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1 Introduction

1.1 Brief history of solitons

We can say that the history of solitons began in 1834, on the bank of the
Edinburgh-Glasgow canal, in Scotland. An engineer by name John Scott Russel
was walking along the channel, when he saw something that caught his interest.
But let leave to him the description of such curious phenomenon:

“I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped - not so the mass
of water in the channel which it had put in motion; it accumulated round the
prow of the vessel in a state of violent agitation, then suddenly leaving it be-
hind, rolled forward with great velocity, assuming the form of a large solitary
elevation, a rounded, smooth and well-defined heap of water, which continued
its course along the channel apparently without change of form or diminution of
speed. I followed it on horseback, and overtook it still rolling on at a rate of some
eight or nine miles an hour, preserving its original figure some thirty feet long
and a foot to a foot and a half in height. Its height gradually diminished, and
after a chase of one or two miles I lost it in the windings of the channel. Such, in
the month of August 1834, was my first chance interview with that singular and
beautiful phenomenon which I have called the Wave of Translation.”

This is what Russel reported to the British Association for the Advancement of
Science. This moment began one of the most interesting and involved area of
physics research. Russel concentrated his energy on the comprehension of such
phenomenon, and after a while he was able to reproduce a model of the chan-
nel and he obtained an empirical formula expressing the speed of the wave in
terms of its amplitude and the depth of the channel. With this experiment, he
found out that the wave’s speed is proportional to its amplitude, showing that

higher waves travel faster. At that time it was believed that any non-sinusoidal
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wave would broaden and decay. The excitement of Russel was caused by the lack
of dispersion of the wave in the channel. Only 40 years later, Boussinesq and
Rayleigh, independently, were able to derive the expression for the shape and the
speed of such waves, but we have to wait until 1895, before to have an equation
governing the propagation of shallow water waves. Such result was obtained by
two Dutchmen, Korteweg and his student de Vries. This equation was based on
the assumption that the width of the wave was big compared with the depth of
the water. The Kortweg-de Vries equation, or shortly called KdV equation, has

the following form

u, +6uuy +uy, = 0, (1)

and its solution is

u = a sech’[b(t — vz)] . (2)

Here b = \/%, v = 3a, and a is a free parameter.

The people mentioned until now were the pioneers of a new area of research,
which is extensively studied today in a large number of fields. However, after the
work of Korteweg and de Vries, few paid attention to these waves for quite some
time afterwards. We have to wait until the middle of the last century before this
phenomenon returns to catch the interest of many researchers.

The beginning of a new age for solitary waves began in 1955, when Fermi, Pasta,
and Ulam described a model for studying the finite heat conductivity of solids.
This model consists of a set of masses connected with each other by springs.
The masses represent the molecules of the matter, and the springs the forces
holding the molecules together. They investigated numerically a one-dimensional

lattice, in which all the energy was concentrated in the lowest mode. What



1.1 Brief history of solitons 5

Fermi, Pasta, and Ulam expected was the thermalization of the system, by effect
of a redistribution of the entire energy throughout all the modes. This did not
happen: they saw the energy flow back and forth throughout all the modes and
eventually recollect near the initial state.

This phenomenon was explained 12 years later by two mathematical physicists,
Zabusky and Kruskal. They approximated the discreet model of Fermi, Pasta
and Ulam by a continuous model, by letting the spacing between the masses
approach zero. As a result, the equation that they obtained for wave propagation
in the model was the KdV equation. Computer experiments showed that an
initial sinusoidal pulse breaks into a train of pulses, which after a certain time
recombines to almost reproduce the initial shape. Another interesting results was
given by the studying the interaction between these waves: they came out of the
collision with their identities intact. Zabusky and Kruskal called such special
localized waves, which show particle-like behavior, solitons.

Some years later, in 1973, Hasegawa and Tappert proposed to use soliton pulses
in optical communication systems through the balance between dispersion and
nonlinearity. They showed that solitons in fibers are governed by the nonlinear
Schrédinger equation (NLS), solved one year before by Zakharov and Shabat by
using the inverse scattering method. However, at that time, there was neither
capability to produce fibers with proper characteristics for this scope, nor to build
lasers which could produce very short wavelengths. In 1980, Mollenauer, Stollen
and Gordon demonstrated experimentally what Hasegawa and Tapper predicted
7 years before. The propagation of solitons in optical fibers was possible.

In the last 20 years much progress has been made in this field in the last 20 years.
Solitons are not only extensively studied for application in optical communication
systems or in hydrodynamics, but also in a quite large area of research. They are
involved in description of plasmas, protein models, general relativity, high energy

physics and solid state physics.
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After this excursus in the history of solitons, we would like to briefly resume the

most important characteristic of such particular phenomenon:

- existence due to a balance between dispersion and nonlinear effects
- remarkable stability against perturbations

- periodicity of the phase

- particle-like properties (solitons attract or repel each other)

- no changes in shape after collision

- non linear superposition of n-waves

1.2 Motivations: solitons in optical communication

After the experiment of Mollenauer, Stollen and Gordon in 1980, which confirmed
the prediction of Hasegawa and Kodama about the possibility to propagate soli-
tons in optical fibers through the balance of nonlinearity and dispersion, a wide
number of scientists and private companies concentrated on this new area of re-
search. Optical communication systems require a transmitter, a receiver and a
medium for transmitting the encoded information. The transmission rate is mea-
sured in bits per second. The information is stored in a series of 0’s and 1’s, or
on’s and off’s. The original communication system employed pulse trains with
width of about one nanosecond, and in order to correct the distortion caused by
fiber loss, repeaters were placed every several of tens kilometers. In 1988 Mol-
lenauer and his group had shown that an amplification of the signal could be
realized through a process known as Raman scattering (see Sec 1.3) and they
were able to propagate a soliton over 6000 km without the need of repeaters.

During the last 20 years much progress has been made in developing fibers with
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proper characteristics, amplifiers and lasers which could produce very small wave-
lengths. The development of optical fibers, which are the basis of such systems,
had led to a revolution in communication technology. Different techniques are
used to transmit and decode signals (e.g. return to zero RTZ, non return to zero
NRZ and dispersion phase shift keying DPSK). Soliton transmission is a promis-
ing technology for future undersea communication systems, owing specifically to
its very high capacity potential (> 40-100 Gbit/s), the possibility of long am-
plifier /repeater spacing (> 60-100 Km), and increased transmission distances (>
10000 Km) [1]. In order to give an idea of the power of such systems, we can say
that a transmission rate of 32 Gbits per second is the equivalent of one half mil-
lion digitized voice channels in one fiber. Since the rate at which the information
can be transmitted depends on the rate of modulation, which is naturally limited
by the carrier frequency, it becomes important to investigate the transmission of

shot-pulses (femtosecond pulses).

1.3 Linear and nonlinear properties of the dielectric fiber

An optical fiber consists of a central core with refractive index n; surrounded by
a cladding layer with a slightly lower refractive index (ny < n;), and a jacket
(with ng < ng). If the fiber has a very small cross section, any angle of incidence
between the ray and the core-cladding-interface will be smaller than the critical
angle ¢., where

b = arcsin(@) , (3)
ni
needed to produce the complete internal reflection of the ray. The material of
choice for optical fibers is silica glass formed by fusing Si0; molecules. The
reflective core-cladding index difference A defined by
ny — Ny

A = : (4)

n
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is realized by a selective use during the fabrication process. To increase the re-
fractive index of the core dopant such as GeO, and P,Oj5 are used, while boron
and fluorine are used in order to decrease the reflective index in silica. Additional
dopant can be used depending on specific requirements.

The main linear and nonlinear properties of a dielectric fiber responsible for pulse
evolution during propagation are: energy loss, chromatic dispersion, Kerr effect
and Raman scattering. Next to these effects we would also like to mention Bril-
louin and modal birefringence [35, 38|, which will not be taken into account in
this work. In the next few pages we give a brief overview of these phenomena to

understand the physical processes which occur inside an optical fiber.

Energy loss

The fiber loss is the main drawback in using optical fibers. This loss is due to sev-
eral physical phenomena such as Rayleigh scattering, absorption and dispersion.
Rayleigh scattering is the major loss mechanism. It occurs because of random
fluctuation of the index of refraction in the fiber material, and is measured in
units of decibel per unit length. Such local fluctuations in the index of refraction
scatter light in all directions. The Rayleigh scattering loss increases as A™* and
thus is dominant at short wavelengths. Even a small amount of impurities can
lead to a significant absorption. The most important impurity is the ion OH~
which has an absorption peak near to 1.37 and 1.23 micrometer wavelengths. If
P, is the power of the entering signal at the beginning of the fiber, the transmit-
ted power Pp after a length L is

PT = Poe_aL, (5)
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where « is the attenuation constant, commonly referred to as the fiber loss. A rig-
orous discussion of the process would require quantum mechanics, but a classical
picture is enough to describe a qualitative model. When electromagnetic waves
travel through the dielectric, they interact with electrons which are bounded to
the nucleus. The incident wave will move the electrons away from their equilib-
rium positions creating a dipole. Then, the electron will be attracted again from
the protons to the nucleus, and this will originate an oscillating dipole. We can
imagine such oscillating dipoles like little antennas, which emit electromagnetic
waves in all directions at the same frequency of the incident light. This effect
is called Rayleigh scattering and it responses to the attenuation of the signal
through the fiber.

Absorption occurs when the electrons do not release the same fraction of energy
that has excited them. This can happen when the oscillations of the dipole are

damped out because of molecular vibrations.

Chromatic dispersion

A wave propagates along the fiber at a certain group velocity v,. Since the speed
of the wave depends on the index of refraction, the harmonics which compose the
wave will propagate at different speeds, given by ﬁ This phenomenon is known
as chromatic dispersion, and contributes to distort the incoming signal (broad-
ening of the pulse). This effect is related to the interaction of the electric field
with the bound electrons of the dielectric and can be described by the frequency
dependence of the linear index of refraction ng(w). The major contributing factor
to ng(w) is the resonance of bound electrons with light wave frequency. Far from

the resonance region, the refractive index can be approximated by the Sellmeier

equation [2]
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w) =1 6
n*(w) +Zw—w2’ (6)

where w; is the resonance frequency and A; is the strength of ¢ — th resonance.
The effects of dispersion in fibers can be expressed by a Taylor series of the

mode-propagation 3

Bw) = n(w)== (7)

= By+ Bilw—wo) + %@(w — )

where

dm
By = (dw—f)w:wo m=0,1,2, ... (8)

B is the inverse of the group velocity of the envelope

1

dn, 1
i = —(n+wr)= W 9)

and [, is responsible for the pulse broadening

(zdn+ dzn)N A3 d2n
¢ dw wde T 2me2d)\?

Ba = (10)

An important parameter which characterizes the group dispersion is the group

dispersion delay D defined as

2me
22



1.3 Linear and nonlinear properties of the dielectric fiber 11

D is measured as the delay of arrival time in picoseconds of two light pulses with
the wavelength separation of one nanometer over the distance of one kilometer.
Fiber dispersion plays a crucial role in optical communication systems. However,
it is possible to minimize the dispersive characteristics of the fiber by choosing
an appropriate core radius and different refractive indices of the core and the

cladding.

Kerr effect

A linear relation has been assumed between polarization and the applied field.
However, when a large electric field is present in the fiber, nonlinear effects should
also be taken into account. The origin of the nonlinear response is related to non-
harmonic motion of bound electrons under the influence of an applied field. As
a result, the Fourier amplitude of the induced polarization P is not linear in the

electric field F, but involves terms at higher order in the electric field amplitude,

P = ¢xV -E+x?:EE+x®:EEE +..), (12)

where ¢, is the vacuum permittivity and x® (i=1,2,...) is the i-th order suscep-
tibility. x is a tensor of rank i + 1. The linear susceptibility x(!) represents the
dominant contribution to P. The second-order susceptibility x® is responsible
for such nonlinear effects as second-harmonic generation and sum-frequency gen-
eration [9]. Since SiO, is a symmetric molecule, x(?) vanishes for silica glasses.
As a result, optical fibers normally do not exhibit second-order nonlinear effects.
Most of the nonlinear effects in optical fibers originate from a nonlinear refractive
index, which results from the contribution of (). The refractive index of fibers

becomes
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nw,|E") = n(w)+nlE*, (13)

where n(w) is the linear part given by Eq.(6), |E|? is the optical intensity inside
the fiber, and n, is the nonlinear-index coefficient related to x®). This is the so
called Kerr effect. It occurs when the medium becomes anisotropic due to the
polarization of the molecules in the presence of an applied electric field. The
intensity dependence of the refractive index leads to a large number of inter-
esting nonlinear effects; the two most important and widely studied effects are
self-phase modulation (SPM) and cross-phase modulation (XPM). SPM refers
to the self-induces phase shift experienced by an optical field during its propa-
gation in optical fibers. XPM refers to the nonlinear phase shift of an optical
field induced by a co-propagating field at a different wavelength. The first effect
is responsible for spectral broadening of ultrashort pulses [12] and the existence
of optical solitons in the anomalous-dispersion regime of fibers [13]. The second
one is responsible for asymmetric spectral broadening of co-propagating optical
pulses. For optical fields, which are equally intense, the contribution of XPM to

the nonlinear phase shift is two times larger compared to that of SPM.

Raman scattering

The nonlinear effects governed by the third-order susceptibility x® are elastic
in the sense that no energy is exchanged between the electromagnetic field and
the dielectric medium. Another class of nonlinear effects results from stimu-
lated inelastic scattering in which the optical field transfers part of its energy to
the nonlinear medium. Two of those important phenomena are known as stim-
ulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) and
were among the first nonlinear effects studied in optical fibers [14, 15, 16]. The
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main difference between the two effects is that optical phonons participate in SRS
while acoustic phonons participate in SBS [35].

