Aus dem Institut für Neuropathologie der Heinrich-Heine-Universität Düsseldorf Direktor: Univ.-Professor Dr. med. G. Reifenberger

Isolierung und Analyse altersabhängiger Proteinaggregate im Gehirn

Dissertation

zur Erlangung des Grades eines Doktors der Medizin

Der Medizinischen Fakultät der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Katharina Koppe

(2012)

Als Inauguraldissertation gedruckt mit Genehmigung der Medizinischen Fakultät der Heinrich-Heine-Universität Düsseldorf

> gez.: Univ.-Prof. Dr. med. Joachim Windolf Dekan

Referent: Prof. Dr. med. Korth Korreferent: Prof. Dr. med. Methner

Teile dieser Arbeit wurden veröffentlicht:

Ottis, P., K. Koppe, B. Onisko, I. Dynin, T. Arzberger, H. Kretzschmar, J.R. Requena, C.J. Silva, J.P. Huston, C. Korth (2012). "Human and rat brain lipofuscin proteome" Proteomics 12:2445-2

Inhaltsverzeichnis

Abl	AbkürzungsverzeichnisIII			
1.	Einleitung			
	1.1. Allgemeine Zellalterung	1		
	1.1.1. Replikative Seneszenz	1		
	1.1.2. Telomere	2		
	1.1.3. Oxidativer Stress	3		
	1.2. Zellalterung im Zentralnervensystem	4		
	1.2.1. Zellalterung von Neuronen	4		
	1.2.2. Proteinaggregate bei physiologischen Alterungsprozessen	6		
	1.2.2.1. Lipofuszin	6		
	1.2.2.1.1. Zusammensetzung und Eigenschaften von Lipofuszin	7		
	1.2.2.1.2. Entstehung von Lipofuszin	8		
	1.2.2.1.3. Lipofuszin und Erkrankungen	10		
	1.2.2.2. Altersabhängige Proteinaggregate	10		
	1.2.3. Proteinaggregate bei neurodegenerativen Erkrankungen	11		
	1.2.3.1. Morbus Alzheimer	12		
	1.2.3.2. Prionen-Erkrankungen	13		
	1.2.3.3. Erkrankungen mit Aggregaten aus Intermediärfilamenten	14		
	1.3. Zielsetzung dieser Arbeit	16		
2.	Material und Methoden	. 18		
	2.1 . Material	18		
	2.1.1. Chemikalien und Enzyme	18		
	2.1.2. Basispuffer	20		
	2.2.3. Kits	20		
	2.2.4. Antikörper	21		
	2.2.5. Versuchsgeräte und weitere Verbrauchsmaterialen	21		
	2.2 . Methoden	23		
	2.2.1. Lipofuszin: Isolierung und Analyse	23		
	2.2.1.1. Lipofuszin: Isolierung mittels Dichtegradientenzentrifugation	24		
	2.2.1.2. Proteinnachweis mittels SDS-Gelelektrophorese und			
	Western Blot/Immunblot	27		
	2.2.1.3. SDS PAGE für die massenspektrometrische Analyse			

	2.2.2. Herstellung monoklonaler Antikörper gegen Lipofuszin	30
	2.2.2.1. Fusion der murinen Splenozyten mit Myelomzellen	31
	2.2.2.2. Identifizierung der Antikörper gegen Lipofuszin	33
	2.2.2.3. Screening mittels ELIFA (Enzyme Linked Immunofilter Assay)	34
	2.2.2.4. Screening mittels ELISA (Enyme Linked Immunosorbent Assay)	35
	2.2.3. Analyse von Proteinaggregaten im Verlauf des physiologischen	
	Alterns	37
	2.2.3.1. Aufreinigung von aggregierten Proteinen	37
	2.2.3.2. Isotope Coated Affinity Tag (ICAT)	39
	2.2.3.3. Proteinnachweis mittels SDS-Gelelektrophorese und	
	Western Blot/Immunblot	44
3.	Ergebnis	45
	3.1. Lipofuszin	45
	3.1.1. Isolierung des humanen Lipofuszins	45
	3.1.2. Isolierung des Lipofuszins der Ratte	51
	3.1.3. Analyse der humanen Lipofuszinprobe auf Zellbestandteile	
	mittels Western Blot/Immunblot	55
	3.1.4. SDS PAGE und massenspektrometrische Analyse des Lipofuszi	ns.57
	3.2. Herstellung monoklonaler Antikörper gegen Lipofuszin	63
	3.3. Analyse von Proteinaggregaten im Verlauf des physiologischen	
	Alterns mittels ICAT	68
	3.3.1. SDS PAGE und massenspektrometrische Analyse der Aggregate	ə69
	3.3.2. Überprüfung der ICAT Resultate mittels Western/Immunblot	74
4.	Diskussion	76
	4.1. Lipofuszin-Analyse	77
	4.2. Antikörper gegen Lipofuszin	83
	4.3. Analyse von Proteinaggregaten im Verlauf des physiologischen Altern	s84
5.	Zusammenfassung	88
6.	Anhang	90
	6.1. Rohdaten der Fluoreszenz-3D-Scans	90
	6.2. Zusammensetzung des humanen Lipofuszin-Proteoms	94
	6.3. Zusammensetzung des Lipofuszin-Proteoms der Ratte	100
	6.4. Literaturverzeichnis	105
7.	Danksagung	. 111
8.	Eidesstattliche Erklärung	. 112

Abkürzungsverzeichnis

ALS	Amyotrophe Lateralsklerose
bzw.	beziehungsweise
°C	Grad Celsius
ca.	circa
d. h.	dass heißt
EDTA	Ethylendiamintetraessigsäure
ELIFA	Enzyme Linked Immunofilter Assay
ELISA	Enzyme Linked Immunosorbent Assay
g	Gramm
g	Erdbeschleunigung
GFP	grün-fluoreszierendes Protein
HCI	Salzsäure
H ₂ O	Wasser
ICAT	Isotop Coated Affinity Tag
lg	Immunglobulin
kDa	Kilo-Dalton
kg	Kilogramm
L	Liter
Μ	Molar
mA	Milliampere
mg	Milligramm
min	Minuten
mL	Milliliter
mM	Millimolar
μg	Mikrogramm
μL	Mikroliter
NaCl	Natriumchlorid
NF-H	Neurofilament heavy
NF-L	Neurofilament light
NF-M	Neurofilament medium
ng	Nanogramm
nm	Nanometer
PAGE	Polyacrylamid-Gelelektrophorese

PBS	Phosphatgepufferte Saline
PBST	PBS+ 0,05 % Tween-20
PEG	Polyethylenglykol
рН	negativer dekadischer Logarithmus der
	Wasserstoffionen-Aktivität
PNS	peripheres Nervensystem
PrP℃	physiologisches Prion Protein
PrP ^c -ko	Prion Protein knockout
PrP ^{sc}	pathogenes (Scrapie) Prion Protein
ROS	reaktive oxidative Sauerstoffspezies
RT	Raumtemperatur
SDS	Sodium Dodecyl Sulfat
S.O.	siehe oben
S.U.	siehe unten
TRIS	Tris(hydroxymethyl)aminomethan
Tween-20	Polyoxyethylensorbitanmonolaurat
U	1 μmol/min
V	Volt
z. T.	zum Teil

1. Einleitung

Der Alterungsprozess ist aufgrund der demographischen Bevölkerungsentwicklung zu einem zentralen Thema unserer Gesellschaft geworden. Das statistische Bundesamt berechnete eine Zunahme der über 65-Jährigen bis 2060 um 20 % auf 34 %. Diese Entwicklung ist auf eine steigende Lebenserwartung und eine weiterhin rückläufige Geburtenrate zurückzuführen. Die Lebenserwartung für ein weibliches Neugeborenes nach den Sterbetafeln 2007/2009 liegt bei 82,6 Jahren und wird für das Jahr 2060 auf ca. 89,2 Jahren geschätzt (Statistisches Bundesamt 2009; Statistisches Bundesamt 2010). Für ein männliches Neugeborenes wird die Lebenserwartung von derzeit 77,4 Jahren (Sterbetafel 2007/2009) auf ca. 85 Jahre ansteigen (Statistisches Bundesamt 2010). Als Folge des demographischen Wandels werden altersabhängige Erkrankungen, wie beispielsweise neurodegenerative Erkrankungen, in den kommenden Jahrzehnten deutlich zunehmen. Das Risiko, eine Alzheimer Demenz zu erleiden, ist mit 85 Jahren 20mal höher als mit 65 Jahren (Drachman 1997). Somit ist das Altern an sich und die damit einhergehende Überalterung der Gesellschaft schon jetzt, aber auch in Zukunft, ein bedeutender soziologischer, wirtschaftlicher, politischer und insbesondere medizinischer Brennpunkt.

1.1. Allgemeine Zellalterung

Altern ist ein Prozess, der durch einen progressiven Verlust von Funktion und Fertilität einhergehend mit einer erhöhten Mortalität bei zunehmenden Alter gekennzeichnet ist (Kirkwood and Austad 2000). Das Altern im biologischen Sinne lässt sich als Verlust der Homöostase definieren, der alle neuroendokrinen, metabolischen, immunologischen und genomischen Regelungs- und Instandhaltungssysteme erfasst. Der Begriff Homöostase umfasst dabei das Streben und den Erhalt eines physiologischen Gleichgewichts, welches im Alter empfindlicher gegenüber inneren und äußeren Störfaktoren wird (Silbernagel 2005). Auf der zellulären Ebene gibt es verschiedene nachgewiesene altersabhängige Veränderungen, zu welchen die replikative Seneszenz, Telomer-Verkürzung und der oxidative Stress gehören.

1.1.1. Replikative Seneszenz

Eine Zelle kann nur eine Zelltyp-spezifische Anzahl an Zellzyklen und somit eine begrenzte Zahl an Mitosen durchlaufen. Nach Beendigung dieser Zyklen tritt die Zelle in

den Seneszenz-Zustand (G0 Phase) ein, in welchem sich ausdifferenzierte Zellen befinden und ihrer gewebespezifischen Funktion nachkommen. Ein Beispiel für ausdifferenzierte Zellen in der G0 Phase ist die Nervenzelle (Herbig, Ferreira et al. 2006). Der Zellzyklus unterliegt verschiedenen Kontroll- und Steuerungsmechanismen, die im Falle von Schädigungen den Zellzyklus anhalten und wenn möglich eine Reparatur oder andernfalls die Apoptose einleiten (Campisi and d'Adda di Fagagna 2007). Die Apoptose ist ein programmierter Zelltod, bei dem die Zelle kontrolliert und ohne Schädigung ihrer Umgebung durch verschiedene Stoffwechselschritte ihre Zellfunktion aufgibt und von anderen Zellen phagozitiert wird (Thompson 1995). Neben der Zelltyp-spezifischen Seneszenz gibt es noch weitere molekularbiologische Ursachen der replikativen Seneszenz, wie beispielsweise verkürzte Telomere, oxidativer Stress, sowie auch andere DNS-schädigende Faktoren (Shay and Wright 2007).

1.1.2. Telomere

Telomere sind repetitive nicht kodierende Basensequenzen (TTAGGG), die sich an den Enden jedes eukaryotischen Chromosoms befinden. Ihre Aufgabe ist der Schutz der Chromosomen vor enzymatischem Abbau durch Exonukleasen, End-zu-End-Fusion, Instabilität und Verkürzung der kodierenden DNS (Harley, Futcher et al. 1990; Belair, Yeager et al. 1997).

Während der DNS-Replikation synthetisiert die DNS-Polymerase einen neuen komplimentären Strang in 5'-3'-Richtung. Für den Start der Replikation benötigt das Enzym allerdings einen RNA-Primer mit einem 3'-Ende, an den es die folgenden Nukleotide anheften kann. Dieser Primer wird im Bereich der Telomere durch die RNA-Polymerase synthetisiert. Da der RNA-Primer nach Beendigung der Replikation entfernt wird, wird der DNS-Bereich, an dem der Primer gebunden hat, nicht repliziert. Aus diesem Grund wird die chromosomale DNS mit jedem Zyklus kürzer. Sobald die Telomere eine kritische Länge unterschreiten, führt dies zu einer Aktivierung der Apoptose (Zakian 1995).

Das Ribonukleoprotein-Enyzm Telomerase ist jedoch in der Lage, die fehlenden Nukleotide wieder zu vervollständigen; allerdings konnte das Enzym bisher nur in Stammzellen, Keimbahnzellen und in adulten Stammzellen des Immunsystems sowie des Gastrointestinalsystems nachgewiesen werden (Blackburn 2000). In welcher Weise Telomere für die Alterung des gesamten Organismus verantwortlich sind, ist bisher noch ungeklärt. Die Telomer-Länge korreliert jedoch nicht mit der Lebenslänge unterschiedlicher Spezies und auch nicht mit der Lebenserwartung derselben Zelle.

Telomer-Verkürzungen können zur genomischen Instabilität führen, dessen ungeachtet es aber auch weitere Einflussfaktoren gibt (Blackburn 2000).

1.1.3. Oxidativer Stress

Als oxidativer Stress wird ein gestörtes Gleichgewicht zwischen den anfallenden reaktiven Sauerstoff- und Stickstoffspezies und deren Neutralisation durch antioxidative Moleküle und Enzyme bezeichnet (Balaban, Nemoto et al. 2005).

Zu den reaktiven oxidativen Molekülspezies gehören beispielsweise freie Radikale, die über ein ungepaartes Elektron verfügen, wie das Hydroxylradikal. Über dieses ungepaarte Elektron erfolgt eine Interaktion des Radikals mit anderen Atomen, wodurch sich ein weniger reaktives Elektronenpaar ausbildet und somit eine erhöhte Stabilität erreicht wird (Halliwell and Whiteman 2004). Hierbei stellen die Mitochondrien die größte Quelle für reaktive Sauerstoffspezies dar, welche im Verlauf der Atmungskette anfallen und bei Zellschädigung vermehrt freigesetzt werden (Raha and Robinson 2000; Chen, Vazquez et al. 2003). Zur Neutralisation und somit zum Schutz vor zellulärer Schädigung verfügt die Zelle über Enzyme wie beispielsweise Superoxid-Dismutase und Katalase, welche Radikale in unschädliche Moleküle umwandeln können (Raha and Robinson 2000). In der Zelle haben reaktive oxidative Sauerstoffspezies (ROS) aber auch physiologische Aufgaben: Zum einen nutzen phagozytäre Zellen diese als Abwehrmechanismus gegen Infektionen, zum anderen ist eine Regulation zellulärer Proliferationen durch reaktive Spezies möglich (Balaban, Nemoto et al. 2005).

Einen Zusammenhang zwischen Oxidationsprozessen und Zellalterung sowie degenerativen Veränderungen postulierte als erster Harman 1956 und publizierte die Theorie des Alterns durch freie Radikale (Harman 1994). Aktuelle Studien belegen, dass es in alternden Zellen zu einer vermehrten Ablagerung von oxidativ geschädigten Zellmolekülen kommt und dass eine Reduktion von oxidativen Stress lebensverlängernd auf Organismen wirkt. Die Ursachen des oxidativen Stress und der unzureichenden Abwehrmechanismen gegen ROS, während der zellulären Alterung, sind noch nicht vollständig aufgeklärt (Balaban, Nemoto et al. 2005).

In der Zelle sind für oxidativen Stress Lipide, DNS und Proteine suszeptibel. Zellipide werden durch oxidativen Stress geschädigt und zum Teil selbst in Lipidradikale umgewandelt. Lipidradikale sind in der Lage, Zellmembrane zu passieren und zu schädigen, wodurch diese in ihrer Struktur und Funktion beeinträchtigt werden. Daneben können Lipidradikale auch mit Proteinen und Nukleinsäuren reagieren und somit ihre Funktion beeinträchtigen. DNS-Schädigungen können sich als Basenmodifikation oder als

Doppelstrangbrüche äußern und zu einer Karzinogenese führen (Chang, Ernst et al. 1996; Klaunig, Xu et al. 1998). Proteine reagieren bei oxidativem Stress mit einer höheren Rate an Fehlfaltungen und einer vermehrten Hydrophobität, was gemeinsam die Bildung von Aggregaten begünstigen kann. Daneben verändert sich die Quantität des Proteinabbaus. Ein milder oxidativer Stress führt zu Erhöhung des Proteinabbaus, ein starker oxidativer Stress führt zu einer erniedrigten Abbaurate (Keller, Dimayuga et al. 2004).

1.2. Zellalterung im Zentralnervensystem

Das Zentralnervensystem (ZNS) wird von Neuronen und Gliazellen gebildet. Neurone sind die eigentlichen informationsverarbeitenden Zellen, welche in der Lage sind, elektrische Aktionspotenziale zu generieren. Gliazellen verfügen nicht über diese Fähigkeit, sondern stellen das Stützgewebe des ZNS dar. Neurone sind postmitotische Zellen, die ab der Vorläuferstufe des Proneurons in der G0-Zellzyklusphase verblieben sind (Magavi, Leavitt et al. 2000). Als Ausnahmen gelten der Gyrus dendatus, der als Teil des Hippocampus in der Lage ist, Neurogenese zu betreiben und der Bulbus olfactorius, dessen erneuerbare Neurone aus der subventrikulären Zone des Gehirns stammen (Altman 1969). Im ZNS gibt es derzeit keine Möglichkeit, eine De-novo Neurogenese zu induzieren. Interessanterweise konnte aber im Maus-Experiment gezeigt werden, dass nach einer Degeneration unter bestimmten Bedingungen transplantierte Vorläuferzellen ausreifen und die Funktion der zugrunde gegangenen Neurone übernehmen können (Magavi, Leavitt et al. 2000). Somit sind für die informationsverarbeitenden Zellen des ZNS der postmitotische Status, die Langlebigkeit und die fehlende Regenerationsfähigkeit im annähernd gesamten Gehirn charakteristisch.

1.2.1. Zellalterung von Neuronen

Der größte Risikofaktor für eine abnehmende kognitive Leistung und Neurodegeneration ist das zunehmende Alter. In den USA leiden ca. 50 % der über 85-Jährigen am Morbus Alzheimer (Hebert, Scherr et al. 2003). Anfänglich wurde angenommen, dass die altersabhängige kognitive Leistungsminderung mit einer starken Abnahme der Neuronenzahl einhergeht, welche in verschiedenen kortikalen Gehirnregionen unterschiedlich stark ausgeprägt ist (10 – 60 %). Darüber hinaus ging man ursprünglich davon aus, dass es zu einer Reduktion der dendritischen Ausläufern am Dendritenbaum kommt (Scheibel, Lindsay et al. 1976).

Diese Thesen sind jedoch widerlegt worden. Nach heutigem Wissensstand geht der physiologische Alterungsprozess nur mit einer geringen Reduktion von Neuronen einher, die auf wenige kleine Areale im Gehirn beschränkt ist. Die Verzweigungen im Dendritenbaum bleiben unverändert oder nehmen im Alter je nach Gehirnregion sogar zu (Shamsi and Boulton 2001; Burke and Barnes 2006).

Der Alterungsprozess beeinflusst jedoch Vorgänge innerhalb der Neuronen wie z. B. die Glukoseutilisation oder die mitochondriale Funktion. Die Glukoseutilisation im Gehirn nimmt zwischen dem 20. und dem 67. Lebensjahr pro Dekade um 6 % ab, ausgenommen dem Okzipitalkortex und Teilen des Kleinhirns (Petit-Taboue, Landeau et al. 1998).

Die Beeinflussung in der mitochondrialen Funktion ist vielfältig. Beispielsweise findet in vielen Organismen, einschließlich dem Menschen, im Alter eine verminderte Expression mitochondrialer Gene statt (Yankner, Lu et al. 2008). Zudem kann eine Beeinflussung der mitochondrialen Prozesse durch reaktive Sauerstoffspezies erfolgen, die während der ATP-Synthese im Mitochondrium entstehen und durch nachlassende Aktivität der antioxidativen Enzyme im Alter zunehmen (Wallace 2005). Durch die reaktiven Sauerstoffspezies können Mutationen in der mitochondrialen DNS entstehen, welche durch das Fehlen von protektiven Histonen besonders sensitiv gegenüber derartigen Schädigungen sind und durch mangelnde DNS Reparaturenzyme nicht ausreichend repariert werden können (Galou, Colucci-Guyon et al. 1996).

Diese Mutationen wiederum führen zu erniedrigten Transkriptions- und Replikationsraten sowie einer verminderten respiratorischen Aktivität (Yankner, Lu et al. 2008). Besonders betroffen von der verminderten mitochondrialen Funktion sind Neurone mit einem großen energetischen Bedarf, wie z. B. Pyramiden-Neurone (Bishop, Lu et al. 2010).

Allerdings ist auch die chromosomale DNS von altersabhängigen Veränderungen betroffen. Ab dem 40. Lebensjahr werden Gene im frontalen Kortex vermindert exprimiert, die an der Plastizität von Synapsen und am Vesikeltransport beteiligt sind. Dabei sind die Promotor-Regionen dieser Gene äußerst empfindlich gegenüber oxidativen Stress und weisen eine verringerte DNS-Reparatur auf (Galou, Colucci-Guyon et al. 1996).

Hierbei sollte nicht außer Acht gelassen werden, dass reaktive Sauerstoffspezies nicht nur die mitochondriale und chromosomale DNS beeinträchtigen, sondern auch Lipide und insbesondere auch Proteine direkt schädigen können (Squier 2001; Seehafer and Pearce 2006).

1.2.2. Proteinaggregate bei physiologischen Alterungsprozessen

Im Rahmen des Alterungsprozesses kann es durch die geschilderten Beeinträchtigungen der zellulären Funktionen zu intrazellulären Proteinaggregaten kommen. Durch die Langlebigkeit und dem postmitotischen Status sind neuronale Zellen prädisponiert für zytoplasmatische Proteinablagerungen, da eine Dilution dieser durch Zellteilung nicht möglich ist (Lindner and Demarez 2009). Ein seit langem bekanntes altersabhängiges Polymer stellt das Lipofuszin dar, welches sowohl aus Proteinen als auch aus anderen Komponenten besteht und sich während des physiologischen Alterungsprozesses ablagert. Daneben wurden in neueren Studien Proteinaggregate in der Zelle gefunden, die sich ebenfalls während der physiologischen Alterung ablagern und über deren genaue Zusammensetzung noch nicht viel bekannt ist (David, Ollikainen et al. 2010).

1.2.2.1. Lipofuszin

Lipofuszin ist ein intrazelluläres, dicht gepacktes, scharf abgegrenztes Pigment (Abbildung 1), dass von Hannover zuerst im Perikaryon von alternden Neuronen 1842 beschrieben wurde (Hannover 1842; Miyagishi 1966).

Abbildung 1: Elektronenmikroskopische Aufnahme einer Nervenzelle aus dem Gehirn einer alten Ratte (Miyagishi 1966)

In der Abbildung sind der Nucleus (n), Lysosomen (ly), Lipofuszin (l), Mitochondrium (m) und das endoplasmatische Retikulum (er) zu erkennen. Das Lipofuszin stellt sich als dunkle, dicht gepackte, scharf abgegrenzte und unregelmäßig geformte Struktur dar.

Koneff erkannte 44 Jahre später, dass eine Korrelation zwischen der Akkumulation des Polymers und dem Alter der Zelle besteht (Koneff 1886). Nach heutigem Wissensstand findet eine intrazelluläre Einlagerung des Lipofuszins sowohl bei der physiologischen Alterung, als auch in Zusammenhang mit degenerativen Erkrankungen statt (Braak, Sandmann-Keil et al. 2001). Während des physiologischen Alterungsprozesses akkumuliert Lipofuszin fast linear mit dem Lebensalter (Strehler, Mark et al. 1959).

1.2.2.1.1. Zusammensetzung und Eigenschaften von Lipofuszin

Lipofuszin ist ein gelbes bis braunes intralysosomales Polymer, welches in postmitotischen Zellen verschiedener Spezies während des Alterungsprozesses in unterschiedlich starken Mengen akkumuliert. Die Analyse zeigt eine Zusammensetzung aus mehreren Verbindungen, wobei die Protein- (30 - 70 %) und die Lipidbestandteile (20 - 50 %) den größten Anteil stellen. Kohlenhydrate sind mit 4 - 7 % vertreten, während Metalle weniger als 2 % des Lipofuszins ausmachen (Brunk and Terman 2002). Dabei ist Eisen der Hauptanteil, wohingegen Kupfer, Aluminium, Zink, Calcium und Mangan nur in geringen Mengen vorhanden sind (Jolly, Douglas et al. 1995).

Die exakte Zusammensetzung von Lipofuszin unterscheidet sich je nach Ursprung. Beispielsweise besteht das Lipofuszin im retinalen Pigmentepithel zu fast 90 % aus Retinoiden, die wesentlich für den Stoffwechsel der Netzhaut sind (Katz, Drea et al. 1986).

Dennoch existieren Charakteristika, die alle Lipofuszin-Polymere unterschiedlichen Ursprungs gemeinsam haben. Zum einen stellt es einen nicht-abbaubaren Stoff dar, der von einer lysosomalen Membran umgeben ist (Brunk and Ericsson 1972; Kikugawa, Kato et al. 1989). Zum anderen ist die Fluoreszenzaktivität ein definierendes Merkmal. Unter Exzitationen zwischen 325 nm – 480 nm ergeben sich je nach Konzentration des Lipofuszins unterschiedliche Emissionen (Terman and Brunk 1998). Lipofuszin liegt in der Zelle in einer hochkondensierten und konzentrierten Form vor, welches in einem Bereich zwischen 500 nm und 600 nm emittiert. Isoliertes Lipofuszin dagegen ist niedriger konzentriert und emittiert in einem Bereich zwischen 400 nm und 490 nm (Brunk and Terman 2002). Ebenfalls kann eine Messung im Fluorimeter und eine Messung im Fluoreszenzmikroskop zu unterschiedlichen Ergebnissen führen, da durch Fluoreszenzmikroskopie nur die oberflächliche Strahlung detektiert wird (Yin 1996). Jedoch scheint die Konzentrationsveränderung der essentielle Faktor der unterschiedlichen Fluoreszenzspektren zu sein. Dies konnte mit Hilfe künstlich hergestellter Fluorophore des Lipofuszins wie dem 1,4-Dihydropyridin, dem Schiff-Bases und den MDA-Polymeren gezeigt werden. Hierbei veränderte sich in einer Verdünnungsreihe die Fluoreszenzaktivität in Abhängigkeit von der Konzentration wie bereits oben geschildert (Yin and Brunk 1991).

1.2.2.1.2. Entstehung von Lipofuszin

Es gibt zwei mögliche Hauptmechanismen, die eine Akkumulation von Lipofuszin bewirken können: zum einen durch eine Störung im Rahmen des lysosomalen Abbauweges und zum anderen durch oxidative Schädigung von Proteinen.

Störungen des lysosomalen Abbaus von Proteinen:

Proteine werden in der Zelle synthetisiert und je nach Lebenszeit des Proteins wieder degradiert. Dazu steht der Zelle verschiedene Abbausysteme wie Proteasomen, Calpaine und Lysosomen zur Verfügung. Hierbei übernehmen Lysosomen die Degradation der meisten langlebigen Proteine sowie allen Zellorganellen und zellfremden Materialien. Lysosomen sind Zellorganellen, welche mit einer einfachen Membran umgeben sind und abbauende Enzyme wie Proteasen, Peptidasen, Nukleasen, Lipasen und Glykosidasen enthalten. Der intralysosomale pH-Wert liegt bei ca. 5 und wird durch ATP-abhängige Protonenpumpen aufrecht erhalten (Bainton 1981; Bohley and Seglen 1992).

Die Aufnahme der abzubauenden Stoffe durch die Lysosomen erfolgt über Makroautophagie, Mikroautophagie, Krinophagie, Heterophagie oder Chaperon-vermittelter Autophagie. Das primäre Lysosom, welches ausschließlich Enzyme enthält, wird durch die Aufnahme der abzubauenden Substanzen zum sekundären Lysosom (Marzella, Ahlberg et al. 1981; Klionsky and Emr 2000).

Während der Makroautophagie fusioniert die Membran des Lysosoms mit der Membran des abzubauenden Stoffes, wodurch eine Aufnahme in das Lysosom erfolgt. Dazu stellt die Krinophagie einen analogen Prozess dar, in dem jedoch ein sekretorisches Vesikel abgebaut wird. Ähnlich verläuft die Heterophagie, in welcher ein Stoff lysosomal abgebaut wird, der zuvor durch Endozytose von der Zelle aufgenommen wurde. Während der Mikroautophagie stülpt sich die Membran des Lysosoms um den im Zytosol befindlichen abzubauenden Stoff, der dadurch aufgenommen wird. Dagegen wird das abzubauende Material bei der Chaperon-vermittelten Autophagie Rezeptor-getriggert in das Lysosom aufgenommen (Marzella, Ahlberg et al. 1981; Klionsky and Emr 2000).

Restkörper ("Residual Bodies") sind Lysosomen, die Substanzen enthalten, welche von ihnen nicht mehr abgebaut werden können (Dice 2000). Lipofuszin ist eine solche nicht-abbaubare Substanz, die anfänglich nur einen Teil des Lysosoms ausfüllt, im Verlauf aber zu einem elektronendichten Material (Abbildung 1) wird (Miyagishi 1966). Eine These besagt, dass die Akkumulation des Lipofuszins aufgrund einer erniedrigten Aktivität lysosomaler Enzyme erfolgt. Ein Hinweis dafür ist, dass die Injektion von Inhibitoren lysosomaler Enzyme (Leupeptin und Chloroquine) im Gehirn junger Ratten zu einer gesteigerten Akkumulation Lipofuszin-ähnlichen Materials führt (Ivy, Schottler et al. 1984).

Die Veränderung bzw. die Abnahme der Aktivität von lysosomalen Enzymen im Alter wird nach derzeitigem Wissen kontrovers diskutiert. In humanen Fibroblasten sowie auch in Neuronen von Ratten konnten eine reduzierte Aktivität der lysosomalen Cysteinprotease bei gleichzeitigem Anstieg des Lipofuszin-Gehaltes festgestellt werden, wohingegen die Cathepsin B Aktivität, eine weitere lysosomale Cysteinprotease, in der Leber alter Ratten erhöht ist (Gracy, Chapman et al. 1985; Amano, Nakanishi et al. 1995; Keppler, Walter et al. 2000). Im Gehirn alter Ratten ist die Aktivität von Cathepsin B und D erhöht, die von Cathepsin L jedoch erniedrigt (Nakanishi, Tominaga et al. 1994). Auf der anderen Seite gibt es keine Unterschiede in der Cathepsin B Aktivität im Herzen alter Ratten verglichen mit jungen, obwohl bei den alten Ratten eine erhöhte Lipofuszin-Akkumulation nachgewiesen werden konnte (Porta 1991). Daher ist es gegenwärtig schwer möglich, eine eindeutige Aussage über den Einfluss der Aktivität lysosomaler Enzyme auf die Akkumulation von Substanzen wie Lipofuszin zu treffen.

Eine andere Art der Beeinflussung des lysosomalen Abbauweges kann durch den Autophagie-Prozess erfolgen. Hierbei konnte gezeigt werden, dass eine Blockade des Autophagie-Prozesses durch 3-Methyladenine (3MA) in menschlichen Fibroblasten zu einer Akkumulation von Lipofuszin-ähnlichem Material führt, da dadurch die Aufnahme und der Abbau des Materials durch ein Lysosom nicht mehr vollzogen werden kann (Stroikin, Dalen et al. 2004). Darüber hinaus konnte nachgewiesen werden, dass bei älteren Mäusen mit erhöhter Lipofuszin-Akkumulation die Autophagie-Aktivität, im Vergleich zu jungen Mäusen ohne Lipofuszin-Akkumulation, reduziert ist (Terman 1995).

Oxidativer Stress:

Eine andere mögliche Ursache für die Akkumulation von Lipofuszin ist oxidativer Stress. ROS verursachen Quervernetzungen zwischen Proteinen und anderen Zellmolekülen und reduzieren dadurch deren Abbaubarkeit (Kikugawa, Kato et al. 1989). Wasserstoffperoxid, welches nicht durch abbauende Enzyme wie Katalase neutralisiert wurde, kann in Lysosomen diffundieren und dort mit Eisen reagieren. Im Rahmen der Fenton Reaktion zweiwertiges Eisen die Reduktion von Wasserstoffperoxid katalysiert zu Hydroxylradikalen und Hydroxidionen, welche mit lysosomalen Stoffen weiter reagieren können (Terman and Brunk 1998). Dabei kann das Hydroxylradikal mit Fetten, Lipiden oder anderen Metaboliten reagieren und verursacht dadurch Querverbindungen sowie Polymerisationen von Makromolekülen. Diese molekularen Veränderungen können zu einer Verschlechterung der Abbaufähigkeit führen und damit eine Akkumulation von Lipopigmenten begünstigen (Seehafer and Pearce 2006).

Darüber hinaus konnte gezeigt werden, dass die Kultivierung humaner Fibroblasten bei 40 % Sauerstoff zu einer erhöhten Akkumulation von Lipofuszin, im Vergleich zu einer Kultivierung bei 8 % Sauerstoff, führt (Terman and Brunk 1998). Zudem weisen aus Rattengehirn extrahierte Neuronen einen erhöhten Lipofuszingehalt auf, wenn den Tieren zuvor Eisen intralumbal injiziert wurde (Zs-Nagy, Steiber et al. 1995). In beiden Fällen konnte eine erhöhte ROS-Konzentration detektiert werden, was für die These spricht, dass oxidativer Stress die Akkumulation von Lipofuszin begünstigt. Dies wird durch die Beobachtung gestützt, dass der Einsatz des Eisenchelators Desferrioxamine bei der Kultivierung von Ratten-Kardiomyozyten eine Reduktion des Lipofuszingehaltes zur Folge hatte (Marzabadi, Sohal et al. 1988).

1.2.2.1.3. Lipofuszin und Erkrankungen

Eine Akkumulation von Lipofuszin wird im Verlauf der physiologischen Alterung beobachtet, ist aber auch mit degenerativen Erkrankungen, wie Morbus Parkinson oder der Makulardegeneration in Verbindung gebracht worden (Holz, Bellman et al. 2001 (Braak, Sandmann-Keil et al. 2001). Insbesondere im Rahmen der Pathologie der altersbedingten Makulardegeneration hat die Lipofuszinakkumulation an Bedeutung gewonnen. In klinischen Studien sowie auch in experimentellen Ansätzen ist gezeigt worden, dass eine Lipofuszin-Akkumulation in den retinalen Pigmentepithelzellen mit zellulärer Dysfunktion und Sehbeeinträchtigung einhergeht (Holz, Bellman et al. 2001; Shamsi and Boulton 2001). Dabei kommt es speziell in Netzhautarealen mit einem hohen Lipofuszin-Gehalt zu einer Atrophie (Holz, Bellmann et al. 1999). Jedoch fehlt bis heute der direkte Nachweis, dass die Akkumulation von Lipofuszin den zellulären Stoffwechsel beeinflusst. (Holz, Schutt et al. 1999). Mittels Massenspektrometrie ist bisher die Zusammensetzung des retinalen Lipofuszins analysiert worden, wobei dabei 66 verschiedene Proteine identifiziert wurden. Den Hauptanteil machten Proteine des Zytoskeletts, der Phototransduktion, der mitochondrialen Atmungskette und der Ionenkanäle sowie Stoffwechselenzyme und Chaperone aus (Schutt, Ueberle et al. 2002).

