Regulation durch

verzweigtkettige Aminosäuren

in Corynebacterium glutamicum

Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

> vorgelegt von Christian Lange aus Solingen

> > Jülich, 2003

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Referent:

Prof. Dr. H. Sahm

Korreferent:

Prof. Dr. M. Bott

Tag der mündlichen Prüfung: 02.02.2004

Die vorliegende Arbeit wurde am Institut für Biotechnologie 1 des Forschungszentrums Jülich angefertigt.

Teile der vorliegenden Arbeit wurden in folgender Publikation veröffentlicht:

Lange, C., Rittmann, D., Wendisch, V. F., Bott, M. and Sahm, H. (2003). Global expression profiling and physiological characterization of *Corynebacterium glutamicum* grown in the presence of L-valine. *Applied and Environmental Microbiology* **69**: 2521-32.

I. Zusammenfassung	1
II. Einleitung	2
1. Der Aminosäureproduzent Corynebacterium glutamicum	2
2. Die Biosynthese verzweigtkettiger Aminosäuren in C. glutamicu	<i>m</i> 3
3. Regulation der Biosynthese verzweigtkettiger Aminosäuren	5
4. Biotechnologische Produktion verzweigtkettiger Aminosäuren n <i>C. glutamicum</i> : Negative Effekte der Endprodukte?	nit 7
III. Material und Methoden	11
1. Chemikalien und Enzyme	11
2. Oligonukleotide	14
3. Bakterienstämme und Plasmide	14
4. Nährmedien und Kultivierungsbedingungen	17
5. Molekularbiologische Methoden	19
 5.1 Isolierung von Nukleinsäuren	19 19 19 20 21 21 21 21 22 22 22 23 23
6. Biochemische Methoden	24
 6.1 Zellautschluss und Fraktionierung 6.1.1 Herstellung von Enzymrohextrakten nach Ultraschallaufschluss 6.1.2 Zellaufschluss und Isolierung der cytosolischen Proteinfraktion 6.2 Bestimmung der Proteinkonzentration 6.2.1 Proteinbestimmung mit dem BCA-Test	24 25 26 26 26 26 26 26 27 27 27
6.4 Bestimmung der Acetohydroxysäuresynthase-Aktivität 6.5 Bestimmung der Transcarbamylase-Aktivität	2 2

6.7 Pufferaustausch bei Proteinlösungen	
6.8 Detektion Strep-getaggter Proteine im SDS-Gel	
6.9 Bestimmung von Aminosaurekonzentrationen mittels HPLC	
7. DNA-Chip-Technologie	30
7.1 Herstellung von <i>C. glutamicum</i> -DNA-Chips	30
7.2 Chemische und thermische Nachbehandlung von DNA-Chips	31
7.3 Synthese fluoreszenzmarkierter DNA-Sonden	32
7.3.1 Synthese fluoreszenzmarkierter cDNA-Sonden	32
7.3.2 Fluoreszenzmarkierung genomischer DNA	32
7.4 DNA-Chip-Hybridisierung	33
7.5 Messung und Quantifizierung der Fluoreszenz von	00
Hybridisierungssignalen	
7.6 Normierung und statistische Analyse von DNA-Chip-Daten	
7.7 Alchivierung von DNA-Chip-Daten	
8. Proteomanalyse	36
8.1 Zweidimensionale Gelelektrophorese von Proteinen	36
8.2 Identifizierung von Proteinen mittels MALDI-TOF-Massenspektromet	ie 37
9. Nachweis von DNA-Protein-Interaktionen	
9.1 Isolierung und Identifizierung an ein StrepTactin-getaggtes Protein	
gebundener DNA ("ChIP to chip"-Technik)	38
9.2 DNase I-Footprintanalysen	39
9.2 DNase I-Footprintanalysen	39 41
9.2 DNase I-Footprintanalysen	39 41
 9.2 DNase I-Footprintanalysen IV. Ergebnisse 1. Einfluss verzweigtkettiger Aminosäuren auf das Wachstum verschiedener C. alutamicum-Stämme 	39 41 41
 9.2 DNase I-Footprintanalysen IV. Ergebnisse 1. Einfluss verzweigtkettiger Aminosäuren auf das Wachstum verschiedener C. glutamicum-Stämme 	39 41 41
 9.2 DNase I-Footprintanalysen IV. Ergebnisse 1. Einfluss verzweigtkettiger Aminosäuren auf das Wachstum verschiedener C. glutamicum-Stämme 1.1 Wachstum auf Glukose-Minimalmedium in Anwesenheit verzweigtket 	39 41 41 tiger
 9.2 DNase I-Footprintanalysen IV. Ergebnisse 1. Einfluss verzweigtkettiger Aminosäuren auf das Wachstum verschiedener <i>C. glutamicum</i>-Stämme 1.1 Wachstum auf Glukose-Minimalmedium in Anwesenheit verzweigtket Aminosäuren 1.2 Verzweigtkettige Aminosäuren als potentielle Kohlenstoff- und 	39 41 41 tiger 41
 9.2 DNase I-Footprintanalysen IV. Ergebnisse 1. Einfluss verzweigtkettiger Aminosäuren auf das Wachstum verschiedener <i>C. glutamicum</i>-Stämme 1.1 Wachstum auf Glukose-Minimalmedium in Anwesenheit verzweigtket Aminosäuren 1.2 Verzweigtkettige Aminosäuren als potentielle Kohlenstoff- und Stickstoffguellen von <i>C. glutamicum</i> 	39 41 41 tiger 41
 9.2 DNase I-Footprintanalysen IV. Ergebnisse 1. Einfluss verzweigtkettiger Aminosäuren auf das Wachstum verschiedener <i>C. glutamicum</i>-Stämme 1.1 Wachstum auf Glukose-Minimalmedium in Anwesenheit verzweigtket Aminosäuren 1.2 Verzweigtkettige Aminosäuren als potentielle Kohlenstoff- und Stickstoffquellen von <i>C. glutamicum</i> 	39 41 41 tiger 41 42
 9.2 DNase I-Footprintanalysen IV. Ergebnisse 1. Einfluss verzweigtkettiger Aminosäuren auf das Wachstum verschiedener <i>C. glutamicum</i>-Stämme 1.1 Wachstum auf Glukose-Minimalmedium in Anwesenheit verzweigtket Aminosäuren 1.2 Verzweigtkettige Aminosäuren als potentielle Kohlenstoff- und Stickstoffquellen von <i>C. glutamicum</i> 2. Einfluss verzweigtkettiger Aminosäuren auf die globale 	39 41 41 tiger 41 42
 9.2 DNase I-Footprintanalysen IV. Ergebnisse 1. Einfluss verzweigtkettiger Aminosäuren auf das Wachstum verschiedener <i>C. glutamicum</i>-Stämme 1.1 Wachstum auf Glukose-Minimalmedium in Anwesenheit verzweigtket Aminosäuren 1.2 Verzweigtkettige Aminosäuren als potentielle Kohlenstoff- und Stickstoffquellen von <i>C. glutamicum</i> 2. Einfluss verzweigtkettiger Aminosäuren auf die globale Genexpression von <i>C. glutamicum</i> ATCC 13032 	39 41 tiger 41 42
 9.2 DNase I-Footprintanalysen IV. Ergebnisse 1. Einfluss verzweigtkettiger Aminosäuren auf das Wachstum verschiedener <i>C. glutamicum</i>-Stämme 1.1 Wachstum auf Glukose-Minimalmedium in Anwesenheit verzweigtket Aminosäuren 1.2 Verzweigtkettige Aminosäuren als potentielle Kohlenstoff- und Stickstoffquellen von <i>C. glutamicum</i> 2. Einfluss verzweigtkettiger Aminosäuren auf die globale Genexpression von <i>C. glutamicum</i> ATCC 13032 2.1 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von L. Valin 	39 41 tiger 41 42 42
 9.2 DNase I-Footprintanalysen IV. Ergebnisse 1. Einfluss verzweigtkettiger Aminosäuren auf das Wachstum verschiedener <i>C. glutamicum</i>-Stämme 1.1 Wachstum auf Glukose-Minimalmedium in Anwesenheit verzweigtket Aminosäuren 1.2 Verzweigtkettige Aminosäuren als potentielle Kohlenstoff- und Stickstoffquellen von <i>C. glutamicum</i> 2. Einfluss verzweigtkettiger Aminosäuren auf die globale Genexpression von <i>C. glutamicum</i> ATCC 13032 2.1 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von L-Valin 	
 9.2 DNase I-Footprintanalysen IV. Ergebnisse 1. Einfluss verzweigtkettiger Aminosäuren auf das Wachstum verschiedener <i>C. glutamicum</i>-Stämme 1.1 Wachstum auf Glukose-Minimalmedium in Anwesenheit verzweigtket Aminosäuren 1.2 Verzweigtkettige Aminosäuren als potentielle Kohlenstoff- und Stickstoffquellen von <i>C. glutamicum</i> 2. Einfluss verzweigtkettiger Aminosäuren auf die globale Genexpression von <i>C. glutamicum</i> ATCC 13032 2.1 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von L-Valin 2.2 Proteomanalysen nach Wachstum in An- oder Abwesenheit von L-Va 	
 9.2 DNase I-Footprintanalysen IV. Ergebnisse 1. Einfluss verzweigtkettiger Aminosäuren auf das Wachstum verschiedener <i>C. glutamicum</i>-Stämme 1.1 Wachstum auf Glukose-Minimalmedium in Anwesenheit verzweigtket Aminosäuren 1.2 Verzweigtkettige Aminosäuren als potentielle Kohlenstoff- und Stickstoffquellen von <i>C. glutamicum</i> 2. Einfluss verzweigtkettiger Aminosäuren auf die globale Genexpression von <i>C. glutamicum</i> ATCC 13032 2.1 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von L-Valin 2.2 Proteomanalysen nach Wachstum in An- oder Abwesenheit von L-Valin 	
 9.2 DNase I-Footprintanalysen IV. Ergebnisse 1. Einfluss verzweigtkettiger Aminosäuren auf das Wachstum verschiedener <i>C. glutamicum</i>-Stämme 1.1 Wachstum auf Glukose-Minimalmedium in Anwesenheit verzweigtket Aminosäuren 1.2 Verzweigtkettige Aminosäuren als potentielle Kohlenstoff- und Stickstoffquellen von <i>C. glutamicum</i> 2. Einfluss verzweigtkettiger Aminosäuren auf die globale Genexpression von <i>C. glutamicum</i> ATCC 13032 2.1 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von L-Valin. 2.2 Proteomanalysen nach Wachstum in An- oder Abwesenheit von L-Valin. 2.3 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von L-Leucin. 2.4 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von 	
 9.2 DNase I-Footprintanalysen IV. Ergebnisse 1. Einfluss verzweigtkettiger Aminosäuren auf das Wachstum verschiedener <i>C. glutamicum</i>-Stämme 1.1 Wachstum auf Glukose-Minimalmedium in Anwesenheit verzweigtket Aminosäuren 1.2 Verzweigtkettige Aminosäuren als potentielle Kohlenstoff- und Stickstoffquellen von <i>C. glutamicum</i> 2. Einfluss verzweigtkettiger Aminosäuren auf die globale Genexpression von <i>C. glutamicum</i> ATCC 13032 2.1 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von L-Valin. 2.2 Proteomanalysen nach Wachstum in An- oder Abwesenheit von L-Valin. 2.3 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von L-Leucin. 2.4 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von L-Isoleucin 	
 9.2 DNase I-Footprintanalysen IV. Ergebnisse 1. Einfluss verzweigtkettiger Aminosäuren auf das Wachstum verschiedener <i>C. glutamicum</i>-Stämme 1.1 Wachstum auf Glukose-Minimalmedium in Anwesenheit verzweigtket Aminosäuren 1.2 Verzweigtkettige Aminosäuren als potentielle Kohlenstoff- und Stickstoffquellen von <i>C. glutamicum</i> 2. Einfluss verzweigtkettiger Aminosäuren auf die globale Genexpression von <i>C. glutamicum</i> ATCC 13032 2.1 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von L-Valin 2.2 Proteomanalysen nach Wachstum in An- oder Abwesenheit von L-Va 2.3 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von L-Leucin 2.4 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von L-Isoleucin 2.5 Vergleich des Einflusses verzweigtkettiger Aminosäuren auf die 	
 9.2 DNase I-Footprintanalysen IV. Ergebnisse 1. Einfluss verzweigtkettiger Aminosäuren auf das Wachstum verschiedener <i>C. glutamicum</i>-Stämme 1.1 Wachstum auf Glukose-Minimalmedium in Anwesenheit verzweigtket Aminosäuren 1.2 Verzweigtkettige Aminosäuren als potentielle Kohlenstoff- und Stickstoffquellen von <i>C. glutamicum</i> 2. Einfluss verzweigtkettiger Aminosäuren auf die globale Genexpression von <i>C. glutamicum</i> ATCC 13032 2.1 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von L-Valin 2.2 Proteomanalysen nach Wachstum in An- oder Abwesenheit von L-Leucin 2.4 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von L-Isoleucin 2.5 Vergleich des Einflusses verzweigtkettiger Aminosäuren auf die Genexpression 	39 41 tiger 41 41 42 42 42 42 42 42 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 42 44 42 42 43 42 42 43 42 43 42 42 42 42 42 42 42 42 42 42 42 42 42

3. Untersuchung des Valinstress beim Valin-Produktionsstamm <i>C. glutamicum</i> VAL1	.57
3.1 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von	
L-Valin	57
3.2 Proteomanalysen mittels zweidimensionaler Gelelektrophorese	62
3.2.1 Proteomanalysen nach Wachstum in An- oder Abwesenheit von	
L-Valin	62
3.2.2 Vergleich der Proteinmuster von Wildtyp und Produktionsstamm	65
3.3 Einfluss von L-Valin auf die Acetohydroxysäuresynthase-Aktivität von	~~
VVIIdtyp und VAL1	. 60 +
	ו 67
3.5 Abhängigkeit des Valinstress von der <i>ilv</i> A-Deletion in VAI 1	68
3.6 Finfluss von L-Valin auf das Wachstum bei Supplementation mit Isoleucyl-	. 00
Isoleucin-Dipentid	69
3.7 Einfluss extern zugegebenen L-Valins auf die Valinproduktion mit VAL1	71
4. Funktion des Transkriptionsregulators "Leucine responsive	
regulatory protein" (Lrp) in <i>C. glutamicum</i>	.72
4.1 Untersuchung des Lrp-Regulons durch Transkriptomanalysen mit der	
Δr	72
4 1 1 Transkriptomanalysen nach Wachstum von C. alutamicum 13032	
in An- oder Abwesenheit verzweigtkettiger Aminosäuren	72
4.1.2 Transkriptomanalysen zum Vergleich der Genexpression in Wildtyp	. –
und <i>Irp</i> -Deletionsmutante	.79
4.1.3 Vergleich der Genomsequenzen von C. glutamicum ATCC 13032 und	
13032∆ <i>Irp</i> durch vergleichende Genomhybridisierung	82
4.1.4 Identifizierung Lrp-regulierter Gene anhand der Transkriptomdaten	85
4.2 Nachweis der Bindung von Lrp an Zielpromotoren	88
4.2.1 Aufreinigung von C-terminal Strep-getaggtem Lrp (LrpStrep)	88
4.2.2 Isolierung und Identifizierung von <i>in vivo</i> an Lrp <i>Strep</i> gebundenen	
Zielsequenzen	.93
4.2.3 Bindung von LrpStrep in vitro an Promotorbereiche von brnF und irp	.95
4.3 Wachstum von C. giutamicum ATCC 13032, 13032 Δ irp und 13032 Δ brnFE	00
In Anwesenneit von Leucin, valin oder isoleucin	98
V. Diskussion	99
1. Wachstum von <i>C. glutamicum</i> in Anwesenheit verzweigtkettiger	
Aminosäuren	99
2. Regulation der Genexpression durch verzweigtkettige Aminosäuren1	02
3. Funktion des Transkriptionsregulators Lrp in C. glutamicum1	07
4. Optimierung der biotechnologischen Produktion verzweigtkettiger Aminosäuren mit <i>C. glutamicum</i>	14
VI. Literaturverzeichnis	16

Abkürzungen

Abb.	Abbildung
ad	Auffüllen auf (ein Volumen von)
AEC	Aminoethylcystein (Lysin-Strukturanalog)
AHAS	Acetohydroxysäuresynthase
APS	Ammoniumpersulfat
ATCC	American Type Culture Collection
BCA	Bicinchoninsäure
BCIP	5-Bromo-4-Chloro-3-indolvlphosphat
hn	Basennaare (Nukleinsäuren)
BSA	Rinderserumalbumin
bzw	beziehungsweise
°C	Grad Celsius
ca.	circa
	3-[N-(3-Cholanamidopropyl)-dimethylammonio]-1-
CHAP3	propansulfonat
ChIP	Chromatinimmunopräzipitation
Cm	Chloramphenicol
cm	Zentimeter
d	Durchmesser
ddH ₂ O	doppelt destilliertes Wasser
DMF	N,N-Dimethylformamid
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
DNase	Desoxyribonuklease
dNTP	Desoxyribonukleotid-5´-Triphosphat
DSM7	Deutsche Sammlung von Mikroorganismen und Zellkulturen
	GmbH (Braunschweig)
DTT	1,4-Dithiothreitol
dUTP	Desoxyuridin-5'-Triphosphat
EDTA	Ethylendiamintetraessigsäure
E _x	Extinktion bei x nm
g	Gramm
ggfs.	gegebenenfalls
h	Stunde
HABA	4'-Hydroxyazobenzol-2-Carboxylsäure
HEPES	N-2-Hydroxyethylpiperazin-N´-2-ethansulfonsäure
HPLC	High Performance Liquid Chromatography
IPG	immobilisierter pH-Gradient
Kan	Kanamycin
kb	Kilobasenpaare
I	Liter
λ	Wellenlänge
$\lambda_{\text{EX max}}$	Wellenlänge maximaler Extinktion
λ _{EM max}	Wellenlänge maximaler Emission
LB-Medium	Luria-Bertani-Medium
М	molar
m	milli-: -meter
h	mikro-
•	

MALDI-TOF	matrix assisted laser desorption ionisation time of flight
MES	2-[N-Morpholino]-ethansulfonsäure
min	Minute
mol	Mol
MOPS	3-Morpholinopropansulfonsäure
n	nano-
NAD⁺	Nikotinamid-Adenin-Dinukleotid, oxidiert (reduziert: NADH)
NADP ⁺	Nikotinamid-Adenin-Dinukleotidphosphat, oxidiert
	(reduziert: NADPH)
NBT	Nitroblau-Tetrazoliumchlorid
OD ₆₀₀	optische Dichte bei 600 nm
OPA	ortho-Phthaldialdehyd
ORF	open reading frame (offenes Leseraster)
р	piko-
PAGE	Polyacrylamid-Gelelektrophorese
PBS	Phosphate buffered saline
PCR	Polymerasekettenreaktion
pers.	persönliche
PIPES	Piperazin-N,N´-bisethansulfonsäure
PSD	post source decay
R	Resistenz
RNA	Ribonukleinsäure
RNase	Ribonuklease
S	Sekunde
S.	siehe
SDS	Natriumdodecylsulfat
Strep-Tag	Streptavidin-Tag
t	Tonne
Tab.	Tabelle
TEMED	N,N,N´,N´-Tetramethylethylendiamin
TFA	Trifluoressigsäure
Tris	Tris-(hydroxymethyl)-aminomethan
v/v	volume per volume (Volumen pro Volumen)
w/v	weight per volume (Gewicht pro Volumen)
z.B.	zum Beispiel
2D-Gelelektrophorese	zweidimensionale Gelelektrophorese

I. Zusammenfassung

In dieser Arbeit wurde die Regulation der Genexpression von *Corynebacterium glutamicum* durch L-Valin, L-Leucin und L-Isoleucin sowie durch den Transkriptionsregulator Lrp charakterisiert. Folgende Ergebnisse wurden erhalten:

1. Die verzweigtkettigen Aminosäuren können von *C. glutamicum* nicht als Kohlenstoff- oder Stickstoffquelle genutzt werden. Zu hohe intrazelluläre Konzentrationen von Valin, Leucin oder Isoleucin werden daher durch Export über den kürzlich beschriebenen Exporter BrnFE reduziert. Die Anwesenheit von 100 mM Leucin oder Isoleucin im Kulturmedium führte zu einer leichten Wachstumshemmung des Wildtyp-Stammes, während Valin in dieser Konzentration keinen Effekt zeigte. Die Expression von drei Biosynthesegenen verzweigtkettiger Aminosäuren (*ilvN*, *leuC*, *leuD*) wurde in Anwesenheit der Aminosäuren reprimiert.

2. Im Gegensatz zum Wildtyp führte die Anwesenheit von Valin und Leucin zu einer starken Wachstumshemmung des Valin-produzierenden Stammes *C. glutamicum* VAL1 (13032 $\Delta ilvA\Delta panBC$ (pJC1*ilvBNCD*)). Transkriptomanalysen mit DNA-Chips, Proteomanalysen und Enzymtests zeigten überraschenderweise durch Valin erhöhte mRNA-, Protein- und Aktivitätsverhältnisse der Acetohydroxysäuresynthase (*ilvBN*-Genprodukt) im VAL1-Stamm, nicht aber im Wildtyp. Da der inhibitorische Effekt von Valin und Leucin durch eine erhöhte Isoleucin-Konzentration aufgehoben werden konnte, war er auf eine Isoleucin-Limitation des isoleucinauxotrophen VAL1-Stammes zurückzuführen. Verursacht wird diese Limitation dadurch, dass alle drei verzweigtkettigen Aminosäuren durch denselben Transporter BrnQ in die Zelle transportiert werden und folglich hohe Konzentrationen von Valin oder Leucin die Aufnahme des Supplements Isoleucin kompetitiv inhibieren. Als Beweis für diesen Mechanismus konnte gezeigt werden, dass Valin und Leucin nicht inhibierend auf VAL1 wirken, wenn das Supplement Isoleucin in Form des Dipeptids Isoleucyl-Isoleucin angeboten wird, welches nicht über BrnQ in die Zelle aufgenommen wird.

3. Das Gen für den Transkriptionsregulator Lrp ("Leucine responsive regulatory protein") liegt divergent zu den Genen brnFE für den Exporter verzweigtkettiger Aminosäuren. Ein Transkriptom-Vergleich von Wildtyp und Irp-Deletionsmutante ergab, dass die Expression von 60 Genen direkt oder indirekt von Lrp beeinflusst wird. Mit Hilfe der "ChIP-to-chip"-Technik, die eine Identifizierung der DNA-Bereiche ermöglicht, an die Lrp in vivo bindet, konnten nur drei Fragmente identifiziert werden. Dies spricht für eine Funktion von Lrp als lokalem Regulator. Unter den drei Bereichen befand sich die Promotorregion zwischen Irp und brnFE. Die Bindepositionen von Lrp in diesem Bereich, die in vitro durch DNase I-Footprints mit gereinigtem Lrp-Protein bestimmt wurden, wiesen darauf hin, dass Lrp als Aktivator der brnFE-Gene und als Repressor des Irp-Gens fungiert. Im Einklang damit konnte bereits früher gezeigt werden, dass der Export verzweigtkettiger Aminosäuren in einer Irp-Mutante stark reduziert ist. Die Vielzahl an Genexpressionsunterschieden in der Irp-Deletionsmutante sowie die Wachstumshemmung durch verzweigtkettige Aminosäuren beruhen wahrscheinlich auf der fehlenden brnFE-Induktion und den dadurch bedingten erhöhten intrazellulären Konzentrationen der Aminosäuren.

II. Einleitung

1. Der Aminosäureproduzent Corynebacterium glutamicum

Corynebacterium glutamicum wurde 1957 als L-Glutamat ausscheidendes Bakterium aus Bodenproben isoliert (Kinoshita et al., 1957). Die unter dem Namen C. glutamicum zusammengefasste Bakterienart zeichnet sich durch eine positive Gram-Färbung, Unbeweglichkeit, Biotinbedürftigkeit, eine unregelmäßige, stäbchenbis keulenförmige Morphologie, keine Sporenbildung sowie die Produktion von L-Glutamat unter Biotinmangel aus (Abe et al., 1967). Charakteristisch sind die Zellwandbestandteile Arabinose, Galaktose und kurzkettige Mycolsäuren sowie die Verknüpfung der einzelnen Ketten des Peptidoglykangerüsts über meso-Diaminopimelinsäure (Liebl, 1991). Taxonomisch gehört die 1896 von Lehmann und Neumann eingeführte Gattung Corynebacterium zur Familie der Corynebacteriaceae, einer eigenen Unterordnung Corynebacterineae in der Ordnung die der Actinomycetales (Klasse Actinobacteria) zugeordnet wird (Liebl, 1991; Stackebrandt et al., 1997). Als Actinobacteria werden Gram-positive Eubakterien mit hohem GC-Gehalt zusammengefasst. Zu den Corynebacterineae zählen neben den Corynebacteriaceae auch die Familien Dietziaceae, Gordoniaceae, Nocardiaceae, Mycobacteriaceae, Tsukamurellaceae und Williamsiaceae (National Center for Biotechnology Information (NCBI) Taxonomy Browser, http://www.ncbi.nlm.nih.gov/ Taxonomy/Browser/wwwtax.cgi?mode=Root). Die Corynebacteriaceae beinhalten sowohl pathogene Arten (z.B. C. diphtheriae) wie auch saprophytische und nichtpathogene Arten (Liebl, 1991).

Für die Biotechnologie sind Corynebakterien insbesondere wegen der Produktion von Primärmetaboliten wie Aminosäuren und Nukleotiden von Bedeutung (Liebl, 1991). Vorteil der biotechnologischen Produktion von Aminosäuren ist die im Gegensatz zur chemischen Synthese enantiomerenreine Darstellung. Heutzutage werden zwei Aminosäuren in großem Maßstab biotechnologisch mit *C. glutamicum* hergestellt. Dabei handelt es sich um L-Glutamat (1.000.000 t/Jahr), welches als Geschmacksverstärker eingesetzt wird, und L-Lysin (500.000 t/Jahr), das insbesondere als Futtermittelzusatz genutzt wird (Eggeling, 2001). Im Gegensatz zu Glutamat wird Lysin nur von genetisch modifizierten Stämmen ausgeschieden, zum Beispiel von *C. glutamicum* MH20-22B (Schrumpf *et al.*, 1992), das bis zu 230 mM L-Lysin im Kulturmedium akkumulieren kann. Die Nutzung von *C. glutamicum* zur

Lysinproduktion ist besonders vorteilhaft, da es ein "GRAS"-Organismus ("generally regarded as safe") ist. Daher kann die Biomasse zusammen mit dem L-Lysin verfüttert werden, was die Produktaufarbeitung vereinfacht.

Aus mehreren Gründen ist *C. glutamicum* sehr gut für die Produktion weiterer Aminosäuren geeignet. Die Regulation von Biosynthesewegen ist oft weniger komplex als bei anderen Bakterien. Zum Beispiel besitzt *C. glutamicum* nur eine Acetohydroxysäuresynthase (Keilhauer *et al.*, 1993), während in *Escherichia coli* drei allosterisch verschieden regulierte Isoenzyme vorhanden sind (Barak *et al.*, 1990; Wek *et al.*, 1985). Weiterhin sind zentrale Kohlenstoff-Stoffwechselwege, anaplerotische Reaktionen sowie viele Aminosäure-Biosynthesewege und auch Transportprozesse in *C. glutamicum* bereits im Detail untersucht (Sahm *et al.*, 2000). Ein weiterer Vorteil ist, dass die Genomsequenz von *C. glutamicum* bekannt ist (Kalinowski *et al.*, 2003; Ikeda & Nakagawa, 2003) und effektive Methoden zur gezielten genetischen Modifikation vorhanden sind (Sahm *et al.*, 1995). Schließlich sind auch Methoden zur Untersuchung der globalen Genexpression durch Transkriptomanalysen mit DNA-Chips (Wendisch, 2003) und durch Proteomanalysen (Schaffer *et al.*, 2001) etabliert.

2. Die Biosynthese verzweigtkettiger Aminosäuren in C. glutamicum

Die verzweigtkettigen Aminosäuren L-Valin, L-Leucin und L-Isoleucin sind für Vertebraten essentiell. Die Produktion dieser Aminosäuren ist wegen der Verwendung in Infusionslösungen und Diätprodukten sowie als Futtermittelzusatz und Vorstufe bei der chemischen Synthese von Herbiziden von kommerziellem Interesse (Eggeling, 2001; Leuchtenberger, 1996; Sahm et al., 1995). Der Bedarf an verzweigtkettigen Aminosäuren steigt kontinuierlich, zur Zeit werden 500 t L-Valin. 400 t L-Leucin und 400 t L-Isoleucin jährlich produziert (Leyval et al., 2003). Die Herstellung erfolgt durch Fermentation oder durch Extraktion saurer Proteinhydrolysate (Eggeling, 2001). Mit zunehmendem Bedarf gewinnt die kostengünstigere und umweltfreundlichere fermentative Produktion aus Glukose an Bedeutung.

Wie in Abbildung 1 dargestellt, synthetisiert *C. glutamicum* L-Valin in vier Schritten aus zwei Molekülen Pyruvat (Keilhauer *et al.*, 1993; Radmacher *et al.*, 2002). Pyruvat wird bei Wachstum auf Glukose als Kohlenstoffquelle in der Glykolyse bereitgestellt. Die Acetohydroxysäuresynthase (das *ilvBN*-Genprodukt) katalysiert die

Kondensation von zwei Molekülen Pyruvat zu α -Acetolactat, wobei CO₂ freigesetzt wird. Die Isomeroreduktase (kodiert von *ilvC*) katalysiert die NADPH-abhängige Reduktion und Isomerisierung von α -Acetolactat zu α , β -Dihydroxyisovalerat. Dieses Zwischenprodukt wird durch die Dihydroxysäure-Dehydratase (kodiert von *ilvD*) zu α -Ketoisovalerat dehydratisiert. Die Transaminase B (kodiert von *ilvE*) aminiert schließlich das α -Ketoisovalerat zu L-Valin. Die Transaminierung kann auch über eine Transaminase C mit Alanin anstelle von Glutamat als Donor der Aminogruppe erfolgen, diese Reaktion ist aber von untergeordneter Bedeutung (Leyval *et al.*, 2003). Beim Gen dieser zweiten Valin-Transaminase könnte es sich um *pdxR* handeln, welches für das Wachstum einer *ilvE*-Inaktivierungsmutante ohne Valin-Supplementation essentiell ist und eine Transaminasedomäne besitzt (McHardy *et al.*, 2003).

Abbildung 1: Biosynthese der verzweigtkettigen Aminosäuren L-Valin, L-Isoleucin und L-Leucin in *C. glutamicum*

Das Zwischenprodukt α -Ketoisovalerat der L-Valin-Biosynthese ist gleichzeitig Ausgangssubstanz der Biosynthese des Vitamins D-Pantothenat (Sahm & Eggeling, 1999) und der verzweigtkettigen Aminosäure L-Leucin (Abb. 1). Bei der L-Leucin-Biosynthese (Patek *et al.*, 1994; Patek *et al.*, 1998) kondensieren α -Ketoisovalerat und eine an Coenzym A gebundene Acetylgruppe zu α -Isopropylmalat. Diese Reaktion wird durch die Isopropylmalatsynthase (leuA-Genprodukt) katalysiert. Die Isopropylmalat-Dehydratase (kodiert durch leuCD) katalysiert dann unter Dehydratisierung und Rehydratisierung die Isomerisierung zu β -Isopropylmalat. Dieses Intermediat wird durch die Isopropylmalat-Dehydrogenase (kodiert durch NAD⁺-abhängig leuB) oxidativ zu α -Ketoisocaproat decarboxyliert. Die Transaminase B katalysiert schließlich die Transaminierung zu L-Leucin.

Wie auch aus anderen Organismen bekannt, katalysieren die vier Enzyme der Valin-Biosynthese gleichzeitig die Synthese der dritten verzweigtkettigen Aminosäure L-Isoleucin (Eikmanns *et al.*, 1993) aus Pyruvat und α -Ketobutyrat (Abb. 1). Das α -Ketobutyrat wird durch Deaminierung von L-Threonin gebildet, die Reaktion wird durch die Threonin-Dehydratase (das *ilvA*-Genprodukt) katalysiert (Möckel *et al.*, 1992). L-Threonin gehört zu den Aminosäuren der Aspartatfamilie und wird aus dem Citratzyklusintermediat Oxalacetat gebildet (Eikmanns *et al.*, 1993). Die weiteren Isoleucin-Biosyntheseschritte laufen dann analog zur Valin-Synthese ab.

3. Regulation der Biosynthese verzweigtkettiger Aminosäuren

Das Schlüsselenzym für die Regulation der Biosynthese verzweigtkettiger Aminosäuren (Abb. 1) ist die Acetohydroxysäuresynthase (AHAS). Dieses Enzym weist eine kumulative Endprodukthemmung durch Valin, Leucin und Isoleucin (K_i = 0,36, 9,6 und 3,7 mM) auf (Eggeling *et al.*, 1987; Eggeling *et al.*, 1990). Auch in Anwesenheit aller drei verzweigtkettigen Aminosäuren wird die Enzymaktivität maximal zu ca. 50% inhibiert (Eggeling et al., 1987). In Anwesenheit ausreichend hoher Ketobutyrat-Konzentrationen bildet die AHAS aufgrund des etwa doppelt so hohen K_m für Pyruvat (Pyruvat: $K_m = 8,4$ mM, Ketobutyrat: $K_m = 4,8$ mM) bevorzugt Acetohydroxybutyrat aus Pyruvat und Ketobutyrat, wodurch überproportional viel Isoleucin gebildet wird (Eggeling et al., 1987). Die Aktivität der Threonin-Dehydratase, die die Synthese von Ketobutyrat aus Threonin katalysiert, wird daher über die Konzentration des Endprodukts Isoleucin reguliert (Miyajima & Shiio, 1972; Möckel et al., 1992). Neben der Regulation der AHAS-Aktivität durch alle drei verzweigtkettigen Aminosäuren wurde in Anwesenheit von L-Valin und L-Leucin mittlerweile auch eine Hemmung der Dihydroxysäure-Dehydratase- (K_i = 170 und 120 mM) und insbesondere der Isomeroreduktase-Aktivität ($K_i = 6,6$ und 6,9 mM) nachgewiesen (Leyval et al., 2003).

E. coli besitzt im Gegensatz zu *C. glutamicum* drei AHAS-Isoenzyme, der Effekt von L-Valin auf die Aktivität der Isoenzyme wurde näher untersucht (Umbarger, 1996). Valin verursacht eine Endprodukthemmung der Isoenzyme AHAS I (kodiert durch *ilvBN*) und AHAS III (kodiert durch *ilvIH*) (Chipman *et al.*, 1990; Chipman *et al.*, 1998). Die kleinen, regulatorischen Untereinheiten IIvN und IIvH sind für die Valin-Sensitivität verantwortlich (Chipman *et al.*, 1998; Eoyang & Silverman, 1986). AHAS II (kodiert durch *ilvGM*) ist hingegen resistent gegen Valininhibition (Barak *et al.*, 1990; De Felice *et al.*, 1979; Guardiola *et al.*, 1977). In Gegenwart von Valin verursacht die fehlende *ilvGM*-Expression des Stammes *E. coli* K-12 einen Wachstumsdefekt durch Ketobutyrat-Toxizität und Leucin- und Isoleucin-Mangel (De Felice *et al.*, 1979; Guardiola *et al.*, 1977; Lawther *et al.*, 1981; Williams & Williams, 1985). Valinresistente *E. coli* K-12-Mutanten zeigten eine wiederhergestellte *ilvGM*-Expression (Lawther *et al.*, 1981).

Die Biosynthese verzweigtkettiger Aminosäuren wird neben der allosterischen Hemmung der Enzymaktivitäten auch auf der Ebene der Transkription reguliert. Die Biosynthesegene liegen über das *C. glutamicum*-Genom verteilt vor, lediglich fünf Gene bilden zwei Operons (Abb. 2). Die Gene *ilvB*, *ilvN* und *ilvC* liegen im *C. glutamicum*-Genom als Operon vor, neben dem *ilvBNC*-Transkript werden auch kürzere *ilvNC*- und *ilvC*-Transkripte gebildet (Keilhauer *et al.*, 1993). Die anderen gemeinsamen Gene der Biosynthese aller verzweigtkettigen Aminosäuren, *ilvD* und *ilvE*, befinden sich separat in anderen Regionen des Genoms (Radmacher *et al.*, 2002). Die Gene der beiden Leucin-Biosynthesegene *leuD* und *leuC* (Isopropylmalat-Dehydratase) liegen wie *ilvBNC* als Operon vor (Abb. 2).

Die Anordnung der Gene zur Biosynthese von L-Valin, L-Leucin und L-Isoleucin ist schematisch entsprechend der Lage im Genom dargestellt. Die Länge der Pfeile symbolisiert die Länge der entsprechenden Gene (1 cm \approx 2000 bp), die Pfeilspitze die Transkriptionsrichtung. Schrägstriche kennzeichnen Unterbrechungen durch andere Gene.

Bei *E. coli* wird die Transkription des *leuABCD*-Operons über einen Attenuationsmechanismus durch die Leucinkonzentration reguliert (Wessler & Calvo,

1981). Bei *C. glutamicum* liegen nur die Gene der Isopropylmalat-Dehydratase-Untereinheiten *leuD* und *leuC* als Operon vor (Abb. 2). Im *leuA*-Promotor von *C. glutamicum* wurden Sequenzen gefunden, die charakteristisch für eine Attenuationskontrolle sind (Patek *et al.*, 1994). Für *leuB* konnte eine verringerte Transkription in Anwesenheit von L-Leucin nachgewiesen werden (Patek *et al.*, 1998).

Die Transkription des *ilvBNC*-Operons von *C. glutamicum* variiert durch einen Attenuationsmechanismus bis zu zweifach in Reaktion auf die Konzentration verzweigtkettiger Aminosäuren (Morbach *et al.*, 2000). Acetohydroxysäuresynthase und Isomeroreduktase werden also offenbar sowohl auf der Ebene der Enzymaktivität als auch bei der Transkription ihrer Gene reguliert. Im Gegensatz zu einem direkten Aminosäuremangel führt ein durch Ketobutyratzugabe ausgelöster Valin-, Leucin- und Pantothenatmangel zu etwa 10-fach erhöhter AHAS-Aktivität, was auf einen zusätzlichen, bisher unbekannten Regulationsmechanismus der AHAS-Aktivität hindeutet (Eggeling *et al.*, 1987; Morbach *et al.*, 2000).

In *E. coli* wird die *ilvBN*- und *ilvGMEDA*-Expression über einen Attenuationsmechanismus reguliert (De Felice *et al.*, 1978; Friden *et al.*, 1982; Hauser & Hatfield, 1984; Lawther & Hatfield, 1980; Umbarger, 1996). Die *ilvIH*-Expression wird hingegen über den globalen Regulator "Leucine responsive regulatory protein" (Lrp) kontrolliert (Ricca *et al.*, 1989; Umbarger, 1996; Wang & Calvo, 1993). Eine Deletion von *Irp* beeinflusste bei *E. coli* die Expression von etwa 400 Genen (Tani *et al.*, 2002). Lrp kann sowohl als Induktor als auch als Repressor der Transkription wirken, teilweise wird L-Leucin als Cofaktor benötigt (Brinkman *et al.*, 2003; Chen *et al.*, 2001). In *C. glutamicum* konnte ein zu *Irp* homologes Gen identifiziert werden, dessen Funktion bisher nicht geklärt ist (Wessel, 2000).

4. Biotechnologische Produktion verzweigtkettiger Aminosäuren mit *C. glutamicum*: Negative Effekte der Endprodukte?

Bisher wurden *C. glutamicum*-Produktionsstämme zur biotechnologischen Herstellung von L-Valin (Radmacher *et al.*, 2002) und L-Isoleucin (Morbach *et al.*, 1996) beschrieben.

C. glutamicum-Stämme, die bis zu 90 mM L-Valin im Medium akkumulieren können (Radmacher *et al.*, 2002), wurden durch gezielte genetische Veränderungen erzeugt. Hierzu wurden im Produktionsstamm 13032∆*ilvA*∆*panBC*(pJC1*ilvBNCD*) (im

folgenden als VAL1 abgekürzt; Radmacher et al., 2002) die Valin-Biosynthesegene ilvB, ilvN, ilvC und ilvD plasmidkodiert überexprimiert. Die Transaminasereaktion (IIvE) stellt, wie für die Isoleucinsynthese gezeigt, keinen limitierenden Schritt dar (Wilhelm et al., 1989). Weiterhin wurde das ilvA-Gen deletiert, um die Bereitstellung des Isoleucin-Vorläufermetabolits Ketobutyrat und damit die konkurrierende Bildung von L-Isoleucin zu unterbinden. Zusätzlich ermöglicht eine Kultivierung unter Isoleucin-Limitation eine gesteigerte *ilvBN*-Expression über den Attenuationsmechanismus (Morbach et al., 2000). Außerdem wurden die Gene panBC für zwei Schritte der Pantothenat-Biosynthese deletiert, wodurch der Valin-Biosynthese weniger Ketoisovalerat entzogen wird. Pantothenat ist ein Bestandteil von Coenzym A (Jackowski & Rock, 1981) und wird daher zur oxidativen Decarboxylierung Acetyl-Coenzym von Pyruvat zu А durch den Pyruvatdehydrogenase-Komplex benötigt. Kultivierung unter Pantothenat-Limitation sollte diese Reaktion verlangsamen, wodurch mehr Pyruvat als Substrat der Valin-Biosynthese zur Verfügung stehen sollte.

Zur Isoleucinsynthese wurde ein Derivat des Lysinproduzenten MH20-22B verwendet, da in MH20-22B vermehrt Vorstufen des wie L-Lysin zur Aspartatfamilie gehörenden L-Threonin gebildet werden, welches wiederum als Substrat der Isoleucin-Biosynthese benötigt wird (s. auch Abb. 1). Zusätzlich werden im L-Isoleucin-Produktionsstamm *C. glutamicum* SM13 plasmidkodiert die Gene für eine Homoserinkinase, eine feedbackresistente Homoserin-Dehydrogenase und eine feedbackresistente Threonin-Dehydratase exprimiert, um die Threonin- sowie Isoleucin-Synthese zu erhöhen (Morbach *et al.*, 1996). *C. glutamicum* SM13 akkumuliert bis zu 60 mM L-Isoleucin im Medium.

Da die erreichten Konzentrationen von 90 mM L-Valin und 60 mM L-Isoleucin deutlich geringer sind als die von *C. glutamicum* MH20-22B akkumulierten 230 mM L-Lysin, stellte sich die Frage nach dem limitierenden Faktor bei der Produktion verzweigtkettiger Aminosäuren mit *C. glutamicum*.

Bedeutend für die Produktion verzweigtkettiger Aminosäuren mit *C. glutamicum* könnte der Transport sein. Der Export ins Medium erfolgt über das gemeinsame Transportsystem verzweigtkettiger Aminosäuren BrnFE (Kennerknecht *et al.*, 2002). Hierbei werden L-Leucin und L-Isoleucin etwa gleich schnell exportiert, L-Valin mit einer auf 60% verringerten Rate (Kennerknecht *et al.*, 2002). Zusätzlich trägt die Diffusion dieser unpolaren Aminosäuren zum Export bei. Die Funktion des

8

Aminosäure-Exportsystems BrnFE könnte ein Schutz vor toxischen Konzentrationen von L-Valin, L-Leucin und L-Isoleucin in der Zelle sein (Kennerknecht et al., 2002). Dies sollte für die biotechnologische Produktion dieser Aminosäuren von Vorteil sein, trotzdem kann die Kapazität des Exporters immer noch begrenzend für die Produktion sein. Bei einem Isoleucin-Produktionsstamm von C. glutamicum wurden bei einer extrazellulären Konzentration von 60 mM intrazellulär 110 mM L-Isoleucin gemessen (Morbach et al., 1996), auch der Valinproduzent VAL1 weist intrazellulär eine höhere Valinkonzentration auf als extrazellulär (I. Denina, persönliche Mitteilung). Zu beachten sind Wechselwirkungen mit dem Import verzweigtkettiger Aminosäuren. Dieser erfolgt über das gemeinsame Aufnahmesystem verzweigtkettiger Aminosäuren BrnQ (Ebbighausen et al., 1989; Tauch et al., 1998). Dieser Na⁺-gekoppelte Symporter hat nur leicht verschiedene Aufnahmeraten für L-Valin, L-Leucin und L-Isoleucin (Ebbighausen et al., 1989). Es wurde beschrieben, dass BrnQ erst ab einer gewissen intrazellulären Konzentration an verzweigtkettigen Aminosäuren aktiv ist (Boles et al., 1993).

Für die weitere Verbesserung der Valin- und Isoleucinproduktion mit C. glutamicum stellte sich außerdem die Frage, welchen Effekt die Produkte L-Valin und L-Isoleucin auf Wachstum und Produktsynthese der Produktionsstämme haben. Ausgelöst wurde diese Frage durch die Beobachtung, dass die Anwesenheit von 30 mM L-Valin oder L-Isoleucin im Kulturmedium das Wachstum des leucinauxotrophen Lysinproduzenten C. glutamicum MH20-22B signifikant inhibierte (Eggeling et al., 1997). Der von C. glutamicum MH20-22B abgeleitete Isoleucinproduzent SM13 wies ebenfalls eine Wachstumsinhibition auf (Morbach, 1997). Da die hydrophilen Aminosäuren L-Alanin und L-Lysin keine Wachstumsinhibition verursachten, wurde spekuliert, dass die Hydrophobizität der verzweigtkettigen Aminosäuren die Funktion von Makromolekülen wie z.B. der Cytoplasmamembran beeinträchtigt (Eggeling et al., 1997). Zusätzlich wurde die Fehlbeladung von tRNAs als alternative Erklärung diskutiert (Eggeling et al., 1997). Ein solcher inhibitorischer Effekt könnte für die generell geringere Produktausbeute bei der biotechnologischen Gewinnung nichtpolarer Aminosäuren wie L-Valin oder L-Isoleucin im Vergleich zu polaren Aminosäuren wie L-Lysin mit C. glutamicum verantwortlich sein (Leuchtenberger, 1996).

Der Isoleucin-Produktionsstamm C. glutamicum SM13 eignet sich schlechter zur Untersuchung der Ursache des Valin- und Isoleucinstress bei C. glutamicum, da der

Vorläufer MH20-22B durch ungerichtete Mutagenese und Selektion generiert wurde (Schrumpf *et al.*, 1992) und somit sehr wahrscheinlich unbekannte Mutationen aufweist. Modellhaft wurde daher der Einfluss verzweigtkettiger Aminosäuren auf den Wildtyp ATCC 13032 und den durch gezielte genetische Manipulationen erzeugten Valinproduzenten VAL1 untersucht.

Ziel dieser Arbeit war die Aufklärung von Mechanismen, über die verzweigtkettige Aminosäuren die Genexpression von C. glutamicum beeinflussen. Dazu sollte zunächst der Effekt verzweigtkettiger Aminosäuren auf das Wachstum verschiedener C. glutamicum-Stämme untersucht werden. Anschließend sollten durch globale Expressionsanalysen mit DNA-Chips Genexpressionsänderungen charakterisiert werden, die durch die Anwesenheit verzweigtkettiger Aminosäuren ausgelöst werden. Die Ergebnisse sollten durch unabhängige Methoden wie Proteomanalysen und Enzymaktivitätsmessungen validiert werden. Dabei sollte auch untersucht werden, ob negative Einflüsse des Produkts L-Valin auf die Valinsynthese bei dem Produktionsstamm C. glutamicum VAL1 vorliegen. Außerdem sollte die Rolle des Regulators "Leucine responsive regulatory protein" bei der Regulation der Aminosäuren Genexpression durch verzweigtkettige untersucht werden. Insbesondere sollten Identität und Anzahl der Zielgene von Lrp bei C. glutamicum aufgeklärt werden.

III. Material und Methoden

1. Chemikalien und Enzyme

Im Folgenden sind die Bezugsquellen der verwendeten Chemikalien aufgeführt. Bezugsquellen weiterer Chemikalien und Materialien sind direkt im Text genannt. Die Chemikalien entsprachen mindestens dem Reinheitsgrad "pro analysi".

Amersham Pharmacia (Freiburg)

3-[*N*-(3-Cholanamidopropyl)-dimethylammonio]-1-propansulfonat (CHAPS) 1,4-Dithiothreitol (DTT) Harnstoff (für Polyacrylamid-Gelelektrophorese) Pharmalyte 3-10NL

AppliChem GmbH (Darmstadt):

Agarose (für Agarose-Gele) 3-Morpholinopropansulfonsäure (MOPS)

Bachem (Weil am Rhein):

Alanyl-Leucin Isoleucyl-Isoleucin

BIOMOL (Hamburg):

5-Bromo-4-Chloro-3-indolylphosphat (Dinatriumsalz) (BCIP) N-2-Hydroxyethylpiperazin-N'-2-ethansulfonsäure (HEPES) Nitroblau-Tetrazoliumchlorid (NBT)

Biozym (Hess. Oldendorf):

Chilloutwax

Carl Roth GmbH (Karlsruhe):

Ammoniumpersulfat (APS) Ethidiumbromid N,N,N´,N´-Tetramethylethylendiamin (TEMED) Zink(II)-sulfat-Heptahydrat

Difco (Detroit, USA):

Bacto[™] Agar Hefeextrakt Trypton

BHI (Brain-Heart-Infusion) Pepton

Eurobio (Les Ulis Cedex B, Frankreich):

Lachssperma-DNA

Fluka (Neu-Ulm):

Acetonitril Lithium-Carbamoylphosphat Phosphorsäure Coomassie Brilliant Blau G-250 Natriumpropionat

Merck (Darmstadt):

Acetoin Ammoniumacetat L-Asparagin Bromphenolblau Chloroform N,N-Dimethylformamid (DMF) Essigsäure Formaldehyd Glycin Harnstoff (Medien) L-Isoleucin Kaliumchlorid Kalium-Dihydrogenphosphat Kaliumjodid Kupfer(II)-sulfat-Pentahydrat L-Leucin Magnesiumsulfat-Heptahydrat Mangansulfat-Monohydrat α-Naphthol Natriumazid tri-Natriumcitrat-Dihydrat Natriumdodecylsulfat-Lösung (10% (w/v)) Nickelchlorid-Hexahydrat Phenol Schwefelsäure Trichloressigsäure Tris-(hydroxymethyl)-aminomethan Tween 20 I-Valin

Aceton Ammoniumsulfat Biotin Calciumchlorid-Dihydrat L-Citrullin Eisen(II)-sulfat-Heptahydrat Ethanol Glukose-Monohydrat Glyzerin Isoamylalkohol Isopropanol Di-Kaliumhydrogenphosphat Kaliumhydroxid (Plätzchen) D/L-Kalium-Natrium-Tartrat-Tetrahydrat Magnesiumchlorid Manganchlorid Methanol Natriumacetat Natriumchlorid Di-Natrium-Hydrogenphosphat Natriumhydroxid (Plätzchen) L-Ornithin Salzsäure Sorbitol Trifluoressigsäure (TFA) Triton X-100 Tween 80

Roche (Mannheim)

Chloramphenicol (Cm) Kanamycinsulfat (Kan) dNTPs Restriktionsenzyme Rinderserumalbumin (BSA)

Sigma (Taufkirchen):

Ammoniumbicarbonat Anhydrotetracyclin Bernsteinsäure-Anhydrid α-Cyano-4-hydroxy-*trans*-Zimtsäure Dimethylsulfoxid (DMSO) 4'-Hydroxyazobenzol-2-Carboxylsäure (HABA) Kreatin-Monohydrat 1-Methyl-2-Pyrrolidinon Natrium-D-Pantothenat Natriumpyruvat Piperazin-N,N'-bisethansulfonsäure (PIPES) Protokatechusäure (3, 4-

Desoxyribonuklease I (DNasel) Lysozym Proteinase K Ribonuklease A (RNaseA) Thiaminpyrophosphat

Ammoniumhydrogencarbonat Avidin Borsäure D-Desthiobiotin Ethylendiamintetraessigsäure (EDTA) Isoniazid Jodacetamid β-Mercaptoethanol 2-[N-Morpholino]ethansulfonsäure (MES) Poly-L-Lysin-Lösung (0,1% w/v) Dihydroxybenzoesäure)

2. Oligonukleotide

Die bei Polymerasekettenreaktionen eingesetzten Oligonukleotide (MWG Biotech,

Essenberg) sind in Tabelle 1 aufgeführt.

