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Abstract

In this thesis, the dynamics of granular matter are investigated in different
experiments. Image processing algorithms are developed and used to ex-
tract particle positions from the experimental data.

A 2D Lorentz model is realized by driving a particle through a network of
obstacles on a vibrating table. The mechanism of driving a particle hor-
izontally by vertical vibrations is analyzed in detail. The mean-squared
displacement is measured over more then six decades in time. Critical ex-
ponents for the long-time dynamics of particles of different sizes are found
and compared to simulation results.

The behavior of 2D granular fluids close to the glass transition is investi-
gated: Bidisperse mixtures of disk-like particles are driven by a vibrating
table. The particles are marked by individual labels, which can be identi-
fied by an image processing algorithm. This algorithm allows to measure
the evolution of the mean-squared displacement over long times, while
the influence of particle tracking errors is greatly reduced. The emergence
of a plateau in the mean-squared displacement close to the glass transition
is observed. α-scaling is successfully applied and compared to mode-
coupling predictions.

In 3D, the data from microgravity experiments on magnetically excited
granular gases is analyzed. Particle velocity distributions both during
magnetical driving and during granular cooling are determined. The cool-
ing behavior is evaluated for different densities and Haff’s Law is verified.



Zusammenfassung

In dieser Doktorarbeit wird die Dynamik granularer Materialien in ver-
schiedenen Experimenten untersucht. Bildverarbeitungsalgorithmen zur
Bestimmung von Teilchenpositionen werden entwickelt und angewendet.

Ein 2D Lorentzmodell wird mit Hilfe durch vertikale Schwingungen ge-
triebener Testteilchen realisiert, die sich durch ein Netzwerk von Hinder-
nissen bewegen. Die Umsetzung der vertikalen Schwingungen in hori-
zontale Teilchenbewegungen wird detailiert untersucht. Das mittlere Ver-
schiebungsquadrat wird über mehr als sechs zeitliche Dekaden gemessen.
Kritische Exponenenten für die Langzeitdynamik von Teilchen verschie-
dener Größe werden ermittelt und mit Simulationsergebnissen verglichen.

Das Verhalten eines zweidimensionalen granularen Fluids wird unter-
sucht: Bidisperse Mischungen scheibenähnlicher Teilchen werden durch
einen Rütteltisch angetrieben. Die einzelnen Teilchen werden mit indivi-
duellen Codes markiert, die dann durch einen Bildverarbeitungsalgorith-
mus ausgelesen werden. Dieser Algorithmus erlaubt, Langzeitmessun-
gen durchzuführen und dabei Störungen durch Teilchenverfolgungsfehler
weitestgehend zu vermeiden. Die Ausbildung eines Plateaus im mittleren
Verschiebungsquadrat über mehr als vier zeitliche Dekaden kann nahe
dem Glasübergang beobachtet werden. α-Scaling wird erfolgreich ange-
wandt und mit Modenkopplungsvorhersagen verglichen.

Die Daten eines Mikrogravitationsexperimentes bezüglich magnetisch ge-
triebener granularer Gase werden ausgewertet. Die Verteilungen der Teil-
chengeschwindigkeiten werden sowohl für die Anregungsphase als auch
für die Phase des granularen Kühlens bestimmt. Das granulare Kühlen
wird bei verschiedenen Dichten untersucht und das Haff’sche Gesetz kann
bestätigt werden.
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Chapter 1

Introduction

1.1 Granular Matter

Granular matter is defined as an assembly of macroscopic solid particles.
Macroscopic means, that the particles are large enough to not show any
significant thermal motion [1]. The most familiar example for granular
matter is sand, but also powders, grains, boulders and even the rings of
Saturn can be considered a granular material according to the definition
above. Because it can be applied to such a variety of systems, granular
physics is quite relevant both for understanding phenomena in nature and
for optimizing industrial processes.

Granular matter can occur in different states: For instance, sand can be-
have like a solid when lying still at a beach or in a desert. But it can also
behave like a liquid for example in an avalanche or like a gas in a sand
storm. However, because thermal movements do not play a role for granu-
lar matter1, none of these states can be described by equilibrium statistical
mechanics.

When investigating granular matter, it appears to be reasonable to first
distinguish between granular statics (solid-like behavior) and granular

1For example, consider a sand grain with a diameter of 2r = 0.1mm and a density of
ρ = 2.5 kg

l : This grain has a mass of 4
3πr3ρ ≈ 1.3 ∗ 10−9kg. For a temperature T = 300K, the

sand grain has an average thermal energy ET =
3
2 kBT ≈ 6.21 ∗ 10−21J. This energy could

only lift the considered grain by h = ET

mg ≈ 4.87 ∗ 10−13m, which is by more than 8 orders

of magnitude smaller than the diameter of 10−4m, and therefore negligible. On the other
hand, if this grain would move by an average speed of 1 mm

s , its temperature would equal
∼ 0.3TK.
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dynamics (liquid- or gas-like behavior). Both subjects are challenging in
different ways:

The problem of granular statics is essentially a problem of mechanical
stability in a disordered system. Other than for crystaline solids, for me-
chanically stable disordered systems there is no generally accepted defini-
tion: Some researchers assume that there is a well-defined random-close
packing state that disordered systems tend to approach when they are
coming to rest [2]. This random-close packing state is often thought of as
being geometrically preferred in some way. Therefore, many approaches
of explaining random-close packing are based on analysing geometrical
properties of packings of spheres [3, 4, 5]. It has been argued, that the
properties of a disordered granular solid are mainly determined by the
circumstances of its formation [6], e.g. if the grains were shaken more or
less before coming to rest. This would make it even more complicated to
formulate a theory explaining granular solids, because both statical and
dynamical properties of granular matter would have to be considered.

On the other hand, dynamical granular systems show many analogies
to classical liquids or gases. For example, one can define a granular tem-
perature T = 3

2 < v2 >, which can be calculated from the particle velocities
v, or define a pressure P for a granular gas. Therefore, upto a certain
point it is possible to apply fluid mechanics or gas equations to dynami-
cal granular systems. However, the validity of such analogies is limited,
because different from e.g. a molecular gas, a dynamical granular system
constantly dissipates kinetic energy due to inelastic particle-particle colli-
sions. Therefore, in order to maintain a dynamical granular state, there has
to be a driving mechanism which constantly injects energy to the system
(e.g. gravity for an avalanche or air flow for a sand storm). Such systems
may reach a steady state, but not an equilibrium state.

The fact that such a dynamical system samples many different states over
time, makes it accessible by methods from statistical physics. Thus, inves-
tigating dynamical granular systems might be a good starting point for
developing a theory of granular matter, which eventually might allow to
draw conclusions also about static granular systems. This thesis focuses
on investigating dynamical granular systems experimentally in order to
increase the amount of empirical knowledge about such systems. Such
knowledge might be used as the basis, on which a potential theory of
granular matter could be built.
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This thesis is seperated into three different parts, which cover three differ-
ent realizations of granular dynamics:

• In the first part, the dynamics of a single particle within a network of
obstacles (Lorentz model) is investigated. This allows to focus on the
impact of the geometry of a disordered system on particle dynamics.

• In the second part, a 2D granular gas is investigated at high densities.
This means, that the static obstacles from the first part are effectively
replaced by moving obstacles, which are the particles of the granular
gas hindering each other’s movement. Therefore, the dynamics of
such a system can not be explained purely geometrically anymore,
but result from a combination of geometrical and dynamical factors.

• In the third part, the granular cooling of a 3D granular gas is inves-
tigated at low densities. Because a homogenous 3D dilute granular
gas is very difficult to achieve in a laboratory experiment, the data
resulting from a microgravity campaign is used. Therefore, different
from the first two parts, the third part of this thesis is not based on
own experiments, but deals with the data analysis for an already
existing experiment.

1.2 Lorentz Model

The Lorentz model [7] was originally developed to explain the conductivity
of non-homogenous metals. In this model, the interaction of a randomly
moving test particle with a network of randomly distributed spherical
obstacles is investigated. Every obstacle has the same radius r, while
the test particle is point-shaped. The spatial coordinates of the obstacles
are drawn from a uniform probability distribution. Consequently, the
obstacles are allowed to overlap. With the obstacle radius r and the number
density n of obstacles, a dimensionless density n∗ can be determined as

n∗ = rdn, (1.1)

where d is the number of spatial dimensions. The test particle starts with
an initial velocity and undergoes elastic collisions with the obstacles, i.e.
the particle velocity is conserved. Because the path of the particle does not
depend on the initial velocity, the only controling parameter relevant for
particle dynamics is the dimensionless density n∗.
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For small densities n∗, one would expect a diffusive particle motion in
the long time limit, because the obstacles cause random changes in the
particle direction, but, on the other hand, do not restrict the particle move-
ment significantly. For high densities n∗, the obstacles restrict the particle
motion to such an extend, that the particle can not percolate the system
anymore. However, there is no simple argument to predict the exact par-
ticle dynamics for intermediate densities.

The particle dynamics in 3D Lorentz models with different densities n∗

have been investigated in event driven simulations [8]. The mean-squared
displacement MSD(t) has been observed as a function of the time differ-
ence t. For low densities n∗ (e.g. n∗ = 0.3 or n∗ = 0.4), two regimes in the
function MSD(t) can be identified:

• For short times, the mean-squared displacement increases quadrat-
ically with t, i.e. MSD(t) ∼ t2. This indicates a ballistic motion of
the particle, which means that it moves with constant velocity in a
constant direction2.

• For long times, the mean-squared displacement crosses over to dif-
fusive dynamics, i.e. MSD(t) ∼ t. This crossover is caused by the in-
creasing influence of collisions and therefore changes of ~v for longer
times.

A ballistic regime at small times is also observed for higher densities
n∗. However, at higher densities the mean-squared displacement crosses
over to a subdiffusive regime (MSD(t) ∼ t

2
z with z > 2) for indermediate

times. For large times, the mean-squared displacement either approaches
MSD(t) ∼ t again for n∗ < n∗c or approaches a constant value for n∗ > n∗c.
Thereby, n∗c is a critical density seperating the densities at which the particle
can eventually diffuse through the whole system from those at which the
particle is localized by the obstacle network.

The discussed simulation also shows, that the time window of the sub-
diffusive regime becomes increasingly larger if n∗c is approached from the
side of small densities. For n∗ = 0.84, the simulation results show a subdif-
fusive regime MSD(t) ∼ t

2
z over more than five decades with an exponent

of z ≈ 6.25. This indicates, that this density is very close to the critical

2For a particle moving with a constant velocity vector ~v, the equation of movement
is given by ~r(t) = ~v(t) + ~r(0). This leads to a mean-squared displacement of MSD(t) =<
(~r(t) − ~r(0))2 > =< (~vt)2 >= v2t2, where v is the absolute value of ~v.
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density n∗(3D)
c . Therefore, from the simulation it can be concluded, that

n∗(3D)
c ≈ 0.84. (1.2)

For a 2D Lorentz model, simulation results [9] indicate a critical density
n∗(2D)

c of
n∗(2D)

c ≈ 0.359 (1.3)

and the exponent for the subdiffusive regime at the critical density ∼ t2/z is
found as z ≈ 3.036.

However, the dynamics of a Lorentz model with a granular particle are still
unknown. In particular, using a granular particle means that the collisions
become inelastic and that kinetic energy has to be injected continously. For
instance, the subdiffusive regime at intermediate time scales might change
due to different particle dynamics in a granular Lorentz model.

Therefore, in this thesis a granular Lorentz model experiment is performed
and the particle dynamics and the mean-squared displacement are inves-
tigated.

1.3 Glass Transition in Dense Granular Fluids

1.3.1 Glass Transition

Most liquids exhibit a glass transition when they are supercooled far
enough and crystallization is avoided [15]. This means, that a rapid growth
of the viscosity occurs, i.e. the liquid becomes solid-like. However, the
glass transition is not a phase transition and a glass does not exhibit long
range order, which makes it difficult to give an exact definition of the glass
transition. One widely used definition is to define the glass transition
temperature TG as the temperature at which the viscosity of the material
reaches a value of 1012Pa · s [15].

It can be shown that also hard-sphere systems exhibit a glass transition
[16, 17, 18]. However, in a hard-sphere systems temperature does only
influence the velocities, but not the trajectories of particles. Therefore, the
behavior of the system is independent of temperature. This means, that
the only parameter which can change the behavior of the system quali-
tatively is the packing fraction ϕ. The glass transition in such a system
happens, when the system is compressed to a certain packing fraction ϕG
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and crystallization is avoided.

It is also possible to define a glassy state as a state, at which the mean-
squared displacement of the system approaches a constant value [19]. In
contrast, any system in which the mean-squared displacement eventually
goes to infinity, is considered a liquid. This definition is particularely useful
in simulations or in experiments which allow for the tracking of individual
particles. However, in experiments the mean-squared displacement can
only be observed for finite times. Therefore, in experiments and simu-
lations, a system is defined as a glass, if the mean-squared displacement
seems to be restricted to a finite value during measurement time. Hence,
this definition becomes increasingly more useful for longer measurement
times.

1.3.2 Dense Granular Fluids

Mode-coupling theory [20] calculations predict, that in granular fluids the
glass transition density and other properties of the glass transition depend
on the coefficient of restitution [21, 22]. This means, that going from an
elastic hard-sphere system to a system with dissipative dynamics has a
non-trivial influence on the glass transition. However, granular fluids in
experiments or in nature do not obey the idealized conditions which are
fed into mode-coupling calculations. For example, the driving mechanism,
which injects kinetic energy, is more complex. The same is true for the dis-
sipation mechanism: The coefficient of restitution ǫ for particle-particle
collisions is in general not a constant, but a function of collision velocity,
collision angle and eccentricity. In addition, energy can also be dissipated
outside of particle-particle collisions, e.g. by air friction or, especially in
2D systems, by the system boundaries.

Experiments concerning dense 2D granular fluids have been performed
already: For a monodisperse layer of vibrated spheres, the system does
not show a glassy state, but develops crystaline structures for higher pack-
ing fractions instead [23]. Therefore, in order to observe a glassy state,
crystalization has to be avoided. One way to avoid crystalization is to
use bidisperse instead of monodisperse systems. This has been done in
another experiment, using bidisperse mixtures of steal beads driven by a
vertical upflow of air [24]. The system exhibits an amorphous state for all
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densities, hence crystallization can be avoided successfully. The behavior
of the mean-squared displacement varies with density: For low densities,
e.g. ϕ = 48.7%, a crossover from ballistic to diffusive motion can be seen.
For intermediate and high densities, a crossover to subdiffusive motion
is observed. However, the exponent e of the mean-squared displacement
MSD(t) ∼ te starts to increase again for longer times. This is even true for
densities as high as ϕ = 80.9%. However, the time of measurement is not
long enough to see if the mean-squared displacement returns to a diffusive
behavior eventually for all densities.

Mode-coupling theory predicts, that the mean-squared displacement ap-
proaches a constant value for a glass also in two dimensions [27]. The
fact, that such an behavior of mean-squared displacements could not be
observed even at densities as high as ϕ = 80.9%, can have a variety of
reasons:

1. The glass transition in the investigated system might only occur at
densities above 80.9%.

2. The mode-coupling predictions may not hold for either granular
fluids in general or for the specific dynamics of 2D granular particles
driven by an vertical airflow.

3. It is possible, that the used image processing algorithm mixes up
neighboring particles occasionally. This would lead to a apparent
growth of the mean-squared displacement at long times, even within
the glassy state (for a detailed discussion, see section 4.2.1).

In this thesis, a bidisperse 2D granular fluid driven by a vertically vibrated
baseplate is investigated. The main goal of this experiment is the investiga-
tion of a potential glass transition in a granular fluid. The granular particles
are realized by cylinders with spherical caps. While the cylindrical part of
the particles ensures a disk-like collision behavior, the spherical cap allows
for efficient driving by vertical vibrations. Each particle is tagged with an
individual, machine-readable code. This allows measurements with small
frame rates, since the particles do not have to be tracked on a frame-to-
frame basis. Therefore, it is possible to observe the system also for longer
times without producing an extreme amount of raw image data. The in-
dividual tagging of particles also adresses the potential problem of image
processing errors, because it becomes less likely to confuse the different
particles.
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1.4 Granular Cooling

If the injection of kinetic energy into a granular gas is stopped, the total
amount of kinetic energy of the system starts to decrease due to inelastic
collisions. In order to describe this behavior, it is useful to define a granular
temperature T as

T =
d

2
< v2 >, (1.4)

where d is the number of spatial dimensions and v are the velocities of
individual particles. Consequently, the loss of kinetic energy in a granular
gas without continous energy injection is referred to as granular cooling.
The time-evolution of such a system can be explained by Haff’s Law [28],
which is given as

< v(t) >=
< v(0) >
1 + t

τH

(1.5)

The time τH defines a time scale of the cooling process and depends on the
average initial velocity < v(0) >, the mean free path s and the coefficient of
restitution ǫ of particle-particle collisions. Haff’s Law was intially derived
from hydrodynamic equations [28]. However, it can also be derived as
follows3:

The change in kinetic energy during a collision is given by

E′kin = Ekin(1 − ǫ2) (1.6)

As long as no clustering [31] occurs, a homogenous system can be assumed.
In such a system, the rate rc of collisions can be calculated from the mean
free path s as:

rc =
s

< v >
(1.7)

Using equations (1.6) and (1.7), a differential equation for the granular
temperature can be formulated as

d

dt
T = − 1 − ǫ2

s/ < v >
T (1.8)

With equation (1.4), this can be written as

d

dt
< v2 >= −1 − ǫ2

s
< v >< v2 > (1.9)

3This derivation is enhancing a motivation of Haff’s Law given in [30].
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Provided that the shape of the velocity distribution does not change over
time, the quantity < v2 > only deviates from < v >2 by a constant factor α:

< v2 >= α < v >2 (1.10)

This can be inserted into equation (1.9) as

d

dt
α < v >2

= −1 − ǫ2

s
< v > α < v >2, (1.11)

which leads to:
d

dt
< v >2

= −1 − ǫ2

s
< v >3 (1.12)

This equation can now be transformed to

2 < v >
d

dt
< v >= −1 − ǫ2

s
< v >3 (1.13)

which allows to devide both sides by < v >:

2
d

dt
< v >= −1 − ǫ2

s
< v >2 (1.14)

Now the Ansatz

< v(t) >=
< v(0) >
1 + t

τH

(1.15)

is chosen and its first time derivation is calculated as

d

dt
< v(t) >= −(

< v(0) >
1 + t

τH

)2 1
τH

(1.16)

Inserting this into equation (1.14) gives

−2(
< v(0) >
1 + t

τH

)2 1
τH
= −1 − ǫ2

s
(
< v(0) >
1 + t

τH

)2 (1.17)

This proves the validity of the above Ansatz. Further, it can be transformed
to the following equation

− 2
τH
= −1 − ǫ2

s
, (1.18)

which allows to calculate the Haff time τH as

τH =
2s

1 − ǫ2 . (1.19)
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With s = 1
nσ , where n is the number density and σ is the cross section of the

particles, this can also be written as

τH =
2

(1 − ǫ2)nσ
. (1.20)

Haff’s Law seems to be a quite robust phenomenon. For instance, already
for the case of a single particle cooling between two walls, a Haff-like
behavior can be predicted (cf. sect. A.1).

