
Discrete Projection Methods

for Time-Dependent

Viscous Incompressible Fluid Flow

Simulations in Arbitrary Domains

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Jörg-Matthias Sautter

aus Tübingen

Düsseldorf, Juni 2004

Gedruckt mit der Genehmigung der Mathematisch-Naturwissen-

schaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Referentin: Professor Dr. Marlis Hochbruck

Korreferent: Professor Dr. Kristian Witsch

Tag der mündlichen Prüfung: 25. Juni 2004

Discrete Projection Methods

for Time-Dependent

Viscous Incompressible Fluid Flow

Simulations in Arbitrary Domains

by

Jörg-Matthias Sautter

A thesis submitted to the

Department of Mathematics and Sciences

of the University of Düsseldorf, Germany

Directed by

Professor Dr. Marlis Hochbruck

Düsseldorf, June 2004

Acknowledgements

Since this is the part of my thesis which is most likely to be read by non-mathemeticians

and mathematicians alike, I would like to take the opportunity to say a few words about

those people who have somehow helped me in their very own way during my studies and

while I was working on this thesis.

I would like to thank my advisor, Professor Dr. Marlis Hochbruck1, for her continuous

openness, her trust, the opportunities to participate in and develop different projects, the

wonderful cooperation in many different aspects, and especially for the large amount of

freedom and autonomy which was always given to me for my work. And I would like

to thank Professor Dr. Kristian Witsch1 for being on my committee and for reading this

thesis.

In addition, my sincere thanks goes to Professor Dr. Donald St. Mary2, Professor

Dr. Nathaniel Whitaker2, and Professor Dr. Steve F. McCormick3, who conveyed to me

the joy of mathematics through their own enthusiasm. It would never have come to this

dissertation without them. I would also like to thank Marion Frey, Damaris Schneider,

and especially Jacquelyn R. Deal for reading parts of this thesis and polishing my English.

A special thanks goes to my colleagues, especially to Berthold Nöckel, for continually

helping me solve various intricate Linux problems, for endless discussions about math

(anything from junior-high-level math to open mathematical questions), for countless coffee

breaks (which, of course, weren’t always actual breaks, but continuations of these math

discussions), and for conversations about the world in general.

The wonderful years I spent at UMass Amherst and at CU Boulder have, in retrospect,

been the most important to me and I am not sure whether I would have succeeded in writing

this thesis without having had these incredible experiences. I have ever since been grateful

for the hospitality I received from all the faculty and my friends there. As mentioned

above, the joy of mathematics conveyed to me especially by Nate and Steve motivated me

tremendously for and during all the years that followed. I should not forget to mention and

thank Kris Gaida, Jacquelyn R. Deal, and Dr. Thaddeus Pace who, with their friendship,

1University of Düsseldorf
2University of Massachusetts at Amherst
3University of Colorado at Boulder

v

vi

made my time in Amherst and Boulder unforgettable. It was Jackie who opened my eyes

by showing me how all this math stuff comes across to non-mathematicians. I also owe

thanks to my colleagues Paul Mullowney, Ben Bergen, and Dr. Luke Olson for digging me

out of an avalanche in Rocky Mountain National Park in 2000.

As already mentioned above, I am very grateful to Marlis for the large amount of

freedom and autonomy which was always given to me for my work. It was extraordinarily

interesting and at the same time fun to explore the unbelievably huge field of fluid dynamics

and its computational aspects. Following the footprints of others or just concentrating on

one single aspect would have been a more direct way, but certainly not the way I wanted

to go.

At the same time, Marlis gave me the opportunity to participate in several projects

which diversified, alternated, and supplemented the work on my thesis. The projects

on how chemical ingredients of hair dye affect hair, modeling the process of a detergent

dissolving in a liquid, or the project on computer tomography showed me that the gap

between industry and universities can be bridged. An issue sadly neglected at German

universities, but not so much in the United States.

Altogether, I can say that working on this thesis has not only been a wonderful expe-

rience for me but also a lot of fun; interrupted, however, by numerous doubtful moments

wondering how to make everything work. In 2003, I met an American at Camp I near the

Polish glacier of Aconcagua. He was just weeks away from getting his PhD in civil engi-

neering and couldn’t stand it anymore, took a long break, and left for Argentina. Spending

the evening with him and his friends up there, I wondered what the last weeks or months

before having finished this thesis would feel like to me. I am glad that everything worked

out very well and the progress after long evenings, late nights, and extensive weekends of

work mostly gave me new enthusiasm and energy for the next stages that were ahead of

me.

After having finished this work, I am in the fortunate position that I can finally show my

true friend Alex what triangles are good for. With a smile on his face, he has always asked

“Wia goat’s Deine Dreieckla?”4 and I’m not sure whether my answers on why triangles can

somehow be important could ever convince him. Thank you for the truly long friendship,

Alex! I am also grateful to my true friend Rainer and his wife Eve for their countless

invitations and their wonderful hospitality on my rides from Düsseldorf to Pfullingen and

back. How can I ever properly express my gratitude?

Finally, I apologize to all those I also should have mentioned explicitly but forgot to do

so. And last, but not least, I would like to thank my parents for their support during my

studies, and especially my brother, Björn, for his true friendship!

4“How are your triangles doing?” ©

Contents

Introduction 1

1 The Continuum Equations 7

1.1 Physics of fluids . 7

1.1.1 Classification of fluid flow . 8

1.1.2 Fluid dynamics: Then and now . 10

1.2 The Navier-Stokes equations . 11

1.2.1 Initial boundary value problem . 18

1.2.2 Existence and uniqueness . 21

1.3 Modeling fluid flow . 22

1.3.1 Other model equations . 22

1.3.2 Computational fluid dynamics . 23

1.4 Notational introduction . 23

2 Spatial Discretization 27

2.1 Preprocessing . 28

2.1.1 Definition of geometry . 29

2.1.2 Mesh generation . 30

2.1.3 Finite element spaces . 32

2.2 Weak form with Lagrange multipliers . 35

2.2.1 A common weak formulation and its approximation 35

2.2.2 A Lagrange multiplier ansatz . 37

2.2.3 The Navier-Stokes equations with Lagrange multipliers 38

2.2.4 The (constrained) weak form . 40

2.3 Approximation . 41

2.4 Discretized Problem . 48

2.4.1 Linearized Problem . 48

2.4.2 Elimination of constraints (nonlinear) 48

2.4.3 Elimination of constraints (linear) 50

2.5 Eliminated Navier-Stokes system . 51

vii

viii CONTENTS

2.5.1 Fully coupled mode . 51

2.5.2 Individual mode . 52

2.5.3 Decoupled mode . 54

2.5.4 Mixed finite elements . 55

2.6 Initial value . 55

3 Numerical Solution Strategies 57

3.1 Introduction . 57

3.1.1 A test problem . 58

3.1.2 Pressure modes . 59

3.1.3 Differentiation index . 61

3.2 Fully coupled methods . 62

3.3 Classical projection methods . 66

3.3.1 The pressure correction method - continuous approach 67

3.3.2 The pressure correction method - discrete approach 68

3.3.3 Concomitant pressure field . 70

3.3.4 Projection step: L2-projection . 71

3.4 Discrete multistep projection methods . 73

3.4.1 Multistep methods . 73

3.4.2 Velocity-pressure decoupling . 74

3.5 One-step methods vs. multistep methods 75

3.6 Discrete one-step projection methods . 76

3.6.1 Diagonally implicit Runge-Kutta methods 76

3.6.2 Velocity-pressure decoupling . 77

3.6.3 Projected velocity-pressure decoupling 78

3.7 The velocity and projection steps . 80

3.7.1 Treatment of the advection term 80

3.7.2 The discrete projection step . 81

3.7.3 A remark on robustness . 85

3.7.4 Treatment of the nonlinear subproblems 86

3.7.5 Treatment of the linear subproblems by AMG 86

3.7.6 Implementation . 90

4 Extensions 93

4.1 Fluid-structure interaction . 94

4.1.1 Initial boundary value problem . 94

4.1.2 (Basic) Algorithm . 95

4.2 Free boundary problems . 96

4.2.1 Boundary condition . 97

CONTENTS ix

4.2.2 Computation of surface tension . 97

4.2.3 (Basic) Algorithm . 99

5 Applications 101

5.1 Flow over a hemisphere . 101

5.2 A fluid-structure interaction problem . 105

5.3 A free boundary problem . 107

5.4 Flow over a 3D obstacle . 108

A Implementation 119

A.1 Modus operandi . 119

A.2 Natural and essential boundary conditions 120

A.3 Data structure . 121

A.4 Basic solver options . 125

B Weak formulation 126

B.1 Mass coefficient . 126

B.2 Pseudo total stress form . 126

B.3 Pseudo viscous stress form . 127

B.4 Viscous stress form . 127

B.5 Total stress form . 127

C Notation 129

C.1 Variables, constants, etc. 129

C.2 Operators . 130

C.3 Discretizations and finite element constructs 131

C.4 Matrices and vectors . 132

List of Tables 134

List of Figures 136

Bibliography 137

Introduction

The subject of the flow of fluids, and particularly of water, fascinates everybody. We can

all remember, as children, playing in the bathtub or in mud puddles with the strange stuff.

As we get older, we watch streams and waterfalls [. . .] and we are fascinated by this

substance which seems almost alive relative to solids. The behaviour of fluids is in many

ways very unexpected and interesting. [. . .] The efforts of a child trying to dam a small

stream flowing in the street and his surprise at the strange way the water works its way out

has its analog in our attempts over the years to understand the flow of fluids.

Richard P. Feynman5

Figure 1: A moving “obstacle” within incompressible fluid flow or an example of (real)

fluid-structure interaction (cf. chapters 4 and 5)

5[33] on page 40-1

1

2 CONTENTS

The Navier-Stokes equations for incompressible isothermal flow of a Newtonian fluid

are at the core of fluid dynamics. In their original form, derived by Navier in 1822 and

rederived by Stokes in 1845, they read

∂u

∂t
+ (u · ∇)u = ν∆u−∇p (1a)

∇ · u = 0 (1b)

in Ω for t ∈ [0, tfinal] where u is the fluid velocity, p the normalized pressure, and ν the

kinematic viscosity (see section 1.1.2). Provided that correct initial data and true physical

boundary conditions are given, they describe a wide range of hydrodynamical fluid flow

problems accurately as long as the continuum assumption is satisfied, which is the case

in all relevant simulations occurring in practice. In addition, the Navier-Stokes equations

(1) also play a major role in aerodynamics. This is due to the fact that the flow of a

compressible fluid exhibits incompressible behavior at Mach numbers below approximately

M = 0.3 (cf. [54]) and is therefore governed by (1) to a very high degree of accuracy.

In other words, we can have (nearly) incompressible flow of a compressible fluid. This

explains the importance of the incompressible Navier-Stokes equations in aerodynamics

and, of course, also in hydrodynamics.

Since analytical solutions are only available in very special cases, numerical algorithms

are essential for computing fluid flow simulations of complex, real-life applications with

sufficient accuracy and efficiency. This is known as computational fluid dynamics (CFD),

which belongs to the field of scientific computing.

Computational fluid dynamics numerically models a wide variety of fluid flow phenom-

ena. Simulation of fluid flows is of particular interest in mechanical engineering where

numerical simulations replace costly and time-consuming experiments with prototypes. In

some cases, simulation is the only way to obtain insight into a system’s behavior, either

because experiments are impossible, as is the case for climate modeling, or because mea-

surement instruments cannot be installed, as could be the case with a combustion chamber.

Computational fluid dynamics simulation has therefore become an important tool in the

design and development of a wide range of products.

Scientific computing is an interdisciplinary field for solving real-life problems from sci-

ence and technology on a computer. It is the interface between (real-life) applications,

computer science, and mathematics (cf. figure 2 and [106]). The notion numerical simula-

tion plays a decisive role in scientific computing. Following the methodology of scientific

computing, obtaining the numerical solution for the simulation of a real-life problem can be

divided into four stages. First, a precise formulation of the problem in terms of equations,

boundary conditions, initial condition and solution domain is needed. Next, the domain

is usually divided up into elements or cells to form a discrete grid on which the numerical

scheme operates. The third stage is the actual solution procedure, and in the final step,

CONTENTS 3

A

SC

M CS

Figure 2: Scientific Computing and its connections to Applications, Computer Science,

and Mathematics

any post-processing, such as visualizing the results, is performed.

In order to solve the Navier-Stokes equations numerically, they must be discretized in

space and time. Historically speaking, this was done for the first time in the 1950s with the

finite difference method. The implementation is rather straightforward, especially for sim-

ple geometries. However, for more complicated geometries, the implementation becomes

unwieldy and tedious very quickly. A decade later, another method for the discretization

in space became popular. The finite element method is by far more suited for complex

geometries than the finite difference method. It requires much more complex data struc-

tures, however, and higher order approximations are more difficult to achieve. Another

method with similar geometrical flexibility as the finite element method is the finite vol-

ume method. The most often stated advantage of the latter is that linear conservation laws

implied by the governing partial differential equations are always and inherently satisfied

locally (at control level) and thus globally (via summation). On the other hand, properties

of the original differential operator do not, in general, transfer to the finite volume dis-

cretized operator. The pros and cons concerning the two methods are discussed in [48], for

example. Last but not least, spectral methods became popular in the 1970s. Due to global

basis functions, these methods are suitable for high accuracy computations. In contrast,

spectral methods are generally not practical for complex geometries and are inferior to the

methods mentioned before.

From the large variety of existing time discretization schemes, fully coupled implicit

methods, continuous projection methods, and their discrete counterparts are three classes

of most common solution schemes. All have their pros and cons. The coupled approach

yields the best stability behavior but also entails the largest numerical effort. Projection

methods decouple velocity and pressure and reduce the problem to a sequence of simpler

problems.

There are many publications on how to solve the Navier-Stokes equations in rather

special cases (e.g., see [19, 59, 60, 65, 74, 87, 121], just to name a few). However, there

is currently no software package available that can handle any kind of fluid flow problem

in arbitrary domains. The difficulty arises from the huge field of different flow phenomena

4 CONTENTS

(such as, e.g., dependence on the Reynolds number) and the numerical problems arising

from simulations in complex domains, e.g. transient domains with coupled boundary condi-

tions. This work is an attempt to clarify the issue how to simulate a large class of physical

fluid flow problems and how to employ the appropriate mathematical tools.

This thesis presents new numerical simulation techniques for incompressible fluid flow

problems offering advantages for obtaining solutions to a wide variety of time-dependent

two- or three-dimensional viscous incompressible fluid dynamics problems. The techniques

are tailored to solve

%

(
∂u

∂t
+ (u · ∇)u

)
= ∇ ·

(
−pId×d + η(∇u+ (∇u)T)

)
+ b in Ω for t ∈ [0, tfinal]

∇ · u = 0 in Ω for t ∈ [0, tfinal]

for a given body force b, viscosity η, prescribed boundary values on ∂Ω, and initial data.

In particular, the presented techniques allow, in contrast to other existing solvers,

simulations of Newtonian and non-Newtonian incompressible fluid flow problems with or

without pressure modes in stationary and transient domains, possibly coupled with other

physical effects such as fluid-structure interaction (see figure 1 for a real fluid-structure

interaction example). This thesis describes the basic methodology, finite element spatial

discretization on possibly time-dependent meshes that are moved with the fluid, new time

integration schemes, and numerical comparisons of their efficiencies and applicability. In

addition, illustrations are included from a number of representative calculations. The

projection schemes may be regarded as extensions of the discrete versions (cf. [120, 121])

of the classical projection schemes of Chorin (cf. [14]) and Van Kan (cf. [73]) and variants

of those. It is known (see for example [120]) that the projection approach requires only

moderately smaller time steps than fully implicitly coupled schemes, but that the work to

obtain comparative results with discrete projection methods as solvers is much lower.

The main contributions of this work are the clarification and unification of different

formulations of the governing equations and their different weak forms and corresponding

physically relevant boundary conditions, their applicability, the implementation of the dif-

ferent forms via a Lagrange multiplier ansatz, the extension of classical projection meth-

ods to discrete multistep projection methods and discrete one-step projection methods,

the efficient solution of nonlinear and linear subproblems in the projection methods with

algebraic multigrid, and the extension of the simulation techniques to free boundary and

fluid-structure interaction problems. In particular, the efficiency of the methods or their in-

herent subproblems and their extensibility to multiphysics problems, such as fluid-structure

interaction or free boundary problems, is emphasized rather than theoretical properties of

the methods. This work is to be understood as a contribution and an attempt towards a

solver for fluid flow problems in non-trivial domains for a much larger class of fluid flow

problems compared to existing solvers. The programming has been done in Matlab r© 5.3

CONTENTS 5

and 6.5 and some routines from Femlab r© 2.3 have been used.

This thesis is organized as follows: The physics of fluids and appropriate corresponding

mathematical formulations are presented in chapter 1. It is described how the mathe-

matical modeling is strongly influenced by the underlying physical principles. Since any

modeling error spoils the results of the numerical simulation, it is particularly emphasized

how to obtain adequate mathematical models for the simulation of the physical phenomena

and explained which model should be used in certain situations. In chapter 2, the spa-

tial discretization of the incompressible Navier-Stokes equations in arbitrary domains via

the finite element method with Lagrange multipliers is described. In chapter 3, solution

strategies for the time discretization are presented. The discrete projection methods are

based on multistep methods and one-step methods and can be applied to problems with

or without pressure modes. The efficient solution of the nonlinear and linear subproblems

occurring in the velocity and pressure-correction step with algebraic multigrid is described.

In chapter 4, the simulation techniques are extended to transient domains coupled with

other physical phenomena, such as fluid-structure interaction problems and free boundary

problems. Finally, chapter 5 shows the applicability and performance of the methods or

their inherent subproblems in two- and three dimensional simulations.

Chapter 1

The Continuum Equations

1.1 Physics of fluids

Fluid mechanics is the branch of physical sciences concerned with how fluids behave at rest

or in motion. Fluid mechanics examines the behavior of liquids, gases, and – in the case

of very high energies – also plasmas. We have to understand fluid mechanics if we want

to model the red spot on Jupiter, measure the velocity in a tornado, design an airfoil, or

predict the behavior of subatomic particles in a betatron, to name but a few examples (see

also [47, 85]). Fluid mechanics plays a significant role in literally dozens of fields within

science and engineering: in meteorology, oceanography, and astronomy; for aerodynamics

propulsion, and combustion; for biofluids, in acoustics, and in particle physics.

The study of fluid mechanics is subdivided into statics and dynamics which in turn

are divided into incompressible and compressible flow (cf. table 1.1). Incompressible and

compressible flow are divided into real and ideal. Real is divided into laminar and turbulent.

And so on.

hydrostatics aerostatics hydrodynamics aerodynamics

pressure ✓ ✓ ✓ ✓

density ✓ ✓

velocity ✓ ✓

examples resting liquids resting gas moving liquid moving gas

Table 1.1: The fields of fluid mechanics

The foundational axioms of fluid dynamics are the conservation laws, specifically, con-

servation of mass, conservation of linear momentum, conservation of angular momentum,

conservation of energy, and the second law of thermodynamics (see also [103] and references

therein for details).

7

8 CHAPTER 1. THE CONTINUUM EQUATIONS

The central equations for fluid dynamics are the Navier-Stokes equations, which are

nonlinear partial differential equations describing fluid flow. In general, there are no closed-

form solutions to the Navier-Stokes equations. The equations can be simplified in a number

of ways. All simplifications make the equations easier in some sense, although not easy

to solve in most cases. Some of them allow appropriate fluid dynamics problems to be

solved in closed form. In order not to obtain only qualitative but also quantitative results,

computational fluid dynamics is the essential tool.

1.1.1 Classification of fluid flow

Fluids are a subset of the phases of matter and encompass liquids and gases and in the case

of very high energies also plasmas. They share the properties of not resisting deformation

and the ability to flow. In other words, the main property that distinguishes a fluid from a

solid is that a fluid cannot maintain shear stress for any length of time. If shear is applied

to a fluid, it will move under the shear.

This thesis considers fluids – be it liquid or gas – which are single phase (cf. [85]),

isothermal, purely viscous (cf. [54]), incompressible, and homogeneous, i.e. they exhibit

constant density in space as well as in time due to their incompressibility. Each separate

classification is important. This includes the large classes of Newtonian and non-Newtonian

fluids. The concepts of viscosity and incompressibility which play a central role in this work

will be explained briefly in the following. Furthermore, we suppose that the fluid may be

regarded as a “continuum” of matter (see also [4, 23, 53, 103]). The dynamics of such a

fluid, i.e. the fluid flow, is supposed to be laminar and instationary and is subject of the

numerical simulation techniques in the upcoming chapters. Of course, fluid flows whose

properties match those mentioned above sufficiently well may also be simulated with these

numerical techniques.

Purely viscous fluids

Viscosity is perhaps the single most important property of fluid dynamics (see also [47]).

This property of a fluid manifests as a resistance to flow and is measured by the tangential

force per unit area, τ (a.k.a. shear stress), of either of two horizontal planes at distance δ

apart, one of the planes moving with velocity vδ relative to the other, the space between

being occupied by the flowing fluid (cf. figure 1.1). This is due to the fact that the velocity

of a fluid at a surface always equals the surface’s velocity (cf. [33]).

For Newtonian fluids, the shear stress τ is proportionally related to the rate of change

of the shear strain ∂u1
∂x2

, i.e.

τ =
F

A
= η

vδ
δ

= η
∂u1
∂x2

(1.1)

1.1. PHYSICS OF FLUIDS 9

moving plate

stationary plate

x2

x1

vδ

u1(x2) τ

−τ
δ

Figure 1.1: Viscous drag between two parallel plates (plate viscometer)

where η is called the coefficient of dynamic viscosity, or more commonly, the viscosity. It

is constant for a fixed temperature and pressure and is independent of the velocity or the

rate of strain. Viscosity diminishes as temperature rises, often by about 2% per degree

Celsius; it also increases with an increase in pressure (cf. [47, 54]). The unit of the viscosity

is the Pascal second. The kinematic viscosity is defined as

ν =
η

%
. (1.2)

Fluids for which the linear, instantaneous relation (1.1) between the stress and the rates

of strain (or the velocity gradients) does not exist are referred to as non-Newtonian fluids.

These fluids may have extremely varied properties and the study of their characteristic

response to a given stress is subject of the science of rheology (cf. [54]). Non-Newtonian

fluids are divided into three main categories, namely purely viscous fluids, time-dependent

fluids, and viscoelastic fluids which again all divide into several subcategories (see [54, 47]

for example). Purely viscous fluids can be modeled by (1.1) where η depends, e.g. on the

velocity or the rate of strain (see also chapter 5 for an example).

Incompressible fluid flow

Incompressible fluids are fluids whose density is independent of the pressure. Whether to

use compressible or incompressible fluid dynamics depends on the Mach number of the

problem. As a rough guide, compressible effects can be ignored at Mach numbers below

approximately M = 0.3. Nearly all problems involving liquids are in this regime and

modeled as incompressible (cf. [54]). Even gases are often modeled as incompressible, al-

though gases and liquids have quite different characteristics from a thermodynamic point

of view. This is justified due to the fact that the pattern of the flow of air can be similar

to that of water (see also section 1.2). However, incompressible fluid is a thermodynamic

term whereas incompressible flow is a fluid mechanical term. We can have (nearly) incom-

pressible flow of a compressible fluid. This explains the importance of the incompressible

Navier-Stokes equations.

10 CHAPTER 1. THE CONTINUUM EQUATIONS

In the remainder of this work the focus point will be on the flow of a fluid which

possesses inertia and viscosity but which is effectively incompressible. This program might

appear to be modest, but it lies at the center of fluid mechanics (see also [49] and references

therein).

1.1.2 Fluid dynamics: Then and now

The first mathematical description of the motion of an ideal fluid was formulated by Euler

in 1755 (cf. [29]) as a statement of Newton’s second law of motion applied to a fluid

moving under an internal force known as the pressure gradient. The Euler equations

are important theoretically, but omit the effects of friction. To incorporate friction, in

1822 Navier derived (cf. [86]) the equations (1) of motion for a viscous fluid in which

he included the effects of attraction and repulsion between neighboring molecules while

at the same time assuming the continuum hypothesis. For Navier, the parameter ν was

simply a function of the molecular spacing to which he attached no particular physical

significance (cf. [11]). Finally, in 1845, Stokes rederived the viscous equations (1) and,

unlike Navier, made it clear that the parameter ν has an important physical meaning:

namely the viscosity, known today as kinematic viscosity, not to be confused with dynamic

viscosity.

Although the Navier-Stokes equations have been known for a long time, the issue of

existence and uniqueness of solutions is still an open problem and the concept of “blow-up”

for the Navier-Stokes equations has recently received considerable publicity in the context

of one of the million dollar prize problems offered by the Clay Mathematics Institute (see

also [11, 31] and section 1.2.2).

In the early simulation methods for viscous incompressible flow, vorticity and stream

function were the calculated variables, and in the late sixties, simulations in terms of

primitive variables, i.e. velocity and pressure, began. Pioneering work in this direction

was performed by Harlow and Welch [58] who introduced the staggered grid. Projection

methods were introduced through Chorin [14] and Temam [112, 113] within the finite

difference regime. In the late seventies, spectral methods became popular. They are

suitable for high accuracy computations, but only in very simple domains. In the eighties,

considerable interest was evinced for the techniques for handling flows in arbitrary shaped

geometries. On the one hand, methods for transforming complex geometries into simple

ones have been proposed (a discussion can be found, e.g., in [114]) and on the other hand,

automatic grid generation for arbitrary domains has been a major research area since. This

was the launch pad for finite element or finite volume based algorithms for the simulation

of realistic flow problems. It is nowadays a research area evoking more interest than ever

(see also chapters 2 and 3).

1.2. THE NAVIER-STOKES EQUATIONS 11

1.2 The Navier-Stokes equations

This section is meant to be a very brief introduction to the Navier-Stokes equations for

single phase, isothermal, purely viscous, and homogeneous fluids. It is by no means com-

plete. A rigorous derivation of the Navier-Stokes equations can be found in [53, 103] and

for the physics of hydrodynamics see [54], for example.

As mentioned in the previous section, fluids are substances which cannot resist grav-

itational forces at rest, such as gases, liquids, honey, and even glaciers or glass, just to

name a few. The goal is to describe the motion of a fluid in a two- or three-dimensional

region Ω̄ = Ω ∪ ∂Ω within some time interval [0, tfinal]. Let x ∈ Ω̄ be a point and consider

a particle of fluid1 moving through x at time t. When the model of particles of fluid is

applicable, the fluid can be treated as a continuous medium. Now, imagine a particle in

the fluid. Think about a particle of dust suspended in the fluid. This particle traverses a

well-defined trajectory (cf. figure 1.2). Following the motion of this particle corresponds

to a Lagrangian point of view. In the following, an Eulerian point of view will be taken.

Then, the motion of the fluid is completely determined by the quantities velocity, pressure,

and density,

u : Ω× [0, tfinal] → Rd

p : Ω× [0, tfinal] → R
% : Ω× [0, tfinal] → R

if we will assume that the temperature of the fluid is constant in space and time, i.e. the

fluid is isothermal.

trajectory of fluid particle

u(x, t)

x

Ω

Figure 1.2: Fluid particle moving in a region Ω̄

1A particle of fluid must not be confused with the molecule (or atom) that makes up the fluid.

12 CHAPTER 1. THE CONTINUUM EQUATIONS

Conservation of momentum

Let W ⊂ Ω and let Wt = {x(y, t) | y ∈ W} be the volume transported by the flow. Linear

momentum PWt
(t) of Wt at time t and the force FWt

(t) acting upon Wt are defined as

PW (t) =

∫

Wt

%(x, t)u(x, t) dV and FW (t) =

∫

∂Wt

s(n, x, t) dA+

∫

Wt

b dV

where s = s(n(x, t), x, t) is a surface force density and

b : Ω× [0, tfinal]→ Rd

is a given function called the body force density representing body forces, such as gravity

acting upon the fluid, for example. It can be shown that the principle of linear momentum

under weak assumptions requires the surface force density to be simple. The stress principle

is put to use through Cauchy’s fundamental lemma: there is a tensor σ(x, t), called the

Cauchy stress tensor, so that

s(n, x, t) = σ(x, t)n.

That is, the traction s does not depend arbitrarily on the normal n; it is in fact a linear

homogeneous function of it (cf. [103, 117]). It is shown in [103] that applying Newton’s

law

ṖWt
(t) = FWt

(t)

yields ∫

Wt

%

(
∂u

∂t
+ (u · ∇)u

)
dV =

∫

Wt

∇ · σ(x, t) dV +

∫

Wt

b dV ∀Wt ⊂ Ω

and hence

%

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · σ + b

with

σ = −pId×d + σviscous.

The viscous part of the stress tensor is determined by two constants η and λ which are

called the first and second coefficients of viscosity, respectively.

σviscous = η(∇u+ (∇u)T) + λ(∇ · u)Id×d. (1.3)

Both can be measured in an experiment. Roughly speaking, the first coefficient of viscosity,

a.k.a. dynamic viscosity, expresses what is generally understood by viscosity, i.e. the slow

movement of a fluid due to internal friction, while the second coefficient of viscosity is

related to the speed of sound in the fluid and thus related to the incompressibility of the

fluid (see also [54]). Therefore, the equation for conservation for momentum is

%

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · (−pId×d + η(∇u+ (∇u)T) +∇(λ(∇ · u)) + b. (1.4)

1.2. THE NAVIER-STOKES EQUATIONS 13

Conservation of mass

LetW ⊂ Ω and assume that for every t the fluid has a well-defined mass density distribution

%(x, t) : f(Ω̄)→ R+ for any deformation f of Ω̄. Then the mass of fluid in W at time t is

given by

m(Wt) =

∫

Wt

%(x, t) dV.

The assumption that % exists is a continuum assumption. It does not hold any longer if one

considers the molecular structure of matter. However, for most macroscopic phenomena

occurring in nature, it is believed that this assumption is extremely accurate. It is shown

in [103] that conservation of mass, i.e.

d

dt
m(Wt) = 0

for all W ⊂ Ω and for all t ∈ [0, tfinal], is equivalent to local conservation of mass,

∂%

∂t
+∇ · (%u) = 0. (1.5)

This is called the differential form of the law of conservation of mass. It is known as the

equation of continuity2.

Compressible Navier-Stokes equations

(1.4) and (1.5) resemble d+1 equations for d+2 unknowns u, p, and %. The last equation

required is the so-called equation of state, p = ϕ(%), which relates pressure and density.

While conservation of momentum and conservation of mass can be derived mathematically

from physical principles, the equation of state must be determined experimentally. Equa-

tions (1.4) and (1.5) and the equation of state yield the Navier-Stokes equations for an

isothermal compressible fluid,

%

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · (−pId×d + η(∇u+ (∇u)T) +∇(λ(∇ · u)) + b

∂%

∂t
+∇ · (%u) = 0

p = ϕ(%).

2Why is (1.5) called the continuity equation? We quote [4], ’It has been called the equation of continuity

for many years, although not for any evident reason’, and then from [90], ’The equation [. . .] has been

called the continuity equation to emphasize that the continuum assumptions (the assumption that density

and velocity may be defined at every point in space) are prerequisite.’ But he goes on to say, properly,

’The continuum assumption is, of course, a foundation for all the basic laws.’ Thus, we side with [4]. See

also [48, 103].