In presence of some resonance level wg of a material, the incident light wave at
w = wy excites the resonance, shifts down its frequency by wg, and reappears at
the new frequency called Stokes mode, wy — wg. Such a process is called the Ra-
man scattering. This scattering, unlike the Rayleigh scattering, is inelastic. The
incident photon loses its energy by the amount Awpg although the photon number
does not change. The major contribution to the resonance in a fiber comes from
the optical phonon having a frequency of ~ 10'® Hz. Since the optical phonon
has little momentum (kg ~ 0), the scattered light propagates at the group ve-
locity v, evaluated at wy — wg in the same direction as the incident light. When
the frequency beating between the incident and the scattered waves collectively
enhance the optical phonon, the scattering process is stimulated and the ampli-
tude of the scattered wave grows exponentially in the direction of propagation.
Such a process is called the stimulated Raman scattering (SRS), which plays an
important role in the light wave propagation in a fiber. For given pump intensity

I,,, the Stokes intensity I grows in z according to equation

dl,
E = gRIplsa (14)

where gg is the gain coefficient which depends on the frequency separation be-
tween the pump and the Stokes modes (gr = 0 when I, = I;). When a short
pulse propagates in a fiber, the carrier frequency may serve as the pump and ex-

cites lower side band spectra. As a results, the carrier frequency cascades down.

Modal birefringence

Even single mode fibers are actually bimodal due to the presence of optical bire-
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fringence. The two degenerate modes are dominantly polarized in two orthogonal
directions. Under ideal conditions (perfect cylindrical geometry and isotropic ma-
terial), a mode excited with its polarization in z-direction, would not couple to
the mode with the orthogonal y-polarization state. However, such conditions are
very difficult to realize in transmission systems. Even small defects in the geome-
try or isotropy of the material produce a mixing of the two polarization states by
breaking the mode degeneracy. This means that the mode-propagation constant
B (see Eq.7) becomes slightly different for the modes polarized in orthogonal di-
rections. This effect is known as modal birefringence [3, 4]. The degree of modal

birefringence B is defined by

B, — B
B = 7| v = |ny —nyl, (15)
ko

where n, (n,) is the index of refraction for the z-polarized (y-polarized) mode.
It can be shown [4] that for a given value B, the power between the two modes
is exchanged periodically as they propagate inside the fiber with the period Lg
defined by

2 A

L is generally referred to as the beat length. The axis along which the effective
mode index is smaller(larger) is called the fast(slow) axis because the group ve-
locity for the light propagating in that direction is larger(smaller).

Because of fluctuations in the core shape and anisotropy, B is not constant along
the fiber but changes. As a result, light launched into the fiber with linear polar-
ization usually acquires arbitrary polarization. However, by artificially introduc-
ing large birefringence by means of a proper design of the fiber, it is possible to

construct a fiber which allows propagation of only one polarization. Such a fiber
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is called a polarization-preserving fiber [3, 4, 5, 6, 7].

Brillouin effect

A fiber material admits also excitation of an acoustic wave, which is quantum
mechanically called a phonon. Since the velocity of the phonon v, is much smaller
than the speed of the light ¢, it has a large momentum, %k,. In this case the
scattered wave propagates in the direction opposite to the pump wave. The scat-
tering of a light wave of the acoustic wave is called the Brillouin scattering (SBS).
While the Raman scattering is a forward scattering, the Brillouin scattering is a
backward scattering. If the pump wave is so that the Stokes wave can continu-
ously coexist with the pump, the frequency beating between the pump and the
Stokes modes continuously induces the acoustic wave excitation, and the process
grows exponentially. For a given pump I,, the Stokes intensity I; grows in z
following a relation similar to the (14), where instead of the Raman-gain gp we
have the Brillouin-gain coefficient gg. Because of the back scattering, SBS may

become important in the case of a pulse train.

1.4 The higher-order nonlinear Schrodinger equation (HNLSE)

In Sec. 1.3 we have discussed some of the most important linear and nonlinear
effects in a dielectric fiber. Now we would like to show how such effects can be
described mathematically. For ultrashort pulses with width 7Ty < 0.1 [ps], or for
application of solitons to long-distance communication systems, it is often nec-
essary to include the effects of higher-order terms. The NLS equation including

the higher-order terms may be expressed as [17, 45]



16 1 INTRODUCTION

i, + agh + a1ty + axthy + By = (17)
= i(asPu + as(|Y*P):) + asyo(|9);

¥(z,t) is a complex function which represents the slowly varying envelope of the
electric field. Here a1, a9, a3, a4, and b are real, while ag and a5 are complex
numbers. The real part of the coefficient ag, Re(ay), represents the phase velocity,
while its imaginary one, Im(ayp), is the damping rate arising from the fiber loss,
if Im(ag) > 0, or fiber gain, if I'm(ag) < 0. a; represents the group velocity. The
two terms a, and b take into account the chromatic dispersion and Kerr effect,

respectively

Q2 = _%7 (18)
ToWo
= 1

where (35 is the second term in the expansion (7), ny the Kerr coefficient of the
dielectric material, A the effective core area (typical value between 10 and 20

[um?]), ¢ the velocity of the light, and wq the carrier frequency.

Dispersion-induced pulse broadening discussed in Sec. 1.3 is due to the lowest-
order GVD (group velocity dispersion), which is proportional to as in the expan-
sion (7). When solitons propagate close to the zero-dispersion point (82 ~ 0)
in optical fibers, or when we have to do with femtosecond pulses, the nonlinear
Schrodinger equation must be modified to take into account third order dispersion

governed by as, which provides an important contribution to the GVD effect

as = —, (20)
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where (33 is the cubic term in the expansion (7). When pulses are injected into
an optical fiber at dispersion point zero, we find that the pulses separate in the
frequency domain into a portion that propagates in the normal dispersion regime
and disperses away, and a portion that propagates in the anomalous dispersion
regime and turns into a soliton. This behavior is an example of soliton robustness

in optical fibers and also plays an important role in lasers.

The term a4 is responsible for self-steepening and shock formation at the pulse
edge [21, 22, 23, 24, 25, 26, 27, 28, 29]. It can be approximately written in the

form

- M
ay, = CA y (21)

where A is the effective core area, and ny is the Kerr coefficient of the dielectric

material.

The last term on the right-hand side of Eq.(17), as, is responsible for the self-
frequency shift [30, 31]. That the spectrum of an ultrashort optical pulse can shift
toward long wavelengths (red-shift) was discovered numerically in 1985 [27] and in
an experiment of 500 fs pulse transmission in 1986 [30]. The intra-pulse Raman
scattering (IRS) is responsible for a spectral shift. When femtosecond pulses
propagate in fiber, the carrier frequency may serve as the pump and excites lower
band spectra, so that the spectrum is continuously shifted down.

Generally, the imaginary part of as is very small and in most cases ignored [28,

29, 32, 33, 34]. Under such assumption, as can be written in the form

as = Ty, (22)

ne, w and ¢ have been previously defined, and the Raman gain T is estimated to

be ~ 5 fs [31]. However, the possibility to compensate the effects given by Re(as)
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has already been shown mathematically [36, 37]. In this case, the imaginary part
of a5 becomes the most important term for propagation of optical pulses in trans-
mission systems.

The partial differential equation we are going to consider has the form (17), where
a; (i=0,1,..,4) and b are real, and a5 is imaginary (all of them are of dispersive
type [19, 20]). In this work we limit our attention to a well-defined parameter
range, where the master equation is integrable. Eq.(17) is integrable under Sasa

[41]

3bas = asay , (23)
as+2a5 =0, (24)
and Hirota conditions [40]
as+as; = 0, (25)
3baz = agay . (26)

Under Sasa conditions Eq.(17) does not only admit bright and dark solutions,
but also a linear combination of them. The stability and other properties of such

solutions are the topics of the second chapter.
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1.5 Dispersion managed solitons

Due to their applicability on long transmission systems, dispersion-managed
(DM) solitons have recently gained considerable interest [81, 82, 83, 84, 85]. A
dispersion-compensated map consists of a combination of subsections of fiber
with sharply different dispersion characteristics, anomalous and normal. The
structure is repeated periodically to make up the entire fiber length. The rele-
vant fundamental equation, governing the dynamics, is the nonlinear Schrodinger
equation (NLSE) [35, 38]. The NLS equation, including a non-constant dispersion
term, admits soliton-type solutions, called DM solitons [70, 90]. In DM maps,
the average dispersion and the nonlinear terms are much smaller than the local
dispersion. To compensate the effects of loss during the propagation of the pulse,
amplifiers are used (at distances of tens of kilometers).

Solitons, which propagate in a dispersion-managed system, have many advan-
tages compared with conventional pulses. The main advantage is that the av-
erage dispersion of the map is substantially lower for a given intensity, so that
the Gordon-Haus timing jitter is reduced and the system performance improved.
Another important reason is, that a DM bright soliton requires a Gaussian form,
which means less susceptibility to mutual interaction between pulses. The phase
of DM bright solitons has a quadratic time dependency, the so called chirp. It
has been proven, that DM solitons work better than standard solitons with wave-
lengths division multiplexing (WDM), and show a higher robustness against po-
larization division multiplexed (PMD), which is likely to limit any high-speed
system. Therefore, DM solitons have been actively considered for the next gen-
eration of optical communication systems.

Both NLS equation and the unperturbed NLS equation (17) admit dark soliton
solutions in normal dispersion regime. DM dark pulses keep a tanh-profile and
their phase shows a Gaussian time dependency. While DM bright solitons in a

NLS equation show oscillations being observable only on a logarithmic scale, the
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oscillations of DM dark solitons are dominant on a linear scale.

Propagation of solitons in communication systems using low dispersion fibers is
based on the guiding-center (average) soliton concept [82, 86, 87, 88, 89]. Ex-
istence of DM solitons has been proven for average dispersion bigger or equal
zero, in case of bright pulses, and smaller or equal zero, in case of dark pulses,
respectively. Solitons are not only considered for oceanic systems, but also for
shorter terrestrial systems. However, most of the research in DM solitons has
been focused on bright pulses. It becomes therefore natural to ask ourself if also
DM dark solitons could be applied in long transmission systems and to stress
out the advantages and disadvantages of such pulses. This is the main subject
of the last part of this work, where several methods are used in order to find out
whether periodic DM bright and dark solitons are possible for the perturbed NLS

equation (17).

1.6 The subject of the present work

In recent years transmission of ultra-short pulses in optical transmission systems
has become of great interest. The aim of this work to investigate the stabil-
ity, interaction, and applicability in dispersion-managed systems of ultra-short
pulses. Here, we concentrate our research on a particular area, where the master
Eq.(17) becomes integrable. A full stability analysis of a pulse allows us to pre-
dict whether a given solution could be used for practical applications. A measure
of the robustness of a pulse is given by its stability against finite perturbations on
its characteristics (amplitude, width, chirp, noise and shape), and its sensitivity
to changes of the fiber parameters, which are mathematically represented by the

coefficients of the master equation.
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In the second chapter of this work, we have investigated the stability of a new
type of short-pulse solutions of Eq.(17), under Sasa conditions. What makes
these solutions interesting is that, when the Sasa conditions are fulfilled, the
HNLS equation admits not only a pure bright or dark pulse solutions, but also a
linear combination of them. We have reported the stability analysis of bright-like
and dark-like pulses in detail. With bright-like(dark-like) we mean a dominant
contribution of the bright(dark) part. Such new solutions have shown a very high
robustness against amplitude, width, shape, and chirp perturbations. Even when
an initial random noise disturbs the initial pulse, no sign of instability has been
observed.

Significant results also come from the study of the interaction and the collision
between pulses. We have observed that a repulsive force acts between bright-like
pulses, while two dark-like pulses form a bound state. On the other hand, when
we let both bright-like and dark-like pulses collide, we see that they cross each
other preserving their shape. Such particle-like behavior indicates that the soli-
tary waves behave like solitons.

Next, we have investigated the stability of those pulses when the characteristics
of the fiber, mathematically represented by the coefficients of the HNLS equa-
tion, do not exactly satisfy the condition required for the soliton existence. We
have noticed that when the Sasa conditions are not exactly fulfilled, bright-like
and dark-like pulses can become strongly unstable. By instability of the pulse we
mean that in a few hundreds dispersion lengths, it changes its form so drastically
that the receiver is not anymore able to detect it. These new types of solutions
have shown a very high instability in case of perturbations on the second order
dispersion (GVD), and third-order dispersion (TOD), respectively as and a3 in
Eq.(17). This result implicates that such kind of waves could never be employed
for practical systems. On the other hand, if the nonlinear coefficients are touched,
the pulse is stable. Results of particular interest are obtained by studying the

pulse stability when the term a5 is disturbed. In fact, in case of bright-like pulses,
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the initial distribution changes its characteristics and evolves into a completely
new type of solution. This means that other solutions exist even when the Sasa

conditions are not exactly fulfilled.

In the third and fourth part of this work we present some analytical methods
useful to investigate the stability of bright pulses and their interaction. In partic-
ular, we are interested to confirm the results numerically obtained in the previous
chapter, and understand whether bright pulses are more stable in other coeffi-
cient ranges. We have seen that bright pulses under Hirota conditions (see Sec.
1.4) do not present any instability when the characteristics of the pulse and the
coefficients of the master equation are disturbed. Three types of solutions have
been studied in detail. In all cases, the analytical results have been compared
with direct numerical simulations.

In order to estimate a bit rate for short-pulses, it becomes very important to ana-
lyze the interactions of signals during their propagations in a fiber. At this scope
we have introduced the Karpman Solv’ev approach (KSA). This method allows
us to derive a system of differential equations which describes the evolution of the
characteristic of the pulse along the fiber during their interaction. By numerical
simulation we have proved a good qualitative agreement of such approach in case

of bright pulses under Hirota conditions.