Haff’s Law has already been tested in a magnetically levitated granular
gas [30]. However, the investigated granular gas consists only of about 40
particles. Also, the levitating field is not completely homogenous, which
causes the particles to form an increasingly large cluster in the field mini-
mum. Therefore, in this experiment only very few particles remain moving
freely outside the cluster for a longer time. This means, that the measure-
ment of the average velocity in the long time regime relies on 1−3 particles
only.

In micro gravity experiments, no levitating field is needed and conse-
quently no field minimum exists. Therefore, it makes sense to use micro
gravity experiments to further investigate Haff’s Law.

In this thesis, the data analysis for a drop tower experiment is performed
in order to investigate the temporal evolution of the mean velocity < v(t) >
and the shape of the velocity distribution for different granular gases.
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Chapter 2

Driving of Granular Particles in
Two Dimensions

2.1 Driving Mechanism

In order to investigate granular dynamics in two dimensions, a mechanism
to inject kinetic energy into the sample has to be developed. The goal of
such a mechanism is to excite one or more particles in a way, that they
perform a random and isotropic horizontal movement. This can be either
achieved by

• horizontal driving from the boundaries, e.g. electromagnetic actua-
tors [32] or by

• vertical driving by a vibrating surface.

For vertical driving, a homogenously vibrated surface is needed. While
vibrating a surface is not a problem itself, vibrating in a controlled and ho-
mogenous way takes some effort. For instance, the driving force needs to
be transmitted from its source to all parts of the surface without applying
bending stresses to it.

A well controlled vibration of a big area can be achieved by using indus-
trial vibrating tables (cf. fig. 2.1). Such a vibrating table uses an osillating
magnetic field in order to produce vertical vibrations. Those vibrations are
then transmitted via a massive metal block (headexpander) to a baseplate,
to which an experiment can be attached. Such a headexpander is needed
in order to avoid resonances or bending of the baseplate. If the baseplate
area is increased, also the size and weight of the headexpander has to be
increased. This requires a higher driving force and therefore a stronger

13



Figure 2.1: The LDS V721 vibrating table used for this thesis. The black
top plate of the vibrating table can be vibrated vertically by different fre-
quencies and amplitudes. An acceleration sensor (on top of the vibrating
table, connected by a blue wire) is used to controll the top plate oscillation
by a feed-back loop.

vibrating table. Thus, the size of the experimental area is limited by the
power of the used vibrating table.

For driving from the boundary, such restrictions do not apply: Because
the baseplate does not move, there is no size limit for the experimental
setup. However, particles can only gain kinetic energy by either

• collisions with the walls or

• collisions with other particles.

First, this means that certain setups, like measurements of one-particle-
dynamics in a network of obstacles, can not be realized with driving from
the boundaries at all, because the particle does not touch the walls often
enough to gain kinetic energy consistently.

But also for 2D granular gases without obstacles, driving from the bound-
aries has an important disadvantage: Particle-particle collisions are an
essential feature of the dynamics of granular gases. In order to have a
system dominated by particle-particle collisions, the mean free path needs

14



to be small compared to the system size. At each collision, the kinetic
energy of a particle is reduced by ǫ, where ǫ is the coefficient of restitu-
tion. Therefore, if the system radius equals n times the mean free path,
the average kinetic energy of a particle travelling from the boundaries to
the centre of the system is reduced by a factor ǫn. This leads to a lower
average kinetic energy in the bulk than at the boundaries of the system
and therefore makes the system inhomogenous.

This mechanism can even cause a situation, where the particles in the
centre of the system do not move at all, although the system is constantly
driven from the walls1. In addition, the energy transport within such a
system depends highly on the coefficient of restitution ǫ. Therefore, it
would be very difficult to investigate systems with high ǫ or to compare
the granular dynamics of systems with different ǫ.

In summary, driving from the boundaries has many intrinsic limitations,
which become particularly relevant for interesting experimental setups
like dense systems or systems with small ǫ. On the other hand, driving
by vertical vibrations does not have any intrinsic limitations, but is only
limited by the power of the vibrating table.

Therefore, a vertical shaking setup is chosen: A LDS V721 vibrating ta-
ble with a suitable headexpander is used in order to employ a defined
vertical oscillation to a 500 ∗ 500mm2 baseplate. This vibrating table is able
to produce oscillation frequencies between 5Hz and 4000Hz with a peak
force of about 4000N. With a total weight of headexpander and experiment
of≈ 20kg and a reasonable margin of safety, this allows a peak acceleration
of about 10g. Due to the construction of the vibrating table, the maximum
amplitude of the oscillation is 12.7mm. For sine-shaped vibrations, the
relation of amplitude A, peak acceleration a and frequency f is given as

a = A(2π f )2 (2.1)

The actual oscillation frequency and amplitude can then be optimized in
order to achieve an optimal driving of the particles.

1An interesting example for this can be seen in a microgravity experiment described
in [33]: Granular particles are driven by the walls of a container. For certain packing
fractions, this leads to a motionless dense cluster of particles in the centre of the container,
although the walls of the container are still moving.
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2.2 Dynamics of a Point-Shaped Particle

A crucial point of the driving mechanism is the dynamics of individual
particles. The particles has to be driven in a way that

1. all particles can gain kinetic energy,

2. the resulting movement of the particles is random and

3. the particles are restricted to a 2D-movement, e.g. do not slip on top
of each other.

In order to fulfill all three conditions, the particle shape, the parameters
of the driving oscillation and the experimental setup have to be chosen
accordingly. For this, a good understanding of the driving mechanism is
needed. Therefore, first the dynamics of a point-shaped particle on an
oscillating surface is discussed.

2.2.1 Vertical Movement of Inelastic Particles

Consider a totally inelastic particle (ǫ = 0) on a surface which performs a
sine-shaped vibration with an oscillation frequencyω = 2π f , an amplitude
A and a peak acceleration a. If a particle is placed on that surface, it will
stay there unless the surface accelerates downwards with more than one
g. If this happens, the particle crosses over to free fall, until it hits the
vibrating surface again.

The z-position of the vibrating surface as a function of the time t is given
as:

z(t) = A sin (ωt) (2.2)

Then the velocity ż(t) and the acceleration z̈(t) of the surface are given as

ż(t) = Aω cos (ωt) (2.3)

and
z̈(t) = −Aω2 sin (ωt). (2.4)

With this, the peak acceleration a can be expressed as

a = Aω2. (2.5)

16



For convenience, a dimensionless peak acceleration G is defined as

G =
a

g
=

Aω2

g
. (2.6)

Now the time tJ, at which the surface moves downwards with z̈(tJ) = −g,
can be calculated from (2.4) and (2.6):

tJ =
1
ω

arcsin
g

Aω2 =
1
ω

arcsin
1
G

(2.7)

The velocity of the surface vJ at the time tJ can then be calculated as follows:

vJ = ż(tJ) = Aω cos (ωtJ) = Aω cos (arcsin
1
G

) = Aω

√

1 − 1
G2 (2.8)

Also, the vertical position zJ at which the particle leaves the surface can
now be calculated as

zJ = z(tJ) = A sin (ω
1
ω

arcsin
1
G

) =
A

G
(2.9)

Now tM is defined as the time the particle needs to reach its maximum
height after departing from the vibrating surface. Using equation (2.8), it
can be calculated as

tM =
vJ

g
=

Aω

g

√

1 − 1
G2 =

G

ω

√

1 − 1
G2 =

1
ω

√
G2 − 1 (2.10)

The maximum height zM of the particle is calculated as

zM = zJ +
g

2
t2
M =

A

G
+

g

2ω2 (G2 − 1) (2.11)

=
A

G
+

A

2G
(G2 − 1) =

AG

2
+

A

2G
(2.12)

However, the maximum height hM the particle reaches relative to the vi-
brating surface is more relevant than the maximum height zM the particle
reaches relative to the rest position of the surface. For large peak accel-
erations G, the peak-peak distance of the vibrating surface 2A is small
compared to zM. Therefore, in this case the approximation

hM ≈ zM = A(
G

2
+

1
2G

) ≈ AG

2
(2.13)
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Figure 2.2: The normalized particle-surface distance h(τ)
A

as a function of
τ = ω(t−tM−t j) is calculated as the difference between the absolute particle
height and the surface position for a normalized peak acceleration G = 7.

is feasible. On the other hand, for small G the movement z(t) of the surface
influences hM significantly and has to be considered. Therefore, the time-
dependent distance h(t) between particle and surface has to be calculated
and its maximum hM has to be found (cf. fig. 2.2).

For this purpose, first a variable τ = ω(t − tM − tJ) is defined. Then the
distance between particle and surface h(τ) can be written as:

h(τ) = zM −
g

2
(
τ

ω
)2 − A sin (τ + ω(tM + tJ)) (2.14)

h(τ) =
AG

2
+

A

2G
−

g

2ω2τ
2 − A sin (τ +

√
G2 − 1 + arcsin

1
G

) (2.15)

Accordingly, H := h(τ)
A

can be written as

H(τ) =
h(τ)
A
=

G

2
+

1
2G
−

g

2Aω2τ
2 − sin (τ +

√
G2 − 1 + arcsin

1
G

) (2.16)

H(τ) =
G

2
+

1
2G
− τ

2

2G
− sin (τ +

√
G2 − 1 + arcsin

1
G

) (2.17)

The dimensionless quantity H(τ) depends only on the peak acceleration G.
This means that the shape of the function h(t) depends solely on the peak

18



G 2 3 4 5 6 7
HM 1.27 2.37 3.09 3.59 3.95 4.22

Table 2.1: Normalized peak heights of inelastic particles on a vertically
vibrated surface for different peak velocities of a sine-shaped surface vi-
bration. The peak height HM is given in units of the vibration amplitude.
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Figure 2.3: Dimensionless trajectories of inelastic particles on a vibrating
surface for different dimensionless peak accelerations G, which are indi-
cated by numbers in the plot. The red curve is the same as shown in figure
2.2.

acceleration G, while the quantities A and ω are prefactors, which define
the spatial and temporal dimension of h(t).

The maxima HM of the function H(τ) are obtained numerically for dif-
ferent peak accelerations G and shown in table 2.1 For G ≤ 1, the particle
does not leave the surface at all and therefore hM

A
is always zero. For G≫ 1,

one can see from equation (2.13) that HM can be approximated as

HM ≈
G

2
(2.18)

Once the value HM is known for all relevant peak accelerations G, the
maximum height hM can then be calculated from the oscillation frequency
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f = ω
2π and the peak acceleration G as follows:

hM(G, f ) = AHM(G) =
Gg

ω2 HM(G) =
Gg

(2π f )2 HM(G) (2.19)

2.2.2 Elastic Particles

If the coefficient of restitution ǫ becomes greater than zero, the dynamics
become considerably more complicated: For ǫ = 0, a particle can only
leave the vibrating surface excactly at the moment tJ, when the surface’s
downward acceleration exceeds 1g:

z̈(tJ) = −g (2.20)

On the other hand, if a particle performs an elastic collision with the
surface (ǫ > 0), it can keep some of its kinetic energy. This means, that it
can leave the surface again immediately, no matter how much the surface
is accelerating or decelerating at that moment. Therefore, one gets for the
starting time tJ of a particle jump:

z̈(tJ) ≥ −g (2.21)

Times with z̈(t) < −g are still excluded, because a free-falling particle can
not collide with the surface when it accelerates downwards with more
than 1g. The time tJ and therefore the velocity vJ = ż(t) now depends on
the preceding jump of a particle which again depends on the jump before.
Therefore, in most cases the trajectory of a particle will become unpre-
dictable very soon. This also makes it very difficult to estimate the largest
height a particle can gain relative to the surface.

However, an upper treshold hM
M

(G, f ) for the relative particle height can
be estimated as follows: Using equation (2.6), the maximum velocity żM of
the surface is given as

żM = Aω =
gG

ω
. (2.22)

When a particle with velocity ~v collides with a surface which moves with
velocity ż, the velocity ~v′ of the particle after the collision is given by

~v′ − ~̇z = −ǫ(~v − ~̇z). (2.23)

This can be transformed to:

~v′ = −ǫ~v + (1 + ǫ)~̇z (2.24)
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Because all vectors are parallel to each other, this can also be written as a
scalar equation:

v′ = ǫv + (1 + ǫ)ż (2.25)

Now, using the maximum surface velocity żM, an upper treshold of the
velocity v′ after the collision can be given by

v′ ≤ ǫv + (1 + ǫ)żM (2.26)

With the assumption that the particle velocity v directly before a collision
can not exceed the maximum possible particle velocity vM, this maximum
velocity vM can be calculated: The maximum velocity vM is reached directly
after a collision under optimal conditions. Those optimal conditions are
met when both the particle velocity before the collision and the surface
velocity are at their maxima:

vM = ǫvM + (1 + ǫ)żM (2.27)

Now vM can be calculated as

vM =
1 + ǫ
1 − ǫ żM (2.28)

With equation (2.22), this can be written as:

vM =
gG

ω

1 + ǫ
1 − ǫ (2.29)

The upper treshold hM
M

(G, f ) of the height can then be estimated as:

hM
M ≈

1
2

g(
vM

g
)2
+ A =

v2
M

2g
+ A (2.30)

The summand A is caused by the fact that the surface position at the peak
height is unknown and h is defined as the distance between surface and
particle. With equation (2.22) and equation (2.6), this can be transformed
to

hM
M ≈

g2G2

2qω2

(1 + ǫ)2

(1 − ǫ)2 +
gG

ω2 =
gG

ω2 (
G

2
(1 + ǫ)2

(1 − ǫ)2 + 1) (2.31)

With ω = 2π f , one can finally write:

hM
M(G, f , ǫ) ≈

gG

4π2 f 2 (
G

2
(1 + ǫ)2

(1 − ǫ)2 + 1) (2.32)
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For large G or large ǫ, the second summand can be dropped and one gets2:

hM
M(G, f , ǫ) ≈

gG2

8π2 f 2

(1 + ǫ)2

(1 − ǫ)2 (2.33)

This equation can now be compared to the large-G-limit of the maximum
height hM(G, f ) for the inelastic case, which can be derived from equation
(2.18) and equation (2.19) as

hM(G, f ) =
Gg

4π2 f 2 HM(G) ≈
Gg

4π2 f 2

G

2
=

gG2

8π2 f 2 (2.34)

Therefore, for large peak accelerations G the following relation is valid:

hM
M(G, f , ǫ) ≈ hM(G, f )

(1 + ǫ)2

(1 − ǫ)2 (2.35)

This means, that in the large-G-limit the upper threshold of the jump
height of elastic particles can be calculated by multiplying the inelastic
jump height hM(G, f ) by a factor (1+ǫ)2

(1−ǫ)2 .

2.2.3 Horizontal Movement

The horizontal movement of particles is caused by the roughness of the
surface: If a particle collides with a point of the surface, which is not com-
pletely leveled, it can pick up some horizontal velocity. If the horizontal
velocity and the jump time are small, a particle might still get stuck at some
local minimum of the surface, because it can not move far enough between
two collisions to escape from that minimum. Therefore, some minimum
jump height and jump time are required in order to allow for a effective
horizontal particle movement. Those requirements have to be determined
experimentally.

However, once the requirements are met, a random horizontal movement
can be achieved. This is, because the roughnesses of the surface, which
controls the direction of the movement, are randomly distributed.

2For a comparison of equation (2.33) with observed particle trajectories, see section
2.2.3.
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Figure 2.4: Movement of a 8mm polyester resin sphere on a vibrating
surface with frequency f = 156Hz and peak acceleration a = 7g. The
evolution of vertical positions and horizontal velocities is shown over a
time period of ∼ 1.5s.

2.3 Spherical Particles

In order to investigate the dynamics of spherical particles on a vibrating
surface, a polyester resin sphere with a diameter of 8mm is put on a vi-
brating epoxi plate. Randomly ordered vertical needles are attached to the
surface and act as obstacles. The vibrating table performs a sine-shaped
oscillation with a frequency of f = 156HZ and a peak acceleration of a = 7g.
The movement of the sphere in an x-z-plane is filmed by a Phantom V10
high speed camera (cf. fig. 2.4). The coefficient of restitution is deter-
mined as ǫ ≈ 0.8 in a seperate measurement by dropping the polyester
resin sphere from a height of 100mm.

In figure 2.4, the largest observed height amounts to about 10mm. This is
consistent with equation (2.33), which predicts a maximum height hM

M
of

hM
M(G, f , ǫ) ≈

gG2

8π2 f 2

(1 + ǫ)2

(1 − ǫ)2 = 20.3mm (2.36)
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The amplitude A of the vibrating table oscillation is given as A = a
ω2 ≈

0.092mm, which is two orders of magnitude smaller than the largest ob-
served jump height of the sample sphere.

From figure 2.4, it can be seen, that the particle collides with the surface
31 times during a time interval of ∼ 1.6s. This equals a collision frequency
of about 20Hz. However, the jump height, and therefore the collision fre-
quency varies greatly with time.

