Untersuchungen von Chalcogenophosphaten und Chalcogenophosphathalogeniden

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Stefan Jörgens

aus Düsseldorf

Düsseldorf 2004

Gedruckt mit Genehmigung der

Mathematisch-Naturwissenschaftlichen Fakultät der

Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. A. Mewis

Korreferent: Prof. Dr. W. Frank

Tag der mündlichen Prüfung :02.06.2004

Zur Wahrung der Priorität wurden Teile dieser Arbeit bereits publiziert:

STEFAN JÖRGENS, DIRK JOHRENDT, ALBRECHT MEWIS Motive dichtester Kugelpackungen: Die Verbindungen Zn₃(PS₄)₂ und LiZnPS₄ *Z. Anorg. Allg. Chem.* **628**, 1765 (2002)

STEFAN JÖRGENS, ALBRECHT MEWIS, ROLF-DIETER HOFFMANN, RAINER PÖTTGEN, BERND D. MOSEL Neue Hexachalcogeno-Hypodiphosphate der Erdalkalimetalle und des Europiums *Z. Anorg. Allg. Chem.* **629**, 429 (2003)

STEFAN JÖRGENS, DIRK JOHRENDT, ALBRECHT MEWIS BaP₄Te₂ - A Ternary Tellurid with P-Te Bonds and a Structural Fragment of Black Phosphorus *Chem. Eur. J.* **9**, 2405 (2003)

STEFAN JÖRGENS, DIRK JOHRENDT, ALBRECHT MEWIS Nicht länger im Dunkeln: Die Kristallstruktur von AuPS₄ *Z. Anorg. Allg. Chem.* **629**, 2236 (2003)

STEFAN JÖRGENS, ALBRECHT MEWIS Die Kristallstrukturen von Hexachalcogeno-Hypodiphosphaten des Magnesiums und Zinks *Z. Anorg. Allg. Chem.* **630**, 51 (2004)

Inhalt

1	Einleitung	1			
2	Arbeitsmethoden	3			
	2.1 Darstellung der Präparate	3			
	2.2 Röntgenographische Methoden	5			
	2.2.1 Röntgenstrukturanalyse	6			
	2.3 Thermoanalyse	8			
	2.4 Röntgenfluoreszenzanalyse	8			
	2.5 Ramanspektroskopie				
	2.6 Magnetische Messungen	9			
	2.7 Mössbauer-Spektroskopie	10			
	2.8 Bandstrukturrechnungen	11			
3	Hexachalcogeno-Hypodiphosphate	15			
	3.1 Vorbemerkungen	15			
	3.2 Die Hexaseleno-Hypodiphosphate der Erdalkalimetalle und des Europiums 16				
	3.2.1 Darstellung und Strukturbeschreibung	16			
	3.2.2 Magnetismus und Mössbauer-Spektroskopie	24			
	3.3 $Mg_2P_2S_6$, $Mg_2P_2Se_6$ und $Zn_2P_2Se_6$	27			
	3.3.1 Synthese	27			
	3.3.2 $Mg_2P_2S_6$	27			
	3.3.3 $Mg_2P_2Se_6$ und $Zn_2P_2Se_6$	33			
	$3.4 Ag_2MgP_2S_6$	38			
	$3.5 K_2MgP_2Se_6$	44			
4	Orthochalcogenophosphate	49			
	4.1 Ag ₃ PS ₄	49			
	4.2 AuPS ₄	54			
	4.2.1 Experimentelle Angaben und Strukturbestimmung	54			
	4.2.2 Strukturbeschreibung	61			
	4.2.3 Bandstrukturrechnungen	63			
	4.3 Ba ₃ (PX ₄) ₂ mit $X = S$, Se	67			

	421 (DC) and Da (DC)	67
	4.3.2 β β_{2} (β_{3})	70
	4.5.2 p -Da ₃ (1.54) ₂	97
	4.4 Liziii 54	07 97
	4.4.2 Dendstrukturrechnungen	07
	4.4.2 bandstrukturreennungen	95
	4.5 LIEUI 54	93
	4.5.2 Strukturbeschreibung	98
	4.6 KBaPS, und KBaPSe.	102
	4.6.1 Darstellung und Strukturbestimmung	102
	4.6.2 Strukturbeschreibung	106
_		
5	Thiophosphathalogenide	111
	5.1 $Ag_5PS_4Cl_2$	113
	5.2 $Ag_{15}(PS_4)_4Cl_3$	122
	5.3 Verbindungen der Argyrodit-Familie: Cu ₆ PS ₅ Cl, Ag ₆ PS ₅ Cl, Ag ₆ PS ₅ B Ag ₆ PS ₅ Cl _{0.5} Br _{0.5} , Ag ₅ PS ₄ Br ₂ und Ag ₆ PS ₅ I	r, 129
	5.4 $Ag_5PS_4I_2$	140
	5.5 $Ag_{10}(PS_4)_2CII_3$	148
	5.6 Ag ₁₀ (PS ₄) ₂ SCl ₂ und seine Phasenumwandlungen	157
	5.6.1 γ -Ag ₁₀ (PS ₄) ₂ SCl ₂	157
	5.6.2 β -Ag ₁₀ (PS ₄) ₂ SCl ₂	168
	5.6.3 α -Ag ₁₀ (PS ₄) ₂ SCl ₂	178
6	Ba ₃ PSe ₄ PO ₄	184
7	BaP ₄ Te ₂	193
	7.1 Synthese und Strukturanalyse	194
	7.2 Strukturbeschreibung	197
	7.3 Bandstrukturrechnungen	200
8	Zusammenfassung	204
9	Anhang A: Kristallographische Daten	209
10	Anhang B: Pulverdiffraktogramme	215
11	Literaturverzeichnis	238

1 Einleitung

Das Forschungsgebiet der Festkörperchemie verzeichnet in den letzten Jahrzehnten einen rasanten Anstieg der Zahl neuer Verbindungen. Dies liegt nicht alleine an neuen oder verbesserten Darstellungstechniken der Festkörperchemiker, sondern auch an dem erheblichen Fortschritt im Bereich der röntgenographischen Untersuchungs- und Auswertemethoden. So können heute durch den Einsatz von Einkristalldiffraktometern mit IPDS- bzw. CCD-Technik (Flächenzähler) Kristalle untersucht werden, die noch vor wenigen Jahren als ungeeignet verworfen wurden. Desweiteren ermöglicht der Einsatz moderner leistungsfähiger Computer die Lösung komplexerer kristallographischer Probleme (Inkommensurable- bzw. Überstrukturen), die früher als unlösbar galten. Ein weiterer Bereich beschäftigt sich in jüngerer Zeit - neben der reinen Strukturaufklärung mit der Untersuchung der physikalischen Eigenschaften, die direkt von der Kristallstruktur und den darin vorliegenden Bindungsverhältnissen abhängen. Durch den Einsatz leistungsfähigerer Rechenprogramme sowie verbesserter Theorien können jetzt auch physikalische Phänomene, wie elektronische Strukturen in Festkörpern, berechnet werden (Bandstrukturmethoden). So erlauben neuere Konzepte, wie etwa die COOP- oder COHP-Methode [1, 2], in zunehmendem Maße eine Interpretation der im Festkörper auftretenden Bindungsverhältnisse. Hierbei zeigt sich, daß der Charakter der chemischen Bindung in Festkörpern sich nicht grundlegend von dem in Molekülen unterscheidet. Eine Prognose über Art und Geometrie der Bindungen in Feststoffen ist zum heutigen Zeitpunkt allerdings noch nicht möglich.

Die Strukturen der ternären und quaternären Thio- bzw. Selenophosphate sind durch isolierte PX_4 -Tetraeder oder P_2X_6 -Einheiten (X = S, Se) geprägt, seltener durch Einheiten der allgemeinen Form P_yX_z (y = 2 - 4; z = 7 - 13) [3], die durch elektropositive Hauptgruppenmetall- bzw. Übergangsmetallkationen separiert werden. Diese Verbindungen können als weitgehend ionisch aufgebaut gedeutet werden, wobei die PX_4 -Tetraeder analog zu PO₄-Tetraedern als (PX_4)³⁻-Einheiten betrachtet werden können. Somit gibt die unedle Metall-Komponente Elektronen an die kovalent gebundene PX_4 -Baueinheit ab. Trotz des gemeinsamen Aufbaus der Thio/Seleno-Phoshate und der Oxophosphate - Phosphor ist immer tetraedrisch umgeben - ist die Chemie dieser

Verbindungen unterschiedlich. Es sind keine Strukturen von Thio- bzw. Seleno-Phosphaten bekannt, die eine gewisse Isotypie zu denen der sehr zahlreichen Oxophosphate aufweisen. Auch eine Polykondensation der PX_4 -Tetraeder zu längeren Ketten, die bei den Oxo-Verbindungen z.B. (NaPO₃)_n häufig anzutreffen ist, wird bei den restlichen Chalcogenophosphaten bisher nicht beobachtet. Viele der Thio- bzw. Selenophosphate sind im Gegensatz zu den Oxophosphaten hydrolyseempfindlich, spalten das Chalcogen ab - meistens als H_2X - und es bilden sich Oxophosphat-Anionen. Dies schränkt die weitere Anwendung mancher interessanter Verbindungen ein.

Obwohl das Gebiet der Thio- bzw. Selenophosphate, ausgehend von den Arbeiten von Hahn et al [4], seit den siebziger Jahren intensiv erforscht wird, so daß mit fast allen Metallen Chalcogenophosphat-Verbindungen bekannt sind, gibt es immer noch Lücken hinsichtlich der Synthese und Kristallstrukturbestimmung von Verbindungen, deren Existenz anzunehmen ist. So waren bisher z. B. keine ternären Zink-Selenophosphate bekannt. Ebenso sind Verbindungen, die P-Te-Bindungen enthalten, nahezu unbekannt. Sie könnten möglicherweise völlig andere Eigenschaften als die Thio- bzw. Selenophosphate besitzen. Mit Halogenid-Anionen als zusätzliche anionische Komponente ist es möglich, die Ionenleitung kleiner Kationen (Ag⁺, Cu⁺) in Festkörpern zu verbessern (Cu₆PS₅Cl [5]). Auf diesem Gebiet sind bisher nur wenige Verbindungen strukturchemisch untersucht worden. Ausgehend von den Verbindungen $Zn_3(PS_4)_2$ und $CePS_4$ [6] sollte untersucht werden, ob sich zwei- bzw. dreiwertige Kationen partiell durch einwertige Kationen (Li⁺) substituieren lassen, da deren Kristallstrukturen diese Möglichkeiten prinzipiell bieten. Im Rahmen dieser Arbeit sollten außerdem die Systeme Metall-P-(X, Hal) (X = S, Se, Te; Hal = Cl, Br, I) auf bisher noch nicht röntgenographisch charakterisierte Verbindungen untersucht werden.

2 Arbeitsmethoden

2.1 Darstellung der Präparate

Zur Darstellung der im Rahmen dieser Arbeit beschriebenen ternären und quaternären Verbindungen wurden folgende Elemente bzw. Verbindungen verwendet:

Element	Gehalt (%)	Beschaffenheit	Hersteller
Calcium	99,5	Stücke	Alfa
Barium	> 99,7	Stücke	Ventron
Gold	100	Draht	Welz
Europium	99,9	Stücke	Alfa-Aesar
Iod	99,5 doppelt sub.	Körner	Merck
Kalium	> 98	Würfel	Merck-Schuchardt
Kupfer	99,5	Pulver	Aldrich
Lithium	> 99	Stangen	Merck-Schuchardt
Magnesium	> 99	Stücke	Alfa
Phosphor (rot)	99,999	Stücke	Hoechst
Schwefel	99,999	Stücke	Chempur
Selen	99,999	Stücke	Alfa
Silber	99,999	Pulver	Heraeus
Strontium	> 99	Stücke	Ventron
Tellur	99,999	Stücke	Alfa
Zink	99,999	Pulver	Chempur
Kaliumchlorid	> 99	Pulver	Acros Organics
Kupfer(I)chlorid	> 99	Pulver	Riedel-De Haën
Silberchlorid	> 99,5	Pulver	Fluka Chemika
Silberiodid	> 99	Pulver	Fluka Chemika
Rubidiumiodid	> 99	Pulver	Merck

Die Erdalkalimetalle Calcium, Barium und Strontium wurden vor der Verwendung im Hochvakuum destilliert. Alle Arbeiten mit den Erdalkalimetallen und Europium wurden in einem Argon-Handschuhkasten durchgeführt. Das Kalium- und Kupferchlorid wurden mehrere Tage im Vakuumtrockenschrank getrocknet. Durch Ausfällung, anschließende Reinigung und Vakuumtrocknung wurde Silberbromid hergestellt. Für die Synthese von Li₂S₄ wurden Lithiummetallstücke in flüssigem Ammoniak gelöst, die stöchiometrische Menge Schwefel hinzugegeben und ca. einen Tag gerührt. Das Ammoniak wurde entfernt und das Produkt zur Homogenisierung in einer geschlossenen Ampulle aufgeschmolzen. Charakterisiert wurde Li_2S_4 mit Hilfe der Pulverdiffraktometrie. Li_2S_4 ist sehr hydrolyseempfindlich und alle weiteren Arbeiten mit Li_2S_4 wurden im Argon-Handschuhkasten durchgeführt.

Die Synthese der Präparate erfolgte durch Erhitzen der Elementgemenge in entsprechenden Molverhältnissen. Bei LiEuPS₄ hat es sich als vorteilhaft herausgestellt, mit Li₂S₄ anstelle von elementarem Li und S zu arbeiten. Für Versuche zur Verbesserung der Kristallqualität wurden elementares Iod und Halogenidschmelzen verwendet, wobei sie nicht nur als Transport- oder Flußmittel auftraten, sondern teilweise auch Reaktionspartner darstellten. Die Reaktionen fanden in evakuierten Quarzglasampullen statt, die in elektrischen Öfen Röhrenöfen erhitzt wurden. Die Temperatur der wurde mit Pt/PtRh-Thermoelementen gemessen und mit programmierbaren Reglern der Firma WEST und EUROTHERM gesteuert. Detaillierte Angaben zur Versuchsdurchführung werden bei den jeweiligen Verbindungen gemacht.

2.2 Röntgenographische Methoden

Die röntgenographische Phasenuntersuchung der Pulverpräparate erfolgte mit Hilfe eines mit Silizium kalibrierten, rechnergesteuerten Pulverdiffraktometers HUBER SMC 9000 (Durchstrahltechnik, CuK_{$\alpha 1$}-Strahlung, Quarzmonochromator, $\lambda = 1,54051$ Å) mit GUINIER-Geometrie. Auf diese Weise wurden die dargestellten Phasen identifiziert, auf ihre Reinheit überprüft und Gitterkonstanten bestimmt. Zur Strukturbestimmung wurden unter dem Stereomikroskop Kristalle geeigneter Größe aus dem Pulver ausgelesen, mit Hilfe von Schlifffett oder Zweikomponentenkleber in einem Markröhrchen (\emptyset 0,1 -0,5 mm) eingeklebt, eingeschmolzen und mit Wachs auf einem Goniometerkopf befestigt. Die Qualität der Kristalle wurde mit Hilfe von Schwenkaufnahmen auf einer Weißenberg-Kamera (HUBER, CuK $_{\alpha}$ -Strahlung, Ni-Filter) überprüft. Von einigen gut ausgebildeten Kristallen wurden Gitterkonstanten und Auslöschungen mittels Weißenberg- bzw. Precession-Aufnahmen (HUBER, Mo- K_{α} -Strahlung, Zr-Filter) bestimmt. Die Aufnahmen wurden entweder mit konventioneller Filmtechnik erstellt oder auf einer Image-Folie (Image-Plate BAS-MS) aufgenommen und mit einem Scanner (Fujifilm BAS-1800) ausgelesen. Die Intensitätsmessungen für die Strukturrechnungen wurden mit einem Vierkreisdiffraktometer P3/P21 der Firma SIEMENS, einem AED2 der Firma STOE (MoK_{α}-Strahlung, Graphitmonochromator, $\lambda = 0,71073$ Å, $\omega/2\theta$ -Scan bzw. ω/θ -Scan) einem IPDS Flächenzähler STOE IPDS1 bzw. einem STOE STADI4-CCD-Diffraktometer (MoK_{α}-Strahlung, Graphitmonochromator, $\lambda = 0,71073$ Å) durchgeführt. Die Messungen erfolgten in einem Winkelbereich von $3^{\circ} \le 2\theta \le 52-70^{\circ}$ und wurden mit einem Ψ -Scan - bei geeigneten Diffraktometern - einiger ausgesuchter Reflexe zur Absorptionskorrektur abgeschlossen. Messungen bei tiefen Temperaturen auf dem IPDS-Diffraktometer erfolgten mit einer Stickstoff-Kaltstrom Apparatur (Cryostream Cooler) der Firma OXFORD CRYOSYSTEMS, für Hochtemperaturmessungen wurde eine Heizvorrichtung im Eigenbau entwickelt. Temperaturabhängige Pulverdiffraktogramme wurden mit einem X'Pert PRO der Firma PHILIPS ANALYTICAL aufgenommen.

2.2.1 Röntgenstrukturanalyse

Die zur Strukturbestimmung erforderlichen Rechnungen erfolgten auf einer VAX 2300-Workstation bzw. auf einem PC mit Hilfe des Programmsystems SHELXL 97[7]. Die auf dem Vierkreisdiffraktometer gemessenen Reflexintensitäten wurden zunächst einer Untergrund- und Lorentz-Polarisationskorrektur unterzogen. In vielen Fällen wurde eine empirische Absorptionskorrektur mit Hilfe eines Ψ -Scans oder eine numerische Absorptionskorrektur durchgeführt. Bei einem Ψ -Scan handelt es sich um sogenannte Azimut-Rotationen des Kristalls um die Netzebenennormale, bei denen die Ebene immer in Reflexionsstellung bleibt. Gemessen wird die Intensität eines solchen Reflexes bei Variation des Y-Winkels, wobei ein Absorptionsprofil aufgenommen wird. Für eine numerische Absorption erfolgte die Indizierung der Kristallflächen und Optimierung der Kristallgestalt mit dem Programm X-Shape [8, 9]. Die so korrigierten Datensätze wurden mit dem Programm SHELXTL-PLUS [10] bzw. XRED [11] zu einem Satz symmetrieunabhängiger Strukturamplituden zusammengefaßt, mit einem R_{int}-Wert, der ein Maß für die Abweichung der symmetrieäquivalenten Reflexe vom betreffenden Mittelwert in der entsprechenden LAUE-Klasse angibt:

$$\mathbf{R}_{\text{int}} = \frac{\sum_{i=1}^{n} \left| F_o^2 - \overline{\left(F_o^2\right)} \right|}{\sum_{i=1}^{n} F_o^2}$$

n = Zahl der symmetrieunabhängigen Reflexe

 F_0^2 = gemessene Intensität

 $\overline{F_{0}^{2}}$ = beobachtete, über n Reflexe gemittelte Intensität

Es wurden zur Strukturrechnung nur jene Reflexe herangezogen, welche der folgenden Bedingung gehorchen :

$$|F_0^2| \ge 2\sigma (F_0^2)$$

 σ = Standardabweichung aus der Zählstatistik

Die Strukturlösung erfolgte mittels der Direkten Methoden. Das hierbei verwendete Programmpaket SHELXL-97 wurde anschließend auch zur Verfeinerung der Struktur benutzt. Freie Lageparameter, Besetzungsdichten und thermische Auslenkungsparameter wurden mittels "least-squares"-Methode (Methode der kleinsten Fehlerquadrate) optimiert. Bei diesen Verfeinerungszyklen wurden die Atomformfaktoren der neutralen Elemente verwendet. Zunächst erfolgte die Verfeinerung mit isotropen Auslenkungsparametern, die anschließend anisotrop aufgespalten wurden :

isotrop :
$$T = \exp \left[-8\pi^2 U \sin^2 \theta / \lambda^2\right]$$

anisotrop : $T = \exp \left[-2\pi^2 \left(h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12} + ... \right)\right]$

Die mittleren prozentualen Abweichungen der beobachteten und berechneten Strukturamplituden werden durch den konventionellen R-Wert R_1 (ungewichtet) bzw. den nach

w = 1 /
$$[\sigma^2 (F_o^2) + (a \cdot P)^2 + b \cdot P]$$
 mit P = $[max (F_o^2, 0) + 2 \cdot F_c^2] / 3$

gewichteten R-Wert wR₂ angegeben.

w = Wichtungsschema

 F_o = beobachteter Strukturfaktor F_o^2 = beobachtete Intensität

 F_c = berechneter Strukturfaktor F_c^2 = berechnete Intensität

Die anschließend durchgeführten Differenzfouriersynthesen waren in allen Fällen konturlos. Die Gitterkonstanten wurden auf den Vierkreisdiffraktometern aus 15-30 starken und zentrierten Reflexen im 20-Bereich 10-30° bestimmt. Aus den

Pulverdiffraktogrammen erfolgt die Verfeinerung der Gitterkonstanten mit dem Programm U-FIT [12]. Die in den Pulverdiffraktogrammen angegebenen berechneten Intensitäten wurden mit dem Programm CRYSCON [13] aus den verfeinerten Strukturdaten bestimmt. Alle Strukturbilder wurden mit dem Programm DIAMOND [14] erstellt.

2.3 Thermoanalyse

Bei einigen Verbindungen wurden zur Untersuchung von thermischen Effekten DSC-Messungen durchgeführt. Die verwendeten Aluminiumtiegel zeigten mit dem Probenmaterial auch bei höheren Temperaturen keine erkennbaren Reaktionen. Die Messungen wurden mit einer DSC-Meßaparatur METTLER DSC 30, bzw. NETSCH STA 449C durchgeführt. Die Aufheiz- bzw. Abkühlraten betrugen 2°-10° C°/min; die Messungen wurden jeweils mehrfach durchgeführt, um eventuell auftretende Effekte durch nicht vollständig umgesetzte Edukte ausschließen zu können.

2.4 Röntgenfluoreszenzanalyse

Von ausgesuchten Kristallen wurden zur Bestimmung der Zusammensetzung EDX-Analysen (Energy-Dispersive Analysis with X-Ray) angefertigt. Bei diesem Analyseverfahren wird die zu untersuchende Probe mit beschleunigten Elektronen zur Röntgenfluoreszenz angeregt und das resultierende Emissionsspektrum aufgezeichnet. Die Wellenlänge und Intensität der emittierten Strahlung erlaubt eine qualitative und quantitative Analyse der in der Probe enthaltenen Elemente. Der Vorteil dieses Analyseverfahrens liegt in der zerstörungsfreien Analyse geringer Substanzmengen, so daß ein einzelner Kristall sowohl für die Strukturbestimmung als auch für die Analyse ausreicht. Die Genauigkeit der Methode ist von der Beschaffenheit der Probe abhängig. Da es sich um eine Oberflächenmethode handelt, wirkt sich eine glatte Probenoberfläche vorteilhaft aus. Der Fehler bei der quantitativen Analyse wird auf ca. \pm 10 Atomprozent geschätzt.

Ein Teil der Messungen wurden am Institut für Physikalische Chemie und Elektrochemie II der Heinrich-Heine-Universität Düsseldorf an einem DS 130 ISI-Diffraktometer mit dem EDX-System EDAX-DX4 mit einer Anregungsenergie von 19-30 kV durchgeführt. Bei

einigen Kristallen wurden die Messungen am Institut für Anorganische Chemie und Strukturchemie Π der Heinrich-Heine-Universität Düsseldorf einem an EAGEL-II-µ-PROBE Mikro-Röntgen-Fluoreszenz-Spektrometer (**R**ÖNTGENANALYTIK MEßTECHNIK GmbH) mit einer Detektor-Auswerteeinheit der Firma EDAX durchgeführt. Mit der verwendeten Rhodium-Röhre können bei sehr kleinen Kristallen Probleme bei der Chlor-Erfassung der chlorhaltigen Silberthiophosphate auftreten, da sich das Chlor-Emissionsspektrum und das Röhren-Emissionsspektrum teilweise überlagern.

2.5 Ramanspektroskopie

Mit der Ramanspektroskopie können Molekülschwingungen in allen Agregatzuständen detektiert werden. Es wird monochromatisches Licht (Laser) eingestrahlt, das zu elastischen Photonen/Molekül-Stößen (Rayleigh-Strahlung) und inelastischen Stößen (Stokes- und Anti-Stokes-Banden) führt. Voraussetzung für eine Raman-aktive Schwingung ist, daß sich beim Schwingungsvorgang die Polarisierbarkeit α ändert. Wie auch in der Infrarot-Spektroskopie ist ein Raman-Spektrum substanzspezifisch und kann zur Identifizierung herangezogen werden. In den Verbindungen dieser Arbeit liegt das Augenmerk bei den kovalent gebundenen P-S-Gruppen. Die Messung wurde mit einer kristallinen Pulverprobe, die sich in einer 10mm langen Glaskapillare mit 1mm Durchmesser befand, durchgeführt. Bei dem Messgerät handelt es sich um ein Excalibur FTS 3500 Spektrometer der Firma DIGILAB mit einer Raman-Accessory. Als Laserquelle wurde ein Neodym dotierter Yttrium-Aluminium-Granat Kristall (Nd:YAG) mit einer Wellenlänge von 1,064 μm eingesetzt.

2.6 Magnetische Messungen

Die magnetischen Eigenschaften der Europiumverbindungen werden fast ausschließlich durch die Besetzung der 4f-Schale des Europiums (Xe $4f^76s^2$) bestimmt. Aus magnetischen Messungen sind somit Rückschlüsse auf den elektronischen Zustand des Europiums - und damit auf seine Valenz - möglich.

Die magnetischen Suszeptibilitäten wurden mit einem MPSMS SQUID-Magnetometer (QUANTUM DESIGN) am Institut für Anorganische Chemie der Universität Münster gemessen. Die Messungen erfolgten in einem Temperaturbereich von 2 K bis 300 K mit einer magnetischen Flußdichte von 1T. Die Probe wurde in ein Quarzglasröhrchen gefüllt, am Probenhalter befestigt und zunächst ohne externes Magnetfeld auf 2 K gekühlt. Anschließend erfolgte die Messung mit steigender Temperatur bei eingeschaltetem Feld.

2.7 Mössbauer-Spektroskopie

Von der Europiumverbindungen Eu₂P₂S₆ wurde ein Mössbauer-Spektrum am Institut für Physikalische Chemie in der Universität Münster aufgenommen, um die Europiumvalenzen (Eu²⁺, Eu³⁺) zu bestimmen. Die beiden Valenzzustände besitzen aufgrund der unterschiedlichen Abschirmung des Kerns durch die f-Elektronen verschiedene effektive Kernpotentiale und damit unterschiedliche Aufenthaltswahrscheinlichkeiten der s-Elektronen am Kern. Aus diesem Grund erwartet man bei Verbindungen mit zweiwertigem Europium eine Isomerieverschiebung zwischen -8 und -12 mm/s, während diese beim dreiwertigen Europium bei 0 bis +4.5 mm/s liegt. Für die Europium-Mössbauer Spektroskopie wurde der 21,53 keV Übergang von ¹⁵¹Eu mit einer Aktivität von 130MBg (2% der Gesamtaktivität einer ¹⁵¹Sm:EuF₃-Quelle) genutzt. Die Messung wurde in einem Helium-Badkryostaten bei 77 K durchgeführt. Die Quelle wurde bei Raumtemperatur belassen. Die Probe wurde in eine PVC-Dose mit einer Belegung von 10 mg Eu/cm² eingeschlossen.

2.8 Bandstrukturrechnungen

Mit Bandstrukturrechnungen ist es möglich, Informationen über die elektronischen Eigenschaften von Festkörpern zu erhalten. *R. Hoffmann* [15] stellte 1963 das semiempirische Extended-Hückel-Verfahren als eine Methode zur Berechnung der elektronischen Struktur von Molekülen vor. In den darauffolgenden Jahren fand dieses Konzept auch zunehmend Anwendung in der Festkörperchemie. Heute wird bei der Berechnung von Bandstrukturen vorwiegend die TB-LMTO-ASA (Thight-Binding Linear-Muffin-Tin-Orbital Atomic-Sphere-Approximation) Methode [16] verwendet, die im Gegensatz zur Extended-Hückel-Methode selbstkonsistent arbeitet. Die wichtigsten Näherungen dieses Verfahrens werden im Folgenden kurz vorgestellt.

Dichte-Funktional-Formalismus

Eine exakte Berechnung der Energie aller Elektronen in einem so komplexen System wie dem Festkörper ist mit heutigen Methoden nicht möglich. Einen Ansatz zur Lösung des Problems bietet der Dichte-Funktional-Formalismus mit Einführung der Elektronendichte p. Sie kann als eine kontinuierliche Funktion räumlicher Koordinaten aufgefaßt werden, in der keine individuellen Elektronen mehr vorkommen. Grundlage für diese Näherung sind die Arbeiten von Hohenberg und Kohn [17], nach denen die Gesamtenergie des Vielteilchensystems ein eindeutiges Funktional der Grundzustandsdichte $\rho(r)$ ist. Variiert man das Funktional, so kann man bei Erreichen des Energieminimus die korrekte Dichte ermitteln. Kohn und Sham [18] konnten zeigen, daß ein System wechselwirkender Teilchen durch ein Energiefunktional des effektiven Einteilchensystems beschrieben werden kann. Integriert man die Energie aller effektiven Einteilchensysteme, so erhält man die Elektronendichte. Die potentielle Energie der effektiven Einteilchen-Schrödingergleichung setzt sich aus mehreren Potentialen wie dem Hartree-Potential V_H (Elektronen-Elektronen-Abstoßung), dem Kernpotential V_N und dem Austausch-Korrelationspotential E_{XC} zusammen. Das Austausch-Korrelationspotential wird in der LMTO-Methode durch die Lokale-Dichte-Näherung (LDA: Local Density Approximation) bestimmt.

Als exaktes Potential erhält man unter Einbeziehung der kinetischen Energie der nicht wechselwirkenden Elektronen $T[\rho(r)]$:

$$E_{G}[\rho(r)] = T [\rho(r)] + \int \rho(r) V_{N} dr + \frac{1}{2} \int \rho(r) V_{H} dr + E_{XC}[\rho(r)]$$

Der Dichte-Funktional-Formalismus ermöglicht auch die Berücksichtigung des Elektronenspins, so daß auch spinpolarisierte Bandstrukturrechnungen möglich sind. Hierzu muß die elektronische und magnetische Dichte für jeden Spin gesondert berechnet werden.

Das Muffin-Tin-Orbital

In Festkörpern verläuft das Potential zwischen den Atomrümpfen ziemlich flach, deshalb wird bei dieser Methode das exakte Potential durch ein Muffin-Tin-Orbital angenähert. Dieses kugelsymmetrische Modellpotential ist um jeden Atomrumpf innerhalb des Muffin-Tin-Radius stark variierend und im Bereich zwischen den Atomrümpfen konstant. Das Potential der Atomrümpfe wird bei den Berechnungen als vollständig lokalisiert behandelt und von dem der Valenzelektronen getrennt berechnet (frozen-core-approximation). Die Bewegung der Valenzelektronen zwischen den Muffin-Tin-Potentialtöpfen (Zwischenbereich) wird durch Kugelwellen beschrieben, die selbstkonsistent zwischen den Potentialtöpfen gestreut werden. Die aus der Wellenfunktion Ψ erhaltenen Muffin-Tin-Orbitale (MTO) sind energieabhängig.

$$[-\nabla^2 + V_{MT}(r) - E_{kin}]\Psi(E, r) = 0$$

Da die Verwendung des Ritz schen Variationsprinzips jedoch nur energieunabhängige Orbitale erlaubt, müssen die MTO's nach einem Verfahren von *Kohn, Korringa* [19] und *Rostoker* [20] in energieunabhängige Orbitale umgewandelt werden. Dies geschieht, indem innerhalb des Muffin-Tin-Potentials die Wellenfunktion Ψ in einer Taylorreihenentwicklung um einen festen Energiewert E_v entwickelt wird.

$$\Psi^{(E,r)} = \Psi_{x}(r) + \varepsilon \Psi_{v}(r) + \frac{1}{2}\varepsilon^{2}\Psi_{v}^{"} + \dots \qquad \varepsilon = E - E_{v}$$

 E_v wird in jedem Iterationsschritt neu ermittelt. Die Wahl der Entwicklungsenergie hängt davon ab, welcher Bereich der Bandstruktur (z. B. die Ladungsdichte oder Energiebänder) exakt beschrieben werden soll.

Atomic-Sphere-Approximation

Bei der Atomic-Sphere-Approximation (ASA) wird von einem kugelsymmetrischen Potential im Zwischenbereich der Atomrümpfe ausgegangen. Die Muffin-Tin-Potentiale werden hierbei zu atomaren Kugeln mit dem Radius S vergrößert.

$$\Omega = \frac{4\pi}{3}S^3$$

Die Summe der Kugelvolumina Ω entspricht dem Volumen der Elementarzelle. Die Wahl der ASA-Radien hat Auswirkungen auf die Bandstrukturrechnung, da zu große Überlappungs- und Leerbereiche die Rechnung verfälschen. Dieser Gefahr kann durch Einführung von Leerkugeln (Empties) entgegengewirkt werden. Empties werden in den Rechnungen wie Atomkugeln ohne Kern behandelt.

COHP-Diagramme

Die Analyse der Bindungsverhältnisse erfolgte mit der Crystal Orbital Hamiltonian Population (COHP)-Methode [2]. Mit dieser Funktion lassen sich Aussagen zur Bindungsstärke in einem Festkörper machen. Das COHP-Verfahren ist eng verwandt mit der Kristallorbitalüberlappungspopulation (COOP, Crystal Orbital Overlap Population) [1], teilt jedoch im Gegensatz zu ihr nicht die Überlappungsdichte, sondern die Bandstrukturenergie unter den verschiedenen Bindungen auf. Um positive Werte für bindende und negative Werte für antibindende Zustände zu erhalten, ist in den Diagrammen jeweils -COHP(E) aufgetragen.

Die im Rahmen dieser Arbeit berechneten Bandstrukturen, Zustandsdichten, COHP-Diagramme und Elektronenlokalisierungsfunktionen wurden auf einem DEC-a-500 Rechner mit dem Programmpaket TB-LMTO47c [21] ermittelt. Für die Verbindung LiZnPS₄ wurden die Integrationen im Impulsraum nach dem Tetraederverfahren [22] mit 134 k-Punkten in der irreduziblen Einheit der Brillouin-Zone

durchgeführt. Als Basissätze wurden verwendet: Li 2s/2p/3d; Zn 4s/4p/3d; P und S: 3s/3p/3d. Die 2p/3d-Orbitale von Li, sowie 3d von P und S wurden "heruntergefaltet" [23]. Die ASA-Radien der Atome ebenso die Positionen und Radien der Leerkugeln wurden automatisch nach einem Verfahren von *Krier* [24] bestimmt. Zur Untersuchung der Bindungsverhältnisse wurde ein zweidimensionales Raster der Elektronenlokalisierungsfunktion ELF berechnet [25]. Die ELF nimmt in den Bereichen, wo Elektronenpaare vorliegen, große Werte an ($\geq 0,8$), so daß diese Regionen entweder kovalenten Bindungen oder freien Elektronenpaaren zuzuordnen sind [26].Bei den anderen Verbindungen wurde analog verfahren, dabei wurden bei BaP₄Te₂ 1138 irreduzible k-Punkte verwendet. Die Basissätze für Ba sind 6s/5d/4f, für P 3s/3p und 5s/5p für die Te-Atome. Berechnungen an AuPS₄ wurden mit 2920 k-Punkten und den Basissätzen Au: 6s/6p/5d sowie 3s/3p für P und S durchgeführt.

3 Hexachalcogeno-Hypodiphosphate

3.1 Vorbemerkungen

In der Literatur sind zahlreiche Hexathio- sowie Hexaseleno-Hypodiphosphate beschrieben worden [27]. Einen Überblick liefern die Arbeiten von *Hahn* und Mitarbeitern [4, 28]. Der charakteristische Strukturbaustein ist das $(P_2X_4)^{4-}$ -Anion (*X*=S, Se), das eine Ethan-analoge Konformation aufweist. Der Ladungsausgleich erfolgt in der Mehrzahl der Verbindungen durch zweiwertige Kationen, aber auch nieder- oder höherwertige Kationen, wie z. B. in Li₄P₂S₆ [29], Cr₄(P₂S₆)₃ [30] oder SnP₂S₆ [31] sind bekannt. Von den Erdalkalimetall-Verbindungen wurden bisher erst Ca₂P₂S₆, Sr₂P₂S₆ [32] sowie Eu₂P₂S₆ und Ba₂P₂S₆ [6] auf der Basis von Einkristalldaten strukturell charakterisiert. Von den Mg-Verbindungen [4] sowie von Eu₂P₂Se₆ [33] sind lediglich die aus Pulveruntersuchungen ermittelten Gitterparameter bekannt.

Mit schwingungsspektroskopischen Methoden konnten Pätzmann und Brockner die Existenz von $Ca_2P_2Se_6$ und $Ba_2P_2Se_6$ nachweisen [34]. Hinweise auf einen neuen, unbekannten Strukturtyp für Ca₂P₂Se₆ gaben Francisco und Eckert, die aus einem Pulverdiffraktogramm orthorhombische Symmetrie und Gitterkonstanten abgeleitet haben [3]. Bisher unbekannt war die Existenz von Zn₂P₂Se₆, obwohl Versuche zur Synthese von Francisco und Eckert unternommen wurden. Die Mg-Verbindungen sind nicht isotyp zu Erdalkalimetall-Verbindungen, den restlichen sondern gehören nach den beurteilt strukturell in die Reihe Gitterkonstanten der Nebengruppenmetall-Hexachalcogeno-Hypodiphosphate. Eine weitere Möglichkeit für den Ladungsausgleich der (P₂X₄)⁴⁻-Anionen bieten quaternäre Verbindungen mit ein- und zweiwertigen Kationen, u. a. $K_2FeP_2S_6$ [35] und $Ag_2MnP_2S_6$ [36].

3.2 Die Hexaseleno-Hypodiphosphate der Erdalkalimetalle und des Europiums

3.2.1 Darstellung und Strukturbeschreibung

Zur Darstellung der Hypodiphosphate wurden die der Formel entsprechenden Elementgemenge in evakuierten Quarzglasampullen mit 20°/h auf 750°C erhitzt, für 60 h bei dieser Temperatur belassen und anschließend mit 10 - 15°/h im Ofen abgekühlt. Auf diese Weise konnten grobkristalline Pulver mit größeren Kristallkonglomeraten an den Glaswänden erhalten werden. Für die Gewinnung besserer Einkristalle wurden ausgehend von der Beobachtung, dass sich die Produkte über die gesamte Ampullenlänge erstreckten, die Elementgemenge bzw. die Produktpulver mit wenig Iod erhitzt. Bei Eu₂P₂Se₆ führte dieses Verfahren zu deutlich größeren Kristallen. Bei Ba₂P₂Se₆ konnten geeignete Kristalle durch Umsetzen des Elementgemenges in einer KCl-Schmelze (10 h, 700° C) gezüchtet werden. Die Erdalkalimetall-Verbindungen sind farblos transparent, während Eu₂P₂Se₆ eine rötliche Färbung zeigt. Alle Seleno-Hypodiphosphate können kurzzeitig (mehrere Stunden) an der Luft bearbeitet werden, zerfallen aber nach einigen Tagen; nur die Eu-Verbindung ist deutlich länger stabil.

Sämtliche Hypodiphosphate ergaben auf den Diffraktometern eine monokline Elementarzelle mit vergleichbarer Metrik. Aus den Auslöschungsbedingungen - h0l nur vorhanden mit h+l = 2n und 0k0 mit k = 2n - resultierte das Beugungssymbol 2/mP-2₁/n-. Damit ist nur die Raumgruppe P2₁/n möglich und legt somit eine Isotypie mit der Hochtemperaturphase von Sn₂P₂S₆ nahe. Dieser Befund gilt auch für Ca₂P₂Se₆, für das *Francisco* und *Eckert* orthorhombische Symmetrie mit a = 5.73(1) Å, b = 9.86(1) Å und c = 15.78(1) Å ermittelt haben. Die Ergebnisse der Strukturrechnungen sind in den Tabellen 3.2.1.1 - 3 aufgeführt.

Empirische Formel:	$Ca_2P_2Se_6$	$Sr_2P_2Se_6$	$Eu_2P_2Se_6$	$Ba_2P_2Se_6$
Meßgerät:	AED	P3	IPDS	AED
Raumgruppe:	P2 ₁ /n (14)	P2 ₁ /n (14)	P2 ₁ /n (14)	P2 ₁ /n (14)
Gitterkonstanten [Å]: a:	9,664(2)	9,844(2)	9,779(2)	10,355(2)
b:	7,519(2)	7,788(2)	7,793(2)	7,862(2)
c:	6,859(1)	6,963(1)	6,957(1)	7,046(1)
Winkel β [°]: Zellvolumen [Å ³]:	92,02(3) 498,1(2)	91,50(3) 533,7(2)	91,29(3) 530,0(2)	90,83(3) 573,6(2)
Formeleinheiten/Zelle	2	2	2	2
Dichte (theoretisch) $[g \times cm^{-3}]$:	4,106	4,425	5,261	4,692
Meßbereich:	$6^{\circ} \leq 2\theta \leq$	$6^{\circ} \le 2\theta \le 60^{\circ}$	$6^\circ \le 2\theta \le 60^\circ$	$6^\circ \le 2\theta \le 60^\circ$
hkl-Bereich:	$0 \le h \le 13$	$-13 \le h \le 13$	$-13 \le h \le 13$	$0 \le h \le 14$
	$-10 \le k \le 0$	$-10 \le k \le 10$	$-11 \le k \le 11$	$-11 \le k \le 0$
Anzahl der Reflexe:	- 9≤1≤9	-9≤l≤9	$-9 \le l \le 9$	- 9≤1≤9
gemessen:	7098	5111	5852	3568
R _{int} :	0,235	0,062	0,099	0,127
symmetrieunabhängig:	1575	1565	1566	1666
$I \ge 2\sigma$ (I):	869	1252	925	1429
Absorptionskorrektur:	Ψ-scan	Ψ-scan	numerisch	Ψ-scan
Absorptionskoeffizient μ [mm ⁻¹]:	23,31	30,69	32,56	26,08
T _{min} :	0,700	0,668	0,092	0,136
T _{max} :	0,999	0,979	0,237	0,996
R ₁ :	0,056	0,044	0,047	0,031
$w R_2$ (alle Reflexe):	0.156	0,102	0,098	0,087

Tabelle 3.2.1.1: Strukturdaten von Ca₂P₂Se₆, Sr₂P₂Se₆, Eu₂P₂Se₆ und Ba₂P₂Se₆

Tabelle 3.2.1.2: Atomkoordinaten und äquivalente Auslenkungsparameter $[pm^2]$ von $M_2P_2Se_6$ mit M = Ca, Sr, Eu, Ba

		$Ca_2P_2Se_6$	$Sr_2P_2Se_6$	$Eu_2P_2Se_6$	Ba ₂ P ₂ Se ₆
М	x	0,2470(3)	0,24954(6)	0,24961(7)	0,25039(3)
	у	0,3877(4)	0,39362(8)	0,39162(9)	0,40940(5)
	Z	0,9613(4)	0,9613(1)	0,9605(1)	0,96053(5)
	U _{eq}	183(6)	108(2)	131(2)	161(2)
Р	x	0,0636(3)	0,0631(2)	0,0634(3)	0,0596(1)
	у	0,3930(5)	0,3941(2)	0,3944(5)	0,3887(2)
	Z	0,4359(5)	0,4426(2)	0,4401(5)	0,4557(2)
	U _{eq}	106(7)	53(3)	117(6)	109(3)
Se1	x	0,2643(1)	0,26443(7)	0,2664(1)	0,25662(5)
	у	0,5117(2)	0,50111(9)	0,5035(2)	0,48239(9)
	Z	0,3791(2)	0,4008(1)	0,3975(2)	0,43338(9)
	U _{eq}	146(2)	108(2)	129(3)	170(2)
Se2	x	0,9505(1)	0,96014(7)	0,9585(1)	0,97408(5)
	у	0,2974(2)	0,30047(8)	0,3007(2)	0,29382(8)
	Z	0,1744(2)	0,18023(9)	0,1765(2)	0,19055(8)
	U _{eq}	142(4)	86(2)	126(3)	145(2)
Se3	x	0,0627(1)	0,05321(7)	0,0536(1)	0,03643(6)
	у	0,1893(2)	0,19769(8)	0,1957(2)	0,20317(8)
	Z	0,6624(2)	0,66495(9)	0,6640(2)	0,68305(8)
	U _{eq}	136(4)	93(2)	125(3)	157(2)

Besetzte Punktlage: 4e (x, y, z)

	e	0 1 1	5 3	•
	$Ca_2P_2Se_6$	$Sr_2P_2Se_6$	$Eu_2P_2Se_6$	$Ba_2P_2Se_6$
<i>M</i> - Sel	3,172(1)	3,172(1)	3,164(2)	3,381(1)
	3,035(3)	3,208(1)	3,187(2)	3,440(1)
				3,760(1)
-Se2	3,154(3)	3,260(1)	3,241(2)	3,415(1)
	3,161(4)	3,287(1)	3,273(2)	3,431(1)
	3,332(3)	3,346(1)	3,325(2)	3,451(1)
-Se3	3,057(3)	3,180(1)	3,145(2)	3,352(2)
	3,058(§)	3,200(1)	3,185(2)	3,361(1)
	3,354(3)	3,351(1)	3,334(2)	3,447(1)
P - Sel	2,182(4)	2,177(2)	2,187(4)	2,177(2)
-Se2	2,189(4)	2,191(2)	2,205(3)	2,187(2)
-Se3	2,181(4)	2,180(2)	2,200(4)	2,182(2)
-P	2,226(7)	2,226(3)	2,232(7)	2,236(3)
	A	usgewählte Wi	nkel	
Se1-P-P	106,3(2)	106,4(1)	106,1(2)	106,1(1)
Se2-P-P	107,1(2)	107,2(1)	107,6(2)	106,7(1)
Se3-P-P	102,1(2)	103,3(1)	102,8(2)	104,6(1)
Se1-P-Se2	114,2(2)	114,8(1)	115,0(2)	115,0(1)
Se1-P-Se3	116,1(2)	114,9(1)	115,1(1)	113,1(1)
Se2-P-Se3	109,8(2)	109,3(1)	109,2(2)	110,6(1)

Tabelle 3.2.1.3: Bindungslängen [Å] und Winkel [°] von $M_2P_2Se_6$ mit M = Ca, Sr, Eu, Ba

Zentrales Motiv in der Kristallstruktur der vier Hexaseleno-Hypodiphosphate sind isolierte $(Se_3P-PSe_3)^{4-}$ -Anionen mit einer Ethan-analogen gestaffelten Konformation, deren Torsionswinkel Se1-P-P-Se1 im Rahmen der Genauigkeit nicht von 180° abweichen (Abb.3.2.1.1). Der P-P- Abstand liegt im Mittel bei 2,24 Å und damit im Bereich einer P-P- Einfachbindung (2,20 Å [37]). Dagegen sind die P-Se-Bindungslängen (2,18 Å - 2,24 Å) signifikant kürzer als die Summe kovalenter Einfachbindungsradien von 2,27 Å, so daß in jedem Fall ein deutlicher P-Se-Doppelbindungsanteil zu diskutieren ist. Die Se-P-Se-Bindungswinkel, die bei den untersuchten Verbindungen im Mittel im Bereich von 113° liegen, sind merklich größer als die Se-P-P-Winkel (im Mittel 105° - 106°), was wohl auf sterische Wechselwirkungen der großen Se-Atome untereinander zurückzuführen ist. Dazu paßt, daß die kürzesten Se-Se-Abstände stets zwischen den Atomen gefunden werden, die das gleiche P-Atom koordinieren.

Abbildung 3.2.1.1: Hexaseleno-Hypodiphosphat-Anion (Bindungslängen für Ba₂P₂Se₆ in Å)

Die Bindungslängen und -winkel sind sehr gut mit denen anderer Chalcogeno-Hypodiphosphate zu vergleichen und stimmen auch mit denen quaternärer Verbindungen wie K₂MnP₂S₆ [38], KLaP₂S₆ [39], K₂Au₂P₂Se₆ [40] oder K₂HgP₂Se₆ [41] hervorragend überein. Dies ist ein Indiz dafür, daß die Kationen nahezu ohne Einfluß auf die Metrik der kovalenten Bindungen innerhalb der starren (P₂Se₆)⁴⁻-Anionen bleiben. Diese sind über Se-M-Se-Kontakte zu einer Raumnetzstruktur verknüpft (s. Abb. 3.2.1.2). Dabei wird M in der Mehrzahl der Fälle in Form eines zweifach seitenüberkappten trigonalen Prismas von acht Se-Atomen koordiniert, die zu vier verschiedenen Anionen gehören. Die M-Se-Abstände sind ausnahmslos größer als die jeweilige Ionenradiensumme und liegen bei M = Ca, Sr, Eu im Mittel zwischen 4,5% (Sr₂P₂Se₆) und 6,1% (Ca₂P₂Se₆) über den betreffenden Werten. Ein neuntes Se-Atom über der dritten Vierecksfläche des trigonalen Prismas ist dagegen mit mindestens 4,0 Å so weit vom jeweiligen Zentralatom entfernt, daß kaum Wechselwirkungen anzunehmen sind. Das ist bei Ba₂P₂S₆ [42] und Ba₂P₂Se₆ anders (s. Tab.3.2.1.3), so daß sich für das größere Bariumion in beiden Fällen eine Koordinationszahl von 8+1 ergibt (s. Abb. 3.2.1.3). Die Bindungslängen dieser neun Liganden übersteigen im Mittel die Ionenradiensumme [37] nur um 4,1% (X = S) bzw. 3,6% (X = Se).

Abbildung 3.2.1.2 Kristallstruktur von $M_2P_2Se_6$ (M = Ca, Sr, Ba, Eu) M: (groß, dunkel); P: (klein, hell); Se: (klein, dunkel)

Abbildung 3.2.1.3: Ba₂P₂Se₆: Koordination von Barium (Atombezeichnung s. Abb. 3.2.1.2)

Die Hochtemperaturform von Sn₂P₂S₆ wandelt sich beim Abkühlen bei 60°C reversibel und nach zweiter Ordnung in eine ferroelektrische Phase um, die in der Raumgruppe Pn zu beschreiben ist [43]. Der Phasenübergang, der sich auch thermoanalytisch bestimmen läßt, wird im wesentlichen durch eine Verschiebung der Sn-Atome verursacht, während die Positionen der (P2S6)4- -Anionen unverändert bleiben. Um zu überprüfen, ob auch die Erdalkalimetall-Chalcogeno-Hypodiphosphate eine solche Phasenumwandlung zeigen, wurden Tieftemperaturmessungen bis zur Temperatur des flüssigen Stickstoffs auf einem IPDS-Diffraktometer durchgeführt. Dabei ließ sich kein Verlust der 21-Schraubenachse feststellen, der sich im Auftreten von zumindest sehr schwachen 0k0-Reflexen mit $k \neq 2n$ bemerkbar machen müssen; die mit diesen Datensätzen hätte berechneten Strukturparameter zeigen keine signifikanten Veränderungen gegenüber den Raumtemperaturdaten. Sowohl die Ergebnisse magnetischer Messungen als auch der Mössbauer-Spektroskopie [42] und DSC-Messungen bei Eu₂P₂S₆ führten nicht zu einem anderen Befund.

3.2.2 Magnetismus und Mössbauer-Spektroskopie

Um die Valenz des Europiums zu bestimmen, wurden Suszeptibilitätsmessungen an Eu₂P₂S₆ durchgeführt und Mössbauer-Spektren (Universität Münster) aufgenommen. Die magnetische Suszeptibilität von Eu₂P₂S₆ wurde mit einem MPMS SQUID-Magnetometer (Quantum Design) von 2 bis 300 K mit einer magnetischen Flussdichte von 1 T gemessen. Die Probe wurde in ein Quarzglasröhrchen gefüllt, am Probenhalter befestigt und zunächst ohne externes Magnetfeld auf 2 K gekühlt. Anschließend erfolgte die Messung mit steigender Temperatur bei eingeschaltetem Feld. Für die Eu-Mössbauer Spektroskopie wurde der 21,53 keV Übergang von ¹⁵¹Eu mit einer Aktivität von 130 MBq (2% der Gesamtaktivität einer ¹⁵¹Sm:EuF₃-Quelle) genutzt. Die Messung wurde in einem Helium-Badkryostaten bei 77 K durchgeführt. Die Quelle wurde bei Raumtemperatur belassen. Die Probe wurde in eine PVC-Dose mit einer Belegung von 10 mg Eu/cm² eingeschlossen.

In Abbildung 3.2.2.1 ist die Temperaturabhängigkeit der magnetischen Suszeptibilität von $Eu_2P_2S_6$ dargestellt. Die Verbindung zeigt über den gesamten Temperaturbereich Curie-Weiss-Verhalten. Eine leichte konvexe Krümmung weist auf einen kleinen, temperaturunabhängigen Beitrag zur Gesamtsuszeptibilität hin. Für den Temperaturbereich

20-300 K konnten die experimentellen Daten mit einem modifizierten Curie-Weiss-Term $\chi = \chi_0 + C/(T - \Theta)$ angepasst werden: $\chi_0 = 0,0013(2)$ emu/mol, $\Theta = -0,3(1)$ K und $\mu_{exp} = 7,43(2) \mu_B/Eu$. Das experimentelle Moment ist etwas niedriger als der Wert von 7,94 μ_B für das freie Eu²⁺-Ion [44]. Ein ähnliches Verhalten wurde auch bei einer Reihe anderer Verbindungen festgestellt [45]. Bis zu 2 K wurde kein Hinweis auf magnetische Ordnung erhalten, was in Einklang mit dem äußerst niedrigen Wert der Weiss-Konstante Ein experimentelles und simuliertes (least squares steht. Anpassung mit Transmissionsintegral) ¹⁵¹Eu Mössbauer-Spektrum bei 77 K wird in Abbildung 3.2.2.2 wiedergegeben. Das Spektrum zeigt nur ein Signal bei einer Isomerieverschiebung von -12,6(1) mm/s und einer Linienbreite von 3,7(1) mm/s. Bei Raumtemperatur werden ähnliche Werte gefunden. In Einklang mit den magnetischen Daten kann somit auf stabiles zweiwertiges Europium in Eu₂P₂S₆ geschlossen werden. Die sehr negative Isomerieverschiebung reflektiert den hohen ionischen Bindungscharakter. Ähnlich negative Isomerieverschiebungen treten auch bei EuI₂ oder Eu(OH)₂ [46] auf. Die experimentelle Linienbreite ist etwas höher als der üblicherweise beobachtete Wert von ca. 2,3 mm/s [45]. Da aus den röntgenographischen Strukturverfeinerungen bei Raumtemperatur und bei tiefen Temperaturen jeweils nur eine kristallographische Eu-Position resultiert und die Mössbauer-spektroskopisch untersuchte Probe im Röntgen-Pulverdiagramm keine Fremdreflexe zeigte, kann zur Zeit kein plausibler Grund für die Linienverbreiterung angegeben werden.

Abbildung 3.2.2.1: Temperaturabhängigkeit der inversen magnetischen Suszeptibilität von Eu₂P₂S₆ bei einer äußeren Flußdichte von 1 T. Das Verhalten bei tiefen Temperaturen ist vergrößert herausgezeichnet.

Abbildung 3.2.2.2: Experimentelles und simuliertes 151 Eu Mössbauer-Spektrum von Eu $_2P_2S_6$ bei 77 K

3.3 $Mg_2P_2S_6$, $Mg_2P_2Se_6$ und $Zn_2P_2Se_6$

3.3.1 Synthese

Für die Darstellung von $Mg_2P_2S_6$ und $Mg_2P_2Se_6$ wurden der Formel entsprechende Elementgemenge in evakuierten Quarzglasampullen mit 50°/h auf 700°C erhitzt, für 50 h bei dieser Temperatur belassen und anschließend mit 10°/h auf Raumtemperatur abgekühlt. Die beiden Zielverbindungen fallen in Form farbloser transparenter Kristalle an und lassen sich röntgenrein erhalten. Ebenfalls durch Erhitzen des betreffenden Elementgemenges mit einigen I₂-Kristallen auf 300°C (100 h) wurden gelbe, transparente Zn₂P₂Se₆-Kristalle in Form dünner Plättchen erhalten. Hierbei gelang es nicht, eine röntgenreine Substanz zu synthetisieren, als Nebenprodukte wurden ZnSe und P₄Se₄ im Pulverdiagramm identifiziert. Die Reaktionstemperatur mußte im Vergleich zu vielen anderen Hexachalcogeno-Hypodiphosphaten relativ niedrig gehalten werden, da höhere Temperaturen die Bildung der Nebenprodukte begünstigt.

Die Qualität (Größe) der Mg₂P₂Se₆-Kristalle konnte durch Tempern (700°C; 15 h) der Verbindung in einem Überschuß von RbI und anschließendes langsames Abkühlen (5°/h) deutlich verbessert werden. Alle drei Verbindungen sind feuchtigkeitsempfindlich; Mg₂P₂S₆ zersetzt sich innerhalb von Minuten, Zn₂P₂Se₆ erst nach wenigen Tagen.

3.3.2 $Mg_2P_2S_6$

Die Verbindung Mg₂P₂S₆ wurde von *W. Klingen* et al. [4] auf Grund der ermittelten Gitterparameter dem Fe₂P₂S₆-Typ - eine auf den CdCl₂-Typ zurückzuführende Schichtstruktur monokliner Symmetrie - zugeordnet [28]. Da die Autoren bei einigen isotypen Verbindungen u.a. zusätzliche diffuse Reflexe beobachtet haben, die auf eindimensionale Fehlordnung schließen lassen, wurde ein plättchenförmiger Mg₂P₂S₆-Einkristall einer gründlichen röntgenographischen Untersuchung unterzogen. Die Messung auf einem IPDS lieferte eine monokline Elementarzelle mit a = 6,085(1) Å, b = 10,560(2) Å, c = 6,835(1) Å und β = 106,97(3)° mit 2631 Reflexen, von denen nach einer numerischen Absorptionskorrektur und der Symmetriereduktion 366 Reflexe mit I ≥ 2 σ (I) zur Strukturbestimmung herangezogen wurden. Mit der Auslöschungsbedingung hkl: h+k = 2n ergab sich das Auslöschungssymbol 2/mC1-1, das die Raumgruppen C2, Cm und C2/m zuläßt. Die Parameterverfeinerung wurde mit einer Fe₂P₂S₆-analogen Aufstellung (Raumgruppe C2/m) begonnen. Sie endete bei einem R1-Wert von 6,5% (wR₂: 15,2%) und einer Differenzfourier-Synthese, die eine nicht zu vernachlässigende Restelektronendichte von 4,26 e/Å³ in 0, 0, 0, sowie 2,86 e/Å³ in 0,05, 0,33, 0,17 aufwies. Analog zu dem von G. Ouvrard et al. [47] bei der Strukturbestimmung von Ni₂P₂S₆ erzielten Ergebnis wurde dies als Folge einer Fehlordnung interpretiert: Ein geringer Mg-Anteil befindet sich auf den P-Plätzen und nimmt dabei - da die P-Atome zu P₂-Hanteln verknüpft sind - mit 0, 0, 0 jeweils den Schwerpunkt einer solchen Hantel ein. Umgekehrt besetzen P2-Hanteln mit ihrem Schwerpunkt die frei gewordenen Mg-Positionen. Mit einer entsprechend leicht modifizierten Atomverteilung konvergierte die Rechnung bei deutlich besseren R-Werten (R1: 0,036; wR2:0,085) und wurde mit den in den Tabellen 3.3.2.1 - 3 aufgeführten Ergebnissen abgeschlossen, wobei die Auslenkungsparameter der auf den "Fremdlagen" sitzenden Atome (Mg^{*}, P^{*}) isotrop verfeinert wurden. Die Besetzungsdichte aller Mg- und P-Lagen wurde ebenfalls verfeinert, was allerdings zu einer geringfügigen Abweichung von der idealen Zusammensetzung führte (Mg₁₉₇P₂₀₆S₆). Eine abschließend gerechnete Differenzfourier-Synthese zeigte keine signifikanten Maxima mehr. Bei den in Tabelle 3.3.2.3 aufgeführten Bindungslängen wurde die Fehlordnung nicht berücksichtigt.

Raumgruppe :	C2/m (Nr. 12)
Meßgerät:	IPDS
Gitterkonstanten ^{a)} [Å]:	a = 6,085(1)
	b = 10,560(2)
	c = 6,835(1)
Winkel β [°]:	106,97(3)
Formeleinheiten/Zelle	Z = 2
Zellvolumen [Å ³]:	420,1(1)
Dichte (röntgenographisch) $[g \times cm^{-3}]$:	ρ = 2,395
Meßbereich :	$5^\circ \le 2\theta \le 61^\circ$
	$-8 \le h \le 8$
	$-14 \le k \le 14$
	$-9 \le 1 \le 9$
Absorptionskorrektur	numerisch
Absorptionskoeffizient μ [mm ⁻¹]:	2,07
Anzahl der Reflexe	
gemessen:	2631
symmetrieunabhängig:	659
mit $I \ge 2\sigma$ (I):	366
R _{int} :	0,075
R ₁ :	0,036
wR ₂ :	0,085

Tabelle 3.3.2.1: Strukturdaten der Verbindung $Mg_2P_2S_6$

^{a)} Gitterparameter nach [4]: a = 6,07 Å, b = 10,53 Å, c = 6,80 Å, β = 107,1°

62 2	0		
3,73(3) Mg auf 4g (0, y, 0)	y = 0,3330(2)	$U_{11} = 146(9)$	$U_{12} = U_{23} = 0$
		$U_{22} = 144(9)$	$U_{13} = 77(7)$
		$U_{33} = 246(11)$	
0,20(2) Mg [*] auf 2a (0, 0, 0)		U _{iso} = 240(90)	
3,70(3) P auf 4i (x, 0, z)	x = 0,0555(2)	U ₁₁ = 120(6)	$U_{12} = U_{23} = 0$
	z = 0,1676(2)	$U_{22} = 128(6)$	$U_{13} = 77(5)$
		U ₃₃ = 229(8)	
0,41(4) P [*] auf 8j (x, y, z)	x = 0,058(2)	U _{iso} = 100(50)	
	y = 0,336(1)		
	z = 0,172(2)		
4 S1 auf 4i (x, 0, z)	x = 0,7578(2)	U ₁₁ = 133(5)	$U_{12} = U_{23} = 0$
	z = 0,2482(2)	U ₂₂ = 179(5)	$U_{13} = 81(4)$
		U ₃₃ = 211(7)	
8 S2 auf 8j (x, y, z)	x = 0,2444(1)	U ₁₁ = 154(4)	$U_{12} = -10(3)$
	y = 0,1619(1)	$U_{22} = 146(4)$	$U_{13} = 62(3)$
	z = 0,2497(1)	U ₃₃ = 211(5)	$U_{23} = -16(3)$

Tabelle 3.3.2.2: Atomparameter und anisotrope Auslenkungsparameter $[pm^2]$ von $Mg_2P_2S_6$
Mg - S	l 2×2,626(2)	P - S1	1 × 2,042(2)
- S2	2 2×2,624(1)	- S2	2×2,045(1)
- S2	2 2×2,628(1)	- P	1 × 2,191(3)
S1-P-P	104,78(9)		
S2-P-P	2×105,31(6)		
S1-P-S2	113,44(5)		
S2-P-S2	113,43(8)		

Tabelle 3.3.2.3: Atomabstände [Å] und Winkel [°] von Mg₂P₂S₆

Der Aufbau von $Mg_2P_2S_6$ (s. Abb. 3.3.2.1) entspricht im wesentlichen einer CdCl₂analogen Schichtstruktur, bei der die Schwefel-Atome als dichteste Kugelpackung angeordnet sind. Die etwas verzerrten Oktaederlücken jeder zweiten Schwefelschicht werden von Mg^{2+} -Ionen und P₂-Hanteln - im großen und ganzen geordnet - besetzt. Auf diese Weise wird das für die Hypodiphosphate charakteristische Strukturmerkmal gebildet: $(S_3P-PS_3)^{4-}$ -Anionen, die eine zum Ethan analoge gestaffelte Konformation aufweisen (Diederwinkel S-P-P-S: 60°). Der P-P-Abstand kommt mit 2,19 Å einer P-P-Einfachbindung (2,20 Å [37]) sehr nahe, während die P-S-Bindungslängen mit 2,04 Å deutlich kürzer sind als die Summe kovalenter Einfachbindungsradien von 2,14 Å. Daraus folgt, daß hier - wie bei solchen Hypodiphosphaten allgemein diskutiert - ein Doppelbindungsanteil vorliegt. Auch hinsichtlich der übrigen Abstände und der Bindungswinkel besteht eine gute Übereinstimmung mit den Werten der bisher untersuchten Hexathio-Hypodiphosphate. Die (P₂S₆)⁴⁻-Anionen sind untereinander über S-Mg-S-Kontakte verknüpft, wobei die S-Atome dreier P₂S₆-Gruppen die verzerrt oktaedrische Umgebung des Magnesiums aufbauen.

Abbildung 3.3.2.1: Elementarzelle von Mg₂P₂S₆: MgS₆-Oktaeder grau hinterlegt; Mg: (groß, dunkel),P: (klein, dunkel), S: (klein, hell).

3.3.3 Mg₂P₂Se₆ und Zn₂P₂Se₆

 $Mg_2P_2Se_6$ wurde erstmals von *W. Klingen* et al. [4] durch Erhitzen eines Elementgemenges auf 480° - 690°C für drei Monate und anschließende Sublimation (620°C) in Form gelber transparenter Kristalle mit rhomboedrischer Symmetrie dargestellt. Von der Verbindung $Zn_2P_2Se_6$ sind bisher keine kristallographischen Daten bekannt, auch führten Versuche zur Synthese, die von *R.H.P. Francisco* u. *H. Eckert* [3] unternommen wurden, nur zu binären Zn/Se- und P/Se-Phasen. Von beiden Verbindungen wurden mit geeigneten Kristallen Untersuchungen auf einem AED-Diffraktometer bzw. P3-Vierkreis-Diffraktometer durchgeführt. Für $Mg_2P_2Se_6$ ergab sich die von *Klingen* postulierte rhomboedrische Symmetrie mit a = 6,404(1) Å und c = 20.194(4) Å in hexagonaler Aufstellung.

Der Zn₂P₂Se₆-Kristall lieferte ebenfalls eine rhomboedrische Zellmetrik (hex. Aufstellung: a = 6,290(3) Å, c = 19,93(2) Å). Eine Untersuchung der Zusammensetzung durch eine EDAX-Analyse bestätigte die Stöchiometrie, was auf eine Isotypie mit Mg₂P₂Se₆ hindeutete.

Nach den Erkenntnissen von Klingen soll Mg₂P₂Se₆ im Fe₂P₂Se₆-Typ kristallisieren, deshalb wurden die Rechnungen bei beiden Verbindungen mit einer entsprechenden Atomverteilung begonnen (Raumgruppe R3). Das Ergebnis war angesichts hoher Standardabweichungen jedoch unbefriedigend. Eine nähere Betrachtung der Lageparameter ergab, daß die Struktur zentrosymmetrisch und demzufolge in der Raumgruppe $R\overline{3}$ zu beschreiben ist. Zu einem gleichlautenden Ergebnis kamen A. Wiedenmann et al. [48], die Fe₂P₂Se₆ und Mn₂P₂Se₆ mit Hilfe der Neutronenbeugung untersucht haben. Die kristallographischen Daten der beiden isotypen Verbindungen sind in den Tabellen 3.3.3.1 - 3 zusammengefaßt. Während sich bei der Mg-Verbindung kein Hinweis auf eine zu Mg₂P₂S₆ analoge Fehlordnung bei der Besetzung der von Se-Atomen gebildeten Oktaederlücken ergab, zeigte die Differenzfourier-Synthese von Zn₂P₂Se₆ insbesondere im Schwerpunkt der P₂-Hanteln eine Restelektronendichte von 6,95 $e/Å^3$, so daß wie bei Mg₂P₂S₆ verfahren wurde. Dabei konnte nur die Verteilung der Zn-Atome ermittelt werden. Die damit zwangsläufig verbundene Fehlordnung der P-Atome ließ sich dagegen mit dem vorhandenen Datenmaterial nicht verifizieren und wurde deshalb in den abschließenden Rechnungen nicht berücksichtigt. Es bleibt aber festzuhalten, daß in Zn₂P₂Se₆ bei der Besetzung der Oktaederlücken von einer geringen Fehlordnung auszugehen ist.