1.2.2.2. Altersabhängige Proteinaggregate

Es ist bekannt, dass viele neurodegenerative Erkrankungen mit der Bildung von Proteinaggregaten einhergehen und dass das Erkrankungsrisiko mit zunehmenden Alter ansteigt (Munoz, Greene et al. 1988; Hartmann, Bieger et al. 1997; Prusiner 1998).

Dagegen ist innerhalb des physiologischen Alterns über die Bildung von Proteinaggregaten, neben dem Anteil im Lipofuszin, wenig bekannt.

Der Proteinabbau verändert sich während des Alterungsprozesses. Die Menge an Chaperone und der Proteinabbau über das Proteasom nimmt ab, während es zur Aktivitätsveränderung des lysosomalen Abbaus keine eindeutigen Ergebnisse gibt (Gracy, Chapman et al. 1985; Porta 1991; Nakanishi, Tominaga et al. 1994; Amano, Nakanishi et al. 1995; Keppler, Walter et al. 2000; Lund, Tedesco et al. 2002; Tonoki, Kuranaga et al. 2009). Daneben können durch ROS-modifizierte Proteine die zelluläre Degradation von Proteinen beeinflussen (Poon, Vaishnav et al. 2006). Welche Konsequenzen diese Altersveränderungen während des physiologischen Alterns für die zelluläre Homoöstase haben, ist noch ungeklärt. Dagegen werden jedoch diesen Altersveränderungen eine unterstützende Rolle bei der Entstehung von neurodegenerativen Erkrankungen zugesprochen (Poon, Vaishnav et al. 2006). Neue Forschungsansätze an Caenorhabditis elegans haben gezeigt, dass sich mehrere Hundert unlösliche Proteine während des physiologischen Alterungsprozesses ablagern, die reich an Beta-Faltblatt-Strukturen sind. Eine Korrelation zwischen der Anzahl der identifizierten Aggregations-anfälligen Proteinen und der Anzahl an tatsächlich vorhandenen Proteinaggregaten konnte dabei nicht nachgewiesen werden (David, Ollikainen et al. 2010). Jedoch konnte die altersabhängige Proteinaggregation vermindert und somit beeinflusst werden, indem die Aktivität der Insulin/IGF-Signalkaskade reduziert wurde. Die Aggregations-anfälligen Proteine erfüllen aber auch gleichzeitig zelluläre Funktionen, zu welchen die Regulation der Proteostase und der Schutz vor einer pathologischen Proteinaggregation gehören. Ebenfalls wurde gezeigt, dass diese in der Lage sind, die Lebensspanne zu modulieren (David, Ollikainen et al. 2010). Somit ist eine Proteinaggregation nicht nur ein Anzeichen für neurodegenerative Erkrankungen, sondern auch für physiologische Alterungsprozesse und übt darüber hinaus Einfluss auf den

zellulären Proteinstoffwechsel aus.

1.2.3. Proteinaggregate bei neurodegenerativen Erkrankungen

Zu den neurodegenerativen Erkrankungen, die eine Proteinaggregation aufweisen, gehört der Morbus Alzheimer, die Prionen-Erkrankungen sowie Erkrankungen mit Aggregationen von Intermediärfilamenten, wie beispielsweise der Morbus Parkinson und die Amyotrophe Lateralsklerose (Pappolla 1986; Munoz, Greene et al. 1988; Hartmann, Bieger et al. 1997; Prusiner 1998).

1.2.3.1. Morbus Alzheimer

Die am weitesten verbreitete neurodegenerative Erkrankung im Alter ist der Morbus Alzheimer, bei dem es zum progredienten Abbau von kognitiven Leistungen und der Gedächtnisfunktion kommt (Terry and Davies 1980; Hebert, Scherr et al. 2003). Ein Charakteristikum dieser Erkrankung ist die extrazelluläre Ablagerung des Beta-Amyloid Peptids in Form von senilen Plagues im Gehirn und in zerebralen Blutgefäßen. Das entsteht aus dem Amyloid Precurser Protein (APP), Protein welches ein Transmembranprotein darstellt und dessen Funktion noch nicht vollständig geklärt ist (Kang, Lemaire et al. 1987). Die Beta-Amyloid Peptide sind in ihrer Sekundärstruktur als Beta-Faltblatt aufgebaut, welche zusammen zu Fibrillen angeordnet sind, deren Proteingerüst senkrecht zur Fibrillenachse aufgebaut ist (Glenner and Wong 1984; Serpell and Smith 2000; Makin and Serpell 2005). Das Beta-Amyloid besteht entweder aus 40 oder 42 Aminosäuren, wobei das längere Peptid die pathogenere Form darstellt (Hartmann, Bieger et al. 1997). Weitere im Rahmen dieser Erkrankung akkumulierende Komponenten sind intrazelluläre neurofibrilläre Bündel (NFT), sogenannte Tangles. Diese NFT bestehen aus gepaarten helikalen Filamenten des hyperphosphorilierten Proteins Tau und sind im Zellkörper und im proximalen Dendriten zu finden (Goedert, Jakes et al. 1996). Das Protein Tau gehört zu den Mikrotubuli-assoziierten Proteinen und dient der Bildung sowie der Stabilisierung von Mikrotubuli (Friedhoff, von Bergen et al. 2000).

Eine Korrelation zwischen der Menge der akkumulierenden Proteine und dem kognitiven Defizit konnte jedoch nicht festgestellt werden (Lassmann, Fischer et al. 1993). Ein wesentliches Merkmal dieser Erkrankung ist der Verlust an Neuronen. Im Gegensatz zum physiologischen Alterungsprozess, wo nur ein geringer Verlust an Neuronen zu verzeichnen ist, kommt es im Rahmen des Morbus Alzheimer zum Rückgang der Neuronenanzahl vor allem in Teilen des Hippocampus sowie des entorhinalen Kortex (West, Coleman et al. 1994). Zudem konnte im Hippocampus, welcher eine zentrale Rolle bei Lernprozessen einnimmt, ein vermehrter Verlust an Synapsen beobachtet werden (Lassmann, Fischer et al. 1993).

Der Großteil der Erkrankten leidet an einer sporadischen Form der Alzheimer-Erkrankung, bei der bestimmte Umweltfaktoren und genetische Prädispositionen als Risikofaktoren gelten. Nur bei einem geringen Anteil der Erkrankten wird Alzheimer autosomal dominant vererbt, wodurch diese Erkrankung in den betroffenen Familien gehäuft auftritt (Richard and Amouyel 2001). Die Akkumulation von Proteinen in Form einer Amyloidose ist nicht nur beim Morbus Alzheimer zu finden, sondern auch bei anderen Krankheiten wie beispielsweise die Creutzfeld-Jakob-Erkrankung, welche zum Formenkreis der Prionen-Erkrankungen gehört (Makin and Serpell 2005).

1.2.3.2. Prionen-Erkrankungen

Prionen-Erkrankungen sind neurodegenerative Erkrankungen, die durch infektiöse Proteine hervorgerufen werden und die Umwandlung der Sekundärstruktur anderer Proteine von Alpha-Helix zum Beta-Faltblatt bewirken. Das Auftreten ist sporadisch, durch familiäre genetische Mutationen gehäuft oder durch aus der Umwelt aufgenommene infektiöse Prionen getriggert (Prusiner 1998). Das physiologische Prion-Protein (PrP^c) ist ein Glykoprotein, das an fast allen Zelloberflächen zu finden ist und in besonders hoher Konzentration bei Neuronen und Neuroglia vorkommt, wobei es in bestimmten Neuronen des Gehirns auch intrazellulär exprimiert wird (Stahl, Borchelt et al. 1987; Fournier, Escaig-Haye et al. 1998; Mironov, Latawiec et al. 2003)

Die vollständige Funktion des PrP^c ist bis heute nicht geklärt. Jedoch konnte gezeigt werden, dass das Oberflächenmolekül in der Lage ist Kupferionen zu binden. Neue Forschungsergebnisse weisen zudem darauf hin, dass PrP^c auch ein Immunregulator darstellt. Hierbei führte die pharmakologische Blockade des PrP^c-Moleküls zu einer erhöhten Immunreaktivität (Hu, Nessler et al.; Hornshaw, McDermott et al. 1995).

Die Struktur des physiologischen PrP^c besteht zum Großteil aus Alpha-Helices mit einem geringen Anteil an Beta-Faltblatt. Das infektiöse Prion-Protein (PrP^{sc}) weist dagegen einen erhöhten Anteil an Beta-Faltblatt-Strukturen auf. Das gegenwärtige Modell zur Pathogenese geht davon aus, dass ein physiologisches PrP^c durch Kontakt mit einem infektiösen PrP^{sc} in den infektiösen Zustand versetzt wird und es dadurch zu einer Verbreitung des PrP^{sc} kommt (Nguyen, Baldwin et al. 1995).

Die häufigste den Menschen betreffende Prionen-Erkrankung ist die Creutzfeld-Jakob-Krankheit. Diese geht einher mit Halluzinationen, neurologischen Ausfällen und einer progredienten Demenz (Sturzenegger 2001). Zur Pathologie dieser Erkrankung gehört die schwammartige Vakuolisierung der grauen Substanz, der Verlust von Neuronen, die Proliferation von Gliazellen sowie die Entstehung von amyloiden Plaques aus PrP^{sc}. Hierbei konnte gezeigt werden, dass das infektiöse PrP^{sc}, welches aus infizierten Gehirnen extrahiert wurde, hoch aggregiert und unlöslich für Detergenzien ist (Collinge 2001). Es werden vier Formen der Erkrankung unterschieden: die sporadische, die genetische, die iatrogene und die übertragbare Creutzfeld-Jakob-Erkrankung. Die häufigste Form ist die sporadische Form mit einem Erkrankungsbeginn zwischen dem 60. und 70. Lebensjahr. Die genetische Form beruht auf Punktmutationen, die autosomal dominant vererbt werden. Unzureichende Sterilisierung von Operationsinstrumenten oder infizierte Transplantate (z. B. Hornhaut) führen zur iatrogenen Infektionen von Patienten mit der Creutzfeld-Jakob-Erkrankung (Will, Ironside et al. 1996). Die jüngst entdeckte Form der Erkrankung steht im Zusammenhang mit der bovinen spongiformen Enzephalopathie (BSE) in Großbritannien, wo die Übertragung der Erkrankung von Rindern auf den Menschen als Auslöser für eine neue Art der Creutzfeld-Jakob-Krankheit angesehen wird, bei der auch junge Patienten infiziert werden (Will, Ironside et al. 1996). Neben Morbus Alzheimer und den Prionen-Erkrankungen weisen auch neurodegenerative Erkrankungen wie Morbus Parkinson, Chorea Huntington und Amyotrophe Lateralsklerose charakteristische unlösliche Proteinaggregate auf, welche jedoch aggregierte Intermediärfilamente als Bestandteil aufweisen (Ross and Poirier 2004).

1.2.3.3. Erkrankungen mit Aggregaten aus Intermediärfilamenten

Bei einigen neurodegenerativen Erkrankungen, wie z. B. Morbus Parkinson und Amyotrophe Lateralsklerose, bilden Intermediärfilamente unlösliche Aggregate im Gehirn. Physiologisch betrachtet sind sie Teil des Zytoskeletts von Neuronen und haben einen Durchmesser von 10 nm. Intermediärfilamente besitzen eine Stützfunktion in der Zelle und sorgen für mechanische Stabilität (Kim and Coulombe 2007). Zum Zytoskelett gehören darüber hinaus die kleinen Mikrofilamente (5-7 nm Durchmesser) und die größeren Mikrotubuli (25 nm Durchmesser). Die Intermediärfilamente lassen sich in fünf Typen aufteilen (Tabelle 1).

Typ 1 und Typ 2 bestehen aus Keratinen, welche im ZNS keine wesentliche Rolle spielen. Dagegen stellen der Desmin-Typ (Typ 3), der Neurofilament-Typ (Typ 4) und der Lamin-Typ (Typ 5) wichtige Intermediärfilamente für das ZNS dar. Die Lamine sind in allen Zelltypen vorhanden, während das Neurofilament light (NF-L), medium (NF-M) und heavy (NF-H) sowie auch das Intermediärfilament Alpha-Internexin in den Neuronen des ZNS zusätzlich zu finden sind. In Gliazellen, besonders Astrozyten, ist hingegen das GFAP (Glial fibrilliar acidic protein) zugegen, während Vimentin in allen Zellen mesenchymaler Herkunft vorhanden ist (Kim and Coulombe 2007).

Ein Neurofilament Triplett wird von drei Neurofilament-Monomeren gebildet: NF-L (ca. 70 kDa), NF-M (ca. 150 kDa) und NF-H (ca. 200 kDa) (Hoffman and Lasek 1975; Fasani, Bocquet et al. 2004). Das NF-L bildet das Grundgerüst eines Tripletts, während NF-M und NF-H die Seitenarme darstellen (Lee and Cleveland 1996).

Die größte Dichte an Neurofilamenten befindet sich im Axon eines Neurons, wodurch der axonalen Durchmesser und damit die Leitfähigkeit des Neurons beeinflusst wird. Neurofilamente werden im Zellkörper hergestellt, zum Axon transportiert und dort phosphoryliert.

Typen	Proteine	Vorkommen
1. Saure Keratine	Saures Keratin	Epithelien, Haare, Nägel
2. Basische Keratine	Basisches Keratin	Epithelien, Haare
3. Desmin-Typ	GFAP (glial fibrilliar acidic protein)	Gliazellen, Astrozyten
	Desmin	Muskelzellen
	Vimentin	Zellen mesenchymaler Herkunft
	Peripherin	Periphere Neurone
4. Neurofilamente	Neurofilament light (NFL)	Neurone (ZNS)
	Alpha-Internexin	Neurone (ZNS)
	Neurofilament medium (NFM)	Neurone (ZNS)
	Neurofilament heavy (NFH)	Neurone (ZNS)
	Nestin	Neuroepithel
	Syncoilin	Muskel
	Synemin	Muskel
5. Lamin-Typ	Lamin A	Zellkern (Membran)
	Lamin B1 B2	Zellkern (Membran)
	Lamin C	Zellkern (Membran)

Tabelle 1: Intermediärfilamente (modifiziert nach Kim and Coulombe 2007).

Intermediärfilamente werden in 5 Typen unterteilt. Die sauren (Typ 1) und basischen (Typ 2) Keratine kommen hauptsächlich in Epithelien, Haut und Haaren vor. Intermediärfilamente des Desmin-Typ finden sich im ZNS, im peripheren Nervensystem (PNS), in Muskelzellen sowie in Zellen mesenchymaler Herkunft. Dagegen kommt der Neurofilament-Typ nur im ZNS und in Muskelzellen vor. Lamine wiederum sind in allen Zellen zugegen.

Durch die Phosphorylierung verändert sich die Konfiguration der Neurofilamente untereinander und damit auch deren Funktionsstatus (Al-Chalabi and Miller 2003).

Bei verschiedenen neurodegenerativen Erkrankungen tritt eine Ablagerung von Intermediärfilamenten auf. Zu diesen Erkrankungen gehören beispielsweise die Amyotrophe Lateralsklerose (ALS) und der Morbus Parkinson (Pappolla 1986; Munoz, Greene et al. 1988; Xiao, McLean et al. 2006).

Man geht davon aus, dass Mutationen in den Neurofilament-Genen nur eine untergeordnete Rolle spielen, da beispielsweise nur bei ca. 1 % der ALS-Erkrankungen Mutationen nachgewiesen werden konnten (Julien 1999). Vielmehr scheint es sich bei den Ablagerungen um einen sekundären Vorgang zu handeln, bei dem sich die axonale Spheroide und hyaline Einschlusskörperchen im Perikaryon, insbesondere in degenerierten Motoneuronen des Rückenmarks, nachweisen lassen (Munoz, Greene et al. 1988; Xiao, McLean et al. 2006). Daneben zeigt der Morbus Parkinson ebenfalls Proteinaggregate mit Neurofilamenten als Hauptbestandteil, welche als sogenannte Lewy-

Körperchen in der Substantia nigra und in anderen Gehirnteilen identifiziert werden (Pappolla 1986). Insgesamt können die Aggregationen der Neurofilament-assoziierten Erkrankungen durch Hyperphosphorilierung, Glycosilierung, Dysregulation der Synthese der Neurofilamente und durch Fehler im axonalen Transportes derselben begünstigt und hervorgerufen werden (Nixon 1993; Chou, Wang et al. 1998; Miller, Ackerley et al. 2002).

Neben den Intermediärfilamenten aggregieren auch andere Proteine des Zytoskeletts, wie die bereits beschriebenen neurofibrillären Bündel im Rahmen der Alzheimer Erkrankung (1.2.2.1). Innerhalb der Pathogenese kommt es zu einer Hyperphosphorilierung sowie Anreicherung des Mikrotubuli-assoziierten Proteins Tau, was vermutlich die Aggregation zu neurofibrillären Bündeln bewirkt (Gong, Lidsky et al. 2000).

Zum neuronalen Zytoskelett gehören somit einige Proteine, die während der Pathogenese von neurodegenerativen Erkrankungen Aggregate bilden, von denen man ausgeht, dass diese morphologischen Erscheinungen in einem kausalen Zusammenhang mit der Erkrankung stehen.

1.3. Zielsetzung dieser Arbeit

Im Rahmen dieser Dissertation, die ein gefördertes Projekt der Deutschen Forschungsgemeinschaft (DFG) innerhalb des Graduiertenkollegs 1033 ist, sollen altersabhängige Proteinaggregate im Gehirn isoliert und analysiert werden. Die Zielsetzung dieser Arbeit lässt sich in drei Teilbereiche unterteilen:

1) Lipofuszin-Analyse:

Eine Zielsetzung dieser Arbeit ist die Aufreinigung und die Untersuchung der proteomischen Zusammensetzung des neuronalen Lipofuszins von Mensch und Ratte, welche noch nicht näher beschrieben worden ist. Die Identifikation der Bestandteile des neuronalen Lipofuszins würde aufklären, welche Proteine gefährdet sind im neuronalen Lipofuszin zu akkumulieren sowie welche subzelluläre Herkunft diesen Proteinen zugrunde liegt.

2) Antikörper gegen Lipofuszin:

In einem zweiten Schritt wird ein monoklonaler Antikörper gegen humanes Lipofuszin generiert, welcher in der Lage ist, als Fluoreszenz-unabhängiger Marker den Proteinanteil des Polymers zu identifizieren.

3) Analyse von Proteinaggregaten im Verlauf des physiologischen Alterns:

Neben der Lipofuszin-Analyse werden in dieser Arbeit aggregierte Proteine aus dem Gehirn von Wildtyp und Prion-Protein knockout (PrP^c ko) Mäusen aufgereinigt und analysiert. Hierbei liegt der Fokus auf der Überprüfung quantitativer und damit altersabhängiger Unterschiede in den neuronalen Proteinaggregaten junger und alter Mäuse, einschließlich der Identifikation der Proteinbestandteile der Aggregate. Der Vergleich zwischen den Aggregaten von PrP^c ko und Wildtyp Mäusen wiederum führt zu Rückschlüssen auf eine Einflussnahme des Prion-Proteins auf die altersabhängige Proteinakkumulation im Maus-Modell.

2. Material und Methoden

2.1. Material

2.1.1. Chemikalien und Enzyme

Die Chemikalien folgender Firmen wurden in dieser Arbeit eingesetzt: Amersham (Freiburg), AppliChem (Darmstadt), BD Biosciences (Heidelberg), BioVeris (Gaitersburg, Maryland, USA), Bio-Rad (München), DAKO (Hamburg), Fluka/Sigma-Aldrich (Taufkirchen), Gibco/ Invitrogen (San Diego, USA), Invitrogen (Karlsruhe), Merck (Darmstadt), OXOID (Wesel), PAA (Linz, Östererich), Pierce (Bonn), Roche (Mannheim), Roth (Karlsruhe), Sigma-Aldrich (Taufkirchen), ZYMED (San Francisco, USA)

Aceton ≥ 99,5 %	Sigma-Aldrich
Acetonitril	Sigma-Aldrich
Aminopterin Hybri-Max 50x	Sigma-Aldrich
Ammoniumchlorid	Sigma-Aldrich
Ammonium Sulfate	Sigma-Aldrich
Benzonase	Sigma-Aldrich
BD Bioscience Substrate A and B	BD Bioscience
Bovines Serumalbumin \ge 98 %	Sigma-Aldrich
Bromphenol blue	Sigma-Aldrich
Criterion Precast Gel	Bio-Rad
Colloidal Blue	Invitrogen
DNase	Roche
D-MEM	Invitrogen
EDTA (Ethylendiamintetraessigsäure)	AppliChem
Enhanced chemical luminescence (ECL)	Amersham
Reagent 1	
Enhanced chemical luminescence (ECL)	Amersham
Reagent 2	
Fetal Calf Serum (FCS)	PAA
Glutathione reduced minimum 99 %	Sigma-Aldrich
Glycerin	Sigma-Aldrich
L-Glutamin	Gibco

HEPES (4-(2-Hydroxyethyl)piperazin	Sigma-Aldrich
-1-Ethansulfonsäure) \geq 99,5 %	
Hypoxanthine/ Thymidine (HT)	Gibco
Hybridoma Cloning Faktor (HCF)	BioVeris
Kaliumchlorid	Sigma-Aldrich
Magnesiumchlorid	Sigma-Aldrich
MEM (Minimum Essential Media)	Gibco
β -Mercaptoethanol	Sigma-Aldrich
Methanol	Merck
MPL+TDM adjuvant (US.Oat 4436727)	Sigma-Aldrich
Milchpulver (Skim Milk Powder)	OXOID
Natriumchlorid	Fluka
Natriumhydrogencarbonat	Merck
Natriumhydroxid	Fluka
Nonidet NP-40	Sigma
PBS (Phospate Buffered Saline), steril	Gibco
Penicillin/ Streptomycin	PAA
PMSF (Phenylmethylsulfonyl fluoride) ≥98,5 %	Sigma-Aldrich
Polyethylenglykol	Merck
Protease inhibitor cocktail tabletts,	Roche
complete Mini	
Sarkosyl Ultra	Sigma-Aldrich
Schwefelsäure 25 %	Merck
TCEP (tris(2-carboxyethyl)phosphine)	Sigma-Aldrich
Trichloressigsäure \geq 99 %	Sigma-Aldrich
TRIS (tris-(hydroxymethyl)-amino methane)	Merck
Triton®X-100	Sigma-Aldrich
TWEEN® 20	Sigma-Aldrich
SDS (sodium dodecyl sulfate) \ge 99 %	Roth
Stickstoff, flüssig	
Sucrose	Sigma-Aldrich (Deisenhofen)
Urea ≥ 99,5 %	Fluka

2.1.2. Basispuffer

<u>Ladepuffer</u>		PBS	
TRIS, pH 6,8	100 mM	NaCl	137 mM
SDS	4 %	KCI	2,7 mM
Glycerin	20 %	KH ₂ PO ₄	2 mM
Bromphenol blue	0,2 %	Na ₂ HPO ₄	10 mM
Beta-Mercaptoethanol	4 %		
PBS-T		Laufpuffer	
NaCl	137 mM	TRIS	25 mM
KCI	2,7 mM	Glycin	250 mM
KH ₂ PO ₄	2 mM	SDS	0,1 %
Na ₂ HPO ₄	10 mM		
Tween	0,05 %		
Transferpuffer		VRL Puffer, pH 7,5	
TRIS	48 mM	HEPES	50 mM
Glycin	39 mM	Sucrose	250 mM
Methanol	20 %	EDTA	5 mM
		KAc (CH ₃ COOK)	100 mM
VRL Puffer 10x ohne Sucros	<u>e, pH 7,5</u>	Stockpuffer Sucrose	
HEPES	500 mM	Sucrose	2300 mM
EDTA	50 mM	(nach der Herstellung steril fi	ltriert)
KAc (CH ₃ COOK)	1000 mM		

2.2.3. Kits

Colloidal Blue Staining Kit	Invitrogen
Cleavable ICAT Reagent Kit	Applied Biosystems

2.2.4. Antikörper

Mouse-anti-Annexin VI (human) (610301)	BD Biosciences
Mouse-anti-Lamp1, H4A3	BD Biosciences
Rabbit-anti-LC3, GAJ8	BD Biosciences
Mouse-anti-NF-H	Pierce
Mouse-anti-Alpha Internexin (Inexin)	ZYMED
Rabbit-anti-GFAP	DAKO
POD-markierter goat-anti-Maus-IgG	Pierce
POD-markierter goat-anti-Rabbit-IgG	Pierce

2.2.5. Versuchsgeräte und weitere Verbrauchsmaterialien

Scororex
Beckman coulter
Amersham
BioRad
BioRad
BioRad
NUNC
Braun
BioRad
Whatman
Star Lab
Star Lab
Star Lab
Star Lab
NUNC
Eppendorf
Beckmann coulter
Protran
Braun
Braun
Braun
Beckman coulter
Hirschmann Laborgeräte

pH-Elektrode SenTix 21	WTW
Polyallomer tube, 32 mL, open-top, thickwall	Beckmann coulter
PVDF-Membran	Millipore
Research Pipetten 2-20 μ L	Eppendorf
Research Pipetten 20-200 µL	Eppendorf
Research Pipetten 100-1000 μ L	Eppendorf
Research Pipetten 500-5000 μ L	Eppendorf
Safe-lock tubes 1,5 mL	Eppendorf
Safe-lock tubes 2 mL	Eppendorf
Steriles Besteck (Pinzetten, Scheren, Metallsieb)	
Sterilfilter	Sartorius
Stericup, Vacuum filter cups	Milipore
Tecan-Safir	Tecan
Zellkulturplatten, Nuncion black Microwell SI	NUNC

2.2. Methoden

Im Rahmen dieser Arbeit erfolgte eine Aufreinigung des Lipofuszins von Mensch und Ratte über eine Sucrose-Dichtegradientenzentrifugation. Ein Teil des extrahierten Lipofuszins wurde im Anschluss massenspektrometrisch analysiert, ein weiterer Teil für Western Blot/Immunblot Analysen eingesetzt, während ein dritter Teil zur Generierung eines monoklonalen Antikörpers gegen Lipofuszin verwendet worden ist. Für die Generierung des monoklonalen Antikörpers galten die Tierversuchsgenehmigungen

Az 8.87-50.10.54.08.055 und Az 50.05-250-65/05 (Landesamt für Natur, Umwelt und Verbraucherschutz NRW). Für die Experimente in dieser Dissertation wurde Herrn Prof. Dr. Korth von der Ethikkomission der Heinrich Heine Universität die Erlaubnis erteilt, mit humanem postmortem Gehirn zu experimentieren (Studie 1978).

In einem weiteren Teil dieser Arbeit wurden aggregierte Proteine aus dem Gehirn von (PrP^c-ko) Wildtyp und Prion Protein knockout Mäusen aufgereinigt und massenspektrometrisch analysiert. Hierbei lag der Fokus auf der Überprüfung quantitativer und damit altersabhängiger Unterschiede in den neuronalen Proteinaggregaten junger und alter Mäuse. Zusätzlich wurde untersucht, inwieweit PrP^c einen Einfluss auf die altersabhängige Proteinaggregation ausübt.

Die Organentnahmen in dieser Dissertation, bei Mäusen und Ratten, fallen unter die Organentnahmegenehmigung der TVA (HHUD) O22/03. Die Versuchsanteile, für deren Durchführung der Erwerb des Tierversuchsscheins notwendig ist, wurden immer durch eine Person durchgeführt, die zuvor an der Tierversuchskunde teilgenommen hat.

Die Massenspektrometrie in dieser Arbeit wurde von Prof. Bruce Onisko (University of California, Berkley, USA) durchgeführt.

2.2.1. Lipofuszin: Isolierung und Analyse

Die Isolierung neuronalen Lipofuszins aus humanem Hirngewebe und dem Gehirn von Ratten erfolgte mittels einer Sucrose-Dichtegradientenzentrifugation. Im Rahmen dieses physikalischen Trennverfahrens werden subzelluläre Bestandteile in einem Zentrifugationsfeld ihrer Dichte entsprechend aufgetrennt. Hierfür wurden Zellhomogenate unterschiedlicher Hirngewebe auf diskontinuierliche Sucrose-Gradienten aufgetragen und nach Ultrazentrifugation, welche zur Bildung von Trennphasen gleicher Dichte führte, wurde jeweils die Lipofuszin-haltige Fraktion abgenommen (Boulton and Marshall 1985). Die Identifikation des Lipofuszins erfolgte über einen Fluoreszenz-3D-Scan. Nach Aufreinigung des Lipofuszins durch eine zweite Ultrazentrifugation und anschließenden Waschschritten erfolgten Analysen mittels Western Blot und Massenspektrometrie. Zudem wurden Mäuse mit dem aufgereinigten humanen Lipofuszin zur Generierung monoklonaler Antikörper immunisiert. Nach der Immunisierung wurde die Milz der Mäuse entnommen und die daraus stammenden B-Lymphozyten mit Myelomzellen zu Antikörper-produzierenden Hybridomazellen fusioniert. Als Screening-Methoden wurden *Enzyme Linked Immunosorbent Assay* (ELISA) und *Enyzme Linked Immunofilter Assay* (ELIFA) eingesetzt.

2.2.1.1. Lipofuszin: Isolierung mittels Dichtegradientenzentrifugation

Homogenisierungspuffer: VRL Puffer mit 0,25 M Sucrose + 1x Proteaseinhibitor

	(1 Tablette pro 50 mL)
Gradientenpuffer:	VRL Puffer mit 1 M Sucrose
	VRL Puffer mit 1,2 M Sucrose
	VRL Puffer mit 1,4 M Sucrose
	VRL Puffer mit 1,5 M Sucrose
	VRL Puffer mit 1,6 M Sucrose
Versuchsgewebe:	Humanes Gehirn S 21903, 64 Jahre alt, 35,43 g des temporalen
	Kortex. schockgefroren und verwahrt bei –80 °C

Alle Versuchsschritte erfolgten, sofern nicht anders beschrieben, bei 0 °C.

- Der Temporalkortex wurde aufgetaut und mit Hilfe des DOUNCE Homogenisators in VRL Puffer zu einer 20 %igen gleichmäßigen Suspension homogenisiert.
- Das Homogenat wurde bei 4 °C zentrifugiert (7 Min, 60 x g). Das Pellet wurde in flüssigem Stickstoff schockgefroren und bei –80 °C für spätere Western Blots/Immunblots verwahrt, während der Überstand erneut zentrifugiert wurde (10 Min, 6000 x g).
- Der Überstand wurde abgenommen, schockgefroren und ebenfalls f
 ür sp
 ätere Western Blots/Immunblots verwahrt.
- 4. Das Pellet wurde in VRL Puffer resuspendiert und die Suspension bis zu einem Volumen von 25 mL mit dem genannten Puffer aufgefüllt.
- Sechs Zentrifugationstubes wurden äußerst vorsichtig mit einem diskontinuierlichen Sucrose-Gradienten (in VRL Puffer) geladen (Abbildung 2), welcher fünf vom Boden aufsteigende Konzentrationsstufen beinhaltete: 1,6 M (3,5 mL); 1,5 M (3,5 mL); 1,4 M (5 mL); 1,2 M (7 mL); 1,0 mM (7 mL).

Abbildung 2: Zentrifugationsgefäß mit diskontinuierlichen Sucrose-Gradienten

Der Gradient bestand aus fünf aufsteigenden Konzentrationsstufen. Die unterste Stufe mit 3,5 mL bestand aus 1,6 M Sucrose-VRL Puffer, gefolgt von 1,5 M Sucrose-VRL Puffer mit gleichem Volumen. In der Mitte befand sich 5 mL 1,4 M Sucrose-VRL Puffer und darüber 7 mL 1,2 M Sucrose-VRL Puffer. Die oberste Stufe beinhaltete 1,0 M Sucrose-VRL Puffer mit einem Volumen von 7 mL. Auf dem Gradienten wurde die aufzutrennende Probe (5 mL) geladen.

- Im Folgenden wurden jeweils 5 mL der Probe (aus Schritt 4) auf sechs Sucrose-Gradienten aufgetragen und durch Ultrazentrifugation in einem SW 28 Rotor aufgetrennt (1 h, 100000 x g, 4 °C, Bremse und Beschleunigung: Stufe 9)
- Die drei entstandenen gut erkennbaren Proteininterphasen wurden mit Pasteurpipetten einzeln abgenommen. Die Phasen mit gleicher Höhe im Gradienten aus den sechs Zentrifugationstubes wurden gepoolt.

Es wurden folgende Phasen isoliert:

Zwischen 0,25 M und 1,0 M Sucrose-VRL Puffer: Phase DB oberhalb des Gradienten

Zwischen 1,0 M und 1,2 M Sucrose-VRL Puffer: Interphase U

Zwischen 1,2 M und 1,4 M Sucrose-VRL Puffer: Interphase D

8. Durch einen Fluoreszenz-3D-Scan der Interphasen wurde ermittelt, in welcher Phase sich das Lipofuszin angesammelt hat. Dafür wurden jeweils 100 μL in ein Well einer schwarzen 96-Well-Mikrotiterplatte pipettiert. Die schwarze Farbe minimierte die Eigenfluoreszenz der Platte sowie den Signalaustausch zwischen benachbarten Wells. Die Proben wurden mit Licht einer Wellenlänge zwischen 300 nm und 400 nm angeregt und auf eine Emission im Bereich zwischen 400 nm und 550 nm getestet. Die Phase DB zeigte die stärkste Fluoreszenzaktivität, jedoch handelte es sich um eine inhomogene Phase oberhalb des Gradienten, die unaufgetrennt geblieben war. Von den aufgetrennten Interphasen zeigte die Probe U die stärkste Fluoreszenzaktivität.