The horizontal x-movement changes rapidly at the times when the par-
ticle touches the surface, which confirms that the horizontal movement
is caused by changes in the particle direction during collisions. In addi-
tion, the horizontal velocity also changes significantly in between particle-
surface collisions, which is due to collisions with the obstacles. The highest
observed horizontal velocity is about 0.05m

s
. This can be compared to the

highest vertical velocity v, which can be calculated from the largest ob-
served height h of 0.01m by

v =
√

2gh = 0.443
m

s
(2.37)

This indicates, that only a small fraction of the total kinetic energy can
be transformed into horizontal movement, which is probably due to the
relative flatness of the surface. However, the achieved horizontal velocity
is high enough to allow the particle to move randomly through the whole
system, e.g. it does not get stuck at local roughnesses at the surface.

The vertical movement can also be evaluated in a quantitative way in
order to confirm if the particle trajectory is consistent with a coefficient of
restitution ǫ ≈ 0.8. This is necessary, because the coefficient of restitution
might depend on the impact velocity and might therefore in some cases
deviate from the measured ǫ ≈ 0.8. In order to determine the ǫ of individ-
ual collision, first the impact velocities v have to be determined. This can
be done by using the temporal distances dt of collisions (c.f. fig 2.5) with
following equation:

v =
√

2gh =

√

2g
g

2
(
dt

2
)2 =

g

2
dt (2.38)

The vertical particle velocity v′ after the collsion is assumed to be equal to
the impact velocity of the next collision and can therefore be determined
by the same equation. However, in order to determine ǫ, also the velocity
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Figure 2.5: Minima and maxima of the height of a 8mm polyester resin
sphere above a vibrating surface with frequency f = 156Hz and peak
acceleration a = 7g. The minimum height is moving with time due to
roughnesses of the baseplate.
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vs of the vibrating surface at the collision has to be known. Because the
amplitude of the vibrating surface A =

gG

(2π f )2 = 7.1 ∗ 10−6m is very small,
the surface vibration can not be measured by the high speed camera. On
the other hand, an upper and a lower threshold for ǫ can be determined by
assuming that the surface is moving downwards or upwards, respectively,
with its maximum velocity vM

s , which is given as

vM
s = Aω =

Gg

2π f
= 0.0701

m

s
(2.39)

For the case of maximum upward velocity, the collision can be described
by the following equation:

v′ − vM
s = ǫ(v + vM

s ) (2.40)

For the case of maximum downward velocity, the corresponding equation
is given as:

v′ + vM
s = ǫ(v − vM

s ) (2.41)

Provided that the measured velocities v and v′ are fixed, the upper thresh-
old ǫU of ǫ can be retrieved from the case of maximum downward move-
ment, while the lower threshold ǫL is given by the case of maximum up-
ward velocity. Therefore, from equation (2.41) and equation (2.40), one can
derive

ǫU =
v′ + vM

s

v − vM
s

(2.42)

and

ǫL =
v′ − vM

s

v + vM
s

. (2.43)

In addition, a coefficient of restitution ǫ0 for the case that the baseplate
does not move during collision can be calculated as:

ǫ0 =
v′

v
(2.44)

Now, from the collision times, the impact velocities and the lower and
upper threshold for ǫ and the value ǫ0 are calculated and shown in table
2.2.

For the collision at t = 0.4422s no values have been calculated, because the
jump between t = 0.4256s and t = 0.4422s is too small for a well-defined
measurement. The upper and lower thresholds ǫU and ǫL, as well as the
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t/s dt/s vimpact/
m
s ǫL ǫ0 ǫU

0.0541
0.1083 0.0542 0.2659 0.40 0.77 1.40
0.15 0.0417 0.2046 0.40 0.88 1.86

0.1867 0.0367 0.1801 0.30 0.80 1.95
0.2163 0.0295 0.1448 0.58 1.35 3.55
0.2561 0.0398 0.1954 0.07 0.45 1.26
0.2741 0.0180 0.0881 0.53 1.75 12.40
0.3055 0.0314 0.1541 0.83 1.67 3.89
0.3578 0.0523 0.2567 0.51 0.93 1.65
0.4063 0.0484 0.2376 0.35 0.74 1.47
0.4422 - - - - -
0.4831 0.0298 0.1464 0.14 0.69 2.23
0.5036 0.0205 0.1004 0.70 1.89 8.57
0.5423 0.0388 0.1901 0.75 1.39 2.79
0.5963 0.0539 0.2644 0.20 0.52 1.07
0.6244 0.0281 0.1380 0.30 0.97 3.00
0.6516 0.0272 0.1334 0.86 1.83 4.97
0.7014 0.0498 0.2445 0.49 0.92 1.69
0.7472 0.0458 0.2246 0.77 1.32 2.37
0.8075 0.0603 0.2958 0.29 0.60 1.10
0.8438 0.0363 0.1778 0.85 1.58 3.25
0.9009 0.0572 0.2805 0.62 1.02 1.70
0.9595 0.0586 0.2874 0.78 1.21 1.92
1.0305 0.0709 0.3480 0.73 1.08 1.61
1.1072 0.0767 0.3763 0.75 1.08 1.56
1.19 0.0828 0.4062 0.84 1.15 1.60

1.2855 0.0955 0.4683 0.72 0.98 1.33
1.3791 0.0936 0.4591 0.27 0.46 0.73
1.4223 0.0433 0.2123 0.40 0.87 1.79
1.4598 0.0375 0.1839

Table 2.2: Lower thresholds ǫL, values for a not moving baseplate ǫ0,
and upper thresholds ǫU of possible coefficients of restitution ǫ of the test
particle. The thresholds are calculated from the observed collision times
of subsequent collisions of a test particle with a vibrating surfaced.
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Figure 2.6: Apparent coefficients of restitution ǫ for a 8mm polyester resin
sphere for different impact velocities. Upper thresholds ǫU, values from
assuming no baseplate movement ǫ0, and lower thresholds ǫL are shown.
The horizontal lines at ǫ = 0.85 and ǫ = 1 indicate the range of possible
values of the ǫ of the sphere-surface collision.

values for a not moving baseplate ǫ0, for different impact velocities vimpact

are plotted in figure 2.6. The plot indicates, that ǫ ≥ 0.85. This is a little
larger than the ǫ ≈ 0.8 measured by dropping the sphere from a height of
100mm. This deviation might be caused by a slight velocity dependence of
ǫ. On the other hand, the measured ǫL in figure 2.6 might also be heigher
than the actual ǫ in some cases: The horizontal velocity can also be trans-
formed back to vertical velocity during a collision. This might cause the
vertical velocity to grow during a collision by a bigger amount than what
one would expect from the driving by the shaker and the vertical velocity
vz before the collision.

Therefore, one can conclude that the trajectory shown in figure 2.4 and
figure 2.5 is consistent with the measured ǫ ≈ 0.8 of the polyester resin
sphere.
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2.4 Disks

For a 2D granular experiment, another interesting option is to choose disk-
shaped particles. However, the dynamics of disks on a vibrating surface
is much more complicated than the dynamics of a spherical particle: For
instance, if a disk collides with the surface, the course of this collision
depends very much on the tilting angle of the disk in the moment of colli-
sion: If the disk is parallel to the surface, its whole area collides with the
surface at virtually the same moment. However, if the disk is significantly
tilted, it collides with one side first and therefore experiences a significant
torque. Also the coefficent of restitution ǫ depends on the exact course of
a collision. This means that the dynamics of disks on a vibrating surface is
very difficult to predict by mathematical considerations.

The dynamics of various non-spherical particles on vibrating surfaces have
already been investigated. For example, a dimer consisting of two spheres
connected by a rod can perform horizontal drifting on a vibrated surface3

[34]. The dynamics of the dimer depend on the driving parameters like
oscillation frequency and peak acceleration. However, the exact dynamics
of disks on a vibrating surface are still unknown and therefore have to be
investigated.

2.4.1 Dynamics of Disks on a Vibrating Surface

In order to investigate the dynamics of disks on a vibrating surface exper-
imentally, twenty polyethylen disks are put into a confined area and their
behavior is observed for different oscillations. Because for many purposes
bidisperse disks are needed, ten of the disks have a diameter of 15mm,
while the other ten have a diameter of 18mm. The height of all disks is
2mm.

Five qualitatively different kinds of disk behavior are observed. Those
states are listed in table 2.3.

Table 2.4 and figure 2.7 show a number of measurements for different
peak accelerations and frequencies with the observed states (1-5).

3Similiar self-propelled particles are described in section A.2.
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State Description
1 The disks do not move in x-y-directions.
2 Some disks are moving slowly in the beginning. However, after a short

time they tend to get stuck at the system boundaries or to form big
clusters of disks which do not move anymore.

3 Some disks are moving lively, while most of the disks do not move at all.
4 Some disks are agitated to an extent that they can jump on top of other

disks or flip around. On the other hand, there are also still disks which
do not move at all.

5 All disks are moving around wildly. Some of them flip around frequently
or even jump across the system boundaries.

Table 2.3: Definition of five different possible behaviors of disks on a
vibrated surface.

2g 3g 5g 7g
20 Hz 5 - - -
25 Hz 4 - - -
30 Hz 4 5 - -
40 Hz 3 4 - -
50 Hz 3 3 5 -
70 Hz 3 3 4 5

100 Hz 2 3 3 4

150 Hz 2 2 2 3

200 Hz 2 2 2 3

250 Hz 1 2 2 2

300 Hz - 2 2 2

400 Hz - 2 2 2

500 Hz - 1 2 2

700 Hz - - 2 2

1000 Hz - - 1 2

1500 Hz - - - 1

Table 2.4: Dynamics of disks on a vibrated surface. The definition of the
different kinds of dynamic behavior are listed in table 2.3.
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Figure 2.7: Dynamical behavior of disks on a vibrated surface for different
peak accelerations G and driving frequencies f . The different kinds of
dynamical behavior are explained in table 2.3.

The data shows that for high frequencies the disks move steadily but
get stuck soon (state 2), while for low frequencies the disks move around
wildly (state 4,5), which leads effectively to 3D dynamics instead of the
desired 2D dynamics.

This dynamical behavior of the disks is plotted versus the peak accel-
eration G and the theoretical jump height hM for the inelastic case (c.f.
equation (2.19)) in figure 2.8. hM is the maximum distance from the sur-
face which the disks could reach if they would collide with the surface
completely inelasticly. However, the disks collide partly elastic and can
therefore accumulate energy over several jump cycles. This means, that
the jump height can be larger than hM. Also, the disks can be tilted during
the time when they do not touch the surface. If a tilted disk collides with
the surface, it experiences a combination of a torque and a repulsive force.

This torque tends to be higher for higher hM, because a bigger jump height
allows for a higher tilting angle. If the torque gets large enough, it might
destabilze the disk and might even cause it to flip around (state 4 and 5).
This is consistent with figure 2.8, which shows that state 4 and 5 always
occur at high hM. On the other hand, if hM is very small, this means that
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Figure 2.8: Dynamical behavior of disks on a vibrated surface for different
peak accelerations G and theoretical particle jump height hM. The theo-
retical jump height is calculated from the vibration parameters, assuming
a point-shaped and inelastic particle (cf. section 2.2.1). Therefore, the ac-
tual jump height for different points at the disks will in general deviate
significantly from the calculated hM.

the disks only leave the surface for a rather short time. Also, they can
only experience a very small torque. Therefore, in this case the disks can
only move by a small distance between two collisions. This makes it very
likely that they get stuck in some locally stable position, e.g. caused by a
small unevenness of the surface. This is also consistent with the fact that
in figure 2.8 the static state 1 only occurs at very low hM.

Also, at least some small tilting seems to be a neccessary condition
for a disk to start moving. Because of this, disks which touch the walls
or neighboring disks often stop moving: A neighboring disk (especially
if it does not move itself) or a wall provides a vertical plane, which can
restrict the tilting possibilities of the disk and by this eventually also stop
its horizontal movement. Especially for lower hM, this often leads to the
formation of groups of adjacent disks, which are not able to move any
further anymore.
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In summary, one can conclude that the complexity of the dynamics of
disks on a vibrating surface causes a significant likelihood for a disk not to
move even for quite high hM. This likelihood becomes smaller for higher
hM and eventually all disks start moving (state 5). But at the same time
a higher hM increases the likelihood of strong tilting, flipping around and
overlapping of disks, which effectively produces a 3D-system instead of a
2D-system. In the described experiments no set of parameters (G, f ) could
be found which allows for a continous movement of all particles and pre-
vents 3D-dynamics at the same time. In addition, the analysis of those
experimental results suggests that there are no such parameter sets at all.
This might also be the reason for the fact, that no 2D granular experiments
using disks on a vibrated surface can be found in literature.

2.4.2 Disks with Top Plate

A possible solution for the problem of excessive tilting of driven disks
could be the introduction of a top plate into the system, which would
constrain the disks effectively to two dimensions. Such a setup is tried by
using a plexiglass plate as top plate for a 200× 200mm2 experimental area.
This means, the disks are confined in a box which consists of the vibrating
surface as bottom plate, metal bars as horizontal boundaries and the plex-
iglass plate as top plate. Different heights of this box between 2.5mm and
5mm are tried. The whole system is vibrated with different parameter sets
which allow all disks to move, or in other words, which leads to a state-5
disk movement according to figures 4.32 and 2.8.

However, when vibrated that strongly, the plexiglass plate also starts to
vibrate significantly. This cannot be easily prevented, because it could only
be stabilized by either introducing supporting columns into the experimen-
tal area or by using a very thick plate. But introducing supporting columns
would change the bulk dynamics of the system and using a very thick plate
would lead to an undesirable high total mass of the experiment, especially,
when the experimental area is eventually extended to 500×500mm2. Also,
the choice of possible top plate materials is quite limited, because it has to
be transparent in order to allow a direct observation of the system.

A vibrating top plate allows the system height to change temporarely
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Figure 2.9: Large particle A with spherical cap. The spherical cap has a
height of k = 2mm and a curvature radius of 17mm. A cylinder with height
h = 3mm and diameter d = 20mm is placed at the top of the spherical cap.

and locally. For instance, even if the system height is set to 2.5mm, the
height can temporarly exceed 4mm at some places. This allows some disks
to slip above each other, which can be frequently observed in such setups.
This means that introducing a top plate does not prevent the disks from
performing 3D-dynamics.

Therefore, driving disks by vertical shaking in a controlled way seems
to be rather difficult. Consequently, it makes sense to look for alternative
particle shapes, which should allow for a disk-like 2D collision behavior
and for a controlled driving by vertical shaking at the same time.

Also, an experiment with open top is more suitable for possible future
extensions. For instance, it might be interesting to investigate the dynam-
ics of a sample particle, which is pulled through a dense granular fluid by
a constant force [11, 12, 13].

2.4.3 Disks with Spherical Cap

The main difficulty of driving cylindrical particles in a horizontal direction
is due to the fact, that the whole particle touches the vibrating table surface.
This leads to geometrical constraints of the possible particle movement.
Those restrictions can hinder or even effectively block the transformation
of the vertical vibrations into a horizontal motion. On the other hand,
spherical particles touch the vibrating table surface only at one point and
do not experience any geometrical constraints due to their shape. Conse-
quently, spheres can be driven very well by vertical vibrations.
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Figure 2.10: Small particle B with spherical cap. The spherical cap has a
height of k = 2mm and a curvature radius of 17mm. A cylinder with height
h = 3mm and diameter d = 16mm is placed at the top of the spherical cap.

Therefore, it makes sense to design particles, which consist of a cylin-
drical part combined with a spherical cap (cf. fig. 2.9, fig. 2.10). While
the cylindrical part ensures a disk-like particle-particle collision behavior,
a spherical cap at the lower side of the cylinder allows for a good transfor-
mation of vertical driving into horizontal motion.

In order to produce a bidisperse mixture, two different kinds of parti-
cles are designed: The cylindrical part of the large particles A has a height
of 3mm and a diameter of 20mm (cf. fig. 2.9). The cylindrical part of the
small particles B has a height of 3mm and a diameter of 16mm (cf. fig.
2.10). The curvature radius of the spherical cap is chosen as 17mm both
for A- and B-particles. This ensures, that the coupling of both kinds of
particles to the vibrating surface is as similiar as possible. Also, the height
of the spherical cap (2mm) is the same for both kinds of particles in order
to achieve an equal height of A- and B-particles.

The particles are produced from an ABS filament by a 3D printer (Maker-
bot). This 3D printer allows for a spatial resolution of about ≈ 0.3mm.

The height of the center of mass can be determined as cA = 3.52mm for
large particles and cB = 3.32mm for small particles. This is much smaller
than the curvature radius of the spherical cap of 17mm. Hence, if the
particle is tilted in one direction, it experiences a torque opposite to the
tilting direction. This means, that if tilted, the particle automatically goes
back into an upright position. On the one hand such a particle is able to
pick up horizontal velocities due to the spherical shape of its lower surface,
but on the other hand its ability to maintain an upright position ensures a
disk-like particle-particle collision behavior.
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Figure 2.11: A tilted cylinder with spherical cap experiences a torque (red
arrow) opposite to the tilting direction. The torque is caused by the fact,
that the x-y-position of the center of mass (blue cross) deviates from the
position of the contact point between spherical cap and surface.

However, if the particles are driven too strongly, they can flip around
or slip above each other. This would destroy the disk-like dynamics and
effectively produce a 3D system. Therefore, a too strong agitation of the
particles has to be avoided. Because the dynamics of disk-shaped particles
with spherical caps are quite complex, suitable parameters of the vertical
driving have to be determined experimentally: A suitable baseplate os-
cillation on the one hand has to be strong enough to produce a random
horizontal movement of particles, but one the other hand has to be weak
enough to avoid particle flipping and 3D particle dynamics.

It turns out, that a sine-shaped oscillation with a frequency of f = 120Hz
and a peak acceleration of a = 3g leads to optimal particle dynamics. The
amplitude A of this oscillation amounts to A = a

ω2 ≈ 52µm.
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Chapter 3

Lorentz Model

3.1 Setup

A Lorentz system is realized by a 400 × 300mm2 epoxi plate (cf. fig. 3.1
and 3.2). The actual area of the system is A = 350x240mm2, contained by
styrofoam boundaries. Within this area, there are N = 1600 randomly dis-
tributed needles, which act as obstacles. The positions of the needles are
calculated by a computer program, which draws the x- and y-coordinates
of the needle positions from uniform probability distributions.

