Aus der Klinik für Unfall- und Handchirurgie
der Heinrich-Heine-Universität Düsseldorf
Direktor: Univ.-Prof. Dr. med. Joachim Windolf

Therapie von Läsionen des Triangular Fibrocartilage Complex
(TFCC)
Eine systematische Literaturanalyse

Dissertation

zur Erlangung des Grades eines Doktors der Medizin
der Medizinischen Fakultät der Heinrich-Heine-Universität
Düsseldorf

vorgelegt von

Kristin Müller

2012
Als Inauguraldissertation gedruckt mit Genehmigung der Medizinischen Fakultät der Heinrich-Heine-Universität Düsseldorf

gez.: Univ.-Prof. Dr. med. Joachim Windolf
Dekan
Referent: Prof. Dr. Schädel-Höpfner
Korreferentin: Priv.-Doz. Westhoff
<table>
<thead>
<tr>
<th>Inhaltsverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Einleitung ... 1</td>
</tr>
<tr>
<td>1.1. Evidenzbasierte Handchirurgie .. 1</td>
</tr>
<tr>
<td>1.2. Handgelenk - anatomische Grundlagen ... 2</td>
</tr>
<tr>
<td>1.2.1. Anatomischer Aufbau des TFCC .. 3</td>
</tr>
<tr>
<td>1.2.2. Histologische Morphologie des TFCC .. 7</td>
</tr>
<tr>
<td>1.2.3. Arterielle Blutversorgung und Innervation des TFCC 8</td>
</tr>
<tr>
<td>1.3. Biomechanische Aspekte des TFCC .. 10</td>
</tr>
<tr>
<td>1.4. Pathophysiologie und Klassifikation von TFCC-Läsionen 12</td>
</tr>
<tr>
<td>1.5. Diagnostik von TFCC-Läsionen ... 18</td>
</tr>
<tr>
<td>1.5.1. Anamnese und klinische Untersuchung ... 18</td>
</tr>
<tr>
<td>1.5.2. Röntgendiagnostik ... 19</td>
</tr>
<tr>
<td>1.5.3. Arthrographie ... 20</td>
</tr>
<tr>
<td>1.5.4. MRT ... 21</td>
</tr>
<tr>
<td>1.5.5. Arthroskopie .. 23</td>
</tr>
<tr>
<td>1.6. Therapieoptionen bei TFCC-Läsionen .. 24</td>
</tr>
<tr>
<td>1.6.1. Konservative Therapie ... 25</td>
</tr>
<tr>
<td>1.6.2. OPERATIVE THERAPIE ... 25</td>
</tr>
<tr>
<td>1.6.3. Débridement ... 26</td>
</tr>
<tr>
<td>1.6.4. Reparatur / Refixation ... 26</td>
</tr>
<tr>
<td>1.6.5. Osteotomien der Ulna .. 27</td>
</tr>
<tr>
<td>1.6.6. Resektion bzw. Teilresektion ... 29</td>
</tr>
<tr>
<td>2. Zielstellung ... 30</td>
</tr>
<tr>
<td>3. Material und Methoden ... 31</td>
</tr>
<tr>
<td>3.1. Themenpriorisierung ... 31</td>
</tr>
<tr>
<td>3.2. Suchstrategie .. 32</td>
</tr>
<tr>
<td>3.3. Kriterien der Berücksichtigung von Studien .. 33</td>
</tr>
<tr>
<td>3.4. Datenerfassung und Datenkategorisierung .. 34</td>
</tr>
<tr>
<td>3.4.1. Allgemeine Daten ... 34</td>
</tr>
<tr>
<td>3.4.2. Diagnose .. 34</td>
</tr>
<tr>
<td>3.4.3. Intervention ... 35</td>
</tr>
<tr>
<td>3.4.4. Ergebnisbewertung (Outcome measures) ... 36</td>
</tr>
<tr>
<td>3.5. Umfrage .. 41</td>
</tr>
<tr>
<td>4. Ergebnisse ... 42</td>
</tr>
<tr>
<td>4.1. Identifizierte Studien .. 42</td>
</tr>
<tr>
<td>4.2. Methodologische Qualität und Evidenz-Niveau ... 44</td>
</tr>
<tr>
<td>4.3. Einteilung der Studien nach Ursache und Lokalisation der Schädigung 44</td>
</tr>
<tr>
<td>4.4. Therapie traumatischer TFCC-Läsionen ... 45</td>
</tr>
<tr>
<td>4.4.1. Therapie zentraler Typ 1A-Läsionen .. 45</td>
</tr>
<tr>
<td>4.4.1.1. FALLSERIEN MIT HÖHERER EVIDENZ .. 45</td>
</tr>
<tr>
<td>4.4.1.2. FALLSERIEN MIT GERINGERER EVIDENZ 47</td>
</tr>
<tr>
<td>4.4.1.3. FALLSERIEN: SCHLUSSFOLGERUNGEN ... 48</td>
</tr>
<tr>
<td>4.4.2. Therapie ulnarer Typ 1B-Läsionen .. 49</td>
</tr>
<tr>
<td>4.4.2.1. Vergleichende Studie ... 50</td>
</tr>
<tr>
<td>4.4.2.2. Vergleichende Studie: Schlußfolgerungen ... 50</td>
</tr>
<tr>
<td>4.4.2.3. FALLSERIEN: OFFENE THERAPIE ... 51</td>
</tr>
<tr>
<td>4.4.2.4. FALLSERIEN: ARTHROSKOPISCHE THERAPIE 52</td>
</tr>
<tr>
<td>4.4.2.5. FALLSERIE MIT GERINGER EVIDENZ ... 54</td>
</tr>
<tr>
<td>4.4.2.6. FALLSERIEN: SCHLUSSFOLGERUNGEN ... 55</td>
</tr>
<tr>
<td>4.4.2.7. Vergleich 1B-Läsion ohne vs. mit distaler Radiusfraktur 55</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

4.4.2.8. Schlussfolgerung: 1B-Läsion ohne vs. mit distaler Radiusfraktur 56
4.4.3. Therapie peripherer Typ 1C-Läsionen .. 57
4.4.3.1. Fallserien .. 57
4.4.3.2. Fallserien: Schlussfolgerungen ... 58
4.4.4. Therapie radierer Typ 1D-Läsionen ... 58
4.4.4.1. Vergleichende Studie .. 58
4.4.4.2. Vergleichende Studie: Schlussfolgerungen 59
4.4.4.3. Fallserie ... 59
4.4.4.4. Fallserie: Schlussfolgerungen .. 60
4.4.5. Therapie peripherer TFCC-Läsionen ... 60
4.4.5.1. Fallserien .. 60
4.4.5.2. Fallserien: Schlussfolgerungen ... 62
4.4.6. Therapie traumatischer TFCC-Läsionen ... 63
4.4.6.1. Vergleichende Studie mit geringerer Evidenz 63
4.4.6.2. Vergleichende Studie: Schlussfolgerungen 64
4.5. Therapie degenerativer TFCC-Läsionen .. 65
4.5.1. Therapie degenerativer Typ 2-Läsionen ... 65
4.5.1.1. Fallserien mit höherer Evidenz ... 65
4.5.1.2. Fallserien mit geringerer Evidenz ... 66
4.5.1.3. Fallserie: Schlussfolgerungen ... 67
4.6. Einteilung der Studien nach der Behandlungart 68
4.6.1. Arthroskopisches Débridement und Refixation 68
4.6.1.1. Vergleichende Studie ... 68
4.6.1.2. Vergleichende Studie: Schlussfolgerungen 69
4.6.1.3. Fallserien ... 69
4.6.1.4. Fallserien: Schlussfolgerungen ... 70
4.6.2. Offene Rekonstruktion mittels ECU-Sehne ... 71
4.6.2.1. Fallserien ... 71
4.6.2.2. Fallserie: Schlussfolgerungen ... 72
4.7. Einteilung der Studien nach zusätzlichen Begleitdiagnosen 73
4.7.1. Traumatische TFCC-Läsion und LTI-Verletzung 73
4.7.1.1. Fallserie ... 73
4.7.1.2. Fallserie: Schlussfolgerungen ... 74
4.7.2. TFCC-Läsion und Ulna-Impaction-Syndrom 74
4.7.2.1. Vergleichende Studie mit geringerer Evidenz 75
4.7.2.2. Vergleichende Studie: Schlussfolgerungen 76
4.7.2.3. Fallserie ... 76
4.7.2.4. Fallserie: Schlussfolgerungen ... 77
4.8. Umfrageergebnisse .. 78
5. Diskussion ... 82
5.1. Evidenzbasierte Handchirurgie ... 82
5.2. Chirurgische Studienqualität am Beispiel von Läsionen des TFCC 86
5.3. Klassifikation und diagnoseabhängige Studienselektion 87
5.4. Zielkriterien und Vollständigkeit der Datenerfassung 90
5.5. Vielfalt der therapeutischen Verfahren .. 91
5.6. Therapeutische Empfehlungen ... 93
5.7. Konsequenzen für die zukünftige Forschung zu TFCC-Läsionen 94
5.8. Umfrageergebnisse im Vergleich zu den Resultaten der Literatursynthese. 95
6. Zusammenfassung .. 98
7. Tabellen ... 100
8. Abbildungen ... 135
9. Anhang ...143
10. Literaturverzeichnis ..146
Curriculum vitae ..155
Eidesstattliche Versicherung ..156
Verzeichnis der akademischen Lehrer ...157
Danksagung ..159
1. Einleitung

1.1. Evidenzbasierte Handchirurgie

Einleitung

1.2. Handgelenk - anatomische Grundlagen

Umgangssprachlich wird die Bezeichnung des Handgelenkes gebraucht, um die Verbindung zwischen Unterarm und Hand zu beschreiben. Anatomisch setzt sich diese Verbindung jedoch aus mehreren Einzelgelenken zusammen: das distale Radioulnargelenk, das Radiocarpalgelenk und das Mediocarpalgelenk.

Das Handgelenk im rein anatomischen Sinn bezeichnet das aus zwei Teilgelenken zusammengesetzte Gelenk (Articulatio composita) an der Hand des Menschen. Es besteht aus dem Radiocarpalgelenk (Articulatio radiocarplis) und dem Mediocarpalgelenk (Articulatio mediocarplis) [142]. Das distale Radioulnargelenk gehört anatomisch nicht zum Handgelenk, ist jedoch funktionell an das Handgelenk gebunden und befindet sich in nächster Nähe zu dem [171]. Der Discus ulnocarpalis des Triangular Fibrocartilage Complex stellt hierbei eine Schlüsselstruktur dar, da er die Articulatio radioulnaris distalis anatomisch vollständig von der Articulatio radiocarplis trennt [71].

Um diese wichtige und zentrale Bedeutung des Triangular Fibrocartilage Complex zu veranschaulichen, wird zunächst auf die Anatomie im Bereich des Handgelenkes eingegangen. Der TFCC kann nicht nur als einzelne Struktur gesehen werden, sondern muss in seiner anatomischen Gesamtheit im Handgelenk dargestellt werden, um die große Bedeutung bei Läsionen nachvollziehbar zu machen und zu verdeutlichen.

Das proximale Handgelenk, Articulatio radiocarplis, ist ein Ellipsoid-Gelenk und verbindet die beiden Unterarmknochen beweglich mit der proximalen Reihe der Handwurzelknochen. Die Gelenkpfanne wird zu drei Vierteln aus der Facies articularis des Radius und zu einem Viertel aus dem Discus ulnocarpalis (Bestandteil des Triangular Fibrocartilage Complex), der den distalen Anteil des Caput ulnae überdeckt, geformt. Der vom Radius gebildete Anteil der Gelenkpfanne setzt sich wiederum aus zwei Facetten zusammen, der radial gelegenen Fovea scaphoidea und der größeren ulnaren e legenen Fovea lunata [137]. Die distale, konvexe Gelenkfläche der Articulatio radiocarplis wird von radial nach ulnar aus Os scaphoideum, Os lunatum und Os triquetrum gebildet. Gemeinsam werden sie als karpaler Kondylus bezeichnet [69]. Die Handwurzelknochen sind durch sog. intrinsische Ligamente miteinander verbunden (Lig. scapholunatum interosseum, Lig. lunotriquetrum interosseum), so dass eine kontinuierliche konvexe, überknorpelte Gelenkfläche vorgetäuscht wird [170].

In Mittelstellung artikulieren jedoch das Os scaphoideum und radiale Anteile des Os lunatum mit der Facies articularis des Radius und stellen das radiokarpale Kompartiment dar [74]. Das ulnokarpale Kompartiment wird von der ulnaren proximalen Gelenkfläche des Os lunatum und dem Os triquetrum gebildet, welche mit dem Discus ulnocarpalis korrespondieren [136].

Das distale Handgelenk, Articulatio mediocarplis, verbindet die proximalen Karpalknochen mit den distalen (Os trapezium, Os trapezoideum, Os capitatum, Os hamatum) [137] [69].

Die Stabilität der Handwurzel und des Handgelenkes wird durch eine Vielzahl extrinsischer und intrinsischer Ligamente gewährleistet, die in einem komplizierten Zusammenspiel die komplexen Bewegungen des Handgelenkes ermöglicht und kontrolliert [85].

1.2.1. Anatomischer Aufbau des TFCC

Der Begriff Triangular Fibrocartilage Complex wurde erstmals von Palmer und Werner im Jahr 1981 verwandt und bezeichnet eine kombinierte und komplexe Struktur aus fibrokartilaginären und ligamentären Anteilen, die an der ulnaren Seite des Handgelenks zwischen Ulnakopf und Os lunatum bzw. triquetrum gelegen ist [117] (s. Abbildung 1). Topographisch genauer entspringt der TFCC an der ulnaren Seite der Fovea lunata des Radius, breitet sich ulnarwärts aus, um an der Basis des Proc. styloideus ulnae anzusetzen. Er dehnt sich distal bis zum Os triquetrum und Os hamatum aus und erstreckt sich bis zur Basis des fünften Metacarpalknochens.
Der Ulnokarpale Komplex setzt sich aus folgenden funktionell sehr wichtigen Komponenten zusammen (s. Abbildung 1):
- Discus ulnocarpalis (Discus triangularis)
- Ligg. radioulnare dorsale und palmare
- Ligg. ulnolunatum und ulnotriquetrum
- Meniscus ulnocarpalis (Meniscus homologue)
- Lig. collateral carpi ulnare
- Sehnenscheide des M. extensor carpi ulnaris.

Einleitung

Berger (2001) rechnet als zusätzliche Struktur des TFCC noch das Lig. ulnocapitatum hinzu [15]. Es ist das oberflächlichste Band der drei ulnokarpalen Bänder und setzt an der Basis des Proc. styloideus ulnae an. Am distalen Anheftungsbe reich vermengt es sich mit den Fasern des Lig. radioscaphocapitatum.

Die einzelnen Elemente des ulnokarpalen Complexes lassen sich pr äparatorisch allerdings nicht so deutlich voneinander abgrenzen, wie es vielleicht die systematische Auflistung der zugehörigen Strukturen vermuten lasst. An vielen Stellen sind sie miteinander verwachsen bzw. gehen ohne definierbare Grenze fließend ineinander über [137]. Trotzdem ist es wichtig für das spätere Verständnis der verschiedenen TFCC-Läsionstypen an dieser Stelle noch einmal ausführlich auf die Anatomie der einzelnen Strukturen des Triangular Fibrocartilage Complex einzugehen (s. Abbildung 2).

Abbildung 2: Anatomische Übersicht des Triangular Fibrocartilage Complex von distal [137]

Die zentrale Struktur des TFCC ist der aus Faserknorpel bestehende Discus ulnocarpalis bzw. triangularis, der in einer transversalen Ebene ausgespannt ist und zwischen distaler Ulna und Os triquetrum bzw. Os lunatum liegt. Durch sein e bikonkave Form schafft er eine kongruente Oberfläche für Ulna und Karpus, die sich ansonsten aufgrund ihrer Konvexität inkongruent gegenüberstünden [90]. Wie der Name „Discus triangularis“ schon andeutet, weist er eine trianguläre bzw. dreieckige Form auf, so dass eine Basis und eine Spitze unterschieden werden kann. Der Diskus entspringt mit seiner Basis (14-16 mm lang) und einer Dicke von ca. 2 mm am distalen Rand des Radius an der Incisura ulnaris radii und zieht ulnarwärts, wo er sich in zwei plattenartige etwa 9-11 mm lange Faserstränge teilt: Der proximale Strang zieht zur Basis des Processus styloideus ulnae (Fovea basistyloidea), während der distale bis zu dessen Spitze reicht [75]. Beide Faserstränge weisen ulnar im Mittel eine Breite von 4 mm auf [90]. Zwischen den beiden ulnaren Anheftungsstellen liegt eine stark vaskularisierte Zone mit lockerem Bindegewebe, in das von palmar Blutgefäße
Einleitung

eindringen. Henle (1856) bezeichnete früher dieses Gewebe irreführenderweise als „Lig. subcruentum“ („blutiges Band“) [62], wobei es sich weder histologisch noch mechanisch um ein wahres Ligament handelt [50]. Außerdem treten durch diesen Zwischenraum die beiden Bandzüge des Lig. ulno lunatum und des Lig. unnotriquetrum vom Proc. styloideus ulnae kommend hervor und ziehen palmar zum Os lunatum bzw. Os triquetrum [136]. Genauer gesagt, gehen sie proximal aus dem palmaren radioulären Ligament hervor und setzen dadurch nur indirekt an der Ulna an. Diese Anordnung unterstützt vermutlich die Unterarmrotation und die Bewegung im Handgelenk, ohne die ulnokarpale Stabilität zu beeinträchtigen. Sie lassen sich nicht klar voneinander abgrenzen, so dass eine Unterscheidung der beiden Ligamente nur aufgrund ihrer distalen Anhaftungsstelle möglich ist (Os lunatum bzw. Os triquetrum) [15].

wohingegen der am weitesten von der Fovea entfernte Bandteil die größte Verformung bzw.
Dehnbarkeit zeigt [100].
Während der Phylogenese erweitert sich das ulnokarpale Kompartiment der Articulatio
radiocarpalis zwischen dem Processus styloideus ulnae und dem Os triquetrum, indem diese
Strukturen immer mehr auseinanderrücken [79] [5]. Der dadurch entstandene breite
Spaltraum wird beim Menschen vom Meniscus ulnocarpalis, auch Meniscus homologue
genannt, ausgefüllt (s. Abbildung 2). Er dient, insbesondere bei Ulnarabduktion, der
Vergrößerung der kraftaufnehmenden Fläche [117]. Dieser vertikal eingesetzte Bestandteil
des ulnokarpalen Komplexes entspringt ohne sichtbaren Übergang von den dorsalen und
dalen Kanten des Diskus und vom Processus styloideus ulnae. Die Fasern des Meniskus
konvergieren und strahlen nach distal aus, wo sie an der palmaren Fläche des Os triquetrum
befestigt sind [104]. Ulnar (außen) liegen ihm Fasern des Lig. collaterale carpi ulnare an,
welches ebenfalls zum Triangular Fibrocartilage Complex gezählt wird. In seltenen Fällen
(0,5-1%) können beim Erwachsenen in den Fasern des Meniscus ulnocarpalis akzessorische
Knöchelchen eingebettet sein [80] [8] [78].
Zwischen dem Meniscus ulnocarpalis und dem ulnokarpalen Diskus befindet sich ein mit
Synoviallepithel ausgekleidete Hohlraum, der in den Recessus ulnaris hineinführt. Dieser
kann als ein weiteres Relikt des proximalen Kompartimentes der Handgelenköhle bei
Anthropoiden aufgefasst werden [79]. Am häufigsten (62%) projiziert er sich auf die palmare
und gleichzeitig ulnare Seite des Proc. styloideus ulnae („Recessus praestyloideus“) und ist
nur durch eine dünne Membran von der Sehnenscheide des M. extensor carpi ulnaris
getrennt. Seltener liegt der Recessus ulnaris radiopalmar (16%) oder apikal (10%) und nur
trotz der palmoulnar (1,6%) des Proc. styloideus ulnae. In einigen Fällen (10,4%) ist eine
genaue Lokalisationszuordnung aufgrund von pathologischen Veränderungen im Bereich
des Triangular Fibrocartilage Complex nicht mehr möglich. Seine räumliche Ausdehnung
zeigt unterschiedliche Formgestaltung. Bade et al. (1993) fanden sackförmige,
schlauchförmige (tubulöse), zapfen- oder zungenförmige Recessus vor [10]. In Abhängigkeit
von der Länge und Ausformung des Processus styloideus ulnae beträgt die Tiefe der
Ausdehnung des Recessus ulnaris zwischen 6 und 10 mm. Bei Arthrographien ist er daher
immer deutlich zu erkennen [72] [165] [89] [56].

1.2.2. Histologische Morphologie des TFCC
Für das bessere Verständnis von therapeutischen Optionen bei Läsionen des Triangular
Fibrocartilage Complex ist ein genaues anatomisches Wissen über die se komplexe Region
am ulnaren Handgelenk elementar. Dies beinhaltet nicht nur die makroskopische Anatomie
(siehe oben), sondern auch den mikroskopisch histologischen Aufbau des Ulnokarpalen
Komplexes.
Einleitung

1.2.3. Arterielle Blutversorgung und Innervation des TFCC

Neben der Anatomie des Triangular Fibrocartilage Complex ist auch hinsichtlich der Läsionen und ihrer Therapiemöglichkeiten die arterielle Blutversorgung von großer Bedeutung. Die vaskuläre Versorgung spielt eine wichtige Rolle bei degenerativen Prozessen und hat großen Einfluss auf die Heilungschancen bei auftretenden Schäden, so dass sich die Therapie an den Gegebenheiten der Blutversorgung orientierte. Aufgrund dieser Tatsache ist es erforderlich, die arterielle Versorgung des TFCC näher zu beschreiben, wobei der Discus ulnocarpalis die größte Aufmerksamkeit hat.

Er wird aus einem Gefäßbogen versorgt, der den gesamten Bereich des Ulnokarpalen Komplexes umgreift. Dabei bildet die A. ulnaris zusammen mit palmaren und dorsalen Ästen
Einleitung

Außerdem dringen die arteriellen Gefäße nur in die äußeren Randschichten des Diskus ein, so dass 80% der zentralen sowie radialen Abschnitte des Discus ulnocarpalis avaskulär bleiben. Gerade in dieser „vulnerablen Zone“ können mit zunehmendem Alter Perforationen auftreten (Palmer Typ 2), die aufgrund der fehlenden Durchblutung nur geringe Heilungschancen besitzen und so zu schmerzhafte Problemen führen können. Auch in diesem Fall sowie bei traumatischen zentralen Läsionen (Palmer 1A) ist eine Refixation nicht empfehlenswert, da sich die Perforation im zentralen avaskulären Teil des Diskus befindet und so nur schlecht bis gar nicht heilt [152] [13]. Empfohlen wird hier beispielsweise ein Débridement der abgenutzten Bereiche.

Bei peripheren Läsiones des Discus ulnocarpalis (Palmer 1B und 1C) sind hingegen die Heilungschancen bedeutend besser aufgrund der guten arteriellen Blutversorgung. Aus diesem Grund kann eine Refixation und damit die Reparatur des Schadens eine Therapieoption darstellen und zu erfolgreichen Ergebnissen führen.

Die Kenntnisse der Blutversorgung des Diskus sind somit äußerst wichtig für die Entscheidung der optimalen Therapiemöglichkeit bei Läsionen des Triangular Fibrocartilage Complex.

1.3. Biomechanische Aspekte des TFCC

Der Triangular Fibrocartilage Complex hat drei biomechanische Hauptfunktionen. Nur beim Zusammenwirken dieser Funktionen ist ein stabile, gleichmäßige und barrierefreie Bewegung im ulnaren Handgelenk möglich und gegeben. Zum einen dient der Ulnokarpal Komplex als wesentlicher Stabilisator des distalen Radioulnargelenks (DRUG), wobei der Discus triangularis den Hauptteil dieser Stabilisierung übernimmt [117] [140] [3] [50] [112] [81]. Unterstützt wird er dabei von den Lig. radioulnare palmare und dorsale. Eine alleinige Läsion des Diskus ohne Beteiligung der Bänder führt daher meist nicht zur Instabilität im distalen Radioulnargelenk [164]. Jedoch sind vor allem bei traumatischer Bedeutung und/oder Rupturen der radioulnaren Bänder zu erkennen, dass eine radioulnare Instabilität beobachtet wird und somit eine Therapie unbedingt angezeigt ist. Der Discus ulnocarpalis ist in vollständiger Pronation und Supination entspannt und gleitet während den Umwendbewegungen auf der distalen Ulnafläße wie ein
Einleitung

Scheibenwischer hin und her. In Mittelstellung des Gelenkes ist er maximal angespannt, da er hier vom Processus styloideus bis zur Incisura ulnaris radii die weiteste Strecke überbrücken muss. Außerdem besteht gleichzeitig in dieser Stellung der maximale Kontakt zwischen den Gelenkflächen [50] [9], so dass der Diskus in dieser Position dem Gelenk die größtmögliche Stabilität verleiht [1 17]. Aber insbesondere auch in Extrempositionen der Umwendbewegungen ist der TF CC für das distale Radioulnargelenk von großer stabilisierender Bedeutung. Die geringen Kontakte der Gelenkflächen (2-3 mm) in Pronation und Supination führen dazu, dass die Druckkräfte, die in solchen Extremstellungen pro Flächeneinheit wirken, deutlich ansteigen und daher eine ausreichende Stabilität besonders wichtig ist, damit Ulna und Radius in ihrer korrekten Position verbleiben [3] [106].

Zum anderen ist der Triangular Fibrocartilage Complex an der axialen Lastübertragung zwischen Hand und Unterarm beteiligt [116] [9 0] [141] [99]. Die Hauptrolle spielt dabei der Discus ulnocarpalis, der sich wie ein Kissen zwischen Ulna und Karpus legt und so ein direkter ulnokarpaler Kontakt verhindert wird [103]. Seine druckübertragende und gleichzeitig auch dämpfende Funktion wird durch dessen Architektur erzielt. Die unterschiedliche Anordnung aus längsgestreckten und s-förmig verlaufenden Fasern kann funktionellen Beanspruchungen wie Druck, Zug und Abscherkräften entgegenwirken [118] [82].

Die dritte biomechanische Hauptfunktion des Triangular Fibrocartilage Complex besteht darin, dass er dem ulnaren Karpus Stabilität verleiht und gleichzeitig als ein Puffer bzw.

1.4. Pathophysiologie und Klassifikation von TFCC-Läsionen

Der Triangular Fibrocartilage Complex ist eine äußerst verletzungsanfällige Region am ulnaren Handgelenk. Leitsymptome für eine Verletzung des TFCC sind vor allem neben Schmerzen an der ulnaren Seite des Handgelenks auch eingeschränkte Pro- und Supinationsbewegungen, welche die Lebensqualität von betroffenen Patienten erheblich einschränken.

Läsionen bzw. Verletzungen des TFCC können den horizontal verlaufenden Discus ulnocarpalis, seine in der Peripherie liegenden Ligamente oder auch deren Ansätze betreffen. Zudem können als Folge einer Schädigung des Ulnokarpalen Komplexes auch benachbarte Strukturen mitbetroffen sein, wie z.B. die Knochenoberfläche des Ulnaköpfchens, des Radius oder der ulnokarpalen Knochen (Os lunatum und triquetrum) sowie das Lig. lunotriquetrum [112].

Einleitung

Aufgrund der Vielzahl verschiedener Verletzungsmöglichkeiten im Bereich des Triangular Fibrocartilage Complex führte Palmer 1989 eine Klassifikation ein, die sich sowohl in der Literatur durchgesetzt hat als auch in der Praxis breite Anwendung findet [112] (s. Tabelle 1).

Tabelle 1: Einteilung der Läsionen des Triangular Fibrocartilage Complex nach Palmer 1989

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Typ</th>
<th>Pathoanatomie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traumatisch</td>
<td>1A</td>
<td>Riss im radialseitig gelegenen Abschnitt des Diskus ulnocarpalis (zentrale Perforation)</td>
</tr>
<tr>
<td>(Klasse 1)</td>
<td>1B</td>
<td>Abriss des Discus ulnocarpalis an der ulnaren Insertionsstelle, mit oder ohne Fraktur der Basis des Processus styloideus</td>
</tr>
<tr>
<td></td>
<td>1C</td>
<td>Abriss des peripheren / distalen Anteils des TFCC, insb. der Ligg. ulnolunatum und ulnotrique tram</td>
</tr>
<tr>
<td></td>
<td>1D</td>
<td>Abriss des Discus ulnocarpalis an der radialen Insertionsstelle, mit oder ohne distaler Radiusfraktur</td>
</tr>
<tr>
<td>Degenerativ</td>
<td>2A</td>
<td>Degenerative Abnutzung / Ausdünnung des Discus ulnocarpalis ohne Perforation des Discus</td>
</tr>
<tr>
<td>(Klasse 2)</td>
<td>2B</td>
<td>Fortgeschrittene Degeneration des Discus ulnocarpalis, ohne Perforation, initiale Chondropathien am Ulnaköpfchen und / oder Os lunatum und / oder Os triquetrum</td>
</tr>
<tr>
<td></td>
<td>2C</td>
<td>Voranschrittene degenerative Veränderung mit zentraler Perforation des Discus ulnocarpalis</td>
</tr>
<tr>
<td></td>
<td>2D</td>
<td>Fortschreitende degenerative zentrale Diskusperforation und Ruptur des Lig. ulnotrique tram, malazische Veränderungen am Ulnaköpfchen bzw. Os lunatum</td>
</tr>
<tr>
<td></td>
<td>2E</td>
<td>Große zentrale Perforationen im Discus ulnocarpalis, Chondropathien des hyalinenten Gelenkknorpels, Ruptur des Lig. ulnotrique tram und begleitende degenerative ulnokarpale Arthritis mit oder ohne radioulnar Arthritis</td>
</tr>
</tbody>
</table>

Palmer unterscheidet zunächst ganz grob traumatisch bedingte (Klasse 1) und degenerativ verursachte TFCC-Läsionen (Klasse 2) voneinander. Die weitere Klassifizierung richtet sich nach der Lokalisierung der beschädigten Struktur bei traumatischen Läsionen sowie dem Schweregrad bzw. der Progredienz der Veränderung am Discus ulnocarpalis und des hyalinen Knorpels am Ulnaköpfchen und der Ossa lunatum und triquetrum bei degenerativen Schäden [112].

Traumatische Klasse 1-Läsionen werden von Palmer wiederum in vier Subtypen unterteilt: 1A, 1B, 1C und 1D.

Klasse 1B-Läsionen beschreiben Abrisse des Discus ulnocarpalis an seiner ulnaren Insertionsstelle mit oder auch ohne Fraktur der Basis des Processus styloideus ulnae (s. Abbildung 4). Diese Läsionen sind meistens mit einer Ruptur der palmaren und dorsalen radioulnaren Ligamente verbunden und führen daher oft zu einer radioulnaren Instabilität im Handgelenk [112]. Klasse 1B-Läsionen befinden sich in der gut vaskularisierten Zone des Diskus, so dass sie ein großes eigenständiges Heilungspotential zeigen [152].

Als Klasse 1C-Läsionen werden Abrisse des peripheren bzw. distalen Anteils des Triangular Fibrocartilage Complex bezeichnet, insbesondere der Ligg. ulnolunatum und ulnotriquetrum (s. Abbildung 5). Diese Schäden führen oft aufgrund der Bedeutung des TFCC als Hauptstabilisator des ulnaren Karpus zu einer ulnocarpalen Instabilität. Die Instabilität äußert sich in einer palmaren Translokation des Os lunatum oder Os triquetrum bezogen auf den Radius oder den Ulnakopf [112].
Einleitung

Abbildung 5: Darstellung von Typ 1C-Läsionen nach Palmer [112]

Abbildung 6: Darstellung von Typ 1D-Läsionen nach Palmer [112]

Einleitung

Abbildung 7: Darstellung von degenerativ bedingten 2A-Läsionen nach Palmer [112]

Klasse 2B-Läsionen gehen mit einer Progression des Spektrums der degenerativen Veränderungen einher (s. Abbildung 8). Die Ausdünnung des Discus ulnocarpalis ist noch fortgeschrittener als bei Klasse 2A, wobei immer noch keine Perforation vorliegt. Außerdem treten zusätzlich initiale Chondropathien an der radialen Gelenkfläche des Ulnaköpfchens und / oder der ulnaren Gelenkfläche des Os lunatum und / oder des Os triquetrum auf [112].

Abbildung 8: Darstellung von degenerativ bedingten 2B-Läsionen nach Palmer [112]

Klasse 2C-Läsionen sind charakterisiert durch eine vorangeschrittene degenerative Veränderung mit einer offenen, zentralen Perforation des Discus ulnocarpalis (s. Abbildung 9). Die Form dieser Perforation ist eher oval als schlitzförmig, so dass sie von einer traumatischen Läsion oft gut zu unterscheiden ist. Außerdem sind die degenerativ bedingten Perforationen meistens in der dünnen avaskulären Zone des Diskus lokalisiert [112]. Das sollte bei den Therapieoptionen berücksichtigt werden, da degenerative Perforationen somit kein Heilungspotential aufweisen und erschwerend die repetitiven Krafteinwirkungen auf diesen Bereich hinzukommen.
Einleitung

Abbildung 9: Darstellung von degenerativ bedingten 2C-Läsionen nach Palmer [112]

Klasse 2D-Läsionen unterscheiden sich von 2C-Läsionen, indem zusätzlich noch eine degenerative Ruptur des Lig. ulnotriquetrum vorliegt (s. Abbildung 10). Diese Schäden können zu einer ulnotriquetralen Instabilität führen. Palmer setzt dabei voraus, dass es durch chronische Krafteinwirkung auf den ulnaren Teil des Os lunatum zu einer verminderten Spannung des Lig. ulnotriquetrum kommt und es im weiteren Prozess zu einer Ausdünnung dieses Bandes bis hin zu einer Ruptur führen kann [112]. Außerdem zeigt sich weiterhin eine fortschreitende degenerative Diskusperforation mit malazischen Veränderungen am Ulnaköpfchen bzw. an der Gelenkfläche des Os lunatum.

