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Zusammenfassung 

 

Nach neusten Schätzungen wird die weltweite Prävalenz von Diabetes von 366 Millionen 

Betroffenen im Jahr 2011 auf 552 Millionen im Jahr 2030 ansteigen. Diese Zahlen spiegeln die 

Notwendigkeit wider, dass die molekularen Mechanismen, die zu der Entstehung dieser Erkrankung 

führen, schnellstmöglich aufgedeckt werden, um neue therapeutische Strategien entwickeln zu 

können. Sowohl die Entstehung von Insulinresistenz im Skelettmuskel, Leber und Fettgewebe, als 

auch die Dysfunktion der β-Zellen des Pankreas bestimmen die Pathogenese des Typ 2 Diabetes 

(T2D). Dabei spielt vor allem die Entstehung einer Insulinresistenz im Skelettmuskel eine 

entscheidende Rolle. Die Sensitivität dieser Zellen auf Insulin zu reagieren ist dabei gestört, lange 

bevor klinische Symptome erkennbar sind. Jedoch sind die Ursachen und Faktoren, die zur 

Entstehung von Insulinresistenz beitragen, nicht zufriedenstellend aufgedeckt und verstanden. 

Zusätzlich sind noch immer nicht alle Bestandteile des Insulinsignalweges identifiziert, so dass die 

physiologische sowie auch pathophysiologische Regulation dieses zentralen Signalweges 

unzureichend verstanden wird. Aus diesem Grund ist ein zentrales Ziel der Diabetesforschung den 

Insulinsignalweg weiter zu charakterisieren und die Mechanismen aufzudecken, die eine Störung des 

Insulinsignalwegs im Skelettmuskel bewirken. 

Sowohl der Akt- als auch der mammalian target of rapamycin complex 1 (mTORC1)-

Signalweg spielt eine entscheidende Rolle bei der Kontrolle und Regulierung der Insulinwirkung. Eine 

Dysregulation dieser Signalwege konnte bereits mit der Entstehung von Insulinresistenz in 

Verbindung gebracht werden. Das Protein proline-rich Akt substrate of 40 kDA (PRAS40) ist nicht nur 

Bestandteil und Substrat des Proteinkomplexes mTORC1 sondern auch eines derjenigen Proteine, die 

am stärksten durch die Proteinkinase Akt reguliert werden. Obwohl bereits gezeigt werden konnte, 

dass die Insulin-vermittelte Phosphorylierung von PRAS40 sowohl in Nagern nach einer Hochfett-Diät 

als auch in Menschen mit T2D reduziert ist, ist die Funktion dieses Proteins im Insulinsignalweg 

unvollständig aufgedeckt. Aufgrund dieser unzureichenden Kenntnisse über PRAS40 war das Ziel 

dieser Arbeit die Funktion von PRAS40 auf den Insulinsignalweg sowie auf den mTORC1-Signalweg in 

Skelettmuskelzellen zu untersuchen. Der Knockdown von PRAS40 führte zu einer verminderten 

Insulin-vermittelten Phosphorylierung von Akt und seinen Substraten. Zusätzlich war die Insulin-

induzierte Aufnahme von Glukose in die Muskelzellen beeinträchtigt. Bei Abwesenheit von PRAS40 

war Insulin zudem nicht mehr in der Lage, die mTORC1 Aktivität zu steigern, was auf eine 

verminderte Aktivität des PI3K/Akt/TSC2 Signalweges zurückzuführen ist. Die Beeinträchtigung der 
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Insulinwirkung durch den Verlust von PRAS40 konnte durch eine verminderte Proteinexpression von 

insulin receptor substrate (IRS) 1 erklärt werden. Die Inhibierung der Kinase p70S6K, welche bekannt 

ist, den aktiven Abbau von IRS1 zu begünstigen, konnte weder die verminderte IRS1-

Proteinexpression noch die Insulinsensitivität bei Abwesenheit von PRAS40 normalisieren. Im 

Gegensatz dazu, konnte die Reduktion der IRS1 Proteinabundanz durch den Knockdown von PRAS40 

mit einer gesteigerten Aktivität des 26S Proteasoms und durch eine erhöhte Genexpression der E3-

Ligasen MuRF1 und FBXO32 erklärt werden. Die pharmakologische Inaktivierung des Proteasoms in 

PRAS40-knockdown Zellen durch MG-132 normalisierte die IRS1 Proteinexpression sowie die 

Insulinsensitivität. Im Gegensatz zu diesen Ergebnissen bewirkte die Überexpression von PRAS40 eine 

signifikante Erhöhung der Insulinsensitivität in humanen Skelettmuskelzellen in vitro sowie in vivo in 

Mausmuskeln. Diese Effekte konnten erneut durch Veränderungen des IRS1 Proteinlevels erklärt 

werden. Die Überexpression von PRAS40 bewirkte eine verstärkte Proteinexpression von IRS1, was 

vornehmlich durch eine verminderte Aktivität des Proteasoms induziert wurde. Es stellte sich heraus, 

dass die positiven Effekte von PRAS40 auf die Aktivität des Proteasoms unabhängig von 

posttranslationalen Modifikationen (genauer gesagt Phosphorylierung) sowie von der Bindung von 

PRAS40 an mTORC1 vermittelt wurden. Im Gegensatz dazu, konnte die Insulinresistenz, die durch 

eine chronische Behandlung der Skelettmuskelzellen mit Insulin induziert wurde, nur durch 

Überexpression von PRAS40 aufgehoben werden, wenn Phosphorylierung von PRAS40 und/oder die 

PRAS40-mTORC1-Bindung ermöglicht werden konnte. Diese mTORC1-Bindung und 

Phosphorylierungsstellen waren zudem essentiell für die Inhibierung des mTORC1 durch PRAS40-

Überexpression. Wir konnten des Weiteren zeigen, dass PRAS40 eine Sequenz besitzt, welche den 

Export von Proteinen aus dem Kern reguliert. Die Einfügung einer Mutation innerhalb dieser Sequenz 

führte zu einer verstärkten Akkumulierung von PRAS40 im Zellkern von A14 Fibroblasten und 

resultierte in einer verminderten Insulin-induzierten Aktivierung des Akt- und mTORC1 Signalweges. 

Schlussendlich konnten wir bestätigen, dass die Phosphorylierung von PRAS40 an Thr246 ein 

möglicher Biomarker für Insulinresistenz darstellt. Sfrp5, welches identifiziert wurde die 

Insulinwirkung in humanen Adipozyten zu modulieren, inhibierte die Insulin-vermittelte 

Phosphorylierung von Akt. Dieses spiegelte sich zusätzlich in einer verminderten Phosphorylierung 

von PRAS40 an Thr246 durch Insulin wider.  

Zusammenfassend zeigen unsere Daten, dass PRAS40 als ein neuer Modulator der 

Insulinwirkung identifiziert werden konnte. PRAS40 wirkt regulierend auf die Proteinabundanz von 

IRS1 und bestimmt dadurch die Insulinsensitivität. Dabei besitzt dieses Protein zwei unabhängige 

Funktionen in der Zelle: Auf der einen Seite wirkt PRAS40 inhibierend auf den mTORC1 Signalweg, 

auf der anderen Seite wird die Aktivität des Proteasoms durch PRAS40 moduliert. Zukünftige 
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Experimente müssen jedoch den Mechanismus aufdecken, wie der Einfluss von PRAS40 auf das 

Proteasom vermittelt wird. 
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Summary 

 

 According to current estimations, the worldwide prevalence of diabetes will increase from 

366 million in 2011 to 552 million in 2030, emphasizing the exigency of understanding the molecular 

mechanisms underlying the pathophysiology of this disease in order to develop new therapeutic 

strategies. Both, insulin resistance in skeletal muscle, adipocytes and liver as well as β-cell 

dysfunction are the core pathophysiological defects in type 2 diabetes (T2D). In this context, insulin 

resistance in skeletal muscle represents a critical determinant in pathogenesis of T2D and occurs long 

before clinical symptoms are observed. However, the underlying mechanisms as well as the involved 

factors contributing to the progression of insulin resistance are not yet fully elucidated. 

Intermediates involved in insulin signaling are pleiotropic and their role in physiological and 

pathophysiological insulin action is often undefined. For that reason, one important issue of diabetes 

research is to understand the normal insulin signaling cascade as well as to identify and characterize 

the multiple mechanisms involved in the disturbance of insulin action in skeletal muscle. 

The Akt and mammalian target of rapamycin complex 1 (mTORC1) signaling pathway play a 

predominant role in normal control of insulin action as well as in pathophysiology of insulin 

resistance. Proline-rich Akt substrate of 40kDa (PRAS40), a component and substrate of mTORC1, is 

one of the most prominent Akt-substrates in skeletal muscle. Although insulin-mediated 

phosphorylation of PRAS40 is impaired in skeletal muscle of high-fat diet fed rodents and humans 

with T2D, its function in insulin action is incompletely understood. Due to this inadequately defined 

function of PRAS40 in insulin signaling, one of the aims of this thesis was to characterize the function 

of PRAS40 on insulin action as well as on mTORC1 signaling in skeletal muscle. Knockdown of PRAS40 

inhibited insulin-mediated phosphorylation of Akt and its downstream targets and importantly, 

reduced insulin-stimulated uptake of glucose. In addition, activation of the mTORC1 pathway by 

insulin was decreased, likely due to inhibition of the PI3K/Akt/TSC2 axis. The reduction in insulin 

sensitivity by PRAS40 knockdown could be ascribed to a marked reduction in insulin receptor 

substrate (IRS) 1 protein expression. Pharmacological inhibition of p70S6K, which has been linked to 

IRS1 degradation, did not restore IRS1 expression and insulin sensitivity in cells lacking PRAS40. 

Rather, knockdown of PRAS40 elevated the activity of the 26S proteasome, and increased the mRNA 

expression of the E3 ligases MuRF1 and FBXO32. Pharmacological inhibition of the proteasome using 

MG-132 restored IRS1 abundance and insulin sensitivity in PRAS40-knockdown cells. In contrast to 

these results, overexpression of PRAS40 significantly increased insulin sensitivity in human skeletal 
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muscle cells in vitro, as well as in vivo in mice muscle. Again, these effects were mediated by 

alterations in IRS1. Protein abundance of IRS1 was increased after PRAS40 overexpression, which was 

likely induced via down-regulation of the proteasome activity by PRAS40 overexpression. 

Importantly, these beneficial effects were independent of posttranslation modifications (more 

precisely phosphorylation) and binding of PRAS40 to mTORC1. In contrast, protection against 

hyperinsulinemia-induced insulin resistance was only observed after PRAS40 overexpression when 

phosphorylation of PRAS40 and/or binding to mTORC1 was feasible. These events were also 

indispensable for inhibition of mTORC1 signaling by PRAS40 overexpression. Furthermore, our data 

revealed that PRAS40 possesses a functional nuclear export sequence. Enforced nuclear 

accumulation of PRAS40 via mutation of this sequence resulted in decreased insulin-mediated 

activation of Akt as well as of mTORC1 signaling pathway in A14 fibroblasts. Finally, we and others 

identified phosphorylation of PRAS40 at Thr246 as a possible biomarker for insulin resistance. Sfrp5, 

a newly identified modulator of insulin action in human adipocytes, inhibited insulin-mediated Akt 

phosphorylation, which was also displayed in a reduction in the ability of insulin to induce PRAS40 

phosphorylation. 

In summary, we could demonstrate that PRAS40 is a new modulator of insulin action via 

affecting IRS1 protein abundance. In this context, PRAS40 processes a dual function; on the one 

hand, PRAS40 regulates mTORC1 function. On the other hand, PRAS40 affects the activity of the 

proteasome, which is mediated in an mTORC1-independet manner. However, the underlying 

mechanism of PRAS40 action on the proteasomal machinery has to be elucidated in the future.  
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CHAPTER 1 

General Introduction 

  



 1.1. Type

 

1.1.1

 

Diabetes mellitus covers a group of metabolic disorders, which are characterized by elevated 

blood glucose concentrations. Hyperglycemia resulting from diabetes occurs as a consequence of 

abnormalities in insulin action, which result from inadequate insuli

pancreas and/or decreased tissue response to insulin. Symptoms of diabetic hyperglycemia are 

polyuria, polydipsia, weight loss, vision disorders and susceptibility to infections as well as 

ketoacidosis as an acute conseq

for long

metabolism; diabetes increases the incidence of microvascular complications, including retinopathy, 

nephropathy, neuropathy and erectile dysfunctions, as well as macrovascul

cardiovascular diseases, in particular ischemic heart diseases, peripheral vascular diseases, and 

cerebrovascular diseases, resulting in organ damage and failure in up to one half of patients with 

diabetes 

quality of life. 

According to guidelines for diagnosis of diabetes defi

Associations (ADA), one of the following criteria must be fulfill; (1) glycated hemoglobin A1C (HbA1C) 

levels ≥ 6.5%, or (2) fasting plasma glucose (FPG) levels ≥ 126mg/dl (7.0 mmol/l), or (3) 2h plasma 

glucose levels during an

random plasma glucose level of 

hyperglycemia or hyperglycemic crisis 

two subtypes, type 1 diabetes (T1D) and type 2 diabetes (T2D). 

T1D accounts for 5

destruction of the β

autoantibodies (e.g. against insulin, 

IA-2β), which are detectable in up to 90% of these patients and serve as diagnostic markers. 

Additionally, T1D is characterized by a strong human leukocyte antigen (HLA)

absolute insulin deficiency induced by the dest

need for insulin treatment. 

the autoimmune destruction of β

been increasingly diagnosed in children and adolescents in the last decades, T1D is the most common 

type of diabetes in youth. However, one fourth of patients with T1D are diagnosed as adults and in 

Type 2 diabetes

 1.1.1 Definition

 

Diabetes mellitus covers a group of metabolic disorders, which are characterized by elevated 

blood glucose concentrations. Hyperglycemia resulting from diabetes occurs as a consequence of 

abnormalities in insulin action, which result from inadequate insuli

pancreas and/or decreased tissue response to insulin. Symptoms of diabetic hyperglycemia are 

polyuria, polydipsia, weight loss, vision disorders and susceptibility to infections as well as 

ketoacidosis as an acute conseq

ng-term consequences due to chronic abnormalities in carbohydrate, fat and protein 

metabolism; diabetes increases the incidence of microvascular complications, including retinopathy, 

nephropathy, neuropathy and erectile dysfunctions, as well as macrovascul

cardiovascular diseases, in particular ischemic heart diseases, peripheral vascular diseases, and 

cerebrovascular diseases, resulting in organ damage and failure in up to one half of patients with 

diabetes (2,3). Taken together this disease is associated with reduced life expectancy and diminished 

quality of life.  

According to guidelines for diagnosis of diabetes defi

Associations (ADA), one of the following criteria must be fulfill; (1) glycated hemoglobin A1C (HbA1C) 

≥ 6.5%, or (2) fasting plasma glucose (FPG) levels ≥ 126mg/dl (7.0 mmol/l), or (3) 2h plasma 

glucose levels during an

random plasma glucose level of 

hyperglycemia or hyperglycemic crisis 

two subtypes, type 1 diabetes (T1D) and type 2 diabetes (T2D). 

T1D accounts for 5

destruction of the β

autoantibodies (e.g. against insulin, 

2β), which are detectable in up to 90% of these patients and serve as diagnostic markers. 

Additionally, T1D is characterized by a strong human leukocyte antigen (HLA)

absolute insulin deficiency induced by the dest

need for insulin treatment. 

the autoimmune destruction of β

been increasingly diagnosed in children and adolescents in the last decades, T1D is the most common 

type of diabetes in youth. However, one fourth of patients with T1D are diagnosed as adults and in 

iabetes mellitus

Definition, classification and prevalence of diabetes

Diabetes mellitus covers a group of metabolic disorders, which are characterized by elevated 

blood glucose concentrations. Hyperglycemia resulting from diabetes occurs as a consequence of 

abnormalities in insulin action, which result from inadequate insuli

pancreas and/or decreased tissue response to insulin. Symptoms of diabetic hyperglycemia are 

polyuria, polydipsia, weight loss, vision disorders and susceptibility to infections as well as 

ketoacidosis as an acute conseq

term consequences due to chronic abnormalities in carbohydrate, fat and protein 

metabolism; diabetes increases the incidence of microvascular complications, including retinopathy, 

nephropathy, neuropathy and erectile dysfunctions, as well as macrovascul

cardiovascular diseases, in particular ischemic heart diseases, peripheral vascular diseases, and 

cerebrovascular diseases, resulting in organ damage and failure in up to one half of patients with 

. Taken together this disease is associated with reduced life expectancy and diminished 

According to guidelines for diagnosis of diabetes defi

Associations (ADA), one of the following criteria must be fulfill; (1) glycated hemoglobin A1C (HbA1C) 

≥ 6.5%, or (2) fasting plasma glucose (FPG) levels ≥ 126mg/dl (7.0 mmol/l), or (3) 2h plasma 

glucose levels during an oral glucose tolerance test (OGTT) 

random plasma glucose level of 

hyperglycemia or hyperglycemic crisis 

two subtypes, type 1 diabetes (T1D) and type 2 diabetes (T2D). 

T1D accounts for 5-10% of diabetic patients and is caused by an immune

destruction of the β-cells of the pancreas. This disease is characterize by the presence of 

autoantibodies (e.g. against insulin, 

2β), which are detectable in up to 90% of these patients and serve as diagnostic markers. 

Additionally, T1D is characterized by a strong human leukocyte antigen (HLA)

absolute insulin deficiency induced by the dest

need for insulin treatment. Multiple genetic predispositions and environmental factors are linked to 

the autoimmune destruction of β

been increasingly diagnosed in children and adolescents in the last decades, T1D is the most common 

type of diabetes in youth. However, one fourth of patients with T1D are diagnosed as adults and in 

mellitus 

, classification and prevalence of diabetes

Diabetes mellitus covers a group of metabolic disorders, which are characterized by elevated 

blood glucose concentrations. Hyperglycemia resulting from diabetes occurs as a consequence of 

abnormalities in insulin action, which result from inadequate insuli

pancreas and/or decreased tissue response to insulin. Symptoms of diabetic hyperglycemia are 

polyuria, polydipsia, weight loss, vision disorders and susceptibility to infections as well as 

ketoacidosis as an acute consequence (1). However, of more importance is the increased incidence 

term consequences due to chronic abnormalities in carbohydrate, fat and protein 

metabolism; diabetes increases the incidence of microvascular complications, including retinopathy, 

nephropathy, neuropathy and erectile dysfunctions, as well as macrovascul

cardiovascular diseases, in particular ischemic heart diseases, peripheral vascular diseases, and 

cerebrovascular diseases, resulting in organ damage and failure in up to one half of patients with 

. Taken together this disease is associated with reduced life expectancy and diminished 

According to guidelines for diagnosis of diabetes defi

Associations (ADA), one of the following criteria must be fulfill; (1) glycated hemoglobin A1C (HbA1C) 

≥ 6.5%, or (2) fasting plasma glucose (FPG) levels ≥ 126mg/dl (7.0 mmol/l), or (3) 2h plasma 

oral glucose tolerance test (OGTT) 

random plasma glucose level of ≥ 200mg/dl (11.1 mmol/l) in a patient with classic symptoms of 

hyperglycemia or hyperglycemic crisis (1). The majority of patients with diabetes can be divided in 

two subtypes, type 1 diabetes (T1D) and type 2 diabetes (T2D). 

10% of diabetic patients and is caused by an immune

cells of the pancreas. This disease is characterize by the presence of 

autoantibodies (e.g. against insulin, glutamate decarboxylase 65

2β), which are detectable in up to 90% of these patients and serve as diagnostic markers. 

Additionally, T1D is characterized by a strong human leukocyte antigen (HLA)

absolute insulin deficiency induced by the dest

Multiple genetic predispositions and environmental factors are linked to 

the autoimmune destruction of β-cells, but are yet incompletely defined 

been increasingly diagnosed in children and adolescents in the last decades, T1D is the most common 

type of diabetes in youth. However, one fourth of patients with T1D are diagnosed as adults and in 
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Diabetes mellitus covers a group of metabolic disorders, which are characterized by elevated 

blood glucose concentrations. Hyperglycemia resulting from diabetes occurs as a consequence of 

abnormalities in insulin action, which result from inadequate insuli

pancreas and/or decreased tissue response to insulin. Symptoms of diabetic hyperglycemia are 

polyuria, polydipsia, weight loss, vision disorders and susceptibility to infections as well as 

. However, of more importance is the increased incidence 

term consequences due to chronic abnormalities in carbohydrate, fat and protein 

metabolism; diabetes increases the incidence of microvascular complications, including retinopathy, 

nephropathy, neuropathy and erectile dysfunctions, as well as macrovascul

cardiovascular diseases, in particular ischemic heart diseases, peripheral vascular diseases, and 

cerebrovascular diseases, resulting in organ damage and failure in up to one half of patients with 

. Taken together this disease is associated with reduced life expectancy and diminished 

According to guidelines for diagnosis of diabetes defi

Associations (ADA), one of the following criteria must be fulfill; (1) glycated hemoglobin A1C (HbA1C) 

≥ 6.5%, or (2) fasting plasma glucose (FPG) levels ≥ 126mg/dl (7.0 mmol/l), or (3) 2h plasma 

oral glucose tolerance test (OGTT) 

≥ 200mg/dl (11.1 mmol/l) in a patient with classic symptoms of 

. The majority of patients with diabetes can be divided in 

two subtypes, type 1 diabetes (T1D) and type 2 diabetes (T2D). 

10% of diabetic patients and is caused by an immune

cells of the pancreas. This disease is characterize by the presence of 

glutamate decarboxylase 65

2β), which are detectable in up to 90% of these patients and serve as diagnostic markers. 

Additionally, T1D is characterized by a strong human leukocyte antigen (HLA)

absolute insulin deficiency induced by the destruction of β

Multiple genetic predispositions and environmental factors are linked to 

cells, but are yet incompletely defined 

been increasingly diagnosed in children and adolescents in the last decades, T1D is the most common 

type of diabetes in youth. However, one fourth of patients with T1D are diagnosed as adults and in 

, classification and prevalence of diabetes

Diabetes mellitus covers a group of metabolic disorders, which are characterized by elevated 

blood glucose concentrations. Hyperglycemia resulting from diabetes occurs as a consequence of 

abnormalities in insulin action, which result from inadequate insulin secretion from the β

pancreas and/or decreased tissue response to insulin. Symptoms of diabetic hyperglycemia are 

polyuria, polydipsia, weight loss, vision disorders and susceptibility to infections as well as 

. However, of more importance is the increased incidence 

term consequences due to chronic abnormalities in carbohydrate, fat and protein 

metabolism; diabetes increases the incidence of microvascular complications, including retinopathy, 

nephropathy, neuropathy and erectile dysfunctions, as well as macrovascul

cardiovascular diseases, in particular ischemic heart diseases, peripheral vascular diseases, and 

cerebrovascular diseases, resulting in organ damage and failure in up to one half of patients with 

. Taken together this disease is associated with reduced life expectancy and diminished 

According to guidelines for diagnosis of diabetes defined by the American Diabetes 

Associations (ADA), one of the following criteria must be fulfill; (1) glycated hemoglobin A1C (HbA1C) 

≥ 6.5%, or (2) fasting plasma glucose (FPG) levels ≥ 126mg/dl (7.0 mmol/l), or (3) 2h plasma 

oral glucose tolerance test (OGTT) ≥ 200mg/dl (11.1 mmol/l), or (4) a 

≥ 200mg/dl (11.1 mmol/l) in a patient with classic symptoms of 

. The majority of patients with diabetes can be divided in 

two subtypes, type 1 diabetes (T1D) and type 2 diabetes (T2D).  

10% of diabetic patients and is caused by an immune

cells of the pancreas. This disease is characterize by the presence of 

glutamate decarboxylase 65 or tyrosine phosph

2β), which are detectable in up to 90% of these patients and serve as diagnostic markers. 

Additionally, T1D is characterized by a strong human leukocyte antigen (HLA)

ruction of β-cells, patients with T1D have a lifelong 

Multiple genetic predispositions and environmental factors are linked to 

cells, but are yet incompletely defined 

been increasingly diagnosed in children and adolescents in the last decades, T1D is the most common 

type of diabetes in youth. However, one fourth of patients with T1D are diagnosed as adults and in 

, classification and prevalence of diabetes 

Diabetes mellitus covers a group of metabolic disorders, which are characterized by elevated 

blood glucose concentrations. Hyperglycemia resulting from diabetes occurs as a consequence of 

n secretion from the β

pancreas and/or decreased tissue response to insulin. Symptoms of diabetic hyperglycemia are 

polyuria, polydipsia, weight loss, vision disorders and susceptibility to infections as well as 

. However, of more importance is the increased incidence 

term consequences due to chronic abnormalities in carbohydrate, fat and protein 

metabolism; diabetes increases the incidence of microvascular complications, including retinopathy, 

nephropathy, neuropathy and erectile dysfunctions, as well as macrovascular complications such as 

cardiovascular diseases, in particular ischemic heart diseases, peripheral vascular diseases, and 

cerebrovascular diseases, resulting in organ damage and failure in up to one half of patients with 

. Taken together this disease is associated with reduced life expectancy and diminished 

ned by the American Diabetes 

Associations (ADA), one of the following criteria must be fulfill; (1) glycated hemoglobin A1C (HbA1C) 

≥ 6.5%, or (2) fasting plasma glucose (FPG) levels ≥ 126mg/dl (7.0 mmol/l), or (3) 2h plasma 

≥ 200mg/dl (11.1 mmol/l), or (4) a 

≥ 200mg/dl (11.1 mmol/l) in a patient with classic symptoms of 

. The majority of patients with diabetes can be divided in 

10% of diabetic patients and is caused by an immune

cells of the pancreas. This disease is characterize by the presence of 

or tyrosine phosph

2β), which are detectable in up to 90% of these patients and serve as diagnostic markers. 

Additionally, T1D is characterized by a strong human leukocyte antigen (HLA)-association. Due to an 

cells, patients with T1D have a lifelong 

Multiple genetic predispositions and environmental factors are linked to 

cells, but are yet incompletely defined (1,4)

been increasingly diagnosed in children and adolescents in the last decades, T1D is the most common 

type of diabetes in youth. However, one fourth of patients with T1D are diagnosed as adults and in 
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. However, of more importance is the increased incidence 
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up to 10% of adults, which were primarily diagnosed with T2D, autoantibodies associated to T1D are 

detectable. This subtype of T1D is also termed latent autoimmune diabetes of adults (LADA). Finally, 

a minority of patients with T1D (less than 10%, most of African or Asian ancestry) suffers from 

episodic ketoacidosis and insulin deficiency but shows no evidence of β-cell autoimmunity, defining 

the idiopathic or type 1B diabetes (1,3-5). 

The non-insulin-dependent T2D or adult-onset diabetes accounts for 90-95% of diabetic 

cases and is characterized by resistance to insulin action in peripheral tissues, inadequate secretion 

of insulin as well as impaired suppression of glucagon secretion (1,6). This type of diabetes was long 

thought to be a metabolic disorder in elderly, however, an alarming increase of newly diagnosed T2D 

in children and adolescents could be observed in the last two decades. T2D may remain undiagnosed 

for many years because hyperglycemia develops gradually and symptoms are unnoticed. However, 

damages of organs and neurons, especially resulting from micro- and macrovascular complication 

can already progress (6,7). As T2D patients usually display only relative insulin deficiency, no daily 

doses of insulin are required, whereas changes in dietary and physical activity behavior and/or 

medication are used as therapeutic options. 

 Other forms of diabetes are mediated by specific genetic defects, e.g. of β-cell function 

(maturity-onset of diabetes in the young (MODY)) or mutations in mitochondrial DNA (maternally 

inherited diabetes and deafness (MIDD)), by diseases of the exocrine pancreas (pancreatitis) or by 

drugs and chemicals as well as due to infections (3,8,9). Furthermore, pregnant women can develop 

gestational diabetes, which symptoms resemble T2D very much. Although this type of diabetes 

mostly disappears after delivery, the incidence for developing T2D later in life is increased in these 

women (10). During manifestation of T2D, the progression from normal glucose tolerance (NGT) to 

T2D involves stages of impaired fasting glucose (IFG) and impaired glucose tolerance (IGT), also 

known as prediabetes. These patients do not meet the criteria for diabetes, yet their glucose levels 

are higher than those considered normal. Per year 5-10% of the individuals with prediabetes become 

diabetic, but the same portion returns to normoglycemia by lifestyle- or drug-based interventions. 

However, the ADA estimates that 70% of prediabetic patients will develop diabetes as well as 

cardiovascular diseases (11). 

According to current estimations the worldwide prevalence of diabetes mellitus will increase 

from 366 million in 2011 to 552 million in 2030 due to an increase in economic development and 

urbanization, which will lead to changes in lifestyles characterized by reduced physical activity and 

increased obesity. Interestingly, the number of patients with diabetes is inversely correlated with the 

current income status, with the greatest increase being expected in low-income countries (92%) (12). 

In line with this prevalence, diabetes imposes an increasing economic burden on national health care 



systems worldwide. In 2010 the expenditure on dia

billion and will raise to USD 490 billion in 2030 

leading caus

diabetes and its complications, especially due to cardiovascular diseases, emphasizing the 

importance of discovering new therapeutic options and facilitating early diagnos

 

1.1.2

 

Nowadays, it is well established that environmental factors causing metabolic disorders like 

obesity, hypertension and dyslipidemia trigger the progression of glucose intolerance. These 

disorders are collectively described as the metabolic syndrome (MetS, 
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enabling glucose uptake and decreasing blood glucose level. This aim is achieved via activation of 

/phosphatidylinositol 3´ 

mediated glucose 

uptake and progression of insulin resistance and will be discussed in detail in the following sections 

n of the adapter protein with pleckstrin homology and Src homology domain 

associated protein (CAP) complex is a PI3K-

. APS binds 

th CAP to the IR, where Cbl gets phosphorylated on 

multiple tyrosine residues. This induces the disassociation and translocation of the CAP/Cbl complex 

to specialized microdomains of the plasma membrane, the caveolar lipid rafts. Here, small guanosine 

 1.1). (iii) 

The third way by which insulin increases the amount of GLUT4 on the plasma membrane is via 

11 Jewell et al. could 

demonstrate for the first time that Munc18c is phosphorylated at Tyr521 by the IR in skeletal muscle 

associated 
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protein 23 (SNAP23) complex and enables its binding to the v-SNARE protein vesicle-associated 

membrane protein 2 (VAMP2). This in turn activates the soluble N-ethylmaleimide-sensitive-factor 

attachment receptor (SNARE)-machinery involved in coordination of GLUT4 exocytosis (Fig. 1.1) 

(34,37). 

 

Figure 1.1 IR-mediated GLUT4 translocation. Binding of insulin to insulin receptors results in conformational 

change and activation of intrinsic tyrosine kinases (TK) leading to autophosphorylation of the β-subunits. 

Exocytosis of GLUT4 vesicles can be induced via three independent mechanisms; (i) IRS1 binds to activated IR 

and induces PI3K/Akt-mediated GLUT4 translocation. (ii) Cbl is recruited to the plasma membrane and is 

phosphorylated by APS, which results in localization to lipid rafts via binding to CAP and flotillin. Here, 

phosphorylated Cbl recruits CrkII and the nucleotide exchange factor C3G, which acts on TC10 and results in 

GLUT4 translocation. (iii) IR phosphorylates Munc18c, which leads to dissociation of Munc18c from syntaxin 4. 

Syntaxin4 forms together with SNAP23 the only known active t-SNARE protein in skeletal muscle for GLUT4 

exocytosis. Free syntaxin 4 functions in glucose uptake by interacting with the v-SNARE VAMP-2, localized at 

the GLUT4 vesicles. Under basal conditions Munc18c prevents syntaxin 4/VAMP-2 interaction and must 

undergo conformational change by insulin-mediated phosphorylation to allow vesicle fusion. 

 

1.2.1.2 Function of IR in growth and aging 

 

Like many growth factor receptors the IR regulates mitogenesis via activation of the 

RAS/mitogen-activated protein (MAP) kinase pathway. Hereby, the adaptor protein Grb2, which is 

constitutively linked to the son of sevenless (SOS) protein, binds to phosphorylated IRS or Shc 

proteins, causing the recruitment of Grb2-SOS complex to the plasma membrane. Although IRS also 

binds Grb2, it is believed that the Shc-Grb2-SOS complex is predominantly involved in insulin-

mediated stimulation of growth. Once the Grb2-SOS complex is formed, p21ras gets activated via 
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GTP loading. This leads to phosphorylation and activation of serine/threonine kinases, including 

rapidly accelerated fibrosarcoma (Raf) and mitogen-activated protein kinase/extracellular signal-

regulated kinase kinase (MEK), resulting in activation of extracellular-signal-regulated kinase (ERK). 

Once ERK gets phosphorylated, it is translocated from the cytoplasm into the nucleus, where it 

phosphorylates a number of substrates involved in activation of transcription and cell-cycle 

progression (34,38,39). Besides activation of the RAS/MAPK pathway, IR can directly induce gene 

transcription via activation of the transcription factor signal transducer and activator of transcription 

(STAT) 5b. Upon phosphorylation, STAT-5b homodimerizes through SH2 domains and translocates to 

the nucleus (Fig. 1.2) (34,40). Importantly, the IR subunits α and β can form heterodimers with the 

insulin growth factor receptor (IGFR) to form IR-IGFR hybrids. These hybrids bind insulin growth 

factor (IGF) with the same affinity as IGFR homodimer, however, insulin binds with significantly lower 

affinity to hybrid receptors (41). Therefore, IR-IGFR hybrids more likely function in transduction of 

mitogenic signaling rather than metabolic downstream signaling.  

Genetic suppression of insulin and IGF signaling can extend longevity in worms, insects, and 

mammals. In line with this, both obesity and diabetes are associated with shortened life expectancy. 

Furthermore, caloric restriction, resulting in low insulin and IGF-1 levels, is the most effective method 

to increase lifespan in model systems. This effect is mediated by IR signaling cascades, which are also 

involved in regulation of metabolism and growth. A pivotal role for forkhead box transcription factor 

(FOXO), sirtuins (Sir) and mammalian target of rapamycin (mTOR) complex 1 (mTORC1) could be 

demonstrated in this scenario (Fig. 1.2) (42). Preliminary evidence indicates that it is relevant for 

regulation of longevity in human as well. 
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insulin action (43). This pathway is highly conserved in metazoan organisms and tightly controlled via 

a multistep process, which should be presented in the following sections. 

 

1.2.2.1 IRS proteins 

 

Tyrosine phosphorylation of IRS proteins constitutes the first event after activation of the IR 

that mediates intracellular insulin action. Importantly, IRS proteins do not possess an intrinsic 

catalytic activity but contain several functional domains which mediate interaction with the IR and 

several substrates. A phosphotyrosine-binding (PTB) domain, located at the amino terminus, is 

responsible for binding to the IR or IGFR. A pleckstrin homology (PH) domain, also located at the 

amino terminus, is required to elicit an optimal signal response. Although the underlying mechanism 

is unknown, deletion of this domain results in significantly decreased insulin-stimulated IRS1 tyrosine 

phosphorylation. The C terminus of IRS proteins contains numerous tyrosine residues that, after 

phosphorylation by the IR, act as on/off switches to recruit and regulate various substrates that 

contain Src-homogy-2 (SH2) domains. 

The family of IRS proteins consists of 4 members, IRS1-4 respectively. IRS1 and IRS2 are 

widely distributed, including tissues thought to be most important for glucose and lipid homeostasis, 

while the other members have restricted distributions. IRS1 and IRS2 are expressed in muscle, liver, 

fat and pancreatic islets, whereby IRS-1 appears to be more important in muscle metabolism and IRS-

2 may play greater roles in liver, adipose tissue and islet β cells. IRS3 is expressed in murine 

adipocytes and brain, but has so far not been detected in humans, whereas IRS4 is limited to 

embryonic tissue, brain, thymus or cell lines. Recently, two potential new members, IRS5 and IRS6, 

have been identified (43). The function of these proteins in signaling and if they really can be 

classified as IRS proteins need to be elucidated in the future (43,44).  

IRS1 and IRS2 are large proteins (160-185kDa), which are homologous in their PH and PTB 

domain and possess many similar tyrosine phosphorylation motifs. However, in contrast to IRS1, IRS2 

contains the kinase regulatory loop binding (KRLB) domain, which interacts with the IR, but not with 

IGFIR, and may function to limit IRS2 tyrosine phosphorylation. Furthermore, knockout studies in 

mice provide strong evidence that the IRS proteins have non-redundant functions in insulin signaling. 