Tabelle 1: Sequenzen der verwendeten Oligonukleotide

Alle Sequenzen sind in 5' \rightarrow 3'-Richtung dargestellt. Durch die Oligonukleotide eingeführte *Restriktionsschnittstellen* und *Strep*-Tags sowie eine 5'-IRD800-Markierung sind in der Spalte "Eigenschaft" vermerkt.

Name	Sequenz	Eigenschaft	
Konstruktion von pAN3K-1- <i>Irp</i> (C-terminaler <i>Strep</i> -Tag)			
for_IBA3_Irp	ATGGTAGGTCTCAAATGAAGCTAGATTCCATTGATCGCGC	Bsal	
rev_IBA3_Irp	ATGGTAGGTCTCAGCGCTCACCTGGGGGGCGAGCTGGTT	Bsal	
Konstruktion	von pAN5K-1- <i>Irp</i> (N-terminaler Strep-Tag)		
for_IBA5_Irp	ATGGTAGGTCTCAGCGCCATGAAGCTAGATTCCATTGATC GC	Bsal	
rev_IBA5_Irp	ATGGTAGGTCTCATATCACACCTGGGGGGCGAGCTGGTT	Bsal	
Konstruktion	von pK19 <i>mobsacB-lrp</i> Strep bzw. 13032 <i>lrp</i> Strep		
for_Int_Irp	GAATTCCGGGACCTTGCTTGAGGAGGG	<i>Eco</i> RI	
rev_Int_Irp	CGGGATCCTTATTTTTCGAACTGCGGGTGGCTCCAAGCGC TCACCTGGGGGCGA	BamHI, Strep	
K_for_Int_Irp	GCGCGAATGCGCGCATCTCA		
K_rev_Int_Irp	AACTGCGGGTGGCTCCAAGC		
M13-forward	TGTAAAACGACGGCCAGT	IRD800	
M13-reverse	GGAAACAGCTATGACCATG	IRD800	
DNase-Footpr	intanalysen		
brnE_F	AACCGCCCGGAGCGCAAAAG		
brnE_F*	AACCGCCCGGAGCGCAAAAG	IRD800	
brnE_R	AGCCTACGCAGTCACTGCGG		
brnE_R*	AGCCTACGCAGTCACTGCGG	IRD800	
brnF_F	CATCTGGTTCCAGGGCTGCC		
brnF_F*	CATCTGGTTCCAGGGCTGCC	IRD800	
brnF_R	TCAGCAACGCCGATGCGGAC		
brnF_R*	TCAGCAACGCCGATGCGGAC	IRD800	
lrp_F	ATGTGGTGAGCGCGATGGCG		
Irp_F*	ATGTGGTGAGCGCGATGGCG	IRD800	
lrp_R_b	GCACCTTGTCAGCCAGTGCG		
lrp_R_b*	GCACCTTGTCAGCCAGTGCG	IRD800	

3. Bakterienstämme und Plasmide

Die in der vorliegenden Arbeit verwendeten Bakterienstämme sind in Tabelle 2 aufgeführt, die verwendeten Plasmide sind in Tabelle 3 aufgelistet. Die zur Konstruktion von Plasmiden nötigen Klonierungen wurden mit *E. coli* DH5 α durchgeführt, Plasmidkarten neu konstruierter Plasmide sind in Abbildung 3 dargestellt.

Tabelle 2: Verwendete Bakterienstämn	ne
--------------------------------------	----

Stamm	Genotyp/Eigenschaft	Referenz	
Escherichia coli			
DH5a	F ⁻ thi-1 endA1 hsdr17(r ⁻ , m ⁻) supE44 Δ lacU169(Φ 80lacZ Δ M15) recA1	Hanahan, 1983	
Corvnebacterium glutamicum			
ATCC 13032	Wildtyp	Abe <i>et al.</i> , 1967	
13032∆ <i>lrp</i>	Irp-Deletion	Wessel, 2000	
13032∆brnFE	brnFE-Deletion	Kennerknecht <i>et al.</i> , 2002	
13032∆ <i>ilvA</i>	ilvA-Deletion (isoleucinauxotroph)	Sahm & Eggeling, 1999	
13032∆panBC	<i>panBC</i> -Deletion (pantothenatauxotroph)	Radmacher <i>et al.</i> , 2002	
13032∆ilvA∆panBC	ilvA- und panBC-Deletion	Radmacher et al., 2002	
VAL1 = 13032∆ <i>ilvA∆panBC</i> (pJC1 <i>ilvBNCD</i>)	<i>ilvA-</i> und <i>panBC-</i> Deletion, Plasmid (pJC1 <i>ilvBNCD</i>)	Radmacher <i>et al.</i> , 2002	
13032 IrpStrep	pK19mobsacB-lrpStrep-Integration	diese Arbeit	
RES167	ATCC 13032∆(<i>cgIIM-cgIIR-cgIIIR</i>) (restriktionsdefizient)	Claes <i>et al.</i> , 2002	
WAC8	RES167∆prpD2B2C2	Claes et al., 2002	
MH20-22B	AEC ^R , <i>leuD</i> ⁻ (leucinauxotroph)	Schrumpf <i>et al.</i> , 1992	

Tabelle 3: Verwendete Plasmide1

Plasmid	Merkmale	Referenz
pJC1	Shuttle-Vektor; Kan ^R ; <i>oriV</i> _{E.c.} , <i>oriV</i> _{C.g.}	Cremer <i>et al.</i> , 1990
pJC1 <i>ilvBNCD</i>	pJC1 mit <i>ilvBNC</i> - und <i>ilvD</i> -Restriktions- fragmenten unter natürlichen Promotoren	Sahm & Eggeling, 1999
pAN3K-1	Expression C-terminal <i>Strep</i> -getaggter Proteine; p <i>tet</i> , <i>f1</i> ; Cm ^R , Kan ^R ; <i>oriV</i> _{E.c.} , <i>oriV</i> _{C.g.} , basiert auf pASK-IBA3C (IBA GmbH, Göttingen)	A. Niebisch, pers. Mitteilung
pAN5K-1	Expression N-terminal <i>Strep</i> -getaggter Proteine; p <i>tet</i> , <i>f1</i> ; Cm ^R , Kan ^R ; <i>oriV</i> _{E.c.} , <i>oriV</i> _{C.g.} , basiert auf pASK-IBA5C (IBA GmbH, Göttingen)	A. Niebisch, pers. Mitteilung
pAN3K-1- <i>lrp</i>	pAN3K-1 mit <i>Irp</i> -Gen aus C.g.	diese Arbeit
pAN5K-1 <i>-Irp</i>	pAN5K-1 mit <i>Irp</i> -Gen aus C.g.	diese Arbeit
pK19 <i>mobsacB</i>	Kan ^R ; <i>sacB</i> ; <i>oriV_{E.c.}, oriT</i>	Schäfer <i>et al.</i> , 1994
pK19 <i>mobsacB-</i> <i>Irp</i> Strep	pK19 <i>mobsacB</i> mit C-terminalem Bereich des <i>Irp</i> -Gens von C.g. (C-terminal <i>Strep</i> -getaggt)	diese Arbeit

¹oriV: Replikationsursprung, oriT: Transferursprung, E.c.: *E. coli*, C.g.: *C. glutamicum*, p: Promotor

Abbildung 3: Konstruierte Plasmide

Die angegebenen Restriktionsschnittstellen wurden überprüft. Die Plasmide pAN3K-1-*Irp* bzw. pAN5K-1-*Irp* zur Expression des C- bzw. N-terminal Strep-getaggten *Irp*-Gens in *E. coli* und/oder *C. glutamicum* enthalten das mittels *Bsa*I-Restriktion eingefügte, mit den Oligonukleotiden for_IBA3_Irp und rev_IBA3_Irp bzw. for_IBA5_Irp und rev_IBA5_Irp (Tab. 1) amplifizierte *Irp*-Gen von *C. glutamicum* ATCC 13032. In das Plasmid pK19*mobsacB-Irp*Strep wurde der C-terminale Bereich (bp 96-453) des *Irp*-Gens von *C. glutamicum* ATCC 13032 mit angefügtem *Strep*Tag II mittels *Eco*RI- und *Bam*HI-Restriktion kloniert, zur Amplifikation wurden die Oligonukleotide for_Int_Irp und rev_Int_Irp (Tab. 1) verwendet. Zur Erstellung der Plasmidkarten wurde die Clone Manager 6-Software (Scientific & Educational Software, Durham, USA) genutzt.

Zur Stammhaltung wurden Übernachtkulturen der Stämme in Vollmedium kultiviert, abzentrifugiert (5 min, 3500 x g, 4°C) und in 30% (v/v) Glycerin aufgenommen, die Lagerung erfolgte bei -70°C. Der Stamm 13032*lrp*Strep wurde in dieser Arbeit durch Integration des Plasmids pK19*mobsacB-lrp*Strep ins Genom von ATCC 13032

erzeugt. Er exprimiert ein C-terminal um einen *Strep*-Tag II (Sequenz: N-(SA)WSHPQFEK-C) verlängertes Lrp-Protein. Der Valin-Produktionsstamm 13032*\DeltailvA\DeltapanBC*(pJC1*ilvBNCD*) wird im folgenden mit der Abkürzung "VAL1" bezeichnet. Weitere Stämme, die nur durch Transformation von Plasmiden aus Tab. 3 in Stämme aus Tab. 2 generiert wurden, sind nicht gesondert aufgeführt.

4. Nährmedien und Kultivierungsbedingungen

Zur Kultivierung von *E. coli* wurde im allgemeinen Luria-Bertani- (LB-) Medium (Sambrook & Russell, 2001) verwendet. Die Kultivierung erfolgte bei 37°C in 50-100 ml Medium im 500 ml-Erlenmeyerkolben mit zwei seitlichen Schikanen bei 130 Umdrehungen pro Minute oder in 5-10 ml Medium im Reagenzglas bei 170 Umdrehungen pro Minute oder auf Agarplatten (Zugabe von 18 g/l BactoTM Agar). Zur Herstellung kompetenter *E. coli*-Zellen (5.5.1) wurde SOB-Medium verwendet, zur Regeneration nach Transformationen SOC-Medium (Inoue *et al.*, 1990).

LB-Medium:	10 g/l Trypton, 5 g/l Hefeextrakt, 10 g/l NaCl
SOB-Medium:	20 g/l Trypton, 5 g/l Hefeextrakt, 0,5 g/l NaCl, 0,19 g/l KCl; mit NaOH auf pH 7,0 eingestellt, autoklaviert; vor Gebrauch ad 10 mM MgCl ₂ zugegeben
SOC-Medium	SOB-Medium mit 0,4% (v/v) Glukose

Die Kultivierung von *C. glutamicum* erfolgte in den Komplexmedien LB und CGIII (Kase & Nakayama, 1972) bei 30°C in 50-100 ml Medium im 500 ml-Erlenmeyerkolben mit zwei Schikanen bei 120 Umdrehungen pro Minute oder im Reagenzglas (5 ml Medium, 170 Umdrehungen pro Minute) oder auf Agarplatten.

Zur Kultivierung unter definierten Bedingungen wurden 60 ml des Minimalmediums CGXII (Keilhauer *et al.*, 1993) mit 0,03 g/l Protokatechusäure und in der Regel 0,2 M Glukose im 500 ml-Erlenmeyerkolben verwendet. Hierzu wurde zunächst eine LB-Medium-Agarplatte aus der Glycerinkultur (s. 3.) beimpft, von dieser wurden 5 ml CGIII-Medium im Reagenzglas angeimpft und über Tag kultiviert. Die Zellen wurden abzentrifugiert (5 min, 3500 x *g*) und zum Animpfen einer Übernachtkultur in CGXII-Medium zu einer OD₆₀₀ von 0,1 genutzt. Diese Vorkultur enthielt bei der Kultivierung für DNA-Chip-Experimente, Proteomanalysen und Enzymtests dieselben Zusätze wie die von ihr zu einer OD₆₀₀ von 0,3-1 angeimpfte Hauptkultur in CGXII-Medium, um eine Adaptation durch Kultivierung für mindestens 10 Generationen zu

gewährleisten. Die Ernte der Hauptkultur erfolgte gewöhnlich bei einer OD₆₀₀ von 3-5 in der exponentiellen Wachstumsphase. Bei Zugabe verzweigtkettiger Aminosäuren in hoher Konzentration wurden diese dem CGXII-Medium vor dem Einstellen des pH-Werts zugefügt.

CGIII-Medium:	10 g/l Pepton, 10 g/l Hefeextrakt, 2,5 g/l NaCl; Glukose ad 2% (w/v)
CGXII-Medium:	20 g/l Ammoniumsulfat, 5 g/l Harnstoff, 1 g/l KH_2PO_4 , 1 g/l K_2HPO_4 , 42 g/l MOPS, 1 ml/l 1% (w/v) CaCl ₂ , 1 ml/l 25% (w/v) MgSO ₄ x 7H ₂ O, 1 ml/l Spurensalzlösung (10 g/l FeSO ₄ x 7H ₂ O, 10 g/l MnSO ₄ x H ₂ O, 1 g/l ZnSO ₄ x 7H ₂ O, 0,2 g/l CuSO ₄ , 0,02 g/l NiCl ₂ x 6H ₂ O, zum Lösen mit HCl angesäuert); pH 7,0 (KOH), autoklaviert, + Kohlenstoffquelle, 0,2 mg/l Biotin, 30 mg/l Protokatechusäure
EPO-Medium:	A: 10 g Trypton, 5 g Hefeextrakt, 10 g NaCl, ad 800 ml ddH ₂ O B: 4 g Isoniazid, 25 g Glycin, 1 ml Tween 80, ad 200 ml ddH ₂ O A autoklaviert, B sterilfiltriert, anschließend vereinigt
BHIS-Medium:	37 g/l Hirn-Herz-Infusion, 91 g/l Sorbitol; sterilfiltriert
LBHIS-Medium:	A: 5 g Trypton, 5 g NaCl, 2,5 g Hefeextrakt, 18,5 g BHI, 18 g Agar B: 91 g Sorbitol je ad 500 ml ddH ₂ O, getrennt autoklaviert, anschließend vereinigt

Zur Herstellung kompetenter *C. glutamicum*-Zellen (5.5.2) wurde das EPO-Medium (Schäfer *et al.*, 1994) verwendet, zur Regeneration nach der Elektroporation wurde BHIS-Medium (Liebl *et al.*, 1989) eingesetzt, anschließend wurde auf LBHIS-Agarplatten ausplattiert.

Zur Kultivierung auxotropher oder antibiotikaresistenter Stämme und zur Induktion des *tet*-Promotors wurden den Medien die in Tabelle 4 aufgeführten Zusätze aus Stammlösungen zugesetzt, Antibiotika wurden in den bei Sambrook & Russell (2001) genannten Lösungsmitteln angesetzt.

Tabelle 4. Medicilzusatze			
Mediumzusatz	E. coli	C. glutamicum	
Kanamycin	50 µg/ml	50 µg/ml oder 25µg/ml*	
Chloramphenicol	25 µg/ml		
Anhydrotetracyclin	0,2 μg/ml	0,2 µg/ml	
L-Leucin		2,3 mM	
L-Isoleucin		3,4 mM	
D-Pantothenat		3 μM	

Tabelle 4: Medienzusätze

*zur Selektion nach Elektroporation

5. Molekularbiologische Methoden

5.1 Isolierung von Nukleinsäuren

5.1.1 Isolierung genomischer DNA

Genomische DNA von *C. glutamicum* wurde nach Eikmanns *et al.* (1994) isoliert. Nach Aufschluss der Zellen (Lysozym- und SDS-Behandlung) und enzymatischer Proteolyse wurden die restlichen Proteine durch Aussalzen mit NaCl entfernt. Nach Zentrifugation (30 min, 5000 x g) wurde die genomische DNA durch Ethanolfällung aus dem Überstand isoliert und in TE-Puffer (10 mM Tris-HCl, pH 7,6, 1 mM EDTA) gelöst.

5.1.2 Isolierung von Plasmid-DNA

Die Isolierung von Plasmid-DNA aus *E. coli* und *C. glutamicum* erfolgte durch alkalische Lyse (Birnboim & Doly, 1979). Im kleinen Maßstab (2-5 ml Übernachtkultur) wurde das QIAprep Spin Miniprep Kit (Qiagen, Hilden), für größere Mengen DNA (aus 50 ml Übernachtkultur) das HiSpeed Plasmid Midi Kit (Qiagen) benutzt, die Kits beinhalteten Säulen mit einer DNA-bindenden Silikatmatrix. Die Präparation erfolgte jeweils nach den Angaben des Herstellers. Bei *C. glutamicum* wurde die Zellwand vor der eigentlichen Plasmid-Isolierung durch eine Lysozymbehandlung (Eikmanns *et al.*, 1994) zerstört.

5.1.4 Isolierung von RNA

Die Isolierung von RNA für globale Genexpressionsanalysen aus *C. glutamicum* erfolgte nach mechanischem Zellaufschluss mit dem RNeasy Mini Kit (Qiagen, Hilden) (Lange *et al.*, 2003), welches auf der Bindung von RNA an eine Silikatmatrix beruht. Dazu wurde ein Aliquot der Kultur (25 ml) zusammen mit 25 g Eis (vorgekühlt auf -20°C) abzentrifugiert (5 min, 3500 x g, 4°C) (Wendisch *et al.*, 2001). Die Zellen wurden in 350 µl RLT-Puffer (Qiagen) resuspendiert und 30 s lang mit 0,5 g Zirkonium-/Silica-Perlen (d = 0,1 mm, Roth, Karlsruhe) in einem Silamat S5 (Vivadent, Ellwangen) aufgeschlossen. Nach Zentrifugation (2 min, 14500 x g) wurde der Überstand zur RNA-Isolierung mit dem RNeasy Kit mit DNase-Behandlung auf der Säule nach Herstellerangaben verwendet. Die Qualität der RNA wurde durch denaturierende Formaldehyd-Agarose-Gelelektrophorese überprüft (s. 5.4.2).

5.2 Bestimmung von Nukleinsäurekonzentrationen

Die Konzentration von Nukleinsäuren wurde photometrisch (Specord S 100 B, Carl Zeiss, Jena) durch Messung der Extinktion bei 230-280 nm bestimmt, wobei eine E_{260} von 1 einer Konzentration von 40 ng/µl bei RNA und 50 ng/µl bei doppelsträngiger DNA entspricht (Sambrook & Russell, 2001). Die Reinheit wurde mittels der Quotienten E_{260}/E_{280} (Protein-Verunreinigung) und E_{260}/E_{230} (Kohlenhydrat-Verunreinigung) kontrolliert, welche zwischen 1,8 und 2,0 liegen sollten (Sambrook & Russell, 2001).

5.3 Restriktion, Ligation und Reinigung von DNA

Restriktion, Ligation und Reinigung von DNA erfolgten im allgemeinen nach Sambrook & Russell (2001).

Die Restriktion von DNA erfolgte enzymatisch nach den Angaben und mit den Puffern des Herstellers durch mindestens zweistündige Inkubation bei der benötigten Temperatur. Für analytische DNA-Restriktionen wurde ein Ansatz von 10 µl mit maximal 0,5 µl Enzym (5 U) und 0,5 µg DNA gewählt, für präparative Restriktionsansätze wurde das Volumen auf 50 µl (2,5 µl Enzym, 2 µg DNA) erhöht.

Ligationsreaktionen wurden mit der T4-DNA-Ligase des Rapid DNA Ligation Kits (Roche, Mannheim) nach Angaben des Herstellers durchgeführt. Hierbei wurde ein Verhältnis Insert:Vektor von 3:1 angestrebt. Es wurden insgesamt etwa 200 ng DNA eingesetzt, die Ligation erfolgte durch mindestens dreißigminütige Inkubation bei Raumtemperatur.

Zur Reinigung von PCR-Produkten und Restriktionsansätzen von Puffer, Enzym und kurzen DNA-Fragmenten wurde das PCR Purification Kit (Qiagen, Hilden) nach den Angaben des Herstellers eingesetzt. Hierbei bindet die DNA ab etwa 100 bp Länge selektiv an eine Silikatmatrix.

Zur Abtrennung von Proteinen aus DNA-Lösungen wurde eine Phenol-Chloroform-Extraktion durchgeführt. Hierzu wurde die wässrige DNA-Lösung zweimal mit einem Volumen Phenol/Chloroform/Isoamylalkohol (25:24:1) extrahiert, zur Trennung der DNA-haltigen wässrigen Phase von der proteinhaltigen organischen Phase wurden die Proben jeweils 5 min bei Raumtemperatur inkubiert und dann 5 min bei 14500 x *g* zentrifugiert. Anschließend erfolgte eine weitere Extraktion mit einem Volumen Chloroform/Isoamylalkohol (24:1). Zur Konzentrierung von DNA und Entfernung von Salzen wurde eine Fällung mit 2,5 Volumen Ethanol (-20°C) und $^{1}/_{10}$ Volumen 3 M Natriumacetat (pH 5,2) durchgeführt (30 min, 14500 x *g*, 4°C), nachfolgend wurde mit 70% (v/v) Ethanol (-20°C) gewaschen. Die DNA wurde getrocknet und in Wasser oder Puffer gelöst.

5.4 Agarose-Gelelektrophorese

5.4.1 DNA-Agarose-Gelelektrophorese, Isolierung von DNA aus Agarosegelen

Für die Größenselektionierung von DNA-Fragmenten zur Identifizierung oder Reinigung wurde die Agarose-Gelelektrophorese eingesetzt (Sambrook & Russell, 2001). Je nach Fragmentgröße wurde 0,8-2% (w/v) Agarose in TAE-Puffer (40 mM Tris, 1 mM EDTA, 0,35% (v/v) Essigsäure) verwendet, der auch als Laufpuffer diente. Die Elektrophorese der mit 6 x Ladepuffer (0,25% (w/v) Bromphenolblau in 40% (v/v) Glycerin) versetzten DNA-Probe wurde mit einer horizontalen Gelapparatur Sub-Cell GT (Bio-Rad, Hercules, USA) durchgeführt. Zur Größenbestimmung und Mengenabschätzung wurden die DNA-Standards 100 bp DNA Ladder (GIBCO, Karlsruhe), XVI (Roche, Mannheim) sowie *Bst*EII- oder *Hin*dIII-verdaute DNA des Phagen λ eingesetzt. Nach der Auftrennung bei 75-100 V wurde die DNA mit dem interkalierenden Farbstoff Ethidiumbromid (0,5 mg/l) gefärbt, überschüssiges Ethidiumbromid mit Wasser entfernt und das Gel unter UV-Licht mit einem Image Master VDS-System (Amersham Pharmacia, Freiburg) fotografiert.

Zur Aufreinigung von DNA-Fragmenten aus Agarosegelen wurde die entsprechende Bande mit einem Skalpell ausgeschnitten und die DNA mit dem QIAEX II-Kit (Qiagen, Hilden) nach den Anweisungen des Herstellers isoliert. Die Methode beruht auf Freisetzung der DNA durch Aufschmelzen der Agarose und selektiver Bindung an eine Matrix, von der die DNA isoliert werden kann.

5.4.2 RNA-Agarose-Gelelektrophorese

Die Qualität isolierter RNA wurde mittels denaturierender Formaldehyd-Agarose-Gelelektrophorese überprüft (Sambrook & Russell, 2001). Hierbei wurde MOPS-Puffer (10 x MOPS-Puffer, Eppendorf, Hamburg) als Laufpuffer und zur Herstellung des Gels (0,25 g Agarose, 2,5 ml 10 x MOPS, 18,25 ml ddH₂O, 4,25 ml Formaldehyd) verwendet. Das eingesetzte Formaldehyd wurde mit Ionenaustauscher (AG 501-X8 (D) Resin 20-50mesh, Bio-Rad) deionisiert. Die RNA-Proben (0,5 μ g) wurden vor der Elektrophorese in RNA Gel Loading Buffer (Eppendorf; mit 0,7% (v/v) 10 mg/ml Ethidiumbromid-Lösung) für 10 min bei 65°C und dann für 5 min auf Eis inkubiert. Das Gel wurde nach der Elektrophorese mit dem Image Master VDS-System (Amersham Pharmacia, Freiburg) unter UV-Licht fotografiert.

5.5 Transformation von Bakterien

5.5.1 Herstellung und Transformation kompetenter E. coli-Zellen

E. coli-Zellen mit gesteigerter Kompetenz zur Aufnahme von DNA nach einem Hitzeschock wurden nach Inoue *et al.* (1990) hergestellt. Hierzu wurden 250 ml SOB-Medium im 2 I-Erlenmeyerkolben mit 10-12 Kolonien *E. coli* DH5 α inokuliert, die Bakterien wurden bei 18°C bis zu einer OD₆₀₀ von 0,6 kultiviert, für 10 min auf Eis abgekühlt, abzentrifugiert (10 min, 4000 x g, 4°C) und für 10 min in eiskaltem TB-Puffer (10 mM Pipes, 15 mM CaCl₂, 0,25 M KCl, pH 6,8 mit KOH, 55 mM MnCl₂) inkubiert. Die Zellen wurden erneut abzentrifugiert, in 20 ml TB-Puffer mit 7% (v/v) DMSO auf Eis inkubiert (10 min) und in 200 µl-Aliquots in flüssigem Stickstoff schockgefroren. Die Lagerung erfolgte bei -70°C.

Zur Transformation wurde ein Aliquot der kompetenten *E. coli* aufgetaut, mit 1-5 μ l Plasmid-DNA oder 10 μ l eines Ligationsansatzes versetzt und 30 min auf Eis inkubiert. Dann erfolgte ein Hitzeschock (1 min, 42°C) mit nachfolgender Zugabe von 0,8 ml SOC-Medium. Zur Regeneration wurden die Bakterien 45-60 min bei 37°C inkubiert, anschließend wurden die Zellen auf selektivem LB-Medium ausplattiert.

5.5.2 Herstellung und Transformation kompetenter C. glutamicum-Zellen

Die Herstellung und Transformation kompetenter *C. glutamicum*-Zellen erfolgte nach der Methode von van der Rest *et al.* (1999). Von einer Übernacht-Vorkultur in LB-Medium mit 2% (w/v) Glukose wurde die Hauptkultur in 100 ml EPO-Medium angeimpft ($OD_{600} = 0,3$), welche für 28 h bei 18°C kultiviert wurde. Diese Kultivierung führt vermutlich zu besserer Durchlässigkeit der Zellwand. Die Kultur wurde auf Eis abgekühlt, die Zellen wurden viermal mit kaltem, zehnprozentigem (v/v) Glycerin gewaschen, in 500 µl 10% (v/v) Glycerinlösung aufgenommen und in 50 µl-Aliquots in flüssigem Stickstoff schockgefroren. Die Lagerung erfolgte bei -70°C.

Für die Elektroporation wurde ein Aliquot der elektrokompetenten Zellen aufgetaut, mit 0,25-1 µg DNA (maximal 2 µl) versetzt und in eine eiskalte Elektroporations-

küvette (Elektrodenabstand 0,2 cm; VWR, Darmstadt) überführt. Die Elektroporation erfolgte mit einer Spannung von 2,5 kV, einem Widerstand von 600 Ω und einer Kapazität von 25 μ F (Gene Pulser, Bio-Rad, Hercules, USA). Sofort nach der Elektroporation wurde 1 ml BHIS-Medium zugefügt und es erfolgte ein Hitzeschock (6 min, 46°C), wodurch wahrscheinlich die Aktivität des Restriktionssystems zum Abbau fremder DNA herabgesetzt wird. Nach einstündigem Schütteln bei 30°C zur Regeneration wurden die Zellen auf selektivem LBHIS-Medium ausplattiert.

5.6 Polymerasekettenreaktion (PCR)

Die Polymerasekettenreaktion zur Amplifizierung von DNA-Fragmenten wurde nach Innis *et al.* (1988) ausgeführt. Die Durchführung erfolgte mit dem Thermocycler Gene Amp PCR System 9700 (PerkinElmer, Wellesley, USA), die Temperatur zur Anlagerung der Primer ("Annealing"; $T_M = 4 \times (G + C) + 2 \times (A + T)$ °C) und die Elongationszeit ($t_E = 1 \min/kb$) richteten sich nach der Sequenz der Oligonukleotide und der Länge des zu amplifizierenden Fragments (Sambrook & Russell, 2001). Das PCR-Programm bestand aus einer initialen Denaturierung (5 min, 95°C), 25 bis 30 Zyklen mit Denaturierung (30 s, 95°C), Annealing (30 s, T_M - 5°C) und Elongation (t_E , 72°C) sowie einer abschließenden Elongation (5 min, 72°C).

Bei PCR-Amplifikationen der auf die DNA-Chips aufgebrachten Genfragmente und zur Überprüfung der Länge von DNA-Fragmenten wurde *Taq*-Polymerase nach den Angaben des Herstellers (Qiagen, Hilden) eingesetzt. Zur Verringerung der Fehlerrate wurde zur Vervielfältigung zu klonierender DNA-Fragmente das Expand High Fidelity Kit (Roche, Mannheim) eingesetzt, welches neben *Taq*-Polymerase eine *Pwo*-Polymerase mit Proofreading-Aktivität (3'-5'-Exonukleaseaktivität) enthält. Als Template (Matrize) wurden 100-500 ng genomische DNA bzw. Plasmid-DNA oder alternativ 1-2 ul *C. glutamicum*-I vsat verwendet wozu Zellen einer

oder alternativ 1-2 µl *C. glutamicum*-Lysat verwendet, wozu Zellen einer Einzelkolonie in 10 µl Wasser 10 min bei 95°C erhitzt wurden.

5.7 DNA-Sequenzierung

Die DNA-Sequenzierung des Inserts von pK19*mobsacB-lrp*Strep und der Sequenzen für die DNase-Footprintanalysen (s. 9.2) erfolgte nach der Kettenabbruchmethode (Sanger *et al.*, 1977) mit dem Thermosequenase-Kit (Amersham Pharmacia, Freiburg) und dem LI-COR 4200 DNA-Sequenziergerät (MWG Biotech, Essenberg) nach den Angaben der Hersteller. Die verwendeten Primer waren am 5'-Ende zur

Detektion der Sequenzierungsprodukte mit dem Fluoreszenzfarbstoff IRD800 $(\lambda_{EX max} 795 \text{ nm}, \lambda_{EM max} 819 \text{ nm})$ markiert (Tab. 1). Für die Sequenzierungsreaktion wurde bei pK19mobsacB-lrpStrep ein DNA/Primer-Prämix aus 82,5 ng/kb DNA, 2,5 pmol Primer und 0,44 µl DMSO in einem Gesamtvolumen von 10 µl erstellt. Je 1,5 µl dieses DNA/Primer-Prämix wurden mit je 1 µl 1:2 verdünntem ddATP-, ddCTP-, ddGTP- oder ddTTP-Terminationsgemisch (Thermosequenase-Kit) und 5 µl Chilloutwax versetzt. Bei der PCR-Reaktion (5.6) erfolgte die Anlagerung der Primer bei 50°C und die Kettenverlängerung für 1 min bei 70°C. Die Sequenzierreaktionen wurden mit je 2,5 µl Formamidladepuffer (Thermosequenase-Kit) versetzt, für 5 min bei 70°C denaturiert und zur Erhaltung der Einzelstränge auf Eis abgekühlt. Je 1,2 µl der Proben wurden auf das Sequenziergel (21 g Harnstoff, 5 ml 10 x TBE (890 mM Tris, 890 mM Borsäure, 20 mM EDTA), 4,6 ml Long Ranger Acrylamid-Bisacrylamid-Lösung (Biozym, Hess. Oldendorf), 0,5 ml DMSO, 32 ml ddH₂O, 50 µl TEMED, 350 µl 10% (w/v) APS) aufgetragen. Die Elektrophorese wurde bei 2200 V, 37 mA, 50 W und 45°C mit 1 x TBE als Laufpuffer durchgeführt, Aufzeichnung und Analyse der Seguenzdaten erfolgten mit der von MWG Biotech erworbenen Software Data Collection Modell 4200 Single Dye DEV7 und Image Analysis Version 4.1.

Abweichend wurde für die Sequenzierungsreaktionen im Rahmen der DNase-Footprintanalysen ein DNA/Primer-Prämix aus 130 ng DNA, 2 pmol Primer und 0,7 μ l DMSO in einem Gesamtvolumen von 20 μ l erstellt, je 4 μ l dieses Prämix wurden mit je 1 μ l Terminationsgemisch versetzt. Die Annealingtemperatur wurde entsprechend der Primersequenzen erhöht. Die Reaktion wurde mit 5 μ l Formamidladepuffer gestoppt, es wurde nur 1 μ l der Proben auf das Sequenziergel aufgetragen.

6. Biochemische Methoden

6.1 Zellaufschluss und Fraktionierung

6.1.1 Herstellung von Enzymrohextrakten nach Ultraschallaufschluss

Zur Bestimmung von Enzymaktivitäten wurde *C. glutamicum* wie beschrieben (4.) kultiviert, abzentrifugiert (5 min, 3500 x g, 4°C), mit einem Volumen des zu verwendenden Puffers gewaschen und in 1 ml Puffer aufgenommen. Der Aufschluss der Zellen erfolgte in einem Eppendorfgefäß, welches zur Kühlung in Eiswasser eintauchte, mit einem Ultraschalldesintegrator (Branson Sonifier W-250, Branson Sonic Power Co, Danbury, USA) durch 10 min Beschallung bei einer Pulslänge von

20% und einer Beschallintensität von 0,2. Nach der Ultraschallbehandlung wurden intakte Zellen und Zellfragmente durch Zentrifugation (1 h, 13000 x g, 4°C) abgetrennt, der Überstand wurde als Enzymrohextrakt eingesetzt.

6.1.2 Zellaufschluss und Isolierung der cytosolischen Proteinfraktion

Für Proteomanalysen wurde C. glutamicum durch Zentrifugation (5 min, 3500 x g, 4°C) geerntet und mit einem Kulturvolumen TE-Puffer (10 mM Tris-HCl, pH 8,0, 1 mM EDTA) gewaschen. Die Zellen wurden für den mechanischen Aufschluss mit Zirkonium-/Silica-Perlen oder den Aufschluss durch French Press in 1 oder 10 ml TE-Puffer mit Complete Protease Inhibitor (Roche, Mannheim), 100 µg RNase A und 25 µg DNase I resuspendiert. Für den mechanischen Aufschluss wurden der Zellsuspension 1 g Zirkonium-/Silica-Perlen (d = 0,1 mm, Roth, Karlsruhe) zugesetzt, anschließend wurden die Zellen im Eppendorfgefäß für 4 x 30 s in einem Silamat S5 (Vivadent, Ellwangen) aufgeschlossen. Wahlweise wurden 10 ml Zellsuspension durch fünfmalige Passage durch eine French-Press-Zelle (SLM AMINCO Spectronic Instruments, Rochester, USA) bei einem Druck von 172 MPa aufgeschlossen. Anschließend wurden Zellen und Zellfragmente durch Zentrifugation abgetrennt $(20 \text{ min}, 27000 \text{ x} \text{ g}, 4^{\circ}\text{C})$ und die cytosolische Fraktion wurde durch Ultrazentrifugation (1 h, 150000 x g, 4° C) von der Membranfraktion abgetrennt. Der gewonnene Überstand wurde für die zweidimensionale Gelelektrophorese (8.1) eingesetzt.

Zur Isolierung von Proteinen mittels *Strep*Tactin-Affinitätschromatographie wurden *C. glutamicum* und *E. coli* durch Zentrifugation (10 min, 11325 x g, 4°C) geerntet, mit einem halben Kulturvolumen 100 mM Tris, 1 mM EDTA, pH 8,0 gewaschen und in 10 ml dieses Puffers mit Complete Protease Inhibitor (Roche, Mannheim) aufgenommen. Der Aufschluss durch French Press erfolgte wie zuvor beschrieben, bei *E. coli* waren jedoch nur drei Passagen bei einem Druck von 108 MPa erforderlich. Die Zellfraktionierung erfolgte wie beschrieben, die cytosolische Fraktion wurde für die *Strep*Tactin-Affinitätschromatographie (6.6) eingesetzt.

6.2 Bestimmung der Proteinkonzentration

6.2.1 Proteinbestimmung mit dem BCA-Test

Zur Bestimmung von Proteinkonzentrationen für 2D-Gelelektrophorese nach der Bicinchoninsäure- (BCA-) Methode (Smith *et al.*, 1985) wurde das BCA Protein Assay Kit (Pierce Chemical Company, Rockford, USA) eingesetzt. Die Messung beruht auf der auch beim Biuret-Test genutzten Reduktion von Cu^{2+} zu Cu^+ durch Proteine bei alkalischem pH. Bicinchoninsäure bildet einen farbigen Komplex mit Cu^+ , der durch Messung der Extinktion bei 562 nm detektierbar ist. Die Proteinextrakte wurden mit BCA-Reagenz versetzt, 30 min bei 37°C inkubiert und nach Abkühlung auf Raumtemperatur (10 min) wurde die E₅₆₂ bestimmt. Als Standard wurde Rinder-Serumalbumin verwendet.

6.2.2 Proteinbestimmung nach Bradford

Die Proteinbestimmung bei Rohextrakten für die eindimensionale SDS-Polyacrylamid-Gelelektrophorese und bei über *Strep*Tactin-Affinitätschromatographie gereinigtem Protein wurde nach der Bradford-Methode (Bradford, 1976) mit dem Bradford-Reagenz von Sigma (Taufkirchen) nach den Angaben des Herstellers durchgeführt. Hierzu wurden 50 μ l Probe mit 1,5 ml Bradford-Reagenz versetzt, 15 min bei Raumtemperatur inkubiert, und die E₅₉₅ der entstandenen Protein-Brilliantblau G-Komplexe photometrisch bestimmt. Zur Quantifizierung wurde eine Eichgerade mit Rinder-Serumalbumin erstellt.

6.2.3 Proteinbestimmung nach der Biuret-Methode

Zur Bestimmung von Proteinkonzentrationen in Enzym-Rohextrakt wurde die Biuret-Methode (Gornall *et al.*, 1949) eingesetzt. Hierbei wurden die Proteine zunächst in 0,5 M Trichloressigsäure gefällt (15 min Inkubation auf Eis; anschließend Zentrifugation 15 min, 16000 x g, 4°C), um evtl. störende Pufferkomponenten abzutrennen. Anschließend wurde das präzipitierte Protein mit 1 ml Biuret-Reagenz (4,5 g Kalium-Natrium-Tartrat, 1,5 g Kupfersulfat-Pentahydrat, 2,5 g Kaliumjodid in 200 ml 0,2 M NaOH gelöst, anschließend mit 0,1 M NaOH ad 500 ml) versetzt und 30 min im Dunkeln bei Raumtemperatur inkubiert. Die entstandenen kupferhaltigen, blauen Proteinkomplexe wurden anschließend durch Messung der Extinktion bei 580 nm quantifiziert. Als Standard diente Rinder-Serumalbumin.
6.3 SDS-Polyacrylamid-Gelelektrophorese

Zur Auftrennung von Proteinen nach Molekulargewicht mittels SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE) wurde das 10% NuPAGE Bis-Tris Gelsystem (Invitrogen, Karlsruhe) verwendet. Hierbei handelt es sich um ein diskontinuierliches System ähnlich dem von Laemmli (1970), jedoch mit konstantem pH-Wert von 7,0 im gesamten Gel. Als Laufpuffer diente 0,05 M MES, 0,05 M Tris, 0,1% (w/v) SDS, 1 mM EDTA. Die Elektrophorese wurde in einer XCell SureLock Mini-Cell (Invitrogen) bei einer Spannung von maximal 250 V und einer Stromstärke von maximal 50 mA durchgeführt. Die Proben wurden mit DTT (NuPAGE Reducing Agent, Invitrogen) reduziert, in Probenpuffer (NuPAGE LDS Sample Buffer, Invitrogen) für 10 min bei 70°C denaturiert und dann auf das Gel aufgetragen. Als vorgefärbter Standard diente der NuPAGE SeeBlue Marker (Invitrogen). Nach der Elektrophorese wurde das SDS durch dreimaliges Waschen des Gels für je 15 min mit ddH₂O entfernt, bevor es für 1 h mit Coomassie-Färbelösung (Gel Code Blue Stain Reagent, Pierce Chemical Company, Rockford, USA) gefärbt wurde. Überschüssige Färbelösung wurde durch Waschen mit ddH₂O entfernt (16-48 h).

6.4 Bestimmung der Acetohydroxysäuresynthase-Aktivität

Zur Bestimmung der Acetohydroxysäuresynthase-Aktivität wurde C. glutamicum mit 100 mM Kaliumphosphatpuffer (pH 7,5) gewaschen und in 1 ml 50 mM Kaliumphosphatpuffer (pH 7,5) mit 26% (v/v) Glycerin aufgenommen (Lange et al., 2003). Der Zellaufschluss erfolgte durch Ultraschallbehandlung, nach der Abtrennung von Zellfragmenten wurde der Enzymtest für 15 min bei 30°C durchgeführt, wobei das Substrat Natriumpyruvat (100 mM) in Anwesenheit von 0,22 mM Thiaminpyrophosphat und 10 mM Magnesiumchlorid enzymatisch zu Acetolactat umgesetzt wurde (Eggeling et al., 1987). Anschließend wurde die Reaktion durch Zugabe von Schwefelsäure ad 545 mM gestoppt, wobei das Acetolactat zu Acetoin decarboxylierte (Eggeling et al., 1987). Das Acetoin wurde nach der colorimetrischen Methode von Westerfeld (1945) nachgewiesen, die auf der Reaktion zwischen Acetoin und der Guanidino-Gruppe von Kreatin (0,07% (w/v)) in Gegenwart von α -Naphthol (0,7% (w/v)) und Alkali (0,7 M NaOH, zum Lösen des Naphthols verwendet) beruht. Die Extinktion bei 530 nm wurde hierbei mit der eines Acetoinstandards verglichen (Eggeling et al., 1987). Zur Ermittlung spezifischer Enzymaktivitäten wurde die Proteinkonzentration im Rohextrakt nach Biuret bestimmt (6.2.2).

6.5 Bestimmung der Transcarbamylase-Aktivität

Die Herstellung der Rohextrakte zur Bestimmung von Transcarbamylase- (ArgF-) Aktivitäten erfolgte wie für die Acetohydroxysäuresynthase-Aktivitäten beschrieben. Der Reaktionsansatz enthielt Rohextrakt sowie die Substrate L-Ornithin (15 mM) und Lithium-Carbamoylphosphat (10 mM) in Kaliumphosphatpuffer (100 mM, pH 7,5) und wurde für 15 min bei 30°C inkubiert (Lange *et al.*, 2003). Anschließend wurde die enzymatische Umsetzung durch Zugabe von HCI ad 0,2 M gestoppt. Das gebildete L-Citrullin wurde durch reversed phase HPLC quantifiziert.

6.6 Proteinaufreinigung mittels StrepTactin-Affinitätschromatographie

Proteine mit einem C-terminalen *Strep*-Tag II (Sequenz: N-WSHPQFEK-C) wurden durch Affinitätschromatographie mit *Strep*Tactin-Sepharose (IBA GmbH, Göttingen) modifiziert nach (Skerra & Schmidt, 2000) gereinigt.

Hierzu wurde *E. coli* in 0,5 I LB-Medium in einem 2 I-Erlenmeyerkolben mit zwei Schikanen zu einer OD₆₀₀ von 0,1 angeimpft (Übernacht-Vorkultur: 50 ml LB-Medium in einem 500 ml Erlenmeyerkolben). Bei einer OD₆₀₀ von 0,4-0,5 (nach 2 h) wurde durch Anhydrotetracyclin-Zugabe die Expression des plasmidkodierten *Irp*-Gens induziert, geerntet wurden die Zellen bei einer OD₆₀₀ von 1,2-1,4 (nach 4 h). *C. glutamicum* wurde ebenso kultiviert, wobei zu einer OD₆₀₀ von 0,5 angeimpft wurde und bei einer OD₆₀₀ von etwa 6 (nach 7 h) geerntet wurde. Zellaufschluss durch French Press und Zellfraktionierung erfolgten wie unter 6.1.2 beschrieben.

Die cytosolische Proteinfraktion in etwa 10 ml 100 mM Tris, 1 mM EDTA, pH 8,0 (6.1.2) wurde zunächst zur Absättigung biotinylierter Proteine mit Avidinlösung (5 µg/µl) versetzt (für *C. glutamicum* 10 µl, für *E. coli* 2 µl) und 30 min auf Eis inkubiert. Anschließend wurde die Proteinlösung auf eine mit 5 ml 100 mM Tris, 1 mM EDTA, 100 mM NaCl, pH 8,0 äquilibrierte Säule mit 4 ml 50% *Strep*Tactin-Sepharose gegeben. Nach fünfmaligem Waschen mit diesem Puffer (für *C. glutamicum* je 10 ml, für *E. coli* je 2 ml) wurden spezifisch gebundene Proteine in acht Fraktionen mit je 1 ml 100 mM Tris, 1 mM EDTA, 100 mM NaCl, 2,5 mM Desthiobiotin, pH 8,0 eluiert. Die Säule wurde durch dreimaliges Waschen mit je 10 ml 100 mM Tris, 1 mM EDTA, 1 mM HABA, pH 8,0 und zweimaliges Waschen mit je 8 ml dieses Puffers ohne HABA regeneriert.

6.7 Pufferaustausch bei Proteinlösungen

Das Umpuffern der durch *Strep*Tactin-Affinitätschromatographie erhaltenen Proteinlösung in 10 mM Tris-HCl pH 8,0 erfolgte durch Gelfiltration mit Sephadex G-25 (PD-10-Säule, Amersham Pharmacia, Freiburg). Nach dem Äquilibrieren der Säule mit 10 ml Tris-HCl wurden 2 ml Proteinlösung und anschließend 0,5 ml Tris-HCl auf die Säule gegeben. Das Protein wurde in vier Fraktionen mit je 1 ml Tris-HCl eluiert. Anschließend wurde die Säule mit 20 ml Tris-HCl gewaschen.

6.8 Detektion Strep-getaggter Proteine im SDS-Gel

Die Detektion *Strep*-getaggter Proteine im SDS-Gel erfolgte mit *Strep*Tactinalkalische Phosphatase-Konjugat (IBA GmbH, Göttingen) modifiziert nach Skerra & Schmidt (2000). Das dreimal mit ddH₂O gewaschene SDS-Gel wurde über Nacht bei 4°C in PBS (4 mM KH₂PO₄, 16 mM Na₂HPO₄, 115 mM NaCl) mit 3% (w/v) BSA und 0,5% (v/v) Tween-20 blockiert. Anschließend wurde das Gel dreimal 5 min bei Raumtemperatur in Waschpuffer (PBS mit 0,1% Tween-20) gewaschen, optional wurden biotinylierte Proteine durch 30 min Inkubation in Waschpuffer mit 4 µg/ml Avidin maskiert. Das *Strep*Tactin-alkalische Phosphatase-Konjugat wurde in einer Verdünnung von 1:2000 zugegeben. Nach 1 h wurde das Gel zweimal 2 min in Waschpuffer, einmal 2 min in PBS und einmal 5 min in Detektionspuffer (100 mM Tris, 100 mM NaCl, 10 mM MgCl₂, pH 9,5) gewaschen. Die Detektion der alkalischen Phosphatase erfolgte in 25 ml Detektionspuffer mit 250 µl BCIP (20 mg/ml in ddH₂O) und 250 µl NBT (30 mg/ml in 70% (v/v) DMF). Nach Entwicklung der Färbung wurde die Reaktion durch Waschen mit ddH₂O gestoppt.

6.9 Bestimmung von Aminosäurekonzentrationen mittels HPLC

Zur Bestimmung von Aminosäurekonzentrationen im Kulturüberstand wurden die Bakterien durch Zentrifugation (5 min, 16000 x *g*) abgetrennt, der Überstand wurde in entsprechender Verdünnung zur Analyse eingesetzt. Die Aminosäurebestimmung erfolgte durch automatische Vorsäulenderivatisierung mit *ortho*-Phthaldialdehyd (*o*-Phthaldialdehyd/2-Mercaptoethanol-Fertigreagenz, Pierce Chemical Company, Rockford, USA) (Lindroth & Mopper, 1979) und reversed phase HPLC (HP1100 Serie, Hewlett-Packard, Waldbronn). Die entstehenden thiosubstituierten Isoindole wurden über Vorsäule (40 x 4 mm, Hypersil ODS 5 µm) und Hauptsäule (4 x 120 mm, Hypersil ODS 5 µm; beide von Chromatographie Service GmbH, Langerwehe) in einem zunehmend unpolaren Gradienten aus Methanol und Natriumacetat (0,1 M, pH 7,2; mit 0,03% (v/v) Natriumazid) bei einer Flussrate von 0,5 ml/min aufgetrennt. Die Fluoreszenzdetektion erfolgte durch Anregung bei 230 nm und Messung der Emission bei 450 nm. Zur Quantifizierung wurde L-Asparagin als interner Standard und ein Aminosäuregemisch als externer Standard verwendet, die Ermittlung der Peakflächen erfolgte mit der Software HP-Chem-Station (Hewlett-Packard).

7. DNA-Chip-Technologie

In dieser Arbeit wurden DNA-Chips verwendet, die auf PCR-Produkten von *C. glutamicum*-Genen basierten (Lange *et al.*, 2003; Sindelar, 2003; Wendisch, 2003). Hierbei wurden jeweils zwei unterschiedlich fluoreszenzmarkierte Sonden gleichzeitig auf einen DNA-Chip hybridisiert (Khodursky *et al.*, 2003; Rhodius *et al.*, 2002; Shalon *et al.*, 1996; Wendisch *et al.*, 2001; Zimmer *et al.*, 2000). Die DNA-Chips wurden für globale Expressionsanalysen zur Untersuchung differentieller Genexpression, für vergleichende Genomhybridisierungen zum Vergleich der chromosomalen Kopiezahl von Genen und für "ChIP to chip"-Experimente zur Identifizierung an ein Regulatorprotein gebundener DNA eingesetzt. Die verwendete DNA-Chip-Technologie und das Robotersystem zur Herstellung der DNA-Chips beruhten auf dem an der Stanford-Universität entwickelten System (Shalon *et al.*, 1996), detaillierte Protokolle sind im Internet verfügbar (Brown, The MGuide, http://cmgm.stanford.edu/pbrown/mguide/index.html).

7.1 Herstellung von C. glutamicum-DNA-Chips

Zur Herstellung von DNA-Chips wurden PCR-Fragmente der *C. glutamicum*-Gene auf polylysinbeschichtete Glasobjektträger aufgebracht. Die *C. glutamicum*-Gene wurden in 96-well Mikrotiterplatten (PE Applied Biosystems, Kalifornien, USA) mittels PCR (*Taq*-Polymerase, Qiagen, Hilden; GeneAmp PCR System 9700, PE Applied Biosystems) mit genspezifischen Primerpaaren (GeneScan, Freiburg) und genomischer DNA von *C. glutamicum* ATCC 13032 als Template amplifiziert. Größe und Menge der PCR-Produkte wurden durch Agarose-Gelelektrophorese überprüft. Anschließend wurden die PCR-Produkte mit Isopropanol gefällt, in 3 x SSC (20 x SSC: 3 M NaCl, 0,3 M Natriumcitrat, pH 7,0) resuspendiert und in 384-well Mikrotiterplatten (PE Applied Biosystems) transferiert (Polen, 2002; Wendisch *et al.*, 2001; Zimmer et al., 2000). Die Glasobjektträger (Marienfeld GmbH, Lauda-Königshofen) wurden mit 57% (v/v) Ethanol mit 25% (w/v) Natriumhydroxid gereinigt, mit Poly-L-Lysin (17% (v/v)) beschichtet, mit Wasser gewaschen und getrocknet (Polen, 2002; Zimmer et al., 2000). Die PCR-Produkte wurden mittels eines computergesteuerten Robotersystems (http://cmgm.stanford.edu/pbrown/mguide /index.html) an definierten Positionen auf die beschichteten Objektträger aufgebracht (Polen et al., 2003). Die DNA-Chips wurden im Exsikkator gelagert, um Alterungsprozesse zu verlangsamen. Je nach Serie enthielten die DNA-Chips PCR-Produkte für bis zu 3.530 der zunächst vorhergesagten 3.567 offenen Leseraster (Sindelar, 2003). Dadurch wurden 2860 der aktuell angenommenen 2994 offenen Leseraster von C. glutamicum (NCBI NC003450) und 284 weitere, möglicherweise kodierende Seguenzen abgedeckt (Kalinowski et al., 2003; Wendisch, 2003). Zur Normierung und als Positivkontrolle wurde genomische C. glutamicum-DNA an bis zu 196 Positionen aufgebracht, als Negativkontrollen dienten λ -DNA, genomische E. coli-DNA, das E. coli aceK-Gen und sechs verschiedene Plasmide (Sindelar, 2003).