Abbildung 10: Darstellung von degenerativ bedingten 2D-Läsionen nach Palmer [112]

Sind die degenerativen Schäden am Triangular Fibrocartilage Complex noch stärker ausgeprägt, so gehören sie der Klasse 2E nach Palmer an (s. Abbildung 11). Diese Läsionen beinhalten große zentrale Perforationen im Discus ulnocarpalis, Chondropathien des hyalinen Gelenkknorpels, Ruptur des Lig. ulnotriquetrum und beg leitende degenerative ulnokarpale Arthritis mit oder ohne radioulnarer Arthritis. Es ist das Endstadium der degenerativen Veränderungen, die durch chronische, axiale und ulnare Belastung auf das Handgelenk entstehen können [112].
1.5. Diagnostik von TFCC-Läsionen

1.5.1. Anamnese und klinische Untersuchung

Die initiale Untersuchung umfasst eine sorgfältige Anamnese und eine gründliche klinische Untersuchung [118]. Wichtig für eine grobe Einschätzung der Ätiologie ist die Ermittlung des zeitlichen Beginns der Beschwerden [84]. Traten sie plötzlich oder im Zusammenhang eines bestimmten Ereignisses auf, wie z.B. ein Sturz auf das pronierte ausgestreckte Handgelenk, eine Rotationsverletzung des Unterarms oder eine extreme axiale Krafteinwirkung auf das Handgelenk? War dies der Fall, kann vermutet werden, dass es sich um eine traumatische Klasse 1-Läsion des Triangular Fibrocartilage Complex handelt. Oder nahmen die Symptome langsam progradent und ohne ein bestimmtes auslösendes Ereignis? Befindet sich der Betroffene in einem höheren Lebensalter, so liegt die Vermutung nahe, dass es sich eher um eine degenerativ bedingte Klasse 2-Läsion des TFCC handelt [112]. Typischerweise werden über ulnokarpale Schmerzen, insbesondere bei forciertener Drehbewegung, geklagt. „Klick-“ oder „Schnappphänomene“ können die Pro- bzw.

Bei der Palpation des ulnokarpalen Gelenks weist ein dorsaler Druckschmerz auf eine zentrale Läsion hin, während ein ulnar betonter Druckschmerz eher auf eine periphere Läsion hin deutet [84]. Die geeignetste Stelle, um den Triangular Fibrocartilage Complex zu palpieren, ist zwischen der Sehne des M. extensor carpi ulnaris (ECU) und der Sehne des M. flexor carpi ulnaris (FCU), distal des Styloids der Ulna und proximal des Os pisiforme [4].

Ein positiver ulnokarpaler Stresstest lässt sehr stark eine TFCC-Läsion vermuten. Dabei führt die forcierte Pro-/Supination oder Flexion/Extension bei ulnar abduziertem Handgelenk und axial einwirkender Kraft auf das ulnokarpale Gelenk zu reproduzierbaren Schmerzen [84].

Die klinische Untersuchung mit ulnarem Kompressionsschmerz, aber auch Zeichen der Instabilität im distalen Radioulnargelenk geben lediglich nur Hinweise auf eine Schädigung des TFCC. Eine zuverlässige Diagnostik ist rein klinisch nicht zu stellen, so dass weitere bildgebende Verfahren zur objektiven und sicheren Abklärung der Diagnose einer TFCC-Läsion veranlasst werden müssen [61]. Dabei gibt es verschiedene Möglichkeiten, auf die im Folgenden näher eingegangen wird.

1.5.2. Röntgendiagnostik

1.5.3. Arthrographie

Heute wird die alleinige Arthrographie nur noch sehr selten angewendet, da sie schwerwiegende Limitationen aufweist. Zum einen kann nur der Discus triangularis beurteilt

1.5.4. MRT

In der Literatur unterscheiden sich die Meinungen zur Nützlichkeit der Magnetresonanztomographie (MRT) bei der Diagnostik von Läsionen des Triangular Fibrocartilage Complex. Die Ergebnisse der einzelnen Studien hierzu schwanken enorm, so dass die Sensitivität zwischen 17-100% liegt, die Spezifität zwischen 51-100% und sich eine Genauigkeit zwischen 60-97% finden lässt. Diese Unterschiede können damit zu sammen hängen, dass die Ergebnisse zum einen abhängig von der verwendeten MRT-Technik sind, zum anderen jedoch auch von der Lokalisierung der Defekte bzw. Rupturen. Potter et al. führte 1997 eine prospektive Studie durch, bei der er die Nützlichkeit der MRT bei der Diagnostik von TFCC-Läsionen untersuchte [120]. Dabei fand er eine Sensitivität von 100%,

Zusammenfassend lässt sich somit sagen, dass die Magnetresonanztomographie nur dann eine gute Untersuchungstechnik für die Diagnostik von TFCC-Läsionen ist, wenn folgende Voraussetzungen gegeben sind: Zum einen müssen spezielle MRT-Geräte bzw. MRT-Techniken verwendet werden, um den Triangular Fibrocartilage Complex überhaupt akkurat abbilden zu können. Zum anderen sollten die Schäden an einer geeigneten Stelle lokalisiert sein, was bedeutet, dass sie sich wie oben genannt nicht am ulnaren Teil des TFCC befinden. Des Weiteren ist es von entscheidender Bedeutung für eine erfolgreiche und
genaue Diagnostik, dass ein erfahrener Radiologe die Auswertung der MRT-Bilder übernimmt.

Außerdem geht aus der Auswertung der verschiedenen Studien hervor, dass sich die MRT als ein hilfreiches Untersuchungsverfahren zusätzlich zu der Anamnese und der klinischen Untersuchung bei der Erkennung von TFCC-Läsionen zeigt, jedoch keine guten Ergebnisse bzgl. der Vorhersage der Lokalisation des TFCC-Schadens liefern kann [22] [120]. Zudem ist die Applikation von Kontrastmittel intravenös und / oder intraartikulär in Betracht zu ziehen, da sie die diagnostische Sicherheit am Ulnokarpalen Komplex signifikant erhöht [139].

Das bedeutet, dass die Magnetresonanztomographie als zusätzlich zielgerichtetes bildgebendes Verfahren durchaus in der Diagnostik von TFCC-Läsionen eingesetzt werden kann, aber nicht als alleinige Untersuchung zur Therapieplanung durchgeführt werden sollte.

1.5.5. Arthroskopie

Neben der Beurteilung von TFCC-Schäden lassen sich auch assoziierte Knorpelläsionen oder insbesondere interkarpale Insuffizienzen der lunotriquetralen Verbindung nachweisen. Es existieren diverse klinische Studien, die die einzelnen diagnostischen Untersuchungsmöglichkeiten untereinander vergleichen. Bei vielen Studien wird die Arthroskopie als ein sehr sicheres, zuverlässiges und valides Verfahren zur Diagnostik von

1.6. Therapieoptionen bei TFCC-Läsionen

1.6.1. Konservative Therapie

1.6.2. Operative Therapie

Sollten die Beschwerden trotz konservativer Therapie bestehen bleiben oder ist die Schädigung am Triangular Fibrocartilage Complex von vornherein konservativ nicht erfolgreich zu therapieren, ist eine chirurgische Behandlung nötig. Dabei gibt es wie oben genannt verschiedenste Therapiemöglichkeiten, die in der Literatur unterschiedlich bewertet und präferiert werden. Grundsätzlich kann die arthroskopische von der offenen Behandlung differenziert werden. Zu beiden Verfahren gibt es viele Studien mit guten Resultaten, auf die später noch näher eingegangen wird.

Als Standardzugänge zum Radiokarpalgelenk werden für die arthroskopische Therapie von TFCC-Läsionen meistens der 3-4 Zugang (zwischen der Sehne des M. extensor pollicis longus und der Sehnen der Mm. extensor digitorum) für das Arthroskop und der 6U- bzw. 6R-Zugang für das Instrumentarium gewählt (radial bzw. ulnar der Sehne des M. extensor carpi ulnaris) [36] [38] [46] [169]. Dabei wird die Hand oft in einen sog. „Traction-Tower“ eingespannt, der sich für eine stabile Lagerung der Hand in einem osziertem Längszug bewährt hat. Der Patient befindet sich während des Eingriffs entweder unter Intubationsnarkose oder unter einer lokalen Anästhesie (axilläre Plexusanästhesie) [36].

Bei der offenen chirurgischen Technik ist der Zugangsweg etwas anders. Es erfolgt ein ca. 2 cm langer longitudinaler Schnitt über dem Ulnokarpalgelenk zwischen den Sehnen des M. extensor digitii minimi und dem M. extensor carpi ulnaris. Dabei sollte der Ramus cutaneus dorsalis des N. ulnaris geschont werden. Anschließend wird weiter in die Tiefe bis zur Gelenkkapsel präpariert und diese ebenfalls inzidiert, um freie Sicht auf den Triangular Fibrocartilage Complex zu erlangen [32] [143].
Einleitung

Die im Folgenden genannten Therapieoptionen werden bei TFCC-Läsionen häufig angewendet und können sowohl arthroskopisch als auch als offener Eingriff durchgeführt werden.

1.6.3. Débridement

Das Débridement spielt in der Behandlung von Schäden am TFCC eine besondere Rolle [38] [47]. Es kann sowohl als alleinige Therapie als auch als zusätzliches Verfahren zu einer Refixation, Ulnaverkürzung oder einer Teilresektion erfolgen. Dabei werden aufgeraute lose und störende Fragmente oder auch eingerissene Anteile des TFCC und seiner Umgebung mittels einer Hochfrequenz-Sonde, einem Laser, einer Kürette, einem Shaver oder einem Vaporisator entfernt und die Ränder geglättet [67] [108]. Ziel des Débridements ist durch die Bereinigung der strukturellen Gegebenheiten im Bereich des Triangular Fibrocartilage Complex eine Linderung von Schmerzen, eine Verbesserung der Handgelenksbewegung und die Prävention bzw. Therapie von Sekundärkomplikationen, wie z.B. Chondro- oder Osteomalazien. Besonders effizient scheint das Débridement bei Läsionen im avaskulären Bereich des TFCC zu sein, wie z.B. bei Klasse 1A-, 1D- oder auch Klasse 2-Läsionen nach Palmer [38] [167] [20].

1.6.4. Reparatur / Refixation

Die Reparatur bzw. Refixation von TFCC-Strukturen nimmt in der Behandlung des Triangular Fibrocartilage Complex einen hohen Stellenwert ein [31] [35] [125] [41]. Diese Operationstechnik scheint zu besonders guten Resultaten bei peripheren Läsionen zu führen, die sich in den vaskulären Teilen des Discus ulnocarpalis befinden und somit ein gutes Heilungspotential besitzen. Bei der Refixation von TFCC-Strukturen werden überwiegend zunächst die Verletzungsränder mittels eines Débridements angefrischt, um die Heilung zu verbessern [36] [92] [147]. Anschließend werden sie aneinander fixiert, was durch unterschiedliche Methoden geschehen kann. So gibt es z.B. bei der arthroskopischen Reparatur die weit verbreitete Outside-inside-Technik [173], die Inside-outside Methode [148] oder aber auch die All-inside-Technik [23]. Alle Methoden erfolgen in der sogenannten Kanülentechnik mit meist resorbierbarem Nahtmaterial. Außerdem lässt sich die arthroskopische mit der offenen Technik bei der Reparatur von TFCC-Strukturen gut verbinden, so dass ein halboffenes Verfahren entsteht. Vorteil dieser Methode ist, dass sich insbesondere dorsal gelegene Einrisse sehr gut einsehen und nähen lassen, was bei einem rein arthroskopischem Vorgehen nicht immer gelingt. Zu sätzlich kann die Integrität der Sehnenscheide des M. extensor carpi ulnaris als wesentlicher dorsaler Stabilisator des distalen Radioulnargelenks überprüft werden und gegebenenfalls an ihre anatomische Stelle
Einleitung

refixiert werden [17]. Rupturen des Triangular Fibrocartilage Complex, die nahe der radialen oder auch ulnaren Aufhängung lokalisiert sind, erfordern normalerweise ein spezielles Instrumentarium zur transossären Refixation am Radius bzw. an der Ulna [17] [156] [35] [95] [131].

1.6.5. Osteotomien der Ulna

Exemplarisch soll im Folgenden auf einige Methoden näher eingegangen werden. Feldon et al. beschrieb 1992 die sogenannte „Wafer Procedure“, die aus der Resektion des distalen Anteils des Caput ulnae besteht, welches sich oft nicht als ebene Fläche darstellt, sondern konvex zum distalen Radioulnargelenk (DRUG) vorgewölbt ist [47]. Dieser Eingriff kann sowohl offen als auch arthroskopisch durchgeführt werden [172]. Es werden ungefähr 3-4 mm des Ulnakopfes flächig abgetragen, wobei der Processus styloideus ulnae erhalten bleibt. Nachteil dieser Methode ist, dass das Handgelenk im Anschluss an den Eingriff für eine längere Zeit (oft 3-6 Monate postoperativ) schmerzhaft bleibt [129].

Ein weiteres Verfahren stellt die Ulnaverkürzungsosteotomie dar, die ursprünglich von Milch (1963) beschrieben wurde [91]. Im Laufe der Zeit haben sich darauf basierend verschiedene Varianten der ulnaren Verkürzungsosteotomie entwickelt. So z.B. die Schrägosteotomie, die normalerweise im distalen Drittel der Ulna durchgeführt wird. Dabei wird ein Knochenzylinder reseziert korrespondierend zu der gewünschten Verkürzungslänge der Ulna. Die Osteosynthese wird anschließend z.B. mit einer 6-Loch dynamischen Kompressions-Platte (DCP) und interfragmentärer Zugschraube durchgeführt [25]. Diese Schrägosteotomie weist durch ihre breite Knochenkontaktfläche eine hohe Druck- und Torsionsstabilität auf und
Einleitung

In der Literatur sind noch diverse andere Ulnaverkürzungsoстеотомії beschrieben, die den oben genannten jedoch sehr ähneln und sich nur unwesentlich unterscheiden.

Die Gemeinsamkeit aller Verfahren zur Ulnaverkürzung, die bisher beschrieben wurden, besteht darin, dass das distale Radioulnargelenk komplett erhalten bleibt. Es gibt jedoch auch Methoden, bei denen dies nicht der Fall ist und das DRUG aufgrund von arthrotischen Veränderungen mit entfernt werden muss, so z.B. auch bei TFCC-Läsionen der Klasse 2E nach Palmer [39] [26] [162].

Die Methode nach Watson beinhaltet eine angepasste distale Ulnaresektion [163], welche heute nur noch selten durchgeführt wird, so dass sie an dieser Stelle nicht weiter ausgeführt wird.

1.6.6. Resektion bzw. Teilresektion

Aufgrund der verschiedensten Möglichkeiten zur Therapie von Läsionen des Triangular Fibrocartilage Complex kommt den vorhandenen Therapiestudien in der Literatur eine große Bedeutung zu. Im Folgenden sollen sie näher auf ihren Erfolg untersucht sowie untereinander verglichen werden.
2. Zielstellung

3. Material und Methoden

3.1. Themenpriorisierung

Systematische Übersichtsarbeiten stellen sowohl zur Effektivitätsbeurteilung medizinischer Interventionen als auch bei der Bestimmung von zukünftigen Forschungsfeldern wesentliche Instrumente dar.

In der Handchirurgie ist bisher der Einfluss und die Anzahl von systematischen Übersichtsarbeiten oder Meta-Analysen noch gering, wodurch die Therapieentscheidungen oftmals nur auf wenig verlässlichen Daten und Studien basieren und somit insgesamt ein Mangel an evidenzbasiertem Wissen auf diesem Gebiet vorherrscht.

Vor diesem Hintergrund hat die Deutsche Gesellschaft für Handchirurgie (DGH) beschlossen, besonders relevante handchirurgische Themen zu identifizieren und zu diesen systematische Übersichtsarbeiten zu erstellen [133]. Aufgrund der großen Vielfalt möglicher Fragestellungen wurde zunächst eine Ermittlung der grundsätzlich infrage kommenden handchirurgischen Themen durch eine Analyse der seit 1990 veröffentlichten Publikationen in Fachzeitschriften durchgeführt. Dabei konnte ein Katalog mit 24 Themen erstellt werden. Dieser wurde 30 deutschen handchirurgischen Experten in Form eines Fragebogens zur Relevanzeinschätzung vorgelegt. Anhand dieser Umfrage erfolgte eine Themenpriorisierung, indem die Befragten die Relevanz der Themen mithilfe eines Schulnotensystems bewerteten (1 = sehr relevant bis 5 = nicht relevant).

großen Bedarf an einer objektiven Bewertung der vorhandenen Evidenz oder aber auch Demonstration eines etwaigen Mangels.

3.2. Suchstrategie

Es wurden folgende Suchabfragen verwendet:

Außerdem wurde die Datenbankrecherche durch eine Handsuche in den relevanten handchirurgischen Zeitschriften, die nicht in PubMed zu finden waren, ergänzt. Zusätzlich wurden die Literaturverzeichnisse der als interessant eingeschätzten Publikationen auf Querverweise bislang nicht gefundenen Studien hin überprüft. Lag die entsprechende Publikation nicht vor, wurde sie im Volltext besorgt und ebenfalls näher analysiert.

3.3. Kriterien der Berücksichtigung von Studien

Für die Erstellung einer systematischen Übersichtsarbeit zum Thema „Therapie von Läsionen des Triangular Fibrocartilage Complex“ ist die gründliche Auswahl der zu berücksichtigenden Studien von größter Bedeutung. Da das Hauptaugenmerk dieser Arbeit auf der Bewertung und Analyse verschiedener Behandlungsmethoden liegt, wurde die Literaturrecherche größtenteils auf Therapiestudien beschränkt.

Außerdem wurde die Analyse von Publikationen mit einem möglichst hohen Evidenzniveau angestrebt, um so für die Beantwortung der Fragestellung die beste verfügbare Evidenz zu erhalten. Die Einteilung der Evidenzstärke erfolgte nach bestimmten Kriterien entsprechend dem Klassifikationssystem des Centre for Evidence-based Medicine in Oxford (s. Tabelle 3) [128].

Tabelle 3: Klassifikationssystem des Centre for Evidence-based Medicine Oxford

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenz-Level</th>
<th>Studiendefinition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1a</td>
<td>Systematisches Review (mit Homogenität) von randomisierten kontrollierten Studien</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>Mindestens eine randomisierte kontrollierte Studie (mit engen Konfidenzintervallen)</td>
</tr>
<tr>
<td></td>
<td>1c</td>
<td>Alles-oder-Nichts-Fallserie</td>
</tr>
<tr>
<td>B</td>
<td>2a</td>
<td>Systematisches Review (mit Homogenität) von Kohortenstudien</td>
</tr>
<tr>
<td></td>
<td>2b</td>
<td>Mindestens eine Kohortenstudie (oder auch RCT schlechter Qualität, z.B. mit <80% Follow-up)</td>
</tr>
<tr>
<td></td>
<td>2c</td>
<td>"Outcome"-Forschung</td>
</tr>
<tr>
<td></td>
<td>3a</td>
<td>Systematisches Review (mit Homogenität) von Fall-Kontroll-Studien</td>
</tr>
<tr>
<td></td>
<td>3b</td>
<td>Einzelne Fall-Kontroll-Studie</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>Fall-Serien (und Kohorten- und Fall-Kontroll-Studien niedriger Qualität)</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>Expertenmeinung ohne Studienhintergrund oder basiert auf physiologischen Prinzipien, Laborforschung, etc.</td>
</tr>
</tbody>
</table>

Jedem Evidenzlevel ist auch ein Empfehlungsgrad zugeordnet, welcher dem internationalen Gebrauch entspricht und eine Vergleichbarkeit bezüglich Therapieempfehlungen erlaubt.

Eingeschlossen in die Analyse und Auswertung wurden Studien, die sich mit der Behandlung von jeglichen Läsionen des Triangular Fibrocartilage Complex beschäftigten.

Da insgesamt nur wenige qualitativ hochwertige Studien zu diesem Thema existieren, wurden für die systematische Übersichtsarbeit Studien bis zu einem Evidenzniveau von 4
berücksichtigt. Es gingen somit sowohl retrospektive Kohortenstudien als auch überwiegend Fallserien in die Auswertung mit ein.

Einschlusskriterien für eine Fallserie war eine Fallzahl von mindestens fünf Fällen, eine homogene Studiengruppe bezogen auf ihre Diagnosestellung, wie auch eine suffiziente Ergebnisauswertung der angewandten Therapiestrategie, die nicht nur auf subjektivem Empfinden der Patienten basierte.

Studien mit einem Evidenzlevel von 5 wurden von der Auswertung ausgeschlossen und damit auch von der Berücksichtigung in der systematischen Übersichtsarbeit. Diesem Evidenzniveau werden Laborforschungen, Expertenmeinungen, Fallberichte (Case Reports), Fallserien mit weniger als fünf Fällen wie auch Reviews ohne Studienhintergrund zugeordnet (s. Tabelle 3).

3.4. Datenerfassung und Datenkategorisierung

3.4.1. Allgemeine Daten

Die Erfassung aller Studiendaten erfolgte in tabellarischer Form. Dabei wurden neben der Diagnosestellung, der angewandten Therapie und der Ergebnisbewertung auch allgemeine Daten zum Vergleich festgehalten. Unter allgemeinen Daten werden folgende Angaben verstanden, die bei der Analyse erfasst wurden:

Es wurde sowohl die gesamte Fallzahl der Patienten, die in die Studie aufgenommen wurden, angegeben als auch die Anzahl der Patienten, die letztlich unter der jeweiligen Fragestellung als relevant eingestuft und analysiert wurden. Außerdem erfolgte eine Erfassung des mittleren Patientenalters wie auch der gesamten Altersrange.

Neben diesen Daten wurde ebenfalls die Anzahl der nachuntersuchten Fälle wie auch deren Nachuntersuchungsrate beschrieben. Darunter ist der prozentuale Anteil der Patienten, der anschließend auch im weiteren Verlauf für Nachuntersuchungen zur Verfügung standen bzw. bei denen postoperative Ergebnisse ermittelt werden konnten, bezogen auf die gesamte Studienpopulation, zu verstehen. In fast allen Publikationen wurde für diese Nachuntersuchung eine durchschnittliche Follow-up-Zeit wie auch deren Range angegeben, welche zusätzlich in die tabellarische Studienauswertung aufgenommen wurden.

Der Vollständigkeit halber wurden außerdem bei vielen Studien die mittlere Zeit bis zur Behandlung beschrieben und in der Analyse erfasst.

3.4.2. Diagnose

Bei der tabellarischen Auswertung aller relevanten Publikationen spielte die Erfassung der jeweiligen Diagnose eine wichtige Rolle, da größtenteils die Studien nach ihrer
Material und Methoden

3.4.3. Intervention

Bei der Auswertung der Studien spielte das durchgeführte Behandlungsverfahren der jeweils vorliegenden TFCC-Läsion eine bedeutende Rolle, so dass es bei jeder Publikation herausgearbeitet und tabellarisch erfasst wurde. Grundsätzlich können die Therapieverfahren grob in zwei Kategorien eingeteilt werden: einerseits die arthroskopischen Operationen und andererseits die offenen durchgeführten Eingriffe.

Zusätzlich zu den oben beschriebenen Methoden gibt es noch ein weiteres Behandlungsverfahren – die partielle Diskusresektion –, die jedoch nur eine untergeordnete Rolle in der Praxis spielt.

Außerdem treten neben TFCC-Läsionen oft auch Begleitschäden der umgebenden Strukturen auf, so dass dann verschiedene Therapieverfahren miteinander kombiniert werden müssen. Liegt eine zusätzliche Verletzung des Ligamentum lunotriquetrum interosseum vor, muss zu der Reparatur des TFCC-Schadens eine Kapsulodese des lunotriquetralen Gelenkes durchgeführt werden.

3.4.4. Ergebnisbewertung (Outcome measures)

Da das Ziel dieser systematischen Übersichtsarbeit größtenteils die Analyse und Bewertung von Therapieverfahren bei Läsionen des Triangular Fibrocartilage Complex ist, spielte bei der Auswertung der Studien die Ergebniserfassung jeder einzelnen Behandlungsstrategie eine besonders wichtige und zentrale Rolle. Alle verwendeten Messgrößen wurden tabellarisch erfasst und in die Auswertung einbezogen. Dabei fiel auf, dass die relevanten Publikationen in unterschiedlichster Weise ihre Ergebnisse dokumentierten und bewerteten, so dass im Folgenden die verwendeten Messgrößen kurz näher zu beschreiben sind.

Grundsätzlich muss zwischen subjektiven und objektiv-verifizierbaren Ergebnisbewertungen unterschieden werden. Zu den objektiven Kriterien gehören die Beweglichkeit des Handgelenkes (ROM), die Griffstärke (Kraft), zum Teil der Mayo Modified Wrist Score, Minamis Evaluationskriterien wie auch die Kriterien von Darrow. Dem gegenüber stehen subjektiv vom Patienten wahrgenommene Therapieberwahrungen wie die postoperativen Schmerzangaben, die zum Teil mit Hilfe des VAS-Scores angegeben wurden, der DASH-Score, die Zufriedenheit der Patienten mit der Behandlung als auch Angaben über die Wiederaufnahme von Alltagstätigkeiten.

Zu einem kleinen Teil gaben dies die Studien für alle Bewegungsrichtungen an (Extension/Flexion, Pronation/Supination, Ulnarduktion/Radialduktion), jedoch erfolgten
meistens nur Angaben für Extension und Flexion, so dass als wichtigster Parameter für die Beweglichkeit des Handgelenkes die active Extension und Flexion festgelegt wurde. Wenn eine prozentuale Angabe in der Publikation fehlte und nur ein summarisches Bewegungsausmaß für Extension und Flexion in Grad angegeben war, wurde dieses in Beziehung zu einem Normwert von 130 Grad gesetzt und in eine prozentuale Angabe umgerechnet.

Ebenfalls gilt die postoperative Untersuchung der größen Kraft beim Faustschluss (Griffstärke) als wichtiger Parameter, um einen Eindruck von der resultierenden Kraftentwicklung der therapierten Hand zu erlangen. Auch diese Messgröße wurde immer prozentual im Vergleich zu der gesunden Gegenseite angegeben.

Tabelle 4: Mayo Modified Wrist Score nach Cooney [35]

<table>
<thead>
<tr>
<th>Untersuchungskriterium</th>
<th>Untersuchungsergebnis</th>
<th>Punktzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td>No pain</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Mild, occasional</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Moderate, tolerable</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Severe, intolerable</td>
<td>0</td>
</tr>
<tr>
<td>Functional Status</td>
<td>Return to regular employment</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Restricted employment</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Able to work, unemployed</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Unable to work, pain</td>
<td>0</td>
</tr>
<tr>
<td>Motion</td>
<td>90 – 100%</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>80 – 89%</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>70 – 79%</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>50 – 69%</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>25 – 49%</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0 – 24%</td>
<td>0</td>
</tr>
<tr>
<td>Grip strength</td>
<td>90 – 100%</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>75 – 89%</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>50 – 74%</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>25 – 49%</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0 – 24%</td>
<td>0</td>
</tr>
</tbody>
</table>

Bewertung: Excellent: 91-100 points; good: 80-90 points; fair: 65-79 points; poor: < 65 points

Je nach Status quo werden pro Kategorie 0-25 Punkte vergeben, die am Ende addiert werden, so dass insgesamt eine minimale Punktzahl von 0 und eine maximale Punktzahl von...

Tabelle 5: Evaluationskriterien nach Minami [93]

<table>
<thead>
<tr>
<th>Grade</th>
<th>Pain</th>
<th>Motion</th>
<th>Grip strength</th>
<th>Return to job</th>
<th>Satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>None/slight</td>
<td>Improvement</td>
<td>Improvement</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Good</td>
<td>Mild</td>
<td>Improvement</td>
<td>Improvement</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Fair</td>
<td>Mild/moderate</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Yes/No</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Poor</td>
<td>Moderate/severe</td>
<td>Worse</td>
<td>Worse</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Diese Erfolgsgrade definieren sich nicht über eine gewisse Gesamtpunktzahl, sondern über bestimmte Kriterien, die zur jeweiligen Zuordnung erfüllt sein müssen (s. Tabelle 5).

Vergleichbar mit den Kriterien von Minami sind auch die Evaluationskriterien von Darrow [40]. Sie beinhalten die Bewertung des Bewegungsumfangs des Handgelenkes, das Schmerzempfinden des Patienten, seine Funktionseinschränkung sowie die Fähigkeit des Patienten, seinen Beruf weiter auszuführen (s. Tabelle 6).
Material und Methoden

Tabelle 6: Evaluationskriterien nach Darrow [40]

<table>
<thead>
<tr>
<th>Bewertungsgrad</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>Full range of motion compared with opposite wrist and no pain or limitation of function</td>
</tr>
<tr>
<td>Good</td>
<td>Mild discomfort with strenuous use and mild limitation of motion compared with opposite wrist</td>
</tr>
<tr>
<td>Fair</td>
<td>Moderate discomfort with use, moderate limitation of motion in more than one direction and limitation of function sufficient to prevent full return to work</td>
</tr>
<tr>
<td>Poor</td>
<td>Persistent pain, limitation of motion sufficient to prevent return to gainful employment and/or nonunion</td>
</tr>
</tbody>
</table>

3.5. Umfrage

Um einen Eindruck von der derzeitigen Behandlungsstrategie in Deutschland bei Läsionen des Triangular Fibrocartilage Complex zu gewinnen, erfolgte eine eigene Umfrage zu diesem Thema.

Es wurde ein Fragebogen mit verschiedenen Fragen erstellt, die sich alle auf das klinikeigene / praxiseigene Vorgehen bei Läsionen des TFCC am Handgelenk beziehen. Dieser Fragebogen beinhaltete Fragen zu der Patientenanzahl, zu der Behandlungsstrategie (konservative oder operative Behandlung), zu der Art der konservativen bzw. der operativen Therapie und zu der postoperativen Ruhigstellung. Außerdem erfragte er Tendenzen zur Änderung des Behandlungskonzeptes in den letzten 5 Jahren (operatives versus konservatives Vorgehen und offene versus arthroskopische Operationstechniken) wie auch die subjektive Einschätzung der Relevanz des Themas „Läsionen des Triangular Fibrocartilage Complex“ (s. Umfrage im Anhang).

Verteilt wurde dieser Umfragebogen im Rahmen des 50. Kongresses der Deutschen Gesellschaft für Handchirurgie (08.-10. Oktober 2009, Tübingen) an alle Teilnehmer. Diese konnten den Fragebogen ausgefüllt direkt vor Ort wieder abgeben oder ihn per E-mail oder Fax zurück senden.
4. Ergebnisse

4.1. Identifizierte Studien

Letztlich konnten somit 35 Studien für die systematische Übersichtsararbeit zur Therapie von Läsionen des Triangular Fibrocartilage Complex berücksichtigt und analysiert werden (s. Abbildung 12).

Abbildung 12: Anzahl der durch den Review Prozess identifizierten und evaluierten Arbeiten

Als potentiell relevant identifizierte Arbeiten \(n = 259 \)

Bestellte und potentiell relevante Arbeiten \(n = 156 \)

Ausgewertete Arbeiten \(n = 54 \)

Für den Review berücksichtigte Arbeiten \(n = 35 \)

Anhand des Abstracts ausgeschlossen wegen fehlender inhaltlicher Relevanz \(n = 103 \)

Ausgeschlossen wegen fehlender inhaltlicher Relevanz oder niedrigem Evidenzniveau \(n = 102 \)

Keine einheitliche Therapie \(n = 2 \)

Ausgeschlossen wegen nicht verwertbarer Ergebnisse \(n = 14 \)

Ausgeschlossen wegen ungenauer Diagnosestellung \(n = 3 \)
4.2. Methodologische Qualität und Evidenz-Niveau

Tabelle 8: Evidenzniveau-Übersicht der ausgewerteten Literatur

<table>
<thead>
<tr>
<th>Studientyp</th>
<th>Evidenzniveau</th>
<th>Anzahl der Studien</th>
</tr>
</thead>
<tbody>
<tr>
<td>retrospektive Kohortenstudie</td>
<td>2b</td>
<td>2</td>
</tr>
<tr>
<td>retrospektive Kohortenstudie niedriger Qualität</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Fallserien</td>
<td>4</td>
<td>31</td>
</tr>
</tbody>
</table>

4.3. Einteilung der Studien nach Ursache und Lokalisation der Schädigung

4.4. Therapie traumatischer TFCC-Läsionen

4.4.1. Therapie zentraler Typ 1A-Läsionen

Insgesamt wurden 7 Studien zu Therapieverfahren bei traumatischen Läsionen im zentralen Bereich des Triangular Fibrocartilage Complex (Typ 1A nach Palmer) ausgewertet. Alle Studien zeigten sich nach genauer Betrachtung letztlich als Fallserien, die jedoch für eine evidenzbasierte Auswertung in zwei Untergruppen unterteilt werden mussten.

Zwei der sieben Studien beschäftigten sich neben der Untersuchung von Palmer 1A-Läsionen ebenfalls mit anderen Läsionstypen, wobei jedoch sowohl die Therapie als auch deren Ergebnisse aufg eschlüsselt und den jeweiligen Läsionstypen einzeln zug eordnet waren [95] [150]. Deshalb wurde nur der entsprechende Arm der Studie mit der 1A-Läsion in die weitere Auswertung eingeschlossen, die anderen Arme mit den abweichenden Diagnosen nicht erfasst.

In allen Studien werden unterschiedliche Therapieverfahren verwendet und untersucht, wobei der Teilresektion des TFC C, der Ulnaverkürzung und vor allem dem Débridement aufgerauter Ränder eine bedeutende Rolle zukommt. Die Ulnaverkürzung als Behandlungskonzept bei traumatisch plötzlich auftretenden Verletzungen ist erstaunlich, da sie normalerweise bevorzugt bei degenerativ bedingten Schäden eingesetzt wird. Diese Tatsache ist jedoch damit zu erklären, dass durch die relative Langen Ulna der Diskus bereits prädisponiert für Läsionen ist und bei einem zusätzlichen Trauma schneller Verletzungen entstehen können. Um einer Wiederholung vorzubeugen und den Ulnokarpalen Komplex längerfristig zu entlasten, scheint eine Ulnaverkürzung ein sinnvolles Therapieverfahren zu sein.