The dynamics of a sample particle in this Lorentz system has to be

measured for different obstacle densities n∗ =
r2

ob
N

A
. This could be achieved

by changing the obstacle radius rob between measurements, which would
effectively mean that a new epoxi plate has to be produced. However, a
collision of a sphere of diameter rs with a point-shaped obstacle is geomet-
rically identical to a collision of a point-shaped particle with an obstacle
of radius rob. Because of this, instead of building different systems with
different obstacle radii, in this experiment different spheres with different
radii are used as sample particles. Since the needle radii are smaller than
0.5mm, while the spheres have radii between 2.9mm and 6.95mm, the ob-
stacles can be considered as approximately point-shaped.

The epoxi plate is attached to a vibrating table, which is driven by a sine
oscillation with a peak acceleration a = 7g and a frequency f = 156Hz. This
leads to an oscillation amplitude of A = a

ω2 ≈ 0.092mm. Polyester resin
spheres with diameters d = 5.8mm, d = 8mm, d = 10mm, d = 11.5mm
and d = 13.9mm are used as sample particles. Those spheres can move
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Figure 3.1: The Lorentz system experiment. The experiment is put on a
LDS V721 vibrating table, which produces vertical oscillations. A sphere
is driven by those oscillations and moves through a random network of
obstacles, which are represented by needles.

randomly through the system with the specified driving parameters. A de-
tailed analysis of the microscopic dynamics of those particles is provided
in section 2.3.

An example of a trajectory of a d = 8mm-sphere on a vibrating surface
is shown in figure 3.3. It can be seen, that the particle samples a fractal
pocket of the obstacle network.

The dynamics of the sample particle differ from the dynamics of an elastic
Lorentz model:

• The collisions between particles and needles are inelastic.

• The particle does not only change its direction and velocities during
collisions with the obstacles, but also every time it hits the base-
plate of the experiment. For the applied vibration parameters, this
happens with a collision frequency in the order of 20Hz. Also, the
collision frequency with the surface can vary greatly, depending on
the current kinetic energy of the particle (cf. sect. 2.3). This means
that the horizontal particle movement between obstacles can not be
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Figure 3.2: View from above of the Lorentz system. The black sphere
(d = 8mm) moving through the obstacle network is the sample particle.
The feint black circles are caused by the attachement of the expoxi plate to
the headexpander.
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Figure 3.3: Trajectory of a sphere with d = 8mm within the Lorentz system
experiment during a measurement time of ∼ 300s. The sphere is driven
by an vertical oscillation with frequency f = 156Hz and peak acceleration
a = 7g.

considered purely Newtonian, but is probably rather a mixture of
Newtonian and Brownian behavior.

• The particle velocity depends on a balance between driving and dis-
sipation. Since the intensity of dissipation depends on the local obsta-
cle density, the particle velocity might also depend on the geometry
of the experiment. For instance, the particle might move faster on
average within larger pockets of the obstacle network.

Because of those differences, it is interesting to compare simulation results
of frictionless Lorentz models with experimental results from a granular
Lorentz model. For instance, this might allow to draw conclusions on how
much the long-time dynamics of particles within a Lorentz model depend
on microscopic dynamics.

3.2 Experiment

For each run, a polyester resin sphere is put at a random position of the
Lorentz system plate, before the vibrating table is switched on. This start-
ing position is determined by a random number generator in order to
avoid any bias by the experimenter. If this position is blocked by needles,
another possible position is calculated until the sphere can be placed.
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Once the sphere is placed, the vibrating table is switched on and a vi-
bration with a = 7g and f = 156Hz is started. The sphere is filmed by
a high speed camera, which is able to produce videos with frame rates
between 4.68fps and 480fps at full resolution (2400x1800px2). If the reso-
lution is decreased, the frame rate can be increased beyond 480fps. From
the resulting video, the trajectory of the sphere can be determined by the
image processing algorithm. This algorithm is written in c++ and uses
following steps to determine the position of the sphere from a greylevel
image I(x, y) of the experiment:

1. A smoothed image J(x, y) is calculated from the original image I(x, y).
The smoothing filter is defined as follows:

J(x, y) =
1

(2n + 1)2

x+n
∑

k=x−n

y+n
∑

l=y−n

I(k, l) (3.1)

The smoothing is effectively a low-pass filter, which can be tuned by
the parameter n. It is used to retrieve the background intensity of the
image.

2. A local treshold T(x, y) is calculated by dividing the original image
I(x, y) by the background intensity J(x, y) and multiplying with a
factor f :

T(x, y) =
f I(x, y)
J(x, y)

(3.2)

3. A binarized image B(x, y) is produced by applying the local threshold
T(x, y) to the original image I(x, y):

B(x, y) =
{

1, if I(x, y) > T(x, y)
0, else (3.3)

4. Because a black sphere is used, now the sphere should be represented
in B(x, y) by pixels with the value 0, while all other pixels have value
1. Therefore, the position (xs, ys) of the sphere can be calculated as
an average over the positions of all pixels with value 0. In order to
avoid wrong results, the algorithm also checks if all 0-pixels form a
connected area. If not, no particle position is returned.

The algorithm is optimized by changing the parameters n and f until the
particle position can be recognized correctly. The optimal set of parameters
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diameter 4.68fps 480fps 6400fps
5.8mm 40 9 13
8mm 14 12 9

10mm 11 0 0
11.5mm 6 14 4
13.9mm 10 4 6

Table 3.1: Number of runs of measurements for different sphere diameters
and frame rates of the Lorentz model.

depends on the position and strength of light sources and on the exposure
time. However, n = 200px and f = 0.91 work for most image series.

After the particle position is known for every frame, the mean-squared
displacement M(t) := δr2(t) of the particle trajectory can be calculated. For
large times t, M(t) depends very much on the starting point and the actual
path of the particle. For instance, if a particle is too large to explore the
whole system, it is confined within a subarea of the system during the
whole measurement. In this case, the size of this subarea which contains
the starting position has a big impact on M(t). However, even if the particle
is small enough to move through the whole system, this might still take
longer than the duration of the measurement. This means, that the particle
stays within a subarea during the whole measurement even though it is
in priniciple able to leave that area. Therefore, while the impact of the
starting position is most significant for large particles, it does also exist for
smaller particles.

In order to obtain a representative M(t), multiple measurements are per-
formed for each sphere diameter and the mean-squared displacements of
individual measurements are averaged. Also, the frame rate of the camera
is varied in order to capture the dynamics of the sample particles for both
very small and rather large times. In particular, for most particle sizes mea-
surements with frame rates of 4.68fps, 480fps and 6400fps are performed.
Table 3.1 shows the exact number of measurement runs for each particle
size.

The mean-squared displacements M(t) are averaged for each frame rate
seperately and than put together in a joint plot.
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Figure 3.4: Mean-squared displacements of different spheres in the Lorentz
system

3.3 Results

The results of the Lorentz system experiment are shown in figure 3.4.
The average mean-squared displacement for different frame rates (4.68fps,
480fps and 6400fps) match each other quite well, which allows to plot
smooth mean-squared displacement curves from t ≈ 156µs to t ≈ 304s.
This means, that the measurements cover more than six decades in time.

For small times, all mean-squared displacements M(t) are approximately
proportional to t2, which means that for small times the particles mainly
move ballistically and accelerations due to collisions or friction are negli-
gible. The distance ∆xi covered by a particle during a time t can therefore
be expressed as

∆x = vt (3.4)

The behavior of the resulting mean-squared displacement M(t) can be
explained by squaring this expression and averaging over a large number
of observations:

M(t) =< ∆x2 >=< v2t2 >=< v2 > t2 (3.5)
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Figure 3.5: Manual fit of ballistic movement and subdiffusive dynamics to
the mean-squared displacement for the density n∗ = 0.160. The fit of the
ballistic regime at short times gives a velocity of

√
< v2 > ≈ 25mm

s and the
fit of the long-time regime yields an exponent of β ≈ 0.77.
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Figure 3.6: Manual fit of ballistic movement and subdiffusive dynamics to
the mean-squared displacement for the density n∗ = 0.305. The fit of the
ballistic regime at short times gives a velocity of

√
< v2 > ≈ 22mm

s and the
fit of the long-time regime yields an exponent of β ≈ 0.7.

With this equation, the mean-squared velocities of particles can be obtained
directly from the measured M(t).

For longer times, the exponent of the mean-squared displacements de-
creases below 1. The exact value of this exponent depends on the particle
diameter. For even longer times, one would either expect a transition to
diffusive dynamics or to localized dynamics, depending on if the system
is below or above the critical density n∗c [8][9]. This means, the exponent
should either approach 1 or drop to 0. However, for most sphere diameters
the time of measurement is too short to observe the long-time limes of the
exponent. Only for d = 13.9mm an eventual decrease of the exponent to 0,
which indicates localized dynamics, can be observed.

For the d = 5.8mm-sphere and the d = 8mm-sphere, the mean-squared
displacement reaches values in the order of 104mm2 at the large-time side
of figure 3.4. Because the system size is 350 × 240mm2, a mean-squared
displacement of 104mm2, which amounts to mean displacements in the
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Figure 3.7: Manual fit of subdiffusive dynamics to the mean-squared dis-
placement for the density n∗ = 0.476. The fit of the long-time regime yields
an exponent of β ≈ 0.62.

order of 102mm, is already comparably large. Therefore, trying to measure
larger mean-squared displacements would lead to significant finite size
effects.

For further evaluation of the measured data, first the effective densities of
the Lorentz system for different sphere diameters have to be determined.
The effective density n∗ is given as:

n∗ =
r2

ob
N

A
=

d2
ob

N

4A
(3.6)

rob and dob are the radius and the diameter of the obstacles. Because the
actual diameter of a needle is small compared to the particle diameter, the
effective obstacle diameter dob approximately equals the sphere diameter.
N = 1600 is the number of obstacles and A = 84000mm2 is the total area of
the experiment. The resulting densities n∗ for different sphere diameters
are listed in table 3.2.

Now the mean-squared particle velocities are determined for different
densities by a manual fit of equation (3.5) to the short-time regime of the
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Figure 3.8: Manual fit of ballistic movement and subdiffusive dynamics to
the mean-squared displacement for the density n∗ = 0.630. The fit of the
ballistic regime at short times gives a velocity of

√
< v2 > ≈ 21mm

s and the
fit of the long-time regime yields an exponent of β ≈ 0.45.

sphere diameter in mm 5.8 8 10 11.5 13.9
n∗ 0.160 0.305 0.476 0.630 0.920

Table 3.2: Densities of the Lorentz model for different diameters of the
sample sphere.
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Figure 3.9: Manual fit of ballistic movement and localization length to
the mean-squared displacement for the density n∗ = 0.920. The fit of the
ballistic regime at short times gives a velocity of

√
< v2 > ≈ 20mm

s . In the
long-time regime, the particle is arrested and the exponent is β = 0.

measured mean-squared displacements. Similiarly, the function

M(t) = atβ (3.7)

is fitted manually to the long-time regime of the measured mean-squared
displacements in order to obtain the prefactor a and the exponent β. Those
fits are shown in figure 3.5, 3.6, 3.7, 3.8 and 3.9.

The resulting mean squared velocities < v2 > for the ballistic motion
and the parameters a and β of the subdiffusive motion are listed in table
3.3.

It turns out that the mean-squared velocities < v2 > decrease with in-
creasing density n∗. The driving mechanism should only depend on the
vibrating table oscillation and on the coefficient of restitution ǫ of the par-
ticles, but not on the mass and size of the particle. Therefore, the decrease
of the mean-squared velocity is most likely not caused by differences in
the driving itself. However, the mean free horizontal path of a particle is
much smaller at higher densities. Therefore, the horizontal velocity has
less time to add up until the particle collides with an obstacle and by this
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n∗
√
< v2 >[mm

s ] a[mm2] β
0.160 25 230 0.77
0.305 22 250 0.7
0.476 - 95 0.62
0.630 21 55 0.45
0.920 20 92 0

Table 3.3: Short time velocities and parameters of a function atβ fitted to
the long-time regime of the measured mean-squared displacements.

loses a part of its horizontal velocity. This mechanism might explain the
differences in the microscopic dynamics.

The exponent β does also decrease with increasing density. For n∗ = 0.920
it becomes zero, which means that the particle becomes localized. Molec-
ular dynamics simulations predict a critical density of n∗c ≈ 0.359 for a 2D
Lorentz model [9]. Different from those simulation results, for n∗ = 0.476
and n∗ = 0.630 non-zero exponents β are measured. However, the sys-
tem used in this experiment is to small to determine if the particle finally
localizes or not at densities of n∗ = 0.476 and n∗ = 0.630. Also, the dis-
tribution of the 1600 obstacles is fixed for all measurements. This means,
that the obstacle distribution used in the experiment might not be statisti-
cally representative for a 2D Lorentz model and therefore exhibit different
properties. In order to check this, either additional measurements with
different obstacle distributions or a larger system is needed.

Another result from simulation is that the exponent β just at n∗c is

β(n∗c) =
2

3.03
= 0.66 (3.8)

This is consistent with the measured data, which shows an exponent β ≈ 0.7
at the density n∗ = 0.305. The measured β are also shown in figure 3.10.

3.4 Conclusion

A 2D Lorentz model is realized experimentally. A random particle move-
ment is achieved by vibrating the system vertically. The obtained mean-
squared displacements show a localization transition and subdiffusive dy-
namics consitent to simulation results.
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Figure 3.10: Measured exponents β as a function of the density n∗. The
dashed vertical line shows a molecular dynamics prediction for the critical
density n∗c [9].

However, for more detailed measurements a larger system size and sam-
pling over several obstacle configurations is required.
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Chapter 4

Glass Transition in a Dense
Granular Fluid

4.1 Setup

A dense granular fluid in two dimensions is represented by cylinders with
spherical caps on a vibrating surface (cf. fig 4.1). The particles used are
described in detail in section 2.4.3. In the experiment, a bidisperse mixture
consisting of 50% large particles (A) with a diameter dA = 20mm and 50%
small particles with a diameter of dB = 16mm, is used. The particles are
confined within a circular area with a diameter of 380mm. The baseplate of
this area is driven by an LDS vibrating table, which produces a vertical sine
oscillation with a frequency of f = 120Hz and a peak acceleration of a = 3g.

A camera is mounted above the experiment. This allows to continously
take pictures of the sample, which then can be evaluated by image pro-
cessing programs in order to track the movement of the sample particles.

4.2 Image Processing

For measuring quantities like e.g. the mean-squared displacement, it is
crucial to be able to track individual particles over long times. This can be
either done by tracking the particles from frame to frame within a video,
or by recognizing individual particles within images.
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Figure 4.1: Experimental setup for the dense granular fluid experiment.
The particles are contained in a circular area and vertically vibrated by a
LDS V721 shaker.

4.2.1 Particle Tracking on a Frame-to-Frame Basis

In order to track particles from frame to frame, first the particle positions
have to be evaluated for every frame. Then the found particle positions
in subsequent frames are compared. If two particle positions in two sub-
sequent frames differ by less than a particle radius, they are considered
as two subsequent observations of the same particle. By matching parti-
cle positions between subsequent frames, it is possible to track individual
particles over the whole time of an experiment1.

However, the success of such a tracking algorithm depends on two condi-
tions:

• The frame rate has to be high enough to guarantee, that no particle
can move by more than one particle radius between frames. If the
long time dynamics of particles have to be measured, this leads to
an extremely high number of images which has to be recorded and
analysed.

1A detailed description of an image processing algorithm which tracks particles on a
frame-to-frame basis is given in section 5.2
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• If the position of a particle can not be determined within a certain
frame, the tracking of this particle gets interrupted and can not be
continued, because in later frames the particle can not be identified
again. Even worse, if a particle is falsely found at a wrong position in
one frame, this can cause the image processing algorithm to swap two
particles which each other, which might e.g. artificially increase the
measured mean-squared displacement. This means, the tracking al-
gorithm depends very much on the accuracy of the image processing
algorithm which determines the particle positions. In addition, the
impact of image processing errors becomes increasingly large, when
the measurement time and therefore the total number of frames is
increased.

Because long time measurements are particularely interesting for analysing
glassy dynamics, especially the second point is critical for the accuracy of
such a particle tracking algorithm for the described experiment. The im-
pact of image processing errors on the measured mean-squared displace-
ment of a 2D-system can be estimated as follows:

Assume a system with N particles, which are tracked by an image pro-
cessing algorithm. This algorithm has a probability p > 0 to confuse a
given particle with its neighbor at a given frame. Consequently, after t
frames, (1 − (1 − p)t)N particles have been confused with neighboring par-
ticles at least once.

If a particle i is swaped with its neighbor j at a time t1, this has two effects:
First, the displacement ~Di(t) of the particle after t frames is replaced by the
sum of two seperate displacements ~Di(t1) and ~D j(t− t1− 1) of the particles i
and j after t1 and t− t1−1 frames, respectively. In addition, a displacement
~d is added, because if two particles are swaped, this appears like one par-
ticle moving by its own diameter. Consequently, the absolute value of the
vector ~d equals one particle diameter. Now, the measured displacement
~D′

i, j(t) of the apparent particle trajectory can be written as:

~D′i, j(t) = ~Di(t1) + ~d + ~D j(t − t1 − 1) (4.1)

If we now assume, that we average over a large number of trajectories of
particles, which all are swaped with a neighboring particle at the time t1,
we can write:

< ~D′(t)2 >=< (~D(t1) + ~d + ~D(t − t1 − 1))2 > (4.2)
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This means, that for such a system the measured < ~D′(t)2 > is signif-
icantly smaller than the actual mean-squared displacement M(t).

• If the particles move diffusively, the mean-squared displacement is
proportional to t and therefore

M(t) ≈M(t1) +M(t − t1 − 1) (4.6)

This means, that for diffusive dynamics, the measured< ~D′(t)2 >does
is a good approximation of the actual mean-squared displacement
M(t). However, this is only valid as long as M(t)≫ d2 is true.

• If the particles move subdiffusively, one can write

M(t)≪M(t1) +M(t − t1 − 1) (4.7)

In this case, the measured < ~D′(t)2 > is significantly larger than the
actual mean-squared displacement M(t).

Still, a particle might be swaped with its neighbors more often then once.

