Genomweite Effekte des Transkriptionsregulators LysG in *Corynebacterium glutamicum*

Inaugural – Dissertation zur Erlangung des Doktorgrades

der

Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

vorgelegt von Eva Krings

> aus Meerbusch

Jülich, Juni 2003

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine Universität Düsseldorf.

Referent: Prof. Dr. Hermann Sahm Korreferent: Prof. Dr. Johannes H. Hegemann

Tag der mündlichen Prüfung: 21.07.2003

Inhaltsverzeichnis

I		Ein	leitung	1
		Mat	erial und Methoden	7
	1	Bak	terienstämme und Plasmide	7
	2	Näh	rmedien und Kultivierungsbedingungen	11
		2.1 2.2 2.3	Chemikalien Nährmedien Kultivierung der Bakterien	11 11 12
	3	Mole	ekulargenetische Methoden	13
		3.1 3.2 3.3 3.4 3.5	Transformation von <i>E. coli</i> und <i>C. glutamicum</i> Isolierung von DNA Restriktion, Modifikation und Rekombination von DNA Polymerasekettenreaktion DNA-Seguenzierung und computergestützte Seguenzanalyse	13 14 15 15 16
	4	DNA	A-Chip Analyse	17
		4.1 4.2 4.3 4.4 4.5 4.6	Herstellung von <i>C. glutamicum</i> DNA-Chips Isolierung von bakterieller Gesamt-RNA Synthese fluoreszenzmarkierter cDNA DNA-Chip Hybridisierung Messung und Quantifizierung der Fluoreszenz von DNA-Chips Archivierung von DNA-Chip Daten	17 18 19 19 20 21
	5	Bes	timmung von Aminosäuren	22
		5.1 5.2	SilikonölzentrifugationQuantifizierung von Aminosäuren	22 23
	6	Bes	timmung von Enzymaktivitäten	24
		6.1 6.2	Herstellung von Rohextrakten Bestimmung der spezifischen β-Galactosidaseaktivität	24 25
		Erg	ebnisse	26
	1	Isoli	erung LysG-bindender DNA-Fragmente	26
		1.1 1.2	Konstruktion des Integrationsstammes R127 <i>ppc</i> ::pEM3 <i>dppc</i> GE" <i>lacZ</i> Etablierung eines Platten-Screeningsystems zur Isolierung LysG-bindender	26 28
		1.3	Charakterisierung von 11 Klonen mit veränderter <i>lacZ</i> -Expression	20 30
	2	DNA	A-Chip Analysen bei Wachstum in BHI-Komplexmedium	34
		2.1 2.2	Experimentelle Rahmenbedingungen LysG-spezifische Expressionsveränderungen	34 39

I

3	DNA-Chip Analysen bei Wachstum in CGXII-Minimalmedium		
	3.1 Bestimmung der internen L-Lysinkonzentration3.2 Analyse der Genexpression	42 42	
4	Untersuchungen zur Maltoseverwertung in C. glutamicum	44	
	 4.1 Konstruktion und Charakterisierung einer <i>malGFE</i>-Deletionsmutante	44 46 48	
5	Der myo-Inositolstoffwechsel in <i>C. glutamicum</i>	50	
	 5.1 Expressionsanalysen bei Wachstum auf <i>myo</i>-Inositol 5.2 Funktionsanalyse putativer <i>myo</i>-Inositolstoffwechselgene 5.3 Untersuchung von Deletionsmutanten putativer <i>myo</i>-Inositoltransporter 5.4 Charakterisierung des <i>iol</i>-Operons II 5.5 LysG-spezifische Expression bei Wachstum auf <i>myo</i>-Inositol 	50 56 67 69 72	
IV	Diskussion	75	
1	LysG-abhängige Expression im Zuckertransport	75	
2	Der myo-Inositolstoffwechsel in C. glutamicum	78	
V	Zusammenfassung	84	
VI	Literaturverzeichnis	85	
VII	Anhang	103	
1	PCR- und Sequenzierprimer	103	
2	Restriktionskarten der konstruierten Plasmide	107	

