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Introduction

Let p be a prime and Q, the field of p-adic numbers with the ring of p-adic
integers Zp. An easy computation shows

p—1 1
[ el duta) =2
ZP

1 bl
p o 1-2ns

(1)

where |-|, denotes the p-adic valuation and p is the (additive) Haar measure
on Q,, normalized such that pu(Z,) = 1.

This formula occurred for the first time as an important ingredient of
Tate’s theory of the Riemann Zeta function. Its success gave rise to A. Weil’s
generalization:

Definition 0.1. Let k be a finite extension field of Q,, let G be a linear
algebraic group over k and let p : G — GL, be a k-rational representa-
tion. We define the Zeta function of the algebraic group G at the
representation p to be

Zoty o) = [ | |det(ol)); eelo).

where Gt = p~Y(p(G(k)) N M, (9%)), 9y is the ring of integers of k and pg
denotes the right Haar measure on G(k), normalized so that pug(G(9x)) = 1.

Many attempts to evaluate this integral for other groups than just Q,,
hoping to find similar formulas as (1), have been made, for example by Weil,
Macdonald, Igusa, Lubotzky, du Sautoy and Grunewald.

This work is based on a formula, that has been developed by M. du
Sautoy and A. Lubotzky (see [8]) and a bit earlier in a slightly different
setting by J.I. Igusa (see [7]). For Chevalley groups the result of du Sautoy
and Lubotzky is:

Proposition 0.2. Let G be a Chevalley group over Qp, let p: G — GLy, be
an irreducible Qy-rational representation and let w be the dominant weight of
the contragredient representation p* = 1. Let {ay,...,as} be a basis for
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the root system ® of the derived group G' of G(Qp). Define two polynomials
PG;P(X’ Y)a QG,p(X, Y) € Z[X,Y] by

Po,(X,Y) = > x Ao [ Xxoy%® (2)
weW apcw(PT)
0
and Qa,(X,Y) = (1-Y™) [[(1 - X%y, (3)
k=1

where m is the order of G', W denotes the Weyl group of ® and X\ is the
length function of W. £ is the rank of the root system and ®~ is the set of
negative roots. The ay are certain natural numbers associated to ® and the
by are certain linear maps from the set of dominant weights to Ny. For a
precise description of the ay and by see chapter 2.

Then
_ Pg,(p,p(Mm)

 Qa,p(p,p= (/M)
Remark. (a) Unless in chapter J, the particular choice of the represen-

tation will play no role in this thesis; thus we will often be interested
in the more general objects

ZG,p,p(S)

Pep(X,Y)= > x A [ xey™
weW ap€w(®T)

and Q, (X,Y) respectively, where b= (b1,...,by) is allowed to be any

element of N¢. We will leave the subscribt p or b out, if any choice for
b is allowed; an additional subscript p will express explicitly, that the
polynomial associated to a special representation is meant.

(b) Note that for any irreducible representation p both Pg,(X,Y) and

Qac,p(X,Y) are independent of p, thus we have Zg ,p(s) = %‘%
o\
for all primes p. J.I Igusa calls Zeta functions with this quality uni-

versal.

(¢c) M. du Sautoy and A. Lubotzky formulated this result not only for Q,
but for every finite extension of Q,. We confine ourselves to Q,, be-
cause we are only interested in the resulting polynomials Pg and Qg,
and these are independent of the particular extension of Q.

The numerator polynomials Qg (X,Y) obviously lead to factors as in
(1), and for the special case, where G is the Chevalley group GL,y1 (£ € N)
in its natural representation p, also the numerator polynomial Pg ,(X,Y)
has this property. This is an immediate consequence of a formula from
I.G. Macdonald (see [2]). The derived group of GLg; is SLyy; and has the
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root system A,y. The Weyl group is isomorphic to the symmetric group Sp1.
Macdonald’s formula for the numerator polynomial is

12 k

Pe(X,Y) =[] (ZXf*kY)j.

k=0 7=0

We see, that P(X,Y") has one factor which is one monomial, one factor which
is the sum of two monomials, one factor which is the sum of three monomials
and so on. The question comes up, whether it might be possible to find
formulae for other Chevalley groups, in which the structure of the associated
Weyl group becomes similarly visible. Unfortunately this is impossible; in
most cases the polynomials have an irreducible factor which is the sum of ¢!
many monomials.

The groups we will consider in this thesis are the group of orthogonal
similitudes GOq41, the group of symplectic similitudes GSp,, and the group
of orthogonal similitudes whose Spinor-norm is 1, GOJ,.

We will refer to these groups as “groups of type By, C; and D,”, since the
root systems of their commutator subgroups (which are also their derived
groups) are of type By, Cy and Dy. Note that the root systems of the entire
groups have an additional summand A;.

The Weyl groups of the root systems B, and C,; are isomorphic to
S x P({1,...,4}) (via ¢, say), where the group operation of the power set
P({1,...,£}) is the symmetric difference. The Weyl group of the root system
Dy is isomorphic to Sy X Peyen({1,...,£}), where Peyen({1,...,£}) denotes
the subgroup of P({1,...,¢}), which consists of the subsets of {1,...,¢}
with even cardinality.

Under the conditions of proposition 0.2 we define for w € W

My(X,Y) =X J[ Xx%ybh.
ap€w(®)

In these terms we can formulate the first of our two most important results:

Theorem 0.3. (a) Let G be the Chevalley group GOg¢41 or GSpy,. Then
the numerator polynomial (2) is'

l
ML_I a,{k (XaY)
PG(X,Y) = Z Mfl(a,(l))(XaY) : H (1+ M—E { }zX Y) ) (4)
oeS, k=1 o)\

'We omit one pair of brackets, writing 1~' (o, S) instead of t~'((a, S)).

7



(b) Let G be the Chevalley group GO;@. Then the numerator polynomial
(2) is

-1
M, o,{k,tl (XaY)
Po(X,Y) = Y Moip0(X,Y)- [] (H M_(l{ }()X ) ) (5)
oE€S, k=1 v Ho0)

The structure of the Weyl groups becomes partly visible in these formu-
las; in particular we see the P({1,...,¢}) component (the Peyen({1,...,¢})
component, respectively).

For groups of type By we are now going to outline briefly our derivation
of formula (4) from formula (2). The root system By is the subset of R,
that consists of all vectors with integer coordinates and squared length 1
or 2. A basis is given by ai,...,ap, where oy = e — €41 for £ < £ and
ay = eg. The Weyl group W is defined as the group of linear maps R¢ — R¢
generated (via composition) by the reflections at the hyperplanes orthogonal
to the elements of our basis. These generators <o, (or ) are thus called
“fundamental reflections” and they act on a vector z € R¢ as follows:

e for k < £: ¢,, exchanges the k-th and the (k + 1)-st coordinate.

® ¢o, changes the sign of the /-th coordinate.
So the elements of the Weyl group act on a vector z € Rf by permuting the

coordinates and changing the signs of some of them.

For any element w € W of the Weyl group this action can obviously be
represented by a permutation o € Sy and a set S C {1,...,£} if we let for

(Tk)ke1,...0p € R

(0, ) @Rkeqr,.ey = (1 Pz )y

There exists a group isomorphism
LW =S x PH{L,...,4}),
where the group operation e in Sy x P({1,...,£}) is described by
(01,51) ® (02,82) = (01 © 02,02_1(51)A52)

for (01,81),(02,52) € S x P({1,...,£}). Tt is induced by the composition
on the one hand and the symmetric difference on the other.

The images of the fundamental reflections under this isomorphism are
u(sk) = ((k,k+1),0) fork <£ and u(s) = (id,{£}).
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We seek for a better understanding of the formula for the numerator
polynomials, therefore we shall develop an easy to handle criterion for de-
ciding the question, which primitive roots lie in the image of the positive
roots and which lie in the image of the negative roots under a given ele-
ment of the Weyl group. The set of positive roots has the following explicit
description:

Lemma 0.4. Choose a, = e, —eg_1 (k€ {1,...,£—1}) and oy = ey as a
basis for the root system By. Then the set of positive roots is

Ot ={e;|1<i<f}U{e;—ej|1<i<j<LiU{ei+e;|l<i<j<i}

If we restrict ourselves to the elements of the Weyl subgroup which do
only permute coordinates, it is due to the last lemma, easy to decide, whether
the preimage of a simple root lies in ®* or ®~. The result is:

Proposition 0.5. Let W be the Weyl group of the root system By and let
w €W with «(w) = (0,0) for a suitable o € Sy. Then
o apcw(dh)

e apcw(®) ol k) <o k+1) forke{l,...,£—1}.

Under our restriction the length can be described in a similar manner:

Lemma 0.6. Let W be the Weyl group of the root system By and let w € W
with (w) = (0,0) for a suitable o € S;. Then

Aw) = §{(,) € {1,...,0}°|i <j A a(i) > 0(4)}
= #{G,5) €{l,.... 0% i< Ao @) >0 ()}

We will refer to the cardinalities of the above sets as inv(o) (and inv(o™1),
respectively) (inv for “number of inversions”).

The search for such statements for the rest of W took a long time. The
key to this was then found in expressing the elements of W as a special type
of products of fundamental reflections, which seems to be the canonical
description in our context. First we define

Definition 0.7. For s € {1,...,4} we define

TS ::gso...oge_

In the language of Sy x P({1,...,£}) this means

(1))



T, denotes the unique Weyl group element of shortest length, that changes
the sign of the s-th coordinate when applied to an £-vector (more precisely,
—xs becomes the £-th coordinate).

Additionally we make the following

Definition 0.8. Let W denote the Weyl group of the root system By. Let
w € W with v(w) = (0,5), S = {s1,...,8m} with s; < -+ < sp and
S¢={t1,...,tn} withty < --- < t,. Then we define a permutation mw(w) by
o(sy) = w(w)(l+1—k) forke{l,...,m}
and o(ty) = w(w)(k) forke{l,...,n}.

This induces a map 7 : W — .

With some combinatorics it is then possible to prove

Proposition 0.9. Let W be the Weyl group of the root system By and let
w € W with «(w) = (0,S) where S = {s1,...,8m} with sy <--- < sy,. Then

(0,8) = (m(w),0) e 175, 0--- 0 75,,)

Note that the function 7 is not a group isomorphism; it does not preserve
the group operation. Anyway, it plays the key role in getting the information
about the elements of the Weyl group we need for our formula much faster.
That is because of

Proposition 0.10. Let W be the Weyl group of the root system By and let
w €W with «(w) = (0,S) where S ={s1,...,8m} with s1 < -+ < sp,.

a) The length of w equals the sum of the length of the factors in formula
(4), that is:

AMw) =inv(m(w)) + Y (£— s+ 1)
k=1

b)

a € w(d) & oK) € 8-
And for k < £:

ar €w(®) & o € (m(w),d) (@)

The proof of the following result requires 0.5-0.10:

Proposition 0.11. Let W be the Weyl group of the root system By and
w € W with «(w) = (0,8) and k € S¢. Then

My(X,Y) - My=1(6 413y (X,Y)
Mb—l(a,ﬂ) (Xa Y)

M1 (5508 (X, Y) =
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In the proof of this proposition we will see, that each pair (i,j) €
{1,...,£}? appears the same number of times as an inversion of 7(w) and
of m(171(a, {k})) as of 7(t (o, 0)) and 7(+ (o, S U {k})).