- Die Proteinproben wurden mit sterilem PBS gewaschen (6000 x g und 4 °C f
 ür 10 Min).
- Die Pellets wurden mit VRL Puffer + 1x Proteinaseinhibitor (1 Tablette in 50 mL) resuspendiert bis ein Volumen von 10 mL erreicht wurde. Jede Probe wurde auf jeweils zwei Zentrifugationstubes aufgeteilt.
- 11. Die Zentrifugationsgefäße wurden für 1 h bei 100000 x g und 4 °C zentrifugiert (Beschleunigung und Bremse: Stufe 9).
- 12. In den Tubes mit der Probe der Phase DB sammelte sich die Phase an ihrem charakteristischen Platz oberhalb des Gradienten (zwischen 0,25 M und 1,0 M Sucrose-VRL Puffer). In den Tubes mit der Probe der Interphase U sammelte sich die Interphase erwartungsgemäß zwischen 1,0 M und 1,2 M Sucrose-VRL Puffer. In den Tubes mit der Probe der Interphase D sammelte sich die Interphase zwischen 1,2 M und 1,4 M Sucrose-VRL Puffer.
- 13. Die Proteininterphasen wurden einzeln mit Pasteurpipetten abgenommen. Die Proben mit der gleichen Höhe im Gradienten wurden gepoolt.
- Um zu ermitteln, in welcher Fraktion sich das Lipofuszin gesammelt hat, wurden 100 μL jeder Proteininterphasen erneut im Fluoreszenz-3D-Scan untersucht.
- 15. Die Proben wurden zweimal mit sterilem PBS gewaschen (10 Min, 6000 x g, 4 °C) und die Pellets am Ende jeweils in 1,5 mL sterilem PBS resuspendiert.
- 16. Für die anschließenden Western Blot/Immunblot Analysen wurden jeweils 100 μL Probe abgenommen, schockgefroren und bei –80 °C verwahrt.
- 17. Die restlichen Proben (1,4 mL) wurden zentrifugiert (10 Min, 13400 rpm, 4 °C) und das resultierende Pellet schockgefroren sowie bei –80 °C verwahrt.

Das gleiche Aufreinigungsprotokoll wurde mit dem Gehirngewebe von Ratten durchgeführt. Im Gegensatz zum Versuch mit dem humanen Gehirngewebe, wurden die Ratten erst kurz vor dem Versuch durch eine Kohlstoffdioxid-Inhalation getötet, das Gehirngewebe entnommen und anschließend direkt aufgereinigt. Des Weiteren wurde im Tierexperiment das gesamte Gehirn eingesetzt, wohingegen beim humanen Gewebe ausschließlich ein Teil des temporalen Kortex verwendet wurde.

Die stärkste Fluoreszenzaktivität hatten in diesem Versuch die Proteine in der Interphase zwischen 1,0 M und 1,2 M Sucrose-VRL Puffer, welche als Interphase B bezeichnet

wurde. Zwischen 1,2 M und 1,4 M Sucrose-VRL Puffer sammelte sich eine Interphase HB, die eine schwächere Fluoreszenzaktivität aufwies. Eine Proteinphase oberhalb des Gradienten, wie die Interphase DB im humanen Versuch, gab es im Tierexperiment nicht.

Versuchstiere: Fünf Ratten (Stamm Wistar): ca. 1,75 Jahre alt, Gehirngewicht gesamt: 9,95 g

2.2.1.2. Proteinnachweis mittels SDS-Gelelektrophorese und Western Blot/Immunblot

Primärantikörper:	Mouse-anti-Annexin VI (human) (610301)	Verdünnung 1 : 2500
	Mouse-anti-Lamp1, H4A3	Verdünnung 1 : 5000
	Rabbit-anti-LC3, GAJ8	Verdünnung 1 : 5000
Sekundärantikörper:	POD-markierter goat-anti-Maus-IgG	Verdünnung 1 : 25000
	POD-markierter goat-anti-Rabbit-IgG	Verdünnung 1 : 25000

Die Detektion mittels Western Blot/Immunblot ist ein spezifisches Nachweisverfahren für Proteine. Hierfür wird das Proteingemisch zunächst durch eine diskontinuierliche SDS-Polyacrylamid Gelelektrophorese (*SDS PAGE*) seiner Molekülgröße nach aufgetrennt. Im nächsten Schritt werden die Proteine auf eine Membran übertragen und dann mittels spezifischer Antikörper nachgewiesen.

- Die Proteinproben (2.2.1.1.) wurden 1 : 1 in zweimal Ladepuffer f
 ür 5 Minuten bei 95 °C denaturiert. Die Disulfidbr
 ückenbindungen der Proteine wurden durch beta-Mercaptoethanol reduziert, wodurch sich die Sekund
 är- und Terti
 ärstruktur aufl
 öste. Durch SDS erhielt das Molek
 ül eine konstante negative Ladung.
- 3. Nach der Auftrennung wurden die Proteine im Gel auf eine Nitrocellulose-Membran übertragen, die zuvor in MilliQ-Wasser eingelegt worden war. Die Übertragung erfolgte in einem Blot-Sandwich. Auf der Seite der Anode lag zunächst ein Whatman-Papier, dann die Nitrocellulose-Membran, gefolgt von dem Polyacrylamidgel und einem Whatman-Papier.
- 4. Über Nacht wurde das Sandwich in einer Blotting Transfer Apparatur bei 130 mA in Transferpuffer geblottet. Das elektrische Feld verlief dabei senkrecht zum Gel, wodurch die Proteine vom Gel auf die Membran transferiert wurden.
- 5. Am nächsten Morgen wurde die Membran in PBS-T mit 5 % Milchpulver für eine Stunde geblockt, um unspezifische Bindungsstellen auf der Membran zu sättigen.

- 6. Danach wurde die Membran für 10 Minuten mit PBS-T gewaschen.
- 7. Im Anschluss inkubierte die Membran für zwei Stunden bei Raumtemperatur mit dem jeweiligen Primärantikörper in PBS-T.
- Daraufhin wurde die Membran einmal kurz und dann dreimal f
 ür 10 Minuten in PBS-T gewaschen.
- Der Meerrettichperoxidase-konjugierte Sekundärantikörper wurde für eine Stunde in einer Verdünnung von 1:25000 aufgetragen. Dieser markierte den Primärantikörper, welcher an Proteinbanden gebunden hatte.
- 10. Die Membran wurde einmal kurz und dann dreimal für 10 Minuten mit PBS-T gewaschen.
- 11. Die Entwicklung des Blots erfolgte mit 1 mL *Enhanced chemical luminescence detection reagent* (ECL), das aus Reagenz 1 und 2 im Verhältnis von 1:1 bestand. Dieses Reagenz dient als Substrat der Meerrettichperoxidase, welche Luminol mit Hilfe von Wasserstoffperoxid oxidiert und wodurch eine bläuliche Bioluminszenz entsteht.
- 12. Der Blot wurde anschließend in Klarsichtfolie eingeschweißt und in einer Dunkelkammer entwickelt, wobei das Lumineszenz-Signal einen Hyperfilm belichtete. Die Belichtungszeit wurde je nach Stärke des Signals variiert.

2.2.1.3. SDS PAGE für die massenspektrometrische Analyse

Für die massenspektrometrische Analyse des Lipofuszins von Mensch und Ratte wurden die Lipofuszinproben durch SDS PAGE aufgetrennt. Hierfür wurden zunächst die bei -80 °C gefrorenen Lipofuszinpellets (2.2.1.1.) in sterilem PBS gelöst, verdünnt und alliquotiert. Ein Teil es humanen Lipofuszins wurde für die Immunisierung von zwei Mäusen verwendet. Für die SDS PAGE wurden von Mensch und Tier jeweils 20 µL Lipofuszin-PBS-Lösung auf das Gel aufgetragen. Nach der Auftrennung wurden die Lanes mit *Colloidal Blue* gefärbt, in Rechtecken ausgeschnitten und zur massenspektrometrischen Untersuchung verschickt. Im Folgenden wird berechnet, wie viel Gehirnmasse das zur massenspektrometrischen Analyse eingesetzte Lipofuszin repräsentiert.

Mensch (Temporalkortex, Gehirn S 21903):

Berechnung des Gehirnmasse-Äquivalents pro 20 μL eingesetzter Lipofuszin-PBS-Lösung für SDS PAGE:

- Das Gehirngewebe hatte ein Gewicht von 35,4 g. Das resultierende Lipofuszinpellet war in 1,5 mL PBS gelöst. Davon wurden 100 μL für Western Blots abgenommen. In den verbliebenen 1,4 mL befand sich das Lipofuszin aus 33,04 g Kortex (35,4 g : 1,5 mL = 23,6 g/mL = 0,0236 g/μL; 0,0234 g/ μL x 100 μL = 2,36 g; 35,4 g - 2,36 g = 33,04 g).
- Die Lösung wurde zentrifugiert, der Überstand verworfen und das Pellet in 450 μL PBS gelöst. Davon wurden 150 μL für die Immunisierung von zwei Mäusen abgenommen. (Zu diesen 150 μL wurden 1350 μL PBS hinzugefügt, die Lösung zehnmal alliquotiert, schockgefroren und verwahrt bis zur Immunisierung).
- 3. Von den verbliebenen 300 μL wurden 40 μL abgenommen und mit 5 x Ladepuffer (40 μL) für 5 Minuten bei 95 °C denaturiert. Für die massenspektrometrische Untersuchung wurden 20 μL dieser Lösung mittels SDS PAGE aufgetrennt. 20 μL entsprachen dem Lipofuszingehalt von 0,73 g humanen temporalen Kortex.
- 4. Die restlichen 260 μ L der Lösung wurden alliquotiert, schockgefroren und bei -80 °C verwahrt.

Ratten:

Berechnung des Gehirnmasse-Äquivalents pro 20 µL eingesetzter Lipofuszin-PBS-Lösung für SDS PAGE:

- Die Gehirne der fünf Ratten hatten ein Gesamtgewicht von 9,95 g (2.2.1.1.) Das resultierende Lipofuszinpellet war in 1,1 mL PBS gelöst. Davon wurden 100 μL für spätere Western Blots abgenommen. In den verbliebenen 1,0 mL befand sich das Lipofuszin aus 9,05 g Gehirn (9,95 g : 1,1 mL = 9,05 g/mL).
- Die Lösung wurde zentrifugiert, der Überstand verworfen und das Pellet in 180 μL PBS gelöst. 40 μL wurden abgenommen und mit 5 x Ladepuffer (40 μL) 5 Minuten bei 95 °C denaturiert. Für die massenspektrometrische Untersuchung wurden 20 μL dieser Lösung mittels SDS PAGE aufgetrennt. 20 μL dieser Lösung entsprach einem Lipofuszingehalt von 0,5 g Rattengehirn.
- 3. Die restlichen 140 μL der Lösung wurden alliquotiert, schockgefroren und bei -80 °C verwahrt.

Die Proben wurden auf ein 4-20 % iges Tris-HCl Trenngel geladen. Auf einem Gel wurden jeweils 20 μ l Probe des Lipofuszins von Mensch (entspricht 0,73 g) und Ratte (entspricht 0,5 g Gehirn) in die Gelkammern pipettiert.
- 1. Die Proben wurden bei 90 V ca. 2,5 h im Gel aufgetrennt.
- Jedes Gel wurde mit 100 mL *Colloidal Blue* gefärbt: 20 mL *Stainer A*, 5 mL *Stainer B*,10 mL Methanol, 55 mL destilliertes Wasser. Die *Colloidal Blue* Färbung ist fünfmal sensitiver als eine *Coomassie* Färbung.
- Nach 4 h wurden die Gele kurz in 100 mL destilliertem Wasser gewaschen und über Nacht f
 ür ca. 12 h in 100 mL destilliertem Wasser entf
 ärbt.
- 4. Am nächsten Morgen wurden die Gele erneut dreimal kurz in 100 mL destilliertem Wasser gewaschen.
- 5. Zum Ausschneiden der Lanes wurden eine saubere Glasscheibe und Skalpellklingen Nr. 23 verwendet. Als Schutz vor Keratinkontaminierung der Proben wurden während des Schneidens zusätzlich Schutzbrille, Mundschutz, OP-Kopfbedeckung und ein frischer Kittel getragen. Aus den einzelnen Banden wurden ca. 1-2 mm x 10 mm große Rechtecke geschnitten und jeweils in einem Well einer für die Massenspektrometrie speziellen 96-Well-Reaktionsplatte gelegt. Die Größe der Rechtecke hing von dem Bandenmuster ab.

Die befüllten 96-Well-Reaktionsplatten wurden mit einer klebenden Schutzfolie abgedeckt, einzeln in Folie eingeschweißt und zur Massenspektrometrie an Professor Bruce Onisko (University of Califonia, Berkley, USA) geschickt.

2.2.2. Herstellung monoklonaler Antikörper gegen Lipofuszin

Für die Herstellung von monoklonalen Antikörpern gegen das humane Lipofuszin wurden zwei Wildtyp Mäuse immunisiert. Als Antigen fungierte das aufgereinigte Lipofuszin aus dem temporalen Kortex des Gehirns S 21903, welches mit dem Adjuvant MPL + TDM zur Stimulierung der Immunantwort versetzt wurde. Es wurde das Lipofuszin aus 1,1 g Temporalkortex pro Injektion eingesetzt. Das Adjuvant besteht aus dem monophosphorilierten Lipid A (MPL) von S. minnesota und Trehalose Dicorynomycolate (TDM). Die Tiere wurden dreimal immunisiert, wobei die 2. Immunisierung (1. Boost) sechs Wochen nach der ersten Immunisierungsinjektion (Priming) erfolgte, während die 3. Immunisierung (2. Boost) eine Woche darauf vorgenommen wurde. Die Fusion der murinen Splenozyten mit den Myelomzellen wurde eine Woche nach der letzten Immunisierungsinjektion durchgeführt. Myelomzellen sind bösartige B-Lymphozyten mit der Fähigkeit zur unbegrenzten Vermehrung.

2.2.2.1. Fusion der murinen Splenozyten mit Myelomzellen

GKN 10x (Stammlösung), pH 7,4		MEM Medium	
NaCl	24 g	MEM	
KCI	1,2 g	FCS	10 %
NaHPO ₄	4,26 g	Penicillin/ Streptomycin	1 %
NaH ₂ PO ₄	1,8 g	L-Glutamin	1 %
Glucose	6 g	HT-Supplement	2 %
Phenol-red	0,03 g		

In 300 mL MilliQ Wasser gelöst, steril filtriert

Selektionsmedium (HAT-Medium)		HT Medium	
MEM		MEM	
FCS	15 %	FCS	10 %
Penicillin/ Streptomycin	1 %	Penicillin/ Streptomycin	1 %
L-Glutamin	1 %	L-Glutamin	1 %
HT-Supplement	2 %	HT-Supplement	2 %
Aminopterin Hybri-Max 50x	2 %		
Hybridoma Cloning Faktor	10 %		

1. Fusion

- 1. Eine 60 mm Zellkulturschale mit rostfreiem Metallsieb (Porengröße ca. 200 μ m) wurde mit 10 mL 37 °C warmer GKN Lösung gefüllt.
- 2. Nach dem Töten der Maus wurde das Fell mit reichlich 70 %igem Alkohol desinfiziert.
- 3. Auf der linken Seite der Maus unterhalb des Rippenbogens wurde die Milz mit sterilem chirurgischem Besteck entnommen.
- 4. Peripheres Blut wurde aus dem linken Herzen mittels Punktion entnommen und verwahrt.
- 5. Die Milz wurde zügig in die Zellkulturschale überführt und mit einem sterilen 5 mL Spritzenkolben zerrieben, bis keine Gewebestücke mehr erkennbar waren.
- 6. Die Zellsuspension wurde auf zwei 15 mL Falcons zu gleichen Teilen verteilt.
- 7. Das Metallsieb und die Zellkulturschale wurden mit 8 mL GKN gründlich gespült und diese Spüllösung wurde zu gleichen Teilen auf die beiden Tubes verteilt.
- Es erfolgte eine Zentrifugation in der Hettich Tischzentrifuge Rotina 46R (5 Min, 1750 rpm, Bremse: Stufe 0, Beschleunigung: Stufe 2).

- 9. Beide Tubes wurden auf Eis gestellt und deren Überstände wurden vorsichtig abgenommen.
- Zur Lyse der verbliebenen Erythrozyten wurden jeweils 7,5 mL einer eiskalten 0,75 %igen Ammoniumchlorid-Lösung hinzugefügt und die Zellsuspension 7 Minuten auf Eis gestellt. Zwischendurch wurde dreimal geschüttelt.
- Beide Zellsuspensionen wurden in ein 50 mL Falcon überführt und das Gefäß bis 50 mL mit GKN aufgefüllt.
- 12. Parallel dazu wurden P3U-Zellen (Myelomzellen) aus einer T75-Flask abgewaschen und in ein 50 mL Tube überführt, welches mit GKN auf 50 mL aufgefüllt wurde.
- 13. Die Falcons mit der Splenozytenzellsuspension und den P3U-Zellen wurden zentrifugiert (5 Min, 1750 rpm, Bremse: Stufe 0, Beschleunigung: Stufe 2, RT).
- 14. Die Überstände wurden vorsichtig abgenommen und die Falcons bis zur 50 mL Marke mit GKN aufgefüllt.
- 15. Es erfolgte eine Zentrifugation (5 Min, 1750 rpm, Bremse: Stufe 0, Beschleunigung: Stufe 2, RT)
- 16. Die Überstände wurden erneut vorsichtig abgenommen und die Falcons mit GKN bis 10 mL aufgefüllt.
- 17. In beiden Tubes wurde die Zellzahl mit Hilfe einer Neubauer-Zählkammer ermittelt. Aus der Auszählung der vier Großquadranten wurde ein Mittelwert gebildet und nach folgender Formel wurde das Mischungsverhältnis zwischen beiden Zellsuspensionen berechnet.

x (Splenozyten) · 10000 · 10 mL (x (Myeloma) · 10000)

Es wurden 31 Splenozyten und 48 Myelomas ausgezählt und 3 mL der Myelomasuspension, berechnet nach der oben genannten Formel, zu der Splenozytensuspension hinzugegeben.

- 18. Nachdem die beiden Zellsuspensionen vermengt worden waren, wurde die Zellmischung mit GKN auf 50 mL aufgefüllt.
- 19. Es erfolgte eine Zentrifugation (5 Min, 1750 rpm, Bremse: Stufe 0, Beschleunigung: Stufe 2, RT)
- 20. Der Überstand wurde vorsichtig abgenommen und verworfen. Das Tube wurde in ein 37 °C warmes Wasserbad gestellt.

- 21. Zur Destabilisierung der Zellmembranen wurde das Pellet mit 700 μL einer 37 °C wärmen 50 %igen Polyethylenglycol-GKN-Lösung resuspendiert.
- 22. Das Tube wurde für 4 Minuten bei 500 rpm, Bremse: Stufe 0, Beschleunigung: Stufe 2 und RT zentrifugiert.
- 23. Das Tube wurde zurück in das vorgewärmte Wasserbad gestellt. Unter kreisendem Schütteln wurden zur Resuspendierung des Pellets zunächst 10 mL GKN (37 °C) tröpfchenweise hinzugefügt. Nach einer Minute Ruhezeit wurden erneut 20 mL GKN (37 °C) langsam hinzugegeben.
- 24. Es folgte eine 20-minütige Inkubationszeit bei 37 °C unter gelegentlichem kreisendem Schütteln.
- 25. Das Tube wurde für 5 Minuten bei 1750 rpm, Bremse: Stufe 0, Beschleunigung: Stufe 2 und RT zentrifugiert.
- 26. Die Zellen wurden zur Regeneration über Nacht in 35 mL MEM Medium (ohne HT) aufgenommen.
- 27. Am nächsten Tag wurden die Zellen sorgfältig vom Flaschenboden abgespült, zentrifugiert und mit 200 mL Selektionsmedium verdünnt.
- 28. Die Zellmischung wurde auf 20 96-Well-Zellkulturplatten verteilt, wobei jeweils 100 μL in jedes Well pipettiert wurden. Durch die vorhergegangene Verdünnung befand sich so statistisch maximal eine Zelle in einem Well.
- 29. Nach vier Tagen wurde jedes Well mit 150 µL Selektionsmedium aufgefüllt.

2. Fusion

Bei der zweiten Fusion wurde eine Maus nach gleichem Schema mit dem aufgereinigten Lipofuszin immunisiert. Der Versuch wurde analog zum oben genannten Protokoll durchgeführt. Es wurden 25 Myelomas zu 13 Splenozyten ausgezählt und 6 mL Myelomasuspension zu der Splenozytensuspension hinzugegeben.

2.2.2.2. Identifizierung der Antikörper gegen Lipofuszin

Acht Tage nach der Fusion waren in den Wells makroskopisch die ersten Klonkolonien erkennbar, weitere folgten bis zum 10. Tag. Sobald sich das Medium durch die Stoffwechselaktivität der Zellen gelb verfärbt hatte, wurde der Überstand der Klone für ein Screening abgenommen und den Zellen frisches Medium zugefügt. Die Identifikation der Klone, die Antikörper gegen Lipofuszin bilden, erfolgte nach 2 Methoden:

Die Antikörper-haltigen Überstände wurden mittels ELIFA auf ihre Affinität zu Gehirnhomogenaten eines älteren und eines jüngeren Menschen getestet, um so eine altersabhängige Signaldifferenz darzustellen.

Im zweiten Schritt wurden die Antikörper-haltigen Überstände mittels ELISA auf ihre Affinität zum Amyloid-beta 42 Protein getestet. Amyloid-beta 42 ist ein Protein, welches bei der Alzheimer Demenz in großer Menge im Gehirn eingelagert wird, aber auch im gealterten gesunden Gehirn in geringer Menge vorkommt. Kreuzreaktivitäten von Beta-Amyloid Antikörpern gegen Lipofuszin weisen darauf hin, dass Beta-Amyloid oder dessen Vorstufen ein Bestandteil von Lipofuszin sein können (Bancher, Grundke-Igbal et al. 1989). Zum Ausschluss unspezifisch bindender Antikörper wurde mittels ELISA die Affinität gegenüber bovinen Serumalbumin (BSA) überprüft.

Entnahme des Antikörper-haltigen Zellkulturüberstandes:

- 1. 170 μL Überstand aus dem Well eines reifen Klons wurden unter sterilen Bedingungen in ein Well einer BSA-beschichteten Maxisorp-Platte überführt.
- 2. 170 µL HT Medium wurden jedem Klon zugefügt.

2.2.2.3. Screening mittels ELIFA (Enzyme Linked Immunofilter Assay)

Beim ELIFA wird das Antigen durch Unterdruck in eine Nitrocellulose-Membran eingesogen. Im Vergleich zum ELISA hat das Verfahren den Vorteil einer hohen Antigenkonzentration pro Testfläche. Dadurch ist dieser Test empfindlicher für schwach bindende oder gering konzentrierte Antikörper.

Herstellung des Homogenats in einer Verdünnung 1 : 500:

Probe <i>jung</i> :	Gehirn N 131, 39 Jahre alt , 10 %iges Homogenat in VRL Puffer
	1 : 500 = 5,5 mL VRL Puffer + 10 μ L Homogenat
Probe <i>alt</i> :	Gehirn S 21903, 64 Jahre alt, 20 %iges Homogenat in VRL
	1 : 500 = 5,5 mL VRL Puffer + 5 μL Homogenat

ELIFA

1. Eine 0,45 μ m Nitrocellulose-Membran wurde zwei Minuten mit MilliQ Wasser befeuchtet.

- 2. Anschließend wurde die Membran in das ELIFA-Titer-System eingelegt.
- Pro Well wurden 50 μL MilliQ Wasser hinzugefügt und für eine Minute ein Vakuum angelegt.
- In jedes Well wurden 50 μL eines verdünnten Homogenats (1 : 500) verteilt und danach 100 μL VRL Puffer pro Well hinzugefügt.
- 5. Für eine Minute wurde ein Vakuum angelegt.
- 6. Die Membran wurde aus dem Titer-System entfernt und in 50 mL 5 % Milchpulver in PBS-T für 45 Minuten bei RT geblockt.
- 7. Die Membran wurde wieder in ihrer ursprünglichen Position in das Titer-System eingelegt.
- Jeweils 50 μL Zellkulturüberstand (Antikörper) pro Well wurden aufgetragen und 2 h bei Raumtemperatur inkubiert. Während der Inkubation wurde das Titel-System mit Folie abgedeckt, um Kontamination und Verdunstung zu vermeiden.
- Die Überstände wurden verworfen und die Membran aus dem ELIFA-Titer-System entnommen. Die Membran wurde zunächst kurz und dann dreimal 10 Minuten in PBS-T 0,05 % gewaschen.
- 10. Die Membran wurde 1 h mit einem POD-konjugierten Sekundärantikörper (goat-anti-Maus-IgG) in einer Verdünnung von 1 : 20000 inkubiert.
- 11. Die Membran wurde zunächst kurz und dann dreimal 10 Minuten in PBS-T 0,05 % gewaschen.
- 12. Als Substrat des Enzyms POD wurde ECL auf der Membran verteilt, welche anschließend in Klarsichtfolie eingeschweißt wurde.
- 13. In der Dunkelkammer wurde ein Röntgenfilm mit dem Bioluminiszenz-Signal belichtet und entwickelt. Die Belichtungszeit variierte je nach Signalstärke.

2.2.2.4. Screening mittels ELISA (Enyzme Linked Immunosorbent Assay)

ELISA ist ein immunologisches Nachweisverfahren, das auf einer messbaren enzymatischen Farbreaktion basiert. Biologische Substanze, wie z. B. Proteine, können in einer Probe nachgewiesen werden, indem ein spezifischer Antikörper hinzugefügt wird. Dieser Antikörper trägt entweder selbst ein Enzym oder es wird ein zweiter Antikörper (mit Enzym) gegen den ersten hinzugegeben. Fügt man nun das Substrat des Enzyms hinzu, kommt es zur Farbreaktion, sofern das gesuchte Protein in der Probe enthalten ist. Im Rahmen dieses Versuches wurde ein indirekter ELISA angewendet, der im Unterschied zum direkten ELISA nicht ein Protein, sondern einen Antikörper identifiziert, welcher in

diesem Versuch ein gegen Beta-Amyloid gerichteter Antikörper war. Daher wurden verschiedene Antikörperüberstände auf ihre Affinität zum Antigen Amyloid-beta 42 getestet.

ELISA:

- 100 μg Amyloid-beta 42 Protein wurden in 11 mL Na₂CO₃ (pH 11) gelöst, so dass sich eine Endkonzentration von 9,09 mg/L ergab.
- In zwei 96-Well-ELISA-Platten wurden jeweils 50 μL der Amyloid-beta 42 Proteinlösung pro Well pipettiert.
- 3. Die Platten wurden über Nacht bei 4 °C inkubiert.
- Am nächsten Tag wurde die Proteinlösung verworfen und die Wells mit 200 μL 5 % BSA für eine Stunde bei 37 °C geblockt.
- 5. Die ELISA-Platten wurden mit MilliQ Wasser sorgfältig ausgespült.
- Die ELISA-Platten wurden jeweils mit 50 μL Zellkulturüberstand der verschiedenen Klone beladen, mit Schutzfolie abgedeckt und 2 h bei RT inkubiert.
- Der Zellkulturüberstand wurde verworfen. Die ELISA-Platten wurden zehnmal mit PBS-T gespült.
- In jedes Well wurden 50 μL eines POD-konjugierten goat-anti-Maus Sekundärantikörpers in einer Verdünnung von 1 : 5000 in PBS-T pipettiert, mit einer Schutzfolie abgedeckt und 1 h bei RT inkubiert.
- 9. Die Platten wurden erneut zehnmal mit PBS-T gespült.
- 10. Um eine Antikörperbindung am Amyloid-beta 42 Protein zu markieren, wurde das Substrat des Enzyms Meerrettich Peroxidase hinzugefügt: 100 μL der *BD Opteia Lösung* (50 μL *BD Opteia Lösung A* + 50 μL *BD Opteia Lösung B*) wurden in jedes Well pipettiert. In Gegenwart von POD katalysiert dieses Enzym die Oxidation des Stoffes TMB mit Hilfe von Wasserstoffperoxid und es kommt zu einem blauen Farbumschlag.
- 11. Durch die Zugabe von 25 %iger Schwefelsäure wurde diese Reaktion gestoppt und ein Farbumschlag von blau nach gelb eingeleitet.

Herstellung von BSA-beschichteten Maxisorp-Platten:

 In jedes Well einer 96-Well-Maxisorp-Platte wurden 200 μl 5 %iges BSA (in H₂O) pipettiert und über Nacht bei –4 °C inkubiert.

- 2. Am nächsten Morgen wurde die Platte abgeschlagen, mit MilliQ Wasser gewaschen und bei -20 °C bis zum Gebrauch verwahrt.
- 3. Mit den hergestellten BSA-beschichteten Platten wurde nach dem oben genannten ELISA Protokoll (ab Schritt 6) weiter verfahren.

2.2.3. Analyse von Proteinaggregaten im Verlauf des physiologischen Alterns

In diesem Versuch wurden aus murinem Gehirn aggregierte Proteine angereichert nach einem Aufreinigungsprotokoll von Leliveld (Leliveld, Bader et. 2008).

Die Versuchsmäuse wurden hierfür in vier Gruppen mit jeweils zwei Tieren eingeteilt.

Folgende BALB/c Mäuse wurden als Versuchstiere verwendet:

- 2x Wildtyp BALB/c Mäuse "jung":	ca. 3 Monate alt, Gehirngewicht gesamt: 0,847 g
- 2x Wildtyp BALB/c Mäuse "alt":	ca. 1,5 Jahre alt, Gehirngewicht gesamt: 0,723 g
- 2x PrP ^c -ko BALB/c Mäuse "jung":	ca. 3 Monate alt, Gehirngewicht gesamt: 0,796 g
- 2x PrP ^c -ko BALB/c Mäuse "alt":	ca. 1,5 Jahre alt, Gehirngewicht gesamt: 0,682 g

2.2.3.1. Aufreinigung von aggregierten Proteinen

5 mM

1%

MgCl₂

NP-40

Puffer A (Homogenisierungspuffer)		Puffer B (Waschpuffer)	
HEPES	50 mM	HEPES	50 mM
NaCl	300 mM	NaCl	1500 mM
Sucrose	250 mM	Sucrose	250 mM
EDTA	5 mM	EDTA	5 mM
GSH	5 mM	GSH	5 mM
NP-40	1 %	NP-40	1 %
Sarkosyl	0,2 %		
Puffer C (Waschpuffer)		Puffer D (Waschpuffer)	
TRIS, pH 8	50 mM	HEPES	50 mM
Sucrose	250 mM	EDTA	5 mM

GSH

NP-40

5 mM

1%

Puffer E (Kissen)

HEPES	50 mM
Sucrose	2300 mM
EDTA	5 mM
GSH	5 mM

- 1. Die Gehirne jeder Gruppe wurden jeweils in Puffer A mit 1x Protease Inhibitor (1 Tabl. in 50 mL) und 1 mM PMSF zu einem 10 %igen Homogenat homogenisiert. Jeweils 6 mL des Homogenats wurden 30 Minuten bei 1800 x g und 4 °C zentrifugiert. Das PMSF diente dabei als Inhibitor für Serin-Proteasen und für die Cysteinprotease Papain. Anschließend wurde das Pellet in 45 mL Puffer A resuspendiert und 30 Minuten bei 1800 x g sowie 4 °C zentrifugiert. Der Überstand wurde verworfen. Nach diesem Schema erfolgten alle weiteren Waschschritte, sofern nicht explizit anders beschrieben.
- Das Pellet wurde in Puffer B (45 mL) mit 1 mM PMSF und 0,2 % Sarkosyl resuspendiert und zentrifugiert. Im Anschluss erfolgte ein Waschschritt mit Puffer B (45 mL).
- 3. Im Folgenden wurde das Pellet in Puffer C (45 mL) gewaschen und erneut in Puffer C (45 mL) mit 1x Protease Inhibitor, 1 mM PMSF, 40 U/mL Benzonase und 40 U/mL DNase resuspendiert (Gesamtvolumen 50 mL). Benzonase ist eine gentechnisch manipulierte Endonuklease, die unspezifisch jede Art von DNA sowie RNA (einzelsträngig oder doppelsträngig, linear oder zyklisch), schneidet. Die Proben wurden bei 37 °C für 30 Minuten geschüttelt, bei 4 °C über Nacht weiter geschüttelt und am nächsten Morgen zentrifugiert.
- 4. Das Pellet wurde in Puffer A (45 mL) inklusive 1 mM PMSF gewaschen, zentrifugiert und anschließend mit Puffer D (6,1 mL) resuspendiert. Nach erfolgreicher Resuspension wurde Puffer E hinzugegeben (14 mL), bis die Endkonzentration von 1,6 M Sucrose erreicht wurde.
- 5. Die Suspension wurde vorsichtig auf ein 1 mL Kissen von Puffer E pipettiert und in einer Ultrazentrifuge für 45 Minuten bei 45000 rpm im MLS-50 Rotor zentrifugiert.
- 6. Die Interphase zwischen den Puffern wurde vorsichtig abgenommen, in 20 mM HEPES gewaschen (aufgeteilt in drei Eppendorf-Reaktionsgefäße pro Gruppe) und für 45 Minuten bei 45000 rpm und 4 °C im SW 28-Rotor zentrifugiert.
- Das Pellet wurde in 300 μL 20 mM HEPES resuspendiert. 270 μL davon wurden schockgefroren und bei –80 °C verwahrt. Die restlichen 30 μL wurden 1 : 1 mit 2 x

Ladepuffer bei 95 °C fünf Minuten gekocht und für spätere Western Blots aufbewahrt.

2.2.3.2. Isotope Coated Affinity Tag (ICAT)

ICAT (Isotop Coated Affinity Tag) ist eine quantitative massenspektrometrische Analyse, bei der zwei Proben mit identischen Proteinen, aber in unterschiedlicher Quantität, miteinander verglichen werden. Die vier Proteinproben aus der Aufreinigung 2.2.3.1 wurden hierbei massenspektrometrisch untersucht und quantitativ verglichen. Da bei allen Proben nach dem gleichen Protokoll gearbeitet wurde, ist anzunehmen, dass weitgehend die gleichen Proteine isoliert wurden.

Es wurden zwei alte Wildtyp BALB/c Mäuse (1,5 Jahre alt) mit zwei jungen (3 Monate alt) und zwei alte PrP^c-ko BALB/c Mäuse (1,5 Jahre alt) mit zwei jungen (3 Monate alt) verglichen. Zusätzlich wurden die zwei alten Wildtyp BALB/c Mäuse mit den zwei alten PrP^c-ko BALB/c Mäusen verglichen (Abbildung 3).

Abbildung 3: Darstellung der vier Vergleichsproben

Zunächst wurden aggregierte Proteine aus den Gehirnhomogenaten der Versuchstiere aufgereinigt. Im zweiten Schritt wurden mittels der ICAT Methode die gewonnenen Proben qualitativ und quantitativ massenspektrometrisch miteinander nach dem dargestellten Schema verglichen. Dabei wurden die alten mit den jungen Wildtyp Mäusen sowie die alten mit den jungen PrP^c-ko Mäusen verglichen. Zusätzlich wurde ein Vergleich zwischen alten PrP^c-ko und alten Wildtyp Mäusen durchgeführt.

Die aufgereinigten Proteinproben aus 2.2.3.1 wurden mittels des *Isotope Coated Affinity Tag* markiert. Bei dem angewendeten Verfahren wurden die Disulfidbindungen der Proteine zu Cysteinresten reduziert. Diese reagierten mit einer thiolspezifischen Iodacetamid-Gruppe des ICAT Reagenz (Abbildung 4) weiter.