Abkürzungen

FBR	feedback resistant
A	Adenin
аа	Aminosäure (<i>amino acid</i>)
Abb.	Abbildung
ABC-Transporter	ATP binding cassette-Transporter
ATCC	Stammsammlung (American Type Culture Collection)
ATP	Adenosin-5'-triphosphat
bp	Basenpaare
BSA	Rinderserumalbumin (bovine serum albumin)
С	Cytosin
cDNA	Komplementär-DNA (complementary DNA)
C- / N-Terminus	Carboxy- / Aminoterminus von Proteinen
CoA	Coenzym A
dATP	Desoxyadenosintriphosphat
dCTP	Desoxycytosintriphosphat
dGTP	Desoxyguanosintriphosphat
DNA	Desoxyribonucleinsäure (desoxyribonucleic acid)
dTTP	Desoxythymidintriphosphat
dUTP	Desoxyuridintriphosphat
F	Farad
g	Gramm
G	Guanin
h	Stunde(n)
HEPES	N-2-Hydroxyethylpiperazin-N'-2-Ethansulfonsäure
HPLC	high performance liquid chromatography
IPTG	Isopropyl-β-D-thiogalaktosid
JMD	Jülich Microarray Database
Kan ^R	Kanamycinresistenz
kb	Kilobasen
kV	Kilovolt
L	Liter
Μ	Molarität [mol/L]
Min	Minute(n)

MOPS	3-(N-Morpholino)propansulfonsäure
mRNA	Boten-RNA (messenger RNA)
OD ₆₀₀	optische Dichte gemessen bei 600 nm
ONPG	o-Nitrophenyl-β-D-Galactosid
ORF	offenes Leseraster (open reading frame)
ori	Replikationsursprung (origin of replication)
PCR	Polymerasekettenreaktion (polymerase chain reaction)
RNA	Ribonucleinsäure (ribonucleic acid)
S	Sekunde(n)
SDS	Natriumdodecylsulfat (sodium dodecylsulfate)
SSC	Saline Sodium Citrate
Т	Thymin
Tab.	Tabelle
TAE	Tris-Acetat-EDTA
Tet ^R	Tetracyclinresistenz
Tris	Tris(hydroxymethyl)aminomethan
Tween 80	Polyoxyethylensorbitanmonolaurat
U	spezifische Enzymaktivität (units) [µmol · min ⁻¹ · mg ⁻¹ Protein]
Upm	Umdrehungen pro Minute
UV	Ultraviolett
v/v	Volumen pro Volumen
w/v	Gewicht pro Volumen (weight per volume)
Xgal	5-Bromo-4-chloro-3-indolyl-β-D-galactosid
•	, i 3

I Einleitung

1957 wurde in Japan ein Gram-positives Bakterium aus einer Bodenprobe isoliert und als Glutamatproduzent charakterisiert (Kinoshita et al., 1957). Dem zunächst als Micrococcus glutamicus benannten Bakterium wurde später der Name Corynebacterium glutamicum gegeben. Es ist ein unbewegliches, nicht sporenbildendes, Biotin-auxotrophes Eubakterium aus der Gruppe der mycolsäurehaltigen Actinomyceten und somit eng verwandt mit Bakterien der Gattung Gordonia, Nocardia und Mycobacterium (Pascual et al., 1995; Stackebrandt et al., 1997). Namengebendes Merkmal von C. glutamicum ist seine stäbchenbzw. keulenförmige (coryneforme) Gestalt und die Fähigkeit zur Produktion von Glutamat (Kinoshita et al., 1957). Heutzutage zählen C. glutamicum und die Subspezies flavum und lactofermentum zu den bedeutendsten Mikroorganismen bei der industriellen Aminosäureproduktion (Eggeling und Sahm, 1999; Kircher und Leuchtenberger, 1998; Liebl et al., 1991). Mit C. glutamicum werden mehr als 1.000.000 Tonnen L-Glutamat und 600.000 Tonnen L-Lysin pro Jahr hergestellt (Pfefferle et al., 2003; Eggeling et al., 2001; Leuchtenberger, 1996). Während Mononatriumglutamat als Geschmacksverstärker in der Lebensmittelindustrie Anwendung findet, wird L-Lysin als eine für Vertebraten essentielle Aminosäure, hauptsächlich als Futtermitteladditiv und in der pharmazeutischen Industrie eingesetzt (Leuchtenberger, 1996).