14 CHAPTER 1. THE CONTINUUM EQUATIONS

Incompressible Navier-Stokes equations

For incompressible homogeneous fluids, i.e. % = %0 = constant in space and time, the

equation of continuity (1.5) simplifies to ∇ · u = 0 and hence the viscous part of the stress

tensor simplifies to σviscous = η(∇u+(∇u)T). This yields the incompressible Navier-Stokes

equations in total stress form3,

%

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · σ + b = ∇ · (−pId×d + η(∇u+ (∇u)T) + b in Ω (1.6a)

∇ · u = 0 in Ω. (1.6b)

What makes this form of the incompressible Navier-Stokes equations so attractive is the

fact that boundary conditions at an outflow or free boundary can be implemented as

natural boundary conditions. It should be noted that the total stress form also allows for

varying viscosity, i.e. it is also suited to model flow of non-Newtonian purely viscous fluids.

Except for the essential non-linearity of the advection term (u · ∇)u and the implicit

presence of the velocity-pressure coupling through ∇ · u = 0, the Navier-Stokes equations

share many of the features of advection-diffusion equations (cf. [49]). While the additional

term ∇p appears to be a relevant physical quantity – a force per unit volume, i.e. accel-

eration in Newton’s second law – it is actually that plus a bit more; p also plays the role

of a Lagrange multiplier for the incompressibility constraint by adjusting itself instanta-

neously in time (related to the infinite speed of sound in an incompressible medium) and

everywhere in space so that ∇ · u = 0 everywhere (including the boundary) and for all

time.

Actually, it is the combination of nonlinearity and the pressure-velocity coupling that

makes the Navier-Stokes equations difficult (if not impossible, in general) to solve. If either

is absent, the equations are much simpler and are known to have solutions (cf. [38, 39, 40])

– the limiting cases being Stokes flow and the so-called Burgers equation, respectively.

Alternative forms

There are many equivalent ways to represent both the viscous terms and the advection

terms in the Navier-Stokes equations, many of which are based on the ever-present con-

straint equation ∇ · u = 0. These alternative representations, all of which are equivalent

in the continuum, lead to semi-discrete (continuous time, discrete space) equations that

are generally not equivalent – and which sometimes offer advantages over the conventional

form of the momentum equation presented above. The above form (1.6) is not the most

common form, although it is the most general form. We will briefly derive some alternative

forms of the incompressible Navier-Stokes equations, including their most common form.

3a.k.a. stress-divergence form

1.2. THE NAVIER-STOKES EQUATIONS 15

For a Newtonian fluid, i.e. a fluid of which the viscosity is constant, the viscosity term

can be reduced in the following way.

Proposition 1.1 Let u := Rd → Rd for d = 2 or d = 3. The divergence of the viscous

stress tensor (1.3) simplifies to

∇ · σviscous = ∇ · (η(∇u+ (∇u)T)) (1.7a)

= η(∆u+∇(∇ · u)) (1.7b)

= η∆u (1.7c)

if the viscosity η is constant in space and ∇ · u = 0.

The proof is just elementary calculus. Applying proposition 1.1 to (1.6) and dividing by %

yields the most common form of all velocity-pressure forms,

∂u

∂t
+ (u · ∇)u = −∇p′ + ν∆u+ b′

∇ · u = 0
(1.8)

with the normalized pressure p′ = p

%
, the kinematic viscosity ν as defined in (1.2), and

the normalized body force density b′ = b
%
. For the sake of simple notation, p is typically

used instead of p′ and b instead of b′. In contrast to the total stress form, the form (1.8)

is not suitable for non-Newtonian fluid flow and boundary conditions at an outflow or

free boundary are no longer natural boundary conditions. In fact, it leads to non-physical

outflow boundary conditions in conjunction with the finite element Galerkin method.

In contrast to many other publications (e.g. [8, 59, 65, 87, 120, 121]), we prefer (1.6)

to the simpler conventional form (1.8). The reasons are – as mentioned above – related to

the weak forms, natural boundary conditions, and non-Newtonian fluids. Only the total

stress form leads to natural boundary conditions that represent true physical forces (see

also [48]).

Besides modifying the viscous terms, also the advection term may be represented in an

alternative way. The divergence form (of advection) is given by

%

(
∂u

∂t
+∇ · (uuT)

)
= −∇p+ η∆u

since ∇ · (vuT) = (u · ∇)v. If this divergence form is combined with the total stress form,

the total divergence form

%
∂u

∂t
= ∇ · (σ − uuT)

is obtained, which offers the following advantages when discretized via the Galerkin finite

element method: it leads to the proper global momentum balance (cf. [48]), and its natural

boundary conditions can be used to implement boundary conditions of total momentum

flux, n · (%uuT − σ), if desired at a boundary.

16 CHAPTER 1. THE CONTINUUM EQUATIONS

Concomitant pressure field

Although initial conditions of the Navier-Stokes equations need only to be set for the

velocity, some numerical methods do require an initial value for the pressure. Since every

velocity field is accompanied by a pressure field, it is important to calculate the concomitant

pressure field. Taking the divergence of (1.6a) yields the first form of the pressure Poisson

equation,

∆p = ∇ ·
(
∇ · (η(∇u+ (∇u)T)) + b− (u · ∇)u− ∂u

∂t

)
. (1.9)

Proposition 1.2 Let u := Rd → Rd be sufficiently smooth and d = 2 or d = 3. Then

∆u = ∇(∇ · u)−∇×∇× u

and

∇ · (∇×∇× u) = 0

where the operators are defined as in appendix C.

The proof is again elementary calculus. Note that only for d = 3 “∇×” is the ordinary

curl operator. Invoking propositions 1.1 and 1.2, and equation (1.6b) to (1.9) yields the

simplified pressure Poisson equation

∆p = ∇ · (b− (u · ∇)u) .

The pressure Poisson equation which works best numerically, however, is that in which the

seemingly zero viscous term is retained:

∆p = ∇ ·
(
∇ · (η(∇u+ (∇u)T)) + b− (u · ∇)u

)
(1.10)

This equation is called the consistent pressure Poisson equation. Alternatively,

∆p = ∇ · (η∆u+ g − (u · ∇)u)

with the assumptions of proposition 1.1 and all the disadvantages mentioned for the most

common velocity-pressure form.

Although there are no boundary conditions for the pressure in the Navier-Stokes equa-

tions, we now need boundary conditions for the pressure in order to solve the pressure

Poisson equation. Multiplying the momentum equation (1.6a) by the unit normal vector

and invoking proposition 1.1 yields

∂p

∂n
= n ·

(
η∆u+ b− %

∂u

∂t
− %(u · ∇)u

)
(1.11)

1.2. THE NAVIER-STOKES EQUATIONS 17

if n · u is specified on the boundary, i.e. on ΓD, (see also [48, 93]). ΓD denotes that part of

the boundary where Dirichlet boundary conditions are specified and ΓN that part, where

Neumann boundary conditions are given. If the normal velocity is not specified on the

boundary, i.e. on ΓN , but a traction consition is given (see section 1.2.1), the boundary

condition for (1.10) is a Dirichlet condition,

p = ηn · (∇u+ (∇u)T)n− n · f

on ΓN . This implies that there is no hydrostatic pressure mode present (see also sec-

tions 1.2.1 and 3.1.2).

There are many other equivalent ways to represent the incompressible Navier-Stokes

equations, just as there are other forms of writing the advection and diffusion term in terms

of velocity and pressure. Additionaly, there are also other forms such as the velocity-

vorticity formulation or the stream function-vorticity formulation, just to name two of

them. For an exemplary overview see [48]. An evolution equation for the pressure may be

obtained by differentiating the pressure Poisson equation in time and using the equation

of motion to eliminate the time derivatives of the velocity in favor of the velocity and

pressure. The result is a Poisson equation for ∂p

∂t
to be solved subject to Neumann boundary

conditions that arise by differentiating equation (1.11) in time and interchanging the order

of the normal spatial derivative and temporal derivative on the left-hand side. According

to [96], this method appears to be untested in practice.

Similar flows

It should be noted that for any (numerical) simulation, the dimension of the problem is

crucial. Two flows are called similar if they have similar geometries (modulo some scaling)

and the same Reynolds number,

Re :=
LcUc

ν
=
%LcUc

η
,

where Lc and Uc denote a characteristic length and velocity of the flow. Solutions of the

Navier-Stokes equations do not only depend on initial and boundary values or the viscosity,

but also on the Reynolds number. Although, say, air and water are fluids with different

characteristics, their flows can be quite similar, if they have a similar Reynolds number.

For low Reynolds number flow, such as fluid flow in micro systems(LcUc small), a.k.a.

microfluidics, or flow with high viscosity (ν large), such as in artery flow simulations,

discrete Navier-Stokes equations become stiff and hence influence the performance of the

solvers.

18 CHAPTER 1. THE CONTINUUM EQUATIONS

1.2.1 Initial boundary value problem

In order to compute the motion of an incompressible homogeneous fluid, the Navier-Stokes

equations (1.6) need to be equipped with boundary conditions and an initial value. In the

first part of this section, boundary conditions required for the upcoming simulations will

be described. Requirements for initial values will be addressed in the second part.

Boundary conditions

The issue of boundary conditions for the Navier-Stokes equations is even larger than that of

how to write the Navier-Stokes equations themselves. Therefore, only boundary conditions

which will be required for numerical simulations in the following chapters are described.

For every component uα of the velocity, the boundary of the domain is split into two

parts, ∂Ω = ΓDα ∪ ΓNα , where ΓDα denotes that part of ∂Ω where uα is constrained by

Dirichlet boundary conditions and ΓNα denotes the part where uα suffices a Neumann

boundary condition. If ΓDα = ΓDβ and ΓNα = ΓNβ ∀α, β ∈ {1, . . . , d}, we define ΓD := ΓDα
and ΓN := ΓNα .

Particularly important is the following partitioning of the boundary of the domain:

Let Γin and Γout represent those parts of the boundary where fluid flows into the domain

according to some prescribed velocity profile and where fluid flows out of the domain

depending on some force acting upon the fluid at the outlet. And let Γsolid and Γfb be

those parts of the boundary where the fluid’s relative velocity to the wall is zero and where

the fluid’s boundary is free, i.e. depending on a surface tension acting upon the fluid on this

part of the boundary. We then have ΓN = Γout ∪ Γfb and ΓD = Γin ∪ Γsolid and, of course,

∂Ω = ΓN ∪ ΓD. The boundary conditions on these parts of the domain are described in

the following.

No-slip condition: The fact that fluid cannot penetrate into a solid requires that the

components of the velocity normal to the boundary surface should be equal for the fluid

and the solid. On the other hand, the viscosity stresses prevent any slipping of the fluid

relative to the solid surface. Therefore, the correct boundary condition for solid boundaries

is the no-slip condition:

u = uD on Γsolid ⊂ ΓD.

If ∂Ω = ΓD, then it is also required that
∫

∂Ω

n · uD = 0

since the fluid is incompressible, i.e.

0 =

∫

Ω

∇ · u dV =

∫

∂Ω

n · uD dA

1.2. THE NAVIER-STOKES EQUATIONS 19

by the divergence theorem. In this case, p is determined only up to an arbitrary additive

constant (called the hydrostatic pressure). Therefore, the restriction
∫

Ω

p dA = 0 for t ∈ [t0, tfinal]

is imposed.

Slip condition: For macroscale simulations, the fluid at a fluid-wall interface obeys a

no-slip condition. It is known, however, that the classical no-slip condition is violated for

some complex fluids including polymers, elastomers, and suspensions (cf. [42]). The slip

boundary condition for a fluid is given by

u · n = 0

τT
(
η(∇u+ (∇u)T − pId×d)

)
n = 0.

The first equation is a no-penetration condition and the second equation reflects the fact

that there is no tangential force exerted upon the fluid by the wall, i.e. the fluid is allowed

to slip along the wall. At boundaries where the fluid is subject to slip boundary conditions,

no boundary layers emerge. However, slip boundary conditions are more often applied to

fluid dynamics problems in literature than they actually should since simple Newtonian

fluids obey a no-slip condition on a solid wall and therefore generate boundary layers.

Nevertheless, slip conditions, although unphysical in many cases, are convenient since they

allow for simpler grids due to the absence of boundary layers.

Inflow condition: In principle, these boundary conditions are also no-slip boundary

conditions. In contrast to the no-penetration condition above, the normal part of the

inflow velocity is non-zero, in general.

u = uin on Γin ⊂ ΓD

Traction condition: In addition to specified velocity, another boundary condition that

is used in some branches of fluid mechanics is a force (per unit area) balance boundary

condition. This is referred to as specified traction and reads

σn = (η(∇u+ (∇u)T)− pId×d)n = ftraction on ΓN

where ftraction is the applied force (traction) on the boundary. This type of boundary

condition is the reason why we will prefer (1.6) to the other forms of the Navier-Stokes

equations described in this section. Only the total stress form leads to natural boundary

conditions that represent true (physical) forces.

20 CHAPTER 1. THE CONTINUUM EQUATIONS

The two most important cases of the traction condition are outflow boundary condi-

tions, ftraction = fout, and free boundary conditions, ftraction = fst. In the case of outflow

boundary conditions, ftraction is simply the force acting upon the fluid at the outlet. In the

case of a free boundary, the applied force on the boundary is the surface tension which is

proportional to the curvature of the boundary, i.e.

ftraction = fst = κ

(
1

r1
+

1

r2

)
n on Γf

where r1 and r2 are the boundary’s radii of curvature (see also chapter 4). In two di-

mensions, i.e. d = 2, we set r2 = ∞. κ is a constant depending on the fluid (see also

[1, 50]).

There is an ongoing discussion in literature about the correct outflow boundary con-

ditions for a simulation of fluid flow. The outflow boundary conditions above model true

physical forces and are therefore correct. Nevertheless, it might be difficult or even im-

possible to find the true physical force at the outflow boundary. This is a crucial point

regarding the quantitative accuracy of any numerical simulation in fluid dynamics involving

an outflow boundary.

In addition to the boundary conditions mentioned above, there are many others. For

other outflow boundary conditions see [19, 20, 120, 121], for example. Straight-out condi-

tions, neutral conditions, etc., are not considered in this work.

Inflow and no-slip boundary conditions are also referred to as constraints, Dirichlet,

or essential boundary conditions. All traction boundary conditions are implemented as

generalized Neumann boundary conditions (see section 2.2.2).

Initial data

For the velocity-pressure formulation (1.6), initial data for the velocity is all that is needed.

The initial velocity field u0 is supposed to be divergence-free and comply with essential

boundary conditions (cf. [48]), i.e.

∇ · u0 = 0 in Ω

n · u0 = n · uD on ΓD.

1.2. THE NAVIER-STOKES EQUATIONS 21

An initial boundary value problem

The following initial boundary value problem for incompressible flow is subject to the

upcoming numerical techniques and simulations if not stated otherwise.

%

(
∂u

∂t
+ (u · ∇)u

)
= ∇ ·

(
−pId×d + η(∇u+ (∇u)T)

)
+ b in Ω for t ∈ [0, tfinal] (1.12a)

∇ · u = 0 in Ω for t ∈ [0, tfinal] (1.12b)

u = uin on Γin ⊂ ΓD (1.12c)

u = uD on Γsolid ⊂ ΓD (1.12d)

fst = (η(∇u+ (∇u)T)− pId×d)n on Γfb ⊂ ΓN (1.12e)

fout = (η(∇u+ (∇u)T)− pId×d)n on Γout ⊂ ΓN (1.12f)

u = u0 in Ω at t = 0 (1.12g)

∇ · u0 = 0 in Ω (1.12h)

n · u0 = n · uD on ΓD (1.12i)

It is important to note that the Navier-Stokes equations require no a priori boundary con-

ditions on the pressure. Velocity boundary conditions applied to the momentum equations

are sufficient to allow the determination of both velocity and pressure.

As mentioned earlier, solutions of this initial boundary value problem do not only

depend on initial data and boundary values or the viscosity, but also on the Reynolds

number. In viscous fluids governed by the Navier-Stokes equations, the solution may show

singularities when the domain contains vertices, the boundary values are not continuous,

or the type of boundary condition changes between Dirichlet and Neumann.

1.2.2 Existence and uniqueness

The Navier-Stokes equations (1.8) without body forces in two dimensions with Dirichlet

boundary conditions possess a unique solution (up to an additive constant for the pressure)

for all t > 0. In three dimensions, uniqueness of the solution can only be shown for some

interval [0, tfinal] (cf. [80]).

The effects of nonlinearity in the fluid equations are strikingly different in two dimen-

sions and three dimensions. In fact, existence and uniqueness of regular solutions for all

time for the two-dimensional Navier-Stokes equations are classical results by Leray 1933,

[83], whereas the analog in three dimensions is a Clay prize problem (cf. [31]). Kato, [75],

has proven the existence of a global unique regular solution in three dimensions under the

restrictive assumption of small initial data.

One crucial difference between two and three dimensions is the constraint that equations

22 CHAPTER 1. THE CONTINUUM EQUATIONS

(1.8) impose in two dimensions on the evolution of vorticity, ω = ∇× u,

Dω

Dt
=
∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ν∆ω. (1.13)

In two dimensions, the vorticity is a scalar field multiplied by a unit vector perpendicular to

the two dimensional plane of motion. Hence, the term (ω ·∇)u vanishes in two dimensions,

and although (1.13) remains nonlinear, it is simpler than the three dimensional equation.

Thus, in two dimensions, the vorticity is a scalar quantity that is conserved along the

trajectories of the fluid particles (cf. [11, 21]).

According to Fefferman (cf. [31]), “Fluids are important and hard to understand. There

are many fascinating problems and conjectures about the behavior of the Euler and Navier-

Stokes equations. Since we don’t even know whether these solutions exist, our understand-

ing is at a very primitive level. Standard methods from PDE appear inadequate to settle

the problem. Instead, we probably need some deep, new ideas.”

The importance of computational fluid dynamics is mainly due to the fact that in

general the solution cannot be found analytically. Only numerical approximations are

possible (assuming that there is a solution at all); in particular for all real-life problems

(cf. [50]). Therefore, the development of accurate and efficient numerical algorithms is

crucial!

1.3 Modeling fluid flow

1.3.1 Other model equations

In principle, the Navier-Stokes equations describe a wide range of flows in continuum

mechanics: the motion of incompressible or compressible, Newtonian or non-Newtonian

flows are governed by the Navier-Stokes equations. However, it is so far hardly possible

to compute instationary flows with acceptable accuracy in an acceptable amount of time

when simulating real-life phenomena. The usual approach is to use approximations either

at the modeling level or at the algorithmic level or at both levels.

There is a large number of simpler approximations to specific flow problems (cf. [88]).

These equations of motion are usually obtained by modification of the Navier-Stokes equa-

tions. For example, the Stokes equations describe flow at very low Reynolds numbers,

such that inertial forces can be neglected when compared to viscous forces. The standard

equations of inviscid flow are the Euler equations. Very often, especially in computational

fluid dynamics, the Euler equations are used to model flow far from the body and the

boundary layer equations (cf. [104]) for flow close to the body.

Turbulent flows are typically modeled by the Reynolds equations or the κ-ε-model or

large-eddy simulations (see also [50, 88, 96]).

1.4. NOTATIONAL INTRODUCTION 23

Other simplified equations are the Boussinesq approximation, which neglects compress-

ibility except to calculate buoyancy forces, the Hele-Shaw equation (see also [124, 125]),

the shallow water equation (cf. [67]), and the potential equation (cf. [89]), to name only a

few. Examples and visualizations of such special fluid flows which can be modeled by the

above equations can be found in [27].

1.3.2 Computational fluid dynamics

Simplifications at the modeling level need to be handled with great care. Any error intro-

duced by such a simplification will be inherent to the whole simulation, regardless of the

numerical methods applied.

Even nowadays, numerical simulation of flow for the design of aircrafts is typically

not computed by entirely solving the full Navier-Stokes equations but by solving different

equations (from the ones mentioned above) in different regions of the flow (cf. [71]). Usually,

the Euler equations or the potential equation are used to simulate the free flow sufficiently

far away from the aircraft. The flow near the wings and body is simulated by solving

the boundary layer equations. However, boundary layer separation can only be simulated

sufficiently accurate by solving the Navier-Stokes equations (cf. [54, 89]).

Solving the Navier-Stokes equations sufficiently accurate is therefore of great impor-

tance in many fields of science and engineering. The need for efficient numerical algorithms

is as important as the need for increasing computer capacity.

From the perspective of hydrodynamics, CFD complements fluid dynamics theory and

experiments (cf. figure 1.3). From the perspective of applications, CFD is the only tool

which yields reliable and quantitative predictions of fluid flow.

CFD

Experiment Theory

Figure 1.3: CFD complements fluid dynamics theory and experiments

1.4 Notational introduction

From a mathematical point of view, the area occupied by a fluid is referred to as the spatial

domain, or just domain, which may be stationary or transient. In general, this is only an

approximation to the area occupied by the fluid in reality.

24 CHAPTER 1. THE CONTINUUM EQUATIONS

When performing a simulation, the physical domain, i.e. the area occupied by the real

fluid, is represented (or possibly sometimes approximated) by some kind of geometry model

via boundary modeling. The geometry model is then approximated by a (mathematical)

spatial domain, e.g., via finite element triangularization, possibly using isoparametric el-

ements. Figure 1.4 shows this approximation process, where a three-dimensional flow is

modeled in two dimensions using isoparametric and affine finite elements. The expressions

spatial domain, geometry and geometry model will be used equivalently, if there is no

danger of confusion.

(a) 3D physical domain

−2 0 2 4

0

1

2

3

1

2

3

4

5

6

7

8

(b) 2D geometry model

0 0.5 1

−1

−0.5

0

(c) Section of mathematical do-

main near boundary element 7

Figure 1.4: Approximation of the spatial domain

The spatial dimension is denoted by d with d = 2 or d = 3. In some cases it is also

denoted by sdim. Space coordinates are denoted by xα where α = 1, 2, . . . , d. Several

continuous quantities4 and discrete quantities will be needed to describe a fluid flow nu-

merically, most notably, velocity and pressure and their discrete analogons. For discrete

quantities, we distinguish between constrained and eliminated solution vectors. Notation

of typical fluid dynamics quantities is as shown in table 1.2, where the α-index serves as a

spatial index.

discrete continuum

constrained eliminated

velocity uh ue u

velocity in xα-direction uαh uαe uα
pressure ph pe p

solution vector yh ye y

Table 1.2: Notation of major discrete and continuous variables and quantities.

4In the sense of the hypothesis of continuity for fluids (see also [15, 47, 81, 103]).

1.4. NOTATIONAL INTRODUCTION 25

As a rule of thumb: Greek indices are spatial indices, i.e. α = 1, . . . , d, for example.

Latin indices are discretization indices or some other kind of indices, i.e. i = 1, . . . , n for

some n ∈ N, for example. Therefore, uhi is the ith component of the discrete velocity

vector uh which is an approximation to the velocity u due to spatial discretization via the

Galerkin finite element method. And uαhj is the jth component of the discrete velocity

vector uαh which is an approximation to the velocity uα in xα-direction. In some cases, if

there is no confusion, indices may be omitted.

The number of (constrained) degrees of freedom, i.e. the total number of (constrained)

velocity and pressure unknowns is denoted by NDOF. The number of degrees of freedom

minus those determined by essential boundary conditions is denoted by NDOFe. A complete

list can be found in appendix C.3.

Chapter 2

Spatial Discretization

There are several spatial discretization approaches used for the numerical solution of the

incompressible Navier-Stokes equations. Most prominent are the finite difference method,

the pseudospectral method, the finite volume method, and the finite element method.

The finite difference method is the oldest method for the numerical solution of par-

tial differential equations, believed to have been introduced by Euler in the 18th century

(cf. [32]). It is also the first spatial discretization method used in computational fluid

dynamics (see for example [12, 13, 14, 58] or references in [50]). On structured grids,

the finite difference method is simple and effective. Accurate, i.e. higher order, approx-

imations can be easily achieved, especially on regular grids (cf. [36]). In principle, the

finite difference method can be used for the spatial discretization of complex domains (cf.

[51, 50, 68]), however this is cumbersome, especially the correct treatment of Neumann

boundary conditions.

The spectral method is best suited for very high spatial accuracy. It is however not

really flexible and difficult to apply to complicated domains (cf. [95]), and therefore rarely

used for numerical simulations of realistic fluid flow phenomena.

According to [48], the finite volume method has probably been (and still is) the most

popular spatial discretization method in computational fluid dynamics. It can accommo-

date any type of grid, so it is suitable for complex geometries. The method is conservative

by construction, i.e. linear conservation laws are inherently satisfied (cf. [122]). According

to [32], the finite volume approach is perhaps the simplest to understand and to imple-

ment. All terms that need to be approximated have physical meaning, which is why it is

so popular with engineers. However, properties of the original differential operators do, in

general, not transfer to the finite volume discretized operators.

Another popular discretization scheme in computational fluid dynamics is the (Galer-

kin) finite element method. It is very well suited for unstructured grids, i.e. complex

geometries can be handled easily. Its main advantages are the inherent ability to easily and

accurately apply the appropriate physical boundary conditions even on complex domains

27

28 CHAPTER 2. SPATIAL DISCRETIZATION

– especially the Neumann type, and especially at outflow regions – is a real asset. Global

physical linear conservation laws are either satisfied automatically or can be made to do

so with a slight change in formulation. If the original differential operator is self-adjoint,

so too are the discretizations of the operator via the finite element method. As mentioned

above, this is, in general, not true for the finite volume method (see also [48]).

A principle drawback, which is shared by any method that uses unstructured grids, is

that the matrices of the linearized equations are not as well structured as those for regular

grids, thus making them more difficult to solve. But, as we will see shortly, there is no way

to find a remedy if a realistic simulation is the objective.

Numerical solutions of fluid flow problems are only approximate solutions which always

include at least three kinds of systematic errors (see also [32]):

• Modeling errors, which are defined as the difference between the actual flow and the

exact solution of the mathematical model,

• Discretization errors, defined as the difference between the exact solution of the

continuous equations and the exact solution of the algebraic systems of the equations

obtained by discretizing these equations, and

• Convergence errors, defined as the difference between the iterative and exact solution

of the algebraic equations systems.

It is important to be aware of the existence of these errors, and even more to try to distin-

guish one from another. Otherwise it will be hardly possible to judge the actual quality of a

numerical simulation. Since any modeling error will be inherent to the numerical solution,

it is important to minimize the modeling error. Major considerations are directed to the

governing equations (cf. chapter 1) and the correct representation of the spatial domain.

Arbitrarily shaped geometries are clearly essential. In principle, it is possible to use

finite differences on complicated geometries. It is shown in [50, 115] how to treat curved

boundaries and interfaces without disturbing the overall regularity of grids. Nevertheless,

by far the most flexible and accurate approach is obtained by utilizing unstructured grids,

which advises the use of the finite volume or finite element method. For the reasons

mentioned above, we use the Galerkin finite element method with Lagrange multipliers to

discretize the incompressible Navier-Stokes equations in space, which is described in the

remainder of this chapter.

2.1 Preprocessing

The finite element method is a technique for obtaining approximate solutions of weak forms,

i.e. it is a method of discretizing the weak form with the result that the underlying function

2.1. PREPROCESSING 29

spaces become finite dimensional – and thus amenable to representation via computer.

The approximate solution is represented as an expansion in a convenient (and finite) set

of linearly-independent local basis functions (piecewise-polynomials) with coefficients to

be determined. The finite element method comprises approximations at several stages,

mainly approximation of the domain, for example by a polygonal or Bézier shaped domain,

numerical evaluation of integrals, and the finite element spaces themselves. This section

describes the preprocessing required in order to set up the finite element method, i.e.

definition of geometry, mesh generation, and the choice of finite element spaces.

2.1.1 Definition of geometry

For simplicity, we suppose that the physical domain Ω ∈ Rd is connected. For a non-

connected region, every connected subregion can be treated separately. To define the

spatial domain, we use the concept of boundary modeling, which is the process of defining

a region in terms of its boundary. Another popular concept, especially in computer aided

design, is solid modeling (cf. [19]). However, it turns out that boundary modeling is most

general although sometimes cumbersome.

The partitioning of the boundary of a two-dimensional domain is now described (the

extension to d = 3 is similar). We partition ∂Ω into NΓ boundary segments Γi, so that

∂Ω =

NΓ⋃

i=1

Γi

and

Γi ⊂ ΓD1 ∩ ΓD2 or Γi ⊂ ΓN1 ∩ ΓD2 or Γi ⊂ ΓD1 ∩ ΓN2 or Γi ⊂ ΓN1 ∩ ΓN2 . (2.1)

ΓDα denotes that part of the boundary ∂Ω where the solution uα is constrained by essential

boundary conditions. The part of the boundary where uα suffices a natural boundary

condition is denoted by ΓNα (see also section 1.2.1). In particular, this means that the

type of boundary conditions for the solution components u1, . . . , ud do not change on a

boundary segment. Of course, the boundary conditions themselves, whether of Dirichlet

or Neumann type, may (and in general will) depend on space and time.

Each boundary segment Γi is then represented by a parameterized curve

gi : [s1i, s2i]→ R2, s1i, s2i ∈ R.

For most applications occurring in practice, a sufficient and practical way of describing

the boundary segments is by means of piecewise Bézier curves which has been done for all

of the following numerical simulations. Any other curve describing the boundary is also

possible, of course. For d = 3, (2.1) is extended analogously and each Γi is represented by

a parameterized surface gi.

30 CHAPTER 2. SPATIAL DISCRETIZATION

2.1.2 Mesh generation

Triangularization

Let the spatial domain Ω ⊂ Rd be a connected polygonal or polyhedral region as described

in the previous section. In practice it is enough if the physical domain can be approximated

sufficiently well by a polygonal or polyhedral region Ω. We start by breaking up the domain

Ω̄ into a set of N∆ triangles or tetrahedrons (d-simplices), Th = {∆i}N∆i=1. The partition

is assumed to be non-degenerate so that the intersection of two triangles is a point or an

edge of the triangles and analogously in three dimensions. In particular, the partition is

supposed to be conformal:

Definition 2.1 A triangular (tetrahedral) decomposition Th = {∆i}N∆i=1 of Ω̄ ∈ Rd with N∆

closed triangles (tetrahedrons) ∆i is called conformal triangularization1 (tetrahedroniza-

tion1) if

1. Ω̄ =
⋃

∆i∈Th
∆i

2. int(∆i) ∩ int(∆j) = ∅ if i 6= j

3. ∆i ∩∆j 6= ∅ =⇒ ∆i ∩∆j is either

• a single point or a joint edge (d = 2)

• a single point or a joint edge or a joint side (d = 3)

of both ∆i and ∆j.

In addition, the partition of two triangles is assumed to satisfy a minimum angle condition,

i.e. each angle in the triangularization is greater than or equal to some fixed angle θ0. This

implies that the diameters of neighboring triangles are roughly the same and only a fixed

number (independent of the diameter) of triangles can meet at any point.

Mesh generation

The simplest finite element tesselations are structured meshes, i.e. meshes with regular dis-

tribution of nodes according to some pattern. The pattern may change near the boundary

(see also [77] and references therein). Structured meshes permit the efficient solution of

algebraic systems because matrices of linearized equations are also structured. For real-life

problems with complex geometries, which require automatic meshing, this approach is not

useful or not even doable.

1Both, triangularization and tetrahedronization, are sometimes referred to as tesselation in literature.

2.1. PREPROCESSING 31

For complicated geometries, unstructured grids need to be employed in order to min-

imize the spatial discretization error. In this work, Femlab r©’s automatic grid generator

is used to generate unstructured grids. The grid generator is based on the Delaunay al-

gorithm (cf. [16]). In two dimensions, the Delaunay triangularization of the convex hull

Ḡ of a given set of isolated points excels all other possible triangularizations of Ḡ (with

the same boundary nodes) due to the fact that its minimal interior angle is maximal. In

three dimensions, however, this is not true anymore. Another feature of the Delaunay

triangularization in two dimensions is that the sum of the two angles opposite a common

side of two triangles is bounded by π. This is a requirement for maximum principles for

finite element methods. See [41, 77] for details.