	$Mg_2P_2Se_6$	Zn ₂ P ₂ Se ₆
Raumgruppe :	$R\overline{3}$ (1	Nr. 148)
Meßgerät:	AED	P3
Gitterkonstanten ^{b)} [Å]:	a = 6,404(1)	a = 6,290(3)
	c = 20,194(4)	c = 19,93(2)
Formeleinheiten/Zelle	Z = 3	Z = 3
Zellvolumen [Å ³]:	717,2(2)	682,8(9)
Dichte (röntgenographisch) [g×cm ⁻³]:	ρ = 4,059	$\rho = 4,862$
Meßbereich :	$6^\circ \le 2\theta \le 60^\circ$	$6^\circ \le 2\theta \le 65^\circ$
	$-8 \le h \le 8$	$-8 \le h \le 8$
	$-8 \le k \le 8$	$-8 \le k \le 8$
Absorptionskorrektur	$-28 \le l \le 28$ \P-Scan	-27 ≤ l ≤ 27 Ψ-Scan
Absorptionskoeffizient µ [mm ⁻¹]:	23,34	28,61
T _{min} :	0,070	0,118
T _{max} : Anzahl der Reflexe	0,997	0,999
gemessen:	2796	2516
symmetrieunabhängig:	466	564
mit $I \ge 2\sigma$ (I):	302	253
R _{int} :	0,180	0,154
R ₁ :	0,044	0,079
wR ₂ :	0,112	0,198

Tabelle 3.3.3.1: Strukturdaten^{a)} der Verbindungen Mg₂P₂Se₆ und Zn₂P₂Se₆

a) hexagonale Aufstellung; b) Gitterparameter für $Mg_2P_2Se_6$ nach [4]: a = 6,39 Å, c = 20,12 Å

-			
6 Mg auf 6c (0, 0, z)	z = 0,1679(2)	$U_{11} = U_{22} = 126(10)$	$U_{23} = U_{13} = 0$
		U ₃₃ = 200(20)	$U_{12} = \frac{1}{2} U_{11}$
6 P auf 6c (0, 0, z)	z = 0,4452(2)	$U_{11} = U_{22} = 80(7)$	$U_{23} = U_{13} = 0$
		U ₃₃ = 116(14)	$U_{12} = \frac{1}{2} U_{11}$
18 Se auf 18f (x, y, z)	x = 0,3293(1)	U ₁₁ = 139(4)	U ₂₃ = 14(2)
	y = -0,00624(9)	U ₂₂ = 103(3)	$U_{13} = 0(2)$
	z = 0,08174(3)	U ₃₃ = 135(4)	U ₁₂ =70(2)

Tabelle 3.3.3.2: Atomparameter und anisotrope Auslenkungsparameter $[pm^2]$ von $Mg_2P_2Se_6$

Tabelle 3.3.3.3: Atomparameter und anisotrope Auslenkungsparameter $[pm^2]$ von $Zn_2P_2Se_6$

5,6 Zn auf 6c (0, 0, z)	z = 0,1676(2)	$U_{11} = U_{22} = 268(11)$	$U_{23} = U_{13} = 0$
		$U_{33} = 410(30)$	$U_{12} = \frac{1}{2} U_{11}$
0,40 Zn [*] auf 3b (0, 0, $\frac{1}{2}$)		$U_{iso} = 160(64)$	
6 P auf 6c (0, 0, z)	z = 0,4447(4)	$U_{11} = U_{22} = 191(18)$	$U_{23} = U_{13} = 0$
		U ₃₃ = 140(40)	$U_{12} = \frac{1}{2} U_{11}$
18 Se auf 18f x, y, z)	x = 0,3310(3)	$U_{11} = 217(7)$	$U_{23} = 25(6)$
	y = 0,0010(2)	U ₂₂ = 182(7)	$U_{13} = 5(6)$
	z = 0,08221(7)	U ₃₃ = 158(7)	$U_{12} = 110(6)$

Mg ₂	P_2Se_6 :		Zn	$_{2}P_{2}Se_{6}$:	
Mg	- Se	3×2,749(2)	Zn	- Se	3 × 2,680(3)
	- Se	3×2,749(3)		- Se	3×2,687(3)
Р	- P	1 × 2,215(6)	Р	- P	1 × 2,20(2)
	- Se	3×2,194(1)		- Se	3 × 2,189(3)

Tabelle 3.3.3.4: Mg₂P₂Se₆ und Zn₂P₂Se₆: Ausgewählte Bindungslängen [Å]

Der Fe₂P₂Se₆-Typ und damit die Kristallstruktur von Mg₂P₂Se₆ und Zn₂P₂Se₆ steht in enger Verwandtschaft zum CdI2-Typ. Demzufolge entspricht der Aufbau der Schichten hinsichtlich der Koordinationsverhältnisse und der Art der Polyederverknüpfung dem von Mg₂P₂S₆ (s. Abb. 3.3.2.1). Ein wesentlicher Unterschied besteht in der Abfolge der Chalcogenschichten, die nun entlang [001] nach dem Motiv der hexagonal dichtesten Kugelpackung angeordnet sind (s. Abb. 3.3.3.1). Bei der Mg-Verbindung entspricht die Mg-Se-Bindungslänge mit 2,75 Å nahezu der Radiensumme von 2,77 Å (Mg: Atomradius (KZ 12); Se: Kovalenzradius) und der P-P-Abstand mit 2,22 Å dem einer Einfachbindung. Dies ist bei Zn₂P₂Se₆ ein wenig anders. Der Zn-Se-Abstand liegt ca. 7 % über der entsprechenden Radiensumme von 2,51 Å, während die P-P-Bindungslänge 2,20 Å beträgt. Dies resultiert vermutlich aus der - verglichen mit Magnesium - geringeren Größe des Zinks, für das angesichts seiner Neigung zu eher kovalenten Bindungen eine Verringerung des Zn-Se-Abstands sicherlich "wünschenswert" wäre. Die damit einhergehende Verkleinerung des Se-Oktaeders würde jedoch eine Stauchung der P2-Hantel oder eine Verkürzung der P-Se-Bindungslänge nach sich ziehen, wobei letztere mit 2,19 Å die Kovalenzradiensumme (2,27 Å) bereits merklich unterschreitet.

Abbildung 3.3.3.1: Struktur von $M_2P_2Se_6$ längs [001], (M = Mg, Zn); MSe_6 -Oktaeder grau hinterlegt, M: (groß, dunkel), P: (klein, dunkel), S: (klein, hell)

$3.4 Ag_2MgP_2S_6$

Bei den Versuchen, durch Umsetzung von Erdalkalimetall-Thiophosphaten mit Ag-Halogeniden neue quaternäre Thiophosphate darzustellen, wurden durch Erhitzen von Mg₂P₂S₆ mit einem Überschuß einer AgCl/AgI-Mischung für 20 h bei 900°C u.a. farblose transparente Kristalle erhalten. Diese unterschieden sich schon durch ihren Habitus und dem Verhalten bezüglich mechanischer Beanspruchung von den Mg₂P₂S₆-Kristallen. Eine Einkristalluntersuchung auf einem IPDS lieferte eine monokline Elementarzelle mit a = 6,36 Å, b = 10,98 Å, c = 13,44 Å und β = 98,43° sowie 5971 Reflexe, von denen nach einer numerischen Absorptionskorrektur und der Symmetriereduktion 589 Reflexe mit I $\geq 2\sigma(I)$ zur Strukturbestimmung herangezogen wurden. Mit den Auslöschungsbedingungen hkl: h+k = 2n und h0l: 1 = 2n ergab sich das Auslöschungssymbol 2/mC1c1, das die Raumgruppen Cc und C2/c zuläßt. Die Strukturlösung gelang in der Raumgruppe C2/c und die Strukturverfeinerung mit anisotropen Auslenkungsparametern konvergierte bei einem R₁-Wert von 6,8% (wR₂: 11,4%). Hierbei mußte die Ag-Position allerdings als Splitlage verfeinert werden, dabei sind die beiden Lagen mit 80% für Ag1 bzw. 20% für Ag2 signifikant unterschiedlich besetzt; ihre Plätze können nur alternativ eingenommen werden, andernfalls ergäben sich unsinnig kurze Ag-Ag-Abstände. Hinweise für eine geordnete Verteilung ergaben sich nicht. Das Ergebnis der Strukturbestimmung zeigt, daß Ag₂MgP₂S₆ isotyp mit Ag₂MnP₂S₆ [49] ist. Für einen besseren Vergleich der beiden Verbindungen wurde die Elementarzelle in die von den Autoren gewählte Zelle (C2/n) transformiert. Das ermöglicht einen direkten Vergleich zum Fe₂P₂S₆-Typ, in dem zahlreiche Hexathio-Hypodiphosphate, u.a. auch Mn₂P₂S₆ [47] und Mg₂P₂S₆, kristallisieren. Die Ergebnisse sind in den Tabellen 3.4.1 - 3 zusammengestellt.

_	
Raumgruppe :	C2/n (Nr. 15)
Meßgerät:	IPDS
Gitterkonstanten [Å]:	a = 6,364(1)
	b = 10,975(2)
	c = 13,999(3)
Winkel β [°]:	108,29(3)
Formeleinheiten/Zelle	Z = 4
Zellvolumen [Å ³]:	928,4(3)
Dichte (röntgenographisch) [g×cm ⁻³]:	$\rho = 3,537$
Meßbereich :	$5^\circ \le 2\theta \le 55^\circ$
	$-8 \le h \le 8$
	$-14 \le k \le 14$
	- 18 ≤ l ≤ 18
Absorptionskorrektur	numerisch
Absorptionskoeffizient μ [mm ⁻¹]:	6,00
Anzahl der Reflexe	
gemessen:	5971
symmetrieunabhängig:	1106
mit I $\geq 2\sigma$ (I):	589
R _{int} :	0,108
R ₁ :	0,068
wR ₂ :	0,114

Tabelle 3.4.1: Strukturdaten der Verbindung $Ag_2MgP_2S_6$

	$Ag_2MgP_2S_6$			
6,4(7) Ag1	x = 0,671(2)	y = 0,412(1)	z = 0,125(3)	$U_{eq} = 760(30)$
1,6(7) Ag2	x = 0,652(5)	y = 0,409(4)	z = 0,098(3)	$U_{eq} = 490(6)$
4 Mg	$X = \frac{1}{4}$	y = 0,5770(5)	Z = 1/4	$U_{eq} = 233(12)$
8 P	x = 0,6968(5)	y = 0,7544(2)	z = 0,6660(2)	$U_{eq} = 176(7)$
8 S1	x = 0,5562(4)	y = 0,5879(3)	z = 0,6202(2)	$U_{eq} = 184(6)$
8 S2	x = 0,4730(5)	y = 0,6089(2)	z = 0,1195(2)	$U_{eq} = 224(8)$
8 S3	x = 0,5287(5)	y = 0,7193(3)	z = 0,3762(2)	$U_{eq} = 201(7)$

Tabelle 3.4.2: Atomparameter und anisotrope Auslenkungsparameter [pm²] von

Tabelle 3.4.3: Ag₂MgP₂S₆: Ausgewählte Atomabstände [Å]

Ag1	- S1	2,474(7)	Mg	- S1	2×2,587(5)
	- S2	2,490(11)		- S2	2×2,665(3)
	- S3	2,465(12)		- S3	2×2,596(5)
	- Agl	3,31(7)			
Ag2	- S1	2,49(3)	Р	- P	2,233(6)
	- S2	2,91(4)		- S1	2,048(4)
	- S2	2,53(4)		- S2	2,029(4)
	- S3	2,46(4)		- S3	2,033(4)

Die Kristallstruktur von $Ag_2MgP_2S_6$ läßt sich von der des $Mg_2P_2S_6$ ableiten, indem unter Wahrung der Elektrovalenz die Hälfte der Mg^{2+} - durch Ag^+ -Ionen ersetzt werden. Diese Substitution macht sich durch eine Vergrößerung des Zellvolumens ($Ag_2MgP_2S_6$: 928,4 Å³; $Mg_2P_2S_6$: 2×420,1 = 840,2 Å³) und eine Verzerrung der Koordinationspolyeder um die verbliebenen Mg-Atome und P₂-Hanteln bemerkbar (s. Abb. 3.4.1). Die Ag^+ -Ionen besetzen aber nicht die Zentren der ursprünglichen MgS₆-Oktaeder, sondern zwei ihrer Dreiecksflächen (Ag1) bzw. sind in Richtung des Tetraederzentrums verschoben (Ag2), das von drei S-Atomen des betreffenden Oktaeders und einem S-Atom der nächsten S-Schicht gebildet wird (s. Abb. 3.4.1.3). Die Bindungslängen zwischen den Ag⁺-Ionen und ihrer drei nächsten S-Nachbarn reichen von 2,46 Å bis 2,53 Å und liegen damit in dem für eine planare Dreierkoordination typischen Bereich (z.B. 2,51 Å bei Ag₃AsS₃ [50]). Nur der Abstand zwischen Ag2 und seinem vierten S-Nachbarn ist mit 2,91 Å erheblich größer und auch merklich länger als im Ag₂MnP₂S₆ (2,75 Å). Durch den Einbau von Silber weitet sich der Abstand zwischen den betroffenen S-Schichten von 3,08 Å auf 3,28 Å auf, während er im van der Waals Gap nahezu unverändert bleibt (~3,45 Å). Damit verbunden ist neben einer stärkeren Verzerrung des MgS₆-Oktaeders eine Dehnung der P-P-Bindung, die von 2,19 Å auf 2,23 Å steigt; außerdem geht die ideal gestaffelte Konformation der (S₃P-PS₃)⁴⁻-Anionen verloren (z.B. Diederwinkel S1-P-P-S3: 77,3°) (s. Abb. 3.4.2).

Abbildung 3.4.1: Elementarzelle von Ag₂MgP₂S₆, Mg: (dunkel, groß), Ag1: (hell, groß), P: (dunkel, klein), S: (hell, klein). Ag2 ist aus Gründen der Übersichtlichkeit nicht eingezeichnet.

Abbildung 3.4.2: Struktur von Ag₂MgP₂S₆ (Atombezeichnung s. Abb. 3.4.1)

Ein interessanter Aspekt der Ag₂MgP₂S₆-Struktur ist die Anordnung der Ag⁺-Ionen, die auch anders aussehen könnte: Denkbar wäre die Besetzung des von Mg frei gemachten Oktaederzentrums durch Ag1 sowie einer Lücke im van der Waals Gap durch Ag2. Das würde zwar die Verzerrung der Struktur verringern, doch vermutlich wird dieser Vorteil durch die offensichtlich bevorzugte Dreierkoordination des Silbers überkompensiert. Die Frage nach möglichen bindenden Ag-Ag-Wechselwirkungen wurde bereits anhand von Ag₂MnP₂S₆ intensiv diskutiert und angesichts der betreffenden Abstände von 3,38 Å und 3,15 Å von den Autoren ausgeschlossen. Gleiches gilt für Ag₂ZnP₂S₆ [51] mit vergleichbarer Struktur, bei der allerdings eine etwas andere Kationenverteilung zu einer Verdopplung von c führt. In beiden Fällen wird die Vermutung geäußert, durch einen Ersatz von Mn bzw. Zn durch kleinere Kationen wie Mg²⁺ und eine damit verbundene Kompression der S-Schichten ließen sich Ag-Ag-Bindungen aufbauen. Der für Ag₂MgP₂S₆ ermittelte kürzeste Ag-Ag-Abstand von 3,31 Å (Ag1) zeigt, daß dies nicht zutrifft. Wie bei der Mn- sind auch bei der Mg-Verbindung die Auslenkungsparameter der Ag^+ -Ionen - insbesondere U_{33} (Ag1: 1850 pm²; Ag2: 800 pm²) - sehr groß. Temperaturabhängige Messungen an Ag₂MnP₂S₆-Einkristallen ergaben, daß die Silberfehlordnung statisch ist [52]. Das Gleiche sollte auch auf Ag₂MgP₂S₆ zutreffen.

Abbildung 3.4.3: Koordination der Ag-Atome (mit Schwingungsellipsoiden) in $Ag_2MgP_2S_6$

3.5 $K_2MgP_2Se_6$

Die Umsetzung von Metall-Chalcogenophosphaten mit Metallhalogeniden stellt eine effektive Methode zur Verbesserung der Kristallqualität (Größe) sowie zur Darstellung ternärer M^1M^2 -Chalcogeno-Thiophosphaten dar. Im Rahmen solcher Versuche wurden farblose Kristalle von K₂MgP₂Se₆ gezüchtet, indem Mg₂P₂Se₆ mit einem KCl-Überschuß 15 h bei 500°C in einer Quarzglasampulle erhitzt wurden. Bei der Einkristalluntersuchung auf einem Vierkreisdiffraktometer wurde eine monoklin-primitive Elementarzelle mit a = 6,546(1) Å, b = 12,724(3) Å, c = 7,599(2) Å und β = 103,02(4)° ermittelt. Die Datensammlung lieferte 3760 Reflexe, von denen nach einer Absorptionskorrektur (Ψ -Scan) und der Symmetriereduktion 1005 Reflexe mit I ≥ 2 σ (I) zur Strukturbestimmung herangezogen wurden. Mit den Auslöschungsbedingungen h0l: h+l = 2n und 0k0: k = 2n ergab sich das Auslöschungssymbol 2/mP12₁/n1, das nur die Raumgruppe P2₁/n zuläßt. Die Strukturlösung und die Strukturverfeinerung mit anisotropen Auslenkungsparametern endete bei einem R₁-Wert von 4,7% (wR₂: 9,5%). In den Tabellen 3.5.1 - 3 sind die Ergebnisse der Strukturanalyse aufgelistet.

Raumgruppe :	P2 ₁ /n (Nr. 14)
Meßgerät:	AED
Gitterkonstanten [Å]:	a = 6,546(1)
	b = 12,724(3)
	c = 7,599(2)
Winkel β [°]:	103,02(4)
Formeleinheiten/Zelle	Z = 2
Zellvolumen [Å ³]:	616,7(2)
Dichte (röntgenographisch) $[g \times cm^{-3}]$:	$\rho = 3,437$
Meßbereich :	$5^\circ \le 2\theta \le 60^\circ$
	$-9 \le h \le 9$
	$0 \le k \le 17$
	$-10 \le 1 \le 10$
Absorptionskorrektur	Ψ-Scan
Absorptionskoeffizient μ [mm ⁻¹]:	18,728
T _{min} :	0,650
T _{max} :	0,998
Anzahl der Reflexe	
gemessen:	3760
symmetrieunabhängig:	1794
mit $I \ge 2\sigma(I)$:	1005
R _{int} :	0,087
R ₁ :	0,047
wR ₂ :	0,095

 Tabelle 3.5.1: Strukturdaten der Verbindung K2MgP2Se6

11211181 2				
4 K auf 4e (x, y, z)	x = 0,2217(3)	y = 0,3087(2)	z = 0,5429(3)	$U_{eq} = 497(6)$
2 Mg auf 2c (0, ½, 0)				$U_{eq} = 250(9)$
4 P auf 4e (x, y, z)	x = 0,5123(3)	y = 0,5325(2)	z = 0,8663(3)	$U_{eq} = 189(4)$
4 Se1 auf 4e (x, y, z)	x = 0,1870(1)	y = 0,5586(1)	z = 0,7291(1)	$U_{eq} = 325(3)$
4 Se2 auf 4e (x, y, z)	x = 0,3218(1)	y = 0,5868(1)	z = 0,2542(1)	$U_{eq} = 316(3)$
4 Se3 auf 4e (x, y, z)	x = 0,2864(1)	y = 0,3296(1)	z = 0,0737(2)	$U_{eq} = 345(3)$

Tabelle 3.5.2: Atomparameter und äquivalente Auslenkungsparameter $[pm^2]$ von $K_2MgP_2Se_6$

Tabelle 3.5.3: K₂MgP₂Se₆: Ausgewählte Atomabstände [Å]

K	- Se1	3,433(3)	Mg - Sel	2×2,726(1)
	- Se1	3,508(3)	- Se2	2×2,748(1)
	- Se1	3,609(3)	- Se3	2×2,838(1)
	- Se2	3,317(2)		
	- Se2	3,586(3)	P - P	2,233(4)
	- Se3	3,402(2)	- Se1	2,176(4)
	- Se3	3,694(3)	- Se2	2,184(2)
			- Se3	2,180(2)

 $K_2MgP_2Se_6$ läßt sich formal von $Mg_2P_2Se_6$ durch eine einfache Substitution ableiten, dieser Austausch führt aber unter Bildung des $K_2FeP_2S_6$ -Typs zu einer signifikant anderen Kristallstruktur (Abb. 3.5.1). Zwar bleiben die charakteristischen Ethan-analogen (Se_3P-PSe_3)-Einheiten sowie die oktaedrische Se-Koordination um das Magnesium erhalten, doch die schichtförmige Anordnung der CdI₂-analogen Struktur wird aufgebrochen. An ihre Stelle treten Ketten, in denen sich flächenverknüpfte Se-Oktaeder - von Mg zentriert - und trigonale Se-Antiprismen - von P₂-Hanteln zentriert - abwechseln und die sich in dichter Anordnung entlang [100] erstrecken. Die Bindungslängen in den Polyedern (Tab. 3.5.3) stimmen mit denen von Mg₂P₂Se₆ nahezu überein, die Polyeder selbst sind dagegen merklich stärker verzerrt: Bei Mg₂P₂Se₆ liegen die Oktaederwinkel zwischen 84,2° und 95,5° und die Winkel in den P₂Se₆-Einheiten betragen 112,6° (Se-P-Se) bzw. 106,1° (Se-P-P). Bei K₂MgP₂Se₆ überstreichen dagegen die betreffenden Winkel einen Bereich von 78,5° bis 101,5° (MgSe₆-Oktaeder) und reichen von 108,2° bis 117,2° (Se-P-Se) bzw. von 103,3° bis 105,6° (Se-P-P). Überdies macht sich die größere Abweichung des (P₂Se₆)⁴⁻-Anions von der Symmetrie D_{3d} in Abweichungen der Diederwinkel (Se-P-P-Se) von 60° bemerkbar (56,3°; 58,3°; 65,4°); diese entsprechen bei Mg₂P₂Se₆, aber auch bei Mg₂P₂S₆ und Zn₂P₂Se₆, im Rahmen der Genauigkeit dem idealen Wert. Die Gründe für dieses Verhalten haben bereits *Carrillo-Cabrera* et al. am Beispiel von K₂FeP₂S₆ [35] diskutiert. Zwischen den Ketten befinden sich die K-Atome, zu ihren nächsten Nachbarn zählen sieben Se-Atome, die ein unregelmäßiges Polyeder bilden. Zwar differieren die betreffenden Bindungslängen beträchtlich, stimmen im Mittelwert aber mit der Radiensumme von 3,52 Å überein (K: Atomradius; Se: Kovalenzradius). Weitere Se-Atome im Abstand von 3,96 Å oder darüber sollten - wenn überhaupt - nur noch wenig mit dem Zentralatom wechselwirken.

Abbildung 3.5.1: K₂MgP₂Se₆: oben: [100]-Projektion;K: (groß, hell), Mg: (groß, dunkel), P: (klein, dunkel), Se: (klein, hell) unten: Stränge aus Se-Oktaedern und -Antiprismen

4 Orthochalcogenophosphate

4.1 Ag₃PS₄

Die ternären Verbindungen A_3PnX_4 (A = Cu, Ag; Pn = P, As, Sb; X = S, Se) sind schon seit mehreren Jahrzehnten bekannt und wurden strukturell charakterisiert. So ist Ag₃PS₄ bereits 1989 von *Andrae* und *Blachnik* [53] untersucht worden, wobei anhand von Pulverdiagrammen eine Isotypie zu Cu₃AsS₄ (Enargit) postuliert wurde. Kürzlich wurde die Verfeinerung der Kristallstruktur von Cu₃PS₄ durch *Pfitzner* und *Reiser* [54] veröffentlicht, das mit der Raumgruppe Pmn2₁ ebenfalls im Enargit-Typ kristallisiert, einer vom Wurtzit ausgehenden Überstruktur. Da bisher keine Strukturparameter für Ag₃PS₄ vorlagen, erfolgte die Strukturbestimmung unter dem Aspekt der Silberkoordination hinsichtlich der Frage: Ist das Ag-Ion nahezu ideal tetraedrisch koordiniert oder zeigt es Tendenzen, eine 3+1-Koordination einzunehmen.

Bei den Versuchen, neue quaternäre Silberchalcogenophosphate zu synthetisieren, bildete sich Ag_3PS_4 immer wieder als Nebenprodukt. Aus einem solchen Probenansatz wurde ein gelber, transparenter Kristall für eine Kristallstrukturanalyse ausgelesen. Eine explizite Synthesevorschrift findet sich bei *Andrae* und *Blachnik*.

Die Bestimmung der Gittermetrik auf einem Vierkreisdiffraktometer lieferte eine orthorhombisch-primitive Elementarzelle mit a = 7,647(3) Å, b = 6,858(2) Å und c = 6,506(1) Å. Die anschließende Messung der Intensitäten lieferte 2522 Reflexe, von denen nach einer empirischen Absorptionskorrektur (Ψ -Scan) und der Symmetriereduktion 615 Reflexe mit I $\geq 2\sigma(I)$ zur Strukturbestimmung herangezogen wurden. Die Auslöschungsbedingung h01: h+1 = 2n ergibt das Auslöschungssymbol mmmP-n-, welches die Raumgruppen Pmnm und Pmn2₁ zuläßt. Eine Strukturlösung und Verfeinerung erfolgte auf Grund der vermuteten Isotypie zu Cu₃PS₄ in der Raumgruppe Pmn2₁. Nach der anisotropen Aufspaltung der Auslenkungsparameter konvergierte die Rechnung mit einem konventionellen R-Wert von 3,6 %, die Restelektronendichte lag bei max. 1,28 e/Å³. Das Ergebnis ist in den Tab. 4.1.1 - 3 zusammengestellt.

	0 00 .
Raumgruppe :	Pmn2 ₁ (Nr. 31)
Meßgerät:	P3
Gitterkonstanten [Å]:	a = 7,647(3)
	b = 6,858(2)
	c = 6,506(1)
Formeleinheiten/Zelle:	Z = 2
Zellvolumen [Å ³]:	341,2(2)
Dichte (röntgenographisch) [g×cm ⁻³]:	4,700
Meßbereich:	$3^\circ \le \theta \le 70^\circ$
	$-12 \le h \le 12$
	$-10 \le k \le 10$
	$-10 \le l \le 0$
Absorptionskorrektur:	Ψ-scan
Absorptionskoeffizient μ [mm ⁻¹]:	9,86
T _{min} :	0,874
T _{max} :	0,990
Anzahl der Reflexe:	
gemessen:	2522
symmetrieunabhängig:	708
mit $I \ge 2\sigma(I)$:	615
R _{int} :	0,052
R ₁ :	0,036
wR ₂ :	0,087

 Tabelle 4.1.1: Strukturdaten der Verbindung Ag₃PS₄

2 Ag1 auf 2a (0, y, z)	y = 0,6450(2)	U ₁₁ = 486(8)	$U_{12} = 116(6)$
	z = 0,1202(2)	U ₂₂ = 575(8)	$U_{13} = 0$
		U ₃₃ = 496(8)	$U_{23} = 0$
4 Ag2 auf 4 b (x, y, z)	x = 0.7296(1)	II = 546(6)	II = 40(4)
4 Ag2 au1 40 (x, y, z)	x = 0,7280(1)	$U_{11} - 340(0)$	$0_{12}40(4)$
	y = 0,2017(1)	$U_{22} = 433(5)$	$U_{13} = 43(4)$
	z = 0,0704(1)	$U_{33} = 367(4)$	$U_{23} = -12(4)$
2 P auf 2a (0, y, z)	y = 0,3052(3)	$U_{11} = 155(11)$	$U_{12} = -11(8)$
	z = 0,5958(4)	U ₂₂ = 147(10)	$U_{13} = 0$
		U ₃₃ = 120(11)	$U_{23} = 0$
2 S1 auf 2a (0, y, z)	y = 0,3068(5)	$U_{11} = 323(16)$	$U_{12} = -3(10)$
	z = 0,2818(4)	$U_{22} = 369(16)$	$U_{13} = 0$
		U ₃₃ = 144(10)	$U_{23} = 0$
2 S2 auf 2a (0, y, z)	y = 0,5781(4)	$U_{11} = 320(16)$	$U_{12} = -44(9)$
	z = 0,7234(4)	$U_{22} = 211(13)$	$U_{13} = 0$
		U ₃₃ = 249(12)	$U_{23} = 0$
4 S3 auf 4b (x ,y, z)	x = 0,7193(3)	$U_{11} = 257(11)$	$U_{12} = 7(7)$
	y = 0,8426(3)	U ₂₂ = 257(9)	$U_{13} = -59(7)$
	z = 0,1926(3)	U ₃₃ = 240(8)	$U_{23} = -54(8)$

Tabelle 4.1.2: Atomparameter und anisotrope Auslenkungsparameter [pm²] von Ag₃PS₄

				6-	
Ag1	- S1	2,546(4)	Tetraeder um Ag1	S1 - Ag1 - S3	2×113,74(7)
	- S2	2,622(3)		S3 - Ag1 - S2	2×105,76(6)
	- S3	2×2,582(3)		S1 - Ag1 - S2	1×104,3(1)
				S3 - Ag1 - S3	1×112,5(1)
Ag2	- S1	2,592(2)	Tetraeder um Ag2	S3 - Ag2 - S2	1 × 124,81(9)
	- S2	2,516(2)		S3 - Ag2 - S3	1 × 100,97(6)
	- S3	2,508(2)		S2 - Ag2 - S3	1×115,49(9)
		2,589(2)		S3 - Ag2 - S1	1×115,25(8)
				S2 - Ag2 - S1	1 × 100,33(9)
				S3 – Ag2 – S1	1 × 97,11(9)
Р	- S1	2,043(4)	Tetraeder um P	S1 - P - S2	1×113,6(2)
	- S2	2,047(4)		S1 – P – S3	2×108,0(1)
	- S3	2×2,058(3)		S2 - P - S3	2×109,0(1)
				S3 – P – S3	1 × 109,1(2)

Tabelle 4.1.3: Atomabstände [Å] und Winkel [°] von Ag₃PS₄.

Die Struktur von Ag₃PS₄ ist aus isolierten PS₄³⁻-Tetraedern aufgebaut, die Verbindung zählt folglich zu den Orthothiophosphaten. Mit einer durchschnittlichen P-S-Bindungslänge von 2,05 Å und Winkeln zwischen 108° und 114° fügt sich die Metrik dieser Tetraeder in die bisher bekannter Orthothiophosphate ein. Die PS₄-Tetraeder sind über alle Ecken mit AgS₄-Tetraedern verbunden und bilden ein dreidimensionales Netzwerk, das dem im Wurtzit (ZnS) entspricht, bei dem die S-Atome eine hexagonaldichteste Kugelpackung bilden und die Zn-Atome die Hälfte der Tetraederlücken besetzen. In Ag₃PS₄ werden die Zn- durch ³/₄ Ag- und ¹/₄ P-Atome ersetzt. Die S-Tetraeder um die beiden Ag-Atome unterscheiden sich hauptsächlich in den Tetraederwinkeln, während die Bindungslängen annähernd gleich sind (Ag1: ~2,58 Å ; Ag2: ~2,55 Å) und so in beiden Fällen größer sind als die Kovalenzradiensumme (2,38 Å [37]). Um Ag1 liegen die Winkel im Bereich des idealen Tetraederwinkels (104.3° - 113,8°; ideal: 109°), bei Ag2 ist das Tetraeder mit Winkeln von 97,1° bis 124,8° deutlich verzerrt. In Cu₃PS₄ ist dies ähnlich, die Verzerrung des Cu(2)S₄-Tetraeders ist allerdings merklich geringer (104° - 114°). Insgesamt liegt bei Ag₃PS₄ eine Ag-Tetraederkoordination vor und es gibt keine Tendenz zu einer 3+1 Koordination.

Abbildung 4.1.1: Struktur von Ag₃PS₄: Ag: (groß, dunkel), P: (klein, dunkel), S: (klein hell) P-S-Bindungen und AgS₄-Polyeder hervorgehoben.

4.2 AuPS₄

Von den möglichen Orthothiophosphaten der Münzmetalle sind bisher nur Cu₃PS₄ [54] und Ag₃PS₄ [Kap. 4.1] auf der Basis von Einkristalldaten strukturell charakterisiert worden. Die Verbindungen kristallisieren isotyp zu Cu₃AsS₄ (Enargit-Typ) in einer geordneten Überstruktur des Wurtzit-Typs. Hinweise auf die Existenz der analogen Goldverbindung Au₃PS₄ sind in der Literatur nicht zu finden, so daß Versuche unternommen wurden, diese "Lücke" zu schließen. Hierbei konnte bislang aber nur die Au^{III}-Verbindung AuPS₄ erhalten werden, die demnach das bislang einzige ternäre Goldthiophosphat ist. Es wurde erstmalig von Pätzmann et al. [55] dargestellt und u. a. schwingungsspektroskopisch untersucht. Der aus diesen Daten abgeleitete Strukturvorschlag konnte allerdings aufgrund verzwillingter Kristalle nicht verifiziert werden, was Kanatzidis [40] zu der Bemerkung veranlaßte: "... AuPS₄, whose structure remains elusive."

4.2.1 Experimentelle Angaben und Strukturbestimmung

Die Darstellung von AuPS₄ erfolgte aus einem stöchiometrischen Elementgemenge in evakuierten Quarzglasampullen. Unter der Verwendung eines Golddrahtes bildete sich bei 350°C ein voluminöses Konglomerat feinster roter Nadeln, die für eine Kristallstrukturbestimmung ungeeignet sind. Ab einer Temperatur über 400°C zersetzt sich AuPS₄ wieder in metallisches Gold und glasige, nicht näher bestimmte Phosphorsulfide. Wesentlich bessere Kristalle lassen sich züchten, wenn das bei 350°C gebildete Produkt für 24 h auf 600°C erhitzt und mit ca. 10°/h abgekühlt wird. Wenn sich AuPS₄ zersetzt, liegt das Gold in fein verteilter Form vor, was beim Abkühlen einen positiven Effekt für die Ausbildung großer Kristalle zu haben scheint. Die so gezüchteten rot-transparenten Kristalle haben einen plättchenförmigen Habitus sowie die Form einer quadratischen Säule. Diese stellen sich aber bei genauerer Betrachtung als hohl dar und bestehen aus vier - in einem ca. 90° Winkel - miteinander verwachsenen Plättchen. Die Kristalle sind feuchtigkeitsunempfindlich, allerdings gegenüber "mechanischer" Beanspruchung sehr empfindlich, so daß die Plättchen bei einer Berührung sofort auffasern. Aus dem Reaktionsprodukt, dessen Ramanspektrum (Abb. 4.2.1.1) mit dem von Pätzmann et al.

[55] angegebenen übereinstimmt, konnte ein Kristall mittlerer Qualität isoliert werden, der auf einem IPDS Diffraktometer eine trikline Elementarzelle mit a = 5,891(1) Å, b = 6,961(1) Å, c = 8,063(2) Å, α = 78,18(3)°, β = 87,59(3)° und γ = 79,29(3)° lieferte. Die Strukturlösung gelang in der Raumgruppe $P\overline{1}$ und nach der Strukturverfeinerung mit anisotropen Auslenkungsparametern konvergierte die Rechnung bei einem konventionellen R₁-Wert von 64 %.

Dessee environ est			
Raumgruppe:	<i>P</i> 1 (Nr. 2)		
Meßgerät:	IPDS		
Gitterkonstanten [Å]; Winkel [°]:	a = 5,891(1); α = 78,18(3)		
	b = 6,961(1); β = 87,59(3)		
	c = 8,063(2); γ = 79,29(3)		
Formeleinheiten/Zelle:	Z = 2		
Zellvolumen [Å ³]:	317,9(1)		
Dichte (röntgenographisch) $[g \times cm^{-3}]$:	3,720		
Meßbereich:	$3^\circ \le 2\theta \le 60^\circ$		
	$-8 \le h \le 8$		
	$-9 \le k \le 9$		
	-11 ≤ 1 ≤ 11		
Absorptionskorrektur:	numerisch		
Absorptionskoeffizient μ [mm ⁻¹]:	24,55		
T _{min} :	0,170		
T _{max} :	0,351		
Anzahl der Reflexe:			
gemessen:	5073		
symmetrieunabhängig:	1744		
mit $I \ge 2\sigma$ (I):	796		
R _{int} :	0,133		
R ₁ :	0,064		
wR ₂ (alle Reflexe):	0,163		

 Tabelle 4.2.1.1: Strukturdaten der Verbindung AuPS4

1 Au1 auf 1a (0, 0, 0)		$U_{11} = 374(8)$	$U_{23} = -132(6)$
		U ₂₂ = 300(8)	$U_{13} = 48(6)$
		U ₃₃ = 225(8)	$U_{12} = 82(6)$
1 Au2 auf 1h ($\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$)		U ₁₁ = 333(8)	U ₂₃ = -148(6)
		U ₂₂ = 294(8)	$U_{13} = 83(6)$
		U ₃₃ = 249(8)	$U_{12} = 58(6)$
2 P auf 2i (x, y, z)	x = 0,733(1)	$U_{11} = 360(30)$	U ₂₃ = -140(19)
	y = 0,249(1)	U ₂₂ = 310(20)	$U_{13} = 55(19)$
	z = 0,246(1)	U ₃₃ = 260(20)	$U_{12} = 60(20)$
2 S1 auf 2i (x, y, z)	x = 0,419(1)	$U_{11} = 380(30)$	U ₂₃ = -220(30)
	y = 0,252(1)	U ₂₂ = 440(30)	U ₁₃ = 130(20)
	z = 0,3655(8)	U ₃₃ = 420(30)	$U_{12} = -10(20)$
2 S2 auf 2i (x, y, z)	x = 0,046(1)	$U_{11} = 480(30)$	$U_{23} = -110(20)$
	y = 0,0240(8)	U ₂₂ = 300(20)	$U_{13} = 20(20)$
	z = 0,7058(7)	U ₃₃ = 240(20)	$U_{12} = 130(20)$
2 S3 auf 2i (x, y, z)	x = 0,164(1)	U ₁₁ = 440(30)	U ₂₃ = -250(30)
	y = 0,5255(9)	U ₂₂ = 340(30)	$U_{13} = 180(20)$
	z = 0,6680(8)	U ₃₃ = 440(30)	$U_{12} = -60(20)$
2 S4 auf 2i (x, y, z)	x = 0,717(1)	$U_{11} = 700(40)$	$U_{23} = -110(30)$
	y = 0,291(1)	$U_{22} = 560(40)$	$U_{13} = -20(30)$
	z = 0,9850(8)	U ₃₃ = 250(30)	$U_{12} = 290(30)$

Tabelle 4.2.1.2: Atomparameter und anisotrope Auslenkungsparameter [pm²] von AuPS₄

Au1	- S2	2×2,352(5)	"Quadrat" um Au1	S2 – Au1 – S4	83,8(2)
	- S4	2×2,355(7)		S2 - Au1 - S4	96,2(2)
Au2	- S1	2×2,348(6)	"Quadrat" um Au2	S1 - Au2 - S3	83,0(2)
	- S3	2×2,350(6)		S1 - Au2 - S3	97,0(2)
Р	- S1	2,05(1)	Tetraeder um P	S1 - P - S2	114,6(5)
	- S2	2,07(1)		S1 - P - S4	114,4(5)
	- S3	2,04(1)		S2 - P - S4	99,0(5)
	- S4	2,07(1)		S3 - P - S1	99,2(5)
				S3 - P - S2	116,0(4)
				S3 - P - S4	114,5(5)

 Tabelle 4.2.1.3: Atomabstände [Å] und Winkel [°] von AuPS4

Abbildung 4.2.1.1: AuPS₄: Ramanspektrum

Raman Shift (cm ⁻¹)	Pätzman	Zuordnung
	n	
117	118	$\delta(SAuS)/B_2$
188	192	$\delta(SPS)/A_1$
211	214	$v(AuS)$ out of plane / B_2
315	318	$\delta(SPS)/B_2$
348	351	$v(AuS)/A_1$
363	366	$\delta(SPS)/A_1$
421	425	$v(PS)/A_1$
552	554	$v(PS)/B_2$
603	606	$v(PS)/A_1$

 Tabelle 4.2.1.4: Zuordnung der Peaks nach Pätzmann et al. [55]

Abbildung 4.2.1.2: Kristallstruktur von AuPS₄: Au: (groß, hell); P: (klein, dunkel); S: (klein, hell); (PS₄-Tetraeder hervorgehoben)

Abbildung 4.2.1.3: ¹_∞[AuS_{4/2}PS_{4/2}]-Kette; Bindungslängen in Å

4.2.2 Strukturbeschreibung

Die Kristallstruktur von AuPS₄ wird von $\frac{1}{2}$ [AuS_{4/2}PS_{4/2}]-Ketten aufgebaut, in denen die beiden kristallographisch unterschiedlichen Goldatome ihrer Dreiwertigkeit entsprechend nahezu quadratisch planar von Schwefel umgeben sind (s. Abb. 4.2.1.3). Die Abweichung von der idealen Koordination läßt sich vor allem an den unterschiedlichen S-Au-S-Winkeln ablesen (~ 84° und ~ 96°), während die Au-S-Abstände nahezu gleich sind und mit einem Mittelwert von 2,35 Å der Summe kovalenter Radien (2,38 Å [37]) entsprechen. In den Ketten wechseln sich AuS₄-Einheiten mit PS₄-Tetraedern ab, mit denen sie über gemeinsame Kanten verknüpft sind. Die P-S-Abstände liegen zwischen 2,04 Å und 2,07 Å und sind damit ausnahmslos etwas kürzer als die Kovalenzradiensumme von 2,14 Å, bewegen sich aber im Rahmen der bisher bekannten PS₄-Tetraeder. Die Tetraedergeometrie ist nicht ideal, die jeweils kleinsten Winkel liegen in den von Phosphor, Schwefel und Gold aufgespannten Vierringen. Insgesamt stimmt die Atomanordnung in den Ketten mit dem von Pätzmann et al. [55] aus spektroskopischen Daten abgeleiteten Strukturvorschlag überein; allerdings ist die von den Autoren für die Schwingungsanalyse angenommene lokale D_{2d}-Symmetrie aufgrund der beschriebenen Verzerrungen nicht gegeben.

Die Metrik der AuS₄- und PS₄-Einheiten läßt sich gut mit der einer [AuP₂S₇]-Kette vergleichen, wie sie in $AAuP_2S_7$ mit A = K, Rb gefunden wurde [40]. Auch dort sind PS₄-Tetraeder mit quadratisch planaren AuS₄-Einheiten verknüpft. Die Verzerrung der jeweiligen Koordinationsgeometrie entspricht der von AuPS₄: Die S-Au-S-Winkel

betragen 83,5° bzw. 96,5°, die Tetraederwinkel bewegen sich in einem Bereich von 98,9° bis 118,3°. Der kleinste Winkel liegt auch bei dieser Verbindung in einem von Phosphor, Schwefel und Gold gebildeten Vierring. Der Unterschied zu AuPS₄ besteht darin, daß zwischen Tetraeder und Quadrat ein weiteres PS4-Tetraeder eingefügt ist. Durch die Eckenverknüpfung beider Tetraeder sind die Ketten nicht mehr linear, sondern gewinkelt. Im Gegensatz zu AAuP₂S₇, in welchem die $\frac{1}{2}$ [AuP₂S₇]-Ketten eine negative Ladung tragen und über A^+ -Kationen miteinander vernetzt sind, wirken zwischen den ungeladenen Ketten von AuPS₄ nur van der Waals Kräfte. Dies erklärt den faserigen Habitus der Kristalle und deren extreme Empfindlichkeit gegenüber jeglicher mechanischer Beanspruchung. Die Ketten verlaufen entlang [111] und sind in dieser Richtung dem Motiv nach hexagonal angeordnet (s. Abb. 4.2.2.1). Dabei spiegeln die unterschiedlichen Au-Au-Abstände - sie betragen 5,34 Å, 5,84 Å und 5,89 Å - die Verzerrung dieser Anordnung wider. Zwischen den Ketten mit den kürzesten Au-Au-Abständen finden sich auch die kürzesten S-S-Distanzen. Diese sind mit 3,48 Å etwas kürzer als der doppelte van der Waals-Radius von Schwefel (3,70 Å [37]). Die damit verbundene abstoßende Wechselwirkung dürfte auch der Grund dafür sein, daß die S-Atome der in dieser Richtung benachbarten Ketten etwas gegeneinander verkippt sind.

Abbildung 4.2.2.1: Anordnung der ¹_∞[AuS_{4/2}PS_{4/2}]-Ketten entlang [111] (Abstände in Å)

4.2.3 Bandstrukturrechnungen

Die elektronische Gesamtzustandsdichte von AuPS₄ und die jeweiligen Anteile der Au-, Pund S-Atome zeigt Abb. 4.2.3.1 (von unten nach oben). Im Einklang mit der Farbigkeit der Verbindung ergibt sich eine Bandlücke E_a von 1,7 eV oberhalb der für T = 0K berechneten Fermienergie. Experimentell ist sicher ein etwas größerer Wert für E_a zu erwarten. Die partielle Zustandsdichte der Au-Atome ist von den 5*d*-Orbitalen bestimmt, von denen ein deutlicher Anteil oberhalb von E_F liegt. Der Peak in der Au-Zustandsdichte bei ca. +2,5 eV ist (formal) den im quadratischen Ligandenfeld destabilisierten $d_{x^2y^2}$ -Orbitalen zuzuordnen. Die Bandstrukturrechnung bestätigt auf diese Weise klar die d^8 -Konfiguration von Au³⁺ in AuPS₄. Dafür spricht auch die insgesamt starke Verbreiterung der Au-5 d^8 Bänder über mehr als 4 eV, die bei typischen Au-5 d^{10} Verbindungen des einwertigen Goldes aufgrund der abgeschlossenen *d*-Schale wesentlich geringer ist. Aus dem COHP-Diagramm in Abb. 4.2.3.2 ist ersichtlich, daß neben den Au-6*s*,*p* bei -2 eV auch die Au-5*d*-Orbitale um -5 eV stark an der Au-S Bindung beteiligt sind. Die nach der COHP-Integration nur ca. 15 % stärkere P-S-Bindung wird naturgemäß von den P- und S-3*s*/3*p*-Orbitalen gebildet. Dadurch sinken die P-S bindenden S-3*p* Orbitale in der Energie ab (s. S-DOS bei -5 eV), während die S-3*p* Orbitale zwischen -2,5 eV und E_F praktisch an keiner Bindung teilnehmen und damit einsame Elektronenpaare sind.

Abbildung 4.2.3.1: Elektronische Zustandsdichten (DOS) von AuPS₄

Abbildung 4.2.3.2: COHP-Kurven der P-S und Au-S Bindungen in AuPS₄

Diese lone pairs an den S-Atomen treten auch in der in Abb. 4.2.3.3 gezeigten Elektronenlokalisierungsfunktion (ELF) deutlich hervor. Daneben ist die starke Lokalisierung innerhalb der kovalenten P-S-Bindung zu erkennen, deren Attraktor etwas zu den P-Atomen verschoben ist. Dies gilt in noch stärkerem Maße für die Au-S-Bindung, für die das Lokalisierungsmaximum deutlich näher bei den elektronegativeren S-Atomen liegt. Letztlich läßt die Bindungssituation innerhalb der $^{1}_{\infty}$ [AuS_{4/2}PS_{4/2}]-Ketten aus elektronischer Sicht keine großen Besonderheiten erkennen. Die Ursachen für die Verzerrung der quadratisch planaren Umgebung des Goldes und auch für die Verkippung benachbarter Ketten sind sicher nicht elektronischer Natur, sondern eher auf die Packung der 1D-Stränge im Kristall zurückzuführen. Bemerkenswert bleibt natürlich das Vorliegen dreiwertigen Goldes in einem Sulfid, welches sonst eher mit elektronegativeren Nachbarn wie Halogeniden auftritt. Ein Grund dafür könnte hier in der hohen Gruppenelektronegativität der PS₄-Tetraeder liegen.

Abbildung 4.2.3.3: Elektronenlokalisierungsfunktion (ELF) in einer AuS₄-Ebene von AuPS₄ ($0,6 \le ELF \le 0,9$)
4.3 Ba₃(PX₄)₂ mit X = S, Se

Von der Gruppe der Erdalkalimetalle ist hinsichtlich ihrer Chalcogenophosphate und deren Kristallstrukturen wenig bekannt und nur von den Hexachalcogeno-Hypodiphosphaten sind die Kristallstrukturen veröffentlicht [42, 32]. Über die Orthochalcogenophosphate gibt es bislang nur Vermutungen. *Brockner* et al. postulieren die Existenz von Ba₃(PS₄)₂ und Ca₃(PS₄)₂ anhand eines Vergleiches der Raman-Spektren der von ihnen dargestellten Pulverpräparate mit denen von Na₃PS₄ und Tl₃PS₄ [56]. Die Autoren *Soklakov* und *Nechaeva* [57] berichten von einer Verbindung der Zusammensetzung Sr₃P₂S₈, die im tetragonalen Kristallsystem kristallisiert, ohne einen Beweis hierfür zu liefern. Im Rahmen dieser Arbeit gelang es, von Ba₃(PS₄)₂ und Ba₃(PS₄)₂ zu belegen.

4.3.1 α -Ba₃(PS₄)₂ und Ba₃(PSe₄)₂

Für die Darstellung von Ba₃(PX₄)₂ (X = S; Se) wurden die jeweiligen stöchiometrischen Elementgemenge in evakuierten Quarzglasampullen erhitzt. Im Fall von Ba₃(PSe₄)₂ bei einer Reaktionstemperatur von 800°C über einen Zeitraum von 25 h. Das Abkühlen der Ampulle erfolgte mit 10°C/h, dabei fiel die Verbindung - neben Ba₂P₂Se₆ und röntgenamorphen, glasigen Phosphorseleniden - als gelb-transparente Kristalle an. Bei Ba₃(PS₄)₂ hat es sich als vorteilhaft herausgestellt, die Reaktionszeit auf 10 bis 15 h (bei 800°C) zu verkürzen und die Ampulle schnell abzukühlen bzw. abzuschrecken. Als Nebenprodukt bildete sich Ba₂P₂S₆ als rein weiße Verbindung im unteren Teil der Ampulle, während sich das schwach rosa gefärbte Ba₃(PS₄)₂ darüber befand. Die so erhaltenen Kristallite waren für eine Röntgenstrukturanalyse jedoch zu klein. Geeignete Kristalle bilden sich, wenn Ba₃(PS₄)₂ mit einem AgI-Überschuß in einer Quarzglasampulle für 100 h bei 800°C erhitzt und mit 10°C/h abgekühlt wird. *Brockner* et al. berichten von der Zersetzung von Ba₃(PS₄)₂ bei höheren Temperaturen gemäß:

 $2 PS_4^{3-} \Longrightarrow P_2S_6^{4-} + S^{2-} + S$

Eigene Beobachtungen zeigen, daß sich der Ba₂P₂S₆-Anteil bei Temperaturen auch unterhalb von 800°C durch eine längere Reaktionszeit erhöht, bis schließlich kein Ba₃(PS₄)₂ mehr vorhanden ist. Beide Titelverbindungen zersetzen sich spontan in Wasser, können aber mehrere Stunden der Laborluft ausgesetzt werden, ohne daß sie zerfallen.

Erste Versuche zur Strukturbestimmung von $Ba_3(PS_4)_2$, das wegen einer Phasenumwandlung im folgenden als a-Phase bezeichnet wird, wurden auf einem Vierkreisdiffraktometer durchgeführt und lieferten eine Elementarzelle mit hexagonaler Metrik (a = b = 6,61 Å; c = 8,65 Å). Eine Strukturlösung und Verfeinerung im hexagonalen Kristallsystem in verschiedenen Raumgruppen führte aber mit physikalisch nicht sinnvollen thermischen Auslenkungsparametern zu dem Ergebnis, daß die Struktur sehr wahrscheinlich aus einem "Schweratom" und isolierten MX₄-Tetraedern aufgebaut ist. Ein Kristall mit plättchenförmigem Habitus wurde auf einer Buerger-Präzessions-Kamera montiert, um neue Erkenntnisse über die Kristallmetrik zu erhalten. Für diese Kamera stand neben den Röntgen-Filmen ein "Image-Plate" mit einem Scanner (FUJIFILM BAS-1800) zur Verfügung. Dadurch wird die Aufnahmeempfindlichkeit deutlich verbessert und es konnten schwache Überstrukturreflexe entlang aller drei Achsen erkannt werden, die bei größeren Kristallen dann auch auf dem Vierkreis-Diffraktometer beobachtet werden konnten. Diese Reflexe führten zu einer hexagonalen Zelle mit a = b = 13,52 Å und c = 17,30 Å. Doch auch mit dieser Elementarzelle sowie mit der sich daraus ableitenden orthorhombisch C-zentrierten Zelle (a = 13,52 Å; b = $\sqrt{3} \times 13.52$ Å = 23,42 Å; c = 17,30 Å) konnten keine Verbesserungen bei der Strukturverfeinerung erzielt werden. Unter Vernachlässigung der wenigen Reflexe, die für die Verdoppelung der a- und b-Achse verantwortlich sind, ergibt sich die hexagonale Elementarzelle mit a = b = 6,61 Å und c = 17,30 Å, welche sich in eine orthorhombisch C-zentrierte Zelle mit a = 6,61 Å; b = 11,65 Å und c = 17,30 Å transformieren läßt. Auffallend ist, daß bei allen Kristallen der hexagonale Winkel etwas von 120° abweicht und das Kristallsystem möglicherweise "monoklin" mit einem Winkel β nahe 90° ist.

Letztendlich kristallisiert α -Ba₃(PS₄)₂ in einer monoklinen Elementarzelle (a = 11,649(3) Å; b = 6,610(1) Å; c = 17,299(2) Å; β = 90,26(3)°) und die Struktur kann in der Raumgruppe P2₁/a gelöst und mit anisotropen Auslenkungsparametern verfeinert werden. Spätere Untersuchungen auf einem IPDS-Diffraktometer bestätigten die monokline Metrik und es zeigte sich, daß die anfänglichen Probleme bei der richtigen Wahl der Elementarzelle durch drei Kristalldomänen verursacht werden, die um ihre c-Achse um je 120° gegeneinander verdreht sind. An den Stellen, an denen sich alle drei Zellen überlagern, sind die Intensitäten der Reflexe besonders ausgeprägt, was eine hexagonale Metrik vortäuscht.

Abbildung 4.3.1.1: α-Ba₃(PS₄)₂: Präzessionaufnahme der a*b*-Ebene (0. Schicht) bei 25°C mit drei gegeneinander verdrehten a*b*-Ebenen

In Abbildung 4.3.1.1 ist eine Präzessionsaufnahme der reziproken a*b*-Ebene mit den drei verdrehten monoklinen Zellen dargestellt. Die Reflexe, die für eine "Verdoppelung" der hexagonalen a-Achse auf 13,52 Å sorgen, stammen von dem zweiten bzw. dritten Kristall. Daß es sich nicht um ein hexagonales Kristallsystem handelt, zeigt ein Vergleich der Achslängen. Das Verhältnis der monoklinen a- und b-Achsen liegt bei a/b = 1,762 (Ba₃(PS₄)₂) bzw. 1,778 (Ba₃(PSe₄)₂). Sollen diese beiden Achsen dem ortho-hexagonalen System genügen, muß das Verhältnis $\sqrt{3} = 1,732$ sein. Ein weiteres Indiz für die Richtigkeit der monoklinen Metrik liefern die Profile zahlreicher Reflexe auf einem AED-Diffraktometer. Hier ist vielfach eine Schulter bzw. ein zweiter Reflex, der nicht durch die K α_1 -K α_2 -Aufspaltung zustande kommt, zu beobachten, da die drei Zellen nicht exakt aufeinander fallen. Die spezielle Zellmetrik und auch der Winkel β mit fast 90° begünstigen die Drillingsbildung dieser Verbindung. All dies trifft auch für Ba₃(PSe₄)₂ zu, was die schlechten R-Werte der Strukturrechnungen erklärt, da in vielen Reflexen die Intensität von drei oder zwei Kristallen steckt.

	α -Ba ₃ (PS ₄) ₂	$Ba_3(PSe_4)_2$
Meßgerät:	IPDS	AED
Raumgruppe :	P2 ₁ /a (Nr.	14)* ¹
Gitterkonstanten [Å]; Winkel [°]	a = 11,649(3)	a = 12,282(2)
	b = 6,610(1)	b = 6,906(1)
	c = 17,299(2)	c = 18,061(4)
	$\beta = 90,26(3)$	$\beta = 90,23(3)$
Formeleinheiten pro Elementarzelle:	Z = Z	ł
Zellvolumen [Å ³]:	1332,0	1531,9
Dichte (röntgenographisch) [g×cm ⁻³]:	3,642	4,794
Meßbereich :	$3^\circ \le 2\theta \le 52^\circ$	$3^\circ \le 2\theta \le 60^\circ$
	$-14 \le h \le 14$	$-17 \le h \le 0$
	$-8 \le k \le 8$	$-9 \le k \le 9$
	$-21 \le l \le 21$	$-0 \le l \le 25$
Absorptionskorrektur	keine	Ψ-scan
Absorptionskoeffizient μ [mm ⁻¹]:	10,22	26,80
T _{min} :		0,283
T _{max} :		0,992
Anzahl der Reflexe		
gemessen:	13621	4964
symmetrieunabhängig:	2610	2401
mit I $\geq 2\sigma$ (I):	2108	1158
R _{int} :	0,200	0,119
R ₁ :	0,093	0,085
wR ₂ :	0,226	0,1513

Tabelle 4.3.1.1: Strukturdaten von $Ba_3(PX_4)_2$ mit X = S, Se

 $\overline{*^{1}}$: Die Austellung P2₁/a wurde für den besseren Vergleich mit β-Ba₃(PS₄)₂ (C2/m) gewählt.

		~,~~)
	α -Ba ₃ (PS ₄) ₂	$Ba_3(PSe_4)_2$
4 Ba1 auf 4e	x = 0,02185(9)	x = 0,0274(2)
	y = 0,9618(2)	y = 0,9368(3)
	z = 0,25089(5)	z = 0,2534(2)
	$U_{eq} = 261(4)$	$U_{eq} = 197(8)$
4 Ba2 auf 4e	x = 0,16900(8)	x = 0,1734(16)
	y = 0,4908(1)	y = 0,4864(3)
	z = 0,42805(6)	z = 0,4237(2)
	$U_{eq} = 226(4)$	$U_{eq} = 229(10)$
4 Ba3 auf 4e	x = 0,33921(8)	x = 0,3501(2)
	y = 0,9949(1)	y = 0,9926(3)
	z = 0,07225(6)	z = 0,0777(2)
	$U_{eq} = 237(4)$	$U_{eq} = 272(9)$
4 P1 auf 4e	x = 0,1617(3)	x = 0,1653(8)
	y = 0,4738(5)	y = 0,456(1)
	z = 0,1406(2)	z = 0,1381(5)
	$U_{eq} = 166(8)$	$U_{eq} = 110(30)$
4 P2 auf 4e	x = 0,3288(3)	x = 0,3334(8)
	y = 0,9852(5)	y = 0,980(1)
	z = 0,3599(3)	z = 0,3619(5)
	$U_{eq} = 172(8)$	$U_{eq} = 120(30)$
4 <i>X</i> 1 auf 4e	x = 0,1119(4)	x = 0,0913(4)
	y = 0,4503(8)	y = 0,4185(5)
	z = 0,2511(2)	z = 0,2489(2)
	$U_{eq} = 385(10)$	$U_{eq} = 242(14)$

Tabelle 4.3.1.2: Atomparameter und äquivalente Auslenkungsparameter $[pm^2]$ von Ba₃(PX₄)₂ (X = S; Se)

4 <i>X</i> 2 auf 4e	x = 0,8313(3)	x = 0,8438(3)
	y = 0,0248(6)	y = 0,0439(5)
	z = 0,1154(3)	z = 0,1232(3)
	$U_{eq} = 267(9)$	$U_{eq} = 235(15)$
4 <i>X</i> 3 auf 4e	x = 0,0927(3)	x = 0,1017(4)
	y = 0,2328(6)	y = 0,2169(5)
	z = 0,0827(2)	z = 0,0712(3)
	$U_{eq} = 252(8)$	$U_{eq} = 258(15)$
4 <i>X</i> 4 auf 4e	x = 0,0939(3)	x = 0,1047(3)
	y = 0,7303(6)	y = 0,7299(5)
	z = 0,0921(2)	z = 0,0899(2)
	$U_{eq} = 231(8)$	$U_{eq} = 227(14)$
4 <i>X</i> 5 auf 4e	x = 0,3032(3)	x = 0,2990(4)
	y = 0,9075(8)	y = 0,8598(5)
	z = 0,2489(2)	z = 0,2507(2)
	$U_{eq} = 388(10)$	$U_{eq} = 213(13)$
4 <i>X</i> 6 auf 4e	x = 0,9072(3)	x = 0,9076(3)
	y = 0,2491(6)	y = 0,2348(5)
	z = 0,3852(2)	z = 0,3783(3)
	$U_{eq} = 270(9)$	$U_{eq} = 222(14)$
4 <i>X</i> 7 auf 4e	x = 0,9223(3)	x = 0,9342(3)
	y = 0,7377(6)	y = 0,7336(5)
	z = 0,4115(3)	z = 0,4201(2)
	$U_{eq} = 273(9)$	$U_{eq} = 215(13)$
4 X8 auf 4e	x = 0,1730(3)	x = 0,1737(3)
	y = 0,9916(5)	y = 0,9914(5)
	z = 0,4139(2)	z = 0,4191(2)
	$U_{eq} = 203(9)$	$U_{eq} = 171(12)$

					-		
		α -Ba ₃ (PS ₄) ₂	$Ba_3(PSe_4)_2$			α -Ba ₃ (PS ₄) ₂	$Ba_3(PSe_4)_2$
Bal	- X1	3,395(5)	3,420(4)	Ba2	- X1	3,141(4)	3,343(6)
		3,540(5)	3,665(4)		- <i>X</i> 6	3,284(4)	3,362(4)
	- X2	3,248(5)	3,334(6)			3,519(4)	3,784(5)
	- X3	3,518(4)	3,929(6)			3,757(4)	
	- <i>X</i> 4	3,257(4)	3,420(4)		- <i>X</i> 7	3,316(4)	3,398(5)
	- X5	3,297(4)	3,378(5)			3,338(4)	3,471(4)
		3,528(5)	3,473(5)			3,466(4)	3,743(5)
	- <i>X</i> 6	3,288(4)	3,393(4)		- X8	3,289(4)	3,399(6)
	- <i>X</i> 7	3,360(4)	3,516(4)			3,309(3)	3,419(4)
	- X8	3,324(4)	3,504(6)			3,320(3)	3,489(4)
-				-			
Ba3	- X2	3,263(4)	3,306(4)	P1	- X1	2,006(6)	2,216(8)
		3,517(4)	3,796(4)		- X2	2,025(6)	2,210(9)
		3,821(4)			- X3	2,045(5)	2,19(1)
	- X3	3,280(4)	3,350(5)		- <i>X</i> 4	2,048(5)	2,21(1)
		3,291(4)	3,422(5)				
		3,462(4)	3,687(5)				
	- <i>X</i> 4	3,336(4)	3,488(5)	P2	- X5	2,008(6)	2,21(1)
		3,337(4)	3,490(5)		- <i>X</i> 6	2,027(5)	2,19(1)
		3,369(4)	3,525(5)		- <i>X</i> 7	2,036(5)	2,19(1)
	- X5	3,141(4)	3,318(5)		- X8	2,045(5)	2,222(7)

Tabelle 4.3.1.3: Atomabstände [Å] für $Ba_3(PX_4)_2$ mit X = S, Se

		α -Ba ₃ (PS ₄) ₂	$Ba_3(PSe_4)_2$
Tetraeder um P1	<i>X</i> 1 - P1 - <i>X</i> 2	119,5(3)	121,4(6)
	<i>X</i> 1 - P1 - <i>X</i> 3	107,0(2)	105,1(3)
	<i>X</i> 1 - P1 - <i>X</i> 4	110,0(2)	108,6(3)
	<i>X</i> 2 - P1 - <i>X</i> 3	106,2(2)	106,4(3)
	<i>X</i> 2 - P1 - <i>X</i> 4	106,4(2)	106,7(3)
	<i>X</i> 3 - P1 - <i>X</i> 4	107,1(2)	108,0(5)
Tetraeder um P2	<i>X</i> 5 - P2 - <i>X</i> 6	119,5(3)	122,5(4)
	<i>X</i> 5 - P2 - <i>X</i> 7	108,1(2)	106,8(4)
	<i>X</i> 5 - P2 - <i>X</i> 8	108,3(2)	105,6(5)
	<i>X</i> 6 - P2 - <i>X</i> 7	107,0(3)	107,9(5)
	<i>X</i> 6 - P2 - <i>X</i> 8	106,5(2)	105,8(3)
	<i>X</i> 7 - P2 - <i>X</i> 8	106,8(2)	107,5(4)

Tabelle 4.3.1.4: PX₄-Tetraederwinkel [°] in Ba₃(PX₄)₂ mit X = S, Se

Die zwei Verbindungen α -Ba₃(PS₄)₂ und Ba₃(PSe₄)₂ kristallisieren isotyp. Sie enthalten isolierte PX₄-Tetraeder, von deren X-Atomen die Ba-Atome koordiniert werden. Innerhalb der Tetraeder liegen die P-S-Abstände (2,01 Å - 2,05 Å) sowie die P-Se-Abstände (2,19 Å - 2,22 Å) im Bereich der bisher bekannten PX-Längen für eine Tetraeder-Koordination (s. Tab. 4.3.1.4). Eine Abweichung von der idealen Geometrie erfolgt durch eine Vergrößerung von einem der sechs Tetraederwinkel auf 119° (PS₄), bzw. 122° (PSe₄), während alle anderen Winkel zwischen 105° und 109° liegen. Das Ba1-Atom wird von zehn X-Atomen mit Abständen von 3,25 Å bis 3,54 Å (X = S) und 3,33 Å bis 3,93 Å (X = Se) koordiniert (s. Abb. 4.3.1.2). Davon bilden sechs Atome ein so stark verzerrtes Oktaeder, daß es als trigonales Antiprisma zu bezeichnen ist. Die restlichen vier X-Atome befinden sich über vier der sechs Seitendreiecksflächen des Antiprismas. Von einem noch stärker verzerrten Polyeder werden die Atome Ba2 und Ba3 umgeben, das nur noch als "unregelmäßig" geformt beschrieben werden kann und ebenfalls von zehn S- (3,14 Å - 3,82 Å), bzw. neun Se-Atomen (3,31 Å - 3,80 Å) aufgebaut wird (s. Tab. 4.3.1.4). Die Anordnung der Ba-Atome und PX₄-Tetraeder entlang der c-Achse in Abb. 4.3.1.3 zeigt ein hexagonales Muster, das in Korrelation zu der oben erwähnten pseudo-hexagonalen Symmetrie steht. Für eine Beschreibung der Tetraeder-Anordnung als strukturbildendes Element kann ein Vergleich mit der β -K₂SO₄-Struktur (Pcmn a = 10,07 Å; b = 5,77 Å c = 7,48 Å) [58] herangezogen werden. Ein Blick entlang der c-Achse in β -K₂SO₄ und α -Ba₃(PS₄)₂ zeigt, daß die Orientierung der Tetraeder in beiden Fällen nahezu identisch ist und die Polyeder bei dem Thiophosphat lediglich etwas gegeneinander verdreht sind (s. Abb. 4.3.1.3). Auch entlang der b-Achse ist die Anordnung sehr ähnlich, allerdings werden hier die ersten Unterschiede sichtbar (s. Abb. 4.3.1.4).

Abbildung 4.3.1.2: Koordination von Ba1 in α-Ba₃(PS₄)₂; trigonales Antiprisma dick eingezeichnet. Atombezeichnung s. Abb. 4.3.1.3

Abbildung 4.3.1.3: [001]-Projektion: α-Ba₃(PS₄)₂ (links) und β-K₂SO₄ (rechts). Atombezeichnung: Ba/K: (groß, dunkel); P/S: (klein , dunkel); S/O: (klein, hell).

Ein "Paar" der Tetraeder - gestrichelte Rechtecke in Abbildung 4.3.1.4 - steht immer Spitze an Spitze und die Wiederholung der Paare entlang [001] ist bei beiden Strukturen identisch. Senkrecht dazu unterscheidet sich die Anordnung der Paare in der Art, daß sie in α -Ba₃(PS₄)₂ exakt nebeneinander liegen, hingegen in β -K₂SO₄ entlang a um c/2 gegeneinander verschoben sind.

Abbildung 4.3.1.4: [010]-Projektion: α -Ba₃(PS₄)₂ (links) und β -K₂SO₄ (rechts) Atombezeichnung s. Abb. 4.3.1.3

In der dritten Raumrichtung tritt der gravierendste Unterschied auf (s. Abbildung 4.3.1.5). Bei β -K₂SO₄ sind alle Tetraeder, die in der Papierebene entlang der c-Achse verlaufen, jeweils gleich ausgerichtet, während die Tetraeder in α -Ba₃(PS₄)₂ Spitze auf Spitze stehen und gegeneinander leicht verdreht sind. Diese unterschiedlichen Verdrehungen der Tetraeder könnte die Ursache für die Bildung von Drillingskristallen sein. In der c-Richtung kommt es zu einer Schichtfolge von Ba3/Tetraeder/Ba1/Tetraeder/Ba2, so daß sich zwischen Ba2- und Ba3-Atomen keine PS₄-Tetraeder mehr befinden. Eine Drehung dieses Schichtblockes um 60°, bzw. 120° etc. senkrecht zur c-Achse ergibt wieder ein fast identisches Bild in der bc-Ebene, was möglicherweise die Ausbildung dreier großer Domänen in den Kristallen begünstigt.

Abbildung 4.3.1.5: [100] [Projektion: α -Ba₃(PS₄)₂ (links) und β -K₂SO₄ (rechts) Atombezeichnung s. Abb. 4.3.1.3

4.3.2 β -Ba₃(PS₄)₂

Die Anordnung der PS4-Tetraeder mit ihren geringen Verkippungen ließ es lohnend erscheinen, α -Ba₃(PS₄)₂ auf eine mögliche Phasenumwandlung zu untersuchen. In Differential-Scanning-Calorimetry Abbildung 4.3.2.1 das Diagramm einer ist Untersuchung (DSC) wiedergegeben, die mit Ba₃(PS₄)₂-Pulver durchgeführt wurde. Es zeigt einen endothermen Prozeß im Bereich von 70°C - 80°C, der auf eine Phasenumwandlung hinweist. Temperaturabhängige Pulverdiffraktogramme (Philips X'Pert) in diesem Temperaturbereich bestätigen den DSC-Befund (s. Abb. 4.3.2.2). Da sich die Reflexlagen nicht nur verschieben - was für eine geringe Änderung der Achsenlängen steht - sondern das Diffraktogramm auch linienärmer wird, sollte sich die Zellmetrik ändern. Mit Einkristallaufnahmen auf einer Buerger-Präzessionskamera bei unterschiedlichen Temperaturen wurde dies bestätigt. Die Auswertung der vier Image-Plate-Aufnahmen in Abb. 4.3.2.3 ergaben, daß die Ausbildung von Drillings-Kristallen verschwunden ist, und daß die Achsenlängen a und b unverändert sind. Die c-Achslänge verkleinert sich dagegen auf die Hälfte.