For transmission of signals over long distances, dispersion managed (DM) maps
are commonly used. Both, the definition of DM maps and their advantages with
respect to standard monomode fibers, have been already discussed in the previous
section dedicated to dispersion managed solitons. In the last part of this work,
we present four different methods which can be used in order to find periodic
bright and dark solutions of a given DM map. To find for these solutions one

must search for pulses that, at the end of the fiber, represent the same ampli-



1.6 The subject of the present work 23

tude and width from the beginning. The first two methods are the variational
approach and the integral equation, respectively. When the higher-order terms
in the HNLS equation are much smaller with respect to GVD and SPM, these
approaches produce very good results. However, they can not be applied with
success on DM dark pulses. On the other hand, by employing only numerical
methods, we have seen that DM dark solitons for both NLS and HNLS equa-
tions exist. In the fourth and last part, a new semi-analytic method has been
presented. Even in this case we have succeeded in finding DM dark solitons. The
main advantage of the last two methods, with respect to the first two is, that the
higher-order terms have not been treated as perturbations. This means that the
obtained solutions are very close to the exact solution of the map. The pulses
obtained have been propagated over tens dispersion lengths, and at the end of

each map no changes in shape have been observed.
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2  Stability of bright-like and dark-like pulses

In this first part of the work we investigate a new type of solutions of the higher-
order nonlinear Schrédinger equation (17) under Sasa conditions [41]. Those
solitary waves are very interesting because their particular form, which is given
by a combination of bright and dark pulses. The so far known bright solitary wave
solutions were obtained under zero boundary conditions. Additional solutions,
describing the evolution of ultra-short light pulses and shocks in optical fibers,
were recently presented by Li et al [49]. It was shown that both, bright-like and
dark-like soliton solutions, exist in the anomalous and the normal dispersion re-
gions, respectively. As is being demonstrated here, those solutions can be further
generalized to a combination of bright and dark solitons.

The master equation we are going to consider has several advantages. First, it
takes into account important effects beyond the standard nonlinear Schrodinger
(NLS) description, such as third order dispersion (TOD), as well as self-steepening
and self-frequency shift arising from stimulated Raman scattering (SRS). Sec-
ondly, under Sasa conditions the master equation is integrable and exact analyt-
ical solutions of different types are known.

Stability is the natural and most important problem consecutive to any presenta-
tion of new solutions. In the present case stability is especially important because
of the potential applications in transmission systems of the next generation.
The chapter is organized as follows. We start with the model and the new an-
alytic solutions. Then we demonstrate the stable propagation of those waves
by employing appropriate numerical simulation methods. The dynamics will be
studied over several thousand dispersion lengths. Successively, we will apply per-
turbations on some of the characteristic parameters (amplitude, width, phase,
shape, and noise) and on the coefficients of the master equation in order to in-
vestigate the pulses stability.

Finally, we shall investigate interaction and collision between solitary waves and
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we discuss whether the stable solutions show a particle-like behavior.

2.1 New analytical solutions for ultra-short pulses

Ultra-short light-pulses propagation may be described by an equation of the form

(17), where ay and a; have been set to zero

¥, = i(atu + bY*Y) + asthu + as(|¥]*), (27)
+asy(|9[?)e -

¥ is the slowly varying envelope of the electric field, depending on space z and
time t, respectively. The spatial and temporal partial derivatives are being per-
formed in retarded time coordinates. The left-hand-side of Eq. (27), combined
with the first two terms on the right-hand-side, is the standard NLS equation. The
additional higher-order terms (a3, a4, and as) take into account higher-dispersive
as well as SRS effects, respectively. To be more specific, as, b, a3, a4 and a5, are
the real parameters related to SOD, SPM, TOD, self-steepening, as well as self-
frequency shift arising from SRS, respectively. The additional last three terms on
the right-hand-side of Eq. (27) become important for femtosecond light-pulses,
whose durations are shorter than 100 fs [35]. For picosecond light-pulses, such
terms can be neglected (leading to the standard NLS equation). A solution of
Eq. (27) may be written in the form

Y(zt) = Alz, ) (28)

when separating the solution v(z,t) into a complex envelope A(z,t) and a linear
phase shift ¢(z,t) = kz — Qt. Inserting the expression (28) into Eq. (27), and

removing the exponential term, we obtain the differential equation
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Az = ’iOf()A + alAt + iagAtt + ’LB|A‘2A + a’3Attt + (29)

OZ4|A‘2At + 06514214;5|< y

where og = —k — a20? + a3Q3, a1 = 2 4. — 3a303, ag = as — 3a39), a3 = as,
oy = 2a4 + a5, a5 = a4 + a5, and § = b — asfd.
So far the model is quite general (although dissipative as well as driving terms

have been excluded already). Now we specialize further by requiring the two Sasa

conditions already presented in Sec. 1.4,

3bCL3 = Q904 , (30)

as+2a; =0. (31)

A few words are necessary at this stage. The Sasa conditions (30) and (31) look
quite restrictive at the first glance. In addition, when scaling amplitude and time
we have some freedom in the choice of the a-coefficients which may be used to
better fulfill Eq.(30)-(31). Now we generalize known solutions [49] by making the

ansatz

A(z,t) = A tanh[n(t — xz)] +ip sechn(t — x2)] ; (32)

A and p are free parameters (see below). The form includes bright-like as well
as dark-like forms. Inserting this ansatz into the basic equation (27) under Sasa

conditions (30) and (31) we obtain
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2= = (pP =N 33
X = —(a2Q + as)?) — asn?, (34)
b
O = — 35
(3)
and

2&2[)2
k = ————. 36
3 a2 (36)

The intensity of the solution (28) is given by

[Y* = A + (p* — X*)sech®[n(t — x2)] - (37)

We notice that for A # 0 the intensity does not vanish for ¢ — 4+o00. A typical
graph is shown in Fig. 1. For A = 0 the distribution corresponds to a bright

solitary wave, while if p = 0 to a black one.

From the relations between the coefficients a;, b and the parametersn, p, A, x, €2,
k [see expression (33) - (36)] we recognize that the solution can describe a bright-
like or a dark-like solitary wave. In order to fulfill the condition n? > 0, the factors
p* — A? and 4+ should be simultaneously either bigger or smaller than zero. In

the first case (bright-like) we have p > A\ and agas > 0. Since the coefficient b is
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Figure 1: Absolute value [¢(2=0,t)| = |A(2=0,t)| of an exact solution (28) of

Eq. (27) for p = 1.0 and A = 0.1. The coefficients a,=0.5, b=1.0, a3=-0.0083,
a4=-0.0498, and a5=0.0249 have been chosen.

always positive, in the bright-like case as must be bigger than zero [see Eq. (30)],
in agreement with the known case of bright NLS solitons. On the other hand, we
call p < X and azay < 0, requiring as < 0, the dark-like case.

When A — 0 or p — 0, the solution (32) corresponds to the simple bright or dark
solitary wave solution, respectively.

In the next section we start with the stability investigation of the just presented

analytical solutions by employing numerical methods.

2.2 Numerical scheme for ultra-short pulses

Because the higher-order terms in Eq.(17) and the particular form of its solutions,

it becomes necessary to discuss the numerical scheme that we have adopted. In
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this work, and particularly in this chapter, solutions have been take into account
which are a combination of even and odd functions with no trivial boundary
conditions. The higher-order coefficients are actually small terms, but in case
of long propagation distances, they can strongly influence the accuracy of the
results. Here, we present the scheme we have used in order to integrate the
master equation, and we discuss the boundary problem.

We consider a generalized form of Eq.(17)
V. = agh + a1y + axthy + bJY*Y + asthu + as(| V)¢ + asv (|9 , (38)

where all coefficients a; (i=0,1,..,5) and b are complex numbers.
Because of the no-trivial form of Eq.(38), the Split-Step Fourier Method has
been chosen. A standard scheme to solve such equation is the following. One can

rewrite Eq.(38) as

v, = L+Nyw, (39)

where L is a linear operator which takes into account for dispersion and absorption
in a linear medium, and N is a nonlinear operator that governs the effects of fiber

nonlinearities. Those operators are

-~ 0 0* ok
L = a0+ala+a2ﬁ+a3ﬁ, (40)

N = b|w+%uwwmas(\w» (41)
= B2 + (|8]?)e(as + as) + %w% .
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Using the split-step Fourier method we propagate the pulse over a small dis-
tance h, by assuming that nonlinear and dispersive effects act independently

[35]. Eq.(39) can be rewritten as following

U(z+ h,t) =~ e%iehﬁegitp(z, t) . (42)

Because of the symmetric form of the expression (42), this method is known as the
symmetrized split-step Fourier method [50]. In the first step the linear operator
(40) acts alone (N = 0) and propagates the field ¢(z, t) for a distance of b Then,
on the new field only the nonlinear operator (41) (L = 0) acts over the whole
segment length A. Finally, the field is propagated for the remaining length % with
dispersion only to obtain 1 (z + h,t). The optical field ¥(z, ) is propagated for a
distance £ with dispersion using the FFT algorithm and Eq.(40). The execution

of the exponential operator e” is carried out in the Fourier domain by using the

prescription

Lo(zt) = (F e3P F)g(z,1) (43)

Sy

(&

where with F' we have indicated the Fourier-transform operation, and with F~!
its inverse. Replacing the differential operator % by iw, we see that the linear

operator (40) in Fourier space becomes just a number

E(w) = ag+ iaw — asw? — iazw?® . (44)
The split-step Fourier method presented is only accurate up to the first order in
step size h. When the higher-order terms are not very small or if the propagation
distance becomes too long, this kind of integrator does not assure us the necessary

accuracy. In order to increase the quality of the results, we should choose a
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very small step size h, this means a very long computation time. By adopting
a different procedure we can improve the accuracy of our integrator up to the
second order in the step size h. The idea is to split the nonlinear step into two

steps. In the first one, we consider the nonlinear part

v = by (45)

In the second one, the other two nonlinear terms (Raman terms) are taken into

account

¥, = as([Y*V)e + asp(|Y)*)e - (46)

Even in this case we propagate the pulse over a distance h by assuming that linear
and nonlinear operators act independently. Let us consider the first nonlinear

step, were the coefficient b is a complex number

Y, = (br + sz)|¢‘2w ) (47)

with both b, and b; real numbers. This equation is solvable and its solution is

bty = 8= (48)

2
= (2, t)e (IO Fivol)
The solution (48) can just be used when both terms b, and b; are different from
zero. If this condition is not satisfied, we have to go back to the nonlinear operator
N , Eq.(41), and exclude the Raman terms.

In the second nonlinear step we consider the last two terms on the right-hand
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side of Eq.(38). For this purpose, we consider the Split Step a la Heun. The

equation for the Raman terms can be rewritten in the form

wz = S(?/)), (49)

where

S) = as([¥)e + asv(|9?): - (50)

The step is given by the following expression

~

Y(z+ h,t) = Ri(z,t) (51)
= (1) + g(S[d)(za )]+ S[v(z, 1) + hS(P(z, 1)) ,

and it is valid up to the second order in step size h.
The initial field 1 (z,t) is propagated along the whole segment h by using the

following scheme

b(z+ht) ~ el N(=) R(h) N(2) erlop(z, 1) . (52)

N >

h
2

The advantage of this method compared with most differential schemes is that
by using the FFT algorithm [51] the numerical evaluation of Eq.(38) becomes
relatively fast [52]. The only disadvantage is that only periodic functions in both
real and imaginary part can be integrated. To overcome this problem and make
our integrator valid for a larger domain of functions, we present a very useful
"trick”. If the absolute value of our initial distribution |¢(z = 0,t)| is periodic,
we can always transform the non-periodic imaginary and real parts into periodic

functions. The new {ﬁv can be obtained as follows
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b o= e T (53)

where T is the domain and A is the difference of phase between the two points

at the edge of the domain (—%, %) For example, in case of ¢ = tanh(t), A = 7.

Substituting the expression (53) into equation (38), we obtain

Y, = ao{/; + al{ﬁt + 0421;& + 5|1Z|21Z+ O‘Zﬂ;ttt + (54)

au(|9*9): + st ([]):

where the new coefficients are: o = ag + ipa; — ¢?ay — id3as, a1 = a; + 2iday —
3¢%a3, oy = ag + 3idas, az = a3, B = b+ idas, oy = a4, and o5 = as. By
employing this algorithm, we have obtained a very good accuracy even for large
nonlinear terms and long distance propagation.

Of course, there exists another possibility to integrate functions which do not have
periodic real and imaginary parts. That method can be used for odd functions
like tanh(t). The idea is to build up an initial distribution formed by two waves
defined in two different parts of the domain and with initial different phases,
so that we have a continuous and periodic function. A very simple case is the

following

tanh(¢) if t>0
»(t) = , (55)
—tanh(¢) if t <0

The split-step Fourier method has been applied to a wide variety of optical prob-
lems including wave propagation in the atmosphere [50, 53], graded-index fibers
[54, 55], semiconductor lasers [56, 57, 58], unstable resonators [59, 60], and waveg-
uide couplers [61, 62].

For the specific case of pulse propagation in optical fibers, the split-step Fourier
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method was first applied in 1973 [38]; its use has become widespread [63, 64]
because of its fast execution compared with most finite difference schemes [65].
To integrate systems of differential equations a differential scheme up to the sec-
ond order has been used.

In the course of this work many other routines have been created and used (e.g.

programs for chirp, amplitude and width extrapolation, interpolation, and cut-

off).

2.3 Stability of bright pulses
2.3.1 Single bright-like pulse

In order to investigate the stability of bright-like pulses numerically, we have to
specify parameters and coefficients. In the following we present results for “typ-
ical” parameters and coefficients, i.e. the general conclusions will not depend on
the specific values chosen for bright-like or dark-like solutions, respectively. The
general conclusions have been checked by analyzing many different simulations.
Using as parameters p=1.0, A=0.1, a»=0.5, and a3=-0.0083 we are in the bright-
like range. The values b=1.0, a,=-0.0498, a5=0.0249, and 2 = i:—20.08 will be
also used as typical parameter for dark-like solutions (see section 2.4).

n and y are determined by Eqs.(33) and (34). From Eq. (37) one can understand
the meaning of p and A. They are the maximum amplitude of the pulse and the
asymptotic value of the background, respectively. Fig. 1 shows the absolute value
|1(z,t)| of an exact solution of our system.