7.2 Chemische und thermische Nachbehandlung von DNA-Chips

Zur Absättigung freier ε-Aminogruppen von Poly-L-Lysin sowie zur Immobilisierung und Denaturierung der DNA wurden die DNA-Chips vor der Hybridisierung fluoreszenzmarkierter Sonden chemisch und thermisch behandelt. Zunächst wurde die aufgebrachte DNA in einer Feuchtigkeitskammer über einer 1 x SSC-Lösung rehydratisiert und anschließend bei 100°C blitzgetrocknet, um gleichmäßigere und größere Hybridisierungssignale zu erzielen. Anschließend wurde die DNA durch UV-Bestrahlung (Stratalinker, Stratagene, La Jolla, USA; 650 µJ) kovalent mit der Poly-L-Lysinbeschichtung vernetzt (Polen, 2002; Shalon et al., 1996). Freie ε-Aminogruppen Poly-L-Lysinmolekülen wurden durch Derivatisierung mit 180 mM von Bernsteinsäureanhydrid blockiert. um eine unspezifische Bindung der fluoreszenzmarkierten Sonde zu verhindern (Polen, 2002; Shalon et al., 1996; http://cmgm.stanford.edu/pbrown/mguide/index.html). Zur Denaturierung der DNA-Doppelstränge wurden die DNA-Chips für 1,5 min in 95°C heißem Wasser inkubiert und die Einzelstränge anschließend durch Inkubation in kaltem Ethanol fixiert (Polen et al., 2003; Shalon et al., 1996). Nach Trocknung durch Zentrifugation (5 min, 50 x g) wurden die DNA-Chips bis zur Hybridisierung im Exsikkator gelagert.

7.3 Synthese fluoreszenzmarkierter DNA-Sonden

Zur DNA-Chip-Hybridisierung wurden fluoreszenzmarkierte DNA-Sonden benötigt. Für die globalen Genexpressionsanalysen wurde hierbei markierte cDNA von einem RNA-Template synthetisiert, für die vergleichende Genomhybridisierung und die "ChIP to chip"-Experimente wurden komplementäre DNA-Stränge zu einem DNA-Template synthetisiert.

7.3.1 Synthese fluoreszenzmarkierter cDNA-Sonden

Zum Vergleich genomweiter Genexpressionsmuster wurden fluoreszenzmarkierte cDNA-Sonden von gleichen Mengen (20-25 µg) der zu vergleichenden RNA-Proben synthetisiert. Die reverse Transkription erfolgte mittels der RNA-abhängigen DNA-Polymerase Superscript II (Invitrogen, Karlsruhe) mit 500 ng Zufalls-Hexamerprimern (Invitrogen), wobei 3 nmol der fluoreszenzmarkierten dUTP-Analoga FluoroLink Cy3dUTP oder Cy5-dUTP ($\lambda_{EX max}$ 550 nm, $\lambda_{EM max}$ 570 nm, grünfluoreszierend oder $\lambda_{EX max}$ 649 nm, $\lambda_{EM max}$ 670 nm, rotfluoreszierend; Amersham Pharmacia, Freiburg) zugesetzt wurden (Khodursky *et al.*, 2003; Polen, 2002; Wendisch *et al.*, 2001). Anschließend wurde die RNA in 25 mM NaOH hydrolysiert (10 min, 70°C), nach Neutralisierung mit HCI wurde die Sonde mittels Microcon YM-30 Säulen (Millipore, Schwalbach) unter Abtrennung nicht eingebauter Nukleotide eingeengt (Khodursky *et al.*, 2003; Polen *et al.*, 2003; http://cmgm.stanford.edu/pbrown/mguide/index.html). Die bei einem zweiten Reinigungsschritt mit den Microcon-Säulen vereinigte, fluoreszenzmarkierte Sonde wurde direkt zur DNA-Chip-Hybridisierung eingesetzt.

7.3.2 Fluoreszenzmarkierung genomischer DNA

Die Fluoreszenzmarkierung *Eco*RV-geschnittener genomischer DNA für die vergleichende Genomhybridisierung und von DNA für "ChIP to chip"-Experimente erfolgte modifiziert nach Feinberg & Vogelstein (1983). Je 2 µg DNA wurden zusammen mit einem Primermix (15 µg Zufallsoktamere; BioPrime DNA Labeling System, Invitrogen) denaturiert (5 min, 100°C). Die Synthese fluoreszenzmarkierter komplementärer DNA-Stränge erfolgte in Anwesenheit von 3 nmol der dUTP-Analoga FluoroLink Cy3-dUTP oder Cy5-dUTP (s. 8.3.1) mit 40 U Klenow-Fragment (BioPrime DNA Labeling System, Invitrogen) für 2 h bei 37°C (Sindelar, 2003; http://cmgm.stanford.edu/pbrown/mguide/index.html). Nach Inaktivierung der Klenow-Polymerase (http://cmgm.stanford.edu/pbrown/mguide/index.html) wurden

die DNA-Sonden wie zuvor beschrieben mittels Microcon YM-30 Säulen (Millipore, Schwalbach) konzentriert und gereinigt und anschließend direkt zur DNA-Chip-Hybridisierung eingesetzt.

7.4 DNA-Chip-Hybridisierung

Zur Bestimmung relativer mRNA- oder DNA-Spiegel wurden je eine Cy3- und Cy5markierte Sonde gleichzeitig auf einen DNA-Chip hybridisiert. Der vereinigten Sonde wurden 1,2 µg poly(A) oder poly(dI-dC) (Sigma, Taufkirchen) als Kompetitor zur Verringerung unspezifischer Hintergrundfluoreszenz zugefügt. Die Sonde wurde in 3 x SSC mit 30 mM HEPES (pH 7,0) zur Sicherung stringenter Hybridisierungsbedingungen und 0,3% (w/v) SDS zur Verringerung der Oberflächenspannung aufgenommen, für 2 min bei 100°C denaturiert und nach dem Abkühlen (5-10 min) zur Hybridisierung eingesetzt (Zimmer et al., 2000). Die Sonde wurde zwischen ein Spezialdeckgläschen (LifterSlip, Erie Scientific, New Hampshire, USA) und den Objektträger mit der immobilisierten DNA pipettiert, der DNA-Chip wurde in einer Hybridisierungskammer (Die Tech Inc., USA) für 5-16 h bei 65°C inkubiert (Polen, 2002; Zimmer et al., 2000). Nach der Hybridisierung erfolgte ein stringentes Waschen in 1 x SSC mit 0,03% SDS und anschließend in 0,05 x SSC zum Entfernen unspezifisch gebundener fluoreszenzmarkierter DNA (Polen, 2002; Zimmer et al., 2000). Der DNA-Chip wurde durch Zentrifugation getrocknet (5 min, 50 x g), bevor die Fluoreszenz auf der DNA-Chip-Oberfläche bestimmt wurde.

7.5 Messung und Quantifizierung der Fluoreszenz von Hybridisierungssignalen

Zur Bestimmung relativer mRNA- oder DNA-Spiegel wurde die Cy3- und Cy5-Fluoreszenz der Hybridisierungssignale auf dem DNA-Chip gemessen, welche direkt mit der Menge gebundener, fluoreszenzmarkierter Sonde korreliert. Nach der Hybridisierung und dem stringenten Waschen des DNA-Chips wurden hierzu ortsaufgelöste Fluoreszenzintensitäten mit einem GenePix 4000 Laserscanner (Axon Inc., Union City, Kalifornien, USA) gemessen und als 16-bit-TIFF-Dateien elektronisch gespeichert (Software GenePix Pro 3.0, Axon Inc.). Die Anregung von Cy3-dUTP erfolgte mit monochromatischem Licht von 532 nm (Messung der Emission bei 570 nm) und die von Cy5-dUTP bei 635 nm (Emission bei 670 nm), die Lichtemission wurde mit lichtempfindlichen Kathoden registriert (Polen, 2002). Dabei wurde das Bild in Bildpunkte unterteilt, die jeweils eine Fläche von 10 x 10 µm auf dem DNA-Chip hatten. Die Fluorogramme wurden quantitativ mit der GenePix-Software analysiert, wobei der Quotient der Mediane als Maß für das Verhältnis der roten zur grünen Fluoreszenz verwendet wurde. Die Quantifizierung der Fluoreszenz ist in Abbildung 4 dargestellt. Hierbei wurde das Verhältnis der Cy5- (rot)/Cy3- (grün) Nettofluoreszenzintensität für jedes detektierbare Hybridisierungssignal berechnet.

Abbildung 4: Quantifizierung der Fluoreszenz von Hybridisierungssignalen auf einem DNA-Chip mit der Software GenePix Pro 3.0

A) Ausschnitt aus einem Fluorogramm mit identifizierten Hybridisierungssignalen (Kreise)

B) Quantifizierung der Hybridisierungssignal-Fluoreszenz (schematisch): Bildpunkte des inneren Kreises bilden das Hybridisierungssignal, Bildpunkte des mittleren Kreises gehören zum unberücksichtigten Ausschlussbereich und Bildpunkte des äußeren, dunklen Bereichs bilden den Hintergrund.

C) Zur Berechnung des Quotienten der Mediane eines Hybridisierungssignals wird vor der Bildung des Cy5/Cy3-Fluoreszenzverhältnisses die Hintergrundfluoreszenz von der Signalfluoreszenz bei der entsprechenden Wellenlänge subtrahiert.

(A: Polen (2002); B,C: aus dem Handbuch zur GenePix 3.0 Software)

7.6 Normierung und statistische Analyse von DNA-Chip-Daten

Um Unterschiede bei Einbau und Stabilität der beiden Fluoreszenzfarbstoffe ausgleichen zu können, wurden die erhaltenen Fluoreszenzverhältnisse durch Multiplikation mit einem konstanten Faktor so normiert, dass der durchschnittliche Quotient der Mediane der genomischen DNA von *C. glutamicum* den Wert 1 ergab (Eisen *et al.*, 1998; Khodursky *et al.*, 2000; Wendisch *et al.*, 2001; Zimmer *et al.*, 2000). Um nur zuverlässige Hybridisierungssignale für die Normierung zu verwenden, wurden nur Signale berücksichtigt, deren Fluoreszenzintensität für mindestens eine Wellenlänge mindestens dreifach über dem Hintergrund lag (Signal/Rausch-Verhältnis ≥3) und die optisch deutlich zu erkennen waren. Diese Qualitätskriterien wurden auch für alle anderen Hybridisierungssignale angewandt, zu schwache Signale wurden als nicht quantifizierbar angesehen.

Um statistisch abgesicherte Aussagen treffen zu können, wurden die Experimente mehrfach wiederholt. Für statistische Analysen wurden *p*-Werte aus einem *t*-Test

nach Student (einseitiger Test, heteroskedastisch; TTEST-Tabellenfunktion, Excel 2000, Microsoft, Redmond, USA) aus den logarithmierten mRNA- bzw. DNA-Spiegeln der Wiederholungsexperimente und den relativen Fluoreszenzverhältnissen der genomischen *C. glutamicum*-DNA als Kontrollgruppe berechnet, bei einem *p*-Wert \leq 0,05 wurde die Veränderung des mRNA- bzw. DNA-Spiegels als signifikant betrachtet (Arfin *et al.*, 2000; Lehnen *et al.*, 2002; Polen, 2002; Polen *et al.*, 2003). Bei der Analyse von Genexpressionsänderungen wurde nach Genen mit signifikant durchschnittlich mindestens zweifach verändertem relativem mRNA-Spiegel gesucht.

7.7 Archivierung von DNA-Chip-Daten

Zur Verwaltung und Archivierung von DNA-Chip-Daten wurde die für das Computer-Betriebssystem Linux frei erhältliche relationale Datenbank mySQL verwendet (MySQL AB Company, Uppsala, Schweden, http://www.mysql.com). Die DNA-Chip-Daten, Fluorogramme und relevanten Informationen zur Durchführung des DNA-Chip-Experiments wurden mit Hilfe einer von T. Polen selbst entwickelten Software (Polen, 2002; Polen & Wendisch, in press) erfasst und auf dem Linux-Zentralrechner des Instituts in einer mySQL-Datenbank hinterlegt, so dass sie über das institutsinterne Computernetzwerk für weitere Analysen zur Verfügung standen.

7.8 Hierarchische Clusteranalyse

Durch hierarchische Clusteranalyse wurden Gene und Experimente anhand der Ähnlichkeit der Expressionsveränderung sortiert. Hierbei werden die zwei ähnlichsten Werte (Gene auf der einen und DNA-Chip-Experimente auf der anderen Achse) paarweise angeordnet und sukzessive mit weiteren Paaren graphisch als Dendrogramm dargestellt, so dass die ähnlichsten Werte örtlich nahe benachbart liegen, während verschiedenes Expressionsverhalten zu größerer örtlicher Entfernung führt (average linkage method, Eisen et al. (1998)). Zur bildlichen Darstellung wurden die den relativen mRNA-Spiegeln entsprechenden Fluoreszenzverhältnisse in roten und grünen Farbwerten dargestellt, schwarz symbolisiert einen unveränderten relativen mRNA-Spiegel und grau einen nach den zuvor genannten Kriterien nicht auswertbaren RNA-Spiegel (Eisen et al., 1998). Zur Durchführung der hierarchischen Clusteranalyse und zur Darstellung der Resultate wurde eine von Tino Polen erstellte Software (Polen, 2002; Polen & Wendisch, in

press) verwendet, die auf dem Algorithmus der hierarchischen Clusteranalyse-Software von Eisen *et al.* (1998) beruht.

8. Proteomanalyse

Zur Bestimmung der Konzentration cytosolischer Proteine wurden zweidimensionale Gelelektrophoresen mit nachfolgender Identifizierung in der Intensität veränderter Proteinbanden durch MALDI-TOF-Massenspektrometrie durchgeführt. Die Experimente wurden im wesentlichen wie zuvor von Schaffer *et al.* (2001) beschrieben durchgeführt.

8.1 Zweidimensionale Gelelektrophorese von Proteinen

Bei der zweidimensionalen (2D-) Gelelektrophorese werden Proteingemische zuerst nach isoelektrischem Punkt (isoelektrische Fokussierung) und anschließend nach Größe (SDS-Polyacrylamid-Gelelektrophorese, SDS-PAGE) aufgetrennt. Nach der Solubilisierung von 300 µg acetongefällter cytosolischer Proteinfraktion von C. glutamicum (6.1.2) wurde die isoelektrische Fokussierung mit einer IPGphor Elektrophoreseeinheit (Amersham Pharmacia, Freiburg) und einem immobilisierten pH-Gradienten (18 cm Immobiline DryStrip, Amersham Pharmacia) durchgeführt (Schaffer et al., 2001). Hierbei wurden pH-Gradienten von 4-7 und zusätzlich zum Erreichen einer besseren Auflösung Gradienten von pH 4,5-5,5 benutzt. Nach der isoelektrischen Fokussierung wurden die Gele der 1. Dimension äquilibriert, an der Kathodenseite auf ein SDS-PAGE (Excel SDS Gradientengel 12-14%, Amersham Pharmacia) aufgelegt, und die SDS-PAGE zur Auftrennung nach Größe wurde mit dem Horizontalgel-System Multiphor II (Amersham Pharmacia) durchgeführt (Schaffer et al., 2001). Als Größenstandard wurde der Broad Range Protein Marker (New England Biolabs, Frankfurt a.M.) verwendet. Nach der SDS-PAGE wurden die Gele fixiert, mit Coomassie Brilliant Blau gefärbt, überschüssiger Farbstoff wurde durch Entfärben entfernt und die Gele wurden getrocknet (Schaffer et al., 2001).

Zur Auswertung der 2D-Gele wurden diese mit einem JX-330 Scanner (Sharp, Tokyo, Japan) gescannt, anschließend wurden die Bilder eines zu vergleichenden Gelpaares mittels der ProteomWeaver 2D-Gel-Analysesoftware (Version 1.13; Definiens Imaging GmbH, München) analysiert. Mit Hilfe der Software wurden Proteinbanden identifiziert, deren relative Intensität sich in den verglichenen Gelen unterschied. Hierbei wurde jedes Experiment dreimal mit Proteinextrakten aus unabhängigen Kultivierungen wiederholt, es wurde nach im Durchschnitt mindestens zweifach veränderten Protein-Spiegeln gesucht. Da die Abweichungen zwischen den Wiederholungsexperimenten größer waren als bei den DNA-Chip-Experimenten, wurde als Kriterium für Signifikanz der veränderten Protein-Spiegel ein *p*-Wert von \leq 0,1 in einem *t*-Test nach Student festgelegt (siehe auch 7.6, Lange *et al.* (2003)).

8.2 Identifizierung von Proteinen mittels MALDI-TOF-Massenspektrometrie

Zur Identifizierung von Proteinen wurden "Peptidmassen-Fingerprintanalysen" wie von Schaffer *et al.* (2001) beschrieben durchgeführt. Hierzu wurden die entsprechenden Proteinbanden entweder aus den getrockneten 2D-Gelen ausgeschnitten und die Gelstücke für 30 min mit 500 µl Wasser rehydratisiert oder Banden aus frischen Polyacrylamidgelen ausgeschnitten. Die Gelstücke wurden mit 0,1 M Ammoniumbicarbonat in 30% (v/v) Acetonitril entfärbt und in einer Vakuum-Zentrifuge (Savant Instruments Inc., Holbrook, NY) getrocknet (Schaffer *et al.*, 2001). Die enthaltenen Proteine wurden mit 10 ng/µl Trypsin (Sequencing grade modified Trypsin, Promega, Mannheim) in 3 mM Tris-HCl, pH 8,8 verdaut und die entstandenen Peptide mit 0,03% (v/v) Trifluoressigsäure (TFA) in 10% (v/v) Acetonitril eluiert (Fountoulakis & Langen, 1997; Schaffer *et al.*, 2001).

Ein 0,5 µl-Aliquot der erhaltenen Peptidlösung wurde auf einer Probenplatte aus Stahl mit derselben Menge gesättigter α -Cyano-4-hydroxy-*trans*-Zimtsäure in 50% (v/v) Acetonitril und 0,1% (v/v) TFA als Matrixlösung gemischt. Für die externe Kalibrierung wurden die Calibration Mixtures 1 und 2 des Seguazyme Peptide Mass Standard Kits (Applied Biosystems, Weiterstadt) mit aufgetragen. Die Proben wurden in einer Voyager-DE STR Biospectrometry Workstation (Applied Biosystems) analysiert (Schaffer et al., 2001). Die erhaltenen Peptidmassen wurden mit den theoretisch erwarteten Peptidmassen aus einer Datenbank von 3.746 C. glutamicum-Proteinen (degussa., Frankfurt) verglichen (Schaffer et al., 2001). Wenn die Anzahl zugeordneter Peptide für eine sichere Identifizierung nicht ausreichte, wurde die Peptidlösung durch eine ZipTip (Millipore, Schwalbach) -Aufreinigung aufkonzentriert und entsalzt. Beim ZipTip handelt es sich um eine Pipettenspitze, in der ein Chromatografiematerial angebracht ist, an das Proteine und Peptide binden können. Das ZipTip wurde zweimal mit 10 µl 50% (v/v) Acetonitril befeuchtet, zweimal mit 0,1% (v/v) TFA äquilibriert und anschließend wurden die Peptide durch zehnmaliges Aufziehen und wieder Abgeben im ZipTip gebunden. Nach fünfmaligem Waschen mit 0,1% TFA wurden die Peptide durch fünfmaliges Aufziehen und wieder Abgeben direkt mit Matrixlösung eluiert. Ein Aliquot der gereinigten und aufkonzentrierten Peptidlösung wurde erneut im MALDI-TOF Massenspektrometer analysiert.

9. Nachweis von DNA-Protein-Interaktionen

Zum direkten Nachweis der *in vivo*- und *in vitro*-Bindung des Regulatorproteins Lrp an DNA wurden eine Modifikation der "ChIP to chip"-Technik (lyer *et al.*, 2001) und DNase-Footprintanalysen (Galas & Schmitz, 1978; Galas, 2001) eingesetzt.

9.1 Isolierung und Identifizierung an ein *Strep*Tactin-getaggtes Protein gebundener DNA ("ChIP to chip"-Technik)

Bei der Chromatinimmunopräzipitation (ChIP) wird nach einer Formaldehyd-Quervernetzung von DNA und daran gebundenem Protein ein Protein-DNA-Komplex mittels eines spezifischen, gegen das Protein gerichteten Antikörpers oder Antiserums präzipitiert (Spencer *et al.*, 2003). Anschließend kann die an das Protein gebundene DNA mittels DNA-Chip-Technik ("ChIP to chip") identifiziert werden (Iyer *et al.*, 2001; Pollack & Iyer, 2002). Diese Technik erlaubt die Identifizierung der Zielgene eines DNA-bindenden Regulatorproteins und weist *in vivo* die Bindung des Regulatorproteins an eine DNA-Sequenz nach.

Mit der "ChIP to chip"-Technik wurden Zielgene des Regulators Lrp von C. glutamicum identifiziert, indem das Lrp-Protein nach Formaldehyd-Vernetzung gebundener DNA mittels eines C-terminal angefügten Strep-Tags (Stamm 13032*lrp*Strep) über StrepTactin-Affinitätschromatographie gereinigt wurde. Anschließend wurde die Lrp-gebundene DNA isoliert und mittels DNA-Chip-Technik identifiziert. Als Kontrolle auf unspezifisch isolierte DNA diente der Wildtyp ATCC 13032, mit dem Affinitätschromatographie und DNA-Isolierung analog zu 13032/rpStrep durchgeführt wurde. Dazu wurden die C. glutamicum-Stämme in 0,5 I LB-Medium in einem 2 I-Erlenmeyerkolben mit zwei seitlichen Schikanen von OD₆₀₀ 0,5 bis 6,0 kultiviert (Übernacht-Vorkultur 50 ml LB im 500ml-Kolben), durch Zentrifugation geerntet (10 min, 11325 x g, 4°C), mit einem halben Kulturvolumen 100 mM Tris, 1 mM EDTA, pH 8,0 gewaschen und in 10 ml aufgenommen. Zur Quervernetzung von DNA und gebundenem Protein wurde den Zellen Formaldehyd zu einer Endkonzentration von 1% (v/v) zugesetzt, 20 min unter Schwenken bei Raumtemperatur inkubiert und überschüssiges Formaldehyd durch Zugabe von

125 mM Glycin inaktiviert. Anschließend wurden die Bakterien abzentrifugiert (10 min, 3500 x g, 4°C), zweimal mit 50 ml 100 mM Tris, 1 mM EDTA, pH 8,0 gewaschen und in 10 ml dieses Puffers mit Complete Protease Inhibitor (Roche, Mannheim) aufgenommen. Zellaufschluss mit anschließender Isolierung der cytosolischen Proteinfraktion (6.1.2) und Aufreinigung des Lrp-Proteins mittels StrepTactin-Affinitätschromatographie (6.6) erfolgten wie zuvor beschrieben. Allerdings wurde der Rohextrakt nach dem French-Press-Aufschluss zweimal für 30 s (Pulslänge 40%, Beschallintensität 1) mit einem Ultraschalldesintegrator (Ultraschallprozessor UP200s, Dr. Hielscher GmbH, Teltow) behandelt, um die Länge der enthaltenen DNA-Fragmente auf ca. 50-600 bp zu reduzieren. Die Elutionsfraktionen der StrepTactin-Affinitätschromatographie wurden mit 1% SDS (w/v) versetzt und über Nacht bei 65°C inkubiert, um die DNA vom Lrp-Protein zu lösen. Anschließend wurden die Fraktionen nach Zugabe von je 20 µg Proteinase K für 3 h bei 55°C inkubiert, um Proteine abzubauen. Zur Entfernung restlichen Proteins wurden die Fraktionen mit Phenol-Chloroform extrahiert und anschließend zur Konzentrierung mit Ethanol und Natriumacetat gefällt (5.3). Die Konzentration der in 100 µl TE-Puffer (5.1.1) aufgenommenen DNA (ca. 5-15 µg in Elutionsfraktion 3) wurde photometrisch bestimmt, Qualität und Länge der DNA-Fragmente wurden auf einem Agarose-Gel überprüft. Gleiche Mengen (je 2 µg) der aus C. glutamicum 13032/rpStrep isolierten DNA sowie der Kontroll-DNA aus C. glutamicum ATCC 13032 wurden als Template für die Synthese fluoreszenzmarkierter DNA-Sonden eingesetzt und wie im Abschnitt 7 beschrieben für die DNA-Chip-Hybridisierung eingesetzt. Ein erhöhtes Hybridisierungssignal auf dem DNA-Chip für die aus C. glutamicum 13032lrpStrep gewonnene Sonde zeigte eine Anreicherung dieser DNA-Sequenz durch Bindung an das Strep-getaggte Lrp-Protein an und wies somit die direkte Bindung von Lrp an ein Zielgen oder direkt benachbarte Sequenzen nach.

9.2 DNase I-Footprintanalysen

Zur Identifizierung von Bindestellen des Lrp-Proteins im Promotorbereich von Genen wurden DNase I-Footprintanalysen (Galas & Schmitz, 1978) durchgeführt, bei denen der Schutz von Bereichen einer DNA-Sonde vor dem Abbau durch DNase I die Bindung des Proteins anzeigt.

Die nötigen DNA-Sonden wurden durch Polymerasekettenreaktionen unter Verwendung der in Tabelle 1 aufgeführten Oligonukleotide erhalten. Hierbei wurde

der Bereich von ca. 350 bp vor dem Transkriptionsstart eines Gens bis ca. 50 bp dahinter zunächst durch eine PCR mit unmarkierten Primern und genomischer DNA von *C. glutamicum* ATCC 13032 als Template amplifiziert. Das PCR-Produkt wurde durch Aufreinigung aus einem Agarose-Gel gereinigt. Dieses PCR-Produkt wurde als Template einer weiteren PCR eingesetzt, bei der eines der Oligonukleotide IRD800-markiert war. Das entstandene, an einem Ende IRD800-markierte DNA-Fragment wurde mittels Microcon YM-30 Säulen (Millipore, Schwalbach) gereinigt (8.3.1) und als Sonde bei der DNase-Footprintanalyse eingesetzt.

Das Lrp-Protein wurde aus *E. coli* DH5α(pAN3K-1-*lrp*) aufgereinigt. Anschließend wurden die zwei konzentriertesten Elutionsfraktionen (die dritte und vierte) durch Gelfiltration nach Tris-HCl pH 8,0 umgepuffert, um die Salzkonzentration zu verringern. Die Proteinkonzentration in den hierbei erhaltenen Elutionsfraktionen wurde nach Bradford (1976) bestimmt.

Die Footprintreaktion enthielt in 200 µl Volumen 0,6 pmol Sonde, 10 mM Tris-HCl pH 7,5, 0,5 mM EDTA, 5% (v/v) Glyzerin, 0,5 mM DTT, 0,005% (v/v) Triton X-100, 50 mM NaCl, 5 mM MgCl₂, 2,5 mM CaCl₂, 6 pmol poly(dl-dC) (Sigma, Taufkirchen) sowie verschiedene Mengen Lrp (0-20 µg) und wurde zur Bindung des Proteins an die DNA-Sonde 30 min bei Raumtemperatur inkubiert. Durch Zugabe von 5 µl 0,25 µg/ml DNase I in DNase I-Puffer (10 mM Tris-HCl pH 8,0, 5 mM MgCl₂, 5 mM CaCl₂, 50 mM KCl, 1 mM DTT) und 2 min Inkubation bei Raumtemperatur wurde die Sonde partiell fragmentiert. Die Restriktion wurde durch Zugabe von 700 µl kaltem 88% Ethanol (v/v) mit 20 µg Lachssperma-DNA und 0,65 M Ammoniumacetat gestoppt und die DNA über Nacht bei -20°C gefällt. Anschließend wurde die DNA abzentrifugiert (40 min, 14500 x *g*, 4°C), mit 500 µl 70% (v/v) Ethanol gewaschen und in 2,5 µl Wasser und 2,5 µl Formamidladepuffer (Thermosequenase-Kit, Amersham Pharmacia, Freiburg) aufgenommen.

Das der Sonde entsprechende, unmarkierte PCR-Produkt wurde als Matrize für DNA-Sequenzierungsreaktionen unter Verwendung IRD800-markierter Primer verwendet. Eine Footprintreaktion wurde zusammen mit der Sequenzreaktion auf ein Sequenziergel aufgetragen und mittels des LI-COR 4200 DNA-Sequenziergeräts (MWG Biotech, Essenberg) aufgetrennt (5.7). Dadurch konnte dem im Footprint vor dem DNase I-Verdau geschützten DNA-Bereich eine Sequenz zugeordnet werden.

IV. Ergebnisse

1. Einfluss verzweigtkettiger Aminosäuren auf das Wachstum verschiedener *C. glutamicum*-Stämme

1.1 Wachstum auf Glukose-Minimalmedium in Anwesenheit verzweigtkettiger Aminosäuren

Das Vorhandensein von 30 mM L-Valin oder L-Isoleucin im Kulturmedium inhibierte das Wachstum des Lysin-Produktionsstamms MH20-22B (Eggeling *et al.*, 1997). Deshalb wurde der Effekt verzweigtkettiger Aminosäuren auf das Wachstum verschiedener *C. glutamicum*-Stämme untersucht. Hierzu wurden der Wildtyp ATCC 13032 (Abe *et al.*, 1967), der Lysinproduzent MH20-22B (Schrumpf *et al.*, 1992), der Valinproduzent VAL1 (Radmacher *et al.*, 2002) und die Deletionsmutante 13032 Δ *lrp* (Wessel, 2000) in Glukose-Minimalmedium in Anwesenheit verzweigtkettiger Aminosäuren kultiviert. In Abbildung 5 sind die Wachstumsraten in Abhängigkeit von den verschiedenen Aminosäurekonzentrationen aufgetragen.

Abbildung 5: Maximale Wachstumsraten von *C. glutamicum* ATCC 13032 (\blacklozenge), 13032 Δ *lrp* (\circ), VAL1 (\triangle) und MH20-22B (\Box) in CGXII-Minimalmedium mit 0,2 M Glukose unter Zusatz von A) L-Valin, B) L-Leucin oder C) L-Isoleucin Bei den auxotrophen Stämmen VAL1 bzw. MH20-22B wurden 3 μ M D-Pantothenat und mindestens 3,4 mM L-Isoleucin bzw. 2,3 mM L-Leucin dem Medium zugesetzt.

Für den leucinauxotrophen Lysinproduzenten *C. glutamicum* MH20-22B konnte die von Eggeling *et al.* (1997) beschriebene starke Wachstumshemmung in Anwesenheit von L-Valin und L-Isoleucin bestätigt werden. Es konnte weiterhin gezeigt werden, dass bis zu 100 mM L-Leucin das Wachstum dieses Stammes nicht beeinflussten.

Wie in Abbildung 5 gezeigt, hatten im Gegensatz zu MH20-22B bis zu 200 mM Valin keinen Effekt auf die Wachstumsrate des Wildtyps ATCC 13032. Leucin und

Isoleucin führten dagegen ab einer Konzentration von etwa 50-100 mM zu einer auf etwa 85% verlangsamten Wachstumsrate.

Der durch gezielte Veränderungen aus dem Wildtyp erzeugte isoleucinauxotrophe Valin-Produktionsstamm VAL1 wies mit L-Leucin eine etwas stärkere Wachstumshemmung als der Wildtyp auf. L-Isoleucin verlangsamte das Wachstum von VAL1 erst ab etwa 150 mM. Auffällig war die deutliche Wachstumshemmung des Valinproduzenten durch Valin, wobei eine Konzentration von etwa 250 mM zu einer halbmaximalen Wachstumsrate führte.

Die Deletion des Regulators "Leucine responsive regulatory protein" (Lrp) im Wildtyp führte zu verstärkter Sensitivität gegenüber Leucin und Isoleucin, die Wachstumsrate war mit 100 mM der Aminosäuren auf etwa 60% reduziert (ATCC 13032: 85%). Im Gegensatz zum Wildtyp wurde das Wachstum von $13032\Delta Irp$ auch durch Valin leicht inhibiert. Ein Gemisch aller drei verzweigtkettigen Aminosäuren (je 33 mM) ergab eine ähnliche Reduzierung der Wachstumsrate von $13032\Delta Irp$ wie 100 mM L-Valin (von 0,39 auf etwa 0,35 oder 90%), während die anderen Stämme durch ein solches Gemisch nicht beeinflusst wurden (Daten nicht gezeigt). Diese erhöhte Sensitivität gegenüber verzweigtkettigen Aminosäuren deutet auf eine Beteiligung von Lrp an aminosäureabhängigen Regulationsmechanismen hin.

Im Gegensatz zur Wachstumsrate wurde die maximal erreichte OD₆₀₀ durch die beschriebene Aminosäurezugabe nicht signifikant beeinflusst. Wie HPLC-Messungen ergaben, wurden die zugegebenen Aminosäuren nicht abgebaut.

Zusammenfassend bleibt festzuhalten, dass der Effekt verzweigtkettiger Aminosäuren auf das Wachstum von *C. glutamicum* stammspezifisch ist. Bei dem durch Mutagenese und Selektion generierten Lysinproduzenten MH20-22B könnten die zahlreichen, nicht vollständig charakterisierten Mutationen sowie die Leucinauxotrophie für Unterschiede zum Wildtyp verantwortlich sein. Für die Stämme ATCC 13032, VAL1 und 13032 Δ *lrp* wurden die Effekte verzweigtkettiger Aminosäuren im folgenden näher charakterisiert.

1.2 Verzweigtkettige Aminosäuren als potentielle Kohlenstoff- und Stickstoffquellen von *C. glutamicum*

Bei Fermentationen zur Bestimmung der durch VAL1 maximal produzierten L-Valin-Konzentration fiel auf, dass die Konzentration nach Erreichen eines Maximums (nach 48-72 h) wieder leicht um ca. 10 mM abnahm (A. Krug, pers. Mitteilung). Ferner zeigten Transkriptomanalysen mit ATCC 13032 die Induktion des Methyl-Citratzyklus durch Valin, welcher Teil eines potentiellen Valin-Abbauweges ist (s. 2.1). Daher wurde untersucht, ob verzweigtkettige Aminosäuren eine Kohlenstoff- (C-) und/oder Stickstoff- (N-) Quelle für *C. glutamicum* sein könnten. Um die Bedeutung des Methyl-Citratzyklus für die Metabolisierung verzweigtkettiger Aminosäuren zu verifizieren, wurde auch die *prpD2B2C2*-Deletionsmutante WAC 8 (Claes *et al.*, 2002) und der Ausgangsstamm RES 167 verwendet.

Tabelle 5: Vergleich des Wachstums von *C. glutamicum* mit verschiedenen potentiellen Kohlenstoff- und Stickstoffquellen

Die *C. glutamicum*-Stämme ATCC 13032, WAC8 (RES167 Δ *prpD2B2C2*) und RES167 wurden nach Waschen mit CGXII-Medium ohne C- und N-Quelle aus einer Vollmedium-Vorkultur zu einer OD₆₀₀ von etwa 0,3 in CGXII überimpft. Angegeben ist die in 3 (b: 2) Wochen maximal erreichte OD₆₀₀. Gegebenenfalls wurden die Kohlenstoffquellen (10 g/l Glukose (b: 20 g/l) bzw. 10 g/l Propionat) und/oder Stickstoffquellen (20 g/l Ammoniumsulfat und 5 g/l Harnstoff) durch 10 g/l (b: 20 g/l) einer verzweigtkettigen Aminosäure ersetzt. Wachstum ist durch graue Hinterlegung gekennzeichnet. (n.b. = nicht bestimmt)

	N-Quelle	Maximale OD ₆₀₀							
C-Quelle	N-Quelle	13032	13032 (b)	WAC8	RES167				
Glukose	Ammoniumsulfat + Harnstoff	14,9	28,0	13,2	13,9				
Propionat	Ammoniumsulfat + Harnstoff	8,8	n.b.	5,9	6,9				
Glukose	-	2,5	0,5	1,3	1,4				
Glukose	Valin	3,4	1,2	3,5	3,9				
Glukose	Isoleucin	3,6	n.b.	5,0	5,6				
Glukose	Leucin	3,1	n.b.	2,9	3,9				
-	Ammoniumsulfat + Harnstoff	0,3	0,3	0,2	0,2				
Valin	Ammoniumsulfat + Harnstoff	0,2	0,3	0,2	0,2				
Isoleucin	Ammoniumsulfat + Harnstoff	0,2	n.b.	0,2	0,2				
Leucin	Ammoniumsulfat + Harnstoff	0,2	n.b.	0,2	0,2				
	Valin	0,2	n.b.	0,2	0,2				
	Isoleucin	0,2	n.b.	0,2	0,2				
	Leucin	0,2	n.b.	0,2	0,2				

In Tabelle 5 ist zu erkennen, dass keine der verzweigtkettigen Aminosäuren als alleinige Kohlenstoffquelle verwertet werden konnte. Nur Kulturen mit Glukose oder Propionat als C-Quelle zeigten Wachstum. Mit Propionat betrug die Lag-Phase bei ATCC 13032 und RES 167 etwa einen Tag, das Experiment war also ausreichend lang zur Induktion des Propionat-Abbauweges Methyl-Citratzyklus. Nach fünftägiger Lag-Phase zeigte auch WAC 8 Wachstum auf Propionat, obwohl das deletierte *prpD2B2C2*-Operon als für die Propionat-Verwertung essentiell beschrieben wurde

(Claes *et al.*, 2002). Möglicherweise hat eine Suppressormutation den Propionat-Abbau z.B. über das homologe *prpD1B1C1*-Operon ermöglicht.

Die optische Dichte mit verzweigtkettigen Aminosäuren als alleiniger N-Quelle war deutlich niedriger als bei der Positivkontrolle mit Ammoniumsulfat und Harnstoff, aber höher als bei der Negativkontrolle (Tab. 5). Die eingesetzte Aminosäurekonzentration entsprach 16-18% (bei (b) 36%) der Menge an Stickstoffatomen in Ammoniumsulfat und Harnstoff, welche in dieser Konzentration auch bei Wachstum mit 60 g/l Glukose (hier 10 bzw. (b) 20 g/l) nicht limitierend sind. Die Stickstoffkonzentration sollte also nicht Ursache des geringen Wachstums sein, vielmehr wurde keine der verzweigtkettigen Aminosäuren als alleinige N-Quelle verwertet. Dies wurde für L-Isoleucin bereits beschrieben (Gutmann *et al.*, 1992). Für das beobachtete stärkere Wachstum im Vergleich zur Negativkontrolle könnte verantwortlich sein, dass die zugegebene Aminosäure nicht mehr selbst synthetisiert werden musste.

Um die zur Verwertung von Valin und Isoleucin möglicherweise nötige Aktivität des Methyl-Citratzyklus sicherzustellen, wurde das Experiment mit dem Wildtyp ausgehend von einer Vorkultur mit Propionat als C-Quelle wiederholt. Auch hier war keine Verwertung der verzweigtkettigen Aminosäuren als C- oder N-Quelle zu beobachten. Festzuhalten bleibt damit, dass Valin, Leucin und Isoleucin keine alleinigen Kohlenstoff- oder Stickstoffquellen für *C. glutamicum* darstellen.

2. Einfluss verzweigtkettiger Aminosäuren auf die globale Genexpression von *C. glutamicum* ATCC 13032

2.1 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von L-Valin

Der Einfluss von L-Valin im Medium auf die globale Genexpression von *C. glutamicum* ATCC 13032 wurde mittels Transkriptomanalysen untersucht, um mögliche Regulationsmechanismen aufzuklären. Hierzu wurden parallele Kultivierungen in CGXII Glukose-Minimalmedium ohne oder mit 50, 100 bzw. 300 mM L-Valin durchgeführt. Nach mindestens zehn Generationen exponentiellem Wachstum unter diesen Bedingungen wurden die Zellen zur RNA-Extraktion geerntet. Nach Herstellung markierter cDNA-Sonden durch reverse Transkription wurden relative mRNA-Spiegel durch Hybridisierung auf DNA-Chips bestimmt.

		Appotation ³	Gen ⁴	mR	NA-Sp	oiegel	+/- Va	alin [m	זM]⁵
	NCBI	Alliotation	Gen	50	100a	100b	300a	300b	Ø
237	NCgl2749	hypothetical membrane protein		0,5			0,6	0,3	0,5
585	NCgl0190	hypothetical membrane protein					0,5	0,5	0,5
860	NCgl0385	hypothetical protein		0,5			0,7	0,5	0,5
1495	NCgl0891	hypothetical protein					0,6	0,5	0,5
1606	NCgl0986	Na ⁺ -dependent transporter of the SNF family			0,6	0,5	0,6		0,5
1623	NCgl1004	aldo/keto reductase					0,5	0,5	0,5
1906	NCgl2919	hypothetical protein					0,4	0,5	0,4
1953	NCgl1770	hypothetical protein					0,4	0,5	0,5
2136	NCgl1952	membrane metalloendopeptidase protein					0,5	0,6	0,5
2552	NCgl1405	ABC-type transporter, ATPase component		0,5			0,5	0,7	0,5
2792	NCgl1223	acetolactate synthase, small subunit	ilvN	0,4	0,4	0,3	0,8	0,7	0,5
2827	(2778481-	pyruvate oxidase		0,4		0,4	0,6	0,8	0,5
3312	NCgl0018	protein-disulfide isomerase					0,5	0,6	0,5
3384	NCgl1669	predicted ATPase					0,5	0,5	0,5
3396	NCgl1678	, hypothetical protein					0,4	0,4	0,4
3397	NCgl1679	hypothetical protein					0,6	0,7	0,6
3398	NCgl1680	hypothetical protein					0,3	0,4	0,3
3431	NCgl2953	putative sugar permease					0,4	0,3	0,3
3443	NCgl2960	hypothetical protein					0,5	0,5	0,5
3481	NCgl2433	Rad3-related DNA helicase					0,6	0,5	0,5
3501	NCgl2417	hypothetical protein					0,4	0,4	0,4
3503	NCgl2415	RNase PH					0,8	0,8	0,8
3514	NCgl2407	hypothetical membrane protein					0,5	0,4	0,4
3549	NCgl0482	ABC-type transporter, ATPase component					0,4	0,3	0,3
66065	NCgl2320	benzoate dioxygenase large subunit					0,4	0,4	0,4
675	NCgl0254	branched-chain amino acid permease	brnF	1,6		2,6	1,7	2,4	2,1
6/6	NCgI0254	branched-chain amino acid permease	brnF	1,5		1,5	0,9	1,5	1,4
830		succinate denydrogenase cytochrome B-558 subunit	sanCD	1,7	1,1	1,0	2,3	4,2	2,1
1160	NCgl0627,	methylaconitase	prpD2	6,4	9,5	7,4	3,5	4,6	6,3
1161	NCgl0629	methylisocitrate lyase	prpB2	4,1	8,8	5,7	3,9	3,7	5,2
1162	NCgl0630	methyl citrate synthase	prpC2	4,0	6,7	7,5	4,6	4,2	5,4
1204	NCgl0664	methylaconitase	prpD1	1,4	1,9	1,4	1,1	1,1	1,4
1205	NCgl0665	methylisocitrate lyase	prpB1	1,1	1,7	1,5	1,4		1,4
1206	NCgl0666	methyl citrate synthase	prpC1	4,3	4,0	4,1	2,2	4,0	3,7
1451	NCgl0856	choline-glycine betaine transporter	betP	1,6	1,6	1,5	2,0	3,9	2,1
1783	NCgl1139	nitrate reductase gamma subunit					2,2	2,2	2,2
1784	NCgl1140	nitrate reductase delta subunit				1,0	1,0		1,0
1785	NCgl1141	nitrate reductase beta chain		1,6	1,1	1,1	3,0	4,6	2,3
1787	NCgl1143	nitrate/nitrite transporter		1,2	1,2	1,1	1,6	2,5	1,5
1788	NCgl1143	nitrate/nitrite transporter		1,5	1,2	1,2	2,4	2,0	1,7
2280	NCgl2086	isoleucyl-tRNA synthetase		1,9	1,4	1,4	3,1	2,6	2,1
2281	(2274263-2274442)	hypothetical protein		1,4	1,5	1,2	1,6	2,7	1,7
2622	NCgl1347	argininosuccinate lyase	argH	1,2	1,5	1,1	1,1	1,8	1,3
2623	NCgl1346	argininosuccinate synthase	argG	1,4	1,5	1,3	2,3	1,6	1,6
2624	NCgl1345	arginine repressor	argR	1,4	1,8	1,7	3,8	1,4	2,0
2625	NCgl1344	ornithine carbamoyltransferase	argF	2,1	2,4	2,4	3,5	2,0	2,5
2626	NCgl1343	PLP-dependent aminotransferase	argD	1,4	1,8	1,5	2,1	2,1	1,8
2627	NCgl1342	N-acetylglutamate kinase	argB	1,7	1,9	1,9	2,4	1,4	1,9
2628	NCgl1341	ornithine acetyltransferase	argJ	1,3		1,4	1,3	1,9	1,5
2629	NCgl1340	acetylglutamate semialdehyde dehydrogenase	argC	2,0	2,2	1,6	2,7	2,5	2,2
2736	NCgl1263	3-isopropylmalate dehydratase small subunit	leuD	2,2	1,6	1,6	5,1	3,9	2,9
2850	NCgl2504	hypothetical protein					1,8	2,1	2,0
1.1	NCgi2319	protocatechuate 3,4-dioxygenase beta subunit					2,1	2,5	2,3

Tabelle 6: Offene Leseraster von *C. glutamicum* ATCC 13032, die in Anwesenheit von L-Valin veränderte relative mRNA-Spiegel aufwiesen

¹Nummern der offenen Leseraster (ORFs), putative Operons sind grau hinterlegt. ²Korrespondierende ORFs (Positionen) des National Center for Biotechnology Information

(NCBI) (http://www.ncbi.nlm.nih.gov/genomes/framik.cgi?db=genome&gi =232) ³Ähnlichstes Gen aus öffentlichen Datenbanken ⁴Nur beschriebene *C. glutamicum*-Gene ⁵Aufgelistet sind relative mRNA-Spiegel Anwesenheit/Abwesenheit der angegebenen Valin-Konzentration in Glukose-Minimalmedium und deren Durchschnitt (\emptyset). Nur ORFs mit einem *p*-Wert $\leq 0,05$ in einem *t*-Test nach Student wurden berücksichtigt, zusätzlich zu ORFs mit ≥ 2 -fach verändertem RNA-Spiegel wurden weitere ORFs putativer Operons aufgenommen.

In Tabelle 6 sind offene Leseraster (ORFs) aufgeführt, die statistisch signifikante (*p*-Wert \leq 0,05 in einem *t*-Test nach Student; TTEST-Tabellenfunktion, Excel 2000, Microsoft, Redmond, USA), mindestens zweifache Änderungen des relativen mRNA-Spiegels beim Vergleich Wachstum in An-/Abwesenheit von L-Valin zeigten. Hierbei wiesen 23 ORFs in Anwesenheit von Valin \geq 2-fach reduzierte und 16 ORFs \geq 2-fach erhöhte mRNA-Spiegel auf. Zusätzlich sind ORFs aufgelistet, die ein mögliches Operon mit einem dieser 39 Gene bilden und eine signifikante (*p*-Wert \leq 0,05), aber <2-fache Änderung des mRNA-Spiegels aufwiesen.

Unter den Genen mit reduziertem RNA-Spiegel befand sich *ilvN*, welches für die kleine Untereinheit der Acetohydroxysäuresynthase (AHAS) kodiert. Für dieses Biosyntheseenzym verzweigtkettiger Aminosäuren ist eine Transkriptionsregulation über einen Attenuationsmechanismus bekannt (Morbach *et al.*, 2000), welche die beobachtete, zweifach reduzierte RNA-Menge in Anwesenheit eines Endprodukts des Biosyntheseweges erklären könnte. Die weiteren Gene des *ilvBNC*-Operons zeigten allerdings unveränderte mRNA-Spiegel. Erklärung hierfür könnte sein, dass vom *ilvBNC*-Operon drei verschieden lange Transkripte gebildet werden (Keilhauer *et al.*, 1993), so dass mRNA für die drei Gene in verschiedener Menge vorliegen kann. Die Enzymaktivität der AHAS wurde durch die Kultivierung in Anwesenheit von Valin nicht beeinflusst. Die Annotation der weiteren ORFs mit reduziertem RNA-Spiegel lässt keinen direkten Zusammenhang zu L-Valin erkennen.

Einen erhöhten mRNA-Spiegel wies *brnF* auf (Tab. 6). Dieses Gen kodiert für eine Untereinheit des Exporters für verzweigtkettige Aminosäuren BrnFE (Kennerknecht *et al.*, 2002). Aufgrund eines Fehlers in der ursprünglichen Annotation wird *brnF* durch zwei PCR-Produkte auf den DNA-Chips repräsentiert. Eine Induktion des Exporters durch Anwesenheit eines seiner Substrate erscheint sinnvoll. Der Mechanismus dieser Induktion wurde in Abschnitt 4. dieser Arbeit näher untersucht. Das Gen der zweiten Untereinheit des Exporters, *brnE* (ORF 677) zeigte eine 1,6fache Induktion durch Valin, ist aber aufgrund eines *p*-Werts von 0,14 nicht in Tabelle 6 aufgeführt. Weiterhin wiesen eine putative Isoleucyl-tRNA-Synthetase und ein benachbarter, kurzer ORF erhöhte mRNA-Spiegel auf. Dies ist ein Hinweis auf einen Mangel an korrekt beladener Isoleucyl-tRNA (Grunberg-Manago, 1996), wofür eine Fehlbeladung durch die hohe Konzentration der ähnlichen Aminosäure Valin oder ein Mangel an Isoleucin verantwortlich sein könnte. Der mRNA-Spiegel des Gens *leuD* für die kleine Untereinheit der Isopropylmalat-Dehydratase war etwa dreifach erhöht. Das Gen *leuC* der großen Untereinheit wies einen 6,6-fach erhöhten mRNA-Spiegel auf, jedoch mit einem *p*-Wert >0,05. Diese Induktion der Leucin-Biosynthese könnte auf einen Leucin-Mangel hinweisen. Möglicherweise verursacht die Induktion des gemeinsamen Exporters verzweigtkettiger Aminosäuren durch die hohe Valinkonzentration also einen Mangel der weiteren verzweigtkettigen Aminosäuren Leucin und Isoleucin.

Am stärksten durch L-Valin beeinflusst wurde die Expression des *prpD2B2C2*-Operons (mRNA-Spiegel ca. 5-6), dessen Gene für die Enzyme des Methyl-Citratzyklus 2-Methylcitrat-Synthase (*prpC2*), 2-Methylcitrat-Dehydratase (*prpD2*) und 2-Methylisocitrat-Lyase (*prpB2*) kodieren. Diese Gene sind essentiell für das Wachstum mit Propionat als Kohlenstoffquelle (Claes *et al.*, 2002), aus welchem im Methyl-Citratzyklus Pyruvat entsteht. Beim Abbau von Valin würde wahrscheinlich Propionyl-CoA entstehen, allerdings konnte ein solcher Abbau nicht gezeigt werden. Die Expression des homologen *prpD1B1C1*-Operons, welches nicht essentiell für das Wachstum mit Propionat ist (Claes *et al.*, 2002), war ebenfalls erhöht. Hierbei könnte es sich allerdings aufgrund der hohen Sequenzhomologie (70-75% auf DNA-Ebene, Claes *et al.* (2002)) auch um eine Kreuzhybridisierung der *prpD2B2C2*-cDNA mit den *prpD1B1C1*-PCR-Produkten auf dem DNA-Chip handeln.

Ebenfalls erhöhte mRNA-Spiegel zeigten die Gene des putativen *narKGHJI*-Operons (ORFs 1783-1788), das ein Nitrat-Nitrit-Transportprotein und die vier Untereinheiten der Nitratreduktase kodiert.

Nahezu alle Gene der Arginin-Biosynthese (Sakanyan *et al.*, 1996) hatten bis zu 2,5fach erhöhte mRNA-Spiegel. Der erhöhte *argF*-mRNA-Spiegel korrelierte mit erhöhter Transcarbamylase-Aktivität. Nach Wachstum in Abwesenheit von Valin betrug die spezifische Aktivität dieses Enzyms 95 mU/mg Protein im Vergleich zu 210 mU/mg Protein nach Wachstum in Anwesenheit von 300 mM L-Valin. Es gibt bei Pilzen Hinweise auf Zusammenhänge zwischen der Konzentration von Valin und der Regulation der Arginin-Biosynthese (Delforge *et al.*, 1975; Kemp & Flint, 1982).

