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Abstract

Two essential issues of semiempirical quantum chemical methods are addressed
in this dissertation: performance and accuracy. First, semiempirical program
code was developed for heterogeneous high-performance CPU-GPU computing
platforms. In systematic test calculations on large molecules, the overall perfor-
mance could be improved by one order of magnitude, which is unattainable on
CPU-only parallel computers due to intrinsic constraints of the hardware architec-
ture. Second, both local and global optimization algorithms for the parameters
of semiempirical methods were implemented from scratch. The efficiency of
parameterization was increased by taking advantage of coarse-grained parallelism
on symmetric multiprocessors, which enables more comprehensive explorations
of parameter space. This was demonstrated by reparameterization of OM2 and
OMS3 using dispersion corrections and by specific parameterizations for an enzy-
matic reaction, the hydride transfer catalyzed by dihydrofolate reductase, and
for hydrogen bonding and proton transfer in water. The optimized CPU-GPU
code was used in a systematic benchmark with full geometry optimization for a
set of 28 proteins using 10 different semiempirical quantum chemical methods.
These extensive computations unveiled some limitations of the currently available
semiempirical methods that need to be addressed in future work.



Zusammenfassung

Zweil wesentliche Aspekte semiempirischer quantenchemischer Methoden werden
in dieser Dissertation behandelt: Effizienz und Genauigkeit. Erstens wurde
semiempirischer Programmcode fiir heterogene CPU-GPU-Systeme mit ho-
her Rechenleistung entwickelt. Bei systematischen Testrechnungen an grofien
Molekiilen konnten dadurch Leistungssteigerungen bis zu einer Gréflenordnung
erzielt werden, was durch Parallelisierung des seriellen Codes auf rein CPU-
basierten Systemen problem- und hardwarebedingt nicht moéglich ist. Zwei-
tens wurden Algorithmen zur lokalen und globalen Optimierung von Param-
etern semiempirischer Methoden von Grund auf neu implementiert. Die Ef-
fizienz der Parametrisierung konnte durch Nutzung grobkérniger Parallelitat
auf symmetrischen Multiprozessorsystemen gesteigert werden, wodurch eine
weitergehende Erkundung der Parameterflache erméglicht wurde. Dies wurde
demonstriert durch Reparametrisierung von OM2 und OM3 unter Einbeziehung
von Dispersionskorrekturen und durch spezifische Parametrisierungen fiir eine
enzymatische Reaktion, den durch Dihydrofolatreductase katalysierten Hydrid-
transfer, und fiir Wasserstoffbriickenbindungen und Protonentransfer in Wasser.
Mit dem optimierten CPU-GPU Code konnte ein systematisches Benchmarking
mit vollstandiger Geometrieoptimierung fiir einen Satz von 28 Proteinen mit
zehn verschiedenen semiempirischen quantenchemischen Methoden durchgefiihrt
werden. Diese ausgedehnten Rechnungen deckten einige Schwichen aktueller
semiempirischer Methoden auf, die in zukiinftigen Arbeiten behoben werden
sollen.
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Chapter 1

Introduction

Semiempirical quantum chemical methods are fast electronic structure approaches
for studying molecular geometry, stability, spectroscopy, and chemical reac-
tions [1]. The development of semiempirical methods has a long history. Soon
after the advent of quantum mechanics [2], Dirac remarked the following in his

paper [3]:

The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these
laws leads to equations much too complicated to be soluble.

A recommendation how to approach these difficulties was given immediately
after this statement:

It therefore becomes desirable that approrimate practical methods of
applying quantum mechanics should be developed, which can lead
to an explanation of the main features of complex atomic systems
without too much computation.

Hence it was anticipated already at that time that methods, which entail suitable
approximations in the complicated mathematical formalism, would be able to
provide feasible solutions to problems in chemistry.

One of the earliest semiempirical methods was a contribution of Erich Hiickel.
In 1931, he proposed a molecular orbital (MO) method for the energies of the
m-electrons in planar conjugated hydrocarbons using linear combinations of
atomic orbitals (LCAO) [4]. In spite of its simplicity, the Hiickel method was
able to rationalize and predict the properties and reactivities of conjugated
compounds on a qualitative level, and it was widely used as a guide. However,
there are two major limitations of the Hiickel method. First, electron repulsion
is explicitly neglected in the Hamiltonian. Second, since it is based on the
approximation of the o-m separation of electrons, only the m-electrons of planar
molecules can be treated. The Pariser-Parr-Pople (PPP) method [5,6] introduces
electron repulsion into the semiempirical m-electronic Hamiltonian and solves
the secular equations in an iterative manner but it is still restricted to planar
systems. Extensions of the Hiickel method considering all valence electrons
were developed later by Hoffmann [7,8] and others [9] for nonplanar molecules.
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2 CHAPTER 1. INTRODUCTION

The corresponding Hamiltonians, however, are made up of one-electron terms
only, still neglecting electron repulsion. General valence-electron semiempirical
quantum chemical methods overcoming both limitations were initially developed
by Pople and coworkers with three different levels of approximation for the two-
electron integrals, namely CNDO (complete neglect of differential overlap), INDO
(intermediate neglect of differential overlap) and NDDO (neglect of diatomic
differential overlap) [10,11]. The NDDO model fulfills the requirement that
the energy must be invariant with respect to a rotation of the molecule in the
coordinate system and for an orthogonal transformation of the occupied orbitals.
The model can be formally justified [12-16] in terms of orthogonalized Lowdin
atomic orbitals [17]. The MNDO (modified neglect of diatomic overlap) method is
the first successful NDDO-based approach for ground-state molecular properties,
such as heats of formation, molecular geometries, ionization potentials, and
dipole moments [18-20]. Moreover, the MNDO model constitutes the basis for
the most popular semiempirical methods today, in particular AM1 (Austin Model
1) with empirical Gaussian functions for core-core interactions [21] and PM3
(Parametric Method 3) with more thoroughly optimized parameters [22,23].

Some underlying deficiencies of the NDDO model prohibit further improve-
ment of the accuracy merely through more complicated core repulsion functions
or refinement of the parameters [1,24-29]. The OMz (Orthogonalization Method
z, z =1, 2, and 3) methods were developed to go beyond the NDDO model by
means of explicit inclusion of orthogonalization corrections in the Fock matrix
to account for Pauli exchange repulsion [30-32]. Persistent improvements were
obtained over MNDO-type methods for ground-state molecular properties. Fur-
thermore, noteworthy enhancements are also observed in some particular areas,
for example, for vertical excitation energies, rotational barriers, relative energies
for different conformers, and hydrogen bonding [33-35].

The development of quantum chemistry has always been tightly coupled with
the available computing technologies. In fact, the demand for a semiempirical
treatment of molecules was dictated by the limited computational capabilities
in the early days of quantum chemistry. For example, the first all-electron ab
initio calculation of N, was done in 1955 by Scherr and two assistants with
hand-operated mechanical calculators, which took two years to complete [36].
After the introduction of electronic computers into quantum chemistry, some
groups started to develop computer programs so that approximate solutions
of the non-relativistic Schrédinger equation for a molecular system could be
calculated automatically [37-41]. These programs were written for completely
sequential execution on one general-purpose central processing unit (CPU). Due
to increasing clock speed and architectural advances, the performance of a
single-core CPU followed Moore’s law [42] which predicts doubling every 12-24
months.! Thus quantum-chemical calculations became faster and more complex
algorithms could be implemented with every new processor generation. But as
some physical limits associated with the design of silicon chips were approached
about a decade ago, it became more and more difficult to increase the clock
frequency of a single processor. Therefore many efforts were devoted to the
parallelism of multi-processing units in order to keep the exponential growth
of the computing power [43]. Since the 1990s, quantum chemists have been

n its original formulation, Moore’s law refers to the number of transistors on a silicon
chip doubling every 12-24 months, but the exponential growth seems to apply for the resulting
performance as well.



inspired by this tendency to parallelize their serial codes on high-performance
computers with multiple CPUs for boosting performance [44]. Even more recently,
high-performance computers with heterogeneous architectures have become
available, e.g. computing nodes consisting of symmetrically parallel CPUs and
multiple graphics processing units (GPUs) as accelerators for compute-intensive
tasks, which benefit from the substantial peak arithmetic performance and
memory bandwidth provided by the co-processors [45-47]. This has motivated
many theoretical groups [48,49] to develop dedicated programs for such high-
performance heterogeneous computers in the areas of quantum Monte Carlo
methods [50,51], two-electron integral evaluation [52-57], density functional
theory (DFT) [58-65], high-level correlated ab initio methods [66-73|, and
semiempirical quantum chemistry [74, 75].

The accuracy of a semiempirical method is essentially determined by the
theoretical model and the optimization of the involved parameters. This thesis
does not address the important and challenging task to advance the available
semiempirical quantum chemical models, but focuses on the second and more
technical issue of parameterization. There have been numerous attempts to
improve a given semiempirical method to some extent, and even to approach the
limit of accuracy inherent to the underlying model, by careful parameterizations.
Examples are RM1 [76], which is a reparameterization of AM1 [21], and the series
of PMzx (z = 3, 5, 6, and 7) methods [22,77-79]. Due to insufficient computation
power, searches for the best parameters were usually confined to the vicinity of
the initial estimates in the early days of semiempirical quantum chemistry [19].
Global optimizations of the parameters inside some predefined intervals became
feasible later [80-83] with progress in computer hardware and software. Since an
enormous number of function evaluations is generally required both in local and
global optimization procedures, it is vital to take advantage of parallel computing
technologies and to distribute independent function evaluations among multiple
processors to speed up the parameterization. Nonetheless, experience has shown
that it is necessary to carry out careful checks by human beings during the whole
process to make sure that the obtained parameters are consistent with their
physical meaning,.

This dissertation is organized as follows: Chapter 2 gives a brief overview
over the theory of semiempirical quantum chemistry. Chapter 3 describes the
development of modules for the MNDO99 program [84] that enables accelerated
semiempirical calculations on heterogeneous CPU-GPU computing platforms.
The results, especially the speedups compared with CPU-only systems, are
reported in Appendices A and B. The development and the technical details of the
parallel parameterization program on multiple CPUs are presented in Chapter 4
together with an illustrative application, i.e. the reparameterization of the OM2
and OM3 methods with dispersion corrections. Two specific parameterizations
for an enzymatic reaction and for hydrogen bonding and proton transfer in
water clusters are described in Appendices C and D, respectively. Chapter 5
summarizes systematic geometry optimizations for 28 proteins using 10 different
semiempirical methods as a benchmark application. Finally, a short conclusion
is offered in Chapter 6.






Chapter 2

Theoretical Background

Semiempirical quantum chemistry has a long history starting from 1931 [4].
This chapter does not intend a complete survey of its development in the past
decades. Instead it will present the main concepts and the working formulas of
the methods covered in the thesis, for the sake of coherence and for establishing
notation. The underlying theory of the semiempirical methods and the numerous
applications are described in several books [85-87| and reviews [1,24-29,88-91].

2.1 Nightmare of integrals

A non-relativistic time-independent quantum mechanical description of a molec-
ular system is provided by the Schrédinger equation:

H#T = BV (2.1)

where J# is the Hamiltonian operator, E is the total energy of a particular
quantum state described by the wave function ¥. The exact solution to Equa-
tion (2.1) is limited to the simplest systems consisting of one nucleus and a
single electron, i.e. the hydrogen atom and hydrogen-like ions. If each electron is
assumed to move independently in an effective field generated by the fixed nuclei
and the other electrons, the Hartree-Fock (HF) equations for single-electron
wave functions i; can be derived as

Fipi = €. (2:2)

The Fock operator .%; represents the average potential experienced by the ith
electron. {1;} forms a set of orthonormal molecular orbitals (MOs) and ¢; is the
orbital energy. It is, however, impossible to solve Equation (2.2) analytically for
a molecule. A strategy to express 1; as a linear combination of atomic orbitals

(LCAO), namely

K
d)ﬁ = Z Cﬁi¢ﬁ: (2'3)
pu=1

is commonly adopted. ¢, are called basis functions that are normally centered
at the nuclei of a molecule. The coefficients C}; can be varied such that the
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6 CHAPTER 2. THEORETICAL BACKGROUND

total energy is minimized. Since Equation (2.3) is a finite expansion in practice,
the integro-differential HF equations can be rewritten in matrix form (the
Roothaan-Hall equations):

FC = SCE (2.4)

where F is the matrix representation of the Fock operator in the basis of
{¢p : p=1,2,...,K} and each entry of S describes the overlap between two
atomic orbitals (AOs),

S = [ Gu(e)du(er) dr. (2.5)

The vector r; represents the spatial coordinates of an electron. The basis set
may be composed of Slater-type or Gaussian-type functions at each atom. The
basis functions are orthogonal only in a local environment, i.e. Sy, = 0 if both
¢n and ¢, are centered on the same atom, but the overlap of AOs belonging to
different atoms in a molecule may not vanish. S is thus not an identity matrix.
Therefore Equation (2.4) is a pseudo-eigenvalue problem and the eigenvalues
and eigenvectors are the MO energies and coefficients.

The Fock matrix elements F),,, for a closed-shell molecule of 2n electrons are
listed below in atomic units.

Fow = H® + G (2.6)
Heore / bu(x)[ 7 (1) + ¥ (21)]by (1) drs (27)

Guv =) _ Prol(uv|ro) - (#AIW)] (2.8)

Ao

P;_w =2 Z Omcw (29)

(o) = [[ 6ue0du () 2o () drydrs (210)

F is the sum of H;J™ and Gy,. H,;'® is the one-electron core-Hamiltonian
element that includes the kinetic energy (.7) of an electron and the attraction
(7') between the electron and the nuclei. Once a basis set {¢,} is specified, the
core-Hamiltonian matrix will not change in a calculation.

G . is the two-electron part of the Fock matrix. It features two characteristics.
First, it is not fixed in a calculation. The construction of G, depends on
the density matrix P, which itself depends on the doubly occupied MOs (see
Equation (2.9)). Because these orbitals are the solution to Equation (2.4), an
initial guess must be provided for the density matrix. Thereby, the Roothaan-Hall
equations have to be tackled by a self-consistent-field (SCF) procedure, during
which P is iteratively refined until certain convergence criteria are satisfied.
Second, the computation of G, requires the evaluation of a huge number of
two-electron integrals (see Equation (2.10)). Since every (uv|Ac) involves four
AOs, their number scales in proportion to the fourth power of the number
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of basis functions. For example, the number of two-electron integrals for a
calculation with 1000 basis functions is one trillion (1 x 10'2) if orbital and
integral symmetry are completely discarded. The computer memory required
is 8 terabytes, i.e. 8 x 10!? bytes, for double precision floating-point numbers.
Even today (in 2013) this kind of calculation is not feasible on most current
computers. Direct SCF techniques, in which the two-electron integrals necessary
for the Fock matrix update are recomputed on the fly in every SCF iteration,
were invented to surmount this difficulty [92]. While this circumvents the storage
problems, the intrinsic number of floating-point operations for integral evaluation
is actually increased in accurate direct SCF calculations, which in essence trades
floating-point operations for memory space. In practice, the computational
costs are reduced by applying screening techniques during on-the-fly integral
evaluation in direct SCF methods, which makes it possible to compute molecules
with up to several hundred atoms by using ab initio HF methods or density
functional theory (DFT).

2.2 Neglect of differential overlap

To alleviate the burden of two-electron integral evaluation, the zero-differential
overlap (ZDO) approximation,

@™ (r)@"(ry)dry =0, (2.11)

was introduced in the early days of quantum chemistry. It was first used in
the PPP (Pariser-Parr-Pople) method [5,6,93] for the m-electrons of planar
conjugated organic molecules, where ¢ and ¢® denote the p, orbitals on atoms
A and B, respectively.

An effective valence-shell Hamiltonian for both o- and m-electrons [94] is
employed in most of the semiempirical methods today. The most sophisticated
neglect of differential overlap (NDO) approximation is assumed by the NDDO
(Neglect of Diatomic Differential Overlap) model [10],

¢ (r1) @y (r1) dry = 6apd), (r1) ¢y (r1) dry, (2.12)

where dag is the Kronecker delta, i.e. a5 = 1 if A and B are the same atom,
otherwise dap = 0, and (f)f: and ¢2 are arbitrary AOs.

There are two consequences of the NDO approximation. First, the overlap
matrix S in the Roothaan-Hall equations becomes an identity matrix. The
pseudo-eigenvalue problem of Equation (2.4) is thus simplified to a standard
eigenvalue problem

FC = CE. (2.13)

These NDDO secular equations are easier and faster to solve than Equation (2.4)
from a computational point of view, since one additional diagonalization of
S and several extra matrix multiplications, which are necessary in the full
Roothaan-Hall treatment, are bypassed in Equation (2.13).

Second, the NDDO model eliminates a substantial number of two-electron
integrals and the only leftovers are the one- and two-center electron repulsion
integrals,
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(u*vB|XCoP) = 6apdop (B2 |XCaC). (2.14)

Thus the number of two-electron integrals in semiempirical quantum chemical
methods formally scales as O(K?) instead of O(K*) in ab initio HF (or DFT)
methods. Equation (2.14) is the major source for the reduction in floating-point
arithmetic operations and memory usage. Hence, in contrast to large-scale ab
initio HF and DFT calculations that make use of the direct SCF technique, it is
possible in semiempirical methods to compute the relevant integrals only once
and to store them in fast memory for the subsequent Fock matrix formation.

The NDDO integral approximation (in Equation (2.14)) is seemingly rather
drastic at first sight. It can be rationalized by considering the transformation of
the non-orthogonal AOs {¢, } into the symmetrically orthogonalized AOs (or
Léwdin orbitals) {*¢, }:

K
A(\i)b’ = ZTgv¢ﬁ (T = S_1/2) (215)
pu=1

where the transformation matrix T is the inverse square root of the overlap
matrix in the basis of {¢,,}. Since the Lowdin orbitals are orthonormal, it is
straightforward to conceive S as an identity matrix and to retrieve the NDDO
secular equations (2.13). Even though the orthogonalized basis set {*¢, } consists
of linear combinations of the original AOs, the Lowdin orbitals are deliberately
optimized to minimize the overall differences between {1} and {*¢,,} so that
every symmetrically orthogonalized AO is dominated by the corresponding
localized AO. The NDDO model for the two-electron integral evaluation can be
motivated in this way, and supported by numerical computations as well [12-16,
95]. For example, the neglected multi-center and certain two-center integrals
are very small in the basis of the Lowdin orbitals. The remaining two-electron
repulsion integrals do not undergo serious variations if the basis functions are
changed from {¢;,} to {*¢,.}.

Finally, it must be stressed that the one-electron part of the Fock matrix,
H;J'® in Equation (2.7), accounts for the electron-core attraction and represents
the major cause of covalent bonding. If Equation (2.12) were applied to the
integrals in H;)"®, the whole molecule would be unbound. Therefore H;;)’® in
the NDDO model is not subject to the NDO approximation.

2.3 MNDO method

The MNDO (Modified Neglect of Diatomic Overlap) method [19] is based on
the NDDO model. The Fock matrix elements are defined as

A
core 1
F#V = H’_w + Z P)&O’(Gﬁv,,\a - §Gf:)'.~""7)

Ao

B
+) PyuGhly, (n€AandveA) (2.16)
Ao
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__ gycore
F = HS™® —

B3| =

B A
YN PuGhl, (n€AandveB), (2.17)
o A

where G* and GAB are the one- and two-center two-electron repulsion integrals,
respectively (see Equation (2.18)).

Gﬁv)a = (»U’AVAP‘AJA): (218&)
Givho = (VA AB®). (2.18b)

The values of G* adopted in the MNDO method are derived from experi-
mental data. In later general-purpose parameterizations of the MNDO model,
they have been freely optimized, for example in PM3 [22]. In the current thesis,
this has also been done in specific parameterizations for an enzyme-catalyzed
reaction and for hydrogen bonding in water (see Appendices C and D).

A more challenging task is to devise an appropriate treatment of the two-
center two-electron integrals Gf“f so- These integrals were computed analytically
in terms of Slater-type orbitals in early attempts to parameterize the NDDO
model [96-98]. But the results were not satisfactory. One of the distinctions
between MNDO and its predecessors lies in the evaluation of the two-center
two-electron integrals. In the MNDO method, they are expanded as a series of
multipole-multipole interactions

Giionw =D D D IMR™, Mg™), (2.19)

!1 !2 m

where the superscripts [ and m are the order and the orientation of the multipoles,
respectively. The multipoles of two interacting charge distributions are modeled
by suitable configurations of point charges. The integrals evaluated in this
manner exhibit the correct asymptotic behavior for large interatomic separations,
i.e. they converge to the classical point charge interactions. If atoms A and B
are superposed, the GAP integrals are designed to reproduce the numeric values
of the one-center integrals. For intermediate distances, the semiempirical GAB
integrals are somewhat smaller than their analytic ab initio counterparts, which
is considered to account (to some extent) for dynamic electron correlation effects
in an average manner.

The total energy of a molecule is the sum of the electronic energy and the
core-core interactions. The latter consist of electrostatic terms and additional
core-repulsion functions (CRFs). In the framework of the MNDO model, there
have been a number of developments that primarily focused on refinements of
the empirical CRFs, with the hope that some limitations of the original MNDO
method could be (at least partially) remedied [21,22,99-104]. AM1 [21] and
PM3 [22] are the most popular variants of this kind. The accuracy limits of the
MNDO model were explored by using ever more sophisticated CRFs in a sequence
of reparameterizations in the PMz (z = 3, 5, 6, and 7) methods [22,77-79]. The
results of these efforts indicate that the accuracy of the MNDO-type methods
cannot be improved dramatically without advances in the underlying theoretical
model. Hence it seems crucial for further progress to go beyond the MNDO
model.
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2.4 OMz methods

The ab initio HF method makes use of localized non-orthogonal basis functions
{#u} in the Roothaan-Hall equations (see Equation (2.4)). The transformations
to the Lowdin orbitals {*¢,} and to the orthogonalized Fock matrix *F are
performed explicitly by

Yo =812 (
)\F _ S_UQFS_U?, (

0)
1)

Because of the aforementioned NDO approximation (see Equation (2.12)), the
basis functions in the MNDO method are presumed to be the orthogonalized AOs.
Therefore, the semiempirical NDDO Fock matrix NPPOF is supposed to mimic
the transformed Fock matrix *F in the ab initio HF method. The MNDO-type
methods try to recover the effects of these transformations indirectly through
flexible CRFs and continual reparameterizations. The OMz (Orthogonalization
Method, = = 1, 2, and 3) methods, on the other hand, strive to incorporate
the orthogonalization effects into the semiempirical Fock matrix via explicit
corrections guided by the ab initio formulas and numerical results [30-32]. As
already discussed, the two-electron integral approximations in the NDDO model
can be motivated in terms of the Léwdin orbitals [12-16]. Hence, the semiempir-
ical two-electron integrals implicitly incorporate the orthogonalization effects
to some degree. By contrast, the one-electron core Hamiltonian is significantly
affected by changes of the basis from {¢} to {*¢}, i.e. H®™ and *H®°"® can be
quite different. Thus it is important to capture this effect for the semiempirical
core Hamiltonian at the electronic level by going beyond the classic MNDO
method [19].

The semiempirical orthogonalization correction to the core Hamiltonian
matrix elements in the OMz methods is given by

2.2
2.2

C
1
V;ErRT = _EA;J.V (S,u.)u@,\v + rB,u)uS,\v)
A
C

1
+ 5B Y SunSw (HiGe + H™ — 2H), (2.22)
A

where 8, are the two-center one-electron resonance integrals (¢, and ¢, are
located on different atoms) and A,,,, and B, are adjustable parameters. V#C:,RT
in Equation (2.22) is a generic formula. The first OMz method, OM1, only
contains the corrections for the one-center core Hamiltonian, i.e. both ¢, and ¢,
are on the same atom [30]. Corrections to all elements of the core Hamiltonian
are included in the OM2 and OM3 methods [31,32]. For computational efficiency,
VILE,RT in OM3 is truncated at the first-order expansion level, i.e. By, is set to
zero, which causes only a very minor loss in accuracy.

Benchmark calculations [33-35] have demonstrated that the OMz methods
can slightly improve the calculated ground-state properties, e.g. heat of forma-
tions and molecular geometries, compared with MNDO-type methods, whereas
more significant enhancements are observed in several other areas, including
vertical excitation energies, rotational barriers, and hydrogen bonding.
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2.5 Dispersion corrections

Noncovalent forces, such as hydrogen bonds and dispersion interactions that
are much weaker than conventional covalent bonds, are very important in
biomolecules [105]. They are essential for driving the spontaneous folding of
proteins and nucleic acids [106]. The MNDO method [19] tends to overestimate
the repulsion between non-bonded atoms and can thus not properly predict the
energy and structure of a system with dominant noncovalent interactions. A
commonly adopted remedy of this problem is to use empirical CRFs to improve
calculated energies and optimized geometries. A number of CRFs has been
proposed for various MNDO-type methods in the past [21,22,99-104], particularly
in order to improve the description of hydrogen bonding. Dispersion is a rather
weak attractive interaction that acts between any pair of atoms (mainly within
distances around the sum of their van der Waals radii) due to instantaneous
electron fluctuations [107-109]. Formally, the dispersion interaction is not
included in any of the current standard semiempirical methods [1], and the
long-range dispersion attractions are not taken into account at the HF and DFT
levels of theory either [110-114]. On the other hand, this kind of interaction is
often well modeled by molecular mechanics force fields, e.g. AMBER [115] and
CHARMM [116], with an empirical Lennard-Jones potential [117]. Thus, one
can model dispersion by an additional energy correction term

c
Egisp = —SSZZde%m, (2.23)
AB

B=A

which is proportional to the sixth power of the inverse distance between atoms
A and B. Such corrections have been incorporated into the self-consistent-charge
density-functional tight-binding (SCC-DFTB) method [118], the HF [119-121],
a variety of DFT [122-127], and some semiempirical methods [128-133] to better
represent the van der Waals interaction in weakly bound complexes of molecules.






Chapter 3

GPU-Accelerated

Semiempirical Quantum
Chemical Calculations

3.1 Introduction

The graphics processing unit (GPU) has evolved into a many-core processor with
massive parallelism for tremendously intensive computations over the last few
years [46,47]. Both the peak arithmetic performance and memory bandwidth
of a GPU have significantly exceeded those of a multi-core central processing
unit (CPU) as illustrated in Figure 3.1. Thus it becomes appealing to develop
programs in computational chemistry that can harness the GPU as a powerful
computing device [48,49,61].

The reason for the advanced performance of a GPU lies in its distinct
architectural design. The CPU and GPU dies are schematically represented in
Figure 3.2. Since a CPU is a processor for general-purpose computing, many
transistors are needed as control units for sophisticated workflow. In contrast,
a GPU can be regarded as a specific co-processor. It devotes more transistors
to arithmetic and logic units for highly parallel floating-point computations.
Moreover, due to the von Neumann bottleneck [134], more area on a CPU die is
used for caches to facilitate data access to main memory. On the other hand, a
GPU is optimized for the execution of tens of thousands of parallel threads that
can efficiently hide memory latency. Consequently, the architecture of a GPU
has progressed in a very different direction than that for a CPU.

Even though semiempirical quantum chemical calculations are about three
orders of magnitude faster than ab initio Hartree-Fock and DFT calculations [26],
they can be rather time-consuming when it comes to large-scale applications, e.g.
for proteins and long-time dynamics simulations. Therefore the best strategy is
to deploy a heterogeneous CPU-GPU computer and move the most demanding
parts of semiempirical calculations to the GPUs.

One major project in the dissertation was to port the MNDO99 code [84] to a
hybrid CPU-GPU platform and to optimize the performance of GPU-accelerated
semiempirical quantum chemical calculations. This has been accomplished both

13
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Figure 3.1: Comparison of peak arithmetic performance and memory bandwidth
of different Intel CPUs and NVIDIA GPUs.
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Figure 3.2: Schematic diagrams of the CPU and GPU dies. The processing cores
are depicted by gray squares.

for MNDO-type and OMx methods, with overall speedups of typically one order
of magnitude for SCF calculations and geometry optimizations of large molecular
systems. This work has been published [74], and copies of these articles are
included in Appendices A and B. Rather than summarizing these published
papers, the aim of this chapter is to document the technical implementation in
greater detail so that the intricate GPU code can be more easily understood. In
the following, we first describe the hardware specifications of the heterogeneous
CPU-GPU computing node used for the development. Thereafter we present the
dedicated optimizations on multiple GPUs for the fast pseudodiagonalization
and the orthogonalization corrections.

3.2 Heterogeneous CPU-GPU computer

The development was conducted on a CVS version of the MNDO99 package [84].
The GPU acceleration is exclusively based on the CUDA (Compute Unified
Device Architecture) framework that allows developers to program the NVIDIA
GPU as a discrete computational device in terms of a C-like language [135].

Figure 3.3 presents a diagram for the heterogeneous CPU-GPU computer
used in the development. It consists of two parts, host and device, which are
connected by a 16-lane PCIE (Peripheral Component Interconnect Express)
interface with a theoretical bandwidth of 8.0 GB/s. The host has two Intel
Xeon X5690 CPUs which are linked via QPI (Intel QuickPath Interconnect). To
each CPU a part of the system memory is connected. Using the QPI link the
memory is shared among all CPUs. Because of the distiction between locally
connected and remote memory this is called a NUMA (Non-Uniform Memory
Access) architecture. The device is composed of two NVIDIA Tesla M2090 GPUs
with disjoint DRAM (Dynamic Random-Access Memory). The multi-GPU part
may also be regarded to have a kind of NUMA architecture as each GPU may
access the memory connected to the other GPU (peer-to-peer direct access).
Data transfer between both GPUs (and between host and device) takes place
over the PCIE links. PCIE bandwidth represents a significant constraint for the
transfer rate. Thus it is crucial to avoid the peer-to-peer data access for the
GPUs in the code optimization.
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Figure 3.3: A schematic representation of the heterogeneous CPU-GPU com-
puter.

Table 3.1: Some hardware specifications of the Intel Xeon X5690 CPU with the
Turbo Boost Technology switched off and the NVIDIA Tesla M2090 GPU with

ECC (error-correcting code) memory.

CPU GPU
clock frequency (GHz) 3.46 1.3
number of cores 6 -
number of CUDA cores - 512
double precision performance (GFLOP/s) 83.0 665.6
thermal design power (W) 130 250
performance per watt 0.6 2.7
maximum memory size (GB) 288 5.25
memory bandwidth (GB/s) 32 155
cache size (MB) 12 0.768

The hardware architectures of the Intel Xeon X5690 CPU and the NVIDIA
Tesla M2090 GPU are quite different (see Table 3.1). Each CPU core is much
more powerful than a CUDA core of the GPU. The clock frequency alone is
3.46 GHz versus 1.3 GHz, and a CPU core is a lot more complex. The GPU,
however, possesses many more processing cores than the CPU, i.e. 512 versus
6. Therefore the Tesla M2090 has a much higher double-precision floating-
point performance than the Xeon X5690. The energy consumed by the GPU is
roughly twice as high as that of the CPU. However, Tesla M2090 is more energy
efficient than Xeon X5690 because the former can deliver 8 times the arithmetic
performance of the latter.

The GPU memory size is the primary restriction for a large-scale calculation.
Our current workaround is to move the required data arrays back and forth
on-the-fly for the bottleneck computations. This approach minimizes the usage
of GPU memory, whereas the host-device data transfer represents a compromise.
Typically, there are 30 iterations to achieve a self-consistent solution to the
secular equations in a semiempirical Hartree-Fock calculation. In addition, only
a few data transfers must take place for each iteration. Thus it seems reasonable
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to make such a trade-off for the GPU memory.

Each GPU can normally maintain a higher speed for accessing the data in its
own DRAM. Moreover, the GPU is designed to execute computing threads with
massive parallelization to hide memory latency. Hence a cache was not present
in earlier generations of the NVIDIA GPU until the recent Fermi architecture.
In contrast to the cache size on a CPU, the GPU cache is fairly small, e.g. 12 MB
versus 768 KB. Nonetheless, some algorithms that cannot make use of the GPU
shared memory may benefit from the GPU cache to some extent.

3.3 Fast pseudodiagonalization

The fast pseudodiagonalization has been described in detail in the original pa-
per [136]. Because the optimized GPU implementation can be quite complicated,
its mathematical formulas are briefly repeated here.

Basically the fast pseudodiagonalization entails two operations. First, the
Fock matrix in the basis of the atomic orbitals (AOs) is transformed to molecular
orbitals (MOs) by means of a triple matrix multiplication

Z =C/FcC,, (3.1)

where C, and C, are the matrices of the occupied and virtual MO vectors. The
second step begins with the evaluation of the rotation coeflicients, ¢ and s,

()

u
=1—— 3.3
c=1-3 (33)

w2

T (34)

s = —sgn(Fi )\ u—
where ¢ and a are the indices for the occupied and virtual MOs, respectively.
Noniterative Jacobi-like 2 x 2 rotations are then applied for appropriate pairs of
occupied (c,) and virtual (c,) vectors

cl = cc, — sy (3.5)
¢l = sCo + cCy. (3.6)

¢/, and ¢, are the new MOs. The values of .%;, and €, — ¢; are used to determine
whether the associated rotation will be done or not, so that only a sparse set of
orbitals is rotated in practice.

In the following, we begin with the description for the multi-GPU implemen-
tation of the triple matrix multiplication (see Equation (3.1)). Then the memory
management and data storage for the subsequent Jacobi-like rotations on one
single GPU device are demonstrated using an example of 8 basis functions and
5 doubly occupied MOs. A description of how to utilize multiple GPU devices
for performing the rotations is given at the end of this section.

Let us consider a semiempirical calculation with n basis functions, with
the number of occupied and virtual orbitals being n, and n,, respectively. In
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Figure 3.4: Schematic illustrations for the implementation of # = C]FC, on
two GPUs (GPUO and GPU1). The arrays that reside exclusively in the memory
of one GPU are marked by GPUO (or GPU1), whereas the arrays in the memory
of both GPUs are colored in gray. T is a temporary matrix.

addition, we assume that n, is greater than or equal to n,,, which will often be the
case in semiempirical calculations. Then it can be readily proved that the number
of floating-point operations for computing .% is minimized if the associativity
of C](FC,) is exploited in Equation (3.1). Therefore, the implementation
performs the matrix multiplications T = FC, and £ T = TTC,, in this order
(see Figure 3.4), where T is a temporary array. Because .# is symmetric it does
not matter that these two multiplications result in the transposed matrix.

The basic principle of the multi-GPU implementation is to partition the
relevant matrices into smaller tiles for each GPU. Initially, both F and C reside in
the host main memory. For the first matrix multiplication, C, is evenly divided
and the resulting smaller arrays are transferred to the corresponding GPU
memory. Meanwhile the complete Fock matrix (the gray square in Figure 3.4(a))
is moved to both GPUs. Thus the two independent computations may run on
two GPUs at the same time. The second matrix multiplication can be executed
in a similar manner, provided the matrix C, resides in both GPU memories (see
Figure 3.4(b)). It should be noted that the two matrix multiplications can run
asynchronously on multi-GPU devices, i.e. the calculation on one GPU does
not need to wait for the others for finishing the multiplications at any stage. It
is enough to have a final barrier that transfers the related tiles of .%# back to
the main memory on the host. Our numerical tests have shown that the triple
matrix multiplications on two Tesla M2090 GPUs are ~ 1.6 times faster than
those on one single GPU.

The GPU-dedicated algorithm of the noniterative Jacobi-like rotations has
been described in the published paper [74] (see Appendix A). The internal
memory management is documented here by using an example calculation with 8
basis functions, in which 5 occupied orbitals and 3 virtual orbitals are presumed.

All the Jacobi-like rotations are depicted in Figure 3.5 for the example
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Figure 3.5: All noniterative Jacobi-like 2 x 2 rotations for an example calculation
with 8 basis functions. The 5 occupied orbitals and 3 virtual orbitals are
represented by gray and white squares, respectively. Rotations in a sweep are
indicated by dashed lines. The thresholds for skipping small rotations are not
considered.

calculation. There are a total of n, sweeps and n, rotations for each sweep
(if all rotations are performed disregarding the thresholds for skipping small
rotations). Moreover, the rotations belonging to the same sweep can be executed
out-of-order, but the sweeps must be performed in a sequential manner. Thus a
local data synchronization is imposed for every block of GPU threads prior to
an execution of the next sweep.

All rotations and the related pairs of occupied and virtual orhitals are
summarized in Figure 3.6. There is a one-to-one mapping between the rotations
and the matrix entries .%,,. Because certain thresholds on the Fock matrix
elements for skipping small rotations are always used in a calculation, not all
pairs of orbitals are actually rotated. The ratio between rotated and skipped
pairs, however, can vary a lot from one SCF cycle to another, and thereby be
unpredictable. Hence we may assume that two pairs of orbitals, 4 <+ 5 and
1 <+ 7, of the 5th sweep in the example fulfill the thresholds for rotation, whereas
the 0 +» 6 combination will not be rotated (see Figure 3.7).

Two supplementary integer arrays, npair and imo, are employed to store
the counters for the Jacobi-like rotations. npair is one-dimensional. Its length
equals the number of sweeps. Each entry of npair contains the number of
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Figure 3.7: All the Jacobi-like rotations in the example calculation of 5 occupied
and 3 virtual orbitals. The 5th sweep of rotations is highlighted by bold squares,
whereas the others are represented by dashed squares. The rotations of the 5th

sweep, which can satisfy the thresholds, are filled with gray.
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orbital rotations to be performed in the corresponding sweep, e.g. 2 for the
5th sweep. imo is an m, X n, matrix. Its columns correspond to the sweeps.
The occupied orbitals of the rotations for which the thresholds are fulfilled are
recorded in the column vectors, whose actual lengths (without trailing unused
elements) are given by npair. The corresponding virtual orbitals can be easily
deduced from the occupied orbitals using an offset determined by the sweep (see
Figure 3.6). The occupied orbitals in the sweep vectors are always definite, but
their sequential order in a column is completely unspecified. For example, orbital
1 may be followed by orbital 4 for the 5th sweep (see Figure 3.8). But it does
make sense to have a sequence of 1 coming after 4 for the same sweep in another
independent run of the program. The reason for this uncertainty is that the
GPU computing threads are executed completely out-of-order. Therefore atomic
operations are applied to find the next unused element of the current column
vector in matrix imo into which the index of the occupied orbital will be stored.
Before storing any index into the current column of imo, the corresponding
element of npair will be initialized with O indicating an empty column and
pointing to the first element in the column (0-based index). A GPU thread that
finds a non-negligible rotation will use an atomic operation to increment this
pointer, i.e. reading the old value, adding 1 and storing the new value will not be
interrupted by another thread. Using the pointer obtained this way the occupied
orbital index can be safely stored into the column vector. The coefficients of
the Jacobi-like rotations (see Equation (3.2)) are stored in a (2n,) x n, double
precision matrix a. There is a direct mapping between the orbitals listed in imo
and the coeflicients given in a, i.e. the arrangement of the occupied orbitals for
the 5th sweep in imo is consistent with the coefficients saved in a (see Figure 3.8).

The multi-GPU implementation of the noniterative Jacobi-like rotations is
illustrated in Figure 3.9 on two GPU devices. The basic principle is rather
simple: just partition the relevant arrays of the occupied and virtual orbitals on
the GPUs as balanced as possible. Our test calculations demonstrate that the
multi-GPU implementation for the rotations is very efficient, i.e. the speedup is
1.9 on 2 GPUs (see Appendix B). It should be stressed that the actual dimension
of the GPU threads in a block, the mapping of the threads to the rotations, and
the local synchronization within a block of threads are not shown in Figure 3.9
explicitly. These complicated technical details are beyond the scope of this thesis
and can be checked in the code itself.

3.4 Orthogonalization corrections

Our benchmark calculations have shown that the orthogonalization corrections
for the OM2 and OM3 methods may consume a very significant share of the total
computation time, i.e. ~ 10% of the wall clock time in a single-core CPU-only
calculation and ~ 30% for a GPU-accelerated calculation [74]. Instead of a
straightforward port of the original CPU code onto the GPU devices, we devised
a new algorithm for the orthogonalization corrections, which is entirely equivalent
to the old one formally, but much more efficient for numerical computations on
both CPU and GPU architectures. The new algorithm is presented first in this
section. Thereafter it is tested through OMS3 calculations on a set of proteins,
showing that speedups of ~ 400 can be readily achieved by the implementation
of the new algorithm on 2 GPU devices (compared with the original serial
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on the 5th sweep. npair and imo are integer arrays, whereas a is an array of
double-precision floating-point numbers.



3.4. ORTHOGONALIZATION CORRECTIONS 23

one thread

. - A H
B8 o
v ir /"" . . .
088 .,
2088

occupied virtual
orbitals orbitals

Figure 3.9: The multi-GPU implementation of the noniterative Jacobi-like
rotations. The arrays of orbitals are divided between two GPU devices (GPUO
and GPU1). A single GPU thread, which computes one allowed rotation, is
represented by a dashed arrow. The gray squares denote blocks of GPU threads.
The grids of thread blocks are organized in shadow rectangles on the GPUs.

CPU-only implementation).

In the OM2 method, the orthogonalization corrections are in their most
general form, and hence they are used for deriving the new algorithm. The
general formula for the OM2 corrections is

omM2 __
VoM —

b | =

C

AJ-W Z(S#AJB)W + .BﬁAS)w)
A
C

1
+ g B D SinSn (Hi + H = 2R, (3.7)
A

where p and v are atomic orbitals on arbitrary atoms A and B, respectively.
The summation in Equation (3.7) ranges over atomic orbitals A at atoms C that
differ from A and B. We now formally extend these summations to cover all
atoms including A and B:

1
VI,_.-,?;MQ = _EA;J.V Z(S,ukﬁkv + ﬂ,ukskv)
k
1 core core core
+ ngZS,mSkV(HW + HE™ — 2HE™)
k

A
+ 5 A Z(Sﬁpﬁpv + BupSpv)
p

bo| =
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— gBw D SupSew(Hi + HEY™® — 2H™)
p
1 B
+ EA#V Z(Sﬂaﬁav + }B#O'SCFV)

B
1
~ gD >~ SuoSov(Hr® + Hy™ — 2HGTe), (3-8)
a

where k runs over all atomic orbitals, and p and ¢ symbolize the orbitals on atoms
A and B, respectively. The extra terms in the last four lines of Equation (3.8)
exactly cancel the extra terms in the first two lines that arise from extending

the sums over k to all orbitals. The extra terms in the last four lines are all zero,

because the the basis functions on the same atom are orthonormal to each other

Suv = Oy, (3.9)

and the related resonance integrals are also zero by definition

Buv =0, (3.10)
Equation (3.8) can thus be simplified as

1 1
V;ErM2 = _EA;_LVX;_LV + gB;_wY;_w-, (311)

where X, and Y,,,, are given below.

Xpw = lz Sﬁk.@kv - ﬂgv + lz ;ngskv - ﬂgv] (3-12)
k k

Yoo = (Hpr® + H3®) > " SuiSkw — 2 SunHip S (3.13)
k k

Equation (3.12) can be written as

X=(S88-B)+(BS—B) (3.14)

in matrix form. If we define Q = S — I, where I is an identity matrix, then
Equation (3.14) becomes X = QB + Q. Because Q and 8 are symmetric
matrices, we have

X =(QB)+(QB)". (3.15)

If we further define G, = —3A,,,, the first term of Equation (3.7), which is in
fact the orthogonalization correction in the OM3 method, is

VM =Gl X - (3.16)
Equation (3.16) in matrix form is

VOM3 — GoX, (3.17)

where o denotes the element-wise product.
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Table 3.2: The proteins used for testing the orthogonalization corrections in
the OM3 method. N, and Ny are the numbers of atoms and basis functions,
respectively.

notation Poso  Poes  Pose  Pioo  Pias  Pise  Pies  Paan

PDB ID 1BTQ 1K50 2HXX 3K6F 1ACF 2A4V 4A02 3AQO
N, 307 1097 1495 1842 2004 29069 3415 3 558
Nf 754 2699 3655 4446 4920 7157 8173 8727

Unfortunately, there is no similar matrix expression for Equation (3.13), since
its second term, i.e. ), SurHgp ®Sky, involves three matrix elements. Experi-
ence shows that the contribution of Equation (3.13) to the orthogonalization
corrections in the OM2 method is normally rather small, mainly because the
first and second sums in Equation (3.13) are of opposite sign and may thus par-
tially compensate each other in numerical computations. The orthogonalization
corrections in OM2 and OM3 are thus fairly similar, and benchmark calculations
have indeed demonstrated that the accuracy of OMS3 is closely comparable to
that of the OM2 method [31, 32,34, 35].

A new algorithm for computing the orthogonalization corrections in the OM3
method is outlined in Algorithm 3.1. The main computational effort is the
matrix-matrix multiplication in line 6. In addition, as Q, 8, G, X, and VOM3
are symmetric, only the lower (or upper) triangular entries of the matrices are
considered in practice (see lines 3, 7, and 8).

Algorithm 3.1 A matrix multiplication algorithm for computing the orthogo-
nalization corrections in the OM3 method.
1: fori=1to Ny do
for j=1toido
compute Q;4, B;; and Gj ;. > All in linear arrays.
end for
end for
: T+ QA > T is a temporary workspace.
X« T+T'
S VOM3 . GoX

L R

This algorithm has been implemented in the MNDO99 package [84] for both
multi-CPU and multi-GPU architectures. Its performance was compared with
that of the original code by using a set of 8 proteins [137-144]. Table 3.2 lists
these proteins that are labeled as P, where  is the number of residues. The
notations for the computing configurations and the employed algorithms are
collected in Table 3.3. The computation times and speedups are summarized in
Tables 3.4 and 3.5, respectively.

The new algorithm offers significant advantages in both computational ef-
ficiency and numerical accuracy. The original code without any cutoff for the
orthogonalization corrections to matrix elements involving distant atoms is com-
paratively slow on one single CPU core (O1¢). By contrast, the new algorithm
is about 10 times faster when run on the same hardware (N;¢). Furthermore,
the GPU-oriented implementation can amplify the performance gain to more
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Table 3.3: Description of the notations for the different algorithms for the
orthogonalization corrections in the OM3 method on a variety of computing
platforms.

notation description

O1c the original algorithm on a single CPU core

Ogc the original algorithm on a single CPU using all 6 cores

O1ac the original algorithm on two CPUs using all 12 cores

the original algorithm with the default cutoffs on a single CPU

O1c core

o the original algorithm with the default cutoffs on a single CPU
6C using all 6 cores

o the original algorithm with the default cutoffs on two CPUs using
12C

all 12 cores

Nic the new algorithm on a single CPU core

Ngc the new algorithm on a single CPU using all 6 cores
Niac the new algorithm on two CPUs using all 12 cores
Nig the new algorithm on a single GPU device

Nsa the new algorithm on two GPU devices

Table 3.4: Computation time (in seconds) for the subroutine calculating the
orthogonalization corrections in the OM3 method.

Po2o Poss Pose P1oo

Oic 0.560 39.470 84.384 153.225
Ogc 0.100 5.969 15.711 28.686
O1oc 0.054 3.710 10.045 19.076

EC 0.071 2.331 5.629 10.471

’GC 0.014 0.396 0.952 1.779
0o 0.008 0.201 0.479 0.900
Nic 0.075 3.583 8.147 14.170
Ngc 0.023 1.219 1.563 2.774
Niac 0.020 1.113 1.766 1.701
Nic 0.007 0.143 0.310 0.530
Naoc 0.008 0.119 0.247 0.396

Pias Pise Pise Paa1

Oic 243.246 639.672 968.720 1156.657
Ogc 38.403 124.616 194.525 233.753
Oiac 25.818 102.241 176.604 214.191

EC 13.517 44.965 68.980 78.165

’GC 2.299 7.573 11.650 13.202
0o 1.150 3.807 6.125 7.037
Nic 18.499 56.778 84.360 130.444
Nec 3.471 10.997 15.760 20.819
Niac 2.655 6.223 8.415 11.501
Nic 0.694 2.660 4.017 4.799

Nog 0.509 1.601 2.437 2.730
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Table 3.5: Speedups of the subroutine computing the orthogonalization correc-
tions in the OM3 method. The wall clock times of O are used as reference.

Po2o Poss Poss P1oo
Ogc 5.6 6.6 54 5.3
O1ac 10.4 10.6 8.4 8.0
0 7.9 16.9 15.0 14.6
Ol 40.0 99.7 88.6 86.1
O 70.0 196.4 176.2 170.2
Nic 7.5 11.0 10.4 10.8
Nec 24.3 32.4 54.0 55.2
Niac 28.0 35.5 47.8 90.1
Nic 80.0 276.0 272.2 2890.1
Noc 70.0 331.7 341.6 386.9
Pias Pise ST Pas1
Ogc 6.3 5.1 5.0 4.9
O1ac 94 6.3 5.5 54
0 18.0 14.2 14.0 14.8
0%0 105.8 84.5 83.2 87.6
O 211.5 164.1 158.2 164.4
Nic 13.1 11.3 11.5 8.9
Nec 70.1 58.2 61.5 55.6
Nioc 91.6 102.8 115.1 100.6
Nic 350.5 240.5 241.2 241.0

Nog 477.9 399.5 397.5 423.7
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Table 3.6: The maximum numerical error (in €V) for the matrix elements of
the orthogonalization corrections in the OM3 method. The reference values are

those computed with the O;¢ setup.

Po2o Poss Pose Pioo
Ogc 0.00 0.00 0.00 0.00
Oiac 0.00 0.00 0.00 0.00
0)c 0.92x104 0.14 x 103 0.11 x 10-3 0.11 x 103
Opc  0.92x10°* 0.14 x 103 0.11 x 10-3 0.11 x 103
Oy 0.92x 1074 0.14 x 103 0.11 x 10-3 0.11 x 103
Nic 0.17x 10714 0.18 x 1014 0.22 x 10— 14 0.22 x 10-14
Ngc  0.17x 10714 0.18 x 1014 0.22 x 10— 14 0.22 x 10-14
Nise 0.17x 10~ 0.18 x 10~ 14 0.22 x 10~ 14 0.22 x 1014
Nic 0.18 x 1014 0.17 x 10714 0.22 x 10~ 14 0.23 x 1014
Nog 0.18 x 1014 0.17 x 10714 0.22 x 10~ 14 0.23 x 1014

Pios Piss Pise Pooy
Ogc 0.00 0.00 0.00 0.00
Oiac 0.00 0.00 0.00 0.00
O} 012x1073 0.13 x 1073 0.12x 1073 0.12 x 1073
O 0.12x10°3 0.13 x 103 0.12 x 10-3 0.12 x 103
Oy 0.12x 1073 0.13 x 103 0.12 x 10-3 0.12 x 103
Nic  0.24x 1014 0.22 x 10-14 0.36 x 10— 14 0.17 x 10-14
Ngc  0.24x 10714 0.22 x 1014 0.36 x 10— 14 0.17 x 10-14
Nioe  0.24 x 1014 0.22 x 1014 0.36 x 10— 14 0.17 x 10-14
Nic 0.26 x 1014 0.19 x 10714 0.43 x 10~ 14 0.19 x 10~
Nog 0.26 x 1014 0.19 x 10714 0.43 x 10~ 14 0.19 x 10~

than 400 times on 2 GPU devices.

The original code provides the option to skip the evaluation of the exponen-
tially decaying orthogonalization corrections if certain distance-based and/or
overlap-based criteria are satisfied. When using the default cutoffs in the orig-
inal code, the computations are significantly accelerated. For a large system,
the speedup can be one order of magnitude on one CPU core and can reach
200 times with a total of 12 CPU cores. However, these default cutoffs cause
numerical errors of around 0.1 x 1072 €V in the matrix elements VM3 (see
Table 3.6). On the other hand, the new algorithm is able to reproduce reference
values of VOM3 from O;c calculations with very high accuracy, i.e. the errors
are always less than 0.5 x 1071 €V (i.e. of the order of the finite precision of
the floating-point numbers as represented in the computer). Therefore the new
algorithm is error-free in principle.

No matter what algorithm is employed in the computation, the parallelization
on the CPU-only platforms scales well with respect to the number of processing
cores in the test. A superlinear scaling may happen occasionally, e.g. a speedup
of 6.6 times for Pyg3 is observed with the Ogc computing setup. This can be
attributed to the presence of the CPU cache. Data that does not fit into the
cache of a single CPU core may fit if distributed among multiple cores causing
a greater speedup. The GPU-dedicated implementation of the new algorithm
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affords the best performance. If multiple GPU devices are utilized, some extra
acceleration that is proportional to the number of GPUs should be possible,
provided the investigated system is large enough. For example, the computation
of Py, on two GPUs takes 2.7 sec, which is 1.8 times faster than that (4.8 sec)
on a single GPU.






Chapter 4

Parallel Parameterization
Program

4.1 Introduction

Semiempirical quantum chemical methods are quite unique varieties of electronic
structure theory in that the parameterization with regard to experimental or
high-level theoretical reference data plays a much more important role than
for ab initio and density functional methods during method development [26].
The accuracy of a semiempirical method is mostly governed by the underlying
model and the quality of the optimized parameters. Although it has been widely
recognized that the former determines the intrinsic accuracy of a semiempirical
method, the latter is of great practical importance. Extended parameterization
can improve the overall quality of an established semiempirical model to approach
the inherent limit of accuracy for general applications. For example, the contin-
uous parameterization endeavors for MNDO-type semiempirical methods [18,19]
gave rise to AM1 [21], RM1 [76] and PMz (z = 3, 5, 6, and 7) [22,77-79] with
progressively enhanced accuracy and capabilities. Moreover, a specific reparam-
eterization of a semiempirical method may be useful for a targeted system of
interest [80-83,145,146]. It must be stressed, however, that parameterization
should not be overused, because breakthroughs in the development of semiempiri-
cal quantum chemical methods will mainly come from advances in the underlying
theoretical model, rather than the mere reoptimization of the parameters. It
should also be noted that the numerical values of certain parameters need to be
confined to a certain range to retain their physical significance [26].

The parameterization of a semiempirical method aims at finding the optimum
values for a set of parameters by fitting calculated molecular properties !¢ to
reference data x™f so that the error function is minimized. Because a definite
range of allowed values is usually imposed on each parameter, this procedure
can be viewed as a constrained optimization mathematically. A single evaluation
of the error function may involve semiempirical calculations on hundreds of
molecules. Furthermore, the optimization of the parameters will normally
require many iterative cycles, and hence a huge number of evaluations of the
error function, to ensure a comprehensive exploration of parameter space. Thus
the parameterization of a semiempirical method can be an exceedingly time-

31
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consuming task.

One major project in this thesis was the development of a parallel parameteri-
zation program (PPP) that is able to take advantage of symmetric multiprocessing
(SMP) computers and parallel optimization algorithms, in order to solve the
constrained optimization problem in a more efficient way.! In the following, we
first describe the mathematical foundations of the parameterization problem
and the basic principles employed in PPP. We then outline the algorithms for
local and global optimizations that have been implemented in PPP. Finally, an
application is presented, namely the optimization of parameters in empirical
dispersion corrections for the OM2 and OM3 methods.

During the thesis, specific semiempirical parameterizations were performed
in two cases, in order to obtain an optimum semiempirical description of the
enzymatic reaction catalyzed by dihydrofolate reductase [145] and of hydrogen
bonding and proton transfer in water [146]. These studies will not be summarized
here, since they have been published. The corresponding publications are
attached in Appendices C and D.

4.2 Theory

Consider a semiempirical method that depends on n parameters

p=|" | vmeRr (4.1)

T

that are optimized by calibrating against a set of m (m > n) reference properties

a:‘i‘at_

:L'EEt
Kref — . ( 42)
oref
obtained from either experiment or high-level theoretical calculations. The
residuals f; are defined as the weighted differences between the calculated and
reference values of the molecular properties,

o (20—
£ Wa ﬂ3331{3(1)) - IEEf

o (550~ 25
where w; is the ith weighting factor whose unit is the inverse of the dimension
of the reference property so that f; is dimensionless. Equation (4.3) is a vector
function of p, i.e. f: R™ — R™. The objective of the parameterization of a
semiempirical method is to find the minimizer

; (4.3)

p" = arg min s(p), (4.4)
P

1In this chapter, PPP does not refer to the Pariser-Parr-Pople method. [5,6]
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where s(p) is the sum of squared residuals,

stp) =3 £2 (@5)

The residual function (see Equation (4.3)) can be approximated by a first-
order Taylor series expansion in the vicinity of an initial set of parameters

Po

f(po +h) = f(po) + J(po)h, (4.6)

where h represents an infinitesimal shift and J is the Jacobian at the point
Po. The Jacobian contains the first-order partial derivatives of the residual
components with respect to the parameters organized in an m x n matrix

én ... 84
apl apn,
J=1: - (4.7)
Ofm .. Ofm
Bpr Bpn

After applying the linear approximation in Equation (4.6) to the sum of squares
given by Equation (4.5), we have

s(p) = (fo + Joh) T (fo + Joh), (4.8)

where fj and Jg are shorthand notations for f(pg) and J(pg), respectively. The
approximate gradient of s(p) can also be derived from Equation (4.8)

g(p) ~ 234 fo + 234 Joh. (4.9)

It is set to zero when Equation (4.5) is minimized. Upon rearrangement the
normal equations written in matrix form become

JJJoh = —J] fo. (4.10)

Equation (4.10) constitutes the theoretical basis for the gradient-based algo-
rithms.