We begin the stability analysis by perturbing the amplitude of the imaginary part
in Eq.(32). Multiplying the parameter p by either the factor p,=1.1 or p_=0.9,
we increase or decrease the maximum initial value of |)(2=0,t)| by 10 percent.

The simulation results are depicted in Fig. 2. Note that in order to have a fast
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and clear idea of the evolution of the perturbed distribution, we have plotted the
behavior of the maximum value of |¢(z,t)| with respect to z. We clearly recog-
nize that the amplified or reduced distributions are going to finally increase or
decrease their amplitudes, respectively. In the case p, we get the final amplitude
Prew =~ 1.2, whereas in the case p_ the final amplitude is ppe, =~ 0.8. The widths
follow the behaviors according to relation (33). Energy is being conserved. From
here we conclude that an initial perturbation of p leads to the evolution into a
new stable solution whose parameter values exactly follow the relations (33)-(36)
with a newly determined value of p (maximum amplitude).

Next, a similar procedure is applied to the full width at half maximum (FWHM).
In this case, the parameter 7 is multiplied by p.. The simulation results are sim-
ilar to Fig. 2, but now the final amplitudes reach the values: ppe, =~ 1.1 for
p+=0.9, and pye, >~ 0.9 for p,=1.1. We again find that the solution evolves into
the form (32) with parameters obeying the relations (33) and (36).

In both cases, when initially either the parameter p or the parameter n are dis-
turbed, we can draw the same conclusion. In a few hundreds dispersion lengths
the pulses modify their amplitudes and widths and the new value of p and 7
satisfy the relation (33). When the energy of the initially perturbed solution is
bigger (smaller) than the energy of the original solution, the pulses evolve into a
new bound state with larger (smaller) amplitudes. The newly appearing solitary
waves are stable, which can be demonstrated by simulations over thousands of
dispersion lengths. Note that the relaxation into the new bound state generally
occurs around 200-300 dispersion lengths.

Generalizing the previous perturbations, we next start with a smooth initial per-
turbation being relatively far away from an exact solution. The following expres-

sion is used in order to perturb the shape function

A(z=0,t) = Xtanh(nt)+ipen . (56)
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Figure 2: Evolution of the maximum amplitude |¢(z,t)| with respect to z for
the case of an initial perturbation parameter p. Case p,: p(z = 0)=1.1, case p_:

p(z = 0)=0.9. The other parameters are the same as in Fig. 1.

Instead of the sech-shape for the imaginary part of the exact solution we assume
initially a Gaussian form. The real part agrees with the exact solution. However,
the difference in energy between the exact solution (32) and the initial distribution
(56) is very small. The numerical simulations produce results comparable to the
previous cases (amplitude and width perturbations). Figure 3 shows the evolution
of the maximum amplitude. During the first 300 dispersion lengths, the pulse
modifies its amplitude, width, and form, but finally it evolves into a new bound
state which is described by Eqs.(28) and (33)-.(36) The oscillations visible for z >
600 are due to numerics. Because the periodic boundary condition used in the
integrator, we get reflections from the boundaries back to the center. Note that
the oscillations, also occurring in Fig. 2, are smaller since the initial distributions

are closer to the final ones in those cases.
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Figure 3: Amplitude evolution of the perturbed solution, Eq.(56). Even in this

case the wave evolves around a new bound state.

Until now we have analyzed the stability of Eq. (28) by changing its form. Now

we introduce an initial chirp by modifying the exact solution in the form

—02t2

P(z=0,t) = ¥(z=0,t) e® (57)

Such perturbation produces a change in real and imaginary part, but not in the
energy. The form eic1e2 i chosen in order to preserve the initial boundary
conditions of our initial distribution. The chirp has a Gaussian shape with max-
imum value at t = 0 and decreasing away from the center of the pulse, where
only the background is present. For our numerical simulation we have ¢;=0.01
and c;=1.0. We have chosen ¢;=0.01 in order to perturb the real part around 10
percent (remember that p=1.0 and A=0.1). In fact, the initial distribution can
up to t~ O (1) be approximated by
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(A tanh[nt] + ip sechnt])e’ ~ (...)(1 +ic;) ~ (58)

A tanh([nt] — ¢1p sech{nt] + i(p sech[nt] + ¢; A tanh[nt])

For the imaginary part the perturbation is around the 0.1 percent. Under such
conditions the numerical simulations do not show the convergence into a new state
as was observed in the other three cases. In Fig. 4 is shown the behavior of the
maximum of the distribution (57). The amplitude grows constantly but slowly
along z, and the pulse does not reach any stable point. After 1000 dispersion

lengths the maximum amplitude is increased only by 0.1 percent.
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Figure 4: Amplitude evolution of the chirped pulse initially described by Eq.(57).

In this case the maximum of the pulse grows very slowly along z.

We conclude the part on stability of bright-like solutions by investigating the ro-
bustness of a bright-like pulse under noise perturbations. We have initially added

on the solution (28) a random noise with a maximum amplitude of 30 percent
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of the background A. The pulse was propagated over more than one thousand
dispersion lengths, and no sign of instability was observed. Even for larger per-
turbations (up to 50 percent of ) the wave preserves its form, amplitude, and
width. The absolute value of the pulse |¢(z,1)| is shown in Fig. 5.

One important additional aspect we want to emphasize. The finite tails of the

pulses do not show instability.

1000 Z
4 800
! 600
400
200

Figure 5: Evolution of |1(z,t)| along z for an initial distribution perturbed with

random noise. The maximum amplitude of the noise is §=0.3 .

2.3.2 Interaction

An important task is the study of interactions between solitary waves. In this
section we present results concerning the propagation of two solitary waves start-
ing at different initial positions. We will follow the propagation over more than
1000 dispersion lengths. The initial distribution is thought as a distribution with

two peaks separated by the distance d. To be more specific we choose
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Atanh(m(t— %)) if t>0
Real(A(z,t)) =
A=) —\ tanh(no(t + £)) if t <0 59)

Imag(A(z,t)) = py sech(n(t — g)) + po sech(ny(t + %i)) . (60)

As one can note, the real part, representing the background, has not been addi-
tively composed like the imaginary one. If two pulses are well separated they can
be considered as asymptotic soliton solutions of Eq. (29). We consider an initial
distribution of the form (60), with p; = 1.0, p, = 2.0 and A = 0.1. 7; and 7 are
determined by relation (33). These parameters will lead to a collision of solitary
pulses. In order to elucidate this last point, we write the shape function (32) in

the form

Alz,t) = |A(z,0)|e?®Y (61)

where

p sech[n(t — xz)] ).

¢(2,1) = arctan(s tanh[n(t — xz)]

(62)

As one can see from Eq.(62), the phase ¢ depends on p, A and 7. Of course
A must be the same for every couple of waves, otherwise the background would
present a discontinuity. Considering that 7 and p are related to each other by
(33), we can argue that the phase ¢ (and the wave’s velocity) depends only on
the parameter p. This means that pulses well separated with same amplitude
propagate with the same velocity. Our numerical simulations show that couples
of pulses with same amplitude and initial distance d = 10 move parallel over one

thousand dispersion lengths without interact with each other. Therefore, in order
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to avoid initial interactions, we have chosen (for the case p; = 1.0, p, = 2.0) as
initial distance d = 10. For the just mentioned parameters our simulations show
that two pulses move with different and opposite velocity and after circa 200
dispersion lengths they cross each other (see Fig. 6). An important results to
point out is that after the collision the form of the two solitary waves is exactly
conserved. Such a characteristic particle-like behavior is a prerogative of solitons.
The same effect will be observed also in the dark-like case, as one can see in the

next section.
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Figure 6: Collision of bright-like pulses. The 3-dimensional picture shows the
collision of two solitons with initial distribution (60). p1=1.0, p2=2.0, A\=0.1,
d=10, and 7y, 72 calculated from (33). Any changes have been observed after the

collision. Shown is the absolute value of the amplitude

We end the analysis of bright-like solitary waves by investigating the evolution of



42 2 STABILITY OF BRIGHT-LIKE AND DARK-LIKE PULSES

a pair of pulses having same amplitude (p;=p,=1.0) and different initial distances
(d=7, 6, 5, and 4). As initial distribution was used the expression (60). For such
values of d we can not anymore consider the pulses as asymptotic soliton solutions
of Eq.(29). When the initial distance between two pulses is large enough (d = 6
or 7), the interaction is very small, but decreasing the distance (d = 4) one
can observe a strong repulsive force. For d = 4, numerical simulations show a
variation of the amplitudes of the two waves along z (see Fig. 7). After 1000
dispersion lengths, the distance between them becomes larger (d ~ 11), while one
wave increases its amplitude (by 15.5 percent) the other one decreases it (by 7.6
percent). The two pulses evolves into new bound states which are described by

Eqgs. (32) and (33)-(36).

2.4 Stability of dark pulses
2.4.1 Single dark-like pulse

The objective of the present section is to complete the stability considerations by
investigating the remaining case of dark-like solutions. As we previously saw, a
single dark-like is realized when A > p. Such condition involve g+ < 0 (Eq.33)
and, since b > 0, a; < 0 (Eq.30). Finally, for simulation of dark-like pulses,
we have used ao=-0.5, a3=0.0083, A\=1.0 and p=0.4. The other coefficients of
Eq.(27) are the same as in the previous section, while the parameters for the
initial distribution are calculated by using (33)-(36). A single dark-like pulse is

shown in Fig. 8. In this case the parameter p represents the minimum of the

hump and X the asymptotic value of the background.

Similar to the previous section, perturbation on the minimum and on the width
of the shape function (32) are produced by multiplying p and 7 by factors p.,
respectively. In Fig. 9 the evolution of the minimum of a dark pulse is plotted

for three different initial cases: p; = 1.1, 1.2, and 1.3. Multiplication of p by



2.4 Stability of dark pulses 43

h/
,, 1000 z
800
600
400
200
‘ ' ' ' ' ' ' 0
20 15 10 5 0 5 -0 -15 -20

Figure 7: Interaction of bright-like pulses. The initial distance between the soli-
tary waves is p; = pp=1.0, A=0.1, d=4, and 7, = 7 calculated from (33). After
1000 dispersion lengths the distance becomes d ~ 11. The amplitudes of both

waves change their values during the propagation.

a factor p > 1 means a reduction of the deepness of the humps. For dark-like
waves, the convergence into a new stable state is realized in less than one hundred
dispersion lengths, much faster than in the bright-like case. Similar results are
obtained when p is multiplied by p_ = 0.9, 0.8 and 0.7. In all cases the new
solutions exactly represent realizations of the form (32) and the new parameters

satisfy the relations (33) and (36).

Even when the parameter n is disturbed, we can draw the same conclusions.
Next, we propose the stability analysis of a dark-like pulse by perturbing its
shape function. We have substituted the sech-shape of the imaginary part with
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Figure 8: Single dark-like pulse. The figure shows the absolute value of the
initial distribution (32) for p = 0.4 (minimum of the hump), A = 1.0 (asymptotic
value), and 7 calculated from (33). The coefficients of Eq. (27) are: as=-0.5,
b=1.0, a3=0.0083, a4=-0.0498 and a5=0.0249.

a Gaussian by using as initial distribution the expression (56). This substitution
changes the shape of the hump but not greatly the total energy. Fig. 10 shows
that the convergence into a new state is realized after few hundreds dispersion
lengths. The minimum of the hump (p) and the new 7 satisfy relation (33). The

pulse regain a sech-shape.

By using Eq.(57), we add a chirp to the exact solution. The distribution (28)
is multiplied by eicleﬂ?ﬁ, where the chirp function has a Gaussian form for the
reasons already discussed in a previous section. Two cases considered are: ¢; =
1.0, ¢ = 0.1 and ¢; = 1.0, ¢co = 1.0. We have used p=0.4, A=1.0 and 5 calculated
from Eq.(33). In Fig. 11 one can observe what happens when a chirp is initially

applied on the exact solution. In both cases the chirped pulse converge into a
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Figure 9: Evolution of the minimum amplitude for three different initial distri-

butions when p is multiplied by the factors p;=1.1, po=1.2, p3=1.3, respectively.

new state. The velocity of such evolution is proportional to the factor ¢y, which
is inversely proportional to the width of the Gaussian. A small ¢, means to apply
the chirp on a larger domain. The parameter ¢; represent the amplitude of the

perturbation.

We complete the stability analysis of dark-like pulses by disturbing initially the
solution (28) with a random noise. The perturbation was chosen as 5 percent
of the background (A = 1.0). Figure 12 shows that the dark-like wave is not
sensitive to noise perturbations. Increasing the noise amplitude (10 percent of
A) we did not observe any significant modifications of its shape, amplitude and

width. The pulse was propagated over one thousand dispersion lengths.
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Figure 10: Perturbation of the sech-shape of the exact dark-like solution by using

Eq.(56). p=1.0, A=0.1, and 71 has been obtained from (33).

2.4.2 Interaction

In this section we present the results concerning the propagation of couple of
dark-like pulses. We have chosen \; = Ay = 1, p = 0.6, p, = 0.1, and as
initial distance d = 10. 7, and 7, are obtained from relation (33). The initial
distribution has form (60). Due to their differences of deepness (p; # po), the
two pulses move with a relative velocity different from zero. The initial distance
d is large enough to preserve initial interactions. Under such condition, the two
pulses can be considered as asymptotic solutions of Eq.(29). The collision was
carefully studied over 3000 dispersion lengths. Similar to the bright-like case, the
amplitudes and the widths of the two waves are exactly conserved after collision

(Fig. 13).