4.4.1.1. Fallserien mit höherer Evidenz

Von den sieben Studien, die die Therapie von traumatisch bedingten zentralen Schäden am Triangular Fibrocartilage Complex untersuchten, wurden drei Studien der Gruppe mit Fallserien höherer Evidenz zugeordnet [18] [20] [95]. Trotzdem wiesen je doch diese
Ergebnisse

Fallserien aufgrund ihres gesamten Studiendesigns le diglich einen Evidenz-Grad 4 auf. Nachfolgend werden die ermittelten Daten dieser drei Fallserien miteinander verglichen, wobei eine ganz besondere Beachtung den Therapieergebnissen gilt (s. Tabelle 9).

Bilos und Chamberland [18] führten eine Studie mit 7 Patienten durch, bei der eine 100% ige Follow-up Rate erzielt wurde, wie auch in der Studie von Miwa et al. [95], die insgesamt 10 Fälle mit Palmer 1A-Läsionen analysierte. Blackwell et al. [20] hingegen begann seine Studie mit 42 Patienten, von denen jedoch letztlich nur 35 nachuntersucht werden konnten, so dass die Follow-up Rate etwas niedriger bei 83% lag. Das mittlere Patientenalter war in allen drei Studien vergleichbar (31-41 Jahre), wie auch die mittlere Zeit bis zur Behandlung der Handgelenksverletzung (7-8 Monate).

Unterschiede gab es in allen drei Fallserien bei dem therapeutischen Vorgehen, was unter anderem auf die Begleitdiagnose der relativ zu langen Ulna zurückzuführen ist, die vor allem in der Studie von Bilos und Chamberland eine große Rolle spielte. Diese Patienten zeigten alle zusätzlich zur Klasse 1A-Läsion des TFCC eine Ulna-Plus-Variante von mindestens 2 mm und mehr. Ihre Therapie bestand aus einer in 11 Patienten durchgeführten Ulnaverkürzung mit Hilfe des „Wafer Procedure“, bei der vom distalen Anteil des Caput ulnae etwa 2-4 mm reseziert wurden. Ziel dieses Verfahrens war eine Entlastung des ulnokarpalen Komplexes. Zusätzlich erfolgte in 28,5% (bei 2 Patienten) ein Débridement der losen und störenden Teile des TFCC.

Auch die Therapie bei Klasse 1A-Läsionen nach Miwa et al. bestand aus einer arthroskopischen Teilresektion und einem anschließend durchgeführten Débridement [95]. Die postoperativen Untersuchungen zeigten folgende Ergebnisse:

Blackwell et al. versuchte seine Eindrücke der klinischen Untersuchung sowie die subjektiven Angaben der Patienten zu objektivieren, indem er den Mayo modified wrist Score zu Hilfe nahm. Die Patienten in der Studie von Blackwell et al. erreichten postoperativ zu 68% ein „exzellentes“ bis „gutes“ Resultat, 21,5% der Patienten ein „ausreichendes“ Ergebnis und lediglich 7% ein „schlechtes“.

Eine Bewegungseinschränkung war in der Studie von Bilos und Chamberland postoperativ nicht zu erkennen. Ähnliche Ergebnisse diesbezüglich lieferten auch Blackwell et al., die lediglich eine Bewegungseinschränkung von 16% beschrieben.

Diesen objektiven Daten stehen die subjektiven Angaben des Patienten gegenüber, die jedoch nicht vernachlässigt werden sollten. Im Vordergrund steht dabei die Empfindung von

Nur Blackwell et al. berichtete postoperativ über eine tief e Wundinfektion, die jedoch bei lediglich 3% der Behandelten auftrat. Miwa et al. betonte sogar, dass es postoperativ zu keinerlei Komplikationen in seiner Studienpopulation kam.

4.4.1.2. Fallserien mit geringerer Evidenz

Dieser Gruppe gehören insgesamt vier Studien an, die zwar größtenteils Palmer 1A-Läsionen untersucht, jedoch nicht ausschließlich [38] [66] [47] [150]. Aus diesem Grund sind sie sowohl methodologisch als auch von ihrer Aussagekraft schlechter einzuschätzen als die oben beschriebenen Fallserien. Jedoch ist ihnen nach genauer Untersuchung trotz allem ein Evidenz-Grad von 4 zuzuordnen.

Die Studien von Darlis et al. [38], Husby und Haugstvedt [66] und Feldon et al. [47] weisen als Gemeinsamkeit auf, dass sie neben den zentralen traumatisch bedingten Läsionen noch bei 10-17% Schäden im Bereich des radialen Anteils des Triangular Fibrocartilage Complex untersuchen. Zentrale jedoch degenerativ verursachte Schäden werden in einem geringeren prozentualen Anteil von Darlis et al. (9%) und Husby (20%) ebenfalls mit analysiert.

Dem gegenüber schließt Tatebe et al. in seiner Ergebnisauswertung neben zentralen 1A-Läsionen noch zusätzlich traumatisch bedingte ulnare 1B-Läsionen ein, die jedoch einen zu vernachlässigten geringen Anteil von nur 7% ausmachen [150].

Ganz unterschiedlich gestaltet sich die operative Behandlungsart in den vier zu vergleichenden Studien (s. Tabelle 10).

Während Darlis et al. bei seinen 20 Patienten ausschließlich ein arthroskopisches Débridement mittels einer Hochfrequenz-Sonde durchführt, wendet Husby und Haugstvedt bei ihrer Studienpopulation von 32 analysierten Fällen sowohl eine arthroskopische Teilresektion als auch ungefähr bei der Hälfte der Patienten ein Débridement an.

Bei Feldon et al. hingegen besteht die Behandlung aus einer offenen Ulnaverkürzung („Wafer Procedure“) und einem Débridement der losen und damit störenden Teile des TFCC.
Feldon erachtet diese Therapie für die Versorgung einer zentralen TFCC-Läsion für sinnvoll, da bei 75% seiner Patienten als Begleitdiagnose eine Ulna-Plus-Variante vorliegt, und er mit einer Reduktion der Ulnalänge den Ulnokarpalen Komplex entlasten möchte. Diese Behandlungsstrategie verfolgt auch Tatebe et al., der eine Ulnaverkürzungsosteotomie von 2-5 mm durchführt und anschließend die Osteosynthese mit einer Platte versorgt.

Während Darlis durch das Débridement eine Zunahme der Griffstärke von fast 20% aufweisen kann (präop. 64%, postop. 83%), liegt die Steigerung bei Tatebe nur bei 7% (von 81% auf 88%). Husby und Haugstvedt sowie Feldon geben leider nur ihre durchschnittlichen postoperativen Griffstärken an, die jedoch bei beträchtlichen 95% bzw. 100% liegen.

Die globale Schmerzmessung mittels VAS zeigte in beiden Studien von Darlis et al. und Husby und Haugstvedt nur noch leichte Schmerzen. So gaben in allen Studien 85-100% der Patienten Schmerzfreiheit an bzw. eine Reduktion der Schmerzen im Vergleich zur präoperativen Ausgangssituation.

Auffällig war jedoch, dass nur knapp über die Hälfte der Studienpopulation von Darlis et al. ihre Alltagsaktivität wieder aufnahm. Im Vergleich dazu waren es bei Husby und Haugstvedt bzw. bei Feldon et al. etwa 90% der Patienten.

Komplikationen beschrieb nur Feldon in seinen ersten Fällen (23%), bei denen sich eine Sehnenentzündung des M. extensor carpi ulnaris entwickelte. Daraufhin stellte er seine Operationstechnik minimal um und hatte von dato an ebenfalls keine postoperativen Probleme mehr zu verzeichnen.

4.4.1.3. Fallserien: Schlussfolgerungen

Fallserien lassen zwar keine therapeutischen Empfehlungen zu, zeigen jedoch Tendenzen zur Behandlung von zentralen Typ 1A-Läsionen des Triangular Fibrocartilage Complex auf. Zusätzlich lassen sich die Ergebnisse der analysierten Fallserien folgendermaßen zusammenfassen:
Ergebnisse

- Ausschließliche Teilresektionen des Diskus, Débridements des TF CC und Ulnaverkürzungen stellen die verwendeten Therapieoptionen in der vorhandenen Literatur für Palmer 1A-Läsionen dar.
- Die arthroskopische Teilresektion in Verbindung mit einem Débridement liefert relativ einheitliche, gute klinische Ergebnisse. Es liegt eine hohe postoperative Schmerzfreiheit bzw. Reduktion der Schmerzen vor, so dass insgesamt die meisten Patienten äußerst zufrieden mit der Behandlung sind und wieder zu ihrer Alltagstätigkeit zurückkehren können.
- Bei geeigneter Begleitdiagnose (Ulna-Plus-Variante/Ulna-Impaction-Syndrom) scheint auch trotz traumatisch verursachten TFCC-Schäden eine Ulnaverkürzung als zusätzliches Verfahren eine sinnvolle und erfolgreiche Therapieoption zu sein.

4.4.2. Therapie ulnarer Typ 1B-Läsionen

Die Literaturrecherche ergab insgesamt 16 Studien, die in die Auswertung zur Therapie ulnarer TFCC-Läsionen vom Typ 1B einbezogen wurden. Darunter befanden sich ursprünglich 2 retrospektive Kohortenstudien und 14 Fallserien, die ein Evidenzniveau von 4 aufwiesen.

In nahezu allen Studien bestand die Therapie aus einer Refixation bzw. Reparatur des verletzten Anteils des Discus ulnaris und in wenigen Ausnahmefällen auch in einem zusätzlichen Débridement oder einer Ulnaverkürzung.

Die Fallserien wurden in zwei Gruppen unterteilt; bei der eine Gruppe aus 5 Studien bestand, die die offene therapeutische Vorgehensweise untersuchten und die andere Gruppe beinhaltete 8 Fallserien, bei denen das arthroskopische Verfahren angewandt wurde. In der Gruppe der offenen Therapie fanden sich zwei Studien, die neben 1B-Läsionen auch andere Läsionstypen analysierten [31] [151]. Diese jeweiligen Arme wurden aus der Auswertung ausgeschlossen und lediglich der Arm mit der ulnaren Schädigung berücksichtigt. Die Werte musste eine Fallserie der Gruppe der arthroskopischen Refixation extra betrachtet werden, da sie aufgrund von methodologischen Defiziten eine geringere Evidenz aufwies als die anderen Studien [125]. Sie analysierte zwar größtenteils Palmer 1B-Läsionen (90%), jedoch zu einem geringen Teil berücksichtigte diese auch 1A- und 1D-Läsionen (10%).

Beide Kohortenstudien konnten in einem Evidenzgrad 2b zugeordnet werden [95] [157]. Jedoch verglich eine Kohortenstudie ein und dasselbe arthroskopische Therapieverfahren sowohl bei ulnaren als auch bei radialen TFCC-Schäden, so dass der Arm mit den 1D-
Ergebnisse

4.4.2.1. Vergleichende Studie

Insgesamt kam es zu keinen signifikanten Unterschieden in der postoperativen Untersuchung zwischen den Patientengruppen mit der arthroskopischen Refixation mittels „Naht“ und dem arthroskopischen Débridement.

4.4.2.2. Vergleichende Studie: Schlussfolgerungen

Die vorliegende vergleichende Studie kann die Überlegenheit eines Therapieverfahrens bei traumatisch bedingten ulnaren T FCC-Läsionen nicht belegen. Nur wenige Folgerungen
können abgeleitet werden, wobei diese mit Vorsicht zu betrachten sind, da sich die Fallzahl zwischen den Gruppen deutlich unterscheidet:

- Die arthroskopische Refixation und das arthroskopisch durchgeführte Débridement führen zu ähnlichen klinischen Ergebnissen und einer vergleichbaren Verbesserung des Bewegungsumfangs sowie der Griffstärke. Schmerzen wurden in beiden Behandlungsgruppen postoperativ insgesamt keine bis moderate angegeben.

4.4.2.3. Fallserien: offene Therapie

In fünf Fallserien wurde für die Behandlung von ulnaren 1B-Läsionen des Triangular Fibrocartilage Complex ein offen durchgeführtes Therapieverfahren gewählt (s. Tabelle 12). Drei Studien davon berichteten über eine offene Refixation mittels „Naht“ [31] [63] [151], während eine Studie von Sennwald et al. zusätzlich noch eine Ulnakopf-Verkürzungsosteotomie durchführte [143]. Chou et al. wendete 2003 in seiner Studienpopulation eine mini-open „suture anchor“-Technik (Unlnaverankerung) und ein Débridement an, um die ulnare TFCC-Läsion zu versorgen [32]. Die analysierten Fallzahlen in allen fünf Studien waren vergleichbar (8-17 Patienten), während das mittlere Patientenalter variierte. Terry et al. behandelte lediglich Kinder bzw. Jugendliche sowie junge Erwachsene (12,5-23 Jahre) [151]. Chou und Lee hingegen verzeichneten ein mittleres Patientenalter von 47 Jahren, da sie Erwachsene auch noch bis in das hohe Lebensalter therapierten (19-79 Jahre) [31].

Die bislang noch nicht angeführten Studien von Hermansdorfer et al. und Sennwald et al. legten in ihrer Ergebnisauswertung großen Wert auf das Bewegungsausmaß, die Griffstärke und die Schmerzintensität [63] [143]. Während die Patienten von Hermansdorfer et al. ein mittleres Bewegungsausmaß von 96% in der Extension-Flexion im Vergleich zur gesunden Seite erreichten [63], lag die Studienpopulation von Sennwald et al. in dieser Bewegungsrichtung leicht dahinter (90%) [143]. Auch bei der Pronation-Supination konnte Hermansdorfer et al. in seiner Studie ein fast seitengleiches Bewegungsausmaß feststellen (99% der Gegenseite), während Sennwald et al. ganz leicht Einschränkungen hinnehmen musste (94% der Gegenseite). Lediglich bei der Radial- und Ulnarduktion zeigten sich signifikante Unterschiede in beiden Studien. Sennwald et al. ermittelte postoperativ eine Bewegungseinschränkung in dieser Handgelenksrichtung von 27%, die deutlich über der von Hermansdorfer lag (3%).

Auch die Griffstärke der operierten im Vergleich zur gesunden Hand lag bei den Patienten von Sennwald et al. nach dem operativen Eingriff unterhalb derer von Hermansdorfer et al. und Chou et al. (70% vs. 87% bzw. 88%).

Schmerzfreiheit bzw. eine Reduktion der Schmerzen konnten Chou et al., Hermansdorfer et al. und Terry et al. bei 73-100% ihrer Patienten verzeichnen. Bei 12,5 % der Patienten von Sennwald et al. kam es zu keiner Veränderung der Schmerzintensität und daher zu Unzufriedenheit unter den Patienten bzgl. der Behandlungsmethode. Bei Hermansdorfer et al. lag der prozentuale Anteil sogar bei 27%, die postoperativ weiterhin unter unveränderten Schmerzen litten.

Die Studie von Sennwald et al. versuchte darüber hinaus die Angaben der Schmerzintensität zu objektivieren, in dem sie sie mittels VAS maß. Der VAS-Score sank von präoperativ 7 auf postoperativ 2,5.

Eine rezidivierende Instabilität im distalen Radioulnargelenk wurde von Chou und Lee in 38% der Fälle angegeben. Bei Hermansdorfer et al. waren bei 18% der Patienten Folgeeingriffe erforderlich.

4.4.2.4. Fallserien: arthroskopische Therapie

Von den insgesamt 15 Fallserien, die Läsionen am ulnaren Anteil des TFCC behandelten, führten acht Studien die Therapie arthroskopisch durch und untersuchten dieses Verfahren. In diesen acht Studien wurden alle 1B-Läsionen mit einer Refixation mittels „Naht“ therapiert. Zwei Studien führten zusätzlich ein Débridement durch [123] [157]. De Araujo et al. benutzte
Ergebnisse

Die klinischen Ergebnisse der sechs Studien, die das Bewegungsausmaß untersuchten, zeigten postoperativ übereinstimmend eine äußerst geringe Reduzierung der Handgelenksbeweglichkeit im Vergleich zur gesunden Gegenseite [41] [43] [60] [11] [123] [157]. Weiterhin wurden in der Extensions-Flexions-Bewegung, der Pro- und Supination als auch in der Radial- und Ulnarduktion mindestens 90% des Ausmaßes der gesunden Gegenseite erreicht. Auch die postoperative Griffstärke wurde bei fast allen Studien ermittelt und lag zwischen 80% und 85% der Gegenseite. Nur de Araujo et al. [41] und Millants et al. [92] untersuchten diese nicht.

Neben der Handgelenksbeweglichkeit spielte auch die Schmerzintensität in der Therapiebewertung eine große Rolle, so dass sie in den Studien von Degref et al., Haugstvedt und Husby, Millants et al. und Reiter et al. mittels VAS gemessen wurde. In allen vier Studien gaben die Patienten nur geringe Schmerzen an (VAS 2,3-3,4). Die Patienten in der Fallserie von Trumble et al., die mit einem arthroskopischen Débridement sowie einer Refixation mittels „Naht“ behandelt wurden, waren sogar zu 91% schmerzfrei und 9% gaben eine postoperative Reduktion der Schmerzen an [157]. Zu ähnlichen guten Ergebnissen kamen auch Tünnerhoff und Haußmann, bei denen 90% der Patienten über geringere Schmerzen oder Schmerzfreiheit berichteten und lediglich 10% die Schmerzintensität als unverändert empfanden [159]. Bei Haugstvedt und Husby hingegen gaben nur 9% der Patienten Schmerzfreiheit an, während sich aber bei 72% die Schmerzen reduzierten; 4% der Patienten klagten über unveränderte Schmerzen und sogar 5% über schlimmere postoperative Schmerzen als vor der OP [60]. Die schlechtesten Therapieergebnisse bzgl. der Schmerzintensität hatte Reiter et al. zu verzeichnen [123]. In seiner Studie waren nur 57% der Patienten schmerzfrei bzw. gaben reduzierte Schmerzen an, während 43% über unveränderte Schmerzen berichteten.
Ergebnisse

4.4.2.5. Fallserie mit geringerer Evidenz

Die Fallserie von Ruch und Papadonikolakis (2005) muss getrennt von den anderen Studien, die die arthroskopische Refixation mittels „Naht“ bei 1B-Läsionen untersuchen, betrachtet werden, da sie methodologische Defizite aufweist [125]. Sie analysiert zwar überwiegend Palmer 1B-Läsionen (89%), jedoch zu einem geringen Teil (11%) sind zusätzlich zu der ulnaren Läsion auch 1A- und 1D-Läsionen in die Auswertung mit eingeschlossen worden (s. Tabelle 14). Im Vergleich zu den anderen Studien ist dieser Fallserie daher eine etwas geringere Evidenz zuzuordnen.

Ruch und Papadonikolakis führten eine Studie mit 35 Patienten durch, bei der sie nach durchschnittlich 29 Monaten eine Follow-up Rate von 100% erzielten. Alle Patienten wurden arthroskopisch behandelt, indem die Refixation mithilfe der „Outside-in“ Technik durchgeführt wurde. Das operative Prozedere bestand darin, dass der periphere Anteil des abgerissenen unokarpalen Diskus wieder an die Gelenkkapsel und an die Extensor carpi ulnaris-Sehne fixiert wurde.

Bei den Nachuntersuchungen konnten keine Bewegungseinschränkungen im Handgelenk festgestellt werden. Auch die Griffstärke lag mit 73% der gesunden Gegenseite in einem akzeptablen postoperativen Bereich.

Der mittlere DASH-Score in dieser Studie betrug 12. Dieser Score bedeutet, dass die durchgeführte Behandlungsmethode bei peripheren TFCC-Läsionen insgesamt zu sehr
guten“ funktionellen Resultaten führt. 77% der Patienten erreichten ein „sehr gutes“ Ergebnis (DASH < 20), 14% ein „gutes“ (DASH 20-30) und ein „schlechtes“ Resultat (DASH > 30) wurde bei nur 9% der Patienten ermittelt. Auch die Angaben der Patienten zur postoperativen Schmerzintensität waren sehr zufrieden stellend. 46% der Patienten gaben Schmerzfreiheit an, während 48% über eine Reduktion der Schmerzen berichteten. Lediglich 6% klagten auch postoperativ über starke Schmerzen im Bereich des Ulnokarpalen Komplexes.

4.4.2.6. Fallserien: Schlussfolgerungen

Auch diese Fallserien lassen zwar keine therapeutischen Empfehlungen zur Behandlung von ulnaren 1B-Läsionen zu, jedoch können die Ergebnisse der Studien zusammengefasst und die unterschiedlichen Eingriffe (arthroskopisch vs. offen) verglichen werden. Folgende Tendenzen lassen sich erkennen:
• Die Refixation der lädierten Diskusanteile spielt bei Palmer 1B-Läsionen in der Literatur die größte Rolle.
• Die offene Refixation mittels „Naht“ führt nicht in jeder Studie zu guten Ergebnissen bzgl. des Mayo Scores. Dieses ist jedoch nicht unbedingt auf eine schlechtere Behandlungsmethode zurückzuführen, da ein vergleichsweise hohes mittleres Patientenalter oder auffallend schlechte Ausgangswerte vorlagen.
• Die Refixation mittels „Naht“ bei Hermansdorfer et al. ergibt vergleichsweise schlechte Ergebnisse bzgl. des Schmerzempfindens.
• Die offene Refixation in Verbindung mit einer Ulnakopfverkürzungsosteotomie führt zu einer größeren Bewegungseinschränkung des Handgelenkes als eine solitär durchgeführte Refixation (Einschränkung ca. 30% vs. 5%).
• Die arthroskopisch durchgeführten Behandlungen weisen insgesamt eine höhere Komplikationsrate auf als die offen durchgeführten.
• Signifikante Unterschiede lassen sich klinisch zwischen den offenen und arthroskopisch durchgeführten Therapien nicht erkennen.

4.4.2.7. Vergleich 1B-Läsion ohne vs. mit distaler Radiusfraktur

Ziel der Studie war zu ermitteln, ob eine sofortige Reparatur des TFCC zu einem stabilen distalen Radioulnargelenk nach Frakturheilung beitragen kann. Diese Studie war jedoch gleichzeitig auch die Frage auf, ob eine distale Radiusfraktur die Therapieergebnisse eine 1B-Läsion beeinflusst oder eventuell sogar verschlechtert. Vergleichswerte zu dieser Studie lieferten die Fallserien von Degre et al., Haugstvedt und Husby, Millants et al. sowie Tünnerhoff und Haußmann, die alle ausschließlich Palmer 1B-Läsionen mit einer arthroskopisch durchgeführten Refixation mittels „Naht“ behandelten [43] [60] [92] [159]. Nach durchschnittlich 24 Monaten wurden alle Patienten von Ruch et al. nachuntersucht und die Ergebnisse festgehalten (s. Tabelle 15). Bei der Untersuchung des Bewegungsumfangs erzielte diese Studie bessere Ergebnisse als die Studien mit einer alleinigen 1B-Läsion. Es konnte so gut wie keine Bewegungseinschränkung im Handgelenk beobachtet werden (ROM E/F 99% der gesunden Gegenseite). Auch bei der postoperativen Griffstärke konnten keine signifikanten Unterschiede ermittelt werden (78% vs. 80-85%).

Der mittlere DASH-Score lag in der Studie von Ruch et al. bei 13, welches ein sehr gutes Resultat der Funktionalität der betroffenen oberen Extremität darstellt. Einen Vergleichswert liefert die Studie von Millants et al., die einen mittleren DASH-Score von 15 angibt.

Bei der gleichzeitigen Behandlung von Palmer 1B-Läsionen und distaler Radiusfraktur traten in 15% der Fälle postoperativ Parästhesien im Bereich des sensiblen dorsalen Astes des N. ulnaris auf. Ansonsten konnten keine Komplikationen und auch keine DRUG-Instabilität festgestellt werden.

4.4.2.8. Schlussfolgerung: 1B-Läsion ohne vs. mit distaler Radiusfraktur

Aus dem vorliegenden Vergleich von Palmer 1B-Läsionen mit 1B-Läsionen begleitet von distalen Radiusfrakturen lassen sich folgende Ergebnisse zusammenfassen:

- Therapieergebnisse einer arthroskopischen Refixation mittels „Naht“ von Palmer 1B-Läsionen werden durch eine gleichzeitige distale Radiusfraktur und deren Versorgung mittels Fixateur externe nicht beeinflusst.
- Es werden ähnlich gute klinische Ergebnisse beobachtet wie bei einer alleinigen Refixation von ulnaren TFCC-Läsionen. Es bestehen keine Bewegungseinschränkungen im Handgelenk und die Schmerzreduktion ist ebenfalls erheblich.
- Parästhesien als postoperative Komplikation treten relativ häufig auf (15% der Fälle).
4.4.3. Therapie peripherer Typ 1C-Läsionen

Zur Therapie von peripheren Palmer Typ 1C-Läsionen wurden insgesamt zwei Studien in die Auswertung einbezogen, die beide dem Studiendesign einer Fallserie entsprachen [36] [95]. Eine der Fallserien bestand aus einer größer angelegten Studie, die neben 1C-Läsionen auch andere TFCC-Läsonstypen und deren Therapien untersuchte [95]. Für diese Auswertung wurden jedoch diese Arme ausgeschlossen und lediglich die Palmer 1C-Läsionen mit ihren Therapieergebnissen berücksichtigt und als Fallserie analysiert.

4.4.3.1. Fallserien

Das Behandlungsverfahren von Corso et al. mittels eines „zone-specific repair kit“ beinhaltete die Refixation der abgerissenen peripheren Anteile des TFCC wieder an den Discus ulnocarpalis. Miwa et al. behandelte seine Patienten mit einem einfachen arthroskopischen Débridement und untersuchte post operativ die Patienten unter B ersücksichtigung von Minamis Evaluationskriterien [95]. Es erreichten 87,5% der Patienten „gute“ bis „exzellente“ Resultate, während 12,5% ein „ausreichendes“ Ergebnis erzielten. Das bedeutete, dass 87,5% der Patienten zufrieden mit ihrer Behandlung waren und keine bis deutlich geringere Schmerzen empfanden. Alle 8 Patienten (100%) konnten ihre Alltagstätigkeit wieder aufnehmen und somit an ihr en Arbeitsplatz zurückkehren. Corso et al. errechnete ähnliche Ergebnisse, so dass 93% seiner Patienten insgesamt zufrieden mit der Therapie waren und ihren Alltagstätigkeiten wieder nachgehen konnten [36]. Zur Objektivierung der Therapieergebnisse wurde in der Studie von Corso et al. der Mayo modified wrist Score angegeben, der im Mittel postoperativ bei 87,5 lag, was insgesamt betrachtet ein „gutes“ Behandlungsergebnis bedeutete. Aufgeteilt in die einzelnen Erfolgsstufen erreichten 91% der Patienten ein „gutes“ bis „exzellent es“ Resultat und nur 9% mussten sich nach dem Mayo Score mit einem „ausreichenden“ bis „schlechten“ Ergebnis zufrieden geben. Die 7% der
Patienten, die ein schlechtes Resultat erlangten, gaben postoperativ chronische Schmerzen oder eine N. ulnaris Dysästhesie an.

4.4.3.2. Fallserien: Schlussfolgerungen

Fallserien lassen therapeutische Empfehlungen nicht zu. Es können lediglich die Ergebnisse der analysierten Fallserien zur Therapie von peripheren 1C-Läsionen des TFCC zusammengefasst und Therapietendenzen formuliert werden:
- Der Literatur zufolge spielen für die Therapie von Palmer 1C-Läsionen das arthroskopisch durchgeführte Débridement sowie die Refixation des peripheren Anteils des Discus ulnaris eine entscheidende Rolle.
- Der Mayo modified wrist Score ist nicht direkt mit den Minami Evaluationskriterien zu vergleichen, jedoch erfassen beide ähnliche Untersuchungskriterien. Sowohl das alleinige arthroskopische Débridement als auch in Verbindung mit einer Refixation der peripheren Diskusanteile zeigen vergleichbar gute postoperative Resultate.
- Komplikationsreicher als das alleinige Débridement ist das arthroskopische Débridement mit anschließender Refixation.

4.4.4. Therapie radialer Typ 1D-Läsionen

Insgesamt wurden zwei Studien zu Therapiev erfahren bei radialen Typ 1D-Läsionen des Triangular Fibrocartilage Complex ausgewertet [95] [94].

4.4.4.1. Vergleichende Studie

Miwa et al. führte 2004 eine retrospektive Kohortenstudie zur Therapie von radialen 1D-Läsionen durch, bei der 5 Patienten mit einem arthroskopischen Débridement und 12

Bei beiden Therapieformen traten keine Komplikationen auf.

4.4.4.2. Vergleichende Studie: Schlussfolgerungen

Eine absolute Überlegenheit eines Therapieverfahrens bei radialen TFCC-Läsionen kann die vorliegende vergleichende Studie nicht belegen. Es können nur wenige Folgerungen abgeleitet werden:

- Die arthroskopische Reparatur mittels „Naht“ führt insgesamt zu etwas besseren Therapieergebnissen als das arthroskopische Débridement.
- Komplikationen konnten bei beiden Behandlungstechniken nicht beobachtet werden.

4.4.4.3. Fallserie

Minami et al. berichtete anhand einer Fallserie über die Ergebnisse einer offenen Refixation von radialen 1D-Läsionen in Verbindung mit einer Hemiresektions-Interpositions-Arthroplastik (HIA) [94]. Auf fast allen nativen Röntgenaufnahmen konnte eine Ulna-Plus-Variante festgestellt werden, die durchschnittlich 3 mm betrug (2-6 mm).

Eine Nachuntersuchung wurde bei allen Patienten im Mittel nach ungefähr 42 Monaten durchgeführt. Dabei ergab sich eine Verbesserung der Handgelenksbeweglichkeit in allen drei Ebenen, so dass in sgesamt keine Bewegungseinschränkung mehr festzustellen war (s. Tabelle 18). Auch die Griffstärke verbesserte sich von präoperativ 42% der gesunden Gegenseite auf postoperativ 86%. Alle Patienten (100%) berichteten beim Follow-up über Schmerzfreiheit bzw. zumindest über eine Reduktion der Schmerzintensität.

59
Ergebnisse

Alltagstätigkeit konnten 100% der Patienten nach dem operativen Eingriff wieder aufnehmen, jedoch war eine hohe Komplikationsrate bei dieser Therapiemethode zu beobachten. Es kam in 18% der Fälle zu einer ECU-Sehnenentzündung, in 9% an der Stelle der ulnaren Hemiresektion zu einer Fraktur und bei 18% der Patienten zu einer Re-OP.

4.4.4.4. Fallserie: Schlussfolgerungen

Auch diese Fallserie lässt keine therapeutische Empfehlung zu, jedoch können die Ergebnisse zur Therapie von radialen TFCC-Läsionen zusammengefasst werden:

- Die Therapie durch eine Hemiresektion s-Interpositions-Arthroplastik in Verbindung mit einer Refixation der lädierten radialen Anteile des Discus ulnocarpalis ergibt klinisch funktionell gute Ergebnisse.

- Dieser Eingriff ist jedoch äußerst aufwendig und es treten verstärkt Komplikationen wie ECU-Sehnenirritationen, Frakturen oder die Notwendigkeit einer Re-OP auf.

4.4.5. Therapie peripherer TFCC-Läsionen

Zu Therapieverfahren bei traumatisch bedingten peripher lokalisierten TFCC-Läsionen, die die Palmer Klassen 1B, 1C und 1D beinhalten, wurden insgesamt sechs Studien ausgewertet [158] [147] [157] [145] [35] [94]. Bei zwei dieser Studien wurde jeweils ein Arm im Rahmen arthroskopischer 1B-Läsionen bzw. 1D-Läsionen zuvor bereits genauer untersucht [157] [94]. In diese Auswertung wurden nur die Studien eingeschlossen, die sich mit der Therapie von Palmer 1B-, 1C- als auch 1 D-Läsionen befassten. Besondere Beachtung galt den Behandlungsergebnissen und deren Analyse. Alle sechs Studien wurden als Fallserie ausgewertet und einem Evidenzgrad 4 zugeordnet.

In nahezu allen Studien wurden jeweils leicht unterschiedliche Behandlungsmethoden angewandt, wobei eine Refixation der lädierten Diskusanteile immer durchgeführt wurde. Darüber hinaus erfolgte in drei Studien zunächst die Glättung der Wundränder mittels eines arthroskopischen Débridements [158] [147] [157]. Eine dieser Studien führte im Anschluss zusätzlich eine offene Ulnaverkürzung durch [158]. Zwei andere Studien berichteten hauptsächlich von einer Therapie mittels Refixation und nur gegebenenfalls wurde bei ihren Patienten eine Ulnaverkürzung angewandt [145] [35].

4.4.5.1. Fallserien

In sechs Fallserien wurde ein und dieselbe Therapie bei drei verschiedenen Diagnosestellungen durchgeführt. Die Gemeinsamkeit aller Diagnosen bestand darin, dass sich der Schaden jeweils im peripheren Anteil des Triangular Fibrocartilage Complex bzw.
Ergebnisse

des ulnokarpalen Diskus befand. Unterschiede zeigten sich aber in der Häufigkeitsverteilung
der einzelnen Diagnosestellungen (s. Tabelle 19). Während in den zu vergleichenden
Studien 1B-Läsionen mit einer Häufigkeit zwischen 13 und 51% auftraten, waren 1C-
Läsionen nur bei 8-30% der Fälle vertreten. Auch 1D-Läsionen konnten in den
Studiendurchschnitten häufig festgestellt werden (19-70%).