Since the analytical expressions for the components of the residual function
are normally not available, the Jacobian has to be constructed by means of
numerical differentiation,

Jp = fi(po +e;0) — f:s(Po—eJ5)1 (4.11)
26
which can be a very demanding computational task. In Equation (4.11), e; is
the jth column of an identity matrix and J denotes the small variation of the
jth parameter.

The parameterization of a semiempirical method is a typical non-linear least
squares problem that can be solved by various general optimization methods.
Derivative-free optimization techniques would seem to be particularly attractive,
because the imprecise and time-consuming gradient evaluation can be omitted
completely. To prepare for the description of the derivative-free algorithms in the
next section, we will first introduce the concept of a simplex and the elementary
operations associated with it [147].



34 CHAPTER 4. PARALLEL PARAMETERIZATION PROGRAM

(a) 3-simplex

(b) reflection and expansion

(c) contraction (d) reduction

Figure 4.1: A 3-simplex and the relevant operations for derivative-free optimiza-
tion. The vertices of the highest and lowest values are designated by black and
white circles, respectively. The gray triangles represent the reflection plane and
the centroids are denoted by smaller circles. The points of reflection, contraction,
and reduction are marked by black crosses, respectively, whereas the white cross
indicates the expansion point.

A set of parameters, i.e. p in Equation (4.1), can be considered as a point
in an n-dimensional space. A simplex of parameters is a special polytope of
(n + 1) vertices in n dimensions. Each vertex is defined by a parameter set p;
and its value is given by the sum of squared residuals (see Equation (4.5)). For
example, a 3-simplex in Figure 4.1(a) is a tetrahedron. It can represent a set of
3 parameters that need to be optimized.

There are four basic operations on a simplex in numerical optimization,
namely reflection, expansion, contraction, and reduction. After initial evaluation
of all vertices of a simplex, the vertices of the highest and lowest values are
sorted and labeled as py and p, respectively. The vertices except py then form
an abstract plane, where p denotes its centroid

1 n+1

Z pi (i#h). (4.12)

p:n—l—l

The reflection operation is to reflect the vertex py through the opposite side of
the plane and obtain a new point p*
p"=(1+a)p— apy, (4.13)

where « is a positive constant named the reflection coefficient. This point can
be further expanded along the line joining py and p in the same direction giving
p¢ in the second operation

p°=7p: + (1 —7)p, (4.14)
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where ~ is greater than one and called the expansion coefficient. The contraction
operation is to move the highest vertex towards the centroid of the plane which
results in

p° = Bpn + (1 - B)p, (4.15)

where the coefficient 3 lies between 0 and 1. The last operation displaces all
vertices to the lowest p;

Pi =p1+4(pi — p1) (i#1), (4.16)

so that the size of the simplex is shrunk. The allowed interval of 4 is between 0
and 1. All four operations are demonstrated for the example of a 3-simplex in

Figure 4.1.

4.3 Technical details

In the parameterization of a semiempirical method, the aim is to find an optimal
set of parameters that minimize the objective function (see Equation (4.5)). In
numerical analysis, there are a large number of algorithms available for such
minimization problems. These algorithms can be classified into two types, local
optimization and global optimization. Local optimization finds the minimizer
that gives the lowest value of a function in the neighborhood of the starting
point. For example, p; may be reached from py by a local optimization (see
Figure 4.2). On the other hand, the overall lowest function value in the search
domain is targeted in global optimization, e.g. the point p; in Figure 4.2. Both
local and global approaches can be utilized for parameterization. In both cases,
the comprehensive exploration of parameter space will generally require an
excessive number of function evaluations, and it should thus be preferable to
take advantage of algorithms devised for parallel computers. Some representative
algorithms for both local and global optimizations implemented in PPP are
described in the next subsections.

4.3.1 Local optimization

Algorithms for local optimization usually lead to a minimum in the vicinity of the
initial point. If a function is differentiable and its derivatives can be analytically
computed or accurately estimated by numerical means, then a wide variety of
gradient-based methods is available for searching the best parameters. Otherwise,
a direct derivative-free method may be useful, especially if it is inconvenient or
too demanding to evaluate the function derivatives.

4.3.1.1 Gradient-based algorithms

Two of the most widely used gradient-based algorithms are the Gauss-Newton
method [147,148] and the Levenberg-Marquardt method [149,150]. The basic
theory has been briefly reviewed in the previous section, Algorithms 4.1 and 4.2
present the pseudocode for both methods.

po gives an initial guess for the parameters and check__conv verifies whether
the stopping criteria are satisfied in the end. The vector-valued residual function
(Equation (4.3)) and the Jacobian (Equation (4.7)) need to be evaluated in
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function value

Y

search domain

_— .
- v

Figure 4.2: The minima of a function in an interval. The starting point py for
optimization is indicated by a white circle. All minima are represented by black
circles. p; and p; are local minima, whereas p; denotes the global minimum
within the search domain.

Algorithm 4.1 The Gauss-Newton method.
1: P+ Do
2: repeat
3: f + f(p)
4: J« J(p)
5: solveJTJh=-J'f
6: search a* + arg min s(p + ah)
7 {p,s} < {p+a’h,s(p)}
8-
9:

: conv + check__conv()
until conv

Algorithm 4.2 The Levenberg-Marquardt method.
L. P+ Po
2: repeat
3: f + f(p)
4: J« J(p)
5 A + update()
6: solve (JTJh+AM) =-J'f
T: Pp+<p+h
8
9:

conv + check__conv()
until conv
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both methods at the beginning of the loops. In the Gauss-Newton method, the
normal equations are solved immediately for the direction of steepest descent.
This is followed by a line search for an optimal step size a* in this direction.
Then a new set of parameters is generated to test of convergence. On the
other hand, the Levenberg-Marquardt method introduces a damping factor A
into the normal equations which needs to be updated in each iteration (see
lines 5 and 6 in Algorithm 4.2). For small values of A the Levenberg-Marquardt
method approaches the Gauss-Newton method. The matrix M in the modified
normal equations is a positive diagonal matrix. It can be either an identity
matrix I or diag(J"J), which might be helpful to converge the procedure in
some circumstances.

There may be tens of parameters in a semiempirical method and thousands of
reference properties for a parameterization. In addition, the analytical derivatives
with respect to the parameters are unknown in most cases. Hence the numerical
evaluation of the Jacobian by using a finite difference method can become the
computational bottleneck (see line 4 in Algorithms 4.1 and 4.2). It can thus
be beneficial to make use of multiple processors, e.g. all CPU cores, for this
task. The parallel pseudocode for the computation of the Jacobian is given in

Algorithm 4.3.

Algorithm 4.3 The computation of the Jacobian by a finite difference method
on multiple processors.

1: for iy - 1 to n, do

2 {is,1e} « {set_start(ip,np,n), set_end(ip,np,n)}
3 for ¢ + i, to i, do
4 f+ — f(PO + 93'6)
5: f + f(po —eid)
6 Ji+— (. —£.)/28
7 end for
8: end for

The parallelism in Algorithm 4.3 is achieved by a balanced distribution of
the computation of the Jacobhian matrix for n parameters on n, processors. The
column ranges of the Jacobian, i.e. from i, to ., assigned to each processor are
determined by the functions set_start and set__end. The speedup will trivially
scale proportional to the number of processors in general.

4.3.1.2 Derivative-free algorithms

There are at least two reasons for employing a derivative-free optimization
algorithm for the parameterization. First, the numerical evaluation of the
Jacobian can be very expensive. Second, the residual functions may be somewhat
noisy with respect to variations of the parameters in some calculations so that
one may not always be able to trust the derivatives approximated by finite
differences.

The Nelder-Mead method [151] is a well-established numerical technique
that requires no knowledge of derivatives for a general nonlinear optimization
problem in a multidimensional space. This method, however, usually demands
a very large number of function evaluations to converge a minimization, and
therefore a generalization of the Nelder-Mead method for parallel processors was
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developed [152]. The pseudocode for the parallel Nelder-Mead method is given
in Algorithm 4.4, where 1-based indexing is used throughout.

It should not be difficult to parallelize the construction of an initial simplex on
ny, processors (lines 1 to 3). Unlike the primitive algorithm that tries to replace
the highest vertex of the simplex with a better point, the parallel approach
attempts to simultaneously improve n, vertices of the highest values. The
computation corresponding to one vertex is assigned to a single processor so
that a coarse-grained parallelization of the Nelder-Mead method can be realized
for parameterization. As can be seen in Algorithm 4.4, the four elementary
operations on a simplex, i.e. reflection, expansion, contraction, and reduction,
are all encompassed in the parallel procedure. Moreover, if there is only one
processor in use, i.e. ny < 1, the parallel Nelder-Mead algorithm collapses to
the original version. Finally, it is crucial to notice that the starred variables, i.e.
p; and s}, must be independent on each processor to avoid data race conditions.

4.3.2 Global optimization

Global optimization appears to be attractive since it promises to locate the best
point in the variable space. However, it is not really that appealing as far as the
parameterization of a semiempirical method is concerned. First, the essential
physical meaning of some parameters must be preserved, which implies a certain
locality on the search domain. Second, an overuse of the global optimization
technique should be avoided as the reference data is usually limited to a set of
representative molecules.

Global optimization is very difficult in general, because the objective function
may have many local minima, and criteria are normally lacking to determine
whether a local minimum is truly global. There is a large number of monographs
on global optimization. For the purpose of parameterizing a semiempirical
quantum chemical method, a parallel controlled random search (CRS) was
implemented in the PPP program.

The CRS algorithm belongs to the stochastic direct search methods of global
optimization. It is robust for optimizing a function with noise.? The original
version was proposed by Price in the 1970s [153-156]. Its effectiveness was
improved by many others later on [157-159]. Nevertheless, it is critical to
parallelize the algorithm for more efficiency, because it requires far more function
evaluations to adequately sample the points in the search domain [160]. The
parallel pseudocode is given in Algorithm 4.5.

First, a configuration of N trial points (N > n) is generated at random over
the search domain V, which can be easily parallelized on multiple processors.
Then each working processor randomly samples (n + 1) out of N points in the
configuration and produces an updated point according to some combination
rules. There is no need to synchronize the computations on the processors at
the end of the loop (line 12). Once a processor finishes the computation for a
new point, the maximum of the N points is found and compared with the new
point. If the new point has a smaller value, then the maximum will be replaced.
It should be emphasized that the modification of the maximum is enclosed in a
critical region (lines 13 to 18), which permits execution by only one processor at

2There is no guarantee for the smoothness of the residual functions with respect to the
parameters of a semiempirical method.
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Algorithm 4.4 The parallel Nelder-Mead method.

1: for i+ 1to (n+1) do > create an initial simplex
2: 8i S(I)g')
3: end for
4: repeat
5: sort(sg-,pi) ) g S1(p1) < 32(92) << 3n+1(Pn+1)
= 1 n+l—-n
6: | nri—ny 2ui=1 F Pi
T: shrink + true
8: for i <~ (n+2—ny) to (n+1) do > loop through the n, worst points
o: {p},si} « {reflect(pi), s(p})} > reflection
10: if sj < s; then
11: {p§, s} + {expand(p}), s(p§)} > expansion
12: if s¢ < s; then
13: {p},si} « {pf, s}
14: else
15: {pf.si} « {pi, i}
16: end if
17: strink < false
18: else if s; < s} and s < s;_; then
19: {pi.si} < {pi,si}
20: strink < false
21: else if s; | < s} then
22: {p¢, s¢} « {contract(p;), s(p$)} > contraction
23: {ﬁiugi} (_min({piusi}:{pgus:;})
24: if s§ < 5; then
25: {pi,si} « {p7,si}
26: strink < false
27: else
28: {pi,si} < {pi,si}
29: end if
30: end if
31: end for
32: if shrink then > reduction
33: fori:=2to (n+1—ny) do
34 {pi, si} + {reduce(p:), s(pi)}
35: end for
36: fori=(n+2—mny) to (n+1) do
37 {pi, si} « {reduce(p;), s(pi)}
38: end for
39: else
40: fori=(n+2—mny) to (n+1) do
4L: {pi, si} < {p}, 57}
42: end for
43: end if
44: conv + check__conv()

45: until conv
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a time, so that a corresponding data race condition can be completely avoided.
The final step is to check for convergence. The outermost loop is terminated if
some suitable convergence criterion is satisfied.

Algorithm 4.5 The parallel controlled random search method.

1: fori=1to N do > N trial points
2: pi + random(V)

3: 8i S(pi)

4: end for

5: repeat

6: for all processors do

7 r + sample(N,n+ 1)

8: fori=1to (n+1) do

o: p; < Pr,

10: end for

11: {p", s"} « {update(p*), s(p")} > a new point
12: end for

13: Begin Critical

14:  {Pm;sm} < maz({p;,s:}, N)

15: if s" < s, then

16: {pm-, Sm} — {pu, Su}

1T: end if

18: End Critical

19: conv + check__conv()

20: until conv

4.3.3 Implementation

No matter whether gradient information is used or not in the aforementioned
optimization algorithms, the primary computational task for parameterizing a
semiempirical method is the evaluation of the sum of squared residual functions
(see Equation (4.5)). Since the function evaluations are mostly independent of
each other, they can be assigned to the processors of a symmetric multipro-
cessing computer and executed in parallel (see Figure 4.3). The coarse-grained
parallelization is organized in a master-worker pattern. PPP, as a master pro-
gram, is responsible for generating new trials of parameters, distributing the
computations and accumulating the final sum-of-squares, whereas the function
evaluations are invoked via system calls to the MNDO99 program as workers on
parallel processors. Please note that the MNDO99 program should be executed
in a sequential mode for this particular situation to maximize the parallelism of
the function evaluations on multiple processors.

4.4 Demonstrations

Three studies on the parameterization of semiempirical methods were carried out
as demonstrations. The first one is a specific parameterization for an enzyme-
catalyzed hydride transfer based on the AM1 Hamiltonian [145]. The second one
is an extensive parameterization of MNDO-type (MNDO, AM1, and PM3) and
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Figure 4.3: A diagram for the coarse-grained parallelization employed in the
PPP program. The multi-core CPUs are represented by bold squares and the
smaller squares indicate the processing cores.

OMz (z =1, 2, and 3) methods for hydrogen bonding and proton transfer in
water clusters [146]. Both studies have been published, the papers are attached
in Appendices C and D. The third investigation concerns the parameterization
of dispersion corrections in the OM2 and OM3 framework for weakly bound
complexes. The corresponding results are presented in this section.

Noncovalent intermolecular interactions are weak by nature, but they are
ubiquitous in biological systems and of particular prominence for protein folding
and nucleobase stacking in DNA (deoxyribonucleic acid) and RNA (ribonu-
cleic acid) [106]. One of the noncovalent interactions is dispersion which is
attractive for any pair of atoms due to instantaneous fluctuations of the elec-
trons [108,109]. A proper theoretical description of dispersion is difficult [105,161].
Some commonly used quantum chemical methods, e.g. ab initio MO theory and
DFT with standard functionals, do not account for dispersion effects prop-
erly [113,114]. High-level correlated ab initio methods, e.g. MP2 or CCSD(T),
with large basis sets are required for an accurate treatment of dispersion in-
teractions accurately [110-112]. Such calculations are practical only for rather
small molecules. However, unlike other effects in electronic structure theory,
dispersion interactions can be reasonably modeled by molecular mechanics force
fields in terms of empirical formulas with suitable parameters [115,116]. In order
to retrieve the dispersion energy for methods based on quantum mechanics with
an affordable computational effort, dispersion terms from empirical Lennard-
Jones potentials [117] have been added to the energies from the Hartree-Fock
method [119-121, 162], some DFT methods [122-127], the self-consistent-charge
density-functional tight-binding (SCC-DFTB) method [118], and several semiem-
pirical methods, e.g. AM1, PM3, and PM6 [128,130-133,163]. Dispersion
corrected OMz methods have been explored in our group [129]. The current
study aims at testing alternative dispersion formulas, searching the parameter
space more thoroughly, and reaching the best accuracy.

The empirical dispersion energy for the OM2 and OM3 methods is given by
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C
Ed = —8g E E fd%; (417)
AB

B=A

where sg is a global scaling factor, Rsg is the distance between atoms A and B,
and Cag/ RSy is an analogue of the second term for the Lennard-Jones potential.
The Cap coefficient is computed as the geometric mean of the Cs parameters

for a pair of atoms
Cag =4/CHCB. (4.18)

A damping function f3 must be used for every term in the sum to prevent
the dispersion energy from assuming unphysically large negative values when two
atoms, A and B, are coming very close to each other. Several functional forms
have been proposed for f; in the literature. Two different damping functions,
denoted as fp, and fp,, are studied in this work, namely

fo, = [1 — exp (—cd %B )] ' (4.19)

and

1
-1 + exp[—cq (Rag/Ry, —1)]’

cq are the damping coefficients and Ry is the sum of the van der Waals radii

Jfo, (4.20)

R, = Ry + RS, (4.21)

The numerical values of ¢q can be quite different for the two functions, e.g. 3.0 in
Equation (4.19) and 20.0 in Equation (4.20) were used in previous studies [118,
122,123]. When Rap becomes infinite, both sigmoid functions approach unity,
and hence the correct RKE asymptotic behavior of the dispersion interaction
will be fulfilled. However, there is a fundamental difference between these two
functions at short distances. If Rap is zero, Equation (4.19) is zero precisely,
whereas Equation (4.20) is not zero (albeit very tiny). In the latter case,
—Cap/RSy will diverge when the two atoms are very close; however, this
happens at unrealistically short distances that are generally not encountered in
molecular systems.

The S22 set of noncovalent complexes [164] was employed for the param-
eterization of the dispersion-corrected OM2 and OM3 methods (denoted as
OM2-D and OM3-D, respectively). This training set includes 7 hydrogen bonded
complexes, 8 dispersion force dominated complexes, and 7 complexes of mixed
interactions (see Figure 4.4). The reference properties for the parameterization,
i.e. binding energies, hydrogen bond lengths and angles, and some relevant atomic
distances mainly governed by dispersion forces, are listed in Table 4.1 together
with the associated weighting factors. There are 141 reference data in total.
Since the potential energy surface for a weakly bound system may be rather
flat, stringent convergence criteria were employed for both the SCF calculations,
in which the variation of the electronic energy for successive iterations must
be less than 1.0 x 1079 €V and the maximum change of the density matrix



4.4. DEMONSTRATIONS 43

Table 4.1: The number (No.) of reference data and the associated weighting
factors (w) used in the parameterization of the OM2-D and OM3-D methods. The
molecular properties include binding energy (AFE), hydrogen bond length (rg)
and angle (ap), important atomic distances dominated by dispersion interactions
involving one hydrogen atom (rgp) and heavy atoms only (rp).

AFE TH ayg THD ™D

No. 22 14 14 32 59
w  10.0 mol/kcal 100.0 A= 1.0 degree* 100.0 A—' 100.0 A—!

elements must be less than 1.0 x 107°, and for the geometry optimizations of
single fragments and whole complexes, in which the gradient norm must be less
than 0.01 kcal/(mol - A).

The parameters to be optimized are sg, ¢4, Cg, and Ry. The first two are
general parameters not associated with any atoms, whereas the others possess
distinct values for different atoms. Two damping functions, fp, and fp, (see
Equations (4.19) and (4.20)), were investigated and compared in this work and
the relevant methods are denoted by suffixes “-D1” and “-D»”, respectively.

Because there are two types of parameters, the parameterizations were carried
out in two steps. First, the optimal values for sg and ¢4 were found by a grid
search, in which sg was varied from 0.4 to 1.0 and ¢4 was varied in the interval
of 0.5 to 4.0 for fp, and 12.0 to 24.0 for fp,, respectively. The granularity of the
grid was 0.1. The top 5 combinations of sg and ¢q4 sorted by the root-mean-square
deviation (RMSD) of the binding energy are given in Table 4.2 for the dispersion-
corrected OM2 and OMS3 methods. It can be seen that all reference properties
are fairly insensitive to small variations of s and ¢g4 in the regions that exhibit
the smallest deviations of the binding energy. We have adopted the combinations
of s and ¢4 listed in the first row of each method in Table 4.2 as suitable
parameters for the empirical dispersion corrections. Keeping those sg and ¢g
fixed for each method, the atomic parameters, Cg and Ry, for hydrogen, carbon,
nitrogen, and oxygen were optimized in the second step. There is a connection
between the Cp coefficients and the atomic polarizabilities [107,165]. In addition,
the Ry parameters are the van der Waals radii of the atoms [166]. Hence the
underlying physical significance of both parameters must be preserved during
parameterization. Therefore the initial values for Cs and Ry were drawn from
reference [123] and further optimizations were confined by allowing variations of
at most +10% from the original values. The initial and final values of Cg and
Ry are given in Table 4.3 for the OM2-D and OM3-D methods. Evidently, the
second parameterization step (see Table 4.4) achieves only minor improvements
of the reference properties compared with the first step (Table 4.2). Overall,
there are substantial enhancements relative to the results from the original OM2
and OM3 methods, especially in the case of OM3 (see Table 4.4).

A comparison of the molecular properties for the S22 set calculated by using
the standard OM2 and OM3 methods and the dispersion-corrected OM2-D and
OM3-D methods is given in Table 4.4. The OM2-based methods, i.e. OM2,
OM2-D,, and OM2-D,, always produce smaller errors for ry than the OM3
counterparts, but the RMSDs for ry are almost unchanged for a given method
with or without dispersion corrections. ay and rup are very slightly improved by
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hydrogen bonded complexes
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Figure 4.4: The S22 training set. The carbon, nitrogen, and oxygen atoms are
represented by gray, blue, and red balls, respectively. The hydrogen atoms are
shown as smaller white balls. The noncovalent interactions involving hydrogen
atoms are indicated by dashed lines.
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Table 4.2: Root-mean-square deviations of the OM2-D and OMS3-D binding
energies (AE, in kcal/mol), hydrogen bond lengths (7, in A) and angles (ay;, in

degree), and some important atomic distances involving dispersion interactions

(rap and rp, both in A) for the S22 set in the grid search for sg and cg.

(a) OM2-D;
Sg Cd AFE TH ayg THD ™D
0.8 0.6 1.26 0.18 3.65 0.34 0.37
0.7 0.8 1.27 0.18 3.24 0.31 0.34
0.9 0.5 1.27 0.17 3.79 0.40 0.37
0.7 0.7 1.27 0.18 3.42 0.32 0.36
0.6 1.0 1.27 0.18 2.90 0.29 0.37
(b) OM2-D3
sg cd AF TH an THD ™D
0.5 12.0 1.24 0.18 3.01 0.30 0.39
0.5 12.1 1.24 0.18 3.01 0.30 0.39
0.5 12.2 1.24 0.18 3.02 0.30 0.39
0.5 12.3 1.24 0.18 3.01 0.30 0.39
0.5 124 1.24 0.18 3.02 0.30 0.39
(¢c) OM3-D;
sg cd AF TH an THD ™D
0.6 14 0.80 0.35 1.51 0.42 0.30
0.6 1.5 0.80 0.35 1.57 0.42 0.30
0.6 1.6 0.80 0.35 1.64 0.45 0.30
0.6 1.3 0.81 0.35 1.44 0.42 0.30
0.7 1.0 0.81 0.35 1.23 0.46 0.29
(d) OM3-D3
sg cd AF TH an THD ™D
0.6 18.6 0.83 0.35 1.72 0.44 0.32
0.6 18.5 0.83 0.35 1.72 0.44 0.33
0.6 18.7 0.83 0.35 1.72 0.44 0.33
0.6 18.8 0.83 0.35 1.73 0.44 0.33
0.6 184 0.83 0.35 1.72 0.44 0.33
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Table 4.3: The initial values of the Cg (in J - nm® - mol™') and Ry (in nm)
parameters for hydrogen, carbon, nitrogen, and oxygen and the optimized

parameters for the OM2-D and OM3-D methods.

(a) initial values

hydrogen carbon nitrogen oxygen
Cs 0.14000000 1.75000000 1.23000000 0.70000000
Ry 0.10010000 0.14520000 0.13970000 0.13420000
(b) OM2-Dy
hydrogen carbon nitrogen oxygen
Cs 0.13836140 1.74837313 1.22660965 0.70235574
Ry 0.09195488 0.14057505 0.13120977 0.13943710
(¢c) OM2-Dy
hydrogen carbon nitrogen oxygen
Cs 0.13349720 1.74649564 1.22649173 0.68974720
Ry 0.10685589 0.14169369 0.14069819 0.13069564
(d) OM3-D;
hydrogen carbon nitrogen oxygen
Cs 0.13699517 1.76051239 1.23050050 0.70000000
Ry 0.09359344 0.14369850 0.13970000 0.13420000
() OM3-D
hydrogen carbon nitrogen oxygen
Cs 0.14146973 1.75148586 1.23148586 0.70136073
Ry 0.10158635 0.15275442 0.14115458 0.13573278

Table 4.4: Root-mean-square deviations of the binding energy (AFE, in keal/mol),
hydrogen bond length (rg, in A) and angle (ag, in degree), and some important
atomic distances involving dispersion interactions (rgp and rp, both in A) for
the S22 set calculated by using the standard and the dispersion-corrected OM2
and OM3 methods.

AFE TH aH THD ™D
OM2 2.69 0.17 3.24 0.42 1.54
OM2-D, 1.36 0.18 2.73 0.27 0.35
OM2-D» 1.26 0.18 3.24 0.30 0.38
OM3 2.59 0.34 3.08 0.44 6.82
OM3-D, 0.81 0.35 1.97 0.41 0.27
OM3-D, 0.81 0.35 1.64 0.41 0.31
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Figure 4.5: The empirical dispersion interaction energies between hydrogen and
nitrogen atoms in the OM2-D;, OM2-D», OM3-D;, and OM3-Dy methods.
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Figure 4.6: The empirical dispersion interaction energies between hydrogen and
oxygen atoms in the OM2-D;, OM2-D5, OM3-D;, and OM3-Dy methods.
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Figure 4.7: The empirical dispersion interaction energies between two carbon

atoms in the OM2-D;, OM2-D5, OM3-D;, and OM3-D5 methods.

adding the empirical dispersion corrections. Overall, however, the impact of the
dispersion corrections on the geometries of hydrogen bonds is very small. This
can be easily understood. For one thing, hydrogen bonds are treated reasonably
well already by the standard OM2 and OM3 methods. The strength of common
hydrogen bonds is at least ~ 2 kcal/mol [167], while the interaction energy
contributed by the dispersion corrections is rather small, e.g. < 0.15 kcal/mol
between hydrogen and an electronegative atom (see Figures 4.5 and 4.6 for
the potential curves of H---N and H---0). Hence, the hydrogen bonding
interactions are primarily electrostatic attractions. On the other hand, the
dispersion corrections significantly improve the interatomic distances dominated
by dispersion forces. Since dispersion effects are formally missing in the standard
OM2 and OM3 methods, the errors of rp are unacceptably large, e.g. 1.54 A for
OM2 and 6.82 A for OM3. The original OM2 and OM3 methods thus do not
produce realistic structures for complexes dominated by dispersion interactions,
and the corresponding binding energies are meaningless. It is obvious that the
predicted rp values are greatly improved if the methods are augmented with
dispersion corrections (see Table 4.4). Moreover, it seems that the results are not
much affected by the choice of the damping function. The accuracy of OM2-D,
and OM2-Ds (also of OM3-D; and OM3-D5) with respect to rp is quite similar.
The OM3-D methods have smaller errors than OM2-D with regard to the binding
energy, e.g. 0.8 kcal/mol for the former versus ~ 1.3 kcal/mol for the latter, but
both perform better than the standard OM2 and OM3 methods. To summarize,
the empirical dispersion corrections enhance the description of the van der Waals
complexes, and the quality of the four methods, i.e. OM2-D;, OM2-Dy, OM3-D;,
and OM3-Ds, for noncovalent systems is comparable in general.

Plots of the OM2-D and OM3-D dispersion energies for two carbon atoms
are illustrated in Figure 4.7. Obvious wells are found at distances of 3.0 A
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to 3.5 A, which roughly correspond to the sum of the van der Waals radii of
two carbon atoms.? In all four semiempirical methods, the well depths due to
dispersion between a pair of carbon atoms vary from —0.15 to —0.20 kcal /mol.
These values are reasonable and in good agreement with the dispersion energies
for various DFT-D methods [124,125]. Because the damping function fp, of
Equation (4.20) does not go to zero when two atoms approach each other closely,
unphysical attractions are witnessed when the distance between two carbon
atoms drops below 1.0 A (see the green and magenta curves in Figure 4.7).
The steepness of the attractive curve in the covalent region is governed by the
damping coefficient ¢g. The optimized ¢4 value for OM2-Ds is less than that for
the OM3-D5y method, i.e. 12.0 versus 18.6. Consequently, the curve for OM2-D5
has a broader well that extends to ~ 1.5 A and then drops off again for a pair
of carbon atoms. By contrast, the damping function from Equation (4.19) is
almost exactly zero for short distances, e.g. for Rc...c < 2.0 A, and the empirical
dispersion corrections affect essentially only the van der Waals region, if fp, is
employed as the damping function. For large separations, all empirical dispersion
corrections fall off according to the asymptotic Ryg law, by construction. In
conclusion, even though the four dispersion corrected methods are of similar
accuracy for noncovalent complexes, the OM2-D; and OM3-D; methods are
recommended because the damping function fp, behaves more properly than
fp, over the full range of interatomic distances.

3The van der Waals radius of a carbon atom is 1.70 A [166]. Note that this value is subject
to debate [168].






Chapter 5

Benchmark of
Semiempirical Methods on
Protein Structures

Because of the improved performance of the MNDO99 program [84] on hybrid
CPU-GPU computing architectures [74,169], full geometry optimizations were
carried out for a set of 28 proteins characterized by different secondary struec-
tures using 10 semiempirical quantum chemical methods, namely MNDO [19],
AM1 [21], PM3 [22], OM1 [30], OM2 [31], OM2-D;, OM2-D,, OM3 [32], OM3-
D;, and OM3-D,. The 28 proteins were selected from a benchmark set used
in previous work [170] by eliminating those containing sulfur, since parameters
for this element are not available for the OMz-type methods at present. The
28 proteins can be classified according to their dominant secondary structural
element, namely a-helix, 8-strand, or random coil (see Figure 5.1). However,
there are only two proteins of S-strand type. In order to have sufficient sam-
ples for the statistics of the benchmark calculations, the a-helix and S-strand
proteins are treated as a single group in the following discussion. The primary
noncovalent interaction among the residues in this first group with dominant
a-helix or S-strand structures is hydrogen bonding, whereas it is dispersion in
the second group with somewhat unfolded main chains.

The quality of the protein structures predicted by the semiempirical cal-
culations was evaluated in terms of the structural criteria for the backbone
and the side chains by using the PROCHECK program [171]. As depicted in
Figure 5.2, the criteria cover all covalent bond lengths and bond angles for the
residues along the main chains [172]. Moreover, all the dihedral angles (¢ for
Ci1—N;—C{—C,, ¢ for N;—C{"—C;—N,, ;, and w for C{*—C;—N;,; —C{} ;) of the
backbone and the first side chain dihedral angle (x; for Ni—C‘-ft—C’i8 —C) were
also included [173,174]. It must be emphasized that the default geometric data
employed in PROCHECK, instead of the experimental structures, were used as
references to evaluate the quality and errors of the protein structures optimized
by the semiempirical calculations. It should be noted in this context that the
structures of the 28 proteins in this set were determined by several different
experimental techniques, e.g. X-ray diffraction, solution NMR (nuclear magnetic
resonance) and solid state NMR, and hence the quality of the experimental struc-
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Figure 5.1: The benchmark set of proteins.
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Figure 5.2: The structural criteria for assessing the quality of the protein
structures. The covalent bonds are colored in red. The bond angles are denoted
by blue arc arrows. The backbone dihedral angles are indicated by ¢, ¥, and w.
x1 is the first dihedral angle of the side chain.

tures is not guaranteed to be the same for all proteins, e.g. the structure resolved
by one experiment might be more accurate than others [106]. By contrast, the
stereochemical parameters, i.e. bond lengths, bond angles, and dihedral angles,
used in the PROCHECK program are derived from statistics on protein coordi-
nates obtained from high-resolution X-ray crystallography [172,174]. Therefore
it seems better to use the reference values from PROCHECK as the “standards”

The experimental structures of our protein set were also compared with the
PROCHECK reference values so that their quality can be assessed with respect to
other protein structures solved by more reliable experiments. Last but not least,
we also considered the protein structures optimized by other theoretical methods,
i.e. the AMBER ff03 force field (AMBER) [115], the restricted Hartree-Fock (HF)
method, and the wPBEh density functional theory [175], using the 6-31G basis
set in the latter two cases. The optmized structures were extracted from the
original paper [170] and the relevant stereochemical quantities were determined
using the PROCHECK program to allow for a comprehensive comparison of the
protein structures obtained from the semiempirical quantum chemical methods
and the other theoretical approaches.

Usually, there are 5 relevant covalent bonds and 7 relevant bond angles per
residue in a protein (see Figure 5.2). The bond lengths and bond angles are
classified in PROCHECK according to the type of amino acids. The reference
data and their standard deviations are given in Tables 5.1 and 5.2. The mean
absolute errors (MAEs) for the bond lengths and the bond angles in the backbone
determined by experiments and different theoretical calculations averaged over
each group of the protein test set are listed in Table 5.3. In general, the
experimental values show the best agreement with the PROCHECK reference
data in both protein groups. They are followed by the AMBER, HF, and DFT
calculations, for which the deviations are roughly similar, i.e. 0.01 A for the

bond lengths and ~ 2 degree for the bond angles. The bond angles predicted by
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Table 5.1: The classification of the main-chain covalent bonds in a protein, the
reference values (o, in A), and the standard deviations (o, in A) employed in

the PROCHECK program.

notation  bond description To o
by C-N C-NH1 (except Pro) 1.33 0.01
b C-N (Pro) 1.34 0.02
b c-0 CO 1.23 0.02
by CA-C CHIE-C (except Gly) 1.52 0.02
bs CH2G*-C (Gly) 1.52 0.02
bs CA-CB CHIE-CH3E (Ala) 1.52 0.03
by CHIE-CHIE (Ile, Thr, Val) 1.54 0.03
bs CH1E-CH2E (the rest) 1.53 0.02
bg N-CA NHI-CHIE  (except Gly, Pro) 1.46 0.02
b1o NH1-CH2G* (Gly) 1.45 0.02
bis N-CHIE (Pro) 1.47 0.01

all semiempirical methods are of about the same quality as the other theoretical
methods, but the deviations for the bond lengths are somewhat larger. On
average, the deviations for the OMz-based methods are slightly smaller, by
~ 0.01 A, than those obtained with the MNDO-type methods. The MAEs of
all types of covalent bonds for the experimental and theoretical methods are
summarized in Tables 5.4 and 5.5. The worst errors for all semiempirical methods
are due to the elongated (by about 0.05 to 0.08 A) amide C—N bonds. This
bond seems quite sensitive to the environment of the molecule. For example, the
experimental peptide bond length of N-methylacetamide is 1.386 A in the gas
phase [176], but is decreased to 1.33 A in the crystalline state [177]. The default
values in PROCHECK are taken from the X-ray crystal structures of proteins.
By contrast, semiempirical methods are mostly parameterized with respect to
experimental gas-phase data, and the geometry optimizations were carried out
for the isolated proteins. This complicates the assessment of the quality of the
theoretical predictions for the amide bond length.

The Ramachandran map of [¢, 1] combinations in proteins [178] is divided
into four regions by the PROCHECK program: most favored (P ! »)» additionally
allowed (P¢ ), generously allowed (PSw) and disallowed (P¢ !D) The average
dlStI‘lbllthl’l.S of the regions for the benchmark proteins are given in Table 5.6.
In general, much higher Pl values are observed for the first group of proteins
with more regular seeonda;ry structures than for the second group of disordered
polypeptide chains. As required by the PROCHECK program, the value of P
is expected to be higher than 90% for a well-resolved protein structure. ThlS
is a very strict requirement, which is not satisfied on average by the protein
structures determined either from experiment or from theoretical calculations
(see Table 5.6). The experimental structures show the best P‘;.w values, i.e.
81% and 68% for the first and second group, respectively. In most cases, the
AMBER, HF, and DFT calculations retain higher P 5. and lower P¢_ y values
than the semiempirical methods, which tend to predlct higher distributions in
the additionally allowed region. Overall MNDO and OM1 seem to be the best
among the semiempirical methods for the [, 1']-distribution.



Table 5.2: The classification of the main-chain bond angles in a protein, the
reference values (zp, in degree), and the standard deviations (o, in degree)

employed in the PROCHECK program.

notation angle description T o
ay CA-C-N CHI1E-C-NH1 (except Gly, Pro) 116.2 2.0
as CH2G*-C-NH1 (Gly) 1164 2.1
a3 CH1E-C-N (Pro) 1169 1.5
ay O-C-N  O-C-NH1 (except Pro) 123.0 1.6
as O-C-N (Pro) 1220 14
ag C-N-CA C-NH1-CHIE (except Gly, Pro) 121.7 1.8
ar C-NH1-CH2G* (Gly) 1206 1.7
ag C-N-CH1E (Pro) 1226 5.0
ag CA-C-O CHI1E-C-O (except Gly) 1208 1.7
a0 CH2G*-C-O (Gly) 1208 2.1
a1 CB-CA-C CH3E-CHIE-C (Ala) 1105 15
a1 CHIE-CHIE-C (U, Thr, Val)  109.1 2.2
ais CH2E-CH1E-C (the rest) 1101 1.9
ais N-CA-C NH1-CH1E-C (except Gly, Pro) 111.2 2.8
ais NH1-CH2G*-C (Gly) 1125 2.9
ae N-CHIE-C (Pro) 1118 25
ay N-CA-CB NHI1-CHIE-CH3E (Ala) 1104 15
ais NH1-CHIE-CH1E (Ile, Thr, Val) 111.5 1.7
alg N-CH1E-CH2E (Pro) 103.0 11
a0 NHI-CHIE-CH2E (the rest) 1105 1.7

Table 5.3: Mean absolute errors averaged over all bond lengths (MAE;, in A)
and bond angles (MAE,, in degree), respectively, in the protein main chains
determined by experiments (Expt.) and various theoretical methods.

a-helix and S-strand random coil
method
MAE;, MAE, MAE;, MAE,
Expt. 0.008 1.03 0.013 1.26
AMBER 0.011 1.84 0.011 1.92
HF 0.008 1.63 0.010 2.09
DFT 0.010 1.58 0.013 2.24
MNDO 0.033 2.44 0.036 2.59
AM1 0.020 1.98 0.020 2.01
PM3 0.030 2.05 0.032 1.98
OM1 0.022 2.01 0.027 2.23
OM2 0.020 2.18 0.020 2.28
OM2-D, 0.019 2.25 0.021 2.63
OM2-D, 0.020 2.23 0.020 2.50
OM3 0.026 1.92 0.028 2.11
OM3-D, 0.025 1.91 0.028 2.25

OMS3-D, 0.025 1.86 0.029 2.23
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Table 5.4: Mean absolute errors (in A) for all types of bond lengths determined by experiments (Expt.) and different levels of theoretical
calculations. The statistics refer to the first group of proteins with dominant a-helix and S-strand structures in the main chain.

Expt. AMBER HF DFT MNDO AM1 PM3 OM1 OM2 OM2-D; OM2D, OM3 OM3-D; OM3-D,
b, 0.008 0.009 0.014 0.020 0.080 0.046 0.088 0.044 0.039 0.039 0.038 0.064 0.061 0.061
b,  0.010 0.010 0.004 0.009 0.081 0.037 0.085 0.036 0.035 0.035 0.035 0.061 0.057 0.058
bs  0.006 0.004 0.010 0.027 0.005 0.021 0.009 0.022 0.021 0.020 0.020 0.027 0.028 0.027
by  0.006 0.014 0.005 0.006 0035 0.025 0.016 0.040 0.023 0.022 0.020 0.038 0.036 0.036
bs  0.009 0.013 0.005 0.007 0031 0.023 0.012 0.035 0.023 0.022 0.023 0.034 0.035 0.034
bs  0.007 0.015 0.010 0.007 0.028 0.006 0.003 0.008 0.004 0.004 0.003 0.006 0.006 0.004
b;  0.008 0.008 0.011 0.007 0.039 0.009 0.011 0.021 0.009 0.009 0.010 0.019 0016 0.016
bs  0.006 0.010 0.011 0.009 0.033 0.010 0.009 0.015 0.007 0.007 0.007 0.012 0.011 0.011
by 0.010 0.013 0.008 0.008 0.010 0.016 0.033 0.009 0.018 0019 0.018 0.010 0.010 0.010
byp 0.014 0.018 0.005 0.007 0.009 0.019 0.030 0.010 0.021 0.020 0.022 0.006 0.006 0.006
bi1  0.004 0.004 0.005 0.005 0.013 0.008 0.032 0.003 0.015 0.018 0.018 0.010 0.011 0.011
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Table 5.6: Statistics (in %) of the [¢,¢]-distribution in the most favored (Pj ),
additionally allowed (P;w], generously allowed (P;',u,)? and disallowed (P‘;l,w)
regions of the Ramachandran maps for the protein structures determined by
experiments (Expt.) and theoretical calculations at different levels.

(a) proteins dominated by a-helix or S-strand

method P‘i_l,w Piw Pi " P;. "
Expt. 80.7 16.8 1.7 0.8
AMBER 77.9 17.6 2.8 1.7
HF 81.5 15.6 2.3 0.7
DFT 78.2 19.1 2.7 0.0
MNDO 69.5 28.2 0.8 1.5
AM1 60.2 35.7 3.1 1.0
PM3 59.9 36.5 2.6 1.0
OM1 72.7 19.7 4.8 2.8
OM2 63.5 29.3 4.5 2.8
OM2-D, 66.4 25.5 5.8 2.2
OM2-D» 65.2 29.0 3.6 2.2
OM3 65.1 29.3 3.3 2.3
OM3-D, 69.6 22.5 3.9 4.0
OM3-Ds 67.8 25.1 3.7 3.5

(b) proteins dominated by random coil

method P¢l,w Piw Pg,, " P; "
Expt. 67.5 25.8 4.7 2.1
AMBER 57.5 324 7.5 2.5
HF 67.4 23.4 6.4 2.7
DFT 61.8 26.7 10.0 1.5
MNDO 60.7 34.7 2.5 2.1
AM1 44.3 42.8 9.4 3.5
PM3 48.1 41.9 8.1 1.9
OM1 52.5 39.5 3.7 4.2
OM2 42.0 46.1 6.4 5.5
OM2-D, 42.4 46.1 5.4 6.1
OM2-Do 31.2 49.8 13.4 5.5
OM3 46.2 43.4 4.9 5.5
OM3-D, 42.1 41.2 11.5 5.2
OM3-Ds 36.7 50.2 9.4 3.6

Table 5.7: The default values (Z, in degree) of the dihedral angles in proteins and
their standard deviations (o, in degree) defined in the PROCHECK program.

w x1(97) x1 (trans) x1 (g%)

T 180.0 64.1 183.6 —66.7
O 5.8 15.7 16.8 15.0
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Table 5.8: Average value (@, in degree), mean absolute error (MAE, in degree),
and root-mean-square deviation (RMSD, in degree) for the peptide bond dihedral
angle of the protein structures determined by experiments (Expt.) and different
theoretical calculations.

a-helix and S-strand random coil
method
@ MAE RMSD @ MAE RMSD

Expt. 179.5 1.6 3.3 179.0 6.4 12.7
AMBER 175.4 7.6 10.5 179.4 11.8 15.7
HF 179.3 6.1 8.4 180.6 9.1 12.4
DFT 178.7 6.1 8.7 179.8 10.5 13.6
MNDO 183.0 12.6 19.7 177.5 15.0 18.0
AM1 176.4 9.8 16.3 175.0 14.8 26.5
PM3 177.0 16.0 21.7 177.5 22.7 34.4
OM1 180.8 8.2 11.8 179.9 12.8 16.2
OM2 179.0 8.8 12.0 177.1 13.7 18.5
OM2-D, 177.1 11.0 14.8 176.9 15.8 20.5
OM2-Do 177.6 10.6 14.0 177.6 14.4 18.9
OM3 178.4 7.7 11.0 177.1 11.8 16.8
OM3-D, 178.8 9.1 12.5 178.3 12.5 17.5
OM3-Do 177.1 9.4 12.6 177.1 12.5 16.5

The peptide bonds are expected to be planar owing to the partial double
bond character arising from two dominant resonance structures [179]. Moreover,
the trans configuration is overwhelmingly preferred due to the much smaller
steric hindrance between the groups attached to the C® atoms. Hence the
dihedral angle of the peptide bond (w) in proteins is mostly 180°, but small
deviations may occasionally be encountered according to the statistics [174].
The average values of w and the errors for the experimental structures and
the theoretically optimized structures are given in Table 5.8. Evidently, the
results from experiments are generally closest to the predefined PROCHECK
reference values. The dihedral angles predicted by the AMBER, HF, and DFT
calculations are less accurate, and the RMSDs exceed the standard deviations
given in PROCHECK (see Table 5.7). All semiempirical methods produce still
larger deviations from planarity. This problem has already been reported in
earlier studies [180,181]. Nevertheless, slight improvements can be found for the
OMz methods over MNDO, AMI1, and PM3. Since the molecular mechanics
corrections for the peptide bond in the MNDO-type methods were deliberately
switched off, PM3 gives the worst deviations [22,23]. Finally we note that
the dispersion corrections included in the OM2-D and OM3-D methods (see
Section 4.4) may deteriorate the calculated w values because of the added small
dispersive attractions between the two nearest C® atoms surrounding the peptide

bond.

Figure 5.3 depicts the three rotational conformers, two gauche rotamers (g~
and g*) and one trans isomer, for the C*—C? bond in proteins. The different
conformations are distinguished by the dihedral angle 1 of Ni—C?—C’i8 —C7
(see Figure 5.2). The expected values of x; for the three configurations and their
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Figure 5.3: The Newman projection for the three conformations of the C*—C?
bond in protein. The front C°—C” bond and the back C*—N bond of the
dihedral angle 1 are colored in red.

standard deviations obtained from statistics of the X-ray protein structures are
given in Table 5.7. In contrast to w, large deviations, e.g. 15° to 17°, are often
found for x1 in the experimental structures due to the diversity of the vicinal
groups and the small rotationial barrier, which implies rather shallow potential
energy surfaces [173]. The average x1 and the corresponding errors for the three
conformations in the protein set are summarized for all methods in Tables 5.9
to 5.11. In most cases, the y; values for the first group of proteins are more
clustered around the predefined values than the second group. The RMSDs
of x1 for all the methods are more or less in the same range as the standard
deviations specified in the PROCHECK program (see Table 5.7). In this regard
the semiempirical methods are of similar quality as the other theoretical models.

In summary, geometry optimizations were performed for 28 proteins char-
acterized by a-helix, S-sheet, and random coil secondary structures using 10
semiempirical methods. The quality of the predicted protein structures was
assessed in terms of the geometric criteria defined in the PROCHECK program.
Furthermore, the semiempirical results were also compared with the protein
structures determined by experiments and other theoretical methods, i.e. molec-
ular mechanics force field, Hartree-Fock, and DFT calculations. Overall the
semiempirical methods produce qualitatively reasonable geometries, especially
for the proteins with more regular secondary structures like a-helix and S-strand.
There are, however, some shortcomings of the protein structures obtained from
the semiempirical methods. For example, the [¢, 1)]-distributions are less apt to
the most favored region of the Ramachandran plot and the peptide bonds tend
to be slightly nonplanar. We are confident that these quantitative deficiencies
can be alleviated in the future development of improved semiempirical quantum
chemical methods.
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Table 5.9: Average value (X1, in degree), mean absolute error (MAE, in degree),
and root-mean-square deviation (RMSD, in degree) for the side-chain dihedral
angle of the g~ conformation in the protein structures determined by experiments
(Expt.) and different theoretical calculations.

a-helix and S-strand random coil
method
X1 MAE RMSD X1 MAE RMSD

Expt. 64.2 12.9 18.5 60.7 16.7 22.9
AMBER 67.1 10.3 13.3 56.1 10.9 12.8
HF 65.9 10.3 14.7 54.9 13.5 17.7
DFT 62.4 104 12.7 54.3 15.4 18.4
MNDO 61.7 9.0 11.4 54.2 15.0 17.5
AM1 57.2 15.5 19.8 48.3 17.3 21.8
PM3 61.0 14.2 18.1 534 11.5 15.6
OM1 61.1 11.6 17.5 58.2 19.1 22.6
OM2 64.6 11.5 15.6 51.6 15.7 18.7
OM2-D, 62.7 10.1 12.2 47.8 22.7 25.7
OM2-D, 59.7 11.9 16.7 50.5 18.8 23.9
OM3 59.2 12.1 16.4 57.2 12.2 14.1
OM3-D, 64.2 13.9 19.2 54.8 18.0 20.8
OM3-Ds 65.4 124 17.1 56.3 15.7 17.5

Table 5.10: Average value (Y1, in degree), mean absolute error (MAE, in de-
gree), and root-mean-square deviation (RMSD, in degree) for the side-chain
dihedral angle of the trans conformation in the protein structures determined by
experiments (Expt.) and different theoretical calculations.

a-helix and S-strand random coil
method
X1 MAE RMSD X1 MAE RMSD

Expt. 192.7 15.6 21.8 190.9 12.7 17.3
AMBER 188.6 8.8 13.3 185.6 9.8 14.0
HF 189.4 11.5 16.0 189.3 11.0 13.3
DFT 189.0 14.0 19.2 189.1 12.0 14.4
MNDO 189.9 10.1 13.7 191.0 12.4 15.6
AM1 194.6 15.0 19.6 196.3 13.5 18.2
PM3 194.0 13.9 17.3 200.7 20.2 24.2
OM1 187.6 11.4 15.5 187.2 16.1 21.0
OM2 187.3 11.8 154 187.7 13.1 16.4
OM2-D, 181.1 12.5 16.8 181.8 134 18.4
OM2-Do 181.0 13.0 16.9 182.5 14.9 20.0
OM3 190.7 12.9 16.8 191.6 14.6 19.3
OM3-D, 187.7 134 174 187.2 11.8 15.7

OM3-D, 184.4 13.0 17.3 185.1 14.9 18.8
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Table 5.11: Average value (X1, in degree), mean absolute error (MAE, in degree),
and root-mean-square deviation (RMSD, in degree) for the-side chain dihedral
angle of the gt conformation in the protein structures determined by experiments
(Expt.) and different theoretical calculations.

a-helix and SB-strand random coil
method
X1 MAE RMSD X1 MAE RMSD

Expt. —72.2 17.1 214 —64.2 154 21.9
AMBER —66.8 13.1 17.6 —57.9 11.6 16.1
HF —69.7 10.0 15.3 —59.1 10.6 12.7
DFT —68.3 10.2 14.7 —58.8 12.5 15.3
MNDO —70.7 8.1 11.6 —65.7 10.9 134
AM1 —67.4 9.3 13.2 —65.1 15.3 20.4
PM3 —-72.2 12.0 15.7 —69.2 14.3 18.9
OM1 —64.6 7.3 10.5 —61.8 10.8 13.5
OM2 —71.0 9.9 14.0 —66.2 14.4 18.2
OM2-D, —64.1 13.0 16.9 —63.8 16.5 19.6
OM2-Ds —69.0 12.3 17.1 —61.4 16.2 19.6
OM3 —-72.6 10.2 144 —62.1 13.2 17.3
OM3-D, —67.6 9.2 12.5 —60.5 15.9 19.7

OM3-D, —68.0 9.7 12.8 —61.6 15.2 19.1




Chapter 6

Concluding Remarks

The central goal of the investigations conducted in this dissertation is rather
simple: to make semiempirical quantum chemistry faster and more accurate (at
least for some specific applications) by taking advantage of high-performance
computers.

First, a profile-guided optimization of the MNDO99 program was carried out
on heterogeneous CPU-GPU computing platforms (see Chapter 3 and Appen-
dices A and B). Systematic tests on fullerenes, water balls, and proteins showed
that semiempirical MNDO, AM1, PM3, and OMz (z = 1, 2, and 3) calculations
on multiple CPU-GPU platforms can be accelerated by one order of magnitude
over the serial executions on a single CPU core for large systems, e.g. a protein
with 100 residues, 1842 atoms, and 4446 basis functions. By contrast, the
speedups were always less than fourfold in the CPU-only calculations, no matter
how many parallel processors were deployed. A detailed analysis indicated that
this limited gain in performance can be attributed to the inadequate memory
bandwidth of the CPU-only architecture. In other words, the parallel CPUs have
to wait for the data due to the “traffic jam” from memory to processors. Hence
the arithmetic power of the CPUs is highly underutilized in the CPU-only cases.

Second, a parallel parameterization program (PPP) was developed for sym-
metric multiprocessor computers (see Chapter 4). Because a large number of
function evaluations is usually involved in the parameterization of a semiempiri-
cal method, the parallel implementation on multiple CPUs permits more efficient
and more thorough optimization of the parameters within given boundaries,
e.g. £10% of the initial values. The use of PPP was demonstrated by three
studies: the specific parameterization of the AM1 Hamiltonian for the reactant,
transition state, and product of an enzyme-catalyzed hydride transfer reaction
(see Appendix C); the reparameterization of MNDO, AM1, PM3, and OMz
(r =1, 2, and 3) for hydrogen bonding and proton transfer in water clusters
(see Appendix D); and the optimization of the parameters of the dispersion
corrections in the OM2-D and OM3-D methods for noncovalent complexes (see
Section 4.4).

Finally, benchmark calculations with geometry optimizations for a set of 28
proteins were performed by using 10 semiempirical methods, i.e. MNDO, AM1,
PM3, OMz (z =1, 2, and 3), and OM2-D and OM3-D with two types of damping
functions (see Chapter 5). The optimized protein structures were compared
with those determined by experiments and by other theoretical approaches,
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with regard to the geometries and stereochemical properties of the backbone
and side chains. In general, the semiempirical methods were found to produce
qualitatively reasonable geometries, especially for proteins with dominant a-helix
and S-strand secondary structures. However, the protein structures obtained
at the semiempirical level are not as good as those obtained from experiments,
from state-of-the-art molecular mechanics force fields, or from first-principles
Hartree-Fock and DFT calculations using the 6-31G basis set. For instance,
the semiempirical protein structures are less prominently clustered in the most
favored [1), #]-region of the Ramachandran diagram, and there is some slight
pyramidalization at the nitrogen atom of the peptide bond. We helieve that
these quantitative deficiencies can be alleviated in future developments and that
semiempirical quantum chemical methods will then become even more valuable
tools for studying complicated biochemical molecules and their reactions.
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ABSTRACT: In this work, we demonstrate that semiempirical quantum chemical calculations can be accelerated significantly by
leveraging the graphics processing unit (GPU) as a coprocessor on a hybrid multicore CPU—GPU computing platform.
Semiempirical calculations using the MNDO, AMI1, PM3, OM1, OM2, and OM3 model Hamiltonians were systematically
profiled for three types of test systems (fullerenes, water clusters, and solvated crambin) to identify the most time-consuming
sections of the code. The corresponding routines were ported to the GPU and optimized employing both existing library
functions and a GPU kernel that carries out a sequence of noniterative Jacobi transformations during pseudodiagonalization. The
overall computation times for single-point energy calculations and geometry optimizations of large molecules were reduced by
one order of magnitude for all methods, as compared to runs on a single CPU core.

1. INTRODUCTION

Semiempirical molecular orbital (MO) methods are widely
used in quantum chemical studies oflarge molecules.! ™8 They
provide qualitative insights into chemical problems at low cost,
because they are much faster than the more accurate ab initio
and density functional methods, typically by at least 3 orders of
magnitude. This efficiency makes them especially useful for
initial explorations before employing more expensive calcu-
lations, for correlating large sets of experimental and theoretical
data to establish trends, and for studym§ the properties and
dynamical behavior of complex systems.l'

Semiempirical and ab initio MO approaches share the same
conceptual framework, but a number of drastic approximations
are introduced at the semiempirical level to speed up the
calculations. The most important approximation is that many of
the smaller one- and two-electron integrals are neglected, and
the remaining ones are either determined directly from
experiment or calculated from suitable parametric functions.*®
As a consequence, integral evaluation in semiempirical
calculations formally scales as O(N?) for N basis functions, in
contrast to O(N*) in generic ab initioc MO calculations. The
dominant computational effort is therefore shifted from integral
evaluation to linear algebra operations, for example, matrix
multiplication and matrix diagonalization, which formally scale
as O(N%) .