Thiolspezifische Verbindungsstück IC lodacetamid Gruppe

Abbildung 4: Molekulare Darstellung des ICAT heavy Anhängers (Hermanson 2008)

Die thiolspezifische lodacetamid Gruppe des ICAT Anhängers reagiert mit dem Cysteinanteil des zu markierenden Proteins. Das Verbindungsstück in der Mitte des Moleküls enthält acht Deuteriumatome, während der ICAT *light* Anhänger in der gleichen Lokalisation acht Wasserstoffatome beinhaltet. Dadurch ist der ICAT *heavy* Anhänger 8 Da schwerer ist als der ICAT *light* Anhänger. Im Rahmen der Massenspektrometrie führt dies zu zwei unterschiedlichen Peaks desselben Proteins aus zwei verschiedenen Proben.

Das ICAT Reagenz besteht aus einem Biotin-Anhang, einem Verbindungsstück und einer thiolspezifischen Iodacetamid Gruppe. Es gibt zwei ICAT Reagenzien, die sich im Aufbau des Verbindungsstücks unterscheiden. ICAT *heavy* ist aufgrund acht Deuteriumatome im Verbindungsstück des ICAT Markers 8 Da schwerer als ICAT *light*. Dieses trägt anstelle des Deuteriums Wasserstoffatome im Verbindungsstück. Bei zwei zu vergleichenden Proteinproben wird eine Probe mit dem ICAT *heavy* Reagenz markiert und die andere Probe mit ICAT *light* Reagenz. Bei der massenspektrometrischen Untersuchung wird ein Protein, das in den beiden Proben vorhanden ist, als solches erkannt, da die massenspektrometrischen Peaks genau 8 Da voneinander entfernt sind. Diese Peaks werden in ihrer Höhe verglichen und lassen auf die relative Menge des Proteins in den Proben schließen.

Denaturierung der Proteine:

Denaturierungspuffer:	8 M Urea,	
	0,5 % SDS,	
	50 mM TRIS (pH 8,5)	

- Die aufgereinigten Proteinproben (aus 2.2.3.1.), die in 270 μL 20 mM HEPES so gut wie möglich resuspendiert worden sind, wurden 10 Minuten bei 45000 rpm und 4 °C im TLA 55 Rotor zentrifugiert. Der Überstand wurde bis auf 50 μL verworfen.
- Die Proben wurden in 400 μL Denaturierungspuffer (s.o.) sorgfältig resuspendiert, denaturiert und anschließend bei 16000 x g und 4 °C für 5 Minuten zentrifugiert.

- 3. Der Überstand jeder Probe wurde in vier Teile zu jeweils 80 µL aliquotiert.
- Jeweils zwei Aliquots pro Probe wurden f
 ür den Versuch verwendet. Der Rest wurde schockgefroren und bei –80 °C verwahrt.

Reduktion der Proteine:

- Zu den Proben wurden jeweils 2 μL Reduktionsreagenz (50 mM TCEP) hinzugefügt. Anschließend wurde die Proben gevortext und kurz in einer MiniSpin zentrifugiert (bis maximal 14000 x g).
- 2. Die Proben wurden 10 Minuten lang in einem kochenden Wasserbad inkubiert.
- 3. Anschließend wurden die Proben gevortext und ein bis zwei Minuten zum Abkühlen in einer MiniSpin zentrifugiert.

Markierung der Proteine mit dem ICAT Reagenz:

- 1. Drei ICAT Reagenzien *heavy* und drei ICAT Reagenzien *light* wurden auf Raumtemperatur erwärmt und kurz zentrifugiert.
- 2. 20 μL Acetonitril wurden jeweils dem Reagenz hinzugefügt, gevortext und kurz zentrifugiert.
- 3. Die Proben wurden mit dem ICAT Reagenz markiert, indem diesen entweder ICAT Reagenz *light* oder *heavy* zugesetzt wurde. Im ersten Vergleich wurden die Proben der alten Wildtyp Mäuse mit dem ICAT *heavy* Reagenz und die Proben der jungen Wildtyp Mäuse mit dem ICAT *light* Reagenz markiert.

	Probe	ICAT Reagenz
Vergleich 1	Probe Wildtyp Mäuse alt Probe Wildtyp Mäuse jung	ICAT <i>heavy</i> ICAT <i>light</i>
Vergleich 2	Probe PrP ^c -ko Mäuse alt Probe PrP ^c -ko Mäuse jung	ICAT <i>heavy</i> ICAT <i>light</i>
Vergleich 3	Probe Prp ^c -ko Mäuse alt Probe Wildtyp Mäuse alt	ICAT heavy ICAT light

Tabelle 2: Darstellung der Probenvergleiche und der Zuteilung der ICAT Reagenzien

Für den ersten Vergleich wurde die Proteinprobe der alten Wildtyp Mäuse mit dem ICAT *heavy* Reagenz und die Probe der jungen Wildtyp Mäuse mit dem ICAT *light* Reagenz markiert. Im zweiten Vergleich erfolgte die gleiche Verteilung der ICAT Reagenzien auf die Proben der alten und jungen PrP^c-ko Mäuse. Im letzten Vergleich wurde die Proteinprobe der alten PrP^c-ko Mäuse mit dem ICAT *heavy* Reagenz und die Probe der alten Wildtyp Mäuse mit dem ICAT *light* Reagenz markiert.

- 4. Die gleiche Zuteilung erfolgte bei den Proben der jungen und alten PrP^c-ko Mäuse im zweiten Vergleich. Im dritten Vergleich wurde die Probe der alten PrP^c-ko Mäuse mit ICAT *heavy* Reagenz markiert, während die Probe der alten Wildtyp Mäuse mit dem ICAT *light* Reagenz ein Bindung einging. Die Tabelle 2 zeigt diese beschriebene Probenzuteilung.
- 5. Jedes ICAT Reagenz inkl. einer Probe wurde gevortext und kurz zentrifugiert.
- 6. Die Proben wurden 2 h bei 37 °C inkubiert und danach gevortext sowie kurz zentrifugiert.

Zusammenfügen der Proben:

- Die zwei Proben, die verglichen werden sollten (Abbildung 3, Tabelle 2), wurden vermengt. Dabei wurde die Probe mit dem ICAT Reagenz *light* zu der Probe mit dem ICAT Reagenz *heavy* gegeben.
- 100 μL Milli-Q Wasser wurden in das Reaktionsgefäß gegeben, in welchem zuvor die Probe mit dem ICAT Reagenz *light* enthalten war, um Probenreste an den Wänden zu lösen. Die Mischung wurde gevortext und kurz zentrifugiert.
- Anschließend wurde dieser wässrige Probenrest in das Gefäß, der zuvor zusammengefügten Proben gegeben und anschließend gevortext sowie kurz zentrifugiert.

Methanol Protein Präzipitation:

Um das Volumen der ICAT Probenmischung zu reduzieren und die Proteine zu präzipitieren, wurde eine Methanol Protein Präzipitation durchgeführt und das daraus resultierende Pellet weiterverarbeitet.

- 1. Es wurden fünf Volumenanteile Methanol zu einem Volumenanteil Probe hinzugefügt: 1500 μL Methanol : 300 μL Probe.
- 2. Die Proben wurden 2 h bei -20 °C inkubiert.
- Es erfolgte eine 30-minütige Zentrifugation bei maximaler Geschwindigkeit bei 4 °C in einer Mikrozentrifuge.
- 4. Nach weiteren 15 Minuten in einer Vakuumzentrifuge wurde ein Pellet sichtbar.
- Der Überstand wurde abgenommen und verwahrt. Das Pellet wurde über Nacht bei –20 °C verwahrt und am nächsten Tag bei 45000 rpm und 4 °C für 30 Minuten im TCA 55 Rotor ultrazentrifugiert.
- Der Überstand wurde abgenommen und verwahrt. Der verbliebene Restüberstand über dem Pellet wurde durch eine Vakuumzentrifuge evaporiert, bis ausschließlich das Pellet im Reaktionsgefäß übrig blieb.

Abspaltung (Cleaving) des Biotinanteils am Isotopenanhänger:

Cleaving Reagenz A: (Applied Biosystems, 95 % TFA)

Cleaving Reagenz B: (Applied Biosystems)

Der ICAT Marker besitzt einen Biotinanteil, der bei der massenspektrometrischen Analyse Fehlermeldungen erzeugen kann. Daher wird dieser zuvor chemisch durch *Cleaving* Reagenzien vom Marker entfernt.

- Die *Cleaving* Reagenzien A und B wurden in einem Verhältnis 95 : 5 gemischt und es wurde ein Volumen von 90 μL pro Probe eingesetzt.
- 2. Das Reagenz wurde gevortext und kurz zentrifugiert.
- 3. Jeweils 90 μL *Cleavin*g Reagenz wurden zu einem Pellet ins Reaktionsgefäß gegeben. Dieses wurde kurz gevortext und zentrifugiert.
- 4. Es erfolgte eine Inkubation bei 37 °C für 2 h und anschließend eine kurze Zentrifugation.
- 5. Der Überstand wurde in einer Vakuumzentrifuge evaporiert (ca. 1 h).

Auftrennung über SDS Page:

- Das Pellet wurde in 43 μL Ladepuffer aufgenommen (Gesamtvolumen 50 μL), mit TRIS bis zu einem blauen Farbumschlag alkalisiert und 5 Minuten gekocht. Jeweils 20 μL wurden pro Probe auf das Gel pipettiert, während der Rest schockgefroren und bei –80 °C verwahrt wurde.
- 2. Die Proben wurden im Gel bei 90 V bis zur einer Laufspur von 1,5 cm aufgetrennt.
- Eine Färbung des Gels erfolgte mit *Colloidal Blue* für 4 Stunden:
 Für das Gel wurden 100 mL Färbelösung verwendet: 20 mL Stainer A, 5 mL
 Stainer B, 20 mL Methanol und 55 mL destilliertes Wasser.
- 4. Nach 4 h wurde das Gel zweimal kurz in destilliertem Wasser gewaschen.
- 5. Über Nacht wurde das Gel 12 h in destilliertem Wasser entfärbt.
- 6. Am Morgen wurde das Gel dreimal kurz in destilliertem Wasser gewaschen.
- Die Lanes wurden in 15 1-2 mm lange Rechtecke geschnitten und jeweils in einem Well einer 96-Well-Reaktionsplatte einzeln verwahrt, mit Schutzfolie abgedeckt und zur massenspektrometrischen Analyse verschickt (Prof. B. Onisko, University of California, Berkley, USA).

2.2.3.3. Proteinnachweis mittels SDS-Gelelektrophorese und Western Blot/Immunblot

Primärantikörper: Rab		pit-anti-GFAP	Verdünnung 1 : 10000
	Mous	se-anti-Neurofilament (RT 97, Überstand)	Verdünnung 1 : 10
	Mous	se-anti-Alpha-Internexin (Inexin)	Verdünnung 1 : 5000
Sekundärantikörp	er:	POD-markierter goat-anti-Maus-IgG	Verdünnung 1 : 25000
		POD-markierter goat-anti-Rabbit-IgG	Verdünnung 1 : 25000

Als spezifisches Nachweisverfahren für Proteine wurde die Methode des Western Blots/Immunblots angewendet wie unter 2.2.1.2. beschrieben. Als Versuchsproben wurden aggregierte Proteine, nach einer Aufreinigung wie unter 2.2.3.1 beschrieben, von Wildtyp Mäusen (Stamm Ola) alt und jung sowie PrP^c-ko Mäusen (Stamm Ola) alt und jung eingesetzt.

Versuchstiere und deren Gehirnmasse:

4 *junge* Wildtyp Mäuse (Stamm 129/Ola): 5 Tage alt: Wildtyp Maus jung 1: 0,41 g, Wildtyp Maus jung 2: 0,38 g, Wildtyp Maus jung 3: 0,41 g, Wildtyp Maus jung 4: 0,41 g
5 *alte* Wildtyp Mäuse (Stamm 129/Ola): ca. 1 Jahr alt: Wildtyp Maus alt 1: 0,48 g, Wildtyp Maus alt 2: 0,32 g, Wildtyp Maus alt 3: 0,39 g, Wildtyp Maus alt 4: 0,42 g, Wildtyp Maus alt 5: 0,38 g,
4 *junge* PrP^c-ko Mäuse (Stamm 129/Ola): 8 Tage alt: PrP^c-ko Maus jung 1: 0,37 g, PrP^c-ko Maus jung 2: 0,32 g, PrP^c-ko Maus jung 3: 0,40 g, PrP^c-ko Maus jung 4: 0,42 g
4 *alte* PrP^c-ko Mäuse (Stamm 129/Ola): ca. 1 Jahr alt: PrP^c-ko Maus alt 1: 0,45 g, PrP^c-ko Maus alt 2: 0,42 g

Im Unterschied zum Protokoll 2.2.1.2 wurde jedes Gehirn einzeln homogenisiert und aufgereinigt, wobei pro Aufreinigung 3 mL eines 10 %igen Homogenats verwendet wurden. Der Proteinnachweis erfolgte mittels Rabbit-anti-GFAP Antikörpern, Mouse-anti-Alpha-Internexin Antikörpern und Mouse-anti-NF-H Antikörpern in den beschriebenen Konzentrationen (s.o.).

3. Ergebnis

3.1. Lipofuszin

3.1.1. Isolierung des humanen Lipofuszins

Abbildung 5: Zusammenfassung der humanen Lipofuszin-Isolierung (2.2.1.1)

Der Temporalkortex des humanen Gehirns wurde homogenisiert und zentrifugiert. Der Überstand wurde erneut zentrifugiert und das Pellet in VRL Puffer resuspendiert. Diese Suspension wurde auf einen Sucrosegradienten geladen. Nach der Ultrazentrifugation waren drei Proteinphasen makroskopisch differenzierbar. Die Phase DB verblieb oberhalb des Gradienten. Die Interphase U sammelte sich zwischen der Gradientenstufe 1 M und 1,2 M Sucrose-VRL Puffer und die Interphase D zwischen der Gradientenstufe 1,2 M und 1,4 M Sucrose-VRL Puffer. Die Phase DB und die Interphase U sowie D wurden weiter durch einen Fluoreszenz-3D-Scan untersucht und erneut durch eine Gradientenultrazentrifugation aufgereinigt. Nach einem weiteren Fluoreszenz-3D-Scan wurde die Interphase U zur massenspektrometrischen Analyse und zur Immunisierung von zwei Mäusen weiter verwendet.

Das Lipofuszin wurde aus humanem Gewebe mittels Dichtegradientenzentrifugation isoliert und aufgrund seiner charakteristischen Fluoreszenzaktivität durch einen Fluoreszenz-3D-Scan identifiziert (2.2.1.1). In der Abbildung 5 sind die einzelnen Aufreinigungsschritte kurz zusammengefasst.

Nach der Zentrifugation wies die Interphase U, zwischen 1,0 M und 1,2 M Sucrose-VRL Puffer (Exzitation 370 nm, Emission 435 nm), verglichen mit der Interphase D, zwischen 1,2 M und 1,4 M Sucrose-VRL Puffer (Exzitation 355 nm, Emission 435 nm), das charakteristische Fluoreszenzspektrum und eine starke Fluoreszenzaktivität auf, was auf einen hohen Lipofuszingehalt hindeutete.

Abbildung 6: Schematische Darstellung des Zentrifugationstubes nach der ersten Ultrazentrifugation

Der Dichtegradient bestand aus fünf vom Boden aufsteigenden Dichtestufen (1,6 M, 1,5 M, 1,4 M, 1,2 M und 1,0 M), auf welchem die Probe geladen wurde. Zwischen dem Probenpuffer und 1,0 M Sucrose-VRL Puffer sammelte sich Phase DB, welche ein Fluoreszenzmaximum unter einer Anregung von 370 nm und einer Emission von 430 nm zeigte. Die Interphase U befand sich zwischen 1,0 M und 1,2 M Sucrose-VRL Puffer und wies die stärkste Fluoreszenzaktivität bei einer Exzitation von 370 nm bei einer Emission von 435 nm auf. Eine Konzentrationsstufe darunter sammelte sich die Interphase D zwischen 1,2 M und 1,4 M Sucrose-VRL Puffer und zeigte die höchste Fluoreszenzittensität bei einer Anregung von 355 nm unter einer Emission von 435 nm.

Die höchste Fluoreszenzintensität zeigte die Proteinphase DB oberhalb des Gradienten zwischen 0,25 M und 1,0 M Sucrose-VRL Puffer (Exzitation 370 nm, Emission 430 nm), welche jedoch nicht durch den Gradienten aufgereinigt wurde und aus einer inhomogenen Suspension mit Lipidflocken bestand (Abbildung 6).

Erste Gradientenultrazentrifugation:

Die Ergebnisse des Fluoreszenz-3D-Scans der Proteinphase DB, welcher nach der ersten Gradientenultrazentrifugation durchgeführt wurde, sind in Abbildung 7 dargestellt. Hierbei wurden 100 μ L der Probe eingesetzt. Die Probe wurde mit Licht in einem Wellenlängenbereich zwischen 325 nm bis 385 nm angeregt und die relative Fluoreszenzaktivität bei Emissionen zwischen 400 nm und 500 nm gemessen (Rohdaten siehe Anhang).

Abbildung 7: Graphische Darstellung des Fluoreszenz-3D-Scans der Phase DB nach der ersten Gradientenultrazentrifugation.

Im Fluoreszenz-3D-Scan wurde die relative Fluoreszenzintensität bei Anregungen mit 325 nm bis 385 nm in einem Emissionsbereich zwischen 400 nm und 500 nm gemessen. Die stärkste relative Fluoreszenzintensität von 37465 I_{rel} entwickelte sich unter einer Anregung mit 370 nm während einer Emission von 430 nm (Rohdaten siehe Anhang).

Alle Anregungen im Bereich von 325 nm bis 385 nm entwickelten ein Maximum der relativen Fluoreszenzaktivität (I_{rel}) bei einer Emission von 430 nm. Darunter zeigte sich die stärkste Fluoreszenzaktivität von 37465 I_{rel} während einer Exzitation mit 370 nm in einem Emissionsbereich von 430 nm (Abbildung 7). Die Phase DB sammelte sich während der Ultrazentrifugation oberhalb des Sucrosegradienten und bestand makroskopisch aus einer heterogenen Mischung mit Lipidflocken, so dass diese Probe keine aufgereinigte Phase darstellte.

Bei der Dichtegradientenzentrifugation sammelte sich zwischen 1,0 M und 1,2 M Sucrose-VRL Puffer die weiße Interphase U (2.2.1.1.; Abbildung 5; Abbildung 6). 100 μ L der Probe wurden für eine Fluoreszenzmessung eingesetzt.

Abbildung 8: Graphische Darstellung des Fluoreszenz-3D-Scans der Interphase U nach der ersten Gradientenultrazentrifugation

Die relative Fluoreszenzintensität wurde im Fluoreszenz-3D-Scan bei Anregungen mit 325 nm bis 385 nm in einem Emissionsbereich zwischen 400 nm und 500 nm gemessen. Unter einer Anregung mit 370 nm bei einer Emission von 435 nm entwickelte sich die stärkste relative Fluoreszenzintensität von 4785 I_{rel} (Rohdaten siehe Anhang).

Bei dem Fluoreszenz-3D-Scan wurde die Probe mit Licht in einem Wellenlängenbereich zwischen 325 nm und 385 nm angeregt sowie dabei die relative Fluoreszenzaktivität bei Emissionen zwischen 400 nm und 500 nm gemessen (Rohdaten siehe Anhang). Bei Exzitationen von 340 nm, 370 nm, 375 nm und 385 nm entwickelte sich ein Maximum der relativen Fluoreszenzintensität bei einer Emission von 435 nm. Die Exzitationen 325 nm, 355 nm und 365 nm entwickelten bei einer Emission von 430 nm ein Maximum. Insgesamt konnte die stärkste Fluoreszenzintensität von 4785 I_{rel} bei einer Exzitation von 370 nm in einem Emissionsbereich von 435 nm ermittelt werden (Abbildung 8).

Während der Dichtegradientenzentrifugation sammelte sich zwischen 1,2 M und 1,4 M Sucrose-VRL Puffer die weiße Interphase D, die ebenfalls durch eine Fluoreszenzmessung analysiert wurde (Abbildung 9).

Abbildung 9: Graphische Darstellung des Fluoreszenz-3D-Scans der Interphase D nach der ersten Gradientenultrazentrifugation

Die relative Fluoreszenzintensität wurde unter Exzitationen zwischen 325 nm und 385 nm sowie Emissionen zwischen 400 nm und 500 nm gemessen. Die stärkste relative Fluoreszenzintensität von 743 I_{rel} entwickelte sich unter einer Anregung mit 355 nm während einer Emission von 435 nm (Rohdaten siehe Anhang).

Hierbei zeigte sich, dass bei einer Exzitation von 325 nm die maximale relative Fluoreszenzintensität in einem Emissionsbereich von 430 nm zu finden war, während bei Anregungen in Wellenlängenbereichen von 340 nm, 355 nm, 365 nm, 370 nm 375 nm und 385 nm das Maximum der Fluoreszenz (I_{rel}) während einer Emission von 435 nm erreicht wurde (Rohdaten siehe Anhang). Insgesamt betrachtet wurde die stärkste relative Fluoreszenzintensität von 743 I_{rel} bei einer Exzitation von 355 nm in einem Emissionsbereich von 435 nm gemessen. Dieser Wert beträgt nur ca. 16 % der maximalen Intensität, die in der Interphase U ermittelt wurde, wobei hier die Anregungswellenlänge 370 nm betragen hat.

Zweite Gradientenultrazentrifugation:

Nach der ersten Gradientenultrazentrifugation wurden die Interphasen erneut durch eine weitere aufgereinigt, wobei nun Tubes einzeln mit den Interphasen DB, U und D geladen wurden (Abbildung 5; 2.2.1.1). Nach diesem Zentrifugationsschritt erfolgte nochmals ein Fluoreszenz-3D-Scan der Interphase U und der Interphase D mit 100 µL der jeweiligen

Probe. Auf die Darstellung der Fluoreszenzergebnisse der Phase DB wurde im Folgenden verzichtet, da diese Probe nicht durch den Gradienten aufgetrennt wurde.

Abbildung 10: Graphische Darstellung des Fluoreszenz-3D-Scans der Interphase U nach der zweiten Gradientenultrazentrifugation

Die relative Fluoreszenzintensität wurde im Fluoreszenz-3D-Scan bei Anregungen mit 325 nm bis 385 nm in einem Emissionsbereich zwischen 400 nm und 500 nm detektiert. Unter einer Anregung mit 370 nm bei einer Emission von 435 nm entwickelte sich die stärkste relative Fluoreszenzintensität von 2854 I_{rel} (Rohdaten siehe Anhang).

Bei Exzitationen mit den Wellenlängen von 325 nm bis 340 nm entwickelte sich ein relatives Fluoreszenzmaximum in einem Emissionsbereich von 430 nm, wohingegen durch Exzitationen mit 355 nm, 365 nm, 370 nm, 375 nm und 385 nm ein Maximum der Fluoreszenz unter einer Emission von 435 nm erreicht wurde (Rohdaten siehe Anhang). Im Vergleich wurde die stärkste relative Fluoreszenzintensität von 2854 I_{rel} bei einer Exzitation mit Wellenlängen von 355 nm in einem Emissionsbereich von 435 nm detektiert (Abbildung 10). Dies entspricht ca. 60 % der Intensität der Interphase U während des ersten Fluoreszenz-3D-Scans. Der Fluoreszenz-3D-Scan der Interphase D nach der zweiten Dichtegradientenzentrifugation ergab undulierende Kurvenverläufe bei Anregungen mit Wellenlängen zwischen 325 nm und 385 nm, welche mehrere Amplituden im Emissionsbereich von 400 nm bis 450 nm zeigten (Abbildung 11).

Durch eine Exzitation von 375 nm kristallisierte sich bei einer Emission von 420 nm ein relatives Fluoreszenzmaximum von 43 I_{rel} heraus, gefolgt von einem erneuten Anstieg der Emission bei 440 nm auf eine Intensität von 27.

Abbildung 11: Graphische Darstellung des Fluoreszenz-3D-Scans der Interphase D nach der zweiten Gradientenultrazentrifugation

Die Messung der relativen Fluoreszenzintensität erfolgte mittels Exzitationen mit Wellenlängen zwischen 325 nm und 385 nm, wobei ein Emissionsbereich zwischen 400 nm und 500 nm detektiert wurde. Ein Maximum der relativen Fluoreszenzaktivität von 47 I_{rel} wurde durch die Anregung mit Licht einer Wellenlänge von 375 nm unter einer Emission von 430 nm erreicht, wobei der Kurvenverlauf jedoch eine weitere, aber niedrigere Amplitude aufweist. Insgesamt ergeben die gemessenen Intensitätswerte I_{rel} der restlichen Anregungen ebenfalls einen undulatorischen Kurvenverlauf bei insgesamt geringen Fluoreszenzintensitäten (Rohdaten siehe Anhang).

Das zweite relative Fluoreszenzmaximum unter einer Anregung von 370 nm in einem Emissionsbereich von 430 nm erreichte 36 I_{rel}. Insgesamt wurden unter stark schwankenden Kurvenverläufen nur sehr geringe relative Fluoreszenzintensitäten gemessen (Rohdaten siehe Anhang 6.1.).

3.1.2. Isolierung des Lipofuszins der Ratte

Das Gehirnhomogenat ebenfalls Ratten wurde durch von eine Dichtegradientenzentrifugation aufgereinigt. Im Unterschied den zu humanen Gehirnproben, die zuvor bei -80 °C verwahrt worden waren, wurden die Versuchtiere erst unmittelbar vor dem Versuch getötet. Ein weiterer Unterschied bestand darin, dass bei dem humanen Versuch ausschließlich der Temporalkortex verwendet worden ist, wohingegen beim Tierversuch das Rattengehirn im Ganzen und fünf Gehirne gepoolt eingesetzt worden sind.

Abbildung 12: Schema A: Schematische Darstellung des Zentrifugationstubes im Ratten-Experiment Schema B: Schematische Darstellung des Zentrifugationstubes im humanen Experiment

Schema A: Der Dichtegradient bestand aus fünf vom Boden aufsteigenden Dichtestufen (1,6 M, 1,5 M, 1,4 M, 1,2 M und 1,0 M Sucrose-VRL Puffer), auf welchem die Probe geladen wurde. Zwischen 1,0 M und 1,2 M Sucrose-VRL Puffer sammelte sich die Interphase B. Eine Konzentrationsstufe darunter befand sich die Interphase HB zwischen 1,2 M und 1,4 M Sucrose-VRL Puffer.

Schema B: Im humanen Experiment sammelte sich ebenfalls eine Interphase sowohl zwischen 1,0 M und 1,2 M Sucrose-VRL Puffer als auch zwischen 1,2 M und 1,4 M Sucrose-VRL Puffer. Zusätzlich konnte in diesem Versuch auch eine Phase DB identifiziert werden, welche sich oberhalb des Gradienten zwischen dem Probenpuffer und 1,0 M Sucrose-VRL Puffer sammelte.

Nach der Dichtegradientenzentrifugation ergaben sich zwei Interphasen. Interphase B zwischen 1,0 M und 1,2 M Sucrose-VRL Puffer und Interphase HB zwischen 1,2 M und 1,4 M Sucrose-VRL Puffer. Eine Phase zwischen dem Probenpuffer und dem obersten Gradienten, wie in der humanen Probe, existierte nicht (Abbildung 12). Folgend wird auf die Darstellung der Fluoreszenzwerte der ersten Dichtegradientenzentrifugation verzichtet und stattdessen direkt die Resultate der zweiten Aufreinigung beschrieben, da diese die finalen und relevanten Ergebnisse der Interphasen, für weitere Analysen, darstellen.

Zweite Gradientenultrazentrifugation

Bei dem Fluoreszenz-3D-Scan wurde die Probe mit Licht in einem Wellenlängenbereich zwischen 360 nm und 390 nm angeregt sowie die relative Fluoreszenzaktivität bei Emissionen zwischen 420 nm und 500 nm gemessen. Der Scan der Interphase B nach der zweiten Dichtegradientenzentrifugation zeigte, dass alle Anregungen im Bereich von 360 nm bis 390 nm ein Maximum der relativen Fluoreszenzintensität (I_{rel}) bei einer Emission von 435 nm entwickelten und insgesamt einen homogen Kurvenverlauf aufwiesen (Abbildung 13). Insgesamt wurde die stärkste Fluoreszenzintensität von 5099 I_{rel} während einer Exzitation mit 375 nm in einem Emissionsbereich von 435 nm gemessen (Rohdaten siehe Anhang).

Abbildung 13: Graphische Darstellung des Fluoreszenz-3D-Scans der Interphase B nach der zweiten Gradientenultrazentrifugation

Im Fluoreszenz-3D-Scan wurde die relative Fluoreszenzintensität bei Anregungen mit 360 nm bis 390 nm in einem Emissionsbereich zwischen 420 nm und 500 nm gemessen. Die stärkste relative Fluoreszenzintensität von 5099 I_{rel} entwickelte sich unter einer Anregung mit 375 nm während einer Emission von 435 nm (Rohdaten siehe Anhang).

Der Fluoreszenz-3D-Scan der Interphase HB (zwischen 1,2 M und 1,4 M Sucrose-VRL Puffer) zeigte bei Exzitationen von 360 nm, 365 nm, 370 nm, 380 nm und 385 nm ein relatives Fluoreszenzmaximum in einem Emissionsbereich von 435 nm, wohingegen durch Exzitationen mit 375 nm und 390 nm ein Maximum der Fluoreszenz während einer Emission von 440 nm erreicht wurde (Abbildung 14). Im Vergleich wurde die stärkste relative Fluoreszenzintensität von 2494 I_{rel} bei einer Exzitation mit einer Wellenlänge von 375 nm in einem Emissionsbereich von 440 nm detektiert (Rohdaten siehe Anhang).

Abbildung 14: Graphische Darstellung des Fluoreszenz-3D-Scans der Interphase HB nach der zweiten Gradientenultrazentrifugation

Die relative Fluoreszenzintensität wurde im Fluoreszenz-3D-Scan bei Anregungen mit 360 nm bis 390 nm in einem Emissionsbereich zwischen 420 nm und 500 nm detektiert. Unter einer Anregung mit 375 nm während einer Emission von 440 nm entwickelte sich die stärkste relative Fluoreszenzintensität von 2494 I_{rel} (Rohdaten siehe Anhang).

Die stärkste Fluoreszenzintensität der Interphase HB entsprach ca. 49 % der stärksten Fluoreszenzintensität der Interphase B, wodurch sich zeigte, dass die Interphase B den höheren Lipofuszingehalt beinhaltete.

Der Vergleich der Fluoreszenzergebnisse der jeweiligen Lipofuszin-haltigen Interphasen von Mensch und Ratte weist mehrere Ähnlichkeiten auf. Bei beiden Experimenten wird die stärkste Fluoreszenzintensität zwischen 1,0 M und 1,2 M Sucrose-VRL Puffer detektiert. Der Wellenlängenbereich, welcher der Fluoreszenz zugrunde lag, war ebenfalls annährend gleich (Abbildung 15). Dabei wurde im humanen Experiment die stärkste Intensität unter einer Anregung von 370 nm und einer Emission von 435 nm gemessen, während das Maximum der Fluoreszenzintensität im Rattenexperiment unter einer Anregung von 375 nm und einer Emission von 440 nm erreicht wurde. Hierbei zeigte die humane Probe mit 2854 I_{rel} eine stärkere Intensität als die Rattenprobe (2494 I_{rel}). Insgesamt wirkt der Kurvenverlauf im Humanexperiment heterogener als im Tierexperiment, was auf zwei mögliche Ursachen zurückzuführen ist. Zum einen wurde das Messfenster um die Exzitationen 325 nm und 340 nm größer gewählt, so dass

dadurch auch schwächere Fluoreszenzintensität dargestellt wurden, welche im Tierversuch fehlten. Zum anderen wurde im Tierversuch frisches postmortem Gewebe eingesetzt, während das humane Gewebe eine längere postmortem Zeit erfahren hatte, bis es eingefroren und der postmortem Zellzerfall verlangsamt wurde.

Abbildung 15: Vergleich der Fluoreszenz-3D-Scans von Mensch und Ratte (nach der zweiten Gradientenultrazentrifugation)

In beiden Proben wurde ein nahezu gleiches Maximum der Fluoreszenzintensität detektiert. Während im humanen Experiment die stärkste Intensität unter einer Anregung von 370 nm und einer Emission von 435 nm gemessen wurde, kristallisierte sich das Maximum im Rattenexperiment unter einer Anregung von 375 nm und einer Emission von 440 nm heraus. Hierbei zeigte die humane Probe mit 2854 I_{rel} eine stärkere Intensität als die Rattenprobe (2494 I_{rel}).

3.1.3. Analyse der humanen Lipofuszinprobe auf Zellbestandteile mittels Western Blot/Immunblot

Zur Analyse der humanen Lipofuszin-haltigen Interphasen U wurden Immunblots zur Detektion der Proteine Lamp I, LC 3 und Annexin VI angefertigt. Neben der Interphase U wurden zur Überprüfung ebenfalls das Homogenat (H), das Pellet nach der ersten Zentrifugation (P1), der Überstand nach der zweiten Zentrifugation (S2) sowie die Interphase DB aufgetragen. Die Proben H, P1, S2 wurden zuvor zu einer 5 %igen Lösung verdünnt. Die Interphasen DB und U wurden auf das Originalvolumen der Gehirnprobe verdünnt.

Lamp I ist ein lysosomales Membranprotein mit einem Gewicht von 110 kDa. Die Immunfärbung der verschiedenen Interphasen mit dem Antikörper mouse-anti-Lamp I zeigte, dass im erwarteten Bereich von 110 kDa ein deutliches Signal bei den Proben H und P2 zu finden war, während im Überstand S2 nur ein äußerst schwaches Signal detektierbar war. Im Gegensatz dazu wiesen die beiden Interphasen DB und U keine Bindung des Antikörpers auf, was darauf hindeutete, dass diese Fraktionen frei von dem lysosomalen Membranbestandteil Glykoprotein Lamp I waren (Abbildung 16).

Das autophagosomale Markerprotein LC 3 konnte mit Hilfe des Antikörpers rabbit-anti-LC 3 ebenfalls in den Proben H, P1 und S2 in Höhe von 16 kDa nachgewiesen werden, wobei auch hier kein Signal in den beiden Proben DB und U detektiert werden konnte (Abbildung 17). Dies führte zu der Schlussfolgerung, dass LC 3 in diesen Fraktionen nicht enthalten war.

Abbildung 17: Immunblot mit einem Antikörper gegen LC 3 (16 kDa) In Höhe von 16 kDa waren in den Proben H, P1 und S2 distinkte Banden zu identifizieren. Die Probe DB und U zeigten dagegen kein Signal, wodurch ersichtlich wurde, dass diese kein LC 3 enthielten.

Annexin VI ist ein Calcium-abhängiges Membranprotein mit einer Molekülmasse von 70 kDa. Annexin VI konnte in allen Fraktionen mit Hilfe des Antikörpers mouse-anti-Annexin VI in der charakteristischen Höhe detektiert werden (Abbildung 18), wobei die Proben H, P1, S2 die stärksten Signale aufwiesen.