Die L-Lysinbildung erfolgt in Prokaryonten als Teil des verzweigten Biosyntheseweges der Aminosäuren der Aspartatfamilie (Patte, 1996). Der L-Lysinbiosyntheseweg ist in *C. glutamicum* sowohl genetisch als auch biochemisch weitestgehend aufgeklärt (Sahm, 1995; Eggeling und Sahm, 1999). Die Aspartatkinase ist das erste Enzym, welches den Metabolitfluß in Richtung der Aminosäuren der Aspartatfamilie katalysiert und reguliert. Während in *E. coli* und *B. subtilis* Isoenzyme der Aspartatkinase existieren, die jeweils unterschiedlich reguliert werden (Cohen und Saint-Girons, 1987; Chen *et al.*, 1987; Graves und Schwitzer, 1990), liegt in *C. glutamicum* nur eine Aspartatkinase vor. Dieses Enzym wird durch das Gen *lysC* kodiert (Kalinowski *et al.*, 1991). Die Aspartatkinase unterliegt einer konzertierten Endprodukthemmung durch L-Lysin und L-Threonin (Nakayama *et al.*, 1966). Eine Regulation von *lysC* auf Transkriptions-Ebene, wie es für *E. coli* beschrieben ist (Richaud *et al.*, 1980), ist in *C. glutamicum* bisher nicht bekannt (Cremer *et al.*, 1991). Die Überexpression des Gens für die Feedback-resistente Aspartatkinase *lysC^{FBR}* (Kalinowski *et al.*, 1991) führt bereits zur Produktion von L-Lysin durch *C. glutamicum* (Cremer *et al.*, 1991) und stellt so den entscheidenden ersten Schritt zur Herstellung von L-LysinProduktionsstämmen dar (Sahm, 1995). Am Verzweigungspunkt der Biosynthese in Richtung L-Lysin bzw. L-Homoserin konkurrieren die Dihydrodipicolinat-Synthase (dapA) und Homoserindehydrogenase (hom) um das gemeinsame Substrat Aspartatsemialdehyd. Die Homoserindehydrogenase von C. glutamicum wird analog zu den E. coli Isoenzymen (Truffa-Bachi et al., 1968; Dautry-Varsat et al., 1977) durch L-Threonin inhibiert (Miyajima und Shiio, 1970) und durch L-Methionin reprimiert (Miyajima und Shiio, 1971; Follettie et al., 1988). Die Inaktivierung der Homoserindehydrogenase führt zu einer Erhöhung des Flusses in Richtung L-Lysin (Nakayama, 1985; Shiio und Sano, 1969; Fernandez-Gonzalez et al., 1996; Schäfer et al., 1994). Dagegen wird die Dihydrodipicolinat-Synthase von C. glutamicum, anders als das E. coli Enzym (Richaud et al., 1986), nicht reguliert (Cremer et al., 1988). Dennoch wird durch die Überexpression von dapA sowohl im Wildtyp als auch in einem Stamm mit deregulierter Aspartatkinase die L-Lysinbildung gesteigert (Cremer et al., 1991; Eggeling 1996; Eggeling et al., 1998). Dies spricht für eine Beteiligung der Dihydrodipicolinat-Synthase an der Flußkontrolle, wobei dies offensichtlich direkt über die Enzymmenge und nicht über die Beeinflussung der katalytischen Aktivität des Enzyms erfolgt (Eggeling, 1994). Neben $lysC^{FBR}$ und dapA ist bisher kein anderes Gen der L-Lysinbiosynthese in C. glutamicum bekannt, dessen Überexpression eine erhöhte L-Lysinproduktion zur Folge hat (Cremer et al., 1991).