IRS1 
-/-mice show a 70% reduction in body size mainly due to IGF1 resistance, whereas IRS2 

-/- mice 

show altered growth in only a few tissues, like brain, ovaries and pancreatic β-cells. Interestingly, in 

both models peripheral insulin resistance could be observed, but only IRS2 
-/ -mice develop diabetes 

due to loss of β-cell function (45,46). In vitro knockdown studies using IRS1- or IRS2-specific siRNAs in 

L6 myotubes implicate that IRS1 seems to be more closely linked to glucose uptake, whereas IRS2 is 

found to be important for regulation of MAPK activity (47). In line with this, a large body of human 
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studies link the occurrences of IRS1 polymorphisms to insulin resistance and diabetes, whereas no 

consistent association between IRS2 polymorphism and neither insulin resistance nor diabetes could 

be observed (48). Until now the function of IRS3 and IRS4 is not investigated in detail. IRS4 
-/-mice 

only show a mild reduction in growth, reproduction and insulin sensitivity, indicating that IRS4 

cannot activate MAPK and PI3K to the same degree as IRS1 or IRS2 (49). Finally, the ability and 

affinity to bind and activate various SH2-substrates as well as their cellular compartmentalization 

differ between the members of the IRS family (43). Downstream substrates of IRS proteins in 

response to insulin include the p85 regulatory subunit of PI3K, Grb2, and SH2 domain-containing 

protein tyrosine phosphatase-2 (SHP2). Although binding of other SH2-domain containing adaptor 

proteins to IRS has been reported, the dominant function for IRS proteins in IR-mediated regulation 

of metabolism is the amplification of PI3K signaling to activate the serine/threonine kinase Akt (43) 

(Fig.1.3). 

 

1.2.2.2 PI3K 

 

PI3K belongs to a family of lipid kinases that form different isoform and have been divided 

into different classes (class Ia, Ib, II, III) based on their structure, substrate specificity and mechanism 

of activation (50). Class Ia PI3K consists of a regulatory and a catalytic subunit, each of which occurs 

in several isoforms (regulatory: p85α, p55α, p50α, p85β; catalytic: p110α, p110β, p110δ). Inhibition 

or transgenic deletion of class Ia PI3K abrogates nearly all effects of insulin´s metabolic actions, 

highlighting the essential role of these proteins in insulin signaling. The p85α protein is best known as 

the regulatory subunit of PI3K. As such, it has major well-described functions in the stabilization and 

regulation of the p110 catalytic subunit of PI3K (51). In unstimulated cells the complex of p85 and 

p110 is located in the cytosol and PI3K activity is repressed. In response to insulin or other growth 

factors IRS proteins get activated, enabling binding of p85 through the SH2-binding domains, leading 

to recruitment of p85-p110 complexes to the plasma membrane where termination of the repression 

of p110 catalytic activity is induced. Active PI3K phosphorylates the inositol ring of 

phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) on the 3-position, resulting in generation of 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3). PIP3s are important lipid messengers, which recruit 

a number of downstream signaling proteins containing pleckstrin homology (PH) and PH-like domains 

to the plasma membrane thereby transmitting the signal elicited by PI3K activation. Two of the best-

characterized substrates are the serine/threonine kinase Akt and the AGC kinase 3-phosphoinositide-

dependent protein kinase 1 (PDK1) (Fig.1.3) (52).  
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1.2.2.3 Serine/threonine kinase Akt 

 

Akt (or protein kinase B (PKB)), a 56kDa member of the ACC serine/threonine kinase family, 

represents a pivotal node in many signaling pathways downstream of G-protein-coupled receptors 

and growth factor receptors, such as IR and IGFR. As such, Akt plays a crucial role in cell survival, 

proliferation, growth, migration, polarity, insulin-mediated glucose uptake, glucose and lipid 

metabolism, contractility in skeletal muscle and cardiomyocytes, angiogenesis and self-renewal of 

stem cells. In line with this, alterations in Akt activity are linked to diseases such as cancer, T2D, 

cardiovascular, neurodegenerative disorders and muscle hypertrophy (53). Three isoforms, namely 

Akt1, Akt2 and Akt3 are encoded from three different genes on different chromosomes in 

mammalian cells. While Akt3 is predominantly found in testis, brain, kidney and heart, Akt1 and Akt2 

are expressed ubiquitously. All three members of this family consist of a highly conserved domain 

structure with an N-terminal PH-domain, a kinase domain and a C-terminal regulatory tail containing 

a hydrophobic motif (53). However, several studies using either siRNA–mediated knockdown or 

knockout mice demonstrate that the different Akt isoforms regulate distinct biological processes. 

While Akt1 seems to be more important for insulin-mediated regulation of cell growth and survival, 

Akt2 contributes to insulin-induced control of glucose metabolism. Mice with a global knockout of 

Akt1 are viable but smaller compared to wild type littermates and display a reduced life span in 

response to genotoxic stress. However, these mice do not develop insulin resistance or a diabetic 

phenotype (54). In contrast, Akt2 knockout results in impairment of the ability of insulin to lower 

blood glucose (55). Furthermore, a study in humans could demonstrate that a mutation in the kinase 

domain of Akt2 is associated with insulin resistance and diabetes (56). Due to the fact that Akt3 is 

predominantly expressed in brain, Akt3 
-/- mice display impaired brain development but do not show 

any impairment of growth or glucose homeostasis (57). Studies investigating the specific function of 

different Akt isoforms in muscle show that Akt1 is important for myoblast differentiation via 

regulation of the transcription factor myogenic factor 3 (MyoD) (58). Furthermore, deletion of Akt1 is 

associated with increased basal fatty acid uptake and β-oxidation in myotubes, which is linked to 

decreased glucose uptake (59,60). The importance of Akt2 for insulin-induced glucose uptake could 

be confirmed by the observations that glucose uptake and glycogen synthesis is reduced after siRNA-

silencing of Akt2 in muscle cells (59). In contrast, overexpression of constitutively active Akt1 or Akt2 

results in muscle hypertrophy consistent with increased mTORC1 activation, and a 60% increase in 

glycogen accumulation. However, only Akt2 overexpression results in increased glucose uptake in 

vivo (61). Interestingly, studies with double Akt isoform knockout mice reveal some overlap or 

compensation among the isoforms, indicating that both, overlapping as well as specific roles for Akt 

family members exist (62). 
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All three members of the Akt family are recruited to the plasma membrane upon growth 

factor and insulin stimulation. Here, binding of the N-terminal PH domain to PIP3 leads to 

conformational changes within the protein and enables phosphorylation and activation of Akt kinase 

activity. PDK1, which is co-recruited to the membrane after PI3K activation, phosphorylates Akt at 

Thr308 within the catalytic motif (Thr309 in Akt2/Thr305 in Akt3) (53). Phosphorylation of this 

residue increases Akt activity by about 100-fold. However, maximal activation of Akt kinase requires 

the additional phosphorylation of Ser473 (Ser474 in Akt2/Ser472 in Akt3) within the hydrophobic 

domain (63) (Fig.1.3). The kinase responsible for Ser473 phosphorylation within Akt was unknown for 

a long time. Today, mammalian target of rapamycin complex 2 (mTORC2) is believed to be the 

predominant kinase involved in Ser473 phosphorylation of Akt. However, skeletal muscle-specific 

deletion of rictor, the key regulator of mTORC2, revealed that other kinases are also involved in 

Ser473 phosphorylation, such as mitogen-activated protein kinase 2, integrin-linked kinase (ILK), 

protein kinase C isoforms or DNA-dependent protein kinase (DNA-PK) (64). It is currently believed 

that Ser473 phosphorylation can facilitate Thr308 phosphorylation, however, studies using alanine 

mutations show that Akt Thr308 and Ser473 can be phosphorylated independently from each other 

(63). Further studies demonstrated that a deletion of regulatory subunits of the mTORC2, such as 

rictor, mSIN1 or mLST8, on the one hand selectively inhibit Ser473 phosphorylation and 

phosphorylation of the Akt substrate FOXO3, but on the other hand do not affect phosphorylation of 

other Akt targets such as glycogen synthase kinase 3 (GSK3)-β or tuberous sclerosis complex (TSC)-2, 

demonstrating that Ser473 may determine Akt specificity rather than Akt activity (64,65). After 

activation of Akt at the plasma membrane, the kinase dissociates and translocates to the cytosol and 

various subcellular compartments, including the endoplasmic reticulum, mitochondria, Golgi and 

nucleus, where it activates a plethora of substrates by serine and/or threonine phosphorylation. Akt 

substrates consist of a consensus motif (R-X-R-X-X-S/T) (66), which results in thousands of potential 

Akt substrates. However, until today 60-70 of these substrates have been characterized (53). Akt 

either regulates the function of these substrates, alters their localization or modifies their stability. 

GSK3 was the first physiological target of Akt to be identified (67,68). Insulin-mediated 

phosphorylation of GSK3 by Akt results in inhibition of its function and increased glycogen synthesis. 

A number of Akt substrates, such as Bcl-2-associated death promoter (Bad), Bcl-2-associated X-

protein (Bax) and apoptosis signaling kinase 1 (ASK-1) are involved in the regulation of apoptosis, cell 

cycle progression and cell survival. In general, activation of Akt results in induction of anti-apoptotic 

signaling events, thus pointing out the pivotal relevance of Akt in cancer development. In the nucleus 

Akt regulates the gene expression of diverse gluconeogenic and lipogenic enzymes by controlling the 

activity of the transcription factor family FOXO (Fig. 1.3). Another important substrate is TSC2, which 
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controls mTORC1, an essential regulator of cell growth and insulin signaling (see 1.2.3 and Fig.1.4). 

Furthermore, in muscle Akt seems to regulate the composition of the myofribrillar-cytoskeletal 

system (60).  

 

1.2.2.4 Akt-mediated Glut4 translocation 

 

One of the key roles of Akt in skeletal muscle is to mediate the translocation of the insulin- 

and contraction-responsive glucose transporter GLUT4 from intracellular compartments to the 

plasma membrane. This process involves multiple signaling molecules and phosphorylation events 

and finally results in the induction of glucose uptake into the cell. GLUT4 molecules reside in 

specialized intracellular vesicles, termed GLUT4 storage vesicles (GSVs) which, in the basal state, 

slowly recycle between different intracellular compartments and the plasma membrane (69). 

Following insulin stimulation, these GSVs are mobilized within minutes and transferred to distinct 

docking positions at the plasma membrane. This complex mechanism is executed by a multiplicity of 

effector molecules starting from the insulin receptor itself via PI3K and Akt and finally resulting in the 

phosphorylation of RabGTPase-activating protein (GAP)-domain containing proteins (70). One of 

these proteins was first described in 2002 as Akt substrate of 160 kDa (AS160, TBC1D4) (71) and since 

then represents a major focus of research on insulin action (72-74). The direct phosphorylation by 

Akt leads to an inactivation of the GTP-hydrolysis activity of AS160 and subsequently to an 

accumulation of small GTP-bound Rab GTPases present in GLUT4-containing vesicles. Various Rab 

proteins (Rab 8, Rab 10, Rab 14) have been found in in vitro approaches as targets for AS160 in GSVs 

(69,72). In the basal state, AS160 is bound to GSVs, accelerating their intrinsic GTP hydrolysis activity 

and leading to the retention of GLUT4-containing vesicles in the cytosol. Upon stimulation, AS160 

GAP activity is inactivated and GSVs are translocated to the cell surface, resulting in enhanced 

glucose uptake (Fig. 1.3) (69,72). Two models propose how AS160 phosphorylation can lead to GLUT4 

translocation: i) It could be shown that 14-3-3 adaptor proteins bind to phosphorylated AS160 

resulting in an inhibition of its GAP activity (75). ii) Alternatively, phosphorylation of AS160 could lead 

to translocation of AS160 from GSVs to the cytosol, thus enabling conversion of Rab proteins to their 

active (GTP-bound) form and mediating GSV trafficking to the cell membrane (75). Importantly, 

contractile activity in muscle can also stimulate GLUT4 translocation independently of insulin (76,77). 

Exercise stimulates glucose uptake via activation of AMP-activated protein kinase (AMPK) and 

calmodulin, which results in phosphorylation of AS160. A close homologue of AS160 TBC1D1 (tre-

2/USP6, BUB2, cdc16 domain family, member 1) was recently described to act via the same Rab 

GTPases and therefore conducting a similar function in the retention of GSVs (77-79). While AS160 is 

expressed in both, adipose tissue and skeletal muscle, TBC1D1 expression is mostly restricted to the 
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muscle. That leads to the assumption that TBC1D1 represents the major target for contraction-

induced glucose uptake while AS160 might be more relevant for insulin-mediated processes (77).  

 

 

 

Figure 1.3 Simplified overview of the IRS/PI3K/Akt signaling in muscle. Activating tyrosine-phosphorylation of 

IRS1 by IR recruits PI3K to the plasma membrane by binding the regulatory subunit p85. The catalytic subunit 

p110 converts PIP2 to PIP3, which binds to the PH domains of PDK1 and Akt. When located at the plasma 

membrane, Akt becomes phosphorylated by PDK1 at Thr308 and by mTORC2 at Ser473. Activated Akt 

translocates to the cytosol or nucleus, where it phosphorylates a plethora of substrates involved in glucose 

homeostasis: GSK3 activity is inhibited by Akt-mediated phosphorylation releasing the inhibitory function of 

GSK3 on glycogen synthesis (GS). FOXO transcription factors, which in unstimulated cells are located in the 

nucleus, trigger the transcription of genes involved in regulation of glucose and lipid metabolism as well as 

muscle atrophy. Akt phosphorylates FOXO transcription factors on multiple sites, leading to the export of 

phosphorylated FOXO proteins from the nucleus and inhibition of their transcriptional functions. In skeletal 

muscle and adipose tissue insulin-stimulated GLUT4 translocation is induced through Akt-mediated 

phosphorylation of AS160 (or TBC1D1) resulting in inhibition of their GAP activity. This leads to GTP loading of 

Rab proteins on GLUT4-containing vesicle and to the translocation of GLUT4 to the plasma membrane, 

enhancing glucose uptake. In skeletal muscle, contraction-mediated glucose uptake is induced via activation of 

AMPK, which in turn phosphorylates AS160. 
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1.2.3

 

The mammalian target of rapamycin (mTOR) kinase plays a crucial role in nutrient sensing 
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additional investigations. Besides insulin and amino acids, the energy status of the cell regulates 

mTORC1 activation. During energy deprivation by exercise, hypoxia or nutrient deprivation, the 

adenosine monophosphate (AMP) level increases and promotes activation of AMPK. AMPK-mediated 

phosphorylation and activation of the TSC1/2 complex results in repression of mTORC1 signaling 

(Fig.1.4) (85). Furthermore, AMPK can directly phosphorylate the regulatory mTORC1 component 

raptor and thereby inactivate mTORC1 (86). An additional regulator of mTORC1 is phosphatidic acid 

(PA), which directly binds mTOR and activates mTORC1 signaling (87).  

The two best characterized substrates of mTORC1 signaling are ribosomal S6 kinase (S6K1) 

and eukaryotic initiation factor 4E binding protein 1 (4E-BP1) (Fig.1.4). S6K, which is activated by 

phosphorylation through mTOR (Thr389 on the p70S6K isoform), regulates a number of downstream 

targets resulting in increased mRNA translation and elongation as well as ribosome biogenesis (81). 

Phosphorylation of 4E-BP1 results in dissociation of 4E-BP1 from eukaryotic translation initiation 

factor 4E (eIF4E), enabling binding of translation initiation factors and induction of mRNA translation. 

Together, activation of 4E-BP1 and p70S6K results in increased protein synthesis. In parallel, mTORC1 

is also important for suppression of autophagy, a nutrient-recycling process in which cellular 

macromolecules and organelles are degraded into their constituent components (88), and induction 

of mitochondria biogenesis (89). As discussed in the following section, mTORC1 furthermore plays an 

essential role in regulation of insulin signaling (see 1.2.4 and 1.3.1.2). However, despite these diverse 

processes controlled by mTOR, only few mTORC1 substrates are known. Analysis of the mTOR-

regulated phosphoproteome by quantitative mass spectrometry revealed up to hundred 

phosphopeptides as regulated by mTOR. These may display new starting points for investigations of 

mTOR biology (90). 

Null alleles of the components of mTORC1, such as mTOR or raptor, or of its upstream 

regulators, like TSC2, result in very early embryonic lethality, due to the defined role of mTORC1 in 

growth and cellular physiology (91). In contrast, muscle-specific deletion of raptor or mTOR results in 

viable animals, which display decreased muscle mass, increased glycogen content and decreased 

oxidant capacity, predominantly due to decreased mitochondrial biogenesis compared to control 

animals (92,93). 
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Figure 1.4 Simplified overview of the mTORC1 signaling. The kinase mTOR is a component of two distinct 

protein complexes; growth factor receptors activate mTORC2, which consists of its regulatory subunit rictor, 

deptor, mSIN, mLST8 and protor proteins and participate in cytoskeletal remodeling and Akt activation by 

mediating Ser473 phosphorylation. In contrast to mTORC2, mTORC1 consists of the regulatory subunit raptor, 

deptor, mLST8 and PRAS40. mTORC1 activity is regulated by many different mechanisms; activated Akt inhibits 

the GAP-activity of TSC1/TSC2 complex, resulting in increased level of GTP-bound Rheb and activation of 

mTORC1. TSC2 can further be regulated by ERK kinases, AMPK or REDD proteins, which are activated by growth 

factors, contraction or hypoxia, respectively. Amino acids enhance mTORC1 activity via recruitment of mTORC1 

to the membrane of lysosomes, which is realized by the action of Rag GTPases and ragulator proteins. Once 

translocated to the lysosomes, mTORC1 interacts with GTP-bound Rheb. An additional regulatory mechanism 

of mTORC1 signaling involves the lipid second messenger phosphatidic acid (PA). Activated mTORC1 regulates 

multiple protein substrates, which are for example involved in autophagy and angiogenesis. Two of the best 

characterized substrates are p70S6K and 4E-BP1, which both regulate translation and protein synthesis. 

Furthermore, mTORC1 regulates gene expression via activating several different transcription factors, such as 

sterol regulatory element-binding protein (SREBP), peroxisome proliferator-activated receptor (PPAR)-γ (among 

others important for regulation of genes involved in lipid synthesis) and PPARγ co-activator 1α (PGC1α) (which 

increases mitochondrial biogenesis). 
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1.3.1.1 Inhibitory phosphorylation of IRS1 

 

Phosphorylation of IRS1 has emerged as a key step in the control of insulin signaling both 

under physiological and pathological conditions. Many inducers of insulin resistance were 

demonstrated to activate IRS kinases that negatively modulate insulin signaling. In this context, the 

list of IRS kinases implicated in induction of insulin resistance is increasing rapidly, together with 

identification of new inhibitory phosphorylation sites within IRS1. As mentioned above, IRS1 kinases 

frequently are mediators of insulin action, such as p70S6K, MAPK or proteinkinase C-ζ, and induce 

inhibition of IRS signaling after prolonged insulin stimulation. Another group of IRS kinases are 

activated via unrelated (predominantly inflammatory) pathways, like c-Jun NH2-terminal kinase (JNK), 

inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ) or GSK3β (106). Inhibitory 

serine/threonine (S/T) phosphorylation of IRS can disrupt insulin action at least at three nodes: 

interaction of IRS with the plasma membrane, interaction of IRS with IR or interaction of IRS with 

downstream effectors, such as PI3K. Importantly, one stimulus can increase the phosphorylation of 

many S/T residues resulting in abrogation of signaling at different nodes. The tail of IRS1 includes the 

majority of the described S/T phosphorylation sites and abrogates interaction of IRS1 with PI3K. 

However, for example Ser24 phosphorylation within the PH domain, induced by PKC, is linked to a 

decreased capacity of IRS1 to bind to the plasma membrane (107). Examples for inhibitory 

phosphorylation residues near the C-terminus of IRS1 are Ser570, induced by PKCζ, or Ser612, 

Ser632, Ser636, Ser662 and Ser712, which are phosphorylated by MAP kinases (108). In humans, a 

twofold increase in Ser636 phosphorylation was detected in skeletal muscle cells from patients with 

T2D compared to lean controls. This increase was accompanied by enhanced ERK activity and 

inhibition of the MAPK by PD98059 strongly reduced the level of Ser636 phosphorylation (109). 

However, one of the best-characterized inhibitory phosphorylation sites, Ser307, is located near the 

PTB domain and can be induced through JNK, IKKβ or mTORC1 (106,110). Phosphorylation of this site 

disrupts the interaction between IRS1 and IR and is often used as a marker for insulin resistance. 

Currently, the list of potential IRS kinases includes mTORC1, different isoforms of PKC, JNK, IKKβ, 

GSK3, MAPK, AMPK, mouse pelle-like kinase (mPLK), G protein-coupled receptor kinases (GRK)-2, 

salt-inducible kinase (SIK)-2 and Akt (106). 

 

1.3.1.2 mTORC1-mediated feedback mechanism on IRS1 

 

The mTORC1 pathway has long been known to participate in physiological feedback 

regulation of insulin signaling. However, permanent activation of the mTORC1/S6K signaling in 

obesity and diabetes has been demonstrated to promote insulin resistance via chronic inhibitory IRS1 



General Introduction 

 

 

- 23 - 

 

phosphorylation. In line with this, rodents fed with a high fat diet (HFD) to induce obesity and insulin 

resistance demonstrate enhanced basal activity of mTORC1 and S6K, which was accompanied by 

Ser632 and Ser302 (corresponding to human Ser636 and Ser307) phosphorylation of IRS1 (111). In 

vitro studies further identified Ser270, Ser307, Ser312, Ser636 and Ser1101 as mTORC1/S6K-

dependent phosphorylation sites within IRS1 (110). Mice lacking S6K demonstrate reduced basal 

serine phosphorylation of IRS1 and are protected against diet-induced obesity and insulin resistance 

(112,113). Conversely, IRS1 is hyperphosphorylated in TSC2
-/- mouse embryonic fibroblasts (MEFs), 

which exhibit constitutive mTORC1 and S6K activation (114). Nevertheless, mTORC1 itself can also 

affect IRS1 independent of S6K. Tzatos et al. demonstrated that raptor directly binds IRS1 and 

induces mTOR-mediated IRS1 Ser636/Ser639 phosphorylation (115). Given this important role of 

mTORC1/S6K signaling in insulin resistance, inhibitors of mTORC1 could represent suitable 

therapeutic options. However, the use of rapamycin to treat insulin resistance revealed controversial 

results. In a study with 11 healthy men, performed by Krebs et al., rapamycin partially inhibited 

hyperinsulinemia- and hyperaminoacidemia-mediated increase in mTOR-stimulated S6K 

phosphorylation and IRS-1 Ser312/Ser636 phosphorylation (116). Conversely, in other studies 

rapamycin treatment did not improve either glucose tolerance or insulin tolerance in ob/ob mice 

(117) and in muscle of P. obesus (118). Further investigations seem to be required to clarify if 

targeting mTORC1 signaling is appropriate to treat insulin resistance. 

One could argue that hyperactivity of mTORC1 in an insulin resistant state, where 

PI3K/Akt/TSC2-mediated activation of mTORC1 is abrogated, appears paradoxical. However, excess 

availability of nutrients could explain this paradox. High blood levels of amino acids, as seen in 

obesity, were shown to induce the hyperactivity of mTORC1, driving the mTORC1/S6K/IRS1 feedback 

loop and resulting in insulin resistance (119). In addition, amino acid infusion leads to hyperactivation 

of S6K and is tightly linked to decreased insulin-stimulated glucose metabolism in human skeletal 

muscle (120). Nevertheless, the mechanism by which mTOR harmonizes signals from nutrients such 

as amino acids and insulin to affect metabolism in health and disease remains unclear. 

 

1.3.1.3 Impact of the proteasome 

 

Hyperphosphorylation of IRS1 was found to affect its sub-cellular localization and to induce 

its proteasome-mediated degradation. Predominantly, these pathways are activated in response to 

prolonged exposure to insulin or specific activation of the mTORC1 feedback loop. Especially, Ser612 

and Ser307 phosphorylation of IRS1 was demonstrated to be involved in PI3K signaling-mediated 

degradation of IRS1 (106,121). H4IIE rat hepatoma cells expressing a IRS-1 mutant in which Ser312 

was changed to alanine were found to be resistant to insulin-mediated IRS1 degradation compared 
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cells expressing wild type IRS1 (122). In line with these results, reduced IRS1 protein abundance is 

found in animal models of insulin resistance and in adipocytes isolated from T2D patients (122,123). 

The importance of the PI3K/Akt/mTOR pathway in mediating IRS1 degradation is further 

demonstrated by using specific inhibitors of this pathway, thus rescuing insulin-stimulated IRS-1 

degradation (124,125). Additionally, inhibitors of the 26S proteasome abrogate IRS1 degradation but 

do not affect inhibitory phosphorylation of IRS1 (125-127). Degradation of IRS1 is believed to be 

mediated by binding of phosphorylated IRS1 to 14-3-3 adaptor proteins, which relocate IRS1 from 

low-density microsomes to the cytosol, where the proteasome machinery carries out its function 

(126,128).  

The 26S proteasome is a multicatalytic enzyme complex present in the nucleus and 

cytoplasm of all eukaryotic cells. Importantly, the proteasome can only target proteins for 

degradation, which are attached to small peptides, namely ubiquitin. An ATP-dependent cascade of 

enzymes, called E1, E2 and E3, induces labeling of target proteins with ubiquitin. To this end, 

ubiquitin molecules are activated by E1 enzymes and transferred to the ubiquitin-conjugating 

enzymes E2, which in turn presents ubiquitin to E3 enzymes. E3 are ubiquitin-protein ligases, which 

bind to the target protein and finally transfer ubiquitin to the target protein. Repeating this process 

several time, results in creating a polyubiquitin chain that labels the protein for degradation (129). 

Interestingly, while about 20 E2 and more than hundred different E3 enzymes have been identified 

so far, only one E1 enzyme is known (130). The 26S proteasome consists of a catalytic 20S core 

element, which is linked to two 19S regulatory subunits. The 20S is a barrel-like particle formed by 

four rings made up of two outer α-rings and two inner β-rings. The inner β-rings contain three active 

sites, which differ in their substrate specificity and activity, termed caspase-like, trypsin-like and 

chymotrypsin-like activity. These active sites are capable of cleaving peptide bonds at the C-terminal 

side of acidic, basic, and hydrophobic amino acid residues, respectively (131), generating peptides of 

3-25 amino acids (129). Each of the two 19S subunits binds polyubiquitin and cleaves it from the 

target protein. In turn, the target protein is denaturated and inserted into the proteolytic chamber. 

Thereby these subunits generate ATP to supply energy continuously for the degradation (132). 

Even though a direct link between activated proteasome and insulin resistance has been 

shown in some studies, the involvement of proteolytic protein breakdown in the pathogenesis of 

diabetes remains unclear. Importantly, not exclusively IRS1 but also other central members of the 

insulin signaling, such as the IR and Akt, are targeted for proteasomal degradation (133). 

Investigations of enzymes involved in protein degradation may open up new option for treatment of 

insulin resistance and metabolic disorders.  
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 As mentioned above, one of the core functions of insulin in skeletal muscle is to promote 

protein synthesis via mTORC1 and MAPK activation, but also to inhibit protein degradation. FOXO 

transcription factors have a central role in the regulation of these processes. In conditions of insulin 

deprivation or insulin resistance, nuclear localization of FOXO activates the transcription of two 

important muscle specific E3 ligases, muscle RING-finger protein-1 (MuRF1, also known as tripartite 

motif containing 63 (TRIM63)) and F-box protein 32 (FBXO32, also known as atrogin-1). These two 

proteins are tightly linked to protein catabolism in skeletal muscle and muscle atrophy. Importantly, 

excessive loss of skeletal muscle mass was found in older patients with T2D (134). Therefore, the 

proteasome may not only participate in induction of insulin resistance but also in progression of late 

consequences in T2D. 

 

1.3.2 Inducers of insulin resistance in skeletal muscle 

 

It is becoming evident that obesity promotes muscle insulin resistance. During high fat 

feeding, immune cells infiltrate adipose tissue and initiate a proinflammatory cross-talk cycle with 

adipocytes, resulting in a low-grade inflammation and insulin resistance in adipose tissue. As a result, 

excess amounts of hormones, proinflammatory cytokines, chemokines and free fatty acids (FFA) are 

released, which target skeletal muscle in an endocrine manner (135). Some modulators of insulin 

action are briefly reviewed in terms of their capacity to induce insulin resistance in muscle in this 

chapter. Importantly, these effectors act simultaneously and synergistically to abrogate insulin action 

and glucose uptake in skeletal muscle, which results in whole-body insulin resistance. 

 

1.3.2.1 Hyperinsulinemia 

 

Acute insulin stimulation activates a cascade of downstream signaling pathways, whereas 

persistently elevated insulin levels causes desensitization against insulin in target cells. As mentioned 

above the initial stage of progression to T2D is characterized by a compensatory increase of insulin 

secretion from the pancreatic β-cells, resulting in hyperinsulinemia. In vitro studies have 

demonstrated that chronic exposure (24h) to insulin (mimicking hyperinsulinemia) results in down-

regulation of insulin-mediated PI3K/Akt and MAPK signaling as well as glucose uptake via 

degradation of IRS1/IRS2 in 3T3L1 adipocytes and L6 myotubes (136,137). Haruta et al. demonstrated 

that insulin-induced inhibitory phosphorylation and degradation of IRS-1 are mediated by a 

rapamycin-sensitive pathway (138), implicating participation of mTOR in hyperinsulinemia-induced 

insulin resistance. Besides these effects on IRS degradation, continuous exposure to insulin causes 
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increased internalization and degradation of IR, resulting in reduction in number of receptors 

exposed on the cell surface. Furthermore, IR tyrosine activity is diminished after chronic insulin 

stimulation, mainly induced by inhibitory phosphorylation, dephosphorylation by phosphatases or 

binding of inhibitory molecules (139). It remains unclear whether hyperinsulinemia is a result or a 

cause of insulin resistance; insulin resistance induces hyperinsulinemia via increasing blood glucose 

levels due to defects in glucose uptake, thus hyperinsulinemia in turn exacerbates insulin resistance 

in peripheral tissues. However, basal hyperinsulinemia has also been shown to induce insulin 

resistance (139). 

 

1.3.2.2 Adipocyte-derived factors 

 

I. Proinflammatory cytokines 

 

 In the last decades it has become evident that adipocytes do not only function in the storage 

of energy but also secrete a variety of hormones, cytokines and chemokines. Several of these factors, 

also termed adipokines, have been identified to influence insulin action in skeletal muscle. 

Tumor necrosis factor-α (TNFα) is produced mainly by macrophages and adipocytes of fat 

tissue and is an important regulator of immune response, inflammation, cell apoptosis and survival 

as well as synthesis of other cytokines, like IL-1 and IL-6. Furthermore, it has been identified as an 

important mediator of obesity-induced insulin resistance (140). While the role of TNFα in humans is 

still unclear, this adipokine is highly up-regulated in animal models of obesity. Serum concentrations 

of TNFα were increased in obese women, with reduction of circulating TNFα levels after weight loss 

(141). Increased TNFα serum levels were also correlated to low insulin sensitivity, independent of 

BMI (142). Nevertheless, no beneficial effect regarding insulin sensitivity was observed in rheumatoid 

arthritis patients after long-term inhibition of TNFα (143). However, in rodent and cell culture models 

the mechanisms by which TNFα induces insulin resistance in muscle were identified in detail and 

include activation of several different signaling pathways. TNFα-induced signaling involves activation 

of MAPK, like ERK1/2, p38, and JNK, but also NFκB signaling. In line with this, silencing of IKKβ, using 

small interfering RNA, prevents TNFα-induced insulin resistance in human skeletal muscle (144). 

Furthermore, IKKβ was demonstrated to destabilize the TSC1/TSC2 complex, resulting in the 

activation of mTORC1 (145). As mentioned above all these signaling pathways are involved in 

inhibitory phosphorylation and degradation of IRS1, resulting in abrogation of insulin action in 

skeletal muscle. TNFα was also shown to induce caspase-dependent ubiquitination of Akt1 in 3T3L1 

adipocytes (146). Moreover, PTP1B–/– mice showed complete protection against TNF-α-induced 

insulin resistance, indicating that the phosphatase PTP1B is crucial for TNFα signaling (147). 



General Introduction 

 

 

- 27 - 

 

Due to its high abundance and ubiquitous production, monocyte chemoattractant protein-1 

(MCP-1) has been the first discovered and most extensively studied human CC-chemokine (148). 

Adipocytes have been recognized as an important source of MCP-1 and expression of MCP-1 in 

visceral and subcutaneous adipose tissue as well as circulating levels are increased in obese patients 

compared to lean controls (149,150). In adipose tissue, amongst others MCP-1 recruits immune cells 

and regulates adipogenesis (148), but it is also described to induce insulin resistance in adipocytes 

and peripheral tissues. Interestingly, in a large cohort of Caucasians, a common A/G polymorphism 

within MCP-1 negatively correlates with MCP-1 plasma levels and decreases the prevalence of T2D 

(151). In line with this, overexpression of MCP-1 in adipose tissue mimics effects of HFD-induced 

metabolic disorders, including insulin resistance, whereas MCP-1 deficiency ameliorates insulin 

resistance in db/db mice and in mice fed a HFD (152). The molecular mechanism by which MCP-1 

induces insulin resistance in skeletal muscle remains uninvestigated. However, Sell et al. 

demonstrated that human skeletal muscle cells express the MCP-1 receptor CCR2 and treatment 

with recombinant MCP-1 increases ERK1/2 activation but does not activate the NFκB pathway (153), 

indicating that activation of MAPK may contribute to MCP-1-mediated signaling. It remains 

speculative if activation of MAPK by MCP-1 participates in induction of insulin resistance or if other 

signaling pathways are involved. 

Chemerin is expressed at the highest levels in adipose tissue and liver and functions as a 

ligand activator for the G-protein coupled receptor chemokine-like receptor 1 (CMKLR1) (154). The 

highest expression levels of CMKLR1 have been found in macrophages, immature dendritic cells and 

white adipocytes, but it is also detectable in human skeletal muscle cells (155,156). Besides its 

function in recruitment of immune cells, chemerin has been identified as a regulator of adipogenesis 

and adipose metabolism, indicated by experimental data showing that loss of chemerin or CMKLR1 

abrogates adipocyte differentiation and modifies expression of metabolic genes (157). In obese and 

diabetic mice, the expression of chemerin and its receptors are altered in white adipose, skeletal 

muscle, and liver tissue. Interestingly, administration of exogenous chemerin in these mice 

exacerbates glucose intolerance, lowers serum insulin levels and decreases tissue glucose uptake 

(158,159). In humans, several studies have revealed a positive correlation of chemerin serum levels 

with BMI as well as markers of the metabolic syndrome (155). Elevated chemerin serum levels have 

been found in patients with T2D (160). Weight loss due to exercise intervention, caloric restriction or 

bariatric surgery in obese and diabetic subjects resulted in improved glucose tolerance, which was 

associated with a reduction in chemerin serum levels (161). Additionally, chemerin has been found to 

be a strong marker for insulin sensitivity in healthy young men (162). In vitro chemerin has been 

shown to induce insulin resistance via activation of p38MAPK, NFκB and ERK1/2, which results in 
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decreased insulin-stimulated Akt and GSK3 phosphorylation as well as glucose uptake due to 

increased inhibitory IRS-1 serine phosphorylation (156).  

 These are three examples of how cytokines and chemokines, secreted by adipose tissue, 

negatively affect skeletal muscle insulin sensitivity and whole-body glucose metabolism. However, 

current research has identified over 50 adipocyte-secreted factors, and more are yet to be 

discovered (163). 

 

II. Anti-inflammatory cytokines 

 

Adiponectin is one of the few adipokines that is down-regulated in obesity and that positively 

influences insulin sensitivity. Interestingly, adiponectin is the most abundant adipokine in serum, 

accounting for 0.01% of all serum protein (164) and is involved in a wide variety of physiological 

processes, including energy metabolism, inflammation and vascular physiology, by acting directly in 

the liver, skeletal muscle and vascular endothelium (165). Plasma levels of adiponectin are higher in 

women than in men and are decreased in pathologies such as the metabolic syndrome, insulin 

resistance and obesity (166). This protein is exclusively expressed in adipocytes and secretion is 

inversely correlated to adipocyte size. Signaling induced by binding of adiponectin to its receptors 

AdipoR1, AdipoR2 and T-cadherin, which are expressed in diverse peripheral tissues and organs, 

leads to activation of AMPK, p38MAPK and PPARα, resulting in increased GLUT4 translocation, 

inhibition of proinflammatory cytokine production, increased fatty acid oxidation and reduction of 

reactive oxygen species (ROS) production (165). In line with this pivotal role of adiponectin in 

regulation of metabolism and whole-body insulin sensitivity, common SNP within the adiponectin or 

AdipoR1 gene is highly associated with insulin resistance and T2D (167,168). 

Recently, secreted frizzled-related protein 5 (Sfrp5) has been described as an anti-

inflammatory adipokine that antagonizes the proinflammatory action of the adipokine wingless-type 

MMTV integration site family member (Wnt) 5a (186). Nevertheless, the role of this protein remains 

unclear because several controversial data have been published regarding the function and 

expression of this protein in obesity and metabolic syndrome. While a study in Chinese obese and 

T2D patients demonstrated reduced Sfrp5 plasma levels, no differences between lean and obese 

subjects regarding Sfrp5 serum concentration was detectable in other studies (169,170). 