Applying this proposition inductively we obtain
Corollary 0.12. Let W be the Weyl group of the root system By and w € W
with W(w) = (0,5). Then
M-1(5, (s (X,Y)

My(X,Y) = M1 (X, Y) [ M, 1,0 X,Y)

sES

This corollary offers a new sort of natural objects:

Definition 0.13. 1. For the root systems By and Cy let for o € Sp

PX)Y) = > Mogg(X,Y)
Sc{l,...,.e}

l

M, 1, {k})(X7Y)>
= M, X,Y)- 14+ : .
’ (070)( ) kl;[l ( ML_I(O',@) (XaY)
2. For the root system Dy let for o € Sy

P,(X,Y) = > M,-15,5)(X,Y)
SC{1,...,¢}, #S even

/
M. (X,Y)
_ . (o, {k,0})\ <
= Y Mg (X Y) H(1+ b )

ocESy k=1

At this point our formula (3) is clear, because obviously

PG(XaY) = Z PO'(X’Y)'
€Sy

We should point out, that one typical feature of Zeta functions becomes
easily visible through formula (3): The existence of a functional equation.
For our type of Zeta functions this feature was first discovered in [7], and was
then further investigated in [8]. In terms of our two variable polynomials
the functional equation is

P(X-L Yy~
QX-LY-1)

P(X,Y)

— (=1 Z+1Xcard(‘l>+)Ym7_
1) QX,Y)

We can use definition 0.1 to define Zeta functions of algebraic groups over
global fields. We restrict the definition from M. duSautoy and F. Grunewald
made in [11] to the case of Q.
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Definition 0.14. Let G be a linear algebraic group over Q, let p be a prime
and let p : G — GL, be a Q-rational representation. Then we define the
local Zeta function of the algebraic group G at the representation
p and the prime p to be

Z6(@Q.p (8) = Za(qy),0(8)-

Secondly we define the global Zeta function of the algebraic group G
at the representation p to be the Euler product

Zao(8) = 1 Zo@.pw(s)-
D

prime

It has become a matter of common understanding, that such an Euler
product has to offer the possibility of meromorphic continuation to deserve
the “Zeta” label. Unfortunately, the Euler products appearing in our con-
text are not meromorphically continuable to the whole of C. Therefore the
question arose, which rational functions lead to Euler products that do have
this property. In this context we will use the following terminology:

Definition 0.15. a) W(X,Y) € C(X,Y) is called friendly if there exist
cyclotomic polynomials gx(U) € C[U], k = 1,...,n and integers uy, vg,
such that W(X,Y) =], gp(X*“Y"k). Otherwise W(X,Y) is called
unfriendly.

b) Let W(X,Y) € C(X,Y). The Euler product

Z(s)= I wWp.r™)

p prime

is called friendly if it is meromorphically continuable to the whole of
C. Otherwise it is called unfriendly.

Using these terms we can formulate a result from M. du Sautoy (see [10])
as:

Proposition 0.16. Let W(X,Y) € C(X,Y) be friendly. Then the corre-
sponding Euler product Z(s) = ] Wi(p,p~?) is friendly as well.

p prime

The denominator polynomials (formula (3)) are obviously friendly and
the P,(X,Y) defined in 0.13 are friendly polynomials, which are shifted by
some monomial factor. But the numerators as a whole are unfriendly and
restrict the possibility of meromorphic continuation of the Fuler product.

The reverse direction of the upper proposition still has the status of
a conjecture. In [10] the author explains how to continue such an Euler
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product of an unfriendly polynomial up to a certain natural boundary. In
most cases this natural boundary can be read off from the so-called ghost
polynomial.

The ghost polynomial P(X,Y) of a polynomial P(X,Y) is constructed
from the algebraic curve P(X,Y) = 0 as X — oo, such that the algebraic
curve P(X,Y) = 0 approximates P(X,Y) = 0.

A precise description of this construction requires the Puiseux power se-
ries expansion, but one stops the approximation of each branch after the
first step. Since the ghost polynomial depends on the Newton polygon and
the coefficients related to the points on it only, the location of the natural
boundary for meromorphic continuation of the Euler product depends on
these information only, too. The ghost polynomials for all polynomials that
appear in the context of the Chevalley groups of type Ay—D; in their nat-
ural representations are constructed in [11]. For a table of their results see
proposition 4.2.

Such ghost polynomials are — if certain coefficients, i.e. the constant
coefficient, are 1; a condition that is satisfied for the polynomials that come
up with our universal Zeta functions — in many cases polynomials like the
denominator polynomials of the explicit formula, that is they are products
of factors of type (1 + X% Y ) or (1 — X“Y"). This means in particular,
that they are friendly in most of our cases.

The denominator polynomials are in every case identical with their own
ghost. Surprisingly, the ghost polynomials of our numerator polynomials
seem to have a much deeper connection to the original polynomials than
one would expect from the process that generates them. The reason why
we believe this, and the starting point of the research leading to the result
of the work on hand was an examination of the singularities of the algebraic
curves associated to our two variable polynomials. The interested reader is
referred to chapter 5 for some explanations, why we believe that investigating
the singularities of such polynomials may be a suitable method for finding
symmetries.

In particular, we found that in case of the natural representation the
ghost polynomial can be expressed as in formula (3) by summing up not
over all of Sy, but only over a certain subset. Setting for & < £

(1 . k=1 Fk k+1 ... ¢
PE=\1 ... k=1 ¢ 0—-1 ... k

we will prove in chapter 4 our second important result:

13



Proposition 0.17. (a) Let P(X,Y) be the numerator polynomial associ-
ated to the Chevalley group GOgpyq (type By) in its natural represen-
tation. Then its ghost is

P(X,Y) = Py(X,Y).

(b) Let P(X,Y) be the numerator polynomial associated to the Chevalley
group GSpy, (type C¢) or GOJ, (type Dy) in its natural representation.
Then its ghost is

p(Xa Y)= Z Ppil)lo'"opzl;_ll (X,Y).
(Ulv"'vvl—l)e{ovl}z_l

Acknowledgements: Ich danke den Angehorigen des mathematischen In-
stituts der Heinrich-Heine-Universitat Dusseldorf, die mir die Erstellung
dieser Arbeit ermdglicht haben. Insbesondere danke ich meinem Betreuer
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Chapter 1

Root Systems and Weyl
Groups

This thesis deals with the Zeta functions of algebraic groups defined (as in
the introduction) by p-adic integration via the Haar measure of the consid-
ered group.

For our purpose, however, this very definition will not be of great interest;
our starting point is in fact a particular description of these Zeta functions
in terms of the associated root system. It was developed in [7] and [8].
This description was already mentioned in the introduction, and for writing
it down as well as for the following research it is necessary to have some
knowledge about root systems and Weyl groups. For a detailed treatise on
this topic see [2] and [3].

1.1 Basic Definitions and Examples

Throughout this chapter E will always denote some R with a scalar product
(-,-) : ExXE — E. For each nonzero o € E we define a corresponding reflec-

tion ¢, : E — E by ¢,(8) =8 — 289, Tt is an orthogonal automorphism

(a,0)
of E, which leaves the reflecting hyperplane P, = {5 € E|(8,a) = 0}
pointwise fixed.
In the abstract sense a root system is a subset ® of E which satisfies
the following properties:

(R1) @ is finite, spans E and does not contain 0.

(R2) If a € ®, the only multiples of a in & are +a.
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(R3) If a € ¥, the reflection o, leaves ® invariant.

(R4) If o, B € ®, then 282 ¢ 7.

(a,a)

The Weyl group W of the root system ® is then defined to be the
subgroup of GL(FE) generated by the reflections ¢,, where a € ®.

There is only one root system of rank 1, which is clear by (R2). Given
any nonzero real number « the root system consists of nothing but +a. It
is called A; and its Weyl group is isomorphic to Ss.

For rank 2 there are four different root systems. We can describe them
by drawing the following pictures:

a,
—1— az
a, ; g
a,
az .
a,
o,
a,
Figure 1.1: Root systems of rank 2: A; x Ay, Ag, Bg, Go

The proof of the statement, that there are no other root systems of rank
2 than these, is mainly based on the fact, that for a given nonorthogonal
pair of roots only certain ratios of their squared lengths can occur, namely
1:1,2:1and 3 : 1 (this follows immediately from the axioms, especially
(R4) is important), which means that only angles of 7, /2, 7/3, 27 /3, 7 /4,
3w /4, w/6 and 57 /6 can occur. This observation can be used to classify the
root systems of higher ranks as well (see section 1.3).
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1.2 Bases and Weyl Chambers

To classify the root systems we make use of bases. For a proof of their
existence see [2] again.

Definition 1.1. A subset A of @ is called a basis if:

(B1) A is a basis of E.

(B2) each root B can be written as B = Y mqa (a € A) with integral
coefficients mq, all nonnegative or nonpositive.

The elements of A are called simple roots.

The roots which can be obtained as in (B2) as sums of simple roots with
nonnegative coefficients are called positive roots, and the set consisting of all
of them is denoted by ®*. On the other hand there is the set ®~ of negative
roots, and we have ®~ = —® ™. For these sets to be sensible notations it has
to be shown that the described linear combinations of the roots are unique.

Once we have a basis A, we can define

Definition 1.2. Let W be a Weyl group and let A = {a1,...,ap} be a basis.
Then we define the length function of W to be

AW = Ny,
w — min{n € Ny : Iky,...ky, such that ¢, 0+ 06a, = w}.

The length of w € W equals the number of positive roots, which w maps
onto negative.

The bases of a given root system are in one-to-one correspondence with
the so-called Weyl chambers. This correspondence can be described as
follows:

Let ® be a root system and let v € E\|J,cq Po- Then v lies for each root
either on the “positive” side ((y,@) > 0) or on the “negative” ((v,a) < 0)
of the reflecting hyperplane P,. 7' € E \ ,cq Pa shall represent the same
class as «y does, if for every root a € ® both v and +/ lie on the same side of
P,. The equivalence class of 7 is called the Weyl chamber of . The Weyl
chambers are the connected components of E \ |J,cg Pa; and each vector
z € E\U,cq Pa is conjugate to exactly one vector per Weyl chamber under
the action of the Weyl group.

Conversely, for each v € E \ Jycp Pa we define the set & (y) := {a €
®|(y, > 0}. It turns out that the subset of the indecomposable roots of
@ (7) (those elements that cannot be expressed as a sum of two elements
of ®T(v)) is a base of ®.

17



1.3 Classification of the Root Systems

Just as in many other cases, the starting point for the classification is a
suitable decomposition of our objects of interest.

Definition 1.3. Let ® be a root system. ® is called reducible if there exist
root systems V1 and Vo, where (-, )|w,xw, = 0 (the scalar product is that
of the underlying vector space) and ® = ¥y U Us.

Otherwise ® is called irreducible.

Now it suffices to examine the irreducible root systems and to consider
the others as compositions of irreducibles.

One possibility to visualize the data of a root system which are relevant
for the classification is to draw the so-called Coxeter graph. If we have a
root system ® and simple roots aq,...,ap we draw £ vertices and join the
i-th and the j-th with 4% lines. For example, the Coxeter graphs
of the two-dimensional root systems are:

AixA; O O
A, o—o0
By, oc—o0

Gy, ——o0
)

In many cases the information about all numbers 2%—’3’) can be found

in the Coxeter graph; at least this is possible if all roots have equal (squared)

(a,05) _ (04,04) ;o
length, because then we have also WJL) = (—ajm for all 4, j.

If more than one root length occurs, this may fail. For that reason it
seems to be sensible to add the information, which of two connected vertices
belongs to the longer simple root, to the diagram. In these cases one adds
an arrow pointing from the vertex representing the longer root to the one

representing the shorter. This new structure is called Dynkin diagram'.

The Dynkin diagrams of the root systems A;xA; and Ay do not differ
from the Coxeter graphs, while the Dynkin diagrams of the root systems B,

and Gs look as follows:
By, o—="0

Gy, O——=—o0

Tt should be mentioned that the shape of both the Coxeter graph and the Dynkin
diagram depend on the numbering of the simple roots. Anyway, for the computation of
our Zeta functions the particular choice of the basis is irrelevant, see [7] or [8].

18



It is clear that a root system @ is irreducible if and only if its Coxeter
graph is connected. The classification theorem then states the following:

Proposition 1.4. Let ® be a root system in the vector space E. Then ®
decomposes uniquely as the union of irreducible root systems @y, (in subspaces
Ey of E), such that E = E1 @ --- @ Ey. Each ® has one of the following
Dynkin diagrams (where £ denotes the rank of ®y):

Ay (£>1) o0——o -+ o0—0
1 2 -1 £
By (£>2) o—o0 o——a—>o
1 2 -2 -1 ¢
Co(£>3) o—o0 o—ao—=<"D
1 2 -2 -1 ¢
Dy (£>4) o—0 -1
1 2 -3 -2
L
2
Eg o o l o o
1 3 4 5 6
2
Er o o I o o o
1 3 4 5 6 7
2
Eg o o [ o o o
1 3 4 5 6 7 8
Fy o——a —>—1oB—0
1 2 3 4

Go oc—=—>
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We will not be particularly interested in the root systems of exceptional
type (that is Eg, E7, Eg, F4, G2); our main goal will be to find some regular-
ities in the series of polynomials that come up with the root systems A,—Dy.
We are now going to explain how these root systems can be imagined.