To further extend the scope of the current quantum chemical
work, it is essential to take advantage of new powerful
computer architectures. The traditional hardware is based on
the general-purpose central processing unit (CPU), which is
capable of executing multiple threads simultaneously due to
various multicore designs. On the other hand, the graphics
processing unit (GPU) is a many-core architecture originally
designed for the rapid processing of images. To the present day,
GPUs have evolved to being able to perform on the order of
10"* floating-point operations per second (FLOP/s) using
thousands of threads and high memory bandwidth."® These
advances have made the GPU become particularly suitable for

< ACS Publications  © 2012 American Chemical Society
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highly parallel arithmetic-intensive computations, in particular
also in the field of molecular modeling (for reviews, see refs
11—-13). Recently, many authors have implemented GPU-
oriented algorithms in their quantum chemistry codes and
reported considerable speedups, up to about 100 times as
compared to CPU-only ‘1mplementat‘mns.14_20 At the semi-
empirical level, we are only aware of some unpublished work in
this area.”!

In this artide, we describe a comprehensive optimization of
the self-consistent-field (SCF) code in our semiempirical
quantum chemistry program MNDO™ on a hybrid multicore
CPU—-GPU computing platform. Six semiempirical methods,
MNDO (Modified Neglect of Differential Overlap),”® AM1
(Austin Model 1),** PM3 (Parameterized Model 3),*® and
OMx (Orthogonalization-corrected Model x, x = 1, 2, and 3),26
are considered. We first report profiles of our original code on a
single CPU core using three representative types of test
systems, fullerenes,””® water clusters,” and crambin'® solvated
in water spheres of increasing size. The most time-consuming
routines identified in this manner are ported to the GPU by
utilizing both vendor-optimized linear algebra library func-
tions®™" as well as a manually tuned GPU kernel. Finally, the
performance of the resulting code is checked through single-
point energy evaluations and geometry optimizations for all test
cases to establish the speedups that can be achieved for
semiempirical calculations on a hybrid multicore CPU—-GPU
platform.

2. COMPUTATIONAL DETAILS

This work covers the semiempirical MNDO,*> AM1,** PM3,%
and OMx (x = 1, 2, and 3)* methods, which are all based on
the NDDO (Neglect of Diatomic Differential Overlap) integral
approximation. ® The standard MNDO-type methods
(MNDO, AM1, and PM3) have served for decades as widely
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Figure 1. The largest system in each test set.
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used colggutntional tools. The more recently developed OMx
methods™ add orthogonalization corrections to the MNDO
model and offer significant improvements in systematic
benchmarks for ground-state molecules®** and especially for
excited-state l:iropert:ies.35 The major computational burdens
during SCF calculations are expected to be similar for all of
these methods. We employ three sets of test molecules,
fullerenes (Ci), water clusters (Wj), and the protein crambin
solvated in water balls (Pk).>® These systems represent typical
application areas of semiempirical methods, ranging from
regularly shaped highly symmetric molecules to molecular
assemblies with many degrees of freedom and complex
biochemical systems.

All present calculations have been carried out on a
workstation featuring one Intel Xeon X5670 processor (6
cores @ 2.93 GHz),>” 12 GB of main memory, and one NVidia
Tesla C2070 GPU (448 cores @ 1.15 GHz) with 6 GB of
global memory. Figure 1 shows the largest test systems in each
set: Cgg, 1800-H, 0O, and crambin-900H,O. The latter two are
close to the size that can be handled in the current setup with
the memory available in the workstation.®® All floating point
arithmetic operations were performed in double precision to
avoid numerical inaccuracies in the computation of the large
molecules considered (>1000 heavy atoms). The SCF
convergence criteria were 1.0 X 10¢ eV for the electronic
energy and 1.0 X 107° for the maximum change in the density
matrix. When using the DIIS (direct inversion of iterative
subspace)® procedure in the SCF iterations, the maximum
error matrix element was required to be less than 1.0 X 1076
eV. The norm of the gradient vector (||g|| < 1.0 kcal/(mol-A))
served as the convergence criterion in geometry optimizations.

The FORTRAN compiler from the development suite “Intel
Composer XE 12.0” and the NVidia CUDA (Compute Unified
Device Architecture) Toolkit 3.2 were used during the
development of the CPU and GPU code in a CVS version of
MNDQ99.* In the CPU-only implementation, the Intel Math
Kernel Library (MKL) was dynamically linked to provide the
required BLAS (Basic Linear Algebra Subprograms) and
LAPACK (Linear Algebra Package) functions. Alternatively,
on the hybrid multicore CPU—GPU platform, the correspond-
ing GPU-accelerated routines were taken from the libraries
CUBLAS?® and MAGMA.*' On our workstation, the CPU—
GPU communication is limited by a 16-lane PCle (Peripheral
Component Interconnect Express) connection with a theoreti-
cal bandwidth of 8.0 GB/s. The actually available bandwidth
was observed to be greater than 4.0 GB/s in our tests. Having
sufficient bandwidth is essential because all data to be processed
by the GPU and the results obtained must be transferred over

this connection. In our implementation, the communication
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overhead was carefully minimized such that the data transfer
only needs a very small portion of the total computation time,
for example, ~0.5% for the MNDO calculation of 1800-H,0 on
the hybrid CPU—GPU platform.

3. SEMIEMPIRICAL CALCULATIONS ON THE

CPU-ONLY PLATFORM

A simplified workflow of a semiempirical single-point SCF
calculation is sketched in Chart 1. The tasks in this workflow

Chart 1. Workflow of a Single-Point Semiempirical SCF
Calculation

Electron Integrals ]
!

[ Initial Density Matrix ]
!

—>[ Construct Fock Matrix ]

!

[ Matrix Diagonalization (FDIAG) ]

¢

[ Calculation of Density Matrix

(BORDER)

NO Check YES
Convergence

are generic and will appear in virtually any semiempirical SCF
program. The profiling results reported below for these tasks
are thus of general relevance for semiempirical code develop-
ment.

Because of the NDDO approximation, the evaluation of the
two-electron integrals formally requires only O(N?) operations.
Therefore, the diagonalization of the Fock matrix (FDIAG) and
the computation of the density matrix (BORDER) are the
O(N?) steps that dominate the calculations in practice.*” Two
additional optional chedures, DIIS* and the pseudodiagon-
alization (PDIAG),” may also consume a significant part of the
computation time and hence deserve spedal attention. The
DIIS scheme makes use of the results from previous SCF
iterations to construct a new Fock matrix such that SCF
convergence is accelerated; this requires the computation of an
error matrix that scales as O(N®). The full diagonalization
(FDIAG) can often be replaced by a less expensive
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pseudodiagonalization (PDIAG), which involves a triple matrix
product (MMM) and noniterative Jacobi transformations
(JACOBI); normally, PDIAG can be applied throughout the
SCF process except for the first and the last cycles.

We have used the existing and already sufficiently optimized
CPU code to profile the semiempirical calculations for all test
molecules on a single CPU. Two typical computational
protocols were chosen: (A) pseudodiagonalization without
DIIS, and (B) full diagonalization with DIIS. In the case of the
MNDO-type methods, the fullerenes and the water clusters
were run using (A), and the crambin set was computed using
(B). All MNDO-type methods behave similarly in this analysis,
so we show only the profiles for AM1 in Figure 2a. For the
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Figure 2. Profiles of the AMI and OM2 calculations of the test
molecules on a single CPU core.

OMx methods, we only examined the fullerenes (B) and the
water clusters W1000 and W1200 (A); crambin could not be
handled because of the missing sulfur parameters, while for the
larger water clusters the memory capacity was not sufficient to
process the orthogonalizatiun corrections with the existing
setup. We present only the OM2 profiles in Figure 2b because
all three OMx methods show similar behavior (except for the
integral routines because there are no orthogonalization
corrections to the two-center terms in OM1). The profiling

results for the other methods (MNDO, PM3, OM1, and OM3)
are documented in the Supporting Information.

Table 1 reports the computation times as well as the number
of SCF iterations and full diagonalizations during the SCF
procedure for all six semiempirical methods, taking the water
cluster W1000 (1000-H,0) as a typical example.*” It is obvious
that the number of SCF iterations (~20) and the computation
times per SCF cycle are roughly in the same range for all
methods; none of them is much more expensive or much
cheaper than the others. AMI1 and PM3 are slightly more costly
than the original MNDO method, presumably at least partly
due to the more complex core-repulsion function.>**> Despite
the orthogonalization corrections to the one-center terms,
OM1 turns out to be the fastest of all six methods. OM2 and
OM3 are somewhat slower than OM1 because of the additional
three-center terms arising from the orthogonallzatmn correc-
tions to the two-center resonance mtegrals

The MNDO-type calculations (Figure 2a) are completely
dominated by the four routines FDIAG, PDIAG, BORDER,
and DIIS (see above). The percentage of the CPU time
consumed by other tasks (ie, mainly integral evaluation and
Fock matrix construction) decreases dramatically with increas-
ing system size, for example, from 12.1% to 1.6% in the MNDO
calculations on Cgy and Cgg, respectively. In small molecules,
the other tasks may require ~10% of the time, but the total
computation time is negligible in these cases; for example, the
MNDO calculations on Cgy and Cyyq just take 0.1 and 1.0 s,
respectively. In larger molecules with several hundred atoms,
the four dominant routines together usually account for >98%
of the total time of an MNDO-type calculation. The situation is
slightly different for the OMx methods because of the
additional orthogonalization corrections to the one-electron
core Hamiltonian (HCORE). The share of HCORE becomes
more pronounced especially in OM2 and OM3 due to the
inclusion of three-center terms in the orthogonalization
corrections. For the water cluster W1000, for instance, the
fraction of the computer time for HCORE amounts to 6.5% in
OM2 and 62% in OM3. Nevertheless, FDIAG, PDIAG,
BORDER, and DIIS remain the four most CPU-intensive
routines also in these cases and together consume more than
90% of the total computation time.

By default, PDIAG rather than FDIAG is commonly applied
whenever possible. According to the profiling, PDIAG will then
normally contribute more than one-third to the total CPU time,
which calls for a more detailed analysis of this routine. The
breakdown of the computational effort in PDIAG is shown in
Figure 3 for MNDO calculations on fullerenes and water
clusters that use the default threshold for deciding whether the
Jacobi transformation is done for a given pair of elgenvec:tors
The triple matrix product MMM takes 50—60% of the CPU
time within PDIAG in the case of the water clusters, and

Table 1. Computation Times (in seconds) of MNDO, AM1, PM3, OM1, OM2, and OM3 Single-Point Energy Calculations of

1000-H,0 on a Single CPU Core”

MNDO-based methods OMx methods
MNDO AM1 PM3 OM1 OM2 OM3
Nscr 18 19 23 18 20 22
Nisg 4 4 4 4 4 4
time 1433.17 1595.66 2045.83 1316.51 1740.69 1818.91
time/Nycp 79.62 83.98 8895 73.14 87.03 82.68

“The number of SCF iterations and full diagonalizations is denoted by Nscg and Ny, respectively.
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Figure 3. Profiles of PDIAG in MNDO calculations of fullerenes and
water clusters on a single CPU core.

typically more than 80% in the case of the fullerenes, while
most of the rest is consumed by the noniterative Jacobi
transformations. The difference between the fullerenes and the
water clusters arises from the thresholding: in the latter case,
more Jacobi rotations are found to be needed, which leads to a
significant increase in the computational effort (see Figure 3).

To summarize, the profiling has identified four bottlenecks
that together consume more than 90% of the CPU time in
semiempirical calculations on large molecules. The GPU
adaptation of the code will focus exclusively on the
corresponding four routines FDIAG, PDIAG, BORDER, and
DIIS.

4. PROFILE-GUIDED OPTIMIZATION ON THE HYBRID
PLATFORM

4.1. Survey of Computational Tasks. To establish
notation, we briefly summarize the main computational tasks.
FDIAG solves the eigenvalue equation:

FC = CE (1)

where F denotes the Fock matrix, C is the matrix of MO
coefficients, and E is a diagonal matrix containing the MO
energies. The triple matrix multiplication in PDIAG is

Fyo = GFC, 2)
where Fyq, is the occupied-virtual block of the Fock matrix. C,
and C, are the occupied and virtual vectors, respectively.
BORDER performs one dominant matrix multiplication (>99%
CPU time, eq 3) to determine the density matrix P.

P = 2C,C! (3)

DIIS evaluates the error matrix, which requires matrix
multiplications (eq 4) that are computationally much more
demanding (~98% CPU time) than the subsequent matrix—
vector multiplications (eqs S and 6).

e, = FP — PF 4)
b, =E'e (5
F = f"x (6)

e, is the error matrix of the kth DIIS step, which is stored in
linearly packed form as the kth column of the composite matrix
E. by, collects the scalar products of error matrices evaluated in
the kth DIIS step. The new Fock matrix F' is obtained as a
linear combination of previous Fock matrices stored in
composite form (E), using the coefficient vector x determined
in the DIIS }:!rm::edure.z'9
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4.2. GPU-Accelerated Library Functions. As docu-
mented above, matrix diagonalization, matrix—matrix multi-
plication, and matrix—vector multiplication are the most
important linear algebra operations in semiempirical SCF
calculations. To identify the routines in the MKIL, CUBLAS,
and MAGMA libraries best suited for our purposes, we have
performed test calculations. In the following, we briefly
summarize the results of these tests (for detailed data, see the
Supporting Information).

Matrix Diagonalization. We have applied four different
LAPACK routines (SYEV, SYEVX, SYEVD, and SYEVR)* for
Fock matrix diagonalization (eq 1). The MKL library contains
an implementation of all four routines, and multithreaded
versions are available for use with symmetric multiprocessing
systems. MAGMA offers SYEVD only, taking advantage of the
hybrid CPU—GPU architecture: one of the steps in the
algorithm is executed on the CPU and the other two on the
GPU*

The tests on one single CPU core indicate that SYEV is
always slowest while SYEVR is a little faster than SYEVD. All
CPU-only calculations are accelerated when run in parallel on 6
CPU cores, but the speedups are moderate (at most by a factor
of 3 for large matrices) because these routines are bandwidth-
bound; that is, the performance of the algorithm is limited by
the memory bandwidth the hardware can provide. On the
hybrid CPU—GPU platform, there are larger gains in
performance when all six CPU cores are used in combination
with the GPU: the hybrid SYEVD (H6CG) routine is always
the fastest one for any matrix size, with a speedup over SYEVD
(1C) of about 5-fold. Because SYEVR is not available in
MAGMA, SYEVD was used for Fock matrix diagonalization in
the following semiempirical calculations to allow for a fair
comparison between CPU-only and hybrid CPU-GPU
computing platforms.

Matrix—Matrix Multiplication. Depending on the type of
the matrices involved, multiplications can be carried out with
the BLAS routines GEMM, SYMM, or SYRK. GEMM
performs the generic matrix—matrix multiplication, whereas
SYMM is more specific because at least one of the matrices is
required to be symmetric. SYRK can be applied if the product
matrix is known to be symmetric so that only the upper or
lower triangular entries need to be computed, which can lead to
a speedup of almost 2 by skipping almost one-half of the
floating-point operations as compared to the general case.
SYRK will thus be an attractive choice for computing the
density matrix, which is symmetric by definition (eq 3).

To assess the performance of GEMM, SYMM, and SYRK for
our purposes, we evaluated the product P = AAT, where A is a
random real symmetric matrix. On the CPU-only platform, the
parallel runs with 6 cores show a speedup of almost 6 over
those on one core (6C vs 1C). On the hybrid CPU-GPU
platform, GEMM and SYRK are much faster still, with a peak
performance close to 300 GFLOP/s. Hence, the SYRK routine
was selected for computing the density matrix in BORDER (eq
3), while GEMM was chosen for carrying out the other matrix—
matrix multiplications in PDIAG (eq 2) and in DIIS (eq 4).
The use of these GPU-accelerated routines on the hybrid
platform offers a ~25X boost in performance as compared to a
single CPU core.

Matrix—Vector Multiplication. Matrix—vector multiplica-
tions are required in DIIS to compute by (eq S, operation p =
M'v) and F' (eq 6, operation p = Mv). These are rather special
cases because the matrices in these products have a very large
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number of rows (of the order of 107 for the biggest molecules
in this work) and only a very small number of columns (of the
order of 10). Three different library routines are available:
GEMYV is the generic routine for matrix—vector multiplications
and can be applied in both situations; DOTL and AXPYL are
alternatives. DOTL loops over the dot product (DOT) of each
row in M and v to produce p = M'v, whereas AXPYL
sequentially sweeps each column in M with v and assembles the
results for Mv in p. In DIIS, the use of DOTL and AXPYL
ensures coalesced memory access in the computation of by and
F/, respectively, because the two-dimensional arrays Eand F are
stored in column major order. The row dimension of these
arrays is given by the number of iterations in the DIIS
procedure and will thus be much smaller than their column
dimension that is equal to the number of elements in the
linearly packed Fock matrix.

Because of the inherently low ratio of compute-to-memory
accesses, the routines GEMV, DOTL, and AXPYL are all
bandwidth-bound, and using more CPU cores thus hardly helps
to increase the speed. The DOTL function from the GPU-
based CUBLAS library is best suited for p = MTv, being up to
about 5 times faster than the CPU-based counterpart. GEMV is
always superior to AXPYL for p = Mv on the same platform: in
this case, the GPU-based GEMYV routine can be roughly 10
times faster than the CPU-based version. In view of these
comparisons, DOTL and GEMV were chosen for the
computation of b, and F' on the hybrid computing platform,
respectively.

4.3. Jacobi Transformation on GPU. There is no ready-
to-use library function available for the noniterative Jacobi
transformation in PDIAG. The underlying algorithm41 involves
several approximations, including the neglect of changes in the
matrix elements of the secular determinant upon rotation. This
substantially simplifies parallelization of the algorithm. For
further background information, the interested reader is
referred to other recent work related to implementing Jacobi
rotations on GPUs* and to earlier work concerning parallel
Jacobi rotations on CPUs.*~*2 In this section, we first describe
the basic algorithms considered in our implementation and
then discuss the results.

The original CPU algorithm41 in PDIAG performs sweeps of
independent 2 X 2 rotations of one occupied and one virtual
molecular orbital trial vector from the last SCF iteration, C, and
C,:

Cl.’ = cC; — sC; q = sC, + ¢C, (7)

where ¢ and s denote the rotation coefficients, and the new MO
vectors are indicated by primes. The rotation coefficients are
calculated from the approximate MO energies & and &, of the
previous SCF iteration and from the matrix element 7, of the
Fock matrix in the MO basis connecting both orbitals.

Fia

) 2
u u ;
c=1——;5=4% u——;u=[ ]
2 Vo4 &= & ®)

The sign of s is opposite of that of the Fock matrix element.

During one sweep, all rotations on a set of independent
occupied-virtual orbital pairs are performed that satisfy a
predefined threshold criterion.*' If, respectively, n, and n, are
the number of occupied and virtual molecular orbitals, and
and 7y, are the smaller and the larger number of , and n,
there are m,, sweeps and ng,,; orbital pairs examined per
sweep.
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The rotation of one pair of vectors in eq 7 can be carried out
by the BLAS level 1 routine ROT. In semiempirical
calculations, the number of basis functions N is usually less
than 10*. In this range, the ROT (G) routine from the GPU-
based CUBLAS library is not yet efficient, due to the low ratio
(<3) of compute-to-memory accesses, and is outperformed by
the single-core CPU variant ROT (1C); this situation is
reversed only for huge values of N (>10°) that are not reached
in practice. Semiempirical calculations will thus not benefit
from the naive use of ROT (G) for the Jacobi transformation in
PDIAG. This calls for the development of a dedicated version
of PDIAG that exploits the potential of the GPU for speeding
up this transformation, which may represent a significant part of
the overall computational effort (see above).

Four algorithms were devised for the Jacobi transformation
on the GPU whose architecture is designed for executing large
numbers of parallel threads. The algorithms differ in the way
how the work is distributed among the threads, how these are
organized in blocks, how the threads are synchronized, and,
most importantly, where the decision is made as to which
orbital pairs to rotate. A detailed description of all algorithms is
given in the Supporting Information.

Algorithms I—IIT have in common that the decision whether
to rotate an orbital pair is made in the threads just before the
rotation would be performed. These algorithms come in three
variants depending on the treatment of the rotation coefficients
in eq 7 that may be recomputed as needed (first variant) or
precomputed by a separate routine and stored in global
memory. For efficient access to these quantities in global
memory, the kernels may rely on the caching mechanisms of
the GPU (second variant) or may explicitly buffer them using
shared memory, which is much faster than global memory
(third variant). These combinations give rise to nine GPU
kernels altogether.

For these algorithms, there is the possibility that the threads
that skip a rotation just remain idle waiting for other threads to
complete a rotation. This will reduce the workload on the GPU,
which will ultimately lead to lower performance. Therefore,
another algorithm IV was designed in which the decision on
which orbital pairs to rotate is made in a separate initial step:
the rotation coefficients are precomputed, and only those are
stored that correspond to rotations actually to be performed
later. This complicates the logistics of precomputing the
rotation coefficients in the parallel environment of the GPU.
The implementation of the actual rotations in algorithm IV was
based on our experience gained with the other algorithms.

For all algorithms and their variants, we tested a large
number of different execution configurations, that is, the
dimensions of the thread blocks, a parameter specific to GPU
programming. The detailed results for the fastest algorithm
(algorithm IV) are documented in the Supporting Information.
In the following, we only summarize the essential findings.

We find in our extensive search that algorithm III with
cached coefficients is the fastest among the first three
algorithms. For Cy, it is about twice as fast as the second-
ranked one (algorithm I with shared memory). Therefore, the
rotations needed in algorithm IV were carried out in analogy to
algorithm III. Systematic tests show that the time for
precomputing and storing the rotation coefficients in algorithm
IV is negligible and that statistically the configuration 64 X 16
performs best on average (see the Supporting Information). We
have therefore adopted this configuration as our default choice.
With this setup, algorithm IV consistently outperforms the

dx.doi.org/10.1021/ct3001798 | L. Chem. Theory Comput. 2012, 8, 2272-2281



Journal of Chemical Theory and Computation

other three algorithms by a large margin. For example, in the
case of Cyqp where the benefits from skipping rotations are
largest, algorithm IV is more than 5 times faster than any of the
three competitors.

Table 2 shows the execution times and speedups of the
Jacobi transformation for selected test molecules, on a single

Table 2. Computation Times (in seconds) for the Jacobi
Transformation in MNDO Calculations on a Single CPU
(1C) and on the GPU”

1000-H,0
Cyg (N = 3840) (N = 6000) crambin (N = 1623)
time speedup time speedup  time  speedup
1C 2696 24134 12.39
GPU 382 7.1 3652 6.6 271 4.6

“N denotes the number of basis functions.

CPU (1C) and on the GPU (algorithm IV). The acceleration
of the Jacobi transformation on the GPU is expected to be
influenced by the size and symmetry of the molecule. Because
the architecture of the GPU is designed for massively parallel
computations, the benefits for larger molecules should be
higher. This is borne out by the data for 1000-H,O and
crambin: in these two unsymmetrical molecules, the percentage
(Ry,) of required Jacobi rotations is similar (13% vs 11%), and
hence the speedup is higher in the case of the larger system (6.6
vs 4.6). In the case of a highly symmetric molecule, many Fock
matrix elements between occupied and virtual MOs will be zero
by symmetry, which will lower R, for example, to 2% in the
icosahedral Cy4, molecule; algorithm IV is designed to exploit

this reduced workload and thus leads to a maximum speedup of
7.1 relative to the time on a single CPU.

5. SEMIEMPIRICAL CALCULATIONS ON THE
CPU-GPU PLATFORM

5.1. Performance. The workstation used in this study
provides several kinds of computing environments: one single
CPU core (1C), multiple CPU cores (2C, 6C), one single CPU
core with one GPU (H1CG), and all CPU cores plus one GPU
(H6CG). Our code also allows for OpenMP parallel execution
of the most demanding tasks not yet ported to the GPU, in
particular, integral evaluation and Fock matrix formation. To
reach the best-effort performance on the currently used hybrid
CPU-GPU platform, OpenMP parallelization was turned on
using all 6 CPU cores in the calculations denoted by H6CG™.
In this section, we report computation times and speedups
obtained in semiempirical calculations on the test molecules in
all of these environments, both for MNDO-type and for OMx
methods.

The full list of performance data is given in the Supporting
Information. As a representative example, the results for
1000-H,O are summarized in Table 3. For a given environ-
ment, the computation times are quite similar for the six
semiempirical methods considered presently, especially when
taking the slight differences in the number of SCF iterations
into account. For instance, the computation times per SCF
cycle range between 73.14 and 88.95 s in the slowest
environment (1C) and between 7.43 and 9.97 s in the fastest
one (H6CG*). The minimum and maximum times for the full
SCF calculation differ at most by factors of 1.55 (1C) and 1.72

Table 3. Computation Times (in seconds) of the MNDO, AM1, PM3, OM1, OM2, and OM3 Single-Point Energy Evaluations
for 1000-H,0 on CPU-Only (nC) and Hybrid CPU—GPU Platforms (HnCG)*

1C 2C
MNDO: Nyc = 18, Ny, = 4
time 1433.17 858.18
time/Nicg 79.62 47.68
speedup 1.7
AMI: Ngcp = 19, Ny, = 4
time 1595.66 993.67
time /Ny 83.98 52.30
speedup L6
PM3: Ngcp = 23, Naw = 4
time 2045.83 134598
time /Ngcp 88.95 58.52
speedup LS
OMI: Nyc = 18, Ny, = 4
time 1316.51 74544
time /Ngcp 73.14 41.41
speedup 1.8
OM2: Nycg = 20, Ny, = 4
time 1740.69 111549
time /Ngcp 87.03 55.77
speedup L6
OM3: Nyc = 22, Ny, = 4
time 1818.91 114849
time/Nicg 82.68 52.20
speedup L6

6C H1CG H6CG H6CG*
491.57 217.84 160.60 154.59
27.31 12.10 892 8.59
29 6.6 89 93
612,29 241.02 18297 176.74
3223 12.69 9.63 9.30
26 6.6 87 9.0
902.66 291.88 23651 229.36
39.25 12.69 10.28 9.97
23 7.0 8.6 89
379.78 208.55 15175 133.68
21.10 11.59 843 743
35 6.3 87 9.8
720.15 34131 284.65 190.67
36.01 17.07 1423 9.53
24 51 6.1 9.1
720.07 34292 287.18 190.59
3273 15.59 13.05 8.66
2.5 53 6.3 9.5

“n is the number of CPU cores in use. The number of SCF iterations and full diagonalizations is denoted by Ngc and Ny, respectively. OpenMP
parallelization was tumned on using 6 CPU cores in H6CG* (our best effort).
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(H6CG*), indicating again a similar computational burden for
the different semiempirical methods in these environments.

In the CPU-only case, the speedups of the multicore
calculations do not increase in proportion to the number of
cores, reaching factors of about 1.5 on two cores (2C) and only
around 3 on six cores (6C) regardless of the type of test
molecule (see Table 3 and the Supporting Information). This is
because the computation is bandwidth-bound on the present
hardware for two of the major bottlenecks, FDIAG and the
JACOBI part of PDIAG; adding more processing units hardly
helps under these circumstances. It should be noted in this
context that this limitation arises from the chosen hardware and
not from the software: early tests of the MNDO program on a
Cray Y-MP8 computer with eight CPU cores and compara-
tively fast shared memory gave speedups up to 7.7 in the
MNDO geometry optimization of the fullerene Caso”’
Repeating this calculation with identical input options on the
current hardware (and with OpenMP parallelization being
turned on) yields a smaller speedup of 4.0 on six CPU cores,
because the higher clock frequency of the current processor (3
GHz vs 80 MHz on the Cray Y-MP) is not matched by a
corresponding increase in memory bandwidth. The MNDO
code will thus offer higher speedups in multicore CPU-only
calculations on large molecules when the hardware perform-
ance is compute-bound (and not bandwidth-bound as in the
present case).

For the chosen representative example of 1000-H,O, the
hybrid CPU-GPU platform with only one CPU core (HICG)
offers speedups of 5.1—7.0 relative to the CPU-only case (1C)
due to the higher FLOP rate and bandwidth of the GPU (Table
3). H1CG outperforms the best CPU-only platform (6C) by a
wide margin (speedup factors of 2.3—3.5). Adding more CPU
cores to HICG further accelerates the SYEVD routine (see
Figure 3 in the Supporting Information) and leads to speedups
of 6.1-8.9 for H6CG relative to 1C. Turning on OpenMP
parallelization (H6CG*) for the other parts of the code leads to
further (rather small) gains in the case of the MNDO-type
calculations where integral evaluation is fast anyway, but to
substantial accelerations especially for OM2 and OM3 where
the computation of the three-center orthogonalization
corrections strongly benefits from this kind of parallelization.
As a consequence, HC6G* provides an excellent overall
performance for all semiempirical methods considered
presently, with speedup factors for 1000-H,O of 8.9-9.8
(Table 3).

Average speedups (H6CG and H6CG* vs 1C) for large
molecules (N > 1000) are summarized in Table 4. Those for
the MNDO-type methods are quite uniform because of the
similar underlying theoretical framework, both for HSCG (8.1—

Table 4. Average Speedups of Semiempirical Single-Point
Energy Evaluations on the Hybrid Multicore CPU-GPU
Platform (H6CG and H6CG*) Relative to the Single-CPU
Case (1C), for Large Molecules with More than 1000 Basis
Functions”

MNDO-type methods OMx methods
MNDO AM1 PM3 OM1 OM2 OM3
H6CG 83 82 8.1 7.1 5.6 57
H6CG* 87 8.6 8.4 77 7.3 75

“OpenMP parallelization was turned on using 6 CPU cores in HSCG*
(our best effort).
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8.3) and for H6CG* (8.4—8.7). In the case of the OMx
methods, the average speedups for OM2 and OM3 are again
relatively low (5.6—5.7) because the orthogonalization
corrections are computed using s‘mgle-threaded CPU code,
which can consume up to 7% of the computation time in the
CPU-only case (Figure 2). After turning on OpenMP
parallelization (H6CG*), the average speedups for the OMx
methods increase to a rather uniform level (7.3—7.7) but
remain slightly below those for the MNDO-type methods.
Figures 4—6 show the speedups obtained in the MNDO,
AM]1, PM3, and OM:x calculations for all test molecules on the
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Figure 4. Speedup of the semiempirical single-point energy
calculations of fullerenes on the hybrid multicore CPU—-GPU platform
(H6CG, dashed lines with squares; and H6CG¥*, solid lines with
circles) with respect to one single CPU core (1C). The MNDO-type
and OMx calculations employ pseudodiagonalization (without DIIS)
and full diagonalization (with DIIS), respectively.

14} eMNDO eAMI  ePM3

12+  eOMI OM2 e OM3 1
-% 10 | 1
& gl ]

6r " . 1

4 . . . . .

WI000  WI200 WI400  WI600  WIB00
water clusters

Figure 5. Speedup of the semiempirical single-point energy
calculations of water clusters on the hybrid multicore CPU-GPU
platform (H6CG, dashed lines with squares; and H6CG¥, solid lines
with circles) with respect to one single CPU core (I1C). The
calculations make use of pseudodiagonalization (without DIIS).
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Figure 6. Speedup of the semiempirical single-point energy
calculations of solvated crambin systems on the hybrid multicore
CPU-GPU platform (H6CG, dashed lines with squares; and H6CG*,
solid lines with circles) with respect to one single CPU core (1C). The
calculations employ full diagonalization and DIIS extrapolation (no
use of psendodiagonalization).

H6CG and H6CG* platforms as compared to the single CPU
case (1C); the corresponding numerical results are available in
the Supporting Information.
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The overall speedups generally increase with the size of the
test molecules and the number of basis functions (N) ranging
from 240 to 10 800. Small molecules like Cg, benefit only little
from the GPU. For example, relative to 1C, MNDO-type and
OMx calculations on Cgy are merely ~1.5 times faster on
H6CG and H6CG*. Several factors restrict the performance for
smaller molecules. First, routines other than those ported to the
GPU take a higher percentage of the computation time, for
example, 12.1% for Cg, versus 1.6% for Cyq (see Figure 2a).
Second, the CPU-only computations for small molecules are
really fast, for example, 0.1 s for Cg, so that the overhead for
CPU-GPU communication on the hybrid platform is no
longer negligible. Hence, there is not much advantage of using
the GPU for semiempirical calculations on small molecules
(say, less than 100 atoms).

In the fullerene and water cluster series, the MNDO-type
calculations for the largest systems reach maximum speedups
on the hybrid multicore CPU—GPU platform of around 13
(Cggo) and 10 (1800-H,0). Because of the memory limitations
on our workstation, OMx calculations are possible for systems
up to the size of 1200-H,0, for which speedups of 9—10 can be
achieved (Figure 5).

In the MNDO-type calculations on the solvated crambin
series, the observed speedups are generally somewhat lower
(around 7, see Figure 6). This is mostly due to the deliberate
decision to turn off pseudodiagonalizations (PDIAG) and use
only full diagonalizations (FDIAG) in these calculations.
FDIAG, which dominates the computation time in this case
(>60%, see Figure 2), is accelerated typically only 5-fold on the
GPU (see Figure 3 in the Supporting Information), much less
so than PDIAG.

Finally, it should be pointed out that the number of required
SCEF iterations may occasionally differ on different platforms,
despite using double-precision floating point arithmetic
throughout (see the Supporting Information). These differ-
ences arise from roundoff errors and are unavoidable. In such
cases, the calculated properties of the molecules, for example,
heats of formation, ionization energies, etc, are the same on the
different platforms (within the limits imposed by the SCF
convergence criteria).

5.2. Profiles on the Hybrid Multicore CPU-GPU
Platform. In this section, we examine the hotspots in
semiempirical calculations on the hybrid CPU—GPU platform
(H6CG). For the reasons outlined in section 3, we only show
the H6CG profiles of the AM1 and OM2 calculations for all
test systems in Figure 7. The data for the other methods are
documented in the Supporting Information.

It is obvious that Fock matrix diagonalization (FDIAG, in
red) and pseudodiagonalization (PDIAG, in green) demand a
larger share of the computation time than on the CPU-only
platform (Figure 2). For example, the percentage of time
consumed by FDIAG grows from 64% to 82% in the MNDO
calculation of unsolvated crambin. The reason for this larger
share is that both SYEVD in FDIAG and the Jacobi
transformation in PDIAG are bandwidth-bound and are thus
not accelerated too much on the GPU, that is, typically by a
factor of ~5; see Figure 3 in the Supporting Information. By
contrast, the major computations in BORDER and DIIS, that
is, the matrix multiplications in SYRK and GEMM, are
dramatically accelerated on the GPU (by a factor of about
25, see Figure 4 in the Supporting Information), and they are
thus no longer bottlenecks in semiempirical calculations on
H6CG. The other routines, for example, integral evaluation and
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Figure 7. Profiles of the semiempirical AM1 and OM2 calculations of
the test molecules on the hybrid multicore CPU—GPU computing
platform.

construction of the Fock matrix, have not yet been ported to
the GPU in our present work. Their share of the computation
time starts to rise on H6CG especially for small molecules, but
remains rather low for large molecules in MNDO-type
calculations.

Figure 8 presents the profiles of PDIAG in the MNDO
calculations on H6CG. Unlike the situation on a single CPU
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Figure 8. The profiles of PDIAG in the MNDO calculations of
fullerenes and water clusters on the hybrid CPU—GPU platform.

core (Figure 3) where the triple matrix product (MMM)
consumes more time than the Jacobi transformation (JACOBI),
the latter takes most of the computation time on the GPU
(~809%). This is because the matrix—matrix multiplication is far
more accelerated on the GPU than the Jacobi transformation,
with speedups of about 25 (see Figure 4 in the Supporting
Information) versus 4—7 (Table 2).

The H6CG profiles of the OMx calculations on water
clusters look quite different from the other profiles, particularly
in the case of OM2 and OM3; see Figure 7b. The computations
in HCORE become quite demanding, taking about 32% and
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33% of the time for OM2 and OM3, respectively. This latter
increase is caused by the three-center orthogonalization
corrections to the resonance ‘mtegmls,26 which are presently
still computed in HCORE by a single-threaded CPU code.
These corrections are crucial for the quality of the OMx
results.**~* One way to accelerate their computation is to turn
on OpenMP parallelization (H6CG*, see above), but it would
also seem worthwhile to develop a dedicated GPU kernel and
find out whether this offers an even more efficient solution on
hybrid CPU—GPU platforms.

5.3. Geometry Optimizations. As a further test, geometry
optimizations of the fullerenes were carried out at the MNDO
level using the 1C, H6CG, and H6CG* platforms. In the
MNDO program, the required gradients are computed by
default using a simple finite-difference procedure with
recalculated integrals and a constant density matrix. This
procedure scales as O(N®) and thus does not constitute a
bottleneck in the present approach, but will benefit from the
existing OpenMP parallelization (in full analogy to integral
evaluation). Therefore, the geometry optimizations were
performed without any additional GPU-oriented modification
of the code using both HSCG and H6CG™*. They were done in
internal coordinates to exploit the symmetry of the fullerenes.
The performance data are shown in Table 5. The speedups

Table 5. Computation Times (in seconds) for MNDO
Geometry Optimization of Fullerenes on a Single CPU Core
(1C) and on the Hybrid Multicore CPU—GPU Platform
(H6CG and H6CG*)*

Cao Cixn Ciso Coo Csio Coso
N 4 49" 14 28 34 40°
symmetry I T, I I I I
N,. 2 17 6 7 15 2
1C 0.46 59.41 42.68 27449 492751 5765194
H6CG 0.29 14.76 8.27 39.88 398.28 3731.21
speedup 1.5 4.0 52 69 124 15.5
H6CG* 0.24 10.37 5.82 2854 309.63 3007.62
speedup* 19 57 73 96 159 192

“1\7‘,1:,t and N, denote the number of the optimization cycles and
geometric variables, respectively. OpenMP parallelization was turned
on using 6 CPU cores in HSCG* (our best effort). “The geometry
optimization of Cy,, finishes (||g]| = 0.05 kcal/(mol-A)) in 44 cycles
on H6CG. “An incomplete optimization for benchmark purposes with
40 cycles.

increase with the size of the fullerene being optimized, as
expected, and they are generally somewhat higher than those
obtained in the single-point calculations (see the Supporting
Information). The improved performance arises from the fact
that the relatively slow full diagonalizations (FDIAG) at the
beginning of an SCF calculation can normally be avoided in the
course of a geometry optimization because the density matrix
from the preceding point usually provides a sufficiently good
starting guess for the SCF procedure of the next point. For the
largest fullerene considered (Cyq), the MNDO geometry
optimizations on the hybrid multicore CPU—GPU platform
thus achieve record speedups of 155 (H6CG) and 192
(H6CG*).

6. CONCLUSIONS

In this work, GPU-accelerated routines for semiempirical
quantum chemical calculations were implemented on a hybrid
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multicore CPU—GPU platform to enable more efficient
computations with MNDO-type methods (for MNDO, AM1,
PM3) and with orthogonalization-corrected methods (OM],
OM2, OM3). Systematic calculations on fullerenes, water
clusters, and solvated crambin systems were performed with all
of these methods on a variety of computing environments
encompassing one single CPU core, multiple CPU cores, a
single CPU core with GPU, and a multicore CPU with GPU.
For all methods considered, the computational bottlenecks
on one single CPU core were identified to be full
diagonalization (FDIAG), pseudodiagonalization (PDIAG),
and matrix multiplications during density matrix formation
(BORDER) and SCF convergence acceleration (DIIS). The
computational effort in other routines, for example, integral
evaluation and Fock matrix construction, turned out to be small
for large molecules. Vendor-optimized library functions and a
manually tuned GPU kemel for Jacobi transformations
(PDIAG) were employed in the profile-guided code
optimization on the hybrid multicore CPU—-GPU platform.
The least accelerated routines on the GPU were found to be
FDIAG and PDIAG, which both contain parts that are
memory-bandwidth bound. Therefore, FDIAG and PDIAG
govern the overall speedup that can be achieved in semi-
empirical calculations on the hybrid CPU—GPU platform.
The performance gains in the semiempirical calculations
increase with the size of the molecule. On average, speedups
close to 10 are achieved in MNDO-type and OMx single-point
calculations for large molecules, on the multicore CPU—GPU
platform relative to one single CPU core, with a maximum of
12.9 for the AM1 energy evaluation of the largest fullerene
(Cygps 3840 basis functions). MNDO geometry optimizations
for the largest fullerenes on the hybrid multicore CPU-GPU
platform reach an even higher performance (with speedups up
to 19.2). The OMx calculations are slightly less accelerated
than the MNDO-type calculations because of the orthogonal-
ization corrections to the core Hamiltonian. Their computation
requires a significant share of the overall time on the hybrid
platform (especially for the three-center terms in OM2 and
OM3). While their evaluation benefits from the available
OpenMP parallelization, it would still seem desirable to develop
a carefully optimized GPU kernel for this task in future work.

B ASSOCIATED CONTENT
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Further profiles of semiempirical SCF calculations on CPU and
hybrid CPU-GPU platforms (MNDOQ, PM3, OM1, and OM3),
performance tests of standard library routines, detailed
description of the GPU algorithms designed for the Jacobi
transformation, benchmarks of the optimized GPU kernel for
this transformation, and computation times for the semi-
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B AUTHOR INFORMATION

Corresponding Author

*E-mail: thiel @mpi-muelheim.mpg.de.

Notes

The authors declare no competing financial interest.

dx.doi.org/10.1021/ct3001798 | L. Chem. Theory Comput. 2012, 8, 2272-2281



Journal of Chemical Theory and Computation

B ACKNOWLEDGMENTS

We would like to thank Wolfgang Angenendt for implementing
parts of the OpenMP parallelization.

B REFERENCES

(1) Clark, T; Stewart, J. J. P. In Computational Methods for Large
Systems; Reimers, J. R, Ed,; John Wiley & Sons, Inc.: Hoboken, NJ,
2011; pp 259-286.

(2) Thiel, W. In Theory and Applications of Computational Chemistry;
Dykstra, C. E., Frenking, G, Kim, K. S., Scuseria, G. E., Eds.; Elsevier:
Amsterdam, 2005; pp 559—580.

(3) Bredow, T.; Jug K. Theor. Chem. Acc. 2005, 113, 1—14,

(4) Thiel, W. In Modern Methods and Algorithms of Quantum
Chemistry; Grotendorst, J, Ed; John von Neumann Institute for
Computing: Jiilich, 2000; pp 261—283.

(5) Clark, T. J. Mol. Struct. (THEOCHEM) 2000, 530, 1—10.

(6) Thiel, W. Advances in Chemical Physics; John Wiley & Sons, Inc.:
New York, 1996; pp 703—757.

(7) Stewart, J. J. P. Reviews in Computational Chemistry; John Wiley &
Sons, Inc.: New York, 1990; pp 45—81.

(8) Thiel, W. Tetrahedron 1988, 44, 7393—7408.

(9) Dewar, M. J. S.; Thiel, W. Theor. Chim. Acta 1977, 46, 89—104.

(10) NVIDIA CUDA C Programming Guide; NVIDIA Corp.: Santa
Clara, CA, 2010.

(11) Stone, J. E.; Hardy, D. J.; Ufimtsev, L S.; Schulten, K. J. Mol.
Graphics Modell. 2010, 29, 116—125,

(12) Farber, R. M. J. Mol. Graphics Modell. 2011, 30, 82—89.

(13) van der Spoel, D.; Hess, B. WIREs Comput. Mol. Sci. 2011, 1,
710-715.

(14) Anderson, A. G; Goddard, W. A, III; Schroder, P. Comput.
Phys. Commun. 2007, 177, 298—306.

(15) (a) Ufimtsev, L S; Martinez, T. J. Comput. Sd. Eng. 2008, 10,
26—34. (b) Ufimtsev, L S.; Martinez, T. J. . Chem. Theory Comput.
2008, 4, 222—231. (c) Ufimtsev, L S.; Martinez, T. J. . Chem. Theory
Comput. 2009, S, 1004—1015. (d) Ufimtsev, L S; Martinez, T. J. |.
Chem. Theory Comput. 2009, 5, 2619—2628. (&) Luehr, N.; Ufimtsev, L.
S.; Martinez, T. J. J. Chem. Theory Comput. 2011, 7, 949-954.
(f) Isborn, C. M; Luehr, N;; Ufimtsev, I. S; Martinez, T. J. J. Chem.
Theory Comput. 2011, 7, 1814—1823,

(16) (a) Yasuda, K. J. Comput. Chem. 2008, 29, 334—342. (b) Yasuda,
K. J. Chem. Theory Comput. 2008, 4, 1230—1236.

(17) Asadchev, A.; Allada, V.; Felder, J.; Bode, B. M.; Gordon, M. §;
Windus, T. L. J. Chem. Theory Comput. 2010, 6, 696—704.

(18) (a) Vogt, L; Olivares-Amaya, R.; Kermes, S.; Shao, Y.; Amador-
Bedolla, C,; Aspuru-Guzik, A. J. Phys. Chem. A 2008, 112, 2049—2057.
(b) Olivares-Amaya, R; Watson, M. A,; Edgar, R. G; Vogt, L.; Shao,
Y.; Aspuru-Guzik, A. J. Chem. Theory Comput. 2010, 6, 135—144.

(19) (a) DePrince, A. E; Hammond, J. R. J. Chemn. Theory Comput.
2011, 7, 1287—1295. (b) Ma, W.; Krishnamoorthy, S; Villa, O;
Kowalski, K. J. Chem. Theory Comput. 2011, 7, 1316—1327.

(20) Wilkinson, K. A,; Sherwood, P.; Guest, M. F.; Naidoo, K. J. J.
Comput. Chem. 2011, 32, 2313—2318.

(21) Mangueira, C. P, Jr.; Carvalho, J. D.; Cabral, L. A. F; Rocha, G.
B. XVI Brasilian Symposium of Theoretical Chemistry; Ouro Preto, 21
November, 2011; Poster P377.

(22) Thiel, W. MNDO99 CVS Development Version; Max-Planck-
Institut fiir Kohlenforschung: Miilheim an der Ruhr, Germany, 2012.

(23) (a) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4899—
4907. (b) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4907—
4917.

(24) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart,J. J. P. |.
Am. Chem. Soc. 1985, 107, 3902—3909.

(25) (a) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209—220.
(b) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 221—264.

(26) (a) Kolb, M.; Thiel, W. J. Comput. Chem. 1993, 14, 775—789.
(b) Weber, W; Thiel, W. Theor. Chem. Acc. 2000, 103, 495—506.
(c) Scholten, M. Semiempirische Verfahren mit Orthogonalisie-

2281

rungskorrekturen: Die OM3 Methode. PhD. thesis, University of
Diisseldorf, 2003.

(27) Bakowies, D.; Thiel, W. J. Am. Chem. Soc. 1991, 113, 3704—
3714,

(28) Bakowies, D.; Biihl, M.; Thiel, W. J. Am. Chem. Soc. 1995, 117,
10113-10118.

(29) Martinez, L; Andrade, R; Birgin, E. G.; Martinez, J. M. J.
Comput. Chem. 2009, 30, 2157—2164.

(30) CUDA CUBLAS Library; NVIDIA Corp.: Santa Clara, CA,
2010.

(31) Tomov, S.; Nath, R; Du, P.; Dongarra, J. MAGMA Users’ Guide;
Innovative Computing Laboratory, University of Tennessee: Knox-
ville, TN, 2010.

(32) Pople, J. A.; Santry, D. P.; Segal, G. A. J. Chem. Phys. 1965, 43,
§129-5135.

(33) Otte, N.; Scholten, M.; Thiel, W. J. Phys. Chem. A 2007, 111,
5751-5755.

(34) Korth, M.; Thiel, W. J. Chem. Theory Comput. 2011, 7, 2929—
2936.

(35) Silva-Junior, M. R,; Thiel, W. J. Chem. Theory Comput. 2010, 6,
1546—1564.

(36) i (i = 60, 120, 180, 240, 540, 960) is the number of carbon
atoms in the fullerenes. j (j = 1000, 1200, 1400, 1600, 1800) and k (k=
500, 600, 700, 800, 900) specify the number of water molecules in the
water clusters and in the solvation spheres around crambin,
respectively. An isolated crambin (642 atoms) is denoted as P.

(37) Intel Turtbo Boost Technology, which increases the CPU clock
depending on the workload, has been switched off to obtain consistent
benchmark timings.

(38) For example, in the case of crambin-900H,0, 6 DIIS cycles in
double precision demand about 3 GB memory on the GPU, which
combined with the requirements by other subroutines approaches the
memory capacity of the GPU.

(39) Pulay, P. J. Comput. Chem. 1982, 3, 556—560.

(40) Thiel, W.; Green, D. G. In Methods and Techniques in
Computational Chemistry: METECC-95; Clementi, E,, Corongu, G,
Eds.; METECC (Series); STEF: Cagliari, 1995; pp 141—168.

(41) Stewart, ]. J. P; Csaszér, P.; Pulay, P. J. Comput. Chem. 1982, 3,
227228,

(42) Detailed information on all tests is given in the Supporting
Information.

(43) Anderson, E.; Bai, Z; Bischof, C.; Blackford, S.; Demmel, J;
Dongarr, J.; Croz, J. D.; Greenbaum, A.; Hammarling, §.; McKenney,
A; Sorensen, D. LAPACK Users’ Guide, 3rd ed.; Society for Industrial
and Applied Mathematics: Philadelphia, PA, 1999.

(44) The three steps in the MAGMA SYEVD implementation are (i)
reduce a real symmetric matrix to tridiagonal form (SYTRD on GPU),
(i) compute all eigenvalues and eigenvectors of a symmetric
tridiagonal matrix using the divide and conquer method (STEDC
on CPU), and (iii) multiply a real matrix by a previously determined
orthogonal matrix (DORMTR on GPU).

(45) Novakovic, V; Singer, S., arXiv:1008.1371v2.

(46) Modi, J. J; Parkinson, D. Comput. Phys. C
317-320.

(47) Berry, M.; Sameh, A. ]. Comp. Appl. Math. 1989, 27, 191-213.

(48) Eberlein, P. J; Park, H. J. Par. Dist. Comp. 1990, 8, 358—366.

1982, 26,

dx.doi.org/10.1021/ct3001798 | L. Chem. Theory Comput. 2012, 8, 2272-2281



Supporting information for: Semiempirical Quantum
Chemical Calculations Accelerated on a Hybrid

Multi-core CPU-GPU Computing Platform

Xin Wu, Axel Koslowski, and Walter Thiel*

Max-Planck-Institut fiir Kohlenforschung, Kaiser-Wilheim-Platz 1,

45470 Miilheim an der Ruhr, Germany

E-mail: thiel@mpi-muelheim.mpg.de

*To whom correspondence should be addressed

S1



1 Profiles of Semiempirical SCF Calculations

Figure 1 shows the profiles of single-point SCF calculations for the methods MNDO, PM3, OM1,
and OM3 obtained with the MNDO program running on one CPU core (1C). Figure 2 shows the
corresponding profiles obtained on the hybrid CPU-GPU platform using all six CPU cores and the
GPU (H6CG).

2 Performance Tests of Standard Library Routines

Figure 3 compares the performance of matrix diagonalization routines from the MKL and MAGMA
libraries. Figures 4 and 5 show analogous comparisons of routines for matrix-matrix and matrix-

vector multiplication from the MKL and CUBLAS libraries, respectively.
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Figure 2: Profiles of semiempirical calculations of the test molecules on the hybrid multi-core CPU-GPU computing platform.
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Figure 3: Computation times (in seconds) for the diagonalization of a random real symmetric
matrix using SYEV, SYEVX, SYEVD and SYEVR from Intel MKL on CPU-only platforms (#C)
and SYEVD from MAGMA on hybrid CPU-GPU platforms (H#CG). n denotes the number of
CPU cores. An enlarged plot for smaller matrices (dimension < 3000) is also shown. The floating-
point arithmetic was performed in double precision.
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Figure 4: Performance of matrix-matrix multiplication (P = AAT) using GEMM, SYMM, and
SYRK from Intel MKL on CPU-only platforms (»C) and the corresponding routines from NVidia
CUBLAS on the hybrid CPU-GPU platforms (G). » denotes the number of CPU cores. A is a
random real symmetric matrix. The floating-point arithmetic was performed in double precision.
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3 Jacobi Transformation on the GPU

As stated in the manuscript, the original CPU algorithm in PDIAG performs sweeps of independent
2 x 2 rotations of one occupied and one virtual molecular orbital (MO) trial vector from the last
SCF iteration, C; and Cg,

Cl=cC;—sC, C, =5C;i+cC, (1)

1

where ¢ and s denote the rotation coefficients and the new MO vectors are indicated by primes.
The rotation coefficients are calculated from the approximate MO energies &; and &, of the previous

SCF iteration and from the matrix element .%;, of the Fock matrix in the MO basis connecting both

2 . 2
c=1-12 s::t\}u—ﬁ U= “ 2)
2 4 Eq— &

The sign of s is opposite to that of the Fock matrix element.

orbitals.

During one sweep all rotations on a set of independent occupied-virtual orbital pairs are per-
formed that satisfy a predefined threshold criterion (see Ref. (41) in the manuscript). If, respec-
tively, n, and »n, are the number of occupied and virtual molecular orbitals, and 7gpan and 7.
are the smaller and the larger number of 7, and 7y, there are 7y, sweeps and 714y, orbital pairs
examined per sweep. In the first sweep, the first pair is formed by the lowest occupied and the
lowest virtual orbital, the second pair by the second-lowest occupied and the second-lowest virtual
orbital, and so on. In the second sweep, the first pair is formed by the second-lowest occupied
and the lowest virtual orbital, the second pair by the third-lowest occupied and the second-lowest
virtual orbital and so on, provided that the number of virtual orbitals is less than the number of oc-
cupied orbitals, which is usually the case for organic molecules. Otherwise, the first pair is formed
by the lowest occupied and the second-lowest virtual orbital, and so on. Using this algorithm every
occupied-virtual orbital pair is examined exactly once and rotated where appropriate.

This algorithm is to be ported to the GPU, taking into account that the architecture of a GPU is
very different from a traditional CPU. One fundamental difference concerns the cost of creating,

deleting, and switching between threads. While on a CPU these actions are relatively expensive,
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so that a programmer is advised to reuse a once created thread as often as possible, and elaborate
algorithms have been developed to efficiently schedule different processes and threads by the op-
erating system kernel, all information about the threads on a GPU are stored in hardware registers
so that creating, deleting, and switching between threads is very cheap or involves no cost at all.
This allows GPU threads to be extremely numerous and short, like millions of threads containing
a single arithmetic operation only.

On a GPU, threads are grouped in blocks and blocks are grouped in a grid, concepts totally
absent on a traditional CPU. Each block and each thread have up to three indices uniquely identi-
fying a thread in a block and a block in the grid. The dimensions of all indices (all blocks being
equivalent) are called the execution configuration.! The dimensions and indices can be used to de-
cide which thread operates on which matrix element, for instance. These quantities also determine
in which order threads are created and executed.

It is, however, impossible for the programmer to know in advance which threads will run
concurrently unless specific measures are taken to synchronize the threads. The threads of one
block (which all execute on one core of one multiprocessor of the GPU) can be easily synchronized
by a simple (and cheap) function call implementing a so-called barrier which makes the threads
wait until all threads have reached this point. Then the function returns and all threads (at least
potentially) continue simultaneously. This behaviour is called local synchronization. Threads in
different blocks can presently only be synchronized by relaunching the kernel after it has completed
a certain subtask and stopped (global synchronization).

We have designed three algorithms differing in the way how the work is distributed among the
threads, how these are organized in blocks and how the threads are synchronized.

Algorithm I uses a two-dimensional grid of one-dimensional blocks. Every thread checks
the threshold criterion and performs the rotation of two MO coefficients where appropriate. The

first index of a block in the grid and the index of a thread in the block determine the row in

1The number of bytes of dynamically allocated shared memory per block is also subsumed under the execution
configuration, as well as an associated stream.
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the MO coefficient matrix, and the second block index identifies the virtual orbital.> Execution
configurations with 32, 64, 128, 256, 512, 768, and 1024 threads per block have been tested. (1024
threads per block is the hardware limit of our GPU.) The kernel uses global synchronization of the
threads by performing one sweep per launch.

Algorithm IT completely avoids the synchronization problem using exactly one thread per row
of the trial vectors, so each thread does all the work for this row very much like the original
CPU algorithm (except that the original algorithm rotates entire vectors instead of two elements).
Execution configurations with the same number of threads per block as in algorithm I have been
tested.

Algorithm IIT uses a one-dimensional grid of two-dimensional blocks. The row index of the
MO coefficient matrix is determined by the index of the block in the grid and the first thread index.
Each thread performs all sweeps for every D,-th virtual orbital of two subsequent rows, D, being
the second block dimension, starting with the second thread index in each block. The threads use
local synchronization to make sure that one sweep on two rows has finished before the next sweep
on these rows is started.