Abbildung 4.3.2.1: DSC von Ba₃(PS₄)₂

Abbildung 4.3.2.2: Ausschnitt aus temperaturabhängigen Pulverdiffraktogrammen von Ba₃(PS₄)₂; schwarz 70°C; hellgrau 80°C

Abbildung 4.3.2.3: Präzessionsaufnahmen (0. Schicht), links Raumtemperatur, rechts 80°C

Um eine vollständige Kristallstrukturbestimmung durchzuführen, wurde in Eigenbau eine Vorrichtung angefertigt, die es ermöglicht, mit der vorhandenen Technik Hochtemperatur-Messungen auf einem IPDS-Diffraktometer durchzuführen. Hierfür wurde ein Hochtemperatur-Kapillarheizer der Firma HUBER (Buerger Präzession Hochtemperatur-Zubehör 231) an die Temperatur-Steuereinheit (Huber HTC 9634) angeschlossen und an der Halterung für die Tieftemperatur-Kühleinrichtung des IPDS befestigt (s. Abb. 4.3.2.4). Eine Temperaturkalibrierung des Heizkopfes wurde nicht durchgeführt, ebenso unterscheiden sich die Positionen des Thermoelementes und des Kristall um bis zu fünf Millimeter, was sich in einer deutlich höheren Umwandlungstemperatur (150°C Anzeigetemperatur) bei den IPDS-Daten bemerkbar macht. Die in Tabelle 4.3.2.1 genannte Meßtemperatur (100°C) entspricht deshalb einer geschätzten Kristalltemperatur.

Abbildung 4.3.2.4: Hochtemperatur-Kapillarheizer im IPDS-Diffraktometer

Mit der Verbindung Ba₃(PSe₄)₂ konnten auf Grund des inhomogenen Probenmaterials keine DSC- und HT-Pulver-Untersuchungen durchgeführt werden. Bei dem Aufheizen eines Ba₃(PSe₄)₂-Kristalles auf dem IPDS-Diffraktometer bis zu einer "eingestellten" Temperatur von 550°C konnten keine Hinweise für eine thermisch induzierte Umwandlung festgestellt werden.

Die Bestimmung der Elementarzelle für β -Ba₃(PS₄)₂ ergab zunächst scheinbar eine hexagonale Metrik (a = 6,69 Å; b = 6,71 Å; c = 8,71 Å; γ = 119,79°), deren orthogonale

Elementarzelle der Bedingung $b_{ortho} = a_{hex} \times \sqrt{3}$ nur unzulänglich genügte. Eine Strukturlösung und Verfeinerung erfolgte daher mit der in Tabelle 4.3.2.1 aufgeführten monoklinen C-zentrierten Zelle, deren Volumen etwa halb so groß ist wie das von α -Ba₃(PS₄)₂.

Meßgerät:	IPDS
Raumgruppe:	C2/m (Nr. 12)
Gitterkonstanten [Å]; Winkel [°]	a = 11,597(2)
	b = 6,727(1)
	c = 8,704(2)
	$\beta = 90,00(3)$
Formeleinheiten pro Elementarzelle:	Z = 2
Zellvolumen [Å ³]:	679,0
Dichte (röntgenographisch) $[g \times cm^{-3}]$:	3,648
Meßtemperatur:	ca. 100°C
Meßbereich:	$3^\circ \le 2\theta \le 54^\circ$
	$-14 \le h \le 14$
	$-8 \le k \le 8$
	- 11≤1≤11
Absorptionskorrektur	keine
Absorptionskoeffizient μ [mm ⁻¹]:	10,08
Anzahl der Reflexe	
gemessen:	4705
symmetrieunabhängig:	758
mit $I \ge 2\sigma$ (I):	715
R _{int} :	0,336
R ₁ :	0,076
wR ₂ :	0,193

Tabelle 4.3.2.1: Strukturdaten von β -Ba₃(PS₄)₂

	.,_		
2 Ba1 auf 2a (0, 0, 0)		$U_{11} = 786(15)$	$U_{23} = 0$
		$U_{22} = 876(13)$	$U_{13} = -5(8)$
		U ₃₃ = 297(9)	$U_{12} = 0$
4 Ba2 auf 4i (x, 0, z)	x = 0,33315(8)	$U_{11} = 368(7)$	$U_{23} = 0$
	z = 0,3638(1)	$U_{22} = 420(7)$	$U_{13} = -12(4)$
		U ₃₃ = 349(8)	$U_{12} = 0$
4 P auf 4i (x, 0, z)	x = 0,3335(3)	$U_{11} = 333(19)$	$U_{23} = 0$
	z = 0,7814(4)	$U_{22} = 393(17)$	$U_{13} = -8(13)$
		U ₃₃ =242(14)	$U_{12} = 0$
8 S1 auf 8j (x, y, z)	x = 0,0854(3)	$U_{11} = 416(18)$	$U_{23} = 25(13)$
	y = 0,2564(3)	$U_{22} = 367(14)$	$U_{13} = -37(14)$
	z = 0,3077(4)	$U_{33} = 567(19)$	$U_{12} = -52(11)$
4 S2 auf 4i (x, 0, z)	x = 0,1714(3)	U ₁₁ = 300(29)	$U_{23} = 0$
	z = 0,6922(5)	$U_{22} = 460(20)$	U ₁₃ = -40(20)
		$U_{33} = 570(30)$	$U_{12} = 0$
4 S3 auf 4i (x, 0, z)	x = 0,335(1)	$U_{11} = 1810(110)$	$U_{23} = 0$
	z = 0,010(7)	U ₂₂ = 1680(80)	$U_{13} = -20(40)$
		U ₃₃ =280(30)	$U_{12} = 0$

Tabelle 4.3.2.2: Atomparameter und anisotrope Auslenkungsparameter $[pm^2]$ von β -Ba₃(PS₄)₂

			-			
Ba2	- S1	2×3,387(3)	Bal	- S1	4×3,336(3)	
		2×3,388(3)		- S2	2×3,336(5)	
		2×3,429(3)		- S3	6×3,880(4)	
	- S2	2×3,399(1)				
		1×3,419(5)				
	- S3	1×3,078(6)				
Р	- S1	2×2,043(4)	Tetraec	ler um P	S1 - P - S1	1×106,7(3)
	- S2	1×2,033(5)			S1 - P - S2	2×106,3(2)
	-S3	1×1,991(7)			S1 - P - S3	2×112,0(3)
					S2 - P - S3	1×113,1(5)

Tabelle 4.3.2.3: Atomabstände [Å] und Winkel [°] für β -Ba₃(PS₄)₂

Die dreidimensionale Struktur von β -Ba₃(PS₄)₂ entspricht im wesentlichen derjenigen der bei Raumtemperatur stabilen Phase (s. Abbildung 4.3.2.5). Beim Übergang der α - in die β -Phase handelt es sich um eine displazive Umwandlung. Dadurch, daß die S1- und S5-Atome in α -Ba₃(PS₄)₂ nun als S3-Atome auf der Spiegelebene in y = 0 liegen, sind die PS₄-Tetraeder entlang der c-Richtung nicht mehr gekippt, sondern parallel zueinander ausgerichtet, wodurch sich die c-Achse halbiert. Außerdem ist deren Verzerrung deutlich geringer (s. Tab. 4.3.2.3). Auch das Ba1-Atom der α -Phase bewegt sich aus seiner allgemeinen Lage (x = 0,02; y = 0,96) und sitzt nun im Ursprung der neuen Zelle.

Abbildung 4.3.2.5: Projektionen der β-Ba₃(PS₄)₂-Struktur entlang [001], [010] und [100] Atombezeichnung: Ba: (groß, dunkel); P: (klein, dunkel); S: (klein, hell)

Durch die Verschiebung der Atompositionen ändert sich die Koordination der Ba-Atome. Das Ba1-Atom ist wie in α -Ba₃(PS₄)₂ von sechs S-Atomen mit einem Abstand von 3,34 Å in Form eines trigonalen Antiprismas umgeben (s. Abb. 4.3.2.6), zusätzlich wird es noch von sechs S3-Atomen im Abstand von 3,88 Å koordiniert, so daß eine Gesamtkoordinationszahl von zwölf resultiert. Die Koordinationssphäre des Ba2-Atoms wird von zehn S-Atomen mit Abständen von 3,08 Å bis 3,43 Å gebildet. (s. Abb. 4.3.2.6). Sechs von ihnen sind in Form eines Rings angeordnet, über bzw. unter diesem befinden sich ein bzw. drei weitere S-Atome.

Ein Grund für die Phasenumwandlung kann die Koordination von Ba1 in β -Ba₃(PS₄)₂ sein. Sechs der 12 S-Atome sind mit 3,88 Å sehr weit vom Zentralatom entfernt. Dabei handelt es sich ausschließlich um S3-Atome, die relativ hohe Standardabweichungen bei den Lageparametern aufweisen, vor allem aber durch außerordentlich große Auslenkungsparameter U₁₁ und U₂₂ auffallen. S3 gehört zu den Koordinationspolyedern von einem Ba2 (3,08 Å) sowie von drei Ba1 (3,88 Å) (s. Abb. 4.3.2.7). Es wäre denkbar, daß S3 in der a,b-Ebene statistisch fehlgeordnet vorliegt und in Wirklichkeit Ba1 mit kürzeren Abständen koordiniert. Bei der Phasenumwandlung und der damit verbundenen Verkippung der PS₄-Tetraeder verliert das betreffende Ba-Atom zwar formal den Kontakt zu zwei S-Nachbarn, gleichzeitig sinkt aber der mittlere Ba-S-Abstand von 3,44 Å in der β- auf 3,38 Å in der α-Phase.

Abbildung 4.3.2.6: Koordination von Ba1 (links) und Ba2 (rechts). Atombezeichnung s. Abb. 4.3.2.5

Abbildung 4.3.2.7: Koordination von S3 (Schwingungsellipsoide 70%)

4.4 LiZnPS₄

Thiophosphate des Zinks sind seit längerem bekannt. In der Literatur wurden bislang zwei Verbindungen beschrieben, deren Kristallstrukturen als gesichert gelten können. So kristallisiert $Zn_2P_2S_6$ [59] wie zahlreiche Vertreter des Formeltyps $A^{II}P_2S_6$ in dem monoklinen Fe₂P₂S₆-Typ [28], während $Zn_4(P_2S_6)_3$ [60] – ebenfalls von monokliner Symmetrie - einen eigenen Strukturtyp bildet. Ferner gelang *Khozhainov* u. *Zhdanov* [61] die Synthese des Orthothiophosphats $Zn_3(PS_4)_2$, dessen Kristallstruktur jüngst aufgeklärt wurde [62]. Das Ergebnis dieser Strukturbestimmung legte die Option nahe, ein Zn-Atom gegen zwei Li-Atome zu ersetzen, um eine neue Verbindung mit einem ähnlichen Strukturmotiv zu bekommen, was mit der Synthese von LiZnPS₄ auch gelungen ist.

4.4.1 Darstellung und Strukturbeschreibung

Zur Darstellung von LiZnPS₄ wurde ein entsprechendes Elementgemenge in einer evakuierten Quarzglasampulle erst 5 h bei 130°C und dann für 50 h bei 400°C erhitzt. Die farblos-transparente Zielverbindung konnte bisher nicht röntgenrein erzeugt werden, da zusätzlich noch Li- und Zn-Thiophosphate sowie ZnS entstanden.

Die Einkristalluntersuchung auf einem Vierkreisdiffraktometer ergab tetragonale Symmetrie mit a = 5,738(1) Å und c = 8,914(1) Å. Die Messung der Intensitäten lieferte 1672 Reflexe, von denen nach einer empirischen Absorptionskorrektur (Ψ -scan) und der Symmetriereduktion 741 Reflexe mit I $\geq 2\sigma(I)$ zur Strukturbestimmung herangezogen wurden. Aus der Auslöschungsbedingung hkl: h+k+l = 2n resultiert das Beugungssymbol 4/mI--- mit den möglichen Raumgruppen I4, $I\overline{4}$ und I4/m. Die Strukturlösung gelang in der Raumgruppe $I\overline{4}$ und nach der anisotropen Aufspaltung der Auslenkungsparameter konvergierte die Rechnung mit einem konventionellen R-Wert von 4,0 %. Das Ergebnis der Strukturbestimmung ist in den Tab. 4.4.1-2 zusammengefaßt, Atomabstände und Winkel von LiZnPS₄ sind in Tab. 4.4.1.3 aufgelistet.

Empirische Formel:	LiZnPS ₄
Meßgerät:	Р3
Raumgruppe:	<i>I</i> 4 (Nr. 82)
Gitterkonstanten [Å]:	a = 5,738(1)
	c = 8,914(1)
Zellvolumen [Å ³]:	V = 293,49(3)
Formeleinheiten/Zelle:	Z = 2
Dichte (theoretisch) $[g \times cm^{-3}]$:	2,620
Meßbereich:	3 ° \leq 2 θ \leq 75 °
	$-9 \le h \le 0$
	$-9 \le k \le 9$
	$-15 \le l \le 15$
Absorptionskorrektur:	ψ-scan
Absorptionskoeffizient μ [mm ⁻¹]:	5,72
T _{min} :	0,736
T _{max} :	0,932
Anzahl der Reflexe:	
gemessen:	1672
symmetrieunabhängig:	781
mit $I \ge 2\sigma(I)$:	741
R _{int} :	0,052
R ₁ :	0.040
<i>w</i> R ₂ (alle Reflexe):	0.098

 Tabelle 4.4.1.1:
 Strukturdaten von LiZnPS4

Tabelle 4.4.1.2: Atomkoordinaten und äquivalente Auslenkungsparameter $[pm^2]$ von
LiZnPS4

2 Li auf 2b (0, 0, ½)		$U_{eq} = 40(16)$
2 Zn auf 2a (0, 0, 0)		$U_{eq} = 184(3)$
2 P auf 2c (0, ½, ¼)		$U_{eq} = 132(3)$
8 S auf 8g (x, y, z)	x = 0,7875(2)	$U_{eq} = 186(2)$
	y = 0,2772(2)	
	z = 0,1348(1)	

Tabelle 4.4.1.3: Bindungslängen [Å] und ausgewählte Winkel [°] von LiZnPS₄

p(2)
-(2)
)(6)
4(3)
9(6)
2(3)

Die Struktur von LiZnPS₄ leitet sich von der Zn₃(PS₄)₂-Struktur ($P\overline{4}n2$) ab (Abb.4.4.1.1). Diese wird von Schichten eckenverknüpfter ZnS₄-Tetraeder geprägt, die sich vom HgI₂-Typ ableiten, allerdings bleibt ein Viertel der Tetraederzentren unbesetzt. Zwischen den Schichten befinden sich die P-Atome, die ebenfalls tetraedrisch von Schwefel koordiniert werden und diskrete (PS₄)³-Einheiten bilden. Aus den Verhältnissen der Gitterkonstanten zwischen LiZnPS₄ und Zn₃(PS₄)₂ ergibt sich direkt der Zusammenhang beider Strukturen. Die a-Gitterkonstante beträgt gegenüber Zn₃(PS₄)₂ etwa a/ $\sqrt{2}$, während der Wert für c ca. 1,5 % kürzer ist. LiZnPS₄ kristallisiert dementsprechend tetragonal innenzentriert und enthält wiederum Schichten eckenverknüpfter Schwefel-Tetraeder. Deren Zentren werden nun vollständig und geordnet von Lithium und Zink so besetzt, daß jedes LiS₄-Tetraeder mit vier ZnS₄-Tetraedern verbunden ist und umgekehrt (s. Abb. 4.4.1.2). Während die Zn-S-Bindungslänge mit 2,34 Å nur geringfügig über der Kovalenzradiensumme (2,29 Å [37]) liegt, entspricht der Li-S-Abstand mit 2,41 Å fast der Summe der Ionenradien (2,44 Å) (s. Tab. 4.4.3). Die Tetraederwinkel in den Metall-Schwefel-Polyedern liegen mehrheitlich im Bereich von 104° (Li) bzw. 105° (Zn), daneben fallen zwei aufgeweitete Winkel von 120,1° (Li) und 118,1° (Zn) ins Auge, die aber weniger verzerrt sind als in Zn₃(PS₄)₂ (130°). Zwischen den Schichten befinden sich auch hier die P-Atome in einer verzerrten tetraedrischen Schwefel-Umgebung mit Tetraederwinkeln von 104,6° und 119,7°.

Abbildung 4.4.1.1: Kristallstruktur von Zn₃(PS₄)₂: Zn: (groß, dunkel); P: (klein, dunkel); S: (klein, hell).

Abbildung 4.4.1.2: Kristallstruktur von LiZnPS₄: Zn: (groß, dunkel); Li: (groß, hell); P: (klein, dunkel); S: (klein, hell).

Eine andere Strukturbeschreibung ergibt sich, wenn in Analogie zu einigen ternären und quaternären Thiogermanaten [63, 64] das Thiophosphat-Anion als abgeschlossene Einheit d. h. als Pseudokugel betrachtet wird. Auch wenn eine solche Betrachtung etwas willkürlich erscheinen mag, läßt sich eine solche Abgrenzung angesichts der unterschiedlichen Bindungen doch vertreten. Die P-S-Bindungen dürften nahezu vollständig kovalenter Natur sein, wohingegen die Wechselwirkungen zwischen Zink bzw. Lithium (s. u.) und Schwefel einen stärkeren Ionenbindungsanteil haben sollten [37]. Abb. 4.4.1.3 zeigt einen Vergleich der beiden Anordnungen mit dem Motiv der kubisch dichtesten Kugelpackung der PS₄-Tetraeder, die allerdings merklich verzerrt ist (c/a = 1,16 bei Zn₃(PS₄)₂). In der ternären Verbindung besetzt Zink geordnet ³/₄ der Tetraederlücken, was einen Vergleich mit α -Mn₂O₃ [65] nahe legt. In dem Oxid belegt

Mangan die Positionen der kubisch dichtesten Kugelpackung, während Sauerstoff ebenfalls - jedoch in einer etwas anderen Verteilung - ³/₄ der Tetraederlücken einnimmt. Auch in LiZnPS₄ entspricht die Anordnung der PS₄-Pseudokugeln dem Motiv der kubisch dichtesten Kugelpackung, die jetzt etwas weniger verzerrt ist (c/a = 1,10) und bei der sämtliche Tetraederlücken - analog zum Fluorit-Typ - geordnet mit Lithium und Zink besetzt sind (s. Abb. 4.4.1.3). Somit läßt sich ein Bogen von LiZnPS₄ über Zn₃(PS₄)₂ zum InPS₄ ($I\overline{4}$; a = 5,623(1) Å, c = 9,058(2) Å) [66] schlagen, bei dem die In-Atome die Hälfte der Tetraederlücken einnehmen.

Abbildung 4.4.1.3: Motiv der kubisch dichtesten Packung der PS₄-Tetraeder bei LiZnPS₄ Bezeichnung der Atome s. Abb. 4.4.1.2

Abbildung 4.4.1.4: Motiv der kubisch dichtesten Packung der PS₄-Tetraeder Zn₃(PS₄)₂, Bezeichnung der Atome s. Abb. 4.4.1.2

4.4.2 Bandstrukturrechnungen

Zur näheren Beschreibung der Bindungsverhältnisse wurde die Elektronenlokalisierungsfunktion (ELF) von LiZnPS₄ berechnet. Mit ihr lassen sich Aussagen über lokalisierte freie- und Bindungselektronenpaare machen. Hierbei nimmt die Funktion an Orten, wo lokalisierte Elektronenpaare vorliegen, große Werte an (bis zu 1), während sie in den übrigen Bereichen kleine Werte liefert. In Abb. 4.4.2.1 sind die ELF-Werte zwischen 0,65 und 0,95 als Höhenlinien dargestellt. Die Ebene wurde so gewählt, daß sie alle relevanten Wechselwirkungen, nämlich die P-S-, Zn-S- und Li-S-Bindungen, enthält. Die größten ELF-Werte (0,95) treten im Bereich der freien Elektronenpaare der Schwefelatome auf, vergleichbar hoch (> 0,9) ist die ELF im Bindungsbereich zwischen den P- und S-Atomen innerhalb der PS₄-Tetraeder. Hier ergibt sich die charakteristische ELF-Topologie einer kovalenten Bindung zwischen Atomen mit wenig unterschiedlichen Elektronegativitäten (P: 2,1; S: 2,4 nach *Pauling*). In den Valenzbereichen der Zn-S und Li-S Bindungen bleibt die ELF dagegen unterhalb von 0,65 und zeigt damit keinen nennenswerten kovalenten Bindungscharakter an. Die elektropositiven Zink- und Lithiumatome sind hier als Zn^{2+} und Li⁺ zu formulieren; sie werden von den freien Elektronenpaaren der Schwefelatome umgeben, deren Ladungswolken weitgehend in Richtung auf die Metallkationen ausgerichtet sind. Insgesamt unterstützt die ELF die oben angesprochene Strukturbeschreibung, nach der die PS₄ -Tetraeder als negativ geladene Pseudokugeln angesehen werden. Diese kovalenten Baueinheiten werden möglichst dicht gepackt und so ausgerichtet, daß die in den Lücken liegenden Metallkationen von den freien Elektronenpaaren der terminalen Schwefelatome koordiniert werden.

Abbildung 4.4.2.1: Elektronenlokalisierungsfunktion (ELF) von LiZnPS_{4;} Konturlinien von ELF = 0,65 bis 0,95, Schrittweite 0,03

4.5 $LiEuPS_4$

Bei den Versuchen, neue Erdalkalimetall- und Europiumchalcogenophosphate in Metallsulfid-Schmelzen zu synthetisieren, gelang es, die Verbindung LiEuPS₄ darzustellen. In der Reihe der Lanthanoide nimmt das Europium neben anderen eine Sonderstellung ein, da es als drei- und zweiwertiges Kation auftritt. Bei allen bisher bekannten Europiumchalcogenophosphaten findet man allerdings ausschließlich das Eu²⁺-Kation, was sich sowohl auf ternäre Verbindungen (Eu₂P₂X₆ mit X = S, Se [42]) als auch auf zahlreiche quaternäre Verbindungen (K₄Eu(PS₄)₂ [67], KEuPS₄ [39], KEuPSe₄ [68], LiEuPSe₄ [69], TIEuPS₄ [70]) bezieht.

4.5.1 Darstellung und Strukturbestimmung

Gelb-orange Kristalle von LiEuPS₄ konnten beim Erhitzen der Elemente Eu und P mit Li₂S₄ in einem evakuierten Quarzglastiegel erhalten werden. Dazu wurde das Gemenge mit 100°C/h für 20 h auf 700°C erhitzt und mit 50°C/h wieder abgekühlt. Das Produkt hat eine einheitlich orange Farbe und ist weitgehendst rein. Einige kleine Peaks im Pulverdiffraktogramm, die nicht zu LiEuPS₄ gehören, konnten wegen ihrer niedrigen Intensität keiner Verbindung zugeordnet werden. Eine Einkristalluntersuchung auf einem AED-Diffraktometer lieferte eine tetragonale Elementarzelle mit a = 11,498(2) Å und c = 19.882(4) Å mit 2705 Reflexen, von denen nach einer Absorptionskorrektur und der Symmetriereduktion 757 Reflexen mit I $\geq 2\sigma(I)$ zur Strukturbestimmung herangezogen wurden. Mit den Auslöschungsbedingungen hkl: h+k+l = 2n; hk0: h = 2n; 0kl: l = 2n und hhl: 2h+l = 4n ergab sich das Auslöschungssymbol 4/mmmIacd, das nur die Raumgruppe I4₁/acd zuläßt.

Diese Metrik und Raumgruppe legten zunächst die Vermutung nahe, daß es sich um die bisher unbekannte Verbindung EuPS₄ handelt und diese isotyp zu den bisher strukturell charakterisierten $LnPS_4$ -Verbindungen ist (Ln: Seltenerdmetall). Eine Strukturlösung und Verfeinerung mit den Lageparametern von CePS₄ [6] schien zunächst zu bestätigen, daß es sich um das erste Eu³⁺-Thiophosphat handelt.

Auffallend war ein Restelektronenmaximum von 3 $e/Å^3$ bei 0,28, 0, $\frac{1}{4}$ in einer Entfernung von ca. 2,4 Å vom nächsten S-Atom. Derartiges war bei eigenen Untersuchungen an

verschiedenen *Ln*PS₄-Verbindungen nicht zu beobachten. Wird diesem Maximum ein Li-Atom zugeordnet, verringert sich der konventionelle R-Wert von 0,035 auf 0,025, der gewichtete R-Wert von 0,100 nach 0,065 und die maximale Restelektronendichte beträgt nur noch 0,77 e/Å³. Es handelt sich demnach nicht um Eu^{III}PS₄, sondern LiEu^{II}PS₄.

Raumgruppe :	I4 ₁ /acd (Nr. 142)
Meßgerät:	AED
Gitterkonstanten [Å]:	a = 11,498(2)
	c = 19,882(4)
Formeleinheiten/Zelle:	Z = 16
Zellvolumen [Å ³]:	2628,7(6)
Dichte (röntgenographisch) [g×cm ⁻³]:	3,215
Meßbereich :	$4^\circ \le 2\theta \le 70^\circ$
	$-18 \le h \le 18$
	$-18 \le k \le 18$
	$0 \le 1 \le 32$
Absorptionskorrektur:	Ψ-scan
Absorptionskoeffizient μ [mm ⁻¹]:	10,92
T _{min} :	0,359
T _{max} :	0,998
Anzahl der Reflexe:	0,039
gemessen:	2705
symmetrieunabhängig:	1455
mit $I \ge 2\sigma(I)$:	757
R _{int} :	0,039
R ₁ :	0,025
wR ₂ (alle Reflexe):	0,065

Tabelle 4.5.1.1: Strukturdaten der Verbindung LiEuPS₄

8 Eu1 auf 8b (0, ¼, 1/8)		$U_{11} = U_{22} = 164(3)$	$U_{12} = -2(1)$
		U ₃₃ = 129(3)	$U_{13} = U_{23} = 0$
8 Eu2 auf 8a (0, ¼, 3/8)		$U_{11} = U_{22} = 164(3)$	$U_{12} = U_{13} = U_{23} = 0$
		$U_{33} = 164(3)$	
16 P auf 16e (x, 0, ¼)	x = 0,0349(1)	$U_{11} = 105(5)$	$U_{12} = U_{13} = 0$
		U ₂₂ = 128(5)	$U_{23} = 0(6)$
		U ₃₃ = 109(5)	
32 S1 auf 32g (x, y, z)	x = 0,2474(1)	U ₁₁ = 166(4)	U ₁₂ = 70(3)
	y = 0,31637(8)	U ₂₂ = 194(4)	$U_{13} = 11(4)$
	z = 0,91563(4)	$U_{33} = 171(4)$	$U_{23} = 2(4)$
32 S2 auf 32g (x, y, z)	x = 0,10240(8)	U ₁₁ = 156(4)	$U_{12} = -10(4)$
	y = 0,11554(8)	U ₂₂ = 152(4)	$U_{13} = 15(4)$
	z = 0,00246(6)	U ₃₃ = 179(4)	U ₂₃ = -29(3)
16 Li auf 16e (x, 0, ¼)	x = 0,2832(10)	U ₁₁ = 150(40)	$U_{12} = U_{13} = 0$
		U ₂₂ = 450(70)	$U_{23} = 0(6)$
		U ₃₃ = 400(70)	

Tabelle 4.5.1.2: Atomparameter und anisotrope Auslenkungsparameter [pm²] von LiEuPS4

Eu1 - S1	4×3,100(1)	Eu2	- S1	4×3,054(1)
- S2	4×3,116(1)		- S2	4×3,194(1)
Li - S1	2 × 2,409(8)	Tetraeder um Li	S1 – Li – S1	1 × 88,3(4)
- S2	2×2,410(8)		S1 - Li - S2	2×119,11(4)
			S1 – Li – S2	2×122,16(4)
			S2 – Li – S2	1 × 89,6(4)
P - S1	2×2,042(1)	Tetraeder um P	S1 - P - S1	1×110,45(8)
- S2	2×2,048(1)		S1 - P - S2	2×109,04(5)
			S1 - P - S2	2×108,14(5)
			S2 - P - S2	1×112,04(8)

Tabelle 4.5.1.3: Atomabstände [Å] und ausgewählte Winkel [°] von LiEuPS₄

4.5.2 Strukturbeschreibung

Die Kristallstruktur von LiEuPS₄ ist sehr eng mit der von PrPS₄ [71] verwandt, der Unterschied besteht lediglich darin, daß noch vorhandene Lücken in dem PrPS₄-Gerüst von Li-Atomen besetzt werden. LiEuPS₄ enthält isolierte PS₄-Tetraeder, die nur wenig verzerrt sind, wie die Winkel und Atomabstände in Tab.4.5.1.3 belegen; letztere sind mit 2,04 Å etwas kürzer als die Summe der Kovalenzradien von 2,14 Å [37]. Demnach ist LiEuPS₄ ebenso wie *Ln*PS₄ als Orthothiophosphat zu bezeichnen. Wie aus den Abb. 4.5.2.1 und Abb. 4.5.2.2 hervorgeht, sind die einzelnen PS₄-Tetraeder - je nach Blickrichtung - in gleicher Orientierung oder jeweils um 180° gedreht hintereinander angeordnet. Dazwischen befinden sich die Eu-Atome; sie werden von acht Schwefel-Atomen umgeben, die paarweise zu jeweils vier Tetraedern gehören (s. Abb. 4.5.2.3). Die dabei gebildeten Polyeder haben die Form eines verzerrten quadratischen Antiprismas.

Abbildung 4.5.2.1: Elementarzelle von LiEuP₄ (PS₄-Tetraeder hervorgehoben) Eu: (groß, dunkel), Li: (groß, mittelgrau), P: (klein, dunkel), S: (klein, hell)

Abbildung 4.5.2.2: LiEuPS₄: Projektion entlang [001] (PS₄-Tetraeder hervorgehoben). Atombezeichnung s. Abb. 4.5.2.1

In Abb. 4.5.2.3 sind die quadratischen Flächen durch dicke Verbindungslinien hervorgehoben. Die mittleren Eu-S-Abstände liegen mit 3,11 Å (Eu1) bzw. 3.12 Å (Eu2) merklich über der Ionenradiensumme von 3.01 Å [37]. Die Polyeder sind in Richtung der c-Achse über Kanten und entlang der a- und b-Achsen über Ecken miteinander verbunden.

Abbildung 4.5.2.3: Verknüpfung der Koordinationspolyeder um Europium (quadratisches Antiprisma um Eu1 hervorgehoben)

In der PrPS₄-Struktur sind entlang der c-Achse Kanäle vorhanden, die bei LiEuPS₄ mit Lithium gefüllt werden. Um das Li-Atom sind vier S-Atome in Form eines stark verzerrten Tetraeders angeordnet, dessen Winkel von 89° bis 122° reichen und das mit zwei benachbarten PS₄-Tetraedern kantenverknüpft ist (s. Abb. 4.5.2.4). Die Längen der Li-S-Bindungen befinden sich mit 2,41 Å im Bereich der Ionenradiensumme (2,43 Å [37]) bzw. sind etwas größer als die Kovalenzradiensumme von 2.27 Å [37]. Durch die Verknüpfung der Tetraeder werden zwei Tetraeder-Stränge gebildet. Ein Strang verläuft entlang der a-Achse, der zweite in Richtung der b-Achse. Mit dem Selenophosphat LiEuPSe₄, das in der Raumgruppe Ama2 kristallisiert [69], ist LiEuPS₄ nicht isotyp, aber auch die EuPSe₄-Teilstruktur enthält Kanäle, in denen sich Li-Atome befinden. Zur Bestätigung der Annahme, daß Eu in LiEuPS₄ zweiwertig vorliegt, müßten magnetische Messungen oder Mössbauer-spektroskopische Untersuchungen durchgeführt werden. Es gelang allerdings bisher nicht, genügend Reinsubstanz zu synthetisieren.

Abbildung 4.5.2.4: Verknüpfung der LiS₄-Tetraeder (grau hervorgehoben) mit den PS₄-Tetraedern

4.6 KBaPS₄ und KBaPSe₄

In den letzten Dekaden wurde über zahlreiche quaternäre Metallchalcogenophosphate berichtet. Hierbei handelt es sich um Metalle der ersten, dritten, vierten und fünften Hauptgruppe sowie Nebengruppenmetalle und Lanthanoide.

Von den Erdalkalimetallen wurden bisher keine quaternären Chalcogenophosphate in der Literatur erwähnt. Lediglich deren ternäre Hexachalcogeno-Hypodiphosphate $(P_2X_6^{4}$ -Anionen) [42] sowie Ba₃(PS₄)₂ und Ba₃(PSe₄)₂ sind bekannt und strukturell untersucht worden. Als erste quaternäre Verbindungen konnten K2MgP2Se6 und $Ag_2MgP_2S_6$ [72] synthetisiert und charakterisiert werden. Mit den beiden Titelverbindungen gelang die Synthese und Strukturbestimmung der ersten quaternären Erdalkalimetallorthothiophosphate.

4.6.1 Darstellung und Strukturbestimmung

Für die Darstellung der beiden Verbindungen die wurden ternären Bariumchalcogenophosphate Ba₃(PX₄)₂ (X = S, Se) mit einem geringen Überschuß an KCl umgesetzt. Die Reaktion erfolgte in evakuierten Quarzglasampullen bei 790°C (30 h) mit anschließendem langsamen Abkühlen (5°C/h). Hierbei entstanden farblose (KBaPS₄) bzw. leicht orange gefärbte (KBaPSe₄) Kristalle. Als Nebenprodukte konnten in beiden Fällen BaCl₂ und nicht umgesetztes KCl identifiziert werden. Die Titelverbindungen können an der Luft gehandhabt werden, sie zersetzen sich jedoch nach einigen Wochen. Aus den jeweiligen Präparaten wurden einzelne Kristalle ausgelesen, die für eine Strukturuntersuchung geeignet waren. Einkristalluntersuchungen auf einem Diffraktometer (KBaPS₄: IPDS bzw. KBaPSe₄: AED) lieferten orthorhombische Elementarzellen mit a = 11,587(2) Å, b = 6,700(1) Å und c = 10,118(2) Å für KBaPS₄ und a = 11,972(2) Å, b = 6.973(1) Å und c = 10.388(2) Å für KBaPSe₄. Nach einer numerischen bzw. Ψ -Scan Absorptionskorrektur und der Symmetriereduktion konnten 1112 bzw. 968 Reflexe mit I $\geq 2\sigma(I)$ zur Strukturbestimmung herangezogen werden. Mit den Auslöschungsbedingungen hk0: h = 2n; 0k1: k+l = 2n ergab sich das Auslöschungssymbol mmmPn-a, das die Raumgruppen Pn21a und Pnma zuläßt. Die Strukturen ließen sich in der Raumgruppe Pnma lösen, anisotrop verfeinern und konvergierten bei konventionellen
R-Werten von 2,9% (KBaPS₄) und 3,8% (KBaPSe₄). Die Ergebnisse der Strukturanalyse sind in den Tab. 4.6.1.1 bis 4.6.1.3 aufgelistet.

	KBaPS ₄	KBaPSe ₄
Raumgruppe :	Pnma (Nr. 62)	
Meßgerät:	IPDS	AED
Gitterkonstanten [Å]:	a = 11,587(2)	a = 11,972(2)
	b = 6,700(1)	b = 6,973(1)
	c = 10,118(2)	c = 10,388(2)
Formeleinheiten/Zelle:	Z = 4	
Zellvolumen [Å ³]:	785,5(2)	867,2(3)
Dichte (röntgenographisch) $[g \times cm^{-3}]$:	2,838	4,008
Meßbereich :	$6^{\circ} \le 2\theta \le 61^{\circ}$	$5^\circ \le 2\theta \le 65^\circ$
	$-16 \le h \le 16$	$0 \le h \le 18$
	$-9 \le k \le 8$	$0 \le k \le 10$
	$-14 \le l \le 14$	$0 \le l \le 15$
Absorptionskorrektur:	numerisch	Ψ-Scan
Absorptionskoeffizient μ [mm ⁻¹]:	6,74	21,93
T _{min} :		0,428
T _{max} :		0,999
Anzahl der Reflexe:		
gemessen:	9667	1681
symmetrieunabhängig:	1239	1681
mit $I \ge 2\sigma(I)$:	1112	968
R _{int} :	0,076	0,119
R ₁ :	0,029	0,038
wR ₂ (alle Reflexe):	0,075	0,091

Tabelle 4.6.1.1: Strukturdaten der Verbindungen KBaPS₄ und KBaPSe₄

	KBaPS ₄	KBaPSe ₄
4 K auf 4c $(x, \frac{1}{4}, z)$	x = 0,0916(2)	x = 0,1057(4)
	z = 0,3383(2)	z = 0,3368(4)
	$U_{eq} = 655(6)$	$U_{eq} = 586(10)$
4 Ba auf 4c (x, $\frac{1}{4}$, z)	x = 0,14784(2)	x = 0,14756(5)
	z = 0,89087(3)	z = 0,88856(6)
	$U_{eq} = 204(1)$	$U_{eq} = 164(2)$
4 P auf 4c $(x, \frac{1}{4}, z)$	x = 0,8141(1)	x = 0,8165(2)
	z = 0,8978(1)	z = 0,8962(3)
	$U_{eq} = 199(2)$	$U_{eq} = 153(5)$
$4 X1 auf 4c (x, \frac{1}{4}, z)$	x = 0,4150(1)	x = 0,4190(1)
	z = 0,7700(1)	z = 0,7791(1)
	$U_{eq} = 347(3)$	$U_{eq} = 346(3)$
8 X2 auf 8d (x, y, z)	x = 0,28801(9)	x = 0,2896(8)
	y = 0,9970(2)	y = -0,0041(1)
	z = 0,1087(1)	z = 0,1096(9)
	$U_{eq} = 365(3)$	$U_{eq} = 346(3)$
$4 X3 auf 4c (x, \frac{1}{4}, z)$	x = 0,9117(1)	x = 0,91658(9)
	z = 0,0686(1)	z = 0,0745(1)
	$U_{eq} = 230(2)$	$U_{eq} = 196(3)$

 Tabelle 4.6.1.2: Atomparameter und äquivalente Auslenkungsparameter [pm²]

K - S3 1 × 3,435(2)		Ba - S3	1 × 3,274(1)
1 × 3,826(2)			2×3,445(1)
- S2 2×3,488(2)		- S2	2×3,220(1)
2×3,667(3)			2×3,383(1)
2×3,941(2)		- S1	1 × 3,151(1)
- S1 2×3,422(1)			1 × 3,329(1)
$1 \times 4,460(3)$			
P - S3 1×2,065(2)	Tetraeder um P	S2 - P - S1	2×107,63(5)
- S2 2×2,036(1)		S3 - P - S1	1 × 112,25(8)
- S1 1×2,062(2)		S3 - P - S2	2×110,21(5)
		S2 - P - S2	1 × 108,80(9)

Tabelle 4.6.1.3: Atomabstände [Å] und Winkel [°] für KBaPS₄

 Tabelle 4.6.1.4:
 Atomabstände [Å] und Winkel [°] für KBaPSe4

K - Se3	$1 \times 3,542(4)$	Ba - Se3	1 × 3,373(1)
	$1 \times 3,835(4)$		2×3,591(1)
- Se2	2×3,570(3)	- Se2	2 × 3,322(1)
	2×3,655(3)		2×3,479(1)
	2×4,191(3)	- Se1	1 × 3,243(1)
- Sel	2×3,550(1)		1 × 3,443(2)
	1 × 4,573(3)		

Р	- Se3	1 × 2,207(3)	Tetraeder um P	Se2 - P - Se1	2×107,6(1)
	- Se2	2×2,180(2)		Se1 - P - Se3	1×113,1(1)
	- Se1	1 × 2,196(3)		Se3 – P – Se2	2×109,8(1)
				Se2 - P - Se2	1 × 108,7(1)

4.6.2 Strukturbeschreibung

In der Struktur der Titelverbindungen liegen isolierte tetraedrische PS_4^{3-} -Anionen vor (s. Abb.4.6.2.2). Die Bindungswinkel schwanken von 107,6° bis 112,3° (KBaPS₄) bzw. von 107,6° bis 113,1° (KBaPSe₄) um den idealen Tetraederwinkel. Die P-*X*-Abstände betragen im Mittel 2,05 Å (X = S) und 2,19 Å (X = Se) und sind damit etwas kürzer als die Summe der Einfachbindungsradien nach *Pauling*[37], was auf den schon vielfach diskutierten Doppelbindungscharakter zurückzuführen ist. Der dreidimensionale Bauzusammenhang entspricht weitgehend dem von TIEuPS₄, dessen Struktur auf den Sr₂GeS₄-Typ (P2₁/m) [73] zurückzuführen ist (s. Abb. 4.6.2.1).

Abbildung 4.6.2.1: Kristallstruktur von TlEuPS₄ entlang [001] mit den Prismen um die Metallatome, gestrichelte Linien deuten die 6+2 Koordination an, Tl: (groß, mittelgrau), Eu: (groß, dunkel), P: (klein, dunkel), S: (klein, hell)

Bei diesem sind die Sr^{2+} -Kationen in ihrer ersten Koordinationssphäre von 6 (+2) S-Nachbarn umgeben. Sechs S-Atome bilden ein nahezu unverzerrtes trigonales Prisma, über dessen Vierecksflächen in den Richtungen [010] und $0\overline{10}$ zwei weitere S-Atome in etwas größerem Abstand liegen. Die Prismen sind entlang der kristallographischen b-Achse über gemeinsame Kanten zu "Zickzack-Ketten" und entlang der c-Achse über ihre Dreiecksflächen verknüpft. Sowohl die GeS4-Tetraeder als auch die SrS4/4S2/2-Prismen sind exakt parallel zur b-Achse ausgerichtet. Zu den quaternären Verbindungen gelangt man, wenn die Plätze der Sr-Atome in der c-Richtung alternierend von K- und Ba-Atomen eingenommen werden. Dadurch geht die exakte Ausrichtung der Tetraeder und Prismen verloren, was sich in einer Verdoppelung der a-Achse niederschlägt. Durch die merklich größeren K- und Ba-Atome ist das Prisma um Ba deutlich verzerrt, um K ist die Prismenform nur noch ansatzweise zu erkennen. Das Ba-Atom ist in KBaPS₄ von sechs S-Atomen in Abständen von 3,15 Å bis 3,38 Å als verzerrtes trigonales Prisma umgeben. Zwei S-Atome im Abstand von 3,45 Å koordinieren das Barium über zwei Vierecksflächen. Zusätzlich ist noch ein neuntes S-Atom zur Koordinationssphäre des Bariums zu zählen. Es liegt über der dritten Vierecksfläche des Prismas mit einem Abstand von 3,33 Å (s. Abb. 4.6.2.3 und 4.6.2.4). Bei TlEuPS₄ ist der betreffende Abstand mit 3,77 Å deutlich größer als zu den ersten acht S-Atomen (Eu-S: 2,97 Å - 3,08 Å). Ermöglicht wird diese zusätzliche Koordination durch eine Verschiebung der Schwerpunkte der PS₄-Tetraeder in Richtung der n-Gleitspiegelebene bei x = 0.25. Dadurch bewegen sich die S2-Atome um $\pm 0,04$ (auf x = 0,21) von der n-Gleitspiegelebene weg, was eine starke Deformation der Prismen zur Folge hat. Verbunden damit bewegen sich die S3-Atome auf die Ba-Atome zu und sind so an deren Koordination beteiligt. Das trigonale Prisma um das K-Atom ist derart verzerrt, daß der längste Abstand zum Zentralatom 4,46 Å beträgt. Dieser Wert überschreitet zwar die Distanzen zu zehn weiteren S-Atomen (3,42 Å - 3,94 Å) beträchtlich, insgesamt aber wird die K-Umgebung von elf S-Atomen aufgebaut (s. Abb. 4.6.2.4).

Abbildung 4.6.2.2: Kristallstruktur von KBaPS_{4;} K: (groß, hell); Ba: (groß, dunkel); P: (klein, dunkel); S: (klein, hell).

Abbildung 4.6.2.3: Prismen (dick eingezeichnet) um Ba in KBaPS₄ entlang [001]; gestrichelte Linien deuten die 6+3 Koordination an; Atombezeichnung s. Abb. 4.6.2.2

Abbildung 4.6.2.4: Koordination der Metallatome in KBaPS₄ entlang [010], die verzerrten Prismen sind hervorgehoben; K-S-Bindungslänge in Å; Atombezeichnung s. Abb. 4.6.2.2

Eine weitere Möglichkeit zur Strukturbeschreibung ergibt sich, wenn die PS₄-Tetraeder wiederum als Pseudokugeln betrachtet werden. Sie bilden das Motiv einer - wenn auch stark verzerrten - hexagonal-dichtesten Packung. In den Oktaeder- und Tetraederlücken dieser Packung liegen die K- bzw. Ba-Atome. Abbildung 4.6.2.5 zeigt einen Ausschnitt aus der Struktur, in dem das Motiv der hexagonal dichtesten (hcp) Packung der PS₄-Tetraeder zu erkennen ist. Die K-Atome besetzen alle Oktaederlücken (OL) und die Hälfte aller Tetraederlücken (TL) werden von den Ba-Atomen besetzt. KBaPS₄ läßt sich auf diese Weise als quasiternäre Variante der Ni₂In-Struktur (Ni^{OL}Ni^{1/2TL}In^{hep}) [74] gemäß K^{OL}Ba^{1/2TL}(PS₄)^{hep} verstehen.

Abbildung 4.6.2.5: Motiv der hexagonal dichtesten Packung der PS₄Tetraeder Atombezeichnung s. Abb. 4.6.2.2; Abstände in Å.

5 Thiophosphathalogenide

Ein beträchtlicher Teil der Festkörperforschung beschäftigt sich mit Problemen der elektrischen Leitfähigkeit mit dem Ziel, neue Verbindungen als Elektrodenmaterial und Festelektrolyte zu entwickeln. Für die elektrische Leitfähigkeit in ionischen Festkörpern sind unter anderem die Kationen als Ladungsträger verantwortlich, von denen besonders Li⁺- und Ag⁺-Ionen in Frage kommen. Fast alle Ionenkristalle besitzen eine spezifische Leitfähigkeit, die allerdings bis um den Faktor 10^{10} kleiner sein kann als die von Metallen. In einfachen Ionenverbindungen wie z.B. NaCl können die Na⁺-Ionen über Kationenleerstellen (Schottky-Defekt) im Kristall wandern. Solche Leerstellen kommen in jedem Realkristall vor. Daneben sind einige ionische Verbindungen gefunden worden, deren Leitfähigkeit sehr viel größer ist als bei den meisten anderen Stoffen dieser Verbindungsklasse. Sie werden "schnelle Ionenleiter" genannt. Bereits 1913 wurde diese Eigenschaft bei der Hochtemperaturform des Silberiodids (kubisches α -AgI) festgestellt. Diese herausragende Eigenschaft läßt sich durch seine Struktur erklären, deren Besonderheit darin besteht, daß es eine große Zahl von Möglichkeiten gibt, die Kationen darin unterzubringen. Die Elementarzelle des α-AgI enthält zwei I-Ionen (kubisch innenzentriert) und deshalb auch zwei Ag⁺-Ionen. Für diese stehen sechs Gitterplätze mit oktaedrischer, 12 mit tetraedrischer und 24 mit trigonaler Umgebung zur Verfügung. Die Strukturbestimmung hat ergeben, daß die zwei Ag⁺-Ionen energetisch gleichwertig statistisch auf die 12 Tetraederplätze verteilt sind. Zählt man nur die Tetraederplätze, bleiben immer noch fünf unbesetzte Lücken im Gitter für jedes Ag⁺-Ion. Man kann sich vorstellen, daß die Ag⁺-Ionen von einem Tetraederplatz zum nächsten durch einen trigonalen Hohlraum (Zentrum der gemeinsamen Flächen zweier flächenverknüpfter Tetraeder) springen. Dabei ändert sich die Koordinationszahl in der Weise $4 \rightarrow 3 \rightarrow 4$, wozu nur eine geringe Aktivierungsenergie benötigt wird, und die Ag⁺-Ionen können so relativ leicht durch das Gitter wandern. Diese große Beweglichkeit der Kationen im Gitter des α-AgI wird auch als Eigenschaft eines "geschmolzenen Untergitters" der Ag⁺-Ionen umschrieben.

Für eine hohe Ionenleitfähigkeit müssen mehrere Faktoren erfüllt sein [75]:

- 1. Die Ladung der Kationen ist klein.
- Die Koordinationszahl der Kationen ist ebenfalls klein, und beim Sprung von einem Gitterplatz zum nächsten ändert sie sich nur wenig.
- 3. Das Anion ist polarisierbar. Das bedeutet, seine Elektronenhülle kann leicht deformiert werden und erleichtert dadurch die Bewegung der Kationen.
- 4. Es gibt eine große Zahl von vakanten Gitterplätzen für die Kationen.

Alle diese Bedingungen treffen für das α -AgI zu. Daneben wurden im Laufe der Zeit weitere Verbindungen erhalten und auf diese Eigenschaft untersucht. Neben Silberverbindungen wie z.B. Ag₂HgI₄, RbAg₄I₅, Ag₂₆I₁₈W₄O₁₆, Ag₁₆I₁₂P₂O₇, Ag₈I₄V₂O₇ und Ag₅IP₂O₇ [76] gehören auch einige Kupfer(I)-Verbindungen wie z.B. CuBr, CuI und Verbindungen des Typs Cu₆PS₅*Hal* mit *Hal* = Cl, Br, I [5] in die Reihe der schnellen Ionenleiter. Die nachfolgenden Metallthiophosphathalogenide zeigen kristallographische Gegebenheiten, die sie ebenfalls als gute Ionenleiter in Betracht kommen lassen.

5.1 $Ag_5PS_4Cl_2$

Die neue Verbindung Ag₅PS₄Cl₂ resultierte aus den Versuchen, guaternäre Erdalkalimetallthiophosphate zu synthetisieren bzw. die Kristallqualitäten von Erdalkalimetallthiophosphaten in Ag-Halogenid-Schmelzen zu verbessern. Ag₅PS₄Cl₂-Kristalle bilden sich beim Erhitzen einer Mischung aus $Ba_3(PS_4)_2$ mit AgCl in evakuierten Quarzglasampullen bei einer Reaktionstemperatur von 450°C (10 - 20 h). Sie sind feuchtigkeitsunempfindlich, transparent und besitzen eine schwach-grüne Färbung; ihr Anteil am Reaktionsprodukt kann über 50% betragen. Als ein Nebenprodukt bildet sich in geringen Mengen die ebenfalls neue Verbindung Ag₁₀(PS₄)₂SCl₂. Die aus Pulverdaten bekannte Verbindung Ag₆PS₅Cl [79] bildet sich unter diesen Bedingungen nicht. Die Bestimmung der Elementarzelle von Ag₅PS₄Cl₂ auf einem IPDS-Diffraktometer bei ca. 20°C ergab eine C-zentrierte Zelle mit a = 11,049(2) Å, b = 6,341(1) Å und c = 7,450(1) Å. Strukturrechnungen mit orthorhombischer Symmetrie führten zu keinen verwertbaren Ergebnissen, nur in der monoklinen Raumgruppe C2 ($\beta = 90.0^{\circ}$) ergab sich ein strukturchemisch sinnvolles Ergebnis. Allerdings müssen zwei Ag-Positionen als Splitlagen verfeinert werden. Eine weitere Messung bei -170°C führte zu einer zentrierten orthorhombischen Elementarzelle mit a = 7,409(1) Å, b = 11,143(2) Å und c = 6,258(1) Å. Von 2691 Reflexen konnten nach einer numerischen Absorptionskorrektur und der Symmetriereduktion 791 Reflexe mit $I \ge 2\sigma(I)$ zur Strukturbestimmung herangezogen werden. Die Auslöschungsbedingung hkl: k+l = 2n ergibt das Auslöschungssymbol mmmA---, welches die Raumgruppen A222, Amm2 und Ammm zuläßt. Eine Strukturlösung und Verfeinerung in der Raumgruppe Amm2 führte zu den in den Tabellen 5.1.1 bis 5.1.3 aufgelisteten Ergebnissen. Eine Verfeinerung mit einer Ag-Splitlage ist nun nicht mehr nötig. Die Zusammensetzung wurde durch eine bestätigt. Untersuchungen EDX-Anlyse überprüft und auf eine mögliche Phasenumwandlung bei höheren Temperaturen mußten auf einen späteren Zeitpunkt verschoben werden.

Empirische Formel:	Ag ₅ PS ₄ Cl ₂
Messgerät:	IPDS
Raumgruppe:	Amm2 (Nr.38)
Gitterkonstanten [Å]:	a = 7,409(1)
Zellvolumen [Å ³]:	V = 516,7(1)
Formeleinheiten/Zelle:	Z = 2
Dichte (theoretisch) $[g \times cm^{-3}]$:	4,946
Meßtemperatur [°C]:	-170
Meßbereich:	$7^\circ \le 2\theta \le 61^\circ$
hkl-Bereich:	$-9 \le h \le 10$
	$-15 \le k \le 15$
Absorptionskorrektur:	$-8 \le 1 \le 8$
Ausorphonskonektur.	numensen
Absorptionskoeffizient μ [mm ⁻¹]:	10,72
Absorptionskoeffizient μ [mm ⁻¹]: T _{min} :	10,72 0,095
Absorptionskoeffizient μ [mm ⁻¹]: T _{min} : T _{max} : Anzahl der Reflexe:	10,72 0,095 0,169
Absorptionskoeffizient μ [mm ⁻¹]: T _{min} : T _{max} : Anzahl der Reflexe: gemessen:	10,72 0,095 0,169 2691
Absorptionskoeffizient μ [mm ⁻¹]: T _{min} : T _{max} : Anzahl der Reflexe: gemessen: symmetrieunabhängig:	10,72 0,095 0,169 2691 800
Absorptionskoeffizient μ [mm ⁻¹]: T _{min} : T _{max} : Anzahl der Reflexe: gemessen: symmetrieunabhängig: mit I $\ge 2\sigma(I)$:	10,72 0,095 0,169 2691 800 791
Absorptionskoeffizient μ [mm ⁻¹]: T _{min} : T _{max} : Anzahl der Reflexe: gemessen: symmetrieunabhängig: mit I $\ge 2\sigma(I)$: R _{int} :	10,72 0,095 0,169 2691 800 791 0,042
Absorptionskoeffizient μ [mm ⁻¹]: T _{min} : T _{max} : Anzahl der Reflexe: gemessen: symmetrieunabhängig: mit I $\geq 2\sigma(I)$: R _{int} : R ₁ :	10,72 0,095 0,169 2691 800 791 0,042 0.023

 Tabelle 5.1.1:
 Strukturdaten von Ag₅PS₄Cl₂

2 Ag1 auf 2b (½, 0, z)	z = 0,4021(2)	$U_{11} = U_{33} = 135(4)$	$U_{12} = U_{13} = U_{23} = 0$
		$U_{22} = 285(4)$	
8 Ag2 auf 8f (x, y, z)	x = 0,22080(6)	$U_{11} = 192(2)$	$U_{23} = -72(2)$
	y = 0,19101(3)	$U_{22} = 180(2)$	$U_{13} = -72(2)$
	z = 0,87268(9)	U ₃₃ = 224(2)	$U_{12} = 59(1)$
2 P auf 2a (0, 0, z)	z = 0,4602(4)	$U_{11} = 103(12)$	$U_{12} = U_{13} = U_{23} = 0$
		U ₂₂ = 64(9)	
		U ₃₃ = 96(11)	
4 S1 auf 4d (0, y, z)	y = 0,1481(2)	U ₁₁ = 116(8)	$U_{12} = U_{13} = 0$
	z = 0,2599(3)	U ₂₂ = 87(7)	U ₂₃ = 29(5)
		U ₃₃ = 105(7)	
4 S2 auf 4c (x, 0, z)	x = 0,2277(2)	$U_{11} = 98(8)$	$U_{12} = U_{23} = 0$
	z = 0,6499(3)	$U_{22} = 83(7)$	$U_{13} = -7(6)$
		U ₃₃ = 110(8)	
4 Cl auf 4e (½, y, z)	y = 0,3268(2)	U ₁₁ = 136(8)	$U_{12} = U_{13} = 0$
	z = 0,6168(3)	U ₂₂ = 194(7)	$U_{23} = -30(6)$
		U ₃₃ = 136(8)	

Tabelle 5.1.2: Atomkoordinaten und anisotrope Auslenkungsparameter $[pm^2]$ von
 $Ag_5PS_4Cl_2$

Ag1	-S2	2×2,545(2)	Tetraeder um Ag1	S2-Ag1-S2	1 × 104,89(9)
	-Cl	2×2,629(2)		S2-Ag1-Cl	4×114,45(3)
				Cl-Ag1-Cl	1 × 94,46(9)
Ag2	-S1	1 × 2,528(2)	trigonale Bipyramide um Ag2	S1-Ag2–S2	1×116,97(6)
	-S1	1 × 2,963(2)		S1-Ag2-Cl	1×137,64(6)
	-S2	1 × 2,545(1)		S2-Ag2-Cl	1×104,12(6)
	-Cl	1×2,579(1)		S1-Ag2-S1	1 × 89,17(4)
	-Cl	1 × 3,022(2)		S2-Ag2-S1	1×108,91(5)
				S1-Ag2-Cl	1 × 86,90(4)
Cl	-Agl	1 × 2,629(2)	quadratische Pyramide um Cl	S1-Ag2-Cl	1 × 86,55(4)
	-Ag2	2×2,579(1)		S2-Ag2-Cl	1 × 96,58(6)
		2×3,022(2)		S1-Ag2-Cl	1×153,16(5)
				Cl-Ag2-Cl	1 × 78,66(3)
Р	-S1	2 × 2,072(2)	Tetraeder um P	S2-P-S2	1 × 109,7(2)
	-S2	2×2,063(2)		S2-P-S1	4×110,37(4)
				S1-P-S1	1×105,6(2)

Tabelle 5.1.3: Bindungslängen [Å] und ausgewählte Winkel [°] von Ag₅PS₄Cl₂

Die neue Verbindung $Ag_5PS_4Cl_2$ ist aus PS_4 -Tetraedern und Ag(S,Cl)-Polyedern aufgebaut. Mit Bindungslängen von 2,07 Å und 2,06 Å (s. Tab. 5.1.3) sowie Tetraederwinkeln zwischen 105,6° und 110,4° liegen hier nahezu unverzerrte PS_4 -Tetraeder vor. Die Koordinationssphären der beiden Ag-Atome unterscheiden sich deutlich voneinander. Das Ag1-Atom bildet mit je zwei S2 - und Cl-Atomen ein Tetraeder. Der Ag1-S2-Abstand befindet sich mit 2,55 Å im Bereich der Ag-S-Abstände vom Ag₃PS₄. Der Ag1-Cl-Abstand von 2,63 Å ist um 0,3 Å größer als die Summe der Kovalenzradien (2,33 Å [37]) und übertrifft die Ag-S-Bindung, obwohl der Kovalenzradius von Schwefel 0,05 Å größer ist als der von Chlor. In AgCl ist der Abstand noch größer und beträgt 2,77 Å [77]. Dabei handelt es sich um eine allgemeine Tendenz, was auch in den weiteren Silberthiophosphathalogeniden beobachtet wird. Bei den Tetraederwinkeln reichen die Werte von 94,5° bis 114,5°, was eine geringe Verzerrung zur Folge hat. Eine vollkommen andere Koordination tritt beim Ag2-Atom auf. Mit zwei Ag-S-Abständen von 2,53 Å bzw. 2,55 Å und einem Ag-Cl-Abstand von 2,58 Å ist Ag2 hier verzerrt trigonal-planar koordiniert (s. Abb. 5.1.1). Eine genauere Betrachtung zeigt allerdings, daß noch ein weiteres S- und Cl-Atom in Abständen von 2,96 Å und 3,02 Å zur Ag2-Sphäre gezählt werden können, die mit dem Zentralatom einen Winkel von 153,2° bilden, so daß eine verzerrte trigonale Bipyramide um das Ag2-Atom resultiert (s. Abb. 5.1.2). Die Tetraeder um das Ag1-Atom sind im Wechsel mit den PS4-Tetraedern über ihre gemeinsamen Ecken zu Strängen entlang [100] verknüpft. Dagegen stehen die trigonalen Bipyramiden der Ag2-Atome untereinander über gemeinsame Kanten in Kontakt (s. Abb. 5.1.3). Die Anordnung aller Polyeder ergibt eine dreidimensionale Struktur, die sich von der Ag₃PS₄-Struktur ableitet. Ein Vergleich der Abbildungen 4.1.1 mit 5.1.4 sowie der Abbildungen 5.1.5 mit 5.1.6 verdeutlicht die Ähnlichkeit beider Verbindungen. In den Abbildungen sind - aus Gründen der Übersichtlichkeit - für Ag2 nur die drei nächsten Nachbarn hervorgehoben. Bei Ag₃PS₄ bilden die S-Atome eine hexagonal dichte Kugelpackung, bei der die Hälfte der Tetraederlücken mit Silber und Phosphor in geordneter Verteilung besetzt ist. Dadurch entsteht ein dreidimensionales Gerüst eckenverknüpfter Tetraeder. Dagegen sind die S- und Cl-Atome bei Ag₅PS₄Cl₂ nicht in Form einer dichten Kugelpackung angeordnet. Allerdings verlaufen auch bei dieser Verbindung längs [100] Ketten eckenverknüpfter Tetraeder, die von S- und Cl-Atomen gebildet und abwechselnd von Phosphor (4 S-Nachbarn) und Ag1 (2 S, 2 Cl) zentriert werden. Durch dieses Strukturmotiv unterscheiden sich die betreffenden Gitterparameter beider Verbindungen nur wenig (Ag₃PS₄: a = 7,647 Å). Die Ketten sind bei dem Thiophosphathalogenid längs [010] nicht direkt miteinander verknüpft, der Kontakt kommt statt dessen über die verzerrt trigonal planar koordinierten Ag2-Atome zustande (s. Abb. 5.1.1). Dadurch verdoppelt sich gegenüber Ag_3PS_4 (b = 6,858 Å) die b-Achse annähernd, während der Wert für c bei beiden Verbindungen im gleichen Bereich liegt $(Ag_3PS_4: c = 6,506 \text{ Å})$. Würde bei dieser Anordnung auch Ag2 eine tetraedrische Koordination anstreben, müßte es aus seiner trigonal planaren Umgebung z. B. in Richtung des weiter entfernt liegenden S-Atoms (2,96 Å, s. Abb. 5.1.2) wandern. Aus Abbildung 5.1.5 geht aber hervor, daß dann die betreffenden Tetraederlücken nur abwechselnd besetzt werden könnten, da sich anderenfalls zu kurze Ag-Ag-Abstände ergeben würden. Denkbar wäre auch eine Auslenkung in die Gegenrichtung mit einer alternierenden Besetzung der beiden Tetraederlücken, was aber offensichtlich ungünstiger wäre. Die Aufsplittung der Ag2-Position bei Raumtemperatur deutet die Möglichkeit einer Ag-Bewegung an.

Abbildung 5.1.1: Elementarzelle von Ag₅PS₄Cl₂; trigonale Ag2-Koordination grau hervorgehoben; Ag: (groß, hell); P: (klein, dunkel); S: (klein, hell) Cl: (groß, dunkel)

Abbildung 5.1.2: Koordination der Ag-Atome; Ag1 links, Ag2 rechts; Atombezeichnung s. Abb. 5.1.1

Abbildung 5.1.3: Verknüpfung der trigonalen Bipyramiden. Dicke Linien: Kantenverknüpfung; gestrichelte Linien: lange Cl-Ag-S-Bindungen. Atombezeichnung s. Abb. 5.1.1

Abbildung 5.1.4: Struktur von Ag₅PS₄Cl₂; die Ag-Atome befinden sich in den grauen Tetraedern. Die gestrichelten Linien stehen für lange Cl-Ag-S-Abstände. Atombezeichnung s. Abb. 5.1.1

Abbildung 5.1.5: Strukturausschnitt von Ag₅PS₄Cl₂. Atombezeichnung s. Abb. 5.1.1

Abbildung 5.1.6: Strukturausschnitt von Ag₃PS₄. Ag in den grauen Tetraedern, P: (klein, dunkel)

5.2 $Ag_{15}(PS_4)_4Cl_3$

Da die Versuchsergebnisse zeigten, daß es möglich ist, Silberthiophosphathalogenide durch Umsetzen ternärer Thiophosphate mit Silberhalogeniden darzustellen, wurden verschiedene Thiophosphate als Edukte untersucht. Die Verbindung Ag₁₅(PS₄)₄Cl₃ bildet sich aus einer Mischung von AgZnPS₄ [78] mit AgCl bei 450°C in evakuierten Quarzglasampullen bei einer Reaktionsdauer von ca. 20 h. Bei diesen Reaktionsbedingungen fallen direkt größere Kristalle an, die für Einkristalluntersuchungen geeignet sind. Sie sind farblos-transparent, weisen aber einen leichten Grünstich auf, der im Vergleich zu Ag₅PS₄Cl₂ jedoch viel schwächer ist. Gegenüber Laborluft und Wasser verhalten sie sich inert. Aus 20 Filmreflexen wurde auf dem P3-Diffraktometer eine Elementarzelle mit kubischer Metrik (14,838(4) Å) ermittelt. Die anschließende Messung der Intensitäten lieferte 2460 Reflexe, von denen nach einer empirischen Absorptionskorrektur (Ψ -Scan) und der Symmetriereduktion 378 Reflexe mit $I \ge 2\sigma(I)$ zur Strukturbestimmung herangezogen wurden. Die Auslöschungsbedingungen hkl: h+k+l = 2n und hhl: 2h+l = 4n ergeben das Auslöschungssymbol $m\overline{3}mI$ --d, welches nur die Raumgruppe $I\overline{4}3d$ zuläßt. Die Strukturlösung und Verfeinerung konvergierte bei einem konventionellen R-Wert von 4,7%, die Ergebnisse sind in den Tabellen 5.2.1 bis 5.2.3 aufgelistet.

Empirische Formel:	Ag15P4S16Cl3
Messgerät:	Р3
Raumgruppe:	<i>I</i> 43 <i>d</i> (Nr.220)
Gitterkonstante [Å]:	a = 14,838(4)
Zellvolumen [Å ³]:	3266,8
Formeleinheiten/Zelle:	Z = 4
Dichte (theoretisch) $[g \times cm^{-3}]$:	4,801
Meßbereich:	$7^\circ \le 2\theta \le 61^\circ$
hkl-Bereich:	$-20 \le h, k, l \le 0$
Absorptionskorrektur:	ψ-scan
Absorptionskoeffizient μ [mm ⁻¹]:	10,24
Anzahl der Reflexe:	
gemessen:	2460
symmetrieunabhängig:	444
mit $I \ge 2\sigma(I)$:	378
R _{int} :	0,061
R ₁ :	0.047
<i>w</i> R ₂ (alle Reflexe):	0.084

Tabelle 5.2.1: Strukturdaten von Ag₁₅(PS₄)₄Cl₃

12 Ag1 auf 12a (0, ¹ / ₄ , 3/8)		$U_{11} = U_{22} = 590(9)$	$U_{12} = U_{13} = U_{23} = 0$
		U ₃₃ = 640(16)	
48 Ag2 auf 48e (x, y, z)	x = 0,1292(1)	U ₁₁ = 690(8)	$U_{12} = -28(6)$
	y = 0,21634(7)	U ₂₂ = 412(6)	$U_{13} = 20(7)$
	z = 0,58940(9)	U ₃₃ = 815(9)	$U_{23} = 42(6)$
16 P auf 16c (x, x, x)	x = 0,1997(2)	$U_{11} = U_{22} = U_{33} = 167(7)$	$U_{12} = U_{23} = -13(8)$
			$U_{13} = 13(8)$
16 S1 auf 16c (x, x, x)	x = 0,0281(2)	$U_{11} = U_{22} = U_{33} = 369(11)$	$U_{12} = U_{13} = -77(11)$
			$U_{23} = -77(11)$
48 S2 auf 48e (x, y, z)	x = 0,1040(2)	U ₁₁ = 326(13)	$U_{12} = 64(10)$
	y = 0,3445(2)	$U_{22} = 231(11)$	U ₁₃ = 46(11)
	z = 0,4780(2)	$U_{33} = 311(13)$	U ₂₃ = -86(10)
12 Cl auf 12b (0, ¼, 7/8)		$U_{11} = U_{22} = 395(19)$	$U_{12} = U_{13} = U_{23} = 0$
		U ₃₃ = 41(3)	

Tabelle 5.2.2: Atomkoordinaten und anisotrope Auslenkungsparameter $[pm^2]$ von
 $Ag_{15}(PS_4)_4Cl_3$

Ag1	- S2	4×2,585(3)	Tetraeder um Ag1	S2-Ag1-S2	4×110,46(6)
				S2-Ag1-S2	2×107,5(1)
Ag2	- S1	1×2,568(3)	Tetraeder um Ag2	S2-Ag2-S2	1×131,10(9)
	- S2	1 × 2,505(3)		S1-Ag2-S2	1×106,14(8)
	- S2	1×2,548(3)		S1-Ag2-S2	1 × 108,0(1)
	- Cl	1×2,610(2)		S2-Ag2-Cl	1×106,83(8)
				S2-Ag2-Cl	1 × 99,15(7)
				S2-Ag2-Cl	1 × 101,94(8)
Cl	- Ag2	4×2,610(2)	Tetraeder um Cl	Ag2-Cl-Ag2	4×105,65(3)
				Ag2-Cl-Ag2	2×117,41(6)
Р	- S1	1 × 2,016(6)	Tetraeder um P	S2-P-S2	3×107,8(1)
	- S2	3×2,054(3)		S2-P-S1	3×111,1(1)

Tabelle 5.2.3: Bindungslängen [Å] und ausgewählte Winkel [°] von Ag₁₅(PS₄)₄Cl₃

Die Kristallstruktur von $Ag_{15}(PS_4)_4Cl_3$ enthält als Orthothiophosphat diskrete PS₄-Tetraeder (s. Abb. 5.2.1), die mit ihren P-S-Bindungslängen von 2,02 Å und 2,05 Å sowie den Tetraederwinkeln zwischen 107,8° und 111,1° kaum verzerrt sind (s.Tab. 5.2.3). Die Ag-Atome werden ebenfalls in Form eines Tetraeders koordiniert, dabei ist das Ag1-Atom von vier S2-Atomen im Abstand von 2,59 Å umgeben. Die Winkel liegen zwischen 107,5° und 110,5°, so daß es sich um ein fast ideales Tetraeder handelt. Das Ag2-Atom wird von drei S-Atomen (2,51 Å bis 2,57 Å) und einem Cl-Atom (2,61 Å) umgeben. Dieses Tetraeder ist mit fünf Tetraederwinkeln von 99,2° bis 108,0° und einem sechsten mit 131,1° (s. Tab. 5.2.3) deutlich verzerrt. Das Ag2-Atom befindet sich nicht mehr im Tetraederzentrum, sondern ist in Richtung der von zwei S2-Atomen gebildeten

Kante verschoben. Dadurch wird der betreffende Winkel stark aufgeweitet (s. Abb. 5.2.2). Um das Chlorid-Ion sind vier Ag2-Atome als gering verzerrtes Tetraeder angeordnet.