For the By, Cy and Dy case we should recall, that P({1,...,£}) (the power
set of {1,...,¢}) together with the symmetric difference is a commutative
group in which every element is self inverse and () is the neutral element. It
is isomorphic to (Z/2Z)% The set Peven({1,...,£}) of subsets of {1,...,¢}
with even cardinality is a subgroup of P({1,...,¢}).

Ay

By

(£ >1): &= {e; —ej]i #5} C R

All roots have the same length 2. As a basis one can choose the set
of all oy := e — ex+1 (k € {1,...,£}). The fundamental reflection g
(k € {1,...,£}) relative to ay acts on a vector z € R‘F! by exchanging
the k-th and the (k + 1)-st coordinate.

Thus the Weyl group W, which is the group generated by these fun-
damental reflections, is isomorphic via ¢ : W — Sp11 to Spy1, if we
let o € Sy1 permute the coordinates of a vector (zx)keq1,....0 € R
such that (zx)keq1,..00 = (To-106))ke{1,...00-

The images of the fundamental reflections under our isomorphism are

t(sg) = (k,k+1) forke{l,..., ¢}

(£>2): &= {Fe;} U{x(e; tej)|i #5} CRE

The elements of the first subset are the short roots of length 1 while the
elements of the second subset are the long roots of length 2. As a basis
one can choose the set of all oy, := e —eg11 (k € {1,...,£—1}), this
time completed with ay := ep. For k € {1,...,£ — 1} the fundamental
reflection ¢, relative to oy, acts on a vector z € R by exchanging
the k-th and the (k + 1)-st coordinate (as in Ay), while ay changes the
sign of the /-th coordinate.

The Weyl group is isomorphic to Sy x P({1,...,£}), if we let (o, S)
act on a vector (Tg)geqi,..rp by first changing the sign of the k-th
coordinate if and only if £ € S and then permuting the coordinates as
in the case of Ay.

Group multiplication on Sy x P({1,...,£} can be described explicitly
by
(01,51) ® (02,82) = (01 0 02,05 (S1)AS2)

for (0'1,51), (O'Q,SQ) € Sy X P({l, e ,E}.
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The images of the fundamental reflections under our isomorphism are

usk) = ((k,k+1),0) forke{l,...,0—1}
and u(s) = (id, {€}).

Co (£>3): & ={£2¢;} U{L(e; Lej)i #j} CR

The first subset contains the long roots of length 4, while the second
subset is that of the short roots with length 2. The root system is dual
to By. The vectors ay := e — exy1 (k € {1,...,£ —1}) together with
oy := 2ey form a base.

The action of the fundamental reflections is obviously the same as in
the case of Cy, such that the Weyl groups of C, and By coincide.

Dy (£>4): @ = {£(e;Le;)|i #j} CR

All roots have the same length 2. The vectors ay := ex — exy1 (k €
{1,...,£—1} and ay := ey_1 + e form a base. Again, the fundamental
reflection relative to oy (k € {1,...,£ — 1}) exchanges the k-th and
the (k + 1)-st coordinate, but ¢, exchanges (£ — 1)-st and the /-th
coordinate and changes the sign of both x, 1 and zy.

The Weyl group is isomorphic to S¢ X Peyen ({1, - .., £}), if we let (o, S)
act on a vector (Tg)ge(1,..,} as in the case of By and C,.

The images of the fundamental reflections under our isomorphism are

usk) = ((k,k+1),0) forie{l,....,0—1}
and () = ((¢—1,0),{¢—1,¢}).

An explicit description of the set of positive roots of a root system X,
will be useful in chapter 3:

Lemma 1.5. 1. The set of positive roots of the root system Ay is

¢+:{e,-—e]-|1§z'<j§£}.

2. The set of positive roots of the root system By is

@+:{6i|1§’i§£}U{ei—6]’|1§i<j§£}U{ei+ej|1§i<j§€}.

3. The set of positive roots of the root system Cy is

@+:{2ei|1§’i§f}U{ei—ej|1S’i<j§e}U{ei+€j|1§i<j§e}.

4. The set of positive roots of the root system Dy is

<I)+:{6i—ej|1§i<j§é}U{€i+ej|1§’i<j§f}.
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Proof. In the Ay case we have for 1 <i < j</Z+1

ei—ej = (e —eiy1) +(eiy1 —€ipa) + -+ (ej_1 — ¢€j)
j—1
- S
pr

In the B, case we can construct e; —e; for 1 < ¢ < j < /£ the same way.
Additionally we get for 1 <3 < j </

eitej = (ei—eiy1)+(eip1 —eipa) +- -+ (ej_1 — ;)
+2(ej — ej11) +2(ej41 —ejr2) + - + 2e

j—1 l
= Zak + 22 (72
k=i k—=j

and for 1 <i </

e = (e —eit1)+(€it1 —eiqyo) + -+ ey
£
= Y
k=i

For root systems Cy the proof works the same, with additional factors 2
occurring frequently in the coefficients.

For root systems Dy we construct for 1 <i < j </

ei—ej = (ei—eip1)+-+(ej-1 —¢)
j—1
= Do
k=i
and for 1 <i<j<¥:

eite; = (ei—eir1)+ -+ (ej-1 —ej)
+2(ej — €jt1) + -+ 2(ee—2 —er-1)
+(er—1 —eg) + (e—1 +e)

j—1 -2
= Zak +2Zak +ap_1+ oy
k=i k—j

and finally for 1 <7 < £:

—~

ei —€it1) + -+ (ep2 —ep1) + (ep—1 +eg)
—2
= ag + oy

2

e +e =

&~

B
Il

22



In all three cases it is clear, that the set of all roots consists of these sets
& together with their negatives (for a description of the set of roots see
section 1.3). This finishes the proof. O

In chapter 3 we will see, that this characterization of the root systems
A,—Dy and the associated Weyl groups allows us to give combinatorial proofs
of our propositions about the Zeta functions.

1.4 'Weights

Let A be the set of all A € E for which 229} € Z for all @ € @ and call
its elements weights. Once we have fixed a base {a1,..., a4} wecall A € A
dominant if 2(%62]—)) > 0 for all primitive roots ;. Obviously all roots

and all linear combinations of them (with integral coefficients) are weights.
They form a sublattice of A, called the root lattice A,.

The Weyl group W preserves the inner product on E, and hence leaves
A invariant. Orbits of weights under W occur frequently in the study of re-
presentations. That is because each weight is conjugate under W to exactly
one dominant weight.

Let {A1,...,A¢} be the basis of E dual to {722, ..., %}, Then
2% = 0,1 and the \; are dominant weights, called fundamental dom-
inajnt weights (relative to A). It is an easy exercise to prove that A is a
lattice and that {A1,..., s} is a basis of it.

These fundamental dominant weights are particularly interesting for our
purpose, because for a group of type X, the irreducible representations can
be parametrized by the set of all 2221 ngAg, where ni,...,n; € Ny.

A list of the fundamental dominant weights for the cases of Ay,—Dy is:

Ay
1 k—1 ¢
M=o ((f—k—l—l)ZzamLkZ(é—'z—F1)ai)
=1 1=k
By:
k—1 Y4 1 £
)\k:Ziai-l-kZa,- (k<) and )\gzizmi
i=1 i=k i=1
Cy:

k—1 -1 1
Ak = 2;7,041 +k (2;(1, + 50[@)
1= 1=
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Dy:

and

1
)\k—Z’LOtz—Fk(Zaz 50— 1+204£> (k<l-1),
1 . 1 1
Mg = 5 (Z 10y + Eéag,l + §(€ — 2)04@)
1
5 (Z 10 + E a1 + Eaé)
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Chapter 2

Zeta Functions of Classical
Algebraic Groups

2.1 Definition and the Connection to
Root Systems

When Mathematicans associate Zeta functions to their objects of research
they hope, that these Zeta functions make certain “hidden” properties of
their objects better visible.

It seems evident, that one expects from a “proper” Zeta function, that
it contains exactly as much information as the object it is associated to.
One tries to get close to this requirement by searching for an in some way
canonical generating process. It is clear that the shape of this process must
be dependent on the type of mathematical object one is considering.

In our case we have algebraic groups, which can be identified (via repre-
sentation) with groups of certain matrices. For the case of algebraic groups
over a finite extension of Q,, A. Weil suggested to define Zeta functions of
these groups as Euler products of certain p-adic integrals. Later on M. du
Sautoy and F. Grunewald used this definition to define Zeta functions of
such algebraic groups over finite extensions of Q as FKuler products of the
former.

Definition 2.1. Let G be a linear algebraic group over a field k and let
p: G — GL, be a k-rational representation.

1. If k is a finite extension of Q, we define the Zeta function of the
algebraic group G at the representation p to be

Zotyo) = [ | |det(ol) *nc(o)
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where GT = p~Y(p(G(k)) N M, (9%)), 9% is the ring of integers of k
and pg denotes the right Haar measure on G(k), normalized so that

pa(G(9g)) = 1.

2. If k is a finite extension of Q and p is a prime of k we define the local
Zeta function of the algebraic group G at the representation
p and the prime p to be

Z6(k),0(8) = ZG(ky),p(8)-

In the latter case we define the global Zeta function of G at the
representation p as the Euler product

Zaw.p(5) = 1] Zaw).pp(s)-
p

The problem with these Zeta functions is that — apart from the case of
GL¢41 in its natural representation — they are not meromorphically continu-
able to the whole of C. This is one important reason, why group theorists
lost their interest in them for some time.

But then Grunewald, Segal and Smith found out, that in case of the
symplectic group these Zeta functions have an interpretation as a Dirichlet
series, where the coefficients count the subalgebras of the Lie algebra asso-
ciated to the group. A similar discovery had been made by K. Hey in 1929
(see [1]). She found out, that the Zeta function of GLgy; counts ideals in
central simple algebras.

Furthermore, in [8] M. du Sautoy and A. Lubotzky managed to find for-
mulae for these Zeta functions in terms of combinatorial data of the buildings
associated to these groups. Similar work had been done by J.I. Igusa in [7]
before, only that he used a slightly different definition of the Zeta functions
in a less general setting. In the context of Grunewald’s, Segal’s and Smith’s
observation the definition from [8] seems to be more canonical.

In both cases it turned out, that the shape of the Zeta function of a
Chevalley group depends only on the root system of the group and — since
the irreducible representations can be parametrized by the weights — on the
choice of some element of Nf;, where £ denotes the rank of the root system.

Perhaps we should recall the exact explanation of the formula as it is
done in [8] and [11]. To understand the results of chapter 3 it is absolutely
sufficient to keep proposition 0.2 in mind. Only in chapter 4 the choice of
the representation will come into play; for that reason it might be helpful
to understand how the values a; and b;(w) are connected to the root system
and the representation whose contragredient has weight w. We may restrict
their result to the case of k = @Q; the resulting polynomials are identical for
any other global field.
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Definition 2.2. Let G be a Chevalley group over Q, and let p : G — GL,
be an irreducible rational representation. We may consider G as an almost
direct product of the derived group G' and a one dimensional central torus
Gy, 1,. The derived group is a Chevalley group of rank £, say. Let Xy denote
its Dynkin diagram. Choose a basis A = {aq,...,ap} for the root system ®
of G'. We shall think of the root system in the abstract sense as explained
in chapter 1. Roots and weights are thus vectors in R™ for us.

Let w denote the dominant weight of the contragredient representation
p* = o7, Let m denote the order of the centre of G' (in the abstract
sense m can be described as the smallest multiple of the vector w that lies

in the root lattice). Then there exist uniquely determined natural numbers
bi(w),...,be(w) for which

L

mw = Z by (w) o

k=1

and natural numbers aq,...,ay for which

4
Z = Zakak.
k=1

acdt =

In particular, for the natural representation the values ay, bg(w) and m
are:

o for Ay:
m=L+1, a,=k(l—k+1), bylw)=k

o for By:
m=1 apr=k(20—-Fk), b(w)=1

o for Cp: m =2,

o — k20 —k+1), fork<Z be(w) — 2, fork</?
k ) fork=0 " 1, fork=¢

o for Dy: m =2,

" {k(2€—k—1),f0rk<€—1 2, fork<t—-1
k:

@ , fork>4—-1" bk(w):{l,forkZE—l

Let W be the Weyl group of the root system ® and let X be the length function
of W. Then we define Pg ,(X,Y),Qa,(X,Y) € Z[X,Y] by
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Po,(X,Y) = > x20 J[ xoy%® (2.1)

weWw akew(d)*)
l
Qap(X,¥) = (1-¥™) [[(1- Xoryh). (22)
k=1

In these terms the result from [8] can be formulated as

Proposition 2.3. Consider the conditions of definition 2.2. Let p be a
prime. Then the local Zeta function of G at the representation p and the
prime p is

_ Pgy(p,p m°)

n

Za(@,pp(8) = TP
Qa,p(p,p~m*)
Because of these observations the question, why these functions are not
meromorphically continuable to C became interesting. This question was
the motivation for the definition of the so-called ghost polynomials.

