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mod·el/[mod-l]/noun

a simplified description, especially a mathematical one, of a system or process, to assist

calculations and predictions.

cha·os/[keias]/noun

the property of a complex system whose behavior is so unpredictable as to appear

random, owing great sensitivity to small changes in conditions.
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Protein Structure Refinement with Adaptable Restraints

Abstract

Proteins and especially their structures play an essential role in computational struc-

tural biology. With accurate characterizations of proteins, processes like drug design and

docking simulations can achieve high resolution results. Protein structures can be de-

rived experimentally and computationally. Structures solved experimentally with X-ray

crystallography are among the most detailed descriptions of proteins we can generate

today. But since this is a complex process involving a lot of labor and time, structures

are also solved computationally with empirical data. Here, the most successful method

is homology modeling. Models produced with this method, though often very accurate,

can carry severe structural errors. We focus on correcting these errors in a reliable,

stable way, by refining the spacial arrangement of atoms.

The more detailed a model built with homology modeling methods actually is, the more

the task of refining means to hold the correctly placed atoms and carefully introduce

corrections just where needed. While starting models deviate more and more, confident

refinement means allowing enough freedom to move atoms but still holding a substantial

part of the protein in place.

Successful refinement approaches solve the task of knowing when to just hold an accurate

model and when to move atoms more substantially automatically.

We achieve exactly that - holding the overall shape of a protein and still allowing needed

movement of atoms - by introducing a novel deformable elastic network (DEN) inspired

adaptive deformable position restraint (ADPt), either internally applied on a single copy

approach or by introducing the use of coupled evolutionary related sequence data.



Proteinstrukturverfeinerung mit adaptierbaren Restraints

Zusammenfassung

Proteine und vor allem ihre Strukturen spielen eine wesentliche Rolle in der compu-

tergestützten Strukturbiologie. Mit genauen Beschreibungen von Proteinen können

Prozesse wie Drug Design und Docking Simulationen eine hohe Auflösung erreichen.

Proteinstrukturen können experimentell oder, mit Hilfe von Computermodellen, em-

pirisch abgeleitet werden. Strukturen, die experimentell mit Röntgenkristallographie er-

stellt wurden gehören zu den detailliertesten Beschreibungen von Proteinen, die heutzu-

tage erzeugt werden können. Da dies aber ein komplexer Prozess ist, der generell viel

Arbeit und Zeit benötigt, werden Strukturen auch empirisch gelöst, wobei hierbei die

erfolgreichste Methode die Homologiemodellierung ist. Modelle, die mit dieser Methode

erstellt wurden sind normalerweise sehr akkurat, können aber auch schwere strukturelle

Fehler tragen. Wir konzentrieren uns auf die Korrektur dieser Fehler, bei der wir eine

Verfeinerung der räumlichen Anordnung der Atome durchführen.

Je detaillierter ein Modell ist, desto mehr bedeutet Verfeinerung, die richtig platzierten

Atome zu halten und Korrekturen nur dort einzubringen, wo sie wirklich nötig sind.

Weichen die Startmodelle mehr und mehr ab, bedeutet zuverlässige Verfeinerung, den

Atomen genug Optimierungsfreiheiten zu lassen, die Gesamtstruktur im Wesentlichen

aber immer noch an Ort und Stelle zu halten.

Erfolgreiche Verfeinerungsansätze lösen die Aufgabe, zu wissen, wann das Protein grös-

stenteils nur gehalten werden muss und wann mehr Bewegungsfreiheit zugelassen werden

darf, automatisch. Wir erreichen genau das - Halten der allgemeinen Form eines Proteins

und gleichzeitig Zulassen von Bewegungen der Atome, die verbessert werden müssen -

durch die Einführung eines neuartigen, vom elastischen verformbaren Netzwerk (DEN

- deformable elastic network) inspirierten adaptiven verformbaren Positionsrestraints

(ADPt - adaptiv deformable position restraints), entweder intern angewendet auf eine

einzelne Proteinkopie oder durch Verwendung von gekoppelten, evolutionär verwandten

Sequenzdaten.
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1.6 Residue identity vs RMSD Å . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Molecular dynamics flowchart (real space/PME) . . . . . . . . . . . . . . 17

3.1 Two-copy system distance restraints . . . . . . . . . . . . . . . . . . . . . 23

3.2 Final simulation box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Monte Carlo simulation with coupled particles . . . . . . . . . . . . . . . 26

3.4 All refinement models of CASP9 . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Ranking of generated models . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Results for TR592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Results of the CASP9 refinement category 2010 . . . . . . . . . . . . . . . 31

3.8 Maximum refinement for all CASP9 targets . . . . . . . . . . . . . . . . . 32

4.1 Schematic ADPt workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 ADPt Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Structures for single copy refinement . . . . . . . . . . . . . . . . . . . . . 44

4.4 RMSD - dRMSD comparison . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Template free sore assessment [94] . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Template-free score of model TR389 . . . . . . . . . . . . . . . . . . . . . 48

4.7 Single copy refinement total view . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Correlation of start position and ∆ dRMSD . . . . . . . . . . . . . . . . . 49

4.9 Refinement at different internal distances . . . . . . . . . . . . . . . . . . 52

4.10 Weighted improvment for α-helices and β-sheets . . . . . . . . . . . . . . 53

4.11 Secondary structure distribution during all 3 types of simulation . . . . . 55

4.12 Sampled space versus improvement . . . . . . . . . . . . . . . . . . . . . . 57

4.13 All simulations scored and correlated . . . . . . . . . . . . . . . . . . . . . 58

4.14 Positon restraint energies against their dRMSD . . . . . . . . . . . . . . . 59

4.15 Improvement of model TR435 . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.16 Improvement of model TR453 . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.17 Improvement of model TR530 . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.18 Histogram of improved frames . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Sali model overview of native structures . . . . . . . . . . . . . . . . . . . 71

ix



List of Figures Refinement with Adaptable Restraints

5.2 Total simulation result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Averaged simulation results model 1dvrA-1ak2 . . . . . . . . . . . . . . . 75

5.4 Averaged simulation results for model 1hdn-1ptf . . . . . . . . . . . . . . 76

5.5 Averaged simulation results for model 1lpt-1mzl . . . . . . . . . . . . . . . 77

5.6 Averaged simulation results for model 1pod-1poa . . . . . . . . . . . . . . 77

5.7 Averaged simulation results for model 1utrA-1utg . . . . . . . . . . . . . . 78

5.8 Position restraint energies and compact score energies . . . . . . . . . . . 79

5.9 Averaged maximum peak simulation results per method . . . . . . . . . . 79

5.10 All averaged simulation results . . . . . . . . . . . . . . . . . . . . . . . . 80

5.11 Structure improvement exmpl. 1ak2 . . . . . . . . . . . . . . . . . . . . . 80

5.12 Structure improvement exmpl. 1mzl . . . . . . . . . . . . . . . . . . . . . 81

5.13 Structure improvement exmpl. 1ptf . . . . . . . . . . . . . . . . . . . . . . 81

5.14 Structure improvement exmpl. 1poa . . . . . . . . . . . . . . . . . . . . . 82

5.15 Structure improvement exmpl. 1utg . . . . . . . . . . . . . . . . . . . . . 82

A.1 Gromacs implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

x



List of Tables

3.1 All CASP9 refinement models . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Initial situation model overview . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Park/Levitt decoys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Model overview picking last . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Model overview compact score . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Initial model overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Sequence selection overview . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xi



Abbreviations

g gram

k kilo

J Joule

K Kelvin, temperature

◦C degree Celsius, temperature
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Chapter 1

Introduction

1.1 Motivation

Highly accurate protein models are needed to understand the function of proteins, elu-

cidate the molecular mechanisms they are using to fulfill this function, and to develop

drugs to manipulate their behavior. For example the design of inhibitors to bind to

receptor proteins requires protein models of high quality, which means the position of

all individual atoms needs to be known precisely. However, oftentimes, only coarse or

low-resolution models are available.

The determination of large proteins and protein complexes is one of the biggest chal-

lenges in structural biology. The intrinsic flexibility and heterogeneity however leads

to generally lower resolution for such large molecular systems in crystallographic or

cryo-electron microscopic experiments. Nevertheless the determination of protein com-

plex structures is of high interest in the study of biological networks. Consequently, an

increasing number of low resolution structures are determined and published.

Additionally and importantly, being able to build structures computationally can help

to overcome the ever widening gap between experimentally solved structures and known

sequences [1], as shown in Fig. 1.1. The rate with which new sequences are determined

is orders of magnitude larger than the rate at which new structures are determined.
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Chapter 1. Introduction Refinement with Adaptable Restraints

Figure 1.1: The gap between available sequence data and resolved structures. (top left
inside: number of structures, main plot: approximate number of sequences). Structure data
from RCSB Protein Data Bank, sequence data from non-redundant database (NCBI) with
GenBank CDS translations, PDB, SwissProt, PIR and PRF, without ES of WGS (before 1999
are approximate values).

Homology modeling is a tool that uses the fact that structure is much more conserved

than sequence, which means even remotely similar (homologous) sequences usually yield

rather similar structures. Homology modeling can therefore be used, at least to some

extent, to build protein models when a homologous structure is known.

Interestingly, the growth of information on individual domains is saturating [2], unlike

the number of new multi domain structures. We are therefore getting closer to knowing

all possible domain folds. This means we should soon be able to build homology models

for all naturally existing proteins including those consisting of multiple domains.

The lower the sequence identity of the (homologous) template structure that is used to

build the protein model, the more errors or structural differences need to be corrected

by further optimization and structure refinement.

In this work, several methods were developed to refine low-quality protein structures

and move them closer to the correct solution. Since there is no principal difference

between the refinement of a homology model or the refinement of a protein model that

has been built using low-resolution or sparse data from X-ray crystallography, single-

particle Cryo-EM, or NMR spectroscopy, the methods developed in this work can be

expected to be applicable in all these different scenarios.

2



Chapter 1. Introduction Refinement with Adaptable Restraints

Structure refinement is not an easy problem. The challenging task is to find the native

structure given the sequence of amino acids and an approximate starting point. The

search space, that is the conformational space, is enormously high-dimensional and,

in particular when the problem is simplified, e.g., by reducing the degrees of freedom,

the achievable accuracy is limited. Large differences between the approximate starting

structure and the true solution are usually very difficult to correct.

The expected solution to this problem is to find the global energy minimum in the

vast conformational space. Among the ensemble of energy minima one single basin

is globally the lowest state. Finding it generally depends, however, on the shape of

the energy landscape. For a simple energy landscape, as shown in Fig. 1.2 A, finding

the global energy minimum is easy when following a path by straight-forward energy

minimization. The direction of the reaction path is unimportant because there is only

one basin. In the second, more complicated scenario (see Fig. 1.2 B), just one path is

most probable. A dynamics simulation will find the global minimum, when it has enough

time to sample sufficiently the relevant regions in conformational space which requires

sufficient kinetic energy to surmount the barriers along the most probable paths. In the

last example 1.2 C, searching the lowest energy within the very rugged landscape yields

many paths and many barriers to overcome, maybe even insurmountable when sampling

with an inappropriate method, with local minima which can be very near to the global

minimum.

Figure 1.2: Different potential energy surfaces: A depicts a landscape with one obvious
global basin. B shows a more complex surface. Searching the global minimum within C is
only possible with

Finding the global free energy minimum is thought to eventually solve the problem of

finding the native conformation of a folded protein [3, 4]. But since every protein has a

different energy landscape, choosing the right method to achieve the required sampling

is difficult because the nature of the energy landscapes and the height of the barriers

cannot easily be predicted. The global energy minimum cannot be found if the sampling

3
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method is unable to cross the existing energy barriers, and if the method is not optimized

enough to sample sufficiently around very low energy basins.

This work focusses on protein structures but the findings obtained with these systems

may also be relevant to RNA, DNA, and other macromolecules or polymers.

1.2 Proteins

Most of the mechanisms and processes that govern the cell and its function involve

proteins.

Proteins can be considered as one of the major components of life as we know it. Made

of amino acids and synthesized in every biological cell, they are responsible for almost

all functions a cell has to master. They are the constituent parts of scaffolding elements,

they are control elements of cell signal transduction, they are hormones, regulators, in-

dicators and most simply the translated genetic code manifestation that every organism

possesses.

Including RNA, proteins are the models that are transcribed within the genetic code.

The ribosomal complex (made itself out of proteins and RNA) is the place at which

proteins are synthesized. While a protein is synthesized it folds into a three-dimensional

structure, and when finally completed, processed and eventually transported to its de-

sired destination it will function for a designated time (controlled passively by its se-

quence stability and actively by other cell factors).

Figure 1.3: The amino acid resonance form within a peptide chain, including the N and C
terminal ion form in water. Proline depicted because of its special ring form.

4
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In fact, the three-dimensional shape of a protein (and its dynamics) defines its func-

tion and the shape is defined by its amino acid sequence. The amino acid sequence is

determined by the sequence of codons in the DNA and its subsequent processing.

A well-defined protein structure is the result of a large number of amino acid interac-

tions, and to a certain degree the structure is tolerant against amino acid substitutions.

However, some interactions seem to be more important than others which is indicated

by the fact that the corresponding amino acids are conserved between different species.

Those amino acids can be expected to be important for the stability of the protein

structure

In addition, amino acids share mutually similar properties, which leads to some level of

degeneracy in the amino acid code. For example, all 20 amino acids can be divided into

two groups: the hydrophobic (H) and the polar (P) group (see Fig. 1.4).

Figure 1.4: Amino acids and their properties. The polar amino acids that carry a positive
charge are basic and those that carry a negative charge are acidic. Three of the amino acids
have special functions that distinguishes them from the others: Cystein, forms disulfide bonds
by changing into a cystin. Glycein has just one residual hydrogen atom, which leaves it without
a chiral Cα atom. Proline, due to its 5-ring structure, introduces a change in the direction of
the amino acid chain.

Hence a change in one of the amino acids will not automatically change the type of

interaction between them and the other residues if it is still of the same group (HP)

and not one of the special types (see Fig. 1.4). The exchange of amino acids with

similar properties, such as similar charge, similar hydrophobicity or similar size is better

tolerated than other exchanges.

This degeneration is the reason for the stability of the three-dimensional structure of

proteins. Changing minor parts of a code segment on whichever level (DNA, RNA, amino

acid) will most likely not destroy its function. And since the amino acid sequence of a

protein defines its structure [5, 6] and therefore also its function [7–10], resilient protein

structures are one of the cornerstones for highly developed (multi)cellular protein-based

life.

5
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Homology modeling methods exploit these facts because from the previous assumption

it simply follows, that many inherited protein sequences must share almost the same

fold, which, on the other hand also means, that the natively accessible conformational

space of folded proteins is much smaller [11, 12] than its entire conformational space

[13].

1.2.1 The structure of a protein

To understand molecular mechanisms, employed by proteins to perform their function,

it is vital to know the structures of the molecules. Several methods exist that are able to

determine the position of the atoms of the molecules, for example X-ray crystallography,

nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (Cryo-

EM).

The topology of a protein, i.e. its general fold, is basically defined by the dihedral angles

between the backbone atoms of the polypeptide chain (see Fig. 1.5).

Figure 1.5: Atoms of the protein backbone (hydrogen atoms are not shown). The backbone
dihedral angles φ ψ and ω are sufficient to define the fold of a protein and also report on the
secondary structure. The ’*’-sign marks the chiral Cα atom to which the different amino acid
residues are attached.

Favorable patterns of hydrogen bonds in the protein backbone lead to formation of spe-

cific structural patterns such as α-helices and β-sheets, which is referred to as secondary

structure. The three-dimensional arrangement of the secondary structure in a molecule

is called the tertiary structure.

In some cases, none of the experimental structure determination methods can be applied.

The reasons for this are manifold: X-ray crystallography requires protein crystals, which

6
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are sometimes very difficult to obtain. An example is the difficulty to crystallize the

majority of membrane proteins due to the unfolding of the proteins in water and the

precipitation in polar environments. NMR cannot be used if the structures are too large,

and Cryo-EM cannot be used if the structures are too small. And all techniques will

yield limited resolution or quality if the molecule is highly flexible or heterogeneous.

Or sometimes the protein of interest simply cannot be expressed in sufficient amounts

necessary for these methods to be applicable.

Empirical structure modeling methods that do not deduce their knowledge entirely from

experiments but make use of information about already resolved molecules can be applied

instead. Ideally, computational methods could be used to build a protein model from

nothing but the sequence ”de novo” in the so called ab initio structure prediction.

Unfortunately, this practice is generally not very successful, since it often produces

structures severely misfolded or erroneous.

Both regimes of computational approaches are presented and explained in the following

section, with a focus on the empirical part which is needed to understand the keystones

of the refinement methods presented here.

1.2.2 Protein structure prediction

1.2.2.1 Ab initio folding

Various computational concepts for predicting the correct fold of a protein have been

developed and were discussed and reviewed intensively [14–16]. They all try to predict

the spatial arrangement of a protein just by knowing its sequence. These methods

use thermodynamic principles and start from a random unfolded state or an extended

chain of the model to subsequently find the native, lowest energy state in the vast

conformational space. To simplify the search problem it is also very common and widely

accepted to reduce the degrees of freedom and build coarse-grained models [17] which are

then translated into all-atom models and further refined at later stages of the prediction

procedure.
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1.2.2.2 Homology modeling

Homology or comparative modeling takes advantage from the fact that a lot of protein

folds share a similar sequence [18, 19]. Normally, the modeling process begins with a

search for a homologous protein which structure has been solved experimentally. This

structure is then used as a template to build a model for the new sequence. For the

modeling to be reliable, the sequence identity, i.e. the number of identical amino acids at

corresponding positions along the peptide chain must be higher than a minimum value,

normally around (20 - 25) % [20–32]. Given a certain threshold of identity the expected

correctness of the resulting models is depicted in Fig. 1.6.