Ansonsten zeigten alle sechs Studien keine signifikanten Unterschiede bezüglich

Cooney et al. sowie Shih und Lee führten Studien durch, bei denen sie als Therapie für
periphere TFCC-Läsionen eine offene Refixation und im Anschluss gegebenenfalls eine
Ulnaverkürzung wählten [35] [145]. Während Shih und Lee [145] zur Refixation der
abgerissenen Anteile des TFCC Teile der Extensor carpi ulnaris-Sehne verwendeten,
benutzte Cooney et al. [35] Naht material. Beide Studien hielten ihre Therapieergebnisse
mithilfe des Mayo modified wrist Scores fest. Diesen Score wählte Shih et al. benutzt in
einer anderen Studie, bei der er 37 Patienten mit einem arthroskopischen Débridement in
Verbindung mit einer Refixation mit tels „Naht“ therapierte [147]. Signifikante Unterschiede
gab es zwischen den drei Studien nicht, wobei insgesamt betrachtet die Studie von Cooney
et al. etwas schlechtere Ergebnisse erzielte. Hier erreichten nur knapp 80% der Patienten ein
gutes bis „exzellentes“ Resultat, während es bei den beiden Studien von Shih et al. um die
90% waren. Den restlichen 10% konnten in „ausreichendes“ Therapieergebnis zugeordnet
werden. Bei Cooney et al. resultierte hingegen in 18% der Fälle ein „ausreichendes“ und
sogar in 3% ein „schlechtes“ Ergebnis.

Die anderen zu vergleichenden Studien von Trumble et al. (2 Studien aus dem Jahr 1997)
und Minami et al. (1991) legten bei ihrer therapeutischen Ergebnisdocumentation mehr Wert
auf den Bewegungsumfang des Handgelenkes [158] [157] [94]. Auch dabei konnte n jedoch
keine signifikanten Unterschiede festgestellt werden. Die Ergebnisse der beiden Studien von
Trumble et al. lagen sehr nah beieinander wie auch ihr mittlerer Nachuntersuchungszeitraum
(29-34 Monate). Bei Minami et al. hingegen wurden die Patienten erst nach durchschnittlich
41 Monaten nachuntersucht und hatten etwas bessere Resultate zu verzeichnen. Während
Minami et al. keinerlei Bewegungseinschränkungen bei seinen Patienten beobachtete,
ermittelte Trumble et al. leichte Bewegungsdefizite im Handgelenk (11-17% im Vergleich
zum gesunden Handgelenk).

Für die postoperative Griffstärke lagen keine Unterschiede vor. In den Studien von
Minami et al., die sie ermittelte, lag sie um 85% bezogen auf die gesunde Seite und nahm damit insgesamt im
Vergleich zum präoperativen Status zu. Die Griffstärke-Angaben von Shih und Lee wurden
nicht beachtet, da sie zu ungenau waren (65-90%) [146].

Berücksichtigt wurden bei fast allen Studien die subjektiven Angaben bzgl. der
Schmerzintensität am Handgelenk. Ungefähr 90% der Patienten in beiden Studien von

4.4.5.2. Fallserien: Schlussfolgerungen

Aufgrund der Tatsache, dass Fallserien keine therapeutischen Empfehlungen zulassen, können lediglich die Ergebnisse der Therapie von 1B-, 1C- und 1D-Läsionen zusammengefasst werden:

- Liegen Unklarheiten über die genaue Zugehörigkeit einer TFCC-Läsion zur Klasse 1B, 1C oder 1D vor, so schien grundsätzlich eine Refixation der geschädigten TFCC-Anteile sinnvoll zu sein. Eventuell kann ein vorheriges Débridement oder auch eine Ulnaverkürzung in Betracht gezogen werden.

- Das Verfahren der offenen Refixation mittels „Naht“ ggf. in Kombination mit einer Ulnaverkürzung (Cooney et al.) führt vergleichswise zu etwas schlechteren Ergebnissen bezogen auf die Mayo-Score Resultate und die Schmerzintensität.
Die offene Refixation mittels „Na ht“ in Verbindung mit einer HIA führt zu einer auffällig hohen Komplikationsrate.

4.4.6. Therapie traumatischer TFCC-Läsionen

Bei der Literaturrecherche wurde eine verwertbare Studie zur Therapie von traumatisch bedingten Läsionen des Triangular Fibrocartilage Complex gefunden und ausgewertet. Es handelte sich dabei um eine retrospektive Kohortenstudie, der jedoch aufgrund ihrer allgemein gehaltenen, sehr unspezifischen Diagnosestellung lediglich ein Evidenzgrad von 4 zugeordnet wurde.

4.4.6.1. Vergleichende Studie mit geringerer Evidenz

Das mittlere Patientenalter in beiden Studiengruppen war vergleichbar, während sich die Zeit der Nachuntersuchung erheblich unterschied (s. Tabelle 20). In der arthroskopisch durchgeführten „Reparatur-Gruppe“ betrug sie im Mittel 32 Monate und die offene „Reparatur-Gruppe“ wurde nach durchschnittlich 53 Monaten nachuntersucht.

Grundsätzlich kann festgehalten werden, dass bei allen klinischen Untersuchungen keine signifikanten Unterschiede zwischen den Therapiegruppen festgestellt werden konnten.

4.4.6.2. Vergleichende Studie: Schlussfolgerungen

Die vorliegende vergleichende Studie kann die Überlegenheit eines Therapieverfahrens bei traumatischen TFCC-Läsionen nicht belegen. Nur wenige Folgerungen können abgeleitet werden:

• Die arthroskopisch durchgeführte und die offene Reparatur des TFCC führen zu ähnlichen klinischen Ergebnissen und einer vergleichbaren Schmerzreduktion.
• Durch beide Eingriffsarten nimmt der Bewegungsumfang im Handgelenk leicht ab und die Griffstärke verbessert sich nur minimal.
• Die offene Methode ist assoziiert mit einem höheren Komplikationsrisiko, z.B. einer Nervenschädigung (Hyperästhesie) oder einer ECU-Sehnenirritation.
4.5. Therapie degenerativer TFCC-Läsionen

4.5.1. Therapie degenerativer Typ 2-Läsionen

4.5.1.1. Fallserien mit höherer Evidenz

Ergebnisse

verwendet wurde. In 89% der Fälle schloss sich an diese Behandlung eine Ulnaverkürzungs-
Osteotomie an. Beide Studien verwendeten zur Objektivierung ihrer postoperativen
Untersuchungsergebnisse den Mayo modified wrist Score. Iwasaki et al. gab bei 66% der
Patienten ein „gutes“ bis „exzellentes“ Therapieresultat an, welches in der Studie von Shih et
al. von 85% der Studienpopulation erreicht wurde. Die restlichen 15% der Patienten von Shih
et al. zeigten bei der Nachuntersuchung ein „ausreichendes“ Ergebnis. Iwasaki et al. legte im Follow-up zusätzlich großen Wert auf die Untersuchung der
Beweglichkeit des Handgelenks. Er stellte postoperativ keinerlei Bewegungseinschränkungen fest, und die Griffstärke nahm von präoperativ 84% auf postoperativ 91% der gesunden Gegenseite zu. 57% der Studienpopulation gaben Schmerzfreiheit an, während 34% von reduzierten Schmerzen berichteten. Lediglich 9% der Patienten klagten über eine unveränderte Schmerzintensität. Bei über der Hälfte der Patienten von Iwasaki et al. zeigte sich im Verlauf eine Metallunverträglichkeit der Osteotomie-Platte, so dass diese nach durchschnittlich 23 Monaten entfernt wurde. Auch Shih et al. berichtete über Komplikationen, wie ulnare Dysästhesien (7%) oder eine oberflächliche Wundinfektion (4%).

4.5.1.2. Fallserien mit geringerer Evidenz

Die Fallserien von Tomaino et al. [154] und Minami et al. [93] müssen gesondert betrachtet
werden, da sie starke methodologische Unzulänglichkeiten aufweisen. Neben der Therapie
von degenerativ verursachten TFCC-Läsionen werden zusätzlich auch traumatische
Schäden am Triangular Fibrocartilage Complex behandelt und untersucht (s. Tabelle 22).
Die Diagnosestellungen in beiden Studien sind somit äußerst heterogen. Aufgrund der
geringen Evidenz sollten keine Schlussfolgerungen bzgl. der Therapie von degenerativen
„zufrieden“, während fast 20% „unzufrieden“ mit der Behandlung waren. In der Studienpopulation von Minami et al. empfanden ungefähr 13% der Patienten postoperativ schlimmere Schmerzen als präoperativ, so dass bei diesen ein Re-OP stattfand. Bei den restlichen Patienten bestand Schmerzfreiheit (31%) oder sie berichteten zumindest über reduzierte Schmerzen (56%). Tomaino et al. konnte bei 67% seiner Patienten Schmerzfreiheit feststellen und bei dem Rest (33%) geringere Schmerzen.

4.5.1.3. Fallserien: Schlussfolgerungen

Fallserien lassen zwar keine Therapieempfehlungen zu, jedoch können die Ergebnisse der Auswertung zusammengefasst und Tendenzen formuliert werden. Im Vordergrund dieser Schlussfolgerungen stehen die Resultate der Analyse der Fallserien mit höherer Evidenz:

- Die Therapie von degenerativ verursachten TFCC-Läsionen setzt sich aus zwei Säulen zusammen: zum einen die Behandlung des eigentlichen TFCC-Schadens, zum anderen die langfristige Entlastung des Ulnokarpalen Komplexes mittels Ulnaverkürzung.
- Bei der Behandlung der eigentlichen TFCC-Läsion führt sowohl das arthroskopische Débridement als auch die offene Refixation zu guten klinischen Ergebnissen. Die Überlegenheit eines Verfahrens kann anhand der vorliegenden Studien nicht belegt werden.
- Das arthroskopische Débridement in Verbindung mit einer offenen Ulnaverkürzungsosteotomie führt zu einer normalen, mit der Gegenseite vergleichbaren Handgelenksbeweglichkeit.
4.6. Einteilung der Studien nach der Behandlungsart

Während zuvor die Studien nach der Lokalisation der Schädigung am Triangular Fibrocartilage Complex eingeteilt und miteinander verglichen wurden, soll nun der Schwerpunkt auf der Betrachtung der Behandlungsart liegen. Abhängig von dem Therapieverfahren wurden die Studien in Gruppen zusammengefasst und analysiert. Dabei soll eine besondere Beachtung den Behandlungsverfahren bezogen auf die jeweilige Diagnosestellung gelten und daraus resultierende Differenzen oder auch Gemeinsamkeiten herausgearbeitet werden.

4.6.1. Arthroskopisches Débridement und Refixation

Bei der Literaturrecherche wurden drei Studien gefunden, die die Effizienz des arthroskopischen Débridements und einer anschließenden Reparatur der Läsion des Triangular Fibrocartilage Complex untersuchten. Die Techniken der Refixation unterschieden sich in den Studien minimal, jedoch hatten sie als Gemeinsamkeit, dass alle Nahtmaterial zur Reparatur der TFCC-Läsionen verwendeten. Analysiert wurde das klinische Outcome dieser Therapie bei Palmer 1B-, 1C- und 1D-Läsionen.

4.6.1.1. Vergleichende Studie

Die klinischen Ergebnisse zeigten keine signifikanten Unterschiede. Jedoch konnte eine geringfügig bessere Beweglichkeit für die ulnare Refixationsgruppe festgestellt werden (91% vs. 87%). Demgegenüber konnte für die radiale Refixationskohorte postoperativ eine etwas höhere Griffstärke (89% vs. 83%) verzeichnet werden. Etwas bessere Ergebnisse bzgl. des subjektiven Schmerzempfindens erzielte die Therapie nach ulnaren TFCC-Läsionen. Während in dieser Kohorte 91% der Patienten Schmerzfreiheit angaben, waren es in der
Ergebnisse

radialen Läsionsgruppe nur 85%. Die restlichen Patienten äußerten in beiden Gruppen postoperativ eine Reduktion der Schmerzen im Vergleich zu ihrem präoperativen Zustand. In beiden Kohorten traten keine Komplikationen auf.

4.6.1.2. Vergleichende Studie: Schlussfolgerungen

Die vorliegende vergleichende Studie zeigte bei der Anwendung des arthroskopischen Débridements und der anschließenden Refixation mittels Nähten keine signifikanten Unterschiede für Palmer 1B- und 1D-Läsionen. Die Überlegenheit des Therapieverfahrens bei einer bestimmten Diagnosestellung konnte somit nicht belegt werden. Nur wenige Folgerungen können aufgrund der Kohortenstudie abgeleitet werden:

- Die Behandlung nach ulnaren TFCC-Läsionen führt zu einem etwas besseren Bewegungsumfang des Handgelenkes als nach radialen Läsionen.
- Die klinischen Untersuchungen zeigen postoperativ leicht höhere Griffstärken für die radialen Läsionen als für die ulnaren Schäden.
- Die Schmerzreduktion nach Behandlung der ulnaren TFCC-Läsionen scheint erfolgreicher zu sein.

4.6.1.3. Fallserien

Die zwei Studien schlossen eine ungefähr gleich große Patientenanzahl ein (46 vs. 45 Patienten), die sich in ihrem durchschnittlichen Alter sehr ähnelten (34 vs. 33 Jahre). Während in der Studie von Reiter et al. die mittlere Nachbeobachtungszeit nur bei 11 Monaten lag, betrug diese bei Corso et al. 37 Monate. 45% der Patienten von Corso et al. hatten neben einer peripheren Palmer 1C-Läsion noch zu sätzliche karpale Bandschäden (s. Tabelle 24).

Die klinischen Ergebnisse wurden in beiden Fallserien mithilfe des Mayo modified wrist Score zusammengefasst. Insgesamt unterschied sich in den zwei Studien nur unwesentlich (80 vs. 87,5), jedoch zeigten sich Unterschiede in der Verteilung der
Ergebnisse

Diese Ergebnisse spiegelten sich auch in der subjektiven Zufriedenheit der Patienten mit der Behandlung wider. Während 93% der Patienten, die vorher an einer 1C-Läsion litten, insgesamt zufrieden mit dem Therapieergebnis waren, waren es bei den Patienten mit einem 1B-Schaden nur 63%. In der Gruppe mit der ulnaren T FCC-Läsion gaben postoperativ lediglich knapp über die Hälfte der Patienten Schmerzfreiheit bzw. eine Reduktion der Schmerzen an. Weniger als die Hälfte empfanden unveränderte Schmerzen.

In der Studie von Reiter et al. fanden sich darüber hinaus noch Angaben zum DASH-Score (22 Punkte), zum VAS (postoperativ: 3,4) und zur Beweglichkeit des Handgelenks. Es ergab sich bei seinem Patientenkollektiv eine Reduzierung der Handgelenkbeweglichkeit um 10% im Vergleich zur gesunden Gegenseite.

Bei 11% der Patienten mit einer 1B-Läsion traten postoperativ Parästhesien auf. In dem Kollektiv der 1C-Läsionen zeigten 5% der Patienten N. ulnaris Dysästhesien und 2% chronische Schmerzen.

4.6.1.4. Fallserien: Schlussfolgerungen

Fallserien lassen keine therapeutischen Empfehlungen zu, jedoch können die Ergebnisse der analysierten Studien zum arthroskopischem Débridement und anschließender Refixation mittels Nähten bei Palmer 1B- und 1C-Läsionen zusammengefasst werden:

- Orientiert am gesamten postoperativen Mayo Score führt die o.g. operative Therapie sowohl bei Palmer 1B- als auch bei 1C-Läsionen zu ähnlich guten klinischen Ergebnissen (80 vs 87,5 Punkte).
- Die Behandlung bei Palmer 1C-Läsionen führt jedoch zu erheblich mehr „exzellenen“ Therapieergebnissen und vergleichsweise weniger „ausreichenden“ bis „schlechten“ Resultaten gemessen am Mayo modified wrist Score. Dieses könnte dafür sprechen, dass ein Débridement mit anschließender Refixation bei Palmer 1C-Läsionen erfolgversprechender ist als bei 1B-Läsionen. Jedoch sollte dabei beachtet werden, dass die mittlere Nachuntersuchungszeit in der Gruppe der 1C-Läsionen wesentlich länger war (ca. 3 Jahre vs. 1 Jahr).
4.6.2. Offene Rekonstruktion mittels ECU-Sehne

Beide Studien waren Fallserien, so dass ihnen ein Evidenzniveau von 4 zugeordnet werden konnte. Obwohl in den zwei Fallserien mehrere Diagnosen eingeschlossen und diese in den Ergebnissen nicht getrennt wurden, schienen die Studien interessant zu sein, so dass sie näher verglichen werden sollten. Die eine Fallserie beschäftigte sich ausschließlich mit traumatisch bedingten TFCC-Läsionen, während die andere Studie nur degenerativ verursachte Schäden ein schloss. Im Vordergrund dieser Analyse stehen somit nicht die einzelnen Diagnosen, sondern die Therapieeffizienz der Übergruppen: Behandlung traumatischer vs. degenerativer Läsionen.

4.6.2.1. Fallserien

Die zwei zu vergleichenden Fallserien wandten die gleiche Therapie bei ihrem jeweiligen Patientengut an: offene Rekonstruktion der lädierten Diskusanteile mithilfe der Sehne des M. extensor carpi ulnaris. Zusätzlich wurde in beiden Studien bei einem ähnlichen Patientenanteil (84% bzw. 89%) eine Schrägosteotomie zur Verkürzung der Ulna durchgeführt.

Ergebnisse

Zusammenfassend lässt sich sagen, dass die Behandlung von traumatisch bedingten TFCC-Läsionen häufig zu besonders guten Therapieergebnissen führt, die Mehrzahl der Fälle aber in guten Resultaten endet. Bei den degenerativ verursachten Schäden zeigt die Behandlung ebenfalls überwiegend gute Ergebnisse, jedoch ist die Anzahl sehr guter Resultate geringer und wird quasi durch die Zahl weniger guter Ergebnisse relativiert.

Die subjektive Zufriedenheit der Patienten mit dem Behandlungsresultat ähnelte sich in beiden Studien (89% bzw. 85%).

4.6.2.2. Fallserien: Schlussfolgerungen

Therapieempfehlungen können aufgrund von Fallserien nicht getroffen werden. Jedoch können die Ergebnisse des Vergleichs zwischen der Therapie der offenen Refixation mittels ECU-Sehne bei traumatischen und degenerativ bedingten TFCC-Läsionen zusammengefasst werden:

- Die offene Rekonstruktion unter Zuhilfenahme der Sehne des M. extensor capi ulnaris scheint sowohl für peripher traumatische als auch degenerative Schäden des Triangular Fibrocartilage Complex eine erfolgreiche Therapie darzustellen. In der zugrundeliegenden Studie wurden jedoch nur 2B- und 2C-Läsionen analysiert, so dass sich für höhergradige Diskusdegenerationen keine Aussagen treffen lassen.

- Signifikante Unterschiede sind bei den Therapieergebnissen zwischen den beiden Läsionstypen nicht fest zustellen, jedoch zeigten die Patienten mit traumatischen TFCC-Schäden prozentual mehr besonders gute Resultate.
4.7. Einteilung der Studien nach zusätzlichen Begleitdiagnosen

Im folgenden Teil der Arbeit soll untersucht werden, ob eine zusätzliche Begleitdiagnose (abgesehen von der vorliegenden TFCC-Läsion) das Therapieergebnis der TFCC-Rekonstruktion negativ oder auch positiv beeinflusst. Besonders eingegangen werden auf Begleitdiagnosen, die sehr häufig mit einem Schaden des Triangular Fibrocartilage Complex einhergehen. Zum einen wird die zusätzliche Behandlung von Verletzungen des Ligamentum lunotriquetrum interosseum mittels einer Kapsulodese in Verbindung mit einem traumatischen TFCC-Schaden näher untersucht und zum anderen wird das Ulna-Impaction-Syndrom, was häufig mit einer degenerativen Läsion des TFCC assoziiert ist, näher betrachtet.

4.7.1. Traumatische TFCC-Läsion und LTI-Verletzung

Die Studie stellte sich als Fallserie heraus, so dass ihr aufgrund ihres Studiendesigns ein Evidenzniveau von 4 zuordnet wurde. Leichte Defizite zeigte die Fallserie bei der Beschreibung der durchgeführten Therapie des TFCC-Schadens. Es wurde lediglich erwähnt, dass dieser repariert oder mithilfe eines Débridements versorgt wurde.

4.7.1.1. Fallserie

Das Therapieergebnis wurde anhand des Mayo modified wrist Score und der postoperativen Handgelenkbeweglichkeit beurteilt. Der Mayo Score verbesserte sich nach der Behandlung
von 50 auf 88 Punkte, was ein sehr gutes Therapieergebnis darstellt. Dieses zeigt sich auch darin, dass 65% der Patienten auf ein „exzellentes“ Resultat kamen und 25% auf ein „gutes“. Lediglich 10% der Behandelten zeigten ein „ausreichendes“ Ergebnis. Auch bei der Untersuchung der Handgelenkbeweglichkeit waren so gut wie keine Einschränkungen festzustellen.

Als Komplikationen dieser Eingriffe wurde über ein fortbestehendes Spannungsgefühl entlang des M. extensor carpi ulnaris berichtet sowie über eine persistierende N. ulnaris-Neuritis.

4.7.1.2. Fallserie: Schlussfolgerungen

Therapieempfehlungen können nicht mithilfe von Fallserien abgeleitet werden, jedoch können die Ergebnisse und Erkenntnisse der Analyse von der Therapie traumatischer TFCC-Läsionen in Verbindung mit LTI-Verletzungen zusammengefasst werden:

- Verletzungen des Lig. lunotriquetrum interosseum und deren Therapie mit einer Kapsulodese scheinen keinen negativen Einfluss auf das Behandlungsergebnis von TFCC-Läsionen zu nehmen.

4.7.2. TFCC-Läsion und Ulna-Impaction-Syndrom

Es wurden zwei Studien bei der Literaturrecherche zu Läsionen des Triangular Fibrocartilage Complex in Verbindung mit einem Ulna-Impaction-Syndrom und deren Therapie gefunden [16] [154]. Das Ulna-Impaction-Syndrom ist hauptsächlich mit einer Ulna-Plus-Variante assoziiert und tritt gehäuft zusammen mit degenerativ verursachten TFCC-Schäden auf, wird aber auch bei traumatisch bedingten TFCC-Läsionen beobachtet.

4.7.2.1. Vergleichende Studie mit geringerer Evidenz

Zusätzlich wurde noch die Griffstärke prä- und postoperativ ermittelt, die jedoch keine signifikanten Unterschiede in den beiden Kohorten zeigte.

Unterschiede konnten wiederum in der subjektiven Angabe bzgl. der Zufriedenheit mit der jeweilig durchgeführten Therapie festgestellt werden. Während bei der „Wafer-procedure Gruppe“ 81% der Behandelten Zufriedenheit angaben, waren es in der Kohorte mit der Ulnakopfverkürzungsosteotomie lediglich 69%. Auch bzgl. des postoperativen Schmerzwertfindens schnitt die Gruppe mit dem „Wafer procedure“ vergleichsweise etwas besser ab.

Über Komplikationen wurden in beiden Kohorten berichtet, jedoch in unterschiedlichem Ausmaß. Alle Osteotomien heilten nach durchschnittlich drei Monaten. 9% der Patienten der „Wafer-procedure Gruppe“ mussten reoperiert werden, 18% litten an einer Sehnenentzündung und bei 9% entwickelte sich eine oberflächliche Wundinfektion. Dem
gegenüber kam es in der Kohorte mit der Verkürzungsosteotomie bei 44% der Patienten zu einer Sehnenentzündung und bei 56% zu einer Metall-Unverträglichkeitsreaktion. Überwiegend aus diesem Grund musste bei fast 63% der Patienten eine Re-OP durchgeführt werden.

4.7.2.2. Vergleichende Studie: Schlussfolgerungen

Die vorliegende Studie gehört zwar in die Gruppe der vergleichenden Studien (Kohortenstudie), jedoch kann aufgrund von methodologischen Unzulänglichkeiten keine Therapieempfehlung abgeleitet werden. Dennoch können ihre Ergebnisse bzgl. der Therapie von TFCC-Läsionen in Verbindung mit einem Ulna-Impaction-Syndrom zusammengefasst und Tendenzen formuliert werden:

- Das arthroskopische Débridement mit anschließender Ulnaverkürzung scheint eine sinnvolle Therapiemöglichkeit für Palmer 1A- und degenerativ verursachte TFCC-Läsionen in Verbindung mit einem Ulna-Impaction-Syndrom darzustellen.
- Die Ulnaverkürzung in Form eines „Wafer-Procedure“ führt insgesamt zu etwas besseren klinischen Therapieergebnissen als die Ulnakopf-Verkürzungsosteotomie.

4.7.2.3. Fallserie

4.7.2.4. Fallserie: Schlussfolgerungen

Fallserien lassen keine Therapieempfehlungen zu, jedoch können die Ergebnisse des arthroskopischen Débridement und der Ulnaverkürzung (Wafer-Procedure) bei traumatischen bzw. degenerativen TFCC-Läsionen in Verbindung mit einem Ulna-Impaction-Syndrom festgehalten und zusammengefasst werden:

- Das arthroskopische Débridement mit einem anschließenden Ulnaverkürzung mittels „Wafer-Procedure“ scheint eine sinnvolle Therapiemöglichkeit für traumatisch und degenerativ verursachte TFCC-Läsionen darzustellen, die in Verbindung mit einem Ulna-Impaction-Syndrom auftreten.
- Die postoperativen Therapieergebnisse sind zufriedenstellend.
4.8. Umfrageergebnisse

Um einen Überblick über die Häufigkeit von therapierelevanten TFCC-Läsionen zu erhalten und damit indirekt auch einen Eindruck über ihre klinische Bedeutung zu erlangen, wurde nach der jährlichen Anzahl an TFCC-Schäden gefragt, die schätzungsweise in der jeweiligen Klinik / Praxis behandelt werden. Dabei gaben ca. 50% der Ärztinnen und Ärzte an, eine jährliche Behandlungsanzahl zwischen 20 und 50 Patienten mit TFCC-Läsionen zu haben (Abbildung 13). Nur ein äußerst geringer Anteil (jeweils ca. 10% der Befragten) berichtete jährlich über weniger als 20 oder mehr als 100 behandlungsbedürftige Patienten.

Die operative Behandlung ist wie oben schon genannt die führende Therapieoption bei Läsionen des Triangular Fibrocartilage Complex. Dabei ist zwischen einer arthroskopisch und einer offen durchgeführten Behandlung zu unterscheiden. In fast 90% der Fälle erfolgt derzeit in Deutschland die operative Therapie von TFCC-Schäden arthroskopisch. Lediglich gut 10% werden offen durchgeführt (Abbildung 16).
Ergebnisse

Die prozentuale Verteilung der behandlungsbedürftigen Läsionstypen gibt eine genauen Überblick über die Häufigkeit der vorkommenden TFCC-Schäden im klinischen Alltag sowie über ihre klinische Bedeutung (Abbildung 18). Etwas mehr als die Hälfte der Läsionen sind traumatisch bedingt, während der Rest degenerativ verursacht ist (45% der Fälle Typ 2-Läsionen). Typ 1A- und 1B-Schäden kommen jeweils in 17% der Fälle vor, dicht gefolgt von 1D-Läsionen (13% der Fälle). Am seltensten werden 1C-Läsionen des Triangular Fibrocartilage Complex diagnostiziert (7% der Fälle).

Den Umfrageergebnissen zufolge nehmen bei traumatisch bedingten 1A-Läsionen vor allem die Teilresektion und das Débridement eine therapeutisch wichtige Rolle ein (Abbildung 19). 41% der Befragten führen bei dieser Diagnosestellung ausschließlich eine Teilresektion durch und 14% ein alleiniges Débridement. In 38% der Fälle werden diese beiden Eingriffe kombiniert durchgeführt. In lediglich 5% wird zusätzlich eine Ulnaverkürzung empfohlen.

Bei Palmer 1B-Läsionen wird in Deutschland eine ganz andere Therapietechnik bevorzugt. In 71% der Fälle wird eine Refixation der lädierten Diskusanteile durchgeführt, so dass dieses Verfahren die am häufigsten angewendete Technik bei 1B-Schäden darstellt (Abbildung 20). In nur insgesamt 24% der Fälle wird dieses Verfahren mit einer Teilresektion, einem Débridement oder einer Ulnaverkürzung kombiniert. Ein alleiniges Débridement wird bei dieser Diagnosestellung in Deutschland lediglich bei ca. 5% der Fälle angewendet.

Bei traumatisch bedingten 1C-Läsionen ist in Deutschland ein so eindeutig überlegenes operatives Verfahren nicht zu erkennen. Sowohl eine Teilresektion als auch ein Débridement als auch eine Refixation kommen bei dieser Diagnosestellung zur Anwendung (Abbildung 21). In der Mehrzahl der Fälle (36%) wird ausschließlich ein Débridement durchgeführt. Teilweise (14% der Fälle) wird dieses auch mit einer Teilresektion verbunden. Manche Handchirurgen in Deutschland (14%) wenden auch alle drei Verfahren zur optimalen chirurgischen Therapie an: Débridement, Teilresektion und Refixation. Ebenfalls ein großer Anteil (25% der Befragten) behandelt 1C-Läsionen nur mit einer Teilresektion. Eine alleinige Refixation der lädierten Diskusteile wird in 11% der Fälle durchgeführt.
Die Auswertung der Umfrageergebnisse zeigt, dass bei radialen 1D-Läsionen des Triangular Fibrocartilage Complex eine Teilresektion sowie ein Débridement die führenden operativen Therapieverfahren darstellen (Abbildung 22). In 35% der Fälle wird eine alleinige Teilresektion durchgeführt und in weiteren 35% wird diese in Verbindung mit einem Débridement angewendet. Ausschließlich ein Débridement wird hingegen in lediglich 9% der Fälle bevorzugt. Die Refixation spielt in Deutschland bei der Therapie von radialen Läsionen nur eine untergeordnete Rolle. 21% der Befragten geben an, eine Refixation der lädierten Diskusanteile durchzuführen, von denen 6% diese jedoch mit einem Débridement kombinieren.

Bei der Versorgung degenerativer TFCC-Läsionen (Typ 2-Läsionen) nimmt in Deutschland laut Umfrage die Ulnaverkürzung in Kombination mit einer Teilresektion oder einem Débridement einen hohen Stellenwert ein (45% der Fälle). Dahinter folgt in 26% der Fälle als Therapieoption eine alleinige Teilresektion und in 18% eine Teilresektion kombiniert mit einem Débridement (Abbildung 23). Äußerst selten wird ausschließlich ein Débridement oder eine Ulnaverkürzung durchgeführt (jeweils nur in 5% der Fälle).

Der Umfragebogen erfasst ebenfalls die Frage nach der Art und Weise der postoperativen Ruhigstellung. Der Auswertung nach zufolge ist hierbei kein eindeutiges Verfahren führend (Abbildung 24). Teilweise wird nach der operativen Behandlung gar nicht ruhig gestellt, teilweise mit einer Handgelenk-, Unterarm- oder Oberarmschiene und wieder andere kombinieren diese verschiedenen Optionen.

Als letzter Punkt des Umfragebogens wurde die persönliche Einschätzung der Relevanz des Themas „Läsionen des Triangular Fibrocartilage Complex“ erfragt. Dabei ergab sich ein Mittelwert von 2,87 auf einer Skala von 1 (sehr relevant) bis 9 (überhaupt nicht relevant), was die Schlussfolgerung zulässt, dass dieses Thema unter Ärztinnen und Ärzten insgesamt als relevant eingeschätzt wurde. Das Ergebnis zeigt somit, dass die Analyse und nähere
Untersuchung von Therapieoptionen des Triangular Fibrocartilage Complex nicht nur von wissenschaftlicher Bedeutung ist, sondern auch für die praktische Anwendung eine wichtige Rolle spielt.
5. Diskussion

5.1. Evidenzbasierte Handchirurgie

Unter der in der Definition vorkommenden individuellen klinischen Expertise wird das Können und die Urteilskraft verstanden, die Ärzte durch ihre Erfahrung und klinische Praxis erwerben. Mit bester verfügbarer externer Evidenz wird die klinisch relevante Forschung gemeint, oft Grundlagenforschung, aber insbesondere auch patientenorientierte Forschung zur Wirksamkeit und Sicherheit therapeutischer und re habilitativer Maßnahmen. Externe klinische Evidenz führt häufig zur Neubewertung bisher akzeptierter therapeutischer Verfahren und ersetzt diese gegebenenfalls durch solche, die wirksamer, genauer, effektiver und sicherer sind.

Diskussion

Systematische Übersichtsarbeiten stellen trotzdem eine fundamentale Entscheidungshilfe für jeden praktisch tätigen Arzt dar, da in der Zeit der hohen Anforderungen nach Evidenzbasierten Medizin systematische und valide Beurteilungen der Effektivität von therapeutischen Interventionen eine Notwendigkeit darstellen. Die Evidenzbasierte Medizin
selbst stellt eine junge, sich entwickelnde Wissenschaft dar, welche das Ziel hat, die Qualität der veröffentlichten medizinischen Daten zu bewerten und damit auch zu verbessern. Dabei beschäftigt sie sich nicht selbst mit der Durchführung von klinischen Studien, sondern mit der systematischen Nutzung ihrer Ergebnisse.

Auch in der Chirurgie und in besonderem Ausmaß in der Handchirurgie stellt die Durchführung von hochwertigen Studien ein erhebliches Problem dar. Randomisierte und verblindete Studiendesigns sind in chirurgischen Disziplinen schwer zu etablieren, was unter anderem auf mangelndes Verständnis und auf eine notwendige, aber nur selten vorhandene Standardisierung zurückzuführen ist [86] [24]. Dieses spiegelt sich auch im Evidenzniveau handchirurgischer Publikationen wider. Es existiert nur eine geringe Anzahl kontrollierter bzw. randomisierter handchirurgischer Studien mit einem adäquaten Studiendesign [6] [52]. Aufgrund der starken Bedeutungszunahme der Evidenzbasierten Medizin im klinischen Alltag und damit ebenfalls wachsender Nachfrage nach evidenzbasierten Therapiestrategien in der Handchirurgie, steht auch diese Disziplin unter großem Druck hochwertige handchirurgische Studien in Zukunft durchzuführen, um die Vielzahl der noch offenen therapeutischen Fragen zu beantworten. Dieser aufstrebende Trend der evidenzbasierten Medizin zeigt sich ebenfalls in der Entwicklung der vorherigen Cochrane Reviews mit
Diskussion

handchirurgischen Themen. Während im Jahr 2006 nur 15 Reviews und 8 Protokolle vorlagen, waren es 2010 bereits 23 Reviews und 7 Protokolle [134].

