© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of pentakis(diisobutylaminium) dichloride tris(tetrachloridoferrate(III)), C₄₀H₁₀₀Cl₁₄Fe₃N₅

Guido J. Reiss^{*}

Institut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany

Received May 01, 2013, accepted June 19, 2013, available online July 29, 2013, CCDC no. 1267/4014

Abstract

C₄₀H₁₀₀Cl₁₄Fe₃N₅, monoclinic, $P2_1/n$ (no. 14), a = 19.549(2) Å, b = 20.031(2) Å, c = 19.705(2) Å, $\beta = 117.388(4)^{\circ}$, V = 6851.3(12) Å³, Z = 4, $R_{gt}(F) = 0.0220$, $wR_{ref}(F^2) = 0.0529$, T = 100 K.

Table 1. Data collection and handling.

yellow blocks, size 0.25 0.30 0.38 mm
Mo K radiation (0.71073 Å)
12.02 cm^{-1}
Bruker APEX-II CCD, φ and ω
50°
59974, 12065
$I_{\rm obs} > 2 \sigma(I_{\rm obs}), 10851$
610
SHELX [12], DIAMOND [13], SADABS [14], SAINT [14]

Source of material

In a typical experiment $0.487 \text{ g} (3 \text{ mmol}) \text{ FeCl}_3$ was dissolved in concentrated hydrochloric acid supported by applying gentle heat. Diisobutylaminiumchloride (0.829 g; 5 mmol) was added to the warm solution and stirred receiving a yellow liquid. At the

bottom of the vessel block-shaped, yellow crystals grow within a few days by isothermal evaporation.

Experimental details

All hydrogen atoms were identified in difference syntheses. (The H atoms of the methyl groups were allowed to rotate with a fixed angle about the C–C bond (HFIX 137 option of the SHELX-2013 program [12]) with U_{iso} (H) set to $1.5U_{eq}$ (C). Hydrogen atoms belonging to CH₂ groups were placed in calculated positions and were included in the refinement using a riding model with U_{iso} (H) set to $1.2U_{eq}$ (C). The hydrogen atoms of the NH₂ groups were refined freely with their U_{iso} values set to $1.2U_{eq}$ (N).

Discussion

Recently, simple dialkylaminium salts attracted considerable attention due to their ferroelectric properties [1, 2]. Furthermore, salts containing the tetrachloridoferrate(III) anion are of particular interest for their magnetic behavior [3, 4]. This contribution is part of our ongoing interest in salts of the system dialkylaminium / halogenometallate [5-7]. The asymmetric unit of the title structure consists of five diisobutylaminium cations (*dibu*H⁺), two chloride and three tetrachloridoferrate(III) anions. The bond lengths within the $dibuH^+$ cations and the complex [FeCl₄]⁻ anions are in the expected ranges. The conformation parameters of the five crystallographically independent *dibu*H⁺ cations are partly extremely different to fulfill the needs of packing and hydrogen bonding. Strong to medium strong N-H…Cl hydrogen bonds (N···Cl distances range from 3.077(2) Å to 3.238(2) Å) connect the five *dibu*H⁺ cations with the two chloride anions and one of the [FeCl₄]⁻ anions to a moiety with the formal stoichiometry $\{(dibuH)_5Cl_2[FeCl_4]\}^{2+}$ as shown in the figure. Further N···Cl distances in the range of 3.277(2) Å to 3.426(2) Å may be interpreted as weak hydrogen bonds which connect all ions. The title structure is in excellent accord with related structures of double salts in the system $aminium^+/FeCl_4^-/Cl^-$. In these structures the chloride anions form the shortest hydrogen bonds whereas the [FeCl₄]⁻ anions form exclusively weak hydrogen bonds [8-11].