In that case, the term < ~d2 > has to be replaced by the term < ~dS

2
>,

while ~dS =
∑n

k=1
~dk is the sum of n apparent displacements by one particle

diameter each. Because those displacements are uncorrelated with each
other, one can write:

< ~dS

2
>= nd2 (4.8)

If one now considers the case, that the particles are at rest, the measured
mean-squared displacement M′(t) can be calculated as follows:

M′(t) =
t−1
∑

l=0

(

t − 1
l

)(

t − 1
t − l − 1

)

pl(1 − p)t−l−1ld2 (4.9)

∑t−1
l=0

(t−1
l

)( t−1
t−l−1

)

pl(1 − p)t−l−1l is the expectation value of a binomial distri-
bution, which is (t − 1)p. Therefore, one gets a apparent mean-squared
displacement of

M′(t) = (t − 1)pd2 ≈ tpd2 (4.10)

One can conclude:

1. For a system at rest (M(t) = 0), the impact of image processing errors
can be calculated from the error probability p as: M′(t) −M(t) ≈ tpd.
Hence, for p > 0, a system at rest will always appear as a diffusive
system. Even for a small error probability of p = 0.001, according to
equation (4.10), this leads to an apparent movement by one particle
diameter after 1000 frames.

55



Figure 4.3: Sketch of a particle label. The particle has the number 131,
which leads to a binary code of 131 ∗ 7 = [00001110010101]2.

2. For a moving system (M(t) , 0), it is difficult to calculate the effect
of tracking errors exactly. However, the image processing errors
drag the measured mean-squared displacements M′(t) towards the
diffusive case M′(t) ∼ t (cf. fig. 4.2).

3. Because the effect of tracking errors increases with the considered
time t, it becomes particularely difficult to properly recognize lo-
calized mean-squared displacements, because the tracking errors al-
ways add a diffusive component to the actual mean-squared dis-
placement.

However, for measuring glassy dynamics, it is interesting to look at local-
ized or subdiffusive mean-squared displacements over long time scales,
i.e. at large t. Thus, a particle tracking algorithm on a frame-to-frame basis
is not suitable for measuring glassy dynamics, because it shows apparent
hopping at long times.

4.2.2 Tracking of Labeled Particles

The main weakness of a tracking algorithm on a frame-to-frame basis is
that the effect of image processing errors adds up over time: If such a track-
ing algorithm loses a particle trajectory, it can not find the particle again
for the remaining time of the measurement, because it can not distinguish
one particle from another. In order to avoid this problem, each particle has
to be labeled by a unique code. Such a labeling system is developed as
follows:
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A unique number between 0 and 2340 is assigned to each particle. Num-
bers between 0 and 999 are assigned to large particles, while numbers
between 1000 and 2340 are assigned to small particles. Those numbers are
multiplied by seven and then turned into 14-digit binary numbers.

For instance, a big particle with number 131 gets the binary code:

131 ∗ 7 = 917 = [00001110010101]2 (4.11)

In order to make this code machine readable, it is encoded into a binary
image with 5 × 8 pixels. White pixels represent the digit 0, while black
pixels represent the number 1. The 22 pixels at the boundary of the label
are always set to 1 (black) in order to allow the image processing algorithm
to determine the dimension and, by that, the resolution of the label. The
two pixels in the upper corners of the inner area of the label are always
set to 0 (white) and the two pixels in the lower corners are always set to 1
(black). This allows to determine the orientation of the label. The binary
code with digits d13, ..., d0 is then written into the 14 remaining pixels.

1 1 1 1 1 1 1 1

1 0 d13 d12 d11 d10 0 1

1 d9 d8 d7 d6 d5 d4 1

1 1 d3 d2 d1 d0 1 1

1 1 1 1 1 1 1 1

Thereby, the digit d13 has the highest value (213) and the digit d0 has the
lowest value (20). For the particle with the number 131 and the binary code
[00001110010101]2, the label then looks as follows:

1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 1

1 1 1 1 0 0 1 1

1 1 0 1 0 1 1 1

1 1 1 1 1 1 1 1

The label of this particle is sketched in figure 4.3. A picture of this particle
within a 2D dense granular fluid can be seen in figure 4.4: The labels are
put on the top surface of the particles in a way that the center of the label
is identical with the center of the respective particle. Therefore the image
processing algorithm only needs to locate the label in order to get the exact
position of a particle. The particles are placed on a comparably bright sur-
face, in order to provide a sufficient contrast between between label and
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Figure 4.4: Labeled particles in a dense granular fluid on a vibrating table.
The particle number 131 is marked by a red number.

background.

The image processing algorithm for finding the particle positions and read-
ing the labels now works as follows:

1. An image J(x, y) is calculated from the original greylevel image I(x, y)
by replacing each pixel with the average of the pixels within a 201 ×
201px2 square around the original pixel. This operation is effectively
a low-pass filter and is used to determine the illumination of the
sample.

2. A binarized image B(x, y) is now created as

B(x, y) =
{

1, if I(x, y) < tJ(x, y)
0, else (4.12)

The threshold t is used to tune the resulting image in a way that, as
far as possible, everything except the particle labels gets the value 0,
while the particle labels get the value 1. The exact value of t depends
on the analysed video. It is usually chosen from a range between
t = 0.5 and t = 0.65.

3. Each connected area of pixels with value 1 is analysed seperately.
First, areas which are too large or too small to represent a label are
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excluded. The labels are represented by rectangles with a side ratio of
5
8 . Using this information, the image processing program measures
the angle of rotation of the found labels. The labels are then extracted
from the image and rotated into an upright position.

4. The resolution of the extracted labels is determined by measuring
their exact dimension. With this information, the values of the 8 × 5
squares within the labels (cf. fig. 4.3) can be read by averaging
the pixel values within each square and applying a threshold to the
result.

5. It is checked if all boundary squares have the value 1 and if two
corner squares of the inner region have the value 0 and the other
two have the value 1. If not, the label is rejected because it may be
unreadable.

6. The binary numbers b =
∑13

i=0 2idi are extracted from the remaining
labels and the positions of the labels are stored together with the
numbers.

7. Finally, the resulting numbers b are devided by seven and it is checked
if l = b

7 is an integer or not. If l is an integer, it is assumed that the
particle with the number l has been found and its position is written
to a data file. If l is not an integer, the particle is rejected. The num-
bers n f and nr of found and rejected particles are printed to a logfile
to check the quality of the image processing algorithm:

On average, one out of seven incorrectly read numbers can not be
detected because they still happen to be multiples of seven2. This
means, that the numbers of nr

6 particles out of the n f found parti-
cles have been read incorrectly. Therefore, the fraction p of image
processing errors is given by

p =

nr

6

n f
=

1
6

nr

n f
(4.13)

Because for all analysed videos, nr

n f
is found to be smaller than 0.2, an

upper threshold for the particle recognition errors can be given by

p < 0.035 (4.14)

2This can only happen if at least three digits of the binary number are read incorrectly,
which is the reason to choose the number 7 as the divisor.
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The errors of this image processing algorithm do also have an influence
on the measured mean-squared displacement. However, different from a
tracking algorithm on frame-to-frame basis, the impact of errors does not
increase with time: If a particle is identified incorrectly in one frame, this
does not prevent the algorithm from identifying it correctly again in later
frames.

An upper threshold for the impact of image processing errors on the mea-
sured mean-squared displacement can be calculated as follows: Assuming
a bidisperse mixture containing 50% large particles (dA = 20mm) and 50%
small particles (dB = 16mm), a granular fluid with a density of ϕ = 0.75 in
this experiment consists of

N = 2
0.75π(190mm)2

π((10mm)2 + (8mm)2)
≈ 330 (4.15)

particles. The labeling system provides 214

7 = 2340 possible particle iden-
tification numbers. Therefore, if a particle is identified incorrectly, there
is a probability of ∼ 330

2340 , that this particle is swaped with one of the 330
existing particles. This means, that the fraction pw of incorrectly measured
particle positions is given by

pw = p ∗ 330
2340

(4.16)

With p < 0.035, this yields:
pw < 0.005 (4.17)

The apparent mean-squared displacement M′(t) of a system of N particles
with a measurement time of T frames is now calculated as

M′(t) =
1

N(T − t)

N
∑

i=1

T−t
∑

τ=1

(~ri(τ) − ~ri(τ + t))2 (4.18)

If a fraction pw of the positions~ri(t) is measured incorrectly, this means that
also a fraction pw of the summands (~ri(τ)−~ri(τ+ t))2 are incorrect. However,
the remaining (1− pw)N(T− t) summands are measured correctly and their
average equals the actual mean-squared displacement M(t). This means,
that equation (4.18) can be rewritten as

M′(t) = (1−pw)M(T)+pw
1
2

1
pwN(T − t)

∑

i,τ∈incorrect

((~r′i(τ)−~ri(τ+t))2
+(~r′i(τ)−~ri(τ−t))2)

(4.19)
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The second summand now contains the average squared distance between
actual particle positions ~r and incorrectly identified particle positions ~r′.
Because the incorrect particle positions are randomly distributed and there-
fore uncorrelated to the actual particle posititions, a good estimate for an
average squared distance is r2

E, while rE is the radius of the sample area.
With this estimate, one can write:

M′(t) = (1 − pw)M(t) + pwr2
E (4.20)

Because pw < 0.005 is rather small, one can write

M′(t) ≈M(t) + pwr2
E (4.21)

This means that the mean-squared displacement is distorted by image
processing errors by an added value dM = pwr2

E, which is given by

dM < 180.5mm2 (4.22)

The upper threshold for dM equals a mean-squared displacement caused
by an average particle movement of about

√
180.5mm2 ≈ 13mm. More

importantly, the value dM does not depend on time, which means that
potential image processing errors might shift the measured mean-squared
displacement M′(t) towards higher mean-squared displacement, but can
not change the time dependence of M′(t). In particular, important fea-
tures like a supposed plateau in the mean-squared displacement can not
be destorted by image processing errors.

However, the upper threshold for tracking errors of ∼ 13mm is larger
than dA

2 , while length scales in the order of dA

10 are particularely interesting
for investigating glassy dynamics. Therefore, an additional mechanism
for preventing swaps of particles is implemented to the image processing
algorithm:

All individual squared displacements Si,τ(t) = (~ri(τ+ t)−~ri(τ))2 for a partic-
ular time difference t. The median squared displacement S(t) is calculated.
Now, all squared displacements which are larger than 100S(t) are rejected
and the measured mean squared displacement M′(t) is calculated from the
remaining squared displacements.

This prevents the algorithm from swaping particles, which are farther

away from each other than 10
√

S(t), which reduces the upper threshold
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dM of the offset due to particle confusion to3

dM(t) ∼ 50pwS(t) (4.23)

Because S(t) is in the order of magnitude of the actual mean-squared dis-
placement M(t), this leads to

dM(t) ∼ 50pwM(t) (4.24)

Having pw < 0.005, this yields:

dM(t) < 0.25M(t) (4.25)

This means, that the measured mean-squared displacement will deviate
less then 25% from the actual mean-squared displacement. In addition,
the upper threshold of 180.5mm2 for the error in the measured M(t) is still
valid.

4.3 Results

Particle trajectories are measured for different densities ϕ of a 2D bidis-
perse granular fluid. The granular fluid consists of 50% large particles with
diameters dA = 20mm and 50% small particles with diameters dB = 16mm.
For each density, the particle trajectories are measured at three differ-
ent frame rates in order to investigate the system behavior both in the
short time and in the long time regime. The used frame rates are 0.2fps,
10fps and 480fps. While for the measurement at 0.2fps a high-resolution
(4008×2672px2) Lumenera camera is used, the measurements at 10fps and
480fps are done with a Phantom high-speed camera, which has a lower
resultion (2400 × 1800px2), but is able to work at higher frame rates.

The dynamics of the granular fluid are measured at different densities
ϕ, ranging from ϕ = 0.6 to ϕ = 0.76. However, measurements at higher
densities are not possible with the mentioned experimental setup: At high

3A particle can now only be confused with particles within a circle of radius R =

10
√

S(t). This means, that the average squared displacement < D > which results from
such a potential confusion can be calculated by integrating over this area as: < D >=

1
πR2

∫ R

0
2πrr2dr = R2

2 = 50S(t).
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densities, the average particle-particle distance becomes very small and
therefore the particles can execute significant forces onto each other. If a
group of particles is pressed into one direction in a dense system, this can
put a significant pressure on individual particles, which can lead to perma-
nent particle overlaps. With increasing time of measurement, the number
of permanently overlapping particles grows, which effectively changes the
system denisity and the particle dynamics.

Therefore, measurements at higher densities than ϕ = 0.76 are omitted.
However, the increase of pressure between particles and the observed col-
lective dynamics at higher densities may also indicate that the system is
close to a glassy state.

4.3.1 Pair Distribution Functions

From the data measured at 0.2fps, particle pair distributions g(r) are cal-
culated. Particle-particle distances r are measured within each individual
frame and g(r) is calculated as a histogram of all distances r with a binning
b of 1px ≈ 1

135dA:

First, preliminary pair distribution functions gp(r) are calulated as

g
p

k,l
(r) =

Nk,l(r ≤ ρ < r + b)
Nk

1
2πrb

(4.26)

k and l indicate the species of particles, whose distances are evaluated.
This can be either all particles (T), large particles only (A), or small parti-
cles only (B). E.g., g

p

A,B(r) denotes the number density of B-particles seen
at a distance ρ ∈ [r, r+ b) from A-particles. Nk,l(r ≤ ρ < r+ b) is the number
of l-particles seen at a distance ρ ∈ [r, r + b) from k-particles and Nk is the
number of k-particles.

Now the actual pair distribution functions gk,l(r) are normalized in a way,
that for an infinite system lim

r→∞
gk,l = 1 is true. This is done by normalizing

with the number density of l-particles within the sample area.

gk,l(r) = g
p

k,l
(r)
πr2

E

Nl/N f
(4.27)
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ϕ NA (actual) NB (actual) NA (identified) NB (identified)
0.6 132 132 111.3 78.4

0.65 143 143 115.7 75.8
0.7 154 154 129.7 85.4

0.72 158 158 137.5 82.6
0.75 165 165 142.9 94.5
0.76 167 167 142.3 90.7

Table 4.1: Numbers of actual and identified large (A) and small (B) particles
for different densities of the dense granular fluid.

rE is the radius of the sample area and N f is the number of considered
frames, so that Nl

N f
is the average number of l-particles per frame. Thereby,

Nl

N f
is in general smaller than the actual number of particles within the sys-

tem, because the image processing algorithm is usually not able to identify
all particles. The average numbers of identified particles and the actual
numbers of particles for different system densities are shown in table 4.1

While, on average, about 80% of the large particles could be identified, only
about 50% to 60% of the small particles could be identified. This might be
because for small particles the distance between the particle boundary and
the particle label is much smaller than for large particles (cf. fig. 4.4). This
might prevent the image processing algorithm from properly identifying
the label.

However, the fact that the image processing algorithm has a significant
probability of failing at identifying a particle, does only decrease the statis-
tics of the pair distribution function, but does not cause systematic errors.
The failure rate is already taken into account by the normalization in equa-
tion (4.27). Potential systematic errors could only be caused by finding
particles at wrong positions. However, the image processing algorithm is
optimized in a way, that it is much less likely to falsely identify particles
than to fail at identifying particles.

The resulting pair distribution functions gT(r) can be seen in figure 4.5. All
pair distribution functions decrease quickly below 1 for higher distances.
This is caused by the finite size of the sample area: Provided a homogenous
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Figure 4.5: Total pair distribution functions gT(r) for granular fluids with
densities ϕ = 0.6, ϕ = 0.65, ϕ = 0.7, ϕ = 0.72, ϕ = 0.75 and ϕ = 0.76.
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Figure 4.6: First peak of total pair distribution functions gT(r) for granular
fluids with densities ϕ = 0.6, ϕ = 0.65, ϕ = 0.7, ϕ = 0.72, ϕ = 0.75 and
ϕ = 0.76.
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Figure 4.7: Partial pair distribution functions gAA(r) for granular fluids
with densities ϕ = 0.6, ϕ = 0.65, ϕ = 0.7, ϕ = 0.72, ϕ = 0.75 and ϕ = 0.76.

particle distribution, 1 − (rE−dA)2

r2
E

≈ 20% of the particles are closer than dA to

the system boundaries and 1 − (rE−2∗dA)2

r2
E

≈ 37.3% of the particles are closer
than 2dA to the system boundaries.

The influence of the system density on the gT(r) can be clearly seen: For
higher densities, the peaks of the pair distribution become larger and more
pronounced. Also, the peaks shift to smaller distances, because the parti-
cles are pushed closer together.

The first peak of the total pair distribution function gT(r) is shown in detail
in figure 4.6. The gT(r) is almost zero for distances below dB = 0.8dA, where
dB is the diameter of small particles. It then exhibits a shoulder for distances
between 0.8dA and 0.9dB, which is caused by small particles neighboring
other small particles. At distances between dA and 1.1dA, a peak in the
gT(r) can be seen. This peak is caused by large particles neighboring other
large particles.
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Figure 4.8: Partial pair distribution functions gAB(r) = gBA(r) for granular
fluids with densities ϕ = 0.6, ϕ = 0.65, ϕ = 0.7, ϕ = 0.72, ϕ = 0.75 and
ϕ = 0.76.
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Figure 4.9: Partial pair distribution functions gBB(r) for granular fluids with
densities ϕ = 0.6, ϕ = 0.65, ϕ = 0.7, ϕ = 0.72, ϕ = 0.75 and ϕ = 0.76.
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Figure 4.10: Possible contributions to partial pair distribution functions
gAA(r) (left), gAB(r) (center) and gBB(r) (right).

For higher densities starting from ϕ = 0.7, another peak can be seen be-
tween 0.9dA and dA. This peak is caused by small particles neighboring
big particles and becomes larger for higher densities. This means, that at
larger densities the particles tend to arrange in structures combining large
and small particles, probably since the available area can be used more
efficiently by such structures.

The left edge of the first peak in gT(r) moves to smaller distances and be-
comes much steeper for higher densities. This also shows, that at heigher
densities the particles are forced to arrange in a way, that they almost touch
each other.