Abbildung 18: Immunblot mit einem Antikörper gegen Annexin VI (70 kDa) In Höhe von 70 kDa waren in allen Proben distinkte Banden zu identifizieren, welche durch die Antikörperbindung an Annexin VI hervorgerufen wurden. In den Proben H, P1 und S2 waren diese Banden stärker ausgeprägt als in den Proben DB und U.

Die Proben DB und U zeigten dagegen nur schwache Banden. Das Membranprotein wurde auch bei der Massenspektrometrie als Bestandteil von Lipofuszin identifiziert. Es lässt sich zusammenfassen, dass in der Lipofuszinprobe ausschließlich Annexin VI identifiziert wurde. Dagegen wurde LC 3 und Lamp 1 nur in den Proben H, P1 und S2 identifiziert.

3.1.4. SDS PAGE und massenspektrometrische Analyse des Lipofuszins

Für die massenspektrometrische Analyse wurde ein Teil der aufgereinigten humanen Lipofuszinprobe sowie ein Teil der Lipofuszinprobe der Ratten (2.2.1.1) durch SDS PAGE aufgetrennt und im Anschluss mit *Colloidal Blue* gefärbt.

Beide Lanes zeigten viele distinkte Proteinbanden (Abbildung 19). Hierbei waren Banden im Bereich zwischen ca. 170 kDa und 200 kDa sowie zwischen 40 kDa und 55 kDa am stärksten angefärbt, was auf einen hohen Proteingehalt schließen ließ. Beide Lanes wurde in 35 1-2 mm große Rechtecke geschnitten, welche sich in ihrer Größe am Bandenmuster orientierten. Die massenspektrometrische Analyse des humanen Lipofuszins zeigte 273 verschiedene Proteine (6.2. Anhang) und 173 Proteine konnten im Lipofuszin der Ratte identifiziert werden (6.3. Anhang).

Abbildung 19: Darstellung der aufgereinigten Lipofuszinprobe nach SDS PAGE und anschließender *Colloidal Blue* Färbung

Darstellung des gefärbten Gels mit den Proben von Mensch und Ratte. Beide Lanes zeigten in Höhe von 40-55 kDa sowie in Höhe von 170-200 kDa deutliche Proteinbanden.

Im Rahmen einer subzellulären Analyse wurden die massenspektrometrisch ermittelten Proteine in folgende Kompartimente eingeteilt:

Zytoplasma, Plasmamembran, Mitochondrium, Zytoskelett, Endoplasmatisches Retikulum, Nucleus und Endosom/Lysosom. Proteine, die sich nicht zu diesen Kompartimenten zuordnen ließen, wurden unter "sonstige Proteine" aufgeführt. Die subzelluläre Analyse wurde mit Hilfe der *UniProt (universal protein) Knowledgebase* (http://uniprot.org/), die größte bioinformatische Datenbank für Proteine, durchgeführt.

Die subzelluläre Analyse der humanen Lipofuszinprobe ergab, dass 84 zytoplasmatische Proteine (30,8 %) den größten Anteil ausmachten.

Mitochondriale Proteine waren mit 69 (25,3 %) und Membran-/Plasmamembranproteine mit 60 Stück (22 %) vertreten. 30 Proteine gehörten zum Zytoskelett (11,0 %) und 7 Proteine zum Endoplasmatischen Retikulum (2,6 %) sowie 6 Proteine zum Nucleus (2,2 %). Dem Endosom/ Lysosom konnten 3 Proteine (1,1 %) zugeordnet werden und 14 Proteine (5,1 %) konnten keiner der genannten Strukturen zugeteilt werden (Abbildung 20).

Insgesamt wurden durch die Massenspektrometrie 273 Proteine in der humanen Lipofuszinprobe identifiziert. Die größte Menge bildeten 84 Zytoplasma-assoziierte Proteine (30,8 %), gefolgt von 69 mitochondrialen Proteinen (25,3 %) und 60 Proteinen der Plasmamembran (22 %). Zum Zytoskelett gehörten 30 Proteine (11,0 %) sowie 7 Proteine zum Endoplasmatischen Retikulum (2,6 %) und 6 Proteine zum Nucleus (2,2 %). 3 Proteine waren dem Endosom/Lysosom (1,1 %) zugeordnet und 14 konnten keiner der genannten Strukturen zugeteilt werden (5,1 %).

Die Ergebnisse der massenspektrometrischen Analyse der Rattenprobe ergaben 173 sicher identifizierte Proteine (6.3 Anhang). Die subzelluläre Analyse ergab, dass das Kompartiment Plasmamembran mit 54 Proteinen (31,2 %) den größten Anteil ausmachte. Daneben konnten 48 zytoplasmatische Proteine (27,7 %) und 43 mitochondriale Proteine (24,9 %) identifiziert werden.

Zum Zytoskelett gehörten 15 Proteine (8,7 %) und zum Endoplasmatischen Retikulum 3 Proteine (1,7 %). Proteine des Nucleus waren mit 3 Stück (1,7 %) vertreten und ein Protein wurde dem Endosom/Lysosom (0,6 %) zugeordnet (Abbildung 21). Weitere 6 Proteine gehörten keinem der genannten Kompartimente an (3,5 %).

Abbildung 21: Subzelluläre Zuordnung der Proteine der Lipofuszinprobe des Rattengehirns

Insgesamt wurden durch die Massenspektrometrie 173 Proteine sicher identifiziert. Die Proteine der Plasmamembran bildeten den größten Anteil mit 54 Proteinen (31,2 %), gefolgt von 48 Proteinen des Zytoplasmas (27,7 %) und 43 mitochondrialer Proteine (24,9 %). 15 Proteine waren dem Zytoskelett (8,7 %) zugeordnet, 3 Proteine dem Endoplasmatischen Retikulum (1,7 %). 3 Proteine gehörten zum Nucleus (1,7 %) und ein Protein zum Endosom/Lysosom (0,6 %). Weitere 6 Proteine konnten keinem der genannten Kompartimente zugeordnet werden (3,5 %).

Der Vergleich der subzellulären Zuordnungen zwischen der humanen Probe und der Probe der Ratte zeigte einige Unterschiede. Während in der humanen Probe zytoplasmatische Proteine den größten Anteil (30,8 %) ausmachten, waren die Membran-/Plasmamembranproteine (31,2 %) die am stärksten vertretene Proteingruppe der Ratte. Letztere waren hingegen beim humanen Lipofuszin am dritthäufigsten zu finden (22 %). Am zweithäufigsten fanden sich im humanen Lipofuszin mitochondriale Proteine (25,3 %), welche die dritthäufigste Proteingruppe der Ratte (24,9 %) waren. Am zweithäufigsten waren bei der Ratte zytoplasmatische Proteine vertreten (27,7 %).

Die beiden Proben waren die Zytoskelett-assoziierten Proteine die vierthäufigste Proteingruppe (Mensch: 10,6 %; Ratte: 8,7 %).

Die Proteine des Endoplasmatischen Retikulums, des Nucleus und des Endosoms/Lysosoms wurden sowohl beim Menschen als auch bei der Ratte in nur geringen Mengen gefunden.

Der Vergleich zwischen den humanen Proteinen und den Proteinen der Ratten ergab, dass 46 der identifizierten Proteine bei beiden vorhanden waren. Weitere zehn Proteine standen in einem engen Zusammenhang zueinander, da es sich entweder um Vorstufen oder Isoformen eines Proteins handelte.

Folgende 46 Proteine wurden sowohl beim Menschen als auch bei der Ratte ermittelt:

	2	ugangsnummer UniProtKB:	
Nr.	Protein:	Mensch	Ratte
1)	Clathrin heavy chain	P68371	P11442
2)	Myelin proteolipid protein	P63261	P60203
3)	Actin, cytoplasmic 1	P13637	P60711
4)	Hexokinase, type I	P19367	P05708
5)	ATP synthase beta chain, mitochondrial precursor	P06576	P10719
6)	2',3'-cyclic-nucleotide 3'-phosphodiesterase	P09543	P13233
7)	Heat shock protein 86	P07900	Q6B437
8)	Aconitate hydratase, mitochondrial precursor	Q99798	Q9ER34
9)	ATP synthase alpha chain, mitochondrial precursor	P25705	P15999
10)	14-3-3 protein zeta/delta	P63104	P63102
11)	Neural cell adhesion molecule 1	P13591	P13596
12)	Sodium/potassium-transporting ATPase alpha-3 chain	Q01082	P06687
13)	Sodium/potassium-transporting ATPase alpha-1 chain precurso	P05023	P06685
14)	Dynein heavy chain, cytosolic	Q14204	P38650
15)	60 kDa heat shock protein, mitochondrial precursor	P10809	P63039
16)	Sodium/potassium-transporting ATPase alpha-2 chain precurso	r P50993	P06686
17)	Calcium/calmodulin-dependent protein kinase type II alpha chair	n Q9UQM7	P11275
18)	Synaptotagmin-1	P21579	P21707
19)	Rab GDP dissociation inhibitor alpha	P31150	P50398
20)	Amine oxidase [flavin-containing] B	P27338	P19643
21)	Beta-catenin	P35222	Q9WU82
22)	Brain acid soluble protein 1	P80723	Q05175
23)	Heat shock cognate 71 kDa protein	P11142	P63018
24)	Voltage-dependent anion-selective channel protein 1	P21796	Q9Z2L0
25)	Isocitrate dehydrogenase [NAD] subunit alpha,	P50213	Q99NA5
	mitochondrial precursor		
26)	Tubulin alpha-1 chain	P68366	P68370
27)	Fructose-bisphosphate aldolase A	P04075	P09117
28)	ATP synthase B chain, mitochondrial precursor	P24539	P19511

29)	Calcium/calmodulin-dependent protein kinase type II beta chain	Q13554	P08413
30)	Vacuolar ATP synthase subunit B, brain isoform	P21281	P62815
31)	Triosephosphate isomerase	P60174	P48500
32)	Voltage-dependent anion-selective channel protein 2	P45880	P81155
33)	Aspartate aminotransferase, mitochondrial precursor	P00505	P00507
34)	Sodium/calcium exchanger 2 precursor	Q9UPR5	P48768
35)	Malate dehydrogenase, cytoplasmic	P40925	O88989
36)	78 kDa glucose-regulated protein precursor	P11021	P06761
37)	Fructose-bisphosphate aldolase C	P09972	P09117
38)	Syntaxin-1B2	P61266	P61265
39)	Succinate dehydrogenase [ubiquinone] flavoprotein subunit,	P31040	Q920L2
	mitochondrial precursor		
40)	L-lactate dehydrogenase A chain	P00338	P04642
41)	Transketolase	P29401	P50137
42)	Calnexin precursor	P27824	P35565
43)	Prohibitin	P35232	P67779
44)	Stress-70 protein, mitochondrial precursor	P38646	P48721
45)	Pyruvate carboxylase, mitochondrial precursor	P11498	P52873
46)	Phosphoglycerate kinase 1	P00558	P16617

Folgende zehn Proteine von Mensch und Ratte stehen in einem engen Zusammenhang zueinander:

Nr.	Protein:	Zugangsnummer UniProtKB:
1) Mensch:	Excitatory amino acid transporter 2	P43004
1) Ratte:	Isoform Glt1 of Excitatory amino acid transporter 2	P31596
2) Mensch:	Excitatory amino acid transporter 1	P43003
2) Ratte:	Isoform GLAST-1 of Excitatory amino acid transporte	r 1 P24942
3) Mensch:	Glyceraldehyde-3-phosphate dehydrogenase, liver	P04406
3) Ratte:	Glyceraldehyde-3-phosphate dehydrogenase	P04797
4) Mensch:	Myelin basic protein	P63261
4) Ratte:	Myelin basic protein isoform 1	P02688
5) Mensch:	Plasma membrane calcium-transporting ATPase 1	P20020

5) Ratte:	Isoform D of Plasma membrane calcium-transporting ATPase 1	P11505
6) Mensch: 6) Ratte:	Vacuolar proton translocating ATPase 116 kDa subunit a isoform 1 Isoform I of Vacuolar proton translocating ATPase 116 kDa subunit a isoform 1	Q93050 P25286
7) Mensch:	Creatine kinase, B chain	P12277
7) Ratte:	Creatine kinase B-type	P07335
8) Mensch: 8) Ratte:	Synapsin-1 Isoform IA of Synapsin-1	P17600 P09951
9) Mensch:	Limbic system-associated membrane protein precursor	Q13449
9) Ratte:	Isoform 1 of Limbic system-associated membrane protein precursor	Q62813
10) Mensch: 10) Ratte:	Citrate synthase, mitochondrial precursor Citrate synthase	O75390 Q8VHF5

3.2. Herstellung monoklonaler Antikörper gegen Lipofuszin

Mit dem Ziel einer Fluoreszenz-unabhängigen Detektion wurden monoklonale Antikörper gegen Lipofuszin generiert.

Nach der erfolgreichen Durchführung von zwei Fusionen wurden die Hybridomazellen auf insgesamt 41 96-Well-Zellkulturplatten verteilt und durch Screenings ca. 400 Klone ermittelt. Die Screenings setzten sich aus den Methoden ELISA und ELIFA zusammen. Initial zeigten 13 Klone die gesuchten Eigenschaften, die jedoch bei Wiederholung der Screenings nicht bestätigt werden konnten. Daher wurde mit diesen Klonen nicht weitergearbeitet. Allerdings konnten drei weitere Klone identifiziert werden, welche auch bei wiederholter Überprüfung die gesuchten Charakteristika aufwiesen. Die Klone 3B9 und 6H7 entstanden dabei im Zuge der ersten Fusion, während der Klon 39F4 aus der zweiten Fusion stammte.

Für den ELIFA wurden Nitrocellulose-Membrane mit Homogenat von einem Gehirn eines alten Spenders und einem Gehirn eines jungen Spenders aufgesättigt, um so beim Screening eine altersabhängige Signaldifferenz und somit eine unterschiedliche Bindungsaffinität des Antikörpers darstellen zu können. Der ältere Gehirnspender erreichte ein Lebensalter von 64 Jahren, während der junge Gehirnspender 39 Jahre alt wurde, so dass sich daraus eine Altersdifferenz von 25 Jahren ergibt.

Da Amyloid-beta 42 ein möglicher Bestandteil von neuronalem Lipofuszin sein kann, wurden die Klone mittels ELISA auf ihre Affinität zu Amyloid-beta 42 sowie auf eine unspezifische Bindungsaffinität zu bovinen Serumalbumin getestet (Bancher, Grundke-Iqbal et al. 1989; Seehafer and Pearce 2006). Sowohl das ELISA Screening gegen Amyloid-beta 42 als auch gegen BSA wurde visuell ausgewertet, dokumentiert und im Folgenden beschrieben.

Klon 3B9:

Abbildung 22: Klon 3B9, erstes ELIFA Screening, 15 Minuten Belichtungszeit

Die Abbildung zeigt Ausschnitte des durch das Screening belichteten Röntgenfilms. Bei gleicher Belichtungszeit von 15 Minuten zeigte der Antikörper am alten Gehirn ein intensiveres Signal und damit eine höhere Bindungsaffinität als am jungen Gehirn.

Mittels ELIFA konnte gezeigt werden, dass der Klon 3B9 ein stärkeres Signal und somit eine höhere Affinität zu der Probe des alten Gehirns aufwies (Abbildung 22). Außerdem zeigte der Klon eine Affinität zu Amyloid-beta 42 im ELISA Screening.

In der zweiten ELIFA Analyse zeigte Klon 3B9 erneut ein deutlich stärkeres Bindungssignal zu der Probe des alten Gehirns im Vergleich zu der Probe des jungen Gehirns.

Abbildung 23: Klon 3B9, zweites ELIFA Screening, vier Wochen später, drei Minuten Belichtungszeit

Auch beim zweiten Screening zeigt der Antikörper 3B9 ein deutlich stärkeres Signal an der Probe des alten Gehirns im Vergleich zum jungen Gehirn bei einer kürzeren Belichtungszeit von drei Minuten.

Bei dieser Überprüfung war die Differenz in der Signalintensität sogar um einiges ausgeprägter als bei der ersten Analyse vier Wochen zuvor (Abbildung 23), obwohl die Belichtungszeit nur drei Minuten betrug.

Jedoch wies der Klon bei der Wiederholung der ELISA Analyse keine durch das gegebene System messbare Affinität zu Amyloid-beta 42 mehr auf.

Klon 6H7:

Abbildung 24: Klon 6H7, erstes ELIFA Screening, drei Minuten Belichtungszeit

Der Antikörper des Klons 6H7 zeigte mit schwachem Signal eine Bindung an der Probe des alten Gehirns, während es zu keiner Bindung am jungen Gehirn kam.

Durch die ELIFA Analyse der Antikörper des Klons 6H7 konnte nur ein schwaches Signal und somit eine geringe Affinität zu der Probe des alten Gehirns festgestellt werden, während der Antikörper 6H7 gar keine Bindungsaffinität am jungen Gehirn zeigte (Abbildung 24). Dagegen war das ELIFA Screening auf Amyloid-beta 42 positiv, ohne dass eine unspezifische Affinität zu BSA detektiert wurde.

Im zweiten ELIFA Screening konnte keine eindeutige Signaldifferenz zwischen altem und jungem Gehirn gezeigt werden (Abbildung 25). Bei der Wiederholung des ELISA konnte dagegen eine Affinität zu Amyloid-beta 42 erneut nachgewiesen werden, allerdings wurde eine unspezifische Bindungsaffinität zu BSA detektiert.

Aus diesem Grund erfolgte eine Subklonierung des Klons, aus der acht differenzierbare Subklone hervorgingen.

Abbildung 25: Klon 6H7, zweites ELIFA Screening, ca. zwei Wochen später, 30 Sekunden Belichtungszeit

In dem zweiten Screening wurde der Antikörper direkt zweimal nebeneinander sowohl auf die Probe des jungen Gehirns (D5, D6) als auch auf die Probe des alten Gehirns (D5, D6) aufgetragen. Der Antikörper band an beiden Proben, jedoch zeigte das Signal und damit die Bindungsaffinität des Antikörpers des Klons 6H7 keine eindeutige Diskrepanz zwischen der Probe des jungen und des alten Gehirns bei einer schwachen Signalstärke.

Dabei wurden die Subklone mit einer starken Affinität zu BSA und/oder einer schwachen Affinität zu Amyloid-beta 42 verworfen.

Subklon 6H7 G10:

Abbildung 26: Subklon 6H7 G10, erstes ELIFA Screening, drei Minuten Belichtungszeit Der Antikörper des Subklons 6H7 G10 zeigte weder zur Probe des alten noch zur Probe des jungen Gehirns eine Affinität.

Der Subklon 6H7 G10 (Abbildung 26) entwickelte im ELIFA sowohl am alten als auch am jungen Gehirn kein Signal. Das ELISA Screening zeigte dagegen weiterhin eine Affinität des Antikörpers gegen das Antigen Amyloid-beta 42 bei leichter Bindungsaffinität zu BSA. Das zweite Screening des Subklons G10 (Abbildung 27) zeigte eine Bindung gleicher Intensität des Antikörpers am jungen und am alten Gehirn.

Abbildung 27: Klon 6H7 Subklon G10, zweites ELIFA Screening, drei Minuten Belichtungszeit

In dem zweiten Screening wurde der Antikörper direkt zweimal nebeneinander sowohl auf die Probe des jungen Gehirns (B 2, B3) als auch auf die Probe des alten Gehirns (B8, B9) aufgetragen. Bei beiden Proben ist ein Signal zuerkennen, jedoch ohne eindeutige Signaldifferenz zwischen alt und jung.

Somit gab es keine höhere Bindungsaffinität des Antikörpers am alten Gehirn. Das ELISA Screening blieb weiterhin positiv, jedoch war keine unspezifische Bindungsaffinität am BSA vorhanden.

Klon 39F4

Abbildung 28: Klon 39F4, erstes ELIFA Screening, 15 Minuten Belichtungszeit Der Klon 39F4 zeigte im ELIFA Screening nach 15 Minuten Belichtung ein schwaches Signal an der Probe des alten Gehirns und gar kein Signal an der Probe des jungen Gehirns.

Das ELIFA Screening des Klons 39F4 (Abbildung 28) ergab nach 15 Minuten Belichtung nur ein schwaches Signal bei der Probe des alten Gehirns, während bei der Probe des jungen Gehirns kein Signal nachgewiesen werden konnte. Dagegen war das ELISA Screening auf Amyloid-beta 42 positiv und zeigte eine starke Affinität ohne unspezifische Affinität zu BSA.

Zwei Wochen später zeigte der Klon im zweiten Screening eine starke Affinität zur Probe des alten Gehirns bei kürzerer Belichtungszeit von drei Minuten, wohingegen das Signal an der Probe des jungen Gehirns nur leicht zunahm (Abbildung 29). Zudem behielt Klon 39F4 seine Affinität zu Amyloid-beta 42 im ELISA Screening.

Abbildung 29: Klon 39F4, zweites ELIFA Screening, zwei Wochen später, drei Minuten Belichtungszeit

Nach drei Minuten Belichtungszeit wiesen beiden Proben ein Signal auf. Dieses war an der Probe des alten Gehirns deutlich intensiver als am jungen Gehirn.

Zusammenfassend lässt sich feststellen, dass der Antikörper des Klons 3B9 im ELIFA ein stärkeres Signal und somit eine stärkere Bindungsaffinität am alten Gehirn zeigte. Dagegen hatte der Klon 6H7 ausschließlich eine Affinität zu Amyloid-beta 42, die sich beim zweiten Screening auch an BSA zeigte. Aus diesem Grund wurde Klon 6H7 subkloniert, wobei dessen Subklon 6H7 G10 eine Affinität zu Amyloid-beta 42 aufwies. Zusätzlich bestand im ersten Screening eine schwache Affinität zu BSA, welche im zweiten Screening nicht mehr nachweisbar war. Die Bindungsaffinität an Amyloid-beta 42 blieb unverändert. Der Klon 39F4 hingegen verfügte über beide Eigenschaften der zuvor genannten Klone. Es bestand sowohl eine erhöhte Affinität zu älteren Gehirnhomogenat als auch eine Bindung an Amyloid-beta 42.

3.3. Analyse von Proteinaggregaten im Verlauf des physiologischen Alterns mittels ICAT

Die aufgereinigten aggregierten Proteine (2.2.3.1) wurden mittels ICAT markiert. Die Proteine entstammten aus dem Gehirnhomogenat von drei und 22 Monate alten Mäusen. Nach der Aufreinigung war schon makroskopisch ersichtlich, dass das Proteinpellet der älteren Mäuse, verglichen mit dem der jüngeren Mäuse, um ein Drittel größer war. Da die Gehirne der alten und der jungen Mäuse zu einer 10 %igen Lösung homogenisiert worden waren und anschließend das gleiche Volumen jeder Tiergruppe für den Versuch verwendet worden ist, zeigte die Mengendifferenz einen altersabhängigen Unterschied. Durch die ICAT-Methode ist es auch massenspektrometrisch möglich, unterschiedliche Quantitäten eines identischen Proteins in zwei Proben zu detektieren. Diese quantitative Aussage ist eine relative Angabe, da dieses Verfahren nicht in der Lage ist, absolute Werte zu generieren.

3.3.1. SDS PAGE und massenspektrometrische Analyse der Aggregate

Die massenspektrometrische Untersuchung der aggregierten Proteinproben, die aufgereinigt, durch das ICAT Reagenz gelabelt und mittels SDS PAGE aufgetrennt worden waren (2.2.3.2), ergab qualitativ sowie quantitativ interessante Ergebnisse.

Abbildung 30: Darstellung der nach SDS PAGE aufgetrennten und mit *Colloidal Blue* gefärbten Proteinproben

Die Proben wurde im Gel bei 90 V ca. 1,5 cm aufgetrennt. Die Laufspur wurde in 16 1-2 mm dicke Banden geschnitten (1-16), welche im Anschluss massenspektrometrisch untersucht wurden. Alle drei Lanes zeigten Banden im Bereich von 200 kDa, 160 kDa sowie zwischen 40 kDa und 70 kDa. Im ersten Vergleich (mittlere Laufspur) wurde die Probe der alten und der jungen Wildtyp Mäusen verglichen. Im zweiten Vergleich (linke Laufspur) wurde die Probe der alten und der alten und der jungen PrP^c-ko Mäusen verglichen. Der dritte Vergleich (rechte Laufspur) beinhaltete die Gegenüberstellung der Probe der alten PrP^c-ko Mäuse und der alten Wildtyp Mäuse.

In der Abbildung 30 ist das mittels SDS PAGE aufgetrennte und mit *Colloidal Blue* gefärbte Gel zu sehen, mit den Proben der folgende Vergleiche:

Im ersten Vergleich wurde die Probe der alten und der jungen Wildtyp Mäuse, beim zweiten Vergleich die Probe der alten und der jungen PrP^c-ko Mäuse sowie beim dritten Vergleich die Probe der alten Wildtyp und der alten PrP^c-ko Mäusen verglichen.

In den drei Lanes waren mehrere distinkte Banden in gleicher Höhe zu erkennen, wobei die ausgeprägtesten Banden im Bereich von 200 kDa und 160 kDa sowie zwischen 40 kDa und 70 kDa zu finden waren (Abbildung 30).

Die im Anschluss durchgeführte qualitative massenspektrometrische Untersuchung im Zuge des ICAT Protokolls identifizierte bei dem ersten Vergleich der alten Wildtyp Mäuse mit den jungen Wildtyp Mäusen, dass NF-H, NF-M, NF-L, Alpha-Internexin und GFAP in den aufgereinigten Proteinproben enthalten waren und dies in Höhe der distinkten Banden des Gels.

Abbildung 31: Ergebnisse der quantitativen ICAT Analyse: Vergleich der alten Wildtyp Mäuse mit den jungen Wildtyp Mäusen

Durch die ICAT Analyse konnten fünf verschiedene Intermediärfilamente massenspektrometrisch identifiziert werden. NF-H und Alpha-Internexin waren bei den alten Wildtyp Mäusen, verglichen mit den jungen, in doppelter Menge vorhanden. NF-M wurde in einer 1,4-mal und NF-L in einer 1,9-mal höheren Menge bei den alten Wildtyp Mäusen nachgewiesen. Das Intermediärfilament GFAP war sogar in einer 4,8-mal höheren Konzentration in der Probe der alten Mäuse enthalten.

Die nachgewiesenen Proteine gehören alle zu der Klasse der zytoplasmatischen Intermediärfilamente und sind wichtige Bestandteile des Zytoskeletts von Neuronen sowie Gliazellen.

Dabei zeigte die Analyse, dass die neuronalen Intermediärfilamente wie NF-H, NF-L und Alpha-Internexin, bei den älteren Wildtyp Mäusen verglichen mit den jüngeren Mäusen, vermehrt auftraten. Sowohl NF-H als auch Alpha-Internexin wurden in einer doppelt so hohen Menge bei den älteren Versuchstieren gefunden (Abbildung 31). Ebenso zeigte sich, dass das NF-M bei den älteren Wildtyp Mäusen, verglichen mit den jungen Mäusen, in einer 1,4-mal und das NF-L in einer 1,9-mal höheren Konzentration zu finden waren.

Der größte Mengenunterschied konnte jedoch bei dem Protein GFAP festgestellt werden, welches überwiegend in Astrozyten zu finden ist. Hier zeigte sich, dass bei den alten Mäusen, verglichen mit den jungen Versuchstieren, fast fünfmal mehr GFAP im Gehirngewebe vorhanden war (4,8 : 1).

In der massenspektrometrischen Untersuchung der alten und jungen PrP^c-ko Mäuse wurden die gleichen Proteine, mit Ausnahme des NF-M, identifiziert. Interessanterweise verhielten sich die Mengenverhältnisse anders.

Hierbei zeigten die quantitativen Ergebnisse, dass die neuronalen Intermediärfilamente wie NF-H, NF-L und Alpha-Internexin bei den älteren PrP^c-ko Mäusen, verglichen mit den jüngeren Mäusen, in einem ähnlichen Verhältnis auftraten (Abbildung 32). Die alten PrP^c-ko Mäuse hatten, verglichen mit den jungen PrP^c-ko Mäusen, geringfügig (10 %) weniger NF-H (0,9 : 1), NF-L (0,9 : 1) und Alpha-Internexin (0,9 : 1), was keine signifikante Differenz darstellte.

Dagegen zeigte das astrozytäre Intermediärfilament GFAP bei den älteren PrP^c-ko Mäusen eine um den Faktor vier erhöhte Akkumulation (4 : 1) (Abbildung 32). GFAP war somit das einzige Protein der PrP^c-ko Mäuse, bei dem eine altersabhängige Akkumulation gezeigt wurde.

Abbildung 32: Ergebnisse der quantitativen ICAT Analyse: Vergleich der alten PrP^c-ko Mäuse mit den jungen PrP^c-ko Mäusen

Durch die ICAT Analyse konnten vier verschiedene Intermediärfilamente massenspektrometrisch identifiziert werden. NF-H, NF-L und Alpha-Internexin waren bei den alten PrP^c-ko Mäusen, verglichen mit den jungen, in ähnlichen Mengen vorhanden, welche sich lediglich um 10 % unterschieden. Im Gegensatz dazu war das astrozytäre Intermediärfilament GFAP in einer viermal höheren Konzentration bei den alten PrP^c-ko Mäusen enthalten.

Die dritte massenspektrometrische Untersuchung beinhaltete den Vergleich zwischen den alten Wildtyp Mäusen und den alten PrP^c-ko Mäusen, indem sechs Proteine identifiziert wurden: NF-H, Spektrin, NF-L, Alpha-Internexin, Vimentin und GFAP.

NF-H wurde 39 % und das NF-L 18 % weniger bei den alten PrP^c-ko Mäusen, verglichen mit dem Wildtyp, gefunden. Bei den gleichen Mäusen konnte ebenfalls Spektrin in einer um 59 % und Alpha-Internexin in einer um 44 % geringeren Menge identifiziert werden.

Dagegen besaßen die alten PrP^c-ko Mäuse 1,35-mal mehr Vimentin in ihrer Probe als die alten Wildtyp Mäuse. Das Intermediärfilament GFAP wurde interessanterweise bei Wildtyp und PrP^c-ko Mäusen in einer nahezu gleichen Menge gefunden (Abbildung 33).

Abbildung 33: Ergebnisse der quantitativen ICAT Analyse: Vergleich der alten PrP^c-ko Mäuse mit den alten Wildtyp Mäusen

Durch die ICAT Analyse konnten sechs verschiedene Intermediärfilamente massenspektrometrisch identifiziert werden. NF-H wurde in einer um 39 % und NF-L in einer um 18 % verminderten Menge bei den alten PrP^c-ko Mäusen gefunden. Spektrin war ebenfalls um 59 % geringer und Alpha-Internexin um 44 % geringer in der Probe der PrP^c-ko Mäuse enthalten. Im Gegensatz dazu war Vimentin 1,35-mal mehr bei den alten PrP^c-ko Mäusen vorhanden, während es bei GFAP ein nahezu ausgeglichenes Verhältnis zwischen den alten PrP^c-ko und den alten Wildtyp Mäusen gab.

Zusammenfassend lässt sich feststellen, dass die ermittelten Intermediärfilamente (NF-H, NF- M, NF-L, Alpha-Internexin und GFAP) bei den alten Wildtyp Mäusen, verglichen mit den jungen, in einer größeren Mengen vorhanden waren. Interessanterweise war bei den PrP^c-ko Mäusen GFAP das einzige Protein, welches vermehrt bei den alten Mäusen gefunden wurde. Dagegen zeigte sich bei NF-H, NF-L und Alpha-Internexin, dass diese Intermediärfilamente in einer ähnlichen Menge bei alten und jungen PrP^c-ko Mäusen enthalten waren, mit Ausnahme von NF-M, welches in der Probe nicht nachgewiesen wurde.

Der Vergleich der alten Wildtyp Mäuse mit den alten PrP^c-ko Mäusen zeigte, dass NF-H, NF-L, Alpha-Internexin und Spektrin vermehrt bei den Wildtyp Mäusen zu finden waren. Dagegen verfügten die alten PrP^c-ko Mäuse über mehr Vimentin. Das astrozytäre Intermediärfilament GFAP hingegen war in beiden Gruppen in einer ähnlichen Menge enthalten.

3.3.2. Überprüfung der ICAT Resultate mittels Western Blot/ Immunblot

Zur Bestätigung der qualitativen und quantitativen massenspektrometrischen Analyse der aggregierten Proteine wurden Immunblots angefertigt und auf ihren Gehalt an GFAP getestet.

Als Probe wurden erneut die Gehirne von jungen und alten Wildtyp Mäusen sowie jungen und alten PrP^c-ko Mäusen aufgereinigt. Im Unterschied zur vorhergegangenen Aufreinigung wurden jedoch keine gepoolten Gehirne verwendet, sondern jedes Gehirn einzeln verarbeitet. Die Gehirne wurden einzeln zu 10 %igen Homogenaten verarbeitet. Für die Aufreinigung wurde das gleiche Volumen jedes Homogenats verwendet.

Es wurden Gehirne von vier jungen (J1-J4) und fünf alten (A1-A5) Wildtyp Mäusen sowie Gehirne von vier jungen (J1-J4) und vier alten (A1-A4) PrP^c-ko Mäusen eingesetzt.

Im Immunblot waren im Bereich von 55 kDa in allen Proben der jungen (J1-J4) und alten (A1-A5) Wildtyp Mäuse Banden zu erkennen, die das Protein GFAP repräsentierten. Der Vergleich zwischen alt und jung ergab, dass die Banden bei den älteren Mäusen deutlich stärker ausgeprägt waren.

Die Immunfärbung der Proben der alten und jungen Wildtyp Mäuse mit dem Antikörper gegen GFAP zeigte, dass in dem erwarteten Bereich von 55 kDa bei allen Proben ein Signal vorhanden war (Abbildung 34). Der Vergleich zwischen den Proben junger und alter Mäuse zeigte deutlich, dass sich das Signal bei den Proben der alten Wildtyp Mäuse (A1 – A5) deutlich stärker abbildete.

Interessanterweise ist dieser Unterschied der Signalintensität auch bei den Proben der PrP^c-ko Mäuse zu erkennen, die durch einen Antikörper auf ihren Gehalt an GFAP analysiert wurden. Hierbei zeigten die alten PrP^c-ko Mäuse ein deutliches Signal, wohingegen die jungen PrP^c-ko Mäuse kein Signal in der charakteristischen Höhe von 55 kDa des GFAPs aufwiesen (Abbildung 35).

Abbildung 35: Proben PrP^c-ko Mäuse (vier alte und vier junge) - Immunblot mit einem Antikörper gegen GFAP (55 kDa)

Der Immunblot mit den Proben der alten und jungen PrP^c-ko Mäuse zeigte bei den alten Mäusen (A1-A4) Banden im Bereich von 55 kDa, die durch die Antikörperbindung an das Protein GFAP entstanden. Es erfolgte jedoch keine Bindung an die Proben der jüngeren Mäuse (J1-J4). GFAP lies sich demnach nicht nachweisen.