5.2. Chirurgische Studienqualität am Beispiel von Läsionen des TFCC

Angestrebt wurde bei dieser Arbeit daher die Identifizierung und Analyse von möglichst hochwertigen Studien, das heisst Studien mit einem hohen Evidenzniveau gemäss des Schemas des Centre for Evidence-based Medicine in Oxford (s. Tabelle 3, S. 33).

Das Hauptaugenmerk bei der Analyse der Publikationen lag in der Auswertung der jeweiligen Therapiestrategie. Das bedeutet, dass insbesondere das Ergebnis bzw. das Outcome der chirurgischen Intervention von besonderem Interesse war. Dies setzte zur Auswertung voraus, dass in der Studie sowohl die an gewandte chirurgische Technik zur Therapie von TFCC-Läsionen genau beschrieben wurde, als auch die Behandlungsresultate postoperativ ausführlich festgehalten wurden. Viele Publikationen erfüllten diese

5.3. Klassifikation und diagnoseabhängige Studienselektion

Läsionen des Triangular Fibrocartilage Complex können sowohl traumatisch verursacht werden, z.B. durch einen Sturz auf das extendierte Handgelenk, als auch degenerativ bedingt sein durch starke repetitive Belastung und Beanspruchung des ulnaren Handgelenkes. Aufgrund der Vielzahl der verschiedene Verletzungsmöglichkeiten im Bereich des TFCC führte Palmer 1989 eine Klassifikation ein, die sich sowohl in der Literatur durchgesetzt hat, als auch in der Praxis breite Anwendung findet [112]. Dabei griff er diese zwei verschiedenen Pathomechanismen auf und unterschied zunächst ganz grob traumatisch bedingte (Klasse 1) und degenerativ verursachte TFCC-Läsionen (Klasse 2) voneinander. Die weitere Klassifizierung richtete sich nach der Lokalisation der beschädigten
Struktur bei traumatischen Läsionen (1A-D) sowie dem Schweregrad bzw. der Progredienz der Veränderung am Discus ulnocarpalis und des hyalinen Knorpels am Ulnakopf und der Ossa lunatum und triquetrum bei degenerativen Schäden (2A-E). Die Einteilung nach Palmer hat sich in der Literatur weitestgehend durchgesetzt, was daran zu erkennen ist, dass in fast jeder Studie die Läsionen des Triangular Fibrocartilage Complex nach dieser Klassifikation eingeordnet und benannt werden. Die Studienlage lieferte diesbezüglich sehr homogene Daten, so dass die Diagnosestellung ein gutes Selektionskriterium darstellte, um die zu vergleichenden Studien in verschiedene Untergruppen einzuteilen. Diagnosebezogen wurde die Effizienz der unterschiedlichen therapeutischen Interventionen analysiert und untereinander verglichen. Diese diagnoseabhängige Studienelektion war notwendig, um überhaupt eine Vergleichbarkeit unter den Publikationen herzustellen.

5.4. Zielkriterien und Vollständigkeit der Datenerfassung

Bei genauer Analyse der Erfassung der Zielkriterien in den relevanten Publikationen konnte jedoch festgestellt werden, dass meistens eine akzeptable Anzahl von therapeutischen Bewertungsparametern in den Studien erwähnt wurden. An objektiven Messgrößen wurden am häufigsten die Beweglichkeit des Handgelenkes (ROM), die Griffstärke (Kraft) sowie der Mayo Modified Wrist Score untersucht und dokumentiert. Die Messmethode der Bewegungsumfangsbeobachtung des Handgelenkes bzw. ihre Dokumentation varierte in einigen Studien, da manche Publikationen die Resultate nach der Neutral-Null-Methode maßen und so das Ergebnis in Grad angaben und andere wiederum den Bewegungsumfang in Bezug zur gesunden Gegenseite setzten und dadurch einen prozentualen Wert dokumentierten. Um diese Angaben vergleichbar zu machen, wurde in der tabellarischen Studienauswertung...
Diskussion

Bei der Studienanalyse wurde eine möglichst vollständige Datenerfassung aller relevanten Publikationen angestrebt. Um dieser Anforderung zu genügen, wurden das Publikationsjahr, der Studientyp, das Evidenzlevel, die Fallzahl, die Anzahl der nachuntersuchten Fälle, wie auch deren Nachuntersuchungsraten, das mittlere Patientenalter, die Diagnose sowie die durchgeführte Therapie in allen Studien tabellarisch festgehalten. Nicht bei allen Publikationen konnte die Zeit bis zur Behandlung sowie der mittlere Follow-up herausgearbeitet werden. Einige Studien zur Therapie von TFCC-Läsionen beschrieben die angewandte Technik sehr ungenau oder hielten die Diagnosestellungen äußerst unspezifisch, so dass diese Publikationen dann aufgrund von methodologischen Unzulänglichkeiten von der systematischen Übersichtsarbeit ausgeschlossen wurden.

5.5. Vielfalt der therapeutischen Verfahren

Insgesamt lässt sich festhalten, dass die Literatur bezüglich der Behandlung von TFCC-Läsionen eine Vielfalt therapeutischer Verfahren aufweist, was Raum sowohl für positive als auch für negative Rückschlüsse und Erklärungen bietet.

5.6. Therapeutische Empfehlungen

Trotzdem können einige Behandlungstendenzen, die sich aus der Literatur herauskristallisieren haben, zu den verschiedenen TFCC-Läsionstypen festgehalten werden:

- Für Palmer 1A-Läsionen stellen ausschließlich Teilresektionen des Diskus, Débridement des TFCC und ggf. Ulnaverkürzungen die verwendeten Therapieoptionen dar.
- Die Refixation der lädierten Diskusanteile spielt bei Palmer 1B-Läsionen die größte Rolle. Die Literatur zeigt dazu die verschiedensten Methoden auf, von denen jedoch keine herausragend gut oder schlecht abschneidet.
- Zu 1C-Läsionen konnten lediglich zwei Therapiestudien gefunden werden, denen zufolge das Débridement sowie die Refixation des peripheren Anteils des Discus ulnaris für die Therapie von Palmer 1C-Läsionen eine entscheidende Rolle spielt.
- Die Refixation der lädierten Anteile des Discus scheint bei 1D-Läsionen dem Débridement überlegen zu sein, wobei jedoch nur eine geringe Anzahl an aussagekräftigen Studien gefunden werden konnte.
Bei relevanter Ulnaüberlänge scheint auch trotz traumatischer Genese von TFCC-Schäden eine Ulnaverkürzung als zusätzliches Verfahren eine sinnvolle und erfolgreiche Therapieoption darzustellen.

Verletzungen des Lig. lunotriquetrum und deren Therapie mit einer Kapsulodese scheinen keinen negativen Einfluss auf das Behandlungsergebnis von TFCC-Läsionen zu nehmen.

5.7. Konsequenzen für die zukünftige Forschung zu TFCC-Läsionen

5.8. Umfrageergebnisse im Vergleich zu den Resultaten der Literaturanalyse

Bei der Versorgung degenerativer TFCC-Läsionen (Typ 2-Läsionen) nimmt in Deutschland laut Umfrage die Ulnaverkürzung in Kombination mit einer Teilresektion oder einem Débridement den höchsten Stellenwert ein (45% der Fälle). Dahinter folgt in 26% der Fälle als Therapieoption eine alleinige Teilresektion und in 18% eine Teilresektion kombiniert mit einem Débridement (Abbildung 23). Äußerst selten wird ausschließlich ein Débridement oder eine Ulnaverkürzung durchgeführt (jeweils nur in 5% der Fälle). Diese Ergebnisse können
Diskussion

Der Vergleich von Umfrageergebnissen und Resultaten der Literaturanalyse lässt das Fazit zu, dass bei den TFCC-Läsionstypen, zu denen nur wenige Therapiestudien in der Literatur existieren, auch eine deutliche Unsicherheit bezüglich der Behandlungsstrategie im klinischen Alltag in Deutschland herrscht. Ansonsten kann eine überwiegende Übereinstimmung zwischen Studien- und Umfrageergebnissen festgestellt werden.
6. Zusammenfassung

Zusammenfassung

Zusammenfassend lässt sich festhalten, dass die vorliegende Arbeit einen umfassenden Überblick über die vorhandene Literatur zur Therapie des Triangular Fibrocartilage Complex gibt, jedoch die optimale Therapie von TFCC-Läsionen weiterhin eine Herausforderung an die Handchirurgie darstellt. Die gezogenen Schlussfolgerungen haben deshalb lediglich einen orientierenden Charakter und stellen keine evidenzbasierten Empfehlungen dar.
7. Tabellen

Übersicht aller Tabellen in diesem Kapitel:

<table>
<thead>
<tr>
<th>Tabellen-Nummer</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Ergebnisse des Rankings aus „Themenpriorisierung für systematische Literatursanalysen in der Handchirurgie“ von Schädel-Höpfner et al.</td>
<td>102</td>
</tr>
<tr>
<td>7a</td>
<td>Tabellarische Übersicht über alle identifizierten und berücksichtigten Arbeiten</td>
<td>103</td>
</tr>
<tr>
<td>7b</td>
<td>Tabellarische Übersicht über alle identifizierten und ausgeschlossenen Arbeiten</td>
<td>104</td>
</tr>
<tr>
<td>9</td>
<td>Patientendaten und Ergebnisse von drei hochwertigen Fallserien [18, 20, 95] zur Therapie von zentralen Palmer 1A-Läsionen</td>
<td>112</td>
</tr>
<tr>
<td>10</td>
<td>Patientendaten und Ergebnisse von vier [38, 47, 66, 150] Fallserien mit niedrigerer Evidenz zur Therapie von zentralen Palmer 1A-Läsionen</td>
<td>113</td>
</tr>
<tr>
<td>11</td>
<td>Patientendaten und Ergebnisse der vergleichenden Studie von Miwa et al. [95] zur Therapie von ulnaren 1B-Läsionen durch eine arthroskop. Refixation mittels "Naht" oder einem arthroskop. Débridement</td>
<td>114</td>
</tr>
<tr>
<td>12</td>
<td>Patientendaten und Ergebnisse von fünf Studien [31, 32, 63, 143, 151] zur offenen Therapie von ulnaren 1B-Läsionen</td>
<td>115</td>
</tr>
<tr>
<td>13</td>
<td>Patientendaten und Ergebnisse von acht Studien [11, 41, 43, 60, 92, 123, 157, 159] zur arthroskopischen Therapie von ulnaren 1B-Läsionen</td>
<td>117</td>
</tr>
<tr>
<td>14</td>
<td>Patientendaten und Ergebnisse der Fallserie mit geringerer Evidenz von Ruch und Papadonikolakis [125] zur arthroskopischen Refixation von ulnaren 1B-Läsionen</td>
<td>119</td>
</tr>
<tr>
<td>15</td>
<td>Patientendaten und Ergebnisse der Studie von Ruch et al. [126] zur Therapie von 1B-Läsionen mit begleitender distaler Radiusfraktur im Vergleich zu vier Studien [43, 60, 92, 159] ohne distale Radiusfraktur</td>
<td>120</td>
</tr>
<tr>
<td>16</td>
<td>Patientendaten und Ergebnisse der Studien von Corso et al. [36] und Miwa et al. [95] zur Therapie von peripheren 1C-Läsionen</td>
<td>121</td>
</tr>
<tr>
<td>17</td>
<td>Patientendaten und Ergebnisse der vergleichenden Studie von Miwa et al. [95] zur Therapie von radialen 1D-Läsionen mittels arthroskopischen Débridement versus Refixation</td>
<td>122</td>
</tr>
<tr>
<td>18</td>
<td>Patientendaten und Ergebnisse der Studie von Minami et al. [94] zur Therapie von radialen 1D-Läsionen mittels offener Refixation und Hemiresektions-Interpositions-Arthroplastik</td>
<td>123</td>
</tr>
<tr>
<td>19</td>
<td>Patientendaten und Ergebnisse von sechs Studien [35, 94, 145, 147, 157, 158] zur Therapie von peripheren TFCC-Läsionen (Palmer 1B, 1C und 1D)</td>
<td>124</td>
</tr>
<tr>
<td>20</td>
<td>Patientendaten und Ergebnisse der Studie von Anderson et al. [7] zur Therapie von traumatisch bedingten TFCC-Läsionen mittels arthroskopischer versus offener Reparatur</td>
<td>126</td>
</tr>
<tr>
<td>21</td>
<td>Patientendaten und Ergebnisse der Studien von Iwasaki et al. [68] und Shih et al. [144] zur Therapie von degenerativ bedingten TFCC-Läsionen</td>
<td>127</td>
</tr>
<tr>
<td>22</td>
<td>Patientendaten und Ergebnisse von zwei Studien mit geringerer Evidenz [93, 154] zur Therapie von überwiegend degenerativ bedingten TFCC-Läsionen</td>
<td>128</td>
</tr>
<tr>
<td>23</td>
<td>Patientendaten und Ergebnisse der vergleichenden Studie von Trumble et al. [157] zur Therapie mittels arthroskopischen Débridement und anschließender Refixation bei radialen (Palmer 1D) und ulnaren TFCC-Läsionen (Palmer 1B)</td>
<td>129</td>
</tr>
<tr>
<td>24</td>
<td>Patientendaten und Ergebnisse der Studien von Reiter et al. [123] und Corso et al. [36] zur Therapie mittels arthroskopischen Débridement und anschließender Refixation</td>
<td>130</td>
</tr>
<tr>
<td>25</td>
<td>Patientendaten und Ergebnisse der Studien von Shih und Lee [145] sowie von Shih et al. [144] zur offenen Rekonstruktion der lädierten Diskusanteile mithilfe der Sehne des M. extensor carpi ulnaris</td>
<td>131</td>
</tr>
<tr>
<td>26</td>
<td>Patientendaten und Ergebnisse der Studie von Moskal et al. [97] zur Therapie von traumatisch bedingten TFCC-Läsionen in Verbindung mit einer Kapsulodese bei Verletzungen des Ligamentum lunotriquetrum interosseum</td>
<td>132</td>
</tr>
<tr>
<td>27</td>
<td>Patientendaten und Ergebnisse der Studie von Bernstein et al. [16] zur Therapie von TFCC-Läsion in Verbindung mit einem gleichzeitig bestehenden Ulna-Impaction-Syndrom</td>
<td>133</td>
</tr>
<tr>
<td>28</td>
<td>Patientendaten und Ergebnisse der Fallserie von Tomaino und Weiser [154] zur Therapie von TFCC-Läsion in Verbindung mit einem gleichzeitig bestehenden Ulna-Impaction-Syndrom</td>
<td>134</td>
</tr>
</tbody>
</table>
Tabelle 2: Ergebnisse des Rankings aus „Themenpriorisierung für systematische Literaturreanalysen in der Handchirurgie“ von Schädel-Höpfner et al. [133]

<table>
<thead>
<tr>
<th>Thema</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skapholunärer Bandschaden</td>
<td>1,48</td>
</tr>
<tr>
<td>Lunatumnekrose</td>
<td>1,66</td>
</tr>
<tr>
<td>Skaphoid-Pseudarthrose</td>
<td>1,69</td>
</tr>
<tr>
<td>TFCC-Schaden</td>
<td>1,86</td>
</tr>
<tr>
<td>Skaphoidfraktur</td>
<td>2,14</td>
</tr>
<tr>
<td>Ulna-Impaction Syndrom</td>
<td>2,17</td>
</tr>
<tr>
<td>Posttraumatische Handgelenkarthrose (SLAC, SNAC)</td>
<td>2,21</td>
</tr>
<tr>
<td>Perilunäre Bandverletzung / Luxation</td>
<td>2,28</td>
</tr>
<tr>
<td>Beugesehnenrekonstruktion</td>
<td>2,28</td>
</tr>
<tr>
<td>Sulcus-ulnaris-Syndrom</td>
<td>2,34</td>
</tr>
<tr>
<td>Nerventransplantation</td>
<td>2,45</td>
</tr>
<tr>
<td>Vaskulär gestielte Lappenplastiken</td>
<td>2,46</td>
</tr>
<tr>
<td>Fingerkuppendefekte</td>
<td>2,52</td>
</tr>
<tr>
<td>Arthrose des distalen Radioulnargelenkes</td>
<td>2,59</td>
</tr>
<tr>
<td>Direkte Nervenkoaptierung</td>
<td>2,59</td>
</tr>
<tr>
<td>Dorsale Endgliedbasis-Fraktur</td>
<td>2,83</td>
</tr>
<tr>
<td>Luxation des proximalen Interphalangealgelenkes</td>
<td>2,83</td>
</tr>
<tr>
<td>Pars terminalis des Streckapparates</td>
<td>2,83</td>
</tr>
<tr>
<td>Motorische Ersatzoperationen</td>
<td>2,86</td>
</tr>
<tr>
<td>STT-Arthrose</td>
<td>2,90</td>
</tr>
<tr>
<td>Verbrennung</td>
<td>2,90</td>
</tr>
<tr>
<td>Nachbehandlung nach Replantation</td>
<td>3,07</td>
</tr>
<tr>
<td>Ulnare Seitenbandruptur des Daumengrundgelenkes</td>
<td>3,28</td>
</tr>
<tr>
<td>Subkapitale Fraktur Metakarpale</td>
<td>3,31</td>
</tr>
</tbody>
</table>

Bewertungsmaßstab: 1 – sehr relevant bis 5 – nicht relevant
<table>
<thead>
<tr>
<th>Autor</th>
<th>Jahr</th>
<th>Evidenzlevel</th>
<th>Diagnose-Kategorie</th>
<th>Therapie-Kategorie</th>
<th>verwertbar</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson, M.L.</td>
<td>2008</td>
<td>4, retrospektive Kohorte</td>
<td>traumatische Läsion</td>
<td>arthrosk. Reparatur</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Badia, A.</td>
<td>2007</td>
<td>4, Fallserie</td>
<td>ulnare Läsion</td>
<td>arthrosk. Reparatur</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Bernstein, M.A.</td>
<td>2004</td>
<td>4, retrospektive Kohorte</td>
<td>zentr./periph. Läsion</td>
<td>arth. Débridement/ arth. Ulna-Verkürzung</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Chou, Chen-Hsi</td>
<td>2001</td>
<td>4, Fallserie</td>
<td>periph. Läsion</td>
<td>arthrosk./ offene Reparatur</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Chou, K.H.</td>
<td>2003</td>
<td>4, Fallserie</td>
<td>ulnare Läsion</td>
<td>mini-open Reparatur</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Coroney, W.P.</td>
<td>1994</td>
<td>4, Fallserie</td>
<td>periph. Läsion</td>
<td>offene Reparatur</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Corso, Salvatore</td>
<td>1997</td>
<td>4, Fallserie</td>
<td>ulnare Läsion</td>
<td>arthrosk. Reparatur</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Darlis, N.A.</td>
<td>2005</td>
<td>4, Fallserie</td>
<td>zentr./rad. Läsion</td>
<td>arthrosk. Débridement</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Degreef, I.</td>
<td>2005</td>
<td>4, Fallserie</td>
<td>ulnare Läsion</td>
<td>arthrosk. Reparatur</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Feldon, Paul</td>
<td>1992</td>
<td>4, Fallserie</td>
<td>zentr./rad. Läsion</td>
<td>offenes Débridement</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Hermansdorfer, J.D.</td>
<td>1991</td>
<td>4, Fallserie</td>
<td>ulnare Läsion</td>
<td>offene Reparatur</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Husby, Torstein</td>
<td>2001</td>
<td>4, Fallserie</td>
<td>zentr./rad. Läsion</td>
<td>arthrosk. Teilresektion</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Iwasaki, N.</td>
<td>2007</td>
<td>4, Fallserie</td>
<td>degenerative Läsion</td>
<td>arth. Débridement/ offene Ulnaverkürzung</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Millants, P.</td>
<td>2002</td>
<td>4, Fallserie</td>
<td>ulnare Läsion</td>
<td>arthrosk. Reparatur</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Minami, A.</td>
<td>1991</td>
<td>4, Fallserie</td>
<td>periph. Läsion</td>
<td>offene Reparatur</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Minami, A.</td>
<td>1996</td>
<td>4, Fallserie</td>
<td>trauma./deg. Läsion</td>
<td>arthrosk. Débridement</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Miwa, Hiroyuki</td>
<td>2004</td>
<td>2b, retrospektive Kohorte</td>
<td>zentr./periph. Läsion</td>
<td>arthrosk. Reparatur/ Débridement</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Reiter, A.</td>
<td>2008</td>
<td>4, Fallserie</td>
<td>ulnare Läsion</td>
<td>arthrosk. Reparatur</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Ruch, D.S.</td>
<td>2003</td>
<td>4, Fallserie</td>
<td>ulnare Läsion</td>
<td>arthrosk. Reparatur</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Ruch, D.S.</td>
<td>2005</td>
<td>4, Fallserie</td>
<td>periph. Läsion</td>
<td>arthrosk. Reparatur</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Sennwald, G.R.</td>
<td>1995</td>
<td>4, Fallserie</td>
<td>ulnare Läsion</td>
<td>offene Reparatur</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Shih, Jui-Tien</td>
<td>2002</td>
<td>4, Fallserie</td>
<td>periph. Läsion</td>
<td>arthrosk. Reparatur</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Shih, Jui-Tien</td>
<td>2005</td>
<td>4, Fallserie</td>
<td>periph. Läsion</td>
<td>offene Rekonstruktion</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Shih, Jui-Tien</td>
<td>2000</td>
<td>4, Fallserie</td>
<td>degenerative Läsion</td>
<td>offene Rekonstruktion</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Tatebe, M.</td>
<td>2007</td>
<td>4, Fallserie</td>
<td>zentr./periph. Läsion</td>
<td>arthrosk. Débridement</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Terry, C.L.</td>
<td>1998</td>
<td>4, Fallserie</td>
<td>zentr./periph. Läsion</td>
<td>arth./offene Reparatur/ Débridem.</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Trumble, T.E.</td>
<td>1997</td>
<td>2b, retrospektive Kohorte</td>
<td>periph. Läsion</td>
<td>arthrosk. Reparatur</td>
<td>ja</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 7b: Tabellarische Übersicht über alle identifizierten aber ausgeschlossenen Arbeiten