The partial pair distribution functions gAA(r), gAB(r) and gBB(r) are shown in
figure 4.7, figure 4.8 and figure 4.9. The function gBA is exactly the same as
gAB and is therefore not shown. For all partial pair distribution functions,
the second peak is relatively smooth at low densities but gets split into two
peaks at higher densities:

Consider three particles in a row. The first and the last particle might
for instance be large particles, so that this particle formation contributes
to gAA(r). However, the particle in the middle can either be a large or a
small particle. If it is a small particle, then the distance between the outer
particles is r = 1

2dA + dB +
1
2dA = 1.8dA. If it is a large particle, the distance

between the outer particles is 2dA. This means, that for dense systems it
is more likely to find two large particles with a distance of 1.8dA or 2.0dA,
than for example, with a distance of 1.9dA. This leads to the observed split
of the second peak of the gAA(r). However, for less dense systems, the
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Figure 4.11: First peak of partial pair distribution functions gAA(r) for
granular fluids with densities ϕ = 0.6, ϕ = 0.65, ϕ = 0.7, ϕ = 0.72, ϕ = 0.75
and ϕ = 0.76.

particles are on average not aligned that strictly, which makes the second
peak broader and its structure less distinct.

Similiar arguments can be made about the structure of the second peak
of the partial pair distribution functions gAB(r) and gBB(r). Possible config-
urations of aligned particles, which can contribute to the according pair
distribution functions, are shown in figure 4.10.

The first peaks of the partial pair distribution functions are shown in figure
4.11, figure 4.12 and figure 4.13. For all pair distribution functions, the first
peak becomes larger and more pronounced at higher densities. However,
this effect is most significant for the pair distribution function gAB(r). This
is consistent with the observation from the total pair distribution functions,
that the particles tend to order in pairs of large and small particles at higher
densities.

The first peak of gAA(r) first decreases from ϕ = 0.6 to ϕ = 0.65 and
then starts to grow for increasing densities again. This means, that pairs
of large particles become significantly less favored when the density raises
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Figure 4.12: First peak of partial pair distribution functions gAB(r) = gBA(r)
for granular fluids with densities ϕ = 0.6, ϕ = 0.65, ϕ = 0.7, ϕ = 0.72,
ϕ = 0.75 and ϕ = 0.76.

above ϕ = 0.6. However, all pair distribution peaks tend to grow with
increasing densities, so that this effect might be overcompensated by the
overall growth of the first peak at densities above ϕ = 0.65.

In general, the pair distribution functions show no signs of crystalliza-
tion within the system. Also, the increase of density can be seen very well
in the pair distribution function, which means that the granular fluid is
sufficiently homogenous (e.g., the particles do not cluster at lower densi-
ties).

4.3.2 Mean-Squared Displacements

From the particle trajectories, mean-squared displacements are calculated.
The resulting mean-squared displacements are shown in figure 4.14.

The mean-squared displacement increases quickly at short times. At
times of about ∼ 0.02s, this increase slows down significantly. The extent
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Figure 4.13: First peak of partial pair distribution functions gBB(r) for gran-
ular fluids with densities ϕ = 0.6, ϕ = 0.65, ϕ = 0.7, ϕ = 0.72, ϕ = 0.75 and
ϕ = 0.76.
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Figure 4.14: Mean-squared displacements of a 2D granular fluid at different
densities ϕ.
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Figure 4.15: Mean-squared displacements of a 2D granular fluid at short
times. An increase with ∼ t1.55 can be observed.

of this slowing down depends on the density: The higher the density, the
slower the mean-squared displacement increases. However, at larger times
the mean-square displacement increases rapidly again for all densities.

In figure 4.14, for some densities (e.g. ϕ = 0.6), small kinks in the
mean-squared displacements can be seen at 0.1s and at 5s. This is because
three different measurements, i.e. at 480fps, 10fps and 0.2fps, go into one
mean-squared displacement curve.

Because the camera and the camera settings have to be changed between
measurements at different frame rates, the according mean-squared dis-
placements can not be measured at the same time. Also, the short-
time mean-squared displacements are only averaged over several seconds,
while the long-time mean-squared displacements are averaged over times
between 2 and 4 hours. Finally, the resolution of the Phantom high-speed
camera which is used for the short-time measurements is smaller than the
resolution of the Lumenera camera used for the long-time measurements,
which makes it harder to identify the particles. This again leads to lower
statistics at short times.
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Therefore, the kinks between mean-squared displacements measured at
different frame rates are probably due to statistical fluctuations of the sys-
tem behavior. However, those kinks usually only shift the mean-squared
displacement by less than 10% and therefore do not affect the qualitative
features of the measured system dynamics.

Short-Time Dynamics

While the mean-squared displacements for different densities deviate from
each other for long and intermediate times, at short times the system dy-
namics are very similiar (cf. fig. 4.15). All short-time mean-squared
displacements increase with the same exponent, i.e. they follow a power
law with ∼ t1.55. This means, that at those times the particles perform
directed movements rather than a random walk. However, the particle
movement is also not ballistic, which would be indicated by an exponent
of 2. One reason for this might be, that different from the dynamics of a
sphere in the Lorentz system (cf. sect. 3.3), the dynamics of cylinders with
spherical caps are more complex.

Since the short-time movement of particles is non-ballistic, no microscopic
velocity can be determined. However, it can be seen that the mean-squared
displacement increases faster for lower densities already at short time. The
short-time mean-squared displacement of the most dilute sample (ϕ = 0.6)
is about twenty percent larger than the mean-squared displacement of the
densest sample (ϕ = 0.76). Because this is a relatively small density de-
pendence of the short-time dynamics, it should not have any significant
impact on the long-time dynamics.

Aging

The initial state of the system might not be representative for the states
which the system samples over time due to its own dynamics. Therefore,
the mean-squared displacement after driving the system for a long time
might deviate from the mean-squared displacement one would measure
directly after leaving the initial state. Because the dynamics of systems
close to the glass tranisition can become very slow, it can take a long time
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Figure 4.16: Mean-squared displacements of a dense granular fluid with
the densityϕ = 0.72. The mean-squared displacements are calculated from
subsequent time periods of the same measurement.

until the influence of the initial state on the mean-squared displacement
has completely vanished. Therefore, in such systems the mean-squared
displacement M(t) can keep changing for a quite long time, until it finally
becomes stable. This behavior is called aging [10].

In order to check if aging plays a role in the granular fluid experiment,
the mean-squared displacement of the longest available run of measure-
ment (ϕ = 0.72) is calculated for five subsequent time periods of 2500s each
(cf. fig. 4.16).

It can be seen that the mean-squared displacements from the different time
periods of the measurement slightly deviate from each other. However,
no systematic change can be observed. For instance, the fastest long-time
dynamics is observed for the first two time periods, while the third time
period exhibits the slowest long-time dynamics and the forth and fifth time
period are somewhere in between.

Thus, it is likely that the differences between the different time periods
are either caused by statistical fluctuations either of the system dynamics
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Figure 4.17: Mean-squared displacement for a granular fluid of the density
ϕ = 0.6. The red line represents a manual fit to a function ∼ t0.65, while the
blue line represents a manual fit to a function ∼ t1.1.

or by the fact that the image processing algorithm sometimes fails to iden-
tify particles. This means that it makes sense to average the mean-squared
displacement over the whole time of measurement, as no substantial aging
is observed.

Exponents at Intermediate and Long Times

In order to find exponents of the mean-squared displacement function
M(t) for intermediate and long times, the mean-squared displacements are
plotted in figures 4.17, 4.18, 4.19, 4.20, 4.21, and 4.22. Functions f (t) of the
type

f (t) = btm (4.28)

are fitted manually both to the intermediate- and the long-time part of M(t).

It turns out that it is possible to properly fit such functions to the mea-
sured data for all considered densities. This means, the mean-squared
displacement actually is proportional to tm with certain exponents m both
for intermediate and long times.
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Figure 4.18: Mean-squared displacement for a granular fluid of the density
ϕ = 0.65. The red line represents a manual fit to a function ∼ t0.65, while
the blue line represents a manual fit to a function ∼ t1.3.
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Figure 4.19: Mean-squared displacement for a granular fluid of the density
ϕ = 0.7. The red line represents a manual fit to a function ∼ t0.5, while the
blue line represents a manual fit to a function ∼ t1.5.
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Figure 4.20: Mean-squared displacement for a granular fluid of the density
ϕ = 0.72. The red line represents a manual fit to a function ∼ t0.45, while
the blue line represents a manual fit to a function ∼ t1.65.
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Figure 4.21: Mean-squared displacement for a granular fluid of the density
ϕ = 0.75. The red line represents a manual fit to a function ∼ t0.38, while
the blue line represents a manual fit to a function ∼ t1.85.
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Figure 4.22: Mean-squared displacement for a granular fluid of the density
ϕ = 0.76. The red line represents a manual fit to a function ∼ t0.38, while
the blue line represents a manual fit to a function ∼ t1.9.

ϕ 0.6 0.65 0.7 0.72 0.75 0.76
mI 0.65 0.65 0.5 0.45 0.38 0.38
bI 0.028 0.02 0.015 0.012 0.008 0.007

Table 4.2: Parameters of a function f (t) = bIt
mI fitted to the mean-squared

displacement of a dense granular fluid at intermediate times for different
densities.

The parameters for the manual fits at intermediate times are listed in table
4.2.

The obtained exponent mI is always smaller then one and decreases
for increasing densities. This indicates that the system approaches a glassy
state, at which the mean-squared displacement would become localized.
However, the exponent mI = 0.38 at the highest measured density ϕ = 0.76
is still significantly larger than zero.

The parameters for the manual fits at long times are listed in table 4.3.
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ϕ 0.6 0.65 0.7 0.72 0.75 0.76
mL 1.1 1.3 1.5 1.65 1.85 1.9
bL 0.0045 0.0007 7e-5 2e-5 5e-6 4.5e-6

Table 4.3: Parameters of a function f (t) = bLtmL fitted to the mean-squared
displacement of a dense granular fluid at long times for different densities.

The exponent mL is always larger than one, which means that there is
a contribution of directed movement to the long time dynamics. Also,
it can be seen that this directed movement becomes more significant for
higher densities. However, from visual observations it can be concluded,
that the center of mass of the system does not move significantly during
measurement. Also, at higher densities it would become more difficult
for the center of mass to move than at lower densities. Therefore, if the
long-time dynamics of the system would be caused by a movement of the
center of mass, one would expect a decrease of these dynamics for increas-
ing densities.

However, the system could also rotate collectively. Because the sample
area is circular, a collective rotational movement is possible at all densi-
ties. This means, while the particles can get localized at higher densities
relative to each other, such localization would still not prevent them from
collectively moving into an angular direction.

4.3.3 Radial Mean-Squared Displacements

In order to check for a possible collective rotational movement, a radial
mean-squared displacement is defined as follows: First, the center ~c of
the sample area is determined. Then, a radial mean-squared displacement
MR(t) is calculated as:

MR(t) =< (|~ri(τ + t) − ~c| − |~ri(τ) − ~c|)2 >i,τ (4.29)

For small times and displacements, the radial mean-squared displacement
should exactly equal 1

2 of the mean-squared displacement M(t). On the
other hand, it has to become smaller than 1

2M(t) for the larger displace-
ments, since a particle moving through the center of the system might
cover a significant distance but still end up at the same radial position
|~r − ~c|. However, this effect can be considered as another finite size effect,
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Figure 4.23: Radial mean-squared displacements for granular fluids at
different densities.
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Figure 4.24: Mean-squared angular displacements for granular fluids at
different densities.
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which should not affect the qualitative features of MR(t).

The radial displacements of the granular fluid at different densities are
shown in figure 4.23. The radial mean-squared displacements show a sim-
iliar behavior to the mean-squared displacements shown in figure 4.14. For
instance, the increase of the radial mean-squared displacement slows down
at intermediate times and becomes faster again at longer times. However,
the exponent does not rise above one at long times anymore. Also, other
than the total mean-squared displacements, the radial mean-squared dis-
placements for higher densities no longer cross the radial mean-squared
displacements for lower densities at long times.

In addition, it can be seen that the radial mean-squared displacements
for high densities ϕ = 0.75 and ϕ = 0.76 stay slow for longer times than
the corresponding total mean-squared displacements.

Mean-Squared Angular Displacements

The fact, that the radial mean-squared displacements do not exhibit ex-
ponents above 1 for long times indicates that the large exponents in the
total mean-squared displacement have to be caused by a rotational motion.
However, in order to check this hypothesis, also a mean-squared angular
displacement is defined as:

Mϕ :=< ((~ri)ϕ(τ + t) − (~ri)ϕ(τ))2 >i,τ (4.30)

Thereby, the ϕ-component of the particle positions ~ri is defined as the an-
gular coordinate within a cylindrical coordinate system with origin in the
center of the sample area. Also, it is taken care of, that the absolute values
of the differences of the angular components ϕ do not exceed π. If this is
the case, the algorithm for calculating the mean-squared angular displace-
ment adds or substracts an multiple of 2π to that difference in order to map
it back onto the interval [−π, π].

The mean-squared angular displacements of the granular fluid are shown
in figure 4.24. It can be seen, that all mean-squared angular displacements
increase with exponents greater than 1 at long times. The higher the den-
sity, the higher those exponents become. This also makes the high-density
mean-squared angular displacements cross the low-density mean-squared
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angular displacements at long times, like it is observed for the total mean-
squared displacement (cf. fig. 4.14).

Therefore, it can be concluded that the fast increase of total mean-squared
displacements at long times is solely caused by a directed angular move-
ment. The fact that this effect becomes more significant for higher densities
can be explained as follows: At low densities, the particles can still move
relatively freely towards each other. Thus, the angular movements of the
particles are not neccessarily correlated with each other. However, for
larger densities, a particle can only move significantly into one direction
(in this case angularely), if all other particles do also move into that direc-
tion.

Therefore, the angular movement becomes a collective movement for
higher densities. This seems to make the movement more persistent: It is
probably more difficult for a particle to change its direction of movement,
if the system is moving collectively, than if every particle is able to move
freely relative to other particles.

Detailed Analysis of Radial Mean-Squared Displacements

In order to avoid the influence of collective angular movements, it makes
sense to analyse the radial mean-squared displacements instead of the total
mean-squared displacements.

The short-time behavior of radial mean-squared displacements is shown
in figure 4.25. Again, the short-time dynamics are similiar for all densi-
ties. However, it can be seen that the particles move slightly faster in low
density systems than in high density systems. E.g., at a density of ϕ = 0.6
the short-time radial mean-squared displacement is about 25% larger than
at a density of ϕ = 0.76. However, all radial mean-squared displacements
increase with ∼ t1.55 at short times. This is very similiar to the short-time
behavior of the total mean-squared displacements, which shows that the
collective angular movement does not play a role at short times.

Functions of the type
f (t) = btm (4.31)
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Figure 4.25: Short-time behavior of the radial mean-squared displacement
of granular fluids at different densities. The short-time increase follows
∼ t1.55.
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Figure 4.26: Radial mean-squared displacement for a granular fluid of the
density ϕ = 0.6. The red line represents a manual fit to a function ∼ t0.65,
while the blue line represents a manual fit to a function ∼ t0.86.
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Figure 4.27: Radial mean-squared displacement for a granular fluid of the
density ϕ = 0.65. The red line represents a manual fit to a function ∼ t0.62,
while the blue line represents a manual fit to a function ∼ t0.88.
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Figure 4.28: Radial mean-squared displacement for a granular fluid of the
density ϕ = 0.7. The red line represents a manual fit to a function ∼ t0.5,
while the blue line represents a manual fit to a function ∼ t0.97.
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Figure 4.29: Radial mean-squared displacement for a granular fluid of the
density ϕ = 0.72. The red line represents a manual fit to a function ∼ t0.42,
while the blue line represents a manual fit to a function ∼ t0.93.
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Figure 4.30: Radial mean-squared displacement for a granular fluid of the
density ϕ = 0.75. The red line represents a manual fit to a function ∼ t0.3,
while the blue line represents a manual fit to a function ∼ t0.75.
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Figure 4.31: Radial mean-squared displacement for a granular fluid of the
density ϕ = 0.76. The red line represents a manual fit to a function ∼ t0.16,
while the blue line represents a manual fit to a function ∼ t0.68.
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Figure 4.32: Exponents for intermediate times at different densities ob-
tained from the total mean-squared displacement (black) and the radial
mean-squared displacement (red).
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Figure 4.33: Fit of a square-root function ∼ (ϕc − ϕ)0.5 to the exponents
for intermediate times of the radial mean-squared displacements. The fit
indicates a glass transition density φc ≈ 0.775.

ϕ 0.6 0.65 0.7 0.72 0.75 0.76
mI 0.65 0.62 0.5 0.42 0.3 0.16
bI 0.013 0.01 0.007 0.006 0.004 0.005

Table 4.4: Parameters used to fit a function f (t) = bIt
mI to the intermediate-

time radial mean-squared displacements of a granular fluid at different
densities.

are manually fitted to the measured radial mean-squared displacements
both for intermediate and for long times. The fits are shown in figure 4.26,
4.27, 4.28, 4.29, 4.30, and 4.31. It can be seen, that fitting such functions
to the data is possible for all densities both for intermediate and long times.

The used fitting parameters for intermediate times are listed in table 4.4.

The resulting exponents mI are compared to the exponents obtained
from the total mean-squared displacements in figure 4.32. It can be seen,
that the exponents are very similiar for low densities up to a density of
ϕ = 0.72. However, for higher densities the exponents obtained from
the radial mean-squared displacements decrease much faster than the ex-
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ϕ 0.6 0.65 0.7 0.72 0.75 0.76
mL 0.86 0.88 0.97 0.93 0.75 0.68
bL 0.0075 0.004 8.5e-4 5.5e-4 3.8e-4 1.95e-4

Table 4.5: Parameters used to fit a function f (t) = bLtmL to the long-time ra-
dial mean-squared displacements of a granular fluid at different densities.

ponents from the total mean-squared displacements. This shows, that the
collective rotational movement of the particles partially distorts the indica-
tions of onsets of glassy dynamics in the total mean-squared displacement.

However, the increasingly fast decay of the exponents in the radial mean-
squared displacement shows that the system is already close to the glass
transition at ϕ = 0.76. Also, in figure 4.31 it can be seen that the radial
mean-squared displacement exhibits a plateau-like behavior over more
than four decades and up to a time of about ∼ 1000s at this density.