Obwohl die Anwesenheit von L-Valin im Medium bei *C. glutamicum* ATCC 13032 keine Wachstumshemmung verursachte, konnte ein deutlicher Einfluss dieser Aminosäure auf die Transkription einer Reihe von Genen nachgewiesen werden. Außer der Repression des Valin-Biosynthesegens *ilvN* zeigten die gemessenen mRNA-Spiegel keine Repression der Valin-Biosynthesegene durch Valin im Medium.

2.2 Proteomanalysen nach Wachstum in An- oder Abwesenheit von L-Valin

Der Einfluss von 300 mM L-Valin im Glukose-Minimalmedium auf das Proteom von *C. glutamicum* ATCC 13032 wurde mittels 2D-Gelelektrophorese untersucht. Hierdurch sollten auch Proteine identifiziert werden, deren Regulation durch Valin nur auf Ebene von Translation oder Proteinstabilität erfolgt. Unterschiede im Proteinmuster wurden mittels der ProteomWeaver-Software (Version 1.13; Definiens Imaging GmbH, München) identifiziert und quantifiziert. In Tabelle 7 sind mittlere relative Intensitäten der Proteinbanden (normiert auf die Gesamtintensität aller Banden eines 2D-Gels) aus den bis zu 6 2D-Gelen (je 3 Gele für pH 4-7 und pH 4,5-5,5) aufgeführt. Aus diesen Intensitäten wurden Protein-Spiegel An-/Abwesenheit von L-Valin gebildet. Als signifikant wurden Expressionsänderungen mit einem p-Wert $\leq 0,1$ im *t*-Test nach Student definiert.

Tabelle 7: Proteine von *C. glutamicum* ATCC 13032, die in Anwesenheit von L-Valin in veränderter Konzentration vorhanden waren

		Protein kodiert durch		Inten	ısität ¹	Protein-
ORF	NCBI	Annotation	Gen	-Val	+Val	Spiegel ²
16	NCgl2582	L-2.3-butanediol dehydrogenase		1,9	0,8	0,4
68	NCgl2621	chaperonin GroEL		0,5	0,2	0,4
486	NCgl0099	predicted oxidoreductase		0,5	0,2	0,4
978	NCgl0469	ribosomal protein L7/L12		20,0	7,5	0,4
1167	NCgl0634	monomeric isocitrate dehydrogenase (NADP ⁺)	icd	1,0	0,4	0,4
1211	NCgl0670	acyl-CoA carboxylase	accBC	0,6	0,2	0,3
1315	NCgl0754	pyridoxine biosynthesis enzyme		1,1	0,4	0,4
2071	NCgl1900	polyribonucleotide nucleotidyltransferase		0,3	0,1	0,4
2149	NCgl1961	thiamine monophosphate synthase		0,5	0,1	0,3
2470	NCgl1512	transketolase	tkt	0,5	0,2	0,4
3065	NCgl2268	phosphoglycerate mutase		0,8	0,3	0,3
1160	NCgl0627,	methylaconitase	prpD2	0,4	3,4	7,9
2624	NCgl0628	arginine repressor	araR	0.1	04	4.8
2629	NCgl1340	acetylglutamate semialdehyde dehydrogenase	argC	0,3	1,3	4,0

Erläuterungen wie in Tabelle 6, außer:

¹Durchschnittliche relative Intensitäten der Banden Coomassie-gefärbter 2D-Gele in Ab-(-Val) oder Anwesenheit (+Val) von 300 mM L-Valin gewachsener Zellen

²Aufgelistet sind relative Protein-Spiegel mit/ohne Valin-Zugabe, wenn ein *p*-Wert von \leq 0,1 in einem *t*-Test nach Student erreicht wurde.

Insgesamt 11 Proteine zeigten reduzierte Protein-Spiegel in Anwesenheit von Valin (Tab. 7). Allerdings hatten die zugehörigen Gene keinen entsprechend reduzierten mRNA-Spiegel, dieser lag jeweils nahe 1. Daher sind diese reduzierten Protein-Spiegel durch Regulation auf Ebene von Translation oder Proteinstabilität und nicht durch Transkriptionsregulation verursacht worden.

Drei Proteine zeigten erhöhte Spiegel bei Anwesenheit von Valin im Medium (Tab. 7), was in allen Fällen mit erhöhten mRNA-Spiegeln (Tab. 6) korrelierte. Die

Konzentration der 2-Methylcitrat-Dehydratase PrpD2 war 8-fach erhöht, der entsprechende mRNA-Spiegel lag bei 6. Die beiden anderen Proteine des Methylcitratzyklus-Operons (Claes *et al.*, 2002), PrpB2 und PrpC2, wurden auf den Gelen vermutlich wegen zu geringer Konzentration nicht detektiert. Der Arginin-Repressor ArgR zeigte einen 5-fach erhöhten Protein-Spiegel und einen 2-fach erhöhten mRNA-Spiegel. Die N-Acetylglutamat-Semialdehyd-Dehydrogenase ArgC wies ebenfalls einen 4-fach erhöhten Protein-Spiegel und einen 2-fach erhöhten mRNA-Spiegel nach Wachstum in Anwesenheit von Valin auf. Somit führte für diese Proteine die erhöhte mRNA-Menge auch zu erhöhten Proteinkonzentrationen.

2.3 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von L-Leucin

Um gemeinsame Einflüsse verzweigtkettiger Aminosäuren auf die Genexpression von Valin-, Leucin oder Isoleucin-spezifischen Effekten zu trennen, wurden auch Transkriptomanalysen in Anwesenheit von Leucin und Isoleucin durchgeführt. Hierzu wurde der Einfluss von 100 mM L-Leucin im Medium auf die globale Genexpression des Wildtyps *C. glutamicum* ATCC 13032 untersucht. Zu beachten ist, dass L-Leucin das Wachstum von *C. glutamicum* ATCC 13032 beeinträchtigt. Bei den durchgeführten zwei unabhängigen Kultivierungen wurde die Kultur mit und die ohne L-Leucin zur selben OD₆₀₀ (ca. 0,5) angeimpft. Um die Effekte der unterschiedlichen Wachstumsrate möglichst gering zu halten, wurde bei der einen Kultivierung nach identischer Kultivierungsdauer (ca. 6 h) geerntet (OD₆₀₀ 3,5 bzw. 4,6; Experimente a und d in Tab. 8), bei der anderen hingegen zeitversetzt bei identischer OD₆₀₀ (ca. 4) geerntet (Experimente b, c und e).

Insgesamt 14 ORFs zeigten in Anwesenheit von Leucin einen signifikant mindestens zweifach reduzierten mRNA-Spiegel (Tab. 8). Hierunter befindet sich mit einem RNA-Spiegel von 0,4 das Gen *prpC2*, welches für die 2-Methylcitrat-Synthase kodiert. Die weiteren Gene des zugehörigen *prpD2B2C2*-Operons, *prpD2* (ORF 1160, 2-Methylcitrat-Dehydratase) und *prpB2* (ORF 1161, 2-Methylisocitrat-Lyase), wiesen 0,5- bzw. 0,6-fach reduzierte mRNA-Spiegel auf, die *p*-Werte lagen jedoch mit ca. 0,1 über der Grenze für eine signifikante Expressionsänderung. Das *prpD2B2C2*-Operon ist essentiell für die Verwertung von Propionat im Methyl-Citratzyklus (Claes *et al.*, 2002) und zeigte in Anwesenheit von Valin stark erhöhte mRNA-Spiegel.

VUII	L-LEU		unge	115.	Tab		0)		
ORF	NCBI	Annotation	Gen	mRI	NA-Sp	iegel	+/- Le	ucin [n	nM]
				100a	100b	100c	100d	100e	Ø
384	NCgl2867	putative NADPH:quinone reductase		0,5			0,4		0,4
568	NCgl0167	transcriptional regulator		0,6	0,4	0,5		0,5	0,5
1162	NCgl0630	methyl citrate synthase	prpC2		0,3	0,3	1,2	0,2	0,4
1476	NCgl0877	hypothetical protein		0,5		0,4			0,5
1887	NCgl2903	sugar transporter family protein		0,5	0,4	0,6	0,5		0,5
1888	NCgl2904	malic enzyme	mez	0,6	0,4	0,4	0,5	0,2	0,4
1916	NCgl2928	anthranilate synthase component II	trpG	0,5		0,4			0,5
2435	NCgl1489	hypothetical protein	-	0,4		0,4			0,4
2596	NCgl1368	acetyltransferase		0,6	0,2	0,3			0,3
3038	NCgl2290	hypothetical protein		0,4		0,4			0,4
3332	NCal1635	hypothetical protein		0.4	0.4	0.3	0.5	0.5	0,4
2445	NCgl1693,			0.0	,	0.0	,	,	0.0
3415	NCgl1694	nypotnetical protein		0,6		0,6			0,6
3417	NCgl1696	hypothetical protein		0,7		0,7			0,7
3419	NCgl1698	hypothetical protein		0,5		0,4			0,5
66065	NCgl2320	benzoate dioxygenase large subunit		0,5		0,5			0,5
66067		ferredoxin subunits of nitrite reductase and ring-hydroxylating		0.5	0.0	0.4			0.2
66067	NCGI2300	dioxygenases		0,5	0,2	0,4			0,3
484	NCgl0098	proline dehydrogenase		2,1	2,2	2,7	1,3	2,9	2,2
517	NCgl0122,	hypothetical protein		14	11 0	72	10	۵7	46
317	NCgl0123	hypothetical protein		1,4	11,0	2, ۱	1,9	5,1	4,0
518	NCgl0123	hypothetical protein		1,5	7,4	5,4	1,8	7,9	3,9
658	NCgl0243	UDP-N-acetylmuramyl tripeptide synthase		1,8	2,7	2,3	1,5	2,4	2,1
854	NCgl0377	hypothetical membrane protein		1,4	4,5	3,6	1,4	4,3	2,7
855	NCgl0378	ABC-type transporter, periplasmic component		1,4	1,9	2,1	1,2	2,4	1,7
857	NCgl0380	ABC-type transporter, ATPase component		1,3	2,1	2,4	1,0	2,4	1,7
010	NCgl0447,	ntorin 4a carbinalamina dabudratasa; pontidasa E			30	1 0	17	33	25
343	NCgl0448				5,0	1,0	1,7	5,5	2,5
1106	NCgl0584	hypothetical membrane protein		1,6	2,8	1,9	1,4	2,3	2,0
1140	NCgl0613	predicted membrane protein		1,7	2,4	2,3	1,3	2,8	2,0
1153	NCgl0624	homoserine O-acetyltransferase	metA	1,3	2,3	2,4			2,0
1166	NCgl0633	hypothetical membrane protein		1,4	1,9		1,4		1,6
1167	NCgl0634	monomeric isocitrate dehydrogenase (NADP ⁺)	icd	1,4	1,6	1,6	1,3		1,5
1168	NCgl0635	hypothetical protein		1,3	2,4	2,6	1,2		1,7
1169	NCgl0636	ABC-type transporter, ATPase component		1,4	4,0	2,9	1,4	3,7	2,4
1170	NCgl0637	ABC-type transporter, permease component		1,5	2,9	3,2	1,3	3,4	2,3
1171	NCql0638	ABC-type transporter, permease component		1,5	1,4	2,0			1,6
1346	NCal0773	siderophore-interacting protein		13	49	4 1	12		2.4
	nogiorro	ABC-type cobalamin/Fe3 ⁺ -siderophore transport system		1,0	1,0	.,.	.,_		_,.
1347	NCgl0774	periplasmic component		1,1	6,2	4,4	1,1	6,1	2,9
1558	NCgl0943	AraC-type DNA-binding domain-containing protein		1,1	4,8	4,0	1,2	26,5	3,7
1645	NCal1022	cvsteine sulfinate desulfinase		1.6	2.1	,	1.1	2.6	1.8
1646	NCgl1023	nicotinate-nucleotide pyrophosphorylase	nadC	4,2	2.3	2.3	1.2	,-	2,3
1647	NCg 1024	auinolinate synthase	nadA	2.3	3.3	2.9	1.4	4.2	2,6
1648	NCal1025	ADP-ribose pyrophosphatase		1.6	8.9	3.9	1.4	18.4	4.3
1697	NCal1071	beta-fructosidase		1.5	2.9	2.0	1.5	3.1	2.1
1855	NCal1200	siderophore-interacting protein		2 5	3.0	42	14	50	2.9
1856	NCal1200	siderophore-interacting protein		2.0	21	2.9	1.6	0,0	21
1992		hynothetical membrane protein		_,0 1⊿	_, · 1 7	17	14	21	16
1002	NCal1927	hypothetical membrane protein		1,4 1 F	1,1 27	1,1 21	1.4	∠,1 27	1,0 2 1
2440	NCal1050	APC type transport systems, periploamic companent		1,0 1.2	2,1	∠, I 2 2	1,0 1.∕	2,1 2 6	∠, I 2 ∩
2140	NC 14005	ABC-type transport systems, perplasmic component		1,3	3,0	2,3	1,4	2,0	2,0
2152		amacieoliae-utilizing enzyme		1,9	∠,4 2.0	∠,U 2.⊑	1,7	2,5	2,1
2205		nypometical protein		1,3	3,2 2 C	2,5	1,4	4,4	2,3
2253		r,4-aipha-giucan branching enzyme		∠,0	3,9 0 -	∠,b	1,8	5,1 0 7	∠,9 0.0
2415	NCgI14/5	memorane protease subunit		1,7	2,5	2,2	1,2	2,7	2,0
2578	NCg11383	nyoroiase of the aipha/beta superfamily		1,5	2,0	2,4	1,3	2,9	1,9
2579	NCgI1382	nypotnetical protein		1,3	2,7	3,1	1,3		2,0
3347	NCgl1646	hypothetical protein		1,2	6,7	7,2	1,7		3,2
3348	NCgl1647	hypothetical protein		1,3	3,3	4,8	1,4	8,0	3,0
3349	(1812016-	hypothetical protein		1.3	2.5	3.2			2,2
	1812174)			.,•	_,•	-, <u>-</u>		o –	_,_
3458	NCgl2970	ABC-type transport systems, periplasmic component		1,3	3,4	3,0	1,2	3,7	2,3

Tabelle 8: Offene Leseraster von *C. glutamicum* ATCC 13032, die in Anwesenheit von L-Leucin veränderte mRNA-Spiegel zeigten (Erläuterungen s. Tabelle 6)

Einen ≥2-fach erhöhten mRNA-Spiegel bei Leucin-Zugabe zeigten 31 ORFs (Tab. 8). Hierunter befanden sich Komponenten fünf putativer Transportsysteme vom ABC-Typ, die alle Ähnlichkeit zu Eisen-Aufnahmesystemen aufweisen. Bei diesen ABC-Transportern war der mRNA-Spiegel insbesondere bei der RNA aus zeitversetzter Ernte erhöht, lag für die andere Kultivierung mit zeitgleicher Ernte (bei verschiedener OD₆₀₀) hingegen bei maximal 1,5. Da im verwendeten Medium die Konzentration verwertbaren Eisens gering war, führt unterschiedlich schnelles Wachstum häufig zu Expressionsänderungen der Eisenaufnahmesysteme. Dieser Effekt kann durch eine erhöhte Eisenkonzentration (durch Sterilfiltrieren statt Autoklavieren der Spurenelementlösung des CGXII-Mediums) vermieden werden (A. Krug, pers. Mitteilung). Auch einige weitere ORFs mit erhöhtem mRNA-Spiegel zeigten ein solches Expressionsverhalten, entsprechend könnten auch diese Expressionsänderungen Eisen- und nicht Leucin-abhängig sein. Es bleibt allerdings unklar, warum hier eine erhöhte Expression dieser Gene in der langsamer wachsenden Kultur beobachtet wurde, die entsprechend später unter Eisenmangel leiden sollte.

2.4 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von L-Isoleucin

Die globale Genexpression von *C. glutamicum* ATCC 13032 in An- oder Abwesenheit von L-Isoleucin wurde mittels Transkriptomanalysen untersucht. Hierzu wurde *C. glutamicum* ATCC 13032 viermal unabhängig in Ab- oder Anwesenheit von L-Isoleucin kultiviert. Mit der aus diesen Kulturen isolierten RNA wurden 11 DNA-Chip-Hybridisierungen durchgeführt.

Nach Wachstum in Anwesenheit von Isoleucin wiesen 6 ORFs einen mindestens zweifach reduzierten und 6 ORFs einen entsprechend erhöhten mRNA-Spiegel auf (Tab. 9). Reduziert war die Expression eines putativen ABC-Transporters, der Homologien zu Sulfonattransportern aufweist, und des benachbarten ORFs, der Ähnlichkeiten zu einem Sulfatmangel-induzierten Protein aufweist. Weiterhin zeigten die Gene des *prpD2B2C2*-Operons zur Verwertung von Propionat im Methyl-Citratzyklus (Claes *et al.*, 2002) verringerte mRNA-Spiegel. Einen erhöhten mRNA-Spiegel in Anwesenheit von L-Isoleucin zeigte unter anderem der Exporter verzweigtkettiger Aminosäuren BrnFE, für den bereits eine Induktion durch L-Valin gezeigt werden konnte. Es fällt auf, dass in Gegenwart von Isoleucin wesentlich weniger Gene eine \geq 2-fache Expressionsänderung zeigten als mit Valin oder Leucin.

VOIT	von E isoleden verdiderte mittiv opleger damiesen (Endderdigen 5. rabeite 6)														
ORF	NCBI	Annotation	Gen			r	nRNA	A-Spie	egel +	/- Isol	eucir	ן [mM]	J		
	нові	, unotation	Cen	50a	50b	100a	100b	100c	100d	100e	100f	100g	100h	100i	Ø
1160	NCgl0627, NCgl0628	methylaconitase	prpD2	0,1	0,3	0,7	0,5	0,4	0,8	0,8	0,7	0,5	0,9	0,7	0,5
1161	NCgl0629	methylisocitrate lyase	prpB2	0,2	0,3	0,9	0,4	0,5	0,8	1,0	0,9	0,5			0,5
1162	NCgl0630	methyl citrate synthase	prpC2	0,2	0,2	0,8	0,6	0,3	0,7	1,0	0,8	0,7	1,0	0,9	0,6
1821	NCgl1173	sulfate starvation-induced protein		0,5		0,6	0,4	0,5	0,6		0,5	0,5			0,5
1822	NCgl1174	ABC-type transporter, permease component		0,4	0,6	0,5	0,3	0,4	0,5	0,6	0,4	0,4	0,5	0,5	0,5
1823	NCgl1175	ABC-type transporter, ATPase component		0,4		0,6	0,3	0,4	0,6		0,5	0,4	0,6		0,5
1824	NCgl1176	ABC-type transporter, periplasmic component		0,5		1,0	0,6	1,0	0,9		1,0	0,6	1,0	0,6	0,7
3332	NCgl1635	hypothetical protein							0,4	0,3					0,3
675	NCgl0254	branched-chain amino acid permease	brnF	1,8		4,2	2,1	3,3	1,3	1,7			2,1	1,7	2,1
677	NCgl0255	branched-chain amino acid permease	brnE			3,6	1,7	4,0	1,4	1,6		1,5	2,1	1,7	2,0
1727	(1192132- 1192344)	hypothetical protein		8,2	9,1	4,2	3,4	3,5	1,7	2,1	2,6	2,4	3,5	3,0	3,5
1728	NCgl1096	predicted flavoprotein involved in K ⁺ transport		2,8		3,7		3,4	1,3	1,8	2,1	1,4		1,5	2,1
1729	NCgl1097	hypothetical membrane protein		1,8		2,0	1,0	2,2	1,5	2,0	1,6	1,3	2,3		1,7
2754	(1366244- 1366474)	hypothetical protein		2,6	4,1	2,2	5,6	2,0	1,2	1,7	1,9	2,4	1,7	2,0	2,3
66055	NCgl2319	protocatechuate 3,4-dioxygenase beta subunit							2,0	1,9					2,0

Tabelle 9: Offene Leseraster von *C. glutamicum* ATCC 13032, die in Anwesenheit von L-Isoleucin veränderte mRNA-Spiegel aufwiesen (Erläuterungen s. Tabelle 6)

2.5 Vergleich des Einflusses verzweigtkettiger Aminosäuren auf die Genexpression

Durch Transkriptomanalysen wurde der Einfluss von L-Valin, L-Leucin oder L-Isoleucin im Kulturmedium auf mRNA-Spiegel von *C. glutamicum* ATCC 13032 untersucht. Für eine vergleichende Analyse wurden die mRNA-Spiegel aller ORFs zusammengestellt, die in Gegenwart von mehr als einer der verzweigtkettigen Aminosäuren einen ≥2-fach veränderten mRNA-Spiegel aufwiesen. In Tabelle 10 sind ORFs zusammengefasst, die in Anwesenheit von mindestens zwei verschiedenen Aminosäuren eine gleichgerichtet veränderte Expression zeigten.

In Anwesenheit von Valin und Isoleucin wurde der Exporter verzweigtkettiger Aminosäuren BrnFE (Kennerknecht *et al.*, 2002) zweifach induziert. Mit Leucin wurde eine 1,4-fach erhöhte mRNA-Menge (bei *p*-Wert >0,05) festgestellt. Offenbar reagiert *C. glutamicum* auf eine erhöhte Konzentration einer verzweigtkettigen Aminosäure im Medium, die durch Diffusion/Import auch eine erhöhte intrazelluläre Konzentration verursachen sollte (Kennerknecht *et al.*, 2002), mit verstärkter Expression der Gene des Exporters. Hierbei werden Leucin und Isoleucin etwa gleich effektiv exportiert, während Valin etwa 40% langsamer transportiert wird (Kennerknecht *et al.*, 2002).

OPE	NCBI		Gen	+/- L-Valin ¹		+/- L-Isoleucin ¹		+/- L-Leucin ¹	
014	NODI	Annotation		Ø	р	Ø	р	Ø	р
675	NCgl0254	branched-chain amino acid permease	brnF	2,1	*	2,1	*	1,4	
676	NCgl0254	anched-chain amino acid permease brnF 1,4			1,4		1,3		
677	NCgl0255	branched-chain amino acid permease	brnE	1,6		2,0	*	1,4	
1906	NCgl2918	hypothetical protein		0,4	*	0,7	*	0,5	
3332	NCgl1635	hypothetical protein	hypothetical protein			0,3	*	0,4	*
66055	NCgl2319	protocatechuate 3,4-dioxygenase beta subunit		2,3	*	2,0	*	0,2	
66065	NCgl2320	benzoate dioxygenase large subunit		0,4	*	0,8		0,5	*

Tabelle 10: Offene Leseraster von *C. glutamicum* ATCC 13032, die in Anwesenheit verzweigtkettiger Aminosäuren gleichsinnig veränderte mRNA-Spiegel zeigten

Erläuterungen wie in Tabelle 6, außer:

¹Aufgelistet sind durchschnittliche mRNA-Spiegel (\emptyset) aus den Vergleichen Wachstum von *C. glutamicum* ATCC 13032 in Anwesenheit/Abwesenheit der angegebenen Aminosäure. Signifikante Änderungen des mRNA-Spiegels mit einem *p*-Wert \leq 0,05 im *t*-Test sind durch ein * in der Spalte *p* gekennzeichnet. Berücksichtigt wurden ORFs, die in mindestens zwei Vergleichen einen übereinstimmend signifikant \geq 2-fach veränderten mRNA-Spiegel zeigten.

Neben *brnF* erfüllten nur vier weitere ORFs das Kriterium einer ≥2-fachen, gleichsinnigen Expressionsänderung in Anwesenheit von mindestens zwei der verzweigtkettigen Aminosäuren (Tab. 10), darunter eine putative Benzoat-Dioxygenase zum Abbau aromatischer Verbindungen mit zweifach reduziertem mRNA-Spiegel in Anwesenheit von Valin und Leucin und eine putative Protocatechuat-Dioxygenase. Offenbar sind die meisten Expressionsänderungen spezifisch für eine der verzweigtkettigen Aminosäuren.

In Tabelle 11 sind ORFs aufgeführt, die ebenfalls in Anwesenheit von mindestens zwei der drei verzweigtkettigen Aminosäuren einen veränderten mRNA-Spiegel zeigten, hierbei jedoch entgegengesetzte Expressionsänderungen aufwiesen.

Tabelle 11: Offene Leseraster von C. glutamicum ATCC 13032, die in Anwesenhe	eit
verzweigtkettiger Aminosäuren gegenläufig veränderte mRNA-Spiegel aufwiesen	

OPE	NCRI	NCBI Appotation	Gon	+/- L-\	/alin ¹	+/- Isol	eucin ¹	+/- Leucin ¹	
	NCBI	Annotation		Ø	р	Ø	р	Ø	р
1160	NCgl0627, NCgl0628	methylaconitase	prpD2	6,3	*	0,5	*	0,5	
1161	NCgl0629	methylisocitrate lyase	prpB2	5,2	*	0,5	*	0,6	
1162	NCgl0630	methyl citrate synthase	prpC2	5,4	*	0,6	*	0,4	*
3347	NCgl1646	hypothetical protein		0,3		0,6	*	3,2	*
3348	NCgl1647	hypothetical protein		0,4		0,6		3,0	*

Erläuterungen wie in Tabelle 10, außer:

¹Berücksichtigt wurden nur ORFs, die in mindestens einem Vergleich einen signifikant $(p \le 0.05) \ge 2$ -fach veränderten mRNA-Spiegel zeigten und in mindestens einem weiteren Vergleich eine entgegengesetzte, signifikante Expressionsänderung aufwiesen.

Die Gene des *prpD2B2C2*-Operons zur Verwertung von Propionat über den Methyl-Citratzyklus (Claes *et al.*, 2002) zeigten in Anwesenheit von Valin 5-6-fach erhöhte mRNA-Spiegel (Tab. 11), mit Isoleucin und Leucin waren diese dagegen etwa 2-fach reduziert (s. auch 2.1, 2.3, 2.4). Propionyl-CoA ist ein mögliches Intermediat beim Abbau von Valin und Isoleucin, ein solcher Abbau durch *C. glutamicum* konnte jedoch nicht gezeigt werden. Ob die Induktion des *prp*-Operons mit einer Funktion von Valin als Substrat zusammenhängt, ist daher nicht klar. Dies würde auch nicht die Repression durch Leucin und Isoleucin erklären. Weiterhin zeigten zwei hypothetische Proteine divergente Expressionsänderungen in Anwesenheit verzweigtkettiger Aminosäuren.

Abbildung 6 zeigt das Ergebnis einer hierarchischen Clusteranalyse (Eisen *et al.*, 1998) mit den mRNA-Spiegeln aller ORFs aus den Tabellen 6, 8 und 9 (Einfluss von Valin, Leucin oder Isoleucin auf die Genexpression von ATCC 13032), die in mindestens 14 der insgesamt 21 Experimente detektierbar waren. Hierbei wurden Gene und Experimente nach Ähnlichkeit des Expressionsverhaltens angeordnet. Je näher sie in der Darstellung benachbart sind, desto ähnlicher war das Muster der Expressionsänderungen. Ziel dieser Darstellung ist die Einordnung der Gene in Gruppen, die in Anwesenheit verzweigtkettiger Aminosäuren gemeinsam oder spezifisch reguliert werden.

Bei der Anordnung der Experimente (in den Spalten) lassen sich drei Gruppen unterscheiden, die durch farbige Markierung der Dendrogramme und Buchstaben gekennzeichnet sind. Die Experimente nach Kultivierung mit Valin clustern wie erwartet zusammen in Gruppe A. Sie unterscheiden sich von den anderen Experimenten insbesondere durch erhöhte mRNA-Spiegel der Gene der Cluster 2 und 3. Mit Leucin oder Isoleucin zeigten diese Gene reduzierte bzw. unveränderte mRNA-Spiegel. In Gruppe B sind 7 der 11 Experimente mit Isoleucin angeordnet. In Gruppe C finden sich überraschenderweise neben den Experimenten mit Leucin auch die restlichen 4 Experimente aus der Kultivierung in Anwesenheit von Isoleucin. Diese Experimente unterscheiden sich durch erhöhte mRNA-Spiegel der Gene des Clusters 4 von den restlichen 7 Experimenten unter Isoleucin-Zugabe, in denen diese Gene reduzierte mRNA-Spiegel aufwiesen. Die heterogene Expressionsänderung dieser Gene in den Kultivierungen mit Isoleucin erklärt also die Aufspaltung der Isoleucin-Experimente in zwei Gruppen.

Bei der Anordnung der Gene (in Zeilen) lassen sich sechs größere Gruppen unterscheiden, die in Abbildung 6 durch Zahlen gekennzeichnet sind.

Die Gene der Gruppe 1 wiesen reduzierte mRNA-Spiegel in Anwesenheit aller Aminosäuren auf. Neben dem Gen des Malatenzyms wurde *ilvN* der kleinen Untereinheit der Acetohydroxysäuresynthase (ORF 2792) in diese Gruppe eingeordnet. Die reduzierte Expression von *ilvN* in Anwesenheit verzweigtkettiger Aminosäuren entspricht der bekannten Regulation durch Attenuation (Morbach *et al.*, 2000). Die weiteren Gene des *ilvBNC*-Operons, *ilvB* und *ilvC*, clustern zwischen den Gruppen 1 und 2. Sie wiesen in allen Experimenten geringe, nicht signifikante Expressionsänderungen auf. Die unterschiedlichen mRNA-Konzentrationen der Gene des *ilvBNC*-Operons könnten durch die Bildung unterschiedlich langer Transkripte von drei Promotoren aus erklärt werden (Keilhauer *et al.*, 1993).

Die Gene der Gruppe 2 zeigten in Anwesenheit von Valin erhöhte mRNA-Spiegel, in Anwesenheit von Leucin und Isoleucin hingegen reduzierte oder unveränderte mRNA-Spiegel. Das Leucin-Biosynthesegen *leuD* (ORF 2736, kleine Untereinheit der Isopropylmalat-Dehydratase) wies mit Leucin reduzierte und mit Valin oder Isoleucin leicht erhöhte mRNA-Spiegel auf. Für das *leu*-Operon von *E. coli* ist eine Regulation über die Leucin-Konzentration durch Attenuation bekannt (Wessler & Calvo, 1981). Ein ähnliches Expressionsverhalten zeigten die ORFs 830 (Untereinheit der Succinat-Dehydrogenase, *sdhC*), 1785 (putative Nitratreduktase-Untereinheit) und 1787 (Teil eines putativen Nitrat/Nitrit-Transporters). In diesem Teil des Clusters sind weiterhin die Gene des *prpD2B2C2*-Operons zur Propionat-Verwertung im Methyl-Citratzyklus (Claes *et al.*, 2002) angeordnet, die mit Valin erhöhte und mit Leucin und Isoleucin reduzierte mRNA-Spiegel aufwiesen.

Die Gene der Gruppe 3 wiesen nur mit Valin deutlich erhöhte mRNA-Spiegel auf. Hierzu gehören die Arginin-Biosynthesegene (ORFs 2622-2629) und eine putative Isoleucyl-tRNA-Synthetase (ORF 2280).

Die Gene der Gruppe 4 zeigten in den linken Experimenten mit Isoleucin (Gruppe B in Abb. 6) und denen mit Valin reduzierte mRNA-Spiegel, mit Leucin und in den restlichen Experimenten mit Isoleucin hingegen deutlich erhöhte mRNA-Spiegel. Die Gruppe beinhaltet insbesondere Gene putativer Eisen-Aufnahmesysteme. Wie bereits erörtert, reagiert deren Expression aufgrund der geringen Konzentration verwertbaren Eisens im verwendeten Medium sensitiv auf variierende Kultivierungsbedingungen. Möglicherweise sind also geringfügige Abweichungen der Kultivierungsbedingungen in den Wiederholungsexperimenten Ursache der beobachteten heterogenen Expressionsänderungen mit Isoleucin.

Die Gene der Gruppe 5 zeigten meist geringe Expressionsänderungen, in Anwesenheit von Leucin wiesen sie allerdings erhöhte mRNA-Spiegel auf. Zu dieser Gruppe von Genen gehören unter anderem die putativen NAD-Biosynthesegene.

Abbildung 6: Hierarchische Clusteranalyse zur Identifizierung von Gen-Gruppen mit ähnlichem Expressionsverhalten bei *C. glutamicum* ATCC 13032 in Anwesenheit verzweigtkettiger Aminosäuren

Es wurden die Gene aus den Tabellen 6, 8 und 9 berücksichtigt, soweit die mRNA-Spiegel in ≥14 der 21 Experimente detektierbar waren. Die durch die ORF-Nummern bezeichneten Gene sind in Reihen angeordnet. Die Experimente sind in Spalten angeordnet und wurden mit der zugegebenen Aminosäure (IIe: L-Isoleucin, Leu: L-Leucin, Val: L-Valin), deren Konzentration in mM und Buchstaben zur Unterscheidung von Wiederholungsexperimenten beschriftet. Rot bedeutet entsprechend der Farbskala erhöhte Expression in Anwesenheit der Aminosäure, grün heißt reduzierte Expression (grau: nicht messbar). Im Text diskutierte Gruppen von Genen bzw. Experimenten sind durch Zahlen bzw. Buchstaben unterschieden. Die Gene der Gruppe 6 (Abb. 6) zeigten in Anwesenheit aller verzweigtkettigen Aminosäuren erhöhte mRNA-Spiegel. Zu dieser Gruppe gehört mit *brnF* (ORF 675) das Gen einer Untereinheit des Exporters verzweigtkettiger Aminosäuren (Kennerknecht *et al.*, 2002). Das Gen *brnE* der zweiten Untereinheit sowie das zweite *brnF*-PCR-Produkt wiesen zu wenige auswertbare Hybridisierungssignale auf und sind daher nicht im Cluster enthalten. Ein ähnliches Expressionsverhalten zeigte der Cholin-Glycin-Betain-Transporter BetP (ORF 1451). Das kompatible Solut Glycin-Betain wird bei Osmostress von *C. glutamicum* akkumuliert (Farwick *et al.*, 1995). Die Aufnahme erfolgt über den Transporter BetP, der durch osmotischen Stress aktiviert wird und bei einer extrazellulären Konzentration von etwa 600 mM NaCI mit maximaler Geschwindigkeit arbeitet (Peter *et al.*, 1996). Alle weiteren Gene dieser Gruppe kodieren hypothetische Proteine.

3. Untersuchung des Valinstress beim Valin-Produktionsstamm *C. glutamicum* VAL1

3.1 Transkriptomanalysen nach Wachstum in An- oder Abwesenheit von L-Valin

Das Wachstum des L-Valin-Produktionsstammes VAL1 wurde im Gegensatz zum *C. glutamicum*-Wildtyp durch die Anwesenheit von L-Valin im Medium inhibiert. Dieser "Valinstress" könnte Bedeutung für die Valinproduktion mit VAL1 haben. Um den Mechanismus der Wachstumshemmung aufzuklären, wurden Transkriptomanalysen zum Vergleich der globalen Genexpression von VAL1 in An- und Abwesenheit von L-Valin durchgeführt. Die Expressionsänderungen wurden mit den entsprechenden Daten für den Wildtyp *C. glutamicum* ATCC 13032 verglichen.

Zur RNA-Isolierung wurden parallele Kultivierungen von VAL1 in CGXII Glukose-Minimalmedium in Abwesenheit (Wachstumsrate $\mu = 0.35 \text{ h}^{-1}$) oder Anwesenheit von 40 mM L-Valin ($\mu = 0.29 \text{ h}^{-1}$) wie für den Wildtyp beschrieben durchgeführt. Die Konzentration von 40 mM L-Valin war ein Kompromiss zwischen möglichst geringer Wachstumshemmung und guter Detektierbarkeit valinabhängig veränderter mRNA-Spiegel. Die Wachstumshemmung war bei dieser Konzentration noch nicht so ausgeprägt, dass sie für die Mehrzahl der beobachteten Expressionsänderungen verantwortlich sein sollte. In diesem Zusammenhang muss erwähnt werden, dass VAL1 selbst ca. 90 mM L-Valin produzieren kann (Radmacher *et al.*, 2002). Durch wiederholte Verdünnungsschritte bei der Kultivierung waren zum Zeitpunkt der RNA- Isolierung weniger als 5 mM von VAL1 produziertes L-Valin im Medium vorhanden. Es wurden 5 DNA-Chip-Experimente mit RNA aus 2 unabhängigen Kultivierungen durchgeführt. Hierbei zeigten 11 ORFs reduzierte und 10 erhöhte mRNA-Spiegel nach Wachstum in Anwesenheit von Valin (Tab. 12).

Tabelle 12: Offene Leseraster von *C. glutamicum* VAL1, die in Anwesenheit von L-Valin veränderte mRNA-Spiegel zeigten (Erläuterungen s. Tabelle 6)

OPE	RF NCBI Annotation	Annotation	Gon	mRN	A-Spie	egel +/-	Valin	[mM]	a
UKF	NCDI	Alliotation	Gen	40a	40b	40c	40d	40e	ø
638	NCgl0232	ABC-type multidrug/protein/lipid transport system, ATPase component		0,4				0,5	0,4
732	NCgl0296	hypothetical membrane protein		0,5	0,6			0,5	0,5
733	NCgl0298	hypothetical protein		0,6	0,8			0,6	0,7
910	NCgl0415	hypothetical protein		0,4	0,5				0,4
1035	NCgl0528	phosphoenolpyruvate synthase/pyruvate phosphate dikinase-like protein		0,4	0,4				0,4
1155	NCgl0626	carbon starvation protein, predicted membrane protein		0,5				0,5	0,5
1156	NCgl0626	carbon starvation protein, predicted membrane protein		0,8	0,5			0,7	0,6
1935	NCgl2942	NADH:flavin oxidoreductase		0,6	0,7	0,7		0,5	0,6
1936	NCgl2942	NADH:flavin oxidoreductase		0,3	0,9	0,4		0,5	0,5
2400	NCgl1464	putative transposase		0,5	0,7	0,4		0,5	0,5
2789	(1341778- 1341957)	hypothetical protein		0,6	0,5				0,5
3032	(2631147- 2631479)	hypothetical protein		0,5	0,5				0,5
3211	(2371029- 2371466)	questionable ORF		0,5	0,9	0,3		0,3	0,5
3543	NCgl0381	hypothetical membrane protein		0,5	0,4				0,5
1362	NCgl0785	hypothetical protein			1,8	2,1	5,5	1,6	2,7
1497	NCgl0892	peptide chain release factor 3		1,4	1,3	1,7	3,3	2,2	2,0
2092	NCgl1915	ABC-type transporter, periplasmic component		1,2	1,5	2,2	1,9	2,0	1,8
2093	NCgl1915	ABC-type transporter, periplasmic component		0,9	1,9	2,5	4,1	1,9	2,3
2094	NCgl1916	ABC-type transporter, permease component		1,1	1,5	2,0	2,2	1,7	1,7
2095	NCgl1917	ABC-type transporter, permease component		0,9	1,9	2,3	2,7	1,6	1,9
2096	NCgl1918	ABC-type transporter, duplicated ATPase component		1,1	1,4	1,8	1,7	1,3	1,5
2280	NCgl2086	isoleucyl-tRNA synthetase		2,5	1,9	2,8	1,9	2,4	2,3
2281	(2274263- 2274442)	hypothetical protein		1,1	2,0		4,1	1,8	2,3
2425	NCgl1482	aconitase A	acn	4,0	2,3	1,8	1,5	1,9	2,3
2453	NCgl1502	predicted iron-regulated ABC-type transporter SufB		2,0	1,6	2,2	1,4	1,4	1,7
2455	NCgl1503	predicted iron-regulated ABC-type transporter SufB		1,3	1,7		3,5	1,6	2,0
2456	NCgl1504	predicted transcriptional regulator		2,0	1,3	1,2	1,0	1,2	1,4
2736	NCgl1263	3-isopropylmalate dehydratase small subunit	leuD	2,9	2,3	1,4		1,4	2,0
2790	NCgl1224	ketol-acid reductoisomerase	ilvC	1,2	1,2			1,7	1,3
2791	(1340543- 1340725)	hypothetical protein		1,6	1,5	1,4	1,0	1,6	1,4
2792	NCgl1223	acetolactate synthase, small subunit	ilvN	2,4	2,3	2,9	2,6	2,4	2,5
2793	NCgl1222	acetolactate synthase, large subunit	ilvB	1,8	2,1	2,0		2,5	2,1

Bei den ORFs mit reduziertem mRNA-Spiegel (Tab. 12) handelte es sich zumeist um hypothetische Proteine ohne bekannte Funktion. Außerdem zeigten die Gene für eine Untereinheit eines möglichen ABC-Transporters, eine mögliche Phosphoenolpyruvat-Synthase, eine putative Oxidoreduktase, eine Transposase und ein Homolog des "Carbon starvation protein" CstA von *E. coli* (Schultz & Matin, 1991) reduzierte mRNA-Spiegel in Anwesenheit von Valin. Zusammenhänge zu Valin-Stoffwechsel oder reduzierter Wachstumsrate sind anhand dieser Annotation nicht zu erkennen.

Erhöhte mRNA-Spiegel in Anwesenheit von Valin zeigten die Gene für einen ABC-Transporter (ORFs 2092-2096) mit Homologie zu Oligopeptid-Aufnahmesystemen von E. coli und B. subtilis (Tab. 12). Die Expression von Peptidtransportern wird durch die intrazelluläre Aminosäurekonzentration beeinflusst. So ist für E. coli eine Induktion des opp-Operons in Anwesenheit von Leucin beschrieben (Andrews et al., 1986; Payne & Smith, 1994). Ebenfalls erhöhte mRNA-Spiegel wiesen eine putative Isoleucyl-tRNA-Synthetase und das Gen leuD einer Isopropylmalat-Dehydratase-Untereinheit auf. Wie bereits für den Wildtyp erörtert, könnte dies auf einen Mangel an den verzweigtkettigen Aminosäuren Isoleucin und Leucin hinweisen. Ferner die mRNA-Spiegel beider Gene der Acetohydroxysäuresynthasewaren Untereinheiten, ilvB und ilvN, 2- bis 2,5-fach erhöht. Mit dem Gen acn, welches für die Aconitase kodiert, zeigte ein Gen des Citratzyklus verstärkte Expression in Anwesenheit von Valin.

Um den Einfluss von L-Valin auf die Genexpression von *C. glutamicum* VAL1 und ATCC 13032 zu vergleichen, wurden Gene identifiziert, deren Expression in beiden Stämmen durch Valin beeinflusst wurde. In Tabelle 13 sind ORFs aufgelistet, die in beiden Stämmen signifikant mindestens zweifach veränderte mRNA-Spiegel in Anwesenheit von Valin aufwiesen. Putative Operons wurden aufgefüllt. Lediglich *ilvN, leuD* und das Gen der putativen Isoleucyl-tRNA-Synthetase erfüllten die je zweifache Expressionsänderung. Dies verdeutlicht, dass die meisten Änderungen der globalen Genexpression in Anwesenheit von Valin spezifisch für *C. glutamicum* VAL1 oder ATCC 13032 waren.

Tabelle 13: Offene Leseraster von *C. glutamicum* VAL1 und ATCC 13032, die in Anwesenheit von L-Valin veränderte mRNA-Spiegel aufwiesen

OPE	NCDI	Appotation	Gan	VA	_1 1	130	32 ¹
UKF	Annotation		Gen	ø	р	Ø	р
2280	NCgl2068	isoleucyl-tRNA synthetase		2,3	*	2,0	*
2281	(2274263-2274442)	hypothetical protein		2,0	*	1,6	*
2736	NCgl1263	3-isopropylmalate dehydratase small subunit	leuD	2,0	*	2,9	*
2790	NCgl1224	ketol-acid reductoisomerase	ilvC	1,3		1,0	
2791	(1340543-1340725)	hypothetical protein		1,4	*	1,0	
2792	NCgl1223	acetolactate synthase, small subunit	ilvN	2,5	*	0,5	*
2793	NCgl1222	acetolactate synthase, large subunit	ilvB	2,1	*	1,0	

Erläuterungen wie in Tabelle 6, außer:

¹Aufgelistet sind ORFs mit \geq 2-fach veränderten durchschnittlichen mRNA-Spiegeln (Ø) in den Vergleichen Wachstum von *C. glutamicum* ATCC 13032 und VAL1 in Anwesenheit/Abwesenheit von Valin. Signifikante Änderungen des mRNA-Spiegels mit einem *p*-Wert \leq 0,05 im *t*-Test sind durch ein * in der Spalte *p* gekennzeichnet.

Auffällig war die unterschiedliche Regulation der Acetohydroxysäuresynthase in Anwesenheit von Valin (Tab. 13). Bei VAL1 waren für die Gene *ilvB* und *ilvN* 2,1- und 2,5-fach erhöhte mRNA-Spiegel zu beobachten, im Wildtyp waren die mRNA-Spiegel mit 1,0 und 0,5 unverändert bzw. reduziert. Die reduzierte Transkription der Gene in Anwesenheit von Valin lässt sich durch den bekannten Attenuationsmechanismus (Morbach et al., 2000) erklären. Die erhöhte mRNA-Konzentration im Valinproduzenten war hingegen nicht zu erwarten und deutet auf einen Mangel an mindestens einer verzweigtkettigen Aminosäure hin. Die Induktion einer putativen Isoleucyl-tRNA-Synthetase war in beiden Stämmen zu beobachten und kann aufgrund der aus E. coli bekannten Regulationsmechanismen (Grunberg-Manago, 1996) als Hinweis auf einen Isoleucin-Mangel gedeutet werden. Möglicherweise überwog also im Wildtyp der direkte Effekt des zugegebenen Valins auf die ilvBN-Transkription, während im Valinproduzenten ein so starker Mangel an Isoleucin vorlag, dass die *ilvBN*-Transkription trotz hoher Valin-Konzentration induziert wurde.

In Abbildung 7 sind die mRNA-Spiegel von ORFs, die im Wildtyp und/oder im Valinproduzenten VAL1 Expressionsänderungen in Gegenwart von Valin aufwiesen, in Form einer hierarchischen Clusteranalyse dargestellt. Hierdurch lassen sich ähnliche Muster von Expressionsänderungen identifizieren.

Bei der Anordnung der Experimente (in Spalten) ist zu erkennen, dass sich die mRNA-Spiegel der berücksichtigten ORFs beider Stämme signifikant unterschieden. Die Experimente mit VAL1 bzw. mit dem Wildtyp bilden jeweils ein distinktes Cluster (beschriftet als A bzw. B in Abb. 7).

Bei der Anordnung der ORFs (in Zeilen) lassen sich vier Gruppen von Genen mit ähnlichem Expressionsverhalten unterscheiden, die in Abbildung 7 durch Zahlen gekennzeichnet sind. Die ORFs der ersten Gruppe zeigten reduzierte mRNA-Spiegel in beiden Stämmen. Die Funktionen dieser ORFs sind nicht bekannt.

Die Gene der zweiten Gruppe zeigten im Wildtyp erhöhte mRNA-Spiegel in Anwesenheit von Valin (s. auch Tab. 6), im Valinproduzenten dagegen leicht reduzierte mRNA-Spiegel (minimal 0,7 für ORF 1160). Zu dieser Gruppe gehören die Gene des *prpD2B2C2*-Operons zur Propionat-Verwertung (Claes *et al.*, 2002) und des homologen *prpD1B1C1*-Operons.

Abbildung 7: Hierarchische Clusteranalyse zur Identifizierung von Gen-Gruppen mit ähnlichem Expressionsverhalten in Anwesenheit von L-Valin bei *C. glutamicum* ATCC 13032 und VAL1

Für Erläuterungen siehe auch Abbildung 6. Es wurden die mRNA-Spiegel der ORFs aus den Tabellen 6 und 12 berücksichtigt, abzüglich ORFs, deren mRNA-Spiegel in mehr als 3 der 10 Experimente nicht detektierbar war. Die Experimente sind mit dem verwendeten *C. glutamicum*-Stamm, der Valinkonzentration in mM und Buchstaben zur Unterscheidung der Wiederholungsexperimente beschriftet.

Die Gene der dritten Gruppe (Abb. 7) zeigten in beiden Stämmen erhöhte mRNA-Spiegel nach Wachstum in Anwesenheit von Valin. Eine putative Isoleucyl-tRNA-Synthetase (ORF 2280) zeigte in beiden Stämmen ähnliche mRNA-Spiegel (s. auch Tab. 13). Weitere Gene zeigten im Wildtyp etwas stärker erhöhte mRNA-Spiegel. Hierzu gehörte eine Untereinheit des Exporters verzweigtkettiger Aminosäuren BrnFE mit einem mRNA-Spiegel von 2,1 im Wildtyp und 1,4 im Valinproduzenten (ORF 675). Das Leucin-Biosynthesegen leuD (ORF 2736) wies im Wildtyp mRNA-Spiegel von 2,9 und in VAL1 von 2,0 auf. Die verstärkte Expression der Arginin-Biosynthesegene in Anwesenheit von Valin war in beiden Stämmen zu beobachten, mit mRNA-Spiegeln von bis zu 1,6 war die Induktion in VAL1 geringer als im Wildtyp (mRNA-Spiegel bis 2,5). Während dies im Wildtyp mit einer von 95 auf 210 mU/mg Protein erhöhten Transcarbamylase-Aktivität (nach Wachstum mit 300 mM L-Valin) korrelierte, war die Aktivität dieses von argF kodierten Enzyms in VAL1 mit 120 bzw. 145 mU/mg Protein in Ab- bzw. Anwesenheit von 40 mM Valin nahezu identisch. Die schwächere Induktion der genannten Gene in VAL1 könnte mit der dort verwendeten niedrigeren Valin-Konzentration (40 statt 50-300 mM) zusammenhängen. Die Induktion eines putativen Oligopeptidtransporters (ORFs 2092-2096) war hingegen mit einem mRNA-Spiegel von maximal 2,0 in VAL1 etwas stärker als im Wildtyp mit einem Verhältnis von maximal 1,8.

Die Gene des vierten Clusters zeigten in Reaktion auf Valin erhöhte mRNA-Spiegel in VAL1 und reduzierte oder unveränderte mRNA-Spiegel im Wildtyp. Auffällig war insbesondere die bereits zuvor erläuterte, gegenläufige Expressionsänderung von *ilvN*. Auch die weiteren Valin-Biosynthesegene gehörten zu diesem Cluster.

3.2 Proteomanalysen mittels zweidimensionaler Gelelektrophorese

3.2.1 Proteomanalysen nach Wachstum in An- oder Abwesenheit von L-Valin

Um Proteine zu identifizieren, deren Expression nur auf der Ebene von Translation oder Proteinstabilität durch L-Valin reguliert wird, wurden Proteomanalysen mit *C. glutamicum* VAL1 durchgeführt. Außerdem sollten hierdurch die Ergebnisse der Transkriptomanalyse unabhängig bestätigt werden. Kultivierung in An- oder Abwesenheit von 40 mM Valin und Identifizierung der Unterschiede im Proteinmuster erfolgten wie für den Wildtyp beschrieben.

Zwei Proteine wiesen reduzierte Konzentrationen in Anwesenheit von Valin auf (Tab. 14), darunter war die durch *aceE* kodierte Komponente E1 der
Thiamindiphosphat-abhängigen Pyruvat-Dehydrogenase. Die entsprechenden Gene zeigten unter denselben Bedingungen unveränderte mRNA-Spiegel. In *E. coli* wurde eine Transkriptionsregulation der Pyruvat-Dehydrogenase in Abhängigkeit von der Substratkonzentration gezeigt (Cassey *et al.*, 1998; Quail *et al.*, 1994), eine Regulation nur auf der Ebene der Proteinkonzentration ist nicht bekannt.