At last, we present results regarding the propagation of a pair of pulses having
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Figure 11: In this picture we show the different behavior of two exact solutions of
Eq.(27) disturbed with different initial chirps. Eq.(57) is the initial distribution
used in our simulation. In both cases ¢; = 1.0, while for ¢; we have used ¢; = 0.1

and ¢y = 1.0. The minimum value of the amplitude is plotted.

same deepness (p; = po) and starting very close (d = 3). Because reasons previ-
ously discussed, in case of short initial distances we can not anymore consider the
two pulse (60) as asymptotic solutions of Eq.(29). Numerical simulations show
(see Fig. 14) a periodical attraction and repulsion between two dark-like pulses
when the initial distribution is chosen according to Eq.(60) d = 3 and for A = 1.0,
p1 = p2 = 0.4. A similar phenomenon was already observed for bright pulses in
the NLS equation where a new bound state was created by their interaction. In
the present case, the shape of the two pulses are not exactly periodic during the
propagation. The reason for that behavior, as already discussed in the preceding
subsections, is due to the difficulties to create a two-pulse initial distribution. In-

creasing the distance between the two waves up to d > 6, the interaction rapidly
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Figure 12: Evolution of a dark-like pulse in the presence of noise with a maximum

amplitude 6=0.05 A\, A = 1.0.

vanishes.

2.5 Structural stability

For practical applications, it is important to check the stability of pulses when
the characteristic of the fibers, mathematically represented by the coefficients of
the HNLS equation, do not exactly satisfy the condition for the soliton existence,
in our case the Sasa conditions (30) -(31). Therefore, after the investigation of
bright-like and dark-like pulses stability under finite perturbations, we propose
a brief discussion of the robustness of those pulses when little perturbations are
applied on the coefficients of Eq.(27).

First, we consider the bright-like case. As initial distribution we have used the

exact bright-like solution (28) of Eq.(27). The parameters (33) - (36) have been
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Figure 13: Collision of dark-like pulses for p; = 0.6, p» = 0.1 and initial distance
d = 10. The 3-dimensional picture shows the collision between two solitary waves

solution of equation (27). Shown is the absolute value of the amplitude.

calculated by using p = 1.0, A = 0.1, a2=0.5, a;=1.0, a3=-0.0083, a,=-0.0498,
and as = 0.0249. Then, we have applied a perturbation on the coefficients of
the master equation . Our numerical simulations show that bright-like pulses
become strongly unstable and decay in few tens of dispersion lengths if very
little perturbations (order of 5 percent) are applied on ay (GVD) and on ag
(TOD). In case of modification of the two nonlinear coefficients a4 and b, the
pulse does not decay. It produces very strong radiations which move from the
central soliton to the boundary. The bright-like pulse changes periodically its
amplitude and width without modifying its sech-shape. In Fig. 15 the evolution

of the maximum amplitude of the pulse for two different cases (perturbation of
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Figure 14: Interaction of dark-like pulses. Initial distance d = 3 in the initial
distribution (60). Two dark-like pulses interact periodically with each other over

2000 dispersion lengths. Shown is the absolute value of the amplitude.

as and a4) has been shown.

Bright-like pulses have shown a very particular behavior when the coefficient as
in Eq.(27) is disturbed. The evolution of the maximum amplitude of bright-like
pulses is shown in Fig. 16. As one can observe, after some thousand dispersion
lengths, the pulse reaches a new stable state which has a higher amplitude. The
same phenomenon was observed by decreasing as by 5, 10 and 20 percent. In
these cases the final states have an amplitude smaller than the initial one. As
stronger the perturbation is, as faster the pulse evolves into a new stable state.

However, the final state can not be written in form (28). In Fig. 17 the absolute

values of the initial distribution (z = 0) and the pulse after 5000 dispersion
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Figure 15: Evolution of the maximum amplitude of the pulse with respect to z for
two different cases. A perturbation of 10 percent on the linear term a, produces
the decay of the pulse, while when the perturbation is applied on the term a4 the

pulse oscillates around an equilibrium point.

lengths are plotted, where the coefficient a5 has been increased by 420 percent
(0.249 — 0.2988). As one can notice, the pulse changes its amplitude, width and
shape, showing two humps on the right and left side of the pulse, but not only this.
Another important information about the new stable state is given from its real
and imaginary part. Having a look to Eq.(28), we see that the initial distribution
has an odd function as real part and an even function as imaginary part. Our new
distribution (see Fig. 18) is the combination of two periodic functions. This new
state has been propagated over thousand of dispersion lengths and any changes

of its shape have been observed. Such result indicates, that when Sasa conditions
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Figure 16: Evolution of the maximum amplitude of the pulse with respect to
z. Three cases have been shown: a; = 0.26145 (45 percent), a5 = 0.2739 (+10
percent) and as = 0.2988 (+20 percent).

are not exactly satisfied, a new kind of solution, which is very different from the
(28), exists.

Similar results have been obtained in case of a pure bright pulses, in Eq.(28)
A = 0. When the background is not present, and the coefficients a, and a3 are
disturbed, the bright pulse shows a decay behavior again. In case of perturbation
on a4 and b the radiation from the central soliton to the boundary are not so
strong as for the bright-like case, but the oscillating behavior of the evolved state
is confirmed. Also the robustness of the pulse against modification of a5 has
been confirmed, but in this case the final state does not represent a new type of

solution.
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Figure 17: The absolute value of the initial distribution and the evolved pulse
|(z = 5000,t)| are shown. The considered case regards perturbation of +20

percent on the Raman term as (see Fig. 16).

Next, we have repeated the same analysis in case of dark-like solitons. Even here,
the pulse shows a strong stability dependence on the linear terms ay and as. If
the nonlinear terms are disturbed, the pulse shows a high robustness. Only in the
special case a4pew > a4, the pulse becomes unstable. In Fig. 19 the evolution of
the minimum value of the dark-like pulse has been shown for two different cases:

perturbation by +10 percent on both a5 and b.

In this chapter, we have numerically investigated the robustness of solitary pulses
solutions of a higher-order nonlinear Schrodinger equation under non-zero bound-
ary conditions. The results show that the solitary waves are stable under finite

perturbations on the pulse characteristics (amplitude, width, shape function,
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Figure 18: Real and imaginary part of the evolved pulse (z = 5000) in case of
perturbation of +20 percent on the Raman term as. Both real and imaginary

parts of the new state are periodic functions.

chirp and noise). In addition we have performed numerical experiments of col-
lision and interaction between two solitary waves. The results indicate that the
pulses keep their shapes after the collision. We have seen that a repulsive force
acts between two bright-like pulses, while two dark-like pulses having same am-
plitude create a bound state. All of these characteristics show that those solitary
waves behave like solitons. Afterwards we have studied the stability of bright-
like and dark-like pulses by disturbing the coefficient of the HNLS equation (27).
We have seen that when the conditions on the coefficients (Sasa) are not exactly
satisfied, the pulses can become strongly unstable, evolve into a new stable state

or into a new type of solution.
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Figure 19: Stability analysis of dark-like solitons. Two cases have been taken into
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as. Evolution of the minimum amplitude of the pulse is shown.
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3 Stability Considerations

In the last chapter we have investigated new types of soliton solutions by employ-
ing numerical simulations. In this part of the work we present some analytical
methods which can be used in order to study the robustness of ultra-short bright
pulses.

We employ two analytical approaches (momentum method, variational approach)
in order to write a system of differential equations which describes the behavior
of the signal when finite perturbations are applied on the characteristics of the
pulse (amplitude and width) and on the coefficients of the master equation. At
the end of each section we compare the analytical model and numerical simula-
tions.

We have seen that an ultra-short light-pulse propagation may be described by
the following equation (see Sec. 1.4))

W, + astby + b|Y*Y = i(asthu + as(|Y V) + asp(|Y)e) (63)

where, all coefficients are real numbers. A general bright solution of Eq.(63) is

[42, 43, 44, 69]

¥(z,t) = psech(n(t— xz))e* ", (64)

where amplitude p, width 7, frequency shift 2, velocity x and phase k, are related
to the coefficients of Eq.(63) by the following relations

6(13

— 65
3a4 + 2(1,5 ’ ( )

p =1
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(1,2(3614 + 2@5) — 3ba3
6az(as + as)

X = a3(3 —n?) — 2a,92, (67)

E = ax(n®— Q%)+ az(Q® - 3n°) . (68)

Here, we consider two particular solutions of Eq.(63) already introduced in Sec.1.4.
If the Sasa conditions (30)-(31) are satisfied, the pulse parameters (65)-(68) be-
come (33)-(36), where A = 0, and the solution (64) is equivalent to the (28).
When the coefficients of Eq.(63) satisfy the Hirota conditions (see Eqs.25 and
26 in Sec. 1.4), amplitude and width are expressed by the same parameter (65),
p = n and  becomes an arbitrary number (66). For bright pulses under Hi-
rota conditions the relation between the perturbation terms becomes: a4, = 6as,
as = —6as.

In the next section, we are going to consider three types of bright solutions of

Eq.(63).

3.1 Stability of a single pulse

The first analytical method we apply in order to investigate the stability of a
bright pulse solution of Eq.(63), is the well known variational approach. By
using this method we are able to get a set of ordinary differential equations
which describes the behavior of a pulse along z when small finite perturbations
are applied on the starting distribution (64) or on the coefficients of the master
equation.

We can rewrite the equation (63) as
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sz + a2¢tt + b\¢|2¢ = Z‘SR(wa w*) ’ (69)

where R includes third order dispersion (TOD), self-steepening and self-frequency

shift arising from stimulated Raman scattering (SRS)

R(,9") = agthm + as([Y[*); + asyp([9[*): - (70)

The left-hand side of Eq.(69) can be rewritten in the Lagrangian form, with the

action defined as

S = / Lo dt dz (71)

o0

=[Gt = )+ al? g1l de d

The right-hand side of Eq.(69) will be treated as a perturbation.
If we consider the case R(1),¢*) = 0, we can write the unperturbed NLS equation

as

0Lg
o*

where

SLo 0" dL, 9 L
St Z( ) ot oYy, 0z 0

As trial function we choose the following form

U(z,t) = psech(n(t —Tp)) HiCelHt=To)=k) (74)
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Any pulse is characterized by its amplitude p, width n, chirp 3, position T,
frequency shift 2 and phase k. Inserting (74) into (71) and integrating we obtain

<L> = / Lo dt (75)
p;oo n
= —(C=+2(T, + k,) — 2C,(In(2) — 1)
n n
2 2
—§a2n2(1 + C?) — 2a,90% + ngb) :

From the Euler equations

é‘<L>_ié’<L>_0
dp dz Op,

(76)

one can derive the equations which describe the evolution of the parameters
v(2) = A(2), n(2), C(z), Q(z), To(z) and k(z) for the unperturbed case R(1, ¢*) =
0 (NLS equation) [70, 71, 72, 73, 74].

In order to include the perturbation R(¢,1*), we calculate

9<L> © §Lodw Ly O
-7 vz 7
E /_oo( 5% 3¢ oy ap )™ (77)
_ / "2 Re(ieR%qi )t |
where
5L, *
o iEeR(, ") . (78)

Inserting the (75) into (76), adding the integrals (77), and solving the system, we

get the following set of differential equations
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2
P, = ngQC(aQ + 3a3Q) , (79)
4 4
ne = 30 C(az + 3a3?) , (80)
8 9 2
Q, = K Cp“(as + as) , (81)
4 2y,2 2,
Cz = —§(1+C )’I’] (a2+3a39)+§p (b+a4Q) , (82)

. (3a3++2a2)9+a3n2(1+02)_3“47‘;2“5/)2, (83)
1
ke = S(0*(2b(=2 +1n(2)) + (205 + ay(—1 + 2In(2)))Q) + (84)

as(? (5 + C%(3 — 41n(2)) — 4In(2)) — 3Q?%) —

6a3Q2(27°(—1 + In(2) + C*(=3 + 4In(2))) + Q7)) .

Those equations describe the evolution of the parameters p, n, 2, Ty, C' and k
with respect to z. Of course, if the initial parameters and the coefficients exactly
satisfy the conditions (65-68) (the initial chirp is C' = 0), the right-hand side of
Eqs.(79-83) vanishes.

The same problem can be analyzed by employing another well known method,
the momentum method.

For this purpose we choose a trial bright function in the form:
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W(z,t) = A sech(n(t— Tp))e(Ct-To)+2(-To)+k) (85)

The only difference between Eq.(74) and Eq.(85) is the shape of the chirp. The

set of equations obtained in this case is

p: = —2pC(as + 3as)) , (86)

n. = —4Cn(az + 3a3Q) , (87)

6asz(—15n* + C%71) + 5n2(12a4 + (a4 + 2a5)7?) A2

Qz = =2 )
C s (88)
c. — 4(ag + 3azQ)(n* — 02;'('2) = 2n%(b + asQ2) p? ’ (89)

m
9 , C*r% 1 )
To, = 2a2+ as(n” +3Q° + p ) — g(3a4 + 2a5)p° , (90)
1 02 2

ke = c(aa(dn” — 602) +6asQ(n® — 207 - nf ) + (91)

(—=5b + asQ + 4a5Q)p?) .

Even here we have a set of differential equations which describes the evolution

of the parameters along z. Because the different ansatz we do not expect an
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Figure 20: Both ODE model and direct integration of Eq.(63) show the decay of
the maximum amplitude of the pulse. The linear parameter a, has been increased

by +10 percent so that the Sasa conditions are not exactly satisfied.

identical correspondence between the two systems, but only a qualitative agree-
ment. Important to remember is that in deriving the set of differential equations
(79)-(84) and (86)-(91) no restriction on the coefficients of the master equation

(63) have been taken into account.

First, we investigate the stability of bright pulses which satisfy the Sasa condi-
tions (30) and (31). As initial distribution we consider the exact bright solution
(28) of Eq.(27). The width (33) and frequency shift (35) have been calculated by
using p = 1.0, A = 0.0 (bright pulse), a3=0.5, a;=1.0, a3=-0.0083, a,=-0.0498,
and as = 0.0249. The initial position, phase and chirp are equal zero.