The mesh data is stored in a node point matrix

P = (p1, . . . , pNN) ∈ Rd×NN

which contains the node points pi, i = 1, . . . , NN , of the mesh; a boundary element matrix

E ∈ R7×NB (2.2)

which contains, among other quantities, indices of the starting and ending node points of

every boundary element; and an element matrix

T ∈ R(d+2)×N∆ (2.3)

which contains indices of the node points defining the vertices of the mesh elements and

their subdomain number. The element matrix (2.3) defines a mapping which assigns locally

numbered vertices p∆i1 , . . . , p∆id+1 ∈ Rd to the vertices of every d-simplex ∆i defined by the

grid points of the mesh.

Tesselation quality measures

Assessment of mesh quality is an important requirement in the selection of a finite element

mesh. It is well known that badly shaped finite elements can lead to inaccurate and unstable

approximations. If the mesh’s quality is poor, the simulation is spoiled. Typically, a planar

triangularization is usually required to satisfy a minimal angle condition (see [6, 107, 108]),

although this has been shown in [2] to be too restrictive and can be replaced by a condition

which limits the maximal allowable angle. More recently, several measures of element

quality have been proposed (cf. [3, 28, 34, 37, 91]) based on the dimensionless rations of

various geometric parameters. A comparison of quality measures can be found in [92]. The

following quality measures 0 ≤ q∆ ≤ 1 are used in this work:

q∆ = min
∆i∈Th

4
√
3
A∆(∆i)∑3

j=1 h
2
j

and q∆ = min
∆i∈Th

216√
3

V∆(∆i)

(
∑6

j=1 h
2
j)
3
2

32 CHAPTER 2. SPATIAL DISCRETIZATION

for d = 2 and d = 3, respectively, where A∆(∆i) and V∆(∆i) denote the area and volume,

respectively, and hj the side lengths of an element ∆i. Optimal quality is obtained for

equilateral elements, i.e. q∆ = 1, and degenerated elements yield q∆ = 0. If q∆ > 0.6 the

mesh may be considered to be of acceptable quality. If not, the mesh needs to be smoothed

and optimized (see also [19, 77]).

2.1.3 Finite element spaces

Throughout this work, the solution components are approximated by C0-elements. The

resulting matrices are sparse and the accuracy for real-life problems is in general sufficient.

Cn-elements yield higher spatial accuracy but at the same time generate less sparse matrices

which makes them less favorable for efficient numerical simulations. On the other side of

the spectrum, discontinuous elements yield the sparse matrices with the lowest bandwidth

but suffer from significant loss of accuracy. Therefore, C0-elements may be considered as

the golden mean for most simulations.

Function spaces

Let L2(Ω) denote the space of functions that are square integrable in the Lebesgue sense

with respect to the domain Ω ⊂ Rd. Let s ∈ N and

Hs(Ω) = {φ ∈ L2(Ω) |Dmφ ∈ L2(Ω),m = 1, . . . , s}

where Dmφ denotes any and all weak partial derivatives of order m, and let

Hs
0(Ω) = {φ ∈ Hs(Ω) | φ = 0 on ∂Ω},

Hs
α,0(Ω) = {φ ∈ Hs(Ω) | φ = 0 on ΓDα },

Hs
α,e(Ω) = {φ ∈ Hs(Ω) | φ = uαD or φ = uαin on ΓDα }.

Using the above definitions, the Sobolev spaces for velocity and pressure are

V := H1
1 (Ω)× · · · ×H1

d(Ω) (2.4a)

V0 := H1
1,0(Ω)× · · · ×H1

d,0(Ω) (2.4b)

W := L2(Ω). (2.4c)

Moreover, let

Ve := H1
1,e(Ω)× · · · ×H1

d,e(Ω). (2.4d)

The approximations of these function spaces are all based on the finite dimensional space

of piecewise polynomial functions

Xk := {φ ∈ L2(Ω) | φ|∆i ∈ Pk(∆i), ∀∆i ∈ Th} ∩ C0(Ω) (2.5)

2.1. PREPROCESSING 33

where

Pk(∆i) = {P : ∆i → R | P (x1, . . . , xd) =
∑

|α|≤k
cαx

α1
1 . . . xαdd }.

Finite dimensional function spaces

For computations on d-simplices, Cartesian coordinates are somewhat awkward. Barycen-

tric coordinates (a.k.a. local coordinates), λ1, . . . , λd+1 ∈ R are more natural. For any

x ∈ ∆i, they are defined in such a way that the following holds:

x =
d+1∑

j=1

λjp
∆i
j and 1 =

d+1∑

j=1

λj

Interpreting the first d Barycentric coordinates λ1, . . . , λd of a d-simplex ∆i as local Carte-

sian coordinates maps ∆i onto the reference d-simplex ∆ref (in parameter space). Vice

versa, the reference d-simplex is mapped (from parameter space or space in local Carte-

sian coordinates) to the d-simplex ∆i in the spatial domain Ω by 0-linear transforms

Fi : ∆ref → ∆i,

x = Fi(λ1, . . . , λd) = J∆i



λ1
...

λd


+ p∆i1

with J∆i = (p∆i2 − p∆i1 , . . . , p∆id+1 − p∆i1) ∈ Rd,d. So Fi maps knots and sides onto each other

and therefore triangles are mapped to triangles (cf. [77]).

Construction of shape functions

In order to define shape functions for velocity and pressure, the grid is augmented by

Lagrange points on each d-simplex of the grid. They are defined as follows:

Definition 2.2 A d-simplex ∆i is said to be a Lagrange element of type k, if there are

Lagrange points

pα =
d+1∑

j=1

αj
|α|pj ∈ ∆i

for all multi-indices α = (α1, . . . , αd+1) with |α| = k and αj ∈ N.

Example 1 Triangular Lagrange reference elements of type k for k = 1, 2, 3 are shown in

figure 2.1. Their s = 1 + 2 + . . . (k + 1) Lagrange points are distributed in k + 1 rows.

We are now in the position to specify nodal basis functions defined by Th and so-called

Lagrange Pk(u)Pk(p)-elements. Lagrange elements of type k(u) and k(p), respectively, are

34 CHAPTER 2. SPATIAL DISCRETIZATION

0 0.5 1

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

λ1

λ
2

0 0.5 1

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

λ1
λ
2

0 0.5 1

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

λ1

λ
2

Figure 2.1: Lagrange points on triangular reference elements.

used for the velocity components and the pressure, respectively. The pressure’s Lagrange

points are denoted by p̂pi , i = 1, . . . , Np and the velocity Lagrange points by p̂ui , i =

1, . . . , NT . For simplicity of notation, we will skip the superscripts on the Lagrange points

if there is no danger of confusion, since they can be distinguished from the domain of the

subscript. Nodal shape functions φpi for the pressure are then defined by

φpi (p̂
p
j) = δij and φpi |∆l ∈ Pk(p)(∆l)

for i, j = 1, . . . , Np and l = 1, . . . , N∆. Similarly, nodal shape functions φαi for the velocity

components uα, are defined by

φαi (p̂
u
j) = δij and φαi |∆l ∈ Pk(u)(∆l)

for i, j = 1, . . . , NT and l = 1, . . . , N∆. So {φpi }
Np
i=1 is a nodal basis for the space Xk as

defined in (2.5), and the sets {φαi }NTi=1 are d bases for the space Xk+1. We are now in the

position to approximate the Sobolev spaces defined at the beginning of this section by

spaces of finite dimensions.

The discrete approximations of (2.4) are, in terms of the shape functions, given by

V h = {v = (v1, . . . , vd)
T | vα(x) =

NT
α∑

i=i

siφ
α
i (x), si ∈ R}

V h
0 = {v ∈ V h | vα|ΓDα=0} = {v = (v1, . . . , vd)

T | vα(x) =
Nα∑

i=i

siφ
α
i (x), si ∈ R}

V h
e = {v ∈ V h | vα|ΓDα = uαD or vα|ΓDα = uαin}

W h = {v | v(x) =
Np∑

i=i

siφ
p
i (x), si ∈ R}

2.2. WEAK FORM WITH LAGRANGE MULTIPLIERS 35

2.2 Weak form with Lagrange multipliers

This section discusses how different weak forms of the incompressible Navier-Stokes equa-

tions are actually achieved and how they are approximated with the finite element method

in order to obtain the discrete equations. Additionaly, the formulation of the boundary

conditions is described. The procedure utilizes a Lagrange-multiplier ansatz, which will al-

low to impose Dirichlet and Neumann boundary conditions at the same time. The discrete

equations are then obtained by first discretizing the partial differential equation in space

while neglecting all constraints, i.e. Dirichlet boundary conditions. The constraints will

then be discretized separately. In the resulting discrete system, the discrete constraints

will be eliminated in a separate elimination process.

Advantages of this approach are that the expensive assembly of the discrete partial

differential equation is independent of the constraints (1.12c)–(1.12d). In the case of tran-

sient boundary conditions, for example, the time-dependent constraints can be assembled

independent of the original partial differential equation.

First, the Lagrange-multiplier ansatz will be described for a general class of advection-

diffusion equations. Then, it will be shown how to apply this procedure to the Navier-Stokes

equations. We try to stick to a concise notation in order to keep things simple.

2.2.1 A common weak formulation and its approximation

By weak formulation, we mean the sequence of steps needed to go from a given system

of partial differential equations and boundary conditions to a specific weak form of them.

There are several different weak forms of the Navier-Stokes equations. A weak form of

the (not so common) total stress form (1.12a)–(1.12b) will be derived now since it is used

most often in the remainder of this work. The actual implementation, however, is done

differently and is described in the following section. How to obtain other weak forms and

their advantages or disadvantages will also be discussed in the following sections.

The objective is to find u ∈ Ve and p ∈W , so that

∫

Ω

∂u

∂t
· v dV +

∫

Ω

(u · ∇)u · v dV =

∫

Ω

(∇ · (ν(∇u+ (∇u)T))−∇p) · v dV

+

∫

Ω

b · v dV ∀v ∈ V0

∫

Ω

(∇ · u)q dV =0 ∀q ∈ W.

36 CHAPTER 2. SPATIAL DISCRETIZATION

Applying Green’s formula to the weak form of the advection term yields
∫

Ω

∂u

∂t
· v dV +

∫

Ω

(u · ∇)u · v dV =−
∫

Ω

(ν(∇u+ (∇u)T))− Ip) : ∇v dV

+

∫

ΓN

(ν(∇u+ (∇u)T)− Ip)nv dA+

∫

Ω

b · v dV

=−
∫

Ω

(ν(∇u+ (∇u)T)) : ∇v dV −
∫

Ω

p∇ · v dV

+

∫

ΓN

(ν(∇u+ (∇u)T)− Ip)nv dA+

∫

Ω

b · v dV

∀v ∈ V0. The trial functions u, p and test functions v, q are now approximated by

uh := (u1h, . . . , udh)
T ∈ V h

e , ph, qh ∈ W h, and vh := (v1h, . . . , vdh)
T ∈ V h

0

uαh = ûα +
Nα∑

j=1

uαjφ
α
j with ûα =

ND
α∑

j=1

ûαjφ
α
j

ph =

Np∑

j=1

pjφ
p
j

vαh =
Nα∑

j=1

vαjφ
α
j

qh =

Np∑

j=1

qjφ
p
j

where φαj , φ
p
j are nodal basis functions defined by Th and Lagrange Pk(u)Pk(p)-elements.

We have tacitly introduced Nα and ND
α , the number of not constrained and constrained

components of uαh:

NT = Nα +ND
α

= # velocity-nodes ∈ Ω ∪ ΓNα +# velocity-nodes ∈ ΓDα

where NT denotes the total number of velocity Lagrange points. The individual integrals

are then evaluated numerically. This kind of implementation is the most common one and

described in detail in [48], for example. We will, however, make use of a different kind of

finite element implementation, namely a finite element method that utilizes a Lagrange-

multiplier ansatz, which allows to impose Dirichlet and Neumann boundary conditions at

the same time. The advantage of this procedure is that major parts of the assembly, i.e.

the assembly of the equation itself, are independent of the boundary conditions which will

be imposed in a separate second step.

2.2. WEAK FORM WITH LAGRANGE MULTIPLIERS 37

2.2.2 A Lagrange multiplier ansatz

The incompressible Navier-Stokes equations are part of a fairly general general class of

partial differential equations, namely general advection-diffusion equations. Let Ω ⊂ Rd

be a connected set and

y = y(t, x1, . . . , xd) = (y1(t, x1, . . . , xd), . . . , yN(t, x1, . . . , xd))
T

be the vector of dependent variables, i.e. an unknown function y : [0, Tfinal]×Ω→ RN that

is to be determined from the system of partial differential equations

N∑

k=1

dalk
∂yk
∂t

+∇ · Γl = Fl in Ω (2.6a)

−nTΓl = Gl +

NR∑

m=1

∂Rm

∂yl
µm on ∂Ω (2.6b)

0 = Rm on ∂Ω (2.6c)

where dalk ∈ R are the mass coefficients, Γl(t, x1, . . . , xd, y1, . . . , yN) ∈ Rd the flux vector,

and Fl(t, x1, . . . , xd, y1, . . . , yN) ∈ R the source term. Gl ∈ R is a boundary source term,

µm ∈ R a Lagrange multiplier, and Rm ∈ R restricts the solution component yl on the

boundary. The equation index l ranges from 1, . . . , N , while the constraint index m ranges

from 1, . . . , NR.

For simplicity, we introduce the following more concise notation of the above system of

partial differential equations,

da
∂y

∂t
+∇ · Γ = F in Ω (2.7a)

−n · Γ = G+

(
∂R

∂y

)T

µ on ∂Ω (2.7b)

0 = R on ∂Ω (2.7c)

where da ∈ RN×N is the mass matrix, Γ(t, x, y) ∈ RN×d the flux matrix, and F (t, x, y) ∈ RN

the source term. G ∈ RN is the boundary source term, µ ∈ RNR a Lagrange multiplier,

and R ∈ RNR restricts the solution y on the boundary.

The second equation is referred to as natural boundary condition and the third equation

as essential boundary condition. In fact, the natural boundary condition is also called

a (generalized) Neumann boundary condition, or in some contexts also mixed or Robin

boundary condition. Essential boundary conditions are also called Dirichlet boundary

conditions, which are also referred to as constraints.

For all relevant computational fluid dynamics simulations occurring in practice, the

constraints of the solution on the boundary are linear in the unknowns. In particular,

38 CHAPTER 2. SPATIAL DISCRETIZATION

the boundary conditions introduced in section 1.2.1 yield linear restrictions of the solution

on the boundary. The interaction of natural boundary conditions and essential boundary

conditions is explained in appendix A.2.

2.2.3 The Navier-Stokes equations with Lagrange multipliers

As mentioned in section 2.2.1, the weak formulation of the incompressible Navier-Stokes

equations can be done in different ways which result in different weak forms. When using

the Lagrange multiplier ansatz (2.7) in order to eventually discretize the Navier-Stokes

equations, different weak forms are obtained depending on the definition of flux vector and

source term in (2.7a). We now present and briefly discuss some possible definitions of the

flux vector and source term which eventually yield the most common weak forms.

Pseudo total stress form

If the mass coefficient, flux vector, and source term are defined as

da =

(
%Id 0d×1
01×d 0

)
∈ Rd×d, Γ =

[−η∇u+ pId
01×d

]
, and F =

[
b− %(u · ∇)u

∇ · u

]
(2.8)

we call the resulting weak form the pseudo total stress form. In this case, the flux vector

does not represent a true physical force because of the simplification (1.7) (see also [48]).

Furthermore, this form applies only in the case of constant density and constant viscosity,

i.e. it should not be used for non-Newtonian fluid flow simulations. Nevertheless, this is

still the most common form used in fluid dynamics (see, e.g., [44, 59, 73, 87, 120, 121]).

Pseudo viscous stress form

Defining mass coefficient, flux vector, and source term as

da =

(
%Id 0d×1
01×d 0

)
∈ Rd×d, Γ =

[−η∇u
01×d

]
, and F =

[
b− %(u · ∇)u−∇p

∇ · u

]
(2.9)

means that integration by parts is not applied to the pressure gradient. This form leads to

non-symmetric systems, as will be seen later, and is therefore not very popular in literature

(although suggested in [19], for example). Like the previous form, the pseudo viscous stress

form applies only in the case of constant density and constant viscosity, i.e. it should not

be used for non-Newtonian fluid flow simulations.

2.2. WEAK FORM WITH LAGRANGE MULTIPLIERS 39

Viscous stress form

Besides Newtonian fluids, also non-Newtonian fluids can be modeled with the so-called

viscous stress form,

da =

(
%Id 0d×1
01×d 0

)
∈ Rd×d, Γ = −η

[∇u+ (∇u)T
01×d

]
, and F =

[
b− %(u · ∇)u−∇p

∇ · u

]

(2.10)

which is used in Femlab’s Navier-Stokes application mode, for example (see also [18, 19,

20]). However, the natural boundary conditions of this form are somewhat awkward for

outflow boundary conditions. This form leads to non-symmetric systems as well.

Total stress form

True physical forces are modeled by the so-called viscous stress form:

da =

(
%Id 0d×1
01×d 0

)
∈ Rd×d, Γ =

[−η(∇u+ (∇u)T) + pId
01×d

]
, and F =

[
b− %(u · ∇)u

∇ · u

]

(2.11)

Its advantages are that physical outflow boundary conditions as well as boundary conditions

on a free boundary are natural boundary conditions. Newtonian and non-Newtonian fluids

are described by this form. Furthermore, this form leads to symmetric systems (see section

2.5).

The weak form of the incompressible Navier-Stokes equations based on the total stress

form seems to be superior to the other forms mentioned above. This is in accordance with

Gresho and Sani [48], for example. Nevertheless, the pseudo total stress form, despite its

disadvantages to the total stress form, is probably the most popular form in computational

fluid dynamics. If not stated otherwise, the total stress form will be used in the remainder

of this work because of the advantages mentioned above. Details about the implementation

in two or three dimensions can be found in appendix B.

If the natural boundary condition of the viscous stress form (2.10) is used for outflow

boundary conditions, a divergence-free velocity field near the outflow can no longer be

guaranteed. This is because η(∇u + (∇u)T)n = 0 is not a traction outflow boundary

condition. If Γm represents the outflow boundary segment, adding the constraint Rm := −p
yields the correct traction outflow boundary conditions. A comparison of this procedure

and the total stress form is shown in chapter 5.

Nonlinear advection

For each of the forms described above, the nonlinear advection term may be computed in

different ways. For simplicity, we restrict ourselves to two dimensions here. The advection

40 CHAPTER 2. SPATIAL DISCRETIZATION

term may be computed either, the most common way, as

(u · ∇)u =



u1

∂u1
∂x1

+ u2
∂u1
∂x2

u1
∂u2
∂x1

+ u2
∂u2
∂x2




or, alternatively, using the identities

u1
∂u1
∂x1

+ u2
∂u1
∂x2

= u1
∂u1
∂x1

+ u2
∂u1
∂x2

+ u1

(
∂u1
∂x1

+
∂u2
∂x2

)

= 2u1
∂u1
∂x1

+ u2
∂u1
∂x2

+ u1
∂u2
∂x2

=
∂(u21)

∂x1
+
∂(u1u2)

∂x2

and

u1
∂u2
∂x1

+ u2
∂u2
∂x2

= u1
∂u2
∂x1

+ u2
∂u2
∂x2

+ u2

(
∂u1
∂x1

+
∂u2
∂x2

)

= u1
∂u2
∂x1

+ u2
∂u1
∂x1

+ 2u2
∂u2
∂x2

=
∂(u1u2)

∂x1
+
∂(u22)

∂x2

provided that ∇ · u = 0. The alternative form of the advection term in three dimensions

can be derived simultaneously. Other alternative forms of the nonlinear advection term

can be found in [48], for example.

Implementation

The field fem.nseform determines the weak form and the form of the advection term used

for the finite element discretization of the Navier-Stokes equations. See appendix B for

details. The type of boundary conditions, i.e. transient or stationary, is controlled by the

boolean field fem.have.tdBCs.

2.2.4 The (constrained) weak form

The starting point for the Galerkin finite element method applied to the strong form (2.6) is

a problem written in weak form. Let v ∈ V ×W be an arbitrary test function. Multiplying

(2.7a) with this function and integrating we get
∫

Ω

vTda
∂y

∂t
dV +

∫

Ω

vT∇ · Γ dV =

∫

Ω

vTF dV (2.12)

2.3. APPROXIMATION 41

where dV represents the volume element if d = 3 or the area element if d = 2. The

objective is to find y ∈ V ×W , so that (2.12) holds for all v ∈ V ×W . Then, using Green’s

formula, i.e. integrating by parts, yields
∫

Ω

vTda
∂y

∂t
dV +

∫

∂Ω

vTΓ · n dA−
∫

Ω

∇v · Γ dA =

∫

Ω

vTF dA ∀v ∈ V ×W

where dA represents the area element if d = 3 or the line element if d = 2. Employing the

Neumann boundary condition (2.7b) yields

∫

Ω

vTda
∂y

∂t
dV =

∫

Ω

(∇v · Γ + vTF) dV +

∫

∂Ω

vT

(
G+

(
∂R

∂y

)T

µ

)
dA (2.13a)

=
d+1∑

l=1

∫

Ω

(∇vl · Γl + vlFl) dV +
d+1∑

l=1

∫

∂Ω

vl

(
Gl +

NR∑

m=1

∂Rm

∂yl
µm

)
(2.13b)

∀v ∈ V ×W . Together with the Dirichlet boundary conditions (2.7c), this is the (con-

strained) weak form of the original problem, i.e. the strong form (2.7).

2.3 Approximation

The trial function y ∈ V ×W is now approximated in the finite dimensional space V h×W h

by

yh := (uh, ph)
T (2.14)

with uαh = (u1h, . . . , udh) ∈ V h and ph ∈ W h which are given by

uαh =

NT∑

j=1

uαjφ
α
j and ph =

Np∑

j=1

pjφ
p
j .

Similarly, the test functions are approximated with the same finite elements, i.e.

vh : Ωh → Rd+1

with

vh := (v1h, . . . , vdh, vph)
T ∈ V h ×W h (2.15)

with vαh : Ωh → R and vph : Ω→ R which are given by

vαh =

NT∑

j=1

φαj and vph =

Np∑

j=1

φpj

42 CHAPTER 2. SPATIAL DISCRETIZATION

where φαj ∈ and φpj ∈ are nodal basis functions defined by Th and Lagrange Pk(u)Pk(p)-

elements. Note that, unlike in section 2.2.1, Dirichlet boundary conditions are not taken

into account at this point.

Since the test functions occur linearly in the integrands of the weak equation (2.13), it

is enough that the weak equation holds for every basis function

vαhj = φαj and vphj = φpj .

Substituting (2.14) and (2.15) into the weak form (2.13) eventually yields the discrete weak

form with

NDOF =
d∑

i=1

NTα +Np

equations. The discretization of the boundary term in (2.13b) is described later. Since

the finite element data structure is rather complex, only few runs through the data struc-

ture should be performed. Therefore, all integrals in discrete weak form which are scalar

expressions involving the dependent variables yl as well as the test functions vl, and their

derivatives, are evaluated elementwise. Finally, every d-simplex is transformed to a ref-

erence element on which the actual computations are performed. This process is briefly

described in the following whereW denotes any of the integrants in the discrete weak form,

i.e. the discrete version of (2.13).

∫

Ω

W dV ≈
∫

Ωh

W dV =

N∆∑

i=1

∫

∆i

W dV

The integrals on the right-hand side are transformed to the reference element,

∫

∆i

W dV =

∫

∆i

W (x1, . . . , xd) dx1 . . . dxd (2.16a)

=

∫

∆ref

W (F (λ1, . . . , λd)) | det J∆i | dλ1 . . . dλd (2.16b)

=





∫ 1

0

∫ 1−λ1

0

g(λ1, λ2) dλ2dλ1 in 2D
∫ 1

0

∫ 1−λ1

0

∫ 1−λ1−λ2

0

g(λ1, λ2, λ3) dλ3dλ2dλ1 in 3D

(2.16c)

≈
np∑

i=1

ωig(λ
i
1, . . . , λ

i
d) (2.16d)

with J∆i as defined on page 33.

2.3. APPROXIMATION 43

Numerical cubature on d-simplices

The integrals in equations (2.16c) occurring in the components of the load vector L, the

stiffness matrixK and the mass matrixD are computed using a quadrature formula (2.16d).

The numerical quadrature formula ought to be accurate and cheap. The already available

Lagrange points seem to come in handy, but it turns out that the order of quadrature

formulas utilizing the given Lagrange points is in general too low for our purposes.

Definition 2.3 A cubature formula on a d-simplex ∆d is said to be of order k + 1 iff

∫

∆d

p(λ) dV =

np∑

i

ωip(λ
i
1, . . . , λ

i
d) ∀p ∈ Pk(∆d).

In order to evaluate the integrals numerically with sufficient accuracy, more Lagrange

points would be needed, i.e. function evaluations at new locations would be necessary. If

function evaluations at new locations are necessary, the number of new locations should

be minimized while at the same time a high order should be attained.

Any multiple integral over a d-simplex may be transformed into a multiple integral over

a d-cube (see [109]). Then, product rules are usually used for quadrature over a d-cube.

The main advantage of product quadrature rules is that their derivation is straightforward

and simple, for any desired order. The primary disadvantage is inefficiency (even for Gauss

quadrature rules) since for high order of the quadrature rule, a relatively large number of

points is required (even when one-dimensional Gauss quadrature rules are used), and other

quadrature rules are available with many fewer points. The second disadvantage is that the

location of the points is unsymmetrical. They are not equally distributed. Except for rules

of low degree, a large number of points will be concentrated in a relatively small region

near one vertex. Such an arrangement, although theoretically (i.e. with infinite precision)

correct, may be undesirable. With finite precision, no vertex should be favored against the

others.

For quadrilateral elements, product quadrature rules (also called multidirectional meth-

ods, cf. [25]) have less geometrical bias than direct methods; on the other hand, for tri-

angular or tetrahedral elements, direct methods have less geometrical bias than product

methods. Therefore, we use non-product cubature rules (cf. [22, 109]) for the computation

of matrices and vectors based on the Galerkin finite element method. In fact, we use sym-

metrical Gaussian quadrature rules which belong to the family of non-product cubature

rules.

In two dimensions, integrals over finite elements are computed with two-dimensional

symmetrical Gaussian quadrature rules; boundary integrals are computed with ordinary

Gaussian quadrature rules. In three dimensions, integrals over finite elements are computed

with three-dimensional symmetrical Gaussian cubature rules while boundary integrals are

44 CHAPTER 2. SPATIAL DISCRETIZATION

evaluated with two-dimensional symmetrical Gaussian quadrature. The order of the in-

tegration method used for an element and its boundary is set by the field gporder (see

appendix A). Default order is twice the order of the finite element’s shape functions if not

specified otherwise. Hence, a minimal number of function evaluations has to be performed

in order to reach maximal accuracy.

For completeness, the Gauss points in barycentric (local) coordinates and the corre-

sponding weights for quadratures of order 2, 3, 4, 5, 6, and 7 are given in tables 2.1 and

2.2. Figure 2.2 shows the distribution of the integration points in two dimensions. Finally,

we remark that it is far from trivial to find as few points and weights as possible so that

the cubature formula is of maximal order and all integration points are inside the triangle.

To my knowledge there is, in contrast to the product rules, no complete theory on how to

compute integration points and weights for symmetric Gaussian cubature rules in two and

three dimensions. Highly nonlinear system of equations have to be solved, typically with

Gauss-Newton or Levenberg-Marquardt algorithms. The initial estimate of the points’

locations is very critical for finding a solution (see also [26]).

0 0.5 1

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

λ1

λ
2

0 0.5 1

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

λ1

λ
2

0 0.5 1

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

λ1

λ
2

0 0.5 1

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

λ1

λ
2

0 0.5 1

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

λ1

λ
2

0 0.5 1

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

λ1

λ
2

Figure 2.2: Gauss points on triangular reference elements for quadratures of order 2, 3, 4,

5, 6, and 7

2.3. APPROXIMATION 45

order np p λ1 λ2 ωp

2 1 1 0.33333333333333 0.33333333333333 0.50000000000000

3 3 1,2,3 0.66666666666667 0.16666666666667 0.16666666666667

4 4 1 0.33333333333333 0.33333333333333 -0.28125000000000

2,3,4 0.60000000000000 0.20000000000000 0.26041666666667

5 6 1,2,3 0.10810301816807 0.44594849091597 0.11169079483901

4,5,6 0.81684757298046 0.09157621350977 0.05497587182766

6 7 1 0.33333333333333 0.33333333333333 0.11250000000000

2,3,4 0.05971587178977 0.47014206410511 0.06619707639425

5,6,7 0.79742698535309 0.10128650732346 0.06296959027241

7 12 1,2,3 0.50142650965818 0.24928674517091 0.05839313786319

4,5,6 0.87382197101700 0.06308901449150 0.02542245318510

7,. . . ,12 0.05314504984482 0.31035245103378 0.04142553780919

Table 2.1: Two-dimensional numerical integration for triangular reference elements

Discretization of constraints

Discretization of (2.13), where the boundary integrals are not taken into account yet, with

the tools as described above, yields

D(yh, t)
dyh
dt

= L(yh, t) (2.17)

with D(yh, t) ∈ RNDOF×NDOF , yh(t) ∈ RNDOF , and L(yh, t) ∈ RNDOF . Now the boundary

term in (2.13) and the constraints (2.6c) are discretized.

The Lagrange multipliers are discretized in the following way. Let

Λmj = µ(xmj)wmj

where xmj are the Lagrange points of the mth boundary mesh element defined by (2.2)

and wmj is the length of the appropriate part of this mesh element. The index j denotes

the jth Lagrange point of this mesh element.

The boundary integral in (2.13) is approximated as a sum over all boundary mesh

elements defined by (2.2). On the mth mesh element, this sum is approximated with a

Riemann sum
∑

j

ϕβi (xmj)h
T (xmj)µ(xmj)ωmj =

∑

j

ϕβi (xmj)h
T (xmj)Λmj

with ϕβi := φαi or ϕβi := φpi and h := − ∂R
∂yh

. This means that the discretization of the weak

equation can be written as

Dyh = L−NTΛ.