There are actually three distinct kernels for each of the above algorithms which differ in the
treatment of the rotation coefficients. One option is to recompute the rotation coefficients in ev-
ery thread as needed. Alternatively, the rotation coeffients are precomputed and stored in global
memory before the first sweep, and for efficient access the kernel either relies on caching of these
values (second option) or explicitly copies them to shared memory (third option).

For every of the above algorithms there is the possibility that the GPU will not run at full effi-
ciency for the orbital pairs not rotated due to the threshold criterion. This is in part because some
of the above kernels are designed such that the threads not performing a rotation will wait for other
threads to have finished a rotation. Another reason is that the threads do not run completely inde-
pendent from each other, but are executed in so-called warps, i.e. batches of 32 threads executed

simultaneously by one GPU core. The core always executes the same instruction of the kernel

2The occupied orbital is selected using an offset to the virtual orbital which is incremented at every sweep.
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for all threads in the warp. Therefore, while some rotations are performed, other threads may idle
automatically.

Algorithm IV was designed with the goal to gain efficiency by avoiding to have threads waiting
for others to finish rotations. In this algorithm the rotation coefficients are precomputed by a
separate kernel, with only those being stored (together with the corresponding orbital indices) that
satisfy the threshold criterion. This step requires a strict linearization, i.e. the rotation coefficients
must be stored one after the other. This is achieved by an atomic increment of the array index
pointing to the location where to store the next pair of rotation coefficients and orbital indices. The
atomic increment consists of reading, modifying and writing the array index without interference
of other threads.

The dimensions of the blocks and the grid and the synchronization method (local synchroniza-
tion) of algorithm IV correspond to algorithm III, except that in algorithm IV each thread works
on one row of the MO coefficient matrix only. This algorithm will rely on the caching mechanisms
of the GPU exclusively, there are no other variants.

With this setup, algorithm IV consistently outperforms the other three algorithms by a large
margin in systematic test calculations. For example, in the case of Cy4,, where the benefits from
skipping rotations are largest, algorithm IV is more than five times faster than any of the three
competitors. Therefore, we present representative timings only for algorithm IV. Tables 1 and 2

contain the timings of the two steps of algorithm IV for different execution configurations.
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Table 1: Computation times (in seconds, sorted in ascending order) for generating the rotation
coefficients for the Jacobi transformation in MNDO calculations of Cyg4, 1000 -H,O, and solvated
crambin using GPU algorithm IV. blockDim denotes the dimension of the thread blocks.

Coeo 1000 -H,O crambin

blockDim time blockDim time blockDim time
16x8 0.03 16x8 0.06 16x8 0.01
8x16 0.03 8x16 0.06 8x16 0.01
8x32 0.03 32x8 0.06 32x8 0.02
32x8 0.03 128x7 0.07 8x8 0.02
16x16 0.03 8x8 0.07 128 x7 0.02
8x8 0.04 16x16 0.07 16x16 0.02
256x%3 0.04 256x3 0.07 256x%3 0.02
128x7 0.04 8x112 0.07 8x32 0.02
64x14 0.04 8x32 0.07 64x14 0.02
16x56 0.05 64x14 0.08 32x28 0.02
32x28 0.05 16x56 0.08 8x112 0.02
8x112 0.05 32x28 0.08 16x56 0.02
8x 64 0.06 64x8 0.09 64x8 0.02
16x32 0.06 32x16 0.10 32x16 0.02
64x8 0.06 8x64 0.10 16x32 0.03
32x16 0.06 16x32 0.11 8x64 0.03
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Table 2: Computation times (in seconds, sorted in ascending order) for the Jacobi transformation
step in MNDO calculations of Cyg4, 1000 -H,O, and solvated crambin using GPU algorithm IV.
blockDim denotes the dimension of the thread blocks.

Coeo 1000 -H,O crambin

blockDim time blockDim time blockDim time
32x32 3.74 1288 36.13 256x4 2.61
64x16 3.79 64x16 36.48 128 x8 2.67
16x32 3.88 64x8 36.48 64x16 2.68
32x8 3.93 256x4 36.65 64x8 2.80
16x64 415 32x32 36.94 32x32 2.87
32x16 418 32x16 36.95 32x16 3.10
256x4 434 32x8 37.10 16x 64 3.13
64x8 436 16x64 38.38 32x8 3.18
1288 437 16x32 38.55 8x128 3.51
16x16 437 16x16 38.56 16x32 3.91
16x8 4.54 16x8 38.80 16x16 4.07
8x8 4.66 8x8 49.28 16x8 427
8x 64 5.07 8x128 57.27 8x64 5.26
8x32 5.22 8x64 62.20 8x8 5.36
8x16 6.89 8x32 67.82 8x32 5.91
8x128 7.10 8x16 69.53 8x16 6.31
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4 MNDO Calculations

Fullerenes

Table 3: Computation times (in seconds) for MNDO single-point energy calculations in CPU-only
(nC) and hybrid CPU-GPU (HnCG and HnCG*) environments (7 is the number of the CPU cores).
Nscr denotes the number of SCF iterations. An asterisk indicates OpenMP parallelization using 6
CPU cores (our best effort). There are 3 full diagonalizations in each calculation.

1C 2C 6C HICG H6CG H6CG*
Nscr 18 16 18 16 16 18
time 0.12 0.07 0.06 0.08 0.07 0.08
speedup — 1.6 2.0 1.4 1.6 1.4
Nscr 24 24 24 24 24 24
time 1.02 0.64 0.41 0.36 0.28 0.23
speedup — 1.6 2.5 2.8 3.6 4.4
Nscr 20 20 20 20 20 20
time 2.59 1.51 0.85 0.81 0.56 0.46
speedup — 1.7 3.0 3.2 4.6 5.6
Nscr 20 20 20 20 20 20
time 5.89 3.35 1.80 1.62 1.03 0.86
speedup — 1.8 33 3.6 5.7 6.8
Nscr 30 30 30 30 30 30
time 86.58 47.39 22.21 12.11 9.94 8.74
speedup — 1.8 3.9 7.2 8.7 9.9
Nscr 34 34 34 36 36 34
time 534.21 292.19 136.10 59.15 47.59 41.84
speedup — 1.8 3.9 9.0 11.2 12.8
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Water Clusters

Table 4: Computation times (in seconds) for MNDO single-point energy calculations in CPU-only
(nC) and hybrid CPU-GPU (HnCG and HnCG*) environments (7 is the number of the CPU cores).
Nscr denotes the number of SCF iterations. An asterisk indicates OpenMP parallelization using 6
CPU cores (our best effort). There are 4 full diagonalizations in each calculation.

1C 2C 6C HICG H6CG H6CG*

1000 -H,O : Ny = 6000

Nscr 18 18 18 18 18 18

time 1433.17 858.18 491.57 217.84 160.60 154.59
speedup — 1.7 29 6.6 8.9 93
1200 -H,O : Ny = 7200

Nscr 18 18 18 18 18 18

time 2476.15 147891 845.54 365.84 270.84 262.51
speedup — 1.7 29 6.8 9.1 94
1400 -H,O : Ny = 8400

Nscr 18 18 18 18 18 18

time 3859.75 2302.46 1295.02 550.02 402.20 390.56
speedup — 1.7 3.0 7.0 9.6 9.9
1600 -H,O : Ny = 9600

Nscr 18 18 18 18 18 18

time 5782.25 3462.94 1956.33 832.70 613.97 597.08
speedup — 1.7 3.0 6.9 9.4 9.7
1800 -H,O : Ny = 10800

Nscr 18 18 18 18 18 18

time 8123.96 4815.66 2658.12 1116.80 797.56 777.87
speedup — 1.7 3.1 7.3 10.2 10.4
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Solvated Crambin

Table 5: Computation times (in seconds) for MNDO single-point energy calculations in CPU-
only (nC) and hybrid CPU-GPU (HnCG and HnCG*) environments (» is the number of the CPU
cores). Ngcr denotes the number of SCF iterations. An asterisk indicates OpenMP parallelization
using 6 CPU cores (our best effort). The number of the full diagonalizations equals Nscr in each

calculation.
1C 2C 6C HICG H6CG H6CG*
crambin : Ny = 1623
Nscr 24 24 24 24 24 24
time 87.56 47.92 23.66 38.82 15.62 14.96
speedup — 1.8 3.7 23 5.6 59
crambin in 500 -H,O : Ny = 4623
Nscr 30 29 30 30 29 30
time 2441.81 1274.88 629.00 553.62 356.59 350.81
speedup — 1.9 3.9 4.4 6.8 7.0
crambin in 600 -H,O : Ny = 5223
Ngcr 30 30 30 30 30 30
time 3426.76 1870.37 900.35 769.59 502.23 495.30
speedup — 1.8 3.8 4.5 6.8 6.9
crambin in 700 -H,O : Ny = 5823
Nscr 29 29 29 29 29 29
time 4565.55 2506.35 1202.36 1012.93 665.17 657.62
speedup — 1.8 3.8 4.5 6.9 6.9
crambin in 800 -H,0 : Ny = 6423
Nscr 36 36 36 36 36 36
time 7673.80 4189.18 2004.12 1639.71 1069.81 1056.54
speedup — 1.8 3.8 4.7 7.2 73
crambin in 900 -H,O : Ny = 7023
Nscr 36 36 36 36 36 36
time 9983.93 5490.60 2632.89 2135.51 1379.79 1367.24
speedup — 1.8 3.8 4.7 7.2 73
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5 AMI1 Calculations

Fullerenes

Table 6: Computation times (in seconds) for AM1 single-point energy calculations in CPU-only
(nC) and hybrid CPU-GPU (HnCG and HnCG*) environments (7 is the number of the CPU cores).
Nscr denotes the number of SCF iterations. An asterisk indicates OpenMP parallelization using 6
CPU cores (our best effort). There are 3 full diagonalizations in each calculation.

1C 2C 6C HICG H6CG H6CG*
Nscr 14 14 15 14 14 14
time 0.10 0.07 0.05 0.08 0.07 0.07
speedup — 1.5 1.9 1.3 1.5 1.4
Nscr 26 26 26 24 26 24
time 1.08 0.68 0.44 0.36 0.29 0.24
speedup — 1.6 2.5 3.0 3.7 4.6
Nscr 22 22 22 18 18 20
time 2.79 1.63 091 0.79 0.52 0.46
speedup — 1.7 3.1 3.5 53 6.0
Nscr 22 22 22 22 22 22
time 6.34 3.61 1.93 1.67 1.08 0.90
speedup — 1.8 33 3.8 59 7.1
Nscr 31 31 31 31 31 31
time 89.17 48.93 23.07 12.35 10.20 8.94
speedup — 1.8 3.9 7.2 8.7 10.0
Nscr 36 36 36 36 36 36
time 563.63 308.60 141.59 59.58 47.98 43.66
speedup — 1.8 4.0 9.5 11.7 12.9
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Water Clusters

Table 7: Computation times (in seconds) for AM1 single-point energy calculations in CPU-only
(nC) and hybrid CPU-GPU (HnCG and HnCG*) environments (7 is the number of the CPU cores).
Nscr denotes the number of SCF iterations. An asterisk indicates OpenMP parallelization using 6
CPU cores (our best effort). There are 4 full diagonalizations in each calculation.

1C 2C 6C HICG H6CG H6CG*

1000 -H,O : Ny = 6000

Nscr 19 19 19 19 19 19

time 1595.66 993.67 612.29 241.02 182.97 176.74
speedup — 1.6 2.6 6.6 8.7 9.0
1200 -H,O : Ny = 7200

Nscr 19 19 19 19 19 19

time 2774.96 1730.01 1067.60 408.75 312.25 303.43
speedup — 1.6 2.6 6.8 8.9 9.1
1400 -H,O : Ny = 8400

Nscr 20 20 20 20 20 20

time 4531.02 2841.73 1743.17 634.53 486.23 472.98
speedup — 1.6 2.6 7.1 9.3 9.6
1600 -H,O : Ny = 9600

Nscr 20 20 20 20 20 20

time 6706.42 4188.18 2545.57 944.75 724.53 705.41
speedup — 1.6 2.6 7.1 9.3 9.5
1800 -H,O : Ny = 10800

Nscr 20 20 20 20 20 20

time 9510.36 5901.32 3552.85 1292.06 965.67 943.63
speedup — 1.6 2.7 7.4 9.8 10.1

S18



Solvated Crambin

Table 8: Computation times (in seconds) for AM1 single-point energy calculations in CPU-only
(nC) and hybrid CPU-GPU (HnCG and HnCG*) environments (7 is the number of the CPU cores).
Nscr denotes the number of SCF iterations. An asterisk indicates OpenMP parallelization using 6
CPU cores (our best effort). The number of the full diagonalizations equals Ngcr in each calcula-

tion.
1C 2C 6C HICG H6CG H6CG*
crambin : Ny = 1623
Nscr 33 33 33 33 33 33
time 120.83 66.78 33.22 53.60 21.47 20.52
speedup — 1.8 3.6 23 5.6 59
crambin in 500 -H,O : Ny = 4623
Nscr 31 31 31 31 31 31
time 2527.47 1363.24 651.13 576.57 377.10 371.21
speedup — 1.9 3.9 4.4 6.7 6.8
crambin in 600 -H,O : Ny = 5223
Nscr 41 41 41 41 41 41
time 4710.21 2564.69 1236.09 1061.84 690.92 680.98
speedup — 1.8 3.8 4.4 6.8 6.9
crambin in 700 -H,O : Ny = 5823
Nscr 54 54 54 54 54 54
time 8557.76 4689.35 2251.66 1915.85 1245.62 1231.29
speedup — 1.8 3.8 4.5 6.9 7.0
crambin in 800 -H,0 : Ny = 6423
Nscr 40 40 40 40 40 40
time 8555.17 4661.00 2241.68 184591 1196.62 1183.40
speedup — 1.8 3.8 4.6 7.1 7.2
crambin in 900 -H,O : Ny = 7023
Nscr 32 32 32 32 32 32
time 8905.18 4896.37 2347 .41 1926.49 1236.16 1221.88
speedup — 1.8 3.8 4.6 7.2 73
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6 PM3 Calculations

Fullerenes

Table 9: Computation times (in seconds) for PM3 single-point energy calculations in CPU-only
(nC) and hybrid CPU-GPU (HnCG and HnCG*) environments (7 is the number of the CPU cores).
Nscr denotes the number of SCF iterations. An asterisk indicates OpenMP parallelization using 6
CPU cores (our best effort). There are 3 full diagonalizations in each calculation.

1C 2C 6C HICG H6CG H6CG*
Nscr 16 16 16 16 16 16
time 0.11 0.07 0.05 0.08 0.08 0.07
speedup — 1.5 2.1 1.3 1.4 1.5
Nscr 22 23 23 22 23 22
time 0.96 0.63 0.41 0.35 0.28 0.22
speedup — 1.5 24 2.7 35 4.3
Nscr 18 18 18 18 18 18
time 2.40 1.40 0.79 0.79 0.53 0.44
speedup — 1.7 3.0 3.0 4.5 55
Nscr 18 18 18 18 18 18
time 5.43 3.10 1.66 1.59 0.98 0.82
speedup — 1.8 33 34 5.5 6.6
Nscr 27 27 27 27 27 27
time 79.21 43.53 20.63 11.76 9.49 8.36
speedup — 1.8 3.8 6.7 8.3 9.5
Nscr 32 32 32 32 32 32
time 509.75 279.42 129.62 57.29 45.24 41.36
speedup — 1.8 3.9 8.9 11.3 12.3
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Water Clusters

Table 10: Computation times (in seconds) for PM3 single-point energy calculations in CPU-only
(nC) and hybrid CPU-GPU (HnCG and HnCG*) environments (7 is the number of the CPU cores).
Nscr denotes the number of SCF iterations. An asterisk indicates OpenMP parallelization using 6
CPU cores (our best effort). There are 4 full diagonalizations in each calculation.

1C 2C 6C HICG H6CG H6CG*

1000 -H,O : Ny = 6000

Nscr 23 23 23 23 23 23

time 2045.83 1345.98 902.66 291.88 236.51 229.36
speedup — 1.5 2.3 7.0 8.6 8.9
1200 -H,O : Ny = 7200

Nscr 24 24 24 24 24 24

time 3701.09 2448.78 1656.62 510.69 418.72 407.61
speedup — 1.5 2.2 7.2 8.8 9.1
1400 -H,O : Ny = 8400

Nscr 22 22 22 22 22 22

time 5445.46 3613.87 2438.36 755.31 612.85 598.85
speedup — 1.5 2.2 7.2 8.9 9.1
1600 -H,O : Ny = 9600

Nscr 24 24 24 24 24 24

time 8531.11 5607.69 3721.23 1149.17 938.75 916.80
speedup — 1.5 2.3 7.4 9.1 93
1800 -H,O : Ny = 10800

Nscr 24 24 24 24 24 24

time 12169.84 8016.51 5300.55 1597.48 1285.98 1260.80
speedup — 1.5 2.3 7.6 9.5 9.7
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Solvated Crambin

Table 11: Computation times (in seconds) for PM3 single-point energy calculations in CPU-only
(nC) and hybrid CPU-GPU (HnCG and HnCG*) environments (7 is the number of the CPU cores).
Nscr denotes the number of SCF iterations. An asterisk indicates OpenMP parallelization using 6
CPU cores (our best effort). The number of the full diagonalizations equals Ngcr in each calcula-

tion.
1C 2C 6C HICG H6CG H6CG*
crambin : Ny = 1623
Nscr 31 31 31 31 31 31
time 114.12 62.69 30.98 50.20 20.23 19.40
speedup — 1.8 3.7 23 5.6 59
crambin in 500 -H,O : Ny = 4623
Nscr 35 35 35 35 35 35
time 2830.34 1526.66 734.56 640.36 42415 418.38
speedup — 1.9 3.9 4.4 6.7 6.8
crambin in 600 -H,O : Ny = 5223
Nscr 34 34 34 34 34 34
time 3874.09 2116.22 1020.04 867.27 571.87 563.24
speedup — 1.8 3.8 4.5 6.8 6.9
crambin in 700 -H,O : Ny = 5823
Nscr 35 35 35 35 35 35
time 5507.13 3017.66 1453.20 1219.83 805.46 795.09
speedup — 1.8 3.8 4.5 6.8 6.9
crambin in 800 -H,0 : Ny = 6423
Nscr 32 32 32 32 32 32
time 6808.15 3712.72 1788.26 1459.84 959.15 947.13
speedup — 1.8 3.8 4.7 7.1 7.2
crambin in 900 -H,O : Ny = 7023
Nscr 33 33 33 33 33 33
time 9127.94 5034.41 2397.42 1955.34 1273.37 1258.21
speedup — 1.8 3.8 4.7 7.2 73
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Table 12: Computation times (in seconds) for OM1 single-point energy calculations in CPU-only
(nC) and hybrid CPU-GPU (HnCG and HnCG*) environments (7 is the number of the CPU cores).
Nscr and Ngjqg denote the numbers of SCF iterations and full diagonalizations. An asterisk indi-
cates OpenMP parallelization using 6 CPU cores (our best effort).

1C 2C 6C HICG H6CG H6CG*

Ceo : Ny = 240, Nscr = 13, Ngjqg = 13

time 0.26 0.17 0.12 0.23 0.17 0.16
speedup — 1.5 2.1 1.1 1.5 1.6
Ciy0 : Ny =480, Nscr = 18, Njjqe = 18

time 231 1.43 0.89 1.632 0.98? 0.92°
speedup — 1.6 2.6 1.4 2.4 2.5
Cigo : Ny =720, Nscr = 13, Ngigg = 13

time 4.76 2.77 1.58 2.50 1.35 1.23
speedup — 1.7 3.0 1.9 35 39
Cyy0 : Ny =960, Nscp = 15, Ngigg = 15

time 12.18 6.87 3.74 5.86 2.86 2.66
speedup — 1.8 33 2.1 4.3 4.6
Csyo : Nf = 2160, Nscr = 24, Njjog = 24

time 202.67 108.20 53.21 63.62 42.92 41.38
speedup — 1.9 3.8 3.2 4.7 4.9
Cogo : Ny = 3840, Nscr = 21, Ngjqe = 21

time 968.54 523.53 256.93 257.05 168.66 164.31
speedup — 1.9 3.8 3.8 5.7 59
1000 -H,O : Ny = 6000, Nscr = 18, Ngjqg = 4

time 1316.51 745.44 379.78 208.55 151.75 133.68
speedup — 1.8 3.5 6.3 8.7 9.8
1200 -H,O : Ny = 7200, Nscr = 19, Ngjqe = 4

time 2376.83 1345.03 684.17 353.66 258.91 232.30
speedup — 1.8 3.5 6.7 9.2 10.2

? Nscr and Ngiag are 20.

S23



8 OM2 Calculations

Table 13: Computation times (in seconds) for OM2 single-point energy calculations in CPU-only
(nC) and hybrid CPU-GPU (HnCG and HnCG*) environments (7 is the number of the CPU cores).
Nscr and Ngjqg denote the numbers of SCF iterations and full diagonalizations. An asterisk indi-
cates OpenMP parallelization using 6 CPU cores (our best effort).

1C 2C 6C HICG H6CG H6CG*
Cgo : Ny = 240, Nscr = 14, Ngjqg = 14
time 0.28 0.19 0.14 0.25 0.19 0.19
speedup — 1.5 2.1 1.1 1.5 1.5
Ciy0 : Ny =480, Nscr = 18, Njjqe = 18
time 222 1.36 0.83 1.37 0.82 0.76
speedup — 1.6 2.7 1.6 2.7 2.9
Cig0 : Ny =720, Nscp = 15, Ngigg = 15
time 5.54 3.25 1.86 295 1.57 1.45
speedup — 1.7 3.0 1.9 35 3.8
Chyo : Ny =960, Nscr = 17, Ngige = 17
time 13.78 7.85 4.26 6.79 3.29 3.09
speedup — 1.8 3.2 2.0 4.2 4.5
Csyo : Nf = 2160, Nscr = 24, Njjog = 24
time 203.45 108.79 53.42 64.81 43.52 41.80
speedup — 1.9 3.8 3.1 4.7 4.9
Cogo : Ny = 3840, Nscr = 25, Ngigg = 25
time 1156.48 624.59 308.59 308.19 201.99 195.95
speedup — 1.9 3.7 3.8 5.7 59
1000 -H,O : Ny = 6000, Nscr = 20, Ngjqg = 4
time 1740.69 1115.49 720.15 34131 284.65 190.67
speedup — 1.6 24 5.1 6.1 9.1
1200 -H,O : Ny = 7200, Nscr = 20, Ng;jqe = 4
time 3061.91 1977.35 1289.87 599.30 506.24 333.82
speedup — 1.5 24 5.1 6.0 9.2
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Table 14: Computation times (in seconds) for OM3 single-point energy calculations in CPU-only
(nC) and hybrid CPU-GPU (HnCG and HnCG*) environments (7 is the number of the CPU cores).
Nscr and Ngjqg denote the numbers of SCF iterations and full diagonalizations. An asterisk indi-
cates OpenMP parallelization using 6 CPU cores (our best effort).

1C 2C 6C HICG H6CG H6CG*
Cgo : Ny = 240, Nscr = 14, Ngjqg = 14
time 0.28 0.18 0.13 0.25 0.18 0.18
speedup — 1.5 2.1 1.1 1.5 1.6
Ciy0 : Ny =480, Nscr = 18, Njjqe = 18
time 2.18 1.34 0.81 1.34 0.80 0.75
speedup — 1.6 2.7 1.6 2.7 2.9
Cig0 : Ny =720, Nscr = 17, Ngigg = 17
time 6.24 3.65 2.07 3.29 1.74 1.57
speedup — 1.7 3.0 1.9 3.6 4.0
Cyy0 : Ny =960, Nscp = 15, Ngigg = 15
time 12.23 6.94 3.80 6.04 3.01 3.16
speedup — 1.8 3.2 2.0 4.1 3.9
Csyo : Ny = 2160, Nscr = 26, Ngjqe = 26
time 220.40 119.01 58.44 70.26 47.51 45.65
speedup — 1.9 3.8 3.1 4.6 4.8
Cogo : Ny = 3840, Nscr = 21, Ngjqe = 21
time 973.13 527.42 259.81 261.92 171.36 165.75
speedup — 1.8 3.7 3.7 5.7 59
1000 -H,O : Ny = 6000, Nscr = 22, Ngjag = 4
time 1818.91 1148.49 720.07 342.92 287.18 190.59
speedup — 1.6 2.5 53 6.3 9.5
1200 -H,O : Ny = 7200, Nscr = 22, Ngjqg = 4
time 3148.18 1982.86 1244.15 593.63 501.18 324.96
speedup — 1.6 2.5 53 6.3 9.7
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Semiempirical Quantum Chemistry

Xin Wu, Axel Koslowski, and Walter Thiel
Max-Planck-Institut fiir Kohlenforschung, Miilheim an der Ruhr, Germany

1.1 Introduction

Semiempirical quantum-chemical methods are cost-effective tools for chemists to study
the structure, stability, and spectroscopy of molecules as well as chemical reactions [1].
They are based on the Hartree-Fock method commonly used in ab initio molecular
orbital theory [2]. The different semiempirical models simplify the Hartree-Fock procedure
by introducing distinct approximations to the Hamiltonian, neglecting many integrals
to speed up computations by several orders of magnitude [3]. The remaining integrals
are modeled using empirical functions with adjustable parameters that are calibrated
against a large number of accurate experimental or high-level theoretical reference data
to make semiempirical methods as reliable and general as possible. These features make
semiempirical models well-suited to many research areas in chemistry and enabled a large
number of semiempirical applications already in the 1970s and 1980s. Since the 1990s,
density functional theory (DFT) has become the major workhorse in computational chemistry
[4]. However, considering that semiempirical methods are approximately 1000 times faster
than standard DFT approaches [5], they are still valuable computational tools nowadays, e.g.,
for screening large numbers of drug candidates [6], for calculations on proteins [7], for long-
time ground-state molecular dynamics simulations [8], and for nonadiabatic excited-state
dynamics of large chromophores [9].

The development of computational chemistry is intimately tied to the evolution of
computer technology. Originally, computational chemistry programs had been exclusively
written for sequential execution on a single central processing unit (CPU) since the 1950s
[10]. With the widespread advent of parallel computing in the 1990s, many quantum-
chemical codes were parallelized to take advantage of the new architectures, including
semiempirical programs [11]. The most recent wave of hardware-driven code development
was triggered by the rise of graphics processing units (GPUs). A GPU is a specially designed
integrated circuit with powerful, but fixed-function pipelines for faster image rendering and
video games. Until 2006, implementing algorithms for general numeric calculations on a

This is a Book Title Name of the Author/Editor
(€) XXXX John Wiley & Sons, Ltd



2 Semiempirical Quantum Chemistry

GPU was tediously difficult because the problem had to be cast into graphics operations by
resorting to a specific (graphics) API (Application Programming Interface). Programming
purely computational tasks on a GPU was considerably simplified by the introduction of the
CUDA (Compute Unified Device Architecture) and OpenCL (Open Computing Language)
frameworks. In this chapter, we will focus exclusively on the CUDA framework that allows
developers to employ the C programming language, with CUDA -specific extensions, to use a
CUDA-capable GPU as co-processor of the CPU for computations [12]. As of 2012, the raw
hardware peak performance and memory bandwidth of a many-core GPU had significantly
outpaced a multi-core CPU. For example, the maximum floating-point performance and
theoretical memory bandwidth of an Intel Xeon E5-4650 CPU (eight cores with a base
clock of 2.7 GHz and a maximum boost clock of 3.3 GHz with the Intel Turbo Boost
Technology, four-channel DDR-1600) are 0.17-0.21 TFlop/s (floating-point operations per
second) and 51.2 GB/s, respectively. By contrast, the flagship Tesla K20x by NVIDIA
(2688 CUDA cores @ 732 MHz) has a peak of 1.31 TFlop/s for double-precision arithmetic
and a memory bandwidth of 250 GB/s with ECC (error-correcting code) off. Hence many
groups decided to develop GPU-accelerated programs [13, 14] to take advantage of this
promising device for quantum Monte Carlo computations [15, 16], the evaluation of two-
electron integrals [17-22], DFT calculations [23-30], high-level correlated ab initio methods
[31-38], and semiempirical quantum chemistry [39, 40].

In this chapter, we begin with a brief review of semiempirical quantum chemistry, referring
readers interested in the detailed formalism and the numerical results to available books
[41-43] and reviews [5, 11, 44-50]. We then examine the computational bottlenecks by
performing systematic calculations on a set of eight proteins with up to 3558 atoms and 8727
basis functions. Thereafter, we outline how the hotspots identified in this manner are ported
to a GPU (making use of multiple devices where possible), and how the remaining code
is parallelized CPU-only using symmetric multiprocessing (SMP) capabilities via OpenMP.
Next, we analyze the overall performance of our code on the hybrid CPU-GPU platform and
compare it with the CPU-only case. Finally, as an illustrative application, we use our CPU-
GPU hybrid program to optimize the geometries of three small proteins, each consisting
predominantly of one type of secondary structure, namely a-helix, S-strand, and random
coil, employing six different semiempirical methods.

1.2 Overview of Semiempirical Methods

Nonrelativistic quantum chemistry aims at finding sufficiently accurate approximate
solutions to the Schrodinger equation. In the early days of quantum chemistry, the
zero-differential-overlap (ZDO) approximation [51, 52] was introduced to deal with “the
nightmare of the integrals™ [10], i.e. the difficulty of evaluating the large number of three-
and four-center integrals in ab initio methods. As a consequence, the integral problem could
be tackled at different levels of approximation. Currently, the most accurate semiempirical
methods are based on the NDDO (Neglect of Diatomic Differential Overlap) model [3],
which retains all one- and two-center two-electron repulsion integrals in the Fock matrix.
The first successful and widely adopted NDDO-based parameterization was the MNDO
(Modified Neglect of Diatomic Overlap) method [53-55]. The MNDO model also serves
as the basis for later parametrizations that have been widely applied, including AM]1
(Austin Model 1) [56], PMx (Parametric Methods, = = 3, 5, 6, and 7) [57-60] as well
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Table 1.1 Proteins in the test set for the OM3 calculations. IV, and Ny denote the
number of atoms and basis functions, respectively.

notation  Poz2o Poes Pose Pioo Pi2s Piss P16 Pa221

PDBID 1BTQ 1K50 2HXX 3K6F 1ACF 2A4V 4A02 3AQO
Ng 307 1097 1495 1842 2004 2969 3415 3558
Ny 754 2699 3655 4446 4920 7157 8173 8727

as PDDG/MNDO and PDDG/PM3 (MNDO and PM3 augmented with Pairwise Distance
Directed Gaussian functions) [61].

Conceptual deficiencies in the established MNDO-type methods include the lacking
representation of Pauli exchange repulsion in the Fock matrix. One possible remedy is to
introduce orthogonalization corrections into the Fock matrix to account for Pauli exchange
repulsion. This can be done through truncated and parametrized series expansions in terms of
overlap, which provide corrections to the one-electron core Hamiltonian. These corrections
are applied to the one-center matrix elements in OM1 (Orthogonalization Method 1) [62]
and to all one- and two-center matrix elements in OM2 [63] and OM3 [64]. Benchmark
calculations demonstrate that the OMxz methods, especially OM2 and OM3, are superior to
AMI1 and PM3 for both ground-state and excited-state molecular properties [65-67]. The
costs of OMz calculation are roughly the same as those for MNDO-type calculations [39],
especially when using suitable cutoffs to neglect the exponentially decreasing three-center
orthogonalization corrections to matrix elements involving distant atoms.

1.3 Computational Bottlenecks

In the present work, the OM3 method is taken as an example to illustrate the general strategy
of optimizing a semiempirical quantum-chemical program on a hybrid CPU-GPU platform.
We have selected a set of eight proteins that are denoted as P, (z being the number of
residues) and listed in Table 1.1, for the purpose of profiling OM3 calculations in a systematic
manner [68-75]. Timings for the OMz methods are also representative for MNDO-type
methods, because the most time-consuming parts of the calculations are the same in both
cases. Consequently, similar wall clock times are obtained: for example, one SCF (self-
consistent-field) iteration in MNDO, AMI1, PM3, OMI1, OM2, and OM3 calculations of
1000 - H,O takes 80, 84, 89, 73, 87 and 83 seconds, respectively, on a single Intel Xeon
X5670 CPU core [39]. Hence, it is sufficient to consider only OM3 in the following.

The OM3 calculations on our test proteins were performed on a server with two Intel
Xeon X5690 CPUs (6 cores @ 3.46 GHz per chip), 48 GiB host memory (24 GiB of triple-
channel DDR-1333 per chip) with a total theoretical bandwidth! of 64 GB/s, and two
NVIDIA Tesla M2090 GPUs (512 CUDA cores @ 1.3 GHz per device) with 5.25 GiB ECC
memory and a bandwidth of 155 GB/s per device. Intel Turbo Boost Technology (which
may automatically increase the CPU frequency above the base clock in accord with the
workload in order to exhaust the allowed thermal envelope of the CPU) was intentionally
turned off to ensure consistent timings. Three criteria were adopted for SCF convergence
in our single-point energy calculations, namely i) a variation of the electronic energy in

'If one CPU needs to access memory connected to the other CPU, the theoretical bandwidth is lower.
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successive SCF iterations of at most 1.0 x 106 eV, ii) a maximum change of the density
matrix elements of 1.0 x 109, and iii) a maximum entry in the error matrix of 1.0 x 10-6
in the DIIS (Direct Inversion of Iterative Subspace) extrapolation [76]. To speed up the
calculations, the full diagonalization was automatically replaced in the SCF procedure by
fast pseudodiagonalization [77] whenever possible.

The code development was conducted on a CVS version of the MNDO99 package [78].
Intel Composer XE 13.1 and NVIDIA CUDA Toolkit 5.0 were used for compiling the
FORTRAN subroutines on the CPU and the C-like functions on the GPU, respectively. The
final executable was dynamically linked against Intel Math Kernel Library (MKL) 11.0,
CUBLAS from the NVIDIA Toolkit, and MAGMA version 1.3.0 [79]. The latter includes
a subset of LAPACK routines ported to the GPU; it has been modified locally to conform to
the ILP64 (64-bit integers, long integers, and pointers) data model, which is needed to access
arrays with 232 or more elements.? Before the inclusion of dynamic memory allocation in the
FORTRAN standard, the early versions of the MNDO program emulated dynamic memory
by passing sections of a fixed-size array in the unnamed COMMON block as arguments to
subroutines. The current version of the MNDO code uses essentially the same mechanism,
but with a dynamically allocated array instead of the fixed-size array. For larger proteins, the
indices of this array may exceed the 32-bit integer range — this is why 64-bit integers are
needed.

The computing setup for the OM3 benchmark calculations is denoted as Cizc_yg), Where
the subscripts = and y are the number of CPU cores and GPU devices in use, respectively. The
wall clock time of an OM3 calculation on Clqy is the reference for calculations with the other
compute configurations and the basis for assessing the corresponding speedups. Timings for
Clig) and Cpyg) refer to subroutines executed exlusively on 1 GPU or 2 GPUs, respectively,
including the associated and generally negligible CPU-GPU communication. All floating-
point operations were done in double precision, both on the CPUs and GPUs, and therefore
the numerical results produced on all hardware setups are essentially the same. Deviations in
the computed heat of formation (total energy) were occasionally encountered, but remained
below 1.0 x 1072 kcal /mol. Such tiny discrepancies can be attributed to the different order,
in which the floating-point operations are performed on the CPU and GPU architectures.
Since many operations are performed in parallel, the execution order may not even be fixed,
i.e. there might be small deviations between different runs of the same calculation on the
same computing setup. The execution order matters because fixed-precision arithmetics is
not associative.

The general form of a two-electron repulsion integral (ERI) in ab initio and DFT methods

is
() = /1 /2 u(1) V(ljlj@) @ v av,

where the Greek letters represent basis functions or atomic orbitals (AOs). The complexity
of the two-electron integral evaluation formally scales as O(N}l) for Ny basis functions, but
the actual scaling may be more favorable due to the application of screening techniques [80].
The currently applied semiempirical methods make use of the NDDO approximation [3] for
ERI evaluation:

(pave|Acop) = 6ag dcp (1ave|Acon),

2Starting with version 1.4, MAGMA supports both 32-bit and 64-bit integers out of the box.
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Figure 1.1 Profiles of the OM3 calculations for the test proteins for the C[;c) computing setup.

where atomic centers are denoted by capital letters and dag (or dcp) will vanish unless A
and B (or C and D) are the same atom. This rather drastic approximation reduces the formal
scaling of the ERI computation in semiempirical methods to O(N}!) and makes it possible to
simulate complex systems with thousands of atoms. The solution of the secular equations

> (Fuw — 6uwei)Coi = 0 (1.1)

scales as O(N)?) and thus becomes the primary computational task in semiempirical methods.
€; is the energy of the ith molecular orbital (MO). Because the Fock matrix elements F,,
depend on the elements C,,; of the eigenvectors, Equation (1.1) has to be solved by an
iterative SCF procedure that requires O(N?) dense linear algebraic operations.

Figure 1.1 depicts the profiles of OM3 calculations for the Cj setup. The
pseudodiagonalization procedure (PDIAG) is roughly twice as fast as a full diagonalization
(FDIAG), and it is thus preferable to replace FDIAG by PDIAG as often as possible. Applying
the default criteria of the MNDO code for the choice between FDIAG and PDIAG, it is
normally sufficient to call FDIAG in four of the SCF iterations (i. e. the first three and the
last one) during single-point energy evaluation and to call PDIAG in the other SCF iterations
(typically 25).> Hence most OM3 calculations are dominated by PDIAG with 42.1% of the
wall clock time on average. FDIAG and PDIAG complement each other, they collectively
contribute ~ 55% of the total CPU time and are thus the first two bottlenecks.

DIIS is the third hotspot that consumes ~ 30% of the computation time (see Figure 1.1).
Although the DIIS extrapolation may be omitted for small systems (with less than 100 atoms),
it is in our experience imperative to apply DIIS to reliably converge the SCF procedure for
larger molecules such as proteins. We will thus also investigate the option of leveraging
multiple GPUs for the DIIS treatment (see next section).

The last two bottlenecks are the calculation of the density matrix (also called bond order
matrix, subroutine BORDER) and the orthogonalization corrections (subroutine ORTCOR

3An exception is Poge with 11 calls to FDIAG.
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in the case of OM3). We spent considerable effort on both routines to achieve optimum
performance with the MNDO99 program [78], especially for ORTCOR, where we obtained
a huge speedup by formulating all operations as standard matrix-matrix multiplications. After
code optimization, BORDER and ORTCOR take 9.4% and 1.1% of the wall clock time on
average, respectively, on the Cjc] setup.

Other computational tasks in an OM3 calculation include integral evaluation, formation
of the Fock matrix, and initial density matrix generation, which all scale as O(N?).
Cumulatively, they require 7% of the CPU time in a serial calculation for a small protein such
as Ppop with 307 atoms and 754 orbitals, but this portion quickly diminishes with increasing
system size, to ~ 0.5% for the largest proteins in our test set, which are the main targets of
our code development. Therefore, these other tasks are not considered to be real bottlenecks,
and the corresponding subroutines are thus only subjected to an OpenMP parallelization to
take advantage of multiple CPUs.

In summary, we have identified five subroutines (FDIAG, PDIAG, DIIS, BORDER and
ORTCOR) as computational bottlenecks by systematic analysis of OM3 calculations on a set
of proteins. We describe the optimization of these hotspots on a hybrid CPU-GPU platform
in the following.

1.4 Profile-Guided Optimization for the Hybrid Platform
1.4.1 Full Diagonalization, Density Matrix, and DIIS

The GPU-accelerated full diagonalization, density matrix construction, and DIIS
extrapolation are jointly described here because they heavily rely on the standard routines
in the BLAS (Basic Linear Algebra Subprograms) and LAPACK (Linear Algebra Package)
libraries.

Equation (1.1) is an eigenvalue problem that can be solved by diagonalizing the Fock
matrix F, which yields the ¢th MO energy ¢; and the coefficient vector c;:

Fci = £;C4

This task can be carried out by the LAPACK function DSYEVD that computes all
eigenvalues and eigenvectors of a real symmetric matrix using the divide-and-conquer
algorithm. DSYEVD of the Intel MKL library makes use of all processor cores on a CPU-
only platform, whereas the DSYEVD implementation in MAGMA is a hybrid that utilizes
both multi-core CPUs and GPU(s)* for the diagonalization [81]. In Figure 1.2 the speedups
of FDIAG are plotted as obtained in the OM3 calculations on the proteins in our test set.
The scalability on CPU-only setups is evidently rather poor: for instance, the best speedups
are observed in the calculations on Pgg3, which are 4.3 on Cjgcj and 5.4 on Cjj5¢)- Hence,
the symmetric parallel processors are highly under-utilized in the FDIAG subroutine, and
the efficiency” is merely 0.72 and 0.45, respectively. This becomes even worse for larger
systems: for example, the speedup of FDIAG for Pa21 on Cigc is 3.3 and barely increases to
3.8 on Cyyycj, with corresponding efficiencies of 0.55 and 0.32, respectively. On the contrary,
the speedup of the hybrid FDIAG is constantly rising until Py (up to more than 8000 basis

4The hybrid DSYEVD function in MAGMA version 1.3 does not support multiple GPUs. This feature is available
starting with MAGMA version 1.4.

SProcessor efficiency is defined as the speedup devided by the number of parallel processing units.
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Figure 1.2 Speedups of the FDIAG subroutine in the OM3 calculations on the multi-CPU Cigc),
Cii2c), and hybrid CPU-GPU C|jyc.ig) computing setups over the serial configuration.

functions). Moreover, it is always superior to its CPU-only counterpart with the exception of
Pogs on the C[ya¢) setup. For the larger calculations, the hybrid FDIAG subroutine tends to be
more than 7 times faster than the serial version and at least two times faster than the parallel
CPU-only version.

The primary computational task (> 99% of the CPU time) in BORDER is a matrix-matrix
multiplication, P = 2C0CE, where P is the density matrix and C, is the coefficient matrix of
the occupied MOs. A general DGEMM routine could be used to perform this task. Because P
is symmetric, and only the lower triangle is stored as a linear array in the MNDO99 package,
we employ a more specific function, namely DSYRK, which only calculates the lower part
of a symmetric matrix and thus avoids unnecessary floating-point operations. The CPU-only
DSYRK routine has no difficulty to fully load all processors, and the performance scales
almost ideally with respect to the number of CPU cores (see Figure 1.3). For example, the
speedups for Pigg are 5.8 on Cg and 9.9 on Clizc)- At present, no multi-GPU enabled
version of DSYRK is available in either CUBLAS or MAGMA. On the other hand, DSYRK
on a single GPU may be more than 20 times faster than a single-threaded CPU routine. Thus,
we will stick to DSYRK in our development, hoping that multi-GPU support will be added
by the vendors in the future.

The DIIS procedure is composed of several different kinds of algebraic operations, in
which the calculation of the error matrix (A = FP — PF) usually consumes more than
98% of the CPU time [39]. Because the product of F and P is a general matrix, the
standard DGEMM function is chosen for the DIIS subroutine. The number of floating-point
operations and memory accesses in DGEMM scale as O(N?) and O(N?) (N being the
matrix dimension), respectively. This implies that the number of compute operations per
memory access is proportional to N in DGEMM. Thus DGEMM is a compute-bound routine
that should be well suited to parallelization. The observed speedups on the CPU-only setups
are ~ 5.5 on Cjgc) and ~ 10.0 on C[jac)- Moreover, a call to DIIS accelerated by a single GPU
(C[1g]) can be up to 20 times faster than for the baseline setup C[icj. However, the speedup
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Figure 1.3 Speedups of the BORDER subroutine in the OM3 calculations on the multi-CPU Cigc},
Cii2c), and GPU-only C[;g; computing setups over the serial configuration.

for Cjg) turns out not to be monotonous with increasing system size: it is highest for P1a5
with ~ 20 and then drops again for the next-larger protein Py56 to ~ 18.

In order to make the best use of our dual-GPU equipped hardware, we designed a block-
matrix scheme for the matrix-matrix multiplication aimed at multiple GPU devices based
on the standard DGEMM routine [82]. There are of course more sophisticated multi-GPU
DGEMM implementations reported in the literature [83, 84], but the performance of our
homemade multi-GPU DGEMM is virtually doubled on two GPUs (Cjpg compared to Cj;g))
with a peak around 0.7 TFlop/s.

The overall speedup for the DIIS procedure with the multi-GPU DGEMM routine on the
Cpag) setup is plotted in Figure 1.4. We find a monotonous increase in performance up to a
factor of 30 compared with the Cj;¢) setup. The use of two GPU devices (Cjyg)) results in a
1.6-fold speedup over the setup with one single GPU (Cyg)).

1.4.2  Pseudodiagonalization

As mentioned in the previous section, pseudodiagonalization will be approximately two times
faster than the conventional diagonalization in a given SCF iteration. Thus PDIAG is used
instead of FDIAG whenever possible. However, an efficient implementation of PDIAG on
multiple GPUs can be challenging. Here, we first analyze the computations involved in
pseudodiagonalization, and then report the individual and overall speedups that have been
achieved.

The details of pseudodiagonalization have been described in the original paper [77]. From
a computational point of view, it is basically comprised of two tasks. First, the Fock matrix
is transformed from the AO basis to the MO basis by a triple matrix multiplication (FMO):

Fmo = CIFC,,
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Figure 1.4 Speedups of the DIIS subroutine in the OM3 calculations on the multi-CPU Cjsc), Ciac),
and GPU-only Cj;5 and Cpg) computing setups over the serial configuration.

Table 1.2 Percentages (%) of computation time in the PDIAG
subroutine consumed by FMO, JACOBI, and other tasks in OM3
calculations on a single CPU core.

notation Po2o  Posa  Pose Pioo Pizs Pise Pies P2

FMO 472 408 451 418 425 447 422 423
JACOBI 516 588 545 579 572 551 576 515
others 1.3 0.5 0.4 0.3 0.2 02 02 0.2

where C, and C, denote the matrices of the occupied and virtual MO vectors, respectively.
Then noniterative Jacobi-like 2 x 2 rotations (JACOBI) between pairs of occupied (c,) and
virtual (c,) vectors are executed:

¢, = ac, — bcy and ¢, = bc, + acy, (1.2)

where a and b are the elements of the rotation matrix, and the new MO vectors, ¢, and ¢},
are denoted by primes.

The profiles of the serial PDIAG version for the OM3 calculations on the proteins in our
test set are given in Table 1.2. On average, FMO and JACOBI consume ~ 45% and ~ 55%
of the CPU time, respectively. The other operations are negligible (< 1%) and can be safely
excluded from optimization.

The FMO step only contains the DGEMM calls for the matrix multiplications. The
relevant speedups with different computing configurations are summarized in Table 1.3.
Since DGEMM is compute-bound, FMO scales well with respect to the number of parallel
processors in the CPU-only setups. One single GPU-accelerated FMO step can be as much
as 20 times faster than on one CPU core. The setup with two GPU devices may further
increase the speedup to more than 30-fold, being about 1.6 times faster than on Cj;g)- The
best performance for a small protein like Ppag is achieved with the CPU-only setup of 12
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Table 1.3 Speedups of the FMO and JACOBI steps in the PDIAG
subroutine on the multi-CPU Cjsc}, C12c), and GPU-only C;g) and Cpg)
computing setups over the serial setup.

FMO JACOBI

Cea Cma Cpal Cpal Cea Crg Cpg Cpg

Po2o 5.2 7.8 59 52 34 5.1 26 3.6
Pogs 57 102 162 186 1.6 1.6 4.4 1.9
Pose 58 106 196 224 1.4 1.4 4.6 8.6
Pioo 58 107 200 231 1.3 1.2 4.5 8.1
Pi2s 58 108 203 254 1.2 1.2 5.0 9.4
Pise 58 113 210 304 1.2 1.2 4.4 8.6
Pige 58 113 206 319 1.2 1.2 4.4 8.6
P22y 55 106 208 329 1.4 1.4 5.1 9.9

cores, however. This is because a GPU is designed for massively parallel tasks that a small
system will not fully exploit, and some inevitable overhead such as CPU-GPU data transfer
may hurt the overall performance of a smaller calculation.

The GPU-oriented optimization of the JACOBI step is demanding. The technical details
can be found in our paper [39]. The resulting speedups are shown in Table 1.3. As one
2 x 2 rotation given in Equations (1.2) involves six memory accesses (four reads and two
writes) and six floating-point operations, the performance of JACOBI is fully determined
by the memory bandwidth. In the case of Pyag, the MO coefficient matrix is small enough
(4.3 MiB) to completely fit into the CPU cache (12 MiB per chip). Modest speedups of 3.4
and 5.1 are therefore achieved on the Cjgcj and Ciiocy setups, respectively. On the other hand,
numerous cache misses can occur for larger proteins starting from Pggz. The performance on
the CPU-only platform will then be determined entirely by the available memory bandwidth.
The obtained speedup rapidly falls down to 1.2, no matter how many CPU cores are in use
for parallelization. On the contrary, JACOBI on a single GPU benefits from the enhanced
memory bandwidth (155 GB/s versus 64 GB/s for two CPUs) and speedups of around
4.5-fold are consistently achieved in the benchmarks except for the smallest case, Pgap.
Addition of a second GPU doubles the total memory bandwidth, and the equal distribution of
horizontal blocks of the coefficient matrix among the available devices enables the rotations
to be carried out independently on each device [82]. The overall speedup on the Cppg) setup
for Pgg; is 10, which is 1.9 times higher than that on a single GPU (C{;g))-

Since the JACOBI step consumes a slightly higher fraction of the CPU time (between
55 and 60% for most proteins in our test set) than FMO in the PDIAG subroutine for the
serial configuration, and since JACOBI benefits less from parallelization than PDIAG on all
computing setups, the overall speedups of PDIAG shown in Figure 1.5 resemble those of
JACOBI (see Table 1.3), but with some additional performance benefits from the FMO step.
The highest speedup is 13.7 for Pag1 on Cjyg), which is again 1.9 times higher than that on a
single GPU (Cjig))-
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Figure 1.5 Speedups of the PDIAG subroutine in the OM3 calculations on the multi-CPU Cigc),
Cli2c), and GPU-only C[;g] and Cppg) computing setups over the serial configuration.

1.4.3  Orthogonalization Correction in OM3

The OM3 method [64] accounts for Pauli exchange repulsion by explicitly adding the

orthogonalization corrections (Vgg) to the core Hamiltonian of the Fock matrix:

1
Vi = =5G D (SunrcBacvn + BuircSaas)  (C# Aand C#B)
Ac

where .S and 3 denote elements of the overlap and resonance matrices, respectively, and G
is defined in terms of a few parameters that can be adjusted to fit reference data. pa, vg,
and Ac are AOs at atoms A, B, and C, respectively. If A and B are the same atom, Vg‘g is
a correction to a one-center term, otherwise it refers to a two-center element. Inclusion of
the latter three-center contributions leads to qualitative improvements over the MNDO-type
methods for the calculated molecular properties, such as rotational barriers, relative energies
of isomers, hydrogen bonds, and vertical excitation energies [1, 65-67].

Even though the ORTCOR subroutine consumes only ~ 1% of the wall clock time for the
Cic setup, we implemented a dedicated algorithm utilizing multiple GPUs in an attempt
to harness all available computing power. The ORTCOR performance for various setups is
depicted in Figure 1.6. The technical details will be presented elsewhere.

The speedup of the ORTCOR subroutine scales reasonably well on the symmetric multi-
CPU setups. For example, 5.5- and 10.1-fold performance boosts are feasible on the Cigc) and
Ci12¢ setups, respectively. ORTCOR is accelerated up to 28-fold for medium-sized proteins
like Pggs on a single GPU (Cig) setup), but thereafter the speedup decreases again with
increasing system size to ~ 20 for the largest proteins in our test set. The speedup on the
Cpag) setup can reach 35-fold for a moderately sized protein, and there is no performance
deterioration for larger proteins. Moreover, the multi-GPU ORTCOR scales well compared
to a single GPU device for sufficiently large proteins. For example, ORTCOR is 1.7 times
faster on Cppg) than on Cjig) for Pag;.
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Figure 1.6 Speedups of the ORTCOR subroutine in the OM3 calculations on the multi-CPU Cigc},
Cli2c), and GPU-only C[;g] and Cppg) computing setups over the serial configuration.
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Figure 1.7 Overall speedups of the OM3 calculations of test proteins on the multi-CPU Cisc), Ciac),
and hybrid CPU-GPU Cji2c.16] and Cj1ac.26] computing setups over the serial configuration.

1.5 Performance

Since a user will of course never run an individual subroutine by itself, the overall speedups
for the OM3 calculations on proteins are more relevant in practice. They are presented in
Figure 1.7.

The performance of the OM3 calculations on the CPU-only platform can hardly be
improved by using more processor cores. The speedups quickly reach a saturation point
and never exceed 4. The mean values averaged over the proteins in the test set are 2.9 and
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3.4 on Cjgcj and C[iac), respectively. Moreover, the individual speedups seem to be almost
invariant with respect to the size of the protein. Thus neither using more CPU cores nor
increasing the system size yields higher speedups on the CPU-only setup. At first glance, this
conclusion seems to contradict our previous result that the speedup of an MNDO calculation
on fullerene Cs,, could reach 7.7 on Cray Y-MP with eight vector processors [85]. This
apparent discrepancy can be resolved by considering the relevant arithmetic operations and
the differences in the computer architectures. Concerning the computational bottlenecks
mentioned in the preceding section, only three subroutines (BORDER, DIIS, and ORTCOR)
of the five hotspots in the OM3 calculations can be well accelerated on current hardware by
using additional CPU cores (see Figure 1.3, 1.4 and 1.6), whereas neither FDIAG nor PDIAG,
which consume ~ 65% of the wall clock time, scale favorably with the number of cores (see
Figure 1.2 and 1.5). This is because the former three are primarily dominated by compute-
bound routines, which demand more arithmetic power than memory bandwidth. On the other
hand, both diagonalization subroutines are composed of bandwidth-bound operations that
would parallelize well on more CPU cores if and only if the demand for memory bandwidth
could be satisfied in the first place. The theoretical floating-point peak performance of the two
Xeon X5690 CPUs (a total of 166 GFlop/s) exceeds that of the Cray Y-MP (2.6 GFlop/s) by
a factor of 64. The theoretical memory bandwidth of our current Xeon server (64 GB/s),
however, is merely two times greater than that of the 25-year-old Cray Y-MP (32 GB/s).
Therefore, a tremendously inadequate memory bandwidth prevents the performance boost
on a computer system including only parallel superscalar CPUs.

Because of the advantages of GPUs with regard to floating-point peak performance
and memory bandwidth, the speedups achieved for the OM3 calculations on GPUs are
monotonously growing with the size of the proteins and the number of GPUs (see Figure 1.7).
Although the hybrid CPU-GPU platform provides higher speedups than the CPU-only
platform for most bottlenecks, there may be exceptions in the case of calculations on small
proteins like Ppap. This may be caused by the CPU-GPU communication overhead, by the
unfavorable behavior of certain subroutines for small systems on a hybrid platform compared
to a CPU-only setup (especially PDIAG, see Figure 1.5), or by less optimized non-GPU
routines becoming more dominant. For example, the CPU-only computation on Py takes
only 41% of the wall clock time for the C[jac2g) setup (see Figure 1.8). Thus the overall
performance of the OM3 calculations for Pgo is rather similar on all computing setups. On
the other hand, the acceleration on the hybrid CPU-GPU and CPU-only platforms is quite
different for large calculations. The speedups of the OM3 calculations for Paoq reach 9.5 and
14.6 on the Cjj5c.16) and Cjipca6) setups, respectively. The relative speedup of Cjpc.o6) over
Cliacig) is ~ 1.5 for the OM3 calculations of large proteins. Further performance increases
are thus very likely when more GPU devices are employed in even larger semiempirical
quantum-chemical calculations.

Finally, we inspect the profiles of the OM3 calculations on the hybrid C[12c.26] setup (see
Figure 1.8). DIIS, BORDER, and ORTCOR are the three subroutines most accelerated on
the GPU, thus their combined share of the wall clock time is just about half of that on Cjy¢.
On average, the shares of DIIS, BORDER, and ORTCOR amount to 31.4%, 9.4%, 1.1% and
14.0%, 5.7%, 0.4% on the Cyyc) and Cijpcoq) setups, respectively. The speedups for FDIAG
and PDIAG are not as good as those for the former three routines, and hence their combined
share on the Cliacag) setup is increased to 64.4% on average. The remaining subroutines
(e. g., for integral evaluation and Fock matrix formation) have not yet been ported to a
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Figure 1.9 Experimental structures of (a) P, (PDB ID: 2AP7, 80% «-helix), (b) Pg (PDB ID: 2EVQ,
50% (-strands) and (c) Pc (PDB ID: 1LVR, 100% random coil). Only the backbone atoms are shown,
with the C® atoms represented by black balls. Four dihedral angles (¢, 1, w, and ¢) in a residue serve
as stereochemical metrics, see the schematic sketch in (d).