Abbildung 5.2.1: Elementarzelle von Ag₁₅(PS₄)₄Cl₃; PS₄-Tetraeder hervorgehoben; Ag: (groß, hell), P: (klein, dunkel), S: (klein, hell); Cl: (groß, dunkel)

Abbildung 5.2.2: Tetraeder um Ag2; Bindungslängen in Å

Wie Ag₅PS₄Cl₂ kann auch Ag₁₅(PS₄)₄Cl₃ unter dem Aspekt einer modifizierten Ag₃PS₄-Struktur betrachtet werden. Unter der Voraussetzung, daß die Ladung dreier Chlorid-Ionen formal ein PS4³⁻-Anion ersetzen kann, ergibt sich folgender Zusammenhang in den Summenformeln: $Ag_3(PS_4)_1 = Ag_{15}(PS_4)_5$; $Ag_5(PS_4)_1Cl_2 = Ag_{15}(PS_4)_3[Cl_3]_2$. So ist ersichtlich, daß in Ag₁₅(PS₄)₃[Cl₃]₂ zwei und in Ag₁₅(PS₄)₄Cl₃ eine PS₄-Gruppe gegen Chlorid-Ionen ausgetauscht werden. Obwohl in Ag₁₅(PS₄)₄Cl₃ nur eine PS₄-Gruppe verloren geht, hat dies massiven Einfluß auf die Verknüpfung der verschiedenen Tetraeder untereinander, was ein Vergleich der Abbildungen 5.2.3 und 5.2.4 mit den entsprechenden Abbildungen in Kapitel 5.1 zeigt. In der in Abbildung 5.2.4 dargestellten Tetraeder-Schicht sind noch die Verknüpfungsmuster der Sechsringe aus eckenverbundenen Tetraedern zu erkennen (mittel- und dunkelgrau hervorgehoben), wie sie in Ag₃PS₄ vorhanden sind. Nur die Ringe aus Ag(1)S₄-Tetraedern (dunkelgrau) sind mit denen in Ag₃PS₄ identisch - die Verküpfungsecken liegen alle in einer Ebene -, während dies bei den Ringen aus $Ag(2)S_3Cl$ -Tetraedern (mittel-grau) an einem Punkt nicht mehr erfüllt ist (eingekreist in Abb. 5.2.4).

Abbildung 5.2.3: Verknüpfung der Tetraederschichten in Ag₁₅(PS₄)₄Cl₃; Tetraeder um Ag grau hervorgehoben, Atombezeichnung s. Abb. 5.2.1

Abbildung 5.2.4: Ausschnitt aus der Ag₁₅(PS₄)₄Cl₃-Struktur. Die Tetraeder um Ag sind hervorgehoben; Atombezeichnung s. Abb. 5.2.1

5.3 Verbindungen der Argyrodit-Familie: Cu₆PS₅Cl, Ag₆PS₅Cl, Ag₆

Wie aus Kapitel 5.1 und 5.2 hervorgeht, ist die bisher bekannte Verbindung Ag₆PS₅Cl nicht die einzig mögliche in diesem quaternären System. Aus diesem Grund wurden die Experimente auf weitere Halogene bzw. Cu-Verbindungen ausgedehnt. Nur von Cu₆PS₅Br [5] wurde bisher eine Strukturbestimmung anhand von Einkristalldaten vorgenommen. Deswegen wurden Einkristalluntersuchungen an den Verbindungen Cu₆PS₅Cl, Ag₆PS₅Cl, Ag₆PS₅Br und Ag₆PS₅I durchgeführt, deren Existenz aus Pulveruntersuchungen postuliert wurde, allerdings ohne konkrete Angaben der jeweiligen Zusammensetzung [79]. Von Cu₆PS₅Cl konnten geeignete Kristalle bei der Umsetzung von Cu₃PS₄ mit CuCl im Verhältnis 1:1 in evakuierten Quarzglasampullen bei 550°C erhalten werden. Obwohl verschiedene Versuche unternommen wurden, gelang es nicht - im Gegensatz zu den Ag-Verbindungen - weitere quaternäre Cu-Verbindungen mit einer anderen Stöchiometrie zu erhalten. Für Ag₆PS₅Cl wurde keine gezielte Synthese durchgeführt, da sich diese Verbindung bei verschiedenen Umsetzungen von Ba₃(PS₄)₂ mit Ag-Halogeniden (s. Kap. 5.1 und 5.2) immer wieder als Nebenprodukt bildete, aus dem direkt Einkristalle isoliert werden konnten. Beim Erhitzen von Ba₃(PS₄)₂ mit einem Überschuß von AgBr bei 400°C für 100h konnte ein überwiegend gelbes Reaktionsprodukt erhalten werden, dessen Einkristalle die bisher unbekannte Zusammensetzung Ag₅PS₄Br₂ besitzen. Wird dieses gelbe Reaktionsprodukt für ein paar Stunden rasch auf 700°C erhitzt, bilden sich rote Kristalle, deren röntgenographische Zusammensetzung Ag₆PS₅Br ist. Das gemischte Halogenid Ag₆PS₅Cl_{0.5}Br_{0.5} erhält man durch Erhitzen einer Mischung von AgCl mit dem gelben "Ag₅PS₄Br₂"-Reaktionsprodukt bei 500°. Für die Darstellung von Ag₆PS₅I wurde eine 1:1:1-Mischung aus Ba₃(PS₄)₂, AgCl und AgI für 10h auf 550°C erhitzt, wobei die Verbindung sich direkt - in Form oranger Kristalle - bildet.

Für alle Verbindungen ergab sich bei der Bestimmung der Elementarzellen eine kubischflächenzentrierte Zelle mit den in Tabelle 5.3.1 aufgeführten Gitterkonstanten. Die erste untersuchte Verbindung war Ag₆PS₅Cl, deren Strukturrechnung schnell bei relativ schlechten R-Werten (R₁: 31%), hohen thermischen Auslenkungsparametern und einer Restelektronendichte von ca. 8e/Å³ (0,9 Å von Ag1 entfernt) konvergierte. Erst eine Verfeinerung des Ag-Atoms in einem Splitlagenmodell und die damit verbundene Freigabe der Besetzung dieser Lagen ergab die in Tabelle 5.3.1 angegebenen Ergebnisse. Nach dem Ergebnis der Strukturanalyse stand fest, daß es sich um eine Verbindung im Argyrodit-Typ handelt. Eine Durchsicht der Literatur ergab, daß diese Schwierigkeiten bei der Metallpositionsverfeinerung ein allgemeines Problem darstellen und es als substanzklassenspezifisch angesehen werden kann. Aufgrund der erwarteten Isotypie der sechs Verbindungen wurden die restlichen Strukturrechnungen mit den Lageparametern von Ag₆PS₅Cl begonnen, wobei aber nur die Strukturverfeinerung von Ag₆PS₅Br ohne weitere Probleme verlief. Für Cu₆PS₅Cl mußte eine dritte Metallposition mit einbezogen werden, auch wenn sie nur eine Besetzung von ca. 4% aufweist. Bei den restlichen fünf Verbindungen war dies nicht erforderlich. Ein neues Problem trat bei der Verbindung Ag₅PS₄Br₂ auf, die zunächst für Ag₆PS₅Br gehalten wurde. Hier hatte die S2-Position viel zu niedrige thermische Auslenkungsparameter und nach der Freigabe der Besetzung war sie mit der fast doppelt so großen Anzahl an S-Atomen besetzt, wie kristallographisch möglich ist. Ersetzt man das S-Atom durch ein Br-Atom, nehmen alle Parameter physikalisch sinnvolle Werte an. Dieser Atomaustausch läßt auch die niedrigere Ag-Anzahl, die sich aus der Freigabe der Ag-Positionen ergibt, sinnvoll erscheinen, so daß die Verbindung weiterhin elektrovalent aufgebaut ist, wenn sie als Ag₅PS₄Br₂ formuliert wird. Dieser Unterschied hat auch einen deutlich Einfluß auf die Farbe. Während alle anderen Cu- und Ag-Verbindungen tief rot erscheinen, ist Ag₅PS₄Br₂ intensiv gelb gefärbt. In der Verbindung Ag₆PS₅Cl_{0.5}Br_{0.5} ließ sich die Br-Lage zunächst nur mit einem hohen thermischen Auslenkungsparameter von 880 pm² (R₁: 3,9%, wR₂: 8,4%) verfeinern. Ein Austausch von Br gegen Cl (s. Synthesebedingungen) verschlechterte die R-Werte (R1: 5,5%, wR2: 11,2%), verbesserte dafür den thermischen Auslenkungsparameter auf 360 pm², allerdings blieb nun eine geringe Restelektronendichte (1,8 e/Å³) nahe an der "Cl-Position" übrig. Eine Freigabe der Besetzung ergab für ein Br-Atom eine deutliche Unterbesetzung, für ein Cl-Atom eine Überbesetzung, woraus letztendlich nur eine statistische Besetzung mit Cl und Br resultieren kann. Die Strukturverfeinerung ergab schließlich eine Besetzung von 53% Br und 47 % Cl. Für Ag₆PS₅I ließ sich die S2-Position nur mit einer Mischbesetzung mit ca. 15% I befriedigend verfeinern. Von einer Fehlordnung bei der Besetzung der S2- und Hal-Lagen wird auch bei Cu₆PS₅Br berichtet. Hier ist das Ausmaß so groß, daß die Autoren keine Aussage über die genaue Verteilung

machen können. Sämtliche Strukturrechnungen wurden in der Raumgruppe $F\overline{4}3m$ durchgeführt. Die Zusammensetzungen der Br- und I-Verbindungen wurden durch EDX-Analysen überprüft und im Rahmen der Meßgenauigkeit bestätigt.

Verbindung	rö. Zusammensetzung	Мев-	Gitterkonstante	Zellvolumen	rö. Dichte
		gerät			
			a [Å]	[Å ³]	[g×cm ⁻³]
Cu ₆ PS ₅ Cl	Cu _{6,03} PS ₅ Cl	CCD	9,690(1)	909,9(2)	4,438
Ag ₆ PS ₅ Cl	Ag _{5,60} PS ₅ Cl	P3	10,320(1)	1099,1(2)	5,281
Ag ₆ PS ₅ Br	Ag _{5,76} PS ₅ Br	Р3	10,420(1)	1131,4(2)	5,392
$Ag_6PS_5Cl_{0,5}Br_{0,5}$	$Ag_{5,86}PS_5Cl_{0,46}Br_{0,54}$	Р3	10,380(2)	1118,4(4)	5,665
$Ag_5PS_4Br_2$	$Ag_{5,06}PS_4Br_{1,88}$	P3	10,356(1)	1110,7(2)	5,133
Ag ₆ PS ₅ I	$Ag_{5,82}PS_{4,85}I_{1,15}$	AED	10,471(1)	1148,1(2)	5,585

Tabelle 5.3.1: Strukturdaten von A7-xPS_{6-x}Hal_x (A: Cu, Ag; Hal: Cl - I)

Tabelle 5.3.2: Strukturdaten von *A*_{7-x}PS_{6-x}*Hal*_x (*A*: Cu, Ag; *Hal*: Cl - I) (Fortsetzung 1)

Verbindung	hkl-Bereich		$2\theta_{max}$	Abs. Korrektur $\mu [mm^{-1}]$ $T_{min / max}$	Farbe (transparent)	
	h	k	1		iiiii / iiiux	
Cu ₆ PS ₅ Cl	-13; 12	-14; 14	-15; 14	67,5°	keine 15,31	rot
Ag ₆ PS ₅ Cl	-15; 15	-15;15	-15; 15	65°	ψ-scan 11,76 0.748 / 0.986	rot
Ag ₆ PS ₅ Br	-11; 15	-15; 15	-15; 15	65°	ψ -scan 14,72 0.594 / 0.998	rot
$Ag_6PS_5Cl_{0,5}Br_{0,5}$	-14; 14	-14; 0	-14; 0	60°	ψ-scan 15,13 0 371 / 0 979	rot
$Ag_5PS_4Br_2$	-14; 0	-14; 14	-14; 14	60°	ψ-scan 16,689 0.696 / 0.999	gelb
Ag ₆ PS ₅ I	-15; 15	-15; 15	-15; 15	65°	ψ-scan 13,71 0,602 / 0,992	orange-rot

Verbindung		Reflexe		R _{int}	R_1	w R ₂ (alle Reflexe)
	gemessen	sym. unabhängig	$I \ge 2\sigma(I)$:			× *
Cu ₆ PS ₅ Cl	10286	222	194	0,109	0,034	0,058
Ag ₆ PS ₅ Cl	2101	244	241	0,083	0,034	0,092
Ag ₆ PS ₅ Br	3867	248	234	0,052	0,030	0,068
$Ag_6PS_5Cl_{0,5}Br_{0,5}$	902	200	184	0,061	0,028	0,059
$Ag_5PS_4Br_2$	1731	202	122	0,103	0,034	0,065
Ag ₆ PS ₅ I	1703	139	116	0,038	0,024	0,045

Tabelle 5.3.3: Strukturdaten von *A*_{7-x}PS_{6-x}*Hal*_x (*A*: Cu, Ag; *Hal*: Cl - I) (Fortsetzung 2)

Tabelle 5.3.4: Lageparameter und äquivalente Auslenkungsparameter von $A_{7-x}PS_{6-x}Hal_x$ (A: Cu, Ag; Hal: Cl - I) in der Raumgruppe $F\overline{4}3m$; Z = 4.

			• • • •	
Verbindung	Р	S1	S2	Hal
	4b (1/2, 1/2, 1/2)	16e (x, x, x)	4c(1/4)/4(1/4)	4a (0, 0, 0)
Cu ₆ PS ₅ Cl	$U_{eq} = 87(7)$	x = 0,6224(1) $U_{eq} = 144(4)$	$U_{eq} = 223(8)$	$U_{eq} = 345(13)$
Ag ₆ PS ₅ Cl	$U_{eq} = 167(7)$	x = 0.6149(1) $U_{eq} = 318(5)$	$U_{eq} = 437(11)$	$U_{eq} = 584(16)$
Ag ₆ PS ₅ Br	$U_{eq} = 165(7)$	x = 0.6141(1) $U_{eq} = 269(5)$	$U_{eq} = 407(10)$	$U_{eq} = 587(8)$
$Ag_6PS_5Cl_{0,5}Br_{0,5}$	$U_{eq} = 189(10)$	x = 0,6144(1) $U_{eq} = 310(7)$	$U_{eq} = 442(14)$	2,16(3) Br und 1,84(3) Cl $U_{eq} = 660(20)$
$Ag_5PS_4Br_2$	$U_{eq} = 248(16)$	x = 0,644(2) $U_{eq} = 486(13)$	3,52(1) Br2 $U_{eq} = 516(12)$	4 Br1 $U_{eq} = 653(13)$
Ag ₆ PS ₅ I	$U_{eq} = 145(10)$	x = 0,6132(1) $U_{eq} = 256(6)$	3,40(1) S2 und 0,60(1) I2 $U_{eq} = 569(18)$	4 I1 $U_{eq} = 508(8)$

Verbindung	<i>A</i> 1	A2	A3
	24g (x, ¼, ¼)	48h (x, x, z)	16e (x, x, x)
Cu ₆ PS ₅ Cl	13,9(1) Cu1 x = 0,0240(2) $U_{eq} = 387(19)$	9,5(1) Cu2 x = 0,1798(8) z = 0,0190(3) $U_{eq} = 361(19)$	0,6(1) Cu3 x = 0,119(1) U _{eq} = 440(14)
Ag ₆ PS ₅ Cl	12,6(1) Ag1 x = 0,0195(2) $U_{eq} = 785(19)$	9,7(1) Ag2 x = 0,1722(5) z = 0,0194(3) $U_{eq} = 678(15)$	-
Ag ₆ PS ₅ Br	14,3(1) Ag1 x = 0,0221(1) $U_{eq} = 840(20)$	8,7(1) Ag2 x = 0,1759(5) z = 0,0183(3) $U_{eq} = 606(13)$	-
Ag ₆ PS ₅ Cl _{0,5} Br _{0,5}	13,9(1) Ag1 x = 0,0209(2) $U_{eq} = 850(30)$	9,5(1) Ag2 x = 0,1723(7) z = 0,0195(3) $U_{eq} = 682(17)$	-
Ag ₅ PS ₄ Br ₂	13,4(2) Ag1 auf 48h x = 0,276(2) z = 0,007(1) $U_{eq} = 1100(200)$	7,0(2) Ag2 x = 0,171(1) z = 0,001(2) $U_{eq} = 920(50)$	-
Ag ₆ PS ₅ I	15,8(2) Ag1 auf 48h x = 0,270(2) z = 0,0198(7) $U_{eq} = 840(18)$	7,2(2) Ag2 x = 0,182(1) z = 0,013(1) $U_{eq} = 620(30)$	-

Tabelle 5.3.5: Lageparameter und äquivalente Auslenkungsparameter von
 $A_{7-x}PS_{6-x}Hal_x$ (A: Cu, Ag; Hal: Cl - I) (Fortsetzung)

Verbindung	P-S1	A1-	A2-	А3-
Cu ₆ PS ₅ Cl	$4 \times 2,054(2)$ $\angle 6 \times 109,5^{\circ}$	S1: $2 \times 2,251(1)$ S2: $1 \times 2,191(2)$	S1: $2 \times 2,421(5)$ S2: $1 \times 2,436(6)$ C1: $1 \times 2,47(1)$	S2: $1 \times 2,20(2)$ C1: $1 \times 2,20(2)$
Ag ₆ PS ₅ Cl	$4 \times 2,05(2) \\ \angle 6 \times 109,5^{\circ}$	S1: 2 × 2,411(1) S2: 1 × 2,379(2)	S1: $2 \times 2,665(4)$ S2: $1 \times 2,637(4)$ C1: $1 \times 2,521(7)$	
Ag_6PS_5Br	$4 \times 2,058(2) \\ \angle 6 \times 109,5^{\circ}$	S1: 2×2,455(1) S2: 1×2,375(1)	S1: 2 × 2,666(4) S2: 1 × 2,650(4) Br: 1 × 2,599(8)	
$Ag_6PS_5Cl_{0,5}Br_{0,5}$	$4 \times 2,056(2) \\ \angle 6 \times 109,5^{\circ}$	S1: 2 × 2,437(1) S2: 1 × 2,378(2)	S1: $2 \times 2,682(5)$ S2: $1 \times 2,651(5)$ Cl; Br: $1 \times 2,54(1)$	
$Ag_5PS_4Br_2$	$4 \times 2,052(4)$ $\angle 6 \times 109,5^{\circ}$	S1: 2×2,380(7) Br2: 1×2,5518)	S1: $2 \times 2,59(1)$ Br1: $1 \times 2,51(2)$ Br2: $1 \times 2,83(3)$	
Ag ₆ PS ₅ I	$4 \times 2,053(3) \\ \angle 6 \times 109,5^{\circ}$	S1: 2 × 2,477(5) S2; I2: 1 × 2,429(9)	S1: $2 \times 2,62(1)$ S2; I2: $1 \times 2,67(1)$ I1: $1 \times 2,69(2)$	

Tabelle 5.3.6: Ausgewählte Abstände in [Å] von A_{7-x}PS_{6-x}Hal_x (A: Cu, Ag; Hal: Cl - I).

 Tabelle 5.3.7: Ausgewählte Metall-Metall-Abstände [Å] und Winkel [°] von

Verbindung	Ag1 - Ag2	Ag2 - Ag2	S/Hal - Ag -S/Hal -Winkel		
Cu ₆ PS ₅ Cl	2 × 0,96(1)	$2 \times 2,20(1)$ $2 \times 2,73(1)$	S1 - Cu2 - S1 S1 - Cu2 - S2 S1 - Cu2 - Cl S2 - Cu2 - Cl	$1 \times 92,5(3) 2 \times 111,3(3) 2 \times 110,7(3) 1 \times 117,5(3)$	
Ag ₆ PS ₅ Cl	2×1,136(7)	2 × 2,230(9) 2 × 2,796(9)	S1 - Ag2 - S1 S1 - Ag2 - S2 S1 - Ag2 - C1 S2 - Ag2 - C1	$1 \times 95,5(2)$ $2 \times 106,6(2)$ $2 \times 112,6(1)$ $1 \times 120,1(2)$	

 $A_{7-x}PS_{6-x}Hal_x$ (A: Cu, Ag; Hal: Cl - I).

Ag ₆ PS ₅ Br	2×1,093(8)	2 × 2,322(9) 2 × 2,862(9)	S1 - Ag2 - S1 S1 - Ag2 - S2 S1 - Ag2 - Br S2 - Ag2 - Br	$1 \times 97,4(2)$ $2 \times 107,6(2)$ $2 \times 111,8(2)$ $1 \times 118,6(2)$
Ag ₆ PS ₅ Cl _{0,5} Br _{0,5}	2×1,14(1)	$2 \times 2,24(1)$ $2 \times 2,82(1)$	S1 - Ag2 - S1 S1 - Ag2 - S2 S1 - Ag2 - Br/Cl S2 - Ag2 - Br/Cl	$1 \times 95,8(2)$ $2 \times 106,5(2)$ $2 \times 112,5(2)$ $1 \times 120,1(3)$
Ag ₅ PS ₄ Br ₂	2×0,77(1)	$2 \times 2,52(4)$ $2 \times 2,50(4)$	S1 - Ag2 - S1 S1 - Ag2 - Br2 S1 - Ag2 - Br1 Br2 - Ag2 - Br1	$1 \times 100,2(7)$ $2 \times 103,8(5)$ $2 \times 116,4(6)$ $1 \times 114,3(8)$
Ag ₆ PS ₅ I	2×0,72(2)	2 × 2,49(3) 2 × 2,89(3))	S1 - Ag2 - S1 S1 - Ag2 - S2/I1 S1 - Ag2 - I1 S2/I2 - Ag2 - I1	$1 \times 101,1(6)$ $2 \times 108,8(5)$ $2 \times 111,0(4)$ $1 \times 115,2(6)$

Die Ergebnisse der Strukturrechnungen zeigen, daß sich die Strukturen der sechs Verbindungen vom Argyrodit-Typ ableiten lassen. Bei diesem bilden die Anionen ein sehr komplexes Gerüst, das sich jedoch auf einfache Bauelemente aus der Strukturchemie intermetallischer Phasen wie z. B. MgCu₂ [80] zurückführen läßt: Frank-Kasper-Polyeder sind so miteinander verknüpft, daß jedes Atom des Polyeders gleichzeitig das Zentralatom eines weiteren Polyeders ist. Es handelt sich dabei um Polyeder mit gleichen oder ungleichen Dreiecksflächen, wobei an jedem Eckpunkt wenigstens fünf Dreiecke angrenzen. Solche Polyeder erlauben die Koordinationszahlen 12, 14, 15 und 16. Dies führt zu sehr dichten Anordnungen, vergleichbar mit dichten Kugelpackungen, aber mit einem gravierenden Unterschied: Sie enthalten nur Tetraederlücken und weisen nur sehr geringe lokale Dichteschwankungen auf. Die Familie der Argyrodit-analogen Verbindungen ist sehr umfangreich, da in Ag₈GeS₆ - dem eigentlichen Argyrodit - Ag⁺ durch andere einoder zweiwertige Kationen und Germanium durch seine Homologen, aber auch durch Ga³⁺ bzw. fünfwertigen Phosphor ersetzt werden können.

Hinzukommt, daß sich ein Teil der Chalcogenid- durch Halogenid-Anionen substituieren läßt, so daß sich folgende allgemeine Formel ergibt:

$$A^{m^{+}}_{(12\text{-n-x})/m}B^{n^{+}}X^{2^{-}}_{6-x}Hal_{x}$$
 (X: S, Se, Te; Hal: Cl, Br, I)

Bezogen auf einwertige A-Elemente, fünfwertigen Phosphor sowie X = S vereinfacht sich die Formel zu $A_{7-x}PS_{6-x}Hal_x$.

Die Kristallstruktur der sechs Verbindungen wird im folgenden an Hand von Ag_6PS_5Br beschrieben. Im weiteren Sinn handelt es sich auch hier um ein Orthothiophosphat, da isolierte PS₄-Tetraeder vorkommen (s. Abb. 5.3.1). Deren P-S-Bindungslängen betragen alle 2,05 Å. Da sie im kubischen Kristallsystem nur von S1-Atomen gebildet werden, betragen alle Winkel 109,5°. Das zweite Chalcogen-Atom (S2) hat im Vergleich zu allen anderen Verbindungen in dieser Arbeit keinen Kontakt mit einem P-Atom; es wird nur von Ag-Atomen umgeben und muß als S²⁻-Anion angesehen werden, so daß die eigentliche Zusammensetzung $Ag_6(PS_4)SBr$ lautet. Die S1-, S2- und Halogenid-Anionen bilden - wie oben dargelegt - ein Gerüst aus ineinandergestellten Frank-Kasper-Polyedern, die aus 12 (Ikosaeder) und 16 Atomen (Friauf-Polyedern) bestehen (s. Abb. 5.3.2).

 Abbildung 5.3.1: Kristallstruktur von Ag₆PS₅Br; unten eingezeichnet sind die PS₄-Tetraeder (mittelgrau), eine trigonale AgS₃Br₂-Bipyramide (hellgrau) und ein Frank-Kasper-Polyeder (graue)Linien; Atombezeichnung: Ag (groß, hellgrau), P (klein, dunkel), S (klein, hell), Br (groß, dunkel) Ein Teil der im Anionengerüst vorhandenen Tetraederlücken wird von P- und Ag-Atomen besetzt, wobei erstere eine ideale Koordinationsgeometrie aufweisen. Die Ag-Atome besetzen dagegen mit stark unterschiedlicher Wahrscheinlichkeit eine 24- (Ag1) und 48-zählige Punktlage (Ag2) mit hohen äquivalenten Auslenkungsparametern, die auf eine gewisse Mobilität schließen lassen. Bei den Verbindungen Ag₅PS₄Br₂ und Ag₆PS₅I befinden sich alle Ag-Atome auf einer 48-zähligen Punktlage (s. Tab. 5.3.5), mit der Konsequenz, daß die Ag1-Position in Abbildung 5.3.3 in zwei Positionen - rechts und links von der trigonalen Schwefelfläche - aufgesplittet ist. Diese statistische Verteilung über eng benachbarte Punktlagen ist charakteristisch für diese und andere analoge Silberverbindungen mit einer vom Argyrodit-Typ abgeleiteten Struktur und erklärt die bei einigen Vertretern nachgewiesene Ionenleitfähigkeit.

Abbildung 5.3.2: Frank-Kasperpolyeder; Friauf-Polyeder (links), Ikosaeder (rechts). Im Ikosaeder ist eine (von dreien) trigonale Bipyramide und exemplarisch die Verknüpfung der Ag-Atome (hellgraue Schwingungsellipsoide) eingezeichnet; gestrichelte Ag-Ag-Bindungen: 2,32 Å.

Abbildung 5.3.3: Trigonale Bipyramide um Ag; Schwingungsellipsoide (60%); Bindungslängen in Å, Atombezeichnung s. Abb. 5.3.1

Wie Abbildung 5.3.3 zeigt, sind in Ag₆PS₅Br die Ag-Atome in einer von zwei flächenverknüpften Tetraedern gebildeten trigonalen Bipyramide lokalisiert, deren Spitzen jeweils von einem Br-Atom eingenommen werden. Dabei befindet sich das Ag1-Atom in der Mitte der Bipyramide und wird von drei S-Atomen (Ag-S-Abstand: 2,38 Å und 2,46 Å) trigonal-planar koordiniert. Die Wechselwirkung zu den Br-Atomen wird bei einem Ag-Br-Abstand von 3,69 Å nur sehr gering sein. Das Ag2-Atom hingegen befindet sich fast im Tetraederzentrum und wird von drei S-Atomen (Ag-S-Abstand: 2 × 2,67 Å; 1 × 2,65 Å) und einem Br-Atom (2,60 Å; nach [37]: 2,48 Å) koordiniert. Die Tetraederwinkel liegen im Bereich von 97,4° bis 118,6° (s. Tab. 5.3.7). Jedes Ag2-Atom ist seinerseits über sehr kurze Ag-Ag-Abstände (2,32 Å, s. Abb. 5.3.2) mit zwei weiteren Ag2-Atomen der nächsten fehlgeordneten Ag-Position verbunden (gestrichelte Linien in Abb.5.3.2). Jeweils vier Ag2-Dreiecke bilden mit sechs Ag1-Atomen einen Cluster, dieser steht mit Ag2-Ag2-Abständen von 2,86 Å mit weiteren Clustern in Kontakt. Durch diese dreidimensionale Verknüpfung und die Unterbesetzung der Ag-Lagen hat ein einzelnes Ag-Kation eine hohe Mobilität, was die Voraussetzung für eine gute Ionenleitfähigkeit ist.

5.4 $Ag_5PS_4I_2$

Eine ergiebige Methode zur Synthese von Silber-Thiophosphathalogeniden stellt die Umsetzung von Ba₃(PS₄)₂ mit Silberhalogeniden dar. Auf diesem Weg kann auch die neue Verbindung Ag₅PS₄I₂ in guten Ausbeuten, allerdings nicht phasenrein, dargestellt werden. Sie wurde durch Erhitzen einer Mischung aus Ba₃(PS₄)₂ mit AgI und AgCl im Verhältnis 1:1:1 bei 650°C für ca. 75h in evakuierten Quarzglasampullen dargestellt. Neben den orange-roten Kristallen von Ag₆PS₅I (s. Kap. 5.3) bestand ein Teil der Probe aus gelben Kristalliten, aus denen geeignete Kristalle für eine Einkristalluntersuchung ausgelesen werden konnten. Die Bestimmung der Elementarzelle auf einem Vierkreis-Diffraktometer ergab eine hexagonale Metrik mit a = 7,396(1) Å und c = 12,226(2) Å. Eine erste Vermutung bestand darin, daß es sich um eine neue Verbindung im Argyrodit-Typ handeln könnte. Die Länge der a- und b-Achse entspricht der halben Flächendiagonale einer kubisch F-zentrierten Elementarzelle mit a = 10,45 Å, und liegt somit in der Größenordnung der bei den Argyroditen gefundenen Werte (s. Kap. 5.3). Eine weitere Überprüfung der Filmreflexe ergab jedoch keinen Hinweis auf eine andere Elementarzelle, die hexagonale Zelle wurde auch in späteren Versuchen auf einem IPDS-Diffraktometer bestätigt. Eine Messung der Intensitäten lieferte 2087 Reflexe, von denen nach einer empirischen Absorptionskorrektur (Ψ -Scan) und der Symmetriereduktion 212 Reflexe mit $I \ge 2\sigma(I)$ zur Strukturbestimmung herangezogen wurden. Die Strukturrechnung konnte in der Raumgruppe P6₃mc durchgeführt werden. Analog zu den Argyroditen mußten auch in Ag₅PS₄I₂ die Silberlagen als Splitlagen verfeinert werden, wobei aber trotzdem noch hohe thermische Auslenkungsparameter für die Ag-Atome und auch für die I-Atome und das S2-Atom resultieren (s. Tab. 5.4.2). Angesichts der ebenfalls sehr hohen Standardabweichungen kann die vorliegende Beschreibung der Struktur nur eine vorläufige sein. Hinweise darauf, daß sich die Fehlordnung bei tiefen Temperaturen ändert, ergaben Elementarzellbestimmungen bei -150°C auf einem IPDS-Diffraktometer. Es treten zusätzliche Reflexe auf, die zu einer Verdoppelung aller drei Achsen führen. Mit den bei dieser Temperatur gemessenen Reflexintensitäten konnte jedoch bisher keine konvergierende Strukturrechnung erhalten werden, die ein chemisch plausibles Strukturbild liefert. Mit Hilfe von EDX-Untersuchungen konnte die röntgenographisch ermittelte Zusammensetzung bestätigt werden und es gab keine Hinweise auf das Vorhandensein von

Chlorid-Ionen, obwohl die Verbindung in einer gemischten Silberhalogenid-Schmelze synthetisiert wurde. Alle Ergebnisse der Strukturbestimmung sind in den Tabellen 5.4.1 bis 5.4.4 aufgelistet.

	-
Empirische Formel:	$Ag_5PS_4I_2$
Messgerät:	P3
Raumgruppe:	P6 ₃ mc (Nr.186)
Gitterkonstanten [Å]:	a = 7,396(1)
Zellvolumen [Å ³]:	579,2(2)
Formeleinheiten/Zelle:	Z = 2
Dichte (theoretisch) $[g \times cm^{-3}]$:	5,461
Meßbereich:	$6^{\circ} \le 2\theta \le 55^{\circ}$
hkl-Bereich:	$-9 \le h \le 4$
	$-9 \le k \le 9$
	$0 \le l \le 15$
Absorptionskorrektur:	ψ-scan
Absorptionskoeffizient μ [mm ⁻¹]:	14,43
T _{min} :	0,791
T _{max} :	0,908
Anzahl der Reflexe:	
gemessen:	2087
symmetrieunabhängig:	291
mit $I \ge 2\sigma(I)$:	212
R _{int} :	0,120
R ₁ :	0,035
<i>w</i> R ₂ (alle Reflexe):	0,077

Tabelle 5.4.1: Strukturdaten von Ag₅PS₄I₂

-		
2,9(1) Ag1 auf 6c (x, -x, z)	x = 0,483(4)	$U_{eq} = 800(200)$
	z = 0,262(7)	
1,4(1) Ag2 auf 6c (x, -x, z)	x = 0,460(3)	$U_{eq} = 620(60)$
	z = 0,314(6)	
1,9(1) Ag3 auf 6c (x, -x, z)	x = 0,476(6)	$U_{eq} = 760(90)$
	z = 0,709(4)	
3,00(2) Ag4 auf 12d (x, y, z)	x = 0,001(3)	$U_{eq} = 610(40)$
	y = 0,282(2)	
	z = 0,512(2)	
1,08(2) Ag5 auf 12d (x, y, z)	x = 0,063(10)	$U_{eq} = 1100(200)$
	y = 0,760(9)	
	z = 0,038(3)	
2 P auf 2a (0, 0, z)	z = 0,269(1)	$U_{eq} = 137(15)$
6 S1 auf 6c (x, -x, z)	x = 0,8499(3)	$U_{eq} = 294(14)$
	z = 0,327(1)	
2 S2 auf 2a (0, 0, z)	z = 0,103(1)	$U_{eq} = 750(30)$
2 I1 auf 2b (1/3, 2/3, z)	z = 0,5069(9)	$U_{eq} = 528(10)$
2 I2 auf 2b (1/3, 2/3, z)	z = 0,1036(9)	$U_{eq} = 515(10)$

Tabelle 5.4.2: Atomkoordinaten und äquivalente Auslenkungsparameter $[pm^2]$ von $Ag_5PS_4I_2$

Tabelle 5.4.3: Bindungslängen [Å] und ausgewählte Winkel [°] von $Ag_5PS_4I_2$

Ag	- S1	2×2,479(9)	trigonale Bipyramide um Ag1	S1-Ag1-S1	1×110,1(6)
	- I1	1 × 3,90(8)		S1-Ag1-I2	2×124,2(9)
		1 × 3,56(8)		S1-Ag1-I1	2×88(1)
	- I2	$1 \times 2,72(3)$		S1-Ag1-I1	1 × 89,2(9)
					1×106(1)
				I1-Ag1-I1	$1 \times 176(2)$
				I1-Ag1-I2	$1 \times 82(1)$
					1 × 102(2)

Ag	- S1	2×2,51(2)	Tetraeder um Ag2	S1-Ag2-S1	1×108,0(1)
	- I1	1 × 2,87(7)		S1-Ag2-I1	2×106(2)
	- I2	1 × 3,04(7)		S1-Ag2-I2	2×111(2)
				I1-Ag2-I2	1×113,1(1)
Ag	- S1	2×2,58(2)	Tetraeder um Ag3	S1-Ag2-S1	1 × 104,1(9)
	- I1	1 × 3,07(8)		S1-Ag2-I1	2×108(2)
	- I2	$1 \times 2,76(4)$		S2-Ag2-I2	2×118,9(2)
				I1-Ag2-I2	1×98,8(1)
Ag	- S1	1 × 2,67(4)	trigonale Bipyramide um Ag5	S1-Ag5-S2	1×106(1)
	- S2	1 × 2,19(3)		S1-Ag5-I1	$2 \times 97(2)$
	- I1	$2 \times 3,08(7)$		S2-Ag5-I1	2×114(2)
	- I2	$1 \times 2,55(3)$		S1-Ag5-I2	$1 \times 104(1)$
				S2-Ag5-I2	1 × 128(3)
				I1-Ag5-I2	$2 \times 104(1)$
				I1-Ag5-I1	1×166(2)
Ag	- S1	$1 \times 2,50(1)$	Tetraeder um Ag4	S1-Ag4-S2	1×106,2(4)
	- S2	1×2,36(19		S1-Ag4-Il	1×112,9(8)
	- I1	1×2,67(2)		S1-Ag4-I2	1 × 99,0(5)
	- I2	1×2,91(2)		S2-Ag4 –I1	1 × 123,1(5)
				S2-Ag4-I2	1 × 107,9(9)
				I1-Ag4-I2	1×105,0(3)
Р	- S1	3×2,051(5)	Teraeder um P	S2-P-S1	3×110,3(3)
	-S2	1×2,03(1)		S1-P-S1	3×108,6(3)

	e	0 0	5	0.
Ag1 - Ag2 :	0,71(6)		Ag1 - Ag3 :	0,83(7)
Ag1 - Ag4 :	2,95(6)		Ag2 - Ag2 :	2,82(6)
Ag3 - Ag3 :	3,16(13)		Ag4 - Ag4 :	2,08(4)
Ag4 - Ag5 :	0,53(4)		Ag5 - Ag5 :	1,31(13)

Tabelle 5.4.4: Ausgewählte Ag-Ag-Abstände [Å] in Ag₅PS₄I₂

Die Abbildung 5.4.1 zeigt die Kristallstruktur der Verbindung Ag₅PS₄I₂, die in einer bisher für Argyrodite nicht ermittelten Raumgruppe zu beschreiben ist [79]. Dennoch steht ihre Struktur in enger Anlehnung zum Argyrodit-Typ. Verantwortlich für die abweichende Kristallstruktur ist die Orientierung der PS₄-Tetraeder. In den kubisch-F kristallisierenden Argyroditen sind alle Tetraeder gleich orientiert und weisen eine Verschiebung auf, deren "Schichtanordnung" einer [ABCABC]-Schichtfolge entspricht, was für eine kubisch-dichte Anordnung spricht. In Ag₅PS₄I₂ sind die Tetraeder in Richtung der c-Achse um jeweils 60° verdreht zueinander angeordnet und die Schichtfolge reduziert sich zu [ABAB], was dem Motiv einer hexagonal-dichten Anordnung entspricht.

Abbildung 5.4.1: Kristallstrukur von Ag₅PS₄I₂ entlang [010] (links) und [001] (rechts); PS₄-Tetraeder sind grau hervorgehoben. Atombezeichnung: Ag: (groß, hell), P: (klein, dunkel), S: (klein, hell), I: (groß, dunkel)

Insgesamt bleiben auch in $Ag_5PS_4I_2$ alle wesentlichen Strukturelemente des Argyrodit-Typs erhalten. Die Koordinationspolyeder um die beiden I-Atome (KZ 16) und die S-Atome (KZ 12) gehören zu den Frank-Kasper-Polyedern, die ineinander verschachtelt sind (s. Abb. 5.4.2).

Abbildung 5.4.2: Frank-Kasper-Polyeder in Ag₅PS₄I₂

Im Gegensatz zu den in Kap. 5.3 aufgeführten Argyroditen, deren Ag-Anordnung mit zwei bzw. drei Punktlagen zu beschreiben ist, sind hierfür bei Ag₅PS₄I₂ insgesamt fünf erforderlich. Die Koordination und Position der Ag2- und Ag3-Atome um Ag1 ist mit der A2-Position der Verbindungen in Kap. 5.3 vergleichbar (Abb. 5.4.3), während sich die zweite Fehlordnungsposition von Ag4 und Ag5 (Abb. 5.4.3) deutlich davon unterscheidet. Liegt die Wahrscheinlichkeit, das Agl-Atom in der trigonal planaren Koordination anzutreffen, bei ca. 48%, so ist diese an der Ag5-Position geringer ausgeprägt. Ag5 ist ober- und unterhalb einer ebenfalls von S- und I-Atomen aufgespannten trigonal planaren Ebene angeordnet, hat aber in der Summe eine Aufenthaltswahrscheinlichkeit von nur noch ca. 18%. Hier geht die Tendenz klar zur Tetraederkoordination, die das Ag4-Atom einnimmt. Sein Abstand zu den II-Atomen verringert sich auf 2,67 Å (Abb. 5.4.3), wohingegen er für die Ag2 und Ag3-Atome noch 2,87 Å bzw. 3,07 Å beträgt. Diese Anordnung ermöglicht dem Ag4-Atom nicht nur eine Migration über zwei flächenverknüpfte Tetraeder, sondern angesichts des sehr kurzen Ag4-Ag4-Abstands von 2,08 Å scheint auch ein Wechsel über zwei kantenverknüpfte Tetraeder möglich zu sein (Abb. 5.4.3).

Abbildung 5.4.3: Silber-Koordinationspolyeder in Ag₅PS₄I₂; Die Atome sind als Schwingungsellipsoide dargestellt; Bindungslängen in Å

Eine Migration des Ag1-Atoms - über die Ag2- bzw. Ag3-Position - zur nächsten Ag1-Position erscheint dagegen weniger wahrscheinlich, da sich der Ag-Ag-Abstand hier zwischen 2,82 Å bis 3,16 Å bewegt (s. Abb. 5.4.4). Insgesamt wird in $Ag_5PS_4I_2$ die dreidimensionale Ag-Mobilität von geringerem Ausmaß sein als in den oben beschriebenen Argyroditen, da der kleinste Abstand zwischen den Ag1,2,3- und Ag4,5-Splitlagen mit 2,95 Å um 0,1 Å größer ist als der entsprechende Abstand in Ag_6PS_5Br .

Abbildung 5.4.4: Ausschnitt aus der dreidimensionalen Verknüpfung der Ag-Atome in Ag₅PS₄I₂ entlang [001]; Die Atome sind als Schwingungsellipsoide dargestellt; Bindungslängen in Å

5.5 Ag₁₀(PS₄)₂ClI₃

Die Synthese von Ag₁₀(PS₄)₂ClI₃ gelang bei der Umsetzung von Ba₂P₂S₆ mit AgCl und elementarem Jod in einer evakuierten Quarzglasampulle bei 400°C für 30h. Dabei konnte die Verbindung als gelbes Hauptprodukt erhalten werden. Mit einem geeigneten Kristall wurde auf einem IPDS-Diffraktometer bei -150°C eine hexagonale Elementarzelle mit a = b = 7,396(1) Å und c = 24,271(5) Å bestimmt. Damit besteht eine auffallende Beziehung zu Ag₅PS₄I₂ (s. Kap. 5.4). Die a- und b-Achsen sind identisch, die c-Achse ist aber doppelt so lang, was auf eine enge Strukturverwandtschaft deutet, möglicherweise auf eine Überstruktur von Ag₅PS₄I₂. Im Gegensatz zu Ag₅PS₄I₂, das beim Abkühlen auf -150°C anscheinend eine Phasenumwandlung unter Verdoppelung aller drei Achsen durchläuft, konnte für Ag₁₀(PS₄)₂ClI₃ keine Änderung im Temperaturbereich von -150°C bis ca. +130°C festgestellt werden. Nach der Messung der Intensitäten konnte die Strukturlösung mit 1050 symmetrieunabhängigen Reflexen mit I $\geq 2\sigma(I)$ in der Raumgruppe P6₃mc durchgeführt werden. Wie bei den vorher beschriebenen Silberthiophosphathalogeniden müssen auch bei Ag₁₀(PS₄)₂ClI₃ die Ag-Positionen als Splitlagen verfeinert werden. Nach dem Ergebnis der Strukturbestimmung sind die Halogenatome nicht wie bei Ag₆PS₅Cl_{0.5}Br_{0.5} statistisch verteilt, sondern besetzen verschiedene Punktlagen. Anschließende EDX-Untersuchungen bestätigten die Zusammensetzung der Verbindung. Eine Auflistung der Ergebnisse wird in den Tabellen 5.5.1 bis 5.5.4 gegeben.

Empirische Formel:	$Ag_{10}(PS_4)_2CII_3$
Messgerät:	IPDS
Raumgruppe:	P6 ₃ mc (Nr.186)
Meßtemperatur [°C]:	-150
Gitterkonstanten [Å]:	a = 7,396(1)
	c = 24,271(5)
Zellvolumen [Å ³]:	1149,8(3)
Formeleinheiten/Zelle:	Z = 2
Dichte (theoretisch) $[g \times cm^{-3}]$:	5,251
Meßbereich:	$6^\circ \le 2\theta \le 56^\circ$
hkl-Bereich:	$-9 \le h \le 9$
	$-9 \le k \le 9$
	-31 ≤ l ≤ 31
Absorptionskorrektur:	numerisch
Absorptionskoeffizient μ [mm ⁻¹]:	13,325
Anzahl der Reflexe:	
gemessen:	17868
symmetrieunabhängig:	1145
mit $I \ge 2\sigma(I)$:	1050
R _{int} :	0,051
R ₁ :	0,058
$w R_2$ (alle Reflexe):	0,106

Tabelle 5.5.1: Strukturdaten von $Ag_{10}(PS_4)_2ClI_3$

1,98(9) Ag1 auf 6c (x, -x, z)	x = 0,182(4)	$U_{11} = U_{22} = 360(50)$	$U_{12} = -10(50)$
	z = 0,587(4)	$U_{33} = 1400(500)$	$U_{13} = -270(150)$
			$U_{23} = -U_{13}$
1,68(8) Ag2 auf 6c (x, -x, z)	x = 0,203(1)	$U_{11} = U_{22} = 360(30)$	$U_{12} = 150(40)$
	z = 0,561(2)	U ₃₃ = 670(130)	$U_{13} = -60(30)$
			$U_{23} = -U_{13}$
1,73(1) Ag3 auf 6c (x, -x, z)	x = 0,1290(7)	$U_{11} = U_{22} = 420(30)$	$U_{12} = 150(3)$
	z = 0,8710(7)	U ₃₃ = 470(40)	$U_{13} = 40(180)$
			$U_{23} = -U_{13}$
1,39(2) Ag4 auf 6c (x, -x, z)	x = 0,1277(8)	$U_{11} = U_{22} = 320(30)$	$U_{12} = 20(30)$
	z = 0,3232(6)	$U_{33} = 310(60)$	$U_{13} = 120(20)$
			$U_{23} = -U_{13}$
4,50(2) Ag5 auf 6c (x, -x, z)	x = 0,1607(7)	$U_{11} = U_{22} = 546(160)$	$U_{12} = -134(18)$
	z = 0,3544(4)	U ₃₃ = 1090(70)	$U_{13} = 420(30)$
			$U_{23} = -U_{13}$
3,96(1) Ag6 auf 12d (x, y,	x = 0,0512(6)	$U_{11} = 510(20)$	$U_{12} = 450(20)$
	y = 0,6683(7)	U ₂₂ = 840(30)	$U_{13} = -140(160)$
	z = 0,9660(2)	U ₃₃ = 323(15)	$U_{23} = -60(20)$
4,76(1) Ag7 auf 12d (x, y,	x = 0,0110(7)	U ₁₁ = 470(20)	$U_{12} = 340(30)$
	y = 0,4116(7)	$U_{22} = 1400(400)$	$U_{13} = -78(15)$
	z = 0,7102(2)	$U_{33} = 350(15)$	$U_{23} = -75(18)$
2 P1 auf 2b (1/3, 2/3, z)	z = 0,8393(3)	$U_{11} = U_{22} = 157(19)$	$U_{12} = \frac{1}{2}U_{11}$
		U ₃₃ = 180(30)	$U_{13} = U_{23} = 0$
2 P2 auf 2b (1/3, 2/3, z)	z = 0,0919(3)	$U_{11} = U_{22} = 145(19)$	$U_{12} = \frac{1}{2}U_{11}$
		U ₃₃ = 160(30)	$U_{13} = U_{23} = 0$
2 S1 auf 2b (1/3, 2/3, z)	z = 0,9227(4)	$U_{11} = U_{22} = 920(60)$	$U_{12} = \frac{1}{2}U_{11}$
		U ₃₃ = 130(40)	$U_{13} = U_{23} = 0$
6 S2 auf 6c (x, -x, z)	x = 0,5148(4)	$U_{11} = U_{22} = 232(14)$	$U_{12} = 131(17)$
	z = 0,3097(2)	U ₃₃ = 420(20)	$U_{13} = -36(9)$
			$U_{23} = -U_{13}$

Tabelle 5.5.2: Atomkoordinaten und anisotrope Auslenkungsparameter $[pm^2]$ von
 $Ag_{10}(PS_4)_2ClI_3$

6 S3 auf 6c (x, -x, z)	x = 0,1827(4)	$U_{11} = U_{22} = 340(20)$	$U_{12} = 200(20)$
	z = 0,0621(2)	U ₃₃ = 450(30)	$U_{13} = -54(10)$
			$U_{23} = -U_{13}$
6 S4 auf 2b (1/3, 2/3, z)	z = 0,1775(3)	$U_{11} = U_{22} = 480(30)$	$U_{12} = \frac{1}{2}U_{11}$
		U ₃₃ = 180(30)	$U_{13} = U_{23} = 0$
2 I1 auf 2a (0, 0, z)	z = 0,2234(1)	$U_{11} = U_{22} = 377(8)$	$U_{12} = \frac{1}{2}U_{11}$
		$U_{33} = 357(11)$	$U_{13} = U_{23} = 0$
2 I2 auf 2b (1/3, 2/3, z)	z = 0,4622(2)	$U_{11} = U_{22} = 564(11)$	$U_{12} = \frac{1}{2}U_{11}$
		U ₃₃ = 439(14)	$U_{13} = U_{23} = 0$
2 I3 auf 2a (0, 0, z)	z = 0,4258(1)	$U_{11} = U_{22} = 599(12)$	$U_{12} = \frac{1}{2}U_{11}$
		$U_{33} = 302(12)$	$U_{13} = U_{23} = 0$
2 Cl auf 2b (1/3, 2/3, z)	z = 0,6525(3)	$U_{11} = U_{22} = 370(30)$	$U_{12} = \frac{1}{2}U_{11}$
		U ₃₃ = 230(30)	$U_{13} = U_{23} = 0$

Tabelle 5.5.3:Bindungslängen [Å] und ausgewählte Winkel [°] von $Ag_{10}(PS_4)_2ClI_3$

۸a	\$2	$2 \times 2.414(7)$	trigonala Dingramida um Agl	S2 A g1 S2	$1 \times 114.2(5)$
Ag	- 55	$2 \times 2,414(7)$	ungonale Dipyrannide um Agr	52-Ag1-52	$1 \times 114,2(5)$
	- I1	$1 \times 4,05(3)$		S3-Ag1-Cl	$2 \times 122(1)$
	- I2	1 × 3,60(3)		S3-Ag1-I1	2×85,9
	- Cl	$1 \times 2,50(3)$		S3-Ag1-I2	2×92,8
				Cl-Ag1-I1	1×85,8
				Cl-Ag1-I2	1 × 96,7
				I1-Ag1-I2	1×177,4
Ag	- S3	2×2,479(9)	Tetraeder um Ag2	S3-Ag2-S3	1×109,7(6)
	- Cl	$1 \times 2,79(4)$		S3-Ag2-Cl	2×109(1)
	- I2	1 × 2,91(4)		S3-Ag2-I2	$2 \times 110(1)$
				Cl-Ag2-I2	1×108,1(5)
Ag	- S3	$2 \times 2,652(7)$	Tetraeder um Ag3	S3-Ag3-S3	$1 \times 99,7(3)$
-	- I1	$1 \times 2,81(1)$		S3-Ag3-Cl	$2 \times 107,8(3)$
	- Cl	1 × 2,675(8)		S3-Ag3-I1	2×113,2(3)
				I1-Ag3-Cl	1×114,1(3)

Ag	- S2	2×2,515(6)	Tetraeder um Ag4	S2-Ag4-S2	$1 \times 106,4(4)$
	- I1	$1 \times 2,92(2)$		S2-Ag4-Il	2×102,7(4)
	- I3	1 × 2,98(1)		S2-Ag4-I3	2×115,5(4)
				I1-Ag4-I3	1×112,7(3)
Ag	- S2	2×2,517(4)	trigonale Bipyramide um Ag5	S2-Ag5-S2	1 × 106,3(2)
	- I1	1 × 3,789(5)		S2-Ag5-I3	2×126,6(1)
	- I2	$1 \times 3,426(5)$		S2-Ag5-I1	2×82,2
	- I3	$1 \times 2,690(4)$		S2-Ag5-I2	2×93,5
				I1-Ag5-I3	1×97,2
				I1-Ag5-I2	1×172,7
				I2-Ag5-I3	1 × 90,1
Ag	- S1	1 × 2,340(5)	Tetraeder um Ag6	S1-Ag6-S3	1×105,3(2)
	- S3	1 × 2,558(6)		S1-Ag6-I2	1×121,1(2)
	- I2	1 × 2,681(4)		S3-Ag6-I2	1×115,3(2)
	- I3	1 × 2,836(4)		S1-Ag6-I3	1×110,8(2)
				S3-Ag6-I3	1 × 97,3(2)
				I2-Ag6-I3	1×104,4(1)
Ag	- S2	1 × 2,515(5)	Tetraeder um Ag7	S4-Ag7-S2	1×106,0(2)
	- S4	$1 \times 2,444(5)$		S4-Ag7-Cl	1×117,9(2)
	- I1	1 × 3,021(5)		S2-Ag7-Cl	1×114,0(2)
	- Cl	1 × 2,589(6)		S4-Ag7-I1	1×107,2(2)
				S2-Ag4-I1	1×100,0(1)
				Cl-Ag4-I1	1×110,0(1)
P1	- S1	1 × 2,03(1)	Tetraeder um P1	S1-P-S2	3×110,3(2)
	-S2	3×2,074(5)		S2-P-S2	3 × 108,7(2)
P2	- S3	3 × 2,060(6)	Tetraeder um P2	S3-P-S3	3×108,4(2)
	-S4	1×2,08(1)		S3-P-S4	3×110,5(2)

Ag1 - Ag2 :	0,70(7)	Ag1 - Ag3 :	1,2(1)
Ag2 - Ag2 :	2,90(2)	Ag2 - Ag6 :	2,84(4)
Ag3 - Ag3 :	2,86(2)	Ag4 - Ag4 :	2,83(1)
Ag4 - Ag5 :	0,87(1)	Ag5 - Ag6 :	3,15(1)
Ag6 - Ag6 :	2,075(8)	Ag7 - Ag7 :	1,389(9)
	2,110(8)		2,882(8)
	3,211(7)		3,125(9)
Ag7 - Ag3 :	2,618(7)		· ()

Tabelle 5.5.4: Ausgewählte Ag-Ag-Abstände [Å] in Ag₁₀(PS₄)₂ClI₃

Wie bereits oben angedeutet, steht die Struktur von $Ag_{10}(PS_4)_2CII_3$ in direkter Beziehung zur $Ag_5PS_4I_2$ -Struktur. Sie enthält nur geringfügig verzerrte PS₄-Tetraeder, die untereinander keinen Kontakt haben. Die Anionen bilden wiederum Frank-Kasper-Koordinationspolyeder, die sich untereinander durchdringen (Abb. 5.5.2). Die Strukturverwandtschaft wird besonders deutlich, wenn Orientierung und Abfolge der PS₄-Tetraeder betrachtet werden. Diese sind bei $Ag_5PS_4I_2$ entlang [001] jeweils um 60° gegeneinander verdreht, während dies bei $Ag_{10}(PS_4)_2CII_3$ erst nach zwei jeweils gleich ausgerichteten Tetraedern der Fall ist. Dabei ergibt sich die in Abbildung 5.5.1 hervorgehobene Anordnung, die zu einer gegenüber $Ag_5PS_4I_2$ verdoppelten c-Achse führt.

Abbildung 5.5.1: Kristallstruktur von Ag₁₀(PS₄)₂ClI₃; links entlang [010], rechts entlang [001]; PS₄-Tetraeder grau eingezeichnet; Atombezeichnung: Ag: (groß, hell);I (groß, dunkel); Cl (groß, mittelgrau); S (klein, hell); P (klein, dunkel)

Abbildung 5.5.2: Frank-Kasper-Polyeder um die Anionen in Ag₁₀(PS₄)₂ClI₃; Atombezeichnung: I (groß, dunkel); Cl (groß, mittelgrau); S (klein, hell)

Auch die Ag-Koordination tendiert wie bei $Ag_5PS_4I_2$ deutlich zu einer tetraedrischen Umgebung, die allerdings stark verzerrt ist. In Abbildung 5.5.3 (links) wird die Koordinationssphäre um die Ag1,2,3-Positionen dargestellt, die im wesentlichen der in $Ag_5PS_4I_2$ entspricht.

Abbildung 5.5.3: Koordinationspolyeder um Ag1,2,3 (links) und Ag4,5 (rechts); Atome mit Schwingungsellipsoiden gezeichnet.

Abbildung 5.5.4: Koordinationspolyeder um Ag6 (links) und Ag7 (rechts); Atome mit Schwingungsellipsoiden gezeichnet.

Ag1 befindet sich demnach in einer verzerrten trigonal-planaren Koordination, während die Ag2- und Ag3-Positionen zur Tetraedermitte verschoben sind. Ein Unterschied zu den vergleichbaren Atompositionen in $Ag_5PS_4I_2$ besteht in der Besetzungsdichte. Mit ca. 48% ist die Ag1-Lage in $Ag_5PS_4I_2$ noch relativ stark besetzt, während es in $Ag_{10}(PS_4)_2CII_3$ nur noch ca. 33 % sind und sich die Besetzung insgesamt homogener auf alle drei Positionen (28% - 33%) verteilt. Entgegengesetzt sieht es im Bereich der Ag4/5-Positionen aus, von denen eine (Ag5) im Zentrum einer trigonalen Bipyramide, also in trigonal-planarer

Koordination, mit ca. 75% deutlich stärker besetzt ist als die in Richtung eines Tetraederzentrums verschobene Ag4-Lage (ca. 23%). Die beiden weiteren Ag-Lagen unterscheiden sich deutlich von den vorhergehenden. Insgesamt bilden sechs Ag6-Positionen - jeweils in einer Tetraederkoordination - einen Sechsring mit viel zu kurzen Ag-Ag-Abständen (ca. 2,1 Å), so daß benachbarte Positionen nicht zeitgleich besetzt sein können. Die Anordnung der Ag7-Atome ist mit der von Ag2 und Ag3 zu vergleichen. Dementsprechend rückt das Ag7-Atom von einer idealen Tetraederkoordination ab und bewegt sich auf das Zentrum einer trigonalen Bipyramide zu, allerdings ohne daß an dieser Stelle eine signifikante Elektronendichte wie bei Ag1 auftritt. In Abbildung 5.5.5 ist die dreidimensionale Verknüpfung der Ag-Positionen dargestellt. Sie ist fast mit der von Ag₅PS₄I₂ identisch, ein gravierender Unterschied findet sich jedoch bei den "Ag7- und Ag6-Ringen". Der Ag6-Ag6-Abstand liegt gleichmäßig bei 2,1 Å, während er bei Ag7 Werte von 1,39 Å und 2,88 Å einnimmt.

Abbildung 5.5.5: Dreidimensionale Verknüpfung der Ag-Atome mit ausgewählten Abständen in Å.

5.6 Ag₁₀(PS₄)₂SCl₂ und seine Phasenumwandlungen

5.6.1 γ -Ag₁₀(PS₄)₂SCl₂

Bei allen Versuchen zur Synthese von Silberthiophosphathalogeniden bildeten sich mehrere Verbindungen gleichzeitig. Eine davon ist die neue Verbindung Ag₁₀(PS₄)₂SCl₂. Sie bildet sich bei relativ niedrigen Temperaturen (450°C - 470°C) aus einer Mischung von AgCl mit $Ba_3(PS_4)_2$ oder $Ba_2P_2S_6$ in evakuierten Quarzglasampullen bei einer Reaktionsdauer von ca. 30h. Oberhalb von 500°C ist sie thermisch instabil. Eine Verbesserung der Kristallqualität, vor allem in der Größe, läßt sich erzielen, wenn die Verbindung ein zweites Mal in einer AgCl/Ba₃(PS₄)₂-Mischung getempert wird. Die Kristalle sind hellrot, transparent, feuchtigkeitsunempfindlich und erreichen eine Größe von bis zu 1 mm³. Die Rotfärbung unterscheidet sich deutlich von den roten Argyrodit-Verbindungen, die schon bei relativ kleinen Kristallen dunkelrot erscheinen und nur noch geringe Transparenz zeigen. Der für die Kristallstrukturanalyse ausgewählte Kristall besaß einen hexagonalen, plättchenförmigen Habitus mit einem Durchmesser von ca. 0,5 mm und einer Dicke von ca. 0,2 mm. Er lieferte eine rhomboedrische Zellmetrik mit den Gitterparametern a = b = 7,393(1) Å und c = 30,546(6) Å in der hexagonalen Aufstellung. Auch in γ -Ag₁₀(PS₄)₂SCl₂ stimmen die a- und b-Achsen mit denen von Ag₅PS₄I₂ und Ag₁₀(PS₄)₂ClI₃ überein. Die Länge der c-Achse läßt sich folgendermaßen interpretieren: Die bei Ag₅PS₄I₂ erwähnte "Baueinheit" mißt längs [001] ca. $\frac{1}{2} \times 12,23$ Å = 6,12 Å. Daraus folgt, daß 30,55 Å fünf Baueinheiten entsprechen. Hieraus könnte auf eine weitere Stapelvariante geschlossen werden. Die Datensammlung lieferte 6883 Reflexe, von denen nach einer nummerischen Absorptionskorrektur und der Symmetriereduktion 360 Reflexe mit I $\geq 2\sigma(I)$ zur Strukturbestimmung herangezogen wurden. Mit der Auslöschungsbedingung hkl: -h+k+l = 3n ergab sich das Auslöschungssymbol R(obv)--, das die Raumgruppen R3, $R\overline{3}$, R32, R3m und $R\overline{3}m$ zuläßt. Letztlich gelang die Strukturlösung in der höchst symmetrischen Raumgruppe $R\overline{3}m$. Auch hier führte erst eine Verfeinerung der Ag-Positionen als Splitlagenmodell - mit einer damit verbundenen frei verfeinerten Besetzung der Ag-Lagen - zu einer deutlichen Verbesserung des R₁-Wertes auf ca. 9%. Um das Ag6-Atom befand sich dann aber immer noch eine hohe Restelektronendichte von 5,6 e/Å³, die bei den oben beschriebenen Verbindungen für

vergleichbare Atompositionen nicht beobachtet wurde. Unter Einbeziehung dieser zusätzlichen Ag7-Position konvergierte die Strukturverfeinerung mit anisotropen Auslenkungsparametern bei einem R₁-Wert von 2,7% (wR₂: 8,1%) und einer Restelektronendichte von 0,6 e/Å³. Die neue Verbindung ist elektrovalent gemäß $(Ag^{1+})_{10}(P^{5+})_2(S^{2-})_9(Cl^{1-})_2$ zusammengesetzt. Der röntgenographisch ermittelte Ag-Gehalt beträgt 10.03 pro Formeleinheit. Das Ergebnis einer EDAX-Untersuchung bestätigte diese Stöchiometrie. Mit Hilfe der Röntgenbeugung kann keine Aussage darüber getroffen werden, ob es sich bei der Atomzuordnung für die "Cl"- und "S3"-Position tatsächlich um Chlor oder Schwefel handelt. Auch die Art der chemischen Umgebung läßt keine eindeutige Zuordnung zu, so daß als einziges Kriterium der Silbergehalt die getroffene Zuordnung stützt und eine andere Stöchiometrie, wie z.B. Ag₉(PS₄)₂Cl₃, weniger wahrscheinlich erscheinen läßt. Die Daten der Strukturanalyse sind in den Tabellen 5.6.1.1

Empirische Formel:	Ag _{10,03} (PS ₄) ₂ SCl ₂
Messgerät:	IPDS
Raumgruppe:	$R\overline{3}m$ (Nr.166)
Meßtemperatur [°C]:	+20
Gitterkonstanten [Å]:	a = 7,393(1)
(hex. Aufstellung)	c = 30,546(6)
Zellvolumen [Å ³]:	1445,9(4)
Formeleinheiten/Zelle:	Z = 3
Dichte (theoretisch) $[g \times cm^{-3}]$:	5,168
Meßbereich:	$6^{\circ} \le 2\theta \le 52^{\circ}$
hkl-Bereich:	$-9 \le h \le 9$
	$-9 \le k \le 9$
	$-9 \le k \le 9$ $-31 \le 1 \le 31$
Absorptionskorrektur:	$-9 \le k \le 9$ $-31 \le 1 \le 31$ numerisch
Absorptionskorrektur: Absorptionskoeffizient μ [mm ⁻¹]:	$-9 \le k \le 9$ -31 \le 1 \le 31 numerisch 11,32
Absorptionskorrektur: Absorptionskoeffizient μ [mm ⁻¹]: Anzahl der Reflexe:	$-9 \le k \le 9$ -31 \le 1 \le 31 numerisch 11,32
Absorptionskorrektur: Absorptionskoeffizient µ [mm ⁻¹]: Anzahl der Reflexe: gemessen:	$-9 \le k \le 9$ -31 \le 1 \le 31 numerisch 11,32 6883
Absorptionskorrektur: Absorptionskoeffizient µ [mm ⁻¹]: Anzahl der Reflexe: gemessen: symmetrieunabhängig:	$-9 \le k \le 9$ -31 \le 1 \le 31 numerisch 11,32 6883 374
Absorptionskorrektur: Absorptionskoeffizient μ [mm ⁻¹]: Anzahl der Reflexe: gemessen: symmetrieunabhängig: mit I $\ge 2\sigma$ (I):	$-9 \le k \le 9$ -31 \le 1 \le 31 numerisch 11,32 6883 374 360
Absorptionskorrektur: Absorptionskoeffizient μ [mm ⁻¹]: Anzahl der Reflexe: gemessen: symmetrieunabhängig: mit I $\ge 2\sigma(I)$: R _{int} :	$-9 \le k \le 9$ -31 \le 1 \le 31 numerisch 11,32 6883 374 360 0,081
Absorptionskorrektur: Absorptionskoeffizient μ [mm ⁻¹]: Anzahl der Reflexe: gemessen: symmetrieunabhängig: mit I $\geq 2\sigma(I)$: R _{int} : R ₁ :	$-9 \le k \le 9$ -31 \le 1 \le 31 numerisch 11,32 6883 374 360 0,081 0,028

Tabelle 5.6.1.1: Strukturdaten von γ-Ag₁₀(PS₄)₂SCl₂

	-		
9,54(3) Ag1 auf 18h (x, -x, z)	x = 0,4881(5) z = 0,1185(7)	$U_{11} = U_{22} = 465(13)$ $U_{33} = 830(70)$	$U_{12} = 195(18)$ $U_{13} = 17(13)$
			$U_{23} = -U_{13}$
5,22(4) Ag2 auf 18h (x, -x, z)	x = 0,474(1)	$U_{11} = U_{22} = 497(19)$	$U_{12} = -1(19)$
	z = 0,101(1)	$U_{33} = 770(100)$	$U_{13} = 280(20)$ $U_{23} = -U_{13}$
2,32(2) Ag3 auf 18h (x, -x, z)	x = 0,4952(8)	$U_{11} = U_{22} = 1360(150)$	$U_{12} = 1200(150)$
	z = 0,137(1)	$U_{33} = 820(130)$	$U_{13} = 40(20)$ $U_{23} = -U_{13}$
1,60(7) Ag4 auf 18h (x, -x, z)	x = 0,458(2)	$U_{11} = U_{22} = 920(70)$	$U_{12} = 190(70)$
	z = 0,078(1)	$U_{33} = 2400(300)$	$U_{13} = -680(90)$ $U_{23} = -U_{13}$
1,15(4) Ag5 auf 18g (x, 0, ½)	x = 0,333(2)	U ₁₁ = 810(70)	$U_{12} = 620(70)$
		$U_{22} = 1230(130)$	$U_{13} = 280(40)$
		$U_{33} = 690(100)$	$U_{23} = 2U_{13}$
4,14(1) Ag6 auf 18f (x, 0, 0)	x = 0,294(2)	$U_{11} = 1111(60)$ $U_{22} = 510(30)$	$U_{12} = 254(17)$ $U_{13} = -20(7)$
		$U_{33} = 337(19)$	$U_{23} = 2U_{13}$
6,16(1) Ag7 auf 36i (x, y, z)	x = 0,270(2)	$U_{11} = 480(20)$	$U_{12} = -190(70)$
	y = 0.217(2) z = 0.9972(3)	$U_{22} = 1760(190)$ $U_{22} = 330(30)$	$U_{13} = -115(17)$ $U_{23} = 490(60)$
	2 - 0,9972(3)	U ₃₃ - 550(50)	U ₂₃ - +90(00)
6 P1 auf 6c $(0, 0, z)$	z = 0,09835(6)	$U_{11} = U_{22} = 223(7)$ $U_{33} = 194(10)$	$U_{23} = U_{13} = 0$ $U_{12} = \frac{1}{2}U_{11}$
6 S1 auf 6c (0, 0, z)	z = 0,16415(7)	$U_{11} = U_{22} = 502(11)$ $U_{22} = 183(11)$	$U_{23} = U_{13} = 0$ $U_{12} = \frac{1}{2}U_{13}$
		$0_{33} - 103(11)$	$0_{12} = 720_{11}$

Tabelle 5.6.1.2: Atomkoordinaten und anisotrope Auslenkungsparameter $[pm^2]$ von
 γ -Ag10(PS4)2SCl2

18 S2 auf 18h (x, -x, z)	x = 0,51527(9)	$U_{11} = U_{22} = 290(6)$	$U_{12} = 179(6)$
	z = 0,40776(4)	U ₃₃ = 240(7)	$U_{13} = -6(2)$ $U_{23} = -U_{13}$
3 S3 auf 3b (0, 0, ¹ / ₂)		$U_{11} = U_{22} = 496(15)$ $U_{33} = 307(18)$	$U_{23} = U_{13} = 0$ $U_{12} = \frac{1}{2}U_{11}$
6 Cl auf 6c (0, 0, z)	z = 0,3580(1)	$U_{11} = U_{22} = 403(10)$ $U_{33} = 607(170)$	$U_{23} = U_{13} = 0$ $U_{12} = \frac{1}{2}U_{11}$

Tabelle 5.6.1.3:Bindungslängen [Å] und ausgewählte Winkel [°] von γ -Ag₁₀(PS₄)₂SCl₂

Ag	- S1	1 × 2,76(2)	"Tetraeder" um Ag1	S1-Ag1-S2	2 × 86,3(2)
	- S2	2×2,673(9)		S2-Ag1-S2	$1 \times 98,0(5)$
	- S3	$1 \times 2,47(1)$		S1-Ag1-S3	1×109,3(8)
				S2-Ag1-S3	2×129,60(8)
Ag	- S2	2×2,534(6)	"Tetraeder" um Ag2	S2-Ag2-S2	1×105,5(4)
	- S3	1 × 2,69(2)		S2-Ag2-S3	2×125,6(5)
	- Cl	$1 \times 2,95(1)$		S2-Ag2-Cl	2 × 93,3(4)
				Cl-Ag2-S3	1×100,3(6)
Ag	- S1	$1 \times 2,41(2)$	"Tetraeder" um Ag3	S1-Ag3-S2	2×86,9(3)
	- S2	2 × 2,97(2)		S2-Ag3-S2	1 × 85,7(9)
	- S3	$1 \times 2,26(2)$		S1-Ag3-S3	1 × 132(2)
				S2-Ag3-S3	2×125,2(6)
Ag	- S2	2×2,52(2)	"Tetraeder" um Ag4	S2-Ag4-S2	1×107(1)
	- Cl	$1 \times 2,28(2)$		S2-Ag4-Cl	2×113(1)
	- S3	1 × 3,13(2)		S2-Ag4-S3	2×110,0(3)
				Cl-Ag4-S3	1×105,5(3)
Ag	- S1	2×2,468(6)	Trigonal-planar um Ag5	S1-Ag5-S1	1×119,9(5)
	- S3	1 × 2,46(1)		S1-Ag5-S3	2×120,1(2)
	- S2	2×3,081(6)			

Ag	- S2	$2 \times 2,520(3)$	"Tetraeder" um Ag6	S2-Ag6-S2	$1 \times 157,4(7)$
	- Cl	2×2,729(9)		S2-Ag6-Cl	2 × 93,3(2)
					2 × 99,3(2)
				Cl-Ag6-Cl	1×112,1(6)
Ag	-S2	1 × 2,44(1)	"trigonal-planar" um Ag7	S2-Ag7-S2	1×163,2(8)
		$1 \times 2,55(2)$		S2-Ag7-Cl	1 × 95,8(5)
	-Cl	$1 \times 2,70(1)$			1 × 99,3(3)
Р	- S1	1×2,010(3)	Tetraeder um P	S1-P-S2	3×110,66(6)
	-S2	3×2,072(1)		S2-P-S2	3 × 108,26(6)

Tabelle 5.6.1.4: Ausgewählte Ag-Ag-Abstände [Å] in γ-Ag₁₀(PS₄)₂SCl₂

Ag1 - Ag2 :	0,56(2)	Ag1 - Ag3 :	0,57(3)
Ag2 - Ag4 :	0,74(5)	Ag5 - Ag5 :	2,46(1)
Ag3 - Ag5 :	1,53(2)	Ag4 - Ag4 :	2,77(4)
Ag6 - Ag7 :	0,51(1)	Ag7 - Ag7 :	0,70(4)
Ag6 - Ag6 :	2,17(2) 3,05(2)	Ag6 - Ag4	2,88(4)

Mit γ -Ag₁₀(PS₄)₂SCl₂ wurde ein neuer Strukturtyp für Silberthiophosphathalogenide ermittelt. Obwohl der oben aufgeführte Vergleich der Gitterkonstanten eine strukturelle Verwandtschaft nahe legt, zeigt die Abbildung 5.6.1.1, daß sich die γ -Ag₁₀(PS₄)₂SCl₂-Struktur signifikant von der Argyrodit- bzw. den "modifizierten" Argyrodit-Strukturen unterscheidet. Der grundlegende Unterschied besteht darin, daß sich jeweils zwei PS₄-Tetraederschichten mit ihren Tetraederspitzen gegenüberstehen, so daß zwei "Baueinheiten" längs [001] eine gemeinsame Grenzfläche besitzen und die Ag5-Atome zu zwei Baueinheiten gehören. Das Prinzip der ineinander verschachtelten Frank-Kasper-Polyeder bei der Argyrodit-Struktur ist hier nur ansatzweise erfüllt. Lediglich um S1 gibt es noch ein klassisches Frank-Kasper-Polyeder mit der Koordinationszahl 12 (s. Abb. 5.6.1.3). Das Polyeder um das S2-Atom mit der Koordinationszahl 13 ist an einer Atomposition so deformiert, daß anstelle einer Dreiecksfläche zwischen den Atomen eine Rautenfläche entsteht. Obwohl das Polyeder um S3 mit 20 Atomen eine außergewöhnlich hohe Koordinationszahl hat, erfüllt es trotzdem alle Bedingungen für ein Frank-Kasper-Polyeder. Insgesamt führt dies alles zu einer großen Deformation der Tetraederlücken, was wiederum den Ag-Atomen eine größere Koordinationsvielfalt ermöglicht.