46 CHAPTER 2. SPATIAL DISCRETIZATION

or
d
er

n
p

p
λ
1

λ
2

λ
3

ω
p

2
1

1
0.
25

00
00

00
00

00
00

0.
25

00
00

00
00

00
00

0.
25

00
00

00
00

00
00

0.
16

66
66

66
66

66
67

3
4

1,
..
.,
4

0.
58

54
10

19
66

24
97

0.
13

81
96

60
11

25
01

0.
13

81
96

60
11

25
01

0.
04

16
66

66
66

66
67

4
5

1
0.
25

00
00

00
00

00
00

0.
25

00
00

00
00

00
00

0.
25

00
00

00
00

00
00

0.
13

33
33

33
33

33
33

2,
..
.,
4

0.
50

00
00

00
00

00
00

0.
16

66
66

66
66

66
67

0.
16

66
66

66
66

66
67

0.
07

50
00

00
00

00
00

5
11

1
0.
25

00
00

00
00

00
00

0.
25

00
00

00
00

00
00

0.
25

00
00

00
00

00
00

0.
25

00
00

00
00

00
00

2,
..
.,
5

0.
78

57
14

28
57

14
29

0.
07

14
28

57
14

28
57

0.
07

14
28

57
14

28
57

0.
00

76
22

22
22

22
22

6,
..
.,
11

0.
39

94
03

57
61

66
80

0.
39

94
03

57
61

66
80

0.
10

05
96

42
38

33
20

0.
02

48
88

88
88

88
89

6
14

1,
..
.,
4

0.
06

73
42

24
22

10
10

0.
31

08
85

91
92

63
30

0.
31

08
85

91
92

63
30

0.
01

87
81

32
09

53
00

5,
..
.,
8

0.
72

17
94

24
90

67
33

0.
09

27
35

25
03

10
89

0.
09

27
35

25
03

10
89

0.
01

22
48

84
05

19
39

9,
..
.,
14

0.
45

44
96

29
58

74
35

0.
45

44
96

29
58

74
35

0.
04

55
03

70
41

25
65

0.
00

70
91

00
34

62
85

Table 2.2: Three-dimensional numerical integration for tetrahedral reference elements

2.3. APPROXIMATION 47

Λ is a vector containing all the discretized Lagrange multipliers Λmj and N is a matrix

whose columns contain the elements ϕβi (xmj)h(xmj). And finally, the constraints, i.e. essen-

tial boundary conditions (2.6c) are incorporated as follows. The constraints are required

to hold pointwise in the Lagrange points of a certain order on each boundary element on

ΓD. Then the discretization of the constraint is

0 = R(xmj)

where xmj are the Lagrange points of themth boundary mesh element defined by (2.2). The

index j denotes the jth Lagrange point of this mesh element. The order of the Lagrange

points is set by the field cporders (see appendix A). Default value is the maximum order

of the shape functions used plus 1. (Each continuous variable is treated separately, i.e.

different orders for different variables (u, p) are possible. I.e. order k(u)+1 for u and order

k(p) + 1 for p on standard Pk(u)Pk(p) element, if not stated otherwise). The discretized

constraints (2.6c) are then given by

M : RNDOF × R → RNPCB

Since the constraints are imposed per boundary element (just like the integrals were eval-

uated elementwise), a constraint for a common point of two boundary elements is imposed

twice. This means that the number of pointwise constraints on the boundary, i.e. boundary

segments with essential boundary conditions, is typically in 2D,

NPCB =
d+1∑

i=1

#edges(yi) ·#Lagrange points(yi)

where #edges(yi) denotes the number of boundary edge elements with a Dirichlet boundary

condition for the variable yi and #Lagrange points(yi) denotes the number of Lagrange

points for the variable yi on boundary edge elements. For each constraint there is a

Lagrange multiplier, and so the Lagrange multipliers are also redundant. This redundancy

is removed in the elimination process which is described in the remainder of this chapter.

To complete this section, the spatially discretized problem now reads

D(yh, t)
dyh
dt

= L(yh, t)−N(yh, t)
TΛ (2.18a)

0 = M(yh, t) (2.18b)

with

N(yh, t) = −
∂M(yh, t)

∂yh
∈ RNPCB×NDOF (2.19)

and2 M ∈ RNPCB .

2In fact, M : RNDOF × R → RNPCB for a constant discretization, or to be more precise, M is a family

of mappings Mi : RNDOF(i) × [ti, ti+1)→ RNPCB(i) in case of a time-dependent discretization.

48 CHAPTER 2. SPATIAL DISCRETIZATION

2.4 Discretized Problem

It was shown in the previous section that the discrete version of the weak form (2.13) is

given by equations (2.18). In order to solve this differential algebraic system (with highly

redundant algebraic equations (2.18b)), the constraints need to be eliminated. This section

described the elimination process, what the linearized problem looks like, and how it is

obtained.

2.4.1 Linearized Problem

Consider the stationary problem, i.e. (2.18)-(2.19) with D(yh, t) = 0 and let L(yh), M(yh),

and N(yh) be independent of t. Using Taylor series expansion of the load vector L(yh) and

the constraint vector M(yh) about y
?
h

L(yh) = L(y?h) +
∂L(yh)

∂yh

∣∣∣∣
yh=y

?
h

(yh − y?h) +O(||yh − y?h||2)

M(yh) = M(y?h) +
∂M(yh)

∂yh

∣∣∣∣
yh=y

?
h

(yh − y?h) +O(||yh − y?h||2)

and neglecting second and higher order terms, the discretization of the linearized problem

is given by

K(y?h)(yh − y?h) +N(y?h)
TΛ = L(y?h)

N(y?h)(yh − y?h) = M(y?h)

with

K(y?h) = −
∂L(yh)

∂yh

∣∣∣∣
yh=y

?
h

N(y?h) = −
∂M(yh)

∂yh

∣∣∣∣
yh=y

?
h

.

If the original problem is linear, then K and N are independent of y?h and its discretization

can be written as

Kyh +NTΛ = L(0) = L(y?h = 0) (2.20a)

Nyh = M(0) = M(y?h = 0). (2.20b)

2.4.2 Elimination of constraints (nonlinear)

Theorem 2.4 If M(yh(t), t) in (2.18) is a linear constraint in yh(t), then

yh(t) = N (t)ye(t) + yhd(t) (2.21)

2.4. DISCRETIZED PROBLEM 49

where yhd(t) is a solution of M(yh, t) = 0, and N (t) ∈ RNDOF×NDOFe is a sparse matrix

whose columns form an orthonormal basis for the null space of N(t) ∈ RNPCB×NDOF (as in

(2.19)),

ker(N(t)) = 〈N (t):,1, . . . ,N (t):,NDOFe〉.

Proof. If M(yh(t), t) is linear in yh(t), then

0 =
∂M(yh, t)

∂yh
yh +M(0, t) ⇐⇒ N(t)yh = M(0, t).

Therefore, if yd(t) is a special solution of the equation on the right-hand side, yh(t) =

N (t)ye(t) + yd(t) is also a solution. Furthermore, N(t) is independent of yh(t). ¦

Theorem 2.5 Let M(yh(t), t) and N (t) be as in theorem 2.4, then

ye(t) = N (t)Tyh(t). (2.22)

Proof. Multiplication of (2.21) by N (t)T yields

N (t)Tyh(t) = ye(t) +N (t)Tyd(t) = ye(t)

since yd(t) ∈ im(N(t)). ¦

Theorem 2.6 Let M(yh(t), t) be a linear constraint in yh. The system (2.18) is equivalent

to the eliminated system

De(ye(t), t)
dye(t)

dt
= Le(ye(t), t) (2.23)

with

De(ye(t), t) = N TDN (2.24)

Le(ye(t), t) = N T (L(N ye(t) + yhd(t), t)−D
dyhd(t)

dt
−D

dN
dt

ye(t)). (2.25)

with D = D(N ye(t) + yhd(t), t) and N = N (t).

De(ye(t), t) is called the eliminated mass matrix and Le(ye(t), t) the eliminated load vector.

Proof. The linear3 constraint M(yh, t) = 0 is eliminated as follows. Let N = N (t) and

write the DOF solution vector yh(t) as

yh(t) = N ye(t) + yhd(t),

3Recall that N = − ∂M
∂yh

, so N is independent of yh since M is linear in yh since R is linear in u (see

p. 37).

50 CHAPTER 2. SPATIAL DISCRETIZATION

as in theorem 2.4. Since yhd(t) ∈ RNDOF is a solution vector which satisfies the essential

boundary conditions, yh(t) also satisfies the boundary conditions. Therefore, (2.18) yields

D(yh(t), t)
dyh(t)

dt
= L(yh(t), t)

=⇒ D(N ye + yhd , t)
d

dt
(N ye + yhd) = L(N ye + yhd , t)

=⇒ DN dye
dt

= L−D
dyhd
dt

−D
dN
dt

ye

=⇒ N TDN dye
dt

= N T

(
L(N ye + yhd , t)−D

dyhd
dt

−D
dN
dt

ye

)

where we have skipped some of the arguments for simplicity notation. ¦

Theorem 2.7 If D is independent of yh, then the Jacobian of the right-hand side of the

eliminated system (2.23) is

Je(ye(t), t) :=
∂Le(ye(t), t)

∂ye(t)
= N (t)T

(
−K(yh(t), t)N (t)−D(yh, t)

dN (t)

dt

)
(2.26)

with

K(yh, t) = −
∂L(yh, t)

∂yh
.

Proof. Applying theorem 2.5 and the chain rule to (2.25) yields

∂Le

∂ye
=
∂Le

∂yh

∂yh
∂ye

= N T (−KN −D
dN
dt

)

where the arguments have been omitted for simplicity of notation. ¦

2.4.3 Elimination of constraints (linear)

Theorem 2.8 The constrained linear system (2.20) is equivalent to the eliminated linear

system

Keye = Le (2.27)

with

Ke = N TKN
Le = N T (L(0)−Kyhd)

2.5. ELIMINATED NAVIER-STOKES SYSTEM 51

Proof. In order to eliminate the linear constraint M , write the constrained solution yh
according to theorem 2.4 as

yh = N ye + yhd .

Then, (2.20) is equivalent to

K(N ye + yhd) = L(0).

Multiplication with N T yields

N TKN ye = N (L(0)−Kyhd).

¦

2.5 Eliminated Navier-Stokes system

Using the tools described in the previous sections, there are several ways to assemble the

discrete Navier-Stokes system. In this section, three modes are introduced in order to

assemble the complete discrete Navier-Stokes equations or just parts of it. The coupled

mode, decoupled mode, and individual mode are described in the following. The individual

mode is the most general one since it gives access to the individual terms of the discrete

Navier-Stokes equations. In some situations, however, a less general procedure may suffice

and the other modes may be preferred.

2.5.1 Fully coupled mode

The spatially discretized eliminated Navier-Stokes system is given by the differential alge-

braic equation

Me

dye
dt

= F (ye) (2.28)

with

Me =

(
M 0

0 0

)
∈ RNDOFe×NDOFe and nonsingular M ∈ RNT×NT

and ye = (ue, ph)
T ∈ RNDOFe , ue ∈ RNTe , ph ∈ RNp , and Me = De (see (2.24)) and F = Le

(see (2.25)). Equation (2.28) is referred to as the fully coupled system. The Jacobian is

given by

Je(ye) :=
∂F (ye)

∂ye
∈ RNDOFe×NDOFe

and computed according to (2.26). Equation (2.28) is the basis for the spatially discretized

Navier-Stokes equations. It represents the discrete approximation of (2.6c) and (2.13), i.e.

it is the finite element discretization of a specific weak form depending on how flux matrix

and source term are defined (cf. section 2.2.3).

52 CHAPTER 2. SPATIAL DISCRETIZATION

This most compact form (2.28) of the discretized Navier-Stokes equations is best suited

for fully coupled implicit solution strategies. However, splitting methods require direct

access to the discrete advection term and diffusion term, for example. These terms are not

amenable individually at this point. In order to suffice the demands of the time integration

methods described in chapter 3, the issue of how to compute all individual terms of the

discrete Navier-Stokes equations individually is now addressed.

The assembly of individual discrete terms is expensive because the data structure needs

to be accessed each time. The velocity and pressure parts can be extracted from the solution

vector as follows:

Definition 2.9 Define indu ∈ RNTe and indp ∈ RNp so that

ue = ye indu and pe = ph = ye indp ,

i.e. ye = (ue, ph)
T .

2.5.2 Individual mode

The most common and most important discrete forms of the Navier-Stokes equations will

now be described. They are based on the weak forms defined by (2.8) or (2.11), i.e. Green’s

theorem is also applied to the gradient of the pressure. The discrete equations based upon

the forms defined in section 2.2.3 are implemented as described in the following. Suppose

that F (as defined in section 2.2.3) is split into its linear and nonlinear parts,

F = Flinear + Fnonlinear.

Symmetric form

For Newtonian fluids, the pseudo total stress form (2.8) and the total stress form (2.11)

yield the discrete Navier-Stokes equations,

M
duh
dt

= −A(uh, uh) +Duh − Cph + f (2.29a)

CTuh = g (2.29b)

with

A(uh, uh) = −Le indu

2.5. ELIMINATED NAVIER-STOKES SYSTEM 53

where Le is assembled with da = 0, Γ = 0, and F = Fnonlinear. All other terms are extracted

as follows:

D = −Ke indu,indu

C = Ke indu,indp

CT = Ke indp,indu

f = Le indu

g = Le indp

M = De indu,indu

with da, Γ as in section 2.2.3 and F = Flinear. Note that f is the discretized weak form of

the force density b in (1.12a) plus contributions from the diffusion term due to Dirichlet

boundary conditions. The discrete diffusion term is not identical for the weak forms defined

by (2.8) and (2.11).

Remark: The vector g is always generated by inhomogeneous Dirichlet boundary con-

ditions and, because we preclude sources or sinks of mass, it contains mostly zeros. For

homogeneous Dirichlet boundary conditions we have g = 0, i.e. the discrete equation of

continuity then reads CT = 0, which describes contained flow within stationary boundaries

(see also [48]).

For non-Newtonian fluids, the symmetric form reads

M
due
dt

= −A(ue, ue) +D(ue)− Cpe + f (2.30a)

CTue = g (2.30b)

where the discrete diffusion term D(ue) is typically nonlinear. As mentioned in section 1.2,

this works only with the total stress form (2.11). In contrast to the Newtonian case, f is

now the discretized force density b and does not contain contributions from the diffusion

term due to Dirichlet boundary conditions.

Non-Symmetric form

For completeness, we also state the non-symmetric form based on the weak forms defined

by (2.9) and (2.10) which reads for Newtonian fluids

M
due
dt

= −A(ue, ue) +Due −Gpe + f (2.31a)

CTue = g (2.31b)

and for non-Newtonian fluids (only (2.10))

M
due
dt

= −A(ue, ue) +D(ue)−Gpe + f (2.32a)

CTue = g. (2.32b)

54 CHAPTER 2. SPATIAL DISCRETIZATION

The discrete diffusion term is not identical for the weak forms defined by (2.9) and (2.10).

Similar to the symmetric case, f contains contributions from D due to Dirichlet bound-

ary conditions if the fluid is Newtonian. For non-Newtonian fluids, there are no such con-

tributions and f is simply the discrete body force. Finally, for equations (2.29a), (2.30a),

(2.31a), and (2.32a), the Jacobian of the advection term is

JA = Ke indu,indu

and the Jacobian of the diffusion term is

JD = −Ke indu,indu .

Of course, D = JD if the fluid is Newtonian.

Remark 2.10 The temporal derivatives in (2.25) and (2.26) of theorem 2.6 and 2.7, re-

spectively, are approximated with central differences,

dyhd(t)

dt
=
yhd(t+∆te)− yhd(t−∆te)

2∆te
+O(∆t2e)

dN (t)

dt
=
N (t+∆te)−N (t−∆te)

2∆te
+O(∆t2e).

The time step ∆te is chosen to be

∆te = max

(
1

100
(tn − tn−1), 10−10

)
= max

(
1

100
∆t, 10−10

)

where tn is the current time where (2.25) and (2.26) are computed and tn−1 is the time of

the previous time step.

Remark 2.11 The matrices and vectors required by the identities (2.21), (2.22), and

(2.25) are stored in the fields

fem.DOF.D = D(t)

fem.DOF.Nu = N (t)

fem.DOF.yd = yhd(t)

fem.DOF.t = t

2.5.3 Decoupled mode

The pseudo total stress form (2.8) for Newtonian fluids and the total stress form (2.11)

for Newtonian and non-Newtonian fluids yield the discrete Navier-Stokes equations in

2.6. INITIAL VALUE 55

decoupled mode,

M
duh
dt

= B(uh, uh)− Cph

CTuh = g

where B(uh, uh) denotes a discrete Burgers operator, i.e. advection plus diffusion plus body

forces. The assembly procedure is performed similar to the fully coupled mode. The mass,

gradient and divergence matrices are extracted,

C = Ke indu,indp

CT = Ke indp,indu

B = Le indu + Cph

where Le and Ke are assembled with with da, Γ as in section 2.2.3 and F = Flinear+Fnonlin.

There is no direct access to the discrete advection term, its Jacobian, or the discrete

diffusion term. In a similar way, the discrete equations for the forms (2.9) and (2.10) may

be obtained.

2.5.4 Mixed finite elements

In order that the spatially discretized Navier-Stokes equations are stable approximations to

(2.7c) and (2.13), it is crucial that the space V h
0 ×W h satisfies the so-called Ladyzhenskaya-

Babuska-Brezzi (LBB) condition

inf
q∈Wh

sup
v∈V h0

∫
Ω
q∇ · v dV

||q||0||∇v||0
≥ γ > 0 (2.34)

with a mesh independent constant γ (see [94]). This guarantees that there are no spurious

pressure modes (see also section 3.1.2). Mixed finite elements, such as P2P1 Lagrange

elements satisfy the LBB condition. Error estimates can be found in [82, 94].

2.6 Initial value

Similar to the continuous in space velocity-pressure formulations, the discrete velocity-

pressure formulations (such as (2.29), for example) require only initial data for the velocity.

The discrete initial velocity field u0 is supposed to be discretely divergence-free and comply

with essential boundary conditions (see also section 1.2.1), i.e. uh(0) = u0h with

CTu0h = g

If n · u0 6= 0 on ΓD, then g 6= 0 due to contributions from the constraints.

Chapter 3

Numerical Solution Strategies

3.1 Introduction

In this chapter, two classes of discrete projection schemes for the incompressible Navier-

Stokes equations are presented. These projection schemes may be regarded as an extension

of the discrete versions (cf. [119, 120, 121]) of the classical projection schemes of Chorin

(cf. [14]) and Van Kan (cf. [73]) and variants of these. It is known that the projection

approach requires only moderately smaller time steps than fully implicitly coupled schemes,

but that the work to obtain comparative results with discrete projection methods as solvers

is much lower (cf. [120]).

There is a large variety of existing solution schemes for the solution of the incompressible

Navier-Stokes equations: fully coupled implicit methods, continuous projection methods

and their discrete counterparts are three classes of most common solution schemes (see

also [44, 48, 82, 94, 120]). The basic methodology of fully coupled methods is described

in the following and it is explained why projection methods can reduce the numerical cost

for instationary fluid flow simulations. Then the principal differences between continuous

and discrete projection schemes are described and their pros and cons are explained. And

finally, two classes of discrete projection schemes are presented and their implementation

is described.

Recall the eliminated spatially discretized Navier-Stokes system of equations in its most

compact form

Me

dye
dt

= F (ye), ye ∈ RNDOFe (3.1)

with constant Me = diag(M, 0Np×Np) which comprises the Newtonian or non-Newtonian

and symmetric or non-symmetric forms introduced in section 2.5. Numerical solution

of (3.1) with explicit time integration methods1, such as explicit Runge-Kutta, explicit

1By explicit time integration we mean fully explicit time integration not to be confused with half-explicit

57

58 CHAPTER 3. NUMERICAL SOLUTION STRATEGIES

multistep methods or exponential time integrators, is not doable straightforward because

of the singular mass matrix Me. This is due to the fact that there is no evolution equation

for the pressure in the differential algebraic systems (Newtonian or non-Newtonian and

symmetric or non-symmetric form) arising from the incompressible Navier-Stokes equations

after spatial discretization. The pressure may be regarded as a Lagrange multiplier which

forces the velocity field to remain solenoidal at any instant of time. From another point of

view, explicit time integrators cannot be applied directly because of their bounded stability

region. The differential equation (3.1) is infinitely stiff as will be seen later (see section 3.4).

Fully coupled methods, a.k.a. fully implicit methods, such as implicit Runge-Kutta

methods or BDF methods, circumvent this problem. However, the numerical work required

per time step is rather expensive.

Projection schemes have been the methods most commonly used in computational fluid

dynamics since Chorin introduced his original scheme in 1967 (see also [12, 13]). They

have proven to successfully reduce the numerical cost and are therefore most efficient for

instationary fluid flow simulations. Projection methods can be divided into two classes:

continuous and discrete projection methods; the former being most popular in computa-

tional fluid dynamics and the latter more suited for the finite element method. The pros

and cons of continuous and discrete projection methods will be discussed shortly. In both

cases, the most important projection methods are based on the implicit Euler method and

Crank-Nicolson scheme (see [48, 120] and references therein).

3.1.1 A test problem

As a first test problem, consider the simulation of time-dependent fluid flow for a modified

driven cavity problem. The spatial domain Ω is simply the unit square minus some obsta-

cle. The domain is defined using the concept of boundary modeling. The boundary of the

domain consists of nine boundary segments Γi, i.e. four straight lines and five Bézier splines

which define the obstacle (see figure 3.1). If not specified otherwise, the fluid’s density is

% = 1 and its viscosity is η = 0.1. The fluid is subject to no-slip boundary conditions on

the top boundary of the square (boundary segment 3) and on the boundary of the obstacle

(boundary segments 5–9). On the other three boundaries (boundary segments 1, 2, and

4), slip boundary conditions are applied. The flow is driven by the top boundary of the

square, moving from left to right with u|bs 3 = 2. Velocity and pressure are approximated

with P2P1 Lagrange elements and the mesh is generated as follows: an initial Delaunay

triangularization is performed where the distribution of the boundary nodes depends on

the curvature of the boundary. This initial mesh consists of N∆ = 272 elements, i.e.

NDOFe = 1191 eliminated unknowns based on P2P1 Lagrange elements, and its quality is

q∆ = 0.75 (cf. figure 3.2(a)). In a second step, the mesh is uniformly refined which yields

time integration.

3.1. INTRODUCTION 59

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1

2

3

4

5

6

7

8

9

Figure 3.1: Driven cavity with obstacle

N∆ = 1088 elements, i.e. NDOFe = 4833 eliminated unknowns (cf. figure 3.2(b)). The mesh

quality drops to q∆ = 0.61 due to new nodes on the curved boundary segments. A uniform

refinement in a domain with only straight boundary segments would not affect the mesh

quality. In the third step, the triangularization near the no-slip boundaries of the obstacle

is refined once and the triangularization near the moving top boundary is refined twice.

This triangularization then consists of N∆ = 2006 elements, i.e. NDOFe = 8816 eliminated

unknowns, and its quality decreases to q∆ = 0.53. Clearly, the mesh quality has again

decreased since the mesh is no longer a Delaunay triangularization. Nevertheless, this

triangularization is better suited to resolve boundary layers than a Delaunay triangular-

ization based on the same boundary nodes would be. Eventually, the mesh is jiggled in

order to improve the mesh quality which yields q∆ = 0.81 while the number of elements,

N∆ = 2006, remains unchanged (cf. figure 3.2(c)). Figure 3.2(d) shows how the elements

become smaller towards the top moving boundary in order to resolve the boundary layers.

3.1.2 Pressure modes

We will now briefly explore the fact that C (as well as G) in (2.32) may or may not have full

rank. This depends on the physical boundary conditions of the problem, their translation

into boundary conditions for the initial boundary value problem, the weak formulation,

and the choice of elements. All this will later significantly influence the performance of the

numerical time integration schemes as well as the ingredients necessary for those schemes.

Recall that either C = G or C and G differ by an integration by parts of ∇p.
There are NTe =

d∑
α=1

Nα velocity equations and Np constraint equations among the

60 CHAPTER 3. NUMERICAL SOLUTION STRATEGIES

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) N∆ = 272, NDOFe = 1191

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) N∆ = 1088, NDOFe = 4833

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) N∆ = 2006, NDOFe = 8816

0.65 0.7 0.75
0.88

0.9

0.92

0.94

0.96

0.98

1

(d) Magnification near top boundary

Figure 3.2: Mesh generation

3.1. INTRODUCTION 61

NDOFe = NTe + Np equations in (3.1). The numbers NTe and Np depend on the choice

of elements, the boundary conditions, and the triangularization. Of the NTe momentum

equations, the Np constraints due to conservation of mass leave only NTe − Np effective

momentum equations if and only if C (and G) have full rank. If C (and G) are rank

deficient, say r := rank(C) < Np, then there are NTe − r effective momentum equations.

There is, at most, one physically meaningful vector in the null space of G called the

hydrostatic pressure mode denoted by PH ; a constant vector. When is PH present? Only

when n ·u is specified on all of Γ! Then, the pressure is only determinable up to an additive

constant (cf. [48]), namely a multiple of the hydrostatic pressure mode. In other words, if

traction boundary conditions, such as free boundary or outflow boundary conditions, are

employed at any portion of Γ – even just at a single point – then G no longer contains

PH in its null space. A traction boundary condition is an additional condition that ties

the pressure to the velocity field, i.e. it can be interpreted as a constraint for the pressure

which removes the hydrostatic pressure mode.

However, if natural boundary conditions of the unsymmetric forms (2.31) and (2.32)

are used to model outflow or free boundary conditions, then the hydrostatic pressure mode

is present. Since natural boundary conditions of the unsymmetric forms don’t model true

physical forces, we do not use them to model outflow or free boundary conditions. Instead,

we always use the traction conditions introduced in section 1.2.1 which models true physical

forces.

All null vectors of G except PH are spurious numerical artifacts and have no analogs

in the continuous case. For example, all equal-order elements generate too many (i.e.

redundant) mass balance constraints and thus possess spurious modes. This explains the

use of mixed order elements, e.g. the Lagrange P2P1 element, a.k.a. Taylor-Hood element

introduced in chapter 2. For appropriate finite elements, i.e. finite elements which satisfy

the LBB condition (2.34), the only possible pressure mode is the hydrostatic pressure

mode, which means that there are no spurious pressure modes. Lagrange P2P1 elements

are appropriate in that sense and therefore guarantee that there are no spurious pressure

modes. Having clarified the issue of pressure modes, we now turn to the numerical time

integration schemes.

3.1.3 Differentiation index

Differentiating (2.32b) with respect to time and inserting (2.32a) yields the pressure Poisson

formulation

Mu̇e = −A(ue, ue) +D(ue)−Gph + f (3.2a)

CTM−1Gph = CTM−1(−A(ue, ue) +D(ue) + f)− ġ. (3.2b)

62 CHAPTER 3. NUMERICAL SOLUTION STRATEGIES

Under the assumption of sufficient smoothness, differentiating (3.2b) yields

Mu̇e = −A(ue, ue) +D(ue)−Gph + f

CTM−1Gṗh = CTM−1 d

dt
(−A(ue, ue) +D(ue) + f)− g̈

provided that CTM−1G is invertible, i.e. if and only if C and G have full rank. This is

a system of ordinary differential equations which we obtained after differentiating twice.

Therefore, the differential algebraic system (2.32) has differentiation index 2 if and only if

there are no pressure modes.

The behavior of BDF and Runge-Kutta methods applied to index-2 systems is well

understood (cf. [56]). However, if the concept of differentiation index does not apply, the

situation is different (cf. [78, 123]).

A typical situation is, however, that no-slip boundary conditions are specified on all of

∂Ω. In this case, C does not have full rank due to the hydrostatic pressure mode (see also

[48]). There are also other cases where this situation occurs. In this case, the concept of

differentiation index does not apply to such systems. A generalized index concept – the

so-called strangeness index – is suggested in [79] for the case of over- and underdetermined

linear differential algebraic systems. It is shown in [123] how to apply the concept of

strangeness index to the linearized Navier-Stokes equations. But the concept of strangeness

index doesn’t reveal any new information about the nonlinear equations.

From a computational point of view, we take care of possible pressure modes by addi-

tional projections. This guarantees that the pressure mode remains constant and doesn’t

evolve unphysically or even explode due to roundoff errors.

3.2 Fully coupled methods

In order to motivate the idea behind projection methods, let us briefly have a look at fully

coupled implicit methods. The scheme most frequently used in practice is the θ-scheme

(cf. [103, 105, 120]). Applied to (3.1), it reads

Me

yn+1e − yne
∆t

= θF (yn+1e) + (1− θ)F (yne) (3.3)

with 0 ≤ θ ≤ 1. For θ = 1, this yields the backward Euler method and for θ = 0 we get the

half-explicit Euler method (cf. [56]) since Me is singular. θ = 1
2
yields the Crank-Nicolson

scheme (see also [73] for a continuous in space variant) which reads, e.g. in the case of the

3.2. FULLY COUPLED METHODS 63

most general2 non-Newtonian non-symmetric form (2.32),

M
un+1e − une

∆t
=

1

2
(−A(un+1e , un+1e) +D(un+1e) + fn+1)

+
1

2
(−A(une , une) +D(une) + fn)− 1

2
G(pn+1h + pnh)

(3.4a)

CTun+1e = gn+1 (3.4b)

provided that un is discretely divergence-free. Solving the coupled nonlinear equations

(3.4) requires the solution of linear systems Aye = b with

A =

(
M + c1(JA − JD) c2G

CT 0Np×Np

)
∈ RNDOFe×NDOFe (3.5)

and c1 = c2 = ∆t
2
, JA = JA(u, u), and JD = JD(u) in every step of the Newton iteration.

There is no really cheap way to solve this discrete saddle point problem. In fact, the

efficient solution of linear systems with system matrix (3.5) is still an ongoing field of

research (cf. [35, 119, 120, 121]). Note that the iteration matrix A can be singular if G

is rank deficient which is actually the case for many important fluid dynamics problems

although this phenomenon is not very often taken into account (see for example [20, 59,

65, 87, 119, 120]). In particular, A is singular in case of the test problem described in

section 3.1.1. Anyway, this problem can be fixed, e.g. by augmenting the linear system

and thus removing the rank deficiency, i.e.

Ã =

(
A (0, P T

H)
T

(0, P T
H) 0

)
∈ R(NDOFe+1)×(NDOFe+1) (3.6)

is non-singular with (0, P T
H)

T ∈ ker(A). We will return to this issue in section 3.7.2.

If the mesh is not too fine, direct methods may be applied in a first naive approach.

If A is non-singular, the simple LU -decomposition in conjunction with symmetric reverse

Cuthill-McKee reordering (cf. [43]) yields acceptable results. However, if A is singular and

the rank deficiency is removed according to (3.6), a direct solution method even with sym-

metric reverse Cuthill-McKee reordering results in an enormous fill-in and is not feasible,

not even on coarse meshes. Figure 3.3 illustrates this for the test problem of section 3.1.1

using only the coarsest mesh as shown in figure 3.2(a). The fill-in is prohibitive and the

problem cannot be solved on the fine mesh with this strategy.

Clearly, iterative methods need to be employed for large scale simulations in order to

get around the fill-in bottleneck of direct methods (see [17] for a comparison of linear

solvers). Nevertheless, the solution of linear systems remains one of the most expensive

2The equations (2.29), (2.30), (2.31) may be regarded as special cases of (2.32).

64 CHAPTER 3. NUMERICAL SOLUTION STRATEGIES

 1 500 1000

 1

 500

1000

(a) Ã (0.2% fill-in)

 1 500 1000

 1

 500

1000

(b) L (17.1% fill-in)

 1 500 1000

 1

 500

1000

(c) U (17.1% fill-in)

Figure 3.3: Sparsity pattern of Ã and its LU -decomposition with reordering

parts of a fluid flow simulation! Typically, a pressure-Schur-complement approach is used

which requires the solution of linear systems App = b with

Ap = CT (M + c1(JA − JD))
−1c2G ∈ RNp×Np , c1, c2 ∈ R. (3.7)

Using this approach, non-symmetric linear systems with a new solution dependent dense

matrix Ap (of course, this dense matrix should never be explicitly computed) must be

solved at every time step and in every step of the Newton iteration or at least every couple

of iterations, if the simplified Newton method is applied. As before, Ap can also be singular.

Both strategies are, in any case, very expensive and in particular solving (3.6) with a direct

method is prohibitive for fine meshes. The iterative solution of the discrete saddle point

problems (3.5), (3.6) and the corresponding Schur complement equation (3.7) is described

in section 3.7.2.

Solving (3.1) with (fully) implicit Runge-Kutta methods is even more expensive per time

step compared to implicit θ-methods. In general, nonlinear systems with s·NDOFe unknowns

need to be solved for an s-stage implicit Runge-Kutta method. Diagonally implicit Runge-

Kutta methods require the solution of s linear systems with NDOFe unknowns per Newton

iteration. BDF methods are cheaper per time step than the latter two methods, since only

one linear system with NDOFe unknowns needs to be solved per Newton iteration step,

i.e. the numerical work per time step is comparable to that of implicit θ-methods. But

BDF methods require a sequence of previous steps which may not always be available (see

section 3.5 and chapter 4).