Furthermore, only a very low gene expression of Sfrp5 was detectable in human white adipose tissue, 

doubting that Sfrp5 can really be classified as a human adipokine. However, both up-regulated (171) 

and down-regulated (172) expression of Sfrp5 has been found in adipose tissue of obese animal 

models. Ouchi et al. demonstrated that Sfrp5 deficiency in mice resulted in deterioration of high-

calorie diet- induced glucose intolerance, hepatic steatosis and macrophage infiltration in adipose 
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tissue. In contrast, Sfrp5 expression was significantly increased in adipose tissue of obese mice 

compared to lean controls (171). Conversely, acute administration of Sfrp5 to obese and diabetic 

mice improved glucose tolerance and adipose tissue inflammation (172), demonstrating an anti-

inflammatory and anti-diabetic function of Sfrp5 in mice. In contrast, Carstensen et al. reported a 

positive association of Sfrp5 with insulin resistance and markers of oxidative stress in subjects with a 

high risk for T2D (170), indicating that the function of Sfrp5 in humans may differ from findings in 

mice. These contradictions have to be elucidated in future studies.  

Additionally the role of other anti-inflammatory cytokines, such as IL-1 receptor antagonist 

(IL-1RA), macrophage inhibitory cytokine-1 (MIC-1) or transforming growth factor-β1 in the context 

of T2D in human remains unclear. However, the balance between proinflammatory and anti-

inflammatory cytokines may be fundamental in the development of insulin resistance. 

 

III. Free fatty acids 

 

Fatty acids are mandatory to store and supply energy for the whole body. However, 

increased availability of FFA has been demonstrated to enhance the amount of ectopic lipid stores in 

non-adipose tissues, such as skeletal muscle, heart, liver or pancreas and are believed to play an 

essential role in the induction of insulin resistance (173). In insulin-sensitive conditions, insulin 

inhibits lipolysis in adipose tissue after food intake, resulting in decreased FFA levels. This 

suppression is impaired in insulin resistant adipose tissue, leading to excess release of FFA, which 

accumulate in skeletal muscle and induce lipotoxicity. Intramyocellular lipids (IMCL) are directly 

linked to insulin resistance by generating active lipid metabolites, like diacylglycerol (DAG) and 

ceramides. DAG and ceramides activate different isoforms of PKC, JNK and IKKβ, resulting in 

inhibitory phosphorylation of IRS1 and IR as well as abrogation of insulin signaling. Thus, insulin-

stimulated glucose uptake in skeletal muscle is impaired and, due to IKKβ-mediated NFκB activation, 

proinflammatory pathways are induced (174). Furthermore, ceramides can activate phosphateses 

such as PP2A, resulting in dephosphorylation of Akt-Thr308 (175). While diet-induced weight loss has 

been shown to decrease IMCL content (176), exercise has been reported to increase IMCL content 

(“athlete´s paradox”) (177), indicating that there might be no direct link between the amount of IMCL 

and insulin resistance (173). However, FFA can also directly induce insulin resistance. In general, FFA 

can be classified into different subgroups, such as saturated or unsaturated, short or long-chain as 

well as essential or nonessential FA. Among these subtypes, saturated long-chain FAs such as 

palmitate or stearic acids have been reported to be the most potent inducers of insulin resistance 

(178). This effect is directly induced by binding of saturated FA to Toll-like receptor (TLR)-4 in skeletal 

muscle, resulting in JNK and IKKβ activation (179). In addition, saturated FA increase ROS production 
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insights into insulin signaling and progression of insulin resistance. Therefore, the aim of this thesis 

was to specify the function of PRAS40 in insulin action and mTORC1 signaling. 

 

• Current literature about PRAS40 is reviewed to obtain an overview over its protein structure, 

phosphorylation sites and potential function in health as well as in pathogenesis of metabolic 

disorders and cancer (chapter 2). Special attention was paid on controversial data concerning 

PRAS40´s role in regulation of mTORC1 activity. 

 

• Due to the fact that the function of PRAS40 in insulin signaling is inadequately defined, one of 

the aims of this thesis was to investigate whether changes in PRAS40 protein expression 

impact insulin action and mTORC1 signaling in skeletal muscle. For this purpose, PRAS40 was 

first silenced using siRNAs (chapter 3). Insulin signaling pathway, glucose uptake as well as 

mTORC1 signaling was analyzed in control and PRAS40 knockdown cells in normal conditions 

and following MCP-1- and chemerin-induced insulin resistance. To further characterize the 

role of PRAS40 in insulin action, PRAS40 wild type and a mutant form of PRAS40, where two 

phosphorylation sites and the mTORC1 binding site have been mutated, were overexpressed 

in vitro in primary human skeletal muscle cells as well as in vivo in tibialis anterior of 

C57BL/6J mice (chapter 4). 

 

• Analysis of the PRAS40 protein sequence yielded that this protein consists of a nuclear export 

sequence (NES), resulting in cytosolic and nuclear localization of PRAS40. The impact of sub-

cellular localization of PRAS40 on insulin and mTORC1 signaling has been completely 

unknown so far and was therefore analyzed in study 4 (chapter 5). 

 

• In the last study (chapter 6), the potentially new adipokine Sfrp5 was analyzed regarding its 

effect on insulin and inflammatory signaling in primary human adipocytes and primary 

human skeletal muscle cells. Special attention was paid on the phosphorylation status of 

PRAS40 in these conditions. 
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Abstract 

 

The proline-rich Akt substrate of 40-kDa (PRAS40) acts at the intersection of the Akt- and 

mammalian target of rapamycin (mTOR) mediated signaling pathways. The protein kinase mTOR is 

the catalytic subunit of two distinct signaling complexes, mTOR complex 1 (mTORC1) and 2 

(mTORC2), which link energy and nutrients to the regulation of cellular growth and energy 

metabolism. Activation of mTOR in response to nutrients and growth factors results in the 

phosphorylation of numerous substrates, including the phosphorylation of S6 kinase by mTORC1 and 

of Akt by mTORC2. Alterations in Akt- and mTOR-activity have been linked to the progression of 

multiple diseases such as cancer and type 2 diabetes. Although PRAS40 was first reported as 

substrate for Akt, investigations towards mTOR binding partners subsequently identified PRAS40 

both as component and substrate of mTORC1. Phosphorylation of PRAS40 by Akt and by mTORC1 

itself results in dissociation of PRAS40 from mTORC1, and may relieve an inhibitory constraint on 

mTORC1 activity. Adding to the complexity is that gene silencing studies indicate that PRAS40 is also 

necessary for the activity of the mTORC1 complex. This review summarizes the regulation and 

potential function(s) of PRAS40 in the complex Akt- and mTOR-signaling network in health and 

disease. 
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Introduction 

 

Proline-rich Akt substrate of 40-kDa (PRAS40) was first identified as a 14-3-3 binding protein 

in lysates from insulin-treated hepatoma cells (1), and is identical to the p39 protein which is 

phosphorylated in PC12 cells treated with nerve growth factor or epidermal growth factor (2), and 

the nuclear phosphoprotein Akt1 substrate 1 (AKT1S1) purified from Hela cells (3). Although 

originally described as substrate for Akt (1), analysis of mammalian target of rapamycin (mTOR) 

immunoprecipitates identified PRAS40 as component and substrate of the mammalian target of 

rapamycin complex 1 (mTORC1) (4-7).  

In addition to mTOR and PRAS40, the mTORC1 complex consists of regulatory-associated 

protein of mTOR (raptor), the mammalian ortholog of yeast lethal with Sec13 protein 8 (mLST8, also 

known as GβL), and DEP-domain containing mTOR-interacting protein (deptor) (8). Within mTORC1, 

raptor functions as a scaffold through regulating the assembly of the mTORC1 complex, the 

recruitment of substrates, and directing the subcellular localization (8). Both PRAS40 and deptor 

exert an inhibitory action on mTORC1 activity (8). Activation of mTORC1, which occurs in response to 

nutrients and growth factors, results in phosphorylation of both PRAS40 and deptor by mTORC1 

(8,9). This leads to dissociation of PRAS40 and deptor from the complex and relieves the inhibitory 

constraint on its activity (8,9). Through phosphorylation of a rapidly expanding list of protein 

substrates (10-12), mTORC1 participates in multiple cellular processes, including the regulation of cell 

size, mRNA translation, ribosome biogenesis, lipid biogenesis, vesicle-mediated transport, autophagy, 

and mitochondrial function (8,13). 

The catalytic subunit of mTORC1, the serine-threonine kinase mTOR, is shared with another 

large multimeric protein complex, mTORC2 (8). While PRAS40 is absent in mTORC2, this complex 

shares mTOR, mLST8 and deptor with mTORC1, and further consists of the unique components 

rapamycin-insensitive companion of mTOR (rictor), mammalian stress-activated protein kinase 

interacting protein (mSIN1) and protein observed with rictor (Protor1, also known as PRR5) (8). 

Activation of mTORC2 in response to growth factors has been linked to the regulation of cell survival 

and cytoskeletal organization (8). Based on recent advances in the characterization of mTORC2-

regulated protein substrates one may presume that the list of cellular functions that can be ascribed 

to mTORC2 will expand accordingly (10-12). Among the substrates of mTORC2 is the serine-threonine 

kinase Akt (14). Thus, although PRAS40 is not present in mTORC2, this protein complex participates in 

the regulation of PRAS40 phosphorylation through its effects on Akt (5,10-12,15).  

Alterations in the activity of mTORC1 and mTORC2 mediated signaling contribute to the 

progression of various diseases, like cancer and type 2 diabetes (8). In the case of type 2 diabetes, 
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hyperactivation of the mTORC1 substrates S6 kinase and growth factor receptor bound 10 (Grb10) 

has been linked to abrogation of the insulin signaling pathway regulating glucose metabolism (9-11). 

Furthermore, glucose-induced hyperphosphorylation of PRAS40 has been implicated in the 

progression of diabetic nephropathy (16). Deregulated activity of mTOR-signaling further fuels 

tumorigenesis through the mTORC1-dependent stimulation of cellular growth, cell proliferation, 

angiogenesis, suppression of autophagy, and the mTORC2-dependent regulation of proliferation, cell 

survival and nutrient uptake (8,17). These multiple aspects of mTORC1 and mTORC2 signaling 

pathways have been extensively reviewed by others (8,13,18). Here, we focus on one regulatory 

component of mTORC1 and downstream target of both mTORC1 and mTORC2, PRAS40. In this 

review, we summarize the regulation of PRAS40 activity and its potential function(s) in the complex 

Akt- and mTOR-signaling networks in health and disease. 

 

Expression and structure of PRAS40 

 

The gene for PRAS40, located on human chromosome 19q13.33, encodes 3 transcript 

variants that differ in their 5’-UTR and result in 256 and 276 amino acid proteins respectively. 

Although the PRAS40 mRNA and protein show a ubiquitous expression in human, rodent and fly 

tissues (1,19,20), there is currently no information available related to the expression pattern of the 

various isoforms. The 276 amino acid protein differs from the 256 amino acid variant in a 20 amino 

acid extension at the amino terminus. As shown in Figure 2.1, the amino terminal part of PRAS40 

contains two proline-enriched stretches with an as yet undefined function as well as sequences that 

have the potential to bind proteins containing Src homology 3 and/or WW-domains (1). The proline-

rich regions are followed by two short motifs implicated in mTORC1-binding, i.e. an mTOR signaling 

(TOS) motif (amino acids 129-133 of the human 256 amino acid PRAS40 protein) (4,21,22), and a Lys-

Ser-Leu-Pro sequence (amino acids 182-185) showing resemblance to the RAIP motif, which has been 

named after a short amino acid sequence found in 4EBP1 (23). Furthermore, sequence analysis of the 

protein identifies a 10 amino acid stretch in the carboxy-terminal part of PRAS40 (amino acids 218-

227 of the human 256 aa protein) which matches the consensus sequence for a leucine-enriched 

nuclear export sequence (NES), Leu-xx(x)-[Leu,Ile,Val,Phe,Met]-xx(x)Leu-x-[Leu,Ile] (9). Finally, 

phosphorylation of PRAS40 on multiple residues, including Ser88, Ser92, Ser116, Ser183, Thr198, 

Ser202, Ser203, Ser211, Ser212, Ser221, and Thr246, has been reported (1,4,10-12,24). 

 

Conservation of PRAS40 
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PRAS40 is highly conserved in higher species (9). Homologues almost identical to the human 

protein have been found amongst other species including Pan troglodytes, Bos taurus, Mus 

musculus, and Rattus norvegicus (9). In these species, also the longer forms with an extension at the 

aminoterminus have been found.  All phosphorylation sites are fully conserved in the PRAS40 

variants in these higher species (Figure 2.1) (9). In Xenopus laevis, Danio rerio, and Drosophila 

melanogaster proteins which are identical to the carboxyterminal part of human PRAS40, but entirely 

lack the proline-enriched stretches found in the aminoterminal PRAS40 proteins from higher species, 

have been found (6,9,20). The proteins found in these species show conservation of the TOS- and 

RAIP- motifs as well as of the phosphorylation sites equivalent to the human residues Ser183, Ser221, 

and Thr246 (Figure 2.1) (9). Notably, the Drosophila melanogaster protein dPRAS40 was originally 

identified as CG10109, a gene associated with the mutant Lobe phenotype (6,20,25). However, a loss 

of the genomic region containing the Lobe-allele (Lrev6-3) is embryonic lethal and linked to a disturbed 

development of the ventral eye (25-27). In contrast, flies deficient in the dPRAS40 gene are viable 

and show no alterations in eye development compared to controls (20). Furthermore, 

CG10109/dPRAS40 expression did not rescue viability in the Lrev6-3 strain (20). This indicates that the 

phenotypes associated with a loss of the Lobe genomic region can not be ascribed to dPRAS40. 

Importantly, dPRAS40 is a component of the TORC1 complex in this species (20). Thus, it seems 

appropriate to consider the proteins lacking the aminoterminal proline-rich part found in lower 

species as PRAS40 homologues. Finally, one report describes weak similarities between human 

PRAS40 and the dauer or aging overexpressing protein family member 5 (dao-5) protein from 

Caenorhabditis elegans (7). However, dao-5 seems to lack preservation of the important regulatory 

features found in PRAS40 from higher species. Therefore, further studies seem required whether 

PRAS40 is also found in this species.  

 

Binding partners 

 

PRAS40 interacts with 14-3-3 proteins, and the mTORC1 complex (9,28). 

 

Interaction with 14-3-3 proteins 

 

Using GST-pull down and far Western assays as well as co-immunoprecipitation experiments, 

PRAS40 has been found to interact with 14-3-3 proteins (1,2,21,24,29). Pretreatment of cells with 

PI3K inhibitors prevented insulin-induced phosphorylation of PRAS40 on Thr246 and 14-3-3 binding 

to PRAS40 (1). Accordingly, replacement of Thr246 by alanine resulted in a loss of the ability of 
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PRAS40 to bind 14-3-3 proteins (21,24). Importantly, the interaction between PRAS40 and 14-3-3 

proteins is also dependent on amino acids (2). However, the induction of PRAS40-Thr246 

phosphorylation by insulin is not prevented by amino acid deprivation. Therefore, additional 

mTORC1-mediated phosphorylations have been implicated in the formation of PRAS40/14-3-3 

complexes (2,21). Indeed, rapamycin partially blocks the interaction between PRAS40 and 14-3-3 

proteins (2,21). Also silencing of raptor substantially impaired the insulin-induced binding of PRAS40 

to 14-3-3 proteins (21). Accordingly, insulin failed to promote 14-3-3 binding to PRAS40 mutants in 

which the mTORC1 phosphorylation sites Ser183, and Ser221 were substituted by alanines (21,24). 

Except for Ser212, which is not required for 14-3-3 binding (24), the involvement of the additional 

phosphorylation sites in PRAS40 remains to be investigated. Consistent with the idea that mTORC1-

mediated phosphorylation of PRAS40 participates in the regulation of 14-3-3 binding, both mutation 

of Pro185 in the putative RAIP-motif as well as of Phe129 in the TOS-motif markedly impaired 14-3-3 

binding to PRAS40 (21,24).  

Because overexpression of 14-3-3 proteins relieves the inhibitory action of PRAS40 on 

mTORC1 activity, it has been proposed that the binding of 14-3-3 proteins to phosphorylated PRAS40 

serves to sequester PRAS40 away from mTORC1 (7). However, activation of mTORC1 by phorbol 

esters can occur independent of PRAS40 binding to 14-3-3 proteins (29). Therefore, additional 

studies seem required to assess whether 14-3-3 proteins are necessary for the activation of mTORC1 

by other factors, like nutrients and growth factors. Furthermore, at least seven different 14-3-3 

proteins have been characterized in humans. It remains to be addressed whether these variants 

impact on PRAS40 binding and possibly regulation of mTORC1 activity. 

 

Interaction with mTORC1 

 

The recent elucidation of the structure of the entire mTORC1 complex supports previous 

biochemical observations that PRAS40 interacts with mTORC1 through the binding to substrate 

binding site of raptor (4-7,21,22,30). A recent report also demonstrated an association between 

dPRAS40 and raptor in Drosophila melanogaster (20). The interaction between PRAS40 and raptor is 

weakened by insulin and to a lesser extent by amino acids, indicating that phosphorylation of PRAS40 

results in dissociation of PRAS40 from mTORC1 (6,7,21,22,31). The dissociation of PRAS40 would 

then allow the binding and activation of mTORC1 substrates like S6K1 and 4EBP1 to the substrate 

binding site of raptor. Critical functions for the interaction between PRAS40 to raptor have been 

ascribed to the TOS- and RAIP-motif, as well as the region located between amino acids 150 and 234 

of PRAS40  (4,7,21,22). It should be noted that some reports also implicate the kinase domain of 
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mTOR in the binding of PRAS40 to mTORC1 (5,7,31). In cells overexpressing mutant forms of mTOR 

with a deletion or inactivation of the carboxyterminal kinase domain, the amount of PRAS40 in mTOR 

immunoprecipitates decreased (5,7). Furthermore, phoshorylation mimicking substitutions of two 

newly identified phosphorylation sites within the mTOR kinase domain, Ser2159 and Thr2164, 

reduced, while substitution of these amino acids by alanine enhanced the presence of raptor and 

PRAS40 in mTOR immunoprecipitates (31). It seems likely that these findings can be explained by the 

identification of the carboxyterminal domain of mTOR as raptor binding domain (30). 

 

Regulation of PRAS40 phosphorylation 

 

Phosphorylation of PRAS40 on multiple residues critically determines the function of the 

protein because it promotes the binding to 14-3-3 proteins and weakens the interaction with 

mTORC1. Stimuli that enhance PRAS40 phosphorylation include growth factors, such as insulin, NGF 

and PDGF, as well as nutrients, such as glucose and amino acids (9,28). Although PRAS40 is 

phosphorylated on multiple sites, only the pathways regulating Ser183 and Thr246 phosphorylation 

are well characterized because of the availability of commercial antibodies recognizing these 

phosphorylated residues. 

 

Phosphorylation of PRAS40-Thr246 by Akt-dependent and –independent pathways 

 

As shown in Figure 2.2, the major kinase promoting PRAS40-Thr246 phosphorylation is Akt. 

The activation of Akt in response to insulin involves the binding of insulin to the insulin receptor. This 

leads to tyrosine phosphorylation and activation of the insulin receptor itself and of multiple 

substrates, such as the insulin receptor substrate (IRS) proteins (32). The tyrosine phosphorylated 

IRS-proteins recruit phosphatidylinositol-3’-kinase (PI3-kinase) to the plasma membrane, where 

activated PI3K phosphorylates phosphatidylinositol-4,5-biphosphate to form phosphatidylinositol-

3,4,5-triphosphate (PI-3,4,5-P3) (32). PI-3,4,5-P3 binds to the pleckstrin homology domains of 

phosphoinositide-dependent kinase 1 (PDK1) and Akt, and mediates the phosphorylation of Akt on 

Thr308 by PDK1 (32). Studies in cultured cell lines show that the induction of PRAS40-

phosphorylation on Thr246 is prevented by PI3K inhibition (1,19,33). Furthermore, the platelet-

derived growth factor-induced phosphorylation of PRAS40 on Thr246 is almost completely abrogated 

in embryonic fibroblasts lacking both Akt1 and Akt2, while inducible activation of Akt alone is 

sufficient to promote PRAS40-Thr246 phosphorylation in NIH3T3 fibroblasts (1). In line with the 

regulation of PRAS40-Thr246 phosphorylation by the PDK1/PI3K/Akt-pathway, tumor cells harboring 
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constitutively active mutants of PI3K or Akt, or a loss of phosphatase and tensin homolog (PTEN), 

which dephosphorylates PI-3,4,5-P3, display elevated levels of Thr246 phosphorylated PRAS40, which 

can be lowered by PDK1 or Akt inhibitors (34-38). For phosphorylation of most downstream 

substrates, Akt requires phosphorylation of Ser473 by mTORC2 (Figure 2.2). This also applies to 

PRAS40, since inhibition of mTORC2, either pharmacologically or through silencing of rictor, reduces 

the phosphorylation of PRAS40 on Thr246 (5,10,11,15). Other stimuli promoting PRAS40-Thr246 

through the Akt-pathway include glucose and ceramide 1-phosphate (39,40). 

Although Akt is the major pathway regulating PRAS40-Thr246 phosphorylation, PRAS40 can 

also be phosphorylated on Thr246 by Akt-independent mechanisms in tumor cells (41). Accordingly, 

the proto-oncogene PIM1 promotes phosphorylation of Thr246 in in vitro kinase assays and following 

enforced expression of PIM1 in myeloid factor-dependent cell progenitors cells (42). In the heart, 

leucine was found to promote PRAS40-Thr246 phosphorylation via a pathway that requires PI3K and 

PDK1, but was independent of Akt (43). PDK1 is a key regulator of the so-called AGC-kinases. 

Although a role for S6K1, protein kinase A, and protein kinase C in the regulation of leucine-mediated 

PRAS40-Thr246 was excluded in this report, these findings implicate a role for members of the AGC 

protein kinase family in the phosphorylation of PRAS40-Thr246. In support of this, protein kinase A 

has been linked to the induction of PRAS40-Thr246 phosphorylation in thyroid cells response to 

thyroid hormone treatment and elevation of intracellular cAMP levels (44).  

  

Phosphorylation of PRAS40-Ser183 by mTORC1 

 

Phosphorylation of PRAS40-Ser183 in cultured cells is promoted by insulin and amino acids, 

and blunted by wortmannin, rapamycin, glucose withdrawal and amino acid starvation (4,33). 

Furthermore, insulin infusion was found to enhance PRAS40-Ser183 phosphorylation in human 

skeletal muscle as well as in rat cardiac and skeletal muscle (33). So far, only mTORC1 has been 

identified as upstream regulator of PRAS40-Ser183 phosphorylation (24). Insulin-induced activation 

of mTORC1 occurs via binding of the GTP-bound form of Rheb to mTORC1. The intracellular levels of 

Rheb-GTP are regulated by the Akt-mediated phosphorylation of tuberous sclerosis complex 2 (TSC2) 

(Figure 2.2). This leads to inactivation of the TSC-complex, which acts as a GTPase activating protein 

on Rheb, and thus an increase in Rheb-GTP levels. The amino acid mediated activation of mTORC1 

may not involve Rheb directly. However, amino acids are indispensable for the activation of mTORC1 

by insulin and other growth factors and serve to bring mTORC1 in the vicinity of Rheb-GTP, which is 

localized in the lysosomal membrane (8,45). The recently identified “Rag-Ragulator” complex plays a 

key role in recruiting mTORC1 to the lysosomal membrane (45). The “Ragulator”complex, consisting 
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of MP1, p14 and p18, targets the Rag-GTPase complex, consisting of RagA/B and RagC/D, to the 

lysosomal membrane (45). Amino acids increase the intracellular levels of RagA/B-GTP thereby 

facilitating the interaction between RagC/D and raptor and thus the activation of mTORC1 (45) 

(Figure 2.2). 

 

Phosphorylation of PRAS40 on other residues by mTORC1 

 

Beside inducing PRAS40-Ser183, and -Thr246 phosphorylation, phosphopeptide mapping of 

HEK293 cells metabolically labeled with [32P]orthophosphate revealed that insulin also promotes the 

phosphorylation of PRAS40 on Ser183, Ser202, Ser203, Ser212 and Ser221 (24). Phosphorylation of 

these amino acids was also induced in in vitro kinase assays on raptor immunoprecipitates, 

suggesting that mTORC1 mediates these additional phosphorylations (24). In this report, only the 

insulin-mediated phosphorylations on Ser183 and Ser221 were found to be sensitive to rapamycin 

(24). Accordingly, phosphoproteomic screens aimed at characterizing mTORC1- and mTORC2-

regulated phosphoproteins on insulin-treated HEK-cells showed that rapamycin downr-egulated the 

phosphopeptide corresponding to PRAS40-Ser183, and that the dual mTORC1/mTORC2-inhibitor 

Torin-1 prevented the insulin-mediated phosphorylation of Ser183, and Thr246 (11). In contrast, 

phosphoproteomic analysis of rat livers following fasting and re-feeding showed that rapamycin 

down-regulated the phosphorylation of the sites corresponding to Ser183 as well as Ser202, Ser203, 

Ser211, and Ser212 of human PRAS40 (12). Furthermore, in mouse embryonic fibroblasts lacking an 

upstream activator of mTORC1, TSC2, the phosphopeptides corresponding to Ser88, Ser92, S202, 

Ser203, Ser212, Ser183, and Thr198 of human PRAS40 were down-regulated by rapamycin (10). In 

another report, Torin-1 down-regulated the phosphorylation of Ser183, Thr246, Ser202, and Ser212 

in wild type embryonic fibroblasts, but up-regulation of these phosphorylation sites in cells lacking 

TSC2 could not be confirmed (11). Finally, in wild type embryonic fibroblasts, insulin-induced 

phosphorylation of Ser88, Ser92, Ser202, Ser203, Ser212 and Thr246 was down-regulated by a dual 

mTORC1/mTORC2-inhibitor Ku0063794 (10). Thus, although these studies identify mTORC1 as 

potential regulator of the additional phosphorylation sites on PRAS40, further studies toward their 

regulation, for example by using antibodies recognizing these phosphorylated residues seem 

required at least to clarify some of the discrepancies that emerged in the phosphoproteomic studies. 
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Cellular function of PRAS40 

 

Effects on mTORC1 activity 

 

Knockdown of PRAS40 has been reported to increase the basal phosphorylation of the 

mTORC1 substrates S6K and 4EBP1 in various cell types, including mouse embryonic fibroblasts, HT-

29, HeLa, HepG2, HEK293, mesangial cells, and 3T3L1 adipocytes (4,6,7,39). Similarly, silencing 

dPRAS40 increased S6K phosphorylation and cell diameter in cultured Drosophila cells (6). In line 

with these observations, overexpression of PRAS40 blunted the insulin-mediated phosphorylation of 

the mTORC1 substrates S6K and 4EBP1 in cultured 3T3L1 adipocytes and HEK293 cells (4,6,21,22), 

and reduced the cell size of HEK293T cells and rat embryonic fibroblasts (7). Furthermore, tissue-

specific overexpression of dPRAS40 led to tissue undergrowth which could be ascribed to reduced 

cell size rather than apoptosis, while ubiquitous overexpression of dPRAS40 reduced the size of the 

entire animal and caused pupal lethality (20). Collectively, these findings support the idea that 

PRAS40 acts as a negative regulator of mTORC1 activity and that the phosphorylation-dependent 

dissociation of PRAS40 from raptor relieves an inhibitory constraint on mTORC1 activity.  

Yet, other reports argue against this proposed function of PRAS40 in mTORC1 activation. For 

example, the dissociation of PRAS40 from mTORC1 has been found to promote 4EBP1 binding to 

raptor, but not to affect basal or insulin-mediated S6K- and 4EBP1-phosphorylation in 293E cells (46). 

Also in C2C12 myoblasts, but not in differentiated C2C12 myotubes, knockdown of PRAS40 did not 

affect basal or insulin-like growth factor 1 induced phosphorylation of the mTORC1 substrates S6K 

and 4EBP1, despite reducing protein synthesis and increasing cell diameter (47). Finally, there are 

reports indicating that PRAS40 is essential for mTORC1 activity. In HEK293 cells, silencing PRAS40 was 

found to impair the amino acid and insulin-mediated phosphorylation of 4EBP1 and the S6K-

substrate ribosomal protein S6 (21). In line with these findings, one study demonstrated that 

silencing PRAS40 led to increased AMP kinase mediated phosphorylation of TSC2, which results in 

inhibition of mTORC1 (48).  

A recent report on Drosophila shed light on these seemingly contrasting findings regarding 

the function of PRAS40 in mTORC1 signaling (20). Deficiency of dPRAS40 did not impact on TORC1 

during the growth of the animal. However, in contrast to the situation in larvae, the absence of 

dPRAS40 led to a dramatic elevation in basal S6K-phosphorylation in the ovaries of adult flies, but not 

in the rest of the animal (20). The authors ascribed these tissue-specific effects of dPRAS40 to 

alterations in the post-translational modification of dPRAS40 in the ovary as compared to the rest of 

the animal (20). Furthermore, the levels of phosphorylated S6K in the ovaries of dPRAS40-deficient 
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females could not be further enhanced upon activation of the PI3K pathway (20). These molecular 

alterations were accompanied by increased fertility since dPRAS40-deficient females had larger 

ovaries and laid more eggs as compared to controls. Importantly, removing one copy of the S6K gene 

in dPRAS40-deficient females normalized fertility, thereby indicating that the main physiological 

function of dPRAS40 is to act as an inhibitor of the TORC1 pathway (20). In addition, these findings 

suggest that post-translational modification, such as phosphorylation, may be critical for the activity 

of PRAS40 towards mTORC1. Therefore, to clarify the function of PRAS40 in more detail in 

mammalian cell types, experiments using mutant forms of PRAS40 in addition to silencing of PRAS40 

should be considered. 

 

Effects on insulin signaling 

 

As for the effects on mTORC1 activity, contrasting data have also been reported for a 

regulatory role of PRAS40 in insulin action. In 3T3L1 adipocytes and HepG2 cells, silencing PRAS40 

resulted in a decreased insulin-mediated phosphorylation of Akt (7). These results were ascribed to 

increased phosphorylation of S6K1 which via the induction of serine phosphorylation of IRS1 resulted 

in degradation of IRS1 and insulin resistance. Decreased IRS1 expression and reduced basal 

phosphorylation of Akt were also observed following PRAS40 knockdown in C2C12 myoblasts (48). 

However, in these studies, these effects were paralleled by a reduced mTORC1 activity. In contrast, in 

HEK293 cells neither overexpression nor silencing PRAS40 affected the phosphorylation of Akt in 

response to insulin. Thus, as for the effects of PRAS40 on mTORC1 signaling, also the potential 

regulatory role in insulin action requires further analysis. 

 

Effects on apoptosis and cell cycle progression 

 

Overexpression of PRAS40 reduced neuronal apoptotic cell death in mice after transient focal 

cerebral ischemia (49,50), and enhanced the survival of motor neurons after spinal cord injury in rats 

(51). These neuroprotective effects were accompanied by an increased binding of phosphorylated 

PRAS40 to 14-3-3 proteins (51). Furthermore, inhibition of PI3-kinase increased apoptosis of motor 

neurons following spinal cord injury (51). Silencing PRAS40 increased apoptosis and lowered cell 

viability in melanoma cells, and reduced tumor development in mice by increasing apoptosis levels 

rather than altering the proliferation rates in melanoma tumors (52). In contrast to these studies, 

one report ascribes a pro-apoptotic function to PRAS40, as silencing of PRAS40 was found to prevent 

the induction of apoptosis in HeLa cells in response to tumor necrosis factor α or cyclohexamide 
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treatment (5). Finally, silencing PRAS40 in C2C12 myoblasts had no effect on apoptosis, but reduced 

the number of cells and the rate of proliferation due to an increased number of cells remaining in the 

G1-phase (47). 

 

Dysregulation of PRAS40 phosphorylation in disease 

 

Cancer 

 

Human cancers frequently show a sustained activation of PTEN/PI3-kinase/Akt- and mTORC-

mediated signaling pathways (8,34). Consequently, elevated PRAS40-Thr246 phosphorylation has 

been reported in several cancer cell lines as well as in meningiomas and malignant melanomas 

(28,41,52-54). Furthermore, phosphorylation of PRAS40-Thr246 has been used as biomarker for 

evaluating the effects of novel inhibitors targeting components of PTEN/PI3-kinase/Akt- and mTORC-

mediated signaling pathways in human cancer. In this respect, multiple studies showed that 

phosphorylation PRAS40-Thr246 state could predict hyperactivation of the PTEN/PI3-kinase/Akt-

pathway in multiple cancer cell types as well as their sensitivity to inhibitors of components of these 

signaling pathways (17,34,37,55). Furthermore, PIM1-mediated hyperphosphorylation has been 

reported in radiation-resistant non-small cell lung cancer cells (56). 

 

Insulin resistance 

 

Insulin resistance in rodent models and type 2 diabetes is characterized by a reduced insulin-

mediated activation of the PI3-kinase/Akt pathway regulating amongst other glucose metabolism. 

Accordingly, the induction of PRAS40-Thr246 phosphorylation by insulin in reduced in target tissues 

for insulin action from rodent models of insulin resistance, such as adipose tissue, skeletal muscle, 

the liver and the heart (19,57,58). In vitro, exposure of rat soleus muscle or fibroblasts to palmitate 

was found to reduce insulin-mediated PRAS40-Thr246 phosphorylation (33,59). Conversely, 

enhancing insulin sensitivity by weight loss through a very low calorie diet improved the induction of 

PRAS40-Thr246 phosphorylation in skeletal muscle following hyperinsulinemia in obese patients with 

type 2 diabetes (60).  

 

Diabetic nephropathy 
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Hyperglycemia contributes to the development of diabetic nephropathy amongst others via 

the induction of hypertrophy of the mesangial cells in the kidney. Increased phosphorylation of 

PRAS40 was found to associate with renal hypertrophy in streptozotocin-induced diabetes in rats 

(39). In vitro studies showed that high glucose promoted the phosphorylation of PRAS40 in mesangial 

cell via activation of Akt that could be ascribed to reductions in PTEN expression resulting from the 

induction of microRNA 21 as well as elevated expression of the proto-oncogene DJ-1 (16,61). 

Silencing PRAS40 was found to mimic the effects of high glucose on hypertrophy in mesangial cells, 

suggesting that inactivation of PRAS40 by glucose-mediated phosphorylation could participate in the 

development of renal cell pathologies in patients with diabetes (39). 

 

Concluding remarks 

 

PRAS40 is among the most prominent Akt- and mTORC1-substrates being phosphorylated in 

response to nutrient and growth factor stimulation in eukaryotic cells. Consequently, phosphorylated 

PRAS40 has emerged as a robust biomarker for pathological conditions associated with alterations in 

Akt- and mTORC1-activity as well as effectiveness for inhibitors of these pathways. Intriguingly, the 

cellular function of PRAS40 has not been completely elucidated in mammalian cells. Yet, genetic 

evidence from Drosophila supports the concept that PRAS40 functions as a regulator of TORC1 

signaling. Importantly, the observed regulation of TORC1 activity by dPRAS40 was tissue-specific and 

seemed to be determined by tissue-specific differences in the post-translational modification of 

dPRAS40. Since most studies toward the function of PRAS40 in mammalian cells have been 

performed by silencing the PRAS40 gene, studies employing overexpression of mutant forms of the 

protein could be fruitful to clarify the function of PRAS40 in further detail. Furthermore, the results 

obtained in flies indicate that the generation of mouse models with a (tissue-specific) PRAS40-

deficiency or -overexpression could be a promising tool to gain further insight into the function of 

this protein acting at the intersection of the Akt- and mTORC1-signaling pathway. 
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TSC1/TSC2 complex, which results in increases in the levels of GTP-bound Rheb and activation of mTORC1. 

Activated mTORC1 phosphorylates multiple protein substrates, including PRAS40, 4EBP1, S6K1 and Grb10. 

Phosphorylation of PRAS40 results in 14-3-3 binding and dissociation of the mTORC1 complex. Phosphorylation 

of 4EBP1 and S6K1 regulates amongst others mRNA translation. Furthermore, both activation of S6K1 and 

Grb10 have been linked to inhibition of the insulin signaling pathway. Other stimuli regulating the activity of 

the mTORC1 complex and thereby PRAS40 phosphorylation on Ser183 include amino acids. Amino acids act on 

the Rag proteins, thereby recruiting the Ragulator-Rag-protein complex, which is localized to the lysosome as is 

Rheb, to raptor, thus allowing the activating of mTORC1. In contrast to growth factors, cellular stresses, like 

hypoxia and energy deprivation promote the activity of the TSC1/TSC2-complex via AMPK-dependent and –

independent phosphorylations of TSC2 (45), thus resulting in inhibition of the mTORC1-pathway. 
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Abstract 

 

AIMS/HYPOTHESIS: The proline-rich Akt substrate of 40kDa (PRAS40) is a component of the 

mammalian target of rapamycin-complex 1 (mTORC1) and among the most prominent Akt-substrates 

in skeletal muscle. Yet, the cellular functions of PRAS40 are incompletely defined. This study assessed 

the function of PRAS40 in insulin action in primary human skeletal muscle cells (hSkMC). 