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	Ζ	$U_{\rm iso}$	
		0.010(1)	0.0000	0.440(4)		-
H(11)	4e	0.218(1)	0.2755(9)	0.443(1)	0.030	
H(12)	4e	0.215(1)	0.310(1)	0.380(1)	0.030	
H(1A)	4e	0.2890	0.2333	0.3586	0.035	
H(1B)	4e	0.2884	0.1886	0.4257	0.035	
H(2A)	4e	0.3586	0.3178	0.4497	0.039	
H(3A)	4e	0.4337	0.1906	0.4829	0.081	
H(3B)	4e	0.4770	0.2611	0.4994	0.081	
H(3C)	4e	0.4243	0.2373	0.4132	0.081	

^{*} e-mail: reissg@hhu.de

|--|

Table 2. continued.					Table 2. continued.						
Atom	Site	x	у	Ζ	$U_{\rm iso}$	Atom	Site	x	у	Ζ	$U_{\rm iso}$
H(4A)	4 <i>e</i>	0.4160	0.2912	0.5820	0.059	H(23A)	4 <i>e</i>	0.0803	0.3946	0.0973	0.061
H(4B)	4e	0 3677	0.2232	0 5627	0.059	H(23B)	4e	0.0548	0.4586	0.0425	0.061
H(4C)	4e	0.3242	0.2936	0.5468	0.059	H(23C)	4e	0.0033	0.4266	0.0701	0.061
H(5A)	4e	0.1413	0.2270	0.2975	0.036	H(24A)	4e	0.0311	0.5679	0.0948	0.095
H(5B)	4e	0.0995	0.2657	0.3391	0.036	H(24B)	4e	0.0548	0.5731	0.1840	0.095
H(6A)	4e	0 1708	0.1373	0.3820	0.037	H(24C)	4e	0.0192	0.5306	0.1284	0.095
H(7A)	4e	0.0113	0.1731	0.3195	0.070	H(41)	4e	0.782(1)	0.4632(9)	0.232(1)	0.019
H(7B)	4e	0.0438	0.0985	0 3393	0.070	H(42)	4e	0.773(1)	0.4108(9)	0.275(1)	0.019
H(7C)	4e	0.0492	0.1384	0.2716	0.070	H(25A)	4e	0.8246	0 3923	0.1666	0.024
H(8A)	40	0.1023	0.2135	0.4577	0.052	H(25B)	40	0.8242	0 3349	0.2228	0.024
H(8R)	40	0.1896	0.1880	0.4950	0.052	H(25B)	40	0.0242	0.4509	0.2220	0.027
H(8C)	40	0.1209	0.1356	0.4733	0.052	H(27A)	40	0.9620	0.3240	0.2414	0.056
H(21)	40	0.120°	0.1330 0.477(1)	0.4755	0.021	H(27R)	40	1 0215	0.3837	0.2814	0.056
H(22)	40	0.213(1) 0.223(1)	0.477(1)	0.407(1)	0.021	H(27C)	40	0.9547	0.3017	0.1956	0.056
H(QA)	40	0.223(1)	0.5240())	0.524(1)	0.021	$H(28\Delta)$	40	0.9320	0.3273	0.3552	0.055
H(0R)	40	0.3273	0.5079	0.3247	0.025	H(28R)	40	0.9320	0.3275	0.3332	0.055
H(10A)	40	0.3333	0.3277	0.5182	0.025	H(28C)	40	0.9012	0.3933	0.3757	0.055
H(11A)	40	0.3333	0.4234	0.0132	0.050	H(200)	40	0.5852	0.3593	0.1651	0.033
H(11R)	40	0.4270	0.4723	0.4913	0.064	H(20R)	40	0.6004	0.3392	0.1001	0.024
$\Pi(11D)$ $\Pi(11C)$	40	0.4089	0.4379	0.5757	0.004	H(29D)	40	0.0904	0.4221	0.1190	0.024
H(11C) H(12A)	40	0.4390	0.5175	0.5008	0.004	H(30A)	40	0.0303	0.4278	0.2274	0.028
$\Pi(12A)$ $\Pi(12D)$	40	0.3903	0.3074	0.6526	0.044	H(31A)	40	0.0809	0.5310	0.2280	0.047