Neben der Regulation der L-Lysinbiosynthese, stellt auch die L-Lysinexkretion einen limitierenden Schritt bei der L-Lysinproduktion mit C. glutamicum dar (Schrumpf et al., 1991; Bröer et al., 1993). Biochemische Analysen ergaben, dass der L-Lysinexport in C. glutamicum Carrier-vermittelt abläuft (Bröer und Krämer, 1991; Erdmann et al., 1993). Durch homologe Komplementation mit einer Plasmidgenbank aus dem C. glutamicum Wildtyp konnte das für den L-Lysinexportcarrier kodierende Gen lysE isoliert, kloniert und sequenziert werden (Vrljić et al., 1996). Der Lysinexportcarrier LysE war der erste spezifische Translokator für den Export von Aminosäuren in Bakterien, der molekular zugänglich war. Inzwischen konnten auch Exportcarrier für den aktiven Transport von L-Isoleucin (brnEF) und L-Threonin (thrE) aus C. glutamicum identifiziert werden (Simič et al., 2001; Kennerknecht et al., 2002), sowie auch erstmals ein Threonin- und Cysteincarrier aus E. coli (Kruse et al., 2002; Franke et al., 2003). Obwohl LysE aus C. glutamicum als sekundärer Translokatortyp charakterisiert ist (Bröer und Krämer, 1991), hat das entsprechende Polypeptid weder auf molekularer noch auf struktureller Ebene Ähnlichkeiten zu einer der 12 bekannten Translokator-Superfamilien (Saier, 1994; Saier et al., 1994; Paulsen et al., 1997). LysE wurde aufgrund seiner neuartigen Struktur und Funktion als erstes Mitglied einer neuen Proteintranslokatorfamilie identifiziert (Vrljić et al., 1996). Geringe

Ähnlichkeiten bestehen auch zu den kürzlich charakterisierten, am Threonin- bzw. Homoserin/Homoserinlactonefflux beteiligten Proteinen der RhtB-Familie, RhtC (Zakataeva *et al.*, 1999) und RhtB (Aleshin und Zakataeva, 1999) aus *E. coli*. Zusammen mit den Proteinen der CatD-Familie, deren Mitglieder unter anderem Cadmiumresistenz in *Staphylococcus* Spezies vemitteln (Chaouni *et al.*, 1996), wurden die RhtB-Familie und LysE-Familie zur LysE-Superfamilie zusammengefaßt (Vrljić *et al.*, 1999).

Untersuchungen mit LysE haben gezeigt, dass die Überexpression des Exportergens im Wildtyp zu einer zehnfach höheren L-Lysinexkretionsrate führen kann (Vrljić *et al.*, 1996). Die physiologische Notwendigkeit, Lysin aktiv zu exportieren, zeigte sich in Experimenten mit *lysE*-Defektmutanten von *C. glutamicum* (Vrljić *et al.*, 1996). Bei Wachstum auf L-Lysin-haltigen Dipeptiden kommt es in diesen Mutanten zu einer zellinternen L-Lysinakkumulation von bis zu 1 M, was zu einem Wachstumsstop der Zellen führte. Da *C. glutamicum* L-Lysin nicht verstoffwechseln kann (Nakayama *et al.*, 1985), dient der Exporter LysE unter diesen Bedingungen der Kontrolle der internen L-Lysinkonzentration. Diese Situation der erhöhten Peptidaufnahme kann für *C. glutamicum* auch im natürlichen Habitat, dem Boden vorkommen. Hier können Peptide als Kohlenstoff- und Energiequelle genutzt werden. Dabei kann L-Lysin im Zellinnern angestaut werden, was so die zunächst physiologisch widersinnig erscheinende L-Lysinexkretion notwendig macht, um den bakteriostatischen Effekt erhöhter L-Lysinkonzentrationen zu verhindern (Vrljić, 1997). Ohne L-Lysinexporter ist aufgrund der äußerst geringen Diffusion von L-Lysin kein Efflux möglich, wodurch dem L-Lysinexportcarrier eine große Bedeutung für die biotechnologische Produktion von L-Lysin zukommt.