Abbildung 5.6.1.1: Struktur von γ-Ag₁₀(PS₄)₂SCl₂ entlang [010]; PS₄-Tetraeder hervorgehoben. Atombezeichnung: Ag: (groß, hell); P: (klein, dunkel); S: (klein, hell); Cl: (groß, dunkel).

Abbildung 5.6.1.2: Struktur von γ -Ag₁₀(PS₄)₂SCl₂ entlang [001]. Es sind vier Elementarzellen dargestellt, Atombezeichnung s. Abb. 5.6.1.1

Abbildung 5.6.1.3: "Frank-Kasper-Polyeder" der Anionen in γ-Ag₁₀(PS₄)₂SCl₂.

In den Abbildungen 5.6.1.4 - 5 sind die Ag-Atome mit ihren Koordinationspolyedern abgebildet. Die Positionen der Ag1/2/3/4-Atome sind mit ihren Übergängen von der trigonalen (Ag1/2) zur tetragonalen Koordination (Ag3/4) mit denen der entsprechenden Atome (Ag1/2/3) in den oben beschriebenen Verbindungen vergleichbar. Hauptsächlich wird sich das Ag-Atom, welches nur eine der vier Positionen besetzen kann, in der trigonal planaren Position befinden. Ein Migrationspfad könnte über die "trigonal planar" koordinierte Ag5-Lage mit einem Abstand von nur 1,53 Å zur Ag3-Position verlaufen. So wie die Ag1/2-Atome in einer erweiterten Koordinationssphäre im Zentrum einer trigonalen Bipyramide liegen, befindet sich auch die Ag5-Position in einer - wenn auch merklich verzerrten - trigonalen Bipyramide mit einem Winkel zwischen den Pyramidenspitzen (S2-Ag5-S2) von 132° (Abstand Ag5-S2: 3,08 Å), während dieser Winkel für die Bipyramide mit Ag1/2 als Zentralatome im Mittel noch ca. 163° beträgt (ideal: 180°). Daß es sich bei Ag5 nur um eine Übergangsposition handelt, verdeutlicht die geringe Besetzung von nur 6%. Neu ist die Ag6/7-Koordination (s. Abb. 5.6.1.5). Mit je zwei S2-Atomen im Abstand von 2,52 Å und zwei Cl-Atomen mit Abständen von 2,73 Å befindet sich das Ag6-Atom in einem stark verzerrten Tetraeder. Die Koordination kann mit den kürzeren Ag-S2-Abständen und einem S2-Ag6-S2-Winkel von 157° als annähernd linear bezeichnet werden. Über die Ag7-Lagen - in einer stark verzerrten trigonal planaren Umgebung - sind die Ag6-Positionen zu einem "Ladungsdichte"-Ring verbunden, in dem sich wahrscheinlich drei Ag-Atome gleichzeitig bewegen können. Dieser Annahme liegt ein Phasenübergang bei tieferen Temperaturen zu Grunde, dessen Auswirkungen im folgenden Abschnitt über die α - und β -Modifikation weiter ausgeführt werden.

Abbildung 5.6.1.4: Koordination der Ag1/2/3/4-Atome (links) und des Ag5-Atoms (rechts). Bindungslängen in Å.

Abbildung 5.6.1.5: Koordination der Ag6/7-Atome. Bindungslängen in Å.

Die Möglichkeiten der Ag-Migration im Kristall sind in Abbildung 5.6.1.6 dargestellt und bei einem Ag-Ag-Abstand von 2,88 Å und 3,05 Å zwischen benachbarten Positionen kann auch in γ -Ag₁₀(PS₄)₂SCl₂ eine Ag-Ionenleitung erwartet werden.

Abbildung 5.6.1.6: Ausschnitt der dreidimensionalen Ag-Verknüpfung in γ -Ag₁₀(PS₄)₂SCl₂. Bindungslängen in Å.

5.6.2 β -Ag₁₀(PS₄)₂SCl₂

Die Strukturbestimmung von γ -Ag₁₀(PS₄)₂SCl₂ zeigt, daß für eine Beschreibung der Ag-Lagen sieben Punktlagen in die Berechnung mit einbezogen werden müssen. Für eine exaktere Lokalisierung wurden mit dem Kristall Tieftemperatur-Messungen auf einem IPDS-Diffraktometer durchgeführt, um die Bewegung der Ag-Atome "einzufrieren". Hierbei treten drastische Änderungen der Gitterkonstanten auf, das rhomboedrische Kristallsystem bleibt jedoch unverändert. Bei 0°C liegt die y-Modifikation mit a = b = 7,39 Å und c = 30,55 Å in hexagonaler Aufstellung vor. Wird der Kristall abgekühlt, so treten im Bereich von -18°C (± 10°C) zusätzliche Reflexe auf, die zu einer Verdoppelung der a- und b-Achsen mit der neuen Metrik a = b = 14,68 Å und c = 30,72 Å führen. Im folgenden wird diese Modifikation als β -Ag₁₀(PS₄)₂SCl₂ bezeichnet. Eine weitere Temperaturabsenkung zeigt bis -75°C keine Veränderung, erst bei -100°C (± 10°C) werden zahlreiche neue Reflexe beobachtet, die eine Vergrößerung der Elementarzelle in allen drei Raumrichtungen bewirken. Die Zellmetrik dieser α-Modifikation beträgt nun 29,29 Å in a- und b-Richtung, sowie 123,37 Å in c-Richtung. Es handelt sich letztendlich um eine 64-fache Vergrößerung der ursprünglichen Elementarzelle. Für beide Modifikationen wurden die Reflexintensitäten ermittelt (β: -58°C; α: -118°C). Während es bei der Datenaufbereitung (Integration der Reflexintensitäten) für die β-Modifikation keine Probleme gab, stößt man mit der α-Modifikation an die Grenzen des Diffraktometers. Bei einem IPDS-Diffraktometer werden viele Reflexe gleichzeitig auf einer Bildplatte registriert, deren Auflösungsvermögen für benachbarte Reflexe einerseits vom Abstand Kristall - Bildplatte, andererseits von der Länge der kristallographischen Achsen abhängt. Je größer die reale Länge ist, desto kleiner werden die auf der Bildplatte registrierten reziproken Abstände der Reflexe, was dazu führt, daß die Reflexe ab einer realen Achslänge von ca. 40 Å, je nach Kristall - Bildplattenabstand, anfangen sich zu überlagern und somit eine Integration der einzelnen Reflexintensitäten nicht mehr möglich ist, ohne Einbußen in der Datenqualität in Kauf zu nehmen. Bei einer Achsenlänge von 123 Å war eine Integration gerade noch möglich, da es sich um die hexagonale Aufstellung einer rhomboedrischen Zelle handelt $(a = b = c = 44,47 \text{ Å}, \alpha = \beta = \gamma = 38,46^{\circ})$ und durch die Auslöschungsbedingungen nur jeder dritte Reflex in der hexagonalen Aufstellung auftritt. Die Strukturlösung und

Verfeinerung mit anisotropen Auslenkungsparametern für β-Ag₁₀(PS₄)₂SCl₂ gelang in der Raumgruppe R3 und konvergierte mit $R_1 = 5,5\%$ und einer Restelektronendichte von 1,6 e/Å³. Die Ergebnisse der Strukturbestimmung sind in den Tabellen 5.6.2.1 - 4 aufgelistet.

Tabelle 5.6.2.1: Strukturdaten von	β -Ag ₁₀ (PS ₄) ₂ SCl ₂
Empirische Formel:	$Ag_{9,8}(PS_4)_2SCl_2$
Messgerät:	IPDS
Raumgruppe:	R3 (Nr.146)
Meßtemperatur [°C]:	-58
Gitterkonstanten [Å]:	a = 14,680(2)
Zellvolumen [Å ³]:	5733,3(4)
Formeleinheiten/Zelle:	Z = 12
Dichte (theoretisch) $[g \times cm^{-3}]$:	5,124
Meßbereich:	$6^\circ \le 2\theta \le 60^\circ$
hkl-Bereich:	$-20 \le h \le 20$
	$-20 \le k \le 20$
	$-42 \le l \le 38$
Absorptionskorrektur:	keine
Absorptionskoeffizient μ [mm ⁻¹]:	11,09
Anzahl der Reflexe:	
gemessen:	35254
symmetrieunabhängig:	3595
mit $I \ge 2\sigma(I)$:	1750
verfeinerte Parameter:	428
R _{int} :	0,158
R ₁ :	0,059
$w R_2$ (alle Reflexe):	0,172

169

Besetzung	Atom	X	у	Z	U _{eq}
9,0(1)	Ag1	0,5858(2)	0,6756(3)	0,1995(1)	643(13)
2,6(2)	Ag2	0,780(1)	0,887(1)	0,1734(8)	670(60)
5,9(2)	Ag3	0,8248(7)	0,9176(6)	0,1995(3)	630(30)
6,3(2)	Ag4	0,1534(7)	0,0765(5)	0,8649(4)	700(30)
2,3(2)	Ag5	0,1231(9)	0,063(1)	0,837(1)	850(80)
3,5(2)	Ag6	0,6070(7)	0,8962(7)	0,1633(4)	870(40)
5,4(2)	Ag7	0,6003(5)	0,8998(6)	0,1853(5)	1180(50)
8,8(1)	Ag8	0,5762(2)	0,6572(2)	0,9675(1)	622(12)
5,9(2)	Ag9	0,0788(4)	0,1554(5)	0,9661(3)	650(30)
2,6(2)	Ag10	0,0612(9)	0,9390(9)	0,9949(7)	700(50)
2,5(1)	Ag11	0,5572(8)	0,4471(9)	0,9947(3)	500(40)
6,0(1)	Ag12	0,5742(4)	0,4162(4)	0,9661(2)	640(20)
3,2(2)	Ag13	0,3468(8)	0,4187(8)	0,9637(6)	760(50)
2,7(2)	Ag14	0,364(1)	0,4321(9)	0,006(1)	1290(110)
3,3(2)	Ag15	0,3944(6)	0,4473(5)	0,9958(1)	299(18)
3,0(1)	Ag16	0,3376(5)	0,3426(7)	0,9188(2)	580(30)
2,5(1)	Ag17	0,510(1)	0,3527(9)	0,9201(3)	800(44)
2,4(1)	Ag18	0,3427(6)	0,489(1)	0,9197(3)	830(50)
0,9(1)	Ag19	0,011(2)	0,167(1)	0,9208(6)	600(90)
1,2(1)	Ag20	0,145(2)	0,156(2)	0,9195(8)	990(110)
5,5(1)	Ag21	0,9621(4)	0,7969(4)	0,0844(1)	415(14)
3,9(1)	Ag22	0,9659(6)	0,6681(7)	0,0839(2)	630(20)
5,4(1)	Ag23	0,8311(4)	0,5352(4)	0,0838(1)	377(13)
3,9(1)	Ag24	0,7091(6)	0,5430(6)	0,0845(2)	644(30)
5,5(1)	Ag25	0,7040(4)	0,6674(4)	0,0842(1)	409(12)
3,7(1)	Ag26	0,8314(7)	0,7912(6)	0,0837(2)	530(20)
8,5(1)	Ag27	0,4624(2)	0,6673(2)	0,08412(6)	442(8)
	P1	0,0000	0,0000	0,5152(3)	174(19)
	P2	0,0000	0,0000	0,3194(3)	153(18)
	P3	0,5024(5)	0,5020(4)	0,3110(2)	163(10)
	P4	0,8307(5)	0,6662(5)	0,1823(2)	192(12)
	S 1	0,0000	0,0000	0,5783(4)	360(30)
	S2	0,4096(5)	0,5915(5)	0.1585(2)	224(12)

 $\begin{array}{l} \textbf{Tabelle 5.6.2.2:} \ Atomkoordinaten und äquivalente Auslenkungsparameter [pm^2] von \\ \beta-Ag_{10}(PS_4)_2SCl_2; \ besetzte Punktlagen: 9b (x, y, z); 3a (0, 0, z). \\ Die P-, S- und Cl-Punktlagen sind jeweils vollständig besetzt. \end{array}$

S3	0,4854(5)	0,7422(5)	0,0100(2)	242(13)
S4	0,0000	0,0000	0,2537(4)	410(30)
S5	0,5010(7)	0,5012(6)	0,2532(2)	348(16)
S6	0,7566(5)	0,5146(5)	0,0101(2)	238(12)
S 7	0,2567(5)	0,2408(5)	0,0104(2)	243(13)
S 8	0,7553(5)	0,7423(5)	0,0096(2)	227(12)
S9	0,6666(6)	0,8329(6)	0,9140(2)	306(14)
S10	0,9073(5)	0,8177(5)	0,1584(2)	229(12)
S11	0,6801(5)	0,5912(5)	0,1584(2)	224(12)
S12	0,6839(5)	0,0937(5)	0,1585(2)	226(12)
S13	0,6663(4)	0,8263(4)	0,2497(2)	400(14)
S14	0,0000	0,0000	0,9162(4)	450(40)
Cl1	0,5027(6)	0,5026(5)	0,0638(2)	349(15)
Cl2	0,0000	0,0000	0,7727(5)	380(30)
C13	0,6668(6)	0,8305(6)	0,1050(3)	420(17)
Cl4	0,0000	0,0000	0,0638(3)	310(20)

Tabelle 5.6.2.3: Ausgewählte Bindungslängen [Å] und Winkel [°] von $\beta\text{-}Ag_{10}(PS_4)_2SCl_2$

1 × 168,9(2)
$1 \times 98,2(2)$
$1 \times 88,9(2)$
$1 \times 98,6(3)$
$1 \times 102,0(2)$
$1 \times 88,5(1)$
$1 \times 166,5(3)$
$1 \times 166,5(3)$ $1 \times 89,4(2)$
$1 \times 166,5(3)$ $1 \times 89,4(2)$ $1 \times 99,4(3)$
$1 \times 166,5(3)$ $1 \times 89,4(2)$ $1 \times 99,4(3)$ $1 \times 99,6(3)$
$1 \times 166,5(3) \\ 1 \times 89,4(2) \\ 1 \times 99,4(3) \\ 1 \times 99,6(3) \\ 1 \times 88,4(3)$
1 1 1 1

Ag23	- S6	$1 \times 2,467(7)$	"Tetraeder" um Ag23	S6-Ag23-S12	$1 \times 168,5(2)$
	- S12	1 × 2,499(7)		S6-Ag23-Cl2	1 × 89,3(2)
	- Cl2	1 × 2,806(6)		S12-Ag23-Cl2	1 × 97,9(2)
	- Cl1	1 × 2,866(8)		S6-Ag23-Cl1	1 × 98,8(3)
				S12-Ag23-Cl1	1 × 88,5(2)
				Cl1-Ag23-Cl2	$1 \times 102,4(2)$
Ag24	- S11	1 × 2,477(8)	"Tetraeder" um Ag24	S11-Ag24-S6	1×173,5(3)
	- S6	1 × 2,487(8)		S11-Ag24-Cl1	$1 \times 87,0(3)$
	- Cl1	$1 \times 2,85(1)$		S6-Ag24-Cl1	$1 \times 96,8(4)$
	- Cl2	1 × 2,886(9)		S11-Ag24-Cl2	$1 \times 97,5(3)$
				S6-Ag24-Cl2	1 × 87,1(2)
				Cl1-Ag24-Cl2	1 × 100,7(3)
Ag25	- S11	1 × 2,487(7)	"Tetraeder" um Ag25	S11-Ag25-S8	1 × 170,5(3)
	- S8	$1 \times 2,489(7)$		S11-Ag25-Cl3	1 × 97,6(3)
	- Cl3	$1 \times 2,784(6)$		S8-Ag25-Cl3	1 × 88,7(3)
	- Cl1	1 × 2,798(9)		S11-Ag25-Cl1	1 × 88,0(2)
				S8-Ag25-Cl1	1 × 97,6(3)
				Cl3-Ag25-Cl1	$1 \times 102,3(3)$
Ag26	- S8	1 × 2,478(9)	"Tetraeder" um Ag26	S8-Ag26-S10	1 × 172,5(3)
	- S10	1 × 2,497(8)		S8-Ag26-Cl3	1 × 88,0(3)
	- Cl3	1 × 2,83(1)		S10-Ag26-Cl3	1 × 96,6(4)
	- Cl4	1 × 2,882(9)		S8-Ag26-Cl4	1 × 97,8(3)
				S10-Ag26-Cl4	1 × 87,2(2)
				Cl3-Ag26-Cl4	1 × 101,5(3)
Ag27	- S3	$1 \times 2,478(7)$	"Tetraeder" um Ag27	S2-Ag27-S3	1×170,1(2)
	- S2	1 × 2,491(7)		S3-Ag27-Cl3	1 × 88,9(3)
	- Cl3	1 × 2,823(9)		S2-Ag27-Cl3	1 × 97,6(3)
	- Cl1	1 × 2,831(8)		S3-Ag27-Cl1	1 × 97,8(2)
				S2-Ag27-Cl1	1 × 88,4(2)
				Cl1-Ag27-Cl3	1×100,8(2)

P1	- S1	1 × 1,95(2)	Tetraeder um P1	S1-P-S2	3×111,2(2)
	- S2	$3 \times 2,064(7)$		S2-P-S2	3 × 107,7(2)
P2	- S4	1 × 2,01(1)	Tetraeder um P2	S3-P-S4	3×111,0(2)
	- S3	3×2,070(7)		S3-P-S3	3×108,0(2)
P3	- S5	1 × 2,050(8)	Tetraeder um P3	S5-P-S6	1×110,2(4)
	- S6	1 × 2,067(9)		S5-P-S7	1×110,3(3)
	- S7	$1 \times 2,074(9)$		S5-P-S8	1×110,7(4)
	- S8	1 × 2,050(9)		S6-P-S7	1 × 107,9(3)
				S6-P-S8	1 × 109,0(4)
				S7-P-S8	1×108,8(3)
P4	- S9	1 × 1,999(8)	Tetraeder um P4	S9-P-S10	1×110,66(4)
	- S10	1 × 2,061(9)		S9-P-S11	1×111,8(4)
	- S11	1 × 2,050(9)		S9-P-S12	1×110,1(3)
	- S12	1 × 2,062(9)		S10-P-S11	$1 \times 108,2(4)$
				S10-P-S12	1 × 107,9(4)
				S11-P-S12	1×108,1(4)

Die Kristallstruktur der β -Modifikation ist in fast allen Bereichen mit der γ -Form identisch (s. Abb. 5.6.2.1). Das Anionengerüst (Frank-Kasper-Polyeder) weist keine Veränderung auf, ebenso die Anordnung der PS₄-Tetraeder. Die Änderung der Metrik wird einzig von den Ag-Atomen beeinflußt, die sich mit sinkender Temperatur zunehmend ordnen. Sind für die Beschreibung der Positionen um Ag1 in γ -Ag₁₀(PS₄)₂SCl₂ vier teilbesetzte Punktlagen notwendig, so sind in β -Ag₁₀(PS₄)₂SCl₂ nur noch zwei Lagen erforderlich. Dies betrifft die Ag1 - Ag15-Atome, wobei die Positionen mit einer Besetzungsdichte > 50% trigonalplanar - die restlichen eher tetraedrisch - koordiniert sind.

Abbildung 5.6.2.1: Kristallstruktur von β -Ag₁₀(PS₄)₂SCl₂ entlang [010]. Atombezeichnung s. Abb. 5.6.1.1

Die Schicht zwischen den Spitze auf Spitze stehenden PS_4 -Tetraedern kann als hexagonale Anordnung von S-Dreiecken beschrieben werden. Während deren eng beieinander liegenden Zentren in der γ -Form von Ag5-Atomen statistisch besetzt sind, werden bei β -Ag₁₀(PS₄)₂SCl₂ von den 24 möglichen Positionen nur noch 15 eingenommen (Ag16 - 20) (s. Abb. 5.6.2.2), und dies mit einer sehr geringen Besetzungsdichte.

Abbildung 5.6.2.2: Schicht der Ag16 - Ag20-Atome entlang [001]. Jedes Zentrum von den S-Atomen aufgespannte Dreieck stellt eine mögliche Ag-Position dar. Alle Atome liegen in der Zeichenebene.

Der eigentlich Grund für die Phasenumwandlung und die damit verbundene Vervielfachung der Elementarzelle liegt in einer teilweisen Ordnung der Ag6/7-Atome der γ -Form. Abbildung 5.6.2.3 zeigt die entsprechende Ebene in β -Ag₁₀(PS₄)₂SCl₂. Die ursprüngliche Ag7-Position ist nicht mehr vorhanden. Die übrigen Atome - Ag21 bis Ag26 - bilden drei 6-Ringe pro Ebene in der Elementarzelle, deren Positionen statistisch besetzt und deren Ag-Ag-Abstände (1,85 Å bis 1,96 Å) sehr klein sind. Die Ag27-Atome sind dagegen in Form eines Dreiecks angeordnet, d. h. in dem ursprünglichen Sechsring der γ -Form ist nur jeder zweite Platz besetzt und dies zu ca. 95%. Der betreffende Ag-Ag-Abstand beträgt 3,30 Å, was einem chemisch sinnvollen Abstand ohne Ag-Ag-Wechselwirkung entspricht. Ein Fortschreiten hin zur linearen Ag-Koordination ist ebenfalls zu beobachten: Die Ag-Cl-Bindung verlängert sich von 2,52 Å (Ag6 γ -Form) auf 2,83 Å (Ag27 β -Form) und der Winkel S-Ag-S nähert sich mit ca. 170° immer mehr dem idealen 180°-Winkel an.

Abbildung 5.6.2.3: Schicht der Ag21 - Ag27-Atome (als Schwingungsellipsoide) entlang [001]. Cl-Atome (dunkel) liegen ober- und unterhalb der Zeichenebene.

Abbildung 5.6.2.4: Ausschnitt aus Abb. 5.6.2.3 mit eingezeichneten "verzerrten" Tetraedern

Mit dem teilweise Verschwinden der Ag6/7-Ringe der γ -Form zugunsten von "Ag-Dreiecken" wird aufgezeigt, in welche Richtung sich die Struktur von Ag₁₀(PS₄)₂SCl₂ mit fallender Temperatur vermutlich bewegt: Es ist anzunehmen, daß sich die restlichen 6-Ringe bei noch tieferen Temperaturen zu Dreiecken ordnen werden. Um ein Viertel der Ringe zu ordnen, ist eine Vervierfachung des Zellvolumens notwendig. Verfolgt man diese Tendenz weiter, sind bei einer weiteren Vervierfachung die Hälfte der Ringe und nach einer nochmaligen Vervierfachung alle 6-Ringe in geordnete Dreiecke übergegangen, also insgesamt bei dem 64-fachen des ursprünglichen Volumens. Vorweggenommen kann so die α -Modifikation erklärt werden: 64 × 1446 Å³ = 92544 Å³ (Volumen von α -Ag₁₀(PS₄)₂SCl₂ : 91659 Å³).

5.6.3 α -Ag₁₀(PS₄)₂SCl₂

Eine Strukturrechnung von α -Ag₁₀(PS₄)₂SCl₂ gestaltete sich durch die riesige Elementarzelle und das schlechte Datenmaterial äußerst schwierig. Für die Datensammlung und die anschließende Intensitätsintegration mußten Kompromisse hinsichtlich der Datenqualität in Kauf genommen werden. Circa 5% der Reflexe konnten nicht benutzt werden, da sie einem zweiten Reflex so nahe kommen, daß ihre Intensitäten nicht einzeln bestimmt werden können. Auch erfüllen nur ca. 8% aller gemessenen Reflexe die Bedingung I $\geq 2\sigma(I)$. Unter diesen ungünstigen Anfangsbedingungen war es nicht möglich, mit dem Programmpaket SHELXL97 eine Strukturlösung zu erhalten, die eine weitere Strukturverfeinerung sinnvoll und erfolgversprechend erscheinen ließ. Deutlich bessere Strukturvorschläge konnten mit dem Programmpaket SIR2002 erhalten werden. Der beste Strukturvorschlag wurde in der Raumgruppe R32 ermittelt, in der schon die richtige Position und Elementzuordnung von ca. 80% der Atome bestimmt wurde. Ausgehend von den SIR2002-Startparametern wurden die weiteren Rechnungen mit SHELXL97 fortgeführt und nachdem die restlichen Atome lokalisiert werden konnten, konvergierte die Verfeinerungsrechnung mit $R_1 = 22,7\%$. An diesem Punkt sind jedoch die Grenzen der Strukturrechnung mit dem derzeit vorhandenen Datenmaterial erreicht; lediglich die Atompositionen können lokalisiert werden und sind im Anhang angegeben. Eine Bestimmung der thermischen Auslenkungsparameter ist nicht möglich, dadurch ist es auch nicht möglich, die jeweilige Besetzungsdichte einer Ag-Position zu berechnen. Die Restelektronendichte weist noch fast 30 Maxima zwischen 20 - 10 eV/Å³ auf. Letztendlich korrelieren aber die Anzahl der Atome (mit Ausnahme von Ag), die Positionen und die interatomaren Abstände mit denen der γ - und β -Modifikation, so daß das Ergebnis der Strukturbestimmung der α -Phase plausibel ist. Die Lageparameter von α -Ag₁₀(PS₄)₂SCl₂ sind im Anhang A aufgelistet, auf die Angaben von Bindungslängen und Winkeln wird verzichtet.

Empirische Formel:	$Ag_{10}(PS_4)_2SCl_2$
Messgerät:	IPDS
Raumgruppe:	R32 (Nr.155)
Meßtemperatur [°C]:	-118
Gitterkonstanten [Å]:	a = 29,30
(hex. Aufstellung)	c = 123,37
Zellvolumen [Å ³]:	91659
Formeleinheiten/Zelle:	Z = 192
Dichte (theoretisch) $[g \times cm^{-3}]$:	ca. 5,22
Meßbereich:	$6^{\circ} \le 2\theta \le 52^{\circ}$
hkl-Bereich:	$-36 \le h \le 0$
	$-31 \le k \le 34$
	- 55 ≤ l ≤ 146
Absorptionskorrektur:	keine
Absorptionskoeffizient μ [mm ⁻¹]:	11,43
Anzahl der Reflexe:	
gemessen:	253981
symmetrieunabhängig:	38465
mit $I \ge 2\sigma(I)$:	5093
verfeinerte Parameter:	1090
R _{int} :	0,116
R ₁ :	0,222
<i>w</i> R ₂ (alle Reflexe):	0,772

 Tabelle 5.6.3.1: Strukturdaten von α-Ag₁₀(PS₄)₂SCl₂

Abbildung 5.6.3.1: Kristallstruktur von α -Ag₁₀(PS₄)₂SCl₂ entlang [010]. Atombezeichnung s. Abb. 5.6.1.1

Aufgrund der oben aufgeführten Schwierigkeiten bei der Strukturbestimmung der α-Modifikation und der damit verbundenen ungenauen Bestimmung der Atompositionen ist es nicht sinnvoll, detailliert auf Bindungslängen und Winkel einzugehen. Das Beispiel der relativ starren PS4-Tetraeder-Geometrie verdeutlicht das Problem. Der normale P-S-Abstand liegt bei 2,04 \pm 0,03 Å. In α -Ag₁₀(PS₄)₂SCl₂ sind die Grenzwerte 1,73 Å und 2,22 Å, 80% aller 1571 P-S-Bindungen/Elementarzelle liegen zwischen 1,90 Å und 2,15 Å. Die Richtigkeit des Strukturvorschlages wird dadurch belegt, daß alle Nichtmetallatome an chemisch sinnvollen Positionen lokalisiert werden (s. Abb. 5.6.3.1). Von den Positionen, an denen sich noch Ag-Ionen der β-Form befinden könnten, sind nur solche Lagen nicht berücksichtigt, die beurteilt nach der Restelektronendichte mit weniger als 10% Ag besetzt sind. Die Unterschiede zur β-Form befinden sich an den gleichen Stellen wie im Vergleich zwischen der γ - und β -Modifikation. In den β -Ag16-Ag20-Schichten sind in α -Ag₁₀(PS₄)₂SCl₂ nur noch 25 - 30% der vorhandenen Positionen besetzt. Wie oben bereits postuliert, kommt es in α -Ag₁₀(PS₄)₂SCl₂ zu einer vollständigen Ordnung der "Ag-6-Ringe" zu "Ag-Dreiecken". Von den 12 Dreiecksschichten entlang der c-Achse gibt es drei verschiedene, die sich in einer ABCBA-Abfolge wiederholen, jedoch leicht gegeneinander verschoben sind. Die Unterschiede dieser drei Schichten sind in Abbildung 5.6.3.2 wiedergegeben. Zur besseren Orientierung sind je drei Ag-Atome zu Dreiecken verbunden, ohne daß dies reale Ag-Ag-Bindungen darstellen soll. Durch eine unterschiedliche Orientierung der Dreiecke zueinander ergeben sich die verschiedenen Schichten. Sie stehen entweder Spitze an Spitze oder Spitze auf Seite. Markante, immer wiederkehrende Anordnungen sind dick umrandet. Diese Vielfalt erklärt, warum es zu einer solchen enormen Vervielfachung der γ -Ag₁₀(PS₄)₂SCl₂-Elementarzelle kommt. Als Konsequenz ergeben sich drei unterschiedliche Verknüpfungsmuster der stark verzerrten Ag(S₂Cl₂)-Tetraeder (s. Abb. 5.6.3.2 rechts). An den eingekreisten Stellen sind drei solcher Tetraeder miteinander verbunden, wovon Tetraederketten mit 3, 5 oder 9 Tetraedereinheiten (dunkel eingezeichnet) ausgehen. Zusätzlich können noch "isolierte" Tetraeder-6-Ringe (ebenfalls dunkel hervorgehoben) vorliegen.

Abbildung 5.6.3.2: "Ag-Dreiring"-Schichten A (oben), B (mitte), C (unten) und die verknüpften Ag(S₂Cl₂)-Tetraeder (links); alles entlang [001].

In der Abbildung 5.6.3.3 wird die Verknüpfung dieser Tetraeder mit den PS_4 -Tetraedern dargestellt, deren Bindungslängen und Winkel mit den entsprechenden der β -Modifikation vergleichbar sind. Aus dem Vergleich der drei $Ag_{10}(PS_4)_2SCl_2$ -Modifikationen geht hervor, daß sich die Ag-Ionen-Mobilität mit sinkender Temperatur stark verringern dürfte, was zu einer Abnahme der vermuteten Ionenleitfähigkeit führen muß.

Abbildung 5.6.3.3: Verknüpfung der Tetraeder aus Abb. 5.6.3.2. Links entlang [010], rechts entlang [001]. Atombezeichnung s. Abb.5.6.1.1

6 Ba₃PSe₄PO₄

Bereits seit vielen Jahrzehnten sind zahlreiche Verbindungen bekannt und detailliert untersucht worden, die Tetraeder enthalten, in denen Phosphor - als Zentralatom - die Chalcogene Sauerstoff, Schwefel und Selen als Ligand-Atome besitzt. Mit Ba₃PSe₄PO₄ wurde erstmals eine Verbindung untersucht, in der Tetraeder mit unterschiedlichen Chalcogenen vorliegen. Beschrieben sind bisher nur Verbindungen, bei denen an einem P-Atom zwei verschiedene Chalcogene gebunden sind, z.B. die (PSO₃)³⁻, (PS₂O₂)³⁻ und (PS₃O)³⁻-Anionen in Na₃PSO₃×12H₂O, Na₃PS₂O₂×11H₂O, Na₃PS₃O×12H₂O [81] sowie in deren wasserfreien Verbindungen [82, 83, 84]. Von den anderen mit Chalcogenen Tetraeder bildenden Elementen der vierten und fünften Hauptgruppe sind Verbindungen mit verschiedenen Chalcogeno-Tetraedern des Typs "PX₄ + PY₄" (*X*, *Y*: unterschiedliche Chalcogene) in einer Substanz ebenfalls unbekannt.

Die Verbindung Ba₃PSe₄PO₄ konnte bisher nur in einer Probe nachgewiesen werden. Sie entstand bei der Synthese von Ba₃(PSe₄)₂, das aus dem stöchiometrischen Elementgemenge in einer evakuierten Quarzglasampulle bei einer Reaktionstemperatur von 800°C (25 h) und anschließendem Abkühlen (10°C/h) dargestellt werden sollte. Unter einer dünnen, grauen amorphen Schicht konnten die Verbindungen Ba₂P₂Se₆ (farblos), Ba₃(PSe₄)₂ (gelb) sowie BaSe durch die Bestimmung ihrer Zellmetrik auf Einkristalldiffraktometern nachgewiesen werden. Unter dem Mikroskop konnten zusätzlich noch einige Kristallkonglomerate erkannt werden, deren kleine orange-transparente Kristalle auf Grund ihrer Farbe nicht zu den bisher in dem Dreistoffsystem bekannten Verbindungen gehören konnten. Alle auf dem AED-Diffraktometer untersuchten Kristalle ergaben eine trikline Metrik, die auch nicht zu einem binären Phosphor-Selenid gehört. Bei der Sauerstoffquelle für Ba₃PSe₄PO₄ handelt es sich wahrscheinlich um eine eingeschleppte Verunreinigung, da die Ampullenwand keine Spuren einer Reaktion zeigte. Versuche, Ba₃PSe₄PO₄ gezielt darzustellen, führten noch zu keinem Erfolg und werden das Ziel weiterer Untersuchungen sein. Für die Kristallstrukturanalyse wurde der geeignetste der vorher getesteten Kristalle auf einem IPDS-Diffraktometer befestigt. Die Messung der Reflexintensitäten und anschließende Elementarzellenbestimmung bestätigten die trikline Symmetrie mit a = 6,779(1) Å; b = 7,108(1) Å; c = 12,727(3) Å; $\alpha = 82,45^{\circ}$; $\beta = 78,88(3)^{\circ}$ und $\gamma = 81,34^{\circ}$. Die Strukturlösung gelang nach einer numerischen Absorptionskorrektur mit 2103 symmetrieunabhängigen Reflexen, welche die Bedingung I $\geq 2\sigma(I)$ erfüllen, in der Raumgruppe $P\overline{1}$. Es zeigte sich schnell, daß zwei kristallographisch unterschiedliche Phosphor-Chalcogen-Tetraeder vorliegen, wobei dasjenige um das P2-Atom vier Liganden hatte, die durch viel zu große isotrope Auslenkungsparameter (~ 3000 pm²) und - bezogen auf Selen - zu kurze P-Ligand-Abstände (~ 1,6 Å) auffielen. Auch konvergierte die Rechnung bei relativ schlechten R-Werten (R₁: 9,6%; wR₂: 22,5%). Da die Ligandenatome eine geringere Elektronenzahl und einen viel kleineren Radius als Selen haben mußten, wurden diese Positionen als Sauerstoff-Atome verfeinert, was zu "realistischen" kristallographischen Werten führte, und die Rechnung mit anisotropen Auslenkungsparametern konvergierte bei einem konventionellen R-Wert von 3,6%. Sämtliche Strukturdaten sind in den Tabellen 6.1 - 3 aufgelistet.

Raumgruppe :	<i>P</i> 1 (Nr. 2)
Meßgerät:	IPDS
Gitterkonstanten [Å]; Winkel [^o]:	$a = 6,779(1); \alpha = 82,45(3)$
	$b = 7,108(1); \beta = 78,88(3)$
	$c = 12,727(3); \gamma = 81,34(3)$
Formeleinheiten/Zelle:	Z = 2
Zellvolumen [Å ³]:	591,6(2)
Dichte (röntgenographisch) [g×cm ⁻³]:	4,793
Meßbereich :	$5^\circ \le 2\theta \le 61^\circ$
	$-9 \le h \le 9$
	$-9 \le k \le 10$
	$-18 \le 1 \le 18$
Absorptionskorrektur:	numerisch
Absorptionskoeffizient μ [mm ⁻¹]:	22,43
T _{min} :	0,134
T _{max} :	0,326
Anzahl der Reflexe	
gemessen:	12822
symmetrieunabhängig:	3245
mit $I \ge 2\sigma(I)$:	2103
R _{int} :	0,058
R ₁ :	0,036
wR ₂ (alle Reflexe):	0,087

 Tabelle 6.1: Strukturdaten der Verbindung Ba₃PSe₄PO₄

Tabelle 6.2: Atomparameter und anisotrope	Auslenkungsparameter [pm ²] von Ba ₃ PSe ₄ PO ₄
besetzte Punktlage: 2i (x, y, z)	

Ba1	x = 0,35254(8)	$U_{11} = 184(3)$	$U_{23} = 32(2)$
	y = 0,31839(8)	U ₂₂ = 217(3)	$U_{13} = -60(2)$
	z = 0,62399(4)	U ₃₃ = 227(3)	$U_{12} = -22(2)$
Ba2	x = 0,04499(9)	$U_{11} = 240(3)$	U ₂₃ = 16(2)
	y = 0,18503(8)	$U_{22} = 185(2)$	$U_{13} = -33(2)$
	z = 0,35117(4)	U ₃₃ = 236(3)	$U_{12} = -30(2)$
Ba3	x = 0,7074(1)	$U_{11} = 336(3)$	U ₂₃ = -24(2)
	y = 0,26728(9)	U ₂₂ = 296(3)	$U_{13} = -48(2)$
	z = 0,88912(5)	U ₃₃ = 199(3)	$U_{12} = 40(3)$
P1	x = 0,6083(4)	$U_{11} = 214(11)$	$U_{23} = 3(8)$
	y = 0,1966(3)	U ₂₂ = 183(10)	$U_{13} = -70(8)$
	z = 0,1908(2)	U ₃₃ = 196(10)	$U_{12} = -23(9)$
P2	x = 0,8591(3)	U ₁₁ = 155(10)	$U_{23} = -5(8)$
	y = 0,3060(3)	$U_{22} = 161(9)$	$U_{13} = -43(8)$
	z = 0,6147(2)	U ₃₃ = 174(10)	U ₁₂ = -25(9)
Se1	x = 0,3396(2)	U ₁₁ = 240(5)	U ₂₃ = 21(3)
	y = 0,2356(1)	$U_{22} = 302(5)$	$U_{13} = -87(3)$
	z = 0,11269(7)	U ₃₃ = 214(4)	$U_{12} = -44(4)$

Se2	x = 0,4594(2)	$U_{11} = 252(5)$	$U_{23} = -40(3)$
	y = 0,8341(1)	U ₂₂ = 293(5)	$U_{13} = -61(3)$
	z = 0,63185(7)	$U_{33} = 187(4)$	$U_{12} = 13(4)$
Se3	x = 0,2380(2)	$U_{11} = 362(6)$	$U_{23} = 54(4)$
	y = 0,5493(1)	$U_{22} = 243(5)$	$U_{13} = -129(4)$
	z = 0,86172(9)	U ₃₃ = 352(5)	$U_{12} = -112(4)$
Se4	x = 0,2044(2)	$U_{11} = 363(6)$	$U_{23} = -18(4)$
	y = 0,0606(1)	$U_{22} = 246(5)$	$U_{13} = -9(4)$
	z = 0,86770(8)	U ₃₃ = 272(5)	$U_{12} = 63(4)$
01	x = 0,931(1)	$U_{11} = 250(30)$	U ₂₃ = -50(20)
	y = 0,4418(9)	$U_{22} = 200(30)$	$U_{13} = -80(30)$
	z = 0,6801(5)	U ₃₃ = 260(30)	$U_{12} = -30(30)$
02	x = 0,046(1)	U ₁₁ = 240(30)	U ₂₃ = -30(20)
	y = 0,1730(9)	$U_{22} = 190(30)$	$U_{13} = -60(20)$
	z = 0,5616(5)	$U_{33} = 210(30)$	$U_{12} = 10(30)$
03	x = 0,743(1)	$U_{11} = 270(30)$	$U_{23} = 50(30)$
	y = 0,4081(9)	$U_{22} = 270(30)$	$U_{13} = -80(30)$
	z = 0,5267(5)	$U_{33} = 230(30)$	$U_{12} = -40(30)$
O4	x = 0,717(1)	$U_{11} = 250(30)$	U ₂₃ = 80(2)
	y = 0,1791(9)	$U_{22} = 230(30)$	$U_{13} = -40(20)$
	z = 0,6951(5)	$U_{33} = 180(30)$	$U_{12} = -110(30)$

Bal	- 03	2,646(6)	Ba2 - O1	2,654(6)	Ba3 - O	4 2,613(6)
	- 02	2,740(7)	- O2	2,671(6)	- O	1 3,011(7)
	- 04	2,792(7)	- O2	2,749(7)	- Se	21 3,410(2)
	- 03	2,827(7)	- O4	2,902(6)	- Se	24 3,442(2)
	- 01	2,838(6)	- 03	3,144(7)	- Se	21 3,497(1)
	- Se2	3,402(1)	- Se1	3,305(2)	- Se	23 3,548(2)
	- Se4	3,442(2)	- Se2	3,389(1)	- Se	21 3,640(1)
	- Se2	3,509(2)	- Se2	3,406(1)	- Se	3,685(2)
	- Se3	3,531(2)	- Se3	3,763(2)	- Se	24 3,710(2)
	- Se2	3,859(2)	- Se4	4,201(2)	- Se	24 3,979(2)
					- Se	e3 4,311(2)
P1	- Se3	2,185(3)	Tetra	aeder um P1	Se3 – P – Se4	111,45(11)
	- Se4	2,191(2)			Se3 - P - Se2	107,79(11)
	- Sel	2,204(3)			Se4 – P – Se2	110,39(10)
	- Se2	2,203(2)			Se3 - P - Se1	107,01(10)
					Se4 - P - Se1	105,57(11)
					Se2 – P – Se1	114,62(11)
P2	- 03	1,534(7)	Tetra	aeder um P2	O3 - P - O1	114,2(4)
	- 01	1,541(7)			O3 - P - O4	108,5(4)
	- 04	1,558(7)			O1-P-O4	107,6(4)
	- 02	1,560(6)			O3 - P - O2	108,8(4)
					O1 - P - O2	109,1(4)
					O4 - P - O2	108,4(4)

Tabelle 6.3: Atomabstände [Å] und ausgewählte Winkel [°] von Ba₃PSe₄PO₄

Bei der bisher unbekannten Verbindung Ba₃PSe₄PO₄ handelt es sich um ein klassisches Orthophosphat mit isolierten Chalcogenophosphat-Tetraedern (s. Abb. 6.1). Völlig neu ist, daß die zwei P-Zentralatome in den beiden Tetraedern von verschiedenen Chalcogenen umgeben sind. Das PSe₄³⁻-Tetraeder ist mit seinen P-Se-Bindungslängen zwischen 2,19 Å und 2,20 Å und Bindungswinkeln von 105,6° bis 114,6° nur gering verzerrt (s. Tab. 6.3); diese liegen im üblichen Bereich für ein PSe₄-Tetraeder, wie z. B. die Verbindungen KBaPSe₄ und Ba₃(PSe₄)₂ zeigen (s. oben). Bei dem zweiten Tetraeder handelt es sich nach der Strukturrechnung eindeutig um ein PO₄³⁻-Tetraeder. Die Winkel bewegen sich von 108,5° bis 114,2° um den idealen Tetraederwinkel. Auch die P-O-Bindungslängen zwischen 1,53 Å und 1,56 Å sind mit denen anderer Oxophosphate vergleichbar. Der mittlere P-O-Abstand in einem PO₄-Tetraeder beträgt nach *D. E. C. Corbrigdge* [81] 1,54 Å. Die P-Se- und P-O-Abstände sind etwas kürzer als die Summe der Kovalenzradien nach *Pauling* [37] (P-Se: 2,27 Å; P-O: 1,76 Å), da auch in diesen kovalenten Bindungen ein Doppelbindungsanteil vorliegt.

Abbildung 6.1: Kristallstruktur von Ba₃PSe₄PO₄: Ba: (groß, dunkel), P: (klein, dunkel) Se: (groß, hell), O: (klein, hell), PSe₄-Tetraeder: (groß); PO₄-Tetraeder: (klein)

Es kommt zu keiner statistischen Besetzung der Tetraederpositionen durch Selen- und Sauerstoffatome, was sich anhand der Temperaturfaktoren und durch eine Verkürzung der Se-P- und Verlängerung der O-P-Bindungen bemerkbar machen sollte. Dafür gibt es keine Hinweise in der Strukturverfeinerung. Alle drei unabhängigen Ba-Atome werden durch die Se- und O-Atome in Form unregelmäßiger Polyeder koordiniert. Das Ba1-Atom hat fünf O-Atome im Abstand von 2,65 Å bis 2,84 Å, ebenso fünf Se-Atome von 3,40 Å bis 3,86 Å in seiner Koordinationssphäre und erreicht so die Koordinationszahl zehn (s. Abb. 6.2). Ein Vergleich zeigt, daß die Bindungen im Bereich der bei Ba₃(PO₄)₂ [85] (Ba-O: 2,64 Å - 2,91 Å) bzw. Ba₃(PSe₄)₂ (Ba-Se: 3,30 Å - 3,79 Å) [s. o.] gefundenen Abstände liegen. Die Koordinationszahl für Ba2 ist ebenfalls zehn und setzt sich auch aus je fünf O- und Se-Atome mit vergleichbaren Abständen zusammen (s. Abb. 6.3). Allerdings ist ein O-Atom mit 3,14 Å und ein Se-Atom mit 4,20 Å im Vergleich zu den restlichen vier Atomen deutlich weiter vom Zentralatom entfernt.

Abbildung 6.2: Koordination um Ba1; Se: (hell, groß), O: (hell, klein)

Das dritte Ba-Atom weicht in der Art seiner Umgebung von den ersten beiden ab, da sich nur zwei O-Atome im Abstand von 2,61 Å und 3,01 Å in seiner Nähe befinden (s. Abb. 6.4). Vervollständigt wird die Ba-Sphäre durch sieben Se-Atome mit Entfernungen von 3,41 Å bis 3,71 Å, deutlich weiter entfernt sind zwei weitere Se-Atome mit Abständen von 3,98 Å und 4,31 Å, so daß eine Gesamt-Koordinationszahl von elf resultiert.

Die Polyederform, die sich mit den elf Liganden ergibt, kann als stark verzerrter Würfel (zwei O- und sechs Se-Atome) beschrieben werden, bei dem drei seiner Vierecksflächen mit den weiter entfernten Se-Atomen überkappt werden. Die beiden am weitesten entfernten Atome befinden dabei fast senkrecht (170,3°) übereinander. Im Einklang mit der Transparenz und der Farbigkeit läßt sich Ba₃PSe₄PO₄ elektronenpräzise als $(Ba^{2+})_3(P^{5+})_2(Se^{2-})_4(O^{2-})_4$ formulieren.

Abbildung 6.3: Koordination um Ba2; Se: (groß, hell), O: (klein, hell)

Abbildung 6.4: Koordination um Ba3, der verzerrte Würfel ist hervorgehoben (gestrichelt);Se: (groß, hell), O: (klein, hell); Abstände in Å.

7 BaP_4Te_2

Die Reaktivität von Tellur gegenüber Phosphor unterscheidet sich deutlich von der anderer Chalcogene. Aufgrund der Instabilität der P-Te-Bindung existieren keine binären Phosphor-Telluride und es sind auch nur wenige ternäre Verbindungen wie P₄STe₂ [86] bekannt. Andererseits sind metallorganische Komponenten in der Lage, die P-Te-Bindung zu stabilisieren, wie z.B. in dem Trialkylphosphan-Tellurid (iso-C₃H₇)₃PTe [87]. Im Bereich der intermetallischen Phasen gibt es zwei Arten. UPTe [88] kristallisiert im tetragonalen La₂Sb-Typ [89]. Es enthält U-P und U-Te-Bindungen, weist aber keine Wechselwirkungen zwischen P und Te auf. Der kürzeste P-Te-Abstand liegt bei 3,84 Å und ist somit viel zu lang im Vergleich zur Summe der Kovalenzradien (2,47 Å) [37]. IrPTe [90] und OsPTe [91] gehören zur zweiten Gruppe, die strukturell dem Pyrit und Marcasit zuzuordnen sind, allerdings mit einer niederen Symmetrie, da die symmetrische S₂-Gruppe durch PTe ersetzt wird. Deren Kristallstruktur gründet sich nur auf Pulverdiffraktogramm-Daten und ist noch nicht endgültig aufgeklärt, allerdings sprechen Spektroskopie-Daten für eine P-Te-Bindung. Obwohl bisher zahlreiche Thio- und Selenophosphate synthetisiert wurden, sind keine Tellurophosphate in der Literatur erwähnt. Versuche, homologe Te-Verbindungen darzustellen, führten zu dem neuen Phosphor-Tellurid BaP₄Te₂.

7.1 Synthese und Strukturanalyse

Die Verbindung kann direkt aus den Elementen im stöchiometrischen Verhältnis in einer evakuierten Quarzglasampulle dargestellt werden. Die Mischung wurde mit 30°C/h auf 475°C erhitzt und nach 100 h auf Raumtemperatur abgekühlt. BaP₄Te₂ bildet sich dabei sowohl als kristallines, röntgenreines Pulver als auch in Form schwarz-glänzender, extrem dünner, langer Nadeln, die erst nach mehreren Wochen an der Luft Zerfallserscheinungen zeigen. Eine zur Röntgenstrukturanalyse geeignete Nadel konnte aus einem Syntheseansatz erhalten werden, mit dem eigentlich eine Verbindung der Zusammensetzung Ba₂P₂Te₆ dargestellt werden sollte. Die Untersuchung auf dem Vierkreisdiffraktometer ergab ein orthorhombisch-primitives Gitter mit a = 16,486(8) Å, b = 6,484(2) Å und c = 7,076(4) Å. Von 2976 gemessenen Reflexen wurden nach einer empirischen Absorptionskorrektur (Ψ -scan) und der Symmetriereduktion 683 Reflexe mit I $\geq 2\sigma(I)$ zur Strukturlösung herangezogen. Aus den Auslöschungsbedingungen 0kl: k+l = 2n und hk0: h = 2n resultiert das Beugungssymbol mmmPn-a. Damit sind die Raumgruppen Pn2₁a und Pnma möglich. Mit Hilfe der Direkten Methoden konnten die Positionen aller Atome lokalisiert und in Pnma beschrieben werden. Die Zusammensetzung wurde durch eine EDX-Analyse (DS 130 ISI, EDAX-DX4) im Rahmen der Fehlergrenzen bestätigt. Das Ergebnis der Strukturbestimmung ist in den Tabellen 7.1.1 und 7.1.2 zusammengefaßt, wichtige Atomabstände und Winkel der Verbindung sind in Tabelle 7.1.3 aufgeführt.

Raumgruppe :	$\frac{1}{\text{Pnma}(\text{Nr} 62)}$
Kaungruppe .	1 IIIIa (111. 02)
Meßgerät:	P3
Gitterkonstanten [Å]:	a = 16,486(8)
	b = 6,484(2)
	c = 7,076(4)
Formeleinheiten/Zelle:	Z = 4
Zellvolumen [Å ³]:	756,4(6)
Dichte (röntgenographisch) [g×cm ⁻³]:	4,535
Meßbereich :	$3^\circ \le 2\theta \le 67^\circ$
	$0 \le h \le 25$
	$-10 \le k \le 10$
	$0 \le l \le 11$
Absorptionskorrektur:	Ψ-scan
Absorptionskoeffizient μ [mm ⁻¹]:	13,54
T _{min} :	0,689
T _{max} :	0,995
Anzahl der Reflexe:	
gemessen:	2976
symmetrieunabhängig:	1597
mit $I \ge 2\sigma(I)$:	683
R _{int} :	0,142
R ₁ :	0,051
wR ₂ (alle Reflexe):	0,114

Tabelle 7.1.1: Strukturdaten der Verbindung BaP₄Te₂

4 Ba auf 4c $(x, \frac{1}{4}, z)$	x = 0,1625(1)	$U_{11} = 185(5)$	$U_{12} = 0$
	z = 0,1015(2)	$U_{22} = 152(5)$	$U_{13} = -2(5)$
		U ₃₃ = 167(6)	$U_{23} = 0$
4 P1 auf 4c $(x, \frac{1}{4}, z)$	x = 0,3781(3)	$U_{11} = 180(20)$	$U_{12} = 0$
	z = 0,1200(7)	$U_{22} = 78(19)$	$U_{13} = 3(2)$
		U ₃₃ = 120(20)	$U_{23} = 0$
8 P2 auf 8d (x, y, z)	x = 0,0650(2)	$U_{11} = 147(14)$	$U_{12} = 11(12)$
	y = 0,0079(5)	U ₂₂ = 95(13)	$U_{13} = 5(13)$
	z = 04616(4)	U ₃₃ = 149(17)	$U_{23} = 12(11)$
4 P3 auf 4c $(x, \frac{1}{4}, z)$	x = 0,0953(3)	$U_{11} = 102(19)$	$U_{12} = 0$
	z = 0,6684(8)	$U_{22} = 110(20)$	$U_{13} = 10(20)$
		$U_{33} = 280(30)$	$U_{23} = 0$
4 Te1 auf 4c (x, $\frac{1}{4}$, z)	x = 0,2462(1)	$U_{11} = 146(5)$	$U_{12} = 0$
	z = 0,5986(2)	$U_{22} = 118(5)$	$U_{13} = -2(5)$
		$U_{33} = 218(7)$	$U_{23} = 0$
4 Te2 auf 4c (x, $\frac{1}{4}$, z)	x = 0,4388(1)	$U_{11} = 177(6)$	$U_{12} = 0$
	z = 0,4390(2)	$U_{22} = 184(5)$	$U_{13} = -14(5)$
		U ₃₃ = 154(7)	$U_{23} = 0$

Tabelle 7.1.2: Atomparameter und anisotrope Auslenkungsparameter $[pm^2]$ von BaP₄Te₂

	-	-	• • •		
Ba-P3	1×3,258(6)	P1-P2	2×2,221(4)	P2-P1-P2	97,7(7)
Ba-P2	2×3,397(3)	P1-Te2	1×2,469(6)	P2-P1-Te2	106,9(2)
Ba-Te1	2×3,575(1)	P2-P3	1×2,203(5)	P2-P2-P1	104,5(2)
Ba-Te2	1×3,699(2)	P2-P2	1×2,213(6)	P3-P2-P1	96,1(2)
		P3-Te1	1×2,537(5)	P3-P2-P2	95,1(2)
				P2-P3-P2	90,9(3)
				P2-P3-Te1	95,3(2)

Tabelle 7.1.3: Ausgewählte Bindungslängen [Å] und Winkel [°] von BaP₄Te₂

7.2 Strukturbeschreibung

Das Hauptmerkmal in der Kristallstruktur von BaP₄Te₂ ist die Existenz von kurzen P-Te-Bindungen und sechsgliedrigen Phosphorringen in Sesselform, die über die P2-Atome miteinander verbunden sind (Abb. 7.2.2). Diese eindimensionalen Bänder entlang [010] leiten sich von einem Fragment des schwarzen Phosphors bzw. grauen Arsens ab. Das P2-Atom betätigt drei homonukleare Bindungen, während die beiden anderen P-Atome jeweils ein Te-Atom als dritten Nachbarn haben. Die zwei Te-Atome eines Sechsringes nehmen sowohl eine axiale als auch eine äquatoriale Position ein. Die P-P-Bindungslängen von 2,20 Å und 2,22 Å stimmen mit denen im schwarzen Phosphor überein [92], ebenso die Bindungswinkel von 90,9° bis 104,5° (schwarzer Phosphor: 96,3° und 102,1°). Die P-Te-Abstände von 2,47 Å und 2,54 Å liegen im Bereich der Kovalenzradiensumme (2,47 Å) [37], was auf eine kovalente P-Te-Bindung hindeutet. In den eindimensionalen P₄Te₂ Bändern ist der Phosphor dreibindig und hat die formale Ladung ± 0 , den terminalen Te-Atomen ist die Ladung -1 zuzuordnen. Sicherlich findet ein Elektronentransfer vom Barium zur $[P_4Te_2]^2$ -Einheit statt. Damit ist BaP₄Te₂ elektrovalent aufgebaut und gehört im weiteren Sinne zu den Zintl-Verbindungen. Um das Ba-Atom befinden sich drei P- und ebenso viele Te-Atome unterschiedlicher P₄Te₂-Einheiten, die zusammen ein irreguläres Polyeder bilden (s. Abb. 7.2.3).

Ergänzt wird die Koordinationssphäre von fünf weiteren Atomen (1P, 4Te), die die Summe der Kovalenzradien um mehr als 5% überschreiten (Ba: Atomradius (KZ 12); P, Te: Kovalenzradius).

Abbildung 7.2.1: Kristallstruktur von BaP₄Te₂. Ba: (groß, dunkel), P: (klein, dunkel), Te: (mittelgroß, hell)

Abbildung 7.2.2: Ausschnitt aus der [P₄Te₂]²⁻-Kette in BaP₄Te₂

Abbildung 7.2.3: Koordination von Ba in BaP₄Te₂

Verbindungen mit Strukturfragmenten des schwarzen Phosphors sind von manchen AP_3 Polyphosphiden mit A = Ca, Sr und Ba bekannt. Ihre Struktur ergibt sich, wenn unterschiedliche Atome aus dem zweidimensionalen Phosphornetzwerk entfernt werden. In BaP₃ werden die Netze durch das Fehlen benachbarter Atome so aufgetrennt, daß eine eindimensionale Struktur aus axial verknüpften P-Sechsringen mit Sesselform resultiert [93]. Während in SrP₃ [94] die Hälfte der P-Ringe erhalten bleibt, sind in CaP₃ [95] alle geöffnet. Eine vergleichbare Anordnung wie in BaP₄Te₂ existiert in der Struktur von LiP₅ [96]. Abbildung 7.2.4 zeigt das eindimensionale Band verknüpfter P-Sechsringe entlang [001]. Anstelle von Te werden hier die äquatorialen und axialen Positionen von P eingenommen, so das jedes dieser Atome zu zwei Bändern gehört und sich im Gegensatz zum BaP₄Te₂ ein dreidimensionales Netzwerk aus P-Sechsringen bildet. Genau wie dem Te in BaP₄Te₂ wird dem zweibindigen P-Atom die formale Ladung -1 zugeordnet, die durch das elektropositive Lithium-Metall ausgeglichen wird.

Abbildung 7.2.4: Ausschnitt des anionischen Netzwerkes von LiP5

7.3 Bandstrukturrechnungen

Bisher ist BaP₄Te₂ die erste rein anorganische ternäre Verbindung mit P-Te-Bindungen, die charakterisiert wurde. Auf Grund der strukturell oben erwähnten formalen Ladungsaufsplittung in $Ba^{2+}(P^0)_4(Te^{-})_2$ sollten alle Valenzelektronen in kovalenten Bindungen oder freien Elektronenpaaren lokalisiert sein. Es ist anzunehmen, daß es sich bei BaP4Te2 um einen Isolator oder Halbleiter handelt, deshalb wurden die Bandstruktur und Elektronenlokalisierungsfunktion ELF berechnet, vor allem, um die aus den Atomabständen postulierte P-Te-Wechselwirkung näher zu untersuchen. In Abb. 7.3.1 ist die Zustandsdichtekurve (DOS) bzw. der Einzelbetrag der Phosphor- und Tellur-Atome dargestellt. Oberhalb der Fermi-Energie tritt eine Bandlücke auf (~1,3 eV), die im Einklang mit den erwarteten Halbleitereigenschaften steht. Die Gesamt-Zustandsdichtefunktion (gepunktete Linie in Abb.7.3.1) spaltet sich grob in zwei Bereiche auf. Während die s-Anteile von Tellur und Phosphor von -15 bis -7 eV reichen, erstrecken sich die p-Niveaus von -7 eV bis zur Fermi-Energie. Bemerkenswert sind die Unterschiede in der Verteilung der P-3p- und Te-5p-Zustände zwischen -7 und 0 eV, da sie größer sind, als es sich aus den Elektronegativitäten erwarten läßt (P: 2,1 und Te: 2,0). Der überwiegende Anteil der Te-5p- Zustände befindet sich in dem großen Peak zwischen -2 eV und 0 eV (durchgezogene Linie in Abb. 7.3.1), mit nur einem geringen Beitrag der P-3p-Niveaus. Den Hauptanteil von P-3p erkennt man im Bereich von -7 eV bis -2 eV (gestrichelte Linie in Abb. 7.3.1), in dem nur ein geringer Te-5p-Anteil erscheint. Hier handelt es sich genau um den Energiebereich der P-Te ppo-Bindungszustände, wie er auch im COHP-Diagramm für die P-Te-Bindung dargestellt wird (Abb. 7.3.2). Im Gegensatz dazu zeigt der Bereich von -2 eV bis 0 eV einen schwachen P-Te antibindenden Charakter, und die Erklärung dafür ist eine schwache π -Wechselwirkung zwischen Phosphor und Tellur, die sich in einer schmalen Aufspaltung der voll besetzten pp π - und pp π^* -Niveaus bemerkbar macht. Dies deckt sich mit dem vereinfachten Molekül-Orbitalschema des zweiatomigen PTe¹⁻ Fragmentes: 12 Elektronen füllen exakt die sso, ppo, $2 \times pp\pi$ - und $2 \times pp\pi^*$ -Orbitale.

Abbildung 7.3.1: Elektronische Zustandsdichte DOS von BaP₄Te₂

Abbildung 7.3.2: COHP-Diagramme der Te-P- und P-P-Bindungen in BaP₄Te₂

Aus den DOS- und COHP-Diagrammen ist ersichtlich, daß zwischen Phosphor und Tellur kovalente Bindungen und ausgeprägte freie Elektronenpaare an den Te-Atomen vorliegen. Die ebenfalls erwarteten homonuclearen P-P-Bindungen treten auch in der COHP auf, so daß alle Ergebnisse die formale Aufspaltung in $Ba^{2+}(P^0)_4(Te^-)_2$ eindeutig belegen. Eine Visualisierung der Bindungsverhältnisse gibt die Elektronenlokalisierungsfunktion ELF in Abb. 7.3.3 wieder. Die xz-Ebene bei y = ¼ enthält die diskutierten P-Te-Bindungen und die Areale hoher ELF-Werte stehen im Einklang mit den berechneten DOS- und COHP-Kurven. Ausgeprägte freie Elektronenpaare umgeben die Te-Atome und befinden sich am P-Atom an der Spitze der (P2)₂P1-Te-Pyramide, wie es für Phosphor in der Oxidationsstufe ±0 erwartet wird. Kovalente P-Te-Bindungen mit hohen ELF-Werten zeichnen sich deutlich auf der Bindungsachse ab. Sie sind allerdings merklich zum Phosphor verschoben, was der höheren Elektronegativität Rechnung trägt.