The exponents mI for intermediate times of the radial mean-squared dis-
placements seem to follow a square-root function. In order to get a better
estimate for the glass transition density, a function

f (ϕ) = a(ϕc − ϕ)0.5 (4.32)

is fit to the measured mI in figure 4.33. This fit indicates a glass transition
density

ϕc ≈ 0.775. (4.33)

The fitting parameters for the radial mean-squared displacements at long
times are shown in the table 4.5.

All exponents mL are smaller than 1. The measured exponents increase
for increasing densities up to ϕ = 0.7, where a diffusive behavior can be
observed. However, for higher densities the exponent starts to decrease
again.

One could suppose that the apparent exponents for ϕ = 0.6 and ϕ = 0.65
are decreased due to finite size effects. However, the system radius is
rE = 190mm, which equals 9.5 times the large particle diameters dA. The
according mean-squared displacement equals r2

E = 90.25. The maximum
measured mean-squared displacements for ϕ = 0.6 and ϕ = 0.65 are still
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by one order of magnitude smaller.

However, the radial mean-squared displacement is affected by finite size
effects already before the maximum possible displacement is reached. In
particular, the apparent movement of particles crossing the center of the
system is systematically underestimated by the radial mean-squared dis-
placement. If the displacements grow, it becomes more and more likely for
a particle to cross through the system center. Therefore, the comparebly
small exponents at low densities might very well be caused by finite size
effects. However, in order to further investigate this point, measurements
at larger systems or at systems with a geometry which prevents collective
angular movements would be neccessary.

The decrease of long-time exponents for densities above ϕ = 0.7 might
be due to the onset of glassy dynamics at higher density. Possibly, the in-
termediate time period of slowly increasing mean-squared displacements
would grow towards higher times, if the system would have more time
to age. However, it has been shown that no effects of ageing can be seen
at the time scales at which the system dynamics is measured. For further
investigating the long-time behavior at higher densities, the duration of
measurements has to be increased greatly.

Radial Mean-Squared Displacements of Large and Small Particles

The radial mean-squared displacements of large particles only and small
particles only are compared for granular fluids at different densities in
figures 4.34, 4.35, 4.36, 4.37, 4.38, and 4.39.

For ϕ = 0.6, the small particles are moving slightly faster than the large
particles at long times. The short-time part of figure 4.34 does not show this
deviation. This is probably caused by the fact that the short time dynamic
is not sampled over long times and therefore the measured dynamics are
not fully representative for the system dynamics. However, the radial
mean squared displacements of large and small particles stay parallel at
long times, i.e. the long-time exponent does not depend on the particle size.

For all other densities no significant deviations between small-particle and
large-particle dynamics can be seen. This means that the gaps between
large particles are not big enough to let the small particles pass through
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Figure 4.34: Comparison of radial mean-squared displacements of large
and small particles for a granular fluid of the density ϕ = 0.6.
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Figure 4.35: Comparison of radial mean-squared displacements of large
and small particles for a granular fluid of the density ϕ = 0.65.
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Figure 4.36: Comparison of radial mean-squared displacements of large
and small particles for a granular fluid of the density ϕ = 0.7.
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Figure 4.37: Comparison of radial mean-squared displacements of large
and small particles for a granular fluid of the density ϕ = 0.72.
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Figure 4.38: Comparison of radial mean-squared displacements of large
and small particles for a granular fluid of the density ϕ = 0.75.
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Figure 4.39: Comparison of radial mean-squared displacements of large
and small particles for a granular fluid of the density ϕ = 0.76.
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Figure 4.40: Scaled radial mean-squared displacements. The scaled time
t̃ is calculated by dividing the actual times t by the corresponding scaling
factors given in table 4.6.

and therefore both large and small particles are equally slowed down with
increasing densities.

α-Scaling

In order to compare the long-time dynamics of radial mean-squared dis-
placements, scaled radial mean-squared displacements M′

r(t̃) are calculated
from the original radial mean-squared displacements Mr(t) as follows:

M′
r(t̃) =Mr(t̃/τα(ϕ)) (4.34)

Thereby τα is a density-dependent scaling factor. It is chosen in a way, that
at the scaled time t̃ = 1 all scaled radial mean-squared displacements M′

r(t̃)
reach a value of 0.05dA. The scaling factors τα are given in table 4.6. The
scaled radial mean-squared displacements are shown in figure 4.40.

The scaled radial mean-squared displacements match each other well at
large t̃, which indicates thatα-scaling [25, 26] is applicable for the measured
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Figure 4.41: Scaling factors τα as a function of the system density ϕ. A
function s(ϕ) = a

(ϕc−ϕ)γ can be fitted to the data with an exponent γ = 1.866
and a critical density ϕc = 0.7668.

ϕ 0.6 0.65 0.7 0.72 0.75 0.76
τα 7.31s 13.8s 45.2s 97.5s 628s 3370s

Table 4.6: Scaling factors τα of the radial mean-squared displacements for
different densities ϕ.
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data. As shown in figure 4.41, the scaling factors τα approximately follow
a function

τα(ϕ) =
a

(ϕc − ϕ)γ
(4.35)

with a prefactor a = 0.308s, the glass transition density

ϕc = 0.7668 ≈ 0.765 (4.36)

and an exponent
γ = 1.866 ≈ 1.87. (4.37)

The obtained glass-transition densityϕc ≈ 0.765 is consistent with the glass
transition density ϕc ≈ 0.775 resulting from the square-root fit of the expo-
nents for intermediate times in section 4.3.3.

Mode-coupling calculations for a monodisperse system of hard disks in
2D predict a scaling exponent γ = 2.38. This is similiar to the above expo-
nent γ ≈ 1.87 for dense granular fluids.

4.3.4 Conclusion

The dynamics of a bidisperse granular fluid with a size ratio of 4/5 and a
mixing ratio of 50% are measured at different densities between ϕ = 0.6
and ϕ = 0.76. Different from [23], the emergence of crystal structures can
be avoided.

The onset of glassy dynamics can be seen very well in the radial mean
squared-displacements: The emergence of a plateau at intermediate times
can be observed already at the density ϕ = 0.6. The dynamics at inter-
mediate times can be described by a function f (t) = bIt

mI . Beginning from
ϕ = 0.6, the exponent mI decreases and the length of the observed plateau
increases continously with increasing densities.

At a density of ϕ = 0.76, a plateau with an exponent as small as mI = 0.16
can be observed over more than four decades in the radial mean-squared
displacement. This deviates significantly from [24], where even at a very
high density ϕ ≈ 0.81 only two decades of a plateau-like behavior with a
rather high exponent mI ≈ 0.4 are observed.

Due to technical limitations, the system dynamics can not be observed
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for densities above ϕ = 0.76. However, the fact that the exponent mI is
decaying increasingly fast at densities close to ϕ = 0.76 indicates that the
actual glass transition happens probably at a slightly higher density than
ϕ = 0.76. Also the scaling behavior of the radial mean-squared displace-
ments suggests a glass transition at ϕ ≈ 0.767. This might also explain the
fact, that above ϕ = 0.76 the inter-particle pressure becomes large enough
to produce permanent particle-overlapping.
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Chapter 5

A 3D Granular Gas Experiment

5.1 Experiment: Magnetically Excited Granular

Matter

MEGraMa (Magnetically Excited Granular Matter) is an experimental
setup for the investigation of dilute granular gases under microgravity: A
granular sample consisting of paramagnetic particles in a 5x5x5cm3 sam-
ple cell is agitated by oscillating magnetic fields in microgravity. Due to
collisions with the sample cell walls, an apparently random movement of
the granular particles can be achieved. After a few seconds, the magnetic
fields are switched off and the granular particles start to gradually lose
energy due to particle-particle and particle-wall collisions. This process is
called granular cooling. The particle dynamics during this cooling process
is to be investigated.

The MEGraMa experiment was performed with similiar setups both
in parabolic flights and at a drop tower. Parabolic flights and drop tower
experiments have different microgravity durations and qualities. While
the parabolic flight experiments allow measuring under microgravity for
about 22s at a time, the microgravity quality in parabolic flights is rather
poor: Because it is difficult for an airplane to follow precisely a free-fall tra-
jectory, during the microgravity time remaining accelerations up to 0.05g
can occur. On the other hand, the drop tower allows only for microgravity
measurement times of up to ∼ 10s, but also limits remaining accelerations
during microgravity to ∼ 10−5g.

For investigating the granular cooling, it is crucial to have good micro-
gravity quality. This is because remaining accelerations can have a dom-
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inating influence especially on slow particles. For instance, it only takes
√

2∗0.05m
0.5 m

s2
≈ 0.45s for a particle to be moved from one side of the sample cell

to the other, if it is accelerated by 0.5m
s2 .

This means, that everything which happens on significantly longer time
scales (e.g. granular cooling), is distorted by remaining accelerations in a
parabolic flight. However, for remaining accelerations of 10−4g, this time

scale amounts to
√

2∗0.05m
0.0001 m

s2
≈ 32s, which is larger than the entire drop tower

measurement time of ∼ 10s.

Therefore, the drop tower data is much more suitable for a quantitive
analysis. Consequently, in this thesis a quantitative analysis of the data of
a MEGraMa experiment on a drop tower is performed.

5.2 Image Processing

In the MEGraMa drop-tower experiment, spherical mu-metal1 particles
with diameters d = 0.9mm are agitated magnetically and filmed by a high-
speed camera with a resolution of 512 × 512px2 and a framerate of 500fps
(cf. fig. 5.2).

In order to obtain the 2D-projections of particle velocities from the recorded
videos, first the particle positions have to be detected. For this, an image
processing software is programmed. This software obtains the particle
positions from the original greyscale images by performing the following
steps:

• The image is binarized by setting all pixels with greylevels below a
certain treshold to 1 and all pixels above that threshold to 0.

• As long as the number of pixels with value 1 is greater than zero, the
following loop is performed:

– The image is eroded [14] by a matrix

















0 1 0
1 1 1
0 1 0

















. In other words,

all pixels which are adjacent to a pixel with value 0 are also set
to 0.

1The mu-metal consists of 77% nickel, 14% iron, 5% copper and 4% molybdenum.
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Figure 5.2: View into the sample cell during a drop tower experiment on
granular cooling. It shows a granular gas after magnetic excitation and
is taken from a video, which is recorded by a high-speed camera during
the experiment and later used as input for the image processing algorithm
described in section 5.2.
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– The image now consists of various disconnected regions of pix-
els with value 1. For each of those regions a maximum radius
is defined by the distance between the average position of all
pixels within that region and the position of the outermost pixel
of the region.

– If the maximum radius is smaller than or equal to a parameter
mr, a particle is found, its position is stored, and all pixels of the
according region are set to zero.

• When all pixels eventually are set to zero, the loop terminates and
the particle finding algorithm is completed.

After the positions of particles in the individual frames are obtained, they
have to be put together to actual trajectories of individual particles. Be-
cause all particles look the same in the camera images, it is not possible to
identify a particular particle only by processing individual images. How-
ever, the particles usually do not move very much from frame to frame.
Therefore, it is possible to follow individual particles from frame to frame
and, by this, to obtain the trajectories of such particles.

Two particle positions obtained from two subsequent frames are consid-
ered to represent the same particle if their distance is smaller or equal than
a parameter md. In order to exclude image processing errors, all parti-
cles which can not be tracked over at least dt + 1 subsequent frames, are
neglected. The components vx(t) and vy(t) of the velocity vectors of the
tracked particles can then be calculated as:

vx(t) =
xt+⌊dt⌋ − xt−⌊dt⌋

dt

vy(t) =
yt+⌊dt⌋ − yt−⌊dt⌋

dt

From those velocities, time dependent 2D velocity distributions and mean
velocities can be calculated.

The tuning parameters of the particle tracking programm are set to mr = 3,
md = 4 and dt = 10.
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Figure 5.3: Drop tower data for a system of 605 annealed mumetal spheres.
The system is excited by sequences of applying a magnetic field for 20ms
and waiting for 80ms.

5.3 Results and Discussion

5.3.1 Evolution of Mean Velocities

Several drop tower measurements for different particle numbers and dif-
ferent kinds of particles and driving sequences are analysed. The particle
number varies between 605 and 1219 spheres with d = 0.9mm, while the
sample cell has always the dimension 50x50x50mm3. In some runs, an-
nealed paramagnetic particles are used, while in other runs the particles
are not annealed. Annealing the particles is a way to achieve a stronger
magnetic susceptibility of the paramagnetic alloy. In addition, also differ-
ent protocols of magnetic excitation are tried in the drop tower experiment.

The protocols used are listed as follows:

1. Two opposing magnets are switched on for 20ms. Then all magnets
are switched off for 80ms. After that, the other two magnets are
switched on for 20ms and finally, all magnets are switched off for
80ms again. This is repeated several time.
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Figure 5.4: Drop tower data for a system of 607 unannealed mumetal
spheres. The system is excited by sequences of applying a magnetic field
for 20ms and waiting for 80ms.

2. Similiar to protocol 1, but the magnets are switched on for 50ms and
also switched off for 50ms.

3. Similiar to protocol 1 and 2, but the magnets are switched on for 50ms
and switched off for 150ms.

For each measurement, the 2D-velocities obtained by image processing are
averaged over sets of 20 frames each and the resulting mean velocities are
plotted as a function of time. The time at which the magnetig excitation is
finished and the time of the impact are obtained from the log of the drop
tower experiments. Haff’s law

< |v(t)| >= v0

1 + t
τH

(5.1)

is fitted to the data which is obtained between switching of the magnetic
excitation and the end of the microgravity phase (impact). The fitting
parameters are the mean initial velocity v0 and the Haff-time τH. The re-
sults of fitting Haff’s Law to the experimental data are given in the table 5.1.
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Figure 5.5: Drop tower data for a system of 607 unannealed mumetal
spheres. The system is excited by sequences of applying a magnetic field
for 50ms and waiting for 150ms.

N ϕ annealed driving protocol v0 τH

605 0.185% yes 1 2.57 cm
s 1.64s

607 0.185% no 1 2.61 cm
s 1.55s

607 0.185% no 3 5.01 cm
s 1.18s

800 0.244% yes 1 2.67 cm
s 1.38s

1000 0.305% yes 1 2.45 cm
s 1.34s

1219 0.372% no 2 4.54 cm
s 1.56s

Table 5.1: Parameters used to fit Haff’s law< |v(t)| >= v0

1+ t
τH

to the measured

velocities of a 3D granular gas with particle numbers N, and, accordingly,
different densities ϕ.

104



-4 -3 -2 -1 0 1 2 3 4 5 6

t [s]

0

1

2

3

4

5

6

<
|v

|>
 [

cm
/s

]

<|v|>
Haff’s Law

Figure 5.6: Drop tower data for a system of 800 annealed mumetal spheres.
The system is excited by sequences of applying a magnetic field for 20ms
and waiting for 80ms.

The Haff time τH and the initial velocity v0 are related to the number
density n, the particle cross section σ and the coefficient of restitution ǫ of
the particles by equation (1.20):

τH =
2

v0(1 − ǫ2)nσ
(5.2)

n and σ can be expressed in terms of the particle radius r and the packing
fraction ϕ as:

n =
ϕ

4
3πr3

(5.3)

and
σ = πr2 (5.4)

This allows to write

nσ =
3ϕ
4r

(5.5)

Therefore, equation (5.2) can be written as:

τH =
8r

3v0(1 − ǫ2)ϕ
(5.6)
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Figure 5.7: Drop tower data for a system of 1000 annealed mumetal spheres.
The system is excited by sequences of applying a magnetic field for 20ms
and waiting for 80ms.

This can finally be transformed to

1
τHv0

=
3(1 − ǫ2)

8r
ϕ (5.7)

Because the numbers ǫ ≈ 0.3 and r = 0.00045m are the same for all drop
tower runs, one would expect to find a linear dependence of 1

τHv0
on the

packing fraction ϕ with offset 0. In order to check this assumption, the
measured data is plotted in figure 5.9.

The plotted data does not show a linear relationship with offset 0. In
addition, the values of 1

τHv0
seem to depend on the used protocol of mag-

netic excitation. For instance, while the two measurements for protocol 1
at ϕ ≈ 0.0019 lead to quite similiar results, the measurement for the same
density using protocol 3 deviates by more than 30%. Also, the data point
measured using protocol 2 is not consistent with the other data points,
because it shows a much smaller value for 1

τHv0
than the other data points

even though it is measured at a comparably high density.
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Figure 5.8: Drop tower data for a system of 1219 unannealed mumetal
spheres. The system is excited by sequences of applying a magnetic field
for 50ms and waiting for 50ms.

0 0.001 0.002 0.003 0.004

φ

0

5

10

15

20

25

30

35

40

1
/(

τv
0
) 

[1
/m

]

protocol 1
protocol 2
protocol 3

Figure 5.9: 1
τHv0

as a function of the packing fraction ϕ for drop tower
results. The different shaking protocols are indicated by different colors.
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Therefore, it makes sense to neglect the data points for protocol 2 and
3 for the time being and to focus on the data points for protocol 1 instead.
A linear function of the form

1
τHv0

= mϕ + b (5.8)

can be fitted to those data points as shown in figure 5.10. This fit yields
a slope of m = 5165.2 1

m
and an offset of b = 14.634 1

m
. This offset might be

caused by a finite size effect of the system: While the number of particle-
particle collisions approaches 0 for ϕ → 0, the number of particle-wall
collisions per particle and travelled length has to stay finite. In addition,
this number should be independent ofϕ for small packing fractionsϕ≪ 1.
Therefore, the finite size of the system leads to an offset of the number of
collisions per particle and travelled length. Because this number has to
be proportional to 1

τHv0
, this consequently leads to an offset in the quantity

1
τHv0

. Therefore, equation (5.7) can be rewritten as

1
τHv0

=
3(1 − ǫ2)

8r
ϕ + b (5.9)

and the slope m can be expressed in terms of the coefficient of restitution ǫ
and the particle radius r:

3(1 − ǫ2)
8r

!
= m = 5165.2

1
m

(5.10)

However, inserting ǫ ≈ 0.3 and r = 0.00045m leads to a slope of ≈ 758 1
m ,

which is about an order of magnitude smaller than the slope obtained from
the data.