Figure 1.6: Correlation of the residue identity versus the RMSD in Å of homology models.
Data from Chothia 1986 [18].

It shows the root mean square deviation (RMSD) of homologous structures with different

sequence identities. Some models even share major structural similarities when the

identity is very small such as around 10 %. By searching for similarity not in sequences

but on a structural level it is possible to detect homologous structures for those models

that would have never been identified by sequence comparison. For this it is necessary

to have search engines that can search in data bases for structural elements [33].
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The actual modeling step then requires to assign the target sequence to the template

backbone. Since this process is normally not computationally expensive, comparative

modeling is usually done in an all-atom representation.

Not every approach is evenly successful in generating high quality models from a given

sequence. Due to the staggering vastness of the given problem, most methods that try

to solve the problem de novo, just with physical approaches by exerting and iterating

thermodynamic principles are not yet very reliable.

The quality of the homology model depends directly on the quality of the template. If

the template is close, i.e. the sequence identity is high (such as 50% and better) and if

the template structure has been solved to high resolution, the homology model can be

of very high quality with an RMSD of 1 Å or better.

However, ab initio methods typically do not reach this level of accuracy. Reaching

RMSD values of 4 to 2 Å is usually the exception, especially for larger proteins (> 150

residues).

As homology modeling often produces relatively good models it is common to just use

the model as is, without refining it. In addition, attempts to refine a model can, and

often did in the past, deteriorate parts of the model [34, 35], which made the practice

of refining such models an unpopular and inaccessible task.

1.2.2.3 Refinement

Since homology models are often already close to the correct solution, one would think

that some further optimization or refinement suffices to correct the small errors in the

model. However, existing methods so far have not been able to consistently move the

models closer to the correct solution. That is why until now the general consensus

seems to be to leave homology models unrefined, without changing the protein backbone

conformation [34].

With this work we show that consistent improvement can be achieved by carefully ad-

justing and augmenting modern molecular dynamics (MD) simulation techniques.

The starting structures for refinement discussed here are obtained by homology modeling

techniques.
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There is no strict definition of which model improvements should be considered a refine-

ment and which is rather extensive remodeling or rebuilding. In this work, refinement

means the improvement of models with an RMSD to the native structure of 4 to 1 Å

[36].

Refinement in this work is performed with MD simulations [37], using a physics-based

force field [38], which is extended by additional restraints to improve the sampling.

Three different restraining approaches were developed which are based on particle cou-

pling mechanisms. The different coupling restraints all modify the original energy func-

tion and eventually smoothen the originally rugged energy landscape. The improved

sampling on the one hand guides structures towards the global energy minimum and on

the other hand reduce the risk of being trapped in local energy minima.

These three different MD setups were intensively tested and are described in Chapters

3, 4, and 5, respectively.
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Chapter 2

Methods

2.1 Molecular dynamics simulations

Atoms move according to their interaction energies and the resulting forces between

them. To simulate this motion one needs to describe these interactions in a way that

allows calculating the forces in an efficient way. The collection of the interaction energy

terms is called force field. It defines the energy landscape and contains all parameters

which let the simulations behave like they should. Changing these parameters can have

major consequences for the result of a simulation. Even tiny deviations can cause large

differences and errors. The calculations for moving an atom based on the force field

parameters are iterated in every single step of the simulation for each and every atom

as it is described below in more detail.

2.1.1 Energy minimization

Prior to any productive molecular simulation, an energy minimization (EM) has to be

done, which ensures that the system is in the nearest local energy minimum and removes

atomic clashes and excessive bond strains. This further avoids large unnatural forces at

the beginning of the simulation which could artificially destabilize the complete system.
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The algorithm we use in our setups is the steepest descent approach. We define

~rk,position vector of all atoms, i.e. all 3N coordinates, at minimization step k

h0, initial maximum displacement

~Fk = −∇V, the force vector on all atoms

Then, the new position vector is calculated by

~rk+1 = ~rk +
~Fk

max(|~Fk|)
hk (2.1)

if(Vk+1 < Vk), new positions are accepted andhk+1 = 1.2hk

if(Vk+1 ≥ Vk), new positions are accepted andhk = 0.2hk

Eq. 2.1 is repeated until a defined number of iterations has reached its threshold or

when the maximum force is smaller than desired.

2.1.2 Force field

The high-dimensional energy landscape on which the atoms are moving is described by

the force field. The forces F within a MD simulation are then obtained simply by the

gradient of this energy landscape. The force on an atom i is given by

~Fi = −∇iV (2.2)

with V being the potential energy. All forces acting on i are conceptually divided within

the force field into the bonded and non-bonded interaction part. The bonded interactions

are summed over the covalent bonds (bon), the angles (ang), the proper (dih) and the
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improper dihedrals (imp).

Vbonded =
∑
bon

ld(~d− ~d0)
2 +

∑
ang

lθ(θ − θ0)2 +

∑
dih

lψ(1 + cos(nψ − σ))2 +

∑
imp

lφ(φ− φ0)2

(2.3)

The non-bonded part below is normally computed pair-wise additive and describes the

Lennard-Jones and the electrostatic interactions.

Vnon−bonded =
∑

non−bonded
=

Lennard−Jones︷ ︸︸ ︷
εij

[(
σij
dij

)12

−
(
σij
dij

)6
]

+

electrostatics︷ ︸︸ ︷
qiqj
dldij

(2.4)

with the charges qi and qj of atoms i and j and their distance dij .

With Eq. (2.3) and Eq. (2.4), we can calculate the complete force vector on all atoms

~F = ∇V (~r)bonded +∇V (~r)non−bonded +∇V (~r)restraints, (2.5)

where the forces from restraints are also added. The movement of the atoms is then

calculated by numerically solving the Newton’s equations of motion

m
d2~r

dt2
= ~F (~r) (2.6)

The total energy of the system is then

H = T + V (2.7)

or in other words,

Etotal =
m

2
~̇r 2 + ~F (~r). (2.8)

In order to simulate a canonical ensemble (NVT) as done in this work, the equation of

motion must be extended by a heat bath term that regulates the systems temperature.

The Nosé-Hoover temperature coupling method is used here for this purpose. In this
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method the Hamiltonian is extended by a friction term to be correct for this type of

ensemble. The friction force is then the product with the particle’s velocity.

d2~ri
dt2

=
~Fi
mi
−
pξ
Q

d~ri
dt

(2.9)

where pξ is the momentum of the added friction parameter ξ. The constant Q is the

mass parameter of the reservoir, which determines the strength of the coupling.

Q =
τT

2 T0
4π2

Several other coupling mechanisms that extend the system to a heat bath exist, but do

not necessarily generate a correct canonical ensemble. One of them is the Berendsen

temperature coupling. Because the Berendsen thermostat is suppressing the fluctuations

of the kinetic energy, no correct canonical ensemble is produced. This fact for us was

the reason to use the Nosé-Hoover temperature coupling within all simulations.

2.1.3 Canonical energy distribution

In a given canonical ensemble, a particle can obtain many different energy states. The

probability for a certain state is given by the Boltzmann distribution.

P (i) =
1

Z
ci e
−βEi (2.10)

where

e−βEi ,Boltzmann factor

β =
1

kBT
, inverse temperature

Z =
∑
i

e−βEi ,partition function

kB,Boltzmann constant

ci,degeneracy level of i.
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Or, another possibility of writing it

Ni

N
=

1

Z
ci e
−βEi (2.11)

describes, which fraction of particles Ni occupy the energy state Ei.

2.1.4 Periodic boundary conditions

The simulations of protein presented here are performed in an explicit water environ-

ment. To reduce the overall computational cost, this water environment is chosen to be

rather small.

A simulation box of finite size raises the question of how to treat the boundaries. Ide-

ally, the water at the boundary behaves as if it was embedded in an infinite solvent

environment. A simple solvent-vacuum boundary with a hard wall would clearly intro-

duce severe artifacts. An elegant solution to this problem is provided by using periodic

boundary conditions.

In this case atoms interact not only with other atoms within the box, but additionally

with atoms in periodically extended simulation volume and thus with virtual copies of

the original system. Furthermore, atoms that leave the box on one side re-enter the box

on the other side, while keeping their momenta.

For small solvent environments the reduction of artifacts is significant compared to a

simple hard wall boundary. The larger the simulation box, the more negligible are those

errors introduced by the boundaries. But since simulation boxes should be kept as

small as possible to reduce simulation overhead and reduce computational cost, periodic

conditions are typically preferred.

However, precaution is required when simulating boxes with bonds (e.g. distance re-

straints) that are longer than half of the box size. This may introduce severe artifacts

and simulation errors since the periodic images of the restraint atoms may interfere

with itself. We came across this problem while producing ensembles in chapter 3. It was

solved by expanding the box size, which was the main reason for dropping of the distance

restraint approach and switching to an implemented code version in chapter 4 and 5.
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This allowed at the same time to also benefit from the parallel domain decomposition

approach, as outlined further below.

2.1.5 Numerical integration method

To simulate the motion of a particle on an energy landscape requires to solve Newton’s

equation of motion. For proteins described by a realistic force field, this can only be

done numerically.

A common way of doing this is the leap frog method, which integrates the equations of

motion by using the positions q at time t and the velocities at time t− 1
2∆t. The update

of the position and velocity is then calculated using the force ~F (q) at its position at time

t.

q̇(t+
1

2
∆t) = q̇(t− 1

2
∆t) +

∆t

m
~F (t) (2.12)

q(t+ ∆t) = q(t) + δtq̇(t+
1

2
∆t) (2.13)

2.1.6 Particle decomposition versus domain decomposition

The speed of a simulation is determined by its slowest component. In the single core

or local memory approach, the slow part is the calculation of long range interactions.

When distributing the system to cores on interconnected workstations, the network

communication part becomes the limiting factor. In the worst case, when the system

is not partitioned, a minimum of half of all atoms have to be communicated between

all hosts or cores to maintain a stable setting. For N cores, the communication is

made of N × N/2 coordinates, which does not scale well at all. We had to use this

setting for our first approach (chapter 3) because the long distance restraints used there

were not dividable and required a non-decomposed system. All other systems presented

here are optimized to work with the fast parallel domain decomposition approach. In

those partitioned systems, only a subset of atoms has to be communicated, because

the communication now only has to be accomplished with coarse domains and not with

particle precision.

16



Chapter 2. Methods Refinement with Adaptable Restraints

2.1.7 Molecular dynamics flow chart (real space/PME)

A general work flow of a simulation with all important steps is depicted. In this chart,

the separation of the computational work load is split into the part of the real dynamics

calculation and the solving of the PME grid summations. This procedure enables the

possibility of ideal work load balancing and enhanced efficiency per computational unit.

Figure 2.1: Molecular dynamics flow chart in the case, where real space calculations are
separated from PME nodes. This is done, e.g. when using domain decomposition. Gray
arrows show communications between the different types of nodes (see also [39]).
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2.2 Monte Carlo simulations

In contrast to MD simulations, no forces are calculated in Monte Carlo (MC) simulations

and its extension to canonical ensembles by Metropolis [40]. All particle movements are

based on random numbers, hence no time steps are involved in any of the computations,

and no time information is obtained. Despite this, MC simulations are used widely for

molecular studies of all kind, but mostly with simplified systems with a reduced number

of degrees of freedom.

Molecular dynamics systems with explicit solvent are generally too big for MC ap-

proaches because sampling can become very inefficient when also including all atom

solvent effects into the calculations. The introduced Metropolis algorithm is a so called

importance sampling approach, which follows the notion of excluding the huge space of

improbable states and focus the sampling around a given problem, while still producing

correct probabilities.

A trajectory of configurations is produced by comparing the energy of the previous state

n with the energy of a new test state m (Markov chain). The test state m is accepted

as the next step of the trajectory according to the transition probability Wn→m, which

depends on the energy difference of these two states.

The new state is accepted if the energy of the new state Em is lower than the energy

of the previous state En, or if a random number xi ∈ [0..1] is smaller than the factor

exp(−(Em − En)/kT ).

While Z =
∑

i e
−βEi is generally inaccessible, the choice of the test states has to obey

the detailed balance condition, which is

Pn(t)Wn→m = Pm(t)Wn←m, (2.14)

which means that the ratio of the transition probabilities is equal to the ratio of the

probabilities, as given by the Boltzmann factors.

We used MC simulations to verify the effects of coupled simulations in a very simplified

system. Only one particle in the case of the approach in chapter 4 and two particles
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in the case of the augmented approach in chapter 5 were simulated with a simple one-

dimensional energy function that gave us a reasonable result on the basis of 5 × 106

steps.
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Chapter 3

Ensemble-Restrained
Structure Refinement

3.1 Introduction

One of the biggest challenges in structural biology is to solve the problem of how proteins

attain their three-dimensional functional structure in a biological context, namely how

proteins fold either in vitro or within a cell. After almost half a century of investigations

and research, predicting the folding of proteins is still unsolved although many different

approaches from different scientific disciplines have been proposed and progress has been

made [41]. A broad range of methods exists to predict protein structures or refine protein

structural model for which the best working ones are still the template-based methods,

for example homology modeling.

In this thesis different methods have been developed to optimize homology models. The

first of these methods is presented in this chapter and aims to refine a homology model

by simulating the dynamics of several copies of the same starting model at the same time.

The idea is to couple all these copies with restraints to keep the structures similar to

each other. The resulting effect is similar to that of a particle swarm optimizer which is

expected to smoothen the energy landscape and thereby facilitate the crossing of energy

barriers.
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Molecular dynamics simulations usually have a problem refining protein structures to

high resolution, mostly because they easily become trapped in local minima and sam-

ple inefficiently low energy regions around the global minimum. Being able to add the

capacity of overcoming energy barriers on the energy landscape to the accuracy needed

to simulate around the native conformation will increase the probability of refining a

given structure. Our approach extends the regular molecular dynamics approach and

simulates a number of structures that are weakly coupled to each other simultaneously.

They therefore have to move together within the simulation. This multiple copy-like op-

timization procedure narrows the obtained structural distribution while at the same time

facilitates the crossing of energy barriers due to the introduced cooperativity between

the structures.

This approach was tested in the international blind test CASP (Critical Assessment of

methods of Protein Structure Prediction) [1, 23, 42–44]. CASP is an evaluation of the

worldwide improvement of how powerful the prediction methods are and what is possible

today. Since 1994, CASP takes place biannually and allows modelers to assess their

methods on models that are solved experimentally but were not published yet. In this

way, only the assessors know the answer to the given problem. Recently (CASP8, 2008),

a specially arranged category dedicated to the refinement problem was introduced. It

solely focusses on models submitted in the categories held earlier in the main template-

based modeling (TBM) section and aims exclusively to improve the predicted structures.

We are focussing only on this special refinement category.

Within the refinement category, the models selected for refinement are not dramatically

wrong structures, because the models for the refinement section have already been fil-

tered by the post modeling procedures of the corresponding server or production method.

The assessment itself begins when the first models targeted for refinement are posted

on the workshops conference homepage (http://www.predictioncenter.org). This hap-

pens subsequently to the initial start of the model building event, which is divided into

the template-based and template-free modeling categories. In addition, participating

groups can be either humans who can use any method including manual modeling and

inspection, or servers which run automatically without any human intervention. The

best prediction is then selected for the refinement category.
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Normally one to three targets are posted initially, given up to three weeks of process

time. In total, 14 targets were posted. After the refinement of the model was finished

the structures were uploaded back to the CASP server. 5 models could be submitted,

ranking the submissions from 1 to 5, where the 5th would be the target which is thought

to be the least refined one. Once all submissions were finished, the assessors compared

the submissions with the experimental structures hold back and published their rankings

on their website and on the conference meeting, held subsequently.

3.2 Methods

3.2.1 Restraints approach

In our approach for CASP (refinement category), eight structures were simulated simul-

taneously. The structures are weakly coupled to each other using restraints between

corresponding Cα-atoms. For the molecular refinement we wanted to take advantage

of the idea that simultaneously coupled simulations might benefit from the averaging

moment the coupled component (another copy of the molecule in our case) introduces.

Somewhat similar strategies were published before, but most of them focussed on ab ini-

tio modeling or refinement based mostly on MC approaches [45] or calculated averages

from aligned models [46].

Since we simulate the coupled molecules all together in one box, under all-atom ex-

plicit solvent conditions, once the setup of the restraints is finished, the system is self

maintained and needs no further intervention.

The complete system contains eight copies of the starting homology model. We re-

strained those Cα atoms which had a low degree of fluctuations within a short 1 ns pre

run, since we just wanted to move atoms which were not in a low energy state. To allow

just those atoms to move, the well placed low fluctuation atoms were stabilized through

a scaffold provided by the other copies. To find the atoms for restraining, we used the

following scheme:

1. After energy minimization and equilibration, perform a short 1 ns simulation of

the targeted protein.
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2. For all Cα atoms calculate the RMSF over all frames of the simulation, then average

the values for each Cα atom.

3. Restrain those Cα atoms which fluctuate less than the calculated average over all

fluctuations.

The motivation for this was to reduce the sampling in the well defined (mostly core)

regions to keep regions that seemed to be acceptably positioned rather fixed and allow

more freedom in the more variable (e.g. loop) regions.