Abbildung 7.3.3: ELF von BaP₄Te₂ in der xz-Ebene bei y = 0,25. Konturlinien der ELF von 0,8 bis 0,96. Weiße Kreise: P-Atome, dunkle Kreise: Te-Atome, grauer Kreis: Ba-Atom

8 Zusammenfassung

Im Rahmen der vorliegenden Arbeit wurden folgende Verbindungen dargestellt und ihre Kristallstrukturen mit Einkristallmethoden untersucht.

	a [Å]	b [Å]	c [Å]	β [°]	Raum- gruppe
$Ca_2P_2Se_6$	9,664(2)	7,519(2)	6,859(1)	92,02(3)	$P2_1/n$
$Eu_2P_2Se_6$	9,779(2)	7,793(2)	6,957(1)	91,29(3)	$P2_1/n$
$Sr_2P_2Se_6$	9,844(2)	7,788(2)	6,963(1)	91,50(3)	$P2_1/n$
$Ba_2P_2Se_6$	10,355(2)	7,862(2)	7,046(1)	90,83(3)	$P2_1/n$
$Mg_2P_2S_6$	6,085(1)	10,560(2)	6,835(1)	106,97(3)	C2/m
$Mg_2P_2Se_6$	6,404(1)		20,194(4)		$R\overline{3}$
$Zn_2P_2Se_6$	6,290(3)		19,93(2)		$R\overline{3}$
$Ag_2MgP_2S_6$	6,364(1)	10,975(2)	13,999(3)	108,29(3)	C2/n
$K_2MgP_2Se_6$	6,546(1)	12,724(3)	7,599(2)	103,02(4)	$P2_1/n$
Ag_3PS_4	7,647(3)	6,858(2)	6,506(1)		Pmn2 ₁
AuPS ₄	5,891(1) $\alpha = 78,18(3)$	6,961(1) $\beta = 87,59(3)$	8,063(2) $\gamma = 79,29(3)$		P 1
α -Ba ₃ (PS ₄) ₂	11,649(3)	6,610(1)	17,299(2)	90,26(3)	$P2_1/a$
β -Ba ₃ (PS ₄) ₂	11,597(2)	6,727(1)	8,704(2)	90,00(3)	C2/m
$Ba_3(PSe_4)_2$	12,282(2)	6,906(1)	18,061(4)	90,23(3)	$P2_1/a$
LiZnPS ₄	5,738(1)		8,914(1)		IĀ
LiEuPS ₄	11,498(2)		19,882(4)		I4 ₁ /acd
KBaPS ₄	11,587(2)	6,700(1)	10,118(2)		Pnma
KBaPSe ₄	11,972(2)	6,973(1)	10,388(2)		Pnma
Ba ₃ PSe ₄ PO ₄	6,779(1) $\alpha = 82,45(3)$	7,108(1) $\beta = 78,88(3)$	12,727(3) $\gamma = 81,34(3)$		P 1
BaP ₄ Te ₂	16,486(8)	6,484(2)	7,076(4)		Pnma
Ag ₅ PS ₄ Cl ₂	7,409(1)	11,143(2)	6,258(1)		Amm2

$Ag_{15}(PS_4)_4Cl_3$	14,838(4)		$I\overline{4}3d$
Cu ₆ PS ₅ Cl	9,690(1)		$F\overline{4}3m$
Ag ₆ PS ₅ Cl	10,320(1)		$F\overline{4}3m$
Ag ₆ PS ₅ Br	10,420(1)		$F\overline{4}3m$
$Ag_6PS_5Cl_{0,5}Br_{0,5}$	10,380(2)		$F\overline{4}3m$
$Ag_5PS_4Br_2$	10,356(1)		$F\overline{4}3m$
Ag ₆ PS ₅ I	10,471(1)		$F\overline{4}3m$
$Ag_5PS_4I_2$	7,396(1)	12,226(2)	P6 ₃ mc
$Ag_{10}(PS_4)_2ClI_3$	7,396(1)	24,271(5)	P6 ₃ mc
γ -Ag ₁₀ (PS ₄) ₂ SCl ₂	7,393(1)	30,546(6)	$R\overline{3}m$
β -Ag ₁₀ (PS ₄) ₂ SCl ₂	14,680(2)	30,720(6)	R3
α -Ag ₁₀ (PS ₄) ₂ SCl ₂	29,30	123,37	R32

Die Hexaseleno-Hypodiphosphate $M_2P_2Se_6$ (M = Ca, Eu, Sr, Ba) kristallisieren isotyp in der Hochtemperaturform von Sn₂P₂S₆. Die in einer zum Ethan analogen gestaffelten Konformation vorliegenden (P₂Se₆)⁴⁻-Anionen sind über Se-*M*-Se Kontakte zu einer Raumnetzstruktur verknüpft, bei der Ca²⁺, Sr²⁺ und Eu²⁺ von 8, Ba²⁺ dagegen von 8+1 Se-Atomen koordiniert werden. Mit der isotypen Verbindung Eu₂P₂S₆ wurden Suszeptibilitätsmessungen durchgeführt und ein ¹⁵¹Eu Mössbauer-Spektrum aufgenommen, deren Ergebnisse auf stabiles zweiwertiges Europium schließen lassen.

Im Fe₂P₂Se₆-Typ kristallisieren die Verbindungen Mg₂P₂Se₆ und Zn₂P₂Se₆, während Mg₂P₂S₆ den Fe₂P₂S₆-Typ bildet. Ihr Aufbau wird von CdI₂- bzw. CdCl₂-analogen Se- bzw. S-Anordnungen geprägt, deren Oktaederlücken geordnet zur Hälfte von Mg²⁺- bzw. Zn²⁺-Ionen und P₂-Hanteln eingenommen werden. Wird in Mg₂P₂S₆ die Hälfte der Mg²⁺- durch Ag⁺-Ionen ersetzt, entsteht mit Ag₂MgP₂S₆ eine Verbindung, bei der die frei gewordenen Oktaeder von Ag⁺-Ionen besetzt werden. Diese sind fehlgeordnet, sie befinden sich in zwei Dreieckslücken des Oktaeders bzw. sind etwas aus dieser Position in Richtung der van der Waals Lücken ausgelenkt. Eine analoge Substitution bei Mg₂P₂Se₆

durch K^+ -Ionen führt zu $K_2MgP_2Se_6$ mit einer $K_2FeP_2S_6$ analogen Struktur. Charakteristisches Merkmal sind Ketten von alternierend flächenverknüpften Se-Oktaedern (Mg-zentriert) und trigonalen Se-Antiprismen (P₂-zentriert), die entlang [100] verlaufen und durch K⁺-Ionen miteinander verbunden sind.

In Ag₃PS₄ sind PS₄-Tetraeder über alle Ecken mit AgS₄-Tetraedern verbunden und bilden ein dreidimensionales Netzwerk, das dem im Wurtzit (ZnS) entspricht, bei dem die S-Atome eine hexagonal-dichteste Kugelpackung bilden und die Zn-Atome die Hälfte der Tetraederlücken besetzen. In Ag₃PS₄ werden die Zn- durch ³/₄ Ag- und ¹/₄ P-Atome ersetzt.

Das triklin kristallisierende Thiophosphat AuPS₄ besteht aus ¹/_∞[AuS_{4/2}PS_{4/2}]-Ketten, in denen sich nahezu quadratische planare AuS₄-Einheiten mit PS₄-Tetraedern abwechseln und über gemeinsame Kanten miteinander verknüpft sind. Zwischen den Ketten, die längs [111] verlaufen, sind nur van der Waals Kräfte wirksam. DFT-Bandstrukturrechnungen verdeutlichen den kovalenten Bindungscharakter der P-S-Bindung und den mehr ionischen Charakter der S-Au-Wechselwirkung.

Aus isolierten PX₄-Einheiten sind die isotypen Verbindungen Ba₃(PX₄)₂ (X = S, Se) aufgebaut, deren X-Atome die Ba²⁺-Ionen umgeben. Ein Teil der Ba-Atome wird von zehn X-Atomen koordiniert. Davon bilden sechs Atome ein trigonales Antiprisma. Die restlichen vier X-Atome befinden sich über vier der sechs Seitendreiecksflächen des Antiprismas. Von einem noch stärker verzerrten Polyeder werden die restlichen Ba-Atome umgeben. Der dreidimensionale Bauzusammenhang ist mit dem von β -K₂SO₄ vergleichbar. α -Ba₃(PS₄)₂ durchläuft bei ca. 75°C eine displazive Phasenumwandlung, bei der die c-Achse halbiert wird und die Raumgruppe von P2₁/a nach C2/m wechselt. In β -Ba₃(PS₄)₂ sind die PS₄-Tetraeder entlang [001] nicht mehr gekippt, sondern parallel zueinander ausgerichtet, was zu einer Verringerung der Polyederverzerrung führt.

In dem Orthothiophosphat LiZnPS₄ besetzen die Metalle die Zentren von Schwefel-Tetraedern. Betrachtet man die PS₄-Einheiten als Kugeln, so bilden sie eine Kugelpackung, in der sämtliche Tetraederlücken - analog zum Fluorit-Typ - geordnet von Li Li-S-Ionenbindung.

und

Bei LiEuPS₄ liegen ebenfalls isolierte PS₄-Tetraeder vor, deren S-Atome die Eu²⁺-Ionen in Form verzerrter quadratischer Antiprismen koordinieren. Die Struktur leitet sich vom PrPS₄-Typ ab. Dieser enthält Freiräume, in die Li⁺-Ionen eingelagert werden und tetraedrisch von Schwefel koordiniert sind. Mit den PS4-Tetraedern sind die LiS₄-Tetraeder zu Strängen verbunden.

In den isotypen Strukturen von KBaPS₄ und KBaPSe₄ liegen isolierte PX₄³⁻-Anionen (X = S, Se) vor. Der dreidimensionale Bauzusammenhang entspricht weitgehend dem von TlEuPS₄, dessen Struktur auf den Sr₂GeS₄-Typ zurückzuführen ist. Die Ba²⁺-Ionen sind von sechs X-Atomen als verzerrtes trigonales Prisma umgeben. Diese Prismen sind entlang der kristallographischen b-Achse über gemeinsame Kanten zu "Zickzack-Ketten" und entlang der c-Achse über ihre Dreiecksflächen mit noch stärker verzerrten Prismen um die K⁺-Ionen verknüpft.

Die Verbindungen der Thiophosphathalogenide lassen sich in zwei Klassen einteilen. Die Struktur von Ag₅PS₄Cl₂ und Ag₁₅(PS₄)₄Cl₃ leitet sich von der Ag₃PS₄-Struktur ab. Die überschüssige positive Ladung der Ag⁺-Ionen wird durch zusätzliche Chlorid-Ionen ausgeglichen, wodurch die Ag₃PS₄-Struktur stark modifiziert wird. In Ag₁₅(PS₄)₄Cl₃ befinden sich die Ag-Atome in verzerrten Tetraedern, die von S- und Cl-Atomen gebildet werden, wohingegen in Ag₅PS₄Cl₂ sich ein Teil der Ag-Atome in einer trigonal planaren Koordinationssphäre befindet. Die zweite Klasse umfaßt die Verbindungen Cu₆PS₅Cl, Ag₆PS₅Cl, Ag₆PS₅Br, Ag₆PS₅Cl_{0,5}Br_{0,5}, Ag₅PS₄Br₂ und Ag₆PS₅I, deren Strukturen sich vom Argyrodit-Typ ableiten lassen. Bestandteil sind auch hier PS4-Tetraeder sowie weitere S^{2} - und Halogenid-Anionen. Die Anionen bilden mittels sich durchdringender Frank-Kasper-Polyeder dichte Packungen, in deren Tetraederlücken die Ag⁺-Ionen verteilt sind. Die Ag-Atome sind auf mehrere Splitlagen aufgeteilt - mit kurzen Ag-Ag-Abständen - die den Ag-Atomen vermutlich eine hohe Mobilität ermöglichen, was diese Verbindungen zu potentiellen Ag-Ionenleitern macht. Zu weiteren Abkömmlingen der Argyrodit-Struktur führen unterschiedliche Orientierungen der PS₄-Tetraeder in den Verbindungen Ag₅PS₄I₂, Ag₁₀(PS₄)₂ClI₃ und Ag₁₀(PS₄)₂SCl₂. Bei letzterer kommt es mit sinkender Temperatur zu einer teilweisen Ordnung der fehlgeordneten Ag⁺-Ionen. Dabei vergrößert sich im Zuge von zwei Phasenumwandlungen das Zellvolumen der Raumtemperaturform (γ -Ag₁₀(PS₄)₂Cl₂) um das 64fache.

Bei der Verbindung Ba₃PSe₄PO₄ handelt es sich um ein klassisches Orthophosphat mit isolierten Chalcogenophosphat-Tetraedern. Bemerkenswert ist, daß die zwei P-Zentralatome in den beiden Tetraedern entweder von vier Se- bzw. vier O-Atomen umgeben sind. Die Ba²⁺-Ionen sind in Form unregelmäßiger Polyeder von Selen und Sauerstoff umgeben.

Das Hauptmerkmal in der Kristallstruktur von BaP₄Te₂ sind P₄Te₂-Ketten entlang [010] aus miteinander verknüpften sechsgliedrigen P-Ringen in Sesselkonformation. In diesem Strukturfragment des schwarzen Phosphors sind die seitlichen P-Atome jeweils mit einem Te-Atom verbunden. BaP₄Te₂ ist gemäß Ba²⁺(P⁰)₄(Te⁻)₂ elektrovalent aufgebaut und fügt sich in das Zintl-Konzept ein. Die P-Te-Bindung wird an Hand von Bandstrukturrechnungen diskutiert.

9 Anhang A: Kristallographische Daten

AdditLageAJL U_{a} Ag19d0,185290,00000,00000,0000Ag218f0,065930,313690,999990,0000Ag39d0,00000,428530,000000,0000Ag59d0,820480,000000,000000,0162Ag618f0,599780,015580,333390,0231Ag718f0,229530,083750,333370,0125Ag818f0,101870,018210,333370,0163Ag918f0,496210,431650,000020,0163Ag1018f0,849930,017330,333300,0268CL118f0,751760,999820,339380,0000CL318f0,751760,999820,339380,0000CL418f0,417610,082390,673290,0000CL56c0,000000,0333300,2200CL618f0,91270,074030,671840,0001Ag1318f0,765860,157280,916960,0031Ag1418f0,435960,16270,91690,0020Ag1518f0,734150,084840,583430,0044Ag2018f0,312780,001240,250310,0046Ag2118f0,314500,67240,250310,0046Ag2118f0,417400,148630,583630,0021Ag1418f0,939990,005	Atom	Lago	v	X 7	7	
Ag1 g_d $0,1852^{9}$ $0,0000^{0}$ $0,0000^{0}$ $0,0000^{0}$ Ag218f $0,06693$ $0,31369^{0}$ $0,00000^{0}$ $0,0000^{0}$ Ag3 $9d$ $0,06010^{0}$ $0,00000^{0}$ $0,0000^{0}$ Ag4 $9d$ $0,66111^{0}$ $0,00000^{0}$ $0,00000^{0}$ Ag5 $9d$ $0,82048^{0}$ $0,01000^{0}$ $0,00000^{0}$ Ag618f $0,59978^{0}$ $0,01558^{0}$ $0,33337^{0}$ $0,0125^{0}$ Ag718f $0,22953^{0}$ $0,08375^{0}$ $0,33337^{0}$ $0,0125^{0}$ Ag818f $0,10187^{0}$ $0,01831^{0}$ $0,33330^{0}$ $0,0268^{0}$ CL118f $0,48993^{0}$ $0,1733^{0}$ $0,33330^{0}$ $0,0268^{0}$ CL218f $0,44832^{0}$ $0,97752^{0}$ $0,3933^{0}$ $0,0000^{0}$ CL318f $0,75176^{0}$ $0,99982^{0}$ $0,33333^{0}$ $0,0200^{0}$ CL418f $0,41761^{0}$ $0,08239^{0}$ $0,67329^{0}$ $0,0000^{0}$ CL5 $6c^{0}$ $0,00000^{0}$ $0,33830^{0}$ $0,220^{0}$ Ag1318f $0,76586^{0}$ $0,15728^{0}$ $0,1696^{0}$ $0,0031^{0}$ Ag1418f $0,41363^{0}$ $0,16627^{0}$ $0,91660^{0}$ $0,0068^{0}$ Ag1818f $0,11396^{0}$ $0,1091^{0}$ $0,91619^{0}$ $0,0020^{0}$ Ag1718f $0,1259^{0}$ $0,06342^{0}$ $0,25031^{0}$ $0,0034^{0}$ Ag2018f $0,31278^{0}$ $0,01330^{0}$ $0,58$	A al		<u> </u>	<u> </u>	<u> </u>	$\underline{\mathbf{U}_{eq}}$
Ag2140.003930.13590.979990.0000Ag39d0.000000.428530.000000.0000Ag59d0.820480.000000.000000.0162Ag618f0.599780.015580.333370.0125Ag718f0.229530.083750.333370.0125Ag818f0.101870.018210.333270.0157Ag918f0.496210.431650.000020.0000CL218f0.498320.997520.339230.0000CL318f0.751760.999820.339380.0000CL418f0.417610.082390.673290.0000CL56c0.00000.000000.338300.0200CL618f0.911270.074030.671840.0000Ag1318f0.765860.157280.916660.0031Ag1418f0.010570.019300.582820.0033Ag1518f0.15960.100910.916190.0020Ag1618f0.010570.019300.582820.0033Ag1918f0.312780.01240.250310.0046Ag2018f0.734150.084840.583350.0044Ag2118f0.734150.084840.583350.0042Ag2218f0.61810.017640.250550.0001Ag2318f0.936990.000540.250110.0000CL76	Agi	9 <i>a</i> 19£	0,18529	0,00000	0,00000	0,0000
Ag3 $3a$ $0,0000$ $0,4283$ $0,00000$ $0,0000$ Ag4 $9d$ $0,06111$ $0,00000$ $0,00000$ $0,0000$ Ag5 $9d$ $0,82048$ $0,00000$ $0,00000$ $0,0000$ Ag6 $18f$ $0,59978$ $0,01558$ $0,33339$ $0,0231$ Ag7 $18f$ $0,22953$ $0,08375$ $0,33327$ $0,0157$ Ag9 $18f$ $0,49621$ $0,43165$ $0,00002$ $0,0163$ Ag10 $18f$ $0,84993$ $0,01733$ $0,33330$ $0,0268$ CL1 $18f$ $0,84993$ $0,01733$ $0,33330$ $0,0268$ CL1 $18f$ $0,48822$ $0,99752$ $0,33923$ $0,0000$ CL3 $18f$ $0,75176$ $0,99982$ $0,33938$ $0,0000$ CL4 $18f$ $0,41761$ $0,08239$ $0,67329$ $0,0000$ CL5 $6c$ $0,00000$ $0,00000$ $0,33830$ $0,0200$ CL6 $18f$ $0,91127$ $0,7403$ $0,67184$ $0,0000$ Ag13 $18f$ $0,75866$ $0,15728$ $0,91696$ $0,0031$ Ag14 $18f$ $0,43596$ $0,1091$ $0,91619$ $0,0020$ Ag17 $18f$ $0,14363$ $0,1627$ $0,91660$ $0,0068$ Ag19 $18f$ $0,31278$ $0,00124$ $0,25031$ $0,0044$ Ag20 $18f$ $0,31278$ $0,00124$ $0,25031$ $0,0044$ Ag21 $18f$ $0,25041$ $0,00054$ $0,25055$ $0,0021$ Ag23 $18f$	Agz	10/	0,00393	0,31309	0,99999	0,0000
Ag49d0,820480,000000,000000,00000Ag59d0,820480,000000,000000,0162Ag618f0,599780,015580,333370,0125Ag718f0,229530,083750,333370,0125Ag918f0,198210,333270,0163Ag1018f0,849930,017330,333300,0268CL118f0,68850,163710,005570,0000CL218f0,498320,997520,339230,0000CL318f0,751760,999820,339380,0000CL418f0,417610,082390,673290,0000CL56c0,00000,000000,388300,0200CL618f0,911270,074030,671840,0000Ag1318f0,765860,157280,916960,0031Ag1418f0,435960,999020,249570,0000Ag1518f0,563590,063420,250040,0000Ag1618f0,015960,10910,916190,0020Ag1718f0,312780,01240,250310,0046Ag2018f0,312780,019810,583310,0086Ag2118f0,734150,084840,583360,0024Ag2218f0,734150,084840,583310,0086Ag2218f0,81090,979760,249680,0074Ag2318f0	Ags	9 <i>a</i>	0,00000	0,42855	0,00000	0,0069
Ags $9d$ $0,8048$ $0,00000$ $0,00000$ $0,0162$ Ag618f $0,59978$ $0,01558$ $0,33337$ $0,0125$ Ag718f $0,22953$ $0,08375$ $0,33337$ $0,0125$ Ag818f $0,1187$ $0,01821$ $0,33327$ $0,0157$ Ag918f $0,49621$ $0,43165$ $0,00002$ $0,0163$ Ag1018f $0,84993$ $0,01733$ $0,33330$ $0,0268$ CL118f $0,78176$ $0,99982$ $0,33923$ $0,0000$ CL218f $0,41761$ $0,08239$ $0,67329$ $0,0000$ CL418f $0,41761$ $0,08239$ $0,67329$ $0,0000$ CL56c $0,00000$ $0,00000$ $0,33830$ $0,0200$ CL618f $0,91127$ $0,07403$ $0,67184$ $0,0000$ Ag1318f $0,75586$ $0,15728$ $0,91696$ $0,0031$ Ag1418f $0,01596$ $0,10091$ $0,91619$ $0,0020$ Ag1518f $0,1576$ $0,10910$ $0,58282$ $0,0033$ Ag1818f $0,10577$ $0,01930$ $0,58282$ $0,0033$ Ag1918f $0,31278$ $0,00124$ $0,25031$ $0,0044$ Ag2018f $0,31278$ $0,00124$ $0,25031$ $0,0044$ Ag2118f $0,73415$ $0,08484$ $0,58348$ $0,0034$ Ag2218f $0,81090$ $0,99796$ $0,24968$ $0,0077$ Ag2318f $0,41740$ $0,1$	Ag4	9 <i>d</i>	0,06111	0,00000	0,00000	0,0000
Ag6 18f 0.599/8 0.01558 0.33339 0.0231 Ag7 18f 0.22953 0.08375 0.33337 0.0157 Ag9 18f 0.49621 0.43165 0.00002 0.0163 Ag10 18f 0.84993 0.01733 0.33330 0.0268 CL1 18f 0.49832 0.99752 0.33923 0.0000 CL2 18f 0.41761 0.08239 0.67329 0.0000 CL4 18f 0.41761 0.08239 0.67329 0.0000 CL5 6c 0.00000 0.00000 0.33830 0.0200 CL6 18f 0.91127 0.07403 0.67184 0.0000 Ag13 18f 0.76556 0.15728 0.91696 0.0001 Ag14 18f 0.43596 0.99902 0.24957 0.0000 Ag13 18f 0.53559 0.06342 0.25031 0.0046 Ag20 18f 0.14363 0.1627 0.91619<	Ago	9 <i>d</i>	0,82048	0,00000	0,00000	0,0162
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ag6	18 <i>f</i>	0,59978	0,01558	0,33339	0,0231
Ag8 18f 0,10187 0,01821 0,33327 0,0157 Ag9 18f 0,49621 0,43165 0,00002 0,0163 Ag10 18f 0,84993 0,01733 0,33330 0,0268 CL1 18f 0,08085 0,16371 0,00557 0,0000 CL2 18f 0,75176 0,99982 0,33938 0,0000 CL3 18f 0,7176 0,99982 0,33938 0,0000 CL4 18f 0,41761 0,08239 0,67329 0,0000 CL5 6c 0,00000 0,033830 0,0200 Ag13 18f 0,76586 0,15728 0,9169 0,0031 Ag14 18f 0,4363 0,16627 0,91660 0,0000 Ag15 18f 0,13278 0,00124 0,25031 0,0044 Ag20 18f 0,731278 0,01848 0,58331 0,0086 Ag21 18f 0,73145 0,08588 0,58331 0,0086<	Ag7	1 <i>8f</i>	0,22953	0,08375	0,33337	0,0125
Ag918f0,496210,431650,000020,0163Ag1018f0,849930,017330,333300,0268CL118f0,980850,163710,005570,0000CL218f0,498320,997520,339230,0000CL318f0,751760,998220,339380,0000CL418f0,417610,082390,673290,0000CL56c0,000000,000000,338300,0200CL618f0,911270,074030,671840,0000Ag1318f0,765860,157280,916960,0031Ag1418f0,755860,157280,916960,0000Ag1518f0,563590,063420,249570,0000Ag1718f0,113780,01240,250040,0000Ag1818f0,100570,019300,582820,0033Ag1918f0,312780,001240,250310,0046Ag2018f0,43150,088880,583430,0044Ag2118f0,734150,084840,583310,0086Ag2318f0,417400,148630,583350,0042Ag2418f0,250910,067240,250050,0021Ag2518f0,601810,017640,583350,0042Ag2618f0,930990,249680,0077Ag2718f0,930990,588010,0322CL76c0,00000 <td>Ag8</td> <td>1<i>8f</i></td> <td>0,10187</td> <td>0,01821</td> <td>0,33327</td> <td>0,0157</td>	Ag8	1 <i>8f</i>	0,10187	0,01821	0,33327	0,0157
$\begin{array}{c ccccc} Ag10 & 18f & 0,84993 & 0,01733 & 0,33330 & 0,0268 \\ CL1 & 18f & 0,08085 & 0,16371 & 0,00557 & 0,0000 \\ CL2 & 18f & 0,75176 & 0,99982 & 0,33923 & 0,0000 \\ CL3 & 18f & 0,75176 & 0,99982 & 0,33938 & 0,0000 \\ CL4 & 18f & 0,41761 & 0,08239 & 0,67329 & 0,0000 \\ CL5 & 6c & 0,00000 & 0,00000 & 0,38830 & 0,0200 \\ Ag13 & 18f & 0,76586 & 0,15728 & 0,91696 & 0,0031 \\ Ag14 & 18f & 0,75586 & 0,15728 & 0,91696 & 0,0031 \\ Ag15 & 18f & 0,01596 & 0,1091 & 0,91619 & 0,0020 \\ Ag17 & 18f & 0,01596 & 0,10091 & 0,91619 & 0,0020 \\ Ag17 & 18f & 0,14363 & 0,16627 & 0,91660 & 0,0068 \\ Ag18 & 18f & 0,10057 & 0,01930 & 0,58282 & 0,0033 \\ Ag20 & 18f & 0,31278 & 0,00124 & 0,25031 & 0,0044 \\ Ag20 & 18f & 0,23313 & 0,08588 & 0,58363 & 0,0044 \\ Ag21 & 18f & 0,43453 & 0,0124 & 0,25031 & 0,0036 \\ Ag23 & 18f & 0,73415 & 0,04844 & 0,58348 & 0,0034 \\ Ag24 & 18f & 0,25091 & 0,06724 & 0,25005 & 0,0021 \\ Ag25 & 18f & 0,25091 & 0,06724 & 0,25005 & 0,0021 \\ Ag25 & 18f & 0,6181 & 0,01764 & 0,58335 & 0,0042 \\ Ag26 & 18f & 0,31299 & 0,00054 & 0,25011 & 0,0000 \\ Ag28 & 18f & 0,43480 & 0,18240 & 0,25025 & 0,0012 \\ Ag26 & 18f & 0,9169 & 0,00054 & 0,25011 & 0,0000 \\ CL9 & 18f & 0,91284 & 0,08664 & 0,92075 & 0,0000 \\ CL10 & 18f & 0,91284 & 0,08664 & 0,92075 & 0,0000 \\ CL11 & 18f & 0,91284 & 0,08664 & 0,92075 & 0,0000 \\ CL11 & 18f & 0,91284 & 0,08064 & 0,92075 & 0,0000 \\ CL11 & 18f & 0,91284 & 0,08064 & 0,92075 & 0,0000 \\ CL11 & 18f & 0,91284 & 0,08064 & 0,92075 & 0,0000 \\ CL11 & 18f & 0,91284 & 0,08064 & 0,92075 & 0,0000 \\ CL11 & 18f & 0,91284 & 0,08064 & 0,92075 & 0,0000 \\ CL11 & 18f & 0,91284 & 0,08064 & 0,92075 & 0,0000 \\ CL11 & 18f & 0,91284 & 0,08064 & 0,92075 & 0,0000 \\ CL11 & 18f & 0,91284 & 0,08064 & 0,92075 & 0,0000 \\ CL11 & 18f & 0,91284 & 0,08064 & 0,92075 & 0,0000 \\ CL11 & 18f & 0,91284 & 0,08064 & 0,92075 & 0,0000 \\ CL11 & 18f & 0,91345 & 0,16526 & 0,75491 & 0,0000 \\ CL11 & 18f & 0,91584 & 0,17146 & 0,25338 & 0,1868 \\ CL11 & 18f & 0,08155 & 0,16526 & 0,75491 & 0,0000 \\ CL11 & 18f & 0,08155 & 0,16526 & 0,25429 & 0,0888 \\ CL11 & 18f & 0,0$	Ag9	1 <i>8f</i>	0,49621	0,43165	0,00002	0,0163
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ag10	1 <i>8f</i>	0,84993	0,01733	0,33330	0,0268
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CL1	1 <i>8f</i>	0,08085	0,16371	0,00557	0,0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CL2	1 <i>8f</i>	0,49832	0,99752	0,33923	0,0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CL3	1 <i>8f</i>	0,75176	0,99982	0,33938	0,0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CL4	18f	0,41761	0,08239	0,67329	0,0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CL5	6 <i>c</i>	0,00000	0,00000	0,33830	0,0200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CL6	18f	0,91127	0,07403	0,67184	0,0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ag13	1 <i>8</i> f	0,76586	0,15728	0,91696	0,0031
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ag14	1 <i>8f</i>	0.43596	0.99902	0.24957	0.0000
Ag1618f0,015960,10010,916190,0020Ag1718f0,143630,166270,916600,0068Ag1818f0,100570,019300,582820,0033Ag1918f0,312780,001240,250310,0046Ag2018f0,233130,085880,583630,0044Ag2118f0,734150,084840,583480,0034Ag2218f0,853020,019810,583310,0086Ag2318f0,417400,148630,583260,0086Ag2418f0,250910,067240,250050,0021Ag2518f0,601810,017640,583350,0042Ag2618f0,810900,997960,249680,0077Ag2718f0,936990,000540,250110,0000Ag2818f0,416410,083290,421160,0000CL76c0,000000,000000,912090,0000CL818f0,912840,086640,920750,0000CL1018f0,65280,086520,421750,0000CL116c0,000000,000000,587030,0032CL1218f0,751330,999550,588010,0052CL1318f0,413070,078470,921600,0000CL1418f0,085540,165620,254290,0088CL1518f0,165870,020370,833420,0144 <t< td=""><td>Ag15</td><td>18f</td><td>0.56359</td><td>0.06342</td><td>0.25004</td><td>0.0000</td></t<>	Ag15	18f	0.56359	0.06342	0.25004	0.0000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ag16	18f	0.01596	0 10091	0,91619	0,0020
Ag1816j0,110570,010210,710520,01021Ag1818f0,312780,001240,250310,0046Ag2018f0,233130,085880,583630,0044Ag2118f0,734150,084840,583480,0034Ag2218f0,853020,019810,583310,0086Ag2318f0,417400,148630,583260,0086Ag2418f0,250910,067240,250050,0021Ag2518f0,601810,017640,583350,0042Ag2618f0,810900,997960,249680,0077Ag2718f0,936990,000540,250110,0000Ag2818f0,416410,083290,421160,0000CL76c0,000000,000000,912090,0000CL818f0,912840,086520,421750,0000CL1018f0,665280,086520,421750,0000CL116c0,000000,000000,587030,0032CL1218f0,333990,168130,579040,0020CL1318f0,921310,836430,421400,0000CL1418f0,751330,999950,588010,0052CL1518f0,088150,165260,754910,0000CL1618f0,08540,171460,253380,0186Ag299e0,064220,064221/20,0000A	Ασ17	18 <i>f</i>	0 14363	0 16627	0.91660	0.0068
Ag1016)0,10570,101240,250310,0026Ag1918f0,312780,001240,250310,0046Ag2018f0,734150,085880,583630,0044Ag2118f0,734150,084840,583480,0034Ag2218f0,853020,019810,583310,0086Ag2318f0,417400,148630,583260,0086Ag2418f0,250910,067240,250050,0021Ag2518f0,601810,017640,583350,0042Ag2618f0,936990,000540,250110,0000Ag2718f0,936990,000540,250110,0000Ag2818f0,434800,182400,250250,0013CL76c0,000000,000000,912090,0000CL818f0,912840,086640,920750,0000CL1018f0,665280,086520,421750,0000CL116c0,000000,000000,587030,0032CL1218f0,333990,168130,579040,0020CL1318f0,921310,836430,421400,0000CL1418f0,751330,999950,588010,0052CL1518f0,085540,171460,253380,0186Ag299e0,064220,064221/20,0000CL1318f0,165870,020370,833420,0141Ag	Ασ18	18 <i>f</i>	0 10057	0.01930	0 58282	0.0033
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Δσ19	18 <i>f</i>	0.31278	0.00124	0,25031	0.0046
Ag20 $16f$ $0,2513$ $0,0036$ $0,0036$ $0,0044$ Ag21 $18f$ $0,73415$ $0,008484$ $0,58348$ $0,0034$ Ag22 $18f$ $0,85302$ $0,01981$ $0,58331$ $0,0086$ Ag23 $18f$ $0,41740$ $0,14863$ $0,58326$ $0,0086$ Ag24 $18f$ $0,25091$ $0,06724$ $0,25005$ $0,0021$ Ag25 $18f$ $0,60181$ $0,01764$ $0,58335$ $0,0042$ Ag26 $18f$ $0,81090$ $0,99796$ $0,24968$ $0,0077$ Ag27 $18f$ $0,93699$ $0,00054$ $0,25011$ $0,0000$ Ag28 $18f$ $0,43480$ $0,18240$ $0,25025$ $0,0013$ CL7 $6c$ $0,00000$ $0,90000$ $0,91209$ $0,0000$ CL8 $18f$ $0,41641$ $0,08329$ $0,42116$ $0,0000$ CL10 $18f$ $0,91284$ $0,08064$ $0,92075$ $0,0000$ CL11 $6c$ $0,00000$ $0,00000$ $0,58703$ $0,0032$ CL12 $18f$ $0,33399$ $0,16813$ $0,57904$ $0,0020$ CL13 $18f$ $0,92131$ $0,83643$ $0,42140$ $0,0000$ CL14 $18f$ $0,08554$ $0,16526$ $0,75491$ $0,0000$ CL15 $18f$ $0,08554$ $0,17146$ $0,25338$ $0,0186$ Ag29 $9e$ $0,06422$ $0,06422$ $1/2$ $0,0000$ Ag30 $9e$ $0,31168$ $1/2$ $0,00144$ Ag31 $18f$ 0	Λα20	18 <i>f</i>	0,23313	0.08588	0,58363	0,0040
Ag21 $16f$ $0,13413$ $0,06464$ $0,53446$ $0,0034$ Ag22 $18f$ $0,85302$ $0,01981$ $0,58331$ $0,0086$ Ag23 $18f$ $0,41740$ $0,14863$ $0,58326$ $0,0086$ Ag24 $18f$ $0,25091$ $0,06724$ $0,25005$ $0,0021$ Ag25 $18f$ $0,60181$ $0,01764$ $0,58335$ $0,0042$ Ag26 $18f$ $0,81090$ $0,99796$ $0,24968$ $0,0077$ Ag27 $18f$ $0,93699$ $0,00054$ $0,25011$ $0,0000$ Ag28 $18f$ $0,41441$ $0,08329$ $0,42116$ $0,0000$ CL7 $6c$ $0,00000$ $0,00000$ $0,91209$ $0,0000$ CL8 $18f$ $0,91284$ $0,08664$ $0,92075$ $0,0000$ CL10 $18f$ $0,66528$ $0,08652$ $0,42175$ $0,0000$ CL11 $6c$ $0,00000$ $0,00000$ $0,58703$ $0,0032$ CL12 $18f$ $0,92131$ $0,83643$ $0,42140$ $0,0020$ CL13 $18f$ $0,75133$ $0,99995$ $0,58801$ $0,0052$ CL15 $18f$ $0,75133$ $0,99995$ $0,58801$ $0,0000$ CL16 $18f$ $0,08554$ $0,17146$ $0,25338$ $0,0186$ Ag29 $9e$ $0,06422$ $0,06422$ $1/2$ $0,0000$ CL18 $18f$ $0,81255$ $0,06123$ $0,49995$ $0,0095$ Ag30 $9e$ $0,31168$ $0,22377$ $0,83342$ $0,0144$ Ag29 </td <td>Ag20</td> <td>18<i>f</i></td> <td>0,23313</td> <td>0,08388</td> <td>0,58348</td> <td>0,0044</td>	Ag20	18 <i>f</i>	0,23313	0,08388	0,58348	0,0044
Ag22 $18f$ $0,03302$ $0,01981$ $0,58331$ $0,0080$ Ag23 $18f$ $0,41740$ $0,14863$ $0,58331$ $0,0086$ Ag24 $18f$ $0,25091$ $0,06724$ $0,25005$ $0,0021$ Ag25 $18f$ $0,60181$ $0,01764$ $0,58335$ $0,0042$ Ag26 $18f$ $0,81090$ $0,99796$ $0,24968$ $0,0077$ Ag27 $18f$ $0,93699$ $0,00054$ $0,25011$ $0,0000$ Ag28 $18f$ $0,43480$ $0,18240$ $0,25025$ $0,0013$ CL7 $6c$ $0,0000$ $0,00000$ $0,91209$ $0,0000$ CL8 $18f$ $0,41641$ $0,08329$ $0,42116$ $0,0000$ CL9 $18f$ $0,91284$ $0,08064$ $0,92075$ $0,0000$ CL10 $18f$ $0,66528$ $0,08652$ $0,42175$ $0,0000$ CL11 $6c$ $0,00000$ $0,00000$ $0,58703$ $0,0032$ CL12 $18f$ $0,92131$ $0,83643$ $0,42140$ $0,0000$ CL13 $18f$ $0,92131$ $0,83643$ $0,42140$ $0,0000$ CL14 $18f$ $0,75133$ $0,99995$ $0,58801$ $0,0052$ CL15 $18f$ $0,41687$ $0,2037$ $0,53342$ $0,0144$ Ag29 $9e$ $0,06422$ $0,75491$ $0,0000$ CL18 $18f$ $0,81255$ $0,06123$ $0,49995$ $0,0095$ Ag30 $9e$ $0,31168$ $1/2$ $0,0000$ Ag31 $18f$ $0,15877$	Ag21	1 0 <i>j</i>	0,75415	0,00404	0,58348	0,0034
Ag23 $18f$ $0,41740$ $0,14863$ $0,38326$ $0,0086$ Ag24 $18f$ $0,25091$ $0,06724$ $0,25005$ $0,0021$ Ag25 $18f$ $0,60181$ $0,01764$ $0,58335$ $0,0042$ Ag26 $18f$ $0,81090$ $0,99796$ $0,24968$ $0,0077$ Ag27 $18f$ $0,93699$ $0,00054$ $0,25025$ $0,0013$ CL7 $6c$ $0,00000$ $0,00000$ $0,91209$ $0,0000$ CL8 $18f$ $0,41641$ $0,08329$ $0,42116$ $0,0000$ CL9 $18f$ $0,91284$ $0,08664$ $0,92075$ $0,0000$ CL10 $18f$ $0,66528$ $0,08652$ $0,42175$ $0,0000$ CL11 $6c$ $0,00000$ $0,00000$ $0,58703$ $0,0032$ CL12 $18f$ $0,33399$ $0,16813$ $0,57904$ $0,0020$ CL13 $18f$ $0,92131$ $0,83643$ $0,42140$ $0,0000$ CL14 $18f$ $0,75133$ $0,99995$ $0,58801$ $0,0052$ CL15 $18f$ $0,41307$ $0,07847$ $0,92160$ $0,0000$ CL16 $18f$ $0,08815$ $0,16562$ $0,25429$ $0,0088$ CL18 $18f$ $0,08554$ $0,17146$ $0,25338$ $0,0186$ Ag29 $9e$ $0,06422$ $0,06422$ $1/2$ $0,0000$ Ag30 $9e$ $0,31168$ $0,74696$ $0,49995$ $0,0095$ Ag33 $18f$ $0,41467$ $0,14708$ $0,83341$ $0,0000$ Ag34 <td>Ag22</td> <td>1 0<i>j</i></td> <td>0,83302</td> <td>0,01961</td> <td>0,58551</td> <td>0,0086</td>	Ag22	1 0 <i>j</i>	0,83302	0,01961	0,58551	0,0086
Ag2418f $0,25091$ $0,06724$ $0,25005$ $0,0021$ Ag2518f $0,60181$ $0,01764$ $0,58335$ $0,0042$ Ag2618f $0,81090$ $0,99796$ $0,24968$ $0,0077$ Ag2718f $0,93699$ $0,00054$ $0,25011$ $0,0000$ Ag2818f $0,43480$ $0,18240$ $0,25025$ $0,0013$ CL7 $6c$ $0,00000$ $0,00000$ $0,91209$ $0,0000$ CL818f $0,41641$ $0,08329$ $0,42116$ $0,0000$ CL918f $0,91284$ $0,08652$ $0,42175$ $0,0000$ CL1018f $0,66528$ $0,08652$ $0,42175$ $0,0000$ CL11 $6c$ $0,00000$ $0,00000$ $0,58703$ $0,0032$ CL1218f $0,33399$ $0,16813$ $0,57904$ $0,0020$ CL1318f $0,92131$ $0,83643$ $0,42140$ $0,0000$ CL1418f $0,75133$ $0,99995$ $0,58801$ $0,0052$ CL1518f $0,41307$ $0,07847$ $0,92160$ $0,0000$ CL1618f $0,08815$ $0,16562$ $0,25429$ $0,0088$ CL1818f $0,08554$ $0,17146$ $0,25338$ $0,0186$ Ag29 $9e$ $0,06422$ $0,06422$ $1/2$ $0,0000$ CL1718f $0,8125$ $0,06123$ $0,49995$ $0,0095$ Ag30 $9e$ $0,31168$ $0,2037$ $0,83342$ $0,0144$ Ag3118f $0,43146$	Ag25	10/	0,41/40	0,14803	0,38520	0,0080
Ag25 $18f$ $0,60181$ $0,01764$ $0,53535$ $0,0042$ Ag26 $18f$ $0,81090$ $0,99796$ $0,24968$ $0,0077$ Ag27 $18f$ $0,93699$ $0,00054$ $0,25011$ $0,0000$ Ag28 $18f$ $0,43480$ $0,18240$ $0,25025$ $0,0013$ CL7 $6c$ $0,00000$ $0,00000$ $0,91209$ $0,0000$ CL8 $18f$ $0,41641$ $0,08329$ $0,42116$ $0,0000$ CL9 $18f$ $0,91284$ $0,08644$ $0,92075$ $0,0000$ CL10 $18f$ $0,66528$ $0,08652$ $0,42175$ $0,0000$ CL11 $6c$ $0,00000$ $0,00000$ $0,58703$ $0,0032$ CL12 $18f$ $0,33399$ $0,16813$ $0,57904$ $0,0020$ CL13 $18f$ $0,92131$ $0,83643$ $0,42140$ $0,0000$ CL14 $18f$ $0,75133$ $0,99995$ $0,58801$ $0,0052$ CL15 $18f$ $0,41307$ $0,07847$ $0,92160$ $0,0000$ CL16 $18f$ $0,33269$ $0,16562$ $0,25429$ $0,0088$ CL18 $18f$ $0,08554$ $0,17146$ $0,25338$ $0,0186$ Ag29 $9e$ $0,06422$ $0,06422$ $1/2$ $0,0000$ Ag30 $9e$ $0,31168$ $0,31168$ $1/2$ $0,0000$ Ag31 $18f$ $0,16587$ $0,2037$ $0,83342$ $0,0144$ Ag32 $18f$ $0,41667$ $0,14708$ $0,83341$ $0,0000$ Ag33 <th< td=""><td>Ag24</td><td>10/</td><td>0,23091</td><td>0,00724</td><td>0,23003</td><td>0,0021</td></th<>	Ag24	10/	0,23091	0,00724	0,23003	0,0021
Ag26 $18f$ $0,81090$ $0,99796$ $0,24968$ $0,0077$ Ag27 $18f$ $0,93699$ $0,00054$ $0,25011$ $0,0000$ Ag28 $18f$ $0,43480$ $0,18240$ $0,25025$ $0,0013$ CL7 $6c$ $0,00000$ $0,00000$ $0,91209$ $0,0000$ CL8 $18f$ $0,41641$ $0,08329$ $0,42116$ $0,0000$ CL9 $18f$ $0,91284$ $0,08664$ $0,92075$ $0,0000$ CL10 $18f$ $0,66528$ $0,08652$ $0,42175$ $0,0000$ CL11 $6c$ $0,00000$ $0,00000$ $0,58703$ $0,0032$ CL12 $18f$ $0,33399$ $0,16813$ $0,57904$ $0,0020$ CL13 $18f$ $0,92131$ $0,83643$ $0,42140$ $0,0000$ CL14 $18f$ $0,75133$ $0,99995$ $0,58801$ $0,0052$ CL15 $18f$ $0,41307$ $0,07847$ $0,92160$ $0,0000$ CL16 $18f$ $0,08815$ $0,16526$ $0,75491$ $0,0000$ CL17 $18f$ $0,08554$ $0,17146$ $0,25338$ $0,0186$ Ag29 $9e$ $0,06422$ $0,06422$ $1/2$ $0,0000$ Ag30 $9e$ $0,31168$ $0,2037$ $0,83342$ $0,0141$ Ag31 $18f$ $0,43146$ $0,74696$ $0,49994$ $0,0106$ Ag34 $18f$ $0,75307$ $0,18414$ $0,50002$ $0,0183$ Ag35 $18f$ $0,41667$ $0,14708$ $0,83341$ $0,0000$ Ag36 <td>Ag25</td> <td>18<i>f</i></td> <td>0,00181</td> <td>0,01704</td> <td>0,58555</td> <td>0,0042</td>	Ag25	18 <i>f</i>	0,00181	0,01704	0,58555	0,0042
Ag2/18f $0,93699$ $0,00054$ $0,25011$ $0,0000$ Ag2818f $0,43480$ $0,18240$ $0,25025$ $0,0013$ CL7 $6c$ $0,00000$ $0,00000$ $0,91209$ $0,0000$ CL818f $0,41641$ $0,08329$ $0,42116$ $0,0000$ CL918f $0,91284$ $0,08064$ $0,92075$ $0,0000$ CL1018f $0,66528$ $0,08652$ $0,42175$ $0,0000$ CL11 $6c$ $0,00000$ $0,00000$ $0,58703$ $0,0032$ CL1218f $0,33399$ $0,16813$ $0,57904$ $0,0020$ CL1318f $0,92131$ $0,83643$ $0,42140$ $0,0000$ CL1418f $0,75133$ $0,99995$ $0,58801$ $0,0052$ CL1518f $0,41307$ $0,07847$ $0,92160$ $0,0000$ CL1618f $0,08815$ $0,16526$ $0,75491$ $0,0000$ CL1718f $0,33269$ $0,16562$ $0,25429$ $0,0088$ CL1818f $0,08554$ $0,17146$ $0,25338$ $0,0186$ Ag29 $9e$ $0,06422$ $0,06422$ $1/2$ $0,0144$ Ag3118f $0,16587$ $0,02037$ $0,83342$ $0,0141$ Ag3218f $0,81225$ $0,06123$ $0,49995$ $0,0095$ Ag3318f $0,41667$ $0,14708$ $0,83341$ $0,0000$ Ag3518f $0,41667$ $0,14708$ $0,83341$ $0,0000$	Ag26	18 <i>f</i>	0,81090	0,99796	0,24968	0,0077
Ag28 $18f$ $0,43480$ $0,18240$ $0,25025$ $0,0013$ CL7 $6c$ $0,0000$ $0,0000$ $0,91209$ $0,0000$ CL8 $18f$ $0,41641$ $0,08329$ $0,42116$ $0,0000$ CL9 $18f$ $0,91284$ $0,08064$ $0,92075$ $0,0000$ CL10 $18f$ $0,66528$ $0,08652$ $0,42175$ $0,0000$ CL11 $6c$ $0,0000$ $0,00000$ $0,58703$ $0,0032$ CL12 $18f$ $0,33399$ $0,16813$ $0,57904$ $0,0020$ CL13 $18f$ $0,92131$ $0,83643$ $0,42140$ $0,0000$ CL14 $18f$ $0,75133$ $0,99995$ $0,58801$ $0,0052$ CL15 $18f$ $0,41307$ $0,7847$ $0,92160$ $0,0000$ CL16 $18f$ $0,08815$ $0,16526$ $0,75491$ $0,0000$ CL17 $18f$ $0,33269$ $0,16562$ $0,25429$ $0,0088$ CL18 $18f$ $0,08554$ $0,17146$ $0,25338$ $0,0186$ Ag29 $9e$ $0,06422$ $0,06422$ $1/2$ $0,0144$ Ag31 $18f$ $0,16587$ $0,02037$ $0,83342$ $0,0141$ Ag32 $18f$ $0,31168$ $0,74996$ $0,49995$ $0,0095$ Ag33 $18f$ $0,43146$ $0,74696$ $0,49994$ $0,0106$ Ag34 $18f$ $0,75307$ $0,18414$ $0,50002$ $0,0183$ Ag35 $18f$ $0,41667$ $0,14708$ $0,83341$ $0,0000$ Ag36<	Ag2/	18f	0,93699	0,00054	0,25011	0,0000
CL/ $6c$ $0,00000$ $0,00000$ $0,91209$ $0,0000$ CL8 $18f$ $0,41641$ $0,08329$ $0,42116$ $0,0000$ CL9 $18f$ $0,91284$ $0,08064$ $0,92075$ $0,0000$ CL10 $18f$ $0,66528$ $0,08652$ $0,42175$ $0,0000$ CL11 $6c$ $0,00000$ $0,00000$ $0,58703$ $0,0032$ CL12 $18f$ $0,33399$ $0,16813$ $0,57904$ $0,0020$ CL13 $18f$ $0,92131$ $0,83643$ $0,42140$ $0,0000$ CL14 $18f$ $0,75133$ $0,99995$ $0,58801$ $0,0052$ CL15 $18f$ $0,41307$ $0,07847$ $0,92160$ $0,0000$ CL16 $18f$ $0,08815$ $0,16526$ $0,75491$ $0,0000$ CL17 $18f$ $0,33269$ $0,16562$ $0,25429$ $0,0088$ CL18 $18f$ $0,08554$ $0,17146$ $0,25338$ $0,0186$ Ag29 $9e$ $0,06422$ $0,06422$ $1/2$ $0,0000$ Ag30 $9e$ $0,31168$ $1/2$ $0,0144$ Ag31 $18f$ $0,16587$ $0,02037$ $0,83342$ $0,0141$ Ag32 $18f$ $0,81225$ $0,06123$ $0,49995$ $0,0095$ Ag33 $18f$ $0,41667$ $0,14708$ $0,83341$ $0,0000$ Ag35 $18f$ $0,41667$ $0,14708$ $0,83341$ $0,0000$	Ag28	18 <i>f</i>	0,43480	0,18240	0,25025	0,0013
CL8 $18f$ $0,41641$ $0,08329$ $0,42116$ $0,0000$ CL9 $18f$ $0,91284$ $0,08064$ $0,92075$ $0,0000$ CL10 $18f$ $0,66528$ $0,08652$ $0,42175$ $0,0000$ CL11 $6c$ $0,00000$ $0,00000$ $0,58703$ $0,0032$ CL12 $18f$ $0,33399$ $0,16813$ $0,57904$ $0,0020$ CL13 $18f$ $0,92131$ $0,83643$ $0,42140$ $0,0000$ CL14 $18f$ $0,75133$ $0,99995$ $0,58801$ $0,0052$ CL15 $18f$ $0,41307$ $0,07847$ $0,92160$ $0,0000$ CL16 $18f$ $0,08815$ $0,16526$ $0,75491$ $0,0000$ CL17 $18f$ $0,33269$ $0,16562$ $0,25429$ $0,0088$ CL18 $18f$ $0,08554$ $0,17146$ $0,25338$ $0,0186$ Ag29 $9e$ $0,06422$ $0,06422$ $1/2$ $0,0000$ Ag30 $9e$ $0,31168$ $1/2$ $0,0141$ Ag31 $18f$ $0,16587$ $0,02037$ $0,83342$ $0,0141$ Ag32 $18f$ $0,43146$ $0,74696$ $0,49994$ $0,0106$ Ag33 $18f$ $0,43146$ $0,74696$ $0,49994$ $0,0106$ Ag34 $18f$ $0,75307$ $0,18414$ $0,50002$ $0,0183$ Ag35 $18f$ $0,41667$ $0,14708$ $0,83341$ $0,0000$ Ag36 $9e$ $0,31608$ $0,00000$ $1/2$ $0,0000$	CL7	6 <i>c</i>	0,00000	0,00000	0,91209	0,0000
CL9 $18f$ $0,91284$ $0,08064$ $0,92075$ $0,0000$ CL10 $18f$ $0,66528$ $0,08652$ $0,42175$ $0,0000$ CL11 $6c$ $0,00000$ $0,00000$ $0,58703$ $0,0032$ CL12 $18f$ $0,33399$ $0,16813$ $0,57904$ $0,0020$ CL13 $18f$ $0,92131$ $0,83643$ $0,42140$ $0,0000$ CL14 $18f$ $0,75133$ $0,99995$ $0,58801$ $0,0052$ CL15 $18f$ $0,41307$ $0,07847$ $0,92160$ $0,0000$ CL16 $18f$ $0,08815$ $0,16526$ $0,75491$ $0,0000$ CL17 $18f$ $0,33269$ $0,16562$ $0,25338$ $0,0186$ Ag29 $9e$ $0,06422$ $0,06422$ $1/2$ $0,0000$ Ag30 $9e$ $0,31168$ $0,31168$ $1/2$ $0,0141$ Ag31 $18f$ $0,16587$ $0,02037$ $0,83342$ $0,0141$ Ag32 $18f$ $0,43146$ $0,74696$ $0,49994$ $0,0106$ Ag33 $18f$ $0,43146$ $0,74696$ $0,49994$ $0,0106$ Ag34 $18f$ $0,75307$ $0,18414$ $0,50002$ $0,0183$ Ag35 $18f$ $0,41667$ $0,14708$ $0,83341$ $0,0000$ Ag36 $9e$ $0,31608$ $0,0000$ $1/2$ 0.0000	CL8	1 <i>8f</i>	0,41641	0,08329	0,42116	0,0000
CL10 $18f$ $0,66528$ $0,08652$ $0,42175$ $0,0000$ CL11 $6c$ $0,00000$ $0,00000$ $0,58703$ $0,0032$ CL12 $18f$ $0,33399$ $0,16813$ $0,57904$ $0,0020$ CL13 $18f$ $0,92131$ $0,83643$ $0,42140$ $0,0000$ CL14 $18f$ $0,75133$ $0,99995$ $0,58801$ $0,0052$ CL15 $18f$ $0,41307$ $0,07847$ $0,92160$ $0,0000$ CL16 $18f$ $0,08815$ $0,16526$ $0,75491$ $0,0000$ CL17 $18f$ $0,33269$ $0,16562$ $0,25429$ $0,0088$ CL18 $18f$ $0,08554$ $0,17146$ $0,25338$ $0,0186$ Ag29 $9e$ $0,06422$ $0,06422$ $1/2$ $0,0000$ Ag30 $9e$ $0,31168$ $0,31168$ $1/2$ $0,0141$ Ag31 $18f$ $0,16587$ $0,02037$ $0,83342$ $0,0141$ Ag32 $18f$ $0,43146$ $0,74696$ $0,49994$ $0,0106$ Ag34 $18f$ $0,75307$ $0,18414$ $0,50002$ $0,0183$ Ag35 $18f$ $0,41667$ $0,14708$ $0,83341$ $0,0000$ Ag36 $9e$ $0,31608$ $0,00000$ $1/2$ $0,0000$	CL9	1 <i>8f</i>	0,91284	0,08064	0,92075	0,0000
CL11 $6c$ $0,0000$ $0,0000$ $0,58703$ $0,0032$ CL12 $18f$ $0,33399$ $0,16813$ $0,57904$ $0,0020$ CL13 $18f$ $0,92131$ $0,83643$ $0,42140$ $0,0000$ CL14 $18f$ $0,75133$ $0,99995$ $0,58801$ $0,0052$ CL15 $18f$ $0,41307$ $0,07847$ $0,92160$ $0,0000$ CL16 $18f$ $0,08815$ $0,16526$ $0,75491$ $0,0000$ CL17 $18f$ $0,33269$ $0,16562$ $0,25429$ $0,0088$ CL18 $18f$ $0,08554$ $0,17146$ $0,25338$ $0,0186$ Ag29 $9e$ $0,06422$ $0,06422$ $1/2$ $0,0000$ Ag30 $9e$ $0,31168$ $0,31168$ $1/2$ $0,0141$ Ag31 $18f$ $0,16587$ $0,02037$ $0,83342$ $0,0141$ Ag32 $18f$ $0,43146$ $0,74696$ $0,49994$ $0,0106$ Ag34 $18f$ $0,75307$ $0,18414$ $0,50002$ $0,0183$ Ag35 $18f$ $0,41667$ $0,14708$ $0,83341$ $0,0000$ Ag36 $9e$ $0,31608$ $0,0000$ $1/2$ $0,0000$	CL10	1 <i>8f</i>	0,66528	0,08652	0,42175	0,0000
CL12 $18f$ $0,33399$ $0,16813$ $0,57904$ $0,0020$ CL13 $18f$ $0,92131$ $0,83643$ $0,42140$ $0,0000$ CL14 $18f$ $0,75133$ $0,99995$ $0,58801$ $0,0052$ CL15 $18f$ $0,41307$ $0,07847$ $0,92160$ $0,0000$ CL16 $18f$ $0,08815$ $0,16526$ $0,75491$ $0,0000$ CL17 $18f$ $0,33269$ $0,16562$ $0,25429$ $0,0088$ CL18 $18f$ $0,08554$ $0,17146$ $0,25338$ $0,0186$ Ag29 $9e$ $0,06422$ $0,06422$ $1/2$ $0,0000$ Ag30 $9e$ $0,31168$ $0,31168$ $1/2$ $0,0141$ Ag31 $18f$ $0,16587$ $0,02037$ $0,83342$ $0,0141$ Ag32 $18f$ $0,43146$ $0,74696$ $0,49994$ $0,0106$ Ag34 $18f$ $0,75307$ $0,18414$ $0,50002$ $0,0183$ Ag35 $18f$ $0,41667$ $0,14708$ $0,83341$ $0,0000$ Ag36 $9e$ $0,31608$ $0,00000$ $1/2$ $0,0000$	CL11	6 <i>c</i>	0,00000	0,00000	0,58703	0,0032
CL13 $18f$ $0,92131$ $0,83643$ $0,42140$ $0,0000$ CL14 $18f$ $0,75133$ $0,99995$ $0,58801$ $0,0052$ CL15 $18f$ $0,41307$ $0,07847$ $0,92160$ $0,0000$ CL16 $18f$ $0,08815$ $0,16526$ $0,75491$ $0,0000$ CL17 $18f$ $0,33269$ $0,16562$ $0,25429$ $0,0088$ CL18 $18f$ $0,08554$ $0,17146$ $0,25338$ $0,0186$ Ag29 $9e$ $0,06422$ $0,06422$ $1/2$ $0,0000$ Ag30 $9e$ $0,31168$ $0,31168$ $1/2$ $0,0144$ Ag31 $18f$ $0,16587$ $0,02037$ $0,83342$ $0,0141$ Ag32 $18f$ $0,43146$ $0,74696$ $0,49995$ $0,0095$ Ag33 $18f$ $0,43146$ $0,74696$ $0,49994$ $0,0106$ Ag34 $18f$ $0,75307$ $0,18414$ $0,50002$ $0,0183$ Ag35 $18f$ $0,41667$ $0,14708$ $0,83341$ $0,0000$ Ag36 $9e$ $0,31608$ $0,00000$ $1/2$ $0,0000$	CL12	1 <i>8f</i>	0,33399	0,16813	0,57904	0,0020
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CL13	1 <i>8f</i>	0,92131	0,83643	0,42140	0,0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CL14	1 <i>8f</i>	0,75133	0,99995	0,58801	0,0052
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CL15	1 <i>8f</i>	0,41307	0,07847	0,92160	0,0000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CL16	1 <i>8f</i>	0,08815	0,16526	0,75491	0,0000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CL17	1 <i>8f</i>	0,33269	0,16562	0,25429	0,0088
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CL18	1 <i>8f</i>	0,08554	0,17146	0,25338	0,0186
Ag30 $9e$ $0,31168$ $1/2$ $0,0144$ Ag31 $18f$ $0,16587$ $0,02037$ $0,83342$ $0,0141$ Ag32 $18f$ $0,81225$ $0,06123$ $0,49995$ $0,0095$ Ag33 $18f$ $0,43146$ $0,74696$ $0,49994$ $0,0106$ Ag34 $18f$ $0,75307$ $0,18414$ $0,50002$ $0,0183$ Ag35 $18f$ $0,41667$ $0,14708$ $0,83341$ $0,0000$ Ag36 $9e$ $0,31608$ $0,00000$ $1/2$ 0.0000	Ag29	9e	0,06422	0,06422	1/2	0,0000
Ag31 $18f$ $0,16587$ $0,02037$ $0,83342$ $0,0141$ Ag32 $18f$ $0,81225$ $0,06123$ $0,49995$ $0,0095$ Ag33 $18f$ $0,43146$ $0,74696$ $0,49994$ $0,0106$ Ag34 $18f$ $0,75307$ $0,18414$ $0,50002$ $0,0183$ Ag35 $18f$ $0,41667$ $0,14708$ $0,83341$ $0,0000$ Ag36 $9e$ $0,31608$ $0,00000$ $1/2$ 0.0000	Ag30	9e	0,31168	0,31168	1/2	0,0144
Ag32 $18f$ $0,81225$ $0,06123$ $0,49995$ $0,0095$ Ag33 $18f$ $0,43146$ $0,74696$ $0,49994$ $0,0106$ Ag34 $18f$ $0,75307$ $0,18414$ $0,50002$ $0,0183$ Ag35 $18f$ $0,41667$ $0,14708$ $0,83341$ $0,0000$ Ag36 $9e$ $0,31608$ $0,0000$ $1/2$ 0.0000	Ag31	18f	0,16587	0,02037	0,83342	0,0141
Ag3318f0,431460,746960,499940,0106Ag3418f0,753070,184140,500020,0183Ag3518f0,416670,147080,833410,0000Ag369e0,316080,000001/20.0000	Ag32	1 <i>8</i> f	0,81225	0,06123	0,49995	0,0095
Ag3418f0,753070,184140,500020,0183Ag3518f0,416670,147080,833410,0000Ag369e0,316080,000001/20.0000	Ag33	1 <i>8</i> f	0,43146	0,74696	0,49994	0,0106
Ag3518f0,416670,147080,833410,0000Ag369e0,316080,000001/20.0000	Ag34	1 <i>8f</i>	0,75307	0,18414	0.50002	0.0183
Ag36 9 <i>e</i> 0,31608 0,00000 1/2 0.0000	Ag35	18f	0,41667	0,14708	0,83341	0,0000
	Ag36	9e	0,31608	0,00000	1/2	0,0000