Tabelle 14: Proteine von *C. glutamicum* VAL1, die in Anwesenheit von L-Valin veränderte Konzentrationen aufwiesen (Erläuterungen s. Tabelle 7, bei +Val Wachstum in Anwesenheit von 40 mM L-Valin)

		Protein kodiert durch		Inter	nsität	Protein-
ORF	NCBI	Annotation	Gen	-Val	+Val	Spiegel
1504	NCgl0899	dioxygenase		0,4	0,2	0,5
3194	NCgl2167	pyruvate dehydrogenase, decarboxylase component	aceE	0,6	0,2	0,3
990	NCgl0478	elongation factor G	efg	0,3	0,6	2,3
1414	NCgl0827	phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase	purM	0,3	1,5	4,3
2793	NCgl1222	acetolactate synthase, large subunit	ilvB	1,6	4,9	3,1
2793	NCgl1222	acetolactate synthase, large subunit	ilvB	0,8	3,1	3,6
2793	NCgl1222	acetolactate synthase, large subunit	ilvB	0,4	1,5	4,1
2793	NCgl1222	acetolactate synthase, large subunit	ilvB	0,2	0,7	4,2
2793	NCgl1222	acetolactate synthase, large subunit	ilvB	0,5	2,4	5,1
2793	NCgl1222	acetolactate synthase, large subunit	ilvB	0,6	3,4	5,3
2793	NCgl1222	acetolactate synthase, large subunit	ilvB	0,2	1,0	5,9
2793	NCgl1222	acetolactate synthase, large subunit	ilvB	0,2	1,6	7,2

Drei Proteine zeigten erhöhte Konzentrationen nach Wachstum in Gegenwart von Valin, und zwar der Translations-Elongationsfaktor EF-G, das an der Purin-Biosynthese beteiligte PurH, und IIvB, die große Acetohydroxysäuresynthase-Untereinheit. Während die Gene für EF-G und PurH keine veränderten mRNA-Spiegel mit Valin aufwiesen, war der von *ilvB* in Anwesenheit von Valin zweifach erhöht (Tab. 12). Die zweite Untereinheit der Acetohydroxysäuresynthase, IIvN, konnte aufgrund eines berechneten pl von 9,15 (ExPASy compute pl/Mw tool, http://www.expasy.org/tools/pi_tool.html, Swiss Institute of Bioinformatics) auf den verwendeten 2D-Gelen der pH-Bereiche 4-7 und 4,5-5,5 nicht detektiert werden.

In Abbildung 8 sind 2D-Gele des pH-Bereichs 4,5-5,5 gezeigt, durch MALDI-TOF-Massenspektrometrie identifizierte Proteinbanden sind gekennzeichnet. Hierbei wurden für IIvB mehrere Proteinbanden identifiziert (s. auch Tab. 14). Alle Banden haben das erwartete Molekulargewicht von etwa 65 kDa, aber pls von etwa 4,7-5,4. Dies könnte durch einen sukzessiven C-terminalen Abbau von IIvB erklärt werden. Die 30 C-terminalen Aminosäuren beinhalten 10 Aspartat- und Glutamatreste, deren Abbau eine Verschiebung des berechneten pl von 4,82 auf 5,14 verursachen würde, nur während die Masse von 66.8 auf 63.8 kDa abnehmen würde (http://www.expasy.org/tools/pi tool.html).

Abbildung 8: Coomassie-gefärbte 2D-Gele zur Analyse des Proteinmusters von *C. glutamicum* VAL1

Gezeigt sind 2D-Gele des pH-Bereichs 4,5-5,5, in A) erfolgte die Kultivierung in Abwesenheit und in B) in Anwesenheit von 40 mM L-Valin. Identifizierte Proteinbanden der Proteine mit verändertem Spiegel sind durch Pfeile gekennzeichnet und mit der ORF-Nummer beschriftet.

3.2.2 Vergleich der Proteinmuster von Wildtyp und Produktionsstamm

Die Protein-Spiegel von Wildtyp und Valin-Produktionsstamm wurden mittels 2D-Gelelektrophorese verglichen, um mit der Valinproduktion verbundene Änderungen zu charakterisieren. Für die Proteomanalyse wurden die 2D-Gele von Wildtyp und Produktionsstamm nach Wachstum in CGXII-Medium ohne Valin mittels der ProteomWeaver 2D-Gel-Analysesoftware (Version 1.13; Definiens Imaging GmbH, München) verglichen. Hierbei ist zu beachten, dass nur VAL1 in Anwesenheit der Supplemente L-Isoleucin (3,4 mM) und D-Pantothenat (3 µM) sowie des Antibiotikums Kanamycin kultiviert wurde.

Tabelle 15: Proteine, die in *C. glutamicum* VAL1 im Vergleich zum Wildtyp veränderte Konzentrationen zeigten (Erläuterungen s. Tab. 7, Spiegel VAL1/ATCC 13032)

			,			
		Protein kodiert durch		Inter	nsität	Protein-
ORF	NCBI	Annotation	Gen	13032	VAL1	Spiegel
141	NCgl2673	fructose-bisphosphate aldolase	fda	1,4	0,7	0,5
561	NCgl0160	myo-inositol catabolism iolE		0,4	0,1	0,2
1315	NCgl0754	pyridoxine biosynthesis enzyme		1,5	0,7	0,4
2114	NCgl1932	methionine aminopeptidase		0,9	0,3	0,3
2625	NCgl1344	ornithine carbamoyltransferase	argF	2,3	0,9	0,4
2736	NCgl1263	3-isopropylmalate dehydratase small subunit	leuD	0,9	0,4	0,4
2925	NCgl2446	NAD synthase	nadE	0,8	0,2	0,3
3094	NCgl2247	malate synthase	aceB	0,5	0,2	0,4
2018	NCgl1858	phosphoenolpyruvate-protein kinase	ptsl	0,7	2,2	3,2
2790	NCgl1224	ketol-acid reductoisomerase	ilvC	0,4	1,3	3,2
2790	NCgl1224	ketol-acid reductoisomerase	ilvC	0,2	1,5	6,2
2790	NCgl1224	ketol-acid reductoisomerase	ilvC	0,3	2,4	9,0
2793	NCgl1222	acetolactate synthase, large subunit	ilvB	0,1	0,7	11,7
2793	NCgl1222	acetolactate synthase, large subunit	ilvB	n.d. ¹	0,4	n.d.
2811	NCgl2537	trehalose-6-phosphatase		0,3	2,3	7,8
2811	NCgl2537	trehalose-6-phosphatase		0,2	2,3	10,2
3194	NCgl2167	pyruvate dehydrogenase, decarboxylase component	aceE	0,3	0,9	2,8
3194	NCgl2167	pyruvate dehydrogenase, decarboxylase component	aceE	0,2	0,9	4,9

¹n.d.: Proteinbande nicht detektiert

Insgesamt acht Proteine zeigten einen im Valinproduzenten im Vergleich zum Wildtyp reduzierten Protein-Spiegel (Tab. 15). Darunter befindet sich mit LeuD ein Protein der Leucin-Biosynthese, dessen Synthese möglicherweise durch die Überexpression von *ilvBNCD* beeinflusst wird, durch die mehr Ketoisovalerat entsteht. Ketoisovalerat wird sowohl für die Valin- als auch für die Leucin-Biosynthese benötigt. Ferner zeigte die Transcarbamylase ArgF eine etwa zweifach reduzierte Proteinkonzentration im Produktionsstamm. Messungen der Enzymaktivität unter denselben Bedingungen ergaben jedoch ArgF-Aktivitäten von 120 mU/mg Protein im Produktionsstamm und 95 mU/mg Protein im Wildtyp.

Fünf verschiedene Proteine wiesen in VAL1 im Vergleich zum Wildtyp erhöhte Protein-Spiegel auf. Für IIvB und IIvC war dies aufgrund des Plasmids pJC1*ilvBNCD*

zu erwarten. Das ebenfalls im Valinproduzenten überexprimierte IIvN konnte aufgrund seines pl nicht detektiert werden, für IIvD wurde eine etwa zweifache Erhöhung des Protein-Spiegels gemessen, der p-Wert lag jedoch bei 0,76. Für IlvB konnte eine Doppelbestimmung durchgeführt werden, da das Protein – wie auch die putative Trehalose-Phosphatase – auf den Gelen beider pH-Bereiche (4,5-5,5 und 4-7) vorhanden war. IIvC wurde nach isoelektrischer Fokussierung bei pH 4-7 sowohl mit der erwarteten Masse von 36 kDa als auch mit wesentlich geringerer Masse detektiert, hier findet wahrscheinlich eine Degradation des Proteins statt. Zwei unmittelbar benachbarte AceE-Banden mit geringfügig verschiedenen pl-Werten wurden detektiert, welche jeweils in VAL1 eine höhere Intensität aufwiesen. Durch die Kultivierung von VAL1 unter Pantothenat-Limitation (Bestandteil von CoA) sollte die Pyruvatdehydrogenase-Komplexes Aktivität des reduziert sein, was möglicherweise zu verstärkter Synthese der Komponenten des Komplexes führt. Die 8-10-fach erhöhte Expression der putativen Trehalose-Phosphatase deutet auf Stress im Valinproduzenten hin. Trehalose wird von C. glutamicum bei Osmostress, aber auch in Abhängigkeit von Art und Verfügbarkeit der Kohlenstoff- und Stickstoffquelle synthetisiert (Varela et al., 2003; Wolf et al., 2003). Auch die biotechnologische Produktion von L-Glutamat mit C. glutamicum führte zu einer Trehalose-Ausscheidung (Gourdon & Lindley, 1999).

Durch die Proteomanalysen mit VAL1 konnten Ergebnisse der Transkriptomanalysen bestätigt werden. So wies die Acetohydroxysäuresynthase erhöhte mRNA- und Protein-Spiegel nach Wachstum von VAL1 in Gegenwart von Valin auf. Außerdem konnten durch Vergleich der Protein-Spiegel von VAL1 und Wildtyp mit der Valinproduktion verbundene Proteinkonzentrationsänderungen charakterisiert werden.

3.3 Einfluss von L-Valin auf die Acetohydroxysäuresynthase-Aktivität von Wildtyp und VAL1

Die Transkriptomanalysen zeigten verschiedene Effekte von L-Valin auf *ilvBN*mRNA-Spiegel in Wildtyp und Valin-Produktionsstamm, die bei VAL1 auch mit erhöhten Protein-Spiegeln korrelierten. Da die von *ilvBN* kodierte Acetohydroxysäuresynthase (AHAS) das Schlüsselenzym der Synthese verzweigtkettiger Aminosäuren ist, wurden die Expressionsdaten durch Aktivitätsmessungen ergänzt.

Wie in Tabelle 16 gezeigt, wurde die AHAS-Aktivität des Wildtyps (20 mU/mg Protein) nicht durch die Anwesenheit von 300 mM L-Valin im Medium beeinflusst. Im

Valinproduzenten betrug die Aktivität in Abwesenheit zusätzlichen Valins 200 mU/mg Protein, die Überexpression mit pJC1*ilvBNCD* führte also zu einer 10-fach erhöhten Aktivität. Nach Kultivierung in Anwesenheit von 40 mM L-Valin stieg die AHAS-Aktivität auf 700 mU/mg Protein. Diese 3,5-fache Zunahme korreliert gut mit dem 2,5-fach erhöhten mRNA-Spiegel und dem erhöhten Protein-Spiegel. Die unerwartet erhöhte AHAS-Expression in Anwesenheit eines Endprodukts des Biosynthesewegs wurde also auch auf der Ebene der Enzymaktivität bestätigt.

Tabelle 16: Acetohydroxysäuresynthase (AHAS)-Aktivität nach Kultivierung von *C. glutamicum* Wildtyp ATCC 13032 und Valin-Produzent VAL1 in An- oder Abwesenheit von L-Valin

Stamm	L-Valin (mM)	AHAS-Aktivit	ät (mL	I/mg Protein) ¹	Relative Aktivität ²
12022	0	20	±	15%	1
13032	300	20	±	20%	1
\/\\ 1	0	200	±	15%	10
VALI	40	700	±	25%	35

¹AHAS-Aktivitäten mit % experimenteller Ungenauigkeit

²Für relative AHAS-Aktivitäten wurde die Aktivität in ATCC 13032 ohne Valin-Zugabe zu 1 normalisiert.

3.4 Einfluss verzweigtkettiger Aminosäuren auf Wachstum und AHAS-Aktivität von VAL1

Um zu untersuchen, ob der inhibitorische Effekt auf das Wachstum und der stimulatorische Effekt auf die AHAS-Aktivität von VAL1 spezifisch für L-Valin sind, wurde der Einfluss von L-Leucin, L-Isoleucin und allen Kombinationen verzweigtkettiger Aminosäuren (je 40 mM) auf Wachstum und AHAS-Aktivität untersucht. In Abbildung 9A sind die Verdopplungszeiten und in 9B die AHAS-Aktivitäten der Kultivierungen gezeigt. Offensichtlich verursachte nicht nur L-Valin, sondern auch L-Leucin eine Wachstumshemmung und eine erhöhte AHAS-Aktivität. L-Isoleucin hatte dagegen keinen signifikanten Effekt. Bei den Kombinationen verzweigtkettiger Aminosäuren hatte nur die Kombination Leucin mit Valin qualitativ denselben Effekt wie diese Aminosäuren alleine. Alle Kombinationen, die 40 mM L-Isoleucin enthielten, hatten keinen Effekt auf Wachstum oder AHAS-Aktivität von VAL1. Somit konnte die Anwesenheit von 40 mM L-Isoleucin (statt der immer als Supplement vorhandenen 3,4 mM) die Effekte von L-Valin und L-Leucin aufheben. Dies ist ein deutlicher Hinweis auf einen intrazellulären Mangel des Supplements L-Isoleucin als Ursache der Wachstumshemmung und der erhöhten AHAS-Aktivität des isoleucinauxotrophen Stammes VAL1 in Gegenwart von L-Leucin oder L-Valin.

Abbildung 9: Einfluss von L-Valin, L-Leucin und L-Isoleucin (jeweils 40 mM) im Kulturmedium auf Verdopplungszeit (A) und AHAS-Aktivität (B) von VAL1

Im Gegensatz zu *C. glutamicum* VAL1 zeigte ATCC 13032(pJC1) unter allen Bedingungen Verdopplungszeiten von 1,6-2,1 h, leicht erhöhte AHAS-Aktivität nach Wachstum in Gegenwart von Isoleucin (120%) und reduzierte Aktivität (40-70%) unter den anderen Bedingungen. Erhöhte AHAS-Aktivität und verringertes Wachstum in Gegenwart von Valin bzw. Leucin waren also spezifisch für den VAL1-Stamm.

3.5 Abhängigkeit des Valinstress von der ilvA-Deletion in VAL1

Um die genetische Eigenschaft zu identifizieren, die VAL1 vom Wildtyp unterscheidet und für den Valinstress verantwortlich ist, wurden verschiedene isogene Derivate von *C. glutamicum* in An- oder Abwesenheit von L-Valin kultiviert. In Abwesenheit von Valin hatten alle untersuchten Stämme dieselbe Verdopplungszeit von ca. 1,7 h (Abb. 10). In Gegenwart von Valin war eine leichte Erhöhung der Verdopplungszeit bei Anwesenheit des Plasmids pJC1*ilvBNCD* zu beobachten (T_d ca. 2 h), den stärksten Effekt hatte jedoch die *ilvA*-Deletion (T_d 2,7 h), welche zur Isoleucinauxotrophie führt. Die Kombination von *ilvA*-Deletion und Plasmid pJC1*ilvBNCD* bewirkte die stärkste Inhibition (T_d 3,5 h), die beobachteten Effekte wirkten also synergistisch. Die das Plasmid pJC1*ilvBNCD* tragenden Stämme produzieren mehr Valin und waren daher höheren Valinkonzentrationen ausgesetzt. Eine Deletion der Gene *panBC* hatte keinen Einfluss auf das Wachstum in Anwesenheit von Valin. Diese Daten stützen die These, dass Isoleucinmangel die eigentliche Ursache des Valin- und Leucinstress beim isoleucinauxotrophen VAL1-Stamm ist.

Abbildung 10: Verdopplungszeit verschiedener von *C. glutamicum* ATCC 13032 abgeleiteter Stämme ohne (graue Balken) oder mit (schwarze Balken) 200 mM L-Valin bei Wachstum in CGXII-Glukose-Minimalmedium

Die verwendeten Stämme waren ATCC 13032 (a), 13032 $\Delta panBC$ (b), 13032(pJC1*ilvBNCD*) (c), 13032 $\Delta ilvA$ (d), 13032 $\Delta ilvA$ (pJC1*ilvBNCD*) (e) und VAL1 [13032 $\Delta ilvA\Delta panBC$ (pJC1*ilvBNCD*)] (f). Unter den Säulen ist angegeben, ob die Stämme eine Deletion in *ilvA* oder *panBC* tragen (Δ) oder nicht (wt) und ob das Plasmid (pJC1*ilvBNCD*) vorhanden war (+) oder nicht (–).

3.6 Einfluss von L-Valin auf das Wachstum bei Supplementation mit Isoleucyl-Isoleucin-Dipeptid

Die zuvor beschriebenen Resultate führten zu der These, dass der molekulare Mechanismus des Valinstress bei VAL1 eine kompetitive Hemmung des Aufnahmesystems verzweigtkettiger Aminosäuren BrnQ (Ebbighausen *et al.*, 1989; Tauch *et al.*, 1998) ist, die intrazellulär einen Isoleucinmangel auslöst. Der Transporter BrnQ ist für die Aufnahme aller drei verzweigtkettigen Aminosäuren zuständig, weshalb hohe Konzentrationen von Valin oder Leucin die Aufnahme des für VAL1 essentiellen Supplements Isoleucin behindern können. Dies erklärt die Aufnebung der Wachstumshemmung bei erhöhter Isoleucinkonzentration (3.4, Abb. 9A). Beweisen lässt sich diese Schlussfolgerung durch Verwendung eines Supplements, das nicht über BrnQ aufgenommen wird. Daher wurde statt Isoleucin das Dipeptid Isoleucyl-Isoleucin verwendet (Abb. 11). Dipeptide werden gewöhnlich über ein Dipeptidaufnahmesystem (De Felice *et al.*, 1973; Smith *et al.*, 1999) oder über ein Peptidtransportsystem (Payne & Smith, 1994) in die Zelle aufgenommen. Das in Anwesenheit von Valin bei VAL1 induzierte putative ABC-Transportsystem

OppABCD (3.1, Tab. 12) kodiert für ein Homolog eines solchen Peptidtransportsystems (Payne & Smith, 1994).

Abbildung 11: Effekt verschiedener L-Valin-Konzentrationen im Kulturmedium auf Wachstumsraten (µ) von *C. glutamicum* VAL1 bei Supplementation mit 3,4 mM L-Isoleucin (■) oder 1,7 mM IsoleucyI-Isoleucin-Dipeptid (○)

Das Wachstum des Valinproduzenten *C. glutamicum* VAL1 wurde bei Supplementation mit 1,7 mM Isoleucyl-Isoleucin nicht durch Valin gehemmt (Abb. 11). Die mit 3,4 mM Isoleucin supplementierte Kontrolle zeigte dagegen wie zuvor beschrieben eine starke Wachstumshemmung. Hierdurch konnte bestätigt werden, dass die kompetitive Hemmung der Isoleucin-Aufnahme über das gemeinsame Aufnahmesystem verzweigtkettiger Aminosäuren BrnQ die Ursache des Valinstress beim Stamm VAL1 ist.

Ebenso wie Valin und Leucin den isoleucinauxotrophen Stamm VAL1 inhibierten, sollte ein leucinauxotropher *C. glutamicum*-Stamm aufgrund des beschriebenen Mechanismus eine Wachstumshemmung in Anwesenheit von Valin und Isoleucin aufweisen. Tatsächlich wies der leucinauxotrophe Lysinproduzent *C. glutamicum* MH20-22B eine Wachstumsinhibition in Anwesenheit von Valin oder Isoleucin auf (Eggeling *et al.*, 1997). Wachstumsexperimente mit MH20-22B zeigten, dass der inhibitorische Effekt von Valin bei Supplementierung mit dem Dipeptid Alanyl-Leucin statt mit Leucin aufgehoben wurde (Daten nicht gezeigt). Hierdurch wurde bestätigt, dass *C. glutamicum*-Stämme mit einer Auxotrophie für eine verzweigtkettige

Aminosäure in Gegenwart einer hohen Konzentration der beiden anderen verzweigtkettigen Aminosäuren durch kompetitive Hemmung der Supplementaufnahme im Wachstum gehemmt werden.

3.7 Einfluss extern zugegebenen L-Valins auf die Valinproduktion mit VAL1

Da Valin bei Isoleucin-Supplementation einerseits das Wachstum des Valin-Produktionsstammes VAL1 hemmte und andererseits zu erhöhter AHAS-Aktivität führte, war es interessant, den Einfluss extern zugegebenen Valins auf die Valinproduktion mit VAL1 zu untersuchen. Hierzu wurde der Stamm mit einer Startkonzentration von 0, 40 und 175 mM L-Valin im Medium kultiviert. Nach 24, 48 und 72 h wurde die Valinkonzentration mittels HPLC bestimmt. Nach 48 h wurde keine weitere Zunahme der Valinkonzentration mehr beobachtet, daher wurde dieser Messpunkt zur Berechnung der Valinproduktion verwendet.

Wie in Tabelle 17 gezeigt, hatte die Zugabe von Valin zum Medium einen positiven Einfluss auf die Valinproduktion mit VAL1. Bei einer Startkonzentration von 40 mM stieg die Produktion um ca. 33%, mit 175 mM Valin sogar um ca. 50%. Hierfür gibt es anhand der untersuchten Effekte von Valin auf VAL1 zwei mögliche Erklärungen. Die Wachstumshemmung durch Valin dürfte die Valinproduktion gegenüber der Biomassebildung bevorzugen. Zusätzlich sollte die erhöhte AHAS-Aktivität in Anwesenheit von Valin die Valinsynthese beschleunigen.

I	L-Valin [mM]									
Startkonzentration Endkonzentration (48 h) Produktion										
0	±	0	60	±	5	60	±	5		
40	±	0	120	±	5	80	±	5		
175	±	5	265	±	15	90	±	10		

Tabelle 17: Einfluss verschiedener L-Valin-Startkonzentrationen im Medium auf die Valinproduktion mit VAL1 (Mittelwerte aus drei Ansätzen)

4. Funktion des Transkriptionsregulators "Leucine responsive regulatory protein" (Lrp) in *C. glutamicum*

In *E. coli* ist Lrp ein globaler Regulator der Genexpression mit einer großen Anzahl von Zielgenen (Brinkman et al., 2003; Tani et al., 2002). In C. glutamicum ist ein homologes Gen bekannt, das in dem Stamm 13032 Alrp (Wessel, 2000) bereits deletiert wurde. Die Deletionsmutante 13032∆*Irp* zeigte in Anwesenheit verzweigtkettiger Aminosäuren eine stärkere Wachstumshemmung als der Wildtyp. Der Regulator Lrp ist in C. glutamicum also offensichtlich an einer Regulation durch verzweigtkettige Aminosäuren beteiligt. Bisher gibt es nur Hinweise auf eine Regulation der benachbarten Gene brnFE des Exporters verzweigtkettiger Lrp (Kennerknecht et Aminosäuren durch al., 2002). Durch globale Genexpressionsanalysen mit 13032 *Lrp* und Nachweis der Bindung von Lrp an DNA-Sequenzen sollten die Zielgene von Lrp in C. glutamicum bestimmt werden.

4.1 Untersuchung des Lrp-Regulons durch Transkriptomanalysen mit der Deletionsmutante 13032∆*Irp*

Zur Identifizierung der Gene des Lrp-Regulons wurde die Genexpression von *C. glutamicum* 13032 Δ *lrp* mit der des Wildtyps verglichen. Hierbei wurden zwei experimentelle Ansätze verfolgt. Einerseits wurde der Einfluss von L-Valin, L-Leucin oder L-Isoleucin auf die mRNA-Konzentration von *C. glutamicum* 13032 Δ *lrp* untersucht. Durch Vergleich der Expressionsdaten wurden Gene identifiziert, die im Wildtyp durch verzweigtkettige Aminosäuren reguliert werden, in 13032 Δ *lrp* aber nicht. Lrp sollte also für die aminosäureabhängige Regulation dieser Gene verantwortlich sein. Andererseits wurde die Genexpression von *C. glutamicum* ATCC 13032 und 13032 Δ *lrp* durch Transkriptomanalysen direkt verglichen. Hierdurch sollten die mit dem ersten Ansatz erhaltenen Daten verifiziert werden. Nur dieser Ansatz erlaubt auch die Identifizierung aminosäureunabhängig Lrp-regulierter Gene.

4.1.1 Transkriptomanalysen nach Wachstum von *C. glutamicum* 13032∆*Irp* in An- oder Abwesenheit verzweigtkettiger Aminosäuren

Durch Transkriptomanalysen in An- oder Abwesenheit von Valin, Leucin oder Isoleucin wurde untersucht, welche Gene in *C. glutamicum* 13032∆*Irp* aminosäureabhängig reguliert wurden (Tab. 18, 19 und 20). Ein Vergleich mit den entsprechenden Transkriptomdaten des Wildtyps sollte die Identifizierung von Genen

des Lrp-Regulons ermöglichen (s. 4.1.3), da diese in der Mutante nicht mehr aminosäureabhängig reguliert sein sollten.

Tabelle 18: Offene Leseraster von *C. glutamicum* 13032∆*Irp*, die in Anwesenheit von L-Valin veränderte mRNA-Spiegel zeigten (Erläuterungen s. Tab. 6, RNA aus 2 unabhängigen Kultivierungen)

ORF NCB		Annotation	Con	mRN	A-Spie	egel +/-	+/- Valin [mM		
UKF	NCDI	Annotation	Gen	50a	50b	200a	200b	ø	
87	NCgl2631	N-acyl-L-amino acid amidohydrolase			0,8	0,9	0,8	0,8	
	(2908984-	, , , , , , , , , , , , , , , , , , ,		0.4	0.0	0.0	, ,		
88	2909142)	nypotnetical protein		0,4	0,8	0,3	0,4	0,4	
517	NCgl0122,	hypothetical protein				02	02	02	
517	NCgl0123					0,2	0,2	0,2	
1155	NCgl0626	carbon starvation protein, predicted membrane protein		0,2	0,1	0,2	0,3	0,2	
1156	NCgl0626	carbon starvation protein, predicted membrane protein		0,5	0,5	0,6	0,5	0,5	
1168	NCgl0635	hypothetical protein		0,6	0,7	0,7	0,4	0,6	
1169	NCgl0636	ABC-type transporter, ATPase component		0,6		0,4	0,4	0,5	
1170	NCgl0637	ABC-type transporter, permease component		0,5	0,5	0,8	0,4	0,5	
1173	NCgl0639	ABC-type transporter, periplasmic component		0,6	0,4	0,7	0,5	0,5	
1346	NCgl0773	siderophore-interacting protein		0,6	0,6	0,3	0,3	0,4	
1347	NCal0774	ABC-type cobalamin/Fe3⁺-siderophore transport system,		07	0.6	0.3	0.3	0.5	
	Nogionia	periplasmic component		0,1	0,0	0,0	0,0	•,•	
1558	NCgl0943	AraC-type DNA-binding domain-containing protein		0,7		0,3	0,3	0,4	
3357	NCgl1654	hypothetical protein		0,5	0,7	0,2	0,3	0,3	
3452	NCgl2965	hypothetical membrane protein		0,6	0,9	0,2	0,2	0,4	
342	NCgl2840	transcriptional regulator		1,8		2,2		2,0	
830	NCgl0359	succinate dehydrogenase cytochrome B-558 subunit	sdhCD	1,6	1,6	6,3	4,4	2,9	
1028	NCgl0522	hypothetical membrane protein				2,0	2,1	2,1	
1160	NCgl0627, NCgl0628	methylaconitase	prpD2	12,3	8,3	18,7	19,9	14,0	
1161	NCgl0629	methylisocitrate lyase	prpB2	9,0	6,4	11,4	18,2	10,5	
1162	NCgl0630	methyl citrate synthase	prpC2	10,9	8.6	24,6	32,3	16,5	
1163	(674799- 675077)	hypothetical protein		3,2		4,8	4,7	4,1	
1164	NCal0631	malate/L-lactate dehydrogenase				45	49	4.7	
1204		methylaconitase	nrnD1	20	15	-,0 2⊿	17	19	
1204	NCal0666	methyl citrate synthese	prpD1	2,0	23	2, 1 5.8	3.8	37	
1720	NCal1004	methioning synthese II	piper	3,0 1 3	2,3	J,0 4 2	2,0	3,1 21	
1751	NCal1114	hypothetical membrane protein		1,3	1,3	4,2	2,5	2,1	
1792	NCal1130	nitrate reductase gamma subunit		1,7	1,0	3,7	2,4	2,5	
1784	NCal1140	nitrate reductase delta subunit		1,0	1,0	5,5 1 1	3.0	2,7	
1795	NCal1141	nitrate reductase beta chain		1,5	1,2	4,4 2.6	3,0 ⊿ 3	2,2	
1705	NCal1143	nitrate/nitrite transporter		1,0	1,4	2,0	4,5	2,3 1 Q	
2002	NCal1015	APC type transporter peripleamic company		1,5	1,2	2,5	2,2	1,0	
2092	NCg11915	ABC-type transporter, periplasmic component		1,1	1,2	2,2	2,1	1,0	
2093	NCal1016	ABC-type transporter, perplasmic component		1,2	1,2	ు,∠ ఎఎ	2,7	1,9	
2094	NCal1017	ABC-type transporter, permease component		1,3	1,2	3,∠ 2,0	2,9	2,0	
2095	NCg11917	ABC-type transporter, permease component		1,5	1,3	3,9	3,5	2,3	
2280	INC912068	ISOIEUCYI-IRINA SYNTHETASE		∠,1		3,1	∠,4	∠,७	
2281	(2274263- 2274442)	hypothetical protein		1,9		2,2	1,8	1,9	
2462	NCgl1509	putative helicase		2,1		3,0	1,6	2,2	
2622	NCgl1347	argininosuccinate lyase	argH	1,8	1,0	2,7	1,9	1,8	
2623	NCgl1346	argininosuccinate synthase	argG	1,7	1,3	2,9	1,9	1,9	
2624	NCgl1345	arginine repressor	argR	2,6	1,9	2,1	2,5	2,2	
2625	NCgl1344	ornithine carbamoyltransferase	argF	2,6	2,0	3,3	2,7	2,6	
2626	NCgl1343	PLP-dependent aminotransferase	argD	1,9	1,6	3,0	1,9	2,1	
2627	NCgl1342	N-acetylglutamate kinase	argB		1,7	3,0	2,4	2,3	
2628	NCgl1341	ornithine acetyltransferase	argJ	2,3	1,3	1,2	1,3	1,5	
2629	NCgl1340	acetylglutamate semialdehyde dehydrogenase	argC	2,3	1,9	1,9	2,3	2,1	
2736	NCgl1263	3-isopropylmalate dehydratase small subunit	leuD	1,9	1,4	5,2	6,4	3,1	
2737	NCgl1262	3-isopropylmalate dehydratase large subunit	leuC	2,0		4,3	3,6	3,1	
2833	NCgl2516	dethiobiotin synthetase	bioD	2,0		2,9	1,6	2,1	
3033	NCgl2294	ABC-type transport systems, periplasmic components		3,0	2,4	5,7	6,1	4,0	
3034	NCgl2293	valyl-tRNA synthetase		1,3	1,2	1,0	1,2	1,2	
3697	NCgl2294	ABC-type transport systems, periplasmic components				2,9	3,4	3,1	

Tabelle 19: Offene Leseraster von *C. glutamicum* 13032∆*Irp*, die in Anwesenheit von L-Leucin veränderte mRNA-Spiegel aufwiesen (Erläuterungen s. Tab. 6, RNA aus 3 unabhängigen Kultivierungen)

				mR	NA-Sr	oieael	+/- Le	ucin [r	mM1
ORF	NCBI	Annotation	Gen	25a	25b	50a	50b	50c	ø
190	(2996809-2997021)	hypothetical protein		0,2	0,7	0,2	1,4	0,4	0,4
311	NCgl2815	hypothetical protein		0,8	0,8	0,8			0,8
312	NCgl2816	putative integral membrane transport protein		0,3	,	0,4			0,3
313	NCgl2817	L-lactate dehydrogenase		0,6	0,9	0,7	0,5	0,8	0,7
E47	NCgl0122,	hundhatical protein		0.0		0.5		0.1	0.0
517	NCgl0123	nypoinelical protein		0,2		0,5		0,1	0,2
518	NCgl0123	hypothetical protein		0,7	0,3	0,7	0,7	0,3	0,5
559	NCgl0158	myo-inositol catabolism iolB		0,6		0,5		0,4	0,5
560	NCgl0159	myo-inositol catabolism iolD		0,9	0,6	0,7	0,6	0,4	0,6
561	NCgl0160	myo-inositol catabolism iolE		0,8	0,5	0,5	0,3	0,4	0,5
562	NCgl0161	myo-inositol 2-dehydrogenase iolG		0,8	0,6	0,5	0,7	0,4	0,6
563	NCgl0162	myo-inositol catabolism protein iolH		0,9	0,7	0,8	0,8	0,5	0,7
777	NCgl0328	nitroreductase		0,4	0,4	0,4	0,6	0,4	0,4
854	NCgl0377	hypothetical membrane protein		0,4	0,4	0,3	0,3	0,2	0,3
856	NCgl0379	ABC-type transporter, permease component		1,1	0,4	0,7	0,7	0,4	0,6
857	NCg10380	ABC-type transporter, A I Pase component		0,9	0,7	0,8	0,8	0,3	0,7
1035	NCgl0528	phosphoenolpyruvate synthase/pyruvate phosphate dikinase-like protein		0,6	0,3	0,5	0,4	0,4	0,4
1160	NCgl0627, NCgl0628	methylaconitase	prpD2	0,9	0,4	0,5	0,5	0,2	0,5
1161	NCgl0629	methylisocitrate lyase	prpB2		0,4	1,1	0,4	0,4	0,5
1162	NCgl0630	methyl citrate synthase	prpC2	0,4	0,3	0,6	0,4	0,2	0,4
1168	NCgl0635	hypothetical protein		0,7	0,2	0,7	0,2	0,2	0,3
1169	NCgl0636	ABC-type transporter, ATPase component		0,7	0,3	0,6	0,3	0,1	0,3
1170	NCgl0637	ABC-type transporter, permease component		1,0	0,3	0,7	0,2	0,1	0,3
1173	NCgl0639	ABC-type transporter, periplasmic component		0,3	0,2	0,3	0,1	0,2	0,2
1346	NCgI0773	siderophore-interacting protein			0,2	0,3	0,2	0,1	0,2
1347	NCgl0774	periplasmic component		0,2	0,2	0,5	0,7	0,1	0,3
1349	NCgl0776	ABC-type cobalamin/Fe3 ⁺ -siderophore transport system, periplasmic component			0,2		0,3	0,3	0,3
1352	NCgl0779	ABC-type cobalamin/Fe3 ⁺ -siderophore transport system, ATPase component					0,4	0,4	0,4
1558	NCgl0943	AraC-type DNA-binding domain-containing protein		0,4	0,2	0,4	0,2	0,3	0,3
1567	NCgl0950	Phospho-2-dehydro-3-deoxyheptonate aldolase	aro	0,4		0,5		0,3	0,4
1866	NCgl1210	predicted Na ⁺ -dependent transporter		0,6	0,3	0,6	0,4	0,4	0,4
2146	NCgl1959	ABC-type transport systems, periplasmic component		0,5	0,4	0,6	0,2	0,2	0,3
2703	NCgl1289	hypothetical protein		0,4	0,3	0,4	0,2	0,3	0,3
2705	NCgl1288	hypothetical protein		0,3	0,3	0,4	0,4	0,4	0,3
2890				0,6	0,2	0,5	0,2	0,3	0,3
3092	NCGI2248	isocitrate iyase	aceA	0,5	0,3	0,3	0,2	0,3	0,3
3093	2470525-	hypothetical protein		0,7	0,4	0,6	0,3	0,4	0,4
3303	NCgl0009	hypothetical transcriptional regulator		0,4	0,5	÷	0,4	0,3	0,4
3332	NCgl1635	hypothetical protein		0,4	0,5	0,6	0,3	0,6	0,5
3347	NCgl1646	hypothetical protein		0,4	0,3	0,4	0,2	0,2	0,3
3348	NCgl1647	hypothetical protein		0,7	0,5	0,6	1,2	0,3	0,6
3458	NCgl2970	ABC-type transport systems, periplasmic component		0,2	0,2	0,2	0,2	0,2	0,2
3480		nypotnetical membrane protein		0,5	0,4	0,5	0,4	0,5	0,5
2543		hypothetical membrane protein		0,5	0,2	0,4	0,3	0,1	0,3
2549		hypothetical memorane protein		0,7	1.0	0,4	0,5	0,2	0,4
3540	NCal0482	ARC-type transporter ATPase component		0,3	1,0	0,4 0.3	0,0	0,∠ 0.1	0,4
3550	NCal0482	ABC-type transporter, ATT ase component		0,2	0,2	0,0	0,1 ()2	0,1	0,∠ ∩ २
3551	NCal0484	ABC-type transporter, permease component		0,0	0,0	0.5	0,0	0.2	0.3
69134	NCal2553	phosphotransferase system IIC component		07	0.4	0.5	0.3	0.4	0.5
671	NCal0251	catalase		3.2	34	2.0	2 1	27	2.6
830	NCal0359	succinate dehydrogenase cytochrome B-558 subunit	sdhCD	2.2	3.1	1.5	2.4	3.4	2.4
831	NCal0360	succinate dehydrogenase flavoprotein subunit	sdhA	2,4	2,2	1,7	1.8	3.6	2,3
832	NCgl0361	succinate dehydrogenase Fe-S protein	sdhB	2.9	2.9	1,7	2,2	4.5	2,7
833	NCgl0361	succinate dehydrogenase Fe-S protein	sdhB	2,0	2,0	1,8	2,4	3,0	2,2

OPE	NCBI	Annotation	Gon	mRNA-Spiegel +/- Leucin [mM]							
UKF	NODI	Annotation	Gen	25a	25b	50a	50b	50c	Ø		
1751	NCgl1114	hypothetical membrane protein		2,7	2,4	1,5	5,2	3,7	2,8		
1782	NCgl1138	hypothetical protein		1,4	1,5	1,5	1,3	1,3	1,4		
1783	NCgl1139	nitrate reductase gamma subunit		2,6		2,8		2,6	2,7		
1785	NCgl1141	nitrate reductase beta chain		2,3	2,6	1,7	2,0	3,4	2,3		
1786	NCgl1142	nitrate reductase alpha chain			2,1	1,3	3,3	2,6	2,2		
1787	NCgl1143	nitrate/nitrite transporter		2,0	1,6	1,1	2,0	1,9	1,7		
2375	NCgl1443	RecB family exonuclease		1,9	2,4	1,5		2,6	2,1		
2376	NCgl1444	plasmid maintenance system antidote protein		3,9	2,8	2,5	2,5	2,9	2,9		
2425	NCgl1482	aconitase A	acn	4,1	4,1	3,4	2,3	3,8	3,5		
2425	NCgl1482	aconitase A	acn	4,6		4,1			4,4		
2427	NCgl1484	GMP synthase		1,9	2,5	1,8	2,4	2,0	2,1		
2754	(1366244-	hypothetical protein		15	17	21	34	31	23		
2134	1366474)			1,5	1,7	۲, ۱	5,4	0,1	2,5		
3472	NCgl2439	ferritin-like protein		2,6	2,9	3,1	1,8	3,2	2,7		

Tabelle 20: Offene Leseraster von *C. glutamicum* 13032∆*Irp*, die in Anwesenheit von L-Isoleucin veränderte mRNA-Spiegel zeigten (Erläuterungen s. Tab. 6, RNA aus 4 unabhängigen Kultivierungen)

OPE		Appotation	Gon	mRNA	-Spieg	el +/- Is	oleucin	[mM]
	ПСЫ	Annotation	Gen	25	50a	50b	50c	Ø
517	NCgl0122, NCgl0123	hypothetical protein		0,9	0,4	0,2	0,3	0,4
518	NCgl0123	hypothetical protein		1,0	0,6	0,4	0,5	0,6
1160	NCgl0627, NCgl0628	methylaconitase	prpD2	0,8	0,7	0,2	0,3	0,5
1162	NCgl0630	methyl citrate synthase	prpC2	0,6	0,6	0,2	0,2	0,4
1163	(674799- 675077)	hypothetical protein				0,4	0,5	0,5
1169	NCgl0636	ABC-type transporter, ATPase component		1,0	0,5	0,3	0,5	0,5
1173	NCgl0639	ABC-type transporter, periplasmic component		0,7	0,5	0,2	0,3	0,4
1352	NCgl0779	ABC-type cobalamin/Fe3 ⁺ -siderophore transport system, ATPase component				0,4	0,5	0,5
1558	NCgl0943	AraC-type DNA-binding domain-containing protein		0,8	0,5	0,3	0,3	0,4
1567	NCgl0950	Phospho-2-dehydro-3-deoxyheptonate aldolase	aro	0,6	0,4	0,3	0,2	0,3
2234	NCgl2028	hydroxypyruvate isomerase			0,6	0,4	0,3	0,4
3092	NCgl2248	isocitrate lyase a	aceA	0,6	0,5	0,5	0,3	0,5
3093	(2470325- 2470678)	hypothetical protein		0,7	0,9	0,5	0,4	0,6
3458	NCgl2970	ABC-type transport systems, periplasmic component		0,7	0,6	0,2	0,4	0,4
3544	NCgl0382	hypothetical membrane protein		0,8	0,3	0,5	0,2	0,4
3548	NCgl0481	hypothetical protein		0,6	0,4	0,4	0,6	0,5
3549	NCgl0482	ABC-type transporter, ATPase component		0,7	0,5	0,2	0,4	0,4
3550	NCgl0483	ABC-type transporter, permease component		0,8	0,5	0,3	0,5	0,5
88	(2908984- 2909142)	hypothetical protein		1,2	1,4	1,8	4,1	1,9
90	NCgl2632	hypothetical protein		2,0	2,7	2,9	7,0	3,2
91	(2909821- 2910057)	hypothetical protein		1,2	1,4	1,0	1,6	1,3
671	NCgl0251	catalase		1,3	2,8	2,1	3,0	2,2
1782	NCgl1138	hypothetical protein		1,4	1,3	1,9	1,6	1,5
1783	NCgl1139	nitrate reductase gamma subunit		1,5	2,9	2,0	2,5	2,2
1784	NCgl1140	nitrate reductase delta subunit				1,9	1,9	1,9
1785	NCgl1141	nitrate reductase beta chain		1,3	2,9	2,8	2,6	2,3
1786	NCgl1142	nitrate reductase alpha chain				1,7	1,9	1,8
1787	NCgl1143	nitrate/nitrite transporter		1,0	1,7	1,6	1,2	1,3
2425	NCgl1482	aconitase A a	acn	1,2	3,5	1,8	4,0	2,3
2754	(1366244-	hypothetical protein		3,3	2,4	2,0	1,8	2,4

Um den Einfluss von Valin, Leucin und Isoleucin auf die Genexpression von *C. glutamicum* $13032\Delta lrp$ zu vergleichen und Gene mit ähnlichem Expressionsverhalten zu identifizieren, wurde eine hierarchische Clusteranalyse (Eisen *et al.*, 1998) durchgeführt (Abb. 12). Berücksichtigt wurden hierbei Gene, die Expressionsänderungen in Anwesenheit mindestens einer verzweigtkettigen Aminosäure aufwiesen (Tabellen 18, 19 und 20).

Bei der Anordnung der Experimente (in den Spalten der Abb. 12) fällt auf, dass die Experimente nach Wachstum in Anwesenheit von Valin eine distinkte Gruppe bilden (Cluster B). Die Experimente mit Leucin oder Isoleucin bilden hingegen eine gemeinsame Gruppe (Cluster A). Diese beiden Aminosäuren führten also zu ähnlichen Expressionsänderungen. Auch beim Wildtyp bildeten die Experimente nach Wachstum in Anwesenheit von Valin eine distinkte Gruppe (Abb. 6).

Bei der Anordnung der ORFs (in den Zeilen der Abb. 12) lassen sich vier Gruppen unterscheiden. Die Gene der ersten Gruppe zeigten bei *C. glutamicum* $13032\Delta lrp$ reduzierte mRNA-Spiegel in Gegenwart von 200 mM L-Valin und erhöhte mRNA-Spiegel mit Leucin oder Isoleucin. Eine analoge Gruppe von Genen war im Wildtyp nicht zu beobachten (Abb. 6). Die ORFs kodieren meist für hypothetische Proteine, einer weist Ähnlichkeiten zum Eisenspeicherprotein Ferritin auf (ORF 3472). Da die Expressionsänderung nur in der *Irp*-Deletionsmutante zu beobachten war, ist Lrp offensichtlich nicht für die Regulation dieser Gene verantwortlich.

Die Gene der Gruppe 2 wiesen erhöhte mRNA-Spiegel in Anwesenheit von Valin und unveränderte bzw. reduzierte mRNA-Spiegel mit Leucin oder Isoleucin auf. Die Gruppe beinhaltete die Gene eines putativen Oligopeptidtransporters (ORFs 2092-2096), der auch im Valinproduzenten VAL1 eine erhöhte Expression in Anwesenheit von Valin (Tab. 12) zeigte. Diese hatten ebenso wie die Arginin-Biosynthesegene (ORFs 2622-2629) und die putative Isoleucyl-tRNA-Synthetase in Anwesenheit von Leucin oder Isoleucin mRNA-Spiegel nahe 1. Die Gene des prpD2B2C2-Operons zur Propionat-Verwertung im Methyl-Citratzyklus wiesen neben 10-17-fach erhöhten mRNA-Spiegeln in Anwesenheit von Valin eine 2-fach reduzierte Genexpression mit Leucin oder Isoleucin auf. Die Gene *leuC* und *leuD* der Leucin-Biosynthese zeigten in Gegenwart von Valin und Isoleucin eine erhöhte Expression, während Leucin zu verringerter Expression führte. Die Gene der arg-, opp- und prp-Operons, die Isoleucyl-tRNA-Synthetase sowie die Leucin-Biosynthesegene zeigten im Wildtyp ähnliche Expressionsänderungen wie in der Irp-Deletionsmutante, allerdings war die Änderung bei ATCC 13032 geringer. Die Auslösung dieser Regulation durch verzweigtkettige Aminosäuren erfolgt offenbar Irp-unabhängig, für die Stärke der Expressionsänderung könnten sekundäre Effekte der Deletion verantwortlich sein.

Abbildung 12: Hierarchische Clusteranalyse zur Identifizierung von Gen-Gruppen mit ähnlichem Expressionsverhalten in Anwesenheit verzweigtkettiger Aminosäuren bei *C. glutamicum* 13032∆*Irp*

Für Erläuterungen siehe auch Abbildung 6. Es wurden die mRNA-Spiegel der ORFs aus den Tabellen 18, 19 und 20 berücksichtigt, abzüglich ORFs, deren mRNA-Spiegel in mehr als 3 der 13 Experimente nicht detektierbar war. Die Experimente sind mit der Konzentration der Aminosäure (Val = L-Valin, Leu = L-Leucin, Ile = L-Isoleucin) in mM und Buchstaben zur Unterscheidung der Wiederholungsexperimente beschriftet.

Die Gene der dritten Gruppe (Abb. 12) wiesen nach Wachstum von *C. glutamicum* 13032 Δ *lrp* in Anwesenheit aller drei verzweigtkettigen Aminosäuren erhöhte mRNA-Spiegel auf. Zu dieser Gruppe gehören die Gene der Citratzyklusenzyme Succinat-Dehydrogenase (ORFs 830-833) und Aconitase (ORF 2425) sowie die Gene des putativen Nitrat-Reduktase-Operons (ORFs 1783-1787). Im Wildtyp war eine analoge Expressionsänderung dieser Gene nur in Gegenwart von Valin oder Isoleucin zu beobachten, außerdem waren die Expressionsänderungen geringer. In Gegenwart von Leucin war im Wildtyp eine verringerte Expression der Aconitase- und Succinat-Dehydrogenase-Gene zu beobachten. Der entgegengesetzte Einfluss von Leucin auf die Expression dieser Gene in *C. glutamicum* ATCC 13032 und 13032 Δ *lrp* deutet auf eine Beteiligung von Lrp an deren Regulation hin.

Die Gene der Gruppe 4 wiesen bei *C. glutamicum* 13032 Δ *lrp* reduzierte mRNA-Spiegel in Gegenwart jeder der drei Aminosäuren auf. Hierunter befinden sich viele putative Eisenaufnahmesysteme, deren Expression wie zuvor beschrieben durch die verringerte Wachstumsrate von *C. glutamicum* 13032 Δ *lrp* in Anwesenheit verzweigtkettiger Aminosäuren beeinflusst sein könnte. Im Wildtyp wiesen die ORFs 1155-1156 (Homologe des "Carbon starvation protein" von *E. coli*) und 1346-1347 (putatives Eisenaufnahmesystem) eine weniger stark reduzierte Expression auf, was dem weniger stark gehemmten Wachstum entspricht. Die ORFs 517-518 und 3347-3348 (hypothetische Proteine), 1558 (putativer Transkriptionsregulator) sowie 854-857, 1168-1173, 1346-1347, 2146 und 3458 (putative Eisenaufnahmesysteme) wiesen im Wildtyp im Gegensatz zu *C. glutamicum* 13032 Δ *lrp* erhöhte mRNA-Spiegel in Gegenwart von Leucin auf. Die An- oder Abwesenheit von Lrp hat offenbar einen Effekt auf die leucinabhängige Regulation dieser Gene.

Die Regulation der Genexpression durch verzweigtkettige Aminosäuren war bei der *Irp*-Deletionsmutante häufig stärker als im Wildtyp, betraf aber meist dieselben Gene. Dies kann auf sekundären Effekten der *Irp*-Deletion beruhen. So findet bei *C. glutamicum* 13032 Δ *Irp* kein Export verzweigtkettiger Aminosäuren mehr statt (Kennerknecht *et al.*, 2002), so dass deren intrazelluläre Konzentration erhöht sein sollte. Zusätzlich waren auch qualitative Unterschiede der Genexpression in Gegenwart verzweigtkettiger Aminosäuren zwischen *C. glutamicum* 13032 Δ *Irp* und ATCC 13032 festzustellen, die auf eine Beteiligung von Lrp an der Regulation der betroffenen Gene hindeuten.

4.1.2 Transkriptomanalysen zum Vergleich der Genexpression in Wildtyp und *Irp*-Deletionsmutante

Zur Identifizierung Lrp-regulierter Gene wurden die Transkriptome von Wildtyp und *lrp*-Deletionsmutante direkt miteinander verglichen. Hierzu wurden die Stämme parallel in identischem CGXII-Medium kultiviert, RNA isoliert und die mRNA-Spiegel mittels DNA-Chips bestimmt. Da in *E. coli* für einige Funktionen von Lrp L-Leucin als Cofaktor benötigt wird (Brinkman *et al.*, 2003; Calvo & Matthews, 1994; Chen *et al.*, 2001), wurden auch Kultivierungen in Anwesenheit verzweigtkettiger Aminosäuren durchgeführt. 75 Gene, die unter mindestens einer dieser Kultivierungsbedingungen einen \geq 2-fach veränderten mRNA-Spiegel im Vergleich 13032 Δ *lrp*/ATCC 13032 aufwiesen, sind in Tabelle 21 aufgeführt. Bei putativen Operons sind weitere Gene mit signifikant verändertem mRNA-Spiegel angegeben. Ferner sind die mRNA-Spiegel von *lrp* und von allen ORFs der Region 1211-1250 aufgeführt.

Für das Gen *Irp* konnte nach Wachstum ohne Aminosäurezugabe ein reduzierter mRNA-Spiegel in der *Irp*-Deletionsmutante im Vergleich zum Wildtyp bestimmt werden, in den anderen Vergleichen lag dieser nahe 1. Die dem PCR-Produkt auf dem DNA-Chip entsprechende Sequenz ist in *C. glutamicum* 13032Δ *Irp* komplett deletiert, entsprechend sollte in Anwesenheit von Valin, Leucin oder Isoleucin auch im Wildtyp nahezu keine *Irp*-Transkription stattgefunden haben. Unklar bleibt, warum das Signal zu Rausch-Verhältnis für das Hybridisierungssignal dann \geq 3 sein konnte.

Bei Betrachtung der Gene in Tabelle 21 fällt auf, dass viele Transposasen unterschiedliche mRNA-Spiegel in *C. glutamicum* $13032\Delta lrp$ im Vergleich zum Wildtyp aufwiesen. Ferner zeigten nahezu alle ORFs der Region 1211-1250 veränderte mRNA-Spiegel. Bei dieser Region kann es sich aufgrund der Größe und der teilweise divergenten Transkriptionsrichtung nicht um ein Operon handeln. Vielmehr legen beide Beobachtungen nahe, dass es neben der Deletion von *lrp* weitere Unterschiede im Genom der verglichenen Stämme gab. Vermutlich lagen Deletionen oder Genduplikationen vor, deren Ursache die Aktivität mobiler genetischer Elemente sein könnte.