The harmonic potential force constant between the distance restrained Cα atoms was

1000 kJ mol−1 nm−2.

Figure 3.1: Distance restraints as used in our approach. Molecules A and B are just copies
of each other. All Cαs are connected like A1 with B1 and A2 with B2, where n is the number
of residues. The connection strength can be controlled by the force constant of the harmonic
potential between the atoms, represented by the dashed blue line.

In this way the coupled proteins were free to do any conformational motion as long as all

restrained structures roughly follow this motion. The mechanism is depicted in Fig. 3.1,

using the example of a simple two-copy system.
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3.2.2 Simulation setup

3.2.2.1 Evaluation of restraints

First, an initial steepest descent energy minimization with a step size of 0.01 fs was

carried out. For evaluation of the restraints we performed a 1 fs time step, 350 K

temperature, NVT Nosé-Hoover, explicit tip3p solvent 1 ns simulated annealing MD

simulation. The annealing temperatures were going from 350 to 320 and 300 to 280 K

over 0, 300, 500, and finally 1000 ps, respectively. Then, the Cα atoms were investi-

gated for their fluctuations and those which moved less than the average were distance

restrained.

3.2.2.2 Production runs

Eventually, the system contained the box filled with solvent and the protein model

copied to each corner of the simulation box. The distance restraints connected all Cα

atoms intermolecular. That means no connections were made within a molecule. Just

corresponding Cα atoms of the different copies were connected.

For the main refinement, 1000 8-copy-restrained simulated annealing runs of 100 ps

length were performed starting at a temperature of 200 K and ending at 100 K. The

MD simulations were done with Gromacs in version 4.0.7 [39, 47] using the AMBER03

force-field [48] and explicit solvent tip3p [49].

In the end, the simulation box was made of the solvent and the copies of the protein

model. We took eight copies because this number makes up a symmetric box and a

symmetric system of distance restraints (see Fig. 3.2).

3.3 Results

3.3.1 One-dimensional Monte Carlo simulations

The general assumption that coupling several copies of a molecule helps to guide our

simulations to the global minimum and smoothen the energy landscape was tested by a
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Figure 3.2: Composition of the simulation box. The solvent is truncated to show the protein
arrangement. Embedded in the solvent are 8 copies of the protein, which are connected by
distance restraints as shown in Fig. 3.1 (not shown here).

simple Monte Carlo simulation approach, where we coupled two particles and simulated

them within a simplified energy landscape.

The results (see Fig. 3.3) showed that by increasing the coupling of the two particles, the

probability for finding the particle in the global minimum was also increased. When we

coupled the particles only weakly, the probability to also occupy the other local minima

increased while decreasing the probabilities for finding it in the global minimum.

3.3.2 The structures

All refinement models of CASP9 are shown in Fig. 3.4. Some of the models were prob-

lematic and introduced difficulties while working with them. Especially model TR517

and TR614. Model TR517 had a poorly described region from residue 69 to 88 (no sec-

ondary structure present). This is a very long region in terms of a refinement approach.

We remodeled this section with the program Coot (version 0.6.1) [50].
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Figure 3.3: Monte Carlo simulation with coupled particles. The dotted line shows the plotted
energy function with its local minima and one global minimum. The strongest coupling did
perform best, appearing most often in the global energy minimum. By decreasing the coupling
strength, the particles acted more and more like a single one, showing, that coupling confines
a system closer to the global energy minimum.

Model TR614 was created with NMR spectroscopy methodology and two structures

were given to refinement as both models were equally ranked by the assessors. Since the

submission threshold of 5 models per target still took effect, deciding for structures to

submit was a bit narrowed.

MODEL exp ] atoms RMSD GDT-TS dRMSD
(*-id) method Cα (Å) (Å)

TR517 X-ray 159 6.932 0.8088 5.2611
TR530 X-ray 115 1.990 0.8594 1.3197
TR557 NMR 145 4.058 0.5441 3.1464
TR567 X-ray 145 3.435 0.7817 2.2811
TR568 X-ray 158 6.149 0.5490 4.4619
TR569 NMR 79 3.010 0.6552 2.2237
TR574 X-ray 126 3.583 0.6201 2.5333
TR576 X-ray 172 6.850 0.6431 4.7643
TR592 X-ray 144 1.257 0.9024 1.0310
TR594 X-ray 140 1.817 0.8661 1.2569
TR606 X-ray 169 4.850 0.7175 3.4613
TR614 a X-ray 135 6.490 0.6963 5.1231
TR614 b X-ray 135 4.199 0.6818 3.2299
TR622 X-ray 138 7.473 0.6680 4.0014
TR624 X-ray 81 5.189 0.5543 3.1542

Table 3.1: All CASP9 refinement models. TR517 was aligned and scored with 138 residues,
for it had missing parts that were modeled poorly in region 65-88. * ] given by the CASP
competition.

In all other cases, non of the information given by the assessors about the quality or the
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Figure 3.4: All models of the refinement section of CASP9. Also, the secondary structure
content is highlighted and the legend in the right corner explains the colors.

region to focus on were taken into account. Interestingly, most of the times, the regions

we identified as highly fluctuating coincided with the regions that were described on the

CASP website as regions that needed special attention in the refinement.

3.3.3 Assessment of model quality

The evaluation of the CASP9 refinement results were based on several comparison met-

rics.

The generally and widely used measurement to assess the quality of a structure is the

root mean square deviation (RMSD) method. It measures the positional distance of

corresponding atoms after an ideal alignment of the two structures. Most of the times,

the alignment of the models is done with a least squares quadratic (LSQ) fit. Though

the resulting value of this method normally gives a good approximation of the quality

of the model, minor deviations distributed throughout the complete structure can have

a significant impact on the score.
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One of the main methods for the assessments of structure quality in CASP is the global

distance test (total score) (GDT-TS) [51]. It is based on RMSD but compared to this,

it works iteratively while considering 4 different distance thresholds of (1, 2, 4 and 8) Å.

Superpositions of the compared models are made and tested for the fraction of atoms

that fall within one of the given thresholds. In the end, all percentiles are summed

together and form the total score. Reasonable values of the score are within 0.2 and 1.0,

where a value below 0.2 can not differentiate between arbitrary placed atoms anymore.

A score of 1.0 means 100 % identity. Thus, higher means better. The main reason for a

quality metric like this is the advantage of ignoring regions of the protein, that are far

away from nativeness, since just atoms more distant than 8 Å are deteriorating the score

significantly. That ensures good scores for models that are mostly correct, even when

a loop is severely misfolded. Scored with a RMSD, those regions would have a higher

impact on the scoring value and models with a considerably good core region have a

higher (worse) rank, compared to a GDT value. Another version of the GDT score is

the high accuracy (GDT-HA) implementation, in which the thresholds are lowered to

(0.5, 1, 2, 4) Å, The slightly modified version of GDT-TS is more responsive for small

changes and useful to compare very similar structures.

In the global distance calculation for side chains (GDC-SC) [52], a GDT-like evaluation

procedure is used, but this time not by looking at the Cα atoms but a characteristic

atom describing each side chain uniquely.

A combined all-atom per-residue score, which takes the side-chains into consideration is

given by SphereGrinder. The ”sphere” is constructed by a 6 Å distance around the Cα

atoms, respectively. Then, a fit based on a RMSD of the sphere-region is performed,

and eventually iterated through all available spheres of the structures. The final score

is calculated by summing and averaging the fraction of all per residue scores that were

within 2 Å compared against the native structure.

Finally, MolProbity was used to test the overall physical correctness of the submitted

models. It tests side chain rotamers, steric clashes and Ramachandran scores [53].
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3.3.4 Selecting structures from an ensemble of models

Our refinement method produced a large number of models. The task was to pick the

best model from the ensemble of all models. To be able to rank the structures for

separating the improved from deteriorated models, we used a combination of clustering

and Ramachandran/H-bond scoring. To obtain the best five candidate models, first

all models were clustered by using the Jarvis-Patrick clustering algorithm [54]. This

method clusters the structures based on similarity. Structures were chosen from the

largest cluster, where the fine grained score to pick within a cluster was done with a

Ramachandran score and evaluation of H-bonds.

Figure 3.5: Ranking of models for CASP9. Performed with the Jarvis-Patrick [54] clustering
method, which is based on a distance matrix, arranging very similar models into clusters.

Fig. 3.5 shows the clustering on the example of model TR592. On the right, B, the

GDT-TS score of each frame of the simulation ranked against its crystal structure is

plotted. The best frame is marked with a small circle. The red area shows the exclusion
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of deteriorated frames through clustering. All clusters are depicted in A. The individ-

ual distribution of GDT scores within the cluster on top reflects the variance of this

structural fraction of the ensemble.

The total ranking of the refinement section of CASP9 is depicted in Fig. 3.7, based on

the ranking with methods outlined above.

Figure 3.6: Result for model TR592. The model already started with a very high GDT-
TS score. Still we were successful in refining the model, although improving a model close
to the optimum is not easy because the chances of deteriorating parts of it are high. The
starting model (blue) had a GDT-TS score of 90.0 compared to its crystal structure (gray).
Our improved structure (purple) had a score of 93.8. The improved regions are highlighted in
red on the right side.

Our molecular dynamics approach was able to improve seven of the 14 CASP9 refine-

ment targets. For one of the most difficult targets TR592, Fig. 3.6 depicts a structure

comparison in which the crystal structure (gray), the homology model (light blue) and

additionally our improve model (purple) are superposed. The target can be considered

difficult, for it was already in a near native state (RMSD 1.257 Å and GDT-TS 0.9024,

compared to its crystal structure). Improving those very near native models can be very

hard, because a significant amount of refinement has already been applied successfully

during the modeling process. Here, the approach of holding in place what was already

modeled very well and just refine what is misplaced by our restraints was somewhat

successful. The encircled regions in Fig. 3.6 show the loop improvement, as well as the

stabilizing effect for β-sheets and α-helical secondary structural elements. The arrows
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point to a tendency to enhance a more compact representation. The falsely modeled

α-helix in the lower region of the protein is about to destabilize and by that dissolves.

Figure 3.7: All scoring methods and results depicted. Listed are just the 20 first Groups.
Assessment was done by Justin L. MacCallum and Ken A Dill.

The overall ranked result, considering all models submitted during the complete contest

is depicted in Fig. 3.7. 3 groups which were already successful in various previous CASP

rounds were on the first positions. The Baker group on position one used their software

package Rosetta [26, 55, 56] to generate and score/rank their ensembles. The second

group used a rather unconventional approach (also under the lead of the Baker group):

the predicted models were placed into the computer game FoldIt [57]. Players from

around the world were asked to participate in the refinement process by playing around

with the structures in this computer game. To facilitate that, the FoldIt game makes

use of an intuitive graphical user interface (GUI), which enabled untrained laymen to

move side chain rotameres - and more - of protein models in an easy way. The goal of

the game is to minimize the Rosetta score for the current model, calculated immediately

during the interactive modeling process. The conformational changes introduced by a

human player actually enhanced some models but also lead to some very false structures.
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Figure 3.8: Refinement results when looked at the maximum GDT-TS change per model.
The first model we did exclude, due to consistency reasons, since the model was stripped from
a lot of atoms in a centered region, leading us to think that all generated structures were
biased because of the missing interactions.

Finally, to give an overview of the capability of our CASP9 refinement, Fig. 3.8 shows

the ∆ GDT-TS when subtracting the initial start GDT-TS from the refinement result.

All models except two showed improvement behavior.

3.4 Discussion of CASP9 results

The very short (100 ps) simulated annealing procedure we used was quite conservative

since not only the achievable improvement but also the potential structure degradation

was limited. A more aggressive annealing (longer simulation time and higher temper-

atures) has the potential for larger improvements but at the same time also higher

chances of deteriorating the structures. Also the structure selection method needs to be

improved, for example by using more structure validation procedures, as the clustering

method performs only slightly better than choosing structures randomly. This was ap-

proached and partially solved subsequently for the two other approaches in chapter 4

and 5, where our compact score achieved better results in discriminating deteriorated

structures from refined models.

Crystal contacts were proposed for several of the structures, namely for model TR517,

TR567, TR576, and TR592. No knowledge of this was available at the time of the

competition. Three of this targets missing essential crystal contacts, which were proba-

bly necessary for reliable refinement [58], also have been problematic in our simulations

as they showed just limited refinement tendencies (TR567) or did not improve at all

(TR576). Target TR517 was a specially difficult case and different compared to all
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other refinement models. A significant number of residues from the mid-part of the

model was removed so we were tempted to skip the model completely from all further

investigations since a dominating part of interactions were missing in the simulations

and hence no real but falsely biased statements whatsoever could be made by analyzing

this data.

The starting model TR592 was too good to be targeted for backbone refinement, though

we still were able to refine this model, and even score it, what possibly means, that this

very careful approach was able to hold atoms of structures in place during a simulation,

just crossing those energy barriers needed to simultaneously refine and improve the

structure.

The general aspect of refinement underlined by the CASP competition is admittedly a

bit biased towards finding only one best native model, which is normally not a realistic

view of the energetic description of a native state. Clearly, there is just one global

energy minimum, but this is not the only solution to the problem. The energies around

a distinct native state can be thought of as a near native ensemble itself. On the other

hand, with conformational differences that come along only slight total energy variations

can be very substantial and may introduce huge structural changes.

Thus we instead did not focus on refinement for special purposes, as we wanted to

develop a methodology that is applicable in most refinement scenarios. We therefore

neglected all additional information for the refinement target given by CASP, and just

focussed on the structures. This helped us to develop a workflow without or with less

necessity for prior knowledge about the protein. Of course this can only be done when

the systems inaccuracy is not harmful to the setup of the model straight away. If thinking

of the abilities of creating realistic, nature mimicking molecular dynamics setups, those

systems will always be devoid of details. So we argue, an all-atom simulation may

be as unrealistic as a coarse grained simulation approach since it also misses a lot of

potentially needed interactions. But it is as far as modern systems can get right now,

and, most importantly, the approach modifies the system to become a self controlled self

maintained all-atom simulation due to its coupled Cα atoms, that can gain detail from

the simultaneous averaging.

Regarding the energies that drive the simulations, our models will be augmented with

this cooperative effect, but indeed, a missing factor like an important crystal contact,
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can have devastating consequences for the ability to synthesize a native conformation

within a MD simulation. All motions of the system depend not only on the protein

interactions but also highly on the protein-water interface. Therefore explicit solvent

mitigates the absence of normally important antagonist effects on the targeted structure.

Inevitably, time is a worsening factor in simulations with lacking components which are

not systematical. The longer a simulation lasts, with a missing interaction on specific

parts of the protein, the resulting conformation will be more and more incorrect over

time.

CASP refinement for us was successful for some targets. Especially TR557, TR569,

TR592 and TR622. The most impressive refinement was achieved with model TR557

with around 0.17 GDT-TS points and model TR592 with around 0.05 GDT-TS points.

The former is remarkable not because of its sheer refinement but because it started

from an already very accurate structure. This is a hint towards the capability of MD

simulations to refine structures normally very susceptible to very small errors.

On total average, our CASP results were ranked slightly above the null refinement,

which sounds small and limited but compared to the competitors this was among the

best scoring results. Although we were not able to rank our five submitted models

correctly, aligning the quality of the five structures per model with the correct label (1

to 5) is as hard as scoring an ensemble of near native structures. Hence, no group was

able to put structures in the right order.

This leads to the question of the improvements since the last CASP refinement and the

future perspective for upcoming events and the general proposition for refinement in the

light of improving structure prediction and modeling.

Under the light of the different refinement approaches of all the teams that participated

at CASP, all of them had their weaknesses and disadvantages but also strengths. Mol-

Probity scores, for example, were among the most refined ones. So if model builders

could integrate a refinement tailored to this score (for example by only allowing highly

accurate side-chain rotameres within models), refinement itself will be more challenging

because it already reached a maximum improvement. But while improving modeling

methods sounds easy when demonstrating the possible goal to achieve, it might be very

hard to actually work out and implement a strict rule into a refinement workflow, since

every protein is different and needs special treatment.
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Exactly this is the point that makes refining of proteins difficult and finding generalities

over a wide spectrum of models really hard. Whenever a scheme or treatment works

fine for one protein, it might completely crash another.
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Chapter 4

Adaptive Position
Restraints

The structure of a protein is important for understanding its function [6, 59–61]. Protein

model precision is furthermore important when working with the structures, for example

in computer aided simulations. Methods that use and work on structural data ideally

start with the most detailed atomistic description available to be as realistic as one can

possibly be to produce reliable results.

Predicting models de novo, without using an homologous template only by using the

protein sequence via so called ab initio protein folding methods is attempted for decades

[15, 45, 62–67] but unfortunately not yet ultimately successful (at least for bigger pro-

teins) because its reliability of producing near native, high quality models is still limited.

In general, models can be very wrong and hence not intended to be used in subsequent

workflows yet. Template free modeling is still considered the ”Holy Grail” of protein

structure prediction.

Usually, very good models are produced by homology modeling [62, 64, 68, 69] methods,

when the sequence identity of the target sequence and the sequence of the homologous

structure is above about 30 %. This approach borrows the known structure and imposes

it on the unknown model. Those models might still have erroneous regions, but the

overall fold of the structure will most probably be correct.
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If the identity between the compared sequences drops below 30 %, the fraction of in-

correctly placed atoms rises quickly. Sources of error in homology modeling are highly

flexible regions, for example not well described loops or unstructured coiled sites. But

also conserved regions, mostly in the hydrophobic core of a protein can sometimes incor-

porate severe misfolded chains. Fortunately nowadays, thanks to the structure solving

community, there is a huge number of structures available to pick high identity sequences

from, albeit at the same time, the gap between known sequences and known structures

gets bigger every day (see Fig. 1.1).