Das quantitative massenspektrometrische Ergebnis der Wildtyp Mäuse, bei dem die alten Mäuse 4,8-mal mehr GFAP aufwiesen als die jungen Mäuse, bestätigte sich durch den Immunblot. Die alten PrP^c-ko Mäuse zeigten in der Massenspektrometrie viermal mehr GFAP als die jungen Mäuse, wobei dieser Mengenunterschied zugunsten der alten PrP^c-ko Mäuse ebenfalls im Immunblot dargestellt wurde.

Neben den Immunblots mit einem Antikörper gegen GFAP wurden auch Antikörper gegen Alpha-Internexin und NF-H eingesetzt (ohne Abbildung), welche jedoch zu widersprüchlichen Ergebnissen führten. Die Immunfärbung mit einem Antikörper gegen Alpha-Internexin bestätigte das massenspektrometrische Ergebnis der Wildtyp Mäuse, da eine erhöhte Menge an diesem Protein bei den alten Wildtyp Mäusen festgestellt wurde. Jedoch zeigten auch die PrP^c-ko Mäuse im Immunblot ein vermehrtes Auftreten von Alpha-Internexin, was den Ergebnissen der quantitativen Massenspektrometrie widerspricht.

Die Immunfärbung mit einem Antikörper gegen NF-H ergab bei den Proben der PrP^c-ko Mäuse ein ähnliches Resultat. Die alten PrP^c-ko Mäuse wiesen, verglichen mit den jungen PrP^c-ko Mäusen, vermehrt NF-H auf. Die massenspektrometrischen Ergebnisse zeigten jedoch keine deutliche Mengendifferenz. Dagegen wiesen die Proben der alten und jungen Wildtyp Mäuse keinen quantitativen Mengenunterschied an NF-H auf, während jedoch die ICAT Resultate einen Mengenunterschied zugunsten der alten Wildtyp Tiere aufdeckt.

4. Diskussion

Im Rahmen dieser Arbeit wurden drei Zielsetzungen definiert, die im Folgenden zusammengefasst und anschließend diskutiert werden.

Lipofuszin-Analyse

Der erste Teil dieser Dissertation befasste sich mit der Aufreinigung und der Untersuchung des bisher unbekannten neuronalen Lipofuszin-Proteoms im Hirn von Mensch und Ratte, dessen Proteine anschließend einem subzellulären Kompartiment zugeordnet wurden. Die humane Probe setzte sich aus 273 Proteinen zusammen, wobei zytoplasmatische Proteine die am stärksten vertretene Proteingruppe darstellten. Das Lipofuszin der Ratte bestand aus 173 Proteinen, worunter die

Membran-/Plasmamembranproteine die größte Fraktion stellten. Insgesamt konnten 46 Proteine sowohl im Lipofuszin-Proteom des Menschen als auch im Lipofuszin-Proteom der Ratte identifiziert werden. Die subzelluläre Analyse ergab, dass die zytoplasmatischen Proteine im Lipofuszin-Proteom des Menschen den größten Anteil ausmachten, während das Lipofuszin-Proteom der Ratte am häufigsten Proteine der Membran/Plasmamembran aufwies.

Antikörper gegen Lipofuszin

Neben der Lipofuszin-Analyse wurde ein monoklonaler Antikörper gegen Lipofuszin generiert, mit dem Ziel einer Fluoreszenz-unabhängigen Lipofuszin-Detektion. Aus ca. 400 Klonen konnten drei Klone identifiziert werden, die einen interessanten Antikörper produzierten. Hierbei wiesen die Antikörper der ausgewählten Klone im Verlauf des Screenings unterschiedliche Eigenschaften auf. Während der Antikörper 3B9 mit einer höheren Affinität am Homogenat des älteren Gehirns band, zeigte der Antikörper 6H7 G10 dagegen eine Bindungsaffinität zu dem Alzheimer Protein Amyloid-beta 42, wohingegen der Antikörper 39F4 beide Eigenschaften der zuvor genannten Antikörper aufwies.

Analyse von Proteinaggregaten im Verlauf des physiologischen Alterns

Ein weiterer Teil dieser Arbeit beschäftigte sich mit altersabhängigen Proteinaggregaten im murinen Gehirn, welche aufgereinigt und anschließend quantitativ massenspektrometrisch analysiert wurden. Im Gegensatz zum Lipofuszin stellen unlösliche Aggregate unbekannte Protein-Targets dar, welche sich durch eine fehlende Löslichkeit durch Sarkosyl auszeichnen. Als Versuchstiere wurden sowohl alte und junge Wildtyp Mäuse als auch alte und junge PrP^c-ko Mäuse eingesetzt. Diese Auswahl an Versuchstieren ermöglichte die Einflussnahme des Prion-Proteins auf die altersabhängige Proteinakkumulation aufzudecken. Die Resultate zeigten, dass bei den alten Wildtyp Mäusen eine altersabhängige Akkumulation von bestimmten Intermediärfilamenten nachgewiesen werden konnte, während die alten PrP^c-ko Mäuse diese Akkumulation, mit Ausnahme des Intermediärfilamentes GFAP, nicht zeigten.

4.1. Lipofuszin-Analyse

Die Fluoreszenzaktivität des Lipofuszins ist ein definierendes Charakteristikum dieses Polymers. In der Zelle liegt Lipofuszin in einer hochkondensierten Form vor, wohingegen isoliertes aufgereinigtes Lipofuszin niedriger kondensiert ist (Terman and Brunk 1998). Dieser Umstand ist für die Bestimmung des Emissionsspektrums wichtig, da hochkondensiertes Lipofuszin in höheren Wellenlängenbereichen emittiert. Aus vorangegangenen Studien geht hervor, dass aufgereinigtes und somit niedrig konzentriertes Lipofuszin eine maximale Fluoreszenzintensität in einem Exzitationsbereich zwischen 325 nm und 480 nm während einer Emission zwischen 400 nm und 490 nm erreicht (Brunk and Terman 2002). Dieses Fluoreszenzsspektrum war somit für die Identifikation der Lipofuszin-haltigen Phase in dieser Arbeit gültig.

Die Ergebnisse der Lipofuszin-Aufreinigung aus dem Hirn von Mensch und Ratte zeigten, verglichen mit den Resultaten in der Veröffentlichung von Schutt et al. 2002, mehrere Übereinstimmungen. Aufgrund des charakteristischen Fluoreszenzspektrums und der hohen Fluoreszenzintensität beinhaltete die Interphase B (Ratte) und die Interphase U (Mensch) den größten Anteil an Lipofuszin. Bei beiden Aufreinigungen und in der Veröffentlichung von Schutt et al. 2002 entwickelte sich das Maximum der Intensität unter einer Anregung von 375 nm bei einer Emission von 430 nm. Alle drei Lipofuszinproben hatten ebenfalls die gleiche Lokalisation im Dichtegradienten nach der Zentrifugation: In der Interphase zwischen 1,0 M und 1,2 M Sucrose-VRL Puffer.

Da Lipofuszin sowohl aus Lysosomen als auch aus Autophagosomen entstehen kann, wurde die Lipofuszin-haltige Interphase U auf ihren Gehalt an spezifischen Markerproteinen dieser Zellorganellen durch Immunblots getestet: Lamp 1 und LC 3. Lamp 1 ist eines der häufigsten lysosomalen Membranproteine, welches u. a. bei Fusionen und Interaktionen zwischen Lysosomen eine Rolle spielt. (Chen, Murphy et al. 1985; Eskelinen 2006). Dagegen ist LC 3 ein autophagosomaler Marker, der bei der Bildung von Autophagosomen beteiligt ist (Kabeya, Mizushima et al. 2000; Fimia and Piacentini 2009). Die Interphase U wurde ebenfalls auf ihren Gehalt an Annexin VI getestet, da es im Lipofuszin-Proteom von retinalen Pigmentepithelzellen identifiziert wurde (Schutt, Ueberle et al. 2002).

Die Ergebnisse der Immunblot-Analyse zeigten, dass zwar Annexin VI, jedoch kein Lamp 1 und kein LC 3 in der Probe enthalten sind. Da Lamp 1 im Lysosomen-Stoffwechsel und LC 3 im Autophagosomen-Stoffwechsel involviert sind, führt ihre Abwesenheit in der Lipofuszin-haltigen Probe zu der Fragestellung, ob die Abwesenheit von Lamp 1 bzw. LC 3 ein Marker für defekte Lysosomen bzw. Autophagosomen ist. Annexin VI ist ein Calcium-abhängiges und Membran-bindendes Protein, dass in dieser Analyse und bei Schutt et al. 2002 als Bestandteil von Lipofuszin identifiziert wurde (Schutt, Ueberle et al. 2002; (Towbin, Staehelin et al. 1979; Kamal, Ying et al. 1998). Ob dieses Protein im Lipofuszin ausschließlich ein nicht-abbaubares Protein darstellt oder über weitere Funktionen verfügt, muss noch geklärt werden

Zur genauen Proteombestimmung der Lipofuszin-haltigen Interphase wurde eine massenspektrometrische Analyse durchgeführt. Dabei bestand das humane Lipofuszin aus 273 Proteinen, während die Rattenprobe 173 Proteine aufwies (Abbildung 36, Abbildung 37). Der Vergleich der beiden Lipofuszin-Proteome ergab 46 identische Proteine (Abbildung 36).

Abbildung 36: Anteil identischer Proteine im Lipofuszin-Proteom von Mensch und Ratte Durch die massenspektrometrische Analyse wurden 273 Proteine in der humanen Probe und 173 Proteine in der Probe der Ratten identifiziert. Eine direkte Übereinstimmung konnte bei 46 Proteinen festgestellt werden.

Zudem standen zehn weitere Proteine in einem engen Zusammenhang zueinander, da sie beispielsweise verschiedene Untereinheiten des gleichen Proteins darstellten (Abbildung 37). Diese Überschneidungen könnten ein Indiz dafür sein, dass diese Proteine Spezies-unabhängig eine Anfälligkeit aufweisen im Lipofuszin zu akkumulieren.

Abbildung 37: Anteil identischer und konvergierender Proteine im Lipofuszin-Proteom von Mensch und Ratte

Neben den 46 übereinstimmenden Proteinen im Lipofuszin-Proteom von Mensch und Ratte konnten zehn weitere Proteine ermittelt werden, welche in einem engen Zusammenhang zueinander standen. Daraus ergaben sich 56 Proteine, die entweder eine direkte Übereinstimmung oder eine Konvergenz aufwiesen.

Zur näheren Analyse der Bestandteile wurde eine subzelluläre Analyse mittels der *UniProt* Datenbank (http://uniprot.org/) durchgeführt. Eine subzelluläre Analyse stellt dabei eine Zuordnung von Proteinen zu einem subzellulären Kompartiment dar, welche Aufschluss über die Herkunft der sich im Lipofuszin akkumulierenden Proteine geben kann.

In der humanen Probe machten zytoplasmatische Proteine mit 31,5 % den größten Anteil aus, während mitochondriale Proteine mit 25 %, Membran-/Plasmamembranproteine mit 22 % und Zytoskelettproteine mit 10,6 % vertreten waren (Abbildung 20). Die Lipofuszinprobe der Ratte zeigte dagegen eine andere Zusammensetzung. In dieser Analyse wurden Proteine der Membran/Plasmamembran mit 31,8 % am häufigsten identifiziert, gefolgt von den zytoplasmatischen Proteinen mit 28,7 % und mitochondrialen Proteinen mit 24,3 %. Die Proteine des Zytoskeletts waren mit 8,1 % vertreten (Abbildung 21). Die Ursache dafür, dass im Lipofuszin-Proteom der Ratte nicht die zytoplasmatischen Proteine, sondern die Membranproteine die größte Fraktion ausmachten, ist unklar.

Eine mögliche Ursache dieser Diskrepanz könnte in den unterschiedlichen Spezies oder in der Auswahl der eingesetzten Gehirnanteilen begründet sein. Die Lipofuszinprobe des Menschen stammte ausschließlich aus dem Temporalkortex, während das Lipofuszin der Ratten aus fünf ganzen Gehirnen gewonnen wurde. Infolgedessen hatte die Gehirnprobe der Ratten eine andere, deutlich komplexere Zusammensetzung, da sowohl Großhirn, Kleinhirn, Zwischenhirn als auch Hirnstamm eingesetzt wurden.

Ein interessanter Ansatz für weitere Analysen wäre eine Lipofuszin-Proteom-Analyse aus dem Temporalkortex von Ratten. Diese könnte mit dem Ergebnis des humanen temporalen Lipofuszin-Proteoms verglichen werden, um so Spezies-spezifische Unterschiede und Spezies-unabhängige Gemeinsamkeiten aufzudecken.

Bisher war das Lipofuszin-Proteom nur aus humanen retinalen Pigmentepithelzellen durch Schutt et al. 2002 analysiert worden. Zuvor vermutete Bancher 1989, dass im neuronalen Lipofuszin Amyloid-beta 1-24 ein möglicher Proteinbestandteil ist. Diese Annahme wurde durch eine Bindungsaffinität eines gegen Amyloid-beta 1-24 gerichteten Antikörpers an zellulärem Lipofuszin begründet (Bancher, Grundke-Iqbal et al. 1989; Seehafer and Pearce 2006). In dieser Lipofuszin-Analyse konnte jedoch kein Beta-Amyloid Protein festgestellt werden. Im Lipofuszin-Proteom der humanen retinalen Pigmentepithelzellen wurde ebenfalls kein Beta-Amyloid gefunden (Schutt, Ueberle et al. 2002).

Der Vergleich des Lipofuszin-Proteoms der humanen retinalen Pigmentepithelzellen von Schutt et al. 2002 mit dem Lipofuszin-Proteom des humanen Temporalkortex zeigte interessante Ergebnisse. Schutt et al. 2002 identifizierte in seiner Analyse 66 unterschiedliche Proteine, wovon 22 auch im neuronalen Proteom vorkamen (Abbildung 38). Folgende identische Proteine konnten identifiziert werden:

		Zugangsnummer	
Nr.	Protein:	UniProtKB:	
1)	Tumor rejection antigen (gp96) (Endoplasmin precursor)	P14625	
2)	Hexokinase 1	P19367	
3)	Valosin-containing protein (Transitional endoplasmic reticulum ATPase)	P55072	
4)	Heat shock protein HSP 90-alpha (HSP 86)	P07900	
5)	Annexin VI (Lipocortin VI)	P08133	
6)	Heat shock 70 kDa protein 8 (Heat shock cognate 71 kDa protein)	P11142	
7)	Tubulin, alpha-1 chain	P68366	
8)	Enolase 2, gamma (Enolase 2)	P09104	
9)	Pyruvate kinase, muscle (Pyruvate kinase, isozymes M1/M2)	P14618	
10)	Enolase 1, alpha (Alpha enolase)	P13639	
11)	Serum albumin	P02768	
12)	Glyceraldehyde-3-phosphate dehydrogenase	P04406	
13)	Porin 31HM (Voltage-dependent anion-selective channel protein 1)	P21796	
14)	Voltage-dependent anion channel 2	P45880	
15)	Phosphoglycerate mutase 1	P18669	

16)	Prohibitin	P35232
17)	ATP synthase, subunit d	O75947
18)	Cytochrome c oxidase subunit Va precursor	P20674
19)	Peroxiredoxin 2	P32119
20)	Crystallin, alpha B (Alpha(B)-crystallin)	P02511
21)	Neuropolypetide h3 (Phosphatidylethanolamine-binding protein)	P30086
22)	Ubiquinol-cytochrome c reductase bindidng protein (QP-C)	O14949

Abbildung 38: Anteil identischer Proteine im neuronalen und retinalen Lipofuszin-Proteom

Der Vergleich zwischen den massenspektrometrischen Ergebnissen des neuronalen Lipofuszins und den Ergebnissen von Schutt et al. 2002 (Lipofuszin aus humanen retinalen Pigmentepithelzellen) zeigte 22 Übereinstimmungen.

Zudem standen 15 weitere Proteine in einem engen Zusammenhang zueinander, wie beispielsweise unterschiedliche Untereinheiten des gleichen Proteins, was insgesamt mehr als die Hälfte der Proteine von Schutt et al. 2002 (37 Proteine) ausmachte (Abbildung 39).

Auch hier führen die Überschneidungen in beiden Lipofuszin-Proteomen zu der Vermutung, dass einige Proteine eine erhöhte Anfälligkeit für Akkumulationen im Lipofuszin aufweisen. Folgende 15 konvergierende Proteine wurden in der neuronalen und retinalen Lipofuszinprobe ermittelt (Neur. L. = Neuronales Lipofuszin, Schutt L. = Lipofuszin in Schutt et al. 2002)

		Zugangsnummer
Nr.	Protein:	UniProtKB:
1) Neur I ·	Spectrin alpha chain, brain	005193
1) Schutt I	Hypothetical protein (alpha-spectrin homolog)	
	rypotnetical protein (alpha-spectrin homolog)	00010
2) Neur. L.:	Heat shock 70 kDa protein 12A	O43301
2) Schutt L.:	Heat shock 70 kDa protein 5	P11021
3) Neur. L.:	Tubulin beta-2 chain	Q13813
3) Schutt L.:	Tubulin beta chain	P07437
4) Neur. L.:	ATP synthase beta chain, mitochondrial precursor	P06576
4) Schutt L.:	ATP synthase beta chain	P06576
5) Nour I :	ATP synthese alpha chain, mitochondrial precursor	P25705
5) Sobutt I :	ATP synthase alpha chain, milliochondhai precursor	P25705
5) Schutt L.	ATF Synthase, alpha subunit	F23703
6) Neur. L.:	Elongation factor 2	P13639
6) Schutt L.:	Tu translation elongation factor	P49411
7) Neur. L.:	Creatine kinase, B chain	P12277
7) Schutt L.:	Creatin kinase	P12277
8) Neur. L.:	Actin, cytoplasmic 1	P13637
8) Schutt L.:	Beta actin	P60709
9) Neur, L.:	Guanine nucleotide-binding protein G(o), alpha subunit 1	P09471
9) Schutt I	Guanine nucleotide-binding protein (0), alpha subunit 2	P19087
c) construction		
10) Neur. L.:	Guanine nucleotide-binding protein G(I)/G(S)/G(T) beta subunit 1	P62873
10) Schutt L.	: Guanine nucleotide-binding protein, beta polypeptide 2	Q6FHM2
11) Neur. L.:	Ubiquinol-cytochrome c reductase complex ubiquinone- binding protein QP-C	O14949
11) Schutt L.	: Ubiquinol-cytochrome c reductase core protein II	P22695
12) Neur. L.:	Calmodulin	P62158
12) Schutt L.	: Calmodulin 2 (phosphorylase kinase, delta)	P62158 (NCBI 14250065)

13) Neur. L.:	Hemoglobin alpha chain	P69905
13) Schutt L.:	Hemoglobin alpha 1 globin chain	P69905 (NCBI 13195586)
14) Neur. L.:	Hemoglobin beta chain	P68871
14) Schutt L.:	Mutant hemoglobin beta chain	Q9BWU5
15) Neur. L.:	Ubiquinol-cytochrome-c reductase complex core	P31930
	protein I, mitochondrial precursor	
15) Schutt L.:	Ubiquinol-cytochrome c reductase core protein I	P31930 (NCBI 4507841)

Abbildung 39: Anteil identischer und konvergierender Proteine im neuronalen Lipofuszin-Proteom und im retinalen Lipofuszin-Proteom (Schutt et al. 2002)

Neben den 22 direkten Übereinstimmungen standen 15 weitere Proteine in einem engen Zusammenhang zueinander, wie beispielsweise unterschiedliche Untereinheiten des gleichen Proteins. Somit gab es insgesamt bei 37 Proteinen eine direkte Übereinstimmung oder eine Konvergenz.

4.2. Antikörper gegen Lipofuszin

Neben der massenspektrometrischen Analyse des Lipofuszins wurde ein Teil des aufgereinigten Polymers zur Generierung monoklonaler Antikörper verwendet, welche eine Fluoreszenz-unabhängige Detektion von Lipofuszin ermöglichen sollten. Aus 400 Klonen konnten drei interessante identifiziert werden: 3B9, 6H7 G10, 39F4.

Der Antikörper des Klons 3B9 verfügte über eine stärkere Bindungsaffinität zu Gehirnhomogenat aus älterem als aus jungem Gewebe. Dies könnte ein Indiz dafür sein, dass der Antikörper an ein Epitop gebunden hatte, welches vermehrt im älteren Gehirn vorhanden war. Da Lipofuszin altersabhängig und fast linear mit dem Lebensalter

akkumuliert, kann dieses Polymer ein solches Epitop darstellen (Strehler, Mark et al. 1959).

Der Antikörper des Klons 6H7 G10 dagegen zeigte eine Bindungsaffinität an Amyloid-beta 42. Beta-Amyloid wurde, wie bereits erwähnt, in einer früheren Studie als möglicher Bestandteil von Lipofuszin identifiziert. Interessanterweise konnte im neuronalen Lipofuszin-Proteom und auch im Lipofuszin-Proteom der retinalen Pigmentepithelzellen (Schutt, Ueberle et al. 2002) kein Beta-Amyloid detektiert werden. Dieser Umstand führt zu der Frage, woher die Affinität zu Amyloid-beta 42 stammte. Dies wiederum könnte auf verschiedene Ursachen zurückzuführen sein. Der Antikörper könnte gegen einen Bestandteil im Lipofuszinpolymer gerichtet sein, welcher entweder einem Sequenzbereich im Amyloid-beta 42 ähnelt oder das Protein Amyloid-beta 42 ist selbst Teil des Lipofuszins, wurde aber im Rahmen der Lipofuszinbildung durch beispielsweise Abbauprozesse oder oxidativen Stress in einem Maße verändert, dass es massenspektrometrisch als Amyloid-beta 42 nicht mehr identifiziert werden konnte.

Der Antikörper des Klons 39F4 war von ganz besonderem Interesse, da sowohl am älteren Homogenat ein stärkeres Signal festgestellt wurde (Abbildung 25) als auch eine Bindungsaffinität an Amyloid-beta 42 bestand. Somit band der Antikörper an einem Bestandteil des Homogenats, welcher mit zunehmendem Alter akkumuliert und außerdem Homologien zum Protein Amyloid-beta 42 aufwies.

4.3. Analyse von Proteinaggregaten im Verlauf des physiologischen Alterns

Im zweiten Teil dieser Arbeit sollte die Ablagerung von unlöslichen Proteinaggregaten im Gehirn im Zuge des physiologischen Alterungsprozesses untersucht werden. Die Ablagerung von aggregierten Proteinen ist ein Prozess, der während des physiologischen Alterns bereits im Modellorganismus Caenorhabditis elegans nachgewiesen wurde. Dort wurden bereits Hunderte solcher unlöslichen Proteine detektiert (David, Ollikainen et al. 2010).

Im Unterschied zum Lipofuszin, welches durch sein Fluoreszenzspektrum definiert wird, zeichnen sich Proteinaggregate durch eine Unlöslichkeit für Sarkosyl aus (Tabelle 3) (Hu, Nessler et al.; Terman and Brunk 1998; Brunk and Terman 2002).

Zwar weisen beide Substanzen eine altersabhängige Akkumulation auf, jedoch entsteht und akkumuliert Lipofuszin ausschließlich durch das Altern, während die unlöslichen Proteine vor ihrer Aggregation auch im jungen Organismus vorkommen (Strehler, Mark et al. 1959; Kim and Coulombe 2007).

Gegenüberstellung der Eigenschaften des Lipofuszins und der unlöslichen Aggregate											
	Lipofuszin	Unlösliche Aggregate									
Definition:	 charakteristisches Fluoreszenzspektrum 	- Sarkosyl-Unlöslichkeit									
Vorkommen:	- strikt altersabhängig	 Vorkommen auch altersunabhängig 									
Sensitivität der Methode (Aufreinigung):	 mittel bis hoch, qualitativ 	- gering, qualitativ und quantitativ									

Tabelle 3: Gegenüberstellung der Eigenschaften des Lipofuszins und der unlöslichen Aggregate

Die Definition des Lipofuszins erfolgt anhand seines charakteristischen Fluoreszenzspektrums, während sich unlösliche Aggregate durch eine Sarkosyl-Unlöslichkeit auszeichnen. Die identifizierten Proteine der Aggregate sind auch altersunabhängig im Organismus vorhanden, wohingegen Lipofuszin strikt durch Alterungsprozesse im Organismus entsteht. Der Proteinnachweis erfolgte beim Lipofuszin qualitativ mit einer mittleren bis hohen Sensitivität. Die unlöslichen Aggregate wurden zusätzlich auch quantitativ analysiert, jedoch mit einer geringeren Sensitivität.

Die Sensitivität der Lipofuszin-Analyse ist von mittel bis hoch einzustufen, da die Identifikation anhand des charakteristischen Fluoreszenzspektrums erfolgte. Dagegen ist die Sensitivität der quantitativen Detektion der unlöslichen Proteinaggregate eher gering. Dies ist auf die ICAT Methode zurückzuführen, durch welche ausschließlich Cysteinhaltige Proteine markiert und somit analysiert werden. Aggregate ohne Cysteinanteil konnten somit nicht detektiert werden (Tabelle 3).

Diese Lücke in der ICAT-Analyse wurde vor Kurzem durch die Entwicklung einer neuen Methode, iTRAQ, geschlossen (Wiese, Reidegeld et al. 2007). Quantitative Proteinanalysen sollten nun mit dem neuen Verfahren durchgeführt werden.

Neben Wildtyp Mäusen wurden auch PrP^c-ko Mäuse auf altersabhängige Aggregatbildungen im Gehirn untersucht, um eine mögliche Einflussnahme des PrP^c auf diesen Prozess aufzudecken.

Die Ergebnisse bei den Wildtyp Mäusen zeigten, dass es bei den alten Tieren zu einer altersabhängigen Akkumulation von NF-H, NF-M, NF-L, Alpha-Internexin und GFAP

gekommen war (Abbildung 33). Eine solche altersabhängige Akkumulation von Neurofilamenten wurde schon von Vickers im Hippocampus festgestellt (Vickers, Riederer et al. 1994) und ist auch bei GFAP bekannt (Nichols, Day et al. 1993). Jedoch wurde eine Akkumulation des Alpha-Internexins während des physiologischen Alterns bis jetzt nur im Rahmen dieser Arbeit nachgewiesen. Lediglich pathologische Akkumulationen des Alphaim Rahmen der Internexins wurden zuvor neuronalen Intermediärfilament-Einschlusskörper-Krankheit (NIFID) gefunden. Dabei ist die Ablagerung von neurofilamentären Bestandteilen oder GFAP innerhalb neurodegenerativen Erkrankungen schon länger bekannt, beispielsweise bei der Amyotrophen Lateralsklerose. Ob nun die Akkumulation während des physiologischen Alterns prädisponierend für neurodegenerative Erkrankungen ist, muss noch geklärt werden.

Die Aggregat-Analyse der PrP^c-ko Mäuse zeigte dagegen ein anderes Ergebnis. Hierbei verfügten die alten PrP^c-ko Mäuse über nahezu genauso viele aggregierte Zytoskelettbestandteile wie die jungen. Lediglich bei GFAP war eine altersabhängige Akkumulation des Filaments zu beobachten (Abbildung 34).

Diese Ergebnisse legen die Vermutung nahe, dass das PrP^c einen Einfluss auf die Aggregat-Akkumulation während des physiologischen Alterungsprozesses ausübt, da eine altersabhängige Akkumulation im PrP^c-ko Organismus nicht auftrat.

Über die Funktion des PrP^c und einem Zusammenhang mit dem Stoffwechsel der Intermediärfilamente ist bis jetzt nur wenig bekannt. Bislang wurden Auffälligkeiten im Zusammenhang mit dem Prion Protein und dem neurofilamentären Stoffwechsel nur im Creutzfeldt-Jakob-Erkrankung Rahmen der gezeigt. Hierbei wurden Neurofilamentakkumulationen in den Ganglienzellen des Trigeminus identifiziert (Guiroy, Shankar et al. 1989). Zusammen mit den Ergebnissen in dieser Arbeit weist dies auf eine Interaktion sowohl zwischen dem PrP^c als auch dem PrP^{sc} mit dem neurofilamentären Stoffwechsel hin. Dabei führt die Anwesenheit des PrP^c zu einer altersabhängigen Akkumulation von Neurofilamenten, welche in Abwesenheit von PrP^c nicht auftrat. Kommt es im Rahmen einer Erkrankung zum Auftreten der pathologischen Form des Prion Proteins, PrP^{sc}, wurden Neurofilamentakkumulationen nachgewiesen (Guiroy, Shankar et al. 1989).

Im Gegensatz zu den Neurofilamenten zeigte sich beim Intermediärfilament GFAP ein anderes Bild. Hier konnte bei den PrP^c-ko Mäusen wie auch bei den Wildtyp Tieren eine altersabhängige Akkumulation ermittelt werden, die auf einen PrP^c-unabhängigen Regulationsmechanismus des Filaments schließen lässt.

Zur Bestätigung der quantitativen massenspektrometrischen Ergebnisse wurden Gehirne von jungen und alten Wildtyp Mäusen sowie von jungen und alten PrP^c-ko Mäusen nach dem Aufreinigungsprotokoll für aggregierte Proteine einzeln aufgereinigt und mittels Western Blot auf ihren Gehalt an GFAP, NF-H und Alpha-Internexin überprüft.

Dabei wurden die quantitativen massenspektrometrischen Ergebnisse der Wildtyp Mäuse durch den Immunblot zur Detektion von Alpha-Internexin und GFAP bestätigt, wohingegen das ICAT Resultat durch den Immunblot zur Detektion von NF-H nicht belegt wurde. Die PrP^c-ko Mäuse zeigten im Immunblot zum quantitativen Nachweis von GFAP eine Korrelation mit den massenspektrometrischen Resultaten, während der Immunblot mit einem gegen NF-H und einen gegen Alpha-Internexin gerichteten Antikörper nicht das quantitative Ergebnis der Massenspektrometrie bestätigte.

Somit bestätigen die Ergebnisse der Immunblot-Analysen nur zum Teil die Resultate der quantitativen Massenspektrometrie. Dieser Sachverhalt könnte durch weitere ICAT Analysen und Immunblot-Analysen mit einer größeren Anzahl an Versuchstieren, welche einzeln auf ihren Gehalt an unlöslichen Aggregaten untersucht werden, geklärt werden.

5. Zusammenfassung

Diese Dissertation, welche durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Graduiertenkollegs 1033 gefördert worden ist, beschäftigte sich mit der Isolation und Analyse von altersabhängigen Proteinaggregaten im Gehirn. Mit Hilfe von drei unabhängigen Methoden konnte in der vorgelegten Arbeit eine altersabhängige Zunahme von Proteinaggregaten im Säugetiergehirn von Maus, Ratte und Mensch gezeigt werden.

Im ersten Teil dieser Arbeit wurde das neuronale Lipofuszin-Proteom von Mensch und Ratte durch Massenspektrometrie auf seine Bestandteile untersucht. Dabei konnten im humanen Lipofuszin 273 verschiedene Proteine und im Lipofuszin der Ratte 173 Proteine identifiziert werden. Der Vergleich beider Proteome ergab 46 identische Proteine sowie weitere zehn sich stark ähnelnde Proteine. Darüber hinaus wurde eine subzelluläre Analyse der identifizierten Proteine vorgenommen und deren Herkunft näher beschrieben. Hierbei zeigte sich, dass die Proteine des humanen Lipofuszins hauptsächlich zytoplasmatischen Ursprungs waren, wohingegen das Lipofuszin-Proteom der Ratte am häufigsten Membran-/Plasmamembranproteine aufwies.

Neben der Proteom-Analyse des Lipofuszins wurden monoklonale Antikörper gegen humanes Lipofuszin, mit dem Ziel einer Fluoreszenz-unabhängigen Detektion, generiert. Zur Selektion der gegen Lipofuszin-gerichteten Antikörper wurden die Klone auf eine erhöhte Affinität zu älterem Gehirnhomogenat, verglichen mit jungem Gehirnhomogenat, getestet. Zusätzlich wurde überprüft, ob eine Affinität zu Beta-Amyloid vorhanden war. Aus insgesamt 400 Klonen konnten drei Klone identifiziert werden, welche jeweils einen vielversprechenden Antikörper produzierten. Dabei banden alle drei Antikörper an altersabhängigen Targets, aber zeigten unterschiedliche Eigenschaften. Während der Antikörper 3B9 mit einer höheren Affinität an Homogenat des älteren Gehirns band, zeigte der Antikörper 6H7 G10 dagegen eine Bindungsaffinität zu dem Alzheimer Protein Amyloid-beta 42, wohingegen der Antikörper 39F4 beide Eigenschaften der zuvor genannten Antikörper aufwies.

Im letzten Teil dieser Arbeit wurde die Zusammensetzung von altersabhängigen unlöslichen Proteinaggregaten im murinen Gehirn analysiert sowie die Einflussnahme des Prion Proteins (PrP^c) auf diesen Prozess untersucht. Dafür wurden altersabhängige unlösliche Proteinaggregate aus dem Gehirn von alten und jungen Wildtyp sowie Prion Protein knockout (PrP^c-ko) Mäusen aufgereinigt und anschließend quantitativ massenspektrometrisch analysiert. Hierbei konnte gezeigt werden, dass bei den alten Wildtyp Mäusen eine altersabhängige Akkumulation bestimmter Intermediärfilamente vorhanden war, während in alten PrP^c-ko Mäusen diese Akkumulation mit Ausnahme des Intermediärfilamentes GFAP, nicht nachgewiesen werden konnte. Daraus lässt sich schließen, dass die Anwesenheit von PrP^c die altersabhängige Akkumulation von NF-L, NF-H und Alpha-Internexin begünstigt.

Zusammenfassend lässt sich klar sagen, dass die in dieser Arbeit isolierten und analysierten Proteine eine altersabhängige Aggregation und Akkumulation aufweisen. Inwieweit diese Altersveränderungen auch für altersbedingte kognitive Einbußen während des normalen nicht krankheitsassoziierten Alterns verantwortlich sind, ist noch unklar. Die Identifizierung wichtiger Kandidatenproteine für diese Fragestellung kann aber für weiterführende Untersuchungen herangezogen werden. Dabei ist das Aufdecken dieser Proteine, welche für kognitive Einbußen im Alter ursächlich sind, die Grundlage für eine mögliche Intervention in diesem Prozess.