Zu beachten ist beim Vergleich der Tabelle 21, dass das Wachstum von *C. glutamicum* $13032\Delta lrp$ stärker durch die Zugabe der Aminosäuren inhibiert wurde als das des Wildtyps. Dies könnte Ursache der gemessenen Expressionsunterschiede vieler putativer Eisenaufnahmesysteme sein, die nur in Anwesenheit verzweigtkettiger Aminosäuren veränderte mRNA-Spiegel aufwiesen.

Tabelle 21: RNA-Spiegel in (C.	glutamicum	13032∆ <i>lr</i>	p im	Verg	gleich	zum	Wildtv	vr	p
1										

			-		0	Va	ll ¹	Le	u ¹	lle	, ¹
ORF	NCBI	Annotation	Gen	ø	р	ø	р	ø	n	ø	n
312	NCal2816	nutative integral membrane transport protein		0.8	٣	0.7	٣	04	*	14	P
516	NCal0122	hypothetical protein		0.7	*	1 1		10		0.7	
	NCal0122			•,1		.,.		1,0		0,1	
517	NCgl0123	hypothetical protein		0,6	*	0,5		0,7		0,4	*
518	NCgl0123	hypothetical protein		0,6	*	0,5	*	0,8	*	0,5	*
674	NCgl0253	leucine responsive regulator	Irp	0,6	*	0,8		0,9		0,9	
675	NCgl0254	branched-chain amino acid permease	brnF	0,9		0,8		0,4	*	0,6	*
676	NCgl0254	branched-chain amino acid permease	brnF	0,9		1,0		0,6	*	0,6	*
677	NCgl0255	branched-chain amino acid permease	brnE	0,8		1,1		0,5	*	0,6	
854	NCal0377	hypothetical membrane protein		0.6	*	0.5	*	0.7		0.6	*
855	NCal0378	ABC-type transporter, periplasmic component		0,7	*	0,7	*	0,9		0,6	*
856	NCgl0379	ABC-type transporter, permease component		0,7	*	0,6	*	0,9		0,6	
857	NCgl0380	ABC-type transporter, ATPase component		0,7	*	0,6	*	0,9		0,7	*
1016	(555125-	hypothetical protain		0 5	*	0.5	*	0.2	*	0.4	*
1010	555286)			0,5		0,5		0,3		0,4	
1074	NCgl0560	hypothetical protein		0,9		2,1	*	0,9		1,1	
	NCgl1021,										
1091	NCgl2284,	transposase		0,3	*	0,3	*	0,3	*	0,4	*
	NCgl2392										
1160	NCgl0627,	methylaconitase	prpD2	1,4	*	2,1	*	0,3	*	1,0	
1161	NCal0629	methylisocitrate lyase	nrnR2	14	*	18	*	05	*	09	
1162	NCal0630	methyl citrate synthase	nrnC2	1.5	*	2.0	*	0.3	*	1.1	
1166	NCgl0633	hypothetical membrane protein	p.p.02	1.3	*	10		14	*	1.3	*
1168	NCal0635	hypothetical protein		0.8	*	0.4	*	0.7		0.6	
1169	NCgl0636	ABC-type transporter ATPase component		0,9		04	*	0.7	*	0,6	*
1170	NCal0637	ABC-type transporter, permease component		0.8		0.4	*	0.7		0.6	
1171	NCal0638	ABC-type transporter, permease component		0.7	*	0.6	*	0.7		0.9	
1173	NCgl0639	ABC-type transporter, periplasmic component		0.8	*	0.5	*	0.5	*	0.4	*
1211	NCal0670	acvl-CoA carboxvlase	accBC	0.3	*	0.4	*	0.3	*	0.3	*
1212	NCgl0671	thiosulfate sulfurtransferase		0.4	*	0.4	*	0.5	*	0.5	*
1214	NCgl0672	hypothetical protein		0,4	*	0,5	*	0,5	*	0,5	*
1215	NCgl0673	hypothetical protein		0,4	*	0,4	*	0,4	*	0,4	*
1217	NCgl0674	predicted acyltransferase		0,3	*	0,3	*	0,3	*	0,3	*
1218	NCgl0675	nucleotide-binding protein		0,7		0,9		0,8	*	0,8	
1219	NCgl0675	nucleotide-binding protein		0,3	*	0,3	*	0,2	*	0,3	*
1220	NCgl0676	hypothetical protein		0,3	*	0,3	*	0,4	*	0,4	*
1221	NCgl0677	detergent sensitivity rescuer	dtsR2	0,4	*	0,4	*	0,5		0,5	*
1222	NCgl0677	detergent sensitivity rescuer	dtsR2	0,4	*	0,4	*	0,4	*	0,4	*
1223	NCgl0678	detergent sensitivity rescuer	dtsR1	0,3	*	0,4	*	0,4	*	0,3	*
1224	NCgl0679	biotin-(acetyl-CoA carboxylase) ligase	birA	0,4	*	0,4	*	0,4	*	0,5	*
1225	NCgl0680	hypothetical membrane protein		0,6	*	0,6	*	0,8		0,8	
1226	NCal0681	phosphoribosylaminoimidazole carboxylase (NCAIR		03	*	03	*	04	*	06	
	No	synthetase)		-,-		s,s				<u>,,</u>	
1229	NCgl0683	hypothetical protein		0,7	*	0,7	*	0,7	*	0,7	*
1230	NCgI0684	prosphoribosylaminoimidazole carboxylase		0,3	*	0,3	*	0,3	*	0,4	*
1231	NCgI0685	nypothetical protein		0,3	Ŷ	0,3	Ŷ	0,4	Ĵ	0,4	^
1232				0,6	*	υ,ŏ	*	0,7	*	υ,δ	
1233		nitrilotriacetate monooxygenase		0,4	Ŷ	0,6	Ŷ	0,5	Ŷ	0,6	
1234	NCal2542	transposase		0,4	*	0,3	*	0,3	*	0,3	*
1235	NCal0689	dehydrogenase/oxidoreductase		03	*	03	*	03	*	0.3	*
1236	NCal0689	dehvdrogenase/oxidoreductase		0.3	*	0.3	*	0.3	*	0.3	*
	(741180-			•,•		•,•		0,0		•,•	
1237	741365)	nypotnetical protein		0,4	×	0,5	*	0,5	*	0,5	~
1238	NCgl0690	hypothetical protein		0,6	*	0,5	*	0,6	*	0,6	*
1239	NCgl0691	hypothetical protein		1,7	*	1,5	*	2,2	*	1,7	*
1240	NCgl0692	hypothetical protein		1,5	*	1,2	*	1,3	*	1,2	*
1241	NCgl0693	hypothetical membrane protein		1,8	*	1,5	*	1,5	*	1,5	*
1242	NCgl0694	ABC-type transporter, permease component		2,3	*	1,7	*	1,3	*	1,7	*
1243	NCgl0695	ABC-type transporter, permease component		2,3	*	1,6	*	1,4	*	1,7	*
1244	NCgl0696	hypothetical protein		2,1	*	1,7	*	1,3	*	1,7	*
1245	NCgl0697	ABC-type transporter, periplasmic component		2,7	*	1,9	*	1,7	*	2,1	*
1246	NCgl0698	ABC-type transporter, ATPase component		1,9	*	1,5	*	1,6	*	1,5	*

						Va	d ¹	Le	u ¹	lle	1
ORF	NCBI	Annotation	Gen	ø	a	ø	a	ø	p	ø	a
1247	NCgl0699	hypothetical protein		1,4	*	1,9	*	1,5	*	1,4	
1248	(748446- 748814)	hypothetical protein		1,3		1,2		1,5	*	1,2	*
1249	NCgl0700	helicase family member		1,3		2,0		1,8	*	1,4	*
1250	NCgl0701	hypothetical protein		1,6	*	1,5	*	1,7	*	1,4	*
1313	NCgl0752	hypothetical protein		0,2	*	0,2	*	0,2	*	0,1	*
1346	NCgI0773	siderophore-interacting protein		0,7	*	0,4	*	0,5	*	0,5	*
1347	NCgl0774	system, periplasmic component		0,7	*	0,4	*	0,6	*	0,5	*
1558	NCgl0943	AraC-type DNA-binding domain-containing protein		0,7	* +	0,4	*	0,7	*	0,4	*
1589				0,6	*	0,5		0,9 1 2		0,8	
1615		CODEE family protoin		2,3	*	1,2 2 /	*	1,2	*	1,0	
1617	NCal0994	bypothetical membrane protein		27	*	2,4	*	1.3	*	1,7	
1618	NCal0995	hypothetical membrane protein		6.3	*	39	*	2.8	*	2.8	
1619	NCal0996	hypothetical methorane protein		3.5	*	21	*	17	*	17	
1013	NCal1021			0,0		2 , I		1,1		1,1	
1644	NCgl2284, NCgl2392	transposase		0,2	*	0,2	*	0,2	*	0,2	*
1645	NCgl1022	cysteine sulfinate desulfinase		1,4	*	1,3	*	1,5	*	1,1	
1646	NCgl1023	nicotinate-nucleotide pyrophosphorylase	nadC	1,6	*	1,2	*	1,8	*	1,2	
1647	NCgl1024	quinolinate synthase	nadA	1,7	*	1,3	*	1,8	*	1,2	
1648	NCgl1025	ADP-ribose pyrophosphatase		1,7	*	1,0		2,0	*	1,3	*
1821	NCgl1173	coenzyme F420-dependent N5,N10-methylene tetrahydromethanopterin reductase		0,6	*	0,7	*	0,9		0,8	
1822	NCgl1174	ABC-type transporter, permease component		0,4	*	0,5	*	1,0		0,7	
1823	NCgl1175	ABC-type transporter, ATPase component		0,5	*	0,8		1,2		0,9	
1831	NCgl1180	hypothetical protein		1,3		2,0	*	1,1		0,8	
1832	NCgl1181	hypothetical protein		1,0		1,4	*	1,0		1,0	
2092	NCgl1915	ABC-type transporter, periplasmic component		2,1	*	1,1		0,8		1,5	
2093	NCgl1915	ABC-type transporter, periplasmic component		2,1	*	1,2		0,7	*	1,3	
2094	NCgl1916	ABC-type transporter, permease component		1,8	*	1,0		0,7	*	1,1	
2095	NCgl1917	ABC-type transporter, permease component		1,9	*	1,2	*	0,7	*	1,3	
2096	NCgl1918	ABC-type transporter, duplicated ATPase component		1,4	*	0,9		0,8		1,1	
2476	NCgl1518, NCgl2461	transposase		0,3	*	0,4	*	0,3	*	0,3	*
2477	NCgl1518, NCgl2461	transposase		0,4	*	0,6	*	0,5	*	0,4	
2703	NCgl1289	nypothetical protein		0,9	*	0,6	*	0,5	*	0,6	*
2705	NCgl1288	hypothetical protein		0,9	*	0,7	*	0,5	*	0,7	*
2806	NCgl0688, NCgl2542	transposase		0,4	*	0,4	*	0,3	*	0,3	*
2825	NCgl2523	transcriptional regulator		0,4	*	0,4	*	0,5	*	0,4	*
2826	NCgl2522 NCgl1518,	transposase		0,4 0,3	*	0,4 0,3	*	0,4 0,3	*	0,5 0,3	*
	NCgi2401 NCgi1021										
3021	NCgl2284, NCgl2392	transposase		0,2	*	0,2	*	0,2	*	0,2	*
3044	NCgl1021, NCgl2284, NCgl2392	transposase		0,2	*	0,2	*	0,2	*	0,3	*
3347	NCgl1646	hypothetical protein		0,6	*	0,4	*	0,7	*	0,5	*
3348	NCgl1647	hypothetical protein		0,7	*	0,6	*	0,8		0,6	*
3543	NCgl0381	hypothetical membrane protein		0,4	*	0,3	*	0,7		0,3	*
3544	NCgl0382	hypothetical membrane protein		0,6	*	0,6	*	1,0		0,4	*
3549	NCgl0482	ABC-type transporter, ATPase component		0,8		0,4	*	0,5	*	0,5	*
3550	NCgl0483	ABC-type transporter, permease component		0,8		0,5	*	0,7	*	0,5	
3551	NCgl0484	ABC-type transporter, permease component		0,8	*	0,5	*	0,7	*	0,5	
69134	NCgl2553	phosphotransferase system IIC component		0,7	*	0,6	*	0,5	*	0,6	*

¹Erläuterungen s. Tab. 6, außer:

Aufgeführt sind durchschnittliche relative mRNA-Spiegel (\emptyset) 13032 Δ *lrp*/ATCC 13032 nach Kultivierung in identischem CGXII-Minimalmedium, das gegebenenfalls die angegebene Aminosäure (Val = L-Valin, Leu = L-Leucin, IIe = L-Isoleucin) enthielt. Durchgeführt wurden 6

Experimente ohne Aminosäurezugabe (5 unabhängige Kultivierungen), je 2 Experimente mit 50 bzw. 200 mM L-Valin (insgesamt 2 Kultivierungen), je 2 bzw. 3 Experimente mit 25 bzw. 50 mM L-Leucin (1 bzw. 2 Kultivierungen) und 1 bzw. 3 Experimente mit 25 bzw. 50 mM L-Isoleucin (aus unabhängigen Kultivierungen). Aufgelistet sind ORFs mit in mindestens einem der Vergleiche signifikant ($p \le 0.05$, Markierung *) ≥ 2 -fach verändertem mRNA-Spiegel. Zusätzlich wurden das Gen *Irp* und alle ORFs der Region 1211-1250 berücksichtigt.

Für einige Gene konnten Daten der Transkriptomanalysen mit ATCC 13032 und $13032\Delta lrp$ in An-/Abwesenheit verzweigtkettiger Aminosäuren bestätigt werden. So zeigten in Gegenwart von Valin die Gene des *prpD2B2C2*-Operons in *C. glutamicum* $13032\Delta lrp$ mit mRNA-Spiegeln von 10-15 (Tab. 18) eine stärkere Induktion als im Wildtyp mit 5-6 (Tab. 6). Beim direkten Vergleich der mRNA-Spiegel beider Stämme in Anwesenheit von Valin wurde entsprechend eine erhöhte Expression in $13032\Delta lrp$ gemessen (Tab. 21). Da eine gleichsinnige Regulation in Wildtyp und *lrp*-Deletionsmutante vorlag, handelte es sich hier jedoch um eine Lrp-unabhängige, aminosäureabhängige Regulation.

Durch den Vergleich der Genexpression in *C. glutamicum* ATCC 13032 und $13032\Delta lrp$ konnten potentiell Lrp-regulierte Gene identifiziert werden. Aufgrund möglicher Unterschiede im Genom der Stämme mussten jedoch die Genomsequenzen verglichen werden, um unterschiedliche Expression von verschiedener Kopiezahl der DNA im Bakteriengenom unterscheiden zu können (4.1.3).

4.1.3 Vergleich der Genomsequenzen von *C. glutamicum* ATCC 13032 und 13032∆*Irp* durch vergleichende Genomhybridisierung

Um zu bestimmen, ob einige der Expressionsänderungen beim Vergleich $13032\Delta lrp/ATCC$ 13032 durch genomische Unterschiede zustande kamen, wurden die Genomsequenzen des verwendeten Wildtyps und der Deletionsmutante mittels vergleichender Genomhybridisierung abgeglichen. Außerdem wurden zwei weitere Wildtypisolate analysiert, um einen zu *C. glutamicum* $13032\Delta lrp$ isogenen Wildtyp zu identifizieren. Hierbei handelte es sich um das mutmaßliche Ausgangsisolat von $13032\Delta lrp$ (Wessel, 2000) und um den Stamm der DSMZ. Die Sequenz der Wildtypisolate wurde auch untereinander verglichen. Hierzu wurde genomische DNA isoliert, zur Begrenzung der Länge mit *Eco*RV fragmentiert und fluoreszenzmarkierte, komplementäre DNA-Stränge wurden zur DNA-Chip-Hybridisierung eingesetzt. Als Grenze für veränderte DNA-Spiegel wurde 1,5 festgelegt, um auch den Unterschied zwischen 1 oder 2 Kopien eines Gens sicher detektieren zu können.

Tabelle 22: Relative DNA-Spiegel beim Vergleich von C. glutamicum-Isolaten

2		• • • •	-		relative	r DNA-S	bieael ¹	
ORF ²	NCBI	Annotation	Gen	b/c	a/c	۸ <i>lrp</i> /b	Alrp/c	∧lrp/a
	NCal1807.							
132	NCql1808,	transposase		1,0	0,6	1,1	1,0	1,7
	NCgl2665							
674	NCgl0253	leucine responsive regulator	Irp	1,0	1,2	0,3#	0,7	0,6
	NCgl1021,							
1091	NCgl2284,	transposase		1,1	0,8	1,2	1,2	1,6
	NCgl2392							
1211	NCgl0670	acyl-CoA carboxylase	accBC	0,7		0,8	0,6	1,2#
1212	NCgl0671	thiosulfate sulfurtransferase		0,5	0,7	0,8	0,5#	1,0
1214	NCgl0672	hypothetical protein		0,4	0,6	0,8	0,6	0,9
1215	NCgl0673	hypothetical protein		0,4	0,4	0,5	0,3	0,9
1217	NCgl0674	predicted acyltransferase		0,4	0,2	0,6	0,2	0,9
1218	NCgl0675	nucleotide-binding protein		0,4	0,3	0,6	0,3	0,8
1219	NCgl0675	nucleotide-binding protein		0,4	0,5	0,7	0,4	0,8
1220	NCal0676	hypothetical protein		0.5	0.5	0.8	0.5	0.9
1221	NCal0677	detergent sensitivity rescuer	dtsR2	0.7	0.6	0.9	0.7	0.9
1222	NCal0677	detergent sensitivity rescuer	dtsR2	04	04	0,9	04	11
1223		detergent sensitivity rescuer	dtsP1	•, •	•, •	0.8	0.3#	.,.
1224		hiotin-(acetyl-CoA carboyylase) ligase	hirA	9.0		0,0 0 8	06	
1224	NCalneen	hypothetical membrane protein	<i>DILA</i>	0,0		0.5	0.4#	
1223		nypothetical memoralle protein phosphoribosylaminoimidazolo carboyyloco (NCAID				0,0#	0,4#	
1226	NCgl0681	synthetase)				1,7	1,2	2,3
1227	NCal0682	K ⁺ transporter		05		0 8#	0 5#	
1229	NCal0683	hypothetical protein		07	0.8	0.8	0.6	09
1230		nhosphoribosylaminoimidazole carboxylase		0.5	0,5	0.8	04	0,0
1230		by notherical protoin		0,0	0,0	0,0	0.2#	0,5
1231	NCal0686	hypothetical protein		0,4	0,2	0,0	0,2#	0,7
1202	NCalocaz			0,5	0,5	0,0	0,7	0,0
1233		The nonocygenase		0,5	0,4	0,8	0,3	0,0
1234	NCgl2542	transposase		0,8	0,6	1,0	0,8	1,2
1235	NCgl0689	dehydrogenase/oxidoreductase		0,4	0,2	0,6	0,3	0,8#
1236	NCgl0689	dehydrogenase/oxidoreductase		0,4	0,6	0,5#	0,2	0,9#
1237	(741180-	hypothetical protein		05	05	07	0.3	0.9
	741365)			0,0	0,0	•,.	0,0	0,0
1238	NCgl0690	hypothetical protein		0,5	0,4	0,7	0,5	0,8
1239	NCgl0691	hypothetical protein		0,9	0,4	2,2	1,4	3,5
1240	NCgl0692	hypothetical protein		0,8	0,4	1,5	1,5	2,7
1241	NCgl0693	hypothetical membrane protein		0,8	0,3	2,0	1,6	
1242	NCgl0694	ABC-type transporter, permease component		0,8		2,6	2,0	8,6#
1243	NCgl0695	ABC-type transporter, permease component		0,9	0,4	2,6	1,7	3,3#
1244	NCgl0696	hypothetical protein			0,4	2,2	1,7	4,5
1245	NCgl0697	ABC-type transporter, periplasmic component		0,7		1,7	1,3#	
1246	NCgl0698	ABC-type transporter, ATPase component		0,8	0,7	1,5	1,0	1,7
1247	NCgl0699	hypothetical protein		0,7	0,5	1,2	1,1	1,6
1249	(748446-	hypothetical protein		0 6	0.4	2 5	1 6	4.2
1240	748814)			0,0	0,4	2,3	1,0	4,2
1249	NCgl0700	helicase family member		0,8	0,4	1,7	1,6	2,9
1250	NCgl0701	hypothetical protein		0,7	0,3	2,4	1,8	5,3
1251	(757449-	hypothetical protein		0.9	0.6	1.3	1.3	1.8
1252	757598) NCal0702	hypothetical protein		0.9	0.5	2.1	1.9	3.9
1613		acetyltransferase		1.6	22	10	1 1	1 0
1615		transnosase		2 2	2,2	1,0	24	1,0
1616		GGDEE family protein		6.1	0,0	1 1	<u>-,-</u> 2 2	1 1#
1617		hypothetical membrane protein		46	4 9	1,1	2,5	1,17
1619	NCalOOGE	hypothetical membrane protein		-1,0	ч,э	1 1	3.6#	1,0
1610	NCalooge	hypothetical memorane protein		20	A 6	1,1	3,0# 2 E	1,0#
1019	NCal1021			5,0	4,0	1,1	5,5	1,0
1644	NCal2284	transposase		1.1	0.6	1.7	1.8	2.4
	NCgl2392			,-	-,-	,-	,-	,-
1895	NCgl2909	D-amino acid dehydrogenase subunit		1,2	0,8	1,2	1,5	1,6
2355	NCgl1425	hypothetical membrane protein		-		0,6	1,0#	
	NCgl1021,							
3021	NCgl2284,	transposase		1,0	0,8	1,7	1,7	2,0
	NCgl2392							

Erläuterungen wie in Tabelle 6, außer:

¹Aufgelistet sind relative DNA-Spiegel aus dem Vergleich der Stämme a = ATCC 13032 von der "Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH", b = ATCC 13032, Ausgangsstamm von 13032 Δ *lrp*, c = ATCC 13032, in dieser Arbeit verwendetes Isolat und Δ *lrp* = 13032 Δ *lrp*. DNA des Stammes über dem Bruchstrich wurde rotfluoreszierend markiert. Aufgeführte ORFs zeigten in mindestens einem Vergleich einen ≥1,5-fach veränderten DNA-Spiegel. Bei Experimenten unter Beteiligung von 13032 Δ *lrp* handelt es sich um Doppelbestimmungen, mit # gekennzeichnete DNA-Spiegel waren jedoch nur einmal detektierbar. Bei den anderen Experimenten handelt es sich um Einfachbestimmungen.

²Benachbarte ORFs sind ohne Berücksichtigung der Transkriptionsrichtung grau markiert.

Die Deletion von *Irp* bei *C. glutamicum* 13032Δ *Irp* konnte gegenüber allen Wildtypisolaten nachgewiesen werden, der DNA-Spiegel war aber insbesondere beim in dieser Arbeit verwendeten Wildtyp (c in Tab. 22) mit 0,7 weniger stark verändert als erwartet. Die Wildtypstämme hatten wie erwartet identische Kopiezahlen von *Irp*.

Für die Region von ORF 1211-1250 wurde aufgrund der Transkriptomanalysen ein Unterschied im Genom von *C. glutamicum* 13032 Δ *lrp* und dem verwendeten Wildtyp erwartet. Tatsächlich sind die ORFs 1211-1225 und 1227-1238 offenbar im verwendeten Wildtypisolat gegenüber allen anderen Stämmen vervielfacht (Tab. 22). ORF 1226 lag im verwendeten Wildtyp und in der Deletionsmutante in gleicher Kopiezahl vor, in den anderen Wildtypisolaten war die Kopiezahl geringer. Von den ORFs 1239-1252 lagen im verwendeten Wildtyp (und evtl. auch in Isolat b in Tab. 22) mehr Kopien vor als im Stamm der Stammsammlung (c). In 13032 Δ *lrp* scheint eine erneute Vervielfachung dieser Region aufgetreten zu sein, so dass im Vergleich zu den Isolaten a und b DNA-Spiegel von 1,5-2,5 und im Vergleich zum Isolat c von bis zu 8,5 gemessen wurden.

Neben diesem bereits vermuteten Unterschied konnte noch eine verringerte Kopiezahl der ORFs 1615-1619 im verwendeten Wildtyp gegenüber allen anderen Stämmen gezeigt werden, die auf eine Deletion hindeutet. ORFs 1644, 3021 (Transposasen) und eventuell 1895 hatten in *C. glutamicum* $13032\Delta lrp$ mehr Kopien als im Wildtyp. Wegen der ähnlichen Sequenz der Transposasen können hier Kreuzhybridisierungen nicht ausgeschlossen werden (s. auch NCgl-Annotation in Tab. 22). Alle für die Experimente der Tabelle 22 verwendeten *C. glutamicum*-Stämme unterschieden sich durch die Kopiezahl einiger Gene voneinander, ein zu $13032\Delta lrp$ isogenes Wildtypisolat konnte nicht identifiziert werden.

Offenbar finden durch die Aktivität der in Tabelle 22 durch Unterstreichung gekennzeichneten Transposasen permanente Veränderungen im Genom von *C. glutamicum* statt. Dies war überraschend, da die Genome von *Corynebacterium*-

Arten aufgrund des fehlenden rekombinatorischen DNA-Reparatursystems Rec als sehr stabil gelten (Nakamura *et al.*, 2003). Beim Vergleich von mRNA-Spiegeln verschiedener Stämme sollten daher zukünftig immer auch die Genomsequenzen verglichen werden. Durch die vergleichende Genomhybridisierung konnte nachgewiesen werden, dass einige der potentiell Lrp-regulierten Gene (4.1.2) offenbar keine Zielgene des Regulators sind, sondern im Genom der verglichenen Stämme in unterschiedlicher Kopiezahl vorlagen. Eine Zusammenstellung der verbliebenen, potentiell Lrp-regulierten Gene erfolgt in Abschnitt 4.1.4. Es kann allerdings nicht ausgeschlossen werden, dass deren Expressionsänderung infolge der Genduplikationen und Deletionen auftrat.

4.1.4 Identifizierung Lrp-regulierter Gene anhand der Transkriptomdaten

Ziel der Transkriptomanalysen mit $13032\Delta lrp$ war die Identifizierung Lrp-regulierter Gene von *C. glutamicum*. Hierzu wurde der Effekt verzweigtkettiger Aminosäuren auf die Genexpression von *C. glutamicum* $13032\Delta lrp$ und ATCC 13032 verglichen. Die Expression der Gene, die nur im Wildtyp eine Expressionsänderung in Anwesenheit von L-Valin, L-Leucin oder L-Isoleucin zeigen, ist direkt oder indirekt durch Lrp reguliert. An der Regulation von Genen, die in $13032\Delta lrp$ und Wildtyp unter identischen Bedingungen entgegengerichtete Expressionsänderungen zeigen, ist Lrp zumindest beteiligt. Direkt oder indirekt durch Lrp reguliert sind außerdem Gene mit verändertem mRNA-Spiegel im direkten Vergleich der Stämme, soweit hierfür keine Unterschiede im Genom verantwortlich sind.

Es konnten 59 potentiell Lrp-regulierte Gene identifiziert werden, deren mRNA-Spiegel in Tabelle 23 zusammengefasst sind. Unter diesen befanden sich die Gene *brnFE* des Exporters verzweigtkettiger Aminosäuren. Diese sind im Genom von *C. glutamicum* unmittelbar zu *lrp* benachbart und werden in divergenter Richtung transkribiert. In einer *lrp*-Deletionsmutante konnte bereits ein verringerter Export verzweigtkettiger Aminosäuren gezeigt werden (Kennerknecht *et al.*, 2002). Die Transkriptomanalysen mit dem Wildtyp ATCC 13032 zeigten insbesondere für ORF 675 (*brnF*) eine Induktion in Anwesenheit verzweigtkettiger Aminosäuren. In *C. glutamicum* 13032 Δ *lrp* war dieser Regulationsmechanismus nicht mehr zu beobachten. Beim direkten Vergleich beider Stämme waren die *brnFE*-mRNA-Spiegel in Anwesenheit von Isoleucin und Leucin in der Deletionsmutante im Vergleich zum Wildtyp zweifach verringert.

Tape	ene 23: mrin/	A-Spieg	jei von O	RFS, die I	aut den	Transknpt	omanalys	en mit C.	giutamic	<i>um</i> 1303	$Z\Delta IP pole$	enueli Lip	-reg	ulle	it s	
ORF	NCBI	Gen	wt+/-Val ¹	wt+/-Leu ¹	wt+/-lle1	<i>∆lrp</i> +/-Val¹	∆ <i>lrp</i> +/-Leu¹	∆ <i>lrp</i> +/-lle¹	∆ <i>lrp</i> /wt¹	∆ <i>lrp</i> /wt Val¹	∆ <i>lrp</i> /wt Leu¹	∆ <i>lrp</i> /wt lle ¹	Lrj	o-reg	ulier	ť
			Øp	Øp	Øp	Øp	Øp	Øp	Øp	Øp	Øp	Øp	-AS	Val	Leu	lle
384	NCgl2867		0,9	0,4 *	0,7 *	1,2 *	1,1	0,9	1,0	1,0	0,9	1,1			+	
517	NCgl0122, NCgl012	23	0,9	4,6*	1,1	0,2 *	0,2 *	0,4 *	0,6 *	0,5	0,7	0,4 *			+	
518	NCgl0123		0,6	3,9 *	1,0	0,4	0,5 *	0,6 *	0,6 *	0,5 *	0,8 *	0,5 *			+	
568	NCgl0167		0,8	0,5*	0,8 *	1,0	1,1	1,1	1,2	1,2 *	1,0	1,1			+	
585	NCgl0189		0,5 *	1,0	0,9	1,1	1,0	1,0	1,1	1,1	1,4 *	1,1		+		
658	NCgl0243		1,1	2,1 *	1,0	1,1	1,1	1,2	1,3 *	1,1	1,2	1,1			+	
675	NCgl0254	brnF	2,1 *	1,4	2,1 *	1,1	1,0	1,1	0,9	0,8	0,4 *	0,6 *		+	+	+
676	NCgl0254	brnF	1,4 *	1,3	1,4	1,1	1,4	0,9	0,9	1,0	0,6 *	0,6 *				
677	NCgl0255	brnE	1,6	1,4	2,0 *	1,3	1,0	1,0	0,8	1,1	0,5 *	0,6			+	+
854	NCgl0377		0,9	2,7 *	1,0	0,7	0,3 *	0,8	0,6 *	0,5 *	0,7	0,6 *		+	+	
855	NCgl0378		0,7 *	1,7 *	1,0	1,0	0,8	0,7	0,7 *	0,7 *	0,9	0,6 *				
856	NCgl0379		0,8	2,5	1,0	0,7	0,6 *	0,9	0,7 *	0,6 *	0,9	0,6				
857	NCgl0380		0,7	1,7 *	0,9	0,8	0,7 *	0,8	0,7 *	0,6 *	0,9	0,7 *				
949	NCgl0447, NCgl04	48	1,1	2,5 *	1,1 *	0,8	1,0	1,1 *	1,2	1,1	1,2 *	1,3 *			+	
1016	(555125-555286))	1,4			1,1	0,8 *	0,9	0,5 *	0,5 *	0,3 *	0,4 *	+	+	+	+
1074	NCgl0560		0,6	1,0	0,7 *	1,5	1,2	0,9	0,9	2,1 *	0,9	1,1		+		
1160	NCgl0627, NCgl062	28 prpD2	6,3 *	0,5	0,5 *	14 *	0,5 *	0,5 *	1,4 *	2,1 *	0,3 *	1,0			+	
1161	NCgl0629	prpB2	5,2 *	0,6	0,5 *	10,5 *	0,5 *	0,5	1,4 *	1,8 *	0,5 *	0,9			+	
1162	NCgI0630	prpC2	5,4 *	0,4 *	0,6 *	16,5 *	0,4 *	0,4 *	1,5 *	2,0 *	0,3 *	1,1			+	
1313	NCgl0752		1,2	1,2 *	1,1	1,3 *	0,9	1,0	0,2 *	0,2 *	0,2 *	0,1 *	+	+	+	+
1346	NCgl0773		0,6	2,4 *	0,9	0,4 *	0,2 *	0,5	0,7 *	0,4 *	0,5 *	0,5 *		+	+	
1347	NCgl0774		0,6	2,9 *	0,9	0,5 *	0,3 *	0,5	0,7 *	0,4 *	0,6 *	0,5 *		+	+	
1476	NCgl0877		0,6	0,5*	1,1	0,9	1,0	0,9	0,9	0,8	1,2	1,0			+	
1558	NCgl0943		0,6	3,7 *	1,0	0,4 *	0,3 *	0,4 *	0,7 *	0,4 *	0,7 *	0,4 *			+	
1646	NCgl1023	nadC	1,6 *	2,3 *	1,0	0,8	1,2	0,8	1,6 *	1,2 *	1,8 *	1,2			+	
1647	NCgl1024	nadA	1,8 *	2,6*	1,0	0,8	1,2	0,8	1,7 *	1,3 *	1,8 *	1,2			+	
1648	NCgl1025		1,7 *	4,3 *	1,1	0,7	1,1	1,0	1,7 *	1,0	2,0 *	1,3 *			+	
1821	NCgl1173		0,7		0,5 *	1,0	1,1	1,0	0,6 *	0,7 *	0,9	0,8				+
1822	NCgl1174		0,8	0,5	0,5 *	0,8	0,7	1,0	0,4 *	0,5 *	1,0	0,7	+	+		+
1823	NCgl1175		0,7	1,2	0,5 *	1,0	1,0	0,8	0,5 *	0,8	1,2	0,9	+			+
1831	NCgl1180		0,6		0,7	1,2	0,9	1,0	1,3	2,0 *	1,1	0,8		+		
1855	NCgl1200		0,9	2,9 *	1,6 *	0,7	0,8	0,8	0,9 *	0,7 *	0,9	0,5			+	
1856	NCgl1200		1,0	2,1 *	1,2	0,8	0,6 *	0,8	0,9 *	0,8	0,9	0,8			+	
1887	NCgl2903		0,8	0,5 *	0,8 *	1,2 *	1,3 *	1,2	0,8	1,1	1,2 *	1,1			+	
1906	NCgl2918		0,4 *	0,5	0,7 *	1,7	1,2	0,8	0,8	1,5	1,1	1,0		+		
1953	NCgl1770		0,5 *	1,1	0,8 *	1,7	1,0	0,8	1,0	1,2	0,9	1,0		+		
1992	NCgl1837		1,1	1,6*	1,1	1,0	0,8 *	1,0	1,2 *	1,0	1,0	0,9				
1993	NCgl1837		1,2	2,1 *	1,2 *	1,0	0,8 *	0,9	1,2	0,9	0,9	1,0			+	
2092	NCgl1915		1,3 *	0,7	1,1	1,6 *	0,9	1,2	2,1 *	1,1	0,8	1,5	+			
2093	NCgl1915		1,6 *	0,6	1,0	1,9 *	0,8	1,0	2,1 *	1,2	0,7 *	1,3	+			

Taballa 22, mDNA Spiegel ven ODEs, die laut den Transkrintemenskapen mit C. alutemieum 12022 Alm notentiell I.m. reguliert eind

—	- I	
-rc	ienr	าเรรค
		11000

ORF	NCBI	Gen	wt+/-Val1	wt+/-Leu ¹	wt+/-lle ¹	∆ <i>lrp</i> +/-Val¹	∆ <i>lrp</i> +/-Leu ¹	∆ <i>lrp</i> +/-lle ¹	∆ <i>lrp</i> /wt ¹	∆ <i>lrp</i> /wt Val ¹	∆ <i>lrp</i> /wt Leu ¹	∆ <i>lrp</i> /wt lle ¹	Lr	p-reç	Julier	ť
		Gen	Øp	Øp	Øp	Øp	Øp	Øp	Øp	Øp	Øp	Øp	-AS	Val	Leu	lle
2094	NCgl1916		1,7 *	0,7	1,1	2,0 *	1,0	1,2	1,8 *	1,0	0,7 *	1,1				
2095	NCgl1917		1,8 *	0,7	1,0	2,3 *	0,9	1,3	1,9 *	1,2 *	0,7 *	1,3				
2146	NCgl1959		0,6 *	2,0 *	0,8 *	0,6 *	0,3 *	0,6 *	0,8 *	0,5 *	0,7 *	0,6 *		+	+	
2152	NCgl1965		0,9	2,1 *	1,1	0,9	0,7 *	0,8 *	1,1	0,9	0,8 *	0,7 *			+	
2205	NCgl2001		0,7	2,3 *	1,2	0,7	0,6 *	0,8	1,4 *	0,6 *	1,1	1,1		+		
2253	NCgl2045		1,3 *	2,9 *	1,3 *	0,9	0,9	1,1	1,5 *	1,2 *	1,3 *	1,3 *		+		
2415	NCgl1475		1,1	2,0 *	1,5 *	0,8	0,9 *	1,0	1,3 *	1,0	1,2 *	1,1 *		+		
2435	NCgl1489		0,6	0,4 *	0,6	1,1	1,1	1,0	1,0	0,7 *	1,2	0,9		+		
2825	NCgl2523		0,6	0,7	1,0	1,0	1,1	1,0	0,4 *	0,4 *	0,5 *	0,4 *	+	+	+	+
2826	NCgl2522		1,2 *	1,2 *	1,1	1,2	1,0	0,9	0,4 *	0,4 *	0,4 *	0,5 *	+	+	+	+
3038	NCgl2290		0,6	0,4 *	0,2	1,5	0,9	0,9	1,0	0,8	0,7	1,1			+	
3312	NCgl0018		0,5 *	0,7	0,9	1,9 *	1,1	1,1	0,9	1,5	0,8	1,1		+		
3347	NCgl1646		0,3	3,2 *	0,6 *	0,4	0,3 *	0,6	0,6 *	0,4 *	0,7 *	0,5 *		+	+	+
3348	NCgl1647		0,4	3,0 *	0,6	0,5	0,6 *	0,8	0,7 *	0,6 *	0,8	0,6 *			+	
3349	(1812016-1812174)		0,9	2,2 *		0,9	0,8	0,9	0,9	1,0	1,0	0,9			+	
3431	NCgl2953		0,3 *	0,5	0,9	0,9	0,5 *	0,9	1,1	1,0	0,9	1,1		+		
3443	NCgl2960		0,5 *	0,7	0,8	1,2 *	0,9	0,9	0,8	1,2 *	1,0	1,2		+		
3458	NCgl2970		0,2	2,3 *	0,7	0,6 *	0,2 *	0,4 *	0,9	0,5 *	0,6 *	0,6		+	+	
3501	NCgl2417		0,4 *	0,5	0,9	1,2	1,0	1,0	0,7	1,2	0,8	1,1 *		+		
3543	NCgl0381		0,3			0,3	0,3 *	0,4	0,4 *	0,3 *	0,7	0,3 *	+	+		+
3544	NCgl0382		0,5			0,4	0,4 *	0,4 *	0,6 *	0,6 *	1,0	0,4 *				+
3549	NCgl0482		0,3 *			0,5 *	0,2 *	0,4 *	0,8	0,4 *	0,5 *	0,5 *		+	+	+
3550	NCgl0483		0,5			0,5 *	0,3 *	0,5 *	0,8	0,5 *	0,7 *	0,5		+		
3551	NCgl0484		0,6			0,6 *	0,3 *	0,5	0,8 *	0,5 *	0,7 *	0,5		+		
66065	NCgl2320		0,4 *	0,5*	0,8	1,3 *	1,1	1,0	0,9	1,4	1,1	1,2 *		+	+	
66067	NCgl2300			0,3 *	0,7 *	1,2	0,8	0,8	1,1	1,2 *	0,9	1,2			+	

Erläuterungen siehe Tabelle 6, außer:

¹Aufgeführt sind durchschnittliche mRNA-Spiegel (\emptyset) aus dem Vergleich Anwesenheit zu Abwesenheit (+/-) der angegebenen Aminosäure (Val = L-Valin, Leu = L-Leucin, Ile = L-Isoleucin) bei ATCC 13032 (wt) oder 13032 Δ *lrp* (Δ *lrp*) bzw. mRNA-Spiegel aus dem direkten Vergleich der Genexpression beider Stämme (Δ *lrp*/wt), gegebenenfalls in Gegenwart von Val/Leu/Ile. Ein signifikant veränderter mRNA-Spiegel ist durch ein * in der Spalte *p* gekennzeichnet. Berücksichtigt wurden ORFs, die im Wildtyp ATCC 13032 (Tab. 6, 8 und 9) durch verzweigtkettige Aminosäuren reguliert waren, in 13032 Δ *lrp* (Tab. 18, 19 und 20) aber nicht mehr oder gegenläufig. Außerdem berücksichtigt wurden ORFs mit Expressionsänderung im direkten Vergleich der Stämme (Tab. 21), die nicht auf Unterschiede in der Genomsequenz (Tabelle 22) zurückzuführen war. ORFs der Tabelle 21 wurden ferner nicht berücksichtigt, wenn nur (bzw. verstärkt) in 13032 Δ *lrp* vorhandene Regulation durch Aminosäuren Ursache für den Unterschied zum Wildtyp war. Putative Operons wurden um ORFs mit ähnlichem Muster an Expressionsänderungen aufgefüllt. ²In den Spalten "Lrp-reguliert" ist gekennzeichnet, ob ein Gen in An- oder Abwesenheit (-AS) von Aminosäuren Lrp-abhängig reguliert wurde.

Da der verringerte Export verzweigtkettiger Aminosäuren eine erhöhte intrazelluläre Konzentration in C. glutamicum 13032 Alrp bewirkt, kann nicht ausgeschlossen werden, dass weitere beobachtete Expressionsänderungen sekundäre Effekte der verschiedenen intrazellulären Aminosäurekonzentration sind, zumal sehr viele putative Transporter unter den identifizierten Genen sind. Dies äußert sich auch darin, dass nur sehr wenige aminosäureabhängig Lrp-regulierte ORFs die Expressionsänderung in beiden experimentellen Ansätzen aufwiesen (Tab. 23). Meist war der mRNA-Spiegel nur im direkten Vergleich der Stämme oder nur beim Vergleich der aminosäureabhängigen Genregulation in Wildtyp und C. glutamicum 13032∆*Irp* auffällig. Offenbar sind viele der beobachteten Expressionsänderungen eine indirekte Folge der Abwesenheit von Lrp. Hierfür sprechen auch die zahlreichen nur in der Deletionsmutante beobachteten Lrp-unabhängigen, aminosäureabhängigen Expressionsänderungen. Um nur direkt durch Lrp regulierte Gene zu identifizieren, war es nötig, auf globaler Ebene die Bindung von Lrp an Zielgene direkt nachzuweisen. Dies wurde durch die in dieser Arbeit für C. glutamicum etablierte "ChIP to chip"-Technik ermöglicht.

4.2 Nachweis der Bindung von Lrp an Zielpromotoren

Da Transkriptomanalysen es nicht erlaubten, zwischen direkten und indirekten Effekten zu unterscheiden, sollte die Bindung von Lrp an Ziel-DNA direkt nachgewiesen werden. Hierzu wurde *in vivo* untersucht, an welche Zielsequenzen das Regulatorprotein in *C. glutamicum* bindet. Die Bindestelle in einem Zielpromotor wurde mittels DNase I-Footprints genau lokalisiert.

4.2.1 Aufreinigung von C-terminal Strep-getaggtem Lrp (LrpStrep)

Um die Bindung von Lrp an Zielpromotoren nachweisen zu können, musste zunächst funktionelles Lrp-Protein isoliert werden. Hierzu wurde das *C. glutamicum Irp*-Gen überexprimiert und das Protein aufgereinigt. Da eine Klonierung und Expression des Gens in *E. coli* DH5 α und *B. subtilis* mit den herkömmlichen, einen T7-*lac* oder *tac*-Promotor enthaltenden Expressionsplasmiden nicht gelang (Wessel, 2000), wurden die Vektoren pAN3K-1 bzw. pAN5K-1 zur Klonierung in *E. coli* DH5 α verwendet. Diese enthalten einen *tet*-Promotor mit sehr geringer Basalaktivität (Degenkolb *et al.*, 1991; Skerra, 1994). Diese Vektoren basieren auf den Plasmiden pASK-IBA3C bzw.

pASK-IBA5C (IBA GmbH, Göttingen), enthalten jedoch einen Replikationsursprung für *C. glutamicum* und eine Kanamycin-Resistenz (A. Niebisch, persönliche Mitteilung). Diese Vektoren ermöglichten die Expression des mittels PCR amplifizierten (Primer for_IBA3_Irp und rev_IBA3_Irp bzw. for_IBA5_Irp und rev_IBA5_Irp, Tab. 1), unter Nutzung von *Bsa*I-Restriktionsschnittstellen eingefügten *Irp*-Gens sowohl in *E. coli* als auch in *C. glutamicum*. Hierbei wurde an das Gen Cbzw. N-terminal ein plasmidkodierter *Strep*-Tag II (Sequenz WSHPQFEK) angefügt, der die Reinigung des Proteins mittels *Strep*Tactin-Affinitätschromatographie (Skerra & Schmidt, 2000) erlaubt. Die konstruierten Plasmide pAN3K-1-*Irp* und pAN5K-1-*Irp* (Abb. 3) wurden durch Restriktion mit verschiedenen Enzymen und Sequenzierung des Inserts (Agowa, Berlin) überprüft und zusätzlich zur homologen Expression in den Stamm *C. glutamicum* 13032 Δ *Irp* transformiert.

Zur Isolierung *in vivo* an Lrp gebundener DNA sollte ein C-terminal *Strep*-getaggtes Lrp-Protein durch Austauschmutagenese in physiologischer Kopiezahl in *C. glutamicum* exprimiert werden. Hierzu wurde der C-terminale Bereich des *Irp*-Gens mit PCR-Primern (for_Int_Irp und rev_Int_Irp, Tab. 1) amplifiziert, die den *Strep*-Tag II enthielten und mittels *Eco*RI- und *Bam*HI-Restriktion in das Plasmid pK19*mobsacB* kloniert. Das erhaltene Plasmid pK19*mobsacB-Irp*Strep (Abb. 3) wurde durch Sequenzierung des Inserts überprüft. Das Plasmid konnte in *C. glutamicum* nicht replizieren, weshalb mit der kodierten Kanamycin-Resistenz auf eine Integration des Plasmids ins Genom selektiert wurde. Der erhaltene Stamm *C. glutamicum* 13032*Irp*Strep wurde mittels PCR überprüft, wobei ein Oligonukleotid (K_rev_Int_Irp) homolog zur *Strep*-Tag-Sequenz des integrierten Plasmids war, während das zweite (K_for_Int_Irp) homolog zum N-Terminus von *Irp* war.

Die Expression des *Strep*-getaggten Lrp-Proteins wurde mittels SDS-PAGE mit Zellrohextrakten der konstruierten Stämme überprüft (Abb. 13). Als Kontrolle wurden Stämme mit den Leerplasmiden verwendet. Eine Überexpression von C-terminal *Strep*-getaggtem Lrp (Lrp*Strep*) war nur bei *E. coli* DH5 α (pAN3K-1-*lrp*) an der erwarteten Bande bei 17,9 kDa zu erkennen (Abb. 13, Spur 3). In *C. glutamicum* 13032 Δ *lrp*(pAN3K-1-*lrp*) war keine Überexpression zu erkennen. Der Rohextrakt von 13032*lrp*Strep wies wie erwartet keine Unterschiede zu den *C. glutamicum*-Stämmen mit Leerplasmid auf. Eine Überexpression N-terminal getaggten Lrp-Proteins mit pAN5K-1-*lrp* gelang nicht. Zur Aufreinigung von Lrp mittels *Strep*Tactin-Affinitätschromatographie wurde daher DH5 α (pAN3K-1-*lrp*) verwendet.

Abbildung 13: Coomassie-gefärbtes SDS-Polyacrylamidgel zum Nachweis der homologen oder heterologen Expression von Lrp

Rohextrakte in LB-Medium (ggfs. mit Anhydrotetracyclin) kultivierter Bakterien wurden durch French-Press-Aufschluss und Abzentrifugieren von Zelltrümmern hergestellt. Es wurden 10 µl der Standards 1) Mark 12 und 6)+12) SeeBlue (Invitrogen, Karlsruhe) sowie 40 µg Gesamtprotein von 2) *E. coli* DH5 α (pAN3K-1), 3) DH5 α (pAN3K-1-*lrp*), 4) DH5 α (pAN5K-1), 5) DH5 α (pAN5K-1-*lrp*), 7) *C. glutamicum* 13032 Δ *lrp*(pAN3K-1), 8) 13032 Δ *lrp*(pAN3K-1), 10) 13032 Δ *lrp*(pAN5K-1), 10) 13032 Δ *lrp*(PAN5K-

Die Fraktionen der Aufreinigung von C-terminal Strep-getaggtem Lrp (LrpStrep) aus *E. coli* DH5 α über eine Säule mit *Strep*Tactin-Sepharose wurden durch SDS-PAGE analysiert (Abb. 14). Durch die Affinitätschromatographie konnte eine Aufreinigung von LrpStrep erzielt werden, das Protein eluierte hauptsächlich in den Fraktionen 3 und 4. Die leichte Verunreinigung durch größere Proteine konnte durch stringenteres Waschen (und Eluieren) unter Zusatz von 100 mM NaCl deutlich verringert werden, so dass zu >95% reines Protein zur Verfügung stand (s. Abb. 15, Spur 7). In den Spuren 2 und 4 (Abb. 14) ist zu erkennen, dass LrpStrep auch in den Sedimenten von Zelltrümmern und Membranfraktion vorhanden war. Vermutlich lag das Protein zum Teil in Einschlusskörpern vor, deren Bildung erfahrungsgemäß durch Kultivierung bei niedrigerer Temperatur (z.B. 30 statt 37°C) hätte verringert werden können. Da jedoch LrpStrep in ausreichender Menge und Reinheit isoliert werden konnte, wurde das Aufreinigungsprotokoll mit Ausnahme des Kochsalzzusatzes nicht weiter modifiziert. Mit diesem Protokoll konnte auch LrpStrep aus C. glutamicum 13032/rpStrep isoliert werden (s. Abb. 15, Spuren 8 und 10), hier zeigte sich aber eine Verunreinigung durch etwa äquimolare Mengen eines 20 kDa großen Proteins.

Abbildung 14: Aufreinigung von Lrp aus *E. coli* DH5α(pAN3K-1-*lrp*) mittels *Strep*Tactin-Affinitätschromatographie

Nach Kultivierung von DH5 α (pAN3K-1-*lrp*) in LB-Medium wurde Lrp über den angefügten *Strep*-Tag II isoliert. Fraktionen der Aufreinigung wurden mittels SDS-PAGE aufgetrennt. Zur Größenbestimmung wurde vorgefärbter SeeBlue-Standard verwendet (Spuren 1, 6, 12, 13, 17 und 24). Aufgetragen wurden 2) das Sediment der Zentrifugation zum Abtrennen von Zellfragmenten, 3) der entsprechende Überstand, 4) das Sediment der Ultrazentrifugation, 5) der entsprechende Überstand, 7) der Durchlauf der *Strep*Tactin-Sepharose-Säule, 8)–11) sowie 14) die Waschfraktionen 1-5, 15)-16) sowie 18)-21) die Elutionsfraktionen 1-6, 22) die Regenerationsfraktion und 23) die abschließende Waschfraktion. Eingesetzt wurden 10 µl der Fraktionen, Sedimente wurden im Volumen des entsprechenden Überstands gelöst.

Um nachzuweisen, dass es sich bei dem 18 kDa großen Protein tatsächlich um Lrp*Strep* handelte, und um auszuschließen, dass die Verunreinigung bei 13032*lrp*Strep ein Lrp-Derivat darstellt, wurde der *Strep*-Tag mittels *Strep*Tactinalkalische Phosphatase-Konjugat und Farbdetektion im SDS-Gel nachgewiesen. In Abbildung 15 ist im rechten Teil eine Coomassie-Färbung gereinigten Lrp-Proteins aus *E. coli* DH5α(pAN3K-1-*lrp*) (Spur 7) und *C. glutamicum* 13032*lrp*Strep (Spuren 8 und 10) gezeigt. Die linke Hälfte des SDS-Polyacrylamidgels zeigt dieselben Proteine in identischer Reihenfolge nach Detektion des *Strep*-Tag. Es ist deutlich zu erkennen, dass nur das 18 kDa-Protein *Strep*-markiert war.