Starting with such a scenario, refinement methods aim to achieve a better atomic place-

ment, closer to the native state. A number of methods exist that attempt to refine given

targets without knowledge of the correct structure, but until now there is no simple

straightforward way to accomplish that task consistently to a satisfying level. Methods

range from Langevin Dynamics, Brownian Dynamics, Monte Carlo implementations of

all kind, energy minimizations with knowledge based and physics based potentials, to,

underestimated but increasingly used, molecular dynamics (MD) simulations [36, 70, 71]

including simulated annealing, either free [36, 72] or with restrictions or enhancements

which all try to extent the sampling to avoid being trapped in local energy basins.

[73, 74]. Up to now it is still very unclear which properties do define the success or

failure of a refinement method. With this work, we think we can shed some light onto

the process of refinement, to pave the way for consistent, reliable improvement of ho-

mology models and contribute to deletion of the notion, that attempted refinement of a

homology model usually deteriorates a structure more then it will improve it.

MD simulations are a very powerful tool to describe atomic motions with classical New-

tonian mechanics [70, 71]. When the underlying force fields are exact enough [9, 75–78]

it should in general be possible to mimic natural atomic behavior as a function of time.

Thus, when simulating long enough, it is possible to observe real folding events. Re-

grettably, just fractions of the time normally needed to observe folding can be simulated

today, at least when larger proteins or protein complexes with interesting and important

biological functions are addressed. Additionally, when prolonging [72] simulations, more

and more precise setups are needed [78] because every small detail (salt concentration,

pH-value, aiding molecules etc.) can ultimately have a big impact on the sampled con-

formational folding space [79]. Refinement consequently can be very susceptible to small

errors and lead to completely misfolded molecules, impossible to correct.
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That means, despite the fact that refinement usually starts with a well defined near

native state (or at least closer than a completely unfolded chain of amino acids), suc-

cessfully reaching an elusive global minimum can be evenly difficult as folding an entire

protein. Likewise, being trapped in a local energy minimum can also render refinement

impossible.

To overcome unavoidable, with MD usually uncrossable energy barriers [80], we tested

simulation setups augmented with a novel positional restraints, which may lower energy

barriers and finally lead to substantially refined models, contributing like the other en-

hanced sampling methods mentioned above. Our approach can be described as locally

adaptable position restraints method. Our adapted positional restraint procedure com-

prises permanently updated per-atom potential which, due to the updates, will adapt

its local minimum as a function of time. Updates will be guided by the direction that

the atom takes while it is moving within its potential. Since it is still influenced by all

the other atoms in the simulation, the potential helps to stay within a reached minimum

for at least up to one update interval until it is then again deformed iteratively to finally

reach a more native-like, settled state for a maximum amount of atoms. This process is

self directed and guided by the internal forces of the molecule.

To generate the structural ensemble, we performed three sets of MD simulations: First

we carried out a fixed temperature restrained refinement simulation with all models.

Then we cross checked the results with unrestrained, free simulations. Finally we tried

to investigate the effect of a simulated annealing restraint simulation on the initial

refinement approach, for which we hoped that it could widen up the possibly narrowed

conformational space of the fixed temperature refinement setup.

In refinement simulations, the actual improvement, if at all, usually does not happen

linearly, but will take a chaotic path, caused by the high dimensionality and complexity

of the addressed problem [81–86]. Accordingly, simply picking the last structure from

a trajectory will not automatically yield an improved structure [36]. To account for

this, in addition to the refinement method, we developed an associated scoring function,

which ideally would be able to filter the generated structures, separating the improved

from the worsened structures. The scoring method assesses a combination of local and

global compactness, so that regional- and molecule-wide distances reflect the quality of

a model.
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4.1 Methods

4.1.1 Restraints approach

We are introducing a deformable elastic network (DEN) [87] inspired positional restraint

to MD systems, which is called adaptive deformable position restraint (ADPt). With

this approach we are able to run a position restrained inspired simulation that is able

to allow changes in all possible directions. Simultaneously it takes advantage of the

notion, that simulations, coupled to an additional potential behave differently and alter

the original energy function. Whether dynamics can now overcome energy barriers that

would normally hinder simulations to improve, resulting in more efficient sampling, will

be shown below.

An ADPt-enhanced simulation setup starts with applying position restraints to all Cα

atoms with harmonic potentials of the form epos =
∑3

i=1m/2(xi−Xi)
2, with the energy

epos and x being the position of the simulated atom and X is the location of the position

restraint. All other atoms are not restrained in this approach, but the method would also

allow all atom restraints. While a position restrained atom moves within the boundaries

of its potential, after a predefined fixed update interval, we update the position restraint

coordinate to the new location (see Fig. 4.1):

Xnew
i = Xold

i + κ(xi −Xold
i ) (4.1)

This update takes place at a fixed frequency, typically every 500 integration time steps.

Figure 4.1: The adaptive deformable position restraint (ADPt) workflow schematically.
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As a result we achieve, that atoms which are modeled very accurately near to their

native position within their local energy minimum tend to stay where they are. Their

movement within their potential is zero in average and hence the update will not change

its position. In contrast, atoms which are far away from their native location tend to

move away from their initial position, not affecting those atoms that are placed ideally,

assuming they do not move too far away. With this approach we do have the advantage

of, first, having position restrained atoms which do not leave their dedicated area because

their movement is zero on average (for example core region of a protein), while at the

same time, second, others freely move where ever the simulation force field directs them,

both combined in one system.

4.2 Results

4.2.1 Monte Carlo simulation

To study the effect of the ADPt approach in which a particle feels a slowly adapted,

updated harmonic potential, we used a MC simulation with one particle and a one-

dimensional energy function.

Figure 4.2: Monte Carlo simulation for a one-dimensional ADPt particle. κ is the rate of
how fast the particle follows its potential. E(j) is the energy of the particle at position j, p(j)
are the probabilities. In conclusion, the lower κ is set, the more the particle can be seen in the
lowest energy state.
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Simulations with three different values of κ, the update strength, 1, 0.2 and 0.1, were

performed and the results are depicted in Fig. 4.2. The curves show impressively what

effect this technique can have in a very simple setup. The black line for κ = 0.1 shows

that the probabilities for being in the lowest energy state are highest of all settings.

All higher κ-values show a wider probability distribution with more populated higher

energy states. At last, for κ = 1, the particle behaves like an unrestrained normal single

particle, with higher occupation rates of higher energy states.

4.2.2 Molecular dynamics setup

The complete ADPt approach is implemented in Gromacs 4.5.3 [39]. To be also suitable

for large systems above about 5.0 × 105 atoms the implementation takes advantage of

the domain decomposition functions within the main computation loop.

We performed canonical NVT ensemble explicit solvent simulations with the water model

tip3p [49] in conjunction with the Amber 99SB-ILDN force field [75]. The duration of

each simulation was 100 ns using an integration step size of 2 fs. For electrostatics calcu-

lations we used the Particle Mesh Ewald (PME) method [88, 89] with a temperature of

300 K controlled by the Nosé-Hoover temperature coupling [90, 91] (simulated anneal-

ing see below). For keeping the constraints and maintaining the overall structure over

the decomposed computing cells we used P-LINCS [92, 93], the parallel implementation

of the linear constraint solver unless mentioned otherwise. The restrained simulations

(including the simulated annealing) position restraint force constant was 100 kJ mol−1

nm−2 (multiple different values have been tested, ranging from 10 to 1.0× 106 kJ mol−1

nm−2) with an ADPt adaptation parameter κ set to a value of 0.2 (in agreement with

our Monte Carlo coupling simulations and various test runs) and an update frequency of

500 steps. κ is designed to allow adjustment of how fast the restraint potential follows

its designated atom. For the free simulations we used the same setup but this time

without any restraints. The simulated annealing simulations were started with 300 K,

then heated until they reached 600 K after 0.6 ns. Then we cooled down the system to

400 K until reaching 1 ns, and afterwards finally slowly letting it reach 300 K after 100

ns. All simulation systems were standardly energy minimized with the steepest descent

algorithm and then equilibrated for 100 ps.
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We generated 100 ns of fixed temperature restrained simulation for all protein models and

added another 100 ns of free, unrestrained simulations for cross checking and simulated

annealing simulations for each model, respectively. Altogether, we produced 5.4 µs of

simulation data. On our cluster a single simulation needed 2-6 days of core time per

model, depending on the number of atoms involved, while using an average amount of

96 Intel R© XEON R© X5670 cpu cores per run.

4.2.3 Model selection and preparation

We selected 18 models from the refinement section of the international blind test meeting

Critical Assessment of methods of protein Structure Prediction (CASP) [1] 8 (model id:

389 429 432 435 453 454 461 488) and CASP 9 (model id: 530 567 568 574 576 592 594

606 622 624) and excluded all NMR models (CASP8 model id: 462 464 469 476, CASP9

model id: 557 569 [614 no pdb.org data found]) for consistency reasons.

Some models were not fully described by their pdb data entries and we had some prob-

lems aligning a few templates with their targets. In detail, model TR389 had one more

residue (LYS 135) than the crystal target, which in fact was not problematic for fitting

procedures, since for all comparison calculations it was simply excluded. The crystal

structure of target T0429 incorporated a gap from residues 56 to 72. Model T0435 also

had a gap from residue 62 to 71 and missed 3 residues at the end. As all our mea-

surement tools included a sequence alignment prior to the actual comparison, gaps were

automatically skipped in both fitted structures.

Table 4.1 gives an overview of the models and their most important properties.

The model with the lowest initial RMSD (1.26 Å) was TR592, the one with the highest

(7.47 Å) was TR622, both from CASP9. Very near native structures are included in

the set (below 2 Å RMSD: TR432, TR453, TR461, TR530, TR592, TR594) as well as

structures rather far away from their native state (above 6 Å RMSD: TR492, TR568,

TR576, TR622).

The shape and size of the models are in the range from all helical (TR432, TR454) to

all beta sheet (TR624), 69 residues as lowest (TR624) and 192 as highest (TR454) value

(see Fig. 4.3).
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all atom
MODEL ] atoms RMSD GDT-TS dRMSD dRMSD
(*-id) Cα/all (Å) (Å) (Å)

TR389 135/2136 2.638 0.8097 1.9643 4.3216
TR429 155/2510 6.796 0.4457 5.9684 7.0900
TR432 130/2159 1.646 0.9173 1.0505 2.1450
TR435 137/2199 2.153 0.8223 1.3952 2.4105
TR453 87 /1386 1.396 0.8879 1.0548 3.1475
TR454 192/2966 3.238 0.6406 2.7201 3.0578
TR461 157/2432 1.634 0.9029 1.1657 2.0900
TR488 95 /1471 2.109 0.8789 1.3405 1.9029
TR530 80 /1288 1.990 0.8594 1.3197 3.5878
TR567 142/2261 3.435 0.7817 2.2811 7.5075
TR568 97 /1541 6.149 0.5490 4.4619 4.9824
TR574 102/1515 3.583 0.6201 2.5333 2.8981
TR576 138/2197 6.851 0.6431 4.7643 5.1740
TR592 105/1635 1.257 0.9024 1.0310 1.3810
TR594 140/2258 1.818 0.8661 1.2569 1.8787
TR606 123/1894 4.850 0.7175 3.4614 4.1534
TR622 122/1996 7.474 0.6680 4.0014 3.5873
TR624 69 /1118 5.189 0.5543 3.1542 4.3264

Table 4.1: Initial model overview. All models were compared to the corresponding crystal
structure with different distance metrics. * ] given by the assessors of CASP.

4.2.4 Assessment of model quality

To assess the quantity and quality of the refinement approach we compared and applied

several measurement methods, since deeper understanding of the refinement processes

demanded for a slightly wider variety of methods.

Normally, structures of the same type, the same reference frame and almost the same

subset of comparable atoms, but with a (moderate) different spatial arrangement of

atoms, can be compared and assessed reasonably well with the root mean square de-

viation (RMSD) method. With a RMSD, usually all Cα atoms of two models are su-

perimposed so that the root of the mean squares of positional differences of the atoms

give a value of the overall similarity. The lower the value the more similar is the spatial

arrangement of the two sets of atoms that are being compared. Since this method is

well established, the value normally gives a good impression of the quality of a model.

The disadvantage of this method is the unavoidable necessity of a superposition of the

models. This is normally done via a least square quadratic fit (LSQ) of the two struc-

tures. Though this approach is now widespread and routinely used, it is not very trivial

to implement. Another shortcoming is that all atoms are weighted equally. Ideally, flex-

ible regions of a protein model (e.g. loops or N/C-terminal regions) should be weighted

less because they can impair an otherwise perfect matching structure score. By this,
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Figure 4.3: Overview of models used in this refinement test. A-H: CASP8, I-R: CASP9. Also
included is a secondary structure icon, showing the percentage of α-helix or β-sheet content
of a model, respectively.

unfortunately, a lot of information is hidden or simply lost within the single-value score

of the RMSD (which we address in Fig. 4.9, where we use a ranged all atom version of

our distance RMSD function).

Consequently, our main quality measure is a distance based RMSD (dRMSD) (see

Fig. 4.4), which measures internal distance differences of the two compared models.

Unless otherwise mentioned we just use the backbone Cα - Cα distances to compute the

score.

dRMSD =

√√√√ 1

n2 − (n
2+n
2 )

n∑
i=1

n∑
j=i+1

(
d
(t)
ij − d

(m)
ij

)2
(4.2)

with d
(t)
ij and d

(m)
ij , which are the distances between atom i and j in the target structure

and the model, respectively.
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Figure 4.4: Comparison of dRMSD and RMSD. The plot shows the unfitted and unnormal-
ized results of the RMSD and the dRMSD calculations applied to a protein model. The overall
trace of the values are similar, the details are different, as this is a complete different value:
dRMSD compares distance differences and not positional differences like RMSD.

Structures evaluated with the dRMSD method do not need to be aligned since we also

do a sequence alignment prior to the distance difference calculation. Accordingly it

can be used to show distance specific clustered data of the investigated model, where

clustered here means focussing just on specific ranges of distances within the model to

depict structural changes that happen during simulations.

Another similarity measure we use is the Global Distance Test (GDT) [51]. This measure

tries to find the largest group of atoms that can be aligned with an RMSD of better

than a certain threshold.

This measure therefore focusses on regions in the protein that form the correct core

and completely ignores outliers. It is an iterative method which takes a small number

of consecutive Cα atoms and executes a least-squares (LSQ) fit with those regions,

measuring four predefined contributing maximum thresholds and looping through that

process until the end of the chain is reached. The GDT Total Score (GDT-TS), which

we used, takes (1, 2, 4, and 8) Å as those RMSD thresholds. Unfortunately, this sort

of structure quality measurement is not ideal when trying to correlate it with potential

energy values from simulations or qualitative rankings like our compact score, because

it is intrinsically unstable regarding the score cutoffs. Since the score disregards parts

of very misplaced structural elements, the real quality of a structure is not reflected in

the absolute score, or at least not as accurate as a direct RMSD method would be.
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4.2.5 Scoring method

Generally, the correct structure is not available to determine the quality of a model. It

is therefore necessary to have a scoring that, given an ensemble of models, quantifies

which model is better, i.e. which model is closer to the true answer.

This scoring could be using energies, structural properties or a combination of multiple

variables of the model and the resulting scoring measure should be closely correlated to

the real quality of the model. A template-free scoring should ideally be stable, meaning it

can score all kinds of proteins, no matter how they are composed, generated or treated,

without loss of generality. Unfortunately, no scoring method can be successful in all

cases. There will always be tradeoffs specific scoring approaches have to face. For

example, taking just the energies of all-atom explicit solvent simulations will usually

not yield a good scoring measure (except regional coincidently) since it will typically be

dominated by large fluctuations arising from the multitude of interactions from particles

within the simulation (mostly water). To create a very low level and highly general

scoring function we combined two compactness scores, a local and a global one. The

local compactness score is focussed on local distances of atoms being within a certain

range within of the model.

The compactness score is calculated as averages over atomic Cα-Cα-distances di by

if di <= 6.7 Å ,Elocal =
1

n

n∑
i=1

di (4.3)

Eglobal =
1

N

N∑
i=1

di (4.4)

Ecompact =
Elocal × Eglobal

2
(4.5)

where N is the number of all Cα atoms, and n = is the fraction of distances that obey

the local distance criterion.

The global score reveals a mean overall model compactness. The resulting compact score

(Eq. 4.5) is composed of the local score (Eq. 4.3), weighted by the global compactness

(Eq. 4.4).
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MODEL ] residues ] decoys min / max RMSD

1ctf 68 630 1.319 / 9.071
1r69 63 675 0.876 / 8.311
1sn3 65 659 1.310 / 9.134
2cro 65 674 0.806 / 8.311
3icb 75 653 0.945 / 9.391
4pti 58 688 1.414 / 9.265
4rxn 54 678 1.356 / 8.140

Table 4.2: Overview of 4-state decoy set by Park and Levitt [94]. The list shows the model
identifier, the number of residues of the decoy, the number of structures within a set and the
minimum and maximum RMSD values of the decoys in the set compared to the native model.

The score as it is used here is an unbiased, geometric measure, which does not need to

be trained or parameterized in any way.