2.2 Ghosts

Due to the observations made by Grunewald, Segal, Smith and Igusa the
Zeta functions defined in the last section seem to be quite good candidates for
Zeta functions, though they are not meromorphically continuable to C. Thus
M. du Sautoy and F. Grunewald in [11] sought for a better understanding
of the problems concerning the possibility of meromorphic continuation.

The reason for this problem is, that as p tends to infinity, the zeros of
P(p,Y) lie dense on a line {y € C: R(y) = 7} with suitable integers u and
v. In [10] it is explained, how to continue such a Zeta function up to this
boundary, and why no meromorphic continuation beyond this boundary is

possible.

Thus the question came up, which polynomials P(X,Y’) € C[X,Y] (with
constant coefficient 1) have an Euler product [[, e P(p,p ), that is
meromorphically continuable to the whole of C. F. Grunewald and M. du
Sautoy defined a class of polynomials, for which it is easy to verify that they
have this property.

Definition 2.4. a) W(X,Y) € C(X,Y) is called friendly if there exist
cyclotomic polynomials g, (U) € C[U|, k = 1,...,n and integers uy, vy,
such that W(X,Y) = []i_, ge(X“*Y k). Otherwise W(X,Y) is called
unfriendly.
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b) Let W(X,Y) € C(X,Y). The Euler product

2(s)= [ Wpp™)

p prime

is called friendly if it is meromorphically continuable to the whole of
C. Otherwise it is called unfriendly.

A result from [10] is then

Proposition 2.5. Let W(X,Y) € C(X,Y) be friendly. Then the corre-
sponding Euler product Z(s) = ] Wi(p,p~?) is friendly as well.

p prime

The authors believe, that the reverse direction is also true, but this has
not been proved yet.

The “ghost polynomial” P(X,Y’) is then constructed from P(X,Y) as
an approximation, which turns out to have the quality of being friendly in
most cases where P(X,Y’) is one of the polynomials that are connected to
the Zeta functions via proposition 2.3. The construction can be done for
any other two variable polynomial as well, but the result is not friendly in
the general case. The principle reminds one of the “Puiseux power series
expansion”.

Let P(X,Y) =3, , cup X*Y" € C[X, Y] with cp0 # 0. In an Ny x No-
lattice, we mark for each nonzero coefficient ¢, , the point (x4, 7). The result
is called the Newton diagram of P(X,Y). The particular shape of the
ghost polynomial will depend on the lower convex hull of this diagram, called
the Newton polygon, only.

Then, from all lines through (0,0) and (u,v) with ¢, # 0, we choose
the particular one that has smallest slope. We can represent this line with a
pair of nonnegative coprime integers (u1,v1), so that the points on the line
are parametrized by (mui,mv1), m € Ny. With M; we denote the largest
integer with cpsyy vy, 7 0. We set

My
P(X,Y) := Z Conag g X ™YL,

m=0

Afterwards we repeat these steps recursively: Under all lines through
(Myuy, Mqv1) and (p,v) with g > Myug, v > Miv; and ¢, # 0 we choose
the one with smallest slope and represent it with (ug,v2), so that the points
on the line are (Mjyuj + mug, Miv1 + mvg), m € Ny. With My we denote
the largest integer with casuy+Mous, Mivi+Mavs 7 0.
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We continue as long as such lines exist and define recursively

Mp41
X MUk+1 Y MVk+1

Py (X,Y) = )
k+1(X, ) Cmuk+1+2§:1Mkuk,mvk+1+2f:1Mkvk

m=0

The ghost polynomial is then defined as the product of these P (X,Y). If
it is friendly, a boundary for the possibility of meromorphic continuation of
the Euler product [[ P(p,p *) can directly be read off from it:

If
ko := min{k € N : Py(X,Y) is unfriendly or is not a factor of P(X,Y)}

exists, then the Euler product can be meromorphically continued up to 1;—:‘1

Otherwise the Euler product is obviously continuable to the whole of C (see
proposition 2.1). This observation was made by M. du Sautoy. He also
proved, that in all cases we are considering in this thesis no meromorphic
continuation beyond this boundary is possible.

Let us consider an example.
Example 2.6. We will determine the ghost polynomial of
P(X,Y) = 14+X°Y +2X7Y2 + X%V3 4 2x10v* 4 x1lyS 4 x12y6
+2X14Y9 +X16Y14 +X17Y19 +X17Y20 +X17Y21.
The Newton diagram is

14
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Note, that the reason we chose a polynomial where all points of the New-
ton diagram lie on the lower convex hull of the Newton diagram is, that (as
already mentioned) all points beyond the lower conver hull (i.e. the corre-
sponding coefficients) are irrelevant for the computation of the ghost poly-
nomial. So if there were more nonzero coefficients, they would be nothing
else but confusing.

The ghost polynomial is thus

P(X,Y) = (1+X°Y)(1+42X?%Y + X*Y?)(1 +2XY + X?Y? 4 X3Y7?)
(14+2X2Y3) (1 + X2Y°) (1 + X3Y)1 4+ Y +Y?).

The factor (1 + X°Y) is friendly, because (1+ U) is a cyclotomic poly-
nomial (substitute U = X°Y ).

The factor (14+2X2Y + X*Y?) is friendly as well, since (142U +U?) =
(1+U)? is a product of cyclotomic polynomials (substitute U = XY ).

In a similar manner it turns out, that the factors (1+X2Y?®), (1+X3Y)
and (1+Y +Y?) are friendly, whilst the rest is not.

As this example demonstrates, given an arbitrary polynomial one can
neither expect it to be friendly, nor can one expect that the ghost is. In [11]
it was proved, that those polynomials coming up with the Zeta functions of
Chevalley groups of types Ay/—D, and their natural representations do have
friendly ghost polynomials. In fact they have friendly ghosts for most of the
irreducible representations.

The reason for this is, that the coefficients of these polynomials have
their origin in counting Weyl group elements with certain properties. The
points marking the convex hull correspond to in some way extremal prop-
erties. In particular for a given set of primitive roots Ay C A there exists a
uniquely determined Weyl group element wq of shortest length, which sat-
isfies wo(a) € @~ for all a € Ag. Let @y be the subroot system of ® that is
generated by Ag. Then wy(e) € ® if and only if @ € ®;, thus the length
of wy is A(wp) = card(®™T).

The points on the lower convex hull of the Newton diagram belong to
such wp, so in our case it seems, that unfriendly ghost polynomials are an
exception. We will illustrate this view in chapter 4 with the example Bs.
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Chapter 3

A Formula for the P(X,Y)
Dotting the Group Structure

In all what follows X, denotes a root system of type By, Cy or Dy with Weyl
group W. As bases for the root system we will use those from section 1.3.

The phrase “group of type X,” will be used for a group G, whose derived
group G’ has the root system X;. Note that the root system of G differs
from Xy; in case of a simple G by a summand A;.

For determining the numerator polynomials we need to know two things
for each element w of the Weyl group. The first question is, which of the
primitive roots lie in w(®") and which lie in w(®~). The second is that for
the length. For both issues we concentrate on the elements of the permuta-
tion subgroup first.

Proposition 3.1. Let W be the Weyl group of a root system Xy and w € W
with v(w) = o, if X¢g = Ay, and 1(w) = (0,0), if Xg = By, Cy or Dy. Then

o if Xg= Ay:
ar €w(@®) e o (k) <o (k+1) forke{l,... L}
o if Xy =By, Cy or Dy:

ap € w(®t) and
oap cw@) eo (k) <o N (k+1) forke{l,...,0—1}.

Proof. If Xy = Ay and o 1(k) < o 1(k+ 1) for k € {1,...,£}, the root
U 1= €5-1(k) — €5-1(k+1) 18 positive by lemma 1.2. Therefore

O = € — €g41 = €5(c—1(k)) — Co(o1(k+1)) = 0(’21,) = U)(U) € w(<I>+).
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The same argument holds in the By case for k € {1,...,¢ —1}. Addi-
tionally the root e,-1(y) is positive in this case, so that

ap = eg = eyg-1(0)) = (0,0)(es-1(0)) = wles-1(p)) € w(PT).

The proof of the opposite direction works analogous and so does the
Cy case. In the Dy case one little difference occurs when proving, that
ap € w(®F). Here we set u := e,-1(p_1) + €,-1(¢) € ®T and thus

ap=er 1+ e = eoip1(-1)) + Coo-1()) = (0,0) (1) = w(u) € w(dF).

O

The following terminology will make formulating the next lemma easier:

Definition 3.2. Let o € §; be a permutation. Then we define the number
of inversions of o as

inv(o) = #{(3,5) € {1,..., 6} i <jAo(i) >0o(5)}
Lemma 3.3. Let W denote the Weyl group of the root system X,. Let
w € W with «(w) = (0,0), if X¢ = By, Cp or Dy and 1(w) = o if Xp = Ay

Then
Mw) = inv(o) = inv(e ™).

Proof. We will perform the proof for X; = By, Cy or Dy, keeping in mind,
that the only difference in the A, case is, that £ has to be replaced by £+ 1.

Let 0 € §¢. We have to investigate which of the primitive roots are sent
to negative by (o,0) sends to negative. For a list of the positive roots see
Lemma 1.5. Since we have no signchange at all, the only positive roots that
are into question are those of type e; —e; (i < j).

Let 1 <4 < j <{. Then e; — e; is a positive root. But
(O" @)(eZ - ej) = €5(4) ~ €a(y) € (0" @)(¢'+)
= o(i) <o(y)

<= (4,7) is an inversion.
This proves the first equality. But the second is clear, anyway. O

At this point we have all tools needed to determine the monomial as-
sociated to any element of the permutation subgroups of our Weyl groups.
In particular we have everything required for the A, case. But of course
we want tools for the rest as well. For that purpose we will construct the
element w € W with +(w) = (0,5) in two steps:
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We begin with constructing the Weyl group element of shortest length,
which has S as its set of sign changes. Afterwards we will “sort” this provi-
sional result with a suitable permutation m(w), such that the result of this
sorting is our w.

It turns out that the information, which of the primitive roots lie in
w(® ), can be read off as in Proposition 3.1, substituting ¢ with 7(w) in
the general case. We will also see that our construction requires only the
smallest number of fundamental reflections that is possible to generate w.
Thus it suffices to add the length of (7w (w), () (which can be calculated with
Lemma 3.3 again) and the length of our provisional result (which will be
very simple) to calculate the length of w.

Let us describe this formally.

Definition 3.4. (a) Let W be the Weyl group of the root system of type
By or Cy. For s € {1,...,4} we define

Tg i=GpO=-++0(s.

(b) Let W be the Weyl group of the root system of type Dy.
For s1,s9 € {1,...,£} with s1 < sy we define

Ts1,s0 ‘= S0 0 (§p—20 -+ 0G5 ) 0 (g1 0+ 0g,).

Remark. Carried over by v the 74 and 7y, 5, are

e=((1 T ) e

and (s, 5,) =
1 --- 89—1 381 81+1 «+- s89—1 89 s9+1 ... / { }
].-.- 31—]_ e 81 . 32_2 e_132—]_ e_]- 5151, 82 .

In other words, 75 is shortest Weyl group element which changes the
sign of the s-th coordinate, while 75, ,, is the shortest one that changes the
sign of both the s1-st and the s3-nd. For an arbitrary set of signchanges
S ={s1,...,8m} C {1,...,£} with s; < --- < s, the Weyl group element
of shortest length, whose set of sign changes is S, is just 75, 0 --- o7, or

Ts1,82 O """ O T, 1 sm» TESPeCtively.