<table>
<thead>
<tr>
<th>Autor</th>
<th>Jahr</th>
<th>Evidenzlevel</th>
<th>Diagnose-Kategorie</th>
<th>Therapie-Kategorie</th>
<th>verwertbar</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams, B. D.</td>
<td>2002</td>
<td>4, Fallserie</td>
<td>radioulnare Instabilität</td>
<td>Rekonstruktion</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Adams, B. D.</td>
<td>1993</td>
<td>5, Laborstudie</td>
<td>partielle / komplette Diskusentfernung</td>
<td>nein</td>
<td>niedriges Evidenzniveau, Laborstudie</td>
<td></td>
</tr>
<tr>
<td>Adams, B. D.</td>
<td>1993</td>
<td>5, Laborstudie</td>
<td>traumatische Läsion</td>
<td>Kräfte in Pro-/Supination</td>
<td>nein</td>
<td>niedriges Evidenzniveau, Laborstudie</td>
</tr>
<tr>
<td>af Ekenstam, F.</td>
<td>1985</td>
<td>5, Laborstudie</td>
<td>u.a. TFCC</td>
<td>Anatomie, Stabilität DRUG</td>
<td>nein</td>
<td>niedriges Evidenzniveau, Laborstudie</td>
</tr>
<tr>
<td>Aliende, C.</td>
<td>2005</td>
<td>4, Fallserie</td>
<td>ECU-Probleme</td>
<td>operative Therapie</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Arons, M. S.</td>
<td>1999</td>
<td>5, Fallbericht</td>
<td>ulnare Läsion</td>
<td>Diagnostik/operative Therapie</td>
<td>nein</td>
<td>niedriges Evidenzniveau, zu kleine Fallzahl</td>
</tr>
<tr>
<td>Atzei, A.</td>
<td>2008</td>
<td>Technik-beschreibung</td>
<td>periph. Läsion</td>
<td>offene Rekonstruktion</td>
<td>nein</td>
<td>Technikbeschreibung, keine Studie</td>
</tr>
<tr>
<td>Bade, H.</td>
<td>1996</td>
<td>Review</td>
<td>u.a. TFCC-Läsion</td>
<td>zusätzliche Ossifikation</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Bade, H.</td>
<td>1993</td>
<td>Review</td>
<td>Recessus ulnaris</td>
<td>Anatomie</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Badia, A.</td>
<td>2006</td>
<td>Technik-beschreibung</td>
<td>periph. Läsion</td>
<td>arthrosk. Rekonstruktion</td>
<td>nein</td>
<td>Technikbeschreibung, keine Studie</td>
</tr>
<tr>
<td>Bae, D. S.</td>
<td>2006</td>
<td>5, Expertenmeinung</td>
<td>periph. Läsion</td>
<td>Reparatur/Rekonstruktion</td>
<td>nein</td>
<td>niedriges Evidenzniveau, keine Studie</td>
</tr>
<tr>
<td>Baehser-Griffith, P.</td>
<td>1997</td>
<td>Review</td>
<td>TFCC-Läsion</td>
<td>Reparatur, Diagnostik etc.</td>
<td>nein</td>
<td>niedriges Evidenzniveau, keine Studie</td>
</tr>
<tr>
<td>Bain, G. I.</td>
<td>2008</td>
<td>Review</td>
<td>u.a. TFCC-Läsion</td>
<td>Arthroskopie -> Möglichkeiten</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Bednar, J. M.</td>
<td>1999</td>
<td>Review</td>
<td>TFCC-Läsion</td>
<td>Reparatur, Diagnostik etc.</td>
<td>nein</td>
<td>niedriges Evidenzniveau, keine Studie</td>
</tr>
<tr>
<td>Bednar, J. M.</td>
<td>1994</td>
<td>Review</td>
<td>TFCC-Läsion</td>
<td>Reparatur, Diagnostik etc.</td>
<td>nein</td>
<td>niedriges Evidenzniveau, keine Studie</td>
</tr>
<tr>
<td>Bednar, M. S.</td>
<td>1991</td>
<td>5, Laborstudie</td>
<td>TFCC</td>
<td>Blutversorgung -> Therapie</td>
<td>nein</td>
<td>niedriges Evidenzniveau, Laborstudie</td>
</tr>
<tr>
<td>Benjamin, M.</td>
<td>1990</td>
<td>5, Laborstudie</td>
<td>TFCC</td>
<td>Histologie->Verletzung</td>
<td>nein</td>
<td>niedriges Evidenzniveau, Laborstudie</td>
</tr>
<tr>
<td>Berger, R. A.</td>
<td>2001</td>
<td>Review</td>
<td>Bänder des TFCC</td>
<td>nein</td>
<td>niedriges Evidenzniveau, keine Studie</td>
<td></td>
</tr>
<tr>
<td>Beyermann, K.</td>
<td>1999</td>
<td>5, Expertenmeinung</td>
<td>TFCC-Läsion</td>
<td>Diagnostik/operative Therapie</td>
<td>nein</td>
<td>niedriges Evidenzniveau, keine Studie</td>
</tr>
<tr>
<td>Blair, W. F.</td>
<td>1985</td>
<td>5, Laborstudie</td>
<td>u.a. TFCC-Läsion</td>
<td>Arthrotomographie</td>
<td>nein</td>
<td>niedriges Evidenzniveau, Laborstudie</td>
</tr>
<tr>
<td>Böhringer, G.</td>
<td>2001</td>
<td>4, Fallserie</td>
<td>zentr./periph. Läsion</td>
<td>arthrosk. Reparatur</td>
<td>nein</td>
<td>kaum Ergebnisse, 4 Diagnosen / Therapien</td>
</tr>
<tr>
<td>Böhringer, G.</td>
<td>2002</td>
<td>Technik-beschreibung</td>
<td>ulnare Läsion</td>
<td>arthrosk. Rekonstruktion</td>
<td>nein</td>
<td>Technikbeschreibung, keine Studie</td>
</tr>
<tr>
<td>Bottke, C.A.</td>
<td>1989</td>
<td>4, Fallserie</td>
<td>TFCC-Läsion</td>
<td>unterschiedlich</td>
<td>nein</td>
<td>unspezifische Diagnose, kaum Ergebnisse</td>
</tr>
<tr>
<td>Boulas, H.J.</td>
<td>1990</td>
<td>4, Fallserie</td>
<td>TFCC-Läsion</td>
<td>offene Ulna-Verkürzung</td>
<td>nein</td>
<td>Diagnose sehr unspezifisch</td>
</tr>
<tr>
<td>Name</td>
<td>Jahr</td>
<td>Fallserie/Laborstudie</td>
<td>TFCC-Läsion</td>
<td>Diagnostik/Behandlung</td>
<td>Evidenzniveau/Studie</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>Braun, H.</td>
<td>2003</td>
<td>4, Fallserie</td>
<td>TFCC-Läsion</td>
<td>Diagnostik</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Breitenseher, M. J.</td>
<td>1997</td>
<td>Review</td>
<td>u.a. TFCC-Läsion</td>
<td>Diagnostik</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Bruser, P.</td>
<td>2004</td>
<td>Review</td>
<td>u.a. TFCC</td>
<td>nein</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Catalano, L. W.</td>
<td>2004</td>
<td>Review</td>
<td>u.a. TFCC-Läsion</td>
<td>Diagnostik</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Cheng, S. L.</td>
<td>1997</td>
<td>Review</td>
<td>u.a. TFCC</td>
<td>nein</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Chidgey, L. K.</td>
<td>1991</td>
<td>5, Laborstudie</td>
<td>TFCC</td>
<td>Histologie -> Verletzung</td>
<td>nein niedriges Evidenzniveau, Laborstudie</td>
<td></td>
</tr>
<tr>
<td>Chloros, G. D.</td>
<td>2007</td>
<td>Review</td>
<td>u.a. TFCC-Läsion</td>
<td>nein</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Chun, S.</td>
<td>1993</td>
<td>4, Fallserie</td>
<td>Ulna-Impac tion Syndrom</td>
<td>Ulnaverkürzung-osteotomie</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Coleman, H. M.</td>
<td>1960</td>
<td>Review</td>
<td>TFCC-Läsion</td>
<td>nein</td>
<td>nein niedriges Evidenzniveau, keine Studie</td>
<td></td>
</tr>
<tr>
<td>Conca, M</td>
<td>2004</td>
<td>4, Fallserie</td>
<td>ulnare Läsion</td>
<td>arthrosk. Reparatur</td>
<td>nein Ergebnisse unklar, Technikbeschreibung</td>
<td></td>
</tr>
<tr>
<td>Constantine, K. J.</td>
<td>2000</td>
<td>4, Fallserie</td>
<td>Ulna-Impac tion Syndr.</td>
<td>Ulnaverkürzung</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Cooney, W. P.</td>
<td>1993</td>
<td>Review</td>
<td>u.a. TFCC-Läsion</td>
<td>Diagnostik</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Dailey, S. W.</td>
<td>2000</td>
<td>Review</td>
<td>TFCC-Läsion</td>
<td>nein</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Darlis, N. A.</td>
<td>2005</td>
<td>4, Fallserie</td>
<td>u.a. TFCC-Läsion</td>
<td>Ulnaverkürzung</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Darrow, J. C., Jr.</td>
<td>1985</td>
<td>5, Fallserie</td>
<td>u.a. TFCC-Läsion</td>
<td>Ulnaverkürzung</td>
<td>nein ungenaue Diagnose, versch. Diagnosen</td>
<td></td>
</tr>
<tr>
<td>De Smet, L.</td>
<td>1994</td>
<td>Review</td>
<td>u.a. TFCC-Läsion</td>
<td>nein</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>De Smet, L.</td>
<td>1995</td>
<td>Review</td>
<td>TFCC</td>
<td>Biomechanik des TFCC</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>De Smet, L.</td>
<td>1999</td>
<td>5, Laborstudie</td>
<td>TFCC-Läsion</td>
<td>Ulna-+-Variante -> TFCC-Läsion</td>
<td>nein niedriges Evidenzniveau, Laborstudie</td>
<td></td>
</tr>
<tr>
<td>Doherty, W.</td>
<td>1993</td>
<td>Review</td>
<td>u.a. TFCC-Läsion</td>
<td>Diagnostik</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Drobner, W. S.</td>
<td>1992</td>
<td>Review</td>
<td>u.a. TFCC</td>
<td>Anatomie, Biomechanik, DRUG</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Dyer, C. R.</td>
<td>1994</td>
<td>5, Fallserie</td>
<td>u.a. TFCC-Läsion</td>
<td>nein</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Earp, B. E.</td>
<td>2006</td>
<td>4, Fallserie</td>
<td>SL-Bandläsion</td>
<td>arthrosk. Behandlung</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Easterling, K. J.</td>
<td>1992</td>
<td>Review</td>
<td>TFCC-Läsion</td>
<td>Diagnostik/operative Therapie</td>
<td>nein niedriges Evidenzniveau, keine Studie</td>
<td></td>
</tr>
<tr>
<td>Elkowitz, S. J.</td>
<td>2006</td>
<td>Review</td>
<td>nein</td>
<td>nein niedriges Evidenzniveau, keine Studie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Noueam, K. I.</td>
<td>1999</td>
<td>4, Fallserie</td>
<td>u.a. TFCC-Läsion</td>
<td>nein</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Estrella, E. P.</td>
<td>2007</td>
<td>4, Fallserie</td>
<td>periph. Läsion</td>
<td>arthrosk. Reparatur</td>
<td>nein ungenaue Diagnose</td>
<td></td>
</tr>
<tr>
<td>Feldkamp, G.</td>
<td>2004</td>
<td>4, Fallserie</td>
<td>degenerative Läsion</td>
<td>arthrosk. Débridement</td>
<td>nein kaum Ergebnisse</td>
<td></td>
</tr>
<tr>
<td>Feldon, P.</td>
<td>1992</td>
<td>Technik-beschreibung</td>
<td>u.a. TFCC-Läsion</td>
<td>Ulnaverkürzung (Wafer-Procedure)</td>
<td>nein Technikbeschreibung, keine Studie</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Jahr</td>
<td>Quelle</td>
<td>TFCC-Läsion</td>
<td>Arthro. Reparatur</td>
<td>Therapie</td>
<td>ft</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>-------------------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Fellinger, M.</td>
<td>1997</td>
<td>5, Expertenmeinung</td>
<td>TFCC-Läsion</td>
<td>arthro. Reparatur</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Fontes, D.</td>
<td>2004</td>
<td>Review</td>
<td>u.a.TFCC-Läsion</td>
<td>arthro. Therapie</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Fontes, D.</td>
<td>2006</td>
<td>5, Expertenmeinung</td>
<td>TFCC-Läsion</td>
<td>arthro. Therapie</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Fontes, D.</td>
<td>1992</td>
<td>5, Expertenmeinung</td>
<td>u.a.TFCC-Läsion</td>
<td></td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Friedman, S. L.</td>
<td>1991</td>
<td>Review</td>
<td>u.a.TFCC-Läsion</td>
<td></td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Fulcher, S. M.</td>
<td>1998</td>
<td>Review</td>
<td>TFCC-Läsion</td>
<td>Diagnostik/Therapie/ Anatomie</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Garcia-Elias, M.</td>
<td>1998</td>
<td>Review</td>
<td>u.a. TFCC</td>
<td>Anatomie, Funktion</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Garcia-Elias, M.</td>
<td>1987</td>
<td>5, Laborstudie</td>
<td>TFCC</td>
<td></td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>Geisl, H.</td>
<td>1981</td>
<td>Review</td>
<td>TFCC-Läsion</td>
<td></td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Geissler, W. B.</td>
<td>1996</td>
<td>4, Fallserie</td>
<td>u.a.TFCC-Läsion</td>
<td></td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Giannoulis, F. S.</td>
<td>2007</td>
<td>Review</td>
<td>u.a.TFCC-Läsion</td>
<td>operative Therapie</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Glowacki, K.</td>
<td>1997</td>
<td>Review</td>
<td>u.a.TFCC-Läsion</td>
<td>Läsionen/Anatomie/ Therapie</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Golimbu, C. N.</td>
<td>1989</td>
<td>4, Fallserie</td>
<td>TFCC-Läsion</td>
<td>Diagnostik</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Grechenig, W.</td>
<td>1996</td>
<td>Review</td>
<td>u.a.TFCC-Läsion</td>
<td></td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Gundry, C. R.</td>
<td>1990</td>
<td>5, Laborstudie</td>
<td>u.a. TFCC-Läsion</td>
<td>Diagnostik</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Gupta, R.</td>
<td>2001</td>
<td>Review</td>
<td>u.a.TFCC-Läsion</td>
<td>arthro. Diagnostik/Therapie</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Gupta, R.</td>
<td>2001</td>
<td>5, Laborstudie</td>
<td>TFCC</td>
<td>Innervation->Therapie</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Gutierrez, A. E.</td>
<td>2007</td>
<td>4, Fallserie</td>
<td>TFCC-Läsion</td>
<td>Rekonstruktion</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Haas, N.</td>
<td>1990</td>
<td>Review</td>
<td>u.a.TFCC-Läsion</td>
<td>Diagnostik/Therapie</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Hahn, P.</td>
<td>2000</td>
<td>4, Fallserie</td>
<td>Recessus ulnaris</td>
<td>konservative Therapie</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Halikis, M. N.</td>
<td>1996</td>
<td>Review</td>
<td>u.a. TFCC-Läsion</td>
<td>Diagnostik, Therapie</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Hanel, D. P.</td>
<td>1988</td>
<td>5, Fallbericht</td>
<td>ECU-Probleme</td>
<td>operative Therapie</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Hanker, G. J.</td>
<td>1991</td>
<td>Review</td>
<td>u.a.TFCC-Läsion</td>
<td>arthro. Diagnostik/Therapie</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Hardy, D. C.</td>
<td>1988</td>
<td>5, Fallserie</td>
<td>TFCC-Läsion</td>
<td></td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Hardy, P.</td>
<td>1999</td>
<td>5, Fallbericht</td>
<td>u.a. TFCC-Läsion</td>
<td>Diagnostik, Therapie</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Hashizume, H.</td>
<td>1996</td>
<td>5, Fallbericht</td>
<td>Zelltumor</td>
<td>Therapie</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Hauck, R. M.</td>
<td>1996</td>
<td>5, Fallserie</td>
<td>u.a.TFCC-Läsion</td>
<td>operative Therapie</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Haugstvedt, J. R.</td>
<td>2006</td>
<td>5, Laborstudie</td>
<td>TFCC-Läsion</td>
<td>Läsion -> DRUG-Instabilität</td>
<td>nein</td>
<td>ft</td>
</tr>
<tr>
<td>Autor</td>
<td>Jahr</td>
<td>Artikeltyp</td>
<td>TFCC-Läsion</td>
<td>Diagnostik/Therapie</td>
<td>Evidenzniveau</td>
<td>Studie</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>---------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Hirahara, H.</td>
<td>2003</td>
<td>5, Laborstudie</td>
<td>u.a. TFCC-Läsion</td>
<td></td>
<td>nein</td>
<td>niedriges Evidenzniveau, Laborstudie</td>
</tr>
<tr>
<td>Hogikyan, J. V.</td>
<td>1992</td>
<td>Laborstudie</td>
<td>u.a. TFCC</td>
<td>Entwicklung des TFCC</td>
<td>nein</td>
<td>niedriges Evidenzniveau, Laborstudie</td>
</tr>
<tr>
<td>Hove, L. M.</td>
<td>1994</td>
<td>5, Fallserie</td>
<td>u.a. TFCC-Läsion</td>
<td>teilweise Rekonstruktion</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Hulsizer, D.</td>
<td>1997</td>
<td>4, Fallserie</td>
<td>zentr./ulnare Läsion</td>
<td>offene Ulna-Verk.</td>
<td>nein</td>
<td>kaum verwertbare Ergebnisse</td>
</tr>
<tr>
<td>Imatani, J.</td>
<td>1996</td>
<td>5, Fallbericht</td>
<td>Galeazzi-Läsion</td>
<td></td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Inada, Y.</td>
<td>1990</td>
<td>5, Fallbericht</td>
<td>Osteochondromatosis</td>
<td>TFCC-Rekonstruktion</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Infanger, M.</td>
<td>2008</td>
<td>4, Fallserie</td>
<td>zentr./periph. Läsion</td>
<td>arthrosk. Débridement</td>
<td>nein</td>
<td>unklare Diagnose</td>
</tr>
<tr>
<td>Jantea, C. L.</td>
<td>1995</td>
<td>5, Expertenmeinung</td>
<td>radiale Läsion</td>
<td>arthroskopische Reparatur</td>
<td>nein</td>
<td>niedriges Evidenzniveau, keine Studie</td>
</tr>
<tr>
<td>Kaempfke, F. A.</td>
<td>1997</td>
<td>5, Fallbericht</td>
<td>zentrale Läsion</td>
<td></td>
<td>nein</td>
<td>niedriges Evidenzniveau, <Fallzahl</td>
</tr>
<tr>
<td>Kauer, J. M.</td>
<td>1992</td>
<td>Review</td>
<td>u.a. TFCC</td>
<td>Anatomie, Funktion</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Kihara, H.</td>
<td>1995</td>
<td>5, Laborstudie</td>
<td>u.a. TFCC</td>
<td>Stabilität des DRUG</td>
<td>nein</td>
<td>niedriges Evidenzniveau, Laborstudie</td>
</tr>
<tr>
<td>Kikuchi, Y.</td>
<td>1998</td>
<td>5, Fallbericht</td>
<td>TFCC-Läsion</td>
<td></td>
<td>nein</td>
<td>niedriges Evidenzniveau, <Fallzahl</td>
</tr>
<tr>
<td>Kinninmonth, A. W.</td>
<td>1990</td>
<td>5, Laborstudie</td>
<td>degenerative Läsion</td>
<td>deg. Veränderungen des TFCC</td>
<td>nein</td>
<td>niedriges Evidenzniveau, Laborstudie</td>
</tr>
<tr>
<td>Kleinman, W. B.</td>
<td>1998</td>
<td>5, Laborstudie</td>
<td>Anatomie des HG</td>
<td></td>
<td>nein</td>
<td>niedriges Evidenzniveau, Laborstudie</td>
</tr>
<tr>
<td>Koebke, J.</td>
<td>1988</td>
<td>Review</td>
<td>u.a. TFCC</td>
<td>Anatomie des HG/DRUG</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Kuntz, D. G., Jr.</td>
<td>1999</td>
<td>5, Fallbericht</td>
<td>traumat. Läsion</td>
<td></td>
<td>nein</td>
<td>niedriges Evidenzniveau, <Fallzahl</td>
</tr>
<tr>
<td>Lee, C. K.</td>
<td>2008</td>
<td>Technikbeschreibung</td>
<td>ulnare Läsion</td>
<td>arthroskopische Reparatur</td>
<td>nein</td>
<td>Technikbeschreibung, keine Studie</td>
</tr>
<tr>
<td>Levinsohn, E. M.</td>
<td>1983</td>
<td>Review</td>
<td>u.a. TFCC-Läsion</td>
<td>Diagnostik</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Lindau, T.</td>
<td>2000</td>
<td>4, Fallserie</td>
<td>u.a. TFCC-Läsion</td>
<td></td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Lindau, T.</td>
<td>1997</td>
<td>4, Fallserie</td>
<td>u.a. TFCC-Läsion</td>
<td></td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Linscheid, R. L.</td>
<td>1987</td>
<td>Review</td>
<td>Ulnaverkürzung</td>
<td></td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Linscheid, R. L.</td>
<td>1992</td>
<td>Review</td>
<td>Biomechanik DRUG</td>
<td>Biomechanik u.a. TFCC</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Lubiatowski, P.</td>
<td>2006</td>
<td>4, Fallserie</td>
<td>TFCC-Läsion</td>
<td>arthrosk./offene Reparatur, Déb.</td>
<td>nein</td>
<td>keine einheitliche Therapie</td>
</tr>
<tr>
<td>Autor</td>
<td>Jahr</td>
<td>Artikeltyp</td>
<td>TFCC-Läsion</td>
<td>Therapie/Verfahren</td>
<td>Ergebnisse</td>
<td>Evidenzniveau</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>------------------------------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Lucky, S. D.</td>
<td>1997</td>
<td>Review</td>
<td>TFCC-Läsion</td>
<td>arthroskopische Therapie</td>
<td>nein</td>
<td>niedriges Evidenzniveau, keine Studie</td>
</tr>
<tr>
<td>Martineau, P. A.</td>
<td>2005</td>
<td>5, Laborstudie</td>
<td>radiale Läsion</td>
<td>Rekonstruktion</td>
<td>nein</td>
<td>niedriges Evidenzniveau, Laborstudie</td>
</tr>
<tr>
<td>Martinek, H.</td>
<td>1977</td>
<td>4, Fallserie</td>
<td>zentr./periph. Läsion</td>
<td>offene Excision</td>
<td>nein</td>
<td>kaum Ergebnisse</td>
</tr>
<tr>
<td>Martinek, H.</td>
<td>1977</td>
<td>Review</td>
<td>u.a. TFCC-Läsion</td>
<td>Exzision</td>
<td>nein</td>
<td>niedriges Evidenzniveau, keine Studie</td>
</tr>
<tr>
<td>Mathoulin, C.</td>
<td>2006</td>
<td>Review</td>
<td>u.a. TFCC-Läsion</td>
<td>Arthroskopie -> Möglichkeiten</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Melone, Charles P.</td>
<td>1992</td>
<td>4, Fallserie</td>
<td>periph. Läsion</td>
<td>Reparatur/ Rekonstruktion</td>
<td>nein</td>
<td>kaum Ergebnisse</td>
</tr>
<tr>
<td>Menon, J</td>
<td>1984</td>
<td>4, Fallserie</td>
<td>TFCC-Läsion</td>
<td>offene Teilexcision</td>
<td>nein</td>
<td>kaum Ergebnisse, Diagnose unspezifisch</td>
</tr>
<tr>
<td>Mikic, Z.</td>
<td>1992</td>
<td>5, Laborstudie</td>
<td>TFCC</td>
<td>Blutversorgung</td>
<td>nein</td>
<td>niedriges Evidenzniveau, Laborstudie</td>
</tr>
<tr>
<td>Mikic, Z. D.</td>
<td>1978</td>
<td>5, Laborstudie</td>
<td>TFCC</td>
<td>altersbezogene Veränderungen</td>
<td>nein</td>
<td>niedriges Evidenzniveau, Laborstudie</td>
</tr>
<tr>
<td>Mikic, Z. D.</td>
<td>1989</td>
<td>5, Laborstudie</td>
<td>Diskus des TFCC</td>
<td>Schäden des Diskus</td>
<td>nein</td>
<td>niedriges Evidenzniveau, Laborstudie</td>
</tr>
<tr>
<td>Mikic, Z. D.</td>
<td>1995</td>
<td>4, Fallserie</td>
<td>TFCC-Läsion</td>
<td>offene Transfixation</td>
<td>nein</td>
<td>kaum Ergebnisse, Diagnose unspezifisch</td>
</tr>
<tr>
<td>Mitz, S.</td>
<td>2007</td>
<td>Review</td>
<td>TFCC</td>
<td>Histologie, Zusammensetzung</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Minami, A.</td>
<td>2005</td>
<td>4, Fallserie</td>
<td>u.a. TFCC-Läsion</td>
<td>versch. Therapien</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Morisawa, Y.</td>
<td>2007</td>
<td>5, Fallbericht</td>
<td>radiale Läsion</td>
<td>Rekonstruktion</td>
<td>nein</td>
<td>niedriges Evidenzniveau, <Fallzahl</td>
</tr>
<tr>
<td>Mossing, N.</td>
<td>1975</td>
<td>4, Fallserie</td>
<td>periph./deg. Läsion</td>
<td>offene Excision</td>
<td>nein</td>
<td>kaum Ergebnisse</td>
</tr>
<tr>
<td>Mullett, H.</td>
<td>2001</td>
<td>5, Fallbericht</td>
<td>u.a. TFCC-Läsion</td>
<td></td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Murray, P. M.</td>
<td>2005</td>
<td>Review</td>
<td>u.a. TFCC-Läsion</td>
<td>u.a. Rekonstruktion</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Nagle, D. J.</td>
<td>1994</td>
<td>Review</td>
<td>degenerative Läsion</td>
<td>arthrosk. Ulnaverkürzung</td>
<td>nein</td>
<td>niedriges Evidenzniveau, keine Studie</td>
</tr>
<tr>
<td>Nagle, D. J.</td>
<td>2001</td>
<td>Review</td>
<td>TFCC-Läsion</td>
<td>konservative Therapie</td>
<td>nein</td>
<td>niedriges Evidenzniveau, keine Studie</td>
</tr>
<tr>
<td>Nakamura, R.</td>
<td>2001</td>
<td>Review</td>
<td>u.a. TFCC-Läsion</td>
<td>Diagnostik, Therapie</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Nakamura, T.</td>
<td>1999</td>
<td>4, Fallserie</td>
<td>TFCC</td>
<td>Anatomie</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Nakamura, T.</td>
<td>2000</td>
<td>5, Laborstudie</td>
<td>TFCC</td>
<td>histologische Anatomie</td>
<td>nein</td>
<td>niedriges Evidenzniveau, Laborstudie</td>
</tr>
<tr>
<td>Nakamura, T.</td>
<td>2001</td>
<td>5, Laborstudie</td>
<td>TFCC</td>
<td>Anatomie</td>
<td>nein</td>
<td>niedriges Evidenzniveau, Laborstudie</td>
</tr>
<tr>
<td>Neviaser, R. J.</td>
<td>1984</td>
<td>5, Expertenmeinung</td>
<td>traumatische Läsion</td>
<td>Exzision</td>
<td>nein</td>
<td>niedriges Evidenzniveau, keine Studie</td>
</tr>
<tr>
<td>Autor</td>
<td>Jahr</td>
<td>Artikelauswahl</td>
<td>TFCC-Läsion/Funktion</td>
<td>Resultat</td>
<td>Evidenzniveau</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>----------------</td>
<td>----------------------</td>
<td>----------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Nishikawa, S.</td>
<td>2003</td>
<td>Fallbericht</td>
<td>TFCC-Ganglion</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Nishikawa, S.</td>
<td>2002</td>
<td>Fallserie</td>
<td>TFCC-Läsion</td>
<td>arthrosk. Debridement</td>
<td>nein niedriges Evidenzniveau</td>
<td></td>
</tr>
<tr>
<td>Nishikawa, S.</td>
<td>2002</td>
<td>Laborstudie</td>
<td>TFCC</td>
<td>Ansätze des TFCC</td>
<td>nein niedriges Evidenzniveau, Laborstudie</td>
<td></td>
</tr>
<tr>
<td>Ohmori, M.</td>
<td>1998</td>
<td>Review</td>
<td>TFCC</td>
<td>nervale Versorgung</td>
<td>nein niedriges Evidenzniveau, keine Studie</td>
<td></td>
</tr>
<tr>
<td>Palmer, A. K.</td>
<td>1984</td>
<td>5, Expertenmeinung</td>
<td>DRUG Biomechanik u.a. TFCC</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pederzini, L. A.</td>
<td>2007</td>
<td>Technik-beschreibung</td>
<td>ulnare Läsion</td>
<td>arthrosk.all-inside Nahntechnik</td>
<td>nein Technikbeschreibung, keine Studie</td>
<td></td>
</tr>
<tr>
<td>Pell, R. F. th</td>
<td>2004</td>
<td>Fallserie</td>
<td>u.a. TFCC-Läsion</td>
<td>thermale Ablation</td>
<td>nein versch. Diagnosen, niedrige Evidenz</td>
<td></td>
</tr>
<tr>
<td>Petersen, M. S.</td>
<td>1993</td>
<td>Review</td>
<td>u.a. TFCC</td>
<td>DRUG-Rekonstruktion</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Pfirrmann, C. W.</td>
<td>2001</td>
<td>Laborstudie</td>
<td>TFCC</td>
<td>Morphologie</td>
<td>nein niedriges Evidenzniveau, Laborstudie</td>
<td></td>
</tr>
<tr>
<td>Rancher, K. D.</td>
<td>1999</td>
<td>Review</td>
<td>radiale Läsion</td>
<td>arthrosk. Reparatur</td>
<td>nein niedriges Evidenzniveau, keine Studie</td>
<td></td>
</tr>
<tr>
<td>Rettig, M. E.</td>
<td>2001</td>
<td>Review</td>
<td>u.a. TFCC-Läsion</td>
<td>Reparatur</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Rimondi, E.</td>
<td>1998</td>
<td>Fallserie</td>
<td>u.a. TFCC-Läsion</td>
<td>Diagnostik</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Rose, R. E.</td>
<td>1993</td>
<td>Fallbericht, Review</td>
<td>TFCC-Läsion</td>
<td>Therapie</td>
<td>nein niedriges Evidenzniveau, keine Studie</td>
<td></td>
</tr>
<tr>
<td>Rose, S.</td>
<td>1999</td>
<td>Fallserie</td>
<td>u.a. TFCC-Läsion</td>
<td>versch. Therapien</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Roth, J. H.</td>
<td>1986</td>
<td>Fallserie</td>
<td>u.a. TFCC-Läsion</td>
<td>Diagnostik</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Ruch, D. S.</td>
<td>2003</td>
<td>Laborstudie</td>
<td>periph. Läsion</td>
<td>Reparatur</td>
<td>nein niedriges Evidenzniveau, Laborstudie</td>
<td></td>
</tr>
<tr>
<td>Russo, M. T.</td>
<td>1991</td>
<td>Fallbericht</td>
<td>u.a. TFCC-Läsion</td>
<td>partielle Diskusentfernung</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Saffar, P.</td>
<td>2007</td>
<td>Review</td>
<td>u.a. TFCC-Läsion</td>
<td>Ulnaverkürzung</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
</tr>
<tr>
<td>Sagerman, S. D.</td>
<td>1996</td>
<td>Technik-beschreibung</td>
<td>radiale Läsion</td>
<td>arthrosk. Rekonstruktion</td>
<td>nein Technikbeschreibung, keine Studie</td>
<td></td>
</tr>
<tr>
<td>Scheker, L. R.</td>
<td>1994</td>
<td>Fallserie</td>
<td>u.a. TFCC-Läsion</td>
<td>Therapie</td>
<td>nein niedrige Evidenz, ungenaue Therapie</td>
<td></td>
</tr>
<tr>
<td>Autor</td>
<td>Jahr</td>
<td>Artikeltyp</td>
<td>Bereich</td>
<td>Inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>------------</td>
<td>-----------</td>
<td>----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmidt, H. M.</td>
<td>1998</td>
<td>Review</td>
<td>TFCC</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmidt, H. M.</td>
<td>2004</td>
<td>Review</td>
<td>TFCC</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schuind, F.</td>
<td>1995</td>
<td>Review</td>
<td>u.a. TFCC</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schuind, F.</td>
<td>1991</td>
<td>Laborstudie</td>
<td>TFCC</td>
<td>nein niedriges Evidenzniveau, Laborstudie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schultz, C. U.</td>
<td>2003</td>
<td>5, Fallbericht</td>
<td>TFCC-Läsion</td>
<td>Diagnostik/Therapie nein niedriges Evidenzniveau, <Fallzahl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schultz, K.</td>
<td>1996</td>
<td>4, Fallserie</td>
<td>Meniskus-Läsion</td>
<td>Diagnostik nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seitz, W. H., Jr.</td>
<td>2007</td>
<td>Review</td>
<td>u.a. TFCC</td>
<td>Rekonstruktion nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shigemitsu, T.</td>
<td>2007</td>
<td>Review</td>
<td>TFCC</td>
<td>Innervation nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shih, J. T.</td>
<td>2001</td>
<td>4, Fallserie</td>
<td>u.a. periphere Läsion</td>
<td>arthroskopische Therapie nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shih, J. T.</td>
<td>2005</td>
<td>4, Fallserie</td>
<td>u. TFCC-Läsion</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siggelkow, G.</td>
<td>1984</td>
<td>Review</td>
<td>TFCC-Läsion</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skie, M. C.</td>
<td>1997</td>
<td>Technikbeschreibung</td>
<td>ulnare Läsion</td>
<td>arthro. inside-out Reparatur nein Technikbeschreibung, keine Studie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slutsky, D. J.</td>
<td>2008</td>
<td>4, Fallserie</td>
<td>u. TFCC-Läsion</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slutsky, D. J.</td>
<td>2008</td>
<td>4, Fallserie</td>
<td>u. TFCC-Läsion</td>
<td>arthrosk. Diagnostik nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith, A. M.</td>
<td>2002</td>
<td>5, Laborstudie</td>
<td>u. TFCC-Läsion</td>
<td>Läsion -> DRUG-Instabilität nein niedriges Evidenzniveau, Laborstudie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soong, M.</td>
<td>2007</td>
<td>4, Fallserie</td>
<td>u. TFCC-Läsion</td>
<td>Rekonstruktion nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sotereanos, D. G.</td>
<td>1996</td>
<td>Review</td>
<td>u.a. TFCC-Läsion</td>
<td>modifiziertes Darrach-Procedure nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tadjalli, H. E.</td>
<td>1997</td>
<td>5, Fallbericht</td>
<td>Tumor</td>
<td>Exzision nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teurlings, L.</td>
<td>2000</td>
<td>5, Laborstudie</td>
<td>TFCC</td>
<td>TFCC -> Ulnalänge nein niedriges Evidenzniveau, Laborstudie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiru, R. G.</td>
<td>1986</td>
<td>5, Laborstudie</td>
<td>TFCC</td>
<td>Blutversorgung -> Therapie nein niedriges Evidenzniveau, Laborstudie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totterman, S. M.</td>
<td>1995</td>
<td>Review</td>
<td>TFCC-Läsion</td>
<td>Anatomie/Diagnostik/Pathologie nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unglaub, F.</td>
<td>2007</td>
<td>4, Fallserie</td>
<td>zentrale Läsion</td>
<td>arthrosk. Débridement nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van der Linden, A.J.</td>
<td>1973</td>
<td>Review</td>
<td>Diskusläsion</td>
<td>nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van der Linden, A.J.</td>
<td>1986</td>
<td>4, Fallserie</td>
<td>traumat./deg. Läsion</td>
<td>offene Teilexcision nein kaum Ergebnisse, unklare Diagnose/Therapie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Sanden, S.</td>
<td>2001</td>
<td>4, Fallserie</td>
<td>Ulna-abutment-Syndrom</td>
<td>nach fehlerhafter TFCC-Therapie nein fehlende inhaltliche Relevanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Schoonhoven, J.</td>
<td>1999</td>
<td>Review</td>
<td>u.a. TFCC-Läsion</td>
<td>Refixation nein niedriges Evidenzniveau, keine Studie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viegas, S. F.</td>
<td>1993</td>
<td>5, Laborstudie</td>
<td>u.a. TFCC-Läsion</td>
<td>Anatomie des HG nein niedriges Evidenzniveau, Laborstudie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weigl, K.</td>
<td>1969</td>
<td>Review</td>
<td>TFCC</td>
<td>Anatomie/Physio/Therapie nein niedriges Evidenzniveau, keine Studie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autor</td>
<td>Jahr</td>
<td>Artikeltyp</td>
<td>TFCC-Verletzung</td>
<td>Therapie</td>
<td>Evidenzniveau</td>
<td>Ergebnisse</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>Whatley, J. S.</td>
<td>2000</td>
<td>5. Laborstudie</td>
<td>TFCC-Läsion</td>
<td>Reparatur mittels Fibrinkleber</td>
<td>nein</td>
<td>niedriges Evidenzniveau, Laborstudie</td>
</tr>
<tr>
<td>Williams, C. S.</td>
<td>1993</td>
<td>Review</td>
<td>TFCC</td>
<td>Anatomie/Diagnostik/ Therapie</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Windisch, G.</td>
<td>2001</td>
<td>Review</td>
<td>TFCC</td>
<td>Anatomie</td>
<td>nein</td>
<td>fehlende inhaltliche Relevanz</td>
</tr>
<tr>
<td>Yao, J.</td>
<td>2007</td>
<td>Technik-beschreibung</td>
<td>periphere Läsion</td>
<td>arthrosk. all-inside Technik</td>
<td>nein</td>
<td>Technikbeschreibung, keine Studie</td>
</tr>
<tr>
<td>Zachee, B.</td>
<td>1993</td>
<td>Technik-beschreibung</td>
<td>periphere Läsion</td>
<td>arthrosk. Reparatur</td>
<td>nein</td>
<td>Technikbeschreibung, keine Studie</td>
</tr>
</tbody>
</table>
Tabelle 9: Patientendaten und Ergebnisse von drei hochwertigen Fallserien [18, 20, 95] zur Therapie von zentralen Palmer 1A-Läsionen

<table>
<thead>
<tr>
<th>Autor</th>
<th>Bilos</th>
<th>Blackwell</th>
<th>Miwa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahr</td>
<td>1991</td>
<td>2001</td>
<td>2004</td>
</tr>
<tr>
<td>Studientyp</td>
<td>Fallserie</td>
<td>Fallserie</td>
<td>Fallserie</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>7</td>
<td>42</td>
<td>62</td>
</tr>
<tr>
<td>analysierte Fälle</td>
<td>7</td>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100</td>
<td>83</td>
<td>100</td>
</tr>
<tr>
<td>nachuntersuchte Fälle</td>
<td>7</td>
<td>35</td>
<td>62</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>31 (19-38)</td>
<td>41(16-70)</td>
<td>33,5 (14-55)</td>
</tr>
<tr>
<td>Diagnose</td>
<td>zentrale Läsion Palmer 1A</td>
<td>zentrale Läsion Palmer 1A</td>
<td>zentrale Läsion Palmer 1A</td>
</tr>
<tr>
<td>Therapie</td>
<td>offene "wafer distal ulna resection" + ggf. Débridement (28,5%)</td>
<td>arthrosk. Resektion/ Débridement mittels Ho:YAG-Laser</td>
<td>partielle arthrosk. Resektion und Débridement</td>
</tr>
<tr>
<td>mittlere Zeit bis zur Behandlung (Mo)</td>
<td>8 (4-12)</td>
<td>6,7 (1-24)</td>
<td>8 (2-48)</td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>27 (18-36)</td>
<td>36 (3-74)</td>
<td>32 (22-74)</td>
</tr>
<tr>
<td>ulna(+)-Variante (%)</td>
<td>100</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Therapie nach OP</td>
<td>3 Wo UA-Gips, 3-5 Wo Immobilisation</td>
<td>1 Wo HG-Schiene</td>
<td>keinen Gips</td>
</tr>
<tr>
<td>MS post gesamt</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS excellent (%)</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS fair (%)</td>
<td>21,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS poor (%)</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM E/F° prä</td>
<td>127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM E/F° post</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM E/F (%)</td>
<td>100</td>
<td>83,5</td>
<td></td>
</tr>
<tr>
<td>ROM P/S° prä</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM P/S° post</td>
<td>134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM P/S (%)</td>
<td>95,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Griffstärke post (%)</td>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>schmerzfrei (%)</td>
<td>43</td>
<td>79</td>
<td>70</td>
</tr>
<tr>
<td>Schmerzen reduziert (%)</td>
<td>43</td>
<td>79</td>
<td>20</td>
</tr>
<tr>
<td>Schmerzen unverändert (%)</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zufrieden (%)</td>
<td>71,5</td>
<td>75</td>
<td>90</td>
</tr>
<tr>
<td>Alltagstätigkeit (%)</td>
<td>83</td>
<td>88</td>
<td>100</td>
</tr>
<tr>
<td>Komplikationen</td>
<td>liefe Wundinfektion (3%)</td>
<td>keine</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 10: Patientendaten und Ergebnisse von vier [38, 47, 66, 150] Fallserien mit niedrigerer Evidenz zur Therapie von zentralen Palmer 1A-Läsionen

<table>
<thead>
<tr>
<th>Autor</th>
<th>Darlis</th>
<th>Husby</th>
<th>Feldon</th>
<th>Tatebe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studientyp</td>
<td>Fallserie</td>
<td>Fallserie</td>
<td>Fallserie</td>
<td>Fallserie</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>20</td>
<td>35</td>
<td>12</td>
<td>32</td>
</tr>
<tr>
<td>Analysierte Fälle</td>
<td>20</td>
<td>32</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100</td>
<td>91</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>nachuntersuchte Fälle</td>
<td>20</td>
<td>32</td>
<td>12</td>
<td>32</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>44 (27-56)</td>
<td>36 (11-52)</td>
<td>29 (18-51)</td>
<td>31 (16-78)</td>
</tr>
<tr>
<td>Diagnose</td>
<td>zentr./rad. Läsion Palmer 1A 70% 1D 10% 2C 20%</td>
<td>zentr./rad. Läsion Palmer 1A 74% 1D 17% 2C 6% 2D 3%</td>
<td>zentr./rad. Läsion Palmer 1A 83% 1D 17%</td>
<td>zentr./ulnare Läsion Palmer 1A 93% 1B 7%</td>
</tr>
<tr>
<td>Therapie</td>
<td>arthrosk. Débridement mit HF-Sonde</td>
<td>arthrosk. Teilresektion + ggf. chondrales Débridement (51,5%)</td>
<td>offene "wafer procedure" + Débridement</td>
<td>Ulna-Verkürzungsosteotomie</td>
</tr>
<tr>
<td>mittlere Zeit bis zur Behandlung (Mo)</td>
<td>6 (3-18)</td>
<td>18 (4-132)</td>
<td>20 (5-94)</td>
<td></td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>22 (9-35)</td>
<td>39 (18-58)</td>
<td>32 (12-57)</td>
<td>658 (259-993)</td>
</tr>
<tr>
<td>Nebendiagnosen:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ulna(+-)Variante (%)</td>
<td>20</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ulna(-)-Variante (%)</td>
<td>15</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS post gesamt</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS excellent (%)</td>
<td>50</td>
<td>40,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS good (%)</td>
<td>35</td>
<td>43,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS fair (%)</td>
<td>15</td>
<td>12,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS poor (%)</td>
<td>3,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM E/F (%)</td>
<td>102</td>
<td>94</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>ROM P/S (%)</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM R/U (%)</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Griffstärke prä (%)</td>
<td>64</td>
<td></td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Griffstärke post (%)</td>
<td>83</td>
<td>95</td>
<td>100</td>
<td>88</td>
</tr>
<tr>
<td>Schmerz global (VAS) prä</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmerz global (VAS) post schmerzfrei (%)</td>
<td>50</td>
<td>23</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Schmerzen reduziert (%)</td>
<td>35</td>
<td>63</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Schmerzen unverändert (%)</td>
<td>15</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sehr zufrieden (%)</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zufrieden (%)</td>
<td>85</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unentschlossen (%)</td>
<td>11,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unzufrieden (%)</td>
<td>11,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sehr unzufrieden (%)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alltagstätigkeit (%)</td>
<td>55</td>
<td>96,9</td>
<td>83,3</td>
<td></td>
</tr>
<tr>
<td>modifizierte Arbeit (%)</td>
<td>25</td>
<td></td>
<td>16,7</td>
<td></td>
</tr>
<tr>
<td>Komplikationen</td>
<td></td>
<td></td>
<td></td>
<td>113</td>
</tr>
</tbody>
</table>
Tabelle 11: Patientendaten und Ergebnisse der vergleichenden Studie von Miwa et al. [95] zur Therapie von ulnaren 1B-Läsionen durch eine arthroskopische Refixation mittels "Naht" oder einem arthroskopischen Débridement