Figure 4.5: Assessment of the compactness score, which was used to rank all models in the
ensemble of decoys. Each circle represents a decoy structure [94, 95]. The high correlation
of the score to the RMSD shows the ability of the score to depict the real quality of the
investigated decoys. Pearson correlation coefficients of each set: r1ctf = 0.69, r1r69 = 0.67 ,
r1sn3 = 0.71, r2cro = 0.76, r3icb = 0.77, r4pti = 0.64, r4rxn = 0.70.

To neutrally assess the quality of the score, we took the Park/Levitt decoy set [94] (4-

state reduced), including all seven models (see table 4.2) and measured them with our

scoring function.

The result of the test can be seen in Fig. 4.5. It clearly shows, that it can discriminate

most near native structures from the worse consistently throughout the complete set of
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Figure 4.6: Scoring of model TR389 in a fixed temperature ADPt MD simulation. Clearly
observable is the nearness of the score (blue) to the distance of the model to the crystal
structure (dRMSD, black) in this case.

decoys.

How close our scoring function can be in comparison to the dRMSD quality measurement

of a model trajectory (TR398 of our set) can be seen in Fig. 4.6. The dRMSD curve

resembles very closely in the curve of the compact score values. So the score really guides

to the most native structure of the ensemble. This is a very accurate example (r= 0.7)

which has to be considered as an ideal case and may not be generalized.

4.2.6 Simulation results

The ADPt approach has been applied to 18 models from CASP8 [1, 96–100] and CASP9

[58, 101] as described in the method section. From all 18 models in this test set, only

model TR622 could not be refined with our approach, even for the annealing simulation

approach. Two simulations even produced only improved structures, meaning at each

time in the refinement trajectory the model was better than the starting model.

To explore, investigate and assess the generated ensembles, we evaluated simulation

properties like potential energies, coulombic and Lennard-Jones short range and 1-4

protein-protein interaction energies, Ramachandran energies, amount of secondary struc-

ture elements (SSE) (α-helices, β-sheets), model size (residues), best refinement frame,

score correlations, frame improvement, starting dRMSD and sampled conformational
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Figure 4.7: Comparison of the total improvement of the three different simulation setups
when considering all frames produced. The improvement capability increases with the ADPt
(middle) - and the simulated annealing ADPt (right) approach.

space, for which best agreements towards the real quality of the structures we only

found in our compact score.

Overall, standard unrestrained MD simulations produced 12 % improved frames, fixed

temperature ADPt restrained simulations improved 25 % frames and simulated anneal-

ing ADPt simulations were able to further increase that by 6 %, ending up with 31 %

of refinement (see Fig. 4.7).

Figure 4.8: Correlation of the ∆ dRMSD of the best (green), scored (light blue), last [meaning
the last structure of a simulation as a function of time] (purple), and worst (red) structures
and their starting dRMSD of the 300 K simulation, respectively. Horizontally, each dot with
the same start dRMSD belongs to the same ensemble. The dotted vertical null line means no
change, i.e. a null refinement. Each dot to the left of the null line is a refined model, each
dot to the right is a deteriorated model. Models with starting dRMSDs between 1.8 and 3.8 Å
(TR606, TR454, TR567) were refined the most, indicating that neither the farther away, nor
the very close models from or to the native structure showed the best improvement.
Nevertheless this could suggest that models of intermediate quality, with a certain degree of
correctness can be improved until a limit, defined by the incorporated level of detail, either by
the limitations of the force field or by the sampled conformational landscape, is reached.
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Focussed on the properties of the models from the fixed temperature ADPt runs, did

the starting quality of the homology model have any impact on the ability to refine it

(see Fig. 4.8)?

Those models in our set with a starting dRMSD value below 1.4 Å showed constant

improvement of 0.05 to 0.4 Å dRMSD for the best model produced. The scoring function

was able to pick a model out of the better lower third part of the ensemble, which was

almost all the time better than simply picking the last produced structure from the

trajectory. No trend was observable within this range of starting quality. Above 1.4

Å, beginning with the first model slightly above 1.9 Å, but below 4 Å, first of all the

sampled space and the amount of improvement doubled, ranging from 0.1 to 0.9 Å. Here,

the scoring function also was better than simply picking the last structure, except for

one example. Two out of six models in this range were perfectly scored, meaning that

the best structure produced was actually picked. Above 4 Å, the models showed very

little overall improvement, with 0.4 Å improvement for TR429 as the best performance,

which was also picked by the scoring function. All scored models were better than the

last structure of the corresponding runs.

Models in the range of below 4 Å and above 1.9 Å dRMSD starting quality were refined

the most. Below 1.4 Å and above 4 Å dRMSD, there were limitations, possibly founded in

the lack of fine grained near native sampling for the first and too much error introducing

models with no guiding path to near nativeness for the latter. A balanced structural

error, combined with a fundamental overall correctness seems to be helpful when trying

to refine a comparative model. To sum up, refinement performance in our simulation is

lower either, when the model is too far away from nativeness (above 6 Å RMSD) or too

close in the very near native region (below 1.4 Å RMSD). Expansion of the runtime from

100 ns to 200 ns can possibly lead to better performance for the models more distant

from the native state, as can be seen in Fig. 4.18, and the simulated annealing ADPt

results in Fig. 4.13.

With eight of the models (TR389, TR429, TR530, TR568, TR576, TR594, TR622

and TR624), the simulated annealing simulations were able to enhance the refinement

significantly. The free runs in most cases just expanded the sampling space without

increasing the chances to visit near native structures.
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Whenever we expanded the conformational space and sampled structures being more

distant from the native state, either with simulated annealing (just TR568) or with free

runs (all but TR568), in 12 of 18 cases we were able to distinguish them with our scoring

function, discriminating those as deteriorated high energy structures (see Fig. 4.13, A,

B, E, H, I, J partly, K, L, M, N, O, P).

A detailed look at the refined models with our all-atom dRMSD assessment score should

give a closer insight into which of the internal distances were actually affected by our

refinement. The question of whether a general deterioration arises from the overall shape

impairment or a drift in short-range interactions of a structure needs to be answered, as

the outcome could give rise to the possible strengths and weaknesses of MD refinement

or MD simulations at all. Unfortunately there is no general trend observable when mea-

suring the models in finer ranges explicitly, which is also good on the one hand, because

that means there is no systematic error or bias within our MD refinement approach.

Nevertheless, the examples we studied below will illustrate that MD simulations are not

limited in their refinement spectrum.

The detailed measurement was done with the all-atom version of the dRMSD method, in

which multiple chosen subsets of intra-distances were taken into the distance difference

calculation. We divided all intra-distances of the crystal structure into ranges of 0-4,

4-8, 8-12, 12-16, 16-20 and 20-max Å and compared those with the corresponding set of

distances of the model. Each comparison yields a score, not observable in a general Cα

RMSD or dRMSD, GDT-TS or GDT-HA (high accuracy).

The most prominent result of that score is shown in Fig. 4.9, which shows that our

simulations are able to maintain the overall shape of a protein and just refine local

interactions (see Fig. 4.9, B, light blue and green line) as well as refine the global shape

and keeping local interactions stable (see Fig. 4.9, A, red line). Compared to the free

simulations, this is a unique feature of our ADPt setup.

In summary, the simulated annealing approach resulted in an extra improvement of 8

models compared to the ADPt setup without simulated annealing. Additionally, dras-

tically reduction of noise (lowered dRMSD variance as a function of time per model)

during a simulation is observed in the fixed temperature and the simulated annealing

restrained setup.
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Figure 4.9: Refinement results analyzed for different internal distances. The dRMSD is
plotted for Cα atoms of each frame against its crystal structure (right y-axis). The other
colored lines show a windowed all-atom dRMSD for a specific distance. For example for 0-4
Å(green line), we first evaluate the distance between two atoms and then take them into the
calculation only when the distance is at least 0 and at most 4 Å. This is done for all listed
distances (left y-axis). By this it is possible to depict the quality of a refinement and to detect
which distance-regime of the model could be improved most during a simulation.
A TR567: The red line shows that the refinement happened almost exclusively at the longer
distances, indicating that the overall shape of the model was corrected. It started with an
all-atom dRMSD of 7.2418 Å and followed a continuous drop until it reached 1.7198 Å after
about 70 ns simulation time (Not observable in this plot; curves are running averages). Then
it deteriorated a bit, which is also observable in the overall dRMSD. Also noteworthy is the
fact, that the improvement in the long distances did not cause a decline of quality of all other
distance ranges. B TR574: In contrast to the overall shape refinement of model TR567, we
can see in this example, that the small impact to the refinement for this model came from
the less distant atoms from 0 to 8 Å (green and light blue line), indicating a better side chain
packing.

Consequently, in contrast to the restrained simulations, free simulations behaved much

more chaotic per time, since it was simply producing worsened structures, in a complete

undirected manner with low chances of yielding improved structures. The chance of de-

teriorating the model simply was very high. All in all, there was only one free simulation

(TR568), that did not produce the worst structures from a combined ensemble of all

runs for a model.
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Figure 4.10: Improvement, weighted with the amount of α-helices/β-sheet rate, against the
size of the model. It is observable here that the improvement of a model is related to the
α-helix content and its size (residues). The bigger a model and the more α-helices it has, the
better was the refinement. On the other hand, there also exists a (weaker but also observable)
relation between the improvement, the size and the amount of β-sheets. The smaller the
model, together with increased amounts of β-sheet content, the better was the refinement. An
exception to that rule was one outlier (TR429) with 155 residues, which was large and showed
a good refinement result, although it had more β-sheet than α-helix content. An explanation
for that behavior could be its dimeric shape, though its difficult to explain, what exact impact
it had on the refinement.

We found, that simulations were most successful when either models were around 120 to

200 residues large containing mainly α-helices (see Fig. 4.10) or smaller and containing

more β-sheet content. This means big α-helical and small β-sheet models were affected

the most in our refinements. This effect could either point to a force field bias towards

stabilizing α-helices. Since this issue was addressed in the past [75] this can be neglected.

By naive juxtaposition of helical and sheet secondary structure elements one can come

to the conclusion, that the sheet feature is, most of the times, much more fragile because

it involves loop motives and introduces a plane area which is difficult to predict because

the exact twist of a β-sheet involves many long range interactions.

While the total amount of secondary structure elements of a structure during a sim-

ulation is usually not correlated with the RMSD of the model, the simulation should

aim for reaching the secondary structure composition of the crystal structure. Fig. 4.11

shows, that we indeed achieve a more native-like distribution of secondary structure

elements. The starting homology model secondary structure distribution was shifted, so

that it missed essential parts of β-sheets and a few α-helices. In the end, the free sim-

ulation produces too much β-sheet content while not being able to accumulate enough

α-helical content. The simulated annealing simulation had the same trend but was at
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initial end initial end initial end
MODEL ] atoms RMSD RMSD GDT-TS GDT-TS dRMSD dRMSD
(*-id) Cα (Å) (Å) (Å) (Å)

TR389 135 2.638 2.934 0.8097 0.7537 1.9643 2.22852
TR429 155 6.796 7.258 0.4457 0.4293 5.9684 6.41063
TR432 130 1.646 1.877 0.9173 0.8962 1.0505 1.15654
TR435 137 2.153 1.991 0.8223 0.8781 1.3952 1.28272
TR453 87 1.396 1.344 0.8879 0.9109 1.0548 0.89694
TR454 192 3.238 3.287 0.6406 0.6406 2.7201 2.54871
TR461 157 1.634 1.771 0.9029 0.8965 1.1657 1.20115
TR488 95 2.109 2.404 0.8789 0.8763 1.3405 1.55187
TR530 80 1.990 1.640 0.8594 0.8813 1.3197 1.20707
TR567 142 3.435 2.230 0.7817 0.7993 2.2811 1.5175
TR568 97 6.149 6.625 0.5490 0.5773 4.4619 4.61816
TR574 102 3.583 3.391 0.6201 0.6446 2.5333 2.61181
TR576 138 6.851 7.677 0.6431 0.5688 4.7643 5.01773
TR592 105 1.257 1.263 0.9024 0.9000 1.0310 0.96313
TR594 140 1.818 1.997 0.8661 0.8500 1.2569 1.31224
TR606 123 4.850 4.594 0.7175 0.7459 3.4614 3.42305
TR622 122 7.474 7.689 0.6680 0.6373 4.0014 4.27649
TR624 69 5.189 5.296 0.5543 0.5761 3.1542 3.14294

Table 4.3: Comparison of crystal structures with the last structure from the refinement
trajectory. This last structure is usually not the best structure. * ] given by the assessors of
CASP.

least able to add some more α-helical content. The fixed temperature ADPt simulation

was able to approach the native secondary structure content the best (see Fig. 4.11, C).

For some models even simulated annealing was able to expand the sampling space and

to lead to better RMSD values. A careful look regarding the native secondary structure

distribution should be made.

As already mentioned and depicted in Fig. 4.12, TR429 (light gray rings) is a model

hard to improve in two ways. First, it is composed of two intra model domains with

a bridge-like interconnection. This link is very flexible and introduces difficulties to

refine the model. Here, modeling the entire periodic crystal structure including crystal

contacts could help to maintain the overall shape. However, in addition to that problem,

one of the cores of this model is poorly modeled and therefore also very difficult to refine

because it gives the simulation no real guidance, at least not with simulation times

used here. So for the three different setups (ADPt, sim. ann., free), three different

improvement results are observable. Expanding the conformational space did have a

huge effect in the most efficient form in case of the simulated annealing setup. Because

all three systems behaved quite differently, we can imply, that the underlying energy

landscape of this model is in the starting region of 6.8 Å more like a flat golf course, far

away from a possible direct refinement funnel path to the global minimum.
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Figure 4.11: Distribution of secondary structure during the MD simulation. The darker the
color the more structures from the refinement trajectory fall into this range of α-helix and β-
sheet content. Red and green squares mark the starting and native composition of secondary
structure of that model, respectively. The goal should be to reach the area of the green square
with the native amount of α-helices and β-sheets. A Simulated annealing of TR622. B Free
MD of TR622. C ADPt fixed temperature MD. D Crystal structure green and homology
model red of model TR622, color scheme is the same as in the secondary structure plots.

When comparing this to the results of model TR567 (4.12, dark gray ring), we see that

all setups reach the same 1.4 Å (also see Fig. 4.13, J) area, but are unable to refine

further. By taking the energy landscape analogon, here we are not starting at an outer

flat region of of the landscape but instead well in the funnel region with a direct path

to a lower energy minimum. Further improvement to the global native minimum would

include reshaping specific sites within the model, temporary dwelling the whole protein

or at least some parts of it. Indication for this could be a decrease of the scoring value,

although the dRMSD is increasing (v-shape of the scored ensemble in all 3 setups). The

consistency of this behavior in all 3 cases, with almost the same minimum points to a

very stable, dominant path, not to the global minimum, but towards the basin at 1.4 Å.

When taking a closer look at the scoring of the ensembles generated in D, E, G, Q and

R (see Fig. 4.13) all simulations were less or even not successful in refining. Interestingly

all those models except R have very good starting models. Difficulties with scoring were

observed when structural changes within the frames were not sufficient, mostly when

the structures become more and more native. So enhancing the scoring with additional
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initial scored initial scored initial scored
MODEL ] atoms RMSD RMSD GDT-TS GDT-TS dRMSD dRMSD
(*-id) Cα (Å) (Å) (Å) (Å)

TR389 135 2.638 2.076 0.8097 0.8116 1.9643 1.60163
TR429 155 6.796 7.130 0.4457 0.4384 5.9684 5.58303
TR432 130 1.646 1.869 0.9173 0.8962 1.0505 1.16438
TR435 137 2.153 2.147 0.8223 0.8719 1.3952 1.31124
TR453 87 1.396 1.429 0.8879 0.8966 1.0548 0.96851
TR454 192 3.238 2.966 0.6406 0.6562 2.7201 2.13244
TR461 157 1.634 1.647 0.9029 0.9156 1.1657 1.16861
TR488 95 2.109 2.155 0.8789 0.8947 1.3405 1.2918
TR530 80 1.990 1.733 0.8594 0.8813 1.3197 1.15396
TR567 142 3.435 2.172 0.7817 0.8063 2.2811 1.59672
TR568 97 6.149 6.425 0.5490 0.5722 4.4619 4.606
TR574 102 3.583 3.462 0.6201 0.6765 2.5333 2.52954
TR576 138 6.851 7.468 0.6431 0.5888 4.7643 4.91183
TR592 105 1.257 1.221 0.9024 0.9048 1.0310 0.91054
TR594 140 1.818 1.910 0.8661 0.8446 1.2569 1.30044
TR606 123 4.850 4.485 0.7175 0.7297 3.4614 2.90214
TR622 122 7.474 7.679 0.6680 0.6803 4.0014 4.172
TR624 69 5.189 5.164 0.5543 0.5833 3.1542 3.05959

Table 4.4: Comparison between crystal structures and refined models that were selected by
our scoring function. * ] given by the assessors of CASP.

complementary information, such as energy functions can be expected to enable better

resolution when structures are closer to the global energy minimum.

Apart from the good results with our compact score, a major advantage of the position

restraints used here is the fact, that the position restraint energies do reveal the quality

of the ensemble (see Fig. 4.14). The higher the position restraint energies, the further

away is the starting structure from its native state.

In the three examples, structural superpositions of different models from our set does

give a good insight into how structures are really refined and what regions where affected

(see Fig. 4.15, 4.16 and 4.17). All examples truly show the advantages and capabilities

of the ADPt approach, since models are refined in one part of the model while others

are kept stable where needed.