6. Anhang

6.1. Rohdaten der Fluoreszenz-3D-Scans

1. Fluoreszenz-3D-Scan: DB (Mensch)

Emission	Exzitation (nm)								
(nm)	325	340	355	365	370	375	385		
400	10511	14517	18060	17722	17695	16429	10489		
405	12112	17506	23672	23554	23783	22921	15325		
410	12641	19291	26975	27331	28229	27029	18818		
415	12987	19988	28905	29709	30895	29760	21448		
420	13050	20491	29727	31069	32365	31471	23352		
425	13637	21524	31523	33645	35169	34518	25959		
430	14004	22561	33373	35691	37465	36931	28642		
435	13755	21786	32211	34930	37482	36813	28715		
440	12062	18956	28478	30945	32752	32187	25771		
445	9264	14556	21469	23653	32761	25146	19879		
450	6059	9192	14131	15454	16379	16424	13373		
455	3643	5546	8315	9121	9898	9733	7972		
460	2215	3518	5301	5754	6179	6143	5206		
465	1803	2793	4079	4570	4889	4885	5204		
470	1885	2681	3968	4424	4690	4728	4044		
475	1953	2799	4048	4502	4896	4928	4023		
480	2009	2989	4079	4554	5021	5056	4380		
485	2068	2890	3972	4427	4789	4911	4338		
490	1996	2907	3716	4219	4526	4573	4117		
495	2013	2588	3555	3931	4232	4340	3907		
500	1841	2348	3189	3642	3847	3886	3607		

1. Fluoreszenz-3D-Scan: U (Mensch)

Emission		Exzitation (nm)								
(nm)	325	340	355	365	370	375	385			
400	1380	1777	2210	1965	1954	1746	1009			
405	1506	2223	2797	2825	2697	2507	1598			
410	1668	2433	3403	3329	3345	3121	2008			
415	1571	2584	3698	3676	3847	3462	2364			
420	1742	2630	3795	3916	4027	3854	2608			
425	1750	2772	4019	4334	4377	4188	2992			

430	1856	2827	4285	4590	4654	4539	3346
435	1707	2849	4248	4587	4785	4554	3392
440	1571	2487	3693	4089	4241	4125	3151
445	1235	1923	2857	3138	3314	3157	2396
450	807	1287	1875	2093	2206	2143	1621
455	558	865	1185	1259	1331	1263	961
460	338	510	735	823	904	853	647
465	290	427	622	675	689	667	548
470	316	439	586	674	748	706	530
475	304	446	649	731	758	721	565
480	354	489	681	729	754	768	642
485	368	487	678	727	753	746	636
490	369	474	620	664	714	746	590
495	348	453	603	609	670	667	549
500	349	450	545	600	621	612	537

1. Fluoreszenz-3D-Scan: D (Mensch)

Emission U	Exzitation (nm)							
(nm)	325	340	355	365	370	375	385	
400	514	433	346	252	231	193	100	
405	473	523	466	367	329	276	186	
410	483	550	497	442	388	359	226	
415	521	528	544	465	480	417	282	
420	524	595	572	519	546	454	314	
425	560	589	648	570	564	549	390	
430	596	633	714	658	692	620	483	
435	581	711	743	686	724	660	510	
440	525	598	707	639	676	636	496	
445	414	531	517	530	518	502	388	
450	322	326	383	396	414	385	288	
455	208	255	251	238	253	247	189	
460	166	177	197	183	196	174	136	
465	130	151	158	159	156	162	125	
470	147	173	178	185	168	180	137	
475	166	219	197	185	199	189	168	
480	181	219	236	207	208	206	194	
485	208	233	255	237	247	229	206	
490	233	241	246	251	236	226	206	
495	221	233	227	243	265	256	222	
500	195	266	267	270	249	245	222	

Emission		Exzitation (nm)							
(nm)	325	340	355	365	370	375	385		
400	559	791	927	939	914	833	549		
405	663	948	1319	1391	1392	1219	826		
410	702	1081	1632	1772	1777	1662	1114		
415	665	1195	1808	1976	1982	1992	1343		
420	789	1276	2036	2152	2292	2181	1558		
425	872	1392	2267	2516	2562	2447	1782		
430	878	1496	2376	2647	2790	2691	2036		
435	838	1470	2393	2744	2854	2731	2067		
440	730	1267	2036	2393	2529	2404	1841		
445	529	968	1549	1830	1912	1877	1414		
450	370	595	1042	1222	1249	1240	940		
455	199	349	582	742	763	758	566		
460	152	244	411	491	495	498	407		
465	117	227	346	404	426	439	366		
470	121	198	355	413	447	418	358		
475	145	201	351	439	465	443	364		
480	117	229	398	462	437	480	380		
485	140	247	381	415	439	414	396		
490	125	221	341	408	418	417	372		
495	120	218	333	389	391	396	344		
500	146	187	309	322	356	382	313		

2. Fluoreszenz-3D-Scan: U (Mensch)

2. Fluoreszenz-3D-Scan: D (Mensch)

Emission		Exzitation (nm)							
(nm)	325	340	355	365	370	375	385		
400	1	6	1	7	17	15	26		
405	6	1	1	10	5	7	14		
410	1	1	3	9	20	11	6		
415	1	2	1	12	17	22	11		
420	1	4	3	3	4	43	19		
425	1	10	17	22	1	4	17		
430	1	1	6	14	36	1	14		
435	1	1	10	29	10	20	11		
440	1	1	1	24	23	28	10		
445	1	10	3	20	16	21	11		
450	2	1	1	1	6	13	1		
455	1	1	1	4	1	5	1		
460	1	1	1	1	1	4	2		

465	1	1	1	3	6	1	2
470	1	1	1	5	1	2	1
475	1	1	1	1	3	6	6
480	1	1	3	6	1	1	2
485	1	1	1	4	1	1	1
490	1	1	1	1	1	1	1
495	1	1	13	6	1	1	1
500	1	1	1	1	1	1	9

2. Fluoreszenz-3D-Scan: B (Ratte)

Emission	Exzitation (nm)						
(nm)	360	365	370	375	380	385	390
420	4521	3939	3816	3715	3352	2899	2368
425	4761	4275	4507	4342	3802	3451	2851
430	5043	4679	4902	4979	4412	3962	3349
435	5084	4693	5022	5099	4593	4212	3616
440	4509	4310	4513	4647	4301	3953	3475
445	3365	3326	3516	3604	3282	3148	2782
450	2203	2132	2305	2370	2256	2117	1867
455	1277	1253	1383	1433	1330	1255	1141
460	806	816	892	903	856	804	752
465	658	654	750	747	731	663	627
470	648	631	726	783	739	712	652
475	703	713	757	829	811	783	732
480	718	771	809	904	814	804	745
485	748	723	815	890	841	813	744
490	724	709	787	819	807	797	738
495	634	655	727	780	751	755	709
500	610	612	709	716	698	680	675

2. Fluoreszenz-3D-Scan: HB (Ratte)

Emission	Exzitation (nm)						
(nm)	360	365	370	375	380	385	390
420	1204	1198	1311	1362	1316	1235	1132
425	1494	1521	1665	1821	1749	1668	1491
430	1777	1873	2131	2210	2200	2150	1956
435	2039	2145	2395	2477	2458	2383	2212
440	1890	2039	2279	2494	2411	2377	2218
445	1566	1636	1887	2048	2013	1962	1883
450	1042	1173	1300	1400	1404	1402	1301

455	641	699	842	862	901	867	852
460	421	461	528	587	582	567	528
465	353	410	443	525	459	472	462
470	406	416	478	512	506	486	482
475	447	438	507	578	539	535	533
480	449	472	531	607	619	609	556
485	445	462	563	605	590	567	559
490	434	471	511	611	589	548	543
495	393	448	529	524	536	551	501
500	389	401	488	534	504	510	496

6.2. Zusammensetzung des humanen Lipofuszin-Proteoms

		Subzelluläre	Zugangsnummer
	Protein:	Zuordnung:	UniProtKB:
1)	Tubulin alpha-ubiquitous chain	Zvtoskelett	P68363
2)	Tubulin beta-2 chain	Zytoskelett	Q13885
3)	Clathrin heavy chain 1	Zytoplasma	Q00610
4)	Sodium/potassium-transporting ATPase alpha-3 chain	Membran/Plasmamembran	P13637
5)	Spectrin alpha chain, brain	Zytoskelett	Q13813
6)	Spectrin beta chain, brain 1	Zytoskelett	Q01082
7)	Myelin proteolipid protein	Membran/Plasmamembran	P60201
8)	Dynamin-1	Zytoskelett	Q05193
9)	Actin, cytoplasmic 1	Zytoskelett	P60709
10)	Hexokinase, type I	Mitochondrium	P19367
11)	Excitatory amino acid transporter 2	Membran/Plasmamembran	P43004
12)	Creatine kinase, B chain	Zytoplasma	P12277
13)	Vesicle-fusing ATPase	Zytoplasma	P46459
14)	ATP synthase beta chain, mitochondrial precursor	Mitochondrium	P06576
15)	Syntaxin binding protein 1	Zytoplasma	P61764
16)	2',3'-cyclic-nucleotide 3'-phosphodiesterase	Membran/Plasmamembran	P09543
17)	Dihydropyrimidinase related protein-2	Zytoplasma	Q16555
18)	Excitatory amino acid transporter 1	Membran/Plasmamembran	P43003
19)	Guanine nucleotide-binding protein G(o), alpha subunit 1	Membran/Plasmamembran	P09471
20)	Heat shock protein HSP 90-alpha	Zytoplasma	P07900
21)	Aconitate hydratase, mitochondrial precursor	Mitochondrium	Q99798
22)	ATP synthase alpha chain, mitochondrial precursor	Mitochondrium	P25705
23)	Glyceraldehyde-3-phosphate dehydrogenase, liver	Zytoplasma	P04406
24)	Myelin basic protein (MBP)	Sonstige	P02686
25)	14-3-3 protein zeta/delta	Zytoplasma	P63104
26)	Neural cell adhesion molecule 1, 140 kDa isoform precursor	Membran/Plasmamembran	P13591
27)	Sodium/potassium-transporting ATPase alpha-1 chain precursor	Membran/Plasmamembran	P05023

28)	NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial precursor	Mitochondrium	Q8TCC9
29)	14-3-3 protein gamma	Zvtoplasma	P61981
30)	Pyruvate kinase, isozymes M1/M2	Zytoplasma	P14618
31)	Dynein heavy chain, cytosolic	Zytoskelett	Q14204
32)	60 kDa heat shock protein, mitochondrial precursor (Hsp60)	Mitochondrium	P10809
33)	Contactin 1 precursor	Membran/Plasmamembran	Q12860
34)	Tubulin beta-4 chain (Tubulin 5 beta)	Zytoskelett	P04350
35)	Sodium/potassium-transporting ATPase alpha-2 chain precursor	Membran/Plasmamembran	P50993
36)	Creatine kinase, ubiquitous mitochondrial precursor	Mitochondrium	P12532
37)	Guanine nucleotide-binding protein G(I)/G(S)/G(T) beta subunit 1	Membran/Plasmamembran	P62873
38)	Alpha-actinin 1	Zytoskelett	P12814
39)	Vacuolar ATP synthase catalytic subunit A, ubiquitous isoform	Zytoplasma	P38606
40)	Tubulin beta-2 chain	Zytoskelett	P68371
41)	Calcium/calmodulin-dependent protein kinase type II alpha chain	Membran/Plasmamembran	Q9UQM7
42)	Keratin, type II cytoskeletal 1	Membran/Plasmamembran	P04264
43)	Tubulin alpha-3 chain	Zytoskelett	Q71U36
44)	Heat shock 70 kDa protein 12A	Sonstige	O43301
45)	14-3-3 protein epsilon	Zytoplasma	P62258
46)	Synaptotagmin-1	Zytoplasma	P21579
47)	Plasma membrane calcium-transporting ATPase 1	Membran/Plasmamembran	P20020
48)	Microsomal glutathione S-transferase 3	ER	O14880
49)	Vacuolar proton translocating ATPase 116 kDa subunit a isoform 1	Zytoplasma	Q93050
50)	Rab GDP dissociation inhibitor alpha	Zytoplasma	P31150
51)	ADP,ATP carrier protein, heart/skeletal muscle isoform T1	Mitochondrium	P12235
52)	Synapsin-1	Membran/Plasmamebran	P17600
53)	Ubiquitin-activating enzyme E1	Sonstige	P22314
54)	Adapter-related protein complex 2 beta 1 subunit	Membran/Plasmamembran	P63010
55)	L-lactate dehydrogenase B chain	Zytoplasma	P07195
56)	Malate dehydrogenase, mitochondrial precursor	Mitochondrium	P40926
57)	Phosphate carrier protein, mitochondrial precursor	Mitochondrium	Q00325
58)	Amine oxidase [flavin-containing] B	Mitochondrium	P27338
59)	ATP synthase oligomycin sensitivity conferral protein,	Mitochondrium	P48047
	mitochondrial precursor		
60)	Glycogen phosphorylase, brain form	Zytoplasma	P11216
61)	Beta-catenin	Zytoplasma	P35222
62)	Brain acid soluble protein 1	Membran/Plasmamembran	P80723
63)	Phosphoglycerate mutase 1	Zytoplasma	P18669
64)	Heat shock cognate 71 kDa protein	Zytoplasma	P11142
65)	Sodium/potassium-transporting ATPase beta-1 chain	Membran/Plasmamembran	P05026
66)	14-3-3 protein beta/alpha	Zytoplasma	P31946
67)	Gelsolin precursor	Zytoskelett	P06396
68)	Alpha crystallin B chain	Zytoplasma	P02511
69)	Myelin-oligodendrocyte glycoprotein precursor	Membran/Plasmamembran	Q16653
70)	Heat shock protein HSP 90-beta	Zytoplasma	P08238
71)	Voltage-dependent anion-selective channel protein 1	Mitochondrium	P21796

72)	Neurofilament triplet L protein	Zytoskelett	P07196
73)	Transitional endoplasmic reticulum ATPase	Zytoplasma	P55072
74)	Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial	Mitochondrium	P50213
	precursor		
75)	Tubulin beta-3 chain	Zytoskelett	Q13509
76)	Tubulin alpha-1 chain	Zytoskelett	P68366
77)	Tubulin beta-6 chain	Zytoskelett	Q9BUF5
78)	Mitochondrial inner membrane protein	Mitochondrium	Q16891
79)	Synaptosomal-associated protein 25	Zytoplasma	P60880
80)	Glucose-6-phosphate isomerase	Zytoplasma	P06744
81)	Glutaminase, kidney isoform, mitochondrial precursor	Mitochondrium	O94925
82)	Fructose-bisphosphate aldolase A	Zytoplasma	P04075
83)	Tubulin polymerization-promoting protein	Zytoskelett	O94811
84)	NADH-ubiquinone oxidoreductase 39 kDa subunit, mitochondrial	Mitochondrium	Q16795
	precursor		
85)	6-phosphofructokinase, type C	Zytoplasma	Q01813
86)	Annexin A6	Zytoplasma	P08133
87)	Myosin heavy chain, nonmuscle type B	Zytoskelett	P35580
88)	Ubiquitin carboxyl-terminal hydrolase isozyme L1	Zytoplasma	P09936
89)	Importin beta-1 subunit	Zytoplasma	Q14974
90)	Ganglioside-induced differentiation-associated protein 1	Zytoplasma	Q8TB36
91)	Dipeptidyl aminopeptidase-like protein 6	Membran/Plasmamembran	P42658
92)	Vacuolar ATP synthase subunit E	Membran/Plasmamembran	P36543
93)	ATP synthase B chain, mitochondrial precursor	Mitochondrium	P24539
94)	Calcium/calmodulin-dependent protein kinase type II beta chain	Zytoplasma	Q13554
95)	BM88 antigen	Membran/Plasmamembran	Q8N111
96)	Tyrosine-protein phosphatase non-receptor type substrate 1	Membran/Plasmamembran	P78324
	precursor		
97)	Pyridoxal kinase	Zytoplasma	O00764
98)	Cytochrome c oxidase subunit 2	Mitochondrium	P00403
99)	Tenascin-R precursor	Sonstige	Q92752
100)	14-3-3 protein eta	Zytoplasma	Q04917
101)	Peroxiredoxin 2	Zytoplasma	P32119
102)	Ras-related protein Rab-3A	Membran/Plasmamembran	P20336
103)	Vacuolar ATP synthase subunit B, brain isoform	Sonstige	P21281
104)	ATP synthase gamma chain, mitochondrial precursor	Mitochondrium	P36542
105)	Triosephosphate isomerase	Zytoplasma	P60174
106)	Calcium-binding mitochondrial carrier protein Aralar1	Mitochondrium	O75746
107)	Serum albumin precursor	Sonstige	P02768
108)	ATP synthase D chain, mitochondrial	Mitochondrium	O75947
109)	Glutathione S-transferase Mu 3	Zytoplasma	P21266
110)	ADP,ATP carrier protein, liver isoform T2	Mitochondrium	P12236
111)	Voltage-dependent anion-selective channel protein 2	Mitochondrium	P45880
112)	Endoplasmin precursor	ER	P14625
113)	Atlastin	ER	Q8WXF7
114)	Ras-related protein Rab-1B	Membran/Plasmamembran	Q9H0U4
115)	Plasma membrane calcium-transporting ATPase 4	Membran/Plasmamembran	P23634

116)	Vacuolar ATP synthase subunit C	Membran/Plasmamembran	P21283
117)	4F2 cell-surface antigen heavy chain	Membran/Plasmamembran	P08195
118)	NAD(P) transhydrogenase, mitochondrial precursor	Mitochondrium	Q13423
119)	Adapter-related protein complex 2 alpha 2 subunit	Membran/Plasmamembran	O94973
120)	Aspartate aminotransferase, mitochondrial precursor	Mitochondrium	P00505
121)	Ubiquinol-cytochrome c reductase iron-sulfur subunit, mitochondrial	Mitochondrium	P47985
·	precursor		
122)	Mitochondrial 2-oxoglutarate/malate carrier protein	Mitochondrium	Q02978
123)	NADH-ubiquinone oxidoreductase 23 kDa subunit, mitochondrial	Mitochondrium	O00217
	precursor		
124)	Peptidyl-prolyl cis-trans isomerase A	Zytoplasma	P62937
125)	Sodium/calcium exchanger 2 precursor	Membran/Plasmamembran	Q9UPR5
126)	Neuronal membrane glycoprotein M6-a	Membran/Plasmamembran	P51674
127)	Thy-1 membrane glycoprotein precursor	Membran/Plasmamembran	P04216
128)	DJ-1 protein	Nucleus	Q99497
129)	Gamma enolase	Zytoplasma	P09104
130)	Vacuolar protein sorting 35	Zytoplasma	Q96QK1
131)	Malate dehydrogenase, cytoplasmic	Zytoplasma	P40925
132)	Alpha-internexin	Zytoskelett	Q16352
133)	Sideroflexin 1	Mitochondrium	Q9H9B4
134)	NADH-ubiquinone oxidoreductase 42 kDa subunit, mitochondrial	Mitochondrium	O95299
	precursor		
135)	Importin-alpha re-exporter	Zytoplasma	P55060
136)	Aspartate aminotransferase, cytoplasmic	Zytoplasma	P17174
137)	Thioredoxin-dependent peroxide reductase, mitochondrial precursor	Mitochondrium	P30048
138)	Limbic system-associated membrane protein precursor	Membran/Plasmamembran	Q13449
139)	Beta-soluble NSF attachment protein	Membran/Plasmamembran	Q9H115
140)	Ras-related protein Rab-2A	ER	P61019
141)	78 kDa glucose-regulated protein precursor	ER	P11021
142)	Hemoglobin beta chain	Sonstige	P68871
143)	Actin, alpha cardiac	Zytoskelett	P68032
144)	cGMP-dependent 3',5'-cyclic phosphodiesterase	Membran/Plasmamembran	O00408
145)	Fructose-bisphosphate aldolase C	Zytoplasma	P09972
146)	Fatty acid synthase	Zytoplasma	P49327
147)	Peroxiredoxin 1	Zytoplasma	Q06830
148)	Syntaxin-1B2	Membran/Plasmamembran	P61266
149)	Protein-arginine deiminase type II	Zytoplasma	Q9Y2J8
150)	Succinate dehydrogenase	Mitochondrium	P31040
151)	Puromycin-sensitive aminopeptidase	Zytoplasma	P55786
152)	Syntaxin-1A	Zytoplasma	Q16623
153)	Lon protease homolog, mitochondrial precursor	Mitochondrium	P36776
154)	Dihydropteridine reductase	Zytoplasma	P09417
155)	Myosin heavy chain, nonmuscle type A	Zytoplasma	P35579
156)	L-lactate dehydrogenase A chain	∠ytoplasma	P00338
157)	Versican core protein precursor	Sonstige	P13611
158)	Neurotilament triplet M protein	Zytoskelett	P07197
159)	Protein kinase C, alpha type	Zytoplasma	P17252

160)	NADP-dependent malic enzyme, mitochondrial precursor	Mitochondrium	Q16798
161)	Succinyl-CoA:3-ketoacid-coenzyme A transferase 1,	Mitochondrium	P55809
·	mitochondrial precursor		
162)	130 kDa leucine-rich protein	Mitochondrium	P42704
163)	Cytochrome c1, heme protein, mitochondrial precursor	Mitochondrium	P08574
164)	Reticulon 1	ER	Q16799
165)	Superoxide dismutase [Mn], mitochondrial precursor	Mitochondrium	P04179
166)	Protein kinase C, gamma type	Zytoplasma	P05129
167)	NADH-ubiquinone oxidoreductase 30 kDa subunit, mitochondrial	Mitochondrium	O75489
	precursor		
168)	ADP-ribosylation factor 1	Sonstige	P84077
169)	Dynamin-like 120 kDa protein, mitochondrial precursor	Mitochondrium	O60313
170)	14-3-3 protein tau	Zytoplasma	P27348
171)	ATP synthase f chain, mitochondrial	Mitochondrium	P56134
172)	Transketolase	Zytoplasma	P29401
173)	Calnexin precursor	ER	P27824
174)	T-complex protein 1, zeta subunit	Zytoplasma	P40227
175)	Keratin, type I cytoskeletal 10	Zytoskelett	P13645
176)	Glutamate dehydrogenase 1, mitochondrial precursor	Mitochondrium	P00367
177)	Cofilin, non-muscle isoform	Nucleus	P23528
178)	Prohibitin	Mitochondrium	P35232
179)	Ras-related protein Rab-7	Lysosom/Endosom	P51149
180)	Adenylate kinase isoenzyme 1	Zytoplasma	P00568
181)	Phosphatidylethanolamine-binding protein	Zytoplasma	P30086
182)	Ferritin heavy chain	Zytoplasma	P02794
183)	Ras-related protein Rab-10	Membran/Plasmamembran	P61026
184)	NAD-dependent deacetylase sirtuin 2	Zytoskelett	Q8IXJ6
185)	Tripartite motif protein 2	Zytoplasma	Q9C040
186)	Serine/threonine protein phosphatase 2B catalytic subunit,	Nucleus	Q08209
	alpha isoform		
187)	Septin 7	Zytoplasma	Q16181
188)	T-complex protein 1, epsilon subunit	Zytoplasma	P48643
189)	Presynaptic density protein 95	Membran/Plasmamembran	P78352
190)	Vacuolar ATP synthase subunit d	Membran/Plasmamembran	P61421
191)	Lymphocyte antigen Ly-6H precursor	Membran/Plasmamembran	O94772
192)	EH-domain containing protein 3	Membran/Plasmamembran	Q9NZN3
193)	Peroxiredoxin 5, mitochondrial precursor	Mitochondrium	P30044
194)	CD9 antigen	Membran/Plasmamembran	P21926
195)	Trifunctional enzyme alpha subunit, mitochondrial precursor	Mitochondrium	P40939
196)	Stress-70 protein, mitochondrial precursor	Mitochondrium	P38646
197)	Ras-related C3 botulinum toxin substrate 1	Membran/Plasmamembran	P63000
198)	Vacuolar ATP synthase subunit G 2	Sonstige	O95670
199)	Transportin 2	Zytoplasma	O14787
200)	Hemoglobin alpha chain	Sonstige	P69905
201)	Heat shock protein 75 kDa, mitochondrial precursor	Mitochondrium	Q12931
202)	Keratin, type I cytoskeletal 9	Zytoskelett	P35527
203)	Dihydrolipoyl dehydrogenase, mitochondrial precursor	Mitochondrium	P09622

204)	Ras-related protein Rap-1A	Membran/Plasmamembran	P62834
205)	Pyruvate carboxylase, mitochondrial precursor	Mitochondrium	P11498
206)	NADH-ubiquinone oxidoreductase B22 subunit	Mitochondrium	Q9Y6M9
207)	SH3-containing GRB2-like protein 2	Zytoplasma	Q99962
208)	Adenylyl cyclase-associated protein 1	Membran/Plasmamembran	Q01518
209)	Mitochondrial glutamate carrier 1	Mitochondrium	Q9H936
210)	Serine/threonine protein phosphatase 2A, 65 kDa regulatory	Zytoplasma	P30153
,	subunit A, alpha isoform		
211)	Leucine zipper-EF-hand containing transmembrane protein 1,	Mitochondrium	O95202
	mitochondrial precursor		
212)	Superoxide dismutase	Zytoplasma	P00441
213)	6-phosphofructokinase, muscle type	Zytoplasma	P08237
214)	Ras-related protein Rab-1A	Sonstige	P62820
215)	Vesicle-associated membrane protein 2	Zytoplasma	P63027
216)	Ras-related protein Ral-A	Membran/Plasmamembran	P11233
217)	Phosphoglycerate kinase 1	Zytoplasma	P00558
218)	Ubiquinol-cytochrome c reductase complex ubiquinone-binding	Mitochondrium	O14949
	protein QP-C		
219)	Citrate synthase, mitochondrial precursor	Mitochondrium	O75390
220)	Guanine nucleotide-binding protein G(q), alpha subunit	Membran/Plasmamembran	P50148
221)	Ras-related protein Rab-5C	Membran/Plasmamembran	P51148
222)	Ubiquinol-cytochrome-c reductase complex core protein 2,	Mitochondrium	P22695
	mitochondrial precursor		
223)	Dynamin 1-like protein	Zytoplasma	O00429
224)	Ferritin light chain	Zytoplasma	P02792
225)	UMP-CMP kinase	Nucleus	P30085
226)	Oligodendrocyte-myelin glycoprotein precursor	Membran/Plasmamembran	P23515
227)	Enoyl-CoA hydratase, mitochondrial precursor	Mitochondrium	P30084
228)	2-oxoglutarate dehydrogenase E1 component, mitochondrial	Mitochondrium	Q02218
	precursor		
229)	T-complex protein 1, delta subunit	Zytoplasma	P50991
230)	Alpha-2 catenin	Zytoplasma	P26232
231)	Ubiquinol-cytochrome-c reductase complex core protein I,	Mitochondrium	P31930
	mitochondrial precursor		
232)	Elongation factor 2	Zytoplasma	P13639
233)	Alpha enolase	Zytoplasma	P06733
234)	26S proteasome non-ATPase regulatory subunit 2	Zytoplasma	Q13200
235)	Cytochrome c	Mitochondrium	P99999
236)	Visinin-like protein 1	Sonstige	P62760
237)	Synaptogyrin-3	Membran/Plasmamembran	O43761
238)	Vacuolar ATP synthase subunit H	Membran/Plasmamembran	Q9UI12
239)	Synaptophysin	Zytoplasma	P08247
240)	Neuromodulin	Membran/Plasmamembran	P17677
241)	Ras-related protein Rab-14	Membran/Plasmamembran	P61106
242)	Rho GDP-dissociation inhibitor 1	Zytoplasma	P52565
243)	NADH-ubiquinone oxidoreductase PDSW subunit	Mitochondrium	O96000
244)	Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1	Nucleus	Q13526

245)	Mitogen-activated protein kinase 1	Nucleus	P28482
246)	Cytochrome c oxidase subunit IV isoform 1, mitochondrial precursor	Mitochondrium	P13073
247)	Neural cell adhesion molecule 2 precursor	Membran/Plasmamembran	O15394
248)	NADH-ubiquinone oxidoreductase 13 kDa-B subunit	Mitochondrium	Q16718
249)	Cytochrome c oxidase polypeptide Va, mitochondrial precursor	Mitochondrium	P20674
250)	Transforming protein RhoA	Membran/Plasmamembran	P61586
251)	Cell division control protein 42 homolog	Membran/Plasmamembran	P60953
252)	Band 4.1-like protein 1	Zytoskelett	Q9H4G0
253)	Phosphatidylinositol 4-kinase alpha	Sonstige	P42356
254)	T-complex protein 1, gamma subunit	Zytoplasma	P49368
255)	Nck-associated protein 1	Membran/Plasmamembran	Q9Y2A7
256)	NipSnap2 protein	Mitochondrium	O75323
257)	NipSnap1 protein	Mitochondrium	Q9BPW8
258)	Glutathione S-transferase P	Zytoplasma	P09211
259)	Ubiquitin carboxyl-terminal hydrolase 5	Lysosom/Endosom	P45974
260)	Profilin-2	Zytoskelett	P35080
261)	cAMP and cAMP-inhibited cGMP 3',5'-cyclic phosphodiesterase 10A	Zytoplasma	Q9Y233
262)	Ras-related protein Rap-2b	Lysosom/Endosom	P61225
263)	Calmodulin	Zytoskelett	P62158
264)	Actin-related protein 2/3 complex subunit 4	Zytoskelett	P59998
265)	Ubiquinol-cytochrome c reductase complex 14 kDa protein	Mitochondrium	P14927
266)	Coronin-1A	Zytoskelett	P31146
267)	NADH-ubiquinone oxidoreductase 19 kDa subunit	Mitochondrium	P51970
268)	Neural cell adhesion molecule L1 precursor	Membran/Plasmamembran	P32004
269)	Glutathione S-transferase Mu 2	Zytoplasma	P28161
270)	Profilin-1	Zytoskelett	P07737
271)	AFG3-like protein 2	Mitochondrium	Q9Y4W6
272)	Sodium/potassium-transporting ATPase beta-2 chain	Membran/Plasmamembran	P14415
273)	Transforming protein p21/H-Ras-1	Membran/Plasmamembran	P01112

6.3. Zusammensetzung des Lipofuszin-Proteoms der Ratte

		Subzelluläre	Zugangsnummer:	
	Protein:	Zuordnung:	UniProtKB:	IPI:
1)	Sodium/potassium-transporting ATPase alpha-3 chain	Membran/Plasmamembran	P06687	IPI00231451
2)	Clathrin heavy chain	Membran/Plasmamembran	P11442	IPI00193983
3)	Isoform Glt1 of Excitatory amino acid transporter 2	Membran/Plasmamembran	P31596	IPI00213663
4)	ATP synthase beta chain, mitochondrial precursor	Mitochondrium	P10719	IPI00551812
5)	ATP synthase alpha chain, mitochondrial precursor	Mitochondrium	P15999	IPI00396910
6)	Isoform 1 of Syntaxin-binding protein 1	Zytoplasma	P61765	IPI00205372
7)	Actin, cytoplasmic 1	Zytoskelett	P60711	IPI00189819
8)	Heat shock cognate 71 kDa protein	Zytoplasma	P63018	IPI00208205
9)	Myelin proteolipid protein	Membran/Plasmamembran	P60203	IPI00231102

10)	Sodium/potassium-transporting ATPase alpha-2 chain precursor	Membran/Plasmamembran	P06686	IPI00205693
11)	Isoform GLAST-1 of Excitatory amino acid	Membran/Plasmamembran	P24942	IPI00324377
10)	60 kDa beat shock protein, mitochondrial precursor	Mitochondrium	P63030	IPI003301/18
12)	Non-erythroid spectrin beta	Zvtoskelett	062099	IPI00555287
13)	2' 3'-cyclic-nucleotide 3'-nhosnhodiaeterase	Membran/Plasmamembran	P13233	IPI0010030207
14)	N-ethylmaleimide sensitive factor	Sonstige	088960	IPI00210635
16)	Pyrijvate kinase muscle	Zvtoplasma	P11980	IPI00231929
17)	Isoform IA of Synapsin-1	Membran/Plasmamembran	P09951	IPI00191335
19)	Guanine nucleotide-binding protein G(o) subunit	Zvtoplasma	P59215	IPI00204843
10)	alpha 2	Zytopiasina	1 33213	11 100204040
19)	Calcium/calmodulin-dependent protein kinase type II alpha chain	Membran/Plasmamembran	P11275	IPI00192337
20)	Dynamin-1	Zytoskelett	P21575	IPI00558839
21)	Synaptotagmin-1	Membran/Plasmamembran	P21707	IPI00206170
22)	ADP/ATP translocase 1	Mitochondrium	Q05962	IPI00231927
23)	Alpha-spectrin 2	Zytoskelett	P16086	IPI00734744
24)	Hexokinase-1	Mitochondrium	P05708	IPI00202543
25)	Aconitate hydratase, mitochondrial precursor	Mitochondrium	Q9ER34	IPI00421539
26)	Glyceraldehyde-3-phosphate dehydrogenase	Zytoplasma	P04797	IPI00555252
27)	Creatine kinase, mitochondrial 1, ubiquitous	Mitochondrium	Q5BJT9	IPI00555166
28)	Sodium/potassium-transporting ATPase subunit beta-1	Membran/Plasmamembran	P07340	IPI00339124
29)	Calcium/calmodulin-dependent protein kinase type II beta chain	Zytoplasma	P08413	IPI00211185
30)	Aspartate aminotransferase, mitochondrial precursor	Mitochondrium	P00507	IPI00210920
31)	Tubulin beta-5 chain	Zytoskelett	P69897	IPI00197579
32)	Dihydrolipoamide S-acetyltransferase	Mitochondrium	P08461	IPI00231714
33)	Fructose-bisphosphate aldolase A	Mitochondrium	P05065	IPI00231734
34)	Sodium/potassium-transporting ATPase alpha-1	Membran/Plasmamembran	P06685	IPI00326305
	chain precursor			
35)	Creatine kinase B-type	Zytoplasma	P07335	IPI00470288
36)	Succinate dehydrogenase [ubiquinone] flavoprotein	Mitochondrium	Q920L2	IPI00200659
	subunit, mitochondrial precursor			
37)	Isoform 2 of AP-2 complex subunit beta-1	Membran/Plasmamembran	P62944	IPI00231502
38)	Glutaminase kidney isoform, mitochondrial precursor	Mitochondrium	P13264	IPI00199465
39)	Isoform IIa of Synapsin-2	Membran/Plasmamembran	Q63537	IPI00210036
40)	Vacuolar ATP synthase subunit B, brain isoform	Membran/Plasmamembran	P62815	IPI00199305
41)	Stress-70 protein, mitochondrial precursor	Mitochondrium	P48721	IPI00363265
42)	Ubiquinol-cytochrome c reductase core protein I	Mitochondrium	Q68FY0	IPI00471577
43)	Brain acid soluble protein 1	Membran/Plasmamembran	Q05175	IPI00231651
44)	NADH dehydrogenase (Ubiquinone) Fe-S protein 1,	Mitochondrium	Q66HF1	IPI00358033
	75kDa			
45)	Ubiquinol-cytochrome c reductase core protein II	Mitochondrium	P32551	IPI00480805
46)	Rab GDP dissociation inhibitor alpha	Zytoplasma	P50398	IPI00324986
47)	L-lactate dehydrogenase B chain	Zytoplasma	P42123	IPI00231783
			Membran/Plasm	
--------------	---	------------------------	---------------	--------------
48)	Tubulin, alpha 4	Zytoskelett	amembran	IPI00362927
49)	Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial precursor	Mitochondrium	Q99NA5	IPI00198720
50)	ТОМ70	Mitochondrium	Q75Q39	IPI00417750
51)	Guanine nucleotide-binding protein $G(I)/G(S)/G(T)$	Zytoplasma	P54311	IPI00212655
	subunit beta 1			
52)	Myelin basic protein isoform 1	Membran/Plasmamembran	P02688	IPI00231819
53)	Adaptor protein complex AP-2, alpha 2 subunit	Membran/Plasmamembran	P18484	IPI00471901
54)	Heat shock protein 86	Membran/Plasmamembran	Q6B437	IPI00208256
55)	83 kDa protein	Sonstige	D3ZDF7	IPI00364895
56)	Long-chain-fatty-acidCoA ligase 6	Mitochondrium	P33124	IPI00324041
57)	Glucose phosphate isomerase	Zytoplasma	Q6P6V0	IPI00364311
58)	Dynein heavy chain, cytosolic	Zytoskelett	P38650	IPI00327630
59)	Septin-7	Zytoplasma	Q9WVC0	IPI00204899
60)	Contactin-1 precursor	Membran/Plasmamembran	Q63198	IPI00206054
61)	Slc25a3 protein	Mitochondrium	Q6IRH6	IPI00209115
62)	Neural cell adhesion molecule 1, 140 kDa isoform	Membran/Plasmamembran	P13596	IPI00476991
CO)	Alpha isoform of regulatory subunit A protein	Zutoplasma	052124	IDI00265422
63)	nhosnhatase 2	Zytopiasina	00/104	IF 100303423
C (1)	Gamma-englase	Zutoplasma	P07323	IPI00326/12
64) 65)	Tubulin alpha-1 chain	Zytopiasina	P68370	IPI00180705
65)	Isoform D of Plasma membrane calcium-	Membran/Plasmamembran	P11505	IPI00194873
00)	transporting ATPase 1	Membran/Hasmanembran	111303	11 100104070
67)	Isoform 1 of Electrogenic sodium bicarbonate	Membran/Plasmamembran	09.1166	IPI00199985
07)	cotransporter 1	Monibian/Flaomanonbian	QUUIUU	
68)	4F2 heavy chain	Membran/Plasmamembran	Q794F9	IPI00211616
69)	Mvosin-10	Zvtoplasma	Q9JLT0	IPI00204046
70)	Isoform Long of Clathrin coat assembly protein	Membran/Plasmamembran	Q05140	IPI00215134
, 0)	AP180			
71)	Svntaxin-1B2	Membran/Plasmamembran	P61265	IPI00191730
72)	Neuromodulin	Membran/Plasmamembran	P07936	IPI00212320
73)	ATPase, H+ transporting, V1 subunit C, isoform 1	Membran/Plasmamembran	Q5FVI6	IPI00213457
74)	Isoform I of Vacuolar proton translocating ATPase	Membran/Plasmamembran	P25286	IPI00202120
, ,,	116 kDa subunit a isoform 1			
75)	Malate dehydrogenase, mitochondrial precursor	Mitochondrium	P04636	IPI00197696
76)	Dihydrolipoamide dehydrogenase	Mitochondrium	Q6P6R2	IPI00365545
77)	Trifunctional enzyme subunit alpha, mitochondrial	Mitochondrium	Q64428	IPI00212622
,	precursor			
78)	Na+/K+-ATPase beta 2 subunit	Membran/Plasmamembran	Q5M9H4	IPI00551569
79)	50 kDa protein	Zytoplasma	D3ZL20	IPI00198966
80)	Ndufa10 protein	Mitochondrium	Q561S0	IPI00561513
81)	Malate dehydrogenase, cytoplasmic	Zytoplasma	O88989	IPI00198717
82)	14-3-3 protein gamma	Zytoplasma	P61983	IPI00230835
83)	Isoform 1 of Serine/threonine-protein phosphatase	Nucleus	P63329	,IPI00201410
	2B catalytic subunit alpha isoform			