Nevertheless, all of these methods have similar or worse sparsity patterns than the

Crank-Nicolson scheme. Of course, iterative methods should be employed in all of these

time integration schemes for large scale simulations. But one downside remains: the simul-

taneous solution for the new velocity and the new pressure requires large or dense linear

3.2. FULLY COUPLED METHODS 65

systems to be solved in every time step. And as mentioned before, the matrix is solution

dependent, i.e. it changes within every step of the Newton iteration, or at least every time

step, if the simplified Newton method is applied and it is non-symmetric.

The assembly of matrices and vectors via the finite element method as described in

chapter 2 and the solution of discrete saddle point problems (3.5), (3.6) or discrete pressure

Poisson problems (3.7) are most time consuming in a fluid flow simulation. Therefore, a

practical idea is to try to reduce the number of those linear systems which have to be

solved per time step. It would be particularly nice if those fewer linear systems always

had the same (if possible symmetric) matrix at least as long as the step size remains

constant. In contrast to fully coupled solution strategies, projection methods have these

desired properties. However, this usually comes at the cost of smaller step sizes and lower

order of the methods. Projection methods are generally based on some kind of modification

of standard time integration methods for differential algebraic equations. Their order is

typically lower than that of the underlying time integration scheme. Nevertheless, they

have proven to be efficient and most popular in computational fluid dynamics.

Half-explicit methods require small step sizes compared to implicit or semi-implicit

methods due to their bounded stability region and the stiffness inherent in the velocity

part of the equations. The maximal possible step sizes of the half-explicit Euler method

applied to the previous test example are given in table 3.1. The maximal step sizes are very

NDOF 1374 5196 9587

N∆ 272 1088 2006

∆t 0.002 0.0002 0.0001

Table 3.1: Maximal step size for half-explicit Euler method

small and they decrease as the grid gets finer. Although there are half-explicit methods of

higher order (cf. [56]), this phenomenon in principle still exists because of their bounded

stability domain and the CFL-condition.

Since fully coupled, i.e. fully implicit, methods are expensive and half-explicit meth-

ods require extremely small step sizes, implicit or semi-implicit projection methods are

inbetween the latter two in some sense. Due to these reasons, projection schemes have

been the preferred methods in computational fluid dynamics since Chorin introduced his

original scheme in 1967 (see also [12, 13]). Typically, the pressure at the new time level

is approximated and later on the velocities and the pressure are corrected, requiring that

the discrete divergence will be zero. For large scale simulations, iterative methods are

necessary ingredients, too.

66 CHAPTER 3. NUMERICAL SOLUTION STRATEGIES

3.3 Classical projection methods

In computational fluid dynamics, projection methods have been introduced as a useful

and efficient way to significantly reduce the computational cost of time-dependent in-

compressible viscous flow simulations in the velocity-pressure formulation (see also [73]

and references therein). The method has been given by various names, such as splitting

method, pressure correction method, or fractional step method. This means that the sys-

tem (1.12a)–(1.12b) is split into a series of simpler equations, such as advection-diffusion

equations and Poisson equations, for example, and explicit or implicit updates.

The pressure correction method has originally been developed for finite difference meth-

ods. It is a special method for incompressible flows. In its original form, the pressure-

correction method consists of two steps. In the first step, the momentum equation is

solved where some approximation for the pressure is used. The continuity equation is not

taken into account and the resulting velocity field may be considered as an intermedi-

ate velocity field. In the next step, this intermediate velocity field is projected onto the

space of divergence-free vector fields. There are several projection strategies. Typically,

a Poisson-type equation for the pressure is solved which is implicitly introduced by the

projection step. The pressure correction method is strongly coupled with the type of time

discretization.

The projection approach, which goes back to Chorin [12, 13, 14] and Temam [112, 113] is

certainly one of the most controversial issues in computation fluid dynamics of incompress-

ible viscous fluid flow, the controversy stemming from the boundary conditions satisfied

by the pressure (see also [48, 84, 97, 98, 99] and references therein). The rigorous underly-

ing analysis and understanding is still incomplete (cf. [100, 101]), particularly concerning

spurious pressure boundary layers. Additionally, smaller time steps have to be chosen due

to the more explicit character of the schemes.

There are two approaches for applying projection methods: continuous in space projec-

tion methods (referred to as projection methods in this work) like the methods of Chorin

[12, 13, 14], Goda [45], Van Kan [73] which belong to the class of Rothe methods and

discrete projection methods such as Turek’s (cf. [121]) discrete counterparts of Chorin and

Van Kan which belong to the methods of lines class.

So far, little attention has been paid to improving the efficiency of the discrete methods

by incorporating other schemes than implicit Euler or Crank-Nicolson or variants thereof.

Discrete projection methods based on implicit Euler and Crank-Nicolson scheme have been

extensively studied by Turek (cf. [118, 119, 120, 121]).

In the remainder of this chapter, it is shown how the advantages of discrete projection

methods can be carried over to BDF and implicit Runge-Kutta methods. The result are

more efficient integrators than discrete versions of Chorin and Van Kan. In addition, the

techniques suggested in [119] may also be applied.

3.3. CLASSICAL PROJECTION METHODS 67

3.3.1 The pressure correction method - continuous approach

Applying the θ-method to the continuous in space equations (1.8) yields

un+1 − un

∆t
=θ
(
ν∆un+1 − (un+1 · ∇)un+1 −∇pn+1 + bn+1

)

+ (1− θ) (ν∆un − (un · ∇)un −∇pn + bn) (3.8a)

∇ · un+1 =0 (3.8b)

provided that un is divergence-free. For simplicity we assume Dirichlet boundary conditions

u =w on Γ.

Again, θ = 0 yields the (continuous in space) half-explicit Euler method, i.e. pn is con-

sidered as a Lagrange multiplier which keeps the velocity at the new time level, un+1,

divergence-free. In other words, although the velocity seems to be advanced explicitly in

time, the pressure at the old time level, pn, needs to be determined implicitly in order to

keep un+1 divergence-free.

Now, because of better stability, consider θ = 1
2
and θ = 1. In the first step of the

pressure-correction method, the pressure at the new time level, pn+1, in the momentum

equation is replaced by some known pressure p̃n+1. This yields an intermediate velocity

field ũn+1 satisfying

ũn+1 − un

∆t
= θ

(
ν∆ũn+1 − (ũn+1 · ∇)ũn+1 −∇p̃n+1 + bn+1

)

+ (1− θ) (ν∆un − (un · ∇)un −∇pn + bn) (3.9a)

ũn+1 = w on Γ. (3.9b)

In the second step, ũn+1 is projected onto the space of divergence-free vector fields,

un+1 − ũn+1

∆t
+∇q = 0 (3.9c)

∇ · un+1 = 0 (3.9d)

un+1 · n = w · n on Γ, (3.9e)

where q may be regarded as auxiliary pressure. This projection step is performed by solving

the (auxiliary) pressure Poisson equation

∆q =
1

∆t
∇ · ũn+1

and then performing two explicit updates

un+1 = ũn+1 −∆t∇q
pn+1 = p̃n+1 +

q

θ
.

68 CHAPTER 3. NUMERICAL SOLUTION STRATEGIES

Classical approaches are those of Chorin with θ = 1, p̃ = 0 where the auxiliary pressure

q is simply the pressure at the new time level tn+1 and of Van Kan with θ = 1
2
, p̃ = pn

where q is a pressure increment; both using finite differences for the spatial discretization.

Chorin’s scheme has since been used repeatedly within finite difference [76], finite volume

[122], finite element (see [48] and references therein) and spectral element (see [95] and

references therein) solvers.

Although there are no boundary conditions for the pressure in the Navier-Stokes equa-

tions, boundary conditions for the auxiliary pressure are required in order to solve the

pressure Poisson equation. Multiplying (3.9c) by the unit normal vector yields

∂q

∂n
= −u

n+1 · n− ũn+1 · n
∆t

on Γ (3.10)

which reduces to ∂q

∂n
= 0. This boundary condition is most widely used and at the same time

has caused controversial discussion ever since in literature (see [100, 101] and references

therein).

The correct boundary conditions can be obtained from (3.8) by taking the inner product

between the momentum equation and the unit normal vector of the boundary,

∂pn+1

∂n
= (−(un+1 · ∇)un+1) + ν∆un+1 + b) · n. (3.11)

The right-hand side of this equation is in general not zero and is independent of the

discretization parameter ∆t, so that errors introduced by (3.10) may be of O(1). However,

imposing the boundary condition (3.11) involves terms at the new time level and therefore

leads to a coupled system which is not what we want, since splitting methods are employed

in order to get rid of the velocity-pressure coupling.

The simple boundary condition (3.10) works well in practice but prevents splitting

methods to be of higher order. Only if the boundary conditions are sufficiently good

approximations of the correct boundary conditions (3.11) can continuous splitting methods

obtain more than order two. It is shown in [74] how the correct boundary conditions (3.11)

can be approximated sufficiently well by using approximations of Adams-Bashforth and

Adams-Moulton type (cf. [74]). This approach seems to be tedious and to my knowledge

has not been applied to complicated domains yet. Since the issue of boundary conditions

for the projection step is one of two major differences between the continuous and the

discrete approach, let us have a closer look at this issue.

3.3.2 The pressure correction method - discrete approach

The continuous in space approach described in the previous section is most common in

computational fluid dynamics, especially when finite differences or pseudospectral methods

3.3. CLASSICAL PROJECTION METHODS 69

are used for the spatial discretization. The so-called discrete projection method belongs

to the methods of lines class. We shall first carry out a semi-discretization, i.e. proceed

with spatial discretization while retaining the temporal derivative. Time marching is then

treated separately in a second step.

Applying the θ-method to the discrete Navier-Stokes equations yields (3.3). Again,

because of better stability, consider θ = 1
2
and θ = 1. In the first step of the pressure-

correction method, the pressure at the new time level pn+1h in the momentum equation

is replaced by some known pressure p̃n+1h . This yields an intermediate velocity field ũn+1e

satisfying

M
ũn+1e − une

∆t
= θ

(
D(ũn+1e)− A(ũn+1e , ũn+1e)−Gp̃n+1h + fn+1

)
(3.12a)

+ (1− θ) (D(une)− A(une , u
n
e)−Gpnh + fn) . (3.12b)

In the second step, ũn+1e is projected onto the space of divergence-free vector fields,

M
un+1e − ũn+1e

∆t
+Gqh = 0 (3.12c)

CTun+1e = 0. (3.12d)

This projection step is performed by solving the pressure Poisson equation

CTM−1Gqh =
1

∆t
CT ũn+1 (3.13)

and then performing two updates

un+1e = ũn+1e −∆tM−1Gqh

pn+1h = p̃h +
qh
θ
.

These discrete counterparts of Chorin’s method (θ = 1, p̃ = 0) and Van Kan (θ = 1
2
,

p̃ = pn) have extensively been studied by Turek (cf. [118, 119, 120, 121].

The major differences between continuous and discrete projection methods are twofold.

On the one hand, discrete projection methods are easier than continuous projection meth-

ods in the sense that boundary conditions for the pressure in the projection step are

automatically inherent. On the other hand, discrete projection methods are more difficult

in the sense that the pressure Poisson equation (3.13) is significantly more expensive to

solve than in the continuous case. At the same time, (3.13) is simpler than (3.7), i.e. the

matrix is constant in time and symmetric whenever the forms (2.29) or (2.30) are used.

From a more general point of view, the discrete projection methods introduced above

obey the following methodology:

70 CHAPTER 3. NUMERICAL SOLUTION STRATEGIES

�

Fix an approximate pressure p̃h

�

Solve M ˙̃ue = B(ũe)−Gp̃h for ũe where B denotes a discrete Burgers operator

�

Project ũe onto the discretely divergence-free space

�

Update the pressure, i.e. pn+1h = φ(p̃h,∆t, λh) with λh as in (3.16) and φ depends on

the solver in the second step

Using this methodology allows to construct discrete projection methods and classify

them according to how the approximate pressure has been chosen, how the discrete Burgers

operator has been constructed and solved, and how the projection step has been performed.

In this notation (i.e. type of splitting / solver for the velocity step), the discrete implicit

projection methods based on the θ-method are

Chorin/IEM: M ˙̃ue = BChorin(ũe), p̃h = 0 φ =
1

∆t
λ

Van Kan/IEM: M ˙̃ue = BIEM(ũe)−Gp̃h, p̃h = pnh φ = pnh +
1

∆t
λh = p̃h +

1

∆t
λh

Van Kan/CNS: M ˙̃ue = BCNS(ũe)−Gp̃h, p̃h = pnh φ = pnh +
2

∆t
λh = p̃h +

2

∆t
λh

with λh as in (3.16). The method in the middle is, however, rarely used in practice

compared to the other two methods. The two possible approaches, namely the fully coupled

(FC) approach and the discrete projection (DP) approach, may be summarized as follows:

FC: First treat the nonlinearity by an outer iteration and obtain linear indefinite sub-

problems which can be solved by a coupled or splitting approach (cf. [120]).

DP: Split the coupled problem and obtain problems in the velocity unknowns (Burgers

equation) as well as in the pressure unknowns (pressure Poisson problems). Then

treat the nonlinear problems in the velocity unknowns.

3.3.3 Concomitant pressure field

In contrast to the continuous in space equations (1.12) which do not require initial data

for the pressure, all discrete projection methods (except those of Chorin type) do require

an initial pressure. Given a discrete velocity field ue, the concomitant pressure field can

be obtained by differentiating (2.32b) with respect to time and plugging into (2.32a). This

yields

CTM−1Gph(t) = CTM−1(−A(ue, ue) +D(ue) + f(t))− ġ(t).

3.3. CLASSICAL PROJECTION METHODS 71

The efficient solution of the pressure Poisson equation is described in section 3.7.2. Note

that the issue with boundary conditions for the pressure Poisson equation does, in contrast

to chapter 1, not arise here.

3.3.4 Projection step: L2-projection

This section deals with the treatment of the incompressibility condition (1.12b) in the

Navier-Stokes equations by the so-called L2-projection. The idea is to force the condition

∇ · u = 0 that the solution has to verify by projecting (a generally non-divergence-free)

predicted value of the solution onto a space of divergence-free vector-valued functions, the

projection being in the sense of L2(Ω) (see also [44]).

The Helmholtz decomposition theorem states that any vector field satisfying appropri-

ate boundary conditions can be orthogonally decomposed into a solenoidal part, i.e. with

zero divergence, and an irrotational part, i.e. with zero curl:

Theorem 3.1 (Helmholtz-Hodge decomposition) A sufficiently smooth vector field

ũ on Ω can be uniquely decomposed in the form

ũ = u+∇λ (3.14)

where u has zero divergence, i.e. ∇ · u = 0, and is parallel to ∂Ω, i.e. u · n = 0 on ∂Ω.

A proof can be found in [15, 52]. The best divergence-free approximation in the L2-sense

of a given velocity field ũ ∈ V0 is achieved by the velocity field u ∈ V0 which minimizes

J(u) =
1

2

∫

Ω

(u− ũ) · (u− ũ) dV

=
1

2

∫

Ω

u · u dV −
∫

Ω

ũ · u dV +

∫

Ω

ũ · ũ dV

︸ ︷︷ ︸
= const.

subject to the constraint ∫

Ω

(∇ · u)w dV = 0

∀w ∈ W . The assigned Lagrange functional is

L(u, λ) = 1

2

∫

Ω

u · u dV −
∫

Ω

ũ · u dV +

∫

Ω

(∇ · u)λ dV

72 CHAPTER 3. NUMERICAL SOLUTION STRATEGIES

which yields the saddle point problem
∫

Ω

u · v dV +

∫

Ω

(∇ · v)λ dV =

∫

Ω

ũ · v dV ∀v ∈ V0 (3.15a)

∫

Ω

(∇ · u)w dV = 0 ∀w ∈W (3.15b)

(see also [5]). This is the weak form of the Helmholtz-Hodge decomposition (3.14). Dis-

cretizing (3.15) with the tools from section 2.2 yields the discrete L2-projection at time t,

Mue +Gλh = Mũe (3.16a)

CTue = g(t). (3.16b)

Solving (3.16a) for ue and plugging it into (3.16b) yields

λh = (CTM−1G)−1CT ũe − (CTM−1G)−1g(t) (3.17)

provided that C and G have full rank. Then, (3.16a) and (3.17) yield

ue = ũe −M−1Gλh

= ũe −M−1G(CTM−1G)−1(CT ũe − g(t))

= (I −M−1G(CTM−1G)−1CT)ũe +M−1G(CTM−1G)−1g(t)

= P0ũe +M−1G(CTM−1G)−1g(t)

where P0 := I −M−1G(CTM−1G)−1CT is called the L2-projection matrix. Note that P0

is indeed a solenoidal projection, i.e.

CTP0ũe = CTue − g(t) = 0

and P0 projects gradients to zero, i.e.

P0M
−1G = 0.

For the remainder of this section, suppose that C = G. Then P0 is an orthogonal projection

via the discrete L2-inner product, (x, y) = xTMy. With Q0 := I − P0,

(P0ũe, Q0ũe) = (P0ũe)
TC(CTM−1C)−1CT ũe = (CTP0ũe)

T (CTM−1C)−1CT ũe = 0

because CTP0ũe = 0. The discrete relation

ũe = ue +M−1Cλh = P0ũe +Q0ũe

3.4. DISCRETE MULTISTEP PROJECTION METHODS 73

mimics (3.14). Testing the orthogonality of ue and M−1Cλh, however, yields

||ũe||20 = (ue +M−1Cλh)
TM(ue +M−1Cλh)

= uTeMue + (M−1Cλh)
TM(M−1Cλh) + 2uTe Cλh

but uTe Cλh = λThC
Tue = λTh g(t) and thus we obtain

||ũe||20 = ||ue||20 + ||M−1Cλh||20 + 2λTh g(t).

Hence, L2-orthogonality between ue and M−1Cλh is obtained only for g(t) = 0 which, in

this case, would require n · u = 0 on ΓD (or ΓD = ∅).
For completeness, we state that there is also a so-called H1-projection which is equiv-

alent to a Stokes problem while the L2-projection is equivalent to solving a Darcy flow

problem (see also [48]). It is in principle possible to replace all L2-projections in this work

by H1-projections.

3.4 Discrete multistep projection methods

3.4.1 Multistep methods

BDF methods are multistep methods for the numerical solution of systems of ordinary

differential equations dy

dt
= f(t, y). In order to apply a BDF method to the differential

algebraic equation (3.1), the singular mass matrix Me = diag(M, 0Np×Np) is replaced by

M ε
e = diag(M, εINp×Np) with ε > 0 and the BDF method is formally applied to

dye
dt

= (M ε
e)
−1F (ye). (3.18)

Multiplication by M ε
e then yields

Ln
∆t,k(M

ε
e y

n+1
e) = F (ye).

The operator Ln
∆t,k represents the BDF scheme approximation of d

dt
,

Ln
∆t,k(Myn+1) =

1

∆t

k∑

m=0

βmMyn+1−m (3.19)

with appropriate coefficients βi, i = 1, . . . , k. Then, let ε → 0 which yields the BDF

method applied to the differential algebraic system (3.1). This procedure is known as the

ε-embedding method (cf. [56]). Note that for ε→ 0 the equation (3.18) becomes infinitely

stiff.

74 CHAPTER 3. NUMERICAL SOLUTION STRATEGIES

In case of the discrete Navier-Stokes equations (2.32), this results in

Ln
∆t,k(Mun+1e) = −A(un+1e , un+1e) +D(un+1e)−Gpn+1h + fn+1 (3.20a)

CTun+1e = gn+1 (3.20b)

provided that une is discretely divergence-free. For k = 1 and β0 = 1, β1 = −1 we get the

(fully coupled) implicit Euler method. For k = 2 we set β0 =
3
2
, β1 = −2, β2 = 1

2
and for

k = 3 we use β0 =
11
6
, β1 = −3, β2 = 3

2
, β3 =

1
3
(see [24]). (3.20) represents a fully coupled

nonlinear system of equations. Although it is more efficient than the discrete θ-method

(if k is sufficiently large), the cost per time step is approximately the same. Therefore,

velocity and pressure are decoupled by introducing a projection step.

3.4.2 Velocity-pressure decoupling

In the following, it is shown how velocity and pressure can be decoupled by introducing

a projection step in order to reduce the numerical cost per time step. This is a general-

ization and extension of the continuous in space approach suggested by [61, 62, 63, 64]

for the Stokes equations and by [59, 65] for the continuous in space linearized Navier-

Stokes equations. These approaches are based on pseudospectral discretizations and are

only demonstrated to work on very simple geometries and with homogeneous Dirichlet

boundary conditions. Furthermore, boundary conditions for the projection step are chosen

to be too simple for this approach, namely homogeneous Neumann boundary conditions

(cf. section 3.3.1). In contrast to these approaches, the discrete approach presented here

takes care of pressure modes, works on arbitrary geometries in combination with a large

variety of physically relevant boundary conditions and the nonlinearity is treated fully

implicitly which allows the simulation of non-Newtonian fluid flows. If desired, the non-

linear advection term may also be treated explicitly in the case of Newtonian fluids (see

section 3.7.1).

In order to reduce the computational cost, consider the following splitting scheme:

1

∆t

(
β0Mũn+1e +M

k∑

m=1

βmu
n+1−m
e

)
= −A(ũn+1e , ũn+1e) +D(ũn+1e)−Gp̃n+1l + fn+1

(3.21)

with pressure correction

β0M
un+1e − ũn+1e

∆t
+G(pn+1h − p̃n+1l) = 0

CTun+1e = gn+1

3.5. ONE-STEP METHODS VS. MULTISTEP METHODS 75

and

p̃n+1l =
l−1∑

m=0

γmp
n−m
h (3.22)

with appropriate coefficients γm, m = 0, . . . , l − 1. For l = 1 we have γ0 = 1 and for l = 2

γ0 = 2, γ1 = −1, for l = 3: γ0 = 3, γ1 = −3, γ2 = 1. For k = 1 and l = 0 this is the discrete

projection method of Chorin type, i.e. Chorin/IEM in section 3.3.2. The projection step

is realized, in principle, by solving (3.17), i.e.

CTM−1Gλh = CT ũe − gn+1

and then performing two updates

un+1e = ũe −M−1Gλh

pn+1h = p̃h +
β0
∆t

λh.

Using this approach, the nonlinear iteration in order to solve (3.21) is only in the velocity

unknowns due to the pressure decoupling, i.e. only “small” linear systems need to be solved.

Therefore, the nonlinear iteration is significantly cheaper compared to a fully coupled

approach. The linear systems which need to be solved within the nonlinear iteration

always have full rank, no matter whether there are pressure modes or not. In other words,

pressure modes don’t affect the velocity step. In addition, only one “large” linear system

or a pressure Poisson equation must be solved per time step in the projection step. If there

are pressure modes, they have to be taken care of only once per time step. Theoretically,

the approximations un+1e are discretely divergence-free. In practice, however, this depends

on how the projection step is actually performed (see section 3.7.2).

3.5 One-step methods vs. multistep methods

Discrete multistep methods require information from k previous time steps at every grid

point from the current time level in order to advance velocity and pressure at the grid

points to the new time level. For time-dependent domains, providing this information

can be an intricate, tedious, and in many situations inaccurate or even impossible task.

Figure 3.4 shows a simple example of a time-dependent domain with a moving mesh. From

an Eulerian point of view, at t = 1.2 there is no history of the velocity field available at grid

points near the left part of the boundary of the moving circle since there has been no fluid at

these positions at the previous time steps. The larger the time steps, the more inaccurate

and difficult it is to obtain information via extrapolation within the spatial domain of

the velocity field at grid points where there has been no fluid at all at previous times

76 CHAPTER 3. NUMERICAL SOLUTION STRATEGIES

0
0.5

1
1.5

2

0
0.5

1
0

0.2

0.4

0.6

0.8

1

PSfrag replacements

x1x2

t

Figure 3.4: Example of a time-dependent domain

steps. The history of fluid particles, i.e. the history of the (moving) grid points themselves

(Lagrangian point of view), is of course known, but the history of the velocity field at the

(for the moment fixed) grid points is not always known. Discrete multistep methods are

therefore awkward or not well suited for transient domains. One-step methods, such as

Runge-Kutta methods, require only information from the current time level in order to

advance velocity and pressure to the new time level. It will therefore be shown in the next

section how the projection approach can be applied to Runge-Kutta methods which then

may be used for fluid flow simulations in transient domains.

3.6 Discrete one-step projection methods

3.6.1 Diagonally implicit Runge-Kutta methods

In principle, Runge-Kutta methods, like any other solver for systems of ordinary differential

equations, can be used to advance the velocity in the second step of a projection scheme

(see p. 70); say of Chorin or Van Kan type. However, this is not very efficient since the

velocities at the inner stages don’t satisfy the constraint, i.e. they are not divergence-free

in general. When solving a differential algebraic equation with Runge-Kutta methods, the

solutions at the inner stages should satisfy the constraint. Implicit Runge-Kutta methods

require the solution of nonlinear systems with s ·NDOFe unknowns in every time step (see

[56]). Computationally more promising than implicit Runge-Kutta methods are diagonally

implicit Runge-Kutta methods. They require the solution of s nonlinear systems with

NDOFe unknowns per time step. In order to apply a diagonally implicit Runge-Kutta

3.6. DISCRETE ONE-STEP PROJECTION METHODS 77

method to the differential algebraic equation (3.1), the ε-embedding method is again used.

Replace the singular mass matrix Me by

M ε
e =

(
M 0

0 εINp×Np

)

with ε > 0 and formally apply the Runge-Kutta method to dye
dt

= (M ε
e)
−1F (ye). Multipli-

cation by M ε
e yields

M ε
e yi = M ε

e y
n
e +∆t

i∑

j=1

aijF (yj) for i = 1, . . . , s

M ε
e y

n+1
e = M ε

e y
n
e +∆t

s∑

i=1

biF (yi)

and finally, let ε→ 0 which gives

Mui = Mune +∆t
i∑

j=1

aij(−A(uj, uj) +D(uj) + fnj)−Gpj) (3.23a)

CTui = gni (3.23b)

for i = 1, . . . , s with fni = f(tn + cj∆t) and gni = f(tn + ci∆t). The new velocity and new

pressure are obtained from

Mun+1e = Mune +∆t
s∑

i=1

bi(−A(ui, ui) +D(ui) + fni)−Gpi) (3.23c)

pn+1h = pnh +∆t
s∑

i=1

bili (3.23d)

where the li are defined by

pi = pnh +∆t
s∑

j=1

aijlj.

In contrast to (3.20), the new velocity un+1e is not divergence-free in general. Therefore,

an additional projection may be performed.

3.6.2 Velocity-pressure decoupling

It will now be shown how velocity and pressure can be decoupled by introducing a pro-

jection step in order to reduce the numerical cost per time step. As in the case of BDF

78 CHAPTER 3. NUMERICAL SOLUTION STRATEGIES

methods, the idea of discrete projection methods of Chorin or Van Kan type is extended

to diagonally implicit Runge-Kutta methods. The approach presented here takes care of

pressure modes, works on non-trivial geometries with a large variety of physically rele-

vant boundary conditions and the nonlinearity is treated fully implicitly which allows the

simulation of non-Newtonian fluid flows. In the case of Newtonian fluids, the nonlinear

advection term may also be treated explicitly (see section 3.7.1).

The fully coupled nonlinear system of equations (3.23) is decoupled by approximating

pi in the ith stage of the method by a known pressure p̃i. This yields an intermediate

velocity ũi which is, in general, not divergence-free. By introducing a projection step, the

velocity is corrected so that it is discretely divergence-free up to some tolerance and then

the pressure is corrected. The principle procedure of the method is shown in algorithm 3.1.

Using this approach, the nonlinear iteration in order to solve (3.24) is only in the

velocity unknowns due to the pressure decoupling. Therefore, the nonlinear iteration is

significantly cheaper compared to a fully coupled approach. The linear systems which need

to be solved within the nonlinear iteration always have full rank independent of the presence

of pressure modes. Similar to BDF methods, pressure modes don’t affect the velocity step.

In addition, only one “large” linear system or a pressure Poisson equation must be solved

per inner stage of the method in the projection step. If there are pressure modes, they

have to be taken care of only once per time step. This is described in section 3.7.2.

The simplest choice for the approximate pressure p̃i for i = 1, . . . , s is p̃i := 0 which

corresponds to Chorin’s method if the velocity is advanced with the implicit Euler method.

Choosing p̃i := pn for i = 1, . . . , s or p̃1 := pn and p̃i := pi−1 for s = 2, . . . , s is also possible.

In general, the approximate pressure at the ith stage should be chosen so that

p0 = pnh

p̃i =
i−1∑

m=0

γimpm for i = 1, . . . , s (3.26)

with appropriate coefficients γim. In principle, it would be possible to use information

from previous time steps in order to obtain a better ”guess” for p̃i, just like in the case

of multistep methods. However, this would make the one-step method become some kind

of multistep method, which is not what we want. It turns out that if the order of the

extrapolations or interpolations (3.26) is too high, the method may become unstable and

therefore the weights γm have to be chosen carefully.

3.6.3 Projected velocity-pressure decoupling

Note that although the velocities ui, i = 1, . . . , s, at the intermediate stages are discretely

divergence-free (up to some given tolerance), this is generally not true for the approxima-

3.6. DISCRETE ONE-STEP PROJECTION METHODS 79

Algorithm 3.1

STEP 1: For i = 1, . . . , s do:

Step 1: Solve

Mũi = Mune +∆t
i−1∑

j=1

aij (−A(tn + cj∆t, uj, uj) +Duj + f(tn + cj∆t)−Gpj)

+ ∆taii (−A(tn + ci∆t, ũi, ũi) +Dũi + f(tn + ci∆t)−Gp̃i) (3.24)

for ũi where p̃i is a hopefully good approximation to pi.

Step 2: Project intermediate velocity ũi onto the discretely divergence-free space,

i.e. solve

Mui +Gλ = Mũi

CTui = g(tn + ci∆t)

as described in section 3.7.2.

Step 3: Update the pressure

pi := p̃i +
1

∆taii
λ

STEP 2: Compute new velocity, i.e. solve

Mun+1e = Mune +∆t
s∑

i=1

bi (−A(tn + ci∆t, ui, ui) +Dui + f(tn + ci∆t)−Gpi)

for un+1.

STEP 3: Compute new pressure:

Step 1: Solve

pi = pnh +∆t
i∑

j=1

aijlj

for li, i = 1, . . . , s provided that A = (aij)i,j is invertible.

Step 2: Compute

pn+1h = pnh +∆t
s∑

i=1

bili (3.25)

STEP 4: Bump n and goto STEP 1

80 CHAPTER 3. NUMERICAL SOLUTION STRATEGIES

tions un+1h of u(tn+1). For applications where this is not acceptable, one may regard the

new velocity un+1e in the nth time step again as an intermediate velocity ũn+1e and then

force it to be discretely divergence-free by performing an additional projection step. Of

course, (3.25) should then no longer be used to compute the new pressure field. Instead,

the concomitant pressure field should be computed (see section 3.3.3). The new steps are

shown in algorithm 3.2, which replace the corresponding steps of algorithm 3.1.

Algorithm 3.2

STEP 2’ Compute new velocity:

Step 1: Solve

Mũn+1e = Mune +∆t
s∑

i=1

bi (−A(tn + ci∆t, ui, ui) +Dui + f(tn + ci∆t)−Gpi)

for ũn+1e .