When a little perturbation is applied on the amplitude or on the width of the

initial distribution (28), direct numerical simulations of Eq.(63) show that the
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pulse evolves into a new stable state really close to the initial one. Such result is
confirmed by our ODE models. In fact, when the Sasa conditions are satisfy and
the initial parameters p and 7 are disturbed, the right-hand side of both systems
(79)- (84), and (86)-(91) vanishes.

Even when the Sasa conditions are not exactly satisfied, PDE and ODE simu-
lations show a good qualitative agreement in estimating the pulse behavior. In
Fig. 20 the comparison of ODE models with direct simulation of Eq.(63), in case
of perturbation on the linear coefficient as (+10 percent), is shown. In this case
the pulse decay in few hundreds of dispersion lengths. The same phenomenon
appears when a3 is disturbed. By perturbing the two nonlinear terms b and a4
we observe a different behavior. The pulse radiates away part of its energy and
starts to oscillate around an equilibrium point. The signal is not sensitive to any
variations of the term as. Here the pulse evolves into a new stable state by follow-
ing a similar behavior already seen in case of amplitude and width perturbations

(see fox example Fig. 2 in Sec. 2.3.1).

Now, we use the ODE models and a direct numerical simulations of the master
equation in order to investigate the stability of bright pulses under Hirota con-
ditions, (25) and (26). The initial distribution (64) has been defined by using,
in Eqgs.(65)-(68), as = 0.5, b =1, a3 = —0.01 a4 = —0.06 and a5 = 0.06. Since
in this case both amplitude and width are described by the same parameter and
the frequency shift is arbitrary, we can choose p =7 =1 and 2 = 0. In the ODE
model the initial chirp has been considered equal zero. When a finite perturba-
tion is applied on the initial amplitude or width, the pulse radiates part of its
energy and starts to oscillate quite smoothly around an equilibrium point. Fig.
21 shows the behavior of the maximum amplitude of the pulse when the initial
width is multiplied by factor 0.9. Same oscillating behavior has been observed
when the Hirota conditions are not satisfied anymore and the linear term as or

the nonlinearity b are disturbed. On the other hand, the pulse does not show any
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Figure 21: Amplitude evolution in case of perturbed width (n = 0.9). A compar-
ison of direct integration of Eq. (63) and ODE model is shown. The parameters
of the fiber and pulse are (Hirota conditions) : ay = 0.5, b = 1, a3 = —0.01,
as = —0.06, a5 = 0.06.

changes of its amplitude and width when small perturbations are applied on the
other three coefficients a3, a4, and as.

From this analysis we have seen that bright pulses under Hirota conditions are
more robust with respect to pulses which satisfy Sasa conditions. Using the two
systems (79)-(84) and (86)-(91) we are able to study the stability of any bright
solution (64) of Eq.(63). At last we report the results obtained for a bright pulse
solution existing in a coefficient range far from both Sasa and Hirota conditions.
The terms ay = 0.5, b = 1, a3 = —0.0154321, a4y = —0.06, a5 = 0.04 have been
chosen. From this set of coefficients, using the Eqs.(65-66) and setting n = 1, we
get the initial parameters p = 0.96225 and €2 = —2.0. The initial position, phase,

and chirp are equal zero.
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Figure 22: Evolution of the maximum amplitude of a perturbed bright pulse
(410 percent on the amplitude p) far from both Sasa and Hirota conditions. The
fiber and pulse parameters are : as = 0.5, b = 1, a3 = —0.0154321, a4, = —0.06,
as = 0.04, n =1, p = 0.96225 and Q = —2.0.

When amplitude and width are disturbed, the pulse behaves like the one under
Hirota conditions. It radiates part of its energy from the central soliton to the
boundary and oscillates smoothly around an equilibrium point. Fig. 22 shows the
evolution of the maximum amplitude of the pulse with respect to z for the case
of an initial perturbation on the amplitude p (+10 percent). The pulses show a
good robustness even when the coefficients a; (i=1,2,3,4,5) and b are disturbed. In
particular, they are very stable against perturbations on the nonlinear term as5. In
this case no changes in shape have been observed. However, if the other terms are
disturbed, the pulse behaves as it was for finite perturbations on its amplitude
and width. The differences between ODE and PDE simulations, that one can

observe in Figs. 22 and 21, are due to the following reason. Having a look at the
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right-hand side of Eq.(63), one can see that all the higher-order terms are not
of dissipative type and therefore the system conserves its energy along z. While
for PDE simulation part of the energy of the pulse can be dispersed away along
the domain, this can not happen within the ODE simulation. The total energy
is kept in the ODE model producing strong oscillations on the parameters. It
would be different for driving systems in which damping and amplification terms

are included and the energy in excess is dissipated.

15 : : . _ |
variational approach
momentum method -------
14 |
o 13r |
©
>
=
Q.
@®©
=)
€ 1t _
X
]
S 09 |
0.8 [ |
0.7 1 ) | I
i ® 0 60 80 100
z

Figure 23: Comparison of variational approach and momentum method. The
case presented is the same as in Fig. 22, where the amplitude p of a bright pulse
far from both Sasa and Hirota conditions was disturbed by an increase of its

amplitude.

The discrepancy between ODE and PDE models depend of the perturbation that
we apply: the more we disturb the pulse the higher the amplitude of the oscilla-
tions will be.

To conclude this section we would like to remark the qualitative equivalence of
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the two systems of equations (79)-(84) and (86)-(91). In Fig. 23 a comparison
of variational approach and momentum method is shown. The case considered
is the same as in Fig. 22. The only difference between those two models consists

in a different phase of the oscillations.

In this chapter we have presented two analytical methods which can qualitatively
describe the behavior of bright pulses when finite perturbations are applied on
the parameters of the pulse (amplitude, and width) and on the coefficients of the
master equation. This kind of analysis is important in order to check the real
possibility to use ultra-short pulses in optical communication systems. Three
types of bright solutions have been considered. In all cases, the analytical results
have been compared with direct numerical simulations. We have seen that bright
pulses under Hirota conditions are more robust with respect to those under Sasa
conditions, specially when the second order dispersion a, and the third order

dispersion ag are disturbed.
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4 Soliton-soliton interaction

4.1 The Karpman Solv’ev approach (KSA)

An important task for high bit rates in optical transmission systems, is the study-
ing of pulse interactions during their propagation along the fiber. In Sec. 2.4.2
and 2.5.2, we have numerically discussed the interaction of bright-like and dark-
like soliton solutions of a HNLS equation under Sasa conditions. Here, we intro-
duce a very useful analytic method, the Karpman-Solov’ev approach (KSA) [75].
This method has been developed at the beginning of the 80’s and during the 90’s
it has been used for the studying of third order effects (TOD) effects [77] and
intra-pulse Raman scattering (IRS) during pulse interaction [78].

The main idea of KSA is to choose a superposition of Schrodinger solitons as a
trial function and to derive ordinary differential equations for the soliton param-

eters which are driven by the interaction as well as the perturbation terms

P(z,t) = Z onpsech (2n, (t — T,,))ekn T2 (t=Tn)) (92)

i=1
where the amplitudes and widths 7, positions 7;,, frequency shift {2,,, and phases
k, are slowly varying functions of z. From such ansatz it is clear that KSA cannot
accurately describe processes which are generating radiations (dispersive waves)
and that change the shape of a pulse.
The perturbed nonlinear Schodinger equation is the same as the one considered

in the last chapter (see Eq.63) with a; = 0.5 and b = 1:

i+ s+ 9% = ieR(y). (93)

Since in the ansatz (92) there is only one parameter to describe both amplitude

and width, we would be able to study only particular solutions of the HNLS
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equation. The solution (64) and the ansatz (92), taken for n = 1, are equivalent
in case of p = n. In Sec. 3.1, we have seen that a bright pulse with same value of
amplitude and width is solution of Eq.(63) only if the Hirota conditions (25) and
(26) are fulfilled. To write a more general ansatz and to derive an ODE system
by following the procedure outlined in [75], is a very difficult problem which will
not be discussed here. In this chapter we limit our study on bright pulses under

Hirota conditions.

The evolution of the soliton parameters along z is given by the following relations

[76]

dnn,
= NOW)+Y NP W), (94)
p>0
) ®
o = MY+ ZM OF (95)
dT, _ _
P 20, + EP (¢) + Z B (), (96)
p>0
o 0 ®
= 2% +m) + X0 (0) + ; XD (), (97)
XP () = 202 +DPW), (98)

where NP (), MP (v), 2P (), XP (¢), and DP (1), for p = 0, take into
account the mixing terms arising from the left-hand side of Eq.(93), the NLS
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equation. The contribution given for p > 0 includes the perturbations repre-
sented by the right-hand side of Eq.(93). The right-hand side of Eqs.(94)-(97) is
determined by [75]

Wy — L[5 dz ®) (1)) o—itrn
Nn (1/)) - 2/;00 COSh(Zn)RE(Rn (¢)e ¢ ) I (99)
Wy — L [7 dznsinh(z,) ) (1)) o—iton

1 [ dz, 2 »
EVW) = E/ oy e e (101)
1 [ dz, (1= z,tanh(z,)) .
DP(y) = Im(RP (1)e™) | (102)

2 oo cosh(z,)
where p =0,1,2,3,...; and 2z, = 2n,(t — T,,).

First, we consider the unperturbed NLS equation (¢ = 0). In this case the soliton
interaction is given by the nonlinear term |t)|?¢), which includes the following

overlapping terms

iemn RO (Yn) = (Y502 + 20m¥atl)) - (103)

Here, we consider the simple case of two pulses (m,n = 1,2, m # n). The

equations for the soliton parameters are [75]

dnn

5 = (=1)"16n°e *"sin(e) , (104)
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d(?” = (_1)71167)36_2"7008((@ , (105)
z
Cilﬂ = 20, +4ne *"sin(¢) , (106)
z
% = 2(n2 + Q2) + Sne 27 (Qsin(4) + 3ncos(d)) (107)

where ¢ = 2Qr + U, U =Fky — ky, n = W, Q= w, and r =17 — Ts.

r is the distance between the solitons and ¥ their relative phase. In deriving
the Eqgs.(104)-(107) it has been assumed that the fluctuations of amplitudes and
velocities are small with respect to their average values (|Q; — Qo] << Q, |y —
n2| << m) and that their relative distance is not too small (pr >> 1). Single
soliton propagation can be easily recovered by Eqs.(104)-(107) as soon as the
distance 7 becomes large enough. In fact, the exponential factor e 2" regulates
the strength of the interaction which depends on the distance between the pulses.
If we assume r >> 1, k, = 0 and ©(z = 0) = 0 as initial conditions, we have in

a first approximation

dp,  dQ,  dT,
e = " — 1
dz dz dz 0, (108)

dk
_m — 9p2
dz G

n -

The only parameter of Eq.(92) which depends on z is the phase [38]: k,(z) =

212z + const.
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4.2 The perturbed NLS equation

Now, adding the third-order dispersion and two Raman terms to the NLS equa-
tion, we consider the case € # 0. As perturbation we assume the same form as

in Eq.(70)

R (Y, 0") = azthy + a4(|¢‘2¢)t + as(WP)ﬂ/’ . (110)

Overlapping contributions due to the two nonlinear terms are not taken into
account. Inserting Eq.(110) into the integrals of Eqs.(99-102), we calculate the
contribution of the perturbation on the n-soliton. Following the procedure out-
lined in the previous section, and using in Egs.(99)-(102) the perturbation (110),

we obtain the following system of differential equations

C;ﬂ = (=1)"16n°c *"sin(¢) , (111)
z
Q
T = ()1brPe *eos(s) (112)

ar, o 8
i 20, + dne *"sin(¢) + daz(n2 + 3Q2) — dayn; — gawi , (113)
z
n o2 + 02) + 8ne " (Qsin(6) + 3ncos()) + (114)
5 = 2 ; ne sin(¢ 7COoS
1
16a3, (22 —n?) — ?6a5§2n7772l )

The soliton-soliton interaction is taken into account at the first order through
the overlapping terms. Eqs.(113) and (114) reflect that the soliton acquires a
velocity and a phase velocity due to TDO (a3) and SRS (a4 and as).
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Figure 24: Soliton distance evolution as result of the direct integration of Eq.(93)
(PDE) and KSA theory. Initial distance r = 14, a3 = —0.05, a4 = —0.3, and
a5 = 0.3.

The Eqgs.(111)-(114) have been derived under the following assumptions [77]:

a) Dispersive radiation can be neglected.

b) The solitons keep their sech-shape with a fixed relation between width and
amplitude.

c¢) The relative fluctuations in the amplitudes and the velocities are small.

d) The separation between the pulses are not too small.

Now we compare the KSA with direct integration of Eq. (93). We remember
that under Hirota conditions amplitude and width are described by the same
parameter (p = 7 in expression (64)) and the frequency shift Q2 becomes arbitrary.
All the pictures showed in this section refer to the case with initial distribution

(92), where e = %, QI,Q =0 and (51,2 =0.
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Figure 25: The soliton maximum amplitude evolution as function of the distance

is plotted. The parameter values and the initial conditions are the same as those

of Fig. 24.

The KSA model gives good results if the perturbation terms are small and the
distance between the solitons remains large enough during the propagation. In
order to check whether the analytical method and the numerical simulations
agree, different initial distances (77 and T») and higher-order terms (a3, a4 and as)
have been chosen. In general we have seen that if the minimum distance between
two solitons never goes under r ~ 7 we obtain very good results (even for large
perturbation terms). Therefore, it is not possible to study the case where two

solitons form a bound state like it happens in case of NLS equation [38].

For our simulations we have chosen a large initial distance between the two pulses
and relative large higher-order terms: r = 14, a3 = —0.05, a4y = —0.3, and
a; = 0.3. Figs. 24 and 25 show the good qualitative agreement between the

analytical description and numerical simulation. Even if the soliton-soliton inter-
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action is taken into account only at the first order, the KSA can predict very well
the behavior of the pair of pulses. In Fig. 24 we observe the soliton separation
evolution with respect of z, while in Fig. 25 the behavior of the maximum am-
plitudes of a pair of solitons is shown. As one can notice, the ODE model keeps
off from the PDE when the distance r is getting smaller (around z = 850 and
z = 2600).