$\Pi(12D)$	40	0.3999	0.4280	0.0320	0.044	$\Pi(31D)$	40	0.5955	0.5401	0.1847	0.047
$\Pi(12C)$	40	0.5102	0.4604	0.0232	0.044	$\Pi(31C)$	40	0.0423	0.3340	0.1307	0.047
H(13A)	40	0.1797	0.5646	0.3796	0.022	H(32A)	40	0.5105	0.4429	0.1197	0.048
H(13B)	40	0.1783	0.6094	0.4462	0.022	H(32B)	40	0.5481	0.3750	0.1097	0.048
H(14A)	40	0.0782	0.4983	0.3755	0.025	H(32C)	40	0.5500	0.4407	0.0644	0.048
H(15A)	40	0.0189	0.5781	0.3161	0.060	H(51)	40	0./15(1)	0.2221(9)	0.428(1)	0.022
H(15B)	40	0.0503	0.5946	0.2966	0.060	H(52)	40	0.732(1)	0.282(1)	0.400(1)	0.022
H(15C)	40	0.0400	0.6373	0.3600	0.060	H(33A)	40	0.6419	0.1897	0.2966	0.024
H(16A)	40	0.0967	0.5086	0.5012	0.055	H(33B)	40	0.6572	0.2646	0.2785	0.024
H(16B)	4 <i>e</i>	0.0105	0.5303	0.4432	0.055	H(34A)	4e	0.5928	0.3011	0.3543	0.027
H(16C)	4 <i>e</i>	0.0741	0.5860	0.48/8	0.055	H(35A)	4e	0.4688	0.2884	0.2448	0.042
H(31)	4e	0.20/(1)	0.4189(9)	0.166(1)	0.021	H(35B)	4e	0.5059	0.2365	0.2093	0.042
H(32)	4e	0.223(1)	0.4313(9)	0.241(1)	0.021	H(35C)	4e	0.5326	0.3130	0.2208	0.042
H(1/A)	4 <i>e</i>	0.3178	0.5063	0.2561	0.026	H(36A)	4e	0.5926	0.1982	0.4118	0.049
H(1/B)	4e	0.2954	0.4951	0.1681	0.026	H(36B)	4e	0.5406	0.1655	0.3299	0.049
H(18A)	4e	0.3412	0.3834	0.1956	0.028	H(36C)	4e	0.5056	0.2225	0.3617	0.049
H(19A)	4e	0.4493	0.4866	0.2784	0.052	H(37A)	4e	0.7884	0.2166	0.3387	0.027
H(19B)	4 <i>e</i>	0.4221	0.4677	0.1908	0.052	H(37B)	4 <i>e</i>	0.7834	0.1567	0.3899	0.027
H(18C)	4 <i>e</i>	0.4738	0.4166	0.2571	0.052	H(38A)	4e	0.8731	0.2753	0.4480	0.030
H(20A)	4 <i>e</i>	0.3291	0.3622	0.3067	0.055	H(39A)	4e	0.8674	0.1655	0.5376	0.052
H(20B)	4 <i>e</i>	0.3916	0.4184	0.3524	0.055	H(39B)	4e	0.8341	0.2384	0.5379	0.052
H(20C)	4e	0.4172	0.3516	0.3255	0.055	H(39C)	4e	0.9249	0.2276	0.5705	0.052
H(21A)	4e	0.1638	0.5269	0.1297	0.031	H(40A)	4e	0.9209	0.1973	0.3888	0.049
H(21B)	4 <i>e</i>	0.1802	0.5383	0.2163	0.031	H(40B)	4e	0.9258	0.1417	0.4492	0.049
H(22A)	4 <i>e</i>	0.0841	0.4571	0.1989	0.042	H(40C)	4 <i>e</i>	0.9796	0.2065	0.4775	0.049
Table 3.	Atomic co	ordinates and di	splacement pa	rameters (in	Å ²).						
Atom	Site	x	у	Ζ	U_{11}	U ₂₂		U_{33}	<i>U</i> ₁₂	U_{13}	U ₂₃
Fe(1)	4 <i>e</i>	0.22678(2	2) 0.47522	(2) 0.026	64(2) 0.0203	3(1) 0.01	59(1)	0.0163(1)	0.00069(9)	0.00930(9)	0.00057(9)
Fe(2)	40	0 704380	0 30121	(2) 0.651	31(2) = 0.0263	k(1) 0.01	67(1)	0.0202(1)	0.00060(9)	0.0126(1)	0.00080(0)