Step 2: Project ũn+1e onto the discretely divergence-free space, i.e. solve

Mun+1e +Gλh = Mũn+1e

CTun+1e = gn+1.

STEP 3’: Compute the concomitant pressure field, i.e. solve

CTM−1Gpn+1h = CTM−1 (−A(tn+1, un+1e , un+1e) +Dun+1e + f(tn+1)
)
− ġn+1

for pn+1h .

The quantity ġn+1 is approximated with central finite differences in a similar way as

shown in remark 2.10. The implementation of the projection step and the post projection

are described in section 3.7.2.

3.7 The velocity and projection steps

3.7.1 Treatment of the advection term

If not specified otherwise, the advection term is treated fully implicitly for the methods in

sections 3.3.2, 3.4.2, 3.6.2, 3.6.3. A common approach in computational fluid dynamics is

to treat the nonlinear advection term explicitly while retaining the implicit treatment of

the diffusion term. Such methods are called semi-implicit methods, which basically solve

3.7. THE VELOCITY AND PROJECTION STEPS 81

a modified Stokes system. However, this only makes sense as long as the diffusion term is

linear, i.e. when the fluid is Newtonian. In order to allow for non-Newtonian fluids, the

advection term as well as the possibly nonlinear diffusion term are both treated implicitly.

Explicit treatment of the advection term may be forced by setting the field fem.advection

as described in section A.3.

3.7.2 The discrete projection step

The discrete projection step can either be performed by solving the fully coupled sys-

tem (3.16), i.e.

Aye = b (3.27)

with

A =

(
M G

CT 0Np×Np

)
, ye =

(
ue
λh

)
, b =

(
f̃

g(t)

)
, f̃ = Mũe

or by decoupling velocity ue and auxiliary pressure λh,

Apλh = CTM−1f̃ − g (3.28a)

Mue = f̃ −Gλh (3.28b)

with

Ap = CTM−1G.

The advantage of this (auxiliary) pressure Schur complement approach is that the linear

system (3.28a) is of much smaller dimension than the original fully coupled system (3.27).

However, the matrix Ap is dense and cannot be explicity computed. In addition, the system

is poorly conditioned on unstructured grids in complicated domains (cf. [48]).

The matrices A and Ap in (3.27) and (3.28a), respectively, can be symmetric or non-

symmetric and they can be singular or have full rank, depending on the weak formulation

(see sections 2.2.3 and 2.5) and the boundary conditions. These four situations require

different solution techniques. The forms (2.30) and (2.29) are most important since they

yield symmetric systems.

Iterative solution of the projection step, part I

In order to solve the (auxiliary) pressure Poisson equation (3.28a) efficiently, the pressure

Schur complement techniques suggested in [119, 120, 121] are applied and extended to

simulations with pressure modes. Let K be a preconditioning operator which is carefully

chosen, i.e. “close to M” and cheap, so that B = (CTK−1G)−1 resembles a good pre-

conditioner. Then, the general formulation of the discrete projection step (3.28) reads as

follows:

82 CHAPTER 3. NUMERICAL SOLUTION STRATEGIES

Given λ0, then solve for l = 1, . . . , L:

λ̃l = λl−1 + α(CTK−1G)−1
(
CTM−1(f̃ −Gλl−1)− g

)
(3.29a)

and compute

λl := λ̃l − PH(P
T
H λ̃

l) (3.29b)

if there are pressure modes or set

λl := λ̃l (3.29c)

otherwise. Finally, determine ue via

Mue = f̃ −GλL +
1

α
(αI −MK−1)G(λL − λL−1). (3.29d)

The iteration counter L ≥ 1 is either explicitly chosen by the user, e.g. as a fixed number,

or by a stopping criterion, i.e. until the residual drops below some chosen tolerance. α is

a relaxation parameter; typically α = 2.

This scheme is a (relaxed by α) Richardson iteration for the Schur complement equation

(3.28), with the special preconditioner CTK−1G and an orthogonalization step. Some

properties of the discrete projection step in the case of no pressure modes are summarized

in the following proposition.

Proposition 3.2 Suppose there are no pressure modes.

1. For K = M and α = 1, the additive term in (3.29d) vanishes and the solution is

obtained after L = 1 iteration.

2. The solution ue in (3.29d) is discretely divergence free, i.e.

CTue = g.

Proof. For K = M , (3.29d) yields (3.28b). To prove the second statement, equation

(3.29a) for l = L yields

1

α
(CTK−1G)(λL − λL−1) = CTM−1

(
f̃ −GλL−1

)
− g

= −CTM−1GλL−1 + CTM−1f̃ − g.

3.7. THE VELOCITY AND PROJECTION STEPS 83

Multiplication of (3.29d) from left by CTM−1 yields

CTue = CTM−1f̃ − CTM−1GλL +
1

α
CT
(
αM−1 −K−1)G(λL − λL−1)

= CTM−1f̃ − CTM−1GλL + CTM−1G(λL − λL−1)− 1

α
CTK−1G(λL − λL−1)

= CTM−1f̃ − CTM−1GλL−1 − 1

α
CTK−1G(λL − λL−1)

= CTM−1f̃ − CTM−1GλL−1 + CTM−1GλL−1 − CTM−1f̃ + g

= g.

¦
The operator K−1 should be a good approximation toM−1 and cheap to apply. A good

choice is

K = Ml

where the lumped mass matrix Ml is defined as

Mlii =

NTe∑

j=1

M
ij
, i = 1, . . . , NTe.

The simplest choice K = I doesn’t work for most examples presented in this work.

The convergence of the iteration scheme (3.29) applied to the test problem of sec-

tion 3.1.1 has been studied. The numerical tests show that the performance of the itera-

tion scheme is superior for problems with hydrostatic pressure mode compared to problems

without hydrostatic pressure mode if the approximations within the iteration are orthog-

onalized with respect to the pressure mode. The results of the projection step applied to

the test problem are shown in section 3.7.6.

When the symmetric forms (2.29) or (2.30) are used, then the conjugate gradient

method may be applied instead. If not specified otherwise, it is assumed that G = C

in the following so that A and Ap become symmetric.

Iterative solution of the projection step, part II

The pressure Poisson equation (3.28a) can also be solved using the conjugate gradient

method. The preconditioned conjugate gradient method (PCG) can be viewed as a conju-

gate gradient method applied to the preconditioned system

BAx = Bf. (3.31)

If A,B ∈ RNp×Np are symmetric positive definite and B is a preconditioner for A, i.e.

B ≈ A−1, then

||x− xk||A ≤ 2

(√
κ(BA)− 1√
κ(BA) + 1

)k

||x− x0||A, (3.32)

84 CHAPTER 3. NUMERICAL SOLUTION STRATEGIES

which implies that PCG converges faster with smaller condition number κ(BA) (see [46]).

Even more important are cluster effects around 1, i.e. only very few eigenvalues of BA

are close to zero or very large compared to the eigenvalues of the original matrix A. From

(3.31) and the convergence estimate (3.32), it follows that the efficiency of the PCG method

depends on two main factors: the action of B and the size of κ(BA) or the eigenvalues of

BA not clustered around 1. Hence, a good preconditioner should have the properties that

the action of B is relatively cheap to compute and that κ(BA) is relatively small w.r.t.

κ(A). Nevertheless, the algorithm described in part I seems to yield better results.

In order to handle the situation where Ap is singular, the PCG method is equipped with

an additional projection in order to keep the solution orthogonal to a possible hydrostatic

pressure mode. This PCG algorithm for (3.28a), i.e. Ax = b with A := Ap, x := λh, and

b := CTM−1f̃ − g, is shown in algorithm 3.3. Similar to the previous approach, K = Ml

Algorithm 3.3 AMG-preconditioned CG for (3.28a), solve Ax = b

STEP 1: Select starting vector x0 ∈ RNp and tolerance tol > 0.

STEP 2: Compute r0 = Ax0 − b, s0 = Br0 and initialize m = 0, d0 = s0, δ0 = rT0 s0.

STEP 3: Compute the approximate solution as follows:

while ||rk|| ≥ tol and m < mmax do

Compute δ′m = dTmAdm
Set αm = δm/δ

′
m

Set x̃m+1 = xm − αmdm
Compute xm+1 = x̃− pH(p

T
H x̃)

Compute rm+1 = rm − αmAdm
Compute sm+1 = Brm+1

Set δm+1 = rTm+1sm+1

Set βm = δm+1/δm
Set dm+1 = sm+1 + βmdm
Bump m

end while

and B = (CTK−1C)−1 is used as a preconditioner. Algebraic multigrid is used to apply the

preconditioner (see section 3.7.5). In addition, algebraic multigrid is also used to perform

the matrix-vector multiplications within the conjugate gradient method. Since the matrix

A = CM−1C is dense, the matrix-vector products y := Ax in algorithm 3.3 are computed

by first solving Mz = Cx (see section 3.7.5) and then computing y = CT z. In other words,

for every matrix-vector multiplication within the PCG method, a linear system has to be

solved. In a second step, ue is computed via (3.28a).

3.7. THE VELOCITY AND PROJECTION STEPS 85

Direct solution of the projection step

If there are no pressure modes, A can be factored as

A =

(
RT 0

ST T T

)(
R S

0 −T

)

by applying two Cholesky decompositions: first, compute the Cholesky decomposition of

M ,

RTR :=M,

then solve

RTS =C

for S and then compute the Cholesky decomposition

T TT :=STS.

If there are pressure modes as in the test problem of section 3.1.1, the rank deficiency

may be removed as shown in (3.6). Applying a LU -decomposition with reverse Cuthill-

McKee reordering works in principle, but the fill-in is prohibitive and only problems on

very coarse meshes can be solved as already mentioned in section 3.2. Therefore, iterative

methods as described above are strongly recommended whenever there are pressure modes

present, even on coarse grids.

3.7.3 A remark on robustness

It would be ideal to choose the weights in (3.22) and (3.26) so that p̃n+1l and p̃i are high

order extrapolations (and for some Runge-Kutta methods also possibly interpolations) to

pn+1 ≈ p(tn+1) and pi ≈ p(tn + ci∆t), respectively.

The most critical point for higher order extrapolation techniques is that the numerical

computations show a strong coupling between robustness of the resulting time stepping

scheme with the underlying shape of the spatial mesh and the accuracy of the projection

step. While these higher order extrapolation techniques work well on meshes without

complex geometrical details (an accurate projection is then also easier to obtain due to lower

condition numbers), the situation may be different in complicated geometries with highly

unstructured meshes with largely varying sizes. Then the decoupled solution strategies

with high order extrapolation are more prone to instabilities compared to those not using

extrapolations of the highest possible order, since large amplification factors for certain

components of the solution vector may arise which can lead to instabilities during evolution

of time. For perturbed data, the error of the interpolation polynomial is estimated by the

following theorem.

86 CHAPTER 3. NUMERICAL SOLUTION STRATEGIES

Theorem 3.3 Let x ∈ Ω and let p̄(·, x) : R → R and p̂(·, x) : R → R be the Lagrange

interpolating polynomials defined by (tn + ci∆t, p̄i(x)) and (tn + ci∆t, p̂i(x)), respectively,

for i = 0, . . . ,m. Then

max
t∈[tn,tn+1]

|p̄(t, x)− p̂(t, x)| ≤ Λm max
i=0,...,m

|p̄i(x)− p̂i(x)|

with the Lebesgue constant Λm.

A proof can be found in [69]. Since the Lebesgue constant grows exponentially with the

number of nodes used for the interpolation, the error introduced by inaccurate projection

steps can be amplified significantly.

If instabilities occur, the order of the extrapolation must be reduced. The numerical

computations in various geometries have shown that doing so prevents instabilities. How-

ever, the decoupled BDF and Runge-Kutta methods of sections 3.4 and 3.6 have worked

well in the presented test examples, although the decoupled BDF approach seems to be

more stable than the decoupled Runge-Kutta approach. Numerical experiments show that

algorithm 3.1 works best if pressure modes are present. If there are no pressure modes, the

projected velocity-pressure decoupling approach should be used.

3.7.4 Treatment of the nonlinear subproblems

For non-Newtonian fluids or for Newtonian fluids where the advection term is treated

implicitly (cf. section 3.7.1), the methods in sections 3.3.2 3.4.2, 3.6.2, and 3.6.3 require

the solution of a nonlinear system of equations in the eliminated velocity unknowns in

every time step or in every stage of the method. These nonlinear equations are solved

by the simplified Newton method. The tolerance for Newton’s method is chosen to be

NliTol = NliTol(∆t) = c∆t with c ∈ R. The solution of the linear systems within

Newton’s method is described in the next section.

3.7.5 Treatment of the linear subproblems by AMG

The projection methods presented in sections 3.4.2, 3.6.2, and 3.6.3 as well as the iterative

solution of the discrete projection step in section 3.7.2 require the solution of linear systems

Mu = b (3.33)

and

(M + c1∆tJA − c2∆tJD))u = b, c1, c2 ∈ R. (3.34)

These linear subproblems are solved with an algebraic multigrid (AMG) solver (cf. [7, 30,

66, 110, 111]) based on the Ruge-Stüben algorithm (cf [102]). In contrast to geometric

3.7. THE VELOCITY AND PROJECTION STEPS 87

multigrid methods, AMG requires no a priori given hierarchy of coarse grids. In fact, the

construction of a problem-dependent hierarchy – including the coarsening process itself,

the transfer operators as well as the coarse-grid operators – is part of the AMG algorithm,

based solely on algebraic information contained in the given system of equations (cf. [116]).

Geometrically oriented approaches, however, can hardly cope with the complex ge-

ometries occurring in simulations of real-life problems. There is generally no natural grid

hierarchy which could easily be exploited. But even if there was such a hierarchy, the

coarsest level would still be required to be fine enough to resolve the geometry to some

extend. For industrially relevant configurations, such coarse grids would still be much too

fine for efficient multilevel solutions (cf. [116]). For example, there is typically no hierar-

chy of coarse grids a priori available for grids coming form an unknown source. Even in

cases where a hierarchy of coarse grids is available, remeshing due to moving meshes in

time-dependent domains may destroy a coarse grid hierarchy.

In principle, it is possible to generate coarse grids from any given fine grid by applying

an automatic coarsening algorithm, e.g., Femlab r©’s meshscale algorithm. A geometric

multigrid solver may then be applied. However, AMG is the more elegant and more

efficient approach for solving the linear subproblems. For example, the performance of

AMG within the context of finite differences on complicated domains has been studied in

[51]. It is shown in the following that AMG also works very well on the unstructured grids

in all numerical simulations presented in this work.

Although AMG has originally been developed for symmetric, positive definite problems,

it can also be applied to non-symmetric systems. However, the convergence behavior is

not clear in this case. The performance of AMG applied to non-symmetric convection-

dominated systems is studied in the following. However, it should be said that at this

point, AMG for non-linear problems is still a field of major ongoing research and there is

no well-settled approach known yet.

If not specified otherwise, Gauß-Seidel smoothing is used within AMG V -cycles with ν1
pre-smoothing relaxations and ν2 post-smoothing relaxations (abbreviated by AMG(ν1,ν2)

in the following), typically ν1 = ν2 = 2. The grid coarsening is performed until the number

of unknowns on the coarsest grid drops below 50. A direct method is then used to solve

on the coarsest level.

Let dm, m ∈ N\{0}, denote the defect of AMG(ν1,ν2) after m V -cycles. Then the

defect reduction factors are defined as

q(m) :=
||dm||
||dm−1|| .

If not specified otherwise, the Euclidean norm is used. The convergence factor ρ of the

88 CHAPTER 3. NUMERICAL SOLUTION STRATEGIES

AMG(ν1,ν2) method can be estimated by the average defect reduction factor q̂(m), i.e.

ρ ≈ q̂(m) := m
√
q(m)q(m−1) · · · q(1) = m

√
||dm||
||d0||

(see also [116]).

The convergence histories and rates of AMG(2,2) applied to (3.33) on different grids of

the first test problem (see section 3.1.1) are shown in table 3.2 and figure 3.5(a). It can

be seen that the convergence is essentially grid independent. Note that the different grids

are not regular refinements of each other and therefore true grid independent convergence

can not be expected.

grid q(1) q(2) q(3) q(4) q̂(4) ≈ ρ

coarse 0.0051 0.0074 0.0075 0.0066 0.0066

medium 0.0072 0.0111 0.0090 0.0070 0.0084

fine 0.0062 0.0092 0.0085 0.0074 0.0077

Table 3.2: Convergence rates on different grids

The efficiency of AMG(ν1,ν2) applied to (3.33) on the fine grid of section 3.1.1 is shown

in figure 3.5(b). It turns out that ν1 = ν2 = 2 is the optimal choice for this test problem.

The performance of AMG(1,2), AMG(2,1), AMG(3,2), AMG(2,3), etc. has been found to

be inferior to that of AMG(2,2).

0 1 2 3 4

10
−5

10
0

coarse grid
medium grid
fine grid

PSfrag replacements

iterations

d
ef
ec
t

work / Mflops

relative error

(a) Grid independent convergence of AMG

0 10 20 30 40

10
−10

10
−5

10
0

AMG(1,1)
AMG(2,2)
AMG(3,3)

PSfrag replacements

iterations

defect

work / Mflops

re
la
ti
ve

er
ro
r

(b) Efficiency of AMG

Figure 3.5: AMG convergence

3.7. THE VELOCITY AND PROJECTION STEPS 89

AMG in the nonlinear iteration

The convergence histories of AMG(2,2) applied to the linear systems (3.34) occurring within

the (simplified) Newton method have been studied on the finest grid of the test problem.

The convergence history of AMG depends on the temporal step size of the underlying

time integration scheme and whether the advection term is treated fully implicitly or

explicitly, as in the case of semi-implicit methods. The results are shown in figure 3.6(a)

for different step sizes. The convergence rates are shown in table 3.3. Figure 3.6(b) shows

∆t = 0.1 0.05 0.02 0.01 0.005 0.002 0.001

fully implicit 0.3832 0.3260 0.2219 0.1272 0.0834 0.0232 0.0047

semi implicit 0.4638 0.3764 0.2305 0.1446 0.0847 0.0241 0.0059

Table 3.3: Convergence rates ρ(∆t) for different step sizes

the dependence of the convergence factor on the temporal step size for both, fully implicit

and semi-implicit methods. These numerical tests show that the convergence factors are

0 5 10 15 20 25

10
−5

10
0

PSfrag replacements

iterations

d
ef
ec
t

fi(0.10)
fi(0.05)
fi(0.02)
si(0.10)
si(0.05)
si(0.02)

relative error

(a) Convergence depending on the step size

(fi(∆t)=fully implicit, si(∆t)=semi implicit)

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

PSfrag replacements

iterations

defect
fi(0.10)

fi(0.05)

fi(0.02)

si(0.10)

si(0.05)

si(0.02)

relative error

fully impl.
semi impl.

ρ

∆t

(b) Convergence factor depending on the step

size

Figure 3.6: AMG convergence in the velocity step

excellent for both fully implicit and semi implicit treatment of the velocity step. In fact,

as the time step size decreases, the efficiency of AMG increases and therefore contributes

to a lower increase of numerical work of the time stepping schemes for small step sizes.

The performance of AMG in three dimensions is studied in section 5.4.

90 CHAPTER 3. NUMERICAL SOLUTION STRATEGIES

3.7.6 Implementation

Several discrete projection methods have been implemented. The discrete multistep projec-

tion methods have been implemented in the codes SpexBDF(k,l) with k and l as defined in

section 3.4.2. An example of a discrete diagonally implicit Runge-Kutta projection method

as described in section 3.6.2 has been implemented in the code SpexSDIRK which is based

on the Runge-Kutta method shown in table 3.4 (cf. [55]). The coefficients γim in (3.26) are

γ γ

1− γ 1− 2γ γ
1

2

1

2

Table 3.4: SDIRK method with γ = 3+
√
3

6

defined as γ10 = 1, γ20 = 1− (1− γ)/γ, γ21 = (1− γ)/γ, or γ10 = 1, γ20 = 0, and γ21 = 1

which yields a more robust scheme (cf. section 3.7.3).

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SpexBDF4
SpexBDF3
SpexBDF2
VanKanCNS

PSfrag replacements

work / s

er
ro
r

Figure 3.7: Work vs. accuracy

The performance of the discrete multistep projection methods compared to the discrete

version of Van Kan’s projection method, which is one of the most popular and most

efficient methods used in practice (cf. [118, 120, 121]), applied to the test problem of

section 3.1.1, is shown in figure 3.7. The error has been measured in the infinity norm.

It can be seen that SpexBDF(3,2) is the most efficient code. This is due to the fact that

SpexBDF(4,l) is unstable for l = 3 and therefore the order of the extrapolation had to be

3.7. THE VELOCITY AND PROJECTION STEPS 91

decreased, i.e. SpexBDF(4,2) was used instead. Nevertheless, this numerical example shows

the advantages, the good performance of SpexBDF(3,2), and the limits of the velocity-

pressure decoupling approach, i.e. SpexBDF(4,2) is less efficient than SpexBDF(3,2).

The convergence behavior of the projection step is shown in figure 3.8. The results of

this simulation are illustrated in terms of the magnitude of the velocity and a streamline

plot in figure 3.9.

Multistep projection methods are typically more efficient than Runge-Kutta projection

methods due to lower numerical cost per time step. However, as mentioned in section 3.5,

there are situations where multistep methods are awkward, nonpractical, and difficult to

apply and Runge-Kutta methods should therefore be used. Such an example is shown in

sections 5.2 and 5.3.

0 5 10 15 20
10

−6

10
−4

10
−2

10
0

10
2

PSfrag replacements

iterations

er
ro
r

Figure 3.8: Convergence of projection step

92 CHAPTER 3. NUMERICAL SOLUTION STRATEGIES

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

PSfrag replacements

work / s

error

(a) Magnitude of velocity

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PSfrag replacements

work / s

error

(b) Streamlines

Figure 3.9: Flow of the test problem

Chapter 4

Extensions

The simulation techniques described in the previous chapters belong to the field of direct

numerical simulations. This means that the fluid motion is resolved numerically and the

forces which move the fluid particles are computed rather than modeled (cf. [70, 72]).

This chapter discusses the simulation of more complicated fluid flows, namely com-

pletely instationary flows within transient domains. Examples of fluid flows in transient

domains are those with free boundaries such as water in a river, multi-fluid flows such as

water-oil mixtures, multi-phase flows such as gas-liquid mixtures, or problems involving

fluid-structure interaction. The methods presented in this chapter are based on body and

boundary fitted moving unstructured grids. Such grids give optimal spatial resolution, but

may yield poor condition numbers of the linear systems in the projection step, for example.

The moving boundaries are computed by tracking fluid particles on the boundaries. This

kind of simulation is called Lagrangian. The fluid equations are then solved in every grid

point as described in the previous chapters, i.e. in their Eulerian form.

The coupling between the fluid and a structure can be twofold, i.e. one way or two way:

The coupling is one way if the motion of the structure influences the fluid flow but the

action of the fluid flow upon the structure is negligible. A rotating fan or a ship’s propeller

are examples of fluid structure interaction problems with one-way coupling. The situation

is more complicated when the motion of the structure influences the fluid flow and at the

same time the structure’s motion is influenced by the fluid flow. This is called a two-way

coupling. Examples are wind power plants and a boulder sinking in water.

In the following, extensions of the solvers to free boundary problems as well as fluid-

structure interaction, particularly solid-liquid flows, with two-way coupling are presented.

In solid-liquid flows, the structures (also denoted as moving obstacles) are moved by New-

ton’s laws under the action of hydrodynamic forces computed from the direct numerical

solution of the fluid equations.

To perform a direct solution in the above sense, therefore, one must simultaneously

integrate the Navier-Stokes equations and the equations of rigid-body motions. These

93

94 CHAPTER 4. EXTENSIONS

equations are coupled through no-slip condition on the moving obstacles’ boundaries, and

through hydrodynamic forces and torques that appear in the equations of rigid-body motion

(cf. [72]). These hydrodynamic forces and torques must, of course, be those arising from the

computed motion of the fluid, and so are not known in advance, but only as the integration

proceeds. It is crucial that no approximation of these forces and torques be made – other

than due to the numerical discretization itself – so that the overall simulation will yield a

solution of the exact coupled initial value problem up to numerical truncation error.

Accurate modeling of interfacial flows such as fluid structure interaction, and free

boundary flows demands a realistic representation of interface and boundary topology.

Therefore, boundary and body fitted unstructured grids are used to resolve the transient

topology. The numerical techniques presented in the previous chapters have been extended

to solve and simulate fluid-structure interaction problems as well as free boundary problems

or possibly a combination of both. These extensions open the gate to simulating highly

interesting non-standard fluid flow problems. The fluid-structure interaction process itself,

the coupling with the Navier-Stokes equations, and the implementation in particular are

rather complicated, elaborate, and expensive compared to simulations in stationary do-

mains. The same can be said about simulations with free boundaries. In the following

two sections, only the basic ideas of the algorithms are presented and we abstain from

describing details of the implementation, data structure, etc.

4.1 Fluid-structure interaction

As an object moves through a fluid, the viscosity of the fluid acts on the moving object

with a force that resists the motion of the object. At the same time, the fluid flow depends

on the moving obstacle. The fluid velocity on each structure boundary must be constrained

to match the rigid-body motion of the structure.

Two recent examples of a fluid-structure interaction simulation can be found in [9,

10]. Their approach is based on a finite differences discretization with staggered grid and

Chorin/EEM is used for the time integration. The approach presented here is based on

body fitted unstructured moving grids for optimal spatial resolution and implicit or semi-

implicit discrete projection methods.

4.1.1 Initial boundary value problem

In order to simulate the motion of Nfsi ∈ N moving obstacles within a fluid, the Navier-

Stokes equations are coupled with the equations for rigid body motions. The initial

boundary value problem for a fluid-structure interaction problem is therefore given by

the complete initial boundary value problem (1.12) augmented by the following equations

4.1. FLUID-STRUCTURE INTERACTION 95

for i = 1, . . . , Nfsi moving structures fsi(i),

mfsi(i)

dufsi(i)
dt

= mfsi(i)g + Ffsi(i)(u) (4.1a)

dxfsi(i)
dt

= ufsi(i) (4.1b)

Ifsi(i)
dωfsi(i)
dt

= Tfsi(i)(u) (4.1c)

dθfsi(i)
dt

= ωfsi(i) (4.1d)

Ffsi(i)(u) =

∫

Γstruct

(−pId×d + η(∇u+ (∇u)T))n (4.1e)

Tfsi(i)(u) =

∫

Γstruct

rfsi(i)τ
T (−pId×d + η(∇u+ (∇u)T))n (4.1f)

u = ufsi(i) + ωfsi(i) × rfsi(i) on Γfsi(i)(t) (4.1g)

ufsi(i)(0) = ufsi(i),0 (4.1h)

xfsi(i)(0) = xfsi(i),0 (4.1i)

θfsi(i)(0) = θfsi(i),0 (4.1j)

ωfsi(i)(0) = ωfsi(i),0. (4.1k)

Mass, velocity of the center of mass, position of the center of mass, moment of inertia,

angular velocity, and angle of rotation of the ith structure are denoted by mfsi(i), ufsi(i),

xfsi(i), Ifsi(i), ωfsi(i), and θfsi(i), respectively, and gravity (or any other type of body force)

is denoted by g. Equations (4.1e) and (4.1f) represent the force and torque exerted upon

the ith structure by the flow. Most important for the simulation is the fluid-structure cou-

pling expressed by the transient no-slip boundary conditions (4.1g). The initial boundary

value problem (4.1) describes fluid-structure interaction problems as long as there are no

collisions between the moving structures.

4.1.2 (Basic) Algorithm

The idea of body fitted grids is that the nodes on the structure are assumed to move with

the obstacle. At each time step, the grid is updated according to the motion of the obstacle.

Then a new grid is generated using the new edge elements in order to prevent distortion of

the grid and the flow field is projected onto the new grid. The simulation of fluid flow in a

time-dependent domain is significantly more expensive since all matrices and vectors are

time-dependent. Furthermore, the grid generation within the simulation is very expensive.

The initial boundary value problem (1.12) and (4.1) is solved by the following splitting

procedure: first, the fluid equations are solved subject to the correct boundary conditions

96 CHAPTER 4. EXTENSIONS

on the moving structure which couple fluid motion and rigid body motion. Then, the

equations of rigid body motion are integrated. This process is repeated while at the same

time the grid is constantly updated.

The main steps of the algorithm are as follows:

�

Compute the new velocity field, i.e. perform one time integration step

�

Compute force and torque exerted upon the structure by the fluid flow

�

Integrate the equations of rigid body motion

�

Compute displacement of moving structure

�

Move nodes on structure

�

Generate new geometry

�

Check mesh quality and possibly compute new triangularization and interpolate the

solution to the new grid

�

Repeat this procedure

4.2 Free boundary problems

To treat incompressible, free surface flows, the marker and cell (MAC) method was devel-

oped by Harlow and Welch (cf. [58]) as a variation of the particle in cell (PIC) method

(cf. [57]). The MAC method is based on a finite difference approach and was the first

successful technique for incompressible flows with free boundaries. Particles were used as

markers to locate the material in the mesh and, consequently, to define the location of the

free-surface. Recent implementations of the MAC method can be found in [10, 50].

In contrast to the popular MAC schemes, the methods presented in this chapter are

based on body and boundary fitted moving unstructured grids, also known as interface

tracking or boundary tracking methods (cf. [72]). The moving boundaries are computed

by tracking fluid particles on the boundaries. If necessary, fluid particles on the boundary

are injected, i.e. the boundary is refined by increasing the number of boundary nodes and

edge elements on the free boundary.

4.2. FREE BOUNDARY PROBLEMS 97

4.2.1 Boundary condition

The boundary condition on the free boundary is a traction boundary condition, where the

traction is given by the surface tension. For d = 2, the free boundary condition reads

(η(∇u+ (∇u)T)− pI2×2)n = fst

where the surface tension force is given by

fst = c
κ

R
n

where n is the unit outward normal vector in the free boundary, R the radius describing

the curvature of the free boundary, and κ a constant depending on the fluid (cf. [48, 50]).

c = ±1 or 0 if concave, convex, or no curvature at all. The discretized surface tension

is represented as a time-dependent surface tension vector. Its dimension depends on the

number of velocity nodes on the free boundary and therefore is, in general, also time-

dependent. The surface tension vector is recomputed every time step.

4.2.2 Computation of surface tension

The computation of the surface tension on the free boundary proceeds in three steps. First,

the surface tension in the mesh nodes on the free boundary is approximated. Second,

the surface tension at Lagrange nodes which are not grid points on the free boundary is

computed. With this information, the surface tension can be computed in every point on

every edge element of the free boundary. The process of computing the surface tension for

P2 velocity elements is described in the following.

Figure 4.1: Computation of surface tension

98 CHAPTER 4. EXTENSIONS

Surface tension at vertices: In a first step, the nodes of the triangularization on the

free boundary are determined. Figure 4.1 shows three mesh elements (solid lines and

solid grid points) with edges on the free boundary (defined by the three upper solid edge

elements). Second, the surface tension in these mesh nodes, i.e. vertices of the finite

elements (solid dots on the free boundary) is computed via the curvature of the surface.

Since the free boundary is polygonal, the curvature in the vertices is computed as the

inverse of the radius of the circle trough a given vertex and its two neighboring vertices.

Figure 4.1 shows parts of the two curvature circles (dashed and dotted arcs) for two vertices

on the free boundary, the corresponding centers (◦), and the corresponding radii (straight

dashed and dotted lines). The exact procedure is described in algorithm 4.1.