Sm s

Next we will define the permutation which will turn out to be the one
sorting this composition the right way.
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Definition 3.5. Let W denote the Weyl group of the root system By, Cy or
Dy. For w € W with «(w) = (0,S) where S = {s1,...,8m} with s1 < --- <
Sm and S¢ = {t1,...,t,} with t; < --- < t, we define n(w) € Sp by
o(ty) = w(w)(k) forke{l,...,n}
and o(sy) = ww)l—-k+1) forke{l,...,m}.
This definition induces a map w: W — ;.

Remark. The map 7 is not a group homomorphism/!

The meaning of this definition becomes clear through

Proposition 3.6. Let W be the Weyl group of the root system By, Cy or
Dy and w € W with «(w) = (0,{81,---,8m}) and s1 < ..., 8y-. Then 7(w)
satisfies

e in the By and C; case:
(0, {s15---s8m}) = (w(w),0) @ 1(r5, 0+++075,.) (3.1)
e and in the Dy case

(0, {s15---s8m}) = (m(w),0) @ (Ts;,50 0 0 Ts,\ 1 5)- (3.2)

Proof. (B and Cy case):
The proposition is verified, if for all (z1,...,z,) € R¢

(Tsy 0= 0 Ts, W @1, -3@0) = (Ttys -3 Tty —Tsps- -y —Tsy)s
since afterwards (m(w),0) sends z;, from the k-th to the to the o(t;)-th
position (k € {1,...,n}) and sends —z,, from the (£ — k + 1)-st to the
o(sk)-th position (k € {1,...,m}) by definition of m(w).
We prove our assertion by induction on m = §S. It starts with the trivial
case S = (), where the product is empty, hence equals the identity.

Induction step: (By and Cy case) Let S = {sg,...,Sn} with sy < --- <
Sm. For 8" := S\{so} we can tell (since {1,...,s0} C (5)°) by the induction
hypothesis

(7'800751°"'°Tsm)($1a---a$2)
= Tso(xtl""’xtn’_:‘vsm"",_:I"sl)
B 1 -+ sg—1 s9 sg+1 --- ¢
N ((1 50—1 12 S0 ! ’{80}
(Ttyyens Tty —Tspyy vy —Tsy)
= (Ttyy e s Bsgs- w1 Ttyy —Lspms- -y —Tsys —Tsg)s

(75, shall indicate the disappearance of zs,) and we are done.

In the D, case the proof works analogous, since 7y, ,, acts as 7s,07g,. [
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The next two propositions state, that most of the information about
w € W we need for our Zeta functions can be found in 7(w):

Proposition 3.7. Let W be the Weyl group of the root system By, Cp or
Dy and let w € W with «(w) = (0,S). Then the length of w equals the sum
of the length of the factors in formula (3.1) (or (3.2), respectively), so that

e in the By and Cy case

Aw) = inv(n(w)) + Y (£ —s+1),

sES

e while in the Dy case

Aw) = inv(m(w)) + Y (£ s).

sES

Proof. We shall outline the proof only for the By and C; case. In principle,
the proof for the Dy works the same.

Recall that for £k < £ the fundamental reflection ¢, applied on an £-
vector (z1,...,x) exchanges the k-th and the (k 4 1)-st coordinate, while
¢¢ changes the sign of the £-th. We will examine, how many ¢ are “caused”
by a pair (i,5) € {1,...,£}? with i < j to appear in our construction of w.
It will turn out, that this number is for each pair just the smallest possible
one. We have to distinguish whether (7, j) is an inversion or not:

1. o(i) > o(j): This is the simpler case. (i,7) is an inversion, which
means, that £z; has to appear on the right hand side of +z; in
w(z1,...,2¢). This means that in any product of fundamental reflec-
tions equalling w an odd number of them has to exchange the positions
of +z; and +z;.

2. 0(i) < o(j): *£z; has to appear on the left hand side of +z; in
w(z1,...,2¢). Therefore in any product of fundamental reflections
equalling w the positions of +z; and +z; have to be exchanged an
even number of times.

In case ¢ € S it is furthermore necessary that at some point (that is
after applying only a suitable part of the product) z; has to be on
the /-th position, because only the sign of the /-th coordinate can be
changed by a fundamental reflection (namely by ¢;). Therefore our
even number we mentioned above cannot be zero in this case.
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Additionally, for each element of S the reflection ¢, has to appear an odd
number of times in the product. So we get a lower bound for the length:

Aw) < #{@G5) €{1,.... 8% i <jnol(i) >a(5)}
+2- #{(4,7) € {1,..., 0% |i < jAo(i) < o(j) ANi € S}
+ S

We will now determine the actual number of factors on the right hand
side of formula (3.1). As usual, let S = {s1,...,8n} with s1 < --- < s
and S¢ = {t1,...,tp} with ¢; < --- < t,. For i € {1,...,¢} the factor 7;
is defined as a product of (¢ — i + 1) many fundamental reflections. The
aggregate number of factors is thus D, g(£ —i +1).

By lemma 3.3 the length of 7(w) equals its inversion number. In the
proof of Proposition 3.6 we had seen that

(Tsl O--- OTSm)(xla"' axe) = (xt17"'7$tn7_x5m""7_x51)'

Therefore (i,§) with 4 < j is in touch with an inversion! of n(w), if +x;
appears on the left hand side of +z; in (x,,...,2¢,, —Ts,,,---, —Ts,) but
on the right hand side in w(z1,...,zy), or vice versa. This is the case if:

e i€ S°ANje S Aa(i) > a())
e icS°AjESNAA(i)> o))
eicSAjES A(i) < o))

eicSAjeESAG(E) <))

The aggregate number of factors in our product is thus

#{(i,5) € {1,...,00%|i < jAa(i) > a(j) Ni € 8%
+H{(5,5) € {1,...,£}*|i <jAo(i) <o(j) Ni€ S}
+> (L—i+1)
i€S
= #{G,5) € {1,...,. % |i <jAo(i) > a(j) NiE S}
+H{(5,7) € {1,... .} |i <jAo(i) <o(j)Nie€ S}

HIS + > ()

1€S

!Note that we do not claim, that (i, j) is an inversion of 7(w) in these cases; in reality
(0(3),0(4)) is an inversion of w(w)~! then. But as inv(w(w)) = inv(w(w)~') this doesn’t
matter at this point. We will treat this fact in detail in the proof of proposition 3.6,
because it will be of particular relevance in this context.
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= #{(4,5) € {1,...,0}%2|i <jAa(i) >a(j)Nie S}
+#{(4,5) € {1,..., 0% |i < jAo(i) < o(j) Ai € S}

HIS+ ) i e{1,..., 0} i < j}
€S

= #{@,5) € {1,...,6}%|i <jAa(i) >o(j)Niec SY
+#{(G,5) € {1,...,}*|i <jAo(i) < o(j)AiE S}
1S +#{G,7) € {1,.... 0% |i<jAi€ S}

= #{(4,5) € {1,..., 0% i <jAa(i) >a(j)Niec S}
+{(,5) € {1,...,.}*|i <jAa(i) < o(j) Ai € S}
+49
+#{(,5) € {1,...,.8}*|i <jAa(i) > o(j)ANi€ S}
+#{(,§) € {1,...,03*|i < jAa(i) <o(j)NiE S}

= #{(,4) € {1,.... 8% i <jAo(i) > a(4)}
+2-#{(i,7) € {1,...,0}%|i <jAo(i) < o(j) Ni € S}
+45,

which is just our lower bound for the length of w. O

Proposition 3.8. Let W be the Weyl group of the root system By, Cy or
Dy and let w € W with (w) = (0,S5). Then

fork < £:
ar €w(®T) & o € (m(w),d) (@)

and for Xy = By or Xy = Cy:
a ew(®) o o 1Y) e 5
while for Xy = Dy:

a € w(®') & min{oc (¢l —-1),0 ()} € S°.

Proof. Let X; = By or Cy. Recall that for s € {1,...,¢}:

7'5_1(3:1,...,:6@) = (T1y-.-yLs—1,—Tpy Tgy---,Lg 1)

Thus for 1 <1< j < £

e; £ ej, ifj<s
6i:l:ej+1, ifi<s<j<t
7'3_1(62' + ej) = €i+1 :|:ej_|_1, if ¢ Z S

e; F es, ifi<sAng=14
ei+1 Fes, ifi>sANj=1"¢
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Let w € W with «(w) = (0,5) and oy € (7(w),0)(dT).
We will prove by induction on the cardinality of S, that either
31<i<j<l: wla)=e —e €dF (3.3)
or
J1<i<max(S)Aj>i: w Yag) =e +ej €. (3.4)
For the induction start we recall that because of proposition 3.1 for S = ()
dJ1<i<j<¥:
wHag) = (m(w), 0) " (ar) = (w(w) ", 0) (e — ext1) = € — e;.
For the induction step let S = {s1,...,8m+1} with1 <51 <+ < 841 <L
By induction hypothesis we have either
J1<i<j<¥t: fl((a, {31,...,3m})71)(ak) =€ —ej
or
Fi<smAj>i: 7 ((0,{81,---,8m}) ") (k) = e + e
In the first case we continue with
w ' ax) = (0,9) (o)
-1
= ((ﬂ-(w)v (0) OTgy O+ 0Tg,, O T5m+1) (ak)
= (Tom 0o 00Ty o (m(w) ™, 0)) ()
= Ty (T 007t o (m(w) ™, 0)) ()
= TS_T:H((L_I((J,{sl,...,sm})_l))(ak)
= Tsm+1 (ei - 6])
€; — €j, if7 < Sm+1
€ — €541, ifi<$m+1 §]<e
= €it1 — €11, ifi > smq1
e +esni, fi<spupiAj=L
€itl + €spyy, HE>8pup1Aj=14

and each of the five possibilities satisfies either (3.2) or (3.3) with suitable
i', 7' instead of 4, 7. In the second case we get

w ' ag) = (0,5) (o)

= Tspi1 (ei + ej) (With 7 < Sm)

e; +¢ej, if j < smt1
e; +ejy1, ifi<spp1<j3<4
= ei+1 + ey, ifi > sp+1 (impossible!)
€ — €51 ifi <spmpiANj=2¢

€41 — €spyy> it 1> Spmy1 (impossible!) Aj = £
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and the three possible cases are of the form described in (3.3) or (3.4) as
well.

This proves, that for k < £
ay € (m(w),0)(®T) = ar € w(dT).

But, of course, the reverse direction can be obtained by considering those
k < £ where oy € (mw(w),0)(®7).

Since w((mi)ie{l,m,@}) = ((—1)"5("'71(i))aca—l(i))ie{1 gy We get for ay:

ag = (6i0)ieq1,...0p € w(@T) & 07 (£) € 5

For Xy = Dy and k < £ the only thing we have to keep in mind is, that
Tor,s (With 1 <'s1 < s9 < £) acts on (z1,...,2,) exactly as 7y, o 7,, does in
the By, and C; case.

For ay we get the following;:

ay € w(®™)
& N<i<ji<liwle+e) =e—1+eVw(e—e) =e—1+e
& [o'e-1)€eSAa(¢) €S

V[min{o (£ —1),0 1 (£)} € S* Amax{o (£ —1),0 ' (£)} € S]
& min{o (£ -1),071(0)} € §¢

For the Weyl group W of the root system X; and w € W we define

My(X,Y):=Xx 2@ J] x%vh,
aj Ew(PT)

so that the numerator polynomial associated to a Chevalley group of type
Xeis P(X,Y) = Xy Mu(X,Y).

Let us consider an:

Example 3.9. Consider the group GO13. The root system @ of the derived
group SO13 s of type Bg. Let W be the Weyl group associated to this root
system. We want to find the monomial My, (X,Y) where

L(w):(a,5)2<<i 2l g),{1,2,6}>.

The “old” algorithm would work as follows: First of all we would have to
determine w(®1) (or w(® ")) and then count the number of positive roots
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sent to negative to calculate the length of w. Afterwards, we would have to
check for the 6 primitive roots, which of them lie in w(®).

Let us now perform our “new” algorithm in detail. First of all we have
to calculate w(w):

_ ot 23ase )
weo=t 536 2 4 1) TLOT20T6
)

= (Sas5535253545152535455) © (S6S554535261) © (S6S5545352) © (S6)-
The inversions of w(w) are
(1,2),(1,4),(1,5), (1,6),(2,4), (2,6), (3,4), (3,5), (3,6), (4, 6), (5,6),
so that inv(m(w)) = 11.
By proposition 12a) the length of w is
AMw) = inv(m(w)) + A(11) + A(72) + A(76)

= 11+6+5+1
= 23.