Finally, our results include a recommendation for the general length of free and restrained

classical MD refinement setups. Limited improvement was observed in the beginning of

a simulation within 20 ns, followed by a overall decrease in quality in the region of about

20 to 60 ns of simulation time. After that, frames began to be better again, and by the

time simulations reached 90 ns, the frame quality raised and included more improved

than deteriorated structures 4.18. So our suggestion is to set simulation times at least
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Figure 4.12: Improvement of the models of each setup compared to the sampled space.
Models at the left are in purple, the homology model, and light blue, the corresponding
crystal structure. An important finding regarding the general ADPt setup is the fact that,
when we expand the conformational space, we improve models more. Compared to the free
runs, chances here are also higher to expand the conformational space without generating more
improved models (light blue line). The more horizontal the line in this plot, the more models
were refined without expanding the conformational space too much, hence following a more
direct, quicker and computationally less demanding simulation path that leads to improved
structures faster.
Models TR429 (light gray rings) and TR567 (dark gray ring) are picked to point out the
different improvements (see text) and to show the different improvement behavior.

to 200 ns to be able to profit from our observed improvement in the last 10 % of a

simulation, and maybe observe even more improvement afterwards.

This of course does not guarantee convergence, but is rather a guidance for future

molecular dynamics simulation implementations.
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Figure 4.13: All simulations evaluated by the compact score. Also shown is the increased
sampling with simulated annealing and free simulations. Green line: Best structure in the
ADPt run. Red line: Best structure in the simulated annealing run. With a simulated an-
nealing approach it is possible to expand the sampling space. It is more likely to overcome
energy barriers without the negative effect of just deteriorating the structure, which happens
in the free runs. Also, the scoring needs conformational changes to successfully discriminate
misshaped structures. With a simulated annealing we could enforce more of those conforma-
tional differences than a normal run with 300 K may create. Success or failure of this method
depends on the energy landscape and the energy barriers.
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Figure 4.14: Correlation of position restraint energies against the dRMSD per model. Each
dot represents the mean dRMSD and the mean position restraint energy value of each model,
respectively. Structures which are closer to the native state have lower energies than those
being further away from their native structure.

Figure 4.15: Starting model TR435. Crystal structure (blue), homology model (purple/red)
(GDT-TS: 0.8223, dRMSD: 1.40 Å), refined model (green) (GDT-TS: 0.8719, dRMSD: 1.31
Å). The homology model was already very good, just with local problems in region e and
an improvable side-chain packing a, c. The refined model still has problems in region e but
shows tendencies to resolve the misplaced helix. Within this model, region e was problematic
because it needed some major refolding and melting of a falsely modeled helix. Apart from
those regions a to d reflect a rather accurate refinement. The helix in a to c is placed more
to the core of the protein, resulting in a more dense part, where also regions b and d profit
from, resulting in a very accurate hit of the native trace.
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Figure 4.16: Starting model TR453. Crystal structure (blue), homology model (purple/red)
(GDT-TS: 0.8879, dRMSD: 1.05 Å), refined model (green) (GDT-TS: 0.8966, dRMSD: 0.97
Å). This is a very accurate model overall, with local problems and a reversed packing problem
in region a. Here, it is actually better to loosen the rigid compact packing. With this, the
model revealed its major refinement in regions a (corrected helical structure placement), b
and c (both coil structures agree better with the native trace), and a very good placing of the
background α-helical structure in site d.

Figure 4.17: Starting model TR530. Crystal structure (blue), homology model (purple/red)
(GDT-TS: 0.8594, dRMSD: 1.32 Å), refined model (green) (GDT-TS: 0.8813, dRMSD: 1.15
Å). Simulations improved both β-sheet contents in region a and b, where a major amount
of secondary structure elements were added to the structure and, impressively, kinked the
terminal region a up to its native contact. The small missing β-sheet in c was a bit fluctuating
during the simulations and could possibly be stabilized by a crystal contact. Region d did
almost not move, indicating a stable state of the modeled helix.
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Figure 4.18: Histogram of improved frames (0 is best, 100 is worst) for all simulation sets,
running averages for all models. For clarification, each line is not comparable directly, it
is just a measure, when refinement runs improve or deteriorate a model, meaning that no
absolute numbers are plotted here, but normalized representations. The plot shows the deteri-
oration tendencies of the quality of the structures during the middle of the 100 ns simulations.
Structures had a better measured quality (better RMSD against the native structure) in the
beginning and the very end of our simulations.
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4.3 Discussion

Generalization of MD simulation results is often difficult because of the large statisti-

cal fluctuations. To reveal a general trend requires starting a large number of similar

simulations with random initial velocities. The number of simulations that can be per-

formed is clearly limited by available computational resources and is a trade-off between

reliability of the observed trend and computational cost.

We observe three categories of refinement problems: The first category is the refinement

of models which have an RMSD to their crystal structure of about and above 5 Å. The

models can be very correct locally but carry severe misfolds in some regions. Or the

structure has an overall low quality, with a medium error all over the whole model. The

former is seen more often in homology models, while the latter may be more improbable,

because once the homology towards the similar sequences breaks or is fractional, no

minor overall error is put into the homology model. When homology vanishes, the

transition from good models to massively misfolded proteins is quite steep. Within a

cut off range of about above 10 Å, models can still be refined, but due to the errors which

one starts with it will take longer and may even fail at all to refine, while destroying

more than correcting.

The second category is the refinement of models that are in the range of below five and

above roughly 1.4 Å RMSD towards their crystal structure. This may be the area into

which most of the homology models fall. Our results show consistent success in refining

models in this range.

The last category is the refinement of models with a RMSD below 1.4 Å. It turns out,

that this region is very hard to address with either simulations and scoring because we

saw a limited success in correlating those scoring values with the real structural dRMSD

towards the crystal structure. A possible solution could be to enhance sampling even

more (apart from simulated annealing) to generate more near native models and/or

extend the scoring measure with additional terms that allow for discrimination of the

very dense similar native like structures.

Qualities of above 10 Å RMSD are not considered to be mainly addressed by our MD

refinement any more, because their local error can be so large that the methodology

may need different considerations and the problem is then to refold significant parts of
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the model. Fortunately, our simulations can detect the quality quantity of the targeted

model quite well (see Fig. 4.14).

These findings may help to categorize and rate targeted refinement attempts and aid to

avoid unnecessary considerations concerning timescales and system setups.

Within our approach, the energy function is not original anymore since we introduced

a self-adapting position restraint into the simulation. However, when the simulation

converges and the atoms do not move much anymore, our ADPts relax slowly towards

to the atom positions. In this way the restraint energy slowly converges to zero and the

structure rests in an almost static part of the energy landscape, which is particularly

true in the case of minimization. That means when minimizing a structure, the local

minimia of the energy landscape are not altered by the adaptable position restraints.

On one hand one might argue, that a slightly changed behavior of the energy function is

undesired since the notion is plainly always to be more and more precise and mimick a

natural unaltered forcefield with highly accurate parameters. But there will never exist

the ”one and only best and optimal” force field in simulations, best for all simulation

conditions. For example classical force fields do not describe the polarizability of atoms,

and cannot treat the hydrogen binding equilibrium of protonatable groups depending

on the pH-value. So perturbing the interactions with our approach to overcome local

energy barriers is not destroying force field parameters and preventing correct results.

Despite the fact, that MD is able to describe proteins in a realistic way and do the right

integration for moving atoms correctly, physics based force fields are not designed for cor-

relating its output with the so called (X-ray crystallographic) native state of a molecule

[102]. That means, when a crystal contact or even the whole crystal environment is re-

quired to keep a loop in place, a simple free MD simulation will not yield any structure

closer to a native state, other than by chance [103]. In this scenario, the simulation will

first try to escape its locally deformed, non natural state and subsequently relax to its

biological structure. This process alone could need more time than 100 ns, which is a

normal efficient simulation length today, pushing the minimal simulation times neces-

sary for senseful refinement to approximately 200 ns and longer. That also means, that

unrecovered errors within the model due to the crystallization process are not obvious

or even detectable, though high variance sites within the molecule (atomic position fluc-

tuations) are a clue but not in the least a general hint towards misplaced regions, since
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intrinsically flexible loops would have the same signature. It can be stated that some

protein models cannot be (efficiently) refined without the presence of a crystal contact

environment or an enhanced sampling method, given that the target which is aimed for

is a X-ray crystallography model (own work). Furthermore, models which seem to be

wrong locally compared with their crystal structure may be right when compared with

their biologically active (non-crystal) counterpart [103].

Being able to find native-like structures within a populated ensemble plays a major role

while assessing methods for structure refinement. Results of our scoring method reveal,

that the function works for at least 12 models as it is able to exclude the majority of non

native structures. The calculation of the compact score as it was used here depends only

on geometric distances. Further modulating it with knowledge-based approaches could

improve and enhance its success rate even more. Residue propensities and secondary

structure motives could increase the sensitivity for ranking near native structures more

accurately (like mentioned earlier). Additionally, effects from solvation, electrostatic

interactions and H-bonds can be assessed to enhance the existing function with the

ability to successfully score models with high resolution (approx. below 1.4 Å).

In the past, enhanced sampling methods like replica exchange MD were successful in

refinement [74, 104], because it was able to sample in otherwise unexplored ensemble

regions and thereby increasing the probability of sampling in the vicinity of the global

energy minimum. The method developed here is trying to take advantage of two major

properties: Local enhancement of correctly folded regions, to finally keep atomistic

arrangements that are of low energy, and stable non fluctuating high kinetics sampling,

combined in one simulation. Local enhancement and peak fluctuation mediating is

achieved by applying a positional restraint. Overcoming energy barriers is enforced by

simulated annealing and adaptive adjustment of the positional restraint coordinates.

The overall effect of our method is self adjustment and local settling of kinetic and

potential energies. Maximum refinement should be reached in general, when all local

fluctuations are minimized by relocation and when the model sits in a globally settled

state. This is reflected in Fig. 4.14, where we show that with our simulations we can

correlate the globally normalized RMSD over all frames of a trajectory with our special

position restraint energies.
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In general, we were successful in refining structures to a certain degree, structure re-

finement was successful although limited by an improvable sampling when aiming for

qualities below 1.4 Å RMSD, but expanding the conformational space could improve

the success rate of refinement attempts immensely like simulated annealing simulations

plainly showed. With non optimal sampling, scoring is pointless and with bad scorings,

sampling is of no use.

When comparing to crystal structures, the refinement performance could possibly be

improved by modeling the realistic crystal environment and include the crystal contacts,

which for example would limit the conformational changes in the contact zones of the

units.

Moreover, we think that force fields are accurate enough [76] for approaches like ours,

where methods enhance the sampling of MD simulations, since most of them change the

dynamics significantly (even replica exchange methods fall into this category, since most

of the force fields are not parametrized to correctly represent and handle temperatures

above e.g. 373 K) and the added terms do introduce effects not observed in unmodified

normal simulations [105].

A possible guideline for simulation result assessment can be a measurement, where sec-

ondary structure content, when correlated with the size of a protein shows propensities

which are utilizable to choose appropriate system settings to match their needs for ad-

ditional improvement.

Finally, our compact score was helpful to enhance the quality of the results and may

possibly be further enhanced by empirical functions in future implementations. Extend-

ing the simulation time from 100 to 200 ns, or even longer could enhance results even

more.
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Coupling Structures with
Multiple Sequences

The success of comparative modeling stems from the fact, that homologous sequences

share a similar structure with an accuracy depending on the degree of identity that

the sequences incorporate. Several studies investigated the reasons, implications and

possibilities that go together with this fact [106, 107], with the aid of simplified two-

state lattice models to deal with the tremendous size the sequence and structural spaces.

The limited (postulated) number of folds [11, 12], the robustness of the amino acid

code [108, 109], the limited sequence space that nature favors [110] and the fact that

similar sequences can share a very similar structure [111] narrows down the search spaces

which would have to be explored when randomly trying out each possible sequence or

conformation in the hunt for finding the correct native fold. But homologous sequences

can only be used directly for homology modeling when information about the homologous

structure is available. The sequences with unknown structure are unfortunately unused

for refinement within molecular dynamics simulations, yet there should be a way of

exploiting the tremendously vast space of known sequences, because they can contribute

to homology model refinement with their evolutionary filtered sequence information (see

Fig. 1.1).
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In this study, we focus on the refinement of structures derived from homology model-

ing methods which are enhanced, stabilized and averaged with homologous sequences,

having a sequence identity in the range of 50 to 80 % (Tab. 5.2).

Our approach shares similarities with methods that try to solve multi-dimensional energy

landscape problems.

For example in Particle Swarm Optimization (PSO) [112, 113], a large set of agents

is applied to find an optimal solution for a search problem. It exploits the fact that

many individuals which can share information between each other, are better in solving

a problem, than a single individual can ever be.

In our case, to reuse this specific example, we replace the agents by homolog proteins

and the sharing of information by our special interconnected ADPt restraints. A step

further would be, to not use a communicating system of agents alone and let it self

adjust, but to incorporate additional information on top of the plain agent, that adds

and contributes to the targeted problem. Again, in our case, this would translate to the

evolutionary mutated sequence.

In protein ab initio folding as well as in refinement approaches, homologous sequences

on the one hand, share common properties with a targeted fold to not distract and

disturb or eventually break and destroy the system, and on the other hand introduce a

perturbing force to overcome the local trap problem.

The general impact of an average over homologous sequences that is used to diversify

the energy landscape was investigated in the past on the example of ab initio folding and

structure prediction by using 2D lattice models and small proteins with Monte Carlo

(MC) simulations [114–116]. The approach compared aligned structures of multiple

simulations to penalize moves that lead to structural diversity.

Coarse-grained (one bead per amino acid ) 2D lattice models were also used to investigate

the effect of mutations of a protein sequence on the example of 4-12 bead models [117].

Here, one structure at a time was sampled to subsequently couple energies by using MC

simulations.

Another approach connected the considerations that govern the random energy model

(REM) with the aspects of homologous sequences [118] and the free energy minimum of

the native fold of a protein.
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In the SWARM-MD approach [46], in vacuo MD simulations of one 64 residue protein

in an united atom force field were investigated. To smoothen the rugged energy land-

scape, a root-mean-square dihedral angle difference based measurement was introduced

to keep the energies of an added potential energy function low. Here, the same molecule

was simulated multiple times, however no information on homologous sequences are

considered.

The SWARM-MD approach was recently [119] implemented into the Amber molecu-

lar dynamics package, and tested by using 3 test models, a 11-mer alanine, a 17-mer

polypeptide and the globular 20-mer TRP-cage. The implementation uses the same

proposed additional potential of the original SWARM-MD approach, but takes just 20

simulation replicas for building up the swarm of conformations.

Besides ab initio folding of proteins, with important examples shown above, the refine-

ment of comparative models remains to be a challenging problem. Since both, accurate

fine tuned sampling within small energy differences and overcoming relatively large en-

ergy barriers is needed at the same time to improve protein models, the task of refining

a polypeptide within the boundaries of limited detail simulation environments and finite

computer resources is a balancing act.

Our approach, broadly described as simultaneous coupling of homologous molecules

derived from similar sequences, wants to accomplish that task, yet it is kept as simple

as possible. To work properly, it only needs the homology model and additional similar

sequences as input. Restraint force constants and the global coupling term κ can be

adjusted. Everything else is self-managed and integrated into the Gromacs MD suite

(version 4.5.3) (see Fig. A.1). With this it takes advantage of the speed improvements of

the fast parallel domain decomposition code implementations. The sequence augmented

system setup combines and connects all added sequences into one simulation system and

simulates the homology models simultaneously. All calculations needed happen in-place

and are parallel, while no superpositioning algorithms and no global restrictions are

needed or imposed on the whole setup. The system is comprised of one multi molecule

MD simulation box with the homology models and explicit solvent including the ADPt

restraints.
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The impact of homologous sequences on refinement simulations, namely the improve-

ment of the quality of the targeted structure, is based on the modification of the under-

lying energy function. The differences between homologous sequences are not random.

All sequences are the result of natural selection during evolution, e.g. for optimized

protein function.

Proteins evolve because of naturally occurring mutations. A mutation can cause amino

acid changes, deletions and additions. During the folding process of a mutated protein,

the new structure is either equally stable, unstable, more stable than its unmutated

predecessor. Given enough time, this process introduces a sieving of valid and working

mutated protein sequences. The original function was either enhanced or shifted. All

dysfunctional mutations are not maintained because they simply do not fold correctly. In

a very basic procaryotic cell this can be fatal and lead to cell death. Even in multi cellular

organisms, this mutations can be fatal, though other cells can buffer the dysfunction of

a few. If the function was shifted, a new protein class can evolve. In this way, random

mutations probe for sites in the sequence whose change do not break the structure of the

protein. This ultimately evolves proteins, who share the same fold but possess different

sequences.

Exactly this homologs can provide the energetic perturbance needed for the refinement

of structures.

Unlike other methods, that try to optimize the speed of the search for free energy min-

ima in the vast conformational space by simplifying the complexity of the model itself

by reducing its degrees of freedom (coarse graining) [120] [17], we narrow down the space

to search in. By coupling our models simultaneously, the observed conformational space

during the simulation is extremely reduced (though theoretically free to move every-

where). This is needed to introduce small conformational changes without destroying

the rest of the structure. And this is where reliable refinement can occur. The coupled

sequences can be thought of opening a sub space in the vast conformational room. In

this sub space, the copies serve as the energetic boundaries (manifested in the force

field). Still, given enough simulation time to change, the explored conformational space

will be huge but with contributions not only from one structure with his own free energy

landscape but from seven. All these energies add together, forming an averaged land-

scape, which hopefully lowers energetic barriers along the conformational path during
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the simulation.