Surface tension at inner Lagrange nodes: For finite elements of order higher than

one, the surface tension also needs to be computed at the inner nodes on boundary edge

elements of the free boundary, i.e. inner Lagrange points of boundary edge elements, de-

noted by ? in figure 4.1. This is done by linear interpolation for every single edge element

of the free boundary.

Surface tension on edge element: Finally, the surface tension needs to be defined

everywhere on the edge elements and not just at the Lagrange points on the free boundary.

This is needed for the numerical evaluation of the weak form via numerical quadrature, for

example. Therefore, the surface tension at Lagrange points is used for interpolating the

surface tension on every edge element using the velocity shape functions.

Algorithm 4.1 Surface tension at free boundary mesh nodes

Let P(:, fbn) be the nfbn mesh nodes on the free boundary, so that P(:, fbn(i − 1)) and

P(:, fbn(i+ 1)) are neighbors of P(:, fbn(i)).

for i = 1 : nfbn do

Compute outward normal vector n on boundary at b = P(:, fbn(i)).

Let a = P(:, fbn(i− 1)) and c = P(:, fbn(i+ 1)).

Solve Ax = y with

A =

(
bT − aT

cT − bT

)
and y =

1

2

(
bT b− aTa

cT c− bT b

)

and define R := ||x||2.
Set fsurface(i) =

κ
R
n where κ is a constant depending on the fluid.

end for

4.2. FREE BOUNDARY PROBLEMS 99

4.2.3 (Basic) Algorithm

The idea of moving grids is that the nodes on the free boundary are assumed to move

with the flow. At each time step, the grid is updated according to the motion of the free

boundary. Then a new grid is generated using the new edge elements in order to prevent

distortion of the grid and the flow field is projected onto the new grid. The simulation

of fluid flow in a time-dependent domain is significantly more expensive since all matrices

and vectors are time-dependent. Furthermore, the grid generation within the simulation

is very expensive.

The initial boundary value problem (1.12) and (4.1) is solved as follows: first, the

surface tension on the free boundary is computed. Then, the fluid equations are solved

subject to the correct boundary conditions on the free boundary. This process is repeated

while at the same time the grid is constantly updated.

The basic algorithm for a simulation with a free boundary reads as follows:

�

Determine edge elements, grid points, and Lagrange points on free boundary

�

Compute surface tension at boundary grid points

�

Compute surface tension at Lagrange nodes on free boundary which are not grid

points via interpolation

�

Perform one time integration step and compute the new velocity field

�

Compute displacement of free boundary

�
Move nodes on boundary

�
Check mesh quality and possibly compute new triangularization and interpolate the

solution to the new grid

�

Repeat this procedure

An example of a numerical simulation of a free boundary fluid flow problem is shown

in chapter 5.

Chapter 5

Applications

The numerical methods described in the previous chapters and their inherent subproblems

have been tested in several simulations. The following applications comprise a wide range

of flow patterns and behaviors in stationary as well as transient domains with and without

fluid-structure interaction. The flows and their phenomena are visualized by their velocity

vector fields, the magnitude of the velocity, and streamlines. A streamline is a curve that

is tangent to the velocity field at an instant of time.

5.1 Flow over a hemisphere

This two-dimensional model problem is known in literature as flow over a hemisphere,

although flow over a semicircle would be a more accurate description. In fact, this model

problem can been seen as a two-dimensional analog of three-dimensional flow over a hemi-

sphere or a cylinder. In section 5.4, a composition of both situations in three dimensions

is presented.

The geometry model and the triangularization are shown in figure 5.1. Boundary

segment Γ1 represents the inlet where the fluid enters the domain with a parabolic velocity

profile

uin = uin(s) = (4s(1− s), 0)T

where s ∈ [0, 1] linearly parameterizes Γ1. Boundary segment Γ5 is the outlet where

homogeneous traction boundary conditions are applied, i.e. the force acting upon the fluid

at the outlet is fout = 0 ∈ R2. No-slip boundary conditions are applied on all other

boundaries.

In order to demonstrate the effect of implementations based on different weak forms, the

stationary flow has been computed for the weak forms introduced in chapter 2. Figure 5.2

shows the magnitude of the divergence of the velocity field. It can be seen that the total

stress form yields better results near the outlet than the viscous stress form. Within the

101

102 CHAPTER 5. APPLICATIONS

0 1 2 3

0

0.5

1

1

2

3

4

5
6 7

(a)

0 1 2 3

0

0.5

1

(b)

Figure 5.1: Geometry model and mesh

domain, there is no significant difference bewteen these two implementations. For the

pseudo total stress form and the pseudo viscous stress form, the maximal magnitude of

the divergence is about 50% higher compared to the total stress form. In that sense, these

implementations don’t seem to be competitive with the total stress form, which also excels

since it also can be used to model non-Newtonian fluids.

0 1 2 3

−0.5

0

0.5

1

1.5

0

0.05

0.1

0.15

0.2

0.25

(a) Total stress form

0 1 2 3

−0.5

0

0.5

1

1.5

0

0.05

0.1

0.15

0.2

0.25

(b) Viscous stress form

Figure 5.2: Magnitude of the divergence

Given a geometry model and boundary conditions, the flow also strongly depends on

the Reynolds number. Figure 5.3 shows the results for Reynolds numbers Re = 6, 60, 600,

and 3000 computed with SpexBDF(3, 2). The emergence of vortices behind the obstacle

can be observed for Reynolds numbers greater than approximately 500. As the Reynolds

number increases, the flow becomes instationary. In order to compute the flow for Reynolds

numbers greater than approximately 3000, the spatial discretization must be refined.

5.1. FLOW OVER A HEMISPHERE 103

0 1 2 3

−0.5

0

0.5

1

1.5

0

0.5

1

1.5

2

0 1 2 3

−0.5

0

0.5

1

1.5

0 1 2 3

−0.5

0

0.5

1

1.5

0

0.5

1

1.5

2

0 1 2 3

−0.5

0

0.5

1

1.5

0 1 2 3

−0.5

0

0.5

1

1.5

0

0.5

1

1.5

2

0 1 2 3

−0.5

0

0.5

1

1.5

0 1 2 3

−0.5

0

0.5

1

1.5

0

0.5

1

1.5

2

0 1 2 3

−0.5

0

0.5

1

1.5

Figure 5.3: Flow at Re = 6, 60, 600, and 3000 (from top to bottom)

104 CHAPTER 5. APPLICATIONS

Non-Newtonian flow

The simulation of non-Newtonian fluid flow is more difficult than the simulation of Newto-

nian fluid flow in the sense that the convergence behavior is, in general, critical. Only the

pseudo total stress form and the total stress form of chapter 2 are appropriate to model

the dynamics of non-Newtonian fluids. As an example of a non-Newtonian fluid, consider

the following test problem with non-constant viscosity

η(u) = η0(1 + u21 + u22)

with η0 = 0.1. The geometry model and the triangularization are the same as for the

previous problem (see figure 5.1). At t = 0, the fluid is at rest and boundary conditions

are a parabolic velocity profile at the inlet, homogeneous traction outflow conditions at

the outlet, and no-slip conditions on all other boundaries. For t = [0, 5], the simulation

has been performed with SpexBDF(2, 1) in conjunction with the total stress form. The

magnitude of the velocity and streamlines are shown in figure 5.4 for t = 5. The different

behavior of the non-Newtonian fluid flow compared to a Newtonian fluid flow with η = η0
can be seen by looking at cross sections of the magnitude of the velocity. Figure 5.5(a)

shows cross sections at x = 1.5 and x = 2.9 for both, Newtonian and non-Newtonian fluid

flow. It can be seen that the non-Newtonian flow differs significantly from the Newtonian

flow and its velocity profile deviates from the more parabolic shaped Newtonian velocity

profile.

0 1 2 3

−0.5

0

0.5

1

1.5

0

0.5

1

1.5

2

(a) Magnitude of velocity

0 1 2 3

−0.5

0

0.5

1

1.5

(b) Streamlines

Figure 5.4: Non-Newtonian flow

Paper pulp is another example of a non-Newtonian fluid which is a suspension of wood

fibers in water. In situations where inertial forces are small over interesting timescales,

5.2. A FLUID-STRUCTURE INTERACTION PROBLEM 105

the two phases don’t separate and a single velocity field can describe the flow (cf. [18]).

Paper pulp is a non-Newtonian fluid because viscous shear forces grow very slowly with

the velocity gradients compared to the Newtonian assumption that the shear forces are

proportional to the velocity gradients. In two dimensions, the non-Newtonian viscosity for

paper pulp is described by the Carreau-Yasuda model (cf. [18])

η(r) =
η0 +

(
r
R

)n
η∞

1 +
(
r
R

)n

with

r =

√√√√1

2

((
∂u1
∂x1

)2

+

(
∂u1
∂x2

)2

+

(
∂u2
∂x1

)2

+

(
∂u2
∂x2

)2
)

and some constants η0, η∞, n, and R. If η0 = η∞, then η(r) = η0 = const and the fluid is

Newtonian. The geometry model and the triangularization are the same as for the previous

problem (see figure 5.1) and let η0 = 500000, η∞ = 2000, R = 0.002, and n = 1.

The stationary solution of this problem has been computed as described in the following.

The implementation uses the weak form based on the total stress form since it has been

shown at the beginning of this chapter that it is superior to the other forms. In order to

obtain convergence for this highly nonlinear stationary problem, the instationary Navier-

Stokes equations for a Newtonian fluid with η0 := η∞ are solved for t ∈ [0, 0.2]. Then,

the solution at t = 0.2 is used as initial guess for solving stationary Newtonian flow. It

has not been possible to solve the stationary problem without having a good initial guess

from the instationary problem. Finally, the stationary Newtonian solution is used as initial

guess for computing the stationary non-Newtonian solution. The stationary problems have

been solved with Femlab r©’s nonlinear solver and the instationary problem has been solved

with SpexBDF. Figure 5.5(b) shows a plot of cross section velocity profiles at x = 1.5

and x = 2.9 for the Newtonian (η0 = η∞) and non-Newtonian (η0 6= η∞) case. As in

the previous test example, the non-Newtonian flow differs from the Newtonian flow and

its velocity profile deviates slightly from the more parabolic shaped Newtonian velocity

profile.

5.2 A fluid-structure interaction problem

As an example of fluid-structure interaction, consider the situation shown in figure 5.6.

A reservoir is filled with fluid and more fluid is pumped into the reservoir through the

inlet on the left side while fluid leaves the reservoir through the outlet on the right side.

Within the reservoir, there is a solid structure (a circle) which moves under body forces

(gravity) and the forces of the fluid acting upon the structure. The domain of the reservoir

106 CHAPTER 5. APPLICATIONS

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

(b)

Figure 5.5: Velocity profiles for Newtonian (red) and non-Newtonian (blue) fluid flow

is represented by 18 boundary segments. Boundary segment Γ1 represents the inlet where

the velocity profile of the flow is given as

uin = uin(s) = (s(1− s), 0)T

where s ∈ [0, 1] linearly parameterizes Γ1. Boundary segment Γ12 is the outlet where

homogeneous traction boundary conditions are applied, i.e. the force acting upon the fluid

at the outlet is fout = 0 ∈ R2 on Γ12. Let the density of the fluid be % = 1, the viscosity

η = 0.1, and the body force b = (0,−2)T . The parameters of the structure are as follows:

The circle’s radius is r = 0.15 and it has a homogeneous mass density. Its mass is mfsi = 1

and its moment of ineratia Ifsi = 1.

At t = 0, the fluid is at rest and the initial position of the center of mass and velocity

of the structure are xfsi(0) = (0.3, 1.8)T and ufsi(0) = (0, 0)T , respectively. In addition, the

initial angular velocity of the structure is ω(0) = 2 and its initial angular orientation is

θ(0) = 0.

As the sphere moves through the fluid, the viscosity of the fluid acts upon the moving

sphere with a force that resists the motion of the object. Since the circle rotates at the

beginning, it can be observed that the angular velocity of the structure decreases due to

frictional forces of the viscous fluid. The evolution of the angular velocity ω(t) is shown in

figure 5.7(a).

As the structure starts moving downward, it also moves slightly to the left since fluid

mainly from the upper right follows the circles’ path. Then, as the circle comes closer to

the inlet, it gets swept away by the stream going mainly from inlet to outlet. Figure 5.7(b)

shows the evolution of the horizontal position of the center of mass of the sphere. The gain

5.3. A FREE BOUNDARY PROBLEM 107

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

(a) Initial geometry

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

(b) Initial mesh

Figure 5.6: Initial configuration

of horizontal momentum, when the sphere gets caught by the stream, can be clearly seen.

The results of this simulation have been computed with SpexSDIRK and the techniques

presented in section 4.1. Figure 5.8 shows a sequence of plots of the magnitude of the

velocity and figure 5.9 shows the corresponding velocity vector field.

5.3 A free boundary problem

As an example of a free boundary problem and the techniques presented in section 4.2,

consider the situation shown in figure 5.10. A reservoir is filled with fluid and the fluid is

drained by opening the lower right outlet. There is no lid on top of the reservoir, so that the

top boundary of the spatial domain is the fluids’ free boundary whose shape is determined

within the simulation by the flow itself and the fluids’ surface tension on the boundary.

Within the reservoir, there are two fixed obstacles which do not move. The domain of the

reservoir is represented by 20 boundary segments. Boundary segment 5 represents the free

boundary of the fluid and boundary segment 17 is the outlet where homogeneous traction

boundary conditions are applied. Suppose the reservoir is filled with a fluid with density

% = 1 and viscosity η = 0.15. Let the constant describing the surface tension be κ = 0.01

and the body force acting upon the fluid is b = (0,−5)T . At t = 0, the fluid is at rest and

the reservoir is drained by opening the lower right outlet. The results of this simulation

are shown in figures 5.11 and 5.12 as sequences of plots of the magnitude of the velocity

and the corresponding velocity vector fields, respectively.

108 CHAPTER 5. APPLICATIONS

0 2 4 6

0

0.5

1

1.5

2
∆t=1e−2
∆t=5e−3

PSfrag replacements

t

ω
fs
i

xfsi,1

(a) Angular velocity

0 2 4 6

0.25

0.3

0.35

0.4

0.45
∆t=1e−2
∆t=5e−3

PSfrag replacements

t

ωfsi

x
fs
i,
1

(b) Horizontal position

Figure 5.7: Evolution of angular velocity and horizontal position of center of mass

5.4 Flow over a 3D obstacle

This model problem is an extension of the problem in section 5.1 to three dimensions. The

obstacle in the channel consists of a quarter of a sphere and one half of a cylinder. The

fluid density is % = 1, the viscosity is η = 0.01, and there are no body forces, i.e. b = 0.

Three meshes have been generated in order to demonstrate the performance of the velocity

and the pressure step of the decoupled methods. The meshes consist of 1491, 3905, and

24034 tetrahedrons with 8204, 20204, and 116220 degrees of freedoms, respectively.

The convergence histories and convergence rates of AMG(1,2) applied to (3.33) on

these grids are shown in table 5.1 and figure 5.14(a). It can be seen that the convergence

is essentially grid independent. Note that the different grids are not regular refinements

of eachother (due to curved boundaries and different parameters for the grid generation)

and therefore true grid independent convergence can not be expected. The efficiency of

grid q(1) q(2) q(3) q(4) q(5) q(6) q(7) q(8) q̂(4) ≈ ρ

coarse 0.0792 0.0936 0.0895 0.0873 0.0870 0.0872 0.0875 0.0879 0.0873

medium 0.0862 0.1051 0.0967 0.0933 0.0923 0.0922 0.0925 0.0928 0.0938

fine 0.0976 0.1130 0.1016 0.0964 0.0951 0.0953 0.0959 0.0966 0.0988

Table 5.1: Convergence rates on different grids

AMG(ν1,ν2) applied to (3.33) on the fine grid is shown in figure 5.14(b). It turns out

that ν1 = 1 and ν2 = 2 is the optimal choice for this test problem. The performance of

5.4. FLOW OVER A 3D OBSTACLE 109

−0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

0

0.05

0.1

0.15

0.2

0.25

(a) t = 0.1

−0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

0

0.05

0.1

0.15

0.2

0.25

(b) t = 1

−0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

0

0.05

0.1

0.15

0.2

0.25

(c) t = 2 (d) t = 3

(e) t = 4

−0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

0

0.05

0.1

0.15

0.2

0.25

(f) t = 6

Figure 5.8: Magnitude of velocity

110 CHAPTER 5. APPLICATIONS

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

(a) t = 0.1

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

(b) t = 1

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

(c) t = 2

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

(d) t = 3

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

(e) t = 4

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

(f) t = 6

Figure 5.9: Velocity field

5.4. FLOW OVER A 3D OBSTACLE 111

−1 0 1 2

−0.5

0

0.5

1

1.5

2

1
2

3

4
5

6

7

8

9

10

11

12

13

14

15

16
17

18

19
20

Figure 5.10: Initial geometry

AMG(1,1), AMG(2,1), AMG(2,2), AMG(2,3), AMG(3,3), etc. has been found to be below

that of AMG(1,2).

The convergence histories of AMG(1,2) applied to the linear systems (3.34) occurring

within the (simplified) Newton method have been studied on the finest grid. The conver-

gence history of AMG depends on the temporal step size of the underlying time integration

scheme and whether the advection term is treated fully implicitly or explicitly as in the case

of semi-implicit methods. The convergence rates are plotted in figures 5.15(a) and 5.15(b)

for both, fully implicit and semi-implicit methods, for different steps sizes. Figure 5.15(c)

shows the dependence of the convergence factor on the temporal step size.

It turns out that in this example, the fundamental idea of multigrid, to reduce the high

frequency components of the error by smoothing procedures and to take care of the low

frequency error components by coarse grid corrections, does not work optimally. Certain

error components remain large an are not reduced effectively by the smoothing procedures

applied. In this situation, the combination with Krylov subspace methods such as GMRES

may excel the convergence properties. This is subject to future work to be done.

112 CHAPTER 5. APPLICATIONS

−1 0 1 2

−0.5

0

0.5

1

1.5

2

(a) t = 0.1

−1 0 1 2

−0.5

0

0.5

1

1.5

2

(b) t = 1

−1 0 1 2

−0.5

0

0.5

1

1.5

2

(c) t = 2

−1 0 1 2

−0.5

0

0.5

1

1.5

2

(d) t = 3

−1 0 1 2

−0.5

0

0.5

1

1.5

2

(e) t = 4

−1 0 1 2

−0.5

0

0.5

1

1.5

2

(f) t = 5

Figure 5.11: Moving mesh

5.4. FLOW OVER A 3D OBSTACLE 113

(a) t = 0.1 (b) t = 1

(c) t = 2 (d) t = 3

(e) t = 4 (f) t = 5

Figure 5.12: Magnitude of velocity

114 CHAPTER 5. APPLICATIONS

Figure 5.13: The geometry of the 3D model

0 2 4 6 8

10
−5

10
0

coarse grid
medium grid
fine grid

PSfrag replacements

iterations

d
ef
ec
t

work / Mflops

relative error

(a) Grid independent convergence of AMG

0 100 200 300
10

−8

10
−6

10
−4

10
−2 AMG(1,1)

AMG(1,2)
AMG(2,1)
AMG(2,2)
AMG(2,3)

PSfrag replacements

iterations

defect

work / Mflops

re
la
ti
ve

er
ro
r

(b) Efficiency of AMG

Figure 5.14: AMG convergence

5.4. FLOW OVER A 3D OBSTACLE 115

0 5 10

10
−5

10
0

PSfrag replacements

iterations

d
ef
ec
tfi(0.02)

fi(0.01)

fi(0.005)

si(0.02)
si(0.01)
si(0.005)

relative error

(a) Convergence depending on step size

0 10 20 30 40
10

−1

10
0

10
1

10
2

PSfrag replacements

iterations

d
ef
ec
t

fi(0.02)
fi(0.01)
fi(0.005)

si(0.02)

si(0.01)

si(0.005)

relative error

(b) Convergence depending on step size

10
−2

10
−1

0.05

0.1

0.15

0.2

0.25

0.3

PSfrag replacements

iterations

defect
fi(0.02)

fi(0.01)

fi(0.005)

si(0.02)

si(0.01)

si(0.005)

relative error

fully impl.
semi impl.

ρ

∆t

(c) Convergence factor depending on step

size

Figure 5.15: AMG convergence in the velocity step

116 CHAPTER 5. APPLICATIONS

Figure 5.16: Streamlines at Re = 100

5.4. FLOW OVER A 3D OBSTACLE 117

(a) x = 0.01, 0.75, 1.5, 2.25, 2.99

0 1 2 3
0

0.5

1

0

0.5

1

1.5

2

2.5

(b) y = 0.1

0 1 2 3
0

0.5

1

0

0.5

1

1.5

2

2.5

(c) y = 0.5

0 1 2 3
0

0.5

1

0

0.5

1

1.5

2

2.5

(d) y = 0.9

Figure 5.17: Cross sections of magnitude of velocity (Re = 100)

Appendix A

Implementation

The first part of this appendix describes the basic methodology for simulating a real-

life fluid flow problem numerically. In the second part, the implementation of boundary

conditions is illustrated with a simple example. In the third part, the underlying data

structure for the numerical simualtions is introduced. For of easy use, flexibility, and

compatibility with Femlab r©, all data necessary for the simulation is stored in a single

Matlab r© structure – the fem structure. The most important fields of this structure are

briefly described in section A.3.

A.1 Modus operandi

Following the methodology of scientific computing, the procedure of numerically simulating

a real-life fluid flow problem consists of four major steps:

• Description of the real problem

• Physical and mathematical modeling

• Numerical approximation

• Visualization

The third step, i.e. the actual numerical solution step, consists of the following major steps:

• Initialize model (initmodel)

– Define domain (initgeom)

– Create coarse mesh (initmesh)

– Mesh refinement (optional)

119

120 APPENDIX A. IMPLEMENTATION

– Set up weak form (nseform)

– Define boundary conditions

• Generate extended mesh, i.e. create Lagrange points for mixed elements

• Do time integration (e.g., using any of the methods of chapter 3) and adapt mesh if

the domain is time-dependent

• Post processing of the solution (visualization)

A.2 Natural and essential boundary conditions

The handling and interaction of Neumann boundary conditions (a.k.a. natural boundary

conditions) and Dirichlet boundary conditions (a.k.a. essential boundary conditions) for

the Lagrange multiplier ansatz presented in section 2.2.2 is illustrated with an example

from [19].

Consider the stationary version of (2.6) with N = d = 2, i.e. Ω ⊂ R2, y : Ω→ R2, and

∇ · Γ1(y) = F1(y) in Ω

∇ · Γ2(y) = F2(y) in Ω

with Neumann boundary conditions

−n · Γ1(y) = G1(y) +
∂R1(y)

∂y1
µ1 +

∂R2(y)

∂y1
µ2 on ∂Ω

−n · Γ2(y) = G2(y) +
∂R1(y)

∂y2
µ1 +

∂R2(y)

∂y2
µ2 on ∂Ω

and Dirichlet boundary conditions

0 = R1(y) on ∂Ω

0 = R2(y) on ∂Ω.

For simplicity of notation, arguments will be omitted in the following. Now, consider three

cases of boundary conditions.

Case 1: Let R1 = R2 = 0, i.e. there are no constraints on the solution and we obtain

Neumann boundary conditions

−n · Γ1 = G1 on ∂Ω

−n · Γ2 = G2 on ∂Ω.

A.3. DATA STRUCTURE 121

Case 2: Let R1 = r1 − y1 and R2 = r2 − y2. Then, the Dirichlet conditions are simply

y1 = r1 and y2 = r2. The Neumann boundary conditions become

−n · Γ1 = G1 − µ1 on ∂Ω

−n · Γ2 = G2 − µ2 on ∂Ω.

and impose no restrictions on y and therefore can be discarded.

Case 3: Let R1 = r1 − y1 and R2 = 0. Then the Dirichlet conditions are y1 = r1 and

0 = 0 on ∂Ω and the Neumann conditions are

−n · Γ1 = G1 − µ1 on ∂Ω

−n · Γ2 = G2 on ∂Ω.

The first Neumann condition can be discarded. Hence, there is a Dirichlet condition

for y1 together with the second Neumann condition.

It is important to note that when mixing Dirichlet and Neumann conditions, the ordering

of the equations as well as the ordering of the variables are important (see [19] for details).

The situation of boundary conditions becomes more intricate as the number of dependent

variables N or the spatial dimension d increases. In addition, different boundary conditions

may be applied on different segments of the boundary.

For the fluid dynamics simulations presented in the previous chapters, the spatial di-

mensions are d = 2 and d = 3 and the number of dependet variables are N = 3 and N = 4,

respectively. In each of the simulations, several different boundary conditions, such as, e.g.

no-slip conditions and traction conditions, were imposed on different segments Γi of the

boundary ∂Ω =
⋃NΓ

i=1 Γi.

A.3 Data structure

The data structures that define the continuous as well as the discrete problem are stored

in a single Matlab r© structure – the fem structure. The data structures in the fields of the

fem structure define different aspects of the problem, and various processing stages produce

new data structures. For compatibility with Femlab r© 2.3, an augmented fem structure is

used in this work which is based upon Femlab r©’s fem structure fem. However, in order to

handle a larger class of fluid dynamics problems and new solvers, it contains several more

structure fields than the original fem structure. Details about the original fem structure

can be found in [19].

122 APPENDIX A. IMPLEMENTATION

const Constants

sdim Names of space coordinates

geom Analyzed geometry

equiv Equivalent boundaries

mesh Mesh structure

xmesh Extended mesh structure

sshape Geometry approximation order

dim Names or number of dependent variables

shape Finite element shape functions

cporder Order of Lagrange points

gporder Order of Gauss points

variables Definition of constants

equ Variables, equations, constraints, and initial values on

subdomains

bnd Variables, equations, constraints, and initial values on

boundaries

form Form of equations (general/coefficient)

init Initial value

sol Solution structure

u Matrix containing solution vectors

tlist Time of solution vectors

Table A.1: Data structure

model Specify a model (cf. chapter 5)

have Properties of the model

pmode Pressure mode (boolean)

tdgeom Time-dependent geometry (boolean)

tdBCs Time-dependent boundary conditions (boolean)

freebnd Free boundary (boolean)

fsi Fluid structure interaction (boolean)

bnd.free Indices to free boundary groups

bnd.fsi Indices to fluid-structure interaction boundary groups

odefile Name of ODEfile

nseform Control weak form (for options see table A.3)

nse Navier-Stokes equation (depending on fem.nseform, see

also p. 38)

continued on next page

A.3. DATA STRUCTURE 123

continued from previous page

da, ga, f Mass coefficient, flux vector, and source term

shape Shape functions

linear Linear parts of PDE

ga Flux vector

f Source term

nonlinear Nonlinear partsof PDE

f Source term

solver Time integration method

strategy Optional instead of solver

integrator Optional instead of solver

newton Options for Newton’s method for nonlinear systems

solver Linear solver within Newton’s method

tol Tolerance

itmax Maximal number of iterations

lumping boolean

projection Control projection

method Type of projection

solver Solver for projection

precond LU/RCM, AMG

fc Auxiliary storage field

L,U,P,perm

penalty Penalize PPE (boolean)

time Control simulation time

t0 Initial time for simulation

tend Final time for simulation

delt Current step size

tlist Solution output time vector. (optional). Equals tend if

not specified.

elim Storage field for eliminated quantities

init Initial value, with fields u, p

sol (eliminated) solution vector

M, D, G, Ct Matrices

f, g Vectors

dof Storage field for constrained quantities

continued on next page

124 APPENDIX A. IMPLEMENTATION

continued from previous page

D Discretized mass coefficient da
Nu N
yd yhd
t Time when the above quantities were computed

ind Indices

u, p Velocity and pressure DOFs

ue, pe Eliminated velocity and pressure DOFs

u1, u2, u3 uα velocity DOFs

N Dimensions

y, u, p

ye, ue, pe

amg Control algebraic multigrid

maxlevels Max. number of grids

minnodes Min. number of nodes

smoother Smoother for AMG

preits # relaxations

postits # relaxations

advection Treatment of advection term (see section 3.7.1)

fluid Type of fluid

Table A.2: Augmented data structure

nseform Weak form

pta Pseudo total stress form (cf. p. 38)

pva Pseudo viscous stress form (cf. p. 38)

vsa Visous stress form (cf. p. 39)

tsa Total stress form (cf. p. 39)

Table A.3: Options for fem.nseform field

A.4. BASIC SOLVER OPTIONS 125

A.4 Basic solver options

Define geometry

fem.geom

Define mesh

fem.mesh

Define boundary

conditions

fem.bnd

Set model problem

fem.model shape,

variables.rho

expression.eta
Set weak form

fem.nseform

Choose solver

fem.solver

Set strategy

fem.strategy

FC Spex

Set integrator

fem.integrator

Set integrator

fem.integrator

Projection

fem.projection.method

FC PPE

Solver
fem.projection.solver

Solver
fem.projection.solver

Solver
fem.projection.solver

Lumping

fem.lumping

LU/RCM Cholesky GMRES LU/RI AMG/CG AMG/RI LU/RCM AMG

Visualization

Appendix B

Weak formulation

In this section, the coefficients used for the strong form (2.7) in order do generate different

weak forms of the Navier-Stokes equations (see also section 2.2) are listed. First, the mass

coefficient and then the flux vectors and source terms for the pseudo total stress form,

the pseudo viscous stress form, the viscous stress form, and the total stress form (see

section 2.2.3 on p. 38) in two and three dimensions are listed in detail.

B.1 Mass coefficient

The mass coefficients for the two-dimensional and three-dimensional Navier-Stokes equa-

tions in advection-diffusion form (2.7a) are given by

da =



% 0 0

0 % 0

0 0 0


 and da =




% 0 0 0

0 % 0 0

0 0 % 0

0 0 0 0


 ,

respectively. See [19] for a detailed description of the syntax. The flux vectors and source

terms required to generate different weak forms are listed below.