In this chapter, interaction between bright pulses under Hirota conditions have
been analytically investigated by employing the Karpman Solv’ev approach. From
this analysis we have seen that the presence of higher-order terms gives a signif-
icant contribution to the dynamics of the pulse interaction. In fact, in case of
the unperturbed NLS equation, two bright solutions close to each other produce
a bound state, while in presence of higher-order terms this does not happen. In
particular we have proven that under Hirota conditions a repulsive force acts
between brighto pulses, see Fig. 24. The analytical description has shown a very

good qualitative agreement with the numerical simulations.
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5 Dispersion managed bright and black pulses

For the application of signals in long transmission systems, dispersion managed
(DM) maps are commonly used. A dispersion compensated map consists of a
combination of fibers with sharply different dispersion characteristics, anomalous
and normal. The advantages of DM systems with respect to conventional systems
have been discussed in Sec. 1.5. What we require for practical application is,
that an input pulse could be detected by the receiver at the end of a line. In this
chapter we are going to introduce different methods useful to find DM bright and
dark solitons for the higher-order nonlinear Schrédinger equation (17). The exis-
tence of DM bright solitons, for both perturbed and unperturbed NLS equation,
have been proved by several authors, but very few results have been obtained for

the dark case.

First, we consider a method already introduced in Sec. 3.2, the variational ap-
proach. We discuss advantages and disadvantages of this method and we compare
the results with direct numerical simulation of the master equation. As second,
we propose an approach based on an integral equation. Even in this case the ap-
plicability of the periodic solutions has been carefully studied. Third, we discuss
the possibility to obtain periodic solutions of the map by using only numerical
simulations. Finally, at last stage, we present a new useful method which com-
bines numerics and analytics.

Fig. 26 shows the map that we have considered in this chapter. It is composed of
three segments: the first and the third have positive group delay parameters D
(standard mono mode fibers SMF) and a length %, and the second one negative

value of D (dispersion compensating fibers DCF) with a length of %

We remember that the local group delay parameter a, is given by

A2D

115
5o (115)

o =



7

<ay>+A, <ay>+A,

<a2>
o

<a,>- A,

L

Figure 26: Sketch of a typical symmetric map for dispersion compensation. The
map is composed by three segments consecutively positive, negative and positive

group delay parameters.

where D [—P%—] has been already defined, and A is the wavelength of a light

pulse. The evolution of femtosecond optical pulses in fibers without damping and

amplification is described by the following equation (see Sec. 1.4)

VY, = idag(2)Pu + bV + az(2)Yum + aa(|¥)*0) + as () . (116)

The meaning of the real coefficients a; (i=2,3,4,5) and b have been previously
discussed. The coefficients a4, a5 and b are constants along the whole map, while

as and a3 depend on z according to relation (117) and (118)
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<a2>+A2 if OSZS%
as(z) =< < ag>—A, if £<z<§ (117)

4
< ag>+Ay if %LSZSL

< ay > is the average value of the group velocity delay parameter, and A, rep-
resents the deviation of ay from its average value. In case of bright pulses the
average dispersion < ay > has been chosen bigger than zero, while for dark soli-
tons smaller or equal zero. The dependency of the third order dispersion as on z

has been considered has follows

<az3>-—-A; if 0<2<
az(z) = <az3>+43 if £<z< (118)

<ag>—Ay if 3L<2<L

Having a look at (117) and (118), it can be noticed that a; and a3 have always
opposite singes, since As and Az are much larger than < ay > and < a3z >,

respectively.

5.1 Variational approach

This method was already successfully used in order to find periodic bright so-
lutions in dispersion compensated transmission systems [79]. In this section we
consider an approximate variational description for optical pulse evolution in fiber

links with varying dispersion [70, 71, 72, 73, 79, 80].

This section is organized as follows. First, we present the equations governing
the evolution of the parameters of the pulse along the map, then we compare the
results of the ODE model with direct numerical simulation of Eq.(116).

As trial function we choose the following Gaussian form
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Y(z,t) = Ao~ G GO+ =T (119)

The pulse is characterized by its amplitude A, width T, position T, phase A,
frequency shift © and chirp u. Since all the terms in Eq.(116) are of dispersive
type, we can use the energy conservation law in order to reduce the 6 degrees
of freedom from to 5. The amplitude of the pulse A can be written as follows:
A= %, where NV is a constant. Here, the last three terms on the right-hand side
of Eq.(116) have been treated as perturbations. Following the procedure outlined

in Sec. 3.2, we apply the variational approach to obtain a set of differential

equations which describes the evolution of the pulse parameters along z

Tz = 4/LT(CL2 + 3(1,39) y (120)

B V2N2(b+ a, Q)T + 4(ag + 3a39Q) (4p?T* — 1)

- 121
/'I'Z 4T4 Y ( )
N2
Q, = —\/iu?(ou1 +as) , (122)
_ 1 o 2 o 2
A = gra(—12050 + V2T (5N%(b 4 a4Q) — 2N?(3a4 + 2a5)Q) + (123)

8(—ay + Q%(ag + 2a3Q)T? + 6a3u*QT*)) ,

3 1 N?3a4 + 2a5
To, = 2a,0+ —a3(20%? + — +4°T%) — — = ">
0z as + 2(13( + + 1% ) T 2\/5

= (124)
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It is important to notice that only the first three equations of the system are
coupled. For given parameters N, b, a; (i=2,3,4,5), and initial values (z = 0) €2,
T, and pu, we search for which width 7" the pulse (119) is periodic on a certain

map.

T
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Figure 27: Comparison of the variational approach with direct numerical simula-
tion of Eq.(116). The evolution of the maximum amplitude of a bright pulse along
z is shown. The parameters of the map are: < as >= 0.1, A3 =5, < ag >= 0.0,
and A; = 0.1.

We fix all the parameters and we numerically integrate the system by using an
arbitrary value of width T = Tj,;;;- If the difference between the width at the
beginning and at the end of the map, 7" and T} respectively, is bigger than the
error we would like to have, we increase or decreas T" by a small factor J, so that
T = Tinitia £ 6. We iterate the process until the difference T' — T} approaches
to zero. The periodic initial distribution (119) has been found by setting in
Eqgs.(120-122) the following coefficients: < ag >= 0.1, A, =5,b=1, a3 = 0.0,
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Az = 0.1, ay = 0.05 and a5 = 0.05; and as initial parameters (z = 0): T, = 0,
A=0,Q2=0, u=0, N=1. The whole map has length L = 1.

The periodicity has been found for 7" = 1.14475. To prove the validity of this
method, we numerically integrate the Eq.(116) along the map by using the solu-
tion of the ODE model. The pulse which propagates along the three segments
of the fiber must be periodically reproduced at the end of the map. In Fig. 27
the comparison of the variational approach with direct numerical simulation is
shown. Depicted is the evolution of the maximum amplitude of the pulse with
respect to z. The maximum initial amplitude is A(z = 0) = % = 0.935, while
the amplitude measured at the end of the map has value A(z = L) = 0.932.

By using this method we were not able to find any DM bright soliton next to
the Sasa conditions (23) and (24). This result agrees with the stability analysis
of Sec. 3.1, where we have seen that pulses under Sasa conditions are very
sensitive to any variation of the linear coefficients (GVD and TOD). As long as
the perturbation coefficients (a3, a4, as) are small compared to ay and b, and
as long as the parameter N is not much larger than one, the agreement between

ODE model and direct numerical simulation of Eq.(116) is very good.

This method is not appropriate to investigate DM dark solitons. While in bright
case one can write an ansatz which well describes the propagation of a pulse
along the map, for dark soliton this can not be done (at least not so easily). A
bright pulse evolves along a dispersion map varying its amplitude, width, phase,
and chirp. Numerical simulations of the NLS equation show that a dark soliton
changes also its width, phase and chirp, but not its maximum amplitude, which
is represented by the background, and its minimum value (in case of dark pulses
equal zero). The three degrees of freedom, width, phase and chirp, appear to be
not enough to describe the evolution of the pulse. On the left-hand side and on
the right-hand side of a dispersion-managed dark soliton appears a tail which is

part of the periodic pulse solution (see in the next Sec. 4.1.3, Fig. 30, and in
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Sec. 4.1.4, Fig. 32). Along the map the tail changes its amplitude and width to
represent periodically itself at the end of each map. Therefore an ansatz of the

form

. _ 2
¥ = A tanh(n(t — Tp))e'O+-Toltye =07 (125)

is not appropriate to describe DM dark pulses. In the next section, we present
another semi-analytical method based on an integral equation. Our aim will be
to check whether this new approach can be used in order to find both DM bright
and dark pulses for the Eq.(116).

5.2 Integral equation

In this section we propose an alternative method useful to find periodic solutions
of an arbitrary map. The idea of the method is to write an integral equation for

the following partial differential equation

V,(z,t) = dag(z,t) — arhy(z,t) + iagthy(z,t) + (126)
Wbl (z, 1) (2, 1) — azhm(z, 1) — as(|9(2, 1) [*) (2, 1)
—as(|9(z, 1) *(2, 1)

where all the coefficients are real numbers. The linear terms a; (i=0,1,2,3) depend

on z and can be written as

a;, = <a; >+A;. (127)
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< a; > (i=0,1,2,3) are the average values along the whole map, and the A;
represent the deviation of the linear terms from their average values. Substituting

(127) into Eq.(126), we obtain

¢Z(Z, t) = ZA()’L/J(Z, t) — Aﬂ/)t(z, t) -+ iAzl/)tt(Z, t) (128)

— Azt (2,t) + €g(2, 1) ,

where

g(z,t) = i<ag>YP(z,t)— <ar > P(z,1t) + (129)
i < ag > PYy(z,t) +iblY(z, 1) P2, 1)~ < az > Y (2, 1)

—as([(z, )[*) (2, t) — a9 (2,1) " (2, 1): -

The term g(z,t) contains the average of the linear terms < a; > (i=0,1,2,3) and
the three nonlinear terms b, a4 and a5, which have all been treated as perturba-

tion. Next, we search for solutions of Eq.(116) in the perturbation series

Y o= toteh+ .., (130)

and we solve the equation up to the first order. Substituting (130) in Eq.(128),

we obtain, at the zero order

0,0 = tAgpy — A10i)o + 1A20u00 — A3Omety - (131)

Replacing the differential operator % by —iw, and integrating between 0 and z,

we have the zero order solution in Fourier space
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Yolz,w) = ¢o(0,w)eiot e s dahz (132)

In Fourier space, the equation at the first order has form

001 (2,w) = iAgh(2,w) + iwA (2, w) — iw? Ayt (2, w) (133)

—iw?® Az (2, w) + €go(z, w)

where

g(z,w) = i<ay>Y(z,w)+i<a; >wiy(z,w)— (134)
i< ag > wih(z,w) —i < ag > wihy(z,w) +
Fliblyo(z, 1) *0(2, t) — as(|v0(2, 1))etbo (2, t) —
as([vo(z,8)[*to(2, 1)) -

With F' we have indicated the Fourier-transform operation and with F~! its

inverse. The Eq.(133) is easily solvable. The result is the following

L
P (z,w) = eiB(‘*’)z/ e Bz g0 (2, w)dz (135)
0

where

B(w) = A() + Alw - A2w2 - A3w3 . (136)

At this stage, we discuss the periodicity of the first order solution. We require

that the pulse at the beginning and at the end of the map has the same form:
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P(z=Lw) = ¥1(z=0,w), (137)

and therefore, since the initial distribution is represented by 1)4(0,t), we obtain

L
(2= Lw) = eiB(‘“)z/ e BW2gi(z,w)dz = 0. (138)
0

Replacing Eq.(134) into Eq.(138), we have

L
z/ e P (< ag >+ < ap >w— < ag >w— < az > w)y(z,w) (139)
0 .
— - [N
0

where N (1), 1§) contains the nonlinear terms

N (o, 95) = blwho(2,8)[*ho(2, ) + (r1 + r2) 05 (2, 1)1% (2,8)  (140)
+(r1 + 2r2) 0o (2, ) |10 (2, )| -

Substituting the solution at the zero order (132) into Eq.(139), we finally obtain

e "B F[N (1o, 13)]
—<agy>—<a; >wt<ay > w4 <ag>wd

L
¢0new(0aw) = /0 dz (141)

Transforming back from w space into t space the expression (141), we have the
new initial distribution ¥guew(0,%). By using numerics, we iterate this procedure
until the incoming distribution )4(0,t) and the new one tg,e,(0,t) are indis-
tinguishable. If after n iterations the difference between the two distribution

converge to zero, Yonew(0, 1) is taken as periodic solution of the map.



86 5 DISPERSION MANAGED BRIGHT AND BLACK PULSES

For our simulations, we have chosen as initial bright distribution (0,¢) the

Gaussian form

bo(0,8) = Ae 7 (142)
where A represents the amplitude of the pulse, and T is a parameter related to
the width of the pulse. Here we have considered A =7 = 1. As one can notice
Eq.(141) requires that the average term < ay > must be different than zero. The
coefficients chosen for our simulation are the following: < ay >= —1.0, Ay = 0.0,
<a; >=0.0,A4;, =00, < ay, >=0.15, A, = 5.0, < a3 >=0.0, A3 =02, b =1.0,
as = 0.03 and a5 = 0.02. The lengths of the map L has been chosen equal one.
The coefficients as and a3 depend on z and are defined by the Eqgs.(117) and
(118).

Similar to the previous section, we use the solution ty,,.,, (0, t) as initial distribu-
tion for a direct numerical integration of Eq.(116). In Fig. 28 one can observe the
results of the PDE simulation. Shown is the evolution of the maximum amplitude
of the pulse along the map. The final amplitude of the pulse at the end of the
map A(z = L) = 1.00038 is very close to its initial value A(z = 0) = 1.0.