Since

r(w) ! = 1 2 3 4 5 6

A6 (>) 4 (>) 2 ()b ()1 ()3

and 0~1(6) = 5 € S, the propositions 7 and 12b) guarantee, that a3, a5, o €
w(®T) while a1, ag, a4 € w(P).

Now we can write down our result:

My(X,Y) = X2 ] x9vyh
o Ew(®)

— X2, xayb  yoeybr yaiyb
Xa1+a2+a4—23yb1+b2+b4
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Now we have all tools which are necessary to prove

Proposition 3.10. (a) Let W be the Weyl group of the root system By or
C¢, w € W with 1(w) = (0,5) and k € S¢. Then?

My(X,Y) - My=1(6 13y (X, Y)
ML—I(O.,(D) (X,Y)

M1 50 (X, Y) =

(b) Let W be the Weyl group of the root system Dy, w € W with 1(w) =
(0,5) and k1 < ke € S¢. Then

My(X,Y) - My-1(g {5y k1) (X, Y)

ML—I(U,SU{kl,kz})(X’Y) - M,-1(5.0) (X,Y)

Proof. By and Cy:

First of all, notice that our equation is equivalent to

Ao o, 0) + A Yo, S U{k})) = AMw) + A (o, {E})) (3.5)

A S (agby) + > (aj,b;)

a; €L=1(a,0)(®) aj€ o, SU{k}) (@)
= Y (ab)+ > (aj,bj). (3.6)
ajcw(d-) aj €1 (o, {k}) (@)

Condition (3.5) is thanks to Proposition 3.5a) equivalent to
inv(o) + inv(z (.7 (o, S U {k}))) = inv(n(w)) + inv(x (.7 (a, {k}))).

Thanks to proposition 3.8 it is clear, that (ag,by) either appears once on
both sides of 3.6, or on none of it (we presupposed, that k € S¢).

For 7 < £, applying the Propositions 3.8 and 3.1 shows that for v € W,
; is in v(®7), if and only if m(v)~1(j) > m(v)~1(j + 1), or in other words:

a; € v(®7) & (4,5 + 1) is an inversion of m(v) L.

Therefore both conditions hold, if each (i, 5) € {1,...,£}? appears equally
often as an inversion of o=! and of 7(+7 (o, S U {k}))™! as of w(w)™! and

m(t o {k})

For 1 <s; <:--<spm < Llet prg, .3 denote the permutation compo-
nent of ¢(75, o+-+ o7, ). Then proposition 3.6 implies:

o m(w) "t =pgoo!

2For (0,8) € S x P({1,...,£} we write just :~' (o, S) leaving one pair of brackets out.
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o 7(t7 (o, {k}) ™ = pgyooT

o (. (0, SU{K}) ! = psuppy 00 !

Let 1 <i < j </ Then

[ ]
(o(i),0(4)) is an inversion of ¢! if and only if o(i) > o(j).
[ ]
1 ifi <k
m( o () Ho (@) = py (i) = £ ifi=k
1—1 ifi>k

So (o(i),0(5)) is an inversion of w(: (o, S U {k}))~! if and only if

[0(i) <o(j) Ni=k]V [o(i) > o(j) Aj=Ek].

_ o 1+{te S t<i}, ifieS¢
m(w) 1("(’))_”(2)_{ (—t{seS|s<i}, ifies

Thus (o(2),0(j)) is an inversion of 7(w) if and only if

[o(i) < a(j) Nie SV [c(i) ><(j) AjeSU{k}.

(e o, S U{RD) " o (0) = psuir (0)
{ L4 §{t € (SU{RYC|t <d}, ifie (TU{k}e
(—#{s € (SU{))|s <i}, ific(SU{k))
So (s(4),5(5)) is an inversion of 7w(+ (o, S U {k}))~! if and only if
[o(i) < a(i) Ai € (SU RNV [o) > a(i) Ad € (SU{RD].

This implies exactly what we required. Additionally, we see that — as does
(ag,bg) — any (aj,b;) can appear only once on each side of (3.6).

Dy:

The proof works analogous. Again, for oy it suffices to refer to proposi-
tion 3.8. For the other simple roots the only difference is, that we have to
consider m(w) ! = pgoa, n(v (o, {k1,k2})) " = piy yy and w(t (0, S U
{kla k?}))_l = pSU{kl,kz}'

O
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Applying this proposition once for each element of S we get:

Corollary 3.11. Let W be the Weyl group of the root system By or Cy and
w € W with 1(w) = (0,5). Then

My ( H {k} Y)
M X Y M ) Y) '
(‘7@) kes (0,0

And, finally our main result:

Theorem 3.12. Let P(X,Y") be the numerator defined in (2.1) for the group
GO2¢11 (type By) or GSpy, (type Cy¢). Then

12

M, (X,Y)

B (o fkh) (A

P(X,Y)=) M 1,0(X,Y)-]] (H M, 1, ¢(X,Y) )
eSSy k=1 = Ho:0) ’

The products appearing on the right hand side of the above equation
look very much like friendly ghost polynomials. Indeed, they are deeply
connected to the ghost polynomial of P. An analysis of this effect will be
subject of the next chapter.

Since fS is even for each element of W in the Dy case, it is somewhat
tricky to find formulas as in 3.10 and 3.11 for these groups.

Consider Sy X Peyen({1,--.,£}), the image of the Weyl group under ¢, as
a subgroup of Sy x P({1,...,£}). In S x P({1,...,£}) we can proceed as
we did in the By and C; case. Each element of it can again be constructed
as a product of § = ((k,k+ 1),0) (k € {1,...,£—1}) and & = (id, {¢}).
The length function A of W can be continued to a function A on the larger
group:

A(0,S) = min{n € Ny : 3k1,...,ky such that ¢, o---o¢, = (0,59)} — §S
In other words: The length function counts as in the By and C; case, but
the signchanges () are costless.

To each element (0,S) € S x P({1,...,£}) we can then associate a
monomial

Mus(X,Y)=Xx 29 [ X%y,
;€(0,5)(3")

and for each element w € W with «(w) = (o, S) we get

My(X,Y) 11 Mepp(XY)

M) (X,Y) 14 Mg (X,Y)
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But now, by the definition of the length function A of S; x P({1,...,4}) it
is immediately clear, that A(o,{k}) = A(o, {k,£}). Recalling the definition
of m, it is furthermore obvious, that (o, {k}) = (o, {k, £}).

These two facts imply, that for o € S and k € {1,...,£ -1}
M) (X,Y) = Mg 5,00 (X,Y) = M1 (o (5,0 (X, Y).
This leads to

Corollary 3.13. Let W be the Weyl group of the root system Dy and let
w € W with «(w) = (0,5). Then

M,(X,Y) I M,-1(6, 1,01 (X, Y)

Mo1o0)(XY) by Moo (XY)

And the main result is in this case

Theorem 3.14. Let P(X,Y) be the numerator defined in (2.1) for the group
GO, (type Dy). Then

- (X,Y)
P(X,Y) =Y M, 1,p(X,Y) H( M l(ikmf}()X 7 )

0ESy
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Chapter 4

The Shape of the Ghost

In this section we will demonstrate, that for all groups of type By, Cy and
Dy with their natural representation the ghost polynomial 15(X ,Y) of the
numerator P(X,Y’) can be expressed in the same way as P(X,Y) in propo-
sition 3.11 (or 3.13, respectively), except that the sum is not built over all
of the symmetric group but only over certain subsets.

First of all let us give names to the individual summands:

Definition 4.1. (a) Let W be the Weyl group of the root system By or Cy
and let 0 € Sy. Then we define

V4
M-, k})()(a)/)
Py(X,Y) = M,-1(,9)(X,Y) - (1 + (0.4 )
() kl;[l Mb—l(a,@)(Xay)

(b) Let W be the Weyl group of the root system Dy and let o € Sp. Then
we define

-1
M, (X Y))
v Mo {k,eh)
PX,Y):=M-1,0(X,Y)- 1+ .
( ) 1( 10)( ) kgl ( ML*I(O—,@) (X, Y)

Before we begin we should list the results from [11]:

Proposition 4.2. Let G be a Chevalley group of type X, over Q, and let
P(X,Y) be the numerator polynomial associated to G and its natural repre-
sentation by formula (2.1). Let P(X,Y) be the ghost of P(X,Y). Then

o for Xp= Ay:
Lk

Px,y)=[[D (x**y)

k=0 35=0
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o for Xy = By:

-1
P(X,Y)=[](1+X%Y)
k=0
o for X, = Cy:
—1 “ -2 "
Px,y)=[[a+x3Y)JJa+x**Y)
k=0 k=0
o for Xy = Dy:
-2 o
Px,v)=[(1+X7Y)"
k=0

Proposition 4.3. Let P(X,Y) be the numerator polynomial associated to
a group of type By and its natural representation. Then its ghost is

P(X,Y) = Pa(X,Y).

Proof. First of all, it is clear that M,-14q¢)(X,Y) = 1. For k € {1,...,¢}
we abbreviate ¢! (id, {k}) =: wiqx. To determine the monomial associated
to wiqk we use the results of chapter 3.

First of all, since the set of signchanges is {k}, we can read off from

definition 3.5, that j = id(j) = 7(wiak)(j) for j <k, j+1=1id(j + 1) =
m(wiq ) (j) for k < j < £ and k = id(k) = m(wiqx)(£), or in other words

o= (1 ES1 k-1t
TWidk) =\ 1 . k=1 k+1 ... ¢ k)

By proposition 3.7 this implies

)\(wid,k) = inv (W(wid’k)) + (é —k+ 1)
= (-R)+(C—k+1)
20-2k+1

Furthermore, the propositions 3.8 and 3.1 imply for j < £

aj € wid’k(<I>+) < a5 € (W(wid’k,ﬂ) ((I)+)
& m(wiar)” () < wlwiar) G+ 1),
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so that ag € wiqx(®7) and @ € wiqx(PT) for j # k. Therefore

¢
My, ,(X,Y)
). — id,k
FalY) = Moo H( M,-1a9)(X, Y))
[ L
= H (14 My, (X H 1_|_Xk (20—k)— (26— k—|—1)Y)
k=1 k=1
£ -1
— H( +X(k 1)(2@ k—|—1)Y) H (1 +Xk(2£ k) )
k=1 k=0
-1 )
= (1+X%Y) = P(X,Y).
k=0

O

For groups of type Cy and Dy the corresponding proposition is even more
surprising; on the other hand it is much harder to prove it.

We will make use of the following terminology:

Definition 4.4. Let £ € N. For k < £ we define pp, € Sy as the permutation,
for which (i,7) (with i < j) is an inversion if and only if i > k.

Remark. (a) The ezxplicit description of py is
(1 k=1 k k+1 ... 0
PE=\1 ... k=1 ¢ ¢—1 ... k)"
(b) The py are self-inverse.

Proposition 4.5. Let G be a Chevalley group of type Cyp or Dy in its natural
representation. Let S = {s1,...,8m} with 1 < 81 < +++ < 8y, < £ and let
0:=ps, 0---0ps . Then

(a) if G is of type Cp:

—1 .
_ ( +X“’“ 1+1Y2) y fkgS
PU(X,Y)_IH{( ),ikaS}(1+

(a) if G is of type Dy:

Pa(X,Y)Zkl;[l Xy ke

“1{ (14 X%-1Y2) | ifk¢g S

49



Proof. Let G be a group of type Cy. First of all we have to determine
M,-1(60) (X,Y). For that purpose it is of course necessary to understand,
which pairs (i,5) (with i < j) are inversions of ¢! and which are not.

Since by the last remark

071:(9310"'0957,1)71:p;nllo---opgllzpsmo...opsl

and
ps(i)=i<sfori<s and ps(i)=~0—i+s>sfori>s
we can conclude, that
(i,7) is an inversion of 0! <= f§{s € S : s < i} is odd. (4.1)
By lemma 3.3 the length is thus
A((,0)) = inv(o)

[(Z—sl)(é—sl—l—l)—(5—52)(€—32+1)+—...
s (=)™l — sp) (£ — 5, + 1)].