<table>
<thead>
<tr>
<th>Autor</th>
<th>Miwa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahr</td>
<td>2004</td>
</tr>
<tr>
<td>Studientyp</td>
<td>retrospektive Kohortenstudie</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>2b</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>62</td>
</tr>
<tr>
<td>analysierte Fälle</td>
<td>21</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100</td>
</tr>
<tr>
<td>nachuntersuchte Fälle</td>
<td>62</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>33,5 (14-55)</td>
</tr>
<tr>
<td>Diagnose</td>
<td>ulnare Läsion Palmer 1B</td>
</tr>
<tr>
<td>Therapie</td>
<td>arthrosk. Refixation mittels "Naht" (inside-out)</td>
</tr>
<tr>
<td>mittlere Zeit bis zur Behandlung (Mo)</td>
<td>8 (2-48)</td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>32 (22-74)</td>
</tr>
<tr>
<td>Therapie nach OP</td>
<td>3 Wo OA-Gips</td>
</tr>
<tr>
<td>Minami excellent (%)</td>
<td>57</td>
</tr>
<tr>
<td>Minami good (%)</td>
<td>38</td>
</tr>
<tr>
<td>Minami fair (%)</td>
<td>5</td>
</tr>
<tr>
<td>zufrieden (%)</td>
<td>95</td>
</tr>
<tr>
<td>schmerzfrei (%)</td>
<td>57</td>
</tr>
<tr>
<td>Schmerzen reduziert (%)</td>
<td>38</td>
</tr>
<tr>
<td>zurück zur Alltagstätigkeit (%)</td>
<td>100</td>
</tr>
<tr>
<td>Komplikationen (%)</td>
<td>keine</td>
</tr>
<tr>
<td></td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>33,5 (14-55)</td>
</tr>
<tr>
<td></td>
<td>ulnare Läsion Palmer 1B</td>
</tr>
<tr>
<td></td>
<td>arthrosk. Débridement</td>
</tr>
<tr>
<td></td>
<td>8 (2-48)</td>
</tr>
<tr>
<td></td>
<td>32 (22-74)</td>
</tr>
<tr>
<td></td>
<td>3 Wo OA-Gips</td>
</tr>
<tr>
<td></td>
<td>kein Gips</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

114
Tabelle 12: Patientendaten und Ergebnisse von fünf Studien [31, 32, 63, 143, 151] zur offenen Therapie von ulnaren 1B-Läsionen

<table>
<thead>
<tr>
<th>Autor</th>
<th>Chou, K.H.</th>
<th>Chou, C.H.</th>
<th>Hermansdorfer</th>
<th>Terry</th>
<th>Sennwald</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studientyp</td>
<td>Fallserie</td>
<td>Fallserie</td>
<td>Fallserie</td>
<td>Fallserie</td>
<td>Fallserie</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>4</td>
<td>4 4 4 4</td>
<td>Fallserie</td>
<td>Falls</td>
<td>Fallserie</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>8</td>
<td>17</td>
<td>13</td>
<td>29</td>
<td>8</td>
</tr>
<tr>
<td>analysierte Fälle</td>
<td>8</td>
<td>14</td>
<td>11</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100</td>
<td>100</td>
<td>85</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>31 (19-49)</td>
<td>47,4 (19-79)</td>
<td>29 (15-50)</td>
<td>17 (12,5-23)</td>
<td>32 (17-56)</td>
</tr>
<tr>
<td>Diagnose</td>
<td>ulnare Läsion Palmer 1B</td>
</tr>
<tr>
<td>Therapie</td>
<td>mini-open"suture anchor"Technik (Ulnarverankerung) + Débridement</td>
<td>offene Refixation mittels "Naht"</td>
<td>offene Refixation mittels "Naht"</td>
<td>offene Refixation mittels "Naht"</td>
<td>offene Refixation + Ulnakopf-Verkürzungs-osteotomie</td>
</tr>
<tr>
<td>mittlere Zeit bis zur Behandlung (Mo)</td>
<td>49 (2-182)</td>
<td>4,6 (1-24)</td>
<td>32 (8-168)</td>
<td>29 (5-125)</td>
<td>59 (1-198)</td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>48 (24-96)</td>
<td>14 (12-15)</td>
<td>23 (12-53)</td>
<td>24 (6-30)</td>
<td>36 (12-54)</td>
</tr>
<tr>
<td>dist.Radius-Fraktur (%)</td>
<td>50</td>
<td>41</td>
<td>8 23</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>ulna(+)Variante (%)</td>
<td>38,5</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo score(Schmerz)prü</td>
<td>8</td>
<td>8</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo score(Schmerz)post</td>
<td>22</td>
<td>20</td>
<td>23,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo score(Funktion)prü</td>
<td>21</td>
<td>5</td>
<td>18,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo score(Funktion)post</td>
<td>24</td>
<td>20</td>
<td>24,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo score(Bewegung)prü</td>
<td>24</td>
<td>5</td>
<td>23,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo score(Bewegung)post</td>
<td>23</td>
<td>14</td>
<td>23,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo score(Griffstärke)prü</td>
<td>11</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo score(Griffstärke)post</td>
<td>21</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gesamter Mayo score prü</td>
<td>62</td>
<td>23</td>
<td>78,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gesamter Mayo score post</td>
<td>88</td>
<td>67</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS excellent (%)</td>
<td>37,5</td>
<td>15</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS good (%)</td>
<td>62,5</td>
<td>15</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS fair (%)</td>
<td></td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS poor (%)</td>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM E/F (%)</td>
<td>89</td>
<td>96</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM P/S (%)</td>
<td>83</td>
<td>99</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Komplikationen</td>
<td>DRUG-Instabilität (38%)</td>
<td>Re-OP (18%)</td>
<td>anhaltende Schmerzen (12,5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM R/U (%)</td>
<td>97</td>
<td>73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM total (%)</td>
<td>89,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Griffstärke post (%)</td>
<td>88</td>
<td>87</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmerz global (VAS) prä</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmerz global (VAS) post</td>
<td>2,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>schmerzfrei (%)</td>
<td>37,5</td>
<td>27</td>
<td>12,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmerzen reduziert (%)</td>
<td>62,5</td>
<td>45,5</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmerzen unverändert (%)</td>
<td>27</td>
<td></td>
<td>12,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zufrieden (%)</td>
<td>72,5</td>
<td>82</td>
<td>87,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unzufrieden (%)</td>
<td>12,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alltagstätigkeit (%)</td>
<td>87,5</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>modifizierte Arbeit (%)</td>
<td>12,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autor</th>
<th>de Araujo</th>
<th>Degreif</th>
<th>Haugstvedt</th>
<th>Millants</th>
<th>Tünerhoff</th>
<th>Badia</th>
<th>Reiter</th>
<th>Trumble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studientyp</td>
<td>Fallserie</td>
<td>Fallserie</td>
<td>Fallserie</td>
<td>Fallserie</td>
<td>Fallserie</td>
<td>Fallserie</td>
<td>Fallserie</td>
<td>retrospektive Kohortenstudie</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2b</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>17</td>
<td>52</td>
<td>22</td>
<td>35</td>
<td>23</td>
<td>23</td>
<td>46</td>
<td>24</td>
</tr>
<tr>
<td>analysierte Fälle</td>
<td>17</td>
<td>52</td>
<td>20</td>
<td>35</td>
<td>21</td>
<td>23</td>
<td>46</td>
<td>11</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100</td>
<td>100</td>
<td>91</td>
<td>100</td>
<td>91</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>nachuntersuchte Fälle</td>
<td>17</td>
<td>52</td>
<td>20</td>
<td>35</td>
<td>21</td>
<td>23</td>
<td>46</td>
<td>24</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>33 (16-54)</td>
<td>32 (16-56)</td>
<td>32 (15-59)</td>
<td>31 (17-56)</td>
<td>32 (14-54)</td>
<td>35 (18-52)</td>
<td>34 (10-58)</td>
<td>32 (22-38)</td>
</tr>
<tr>
<td>Diagnose</td>
<td>ulnare Läsion Palmer 1B</td>
</tr>
<tr>
<td>mittlere Zeit bis zur Behandlung (Mo)</td>
<td>9 (2-26)</td>
<td>25 (5-72)</td>
<td>9,7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>8 (4-13)</td>
<td>16 (7-36)</td>
<td>42 (23-59)</td>
<td>58 (18-107)</td>
<td>27 (14-54)</td>
<td>17</td>
<td>11 (6-23)</td>
<td>34 (26-48)</td>
</tr>
<tr>
<td>Therapie nach OP</td>
<td>3 Wo Immobilis. HG</td>
<td>3 Wo OA-Gips, 3 Wo UA-Gips (K-wire)</td>
<td>6-12 Wo OA/UA-Gips</td>
<td>6 Wo OA-Gips, 3 Wo UA-Gips</td>
<td>6 Wo UA-Gipsschiene</td>
<td>1 Wo OA-Gips, 5 Wo UA-Gips</td>
<td>4 Wo OA-Gips, 4 Wo Bowers-Schiene</td>
<td>6 Wo OA-Gips Supination</td>
</tr>
<tr>
<td>Mayo score (Schmerz) prä</td>
<td>4</td>
<td>19</td>
<td>11,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo score (Schmerz) post</td>
<td>18,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo score (Funktion) prä</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo score (Funktion) post</td>
<td>22,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo score (Bewegung) post</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo score (Griffstärke) post</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gesamter Mayo score prä</td>
<td>54,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gesamter Mayo score post</td>
<td>82</td>
<td>83</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS excellent (%)</td>
<td>35</td>
<td>43</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS good (%)</td>
<td>35</td>
<td>24</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS fair (%)</td>
<td>20</td>
<td>19</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS poor (%)</td>
<td>10</td>
<td>14</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM E/F° post</td>
<td>120</td>
<td>149</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM E/F (%)</td>
<td>92</td>
<td>90</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM P/S° post</td>
<td>132</td>
<td>158</td>
<td>171</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM P/S (%)</td>
<td>100</td>
<td>97</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM R/U° post</td>
<td>53</td>
<td>37</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM total (%)</td>
<td>76.5</td>
<td>90</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grip prä (%)</td>
<td>80</td>
<td>83</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmerz global (VAS) prä</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmerz global (VAS) post</td>
<td>2.43</td>
<td>3</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DASH very good (%)</td>
<td>76</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DASH good (%)</td>
<td>11</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DASH poor (%)</td>
<td>13</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DASH mean</td>
<td>15</td>
<td></td>
<td>21.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sehr zufrieden (%)</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zufrieden (%)</td>
<td>76</td>
<td>85</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unzufrieden (%)</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>schmerzfrei (%)</td>
<td>9</td>
<td>29</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmerzen reduziert (%)</td>
<td>72</td>
<td>62</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmerzen unverändert (%)</td>
<td>14</td>
<td>10</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmerzen schlimmer (%)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zurück zur Alltagstätigkeit (%)</td>
<td>82.4</td>
<td>75</td>
<td>45.7</td>
<td>100</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>modifizierte Arbeit (%)</td>
<td>15</td>
<td>51.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Komplikationen</td>
<td>anhaltende Schmerzen (29.5%)</td>
<td>Re-Arthroskopie (25%), Re-OP (10%)</td>
<td>anhaltende DRUG-Instabilität (33%) N.ulnaris-Irritation (5%)</td>
<td>ulnarer Narbenschmerz (4%)</td>
<td>Parästhesien (11%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 14: Patientendaten und Ergebnisse der Fallserie mit geringerer Evidenz von Ruch und Papadonikolakis [125] zur arthroskopischen Refixation von ulnaren 1B-Läsionen

<table>
<thead>
<tr>
<th>Autor</th>
<th>Ruch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahr</td>
<td>2005</td>
</tr>
<tr>
<td>Studientyp</td>
<td>Fallserie</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>4</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>35</td>
</tr>
<tr>
<td>analysierte Fälle</td>
<td>35</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100</td>
</tr>
<tr>
<td>nachuntersuchte Fälle</td>
<td>35</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>34 (15-58)</td>
</tr>
<tr>
<td>Diagnose</td>
<td>periph. Läsion</td>
</tr>
<tr>
<td></td>
<td>Palmer 1B 89%</td>
</tr>
<tr>
<td></td>
<td>1B+1A 6%</td>
</tr>
<tr>
<td></td>
<td>1B+1D 6%</td>
</tr>
<tr>
<td>Therapie</td>
<td>arthrosk. Refixation mittels "Naht" (outside-in)</td>
</tr>
<tr>
<td>mittlere Zeit bis zur Behandlung (Mo)</td>
<td>mind. 4</td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>29 (6-83)</td>
</tr>
<tr>
<td>Therapie nach OP</td>
<td>3-4 Wo. HG-Immobilisation</td>
</tr>
<tr>
<td>ROM E/F° post</td>
<td>160</td>
</tr>
<tr>
<td>ROM E/F (%)</td>
<td>123</td>
</tr>
<tr>
<td>ROM P/S° post</td>
<td>168</td>
</tr>
<tr>
<td>Grip post (%)</td>
<td>73</td>
</tr>
<tr>
<td>DASH very good (%)</td>
<td>77</td>
</tr>
<tr>
<td>DASH good (%)</td>
<td>14</td>
</tr>
<tr>
<td>DASH poor (%)</td>
<td>9</td>
</tr>
<tr>
<td>DASH mean</td>
<td>12</td>
</tr>
<tr>
<td>schmerzfrei (%)</td>
<td>46</td>
</tr>
<tr>
<td>Schmerzen reduziert (%)</td>
<td>48</td>
</tr>
<tr>
<td>Schmerzen stark (%)</td>
<td>6</td>
</tr>
</tbody>
</table>
Tabelle 15: Patientendaten und Ergebnisse der Studie von Ruch et al. [126] zur Therapie von 1B-Läsionen mit begleitender distaler Radiusfraktur im Vergleich zu vier Studien [43, 60, 92, 159] ohne distale Radiusfraktur

<table>
<thead>
<tr>
<th>Autor</th>
<th>Degreef</th>
<th>Haugstvedt</th>
<th>Millants</th>
<th>Tünnerhoff</th>
<th>Ruch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studientyp</td>
<td>Fallserie</td>
<td>Fallserie</td>
<td>Fallserie</td>
<td>Fallserie</td>
<td>Fallserie</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>52</td>
<td>22</td>
<td>35</td>
<td>23</td>
<td>13</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100</td>
<td>91</td>
<td>100</td>
<td>91</td>
<td>100</td>
</tr>
<tr>
<td>nachuntersuchte Fälle</td>
<td>52</td>
<td>20</td>
<td>35</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>32 (16-56)</td>
<td>32 (15-59)</td>
<td>31 (17-56)</td>
<td>32 (14-54)</td>
<td>37 (16-57)</td>
</tr>
<tr>
<td>Diagnose</td>
<td>ulnare Läsion Palmer 1B</td>
<td>ulnare Läsion Palmer 1B</td>
<td>ulnare Läsion Palmer 1B</td>
<td>ulnare Läsion Palmer 1B</td>
<td>ulnare Läsion Palmer 1B + distale Radiusfraktur</td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>16 (7-36)</td>
<td>42 (23-59)</td>
<td>58 (18-107)</td>
<td>27 (14-54)</td>
<td>24 (17-35)</td>
</tr>
<tr>
<td>Nebendiagnosen:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dist.Radius-Fraktur (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Therapie nach OP</td>
<td>3 Wo OA-Gips, 3 Wo UA-Gips (K-wire)</td>
<td>6-12 Wo OA/UA-Gips</td>
<td>6 Wo OA-Gips, 3 Wo UA-Gips</td>
<td>6 Wo UA-Gipsschiene</td>
<td>3 Wo Gips</td>
</tr>
<tr>
<td>ROM E/F° post</td>
<td>120</td>
<td>149</td>
<td></td>
<td></td>
<td>129</td>
</tr>
<tr>
<td>ROM E/F (%)</td>
<td>92</td>
<td>90</td>
<td></td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>ROM P/S° post</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM P/S (%)</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td>165</td>
</tr>
<tr>
<td>ROM R/U° post</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM total (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>Griffstärke prä (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>Griffstärke post (%)</td>
<td>80</td>
<td>83</td>
<td>85</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>DASH very good (%)</td>
<td>76</td>
<td>74</td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>DASH good (%)</td>
<td>11</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DASH poor (%)</td>
<td>13</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DASH mean</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>schmerzfrei (%)</td>
<td></td>
<td>9</td>
<td>29</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Schmerzen reduziert (%)</td>
<td></td>
<td>72</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmerzen unverändert (%)</td>
<td></td>
<td>14</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmerzen schlimmer (%)</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>13,2</td>
</tr>
<tr>
<td>zurück zur Alltagstätigkeit (%)</td>
<td></td>
<td>75</td>
<td>45,7</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>modifizierte Arbeit (%)</td>
<td></td>
<td>15</td>
<td>51,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Komplikationen</td>
<td>Re-Arthroskopie (25%), Re-OP (10%)</td>
<td>anhaltende DRUG-Instabilität (33%), N.ulnaris-Irritation (5%)</td>
<td></td>
<td></td>
<td>Parästhesien (15%)</td>
</tr>
</tbody>
</table>
Tabelle 16: Patientendaten und Ergebnisse der Studien von Corso et al. [36] und Miwa et al. [95] zur Therapie von peripheren 1C-Läsionen

<table>
<thead>
<tr>
<th>Autor</th>
<th>Corso</th>
<th>Miwa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahr</td>
<td>1997</td>
<td>2004</td>
</tr>
<tr>
<td>Studientyp</td>
<td>Fallserie</td>
<td>Fallserie</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>45</td>
<td>62</td>
</tr>
<tr>
<td>analysierte Fälle</td>
<td>45</td>
<td>8</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>nachuntersuchte Fälle</td>
<td>45</td>
<td>62</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>32,5 (14-52)</td>
<td>33,5 (14-55)</td>
</tr>
<tr>
<td>Diagnose</td>
<td>periphere Läsion Palmer 1C</td>
<td>periphere Läsion Palmer 1C</td>
</tr>
<tr>
<td>Therapie</td>
<td>arthrosk. Débridement + Refixation mittels "zone-specific repair kit"</td>
<td>arthrosk. Débridement</td>
</tr>
<tr>
<td>mittlere Zeit bis zur Behandlung (Mo)</td>
<td>8 (2-48)</td>
<td>37 (6-36)</td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>32 (22-74)</td>
<td></td>
</tr>
<tr>
<td>Nebendiagnosen:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dist.Radius-Fraktur (%)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Ulna styloid-Fraktur (%)</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>karpale Bandschäden (%)</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Therapie nach OP</td>
<td>4 Wo.OA-Gips, 2-4 Wo.HG-Schiene</td>
<td>kein Gips</td>
</tr>
<tr>
<td>gesamter Mayo score prä</td>
<td>45,9</td>
<td></td>
</tr>
<tr>
<td>gesamter Mayo score post</td>
<td>87,5</td>
<td></td>
</tr>
<tr>
<td>MS excellent (%)</td>
<td>64,4</td>
<td></td>
</tr>
<tr>
<td>MS good (%)</td>
<td>26,6</td>
<td></td>
</tr>
<tr>
<td>MS fair (%)</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>MS poor (%)</td>
<td>6,6</td>
<td></td>
</tr>
<tr>
<td>Minami excellent (%)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Minami good (%)</td>
<td>37,5</td>
<td></td>
</tr>
<tr>
<td>Minami fair (%)</td>
<td>12,5</td>
<td></td>
</tr>
<tr>
<td>zufrieden (%)</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>schmerzfrei (%)</td>
<td>87,5</td>
<td></td>
</tr>
<tr>
<td>Schmerzen reduziert (%)</td>
<td>37,5</td>
<td></td>
</tr>
<tr>
<td>Alltagstätigkeit (%)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Komplikationen</td>
<td>N.ulnaris Dysästhesie (5%), chron. Schmerzen (2%)</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 17: Patientendaten und Ergebnisse der vergleichenden Studie von Miwa et al. [95] zur Therapie von radialen 1D-Läsionen mittels arthroskopischen Débridement versus Refixation

<table>
<thead>
<tr>
<th>Autor</th>
<th>Miwa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahr</td>
<td>2004</td>
</tr>
<tr>
<td>Studientyp</td>
<td>retrospektive Kohortenstudie</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>2b</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>62</td>
</tr>
<tr>
<td>analysierte Fälle</td>
<td>5</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100</td>
</tr>
<tr>
<td>nachuntersuchte Fälle</td>
<td>62</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>33,5 (14-55)</td>
</tr>
<tr>
<td>Diagnose</td>
<td>radiale Läsion Palmer 1D</td>
</tr>
<tr>
<td>Therapie</td>
<td>arthrosk. Débridement</td>
</tr>
<tr>
<td>mittlere Zeit bis zur Behandlung (Mo)</td>
<td>8 (2-48)</td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>32 (22-74)</td>
</tr>
<tr>
<td>Therapie nach OP</td>
<td>kein Gips</td>
</tr>
<tr>
<td>Minami excellent (%)</td>
<td>40</td>
</tr>
<tr>
<td>Minami good (%)</td>
<td>40</td>
</tr>
<tr>
<td>Minami fair (%)</td>
<td>0</td>
</tr>
<tr>
<td>Minami poor (%)</td>
<td>20</td>
</tr>
<tr>
<td>zufrieden (%)</td>
<td>80</td>
</tr>
<tr>
<td>unzufrieden (%)</td>
<td>20</td>
</tr>
<tr>
<td>schmerzfrei (%)</td>
<td>40</td>
</tr>
<tr>
<td>Schmerzen reduziert (%)</td>
<td>40</td>
</tr>
<tr>
<td>Alltagstätigkeit (%)</td>
<td>80</td>
</tr>
<tr>
<td>Komplikationen</td>
<td>keine</td>
</tr>
</tbody>
</table>
Tabelle 18: Patientendaten und Ergebnisse der Studie von Minami et al. [94] zur Therapie von radialen 1D-Läsionen mittels offener Refixation und Hemiresektions-Interpositions-Arthroplastik

<table>
<thead>
<tr>
<th>Autor</th>
<th>Minami</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahr</td>
<td>1991</td>
</tr>
<tr>
<td>Studientyp</td>
<td>Fallserie</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>4</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>16</td>
</tr>
<tr>
<td>analysierte Fälle</td>
<td>11</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100</td>
</tr>
<tr>
<td>nachuntersuchte Fälle</td>
<td>16</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>41 (21-63)</td>
</tr>
<tr>
<td>Diagnose</td>
<td>radiale Läsion Palmer 1D</td>
</tr>
<tr>
<td>Therapie</td>
<td>offene Refixation mittels "Naht" + HIA</td>
</tr>
<tr>
<td>mittlere Zeit bis zur Behandlung (Mo)</td>
<td>29 (4-180)</td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>41,5 (21-57)</td>
</tr>
<tr>
<td>ROM E/F° prä</td>
<td>105</td>
</tr>
<tr>
<td>ROM E/F° post</td>
<td>130</td>
</tr>
<tr>
<td>ROM E/F (%)</td>
<td>100</td>
</tr>
<tr>
<td>ROM P/S° prä</td>
<td>135</td>
</tr>
<tr>
<td>ROM P/S° post</td>
<td>173</td>
</tr>
<tr>
<td>ROM R/U° prä</td>
<td>48</td>
</tr>
<tr>
<td>ROM R/U° post</td>
<td>61</td>
</tr>
<tr>
<td>Grip prä (%)</td>
<td>42</td>
</tr>
<tr>
<td>Grip post (%)</td>
<td>86</td>
</tr>
<tr>
<td>schmerzfrei (%)</td>
<td>73</td>
</tr>
<tr>
<td>Schmerzen reduziert (%)</td>
<td>27</td>
</tr>
<tr>
<td>Alltagstätigkeit (%)</td>
<td>100</td>
</tr>
<tr>
<td>Komplikationen</td>
<td>ECU-Sehnenentzündung (18%), Fraktur (9%), Re-OP (18%)</td>
</tr>
</tbody>
</table>
Tabellen

Tabelle 19: Patientendaten und Ergebnisse von sechs Studien [35, 94, 145, 147, 157, 158] zur Therapie von peripheren TFCC-Läsionen (Palmer 1B, 1C und 1D)

<table>
<thead>
<tr>
<th>Autor</th>
<th>Trumble</th>
<th>Shih Trumble</th>
<th>Shih</th>
<th>Cooney</th>
<th>Minami</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studientyp</td>
<td>Fallserie</td>
<td>Fallserie</td>
<td>Fallserie</td>
<td>Fallserie</td>
<td>Fallserie</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>21</td>
<td>37</td>
<td>24</td>
<td>37</td>
<td>33</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Diagnose</td>
<td>periph. Läsion Palmer 1B 43% 1C 10% 1D 48%</td>
<td>periph. Läsion Palmer 1B 51% 1C 27% 1D 22%</td>
<td>periph. Läsion Palmer 1B 38% 1C 8% 1D 54%</td>
<td>periph. Läsion Palmer 1B 51% 1C 30% 1D 19%</td>
<td>periph. Läsion Palmer 1B 15% 1C 15% 1D 70%</td>
</tr>
<tr>
<td>Therapie</td>
<td>arthrosk. Débridement + Refixation mittels "Naht" + offene Ulna-Verkürzung</td>
<td>arthrosk. Débridement + Refixation mittels "Naht" (inside-out)</td>
<td>arthrosk. Débridement + Refixation mittels "Naht"</td>
<td>offene Refixation mittels ECU-Sehne + ggf. Ulna-Verkürzung (84%)</td>
<td>offene Refixation mittels "Naht" + ggf. Ulna-Verkürzung (52%)</td>
</tr>
<tr>
<td>mittlere Zeit bis zur Behandlung (Mo)</td>
<td>2 (0,5-6)</td>
<td>23 (14-28)</td>
<td>(1-36)</td>
<td>33 (4-180)</td>
<td></td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>29 (24-52)</td>
<td>26 (22-28)</td>
<td>34 (26-48)</td>
<td>36 (25-48)</td>
<td>41 (21-60)</td>
</tr>
<tr>
<td>Nebendiagnosen:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ulna(+) Variante (%)</td>
<td>76</td>
<td></td>
<td>45</td>
<td></td>
<td>87,5</td>
</tr>
<tr>
<td>ulna(-) Variante (%)</td>
<td></td>
<td></td>
<td>16</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Therapie nach OP</td>
<td>4-6 Wo OA-Gips</td>
<td>2 Wo keine Ulnardeviation</td>
<td>6 Wo OA-Gips Supination</td>
<td>4 Wo Immobilis. mit K-Drähten</td>
<td>8 Wo OA-Gips, 6 Wo Schiene</td>
</tr>
<tr>
<td>gesamter Mayo score post</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo score(Schmerz) post</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo score(Funktion) post</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo score(Bewegung) post</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo score(Griffstärke) post</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS excellent (%)</td>
<td>27</td>
<td></td>
<td>30</td>
<td></td>
<td>33,3</td>
</tr>
<tr>
<td>MS good (%)</td>
<td>65</td>
<td></td>
<td>59</td>
<td></td>
<td>45,5</td>
</tr>
<tr>
<td>MS fair (%)</td>
<td>8</td>
<td></td>
<td>11</td>
<td></td>
<td>18,2</td>
</tr>
<tr>
<td>MS poor (%)</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM E/F° prä</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM E/F° post</td>
<td>119</td>
<td></td>
<td>121</td>
<td></td>
<td>134</td>
</tr>
<tr>
<td>Komplikationen</td>
<td>Parästhesien (5%)</td>
<td>gerissener Kirschner-Draht (11%)</td>
<td>Parästhesien (4%)</td>
<td>oberflächliche Wundinfektion (8%)</td>
<td>ECU-Sehnenentzündung (25%), Fraktur (8%), Re-OP (12,5%)</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td>---------------------------------</td>
<td>------------------</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>ROM E/F (%)</td>
<td>87</td>
<td>91</td>
<td>103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM P/S° post</td>
<td>126</td>
<td>136</td>
<td>174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM P/S (%)</td>
<td>82</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM R/U° post</td>
<td>38</td>
<td>39</td>
<td>61,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM R/U (%)</td>
<td>72</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM total (%)</td>
<td>83</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Griffstärke prä (%)</td>
<td>68</td>
<td>50</td>
<td>35-40</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Griffstärke post (%)</td>
<td>83</td>
<td>85</td>
<td>65-90</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>zufrieden (%)</td>
<td>87</td>
<td>92</td>
<td>89</td>
<td>89</td>
<td>79</td>
</tr>
<tr>
<td>schmerzfrei (%)</td>
<td>90</td>
<td>27</td>
<td>87,5</td>
<td>33,3</td>
<td>62,5</td>
</tr>
<tr>
<td>Schmerzen reduziert (%)</td>
<td>10</td>
<td>73</td>
<td>12,5</td>
<td>45,5</td>
<td>37,5</td>
</tr>
<tr>
<td>zurück zur Alltagstätigkeit (%)</td>
<td></td>
<td>75</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 20: Patientendaten und Ergebnisse der Studie von Anderson et al. [7] zur Therapie von traumatisch bedingten TFCC-Läsionen mittels arthroskopischer versus offener Reparatur

<table>
<thead>
<tr>
<th>Autor</th>
<th>Anderson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiendtyp</td>
<td>retrospektive Kohortenstudie</td>
</tr>
<tr>
<td>Jahr</td>
<td>2008</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>4</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>37</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>97</td>
</tr>
<tr>
<td>nachuntersuchte Fälle</td>
<td>36</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>traumatische Läsion</th>
<th>traumatische Läsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therapie</td>
<td>arthrosk. Reparatur mittels "Naht" (outside-in)</td>
<td>offene Reparatur mittels "Naht"</td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>32</td>
<td>53</td>
</tr>
<tr>
<td>Nebendiagnose:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dist Radius-Fraktur (%)</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>ulna styloid-Fraktur (%)</td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>Therapie nach OP</td>
<td>5 Wo HG-Immobilisation</td>
<td>5-6 Wo OA-Gips</td>
</tr>
<tr>
<td>gesamter Mayo score prä</td>
<td>63,5</td>
<td>65,5</td>
</tr>
<tr>
<td>gesamter Mayo score post</td>
<td>70,6</td>
<td>71,2</td>
</tr>
<tr>
<td>Mayo score(Schmerz) prä</td>
<td>11,1</td>
<td>10,9</td>
</tr>
<tr>
<td>Mayo score(Schmerz) post</td>
<td>14,6</td>
<td>14,2</td>
</tr>
<tr>
<td>Mayo score(Funktion) prä</td>
<td>12,3</td>
<td>13,1</td>
</tr>
<tr>
<td>Mayo score(Funktion) post</td>
<td>18,5</td>
<td>17,9</td>
</tr>
<tr>
<td>MS excellent (%)</td>
<td>42</td>
<td>44</td>
</tr>
<tr>
<td>MS good (%)</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>MS fair (%)</td>
<td>39</td>
<td>33</td>
</tr>
<tr>
<td>ROM E/F° prä</td>
<td>119</td>
<td>123</td>
</tr>
<tr>
<td>ROM E/F° post</td>
<td>116</td>
<td>109</td>
</tr>
<tr>
<td>ROM E/F (%)</td>
<td>72</td>
<td>68</td>
</tr>
<tr>
<td>ROM P/S (%)</td>
<td>81</td>
<td>79</td>
</tr>
<tr>
<td>Griffstärke prä (%)</td>
<td>66</td>
<td>72</td>
</tr>
<tr>
<td>Griffstärke post (%)</td>
<td>71</td>
<td>73</td>
</tr>
<tr>
<td>Schmerz global (VAS) post</td>
<td>2,6</td>
<td>1,5</td>
</tr>
<tr>
<td>DASH mean</td>
<td>20,7</td>
<td>16,7</td>
</tr>
</tbody>
</table>