METHODS: Insulin action was examined in hSkMC following siRNA-mediated PRAS40 

silencing under normal conditions and following chemokine-induced insulin resistance. 

RESULTS: Knockdown of PRAS40 (PRAS40-KD) in hSkMC decreased insulin-mediated 

phosphorylation of Akt by 50% (p<0.05) as well as of the Akt-substrates glycogen synthase kinase 3 

(40%) and tuberous sclerosis complex 2 (32%) (both p<0.05). Furthermore, insulin-stimulated glucose 

uptake was reduced by 20% in PRAS40-KD myotubes (p<0.05). Exposing PRAS40-KD myotubes to 

chemokines caused no additional deterioration of insulin action. PRAS40-KD further reduced insulin-

mediated phosphorylation of the mTORC1-regulated proteins p70S6K (47%), S6 (43%), and 4E-BP1 

(30%), as well as expression of growth factor receptor bound protein 10 (Grb10) (35%) (all p<0.05). 

The inhibition of insulin action in PRAS40-KD myotubes associated with reductions in insulin receptor 

substrate 1 (IRS1) protein levels (60%) (p<0.05), and was reversed by pharmacological proteasome 

inhibition. Accordingly, expression of the E3-ligases atrogin-1 and Muscle RING-finger protein-1 

(MuRF1) and activity of the proteasome was elevated in PRAS40-KD myotubes. 

CONCLUSION: Inhibition of insulin action in PRAS40-KD myotubes was found to associate 

with IRS1 degradation promoted by increased proteasome activity rather than hyperactivation of the 

p70S6K negative feedback loop. These findings identify PRAS40 as a modulator of insulin action. 

 

Keywords 

chemokines; insulin resistance; IRS1; mTOR; PRAS40; skeletal muscle 
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chemoattractant protein 1; MuRF1, Muscle RING-finger protein-1; p70S6K, p70S6 kinase; PI3K, 

phosphatidylinositol-3’-kinase; PRAS40, proline-rich Akt substrate of 40 kDa; TSC2, tuberous sclerosis 

complex 2 
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Introduction 

 

The nutrient sensor mammalian target of rapamycin complex 1 (mTORC1) is a key regulator 

of multiple anabolic responses (1-3). Activation of mTORC1 amongst others enhances the synthesis 

of proteins and lipids, promotes mitochondrial function, and inhibits autophagy (1-3).  In rodent 

models of obesity and hyperinsulinemia, hyperactivation of mTORC1 signalling in the liver and 

skeletal muscle has been linked to inhibition of insulin signalling (4-8). This involves the induction of 

serine phosphorylation of insulin receptor substrate 1 (IRS1) by the mTORC1 substrate p70S6 kinase 

(p70S6K), which may result in degradation of IRS1 and thereby inhibits the insulin-mediated 

activation of the phosphatidylinositol-3’-kinase (PI3K)/Akt-pathway (1-3). In addition, stabilization of 

the expression of growth factor receptor binding protein 10 (Grb10) by mTORC1 mediated 

phosphorylation has been linked to inhibition of insulin action at the level of the insulin receptor (9-

11). 

Disturbances in the insulin-mediated activation of the IRS1/PI3K/Akt-pathway, which 

amongst others facilitates the GLUT4-dependent glucose disposal in skeletal muscle, characterize 

insulin resistance (12). The impaired activity of the IRS1/PI3K/Akt-pathway also results in reduced  

insulin-mediated phosphorylation of one of the most prominent Akt-substrates, the proline-rich Akt 

substrate of 40 kDa (PRAS40), in skeletal muscle of humans with type 2 diabetes and high-fat diet fed 

rodents (13-15). PRAS40 is a component of the mTORC1 complex (16,17). Yet, studies toward the 

function of this protein within the mTORC1 complex have yielded conflicting results (18-23). Silencing 

and overexpression studies mostly in immortalized cultured cell lines have ascribed both inhibitory 

and stimulatory functions to PRAS40 in the regulation of mTORC1 activity (18-23). Importantly, a 

recent study conducted in D. melanogaster shed light on these seemingly contrasting findings, and 

could demonstrate that dPRAS40 acts as an inhibitor of TORC1 signalling in a tissue-specific way and 

dependent on post-translational modification of the protein (24). Because of the potential 

modulation of insulin action by the mTORC1 signalling pathway, this study aimed at further detailing 

the incompletely defined function of PRAS40 in insulin action in primary human skeletal muscle cells 

(hSkMC). Therefore, PRAS40 was silenced in hSkMC and the effects on insulin action were 

determined. In addition, we examined whether the chemokines chemerin and monocyte 

chemotactic protein 1 (MCP-1), which have been implicated in the induction of insulin resistance in 

hSkMC (25,26), exert an additive effect in hSKMC in which PRAS40 was silenced. 
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Methods 

 

Culture of human skeletal muscle cells 

 

Primary human skeletal muscle cells isolated from rectus abdominis muscle of six healthy 

Caucasian donors (3 males of 16, 18, and 21 years of age, and 3 females of 25, 33 and 37 of age) were 

supplied as proliferating myoblasts from PromoCell (Heidelberg, Germany) or Lonza (Basel, 

Switzerland) and cultured as described previously (27). Briefly, myoblasts were seeded in six-well 

culture dishes and were cultured in growth medium containing α-modified Eagle’s (αMEM)/Ham’s F-

12 medium (Gibco, Berlin, Germany) and the supplement pack for skeletal muscle cells from 

PromoCell (Heidelberg, Germany). After reaching near-confluence, differentiation into myotubes was 

initiated by replacing the growth medium by αMEM containing 2% horse serum (Gibco, Berlin, 

Germany). Cells were routinely starved on serum-free αMEM on day 6 of differentiation prior to 

insulin stimulation on day 7 of differentiation.  

 

Knockdown of PRAS40 

 

On day 3 of differentiation, myotubes cultured as described above were transfected with 75 

nmol/l PRAS40-specific or non-target siRNA (Applied Biosysthem, Carlsbad, CA, USA) using the 

Hiperfect reagent (Qiagen, Hilden, Germany). In all experiments, the effects of two distinct PRAS40 

siRNAs were compared. At 24h after transfection, the medium was replaced and differentiation was 

continued as indicated above.  

 

RNA-isolation and quantitative real-time PCR 

 

Total RNA was extracted using the RNeasy Mini Kit (Qiagen, Hilden, Germany), and 

transcribed into cDNA using the Omniscript Reverse Transcription kit (Qiagen, Hilden, Germany). 

Gene expression levels for F-box protein 32 (Fbxo32, also known as atrogin-1), IRS1, Tripartite motif 

containing 63 (TRIM63, also known as muscle RING-finger protein-1 (MuRF1)), and PRAS40 was 

determined by real-time PCR using SYBR green reagents (Promega, Mannheim, Germany) on a Step 

One Plus Cycler (Applied Biosystems, Carlsbad, CA, USA). Details on the primer assays used are 

provided in the electronic supplementary material. Expression levels were calculated using the ΔΔCt 

method using PPIA and RPS28 as housekeeping genes. The expression levels of these genes showed 

no variations in response to the various treatments applied to the hSkMC in this study. 
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Analysis of insulin signalling 

 

When indicated, myotubes on day 6 of differentiation were exposed to 2 ng/ml recombinant 

human monocyte chemoattractant protein 1 (MCP-1) (PeproTech, Hamburg, Germany) or 2 µg/ml 

recombinant human chemerin (R&D systems, Wiesbaden, Germany) in serum-free αMEM for 24h to 

induce insulin resistance. For inhibition of protein degradation, myotubes were incubated with 3 

µmol/l of the proteasome inhibitor MG-132 (Calbiochem, Darmstadt, Germany) for 24h. When 

indicated, cells were incubated with 7 µmol/l of the selective p70S6K inhibitor PF-4708671 overnight, 

or 100 nmol/l rapamycin (Calbiochem, Darmstadt, Germany) for 15 min on day 7 of differentiation, 

prior to insulin stimulation (porcine insulin, Sigma Aldrich, St Louis, MO, USA) (10 min, 100 nmol/l).  

For Western blot analysis, myotubes were lysed in 50 mmol/l HEPES (pH7.4), supplemented 

with 1% Triton-X100, PhosStop, and Complete Protease Inhibitor cocktails (Roche, Mannheim, 

Germany). Lysates were tumbled for 2h at 4°C, and cleared by centrifugation for 20 min at 15000rpm 

at 4oC. Protein concentrations in the lysates were determined using Bradford reagent (Biorad, 

Munich, Germany). Thereafter, 5 µg of protein was separated by SDS-PAGE and transferred to 

polyvinylidene fluoride membrane (Millipore, Schwalbach, Germany) in a semidry blotting apparatus. 

Blocking of membranes was performed using Tris-buffered saline (TBS) containing 0.1% Tween-20 

and 5% nonfat dry milk or 5% BSA, respectively, and first antibody was incubated overnight at 4°C. 

The antibodies used were: Akt, Akt-phospho-Ser473, Akt-phospho-Thr308, glycogen synthase kinase 

3β (GSK3β), GSK3α/β-phospho-Ser21/9, mammalian target of rapamycin (mTOR), p70S6K, p70S6K-

phospho-Thr389, PRAS40, raptor, ribosomal protein S6, ribosomal protein S6-phospho-Ser240, rictor, 

tuberous sclerosis complex 2 (TSC2) phospho-Thr1462, and eukaryotic elongation binding protein 4E-

BP1 phospho-Thr37/46 from Cell Signaling Technology (Danvers, MA, USA), insulin receptor β-

subunit (IRβ), growth factor receptor bound protein 10 (Grb10), and TSC2 from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA), glucose transporter 4 (GLUT4) from Abcam (Cambridge, UK), 

and polyclonal IRS1 as described (28). After extensive washing membranes were incubated with 

corresponding secondary horseradish peroxidase-coupled antibody (Promega, Heidelberg, Germany) 

and protein bands were visualized by enhanced chemiluminescence using Immobilon Western 

detection reagents (Millipore, Schwalbach, Germany) on a VersaDoc 4000 MP (BioRad, Munich, 

Germany) work station. Analysis was performed with the quantity one analysis software 

(Version4.6.7). Signals were normalized by reprobing the membranes with antibodies for 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and β-actin (both from Cell Signaling 

Technology, (Danvers, MA, USA)).  
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In one experiment, phosphorylation of p70S6K was assessed using the MILLIPLEX® Map Cell 

Signalling Buffer and Detection Kit (Millipore, Schwalbach, Germany), a bead-based suspension array 

using the Luminex xMAP technology. Therefore, myotubes were lysed in 75 µl MILLIPLEX MAP Lysis 

Buffer and incubated for 20 min at 4°C. Lysates were cleared by centrifugation and protein content 

was determined by the BCA Protein Assay (Pierce, Rockford, USA). Subsequently, 10 µg of total 

protein was used for measuring human phospho p70S6K Thr412 MAPmates with the BioPlex 200 

System (BioRad, Munich, Germany). Signals were normalized using GAPDH MAPmates and analyzed 

using Bio-Plex Manager software version 6.0 (Biorad, Munich, Germany). The signals obtained with 

this method were similar to those obtained by Western blotting with antibodies recognizing 

phosphorylated p70S6K-Thr389. 

 

Glucose-uptake 

 

Glucose uptake was determined in serum-starved myotubes on day 7 of differentiation. 

Briefly, cells cultured in 6-well plates were kept untreated or incubated with 100 nmol/l insulin for 30 

min prior to the addition of 9.25 kBq per well 2-desoxy-D-14C-glucose (2-DOG) for 2h. Then, cells 

were washed with ice-cold phosphate-buffered saline containing 0.25 µmol/l cytochalasin B, lysed in 

1 mol/l NaOH, whereafter incorporated radioactivity was assessed by liquid scintillation counting. 

 

20S proteasome activity assay 

 

Proteasome activity was determined in serum-starved myotubes grown in 96-well plates. 

Analysis of the three different proteasome activities (chymotrypsin-like, caspase-like and trypsin-like) 

was performed using the Proteasome-GloTM cell-based assay (Promega, Mannheim, Germany) 

according to the manufacturer´s protocol. Briefly, the luminogenic substrates (Suc-LLVY-GloTM for the 

chymotrypsin-like, Z-nLPnLD-GloTM for the caspase-like and Z-LRR-GloTM for the trypsin-like activity) 

were mixed with the Proteasome-GloTM cell-based buffer and luciferin detection reagent and 

incubated for 30min. When indicated, cells were incubated with 3µM MG-132 for 15 min, before 

100µl of Proteasome-GloTM reagent was added for additional 10 min to non-target siRNA- or PRAS40 

KD-transfected myotubes on day 7 of differentiation. The luminescence was measured using a Tecan 

Infinite 200 reader (Tecan, Maennersdorf, Germany). 

 

Statistical analysis 
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Data are presented as means ± SEM. Significant differences were determined by two-way 

ANOVA (post hoc test: Bonferroni multiple comparison test) or paired two-tailed Student´s t-test 

using Prism5 (GraphPad, LA Jolla, CA) software. P-values of p<0.05 were considered as statistically 

significant.  

 

Results 

 

Silencing PRAS40 inhibits insulin action in primary human skeletal muscle cells 

 

Knockdown of PRAS40 (PRAS40-KD) in hSkMC reduced PRAS40 mRNA expression by 70% and 

protein abundance by ~60% as compared to myotubes transfected with non-target (NT) siRNA 

(supplementary Figure 3.7, Figure 3.1a). PRAS40-KD did not affect protein levels of the insulin 

receptor β-subunit, Akt, and GLUT4 (Figure 3.1b-d). In contrast, IRS1 protein abundance, but not 

mRNA expression, was lowered by 60% in cells with PRAS40 KD as compared to NT-siRNA transfected 

cells (Figure 3.1e, f).  

The effects of PRAS40-KD on IRS1 protein levels were paralleled by a 40-50% inhibition of the 

insulin-mediated phosphorylation of Akt on Ser473 and Thr308 (Figure 3.2a, b). In line with the 

reductions in Akt-phosphorylation, insulin-mediated GSK3β-Ser9 and TSC2-Thr1462 phosphorylation 

were both reduced ~30% in PRAS40-KD versus NT-myotubes (Figure 3.2c, d). The reductions in 

insulin-mediated Akt, GSK3β, and TSC2-phosphorylation could not be ascribed to alterations in 

protein levels induced by PRAS40-KD (Figure 3.1, supplementary figure 3.8). Furthermore, two 

distinct PRAS40 siRNAs yielded similar results as compared to NT-siRNA transfected cells 

(supplementary Figure 3.9). Insulin-stimulated glucose uptake was blunted by 20% in PRAS40-KD 

cells versus NT-myotubes with similar data observed for both PRAS40 siRNAs (Figure 3.2f). 

This reduction of the insulin-mediated activation of the IRS1/Akt-signalling pathway was 

comparable to the well-characterized effects observed after chemerin or MCP-1 treatment of hSkMC 

(25,26) (Figure 3.2). There was no further deterioration of insulin action in PRAS40-KD cells treated 

with either chemerin or MCP-1 (supplementary Figure 3.10).  

 

Effects of PRAS40 knockdown on mTORC1 signalling 

 

Hyperactivation of the mTORC1 signalling pathway has been associated to inhibition of 

insulin action amongst others via p70S6K-mediated serine phosphorylation and subsequent 

degradation of IRS1 (1-3), as well as through the stabilization of the protein levels of an inhibitor of 
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insulin action, Grb10 (9-11). Because some studies have hinted at an inhibitory role for PRAS40 

within mTORC1 (16,17), we next evaluated whether the effects of PRAS40-KD could be ascribed to 

hyperactivation of the mTORC1-pathway. To monitor activation of the mTORC1-pathway, we first 

examined the phosphorylation of the mTORC1-substrates p70S6K and 4E-BP1. In NT-siRNA 

myotubes, phosphorylation of p70S6K-Thr412, its substrate ribosomal protein S6-Ser240, and 4E-

BP1-Thr37/46 was increased after insulin stimulation (Figure 3.3a-c). This response was completely 

prevented in cells pre-treated with rapamycin (Figure 3.3a-c). In PRAS40-KD myotubes, the insulin-

induced phosphorylation of p70S6K-Thr412 and S6-Ser240 were both reduced by ~45%, while the 

induction of 4E-BP1-Thr37/46 phosphorylation by insulin was completely lost (Figure 3.3a-c). The 

inhibition of the mTORC1 signalling pathway was further substantiated by a reduced abundance of 

the mTORC1-substrate Grb10 in PRAS40-KD myotubes and in rapamycin-treated cells versus NT-

siRNA myotubes (Figure 3.3d). The impaired phosphorylation of p70S6K-Thr412, S6-Ser240, and 4E-

BP1-Thr37/46 in insulin-treated PRAS40-KD myotubes could not be ascribed to changes in the 

protein levels of these targets (supplementary figure 3.8). Importantly, PRAS40-KD neither affected 

the abundance of mTOR, nor that of the regulatory components of the mTORC1- and mTORC2 

complexes, raptor and rictor, respectively (supplementary Figure 3.8). In contrast to PRAS40-KD, 

exposure of hSkMC to MCP-1 had no effect on insulin mediated p70S6K-Thr412 phosphorylation, S6-

Ser240 phosphorylation, or Grb10 abundance, whereas insulin-induced 4E-BP1-Thr37/Thr46 

phosphorylation was slightly impaired (Figure 3.3a-d).  

 

Effect of inhibition of p70S6 kinase and the proteasome on protein expression of IRS1 

 

The observed effects on the activity of the mTORC1 pathway seem to exclude an 

involvement of the p70S6K feedback loop on the inhibition of insulin action observed in PRAS40-KD 

myotubes. To substantiate this, we examined the effect of PF-4708671, a highly specific inhibitor of 

p70S6K (29), on IRS1 expression. Treatment with PF-4708671 markedly induced the phosphorylation 

of p70S6K, but blunted the basal- and insulin-stimulated phosphorylation of the ribosomal protein 

S6-Ser240 in both NT-siRNA and PRAS40-KD myotubes (Figure 3.4 a, b). Importantly, the decrease in 

IRS1 abundance in PRAS40-KD cells could not be restored by PF-4708671 (Figure 3.4c).  

Since PRAS40-KD inhibits mTORC1-signalling and inhibition of mTORC1 activity has been 

linked to increased protein degradation amongst others by increased activity of the ubiquitin-

proteasome system (30,31), we next examined whether the mRNA expression of the muscle-specific 

E3-ligases atrogin-1 and MuRF1, which are increased in mice heterozygous for mTOR (30), is affected 

by PRAS40-KD. As shown in Figure 3.5a, b, the mRNA levels of atrogin-1 and MuRF1 were increased 
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in PRAS40-KD versus NT-siRNA myotubes. Furthermore, the chymotrypsin- and caspase-like activity 

of the 20S proteasome was increased in PRAS40-KD versus NT-siRNA myotubes (Figure 3.5 c,d). In 

contrast, there was no significant difference in the trypsin-like proteolytic activity between PRAS40-

KD and NT-siRNA myotubes (Figure 3.5e), although all proteolytic activities examined were sensitive 

to the proteasome inhibitor MG-132 (Figure 3.5 c-e).  

MG-132 was then used to examine whether the reductions in IRS1 protein levels could be 

ascribed to protein degradation. As shown in Figure 3.6a, MG-132 increased IRS1 protein abundance 

by 1.3- and 3-fold in NT-siRNA and PRAS40-KD myotubes, respectively. Although protein abundance 

of PRAS40 was increased by 1.4-fold by MG-132 in both NT-siRNA and PRAS40-KD myotubes, levels 

of PRAS40 were still reduced by 56% when comparing PRAS40-KD with NT-siRNA myotubes (Figure 

3.6b). The increase in IRS1 abundance in MG132-treated PRAS40-KD myotubes was paralleled by a 

restoration of insulin-mediated phosphorylation of Akt-Ser473 (Figure 3.6c). Treating myotubes with 

MCP-1, which does not affect mTORC1 signalling, had no effect on atrogin-1 and MuRF1 levels 

(Figure 3.5a,b). However, chronic exposure of myotubes to MCP-1 also led to a reduction in IRS1 

protein abundance (Figure 3.6d), and similar to PRAS40-KD cells, MG-132 fully restored IRS-1 protein 

levels and insulin action in hSkMC exposed to MCP-1 (Figure 3.6d, e).  

 

Discussion 

 

The present study shows that knockdown of PRAS40 abrogates the insulin-mediated 

activation of the Akt-pathway regulating glucose uptake in primary human skeletal muscle cells. 

These effects involve a reduction in the protein levels of IRS1. Importantly, the reduction in IRS1 

protein abundance cannot be ascribed to a classical negative regulator of insulin action, the 

mTORC1/p70S6K-feedback loop. Rather, knockdown of PRAS40 was found to increase the activity of 

the proteasome, and the reduction in IRS1 levels as well as the associated inhibition of insulin action 

following PRAS40 knockdown could be restored by inhibition of the proteasome. These findings 

suggest that PRAS40 can act as a modulator of insulin action which exerts its action by regulating the 

activity of the proteasome.  

Previous studies have reported contrasting findings for the effects of PRAS40 on insulin 

action (16). In HEK293 cells neither knockdown nor overexpression of PRAS40 affected insulin-

mediated Akt-phosphorylation (22). Yet, in line with our findings on primary human skeletal muscle 

cells, knockdown of PRAS40 resulted in the degradation of IRS1 in 3T3L1 adipocytes, HepG2 cells and 

C2C12 myoblasts (21,32), and reduction of insulin-mediated Akt-phoshorylation in 3T3L1 adipocytes 

and HepG2 cells (21). In one report, an increased basal phosphorylation of p70S6K was observed in 
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PRAS40-KD cells, which may contribute to the degradation of IRS1 through phosphorylation of IRS1 

on Ser636 and 639 (21). Accordingly, overexpression of PRAS40 impaired the insulin-mediated 

phosphorylation of the mTORC1 substrates S6K1 and 4E-BP1 (19,20,22,23). These findings led to the 

suggestion that the dissociation of phosphorylated PRAS40 from raptor could promote downstream 

mTORC1 signalling by increased substrate binding to raptor (16,17). However, this proposed function 

for PRAS40 is in contrast with our findings on primary human skeletal muscle cells and multiple other 

studies (16,22,33,34). In HEK293E cells, the dissociation of PRAS40 from raptor was found to increase 

4E-BP1 binding to raptor, but not to affect the basal or insulin-stimulated phosphorylation of p70S6K 

and 4E-BP1 (33). In other studies, including the present one, the silencing of PRAS40 impaired both 

the basal and the insulin-stimulated activation of the mTORC1-pathway (22,34). In PRAS40-KD 

human primary skeletal muscle cells, this is illustrated by a reduced phosphorylation of the p70S6K-

Thr412, ribosomal protein S6-Ser240, and 4E-BP1-Thr37/Thr46, and, for the first time, also by a 

reduced abundance of Grb10, a newly identified mTORC1 substrate whose levels are stabilized 

through phosphorylation by mTORC1 (9-11). Although genetic evidence obtained in D. melanogaster 

hints at a tissue-specific regulation of the dTORC1-pathway by dPRAS40 (24), the impaired activation 

of the mTORC1 signalling pathway by insulin in the present study most likely results from a reduced 

activation of the IRS1-Akt-TSC2 axis in PRAS40-KD myotubes rather than from a direct role for 

PRAS40 in the regulation of mTORC1-signalling (16,17). 

A novel finding of the present study is the recognition that PRAS40 participates in the 

regulation of proteasome activity, as illustrated by elevated mRNA expression of the E3-ligases 

atrogin-1 and MuRF1, as well as the increased activity of the proteasome in PRAS40-KD myotubes. 

Importantly, pharmacological inhibition of the proteasome reversed the reduction in IRS1 protein 

levels and the impaired insulin-mediated phosphorylation of Akt in PRAS40-KD myotubes. This 

indicates that PRAS40 may affect insulin action by regulating the protein levels of IRS1 through the 

proteasome rather than the mTORC1/p70S6K feedback loop. Accordingly, inhibition of p70S6K 

activity did not prevent the reduction in IRS1 protein abundance in PRAS40-KD myotubes. Previous 

studies already linked the proteasome-mediated degradation of IRS1 to the inhibition of insulin 

action in response to hyperinsulinemia (35,36) and inflammation (37). In this context, multiple E3-

ligases, including F-box only protein 40, Cbl-b, and F-box/WD repeat-containing protein 8, have been 

linked to IRS1 degradation in response to hyperinsulinemia, inflammation and chronic exposure to 

insulin-like growth factor 1 (37-41). Furthermore, an increased expression of atrogin-1 and MuRF1 

associating with reduced activation of the PI3K/Akt pathway by insulin was described in skeletal 

muscle of db/db mice (42). Interestingly, restoration of insulin sensitivity in skeletal muscle of this 

animal model by rosiglitazone was accompanied by reductions in the expression of atrogin-1 and 
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MuRF1 (42). Although these observations are fully in line with our study, further studies are required 

to assess whether atrogin-1 and MuRF1 indeed function as genuine IRS1-ligases. 

Another aspect that remains to be addressed is the molecular mechanism via which PRAS40 

regulates the activity of the proteasome. One may speculate that the effects of PRAS40-KD on the 

proteasome result from inhibition of mTORC1 activity. In primary rat hepatocytes, short-term 

pharmacological inhibition of mTOR was found to reverse the inhibition of the ubiquitin-proteasome 

pathway by insulin and amino acids (31). Furthermore, skeletal muscles of mTOR heterozygous mice 

display elevated expression levels of the E3 ligases atrogin-1 and muscle ring finger -1 (30). However, 

mTOR heterozygosity was not paralleled by alterations in IRS1 expression in these animals (30). 

Furthermore, short-term treatment of 3T3L1 adipocytes with rapamycin does not result in 

abrogation of insulin-stimulated glucose transport (43). Finally, in mice with a muscle-specific 

deletion of raptor, a critical component of the mTORC1 complex, expression levels of atrogin-1 and 

MuRF1 were decreased (44). Alternatively, the reduction in Grb10 levels in PRAS40-KD myotubes 

may participate in the activation of the proteasome. Grb10 has been found to protect the vascular 

endothelial growth factor receptor from ubiquitin-mediated degradation in HEK293 cells (45). 

Although Grb10 has been identified as a negative regulator of insulin receptor abundance (10), IRS1 

levels are markedly reduced in skeletal muscle from mice with a targeted disruption of either Grb10 

alone, or combined with the related Grb14 protein (46,47). Intriguingly, in muscles from Grb10 

knock-out mouse, insulin-induced tyrosine phosphorylation of IRS1 was increased, whereas insulin-

induced phosphorylation of Akt-Ser473 was decreased (46). In muscles from the combined 

Grb10/Grb14 knock-out mouse marked decreases were observed in insulin-stimulated IRS1 

phosphorylation (47). Although it remains to be clarified whether the reductions in IRS1 protein 

abundance in the Grb10-deficient animal models indeed result from increased degradation of IRS1, 

these findings do not exclude the possibility that the reductions in Grb10 protein levels could 

contribute to the inhibition of insulin action observed in PRAS40-KD myotubes. Collectively these 

findings clearly indicate that further studies are required toward identification of the signalling 

pathways linking PRAS40 to the regulation of proteasome activity. 

We further observed that exposing PRAS40-KD myotubes to chemokines did not result in an 

additional deterioration of insulin action. This indicates that PRAS40-KD and chemokines may utilize 

the same pathway to inhibit insulin action. Indeed, chronic exposure of hSkMC to MCP-1 resulted in 

degradation of IRS1, which could be reversed by inhibition of the proteasome. However, whereas 

PRAS40-KD led to inhibition of mTORC1 signalling, MCP-1 treatment had no effect on mTORC1 

signalling in myotubes. This suggests that MCP-1 promotes degradation of IRS1 through other 

mechanisms, such as the induction of serine phosphorylation of IRS1 by members of the MAP kinase 
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family (48). These inhibitory serine phosphorylations facilitate the binding of 14-3-3 proteins to IRS1 

and target the protein for degradation (49). In support of this possibility is the observation that 

inhibition of the extracellular-signal regulated kinase pathway in hSkMC reverses the impairment of 

insulin action induced by MCP-1 (25).  

Collectively, this study provides novel insights into the function of one of the most prominent 

substrates for Akt, PRAS40, in skeletal muscle. Rather than the previously suggested p70S6K negative 

feedback loop, our findings suggest that PRAS40 may modulate insulin action by regulating the 

protein abundance of IRS1 by affecting the activity of the proteasome.  
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Figure 3.6 Inhibition of the proteasome prevents the induction of IRS1 degradation and insulin resistance by 

PRAS40 knockdown and monocyte chemoattractant protein 1. Lysates from human primary skeletal muscle 

cells transfected with either a non-target (NT) or PRAS40 siRNA and incubated with MG-132 or monocyte 

chemoattractant protein 1 (MCP-1) prior to insulin stimulation were analyzed for protein levels of IRS1 (a/d), 

and PRAS40 (b), as well as for phosphorylation of Akt-Ser473 (c/e). The protein signals were normalized for 

GAPDH abundance, which was not affected by the experimental conditions used.  Data are presented as 

representative Western blots and bar graphs showing the mean ± standard error of the mean of the 

phosphorylation levels obtained in at least 5 independent experiments using cells from different donors. The 

values obtained for NT-siRNA transfected cells were considered as control and set at 100%. The effects of 

silencing PRAS40, MCP-1, and MG-132 were analyzed by two-way ANOVA. *, p<0.05, ***, p<0.001 versus cells 

transfected with NT-siRNA; †††, p<0.001; ††, p<0.01 indicates the effect of MG-132 versus basal; ‡, indicates 

p<0.05 for insulin versus basal.  
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Figure 3.7 (supplementary) Effect of PRAS40 silencing on the mRNA expression of PRAS40. Human primary 

skeletal muscle cells were transfected with either a non-target (NT) or PRAS40 siRNA at day 3 of differentiation. 

Differentiated myotubes were harvested at day 7 of differentiation for analysis of mRNA expression of PRAS40 

by real-time PCR. Data are presented as the mean ± standard error of the mean of 3 independent experiments 

using cells from different donors. Values obtained for NT-siRNA transfected cells were considered as control 

and set at 100%. The effect of silencing PRAS40 on mRNA expression was analyzed by a student’s t-test. **, 

p<0.01 versus cells transfected with NT-siRNA. 
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Electronic supplementary material  

 

Primers used for real-time PCR analysis 

 

For IRS1, muscle RING-finger protein-1 (MuRF1), PRAS40, and peptidylprolyl isomerase A 

(PPIA), QuantiTect primer assays were purchased from Qiagen (Hilden, Germany). Atrogin-1 primers 

with the following sequences: forward-ATTAACGAAGCACAAGTCTG, reverse-

GAATAAAGATGGCACCAAGG, and ribosomal protein 28 (RPS28) primers with the following 

sequences: forward-GGTCTGTCACAGTCTGCTCC, reverse-CATCTCAGTTACGTGTGGCG were designed 

using the NCBI Primerblast tool and ordered from Eurogentec (Seraing, Belgium). 
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Abstract 

 

The proline-rich Akt substrate of 40kDa (PRAS40) is a component and substrate of the 

mammalian target of rapamycin complex 1 (mTORC1), but also a prominent Akt-substrate in skeletal 

muscle. We recently observed that the knockdown of PRAS40 impaired insulin action by affecting the 

protein abundance of insulin receptor substrate 1 (IRS1). This study aimed to extend these findings 

by assessing whether overexpression of wild type PRAS40 (WT-PRAS40) enhances insulin action and 

protects against the induction of insulin resistance in skeletal muscle. Furthermore, we examined the 

effects of a mutant form of PRAS40, AAA-PRAS40, in which the two major phosphorylation sites 

(Ser183 and Thr246) as well as the potential mTORC1-binding site Phe129 were mutated into alanine, 

on insulin action. In WT-PRAS40, but not in AAA-PRAS40-expressing human skeletal muscle cells 

(hSkMC), the activation of the mTORC1-pathway by insulin was impaired. However, overexpression 

of WT-PRAS40 enhanced the insulin-mediated phosphorylation of Akt both in hSkMC and mouse 

skeletal muscle. Overexpression of mutant AAA-PRAS40 also increased insulin action in hSkMC, 

although to a lesser extent as compared to WT-PRAS40. The insulin-sensitizing effect of PRAS40 

associated with increased IRS1 protein abundance and inhibition of proteasome activity. Finally, 

overexpression of WT-PRAS40 protected against hyperinsulinemia-induced insulin resistance in 

hSkMC by preventing the reductions in IRS1 protein levels and Akt-phosphorylation. Collectively, 

these findings identify PRAS40 as a regulator of insulin sensitivity in hSkMC. In contrast to the 

regulation of the activity of the mTORC1 pathway, this insulin-sensitizing action occurs independent 

of binding of PRAS40 to the mTORC1 complex 

 

Abbreviations 

 

4E-BP1, eukaryotic elongation 4E-binding protein 1; AAA-PRAS40??αMEM, α-modified 

Eagle’s medium; FBXO32, F-box protein 32; GAPDH, anti-glyceraldehyde 3-phosphate 

dehydrogenase; Grb10, growth factor receptor binding protein 10; hSkMC, human skeletal muscle 

cells; IRβ insulin receptor beta chain IRS1, insulin receptor substrate 1; mTOR, mammalian target of 

rapamycin; mTORC1, mammalian target of rapamycin complex 1; metS, metabolic syndrome; 

MuRF1, muscle ring finger  1; p70S6K , p70S6 kinase; PI3K, phosphatidylinositol-3’-kinase; PRAS40, 

proline-rich Akt substrate of 40 kDa; TA Tibialis anterior, T2D, type 2 diabetes, TSC2, Tuberous 

sclerosis complex 2; WT, wild type.  
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Introduction 

 

The regulation of insulin sensitivity is essential for the maintenance of glucose homeostasis 

and is disturbed in patients with type 2 diabetes (T2D) and the metabolic syndrome (metS) resulting 

in insulin resistance. Because skeletal muscle is responsible for 80-90% of insulin-stimulated glucose 

disposal (1,2), insulin resistance in skeletal muscle has an essential impact on the pathogenesis of 

metS and T2D. Insulin resistance in skeletal muscle is characterized by disturbances in the insulin-

mediated tyrosine phosphorylation of the insulin receptor substrate 1 (IRS1), which results in 

activation of phosphatidylinositol 3'-kinase (PI3K) and phosphorylation of Akt (3). Activation of the 

IRS1/PI3K/Akt-pathway regulates amongst others the translocation of the facilitative glucose 

transporter GLUT4 from intracellular compartments to the plasma membrane thereby increasing the 

rate of glucose transport into the cell (3). 

A reduced activity of the IRS1/PI3K/Akt-pathway additionally impairs the insulin-mediated 

phosphorylation of one of the most prominent Akt-substrates, the proline-rich Akt substrate of 40 

kDa (PRAS40), as demonstrated in skeletal muscle of humans with T2D and high-fat diet-fed rodents 

(4-6). Besides being an Akt-substrate, PRAS40 is also a component and a substrate of the mammalian 

target of rapamycin complex 1 (mTORC1) (7). This multiprotein complex regulates a variety of 

anabolic pathways, such as control of cell growth, cell survival, proliferation, metabolism and 

autophagy (7-9). Previous studies investigating the function of PRAS40 within the mTORC1 complex 

have yielded conflicting results (10-15). In vitro silencing and overexpression approaches mostly in 

immortalized cultured cell lines have ascribed both inhibitory and stimulatory functions to PRAS40 in 

the regulation of mTORC1 activity (10-15). Furthermore, a study in Drosophila melanogaster 

proposed that the regulation of mTORC1 activity by PRAS40 is tissue-specific and dependent on 

posttranslational modification of the protein (16). The function of PRAS40 within the insulin-signaling 

cascade is also incompletely understood. While multiple studies failed to demonstrate an effect of 

PRAS40 overexpression or silencing on insulin action in immortalized cell lines (7), we observed that 

the knockdown of PRAS40 expression in primary human skeletal muscle cells (hSkMC) resulted in the 

proteasome-mediated degradation of IRS1 (17). This was accompanied by an inhibition of the insulin-

mediated activation of the Akt signaling pathway as well as GLUT4-mediated glucose uptake (17). 