GPU, but are executed in parallel using multiple CPU cores (via OpenMP). They become
the bottlenecks for small protein calculations with a time share of 40.9% in Pgyg, which
gradually decreases with system size, down to 7.8% for a large protein like P22;. We may thus
anticipate some further improvement of the overall performance with dedicated multi-GPU
kernels for the semiempirical integral evaluation and Fock matrix construction.

1.6 Applications

Given the code developments outlined above, it has now become a routine task to carry out
semiempirical quantum-chemical calculations for large biomolecules, such as proteins, on a
hybrid CPU-GPU computing platform. We have carried out full geometry optimizations of
three proteins with a-helix, S-sheet, and random coil structures (see Figure 1.9), which were
chosen from a collection of proteins used in previous work [86]. Six different semiempirical
methods were applied, namely MNDO, AMI, PM3, and OMz (z = 1, 2, and 3). The
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Table 1.4 Statistics (%) for [¢, 1] in the most favored (Pg,w) and additionally allowed (Pj,!w) regions
of the Ramachandran plot and standard deviations (°) of w and ¢. Results for the experimental structures
of P4, Pg and Pc are compared with those calculated by semiempirical quantum-chemical methods.

Pa Pz Pc

Poy Piy 0w o¢ Py Piy ou o¢ Py Py ou o

Expt. 100.0 0.0 08 06 875 125 26 07 429 429 23 18
MNDO 917 8.3 90 1.3 875 125 149 05 286 571 170 25
AMI1 75.0 16.7 97 1.0 100.0 00 158 1.0 286 714 70 19
PM3 750 250 153 13 875 125 197 1.0 429 571 228 1.7
OM1 81.8 182 124 10 875 125 94 09 286 714 125 125
OM2 833 16.7 86 1.1 875 125 104 1.1 429 429 105 21
OM3 833 16.7 76 1.1 875 125 157 12 429 429 143 25

optimizations were terminated when the gradient vector norm dropped below a preselected
threshold value (|g| < 1.0kcal - mol~* - ﬁ_l). The quality of the computed structures was
assessed in terms of the conformation of the main chain by using the PROCHECK package
[87], in comparison with the structures determined in aqueous solution by nuclear magnetic
resonance (NMR) experiments. It should be stressed that the results given here are just for
demonstration, since more realistic simulations would require more elaborate approches (e.g.,
including explicit solvent).

The backbones of the proteins are shown in Figure 1.9. Highly regular local structures
imposed by hydrogen bonds are found in P4 and Pg, whereas Pc possesses an unfolded
polypeptide chain. The backbone conformation of a protein is determined by a pair of less
rigid dihedral angles [¢, ] at the C®-atom [88] and a stiff torsion angle w of the peptide
bond. w is usually restricted to be around 180° for an energetically more favorable trans
conformer due to the partial double bond character of the amide bond that prevents facile
rotation. In addition, a virtual dihedral angle ¢ is defined between C{*~N and noncovalently
bound C; - - - Cf as a measure of chirality at the central C{* atom of the amino acid [89].

PROCHECK divides a Ramachandran map into four regions: most favored, additionally
allowed, generously allowed, and disallowed. The shares of the first two distributions, R§,¢
and Pq},,ﬁ,, for P4, Pg and Pc are listed in Table 1.4. In most cases, P&w and P;,w add up to
the total population. Neither experimental nor theoretically optimized protein structures are
spoiled by disallowed [¢, 1] combinations. Since more regular secondary structures exist in
P, and Py than in the disordered P, significantly higher values for PO are obtained for the
former two proteins. MNDO, AM1, PM3, and OM1 predict a higher [qb, 1] population in the
additionally allowed region for Pc, whereas OM2, OM3, and the NMR experiment give equal
values for P&w and P;,w. Although the deficiencies of the original MNDO method for the
description of hydrogen bonds are known from early studies [90, 91], its actual performance
for the proteins in the test set seems rather satisfactory. Both the a-helix (in P4) and S-strand
(in Pg) structures are found, and reasonable [¢, 1] distributions are retained in the optimized
structures.

All semiempirical methods predict greater deviations from planarity around the peptide
bond than deduced from experiment (see the o,, values). Such deviations from planarity in
the peptide group have already been reported in earlier theoretical studies [7, 92, 93]: the
sp2-hybrid nitrogen in a peptide bond should be planar, but it tends to be pyramidalized in
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semiempirical calculations. The average value of { for L-amino acids is 33.81 +4.17° [89].
The o values from experiment and from semiempirical calculations are rather small and of
similar quality, indicating a good description of the local environment of the sp3-C& atoms
in the main chains.

1.7 Conclusion

In this chapter, we have presented a profile-guided optimization of the semiempirical
quantum-chemical MNDO program on a hybrid CPU-GPU platform. OM3 calculations on a
set of eight proteins were used to guide the code development and to assess the performance.
The computational bottlenecks on one single CPU core were identified as the diagonalization
of the Fock matrix (FDIAG), fast pseudodiagonalization (PDIAG), SCF acceleration (DIIS),
density matrix formation (BORDER), and computation of the orthogonalization corrections
in OM3 (ORTCOR), which cover altogether ~ 99% of the wall clock time in the test runs.
Standard library routines and special finely tuned kernels targeting multiple GPU devices
were employed to accelerate these toutines, whereas the relevant remaining subroutines
(~ 1% of the computation time) were run in parallel using multiple CPU cores (via OpenMP)
to achieve optimum performance on the hybrid CPU-GPU platform.

We have identified severe restraints to parallelize the semiempirical calculations on
currently available CPU-only computing architectures. No matter how many processor cores
are utilized in a calculation, a ceiling of the overall acceleration is reached rapidly due to the
limitations imposed by the hardware memory bandwidth. On the other hand, the speedup
of the calculations on the hybrid CPU-GPU platform rises continuously with increasing
system size and reaches one order of magnitude in large protein calculations. The overall
performance can be further improved through the use of multiple GPUs.

As an illustrative application, geometry optimizations of three typical proteins with a-
helix, S-sheet, and random coil structures were carried out by means of the MNDO, AM1,
PM3, and OMz (z = 1, 2, and 3) methods. These calculations produced qualitatively
reasonable conformations of the main chains (with regard to the usual metrics for assessing
protein backbone structures) but showed some deviation from experiment by giving slightly
nonplanar peptide bonds. We are confident that such quantitative deficiencies can be
ameliorated in future semiempirical method development. This will enhance the impact
of the current code development work on hybrid CPU-GPU platforms, which has enabled
semiempirical quantum-chemical calculations on large systems like proteins with thousands
of atoms.

References

[1] W.Thiel. Semiempirical quantum-chemical methods. WIREs Comput Mol  Sci. 2013,
DOIL:10.1002/wcms. 1161.

[2] W.J. Hehre, L. Radom, P. v. R. Schleyer, J. A. Pople, Ab initio molecular orbital theory, John Wiley & Sons,
New York, 1986.

[3] I A. Pople, D.P. Santry, G. A. Segal. Approximate self-consistent molecular orbital theory. I Invariant
procedures. J. Chem. Phys. 1965, 43, S129 — S135.

[4] R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, USA,
1989.

[5] W. Thiel. Perspectives on semiempirical molecular orbital theory. Adv. Chem. Phys. 1996, 93,703 — 757.



Semiempirical Quantum Chemistry 17

(6]
71
(2]
]

[10]

[11]

2]
13]
[14]
115
[16]
7]
[18]

[19]

[20]
[21]
[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

B. Ehresmann, M. I. de Groot, A. Alex, T. Clark. New molecular descriptors based on local properties at the
molecular surface and a boiling-point model derived from them. J. Chem. Inf. Comput. Sci. 2004, 44, 658 —
668.

1. 1. P. Stewart. Application of the PM6 method to modeling proteins. J. Mol. Model. 2009, 15, 765 — 805.

X. Wu, W. Thiel, S. Pezeshki, H. Lin. Specific reaction path hamiltonian for proton transfer in water:
Reparameterized semiempirical models. J. Chem. Theory Comput. 2013, 9, 2672 — 2686.

E. Fabiano, Z. Lan, Y. Lu, W. Thiel, Nonadiabatic Trajectory Calculations with Ab Initio and Semiempirical
Methods in Conical Intersections: Theory, Computation and Experiment, W. Domcke, D.R. Yarkony,
H. Koppel (Eds.), World Scientific Publishing Company, 2011, pp. 463 —496.

1. A. Pople, Quantum Chemical Models in Nobel Lectures in Chemistry (1996-2000), 1. Grenthe (Ed.), World
Scientific Publishing Co., Singapore, 2003, pp. 246 — 260.

W. Thiel, D. G. Green, The MNDO94 Code: Parallelization of a Semiempirical Qauntum-chemical Program in
Methods and Techniques in Computational Chemistry: METECC-95, E. Clementi, G. Corongiu (Eds.), STEF,
Cagliari, 1995, pp. 141 — 168.

D. B. Kirk, W. M. W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach, Morgan
Kaufmann, 2012.

1. E. Stone, D. J. Hardy, L. S. Ufimtsev, K. Schulten. GPU-accelerated molecular modeling coming of age. J.
Mol. Graph. Model. 2010, 29, 116 — 125.

R. M. Farber. Topical perspective on massive threading and parallelism. J. Mol Graph. Model. 2011, 30, 82 —
89.

A. G. Anderson, W. A. G. IIL, P. Schréder. Quantum Monte Carlo on graphical processing units. Comput. Phys.
Commun. 2007, 177, 208 — 306.

1. Kim, J. M. Rodgers, M. Athénes, B. Smit. Molecular Monte Carlo simulations using graphics processing
units: To waste recycle or not? J. Chem. Theory Comput. 2011, 7, 3208 — 3222.

K. Yasuda. Two-electron integral evaluation on the graphics processor unit. J. Comput. Chem. 2008, 29, 334 —
342.

L S. Ufimtsev, T. J. Martinez. Quantum chemistry on graphical processing units. 1. Strategies for two-electron
integral evaluation. J. Chem. Theory Comput. 2008, 4, 222 — 231.

A. Asadchev, V. Allada, J. Felder, B. M. Bode, M. S. Gordon, T. L. Windus. Uncontracted Rys quadrature
implementation of up to G functions on graphical processing units. J. Chem. Theory Comput. 2010, 6, 696 —
704.

K. A. Wilkinson, P. Sherwood, M. E Guest, K. J. Naidoo. Acceleration of the GAMESS-UK electronic
structure package on graphical processing units. J. Comput. Chem. 2011, 32, 2313 - 2318.

Y. Miao, K. M. Merz. Acceleration of electron repulsion integral evaluation on graphics processing units via
use of recurrence relations. J. Chem. Theory Comput. 2013, 9, 965 —976.

A. V. Titov, L. S. Ufimtsev, N. Luehr, T. J. Martinez. Generating efficient quantum chemistry codes for novel
architectures. J. Chem. Theory Comput. 2013, 9, 213 — 221.

K. Yasuda. Accelerating density functional calculations with graphics processing unit. J. Chem. Theory
Comput. 2008, 4, 1230 — 1236.

L S. Ufimtsev, T. J. Martinez. Quantum chemistry on graphical processing units. 2. Direct self-consistent-field
implementation. J. Chem. Theory Comput. 2009, 5, 1004 — 1015.

L S. Ufimtsev, T.J. Martinez. Quantum chemistry on graphical processing units. 3. Analytical energy
gradients, geometry optimization, and first principles molecular dynamics. J. Chem. Theory Comput. 2009,
5,2619 - 2628.

L S. Ufimtsev, T. J. Martinez. Graphical processing units for quantum chemistry. Comput. Sci. Eng. 2008, 10,
26-34.

L. Genovese, M. Ospici, T. Deutsch, J.-E Méhaut, A. Neelov, S. Goedecker. Density functional theory
calculation on many-cores hybrid central processing unit-graphic processing unit architectures. J. Chem. Phys.
2009, 131, 034103 (8 pages).

N. Luehr, L S. Ufimtsev, T. J. Martinez. Dynamic precision for electron repulsion integral evaluation on
graphical processing units (GPUs). J. Chem. Theory Comput. 2011, 7, 949 — 954,

X. Andrade, L. Genovese, Harnessing the Power of Graphic Processing Units in Fundamentals of Time-
Dependent Density Functional Theory, Vol. 837 of Lecture Notes in Physics, M. A. Marques, N. T. Maitra,
F. M. Nogueira, E. Gross, A. Rubio (Eds.), 2012, pp. 401 — 413.



18

Semiempirical Quantum Chemistry

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]
[39]

[40]

[41]
[42]
[43]
[44]
[45]
[46]

[47]

[48]
[49]
[50]
[51]

[52]
[53]

X. Andrade, A. Aspuru-Guzik. Real-space density functional theory on graphical processing units:
computational approach and comparison to Gaussian basis set methods. J. Chem. Theory Comput. 2013, 9,
4360 - 4373.

C. M. Isborn, N. Luehr, L S. Ufimtsev, T. J. Martinez. Excited-state electronic structure with configuration
interaction singles and Tamm-Dancoff time-dependent density functional theory on graphical processing units.
J. Chem. Theory Comput. 2011, 7, 1814 — 1823.

L. Vogt, R.Olivares-Amaya, S.Kermes, Y. Shao, C.Amador-Bedolla, A. Aspuru-Guzik. Accelerating
resolution-of-the-identity second-order Mgller-Plesset quantum chemistry calculations with graphical
processing units. J. Phys. Chem. A 2008, 112, 2049 — 2057.

R. Olivares-Amaya, M. A. Watson, R. G. Edgar, L. Vogt, Y. Shao, A. Aspuru-Guzik. Accelerating correlated
quantum chemistry calculations using graphical processing units and a mixed precision matrix multiplication
library. J. Chem. Theory Comput. 2010, 6, 135 — 144.

M. Watson, R. Olivares-Amaya, R. G. Edgar, A. Aspuru-Guzik. Accelerating correlated quantum chemistry
calculations using graphical processing units. Comput. Sci. Eng. 2010, 12, 40 - 51.

A.E. DePrince, J. R. Hammond. Coupled cluster theory on graphics processing units I. The coupled cluster
doubles method. J. Chem. Theory Comput. 2011, 7, 1287 — 1295.

W.Ma, S.Krishnamoorthy, O.Villa, K. Kowalski. GPU-based implementations of the noniterative
regularized-CCSD(T) corrections: Applications to strongly correlated systems. J. Chem. Theory Comput.
2011, 7, 1316 — 1327.

K. Bhaskaran-Nair, W. Ma, S. Krishnamoorthy, O. Villa, H. J. J. van Dam, E. Apra, K. Kowalski. Noniterative
multireference coupled cluster methods on heterogeneous CPU-GPU systems. J. Chem. Theory Comput. 2013,
9, 1949 — 1957.

A. Asadchev, M. S. Gordon. Fast and flexible coupled cluster implementation. J. Chem. Theory Comput. 2013,
9, 3385 - 3392

X. Wu, A. Koslowski, W. Thiel. Semiempirical quantum chemical calculations accelerated on a hybrid
multicore CPU-GPU computing platform. J. Chem. Theory Comput. 2012, 8, 2272 — 2281.

1. D. C. Maia, G. A. Urquiza Carvalho, C. P. Mangueira, S. R. Santana, L. A. E Cabral, G. B. Rocha. GPU
linear algebra libraries and GPGPU programming for accelerating MOPAC semiempirical quantum chemistry
calculations. J. Chem. Theory Comput. 2012, 8, 3072 — 3081.

M. 1. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, of McGraw-Hill series in advanced
chemistry, McGraw-Hill, 1969.

1. A. Pople, D. L. Beveridge, Approximate Molecular Orbital Theory, of McGraw-Hill series in advanced
chemistry, McGraw-Hill, 1970.

L N. Murrell, A. J. Harget, Semi-empirical Self-consistent-field Molecular Orbital Theory of Molecules,
Wiley-Interscience, 1972.

W. Thiel. Semiempirical methods: current status and perspectives. Tetrahedron 1988, 44, 7393 —7408.
W. Thiel. Computational methods for large molecules. J. Mol. Str. Theochem 1997, 398 — 399, 1 —6.

W. Thiel, Semiempirical Methods in Modern Methods and Algorithms of Quantum Chemistry Proceedings,
Second Edition, J. Grotendorst (Ed.), John von Neumann Institute for Computing, Jiilich, 2000, pp. 261 — 283.
W. Thiel, Semiempirical Quantum-Chemical Methods in Computational Chemistry in Theory and Applications
of Computational Chemistry: The First Forty Years, C. E. Dykstra, G. Frenking, K. 8. Kim, G. E. Scuseria
(Eds.), Elsevier, Amsterdam, 2005, pp. 559 — 580.

1. 1. P. Stewart, Semiempirical Molecular Orbital Methods in Reviews in Computational Chemistry, K. B.
Lipkowitz, D. B. Boyd (Eds.), John Wiley & Sons, Inc., 1990, pp. 45— 81.

M. C. Zerner, Semiempirical Molecular Orbital Methods in Reviews in Computational Chemistry, K. B.
Lipkowitz, D. B. Boyd (Eds.), John Wiley & Sons, Inc., 1991, pp. 313 - 365.

1. 1. P. Stewart. MOPAC: A semiempirical molecular orbital program. J. Comput. Aid. Mol. Des. 1990, 4, 1 —
103.

R. G. Parr. A method for estimating electronic repulsion integrals over LCAO MO’s in complex unsaturated
molecules. J. Chem. Phys. 1952, 20, 1499.

1. A. Pople. Electron interaction in unsaturated hydrocarbons. Trans. Faraday Soc. 1953, 49, 1375 — 1385.

M. 1. S. Dewar, W. Thiel. A semiempirical model for the two-center repulsion integrals in the NDDO
approximation. Theor. Chim. Acta 1977, 46, 89 — 104.



Semiempirical Quantum Chemistry 19

[54]
[55]

[56]

[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[751]

[76]

M. 1. S. Dewar, W. Thiel. Ground states of molecules. 38. The MNDO method. Approximations and
parameters. J. Am. Chem. Soc. 1977, 99, 4899 — 4907.

M. 1. S. Dewar, W. Thiel. Ground states of molecules. 39. MNDO results for molecules containing hydrogen,
carbon, nitrogen, and oxygen. J. Am. Chem. Soc. 1977, 99, 4907 —4917.

M. 1. S. Dewar, E. G. Zoebisch, E. E Healy, J. ]. P. Stewart. Development and use of quantum mechanical
molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem.
Soc. 1985, 107, 3902 — 3909.

1. 1. P. Stewart. Optimization of parameters for semiempirical methods 1. Method. J. Comput. Chem. 1989, 10,
209 —220.

1. 1. P. Stewart. Comparison of the accuracy of semiempirical and some DFT methods for predicting heats of
formation. J. Mol Model. 2004, 10, 6 — 12.

J.I.P. Stewart. Optimization of parameters for semiempirical methods V: Modification of NDDO
approximations and application to 70 elements. J. Mol Model. 2007, 13, 1173 — 1213.

1. 1. P. Stewart. Optimization of parameters for semiempirical methods VI: More modifications to the NDDO
approximations and re-optimization of parameters. J. Mol. Model. 2013, 19, 1 —32.

M. P. Repasky, J. Chandrasekhar, W. L. Jorgensen. PDDG/PM3 and PDDG/MNDO: Improved semiempirical
methods. J. Comput. Chem. 2002, 23, 1601 — 1622.

M. Kolb, W. Thiel. Beyond the MNDO model: Methodical considerations and numerical results. J. Comput.
Chem. 1993, 14,775 — 789.

W. Weber, W. Thiel. Orthogonalization corrections for semiempirical methods. Theor. Chem. Acc. 2000, 103,
495 — 506.

M. Scholten, Semiempirische Verfahren mit Orthogonalisierungskorrekturen: Die OM3 Methode, Ph.D. thesis,
Universitit Diisseldorf, Diisseldorf, 2003.

N. Otte, M. Scholten, W. Thiel. Looking at self-consistent-charge density functional tight binding from a
semiempirical perspective. J. Phys. Chem. A 2007, 111, 5751 — 5755.

M. Korth, W. Thiel. Benchmarking semiempirical methods for thermochemistry, kinetics, and noncovalent
interactions: OMx methods are almost as accurate and robust as DFT-GGA methods for organic molecules. J.
Chem. Theory Comput. 2011, 7, 2929 — 2936.

M. R. Silva-Junior, W. Thiel. Benchmark of electronically excited states for semiempirical methods: MNDO,
AM1, PM3, OM1, OM2, OM3, INDO/S, and INDO/S2. J. Chem. Theory Comput. 2010, 6, 1546 — 1564.

A. R. Gargaro, G. B. Bloomberg, C. E. Dempsey, M. Murray, M. J. A. Tanner. The solution structures of the
first and second transmembrane-spanning segments of band 3. Eur. J. Biochem. 1994, 221, 445 — 454, PDB
ID: 1BTQ.

L W. O'Neill, D. E. Kim, K. Johnsen, D. Baker, K. Y. Zhang. Single-site mutations induce 3D domain
swapping in the Bl domain of protein L from Peptostreptococcus magnus. Structure 2001, 9, 1017 — 1027,
PDB ID: 1K50.

M. Rubini, S. Lepthien, R. Golbik, N. Budisa. Aminotryptophan-containing barstar: structure-function
tradeoff in protein design and engineering with an expanded genetic code. Biochim. Biophys. Acta 2006, 1764,
1147 - 1158, PDB ID: 2HXX.

C. Ciatto, E Bahna, N. Zampieri, H. C. VanSteenhouse, P. S. Katsamba, G. Ahlsen, O. J. Harrison, J. Brasch,
X. Jin, S. Posy, J. Vendome, B. Ranscht, T. M. Jessell, B. Honig, L. Shapiro. T-cadherin structures reveal a
novel adhesive binding mechanism. Nat. Struct. Mol. Biol. 2010, 17, 339 — 347, PDB ID: 3K6E

A. A. Fedorov, K. A. Magnus, M. H. Graupe, E. E. Lattman, T. D. Pollard, S. C. Almo. X-ray structures of
isoforms of the actin-binding protein profilin that differ in their affinity for phosphatidylinositol phosphates.
Proc. Natl. Acad. Sci. USA 1994, 91, 8636 — 8640, PDB ID: 1ACE.

J. Choi, S. Choi, J. K. Chon, J. Choi, M.-K. Cha, L.-H. Kim, W. Shin. Crystal structure of the C1078/C1128
mutant of yeast nuclear 2-Cys peroxiredoxin. Proteins 2005, 61, 1146 — 1149, PDB ID: 2A4V.

G. Vaaje-Kolstad, L. A. Bghle, 5. Giseidnes, B. Dalhus, M. Bjgréas, G. Mathiesen, V. G. Eijsink. Characteriza-
tion of the chitinolytic machinery of Enterococcus faecalis V583 and high-resolution structure of its oxidative
CBM33 enzyme. J. Mol Biol. 2012, 416, 239 — 254, PDB ID: 4A02.

T. Tsukazaki, H. Mori, Y. Echizen, R. Ishitani, S. Fukai, T. Tanaka, A. Perederina, D. G. Vassylyev, T. Kohno,
A.D. Maturana, K. Ito, O. Nureki. Structure and function of a membrane component SecDF that enhances
protein export. Nature 2011, 474, 235 — 238, PDB ID: 3AQO.

P. Pulay. Improved SCF convergence acceleration. J. Comput. Chem. 1982, 3, 556 — 560.



20

Semiempirical Quantum Chemistry

[77]
[78]
[791

[80]
[81]

[82]
[83]

[84]
[85]
[86]
[87]
[88]
[89]
[90]
[91]
[92]

[93]

1. 1. P. Stewart, P. Csaszdr, P. Pulay. Fast semiempirical calculations. J. Comput. Chem. 1982, 3, 227 — 228.
W. Thiel, MNDO99 CVS Development Version, Tech. Rep., Miilheim an der Ruhr, Germany, 2012.

1. Dongarra, T. Dong, M. Gates, A. Haidar, S. Tomov, L Yamazaki, MAGMA: A new generation of linear
algebra libraries for GPU and multicore architectures, 2012.

M. Hiser, R. Ahlrichs. Improvements on the direct SCF method. J. Comput. Chem. 1989, 10, 104 —111.

A. Haidar, R. Solca, M. Gates, S. Tomov, T. Schulthess, J. Dongarra, Leading Edge Hybrid Multi-GPU
Algorithms for Generalized Eigenproblems in Electronic Structure Calculations in Supercomputing, Vol. 7905
of Lecture Notes in Computer Science, J. Kunkel, T. Ludwig, H. Meuer (Eds.), Springer Berlin Heidelberg,
2013, pp. 67 — 80.

X. Wu, A. Koslowski, W. Thiel. unpublished results.

D. Rohr, M. Bach, M. Kretz, V. Lindenstruth. Multi-GPU DGEMM and high performance Linpack on highly
energy-efficient clusters. Micro, IEEE 2011, 31, 18 - 27.

F. Spiga, 1 Girotto, phiGEMM: A CPU-GPU library for porting quantum ESPRESSO on hybrid systems
in Proceeding of 20th Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP2012), pp. 368 —375.

D. Bakowies, W. Thiel. MNDO study of large carbon clusters. J. Am. Chem. Soc. 1991, 113, 3704 — 3714,

H. J. Kulik, N. Luehr, I. S. Ufimtsev, T. J. Martinez. Ab initio quantum chemistry for protein structures. J.
Phys. Chem. B 2012, 116, 12501 — 12509.

R. A. Laskowski, M. W. MacArthur, D. 8. Moss, J. M. Thornton. PROCHECK: A program to check the
stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 26, 283 — 291.

G. N. Ramachandran, C. Ramakrishnan, V. Sasisekharan. Stereochemistry of polypeptide chain configura-
tions. J. Mol Biol 1963, 7, 95— 99,

A. L. Morris, M. W. MacArthur, E. G. Hutchinson, J. M. Thornton. Stereochemical quality of protein structure
coordinates. Proteins. 1992, 12, 345 — 364.

K. Y. Burstein, A. N. Isaev. MNDO calculations on hydrogen bonds. Modified function for core-core repulsion.
Theor. Chim. Acta 1984, 64, 397 — 401.

A. Goldblum. Improvement of the hydrogen bonding correction to MNDO for calculations of biochemical
interest. J. Comput. Chem. 1987, 8, 835 — 849.

K. Méhle, H.-J. Hofmann, W. Thiel. Description of peptide and protein secondary structures employing
semiempirical methods. J. Comput. Chem. 2001, 22, 509 — 520.

G. de M. Seabra, R. C. Walker, A. E. Roitberg. Are current semiempirical methods better than force fields? A
study from the thermodynamics perspective. J. Phys. Chem. A 2009, 113, 11938 — 11948.






Appendix C

Hybrid Quantum and
Classical Simulations of the
Dihydrofolate Reductase
Catalyzed Hydride Transfer
Reaction on an Accurate
Semi-Empirical Potential
Energy Surface

Dvir Doron, Dan Thomas Major, Amnon Kohen, Walter Thiel, and
Xin Wu

Journal of Chemical Theory and Computation, 2011, 7, 3420 — 3437.

I parameterized the AM1-SRP(D) Hamiltonian for the hydride transfer reaction,
produced some of the figures, and drafted the appendix of the paper.

137



l ‘ I ‘ Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Hybrid Quantum and Classical Simulations of the Dihydrofolate
Reductase Catalyzed Hydride Transfer Reaction on an Accurate
Semi-Empirical Potential Energy Surface

Dvir Doron,” Dan Thomas Major,”*’Jr Amnon Kohen,” Walter Thie:],§ and Xin Wu®

"Department of Chemistry, The Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University,

Ramat-Gan 52900, Israel

*Department of Chemistry, University of lowa, Iowa City, lowa 52242, United States
SMax-Plan ck-Institut fiir Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mulheim an der Ruhr, Germany

oSuppo rting Information

ABSTRACT: Dihydrofolate reductase (DHFR) catalyzes the reduction of 7,8-dihydrofolate by nicotinamide adenine dinucleotide
phosphate hydride (NADPH) to form $5,6,7,8-tetrahydrofolate and oxidized nicotinamide. DHFR is a small, flexible, monomeric
protein with no metals or SS bonds and serves as one of the enzymes commonly used to examine basic aspects in enzymology. In the
current work, we present extensive benchmark calculations for several model reactions in the gas phase that are relevant to the
DHER catalyzed hydride transfer. To this end, we employ G4MP2 and CBS-QB3 ab initio calculations as well as numerous density
functional theory methods. Using these results, we develop two specific reaction parameter (SRP) Hamiltonians based on the
semiempirical AM1 method. The first generation SRP Hamiltonian does not account for dispersion, while the second generation
SRP accounts for dispersion implicitly via the AMI1 core-repulsion functions. These SRP semiempirical Hamiltonians are
subsequently used in hybrid quantum mechanics/molecular mechanics simulations of the DHFR catalyzed reaction. Finally,
kinetic isotope effects are computed using a mass-perturbation-based path-integral approach.

B INTRODUCTION

Dihydrofolate reductase (DHFR; EC 1.5.1.3) catalyzes the
reduction of 7,8-dihydrofolate (H,folate) by nicotinamide ade-
nine dinucleotide phosphate hydride (NADPH) to form S-
5,6,7,8-tetrahydrofolate (H,folate) and NADP". Its principal
function is to maintain intracellular pools of H,folate, which in
turn serves as a cofactor in one-carbon metabolic processes and is
essential for the biosynthesis of purines, thymine nucleotides,
and several amino acids. DHFR has long been recognized as an
important target for various therapeutic purposes, in particular
the development of anticancer and antibacterial drugs, such
as methotrexate and trimethoprim, respectively."” The clinical
importance of DHFR, along with its relatively modest size (159
aa in E. coli DHFR), has led many researchers to study, both
experimentally and theoretically, the catalytic mechanism and
kinetics of the NADPH-dependent hydride transfer reaction.'

The key chemical step in the catalytic cycle of DHFR involves
a stereospecific transfer of the pro-R hydrogen at the C4 position
of the nicotinamide ring in NADPH to the si-face of the C6 atom
of the pterin ring in Hfolate, with concomitant protonation at
the adjacent N§ position (Scheme 1).*

Early kinetic studies of E. coli DHFR by Fierke et al. estab-
lished a catalytic pathway cycling between five intermediates,
including the E-NADPH, the Michaelis complex E+-NADPH -
Hofolate, the ternary product complex E-NADP" - H,folate, the
binary product complex E-H,folate, and the product release
complex E-NADPH -H,folate.” At neutral pH, the hydride-
transfer rate in the wild-type enzyme is 220 s~ ' and the rate-
determining step is the release of the product Hufolate (12 s,
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Scheme 1. Hydride Transfer Reaction Catalyzed by DHFR”
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whereas at high pH, the hydride transfer step becomes more rate
limiting, suggesting that the protonated substrate (henceforth
Hfolate™) is the reactive species for the hydride transfer
reaction.” Thus, the traditional view is that the protonation step
precedes hydride transfer, thereby generating a resonance-stabilized
iminium intermediate that serves as a more efficient acceptor
toward the negatively charged hydride ion.**™® Indeed, vibra-
tional spectroscopic studies by Callender et al. have demon-
strated that the NS pK, of H,folate is raised from 2.6 in solution
t0 6.5 in the ternary product complexwith E. coli DHFR.” "> The
elevation of the NS pK, by four units upon complex formation is
likely an enzymatic strategy for a substantial rate enhancement
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over the uncatalyzed reaction in solution. It is likely that the
hydrophobic nature of the active site pocket maintains a relatively
low permittivity, thereby lowering Hjfolate™ acidity. Nevertheless,
the protonation source is a rather controversial issue: originally, it
was believed to be Asp27, being the only ionizable residue within
the binding site of E. coli DHFR.'"™'* However, the studies of
Callender and co-workers suggested that the N5 atom is respon-
sible for the pH dependency of the reaction and that the Asp27
residue exists in a deprotonated form at physiological pH and does
not donate a proton to the substrate during enzymatic catalysis. It
has been suggested instead that the negative charge of the
carboxylate of Asp27 could stabilize the protonated substrate even
though this group is on the other side of the bound substrate
relative to N5.'®" »'* This notion was supported by computational
studies of Brooks and Rod, arguing that the protonation of the
substrate’s N'S position comes directly from the bulk solvent.'®

From a structural point of view, DHFR is a small monomeric
protein (~18 kD, 159 aa for the E. coliDHFR).'”*° The substrate
and coenzyme bind in a deep hydrophobic cleft at the juncture of
the adenosine binding subdomain and the major (“loop”) sub-
domain. In its “closed” conformation, the Met20 loop (residues
9—24) lies directly over the active site, shielding the reactants from
the solvent, and is primarily responsible for determining the active
site architecture. X-ray studies in numerous ligand-bound states
show that the Met20 loop assumes four characteristic conforma-
tions with respect to the active site.” In particular, the movement
of Met20 loop and the cycling of the SF—fG and SG—fH loops
between the closed and occluded conformations are coordinated
with the stages of the catalytic cycle.”

Early computational studies on the hydride transfer reaction
catalyzed by DHFR were typically performed for small model
systems in vacuo.” ~>* In these studies, the potential energy
surface (PES) was traditionally explored at the semiempirical or
ab initio levels of theory. Subsequently, hybrid quantum-mechan-
ical/molecular-mechanical (QM/MM) studies of DHFR have
enabled the examination of environmental effects.**> 7 Indeed,
Moliner and co-workers in their pioneering QM/MM study on
DHFR* illustrated the importance of incorporating the enzyme’s
degrees of freedom in the study of transition state structures,
compared to those calculated for the gas phase models.* How-
ever, the calculated free energies of reaction and activation
barriers by this approach were unrealistic compared to the
experimental data, overestimating the free energy barrier for
the enzymatic reaction, due to the inaccurate representation of
the atoms in the QM region by a semiempirical method.

Nevertheless, numerous research groups took advantage of the
computational efficiency of the hybrid semiempirical QM/MM
approach combined with molecular dynamics (MD) simulations,
to explore the hydride transfer reaction in DHFR”**° and
other related dehydrogenases.” —* Some of these works”?**
attempted to compensate for the inherent errors in the semi-
empirical models by introducing correction terms. In particular,
Gready and co-workers derived correction terms for selected
configurations estimated from analogue cluster calculations at
the DFT and post-Hartree—Fock theoretical levels, and these
were applied to the activation free energy.”® However, the
authors did not manage to obtain quantitative agreement with
the experimentally observed free energy barrier. On the other
hand, Garda-Viloca et al,” and more recently Brooks and
Thorpe,’® enhanced the semiempirical Hamiltonian with a simple
valence bond (SVB) correction term,* which was parametrized to
fit two quantities: the activation free energy of 13.4 kcal/mol,

which is predicted by transition-state theory expression taking
the experimental pH-independent hydride transfer rate constant
(950 s at 25 °C)® into account, and the reaction free energy
of —4.4 kcal/mol, calculated from the reported equilibrium
constant (1700).” The disadvantage of such an approach is that
for systems where the original QM method performs poorly, the
SVB term is necessarily large. This may introduce artifacts into
the vibrational frequency related to the SVB (reaction) coordi-
nate, as well as an artificial increase in energy at the end points
of the reaction coordinate.” Such QM/MM potentials have
been employed in combination with ensemble averaged varia-
tional transition state theory with multidimensional Innnehn}g
(EA-VTST/MT) calculations to obtain kinetic isotope effects.

A different QM/MM approach to studying hydride transfer
reactions is the empirical valence bond (EVB) potential for the
QM region, which was developed by Warshel and Weiss®"** and
parametrized for DHFR by Hammes-Schiffer et al***° and Warshel
and Liu*' In this method, the hydride transfer reaction is repre-
sented by means of two empirical valence bond states, namely,
reactants and products. The matrix elements between these diabatic
states are represented as MM terms which are parametrized to
reproduce experimental free energies of reaction and activation
(dictated by either the pH-independent™ or -dependent™ intrinsic
rate constants). An advantage of the EVB approach is that the
reaction coordinate can naturally be expressed in terms of a
collective entity (ie., the energy gap between the reactant and
product diabatic states). Additionally, the EVB method is com-
putationally very efficient. On the other hand, due to its simplistic
form and depending on the parametrization strategy, the fine
details of the potential energy surface may not be described
correctly. Furthermore, the experimental assessment of intrinsic
rates in a complex kinetic cascade is limited, and the presumed
experimental rate constant is commonly a complex kinetic term
with many microscopic rate constants that cannot be distin-
guished experimentally. Therefore, using experimentally deter-
mined rate constants to parametrize the EVB terms might be
problematic. The EVB potential has been employed to incorpo-
rate nuclear quantum effects by representing the transferring
hydrogen nucleus as a 3-D vibrational wave function,® as well as
in Feynman path-integral (PI) simulations.” For a tabulated
summary of some prominent computational studies on the
DHEFR hydride transfer reaction published in the past decade,
the reader is referred to the Supporting Information.

To the best of our knowledge, no simulation of DHFR has
gone beyond the EVB level or the semiempirical (AM1/PM3)
Hamiltonian levels, using the standard parameters. In this paper,
we first present gas-phase model calculations for the hydride
transfer reaction between H,folate and NADPH, using high-level
ab initio and density functional theory methods. Although these
models lack the contribution of the enzymatic environment, the
calculations shed light on some key thermodynamic aspects
related to the intrinsic thermochemistry of the reaction. Second,
we present an accurate potential energy surface for the hydride
transfer reaction in the enzyme E. coli DHFR, taking advantage of
the comprehensive gas phase calculations presented herein. This
potential energy surface is described by a hybrid quantum
mechanics/molecular mechanics (QM/MM) potential, where
the QM subsystem is treated by a semiempirical model that
has been specifically parametrized to reproduce ab initio and
DFT data. Consequently, the quality of such a specific reaction
parameter (SRP) model®~* is comparable with calculations at
the ab initio and DFT levels, but at a considerably lower cost, hence

3421 dx.doiorg/10.1021/ct2004808 |/ Chem. Theory Comput. 2011, 7, 3420-3437
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Chart 1. Main Models Subjected to Gas-Phase Calculations
in This Study
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allowing us to perform long MD simulations with the full solvated
enzyme. The calibration of the AM1 Hamiltonian was performed
only for the reaction in the gas phase (ie., the intrinsic performance
of the QM model), while the interactions with the environment
are captured via the QM/MM interaction terms. Subsequently,
the performance of the QM/MM potential was validated for the
enzymatic reaction. This is in contrast to models employed in
earlier studies, which parametrize empirical QM models such as
EVB and SVB to the experimental free energies of reaction and
activation in solution or in the enzyme. Two principle SRP models
were explored, differing in the way they treat dispersion interactions.
Nudear quantum effects (NQE) are described using a coupled
free-energy mass-perturbation and umbrella sampling simulation
technique employing Feynman centroid path integral calcula-
tions (PI-FEP/UM ).* Thus, both the electronic structure of the
reacting system and the nuclear dynamics are treated quantum
mechanically. This method has been demonstrated in a series of
studies of chemical reactions in solution and in enzymes.***

B METHODOLOGY

Gas Phase QM Calculations. Model Reactions. The mol-
ecules depicted in Chart 1 represent chemical analogues of the
reacting ligands and their corresponding products involved in the
DHEFR enzymatic reaction. The geometries were fullgv optimized
in the gas phase using the Gaussian 09 program®” and seven
different density functionals, including one generalized gradient
approximation (GGA) functional [PBEPBE (PBE)*"], two hybrid
GGA functionals [PBE1PBE (PBE0)*' and B3LYP*~**], and
four hybrid meta-GGA functionals (B98,>* BB1K,*® MPWBIK,>
and M06°’). For any functional, the 6-31+G(d,p) basis set was
found to give adequately converged geometries and reaction
energies (results are not shown for other basis sets). The same
geometries were recalculated with the semiempirical potential
Austin Model 1 (AM1),® using the standard parameter scheme
within Gaussian 09. We also carried out high-level calculations
with the complete basis set method CBS-QB3,%% as well as the
Gaussian theory method G4MP2.5%% The latter method pro-
vided most of the target values for reparametrization of the
AM1 Hamiltonian (vide infra).

The H,folate substrate and its corresponding H folate product
are represented by derivatives of 6-methyl-7,8-dihydropterin and

6-methyl-5,6,7,8-tetrahydropterin. These molecular models are the
substrate and product of the DHFR catalyzed reaction, and it is
assumed that the mechanism of reduction of the 7,8-dihydropterin
is similar to that of 7,8-dihydrofolate®® To investigate the effect
of protonation of the pyrazine’s N5 atom on thermodynamics,
two model reactions were inspected: the “protonated” model,
which involves the protonated form of the dihydropterin reactant
(6-Me-Hjpterin®), ending up in a neutral reduced tetrahydro-
pterin product (6-Me-H,pterin), and the “unprotonated” model,
in which the unprotonated dihydropterin (6-Me-Hpterin) is
reduced to a negatively charged species (6-Me-H;pterin ™).

Two conformers of the nicotinamide derivative representing
the NADP(H) cofactor were considered, distinguished by the
orientation of the carboxamide with respect to the (dihydro)-
pyridine ring; the cisoid conformer, in which the carbonyl and the
C2=C3 bond are quasi-synperiplanar, and the fransoid conformer,
where these two are quasi-antiperiplanar. As the two types of
conformers were taken into account for both the reduced and
oxidized nicotinamide species (Me-Hynic and Me-Hnic", re-
spectively), four thermodynamic pathways were computed for
each model reaction separately, as depicted in Scheme 2.

In both model reactions, the changes in electronic energy
(AE,), enthalpy (AH), and Gibbs free energy (AG) at 298 K
were computed for each pathway with the aforementioned
methods, according to the following general equations:

AXP™ = X[6-Me-H,pterin] + X|cis/trans-Me-Hnic "]
— X[6-Me-H;pterin ™| — X|cis/ trans-Me-H, nic|

(1a)

AX?"Pt = X[6-Me-H;pterin~| + X|cis/trans-Me-Hnic ™|
— X[6-Me-H,pterin] — X[cis/trans-Me-H,nic]|
(1b)

where X is a general notation for Ey, H, or G, and the superscripts
XP** and X""P"*" refer to the protonated and unprotonated model
reactions, respectively.

Modeling the Reactant, Transition, and Product State Com-
plexes. The optimized model structure for the transition state
complex was found using the synchronous transit-guided quasi-
Newton (STQN) method®* implemented in the Gaussian 09
program,* with all seven density functionals and the standard
semiempirical AM1 potential (the G4MP2 method turned out to
be too costly for transition state optimization of the bimolecular
complex). In the case of the B3LYP functional, an empirical
Grimme-type dispersion correction was also added (denoted
B3LYP-D).*¢ The transoid conformer of the Me-H,nic subunit
was chosen, because it was found to be the most prevalent con-
former identified in X-ray crystal structures of most enzyme
active sites,””*® in particular E. coli DHFR.” The saddle point
was identified by a single imaginary vibrational frequency corre-
sponding to the normal mode of transferring the hydride
between the donor (C4 in the nicotinamide subunit) and
acceptor (C6 in the pterin subunit) carbons.

The reactant and product complexes, [6-Me-Hjpterin™ - trans-
Me-H,nic] and [6-Me-H,folate - trans-Me-Hnic"], respectively,
were obtained by intrinsic reaction coordinate (IRC) calcula-
tions in the direction of reactants and products. The steepest
descent path in mass-scaled coordinates was followed using
100 steps of 0.1 Bohr in each direction of the reaction path
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Scheme 2. Possible Thermodynamic Pathways for the Protonated (Blue) and Unprotonated (Red) Model Reactions of the

Hydride Transfer in the Gas Phase

cis-Me-Hanic — cis-Me-Hnic"
cis-Me-Hynic — trans-Me-Hnic*
6-Me-Hzpterin+ 2 6-Me-Hypterin
or + + or
6-Me-Hgpterin trans-Me-Hznic ———  trans-Me-Hnic* 6-Me-Hpterin”

trans-Me-Hynic ————=  cis-Me-Hnic™

down to the reactant and product complex wells, where the root-
mean-square gradient norms at the end points were no higher
than 0.2 keal-mol™'*A™" and 0.3 kcal-mol "*A™" in the
forward and reverse directions, respectively. Wherever methods
accounting for dispersion (B3LYP-D and M06) were used, the
IRC calculations were performed further until the default con-
vergence criteria were reached in each IRC direction. The IRC
end points were further geometry optimized as was done for the
individual molecules.

Development of Semiempirical Specific Reaction Para-
meters. In the SRP approach,* the semiempirical parameters
are optimized for a given system, i.e., here to treat the hydride
transfer reaction in DHFR. More specifically, AM1-SRP para-
meters were developed to reproduce electronic and thermody-
namic properties obtained from high-level QM calculations on
representative molecular models in the gas phase (vide supra).
For the majority of the modeled species, the reference method
for the AMI1 parametrization was the composite Gaussian
method G4MP2,°"** whereas target quantities associated with
models of the reactant, transition, and product state bimolecular
complexes were calculated using the B3LYP, B3LYP-D, and
MO6 hybrid functionals®>~**with the 6-31+G(d,p) basis set. The
observables used as target values were enthalpies of formation,
reaction energies, geometries, dipole moments, Mulliken charges,
and vibrational frequencies.

Briefly, the current SRP strategy aims at two major goals: (1)
an electronic PES which is of high accuracy, comparable to a
high-level ab initio or DFT PES, and (2) absolute atomization
energies which give rise to accurate heats of formation. The former
goal allows the SRP model to be employed in MD simulations
where all classical thermal effects are included directly via the
propagation of Newton’s equations of motion, while all quantum
thermal effects are included via path-integral simulations or similar
methods. The latter objective serves to limit deviations from the
originll AM1 parameter set (which has been optimized to
reproduce heats of formation) to a minimum, as many basic
molecular properties are treated well by AM1, although energy
values are often not sufficiently accurate for quantitative compar-
ison with experimental results. The SRP parameters are obtained
by a nonlinear optimization, starting with the original AM1
parameters as the initial input® The following general sequential
optimization scheme is adopted: (1) First, optimize the one-center
energies (U and Up,,) and the resonance integrals (f; and f3,,),
followed by the a parameters in the core-repulsion function
(CRF). (2) Adjust the orbital exponents ({; and ;) together
with the previously optimized parameters. (3) Adjust the one-
center two-electron repulsion integrals Gy, Gep) Gppy Gpa (0r Gp),

and H, together with the previously optimized parameters. (4)
Include the Gaussian CRF parameters L, M, and K together with
the previously optimized parameters.

The training set for the optimizations consisted of the 12
individual molecules in Chart 1, plus the neutral nicotinamides,
trans-nic and cis-nic. Additionally, the reactant, product, and
transition states and selected structures along the IRC reaction
paths were also included. All individual molecules were fully
geometry optimized during the SRP parametrization, while the
complexes were either partially or fully optimized. Single point
calculations were carried out for the structures along the IRC.

In order to assess the importance of dispersion interactions, we
attempted to implicitly include dispersion effects into the AM1-
SRP model via the AM1 CRFs. In this approach, an improved
SRP Hamiltonian was developed which implicitly accounts for
dispersion. The motivation for including dispersion was provided
by initial attempts to optimize the geometry of the reactant and
product complexes using standard AM1. This led to unrealistic
gas-phase structures, presumably due to the lack of dispersion
interactions in standard AM1; for example, the two fragments in
the product complex moved far apart (see Results and Discussion
section). In order to capture the dispersion interactions impli-
citly, an empirical Grimme-type dispersion correction was added
to the CRF in standard AM1, and thereafter all parameters in the
Gaussian AM1 terms were reoptimized to best fit this dispersion-
corrected CRF by using a nonlinear least-squares procedure (see
Appendix A for technical details). The original CRF, the added
dispersion corrections, the sum of these two terms, and the best
fit Gaussian terms for the H—H, C—C, N—N, and O—O atom
pairs are plotted in Figure 1. The sum and fitted curves for the
first three pairs are visually almost indistinguishable, and there are
merely minor variations of the standard AM1 CRF parameters
(Figure 1). In the case of the O—O pair, the fitted Gaussian terms
for oxygen, however, are not able to reproduce the attractive well
in the van der Waals region due to the presence of two positive
(repulsion) Gaussian functions (K > 0). Since oxygen is chemi-
cally less important for the DHFR reaction, the standard AM1
parameters for oxygen in the Gaussian terms were retained
except in the very last step (4) of the SRP parametrization.
The dispersion corrected CRF parameters for hydrogen, carbon,
and nitrogen were used in the subsequent optimization proce-
dure described above (fixed in steps 1—3, and adjusted in step 4).

Following the strategy outlined above, two SRP Hamiltonians
were developed and employed in the simulations on DHFR.
Specifically, an initial model termed AMI1-SRP was designed,
where the target complex structures and properties employed
in the SRP development process were obtained from B3LYP.
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Figure 1. The nonlinear least-squares curve fittings for pairs of hydrogen, carbon, nitrogen, and oxygen atoms. CRF is the standard AMI core repulsion
function. Disp is the dispersion energy correction calculated using Grimme’s formula. Sum is the total energy of CRF and Disp. Fit is the Gaussian term
fitted with respect to Sum. A magnified subplot of the van der Waals region is also shown for each atom pair.

In this AM1-SRP model, intermolecular dispersion effects are
not included during the parametrization process. Subsequently,
a SRP Hamiltonian which implicitly includes dispersion was
devised [termed AM1-SRP(D)]. Here, all complex structures
were obtained from B3LYP-D calculations. In both approaches,
the target data for the individual molecules were taken from
G4MP2 calculations (accounting for intramolecular dispersion)
at B3LYP optimized geometries.

Target values are presented in the Supporting Information,
along with a detailed explanation of their determination, validation
of the AM1-SRP performance, and a complete list of the modified
parameters. The AMI-SRP results presented in the Supporting
Information were obtained using the Gaussian 09 program.

Modeling QM/MM Interactions. To investigate the ability of
the developed AM1-SRP Hamiltonians to accurately model
QM/MM interactions, we computed the complexation energies
between selected QM molecules and a TIP3P water molecule.
The QM molecules are 6-Me-H;pterin®, trans-Me-H,nic, 6-Me-
H,pterin, and trans-Me-Hnic". For each of these QM moieties, a
single TIP3P water molecule was placed at different hydrogen
bonding positions around the molecule, for a total of up to four
complexes per QM molecule. The QM/MM complexation en-
ergies were compared to complexation energies computed using
various high-level methods.

QM/MM Simulations of E. coli DHFR. Model of the Ternary
Complex of E. coli DHFR. The crystal structure of E. coli DHFR
with folate and the oxidized cofactor NADP* (PDB ID code:
1rx2), originally reported by Sawaya and Kraut,”® was used to
construct the initial configuration for the present study. This
structure corresponds to the Michaelis complex of E. coli DHFR
with the Met20 loop in the closed conformation. The X-ray
crystal structure contains a total of 159 amino acid residues, 153
crystallographic waters, and the folate and NADP" ligands,™
which were replaced by Hyfolate and NADPH, respectively, for

3424

the simulation. The N5 atom on the substrate’s pyrazine ring was
protonated, as this form is thought to be the active species for the
hydride transfer reaction.'"”°

On the basis of the results of Callender and co-workers,'”'""*
Asp27 was assumed to be deprotonated at neutral pH, while the
protonation states for all other ionizable residues were set
corresponding to pH 7.>”"”* The hydrogen bonding patterns
of the ionizable residues with the surrounding environment were
visually inspected to verify that the protonation states are
reasonable. The coordinates of hydrogen atoms of the protein,
water, and coenzyme were determined using the HBUILD
facility in the program CHARMM.”>”* The possible protonation
states of histidine residues (proton on Ng, proton on NJ, or
doubly protonated form) were determined by examination of the
hydrogen bonding interactions. Peripheral /surface His residues
were generally assumed to be positively charged. In NADPH, the
2'-phosphate moiety on the adenosine ribose was treated as a
dianion, based on a pK, of ~5.9 reported for NADP* bound in
cytochrome P-450 oxidoreductase (P-450R).”* The coordinates
of NE2 and OE1 atoms of the carboxamide moiety in the GIn102
residue were swapped, with respect to the original solved crystal
structure, in order to form plausible hydrogen bond interactions
with the adenine group of NADPH (a similar analysis was carried
out by Brooks et al.”®). Residue 37 was built as Asp37 to be
consistent with the 1RX2 PDB entry and previous work on
DHER, although sequencing data suggest that this residue might
be Asn37.”""® We note that the DHFR function is insensitive to
the nature of the amino acid at position 37.”” The resulting
negatively charged enzyme ( —14) has dimensions of ca. 34 x 42 x
50 A’ To this system, we added 14 sodium ions in random
positions outside the protein to obtain a net-neutral system, a
prerequisite for convergence of the Ewald summation method
(vide infra).*° Subsequently, the protein, ligands, crystal waters,
and counterions were embedded in a water box as detailed below.
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Figure 2. QM/MM partitioning scheme. The dashed line divides the
QM and MM regions, and the quantum hydrogen link atoms are circled.

Hybrid QM(SRP)/MM Potential Energy Surface. The hydride
transfer reaction in E. coli DHFR was described using a hybrid
QM/MM potential energy surface.

o= ﬁQM + I:IMM + I:IQ_M;'W (2)

The system was partitioned into a QM region consisting of 69
atoms and a MM region containing the rest of the system. The
QM subsystem includes 38 atoms from the Hjfolate™ substrate
(the pterin ring, the N-methylene-substituted p-aminobenzoyl
(pABA) moiety, and the NH atoms of the glutamate moiety) and
29 atoms from the NADPH coenzyme (the dihydronicotinamide
and ribose rings). In addition, two hydrogen link atoms were
introduced along the covalent bonds crossing the boundary
between the QM and the MM regions, to satisfy the valence
requirements of the QM fragments. A schematic representation
is depicted in Figure 2, where the quantum link atoms are circled.

The QM region was treated by the AMI1-SRP or the AM1-
SRP(D) Hamiltonians described above. The all-atom CHARMM?22
force field®' with grid-based energy correction maps (CMAP)®
for peptide dihedral angles was employed to treat the entire
protein, the substrate, and the ions, while the CHARMM?27 force
field®" was used for the coenzyme. The water molecules were
represented by the three-point charge TIP3P model.*> Atom
types and parameters for the substrate were assigned by analogy
with existing functional groups, as reported by Garcia-Viloca
et al.” For structure minimization and initial equilibration at
the pure MM level, partial atomic charges for the substrate
were assigned using the CHARMm force field (Momany-Rone)
integrated in Discovery Studio 2.5 (Accelrys Software Inc,, San-
Diego, CA).

QM/MM interactions were treated by electrostatic embed-
ding wherein the MM partial atomic charges are included in the
one-electron Hamiltonian. To fine-tune the PES, QM/MM
interaction energies between the reacting fragments (QM) and
the protein (MM) were modified. The van der Waals (vdW)
parameters of the QM hydrogen atoms were changed to those
that reproduce the interaction energies for hydrogen bonded
complexes in the gas phase obtained from ab initio calculations at
the MP2/6-31G(d,p) level®*

Free-Energy Simulations—General Approach.* We follow a
two-step procedure® in which we first carry out Newtonian MD
simulations to determine the classical mechanical potential of
mean force (PMF) along the reaction coordinate for the hydride
transfer reaction between Hifolate™ and NADPH in the fully
solvated enzyme. Then, atoms that are directly involved in the
hydride transfer are quantized, and the configurations sampled in

Na* ions

MD simulations are used in path-integral simulations by con-
straining the centroid positions of the quantized particles to the
classical coordinates. This double ggummn and classical) aver-
aging scheme is formally rigorous****~*® and yields the QM-PMF
as a function of the centroid reaction path.*>”" In PI.FEP /UM, the
ratio of the quantum partition functions for different isotopes,
which yields the kinetic isotope effects (KIEs), is obtained by free-
energy perturbation from a light isotope mass into a heavier one
within the same centroid path-integral simulation,* avoiding the
difference between two free-energy barriers with greater fluctua-
tions than the difference itself for the two isotopic reactions.
Consequently, the PI-FEP/UM method is unique in that it yields
accurate results for computed KIEs, including secondary KIEs.** 6

MD Simulations. MD simulations were conducted under
periodic boundary conditions (PBC), with Ewald summation
for electrostatic interactions.”’ The solute was soaked in a pre-
equilibrated 65 x 65 x 65 A? cubic box of 9461 water molecules,
with its longest axis lying along the space diagonal of the box to
ensure that all protein atoms are at least 10 A away from the edges
of the box. The final model contained 27 986 atoms. For van der
Waals and electrostatic interactions, a 13.0 A group-based cutoff
was used. The Ewald method was employed for reciprocal space
summations between MM sites as well as for the QM/MM
interactions usinga 64 X 64 x 64 FFT grid.”' The k value was set
t0 0.340 A",

All water molecules were relaxed using the adopted-basis set
Newton—Raphson (ABNR) minimization method (30 steps),
while the crystal water oxygens were harmonically restrained
to their original positions. This was followed by a 100 ps MD
equilibration of the water molecules, which were thereafter
minimized again (30 steps ABNR). Afterward, all atoms were
subjected to minimization in a stepwise fashion, to remove close
contacts in the initial protein—ligand—solvent system: (a) The
substrate and coenzyme molecules were first minimized (30 step
ABNR) while placing harmonic restraints on heavy atoms and
keeping the rest of the system fixed. The restraints were gradually
decreased to zero, while the ligands were further minimized (S5 x 30
steps ABNR). (b) The water molecules and protein molecules
were minimized (this time the ligands were held fixed) while the
harmonic restraints on their heavy atoms were gradually dimin-
ished (4 x 10 steps ABNR). (c) Eventually, the whole system
was minimized (30 steps ABNR) without any restraints.