10(1)	70	0.22070(2)	0.77522(2)	0.02004(2)	0.0203(1)	0.0137(1)	0.0105(1)	0.0000())	0.00750(7)	0.00037(3)
Fe(2)	4 <i>e</i>	0.70438(2)	0.30121(2)	0.65131(2)	0.0263(1)	0.0167(1)	0.0202(1)	0.00060(9)	0.0126(1)	0.00080(9)
Fe(3)	4 <i>e</i>	0.18061(2)	0.34451(2)	0.62052(2)	0.0213(1)	0.0163(1)	0.0163(1)	0.00266(9)	0.0111(1)	0.00101(9)
Cl(13)	4e	0.20732(2)	0.41582(2)	0.34813(2)	0.0280(2)	0.0206(2)	0.0159(2)	0.0017(2)	0.0122(2)	0.0006(2)
Cl(14)	4 <i>e</i>	0.75236(2)	0.38768(2)	0.37703(2)	0.0250(2)	0.0195(2)	0.0184(2)	0.0010(2)	0.0109(2)	0.0004(2)
Cl(1)	4 <i>e</i>	0.35071(2)	0.48919(2)	0.01792(2)	0.0195(2)	0.0351(2)	0.0301(2)	0.0023(2)	0.0081(2)	0.0062(2)
Cl(2)	4 <i>e</i>	0.17584(2)	0.56667(2)	0.00860(3)	0.0290(2)	0.0209(2)	0.0347(2)	0.0019(2)	0.0158(2)	0.0063(2)
Cl(3)	4 <i>e</i>	0.17502(2)	0.45364(2)	0.14984(2)	0.0304(2)	0.0226(2)	0.0168(2)	0.0020(2)	0.0110(2)	0.0001(2)
Cl(4)	4 <i>e</i>	0.20615(3)	0.38935(2)	0.03069(2)	0.0426(2)	0.0218(2)	0.0209(2)	0.0055(2)	0.0173(2)	0.0008(2)
Cl(5)	4 <i>e</i>	0.63235(3)	0.38087(2)	0.65983(3)	0.0549(3)	0.0294(2)	0.0528(3)	0.0110(2)	0.0260(3)	0.0104(2)
Cl(6)	4 <i>e</i>	0.82522(3)	0.32075(3)	0.72945(3)	0.0280(3)	0.0741(4)	0.0426(3)	0.0089(2)	0.0064(2)	0.0156(3)
Cl(7)	4 <i>e</i>	0.67179(3)	0.20819(2)	0.68719(3)	0.0715(3)	0.0186(2)	0.0410(3)	0.0074(2)	0.0398(3)	0.0017(2)
Cl(8)	4 <i>e</i>	0.68542(3)	0.29492(2)	0.53287(3)	0.0620(3)	0.0254(2)	0.0267(2)	0.0042(2)	0.0275(2)	0.0019(2)
Cl(9)	4 <i>e</i>	0.29658(2)	0.30788(2)	0.69647(2)	0.0300(2)	0.0316(2)	0.0289(2)	0.0097(2)	0.0132(2)	0.0090(2)
Cl(10)	4 <i>e</i>	0.16745(2)	0.36148(2)	0.50398(2)	0.0323(2)	0.0217(2)	0.0195(2)	0.0010(2)	0.0166(2)	0.0000(2)
Cl(11)	4 <i>e</i>	0.09593(3)	0.27069(2)	0.61354(3)	0.0408(3)	0.0339(2)	0.0303(2)	0.0197(2)	0.0210(2)	0.0053(2)
Cl(12)	4e	0.15926(2)	0.44077(2)	0.65965(2)	0.0228(2)	0.0256(2)	0.0243(2)	0.0006(2)	0.0083(2)	0.0099(2)
N(1)	4 <i>e</i>	0.21678(9)	0.26919(7)	0.39878(9)	0.0352(8)	0.0211(8)	0.0273(8)	0.0049(6)	0.0217(7)	0.0053(6)
C(1)	4 <i>e</i>	0.2884(1)	0.23505(9)	0.4085(1)	0.039(1)	0.0254(9)	0.032(1)	0.0081(8)	0.0245(9)	0.0046(7)
C(2)	4e	0.3605(1)	0.27033(9)	0.4661(1)	0.035(1)	0.031(1)	0.040(1)	0.0081(8)	0.0246(9)	0.0096(8)
C(3)	4 <i>e</i>	0.4301(1)	0.2368(1)	0.4654(1)	0.042(1)	0.073(2)	0.058(2)	0.017(1)	0.033(1)	0.008(1)