Furthermore, mutation of the nuclear export sequence within PRAS40, resulting in enforced nuclear 

accumulation and absence of PRAS40 in the cytosol, also impaired insulin action by lowering IRS1 

protein levels (18). Because of these modulating effects of PRAS40 on insulin action, the aim of this 

study was to investigate whether overexpression of wild type PRAS40 (WT-PRAS40) enhances 

skeletal muscle insulin sensitivity and therefore has a protective effect against the induction of 
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insulin resistance in this tissue. In addition, we investigated  whether the modulating effect of 

PRAS40 is dependent on its function on mTORC1 signaling by overexpression of a mutant form of 

PRAS40 in which the two best-characterized phosphorylation sites (Ser183 and Thr246) as well as 

Phe129 in the potential mTORC1 binding site (TOS-motif) were changed into alanine (AAA-PRAS40) 

(4,7,15). 

 

Methods 

 

Cultivation and differentiation of primary human skeletal muscle cells 

 

Primary human skeletal muscle cells (hSkMC) isolated from rectus abdominis muscle of three 

healthy Caucasian donors (2 males, 16 and 18 of age; 1 females 33 of age) were supplied as 

proliferating myoblasts from PromoCell (Heidelberg, Germany) or Lonza (Basel, Switzerland). 

Myoblasts were seeded in six-well culture dishes and were cultured in growth medium α-modified 

Eagle’s (αMEM)/Ham’s F-12 medium (Gibco, Berlin, Germany) containing a supplement pack for 

skeletal muscle cells from PromoCell (Heidelberg, Germany). When cells reached near-confluence, 

differentiation of myocytes was induced by replacing the growth medium with differentiation 

medium, containing αMEM and 2 % horse serum (Gibco). All experiments were performed at day 7 of 

differentiation, after cells were starved overnight in αMEM without serum. Acute insulin stimulation 

was performed with 100 nM insulin (porcine insulin, Sigma Aldrich, St Louis, MO, USA) for 10 min. 

Hyperinsulinemia was mimicked by incubating myotubes at day 6 of differentiation with 50 nM 

insulin for 24h. Then cells were washed with αMEM and incubated for 1h before acute stimulation 

with 100 nM insulin and harvesting. 

 

Lentiviral infection of hSkMCs 

 

Empty vector (EV) or constructs expressing human PRAS40 (WT-PRAS40) were generated as 

described previously (4). Via mutagenesis-PCR Ser at position 183, Thr at position 246, and Phe at 

position 129 were mutated into Ala (Ser183Ala/Thr246Ala/Phe129Ala; AAA-PRAS40). These 

constructs were used to produce infectious virus particles (LV). Together with helper plasmids 

encoding HIV-1 gag-pol, HIV-1 rev, and the VSV-G envelope the respective constructs were 

cotransfected in virus-producing HEK293t cells as described previously (19). Virus titer was quantified 

using a HIV-1 p24 antigen enzyme-linked immunosorbent assay (ELISA) kit (ZeptoMetrixCorp., New 

York, USA). For overexpression of wild type or mutant PRAS40, cells were infected at day 3 of 
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differentiation with a MOI of 5. One day after transduction, the medium was replaced by 

differentiation medium. At day 7 of differentiation, cells were starved overnight in αMEM without 

serum, and left untreated or incubated with insulin (100 nM; 10 min) before harvesting 

 

Analysis of insulin signaling in hSkMCs 

 

Skeletal muscle cells were lysed and analyzed using Western Blot as described previously 

(17). Protein bands were visualized by the enhanced chemiluminescence method using Immobilion 

Western detection reagents (Millipore, Schwalbach, Germany) on a VersaDoc 4000 MP (BioRad, 

Munich, Germany) work station. Quantification was performed using Quantity one analysis software 

(Version4.6.7). The following antibodies were purchased from Cell Signaling Technology (Denver, MA, 

USA): anti-phospho-Akt Ser473 and Thr308, anti-Akt, anti-phosho PRAS40 Thr246, anti-PRAS40, anti-

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), anti-tubulin. Anti-insulin receptor beta chain 

(IRβ) was obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA), anti- GLUT4 antibody from 

R&D Systems (Minneapolis, USA) and anti-IRS1 from Upstate (Millipore, Charlottesville, USA). 

 

Glucose-uptake  

 

Cells were serum-starved for 18h and used for analysis on day 7 of differentiation. After an 

acute insulin stimulus (100 nM; 30 min) radioactively-labelled 2-desoxy-D-14C-glucose (2-14C-DOG) 

was added and uptake was assayed for 2h as described previously (20). 

 

RNA-isolation and quantitative real-time PCR 

 

Total RNA was extracted using the RNeasy Mini Kit (Qiagen, Hilden, Germany) according to 

the manufacturer´s instruction. The RNA was reverse-transcribed into cDNA using the GoScript™ 

Reverse Transcriptase system (Promega, Mannheim, Germany), and gene expression levels were 

quantitated by real-time PCR on a Step One Plus Cycler (Applied Biosystems, Carlsbad, CA, USA) using 

GoTaq® qPCR Master Mix (Promega). For IRS1 and MuRF1, QuantiTect primer assays were purchased 

from Qiagen (Hilden, Germany). FBXO32 (also known as atrogin-1) primers with the following 

sequences: forward-ATTAACGAAGCACAAGTCTG, reverse-GAATAAAGATGGCACCAAGG, and ribosomal 

protein 28 (RPS28) primers with the following sequences: forward-GGTCTGTCACAGTCTGCTCC, 

reverse-CATCTCAGTTACGTGTGGCG were designed using the NCBI Primerblast tool and ordered from 

Eurogentec (Seraing, Belgium). The ΔΔCt method was used to normalize the expression data using 
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RPS28 as housekeeping gene. The Ct values for RPS28 showed no variations in response to the 

various treatments applied to the hSkMC in this study. 

 

Proteasome activity assay  

 

Proteasome activity was determined in serum-starved myotubes grown in 96-well plates at 

day 7 of differentiation. Analysis of the caspase-like proteasome activity was performed using the 

Proteasome-Glo cell-based assay (Promega) according to the manufacturer’s protocol as described 

previously (17). When indicated, cells were incubated with 3µmol/l MG-132 (Calbiochem, Darmstadt, 

Germany) for 15 min before assay was started. The luminescence was measured using a Tecan 

Infinite 200 reader (Tecan, Maennersdorf, Germany). 

 

In vivo muscle electroporation (IVE) and ex vivo insulin stimulation in isolated muscles 

 

The animal experiments were performed in accordance with the ‘Principle of laboratory 

animal care’ (NIH publication No. 85-23, revised 1996) and the procedures were approved by the 

local council of animal care in line with the current version of the German Law on the protection of 

animals. The in vivo muscle electroporation procedure was adapted from previous reports (21-23). 

Briefly, plasmids were purified using an Endotoxin-free Mega-Prep kit (Qiagen, Hilden, Germany), 

including elution of the DNA in sterile 0.9% NaCl. For electroporation, 12-16 weeks-old C57BL/6J 

mice were anesthetized using isoflurane and their hindlimbs were shaved. Subsequently, 15 units of 

hyaluronidase (Sigma, Munich, Germany) dissolved in 30 µl sterile 0.9% NaCl were injected in the 

Tibialis anterior (TA) muscles of both legs. Following a 1 h recovery in their cages, the mice were 

anesthetized again with isoflurane and 15 µg vector DNA in 30 µl of sterile saline was injected into 

the TA muscles of both legs. In each animal, one muscle was used as a control and injected with a 

GFP-expressing control vector. The DNA injection was followed by the application of a pair of 

tweezer electrodes across the distal limb connected to an ECM-830 electroporator device (BTX, 

Electro Square Porator ECM 830). The electroporation protocol involved 8 20-ms pulses of 80 V with 

an interval of 1 sec. After 7 days, mice were anesthetized by an intraperitoneal injection of (500 

mg/kg body weight) 2,2,2-Tribromoethanol (Sigma). Then, TA muscles were dissected and subjected 

to vials containing pre-oxygenated (95% O2/ 5% CO2) Krebs-Henseleit buffer (KHB) containing 5 mM 

HEPES and supplemented with 5 mM glucose and 15 mM mannitol. After muscle dissection, animals 

were sacrificed by cervical dislocation. All incubation steps were performed under continuous gassing 

(95% O2/ 5% CO2) at 30°C and slight agitation in a shaking waterbath. After recovery, muscles were 
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transferred to new vials and incubated for 30 min in KHB/ 5 mM HEPES/ 15 mM mannitol/ 5 mM 

glucose under basal condition or in the presence of 120 nM insulin (Actrapid, Novo Nordisk, Mainz, 

Germany). Muscles were immediately snap frozen in liquid nitrogen and stored at -80°C for 

subsequent signal transduction analysis..  

 

Analysis of insulin signaling in electroporated mouse muscle 

 

Muscles were homogenized in buffer containing 20 mM Tris, 150 mM NaCl, 1 mM EGTA, 1 

mM EDTA, 1% (v/v) Triton-X-100, and a proteinase inhibitor cocktail as well as a Phosphatase 

inhibitor cocktail (both from Roche, Mannheim, Germany) using a Tissuelyzer (Qiagen). Lysates were 

centrifuged for 10 min at 16.000 x g at 4°C. Protein content was determined in the supernatant using 

the BCA Protein Assay Kit (Pierce, Rockford, USA) according to the manufacturer´s instruction. 

Protein samples (20 μg) were separated by SDS-PAGE and transferred onto polyvinylidine fluoride 

membranes by immunoblot analysis as described under 'Analysis of insulin signaling in hSkMC'. 

 

Statistical analysis  

 

Data are presented as means ± SEM. Significant differences were determined by one- or two-

way ANOVA followed by Bonferroni multiple comparison analysis as indicated in detail in the legends 

to the figures. Statistical analysis was performed using Prism 6 for Mac OS X (Graphpad, La Jolla, CA). 

P-values of <0.05 were considered as statistically significant 

 

Results 

 

Overexpression of PRAS40 improved insulin action but decreased mTORC1 signaling in hSkMC 

 

Transduction of hSkMC with lentiviruses encoding WT-PRAS40 or AAA-PRAS40 resulted in a 

5.6- and 4.6-fold increases in PRAS40 protein abundance, respectively, versus cells transduced with 

lentivirus particles containing an empty vector (EV) (Figure 4.1a). Neither overexpression of WT-

PRAS40 nor of AAA-PRAS40 affected the protein abundance of IR-β, Akt, or GLUT4 (Figure 4.1b-d). 

However, IRS1 protein levels were increased by 25% in cells overexpressing WT-PRAS40 versus EV 

(Figure 4.1e). The elevated IRS1 protein abundance associated with increases in insulin-stimulated 

Akt phosphorylation at Ser473 and Thr308 (44% and 37%), and elevated insulin-stimulated glucose 

uptake (23%) in hSkMC expressing WT-PRAS40 versus EV (Figure 4.2a-d). Interestingly, this beneficial 
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effect of PRAS40 was also observed, although to a lesser extent following expression of AAA-PRAS40. 

In hSkMC expressing AAA-PRAS40, IRS1 levels were increased by 19% (Figure 4.1e) and insulin-

mediated phosphorylation of Akt at both phosphorylation sites examined was enhanced by 15% 

(Figure 4.2a-c). However, in contrast to WT-PRAS40, expression of mutant AAA-PRAS40 did not result 

in enhanced insulin-stimulated glucose uptake (Figure 4.2d).  

Previous studies have identified PRAS40 as inhibitor of mTORC1-signaling (7). Here, we 

investigated mTORC1 activity by examining the phosphorylation of p70S6K-Thr389 as well as S6-

Ser240. Insulin-stimulated phosphorylation of p70S6K was reduced by nearly 35% (Figure 4.2e) while 

phosphorylation of S6 was even completely abrogated in WT-PRAS40 expressing mytotubes (Figure 

4.2f). In contrast, there were no significant differences in the induction of p70S6K- and S6 

phosphorylation by insulin between hSkMC expressing mutant AAA-PRAS40 and EV (Figure 4.2e-f), 

indicating that phosphorylation and/or mTORC1-binding of PRAS40 is essential for the inhibitory 

function of PRAS40 on mTORC1. 

 

Overexpression of PRAS40 impairs the activity of the proteasome in hSKMC 

 

We previously showed that silencing PRAS40 in hSkMC decreased the protein abundance of 

IRS1 through activation of the proteasome, which resulted in impaired insulin action (17). Here, we 

analysed whether the protective effect of PRAS40 on insulin sensitivity could be ascribed to an 

inhibition of the proteasome. As shown in Figure 4.3a, both the expression of WT-PRAS40 as well as 

of AAA-PRAS40 were found to lower the caspase-like activity of the proteasome. This was 

accompanied by a reduction in the mRNA levels of the muscle-specific E3-ligase MuRF1, but not of 

FBXO32 (Figure 4.3b-c). 

 

Overexpression of PRAS40 improved insulin action in TA muscle in vivo 

 

The overexpression studies described above suggest a function for PRAS40 as sensitizer of 

insulin action. To substantiate this notion, we used in vivo electroporation to increase PRAS40 levels 

in Tibialis anterior (TA) muscle of C57BL/6J mice. Figure 4.4a shows that protein levels of PRAS40 

were increased by nearly 2-fold as compared to TA-muscles expressing the empty control vector (EV). 

The increase in PRAS40 protein levels was accompanied by a 27% increase in the protein abundance 

of IRS1 (Figure 4.4b). In contrast, Akt and GLUT4 protein levels were not altered in PRAS40 

overexpressing TA muscles (Figure 4.4c-d). In line with our observations in hSkMC, the insulin-
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stimulated phosphorylation of Akt at Thr308 and Ser473 were increased by 2.2- and 1.6-fold, 

respectively in muscles expressing PRAS40 as compared to empty vector (Figure 4.5). 

 

Overexpression of WT-PRAS40 protects against hyperinsulinemia-induced insulin resistance in hSkMCs 

 

To further validate the potential function of PRAS40 as sensitizer of insulin action, we 

subsequently examined whether overexpression of the protein protects against the induction of 

insulin resistance. It is well established that chronic exposure to insulin results in a down-regulation 

of insulin-mediated PI3K/Akt signaling likely via increased internalization and degradation of the 

insulin receptor as well as degradation of IRS1/IRS2 (24,25). Accordingly, an in vitro approach 

mimicking hyperinsulinemia via long-time (24h) incubation of mytubes with 50nM insulin, 

significantly impaired the insulin-stimulated phosphorylation of Akt at Thr308 and Ser473 (Figure 

4.6a-b) as well the protein abundances of IR-β (32%) (Figure 4.6c) and IRS1 (30%) (Figure 4.6d). 

Overexpression of WT-PRAS40, but also AAA-PRAS40, improved insulin-stimulated phosphorylation 

of Akt at Thr308 (Figure 4.6a) in myotubes chronically exposed to insulin as compared to hSkMC 

transduced with empty vector. The hyperinsulinemia-induced inhibition of insulin-mediated Akt-

Ser473 phosphorylation was partially restored by expression of WT-PRAS40, but not by AAA-PRAS40 

(Figure 4.6b). Whereas the reduction of IR-β levels by chronic insulin exposure was not rescued by 

PRAS40 overexpression (Figure 4.6c), overexpression of WT-PRAS40 increased IRS1 protein 

abundance by 23% (Figure 4.6d). These data further corroborate our findings that PRAS40 functions 

as a modulator of insulin sensitivity by regulating the protein levels of IRS1. 

 

Discussion 

 

 This study extends our previous reports (17,18) demonstrating that PRAS40 is a modulator of 

insulin action in skeletal muscle. We previously reported that knockdown of PRAS40 as well as 

enforced nuclear localization of PRAS40 lowered IRS1 protein abundance via activation of the 

proteasome. This was accompanied by an impaired activation of the IRS/PI3K/Akt pathway by insulin. 

The present study shows that overexpression of WT-PRAS40 in vitro as well as in vivo results in 

increased IRS1 protein abundance, which resulted in enhanced insulin-mediated Akt phosphorylation 

and increased glucose uptake in vitro. This enhanced insulin sensitivity was accompanied by a 

reduced activity of the proteasome mediating likely the beneficial effect of PRAS40 overexpression 

on IRS1 stability. Importantly, these beneficial effects of PRAS40 seemed to be exclusively affecting 

IRS1, since Akt, GLUT4, and IRβ protein abundances were unaffected upon PRAS40 overexpression. 
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Finally, we could demonstrate that overexpression of PRAS40 partially protects against insulin 

resistance induced by chronic insulin treatment. 

 Multiple studies have proposed an important role for PRAS40 in the regulation of mTORC1 

activity (12,13,15,26). Specifically, the direct binding of PRAS40 through its TOS motif to raptor, may 

sequester mTORC1 away from other substrates, such as p70S6K and 4EBP1, and thereby impair their 

activation (11,12,14,26). Our data confirm this critical role for PRAS40 in the regulation of mTORC1 

function. Overexpression of WT-PRAS40 significantly decreased p70S6K and S6 phosphorylation, 

hinting towards a reduction of the capability of mTORC1 to promote p70S6K activation. While the 

inhibitory effects of PRAS40 knockdown and enforced nuclear localization of PRAS40 on mTORC1 

activity are probably mediated by a secondary effect via inhibition of the IRS1/Akt/TSC2 pathway 

(17,18), PRAS40 overexpression modulates mTORC1 activity independent of the IRS1/Akt/TSC2 axis. 

Due to increased activity of IRS1 and Akt in PRAS40 overexpressing muscle cells, the inhibition of 

mTORC1 activity seemed to be directly mediated by enhanced PRAS40 protein abundance. 

Furthermore, overexpression of a mutant form of PRAS40, in which both phosphorylation sites 

(Ser183 and Thr246) as well as the TOS motif (Phe129) were mutated, did not impact mTORC1 

activity indicated by comparable insulin-stimulated phosphorylation of p70S6K as well as S6 in AAA-

PRAS40-expressing myotubes versus cells transduced with empty vector. This illustrates that full 

phosphorylation of PRAS40 and/or binding of PRAS40 to mTORC1 is essential for the regulation of 

mTORC1 activity by PRAS40. 

 Our data further show that the modulatory effect of PRAS40 on insulin action does not 

require the binding of PRAS40 to mTORC1 since both the overexpression of WT- and AAA-PRAS40 

resulted in increases in IRS1 protein abundance and associated enhanced phosphorylated of Akt after 

insulin stimulation. This is in contrast to suggestions from previous reports, which proposed that 

inhibition of p70S6K by PRAS40 overexpression reduced the inhibitory serine phosphorylation on 

IRS1, and thereby increases phosphorylation of Akt (27-29). However, inhibition of p70S6K does not 

restore IRS1 protein abundance and insulin sensitivity in hSkMC in which PRAS40 expression was 

silenced (17). The present data obtained with the AAA-PRAS40 mutant further argue against the 

importance of the mTORC1/p70S6K-pathway in the regulation of insulin sensitivity by PRAS40. 

Rather, our data provide further support for the regulation of the activity of the proteasome by 

PRAS40, as illustrated by the observation that overexpression of PRAS40 reduces the activity of the 

caspase-like activity of the 26S proteasome, and lowers the mRNA expression of the muscle specific 

E3 ligase MuRF1.  

 Importantly, WT-PRAS40 and AAA-PRAS40 were equally active in inhibition of the 

proteasome pathway and stabilization of IRS1 protein levels. However, WT-PRAS40 was more potent 
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when its considering the 'insulin-sensitizing' potential as compared to AAA-PRAS40. Similar findings 

were obtained when considering the protective effect of AAA-PRAS40 against hyperinsulinemia-

induced insulin resistance. The reason for these discrepancies in activity of regulation of the 

proteasome/IRS1-axis and insulin-mediated Akt phosphorylation and glucose uptake, especially after 

hyperinsulinemia, is not completely clear. Yet, these findings are in support with other studies that 

alterations in IRS1 protein abundance do not necessarily correlate with alterations in Akt signaling 

and glucose uptake. Comparable observations were made by Hoehn and collegaeus, who reported an 

uncoupling between IRS1 tyrosine phosphorylation and Akt phosphorylation in an in vitro model for 

chronic hyperinsulinemia (30). These authors suggest that additional aspects could affect IRS1 

function, like subcellular localization (30). Also others reported a non-linearity between IRS1 and 

downstream signaling to Akt. In mouse muscle, shRNA-mediated silencing of IRS1 did not impair 

glucose disposal (31). Finally, a decrease in IRS1 activity did not affect full Akt phosphorylation by 

insulin in muscle tissues of insulin-resistant mice (32). In addition to this unanswered question, 

another limitation of the present study is that we did not further detail the underlying mechanism 

how PRAS40 interacts and modulates proteasome function. Nevertheless, this study provides further 

insight into the function of PRAS40 in the insulin signaling pathway in skeletal muscle. While 

overexpression of WT-PRAS40 impairs mTORC1 activity, the increase in insulin sensitivity by PRAS40 

overexpression is independent of mTORC1 activity. Furthermore, PRAS40 modulates IRS1 

stabilization through regulation of the proteasome machinery. Finally, while posttranslational 

modification as well as binding of PRAS40 to mTORC1 seems to be essential for PRAS40 function on 

mTORC1, inhibition of the proteasome activity is still occurring in cells overexpressing AAA-PRAS40. 

Collectively, these findings identify PRAS40 as regulator of insulin sensitivity in hSkMC. 
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Figures 

 

Figure 4.1 Effect of WT- and AAA-PRAS40 overexpression on the protein expression of key components of the 

insulin signaling pathway. Lysates from human primary skeletal muscle cells transduced with lentiviruses 

encoding either expressing an empty vector (EV), wild type PRAS40 (WT) or a mutant of PRAS40 (AAA) were 

analyzed for protein levels of PRAS40 (A), the insulin receptor (IR) β-subunit (B), Akt (C), GLUT4 (D), and insulin 

receptor substrate 1 (IRS1) (E). Protein levels were normalized for GAPDH or tubulin protein levels, which were 

not affected by the experimental conditions used in this study. Data are presented as representative Western 

blots and bar graphs showing the mean ± standard error of the mean of 3-15 independent experiments using 

cells from different donors. Values obtained for EV-transduced myotubes were considered as control and set at 

100%. The effects of WT- or AAA-PRAS40 overexpression on protein levels and mRNA expression were analyzed 

by one-way ANOVA followed by post-hoc Bonferroni testing for multiple comparisons. ***, p<0.001; **, 

p<0.01; *, p<0.05 versus EV-control cells.  
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Figure 4.2 Effect of WT- and AAA-PRAS40 overexpression on insulin-mediated activation of the Akt and 

mTORC1 signaling pathway and the regulation of glucose uptake. Representative blots (A) and quantifications 

for the effect of wild type (WT) or mutant AAA-PRAS40 versus cell transduced with empty vector (EV) on 

insulin-mediated phosphorylation of Akt-Thr308 (B), Akt-Ser473 (C), glucose uptake (D), and insulin-induced 

phosphorylation of p70S6K-Thr389 (E) and S6-Ser240 (F). Phosphorylation signals were normalized for GAPDH 

abundance, which was not affected by the experimental conditions used. Data are presented as representative 

Western blots and bar graphs showing the mean ± standard error of the mean of at least 8 independent 

experiments using cells from different donors. Open bars depict basal (-) conditions, and hatched bars 

represent insulin-treated cells (+). The values obtained for EV-transduced insulin-treated cells were considered 
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as control and set at 100%. The effects of PRAS40 overexpression on insulin-mediated glucose uptake (D) are 

the mean ± standard error of the mean of 5 independent experiments using cells from different donors. The 

effects of WT- and AAA-PRAS40 expression on insulin action were analyzed using a two-way ANOVA followed 

by post-hoc Bonferroni testing for multiple comparisons. ***, p<0.001; **, p<0.01, *, p<0.05 versus EV-control 

cells; †, indicates p<0.05 for the effect of insulin- versus untreated-cells. 
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Figure 4.3 Effect of WT- and AAA-PRAS40 overexpression on proteasome activity. Human primary skeletal 

muscle cells were transduced with lentivirus particles either expressing an empty vector (EV), wild type PRAS40 

(WT) or a mutant of PRAS40 (AAA) and analyzed for caspase-like proteasome activity (A), as well as mRNA 

expression of FBXO32 (B) and MuRF1 (C). As a control for the proteasome assay EV-transduced cells were 

treated with the proteasome inhibitor MG132 for 15 min prior assay performance. Data are expressed as mean 

± standard error of the mean of at least 4 independent experiments using cells from different donors The 

values obtained for EV-transduced cells were considered as control and set at 100%. Effects of WT- and AAA-

PRAS40 overexpression on gene expression and proteasomal activity were analyzed by one-way ANOVA 

followed by post-hoc Bonferroni testing for multiple comparisons. ***, p<0.001; **, p<0.01, *, p<0.05 versus 

EV-control cells; ###, p<0.001 for the effect of MG132. 
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Figure 4.4 Effect of PRAS40 overexpression in vivo on protein expression of insulin signaling proteins. TA 

muscles were electroporated in vivo with empty vector (EV) or plasmid encoding wild type PRAS40 (WT). 

Lysates were analyzed for protein levels of PRAS40 (A), IRS1 (B), Akt (C), GLUT4 (D) (n=12). Signals were 

normalized for GAPDH protein levels, which were not affected by the experimental conditions used. Data are 

presented as representative Western blots and bar graphs showing the mean ± standard error of the mean. 

The values obtained for EV-transfected muscles were considered as control and set at 100%. Effects of WT-

PRAS40 overexpression were analyzed by student’s t-test. ***, p<0.001; *, p<0.05 versus EV-control muscle. 
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Figure 4.5 Effect of PRAS40 overexpression in vivo on insulin action. TA muscles were electroporated in vivo 

with empty vector (EV) or plasmid encoding wild type PRAS40 (WT). Lysates were analyzed for phosphorylation 

of Akt-Thr308 (B) and Akt-Ser473 (C). Signals were normalized for GAPDH protein levels, which were not 

affected by the experimental conditions used. Data are presented as representative Western blots for p-Akt-

Thr308, p-Akt-Ser473, total Akt, and GAPDH (A), and bar graphs showing the mean ± standard error of the 

mean of 7 independent experiments with (+) and without (-) ex vivo insulin stimulation. The values obtained for 

EV-transfected muscles were considered as control and set at 100%. The effects of WT-PRAS40 expression on 

insulin action were analyzed using a two-way ANOVA followed by post-hoc Bonferroni testing for multiple 

comparisons. **, p<0.01, *, p<0.05 versus EV-control muscles; †, indicates p<0.05 for the effect of insulin- 

versus untreated-muscle. 
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Figure 4.6 Effect of WT- and AAA-PRAS40 overexpression on hyperinsulinemia-induced inhibition of insulin 

signaling. Lysates from human primary skeletal muscle cells were transduced with lentivirus particles either 

expressing an empty vector (EV), wild type PRAS40 (WT) or a mutant of PRAS40 (AAA). When indicated cells 

were exposed to chronic hyperinsulinemia (50 nM, 24 h). Then cells were kept untreated (-) or stimulated with 

insulin (+) for analysis of phosphorylation of Akt-Thr308 (A), Akt-Ser473 (B),  and protein expression of IRβ (C) 

and IRS1 (D). Signals were normalized for GAPDH or tubulin abundance, which was not affected by the 

experimental conditions used. Data are presented as representative Western blots and bar graphs showing the 

mean ± standard error of the mean of at least 4 independent experiments using cells from different donors. 

Open bars depict basal conditions, and hatched bars represent insulin-treated cells. The values obtained for EV-

infected insulin-treated cells were considered as control and set at 100%. The effects of WT- and AAA-PRAS40 

expression on insulin action were analyzed using two-way ANOVA followed by post-hoc Bonferroni testing for 

multiple comparisons. ***, p<0.001; **, p<0.01, *, p<0.05 versus EV-control cells; †, indicates p<0.05 for the 

effect of insulin- (+) versus untreated-cells (-); #, indicates p<0.05 for the effect of PRAS40 expression versus EV 

under conditions of hyperinsulinemia.  
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Abstract 

 

The proline-rich Akt substrate of 40-kDa (PRAS40) has been linked to the regulation of the 

activity of the mammalian target of rapamycin complex 1 as well as insulin action. Despite these 

cytosolic functions, PRAS40 was originally identified as nuclear phosphoprotein in Hela cells. This 

study aimed to detail mechanisms and consequences of the nucleocytosolic trafficking of PRAS40. 

Sequence analysis identified a potential leucine-rich nuclear export signal (NES) within PRAS40. 

Incubation of A14 fibroblasts overexpressing human PRAS40 (hPRAS40) resulted in nuclear 

accumulation of the protein. Furthermore, mutation of the NES mimicked the effects of leptomycin 

B, a specific inhibitor of nuclear export, on the subcellular localization of hPRAS40. Finally, A14 cells 

expressing the NES-mutant showed impaired activation of components of the Akt-pathway as well as 

of the mTORC1 substrate p70 S6 kinase after insulin stimulation. This impaired insulin signaling could 

be ascribed to reduced protein levels of insulin receptor substrate 1 in cells expressing mutant NES. 

In conclusion, PRAS40 contains a functional nuclear export signal. Furthermore, enforced nuclear 

accumulation of PRAS40 impairs insulin action, thereby substantiating the function of this protein in 

the regulation of insulin sensitivity.  

 

Highlights 

• PRAS40 contains a nuclear export signal 

• Enforced nuclear accumulation of PRAS40 impairs insulin action 

• PRAS40 regulates insulin action by affecting IRS1 protein levels. 

 

Keywords 

PRAS40, Akt, insulin action, subcellular localization, nuclear export signal 
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Introduction 

 

The proline-rich Akt substrate of 40-kDa is a component of the mammalian target of 

rapamycin complex 1, which on its turn regulates a plethora of anabolic pathways, like control of cell 

growth, cell survival, proliferation, metabolism, and autophagy (1,2). In response to extracellular 

stimuli, such as insulin and amino acids, PRAS40 becomes phosphorylated on multiple residues, 

which leads to dissociation of PRAS40 from the mTORC1 complex (3,4). The function of PRAS40 

within the mTORC1 is incompletely understood. Silencing and overexpression studies aimed detailing 

the function of PRAS40 within the mTORC1 complex have led to conflicting results, with both 

inhibitory and stimulatory roles ascribed to PRAS40 in the regulation of mTORC1 activity (5-10). Yet, a 

study in Drosophila melanogaster shed light on this controversy by suggesting that the regulation of 

mTORC1 activity by PRAS40 is tissue-specific and dependent on post-translational modification of the 

protein (11). 

In previous reports, we could demonstrate that PRAS40 is a major substrate for Akt in tissues 

involved in the regulation of insulin sensitivity, and that the insulin-mediated phosphorylation of 

PRAS40 is impaired under conditions of insulin resistance, including skeletal muscle from patients 

with type 2 diabetes and high-fat diet fed animals (12,13). Furthermore, the knockdown of PRAS40 

expression resulted in the proteasome-mediated degradation of the insulin receptor substrate 1 in 

human skeletal muscle, which was accompanied by inhibition of the insulin-mediated activation of 

the Akt signaling pathway regulating GLUT4-mediated glucose uptake (14). 

Despite its participation in these cytosolic cellular processes, it is noteworthy that PRAS40 

was originally identified as a nuclear phosphoprotein in HeLa cells (15). This nuclear localization of 

PRAS40 was also observed by immunological staining of both cultured cell lines and target tissues for 

insulin action with antibodies recognizing PRAS40 phosphorylated on Thr246 (12). These 

observations indicate that PRAS40 can shuttle between the cytosol and the nucleus. Accordingly 

sequence analysis identified a potential leucine-rich nuclear export signal (NES) in the 

carboxyterminal part of the protein. In the present study we aimed to assess the functionality of the 

NES using the nuclear export inhibitor leptomycin B and by overexpression of PRAS40 with a mutated 

NES. Because of the regulatory function of PRAS40 in insulin action, we further examined whether 

the enforced nuclear localization of PRAS40 impacts on insulin action under normal conditions and 

following exposure to palmitate, an inhibitor of insulin action. 
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Methods 

 

Plasmids 

 

The pRRL plasmid expressing human PRAS40 under control of a cytomegalovirus promoter 

and green fluorescent protein behind and IRES has been described elsewhere (13). Via mutagenesis 

PCR, the leucine residues at the positions 225 and 227 in human PRAS40 were mutated into alanine 

residues to generate mutant L225A/L227A-hPRAS40. The correct sequence of the mutant was 

verified by sequence analysis. 

 

Cell culture and incubations 

 

This study was conducted in A14 fibroblasts, which are NIH3T3 cells stably expressing 1.0x106 

insulin receptors per cell (16). Cells were grown in Dulbecco’s modified Eagle medium, supplemented 

with 10% fetal bovine serum, penicillin and streptomycin (all from Invitrogen, Carlsbad, CA, USA). 

When indicated A14 cells, which were seeded at a density of 300000 cells per well in a 6-well plate, 

were transfected the following day at 40% confluence with 1.2μg of empty pRRL vector or pRRL 

containing wild type or mutant PRAS40 using Attractene (Qiagen, Hilden, Germany) following the 

manufacturer’s instructions. Following the transfection, the cells were incubated overnight in DMEM 

containing 0.30 mM fatty acid free bovine serum albumin, or exposed to 0.75 mM palmitate bound 

to fatty acid free serum albumin a in ratio 2.5:1 as described (13). Then, cells were exposed to bovine 

insulin (Sigma Aldrich, St. Louis, MA, USA) (10 nM, 10 min) for analysis of insulin action. For 

immunofluorescence experiments, cells were exposed for 6 hours to the nuclear export inhibitor 

leptomycin B (LMB, 10 nmol/l) (Biomol, Plymouth meeting, PA, USA) when indicated.  

 

Animals 

 

Rat skeletal muscle was obtained from a previously published study (17). This investigation 

conformed to the guide for the care and use of laboratory animals, as published by the National 

Institute of Health (NIH publ. no 85-23, revised 1996) and the regulations of the institutional animal 

care and use committee. Following a 6 h fast, rats received an intraperitoneal injection with saline or 

insulin (10 U/kg body weight; Actrapid 100 U/ml; Novo Nordisk, Alphen aan den Rijn, The 

Netherlands) 30 min before being sacrificed by decapitation. Skeletal muscles were rapidly removed, 

snap frozen in liquid nitrogen-cooled isopentane and stored at −80°C until further analysis. 
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Immunofluorescence 

 

For immunofluorescence, cells were grown on coverslips and fixed in 3.7% formaldehyde. 

Residual cross-linking was quenched using NH4Cl and cells were permeabilized using 0.1% Triton X-

100. Coverslips were blocked (0.2% BSA) and incubated overnight with hPRAS40 antibodies (AHO131, 

Invitrogen, Carlsbad, California, USA) followed by 2 h with Cy3-conjugated anti-mouse IgG (Jackson 

Immunochemicals, West Grove, PA, USA) prior to mounting with Vectashield containing 4’,6-

diamidino-2-phenylindole (DAPI). Pictures were taken with a CCD CoolSnap K4 camera (Photometrics, 

Tucson, AZ, USA) on a Leica DM 5500 B microscope. Confocal pictures were taken on a Leica TCS SP2 

system using a Dm IRBE confocal microscope with maximal magnification. In each independent 

experiment, images from 2 to 4 cells were analyzed with Leica Confocal Software (version 2.5).  

 

Subcellular fractionation  

 

Nuclear proteins were extracted from A14 fibroblasts and rat skeletal muscle as described 

previously (18). Protein content was determined using the BCA protein assay kit (Pierce Rockford, IL, 

USA). Purity of the cell fractions was checked by Western blotting with α/β-tubulin and lamin A/C as 

cytosolic and nuclear markers, respectively. 

 

Western blot analysis 

 

For western blot analysis, cells were lysed in 100 mM Tris-Cl (pH 6.8), 3% (w./vol.) SDS, and 

10% (vol./vol.) glycerol. Protein content was determined using the bicinchoninic acid (BCA) protein 

assay kit. Expression and phosphorylation of proteins was then analyzed by SDS-PAGE and western 

blotting as described (14) using the following antibodies: Akt, Akt-phospho-Ser473, Akt-phospho-

Thr308, FOXO3a-phospho-Thr32, p70 S6 kinase-phospho-Thr389, GAPDH, PRAS40, lamin A/C and 

α/β-tubulin (all from Cell Signalling Technology, Danvers, MA, USA), insulin receptor β-subunit (Santa 

Cruz Biotechnology, Santa Cruz, CA, USA), and IRS1 as previously described (19). Signals were 

detected by enhanced chemiluminescence using Immobilon western blot detection reagents 

(Millipore Corporation, Billerica, MA, USA) on a Versadoc 4000 MP work station (BioRad, Munich, 

Germany), and quantitated using Quantity One analysis software (BioRad, version 4.6.7). 
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RNA-isolation and quantitative real-time PCR 

 

Total RNA was extracted using the RNeasy Mini Kit (Qiagen, Hilden, Germany), and 

transcribed into cDNA using the GoScript® reverse transcription system (Promega, Mannheim, 

Germany). Gene expression levels were determined by real-time PCR using GoTaq® qPCR Master Mix 

(Promega) on a Step One Plus Cycler (Applied Biosystems, Carlsbad, CA, USA). IRS1 gene expression 

was analyzed using QuantiTect primer assays from Qiagen (Hilden, Germany). Hypoxanthine 

phosphoribosyltransferase 1 (HPRT1) primers with the following sequences: forward-

TGACACTGGCAAAACAATGCA, reverse-GGTCCTTTTCACCAGCAAGCT were designed using the NCBI 

Primerblast tool and ordered from Eurogentec (Seraing, Belgium). Expression levels were calculated 

using the ΔΔCt method using HPRT1 as housekeeping gene. The expression levels of HPRT1 showed 

no variations in response to the various conditions applied in this study. 