Um die Identität von Lrp*Strep* zweifelsfrei nachzuweisen und das 20 kDa-Protein zu identifizieren, wurden die Banden aus einem SDS-Gel ausgeschnitten, tryptisch verdaut und mittels MALDI-TOF-Massenspektrometrie analysiert. Bei den 18 kDa-Banden aus *E. coli* und *C. glutamicum* handelte es sich wie erwartet um Lrp. Bei der 20 kDa-Bande aus *C. glutamicum* handelte es sich um das hypothetische, von ORF 3225 kodierte Protein. Da nur drei Peptide zugeordnet werden konnten, wurde dieses Ergebnis durch eine PSD-Analyse (Biemann, 1990) bestätigt. Dieses

hypothetische bereits StrepTactin-Protein wurde zuvor bei einer Affinitätschromatographie von C. glutamicum-Rohextrakt mitgereinigt (Niebisch, 2002). Dies spricht gegen eine spezifische Bindung des Proteins an Lrp als Ursache der Coelution, außerdem konnte das Protein auch aus dem C. glutamicum-Wildtyp isoliert werden (SDS-Gel nicht abgebildet). Das Protein bindet also vermutlich direkt StrepTactin-Sepharose. Hierfür könnten Sequenzähnlichkeiten an die des C-Terminus von Protein 3225 zum Strep-Tag II verantwortlich sein.

Abbildung 15: Nachweis des *Strep*-Tag mittels *Strep*Tactin-alkalische Phosphatase-Konjugat im SDS-Polyacrylamidgel

Lrp*Strep* wurde mittels *Strep*Tactin-Affinitätschromatographie isoliert. Aufgetragen wurden 4 µl der Elutionsfraktion 4 von DH5 α (pAN3K-1-*lrp*) (Spuren 2 und 7) sowie 13 µl der Elutionsfraktionen 3 bzw. 4 von *C. glutamicum* 13032*lrp*Strep (Spuren 3 bzw. 5 und 8 bzw. 10). Zur Größenbestimmung wurde SeeBlue-Standard genutzt (Spuren 1, 4, 6 und 9). In der linken Hälfte (Spuren 1-5) wurde der *Strep*-Tag mittels *Strep*Tactin-alkalische Phosphatase-Konjugat und Farbdetektion nachgewiesen. Die rechte Hälfte wurde mit Coomassie gefärbt.

Nach der Aufreinigung von Lrp sollte die Funktionalität des getaggten Proteins über die Komplementation des Wachstumsdefekts von *C. glutamicum* 13032 Δ *lrp* nachgewiesen werden. Hierzu wurden Wachstumsraten von *C. glutamicum* ATCC 13032 und 13032 Δ *lrp* mit denen von 13032*lrp*Strep, 13032 Δ *lrp*(pAN3K-1-*lrp*) und 13032 Δ *lrp*(pAN5K-1-*lrp*) verglichen (Tab. 24). In Anwesenheit von L-Valin, L-Leucin und L-Isoleucin zeigte *C. glutamicum* 13032 Δ *lrp* die bereits beschriebene stärkere Wachstumshemmung. Der Stamm *C. glutamicum* 13032*lrp*Strep mit der genomischen Kopie C-terminal *Strep*-getaggten Lrps wuchs hingegen wie der Wildtyp. Das C-terminal getaggte Protein war also offenbar funktionell. Der Stamm

 $13032\Delta lrp$ (pAN3K-1-*lrp*), der das C-terminal getaggte Protein plasmidkodiert exprimierte, wuchs eher wie die *lrp*-Deletionsmutante. Hierfür gibt es zwei mögliche Erklärungen. Die höhere Kopiezahl bei plasmidkodierter Expression von *lrp* könnte sich negativ auf das Wachstum auswirken. Möglich wäre auch eine Beeinträchtigung z.B. des benachbarten *brnFE*-Promotors durch die *lrp*-Deletion. Gegen diese Erklärung spricht allerdings, dass das plasmidkodierte N-terminal getaggte Protein den Wachstumsdefekt von $13032\Delta lrp$ teilweise komplementierte (Tab. 24).

Tabelle 24: Wachstumsraten von C. glutamicum-Stämmen in An- oder Abwesenheit verzweigtkettiger Aminosäuren

Die Stämme ATCC 13032 (13032), 13032 Δ *lrp* (Δ *lrp*), 13032*lrp*Strep, 13032 Δ *lrp*(pAN3K-1-*lrp*) und 13032 Δ *lrp*(pAN5K-1-*lrp*) wurden in Ab- oder Anwesenheit von 100 mM L-Leucin (Leu), L-Isoleucin (IIe) oder L-Valin (Val) in CGXII-Medium kultiviert. Wenn angegeben (+) wurden 0,2 µg/ml Anhydrotetracyclin zur Induktion plasmidkodierter *lrp*-Gene zugesetzt.

	13032	Δlrp	13032/rpStrep	<i>∆lrp</i> -pA	N3K-Irp	<i>∆lrp</i> -pA	N5K-Irp
Anhydrotetracyclin:	-	-	-	+	-	+	-
CGXII	0,40	0,40	0,40	0,34	0,33	0,36	0,35
+ 100 mM Leu	0,34	0,25	0,35	0,20	0,22	0,31	0,20
+ 100 mM lle	0,35	0,25	0,33	0,18	0,21	0,26	0,20
+ 100 mM Val	0,39	0,34	0,38	0,32	0,31	0,35	0,33

Festzuhalten bleibt, dass das identische Wachstum von 13032*lrp*Strep und Wildtyp (Tab. 24) die Funktionalität des C-terminal *Strep*-getaggten Lrp-Proteins belegt. Somit konnte funktionelles Lrp-Protein in genügender Menge und Reinheit für den Nachweis der Bindung an Ziel-DNA (4.2.2 und 4.2.3) isoliert werden.

4.2.2 Isolierung und Identifizierung von *in vivo* an Lrp*Strep* gebundenen Zielsequenzen

Es sollte nun *in vivo* an das Regulatorprotein Lrp gebundene DNA aus *C. glutamicum* isoliert werden, um Identität und Anzahl direkt regulierter Zielgene zu bestimmen. Hierzu wurde eine Modifikation der "ChIP to chip"-Technik (lyer *et al.*, 2001; Pollack & Iyer, 2002) eingesetzt, bei der Regulatorprotein und Ziel-DNA *in vivo* mit Formaldehyd vernetzt werden, bevor das Protein zusammen mit der gebundenen DNA isoliert wird. Hier wurde der Stamm *C. glutamicum* 13032*lrp*Strep eingesetzt und statt einer Immunopräzipitation eine *Strep*Tactin-Affinitätschromatographie zur Isolierung der Lrp-DNA-Komplexe durchgeführt. Die DNA wurde während der Reinigung fragmentiert, um die Länge der isolierten Sequenzen zu begrenzen, und abschließend vom Lrp-Protein befreit. Zur Kontrolle auf unspezifisch isolierte DNA wurde dasselbe Protokoll auch mit dem Wildtyp durchgeführt. Zur Identifizierung der Zielgene wurden fluoreszenzmarkierte, komplementäre Stränge der gewonnenen DNA von Wildtyp und *C. glutamicum* 13032*lrp*Strep synthetisiert und kompetitiv auf einen DNA-Chip hybridisiert. Durchgeführt wurden zwei unabhängige DNA-Isolierungen, wobei einmal dieselbe *Strep*Tactin-Säule für beide Stämme verwendet wurde (Experimente a und b in Tab. 25), während bei der Wiederholung separate, neu gepackte Säulen eingesetzt wurden (Experimente c und d). Die DNA wurde für je zwei DNA-Chip-Hybridisierungen (mit umgekehrter Fluoreszenzmarkierung) eingesetzt. Auffällig war, dass die meisten Hybridisierungssignale eine starke, gelbe Fluoreszenz (DNA-Spiegel ≈1) aufwiesen, es wurde also viel DNA unspezifisch aus beiden Stämmen isoliert. Als *in vivo*-Bindeorte von Lrp wurden die Bereiche um die in Tabelle 25 aufgeführten Gene identifiziert.

Tabelle 25: Relative DNA-Spiegel aus "ChIP to chip"-Experimenten mit*C. glutamicum* 13032*lrp*Strep im Vergleich zur Wildtyp-Kontrolle

ORF		BI Annotation	Gon	DNA-Spiegel 13032/rpStrep/ATCC 13032 ¹						
	NCDI		Gen	а	b	С	d	Ø		
674	NCgl0253	leucine responsive regulator	Irp	1,4	2,9	1,4	1,8	1,8		
675	NCgl0254	branched-chain amino acid permease	brnF	3,9	3,3	2,4	2,5	3,0		
1855	NCgl1200	siderophore-interacting protein		2,7	2,0	1,8	2,0	2,1		
1920	NCgl2932	tryptophan synthase alpha chain	trpA			1,8	1,6	1,7		
5800		pEKEx2		2,2	2,4	2,6	2,4	2,4		
5801		pVWEx1		1,8	2,0	1,6	1,8	1,8		
5802		pK19 <i>mobsacB</i>		8,1	10,4	15,3	15,9	11,9		
5803		pXMJ19		2,3	2,2	2,0	2,2	2,2		
5804		pEC7		2,0	2,3	2,8	2,4	2,4		

Erläuterungen s. Tab. 6, außer:

¹Angegeben sind relative DNA-Spiegel 13032*lrp*Strep/ATCC 13032, soweit durchschnittlich (\emptyset) signifikant (*p*-Wert \leq 0,05) \geq 1,5-fache Änderungen zu beobachten waren. Es wurde die DNA zweier unabhängiger Isolierungen durch "ChIP to chip"-Technik (Kultivierung in LB-Vollmedium) auf die DNA-Chips der Experimente a und b bzw. c und d hybridisiert.

Mittels der "ChIP to chip"-Experimente konnte die Bindung von Lrp*Strep* an vier Zielgene nachgewiesen werden (Tab. 25). Darunter war *Irp* selbst und das benachbarte, divergent transkribierte Gen *brnF* für eine Untereinheit des Exporters verzweigtkettiger Aminosäuren. Da diese Gene eine gemeinsame Promotorregion mit direkt benachbarten -35-Regionen aufweisen (Kennerknecht *et al.*, 2002), kann mit dem durchgeführten Experiment nicht zwischen einer Bindung im *brnFE*- oder *Irp*-Promotor unterschieden werden. Es konnte bereits gezeigt werden, dass die Gene *brnFE* des Exporters in einer *Irp*-Deletionsmutante nicht mehr in Anwesenheit verzweigtkettiger Aminosäuren induziert wurden. Eine Autoregulation von *Irp* ist

bereits von anderen Organismen bekannt (Brinkman *et al.*, 2003). Das Gen *brnE* der zweiten Untereinheit des Exporters BrnFE wies im "ChIP to chip"-Experiment unveränderte DNA-Spiegel auf, Ursache ist wahrscheinlich die zu große Entfernung vom gemeinsamen *brnFE*-Promotor (*brnF* ist 750 bp lang, die isolierten DNA-Fragmente waren nur 50-600 bp lang). Als weitere Zielgene von Lrp wurden ein putatives Gen des Eisenstoffwechsels und das Tryptophan-Biosynthesegen *trpA* (Tryptophan-Synthase) identifiziert. Einen 12-fach erhöhten DNA-Spiegel in *C. glutamicum* 13032*lr*pStrep wies das Plasmid pK19*mobsacB* auf, welches direkt benachbart zu *lrp* ins Genom des Stammes integriert ist und entweder wegen der Bindung von Lrp in seinem eigenen Promotorbereich oder wegen dem völligen Fehlen im Wildtyp identifiziert wurde. Vier weitere Plasmide wiesen vermutlich aufgrund von Homologien zu pK19*mobsacB* erhöhte DNA-Spiegel auf. Als Bindeorte von Lrp wurden somit drei Regionen des *C. glutamicum*-Genoms identifiziert, neben dem *lrp-brnFE*-Promotorbereich auch die Umgebung von ORF 1855 und von *trpA*.

4.2.3 Bindung von LrpStrep in vitro an Promotorbereiche von brnF und Irp

Mittels "ChIP to chip"-Experimenten konnte nachgewiesen werden, dass das Lrp-Protein *in vivo* im gemeinsamen Promotorbereich (Kennerknecht *et al.*, 2002) seines eigenen Gens und des Exporters verzweigtkettiger Aminosäuren BrnFE bindet. Zur Identifizierung der Bindestelle wurden DNase I-Footprintanalysen mit gereinigtem Lrp-Protein und IRD800-markierten DNA-Sonden des Irp-brnFE-Promotorbereichs durchgeführt. Außerdem wurde die Bindung an einen möglichen internen Promotor vor dem Gen brnE untersucht (Kennerknecht et al., 2002), diese konnte jedoch nicht nachgewiesen werden. Die verwendeten DNA-Sonden deckten jeweils 350-400 bp vor und 70-90 bp nach dem Transkriptionsstart von Irp, brnF oder brnE ab. Im Promotorbereich zwischen Irp und brnF konnten in den komplementären DNA-Strängen sechs bzw. sieben durch die Bindung von LrpStrep vor der DNase I-Restriktion geschützte Bereiche identifiziert werden (Abb. 16). Anhand der Sequenzierreaktionen wurden die geschützten Bereiche identifiziert, in Abbildung 17 sind sie durch schwarze Hinterlegung der DNA-Sequenz der Promotorregion markiert. Neben den geschützten sind in Abbildung 16 auch hypersensitive Bereiche zu erkennen, die nach LrpStrep-Bindung besser für die DNase zugänglich waren. Dies spricht für eine Strukturänderung (Biegung) der DNA bei Lrp-Bindung. Die durch LrpStrep vor DNase I-Restriktion geschützten Sequenzen reichten von der brnF -35Region bis etwa 25 bp in das *Irp*-Gen hinein (Abb. 17). Bei beiden Promotoren stimmen Transkriptions- und Translationsstart überein (Kennerknecht *et al.*, 2002). Mit Ausnahme einer Bindestelle waren in beiden DNA-Strängen ähnliche Bereiche geschützt. Durch die Bindung in der -35-Region von *brnF* könnte eine Induktion der *brnFE*-Transkription bewirkt werden. Die Bindung im transkribierten Bereich von *Irp* deutet hingegen auf eine Repression hin.

µg Lrp-Protein Sequenzierung 10 0,1 0 А С G 1 Т

Abbildung 16: DNase I-Footprintanalysen zum Nachweis der Bindung von Lrp*Strep* im Promotorbereich der Gene *brnF* und *Irp*

Dargestellt sind Ausschnitte aus DNase I-Footprints, durch Bindung von Lrp vor Restriktion geschützte Sequenzen sind durch Striche markiert. Als Sonde wurde A) 0,6 pmol mit den Primern Irp_F* und Irp_R_b bzw. B) komplementäre, mit den Primern brnF_F und brnF_R* amplifizierte, jeweils 5'-IRD800-markierte DNA eingesetzt. Den Bindereaktionen wurden 10, 1, 0,1 bzw. 0 μ g Lrp*Strep* (aus DH5 α (pAN3K-1-*Irp*)) zugesetzt, als Cofaktoren waren je 25 mM L-Valin, L-Leucin und L-Isoleucin vorhanden. Neben den Footprints wurden Sequenzierreaktionen der PCR-Fragmente mit den Primern A) Irp_F* und B) brnF_R* aufgetragen. Geschützte Bereiche sind durch Striche markiert, hypersensitive durch Sterne.

-35

5 \ - GCGTTTTTTGCACACTACAATCATCACACAATTGCCGGGTAGTTTTG<mark>TTG</mark>C 3 \ - **CGCAAAAAACGTG**TGATGTTAGTAGTGTGTTAACGGCCCA<mark>TCA</mark>AAAC<mark>AACG</mark>

brnF	+1	-10		-35
		-10	+1	lrp

CAGTTTGCGCAC<mark>CTCA</mark>ACTAGGCT<mark>ATTGT</mark>GCA<mark>ATATATGAAGCTAGATTCCATT</mark> GTCAAACGCGT<mark>GG</mark>AGTTGATCCG<mark>ATAA</mark>CACGTTAT<mark>ATAC</mark>TTCGAT<mark>CTAA</mark>GGTAA

GATCGCGCAATTATTGCGGAGCTTAGCGCGAATGCGCGCATCTCAAATCTCGC-3 ` CTAGCGCGTTAATAACGCCTCGAATCGCGCTTACGCGCGTAGAGTTTAGAGCG-5 `

Abbildung 17: Bindung von Lrp im Promotorbereich der Gene *brnF* und *lrp* Startcodons (+1), -10- und -35-Regionen im Promotorbereich von *brnF* und *lrp* sind wie von Kennerknecht *et al.* (2002) beschrieben durch Striche markiert. Kodierende Bereiche der Gene sind in Fettdruck dargestellt. In den DNase I-Footprints durch Zugabe von Lrp*Strep* vor Restriktion geschützte Sequenzen wurden schwarz hinterlegt. Die abgebildete Sequenz entspricht dem Ausschnitt in Abbildung 16.

Beim Footprint der Abbildung 16 wurde die Bindereaktion in Anwesenheit von je 25 mM L-Valin, L-Leucin und L-Isoleucin durchgeführt, da Lrp diese Aminosäuren möglicherweise als Cofaktor zur Bindung an DNA-Sequenzen benötigt. Mit L-Leucin wurde die Abhängigkeit der Lrp-Bindung vom Cofaktor näher untersucht. Hierzu wurden der Bindereaktion eines DNase I-Footprints verschiedene Konzentrationen L-Leucin zugesetzt. Wie in Abbildung 18 exemplarisch dargestellt, wurde tatsächlich der Cofaktor für die Bindung von Lrp*Strep* an Zielsequenzen benötigt. Bei der verwendeten Proteinkonzentration waren etwa 10-20 mM L-Leucin für einen vollständigen Schutz vor der DNase-Restriktion nötig.

Abbildung 18: Abhängigkeit der Bindung von Lrp*Strep* im Promotorbereich der Gene *brnF* und *lrp* von der Konzentration des Cofaktors L-Leucin

Dargestellt ist ein Ausschnitt eines DNase I-Footprints. Eine durch Bindung von Lrp vor Restriktion geschützte DNA-Bande ist durch einen Pfeil markiert. Als Sonde wurde 0,6 pmol mit den Primern Irp_F^{*} und Irp_R_b amplifizierte, 5'-IRD800-markierte DNA eingesetzt. Den Bindereaktionen wurden 10 µg Lrp*Strep* (isoliert aus DH5 α (pAN3K-1-*Irp*)) zugesetzt, als Cofaktor war die angegebene Konzentration L-Leucin vorhanden. Neben dem Footprint wurden Sequenzierungsreaktionen des PCR-Fragments mit dem Primer Irp_F^{*} aufgetragen.

Durch die DNase I-Footprints konnten die Bindestellen von Lrp im *Irp-brnFE*-Promotorbereich identifiziert werden. Außerdem wurde nachgewiesen, dass Lrp zur Bindung einen Cofaktor wie L-Leucin benötigt.

4.3 Wachstum von *C. glutamicum* ATCC 13032, 13032∆*lrp* und 13032∆*brnFE* in Anwesenheit von Leucin, Valin oder Isoleucin

Durch die "ChIP to chip"-Experimente wurden nur vier potentielle Zielgene identifiziert, an die Lrp *in vivo* gebunden hat. Hierunter befanden sich neben *Irp* selbst die Gene *brnFE* für den Exporter verzweigtkettiger Aminosäuren.

Abbildung 19: Maximale Wachstumsraten von *C. glutamicum* ATCC 13032 (schwarze Säulen), $13032\Delta lrp$ (hellgraue Säulen) und $13032\Delta brnFE$ (dunkelgraue Säulen) in CGXII-Minimalmedium in Anwesenheit der angegebenen Konzentrationen verzweigtkettiger Aminosäuren (Val = L-Valin, Ile = L-Isoleucin, Leu = L-Leucin)

Daher wurde der Phänotyp der Irp-Deletionsmutante bei Wachstum in Anwesenheit verzweigtkettiger Aminosäuren mit dem einer *brnFE*-Deletionsmutante (Kennerknecht al., 2002) verglichen, wobei eine übereinstimmende et Wachstumsinhibition zu beobachten war (Abb. 19). Die Übereinstimmung des Phänotyps von C. glutamicum 13032∆lrp und 13032∆brnFE zeigt, dass die Regulation der zwei weiteren potentiellen Zielgene durch Lrp unter den gewählten Kultivierungsbedingungen nicht relevant war. Die fehlende Induktion des Exporters verzweigtkettiger Aminosäuren BrnFE in Anwesenheit der Substrate war also hauptsächlicher Effekt der Irp-Deletion. Die hierdurch erhöhte intrazelluläre Aminosäurekonzentration löste offenbar die Wachstumsinhibition aus.
V. Diskussion

1. Wachstum von *C. glutamicum* in Anwesenheit verzweigtkettiger Aminosäuren

Wie die experimentellen Untersuchungen in dieser Arbeit gezeigt haben, ist der Effekt verzweigtkettiger Aminosäuren auf das Wachstum von *C. glutamicum* ATCC 13032, 13032 Δ *lrp*, VAL1 und MH20-22B stammspezifisch. Daher ist es unwahrscheinlich, dass für die Wachstumsinhibition von MH20-22B wie zuvor vermutet (Eggeling *et al.*, 1997) allein die Hydrophobizität von L-Valin, L-Leucin und L-Isoleucin oder eine Fehlbeladung von tRNAs verantwortlich ist.

Mit Hilfe von globalen Genexpressionsanalysen mit DNA-Chips, Proteomanalysen und Enzymassays wurde der molekulare Mechanismus des Valinstress beim isoleucinauxotrophen Valinproduzenten *C. glutamicum* VAL1 aufgeklärt, der in Abbildung 20 als Modell dargestellt ist.

Abbildung 20: Modell des Valinstress beim Valinproduzenten C. glutamicum VAL1

Ursache der Wachstumsinhibition ist die Konkurrenz zwischen dem Supplement L-Isoleucin und L-Valin um Aufnahme in die Zelle über den Importer BrnQ. Der Na⁺- gekoppelte Symporter BrnQ ist bei *C. glutamicum* für die Aufnahme aller drei verzweigtkettigen Aminosäuren verantwortlich (Tauch *et al.*, 1998) und transportiert

diese bei K_m-Werten von 9,5, 9,0 und 5,4 μ M für Valin, Leucin und Isoleucin mit sehr ähnlichen Aufnahmeraten von 1,3, 0,94 und 1,1 nmol/min x mg Trockengewicht (Ebbighausen *et al.*, 1989). Bei Zugabe einer hohen Valinkonzentration ist die Wahrscheinlichkeit gering, dass Isoleucin an den Importer BrnQ bindet und in die Zellen von *C. glutamicum* VAL1 aufgenommen wird (Abbildung 20, Teil B). Es wurde beschrieben, dass BrnQ erst ab einer intrazellulären Isoleucinkonzentration von 0,5 mM aktiv sein soll und erst bei 5 mM die maximale Aufnahmerate erreicht wird (Boles *et al.*, 1993), was die Hemmung des Transports verstärken könnte. Durch Erhöhung der Isoleucinkonzentration (Abb. 20, Teil C) oder Verwendung eines nicht über BrnQ aufgenommenen Supplements wie Isoleucyl-Isoleucin (D) konnte die resultierende Wachstumsinhibition aufgehoben werden.

Der wichtigste Hinweis auf eine Isoleucin- oder Leucinlimitierung in Anwesenheit von Valin war der erhöhte ilvBN mRNA-Spiegel von VAL1. Transkriptomanalysen mit dem Wildtyp ergaben hingegen unveränderte bzw. reduzierte mRNA-Spiegel dieser Gene nach Wachstum in Anwesenheit von Valin. Die verstärkte ilvBN-Expression in VAL1 war überraschend, da bekannt war, dass Valin über einen Attenuationsmechanismus eine reduzierte Transkription des *ilvBNC*-Operons verursacht (Morbach et al., 2000). Die beobachtete, verschieden starke Expression der drei Gene des Operons lässt sich durch die Bildung kürzerer ilvNC- und ilvC-Transkripte neben dem ilvBNC-Transkript erklären (Keilhauer et al., 1993). Der erhöhte ilvBN mRNA-Spiegel korrelierte mit einem erhöhten IIvB Protein-Spiegel. Die von ilvBN kodierte Acetohydroxysäuresynthase (AHAS), das Schlüsselenzym der Biosynthese verzweigtkettiger Aminosäuren, wies eine 3,5-fach erhöhte Aktivität nach Wachstum von VAL1 in Anwesenheit von Valin auf. Wachstumsexperimente und AHAS-Aktivitätsmessungen unter Verwendung aller verzweigtkettigen Aminosäuren (einzeln oder in Kombination) zeigten, dass L-Leucin denselben Effekt hatte wie L-Valin und dass dieser Effekt durch Erhöhung der Isoleucinkonzentration aufgehoben wurde. L-Isoleucin alleine hatte keinen Einfluss auf Wachstum oder AHAS-Aktivität von VAL1. Hierdurch wurde ein Isoleucinmangel als eigentliche Ursache des Valinstress identifiziert, was durch die Verknüpfung der Wachstumsinhibition mit der Isoleucinauxotrophie (*ilvA*-Deletion) von VAL1 bestätigt wurde.

Bei Supplementierung mit dem Dipeptid Isoleucyl-Isoleucin wurde die Valininhibition aufgehoben, was eine kompetitive Hemmung der Isoleucinaufnahme durch Valin als molekulare Ursache des Valinstress bestätigte. Das Dipeptid wird nicht über BrnQ importiert und konkurriert daher nicht mit Valin um die Aufnahme in die Zelle. Vielmehr wird es vermutlich über ein Dipeptidaufnahmesystem wie bei *E. coli* (De Felice *et al.*, 1973; Smith *et al.*, 1999) oder eines der aus anderen Organismen bekannten Peptidtransportsysteme (Payne & Smith, 1994) aufgenommen. Das bei *C. glutamicum* VAL1 in Anwesenheit von L-Valin induzierte ABC-Transportsystem OppABCD (ORF 2092-2096) stellt möglicherweise ein solches Transportsystem dar.

Der oben beschriebene Mechanismus ist auch die Ursache für den Valin- und Isoleucinstress beim leucinauxotrophen Lysinproduzenten *C. glutamicum* MH20-22B. Dieser wird durch L-Valin und L-Isoleucin im Wachstum gehemmt. Durch Supplementation mit dem Dipeptid Alanyl-Leucin statt mit Leucin konnte die Wachstumsinhibition aufgehoben werden. Auch hier war also die kompetitive Hemmung der Supplementaufnahme in Anwesenheit der beiden anderen verzweigtkettigen Aminosäuren Ursache der Wachstumsinhibition eines auxotrophen Stammes.

Der Stamm C. glutamicum 13032∆lrp weist im Gegensatz zu VAL1 und MH20-22B keine Aminosäureauxotrophie auf, wird aber trotzdem stärker als der Wildtyp durch verzweigtkettige Aminosäuren im Wachstum gehemmt. Transkriptomanalysen zeigten, dass die Expression der Gene brnFE für den Exporter verzweigtkettiger Aminosäuren (Kennerknecht et al., 2002) in 13032∆lrp nicht mehr durch L-Leucin, L-Isoleucin oder L-Valin induziert wird (zur Regulation von BrnFE siehe 3.). Ferner wies eine *brnFE*-Deletionsmutante in Anwesenheit verzweigtkettiger Aminosäuren denselben Phänotyp auf wie *C. glutamicum* 13032∆*lrp*. Bei fehlendem Export werden also vermutlich so hohe intrazelluläre Aminosäurekonzentrationen erreicht, dass sich diese hemmend auf das Wachstum auswirken. Hierfür könnte tatsächlich - wie zunächst für C. glutamicum MH20-22B vermutet – eine Beeinträchtigung der Cytoplasmamembran durch die Hydrophobizität der verzweigtkettigen Aminosäuren oder eine Fehlbeladung von tRNAs (Eggeling *et al.*, 1997) verantwortlich sein. Auch bei *E. coli* wurde gezeigt, dass eine *lrp*-Deletion zu verstärkter Sensitivität gegen verzweigtkettige Aminosäuren führt (Quay et al., 1977), wofür unter anderem die konstitutive Expression des Importers verzweigtkettiger Aminosäuren LIV-I in der Mutante verantwortlich gemacht wurde (Haney et al., 1992; Oxender et al., 1977; Tchetina & Newman, 1995).

101

2. Regulation der Genexpression durch verzweigtkettige Aminosäuren

Die Regulation der Genexpression durch verzweigtkettige Aminosäuren bei C. glutamicum wurde durch Transkriptomanalysen nach Wachstum in Anwesenheit von L-Valin, L-Leucin oder L-Isoleucin charakterisiert. Beim Vergleich des Einflusses verzweigtkettiger Aminosäuren auf die Genexpression von C. glutamicum ATCC 13032 fällt auf, dass die Expression relativ weniger Gene durch alle drei Aminosäuren beeinflusst wird. Die Expression der Gene NCgl2918 und NCgl1635 für zwei hypothetische Proteine, NCgl2320 für eine putative Benzoat-Dioxygenase und brnFE für den Exporter verzweigtkettiger Aminosäuren wurde durch Valin, Leucin und Isoleucin gleich reguliert. Alle drei verzweigtkettigen Aminosäuren riefen eine Induktion von brnFE hervor. Vermutlich kommt es also auch intrazellulär zu einer erhöhten Konzentration von Valin, Leucin oder Isoleucin und als Folge davon zu einem verstärkten Export. Durch BrnFE werden L-Leucin und L-Isoleucin etwa gleich schnell transportiert (4 nmol/min x mg Trockengewicht), L-Valin mit einer ca. 40% geringeren Rate (Kennerknecht et al., 2002). Bei C. glutamicum 13032∆lrp war die Induktion der Gene des Transporters BrnFE nicht zu beobachten, so dass der Regulator Lrp für diesen Regulationsmechanismus notwendig ist (s. 3.). Beim Valinproduzenten VAL1 war in Anwesenheit von Valin keine verstärkte Expression des Exporters zu beobachten. Hierfür gibt es zwei mögliche Erklärungen. Entweder könnte der starke Isoleucinmangel in VAL1 der brnFE-Induktion entgegenwirken, oder das von VAL1 ohne externe Zugabe selbst produzierte Valin war für die Induktion ausreichend, so dass die Valinzugabe keine weitere Steigerung der Expression auslöste.

Bei *C. glutamicum* 13032 Δ *lrp* war die Expressionsänderung vieler Gene in Gegenwart verzweigtkettiger Aminosäuren stärker als beim Wildtyp, was durch den fehlenden Export und die dadurch erhöhte intrazelluläre Konzentration dieser Aminosäuren erklärt werden kann. Daher eignet sich dieser Stamm besser als der Wildtyp zur Charakterisierung des Einflusses verzweigtkettiger Aminosäuren auf die Genexpression von *C. glutamicum*. In Abbildung 21 ist die Anzahl der Gene dargestellt, die bei *C. glutamicum* 13032 Δ *lrp* durch Leucin, Isoleucin und/oder Valin in ihrer Expression beeinflusst wurden. Hierbei zeigt sich, dass L-Valin und L-Leucin wesentlich mehr Gene in ihrer Expression beeinflussten als L-Isoleucin. Die stärkste Übereinstimmung gab es zwischen den Expressionsänderungen durch Leucin und

Isoleucin, wohingegen kein Gen sowohl durch Valin als auch durch Isoleucin reguliert wurde. Eine größere Übereinstimmung der Genexpression in Anwesenheit von Leucin und Isoleucin im Vergleich zu Valin war auch bei einer hierarchischen Clusteranalyse der Genexpressionsdaten zu erkennen. Dies korreliert mit der ähnlich starken Wachstumsinhibition, die Leucin und Isoleucin verursachen. Valin löste im Vergleich dazu eine geringere Wachstumshemmung von *C. glutamicum* aus. Die Funktion der Gene, deren Expression unterschiedlich durch Valin im Vergleich zu Leucin und Isoleucin reguliert wurde, ließ allerdings keine Rückschlüsse auf den Mechanismus der Wachstumshemmung zu.

Abbildung 21: Anzahl der Gene, die bei *C. glutamicum* 13032∆*Irp* erhöhte (A) oder verringerte (B) Expression durch L-Valin (Val), L-Leucin (Leu) und/oder L-Isoleucin (Ile) zeigten

Sechs Gene wurden durch alle verzweigtkettigen Aminosäuren gleich reguliert (Abb. 21). Die zwei Gene mit erhöhtem mRNA-Spiegel gehören zum putativen Nitratreduktase-Operon, welches für ein Nitrat-Nitrit-Transportprotein und die vier Untereinheiten der Nitratreduktase kodiert. Die Gene zeigten auch im *C. glutamicum*-Wildtyp eine entsprechende Regulation. Ein direkter Zusammenhang der Regulation dieser Gene mit der Aminosäurezugabe ist nicht zu erkennen. Bei *E. coli* wird Nitrat unter anaeroben Bedingungen als Elektronenakzeptor genutzt. Die Induktion des *nar*-Operons erfolgt über den Regulator FNR des anaeroben Metabolismus sowie das NarX/NarL-Zweikomponentensystem, welches die Anwesenheit von Nitrat detektiert (Lynch & Lin, 1996). Die vier Gene mit reduzierter Expression kodierten für ein hypothetisches Protein, einen putativen Transkriptionsregulator und zwei Untereinheiten eines putativen ABC-Transporters zur Eisenaufnahme. Die reduzierte Expression eines Eisenaufnahmesystems kann mit der geringen Eisenkonzentration im verwendeten Medium zusammenhängen (A. Krug, persönliche Mitteilung). Durch

das verlangsamte Wachstum von *C. glutamicum* $13032\Delta lrp$ in Anwesenheit verzweigtkettiger Aminosäuren sollte das Eisen langsamer verbraucht werden. Im Wildtyp war diese Expressionsänderung entsprechend schwächer ausgeprägt. Auch die sowohl durch Leucin als auch durch Isoleucin reprimierten Gene kodierten für einige putative Eisenaufnahmesysteme, was die im Vergleich zu Valin stärkere Hemmung des Wachstums von *C. glutamicum* dokumentiert.

L-Leucin und insbesondere L-Valin lösten viele spezifische Expressionsänderungen aus. L-Leucin verursachte hierbei hauptsächlich eine reduzierte Expression weiterer Eisenaufnahmesysteme. Spezifisch für L-Valin war die Induktion einer putativen Isoleucyl-tRNA-Synthetase bei C. glutamicum ATCC 13032, 13032∆lrp und VAL1. Die Isoleucyl-tRNA-Synthetase von E. coli wird bei einem Mangel beladener exprimiert (Grunberg-Manago, Isoleucyl-tRNA verstärkt 1996), auch bei C. glutamicum könnte eine solche Regulation vorliegen. Beim isoleucinauxotrophen Stamm C. glutamicum VAL1 konnte ein Isoleucinmangel zweifelsfrei nachgewiesen und dessen Entstehung durch kompetitive Hemmung der Isoleucinaufnahme erklärt werden. Im Wildtyp könnte die verstärkte Expression des Exporters verzweigtkettiger Aminosäuren BrnFE eine verringerte intrazelluläre Isoleucinkonzentration bewirken. Diese Erklärung gilt allerdings nicht für *C. glutamicum* 13032∆*lrp*. Ein Mangel an beladener Isoleucyl-tRNA könnte alternativ durch eine Konkurrenz zwischen Valin und Isoleucin um Bindung an die Isoleucyl-tRNA entstanden sein. Die IsoleucyltRNA-Synthetase von E. coli aktiviert zu etwa 0,5% fälschlich auch Valin (Schmidt & Schimmel, 1994). Durch eine nachgeordnete Editierreaktion wird diese Fehlerrate mindestens 20-fach verringert, so dass in einem von ca. 3000 Fällen fälschlich Valin statt Isoleucin in ein Protein eingebaut wird (Loftfield & Vanderjagt, 1972). Die Korrektur benötigt Isoleucyl-tRNA (Hale et al., 1997) und erfolgt entweder vor dem Transfer des Valins auf die Isoleucyl-tRNA durch Hydrolyse des aktivierten Valins (Fersht, 1977) oder nach dem Transfer durch Hydrolyse der Aminoacylbindung (Eldred & Schimmel, 1972).

Eine Besonderheit stellt das *prpD2B2C2*-Operon dar. Während diese Gene bei *C. glutamicum* ATCC 13032 und $13032\Delta lrp$ in Gegenwart von L-Valin die am stärksten erhöhte Genexpression aufwiesen, war die Expression in Anwesenheit von L-Leucin oder L-Isoleucin verringert. Das Operon kodiert für die Enzyme 2-Methylcitrat-Synthase (PrpC2), 2-Methylcitrat-Dehydratase (PrpD2) und 2-Methylisocitrat-Lyase (PrpB2), welche essentiell für das Wachstum von

C. glutamicum mit Propionat als Kohlenstoffquelle sind (Claes et al., 2002). Die Expression des prpD2B2C2-Operons wird durch Propionat induziert (Claes et al., 2002). Das Operon weist Sequenzhomologien zu den prp-Operons von Salmonella enterica serovar typhimurium und E. coli auf, bei denen die Umsetzung von Propionyl-CoA zu Pyruvat im Methyl-Citratzyklus durch die kodierten Enzyme nachgewiesen wurde (Horswill & Escalante-Semerena, 1999; Textor et al., 1997). Bei *E. coli* werden diese Gene nur in Anwesenheit von Propionat transkribiert (Brock et al., 2002). Propionyl-CoA ist ein mögliches Intermediat beim Abbau von Valin und Isoleucin durch Bakterien (Massey et al., 1976; Zhang et al., 1996), allerdings wurden die Aminosäuren von C. glutamicum nicht als einzige Kohlenstoff- oder Stickstoffquelle verwertet. Möglicherweise blieb bei C. glutamicum der Regulationsmechanismus zur Induktion der Methylcitratzyklusgene durch Valin erhalten, während die Fähigkeit zum Valinabbau im Laufe der Evolution verloren ging. Im Stamm C. glutamicum VAL1 wurde das prpD2B2C2-Operon allerdings nicht durch Valin induziert. Eventuell verhindert bei diesem Stamm der starke Isoleucinmangel die Induktion eines möglichen gemeinsamen Valinund Isoleucinabbauweges. Offen bleibt, warum Leucin und Isoleucin zu einer Repression des Operons führten. Das zu prpD2B2C2 homologe, für das Wachstum auf Propionat nicht essentielle prpD1B1C1-Operon (Claes et al., 2002) wies ebenfalls erhöhte mRNA-Spiegel auf. Aufgrund der großen Seguenzübereinstimmung beider Operons kann hier eine Kreuzhybridisierung der *prpD1B1C1*-PCR-Produkte auf dem DNA-Chip mit der markierten prpD2B2C2-cDNA nicht ausgeschlossen werden. Sowohl DNA- als auch Proteinsequenz der homologen Gene sind zu 70-80% identisch (Claes et al., 2002). Die Regulation des prpD2B2C2-Operons durch verzweigtkettige Aminosäuren sollte weiter untersucht werden, wobei die mögliche Beteiligung am Valin- und Isoleucinkatabolismus berücksichtigt werden sollte.

Aufgrund der möglichen Bedeutung für die biotechnologische Produktion verzweigtkettiger Aminosäuren mit *C. glutamicum* war die Regulation der Biosynthese dieser Aminosäuren durch die Endprodukte interessant. Das Gen *ilvN* für die kleine Acetohydroxysäuresynthase-Untereinheit zeigte reduzierte mRNA-Spiegel nach Wachstum von *C. glutamicum* ATCC 13032 in Anwesenheit von Valin und Leucin. Das Gen bildet ein Operon zusammen mit *ilvB* (große Untereinheit der AHAS) und *ilvC* (Isomeroreduktase), die unveränderte mRNA-Spiegel aufwiesen. Das *ilvBNC*-Operon wird über einen Attenuationsmechanismus durch die

Konzentration verzweigtkettiger Aminosäuren reguliert, wobei die Transkription bis zu zweifach variiert (Morbach et al., 2000). Eine Repression des ilvB-Promotors findet hierbei erst bei einer ausreichenden Versorgung mit allen drei verzweigtkettigen Aminosäuren statt (Morbach et al., 2000). Die Bildung kürzerer ilvNC- und ilvC-Transkripte neben dem ilvBNC-Transkript (Keilhauer et al., 1993) könnte die beobachtete abweichende Regulation von *ilvN* durch Valin erklären. Die Enzymaktivität der AHAS wurde beim Wachstum des Wildtyps in Anwesenheit von L-Valin hingegen nicht beeinflusst, was die Signifikanz des verringerten ilvN mRNA-Spiegels in Frage stellt. Bei E. coli wird die Transkription von zwei der drei AHAS-Isoenzyme (AHAS I und II) über Attenuation durch Valin reprimiert (Umbarger, 1996). Allerdings hebt das Fehlen von Leucin die Repression der AHAS I (ilvBN) auf, die Repression der AHAS II (*ilvGM*) wird auch bei einem Isoleucinmangel aufgehoben (Umbarger, 1996). Also führt L-Valin bei E. coli nur dann zu verminderter AHAS-Expression, wenn alle drei verzweigtkettigen Aminosäuren in ausreichender Menge vorhanden sind. Entsprechend erscheint es sinnvoll, dass die Transkription der einzigen AHAS von C. glutamicum erst bei einem Überschuss aller drei verzweigtkettigen Aminosäuren reprimiert wird.

Mit *leuCD* wies ein Operon der Leucin-Biosynthese in *C. glutamicum* ATCC 13032, 13032 Δ *lrp* und VAL1 eine mehr als zweifach erhöhte Expression in Anwesenheit von Valin auf. Ebenso führte Isoleucin bei *C. glutamicum* ATCC 13032 und 13032 Δ *lrp* zu etwa 1,5-fach erhöhter *leuCD*-Expression. Die Regulation des *leuCD*-Operons von *C. glutamicum* wurde bisher nicht untersucht. Die Transkription des *leuABCD*-Operons von *E. coli* wird in Abhängigkeit von der Leucinkonzentration durch Attenuation kontrolliert (Wessler & Calvo, 1981). Ursache für einen Leucinmangel beim *C. glutamicum* Wildtyp könnte erneut die erhöhte *brnFE*-Transkription sein. Bei *C. glutamicum* VAL1 und 13032 Δ *lrp* käme als Ursache lediglich Konkurrenz der ähnlichen Aminosäuren Valin oder Isoleucin mit Leucin um Bindung z.B. an die Leucyl-tRNA-Synthetase in Frage. Leucin bewirkte im Gegensatz zu Valin oder Isoleucin bei *C. glutamicum* wird also auf der Ebene von Transkription oder RNA-Stabilität der Gene *leuCD* für die Isopropylmalat-Dehydratase kontrolliert.

Eine Regulation der weiteren Biosynthesegene verzweigtkettiger Aminosäuren *ilvA*, *ilvD*, *ilvE*, *leuA* und *leuB* auf mRNA-Ebene durch Valin, Leucin oder Isoleucin wurde

nicht detektiert. Die Bedeutung der Repression von *ilvN* ist fraglich, da sie die Aktivität der AHAS (IIvBN) nicht beeinträchtigte. Eine Regulation von Genen, die zur Synthese aller drei verzweigtkettigen Aminosäuren benötigt werden, wäre vermutlich nur bei einem Überschuss an L-Valin, L-Leucin <u>und</u> L-Isoleucin zu erwarten, da andernfalls ein Mangel der restlichen verzweigtkettigen Aminosäuren entstünde. Außerdem ist bekannt, dass die Aktivität vieler Enzyme des Biosynthesewegs (z.B. der von *ilvA* kodierten Threonin-Dehydratase (Miyajima & Shiio, 1972; Möckel *et al.*, 1992) durch allosterische Hemmung reguliert wird, die offenbar oft die einzige Regulation darstellt. Im Gegensatz zur Biosynthese wird der Export verzweigtkettiger Aminosäuren auf der Ebene der mRNA-Konzentration reguliert.

3. Funktion des Transkriptionsregulators Lrp in C. glutamicum

In *E. coli* kontrolliert der globale Transkriptionsregulator "Leucine responsive regulatory protein" (Lrp) (Brinkman *et al.*, 2003; Newman *et al.*, 1996; Willins *et al.*, 1991) die Expression der Gene eines AHAS-Isoenzyms und ist somit an der Regulation der Biosynthese verzweigtkettiger Aminosäuren beteiligt (Ricca *et al.*, 1989; Umbarger, 1996; Wang & Calvo, 1993). Transkriptomanalysen mit einer *Irp*-Deletionsmutante von *E. coli* (Hung *et al.*, 2002; Tani *et al.*, 2002) zeigten, dass die Deletion die Expression von etwa 400 Genen beeinflusste (Tani *et al.*, 2002), was ca. 10% aller *E. coli*-Gene entspricht. Lrp kann sowohl als Repressor als auch als Aktivator der Transkription fungieren, wobei zum Teil L-Leucin als Cofaktor benötigt wird (Brinkman *et al.*, 2003; Chen *et al.*, 2001). Bei *C. glutamicum* konnte ein zu *Irp* homologes Gen identifiziert und deletiert werden (Wessel, 2000). Die Deletionsmutante exportierte kein L-Isoleucin mehr (Kennerknecht *et al.*, 2002), weitere phänotypische Veränderungen wurden zunächst nicht festgestellt (Wessel, 2000).

Zur Identifizierung der Zielgene von Lrp bei *C. glutamicum* wurden wie bei Tani *et al.* (2002) die mRNA-Spiegel von Wildtyp und *Irp*-Deletionsmutante direkt verglichen. Zusätzlich wurden Expressionsänderungen der beiden Stämme in Anwesenheit verzweigtkettiger Aminosäuren verglichen, um Gene zu identifizieren, die im Wildtyp durch Valin, Leucin oder Isoleucin reguliert werden, in *C. glutamicum* 13032 Δ *Irp* aber nicht. Hierdurch konnten insgesamt 60 Gene identifiziert werden, deren Regulation von der Anwesenheit von Lrp abhängig war. Auffällig war, dass die Expression sehr weniger Gene sowohl im Wildtyp als auch in *C. glutamicum* 13032 Δ *Irp* ähnlich stark durch verzweigtkettige Aminosäuren beeinflusst wurde. Dies spricht für eine wichtige Rolle des Regulators Lrp bei der Vermittlung aminosäureabhängiger Regulationsmechanismen. Unter anderem war bei *C. glutamicum* 13032∆*lrp* keine Induktion des Exporters verzweigtkettiger Aminosäuren BrnFE in Anwesenheit der Substrate L-Valin, L-Leucin oder L-Isoleucin mehr zu beobachten. Diese Induktion wird also offensichtlich über den Regulator Lrp vermittelt.

Die durchgeführten Transkriptomanalysen mit *C. glutamicum* $13032\Delta lrp$ erlaubten keine Trennung direkter und indirekter Effekte der *lrp*-Deletion. Der reduzierte Export verzweigtkettiger Aminosäuren bei *C. glutamicum* $13032\Delta lrp$ (Kennerknecht *et al.*, 2002) sollte deren intrazelluläre Konzentration erhöhen und damit die Expression Lrp-unabhängig, aminosäureabhängig regulierter Gene im Vergleich zum Wildtyp verändern. Solche indirekt beeinflussten Gene konnten nicht von direkt Lrp-regulierten Genen unterschieden werden.

Um genomweit nur direkt durch Lrp regulierte Zielgene zu identifizieren, musste für C. glutamicum eine neue Technik etabliert werden. In Anlehnung an die "ChIP to chip"-Technik (Iver et al., 2001) wurden Regulatorprotein und Ziel-DNA in vivo mit Formaldehyd guervernetzt, die unbekannten Zielseguenzen wurden durch Coreinigung mit Lrp isoliert und mittels DNA-Chips identifiziert. Hierbei wurden drei Zielsequenzen gefunden. Die geringe Anzahl von Zielgenen spricht gegen eine Rolle von Lrp als globalem Transkriptionsregulator bei C. glutamicum. In vielen Bakterienarten wurden zu Lrp homologe Regulatoren identifiziert, für die ebenfalls nur eine Rolle als lokaler Regulator weniger Zielgene nachgewiesen wurde (Brinkman et al., 2003; Friedberg et al., 2001). So reguliert AzlB von B. subtilis die Expression eines Operons zum Transport verzweigtkettiger Aminosäuren (Belitsky et al., 1997), LysM reguliert Gene der Lysinbiosynthese in Sulfolobus solfataricus (Brinkman et al., 2002), PutR ein Gen des Prolinkatabolismus bei Agrobacterium tumefaciens (Jafri et al., 1999), BkdR die Expression des bkd-Operons des Katabolismus verzweigtkettiger Aminosäuren bei Pseudomonas putida (Madhusudhan et al., 1995) und das Lrp-Homolog AsnC reguliert in E. coli die Expression des Asparagin-Synthetase-Gens (Kölling & Lother, 1985). Damit bleibt die Rolle von Lrp als globaler Regulator der Genexpression auf E. coli beschränkt (Brinkman et al., 2003; Newman et al., 1996; Tani et al., 2002; Willins et al., 1991).

Der ORF 1855 (NCgl1200) wurde durch die "ChIP to chip"-Technik und die Transkriptomanalysen mit *C. glutamicum* 13032∆*lrp* als Zielgen von Lrp identifiziert. Er weist Homologien zum Gen viuB von Vibrio cholerae auf. ViuB wird zur Freisetzung an das Siderophor Vibriobactin gebundenen Eisens im Cytoplasma benötigt (Butterton & Calderwood, 1994). ORF 1855 zeigte in C. glutamicum ATCC 13032 einen zweifach erhöhten mRNA-Spiegel nach Wachstum in Anwesenheit von L-Leucin, in C. glutamicum 13032 Alrp war der mRNA-Spiegel hingegen fast zweifach reduziert. Im verwendeten Minimalmedium war die Konzentration verwertbaren Eisens gering, weshalb bei unterschiedlichen Wachstumsraten häufig Gene für Eisentransportsysteme veränderte mRNA-Spiegel aufwiesen. Die meisten dieser Effekte können durch Erhöhung der Eisenkonzentration vermieden werden (A. Krug, persönliche Mitteilung). Die reduzierte Expression von ORF 1855 in C. glutamicum 13032 *Lrp* bei Leucinzugabe kann also durch den verringerten Eisenbedarf bei reduziertem Wachstum erklärt werden. Der positive Effekt von Leucin auf die Expression von ORF 1855 im Wildtyp ließe sich hingegen durch eine dort vorhandene Regulation durch Lrp erklären. Anscheinend wirkt Lrp zusammen mit dem Cofaktor L-Leucin als Aktivator der Transkription von ORF 1855. Um die Regulation von ORF 1855 über Lrp und Leucin sicher nachzuweisen, sollte die Bindung von Lrp am Promotor von ORF 1855 auch in vitro über DNase-Footprints nachgewiesen werden. Da weitere putative Eisen-Aufnahmesysteme im Wildtyp eine unerwartet erhöhte Genexpression in Anwesenheit von Leucin aufwiesen, wäre eine Untersuchung des entsprechenden Regulationsmechanismus interessant. Eine Bindung von Lrp im Promotorbereich dieser Gene wurde bei der "ChIP to chip"-Analyse nicht detektiert. Möglicherweise ist also ein weiterer Regulator beteiligt, der für die Expressionsänderung aller Eisenaufnahmesysteme verantwortlich ist, vielleicht hat ORF 1855 auch selbst eine regulatorische Funktion. Eine Regulation des Eisenstoffwechsels durch einen zu Lrp homologen, lokalen Regulator konnte bisher nicht nachgewiesen werden. In anderen Organismen regulieren Lrp-ähnliche Regulatoren meist Gene des Aminosäure-Anabolismus, -Katabolismus oder -Transports (s. obige Beispiele).

Vor ORF 1855 liegen die Gene der drei putativen Glutamyl-tRNA-Amidotransferase-Untereinheiten, wovon das am weitesten von ORF 1855 entfernte Gen divergent transkribiert wird (Abb. 22A). Glutamyl-tRNA-Amidotransferasen transaminieren an Glutaminyl-tRNA gebundenes Glutamat zu Glutamin und sind besonders bei Organismen ohne Glutaminyl-tRNA-Synthetase von Bedeutung, als Amidodonor können hierbei Glutamin, Asparagin oder Ammonium genutzt werden (Jahn *et al.*, 1990). Stromabwärts von ORF 1855 folgen die ORFs zweier divergent transkribierter, hypothetischer Proteine. Die Funktion der Nachbargene lässt nicht auf eine gemeinsame Regulation mit ORF 1855 schließen.