The isothermal —isobaric ensemble (NPT) was employed at
1 atm and 298 K using the extended system pressure,/temperature
(CPT) algorithm of Andersen®” with an effective mass of
500 amu and a Hoover thermostat” with an effective mass of
1000 kcal/mol-ps®. The SHAKE algorithm®™ was applied to
constrain all MM bonds involving hydrogen atoms, allowing a
time-step of 1 fs. The system was gradually heated up from 48 to
298 K during five sessions of 5 ps for a total of 25 ps and
thereafter equilibrated at the target temperature (298 K) over the
course of 1 ns at the MM level of theory, with a further 200 ps of
equilibration using the QM(SRP)/MM potential.

In light of the flexibility of the protein and the structural
manipulation of the original ligands bound in the crystal struc-
ture, some issues emerged during the equilibration phase which
required intervention. This included transient introduction of
nuclear Overhauser effect (NOE) harmonic restraints on the
distance between hydride donor and acceptor carbons (C4N in
NADPH and C6 in Hjfolate™, respectively), as well as on other
distances between donors and acceptors of selected hydrogen
bonds within the protein which are characteristic of the closed
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conformation (for details, see the Supporting Information). All
restraints were removed 100 ps prior to commencing the
production phase.

Potential of Mean Force. The classical-mechanical potential of
mean force (CM-PMF)” was determined using the umbrella
sampling technique, in order to sample the high-energy regions of
the potential energy surface.”® The reaction coordinate () was
defined geometrically as the difference between the lengths of the
brealung (C4NNmpH—H4N) and fonmng (H4N—C6H3f0]a,ef)
bonds. A total of 13 discrete regions along the reaction coordi-
nate (“windows”) were defined with a uniform spacing of 0.25 A.
Each simulation was performed with the addition of a biasing
potential (roughly the negative of the computed PMF), and a
harmonic restraint centered at each window. The harmonic force
constants, k, ranged between 20.0 and 60.0 kcal :mol™'-A™*
[Enarm = k(& — &rer)*]. Each window was equilibrated for 2 ps,
followed by a 100 ps production simulation that collected the
probability densities of configurations (p) along the reaction
coordinate (&) and sorted them into bins of width 0.01 A. The
coordinates were saved every 0.5 ps, and the velocities and
positions of the last configuration generated in each window
were used to initiate the next window. The PMF curve was
obtained using the weighted histogram analysis method
(WHAM).”” To ensure convergence of the PMF, the simulations
were run until the difference between sequential PMF profiles
was less than +1 kcal/mol. The QM-PMF was obtained using a
double averaging procedure by centroid path-integral simula-
tions on configurations saved during the umbrella sampling, ***>%7
In essence, the centroid path-integral simulations yield the free
energy difference between the classical mechanical and the
quantum mechanical PMFs.***>%” For each isotope, a quantized
correction curve was fit to the PI simulation data using an inverted
Eckart function. The curve fitting was done using the Leven-
berg—Marquardt algorithm, and the inverted Eckart potential was
added to the CM-PMF to obtain the QM-PMF.

Kinetic Isotope Effects. For the primary KIE (kji/kp), the
pro-R hydrogen (the donated hydride, H4N) is substituted with
deuterium, whereas the secondary KIE (kji/k) involves the
geminal pro-S hydrogen (H42N). To evaluate the KIEs, the
centroid path-integral simulations were carried out for the light
isotopic reaction, and the ratio of the partition functions between
two isotopic reactions was determined by free-energy Eﬁertmba-
tion theory from the light mass into a heavier one.™ In the
present study, we quantized the donor (C4Nyappr) and acceptor
(C6H,folate+) carbons, in addition to the pro-R (H4N) and pro-S
(H42N) hydrogens connected to the donor carbon (in the
reactant state). Each quantized particle was represented by 32
beads. We used a bisection sampling technique® in all centroid
path-integral simulations, and 10 free-particle configurations
were sampled for each of 10 200 classical configurations, yielding
a total of 102 000 path-integral sampling steps.

B RESULTS AND DISCUSSION

Gas Phase QM Calculations. Optimized Geometries. Accord-
ing to the X-ray crystal structure of synthetically prepared
6-methyl-7,8-dihydropterin-monohydrochloride-monohydrate
(6-Me-H,pterin+ HC], which is essentially 6-Me-H,pterin®), the
heterocyclic ring members form a perfectly planar structure.”
However, our gas phase DFT calculations, in particular at the
B3LYP/6-31G(2dfp) level, suggest that the framework of the
pyrazine ring in the dihydropterins is not completely planar, but

g &’ Y

Figure 3. (a) Optimized geometry of 6-Me-Hpterin® calculated at the
B3LYP/6-31G(2dfp) level of theory. (b) Superimposition of the X-ray
crystal structure of 6-methyl-7,8-dihydropterin-monohydrochloride-
monohydrate (green) with the computed geometry of 6-Me-H;pterin®
(purple). Isotropic and anisotropic temperature factors corresponding
to atoms in the crystal structure are represented by thermal ellipsoids.

rather a pucker is observed as the C7 methylene carbon projects
above or below the plane formed by all other ring atoms
(Figure 3). The magnitude of deviation from the plane varies
with the selection of the method and basis set. MP2/6-311
+G(2d,p) optimization supports the nonplanar nature of 6-Me-
H,pterin® predicted by DFT. The discrepancy between experi-
mental results and theory could be due to crystal forces in the
experimental structure. Conversely, the observed crystal struc-
ture could be the average of two structures puckered in opposite
directions. As for the reduced equilibrium structures (6-Me-
H,pterin and 6-Me-Hpterin ), the pyrazine ring adopts a half-
chair conformation, where C6 and C7 lie below and above the
plane, respectively, in a staggered conformation with respect to
each other, and the methyl group attached to C6 takes a pseudo-
equatorial position. These findings are in good agreement with "H
NMR studies on tetrahydropterin derivatives (spin—spin coupling
constants measurements).” "> A comparison of the crystal struc-
ture of 6-Me-Hzpterin” and the computed geometry at the B3LYP/
6-31G(2dfp) level is available in the Supporting Information.
The degree of pyramidality of the C2-exocyclic amino group
can be defined by its torsion angles and tilting from the plane.
While in the 6-Me-H;pterin® structure, this group is nearly
coplanar with the 4-oxopyrimidine ring, it exhibits a substantial
pyramidalization in the other pterin derivatives examined. As this
amino group can be seen as a fragment of a guanidine-like moiety,
it is relevant to mention that the solid-state structure of free base
guanidine, recently determined by X-ray diffraction, 1% indicates
a nonplanar geometry with pyramidal amino groups, in accor-
dance with earlier ab initio calculations.'®* A pyramidal geometry
is also exhibited at the N8 position in 6-Me-H;pterin~ (but not
in the oxidized form), as well as at the NS site in 6-Me-H 4pterin.
As for the nicotinamides, it is noteworthy that the cisoid
conformer was found to be slightly more stable in vacuo (with
the exception of the unsubstituted neutral molecules, cis/trans-nic),
while the conformer identified in X-ray crystal structures of many
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Figure 4. Superimposition of the oxidized nicotinamide portion in
three models: segment from the NADP" cofactor (green), coordinates
taken from the crystal structure of E. coli DHFR temary complex
(PDB ID: 1rx2), trans-Me-Hnic" (blue), and trans-Hnic" (red) com-
puted with B3LYP/6-31G(2dfp). Note the differences in the orienta-
tion of the carboxamide relative to the pyridine ring,

enzyme active sites is the transoid form.”**”*® One may attribute

the preference of the transoid species in the enzyme to specific
interactions with the environment (hydrophilic/hydrophobic,
polar/nonpolar), which may offset the relatively small energy
difference between the two conformers.'” There are some
noticeable differences between the geometries of the cisoid and
the transoid conformers. The degree of distortion of the carbox-
amide group with respect to the pyridine plane can be expressed
in terms of the dihedral angle C2—C3—C7=08 (Chart 1), as
the difference between a “perfect” antiperiplanar angle (180°, for
the transoid conformer) or synperiplanar angle (0°, for the cisoid
conformer) and the actual dihedral. Calculations with B3LYP/
6-31G(2dfp) suggest that in the transoid species, the carbox-
amide is rotated substantially out-of-plane, with distortions of
18.4—19.7° and 27.5—284° for the dihydronicotinamides and
their corresponding oxidized counterparts. However, the out-of-
plane rotations observed in the cisoid conformers are consider-
ably smaller, with values of ca. 2.1° and 13.0—13.2° for H,nic and
Hnic" derivatives, respectively. These observations are in agree-
ment with previous theoretical studies.'” ' ® In the X-ray crystal
structure of the temnary complex ecDHFR:folate:NADP™ (PDB
code: 1rx2) used in the QM/MM simulations in this study, the
nicotinamide subunit is found in its transoid conformer, with out-
of-plane distortion of only 6° (Figure 4). Moreover, in most of the
transoid conformers, there is a considerable pyramidalization of the
amide nitrogen. These two geometric features of the carboxamide
—the out-of-plane distortion and the N-pyramidalization—help
to relieve unfavorable steric interactions between the NH, group
and C2—H bond in the pyridine ring,

The 1,4-dihydropyridine ring skeleton in both unsubstituted
and N-Me-substituted dihydronicotinamides is nearly planar,
and no apparent puckering into a boat conformation is observed.
This finding is in accord with X-ray data for some synthetically
produced and isolated N-substituted nicotinamides, which are
essentially planar in the dihydropyridine ring system.'®''°

Model Reactions. In Table 1, the calculated energies, enthal-
pies, and free energies at room temperature are given for the
“protonated” (a) and “unprotonated” (b) model reactions invol-
ving N-methyl substituted nicotinamides. The results are reported
separately for each of the four thermodynamic pathways described
in the Methodology section (egs 13, 1b).

All methods except AM1 predict an exothermic (and exergonic)
reaction for the “protonated” model. The reaction energies can be
ordered in absolute magnitude as follows: cisoid — transoid <

cisoid — cisoid ~ transoid — transoid < transoid — cisoid (this
trend is opposite for the “unprotonated” model). The variation
between these pathways stems from the slightly higher energy of
the transoid conformer of the nicotinamide species relative to its
cisoid counterpart, either in the reduced or oxidized form. For
the density functionals, the relative order of AE, (and generally
also of AH, and AG,) in absolute values is PBEPBE < M06 <
PBE1PBE < BB1K =~ MPWBIK < B3LYP = B98. The results
obtained with CBS-QB3 and G4MP2 are almost identical yet
considerably more exothermic than those obtained from DFT
(AEq being ~3 kcal/mol more negative than in the case of
B3LYP, which is closest to the ab initio target data).

On the other hand, the “unprotonated” model reaction was
found to be highly endothermic (and endergonic) with most of
the computed AG, values ranging between 120 and 134 kcal/mol.
This emphasizes the crucial role of NS-protonation at the
pyrazine ring of pterin in facilitating a thermodynamically feasible
hydride transfer from dihydronicotinamide to dihydropterin in
the gas phase.

Reaction, Transition, and Product Complexes. The diagram
in Figure S compares the relative energies of the reactant,
transition, and product states (RS, TS, and PS), for the reaction
6-Me-H;pterin™ + trans-Me-H,nic — 6-Me-H pterin + trans-Me-
Hnic", using AM1 and various density functionals.

Focusing on the bimolecular complexes, we define the energy
barrier, AE, as the energy gap between the TS and RS complexes,
and the reaction energy AE, as the difference between the PS
and RS complexes. These quantities are poorly predicted by
the standard AM1 method, as demonstrated by a high barrier
(AE" = 27.8 kcal/mol) and a slightly endothermic reaction
(AE, = 1.9 keal/mol). The DFT methods suggest a much lower
barrier and an exothermic reaction. The gradient corrected
functional PBEPBE, which does not contain Hartree—Fock
exchange, yields the lowest barrier, AE" = 3.5 kcal/mol. There
is good agreement between the functionals B3LYP, BBIK,
MPWBIK, and MO06, while B3LYP-D gives a slightly lower
barrier. It is interesting to note that the computed gas-phase
barriers (e.g., using M0G6, AE* = 12.2 kcal/mol) are quite similar
to the experimental free-energy barrier in the enzyme, 13.4 kcal/mol>

The effect of dispersion is clearly seen by inspecting the
energies of the fully separated molecules relative to the RS/PS
complexes. Using the M06 and B3LYP-D functionals, which
both account for dispersion interactions, there is a considerable
additional stabilization of the complexes. At the BILYP-D level,
this dispersion effect may be estimated directly by comparing
with B3LYP, yielding ca. 11 kcal/mol for the RS and PS. We note
that the PS complexes presented in Figure 5 correspond to a
nearly T-stacked conformation between the pterin and nicotina-
mide rings, similar to that found in DHFR. For methods that
include dispersion, an additional minimum configuration corre-
sponding to planar stacking between the rings is found. This
point is discussed further below.

Considering the close agreement between B3LYP and M06
for the current system, we employ B3LYP (and B3LYP-D) as
target data for the complexes in the SRP parametrization process.
This choice is consistent with the target data for the individual
molecules being taken from the G4MP2 approach, which
employs B3LYP geometries and thermodynamic data.

SRP Development. The AM1 parameters were reoptimized
against high-level QM results, obtained from G4MP2 calcula-
tions as well as B3LYP and B3LYP-D calculations with the
6-31+G(d,p) basis set. The properties used as target values
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Table 1. Energetics Calculated for the “Protonated” (a) and “Unprotonated” (b) Model Reactions in the Gas Phase”

Part a
cisoid — cisoid® cisoid — transoid"® transoid — transoid® transoid — cisoid®

method AE, AH, AG, AE, AH, AG, AEy AH, AG, AE, AH.  AG.
AM1 74 8.5 9.0 9.8 7.1 7.6 55 6.4
BSLY'P/6-31+G(d,p) -7.5 —6.9 —6.6 —56 -5.0 —4.6 =7.7 —=7.0 7.0 —9.6 —-9.0 —-9.0
PBE1PBE/6-31+G(d,p) —67 —61  —56  —47 —40 -38 —69 —63 —65 -88 -83 -83
PBEPBE/6-31+G(d,p) -5.3 46 42 35 27 -28 -52 —47 —48 -7.0 —66 —62
B98/6-31+G(dp) 76  -70 —65  —57 -5.1 -5.5 77 —72 ~7.8 —96 -9.1 -87
BBIK/6-31+4G(dp) 70  —65 —57  —49  —45  —45 73 —68 —72 —94 -89 -85
MPWBIK/6-31+G(d,p) ~7.1 —67 —55  —50 —45 -5.1 74 —69 ~7.8 -9.5 -9.1 -82
MO06/6-31+G(dp) —63 58  —48  —45 —40 —22 —66 —60 —48 -84 -79 —74
G4MP2 —-10.7 —10.1 —-9.5 —8.7 —8.1 —7.6 —-10.0 —9.5 —-9.0 —-12.0 —-11.5 -109
CBS-QB3 —10.8 —10.1 —-9.8 —8.7 —8.0 7.7 —-102 —96 —-9.5 —-122 —-11.7 —11.6

Part b
cisoid — cisoid' cisoid — transoid® transoid — transoid" transoid — cisoid'

method AE, AH, AG, AEy AH, AG, AEy AH, AG, AEy AH, AG,
AM1 129.6 130.7 131.1 132.0 1292 129.8 127.7 128.6
BSLYPX6-31+G(d,p) 125.1 1249 125.1 127.0 126.8 127.1 124.9 124.8 124.7 123.0 122.8 122.7
PBEIPBEX6-31+G(d,p) 1272 126.8 127.2 129.2 128.8 129.0 127.0 126.5 126.3 125.1 124.5 124.5
PBEPBEX6—31+G(d,p) 1217 121.1 1212 123.5 122.9 122.6 121.8 1209 120.5 120.0 119.1 119.1
398f6-31+G(d,p) 125.5 1249 1254 127.4 126.9 126.3 125.4 1248 124.0 123.6 122.9 123.1
BBle6-31+G(d,p) 1314 131.0 131.8 133.6 133.0 133.0 131.2 130.7 130.3 129.1 128.6 129.1
l\-{P‘NBle6-31+G(d,p) 1317 1312 132.5 133.9 133.3 132.9 1315 131.0 130.2 1293 128.8 129.8
M%f6-3l+G(d,p) 1290 1282 129.0 130.8 130.1 131.6 128.7 128.0 129.0 126.9 126.2 126.4
G4MP2 1249 124.3 124.7 126.9 126.3 126.5 125.6 125.0 125.1 123.6 123.0 1232
CBS-QB3 1252 124.6 124.7 127.2 126.7 126.8 125.8 125.1 125.0 123.7 123.0 1229

“ AE, is the change in electronic energy; AH, and AG, are the respective enthalpy and free energy changes at 298.15 K and 1 atm (including zero-point
contributions). ” 6-Me-Hspterin® + cis-Me-Hnic == 6-Me-H,pterin + cis-Me-Hnic". ©6-Me-Hspterin® + cis-Me-H,nic == 6-Me-H,pterin + trans-
Me-Hnic", Y6-Me-H;pterin® + trans-Me-Hynic == 6-Me-Hpterin + trans-Me-Hnic". ©6-Me-Hpterin® + trans-Me-H,nic == 6-Me-H,pterin + cis-
Me-Hnic".f 6-Me-H,pterin + cis-Me-H,nic = 6-Me-H pterin ™ + cis-Me-Hnic". 8 6-Me-H,pterin + cis-Me-Hjnic = 6-Me-Hjpterin~ + trans-Me-Hnic".
" 6-Me-H,pterin + trans-Me-H,nic == 6-Me-Hpterin™~ + trans-Me-Hnic".  6-Me-Hapterin + trans-Me-Hynic == 6-Me-Hjpterin ™ + cis-Me-Hnic".

included heats of formation, dipole moments, Mulliken charges,
and vibrational frequencies of the individual species. Further-
more, the reaction energies for the model complexes also served
as reference data that contributed to the fitness function of the
SRP model (vide infra), in order to improve the accuracy of the
resulting PES.

Determination of the target heats of formation required some
caution, as we are interested in a purely electronic structure
description of the potential energy surface, while nuclear classical
and quantum effects are added only at a later stage during enzyme
simulations. Therefore, any thermal contribution should be
excluded. On the other hand, the AMI energies are originally
interpreted in terms of heats of formations.” In the present
AMI1-SRP reparametrization, we mainly use ab initio and DFT
energies as target data, and therefore the resulting AM1-SRP
energies will mimic electronic energies. This allows the AM1-SRP
models to be employed in molecular dynamics simulations where
all classical thermal effects are included directly via the propagation
of Newton'’s equations of motion, while all quantum thermal
effects are included via path-integral simulations.

Table 2 compares the root-mean-square deviations (RMSD)
from the target data for various properties calculated at the

optimized geometries in three parametrization schemes: stan-
dard AM1, AM1-SRP, and AM1-SRP(D). The target data for the
14 molecules are the same for the three parametrization schemes.
The AMI-SRP parametrization did not involve the heats of
formation of the pterin molecules due to the large gap between
the corresponding target and AM 1 values, an obstacle which was
circumvented by minimizing the errors associated with related
relative energies (see Table 3). Indeed, AM1-SRP produced the
smallest RMSD errors in relative energies among the parame-
trization schemes, and the quality of the individual heats of
formations was considerably improved by ca. 8 kcal/mol when
going from standard AM1 to AM1-SRP. There were significant
changes in the AM1-SRP(D) parameters compared with stan-
dard AMI, in particular in the Gaussian terms. This further
reduced the RMSD error in the heats of formation to ca. 1 kcal/mal,
including the pterin species (whose heats of formation were
incorporated in the training set of AM1-SRP(D)). At the same
time, the error in the relative energies was increased only slightly
relative to AM1-SRP, making its energetic accuracy comparable
to the latter. The RMSD error for the vibrational wavenumbers
was reduced by 29 cm ™" and 55 cm ™ in AM1-SRP and AM1-
SRP(D), respectively, relative to AM1. On the other hand, the
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Figure 5. The relative energies (kcal/mol) of the reactant, transition, and product states associated with the reaction 6-Me-Hspterin® + trans-Me-H,nic
— 6-Me-H,pterin + trans-Me-Hnic". The fully separated reactants and products are represented by RS (separated) and PS (separated), respectively,
where RS (complex) and PS (complex) refer to the corresponding bimolecular complexes.

Table 2. RMSD Errors for Properties Calculated at Opti-
mized Geometries Using AM1, AM1-SRP, and AM1-SRP(D),
with Respect to Target Values (G4MP2)

properties AM1 AMI-SRP  AMI-SRP(D)
heats of formation” (kcal /mol) 12.1 38 1.3
relative erlergiesIJ (kcal/mol) 9.5 19 22
bond lengths (A) 0.02 0.03 0.04
bond angles” (deg) 1.8 34 19
vibrational wavenumbers? (em™?) 108 78 52
Mulliken atomic charges® (e) 0.16 027 020
dipole moments® (D) 1.27 1.08 (1.47)

“The statistics refer to nicotinamide derivatives only. The target heats of
formation for the pterin species were far off the AMI values and were
thus omitted from the calibration set for AM1-SRP [but included in the
AMI1-SRP(D) parametrization]. * The statistics refer to the reactions
described in Table 3. “ The statistics refer to all 14 individual species.
4The statistics refer to wavenumbers larger than 2500 cm™~! for all 14
individual species. ® The statistics refer to eight neutral species out of the
14 individual species. Dipole moments were not included as reference
data in the parametrization of AM1-SRP(D), hence the parentheses.

RMSD of the bond lengths, bond angles, and atomic charges
calculated with AM 1-SRP were slightly increased relative to AM1
by 0.01 A, 1.6°, and 0.11¢, whereas AM1-SRP(D) did somewhat
better with 0.02 A, 0.1°, and 0.04¢, respectively. However, their
overall quality was considered to be acceptable in light of the

large improvements for the energies and vibrational frequencies.
The dipole moments calculated with all three schemes were of
similar quality.

Table 3 provides further insight into the quality of selected
relative energies obtained with each Hamiltonian. It lists the
deviations for various reactions involving four and two species
(classes I and II, respectively), with respect to the reference
entries. As demonstrated by the total RMSD error for each class,
AM1-SRP performs better for reactions of class I, while generally
AM1-SRP(D) treats class II transitions more accurately (though
to a less pronounced degree).

Having the tailored semiempirical Hamiltonians in hand, some
structural and thermodynamic features of the reactant, transition,
and product state complexes were analyzed and compared
against the target DFT methods (Table 4). The analysis includes
geometric relations between the hydride-donating and accepting
carbons (C4’ and C6, respectively) and the transferring hydride
itself, as well as the imaginary vibrational frequency and ener-
getic relations. The three complexes are depicted in Figure 6,
comparing geometries that were obtained using DFT and SRP
Hamiltonians.

Overall, there is good qualitative agreement between the
computed semiempirical structures of the reactant and transition
state complexes and the corresponding DFT reference struc-
tures, and the improvements of the SRP Hamiltonians over
standard AM1 are substantial. In particular, the AMI1-SRP
Hamiltonian is able to reproduce the imaginary vibrational
frequency of the reactive normal mode in the transition state as
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Table 3. Signed Errors of Relative Energies (kcal/mol) Calculated with the AM1-SRP and AM1-SRP(D) Parameters, with Respect

to the Target Data (G4MP2)"

signed error (keal/mol)
class reaction AMI1 AM]1-SRP AMI1-SRP(D)
1 6-Me-H;pterint + frans-Me-H, nic — 6-Me-H,pterin + frans-Me-Hnic * 17.1 1.0 31
6-Me-Hypterin © + cis-Me-H,nic — 6-Me-H,pterin + cis-Me-Hnic © 182 19 42
6-Me-H3pterin+ + trans-Hanic — 6-Me-Hypterin + trans-Hnic 142 -23 -1.1
6-Me-H;pterint + ds-H,nic — 6-Me-H,pterin + cis-Hnic * 151 -14 -02
6-Me-H, pterin + trans-Me-Hnic — 6-Me-Hypterin = + frans-Me-Hnic * 3.8 0.6 20
6-Me-H;pterin + cis-Me-Hznic — 6-Me-Hjpterin =+ cis-Me-Hnic + 4.8 1.6 3.1
6-Me-H;pterin + trans-Hanic — 6-Me-Hzpterin = <+ frans-Hnic + 09 2.7 22
6-Me-H, pterin + cis-Hynic — 6-Me-Hypterin = + cis-Hnic * 1.8 -17 -1.3
RMSD 1.7 1.8 25
I 6-MeHspterin* — 6Me-Hypterin 157 16 13
6-MeH,pterin = 6-Me-Hpterin - 24 13 02
trans-Me-Hynic — transMe-Hnic + 14 —0.6 1.8
cis-Me-Hynic — cis-Me-Hic + 25 03 30
trans-Hynic = _ trans-Hnic + —15 -39 —24
dis-Hynic > cis-Hnic + —06 -30 -15
cis-nic — trans-nic 05 03 0.6
RMSD 6.1 2.1 1.8

“Classes I and II assemble relative energies involving four and two species, respectively.

predicted by B3LYP/6-31+G(d,p) calculations (ie, —880 cn™ ' vs
—838 cm™'). On the other hand, the calculated imaginary
frequency of the TS complex with AM1-SRP(D), —960 cm ™,
resembles more that predicted by M06, —953 cm ™, than the
corresponding B3LYP-D value, —716 cm ™.

The energetic profiles obtained at different theoretical levels are
presented in Figure 7. As expected, the AMI-SRP complexation
energies are fairly dose to those of B3LYP (—9.3 and — 10.7 keal/mol
for RS, —3.0 and —7.2 kcal/mol for PS, respectively), while the
AM1-SRP(D) results are similar to those of B3LYP-D (—22.8
and —22.0 kcal/mol for RS, —25.2 and —27.0 kcal/mol for PS;
the counterpoise corrections for basis set superposition error
(BSSE) with B3LYP-D are 1.5 and 2.1 kcal/mol for RS and PS,
respectively). The barrier height obtained with AM1-SRP is
10.7 kcal/mol, comparable to 11.2 kcal/mol with B3LYP, while
that obtained with AM1-SRP(D) is 13.6 kcal/mol, which is
somewhat higher than the target value 9.2 kcal/mol obtained with
B3LYP-D. In comparison, the M06 barrier height is 12.2 kcal/mol.
An in-depth analysis of the RS and PS complexes will be
presented below.

A detailed inspection of the geometry optimizations of the RS
and PS complexes reveals that the PES in these regions is very flat
with several plausible minima, particularly in the PS region. Using
B3LYP and the AM1-SRP Hamiltonian, we could attain reason-
able geometries of the RS and PS complexes via the IRC path
from the TS only down to a certain point away from the TS in
either direction (these structures are presented in Figure 6).

Full geometry optimization of the RS and PS complexes in the
gas phase yielded highly distorted minimum structures, with no
stacking, which do not resemble the configuration in the DHFR
active site. As the two molecular segments in these complexes are
weakly bound in the van der Waals region (>3.5 A), itis necessary
to include dispersion interactions (which are missing in the AM1
formalism) to accurately reproduce these geometries. Further-
more, the target complexes for AM1-SRP were derived from
B3LYP calculations which do not include much dispersion.
Indeed, the introduction of dispersion by means of B3LYP-D
enabled us to obtain plausible minimum RS and PS geometries.

B3LYP-D and M06 optimizations of the PS both reveal two
possible minimum configurations, with regard to the orientation
of the nicotinamide ring toward the pterin fragment. (a) Firstisa
“T-stacked” configuration, where the nicotinamide ring lies in a
quasi-perpendicular plane with respect to the pterin ring. With
this orientation, the complexation energy obtained with B3LYP-
D is —18.1 kecal/mol, while M06 affords a related minimum
geometry with a complexation energy of —17.6 keal/mol. (b)
Next is a fully “stacked” configuration, in which the rings are
stacked one on top of the other, which corresponds to the global
minimum of the PES of the PS complex (Figures 6 and 7).
The B3LYP-D structure (complexation energy: —27.0kcal/mol)
is almost identical to the fully stacked complex obtained with
MO06 (—23.3 kcal/mol) and resembles that obtained with AM1-
SRP(D) (—25.2 kcal/mol). With AM1-SRP(D), we could not
find a partially T-stacked configuration, suggesting that this
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Table 4. Geometric and Thermodynamic Properties of the Reactant, Transition and Product State Complexes in the Gas Phase,

Calculated with Different Hamiltonians”

R(A)
complex method C4-H C6—H C4'-Cé Z£C4—H—C6 (deg) IFreq (em™ ') AE (keal/mol)

reactant state AM1? 1.128 2.640 3.636 146.61 0.0
B3LYP/6-31+G(d,p)" 1110 2.996 3.863 13595 0.0

AMI-SRP? 1110 2551 3593 15591 0.0
B3LYP-D/6-31+G(d,p)* 1.103 2751 3500 124.85 0.0

AMI-SRP(D)* 1.087 2283 3.170 137.49 0.0

MO6° 1.104 3301 3944 118.15 0.0

transition state AMI1 1.411 1363 2763 169.81 —1385 27.8
B3LYP/6-31+G(d,p) 1309 1.409 2715 174.61 —838 112

AMI-SRP 1317 1.348 2633 162.43 —880 107
B3LYP-D/6-31+G(d,p) 1.280 1.39% 2.664 169.09 —716 92

AMI-SRP(D) 1.308 1322 2.602 163.18 —960 13.6

MO06 1313 1362 2.667 171.01 —953 122

product state AM1® 2512 1136 3.507 145.37 19
B3LYP/6-31+G(d,p)" 2.533 1.110 3.613 163.96 —-4.3

AMI-SRP? 2514 1116 3.503 147.07 -2.8
B3LYP-D/6-31+G(d,p)** 2679 1.110 3.632 143.52 —46

(5.069) (1.100) (5.394) (101.32) (-13.5)

AMI1-SRP(D)" 4.248 1.092 4.748 110.82 -9.3

Mo6 2.499 1.107 3.443 14235 —42

(5.034) (1.107) (5.706) (107.44) (—9.8)

“C4’ is the donor carbon in the nicotinamide subunit, C6 is the acceptor carbon in the pterin subunit, and H denotes the transferring hydride. IFreq
is the imaginary frequency, and AE is the relative energy with respect to the reactant complex. ®The final structure was obtained using IRC
calculations. “ The final structure was obtained using geometry optimization. 4V alues without parentheses refer to the local minimum structure with a
“T-stacked” configuration. Values in parentheses refer to the fully stacked configuration, which corresponds to the global minimum on the potential

energy surface.
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Figure 6. Structures of the reactant, transition, and product state
complexes in the gas phase. The superimposed geometries were
obtained by calculations at a DFT and a related semiempirical level.
Structures are shown for two pairs of methods: B3LYP/6-31+G(d,p)
and AMI-SRP and B3LYP-D/6-31+G(d,p) and AMI1-SRP(D). The
product state complexes represent the T-stacked configuration for B3LYP
and AM1-SRP optimized structures and the fully stacked configuration
for the BILYP-D and AM1-SRP(D) optimized structures.

method might “over-stack” the PS complex. The greater stability
of the fully stacked complexes may be attributed to the presence
of dispersion interactions, hydrogen bonding interactions within
the bimolecular complex, and close contacts between the 7
systems in the nicotinamide and pterin rings.

The gradient norm of the product complex during AMI1-
SRP(D) geometry optimization is plotted in Figure S1 (Sup-
porting Information). The gradient is greatly reduced in the
first steps. The PES then becomes quite flat and shallow.
Thus, the structure of the product complex seems to be highly
flexible, and many arrangements of the two molecular segments
have relatively small gradients. The use of less stringent conver-
gence criteria in the AMI-SRP(D) geometry optimiza-
tion would have led to termination after about 100 cycles, at a
structure close to the T-stacked configuration obtained with
B3LYP-D (Figure S1).

QM/MM Interactions. To investigate the ability of the AM1-
SRP Hamiltonians to accurately model QM/MM interactions,
we computed the complexation energies between selected QM
moieties (6-Me-Hpterin®, trans-Me-H,nic, 6-Me-H,pterin, and
trans-Me-Hnic") and a TIP3P water molecule. For each of these
QM moieties, a single water molecule was placed at different
hydrogen bonding positions around the molecule, for a total of
14 QM/MM complexes (Table S8a, Supporting Information).
The QM/MM interaction energies were computed using
AM1, AM1-SRP, or AM1-SRP(D) and a TIP3P water molecule.
These interaction energies were compared with data from
MO06, B3LYP-D, B3LYP, and HF, all in conjunction with the
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Figure 8. Computed classical potentials of mean force for the hydride
transfer reaction catalyzed by E. coli DHFR at 298 K, obtained with three
different QM/MM schemes distinguished by the semiempirical treat-
ment ofthe QM region: AM1/MM (green), AM1-SRP/MM (blue), and
AMI-SRP(D)/MM (red). The reaction coordinate is defined as the
difference between the distances of the transferring hydride and the

donor and acceptor carbon atoms.

6-31+G(d,p) basis set. BSSE corrections were included for the
DFT methods but not for HF. The different semiempirical
QM/MM methods give similar interaction energies, indicating
that the SRP optimization process did not introduce artificial
polarization of the molecules (Table S8b and Figure S2, Supporting
Information). The QM/MM methods predict sli weaker
complexes than M06 and B3LYP-D (RMSDs of 2.6—4.4 kcal /mol),

while they are in good agreement with B3LYP and HF (RMSDs
between 1.2 and 2.4 kcal/mol).

Enzyme Simulations. Classical Potential of Mean Force.
Figure 8 shows the classical mechanical PMF (CM-PMF) for
the hydride transfer reaction in DHFR obtained from free energy
MD simulations, using the AM1, AM1-SRP, and AM1-SRP(D)
QM/MM Hamiltonians. We note that these data are not directly
comparable to experimental results as NQEs are not yet included
at this stage. The AM1/MM Hamiltonian substantially over-
estimates the free energy barrier (AG" = 36.3 kcal/mol) and
predicts an endothermic reaction (AG" = 6.3 kcal/mol). The
transition state (the free energy bottleneck of the PMF) for the
QM(AM1-SRP)/MM Hamiltonian is located at £ = —0.089 A,
whereas that of the QM(AM1-SRP(D))/MM Hamiltonian is
placed at ' = —0.045 A. Both are relatively late compared to
that reported by Gao and co-workers in recent QM/MM studies
(&= —0.145 A) on ecDHFR, which utilized the AM1 Hamiltonian
with SVB correction (vide supra).”® We further note that the end
points of the AM1-SRP and AM1-SRP(D) QM/MM free energy
profiles are smooth and show no artificial free-energy increase.
The classical free energies of reaction and activation extracted
from the QM(AMI-SRP)/MM-based free energy profile are
—6.4 and 15.9 kcal/mol. The CM-PMF obtained by the en-
hanced Hamiltonian, QM(AM1-SRP(D))/MM, predicts a clas-
sical mechanical free energy barrier which is narrower and slightly
lower (AG* =14.7 kcal /mol), and the reaction is more exergonic
(AG" = —9.3 kcal/mol) by 3 kcal/mol. The considerable
stabilization of the product state by ca. 5 kcal/mol compared
with the experimental data is possibly a manifestation of the “over-
stacking” phenomenon already encountered with the AMI-
SRP(D) in the gas phase (vide supra). Finally, the differences
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Figure 9. The quantum mechanical potentials of mean force for the
hydride transfer reaction in E. coli DHFR. The centroid coordinates are
used in path-integral simulations. Each quantized particle was repre-
sented by 32 beads. The experimental free energies of reaction and
activation are denoted near the dashed lines.

in the free energy barrier width among the three QM/MM
Hamiltonians are consistent with the trends in the imaginary
vibrational frequency of the transition state in the gas phase
obtained from the corresponding semiempirical schemes. Accord-
ing to Table 4, the imaginary wavenumbers in absolute values are
ordered as follows: AM1 > AM1-SRP(D) > AM1-SRP. Indeed,
the QM(AM1) /MM free energy profile has the narrowest barrier,
that of QM(AMI1-SRP(D))/MM is wider, and the QM(AM1-
SRP)/MM Hamiltonian yields a PMF with the widest barrier.

Quantum Potential of Mean Force. The QM-PMF is ob-
tained from Feynman path-integral calculations, *****® in which
the centroid positions of the discrete paths of %uanﬁzed particles
are used to specify the reaction coordinate.****® The “quan-
tum” free energy profiles displayed in Figure 9 describe the
hydride transfer reaction with the two SRP QM /MM Hamilto-
nians. Using QM(AM1-SRP)/MM, the inclusion of NQE in the
simulations™ lowers the computed free energies of activation for
the hydride and deuteride transfer by 2.1 and 1.4 kecal/mol,
respectively, relative to the “classical” free energy barrier. The
resulting quantum free energies of reaction and activation for the
hydride transfer, —6.4 and 13.8 kcal/mol, are in good accord with
the corresponding experimental results (—4.4 and 13.4 kcal/mol).”
The quantum corrections for the AM1-SRP(D)/MM CM-PMF
are very similar, 2.2 and 1.5 kcal/mol for hydride and deuteride,
so that the predicted free energy barrier (12.5 kcal/mol) is in
close agreement with experimental results. The free-energy
results demonstrate that the present QM/MM and path integral
methods can provide an adequate description of the hydride
transfer reaction in DHFR.

Kinetic Isotope Effects. The computed primary (kfi/kp) and
secondary (K/ki) KIEs for the hydride transfer reaction in
DHFR at 298 K are 3.51 £ 0.14 and 1.18 + 0.06 with QM(AM1-
SRP)/MM and 349 + 0.16 and 1.11 =+ 0.04 with QM(AMI-
SRP(D))/MM, respectively. These values are in good agreement
with the experimental intrinsic KIEs measured by Kohen and co-
workers (ki/kh = 3.55 + 0.17; kii/kg = 113 + 0.01),
providing additional evidence for the accuracy of our computa-
tional treatments. These KIEs are also in good agreement with
various QM/MM calculations (e.g,, refs 7 (2° KIEs = 1.13) and
39 (1° KIEs = 3.4 + 0.6)), but here the same method is within
experimental error for both 1° and 2° KIEs,

0.0 (
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Figure 10. The dispersion energy between two carbon atoms calculated
using Grimme's formula.

B SUMMARY

In the current work, we presented extensive benchmark
calculations for several model reactions in the gas phase that
are relevant to the DHFR catalyzed hydride transfer. We
employed G4MP2 and CBS-QB3 ab initio calculations as well
as numerous density functional methods. Using these results as
target data, we developed two specific reaction parameter (SRP)
Hamiltonians by reparametrization of the semiempirical AM1
method. The first generation SRP Hamiltonian does not account
for dispersion, while the second generation SRP includes disper-
sion implicitly via the AM1 core-repulsion functions. These SRP
semiempirical Hamiltonians were subsequently used in hybrid
quantum mechanics/molecular mechanics simulations of the
DHEFR catalyzed reaction. The classical PMFs were computed
using the standard AM1 method as well as the AM1-SRP and
AM1-SRP(D) models. Nuclear quantum effects were included
using a Feynman path-integral method. Finally, kinetic isotope
effects were computed using a mass-perturbation-based path-
integral approach. The quantum PMFs predict free energy barriers
and reaction free energies in good agreement with available
experimental kinetic data.

‘We conclude that the resulting PESs yield accuracies compar-
able to those obtained at the G4MP2 and DFT levels, with a
computational cost that is several orders of magnitude less. This
will allow us to perform long MD simulations of the solvated
enzyme, while providing a realistic description of the kinetics and
thermodynamic properties in the DHFR catalyzed reaction.

B APPENDIX A

The dispersion energies were estimated using the formula
introduced by Grimme for density functional methods.

N N-1 Cé,l}
Eap(ry) = —s6 ), X — Ja(ry)
i=1j=i+1 ij
1

L e e (]

where ry;is the distan ce between atoms i and j. s¢is a global scaling
factor for the dispersion energy, with numerical values ranging
from 0.75 to 1.2 for different density functionals. Herein, we
chose the value 1.0 for simplicity. d is a parameter for damping
function fy. It was chosen to be 20.0 in line with the value used in
DFET-D2. The atomic Cg coefficients and van der Waals radii ry
were taken directly from the original publication. Figure 10 plots
the calculated dispersion energy for two carbon atoms.
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The sum of the standard AM1 core repulsion function and the
dispersion energy correction was scanned for each atom pair. A
total of 396 points for the carbon, nitrogen, and oxygen pairs and
346 points for the hydrogen pair were collected from a distance
of 0.1 A with a step size of 0.02 A. Finally, the parameters in the
Gaussian terms were fitted to these data points using a nonlinear
least-squares procedure implemented in gnuplot with the stan-
dard AM1 parameters as an initial guess. The convergence
criterion was 1.0 X 107°,
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© Supporting Information. Comprehensive list of the gas
phase molecular models; summary of recent computational
studies on the DHFR-catalyzed hydride transfer reaction; vibra-
tional frequency scale factors used for gas phase thermochemistry
calculations; details of the development of AM1-SRP, calibration,
and related target values; selected gas phase vibrational frequen-
cies; list of the semiempirical parameters of AM1-SRP and AM1-
SRP(D); coordinates of geometries calculated at the target
levels; comparison between the crystal structure and computed
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Geometry Optimizations and Reaction Energetics in the Gas Phase. All structures (with the
exception of the reactant, transition and product state complexes) were initially set up using the
builder tool in the GaussView 4.1.2 program.9 These geometries were thereafter fully optimized by
various methods using the Gaussian03'* and Gaussian09"! programs. The vibrational normal modes
of the molecules at their stationary points on the potential energy surface (PES) were calculated
using the same basis set employed in the optimization, to verify true local minima (ie. all

frequencies are real). The vibrational frequency scale factors are summarized in Table S2.

Table S2. Frequency scaling factors for fundamental vibrations for the various levels of theory used in the calculation

of the thermodynamic properties of the models.

Method Scaling factor
AMI 0.9532"
B3LYP/6-31+G(d,p) 0.9648"
PBE1PBE/6-31+G(d,p) 0.9547"
PBEPBE/6-31+G(d,p) 0.9904"
B98/6-31+G(d,p) 0.9635"
BB1K/6-31+G(d.p) 0.9359"
MPWBI1K/6-31+G(d,p) 0.9335"
MO06/6-31+G(d,p) 0.950"
G4MP2 0.9854"
CBS-QB3 0.9900'®

Calibration of the AM1 Hamiltonian. The general approach for the re-parametrization of the AM1
method'” has been outlined in the main paper (see the section on SRP Development). Here we

provide further details.

All target species were grouped into four categories: pterins (A, 4 molecules), N-methyl
nicotinamides (B, 4 molecules), unsubstituted and neutral nicotinamides (C, 6 molecules) and the
reactant, transition and product state complexes (D, 3 molecules). For each of the first three
categories A-C, an internal reference molecule was determined (6-Me-H3pterin+, cis-Me-Hjnic and
trans-nic, respectively) and its reference energy was chosen as its enthalpy of formation in the
gaseous state at 298 K. The heats of formation for f)-Me-ngterinJr and cis-Me-Hjnic were
calculated at the G4MP2 level of theory, according to the procedure described by Ochterski;'®
whereas the entry for the transoid conformer of neutral nicotinamide (frans-nic) was set to the

corresponding experimental enthalpy of formation, -6.9 kcal/mol."® All other species in groups A-C
S4



were energetically interrelated to the reference molecule in their group by addressing different types
of thermodynamic relations: (a) conformational rearrangements (groups B and C); (b) proton
affinities, i.e. protonated vs. unprotonated species (groups A and C); (c) hydride affinities (groups
A,B,C). According to this scheme, the target values for the reference molecules are actual heats of
formation. The target values for all other molecules represent the electronic energy difference
relative to the reference molecule of their group. In this approach, we obtain an accurate electronic
energy surface wherein the absolute energies of the reference molecules are their actual heats of
formation (obtained from experiment or computation) whereas the absolute energies of the
remaining molecules are similar to their heats of formation, but without thermal and zero-point

energy effects.

In reactions of type (a), the entries of the nicotinamides in question were simply determined
by adding or subtracting the cisoid-transoid electronic energy difference relative to the reference

molecule. In reactions of type (b), we considered the proton affinity (PA) of an unprotonated

species R:
PA™(R)=AH}*(R)+AH;*(H")-AH;"(RH") (1)
PA¥(R)=H*"R)+H"H")-H*(RH") (1b)

where Eq. la represents PA in terms of heats of formation, which applies to data obtained from
semiempirical (SE) calculations, while Eq. 2a expresses the PA in the sense of absolute total
enthalpies, which is the kind of values resulting from ab-initio (Al) and DFT calculations. The goal
of the SRP development of the SE method is to correctly reproduce the PA from Al calculations.

Therefore Eq. 1a and 1b should be equal, that is
AHZF(R)+AHFH")—AHF(RH)=H*R)+HY(H")-H"(RH") (2)

A slight rearrangement of Eq. 2 yields the explicit expression for the difference between the heats

of formation for the unprotonated and protonated species:

S5



AH(R)-AH(RH")=H*(R)+HH")-H*(RH")-AH}"(H") 3)

The semi-empirical energy is in essence described in terms of “heats of formation” computed by the
semi-empirical code on the one hand, but the result is required to reproduce electronic energies on
the other hand, excluding any thermal contribution. We shall therefore impose the following

equality requirement:
AH?E (R)— AHJS;E(RHW < ENR)+ENH)-ES(RHY) - AH;’E(HU 4)

where each E/' term represents the electronic energy contribution to the corresponding total

enthalpy term H™ . By definition, E}'(H")=0, and indicating the source of each term in the

equation, we can rewrite Eq. 4 as
ESRP (R) _ ESRP (RH+ ) _ ES4MP2 (R) _ E::\dlMPE (RH+) _ AH;XP (H+) (5)

where E®% stands for the target semi-empirical energy (analogous to the “heat of formation”,

AH3* in standard semi-empirical terms), EJ™” is the electronic energy calculated at the G4MP2

level of theory, and AHT®(H™) is the experimental heat of formation for the proton, 365.7

kcal/mol. %

In reactions of type (c), a development analogous to (b) was applied, starting from two possible
definitions of the hydride affinity (HA) of species R, readily obtained from the enthalpies of

formation or the absolute total enthalpies of RH™ and R:
HA®(R)=AHF(R)+AH*(H")-AH*(RH") (6a)
HAYR)=H*R)+H*H)-H*RH") (6b)
Equating Egs. 6a and 6b, followed by rearrangement gives
AHF(R)—AHF(RH)=H"(R)+H*H )-H*(RH )-AH}*(H") (7)

S6



which can be converted into the corresponding “electronic energy formulation™ as

AH?E (R)— AHJS;E(RH_) S EYR)+EYH)-ESN(RH ) - AH}S:E (H) (8)
Or alternatively:

EX*(R)-EX*(RH )= ES™*(R)+ES™?(H ) - ES™?(RH ) — AHTP(H) 9)

Here not only the electronic energies of the coupled species are calculated with G4MP2, but also

the energy of a hydride ion ES™™(H™), while the experimental enthalpy of formation for hydride

AH $® (H) is 34.7 kcal/mol.”"

Table S3 lists the relative target energies, ES®®and the associated molecular dipole moments for
neutral species, T (dipole moments for charged species were not considered as they are
dependent upon the choice of the origin of the coordinate system) calculated with G4MP2. Other
properties included in the optimization procedure were the geometries of the model structures,
Mulliken charges, vibrational frequencies attributed to C-H stretches (at the G4MP2 level), and the

transition state imaginary frequencies (at the B3LYP/6-31+G(d,p) or B3LYP-D/6-31+G(d,p) level).
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Table S3. Target values for the semiempirical models. EX* and 1°%* are the target energy and dipole moment

Group Compound B "5 T

Label (kcal/mol) (D)

6-Me-Hgpterin® 136.4° -

A 2 6-Me-H,pterin 14.7 6.3508
.
£ 6-Me-H,pterin 33.4 4.2581
6-Me-Hapterin -19.6 -
w cis-Me-Hanic -11.6° 4.0039
3 |
"_:S\ £ cis-Me-Hnic" 147.6 -
B 3 &
= § trans-Me-Hznic -10.3 5.5978
trans-Me-Hnic 149.5 -
T 0 cis-Hznic -33.7 3.9881
oS
.g E cis-Hnic* 131.8 -
c 8E .
5‘} 'S trans-Hanic -32.4 5.2943
L
S5 -
trans-Hnic 133.4 -
m . .
_% cis-nic -6.1 5.3038
0
3 c
s
e : b
§ trans-nic -6.9 2.0730

“ Internal reference, calculated as the enthalpy of formation in the gaseous state at 298 K at the G4MP2 level.
» Internal reference, the experimental enthalpy of formation of nicotinamide in the gaseous state at 298 K."

The individual energies were used to construct a set of reaction energies as target values per se to be

weighted in the fitness function, using the general formula

AEFSRP: ZESRP_ ZESRP- (10)

products reactants

Other entries included were the relative energies between the reactant, transition and product state
complexes (group D) obtained by geometry optimization and IRC calculations (i.e. reaction energy

and barrier), computed either at the B3LYP/6-31+G(d,p) or B3LYP-D/6-31+G(d,p) level of theory.
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Figure S1. The gradient norm of the product complex during AMI-SRP(D) geometry optimization. Note the
logarithmic scale for the gradient norm.
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Table S4. Selected unscaled vibrational frequencies (as wavenumbers) calculated with different levels of theory: (i)
G4MP2; (ii) AM1; (iii) AM1-SRP; (iv) AM1-SRP(D). The RMSD values with respect to G4MP2 are also given.

level V (cm™) RMSD
L i 373835 361835 361151 3589.16 3457.38 3139.44 3085.58 307131 3030.89 2945.80 -
. £ ..
§ s i 3484.82 3447.09 341935 3407.35 3280.76 3130.77 3039.88 3023.25 2997.18 2924.64 141.72
&2 iii 355290 346422 346046 345476 3370.56 3148.63 3094.10 306296 3053.80 3037.22 107.55
T W 3635.34 3600.97 3590.29 3585.68 3483.51 314078 3093.48 3070.07 3049.19 3001.59 39.46
c i 3697.79 3630.28 3603.32 3584.14 3147.07 3055.03 3031.35 3009.93 2904.62 -
E" B i 3493.03 3485.01 346241 3450.69 3148.65 3059.55 305076 3015.67 2941.31 106.71
S 2 i 3624.35 3574.87 3542.82 3537.91 317745 3117.92 3107.60 3092.42 3064.78 79.87
T 3631.48 362842 362220 3603.19 315.67 309871 307424 3053.42 2992.00 4526
c i 3667.09 364122 3608.17 3560.67 3547.89 3114.99 310493 3065.88 3036.36 2988.60 2934.60 -
E" B i 3472776 3458.10 3454.61 343833 337399 315893 3068.83 3065.03 3037.56 2987.50 2968.06 114.59
S 2 i 3620.84 3625.83 358757 3545.05 354320 3189.34 312153 3117.52 310870 3085.01 3028.13 55.65
T W 3632.34  3615.64 3612.14 359633 3531.79 315321 3095.08 3091.86 3069.26 3048.03 3018.83 39.72
e i 3604.17 355342 348345 339538 3092.39 3063.56 301930 2997.13 2981.09 2770.53 -
g'g i 349795 343826 338631 3365.41 3157.37 3070.01 306285 3038.15 2963.56 294101 84.91
S o iii 3703.90 3689.17 363190 361431 3186.05 312234 309423 3079.46 3038.85 3014.21 136.26
T 3655.33 358429 357927 357675 3145.66 3089.93 3051.53 3036.53 2987.87 2968.23 95.34
5 i 3720.42 359234 320856 3204.90 3183.35 3131.21 307529 300548 2951.84 2909.83 -
s g i 3559.99 353475 320147 315047 3109.47 310059 3054.45 3019.30 2996.92 2974.14 67.27
% £ i 3690.03 3634.17 321531 3199.79 3175.77 316296 312597 312236 3092.05 3031.00 73.74
iv 3692.53 3673.87 323645 320599 3177.19 311421 3073.26 3071.60 3040.03 3002.14 54.04
o i 3686.76 3570.08 320430 3189.38 3181.53 3119.96 307554 2999.19 2997.91 2982.81 -
E g ii 3551.76 352347 3199.55 3150.23 3133.18 310279 3065.01 3021.67 2997.29 2983.48 50.20
g:E‘ iii 3705.79 3631.60 321542 3199.10 3188.87 316278 3124.37 3121.98 3100.12 3039.44 61.14
|
= iv 3690.55 3665.06 323544 320530 318494 311479 3087.02 3073.16 3038.97 3021.44 43.68
. i 372235 3592.17 3237.38 323406 3225.05 3205.64 318941 316255 3076.58 -
2% i 3539.74 347243 3155.16 3142.86 3095.56 3086.03 3042.87 3003.03 2997.13 127.83
9 £ i 3661.24 353391 316485 315588 314881 3143.10 313467 3129.59 3103.48 60.58
© iv 3603.99 362822 321624 3201.18 317595 312642 311644 3085.99 3080.01 51.12
b i 3700.85 3576.86 323737 3227.18 3226.17 3216.16 318377 3164.90 3075.69 -
E o i 3535.48 3468.85 3150.56 3122.40 3093.56 3087.55 3086.49 3006.52 2994.20 121.49
S £ i 3667.12 353577 3160.80 3156.86 3141.75 3136.61 313430 313022 3119.35 60.23
|
= iv 3680.23 3618.23 321432 3174.80 3170.38 316521 3116.87 3086.12 3078.76 49.23
o | 372342 3691.56 359447 3217.52 3213.20 3187.84 295439 2910.81 -
&g i 3559.45 3534.64 351148 3203.81 315378 3113.62 3053.95 2973.60 100.92
S £ i 3689.62 3633.54 362240 3223.00 320445 3189.77 3091.61 3030.94 69.52
iv 3691.73 3673.26 364098 323820 3209.68 3180.91 307153 3001.89 57.02
i 3688.66 3668.38 3571.18 3211.81 3197.39 3185.66 3017.43 2969.46 -
g-g i 3551.17 3522.83 346202 3201.28 315273 3136.65 306535 2984.04 85.89
S i 3706.59 3631.62 3629.01 3223.67 3203.57 3205.15 309971 3039.33 4631
iv 3680.77 366441 3623.03 3237.19 3209.15 3190.35 3087.03 3021.40 37.17
A 3720.53 3590.34 355849 3244.02 3235.53 322991 3204.29 -
© i 353843 346920 332946 3151.95 3138.68 308845 3037.61 153.97
S £ i 3659.20 352970 3402.04 3161.56 314372 314191 3107.42 95.82
iv 3692.83 3625.15 3531.69 321352 319845 3173.26 3125.25 45.45
, 3701.07 3577.01 356299 3241.41 323147 3229.56 3212.67 -
g o i 3534.69 346596 333579 3147.74 3115.77 3087.79 3082.39 146.81
SF i 3664.75 3530.87 3411.88 3157.96 3142.60 3139.63 3113.07 91.93
iv 3679.28 3615.80 3537.88 3211.73 3171.53 3169.73 3166.04 4283
o i 3714.06 3587.68 3201.55 3188.06 317832 3156.86 -
T il 3554.96 3524.08 320645 318476 3145.52 3126.95 7230
g iii 3696.50 3618.84 322060 3200.90 318893 3184.18 21.08
iv 3706.07 367344 324908 3219.23 3199.69 3180.35 4408
o i 3723.14 3594.68 321324 3195.05 3158.12 3145.66 -
ﬁ i 3553.03 352449 3204.83 317320 314625 3142.00 75.90
@ iii 3691.34 3617.66 321892 3203.83 3199.61 3171.56 25.95
= v 3704.18 3673.96 3249.02 3209.97 3199.04 3195.61 4531
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Table S5. Comparison of the semi-empirical parameters of the canonical AM1 Hamiltonian vs. the re-parametrized
schemes AM1-SRP and AM1-SRP(D).