To study the advantage of our new method over standard MD simulations, and to

separate the effect of the adaptive position restraints (ADPt) from the effect of the

coupling of homologous structures, three different refinement protocols were performed:

A Simulations with ADPt restraints averaged over eight models with different, evo-

lutionary related sequences.

B Simulations with ADPt restraints averaged over eight models with identical se-

quence.

C Free simulations without any restraints or coupling.

5.1 Methods

5.1.1 Selection of Test Cases

We selected five models out of the set of 31 available from the 2-4 Å in the homology

model benchmark set by A. Sali (Badretdinov decoy set). Those five models were selected

to represent ”normal” protein properties that cover a wide range in aspects of size, SSEs

and globularity. Also, we chose a protein model that was among the largest of that set,

with a large number of amino acids.

MODEL ] atoms RMSD dRMSD
(RCSB-ids) Cα/all (Å) (Å)

1dvrA-1ak2 220/3452 2.790 2.250
1hdn-1ptf 87 /1297 2.150 1.712
1lpt-1mzl 93 /1240 3.887 2.572
1pod-1poa 118/1730 2.347 1.860
1utrA-1utg 70 /1116 3.002 2.509

Table 5.1: Overview of all test proteins. The model name consists of two identifiers: The first
identifier denotes the PDB ID of the template structure which was used to build the homology
model. target where the structures was borrowed from, and the second identifier is the PDB
ID of the target structure, which was not used for the refinement. The RMSD and dRMSD
value measured between the starting model and the corresponding target (crystal) structure
is shown.
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Figure 5.1: Crystal structures of all models used. The legend on the right shows the secondary
structure composition of the models.

5.1.2 Sequence Selection for Coupling

We used psi-blast [121] to search for homologous sequences and decided to choose se-

quences with an average identity of 60.5 % towards the other included sequences and an

average identity towards the target sequence of 61.8 %. For the search the blast pack-

age 2.2.23, build Mar 8 2012 14:49:45 was used. We used the updated ”nr” database

(including all non-redundant GenBank CDS translations, pdb, swissProt PIR and PRF,

excluding environmental samples from WGS projects) with 11,205,216 sequence entries

for our search.

The sequences were chosen such that the corresponding structures can be expected to

be highly similar to the target structure. This is achieved by choosing sequences with

identities to the target sequence of higher than 50 %.

Also, the similarities between the chosen homolog sequences should be considered. They

must not be too high, because their influence ought to be as independent as possible to

introduce as much meaningful variation as possible.

5.1.3 Model building for coupling

The modeling process starts with building an initial homology model that will be the

starting structure for refinement and also provides the template structure for building
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MODEL id identity (to target) % identity (to all) %
min avg max

1dvrA-1ak2 1 70 55 62.3 71
2 68 56 64.2 71
3 57 54 58.5 61
4 53 49 55.7 59
5 65 49 58.2 63
6 61 57 58.4 61
7 66 56 64.3 76

1hdn-1ptf 1 68 56 68.8 82
2 66 59 68.6 82
3 64 53 62.1 71
4 51 53 57.2 61
5 59 57 64.4 71
6 71 53 64.2 73
7 54 53 59.5 62

1lpt-1mz 1 58 42 54.1 68
2 56 41 48.8 62
3 55 47 55.1 63
4 52 41 45.6 50
5 67 47 55.5 68
6 76 41 56.2 62
7 63 45 53.2 63

1pod-1poa 1 77 57 65.4 73
2 69 59 66.0 73
3 63 56 66.8 84
4 74 52 60.6 72
5 59 52 62.5 73
6 61 52 67.6 84
7 77 57 63.7 73

1utrA-1utg 1 58 54 63.6 76
2 52 43 50.7 59
3 54 52 62.7 77
4 55 53 62.7 77
5 53 43 60.6 76
6 57 49 65.3 90
7 55 43 62.7 90

Table 5.2: For each test case (MODEL), seven homology models (with ids 1-7) were generated
in addition to the homology model that was built for the target sequence. All these eight
homology models were built using the same template structure. The sequence identity of each
homology model to the corresponding target sequence is shown in the third column. The last
columns show the minimum, average, and maximum sequence identity of each homology model
to all other seven models used for one test case.

models for all other sequences.

Now, the added sequences simply serve as an extension of the simulation setup on the

level of the evolutionary perturbed sequence information and any improvement in the

targeted structure purely arises from the added sequences, when compared to the similar

sequence approach.

All modeling steps are performed with Modeller [20, 24, 122] version 9.7.
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5.1.4 Sequence Coupling

The simulation box consists of eight homology models that are placed far away from

each other, such that there is no direct interaction between them. One of the models

has the target sequence, the other seven models have sequences that are similar to the

target sequence, with an identity of better than 50 %.

Each Cα atom i in each model j is restrained by an adaptable harmonic position re-

straint at position ~pij . The initial coordinates of the restraints are identical to the Cα

coordinates, ~xij(0), in the starting model.

After a specified update interval, typically 500 integration time steps, the displacement

vector ~v of Cα atoms i in model number j is given by

~vij = ~xij(t+ 1)− ~xij(t), (5.1)

where ~xij(t) is the position of Cα atom i at update step t.

The average displacement vector ~vi(t+ 1) of each position restraint is obtained by aver-

aging over all corresponding Cα atoms:

~vi =
1

8

8∑
j=1

~vij . (5.2)

This average displacement vector is then added to all positions of corresponding re-

straints,

~pij = ~vi + ~xij . (5.3)

Our approach can deal with homologous sequences that do have different amounts of

residues compared to the targeted model, so it is allowed to have gaps and insertions. In

case of any occurring insertion or gap that has no corresponding partner no connection

or interaction is made, it is just left free.

5.1.5 Molecular dynamics setup

All three different setups A, B, and C (list 5) used the same MD parameters and the

same force field, except for the restraints. The free simulations were not restrained or
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modified in any way.

After a steepest descent energy minimization and a short 100 ps position restraint equi-

libration of the system, a 300 K fixed temperature Nosé-Hoover NVT simulation with

tip3p water and the Amber 99SB-ILDN force field with a time step of 2 fs was performed.

For the restraints, we used κ = 0.5 and a force constant of 100 kJ/mol−1/nm−2 (not for

the free runs). All electrostatic long range interactions were calculated with PME and

the constraints were controlled by the P-LINCS approach. On average, 32 - 120 cores,

distributed on several nodes, were used.

5.1.6 Model Quality Assessment/Compactness Score

The compactness of protein models is a unique feature of nativeness [79, 123].

Our compact scoring function is a combination of a local and a global evaluation of

compactness. It is used as defined in 4.5.

5.2 Results

Figure 5.2: All simulation results. Showing the improvement percentages of all frames from
all runs for each method in blue and the deteriorated frames in gray.

The complete impact in improvement of the three approaches are resumed in Fig. 5.2,

where the coupling method augmented with different sequences on the left shows the best

result by far. Nearly 3
4 th of all produced frames were refined structures. Compared to

the similar sequence coupling approach this is 1
4 th more. Although the similar sequence

approach was able to refine only 51 % of the runs, compared to the free runs, which only

refined 15 % in total, this is also remarkable.
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Figure 5.3: Averaged simulation results for model 1dvrA-1ak2. The upper 3 plots show
our compact score results applied on the generated ensembles for the sequence augmented,
the ADPt and the free simulations. The lower plots show the averaged simulation results
of all simulations per model and approach, averaged per frame. In this case, our compact
scoring works best with the sequence augmented approach A. The free simulations C show
a comparatively unordered distribution, what means it is more difficult to rank structures
properly. The simulation results are best for A, can rarely improve in case of the similar
sequence approach B and show no trend of improvement for the free runs C.

Figures 5.3 - 5.7 show the individual simulation results, averaged over all frames pro-

duced for one target, respectively. The plots A - coupling different sequences, B -

coupling similar sequences and C - free simulation runs, on top always show the com-

pact scoring (different symbol sizes correspond to different simulations) and the red line

in all cases marks the null refinement, namely the starting quality of the homology

model. Here, the pure dRMSD is plotted against the scoring energies, so a lower value

in the left corner is the ideal case of a refined and very well scored structure.

The smaller rectangular plot below A, B and C directly shows the averaged refinement

−∆ dRMSD in Å of every approach, so every dot above the red line means improvement.

For 1dvrA-1ak2 the scoring and the refinement was successful. As can be seen in Fig. 5.11

the model size is relatively large (220 residues) and the refinement problem is rather com-

plex because approximately 1
3rd of the structure basically needs a remodeling while the

rest is build quite accurately. Despite the drop of the quality of the structure at the end

of the simulation, improvement adopted very fast, more or less directly after starting the

simulation. This is true for all simulations and models we tested, and can be considered

as a direct effect of our sequence coupling augmentation approach. In comparison to B

and C, A gave the best results by far. The compact score directly reflects the quality

of the three approaches. The energies of the worsened models is higher than those of
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the better models throughout the different approaches. The overall correlation values

for the scorings are r = 0.54 for A, r = 0.11 for B (the best r = 0.87 was lowered by the

other scoring values which were partly negative. It is interesting to see, that the scoring

had problems in the lower energy regions, just like proposed in the discussion of chapter

4), and r = 0.50 for the free approach C.

Figure 5.4: Averaged simulation results for model 1hdn-1ptf. The upper 3 plots show our
compact score results applied on the generated ensembles for the sequence augmented, the
ADPt and the free simulations. The lower plots show the averaged simulation results of
all simulations per model and approach, averaged per frame. Our compact scoring worked
good in all 3 cases A, B and C. The simulation refinement was again best for the sequence
augmented simulations A. 0.1 Å worse was B and the free simulations C just degraded the
frames, although slight improvement occurred at the end of the simulation.

The simulation and scoring results of model 1hdn-1ptf are very promising. All compact

scores are high and point very accurately to improved models. The correlation coefficient

values are r = 0.59 for A, r = 0.57 for B and r = 0.62 for C.

The averaged simulation results in this case show the two coupled approaches relative

close together, slightly more improvement for A at the end of the runs. The free runs

show a tendency to refinement but compared to the two other runs here the variance of

the dRMSD per time is much higher.

A more difficult target was 1lpt-1mzl. The scoring did not yield any additional informa-

tion about the model quality in none of the three approaches and the refinement was

very limited for A and B. During the end of the two runs a tiny trend towards better

structures are recognizable, but overall the coupling just aided to maintain the given

starting model, which indeed is also a very good observation. The correlation coefficients
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Figure 5.5: Averaged simulation results for model 1lpt-1mzl. The upper plots show our
compact score results applied on the generated ensembles for the sequence augmented, the
ADPt and the free simulations. The lower plots show the averaged simulation results of all
simulations per model and approach, averaged per frame. Here, no real good scoring was
observable for all cases, and the simulation results just show, that A and B are both able
to keep the structure in its current energy minimum. In contrast, the free simulation C
deteriorates the structure quite fast.

for the scoring are r = −0.15, r = −0.03, r = 0.17 for A, B and C, respectively.

Figure 5.6: Averaged simulation results for model 1pod-1poa. The upper 3 plots show our
compact score results applied on the generated ensembles for the sequence augmented, the
ADPt and the free simulations. The lower plots show the averaged simulation results of all
simulations per model and approach, averaged per frame. Scoring this target was difficult,
since no approach showed significant tendencies to work well. The simulation results instead
were remarkably good for A, a bit worse for B and again quite bad for the free run C.

Model 1pod-1poa was similarly unsuccessful in its scoring with r = −0.23, r = −0.15,

r = 0.063 for the three approaches A, B and C. But here, the refinement was very stable
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and showed an increase of refinement for A in the last 2 ns of the simulation, whereas

B decreased during that time. The free simulation resembled all other free simulations

for all models and resulted in a high variance deterioration of the model.

Figure 5.7: Averaged simulation results for model 1utrA-1utg. The upper plots show our
compact score results applied on the generated ensembles for the sequence augmented, the
ADPt and the free simulations. The lower plots show the averaged simulation results of all
simulations per model and approach, averaged per frame. For this target the compact scoring
again worked very good for the sequence augmented approach A. For the other 2 examples
it did not produce helpful results. The simulation outcomes were again best for A. Here, the
maximum refinement achieved was a remarkable 1 Å dRMSD. B did not refine significantly
and C just performed good in worsening the structure.

The last model of our set 1utrA-1utg showed a very good refinement capability and,

in case of the different sequence approach A also the scoring was successful with a

correlation coefficient of r = 0.53. Neither the similar sequence coupling nor the free

approach was able to drive the structures any closer to the native state. Also the

scoring correlations were undirected with values of r = −0.48 and r = −0.33 for B and

C, respectively.

All simulations with the different sequence coupling approach were either successful in

refining the given model or, in case of model 1lpt-1mzl, were able to hold the structure

at the null refinement starting level. Additionally, three of the models could be scored

with our compact scoring. In contrast, the free simulations were altogether unsuccess-

ful. For given protein model simulations it is not only important to gain insight into the

single simulation performance. Equally important is the possibility to rank the model

in relation to other models. For this, Fig. 5.8 lists the averaged compact score energies
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Figure 5.8: Position restraint energies from the simulations and compact score energies. The
position restraint energies (left, black) can be correlated to the overall starting RMSD in Å
of the homology model. This is also true for all averaged compact score energies (right, green
and red).

and the averaged special ADPt position restraint energies from the coupled simulations.

The position restraint energies are able to roughly rank the models into their problem

set difficulty, which is the global RMSD in Å of the combined averaged simulation set

of all runs belonging to one model.

Figure 5.9: Averaged maximum peak simulation results relative to the method used. The
dotted lines are the averaged results and the shaded areas mark the difference in gained
improvement per approach.

The same can be achieved, to some extent, with the global averaged compact score
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energies (right of 5.8), though the spread of data points is slightly higher here than in

the ADPt energies.

Sorting out the maximum refinement performance depicted in Fig. 5.9 acts as a monitor

to point out the capability of the augmentation of simulations with sequence informa-

tion. The green shaded area is the difference of the averaged results of all best structures

generated within all simulations compared to the coupling approach with just the same

model. From the free simulations view, the augmentation that was achieved with cou-

pling in peak performance on average was 0.15Å in the same sequence case (middle

green), and another 0.15 Å resulting in 0.3 Å in the different sequence case (dark green).

Figure 5.10: All simulation results averaged (higher means better). These plots depict the
averages of 75 simulation runs in total. This means that each of the 3 plots includes 25 runs,
totaling in ≈ 250 ns simulations for A, B and C, respectively. Including all runs, 1.13 µs
simulations were produced. A shows that ADPt simulations augmented with seven different
homolog sequences produce stable and reliable refinement results compared to B, the simple
coupling of 8 identical sequences and the C free runs. The refinement visible in A is directly
caused by the homolog sequence coupling, because similar sequences coupled, shown in B do
not hold this effect. But still, compared to free simulations C, coupling the same sequence
also has a stabilizing effect, though not as efficient as in A.

Figure 5.11: Model improvement 1ak2. The crystal structure in blue, the homology model
in purple and the refined model in green. The red arrows point out sites with major im-
provements.
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The results and the improvement of a single model can be taken to claim success on a

specific set of structures. But the averaged results over all structure-frames generated in

each of the three test scenarios (see Fig. 5.10) give a feeling about how far the approach

could affect the different model qualities in the total overview. In case A, the different

sequence coupling result showed that the augmentation of the simulation was indeed

successful, for it was able to generate a significant better refinement compared to B and

to C, the simple coupling and the free simulations, respectively.

Figure 5.12: Model improvement 1mzl. The crystal structure in blue, the homology model
in purple and the refined model in green. The red arrows point out sites with major im-
provements.

Figure 5.13: Model improvement 1ptf. The crystal structure in blue, the homology model
in purple and the refined model in green. The red arrows point out sites with major im-
provements.

What refinement in the light of energies from compact scoring or ADPt really means

can be seen in the structural overlay of models beginning with Fig. 5.11. It shows

the crystal structures in blue, the homology starting model in purple and the resulting

refined structure from the different sequence coupling in green. For all of the models,

those figures show the profound structural improvement possible with this methodology.
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Figure 5.14: Model improvement 1poa. The crystal structure in blue, the homology model
in purple and the refined model in green. The red arrows point out sites with major im-
provements.

Figure 5.15: Model improvement 1utg. The crystal structure in blue, the homology model
in purple and the refined model in green. The red arrows point out sites with major im-
provements.

The red arrows point to prominent sites within the structures which were refined. For

model 1ak2, the refinement happens consistently on the more correct helical part, moving

the helices into the right positions, and interestingly, pushing the whole poorly build

lower part closer to the crystal structure representation.

The smaller model 1mzl was compacted by a lesser degree but still observable and marked

by the red arrows.

An interesting fact that is true for all models is that the simulations were able to more or

less precisely reproduce the secondary structure, but for some, the details in extended

loop structures are a bit off like in model 5.12 where, for example, the terminal end
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sticks out or, for model 5.14, where the upper long loop-like structure intermitted by a

small β-sheet is not modeled very precisely.

The opposite is true for models 5.13 and 5.15. Due to their relatively small size and

compact shape, it seems that they are also very precisely modeled in the loop regions.

5.3 Discussion

Refining a protein structure with classical MD simulations means searching for a deeper

minimum on a multidimensional energy landscape which is a difficult problem.