B.2 Pseudo total stress form

sdim=2, nseform=pta:

Γ =



−η ∂u1

∂x1
+ p −η ∂u1

∂x2

−η ∂u2
∂x1

−η ∂u2
∂x2

+ p

0 0


 , F =



b1 − %(u1

∂u1
∂x1

+ u2
∂u1
∂x2

)

b2 − %(u1
∂u2
∂x1

+ u2
∂u2
∂x2

)
∂u1
∂x1

+ ∂u2
∂x2




126

B.3. PSEUDO VISCOUS STRESS FORM 127

sdim=3, nseform=pta:

Γ =




−η ∂u1
∂x1

+ p −η ∂u1
∂x2

−η ∂u1
∂x3

−η ∂u2
∂x1

−η ∂u2
∂x2

+ p −η ∂u2
∂x3

−η ∂u3
∂x1

−η ∂u3
∂x2

−η ∂u3
∂x3

+ p

0 0 0


 , F =




b1 − %(u1
∂u1
∂x1

+ u2
∂u1
∂x2

+ u3
∂u1
∂x3

)

b2 − %(u1
∂u2
∂x1

+ u2
∂u2
∂x2

+ u3
∂u2
∂x3

)

b3 − %(u1
∂u3
∂x1

+ u2
∂u3
∂x2

+ u3
∂u3
∂x3

)
∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3




B.3 Pseudo viscous stress form

sdim=2, nseform=pva:

Γ = −η



∂u1
∂x1

∂u1
∂x2

∂u2
∂x1

∂u2
∂x2

0 0


 , F =



b1 − %(u1

∂u1
∂x1

+ u2
∂u1
∂x2

)− ∂p

∂x1

b2 − %(u1
∂u2
∂x1

+ u2
∂u2
∂x2

)− ∂p

∂x2
∂u1
∂x1

+ ∂u2
∂x2




sdim=3, nseform=pva:

Γ = −η




∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

0 0 0


 , F =




b1 − %(u1
∂u1
∂x1

+ u2
∂u1
∂x2

+ u3
∂u1
∂x3

)− ∂p

∂x1

b2 − %(u1
∂u2
∂x1

+ u2
∂u2
∂x2

+ u3
∂u2
∂x3

)− ∂p

∂x2

b3 − %(u1
∂u3
∂x1

+ u2
∂u3
∂x2

+ u3
∂u3
∂x3

)− ∂p

∂x3
∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3




B.4 Viscous stress form

sdim=2, nseform=vsa:

Γ = −η




2∂u1
∂x1

∂u1
∂x2

+ ∂u2
∂x1

∂u1
∂x2

+ ∂u2
∂x1

2∂u2
∂x2

0 0


 , F =



b1 − %(u1

∂u1
∂x1

+ u2
∂u1
∂x2

)− ∂p

∂x1

b2 − %(u1
∂u2
∂x1

+ u2
∂u2
∂x2

)− ∂p

∂x2
∂u1
∂x1

+ ∂u2
∂x2




sdim=3, nseform=vsa:

Γ = −η




2∂u1
∂x1

∂u1
∂x2

+ ∂u2
∂x1

∂u1
∂x3

+ ∂u3
∂x1

∂u1
∂x2

+ ∂u2
∂x1

2∂u2
∂x2

∂u2
∂x3

+ ∂u3
∂x2

∂u1
∂x3

+ ∂u3
∂x1

∂u2
∂x3

+ ∂u3
∂x2

2∂u3
∂x3

0 0 0


 , F =




b1 − %(u1
∂u1
∂x1

+ u2
∂u1
∂x2

+ u3
∂u1
∂x3

)− ∂p

∂x1

b2 − %(u1
∂u2
∂x1

+ u2
∂u2
∂x2

+ u3
∂u2
∂x3

)− ∂p

∂x2

b3 − %(u1
∂u3
∂x1

+ u2
∂u3
∂x2

+ u3
∂u3
∂x3

)− ∂p

∂x3
∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3




B.5 Total stress form

sdim=2, nseform=tsa:

Γ =



−η2∂u1

∂x1
+ p −η(∂u1

∂x2
+ ∂u2

∂x1
)

−η(∂u1
∂x2

+ ∂u2
∂x1

) −η2∂u2
∂x2

+ p

0 0


 , F =



b1 − %(u1

∂u1
∂x1

+ u2
∂u1
∂x2

)

b2 − %(u1
∂u2
∂x1

+ u2
∂u2
∂x2

)
∂u1
∂x1

+ ∂u2
∂x2




128 APPENDIX B. WEAK FORMULATION

sdim=3, nseform=tsa:

Γ =




−η2∂u1
∂x1

+ p −η(∂u1
∂x2

+ ∂u2
∂x1

) −η(∂u1
∂x3

+ ∂u3
∂x1

)

−η(∂u1
∂x2

+ ∂u2
∂x1

) −η2∂u2
∂x2

+ p −η(∂u2
∂x3

+ ∂u3
∂x2

)

−η(∂u1
∂x3

+ ∂u3
∂x1

) −η(∂u2
∂x3

+ ∂u3
∂x2

) −η2∂u3
∂x3

+ p

0 0 0


 ,

F =




b1 − %(u1
∂u1
∂x1

+ u2
∂u1
∂x2

+ u3
∂u1
∂x3

)

b2 − %(u1
∂u2
∂x1

+ u2
∂u2
∂x2

+ u3
∂u2
∂x3

)

b3 − %(u1
∂u3
∂x1

+ u2
∂u3
∂x2

+ u3
∂u3
∂x3

)
∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3




Appendix C

Notation

C.1 Variables, constants, etc.

d Space dimension, d = 2 or d = 3

α Spatial index, i.e. α = 1, . . . , d

xα Space coordinate

x = (x1, . . . , xd)
T Space variable

Ω Spatial domain Ω ⊂ Rd

∂Ω Boundary of Ω

Γi ∈ ∂Ω Boundary segment of ∂Ω

(see p. 29)

ΓDα Dirichlet boundary for velocity in

xα-direction

ΓNα Neumann boundary for velocity

in xα-direction

int(∆i) Interior of ∆i

p = p(t, x) Scalar pressure field

u = u(t, x) = (u1(t, x), . . . , ud(t, x))
T Velocity field

uα = uα(t, x) Component of velocity field in

xα-direction

t Time

t0 Start of simulation

tfinal End of simulation

b Body force

% ∈ R Density

continued on next page

129

130 APPENDIX C. NOTATION

continued from previous page

η Dynamic viscosity or

first coefficient of viscosity

λ Second coefficient of viscosity

ν Kinematic viscosity (p. 9)

Lc Characteristic length

Uc Characteristic velocity

Re =
LcUc

ν
Reynolds number, if viscosity is

scalar (p. 17)

ω = ∇× u Vorticity

da Mass coefficient (p. 37)

Γ Flux matrix (p. 37)

F Source term (p. 37)

G Boundary source term (p. 37)

R Restriction (constraints) on

boundary, i.e. essential boundary

conditions (p. 37)

µ = (µ1, . . . , µNR) Lagrange multiplier (p. 37)

σc,v = η(∇u+ (∇u)T) + λ(∇ · u)I Viscous stress tensor for a com-

pressible fluid

σc = −pI + σc,v Total stress tensor for a compress-

ible fluid

σv = η(∇u+ (∇u)T) Viscous stress tensor for an in-

compressible fluid

σ = −pI + σv Total stress tensor for an incom-

pressible fluid

C.2 Operators

∆ui =
∂2ui
∂x21

+ · · ·+ ∂2ui
∂x2d

∈ R Laplacian of ui : Rd → R

∆u = (∆u1, . . . ,∆ud)
T ∈ Rd Laplacian of u : Rd → Rd

∇p =

(
∂p

∂x1
, . . . ,

∂p

∂xd

)T

∈ Rd Gradient of p : Rd → R

∇u =

(
∂u

∂x1
, . . . ,

∂u

∂xd

)
∈ Rd,d Gradient of u : Rd → Rd

continued on next page

C.3. DISCRETIZATIONS AND FINITE ELEMENT CONSTRUCTS 131

continued from previous page

∇ · u =
∂u1
∂x1

+ · · ·+ ∂ud
∂xd

∈ R Divergence of u : Rd → Rd

(u · ∇)v = u1
∂v

∂x1
+ · · ·+ ud

∂v

∂xd
∈ Rd Transport operator of

u, v : Rd → Rd

∇× u =
(
∂u3
∂x2
− ∂u2

∂x3
, ∂u1
∂x3
− ∂u3

∂x1
, ∂u2
∂x1
− ∂u1

∂x2

)T
Curl operator of u : R3 → R3

∇× u :=
(
∂u2
∂x1
− ∂u1

∂x2

)
∈ R Auxiliary “curl” operator of

u : R2 → R2

∇× u :=
(

∂u
∂x2

,− ∂u
∂x1

)T
∈ R2 Auxiliary “curl” operator of

u : R2 → R

C.3 Discretizations and finite element constructs

λ = (λ1, . . . , λd+1) Barycentric coordinate (p. 33)

Pk Function space of polynomials

Th Triangularization (p. 30)

∆i ∈ Th Finite element (triangle or tetrahedron)

∆ref Reference element (d-simplex)

N∆ # triangles

NΓ # boundary segments

NN # nodes pi
NB # edges

NPCB # number of pointwise constraints on bound-

ary (p. 48)

q∆ Quality measure (p. 31)

Nα # uα-nodes ∈ Ω ∪ ΓNα
Mα # uα-nodes ∈ ΓDα
NTα = Nα +Mα # uα nodes

NT =
∑

αNα +Mα # of total velocity nodes

NTe =
∑

αNα # of eliminated velocity nodes

Np # pressure nodes

NDOF = NT +Np # degrees of freedom

NDOFe = NTe +NPe # eliminated degrees of freedom

NR # of constraints on boundary (p. 37)

continued on next page

132 APPENDIX C. NOTATION

continued from previous page

V Sobolev space for velocity

V0 Sobolve space for velocity

Ve Set of trial functions

W Sobolev space for pressure

V h Discrete approximation of V

V h
0 Discrete approximation of V0
V h
e Discrete approximation of Ve
W h Discrete approximation of W

Xh Space of piecewise polynomial functions

φpi Nodal shape function for pressure

φαi Nodal shape function for uα

C.4 Matrices and vectors

uh Discrete velocity

ph Discrete pressure

yh = (uh, ph)
T Discrete solution vector

ue Eliminated velocity vector

pe Eliminated pressure vector

ye = (ue, pe)
T Eliminated solution vector

Gp Discrete pressure gradient

Cp Discrete pressure gradient

CTu Discrete divergence of velocity

L(yh, t) Load vector

K(yh, t) = −∂L(yh,t)
∂yh

Stiffness matrix (p .50)

A(ue, ue) Advection term

D(ue) (Possibly nonlinear) Discrete diffusion term

Due Linear discrete diffusion term

D(yh, t) Discrete mass coefficient (p. 45)

M(yh, t) Discrete essential boundary conditions

N(yh, t) = −∂M(yh,t)
∂yh

Jacobian of discrete essential boundary con-

ditions

N (t) Null space of N(t) (p. 48)

De (Eliminated) mass matrix (p. 49)

Me (Eliminated) mass matrix

continued on next page

C.4. MATRICES AND VECTORS 133

continued from previous page

Ml Lumped mass matrix

Le(ye, t) (Eliminated) load vector (p. 49)

Ke(ye, t) (Eliminated) stiffness matrix

Je(ye, t) (Eliminated) Jacobian matrix (p. 50)

JA(ue) Jacobian matrix of advection term

JD(ue) Jacobian matrix of diffusion term

List of Figures

1 A moving “obstacle” within incompressible fluid flow 1

2 Scientific computing and its connections to applications, computer science,

and mathematics . 3

1.1 Viscous drag between two parallel plates 9

1.2 Fluid particle moving in a region Ω̄ . 11

1.3 CFD complements fluid dynamics theory and experiments 23

1.4 Approximation of the spatial domain . 24

2.1 Lagrange points on triangular reference elements. 34

2.2 Gauss points on triangular reference elements 44

3.1 Driven cavity with obstacle . 59

3.2 Mesh generation . 60

3.3 Sparsity pattern of Ã and its LU -decomposition with reordering 64

3.4 Example of a time-dependent domain . 76

3.5 AMG convergence . 88

3.6 AMG convergence in the velocity step . 89

3.7 Work vs. accuracy . 90

3.8 Convergence of projection step . 91

3.9 Flow of the test problem . 92

4.1 Computation of surface tension . 97

5.1 Geometry model and mesh . 102

5.2 Magnitude of the divergence . 102

5.3 Flow at Re = 6, 60, 600, and 3000 . 103

5.4 Non-Newtonian flow . 104

5.5 Velocity profiles for Newtonian (red) and non-Newtonian (blue) fluid flow . 106

5.6 Initial configuration . 107

5.7 Evolution of angular velocity and horizontal position of center of mass . . . 108

5.8 Magnitude of velocity . 109

134

LIST OF FIGURES 135

5.9 Velocity field . 110

5.10 Initial geometry . 111

5.11 Moving mesh . 112

5.12 Magnitude of velocity . 113

5.13 The geometry of the 3D model . 114

5.14 AMG convergence . 114

5.15 AMG convergence in the velocity step . 115

5.16 Streamlines at Re = 100 . 116

5.17 Cross sections of magnitude of velocity (Re = 100) 117

List of Tables

1.1 The fields of fluid mechanics . 7

1.2 Notation of major discrete and continuous variables and quantities. 24

2.1 Two-dimensional numerical integration for triangular reference elements . . 45

2.2 Three-dimensional numerical integration for tetrahedral reference elements 46

3.1 Maximal step size for half-explicit Euler method 65

3.2 Convergence rates on different grids . 88

3.3 Convergence rates ρ(∆t) for different step sizes 89

3.4 SDIRK method with γ = 3+
√
3

6
. 90

5.1 Convergence rates on different grids . 108

A.1 Data structure . 122

A.2 Augmented data structure . 124

A.3 Options for fem.nseform field . 124

136

Bibliography

[1] P. W. Atkins. Physical Chemistry. Oxford University Press, New York, 1998.

[2] I. Babuska and A. Aziz. On the angle condition in the finite element method. SIAM

Journal on Numerical Analysis, 13(2):214–226, 1976.

[3] T. Baker. Element quality in tetrahedral meshes. In Proc. 7th Int. Conf. Finite

Element Methods in Flow Problems, pages 1018–1024, Huntsville, 1989.

[4] G. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press,

Cambridge, 1967.

[5] D. Braess. Finite Elements. Cambridge University Press, Cambridge, 2nd edition,

2001.

[6] J. H. Bramble and M. Zlámal. Triangular elements in the finite element method.

Math. Comp., 24:809–820, 1970.

[7] W. L. Briggs, V. E. Henson, and S. McCormick. A Multigrid Tutorial. SIAM,

Philadelphia, 2000.

[8] D. L. Brown, R. Cortez, and M. L. Minion. Accurate projection methods for the

incompressible Navier-Stokes equations. Journal on Computational Physics, 168:464–

499, 2001.

[9] H.-J. Bungartz, A. Frank, F. Meier, T. Neunhoeffer, and S. Schulte. Fluid structure

interaction: 3D numerical simulation and visualization of a micropump. Technical

Report SFB-Bericht Nr. 342/06/97, TU München, 1997.

[10] H.-J. Bungartz, A. Frank, F. Meier, T. Neunhoeffer, and S. Schulte. Efficient treat-

ment of complicated geometries and moving interfaces for CFD problems. In H.-J.

Bungartz, F. Durst, and C. Zenger, editors, High Performance Scientific and Engi-

neering Computing, volume 8 of Lecture Notes in Computational Science and Engi-

neering, pages 113–123. Springer, Heidelberg, 1999.

137

138 BIBLIOGRAPHY

[11] M. Cannone and S. Friedlander. Navier: Blow-up and collapse. Notices of the AMS,

50(1):7–13, 2003.

[12] A. J. Chorin. A numerical method for solving incompressible viscous flow problems.

Journal of Computational Physics, 2:12–26, 1967.

[13] A. J. Chorin. The numerical solution of the Navier-Stokes equations for an incom-

pressible fluid. Bull. Am. Math. Soc., 73:928–931, 1967.

[14] A. J. Chorin. Numerical solution of the Navier-Stokes equations. Mathematics of

Computations, 22:745–762, 1968.

[15] A. J. Chorin and J. E. Marsden. A Mathematical Introduction to Fluid Dynamics.

Springer-Verlag, New York, 1993.

[16] T. J. Chung. Computational Fluid Dynamics. Cambridge University Press, Cam-

bridge, 2002.

[17] J. Cihlář and P. Angot. Numerical solution of Navier-Stokes systems. Numerical

Linear Algebra with Applications, 6:17–27, 1999.

[18] Comsol, Inc. Femlab 2.3 Model Library, 2001.

[19] Comsol, Inc. Femlab 2.3 Reference Manual, 2001.

[20] Comsol, Inc. Femlab 2.3 User’s Guide and Introduction, 2001.

[21] P. Constantin. A few results and open problems regarding incompressible fluids.

Notices of the AMS, 42(6):658–663, 1995.

[22] R. Cools and P. Rabinowitz. Monomial cubature rules since ’Stroud’: A compilation.

J. Comput. Appl. Math., 48:309–326, 1993.

[23] J. G. Currie. Fundamental Mechanics of Fluids. MacGraw-Hill, New York, 1993.

[24] P. Deuflhard and F. Bornemann. Numerische Mathematik II. de Gruyter, Berlin,

1994.

[25] G. Dhatt and G. Touzot. The finite element method displayed. John Wiley & Sons,

Chichester, 1982.

[26] D. A. Dunuvant. High degree efficient symmetrical Gaussian quadrature rules for

the triangle. Int. Journal Num. Meth. Engineering, 21:1129–1148, 1980.

[27] M. V. Dyke. An Album of Fluid Motion. Parabolic Press, Stanford, 1982.

BIBLIOGRAPHY 139

[28] J. D. et al. Proposal for 3D unstructured tetrahedral mesh optimization. In Proc.

7th Int. Mesh. Roundtable, Dearborn, 1998.

[29] L. Euler. Principles géneraux du movement des fluides. Mém. Acad. Sci. Berlin,

11:274–315, 1755.

[30] R. D. Falgout. Adaptive algebraic multigrid. Lawrence Livermore National Labora-

tory, 2002.

[31] C. L. Fefferman. Existence & smoothness of the Navier-Stokes equation. Available

online at http://www.claymath.org/prizeproblems/navier stokes.pdf, 2000.

Clay Mathematics Institute.

[32] J. H. Ferziger and M. Perić. Computational Methods for Fluid Dynamics. Springer-

Verlag, Berlin, 2001.

[33] R. P. Feynman, R. B. Leighton, and M. Sands. The Feynman Lectures on Physics,

volume 2. Addison-Wesley, Reading, 7th edition, 1977.

[34] D. A. Field. Qualitative measures for initial meshes. Intl. J. for Num. Meth. Engr.,

47:887–906, 2000.

[35] P. F. Fischer. Projection techniques for iterative solution of Ax = b with successive

right-hand sides. Comput. Methods Appl. Mech. Engrg., 163:193–204, 1998.

[36] B. Fornberg. A Practical Guide to Pseudospectral Methods. Cambridge Monographs

on Applied and Computational Mathematics. Cambridge University Press, Cam-

bridge, 1998.

[37] P. J. Frey and P. L. George. Mesh Generation. Hermes Science Publishing, Oxford,

2000.

[38] G. P. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equa-

tions, volume 1. Springer-Verlag., New York, 1994.

[39] G. P. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equa-

tions, volume 2. Springer-Verlag., New York, 1994.

[40] G. P. Galdi, J. G. Heywood, and R. Rannacher. Fundamental directions in mathe-

matical fluid mechanics. Birkhäuser, Basel, 2000.

[41] P. George. Automatic Mesh Generation – Application to Finite Element Methods.

John Wiley & Sons, New York, 1991.

140 BIBLIOGRAPHY

[42] H. Gevgilili and D. Kalyon. Catastrophic failure of the no-slip condition at the wall

during torsional flows and development of gross surface irregularities during capillary

flow of three polymers. Society of Plastics Engineers ANTEC Technical Papers, 48,

2002.

[43] N. Gibbs, W. Poole, and P. Stockmeyer. An algorithm for reducing the bandwidth

and profile of a sparse matrix. SIAM J. Num. Anal., 13(2):236–250, 1976.

[44] R. Glowinski. Numerical Methods for Fluids, volume 3 of Handbook of Numerical

Analysis. North-Holland, Amsterdam, 2003.

[45] K. Goda. A multistep technique with implicit difference schemes for calculating two-

or three-dimensional cavity flows. Journal on Computational Physics, 30:76–95, 1979.

[46] G. H. Golub and C. F. V. Loan. Matrix Computations. Johns Hopkins University

Press, 1996.

[47] R. A. Granger. Fluid Mechanics. Dover Publications, New York, 1995.

[48] P. M. Gresho and R. L. Sani. Incompressible Flow and the Finite Element Method,

volume 2. John Wiley & Sons, Chichester, 2000.

[49] P. M. Gresho and R. L. Sani. Incompressible Flow and the Finite Element Method,

volume 1. John Wiley & Sons, Chichester, 2000.

[50] M. Griebel, T. Dornseifer, and T. Neunhoeffer. Numerical Simulation in Fluid Dy-

namics: A Practical Introduction. SIAM, Philadelphia, 1997.

[51] M. Griebel, T. Neunhoeffer, and H. Regler. Algebraic multigrid methods for the

solution of the Navier-Stokes equations in complicated geometries. International

Journal for Numerical Methods in Fluids, 26(3):281–301, 1998.

[52] R. B. Guenther and J. W. Lee. Partial Differential Equations of Mathematical Physics

and Integral Equations. Prentice Hall, Englewood Cliffs, N.J., 1988.

[53] M. E. Gurtin. An Introduction to Continuum Mechanics. Academic Press, San Diego,

1981.

[54] E. Guyon, J.-P. Hulin, L. Petit, and C. D. Mitescu. Physical Hydrodynamics. Oxford

University Press, Oxford, 2001.

[55] E. Hairer, S. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I.

Springer-Verlag, Berlin, 1986.

BIBLIOGRAPHY 141

[56] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Springer-

Verlag, Berlin, 2002.

[57] F. H. Harlow. Hydrodynamic problems involving large fluid distortion. J. Assoc.

Comp. Mach., 4:137 ff., 1957.

[58] F. H. Harlow and E. Welch. Numerical calculation of time-dependent viscous incom-

pressible flow of fluid with free surface. Phys. Fluids, 8:2182–2189, 1965.

[59] H. Haschke and W. Heinrichs. Splitting techniques for the Navier-Stokes equations.

In P. Neittaanmk̈i, T. Tiihonen, and P. Tarvainen, editors, Numerical Mathematics

and Advanced Applications, 2000.

[60] W. Heinrichs. Spectral multigrid techniques for the Navier-Stokes equations. Com-

puter Methods in Applied Mechanics and Engineering, 106:297–314, 1993.

[61] W. Heinrichs. Splitting techniques for the pseudospectral approximation of the un-

steady Stokes equations. SIAM Journal on Numerical Analysis, 30:19–39, 1993.

[62] W. Heinrichs. High order time splitting techniques for the Stokes equations. J.

Scient. Comput., 11(4):397–410, 1996.

[63] W. Heinrichs. Operator splitting for the Stokes equations. In G. Wittum, editor,

Proceedings of the Fifth European Multigrid Conference, pages 101–113, 1998.

[64] W. Heinrichs. Splitting techniques for the unsteady Stokes equations. SIAM Journal

on Numerical Analysis, 35(4):1646–1662, 1998.

[65] W. Heinrichs and H. Haschke. Splitting techniques with staggered grids for the

Navier-Stokes equations. Journal on Computational Physics, 168:131–154, 2001.

[66] V. E. Henson. An algebraic multigrid tutorial. Lawrence Livermore National Labo-

ratory, 1999.

[67] U. Hesse. Implizite Verfahren höherer Ordnung und Mehrgitterverfahren zur Lösung

der Shallow-Water-Equations. PhD thesis, University of Düsseldorf, 1998.

[68] C. Hirt, B. Nichols, and N. Romero. SOLA – A numerical solution algorithm for

transient fluid flows. Technical Report Rep. LA-5852, Los Alamos Scientific Lab.,

1975.

[69] M. Hochbruck. Numerical analysis. Lecture notes, 2004.

142 BIBLIOGRAPHY

[70] H. H. Hu, N. A. Patankar, and M. Y. Zhu. Direct numerical simulations of fluid-solid

systems using the arbitrary Lagrangian-Eulerian technique. Journal of Computa-

tional Physics, 169:427–462, 2001.

[71] A. Jameson and J. Vassberg. Computational fluid dynamics (CFD) for aerodynamic

design: Its current and future impact. In Proceedings of the 39th AIAA Aerospace

Sciences Meeting and Exhibit, 2001.

[72] D. D. Joseph. Interrogations of direct numerical simulation of solid-liquid flow. Avail-

able online at http://www.efluids.com/efluids/books/joseph.htm, 2004.

[73] J. V. Kan. A second-order accurate pressure-correction scheme for viscous incom-

pressible flow. SIAM J. Sci. Stat. Comput., 7:870–891, 1986.

[74] G. E. Karniadakis, M. Israeli, and S. A. Orszag. High-order splitting methods for

the incompressible Navier-Stokes equations. Journal of Computional Physics, 97:414–

443, 1991.

[75] T. Kato. Strong Lp solutions of the Navier-Stokes equations in Rm with applications

to weak solutions. Math. Z., 187:471–480, 1984.

[76] J. Kim and P. Moin. Application of a fractional-step method to incompressible

Navier-Stokes equations. Journal of Computational Physics, 59:308–323, 1985.

[77] P. Knabner and L. Angermann. Numerik partieller Differentialgleichungen. Springer-

Verlag, Berlin, 2000.

[78] P. Kunkel and V. Mehrmann. Generalized inverses of differential-algebraic operators.

SIAM Journal on Matrix Analysis and Applications, 17(2):426–442, 1996.

[79] P. Kunkel and V. Mehrmann. A new class of discretization methods for the solution

of linear differential-algebraic equations with variable coefficients. SIAM Journal on

Numerical Analysis, 33(5):1941–1961, 1996.

[80] O. A. Ladyshenskaja. Funktionalanalytische Untersuchungen der Navier-Stokesschen

Gleichungen. Akademie-Verlag, Berlin, 1965.

[81] L. D. Landau and E. M. Lifshitz. Hydrodynamik, volume VI of Lehrbuch der Theo-

retischen Physik. Akademie-Verlag, Berlin, 1966.

[82] H. P. Langtangen, K.-A. Mardal, and R. Winter. Numerical methods for incompress-

ible viscous flow. Advances in Water Resources, 25(8-12):1125–1146, 2002.

BIBLIOGRAPHY 143

[83] J. Leray. Études de diverses équations intégrales non linéaires et de quelques

problèmes que pose l’hydrodynamique. J. Math. Pures et Appl., 12:1–82, 1933.

[84] M. Marion and R. Temam. Navier-Stokes equations. In Handbook of Numerical

Analysis, volume 1, pages 197–462. North-Holland, Amsterdam, 1998.

[85] D. Meschede. Gerthsen Physik. Springer-Verlag, Berlin, 2003.

[86] C. L. M. H. Navier. Mémoire sur les lois du movement des fluides. Mém. Acad. Sci.

Inst. France, 6:389–440, 1822.

[87] C. K. Newman. Exponential Integrators for the Incompressible Navier-Stokes equa-

tions. PhD thesis, Virginina Polytechnic Institute and State University, 2003.

[88] H. Oertel. Numerische Strömungsmechanik. Springer-Verlag, Berlin, 1995.

[89] H. Oertel. Strömungsmechanik. Vieweg, Braunschweig/Wiesbaden, 1999.

[90] R. Panton. Incompressible Flow. John Wiley and Sons, Inc., New York, 2nd edition,

1996.

[91] V. T. Parthasarathy, C. M. Graichen, and A. F. Hathaway. A comparison of tetra-

hedral quality measures. Fin. Elem. Anal. Des., 15:255–261, 1993.

[92] P. Pébay and T. Baker. Analysis of triangle quality measures. Math. Comp.,

72(244):1817–1839, 2003.

[93] N. A. Petersson. Stability of pressure boundary conditions for Stokes and Navier-

Stokes equations. Journal on Computational Physics, 172:40–70, 2001.

[94] R. Peyret. Handbook of Computational Fluid Mechanics. Academic Press, London,

2000.

[95] R. Peyret. Spectral Methods for Incompressible Viscous Flow. Springer-Verlag, Hei-

delberg, 2002.

[96] C. Pozrikidis. Introduction to Theoretical and Computational Fluid Dynamics. Ox-

ford University Press, New York, 1997.

[97] A. Prohl. Projection and quasi-compressibility methods for solving the incompressible

Navier-Stokes equations. Teubner, Stuttgart, 1997.

[98] L. Quartapelle. Numerical Solution of the Incompressible Navier-Stokes Equations.

Birkhäuser, Basel, 1993.

144 BIBLIOGRAPHY

[99] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equa-

tions. Springer-Verlag, Berlin, 1994.

[100] R. Rannacher. On Chorin’s projection method for the incompressible Navier-Stokes

equations. In J. G. H. et al., editor, The Navier-Stokes equations II - Theory and

Numerical Methods, volume 1530 of Lecture Notes in Mathematics, Berlin, 1992.

Springer-Verlag.

[101] R. Rannacher. Finite element methods for the incompressible Navier-Stokes equa-

tions. Unpublished, University of Heidelberg, 1999.

[102] J. W. Ruge and K. Stüben. Algebraic multigrid. In S. F. McCormick, editor, Multi-

grid Methods, number 3 in Frontiers in Applied Mathematics. SIAM, Philadelphia,

1987.

[103] J.-M. Sautter. Numerical simulation in fluid dynamics. Master’s thesis, University

of Tübingen, 1997.

[104] H. Schlichting and K. Gersten. Boundary-Layer Theory. Springer-Verlag, Berlin,

2000.

[105] P. Schreiber and S. Turek. An efficient finite element solver for the nonstationary

incompressible Navier-Stokes equations in two and three dimensions. In Proc. Work-

shop ‘Numerical Methods for the Navier-Stokes Equations’, Heidelberg, Oct. 25-28,

1993, volume 47 of Notes on Numerical Fluid Mechanics. Vieweg, 1993.

[106] B. Simeon. Wissenschaftliches Rechnen in der Festkörpermechanik. Lecture notes,

Technical University of Munich, 2002.

[107] G. Strang. Approximation in the finite element method. Numer. Math., 19:81–98,

1972.

[108] G. Strang and G. Fix. An analysis of the finite element method. Prentice Hall,

Englewood Cliffs, N.J., 1973.

[109] A. H. Stroud. Approximate Calculation of Multiple Integrals. Prentice Hall, Engle-

wood Cliffs, N.J., 1971.

[110] K. Stüben. Algebraic Multigrid (AMG): An Introduction with Applications. GMD

Report No. 70. Gesellschaft für Mathematik und Datenverarbeitung, St. Augustin,

Bonn, 1999.

[111] K. Stüben. A Review of Algebraic Multigrid. GMD Report No. 69. Gesellschaft für

Mathematik und Datenverarbeitung, St. Augustin, Bonn, 1999.

BIBLIOGRAPHY 145

[112] R. Temam. Sur l’approximation de la solution des equations de Navier-Stokes par la

méthode des fractionnaires I. Arch. Rational Mech. Anal., 32(2):135–153, 1969.

[113] R. Temam. Sur l’approximation de la solution des equations de Navier-Stokes par la

méthode des fractionnaires II. Arch. Rational Mech. Anal., 33(5):377–385, 1969.

[114] J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin. Numerical Grid Generation.

North-Holland, Amsterdam, 1985.

[115] M. Tome and S. McKee. Gensmac: A computational marker and cell method for free

surface flows in general domains. Journal of Computational Physics, 110:171–186,

1994.

[116] U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Academic Press, London,

2001.

[117] C. Truesdell and K. Rajagopal. An Introduction to the Mechanics of Fluids.

Birkhäuser, Boston, 2000.

[118] S. Turek. A comparative study of some time-stepping techniques for the incompress-

ible Navier-Stokes equations: From fully implicit nonlinear schemes to semi-implicit

projection methods. International Journal for Numerical Methods in Fluids, 22:987–

1011, 1996.

[119] S. Turek. Multilevel Pressure Schur Complement Techniques for the Numerical Solu-

tion of the Incompressible Navier-Stokes Equations. Habilitationsschrift, Universität

Heidelberg, 1997.

[120] S. Turek. On discrete projection methods for the incompressible Navier-Stokes equa-

tions: An algorithmical approach. Comp. Methods Appl. Mech. Engrg., 143:271–288,

1997.

[121] S. Turek. Efficient solvers for incompressible flow problems: An algorithmic and

computational approach, volume 6 of Lecture Notes in Computational Science and

Engineering. Springer-Verlag, Berlin, 1999.

[122] H. K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dy-

namics: The Finite Volume Method. Addison-Wesley, Reading, 1996.

[123] J. Weickert. Navier-Stokes equations as a differential-algebraic system. Preprint

sfb393/96-08, Technische Universität Chemnitz-Zwickau, 1996.

[124] N. Whitaker. Numerical solution of the Hele-Shaw equations. Journal on Computa-

tional Physics, 90(1):176–199, 1990.

146 BIBLIOGRAPHY

[125] N. Whitaker. Some numerical methods for the Hele-Shaw equations. Journal on

Computational Physics, 111(1):81–99, 1994.