 

Statistical analysis 

 

Data are presented as means ± SEM. Significant differences were determined by two-way 

ANOVA (post-hoc test, Bonferroni multiple comparison test) or two-tailed Students t test using 

Prism5 (GraphPad, La Jolla, CA, USA) software. Values of P<0.05 were considered statistically 

significant. 

 

Results 

 

PRAS40 contains a functional nuclear export sequence 

 

Analysis of the protein sequence of PRAS40 for potential motifs regulating the trafficking 

between the cytoplasm and the nucleus led to the identification of a potential 10 amino acid 

sequence in the carboxyterminal part of the protein. The IAASMRALVL-sequence located between 

amino acid residue 218 and 227 in human PRAS40 matches the sequence for a leucine-rich nuclear 

export signal (Figure 5.1a) (20). This potential NES-sequence is identical among the PRAS40 homologs 

identified in Homo sapiens, Bos taurus, Rattus norvegicus, and Mus musculus, slightly altered in 

Xenopus tropicalis, and Danio rerio, but conserved to a lesser extent in D. melanogaster (Figure 5.1b).  

To assess the functionality of the NES, we first compared the localization of a PRAS40-mutant 

in which the critical leucine residues at positions 225 and 227 (L225A/L227A) were replaced by 

alanine with the localization of wild type PRAS40. Immunofluorescence staining of A14 cells showed 
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that mutant L225A/L227A-PRAS40 is mainly found in the nucleus, whereas wild type PRAS40 has a 

predominant cytosolic localization (Figure 5.2a). Quantification of images obtained using confocal 

microscopy showed that 65% of PRAS40 immunoreactivity was observed in the nucleus of 

L225A/L227A-PRAS40 expressing cells versus 2.6% in cells expressing wild type PRAS40 (Figure 5.2b). 

We further confirmed this distribution of wild type and mutant PRAS40 by fractionation and Western 

blot analysis (Figure 5.2c). In a subsequent experiment, we assessed whether the nuclear export 

inhibitor leptomycin B affects the localization of wild type PRAS40. As shown in Figure 5.2a, exposure 

to leptomycin B increased the amount of PRAS40 immunoreactivity in the nucleus in cells expressing 

wild type PRAS40 versus untreated cells. Quantification of images obtained using confocal 

microscopy showed that 30% of wild type PRAS40 was found in the nucleus following leptomycin B 

incubation (Figure 5.2b).  

Finally, we examined the subcellular localization of endogenous PRAS40 both in A14 

fibroblasts and rat skeletal muscle. Western blot analysis of cytosolic and nuclear fractions prepared 

from A14 fibroblasts showed that PRAS40 is present in both compartments. Insulin incubation had no 

impact on the distribution of PRAS40 between the cytosol and the nucleus, but did increase the level 

of PRAS40 phosphorylated on Thr246 (Figure 5.3a).  Comparable data were obtained in a more 

physiological context, i.e. rat skeletal muscle. Figure 5.3b shows the presence of PRAS40 in both 

cytosolic and nuclear fractions prepared from rat skeletal muscle following saline injection. Insulin 

injection had no impact on the subcellular distribution of total PRAS40, but increased the amount of 

phosphorylated PRAS40 both in the cytosol and the nucleus (Figure 5.3b). 

 

Nuclear accumulation of PRAS40 and insulin action 

 

Because of the recently identified regulatory role of PRAS40 in insulin action (14), we next 

studied whether enforced nuclear localization of PRAS40 affects the expression and phosphorylation 

of components of the insulin signaling system. The expression of either wild type or L225A/L227A-

PRAS40 had no impact on the protein levels of the insulin receptor, and Akt as compared to A14 cells 

transfected with the empty vector (Figure 5.4). However, the protein level of IRS1 was significantly 

lower in L225A/L227A-PRAS40 expressing cells versus cells transfected with wild type PRAS40 or the 

empty vector (Figure 5.4). Importantly, no effect of enforced nuclear localization of PRAS40 was 

observed on mRNA expression of IRS1 (Supplementary figure 5.6). The reduction in IRS1 protein 

levels in L225A/L227A-PRAS40 expressing cells associated with an impaired insulin-mediated 

phosphorylation of Akt-Thr308, Akt-Ser473, and of the Akt-regulated substrate FOXO3a-Thr32 in 

L225A/L227A-PRAS40 expressing cells versus cells transfected with wild type PRAS40 or the empty 
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vector (Figure 5.5). Furthermore, the enforced nuclear expression of PRAS40 inhibited the insulin-

mediated phosphorylation of the mTORC1-substrate p70 S6 kinase-Thr389 (Figure 5.5). Exposing the 

cells to palmitate prior to insulin treatment had no additional effect on the inhibition of insulin action 

observed in L225A/L227A-PRAS40 expressing cells (Figure 5.5). In contrast, palmitate was found to 

lower IRS1 protein levels and to blunt the insulin-mediated phosphorylation of Akt, FOXO3a, and p70 

S6 kinase in cells expressing the empty vector or wild type PRAS40 (Figure 5.4 and 5.5). 

 

Discussion 

 

This report describes the identification of a nuclear export sequence within PRAS40. The 

increased nuclear abundance of PRAS40 in cells exposed to leptomycin B or expressing mutant 

L225A/L227A-PRAS40 demonstrates that this nuclear export sequence is functional. Furthermore, we 

showed that enforced nuclear expression of PRAS40 impairs insulin action in a way similar to that 

previously observed in primary human skeletal muscle cells in which PRAS40 was silenced, i.e. 

involving a reduction in the protein abundance of IRS1. 

The presence of a functional nuclear export sequence adds PRAS40 to the list of components of the 

mTORC1-signaling pathway displaying a nucleocytoplasmic distribution and/or possessing a nuclear 

export sequence (21-27). Among these are the other subunits of the mTORC1 complex, such as 

mTOR itself, raptor, and mLST8, as well as upstream regulators of mTORC1 activity, such as Akt and 

TSC2, and the downstream effectors p70 S6 kinase and ribosomal protein S6 (21-27). Raptor, which 

acts as substrate binding scaffold within mTORC1, is highly abundant in the nucleus (25). However, 

mTOR and mLST8, like PRAS40 as demonstrated here, are more abundant in the cytosol (25). 

Furthermore, the nuclear localization of mTOR, and its regulated proteins p70 S6 kinase and the 

ribosomal protein S6 is cell cycle dependent with low levels during G0, and increased nuclear 

abundance during G0 to G1-progession (28,29). In the present study, we did not analyze whether the 

nuclear appearance of PRAS40 is cell cycle dependent. Nevertheless, given the potential role of 

PRAS40 in the regulation of mTORC1 activity, one may propose that nuclear PRAS40 impacts on the 

regulation of processes ascribed to nuclear mTOR, such as the RNA-polymerase I- and III-mediated 

transcription of rDNA and tRNA (30). 

In the present study we further examined whether alterations in the subcellular distribution 

of PRAS40 affect insulin sensitivity. In some cell types, including 3T3L1 adipocytes, HepG2 cells and 

primary human skeletal muscle cells, the knockdown of PRAS40 lowers the protein levels of IRS1 and 

consequently impairs the insulin-mediated activation of the Akt signaling pathway (8,14,31). 

Expression of mutant L225A/L227A-PRAS40 in A14 fibroblasts impaired insulin action similar to that 
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observed after PRAS40 silencing (14). One report ascribed the inhibition of insulin action to an 

increased basal phosphorylation p70 S6 kinase, which on its turn promotes the serine 

phosphorylation of IRS1 that may result in the degradation of this protein (8). However, expression of 

mutant L225A/L227A-PRAS40 had no effect on the basal phosphorylation of p70 S6 kinase, whereas 

in insulin-stimulated cells even a decreased phosphorylation was observed. Similar findings have 

been reported following PRAS40 silencing in multiple studies (9,14,32,33), and it seems plausible that 

the blunted phosphorylation of p70 S6 kinase is a direct consequence of the inhibition of Akt, which 

also regulates insulin-mediated mTORC1 activation (2). Instead the effects of L225A/L227A-PRAS40 

on insulin action may be more in line with the proposed novel function for PRAS40 in the regulation 

of IRS1 protein levels through the proteasome (14). This hypothesis is supporting by the finding that 

enforced nuclear PRAS40 localization has no impact on IRS1 mRNA expression, indicating a 

posttranscriptional regulation of IRS1. In primary human skeletal muscle cells we observed that 

silencing PRAS40 led to degradation of IRS1 through activation of the proteasome (14). One may 

speculate that the as yet unidentified factor responsible for the inhibitory action of PRAS40 on the 

activity of the proteasome is translocated along with PRAS40 in cells with enforced nuclear 

expression of PRAS40. This mechanism would also explain why expression of wild type PRAS40 has 

no effect on insulin action in A14 fibroblasts, which has also been reported previously in other cell 

types (9). Irrespective of the mechanism via which L225A/L227A-PRAS40 impairs insulin action, one 

should note that these data have been obtained in overexpressing experiments, and that it remains 

to be clarified whether the amount of endogenous PRAS40 translocating to the nucleus is sufficient 

to impact on cytosolic insulin action. 

Another issue that remains to be addressed is how PRAS40 is transported to the nucleus. We 

could not identify a nuclear localization signal with the PRAS40 sequence. Notably, proteins smaller 

than 60-kDa can freely move between the cytoplasm and the nucleus, and since PRAS40 is a 40-kDa 

protein it may be able to shuttle independent of active transport between both compartments. 

Nevertheless, expression of wild type PRAS40 in A14 cells resulted in a predominant cytosolic 

localization of the protein while the co-expressed green fluorescent protein was found both in the 

nucleus and the cytosol. This indicates that an alternative mechanism may participate in the 

translocation of PRAS40 to the nucleus. Possible mechanisms regulating the nuclear import of 

PRAS40 could be the interaction with other proteins, such as 14-3-3 proteins or raptor (3,4,34). 

Multiple studies have implicated 14-3-3 proteins in the control of nucleocytoplasmic shuttling 

(35,36), and various reports have demonstrated the binding of PRAS40 to 14-3-3 proteins, albeit 

upon phosphorylation of PRAS40 (9,37,38). Neither in A14 cells nor in rat skeletal muscle, the 

distribution of PRAS40 between the cytosol and the nucleus was affected by insulin, thereby make a 
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contribution of 14-3-3 proteins in this process less likely. Alternatively, the transport of PRAS40 to 

the nucleus may involve in complex with raptor. Raptor is essential for the binding of 

unphosphorylated PRAS40 to the mTORC1 complex and has a predominant nuclear localization (25). 

With the use of additional mutant forms of PRAS40 we have attempted to investigate the importance 

of the key phosphorylation sites within PRAS40 as well as the so-called TOS-motif that is implicated in 

raptor binding. However, all mutants investigated showed nuclear accumulation in cells exposed to 

leptomycin B (supplementary figure 5.7), suggesting that the nuclear import of PRAS40 is 

independent of phosphorylation and binding to raptor. 

 

Conclusion 

 

This study demonstrates that PRAS40 contains a functional nuclear export sequence, and 

that enforced nuclear accumulation of PRAS40 impairs insulin action. Our findings corroborate a 

function of cytosolic PRAS40 as regulator of insulin action. Yet, further studies are required to 

elucidate the cellular processes affected by nuclear PRAS40. 
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Figures 

 

 

Figure 5.1 PRAS40 contains a nuclear export signal. (a). Alignment of the nuclear export signal of PRAS40 with 

those found in human activating transcription factor 2 (ATF2), inhibitor of nuclear factor κBα (IκBα), the rev 

protein of simian human immunodeficiency virus (Rev), and cAMP-dependent protein kinase inhibitor α (PKIA). 

In the consensus sequence for a leucine-rich nuclear export sequence above the aligned sequences, the X 

represents any amino acid, while the leucine (L) can be replaced by any other large hydrophobic amino acid 

(20). (b) Alignment of the nuclear export signal of PRAS40 with PRAS40 homologues found in other species. 
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Figure 5.2 Functionality of the nuclear export sequence in PRAS40. (a) A14 fibroblasts were transfected with 

wild-type hPRAS40 or mutant L225A/L227A-hPRAS40. Transfected cells are positive for green fluorescent 

protein (GFP; green). Cells were untreated (basal) or incubated with LMB (6 h, 10 nM), fixed, permeabilized and 

incubated with anti-hPRAS40. Bound PRAS40 antibody was visualized with anti-mouse conjugated Cy3 

secondary antibodies (red). DNA was stained with DAPI (blue). Photographs are representative of three 

independent experiments. The scale bar equals 50 μm. (b) Quantification of fluorescence detected with 

confocal microscopy in the nucleus and cytoplasm for the hPRAS40 antibody in A14 cells transfected with wild-

type hPRAS40 that were kept untreated (open bars), treated with LMB (gray bars), or transfected with mutant 

L225A/L227A-hPRAS40 (NES; black bars). Data are expressed as mean ± SEM (n=3); *: p<0.05; **, p<0.001 for 

the indicated comparisons. (c) Cytosolic and nuclear extracts from A14 fibroblasts which were transfected with 

empty vector (EV) wild-type hPRAS40 (WT) or mutant L225A/L227A-hPRAS40 (NES) were prepared as described 

in the experimental procedures. Lysates were used for Western Blot analysis to detect total PRAS40, whereas 

purity of the fractions was determined using antibodies against tubulin and lamin A/C, respectively. 
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Figure 5.3 Localization of PRAS40 in A14 fibroblasts (a) and rat skeletal muscle (b). A14 cells were serum 

starved during 6 h, and were left untreated (-) or stimulated with 100 nM insulin for 5 min (+). Following a 6 hr 

fast, rats received an intraperitoneal injection with saline or insulin (10 U/kg body weight), and were sacrificed 

30 min later. Cytosolic and nuclear extracts from A14 fibroblasts and rat skeletal muscles were prepared as 

described in the experimental procedures. Ten micrograms of protein lysate was loaded on a SDS-PAGE gel. 

Western blot analysis was performed using phospho-specific antibodies against PRAS40-Thr246. Purity of the 

fractions was determined by reprobing the western blots with antibodies against tubulin and lamin A/C, 

respectively. Representative blots are shown of three independent experiments. 
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Figure 5.4 Protein levels of insulin signaling components in cells expressing wild type or mutant 

L225A/L227A-PRAS40. A14 fibroblasts were transfected with an empty vector (EV), or a plasmid encoding wild 

type (WT) or L225A/L227A-PRAS40 (NES), followed by overnight exposure to 0.3 mM BSA or 0.75 mM 

palmitate. Shown are representative western blots and bar graphs for the protein levels of the insulin receptor 

β-subunit (IRβ), IRS1, Akt, and PRAS40. Signals were normalized for GAPDH levels, which were not altered by 

the experimental conditions. Data are expressed as mean ± SEM (n=4). *: p<0.05, ***, p<0.001 for the 

indicated comparisons; ‡: p<0.05 for the effect of palmitate. 
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Figure 5.5 Phosphorylation of insulin signaling components in cells expressing wild type or mutant 

L225A/L227A-PRAS40. A14 fibroblasts were transfected with an empty vector (EV), or a plasmid encoding wild 

type (WT) or L225A/L227A-PRAS40 (NES), followed by overnight exposure to 0.3 mM BSA or 0.75 mM 

palmitate. Shown are representative western blots and bar graphs for the phosphorylation of Akt-Ser473, Akt-

Thr308, FOXO3a-Thr32 and p70 S6 kinase-Thr389. Signals were normalized for GAPDH levels, which were not 

altered by the experimental conditions. Data are expressed as mean ± SEM (n=4). *: p<0.05, **, p<0.01, ***, 

p<0.001 for the indicated comparisons; ‡‡‡, p<0.001, ‡‡, p<0.01, ‡, p<0.05 for the effect of palmitate; †, 

p<0.05 for the effect of insulin versus basal. 
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Figure 5.6 (supplementary) Effect of overexpression of WT- and NES-PRAS40 on IRS1 mRNA expression. A14 

fibroblasts were transfected with an empty vector (EV), or a plasmid encoding wild type (WT) or L225A/L227A-

PRAS40 (NES). Two days after transfection, total RNA was extracted and analyzed for IRS1 mRNA expression. 

Data are presented as mean ± standard error of the mean (n=3), and were analyzed by ANOVA followed by 

Bonferroni analysis for multiple comparisons. 
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Figure 5.7 (supplementary) Effect of leptomycin B on the nuclear localization of mutant forms of PRAS40. 

A14 fibroblasts were transfected with wild-type hPRAS40 or mutant F129A-hPRAS40, S183A-hPRAS40, T246A-

hPRAS40, S183A/T246A-hPRAS40, or F129A/S183A/T246A-hPRAS40. Following transfection, cells were kept 

untreated (basal) or incubated for 6 h with 10 nM leptomycin B. PRAS40 was visualized by immunofluorescence 

using PRAS40 antibodies, which on its term were visualized with anti-mouse conjugated Cy3 secondary 

antibodies (red). DNA was stained with DAPI (blue). Photographs are representative of three independent 

experiments. The scale bar equals 50 μm. 
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Abstract 

 

Secreted frizzled-related protein (Sfrp5) was described as adipokine with anti-inflammatory 

and insulin-sensitizing properties in mouse models. However, the mechanism of Sfrp5 action, 

especially in humans, is largely unknown. Therefore, cytokine release and insulin signaling was 

analyzed to investigated the impact of Sfrp5 on inflammation and insulin signaling in primary human 

adipocytes and skeletal muscle cells (hSkMC) in vitro. Sfrp5 had no impact on the release of 

interleukin (IL)-6, monocyte chemoattractant protein 1 (MCP-1), and adiponectin from human 

adipocytes and of IL-6 and IL-8 from hSkMC. In tumor necrosis factor (TNF)α-treated adipocytes, 

Sfrp5 reduced IL-6 release by 49% (p<0.05), but did not affect MCP-1 and adiponectin release. In 

MCP-1-treated hSkMC, the secretion of IL-6 and IL-8 was unaltered. In untreated adipocytes, Sfrp5 

decreased the insulin-mediated phosphorylation of Akt-Ser473 by 28% and Akt-Thr308 by 38% (both 

p<0.01) as well as of its substrates GSK3α-Ser21 by 37% (p<0.001) and PRAS40-Thr246 by 34% 

(p<0.05), respectively. TNFα impaired insulin action in adipocytes to a similar extent as Sfrp5, but 

there was no additional effect when Sfrp5 and TNFα were combined. In contrast, neither in 

untreated, nor in MCP-1 treated hSkMC, Sfrp5 affected insulin signaling. In conclusion, Sfrp5 lowered 

IL-6 release from human insulin-resistant adipocytes, but not under normal conditions, and 

decreased insulin sensitivity in human adipocytes. Sfrp5 did not act on hSkMC. Thus, the cellular 

actions of Sfrp5 seem to depend on the type of tissue as well as its inflammatory and metabolic 

state.  
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Introduction 

 

Chronic, low-grade inflammation in adipose tissue induced by obesity is characterized by an 

aberrant release of hormones, cytokines and chemokines. These factors affect insulin sensitivity not 

only in an auto-/paracrine fashion in adipose tissue but also in an endocrine manner in liver and 

skeletal muscle. Several pro-inflammatory cytokines and chemokines such as tumor necrosis factor 

(TNF)α, monocyte chemotactic protein (MCP)-1 and chemerin, which participate in the detrimental 

crosstalk between adipose tissue and skeletal muscle and progression of insulin resistance during 

obesity, were identified (1-3). In contrast, the knowledge about anti-inflammatory cytokines remains 

limited. Currently, only adiponectin and omentin have been linked to improved insulin sensitivity and 

are downregulated in obesity and type 2 diabetes (T2D) (4).  

Recent studies in mice also suggest an anti-inflammatory and anti-diabetic function for 

secreted frizzled-related protein 5 (Sfrp5). Sfrp5 antagonizes wingless-type MMTV integration site 

family member (Wnt)5a in the non-canonical Wnt-signaling pathway (5). Importantly, Sfrp5-

deficiency in mice results in deterioration of high-calorie diet-induced glucose intolerance, hepatic 

steatosis and macrophage infiltration in adipose tissue. Conversely, acute administration of Sfrp5 to 

obese and diabetic mice improved glucose tolerance and adipose tissue inflammation (6). However, 

one report demonstrated decreased mRNA levels of Sfrp5 (6), whereas others reported increased 

Sfrp5 expression in obese mice (7-10). Also studies in humans on Sfrp5 yielded conflicting results. In 

Chinese subjects, both reductions and increases in circulating Sfrp5 levels between obese and T2D 

patients versus control participants were reported (11-13), while no differences were observed 

between lean and obese Caucasian subjects (14, 15). Furthermore, Sfrp5 gene expression in adipose 

tissue was unaffected by obesity (16). We recently reported a positive association of Sfrp5 with 

insulin resistance and markers of oxidative stress in mostly overweight and obese Caucasians, 

indicating that the function of Sfrp5 in humans may be dependent on the subjects’ metabolic and 

inflammatory state (14). Therefore, the aim of this study was to elucidate the mechanism of Sfrp5 

action in primary human adipocytes and skeletal muscle cells (hSkMC) by assessing the impact of 

Sfrp5 on insulin signaling and release of inflammatory proteins under basal culture conditions and 

following inflammation-induced insulin resistance. 
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Material and Methods 

 

Cell culture  

 

Primary human adipocytes were differentiated from cryopreserved human white 

preadipocytes (PromoCell, Heidelberg, Germany) isolated from subcutaneous adipose tissue from 

five healthy Caucasian donors (5 females aged 31-58 years). For induction of differentiation, the 

medium was replaced by PromoCell preadipocyte differentiation medium for 72h. Then, the medium 

was changed to PromoCell adipocyte nutrition medium to complete differentiation and was 

exchanged every 2-3 days. On day 15-17 of differentiation adipocytes were used for experiments. 

Primary hSkMC isolated from the rectus abdominis muscle of four healthy Caucasian donors 

(2 females, 2 males aged 16-37 years) were obtained as proliferating myoblasts from PromoCell or 

Lonza (Basel, Switzerland) Differentiation into myotubes was initiated by replacing the growth 

medium by αMEM containing 2% horse serum (Gibco, Berlin, Germany). Cells were routinely starved 

on serum-free αMEM on day 6 of differentiation and then used for experiments. (17).  

Differentiated cells were incubated (i) with or without 10 or 100 ng/ml Sfrp5 (R&D Systems, 

Wiesbaden, Germany) for 24h (adipocytes) or 18h (hSkMC), (ii) with or without 100 ng/ml Sfrp5 for 

4h and then adipocytes were exposed to 5 nM TNFα (24h) (Sigma-Aldrich, St Louis, MO) (adipocytes) 

while hSkMC were exposed to 2 ng/ml MCP-1 (PeproTech, Hamburg, Germany). The Sfrp5 

concentrations used match those reported in the circulation in human clinical studies (11-15). For 

analysis of insulin signaling, cells were stimulated with 100 nM insulin (porcine insulin, Sigma Aldrich) 

(10 min) following cytokine treatment. 

 

Analysis of inflammation in primary human adipocytes and skeletal muscle cells 

 

Interleukin (IL)-6, IL-8, IL-15, monocyte chemotactic protein-1 (MCP)-1 and adiponectin were 

measured in cell culture supernatants using Quantikine ELISA kits (R&D Systems). Detection limits for 

the Quantikine ELISAs for human IL-6, IL-8, IL-15, MCP-1 and total adiponectin were 1.6 pg/ml, 15.6 

pg/ml, 2.0 pg/ml, 7.5 pg/ml and 1.6 ng/ml, respectively. Concentrations for all cytokines in cell 

culture supernatants were above the respective detection limit with the exception of IL-15 for which 

concentrations did not exceed the detection limit under the described cell culture conditions. 
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Analysis of insulin signaling in primary human adipocytes and skeletal muscle cells 

 

For insulin signaling, cell lysates were analyzed by Western blotting as described (17). 

Membranes were incubated with antibodies recognizing Akt-phospho-Ser473, Akt-phospho-Thr308, 

glycogen synthase kinase 3 (GSK3) α/β-phospho-Ser21/9 and proline-rich Akt-substrate of 40-kDa 

(PRAS40) phospho-Thr246 (all from Cell Signaling Technology, Danvers, MA). The phosphorylation 

signals were normalized for equal loading by reprobing the membranes with antibodies for 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Cell Signaling Technology). 

 

Statistical analysis 

 

Differences in cytokine concentrations between various treatments were analyzed by 

Friedman´s test followed by Dunn´s multiple comparison test.  For analysis of effects on insulin 

action, the insulin-stimulated condition in the absence of cytokines was set at 100%. Thereafter, 

differences were analyzed using two-way ANOVA followed by Bonferroni multiple comparison 

analysis. All data are presented as mean ± SEM. Statistical analyses were performed using Prism 6 

(GraphPad, LA Jolla, CA) software. P-values of p<0.05 were considered as statistically significant. 

 

Results  

 

Sfrp5 reduces IL-6 release from human adipocytes but has no impact on myokine release from skeletal 

muscle cells 

 

Under basal culture conditions, Sfrp5 did not affect the release of IL-6, MCP-1, and 

adiponectin from primary human adipocytes, and of IL-6 and IL-8 from hSkMC, respectively (Figure 

6.1). Exposing adipocytes to Sfrp5 prior to TNFα incubation lowered the secretion of IL-6 by 49% 

(p<0.05), but had no impact on the release of MCP-1 and adiponectin as compared to cells exposed 

to TNFα only (Figure 6.2a-c). Preincubation of hSkMC with Sfrp5 prior to incubation with MCP-1 had 

no effect on IL-6 or IL-8 release (Figure 6.2d-e). Levels of IL-15 were below the detection limit under 

all experimental conditions for hSkMC. 
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Sfrp5 inhibits insulin signaling in primary human adipocytes but not in skeletal muscle cells 

 

Treating primary human adipocytes with Sfrp5 had no effect on the basal phosphorylation of 

Akt-Thr308, Akt-Ser473 and its substrates GSK3α-Ser21 and PRAS40-Thr246 (Figure 6.3a-d). 

However, the insulin-mediated increases in Akt-Thr308, Akt-Ser473, GSK3α-Ser21, and PRAS40-

Thr246 were reduced in cells pre-incubated with Sfrp5 by 38%, 28%, 37%, and 34%, respectively 

(Figure 6.3a-d). Because some studies ascribed an anti-diabetic and anti-inflammatory action to Sfrp5 

(6, 15), we subsequently analyzed the effect of Sfrp5 on insulin signaling in TNFα-treated adipocytes. 

TNFα alone decreased insulin-mediated phosphorylation of Akt-Ser473, Akt-Thr308, GSK3α-Ser21 

and PRAS40-Thr246 (by 47%, 42%, 28%, and 41%, respectively). Yet, there was no restoration of 

insulin action in adipocytes exposed to Sfrp5 together with TNFα (Figure 6.3). Sfrp5 did not affect 

insulin signaling in hSkMC, neither under basal culture conditions nor following MCP-1-induced 

insulin resistance (Figure 6.4).  

 

Discussion 

 

The present study shows that Sfrp5 impairs insulin signaling in adipocytes under basal culture 

conditions. Furthermore, Sfrp5 reduced IL-6 release from TNFα-treated adipocytes. In contrast to 

adipocytes, Sfrp5 did not act on hSkMC. This suggests that the cellular function of Sfrp5 is tissue-

specific, and dependent on the metabolic and inflammatory state of the target tissue. 

Studies toward the (molecular) mechanism of Sfrp5 action in tissues critical for metabolic 

control are limited and have yielded conflicting results. Several studies reported the induction of 

Sfrp5 expression during differentiation of 3T3L1 adipocytes and in rodent models of genetic and/or 

diet-induced obesity (7-10), and propose a role for Sfrp5 in the adipocyte growth via suppression of 

the Wnt-pathway and inhibition of adipocyte mitochondrial metabolism (9). However, the observed 

inhibition of IL-6 release from TNFα-treated human adipocytes by recombinant Sfrp5 in the present 

study suggests a protective function for Sfrp5, and fits to the reduction of transcript levels of 

inflammatory cytokines, including IL-6, observed in adipose tissue from insulin-resistant ob/ob, but 

not wild-type mice, following adenovirus-mediated Sfrp5 expression (6). Furthermore, a study on 

Asian subjects on 89 normal glucose tolerant and 87 subjects with type 2 diabetes found a negative 

association between plasma levels of Sfrp5 and IL-6 (r=-0.438, p<0.01) (12). Unfortunately, this study 

did not mention whether this relation was different between controls and subjects with type 2 

diabetes (T2D). A study on a smaller, mostly overweight or obese Caucasian population reported no 

association between circulating Sfrp5 and IL-6 levels (14). Thus, more detailed studies involving 
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additional rodent models as well as validation of interaction of Sfrp5 levels with pro-inflammatory 

cytokines in human clinical samples are clearly required to substantiate the notion that metabolic 

and/or inflammatory disturbances impact on the mode of Sfrp5 action.  

The present study further showed that Sfrp5 inhibits insulin action in primary human 

adipocytes under basal culture conditions. In support of a role for Sfrp5 in impairing insulin action are 

data from a clinical study on obese subjects without diabetes in which circulating Sfrp5 levels were 

found to be associated with HOMA-IR (r=0.32, p<0.05) (14), and a study on Chinese subjects which 

reported increased circulating Sfrp5 levels in patients with T2D as compared to subjects without 

diabetes (13). In contrast, two other studies on Asians showed decreased circulating Sfrp5 levels in 

patients with T2D versus subjects with normal glucose tolerance, and reported a negative association 

between plasma levels of Sfrp5 and HOMA-IR (r=-0.446, p<0.01) (12) and (r=-0.444, p<0.001) (11). 

Also in mice conflicting data have been reported. One study showed that loss of functional Sfrp5 

mitigated increases in serum leptin levels, as well as the induction of glucose intolerance, and insulin 

resistance after high-fat feeding (9). In contrast, Sfrp5 deficiency led to severe glucose intolerance 

and further impaired insulin-stimulated phosphorylation of Akt in adipose tissue following high-fat 

feeding as compared to wild-type mice (6). This was associated with increased activation of the c-Jun 

N-terminal kinase (JNK) signaling pathway, which inhibits insulin action via phosphorylation of Ser307 

of insulin receptor substrate 1 (18, 19). In line with observations in 3T3L1 adipocytes (9), we 

observed that Sfrp5 had no effect on JNK phosphorylation in primary human adipocytes, neither 

under basal conditions nor following exposure to TNFα (data not shown). A limitation of the present 

study is that we did not examine all pathways potentially involved in the induction of insulin 

resistance, such as the NFκB-cascade or activation of the proteasome. The value of such 

investigations would however benefit from recognition of the confounding factors that could explain 

the conflicting data observed in the in vivo studies. 

Another aspect that should be considered in this context is that we failed to observe any 

effect of Sfrp5 on hSkMC. Consequently, the action of Sfrp5 may be tissue-specific. Sfrp5 is known to 

act as an antagonist for Wnt5a, which in turn activates Wnt-signaling through binding to the frizzled 

receptors (5). One may hypothesize that hSkMC do not produce Wnt5a, and are therefore 

unresponsive to Sfrp5. However, we found that mRNA levels of Wnt5a are higher in hSkMC 

compared to adipose tissue (data not shown). Furthermore, Wnt5a expression is increased in 

regenerating mouse muscles (20). However, there is nothing known from the literature about effects 

of Sfrp5 and/or Wnt5a on inflammation and insulin action in hSkMC. This suggests that Wnt5a might 

not be the only target molecule for Sfrp5 and that there might be other molecules and/or receptors 

for Sfrp5 associated with its mechanisms of action.  
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Conclusion 

 

Sfrp5 attenuated insulin action in adipocytes under normal conditions and reduced IL-6 

release in TNFα-treated adipocytes, but did not act on hSkMC. The mode of action of Sfrp5 in 

inflammation and insulin resistance might depend on the kind of tissue and defined inflammatory 

and metabolic circumstances of the site of action. 
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Figures 

 

 

Figure 6.1 Effect of Sfrp5 on adipokine and myokine release (unstimulated conditions). Primary human 

adipocytes (a-c) and primary human skeletal muscle cells (d-e) were exposed to increasing amounts of Sfrp5 for 

24 h. Cytokine release by the adipocytes and myotubes was quantified by ELISA, and expressed as mean ± 

standard error of the mean (a-c: n=5; d-e: n=4). 
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Figure 6.2 Effect of Sfrp5 on adipokine and myokine release from cytokine-stimulated cells. Primary human 

adipocytes (a-c) and primary human skeletal muscle cells (d-e) were exposed to Sfrp5 (4h; 100 ng/ml) prior to 

incubation with TNFα (24h; 5 nmol/l) or MCP-1 (18h; 2 ng/ml). Cytokine release by the adipocytes and 

myotubes was quantified by ELISA, and expressed as mean ± standard error of the mean (a-c: n=5; d-e: n=4). 

Differences among the various conditions were analyzed by Friedman´s test followed by Dunn´s multiple 

comparison test;  ### indicates P<0.001; ##, P<0.01 versus cells kept untreated (basal); *, P<0.05 for the effect 

of the Sfrp5 incubation versus TNFα alone. 
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Figure 6.3 Effect of Sfrp5 on insulin action in primary human adipocytes. Primary human adipocytes were kept 

untreated (basal), exposed to 100 ng/ml Sfrp5 for 24h, or to 5 ng/ml TNFα for 24h with or without a 4h 

preincubation with 100 ng/ml Sfrp5. Then, when indicated (+) cells were stimulated with insulin (10 min; 100 

nM). Cell lysates were analyzed for phosphorylation of Akt-Thr308 (a), Akt-Ser473 (b), GSK3α-Ser21 (c), and 

PRAS40-Thr246 (d) by Western blotting. Phosphorylation signals were normalized for GAPDH protein 

abundance and expressed as mean ± standard error of the mean of five independent experiments using cells 

from different donors. The values obtained for untreated insulin-treated cells were considered as control and 

set at 100%. Differences among groups were calculated by two-way ANOVA followed by Bonferroni multiple 

comparison analysis. ***, p<0.001; **, p<0.01; *, p<0.05 versus basal.  
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Figure 6.4 Effect of Sfrp5 on insulin action in primary human skeletal muscle cells. Primary human skeletal 

muscle cells were kept untreated (basal), exposed to 100 ng/ml Sfrp5 for 24h, or to 2 ng/ml MCP-1 for 18 h 

with or without a 4h preincubation with 100 ng/ml Sfrp5. Then, when indicated (+) cells were stimulated with 

insulin (10 min; 100 nM). Cell lysates were analyzed for phosphorylation of Akt-Thr308 (a), Akt-Ser473 (b), 

GSK3α-Ser21 (c), and PRAS40-Thr246 (d) by Western blotting. Phosphorylation signals were normalized for 

GAPDH protein abundance and expressed as mean ± standard error of the mean of five independent 

experiments using cells from different donors. The values obtained for untreated insulin-treated cells were 

considered as control and set at 100%. Differences among groups were calculated by two-way ANOVA followed 

by Bonferroni multiple comparison analysis. **, p<0.01; *, p<0.05 versus basal  
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Insulin is an essential factor in maintaining adequate glucose levels

resistance is the most important pathophysiological feature of T2D. The development of insulin 

resistance in peripheral tissues such as liver, fat and skeletal muscle is an early event during the 

progression of T2D and occurs long befo

insulin signaling are pleiotropic and their role in physiological and pathophysiological insulin action is 

often undefined. For that reason one important issue of diabetes research is to understand

normal insulin signaling cascade as well as to identify and characterize the multiple mechanisms 

involved in the disturbance of insulin action. Since skeletal muscle is one of the major insulin

sensitive organs, identification of new modulators of ins

importance. This knowledge will be essential for the development of new strategies to improve 

insulin sensitivity or to prevent insulin resistance. PRAS40 has been identified as one of the most 

prominent substra

yielded conflicting results and left many aspects regarding the precise function of PRAS40 

unaddressed. Therefore, the aim of the present research in this thesis was to fu

potential function of PRAS40 in insulin signaling in skeletal muscle. Special attention was paid on 

modification of PRAS40 phosphorylation under conditions of insulin resistance (see 7.1) as well as 

investigation of the impact of dif

(see 7.2). Finally, the impact of posttranslational modifications and cellular localization of PRAS40 for 

its function was investigated and discussed (see 7.3). 