With our sequence coupling approach, refinement often happened in the very beginning

of the simulations, indicating that the added homologous sequences impose an additional

force on the model which directly pulls atoms over energy barriers, thereby speeding up

the improvement. After 4 - 5 ns simulation time all simulations have either reached a

more native state (4/5 simulations) or stayed stable at a null refined state (1/5 simu-

lations). It is interesting, that even the systems coupled with the same sequence show

improvement in the very beginning (2 ns) of the simulations, but then decrease by on

average about 0.1 Å dRMSD (see Fig. 5.10). The free simulations decrease in quality

significantly faster and reach a plateau after 4 ns between 0.6 and 0.7 Å dRMSD de-

terioration. Simulations coupled to homologous sequences show no convergence at the

end of our simulations at approximately 10 ns. It is possible that longer simulations can

improve models even more. The long term stability needed will then be a direct effect

of the strength of the implied propensities of the homolog sequences and therefore the

properties of the energy landscape. The observable improvement of the models can be

regarded as an effect of the added homolog sequences. Our biggest model (220 residues)

was a special case to refine as it was modeled very accurately in a major part of the

system and needed a significant improvement in the region of residue 129 to 167 (17.3 %

of the whole model), which contributed to the deterioration with 0.87 Å dRMSD (2.79 Å

instead of 1.92 Å when measured without that region). The task of refining that model

was therefore to keep a large region in place and reshape a smaller area. Doing this with

homolog sequences means, broadly, that its necessary to introduce less modifications in

a very large part of the protein and apply more modifications to the problematic region.

Since the modeled homologous structure is related to the homologous sequences taken
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for modeling but also and in the same way, to the homologous sequences coupled within

our simulations, the steps necessary to improve a desired region should be taken care of

automatically because the homolog modeling process is just a depiction of the homolog

structure space.

Normally, none of the energies produced by an all-atom explicit solvent simulation can be

used unmodified to rank the quality or nativeness of a produced model to find the global

energy minimum. In contrast, the restraint energies and the energies of our compactness

score are able to identify the regime in which the refinement takes place. Broad averages

of mean energies do give an insight to the overall quality of a model, making it possible

to reveal the average distance to the native state and rank the difficulty of the refinement

problem (see Fig. 5.8).

Which and how many sequences have to be coupled to achieve the best and maximum

refinement is debatable. The effect of different sequences on the same setup has not

been investigated in this work, but possible scenarios can be drawn very quickly. Several

degrees of identity between the model and the added homolog sequences can be tested

successively. Also, sequences with specific mutations in predefined domains or regions

of the homology model can be selected.

Homology modeling approaches become more accurate when more homolog sequences

with resolved structural information exist. With this, the refinement problem would de-

crease qualitatively, but probably remain equally difficult, because ”closer to the native

state” does not mean ”easier to refine”. Ultimately, using coupled different sequences in

MD simulation for refinement makes sense when and if there exist more sequences than

resolved structures to a given problem (a scenario which will be true for a long time),

because solved structures improve the homology modeling process directly and do not

need to be incorporated into a refinement simulation via a homolog sequence. In this

way, no more coupling is needed to achieve a spacial improvement, since a significant

rectification which originated from an evolutionary source would have already been im-

posed on the model. It may be questionable, if more homolog information in form of

the sequences coupled to a simulation will yield more improvement. On the other hand,

coupled simulations can still modify the underlying force field in a way, that can make

the simulations more stable and better adjusted to a given problem, for example for a

docking simulation aiming at drug design.
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Here, the sequence selection process is performed by simply aiming for a minimal se-

quence identity via sequence comparison methods that still gives reasonable structural

similarity to the targeted homology model. Various other methods for finding models

that are more distantly related but still share a dominant fraction of the structure are

existing [124]. Those methods and furthermore incorporating information about the

evolutionary distance of the focussed sequences will have an impact on the stability and

efficiency of the augmentation of our coupling approach.

It is possible to further improve this method by picking a structure produced by our

augmented simulations and put those into the refinement process again, either with the

previously used sequences or with new homologs. With this strategy it would be possible

to use more evolutionary sequence data without bloating the simulation box at the same

time, especially when dealing with proteins bigger than 200 residues. The bigger the

box, the more time is wasted by unnecessarily simulating solvent molecules. By taking

the same model and refine it again, more regions of the model could be improved, for it is

possible to surmount energy barriers step by step with each iteration of the simulations.

Given the short simulation time of 10 ns, the impact of the coupled sequences, simi-

lar or different, is clearly observable. The information perturbation/disturbing effect

when using homolog sequences within MD simulations was carried out on the basis of

5 comparative models, placing 8 sequences within the box and couple them via our in-

tegrated algorithm. The different naturally occurring sequences additionally do have a

huge impact on the ability to refine a given structure.

With sequence identity of around 60 % towards the homology model and themselves,

respectively, an increase of approximately 25 % of improvement was accomplished.

Bringing evolutionary information into MD simulations to refine homology models should

work well if these setups meet one prerequisite: The targeted model should not include

any crystal contacts, since those interactions cannot be compensated by anything else

then the contact itself. In all other cases, smoothing the energy landscape to overcome

barriers will be enhanced by introducing more data to the simulations [125, 126].
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Discussion

In this thesis, refinement of proteins derived from homology modeling methods was

attempted.

The concluding result is that all simulation approaches were able to refine the given

problem sets above the null refinement level. Improvement of the quality of selecting

native-like structures from large ensembles has been achieved with the compact scoring

function, which in general is able to allow picking of improved structures out of the best

1
3rd of a large dense ensemble, but sometimes also points exactly to the most native

structures of the ensemble.

General practice, once a model was derived, was, and mostly still is, to not alter it

afterwards because chances are high that modifications would just worsen the model

instead of improving it. That was also the result of the last two CASP meetings (9 and

10), broadly. Constant reliable refinement, if at all, was just achievable on a very small

level. Though at CASP10, an approach which for each model used informations given

by the assessors, ranked best upon all contestants. They used a molecular dynamics

simulation approach and added restraints or constraints to simply hold the unmarked

regions to enable refinement just at the specified sites. Our approaches do not use

any given guiding information since we can not rely on those to be available all the

time, for example in real applications using sequences with unknown structures. So

our methods will stay unbiased, neutral and universally applicable. Although we did

not want to be dependent on external information about the improvable sites within a
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model, we have means to elucidate regions within the protein which may need particular

attention. During our simulations, residues which do not converge to a certain position

with a positional variance close to the mean variance of the converged residues signal us

that those sites are possible candidates for refinement. To know where to address the

improvement in a model is a very important part in any refinement process.

Generally, without prior investigational positional variance check simulations like in

our case, it is not known which parts of a protein are modeled close to the native

representation or very badly, far away from their ideal placement. This is one of the

main fundamental problems for a refinement approach. By looking at the mean square

fluctuations of the complete Cα atom set of a molecular simulation ensemble, we do have

a tool at hand that could tell us the overall quality of a targeted homology model. High

fluctuations point to a dissatisfied model, which has most probably a higher RMSD than

models with a lower overall fluctuation. Even more light is shed on the general quality

of a model when we look at the averaged ADPt energies. The average value calculated

from the whole ensemble gives us a very good correlation to its real quality (see Fig.

4.14). With this value at hand, it would be possible to extent the method with an

estimator, to assess the refinements made. In that sense, if the differences between the

initial and the refined model are greater than the estimator predicts, it may be possible

that the refinement modified too much.

In the past, refinement was tried with many computational methods available, for ex-

ample Monte Carlo approaches, all kinds of molecular dynamics sampling approaches,

in each case with more or less success. As stated above by results of the recent CASP

meetings, non of the methods have been overwhelmingly successful, yet. All of our re-

finement approaches used molecular dynamics simulations to generate an ensemble of

structures. Since ensembles generated by free molecular dynamics simulations tend to

follow unstructured, chaotic paths, restraints were added to help structures to stay in

shape. Generally, when this is done with classical positional restraints, the improvement

will be limited by the strength of the force constant used for the restraints. If chosen to

low, the difference between a free run and a restrained run is marginal. On the other

hand, if the force constant is too high, not enough movement is allowed, so the structural

changes will be low. Hence, a good approach is to choose, by whatever criterion, which

atoms have to be hold in place because their position is almost native and which have to

be more or less free to achieve some improvement. Our ADPt position restraints, either
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in the single copy or in the evolutionary sequence enhanced approach, aim to allow free

movement in low quality sites and lesser, more restrictive movements of atoms in high

quality regions of the protein.

In the first realization step, the system for the CASP9 refinement approach consisted of

eight copies of the same protein, with distance restraints between all corresponding Cα

atoms. The short simulations were repeated 1000 times with different starting seeds to

ensure variations in the initial conditions. The resulting 8000 structures were clustered

with the Jarvis-Patrick clustering [54]. We picked structures from the most populated

cluster by performing a mixture of H-bond and Ramachandran score. The result of the

first approach showed, that a well adjusted coupled simulation with low temperatures,

even with very short simulations is capable to refine the given structures substantially.

In the ADPt system, only one model was simulated at a time. It did not use any distance

restraints but pure adaptable position restraints, which were implemented in Gromacs

to profit from the simulation speed achievable only without distance restraints. Protein

models profited from the changed dynamics and enhanced the generation of improved

structures. We also tried to investigate the effect of a moderate simulated annealing

treatment, which indeed raised the probability of finding improved structures within

our ensemble. Overall, the ensembles of the single copy ADPt method contained 25 %

improved structures, enhanced through the simulated annealing this raised to 31 %. The

free untreated simulations just improved 12 % of all structures of the ensemble.

To filter improved from worsened structures, the compact score helped to directly pick

structures from a very large ensemble. This was a drastic improvement compared to the

clustering filter of the CASP method.

The third approach, in which we used the coupled sequences to improve the related

homology models, profited from all insights of the previous accomplishments. Due to

the bigger systems, without a fast implementation, simulation times would have been too

long. The Gromacs ADPt implementation made this approach feasible. The sequences

used were not picked with regard to their biological evolutional relation. It was just

assured that the sequences did share some degree of similarity and were not too similar.

It is conceivable that a closer relation between the sequences or a more systematic

selection of them might have an impact on the improvement capability. Another point

is the amount of sequences per refinement simulation. We added seven sequences to
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our setups, but this was a value derived from our previous distance restraint method,

which took eight models because of symmetry reasons, a consideration not important

any more in this case. We can think of a quality criterion, that could define the amount

of added sequences. The better the quality of the structure supposedly is, the more

sequences one might have to add (or the higher κ could be set). Altogether, 74 % of the

structures produced with the sequence augmentation were improved models, whereas a

coupling of the same structure (resembling the CASP approach with the improved ADPt

methodology) resulted in 51 % improvement. Again, the free simulations improved just

15 % of all structures.

The most effective and successful approach among all was the incorporation of sequence

information into the simulations. Here we could show that the incorporated sequences

had a tremendous effect on the quality of the produced frames in the first 10 ns of our

simulations. Even after just 2 ns of simulation time, almost all models improved already.

Compared to the free runs that were not able to improve within the given time, this is

a remarkable success.

What were the problems? Finding a structure in its global minimum is difficult and

most often just a simplification of the given problem. There is not just only one native

state that is the solution for the problem, but a collection, itself an ensemble of possible

outcomes and solutions. Those ensembles around the global minimum represent a nar-

rowed set of microstates, all with the same possibility of being almost equally probable.

For the refinement of a given structure that may have several implications. Below a

certain threshold, defined by the complexity and shape of the given problem, it is not

only difficult but elusive to refine further, because we are not searching for one single

structure but for an ensemble of conformations. The problem is to know when to finish

the search. When is the problem solved, when does refining not make any more sense,

because within the refined ensemble, all structures are active and exist in a cell and

solve the given biological task equally well. So the sampled space can still be optimized.

Though the structure may be deteriorated, for example at higher temperatures, chances

are higher to also generate enough native like structures. But those would be very diffi-

cult to separate from the very similar wrong models. By sharpening the scoring function

on the fine grained level, the sieving of good structures may be more reliable. This could

be achieved by including or combining the existing function with other available scores,

like a Ramachandran or H-bond score, or an accessible surface approach.
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I suggest, that our methods featured here, especially the sequence augmented approach,

will be very helpful in improving homology models, even though the generated homology

models may improve over time due to better templates that will be accessible. For a

long foreseeable time, the availability of sequences will be larger than the amount of

solved structures. Consequently there will always be room for improvement by using

the information that is contained within the primary structure of proteins.
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Gromacs implementation

Gromacs (modified), version 4.5.3.

We wanted the modification of the gromacs default code to be as non-invasive as possible

to ensure that the program remains to be fast and easy to maintain.

Apart from minor changes throughout a couple of files, the main changes were done in

the decomposition setup/maintaining routine file domdec.c, the main simulation routine

md.c and the communication initiation file domdec network.c (see figure A.1).

Our modified version of gromacs can be used for any purpose, either for normal simula-

tions with or without normal position restraints, for our single copy ADPt simulations

or the multi copy sequence augmented ADPt simulations.

Parameters for our special purpose simulations can be set in the .mdp file (main grompp

input parameter file). The connections for the sequence augmented simulations are

defined by placing the special connection file disres.con in the working directory of the

simulation. Each row of this file connects the interacting, corresponding atoms. So the

sum of the rows of this file match the total number of residues, and the column elements

are the individually connected atoms. The force constants needed for the coupling are

set in the standard ”posre.itp” file which is also used to introduce the interacting atoms

itself.

As far as we could test it, our modifications had no negative effect on the speed of the

program, neither in default simulations, nor in our special setups.
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Figure A.1: Schematic simplified gromacs implementation for the adaptive restraints.
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1 i f (dd−>ga2la−> l a l ) {
2

3 i n t myi mod ;
4 f o r (myi=0;myi<mydfmax atm ; myi++){
5

6 myi mod = myi % dd−>ga2la−>mod ;
7

8 i f ( dd−>ga2la−> l a l [ myi mod ] . ga < mydfmax atm &&
9 dd−>ga2la−> l a l [ myi mod ] . ga >= 0 && dd−>ga2la−> l a l [ myi mod ] . c e l l == 0 &&

10 dd−>gat index [ dd−>ga2la−> l a l [ myi mod ] . l a ] == myi ) {
11

12 top g loba l−>molblock [ . . . ] . posres xA [ . . . ] [ XX]+=( s t a t e l o c a l −>x [ . . . ] [ XX]
13 −top g loba l−>molblock [ . . . ] . posres xA [ . . . ] [ XX] ) ∗ i r−>den kappa ;
14 top g loba l−>molblock [ . . . ] . posres xA [ . . . ] [ YY]+=( s t a t e l o c a l −>x [ . . . ] [ YY]
15 −top g loba l−>molblock [ . . . ] . posres xA [ . . . ] [ YY] ) ∗ i r−>den kappa ;
16 top g loba l−>molblock [ . . . ] . posres xA [ . . . ] [ ZZ]+=( s t a t e l o c a l −>x [ . . . ] [ ZZ ]
17 −top g loba l−>molblock [ . . . ] . posres xA [ . . . ] [ ZZ ] ) ∗ i r−>den kappa ;
18 }
19

20 }
21

22 }

Listing A.1: high load update

1 i f (dd−>ga2la−>l aa ) {
2

3 f o r (myi=0;myi<mydfmax atm ; myi++){
4

5 i f (dd−>ga2la−>l aa [ myi ] . c e l l ==0){
6

7 top g loba l−>molblock [ . . . ] . posres xA [ . . . ] [ XX]+=( s t a t e l o c a l −>x [ . . . ] [ XX]
8 −top g loba l−>molblock [ . . . ] . posres xA [ . . . ] [ XX] ) ∗ i r−>den kappa ;
9 top g loba l−>molblock [ . . . ] . posres xA [ . . . ] [ YY]+=( s t a t e l o c a l −>x [ . . . ] [ YY]

10 −top g loba l−>molblock [ . . . ] . posres xA [ . . . ] [ YY] ) ∗ i r−>den kappa ;
11 top g loba l−>molblock [ . . . ] . posres xA [ . . . ] [ ZZ]+=( s t a t e l o c a l −>x [ . . . ] [ ZZ ]
12 −top g loba l−>molblock [ . . . ] . posres xA [ . . . ] [ ZZ ] ) ∗ i r−>den kappa ;
13 }
14

15 }
16

17 }

Listing A.2: low load update

1 f o r (myi=0;myi<mynr prote ins ; myi++){
2

3 i f (MASTER( cr ) ) {
4

5 f o r ( i i =1; i i <dd−>nnodes ; i i ++){
6

7 dd recv (dd ,3∗ top g loba l−>molblock [ myi ] . nposres xA ,& pos coords [
8 ( i i ∗ mynr prote ins ∗ mydfmaxii atm ∗ 3) + (myi ∗ mydfmaxii atm ∗ 3) ] , i i , 1 23 ) ;
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9 }
10

11 }
12

13 e l s e {
14

15 dd send (dd ,3∗ top g loba l−>molblock [ myi ] . nposres xA , top g loba l−>molblock [ myi ]
16 . posres xA ,123 ) ;
17

18 }
19

20 }

Listing A.3: communication, send - receive

1 f o r (myi=0;myi<mynr prote ins ; myi++){
2

3 f o r (myh=0;myh<top g loba l−>molblock [ myi ] . nposres xA ;myh++){
4

5 dd bcast (dd , s i z e o f ( top g loba l−>molblock [ myi ] . posres xA [myh ] ) , t op g loba l−>
6 molblock [ myi ] . posres xA [myh ] ) ;
7

8 }
9

10 }

Listing A.4: communication, final broadcast
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