N | =

iFrom (4.1) and proposition 3.1 follows
o €1 Yo, 0)(®T) <= t{s € S : s <k} is odd.
Hence

ML—I(J,(D) (X,Y)
_ X—%[(15—51)(E—sl—I—l)—(15—32)(15—52+1)+—---—(15—sn)(E—sn—f—l)]

so—1 sq4—1 Sn—1
I xovbe. I xovb ... J[ x»v’, (4.2)
k=s1 k=s3 k=sn—1

if n =4S is even and

M,-1(6,9) (X,Y)
— X—%[(Z—sl)(Z—sl+1)—(Z—sz)(Z—sz—i—l)—i——---+(€—sn)(Z—sn—l—l)]
so—1 sq—1 —1

I xovbe. I xsv® ... I x*v™, (4.3)
k=s1 k=s3 k=snp
if n =4S is odd.

M1, 11 (X5Y)

Mt_l(g,@)(X;Y) for k € {1, . ,e}

Next we have to calculate the
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Let i € {1,...,£}. Then (see definition 3.5):

e 1 i1 i i—1 ¢
(e ("’{"}))—<a(1) o oli=1) ol41) ... o) ai))

Now proposition 3.8 implies, that (independent of o) o, ;) € v Yo, {i}) (@),
Qp(i)-1 € 1 ™Yo, {i})(®@*) (if o(d) > 1) and the other simple roots behave
just the way they did for + (o, 0).

How does the length change? We had seen, that if f{s € S : s < o(i)}
is odd, then (o(i),j) is an inversion of o~! for every j > o(i). In this case
the length increases only by 1.

If on the other hand #{s € S : s < o(%)} is even, then (o(7),7) is not
an inversion of o ! for every j > o(i). Then each such pair (o(i),j) has to
be exchanged twice in the construction of 1~!(o, {i}), which means that the
length increases by 2(£ — o (7)) + 1.

We may substitute k£ := o(i). From the observations just made and
the formulas for the aj and by in case of the natural representation (see
proposition 2.2) follows, that the k-th factor of P,(X,Y) is

o for k =1:
—if1¢8S:
14+ X@-2-0-1yb =1 4 xaotly? (4.4)
—ifles:
1+x! (4.5)

o forl <k <¥:

iff{se€S:s<k}isevenand k ¢ S:

1 _'_Xak—Q(e—k)—lybk =14 Xdk—1+ly2 (46)

iff{se€ S:s<k}isoddand k ¢ S:

14 X~ lybion = 1 4 X~ (@t )y =2 (4.7)

iff{s€ S:s<k}isevenand k € S:

14+ Xk —ak—1—2(k)—1ybe—bp—1 — 1 4 ¥ (4.8)

iff{se€ S:s<k}isodd and k € S:

1+ x! (4.9)
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o for k =/:

— if §S is even:

14 xo-lyb =14 xau-ly (4.10)
— if §S is odd:

14 X% a-1-lybebr — 1 4 x (@ Dy -1 (4.11)

The factors of type (4.4), (4.6) and (4.10) already have the predicted shape,
the others require a multiplication with the factor

o (4.5) X0ty

o (4.7) X®-1~1y?2

(4.8) X5

arp_1+1
o (4.9) X~

o (4.11) Xu—1-1ly.

It remains to be proved, that M,-1(4)(X,Y) is just the product of these
factors. We have already shown, that P,(X,Y) can be described as follows
P (X,Y)
ML_I(O',@) (Xa Y)
s1—1 so—1
= Lo+ xmy?) e x7) [T o x-eey =) 04 x)
k=1 k=s1+1
s3—1

sa—1
[T @+xs=y?) a4+ x71) [ @+ X @2y =2). (14 X)
k=so+1 k=s3+1

—1
[T @+ xe-1+1y2) . (14 X% ty),
Sn+1

if n = {5 is even,
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and as

P,(X,Y)
Mfl(a,@) (X,Y)
s1—1 s2—1
= [Ia+xey?) .+ X7 J[ @+ X" @y 2. 1+ X)
k=1 k=s1+1
s3—1 s4—1
[T G+xoety?).qrxh) [ @+ x- @ty =2). 1+ X)
k=s2+1 k=s3+1
Sn—1
[I @+xsy?).1+x1)
k=sn_1+1
-1
[I @+x ety =2). (14 x (e Dy,
k=sn+1

if n = #S id odd.
Recall the equations (4.2) and (4.3). Since

so—1
X*%[(5751)(£781—1-1)7(2752)(@*52—}—1)] H Xaky2
k=s1
s1—1 s2—1
[[Ta+xs7y?) . a+x ) J[ @+X @y 2). (1+X)
k=1 k=s1+1
s
— X—%[(@2—2E51+8%—51)—(£2—2@324—5%—82)] ﬁ Xak_ly2
k=s1+1
s1—1 so—1
[Ta+xe sty aex ) [ @+x @y 2). 04 x)
k=1 k=s1+1
— X£81*%S%+%817552+%S§*%‘92 . Xa32_1y2
s1—1 so—1
[Ta+xsy?) . a+x) [ (X%1v2+ X1 (1+X)
k=1 k=s1+1
— X€S1—%8%+%81—552+%S%—%S2 . Xsa-1y2 ., x—(s2—s1)
s1—1 so—1
H (1 +Xak_1+ly2) . (X + 1) H (Xak—1+1Y2 + 1) . (1 +X)
k=1 k=s1+1
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X£81*%S%+%817552+%S§*%‘92 . Xa32_1y2 i X*(82751) X e

s1—1 ag, _ ag, _
[T +x% 1y (x5 Yy +X 5 v)
k=1

s2—1 ag,— Qgo_
[ x*Hy241)-(x 5 v+x % ty)
k=s1+1

5138+ 551— s —1—€s2+583—Ss2+ 58,1
sizl agy—1 agy—1
[Ta+xsy?) (x % Hy+Xx 5 Y)
k=1

s2—1 Ggy—1 agy—1

[I xey241).(x % v+Xx ¢ *y)
k=s1+1
XZslf%s%—k%slf%(3171)(2Z751+2)7232+%s§f352—}—%(5271)(237524—2)
sit agy—1 gy -1
[Ta+xsy?) (X~ Py + X5 Y)
k=1

so—1
s9—1 Gs9—1

[I xo=y2+1)- (X = Y+X = *Y)
k=s1+1

s1—1 ag, — agy _
X0 [+ X% Y2 (x5 Y 4 X5 Y)
k=1

So—1
As9—1 Gso9—1

[I xo=y2+1)- (X~ Y+X = 1Y)
k=s1+1

For groups of type Dy the proof works completely analogous.

P(Xa Y) = Z szlo"'opzﬂzl (X,Y).
(1]1,...,1)[_1)6{0,1}[71
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the first sy factors behave as predicted. Of course, the same calculation can
be made for the (s + 1)-st — s4-th factor and so on, and the calculation for
the (s, +1)-st — £-th factor (or for the (s,_1+1)-st — £-th factor, respectively)
works very similar.

O

These two propositions imply immediately a formula for the ghost poly-
nomial as a sum of a suitable set of P,(X,Y):

Theorem 4.6. Let P(X,Y) be the numerator polynomial associated to a
Chevalley group of type Cy; or Dy in its natural representation.
ghost is

Then its



Proof. Let S C {1,...,£—1} with k ¢ S and let S’ := S U {k}. Then the
associated class-polynomials have all factors in common, except the k — th.
In the sum of them, the k-th factor can be replaced by

k-1 Gk—1

1+ X% 1Y) L (X T Y+ X 5 YY) = (14 X 5 V)1 + X 5+

or
(1+X%1¥Y2) 42X 2V = (1+X 2 Y)2,

respectively. Successive usage of this argument for each k € {1,...,¢ — 1}

proves the assertion. O

Example 4.7. Consider the group GOz in the irreducible representation
whose contragredient has weight w = n1A1 + nado + n3A3 (n1,n2,n3 € Ny).
Then with Y = Z if ng is even and Y = VA if n3 is odd, the numerator
polynomial P(X,Y) has the ghost P(X,Y), where

1. ifnl =MN92 = N3 =0

P(X,Z) = P(X, Z)

2. 6n1 < 2n9 +n3 A2n1 <ngAdng < 6ny +ng Any > 0:

P(X,2) = (1+X*Z")(1+Xx32%7")
.(1 _|_X5zb1+b3*b2)(1 —I—Xsz*bl)(l +Zb1)
— (1 +X4Z2"1+2"2+"3)(1 +X3z2n2—|—n3)
.(1 _I_X5Z2n1+2n2+2n3)(1 _I_XZ2n2—|—n3)(1 + Z2n1+2n2+n3)

3. n1=0A4ny < n3:

P(X,Z) = (14 X*2°)1+ x32070 4 x67b2)
(1 + X2Z07b2) (1 X 202700y (1 + Zb)

— (1 +X4ZQn2+n3)(1 + X3ZQn2+n3 + X6Z4n2+2n3)
(14 X2Z™) (1 + X Z°2t03)(1 4 Z72tns)

4. 601 +ng =4Ang A2n1 <ngAnqg > 0:

P(X,Z) = (1+X'Z)(1 + X320t 4 x87%)
(L+XZ%270) (1 + 2)

= (1+ X4Z5n1+%n3)(1 4 X3z3m+ins X8Z8n1+4n3)
_(1+Xz3n1+%n3)(1+z5n1+%n3)
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.nm1=0Ang =4no Ang > 0:

P(X,Z) = (1+X*Z)(1 + Xx37b2701 4 x67% 4 x827%,)
(14 X251+ 2™

= (1+ X4Z6"2)(1 + X376m 4 X6 71202 —I—X8Z16"2)
(1 + XZ5™)(1 + Zz%™)

. 0n1 < 2ng +n3 A2n1 < ng Abng +ng < 4no:

P(X,Z) = (1+X'Z")1+Xx82%)(1 + x2% ")(1 + z')
— (1 + X4Z2n1+2n2+n3)(1 + X822n1+4n2+3n3)
.(1 4 XZ2n2+n1)(1 + Z2n1+2n2+n3)

. 2n1 =n3 Ang < ng:

P(X,Z) = (14X'2% 4 x827b% 4 X270+
(14 X2z~ (1 + 2™

= (1 + X4Z2n2+2n3 4+ X8Z4n2+4n3 + X12Z6n2+6"3)
(14 X Z2H78)(1 4 222 17s)

. 6n1 <2no +n3 Ang < 2ng:

P(Xa Z) = (1 + X8Zb3)(1 —I—X4Zb1)(1 +XZb2—b1)(1 + Zbl)
= (1 + X8Z2n1+4n2+3”3)(1 + X4z2n1+2n2+n3)
,(1 —|—XZ2n2+”3)(1 +Z2n1+2n2+n3)

. 2n9 +n3 < 6nq1 A2ng +4ng < dng Ang < 4nq + 4ns:

P(X, Z) = (1 +X7sz)(1 +X5zb1+b3—b2)(1 +Xzb2—b1)(1 4+ Zbl)
= (1 +X7Z2n1+4n2+2n3)(1 +X5Z2n1+2n2+2n3)
.(1 +XZ2n2+n3)(1 _|_Z2n1+2n2+n3)

. 2n9 + n3 < 6n1 Adni + 4ng < ng:

P(X,2) = (1+X7Z%)(1+X32%)(1 + x?72%t2)
(1 + X Zb27bry(1 + )

— (1+X7Z2n1+4n2+2n3)(1+X3Z2n1+2n2+n3)(1+X2Zn3)
.(1 + XZQ”2+"3)(1 + Z2n1+2n2+n3)

. 3ng < nqi ANdni +4ng = ng:

P(X,Z) = (]_ +X7Zb2)(1_|_X3zb1 +X5Zb1+b3_b2)
(14 Xz 1+ 2™

= (]_ +X7zl0n1+12n2)(1 +X326n1+6n2 +X5210n1—|—10n2)
'(1 + Xz4n1+6n2)(1 + Z6n1+6n2)
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12.

13.

1.

15.

16.

17.