84)	Citrate synthase	Mitochondrium	Q8VHF5	IPI00206977
85)	Annexin A6	Zytoplasma	P48037	IPI00421888
86)	CAP, adenylate cyclase-associated protein 1	Membran/Plasmamembran	Q08163	IPI00197616
87)	Fructose-bisphosphate aldolase C	Zytoplasma	P09117	IPI00231736
88)	Tubulin, beta, 2	Zytoskelett	Q6P9T8	IPI00400573
89)	Synaptotagmin-2	Membran/Plasmamembran	P29101	IPI00201467
90)	Amine oxidase [flavin-containing] B	Mitochondrium	P19643	IPI00231774
91)	Dihydropyrimidinase-related protein 1	Zytoplasma	Q62950	IPI00476155
92)	Isoform 1 of Inositol 1,4,5-trisphosphate receptor	ER	P29994	IPI00230873
	type 1			
93)	NORBIN	Zytoplasma	O35095	IPI00205396
94)	Hypothetical protein LOC360975	Sonstige	D3ZFA6	IPI00390995
95)	NADH-ubiquinone oxidoreductase chain 4	Mitochondrium	P05508	IPI00200487
96)	Isoform 2 of Protein NDRG2	Zytoplasma	Q8VBU2	IPI00326606
97)	Isoform 1 of Limbic system-associated membrane	Membran/Plasmamembran	Q62813	IPI00209114
,	protein precursor			
98)	Isoform L-MAG of Myelin-associated glycoprotein	Membran/Plasmamembran	P07722	IPI00210536
,	precursor			
99)	NADH dehydrogenase (Ubiquinone) flavoprotein 1,	Mitochondrium	Q5XIH3	IPI00191913
,	51kDa			
100)	Isoform 2 of Ectonucleoside triphosphate	Membran/Plasmamembran	O35795	IPI00231058
)	Diphosphohydrolase 2			
101)	Beta-catenin	Zytoplasma	Q9WU82	IPI00325912
102)	Pyruvate carboxylase, mitochondrial precursor	Mitochondrium	P52873	IPI00210435
103)	Isoform 2 of Neuroplastin precursor	Membran/Plasmamembran	P97546	IPI00326260
104)	Adenvlvl cvclase-associated protein 2	Membran/Plasmamembran	P52481	IPI00206226
105)	transketolase	Zvtoplasma	P50137	IPI00231139
106)	Immunoglobulin superfamily, member 8	Membran/Plasmamembran	D3ZPC5	IPI00372709
107)	Chaperonin subunit 6a	Zvtoplasma	Q3MHS9	IPI00188111
108)	Phosphoglycerate mutase 1	Nucleus	P25113	IPI00421428
109)	EH-domain containing protein 2	Membran/Plasmamembran	Q4V8H8	IPI00200258
110)	Glutamate decarboxylase 2	Zvtoplasma	Q05683	IPI00191733
111)	Phosphoglucomutase-1	Zvtoplasma	P38652	IPI00231641
112)	Alpha-enolase	Zvtoplasma	P04764	IPI00464815
112)	Calmodulin-binding protein	Membran/Plasmamembran	Q63092	IPI00205056
114)	Type II keratin Kh21	Zvtoskelett	A7M775	IPI00421787
114)	Sodium/calcium exchanger 2 precursor	Membran/Plasmamembran	P48768	IPI00480672
110)	Guanine nucleotide binding protein, alpha g		P82471	IPI00230868
110)	polypentide	Zytopiasina	102471	11 100200000
117)	Alpha-actinin-1	Zvtoskolott	0971P2	ID100200082
117)		Mombran/Plasmamombran	Q92112	IDI00205002
118)	A disintegrin and motalloprotococo domain 02	Sonstige	D37T26	IDI00320330
119)	A disintegrin and metanoprotease domain 23	Zutoploomo	D32130	
120)	ATPace H, transporting V0 suburit Displayment	∠yiuµiasiila Mombran/Diaomomombran	- 13221 OSM7Te	IF100421513
121)	ATT ase, H+ transporting, VU Suburnit D ISOloffii I	Sonction		
122)		Suisiige		
123)	L-lactate denyorogenase A chain	∠ytopiasma	FU4042	
124)	b-phosphotructokinase type C	∠ytopiasma	P4/860	11100231954

125)	Chaperonin containing TCP1, subunit 5	Zytoplasma	Q68FQ0	IPI00470301
126)	Solute carrier family 12 member 5	Membran/Plasmamembran	Q63633	IPI00211024
127)	Prohibitin	Mitochondrium	P67779	IPI00211756
128)	Voltage-dependent anion-selective channel protein 1	Mitochondrium	Q9Z2L0	IPI00421874
129)	ATP-citrate synthase	Zytoplasma	P16638	IPI00214665
130)	Heat-shock protein 105 kDa	Zytoplasma	Q66HA8	IPI00568014
131)	NAD-dependent deacetylase sirtuin-2	Zytoskelett	Q5RJQ4	IPI00562798
132)	Voltage-dependent anion-selective channel protein 2	Mitochondrium	P81155	IPI00198327
133)	Synaptophysin	Membran/Plasmamembran	P07825	IPI00211360
134)	Phosphoglycerate kinase 1	Zytoplasma	P16617	IPI00231426
135)	glutamine synthetase 1	Zytoplasma	P09606	IPI00324020
136)	Amphiphysin	Membran/Plasmamembran	O08838	IPI00196508
137)	ATP synthase, H+ transporting, mitochondrial F1	Mitochondrium		IPI00396906
	complex, gamma polypeptide 1			
138)	Spectrin beta chain, brain 2	Zytoskelett	Q9QWN8	IPI00327662
139)	78 kDa glucose-regulated protein precursor	ER	P06761	IPI00206624
140)	Cytochrome oxidase subunit II	Mitochondrium	Q8SEZ5	IPI00734686
141)	Opa1 protein	Mitochondrium	Q2TA68	IPI00421659
142)	Capping protein (Actin filament) muscle Z-line,	Zytoplasma	Q3T1K5	IPI00370681
	alpha 2			
143)	T-complex protein 1 subunit delta	Zytoplasma	Q7TPB1	IPI00337168
144)	Alpha-internexin	Zytoskelett	P23565	IPI00211936
145)	RAB10, member RAS oncogene family	Membran/Plasmamembran	Q5RKJ9	IPI00555185
146)	Synaptic vesicle glycoprotein 2A	Membran/Plasmamembran	Q02563	IPI00208115
147)	Sideroflexin-5	Mitochondrium	Q8CFD0	IPI00190974
148)	Isocitrate dehydrogenase [NAD] subunit gamma,	Mitochondrium	P41565	IPI00194047
	mitochondrial precursor			
149)	Isocitrate dehydrogenase [NAD] subunit beta,	Mitochondrium	Q68FX0	IPI00357924
	mitochondrial precursor			
150)	Type I hair keratin KA28	Zytoskelett	Q6IFW0	IPI00475960
151)	Cell cycle exit and neuronal differentiation protein 1	Membran/Plasmamembran	Q5FVI4	IPI00194828
152)	Sideroflexin-1	Mitochondrium	Q63965	IPI00213735
153)	Isoform 3 of Ras GTPase-activating protein SynGAP	Membran/Plasmamembran	Q9QUH6	IPI00212566
154)	Isoform B of AP-1 complex subunit beta-1	Sonstige	P52303	IPI00201713
155)	Isoform 1 of Discs large homolog 4	Membran/Plasmamembran	P31016	IPI00566635
156)	Calnexin precursor	ER	P35565	IPI00199636
157)	Glycerol-3-phosphate dehydrogenase,	Mitochondrium	P35571	IPI00199663
	mitochondrial precursor			
158)	ATP synthase B chain, mitochondrial precursor	Mitochondrium	P19511	IPI00196107
159)	Cullin-associated NEDD8-dissociated protein 1	Nucleus	P97536	IPI00205466
160)	Glycoprotein m6a	Membran/Plasmamembran	Q812E9	IPI00287309
161)	tyrosine 3-monooxgenase/tryptophan	Zytoplasma	P35213	IPI00230837
	5-monooxgenase activation protein, beta polypeptide			
162)	Isoform SNAP-25b of Synaptosomal-associated	Zytoplasma	P60881	IPI00204644
/	protein 25	- •		
163)	Hypothetical protein LOC314432	Zytoplasma	Q5U300	IPI00368347

164)	Triosephosphate isomerase	Zytoplasma	P48500	IPI00231767
165)	ATPase, H+ transporting, lysosomal 50/57kDa, V1	Lysosom	Q5XIL1	IPI00364780
	subunit H			
166)	14-3-3 protein zeta/delta	Zytoplasma	P63102	IPI00324893
167)	30 kDa protein	Zytoplasma	D3ZTY8	IPI00205957
168)	6-phosphofructokinase, liver type	Zytoplasma	P30835	IPI00212741
169)	Tumor necrosis factor type 1 receptor associated	Mitochondrium	Q5XHZ0	IPI00369217
	protein			
170)	GDP dissociation inhibitor 2	Zytoplasma	P50399	IPI00421565
171)	Syntaxin-1A	Membran/Plasmamembran	P32851	IPI00324381
172)	Contactin-associated protein 1 precursor	Membran/Plasmamembran	P97846	IPI00208699
173)	ES1 protein homolog, mitochondrial precursor	Mitochondrium	P56571	IPI00231028

6.4. Literaturverzeichnis

- Al-Chalabi, A. and C. C. Miller (2003). "Neurofilaments and neurological disease." <u>Bioessays</u> 25(4): 346-55.
- Altman, J. (1969). "Autoradiographic and histological studies of postnatal neurogenesis.
 IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb." J Comp Neurol **137**(4): 433-57.
- Amano, T., H. Nakanishi, et al. (1995). "Age-related changes in cellular localization and enzymatic activities of cathepsins B, L and D in the rat trigeminal ganglion neuron." <u>Mech Ageing Dev</u> 83(3): 133-41.
- Bainton, D. F. (1981). "The discovery of lysosomes." J Cell Biol 91(3 Pt 2): 66s-76s.
- Balaban, R. S., S. Nemoto, et al. (2005). "Mitochondria, oxidants, and aging." <u>Cell</u> **120**(4): 483-95.
- Bancher, C., I. Grundke-Iqbal, et al. (1989). "Immunoreactivity of neuronal lipofuscin with monoclonal antibodies to the amyloid beta-protein." <u>Neurobiol Aging</u> **10**(2): 125-32.
- Belair, C. D., T. R. Yeager, et al. (1997). "Telomerase activity: a biomarker of cell proliferation, not malignant transformation." <u>Proc Natl Acad Sci U S A</u> 94(25): 13677-82.
- Bishop, N. A., T. Lu, et al. (2010). "Neural mechanisms of ageing and cognitive decline." <u>Nature</u> **464**(7288): 529-35.
- Blackburn, E. H. (2000). "Telomere states and cell fates." Nature 408(6808): 53-6.
- Bohley, P. and P. O. Seglen (1992). "Proteases and proteolysis in the lysosome." <u>Experientia</u> **48**(2): 151-7.
- Braak, E., D. Sandmann-Keil, et al. (2001). "alpha-synuclein immunopositive Parkinson's disease-related inclusion bodies in lower brain stem nuclei." <u>Acta Neuropathol</u> **101**(3): 195-201.
- Brunk, U. and J. L. Ericsson (1972). "Electron microscopical studies on rat brain neurons. Localization of acid phosphatase and mode of formation of lipofuscin bodies." <u>J</u> <u>Ultrastruct Res</u> 38(1): 1-15.
- Brunk, U. T. and A. Terman (2002). "Lipofuscin: mechanisms of age-related accumulation and influence on cell function." <u>Free Radic Biol Med</u> **33**(5): 611-9.
- Burke, S. N. and C. A. Barnes (2006). "Neural plasticity in the ageing brain." <u>Nat Rev</u> <u>Neurosci</u> **7**(1): 30-40.
- Campisi, J. and F. d'Adda di Fagagna (2007). "Cellular senescence: when bad things happen to good cells." <u>Nat Rev Mol Cell Biol</u> **8**(9): 729-40.

- Chang, L., T. Ernst, et al. (1996). "In vivo proton magnetic resonance spectroscopy of the normal aging human brain." <u>Life Sci</u> **58**(22): 2049-56.
- Chen, J. W., T. L. Murphy, et al. (1985). "Identification of two lysosomal membrane glycoproteins." <u>J Cell Biol</u> **101**(1): 85-95.
- Chen, Q., E. J. Vazquez, et al. (2003). "Production of reactive oxygen species by mitochondria: central role of complex III." J Biol Chem **278**(38): 36027-31.
- Chou, S. M., H. S. Wang, et al. (1998). "Advanced glycation endproducts in neurofilament conglomeration of motoneurons in familial and sporadic amyotrophic lateral sclerosis." <u>Mol Med</u> **4**(5): 324-32.
- Collinge, J. (2001). "Prion diseases of humans and animals: their causes and molecular basis." <u>Annu Rev Neurosci</u> 24: 519-50.
- David, D. C., N. Ollikainen, et al. (2010). "Widespread protein aggregation as an inherent part of aging in C. elegans." <u>PLoS Biol</u> **8**(8): e1000450.
- Dice, J. F. (2000). Lysosomal pathways of protein degradation Georgetown, Texas.
- Drachman, D. A. (1997). "Aging and the brain: a new frontier." Ann Neurol 42(6): 819-28.
- Eskelinen, E. L. (2006). "Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy." <u>Mol Aspects Med</u> 27(5-6): 495-502.
- Fasani, F., A. Bocquet, et al. (2004). "The amount of neurofilaments aggregated in the cell body is controlled by their increased sensitivity to trypsin-like proteases." <u>J Cell Sci</u> 117(Pt 6): 861-9.
- Fimia, G. M. and M. Piacentini (2009). "Toward the understanding of autophagy regulation and its interplay with cell death pathways." <u>Cell Death Differ</u> **16**(7): 933-4.
- Fournier, J. G., F. Escaig-Haye, et al. (1998). "Distribution and submicroscopic immunogold localization of cellular prion protein (PrPc) in extracerebral tissues." <u>Cell Tissue Res</u> 292(1): 77-84.
- Friedhoff, P., M. von Bergen, et al. (2000). "Structure of tau protein and assembly into paired helical filaments." <u>Biochim Biophys Acta</u> **1502**(1): 122-32.
- Galou, M., E. Colucci-Guyon, et al. (1996). "Disrupted glial fibrillary acidic protein network in astrocytes from vimentin knockout mice." <u>J Cell Biol</u> **133**(4): 853-63.
- Glenner, G. G. and C. W. Wong (1984). "Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein." <u>Biochem Biophys Res Commun</u> **120**(3): 885-90.
- Goedert, M., R. Jakes, et al. (1996). "Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans." <u>Nature</u> **383**(6600): 550-3.
- Gong, C. X., T. Lidsky, et al. (2000). "Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer's disease." J Biol Chem 275(8): 5535-44.
- Gracy, R. W., M. L. Chapman, et al. (1985). "Molecular basis of the accumulation of abnormal proteins in progeria and aging fibroblasts." <u>Basic Life Sci</u> **35**: 427-42.
- Guiroy, D. C., S. K. Shankar, et al. (1989). "Neuronal degeneration and neurofilament accumulation in the trigeminal ganglia in Creutzfeldt-Jakob disease." <u>Ann Neurol</u> **25**(1): 102-6.
- Halliwell, B. and M. Whiteman (2004). "Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?" <u>Br</u> <u>J Pharmacol</u> 142(2): 231-55.
- Hannover, A. (1842). "Mikroskopiske undersögelser af nervesystemet." Kgl. Danske Vidensk. Kabernes Selkobs Naturv. Math. Afh. Copenhagen 10: 1-112.
- Harley, C. B., A. B. Futcher, et al. (1990). "Telomeres shorten during ageing of human fibroblasts." <u>Nature</u> **345**(6274): 458-60.
- Harman, D. (1994). "Free-radical theory of aging. Increasing the functional life span." <u>Ann</u> <u>N Y Acad Sci</u> **717**: 1-15.
- Hartmann, T., S. C. Bieger, et al. (1997). "Distinct sites of intracellular production for Alzheimer's disease A beta40/42 amyloid peptides." <u>Nat Med</u> **3**(9): 1016-20.

- Hebert, L. E., P. A. Scherr, et al. (2003). "Alzheimer disease in the US population: prevalence estimates using the 2000 census." <u>Arch Neurol</u> **60**(8): 1119-22.
- Herbig, U., M. Ferreira, et al. (2006). "Cellular senescence in aging primates." <u>Science</u> **311**(5765): 1257.
- Hoffman, P. N. and R. J. Lasek (1975). "The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons." J Cell Biol **66**(2): 351-66.
- Holz, F. G., C. Bellman, et al. (2001). "Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration." <u>Invest Ophthalmol Vis</u> <u>Sci</u> 42(5): 1051-6.
- Holz, F. G., C. Bellmann, et al. (1999). "Patterns of increased in vivo fundus autofluorescence in the junctional zone of geographic atrophy of the retinal pigment epithelium associated with age-related macular degeneration." <u>Graefes</u> <u>Arch Clin Exp Ophthalmol</u> **237**(2): 145-52.
- Holz, F. G., F. Schutt, et al. (1999). "Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin." <u>Invest Ophthalmol Vis Sci</u> 40(3): 737-43.
- Hornshaw, M. P., J. R. McDermott, et al. (1995). "Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides." <u>Biochem Biophys Res Commun</u> **214**(3): 993-9.
- Hu, W., S. Nessler, et al. "Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling." <u>Brain</u> 133(Pt 2): 375-88.
- Ivy, G. O., F. Schottler, et al. (1984). "Inhibitors of lysosomal enzymes: accumulation of lipofuscin-like dense bodies in the brain." <u>Science</u> 226(4677): 985-7.
- Jolly, R. D., B. V. Douglas, et al. (1995). "Lipofuscin in bovine muscle and brain: a model for studying age pigment." <u>Gerontology</u> **41 Suppl 2**: 283-95.
- Julien, J. P. (1999). "Neurofilament functions in health and disease." <u>Curr Opin Neurobiol</u> **9**(5): 554-60.
- Kabeya, Y., N. Mizushima, et al. (2000). "LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing." <u>Embo J</u> **19**(21): 5720-8.
- Kamal, A., Y. Ying, et al. (1998). "Annexin VI-mediated loss of spectrin during coated pit budding is coupled to delivery of LDL to lysosomes." <u>J Cell Biol</u> **142**(4): 937-47.
- Kang, J., H. G. Lemaire, et al. (1987). "The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor." <u>Nature</u> **325**(6106): 733-6.
- Katz, M. L., C. M. Drea, et al. (1986). "Relationship between dietary retinol and lipofuscin in the retinal pigment epithelium." <u>Mech Ageing Dev</u> **35**(3): 291-305.
- Keller, J. N., E. Dimayuga, et al. (2004). "Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain." Int J Biochem Cell Biol **36**(12): 2376-91.
- Keppler, D., R. Walter, et al. (2000). "Increased expression of mature cathepsin B in aging rat liver." <u>Cell Tissue Res</u> **302**(2): 181-8.
- Kikugawa, K., T. Kato, et al. (1989). "Fluorescent and cross-linked proteins formed by free radical and aldehyde species generated during lipid oxidation." <u>Adv Exp Med Biol</u> **266**: 345-56; discussion 357.
- Kim, S. and P. A. Coulombe (2007). "Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm." <u>Genes Dev</u> 21(13): 1581-97.
- Kirkwood, T. B. and S. N. Austad (2000). "Why do we age?" Nature 408(6809): 233-8.
- Klaunig, J. E., Y. Xu, et al. (1998). "The role of oxidative stress in chemical carcinogenesis." <u>Environ Health Perspect</u> **106 Suppl 1**: 289-95.
- Klionsky, D. J. and S. D. Emr (2000). "Autophagy as a regulated pathway of cellular degradation." <u>Science</u> **290**(5497): 1717-21.

- Koneff, H. (1886). "Beiträge zur Kenntniss der Nervenzellen in den peripheren Ganglien." <u>Mitt. Naturforsch. Gesellsch. (Bern)</u> **44**: 13-14.
- Lassmann, H., P. Fischer, et al. (1993). "Synaptic pathology of Alzheimer's disease." <u>Ann</u> <u>N Y Acad Sci</u> 695: 59-64.
- Lee, M. K. and D. W. Cleveland (1996). "Neuronal intermediate filaments." <u>Annu Rev</u> <u>Neurosci</u> **19**: 187-217.
- Lindner, A. B. and A. Demarez (2009). "Protein aggregation as a paradigm of aging." <u>Biochim Biophys Acta</u> **1790**(10): 980-96.
- Lund, J., P. Tedesco, et al. (2002). "Transcriptional profile of aging in C. elegans." <u>Curr</u> <u>Biol</u> **12**(18): 1566-73.
- Magavi, S. S., B. R. Leavitt, et al. (2000). "Induction of neurogenesis in the neocortex of adult mice." <u>Nature</u> **405**(6789): 951-5.
- Makin, O. S. and L. C. Serpell (2005). "Structures for amyloid fibrils." Febs J 272(23): 5950-61.
- Marzabadi, M. R., R. S. Sohal, et al. (1988). "Effect of ferric iron and desferrioxamine on lipofuscin accumulation in cultured rat heart myocytes." Mech Ageing Dev 46(1-3): 145-57.
- Marzella, L., J. Ahlberg, et al. (1981). "Autophagy, heterophagy, microautophagy and crinophagy as the means for intracellular degradation." <u>Virchows Arch B Cell</u> <u>Pathol Incl Mol Pathol</u> **36**(2-3): 219-34.
- Miller, C. C., S. Ackerley, et al. (2002). "Axonal transport of neurofilaments in normal and disease states." <u>Cell Mol Life Sci</u> 59(2): 323-30.
- Mironov, A., Jr., D. Latawiec, et al. (2003). "Cytosolic prion protein in neurons." <u>J Neurosci</u> **23**(18): 7183-93.
- Miyagishi, T. (1966). "Electron microscopic studies on the cerebral cortex of senile and vitamin E deficient rats--with special reference to the morphopathogenesis of lipopigments." <u>Seishin Shinkeigaku Zasshi</u> **68**(7): 855-71.
- Munoz, D. G., C. Greene, et al. (1988). "Accumulation of phosphorylated neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients." J <u>Neuropathol Exp Neurol</u> **47**(1): 9-18.
- Nakanishi, H., K. Tominaga, et al. (1994). "Age-related changes in activities and localizations of cathepsins D, E, B, and L in the rat brain tissues." <u>Exp Neurol</u> **126**(1): 119-28.
- Nguyen, J., M. A. Baldwin, et al. (1995). "Prion protein peptides induce alpha-helix to beta-sheet conformational transitions." <u>Biochemistry</u> **34**(13): 4186-92.
- Nichols, N. R., J. R. Day, et al. (1993). "GFAP mRNA increases with age in rat and human brain." <u>Neurobiol Aging</u> **14**(5): 421-9.
- Nixon, R. A. (1993). "The regulation of neurofilament protein dynamics by phosphorylation: clues to neurofibrillary pathobiology." <u>Brain Pathol</u> **3**(1): 29-38.
- Pappolla, M. A. (1986). "Lewy bodies of Parkinson's disease. Immune electron microscopic demonstration of neurofilament antigens in constituent filaments." <u>Arch Pathol Lab Med</u> **110**(12): 1160-3.
- Petit-Taboue, M. C., B. Landeau, et al. (1998). "Effects of healthy aging on the regional cerebral metabolic rate of glucose assessed with statistical parametric mapping." <u>Neuroimage</u> 7(3): 176-84.
- Poon, H. F., R. A. Vaishnav, et al. (2006). "Quantitative proteomics analysis of differential protein expression and oxidative modification of specific proteins in the brains of old mice." <u>Neurobiol Aging</u> 27(7): 1010-9.
- Porta, E. A. (1991). "Advances in age pigment research." <u>Arch Gerontol Geriatr</u> **12**(2-3): 303-20.
- Prusiner, S. B. (1998). "Prions." Proc Natl Acad Sci U S A 95(23): 13363-83.
- Raha, S. and B. H. Robinson (2000). "Mitochondria, oxygen free radicals, disease and ageing." <u>Trends Biochem Sci</u> **25**(10): 502-8.

- Richard, F. and P. Amouyel (2001). "Genetic susceptibility factors for Alzheimer's disease." <u>Eur J Pharmacol</u> **412**(1): 1-12.
- Ross, C. A. and M. A. Poirier (2004). "Protein aggregation and neurodegenerative disease." <u>Nat Med</u> **10 Suppl**: S10-7.
- Scheibel, M. E., R. D. Lindsay, et al. (1976). "Progressive dendritic changes in the aging human limbic system." Exp Neurol **53**(2): 420-30.
- Schutt, F., B. Ueberle, et al. (2002). "Proteome analysis of lipofuscin in human retinal pigment epithelial cells." FEBS Lett **528**(1-3): 217-21.
- Seehafer, S. S. and D. A. Pearce (2006). "You say lipofuscin, we say ceroid: defining autofluorescent storage material." <u>Neurobiol Aging</u> **27**(4): 576-88.
- Serpell, L. C. and J. M. Smith (2000). "Direct visualisation of the beta-sheet structure of synthetic Alzheimer's amyloid." <u>J Mol Biol</u> **299**(1): 225-31.
- Shamsi, F. A. and M. Boulton (2001). "Inhibition of RPE lysosomal and antioxidant activity by the age pigment lipofuscin." <u>Invest Ophthalmol Vis Sci</u> **42**(12): 3041-6.
- Shay, J. W. and W. E. Wright (2007). "Hallmarks of telomeres in ageing research." J Pathol **211**(2): 114-23.
- Silbernagel, S. (2005), Altern und Zelltod. In R. Klinke, H. Pape, S. Silbernagel (Hrsg.), Physiologie (S. 45-50). Stuttgart: Thieme.
- Squier, T. C. (2001). "Oxidative stress and protein aggregation during biological aging." <u>Exp Gerontol</u> **36**(9): 1539-50.
- Stahl, N., D. R. Borchelt, et al. (1987). "Scrapie prion protein contains a phosphatidylinositol glycolipid." <u>Cell</u> **51**(2): 229-40.
- Statistisches Bundesamt (2009). "Im Jahr 2060 wird jeder Siebente 80 Jahre oder älter sein." Pressemitteilung Nr.435.
- Statistisches Bundesamt (2010). "Lebenserwartung in Deutschland erreicht höchsten Stand." Pressemitteilung Nr.401.
- Strehler, B. L., D. D. Mark, et al. (1959). "GEE MV: Rate and magnitude of age pigment accumulation in the human myocardium." <u>J Gerontol</u> **14**: 430-9.
- Stroikin, Y., H. Dalen, et al. (2004). "Inhibition of autophagy with 3-methyladenine results in impaired turnover of lysosomes and accumulation of lipofuscin-like material." <u>Eur J Cell Biol</u> 83(10): 583-90.
- Sturzenegger, M. (2001). <u>Die Klinik der Prionkrankheiten des Menschen</u>. In B. Hörnlimann, D. Riesner, H. Kretschmar (Hrsg.), Prionen und Prionkrankheiten (S. 247-260). Berlin: Gruyter.
- Terman, A. (1995). "The effect of age on formation and elimination of autophagic vacuoles in mouse hepatocytes." <u>Gerontology</u> **41 Suppl 2**: 319-26.
- Terman, A. and U. T. Brunk (1998). "Lipofuscin: mechanisms of formation and increase with age." <u>Apmis</u> **106**(2): 265-76.
- Terry, R. D. and P. Davies (1980). "Dementia of the Alzheimer type." <u>Annu Rev Neurosci</u> 3: 77-95.
- Thompson, C. B. (1995). "Apoptosis in the pathogenesis and treatment of disease." <u>Science</u> **267**(5203): 1456-62.
- Tonoki, A., E. Kuranaga, et al. (2009). "Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process." <u>Mol Cell Biol</u> **29**(4): 1095-106.
- Towbin, H., T. Staehelin, et al. (1979). "Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications." <u>Proc Natl Acad Sci U S A</u> **76**(9): 4350-4.
- Vickers, J. C., B. M. Riederer, et al. (1994). "Alterations in neurofilament protein immunoreactivity in human hippocampal neurons related to normal aging and Alzheimer's disease." <u>Neuroscience</u> **62**(1): 1-13.
- Wallace, D. C. (2005). "A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine." <u>Annu Rev Genet</u> 39: 359-407.

- West, M. J., P. D. Coleman, et al. (1994). "Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease." Lancet **344**(8925): 769-72.
- Wiese, S., K. A. Reidegeld, et al. (2007). "Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research." Proteomics **7**(3): 340-50.
- Will, R. G., J. W. Ironside, et al. (1996). "A new variant of Creutzfeldt-Jakob disease in the UK." Lancet **347**(9006): 921-5.
- Xiao, S., J. McLean, et al. (2006). "Neuronal intermediate filaments and ALS: a new look at an old question." <u>Biochim Biophys Acta</u> **1762**(11-12): 1001-12.
- Yankner, B. A., T. Lu, et al. (2008). "The aging brain." Annu Rev Pathol 3: 41-66.
- Yin, D. (1996). "Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores." Free Radic Biol Med **21**(6): 871-88.
- Yin, D. Z. and U. T. Brunk (1991). "Microfluorometric and fluorometric lipofuscin spectral discrepancies: a concentration-dependent metachromatic effect?" <u>Mech Ageing</u> <u>Dev</u> 59(1-2): 95-109.
- Zakian, V. A. (1995). "Telomeres: beginning to understand the end." <u>Science</u> **270**(5242): 1601-7.
- Zs-Nagy, I., J. Steiber, et al. (1995). "Induction of age pigment accumulation in the brain cells of young male rats through iron-injection into the cerebrospinal fluid." <u>Gerontology</u> **41 Suppl 2**: 145-58.

7. Danksagung

Ich danke Herrn Prof. Dr. C. Korth für die gute Betreuung, den fachlichen Rat und der Vertretung dieser Promotion vor der medizinischen Fakultät.

Dem Direktor des Institut für Neuropathologie, Herrn Prof. Dr. G. Reifenberger, und Herrn Prof. Dr. C. Korth danke ich für die Bereitstellung des Arbeitsplatzes sowie der damit einhergehenden Möglichkeit meine Promotion an diesem Institut durchzuführen.

Herrn Prof. Dr. A. Methner möchte ich für die Übernahme des Korreferates danken.

Ebenfalls danke ich den Mitarbeitern für die gute Arbeitsatmosphäre, die Ratschläge und die Hilfsbereitschaft.

Weiterhin danke ich dem Graduiertenkolleg 1033 für die produktive fachliche Diskussion während der praktischen Durchführung dieser Arbeit.

Schließlich danke ich herzlich meiner Familie, die mich während meiner gesamten Ausbildung unterstützt hat.

Dabei danke ich insbesondere meiner Schwester für den Rückhalt und die guten Ratschläge.

8. Eidesstattliche Erklärung

Ich versichere an Eides statt, dass die Dissertation selbstständig und ohne unzulässige fremde Hilfe erstellt worden ist und die hier vorgelegte Dissertation nicht von einer anderen Medizinischen Fakultät abgelehnt worden ist.

7.03.2013

Datum

Katharina Koppe (Unterschrift)