Die Regulation des L-Lysinexportcarriers erfolgt sowohl auf Aktivitäts- als auch auf Expressionsebene (Erdmann *et al.*, 1993; Erdmann *et al.*, 1995). Auf genetischer Ebene wird *lysE* durch den Regulator LysG (*governing L-lysine excretion*) reguliert, dessen Gen *lysG* bei der Identifizierung und Isolierung von *lysE* stromaufwärts und benachbart zu *lysE* entdeckt wurde. Das abgeleitete Polypeptid LysG (290 aa) weist alle typischen Eigenschaften eines prokaryontischen Transkriptionsregulators der LTTR-Familie (LysR-*type transcriptional regulators*) auf (Henikoff *et al.*, 1988; Schell, 1993). Diese Regulatoren sind in Grampositiven und Gram-negativen Bakterien weit verbreitet (Schell, 1993). Ihre Gene liegen häufig, wie es auch bei LysG der Fall ist, benachbart zum Zielgen und werden meist divergent dazu transkribiert. Bei LysG wurden auch die drei charakteristischen Domänen eines LTTR erkannt (Abb. 1). Der Regulator aus *C. glutamicum* besitzt das stark konservierte Helix-turn-Helix-Motiv (HTH-Motiv) im N-Terminus als potentiellen DNA-Bindebereich. Die zweite konservierte Domäne liegt im zentralen Bereich des Regulators und ist

3

möglicherweise an der Induktorerkennung und -antwort beteiligt (Schell, 1993). Diskutiert wird jedoch auch eine mögliche Bindung des Induktormoleküls im C-terminalen Bereich der Regulatorproteine (Lochowska et al., 2001). Es ist bekannt, dass die Mitglieder der LTTR-Familie ihre Funktion in Abhängigkeit von einem oder sogar mehreren Induktormolekülen (Bundy et al., 2002; Schell, 1993; Spaink et al., 1989) ausüben. Erst kürzlich gelang es, die Induktorspezifität von LysG aufzuklären (Bellmann, 2000). Wie auch bei einigen anderen Regulatoren dieser Familie stellt die zu transportierende Substanz gleichzeitig das Induktormolekül dar. So wird durch die Anwesenheit von L-Lysin als Induktor für LysG die Expression von lysE bis zu 20 fach erhöht (Bellmann et al., 2001). Neben L-Lysin sind auch die beiden basischen Aminosäuren L-Arginin und L-Histidin sowie L-Citrullin Induktoren der LysG-vermittelten lysE-Expression (Bellmann, 2000). Die im C-terminalen Bereich lokalisierte Domäne ist vermutlich essentiell für die Multimerisierung der LTTRs, die meist als Di- oder, in seltenen Fällen, als Tetramere vorliegen (Zaim und Kierzek, 2003; Tyrell et al., 1997; Kullik et al., 1995). Stromaufwärts vom LysE-Translationsstart befindet sich auch die partiell palindromische Region ACTN₇AGT (-75 bp \rightarrow -62 bp), die als typische Erkennungssequenz (RBS, recognition binding site) zur Bindung eines Regulators der LTTR-Familie dienen kann (Schell, 1993).

Abb. 1: Übersicht über den Transkriptionsregulator (LysG) und den L-Lysinexportcarrier (LysE) auf genetischer Ebene und Proteinebene. Gezeigt sind die divergent transkribierten Gene mit der Erkennungsregion von LysG (RBS, *recognition binding site*) und die putative DNA-Binderegion von LysG bei Anwesenheit des Induktors (ABS, *activator binding site*). Für LysG sind die drei charakteristischen Domänen eines LTTR dargestellt.