Table 3. co	ntinued.
-------------	----------

Atom	Site	x	у	Ζ	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
C(4)	4 <i>e</i>	0.3678(1)	0.2695(1)	0.5466(1)	0.039(1)	0.045(1)	0.036(1)	0.0067(9)	0.0190(9)	0.0026(9)
C(5)	4 <i>e</i>	0.1427(1)	0.23529(9)	0.3477(1)	0.035(1)	0.032(1)	0.0267(9)	0.0024(8)	0.0167(8)	0.0027(8)
C(6)	4 <i>e</i>	0.1304(1)	0.16953(9)	0.3788(1)	0.038(1)	0.0233(9)	0.037(1)	0.0013(8)	0.0235(9)	0.0004(8)
C(7)	4 <i>e</i>	0.0517(1)	0.1424(1)	0.3223(1)	0.049(1)	0.045(1)	0.051(1)	0.012(1)	0.027(1)	0.011(1)
C(8)	4e	0.1363(1)	0.17734(9)	0.4583(1)	0.049(1)	0.027(1)	0.040(1)	0.0027(8)	0.030(1)	0.0042(8)
N(2)	4e	0.22515(7)	0.51701(7)	0.48283(8)	0.0172(7)	0.0176(7)	0.0191(7)	0.0005(5)	0.0086(6)	0.0003(6)
C(9)	4e	0.30678(9)	0.52533(8)	0.49726(9)	0.0147(8)	0.0252(9)	0.0224(8)	0.0034(6)	0.0089(7)	0.0022(7)
C(10)	4 <i>e</i>	0.35766(9)	0.46821(9)	0.5442(1)	0.0178(8)	0.0268(9)	0.0255(9)	0.0017(7)	0.0063(7)	0.0047(7)
C(11)	4e	0.4352(1)	0.4745(1)	0.5440(1)	0.0200(9)	0.072(2)	0.034(1)	0.0099(9)	0.0111(8)	0.002(1)
C(12)	4e	0.3669(1)	0.46577(9)	0.6251(1)	0.0214(9)	0.033(1)	0.0288(9)	0.0038(7)	0.0072(8)	0.0061(8)
C(13)	4e	0.16977(9)	0.56376(8)	0.42451(9)	0.0190(8)	0.0181(8)	0.0177(8)	0.0025(6)	0.0078(7)	0.0033(6)
C(14)	4e	0.08645(9)	0.54382(8)	0.39882(9)	0.0186(8)	0.0217(8)	0.0210(8)	0.0007(6)	0.0077(7)	0.0008(7)
C(15)	4e	0.0348(1)	0.5928(1)	0.3374(1)	0.0227(9)	0.063(1)	0.033(1)	0.0107(9)	0.0110(8)	0.023(1)
C(16)	4e	0.0651(1)	0.5420(1)	0.4634(1)	0.0195(9)	0.064(1)	0.027(1)	0.0047(9)	0.0109(8)	0.0137(9)
N(3)	4 <i>e</i>	0.22168(8)	0.44931(7)	0.20001(8)	0.0186(7)	0.0208(7)	0.0133(7)	0.0006(5)	0.0072(6)	0.0002(6)
C(17)	4 <i>e</i>	0.29974(9)	0.47266(8)	0.21468(9)	0.0198(8)	0.0235(8)	0.0201(8)	0.0047(7)	0.0077(7)	0.0029(7)
C(18)	4e	0.35990(9)	0.41796(9)	0.23677(9)	0.0191(8)	0.0307(9)	0.0208(8)	0.0012(7)	0.0089(7)	0.0008(7)
C(19)	4 <i>e</i>	0.4328(1)	0.4501(1)	0.2412(1)	0.0224(9)	0.048(1)	0.034(1)	0.0017(8)	0.0132(8)	0.0024(9)
C(20)	4e	0.3759(1)	0.3846(1)	0.3121(1)	0.027(1)	0.052(1)	0.033(1)	0.0120(9)	0.0160(9)	0.0141(9)
C(21)	4e	0.1641(1)	0.50476(9)	0.1748(1)	0.0269(9)	0.0267(9)	0.0205(8)	0.0091(7)	0.0087(7)	0.0003(7)