Atomkoordinaten von α -Ag₁₀(PS₄)₂SCl₂

Ag39	9e	0,56029	0,00000	1/2	0,0097	
Ag40	18 <i>f</i>	0,49815	0,05857	0,50014	0,0152	
CL19	18 <i>f</i>	0,41229	0,08242	0,17198	0.0000	
CL20	6 <i>c</i>	1/3	2/3	0.50640	0.0000	
CL21	18 <i>f</i>	0.49900	0.99801	0.16105	0.0000	
CL22	18f	0.66652	0.08362	0 49407	0.0024	
C123	18 <i>f</i>	0.08996	0 16974	0,50583	0,0000	
CI 24	18 <i>f</i>	0,00770	0,10774	0,50565	0,0000	
CL24 S01	10 <i>j</i>	0,50979	0,42180	0,30707	0,0000	
591	10/	0,23240	-0,00018	0,37303	0,0000	
59 2	185	0,75647	0,99817	0,37497	0,0313	
893	18 <i>f</i>	0,50140	0,50165	0,37507	0,0000	
S94	18 <i>f</i>	0,90867	0,07466	0,45892	0,0088	
S95	18 <i>f</i>	0,90667	0,07258	0,70935	0,0218	
S96	6 <i>c</i>	0,00000	0,00000	0,12493	0,0000	
S97	18 <i>f</i>	0,16008	0,08087	0,20801	0,0166	
S98	18 <i>f</i>	0,66864	0,09224	0,45810	0,0064	
S99	18 <i>f</i>	0,50261	0,00288	0,87630	0,0068	
S100	18 <i>f</i>	0,49332	0,24522	0,37563	0.0651	
S101	18 <i>f</i>	0 25491	0 99661	0 87588	0,0005	
S102	6c	0,00000	0,00000	0,63059	0,0729	
Δσ41	18f	0 71644	0,17208	0,69835	0.0012	
Ag42	10 <i>j</i> 18 <i>f</i>	0,71044	0,04622	0,69610	0,0012	
Ag42	10j 19£	0,43783	0,04022	0,09019	0,0010	
Ag45	10/	0,83994	0,04009	0,094//	0,0100	
Ag44	185	0,37221	0,99595	0,27911	0,0045	
Ag45	18 <i>f</i>	0,42354	0,1/215	0,3/512	0,0000	
Ag46	18 <i>f</i>	0,29064	0,45940	0,11300	0,0023	
Ag47	18 <i>f</i>	0,70748	0,16338	0,94664	0,0001	
Ag48	18 <i>f</i>	0,12306	0,12606	0,27933	0,0059	
Ag49	18 <i>f</i>	0,83851	0,04431	0,94581	0,0035	
Ag50	18 <i>f</i>	0,69378	0,05728	0,68879	0,0000	
Ag51	18 <i>f</i>	0,37193	0,12640	0,02990	0,0012	
Ag52	18 <i>f</i>	0,87318	0,99221	0,02684	0,0445	
Ag53	18 <i>f</i>	0,11186	0,22388	0,02156	0.0117	
Ag54	18 <i>f</i>	0.12339	0.12799	0.77954	0.0042	
Ag55	18 <i>f</i>	0,00620	0 13070	0.03045	0,0000	
Ag56	18 <i>f</i>	0 78840	0.08502	0 36335	0.0319	
Ag57	18 <i>f</i>	0.37418	0,00502	0,7073	0,0013	
Ag58	10 <i>j</i> 18 <i>f</i>	0,12205	0,62825	0,77854	0,0015	
Ag30	10j 10 <i>1</i>	0,12303	0,02823	0,77834	0,0009	
Ag39	10j 10£	0,41938	0,20034	0,00290	0,0023	
Agou	10/	0,75579	0,12300	0,02815	0,0002	
Ag61	18 <i>f</i>	0,44405	0,14218	0,93801	0,0185	
Ag62	18 <i>f</i>	0,02568	0,13//1	0,27162	0,0127	
Ag63	18 <i>f</i>	0,52718	0,05813	0,35443	0,0106	
Ag64	18 <i>f</i>	0,19387	0,05252	0,93782	0,0146	
Ag65	18 <i>f</i>	0,44576	0,14289	0,68776	0,0223	
Ag66	18 <i>f</i>	0,24762	0,07697	0,87515	0,0000	
Ag67	18 <i>f</i>	0,11105	0,97261	0,52146	0,0000	
Ag68	18 <i>f</i>	0,62177	0,24534	0,02906	0,0537	
Ag69	18 <i>f</i>	0,53843	0,07694	0,86243	0,0066	
Ag70	18 <i>f</i>	0,19167	0,05221	0,68846	0,0230	
Ag71	18 <i>f</i>	0,37469	0,99734	0,52855	0,0047	
Ag72	18 <i>f</i>	0.69382	0.05571	0,93800	0.0235	
Ag73	18 <i>f</i>	0.03978	0.07126	0.36143	0.0415	
Ασ74	18 <i>f</i>	0 69642	0.05319	0 43805	0.0138	
Δ σ75	18 <i>f</i>	0.85003	0,80336	0,43808	0.0107	
ng: J Ag76	10j 18£	0,05775	0.14024	0,43787	0,0192	
Ag10	10j 10£	0,44/20	0,14024	0,43/02	0,0113	
Ag / /	1 <i>8f</i>	0,02399	0,13/92	0,77060	0,0238	
Ag78 18f 0.37162 0.99170 0.02675 0.0434 Ag79 18f 0.70392 0.15688 0.19326 0.0237 Ag80 18f 0.57920 0.99442 0.04179 0.0335 Ag81 18f 0.57920 0.99442 0.04179 0.0176 Ag84 18f 0.44535 0.05479 0.18770 0.0108 Ag84 18f 0.44535 0.05479 0.18770 0.0108 Ag85 18f 0.03769 0.08870 0.55343 0.02433 Ag86 18f 0.04664 0.44604 0.0280 Ag88 18f 0.06071 0.55267 0.0181 Ag90 18f 0.53831 0.08777 0.55267 0.0184 Ag91 18f 0.46107 0.05077 0.94653 0.0318 Ag93 18f 0.41070 0.17046 0.29271 0.0448 Ag93 18f 0.5472 0.04727 0.19443 0.0559						
--	-----------------	------------------------------	---------	---------	---------	--------
Ag79 18f 0.70392 0.15688 0.19326 0.0237 Ag80 18f 0.42142 0.20653 0.61205 0.0337 Ag81 18f 0.75720 0.99442 0.04179 0.0372 Ag83 18f 0.44735 0.05479 0.18770 0.0108 Ag84 18f 0.47215 0.03106 0.14534 0.0149 Ag85 18f 0.03769 0.05870 0.05334 0.0243 Ag87 18f 0.03680 0.08012 0.11365 0.0305 Ag88 18f 0.46078 0.04654 0.44610 0.0277 Ag90 18f 0.75207 0.12554 0.77885 0.0338 Ag91 18f 0.57549 0.04977 0.94653 0.0318 Ag93 18f 0.5870 0.04120 0.44482 0.0355 Ag93 18f 0.57472 0.94443 0.0555 Ag93 18f 0.53890 0.04127 0.14443 <th< td=""><td>Ag78</td><td>18f</td><td>0,37162</td><td>0,99170</td><td>0,02675</td><td>0,0454</td></th<>	Ag78	18f	0,37162	0,99170	0,02675	0,0454
Ag80 18f 0.42142 0.20653 0.61205 0.0335 Ag81 18f 0.57920 0.99442 0.04179 0.0375 Ag81 18f 0.47335 0.05479 0.18770 0.0108 Ag84 18f 0.44735 0.06091 0.70871 0.0477 Ag85 18f 0.03769 0.08810 0.55343 0.0243 Ag87 18f 0.03680 0.06051 0.11655 0.0335 Ag88 18f 0.46078 0.04654 0.44604 0.0280 Ag89 18f 0.03680 0.08012 0.11365 0.0335 Ag91 18f 0.75207 0.12554 0.77885 0.0395 Ag92 18f 0.16276 0.49233 0.04175 0.04434 Ag93 18f 0.16276 0.49233 0.04175 0.0434 Ag93 18f 0.53870 0.04020 0.44422 0.0357 Ag94 18f 0.53960 0.07996 <	Ag79	18f	0,70392	0,15688	0,19326	0,0237
Ag81 18f 0.57920 0.99442 0.04179 0.0372 Ag82 18f 0.78394 0.07926 0.61362 0.0246 Ag83 18f 0.44535 0.05479 0.18770 0.0108 Ag84 18f 0.47215 0.03106 0.14534 0.0149 Ag85 18f 0.58924 0.00091 0.70871 0.0477 Ag86 18f 0.03769 0.08870 0.55343 0.0243 Ag87 18f 0.03880 0.08012 0.11365 0.0305 Ag88 18f 0.46078 0.04654 0.44640 0.0227 Ag90 18f 0.75207 0.12554 0.77885 0.0335 Ag92 18f 0.16276 0.49233 0.04175 0.0448 Ag94 18f 0.16276 0.49233 0.04175 0.0448 Ag95 18f 0.50549 0.04020 0.44482 0.0357 Ag97 18f 0.5870 0.04020 <th< td=""><td>Ag80</td><td>18f</td><td>0,42142</td><td>0,20653</td><td>0,61205</td><td>0,0335</td></th<>	Ag80	18f	0,42142	0,20653	0,61205	0,0335
$A_g 82$ $18f$ $0,78394$ $0,07926$ $0,61362$ $0,0246$ $Ag83$ $18f$ $0,44535$ $0,05479$ $0,18770$ $0,0108$ $Ag84$ $18f$ $0,7215$ $0,03106$ $0,14534$ $0,0147$ $Ag85$ $18f$ $0,03680$ $0,08810$ $0,55343$ $0,0247$ $Ag87$ $18f$ $0,03680$ $0,08012$ $0,11365$ $0,0358$ $Ag87$ $18f$ $0,03680$ $0,08012$ $0,11365$ $0,0357$ $Ag89$ $18f$ $0,00841$ $0,17204$ $0,54198$ $0,0277$ $Ag90$ $18f$ $0,55207$ $0,12554$ $0,77885$ $0,0395$ $Ag92$ $18f$ $0,4107$ $0,05077$ $0,94653$ $0,0318$ $Ag93$ $18f$ $0,4107$ $0,05077$ $0,94653$ $0,0314$ $Ag93$ $18f$ $0,16276$ $0,49233$ $0,04175$ $0,0434$ $Ag95$ $18f$ $0,58970$ $0,04020$ $0,44482$ $0,0357$ $Ag96$ $18f$ $0,58970$ $0,04020$ $0,44482$ $0,0357$ $Ag97$ $18f$ $0,59472$ $0,04727$ $0,19443$ $0,0559$ $Ag98$ $18f$ $0,37413$ $0,12709$ $0,77874$ $0,0462$ $Ag100$ $18f$ $0,35900$ $0,08054$ $0,61280$ $0,0349$ $Ag101$ $18f$ $0,53840$ $0,03094$ $0,94634$ $0,0343$ $Ag103$ $18f$ $0,27547$ $0,12285$ $0,228021$ $0,0396$ $Ag101$ $18f$ $0,27547$ $0,12964$ <t< td=""><td>Ag81</td><td>18f</td><td>0,57920</td><td>0,99442</td><td>0,04179</td><td>0,0372</td></t<>	Ag81	18f	0,57920	0,99442	0,04179	0,0372
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ag82	18f	0,78394	0,07926	0,61362	0,0246
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ag83	1 <i>8</i> f	0,44535	0,05479	0,18770	0,0108
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ag84	18 <i>f</i>	0,47215	0,03106	0,14534	0,0149
$\begin{array}{c ccccc} Ag86 & 18f & 0,03769 & 0,08870 & 0,55343 & 0,0243 \\ Ag87 & 18f & 0,03680 & 0,08012 & 0,11365 & 0,0305 \\ Ag88 & 18f & 0,46078 & 0,04654 & 0,44604 & 0,0280 \\ Ag89 & 18f & 0,00841 & 0,17204 & 0,54198 & 0,0277 \\ Ag90 & 18f & 0,53831 & 0,08727 & 0,55267 & 0,0184 \\ Ag91 & 18f & 0,75207 & 0,12554 & 0,77885 & 0,0395 \\ Ag92 & 18f & 0,46107 & 0,05077 & 0,94653 & 0,0318 \\ Ag93 & 18f & 0,41070 & 0,17046 & 0,29271 & 0,0438 \\ Ag94 & 18f & 0,16276 & 0,49233 & 0,04175 & 0,0434 \\ Ag95 & 18f & 0,55449 & 0,08497 & 0,04192 & 0,0439 \\ Ag96 & 18f & 0,59472 & 0,0420 & 0,44482 & 0,0357 \\ Ag97 & 18f & 0,59472 & 0,04727 & 0,19443 & 0,0559 \\ Ag98 & 18f & 0,37413 & 0,12709 & 0,77874 & 0,0462 \\ Ag99 & 18f & 0,33909 & 0,07996 & 0,61212 & 0,0410 \\ Ag100 & 18f & 0,53854 & 0,08068 & 0,11320 & 0,0456 \\ Ag102 & 18f & 0,12058 & 0,12343 & 0,52858 & 0,0053 \\ Ag103 & 18f & 0,08704 & 0,03913 & 0,94634 & 0,0343 \\ Ag104 & 18f & 0,28110 & 0,32123 & 0,86261 & 0,0232 \\ Ag105 & 18f & 0,75285 & 0,12365 & 0,28021 & 0,0387 \\ Ag106 & 18f & 0,07975 & 0,99412 & 0,54228 & 0,0377 \\ Ag100 & 18f & 0,07975 & 0,9412 & 0,54228 & 0,0377 \\ Ag100 & 18f & 0,07975 & 0,9412 & 0,54228 & 0,0377 \\ Ag106 & 18f & 0,07975 & 0,99412 & 0,54228 & 0,0377 \\ Ag106 & 18f & 0,07975 & 0,99412 & 0,54228 & 0,0377 \\ Ag110 & 18f & 0,77979 & 0,08311 & 0,19531 & 0,0644 \\ Ag109 & 18f & 0,07975 & 0,99412 & 0,54228 & 0,0377 \\ Ag113 & 18f & 0,83461 & 0,04348 & 0,19450 & 0,0271 \\ Ag113 & 18f & 0,83461 & 0,04348 & 0,19450 & 0,0271 \\ Ag114 & 18f & 0,46154 & 0,16047 & 0,19552 & 0,2074 \\ Ag115 & 18f & 0,61887 & 0,49305 & 0,52877 & 0,0369 \\ Ag117 & 18f & 0,61887 & 0,49305 & 0,52878 & 0,0361 \\ Ag118 & 18f & 0,57541 & 0,99741 & 0,87462 & 0,0570 \\ Ag121 & 18f & 0,61887 & 0,49305 & 0,52877 & 0,0369 \\ Ag121 & 18f & 0,61887 & 0,49305 & 0,52877 & 0,0369 \\ Ag122 & 18f & 0,75604 & 0,07309 & 0,12562 & 0,0500 \\ Ag124 & 18f & 0,53630 & 0,0720 & 0,66890 & 0,5500 \\ Ag124 & 18f & 0,53630 & 0,0720 & 0,66890 & 0,5500 \\ Ag124 & 18f & 0,76400 & 0,13200 & 0,27860 & 0,0500 \\ Ag124 & 18f & 0,76400 & 0,13760 & 0,19$	Ag85	18f	0.58924	0.00091	0.70871	0.0477
Ag8718f0,036800,080120,113650,0305Ag8818f0,460780,046540,446040,0280Ag8918f0,03810,87270,552670,0184Ag9018f0,752070,125540,778850,0395Ag9218f0,410700,050770,946530,0318Ag9318f0,162760,492330,041750,0434Ag9418f0,162760,492330,041750,0434Ag9518f0,505490,084970,041920,0439Ag9618f0,589700,040200,444820,0559Ag9718f0,594720,047270,194430,0559Ag9818f0,374130,127090,778740,0462Ag9918f0,539000,080540,612120,0410Ag10118f0,538540,080680,113200,0453Ag10218f0,288100,321230,862610,0232Ag10318f0,087040,39340,946340,0343Ag10418f0,275470,129640,280020,0387Ag10518f0,087360,043140,195310,0644Ag10918f0,752850,123650,280210,0387Ag10818f0,079750,994120,542280,0377Ag10818f0,079750,994120,542280,0367Ag10918f0,775850,123650,280580,0547 <td>Ag86</td> <td>18<i>f</i></td> <td>0.03769</td> <td>0.08870</td> <td>0.55343</td> <td>0.0243</td>	Ag86	18 <i>f</i>	0.03769	0.08870	0.55343	0.0243
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ag87	18f	0.03680	0.08012	0.11365	0.0305
Ag8918f0,008410,172040,541980,0277Ag9018f0,538310,087270,552670,0184Ag9118f0,752070,125540,778850,0395Ag9218f0,461070,050770,946530,0318Ag9318f0,410700,170460,292710,0438Ag9418f0,162760,492330,041750,0434Ag9518f0,59490,084970,041920,0439Ag9618f0,589700,040200,444820,0559Ag9718f0,594720,047270,194430,0559Ag9918f0,374130,127090,778740,0462Ag9018f0,539000,079960,612120,0410Ag10018f0,538540,080680,113200,0456Ag10118f0,538540,039340,946340,0343Ag10318f0,087040,039340,946340,0373Ag10418f0,27550,123430,528580,2322Ag10518f0,97750,994120,542280,0374Ag10718f0,75750,994120,542280,0374Ag11018f0,079750,994120,542280,0374Ag11118f0,618870,493050,529780,0630Ag11318f0,618470,16440,16520,0271Ag11318f0,618470,134670,19520,0374 </td <td>Ag88</td> <td>18f</td> <td>0.46078</td> <td>0.04654</td> <td>0.44604</td> <td>0.0280</td>	Ag88	18f	0.46078	0.04654	0.44604	0.0280
Ag9018f0,538310,087270,552670,0184Ag9118f0,752070,125540,778850,0395Ag9218f0,461070,050770,946530,0318Ag9318f0,162760,492330,041750,0434Ag9518f0,505490,084970,041920,0439Ag9618f0,594720,047270,194430,0559Ag9718f0,594720,047270,194430,0559Ag9718f0,539090,079960,612120,0410Ag9018f0,539000,080540,612800,0349Ag10118f0,538540,080680,113200,0456Ag10218f0,120580,123430,528580,0033Ag10318f0,087040,039340,946340,0343Ag10518f0,375470,123650,280210,0387Ag10618f0,375560,123650,280210,0387Ag10618f0,087360,043140,195310,0644Ag10918f0,07750,994120,542280,0377Ag11018f0,07750,994120,542280,0374Ag11018f0,07750,994110,528750,0369Ag11018f0,077500,994110,528750,0369Ag11118f0,675410,997410,528770,0390Ag11318f0,65130,001890,707360,2893 </td <td>Ag89</td> <td>18f</td> <td>0.00841</td> <td>0.17204</td> <td>0.54198</td> <td>0.0277</td>	Ag89	18f	0.00841	0.17204	0.54198	0.0277
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ag90	18f	0.53831	0.08727	0.55267	0.0184
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ag91	18f	0.75207	0.12554	0.77885	0.0395
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ag92	18f	0.46107	0.05077	0.94653	0.0318
Ag9418f0,162760,492330,041750,0434Ag9518f0,505490,084970,041920,0439Ag9618f0,598700,040200,444820,0357Ag9718f0,594720,047270,194430,0559Ag9818f0,374130,127090,778740,0462Ag9918f0,039090,079960,612120,0410Ag10018f0,538540,080680,113200,0454Ag10118f0,120580,123430,528580,0033Ag10318f0,087040,039340,946340,0343Ag10418f0,288100,321230,862610,0232Ag10518f0,92050,909000,707460,0732Ag10618f0,375470,129640,280020,0396Ag10718f0,752850,123650,280210,0387Ag10818f0,076650,004400,625850,0669Ag11018f0,079750,994120,542280,0371Ag11118f0,742840,085660,459120,0630Ag11218f0,641540,160470,196520,0274Ag11318f0,61540,160470,196520,0274Ag11418f0,41540,160470,196520,0501Ag11518f0,495740,073690,529780,0631Ag11318f0,575410,997410,874620,05	Ag93	18f	0.41070	0.17046	0.29271	0.0488
Ag9518f0.505490.084970.041920.0439Ag9618f0.559700.040200.444820.0357Ag9718f0.594720.047270.194430.0559Ag9818f0.374130.127090.778740.0462Ag9918f0.039090.079960.612120.0410Ag10018f0.538540.080680.113200.0456Ag10118f0.120580.124330.528580.0033Ag10318f0.087040.039340.946340.0343Ag10418f0.288100.321230.862610.0232Ag10518f0.920250.909900.707460.0336Ag10618f0.375470.129640.280020.0396Ag10818f0.087360.043140.195310.0644Ag10918f0.076650.004800.625850.0569Ag11018f0.079750.994120.542280.0371Ag11118f0.076550.01600.208680.0371Ag11118f0.615470.162520.028750.0369Ag11118f0.615440.160470.196520.0274Ag11318f0.618870.493050.529780.0361Ag11418f0.618870.493050.529780.0369Ag11518f0.662130.01890.707360.2893Ag12218f0.6757410.997410.874620	Ag94	18f	0 16276	0 49233	0.04175	0.0434
Ag9618f0,589700,040200,444820,0357Ag9718f0,594720,047270,194430,0559Ag9818f0,374130,127090,778740,0462Ag9918f0,039090,079960,612120,0410Ag10018f0,539000,080540,612800,0349Ag10118f0,538540,080680,113200,0456Ag10218f0,120580,123430,528580,00334Ag10318f0,087040,039340,946340,0323Ag10518f0,920250,909900,707460,0732Ag10618f0,375470,129640,280020,0396Ag10718f0,752850,123650,280210,0387Ag10818f0,079750,994120,542280,0347Ag11018f0,079750,994120,542280,0371Ag11118f0,742840,085660,459120,0630Ag11218f0,037990,083110,862150,0394Ag11518f0,037990,083110,862150,0394Ag11618f0,41540,160470,196520,0274Ag11518f0,62130,001600,28680,0371Ag11318f0,45740,073090,125620,0504Ag11418f0,575410,97740,73600,2578Ag11518f0,757020,134670,528770,05	Ag95	18f	0,50549	0.08497	0.04192	0.0439
	A996	18f	0 58970	0.04020	0 44482	0.0357
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A 997	18 <i>f</i>	0 59472	0.04727	0 19443	0,0559
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ασ98	18 <i>f</i>	0 37413	0,12709	0 77874	0.0462
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Δσ99	18 <i>f</i>	0,03909	0,07996	0,61212	0.0410
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ασ100	18 <i>f</i>	0,03909	0.08054	0,61212	0.0349
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ag101	18 <i>f</i>	0,53950	0.08068	0,01200	0.0456
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Δg102	18f	0,12058	0.12343	0.52858	0,0450
Ag10316j0,001040,001040,00104Ag10418f0,288100,321230,862610,0232Ag10518f0,920250,909900,707460,0732Ag10618f0,375470,129640,280020,0396Ag10718f0,752850,123650,280210,0387Ag10818f0,076650,004800,625850,0569Ag11018f0,079750,994120,542280,0347Ag11118f0,742840,085660,459120,0630Ag11218f0,08390,001600,208680,0371Ag11318f0,834610,043480,194500,0271Ag11418f0,461540,160470,196520,0274Ag11518f0,037990,083110,862150,0394Ag11618f0,413440,162520,208750,0369Ag11718f0,618870,493050,529780,0631Ag11818f0,757020,134670,528970,0390Ag12018f0,495740,073090,125620,0501Ag12118f0,662130,001890,707360,2893Ag12218f0,835890,802550,705940,0578Ag12318f0,78600,072200,608900,0500Ag12418f0,536300,072200,608900,0500Ag12518f0,443600,137600,190300,0500<	Ag102	18 <i>f</i>	0,08704	0,03934	0,94634	0.0343
Ag10416)0,283100,221230,321230,32210,0222Ag10518f0,920250,909900,707460,0732Ag10618f0,375470,129640,280020,0396Ag10718f0,752850,123650,280210,0387Ag10818f0,087360,043140,195310,0644Ag10918f0,076650,004800,625850,0369Ag11118f0,742840,085660,459120,0630Ag11218f0,88390,001600,208680,0371Ag11318f0,834610,043480,194500,0271Ag11418f0,461540,160470,196520,0274Ag11518f0,037990,083110,862150,0394Ag11618f0,413440,162520,208750,0369Ag11718f0,618870,493050,529780,0631Ag11818f0,757020,134670,528970,0390Ag12018f0,45540,001890,707360,2893Ag12118f0,662130,001890,707360,2893Ag12318f0,764000,132200,276000,0500Ag12418f0,536300,072200,608900,0500Ag12518f0,443600,137600,190300,0500Ag12418f0,536300,072100,360000,0500Ag12518f0,764000,13220 <t< td=""><td>Ag104</td><td>18<i>f</i></td><td>0,08704</td><td>0.32123</td><td>0,94054</td><td>0,0343</td></t<>	Ag104	18 <i>f</i>	0,08704	0.32123	0,94054	0,0343
Ag10516)0,220250,707060,707060,0702Ag10618f0,375470,129640,280020,0396Ag10718f0,752850,123650,280210,0387Ag10818f0,087360,043140,195310,0644Ag10918f0,076650,004800,625850,0569Ag11118f0,079750,994120,542280,0347Ag11318f0,088390,001600,208680,0371Ag11318f0,834610,043480,194500,0271Ag11418f0,461540,160470,196520,0274Ag11518f0,037990,083110,862150,0394Ag11618f0,413440,162520,208750,0369Ag11718f0,618870,493050,529780,0631Ag11818f0,757020,134670,528970,0390Ag12018f0,495740,073090,125620,0501Ag12118f0,662130,001890,707360,2893Ag12318f0,764000,132200,276000,0500Ag12418f0,536300,072200,608900,0500Ag12518f0,474600,523400,0500Ag12418f0,534200,067100,109700,0500Ag12518f0,786800,072100,360000,0500Ag12618f0,786800,072100,360000,0500	Ag104	18 <i>f</i>	0,28810	0,92125	0,00201	0,0232
Ag10018j $0,5734^{+}$ $0,12904^{+}$ $0,28002^{-}$ $0,0370^{-}$ Ag10718f $0,75285^{-}$ $0,12365^{-}$ $0,28002^{-}$ $0,0387^{-}$ Ag10818f $0,07365^{-}$ $0,04314^{-}$ $0,19531^{-}$ $0,0644^{-}$ Ag10918f $0,07665^{-}$ $0,00480^{-}$ $0,62585^{-}$ $0,0569^{-}$ Ag11118f $0,07975^{-}$ $0,99412^{-}$ $0,54228^{-}$ $0,0347^{-}$ Ag11118f $0,74284^{-}$ $0,08566^{-}$ $0,45912^{-}$ $0,0630^{-}$ Ag11318f $0,83461^{-}$ $0,04348^{-}$ $0,19450^{-}$ $0,0271^{-}$ Ag11418f $0,46154^{-}$ $0,16047^{-}$ $0,19652^{-}$ $0,0274^{-}$ Ag11518f $0,03799^{-}$ $0,08311^{-}$ $0,8215^{-}$ $0,0394^{-}$ Ag11618f $0,41344^{-}$ $0,16252^{-}$ $0,20875^{-}$ $0,0631^{-}$ Ag11718f $0,6187^{-}$ $0,49305^{-}$ $0,52978^{-}$ $0,0390^{-}$ Ag12018f $0,75702^{-}$ $0,13467^{-}$ $0,52897^{-}$ $0,0390^{-}$ Ag12118f $0,66213^{-}$ $0,00189^{-}$ $0,70736^{-}$ $0,2893^{-}$ Ag12318f $0,76400^{-}$ $0,13220^{-}$ $0,27600^{-}$ $0,0500^{-}$ Ag12418f $0,53420^{-}$ $0,06710^{-}$ $0,10970^{-}$ $0,0500^{-}$ Ag12518f^{-} $0,7768^{-}$ $0,05700^{-}$ $0,9990^{-}$ $0,4260^{-}$ $0,0500^{-}$ Ag12418f^{-} $0,77680^{-}$ $0,$	Ag105	1 0 <i>j</i> 1 8 <i>f</i>	0,92023	0,90990	0,70740	0,0752
Ag107 $16f$ $0,73283$ $0,12303$ $0,23021$ $0,0387$ Ag108 $18f$ $0,0736$ $0,04314$ $0,19531$ $0,0644$ Ag109 $18f$ $0,07665$ $0,00480$ $0,62585$ $0,0569$ Ag110 $18f$ $0,07975$ $0,99412$ $0,54228$ $0,0347$ Ag111 $18f$ $0,74284$ $0,08566$ $0,45912$ $0,0630$ Ag112 $18f$ $0,08839$ $0,00160$ $0,20868$ $0,0271$ Ag113 $18f$ $0,83461$ $0,04348$ $0,19450$ $0,0271$ Ag114 $18f$ $0,46154$ $0,16047$ $0,19652$ $0,0274$ Ag115 $18f$ $0,03799$ $0,08311$ $0,86215$ $0,0394$ Ag116 $18f$ $0,41344$ $0,16252$ $0,20875$ $0,0369$ Ag117 $18f$ $0,61887$ $0,49305$ $0,52978$ $0,0631$ Ag118 $18f$ $0,57541$ $0,99741$ $0,87462$ $0,0570$ Ag120 $18f$ $0,49574$ $0,07309$ $0,12562$ $0,0501$ Ag121 $18f$ $0,66213$ $0,00189$ $0,70736$ $0,2893$ Ag123 $18f$ $0,76400$ $0,13220$ $0,27600$ $0,0500$ Ag124 $18f$ $0,53630$ $0,07220$ $0,60890$ $0,0500$ Ag125 $18f$ $0,5420$ $0,06710$ $0,10970$ $0,0500$ Ag124 $18f$ $0,78680$ $0,07210$ $0,36000$ $0,0500$ Ag125 $18f$ $0,61240$ $0,47460$ $0,52340$ $0,05$	Ag107	10j 19£	0,37347	0,12904	0,28002	0,0390
Ag108 $16f$ $0,08730$ $0,04314$ $0,1931$ $0,0331$ Ag109 $18f$ $0,07665$ $0,00480$ $0,62585$ $0,0569$ Ag110 $18f$ $0,07975$ $0,99412$ $0,54228$ $0,0347$ Ag111 $18f$ $0,74284$ $0,08566$ $0,45912$ $0,0630$ Ag112 $18f$ $0,08839$ $0,00160$ $0,20868$ $0,0371$ Ag113 $18f$ $0,83461$ $0,04348$ $0,19450$ $0,0271$ Ag114 $18f$ $0,46154$ $0,16047$ $0,19652$ $0,0274$ Ag115 $18f$ $0,03799$ $0,08311$ $0,86215$ $0,0394$ Ag116 $18f$ $0,41344$ $0,16252$ $0,20875$ $0,0369$ Ag117 $18f$ $0,61887$ $0,49305$ $0,52978$ $0,0631$ Ag118 $18f$ $0,57541$ $0,99741$ $0,87462$ $0,0570$ Ag120 $18f$ $0,49574$ $0,07309$ $0,12562$ $0,0501$ Ag121 $18f$ $0,66213$ $0,00189$ $0,70736$ $0,2893$ Ag123 $18f$ $0,76400$ $0,13220$ $0,27600$ $0,0500$ Ag124 $18f$ $0,53630$ $0,07220$ $0,60890$ $0,0500$ Ag125 $18f$ $0,78680$ $0,07210$ $0,36000$ $0,0500$ Ag124 $18f$ $0,78680$ $0,07210$ $0,36000$ $0,0500$ Ag123 $18f$ $0,78680$ $0,07210$ $0,36000$ $0,0500$ Ag124 $18f$ $0,78680$ $0,07210$ $0,36000$ $0,0$	Ag107	10j 19£	0,75285	0,12303	0,28021	0,0387
Ag10918f0,079750,994120,023830,0347Ag11018f0,079750,994120,542280,0347Ag11118f0,742840,085660,459120,0630Ag11218f0,083390,001600,208680,0371Ag11318f0,834610,043480,194500,0274Ag11418f0,461540,160470,196520,0274Ag11518f0,037990,083110,862150,0369Ag11618f0,413440,162520,208750,0369Ag11718f0,618870,493050,529780,0631Ag11818f0,575410,997410,874620,0570Ag11918f0,757020,134670,528970,0390Ag12018f0,495740,073090,125620,0501Ag12118f0,662130,001890,707360,2893Ag12318f0,764000,132200,276000,0500Ag12418f0,536300,072200,608900,0500Ag12518f0,443600,137600,190300,0500Ag12618f0,786800,072100,360000,0500Ag12918f0,96000,048100,942200,0500Ag13118f0,599900,044900,185300,0500Ag13218f0,611200,233100,018700,0500Ag13318f0,367000,132000,27580	Ag100	1 0 <i>j</i> 1 8 <i>f</i>	0,08730	0,04314	0,19551	0,0044
Ag110 $18f$ $0,07975$ $0,99412$ $0,34228$ $0,0347$ Ag111 $18f$ $0,74284$ $0,08566$ $0,45912$ $0,0630$ Ag112 $18f$ $0,08839$ $0,00160$ $0,20868$ $0,0371$ Ag113 $18f$ $0,83461$ $0,04348$ $0,19450$ $0,0271$ Ag114 $18f$ $0,46154$ $0,16047$ $0,19652$ $0,0274$ Ag115 $18f$ $0,03799$ $0,08311$ $0,86215$ $0,0394$ Ag116 $18f$ $0,41344$ $0,16252$ $0,20875$ $0,0631$ Ag117 $18f$ $0,61887$ $0,49305$ $0,52978$ $0,0631$ Ag118 $18f$ $0,57541$ $0,99741$ $0,87462$ $0,0570$ Ag119 $18f$ $0,75702$ $0,13467$ $0,52897$ $0,0390$ Ag121 $18f$ $0,66213$ $0,00189$ $0,70736$ $0,2893$ Ag122 $18f$ $0,83589$ $0,80255$ $0,70594$ $0,0578$ Ag123 $18f$ $0,76400$ $0,13220$ $0,27600$ $0,0500$ Ag124 $18f$ $0,53630$ $0,07220$ $0,60890$ $0,0500$ Ag125 $18f$ $0,44360$ $0,13760$ $0,19030$ $0,0500$ Ag126 $18f$ $0,78680$ $0,07210$ $0,36000$ $0,0500$ Ag125 $18f$ $0,78680$ $0,07210$ $0,36000$ $0,0500$ Ag131 $18f$ $0,99990$ $0,04490$ $0,18530$ $0,0500$ Ag131 $18f$ $0,36700$ $0,13200$ $0,27580$ $0,$	Ag110	10j 19£	0,07003	0,00480	0,02383	0,0309
Ag11118f0,742840,053000,49120,00301Ag11218f0,088390,001600,208680,0371Ag11318f0,834610,043480,194500,0271Ag11418f0,461540,160470,196520,0274Ag11518f0,037990,083110,862150,0394Ag11618f0,413440,162520,208750,0369Ag11718f0,618870,493050,529780,0631Ag11818f0,575410,997410,874620,0570Ag12018f0,757020,134670,528970,0390Ag12118f0,662130,001890,707360,2893Ag12218f0,764000,132200,276000,0570Ag12318f0,764000,137600,190300,0500Ag12418f0,534200,067100,109700,0500Ag12718f0,612400,474600,523400,0500Ag12818f0,768000,044900,185300,0500Ag12918f0,99900,044900,185300,0500Ag12118f0,612400,474600,523400,0500Ag12518f0,766000,044900,185300,0500Ag12718f0,612400,474600,523400,0500Ag13118f0,599900,044900,185300,0500Ag13218f0,611200,233100,01870	Agiii	10j 19£	0,07973	0,99412	0,34228	0,0347
Ag11216f0,083590,001600,208080,0511Ag11318f0,834610,043480,194500,0271Ag11418f0,461540,160470,196520,0274Ag11518f0,037990,083110,862150,0394Ag11618f0,413440,162520,208750,0369Ag11718f0,618870,493050,529780,0631Ag11818f0,575410,997410,874620,0570Ag12018f0,495740,073090,125620,0501Ag12118f0,662130,001890,707360,2893Ag12318f0,764000,132200,276000,0500Ag12418f0,536300,072200,608900,0500Ag12518f0,443600,137600,190300,0500Ag12618f0,534200,067100,109700,0500Ag12718f0,612400,474600,523400,0500Ag12918f0,706000,048100,942200,0500Ag13018f0,450000,049200,442600,0500Ag12918f0,611200,233100,018700,0500Ag13118f0,367000,132000,275800,0500Ag13318f0,367000,132000,275800,0500Ag13418f0,034300,067000,109800,0500	Agill Agill2	10j 19£	0,74284	0,08300	0,43912	0,0030
Ag11316f0,834610,043480,194300,0271Ag11418f0,461540,160470,196520,0274Ag11518f0,037990,083110,862150,0394Ag11618f0,413440,162520,208750,0369Ag11718f0,618870,493050,529780,0631Ag11818f0,575410,997410,874620,0570Ag11918f0,757020,134670,528970,0390Ag12018f0,495740,073090,125620,0501Ag12118f0,662130,001890,707360,2893Ag12318f0,764000,132200,276000,0500Ag12418f0,536300,072200,608900,0500Ag12518f0,443600,137600,190300,0500Ag12618f0,786800,072100,360000,0500Ag12918f0,96000,048100,942200,0500Ag13018f0,450000,049200,442600,0500Ag13118f0,599900,044900,185300,0500Ag13118f0,507000,132000,275800,0500Ag13318f0,367000,132000,275800,0500Ag13418f0,034300,067000,109800,0500	Ag112	10j 10£	0,08839	0,00100	0,20808	0,0371
Ag11418/ $0,46134$ $0,16047$ $0,19632$ $0,0274$ Ag11518f $0,03799$ $0,08311$ $0,86215$ $0,0394$ Ag11618f $0,41344$ $0,16252$ $0,20875$ $0,0369$ Ag11718f $0,61887$ $0,49305$ $0,52978$ $0,0631$ Ag11818f $0,57541$ $0,99741$ $0,87462$ $0,0570$ Ag11918f $0,75702$ $0,13467$ $0,52897$ $0,0390$ Ag12018f $0,49574$ $0,07309$ $0,12562$ $0,0501$ Ag12118f $0,66213$ $0,00189$ $0,70736$ $0,2893$ Ag12218f $0,83589$ $0,80255$ $0,70594$ $0,0578$ Ag12318f $0,76400$ $0,13220$ $0,27600$ $0,0500$ Ag12418f $0,53630$ $0,07220$ $0,60890$ $0,0500$ Ag12518f $0,44360$ $0,13760$ $0,19030$ $0,0500$ Ag12618f $0,53420$ $0,06710$ $0,10970$ $0,0500$ Ag12918f $0,78680$ $0,07210$ $0,36000$ $0,0500$ Ag13018f $0,45000$ $0,04490$ $0,18530$ $0,0500$ Ag12918f $0,61120$ $0,23310$ $0,01870$ $0,0500$ Ag13118f $0,36700$ $0,13200$ $0,27580$ $0,0500$ Ag13318f $0,36700$ $0,13200$ $0,27580$ $0,0500$	Ag115	10j 10£	0,83401	0,04348	0,19430	0,0271
Ag115 $18f$ $0,03799$ $0,08311$ $0,88215$ $0,0394$ Ag116 $18f$ $0,41344$ $0,16252$ $0,20875$ $0,0369$ Ag117 $18f$ $0,61887$ $0,49305$ $0,52978$ $0,0631$ Ag118 $18f$ $0,57541$ $0,99741$ $0,87462$ $0,0570$ Ag119 $18f$ $0,75702$ $0,13467$ $0,52897$ $0,0390$ Ag120 $18f$ $0,49574$ $0,07309$ $0,12562$ $0,0501$ Ag121 $18f$ $0,66213$ $0,00189$ $0,70736$ $0,2893$ Ag123 $18f$ $0,76400$ $0,13220$ $0,27600$ $0,0500$ Ag124 $18f$ $0,53630$ $0,07220$ $0,60890$ $0,0500$ Ag125 $18f$ $0,44360$ $0,13760$ $0,19030$ $0,0500$ Ag126 $18f$ $0,53420$ $0,06710$ $0,10970$ $0,0500$ Ag128 $18f$ $0,78680$ $0,07210$ $0,36000$ $0,0500$ Ag129 $18f$ $0,09600$ $0,04810$ $0,94220$ $0,0500$ Ag130 $18f$ $0,59990$ $0,04490$ $0,18530$ $0,0500$ Ag131 $18f$ $0,36700$ $0,13200$ $0,27580$ $0,0500$ Ag133 $18f$ $0,36700$ $0,13200$ $0,27580$ $0,0500$	Ag114	10j	0,40134	0,10047	0,19032	0,0274
Ag116 $18f$ $0,41344$ $0,16232$ $0,20875$ $0,0569$ Ag117 $18f$ $0,61887$ $0,49305$ $0,52978$ $0,0631$ Ag118 $18f$ $0,57541$ $0,99741$ $0,87462$ $0,0570$ Ag119 $18f$ $0,75702$ $0,13467$ $0,52897$ $0,0390$ Ag120 $18f$ $0,49574$ $0,07309$ $0,12562$ $0,0501$ Ag121 $18f$ $0,66213$ $0,00189$ $0,70736$ $0,2893$ Ag122 $18f$ $0,83589$ $0,80255$ $0,70594$ $0,0578$ Ag123 $18f$ $0,76400$ $0,13220$ $0,27600$ $0,0500$ Ag124 $18f$ $0,53630$ $0,07220$ $0,60890$ $0,0500$ Ag125 $18f$ $0,44360$ $0,13760$ $0,19030$ $0,0500$ Ag126 $18f$ $0,53420$ $0,06710$ $0,10970$ $0,0500$ Ag128 $18f$ $0,78680$ $0,07210$ $0,36000$ $0,0500$ Ag129 $18f$ $0,09600$ $0,04810$ $0,94220$ $0,0500$ Ag130 $18f$ $0,59990$ $0,04490$ $0,18530$ $0,0500$ Ag131 $18f$ $0,36700$ $0,13200$ $0,27580$ $0,0500$ Ag133 $18f$ $0,36700$ $0,13200$ $0,27580$ $0,0500$	Agiis	10/	0,03799	0,08511	0,80213	0,0394
Ag117180,618870,493030,329780,0631Ag11818f0,575410,997410,874620,0570Ag11918f0,757020,134670,528970,0390Ag12018f0,495740,073090,125620,0501Ag12118f0,662130,001890,707360,2893Ag12218f0,835890,802550,705940,0578Ag12318f0,764000,132200,276000,0500Ag12418f0,536300,072200,608900,0500Ag12518f0,443600,137600,190300,0500Ag12618f0,534200,067100,109700,0500Ag12818f0,786800,072100,360000,0500Ag12918f0,450000,048100,942200,0500Ag13118f0,599900,044900,185300,0500Ag13218f0,611200,233100,018700,0500Ag13318f0,367000,132000,275800,0500Ag13418f0,034300,067000,109800,0500	Ag110	10j 10£	0,41344	0,10232	0,20873	0,0309
Ag11818f0,373410,997410,874620,0370Ag11918f0,757020,134670,528970,0390Ag12018f0,495740,073090,125620,0501Ag12118f0,662130,001890,707360,2893Ag12218f0,835890,802550,705940,0578Ag12318f0,764000,132200,276000,0500Ag12418f0,536300,072200,608900,0500Ag12518f0,443600,137600,190300,0500Ag12618f0,534200,067100,109700,0500Ag12818f0,786800,072100,360000,0500Ag12918f0,996000,048100,942200,0500Ag13118f0,599900,044900,185300,0500Ag13218f0,611200,233100,018700,0500Ag13318f0,367000,132000,275800,0500Ag13418f0,034300,067000,109800,0500	Ag11/	10j	0,01887	0,49303	0,32978	0,0051
Ag119 $18f$ $0,73702$ $0,13467$ $0,32897$ $0,0390$ Ag120 $18f$ $0,49574$ $0,07309$ $0,12562$ $0,0501$ Ag121 $18f$ $0,66213$ $0,00189$ $0,70736$ $0,2893$ Ag122 $18f$ $0,83589$ $0,80255$ $0,70594$ $0,0578$ Ag123 $18f$ $0,76400$ $0,13220$ $0,27600$ $0,0500$ Ag124 $18f$ $0,53630$ $0,07220$ $0,60890$ $0,0500$ Ag125 $18f$ $0,44360$ $0,13760$ $0,19030$ $0,0500$ Ag126 $18f$ $0,53420$ $0,06710$ $0,10970$ $0,0500$ Ag127 $18f$ $0,61240$ $0,47460$ $0,52340$ $0,0500$ Ag128 $18f$ $0,78680$ $0,07210$ $0,36000$ $0,0500$ Ag130 $18f$ $0,45000$ $0,04810$ $0,94220$ $0,0500$ Ag131 $18f$ $0,59990$ $0,04490$ $0,18530$ $0,0500$ Ag133 $18f$ $0,36700$ $0,13200$ $0,27580$ $0,0500$ Ag134 $18f$ $0,03430$ $0,06700$ $0,10980$ $0,0500$	Ag110	10j 10£	0,37341	0,99741	0,87402	0,0370
Ag120 $18f$ $0,49374$ $0,07309$ $0,12302$ $0,0301$ Ag121 $18f$ $0,66213$ $0,00189$ $0,70736$ $0,2893$ Ag122 $18f$ $0,83589$ $0,80255$ $0,70594$ $0,0578$ Ag123 $18f$ $0,76400$ $0,13220$ $0,27600$ $0,0500$ Ag124 $18f$ $0,53630$ $0,07220$ $0,60890$ $0,0500$ Ag125 $18f$ $0,44360$ $0,13760$ $0,19030$ $0,0500$ Ag126 $18f$ $0,53420$ $0,06710$ $0,10970$ $0,0500$ Ag127 $18f$ $0,61240$ $0,47460$ $0,52340$ $0,0500$ Ag128 $18f$ $0,78680$ $0,07210$ $0,36000$ $0,0500$ Ag130 $18f$ $0,45000$ $0,04810$ $0,94220$ $0,0500$ Ag131 $18f$ $0,59990$ $0,04490$ $0,18530$ $0,0500$ Ag132 $18f$ $0,61120$ $0,23310$ $0,01870$ $0,0500$ Ag133 $18f$ $0,36700$ $0,13200$ $0,27580$ $0,0500$ Ag134 $18f$ $0,03430$ $0,06700$ $0,10980$ $0,0500$	Ag119	10j 10£	0,73702	0,13407	0,32897	0,0390
Ag12118f0,662130,001890,707360,2893Ag12218f0,835890,802550,705940,0578Ag12318f0,764000,132200,276000,0500Ag12418f0,536300,072200,608900,0500Ag12518f0,443600,137600,190300,0500Ag12618f0,534200,067100,109700,0500Ag12718f0,612400,474600,523400,0500Ag12818f0,786800,072100,360000,0500Ag13018f0,450000,048100,942200,0500Ag13118f0,599900,044900,185300,0500Ag13318f0,367000,132000,275800,0500Ag13418f0,034300,067000,109800,0500	Ag120	18J	0,49574	0,07309	0,12562	0,0501
Ag12218f $0,83589$ $0,80255$ $0,70594$ $0,0578$ Ag12318f $0,76400$ $0,13220$ $0,27600$ $0,0500$ Ag12418f $0,53630$ $0,07220$ $0,60890$ $0,0500$ Ag12518f $0,44360$ $0,13760$ $0,19030$ $0,0500$ Ag12618f $0,53420$ $0,06710$ $0,10970$ $0,0500$ Ag12718f $0,61240$ $0,47460$ $0,52340$ $0,0500$ Ag12818f $0,78680$ $0,07210$ $0,36000$ $0,0500$ Ag12918f $0,09600$ $0,04810$ $0,94220$ $0,0500$ Ag13018f $0,45000$ $0,04920$ $0,44260$ $0,0500$ Ag13118f $0,59990$ $0,04490$ $0,18530$ $0,0500$ Ag13318f $0,36700$ $0,13200$ $0,27580$ $0,0500$ Ag13418f $0,03430$ $0,06700$ $0,10980$ $0,0500$	Ag121	18f	0,66213	0,00189	0,70736	0,2893
Ag12318f0,764000,132200,276000,0500Ag12418f0,536300,072200,608900,0500Ag12518f0,443600,137600,190300,0500Ag12618f0,534200,067100,109700,0500Ag12718f0,612400,474600,523400,0500Ag12818f0,786800,072100,360000,0500Ag12918f0,096000,048100,942200,0500Ag13018f0,450000,049200,442600,0500Ag13118f0,599900,044900,185300,0500Ag13318f0,367000,132000,275800,0500Ag13418f0,034300,067000,109800,0500	Ag122	18f	0,83589	0,80255	0,70594	0,0578
Ag12418f $0,53630$ $0,07220$ $0,60890$ $0,0500$ Ag12518f $0,44360$ $0,13760$ $0,19030$ $0,0500$ Ag12618f $0,53420$ $0,06710$ $0,10970$ $0,0500$ Ag12718f $0,61240$ $0,47460$ $0,52340$ $0,0500$ Ag12818f $0,78680$ $0,07210$ $0,36000$ $0,0500$ Ag12918f $0,09600$ $0,04810$ $0,94220$ $0,0500$ Ag13018f $0,45000$ $0,04920$ $0,44260$ $0,0500$ Ag13118f $0,59990$ $0,04490$ $0,18530$ $0,0500$ Ag13218f $0,61120$ $0,23310$ $0,01870$ $0,0500$ Ag13318f $0,36700$ $0,13200$ $0,27580$ $0,0500$ Ag13418f $0,03430$ $0,06700$ $0,10980$ $0,0500$	Ag123	18f	0,76400	0,13220	0,27600	0,0500
Ag12518f $0,44380$ $0,13760$ $0,19030$ $0,0500$ Ag12618f $0,53420$ $0,06710$ $0,10970$ $0,0500$ Ag12718f $0,61240$ $0,47460$ $0,52340$ $0,0500$ Ag12818f $0,78680$ $0,07210$ $0,36000$ $0,0500$ Ag12918f $0,09600$ $0,04810$ $0,94220$ $0,0500$ Ag13018f $0,45000$ $0,04920$ $0,44260$ $0,0500$ Ag13118f $0,59990$ $0,04490$ $0,18530$ $0,0500$ Ag13218f $0,61120$ $0,23310$ $0,01870$ $0,0500$ Ag13318f $0,36700$ $0,13200$ $0,27580$ $0,0500$ Ag13418f $0,03430$ $0,06700$ $0,10980$ $0,0500$	Ag124	18f	0,53630	0,07220	0,60890	0,0500
Ag12618f0,534200,067100,109700,0500Ag12718f0,612400,474600,523400,0500Ag12818f0,786800,072100,360000,0500Ag12918f0,096000,048100,942200,0500Ag13018f0,450000,049200,442600,0500Ag13118f0,599900,044900,185300,0500Ag13218f0,611200,233100,018700,0500Ag13318f0,367000,132000,275800,0500Ag13418f0,034300,067000,109800,0500	Ag125	18f	0,44360	0,13760	0,19030	0,0500
Ag12718f0,612400,474600,523400,0500Ag12818f0,786800,072100,360000,0500Ag12918f0,096000,048100,942200,0500Ag13018f0,450000,049200,442600,0500Ag13118f0,599900,044900,185300,0500Ag13218f0,611200,233100,018700,0500Ag13318f0,367000,132000,275800,0500Ag13418f0,034300,067000,109800,0500	Ag126	18f	0,53420	0,06/10	0,10970	0,0500
Ag12818f0,786800,072100,360000,0500Ag12918f0,096000,048100,942200,0500Ag13018f0,450000,049200,442600,0500Ag13118f0,599900,044900,185300,0500Ag13218f0,611200,233100,018700,0500Ag13318f0,367000,132000,275800,0500Ag13418f0,034300,067000,109800,0500	Ag129	18f	0,01240	0,47460	0,52340	0,0500
Ag12918f0,096000,048100,942200,0500Ag13018f0,450000,049200,442600,0500Ag13118f0,599900,044900,185300,0500Ag13218f0,611200,233100,018700,0500Ag13318f0,367000,132000,275800,0500Ag13418f0,034300,067000,109800,0500	Ag128	18f	0,78680	0,07210	0,36000	0,0500
Ag13018f0,450000,049200,442600,0500Ag13118f0,599900,044900,185300,0500Ag13218f0,611200,233100,018700,0500Ag13318f0,367000,132000,275800,0500Ag13418f0,034300,067000,109800,0500	Ag129	18f	0,09600	0,04810	0,94220	0,0500
Ag13118f0,599900,044900,185300,0500Ag13218f0,611200,233100,018700,0500Ag13318f0,367000,132000,275800,0500Ag13418f0,034300,067000,109800,0500	Ag130	18f	0,45000	0,04920	0,44260	0,0500
Ag13218f0,611200,233100,018700,0500Ag13318f0,367000,132000,275800,0500Ag13418f0,034300,067000,109800,0500	Ag131	18f	0,59990	0,04490	0,18530	0,0500
Ag13318f0,367000,132000,275800,0500Ag13418f0,034300,067000,109800,0500	Ag132	18f	0,61120	0,23310	0,01870	0,0500
Ag134 18f 0,03430 0,06700 0,10980 0,0500	Ag133	18f	0,36700	0,13200	0,27580	0,0500
	Ag134	18 <i>f</i>	0,03430	0,06700	0,10980	0,0500

Ag135	18 <i>f</i>	0,02960	0,06570	0,35230	0,0500
Ag136	18 <i>f</i>	0,78400	0,06690	0,60950	0,0500
Ag137	18 <i>f</i>	0,76820	0,12910	0,51830	0,0500
Ag138	18 <i>f</i>	0,55050	0,10110	0,55700	0,0500
Ag139	18 <i>f</i>	0,28640	0,31680	0,85130	0,0500
PĨ	6 <i>c</i>	0,00000	0.00000	0.72531	0.0000
S1	6 <i>c</i>	0.00000	0.00000	0.71013	0.0000
S2	18 <i>f</i>	0.03342	0.07215	0.73117	0.0021
P2	18 <i>f</i>	0 75393	0.00352	0 72527	0,0000
S 3	18 <i>f</i>	0 59562	0.04601	0.06404	0,0000
S4	18 <i>f</i>	0.69988	0 15785	0.06521	0,0000
S5	18 <i>f</i>	0 28587	0 32357	0.73116	0,0000
S6	18 <i>f</i>	0 74890	0.99331	0 70974	0,0000
P3	18 <i>f</i>	0 50240	0.99878	0 72449	0,0000
S7	18 <i>f</i>	0,76282	0,13250	0 39747	0,0000
S8	18 <i>f</i>	0,70202	0.07463	0,73134	0,0000
S9	18 <i>f</i>	0,43063	0,07105	0,73151	0,0000
S10	18 <i>f</i>	0,49804	0,00518	0,75151	0,0000
D/	18 <i>f</i>	0,42004	0,00510	0,71022	0,0251
S11	18 <i>f</i>	0,91675	0,08121	0,03300	0,0000
S11 S12	10j 18f	0,91023	0,08037	0,04321	0,0000
S12 S12	101	0,93138	0,13422	0,00391	0,0000
S15 S14	10/	0,04340	0,04079	0,00433	0,0021
514 D5	10j 10£	0,09187	0,04075	0,00477	0,0000
F3 S15	10/	0,08785	0,10555	0,39227	0,0000
S15 S16	18J	0,55108	0,52091	0,73030	0,0000
510	185	0,07894	0,10007	0,37030	0,0000
S1/	18 <i>f</i>	0,54017	0,21/86	0,73221	0,0000
518	18f	0,78867	0,21140	0,73086	0,0000
P6	18f	0,41014	0,07922	0,10829	0,0000
S19	18 <i>f</i>	0,3/5/6	0,00956	0,10243	0,0000
S20	18 <i>f</i>	0,42211	0,08610	0,12313	0,0252
S21	18 <i>f</i>	0,38096	0,12409	0,10245	0,0000
S22	18 <i>f</i>	0,48954	0,11768	0,10160	0,0000
P/	18 <i>f</i>	0,49771	0,99942	0,77572	0,0000
S23	18 <i>f</i>	0,51036	0,00931	0,78962	0,0348
S24	18 <i>f</i>	0,79859	0,59870	0,43644	0,0000
S25	18 <i>f</i>	0,46297	0,03706	0,76943	0,0009
S26	18 <i>f</i>	0,79681	0,09386	0,43583	0,0029
P8	18 <i>f</i>	0,24722	0,99924	0,27430	0,0037
S27	18 <i>f</i>	0,44884	0,15479	0,06437	0,0000
S28	18 <i>f</i>	0,45305	0,04748	0,06501	0,0005
S29	18 <i>f</i>	0,32287	0,03632	0,26897	0,0000
S30	18 <i>f</i>	0,25241	0,00122	0,29101	0,0022
P9	18 <i>f</i>	0,08944	0,16862	0,44115	0,0000
S31	18 <i>f</i>	0,15661	0,20038	0,43564	0,0002
S32	18 <i>f</i>	0,08717	0,17495	0,45682	0,0018
S33	18 <i>f</i>	0,57407	0,29078	0,76840	0,0000
S34	18 <i>f</i>	0,46117	0,17627	0,76868	0,0000
P10	18 <i>f</i>	0,91975	0,08915	0,10817	0,0000
S35	18 <i>f</i>	0,12968	0,01077	0,10230	0,0000
S36	1 <i>8f</i>	0,54525	0,09462	0,43520	0,0060
S37	1 <i>8f</i>	0,12878	0,12003	0,10150	0,0000
S38	18 <i>f</i>	0,91163	0,07502	0,12440	0,0000
P11	6 <i>c</i>	0,00000	0,00000	0,02314	0,0071
S39	6 <i>c</i>	0,00000	0,00000	0,03948	0,0017
S40	18 <i>f</i>	0,71151	0,29534	0,31403	0,0000
P12	18 <i>f</i>	0,25016	0,74720	0,02306	0,0000

S41	1 <i>8f</i>	0,92014	0,08890	0,37340	0,0000
S42	18 <i>f</i>	0,78550	0,20740	0,98177	0,0000
S43	18f	0,12236	0,99484	0,64849	0,0000
S44	18 <i>f</i>	0,12093	0,12751	0,64778	0,0000
P13	18f	0,75150	0,49708	0,02288	0,0000
S45	18f	0,08656	0,16884	0,70671	0,0000
S46	18 <i>f</i>	0,08786	0,04719	0,31539	0,0000
S47	18 <i>f</i>	0,83641	0,04176	0,31448	0,0000
S48	18 <i>f</i>	0,20363	0,04368	0,31459	0,0000
P14	18 <i>f</i>	0,66404	0,08412	0,10843	0,0000
S49	18 <i>f</i>	0,74355	0,12154	0,10122	0,0000
S50	18 <i>f</i>	0,63197	0,12088	0,10237	0,0000
S51	18 <i>f</i>	0,62903	0,01400	0,10243	0,0000
S52	18 <i>f</i>	0,67157	0,08290	0,12405	0,0000
P15	6 <i>c</i>	0,00000	0,00000	0,77459	0,0000
S53	6 <i>c</i>	0,00000	0,00000	0,79162	0,0000
S54	18 <i>f</i>	0,07164	0,03824	0,76929	0,0000
P16	18 <i>f</i>	0,75096	0,99723	0,97711	0,0000
S56	18f	0.75548	0.00449	0.03987	0.0000
S57	18f	0.70870	0.16372	0.31578	0.0000
S58	18f	0.79144	0.07792	0.98226	0.0000
S59	18f	0.29315	0.32901	0.98222	0.0000
P17	18f	0.41670	0.08275	0.30941	0.0000
S60	18f	0.25574	0.00104	0.04102	0.0000
S61	18f	0 45379	0.04199	0 31585	0,0000
S62	18f	0.45952	0.16032	0.31539	0.0000
S63	18f	0 37559	0 99417	0 64916	0,0022
P18	18 <i>f</i>	0 16581	0.08589	0.85725	0,0042
S64	18 <i>f</i>	0 12732	0 12254	0.85124	0,0000
S65	18 <i>f</i>	0 24663	0 12542	0 85094	0,0000
S67	18 <i>f</i>	0 99396	0 12623	0.85216	0,0000
S68	18 <i>f</i>	0 16533	0.09037	0.87433	0,0000
P19	18 <i>f</i>	0 25074	0 99892	0 47625	0,0000
S69	18 <i>f</i>	0 29302	0.08106	0 48161	0,0000
S70	18 <i>f</i>	0.29056	0.96160	0.48111	0.0000
S71	18 <i>f</i>	0 45277	0 16078	0.81395	0,0000
S72	18 <i>f</i>	0 24563	0 99765	0 45979	0,0000
P20	18 <i>f</i>	0 33131	0 16732	0.64335	0,0000
S73	18 <i>f</i>	0,49550	0 99454	0.04042	0,0000
S74	18 <i>f</i>	0 20792	0 29238	0 31522	0,0010
S75	18 <i>f</i>	0 37477	0,12990	0.64865	0,0000
S76	18 <i>f</i>	0 54274	0 07976	0 98261	0,0000
P21	18 <i>f</i>	0 74959	0 24761	0 52382	0,0000
S77	18 <i>f</i>	0 20254	0.04168	0.81486	0,0000
S78	18 <i>f</i>	0 71436	0 17315	0 51817	0,0000
S79	18 <i>f</i>	0.41902	0 71148	0.48219	0,0000
S80	18 <i>f</i>	0,75190	0 24961	0 54093	0,0009
P22	18 <i>f</i>	0 24775	0 24729	0 52474	0,0000
S81	18 <i>f</i>	0.67058	0.08254	0.87485	0,0000
S82	18f	0.28756	0.32403	0.48093	0.0000
S83	18f	0.21127	0.17152	0.51869	0.0000
S84	18f	0 79327	0 07940	0 48209	0,0000
P23	6c	0,00000	0,00000	0 47673	0,0000
S85	18 <i>f</i>	0.08107	0.04302	0.51726	0,0000
S86	6c	0,00000	0,00000	0 45893	0,0000
P24	18 <i>f</i>	0 49951	0 99948	0 47627	0,0000
S87	18 <i>f</i>	0 50374	0 99666	0 45980	0,0000
507	10j	0,0007	0,77000	0,70700	0,0000

214				9. Anhang	A: Kristallographische Daten
S88	18f	0,45981	0,03997	0,51842	0,0000
S89	18f	0,54390	0,46474	0,48120	0,0000
S90	1 <i>8f</i>	0,53923	0,95701	0,48366	0,0000

10 Anhang B: Pulverdiffraktogramme

h	k	1	d_{obs}	d_{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2\Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
1	1	0	5,928	5,925	14,93	14,94	0,01686	0,01688	9	3
1	0	-1	5,658	5,676	15,65	15,6	0,01852	0,01840	10	5
1	0	1	5,490	5,490	16,13	16,13	0,01967	0,01966	10	6
0	1	-1	5,056	5,058	17,53	17,52	0,02319	0,02317	10	7
2	0	0	4,820	4,823	18,39	18,38	0,02551	0,02548	8	3
1	1	-1	4,526	4,528	19,60	19,59	0,02894	0,02891	7	2
1	1	1	4,428	4,431	20,04	20,02	0,03023	0,03018	8	2
2	1	0	4,057	4,059	21,89	21,88	0,03602	0,03598	10	5
0	2	0	3,758	3,754	23,66	23,68	0,04198	0,04206	8	3
2	1	-1	3,531	3,537	25,20	25,16	0,04755	0,04739	8	5
0	0	-2	3,410	3,420	26,11	26,03	0,05097	0,05067	8	1
0	2	-1	3,291	3,291	27,07	27,07	0,05474	0,05472	24	29
1	2	-1	3,130	3,131	28,49	28,48	0,06050	0,06045	32	30
1	2	1	3,102	3,106	28,75	28,72	0,06159	0,06145	52	32
1	1	-2	2,985	2,991	29,91	29,85	0,06653	0,06627	35	35
2	2	0	2,962	2,963	30,15	30,14	0,06758	0,06753	100	100
1	1	2	2,930	2,935	30,48	30,43	0,06904	0,06881	46	57
3	0	1	2,865	2,872	31,20	31,12	0,07223	0,07189	20	25
2	0	-2	2,831	2,839	31,58	31,49	0,07397	0,07356	12	9
2	0	2	2,741	2,744	32,64	32,61	0,07890	0,07874	70	40
2	2	1	2,696	2,697	33,20	33,19	0,08154	0,08149	15	16
3	1	1	2,679	2,682	33,42	33,38	0,08257	0,08240	23	21
2	1	-2	2,650	2,655	33,79	33,73	0,08440	0,08409	15	16
2	1	2	2,572	2,578	34,85	34,77	0,08957	0,08919	20	25
0	2	-2	2,525	2,528	35,52	35,48	0,09295	0,09275	13	13
1	2	-2	2,458	2,462	36,53	36,47	0,09811	0,09782	19	17
3	2	0	2,442	2,442	36,77	36,77	0,09940	0,09938	16	15
4	0	0	2,409	2,412	37,30	37,25	0,10216	0,10190	15	18
0	3	-1	2,351	2,350	38,26	38,27	0,10728	0,10734	22	29
3	2	1	2,277	2,281	39,55	39,48	0,11435	0,11397	11	7
1	0	3	2,199	2,202	41,01	40,96	0,12257	0,12230	6	2
1	1	-3	2,140	2,146	42,20	42,07	0,12944	0,12871	7	5
2	3	1	2,106	2,103	42,91	42,98	0,13368	0,13407	9	4
2	1	-3	2,010	2,014	45,07	44,97	0,14674	0,14612	14	12
2	1	3	1,960	1,965	46,28	46,15	0,15426	0,15347	16	15
1	2	-3	1,920	1,922	47,32	47,26	0,16086	0,16051	5	3

 Tabelle B1: Pulverdiffraktogramm von Ca2P2Se6

2	3	-2	1,876	1,877	48,48	48,46	0,16841	0,16827	7	5
3	1	-3	1,832	1,835	49,73	49,65	0,17664	0,17611	11	9
0	4	-1	1,811	1,810	50,35	50,38	0,18077	0,18098	15	15
1	4	-1	1,784	1,782	51,17	51,22	0,18631	0,18666	9	5
3	1	3	1,774	1,778	51,46	51,36	0,18826	0,18761	9	7
3	3	-2	1,726	1,727	53,00	52,99	0,19888	0,19884	18	19
0	0	-4	1,708	1,710	53,62	53,54	0,20323	0,20268	10	5
3	3	2	1,693	1,694	54,14	54,08	0,20692	0,20648	18	15
0	3	-3	1,685	1,685	54,39	54,39	0,20870	0,20867	20	16
5	2	-1	1,676	1,677	54,73	54,69	0,21105	0,21080	14	15
5	1	2	1,664	1,664	55,16	55,14	0,21412	0,21401	21	12
5	2	1	1,651	1,652	55,63	55,58	0,21754	0,21717	11	9
4	1	-3	1,644	1,646	55,88	55,8	0,21930	0,21875	12	6
3	4	0	1,621	1,621	56,74	56,75	0,22554	0,22564	10	11
5	1	2	1,615	1,617	56,96	56,91	0,22714	0,22681	9	8
6	0	0	1,606	1,608	57,32	57,25	0,22978	0,22930	11	10
2	3	3	1,577	1,580	58,46	58,36	0,23823	0,23749	6	4
2	1	4	1,557	1,559	59,31	59,2	0,24460	0,24375	6	5
5	2	2	1,513	1,515	61,20	61,13	0,25888	0,25835	7	5
2	2	-4	1,493	1,495	62,11	62,01	0,26590	0,26510	6	4
2	2	4	1,467	1,467	63,34	63,33	0,27538	0,27532	9	5
5	1	3	1,420	1,422	65,68	65,62	0,29384	0,29334	6	6
2	5	-1	1,407	1,406	66,38	66,44	0,29942	0,29988	7	6
2	5	1	1,402	1,400	66,68	66,75	0,30179	0,30236	9	8
1	5	-2	1,364	1,364	68,74	68,78	0,31840	0,31874	7	4
5	4	0	1,345	1,345	69,89	69,86	0,32781	0,32755	8	5
monoklin P: $a = 9,661(4) \text{ Å}$ $\beta = 92,04(4)^{\circ}$				b =	7,513(4)	Å c=	= 6,851(4) Å	1		

h	k	1	d_{obs}	d_{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2\Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
1	1	0	6,089	6,087	14,54	14,54	0,01599	0,01600	36	3
1	0	-1	5,722	5,723	15,47	15,47	0,01811	0,01810	39	15
0	1	-1	5,171	5,181	17,13	17,1	0,02217	0,02208	39	21
2	0	0	4,899	4,881	18,09	18,16	0,02469	0,02488	38	20
1	1	-1	4,601	4,609	19,28	19,24	0,02800	0,02790	42	18
1	1	1	4,531	4,544	19,58	19,52	0,02887	0,02871	49	37
1	2	0	3,608	3,616	24,66	24,6	0,04554	0,04534	62	59
0	0	-2	3,459	3,473	25,74	25,63	0,04954	0,04915	34	14
0	2	-1	3,386	3,395	26,30	26,23	0,05169	0,05144	36	11
1	2	-1	3,214	3,218	27,74	27,7	0,05739	0,05725	39	16
1	2	1	3,187	3,195	27,97	27,9	0,05834	0,05806	36	13
0	1	-2	3,155	3,171	28,27	28,12	0,05956	0,05896	38	13
2	2	0	3,038	3,043	29,38	29,33	0,06422	0,06403	100	100
1	1	2	2,982	2,998	29,94	29,78	0,06664	0,06597	74	59
3	0	-1	2,918	2,920	30,61	30,59	0,06961	0,06952	29	6
2	0	-2	2,856	2,861	31,30	31,24	0,07268	0,07243	49	38
2	0	2	2,790	2,799	32,05	31,95	0,07612	0,07567	69	45
3	1	-1	2,782	2,778	32,15	32,2	0,07661	0,07683	83	60
3	1	1	2,730	2,734	32,78	32,73	0,07952	0,07931	50	39
2	1	-2	2,679	2,685	33,42	33,34	0,08257	0,08221	42	26
2	1	2	2,624	2,634	34,14	34,01	0,08606	0,08545	49	34
0	2	-2	2,581	2,591	34,73	34,59	0,08896	0,08830	43	22
1	3	0	2,507	2,507	35,79	35,78	0,09430	0,09427	54	44
3	2	0	2,494	2,496	35,98	35,95	0,09527	0,09514	58	49
4	0	0	2,443	2,440	36,76	36,8	0,09930	0,09954	56	49
0	3	-1	2,423	2,431	37,07	36,95	0,10097	0,10032	52	40
1	3	1	2,346	2,354	38,33	38,2	0,10769	0,10697	39	22
3	2	1	2,327	2,336	38,66	38,51	0,10944	0,10864	28	6
3	1	-2	2,295	2,296	39,23	39,21	0,11258	0,11247	29	8
3	1	2	2,240	2,247	40,23	40,1	0,11813	0,11743	27	5
4	1	-1	2,224	2,223	40,53	40,55	0,11987	0,11996	27	9
2	3	1	2,164	2,162	41,70	41,75	0,12653	0,12685	35	10
1	1	3	2,142	2,153	42,14	41,92	0,12914	0,12784	30	10
0	3	-2	2,071	2,078	43,68	43,51	0,13823	0,13724	36	17
2	1	-3	2,031	2,037	44,57	44,43	0,14363	0,14281	34	18
2	1	3	1,994	2,003	45,46	45,23	0,14912	0,14773	36	18
3	3	1	1,936	1,940	46,90	46,8	0,15818	0,15758	30	11
0	4	-1	1,867	1,870	48,73	48,65	0,17000	0,16951	35	9
2	2	-3	1,851	1,854	49,18	49,1	0,17297	0,17247	28	9

Tabelle B2: Pulverdiffraktogramm von Eu2P2Se6

1	4	-1	1,837	1,842	49,57	49,43	0,17559	0,17465	26	5	
2	2	3	1,822	1,829	50,02	49,8	0,17854	0,17710	23	5	
4	2	2	1,759	1,761	51,93	51,87	0,19151	0,19110	32	6	
3	3	2	1,741	1,741	52,51	52,53	0,19549	0,19564	29	6	
4	3	-1	1,729	1,729	52,91	52,91	0,19827	0,19828	28	8	
4	3	1	1,713	1,715	53,46	53,38	0,20208	0,20156	32	9	
5	2	-1	1,701	1,701	53,84	53,86	0,20481	0,20493	32	10	
5	1	-2	1,679	1,678	54,62	54,64	0,21027	0,21045	36	14	
4	1	-3	1,658	1,660	55,38	55,29	0,21572	0,21509	30	8	
5	1	2	1,645	1,647	55,85	55,78	0,21908	0,21861	30	8	
6	0	0	1,628	1,627	56,47	56,52	0,22359	0,22397	29	12	
5	2	-2	1,573	1,572	58,65	58,67	0,23963	0,23980	28	9	
5	2	2	1,544	1,546	59,86	59,76	0,24868	0,24796	32	13	
3	1	-4	1,515	1,516	61,14	61,08	0,25842	0,25797	29	4	
5	1	-3	1,483	1,482	62,61	62,62	0,26971	0,26981	32	10	
2	5	1	1,444	1,448	64,47	64,26	0,28428	0,28260	39	18	
5	4	0	1,376	1,378	68,06	67,96	0,31288	0,31209	30	8	
mo	nokli	n P:	a = 9,77	1(6) Å	b =	7,790(6)	Å c=	= 6,952(4) Å	ί.		_

$$\beta = 91,34(6)^{\circ}$$

h	k	1	d_{obs}	d_{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2\Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
1	1	0	6,274	6,254	14,11	14,15	0,01506	0,01516	36	3
1	0	-1	5,853	5,859	15,12	15,11	0,01730	0,01727	44	12
0	1	-1	5,227	5,242	16,95	16,9	0,02169	0,02157	33	4
2	0	0	5,141	5,169	17,23	17,14	0,02243	0,02218	32	4
1	1	1	4,653	4,655	19,06	19,05	0,02738	0,02736	38	11
1	2	0	3,668	3,670	24,24	24,23	0,04405	0,04400	73	42
0	0	-2	3,511	3,519	25,35	25,29	0,04808	0,04787	48	8
0	2	-1	3,437	3,428	25,90	25,97	0,05017	0,05044	35	9
1	2	1	3,251	3,248	27,41	27,44	0,05608	0,05620	41	3
0	1	-2	3,207	3,211	27,79	27,76	0,05762	0,05749	30	6
2	2	0	3,123	3,127	28,56	28,52	0,06078	0,06061	100	100
1	1	-2	3,077	2,978	29,00	29,98	0,06262	0,06683	40	17
1	1	2	3,057	3,055	29,19	29,21	0,06342	0,06352	58	28
2	0	-2	2,926	2,928	30,53	30,5	0,06924	0,06912	52	41
2	0	2	2,890	2,889	30,91	30,93	0,07095	0,07103	90	41
2	2	-1	2,861	2,867	31,24	31,17	0,07240	0,07211	56	17
2	1	-2	2,741	2,744	32,64	32,6	0,07888	0,07870	34	17
2	1	2	2,710	2,711	33,02	33,01	0,08069	0,08063	44	20
0	2	-2	2,618	2,620	34,22	34,19	0,08649	0,08633	73	37
4	0	0	2,589	2,585	34,61	34,67	0,08841	0,08869	84	47
1	2	2	2,538	2,534	35,33	35,4	0,09200	0,09235	46	12
0	3	-1	2,451	2,453	36,63	36,6	0,09863	0,09849	24	11
3	2	1	2,420	2,423	37,12	37,08	0,10124	0,10100	17	3
1	3	-1	2,385	2,387	37,68	37,65	0,10420	0,10402	24	7
3	1	-2	2,365	2,365	38,02	38,01	0,10598	0,10594	24	6
3	1	2	2,333	2,332	38,56	38,58	0,10890	0,10902	16	3
1	1	-3	2,205	2,203	40,90	40,94	0,12196	0,12218	19	3
1	1	3	2,189	2,190	41,21	41,19	0,12372	0,12362	17	3
0	3	-2	2,099	2,100	43,06	43,03	0,13454	0,13437	27	13
2	1	-3	2,070	2,072	43,68	43,65	0,13827	0,13808	27	5
2	1	3	2,050	2,050	44,14	44,13	0,14103	0,14098	21	5
3	3	1	1,993	1,994	45,47	45,45	0,14920	0,14909	19	5
5	0	1	1,978	1,976	45,84	45,88	0,15150	0,15177	19	4
1	4	0	1,926	1,929	47,14	47,08	0,15972	0,15936	21	10
4	2	-2	1,850	1,850	49,20	49,2	0,17315	0,17312	19	6
4	2	2	1,830	1,830	49,78	49,78	0,17696	0,17697	36	10
3	3	-2	1,800	1,800	50,66	50,66	0,18289	0,18287	22	3
4	3	-1	1,784	1,784	51,17	51,16	0,18631	0,18625	21	4
5	2	-1	1,776	1,777	51,41	51,39	0,18796	0,18781	24	4