2n9 + ng < 6m1 A dng < 2nq + 4no:

P(X,Z) = (1+X82%)(1+ X52%)(1+ z™)
(1 +X8Z2n1+4n2+3n3)(1 +X5Z2n1+4n2+2n3)
(1 +Z2n1+2n2+n3)

no < 2n1 A 2nq1 + 4no = dng:

P(X,Z) = (1+X"2" 4+ X82%)(1+ X52%)(1 + z™)
(1 _I_X7z7n3 +X8z8n3)(1 +X5z6n3)(1 +Z6n3—2n2)

2n9 +n3 =6n1 A2n1 < ng A3dng < 16n;:

P(X,Z) = (1 4+ Xx4zb +X7Zb2)(1+X5Zb1+b3*b2)
(L4 X200 (1+ Z)

= (1+X'Z8m 4 XTZ1m)(1 4 XPZ1m)
(14 X Z0m=2m)(1 4 Z8™)

2n9 +ng = 6m1 A 16m1 < 3ns:

P(X,Z) = 1+X'Z" +X"Z")(1+X3Z")(1+ X?2% ")
(14 X Z%27b01)(1 4 z%)

= (1+X'Z% + XTZ"") 1+ X°Z%")(1+ X Z™)
(14 X Z0m—2m3)(1 + Z8™)

16n; = n3 A 16me = n3 Ang > 0:

P(X,Z) — (1+X4Zb1 +X7Zb2)(1—|—X3Zb1 _|_X5zb1+b3—b2)
(14 X 2zb2b1)(1 4 zb)
— (14 X'Z2" 4 XTY5")(1+ X3Z2" 4 X°Z32™)

2n1 = ng Ane = nz:

P(X,Z) = (1+X'2" 4+ X770 4 X870 4 x12701+03)
(14 X zb27b1)(1 4 zb1)

= (1_|_X4Z4n3 +X7Z7n3+XSZSn3 +X12Z12n3)
(14 X Z33)(1 4 Zms)

In particular, the ghost polynomial is friendly, if the following inequalities

hold:

2n9 +n3 # 6n1, 2n1 #n3, 6n1+n3#4dng,
2n1 + 4no # dng, 4ng + 4no # ng3.
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Proof. Following section 1.4 we have

1 3
M=o +as+a3z, I=a+2a+2a3, A3= EOQ—FOAQ—FEO(?,.

Thus

1 3
mw = m(m +ng+ §n3) a1+ m(nl + 2n9 +n3> a9 —I—m(nl + 2n9 + §n3) as,
so that (see definition 2.2)

m— 1 ,if n3 is even
| 2 ,ifnzisodd

and

1 3
b = m<n1+n2—|—§n3), by = m(n1+2n2—|—n3>, bs = m<n1—|—2n2+§n3) .

Furthermore
a1:5, a2:8, a3:9.

The resulting numerator polynomial is

1+Y™
X (V" +7%)
XZ (Ybl ng)
X3y + 2y 4 vhs)
XY 42y Y0
5(2yb2 + ng + Yb1+b3)
6(2yb2 + 2yb3 + Yb1+bz + Yb1+b3)
X
X
X°(
0

P(X,Y)

7 Y Yb3 + 2yb1+b2 + 2yb1+b3)

X8 Ybs +Yb1+b2 4+ 2Yb1+b3)
Yb1-|-b2 —I—2Yb1+b3 + Yb2+b3)

X 10y b14b2 +2Ybl+b3 +Yb2+b3)

X
11(Yb1+b3 +Yb2+b3)
2(Yb1+b3 +Yb2+b3)
X1

+++

Ybl —+b3 + Yb1 +b2+b3 )

The points that are into question for connecting (0,0) with the line having
smallest slope are (4, b1), (7,b2), (8,b3), (10,b1+b2), (12,b1+b3) and (13, ba+
b3).

We will outline the proof only for case number 2. It is clear, that the
other cases have to be handled similarly.
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Therefore let 6n1 < 2n9 + ng, 2n1 < ng, 4ne < 6n; + ng and nqy > 0.

Then
by B 14nq + 14n9 + Tng
4 28
by . 4nq + 4no + 2n3
4 8
bl . 1On1 + 10n2 + 571,3
4 20
bl - 6711 + 671,2 + 371,3
4 12
bl _ 26n1 + 267&2 + 1371,3
52

6n1<2n2+n3  8ny + 16m9 + 8ng by
< = =
28
2n1<ng 2n1 + 4ng + 3ng b3
< = —
8 8
2n1<ng 8n1 + 12n9 + 6ng . b1 + bo
20 10
2n1<ng 4nq + 6ng + 4ng . by + bs
12 12
2n1<n3 16n1 + 32n9 + 18n3
<
52
16m1 4+ 32n9 + 20n3 by + b3
- 52 13

which means that in the Newton diagram starting at (0,0) the line with
smallest slope is the one, which connects (0,0) and (4,b1). The ghost poly-
nomial has thus a factor (1 4+ X*Y?1).

In the next step we start at (4,b1) and we have to find out, which of the
points (7,b2), (8,b3), (10,b1 + b2), (12,b1 + b3) and (13,be + b3) connected
with (4,b;) gives the line with the smallest slope.

by — by _ 16ng +8ng  4na<bnitns  6n1 + 12n9 + 9ng
3 24 < 24
2n1<ng 12n9 + 12n3 _ by — by
24 4
bo—b1 _ 2no+mng n1>0 n1+2ng +ng by
3 3 < 3 ~ %
by — by _ 16m9 + 83 4n2<6<n1+n3 611 + 12n9 + 9ng _ b_3
3 24 24 8
by — by _ 619 + 3n3 n3>0 2n1 + 6ng + 4ns _ by + b3 — by
3 9 9 N 9 ’
so the second factor is (1 + X3Y?2~01). Afterwards
by + b3 — by _ 4nq + 4no + 4ns 4n2<6<nl+n3 10n, + 5n3
5 10 10
2n1<<n3 mﬁ < ng
10
= b3 — be
by + b3 — by _ 12n1 + 1209 2n1<<n3 10n1 + 12n9 + ng3
5 30 30
< 2n1 + 4ng + 3ns _ b_3
6 6’
so the third factor is (1 + X3Y?1+03=t2) followed by (1 + XY?701) and
(14Y?h), O
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Chapter 5

Concluding Remarks

In this final chapter I will explain, how I found the theorems proved in the
last two chapters. Afterwards I will list some open questions.

The starting point for the research done in this thesis was the formula
for the numerator polynomials from chapter 2. Since these polynomials are
are constructed by a natural process from the groups, one might hope that
certain group properties, which are “invisible” when looking at the group
itself, can be seen when looking at the Zeta function.

As already explained in chapter 2, a proper Zeta function should be just
as complicated as its origin, which is in our case the group it is associated to.
It was clear that in this context there was still some work to be done, because
the Zeta functions (namely the numerator polynomials) looked much more
complicated than they should.

Two possible reasons for this are in question: One is, that the construct-
ing process adds information. If this is the case, the shape of the function is
not only dependent on the group but also on the construction. Under these
circumstances the function should not be called “the” Zeta function of the

group.
The other possibility is, that the function is only virtually complicated,
which shall mean, that it has a symmetry, which makes it possible to express

it entirely through a smaller set of data as well. For example, one would
find a factorized polynomial less complicated than its expansion.

The key question seems to be: What is the shortest algorithm that
calculates the Zeta function?

Unfortunately this question will never be answered. For any given algo-
rithm it is impossible to prove that it is the shortest possible (G. Chaitin).
So the best thing we can do is to find shorter and shorter algorithms that
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generate our Zeta functions, hoping to finallay gather one, from which it
seems to be plausible, that it is the shortest possible one. For that purpuse
it would certainly be an important hint, if one could see the group structure
in it.

(From the theory of algebraic curves it is well known, that the topo-
logical information about these curves is concentrated in its singularities.
Examinations of multiple examples of curves P,(X,Y) = 0, where P, is one
of the numerator polynomials defined in chapter 2 (and p the natural repre-
sentation) lead to the observation, that these polynomials and their ghosts
behave very similar in this matter, namely:

1. Each considered curve P,(X,Y) = 0 has up to four singular points
which are not just ordinary double points. Their (homogenized) coor-
dinates are [1:0:0], [0:1:0],[1: —=1:1] and [-1: —1:1].

2. At these four points the ghost curve ]Sp(X,Y) = 0 is topologically
equivalent to P,(X,Y) =0.

Since two curves which have the same degree are topologically equivalent
if their singularities are, this is a hint for a deeper connection between P,
and P, or even P and P.

In [9] the goal was a general proof of the equivalence of the mentioned
singularities at [1: 0: 0] and [0 : 1 : 0]. It turned out that these singularities
are connected (via the coefficients of the polynomial) to a symmetry of the
Weyl group. It is the same symmetry that causes the functional equation
discovered by J.I. Igusa, A. Lubotzky and M. du Sautoy.

This observation lead to the idea, that a singularity might be a hint for
some symmetry in the object the Zeta function is associated to. Indeed,
through the new formulas for the numerator polynomials (theorems 3.12
and 3.14) we see that the singularities at [1 : —1 : 1] and [-1 : —1 : 1]
do also appear not only by chance, but have a connection to the particular
structure of the Weyl group. In particular, for groups of type By in their
natural representation it seems, that each of the P, has the same singularities
in[l:-1:1and [-1:—1:1] as P.

Perhaps we should dot the way we found our result 3.12 for the B, case:

A curve P(X,Y) =0 for P(X,Y) =3_, , ¢, X"Y" has a singularity of
multiplicity m € N at a point (zg, y9), if all partial derivations of P(X,Y") up

to order (m —1) vanish at (z¢,¥o). In our particular case (zg,yo) = (—1,—1)
this means

o ifm>1
Z(—l)’””’cu,u =0 and

JTR%
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o ifm>2

ZM(_I)”+VCN7V =0 and Z v(=1)**¢c,, =0 and
v v

o ifm>3

> ala—1)(=1)"""¢,, =0 and
v

Zuu(—l)‘”‘”cu,y =0 and Z v(v —1)(-1)**¢,, =0
v w,v

and so on.

Unfortunately, checking these equations directly for the general case is
impossible. But in the examples the ghost has the same singularity at this
point. Thus I believed, that the singularity has something to do with a
hidden connection between the polynomial and its ghost. Let us first write
down the above equations for polynomials of type “friendly ghost”. More
precisely, let P(X,Y) = [I;(1 4+ X“¥Y"t). In this case our equations are

e m>1
H(l + (—1)“*%) =0 and
i
om>2
D up(—1) Tt A+ (-1)% %) =0 and
k Ak
S k(=1 m o [T+ (—1%+%) =0
k j#k
and so on.

Obviously, the derivations vanish if for sufficiently many &k the sum u;+vyg
is odd, and luckily this is indeed the case (for groups of type By, Cy, Dy and
their natural representations). If the equivalence of the singularities is no
accident, this should be a hint for a deeper connection between the ghost
polynomial and the corresponding original polynomial.

One aspect that turned out for all groups of type By, C; and Dy, and
their natural representations was, that all monomials the ghost consists of
do also appear in the original polynomial. In particular, in the case of By
the ghost polynomial consists exactly of those monomials, that belong (in
the formula for the numerator polynomial) to the subgroup isomorphic to
Sy (proposition 4.3).
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As already mentioned the ghost polynomial is topologically equivalent
to the original polynomial at (—1,—1); due to our last observation this
means that in (—1,—1) the whole polynomial is equivalent to a part of
itself, that belongs to a subgroup of the Weyl group. Thus we constructed
the polynomials that belong to the other classes and it turned out, that all
of them also behave the same way in (—1,—1).

Finally, since in case of the natural representation the ghost polynomial
is a product of factors of type (1+monomial), I tried to find a similar de-
scription for the polynomials belonging to the other classes and found out,
that each of them can be described as a product of such factors as well, this
time translated by another monomial (proposition 3.11)

For the C; and Dy cases similar results were achieved, except that the
ghost polynomial is the sum of several class-polynomials then (proposition
4.6).

Due to these results the following questions arise:

e [s it possible to simplify the formula for the numerator polynomials
even further?

e Can the ghost zeta function be expressed as a p-adic integral?

e What is the meaning of the way the ghost construction divides the
set of dominant weights? It seems that the topological types of the
algebraic curves P, (X,Y) = 0 and P,,(X,Y) = 0 are essentially
different only if the shapes of the ghost polynomials P, (X,Y) and
P,,(X,Y) differ.

e Will the method of examining the singularities help to find symmetries
in Zeta functions associated to other than Chevalley groups as well?
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