Hydrogen

Parameter (units) AMI1 AMI1-SRP A AMI1-SRP(D) A

U (eV) -11.39642700  -10.68984024  -0.70658676 -11.43733166 0.04090466
G, (eV) 12.84800000 12.84709466 0.00090534 12.60364621 0.24435379
a(A™h) 2.88232400 298632722  -0.10400322 3.40130304  -0.51897904
G, (eV) -6.17378700 -6.33105768 0.15727068 -5.64837035  -0.52541665
& (au) 1.18807800 1.24851395  -0.06043595 1.17345275 0.01462525
K, (eV) 0.12279600 0.10477938 0.01801662 0.13056000  -0.00776400
Ly (1/A%) 5.00000000 5.11512463  -0.11512463 4.80257197 0.19742803
M, (,Z\} 1.20000000 1.15101043 0.04898957 1.21380391 -0.01380391
K, (eV) 0.00509000 -0.01289865 0.01798865 0.00888975  -0.00379975
L, (1/A%) 5.00000000 5.18465935  -0.18465935 14.28487074  -9.28487074
M, (,Z\} 1.80000000 1.75423483 0.04576517 1.75118838 0.04881162
K; (eV) -0.01833600 -0.01178407  -0.00655193 -0.03032460 0.01198860
Ls (1/A%) 2.00000000 1.98528456 0.01471544 1.60610364 0.39389636
M; (,Z\} 2.10000000 2.19234758  -0.09234758 2.01192128 0.08807872

Carbon

Parameter (units) AMI1 AMI1-SRP A AMI1-SRP(D) A

U (eV) -52.02865800  -52.24737422 0.21871622 -52.12801676 0.09935876
U, (eV) -39.61423900  -38.46838755  -1.14585145 -38.86576821 -0.74847079
G, (eV) 12.23000000 12.17894654 0.05105346 12.05774032 0.17225968
G, (eV) 11.47000000 11.42197994 0.04802006 11.71252941 -0.24252941
Gy (eV) 11.08000000 11.28414421 -0.20414421 11.13199843  -0.05199843
Gy (eV) 9.84000000 9.87970858  -0.03970858 9.86125443  -0.02125443
H,, (eV) 2.43000000 2.40762387 0.02237613 2.40118582 0.02881418
a(Ah) 2.64827400 2.64566311 0.00261089 2.70195063  -0.05367663
G, (eV) -15.71578300  -15.72667726 0.01089426 -15.85249007 0.13670707
B, (V) -7.71928300 -7.80162672 0.08234372 -7.41730443  -0.30197857
& (au) 1.80866500 1.83025672  -0.02159172 2.02999558  -0.22133058
& (au) 1.68511600 1.69607884  -0.01096284 1.61950090 0.06561510
K, (eV) 0.01135500 0.00301604 0.00833896 0.03207184  -0.02071684
Ly (1/A%) 5.00000000 4.94955509 0.05044491 4.61337571 0.38662429
M, (,Z\} 1.60000000 1.58636330 0.01363670 1.70743023  -0.10743023
K, (eV) 0.04592400 0.05629335  -0.01036935 0.02309988 0.02282412
L, (1/A%) 5.00000000 5.04827121 -0.04827121 5.87793752  -0.87793752
M, (,Z\} 1.85000000 1.87582178  -0.02582178 1.83819070 0.01180930
K; (eV) -0.02006100 -0.02474245 0.00468145 -0.01421778  -0.00584322
Ls (1/A%) 5.00000000 5.00959715  -0.00959715 3.84436254 1.15563746
M; (,Z\} 2.05000000 2.02202225 0.02797775 1.95422526 0.09577474
Ky (eV) -0.00126000 -0.00722588 0.00596588 -0.00219237 0.00093237
L, (1/A%) 5.00000000 5.13550628  -0.13550628 1.03264951 3.96735049
M, (A) 2.65000000 2.68246146  -0.03246146 2.75960465  -0.10960465

Nitrogen

Parameter (units) AMI1 AMI1-SRP A AMI1-SRP(D) A

U (eV) -71.86000000  -72.82069585 0.96069585 -72.01619964 0.15619964
U, (eV) -57.16758100  -59.49215630 2.32457530 -57.55693452 0.38935352
G, (eV) 13.59000000 13.65461868  -0.06461868 13.54840912 0.04159088
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Gy, (eV) 12.66000000 12.79898733  -0.13898733 12.54471362 0.11528638
Gy (eV) 12.98000000 12.88438212 0.09561788 13.04037236  -0.06037236
Gy (eV) 11.59000000 11.47612859 0.11387141 11.66657487  -0.07657487
Hg (eV) 3.14000000 3.18707623  -0.04707623 3.15191830  -0.01191830
a(A™h) 2.94728600 3.11091376  -0.16362776 2.86730265 0.07998335
B, (eV) -20.29911000  -19.14256652  -1.15654348 -20.15951726  -0.13959274
B, (V) -18.23866600  -19.28044417 1.04177817 -18.30236349 0.06369749
& (au) 2.31541000 245754818  -0.14213818 2.36751669  -0.05210669
g (au.) 2.15794000 229720493  -0.13926493 2.14340234 0.01453766
K, (eV) 0.02525100 0.01584487 0.00940613 0.02577954  -0.00052854
Ly (1/A%) 5.00000000 5.01639898  -0.01639898 4.93484582 0.06515418
M, (,Z\} 1.50000000 1.40990729 0.09009271 1.50396975  -0.00396975
K, (eV) 0.02895300 0.02413205 0.00482095 0.02888160 0.00007140
L, (1/A%) 5.00000000 4.95264284 0.04735716 5.03773737  -0.03773737
M, (,Z\} 2.10000000 2.08955372 0.01044628 2.10230179  -0.00230179
K; (eV) -0.00580600 0.00231665  -0.00812265 -0.00608690 0.00028090
Ly (1/A%) 2.00000000 2.02251051 -0.02251051 1.57427110 0.42572890
M, (,Z\} 2.40000000 2.53289116  -0.13289116 243317594  -0.03317594
Oxygen

Parameter (units) AMI1 AMI1-SRP A AMI1-SRP(D) A

U (eV) -97.83000000  -97.18740347  -0.64259653 -97.82978333  -0.00021667
U,, (V) -78.26238000  -78.15419188  -0.10818812 -78.26194049  -0.00043951
G, (eV) 15.42000000 15.58420000  -0.16420000 1541584115 0.00415885
Gy, (eV) 14.48000000 1453118414  -0.05118414 14.48088177  -0.00088177
Gy (eV) 14.52000000 14.52057396  -0.00057396 14.51015532 0.00984468
Gy (eV) 12.98000000 13.09474870  -0.11474870 12.98948394  -0.00948394
Hg (eV) 3.94000000 3.98430700  -0.04430700 3.80637580 0.13362420
a(A™h) 4.45537100 4.45864569  -0.00327469 4.51366550  -0.05829450
B, (eV) -29.27277300  -29.03471808  -0.23805492 -29.27065291 -0.00212009
B, (V) -29.27277300  -28.97637174  -0.29640126 -29.28300296 0.01022996
& (au) 3.10803200 3.11536491 -0.00733291 3.01595571 0.09207629
g (au.) 2.52403900 2.49978900 0.02425000 2.38139341 0.14264559
K, (eV) 0.28096200 0.28934086  -0.00837886 0.28091667 0.00004533
Ly (1/A%) 5.00000000 4.98540050 0.01459950 5.00000144  -0.00000144
M, (,Z\} 0.84791800 0.83276255 0.01515545 0.84783749 0.00008051
K, (eV) 0.08143000 0.07785336 0.00357664 0.08133050 0.00009950
L, (1/A%) 7.00000000 7.01317050  -0.01317050 7.00009001 -0.00009001
M, (,Z\} 1.44507100 1.42486880 0.02020220 1.44514698  -0.00007598
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Table S6. Cartesian coordinates of the molecular models optimized geometries at the target levels of theory, calculated
with B3LYP/6-31G(2df, p) (individual molecules), B3LYP/6-31+G(d.p) or B3LYP-D/6-31+G(d,p)) (bimolecular

complexes).

Group A

6-Me-H,pterin*

6-Me-H,pterin

] 2 W

Atom X y 4 X ¥ z

N(1) 1.4545190  -1.3496800  -0.0485110 1.4002650  -1.3505480  -0.0689770
C(2) 24102640  -0.4282010  -0.0219930 2.3675560  -0.4697350  -0.0209990
N(3) 2.1631920 0.9130410 0.0364140 2.1524010 0.8639100 0.0485900
C4) 0.8613050 1.4653150 0.0500000 0.8563910 1.4851510 0.0452790
C(4a) -0.1351230 0.4457600 0.0629390 | -0.1963050 0.5091620 0.0025960
N(5) -1.4682590 0.8251900  -0.0247830 | -1.5218310 0.9332070  -0.1001300
C(6) -2.4792700 0.0133790  -0.0068400 | -2.4645510 0.0759180  -0.0144710
C(7) -2.2009660  -1.4546960 0.2239790 | -2.2270880  -1.4027840 0.2759900
N(8) -0.8198260  -1.8025960  -0.0913200 | -0.8672580  -1.7578100  -0.0885430
C(8a) 0.1908820  -0.9086240  -0.0087520 0.1359650  -0.8424620  -0.0302050
N 3.6830690  -0.8388020  -0.0528620 3.6661510 -0.9112140 0.0134860
0O(10) 0.6626200 2.6645450 0.0400310 0.8025980 2.6982270 0.0844360
C(11) -3.8766560 0.4954790  -0.1407190 | -3.8955040 0.5053480  -0.1442440
H(12) 4.4664000  -0.2089370  -0.0256300 43801140  -0.3070630  -0.3624610
H(13) 3.8568270  -1.8300880  -0.0953350 3.7638260  -1.8845090  -0.2328930
H(14) 2.9168120 1.5890150 0.0333980 2.9182400 1.5184480 0.1284070
H(15) -1.6011540 1.8349100  -0.1213150 - - -

H(16) -4.3327190 0.0827950  -1.0490970 | -4.3780780 0.0219830  -1.0039490
H(17) -3.9336960 1.5850800  -0.1829390 | -3.9479770 1.5877780  -0.2660450
H(18) -4.4808130 0.1408010 0.7032920 | -4.4748680 0.2144020 0.7429590
H(19) -2.8795250  -2.0474660  -0.3982590 | -2.9304960  -2.0194220 -0.2970710
H(20) -2.4594770  -1.6843970 1.2735620 | -2.4396570  -1.6011960 1.3444230
H(21) -0.5650890  -2.7786200  -0.1421740 | -0.5787820  -2.7226270  -0.0435150

6-Me-H,pterin 6-Me-H,pterin’

Atom X y z X y 4

N(1) 14741170  -1.3427950 0.0114120 | -1.4438670  -1.3327070  -0.0256140
C(2) 24261560  -0.4556780 0.0309780 | -2.4005970  -0.4653360  -0.0459660
N(3) 2.1913770 0.8834950 0.0093270 | -2.1528820 0.8815590 0.0275320
C4) 0.8949430 1.4552300 -0.0431320 | -0.8779760 1.4720960 0.0806010
C(4a) -0.1361920 0.4739610  -0.0940310 0.2295390 0.4997090  -0.0118200
N(5) -1.4767470 0.8926120  -0.2078450 1.4741400 0.9800910  -0.1028520
C(6) -2.4553200  -0.0236850 0.3655920 2.4583770  -0.0305610  -0.3749020
C(7) -2.1825280  -1.4219630  -0.2200570 21737840  -1.3423110 0.4030220
N(8) -0.8052640  -1.8044450 0.0351490 0.8437910  -1.8710740 0.1250050
C(8a) 0.1913140  -0.8642720  -0.0210140 | -0.1598020 -0.8611760  -0.0007530
N 3.7450550  -0.8614900 0.1375470 | -3.7710350  -0.8421480  -0.1843530
0O(10) 0.7568680 2.6741030  -0.0314170 | -0.8045150 2.6959290 0.1525070
C(11) -3.8687730 0.4512090 0.0426250 3.8566640 0.5145500  -0.0595220
H(12) 4.4191380  -0.3156150  -0.3805010 | -4.2899390 -0.6371310 0.6710530
H(13) 3.8413900  -1.8542380  -0.0231650 | -3.7700140  -1.8530010  -0.2838690
H(14) 2.9448090 1.5493500 0.1078460 | -2.9129030 1.5434390  -0.0335160
H(15) -1.5754320 1.8562170 0.0909510 - - -

H(16) -4.0148880 0.5182930  -1.0397790 3.9468060 0.7251060 1.0132990
H(17) -4.0481980 1.4436630 0.4687200 4.0100470 1.4596880  -0.5900250
H(18) -4.6161200  -0.2307710 0.4600760 4.6533640  -0.1867820  -0.3464220
H(19) -2.4157850  -1.4043520  -1.2954100 2.2495160  -1.1182950 1.4773840
H(20) -2.8457950  -2.1519070 0.2560580 29143980  -2.1240630 0.1833140
H(21) -0.5175720  -2.7570690  -0.1196860 0.8462170  -2.4865380  -0.6812920
H(22) -2.3438470  -0.1068360 1.4613340 24576650  -0.3259380  -1.4519620
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Group B

cis-Me-H,nic trans-Me-H,nic
3
' g
@
P

Atom X y 4 X ¥ z

N(1) -1.7398450  -0.4389690  -0.0830370 | -1.7102370  -0.5039830  -0.0732330
(o)) -0.4161810  -0.7863080  -0.0498650 | -0.3666940  -0.7833600  -0.0073380
Cc@3) 0.6023270  0.0989740  -0.0128850 | 0.6041480  0.1551000 -0.0303770
C4) 0.3531440  1.5970210  0.0128640 | 0.2778730 1.6373650  -0.0462430
C(5) -1.1304170  1.8794460  0.0360000 | -1.2146570 1.8466010  -0.1080650
C(6) -2.0562400  0.9187300  -0.0092780 | -2.0932840  0.8428590  -0.1110680
(o)) 1.9652660  -0.4789460  0.0077280 | 2.0350980  -0.1957910  0.0440030
o) 2.1950530 -1.6812160  0.0309210 | 2.8803480  0.6306850  0.3522220
N(©9) 2.9948300  0.4379160  0.0399050 | 2.3866010  -1.5180110  -0.2112580
C(10) -2.7864870  -1.4347250  0.0432320 | -2.6984280  -1.5218850  0.2235780
H(11) | -0.1883750 -1.8459600 -0.0591170 | -0.1303610 -1.8380310  0.0821960
H(12) 0.8438760  2.0625320  0.8838950 | 0.7152890  2.1278850  0.8352610
H(13) 0.8102260  2.0927300 -0.8637230 | 0.7742730  2.1259530  -0.8983630
H(14) | -1.4582610 29119940  0.0797940 | -1.5923080  2.8619320  -0.1601900
H(15) | -3.1181460  1.1358860  0.0024360 | -3.1644650 1.0024030  -0.1563620
H(16) 2.8472560  1.3889110  -0.2527310 | 3.3858690  -1.6483000  -0.2791350
H(17) 3.9163320  0.0555480  -0.1024810 | 1.8557510  -2.0154340  -0.9089610
H(18) | -3.6335230 -1.1754740  -0.5999260 | -3.6057180  -1.3415450  -0.3610160
H(19) | -3.1516360 -1.5290270  1.0752320 | -2.9733810 -1.5483370  1.2877300
H(20) | -2.4015400 -2.4051920 -0.2756050 | -2.3066110  -2.5033840  -0.0544400

cis-Me-Hnic* trans-Me-Hnic*
o EN
' 9
™ 9

Atom X y z X y 4

N(1) 1.7032190  -0.3902260  0.0366930 | 1.7081140  -0.4248470  0.0258840
(o)) 0.4126260  -0.7605940  0.0445880 | 0.4044690 -0.7876960  0.0367410
Cc@3) -0.6114670  0.1778720  0.0005850 | -0.6007360  0.1580360  -0.0498910
C4) -0.2676000  1.5250600  -0.0759200 | -0.2406480 1.5071280  -0.1332130
C(5) 1.0791990  1.8946510  -0.0903870 | 1.1024640 1.8625490  -0.1668060
C(6) 2.0492600  0.9188420  -0.0282050 | 2.0639190  0.8730770  -0.0824920
(o)) -2.0101850  -0.4172330  -0.0196880 | -2.0806780  -0.1696980  0.0484020
o) -2.1312140  -1.6057970  -0.2367940 | -2.8315730  0.6775860  0.4768510
N(©9) -3.0390850  0.4357660  0.1820240 | -2.4491860  -1.4287190  -0.3092420
C(10) 27748790  -1.4126400  0.0926840 | 2.7564610  -1.4588600  0.1910560
H(11) 0.1780900  -1.8172000  0.0727600 | 0.2094950  -1.8463140  0.1501350
H(12) | -1.0281180  2.2945940  -0.1466560 | -1.0310850 22491550  -0.1588150
H(13) 1.3777000  2.9334410  -0.1539000 | 1.4140410  2.8963150  -0.2480580
H(14) 3.1098550 1.1352040  -0.0333300 3.1261390 1.0807590  -0.0893510
H(15) | -2.9255400  1.3640120  0.5520340 | -3.4407240 -1.6240710  -0.2879390
H(16) | -3.9670180  0.0382630  0.2058930 | -1.8997340  -1.9817980  -0.9466780
H(17) 3.3807690  -1.2463590  0.9848920 | 3.6562070  -1.1410220  -0.3343010
H(18) 3.3946060  -1.3297650  -0.8016300 | 2.4024010 -2.3976370  -0.2330210
H(19) 2.3201500  -2.4003400  0.1350400 | 2.9718410 -1.5883320  1.2539450
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Group C

cis-Hznic trans-Hznic
Q &€
i &
N i
9 @
Atom X y z X M Z
N(1) 1.8162500 -1.1962800 0.0478900 1.7521170 -1.2644050 -0.0471120
C(2) 0.4485600 -1.1675270 0.0300790 0.3821090 -1.1527720 -0.0907700
C(3) -0.2653470 -0.0235760 0.0128730 -0.2649590 0.0236710 0.0351490
C(4) 0.4148460 1.3368510 0.0077500 0.4911520 1.3349550 0.1717760
C(5) 1.9192110 1.1840410 -0.0413500 1.9810910 1.1113880 0.0678740
C(6) 2.5301320 -0.0024680 -0.0188970 2.5287120 -0.1001260 -0.0333650
C(7)y -1.7389970 -0.1727270 -0.0101080 -1.7369540 0.1214360 -0.0381250
O(8) -2.3119420 -1.2535290 -0.0508510 -2.2984240 1.1791020 -0.2775950
N(9) -2.4512880 1.0067130 -0.0198350 -2.4631170 -1.0512210 0.1382060
H(10) -0.0679770 -2.1197910 0.0295960 -0.1475400 -2.0846900 -0.2519940
H(11) 0.0687470 1.9407910 -0.8473360 0.1394150 2.0402840 -0.5930110
H(12) 0.1312170 1.9257940 0.8997090 0.2377800 1.8226820 1.1264420
H(13) 2.5255070 2.0811870 -0.0919370 2.6338800 1.9770360 0.0833810
H(14) 3.6075600 -0.1102160 -0.0490890 3.5973330 -0.2647280 -0.0996160
H(15) -2.0282050 1.8701720 0.2748110 -3.4569900 -0.8892150 0.2146930
H(16) -3.4455340 0.9141450 0.1152200 -2.1010060 -1.7343020 0.7848470
H(17) 2.2990600 -2.0744390 -0.0026410 2.1746150 -2.1218250 -0.3568780
cis-Hnic* trans-Hnic*
@,
Y
9
9
Atom X y z X M Z
N(1) 1.8126600 -1.1034740 0.0969070 -1.8004140 -1.1450080 -0.1516010
C(2) 0.4708470 -1.1333570 0.0957860 -0.4496170 -1.1634410 -0.1385350
C(3) -0.2495760 0.0503570 0.0125520 0.2484550 0.0173600 0.0315260
C(4) 0.4634340 1.2457520 -0.0924960 -0.4827400 1.2052270 0.1673270
C(5) 1.8612340 1.2399890 -0.0970730 -1.8746940 1.1858580 0.1707390
C(6) 2.5297310 0.0389200 0.0048010 -2.5274080 -0.0206770 0.0035560
C(7)y -1.7594170 -0.1290850 -0.0200270 1.7628690 0.1317630 -0.0299460
O(8) -2.2005320 -1.2424390 -0.2178860 2.2441610 1.1887190 -0.3709950
N(9) -2.5113750 0.9809490 0.1477000 2.4689740 -0.9924720 0.2564540
C(10) -0.0294820 -2.0925910 0.1473770 0.0168840 -2.1270170 -0.2979830
H(11) -0.0557670 2.1924660 -0.1941150 0.0724550 2.1333090 0.2545110
H(12) 24267120 2.1590400 -0.1834400 -2.4528960 2.0936080 0.2878270
H(13) 3.6073440 -0.0588430 0.0113810 -3.6039330 -0.1303240 -0.0212940
H(14) -2.1501670 1.8488270 0.5045670 3.4755680 -0.8993900 0.2552720
H(15) -3.5137560 0.8577470 0.1596260 2.0899040 -1.7329290 0.8240130
H(16) 2.3128620 -1.9849220 0.1641830 -2.2923930 -2.0211880 -0.2963570
cis-nic trans-nic
Y a
»
9 ¥
Atom X ¥ z X ¥ z
N(1) 1.8777390 -1.2089270 0.1550700 -1.8250300 -1.2671730 -0.1191470
C(2) 0.5458880 -1.1775860 0.1229320 -0.4941880 -1.1721920 -0.1314720
C(3) -0.2075620 -0.0061600 0.0167010 0.2065730 0.0308900 -0.0102670
C(4) 0.4850670 1.1976530 -0.1528570 -0.5389810 1.2060910 0.1031720
C(5) 1.8743840 1.1802930 -0.1296810 -1.9231360 1.1250500 0.1203230
C(6) 2.5197580 -0.0427870 0.0311320 -2.5161360 -0.1320520 0.0131960
C(7)y -1.7022950 -0.1320300 -0.0361530 1.7034050 0.1449900 -0.0268480
O(8) -2.2560220 -1.1869470 -0.2823340 2.2595610 1.2086110 -0.2313390
N(9) -2.4052450 1.0220720 0.2122830 2.4016000 -1.0163440 0.1759500
C(10) 0.0229980 -2.1248140 0.2121620 0.0377150 -2.1106810 -0.2732650
H(11) -0.0460560 2.1317080 -0.3054280 -0.0116710 2.1505350 0.1723620
H(12) 2.4485050 2.0931560 -0.2412370 -2.5372170 2.0138020 0.2130800
H(13) 3.6059980 -0.0901100 0.0553390 -3.5988700 -0.2320760 0.0287700
H(14) -1.9812240 1.7727700 0.7311640 3.3996690 -0.9163460 0.2764150
H(15) -3.4000330 0.9045590 0.3231570 1.9726850 -1.8061510 0.6271000
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Group D: B3LYP/6-31+G(d,p)

Reactant State complex

Transition State complex

Product State complex

Atom X y z X y Z X y zZ

N(1) 3.3619270 0.8094190  -0.9939910 3.3565400 0.7471030  -1.0146290 3.3658390 0.8397480 -0.9397950
C(2) 3.9423860  -0.3366890  -0.6604950 3.9954720 -0.3373850  -0.6155610 3.9168580 -0.3174820 -0.6564010
N(3) 5.2337880  -0.2237440  -2.2148760 3.5814990 -1.0977650 0.4449140 3.4229750 -1.1469030 0.3119170
C4) 24671520  -0.7563650 1.2444400 2.4120350 -0.8225660 1.1842810 2.2747660 -0.8532310 1.0693440
C(4a) 1.9109460 0.5156500 0.9105180 1.7752470 0.3837410 0.7759590 1.7358180 0.4387050 0.8168280
N(5) 0.6895180 0.8615140 1.4804220 0.5772380 0.7521010 1.3891210 0.6573530 0.9091370 1.5699770
C(6) 0.0285420 1.9501570 1.2154330 | -0.2259790 1.7339600 0.8995540 -0.1485910 1.9889260 1.0410250
C(7) 0.7287590 2.9724110 0.3475410 0.5317710 27893530 0.0896090 0.8001540 3.0463700 0.4428820
N(8) 5.4568820  -1.6370450 -1.2298140 1.5237030 2.1614190  -0.7751940 1.7056800 2.4182070 -0.5146660
C(8a) 2.3368490 1.2137040  -0.2250300 2.2445630 1.0910020  -0.3286590 2.2893030 1.2155260 -0.1993970
N(9) 49687510  -0.7742840 -1.4112610 5.1300710 -0.7010690  -1.2558710 5.0582720 -0.7000500 -1.3027280
0(10) 2.0729440  -1.5091070 2.1295040 2.0243800 -1.5812690 2.0777260 1.8207290 -1.6953660 1.8692860
C(11) -1.3216150 2.2133420 1.7775150 | -1.3058420 2.2477240 1.8220040 -1.0398110 2.5798780 2.1322240
H(12) 5.4568820  -1.6370450 -1.2298140 5.5800670 -1.5883830  -1.0960150 5.2976740 -1.6784950 -1.3684450
H(13) 5.2337880  -0.2237440  -2.2148760 5.3791270 -0.1818460  -2.0847370 5.3149640 -0.1278020 -2.0947250
H(14) 3.9941990  -1.9843290  0.6160360 4.0805670 -1.9348790 0.7238290 3.8672130 -2.0317520 0.5279050
H(15) 0.2960400 0.1407070 2.0919990 0.2673670 0.1398400 2.1386660 0.2391140 0.2329590 2.1950010
H(16) -1.3592120 3.2118840 2.2288850 | -0.8798640 2.9432150 2.5552430 -0.4356140 2.9909300 29467740
H(17) -1.6022550 1.4730890 2.5302890 | -1.7826690 1.4275410 2.3670930 -1.6976080 1.8128480 2.5574950
H(18) -2.0703100 2.1900390 0.9731290 | -2.0775260 27801920 1.2594160 -1.6718100 3.3779260 1.7291510
H(19) 1.2590890 3.6817600 1.0099600 0.9931530 3.4963420 0.8010310 1.3481800 3.5348940 1.2611290
H(20) -0.0133990 3.5464700  -0.2125590 | -0.1728660 3.3554720  -0.5257800 0.2152710 3.8092120 -0.0793660
H(21) 1.9297640 2.8004470  -1.4261190 1.9577220 27161530  -1.5018040 2.2572890 3.0152720 -1.1174650
N(1%) -4.4230030  -0.5048470  -0.1651750 | -4.2314360  -0.4552060  -0.1655920 -4.4038950 -0.5939110 -0.2756300
C(2") -3.2844450  -1.2635990  -0.0803520 | -3.1228050  -1.2480590  -0.0756430 -3.2826800 -1.3387180 -0.1000430
C(3") -2.1144630  -0.9493110 -0.7016550 | -1.8840180  -0.8443350  -0.5009470 -2.0763890 -0.9682900 -0.6735040
C4) -2.0020950 0.2685660  -1.6074840 | -1.6987080 0.5158270  -1.0281390 -2.0360630 0.1956340 -1.4636590
C(5") -3.2637810 1.0971870  -1.5380670 | -2.9448310 1.2382620  -1.2649570 -3.1980820 0.9543410 -1.6271710
C(6") -4.3678530 0.6930450  -0.8899460 | -4.1314070 0.7684310  -0.8035050 -4.3715560 0.5456480 -1.0220780
C(7) -0.8853340  -1.7407800 -0.5017710 | -0.7059970  -1.7645810  -0.5329650 -0.7956610 -1.7660630 -0.5175260
0(8") 0.2267240  -1.2652330 -0.7821230 0.2571810 -1.5021490  -1.2524230 0.0680260 -1.6571880 -1.3769270
N(9") -0.9831270  -2.9964280  0.0531260 | -0.7584480  -2.9092560 0.2210460 -0.6969320 -2.5722640 0.5748560
C(10") -5.6993340  -0.9762920  0.3640960 | -5.5588770  -0.9643380 0.2092340 -5.6921250 -1.0251610 0.3153900
H(11%) -5.2817270 1.2768200  -0.8769870 | -5.0662350 1.2974470  -0.9478280 -5.3060940 1.0858470 -1.1136560
H(12") -3.2981670 2.0441160  -2.0683160 | -2.9348780 2.1731530  -1.8147580 -3.2005060 1.8587540 -2.2248720
H( 13’)Jr -1.1195740 0.8623130  -1.3291490 | -1.0182970 1.1579300  -0.1125810 -0.7920700 1.6345400 0.2083690
H(14%) -1.7977860  -0.0413930  -2.6447080 | -0.9244320 0.5982260  -1.7941650 -1.1042880 0.4579380 -1.9533040
H(15%) -3.3691840  -2.1267470  0.5720140 | -3.3055890  -2.2509940 0.2930080 -3.4013730 -2.2430680 0.4844270
H(16") -0.1164440  -3.5129970  0.1133950 0.1045980 -3.4365490 0.2556140 0.2528910 -2.8555800 0.8125670
H(17") -1.8200270  -3.5480280  -0.0624740 | -1.3148500  -2.9489160 1.0622520 -1.2571190 -2.3756350 1.3923830
H(18") -6.3338470  -1.3949720  -0.4267300 | -6.1282380  -1.2485410  -0.6812940 -6.3802040 -1.3123850 -0.4826320
H(19") -6.2336820  -0.1517030  0.8446260 | -6.1053800  -0.1953070 0.7593010 -6.1154310 -0.2030970 0.8950550
H(20") -5.5192670  -1.7495620 1.1137900 | -5.4421560  -1.8362750 0.8529060 -5.5184870 -1.8774930 0.9702910

"The transferring hydride
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Group D: B3LYP-D/6-31+G(d,p)

Reactant State complex

Transition State complex

Product State complex

Atom y y y z

N(1) 33252290  1.1518350 -0.7667330 | 3.3062810  0.8847160  -0.8943060 | 2.4520150 -0.4326970  -1.6479740
C(2) 40150990  0.0194930  -0.8007680 | 3.9219590  -0.2479930  -0.6096810 | 2.9958110 -1.4175790  -0.9679990
N(@3) 37105200  -1.0700950  -0.0305400 | 5.0599770  -0.5603340 -1.2675000 | 3.0189210 -1.4383260 0.3965160
C(4) 2.5821870  -1.1307430  0.8149580 | 22927370  -0.9160310  1.0823550 2.3988680 -0.4632630 1.1897300
C(4a) 1.8993470  0.1222860  0.8947110 | 1.6849470  0.3426370  0.8150730 1.8849480 0.6427960 0.4562360
N(5) 0.6298440  0.1465360  1.4732980 | 0.4475410  0.6263320  1.3981900 1.3503740 1.7494850 1.1324840
C(6) -0.1339030  1.1973430  1.5209800 | -0.3324750  1.6487060  0.9667220 0.3743200 2.5408130 0.4048530
C(7) 0.4831850  2.5079490  1.0907150 | 0.4496880  2.8000080  0.3398590 0.9621630 2.8427380 -0.9853420
N(8) 14576700 22753100  0.0295830 | 1.4752550  2.2742340  -0.5525420 | 1.2909530 1.5868600 -1.6666860
C(8a) 22626600  1.1862780  0.0552190 | 2.1821860  1.1606560  -0.1990910 | 1.9168330 0.5914910 -0.9331610
N(9) 5.0796780  -0.0617720 -1.6174100 | 5.0599770  -0.5603340 -1.2675000 | 3.6122620 -2.4399370  -1.6283730
0(10) 22695490  -2.1738010  1.3829420 | 1.8637300  -1.7808920  1.8544540 2.3088330 -0.6221930 2.4241160
C(11) | -0.1339030  1.1973430  1.5209800 | -1.5274500  2.0044930  1.8088770 0.0629090 3.8265300 1.1631590
H(12) 56367220  -0.8973260 -1.7067170 | 5.5050690  -1.4598920  -1.1758160 | 3.7258170 -3.3320430  -1.1716820
H(13) 52924530 07346070  -2.2008580 | 53443240  0.0458210  -2.0230090 | 3.4667300 -2.4628280  -2.6277000
H(14) 42233420  -1.9399330  -0.1249270 | 3.9509380  -1.9974090  0.5224690 3.3924480 -2.2325740 0.9029950
H(15) 0.2583570  -0.7761650  1.7360620 | 0.0863830  -0.0790080  2.0330730 1.1745420 1.5816360 2.1158890
H(16) | -1.6948420  1.8916700  2.7860530 | -1.2306620  2.6589260  2.6380370 0.9723760 4.4262860 1.2738540
H(17) | -1.7886650  0.1481760  2.3886860 | -1.9892960  1.1016550  2.2226760 | -0.3219730 3.6019860 2.1649050
H(18) | -2.2122410  1.3753720  1.1696520 | -2.2725100  2.5289240  1.2019740 | -0.6912710 4.4162730 0.6306810
H(19) 0.9438460 29833240  1.9764290 | 0.8785890  3.4073180  1.1560110 1.8465890 3.4815010 -0.8550210
H(20) | -0.3008970  3.1742110  0.7226590 | -0.2358770  3.4322640  -0.2312500 | 0.2248350 3.3836710 -1.5868110
H(21) 17066520  3.0282760  -0.5983570 | 1.9255430  2.9024360  -1.2051390 | 1.6181550 1.6559320 -2.6231100
N(I) -4.2654400  -0.2921300  -0.2534750 | -4.1087640  -0.4932410  -0.2280910 | -4.1870840  -0.5772570  -0.1450430
C(2) 231362200 -1.0632790  -0.2160420 | -2.9746330  -1.2476730  -0.1309260 | -3.1202740  -1.0304010 0.5658820
Cc3) -1.9385480  -0.6791020  -0.7368600 | -1.7514340  -0.8052370  -0.5591400 | -1.8272550  -0.8151440 0.1204800
Cc@) -1.7920100  0.6256830  -1.5080930 | -1.6154450  0.5577600  -1.0971190 | -1.6230360  -0.1065760  -1.0753010
C(5) -3.0618660  1.4406490  -1.4150050 | -2.8842650  1.2428210  -1.3319120 | -2.7339000 0.3705080 -1.7760050
C(6) -4.1873370  0.9759450  -0.8504340 | -4.0528460  0.7332740  -0.8662320 | -4.0092110 0.1150200 -1.2969910
() -0.7059690  -1.4594350  -0.5801000 | -0.5298800  -1.6606660  -0.5327440 | -0.6406090  -1.4091380 0.8494870
0(8) 0.3180740  -1.1540120 -1.2026200 | 0.4464220  -1.3603940  -1.2208530 | 0.0901960 -2.1758350 0.2368500
N(9") -0.6391130  -2.4354260  0.4098570 | -0.5467650  -2.7806220  0.2576580 | -0.5075540  -1.0560620 2.1499190
C(10’) | -5.5748890  -0.8482480  0.0800900 | -5.4196190  -1.0579510  0.1232470 | -5.5565630  -0.9040650 0.3189350
H(11') | -5.1049690  1.5523120 -0.8113160 | -5.0062930  1.2300770  -1.0033100 | -4.9088220 0.4425230 -1.8041010
H(12') | -3.0782230  2.4356290  -1.8486170 | -2.9029830  2.1813090  -1.8748750 | -2.6187050 0.9318710 -2.6962240
H(13)' | -09316550  1.1902250  -1.1119220 | -0.9932400  1.1891610  -0.1734780 | -0.5645200 1.9714880 0.2426200
H(14’) | -1.5208200  0.4283380  -2.5558020 | -0.8344370  0.6715250  -1.8528290 | -0.6156120 0.0701080 -1.4424100
H(15') | -3.2730270 -2.0178480  0.2832260 | -3.1216810  -2.2514170  0.2522850 | -3.3427190  -1.5775150 1.4750360
H(16’) | 0.2003930  -3.0051880  0.3871580 | 0.3654830  -3.1885520  0.4255300 0.4116250 -1.2131890 2.5774610
H(17') | -1.4751790  -2.9135890  0.7147470 | -1.1657040  -2.8187960  1.0543760 | -1.0250410  -0.2627500 2.5020380
H(18") | -6.0953190  -1.2122750 -0.8152940 | -5.9390590  -1.4069310 -0.7761590 | -5.8259540  -1.9028690  -0.0355590
H(19') | -6.1869240  -0.0778820  0.5587070 | -6.0225250  -0.2927490  0.6188210 | -6.2526590  -0.1651910  -0.0798910
H(20') | -5.4474550  -1.6783980  0.7801990 | -5.2774360 -1.8960770  0.8080030 | -5.5773060  -0.8760430 1.4096270

"The transferring hydride
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Table S7. Comparison between the X-ray crystal structure of 6-methyl-7,8-dihydropterin-monohydrochloride-
monohydrate® (green, isotropic/anisotropic temperature factors are not shown) and the computed geometry of 6-Me-

H,pterin® at the B3LYP/6-31G(2df,p) level (purple).

exp. calc. exp. calc.
Bond Distances (A)*
N(1)-C(2) 1.333 £ 0.003 1.328 N(5)-C(6) 1.294 + 0.003 1.297
N(1)-C(8a) 1.355 £ 0.003 1.339 N(5)-H(15) 0.950 £ 0.030 1.023
C(2)-N(3) 1.360 + 0.003 1.365 C(6)-C(7) 1.491 + 0.004 1.512
C(2)-N(9) 1.329 + 0.004 1.338 C(6)-C(11) 1.483 £ 0.004 1.484
N(9)-H(12) 0.890 + 0.028 1.006 C(11)-H(16) 0.902 +0.034 1.097
N(9)-H(13) 0.925 £ 0.030 1.007 C(11)-H(17) 1.005 £ 0.033 1.092
N(3)-C(4) 1.389 + 0.003 1.414 C(11)-H(18) 0.988 +0.033 1.097
N(3)-H(14) 0.840 £ 0.030 1.012 C(7)-N(8) 1.451 £ 0.004 1.459
C(4)-C(4a) 1.402 + 0.003 1.426 C(7)-H(19) 0.957 £ 0.032 1.095
C(4)-0(10) 1.241 £ 0.003 1.216 C(7)-H(20) 0.972 £ 0.032 1.105
C(4a)-C(8a) 1.394 + 0.003 1.395 N(8)-C(8a) 1.337 £ 0.003 1.352
C(4a)-N(5) 1.412 £ 0.003 1.389 N(8)-H(21) 0.906 + 0.028 1.010
Bond Angles (deg)”
C(2)-N(1)-C(8a) 115.89 £ 0.21 116.75  N(5)-C(6)-C(11) 121.52 £0.25 121.97
N(1)-C(2)-N(3) 123.11 £ 0.22 123.53  C(7)»-C(6)-C(11) 118.59 £0.25 120.16
N(1)-C(2)-N(9) 119.01 £0.23 118.12  C(6)-C(7)-N(8) 11399 +£0.24 111.89
N(3)-C(2)-N(9) 117.88 £0.23 118.35 C(6)-C(7)-H(19) 107.18 £ 1.90 108.96
C(2)-N(9)-H(12) 122.46 + 1.82 123.25  C(6)-C(7)-H(20) 10791 £1.92 107.68
C(2)-N(9)-H(13) 118.61 +1.82 117.85  N(8)-C(7)-H(19) 111.94 £1.90 109.56
H(12)-N(9)-H(13) 118.54 £ 2.56 118.90  N(8)-C(7)-H(20) 110.61 £1.92 112.16
C(2)-N(3)-C(4) 123.58 £ 0.22 123.42  H(19)-C(7)-H(20) 104.70 £2.69 106.39
C(2)-N(3)-H(14) 117.02 £2.07 121.41 C(7)-N(8)-C(8a) 123775 +£0.23 122.48
C(4)-N(3)-H(14) 119.36 £ 2.07 115.12  C(7)-N(8)-H(21) 114.64 £ 1.72 118.70
N(3)-C(4)-C(4a) 113.32+£0.21 111.36  C(8a)-N(8)-H(21) 12127 £1.72 116.97
N(3)-C(4)-0(10) 119.78 £ 0.22 122.39  N(8)-C(8a)-C(4a) 119.14 £0.22 118.07
C(4a)-C(4)-0(10) 126.89 £ 0.23 126.25  N(8)-C(8a)-N(1) 117.68 £0.22 119.07
C(4)-C(4a)-C(8a) 120.89 £ 0.22 122.04  N(1)-C(8a)-C(4a) 123.18 £0.22 122.81
C(4)-C(4a)-N(5) 119.80+0.21 118.36  C(6)-C(11)-H(16) 11433 £2.19 110.11
N(5)-C(4a)-C(8a) 119.25 +0.21 119.10  C(6)-C(11)-H(17) 11324 £1.90 112.14
C(4a)-N(5)-C(6) 123.69 £ 0.21 125.20  C(6)-C(11)-H(18) 11053 £1.93 110.13
C(4a)-N(5)-H(15) 116,71 £ 1.76 113.60  H(16)-C(11)-H(17) 11047 £2.89 108.76
C(6)-N(5)-H(15) 119.59 + 1.77 121.19  H(16)-C(11)-H(18) 102.49 +£2.91 106.65
N(5)-C(6)-C(7) 119.89 +0.24 117.81 H(17)-C(11)-H(18) 104.83 £2.69 108.88
Dihedral Angles (deg)”
N(1)-C(2)-N(3)-H(14) -178.71 -178.55 N(5)-C(6)-C(11)-H(18) -121.03 117.36
N(1)-C(2)-N(9)-H(12) -173.38 -179.28 N(5)-C(6)-C(7)-H(19) -118.89  -142.39
N(1)-C(2)-N(9)-H(13) -0.59 0.03 N(5)-C(6)-C(7)-H(20) 128.85 102.61
N(3)-C(2)-N(9)-H(12) 7.39 0.65 N(5)-C(4a)-C(8a)-N(1) -179.13 174.08
N(3)-C(2)-N(9)-H(13) -179.82 179.96 C(7)-C(6)-C(11)-H(16) -55.29 -65.62
C(2)-N(3)-C(4)-0(10) 179.14  -176.52 C(7)-C(6)-C(11)-H(17) 177.10 173.13
H(14)-N(3)-C(4)-0(10) -3.38 0.98 C(7)-C(6)-C(11)-H(18) 59.78 51.72
N(3)-C(4)-C(4a)-N(5) 178.45 -175.22  C(11)-C(6)-C(7)-H(19) 60.32 40.47
0O(10)-C(4)-C(4a)-N(5) -0.35 4.20 C(11)-C(6)-C(7)-H(20) -51.94 -74.53
C(4)-C(4a)-N(5)-H(15) 0.62 1.78 C(11)-C(6)-C(7)-N(8) -175.17 161.77
C(4)-C(4a)-N(5)-C(6) -178.72  -179.02 C(6)-C(7)-N(8)-H(21) -179.61 -168.66
C(4)-C(4a)-C(8a)-N(8) 178.33 -175.14  C(6)-C(7)-N(8)-C(8a) -6.18 27.34
C(4a)-N(5)-C(6)-C(11) 178.63 -178.39  C(7)-N(8)-C(8a)-C(4a) 3.03 -15.72
C(4a)-N(5)-C(6)-C(7) -2.19 4.52  C(7)-N(8)-C(8a)-N(1) -176.84 166.71
H(15)-N(5)-C(6)-C(11) -0.69 0.75 H(21)-N(8)-C(8a)-C(4a) 176.04  -179.99
N(5)-C(6)-C(11)-H(16) 123.90  -125.30 H(21)-N(8)-C(8a)-N(1) -3.83 2.44
N(5)-C(6)-C(11)-H(17) -3.71 -3.80 N(8)-C(8a)-N(1)-C(2) -179.24 177.18

“ Bond lengths and angles are given as originally reported in ref. 22.
> The torsion angles were computationally measured based on the crystal structure reported in ref, 22.
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Table S8. QM/MM interactions in ligand-water complexes

(a) List of complexes

Hydrogen bonding

Model Structure position with H,0
T
.+ 3 SN@ CHs N ’N
-Me- HN >
6-Me-Hspterin /I:k/l[ j’ NC,O™
iR N°,0"
&
HH O N°(H?)
F Q’Hh-
trans-Me-Hnic ME‘F N°(H"),0®%S
N o8
CH,
8 H H N;’Nz
. 3 5N N°,N
6-Me-Hjpterin H/iji jf-CHs N3O
MY N N°,0"
o N°(H?)
Q’Hh-
trans-Me-Hnic* é)j)k:fra N°(H"),0%3
N o8t
CH,

$ The water molecule forms a H-bonded bridge between Ng(Hb) and O°
in the optimized complex, regardless of whether the water is initially
directed only towards Ng(Hb) or between Ng(Hb) and O°. With both
initial structures, the complexes optimize to the same local minimum.

T For these complexes, the potential energy minimum is very shallow,
yielding considerably different optimized geometries with different
methods, therefore their corresponding complexation energies were not
included in the RMSD calculation (though shown in Figure S2, see

below).

(b) Root mean square deviations (in kcal/mol) of the QM/MM complexation energies with respect to ab initio / DFT

calculations
MO06/6-31+G(d,p) B3LYP-D/6-31+G(d.p) B3LYP/6-31+G(d,p) HF/6-31+G(d,p)
QM(AMI1)/MM 2.6 3.5 1.6 1.2
QM(AMI1-SRPYMM 2.6 3.3 1.8 1.7
QM(AMI1-SRP(D)YMM 3.5 4.4 2.4 2.0
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Cornplexation enargy (kealfmol)

Complexation enargy (kcalimol)

Figure S2. Complexation energies for the ligand-water complexes described in Table S8, calculated with different

methods.
6-Me-H,pterin*
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Technical details concerning the equilibration phase during molecular dynamics simulations

Some dynamical issues emerged during the equilibration
phase which required some intervention. First and foremost
among these are the structural differences between the

ligands originally bound in the crystal structure of E. coli

DHFR (folate and NADP®) and those modeled in this study
Figure S3. Streic clash between the pro-S

(Hsfolate® and NADPH): While folate consists of a fully hydrogen on C7 (of Hsfolate®) and the pro-
R hydrogen on C4 (of NADPH)

oxidized pyrazine ring with no tetrahedral centers, Hsfolate*

contains a sp3-hybridized C7 methylene carbon. In particular, the pro-S hydrogen is located in van
der Waals contact with the donated hydride (pro-R) on the C4 carbon of the nicotinamide moiety in
NADPH (Figure S3). This steric congestion inevitably results in moderate repulsion between the
substrate and the coenzyme during the minimization and equilibration stage, prohibiting the donated
hydride from approaching the acceptor carbon. This issue was addressed by imposing a Nuclear

Overhauser Effect (NOE) harmonic restraint on the distance between the donor and acceptor

carbons (C4N in NADPH and C6 in Hsfolate®, respectively).

Secondly, in light of the flexibility of the protein, some specific hydrogen bond interactions
within the protein (which are characteristic of the closed conformation), as well as key interactions
between the ligands and the protein residues, were distorted or lost during MD heating or
equilibration. Therefore, NOE harmonic restraints were occasionally placed as well on the distances
between the donors and acceptors of selected hydrogen bonds, such as that between the
carboxamide group of the nicotinamide moiety in NADPH and residues Ala7 and Ile14, and that
between Asp27 and the proximate nitrogens of the 4-oxopyrimidine moiety in the substrate’s pterin

ring.
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Appendix D

Specific Reaction Path
Hamiltonian for Proton
Transfer in Water:
Reparameterized
Semiempirical Models

Xin Wu, Walter Thiel, Soroosh Pezeshki, and Hai Lin
Journal of Chemical Theory and Computation, 2013, 9, 2672 — 2686.
I optimized the parameters of the semiempirical methods for the water clus-

ters (denoted as MNDOn, AM1n, PM3n, OM1n, OM2n, and OM3n in the

paper), produced some of the figures, and drafted the paragraphs of parameteri-
zation.
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ABSTRACT: The semiempirical MNDO-based AM1 and
PM3 methods and the orthogonalization-corrected OM]I,
OM2, and OM3 models were reparameterized to improve
their description of bulk water and of proton transfer in water.
Reference data included the gas-phase geometries and energies
of the water molecule, small water clusters, the hydronium ion,
and small hydronium ion—water clusters, as well as the gas-
phase potential energy surface for proton transfer between the
two water molecules in a Zundel ion, all calculated at the
MP2/aug-cc-pVTZ level of theory. Combined QM/MM
molecular dynamics simulations were carried out for bulk
water and for a proton solvated in water using large cluster

New Models

— P
== OM1
e OM3

L L
048 0.44 0.40
Reaction Coordinate o

Potentials of Mean Force [kealimol]

models. Both the authentic and reparameterized semiempirical models were employed in the simulations. The reparameterization
led to significantly better results in all cases. The new set of OM3 parameters gave the best overall results for the structural and
dynamic properties of water and the hydrated proton, with a small but finite barrier of 0.1—0.2 kcal/mol in the potential of mean
force for proton transfer, in agreement with ab initio path-integral molecular dynamics simulations. The reparameterized OM3
model is expected to be useful for efficent modeling of proton transfer in aqueous solution.

1. INTRODUCTION

Transfer of the hydrated proton in bulk water is very important
in many chemical and biological processes.l The proposed
Grotthuss shuttling mechanism,” which involves reorganization
of the covalent and hydrogen bonds over time, presents a
challenge in molecular dynamics (MD) simulations. The
published studies can be largely divided into four categories,
according to how the potential energies were determined. The
first category of studies employed classical force fields that were
specially designed to describe water dissodation, for example,
the central force field by Stillinger and David®* and its
modification by Halley et al,’ the protonizable water model by
Billeter and van Gunsteren,® the polarizable and dissociable
water potential by Lussetti et al,” the dissociative water
potential by Mahadevan and Garofalini® the ReaxFF reactive
force field by van Duin and co-workers,” the reactive molecular
dynamics (RMD) approach by Selvan et al,'” and the LEWIS
reaction force field by Herzfeld and co-workers."' The second
group of studies were based on the so-called multistate
empirical valence bond (MS-EVB) model,'> which is an
extension of Warshel’s EVB model.’® Several parametrized
two-state EVB and MS-EVB models for proton transfer in
water were proposed b‘{ Voth and co-workers,"”'*™" b
Vuilleumier and Borgis,'®"® by Tuckerman and co-workers,”%*
by Kornyshev et al., 2 and by Paesani and co-workers.”> The
third approach made use of ab initio molecular dynamics
(AIMD), in particular, Car—Parrinello molecular dynamics

< ACS Publications  © 2013 American Chemical Society 2672

(CPMD),** simulations using density functional theory (DFT)
to compute the potential on the fly. The first such studies by
Tuckerman et al.>>* in 1994 were followed by many similar
l:iublicatiol:ls.1'16'1""'2?_34 The fourth type of simulations
employed semiempirical methods, in particular, the self-
consistent-charge density functional tight-binding (SCC-
DFTB)* approach; this includes the work by Choi and
Jordan,m5 by Maupin et al,*” and by Cui and co-workers.>**?
All these studies have provided valuable insight into the
solvation structure and the transport mechanism of the
hydrated proton. It is commonly agreed that the proton
transfer occurs via an Eigen—Zundel—Eigen mechanism, where
the Eigen ion is the resting state and the Zundel ion is the
transition state. However, some groups have also advanced
different views (see, for example, refs 27 and 33, as well as the
discussion in ref 17). Furthermore, based on the analysis of ab
initio MD simulations, Berkerbach et al.** proposed a
concerted mechanism, in which the rate-limiting step to proton
diffusion is the loss of an acceptor hydrogen bond at the
proton-receiving water molecule with concomitant formation of
a hydrogen bond at the lone-pair site of the hydronium ion.
Semiempirical quantum-chemical methods are computation-
ally much more efficient than ab initio or DFT methods,
making them attractive choices for MD simulations. However,
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the existing standard semiempirical models are generally not
accurate enough in describing interactions between water
molecules, or proton transfer barriers, or both. This calls for a
revision of these models as a prerequisite for using them in
simulations of water and aqueous solutions. One option is to
add empirical dispersion corrections and/or hydmgen—bonding
corrections, which has been attempted, for example, by
MdNamara and Hillier,*® Hobza and co-workers,*' Maupin et
al,> and Korth.*** Hydrogen-bonding corrections have
recently also been included by Cui and co-workers® into a
new SCC-DFTB model that features third-order terms in the
Taylor expansion of the charge fluctuations.**

In this paper, we report a spec:iﬁc reaction parametrization
(SRP)* of two sets of established semiempirical methods that
targets proton transfer in water. The first set includes the
popular Austin Model 1 (AM1) by Dewar et al* and the
Parameterized Model 3 (PM3) by Stewart,*”*® which are based
on the Modified Neglect of Differential Overlap (MNDO)
approximation by Dewar and Thiel.** The second set covers
the family of orthogonalization-corrected model OMx (x = 1,2,
and 3) developed by Thiel and co-workers.**>* In all cases, the
theoretical framework of the underlying semiempirical method
was retained (ie. no additional terms were introduced). Qur
goal was to develop spedific semiempirical models that can
reproduce ab initio calculated potential surfaces with reasonable
accuracy, in order to enable efficient simulations of proton
transfer in water. The reference data and the parametrization
process are described in Section 2. Section 3 discusses the
results, and conclusions are drawn in Section 4.

2. COMPUTATIONAL DETAILS

2.A. Parameterization. For the parametrization, we
employed two groups of reference data calculated at the MP2
level of theo with the aug-cc-pVTZss’s 7 basis set. The first
group consisted of the fully optimized gas-phase geometries
and the associated energies for water H,O, water clusters H,,0,
(n = 2—5), the hydronium ion H;0% and protonated water
clusters H,,,,,0," (m = 2—4). The model systems are
displayed in Figure 1; entries (a)—(g) are induded in the
training set and entries (h)—(j) are part of the validation set.
For large clusters such as the water tetramer and pentamer,
which have many close-lying local minima, we only selected the
global minimum, with the initial geometries for optimization
being taken from refs 58 and 59. We also computed the
vibrational frequencies for these model systems as part of our
assessment of the accuracy, but we did not attempt to
reproduce these frequencies during the parametrization. The
second group of reference data consisted of 99 data points on
the two-dimensional potential energy surface for the transfer of
one proton between two water molecules within the Zundel ion
in the gas phase, computed by relaxed surface scans (Figure 2).
In these surface scans, the distance between the oxygen atoms
(Roo) and the distance between the migrating proton and one
oxygen atom were kept fixed in partial geometry optimizations.
The 53 data points obtained for Ryq = 2.2, 2.4, 2.6, and 2.8 A
were included in the training set, whereas the other 46 data
points for Rog = 2.3, 2.5, 2.7, and 2.9 A were employed for
validation. Please note that the 99 data points are not uniformly
distributed.

Semiempirical methods have traditionally been parametrized
to reproduce experimental heats (enthalpies) of formation. The
experimental heat of formation for water (—57.80 kcal/ 'mol)*°
thus serves as the reference energy for water, i.e, entry (a) in
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Figure 1. Neutral water clusters and protonated water clusters used for
parametrization; entries (a)—(g) belong to the training set, and entries
(h)—(j) are part of the validation set. Geometries were optimized at
the MP2/aug-cc-pVTZ level.
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Figure 2. Reference MP2/aug-cc-pVTZ gas-phase energies (V) for
proton transfer in the Zundel ion at fixed distances Rgo (in
Angstroms) obtained from relaxed surface scans ((A) training set
and (B) validation set). Here, dr is the difference in the distances
between the migrating proton and the two O atoms.

Figure 1. The target energies for all other systems are the
corresponding ab initio binding energies. In the case of the
water dimer (H,O,), the semiempirically computed energies
(E°F) should thus reproduce as dosely as possible the binding
energy calculated from their ab initio counterparts (E*), with
the goal being

E**(H,0,) — 2E*(H,0) = E*(H,0,) — 2E*(H,0)
(1)
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This equation can trivially be generalized to water n-mers. For
the protonated water clusters, the semiempirical energy of the
proton [i.e., experimental (or accurate) heat of formation for
proton AH(H")] is needed to compute the relative energies. In
the case of the hydronium ion (H;0"), the target is

E*(H,0") — E**(H,0) — AH(H)

= E¥(H;0%) - E*(H,0) - EM(HY) @)
where the electronic energy of an isolated proton E*'(H") is, by
definition, zero. As is common in semiempirical work, we have
used the value of 365.7 kcal/mol from ref 61 for AH(H"). The
target energies for the other protonated water dusters can be
derived in the same way.

The ab initio reference calculations were carried out by using
the Gaussian09 package.f'2 The semiempirical calculations and
parametrizations were performed by using the MNDO
package,f'3 except for the PM6 calculations,®* which were
determined using Gaussian09. Reparameterizations were
attempted for AM1, PM3, OM1, OM2, and OM3, and the
resulting new models are denoted AMIln, PM3n, OMln,
OM2n, and OM3n, respectively. The following weights were
employed in evaluating the error function for the para-
metrization: 10.0 (kcal/mol)™ for energy, 100.0 A™' for
distances, and 5.0 deg_1 for angles. We did not perform any
extensive search for global minima in parameter space, because
we wanted to keep the new parameters as close to the authentic
parameters as possible.