The distribution obtained by using the integral equation can be represented as
the sum of a real even function and an imaginary odd function (see Fig. 29). A

good approximation of ¥y, (0, ) is the following form

$(0,8) = Ae " +itBe " . (143)

The odd function on the right-hand side of Eq.(143) arises from the odd terms
contained in Eq.(126). This method has been tested over a large range of map
parameters. If the higher-order terms are small enough, € << 1, the distribution

obtained by employing the integral equation is a good approximate solution of our
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Figure 28: Maximum amplitude evolution of the periodic function obtained by
using the integral equation. The pulse at the beginning of the fiber has maximum

value A(z = 0) = 1.0 and at the end of the map A(z = L) = 1.00038.

map. Important to mention is that when the coefficients of the equation almost
satisfies the Hirota conditions, DM bright solitons exist. On the other hand,
when the Sasa conditions are satisfy, no DM bright solutions have been found.
This agrees with the results we have obtained in Sec. 3.2, where we have seen
that pulses under Sasa conditions are very sensitive to variations on the linear
terms of the master eqaution. The method has been applied in order to find
DM dark solutions for the case of an unperturbed NLS equation. However, we
have seen that an initial asymmetric pulse having a tanh-form, does not converge
into a dark periodic solution of the map. Next, we present a method based on

numerical simulations.
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Figure 29: Real part and imaginary part of the periodic solution are shown. The
parameters of the map are: < ag >= 0.0, 49 = —1.0, < a; >= 0, A; = 0.0,
<ay >=0.15, Ay =5, < a3 >=0.0, A3 =0.2,b =1, ay = 0.03, and a5 = 0.02.
A=T=1

5.3 Numerical evaluation

In some particular parameter ranges, it is possible and relatively easy to find
both DM bright and dark solitons. As an example we consider the map depicted
in Fig. 26, with parameters < as >= —0.1, Ay = 3.0 and lenght of the map
L = 1.0. The nonlinearity has value b = 0.4 and the higher-order terms have not
been taken into account. As starting distribution we choose the following dark

pulse

W(2,t) = A tanh(nt), (144)

where A = n = 1. We use the expression (144) as starting distribution and we
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propagate it along some tens maps by direct numerical simulation of Eq.(116).
As long as the average dispersion is not too close to zero, or the parameter A,
much larger than one, the initial distribution (144) evolves into a periodic solu-
tion of the map. During this process part of the exceeding energy is radiated
away from the center of the soliton to the boundaries. In Fig. 30 one can see,
that DM black pulses present, on the right-hand side and on the left-hand side of
the central soliton, an oscillating tail. In case of DM bright solitons such humps
can be noticeable only on a logarithmic scale. Important to note is, that while
DM bright solitons are close to a Gaussian form, the central core of DM dark

pulses are close to the classical case (tanh-form).

T
map solution
12 b initial distribution -------

amplitude |A(z,1)|

Figure 30: Initial distribution and periodic solution of the map are shown. The
periodic solution has been obtained by using only numerical simulations. The
parameters of the map are: < ay >= —0.1, Ay = 3, and b = 0.4. The lenght of
the map is L = 1.0.
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The distribution depicted in Fig. 30 has been propagated over tens of dispersion
lenghts and any changes in shape have been observed. A periodic solution can
be obtained quite easily for different kind of maps. However, if we choose an
average dispersion < ay > very close to zero, or for large values of Ay, the
radiations arising from the soliton are much more intense, and it becomes very
difficult to obtain the periodic solution by using only numerics. To overcome this

problem we’ll present an alternative method in the next section.

T
03 o~ chirp form —— A

Figure 31: The first derivate in ¢ of the chirp of the periodic solution at point

(2 =3L) and its fit function have been shown.

It is known that the phase of DM bright pulses as a quadratic time dependency
(e ™% where p is called chirp). Here we show that in case of DM dark pulses the
phase has Gaussian time dependency. This result has been obtained by employing
numerical methods. What we have calculated is the first derivate in time of the

pulse phase pulse depicted in Fig. 30.
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e’ =—— — ¢=—1te"(—) . 145
By using as fit-function
f(Z, t) = :u’e_’ﬂz — f(za t)t = —27Nt€_7t2 ’ (146)

we have calculated v and yu (chirp). In Fig. 31 the function ¢, and its fit function
f(z,t); at the point z = 3L are shown. The periodic solution (see Fig. 30)
has been propagated along the map and at the end of every piece of fiber both
parameters v and i have been measured. At the beginning and at the end of the
whole map the value of the chirp is very close to zero. At the end of the first

and of the second segment of fiber, the chirp reaches its minimum and maximum

L
4

value, respectively. At the distance z = Z we have measured y = —0.86, while
at z = %L, 4 = 0.86. In both cases the parameter 7 related to the width of the
Gaussian has value 0.16.

This method can be employed also when higher-order terms are present. A DM
dark solution have been found by using the following parameters: < ay >= —0.1,
Ay =3.0,b=1.0, < ag >= —0.01, A3 = 0.0, a4, = —0.06 and a5 = 0.06. In the
initial distribution (144) A = n = 1 have been chosen. Important is to point out
that the coefficients are very close to satisfy the Hirota conditions (not exactly
because as depends on z). Here the periodic solution of the map is very similar
to the one depicted in Fig. 30. The pulse acquires a velocity and the minimum
of the hump grows from zero (initial value) up to 0.03. Even in this case it is
not possible to find any solution of DM bright or dark solitons next to the Sasa

conditions. In the next section we present a semi-analitical method usuful to

obtain DM dark solitons in case of zero group velocity dispersion (az = 0).
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5.4 New map

Here, we present a new semi-analytical model which allows us to obtain periodic
bright and dark solutions of an arbitrary map. At the end of the map, the wave
can be written as the sum of the linear and nonlinear effects of Eq.(116) on the

initial distribution (0, t)

Y(L,t) = e“(0,t)+ R. (147)

L is the linear operator defined as

L = /0 (ao(z) + al(z)% + ag(z)g—; + a3(2)(§—:3)d2 , (148)

and R is the contribution given by the three nonlinear terms on the right-hand
side of Eq.(116). To search a periodic solution one has to look for a pulse which
has same shape, amplitude and width at the beginning and at the end of the

fiber. Therefore, our assumption is

Y(L,t) = €“%1(0,1). (149)

Now we can write the two pulses, ¥(0,t) and v(L,t), as a combination of the
function at the n-map (¢,) and at the n + l-map (¢,41) through two weight
parameters o and f.

By using Eq.(149), Eq.(147) assumes the form

e+ (anhri1(0,1) + (1 — )by (0,1)) = (150)
= e£(5¢n+1(0a t) + (1 - /3)%(0, t)) + Rn
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Combining the expression (147) and Eq.(150), so that the term R,, vanishes, and

recovering ¥, 1(0,t), we obtain

wn(L: t) - ei¢n+lwn(05 t)

@bn-l—l(oa t) = wn(o’t) + aetPntrl — ﬁeﬁ

(151)

When the difference 1,,41(0,t) — ¢,,(0,t) approaches to zero, we have the peri-
odic solution of the map. Considering the numerator on the right-hand side of
Eq.(151), we can easly see that such difference will be minimal when ¢, coin-
cide with the difference in phase between v, (L,t) and ¢, (0,t).

We can prove it mathematically. Let us rename g = 1, (0,t)e!*"+1, and f =

n(L,t), we search for which ¢ the following integral becomes minimal

L L
/ e — gPdt = / (f12+1gl? = €9 fg* — e~ prg)dt.  (152)
0 0

The integral is minimal when the two last integrals are maximal.

L L
Y(¢) = / e’ fg*dt + / e frgdt = 6’ + 6% e (153)
0 0

The function Y(¢) is maximal when

e = e 6" . (154)

We can write § = |5\ei‘$ and 0* = |§ |e‘i$. Finally we found that the expression
(152) is minimal when ¢ = —5. The phase ¢ as well as 1,1 have been calculated
numerically.

Also the pulse at the end of the map ¥(z = L,t) has been obtained by direct

numerical simulation of Eq.(116). « and 8 are real number, and the only condition
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T
map solution
initial distribution -------

maximum amplitude

Figure 32: Absolute value of the initial distribution and of the periodic solution
of the map are shown. The parameters of the map are: < as >= 0.0, Ay = 5.0,

and b=04

which they have to statisfy is, that they cannot be simultaneously equal zero. In
order to test the goodness of the method, we consider the unperturbed NLS
equation. This means that the higher-order terms in Eq.(116) have been set
equal to zero. The two weight parameters o and (§ play a crucial role. In fact,
the convergency of the initial distribution depends strongly on them. For every
map and starting pulse, using a iterative proceeding, we search the right values of
« and 5. In the previous section we have discussed the difficulty to obtain a dark
periodic solution of a map having average dispersion equal zero. Now we show
the solution obtained for the following parameters of the map: < ay >= 0.0,

Ay = 5.0, and b = 0.4. As initial distribution ¢ (z = 0,t),—9, we choose

Y(z=0,t)p=0 = A tanh(nt). (155)
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In our simulation A = 1 = 1 have been chosen. In Fig. 32 the absolute value of
the initial distribution and the solution of the map are shown. As one can notice
by a comparison of Fig. 30 with Fig. 32, the tails of the background next to the
central solitons are much higher when the average dispersion is equal zero and
when A, becomes larger. Because the complex form of our solution, it becomes

difficult suggest an expression which could be used as trial function for analitic

methods.
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initial distribution -------
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Figure 33: Real part of the initial distribution and of the periodic solution of the
map are shown. The parameters of the map are: < ay >= 0.0, Ay = 5.0, and

b=0.4.

Using this method we are able to obtain, after few hundreds iterations, DM
bright and dark solitons. For this particular map the best results have been
obtained by using o = —1.2 and f = —1.1. The largest difference d between
the absolute value of the pulse at the beginning and at the end of the map,
was d = 4.769 107%, obtained after 300 iterations (d = 9.028 107, after 1000
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iterations). Fig. 33 shows the real part of the initial distribution and of the
periodic solution. The imaginary part of both initial and final distribution are
equal zero. The only condition that we have to fulfill for dark pulses is that the
average dispersion < as > must be equal zero. Even if we include the higher-
order terms in the discussion, this method shows us the existence of DM dark
solutions. The higher-order terms have been setted: < az >= 0.0, A3 = 0.05,
and a; = a5 = 0.01. By using « = —1.2 and § = —1.1, we have obtained a
convergency after 300 iteractions. The biggest difference d between the absolute
value of the input and output function have been estimeted of ~ 5-107°. The
periodic solution has a form very similar to the one depicted in Fig. 32.

The same method has been used to calculate periodic bright solution when also
higher-order terms are included. Fig. 34 shows the absolute value of the periodic
pulse obtained by using the following map parameters: < a, >= 0.15, Ay = 5.0,
b=1.0, a3 = —0.05, ay = —0.3, a5 = 0.3. The coefficients refer to Eq.(116). For
bright pulses there are not restrictions on the average of dispersion < as > (for
dark it has to be equal zero). & = 8 and 5 = 1 have been used.

As initial distribution we have chosen a Gaussian form

Wz=0t)n0 = Ae™ (156)

with A=n=1.

Fig. 34 shows the periodic bright solution of the map. When higher-order terms
are included, the pulse presents two little humps on both sides of the central
core. In case of unperturbed NLS equation, such humps are noticeable only on
a logarithmic scale. Both the DM bright and dark solitons has been propagated

over tens maps and any changes in shape have been observed.

The last part of this work was dedicated to find out if Eq.(116) admits the exis-
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Figure 34: Absolute value of the initial distribution and of the periodic solution
of the map are shown. The periodic bright pulse shows two humps on the right

and lefth-hand side of the central pulse.

tence of DM bright and dark solitons. We have presented four different methods
which can be succesfully used in this sense. In particular, the first two (variational
approach and integral equation) have given good results for bright pulses, while
the third and the fourth (numerical simulation and new map) can be applied in
both bright and dark case. The main advatage of the last two with respect to
the first two is, that higher-order terms have not been treated as perturbations.
DM bright and dark solitons have been obtained in different parameter ranges,

but we have seen that next to the Sasa conditions these solutions do not exist.



98 6 SUMMARY

6 Summary

In this work the stability of new types of short-pulses, combinations of bright and
dark solitons, have been investigated numerically. Such solutions have shown a
very high robustness against amplitude, width, shape, chirp and noise pertur-
bations. On the other hand, they become strongly unstable when the second
and third order dispersion, GVD and TOD respectively, are disturbed. Results
of particular interest have been obtained by disturbing one of the two Raman
terms of the master equation. In fact, in case of bright-like pulses, the initial
distribution changes its characteristics and evolves into a completely new type
of solution. Significant results also come from the study of interaction and col-
lision. We have observed that a repulsive force acts between bright-like pulses,
while two dark-like pulses form a bound state. On the other hand, when we let
both bright-like and dark-like pulses collide, we see, that they cross each other
preserving their shape. Such particle-like behavior indicates, that the solitary
waves behave like solitons.

Successively, we have presented analytical methods useful to investigate the sta-
bility of bright pulses and their interaction. In particular, we have confirmed the
results concerning the stability analysis of bright pulses under Sasa conditions,
and we have proved that when the Hirota conditions are fulfilled, bright pulses do
not present any instability. The dynamics of the pulses interaction during their
transmission in a fiber have been studied by employing the Karpman Solv’ev
approach (KSA).

In the last part of the work, we have presented four different methods which
can be used in order to find periodic solutions of a given DM map: variational
approach, integral equation, numerical simulation and a new semi-analytic map.
All of them take into account higher-order terms. Some of these methods can
be used only for bright pulses, but others have been successfully adopted also in

dark case. Both DM bright and dark solitons can be easily obtained in coefficient



ranges far from Sasa conditions.
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