 

 7.1. Phosphorylation of PRAS4

 

PRAS40 is highly conserved in higher species and ubiquitously expressed in all tissues, with 

highest expression in human liver and heart 

of PRAS40 shows a high conservation in higher species (

the major kinase promoting Thr246 phosphorylation of PRAS40. Kovacina et al. could d

for the first time that cells lacking Akt1 and Akt2 exhibit a diminished ability to phosphorylate PRAS40 

at Thr246 after 

tumor cells, which display a constitutively active Akt through loss of PTEN, showed elevated levels of

Thr246-phosphorylated PRAS40 

target the PI3K/Akt pathway, used phosphorylation of PRAS40 at Thr246 as a marker for efficiency of 

the inhibitors 

event during carcinogenesis and was suggested to be used as a detection marker for cancer 

development 

Insulin is an essential factor in maintaining adequate glucose levels

resistance is the most important pathophysiological feature of T2D. The development of insulin 

resistance in peripheral tissues such as liver, fat and skeletal muscle is an early event during the 

progression of T2D and occurs long befo

insulin signaling are pleiotropic and their role in physiological and pathophysiological insulin action is 

often undefined. For that reason one important issue of diabetes research is to understand

normal insulin signaling cascade as well as to identify and characterize the multiple mechanisms 

involved in the disturbance of insulin action. Since skeletal muscle is one of the major insulin

sensitive organs, identification of new modulators of ins

importance. This knowledge will be essential for the development of new strategies to improve 
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surprisingly increased both basal and insulin-stimulated phosphorylation of PRAS40 at Thr246 (Fig. 

7.2). Due to the fact that CM contains a variety of factors modulating e.g. extracellular matrix, 

immune response, inflammation, metabolism, oxidative stress or angiogenesis, one might speculate 

that CM contains factors which activate kinases contributing to PRAS40 phosphorylation at Thr246 in 

an Akt-independent way.  

 

 

Figure 7.2 CM decreases insulin-mediated phosphorylation of Akt at Ser473 but increases phosphorylation of 

PRAS40-Thr246. Primary human skeletal muscle cells from different donors were differentiated for seven days 

and serum starved for 24h. Incubation of cells with CM was performed for 24h. Thereafter, cells were 

stimulated with 100nM insulin for 10 min. Total cell lysates were resolved by SDS-PAGE and immunoblotted 

with phosphospecific anti-Akt Ser473 (a) or anti-PRAS40 Thr246 (b) antibody. All data are normalized to the 

level of Tubulin protein level and are expressed relative to the insulin-stimulated control. Data are means ± 

SEM with n=7 experiments. The impact of CM was analyzed using two-way ANOVA followed by post-hoc 

Bonferroni testing for multiple comparisons. ***, P<0.001 versus insulin-stimulated control. $, P<0.05 insulin-

stimulated versus basal. 

 

 

Indeed, the induction of PRAS40-Thr246 phosphorylation is neither confined to insulin nor to 

activation of the Akt pathway. For example follicle-stimulating hormone in Sertoli cells (201), IGF-1 in 

PC12 cells (202), growth hormone in preadipocytes (203), ethanol in myocytes (204), ceramide-1 in 

macrophages (205), exercise in human skeletal muscle cells (206) or several growth factors as well as 

nutrients, such as glucose and amino acids (207) increase PRAS40-Thr246 phosphorylation. In all 

cases the phosphorylation of PRAS40 at Thr246 was paralleled by the increase in the phosphorylation 

of Akt (201-206). Furthermore, phosphorylation of PRAS40-Thr246 was blunted after inhibition of Akt 

phosphorylation by PI3K inhibitors, such as wortmannin and LY294002 (201-203). However, PRAS40 

phosphorylation at Thr246 can also be induced when Akt activation is impaired ((190) and Fig. 7.2). 
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Ouchi et al. could demonstrate for the first time that Wnt5a protein levels are increased in adipose 

tissue of mice fed with a HFD and ob/ob mice (172). Interestingly, in the same study, Sfrp5 has been 

reported to act in an anti-inflammatory and insulin sensitizing manner by antagonizing Wnt5a. 

Furthermore, Sfrp5 has been shown to be secreted by adipocytes and was decreased in conditions of 

obesity. Therefore, Sfrp5 has been postulated to be a new anti-inflammatory adipokine with similar 

properties to adiponectin, a feature which evokes our as well as other groups´ interest. However, our 

results investigating the impact of Sfrp5 on inflammatory and insulin signaling in human adipocytes 

and skeletal muscle cells (chapter 6) failed to confirm these beneficial properties of Sfrp5. Sfrp5 

alone neither altered the secretion of proinflammatory immune mediators, like IL-6 and MCP-1, nor 

of adiponectin (chapter 6, Fig. 6.1). However, pre-incubation of adipocytes with Sfrp5 down-

regulated TNFα-induced IL-6 release, while MCP-1 and adiponectin release were not altered by Sfrp5 

pre-incubation (chapter 6, Fig. 6.2). With regard to this point our results are in line with a study 

performed in mice, where Sfrp5 overexpression decreased TNFα, IL6 and MCP-1 mRNA levels in 

adipose tissue of obese but not lean wild type mice (172). This indicates that Sfrp5 may only act in an 

anti-inflammatory manner under conditions of metabolic and inflammatory disturbances. With our 

study we could show for the first time that Sfrp5 inhibits insulin signaling in primary human 

adipocytes. This was demonstrated by decreased insulin-stimulated Akt and GSK3 phosphorylation as 

well as by inhibition of insulin-mediated phosphorylation of PRAS40 at Thr246 (chapter 6, Fig. 6.3). As 

indicated previously, phosphorylation of PRAS40 at Thr246 is an eligible marker for disturbances of 

insulin signaling downstream of PI3K/Akt. This decrease in insulin sensitivity in adipocytes by Sfrp5 

could be confirmed by a study conducted in 47 healthy subjects, where circulating levels of Sfrp5 

positively associated with decreased insulin sensitivity (measured by HOMA-IR) and oxidative stress 

(170). Furthermore, other members of the Sfrp family such as Sfrp4 have been linked to T2D. In 

serum, Sfrp4 was associated with elevated fasting glucose and impaired insulin sensitivity (221), 

indicating that there could be a general mechanism of the way Sfrp proteins modulate insulin 

sensitivity. 

Interestingly, no alteration of insulin action was observed in human skeletal muscle cells 

after Sfrp5 incubation at baseline or in combination with MCP-1 (chapter 6, Fig. 6.4). While PRAS40-

Thr246 phosphorylation was impaired by MCP-1, Sfrp5 was ineffective in this cell type. Until now, no 

studies investigating the impact of Sfrp5 on skeletal muscle are available. However, it is well known 

that Wnt5a participates in muscle regeneration following injury by regulating satellite cell 

differentiation as well as determining fiber types of newly formed myotubes (222). Therefore, Wnt5a 

signaling is functional in skeletal muscle cells and might be regulated by Sfrp5 as well. Further studies 

investigating this difference in tissue-specific effects of Sfrp5 by e.g. analyzing the expression of 
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function of PRAS40 in mTORC1 activation have led to conflicting results while demonstrating that 

PRAS40 also seemed to be important for mTORC1 activity (186,204,227,228). As already discussed in 

study 1 (chapter 2), the reason for these discrepancies between the reports is unknown. Our results 

analyzing the effect of PRAS40 knockdown (chapter 3) and enforced nuclear localization of PRAS40 

(chapter 5) on mTORC1 signaling are in line with a requirement of PRAS40 for full mTORC1 activity. 

We could demonstrate that insulin-mediated phosphorylation of p70S6K-Thr389, pS6-Ser240 and 

p4E-BP1-Thr37/46 was significantly decreased in PRAS40 knockdown cells (chapter 3, Fig. 3.3 and Fig. 

3.4). Additionally, protein levels of Grb10, a newly identified mTORC1 substrate (90,97-99) whose 

stabilization is increased when it becomes phosphorylated by mTORC1, was significantly down-

regulated in PRAS40-KD cells (chapter 3, Fig. 3.3). Although we have not directly confirmed a 

decrease in mTORC1 activity by performing an in vitro mTORC1 activity assay, these results 

demonstrate that mTORC1 signaling is inhibited after PRAS40 knockdown. Furthermore, mutation of 

the nuclear export sequence within PRAS40, resulting in decreased PRAS40 protein levels in the 

cytosol, diminished insulin-stimulated p70S6K-Thr389 phosphorylation (chapter5, Fig.5.5e). It is 

important to realize, however, that these effects likely result from a secondary response induced by 

impaired activation of the PI3K/Akt/TSC2 pathway (chapter 3, Fig. 3.2 and chapter 5, Fig. 5.5) rather 

than from direct inhibition of mTORC1 activity by reduced PRAS40 protein levels. The fact that we 

have not observed any effect of PRAS40 knockdown or enforced nuclear localization on basal 

phosphorylation of the mTORC1 substrates further supports this conclusion. However, it still remains 

elusive, if a possible increase in mTOR enzymatic activity early on during the course of PRAS40 

absence results in stimulation of feedback mechanisms known to decrease IRS1/PI3K/Akt/TSC2 

signaling pathway and therefore induces subsequent inhibition of insulin to stimulate the mTORC1 

signaling pathway.  

Interestingly, in a study performed in C2C12 mouse myocytes, knockdown of PRAS40 

diminished mTORC1 activity and protein synthesis via decreasing the protein level of mLST8 (also 

known as GβL), a component of mTORC1 and an important factor for full activation of mTORC1 (204). 

In addition, PRAS40 knockdown increased the activity of AMPK. On the one hand, AMPK can directly 

inhibit mTORC1 activity by phosphorylation of raptor at Ser722 and Ser792, which results in binding 

of phosphorylated raptor to 14-3-3 proteins and inhibition of mTORC1. On the other hand, AMPK 

indirectly suppresses mTORC1 activity via its action on TSC2 (86). Due to the decreased 

phosphorylation of TSC2 in our study mediated by decreased Akt activity, we can exclude that the 

decrease in mTORC1 activity is induced via the AMPK/TSC2 axis. Furthermore, in preliminary 

experiments we could not observe any significant effects of PRAS40 knockdown on AMPK-Thr172 or 

raptor-Ser792 phosphorylation (data not shown). It has been postulated that PRAS40 may be 
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essential for the assembly and integrity of the mTORC1 complex (228,229). For that reason, we also 

analyzed raptor protein abundance in PRAS40 knockdown and control cells without detecting any 

differences between the groups (chapter 3, Fig 3.8). However, we have not investigated the protein 

levels of the other components of the mTORC1, such as mLST8, as well as if binding of these factors 

to each other is disturbed in the absence of PRAS40.  

 

7.2.1.2 Overexpression of PRAS40 directly inhibits mTORC1 activity 

 

Enhanced expression of wild type PRAS40 in differentiated human skeletal muscle cells 

(chapter 4) demonstrated that mTORC1 activity is inhibited in PRAS40 overexpressing cells, which 

was indicated by reduced insulin-stimulated p70S6K phosphorylation at Thr389 and S6-Ser240 

phosphorylation (chapter 4, Fig. 4.2). Similar results were obtained in studies performed in 3T3-L1 

adipocytes (226) and HEK cells (217,223,228). Importantly, due to increased activity of the IRS1/Akt 

axis induced by PRAS40 overexpression (see 7.2.2), these inhibitory effects on mTORC1 activity seem 

to be directly mediated by PRAS40. In contrast to the effects of PRAS40 knockdown and enforced 

nuclear localization of PRAS40 on mTORC1 activity, which could result from inhibition of the 

IRS1/AKT/TSC2 pathway, PRAS40 overexpression modulates the mTORC1 activity independent of the 

IRS1/AKT/TSC2 axis. PRAS40 has been reported to directly interact with raptor, the regulatory 

component of the mTORC1, through its TOR signaling (TOS) motif (217,223,225,228). It is proposed 

that binding of PRAS40 to raptor sequesters mTORC1 from other substrates, such as p70S6K and 4E-

BP1, and therefore inhibits their activation. However, PRAS40 association with mTORC1 appears to 

require the presence of both, mTOR and raptor, since disruption of the mTOR-raptor interaction 

releases PRAS40 from the mTORC1 (229). Phosphorylation of PRAS40 weakens the binding of PRAS40 

to raptor and results in dissociation of PRAS40 from the mTORC1, enabling the binding and 

phosphorylation of other mTORC1 substrates. Until today, only one animal model for PRAS40 loss of 

function has been described to address the question if PRAS40 indeed modulates mTORC1 activity 

directly (230). By generating PRAS40 knockout Drosophila, Pallares-Carstes et al. could demonstrate 

that PRAS40 seems to modulate mTORC1 activity in a tissue-specific manner. In particular, PRAS40 

affects TORC1 in ovary and testis of Drosophila, whereas PRAS40 is present but unable to modulate 

TORC1 activity in other tissues (230). However, when PRAS40 was overexpressed inhibition of TORC1 

was also observed in most of the other tissues. In line with these results, a study conducted in mouse 

muscle cells (C2C12) demonstrated that reduction of PRAS40 protein levels in myoblasts impairs 

mTORC1-mediated protein synthesis, whereas PRAS40 knockdown in differentiated myotubes did 

not affect protein synthesis, indicating a developmental-specific effect of PRAS40 in muscle cells 
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overexpression, indicating that PRAS40 modulates IRS1 levels at the posttranslational level (see 

section 7.2.3).  

The IRS proteins have been implicated as crucial intermediates in insulin signaling and 

insulin-regulated glucose metabolism. They are essential for the promotion of glucose uptake and 

the regulation of genes important for the utilization of glucose for energy production as well as for 

the biosynthesis of macromolecules such as proteins, lipids and nucleic acids, which are required for 

cell growth and proliferation (231). Although defects at any step of the insulin signaling cascade 

between the IR and GLUT4 translocation can impair insulin sensitivity, it is widely accepted that 

defects in IRS1 represents a pivotal feature in insulin resistance (106,108-110). Multiple studies, also 

ones conducted in humans, have provided evidence that insulin signaling defects at the level of IRS1 

are directly associated with insulin resistance and T2D (232). For instance, IRS1 phosphorylation was 

significantly altered in skeletal muscle from T2D patients (233). Moreover, not only tyrosine 

phosphorylation of IRS1 was reduced in conditions of insulin resistance, but also IRS1 protein levels 

are lower in skeletal muscle from morbidly obese insulin-resistant subjects or from women with 

gestational diabetes (232,234). Importantly, we could demonstrate that the insulin-resistant state in 

PRAS40 knockdown cells was entirely restored when IRS1 protein levels were normalized to control 

levels (chapter 3, Fig. 3.6). In addition, WT-PRAS40 overexpression protected against chronic insulin-

induced insulin resistance via increasing IRS1 protein levels and thereby normalizing IRS1/PI3K/Akt 

signal transduction induced by insulin (chapter 4, Fig. 4.6). In summary, this finding verified that a 

decrease in IRS1 protein abundance is likely to underlie the altered insulin action by PRAS40 and not 

a consequence thereof.  

Nevertheless, some studies also doubt this central role of IRS1. While obese IRS1 

heterozygous knockout mice were troubled with profound insulin resistance compared to their 

obese wild type littermates, no differences regarding insulin sensitivity was observed between 

healthy (non-obese) IRS
+/- and wild type mice (235). In line with this, shRNA-mediated silencing of 

IRS1 in mouse muscle did not impair glucose disposal (61). Similarly, decreased IRS1 activity did not 

impair full Akt phosphorylation by insulin in muscle tissue of insulin-resistant mice (236). It should be 

noted in this context that IRS1-deficient rodents show up-regulation of related IRS-proteins, like IRS2 

and IRS3, which could take over the function of IRS1 (232,237,238). In line with the observations in 

IRS1-deficient mice, studies conducted in women with gestational diabetes (234) or polycystic ovary 

syndrome (PCOS) (239), who are also characterized by insulin resistance, a decrease in IRS1 protein 

levels in skeletal muscle biopsies was accompanied by an increase in IRS2 protein expression, 

suggesting a compensatory role of IRS2 trying to overcome the loss of IRS1. Because IRS1 is the most 
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prominent IRS isoform in skeletal muscle and adipose tissue (48), the activity or protein level of IRS2 

has not been investigated in the studies conducted in this thesis.  

Insulin-stimulated activation of the IR also mediates mitogenic effects via activation of the 

MAPK pathway. Importantly, insulin defects in T2D appear to be selective for the metabolic pathway 

(232). Skeletal muscles from obese insulin-resistant and moderately obese T2D subjects are 

characterized by a profound impairment of the IRS/PI3K pathway, but generally display a normal 

signal transduction along the MAPK pathway (233,240). However, as the impact of PRAS40 on 

insulin-mediated activation of the MAPK axis has not been analyzed here, a role of PRAS40 in the 

modulation of this insulin-regulated pathway cannot be ruled out. Therefore, the impact of PRAS40 

on IRS2 as well as on the MAPK pathway should be investigated in future studies. 

 

7.2.2.2 PRAS40 affects IRS1 in an mTORC1-independent way 

 

A key finding of this thesis is that the modulation of insulin action by PRAS40 is not mediated 

by alterations in mTORC1 activity. Contrary to our initial hypothesis, alterations in PRAS40 protein 

abundance did not affect IRS1 via activation of the mTORC1-mediated feedback mechanism, such as 

suggested from a study conducted in 3T3L1 and HepG2 cells (224), which reported an increased 

phosphorylation of p70S6K in the absence of PRAS40. These investigators proposed that the 

reduction of IRS1 protein levels in these cells is mediated by induction of an inhibitory feedback loop 

due to the hyperactivity of the mTORC1/p70S6K pathway. Indeed, constitutive activation of 

mTORC1/p70S6K is believed to be one of the crucial mechanisms of insulin resistance (241). In 

skeletal muscle of obese rats and mice, hyperactivity of the mTORC1 pathway has been observed 

(111,117), which was linked to an increased inhibitory phosphorylation of IRS1 and impaired PI3K 

activation. In addition, inhibition of mTORC1 in vitro and in mice on a HFD displayed a reduction in 

inhibitory serine phosphorylation of IRS1, thus allowing optimal stimulation of IRS1 tyrosine 

phosphorylation by the IR and subsequent activation of the PI3K (113,241). In addition, depletion of 

S6K1 protected mice against obesity and insulin resistance due to up-regulation of the oxidative 

phosphorylation pathway (e.g. via increasing the number of mitochondria) as well as increased 

insulin sensitivity (113). Finally, a newly identified substrate of mTORC1, Grb10, has also been 

postulated to mediate feedback mechanisms on the IR and IRS1 (97-99). It was postulated that 

phosphorylation of Grb10 by mTORC1 affects the stability of this protein and triggers the induction of 

Grb10-mediated feedback loops (90). Depletion of Grb10 increases insulin sensitivity, whereas 

overexpression suppresses insulin signaling via binding of Grb10 to the IR and blocking tyrosine 

phosphorylation of IRS1 (90,99,242). The work presented in this thesis showed that PRAS40 
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knockdown in hSkMCs was associated with decreased insulin-stimulated phosphorylation of p70S6K 

and 4E-BP1 as well as reduced Grb10 protein abundance compared to control cells (chapter 3, Fig. 

3.3). Crucially, inhibition of p70S6K did not restore IRS1 protein levels and insulin signaling in cells 

lacking PRAS40 (chapter 3, Fig. 3.4). In addition, enforced localization of PRAS40 in the nucleus also 

decreased IRS1 protein abundance as well as insulin-mediated phosphorylation of p70S6K at Thr389 

(chapter 5, Fig. 5.5). Together these data clearly demonstrate that PRAS40 alters insulin sensitivity in 

an mTORC1-independent way. In support of these data, Hong-Brown et al. have reported that the 

absence of PRAS40 was accompanied with a decreased IRS1 protein abundance and a simultaneous 

down regulation of mTOR as well as p70S6K activity in C2C12 myotubes (204). Overexpression of WT-

PRAS40 increased IRS1 protein levels but simultaneously inhibited mTORC1 activity (chapter 4, Fig. 

4.1-2). Thus, one may speculate that PRAS40 overexpression increased IRS1 abundance via inhibition 

of an mTORC1-mediated feedback-loop. However, considering all data presented in this thesis, it is 

more convincing that PRAS40 modulates IRS1 and mTORC1 activity via two independent mechanisms 

(see also 7.3.2).  

It had long been postulated that the p70S6K-IRS1 feedback loop was insufficient to explain 

the powerful negative control of insulin action by mTORC1, leading to the identification of the 

mTORC1/Grb10 mechanism to fill the first gap in understanding this process (99). Although PRAS40 

regulates insulin signaling independently of mTOR, Grb10 and p70S6K, we have identified PRAS40 as 

a new component of the mTORC1 signaling network, which also participates in feedback mechanisms 

regulating insulin sensitivity.  

Our results further demonstrate that alterations in PRAS40 protein abundance have a 

significant impact on insulin sensitivity in vivo on the one hand and in different cell types in vitro on 

the other hand via affecting IRS1 protein abundance. This indicates that not only phosphorylation of 

PRAS40 but also total protein expression of PRAS40 may act as a biomarker for insulin sensitivity. In 

this respect, we have conducted experiments to examine whether PRAS40 protein abundance is 

altered between insulin-sensitive and insulin-resistant subjects. However, preliminary analysis of 

PRAS40 protein levels in skeletal muscle biopsies from healthy subjects and patients with the 

metabolic syndrome or type 2 diabetes provided no evidence for significant deregulations of PRAS40 

protein levels among these groups (data not shown). In addition, investigations concerning possible 

gene variants within the PRAS40 gene (Akt1S1) and their association with insulin resistance and T2D 

are still lacking, indicating the necessity to further characterize the impact of alterations in PRAS40 

protein expression for the progression of insulin resistance in humans. 
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rat hepatocytes was associated with reduced inhibition of the ubiquitin-proteasome system by amino 

acids and insulin (251). In line with this, Tong et al. have reported that rapamycin-treatment 

increased basal protein expression of MuRF1 and FBXO32 in C2C12 myotubes (252). These reports 

suggested that mTORC1 activity is negatively correlated with the expression of E3 ligases and 

ubiquitin-dependent degradation of proteins. In addition, Grb10, which was also decreased in 

PRAS40 knockdown myotubes, has been identified to protect the vascular endothelial growth factor 

receptor 2 (VEGF-R2) against proteasomal degradation by inhibiting the ubiquitin ligase neural 

precursor cell expressed developmentally down-regulated protein 4 (Nedd4) (253). These data would 

support the idea that PRAS40 knockdown induced increased mRNA expression of MuRF1 and FBXO32 

via inhibition of mTORC1. However, several facts argue against this hypothesis: i) As mentioned 

above, decreased mTORC1 activity in PRAS40 knockdown cells seemed to be a secondary event due 

to inhibition of the PI3K/Akt/TSC2 axis. Therefore, decreased mTORC1 activity as well as reduced 

Grb10 protein levels have to be considered as a result and not as the primary cause for IRS1 

degradation. ii) According to the hypothesis, decreased MuRF1 expression in PRAS40 overexpressing 

myotubes should be accompanied by elevated mTORC1 activity, which in turn protects against IRS1 

degradation. However, activity of mTORC1 is significantly reduced in WT-PRAS40 expressing cells. iii) 

Overexpression of both, WT and mutant PRAS40, reduced MuRF1 mRNA levels in skeletal muscle 

cells but only overexpression of WT-PRAS40 and not of AAA-PRAS40 affected mTORC1 activity (see 

also section 7.3.2). iv) Although expression of MuRF1 and FBXO32 was elevated in mTOR-

heterozygous muscles, no impact of this genotype on IRS1 protein levels has been observed (250). v) 

Finally, genetic deletion or knockdown of raptor in skeletal muscle, which results in activation of 

mTORC1, even caused a decrease in MuRF1 and FBXO32 expression (254). Therefore, it is unlikely 

that PRAS40 modulates expression of E3 ligases via mTORC1.  

Expression of MuRF1 and FBXO32 are both regulated amongst others by the FOXO 

transcription factor signaling pathway (255). As mentioned above (see 1.2.1 and Fig. 1.3), Akt 

activation results in phosphorylation of FOXO proteins, leading to translocation of FOXO from the 

nucleus and inhibition of their transcriptional functions. Therefore, decreased Akt activity might 

reduce FOXO phosphorylation and increase MuRF1 and FBXO32 mRNA expression. However, other 

studies pointed out that translocation of FOXO proteins may also be regulated independently of Akt 

(250,256,257). The absence of PRAS40 from the cytoplasm in A14 fibroblast inhibited insulin-

mediated phosphorylation of Akt and FOXO3a-Thr32 (chapter 5, Fig. 5.5), which may affect 

expression of the E3 ligases. However, it is difficult to discriminate if decreased FOXO 

phosphorylation in NES-PRAS40 expressing cells is a consequence of inhibition of the IRS1/PI3K/Akt 

axis or a potential cause for increased IRS1 degradation, if it is activated in an Akt-independent way. 
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Unfortunately, mRNA levels of MuRF1 and FBXO32 have not been analyzed in this study. In order to 

obtain further insight into the participation of FOXO proteins in PRAS40-mediated regulation of 

MuRF1 and FBXO32, insulin-mediated phosphorylation of FOXO should be analyzed in skeletal 

muscle cells lacking or overexpressing PRAS40.  

 

7.2.3.3 PRAS40 alters the activity of the 26S proteasome 

 

Importantly, in this thesis we provide evidence that PRAS40 not only increases mRNA 

expression of E3 ligases but also affects proteasome activity (chapter 3, Fig 3.5; chapter 4, Fig. 4.3). In 

addition, the increase in proteasome activity in PRAS40 knockdown cells is responsible for the 

induction of insulin resistance. Inhibition of the proteasome using the specific inhibitor MG-132 

entirely restored IRS1 protein levels as well as insulin-mediated Akt phosphorylation in cells lacking 

PRAS40 (chapter 3, Fig. 3.6). Conversely, proteasomal activity was decreased in myotubes 

overexpressing PRAS40 (chapter 4, Fig. 4.3). Although proteasomal degradation of a variety of insulin 

signaling targets, such as IRβ, Glut4 or Akt have been reported (146,249,258), PRAS40 only affected 

the degradation of IRS1. Neither protein abundances of Akt, IRβ nor Glut4 was altered in the absence 

of PRAS40 or after PRAS40 overexpression (chapter 3, Fig. 3.1; chapter 4, Fig. 4.1; chapter 5, Fig. 5.4) 

In addition, overexpression of PRAS40 restored hyperinsulinemia-induced reduction of IRS1 but did 

not alter IRβ protein levels, resulting in a persisting decrease of IRβ abundance in PRAS40 

overexpressing cells after chronic insulin treatment. As mentioned above, this specificity of 

proteasomal degradation could be mediated via activation of IRS1-specific E3 ligases by PRAS40, 

which remain to be identified in the future. 

Although PRAS40-mediated activation of the proteasome seemed to exclusively target IRS1, 

we cannot rule out that PRAS40 may also regulate the protein stability of other IRS isoforms. For 

instance, IRS2 has been reported to be also targeted by the proteasome (133,259-261). Chronic 

exposure of pancreatic β-cells to glucose induced mTOR-mediated inhibitory phosphorylation of 

IRS2, which resulted in its proteasomal degradation (259). In addition, different cell culture models of 

insulin resistance, such as osmotic stress or chronic exposure to insulin or IGF1, have been reported 

to induce IRS2 degradation in 3T3-L1 cells, Fao hepatoma cells and mouse embryo fibroblasts (260). 

To conclude, in this thesis we could demonstrate for the first time that PRAS40 affects the 

activity of the proteasome, resulting in modulation of IRS1 protein stability. The underlying 

mechanisms, how PRAS40 interacts with E3 ligases and the 26S proteasome still need to be 

investigated in the future. Identification of new IRS1-specific E3 ligases, or investigations analyzing 

the impact of FOXO proteins, SOCS proteins, which have also been described to be involved in IRS1 
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proteins as well as regulators of mTORC1 activity, such as Akt and TSC2, are also found in the nucleus 

(53,263-

phosphorylation events 
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nucleus increased after insulin stimulation. So far, it is unknown which function PRAS40 may have in 

the nucleus. On the one hand, one may speculate that due to the 
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promoting IRS1 degradation) or by a secondary effect induced by the absence of PRAS40 from the 
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these questions. 

 

 

A study conducted in 

differ among various tissues 

might be differently regulated in the tissues and therefore define PRAS40 function. Comparable data 

were obtained in cultured cell lines, as illustrated by the observation that PRAS40 knock

induced different phenotypes in undifferentiated C2C12 myoblasts versus differentiated myotubes 

(186). Thus, the function of PRAS40 might depend on posttranslational modifications such as 

phosphorylation events and might be differently regulated in distinct tissues or during cell 

differentiation. To assess the impact of phosphorylation on PRAS40 f

form of PRAS40 (AAA

as the TOS motif at Phe129 were substituted to Ala resulting in loss of phosphorylation at these sites 

as well as prevention of 

Thr246 and Ser183 has been reported to alter PRAS40 function via affecting its binding to 14

proteins as well as regulators of mTORC1 activity, such as Akt and TSC2, are also found in the nucleus 

-266). In this context, translocation mainly seemed to be dependent on specific 

phosphorylation events 

affected by insulin treatment (chapter 5, Fig. 5.3) but the amount of phosphorylated PRAS40 in the 

nucleus increased after insulin stimulation. So far, it is unknown which function PRAS40 may have in 

the nucleus. On the one hand, one may speculate that due to the 

mTORC1 in the cytosol, PRAS40 may also function in the regulation of nuclear mTOR processes, such 

as alteration of rDNA and tRNA transcription 

PRAS40 may have a direct mTOR

terminal of PRAS40 as well as sequences that have the potential to bind proteins containing 

Src homology 3 and/or WW domains (chapter 1 and 

interactions with so far unidentified nuclear 

impact of NES-PRAS40 expression on insulin action is induced by a direct effect of enhanced PRAS40 

abundance in the nucleus (for instance via affecting transcription of E3 ligases and thereby 

romoting IRS1 degradation) or by a secondary effect induced by the absence of PRAS40 from the 

cytoplasm (mimicking silencing of PRAS40). Further studies investigating the function of PRAS40 in 

the nucleus as well as the regulation of PRAS40 import into the

these questions.  

 

 7.3.2 Impact of PRAS40 phosphorylation as well as raptor

function

 

A study conducted in 

differ among various tissues 

might be differently regulated in the tissues and therefore define PRAS40 function. Comparable data 

were obtained in cultured cell lines, as illustrated by the observation that PRAS40 knock

induced different phenotypes in undifferentiated C2C12 myoblasts versus differentiated myotubes 

. Thus, the function of PRAS40 might depend on posttranslational modifications such as 

phosphorylation events and might be differently regulated in distinct tissues or during cell 

differentiation. To assess the impact of phosphorylation on PRAS40 f

form of PRAS40 (AAA

as the TOS motif at Phe129 were substituted to Ala resulting in loss of phosphorylation at these sites 

as well as prevention of 

Thr246 and Ser183 has been reported to alter PRAS40 function via affecting its binding to 14

proteins as well as regulators of mTORC1 activity, such as Akt and TSC2, are also found in the nucleus 

. In this context, translocation mainly seemed to be dependent on specific 

phosphorylation events (264-266)

by insulin treatment (chapter 5, Fig. 5.3) but the amount of phosphorylated PRAS40 in the 

nucleus increased after insulin stimulation. So far, it is unknown which function PRAS40 may have in 

the nucleus. On the one hand, one may speculate that due to the 

mTORC1 in the cytosol, PRAS40 may also function in the regulation of nuclear mTOR processes, such 

as alteration of rDNA and tRNA transcription 

PRAS40 may have a direct mTOR

terminal of PRAS40 as well as sequences that have the potential to bind proteins containing 

Src homology 3 and/or WW domains (chapter 1 and 

interactions with so far unidentified nuclear 

PRAS40 expression on insulin action is induced by a direct effect of enhanced PRAS40 

abundance in the nucleus (for instance via affecting transcription of E3 ligases and thereby 

romoting IRS1 degradation) or by a secondary effect induced by the absence of PRAS40 from the 

cytoplasm (mimicking silencing of PRAS40). Further studies investigating the function of PRAS40 in 

the nucleus as well as the regulation of PRAS40 import into the

Impact of PRAS40 phosphorylation as well as raptor

function 

A study conducted in Drosophila

differ among various tissues (230)

might be differently regulated in the tissues and therefore define PRAS40 function. Comparable data 

were obtained in cultured cell lines, as illustrated by the observation that PRAS40 knock

induced different phenotypes in undifferentiated C2C12 myoblasts versus differentiated myotubes 

. Thus, the function of PRAS40 might depend on posttranslational modifications such as 

phosphorylation events and might be differently regulated in distinct tissues or during cell 

differentiation. To assess the impact of phosphorylation on PRAS40 f

form of PRAS40 (AAA-PRAS40), in which both key phosphorylation sites, Thr246 and Ser183, as well 

as the TOS motif at Phe129 were substituted to Ala resulting in loss of phosphorylation at these sites 

as well as prevention of PRAS40 binding to raptor (chapter 

Thr246 and Ser183 has been reported to alter PRAS40 function via affecting its binding to 14

proteins as well as regulators of mTORC1 activity, such as Akt and TSC2, are also found in the nucleus 

. In this context, translocation mainly seemed to be dependent on specific 

266). In contrast, nuclear localization of total PRAS40 protein was not 

by insulin treatment (chapter 5, Fig. 5.3) but the amount of phosphorylated PRAS40 in the 

nucleus increased after insulin stimulation. So far, it is unknown which function PRAS40 may have in 

the nucleus. On the one hand, one may speculate that due to the 

mTORC1 in the cytosol, PRAS40 may also function in the regulation of nuclear mTOR processes, such 

as alteration of rDNA and tRNA transcription 

PRAS40 may have a direct mTOR-independent fun

terminal of PRAS40 as well as sequences that have the potential to bind proteins containing 

Src homology 3 and/or WW domains (chapter 1 and 

interactions with so far unidentified nuclear 

PRAS40 expression on insulin action is induced by a direct effect of enhanced PRAS40 

abundance in the nucleus (for instance via affecting transcription of E3 ligases and thereby 

romoting IRS1 degradation) or by a secondary effect induced by the absence of PRAS40 from the 

cytoplasm (mimicking silencing of PRAS40). Further studies investigating the function of PRAS40 in 

the nucleus as well as the regulation of PRAS40 import into the

Impact of PRAS40 phosphorylation as well as raptor

Drosophila has described for the first time that function of PRAS40 may 

(230). The authors proposed that the phosphorylation state of PRAS40 

might be differently regulated in the tissues and therefore define PRAS40 function. Comparable data 

were obtained in cultured cell lines, as illustrated by the observation that PRAS40 knock

induced different phenotypes in undifferentiated C2C12 myoblasts versus differentiated myotubes 

. Thus, the function of PRAS40 might depend on posttranslational modifications such as 

phosphorylation events and might be differently regulated in distinct tissues or during cell 

differentiation. To assess the impact of phosphorylation on PRAS40 f

PRAS40), in which both key phosphorylation sites, Thr246 and Ser183, as well 

as the TOS motif at Phe129 were substituted to Ala resulting in loss of phosphorylation at these sites 

PRAS40 binding to raptor (chapter 

Thr246 and Ser183 has been reported to alter PRAS40 function via affecting its binding to 14

 

- 167 - 

 

proteins as well as regulators of mTORC1 activity, such as Akt and TSC2, are also found in the nucleus 

. In this context, translocation mainly seemed to be dependent on specific 

. In contrast, nuclear localization of total PRAS40 protein was not 

by insulin treatment (chapter 5, Fig. 5.3) but the amount of phosphorylated PRAS40 in the 

nucleus increased after insulin stimulation. So far, it is unknown which function PRAS40 may have in 

the nucleus. On the one hand, one may speculate that due to the 

mTORC1 in the cytosol, PRAS40 may also function in the regulation of nuclear mTOR processes, such 

as alteration of rDNA and tRNA transcription (267). On the other hand, PRAS40 or phosphorylated 

independent function in the nucleus. The proline

terminal of PRAS40 as well as sequences that have the potential to bind proteins containing 

Src homology 3 and/or WW domains (chapter 1 and (228)

interactions with so far unidentified nuclear binding partners. Therefore, it is difficult to clarify if the 

PRAS40 expression on insulin action is induced by a direct effect of enhanced PRAS40 

abundance in the nucleus (for instance via affecting transcription of E3 ligases and thereby 

romoting IRS1 degradation) or by a secondary effect induced by the absence of PRAS40 from the 

cytoplasm (mimicking silencing of PRAS40). Further studies investigating the function of PRAS40 in 

the nucleus as well as the regulation of PRAS40 import into the

Impact of PRAS40 phosphorylation as well as raptor

has described for the first time that function of PRAS40 may 

. The authors proposed that the phosphorylation state of PRAS40 

might be differently regulated in the tissues and therefore define PRAS40 function. Comparable data 

were obtained in cultured cell lines, as illustrated by the observation that PRAS40 knock

induced different phenotypes in undifferentiated C2C12 myoblasts versus differentiated myotubes 

. Thus, the function of PRAS40 might depend on posttranslational modifications such as 

phosphorylation events and might be differently regulated in distinct tissues or during cell 

differentiation. To assess the impact of phosphorylation on PRAS40 f

PRAS40), in which both key phosphorylation sites, Thr246 and Ser183, as well 

as the TOS motif at Phe129 were substituted to Ala resulting in loss of phosphorylation at these sites 