Tabelle B3: Pulverdiffraktogramm von Ba2P2Se6

5	1	-2	1,749	1,749	52,27	52,25	0,19386	0,19371	25	7	
6	0	0	1,725	1,723	53,04	53,1	0,19918	0,19960	24	3	
0	1	-4	1,716	1,717	53,33	53,32	0,20123	0,20114	32	13	
1	1	-4	1,698	1,697	53,96	53,98	0,20562	0,20577	23	5	
1	1	4	1,690	1,689	54,24	54,25	0,20763	0,20768	27	7	
2	3	-3	1,660	1,660	55,30	55,28	0,21515	0,21502	19	4	
2	3	3	1,648	1,649	55,72	55,68	0,21819	0,21789	21	5	
5	2	-2	1,631	1,632	56,35	56,32	0,22276	0,22252	29	6	
5	2	2	1,615	1,615	56,98	56,98	0,22730	0,22732	19	8	
6	2	0	1,578	1,578	58,42	58,43	0,23792	0,23801	25	6	
3	3	-3	1,566	1,565	58,93	58,97	0,24175	0,24203	24	5	
3	1	-4	1,545	1,545	59,79	59,79	0,24819	0,24819	20	5	
3	4	-2	1,539	1,539	60,05	60,05	0,25018	0,25015	25	4	
4	4	-1	1,529	1,529	60,49	60,5	0,25344	0,25356	25	4	
5	1	3	1,511	1,511	61,29	61,29	0,25954	0,25957	19	3	
1	4	-3	1,492	1,492	62,14	62,18	0,26612	0,26641	16	3	
2	5	1	1,469	1,470	63,27	63,22	0,27482	0,27447	26	9	
1	3	-4	1,448	1,448	64,25	64,27	0,28255	0,28268	16	1	
4	1	-4	1,441	1,440	64,61	64,7	0,28532	0,28606	16	4	
5	4	0	1,423	1,424	65,54	65,5	0,29273	0,29239	35	8	
2	3	-4	1,410	1,410	66,23	66,25	0,29822	0,29836	16	4	
2	3	4	1,400	1,401	66,78	66,73	0,30262	0,30220	16	5	
7	2	0	1,383	1,383	67,68	67,71	0,30987	0,31008	19	4	
3	4	3	1,376	1,375	68,08	68,15	0,31306	0,31363	16	2	
7	2	1	1,353	1,353	69,38	69,39	0,32360	0,32371	18	2	
monoklin P: $a = 10,350(3) \text{ Å}$ $b = 7,859(3) \text{ Å}$ $\beta = 90,84(4)^{\circ}$							Å c=	= 7,043(2) Å			

h	k	1	d_{obs}	d_{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2\Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
0	0	-1	6,495	6,525	13,62	13,56	0,01405	0,01392	85	64
0	2	0	5,246	5,267	16,89	16,82	0,02154	0,02137	74	10
1	1	0	5,087	5,087	17,42	17,42	0,02290	0,02291	32	14
0	0	-2	3,250	3,262	27,42	27,32	0,05610	0,05572	22	52
1	3	0	2,996	3,005	29,80	29,71	0,06605	0,06566	52	28
2	0	0	2,907	2,905	30,73	30,75	0,07012	0,07023	53	11
1	3	1	2,578	2,586	34,78	34,66	0,08921	0,08864	69	100
1	1	2	2,480	2,475	36,19	36,26	0,09638	0,09673	12	6
1	3	-2	2,395	2,396	37,52	37,51	0,10331	0,10328	11	2
1	3	-3	1,889	1,902	48,12	47,78	0,16605	0,16385	17	18
3	3	-1	1,754	1,753	52,09	52,13	0,19259	0,19288	100	36
3	3	-2	1,691	1,690	54,20	54,23	0,20731	0,20754	15	2
1	3	3	1,640	1,648	56,02	55,72	0,22036	0,21818	20	12
3	3	-3	1,536	1,540	60,21	60,03	0,25137	0,25000	13	7
2	6	-1	1,513	1,514	61,19	61,15	0,25881	0,25850	14	3
2	6	0	1,503	1,502	61,66	61,7	0,26244	0,26272	10	2
4	0	0	1,457	1,453	63,83	64,05	0,27924	0,28095	18	6
monoklin C: $a = 6,075(6) \text{ Å}$ $\beta = 106.8(2)^{\circ}$					b =	10,54(3)	Å c=	= 6,82(1)Å		

Tabelle B4: Pulverdiffraktogramm von Mg2P2S6

Tabelle B5: Pulverdiffraktogramm	M	lg ₂ P	$_2S$	e	6
--	---	-------------------	-------	---	---

h	k	1	d_{obs}	d_{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2\Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
0	0	3	6,707	6,732	13,19	13,14	0,01318	0,01308	8	6
1	0	1	5,322	5,323	16,64	16,64	0,02093	0,02092	4	3
0	1	2	4,838	4,841	18,32	18,31	0,02532	0,02529	3	2
1	0	4	3,739	3,725	23,78	23,87	0,04240	0,04272	3	1
0	0	6	3,351	3,367	26,58	26,45	0,05278	0,05229	28	42
0	1	5	3,258	3,259	27,35	27,34	0,05584	0,05580	2	1
1	1	0	3,192	3,185	27,93	27,99	0,05819	0,05843	7	8
1	1	3	2,882	2,880	31,00	31,03	0,07135	0,07148	100	100
0	2	1	2,727	2,733	32,81	32,74	0,07970	0,07935	11	1
1	1	6	2,311	2,314	38,95	38,89	0,11103	0,11072	18	11
2	1	1	2,077	2,074	43,53	43,6	0,13734	0,13778	1	1
0	2	7	1,996	1,994	45,41	45,44	0,14883	0,14903	1	1
2	1	4	1,929	1,927	47,07	47,11	0,15926	0,15955	7	1
0	3	0	1,843	1,839	49,41	49,52	0,17450	0,17524	27	33

rhomboedrisch R (hexagonale Aufstellung): a = 6,376(7) Åc = 20,22(3) Å

h	k	1	d_{obs}	d_{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2\Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
0	0	3	6,644	6,642	13,32	13,32	0,01343	0,01344	57	22
1	0	4	3,698	3,672	24,04	24,22	0,04334	0,04397	19	1
0	0	6	3,310	3,320	26,91	26,83	0,05409	0,05377	59	21
1	1	0	3,112	3,137	28,66	28,43	0,06120	0,06024	24	1
1	1	3	2,837	2,836	31,51	31,52	0,07367	0,07370	100	100
1	0	7	2,520	2,521	35,59	35,58	0,09332	0,09326	11	2
1	1	6	2,281	2,280	39,47	39,49	0,11392	0,11402	33	16
0	3	0	1,811	1,811	50,34	50,34	0,18069	0,18071	46	30
0	3	3	1,750	1,747	52,24	52,31	0,19363	0,19412	12	1
0	1	11	1,721	1,718	53,17	53,28	0,20006	0,20086	14	1
0	0	12	1,660	1,660	55,28	55,29	0,21501	0,21509	17	5
0	3	6	1,591	1,590	57,93	57,95	0,23431	0,23445	17	6
2	2	3	1,527	1,527	60,58	60,61	0,25416	0,25439	18	2
2	2	6	1,421	1,418	65,65	65,8	0,29355	0,29477	9	3

Tabelle B6: Pulverdiffraktogramm von Zn₂P₂Se₆

rhomboedrisch R (hexagonale Aufstellung): a = 6,279(6) Åc = 19,94(2) Å

h	k	1	d_{obs}	d_{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2\Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
1	1	0	5,111	5,104	17,34	17,36	0,02269	0,02275	16	9
1	0	1	4,950	4,951	17,90	17,9	0,02419	0,02418	13	3
0	1	1	4,722	4,716	18,78	18,8	0,02658	0,02665	26	16
1	1	1	4,025	4,013	22,07	22,13	0,03659	0,03680	20	9
2	0	0	3,828	3,821	23,22	23,26	0,04045	0,04060	10	3
0	2	0	3,430	3,428	25,96	25,97	0,05038	0,05044	39	39
2	1	0	3,339	3,338	26,67	26,68	0,05316	0,05318	54	49
0	0	2	3,252	3,249	27,40	27,43	0,05604	0,05616	60	60
1	2	0	3,127	3,128	28,52	28,51	0,06063	0,06057	14	6
0	2	1	3,035	3,032	29,41	29,43	0,06436	0,06446	29	27
2	1	1	2,972	2,969	30,05	30,07	0,06713	0,06723	100	100
1	2	1	2,824	2,819	31,65	31,72	0,07431	0,07461	8	2
1	1	2	2,744	2,740	32,61	32,65	0,07875	0,07893	14	10
2	2	0	2,554	2,552	35,10	35,14	0,09084	0,09104	14	9
2	0	2	2,478	2,475	36,23	36,27	0,09657	0,09679	14	9
3	0	1	2,376	2,372	37,83	37,9	0,10500	0,10535	16	11
0	2	2	2,359	2,358	38,11	38,13	0,10650	0,10659	22	16
2	1	2	2,330	2,328	38,61	38,64	0,10921	0,10935	20	15
1	2	2	2,254	2,253	39,97	39,98	0,11669	0,11675	10	6
1	3	0	2,194	2,190	41,10	41,19	0,12310	0,12362	7	2
0	3	1	2,158	2,156	41,82	41,87	0,12726	0,12755	10	5
0	1	3	2,065	2,065	43,80	43,8	0,13896	0,13899	13	8
2	2	2	2,009	2,007	45,10	45,14	0,14690	0,14717	13	8
2	3	0	1,963	1,961	46,21	46,25	0,15386	0,15410	24	24
3	1	2	1,927	1,924	47,13	47,2	0,15966	0,16013	6	2
4	0	0	1,910	1,911	47,56	47,55	0,16243	0,16237	16	15
2	3	1	1,877	1,878	48,45	48,44	0,16820	0,16814	8	5
0	2	3	1,832	1,831	49,73	49,76	0,17666	0,17684	14	11
2	1	3	1,818	1,817	50,13	50,17	0,17928	0,17957	39	30
3	2	2	1,733	1,731	52,78	52,86	0,19737	0,19793	8	3
2	3	2	1,679	1,679	54,61	54,61	0,21020	0,21023	15	14
4	2	0	1,670	1,669	54,93	54,97	0,21254	0,21280	9	4
4	0	2	1,648	1,647	55,73	55,77	0,21825	0,21854	12	8
0	0	4	1,624	1,624	56,62	56,62	0,22468	0,22470	7	2
4	2	2	1,486	1,485	62,43	62,51	0,26831	0,26896	5	3
0	2	4	1,470	1,468	63,22	63,31	0,27444	0,27517	6	2
4	1	3	1,404	1,402	66,52	66,63	0,30052	0,30140	5	2
orth	rthorhombisch P: $a = 7,649(2)$ Å $b = 6,862(4)$ Å $c = 6,502(2)$ Å									

Tabelle B7: Pulverdiffraktogramm von Ag₃PS₄

h	k	1	d_{obs}	d _{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2\Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
0	-1	-1	5,683	5,701	15,58	15,53	0,01835	0,01824	24	38
1	1	0	4,797	4,810	18,48	18,43	0,02576	0,02562	60	100
0	-1	1	4,643	4,657	19,10	19,04	0,02750	0,02733	100	82
1	1	1	4,401	4,416	20,16	20,09	0,03061	0,03039	9	4
1	-1	0	4,005	4,019	22,18	22,1	0,03696	0,03670	16	23
0	0	-2	3,928	3,945	22,62	22,52	0,03842	0,03809	14	18
1	-1	1	3,408	3,424	26,13	26	0,05105	0,05055	7	4
0	-2	0	3,332	3,343	26,73	26,64	0,05339	0,05303	10	15
1	1	2	3,291	3,307	27,07	26,94	0,05473	0,05421	8	15
1	2	1	3,131	3,141	28,49	28,39	0,06047	0,06007	9	16
1	-1	-2	2,988	2,995	29,88	29,81	0,06638	0,06610	8	7
2	0	0	2,871	2,877	31,13	31,06	0,07193	0,07162	8	10
1	1	-2	2,841	2,847	31,46	31,4	0,07344	0,07315	11	13
1	2	-1	2,737	2,746	32,69	32,58	0,07914	0,07860	9	5
1	-1	2	2,674	2,665	33,49	33,6	0,08290	0,08346	9	15
0	-1	-3	2,647	2,635	33,84	33,99	0,08461	0,08535	12	11
0	0	-3	2,624	2,630	34,14	34,06	0,08608	0,08569	8	3
2	1	-1	2,591	2,592	34,59	34,57	0,08827	0,08820	5	6
2	-1	-1	2,416	2,419	37,18	37,14	0,10155	0,10132	11	13
2	2	0	2,400	2,406	37,44	37,35	0,10289	0,10243	9	12
1	0	-3	2,379	2,385	37,78	37,68	0,10470	0,10418	11	14
2	0	-2	2,316	2,317	38,86	38,84	0,11052	0,11044	14	11
0	-1	3	2,282	2,295	39,46	39,23	0,11387	0,11258	6	5
0	-3	-1	2,263	2,268	39,80	39,7	0,11575	0,11519	10	13
1	3	0	2,231	2,218	40,40	40,65	0,11909	0,12053	8	5
2	2	2	2,212	2,208	40,75	40,83	0,12112	0,12156	5	6
1	3	2	2,118	2,127	42,66	42,46	0,13218	0,13100	5	7
2	-2	0	2,005	2,009	45,18	45,08	0,14742	0,14680	5	7
1	-3	0	1,960	1,963	46,29	46,21	0,15437	0,15384	7	6
1	-3	-2	1,892	1,895	48,04	47,97	0,16554	0,16508	6	3
3	0	-1	1,861	1,861	48,91	48,91	0,17124	0,17122	7	5
3	2	1	1,804	1,811	50,54	50,34	0,18208	0,18071	5	6
1	1	-4	1,736	1,735	52,67	52,71	0,19659	0,19689	8	5
0	-4	0	1,667	1,672	55,04	54,87	0,21332	0,21208	5	6
1	-3	-4	1,529	1,532	60,49	60,36	0,25350	0,25249	5	3
2	-2	-4	1,496	1,497	61,99	61,92	0,26495	0,26441	4	2
trik	lin P:		a = 5,86	(1) Å	b =	6,954(8)	Å c =	= 8,071(8)Å		
			$\alpha = 7/8, 1$	(1)~	β=	8 ⁷ ,4(1)°	γ =	= 79,3(2)°		

 Tabelle B8:
 Pulverdiffraktogramm von AuPS₄

h	k	1	d_{obs}	d_{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2\Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
1	1	0	5,726	5,745	15,462	15,41	0,01808	0,01796	52	5
1	1	2	4,765	4,777	18,61	18,56	0,02611	0,02598	88	69
0	0	-4	4,303	4,320	20,63	20,54	0,03202	0,03175	31	3
1	1	-3	4,062	4,072	21,86	21,81	0,03592	0,03575	27	1
1	1	-4	3,444	3,457	25,85	25,75	0,04996	0,04960	99	72
3	1	0	3,338	3,345	26,68	26,63	0,05319	0,05299	100	100
0	2	0	3,296	3,302	27,03	26,98	0,05457	0,05436	54	48
1	1	5	2,959	2,958	30,18	30,19	0,06770	0,06775	24	1
0	0	-6	2,871	2,881	31,13	31,02	0,07192	0,07144	86	59
4	0	2	2,751	2,753	32,52	32,49	0,07830	0,07818	61	38
2	2	-2	2,723	2,727	32,87	32,81	0,07995	0,07969	88	81
1	1	6	2,569	2,572	34,90	34,85	0,08983	0,08959	33	9
4	0	-4	2,414	2,419	37,22	37,13	0,10176	0,10127	41	36
2	2	4	2,387	2,389	37,65	37,62	0,10401	0,10386	69	70
1	2	5	2,335	2,337	38,53	38,49	0,10875	0,10854	12	1
3	2	3	2,300	2,302	39,14	39,1	0,11208	0,11187	18	1
4	0	-5	2,221	2,232	40,59	40,38	0,12019	0,11900	14	1
3	1	6	2,177	2,178	41,45	41,42	0,12508	0,12494	36	16
5	1	-2	2,128	2,131	42,45	42,39	0,13093	0,13059	20	9
4	2	2	2,115	2,115	42,72	42,72	0,13251	0,13253	18	7
1	3	2	2,098	2,098	43,08	43,09	0,13469	0,13473	22	8
5	1	3	2,048	2,048	44,19	44,18	0,14135	0,14129	16	1
1	1	8	2,017	2,020	44,90	44,82	0,14567	0,14520	28	11
5	1	4	1,954	1,954	46,43	46,44	0,15522	0,15529	23	13
1	3	-4	1,934	1,935	46,95	46,92	0,15856	0,15834	25	11
3	3	0	1,915	1,914	47,45	47,45	0,16171	0,16173	23	12
4	0	7	1,878	1,878	48,42	48,43	0,16801	0,16807	10	1
0	3	-5	1,859	1,857	48,97	49,02	0,17160	0,17194	13	1
5	1	-6	1,747	1,750	52,33	52,22	0,19427	0,19350	12	3
2	2	-8	1,725	1,728	53,03	52,93	0,19912	0,19842	26	14
6	2	0	1,673	1,673	54,83	54,84	0,21179	0,21187	25	19
0	4	0	1,652	1,651	55,59	55,62	0,21724	0,21746	23	8
1	4	-1	1,627	1,627	56,50	56,5	0,22382	0,22382	13	1
6	0	6	1,606	1,605	57,32	57,35	0,22980	0,23003	12	2
3	3	-6	1,595	1,596	57,76	57,7	0,23307	0,23261	14	3
5	3	-2	1,575	1,574	58,56	58,61	0,23897	0,23935	13	3
2	4	-2	1,560	1,563	59,19	59,07	0,24369	0,24278	12	3
3	1	-10	1,541	1,538	59,96	60,1	0,24949	0,25053	13	4
0	2	-10	1,532	1,531	60,36	60,41	0,25252	0,25287	19	3

Tabelle B9: Pulverdiffraktogramm von α -Ba₃(PS₄)₂

7	1	-4	1,514	1,513	61,18	61,2	0,25873	0,25889	14	4	
5	3	4	1,500	1,498	61,81	61,88	0,26358	0,26410	12	4	
4	0	-10	1,487	1,489	62,40	62,29	0,26809	0,26726	15	3	
2	2	10	1,479	1,479	62,80	62,77	0,27117	0,27097	17	6	
6	2	-6	1,449	1,449	64,25	64,22	0,28250	0,28229	14	6	
6	2	6	1,445	1,444	64,42	64,49	0,28384	0,28441	16	5	
0	4	-6	1,433	1,432	65,05	65,07	0,28886	0,28898	16	5	
4	4	2	1,416	1,416	65,89	65,91	0,29546	0,29565	12	5	
2	0	-12	1,398	1,400	66,89	66,78	0,30350	0,30260	11	1	
8	0	4	1,378	1,377	67,95	68,04	0,31198	0,31274	12	3	
4	4	-4	1,364	1,364	68,75	68,79	0,31849	0,31882	14	6	
5	1	-10	1,361	1,361	68,97	68,93	0,32025	0,31996	13	1	
1	3	-10	1,352	1,351	69,44	69,54	0,32412	0,32494	11	2	
moi	nokli	n P:	a = 11,6 B = 90,2	49(3) Å 9(3)°	b =	6,609(2)	Å c=	= 17,296(5)	Å		
			p – 70,2	7(3)							

h	k	1	d _{obs}	d _{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2\Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
1	1	0	5,733	5,832	15,44	15,18	0,01803	0,01743	34	4
2	0	1	4,778	4,787	18,56	18,52	0,02596	0,02587	77	32
0	0	-2	4,308	4,343	20,60	20,43	0,03194	0,03142	20	2
1	1	2	3,449	3,479	25,81	25,58	0,04984	0,04896	68	59
3	1	0	3,322	3,337	26,81	26,69	0,05371	0,05322	100	100
3	1	1	3,101	3,111	28,76	28,67	0,06162	0,06124	13	1
0	0	-3	2,874	2,896	31,10	30,85	0,07177	0,07067	56	49
2	2	1	2,731	2,763	32,77	32,38	0,07948	0,07767	80	70
3	1	2	2,633	2,641	34,02	33,91	0,08550	0,08496	19	4
1	1	-3	2,572	2,596	34,86	34,52	0,08962	0,08795	31	13
4	0	2	2,395	2,394	37,52	37,54	0,10331	0,10343	68	29
3	1	3	2,175	2,183	41,48	41,33	0,12527	0,12442	33	11
5	1	1	2,112	2,112	42,78	42,79	0,13291	0,13295	22	7
2	2	-3	2,035	2,037	44,48	44,44	0,14311	0,14287	11	7
1	1	-4	2,020	2,029	44,84	44,63	0,14531	0,14403	20	3
5	1	-2	1,944	1,951	46,68	46,5	0,15680	0,15567	27	9
3	3	0	1,940	1,944	46,80	46,69	0,15754	0,15688	18	15
6	0	0	1,921	1,918	47,28	47,35	0,16064	0,16109	23	7
3	1	4	1,813	1,817	50,28	50,17	0,18033	0,17957	8	1
2	2	4	1,738	1,740	52,63	52,56	0,19634	0,19585	15	11
4	0	-4	1,727	1,737	52,97	52,64	0,19866	0,19640	20	5
6	2	0	1,664	1,669	55,14	54,98	0,21400	0,21287	25	18
1	1	5	1,660	1,664	55,29	55,15	0,21507	0,21408	17	2
2	4	1	1,598	1,595	57,63	57,77	0,23209	0,23312	12	2
7	1	-1	1,573	1,573	58,63	58,66	0,23953	0,23972	11	2
5	1	4	1,533	1,535	60,31	60,24	0,25214	0,25158	25	2
7	1	2	1,500	1,497	61,81	61,92	0,26355	0,26441	13	3
4	0	5	1,482	1,484	62,65	62,52	0,27001	0,26904	12	2
6	2	3	1,441	1,443	64,60	64,51	0,28530	0,28457	17	5
4	4	-1	1,438	1,438	64,79	64,76	0,28674	0,28654	12	5
8	0	1	1,419	1,418	65,78	65,79	0,29457	0,29469	9	2
7	1	3	1,398	1,396	66,85	66,96	0,30315	0,30404	10	1
8	0	-2	1,368	1,368	68,53	68,56	0,31673	0,31695	12	3
4	2	-5	1,364	1,364	68,75	68,78	0,31849	0,31874	9	1
5	1	5	1,354	1,356	69,35	69,25	0,32338	0,32257	9	1
moi	noklir	n C:	a = 11,52 $\beta = 90,3$	2(2) Å (2)°	b =	6,770(9)	Å c=	= 8,69(2)Å		

Tabelle B10: Pulverdiffraktogramm von β -Ba₃(PS₄)₂

h	k	1	d_{obs}	d_{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2\Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
2	0	-2	5,070	5,084	17,48	17,43	0,02306	0,02294	31	7
1	1	2	4,989	5,001	17,76	17,72	0,02381	0,02370	32	7
0	0	-4	4,505	4,514	19,69	19,65	0,02920	0,02909	30	8
1	1	-4	3,612	3,613	24,63	24,62	0,04544	0,04541	38	18
3	1	0	3,511	3,519	25,35	25,29	0,04808	0,04787	48	31
0	2	0	3,437	3,449	25,90	25,81	0,05017	0,04983	35	12
1	2	0	3,290	3,320	27,08	26,83	0,05475	0,05377	37	11
1	2	-1	3,251	3,266	27,41	27,28	0,05608	0,05556	41	3
2	1	4	3,207	3,212	27,79	27,75	0,05762	0,05745	30	10
1	2	2	3,123	3,115	28,56	28,63	0,06078	0,06107	32	6
4	0	0	3,057	3,068	29,19	29,08	0,06342	0,06297	58	16
0	0	-6	3,000	3,009	29,76	29,66	0,06587	0,06545	57	72
4	0	2	2,890	2,902	30,91	30,79	0,07095	0,07041	90	42
2	2	-2	2,848	2,854	31,39	31,32	0,07310	0,07279	90	100
4	1	1	2,769	2,768	32,30	32,31	0,07730	0,07734	87	3
4	0	-3	2,741	2,738	32,64	32,68	0,07888	0,07907	34	9
2	2	3	2,683	2,688	33,36	33,31	0,08232	0,08206	20	2
4	0	-4	2,538	2,542	35,33	35,28	0,09200	0,09174	46	37
2	2	4	2,496	2,500	35,96	35,89	0,09517	0,09483	44	70
1	2	5	2,451	2,443	36,63	36,76	0,09863	0,09933	24	2
3	2	-3	2,421	2,417	37,11	37,16	0,10116	0,10142	17	1
1	1	7	2,365	2,369	38,02	37,95	0,10598	0,10562	24	1
4	0	-5	2,336	2,343	38,50	38,39	0,10858	0,10799	19	3
2	2	5	2,303	2,308	39,08	38,99	0,11175	0,11126	20	2
3	1	6	2,277	2,283	39,55	39,44	0,11434	0,11374	16	8
1	3	2	2,189	2,190	41,21	41,15	0,12372	0,12356	17	2
4	2	3	2,139	2,140	42,21	42,19	0,12951	0,12941	16	3
1	1	8	2,110	2,111	42,83	42,79	0,13317	0,13307	16	4
5	1	4	2,050	2,055	44,14	44,03	0,14103	0,14038	21	5
1	3	-4	2,019	2,021	44,84	44,8	0,14535	0,14508	17	3
5	2	3	1,897	1,896	47,90	47,95	0,16465	0,16495	15	2
1	2	8	1,862	1,866	48,88	48,77	0,17100	0,17030	15	2
4	3	-1	1,830	1,831	49,78	49,76	0,17696	0,17684	36	2
2	2	-8	1,800	1,807	50,66	50,47	0,18289	0,18159	22	14
6	2	0	1,756	1,759	52,03	51,94	0,19221	0,19158	25	16
6	2	-2	1,727	1,728	52,97	52,95	0,19871	0,19856	23	4
0	4	-2	1,698	1,694	53,96	54,1	0,20562	0,20662	23	5
6	2	-3	1,690	1,690	54,24	54,23	0,20763	0,20754	27	1
4	0	9	1,673	1,676	54,82	54,72	0,21172	0,21102	19	2

 Tabelle B11: Pulverdiffraktogramm von Ba₃(PSe₄)₂

7	1	3	1,631	1,634	56,35	56,27	0,22276	0,22215	29	1	
0	4	-4	1,615	1,611	56,98	57,13	0,22730	0,22842	19	6	
7	1	-4	1,592	1,592	57,89	57,87	0,23402	0,23386	23	1	
2	0	11	1,585	1,584	58,15	58,19	0,23596	0,23623	18	2	
4	3	6	1,566	1,568	58,95	58,84	0,24186	0,24106	24	2	
4	0	-10	1,557	1,559	59,32	59,23	0,24462	0,24398	17	3	
2	2	10	1,545	1,547	59,79	59,74	0,24822	0,24781	20	5	
8	0	2	1,513	1,511	61,23	61,29	0,25910	0,25957	18	2	
4	4	2	1,481	1,482	62,69	62,62	0,27038	0,26981	16	5	
8	0	4	1,450	1,451	64,16	64,15	0,28183	0,28174	16	1	
1	4	7	1,423	1,423	65,54	65,52	0,29273	0,29255	35	1	
8	0	5	1,410	1,410	66,25	66,24	0,29834	0,29828	16	1	
3	1	-12	1,385	1,385	67,60	67,57	0,30915	0,30895	19	1	
mor	noklii	n P:	a = 12,22 $\beta = 90,2$	81(5) Å 8(3)°	b =	6,903(3)	Å c=	= 18,071(9)	Å		

h	k	1	d_{obs}	d_{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2 \Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
0	1	1	4,818	4,818	18,40	18,4	0,02553	0,02554	54	94
0	0	2	4,459	4,442	19,90	19,97	0,02982	0,03003	11	2
1	1	0	4,066	4,053	21,84	21,91	0,03586	0,03608	14	6
1	1	2	2,997	2,995	29,79	29,81	0,06601	0,06610	100	100
0	1	3	2,634	2,631	34,01	34,05	0,08543	0,08564	11	10
2	1	1	2,466	2,464	36,40	36,44	0,09747	0,09766	13	18
0	2	2	2,410	2,409	37,28	37,3	0,10207	0,10216	7	7
2	2	0	2,029	2,027	44,62	44,67	0,14395	0,14428	15	24
1	2	3	1,941	1,938	46,75	46,83	0,15727	0,15777	11	12
0	3	1	1,870	1,869	48,66	48,69	0,16958	0,16977	4	3
3	1	0	1,817	1,813	50,17	50,28	0,17957	0,18031	4	2
0	2	4	1,757	1,756	51,99	52,05	0,19193	0,19233	15	29
3	1	2	1,680	1,679	54,60	54,63	0,21014	0,21038	9	11
0	3	3	1,608	1,606	57,25	57,33	0,22931	0,22989	6	4
3	2	1	1,566	1,565	58,92	58,96	0,24162	0,24196	6	6
1	2	5	1,463	1,460	63,55	63,67	0,27702	0,27798	6	3
0	4	0	1,433	1,433	65,05	65,01	0,28884	0,28851	4	5
1	1	6	1,393	1,391	67,13	67,27	0,30541	0,30653	7	6
1	4	1	1,375	1,374	68,12	68,21	0,31342	0,31412	4	4

 Tabelle B12: Pulverdiffraktogramm von LiZnPS4

tetragonal I: a = 5,738(1) Åc = 8,890(3) Å

h	k	1	d_{obs}	d_{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2\Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
0	2	0	5,710	5,756	15,51	15,38	0,01818	0,01789	100	100
0	2	2	4,936	4,973	17,95	17,82	0,02432	0,02396	60	17
2	2	0	4,031	4,070	22,04	21,82	0,03649	0,03579	54	13
0	2	4	3,734	3,748	23,81	23,72	0,04250	0,04220	77	81
1	3	2	3,441	3,415	25,87	26,07	0,05006	0,05082	38	1
2	2	4	3,128	3,141	28,52	28,39	0,06059	0,06007	89	56
0	4	0	2,855	2,878	31,30	31,05	0,07270	0,07157	56	21
0	4	2	2,745	2,763	32,60	32,38	0,07868	0,07767	41	1
2	4	0	2,600	2,574	34,46	34,83	0,08767	0,08949	32	40
0	4	4	2,473	2,487	36,29	36,09	0,09690	0,09586	74	47
2	4	4	2,271	2,283	39,65	39,44	0,11493	0,11374	76	54
2	2	8	2,110	2,112	42,82	42,79	0,13312	0,13295	35	16
4	4	0	2,020	2,035	44,84	44,49	0,14529	0,14318	33	16
3	4	5	1,981	1,989	45,76	45,56	0,15103	0,14978	28	3
0	4	8	1,871	1,874	48,63	48,53	0,16937	0,16873	31	6
2	6	0	1,809	1,820	50,39	50,08	0,18107	0,17897	32	10
2	4	8	1,777	1,782	51,36	51,22	0,18764	0,18666	41	15
2	6	4	1,698	1,708	53,96	53,62	0,20560	0,20324	37	18
0	2	12	1,587	1,583	58,06	58,23	0,23524	0,23653	32	7
4	4	8	1,566	1,571	58,95	58,74	0,24187	0,24032	37	13
2	2	12	1,528	1,526	60,54	60,62	0,25383	0,25447	33	11
0	6	8	1,511	1,515	61,31	61,12	0,25970	0,25827	32	5
2	6	8	1,459	1,465	63,71	63,43	0,27830	0,27610	29	8
0	4	12	1,430	1,429	65,16	65,23	0,28971	0,29025	28	4
2	4	12	1,386	1,387	67,52	67,47	0,30855	0,30814	31	6

Tabelle B13: Pulverdiffraktogramm von LiEuPS4

tetragonal I: a = 11,52(1) Åc = 19,77(2) Å

h	k	1	d_{obs}	d _{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2 \Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
1	0	1	7,594	7,622	11,64	11,6	0,01028	0,01020	95	92
2	0	0	5,762	5,771	15,36	15,34	0,01785	0,01780	54	33
0	1	1	5,548	5,576	15,96	15,88	0,01925	0,01906	61	89
2	0	1	4,994	5,015	17,75	17,67	0,02376	0,02357	46	11
1	0	2	4,586	4,645	19,34	19,09	0,02818	0,02747	44	14
2	1	0	4,346	4,365	20,42	20,33	0,03139	0,03112	50	36
2	1	1	4,012	4,010	22,14	22,15	0,03683	0,03686	43	17
1	1	2	3,788	3,811	23,47	23,32	0,04131	0,04081	57	69
3	0	1	3,588	3,597	24,80	24,73	0,04605	0,04581	36	27
0	2	0	3,351	3,337	26,58	26,69	0,05280	0,05322	100	63
3	0	2	3,047	3,062	29,29	29,14	0,06384	0,06322	51	71
4	0	0	2,881	2,886	31,02	30,96	0,07143	0,07117	70	19
3	1	2	2,756	2,781	32,46	32,16	0,07802	0,07664	47	82
1	2	2	2,731	2,711	32,76	33,02	0,07947	0,08068	79	100
2	1	3	2,697	2,674	33,19	33,49	0,08147	0,08293	45	23
4	1	1	2,554	2,563	35,10	34,98	0,09085	0,09024	25	10
0	0	4	2,506	2,536	35,81	35,36	0,09441	0,09214	32	29
3	2	1	2,437	2,447	36,85	36,7	0,09978	0,09902	31	56
3	2	2	2,304	2,258	39,06	39,9	0,11165	0,11630	23	10
4	2	0	2,173	2,183	41,52	41,33	0,12550	0,12442	49	36
5	1	1	2,127	2,133	42,47	42,34	0,13104	0,13029	25	17
3	2	3	2,021	2,021	44,82	44,8	0,14517	0,14508	29	8
1	0	5	2,000	1,999	45,30	45,34	0,14817	0,14841	24	8
1	1	5	1,917	1,914	47,39	47,45	0,16137	0,16173	23	4
2	3	3	1,773	1,769	51,49	51,62	0,18847	0,18938	22	5
0	4	0	1,674	1,668	54,78	54,99	0,21144	0,21294	30	15
4	2	4	1,654	1,655	55,50	55,49	0,21662	0,21652	24	11
2	3	4	1,605	1,606	57,37	57,31	0,23016	0,22974	21	9
3	2	5	1,572	1,581	58,68	58,33	0,23983	0,23727	45	18
6	2	3	1,493	1,495	62,10	62,03	0,26581	0,26525	28	9
orth	orho	mbise	ch P: a	1 = 11,55	(1) Å	b = 6	,679(1) Å	c = 10,	15(2)Å	

 Tabelle B14:
 Pulverdiffraktogramm von KBaPS₄

h	k	1	d _{obs}	d _{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2\Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
0	2	0	5.501	5.548	16.10	15.96	0.01959	0.01925	25	22
1	1	1	4,424	4,392	20,05	20,2	0.03028	0,03072	22	11
2	0	0	3,703	3,702	24,01	24,02	0,04323	0,04326	18	10
0	3	1	3,172	3,186	28,10	27,98	0,05889	0,05839	91	100
0	0	2	3,146	3,134	28,34	28,46	0,05988	0,06037	29	33
2	1	1	3,070	3,064	29,06	29,12	0,06288	0,06314	100	75
1	3	1	2,914	2,927	30,66	30,52	0,06980	0,06921	12	3
0	4	0	2,754	2,774	32,48	32,24	0,07814	0,07701	7	3
0	2	2	2,730	2,729	32,78	32,79	0,07953	0,07959	15	14
1	4	0	2,583	2,598	34,70	34,49	0,08883	0,08780	8	2
1	2	2	2,562	2,560	35,00	35,02	0,09031	0,09044	20	16
3	0	0	2,472	2,468	36,32	36,37	0,09704	0,09730	16	10
2	3	1	2,410	2,415	37,28	37,2	0,10206	0,10164	29	25
2	0	2	2,399	2,392	37,46	37,57	0,10303	0,10359	14	14
3	2	0	2,250	2,255	40,03	39,94	0,11704	0,11653	6	1
2	2	2	2,199	2,196	41,00	41,06	0,12254	0,12287	50	65
0	4	2	2,078	2,077	43,52	43,53	0,13728	0,13736	10	2
1	4	2	2,002	2,000	45,27	45,3	0,14795	0,14816	8	3
1	1	3	1,985	1,979	45,68	45,82	0,15051	0,15140	9	5
3	3	1	1,948	1,951	46,57	46,5	0,15613	0,15567	27	18
4	0	0	1,854	1,851	49,11	49,17	0,17250	0,17293	22	14
2	5	1	1,820	1,822	50,07	50,03	0,17890	0,17864	21	35
2	4	2	1,814	1,812	50,25	50,32	0,18012	0,18058	25	5
2	1	3	1,799	1,796	50,71	50,8	0,18323	0,18381	11	7
2	3	3	1,634	1,633	56,24	56,3	0,22195	0,22237	12	8
4	3	1	1,600	1,601	57,56	57,53	0,23159	0,23136	12	13
0	0	4	1,573	1,567	58,65	58,89	0,23963	0,24144	8	5
0	7	1	1,536	1,537	60,20	60,16	0,25130	0,25098	5	5
3	3	3	1,467	1,464	63,33	63,47	0,27531	0,27642	6	5
2	5	3	1,406	1,407	66,44	66,38	0,29990	0,29940	11	11
orth	orho	mbisc	ch A: a	= 7,411((8) Å	b = 1	1,11(1) Å	c = 6,2	73(7)Å	

 Tabelle B15: Pulverdiffraktogramm von Ag₅PS₄Cl₂

h	k	1	d_{obs}	d_{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2\Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
1	1	1	5,602	5,587	15,81	15,85	0,01889	0,01899	9	10
0	0	2	4,852	4,836	18,27	18,33	0,02518	0,02534	8	8
1	1	3	2,922	2,916	30,57	30,63	0,06942	0,06969	10	9
2	2	2	2,799	2,794	31,94	32,01	0,07564	0,07595	100	100
0	0	4	2,421	2,418	37,10	37,15	0,10110	0,10137	8	14
1	3	3	2,222	2,220	40,57	40,61	0,12009	0,12030	6	8
0	2	4	2,166	2,163	41,66	41,72	0,12634	0,12667	4	5
2	2	4	1,977	1,975	45,86	45,91	0,15162	0,15196	3	2
1	1	5	1,864	1,861	48,81	48,89	0,17054	0,17108	17	20
0	4	4	1,712	1,710	53,48	53,53	0,20226	0,20261	19	36
1	3	5	1,637	1,635	56,13	56,2	0,22111	0,22165	5	6
0	2	6	1,532	1,529	60,37	60,48	0,25258	0,25340	4	1
3	3	5	1,477	1,475	62,88	62,94	0,27179	0,27229	3	1
2	2	6	1,460	1,458	63,68	63,76	0,27806	0,27868	6	9
4	4	4	1,399	1,397	66,80	66,93	0,30274	0,30380	5	1
1	5	5	1,357	1,355	69,19	69,29	0,32204	0,32289	4	1

 Tabelle B16: Pulverdiffraktogramm von Cu₆PS₅Cl

kubisch F: a = 9,688(1) Å

Tabelle B17: Pulverdiffraktogram	mm von Ag ₅ PS ₄ Br ₂
----------------------------------	--

h	k	1	d _{obs}	d _{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2\Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
1	1	1	5,955	5,965	14,87	14,84	0,01672	0,01666	35	13
0	0	2	5,174	5,166	17,13	17,15	0,02215	0,02221	27	5
0	2	2	3,647	3,652	24,39	24,35	0,04456	0,04443	26	1
1	1	3	3,111	3,114	28,67	28,64	0,06124	0,06111	49	28
2	2	2	2,981	2,982	29,95	29,94	0,06672	0,06666	100	100
0	0	4	2,580	2,582	34,75	34,71	0,08907	0,08889	76	31
0	2	4	2,307	2,310	39,02	38,96	0,11141	0,11110	28	9
2	2	4	2,107	2,109	42,89	42,85	0,13354	0,13330	38	14
1	1	5	1,989	1,988	45,57	45,59	0,14984	0,14996	59	18
0	4	4	1,826	1,826	49,89	49,9	0,17770	0,17777	49	30
1	3	5	1,743	1,746	52,46	52,36	0,19517	0,19447	28	4
3	3	5	1,574	1,575	58,59	58,55	0,23917	0,23890	24	2
2	2	6	1,563	1,557	59,06	59,29	0,24272	0,24443	26	4
4	4	4	1,496	1,491	61,98	62,21	0,26484	0,26664	14	2
2	4	6	1,383	1,380	67,70	67,84	0,30998	0,31112	19	2

kubisch F: a = 10,338(6) Å

h	k	1	d_{obs}	d _{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2\Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
0	0	2	6,102	6,104	14,51	14,5	0,01592	0,01591	18	7
0	1	1	5,674	5,665	15,60	15,63	0,01841	0,01847	45	20
1	1	0	3,694	3,693	24,07	24,08	0,04344	0,04347	26	7
0	1	3	3,431	3,433	25,95	25,93	0,05035	0,05029	35	23
0	2	0	3,198	3,197	27,87	27,88	0,05794	0,05798	27	7
1	1	2	3,164	3,160	28,19	28,22	0,05923	0,05937	53	39
0	0	4	3,053	3,053	29,23	29,23	0,06359	0,06360	51	32
0	2	2	2,832	2,832	31,56	31,56	0,07390	0,07388	100	100
0	2	3	2,518	2,514	35,62	35,68	0,09347	0,09376	31	4
1	2	0	2,419	2,417	37,14	37,17	0,10129	0,10148	35	14
1	2	1	2,375	2,371	37,85	37,92	0,10506	0,10546	22	1
1	1	4	2,355	2,353	38,18	38,22	0,10685	0,10707	25	4
0	1	5	2,282	2,281	39,46	39,47	0,11385	0,11391	34	17
1	2	2	2,248	2,247	40,08	40,09	0,11733	0,11737	22	2
0	2	4	2,208	2,208	40,84	40,84	0,12159	0,12161	27	6
0	3	0	2,135	2,131	42,30	42,37	0,13006	0,13047	19	8
1	2	3	2,083	2,078	43,40	43,51	0,13658	0,13724	39	32
0	3	2	2,012	2,012	45,03	45,01	0,14647	0,14637	49	34
0	2	5	1,943	1,941	46,70	46,77	0,15694	0,15738	26	14
1	2	4	1,896	1,895	47,94	47,97	0,16491	0,16508	15	2
2	2	0	1,847	1,846	49,30	49,32	0,17379	0,17392	32	20
2	2	2	1,768	1,767	51,66	51,69	0,18962	0,18986	20	4
0	2	6	1,717	1,717	53,31	53,32	0,20106	0,20114	12	5
0	1	7	1,682	1,683	54,52	54,48	0,20958	0,20931	15	2
1	3	3	1,629	1,626	56,45	56,56	0,22345	0,22426	15	3
2	2	4	1,580	1,580	58,35	58,37	0,23743	0,23756	21	3
1	2	6	1,557	1,557	59,31	59,31	0,24459	0,24458	14	1
0	4	2	1,547	1,547	59,72	59,74	0,24764	0,24781	14	1
0	2	7	1,533	1,531	60,31	60,4	0,25211	0,25280	16	1

Tabelle B18: Pulverdiffraktogramm von $Ag_5PS_4I_2$

hexagonal P: a = 7,390(2) Åc = 12,220(4)Å

h	k	1	d_{obs}	d_{cal}	$2\Theta_{obs}$	$2\Theta_{cal}$	$\sin^2\Theta_{obs}$	$\sin^2\Theta_{cal}$	I _{obs}	I _{cal}
2	1	0	5,085	5,089	17,42	17,41	0,02292	0,02288	50	3
0	1	1	4,790	4,774	18,51	18,57	0,02583	0,02601	48	5
1	1	1	4,564	4,586	19,43	19,34	0,02845	0,02819	50	9
3	0	1	4,332	4,335	20,48	20,47	0,03158	0,03154	54	5
2	1	1	4,129	4,130	21,50	21,5	0,03476	0,03476	70	11
0	0	2	3,536	3,534	25,17	25,18	0,04742	0,04746	54	22
4	1	0	3,478	3,474	25,59	25,62	0,04900	0,04911	69	46
1	0	2	3,456	3,454	25,76	25,77	0,04962	0,04968	66	45
0	2	0	3,234	3,238	27,56	27,52	0,05668	0,05652	98	56
4	1	1	3,120	3,119	28,58	28,6	0,06088	0,06095	40	20
1	1	2	3,051	3,048	29,25	29,28	0,06367	0,06382	45	28
2	2	0	3,013	3,013	29,63	29,62	0,06530	0,06527	40	10
3	0	2	2,973	2,971	30,03	30,05	0,06706	0,06714	39	16
1	2	1	2,899	2,898	30,81	30,83	0,07051	0,07058	58	40
5	1	1	2,711	2,711	33,01	33,01	0,08063	0,08063	100	100
6	1	0	2,528	2,527	35,48	35,49	0,09275	0,09280	18	2
4	1	2	2,478	2,477	36,23	36,23	0,09655	0,09658	24	13
5	0	2	2,408	2,409	37,31	37,29	0,10221	0,10211	21	5
4	2	1	2,395	2,394	37,52	37,53	0,10335	0,10338	27	12
6	1	1	2,380	2,380	37,76	37,77	0,10461	0,10466	25	12
1	2	2	2,363	2,362	38,06	38,06	0,10619	0,10621	55	36
0	1	3	2,215	2,213	40,70	40,73	0,12081	0,12099	25	5
3	2	2	2,187	2,189	41,25	41,2	0,12395	0,12367	18	6
6	0	2	2,167	2,168	41,64	41,63	0,12622	0,12615	19	2
7	1	1	2,111	2,111	42,80	42,81	0,13302	0,13307	23	7
3	1	3	2,056	2,053	44,01	44,07	0,14023	0,14062	18	2
4	1	3	1,950	1,950	46,52	46,54	0,15581	0,15593	21	15
4	3	0	1,911	1,912	47,54	47,52	0,16229	0,16218	29	8
8	1	1	1,892	1,890	48,04	48,09	0,16552	0,16586	22	4
1	3	2	1,835	1,831	49,63	49,77	0,17597	0,17690	21	6
9	0	1	1,772	1,771	51,53	51,55	0,18874	0,18891	13	5
5	3	1	1,748	1,749	52,28	52,25	0,19389	0,19371	38	22
4	2	3	1,728	1,729	52,94	52,92	0,19849	0,19835	26	13
1	1	4	1,696	1,695	54,02	54,05	0,20606	0,20627	15	3
3	0	4	1,682	1,682	54,50	54,52	0,20947	0,20959	22	6
0	3	3	1,592	1,591	57,86	57,9	0,23375	0,23408	18	1
9	1	2	1,576	1,576	58,50	58,51	0,23854	0,23860	19	5
8	1	3	1,509	1,507	61,41	61,46	0,26048	0,26088	16	8
3	2	4	1,492	1,492	62,17	62,15	0,26632	0,26618	18	3

Tabelle B19: Pulverdiffraktogramm von BaP4Te2

4	3	3	1,485	1,484	62,50	62,52	0,26884	0,26904	20	5
3	4	2	1,422	1,422	65,59	65,62	0,29312	0,29334	16	3
8	2	3	1,398	1,398	66,86	66,86	0,30321	0,30324	16	2
0	1	5	1,379	1,381	67,89	67,82	0,31150	0,31096	15	1
1	3	4	1,365	1,362	68,68	68,86	0,31793	0,31939	17	2
orthorhombisch P: $a = 16,483(6)$ Å $b = 6,481(3)$ Å $c = 7,072(4)$ Å										

11 Literaturverzeichnis

- R. HOFFMANN Solid and Surfaces: A Chemist's View of Bonding in Extended Structures Verlag Chemie (VCH), Weinheim 1988
- R. DRONSKOWSKI, P. BLÖCHL
 Crystal Orbital Hamiltonian Population (COHP)
 Energy-resolved visualization of chemical bondeng in solid states based on density-functional calculations
 J.Phys. Chem. 97, 8617 (1993)
- [3] R. H. P. FRANCISCO, H. ECKERT Compound Formation and Local Structure in Ternary Metal-Phosphorus-Selenium Systems J. Solid State Chem. 112, 270 (1994)
- W. KLINGEN, R. OTT, H. HAHN
 Über die Darstellung und Eigenschaften von Hexathio- und Hexaselenohypodithiophosphaten
 Z. Anorg. Allg. Chem. 396, 271 (1973)
- [5] W. F. KUHS, R. NITSCHE, K. SCHEUNEMANN The Crystal Structure of Cu₆PS₅Br, a New Superionic Conductor *Acta Cryst.* B34, 64 (1978)
- [6] S. JÖRGENS
 Versuche zur Synthese von Chalcogen-Phosphor-Verbindungen ausgewählter Metalle
 Diplomarbeit, Heinrich Heine Universität Düsseldorf 1999
- [7] G. M. SHELDRICK
 SHELXL 97
 Crystal structure refinement
 Universität Göttingen (1997)
- [8] W. HERRENDORF HABITUS Programm zur Optimierung der Kristallgestallt für die numerische Absorptionskorrektur anhand geeigneter Ψ-abgetasteter Reflexe Dissertation, Universität Karlsruhe (1993)
- [9] STOE X-SHAPE Version 1.06 Crystal Optimisation for Numerical Absorption Correction STOE & Cie GmbH Darmstadt (1999)

- G. M. SHELDRICK
 SHELXTL-PLUS
 Structure Determination System Release 4.21/V
 Siemens Analytical X-Ray Instruments, Madison, WI, USA, 1990
- [11] XRED 1.09STOE Data Reduction ProgramSTOE & Cie GmbH Darmstadt (1997)
- [12] M EVAIN
 U-FIT V1.3
 Institut des Matériaux de Nantes, France (1992)
- [13] E. DOWNTY CRYSCON 0.91 Shape Software, Kingsport, USA
- K. BRANDENBURG
 DIAMOND Version 2.1
 Informationssystem f
 ür Kristallstrukturen Crystal Impact GbR (1996-2001)
- [15] R. HOFFMANN An Extended HückelTheory I. Hydrocarbons J. Chem. Phys. 39, 1397 (1963)
- [16] H. L. SHRIVER The LMTO Method Springer-Verlag, Berlin (1984)
- [17] P. HOHENBERG, W. KOHN Inhomogeneous Electron Gas *Phys. Rev.* B136, 864 (1964)
- [18] W. KOHN, L. J. SHAM
 Self-consistent Equations Including Exchange and Correlation Effects *Phys. Rev.* A140, 1133 (1965)
- [19] J. KORRINGAOn the calculation of the energy of a block wave in a metal *Physica* 13, 392 (1947)
- [20] W. KOHN, N. ROSTOKER Solution of the Schrödinger Equation in Periodic Lattices with an Application to Metallic Lithium *Phys. Rev.* 94, 1111(1954)

- [21] O. K. ANDERSEN, O. JEPSEN, G. KRIER, A. BURKHARDT The TB-LMTO-ASA program Max-Planck-Institut für Festkörperforschung, Stuttgart (1994-96)
- [22] P. E. BLÖCHL, O. JEPSEN, O. K. ANDERSEN Improved tetrahedon method for Brillouin-zone integrations *Phys. Rev.* 49, 16223 (1994)
- [23] W. R. L. LAMBRECHT, O. K. ANDERSEN Minimal basis sets in the linear muffin-tin orbital method: Application to the diamond-structure crystals C, Si, and Ge *Phys. Rev.* B34, 2439 (1986)
- [24] G. KRIER, O. JEPSEN, O. K. ANDERSON unveröffentlichte Ergebnisse Max-Planck-Institut für Festkörperforschung, Stuttgart
- [25] B. SILVI, A. SAVIN
 Classification of chemical bonds based on topological analysis of electron localization function
 Nature 371(2), 683, (1994)
- [26] T. F. Fässler, A. Savin Chemische Bindungen anschaulich: die Elektronen-Lokalisierungs-Funktion Chemie in unserer Zeit, 31(3), 110, (1997)
- [27] P. VILLARS, L. D. CALVERT Pearson's Handbook of Crystallographic Data for Intermetallic Compounds 2nd ed. 1991 and desk edition 1997, ASM, Metals Park, Oh 44073.
- [28] W. KLINGEN, G. EULENBERGER
 Über die Kristallstrukturen von Fe₂P₂Se₆ und Fe₂P₂S₆
 Z. Anorg. Allg. Chem. 401, 97 (1973)
- [29] R. MERCIER, J. P. MALUGANI, B. FAHYS, J. DOUGLADE, G. ROBERT Synthese, structure cristalline et analyse vibrationnelle de l'hexathiohypodiphosphate de lithium Li₄P₂S₆ J. Solid State Chem. 1982, 43, 151.
- [30] Z. L. HUANG, J. T. ZHAO, J. X. MI, S. Y. MAO, L. S. ZHENG Room Temperature Solid State Synthesis and Characterization of a New Chromium Thiophosphate Cr₄(P₂S₆)₃ *J. Solid State Chem.* 144, 388 (1999)
- [31] Z. WANG, R. D. WILLETT, R. A. LAITINEN, D. A. CLEARY Synthesis and crystal structure of SnP₂S₆ *Chem. Mater.* 7, 856 (1995)

- [32] C. HADENFELDT, D. HOEDEL
 Kristallstruktur und Eigenschaften von Calcium- und
 Strontiumhexathiodiphosphat(IV), Ca₂P₂S₆ und Sr₂P₂S₆, mit einem Beitrag zu
 Ca₅P₈ und Pb₂P₂S₆
 Z. Anorg. Allg. Chem. 622, 1495 (1996)
- [33] J. H. CHEN, P. K. DORHOUT, J. E. OSTENSON
 A Comparative Study of Two New Structure Types. Synthesis and Structural an Electronic Characterization of K(RE)P₂Se₆ (RE = Y, La, Ce, Pr, Gd)
 Inorg. Chem. 35, 5627 (1996)
- [34] U. PÄTZMANN, W. BROCKNER
 Raman-Spektren der Hexaselenidohypodiphosphate des Mg, Ca und Ba
 Z. Naturforsch. 42a, 515 (1987)
- [35] W. CARRILLO-CABRERA, J. SABMANNSHAUSEN, H. G. VON SCHNERING, F. MENZEL, W. BROCKNER
 Synthesis, Crystal Structure, Magnetism and Vibrational Spectrum of Dipotassium Iron(II) Hexathiodiphosphate(IV), K₂Fe[P₂S₆]
 Z. Anorg. Allg. Chem, 620, 489 (1994)
- [36] M. EVAIN, F. BOUCHER, R. BREC, Y. MATHEY The Question of Silver Pairing in the New Structurally Resolved Two-Dimensional Phase Ag₂MnP₂S₆
 J. Solid State Chem. 90, 8 (1991)
- [37] L. PAULINGDie Natur der chemischen Bindung3. Auflage, Verlag Chemie, Weinheim 1976.
- [38] F. MENZEL, W. BROCKNER, W. CARILLO-CABRERA, H. G. V. SCHNERING Crystal Structure and Vibrational Spectrum of Dipotassium-Manganese(II) Hexathiodiphosphat(IV), K₂Mn[P₂S₆] Z. Anorg. Allg. Chem. 620, 1081 (1994)
- [39] C. R. EVENSON IV, P. K. DORHOUT Thiophosphate Phase Diagrams Developed in Conjunction with the Synthesis of the New Compounds KLaP₂S₆, K₂La(P₂S₆)_{0.5}(PS₄), K₃La(PS₄)₂, K₄La_{0.67}(PS₄)₂ K_{9-x}La_{1+x/3}(PS₄)₄ (x = 0.5), K₄Eu(PS₄)₂, and KEuPS₄ *Inorg. Chem.* 40, 2884 (2001)
- [40] K. CHONDROUDIS, J. A. HANKO, M. G. KANATZIDIS Chemistry of Gold in Molten Alkali Metal Polychalcophosphate Fluxes. Synthesis and Characterization of the Low-Dimensional Compounds A₃AuP₂Se₈ (A = K, Rb, Cs), A₂Au₂P₂Se₆ (A = K, Rb), A₂AuPS₄ (A = K, Rb, Cs) and AAuP₂S₇ (A = K, Rb) *Inorg. Chem.* **36**, 2623 (1997)

- [41] K. CHONDROUDIS, M. G. KANATZIDIS
 Group 10 and Group 12 One-Dimensional Selenodiphosphates: A₂MP₂Se₆ (A = K, Rb, Cs; M = Pd, Zn, Cd, Hg)
 J. Solid State Chem. 138, 321 (1998)
- [42] S. JÖRGENS, A. MEWIS, R.-D. HOFFMANN, R.PÖTTGEN, B.D. MOSEL Neue Hexachalcogeno-Hypodiphosphate der Erdalkalimetalle und des Europiums Z. Anorg. Allg. Chem. 629, 429 (2003)
- [43] B. SCOTT, M. PRESSPRICH, R. D. WILLET, D. A. CLEARY High Temperature Crystal Structure and DSC of Sn₂P₂S₆ *Solid State Chem.* 96, 294 (1992)
- [44] H. LUEKEN Magnetochemie Teubnere, Stuttgart 1999
- [45] R. PÖTTGEN, D. JOHRENDT Equiatomic Intermetallic Europium Compounds – Syntheses, Crystal Chemistry, Chemical Bonding and Physical Properties. *Chem. Mater.* 12, 875 (2000)
- [46] G. K. SHENOY, F.E. WAGNER Mössbauer Isomer Shifts North Holland, Elsevier, (1978)
- [47] G. OUVRARD, R. BREC, J. ROUXEL
 Structural Determination Of Some MPS₃ Layered Phases (M = Mn, Fe, Co, Ni and Cd)
 Mat. Res. Bull. 20,1181 (1985)
- [48] A. WIEDENMANN, J. ROSSAT-MIGNOD, A. LOUISY, R. BREC, J. ROUXEL Neutron diffraction study of the layered compounds MnPSe₃ and FePSe3 *Solid State Commun.* **40**, 1067 (1981)
- [49] M. EVAIN, F. BOUCHER, R. BREC, Y. MATHEY The question of silver pairing in the new structurally resolved two-dimensional phase Ag₂MnP₂S₆
 J. Solid State Chem. 90, 8 (1991)
- [50] P. ENGEL, W. NOWACKI
 Die Kristallstruktur von Ag₃AsS₃
 Acta Crystallogr. B24, 77 (1968)
- [51] F.BOUCHER, M. EVAIN, R. BREC
 Synthesis and structure of the layered phase Ag₂ZnP₂S₆
 Eur. J. Solid State Inorg. Chem. 28, 383 (1991)

- [52] A. VAN DER LEE, F. BUOCHER, M. EVAIN, R. BREC
 Temperature dependence of the silver distribution in Ag₂MnP₂S₆ by singel crystal
 X-Ray diffraction
 Z. Kristallogr. 203, 247 (1993)
- [53] H. ANDRAE, R. BLACHNIK Investigation on the ternary System Ag-P-S *J. Therm. Anal.* **35**, 595 (1989)
- [54] A. PFITZNER, S. REISER
 Refinement of the crystal structures of Cu₃PS₄ and Cu₃SbS₄ and a comment on normal tetrahedral structures
 Z. Kristallogr. 217, 51 (2002)
- [55] U. PÄTZMANN, W. BROCKNER, B. N. CYVIN, S. J. CYVIN
 Darstellung, Schwingungsspektrum und Normalkoordinatenanalyse des Gold-ortho-Thiophosphates, AuPS₄
 J. Raman Spectroscopy, 17, 257 (1986)
- [56] W.BROCKNER, U. PÄTZMANN Raman-Spektren des Calcium- und Barium-ortho-Thiophosphates Z. Naturforsch. 42a, 513 (1987)
- [57] A. I. SOKLAKOV, V. V. NECHAEVA
 Production and x-ray diffraction study of cobalt, mercury, tungsten, strontium, antimony, arsenic, and lead thiophosphates
 Izv. Akad. Nauk SSSR, Neorg. Mater. 5, 989 (1969)
- [58] K. OJIMA, Y. NISHIHATA, A. SAWADA
 Structure of potassium sulfate at temperatures from 296K down to 15K
 Acta Crystallogr. B51, 287 (1995)
- [59] E. PROUZET, G. OUVRARD, R. BREC Structure Determination of ZnPS₃ *Mat. Res. Bull.* **21**, 195 (1986)
- [60] P. M. BOUCHETIERE, P. TOFFOLI, P. KHODADAD, N. RODIER Structure Cristalline de Zn₄(P₂S₆)₃ Acta Crystallogr. B34, 384 (1978)
- [61] YU. M. KHOZHAINOV, V. M. ZHDANOV
 Synthesis of Zinc Orthothiophosphate and an Investigation of its Structural and Thermodynamic Properties
 Inorg. Mater. (engl. transl.) 11, 1935 (1975)

[62]	S. JÖRGENS, D. JOHRENDT, A. MEWIS Motive dichtester Kugelpackungen: Die Verbindungen $Zn_3(PS_4)_2$ und LiZnPS ₄ Z. Anorg. Allg. Chem. 628, 1765 (2002)
[63]	M. TAMPIER, D. JOHRENDT BaCu ₆ Ge ₂ S ₈ - Ein Thiogermanat als Variante der Li ₃ Bi-Struktur <i>Z. Naturforsch.</i> 53b , 1483 (1998)
[64]	M. TAMPIER, D. JOHRENDT Neue azentrische Selenogermanate. Kristallstrukturen und chemische Bindung von AM_2GeSe_4 (A = Sr, Ba; M = Cu, Ag) Z. Anorg. Allg. Chem. 627, 312 (2001)
[65]	L. PAULING, M. D. SHAPELL The Crystal Structure of Bixbyite and the C-Modification of the Sequioxides <i>Z. Kristallogr.</i> 75 , 128 (1930)
[66]	R. DIEHL, C. D. CARPENTIER The structural chemistry of indium phosphorous chalkogenides <i>Acta Crystallogr.</i> B34 , 1097 (1978)
[67]	K. CHONDROUDIS, T. J. MCCARTHY, M. G. KANATZIDIS Chemistry in Molten Alkali Metal Polyselenophosphate Fluxes. Influence of Flux Coposition on Dimensionality. Layers and Chains in APbPSe ₄ , $A_4Pb(PSe_4)_2$ (A = Rb, Cs), and $K_4Eu(PSe_4)_2$ <i>Inorg. Chem.</i> 35 , 840 (1996)
[68]	C. R. EVENSON IV, P. K. DORHOUT Selenophosphate Phase Diagrams Developed in Conjunction with the Synthesis of the New Compounds $K_2La(P_2Se_6)_{0.5}(PS_4)$. $K_3La(PSe_4)_2$, $K_4La_{0.67}(PSe_4)_2$ $K_{9-x}La_{1+x/3}(PSe_4)_4$ (x = 0.5), and KEuPSe_4 <i>Inorg. Chem.</i> 40 , 2875 (2001)
[69]	J. A. AITKEN, K. CHONDROUDIS, V. G. YOUNG, JR., M. G. KANATZIDIS LiEuPSe ₄ and KEuPSe ₄ : Novel Selenophosphates with the Tetrahedral [PSe ₄] ³⁻ Building Block <i>Inorg, Chem.</i> 39 , 1525 (2000)
[70]	W. CARILLO-CABRERA, K. PETERS, H. G. VON SCHNERING, F. MENZEL W. BROCKNER Crystal Structure and Vibrational Spectrum of Thallium(I) Europium(II) Tetrathiophosphat(V), TlEu[PS ₄] Z. Anorg. Allg. Chem. 621 , 557 (1995)

- [71] C. WIBBELMANN, W. BROCKNER, B. EISENMANN, H. SCHÄFER
 Kristallstruktur und Schwingungsspektrum des Praseodym-ortho-Thiophosphates
 PrPS₄
 Z. Naturforsch. 39a, 190 (1984)
- S. JÖRGENS, A. MEWIS
 Die Kristallstrukturen von Hexachalcogeno-Hypodiphosphaten des Magnesiums und Zinks
 Z. Anorg. Allg. Chem. 630, 51 (2004)
- [73] E.PHILIPPOT, M. RIBES, M. MAURIN
 Structure cristalline de l'orthothiogermanate de strontium
 Rev. Chim. Miner. 8, 99 (1971)
- [74] F. LAVES, H. J. WALLBAUM
 Über einige neue Vertreter des NiAs-Typs und ihre kristallchemische Deutung
 Zeitschrift für Angewandte Mineralogie 4, 17 (1942)
- [75] L. SMART, E. MOORE
 Einführung in die Festkörperchemie
 Friedr. Vieweg & Sohn Verlagsgesellschaft, Braunschweig, 1997
- [76] S. ADAMS Bindungsvalenzmodelle für Struktur-Leitfähigkeits-Beziehungen in Festelektrolyten Habilitationsschrift, Fakultät f. Geowissenschaften d. Georg-August-Universität, Göttingen, 2000
- [77] ICSD-Datenbank AgCl, Nr.: 64734 National Bureau of Standarts (U.S.)
- [78] P. TOFFOLI, J. C. ROULAND, P. KHODADAD, N. RODIER Structure du Tetrathiophosphate(V) de Zinc et d'Argent, ZnAgPS₄ Acta Cryst. C41, 645 (1985)
- [79] W. F. KUHS, R. NITSCHE, K. SCHEUNEMANN The Argyrodites - A new Family of tetrahedrally close-packed structures *Mat. Res. Bull.* 15, 241 (1979)
- [80] U. MÜLLER Anorganische Strukturchemie Verlag B. G. Teubner, Stuttgart (1991)
- [81] D. E. C. CORBRIDGEThe Structural Chemistry of PhosphorusElsevier Scientific Publishing Company (1974)

- [82] M. POMPETZKI, M. JANSEN Natriumtrithiophosphat(V): Kristallstruktur und Natriumionenleitfähigkeit Z. Anorg. Allg. Chem. 629, 1929 (2003)
- [83] M. POMPETZKI, M. JANSEN Natriummonothiophosphat(V): Kristallstruktur und Natriumionenleitfähigkeit Z. Anorg. Allg. Chem. 628, 641 (2002)
- [84] D. B. POWELL, J. G. V. SCOTT Infrared spectra of the thiophosphates of trisethylenediamine cobalt(III) Spectrochim. Acta. A28, 1067 (1972)
- [85] K. SUGIYAMA, M. TOKONAMI The crystal structure refinements of the strontium and barium orthophosphates *Mineralogical Journal* 15, 141 (1990)
- [86] H. P. BALDUS, R. BLACHNIK Neue A₄B₃-Moleküle: P₃SbS₃, P₄S₂Te und P₄STe₂ Z. Naturforsch. **B45**, 1605 (1990)
- [87] N. KUHN, G. HENKEL, H. SCHUMANN, R. FRÖHLICH Die Bindungsverhältnisse in Phosphantelluriden. Eine empirische NMR-Studie und die Kristallstruktur von (iso-C₃H₇)₃PTe Z. Naturforsch. B45, 1010 (1990)
- [88] A. ZYGMUT, A. MURASIK, S. LIGENZA, J. LECIEJEWICZ The Crystal and Magnetic Structure of UPTe and UAsTe Studied by Neutron Diffraction *Phys. Status. Solidi* A22, 75 (1974)
- [89] W. N. STASSEN, M. SATO, L. D. CALVERT The Crystal Structure of La₂Sb Acta Crystallogr. B26, 1534 (1970)
- [90] G. KLICHE Iridiumphosphidtellurid, IrPTe Z. Naturforsch. **B41**, 130 (1986)
- [91] H. D. LUTZ, T. SCHMIDT, G. WÄSCHENBACH
 Phasendiagramme von Chalkogeniden und Pnictiden des Rutheniums und Osmiums mit Pyrit-, Markasit-, Löllingit- und Arsenopyritstruktur
 Z. Anorg. Allg. Chem. 562, 7. (1988)
- [92] A. BROWN, S. RUNDQVIST Refinement of the crystal structure of black phosphorus *Acta Crystallogr.* **19**, 684 (1965)
- [93] H. G. VON SCHNERING, W. DAHLMANN Über das Bariumphosphid BaP₃ Naturwissenschaften **58**, 623 (1971)
- [94] W. DAHLMANN, H. G. VON SCHNERING Die Polyphospide SrP₃ und Ba₃P₁₄ *Naturwissenschaften* **60**, 429 (1973)
- [95] W. DAHLMANN, H. G. VON SCHNERING CaP₃, ein neues Calciumphosphid *Naturwissenschaften* **60**, 518 (1973)
- [96] W. DAHLMANN, H. G. VON SCHNERING Die Lithiumphosphide LiP₅ und LiP₇ *Naturwissenschaften* **59**, 78 (1972)

J. SCHMEDT A. D. GÜNNE, S. KACZMAREK, L. V. WÜLLEN, H. ECKERT, D. PASCHKE A. J. FOECKER, W. JEITSCHKO Solid state NMR connectivity studies in dipolarly coupled inorganic networks: crystal structure and site assignments for the lithium polyphosphide LiP₅ J. Solid State Chem. **147**, 341 (1999) Die experimentellen Untersuchungen zu der vorliegenden Arbeit wurden in der Zeit von Juli 1999 bis Juli 2003 am Institut für Anorganische Chemie und Strukturchemie II der Heinrich-Heine-Universität Düsseldorf unter der Leitung von Prof. Dr. A. Mewis durchgeführt.

Herrn Prof. Dr. A. Mewis danke ich sehr herzlich für sein stetes Interesse an dieser Arbeit sowie für viele weiterführende Anregungen und Diskussionen.

Herrn Prof. Dr. W. Frank gilt mein Dank für seine Bereitschaft, für diese Arbeit als Zweitgutachter zur Verfügung zu stehen.

Herrn Prof. D. Johrendt danke ich herzlichst für Hilfe und Anregungen bei theoretischen und technischen Fragestellungen. Mein besonderer Dank gilt Ihm für seine wertvollen Hilfen bei den Bandstrukturrechnungen sowie der Bereitstellung der dafür benötigten Programme.

Für ihre Unterstützung danke ich den Herren Dr. H. Wunderlich, Dr. W. Poll und Dr. G. Reiß.

Bei den Damen E. Hammes und K. Skierkowska sowie den Herren P. Roloff und D. Dethmann bedanke ich mich für die Durchführung physikalischer Messungen und die Hilfe bei technischen Problemen.

Weiterhin möchte ich allen Mitarbeitern im Institut für ihr stetiges Interesse und ihre Gesprächsbereitschaft danken.