<p>| Komplikationen | Re-OP (25%), DRUG-Instabilität (14%), Hyperästhesie (22%), ECU-Sehnenentzündung (11%) | Re-OP (28%), DRUG-Instabilität (21%), Hyperästhesie (36%), ECU-Sehnenentzündung (26%) |</p>
<table>
<thead>
<tr>
<th>Autor</th>
<th>Iwasaki</th>
<th>Shih</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahr</td>
<td>2007</td>
<td>2000</td>
</tr>
<tr>
<td>Studientyp</td>
<td>Fallserie</td>
<td>Fallserie</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>53</td>
<td>27</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>nachuntersuchte Fälle</td>
<td>53</td>
<td>27</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>37,5 (14-67)</td>
<td>22,4 (19-24)</td>
</tr>
<tr>
<td>Diagnose</td>
<td>degenerative Läsion Palmer 2B 30% 2C 17% 2D 47% 2E 6%</td>
<td>degenerative Läsion Palmer 2B 41% 2C 59%</td>
</tr>
<tr>
<td>Therapie</td>
<td>arthrosk. Débridement + offene Ulna-Verkürzung</td>
<td>offene Refixation mittels ECU-Sehne + ggf. Ulna-Verkürzung (89%)</td>
</tr>
<tr>
<td>mittlere Zeit bis zur Behandlung (Mo)</td>
<td>15 (4-72)</td>
<td>16 (13-18)</td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>26 (12-95)</td>
<td>26 (22-28)</td>
</tr>
<tr>
<td>Nebendiagnosen:</td>
<td>Ulna impaction Syndrom (%)</td>
<td>100</td>
</tr>
<tr>
<td>Therapie nach OP</td>
<td>2 Wo UA-Schiene</td>
<td>4 Wo Immobilisation mit K-Drähten</td>
</tr>
<tr>
<td>gesamter Mayo score prä</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>MS excellent (%)</td>
<td>66</td>
<td>18</td>
</tr>
<tr>
<td>MS good %</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>MS fair (%)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>ROM E/F° prä</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>ROM E/F° post</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>ROM E/F (%)</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>ROM P/S° prä</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>ROM P/S° post</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>Griffstärke prä (%)</td>
<td>84</td>
<td>38</td>
</tr>
<tr>
<td>Griffstärke post (%)</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>zufrieden (%)</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>schmerzfrei (%)</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Schmerzen reduziert (%)</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Schmerzen unverändert (%)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>zurück zur Alltagstätigkeit (%)</td>
<td>94</td>
<td>85</td>
</tr>
<tr>
<td>modifizierte Arbeit (%)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Komplikationen</td>
<td>Metall-Unverträglichkeit (55%)</td>
<td>oberflächliche Wundinfektion (4%), ulnare Dysästhesie (7%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autor</th>
<th>Tomaino</th>
<th>Minami</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahr</td>
<td>2001</td>
<td>1996</td>
</tr>
<tr>
<td>Studientyp</td>
<td>Fallserie</td>
<td>Fallserie</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>nachuntersuchte Fälle</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>41 (23-63)</td>
<td>30 (20-53)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>deg./zentr./rad. Läsion</th>
<th>degenerative Läsion 31% traumatische Läsion 69%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palmer</td>
<td>2C 17%</td>
<td>2D 25%</td>
</tr>
<tr>
<td></td>
<td>1A 33%</td>
<td>1D 25%</td>
</tr>
<tr>
<td>Therapie</td>
<td>arthrosk. Débridement +</td>
<td>arthrosk. Débridement (partielle Excision)</td>
</tr>
<tr>
<td></td>
<td>arthrosk. Ulna-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verkürzung "wafer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>resection"</td>
<td></td>
</tr>
<tr>
<td>mittlere Zeit bis zur Behandlung (Mo)</td>
<td>14 (2-60)</td>
<td>7 (3-16)</td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>14</td>
<td>35 (14-61)</td>
</tr>
<tr>
<td>Nebendiagnosen:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dist.Radius-Fraktur (%)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ulna styloid-Fraktur (%)</td>
<td>6,25</td>
<td></td>
</tr>
<tr>
<td>karpale Bandschäden (%)</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>ulna(+)-Variante (%)</td>
<td>100</td>
<td>31,25</td>
</tr>
<tr>
<td>ulna(-)-Variante (%)</td>
<td>12,5</td>
<td></td>
</tr>
<tr>
<td>Therapie nach OP</td>
<td>2 Wo HG-Schiene</td>
<td>min. 1 Wo Gipsschiene</td>
</tr>
<tr>
<td>ROM E/F° prä</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>ROM E/F° post</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>ROM E/F (%)</td>
<td>92,5</td>
<td></td>
</tr>
<tr>
<td>ROM P/S° prä</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>ROM P/S° post</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>ROM P/S (%)</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Griffstärke prä (%)</td>
<td>73</td>
<td>58,5</td>
</tr>
<tr>
<td>Griffstärke post (%)</td>
<td>95</td>
<td>93</td>
</tr>
<tr>
<td>sehr zufrieden (%)</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>zufrieden (%)</td>
<td>25</td>
<td>81</td>
</tr>
<tr>
<td>unfrieden (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>schmerzfrei (%)</td>
<td>67</td>
<td>31</td>
</tr>
<tr>
<td>Schmerzen reduziert (%)</td>
<td>33</td>
<td>56</td>
</tr>
<tr>
<td>Schmerzen schlimmer (%)</td>
<td>12,5</td>
<td></td>
</tr>
<tr>
<td>zurück zur Alltagstätigkeit (%)</td>
<td>100</td>
<td>81</td>
</tr>
<tr>
<td>modifizierte Arbeit (%)</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Komplikationen</td>
<td></td>
<td>Re-OP (12,5%)</td>
</tr>
</tbody>
</table>
Tabelle 23: Patientendaten und Ergebnisse der vergleichenden Studie von Trumble et al. [157] zur Therapie mittels arthroskopischen Débridement und anschließender Refixation bei radialen (Palmer 1D) und ulnaren TFCC-Läsionen (Palmer 1B)

<table>
<thead>
<tr>
<th>Autor</th>
<th>Trumble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studientyp</td>
<td>retrospektive Kohortenstudie</td>
</tr>
<tr>
<td>Jahr</td>
<td>1997</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>2b</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>13</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100</td>
</tr>
<tr>
<td>nachuntersuchte Fälle</td>
<td>13</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>29 (23-36)</td>
</tr>
<tr>
<td>Diagnose</td>
<td>radiale Läsion Palmer 1D</td>
</tr>
<tr>
<td>mittlere Zeit bis zur Behandlung (Mo)</td>
<td>4 (0,75-6)</td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>34 (26-48)</td>
</tr>
<tr>
<td>Therapie nach OP</td>
<td>6 Wo OA-Gips Supination</td>
</tr>
<tr>
<td>ROM total (%)</td>
<td>87</td>
</tr>
<tr>
<td>Griffstärke post (%)</td>
<td>89</td>
</tr>
<tr>
<td>schmerzfrei (%)</td>
<td>85</td>
</tr>
<tr>
<td>Schmerzen reduziert (%)</td>
<td>15</td>
</tr>
<tr>
<td>zurück zur Alltagstätigkeit (%)</td>
<td>62</td>
</tr>
<tr>
<td>Komplikationen</td>
<td>keine</td>
</tr>
</tbody>
</table>
Tabelle 24: Patientendaten und Ergebnisse der Studien von Reiter et al. [123] und Corso et al. [36] zur Therapie mittels arthroskopischen Débridement und anschließender Refixation

<table>
<thead>
<tr>
<th>Autor</th>
<th>Reiter</th>
<th>Corso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studientyp</td>
<td>Fallserie</td>
<td>Fallserie</td>
</tr>
<tr>
<td>Jahr</td>
<td>2008</td>
<td>1997</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>46</td>
<td>45</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>nachuntersuchte Fälle</td>
<td>46</td>
<td>45</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>34 (10-58)</td>
<td>33 (14-52)</td>
</tr>
<tr>
<td>Diagnose</td>
<td>ulnare Läsion Palmer 1B</td>
<td>periphere Läsion Palmer 1C</td>
</tr>
<tr>
<td>Therapie</td>
<td>arthrosk. Débridement + Refixation mittels "Naht" (inside-out)</td>
<td>arthrosk. Débridement + Refixation mittels "Naht" (zone-specific repair kit)</td>
</tr>
<tr>
<td>mittlere Zeit bis zur Behandlung (Mo)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>11 (6-23)</td>
<td>37 (6-36)</td>
</tr>
<tr>
<td>Nebendiagnose:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dist.Radius-Fraktur (%)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>ulna styloid-Fraktur (%)</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>karpale Bandschäden (%)</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Therapie nach OP</td>
<td>4 Wo OA-Gips, 4 Wo Bowers-Schiene</td>
<td>4 Wo OA-Gips, 2-4 Wo HG-Schiene</td>
</tr>
<tr>
<td>gesamter Mayo score prä</td>
<td>45,9</td>
<td></td>
</tr>
<tr>
<td>gesamter Mayo score post</td>
<td>80</td>
<td>87,5</td>
</tr>
<tr>
<td>MS excellent (%)</td>
<td>22</td>
<td>64,4</td>
</tr>
<tr>
<td>MS good (%)</td>
<td>41</td>
<td>26,6</td>
</tr>
<tr>
<td>MS fair (%)</td>
<td>27</td>
<td>2,2</td>
</tr>
<tr>
<td>MS poor (%)</td>
<td>10</td>
<td>6,6</td>
</tr>
<tr>
<td>ROM E/F (%)</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>ROM P/S (%)</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>ROM R/U (%)</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>ROM total (%)</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Griffstärke post (%)</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Schmerz global (VAS) prä</td>
<td>7,5</td>
<td></td>
</tr>
<tr>
<td>Schmerz global (VAS) post</td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>DASH mean</td>
<td>21,7</td>
<td></td>
</tr>
<tr>
<td>zufrieden (%)</td>
<td>63</td>
<td>93</td>
</tr>
<tr>
<td>schmerzfrei (%)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Schmerzen reduziert (%)</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Schmerzen unverändert (%)</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>zurück zur Alltagstätigkeit (%)</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Komplikationen</td>
<td>Parästhesien (11%)</td>
<td>N.ulnaris Dysästhesie (5%), chron.Schmerzen (2%)</td>
</tr>
</tbody>
</table>
Tabelle 25: Patientendaten und Ergebnisse der Studien von Shih und Lee [145] sowie von Shih et al. [144] zur offenen Rekonstruktion der lädierten Diskusanteile mithilfe der Sehne des M. extensor carpi ulnaris

<table>
<thead>
<tr>
<th>Autor</th>
<th>Shih</th>
<th>Shih</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahr</td>
<td>2005</td>
<td>2000</td>
</tr>
<tr>
<td>Studientyp</td>
<td>Fallserie</td>
<td>Fallserie</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>37</td>
<td>27</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>nachuntersucht Fälle</td>
<td>37</td>
<td>27</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>22 (19-24)</td>
<td>22 (19-24)</td>
</tr>
<tr>
<td>Diagnose</td>
<td>periphere Läsion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palmer 1B 51%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palmer 1C 30%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palmer 1D 19%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>degenerative Läsion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palmer 2B 41%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palmer 2C 59%</td>
<td></td>
</tr>
<tr>
<td>Therapie</td>
<td>offene Refixation mittels ECU-Sehne + ggf. Ulna-Verkürzung (84%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>offene Refixation mittels ECU-Sehne + ggf. Ulna-Verkürzung (89%)</td>
<td></td>
</tr>
<tr>
<td>mittlere Zeit bis zur Behandlung (Mo)</td>
<td>23 (14-28)</td>
<td>16 (13-18)</td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>36 (25-48)</td>
<td>26 (22-28)</td>
</tr>
<tr>
<td>Therapie nach OP</td>
<td>4 Wo Immobilisation mit K-Drähten</td>
<td>4 Wo Immobilisation mit K-Drähten</td>
</tr>
<tr>
<td>gesamter Mayo score prä</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>MS excellent (%)</td>
<td>30</td>
<td>18</td>
</tr>
<tr>
<td>MS good (%)</td>
<td>59</td>
<td>67</td>
</tr>
<tr>
<td>MS fair (%)</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Griffstärke prä (%)</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Griffstärke post (%)</td>
<td>78</td>
<td>85</td>
</tr>
<tr>
<td>zufrieden (%)</td>
<td>89</td>
<td>85</td>
</tr>
<tr>
<td>zurück zur Alltagstätigkeit (%)</td>
<td>100</td>
<td>85</td>
</tr>
<tr>
<td>Komplikationen</td>
<td>oberflächliche Wundinfektion (8%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>oberflächliche Wundinfektion (4%), ulnare Dysästhesie (7%)</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 26: Patientendaten und Ergebnisse der Studie von Moskal et al. [97] zur Therapie von traumatisch bedingten TFCC-Läsionen in Verbindung mit einer Kapsulodese bei Verletzungen des Ligamentum lunotriquetrum interosseum

<table>
<thead>
<tr>
<th>Autor</th>
<th>Moskal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahr</td>
<td>2001</td>
</tr>
<tr>
<td>Studientyp</td>
<td>Fallserie</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>4</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>20</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100</td>
</tr>
<tr>
<td>nachuntersuchte Fälle</td>
<td>20</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>33</td>
</tr>
<tr>
<td>Diagnose</td>
<td>zentrale/ulnare Läsion</td>
</tr>
<tr>
<td></td>
<td>Palmer 1A 29%</td>
</tr>
<tr>
<td></td>
<td>1B 71%</td>
</tr>
<tr>
<td></td>
<td>+ LTI-Verletzung</td>
</tr>
<tr>
<td>Therapie</td>
<td>Kapsulodese bei LT +</td>
</tr>
<tr>
<td></td>
<td>arthrosk. TFCC-Reparatur / Débridement</td>
</tr>
<tr>
<td>mittlere Zeit bis zur Behandlung (Mo)</td>
<td>30 (0,25-66)</td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>37 (26-67)</td>
</tr>
<tr>
<td>Nebendiagnosen:</td>
<td></td>
</tr>
<tr>
<td>karpale Bandschäden (%)</td>
<td>100</td>
</tr>
<tr>
<td>ulna(+) Variante (%)</td>
<td>40</td>
</tr>
<tr>
<td>Therapie nach OP</td>
<td>5 Tage sugar tong, 8 Wo</td>
</tr>
<tr>
<td></td>
<td>Muenster cast</td>
</tr>
<tr>
<td>gesamter Mayo score prä</td>
<td>50</td>
</tr>
<tr>
<td>gesamter Mayo score post</td>
<td>88</td>
</tr>
<tr>
<td>MS excellent (%)</td>
<td>65</td>
</tr>
<tr>
<td>MS good (%)</td>
<td>25</td>
</tr>
<tr>
<td>MS fair (%)</td>
<td>10</td>
</tr>
<tr>
<td>ROM E/F° post</td>
<td>126</td>
</tr>
<tr>
<td>ROM E/F (%)</td>
<td>97</td>
</tr>
<tr>
<td>ROM P/S° post</td>
<td>153</td>
</tr>
<tr>
<td>ROM R/U° post</td>
<td>35</td>
</tr>
<tr>
<td>Komplikationen</td>
<td>ECU-Spannung (10%), N.ulnaris-Neuritis (5%)</td>
</tr>
</tbody>
</table>
Tabelle 27: Patientendaten und Ergebnisse der Studie von Bernstein et al. [16] zur Therapie von TFCC-Läsion in Verbindung mit einem gleichzeitig bestehenden Ulna-Impaction-Syndrom

<table>
<thead>
<tr>
<th>Autor</th>
<th>Bernstein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahr</td>
<td>2004</td>
</tr>
<tr>
<td>Studiendtyp</td>
<td>retrospektive Kohortenstudie</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>4</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>11 16</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100 100</td>
</tr>
<tr>
<td>nachuntersuchte Fälle</td>
<td>11 16</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>37 (24-61) 38 (19-65)</td>
</tr>
<tr>
<td>Diagnose</td>
<td>traumat./deg. Läsion Palmer 1A 55% 2C 18% 2D 27%</td>
</tr>
<tr>
<td>Therapie</td>
<td>arthroskop. Débridement (Ho:YAG Laser) + arthroskop."wafer distal ulna resection"</td>
</tr>
<tr>
<td>mittlere Zeit bis zur Behandlung (Mo)</td>
<td>15 (5-33) 13 (3-36)</td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>21 (7-61) 15 (7-58)</td>
</tr>
<tr>
<td>Nebendiagnosen:</td>
<td></td>
</tr>
<tr>
<td>karpale Bandschäden (%)</td>
<td>27</td>
</tr>
<tr>
<td>Ulna impaction Syndrom (%)</td>
<td>100</td>
</tr>
<tr>
<td>ulna(+) Variante (%)</td>
<td>100</td>
</tr>
<tr>
<td>Therapie nach OP</td>
<td>6 Wo palmare HG-Schiene</td>
</tr>
<tr>
<td>MS excellent (%)</td>
<td>45</td>
</tr>
<tr>
<td>MS good (%)</td>
<td>36</td>
</tr>
<tr>
<td>MS fair (%)</td>
<td>9</td>
</tr>
<tr>
<td>MS poor (%)</td>
<td>9</td>
</tr>
<tr>
<td>Griffstärke prä (%)</td>
<td>54</td>
</tr>
<tr>
<td>Griffstärke post (%)</td>
<td>86</td>
</tr>
<tr>
<td>Darrow excellent (%)</td>
<td>64</td>
</tr>
<tr>
<td>Darrow good (%)</td>
<td>18</td>
</tr>
<tr>
<td>Darrow fair (%)</td>
<td>9</td>
</tr>
<tr>
<td>Darrow poor (%)</td>
<td>9</td>
</tr>
<tr>
<td>zufrieden (%)</td>
<td>81</td>
</tr>
<tr>
<td>schmerzfrei (%)</td>
<td>64</td>
</tr>
<tr>
<td>Schmerzen reduziert (%)</td>
<td>27</td>
</tr>
<tr>
<td>Schmerzen unverändert (%)</td>
<td>9</td>
</tr>
<tr>
<td>zurück zur Alltagstätigkeit (%)</td>
<td>82</td>
</tr>
<tr>
<td>modifizierte Arbeit (%)</td>
<td>9</td>
</tr>
<tr>
<td>Komplikationen</td>
<td>Re-OP(9%), Sehnenentzündung (18%), oberflächliche Wundinfektion (9%)</td>
</tr>
</tbody>
</table>
Tabelle 28: Patientendaten und Ergebnisse der Fallserie von Tomaino und Weiser [154] zur Therapie von TFCC-Läsion in Verbindung mit einem gleichzeitig bestehenden Ulna-Impaction-Syndrom

<table>
<thead>
<tr>
<th>Autor</th>
<th>Tomaino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahr</td>
<td>2001</td>
</tr>
<tr>
<td>Studientyp</td>
<td>Fallserie</td>
</tr>
<tr>
<td>Evidenzlevel</td>
<td>4</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>12</td>
</tr>
<tr>
<td>Follow-up Rate (%)</td>
<td>100</td>
</tr>
<tr>
<td>nachuntersuchte Fälle</td>
<td>12</td>
</tr>
<tr>
<td>mittleres Pat.alter (Jahre)</td>
<td>41 (23-63)</td>
</tr>
<tr>
<td>Diagnose</td>
<td>traumat./deg. Läsion Palmer 1A 33% 1D 25% 2C 17% 2D 25%</td>
</tr>
<tr>
<td>Therapie</td>
<td>arthrosk. Débridement + arthrosk. Ulna-Verkürzung ("wafer resection")</td>
</tr>
<tr>
<td>mittlere Zeit bis zur Behandlung (Mo)</td>
<td>14 (2-60)</td>
</tr>
<tr>
<td>mittlerer Follow-up (Mo)</td>
<td>14</td>
</tr>
<tr>
<td>Nebendiagnosen:</td>
<td></td>
</tr>
<tr>
<td>dist.Radius-Fraktur (%)</td>
<td>8</td>
</tr>
<tr>
<td>karpale Bandschäden (%)</td>
<td>75</td>
</tr>
<tr>
<td>ulna(+) Variante (%)</td>
<td>100</td>
</tr>
<tr>
<td>Therapie nach OP</td>
<td>2 Wo HG-Schiene</td>
</tr>
<tr>
<td>Griffstärke prä (%)</td>
<td>73</td>
</tr>
<tr>
<td>Griffstärke post (%)</td>
<td>95</td>
</tr>
<tr>
<td>sehr zufrieden (%)</td>
<td>75</td>
</tr>
<tr>
<td>zufrieden (%)</td>
<td>25</td>
</tr>
<tr>
<td>schmerzfrei (%)</td>
<td>67</td>
</tr>
<tr>
<td>Schmerzen reduziert (%)</td>
<td>33</td>
</tr>
<tr>
<td>zurück zur Alltagstätigkeit (%)</td>
<td>100</td>
</tr>
<tr>
<td>Komplikationen</td>
<td>keine</td>
</tr>
</tbody>
</table>
8. Abbildungen

Übersicht aller Abbildungen in diesem Kapitel:

<table>
<thead>
<tr>
<th>Abbildungs-Nummer</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Prozentuale Darstellung der jährlichen Anzahl an TFCC-Schäden, die in den jeweiligen Kliniken / Praxen behandelt werden</td>
<td>136</td>
</tr>
<tr>
<td>14</td>
<td>Graphische Darstellung der prozentualen Verteilung von konservativer und operativer Behandlung bei TFCC-Läsionen</td>
<td>136</td>
</tr>
<tr>
<td>15</td>
<td>Graphische Darstellung der prozentualen Verteilung der konservativen Behandlungsmethoden</td>
<td>137</td>
</tr>
<tr>
<td>16</td>
<td>Graphische Darstellung der prozentualen Verteilung von arthroskopischer versus offener Behandlung von TFCC-Läsionen</td>
<td>137</td>
</tr>
<tr>
<td>17</td>
<td>Prozentuale Verteilung des Umfrageergebnisses bei der Frage nach Unterscheidung der Behandlung je nach Läsionstyp</td>
<td>138</td>
</tr>
<tr>
<td>18</td>
<td>Graphische Darstellung der prozentualen Verteilung der behandlungsbedürftigen Läsonstypen nach Palmer</td>
<td>138</td>
</tr>
<tr>
<td>19</td>
<td>Graphische Darstellung der prozentualen Verteilung der angewandten Therapieverfahren bei zentralen 1A-Läsionen</td>
<td>139</td>
</tr>
<tr>
<td>20</td>
<td>Graphische Darstellung der prozentualen Verteilung der angewandten Therapieverfahren bei ulnaren 1B-Läsionen</td>
<td>139</td>
</tr>
<tr>
<td>21</td>
<td>Graphische Darstellung der prozentualen Verteilung der angewandten Therapieverfahren bei distalen 1C-Läsionen</td>
<td>140</td>
</tr>
<tr>
<td>22</td>
<td>Graphische Darstellung der prozentualen Verteilung der angewandten Therapieverfahren bei radialen 1D-Läsionen</td>
<td>140</td>
</tr>
<tr>
<td>23</td>
<td>Graphische Darstellung der prozentualen Verteilung der angewandten Therapieverfahren bei degenerativ verursachten Typ 2-Läsionen</td>
<td>141</td>
</tr>
<tr>
<td>24</td>
<td>Graphische Darstellung der prozentualen Verteilung der angewandten postoperativen Ruhigstellungsmaßnahmen</td>
<td>141</td>
</tr>
<tr>
<td>25</td>
<td>Graphische Darstellung der prozentualen Verteilung bei der Frage nach Tendenzen zu vermehrt operativen versus konservativen Behandlungsvorgehen</td>
<td>142</td>
</tr>
<tr>
<td>26</td>
<td>Graphische Darstellung der prozentualen Verteilung bei der Frage nach Tendenzen zu vermehrt offener versus arthroskopischer Operationstechnik bei der Therapie von TFCC-Läsionen</td>
<td>142</td>
</tr>
</tbody>
</table>
Abbildung 13: Prozentuale Darstellung der jährlichen Anzahl an TFCC-Schäden, die in den jeweiligen Kliniken / Praxen behandelt werden

Abbildung 14: Graphische Darstellung der prozentualen Verteilung von konservativer und operativer Behandlung bei TFCC-Läsionen
Abbildung 15: Graphische Darstellung der prozentualen Verteilung der konservativen Behandlungsmethoden

Abbildung 16: Graphische Darstellung der prozentualen Verteilung von arthroskopischer versus offener Behandlung von TFCC-Läsionen
Abbildung 17: Prozentuale Verteilung des Umfrageergebnisses bei der Frage nach Unterscheidung der Behandlung je nach Läsionstyp

Unterscheidung der Behandlung je nach Läsionstyp

- **ja:** 91%
- **nein:** 9%

Abbildung 18: Graphische Darstellung der prozentualen Verteilung der behandlungsbedürftigen Läsionstypen nach Palmer

Prozentuale Verteilung der behandlungsbedürftigen Läsionstypen

- **Typ 1A-Läsion:** 45%
- **Typ 1B-Läsion:** 17%
- **Typ 1C-Läsion:** 17%
- **Typ 1D-Läsion:** 17%
- **Typ 2-Läsion:** 13%

- **Typ 1A-Läsion**
- **Typ 1B-Läsion**
- **Typ 1C-Läsion**
- **Typ 1D-Läsion**
- **Typ 2-Läsion**
Abbildung 19: Graphische Darstellung der prozentualen Verteilung der angewandten Therapieverfahren bei zentralen 1A-Läsionen

Abbildung 20: Graphische Darstellung der prozentualen Verteilung der angewandten Therapieverfahren bei ulnaren 1B-Läsionen
Abbildung 21: Graphische Darstellung der prozentualen Verteilung der angewandten Therapieverfahren bei distalen 1C-Läsionen

![Bar Chart: Treatment Options for Type 1C Lesions](image1)

Abbildung 22: Graphische Darstellung der prozentualen Verteilung der angewandten Therapieverfahren bei radialen 1D-Läsionen

![Bar Chart: Treatment Options for Type 1D Lesions](image2)
Abbildung 23: Graphische Darstellung der prozentualen Verteilung der angewandten Therapieverfahren bei degenerativ verursachten Typ 2-Läsionen

Abbildung 24: Graphische Darstellung der prozentualen Verteilung der angewandten postoperativen Ruhigstellungsmaßnahmen
Abbildung 25: Graphische Darstellung der prozentualen Verteilung bei der Frage nach Tendenzen zu vermehrt operativen versus konservativen Behandlungsverfahren

Tendenz vermehrt operative vs. konservative Behandlung in den letzten 5 Jahren

Abbildung 26: Graphische Darstellung der prozentualen Verteilung bei der Frage nach Tendenzen zu vermehrt offener versus arthroskopischer Operationstechnik bei der Therapie von TFCC-Läsionen

Tendenz vermehrt offene vs. arthroskopische Behandlung in den letzten 5 Jahren
Umfrage „Triangular fibrocartilage complex“ (TFCC, ulnokarpaler Komplex)

Alle nachfolgenden Fragen beziehen sich auf das klinikeigene / praxiseigene Vorgehen bei Läsionen des TFCC am Handgelenk.

1. Patientenanzahl

Wie viele Fälle von TFCC-Läsionen werden schätzungsweise jährlich in Ihrer Klinik / Praxis behandelt?

■ □ Fälle pro Jahr

2. Konservative oder operative Behandlung

Wie hoch schätzen Sie den prozentualen Anteil konservativer und operativer Behandlungen in Ihrer Klinik / Praxis?

■ □ % konservative Behandlungen

■ □ % operative Behandlungen

3. Art der konservativen Behandlung

Wie erfolgt typischerweise die konservative Behandlung von TFCC-Läsionen in Ihrer Klinik / Praxis?

■ □ Ruhigstellung des Handgelenkes mittels für Wochen

■ □ Injektionstherapie mit

■ □ Krankengymnastik für Wochen

■ □ andere Behandlung

4. Art der operativen Behandlung

Wie hoch schätzen Sie den prozentualen Anteil arthroskopischer und offener Behandlungen von TFCC-Läsionen in Ihrer Klinik / Praxis?

■ □ % arthroskopische Behandlungen

■ □ % offene Behandlungen

Machen Sie Unterschiede in Ihrer Behandlungsart je nach Läsionstyp (Palmer 1A-D, 2A-E)?

□ ja

□ nein

□ andere Unterscheidung

Wenn nein, wie behandeln Sie typischerweise TFCC-Läsionen am Handgelenk?

□ Teilresektion

□ Débridement

□ Refixation mittels „Naht“

□ Refixation mittels

□ Ulnaverkürzung durch

□ anderes Verfahren
Wenn ja, wie und in welcher Verteilung erfolgt die operative Behandlung in Ihrer Klinik / Praxis?

- für Typ 1A-Läsionen (traumatische, zentrale Läsion)? ca. ___ % der operativen Fälle
 - orthroskopische Behandlung
 - offene Behandlung
 - Teilresektion
 - Débridement
 - Refixation durch
 - Ulnaverkürzung
 - anderes Verfahren

- für Typ 1B-Läsionen (traumatische, ulnare Läsion)? ca. ___ % der operativen Fälle
 - orthroskopische Behandlung
 - offene Behandlung
 - Teilresektion
 - Débridement
 - Refixation durch
 - Ulnaverkürzung
 - anderes Verfahren

- für Typ 1C-Läsionen (traumatische, distale Läsion)? ca. ___ % der operativen Fälle
 - orthroskopische Behandlung
 - offene Behandlung
 - Teilresektion
 - Débridement
 - Refixation durch
 - Ulnaverkürzung
 - anderes Verfahren

- für Typ 1D-Läsionen (traumatische, radiale Läsion)? ca. ___ % der operativen Fälle
 - orthroskopische Behandlung
 - offene Behandlung
 - Teilresektion
 - Débridement
 - Refixation durch
 - Ulnaverkürzung
 - anderes Verfahren

- für Typ 2-Läsionen (degenerative Läsion)? ca. ___ % der operativen Fälle
 - orthroskopische Behandlung
 - offene Behandlung
 - Teilresektion
 - Débridement
 - Refixation durch
 - Ulnaverkürzung
 - anderes Verfahren

5. Postoperative Ruhigstellung
Wie und wie lange wird das Handgelenk postoperativ in Ihrer Klinik / Praxis ruhiggestellt?
 - Handgelenkschiene für ___ Wochen
 - Unterarmschiene für ___ Wochen
 - Oberarmschiene für ___ Wochen
 - anderes Verfahren
 - gar nicht (sofortige Freigabe und Mobilisation)

6. Änderung des Behandlungskonzeptes
Gab es in Ihrer Klinik in den letzten 5 Jahren ein geändertes Behandlungskonzept oder eine Tendenz zur Änderung des Behandlungskonzeptes für die Indikationsstellung?
 - operativ versus konservativ?
 - vermehrt konservatives Vorgehen
 - vermehrt operatives Vorgehen
 - keine Änderung
Anhang

- offene versus arthroskopische Operation?
 - [] vermehrt offene Operation
 - [] vermehrt arthroskopische Operation
 - [] keine Änderung

7. Relevanz
Wie beurteilen Sie die Relevanz des Themas „Läsionen des Triangular fibrocartilage complex“ auf einer Skala von 1 (sehr relevant) bis 9 (überhaupt nicht relevant)?

1 2 3 4 5 6 7 8 9

8. Freiwillige persönliche Angaben
Name
Klinik / Praxis

Rücksendung per Email an: schaedel@uni-duesseldorf.de oder per Fax an: 0211-8104902
10. Literaturverzeichnis

Curriculum vitae

Name: Kristin Müller
Geburtsdatum: 23.10.1985
Geburtsort: Düsseldorf
Staatsangehörigkeit: Deutsch
Familienstand: ledig

Graf-Spee-Grundschule, Düsseldorf-Angermund
1996 – 2005
Erzbischöfliches Suitbertus Gymnasium, Düsseldorf-Kaiserswerth
2005
Abschluss Abitur (Durchschnittsnote 1,5)

Studium Humanmedizin an der Heinrich-Heine-Universität
Düsseldorf
SS 2007
Erster Abschnitt der ärztlichen Prüfung (Physikum)
2010 – 2011 Praktisches Jahr an der Heinrich-Heine-Universität
Düsseldorf
• 1. Tertial: Gynäkologie und Geburtshilfe – Evangelisches
Bethesda-Krankenhaus, Duisburg
• 2. Tertial: Chirurgie – Kantonsspital Luzern, Schweiz
• 3. Tertial: Innere Medizin – Evangelisches Bethesda-
Krankenhaus, Duisburg
2011: Zweiter Abschnitt der ärztlichen Prüfung
Eidesstattliche Versicherung

Ich versichere an Eides statt, dass die Dissertation selbstständig und ohne unzulässige fremde Hilfe erstellt worden ist und die hier vorgelegte Dissertation nicht von einer anderen Medizinischen Fakultät abgelehnt worden ist.

31. März 2012, Kristin Müller
Verzeichnis der akademischen Lehrer

Abholz - Abteilung für Allgemeinmedizin
Albers - Urologische Klinik
Angerstein - Phoniatrie und Pädaudiologie
Antoch - Institut für Diagnostische und Interventionelle Radiologie
Boege - Zentralinstitut für Klinische Chemie und Laboratoriumsdiagnostik
Borkhardt - Klinik für Kinder-Onkologie, -Hämatologie und Klinische Immunologie
Budach - Klinik und Poliklinik für Strahlentherapie und Radioonkologie
Fischer - Institut für Transplantationsdiagnostik und Zelltherapeutika
Fritz - Institut für Toxikologie
Gabbert - Institut für Pathologie
Gaebel - Klinik und Poliklinik für Psychiatrie und Psychotherapie der HHU
Grabitz - Klinik für Gefäßchirurgie und Nierentransplantation
Haas - Klinik für Hämatologie, Onkologie und Klinische Immunologie
Haas - Institut für Neuro- und Sinnesphysiologie
Hartung - Neurologische Klinik
Hartwig - Institut für Anatomie II
Häussinger - Klinik für Gastroenterologie, Hepatologie und Infektiologie
Hengel - Institut für Virologie
Hering - Institut für Lasermedizin
Homey - Hautklinik
Janni – Frauenklinik
Joussen - Augenklinik
Kelm - Klinik für Kardiologie, Pneumologie und Angiologie
Knoefel - Klinik für Allgemein-, Viszeral- und Kinderchirurgie
Krauspe - Orthopädische Klinik
Krutmann - Institut für Umweltmedizinische Forschung
Kübler - Klinik für Mund-, Kiefer- und Plastische Gesichtschirurgie
Labisch - Institut für Geschichte der Medizin
Lichtenberg - Klinik für Kardiovaskuläre Chirurgie
Mau - Institut für Statistik in der Medizin
Mayatepek - Klinik für Allgemeine Pädiatrie und Neonatologie
Müller - Nuklearmedizinische Klinik
Novotny - Institut für Anatomie I
Nürnberg - Institut für Biochemie und Molekularbiologie II
Pannen - Klinik für Anästhesiologie
Pfeffer - Institut für Medizinische Mikrobiologie und Krankenhaushygiene
Reifenberger - Institut für Neuropathologie
Ritz-Timme - Institut für Rechtsmedizin
Roden - Klinik für Stoffwechselkrankheiten
Royer-Pokora - Institut für Humangenetik und Anthropologie
Rump - Klinik für Nephrologie
Santos - Funktionsbereich Kinderchirurgie
Scharf - Institut für Hämostaseologie und Transfusionsmedizin
Scherbaum - Klinik für Endokrinologie, Diabetologie und Rheumatologie
Schipper - Hals-, Nasen- und Ohrenklinik
Schrader - Institut für Herz- und Kreislaufphysiologie
Schrör - Institut für Pharmakologie und Klinische Pharmakologie
Schwarze - Institut für Arbeitsmedizin und Sozialmedizin
Siegrist - Institut für Medizinische Soziologie
Stahl - Institut für Biochemie und Molekularbiologie I
Steiger - Neurochirurgische Klinik
Tress - Klinisches Institut für Psychosomatische Medizin und Psychotherapie
Wesselborg - Institut für molekulare Medizin
Windolf - Klinik für Unfall- und Handchirurgie
Zilles - C. u. O. Vogt-Institut für Hirnforschung
Danksagung

Es ist mir ein besonderes Anliegen, an dieser Stelle meinem Doktorvater Herrn Prof. Dr. med. M. Schädel-Höpfner ganz herzlich zu danken. Er hat mir nicht nur dieses Thema überlassen, sondern zeigte stete Diskussionsbereitschaft mit vielen wichtigen Anregungen sowie großes Interesse an dem Vorankommen dieses Forschungsprojektes. Die Betreuung der Doktorarbeit durch ihn war hervorragend, für die ich mich nochmals besonders bedanken möchte.

Auch möchte ich mich bei Benjamin für seine Geduld, die gute Beratung sowie seine Mithilfe bei der formalen Gestaltung der Arbeit bedanken.