PRAS40 binding to raptor (chapter 

Thr246 and Ser183 has been reported to alter PRAS40 function via affecting its binding to 14

proteins as well as regulators of mTORC1 activity, such as Akt and TSC2, are also found in the nucleus 

. In this context, translocation mainly seemed to be dependent on specific 

. In contrast, nuclear localization of total PRAS40 protein was not 

by insulin treatment (chapter 5, Fig. 5.3) but the amount of phosphorylated PRAS40 in the 

nucleus increased after insulin stimulation. So far, it is unknown which function PRAS40 may have in 

the nucleus. On the one hand, one may speculate that due to the regulating properties of PRAS40 on 

mTORC1 in the cytosol, PRAS40 may also function in the regulation of nuclear mTOR processes, such 

. On the other hand, PRAS40 or phosphorylated 

ction in the nucleus. The proline

terminal of PRAS40 as well as sequences that have the potential to bind proteins containing 

(228)) may mediate different protein

binding partners. Therefore, it is difficult to clarify if the 

PRAS40 expression on insulin action is induced by a direct effect of enhanced PRAS40 

abundance in the nucleus (for instance via affecting transcription of E3 ligases and thereby 

romoting IRS1 degradation) or by a secondary effect induced by the absence of PRAS40 from the 

cytoplasm (mimicking silencing of PRAS40). Further studies investigating the function of PRAS40 in 

the nucleus as well as the regulation of PRAS40 import into the nucleus are necessary to address 

Impact of PRAS40 phosphorylation as well as raptor

has described for the first time that function of PRAS40 may 

. The authors proposed that the phosphorylation state of PRAS40 

might be differently regulated in the tissues and therefore define PRAS40 function. Comparable data 

were obtained in cultured cell lines, as illustrated by the observation that PRAS40 knock

induced different phenotypes in undifferentiated C2C12 myoblasts versus differentiated myotubes 

. Thus, the function of PRAS40 might depend on posttranslational modifications such as 

phosphorylation events and might be differently regulated in distinct tissues or during cell 

differentiation. To assess the impact of phosphorylation on PRAS40 f

PRAS40), in which both key phosphorylation sites, Thr246 and Ser183, as well 

as the TOS motif at Phe129 were substituted to Ala resulting in loss of phosphorylation at these sites 

PRAS40 binding to raptor (chapter 4). Mutation of the phosphorylation sites 

Thr246 and Ser183 has been reported to alter PRAS40 function via affecting its binding to 14

proteins as well as regulators of mTORC1 activity, such as Akt and TSC2, are also found in the nucleus 

. In this context, translocation mainly seemed to be dependent on specific 

. In contrast, nuclear localization of total PRAS40 protein was not 

by insulin treatment (chapter 5, Fig. 5.3) but the amount of phosphorylated PRAS40 in the 

nucleus increased after insulin stimulation. So far, it is unknown which function PRAS40 may have in 

regulating properties of PRAS40 on 

mTORC1 in the cytosol, PRAS40 may also function in the regulation of nuclear mTOR processes, such 

. On the other hand, PRAS40 or phosphorylated 

ction in the nucleus. The proline

terminal of PRAS40 as well as sequences that have the potential to bind proteins containing 

) may mediate different protein

binding partners. Therefore, it is difficult to clarify if the 

PRAS40 expression on insulin action is induced by a direct effect of enhanced PRAS40 

abundance in the nucleus (for instance via affecting transcription of E3 ligases and thereby 

romoting IRS1 degradation) or by a secondary effect induced by the absence of PRAS40 from the 

cytoplasm (mimicking silencing of PRAS40). Further studies investigating the function of PRAS40 in 

nucleus are necessary to address 

Impact of PRAS40 phosphorylation as well as raptor-binding on PRAS40 

has described for the first time that function of PRAS40 may 

. The authors proposed that the phosphorylation state of PRAS40 

might be differently regulated in the tissues and therefore define PRAS40 function. Comparable data 

were obtained in cultured cell lines, as illustrated by the observation that PRAS40 knock

induced different phenotypes in undifferentiated C2C12 myoblasts versus differentiated myotubes 

. Thus, the function of PRAS40 might depend on posttranslational modifications such as 

phosphorylation events and might be differently regulated in distinct tissues or during cell 

differentiation. To assess the impact of phosphorylation on PRAS40 function, we generated a mutant 

PRAS40), in which both key phosphorylation sites, Thr246 and Ser183, as well 

as the TOS motif at Phe129 were substituted to Ala resulting in loss of phosphorylation at these sites 

). Mutation of the phosphorylation sites 

Thr246 and Ser183 has been reported to alter PRAS40 function via affecting its binding to 14

General Discussion

proteins as well as regulators of mTORC1 activity, such as Akt and TSC2, are also found in the nucleus 

. In this context, translocation mainly seemed to be dependent on specific 

. In contrast, nuclear localization of total PRAS40 protein was not 

by insulin treatment (chapter 5, Fig. 5.3) but the amount of phosphorylated PRAS40 in the 

nucleus increased after insulin stimulation. So far, it is unknown which function PRAS40 may have in 

regulating properties of PRAS40 on 

mTORC1 in the cytosol, PRAS40 may also function in the regulation of nuclear mTOR processes, such 

. On the other hand, PRAS40 or phosphorylated 

ction in the nucleus. The proline-rich regions in the 

terminal of PRAS40 as well as sequences that have the potential to bind proteins containing 

) may mediate different protein

binding partners. Therefore, it is difficult to clarify if the 

PRAS40 expression on insulin action is induced by a direct effect of enhanced PRAS40 

abundance in the nucleus (for instance via affecting transcription of E3 ligases and thereby 

romoting IRS1 degradation) or by a secondary effect induced by the absence of PRAS40 from the 

cytoplasm (mimicking silencing of PRAS40). Further studies investigating the function of PRAS40 in 

nucleus are necessary to address 

binding on PRAS40 

has described for the first time that function of PRAS40 may 

. The authors proposed that the phosphorylation state of PRAS40 

might be differently regulated in the tissues and therefore define PRAS40 function. Comparable data 

were obtained in cultured cell lines, as illustrated by the observation that PRAS40 knock

induced different phenotypes in undifferentiated C2C12 myoblasts versus differentiated myotubes 

. Thus, the function of PRAS40 might depend on posttranslational modifications such as 

phosphorylation events and might be differently regulated in distinct tissues or during cell 

unction, we generated a mutant 

PRAS40), in which both key phosphorylation sites, Thr246 and Ser183, as well 

as the TOS motif at Phe129 were substituted to Ala resulting in loss of phosphorylation at these sites 

). Mutation of the phosphorylation sites 

Thr246 and Ser183 has been reported to alter PRAS40 function via affecting its binding to 14

General Discussion 

 

proteins as well as regulators of mTORC1 activity, such as Akt and TSC2, are also found in the nucleus 

. In this context, translocation mainly seemed to be dependent on specific 

. In contrast, nuclear localization of total PRAS40 protein was not 

by insulin treatment (chapter 5, Fig. 5.3) but the amount of phosphorylated PRAS40 in the 

nucleus increased after insulin stimulation. So far, it is unknown which function PRAS40 may have in 

regulating properties of PRAS40 on 

mTORC1 in the cytosol, PRAS40 may also function in the regulation of nuclear mTOR processes, such 

. On the other hand, PRAS40 or phosphorylated 

rich regions in the 

terminal of PRAS40 as well as sequences that have the potential to bind proteins containing 

) may mediate different protein-protein 

binding partners. Therefore, it is difficult to clarify if the 

PRAS40 expression on insulin action is induced by a direct effect of enhanced PRAS40 

abundance in the nucleus (for instance via affecting transcription of E3 ligases and thereby 

romoting IRS1 degradation) or by a secondary effect induced by the absence of PRAS40 from the 

cytoplasm (mimicking silencing of PRAS40). Further studies investigating the function of PRAS40 in 

nucleus are necessary to address 

binding on PRAS40 

has described for the first time that function of PRAS40 may 

. The authors proposed that the phosphorylation state of PRAS40 

might be differently regulated in the tissues and therefore define PRAS40 function. Comparable data 

were obtained in cultured cell lines, as illustrated by the observation that PRAS40 knockdown 

induced different phenotypes in undifferentiated C2C12 myoblasts versus differentiated myotubes 

. Thus, the function of PRAS40 might depend on posttranslational modifications such as 

phosphorylation events and might be differently regulated in distinct tissues or during cell 

unction, we generated a mutant 

PRAS40), in which both key phosphorylation sites, Thr246 and Ser183, as well 

as the TOS motif at Phe129 were substituted to Ala resulting in loss of phosphorylation at these sites 

). Mutation of the phosphorylation sites 

Thr246 and Ser183 has been reported to alter PRAS40 function via affecting its binding to 14-3-3 



proteins (see 7.3.3). In contrast, preventing PRAS40

PRAS40-

binding of PRAS40 to raptor, resulting in increased mTORC1 activity 

overexpression of AAA

stimulated activation of mTORC1, demonstrated by unchanged phosphorylation of p70S6K and S6 

compared to insulin

PRAS40 inhibited insulin

PRAS40 function on mTORC1 depends on intact phosphorylation sites as well as on binding of 

PRAS40 to mTORC1.

Importantly, this AAA

insulin action is independent of 

expressing cells were observed regarding the expression of 

proteasome (chapter 

resulting in increased IRS1 protein abundance. These results further support the indication, that 

PRAS40 has a dual function in that it can regulate mTORC1 activity on the one hand and proteasomal 

activity on the other hand, which both seemed to be independent of 

However, some issues remain to be addressed in this context. Although expression of AAA

PRAS40 has an insulin

PRAS40. Furthermore, in contrast to WT

overcome hyperinsulinemia

effect of PRAS40 on insulin sensitivity, phosphorylation at Ser183 and Thr246 and/or binding to 

raptor is required

sites (chapter 2), which might participate in regulation of PRAS40 function as well in its localization. 

Furthermore, the potential existence of inhibitory phosphorylation

hypothesized to be involved in regulation of PRAS40 function 

other than phosphorylation might impact PRAS40. Application of tools for prediction of 

posttranslational protein modifications (h

PRAS40 might also undergo 

studies, for instance involving the generation of different PRAS40 mutants, in particular individual 

mutation of the phosphorylation sites, are required to analyze the impact of postt

modification on PRAS40 function.

 

 

proteins (see 7.3.3). In contrast, preventing PRAS40

-mediated inhibition of mTORC1 activity 

binding of PRAS40 to raptor, resulting in increased mTORC1 activity 

overexpression of AAA

ed activation of mTORC1, demonstrated by unchanged phosphorylation of p70S6K and S6 

compared to insulin

PRAS40 inhibited insulin

PRAS40 function on mTORC1 depends on intact phosphorylation sites as well as on binding of 

PRAS40 to mTORC1. 

Importantly, this AAA

insulin action is independent of 

expressing cells were observed regarding the expression of 

proteasome (chapter 

g in increased IRS1 protein abundance. These results further support the indication, that 

PRAS40 has a dual function in that it can regulate mTORC1 activity on the one hand and proteasomal 

activity on the other hand, which both seemed to be independent of 

However, some issues remain to be addressed in this context. Although expression of AAA

PRAS40 has an insulin

PRAS40. Furthermore, in contrast to WT

overcome hyperinsulinemia

effect of PRAS40 on insulin sensitivity, phosphorylation at Ser183 and Thr246 and/or binding to 

raptor is required. In addition, PRAS40 exhibits at least eight additional (potential) phosphorylation 

sites (chapter 2), which might participate in regulation of PRAS40 function as well in its localization. 

Furthermore, the potential existence of inhibitory phosphorylation

hypothesized to be involved in regulation of PRAS40 function 

other than phosphorylation might impact PRAS40. Application of tools for prediction of 

posttranslational protein modifications (h

PRAS40 might also undergo 

studies, for instance involving the generation of different PRAS40 mutants, in particular individual 

mutation of the phosphorylation sites, are required to analyze the impact of postt

modification on PRAS40 function.

 

 7.3.3 Potential role of 14

 

proteins (see 7.3.3). In contrast, preventing PRAS40

mediated inhibition of mTORC1 activity 

binding of PRAS40 to raptor, resulting in increased mTORC1 activity 

overexpression of AAA-PRAS40 in differentiated human skeletal muscle cells did not impair insulin

ed activation of mTORC1, demonstrated by unchanged phosphorylation of p70S6K and S6 

compared to insulin-treated control cells (chapter 

PRAS40 inhibited insulin-stimulated phosphorylation of these mTORC1 target

PRAS40 function on mTORC1 depends on intact phosphorylation sites as well as on binding of 

 

Importantly, this AAA-PRAS40 helped us to further substantiate that the effect of PRAS40 on 

insulin action is independent of 

expressing cells were observed regarding the expression of 

proteasome (chapter 4, Fig. 4.3). In both myotubes the proteasomal machinery was inhibited, 

g in increased IRS1 protein abundance. These results further support the indication, that 

PRAS40 has a dual function in that it can regulate mTORC1 activity on the one hand and proteasomal 

activity on the other hand, which both seemed to be independent of 

However, some issues remain to be addressed in this context. Although expression of AAA

PRAS40 has an insulin-sensitizing effect, the activity of this mutant is not similar to that of 

PRAS40. Furthermore, in contrast to WT

overcome hyperinsulinemia-induced insulin resistance. These data suggest that for full beneficial 

effect of PRAS40 on insulin sensitivity, phosphorylation at Ser183 and Thr246 and/or binding to 

. In addition, PRAS40 exhibits at least eight additional (potential) phosphorylation 

sites (chapter 2), which might participate in regulation of PRAS40 function as well in its localization. 

Furthermore, the potential existence of inhibitory phosphorylation

hypothesized to be involved in regulation of PRAS40 function 

other than phosphorylation might impact PRAS40. Application of tools for prediction of 

posttranslational protein modifications (h

PRAS40 might also undergo N-glycosylation as well as N

studies, for instance involving the generation of different PRAS40 mutants, in particular individual 

mutation of the phosphorylation sites, are required to analyze the impact of postt

modification on PRAS40 function.

Potential role of 14

proteins (see 7.3.3). In contrast, preventing PRAS40

mediated inhibition of mTORC1 activity 

binding of PRAS40 to raptor, resulting in increased mTORC1 activity 

PRAS40 in differentiated human skeletal muscle cells did not impair insulin

ed activation of mTORC1, demonstrated by unchanged phosphorylation of p70S6K and S6 

treated control cells (chapter 

stimulated phosphorylation of these mTORC1 target

PRAS40 function on mTORC1 depends on intact phosphorylation sites as well as on binding of 

PRAS40 helped us to further substantiate that the effect of PRAS40 on 

insulin action is independent of mTORC1 signaling. No differences between WT

expressing cells were observed regarding the expression of 

.3). In both myotubes the proteasomal machinery was inhibited, 

g in increased IRS1 protein abundance. These results further support the indication, that 

PRAS40 has a dual function in that it can regulate mTORC1 activity on the one hand and proteasomal 

activity on the other hand, which both seemed to be independent of 

However, some issues remain to be addressed in this context. Although expression of AAA

sensitizing effect, the activity of this mutant is not similar to that of 

PRAS40. Furthermore, in contrast to WT-PRAS40 expressing

induced insulin resistance. These data suggest that for full beneficial 

effect of PRAS40 on insulin sensitivity, phosphorylation at Ser183 and Thr246 and/or binding to 

. In addition, PRAS40 exhibits at least eight additional (potential) phosphorylation 

sites (chapter 2), which might participate in regulation of PRAS40 function as well in its localization. 

Furthermore, the potential existence of inhibitory phosphorylation

hypothesized to be involved in regulation of PRAS40 function 

other than phosphorylation might impact PRAS40. Application of tools for prediction of 

posttranslational protein modifications (http://prosite.expasy.org/prosite.html, 

glycosylation as well as N

studies, for instance involving the generation of different PRAS40 mutants, in particular individual 

mutation of the phosphorylation sites, are required to analyze the impact of postt

modification on PRAS40 function. 

Potential role of 14-3-3 proteins for PRAS40 function

 

- 168 - 

 

proteins (see 7.3.3). In contrast, preventing PRAS40-raptor binding has been linked

mediated inhibition of mTORC1 activity (226). In addition, mutation of Ser183 also abolished 

binding of PRAS40 to raptor, resulting in increased mTORC1 activity 

PRAS40 in differentiated human skeletal muscle cells did not impair insulin

ed activation of mTORC1, demonstrated by unchanged phosphorylation of p70S6K and S6 

treated control cells (chapter 4, Fig. 

stimulated phosphorylation of these mTORC1 target

PRAS40 function on mTORC1 depends on intact phosphorylation sites as well as on binding of 

PRAS40 helped us to further substantiate that the effect of PRAS40 on 

mTORC1 signaling. No differences between WT

expressing cells were observed regarding the expression of 

.3). In both myotubes the proteasomal machinery was inhibited, 

g in increased IRS1 protein abundance. These results further support the indication, that 

PRAS40 has a dual function in that it can regulate mTORC1 activity on the one hand and proteasomal 

activity on the other hand, which both seemed to be independent of 

However, some issues remain to be addressed in this context. Although expression of AAA

sensitizing effect, the activity of this mutant is not similar to that of 

PRAS40 expressing

induced insulin resistance. These data suggest that for full beneficial 

effect of PRAS40 on insulin sensitivity, phosphorylation at Ser183 and Thr246 and/or binding to 

. In addition, PRAS40 exhibits at least eight additional (potential) phosphorylation 

sites (chapter 2), which might participate in regulation of PRAS40 function as well in its localization. 

Furthermore, the potential existence of inhibitory phosphorylation

hypothesized to be involved in regulation of PRAS40 function 

other than phosphorylation might impact PRAS40. Application of tools for prediction of 

ttp://prosite.expasy.org/prosite.html, 

glycosylation as well as N

studies, for instance involving the generation of different PRAS40 mutants, in particular individual 

mutation of the phosphorylation sites, are required to analyze the impact of postt

3 proteins for PRAS40 function

raptor binding has been linked

. In addition, mutation of Ser183 also abolished 

binding of PRAS40 to raptor, resulting in increased mTORC1 activity 

PRAS40 in differentiated human skeletal muscle cells did not impair insulin

ed activation of mTORC1, demonstrated by unchanged phosphorylation of p70S6K and S6 

, Fig. 4.2). Conversely, overexpression of WT

stimulated phosphorylation of these mTORC1 target

PRAS40 function on mTORC1 depends on intact phosphorylation sites as well as on binding of 

PRAS40 helped us to further substantiate that the effect of PRAS40 on 

mTORC1 signaling. No differences between WT

expressing cells were observed regarding the expression of MuRF

.3). In both myotubes the proteasomal machinery was inhibited, 

g in increased IRS1 protein abundance. These results further support the indication, that 

PRAS40 has a dual function in that it can regulate mTORC1 activity on the one hand and proteasomal 

activity on the other hand, which both seemed to be independent of 

However, some issues remain to be addressed in this context. Although expression of AAA

sensitizing effect, the activity of this mutant is not similar to that of 

PRAS40 expressing cells, AAA

induced insulin resistance. These data suggest that for full beneficial 

effect of PRAS40 on insulin sensitivity, phosphorylation at Ser183 and Thr246 and/or binding to 

. In addition, PRAS40 exhibits at least eight additional (potential) phosphorylation 

sites (chapter 2), which might participate in regulation of PRAS40 function as well in its localization. 

Furthermore, the potential existence of inhibitory phosphorylation

hypothesized to be involved in regulation of PRAS40 function (230). Finally, posttranslational events 

other than phosphorylation might impact PRAS40. Application of tools for prediction of 

ttp://prosite.expasy.org/prosite.html, 

glycosylation as well as N-myristoylation. This indicates that further 

studies, for instance involving the generation of different PRAS40 mutants, in particular individual 

mutation of the phosphorylation sites, are required to analyze the impact of postt

3 proteins for PRAS40 function

raptor binding has been linked

. In addition, mutation of Ser183 also abolished 

binding of PRAS40 to raptor, resulting in increased mTORC1 activity (217). In line with these results, 

PRAS40 in differentiated human skeletal muscle cells did not impair insulin

ed activation of mTORC1, demonstrated by unchanged phosphorylation of p70S6K and S6 

.2). Conversely, overexpression of WT

stimulated phosphorylation of these mTORC1 targets, demonstrating that 

PRAS40 function on mTORC1 depends on intact phosphorylation sites as well as on binding of 

PRAS40 helped us to further substantiate that the effect of PRAS40 on 

mTORC1 signaling. No differences between WT

RF1 as well as the activity of the 

.3). In both myotubes the proteasomal machinery was inhibited, 

g in increased IRS1 protein abundance. These results further support the indication, that 

PRAS40 has a dual function in that it can regulate mTORC1 activity on the one hand and proteasomal 

activity on the other hand, which both seemed to be independent of each other. 

However, some issues remain to be addressed in this context. Although expression of AAA

sensitizing effect, the activity of this mutant is not similar to that of 

cells, AAA-PRAS40 expressing cells fail to 

induced insulin resistance. These data suggest that for full beneficial 

effect of PRAS40 on insulin sensitivity, phosphorylation at Ser183 and Thr246 and/or binding to 

. In addition, PRAS40 exhibits at least eight additional (potential) phosphorylation 

sites (chapter 2), which might participate in regulation of PRAS40 function as well in its localization. 

Furthermore, the potential existence of inhibitory phosphorylation sites within PRAS40 was 

. Finally, posttranslational events 

other than phosphorylation might impact PRAS40. Application of tools for prediction of 

ttp://prosite.expasy.org/prosite.html, 

myristoylation. This indicates that further 

studies, for instance involving the generation of different PRAS40 mutants, in particular individual 

mutation of the phosphorylation sites, are required to analyze the impact of postt

3 proteins for PRAS40 function 

General Discussion

raptor binding has been linked to decreased 

. In addition, mutation of Ser183 also abolished 

. In line with these results, 

PRAS40 in differentiated human skeletal muscle cells did not impair insulin

ed activation of mTORC1, demonstrated by unchanged phosphorylation of p70S6K and S6 

.2). Conversely, overexpression of WT

s, demonstrating that 

PRAS40 function on mTORC1 depends on intact phosphorylation sites as well as on binding of 

PRAS40 helped us to further substantiate that the effect of PRAS40 on 

mTORC1 signaling. No differences between WT- and AAA

as well as the activity of the 

.3). In both myotubes the proteasomal machinery was inhibited, 

g in increased IRS1 protein abundance. These results further support the indication, that 

PRAS40 has a dual function in that it can regulate mTORC1 activity on the one hand and proteasomal 

each other.  

However, some issues remain to be addressed in this context. Although expression of AAA

sensitizing effect, the activity of this mutant is not similar to that of 

PRAS40 expressing cells fail to 

induced insulin resistance. These data suggest that for full beneficial 

effect of PRAS40 on insulin sensitivity, phosphorylation at Ser183 and Thr246 and/or binding to 

. In addition, PRAS40 exhibits at least eight additional (potential) phosphorylation 

sites (chapter 2), which might participate in regulation of PRAS40 function as well in its localization. 

sites within PRAS40 was 

. Finally, posttranslational events 

other than phosphorylation might impact PRAS40. Application of tools for prediction of 

ttp://prosite.expasy.org/prosite.html, (268)) revealed that 

myristoylation. This indicates that further 

studies, for instance involving the generation of different PRAS40 mutants, in particular individual 

mutation of the phosphorylation sites, are required to analyze the impact of posttranslational 

General Discussion 

 

to decreased 

. In addition, mutation of Ser183 also abolished 

. In line with these results, 

PRAS40 in differentiated human skeletal muscle cells did not impair insulin-

ed activation of mTORC1, demonstrated by unchanged phosphorylation of p70S6K and S6 

.2). Conversely, overexpression of WT-

s, demonstrating that 

PRAS40 function on mTORC1 depends on intact phosphorylation sites as well as on binding of 

PRAS40 helped us to further substantiate that the effect of PRAS40 on 

and AAA-PRAS40 

as well as the activity of the 

.3). In both myotubes the proteasomal machinery was inhibited, 

g in increased IRS1 protein abundance. These results further support the indication, that 

PRAS40 has a dual function in that it can regulate mTORC1 activity on the one hand and proteasomal 

However, some issues remain to be addressed in this context. Although expression of AAA-

sensitizing effect, the activity of this mutant is not similar to that of WT-

PRAS40 expressing cells fail to 

induced insulin resistance. These data suggest that for full beneficial 

effect of PRAS40 on insulin sensitivity, phosphorylation at Ser183 and Thr246 and/or binding to 

. In addition, PRAS40 exhibits at least eight additional (potential) phosphorylation 

sites (chapter 2), which might participate in regulation of PRAS40 function as well in its localization. 

sites within PRAS40 was 

. Finally, posttranslational events 

other than phosphorylation might impact PRAS40. Application of tools for prediction of 

) revealed that 

myristoylation. This indicates that further 

studies, for instance involving the generation of different PRAS40 mutants, in particular individual 

ranslational 



General Discussion 

 

 

- 169 - 

 

14-3-3 binding proteins are highly conserved proteins which are expressed in all eukaryotic 

cell types (269). All seven isoforms (α/β, ε, η, γ, τ/θ, δ/ζ, σ) are reported to regulate a broad range of 

cellular processes such as cell death, cell migration, cell-cycle, cytoskeletal dynamics and especially 

cellular signaling pathways. Up to now, more than 500 potential 14-3-3 binding partners have been 

identified (269). Recognition and binding of target proteins by 14-3-3 proteins depends on a putative 

peptide sequence (RSXpSXP, p represents phosphorylated serine, X any amino acid) characterized by 

a phosphorylated serine residue (270). Due to the large number of 14-3-3 interacting partners, the 

particular function of 14-3-3 proteins is difficult to define. Binding of 14-3-3 proteins can induce 

conformational changes within target proteins, modulate interactions of the target protein with 

other proteins or facilitate protein-protein interaction by acting as scaffold proteins (271). 

Furthermore 14-3-3 proteins can directly alter enzyme activity of target proteins, shield against 

dephosphorylation, modulate subcellular localization of their cargos (269,272-274) or mediate 

proteasomal degradation of their binding proteins (261,275,276). 

 PRAS40 has been identified to be one of the 500 binding partners of 14-3-3 proteins 

(183,228). Phosphorylation of PRAS40 at Thr246 and additionally at Ser183 is essential for binding of 

PRAS40 to 14-3-3 proteins (see chapter 2, (183,228,277)), demonstrating that PRAS40 binding to 14-

3-3 proteins is Akt- and mTORC1-dependent. In line with this, mutations within mTORC1 binding sites 

markedly impaired 14-3-3 binding to PRAS40 (228,277). Formation of PRAS40/14-3-3 protein 

complexes has been proposed to function in PRAS40-mediated mTORC1 regulation. Thus, 

phosphorylation of PRAS40 by Akt and mTORC1 induces the dissociation of PRAS40 from mTORC1 

through its binding to 14-3-3 proteins. This dissociation is believed to be responsible for elevated 

mTORC1 activity via increasing the binding capacity of mTOR for its other substrates, such as 4E-BP1, 

Grb10 or p70S6K (chapter 2, (229)). However, other reports have demonstrated that binding of 

PRAS40 to 14-3-3 protein is not required in order to repress the inhibitory function of PRAS40 on 

mTORC1 activity (223,278). Therefore, it remains to be addressed if binding of PRAS40 to 14-3-3 

proteins indeed affects its regulatory function on mTORC1. 

 As mentioned above, 14-3-3 proteins also participate in nuclear translocation of proteins 

(270,272-274). Thus, 14-3-3 proteins may participate in regulation of PRAS40 localization. However, 

we reported that mutation of PRAS40 phosphorylation sites did not impact PRAS40 localization 

(chapter 5, supplementary data, Fig. 5.7). In addition, insulin treatment of A14 fibroblasts did not 

alter PRAS40 abundance in the nucleus, demonstrating that participation of 14-3-3 proteins in 

PRAS40 translocation is rather unlikely.  

 Finally, the interaction of PRAS40 and 14-3-3 proteins may participate in modulation of IRS1 

protein abundance by PRAS40. Neukamm et al. have recently published that cAMP-stimulated 
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(284). Preliminary results obtained from insulin- or VEGF-treated umbilical vein endothelial cells 

(HUVECs) indicate that PRAS40 also regulates Akt-and mTORC1 signaling in these cells (data not 

shown). However, datasets have to be expanded in the future. Finally, PRAS40 has been 

demonstrated to be a crucial mediator of glomerular hypertrophy, a process linked to progression of 

diabetic nephropathy (chapter 2 and (285-288)). In summary, these results suggest that PRAS40 

might also influence the progression of various disorders linked to T2D and MetS. 

Nevertheless, PRAS40 has already been linked to other diseases which are not directly 

associated with metabolic disorders. Investigations of the role of PRAS40 in carcinogenesis have 

already aroused great interest. Akt activation is one of the most frequent alterations observed in 

human cancer, resulting in promotion of tumorigenesis by inhibiting apoptosis (229,289). In addition, 

deregulation of the mTORC1 signaling pathway is an essential mediator of cancer progression and 

tumor formation and is induced through the loss of PTEN, mutations in TSC/TSC2 complex, 

hyperactivity of IRS/PI3K and/or overexpression of Akt (290). On the one hand, Akt-dependent 

phosphorylation of PRAS40 at Thr246 has been reported to be elevated in several cancer cell lines as 

well as in meningiomas and malignant melanomas. Therefore, PRAS40-Thr246 has been identified to 

act as an eligible biomarker for the investigation of the efficiency of novel inhibitors of the PI3K-

pathway as new therapeutic options (for details see chapter 2). On the other hand, PRAS40 has also 

been reported to directly affect tumor development. Knockdown of PRAS40 in UACC 903 cells 

(human melanoma cells), which were subsequently injected subcutaneously into mice, resulted in 

decreased tumorigenic potential of these melanoma cells. In particular, targeting PRAS40 inhibited 

melanoma tumor development by elevating apoptosis rates in these tumor cells (208). In line with 

this, cell proliferation and metastatic growth of Ewing sarcoma family tumors (ESFT) cells were 

suppressed by siRNA-mediated PRAS40 knockdown (291). Additionally, the anti-apoptotic properties 

of PRAS40 have also been identified to have an impact on the development of embryoid bodies 

during human amniotic fluid stem cell (AFS) differentiation (292). In contrast to these reports, one 

study has postulated that PRAS40 promotes apoptosis, because knockdown of PRAS40 prevented 

TNFα-induced apoptosis in HeLa cells (225). This indicates again that PRAS40 function in the 

regulation of apoptosis and proliferation differs between different types of tumors and cells and 

might be regulated via posttranslational modifications or alterations in PRAS40 localization. 

Finally, PRAS40 has been demonstrated to be associated with the progression of neuronal 

diseases, in particular Alzheimer´s diseases. Accumulation and toxicity of β-amyloid (Aβ) in the brain 

is considered to be a significant component of the onset and progression of Alzheimer´s diseases. 

Wnt 1 inducible signaling pathway protein 1 (WISP1) expression has been reported to be upregulated 

after Aβ exposure and to play a role in protection of microglial cells against Aβ (293). Shang et al. 



have reported that the neuroprotective function of WISP1 is mediated by the inhibition of PRAS40 

resulting in increased mTORC1 activity. Similar to WISP1 treatment, gene reduction of PRAS40 

decreased microglial cell injury, genomic DNA degradation

phosphatidylserine residues during Aβ exposure. In line with this identification of a neuroprotective 

function of PRAS40, overexpression of PRAS40 reduced neuronal apoptosis after cerebral ischemia in 

mice as well as 
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activity in skeletal muscle cells. On the other hand, PRAS40 modulates the IRS1/PI3K/Akt pathway 

and insulin sensitivity. Although the effects on the proteasomal machinery are mediated 

independently of posttranslational phosphorylation of PRAS40 as well as of its binding to mTORC1, 

beneficial effects of PRAS40 overexpression are only fully mediated if phosphorylation and binding to 

mTORC1 is intact (Fig. 7.3).  

 

 

Figure 7.3 Summary of the presented work. The protein PRAS40 binds via its TOS-motif to raptor. 

Phosphorylation of Ser183 within this protein is mediated by mTORC1, whereas phosphorylation at Thr246 is 

induced by Akt. PRAS40 has a dual cellular function: (a) PRAS40 inhibits mTORC1 function. The suppressing 
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effect depends on the phosphorylation of PRAS40 as well on its binding to mTORC1. Phosphorylation of 

PRAS40, for instance induced by insulin, results in dissociation of PRAS40 from mTORC1 and thereby in the 

release of the suppressive constrain. Phosphorylated PRAS40 is believed to bind 14-3-3 proteins. However, the 

function of 14-3-3 proteins in modulating PRAS40 function is still unclear. In addition, PRAS40 also modulates 

the activity of the proteasomal machinery and thereby alters IRS1 protein abundance (b). IRS1 degradation is 

highly linked to disturbances in insulin-mediated activation of the PI3K/Akt pathway. The mechanism by which 

alterations in PRAS40 protein abundance affect proteasomal-mediated degradation of IRS1 still needs to be 

identified. Furthermore, PRAS40 possesses a nuclear export sequence (c). Enforced accumulation of PRAS40 in 

the nucleus is associated with decreased IRS1 protein levels exactly mimicking the results obtained in PRAS40 

knockdown cells. Finally, phosphorylation of PRAS40 at Thr246 acts as a suitable marker for insulin sensitivity. 

In line with this, Sfrp5 (d), a newly identified inhibitor of insulin action in human adipocytes, reduces insulin-

mediated phosphorylation PRAS40 at Thr246. However, the precise mechanism in which Sfrp5 affects insulin 

sensitivity needs to be address in the future. 

 

 

Identifying the underlying mechanism by which PRAS40 affects proteasomal activity and how 

IRS1-specifity is achieved will be the challenge for the future. One attempt might be to find 

differences in the protein expression pattern between cells expressing different amounts of PRAS40 

using proteomics approaches. Pilot experiments using the 2D-difference gel electrophoresis (DIGE) 

analysis, where the protein pattern of PRAS40 knockdown cells were compared to skeletal muscle 

cells treated with non-target siRNA, revealed that the abundance of six protein spots is altered in the 

absence of PRAS40 (Fig.7.4). In this context, PRAS40 knockdown increased the abundance of four 

protein spots, whereas the expression of two protein spots was down-regulated. The identity of 

these six proteins could not be established yet. However, these experiment have to be expanded (for 

instance via sub-fractionation of the cell lysates or restriction of the pH-gradient). Identification of 

these proteins and others could yield new insight into the mechanism of PRAS40 function in the 

cytosol as well as in the nucleus. 
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Figure 7.4 2D-DIGE of lysates from PRAS40 knockdown- and control cells. Human skeletal muscle cells were 

differentiated and transfected on day 3 of differentiation with either a non-target or PRAS40 siRNA. On day 7 of 

differentiation cells were lysed in 2D lysis buffer. Aliquots were subjected to 2D-DIGE analysis. Labeled samples 

(50 μg each) were separated in the first dimension by isoelectric focusing (IEF) using IPG strips (24 cm, pH 3-10 

linear), followed by SDS-PAGE on 12.5% polyacrylamide gels (24 cm × 18 cm). Subsequently, images of protein 

pattern were acquired using a Typhoon 9400 laser scanner (resolution of 100 μm, photomultiplier tube of 550 

V). Detection of protein spots and calculation of relative spot abundances were carried out automatically using 

Proteomweaver 4.0 image analysis software. a) Differential analysis revealed in total 923 spots of which 6 spots 

differ in the abundance marked with a circle and the unique superspotID. Red circles indicate less abundant, 

green circles more abundant after PRAS40 knockdown. b) Average spot intensity (ASI) of the six spots, which 

were regulated by PRAS40 knockdown, is expressed as fold over ASI of control cells. Proteins with the spot-IDs 

131456, 131872, 131007, 131626 are up-regulated in the absence of PRAS40 (green), whereas the proteins 

with the spot-IDs 131418 and 131908 were down-regulated. Data were produced in collaboration with Dr. 

Sonja Hartwig. 
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Since the IRS1/PI3K/Akt as well as mTORC1 pathway are ubiquitously involved in insulin 

signal transduction, investigation of the impact of PRAS40 in other insulin target tissues might be of 

great interest. Generation of whole body as well as tissue-specific PRAS40 knockout mice may help to 

further characterize the role of PRAS40 in progression of insulin resistance and to clarify if the 

function of PRAS40 differs between the various tissues. Furthermore, overexpression of different 

mutant forms of PRAS40 in vitro and in vivo will help to further analyze the impact of 

posttranslational modifications on PRAS40 function. In particular, mutations of different 

phosphorylation sites as well as mutations within protein structures, which were uninvestigated so 

far (e.g. the proline-rich region of PRAS40) could create new insights for understanding PRAS40 

function and might explain the controversy regarding PRAS40 in the literature. Finally, the function of 

nuclear PRAS40 has to be further investigated in the future. Therefore, challenging and inspiring 

work still lies ahead. 
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