C(22)	4 <i>e</i>	0.0834(1)	0.4818(1)	0.1545(1)	0.0215(9)	0.062(1)	0.0204(9)	0.0122(9)	0.0094(7)	0.0094(9)
C(23)	4e	0.0509(1)	0.4364(1)	0.0849(1)	0.0196(9)	0.036(1)	0.050(1)	0.0042(8)	0.0035(9)	0.0008(9)
C(24)	4 <i>e</i>	0.0330(1)	0.5439(1)	0.1390(1)	0.034(1)	0.096(2)	0.043(1)	0.029(1)	0.003(1)	0.030(1)
N(4)	4e	0.77232(7)	0.42096(7)	0.23100(8)	0.0161(7)	0.0157(7)	0.0159(7)	0.0003(5)	0.0065(6)	0.0010(5)
C(25)	4e	0.83201(9)	0.38329(8)	0.21892(9)	0.0198(8)	0.0182(8)	0.0230(8)	0.0026(6)	0.0110(7)	0.0002(6)
C(26)	4 <i>e</i>	0.91444(9)	0.40120(8)	0.27580(9)	0.0181(8)	0.0213(8)	0.0267(9)	0.0021(6)	0.0100(7)	0.0033(7)
C(27)	4 <i>e</i>	0.9680(1)	0.3726(1)	0.2459(1)	0.024(1)	0.051(1)	0.040(1)	0.0087(9)	0.0175(9)	0.0060(9)
C(28)	4 <i>e</i>	0.9361(1)	0.3761(1)	0.3559(1)	0.0235(9)	0.057(1)	0.026(1)	0.0055(9)	0.0084(8)	0.0091(9)
C(29)	4e	0.69281(9)	0.40788(8)	0.16821(9)	0.0166(8)	0.0222(8)	0.0177(8)	0.0030(6)	0.0043(7)	0.0015(6)
C(30)	4 <i>e</i>	0.62939(9)	0.44354(9)	0.17869(9)	0.0152(8)	0.0330(9)	0.0191(8)	0.0018(7)	0.0067(7)	0.0029(7)
C(31)	4e	0.6394(1)	0.51902(9)	0.1824(1)	0.0212(9)	0.033(1)	0.035(1)	0.0064(7)	0.0088(8)	0.0063(8)
C(32)	4 <i>e</i>	0.55268(9)	0.4238(1)	0.1122(1)	0.0167(8)	0.040(1)	0.032(1)	0.0016(8)	0.0052(8)	0.0036(8)
N(5)	4 <i>e</i>	0.72197(7)	0.23886(7)	0.39098(8)	0.0176(7)	0.0205(7)	0.0162(7)	0.0022(6)	0.0073(6)	0.0013(6)
C(33)	4 <i>e</i>	0.65026(9)	0.23617(8)	0.31600(9)	0.0167(8)	0.0236(8)	0.0167(8)	0.0031(6)	0.0054(7)	0.0039(6)
C(34)	4e	0.57948(9)	0.25964(8)	0.32256(9)	0.0196(8)	0.0235(9)	0.0220(8)	0.0007(7)	0.0084(7)	0.0043(7)
C(35)	4 <i>e</i>	0.5159(1)	0.27584(9)	0.2421(1)	0.0226(9)	0.031(1)	0.0281(9)	0.0051(7)	0.0093(8)	0.0001(8)
C(36)	4 <i>e</i>	0.5521(1)	0.2068(1)	0.3598(1)	0.0236(9)	0.046(1)	0.031(1)	0.0020(8)	0.0135(8)	0.0036(8)
C(37)	4 <i>e</i>	0.78910(9)	0.20571(8)	0.38805(9)	0.0168(8)	0.0252(9)	0.0241(9)	0.0004(7)	0.0084(7)	0.0047(7)
C(38)	4 <i>e</i>	0.86642(9)	0.22631(9)	0.4528(1)	0.0192(8)	0.0269(9)	0.0254(9)	0.0013(7)	0.0074(7)	0.0012(7)
C(39)	4 <i>e</i>	0.8739(1)	0.2133(1)	0.5316(1)	0.0256(9)	0.046(1)	0.026(1)	0.0013(8)	0.0065(8)	0.0008(8)
C(40)	4 <i>e</i>	0.9287(1)	0.1897(1)	0.4410(1)	0.0183(9)	0.041(1)	0.033(1)	0.0024(8)	0.0072(8)	0.0032(8)