Abbildung 22: Umgebung der potentiellen Zielgene von Lrp im Genom von *C. glutamicum*, A) ORF 1855 und B) *trpA* (Gene unbestätigter Funktion in Klammern)

Als weiteres Zielgen von Lrp bei C. glutamicum wurde trpA identifiziert, das für die α -Untereinheit der Tryptophan-Synthase kodiert. Stromaufwärts von *trpA* liegen das Gen eines putativen Tryptophan-Transporters und fünf weitere Tryptophan-Biosynthesegene (Abb. 22B). Direkt vor trpA liegt hierbei das Gen trpB der β-Untereinheit der Tryptophan-Synthase. Stromabwärts von *trpA* folgen im Genom die divergent transkribierten Gene zweier hypothetischer Proteine. Da die Gene der Tryptophan-Biosynthese in C. glutamicum als Operon organisiert sind (Heery & Dunican, 1993), sollte ein Regulator eigentlich vor dem ersten Gen des Operons (trpE) binden. Innerhalb des trpEGDCBA-Operons von C. glutamicum wurde allerdings ein zusätzlicher Tryptophan-Synthase-Promotor vor trpB nachgewiesen (O'Gara & Dunican, 1994). Möglicherweise wird nur dieser durch Lrp reguliert, auch dann hätte allerdings neben *trpA* vor allem *trpB* bei der "ChIP to chip"-Analyse identifiziert werden müssen. Bei den Transkriptomanalysen mit C. glutamicum $13032 \Delta lrp$ wurde weder trpA noch trpB als Zielgen von Lrp identifiziert. Hierfür könnte verantwortlich sein, dass die Transkriptomanalysen in Minimalmedium ohne Tryptophanzugabe durchgeführt wurden, während bei den "ChIP to chip"-Experimenten Vollmedium verwendet wurde, das auch Tryptophan enthielt. Zusammen mit den fehlenden Hinweisen auf einen eigenen *trpA*-Promotor und der fehlenden Lrp-Bindung vor trpB stellt dieses Ergebnis allerdings die Regulation der Tryptophan-Synthase-Gene durch Lrp in Frage. Bei *E. coli* werden alle Tryptophan-Biosynthesegene gemeinsam als Operon transkribiert, die Regulation des *trpEDCBA*-Operons erfolgt Tryptophan-abhängig durch den Repressor TrpR (Pittard, 1996), der nicht zu Lrp homolog ist. Eine Regulation der Tryptophan-Biosynthese durch Lrp-ähnliche Regulatoren wurde bisher in keinem anderen Organismus gezeigt. Eine Regulation des Gens *trpA* von *C. glutamicum* durch Lrp erscheint daher trotz der "ChIP to chip"-Ergebnisse unwahrscheinlich, das Ergebnis sollte durch *in vitro*-Bindungsstudien (DNase-Footprint- oder Bandshift-Experimente) überprüft werden.

Wichtigstes Zielgen von Lrp bei *C. glutamicum* ist der gemeinsame Exporter verzweigtkettiger Aminosäuren BrnFE. Darauf weisen Wachstumsexperimente hin, bei denen eine *brnFE*-Deletionsmutante denselben Phänotyp aufwies wie die *lrp*-Deletionsmutante. Die Transkriptomanalysen mit *C. glutamicum* $13032\Delta lrp$ zeigten, dass die *brnFE*-Expression bei *C. glutamicum* $13032\Delta lrp$ nicht mehr durch verzweigtkettige Aminosäuren induziert wird. Dies wurde auch mit *cat*-Reporterfusionen des *brnF*-Promotors in *C. glutamicum* ATCC 13032 und $13032\Delta lrp$ gezeigt (N. Kennerknecht, pers. Mitteilung). Im Wildtyp bewirkte 100 mM L-Leucin die stärkste (130-fach im Vergleich zur Kontrolle), L-Isoleucin eine mittlere (40-fach) und L-Valin die geringste (20-fach) Induktion des *brnF*-Promotors. Die geringere Induktion durch Valin korreliert mit der schwächeren Wachstumsinhibition von *C. glutamicum* in Gegenwart von Valin.

Im *Irp-brnF*-Promotorbereich (Kennerknecht *et al.*, 2002) konnte eine Bindung von Lrp sowohl *in vivo* mit "ChIP to chip"-Experimenten als auch *in vitro* mit DNase I-Footprints nachgewiesen werden. Hierzu war ein Cofaktor nötig. Neben einem Gemisch aller verzweigtkettigen Aminosäuren war auch L-Leucin allein ausreichend. Da auch L-Valin oder L-Isoleucin bei *C. glutamicum* ATCC 13032 einen erhöhten *brnFE* mRNA-Spiegel hervorriefen, fungieren auch diese Aminosäuren vermutlich als Cofaktor bei der Lrp-Bindung.

Die Bindung von Lrp erfolgte an sieben Positionen innerhalb von ca. 75 Basenpaaren im *lrp-brnF*-Promotorbereich. Die Länge dieser DNA-Sequenz deutet auf die Bindung mehrerer Lrp-Moleküle hin. Die Bindung erfolgt wahrscheinlich unter Biegung der DNA, was die bessere Zugänglichkeit einiger Sequenzen für den DNase-Abbau nach der Lrp-Bindung erklärt. Die einzelnen Bindestellen wiesen uneinheitliche DNA-Sequenzen auf, eine Konsensussequenz konnte daher nicht bestimmt werden. Auffällig war allerdings der hohe Anteil an Adenin und Thymin innerhalb der Lrpgebundenen DNA-Sequenzen. Experimente mit degenerierten Oligonukleotiden zur Identifizierung der Bindesequenz von Lrp bei *E. coli* ergaben ebenfalls einen hohen AT-Gehalt der Bindestelle, die Sequenz war weniger stark konserviert als die Bindesequenzen anderer Regulatoren (Cui *et al.*, 1995). Die Bindestellen von Regulatoren des Lrp-Typs weisen häufig keine perfekten Symmetrieelemente auf (Brinkman *et al.*, 2003; Calvo & Matthews, 1994), vielmehr wird die Kooperativität der Bindung an mehrere suboptimale Bindestellen für die hochaffine Lrp-Bindung verantwortlich gemacht (Cui *et al.*, 1995; Wang & Calvo, 1993). So band das Lrp-Homolog PutR bei *A. tumefaciens* an mehreren Stellen einer ca. 100 bp langen Sequenz, wodurch die DNA zu einer globulären Struktur kondensierte (Jafri *et al.*, 1999). Bei *E. coli* waren die sechs Lrp-Bindestellen im *ilvIH*-Promotor sogar über einen Bereich von 200-250 bp verteilt (Marasco *et al.*, 1994; Wang & Calvo, 1993).

Die Funktion von Lrp als Aktivator der *brnFE*-Transkription wurde durch die Bindung in der -35-Region des gemeinsamen *brnFE*-Promotors unterstützt. Bei *lrp* selbst reichten die Bindestellen hingegen etwa 25 bp in den transkribierten Bereich hinein, was auf eine negative Autoregulation hindeutet. Bei *E. coli* konnte eine solche negative Autoregulation der *lrp*-Expression (Wang *et al.*, 1994) und auch der *asnC*-Expression (Kölling & Lother, 1985) gezeigt werden, allerdings wurden die Lrp- bzw. AsnC-Bindestellen in den eigenen Promotoren nicht lokalisiert. Bei PutR von *A. tumefaciens* (Jafri *et al.*, 1999) und BkdR von *P. putida* (Madhusudhan *et al.*, 1995) war die Autoregulation wie bei *C. glutamicum* mit einer Bindung im transkribierten Bereich des Gens verbunden. Zum Nachweis der negativen Autoregulation von Lrp bei *C. glutamicum* könnten Reportergenfusionen hergestellt werden, bei denen der Anfangsbereich von *lrp* (Basenpaare von ca. -50 bis +25) mit einem Reportergen ohne eigenes Startcodon verbunden werden müsste.

Die Regulation der Gene *brnFE* und *Irp* ist im Modell der Abbildung 23 schematisch dargestellt. Nach Bindung von Leucin, Isoleucin oder Valin an Lrp kann Lrp im *Irp-brnF*-Promotorbereich binden und die Transkription der Gene regulieren. Hierbei wird die *brnFE*-Transkription induziert, so dass verzweigtkettige Aminosäuren verstärkt exportiert werden. Gleichzeitig wird die Transkription von *Irp* reprimiert, so dass die Stärke der *brnFE*-Induktion moduliert werden kann.

Abbildung 23: Modell der Regulation von Irp, brnF und brnE durch Lrp

In vielen Organismen sind mehrere Lrp-ähnliche Regulatoren vorhanden. In E. coli gibt es neben dem globalen Regulator Lrp auch den lokalen Regulator AsnC, der das asnA-Gen für die Asparagin-Synthetase induziert (Kölling & Lother, 1985). Erneute Sequenzanalysen im mittlerweile vollständig sequenzierten C. glutamicum-Genom (Kalinowski et al., 2003; Ikeda & Nakagawa, 2003) identifizierten einen weiteren Regulator vom Lrp-Typ (ORF 3753, NCgl2567). Dessen Aminosäuresequenz stimmt zu 27% mit der von Lrp (C. glutamicum) überein. Mit Lrp von E. coli ist ORF 3753 zu 30% identisch (Lrp von C. glutamicum zu 32%), zu AsnC von E. coli zu 24% (Lrp von C. glutamicum zu 21%). Das neu gefundene Lrp-Homolog ist also ortholog zu Lrp von E. coli (s. auch Abb. 24). Benachbart zu ORF 3753 liegt ein divergent transkribierter putativer Aminosäuretransporter (ORF 3752, NCgl2566) mit Homologie zu Lysin- und Threoninexportern verschiedener Bakterien. Diese Genanordnung entspricht der von Irp und brnFE und lässt auf eine Rolle von ORF 3753 als Regulator des Nachbargens schließen.

Abbildung 24: Vergleich der Aminosäuresequenzen von Regulatoren des Lrp-Typs von *C. glutamicum* (Cg) und *E. coli* (Ec) (Alignment erstellt mit BioEdit, Hall (1999))

Das Alignment der Abbildung 24 zeigt, dass besonders viele konservierte Aminosäuren im N-terminalen Bereich der verglichenen Regulatorproteine liegen. LrpA von *Pyrococcus furiosus*, dessen Kristallstruktur bekannt ist, weist dort eine DNA-Bindedomäne des Helix-Turn-Helix-Typs auf (Leonard *et al.*, 2001). Vermutlich ist also auch bei den verglichenen Lrp-ähnlichen Regulatoren von *C. glutamicum* und *E. coli* der N-terminale Bereich für die DNA-Bindung verantwortlich und deshalb besonders stark konserviert. Der C-terminale Bereich von Lrp ist für die Multimerisierung des Proteins (Brinkman *et al.*, 2003) und auch für die Cofaktorbindung über die kürzlich identifizierte "RAM"-Domäne (Regulator of Amino acid Metabolism) verantwortlich (Ettema *et al.*, 2002). Da der Cofaktor bei verschiedenen Regulatoren der Lrp-Familie variieren kann, erklären diese Funktionen die weniger stark konservierte Sequenz des C-Terminus von Lrp.

Festzuhalten bleibt, dass durch die "ChIP to chip"-Technik drei putative Zielgene des Transkriptionsregulators Lrp von *C. glutamicum* identifiziert werden konnten, der damit eine spezifische, lokale Regulation ausübt. Für den Promotorbereich zwischen dem *Irp*-Gen und dem Operon *brnFE* für den Exporter verzweigtkettiger Aminosäuren konnte die Bindung durch weitere Experimente nachgewiesen werden. Eine Lrp-abhängige Regulation der Biosynthese verzweigtkettiger Aminosäuren liegt bei *C. glutamicum* im Gegensatz zu *E. coli* nicht vor.

4. Optimierung der biotechnologischen Produktion verzweigtkettiger Aminosäuren mit *C. glutamicum*

Bei der Untersuchung des Valinstress im Valinproduzenten VAL1 zeigte sich, dass eine externe Valinzugabe die Valinproduktion positiv beeinflusst. In Medium mit 175 mM L-Valin stieg die Valinproduktion um 50%. Hierfür gibt es zwei mögliche Ursachen. Das durch die Isoleucinlimitation verringerte Wachstum sollte die Valinproduktion gegenüber der Biomassebildung bevorzugen, daher sollte auch bei künftigen Verfahren zur fermentativen Herstellung von L-Valin mit C. glutamicum das Wachstum z.B. durch eine Auxotrophie limitiert werden. Die Lysin-Biosynthese in *C. glutamicum*-Produktionsstämmen konnte durch Einbringen einer Leucinauxotrophie und Kultivierung unter Leucinlimitation um 50% gesteigert werden, wofür das verringerte Wachstum verantwortlich gemacht wurde (Patek et al., 1994). Bei Untersuchungen zur Lysinproduktion mit C. glutamicum wurden außerdem Hinweise darauf erhalten, dass eine Wachstumslimitierung die Verfügbarkeit von Pyruvat erhöht (Eggeling *et al.*, 1998), welches als Substrat der Valin-Biosynthese benötigt wird. Weiterhin dürfte die erhöhte AHAS-Aktivität zur gesteigerten Valinproduktion beigetragen haben. Zur weiteren Verbesserung des Produktionsstamms sollte also die Überexpression der Gene *ilvB* und *ilvN* verstärkt werden. Hierzu könnte ein starker, konstitutiver Promotor statt des *ilvBNC*-Promotors verwendet werden, wodurch möglicherweise auch der negative Einfluss von Valin auf die *ilvN*-Transkription vermieden würde. Da das Intermediat Ketoisovalerat der Valin-Biosynthese auch zur Leucin-Synthese benötigt wird, sollte die AHAS auch in einem *C. glutamicum*-Leucinproduzenten entsprechend überexprimiert werden.

Bei den Proteomanalysen mit *C. glutamicum* VAL1 wurde ein möglicher C-terminaler Abbau der großen Acetohydroxysäuresynthase-Untereinheit beobachtet. Die Ursache für die Entstehung von IIvB-Proteinbanden mit verschiedenem pl und die Auswirkung dieser Modifikation auf die AHAS-Aktivität sollte näher untersucht werden. Falls sich der mögliche Abbau negativ auf die AHAS-Aktivität auswirkt, sollte er reduziert werden, was eventuell durch gezielte Modifikation der AHAS-Sequenz zu erreichen wäre. Ein Abbau der AHAS wäre auch für die Leucin- und Isoleucin-Produktion mit *C. glutamicum* von Bedeutung.

Die Transkriptomanalysen mit *C. glutamicum* ATCC 13032 ergaben, dass die Leucin-Biosynthesegene *leuC* und *leuD* eine verringerte Expression in Anwesenheit von L-Leucin aufwiesen. Diese Regulation sollte bei einem Leucin-Produktionsstamm z.B. durch Expression des *leuCD*-Operons ausgehend von einem nicht leucinregulierten Promotor beseitigt werden.

Messungen intrazellulärer Aminosäurekonzentrationen zeigten, dass der Export von L-Valin (I. Denina, persönliche Mitteilung) und L-Isoleucin (Morbach et al., 1996) in den vorhandenen Produktionsstämmen limitierend ist. Die Wachstumsexperimente mit der Irp- und der brnFE-Deletionsmutante zeigten, dass durch den fehlenden Export verursachte hohe intrazelluläre Konzentrationen verzweigtkettiger Aminosäuren toxisch für C. glutamicum sind. Daher sollten die Gene brnFE des Exporters in C. glutamicum-Produktionsstämmen für verzweigtkettige Aminosäuren überexprimiert werden. An den natürlichen brnFE-Promotor band der Aktivator Lrp erst ab einer Konzentration des Coaktivators L-Leucin von etwa 10-20 mM. Für einen effektiven Export bereits zu Beginn der Produktion verzweigtkettiger Aminosäuren sollte die brnFE-Expression daher nicht mehr Lrp-reguliert sein, wozu der Promotor ausgetauscht werden müsste.

VI. Literaturverzeichnis

Abe, S., Takayama, K.-I. and Kinoshita, S. (1967) Taxonomical studies on glutamic acid-producing bacteria. *J Gen Appl Microbiol*, **13**: 279-301.

Andrews, J. C., Blevins, T. C. and Short, S. A. (1986) Regulation of peptide transport in *Escherichia coli*: induction of the *trp*-linked operon encoding the oligopeptide permease. *J Bacteriol*, **165**: 428-433.

Arfin, S. M., Long, A. D., Ito, E. T., Tolleri, L., Riehle, M. M., Paegle, E. S. and Hatfield, G. W. (2000) Global gene expression profiling in *Escherichia coli* K12. The effects of integration host factor. *J Biol Chem*, **275**: 29672-29684.

Barak, Z., Kogan, N., Gollop, N. and Chipman, D. M. (1990) Importance of AHAS isozymes in branched chain amino acid biosynthesis. *In* Barak Z., Chipman D. M. and Schloss J. V. (ed.), Biosynthesis of branched chain amino acids. VCH Verlagsgesellschaft, Weinheim, 91-107.

Belitsky, B. R., Gustafsson, M. C., Sonenshein, A. L. and Von Wachenfeldt, C. (1997) An *Irp*-like gene of *Bacillus subtilis* involved in branched-chain amino acid transport. *J Bacteriol*, 179: 5448-5457.

Biemann, K. (1990) Nomenclature for peptide fragment ions. *In* Mc Closkey, J. A. (ed.), Methods in Enzymology. Academic Press, New York, Vol. 193, 886-888.

Birnboim, H. C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. *Nucleic Acids Res*, **7**: 1513-1523.

Boles, E., Ebbighausen, H., Eikmanns, B. J. and Krämer, R. (1993) Unusual regulation of the uptake system for branched-chain amino acids in *Corynebacterium glutamicum*. *Arch Microbiol*, **159**: 147-152.

Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem*, **72**: 248-254.

Brinkman, A. B., Bell, S. D., Lebbink, R. J., de Vos, W. M. and van der Oost, J. (2002) The *Sulfolobus solfataricus* Lrp-like protein LysM regulates lysine biosynthesis in response to lysine availability. *J Biol Chem*, **277**: 29537-29549.

Brinkman, A. B., Ettema, T. J., de Vos, W. M. and van der Oost, J. (2003) The Lrp family of transcriptional regulators. *Mol Microbiol*, **48**: 287-294.

Brock, M., Maerker, C., Schütz, A., Völker, U. and Buckel, W. (2002) Oxidation of propionate to pyruvate in *Escherichia coli*. *Eur J Biochem*, **269**: 6184-6194.

Butterton, J. R. and Calderwood, S. B. (1994) Identification, cloning, and sequencing of a gene required for ferric vibriobactin utilization by *Vibrio cholerae*. *J Bacteriol*, **176**: 5631-5638.

Calvo, J. M. and Matthews, R. G. (1994) The leucine-responsive regulatory protein, a global regulator of metabolism in *Escherichia coli*. *Microbiol Rev*, **58**: 466-490.

Cassey, B., Guest, J. R. and Attwood, M. M. (1998) Environmental control of pyruvate dehydrogenase complex expression in *Escherichia coli*. *FEMS Microbiol Lett*, **159**: 325-329.

Chen, S., Hao, Z., Bieniek, E. and Calvo, J. M. (2001) Modulation of Lrp action in *Escherichia coli* by leucine: effects on non- specific binding of Lrp to DNA. *J Mol Biol*, **314**: 1067-1075.

Chipman, D. M., Gollop, N., Damri, B. and Barak, Z. (1990) Kinetics and mechanism of acetohydroxyacid synthases. *In* Barak Z., Chipman D. M. and Schloss J. V. (ed.), Biosynthesis of branched chain amino acids. VCH Verlagsgesellschaft, Weinheim, 243-267.

Chipman, D., Barak, Z. and Schloss, J. V. (1998) Biosynthesis of 2-aceto-2hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. *Biochim Biophys Acta*, 1385: 401-419.

Claes, W. A., Pühler, A. and Kalinowski, J. (2002) Identification of two *prpDBC* gene clusters in *Corynebacterium glutamicum* and their involvement in propionate degradation via the 2-methylcitrate cycle. *J. Bacteriol.*, **184**: 2728-2739.

Cremer, J., Eggeling, L. and Sahm, H. (1990) Cloning the *dapA dapB* cluster of the lysine-secreting bacterium *Corynebacterium glutamicum*. *Mol Gen Genet*, **220**: 478-480.

Cui, Y., Wang, Q., Stormo, G. D. and Calvo, J. M. (1995) A consensus sequence for binding of Lrp to DNA. *J Bacteriol*, **177**: 4872-4880.

De Felice, M., Guardiola, J., Lamberti, A. and Iaccarino, M. (1973) *Escherichia coli* K-12 mutants altered in the transport systems for oligo- and dipeptides. *J Bacteriol*, **116**: 751-756.

De Felice, M., Newman, T. and Levinthal, M. (1978) Regulation of synthesis of the acetohydroxy acid synthase I isoenzyme in *Escherichia coli* K-12. *Biochim Biophys Acta*, **541**: 1-8.

De Felice, M., Levinthal, M., Iaccarino, M. and Guardiola, J. (1979) Growth inhibition as a consequence of antagonism between related amino acids: effect of valine in *Escherichia coli* K-12. *Microbiol Rev*, **43**: 42-58.

Degenkolb, J., Takahashi, M., Ellestad, G. A. and Hillen, W. (1991) Structural requirements of tetracycline-Tet repressor interaction: determination of equilibrium binding constants for tetracycline analogs with the Tet repressor. *Antimicrob Agents Chemother*, **35**: 1591-1595.

Delforge, J., Messenguy, F. and Wiame, J. M. (1975) The regulation of arginine biosynthesis in *Saccharomyces cerevisiae*. The specificity of *argR*-mutations and the general control of amino-acid biosynthesis. *Eur J Biochem*, **57**: 231-239.

Ebbighausen, H., Weil, B. and Krämer, R. (1989) Transport of branched-chain amino acids in *Corynebacterium glutamicum*. Arch Microbiol, **151**: 238-244.

Eggeling, I., Cordes, C., Eggeling, L. and Sahm, H. (1987) Regulation of acetohydroxy acid synthase in *Corynebacterium glutamicum* during fermentation of α -ketobutyrate to L-isoleucine. *Appl Microbiol Biotechnol*, **25**: 346-351.

Eggeling, L., Scheer, E., Cordes, C., Nassenstein, A., Eggeling, I. and Sahm, H. (1990) Isoleucine formation from hydroxybutyrate with *Corynebacterium glutamicum*: Biochemistry, limiting reactions, genes. *In* Barak Z., Chipman D. M. and Schloss J. V. (ed.), Biosynthesis of branched chain amino acids. VCH Verlagsgesellschaft, Weinheim, 179-191.

Eggeling, L., Morbach, S. and Sahm, H. (1997) The fruits of molecular physiology: engineering the L-isoleucine biosynthesis pathway in *Corynebacterium glutamicum*. *J Biotechnol*, **56**: 167-182.

Eggeling, L., Oberle, S. and Sahm, H. (1998) Improved L-lysine yield with *Corynebacterium glutamicum*: use of *dapA* resulting in increased flux combined with growth limitation. *Appl Microbiol Biotechnol*, **49**: 24-30.

Eggeling, L. (2001) Amino acids. *In* Ratledge C. and Kristiansen B. (ed.), Basic Biotechnology. Cambridge University Press, London, 281-303.

Eikmanns, B. J., Eggeling, L. and Sahm, H. (1993) Molecular aspects of lysine, threonine, and isoleucine biosynthesis in *Corynebacterium glutamicum*. *Antonie Van Leeuwenhoek*, **64**: 145-163.

Eikmanns, B. J., Thum-Schmitz, N., Eggeling, L., Ludtke, K. U. and Sahm, H. (1994) Nucleotide sequence, expression and transcriptional analysis of the *Corynebacterium glutamicum gltA* gene encoding citrate synthase. *Microbiology*, **140**: 1817-1828.

Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. *Proc Natl Acad Sci U S A*, **95**: 14863-14868.

Eldred, E. W. and Schimmel, P. R. (1972) Rapid deacylation by isoleucyl transfer ribonucleic acid synthetase of isoleucine-specific transfer ribonucleic acid aminoacylated with valine. *J Biol Chem*, **247**: 2961-2964.

Eoyang, L. and Silverman, P. M. (1986) Role of small subunit (IIvN polypeptide) of acetohydroxyacid synthase I from *Escherichia coli* K-12 in sensitivity of the enzyme to valine inhibition. *J Bacteriol*, **166**: 901-904.

Ettema, T. J., Brinkman, A. B., Tani, T. H., Rafferty, J. B. and Van Der Oost, J. (2002) A novel ligand-binding domain involved in regulation of amino acid metabolism in prokaryotes. *J Biol Chem*, **277**: 37464-37468.

Farwick, M., Siewe, R. M. and Krämer, R. (1995) Glycine betaine uptake after hyperosmotic shift in *Corynebacterium glutamicum*. J Bacteriol, 177: 4690-4695.

Feinberg, A. P. and Vogelstein, B. (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. *Anal Biochem*, **132**: 6-13.

Ferrario, M., Ernsting, B. R., Borst, D. W., Wiese, D. E. 2nd, Blumenthal, R. M. and Matthews, R. G. (1995) The leucine-responsive regulatory protein of *Escherichia coli* negatively regulates transcription of *ompC* and *micF* and positively regulates translation of *ompF*. *J Bacteriol*, **177**: 103-113.

Fersht, A. R. (1977) Editing mechanisms in protein synthesis. Rejection of valine by the isoleucyl-tRNA synthetase. *Biochemistry*, **16**: 1025-1030.

Fountoulakis, M. and Langen, H. (1997) Identification of Proteins by Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry Following In-Gel Digestion in Low-Salt, Nonvolatile Buffer and Simplified Peptide Recovery. *Anal Biochem*, **250**: 153-156.

Friden, P., Newman, T. and Freundlich, M. (1982) Nucleotide sequence of the *ilvB* promoter-regulatory region: a biosynthetic operon controlled by attenuation and cyclic AMP. *Proc Natl Acad Sci U S A*, **79**: 6156-6160.

Friedberg, D., Midkiff, M. and Calvo, J. M. (2001) Global versus local regulatory roles for Lrp-related proteins: *Haemophilus influenzae* as a case study. *J Bacteriol*, **183**: 4004-4011.

Galas, D. J. and Schmitz, A. (1978) DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. *Nucleic Acids Res*, **5**: 3157-3170.

Galas, D. J. (2001) The invention of footprinting. *Trends Biochem Sci*, 26: 690-693.

Gornall, A. G., Bardawill, C. J. and David, M. M. (1949) Determination of serum proteins by means of biuret reaction. *J Biol Chem*, **177**: 751-766.

Gourdon, P. and Lindley, N. D. (1999) Metabolic analysis of glutamate production by *Corynebacterium glutamicum*. *Metab Eng*, **1**: 224-231.

Grunberg-Manago, M. (1996) Regulation of the expression of aminoacyl-tRNA synthetases and translation factors. *In* Neidhardt F. C., Curtiss R., Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M. and Umbarger H. E. (ed.), *Escherichia coli* and *Salmonella*. ASM Press, Washington, 1432-1457.

Guardiola, J., De Felice, M., Lamberti, A. and laccarino, M. (1977) The acetolactate synthase isoenzymes of *Escherichia coli* K-12. *Mol Gen Genet*, **156**: 17-25.

Gutmann, M., Hoischen, C. and Krämer, R. (1992) Carrier-mediated glutamate secretion by *Corynebacterium glutamicum* under biotin limitation. *Biochim Biophys Acta*, **1112**: 115-123.

Hale, S. P., Auld, D. S., Schmidt, E. and Schimmel, P. (1997) Discrete Determinants in Transfer RNA for Editing and Aminoacylation. *Science*, **276**: 1250-1252.

Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucl Acids Symp Ser*, **41**: 95-98.

Hanahan, D. (1983) Studies on transformation of *Escherichia coli* with plasmids. *J Mol Biol*, 166: 557-580.

Haney, S. A., Platko, J. V., Oxender, D. L. and Calvo, J. M. (1992) Lrp, a leucineresponsive protein, regulates branched-chain amino acid transport genes in *Escherichia coli*. J Bacteriol, **174**: 108-115.

Hauser, C. A. and Hatfield, G. W. (1984) Attenuation of the *ilvB* operon by amino acids reflecting substrates or products of the *ilvB* gene product. *Proc Natl Acad Sci U S A*, 81: 76-79.

Heery, D. M. and Dunican, L. K. (1993) Cloning of the *trp* gene cluster from a tryptophan-hyperproducing strain of *Corynebacterium glutamicum*: identification of a mutation in the *trp* leader sequence. *Appl Environ Microbiol*, **59**: 791-799.

Horswill, A. R. and Escalante-Semerena, J. C. (1999) Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle. *J Bacteriol*, **181**: 5615-5623.

Hung, S. P., Baldi, P. and Hatfield, G. W. (2002) Global gene expression profiling in *Escherichia coli* K12. The effects of leucine-responsive regulatory protein. *J Biol Chem*, **277**: 40309-40323.

Ikeda, M. and Nakagawa, S. (2003) The *Corynebacterium glutamicum* genome: features and impacts on biotechnological processes. *Appl Microbiol Biotechnol*, **62**: 99-109.

Innis, M. A., Myambo, K. B., Gelfand, D. H. and Brow, M. A. (1988) DNA sequencing with *Thermus aquaticus* DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. *Proc Natl Acad Sci U S A*, **85**: 9436-9440.

Inoue, H., Nojima, H. and Okayama, H. (1990) High efficiency transformation of *Escherichia coli* with plasmids. *Gene*, **96**: 23-28.

Iyer, V. R., Horak, C. E., Scafe, C. S., Botstein, D., Snyder, M. and Brown, P. O. (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. *Nature*, **409**: 533-538.

Jackowski, S. and Rock, C. O. (1981) Regulation of coenzyme A biosynthesis. *J Bacteriol*, 148: 926-932.

Jafri, S., Evoy, S., Cho, K., Craighead, H. G. and Winans, S. C. (1999) An Lrp-type transcriptional regulator from *Agrobacterium tumefaciens* condenses more than 100 nucleotides of DNA into globular nucleoprotein complexes. *J Mol Biol*, **288**: 811-824.

Jahn, D., Kim, Y. C., Ishino, Y., Chen, M. W. and Soll, D. (1990) Purification and functional characterization of the Glu-tRNA(Gln) amidotransferase from *Chlamydomonas reinhardtii*. *J Biol Chem*, **265**: 8059-8064.

Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., Dusch, N., Eggeling, L., Eikmanns, B. J., Gaigalat, L., Goesmann, A., Hartmann, M., Huthmacher, K., Krämer, R., Linke, B., McHardy, A. C., Meyer, F., Möckel, B., Pfefferle, W., Pühler, A., Rey, D. A., Rückert, C., Rupp, O., Sahm, H., Wendisch, V. F., Wiegräbe, I. and Tauch, A. (2003) The complete *Corynebacterium glutamicum* ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. *J Biotechnol*, **104**: 5-25.

Kase, H. and Nakayama, K. (1972) Production of L-threonine by analog-resistant mutants. *Agric Biol Chem*, **36**: 1611-1621.

Keilhauer, C., Eggeling, L. and Sahm, H. (1993) Isoleucine synthesis in *Corynebacterium glutamicum*: molecular analysis of the *ilvB-ilvN-ilvC* operon. *J Bacteriol*, **175**: 5595-5603.

Kemp, B. F. and Flint, H. J. (1982) Cross-pathway control of ornithine carbamoyltransferase synthesis in *Neurospora crassa*. *J Gen Microbiol*, **128**: 1503-1507.

Kennerknecht, N., Sahm, H., Yen, M. R., Patek, M., Saier Jr., M. H., Jr. and Eggeling, L. (2002) Export of L-isoleucine from *Corynebacterium glutamicum*: a two-gene-encoded member of a new translocator family. *J Bacteriol*, **184**: 3947-3956.

Khodursky, A. B., Peter, B. J., Cozzarelli, N. R., Botstein, D., Brown, P. O. and Yanofsky, C. (2000) DNA microarray analysis of gene expression in response to physiological and genetic changes that affect tryptophan metabolism in *Escherichia coli*. *Proc Natl Acad Sci U S A*, **97**: 12170-12175.

Khodursky, A. B., Bernstein, J. A., Peter, B. J., Rhodius, V., Wendisch, V. F. and Zimmer, D. P. (2003) *Escherichia coli* spotted double-strand DNA microarrays: RNA extraction, labeling, hybridization, quality control, and data management. *Methods Mol Biol*, **224**: 61-78.

Kinoshita, S., Udaka, S. and Shimono, M. (1957) Studies on the amino acid fermentation: I. Production of L-glutamic acid by various microorganisms. *J Gen Appl Microbiol*, **3**: 193-205.

Kölling, R. and Lother, H. (1985) AsnC: an autogenously regulated activator of asparagine synthetase A transcription in *Escherichia coli*. *J Bacteriol*, 164: 310-315.

Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature*, **227**: 680-685.

Lange, C., Rittmann, D., Wendisch, V. F., Bott, M. and Sahm, H. (2003) Global Expression Profiling and Physiological Characterization of *Corynebacterium glutamicum* Grown in the Presence of L-Valine. *Appl Environ Microbiol*, **69**: 2521-2532.

Lawther, R. P. and Hatfield, G. W. (1980) Multivalent translational control of transcription termination at attenuator of *ilvGEDA* operon of *Escherichia coli* K-12. *Proc Natl Acad Sci U S A*, **77**: 1862-1866.

Lawther, R. P., Calhoun, D. H., Adams, C. W., Hauser, C. A., Gray, J. and Hatfield, G. W. (1981) Molecular basis of valine resistance in *Escherichia coli* K-12. *Proc Natl Acad Sci U S A*, **78**: 922-925.

Lehnen, D., Blumer, C., Polen, T., Wackwitz, B., Wendisch, V. F. and Unden, G. (2002) LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in *Escherichia coli*. *Mol Microbiol*, **45**: 521-532.

Leonard, P. M., Smits, S. H., Sedelnikova, S. E., Brinkman, A. B., de Vos, W. M., van der Oost, J., Rice, D. W. and Rafferty, J. B. (2001) Crystal structure of the Lrplike transcriptional regulator from the archaeon *Pyrococcus furiosus*. *Embo J*, 20: 990-997.

Leuchtenberger, W. (1996) Amino Acids - technical production and use. *In* Rehm H.-J., Reed G., Pühler A. and Stadler P. (ed.), Biotechnology: Products of primary metabolism. Verlag Chemie, Weinheim, 465-502.

Leyval, D., Uy, D., Delaunay, S., Goergen, J. L. and Engasser, J. M. (2003) Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of *Corynebacterium glutamicum*. *J Biotechnol*, **104**: 241-252.

Liebl, W., Bayerl, A., Schein, B., Stillner, U. and Schleifer, K. H. (1989) High efficiency electroporation of intact *Corynebacterium glutamicum* cells. *FEMS Microbiol Lett*, **53**: 299-303.

Liebl, W. (1991) The genus *Corynebacterium*-nonmedical. *In* Balows A., Trüper H. G., Dworkin M., Harder W. and Schleifer K. H. (ed.), The prokaryotes. Springer, New York, 1157-1171.

Lindroth, P. and Mopper, K. (1979) High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with *o*-phthaldialdehyde. *Anal Chem*, **51**: 1667-1674.

Loftfield, R. B. and Vanderjagt, D. (1972) The frequency of errors in protein biosynthesis. *Biochem J*, 128: 1353-1356.

Lynch, A. S. and Lin, C. C. (1996) Responses to molecular oxygen. *In* Neidhardt F. C., Curtiss R., Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M. and Umbarger H. E. (ed.), *Escherichia coli* and *Salmonella*. ASM Press, Washington, 1526-1538.

Madhusudhan, K. T., Huang, N. and Sokatch, J. R. (1995) Characterization of BkdR-DNA binding in the expression of the *bkd* operon of *Pseudomonas putida*. *J Bacteriol*, **177**: 636-641.

Marasco, R., Varcamonti, M., La Cara, F., Ricca, E., De Felice, M. and Sacco, M. (1994) *In vivo* footprinting analysis of Lrp binding to the *ilvIH* promoter region of *Escherichia coli*. *J Bacteriol*, **176**: 5197-5201.

Massey, L. K., Sokatch, J. R. and Conrad, R. S. (1976) Branched-chain amino acid catabolism in bacteria. *Bacteriol Rev*, **40**: 42-54.

McHardy, A. C., Tauch, A., Rückert, C., Pühler, A. and Kalinowski, J. (2003) Genome-based analysis of biosynthetic aminotransferase genes of *Corynebacterium glutamicum*. J Biotechnol, **104**: 229-240.

Miyajima, R. and Shiio, I. (1972) Regulation of aspartate family amino acid biosynthesis in *Brevibacterium flavum*. VI. Effects of isoleucine and valine on threonine dehydratase activity and its formation. *J Biochem (Tokyo)*, **71**: 951-960.

Möckel, B., Eggeling, L. and Sahm, H. (1992) Functional and structural analyses of threonine dehydratase from *Corynebacterium glutamicum*. *J Bacteriol*, **174**: 8065-8072.

Morbach, S., Sahm, H. and Eggeling, L. (1996) L-Isoleucine production with *Corynebacterium glutamicum*: Further flux increase and limitation of export. *Appl Environ Microbiol*, **62**: 4345-4351.

Morbach, S. (1997) Bildung von L-Isoleucin mit *Corynebacterium glutamicum* und Analysen zur Genregulation des *ilvBNC*-Operons. Dissertation, Heinrich-Heine-Universität, Düsseldorf.

Morbach, S., Junger, C., Sahm, H. and Eggeling, L. (2000) Attenuation control of *ilvBNC* in *Corynebacterium glutamicum*: evidence of leader peptide formation without the presence of a ribosome binding site. *J biosci bioeng*, **90**: 501-507.

Nakamura, Y., Nishio, Y., Ikeo, K. and Gojobori, T. (2003) The genome stability in *Corynebacterium* species due to lack of the recombinational repair system. *Gene*, **317**: 149-155.

Newman, E. B., Lin, R. T. and D'Ari, R. (1996) The leucine/ *Irp* regulon. *In* Neidhardt F. C., Curtiss R., Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M. and Umbarger H. E. (ed.), *Escherichia coli* and *Salmonella*. ASM Press, Washington, 1513-1525.

Niebisch, A. (2002) Molekulare Charakterisierung des Cytochrom- bc_1 - aa_3 -Superkomplexes aus *Corynebacterium glutamicum*. Dissertation, Heinrich-Heine Universität, Düsseldorf.

O'Gara, J. P. and Dunican, L. K. (1994) Direct evidence for a constitutive internal promoter in the tryptophan operon of *Corynebacterium glutamicum*. *Biochem Biophys Res Commun*, **203**: 820-827.

Oxender, D. L., Anderson, J. J., Mayo, M. M. and Quay, S. C. (1977) Leucine binding protein and regulation of transport in *E. coli. J Supramol Struct*, **6**: 419-431.

Patek, M., Krumbach, K., Eggeling, L. and Sahm, H. (1994) Leucine synthesis in *Corynebacterium glutamicum*: enzyme activities, structure of *leuA*, and effect of *leuA* inactivation on lysine synthesis. *Appl Environ Microbiol*, **60**: 133-140.

Patek, M., Hochmannova, J., Jelinkova, M., Nesvera, J. and Eggeling, L. (1998) Analysis of the *leuB* gene from *Corynebacterium glutamicum*. *Appl Microbiol Biotechnol*, **50**: 42-47.

Payne, G. M. and Smith, M. W. (1994) Peptide transport by micro-organisms. *In* Rose A. H. (ed.), Advances in microbial physiology. Academic Press, New York, 1-81.

Peter, H., Burkovski, A. and Krämer, R. (1996) Isolation, characterization, and expression of the *Corynebacterium glutamicum betP* gene, encoding the transport system for the compatible solute glycine betaine. *J Bacteriol*, **178**: 5229-5234.

Pittard, A. J. (1996) Biosynthesis of the aromatic amino acids. *In* Neidhardt F. C., Curtiss R., Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M. and Umbarger H. E. (ed.), *Escherichia coli* and *Salmonella*. ASM Press, Washington, 458-484.

Polen, T. (2002) Genomweite Genexpressionsanalysen mit DNA-Chips zur Charakterisierung des Glucose-Überflussmetabolismus von *Escherichia coli*. Dissertation, Heinrich-Heine-Universität, Düsseldorf.

Polen, T., Rittmann, D., Wendisch, V. F. and Sahm, H. (2003) DNA Microarray Analyses of the Long-Term Adaptive Response of *Escherichia coli* to Acetate and Propionate. *Appl Environ Microbiol*, **69**: 1759-1774.

Polen, T. and Wendisch, V. F. (in press) Genome-wide expression analysis in amino acid producing bacteria using DNA microarrays. *Appl Biochem Biotechnol.*

Pollack, J. R. and Iyer, V. R. (2002) Characterizing the physical genome. Nat Genet, 32: 515-521.

Quail, M. A., Haydon, D. J. and Guest, J. R. (1994) The *pdhR-aceEF-lpd* operon of *Escherichia coli* expresses the pyruvate dehydrogenase complex. *Mol Microbiol*, **12**: 95-104.

Quay, S. C., Dick, T. E. and Oxender, D. L. (1977) Role of transport systems in amino acid metabolism: leucine toxicity and the branched-chain amino acid transport systems. *J Bacteriol*, **129**: 1257-1265.

Radmacher, E., Vaitsikova, A., Burger, U., Krumbach, K., Sahm, H. and Eggeling, L. (2002) Linking central metabolism with increased pathway flux: L-valine accumulation by *Corynebacterium glutamicum*. *Appl Environ Microbiol*, **68**: 2246-2250.

Rhodius, V., Van Dyk, T. K., Gross, C. and LaRossa, R. A. (2002) Impact of genomic technologies on studies of bacterial gene expression. *Annu Rev Microbiol*, **56**: 599-624.

Ricca, E., Aker, D. A. and Calvo, J. M. (1989) A protein that binds to the regulatory region of the *Escherichia coli ilvIH* operon. *J Bacteriol*, **171**: 1658-1664.

Sahm, H., Eggeling, L., Eikmanns, B. and Krämer, R. (1995) Metabolic design in amino acid producing bacterium *Corynebacterium glutamicum*. *FEMS Microbiology Reviews*, **16**: 243-252.

Sahm, H. and Eggeling, L. (1999) D-Pantothenate synthesis in *Corynebacterium glutamicum* and use of *panBC* and genes encoding L-valine synthesis for D-pantothenate overproduction. *Appl Environ Microbiol*, **65**: 1973-1979.

Sahm, H., Eggeling, L. and de Graaf, A. A. (2000) Pathway analysis and metabolic engineering in *Corynebacterium glutamicum*. *Biol Chem*, **381**: 899-910.

Sakanyan, V., Petrosyan, P., Lecocq, M., Boyen, A., Legrain, C., Demarez, M., Hallet, J. N. and Glansdorff, N. (1996) Genes and enzymes of the acetyl cycle of arginine biosynthesis in *Corynebacterium glutamicum*: enzyme evolution in the early steps of the arginine pathway. *Microbiology*, **142**: 99-108.

Sambrook, J. and Russell, D. W. (2001) Molecular Cloning - A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.

Sanger, F., Nicklen, S. and Coulson, A. R. (1977) DNA sequencing with chainterminating inhibitors. *Proc Natl Acad Sci U S A*, 74: 5463-5467.

Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G. and Pühler, A. (1994) Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. *Gene*, **145**: 69-73.

Schaffer, S., Weil, B., Nguyen, V. D., Dongmann, G., Günther, K., Nickolaus, M., Hermann, T. and Bott, M. (2001) A high-resolution reference map for cytoplasmic and membrane-associated proteins of *Corynebacterium glutamicum*. *Electrophoresis*, **22**: 4404-4422.

Schmidt, E. and Schimmel, P. (1994) Mutational isolation of a sieve for editing in a transfer RNA synthetase. *Science*, **264**: 265-267.

Schrumpf, B., Eggeling, L. and Sahm, H. (1992) Isolation and prominent characteristics of an L-lysine hyperproducing strain of *Corynebacterium glutamicum*. *Appl Microbiol Biotechnol*, **37**: 566-571.

Schultz, J. E. and Matin, A. (1991) Molecular and functional characterization of a carbon starvation gene of *Escherichia coli*. *J Mol Biol*, 218: 129-140.

Shalon, D., Smith, S. J. and Brown, P. O. (1996) A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. *Genome Res*, **6**: 639-645.

Sindelar, G. (2003) Globale Expressionsanalysen zur Charakterisierung der Lysin-Produktion in *Corynebacterium glutamicum*. Dissertation, Heinrich-Heine-Universität, Düsseldorf.

Skerra, A. (1994) Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in *Escherichia coli*. *Gene*, **151**: 131-135.

Skerra, A. and Schmidt, T. G. (2000) Use of the *Strep*-Tag and streptavidin for detection and purification of recombinant proteins. *Methods Enzymol*, **326**: 271-304.

Smith, M. W., Tyreman, D. R., Payne, G. M., Marshall, N. J. and Payne, J. W. (1999) Substrate specificity of the periplasmic dipeptide-binding protein from *Escherichia coli*: experimental basis for the design of peptide prodrugs. *Microbiology*, 145: 2891-2901.

Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. *Anal Biochem*, 150: 76-85.

Spencer, V. A., Sun, J.-M., Li, L. and Davie, J. R. (2003) Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. *Methods*, **31**: 67-75.

Stackebrandt, E., Rainey, F. A. and Ward-Rainey, N. L. (1997) Proposal for a new hierarchic classification system, *Actinobacteria* classis nov. *Int J Syst Bacteriol*, **47**: 479-491.

Tani, T. H., Khodursky, A., Blumenthal, R. M., Brown, P. O. and Matthews, R. G. (2002) Adaptation to famine: A family of stationary-phase genes revealed by microarray analysis. *Proc Natl Acad Sci U S A*, **99**: 13471-13476.

Tauch, A., Hermann, T., Burkovski, A., Krämer, R., Pühler, A. and Kalinowski, J. (1998) Isoleucine uptake in *Corynebacterium glutamicum* ATCC 13032 is directed by the *brnQ* gene product. *Arch Microbiol*, **169**: 303-312.

Tchetina, E. and Newman, E. B. (1995) Identification of Lrp-regulated genes by inverse PCR and sequencing: regulation of two mal operons of *Escherichia coli* by leucine-responsive regulatory protein. *J Bacteriol*, **177**: 2679-2683.

Textor, S., Wendisch, V. F., De Graaf, A. A., Müller, U., Linder, M. I., Linder, D. and Buckel, W. (1997) Propionate oxidation in *Escherichia coli*: evidence for operation of a methylcitrate cycle in bacteria. *Arch Microbiol*, **168**: 428-436.

Umbarger, H. E. (1996) Biosynthesis of the branched-chain amino acids. *In* Neidhardt F. C., Curtiss R., Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M. and Umbarger H. E. (ed.), *Escherichia coli* and *Salmonella*. ASM Press, Washington, 442-457.

van der Rest, M. E., Lange, C. and Molenaar, D. (1999) A heat shock following electroporation induces highly efficient transformation of *Corynebacterium glutamicum* with xenogeneic plasmid DNA. *Appl Microbiol Biotechnol*, **52**: 541-545.

Varela, C., Agosin, E., Baez, M., Klapa, M. and Stephanopoulos, G. (2003) Metabolic flux redistribution in *Corynebacterium glutamicum* in response to osmotic stress. *Appl Microbiol Biotechnol*, **60**: 547-555.

Wang, Q. and Calvo, J. M. (1993) Lrp, a global regulatory protein of *Escherichia coli*, binds co- operatively to multiple sites and activates transcription of *ilvIH*. *J Mol Biol*, **229**: 306-318.

Wang, Q., Wu, J., Friedberg, D., Plakto, J. and Calvo, J. M. (1994) Regulation of the *Escherichia coli lrp* gene. *J Bacteriol*, **176**: 1831-1839.

Wek, R. C., Hauser, C. A. and Hatfield, G. W. (1985) The nucleotide sequence of the *ilvBN* operon of *Escherichia coli*: sequence homologies of the acetohydroxy acid synthase isozymes. *Nucleic Acids Res*, **13**: 3995-4010.

Wendisch, V. F., Zimmer, D. P., Khodursky, A., Peter, B., Cozzarelli, N. and Kustu, S. (2001) Isolation of *Escherichia coli* mRNA and comparison of expression using mRNA and total RNA on DNA microarrays. *Anal Biochem*, **290**: 205-213.

Wendisch, V. F. (2003) Genome-wide expression analysis in *Corynebacterium* glutamicum using DNA microarrays. *J Biotechnol*, **104**: 273-285.

Wessel, M. (2000) Regulationsmechanismen in dem gram-positiven Bodenbakterium *Corynebacterium glutamicum*. Diplomarbeit, Heinrich-Heine-Universität, Düsseldorf.

Wessler, S. R. and Calvo, J. M. (1981) Control of *leu* operon expression in *Escherichia coli* by a transcription attenuation mechanism. *J Mol Biol*, 149: 579-597.

Westerfeld, W. W. (1945) A colorimetric determination of blood acetoin. J Biol Chem, 161: 495-502.

Wilhelm, C., Eggeling, I., Nassenstein, A., Jebsen, C., Eggeling, L. and Sahm, H. (1989) Limitations during hydroxybutyrate conversion to isoleucine with *Corynebacterium glutamicum*, as analysed by the formation of by products. *Appl Microbiol Biotechnol*, **31**: 458-462.

Williams, A. L. and Williams, L. S. (1985) Control of isoleucine-valine biosynthesis in a valine-resistant mutant of *Escherichia coli* K-12 that simultaneously acquired azaleucine-resistance. *Biochem Biophys Res Commun*, **131**: 994-1002.

Willins, D. A., Ryan, C. W., Platko, J. V. and Calvo, J. M. (1991) Characterization of Lrp, an *Escherichia coli* regulatory protein that mediates a global response to leucine. *J Biol Chem*, **266**: 10768-10774.

Wolf, A., Krämer, R. and Morbach, S. (2003) Three pathways for trehalose metabolism in *Corynebacterium glutamicum* ATCC13032 and their significance in response to osmotic stress. *Mol Microbiol*, **49**: 1119-1134.

Yang, L., Lin, R. T. and Newman, E. B. (2002) Structure of the Lrp-regulated *serA* promoter of *Escherichia coli* K-12. *Mol Microbiol*, **43**: 323-333.

Zhang, Y. X., Tang, L. and Hutchinson, C. R. (1996) Cloning and characterization of a gene (*msdA*) encoding methylmalonic acid semialdehyde dehydrogenase from *Streptomyces coelicolor. J Bacteriol*, **178**: 490-495.

Zimmer, D. P., Soupene, E., Lee, H. L., Wendisch, V. F., Khodursky, A. B., Peter, B. J., Bender, R. A. and Kustu, S. (2000) Nitrogen regulatory protein C-controlled genes of *Escherichia coli*: scavenging as a defense against nitrogen limitation. *Proc Natl Acad Sci U S A*, 97: 14674-14679.

Danksagung

Herrn Prof. Dr. Hermann Sahm danke ich für die Überlassung des Themas und das Interesse am Fortgang der Arbeit.

Herrn Pof. Dr. Michael Bott danke ich für die Übernahme des Korreferats, die gute Betreuung und die wertvollen Anregungen.

Mein besonderer Dank gilt Herrn Dr. Volker F. Wendisch für die ständige Unterstützung und Diskussionsbereitschaft.

Bei Doris Rittmann möchte ich mich für die Genom-PCR von *C. glutamicum* bedanken, ohne die die Arbeit mit DNA-Chips nicht möglich gewesen wäre.

Tino und Georg danke ich für die Einführung in die von Ihnen am Institut etablierte DNA-Chip-Technik.

Steffen möchte ich für die Unterstützung bei den Proteomanalysen danken.

Eva R. danke ich für die wertvollen Tipps zum Valinproduzenten.

Bei Nicole, Mark und Mirja möchte ich mich für die gute Zusammenarbeit bei der Charakterisierung von Lrp bedanken.

Andreas danke ich für die produktive Zusammenarbeit im VALPAN-Projekt.

Andrea, Andreas, Armin, Axel, Brita, Carsten, Christina, Corinna, Dolores, Doris, Georg, Gosia, Jens, Kerstin, Marc, Martina, Melanie, Mirja, Oliver, Sabine, Sandra, Siggi, Srinivas, Steffen, Takeru, Tanja, Tino, Tobias und Ulrike danke ich für die kollegiale Unterstützung und die schöne Zeit in Jülich.

Allen Mitarbeitern des Instituts für Biotechnologie danke ich für die gute Arbeitsatmosphäre und stete Hilfsbereitschaft.

Ein besonderer Dank gilt meinen Eltern und Tanja für die liebevolle Unterstützung.