2.B. Tests and Validation. The reparameterized semi-
empirical models were tested by doing calculations on a series
of model systems. First, we examined the gas-phase binding
energy profiles for two water molecules as a function of the
distance between the two O atoms. The ab initio reference
curve for the binding energy was computed at the MP2/aug-cc-
pVTZ level by relaxed surface scans using Gaussian09,” in
which the distance between the O atoms was changed by 0.1 A
from the previous geometry and then fixed during geometry
optimization. The relaxed surface scan started from the fully
optimized water dimer geometry and moved in both directions,
toward longer and shorter O—Q distances. The MP2 optimized
geometries along this path were then adopted as input
geometries for the semiempirical calculations using the
MNDO program.63

Second, we carried out MD simulations for bulk water and
for a hydrated proton in bulk water using large cluster models.
Figure 3 depicts the model system for the hydrated proton. The
entire system had a radius of Ry, = 22 A, containing 1482
water molecules and one hydronium ion initially placed at the
center. The density was 1.00 g/m.L. The system was divided
into two regions: an inner core (Ripner < 12 A) containing 240
water molecules plus the hydronium ion and an outer layer.
The water molecules in the outer layer were subjected to
harmonic potentials with force constants of 10 keal mol ™" A~
that restrained the atoms to their original positions and
effectively prevented the water molecules from evaporating into
the vacuum. The cluster model for neutral bulk water
simulations was obtained by deprotonation of the hydronium
ion.

Regarding the update of the hydronium O atom index, we
have adopted the scheme proposed by Hofer et al®® As
illustrated in Figure 4A, the donor (hydronium oxygen) is
labeled OO0. Any water oxygen atom (O1;) within 2.9 A from
OO0 will be enlisted as a potential acceptor; the number of
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Figure 3. Cluster model for dynamics simulations of protonated water.
The entire system has a radius of R, = 22 A, containing 1482 water
molecules and one hydronium ion initially placed at the center. It is
divided into an inner core (R, < 12 A) containing 213 water
molecules (licorice) plus the hydronium ion (van der Waals balls) and
an outer layer with the other water molecules (lines). (See Section 2.B
for further details.) The cluster model for the charge-neutral water
simulations was generated by deprotonating the hydronium ion.

Donor Potential
Acceptor
(B) Rogor=2.40 A
NG R G os A
ROI'H‘ =1.87 A
AgoHor = 111°
-
o0
) --%.
. -(01'
Rooos = 2.50 A 'H
Roon= 1.25 A
Rawi= 1.25A A
AooHor = 180° o1

Figure 4. (A) Illustration of the criterion for donor—acceptor swaps
during proton migration. (See Section 2.B for a detailed description.)
(B) A snapshot of a donor—acceptor swap from an OM3n trajectory.
H (in green) is the proton being transferred between OO0 and O1,
while H' is the hydrogen between OO0 and the nearest potential
acceptor O1'. Note that the acceptor O1 is further away from OO0 than
01’ is from O0.

potential acceptors varies over time during the MD simulations
and can be larger than 3. For each potential acceptor O1, and
each hydronium hydrogen H; (j = 1,2, and 3), a parallel vector
component Rg{,Hj is computed by projecting the donor-
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Table 1. Parameters Re-optimized in This Work for the MND O-Based Methods AM1 and PM3“

AM1 PM3

parameter H 0 H 0

U, (eV) —11.396 248 28 —97.830 051 00 —13.072 844 90 —86.946 179 86
U, (V) —78.262 408 38 —71.908 402 68
£, (au) 1.188 187 56 3.107 792 05 0.954 530 51 3757 723 92
£, (au) 2.523 560 51 2.404 027 00
B, (eV) —6.173 824 58 —29.272 769 70 —5.618 505 74 —45206 662 11
B, (eV) —29272 857 32 —24.733 236 26
a (A™) 2.882439 11 4455 399 50 3.374 889 68 3219 112 53
G, (eV) 12.847 854 58 15419 913 68 14.809 518 87 15.777 238 66
Gy (eV) 14.520 099 32 13.598 867 86
Gy, (eV) 14479 690 53 10.621 326 89
Gy (eV) 12979 865 09 12.449 747 02
H, (eV) 3.939 834 42 0.578 426 14
K 0.122 538 40 0280 798 02 1.047 892 68 —1.074 471 74
L, 4.999 771 0§ 5.000 022 09 5.142 074 74 5.949 950 70
M, 1.199 850 35 0.847 737 05 1.556 607 86 L600 454 10
K 0.004 892 58 0.081 222 13 —1.022 154 81 1109 274 09
L, 4.999 919 96 7.000 037 71 5.984 287 97 5926 025 97
M, 1.800 222 36 1444 973 83 1.563 919 61 1.598 900 68
K, —0.018 442 33

L, 1.999 842 70

M, 2,100 114 10

“See Table S1 in the Supporting Information for the description of the parameters.

hydrogen vector Reopy; onto the donor-potential acceptor
vector Rogoy- The ratio pj; is defined as follows:

1
IR/

if R Rogoy, > 0
Pi =\ Rpgo ! '

0 otherwise

(3)
The ratio p; is a measure of how likely H; is going to be
transferred to O1, (the larger positive the pji value, the more
likely the transfer will be). At any given time step during the
simulation, O1 is identified as the potential acceptor with the
largest p; value, which is labeled as p. The donor and acceptor
are swapped if p > 0.5. Please note that Ol is not necessarily
the potential acceptor that is the closest to the donor O0, which
is labeled as O1’, although O1 and O1’ are identical most of the
time (>97%) during our MD simulations. Figure 4B shows a
snapshot taken from an OM3n trajectory where O1 and O1’
have different identities. In this case, the acceptor O1 is further
away from OO than the nearest potential acceptor O1’, but the
geometry clearly favors the proton transfer between OO0 and
Ol.

Because of the large number of atoms in the above cluster
models, it is computationally quite expensive to simulate the
entire system even at the semiempirical level We thus carried
out the MD simulations at the combined quantum-mechanics /
molecular-mechanics (QM/MM)®~73 level. The inner core
was described by semiempirical quantum chemistry, and the
outer layer by the SPC™ water potential. For the sake of
simplicity, the mechanical embedding scheme” was adopted.
Both the authentic and reparameterized semiempirical models
were applied to the simulations of the charge-neutral water
system, but only the reparameterized models were employed
for simulating the hydrated proton. In the OM2 and OM2n
simulations, we encountered self-consistent-field (SCF) con-
vergence problems quite often, so we decided not to pursue
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them further; hence, we do not present OM2 and OM2n
results for the bulk systems. The MD simulations were
performed using the Ql\/ﬂ\/ﬂ\/l% program, which calls the
MNDO® program for QM calculations and TINKER”” for
MM calculations. They were carried out in the canonical
(NVT) ensemble at a temperature of 298.15 K, using a Nosé-
Hoover thermostat.”>”” For a given semiempirical model, 10
trajectories were pmpagated independently with a step size of 1
fs, each consisting of 2 ps equilibration followed by a 20 ps
productive run. The total time length of the productive
trajectories was 200 ps for each semiempirical model. For the
bulk water simulations, the geometry of the entire system was
saved every 50 steps. In the hydrated proton case, the geometry
was saved every 10 steps, and the information about the donor
and potential acceptors was recorded every step.

To limit the boundary effects due to the finite size of the
model systems, the radial distribution functions (RDFs) for the
water molecules were computed for an “elite” group of selected
water molecules, more spedifically, the 21 water molecules that
were initially located within 5 A from the center of the cluster.
If an elite water molecule drifted away from the center of mass
of the entire system by more than 5 A at a given time step, the
saved geometry of that snapshot was excluded from the
corresponding RDF analysis. This RDF analysis procedure was
first tested in two calculations at the MM level, where the entire
system was described by the SPC™ and TIP3P®* water
potentials, respectively. In either test, the RDF computed for
the above cluster model was compared with the RDF obtained
from 200 ps NVT simulations at the same temperature using
periodic boundary conditions (PBC) with 216 water molecules
in a cubic box of 18.63 A length. Inspection of the cluster
model-based RDF and the PBC-based RDF (see Figures S1
and S2 in the Supporting Information) revealed only minor and
insignificant differences, which suggests that our approach is
sufficiently accurate. For the RDF calculations of the hydrated
proton, the criterion to include a snapshot was that the
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Table 2. Parameters Re-optimized in This Work for the Orthogonalization-Corrected Models OM1, OM2, and OM3“

OM1 OoM2 OM3
parameter H 0 H 0 H 0]

U, (&V) —12.838 184 53 —93.042 206 09 —12.560 935 10 —101.852 535 97 —12.484 287 97 —105.829 748 09
Upp (eV) —77.598 439 87 —79.043 912 84 —78.874 514 70
£ (au) 1209 193 33 1.102 381 11 1.558 958 16 1.396 722 13 1.285 158 34 1313 975 69
B, (eV bohr /%) —4.892 972 58 —6.222 354 84 —3313 643 01 —10.761 940 01 —3.358 940 34 —14.461 600 14
B, (éV bohr™'2) —9.940 330 68 —8.570 870 01 —8.741 752 81
B (éV bohr™/2) —11.293 709 59 —9.434 719 22 —12.911 417 67
B.(X=H) (eV bohr™/?) —6.459 788 22 —6.640 584 53 —13.583 127 26
Bo(X—H) (eV bohr™'?) —12.474 169 74 —10.192 763 80 —9.409 924 53
a, (au) 0.096 316 41 0.108 573 45 0.098 526 80 0.111 786 91 0.060 830 99 0.084 727 80
a, (au) 0.096 425 42 0085 136 94 0.078 303 72
a, (au) 0.152 820 61 0.166 179 91 0.143 615 89
a(X—H) (au) 0.079 434 49 0.075 948 50 0.173 009 39
a,(X—H) (au) 0.129 291 89 0.083 188 46 0.117 783 94
G, (eV) 12.847 829 62 15.420 763 38 12.803 449 02 15.385 277 00 12.845 336 07 15.369 303 75
Gy, (eV) 14.520 494 26 14.547 376 40 14.578 254 22
G, (eV) 14.480 064 08 14.512 376 78 14.445 520 26
Gy (eV) 12.980 302 07 12.867 807 46 13.015 101 93
H,, (eV) 3.940 777 43 3.992 884 32 3.950 34628

F, 0.541 034 13 0.681 430 71 0.389 765 28 1.156 680 58 0.349 155 26 0.535 902 15
F, 0.846 677 03 0.476 399 46 1.527 086 00 1.089 211 84

G, 0.660 531 90 0262 691 92 0.333 525 83 0.052 674 67
G, 0915 091 13 0.869 410 78

“See Table S1 in the Supporting Information for the description of the parameters.

hydronium O atom must be within 5 A of the center of the
cluster; it turned out that all saved snapshots satisfied this
requirement and could be used. The integrated coordination
number (ICN) for two types of atoms A and B: ng(r) =
47 f gas(r')r'* dr' was computed in a similar way. Again, as can
be seen from Figures S16(A) and S17(A) in the Supporting
Information, we have obtained essentially identical plots of the
oxygen—oxygen ICN ngo(r) and the oxygen—hydrogen ICN
fou(r) for water molecules in the simulations with PBC and
with cluster models.

In this work, the nudear degrees of freedom were treated
classically. Therefore, quantum effects on the nuclear motion
were not included. The zero-point vibrational corrections
would effectively lower the free-energy barrier for proton
transfer, but the change is known to be small (~0.5 keal/ 'mol),’
smaller than the root-mean-square deviation (RMSD) between
the potential energy surfaces from the semiempirical and ab
initio calculations. Tunneling effects are insignificant for proton
transfer in bulk water,""” as expected from the low free-energy
barriers. Therefore, a classical treatment of nudear motion was
considered adequate for our purposes.

3. RESULTS AND DISCUSSION

3.A. Parameters. The OMx Hamiltonian differs from the
MNDO-type Hamiltonian used in AM1 and PM3 by including
orthogonalization corrections that account for Pauli exchange
repu]sions.g1 These corrections are applied to the one-center
Fock matrix elements in OM1, and to all Fock matrix elements
in OM2 and OM3. The corrections in OM2 are truncated in
OM3 for computational efficiency without losing much of the
accuracy. Moreover, while AM1 and PM3 attempt to use
flexible core repulsion functions to model the interactions in
weakly bound systems, the OMx methods put emphasis on the
fine-tuning of the resonance integrals that represent the major
bonding interactions. The optimized new parameters for
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hydrogen and oxygen are tabulated in Table 1 for the
MNDO-based methods AM1 and PM3, and in Table 2 for
the OMx models. A brief description of these parameters is
given in Table S1 in the Supporting Information. The new
values of the parameters are generally quite close to the original
values: the maximum relative changes are <8% for AMIn,
PM3#n, and OMln, and they mostly remain below 10% for
OM2n and OM3n (except for a few larger changes in the
parameters entering the resonance integrals and the prefactors
of the orthogonalization terms). Therefore, the reparameteriza-
tion should be regarded as a fine tuning of the investigated
semiempirical methods (rather than a drastic modification).
3.B. Training and Validation Sets. The overall perform-
ance of the authentic parameters is documented in Table 3 by
the RMSDs of the energies, geometries, and vibrational
frequencies for the training set, using the ab initio results as
the reference. We are particularly interested in the cluster
binding energy (V), the two-dimensional potential surface for
proton transfer (V*£%), and the hydrogen-bonding angle (6;;)
(which is important because it indicates the orientation of the
water molecules in the hydrogen-bonding network). Obviously,
the orthogonalization-corrected models outperform the
MNDO-based methods in nearly all aspects. While the OMx
models reproduce the reference data for the cluster binding
energies V within 6 kcal/mol, the MNDO-based methods yield
significantly larger errors ranging from 12 kcal/mol to 33 kcal/
mol. A similar performance is observed for V5, In the case of
6y, AM1 and PM6 show very large deviations (RMSDs of 48°
and 33°, respectively), implying an erroneous orientation of the
water molecules in the hydrogen-bonding network. OM1
(RMSD = 21°) and PM3 (RMSD = 13°) perform somewhat
better, although not satisfactorily. The OM2 and OM3 results
are best (RMSD < 5°). To exemplify the significance of 8y, we
superimpose the reference MP2 geometry for the Eigen cation
with those obtained from different semiempirical methods in
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Table 3. Root-Mean-Square Deviations (RMSDs) of the
Standard Semiempirical Methods for the Training Set”

onalization-
MNDO-based Oﬂhﬁiﬁc&d
AM1 PM3 PMo OM1 OM2 OM3
V (keal /mol) 125 325 166 55 5.8 4.1
r (A) 0.01 0.01 0.03 0.01 0.01 0.05
ry (A) 0.36 0.15 0.10 022 0.15 023
6 (deg) 36 2.9 7.0 16 22 15
6y (deg) 476 13.1 328 209 46 42
plem™ 1) 235 204 695 116 372 229
My 3 1 1 3 1 1
VPES (keal /mol) 197 392 158 39 8.5 54

“The training set consists of 7 potential energies (V), 35 bond lengths
(r), 11 hydrogen-bond lengths (ry;), 22 bond angles (), 16 hydrogen-
bond angles (), 114 frequencies (v), and the number of imaginary
frequencies (n;) in the water clusters and charged water clusters
[model systems (a)—(g) in Figure 1]. It also includes 53 data points of
the two-dimensional potential energy surface (V*™) for proton
transfer in the Zundel ion at fixed distances (see Figure 2A). See
Section 2 for computational details. e total number of reference
frequencies is 114; any imaginary frequencies are excluded from the
statistics.

Figure 83 of the Supporting Information. The MP2 calculations
yield 6y = 175.2°. The MNDO-based methods, AM1 (& =
100.7°), PM3 (fy = 150.2°), and PM6 (6 = 136.7°), produce
qualitatively wrong orientations of the coordinating water
molecules with respect to the central hydronium ion, whereas
the OMx methods predict much more realistic es Oy of
172.9°, 168.9°, and 175.0° for OMI, OM2, and OM3
respectively.

How do the reparameterized methods perform? First, we
look at the training set (rows 4—11 of Table 4). The
reparameterization leads to substantial improvements in the
energies for PM3n, OM2n, and OM3n, but only slight changes
for AMlIn or OMln. The most impressive advances are
observed for PM3#n. Overall, OM2n and OM3n clearly show the
best performance, achieving excellent agreement with the ab
initio reference data for V (RMSD = 0.5 and 2.0 kcal/mol,
respectively) and V¥ (RMSD = 0.5 and 0.7 kcal/mol,
respectively). In terms of the hydrogen-binding geometries,
OM2n and OM3n are again superior with small RMSD values
for Oy (2.8° and 4.1° respectively). Again using the Eigen
cation as an example (see Figure S3 in the Supporting
Information), AM1n still gives an erroneous hydrogen bonding
angle (6y = 101.8°), the PM3n value (fy = 167.4°)
underestimates the MP2 value by 7.8°, and the reparameterized
OMzx models reproduce the MP2 angle within 2.6°.

Next, we turn to the validation set (see rows 13—18 in Table
4; optimized geometries for entries (h)—(j) are given in Figures
$4—S6 in the Supporting Information). Overall, each of the
reparameterized semiempirical models shows a rather similar
performance for the validation set and the training set.
However, two exceptions should be noted. First, PM3n
achieves a very small RMSD value for 8y (3.7°), indicating
excellent hydrogen-bonding geometries in the validation set.
Second, OM1n gives much larger RMSD values for V and 6y
due to poor geometries for the water tetramer and pentamer,
which maintain the cyclic structure, but adopt hydrogen-bond
orientations that deviate substantially from the MP2 geometry.
The OM1n geometry for the Zundel ion complex with two
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Table 4. Root-Mean-Square Deviations (RMSD) of the
Reparameterized Semiempirical Methods for the Training
and Validation Sets®

MNDO-based Orthogonalization-corrected
AM1n PM3n OMl1n OM2n OM3n
Training Set”
V (keal /mol) 116 74 5.1 05 2.0
r(A) 0.01 0.01 0.01 0.01 0.02
ru (A) 0.36 038 021 0.04 0.04
0 (deg) 3.7 3.8 1.5 09 13
Oy (deg) 474 154 136 2.8 4.1
v (em™)* 243 145 119 383 245
n, 4 3 5 2 2
V'ES (keal /mol) 184 1.0 39 0.5 0.7
Validation Set?
V (keal /mol) 7.1 8.3 135 02 L6
r(A) 0.02 0.01 0.02 0.01 0.02
ru (A) 0.66 0.11 041 0.02 0.01
0 (deg) 2.1 1.3 2.8 0.7 0.4
Oy (deg) 83.7 37 497 73 6.4
V'ES (keal /mol) 19.3 09 33 0.8 0.6

“See Section 2 for computational details. "See footnote (a) of Table 3.
“See footnote (b) of Table 3. “The validation set consists of 3
potential energies (V), 26 bond lengths (r), 13 hydrogen-bond lengths
(ry), 13 bond angles (), 12 hydrogen-bond angles () of the water
clusters and charged water clusters (model systems (h)—(j) in Figure
1). It also includes 46 data points of the two-dimensional potential
energy surface (V%) for proton transfer in the Zundel ion at fixed
R distances (see Figure 2B).

water molecules is still in good agreement with the ab initio
result.

Finally, we take alook at the two-dimensional (2D) potential
surfaces for proton transfer within a Zundel ion in the gas phase
computed by the reparameterized methods (Figure 5). The
reference MP2 surface clearly shows a well at (Rgyq, dr) = (2.4
A, 0), which corresponds to the symmetric Zundel ion. Here, dr
is the difference in the distances from the migrating proton to
either O atom. The AMIn surface differs from the reference
MP2 surface significantly, displaying a well in the upper right
corner that is deeper than the central well of the symmetric
Zundel ion; this suggests that the lowest-energy AMIn
structure of the Zundel ion is very asymmetric (also see Figure
S5(B) in the Supporting Information), and should perhaps
better be regarded as a water molecule that is hydrogen-bonded
to a hydronium ion. Because hydrogen moves much faster than
oxygen, due to the much smaller mass, proton transfers can be
approximated by movements along vertical lines on the two-
dimensional surfaces shown in Figure 5. Since the asymmetric
AMI1n well is located at Rog > 2.8 A, the barrier for proton
transfer will be quite high (>6 kcal/mol). The PM3#n surface
shows a narrow valley extending from (Rp, dr) ~ (2.36 A, 0)
to (Ryo, dr) = (2.44 A, 0.3 A). Such a surface is not optimal for
proton transfer, although the RMSD value in VPES is rather
small (<1 kcal/mol). By contrast, all OMaxn surfaces resemble
the reference MP2 surface in giving a central well for the
symmetric Zundel ion. The OM2# surface seems to agree best
with the MP2 surface, followed by the OM3n surface; both
show a central well near (Roo, dr) &~ (2.41 A, 0). The OM1n
surface has a central well that is somewhat displaced at (Ryg,
dr) ~ (234 A, 0). Interestingly, the OM3n surface, and to a
slightly lesser extent also the OM2n surface, resemble the
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Figure 5. Two-dimensional gas-phase energy surfaces for proton transfer in the Zundel ion at fixed distances Rog (in Angstroms) obtained from (A)
MP2/aug-cc-pVTZ and (B—F) the reparameterized semiempirical methods. Here, dr is the difference in the distances between the migrating proton

and the two O atoms.

effective ab initio path-integral surface for the Zundel ion
calculated by Brancato and Tuckerman (see Figure 1B in ref
21), who have parametrized an MS-EVB model on the basis of
the path-integral surface, so that quantum effects such as the
zero-point energy are implicitly included.

3.C. Binding Energy Profile of the Water Dimer. The
gas-phase binding energy curves of the water dimer are plotted
in Figure 6. Panel (A) shows those computed with the
authentic parameters. First, we note that, at short distances
Ry, all methods including MP2 experience difficulties in
getting smooth curves, because of changes in the relative
orientation of the water molecules. Taking MP2 as an example,
at Rop > 2.6 A, the first water molecule lies in a plane that
bisects the HOH angle of the second water molecule, whereas
at Ry < 2.5 A, both molecules are in the same plane (Figure
S12 in the Supporting Information). This change in relative
orientation only gives rise to a small bump in the MP2 energy
profile, but leads to larger kinks in the curves computed
semiempirically. Second, we note that all semiempirical
methods except AMI predict water dimers that are under-
bound, and the optimal distances between the two O atoms are
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shorter than the MP2 value. At large distances Rgq, all
semiempirical models, including AMI, underestimate the
binding energy, presumably because of the lack of explicit
dispersion terms. Interestingly, the OMx curves seem to
converge faster to the MP2 curve than the MNDO-based
curves do when the water molecules are gradually taken apart.
Adding empirical dispersion corrections may help to improve
the agreement at large distances.**>® However, dispersion
interactions were not deemed to be the main problem in the
parametrization of the energy surface for proton transfer, where
the two water molecules within the Zundel ion are in close
proximity, so that electrostatic interactions are expected to be
dominant. Therefore, we have not included empirical
dispersion corrections in this work.

The energy profiles computed with the reparameterized
methods are depicted in panel (B) in Figure 6. While the AM1n
curve has changed little from AMI, the PM3n curve has
changed remarkably from PM3. The binding well around Roq =
2.8 A in PM3 moves to Roo = 3.1 A in PM3n, and moreover
becomes very shallow, with the binding energy decreased from
4 kcal/mol to 2 kcal/mol. The OM1n curve looks very similar

dxdoi.org/10.1021/ct400224n | J. Chem. Theory Comput. 2013, 9, 2672-2686
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Figure 6. Gas-phase binding energy profiles of two water molecules
computed with the (A) authentic and (B) reparameterized semi-
empirical methods. The solid reference curve was obtained at the
MP2/aug-cc-pVTZ level from relaxed surface scans for the water
dimer as a function of distance between the two O atoms (Ryg), in
steps of 0.1 A. The zero of energy corresponds to two water molecules
at infinite distance: Vg = Vig,0), — 2Viy,0-

to the OM1 curve. The OM2n curve shows the best agreement
with the MP2 curve, followed by the OM3#n curve. Compared
with OM2 and OM3, the improvements in OM2n and OM3n
are most encouraging at larger distances (Roo > 2.8 A), which
further alleviates the need to include empirical dispersion
corrections.

3.D. Properties of Water. The oxygen—oxygen and
oxygen—hydrogen RDF obtained from the bulk water
simulations are plotted in Figures 7 and 8, respectively,
together with the experimental curves.**®> First, let us look at
the oxygen—oxygen RDF. Both AMI1 and AMIln give a first
(broad) peak near r = 2.8 A, but fail to predict the second peak
at r & 4.5 A; the minimum between the first and second peaks
occurs at r & 3.9 A, which is a larger distance than that found
experimentally (r = 3.4 A). The PM3 curve shows the first peak
near r = 2.8 A, with a small shoulder between r=3.0A and r =
35 A In the PM3n curve, the shoulder becomes more
prominent. Neither PM3 nor PM3n predict the second peak
correctly. The OM1 and OM1n RDF are similar, with the first
peak at r = 2.9 A and the second peaks not seen. The OM3
curve has a first sharp peak at a distance that is much too short
(r = 24 A), but the reparameterization improves the RDF
dramatically: the OM3n curve shows the best agreement with
the experimental RDF, although the second peak is still slightly
off (by <0.3 A). The difficulties in reproducing the second peak
with AM1, PM3, and OMI1 (and their reparameterized
counterparts) are likely due to the problem that they all
underestimate the binding energies between water molecules
(see Figure 6).

The first-solvation-shell coordination numbers were esti-
mated by noo(r) at the r values that correspond to the first
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Fi 7. Radial distribution functions gog(r) for water computed for
(A) AM1 and AM1#n, (B) PM3 and PM3n, (C) OM1 and OM1#, and
(D) OM3 and OM3n. The experimental data (denoted by “Exp”) is
plotted in all panels for comparison. The AM1 and OM1 curves are
directly beneath the AM1n and OMIn curves, respectively. All curves
have been scaled such that the height of the first peak is 1.00.

9on(n

Figure 8. Radial distribution functions gqy(r) for water computed for
(A) AM1 and AM1#n, (B) PM3 and PM3n, (C) OM1 and OM1#, and
(D) OM3 and OM3n. The experimental data (denoted by “Exp”) is
plotted in all panels for comparison. The AM1 and OM1 curves are
right beneath the AM1n and OMlIn curves, respectively. All curves
have been scaled such that the height of the peak at ~3 A is 1.00.
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minima of goo(r), and the results echo the above RDF analysis.
The first-solvation-shell coordination numbers are tabulated in
the second column of Table S, and the no(r) plots are given in

Table 5. Integrated Coordination Numbers of the First
Solvation Shell for Water and for Hydronium from
Semiempirical MD Simulations®

Integrated Coordination Number, ICN

water” hydronium®
AM1 87 n/a
AM1n 94 104
PM3 8.0 n/a
PM3n 77 794
OM1 64 nfa
OM1n 6.7 7.8°
OM3 37 n/a
OM3n 49 6.5

“ICNs at the distances comresponding to the first minima in go(r) for
water and in gon(r) for hydronium, unless otherwise indicated. b47in
the experiments =% and 4.1 in ab initio MD simulations.*” ©3.0 in ab
initio MD simulations.” “Including the peak at r = 3.0 A (otherwise,
ICN = 3.3). “Integration over both peaks in the bimodal distribution.

panels (B) and (C) of Figure S16 in the Supporting
Information. Compared with the coordination number value
of 4.7 determined experimenta]ly,9'4_Eis it is apparent that the
MNDO-based methods overestimate the number of coordinat-
ing water molecules due to the erroneous hydmgen—bonding
pattern. Better performance is achieved by the orthogonaliza-
tion-corrected methods, because of their improved hydrogen-
bonding description. In particular, OM3n yields a coordination
number of 4.9 that is in excellent agreement with the
experiments.

Turning to the oxygen—hydrogen RDF, we find that none of
original semiempirical methods with authentic parameters
reproduces the experimental curve correctly. PM3 performs
best, predicting two peaks at r = 1.9 A and 3.3 A that are rather
close to the experimental ones at r 17 A and 33 A,
respectively; however, the first PM3 peak is much too narrow.
Reparameterization again leads to dramatic improvements in
the OM3 case: the OM3n RDF matches the experimental curve
very well, although the position of the first peak deviates
slightly, by ~0.1 A. There are also improvements in the PM3
case, leading to lower and broader peaks in the PM3n curve,
but the agreement is not as good as for OM3n. The AMI1 and
OMI1 RDF are not affected much by the reparameterization.
Taken together, the above results clearly show that OM3n
offers the best structural properties for bulk water.

3.E. Structural Properties of the Hydrated Proton. The
RDF for water O atoms around the hydronium O atom (O0)
are plotted in Figure 9. A bimodal distribution is found with
OM1n: a narrower geak near r = 2.4 A and a wider peak at r ~
2.6 A. Maupin et al.*” observed similar bimodal distributions in
their SCC-DFTB simulations and interpreted them in terms of
a prominent Zundel character for the solvated proton, with one
of the three coordinating water molecules sustainably closer to
the hydronium ion than the other two. Indeed, integration over
the first peak in our OMI1#n plot yielded a coordination number
of 1.4. This bimodal distribution is not seen in experiments or
ab initio MD simulations. The recenﬂ;;repa:mneterized SCC-
DFTB model by Cui and co-workers™ gave a better overlap
between the distributions of the three coordinating water O
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Figure 9. Radial distribution functions gooo(r) for an excess proton in
water computed with the reparameterized semiempirical methods; O0
represents the hydronium O atom. All curves have been scaled such
that the height of the first peak at r ~ 2.5 A is 1.00.

atoms, which removed the bimodal distribution. Qur OM3n
model also predicts a single peak near r = 2.5 A in good
agreement with the experiment and ab initio MD simulations.
The AMln RDF displays a single peak at r = 2.5 A, with a
shoulder near r = 2.9 A. This shoulder becomes another lower
and wider peak at r &~ 3.0 A in the PM3n curve.

The first-solvation-shell coordination numbers are given in
the third column of Table 5. Compared with the coordination
number of 3.0 from the ab initio MD simulations>” all
coordination numbers from the semiempirical methods in
Table S are much larger, including the OM3n result (6.5). We
note that previous SCC-DFTB simulations®”>® produced
coordination numbers in the range of 4.5—5.2, which are
closer to, but still larger than, the ab initio MD value. The larger
coordination numbers in the semiempirical simulations indicate
more fluidic structures around the hydronium ion, as also
implied by the less-prominent second peaks and the minima at
larger r values in the goo(r) curves.

The RDF for hydrogen atoms around OO is displayed in
Figure 10. The first peak at ~1 Ais due to the covalently bound
H atoms in the hydronium ion. Near r= 1.8 A, asmall peak can
be found in the PM3n, OMl#n, and OM3n curves. This peak is
caused by the H atom of the water molecule that is hydmgen-
bonding to the hydronium ion oxygen. AMln does not yield
this small peak, because it does not properly describe the
hydrogen-bonding network (see the earlier discussion on the
hydrogen-bonding angles). All reparameterized models success-
fully predict the peak at 3.1 A. On the basis of this evidence
(Figures 9 and 10), we condude that it is again OM3n which
best reproduces the structural properties.

Traditionally, the structures of the solvated proton are
classified as Eigen- or Zundel-like. However, the distinction
between distorted Eigen and distorted Zundel structures is not
clear-cut. There are various ways to define the Eigen-like and

dxdoi.org/10.1021/ct400224n | I. Chem. Theory Comput. 2013, 9, 2672-2686
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Figure 10. Radial distribution functions gogy(r) for an excess proton
in water computed with the reparameterized semiempirical methods;
OO0 represents the hydronium O atom. All curves have been scaled
such that the height of the peak at r ~ 3.0 A is 1.00.

Zundel-like geometries.l7'27'36'37 In this work, we tested three
definitions based on different geometric parameters, the
distributions of which are illustrated by histograms in Figure
S13 in the Supporting Information. The first definition (Def-1)
used by Choi and ]ordan% employs the distance between the
hydronium oxygen OO0 and the oxygen of the nearest potential
acceptor O1’ (Rpgoy') as the criterion: Zundel for Rpg, < 246
A, intermediate for 2.46 A < Rggopr < 249 A, and Eigen for
2.49 A < Royoy- The second definition (Def-2) is similar to that
used by Marx et al?” and relies on the position of H’, the
hydrogen located between OO0 and O1'; here, the criterion is
the distance difference dr = |[Rggyr — Ropyyl: Zundel for dr <
0.1 A, intermediate for 0.1 A <dr < 0.2 A, and Eigen for 02 A
< dr, where Rggyy and Ry, 4y denote the distances between O0
and H' and between O1’ and H', respectively; the currently
chosen Eigen dr value of 0.2 A (instead of 0.3 A in ref 33) has
been suggested by Markovitch et al.'” The third definition
(Def-3) is based on the ratio p (see Figure 4): Zundel for p >
0.46, intermediate for 0.45 < p < 046 A, and Eigen for p <
0.45. We adopted p values of 045 and 0.46 A for the following
reason. The MP2-optimized Eigen structure has Rygo, = 2.554
A and Rygy = 1.011 A. To reduce the noise from the fast OH
stretching vibrations of the hydronium ion, we (arbitrarily)
took Rygy = 1.05 A as the starting point of proton transfer,
which gave p,., = 0.41; we note that the value of 1.05 Ais close
to the average OOH bond length of 1.057 A from ab initio path
integral calculations.®"” Because of the donor—acceptor swap
at p.,q = 0.5, we chose p,,3 = 0.455 (with 0.005 at each side as
the intermediate buffer) to be the boundary separating Eigen
and Zundel. The average values of the relevant geometric
parameters and the percentages of the Eigen, intermediate, and
Zundel structures for the saved trajectories are listed in rows
6—17 of Table 6.

Table 6. Statistics of the Observed Donor—Acceptor Swaps,
Grotthuss Shuttling Rates (Forward Hop), and Zundel-
Eigen Structural Classifications for the Trajectories
Obtained with the Reparameterized Semiempirical
Methods®

AMln PM3n  OMiln  OM3n
number of swaps 0 306 9364 4678
average time between swaps n/a 065ps 002ps 0.04 ps
forward hops 0 11 91 105
average time between forward n/a 18 ps 22 ps 1.9 ps
hops
Def1
{Rooor’) 231A 246A 2354 2444
Zundel 97.7% 512%  96.9%  64.0%
Eigen 0.8% 24.9% 1.3% 18.1%
Intermediate 1.5% 239%  18% 17.9%
Def2
{dr = IRogr — Royl) 1.03A 045A 019A 028A
Zundel 0 1.4% 36.1%  19.6%
Eigen 100.0%  964%  35.6%  593%
Intermediate 0 2.2% 28.4% 21.1%
Def-3
() 0309 0416 0464 0453
Zundel 0 3.4% 61.9%  414%
Eigen 100.0%  94.6%  274%  46.5%
Intermediate 0 2.0% 10.7% 12.1%

“Based on 10 trajectories for each semiempirical model, each
consisting of 2 ps equilibration and a 20 ps productive run. The
criterion for donor—acceptor swaps is illustrated in Figure 4. The
forward hop rate is defined in eqs 4 and 5 of the text. Three ways to
defme Zundel and Eigen structures have been used here. Def-1 is
based on Rogoy: Zundel for Rpgor < 2.46 A, intermediate for 2.46 A <
Rogorr €249 A, and Eigen for 2.49 A < Rpgoy. Def-2 is based on dr =
IRoowr — Ropl: Zundel for dr < 0.1 A, intermediate for 0.1 A < dr <
0.2 A, and Eigen for 02 A < dr. Def-3 is based on p (see Figure 4):
Zundel for p > 0.46, Intermediate for 0.45 < p <046 A, and Eigen for
p < 045. See Section 3.E for further discussion.

It is remarkable that these different definitions lead to rather
different classifications of the geometries of the hydrated
proton in the saved trajectories. While most of the geometries
are characterized as Zundel-like by Def-1, the Eigen “flavor” is
more prominent according to Def-2 and Def-3. Most
noticeably, the AMIn geometries are considered almost
exclusively Zundel-like by Def-1 but 100% Eigen-like by Def-
2 and Def-3. The classifications by Def-2 and Def-3 are
qualitatively similar, albeit with more geometries in the OM1n
and OM3n trajectories being identified as distorted Eigen
structures by Def-3. Such similarity is not surprising, because
both Def-2 and Def-3 characterize the solvated proton
structures by assessing how symmetrical the location of the
migrating proton is. The AM1n and PM3n geometries appear
to be very asymmetric on average, and, therefore, identifying
them as being Eigen-dominated seems appropriate. Both
OM1n and OM3n simulations yield mixed Zundel and Eigen
structures in comparable amounts. However, the OMln
geometries are generally more symmetric than the OM3n
geometries, implying that the Zundel population is higher in
the OM1#n simulations.

3.F. Dynamic Properties of Proton Transfer. Inspection
of the trajectories revealed that no proton transfer ever
occurred in the AMIln simulations. Proton transfer was
observed occasionally in the PM3n simulations, and was
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found more frequently in the OM1n and OM3#n simulations.
The average time intervals between the proton shuttling were
0.65, 0.02, and 0.04 ps for PM3n, OMln, and OM3n,
respectively (row 3 in Table 6). These time intervals do not
distinguish between the fast subpicosecond back-and-forth
proton exchange within a donor—acceptor pair of a Zundel
structure and the true proton transfer that results in a localized
distorted Eigen structure, the latter of which occurring at a
longer time scale. Similar to what has been done previously, 16
we computed the Grotthuss shuttling rate, or the forward hop
rate, using an accumulation function:

h(t) = h(t — At) + Ah(At)

1(0) = 0 “
where At is the time step, and Ah(At) is given by
0  ifno proton hops
Ah(At) =40  ifaprotonhops back to the last donor
1 ifaprotonhops to a new donor ()

Note that Ah(Af) is defined here in a different way than
previously defined. 16 The average time intervals between
forward hops are found to be 18, 22, and 1.9 ps for the
PM3n, OM1n, and OM3n simulations, respectively (row S in
Table 6), indicating corresponding average rates of proton
hopping of 0.06, 0.45, and 0.53 ps, respectively. Interestingly,
although proton transfer occurs more frequently in the OM1n
simulations, there are more successful Grotthuss shuttling
events for OM3n. The OM1n and OM3n hopping rates are
close to the estimated experimental effective hopping rate (0.71
ps")lﬁ and to the rates obtained in the SCC-DFTB (~0.5
ps ') and CPMD (0.4 ps™') simulations by Maupin et al.>’ For
comparison, we note that MS-EVB simulations’ yielded a rate
of 0.16 ps .

We next look at the potentials of mean force (PMF) for
proton transfer shown in Figure 11, where both dr =
IRggur — Roywl and p are employed as distinguished reaction
coordinates. Both yield a qualitatively similar picture of proton
transfer for any given semiempirical method. The PMF from
PM3n clearly indicates that the resting Eigen state (dr ~ 0.5 A
or p & 0.41) is more stable than the transition Zundel state (dr
~ 0 or p & 0.5) by ~2 kcal/mol. The barrier is quite high,
compared with the thermal energy at temperatures near 300 K
(kgT = 0.6 kcal/mol), so that there are only occasional proton
hops in the PM3n simulations. The OM3n model also predicts
the Eigen—Zundel—Eigen proton transfer mechanism but with
much lower barriers: 0.06 kcal/mol in the dr plot and 0.19
kcal/mol in the p plot. These OM3n effective barriers are lower
than the classicdl CPMD barriers of 0.5 kcal/mol*”*’ but,
incidentally, are very close to the 0.15 kcal/mol barrier from ab
initio path integral calculations,””** which include the quantum
fluctuations of all nudei. A very shallow OM3n minimum
corresponding to the Eigen structure is found near dr = 0.25 A,
again in excellent agreement with the ab initio path integral
calculations. "3 By contrast, the PMFs from OMIln yield
minima at the Zundel structure and thus indicate a Zundel—
Zundel mechanism, which is consistent with the results of
Maupin et al. from standard SCC-DFTB and from a specially
parametrized SCC-DFTB version with a_hydrogen-bonding
damping function>” Cui and co-workers®® also found the
Zundel-Zundel mechanism in their standard and hydrogen-
bonding-corrected SCC-DFTB simulations, while their third-

PMF [kcal/mol]

0.0 — 7= o

0.40

Figure 11. Potential of mean force (PMF) for the solvated proton:
(A) The reaction coordinate is the distance difference dr = [Rogy —
Royud, where OO0 is the hydronium oxygen atom, O1’ is the nearest
potential acceptor, and H' is the hydrogen between them (Rgoy-
(Royy) is the distance between 00 (O1’) and H'); (B) the reaction
coordinate is the ratio p (see Figure 4 for definition).

order SCC-DFTB model with hydrogen-bonding corrections
and a modified O—H repulsion potential gave the Eigen—
Zundel—Eigen mechanism (albeit with a rather-high 0.9 keal/
mol free-energy barrier for proton transfer).

Examples for the evolution of the hydronium O atom index
in a representative sample trajectory are provided in Figure 12A
for the PM3n, OM1n, and OM3n simulations. Also shown is
the percentage of time when the given atom is identified as the
hydronium-ion O atom. The sample trajectories were selected
by requiring that the number of hydronium oxygen switches in
the 20 ps trajectory should be approximately the same as the
average number observed in all 10 trajectories for a given
semiempirical model. In the PM3n sample trajectory, only two
O atoms were ever identified as the donor, with 0220 being the
dominant one (>99% of the time). By contrast, five and four O
atoms served as donor in the OMIln and OM3n sample
trajectories, respectively, and in either case, three of these atoms
were associated with the hydronium ion for a long time (>9%),
which is consistent with the picture of frequent proton transfer
previously discussed. For instance, in the OM3n sample
trajectory, the donor switched from 0529 to 0109 shortly
after the productive run began, remained at 0109 for ~10 ps
with many short visits to 055 and 0394 of up to ~50 fs, and
then migrated to 0106 after a period of ~3 ps that featured
many rapid rattles between 0109 and O106. Such dynamics
was found to be typical of the OM3#n simulations. The forward
hop rates h(t) are plotted in Figure 12B for the sample
trajectories. The flat plateaus represent the resting Eigen state
of no proton transfer with oscillatory shuttling in the Zundel
structure, while the often-clustered steps indicate Grotthuss
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Figure 12. Evolution of (A) the hydronium O atom index and (B) the
forward hop rate in sample trajectories from the PM3n, OMln, and
OM3n simulations. The percentage of time when the given atom was
identified as the hydronium ion O atom is shown in panel (A) in
parentheses. In the sample trajectories, the hydronium O atom index
changed 30 times for PM3#n, 1207 times for OM1n, and 576 times for
OM3n. The average numbers of such changes in all trajectories are 31
for PM3n, 936 for OMln, and 468 for OM3n. In panel (B), the
forward hop rate h(t) is defined in eqs 4 and 5 of the text. No donor—
acceptor swapping occurred in the AM1 (AMl1n) simulations.

proton transfer events. The length of the plateaus varies, but is
roughly in the range of 5—10 ps for the OMln and OM3n
simulations (generally somewhat longer for OM3n). The length
of the plateaus is determined by the fluctuation-induced
breakage and reorganization of hydrogen bonds in the solvation
shells, which are the rate-limiting steps of proton diffusion.”"’

Figure 13 displays the geometries of the sample trajectories
projected onto the Rgpgo;—dr plane, as well as the
corresponding gas-phase two-dimensional potential surfaces
V?ES for proton transfer. While V*E differs from the free-energy
surface for proton transfer in bulk water, the plots are
instructive in connecting the simulated trajectories with the
potential surfaces used in the parametrization (see Section 3.B).
As discussed previously, the gas-phase PM3n surface yields a
narrow valley, which differs noticeably in shape from the
reference MP2 surface. Here, we find that the PM3n sample
trajectory spends the majority of time wandering in the area
centered at Rppoy = 245 A and dr = 045 A, roughly
corresponding to one end of the narrow valley. Compared with
the MP2 surface, the well in the OMI1n surface is wider in the
Rgo direction but narrower in the dr direction; this is
consistent with the concentration of the OM1n geometries at
small values of dr. The well in the OM3n surface resembles the
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Figure 13. Projections of the geometries in the sample trajectories in
Figure 11 for (A) PM3n, (B) OMln, and (C) OM3n. The x-axis
represents the distance between the hydronium oxygen OO0 and the
oxygen of the nearest potential acceptor O1’; the y axis represents the
distance difference dr = [Rgonr — Roywl, where H' is the hydrogen
between OO0 and O1’. For comparison, the gas-phase potential for
proton transfer between two water molecules is also shown for each
reparameterized semiempirical method.

well in the MP2 surface more dosely; the OM3n distribution is
more diffusive in the dr direction and more condensed in the
Rgo direction. As previously discussed, OM3n is the most
accurate semiempirical model developed in this work, and,
hence, the OM3n distributions should be the most reliable. The
results shown in Figure 13 suggest that the quality of
reproducing V™ will play a critical role for the successful
semiempirical modeling of proton transfer in bulk water.
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Finally, we comment on the algorithm used here to update
the hydronium oxygen index (Figure 4). The acceptor O1 was
the oxygen atom O1’ of the closest water molecule most of the
time, but not always. Figure S14 in the Supporting Information
shows plots of the distances Rpyopr v8 Rggo; at the donor—
acceptor swap moments. We find Rpgo; # Rpgo only for a
small fraction of the swaps (up to 2.7%). As such, the “special
pair dancing” dynamics discussed in ref 17 can be applied here,
e.g., to interpret the bimodal distribution in the solvated proton
RDF gogo(r) obtained from OMln (see Section 3.E). The
donor—acceptor distances at the swapping event display normal
distributions centered at 2.37, 2.33, and 2.41 A for the PM3n,
OM1n, and OM3# simulations, respectively (see Figure S15 in
the Supporting Information); these values match the respective
locations of the well centers in V&S for the corresponding
semiempirical models.

4. CONCLUSION

In this paper, we have reparameterized several well-established
semiempirical methods, with the objective to improve the
semiempirical modeling of proton transfer in bulk water.
Overall, the orthogonalization-corrected OMI1n and OM3n
models outperform the MNDO-based AMln and PM3n
methods in reproducing the ab initio reference geometries
and energies, as well as in describing proton transfer. The
OM3n model seems to be the most successful overall, providing
radial distribution functions and potentials of mean force that
are the most accurate among all methods considered. The small
but finite (0.1—0.2 kcal/mol) OM3n free-energy barrier for
proton transfer agrees with the barrier from ab initio path-
inte studies.*”** The OM3n simulations support the
Eigen—Zundel—Eigen mechanism, where a proton is trans-
ferred between resting Eigen-like structures via transitional
Zundel-like structures. The success of the OM3n model is likely
due to the resemblance between the OM3n potential energy
surface and the effective ab initio path-integral energy surface
for the Zundel ion.?' This good match is, to some extent,
fortuitous, because our reparameterization was done with
regard to MP2/aug-cc-pVTZ reference data (and not with
respect to the path-integral surface>). Future refinements of
the current semiempirical surfaces are conceivable, for example,
by including explicit empirical corrections for dispersion
interactions.

The present work demonstrates that the semiempirical
framework is robust and flexible enough to allow for realistic
reparameterizations, which provide a much improved descrip-
tion of water and proton transfer in water. Not surprisingly, it
has been easier to obtain more accurate results by starting from
the improved OMx models with orthogonalization corrections
rather than from the MNDOQ-based AM1 or PM3 methods.
Given our choice of MP2/aug-cc-pVTZ reference data, our
favored OM3n model is expected to provide results of MP2-like
quality for water and proton transfer in water, and it should
thus be useful in practice. We anticipate that it should also be
possible, in principle, to reparameterize the OMx methods with
regard to even more-accurate ab initio data (e.g, computed at
the coupled-cluster level with larger basis sets).

Finally, we note that the new semiempirical models are
specifically designed for water and proton transfer in water.
They may or may not be more accurate than the original
methods in describing other molecules or reactions. The
specific reaction pammetri'z.alion“"3 offers a convenient way to
develop computationally efficient tools with only a handful of
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adjustable parameters for simulations of specific systems that
are too large and too expensive for density functional theory
and ab initio methods to handle. Another recent exampleS? is
the reparameterization of AMI for modeling the reduction of
7,8-dihydrofolate by nicotinamide adenine dinudeotide phos-
phate hydride in dihydrofolate reductase (DHFR). The
corresponding SRP AM1 Hamiltonian was used in QM/MM
simulations of the DHFR-catalyzed reaction to compute kinetic
isotope effects (using a mass-perturbation-based path-integral
approach), in excellent agreement with the experiment.
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Table S1. Description of the optimized parameters for the semi-empirical methods.

Parameters MNDO-based OMx
(AM1 and (x=1,2

PM3) and 3)
Slate-type orbital exponents ¢, ¢, Y N
Scale factor for the Gaussian-type orbitals ¢ N Y
One-electron one-center mtegrals U, U, Y Y
One-electron two-center integral parameters f;, B, Y N
One-electron two-center integral parameters S, B, B, as, &, 0 N Y
Two-electron one-center integrals Gy, Gpp, Gsp, G2, Hyp Y Y
Atomic core-core repulsion term parameters a Y N
Gaussian core repulsion function parameters K, L, M Y N
Pre-factors for orthogonalization corrections F, G N Y

“ Parameters are optimized for oxygen and hydrogen, for which the total number of parameters is
32 for AM1, 29 for PM3, 27 for OMI1, 31 for OM2, and 27 for OM3, respectively. Note that the
parameters f; and S, are defined differently in the MNDO-based and orthogonalization-corrected

methods.
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Table S2. Location of minima and maxima in the radial distribution functions for bulk
water.

goo(r)” gon(r)*

1 Max. 1¥Min. 2°° Max. 1 Max. 1¥Min. 2" Max.

Exp.? 2.76 3.42 4.47 1.71 2.43 3.33
AM1 2.75 3.85 n/a 2.25 2.85 3.45
AMIn 275 3.90 n/a 2.25 2.75 3.45
PM3 2.75 4.05 n/a 1.85 2.25 3.25
PM3n 2.75 4.15 n/a 1.75 2.25 3.25
OM1 2.85 3.85 n/a 2.25 2.60 3.45
OMIn  2.85 3.85 n/a 2.25 2.55 3.35
OM3 2.35 3.15 3.95 n/a 2.30 2.95
OM3n  2.75 3.45 4.75 1.85 2.45 3.35

“In A. The maximum corresponding to the covalently bound hydrogen is excluded from gou(r).
See Fig. 7 and Fig. 8 in the text for the RDF curves.
b Soper, A. K. Chem. Phys. 2000, 258, 121-137; Soper, A. K.; Benmore, C. J. Phys. Rev. Lett.

2008, 7101, 065502/1-4.
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Figure S1: Radial distribution functions goo(r) for water at the MM level

Radial distribution functions goo(r) for water computed for the (A) SPC and (B) TIP3P water
models. PBC indicates simulations employing periodic boundary conditions. The experimental

data (Exp) is plotted in both panels for comparison. Note that all curves have been scaled such

that the height of the first peak is 1.00.
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Figure S2: Radial distribution functions gou(r) for water at the MM level

Radial distribution functions gou(7) for water computed for the (A) SPC and (B) TIP3P water
models. PBC indicates simulations employing periodic boundary conditions. The experimental
data (Exp) is plotted in both panels for comparisons. Note that all curves have been scaled such

that the height of the second peak in the graph (near 3.3 A) is 1.00.
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Figure S3: Optimized Eigen cation
Superimposition of the optimized geometries of the Eigen cation (Entry (g) in Fig. 1). The

alignment is based on the hydronium ion coordinates. Color code for the geometries: MP2 in red,
authentic semi-empirical methods in green, and re-parameterized semi-empirical models in blue.
Distances in A and angles in degree.
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Figure S4: Optimized water tetramer

Superimposition of the optimized geometries of the water tetramer (Entry (h) in Fig

alignment is based on all atomic coordinates. See caption of Fig. S3 for conventions.
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Figure S5: Optimized Zundel ion in complex with two water molecules

Superimposition of the optimized Zundel ion in complex with two water molecules (Entry (1) in
Fig. 1). The alignment is based on the Zundel ion coordinates except in AM1n for which the
alignment is based on all atomic coordinates. See caption of Fig. S3 for conventions.
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Figure S6: Optimized water pentamer

Superimposition of the optimized geometries of the water pentamer (Enfry (j) in Fig

alignment is based on all atomic coordinates. See caption of Fig. S3 for conventions.
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Figure S7: Gas-phase energy profiles for proton transfer: AM1 and AM1n

Comparison of MP2 (solid line), AM1 (dashed lines), and AM1n (dashed-dotted lines) gas-phase
energy profiles for proton transfer between two water molecules in the Zundel ion for given
oxygen-oxygen distances (Roo in A). Here, dr is the difference in the distances between the
migrating proton and the two oxygen atoms. The MP2/aug-cc-pVTZ data obtained from relaxed
surface scans in panel (A) were included in the training set, and those in panel (B) in the

validation set. The AMI1 curve is right beneath the AM1n curve.
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Figure S8: Gas-phase energy profiles for proton transfer: PM3 and PM3n

Comparison of MP2 (solid line), PM3 (dashed lines), and PM3n (dashed-dotted lines) gas-phase
energy profiles for proton transfer between two water molecules in the Zundel ion for given

oxygen-oxygen distances (Roo in A). See caption of Fig. S7 for conventions.
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Figure S9: Gas-phase energy profiles for proton transfer: OM1 and OM1n

Comparison of MP2 (solid line), OM1 (dashed lines), and OM1n (dashed-dotted lines) gas-phase
energy profiles for proton transfer between two water molecules in the Zundel ion for given

oxygen-oxygen distances (Roo in A). See caption of Fig. S7 for conventions. The OM1 curve is

right beneath the OM1n curve.
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Figure $10: Gas-phase energy profiles for proton transfer: OM2 and OM2n

Comparison of MP2 (solid line), OM2 (dashed lines), and OM2n (dashed-dotted lines) gas-phase
energy profiles for proton transfer between two water molecules in the Zundel ion for given

oxygen-oxygen distances (Roo in A). See caption of Fig. S7 for conventions.
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Figure $11: Gas-phase energy profiles for proton transfer: OM3 and OM3n

Comparison of MP2 (solid line), OM3 (dashed lines), and OM3n (dashed-dotted lines) gas-phase
energy profiles for proton transfer between two water molecules in the Zundel ion for given

oxygen-oxygen distances (Roo in A). See caption of Fig. S7 for conventions.
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Figure $12: Water dimer geometries from relaxed surface scans

Water dimer geometries obtained in relaxed surface scans at the MP2/aug-cc-pVTZ level for (A)
long (Roioz = 2.6 A) and (B) short (Rojoz < 2.5 A) distances between the oxygen atoms.
Different relative orientations were observed: (A) the H11-O1-H12 plane bisects the angle H21-
02-H22 with dihedral angle H11-O1-H12-02 ~ 0° (B) both water molecules are in the same

plane with dihedral angle H11-H12-H21-H22 ~ 0°.

(A H21

H11

H12

® H21 02 H12

01  HM
H22 _ _ -




S17

Figure $13: Distributions of the sampled geometries

Distributions of the sampled geometries as functions of (A) the distance Rooo1r between the

hydronium oxygen OO and the nearest potential acceptor O1’; (B) the distance difference

, Where H' denotes the hydrogen atom between O0 and O1’, and Roor' (Ro1m)

dr= ‘R()OH —Rormr

are the distances between O0 (O1’) and H'; and (C) the ratio p (see Fig. 4 for definition).
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Figure $14: Rooo1 and Rpgo¢- at donor-acceptor swaps

Comparison of Rogo; and Rogor When the donor and acceptor atoms swap, from (A) PM3n, (B)
OMIn, and (C) OM3n simulations. Here, Rogo1 (Rooor’) 1s the distance between the donor O0
and the acceptor O1 (the nearest potential acceptor O1"). Usually O1 and O1’ are identical at the
time of swapping: O1’ differs from O1 only in 1.6% of the swaps (5 out of 305) for PM3n, in

0.5% (50 out of 9364) for OM1n, and 2.7% (128 out of 4678) for OM3n.
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Figure S15: Distribution of Roo01 at donor-acceptor swaps

Distribution of the donor-acceptor distance Rooo; at the moment when the donor and acceptor
swap. The average Rogo1 values are 2.37 A, 2.33 A, and 2.41 A for PM3n, OM1n, and OM3n,

respectively.
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Figure $16: Integrated coordination number ngq(r) of water

Integrated coordination number noo(7) for bulk water by the (A) SPC and TIP3P water models,
(B) MNDO-based AM1 and PM3 models, and (C) orthogonalization-corrected OM1 and OM3

models. Results are shown for the authentic and the re-parameterized semi-empirical methods.
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Figure S17: Integrated coordination number ngy(r) of water

Integrated coordination number noy(7) for bulk water by the (A) SPC and TIP3P water models,
(B) MNDO-based AM1 and PM3 models, and (C) orthogonalization-corrected OM1 and OM3

models. Results are shown for the authentic and the re-parameterized semi-empirical methods.
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Figure $18: Integrated coordination numbers ngoo(r) and ngoy(r) of solvated
proton

Integrated coordination numbers (A) nooo(7) and (B) noou(r) for solvated proton obtained from

the re-parameterized semi-empirical methods.
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