Acknowledgments. I thank M. van Megen for technical support. Furthermore, I acknowledge support for the publication fee by the Deutsche Forschungsgemeinschaft (DFG) and the open access publication fund of the Heinrich-Heine-Universität Düsseldorf.

References

- Fu, D.-W.; Zhang, W.; Cai, H.-L.; Ge, J.-Z.; Zhang, Y.; Xiong, R.-G.: Diisopropylammonium Chloride: A Ferroelectric Organic Salt with a High Phase Transition Temperature and Practical Utilization Level of Spontaneous Polarization. Adv. Mater. 23 (2011) 5658-5662.
- Fu, D.-W.; Cai, H.-L.; Liu, Y.; Ye, Q.; Zhang, W.; Zhang, Y.; Chen, X.-Y.; Giovannetti, G.; Capone, M.; Li, J.; Xiong, R.-G.: Diisopropylammonium Bromide Is a High-Temperature Molecular Ferroelectric Crystal. Science 339 (2013) 425-428.
- Kogelnig, D.; Stojanovic, A.; v.d. Kammer, F.; Terzieff, P.; Galanski, M.; Jirsa, F.; Krachler, R.; Hofmann, T.; Keppler, B. K.: Tetrachloroferrate containing ionic liquids: Magnetic- and aggregation behavior. Inorg. Chem. Commun. 13 (2010) 1485-1488.
- Herber, R. H.; Nowik, I.; Kostner, M. E.; Kahlenberg, V.; Kreutz, C.; Laus, G.; Schottenberger, H.: Mössbauer Spectroscopy and X-ray Diffraction Study of ⁵⁷Fe-Labeled Tetrachloroferrate(III)-Based Magnetic Ionic Liquids. Int. J. Mol. Sci. **12** (2011) 6397-6406.
- Reiss, G. J.: Bis(diisopropylammonium) hexafluorosilicate(IV). Acta Crystallogr. 54 (1998) 1489-1491.

- Reiss, G. J.: A reinvestigation of Wilm's salt, (NH₄)₄[RhCl₆]NO₃ -structure, spectroscopy and thermal analysis. Z. Kristallogr. 217 (2002) 550-556.
- Reiss, G. J.; Helmbrecht, C.: Bis(diisopropylammonium)hexachloridostannate(IV). Acta Crystallogr. E68 (2012) m1402-m1403.
- Reiss, G. J.: The double salt tris(diisopropylammonium) tetrachloridoferrate(III) dichloride: Synthesis, crystal structure, and vibrational spectra. J. Struct. Chem. 53 (2012) 403-407.
- Bäcker, T.; Mudring, A.-V.: Betaine Chloride-Betaine Tetrachloridoferrate(III) - An Ionic Liquid Related Crystal Structure Governed by the Pearson Concept. Crystals 2 (2012) 110-117.
- Hu, M.-L.; Chen, F.: Crystal structure of bis(2,2-biimidazol-1-ium) tetrachloroferrate(III)chloride, (C₆H₇N₄)₂[FeCl₄]Cl. Z. Kristallogr. NCS 221 (2006) 47-48.
- Wyrzykowski, D.; Sikorski, A.; Lis, T.; Konitz, A.; Warnke, Z.: Bis(2methylquinolinium) tetrachloroferrate(III) chloride. Acta Crystallogr. E62 (2006) m1737-m1739.
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
- Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 3.2i. Crystal Impact, Bonn, Germany 2012.
- Bruker: SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA 2008.