The values for ǫ and r are determined relatively precisely, which means,
that they can not possibly cause such a big deviation between the expected
and the actual slope. However, the particles are only driven by the mag-
nets in x and y-direction. This means, that even though the distribution
of granular particles in the x-y-plane seems rather homogenous for most
measurements, it might be quite inhomogenous in the z-direction. For
instance, the majority of the particles could stay within a rather thin layer
during the whole experiment. Because the camera observing the exper-
iment is pointing in z-direction, it can only record x-y-projections of the
system. This means, that possible inhomogeneities in z-direction are hard
to detect.
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Figure 5.10: 1
τHv0

as a function of the packing fraction ϕ for drop tower
results for magnetic shaking by protocol 1. A linear fit is performed and
yields a slope of 5165.2 1

m
and an offset of 14.634 1

m
.

If, for instance, the vast majority of particles would stay within a sub-
volume V′ of the sample cell volume V during the whole measurement,
the effective packing fraction ϕ′ for this subvolume would be given as

ϕ′ =
V

V′
ϕ (5.11)

With the definition of a factor β := V′

V
, which equals 1 for a homogenous

system and becomes smaller than 1 for an inhomgenous system, one can
also write:

ϕ′ =
1
β
ϕ (5.12)

Because the dynamics of the system is governed by the effective packing
fraction ϕ′, ϕ′ is also the relevant quantity which goes into equation (5.7):

1
τHv0

=
3(1 − ǫ2)

8r
ϕ′ (5.13)
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However, because only the system-wide packing fraction ϕ can be deter-
mined for the drop tower experiment, it is more convenient to write:

1
τHv0

=
3(1 − ǫ2)

8rβ
ϕ (5.14)

The slope from this equation can then be compared to the measured slope
m:

m =
3(1 − ǫ2)

8rβ
(5.15)

Because ǫ ≈ 0.3 and r = 0.00045m are known, the factor β for the measure-
ments performed with magnetic excitation protocol 1 can be determined
as:

β =
3(1 − ǫ2)

8rm
=

3(1 − ǫ2)

8r ∗ 5165.2 1
m

≈ 0.147 (5.16)

This means, that the particles effectively only use about 15% of the maxi-
mum sample cell volume. However, the validity of this assumption can not
be further investigated with the experimental setup from the drop tower
experiment: In order to obtain a 3D-density distribution of the investigated
granular gas, e.g. a second camera perpendicular to the current camera
would be needed.

5.3.2 Velocity Distributions

For understanding the particle dynamics in cooling granular systems, the
evolution of the velocity distribution might be relevant. For instance, it is
an interesting question if the velocities follow a Maxwell-Boltzmann dis-
tribution or not [29].

If the individual components of velocity vectors

1. follow a Gaussian distribution with mean zero and the same standard
deviation for each spatial dimension and

2. there is no correlation between the components vx, vy and vz,

the absolute values of velocity vectors are Maxwell-Boltzmann distributed.
For a gas in thermal equilibrium, the particle velocities follow a Maxwell-
Boltzmann distribution. However, for a granular gas this is not necessarily
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Figure 5.11: Coefficient of momenta v2

v2
1

for drop tower data for a system
of 605 annealed mumetal spheres. The system is excited by sequences of
applying a magnetic field for 20ms and waiting for 80ms. The red line
represents a running average averaging over 5 data points.

true, because particles undergo dissipative collisions and therefore a gran-
ular gas can not be in thermal equilibrium.

In the drop tower experiment, the particle velocities are obtained from
a 2D-projection. Therefore, the absolute value v of a 2D velocity vector ~v
is given by the x- and y-components vx and vy of the velocity by

v =
√

v2
x + v2

y (5.17)

The z-component vz can not be observed and therefore does not contribute
to the measured velocity vectors.

Now the properties of a potential 2D-Maxwell Boltzmann distribution
have to be derived in order to be compared to the data obtained from the
drop tower experiment. First, Gaussian distributions p(vx,y) are assumed
for the individual components of the velocity vector:

p(vx) =
1

σ
√

2π
exp(−1

2
v2

x

σ2 ) (5.18)
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Figure 5.12: Coefficient of momenta v2

v2
1

for drop tower data for a system of
607 unannealed mumetal spheres. The system is excited by sequences of
applying a magnetic field for 50ms and waiting for 150ms. The red line
represents a running average averaging over 5 data points.

p(vy) =
1

σ
√

2π
exp(−1

2

v2
y

σ2 ) (5.19)

The probability p(v) for the 2D-vector having an absolute value of v can
now written in using cylindrical coordinates as follows:

pMB(v) =
∫ 2π

0
dθp(v cosθ)p(v sinθ)v (5.20)

Using the definition of p(vx,y), this gives:

pMB(v) =
∫ 2π

0
dθ

1
2πσ2 exp(−1

2
(v cosθ)2

σ2 )exp(−1
2

(v sinθ)2

σ2 )v (5.21)

With v2 = v2
x + v2

y and cos2 θ + sin2 θ = 1, one can combine the two expo-
nentials, which leads to:

pMB(v) =
1

2πσ2

∫ 2π

0
dθexp(−1

2
v2

σ2 )v (5.22)
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Figure 5.13: Coefficient of momenta v2

v2
1

for drop tower data for a system
of 607 unannealed mumetal spheres. The system is excited by sequences
of applying a magnetic field for 20ms and waiting for 80ms. The red line
represents a running average averaging over 5 data points.

The above integration yields the 2D-Maxwell Boltzmann distribution as:

pMB(v) =
1
σ2

v exp(−1
2

v2

σ2
) (5.23)

Now the first moment of the 2D-Maxwell Boltzmann distribution can be
calculated as:

v1 =

∫ ∞

0
dv

1
σ2

v2 exp(−1
2

v2

σ2
) (5.24)

Partial integration leads to:

v1 = −[v exp(−1
2

v2

σ2 )]∞0 +
∫ ∞

0
dv exp(−1

2
v2

σ2 ) (5.25)

The first summand is zero and the second summand is proportional to the
integral of the normal distribution. Therefore, v1 can be calculated as:

v1 =

∫ ∞

0
dv exp(−1

2
v2

σ2 ) =
1
2

∫ ∞

−∞
dv exp(−1

2
v2

σ2 ) =
σ
√

2π
2
= σ

√

π

2
(5.26)

113



-4 -3 -2 -1 0 1 2 3 4 5 6

t [s]

0.5

1

1.5

2
v

2
 /

 (
v

1
)2

data
running average
4/π

Figure 5.14: Coefficient of momenta v2

v2
1

for drop tower data for a system
of 800 annealed mumetal spheres. The system is excited by sequences of
applying a magnetic field for 20ms and waiting for 80ms. The red line
represents a running average averaging over 5 data points.

Similiarly, the second moment v2 can be calculated as

v2 =

∫ ∞

0
dv

1
σ2

v3 exp(−1
2

v2

σ2
) (5.27)

Partial integration leads to:

v2 = [−v2 exp(−1
2

v2

σ2
]∞0 +

∫ ∞

0
dv2v exp(−1

2
v2

σ2
) (5.28)

The first summand equals zero. The second summand can be rewritten
with the substitution u = v2 as:

v2 =

∫ ∞

0
du exp(− u

2σ2 ) (5.29)

This integral can be solved as:

v2 = [−2σ2 exp(− u

2σ2 )]∞0 = 2σ2 (5.30)
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Figure 5.15: Coefficient of momenta v2

v2
1

for drop tower data for a system
of 1000 annealed mumetal spheres. The system is excited by sequences
of applying a magnetic field for 20ms and waiting for 80ms. The red line
represents a running average averaging over 5 data points.

The moments v1 and v2 can be obtained from the measured absolute
particle velocities v as

v1 =< v > (5.31)

and
v2 =< v2 > (5.32)

The averaging is performed for sets of 20 frames each, which means that
all velocities obtained from a set of 20 frames or 40ms contribute to the
same data point for v1 and v2. Then for every data set the coefficient

v2

v2
1

is calculated and plotted as a function of time (cf. fig. 5.11, 5.12, 5.13, 5.14,
5.15, and 5.16). The measured coefficient can be compared to the according
value for a Maxwell-Boltzmann velocity distribution, which is:

v2

v2
1

=
2σ2

(σ
√

π
2 )2
=

4
π

(5.33)
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Figure 5.16: Coefficient of momenta v2

v2
1

for drop tower data for a system
of 1219 unannealed mumetal spheres. The system is excited by sequences
of applying a magnetic field for 50ms and waiting for 50ms. The red line
represents a running average averaging over 5 data points.

The plots show, that the coefficient of momenta v2

v2
1

is in general consistent
to a Maxwell-Boltzmann distribution during cooling for most drop tower
measurements.

However, at the beginning and the end of the experiment, strong devi-
ations from the Maxwell-Boltzmann distribution can be seen: The sample
cell is catapulted upwards at the beginning of an experiment and hits the
bottom of the drop tower again at the end of an experiment. Therefore,
the system undergoes strong accelerations at those times and the particle
dynamics are always completely governed by those accelerations.

After the catapulting phase, the coefficient v2

v2
1

approaches the Maxwell-

Boltzmann value of 4
π quickly already during the magnetic excitation

phase. However, the measured coefficient v2

v2
1

fluctuates significantly around
4
π . Also, in some cases (cf. fig. 5.11 and fig. 5.15) it seems to stay slightly
above that value. Therefore, a non-Maxwellian distribution can not be out-
ruled completely. In addition, there is also a possibility, that the velocity
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distribution is consistent to a Maxwell-Boltzmann distribution in the first
two moments, but not in its higher moments. However, for investigating
higher moments and for making more significant statements about the be-
havior of the first two moments, experiments with higher particle numbers
(and therefore better statistics) would be useful.

Different from the other drop tower experiments, the run with 1219 unan-
nealed particles shows strong deviations from Maxwell-Boltzmann over
the whole measurement time: During the magnetic excitation, the coeffi-
cient v2

v2
1

fluctuates wildly around 4
π . During the cooling period, it converges

to a value around 3
2 , which is clearly different from 4

π . When looking at the
original videos, it turns out that the magnetic excitation is not able to pro-
duce homogenous x− y−distributions of particles for higher particle num-
bers. The magnetic excitation produces homogenous x − y−distributions
in the experiments with ∼ 600 and ∼ 800 particles. But for the experiments
with 1000 and 1219 particles the distribution becomes increasingly inho-
mogenous, e.g. the particles tend to cluster. This behavior seems to be
caused by the paramagnetic properties of the particles, because it appears
already before the granular cooling happens. For the run with 1219 parti-
cles, the clustering of the particles seems to be strong enough to change the
velocity distribution significantly: While most particles stick together and
only move slowly, some particles can move around without participating
in clustering and therefore move much faster. This leads to a high-velocity
tail of the velocity distribution which is indicated by a v2

v2
1
> 4
π .

The clustering of particles might also explain the fact, that the data
point for 1219 particles (ϕ ≈ 0.0037) deviates significantly from all other
data points in figure 5.9. The quantity 1

τHv0
, which is proportional to the

number of collisions per travelled distance, is influenced strongly by the
spatial distribution of particles. However, the temporal evolution of the
mean absolute velocity < v > is still consistent with Haff’s Law in this
measurement (cf. fig. 5.8), even though the velocity distribution is quite
different from the other measurements.
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5.4 Conclusion

From the analysis of the described drop tower experiment, the following
conclusions can be made:

• Haff’s Law < v(t) >= v0

1+ t
τH

describes the temporal evolution of mean

absolute velocities in a cooling granular gas very well.

• The obtained Haff times τH differ from the values one would expect
for a completely homogenous system with given v0, n, σ and ǫ. This
is most likely due to inhomogenous spatial distributions of particles,
which are caused by an effectively 2D-excitation mechanism. The as-
sumption that the deviations from the expected values are caused by
the excitation mechanism is supported by the fact, that the results are
consistent between different measurements with the same shaking
mechanism.

• The influence of system walls can be clearly seen. However, it is also
shown by the data, that particle-particle collisions play a significant
role in the drop tower experiment.

• For granular gases without strong clustering, the measured veloc-
ity distributions are consistent with Maxwell-Boltzmann. However,
even for clearly non-Maxwellian velocity distributions, the time evo-
lution of mean absolute velocities still follows < v(t) >= v0

1+ t
τH

. This

means, that the validity of Haff’s Law does not depend on a specific
velocity distribution.

• The current excitation mechanism is only able to produce non-clustered
granular gases at very low densities (ϕ < 0.3%). An optimized driv-
ing mechanism, which produces non-clustered granular gases also
at higher densities, would not only increase the accessible parameter
space, but also allow for higher particle numbers and therefore better
statistics. Also, it would make sense to add magnets in the z-direction
in order to achieve a homogenous spatial distribution of particles.
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Chapter 6

Outlook

In this thesis, granular dynamics have been investigated in a Lorentz
model, for a 2D dense granular fluid, and for a 3D granular gas. In all
three experiments, results beyond literature could be obtained. However,
the analysis of the experimental results also points out possible future im-
provements.

The dynamics of a single sphere within a Lorentz model has been in-
vestigated. The localization transition was observed and exponents of the
subdiffusive dynamics were obtained. The results proved to be consistent
with simulation results. For following the long-time dynamics of the sys-
tem, a larger experimental area would be needed. Also, the experimental
results show a need for better statistics, which could be achieved by av-
eraging over different sample plates with randomly distributed obstacles.
In addition, experiments with more than one sample particle at a time or
with self-propelled particles (cf. sect. A.2) are conceivable.

In 2D dense granular fluids, the onset of glassy dynamics has been ob-
served. A plateau over more than four decades in time was found at a
density of ϕ = 0.76. Exponents of the mean-squared displacements for
intermediate and for long times have been obtained for different densities
and the scaling properties of the mean-squared displacement have been
investigated. For future experiments, a larger system size would be use-
ful in order to diminish the influence of finite size effects and to increase
statistics. Also, introducing rough system boundaries could prevent the
collective angular motion at higher densities. Another extension would be
the behavior of a pulled test particle in a dense granular fluid [11, 12, 13].
In addition, 2D fluids of self-propelled particles [35] could be investigated.
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The cooling of 3D granular gases was investigated and Haff’s Law was
verified. It was shown that the velocity distribution does not change sig-
nificantly during granular cooling. For future microgravity experiments
on granular cooling, it would be interesting to go to higher densities. Also,
the magnetic driving of particles could be improved in order to provide
more homogenous spatial distributions of particles at the beginning of the
cooling process. In addition, measuring with more than one camera would
allow to obtain 3D particle positions.
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Appendix A

A.1 Haff’s Law for a Single Particle in 1D

A simple example of dissipative dynamics is a particle oscillating between
two walls in one dimension. At each wall, the particle undergoes an in-
elastic collision with a coefficient of restitution ǫ < 1 and is reflected back
towards the opposite wall. The time-dependence of the particle velocity
v(t) can be calculated as follows.

The particle starts at time t0 = 0 at one side of the system with an inti-
tial velocity v0. After travelling by the system size L, which takes a time
t1 =

L
v0

, it hits the opposite wall and is reflected back. It then has a new
velocity v1 = v0ǫ. Consequently, the particle veloctiy vn after n collisions
is:

vn = ǫ
nv0 (A.1)

The time tn of the n-th collision can then be calculated as:

tn =

n−1
∑

i=0

L

vi
=

n−1
∑

i=0

L

v0ǫi
=

L

v0

1 − ǫ−n

1 − ǫ−1
=

L

v0

ǫn − 1
ǫn−1(ǫ − 1)

(A.2)

The function
v(t) =

v0

1 + t
τH

(A.3)

with
τH =

L

v0

ǫ

1 − ǫ (A.4)

yields the correct velocities vn(tn) directly after the collisions at the times
tn. This can be proven by inserting equation (A.2) into equation (A.3):

v(tn) =
v0

1 + tn

τH

=
v0

1 + 1−ǫ
ǫ

ǫn−1
ǫn−1(ǫ−1)

=
v0

1 − ǫn−1
ǫn

= v0ǫ
n (A.5)
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Figure A.1: Actual particle velocity (black) versus a Haff-like approxima-
tion v(t) = v0

1+ t
τ

for the cooling behavior of a particle with initial velocity
v0 = 1m

s
between walls. Collisions are indicated by black dots.

The function v(t) is very similiar to Haff’s Law (1.5). Different from the ac-
tual velocity of the particle in the described experiment, v(t) is a continous
function. However, it matches the actual particle velocity at the collision
times tn and therefore is a good approximation of the actual particle ve-
locity. Both the actual particle velocity and the Haff-like velocity function
v(t) are shown in figure A.1 for an initial velocity v0 = 1ms, a wall distance
L = 1m and a coefficient of restitution ǫ = 0.5.

A.2 Self-Propelled Particles

Self-propelled particles [34] are particles which are able to perform a di-
rected motion. This can be achieved by driving each particle individually,
e.g. by a small motor. A more efficient way is to use an external energy
sorce for driving the particles, for instance a vibrating surface [36].

In order to transform vertical vibrations into a directed horizontal move-
ment, particles with an asymetric mass distribution are used. If one side
of the particle has a lower mass than the other, the side with the lower
mass responds stronger to the vertical vibrations than the heavier side of
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Figure A.2: Self-propelled particle with a length of 40mm on a vertically
vibrated surface. The particle moves from right to left.

the particle. This means, the movement of the particle becomes asymetric.

The resulting horizontal motion depends on the shape and material of
the particle and on the driving frequency. The dynamic behavior of dif-
ferent particles is tested experimentally and several possible designs of
self-propelled particles are found.

An example of a self-propelled particle is shown in figure A.2. The particle
consists of a metal screw, which is charged with two nuts on one side and
put into a heat shrink tube. The asymetric mass distribution is provided
by the screw and the nuts, while the heat shrink tube provides a smooth
surface of the particle. The particle length is 40mm.

When driven by a vertical sine vibration with the frequency f = 70Hz
and the peak acceleration a = 2.5g, this particle moves into the direction
of its lighter side. This is because the lighter side jumps up and down
by a significant distance and, by this, slowly pulls the heavier side of the
particle in its direction.

Such particles can be used for future experiments on 2D fluids of self-
propelled particles. Similiar, but smaller particles could also be used as
test particles for the Lorentz model experiment.
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