Die LTTR-Familie ist eine stetig wachsende Gruppe zumeist autoregulativer Transkriptionsregulatoren, die ihre Zielgene meist positiv kontrollieren (Christman *et al.*, 1989; Schell,

4

1993; Parsek *et al.*, 1994). Darüber hinaus werden häufig auch mehrere Gene gleichzeitig reguliert. So werden zum Beispiel Gene, die für Proteine des Aromatenabbaus kodieren (McFall *et al.*, 1997; McFall *et al.*, 1998; Junker *et al.*, 1997; Paradkar *et al.*, 1998) ebenso durch LysR-ähnliche Regulatoren kontrolliert wie Gene für Aminosäurebiosynthese-Enzyme (Wek *et al.*, 1986; Plamann und Stauffer, 1987). Allerdings exisitiert mit *nhaA* aus *E. coli*, einem Gen für einen Na⁺/H⁺-Antiporter, jedoch erst ein einziges Beispiel, wo ein Translokatorgen durch einen LysR-ähnlichen Regulator (NhaR) kontrolliert wird (Dover *et al.*, 1996; Rahav-Manor *et al.*, 1992).

Durch Analyse von *lysE*"lacZ-Fusionsstämmen konnte inzwischen auf molekularer Ebene belegt werden, dass LysG positiver Transkriptionsregulator von lysE ist (Bellmann, 2000). Für einige Transkriptionsregulatoren der LTTR-Familie ist gezeigt, dass sie mehrere Zielgene haben, auf die sie einen sowohl positiven als auch negativen Einfluß ausüben. Derartige Effekte sind vor allem in phytopathogenen Bakterien gut untersucht (Harris et al., 1998; Schell, 1996; Huang et al., 1998; Fellay et al., 1998). So kontrolliert zum Beispiel in Ralstonia solanacearum der LysR-ähnliche Regulator PhcA je nach Umweltsituation des Bakteriums gezielt die Expression verschiedener Gene deren Genprodukte die Virulenz des Bakteriums vermitteln. PhcA ist dabei positiver Transkriptionsregulator für die Expression der Virulenzfaktoren und gleichzeitig negativer Regulator von pehS, dessen Genprodukt Teil eines Zwei-Komponentensystems ist. Dieses kontrolliert wiederum die Expression des Endopolygalacturonasegens (pgIA) (Schell, 1996). Ein weiteres Beispiel für einen LTTR-Regulator mit mehreren Zielgenen ist das zu LysG sehr ähnliche Protein IciA aus E. coli (Thöny et al., 1991). Während IciA die Transkription von dnaA am Promotor P1 induziert (Lee et al., 1996), wird gleichzeitig durch die Bindung des Regulators an dem zweiten Promotor P2 des E. coli eigenen oriC-Locus die Initiation der Replikation verhindert (Hwang und Kornberg, 1990).

Es gibt noch einige wenig verstandene Befunde zur L-Lysinsynthese, an denen LysG, LysE oder die Biosynthese selbst beteiligt sein könnten (Abb. 2). So hat die Art der Kohlenstoffquelle, die im Medium vorhanden ist, einen Einfluß auf den Export von L-Lysin (Erdmann *et al.*, 1994). Da im Fall von Glukose die niedrigste Exportaktivität beobachtet werden konnte, wurde in Analogie zu *E. coli* (Postma *et al.*, 1993) eine hemmende Wirkung von Komponenten des PTS-Systems (Phosphotransferase-Systems) auf den L-Lysin-exportcarrier vorgeschlagen (Erdmann *et al.*, 1995). Es ist auch bekannt, dass sich in Abhängigkeit von der verwendeten Kohlenstoffquelle veränderte L-Lysinausbeuten ergeben, die nicht ausschließlich durch veränderte Transportaktivitäten erklärt werden können (Kiefer

et al., 2002). So ist zum Beispiel die Bildung von L-Lysin in einigen Produktionsstämmen von *C. glutamicum* wesentlich geringer bei Wachstum auf Fruktose als bei Wachstum auf Glukose. Industriell relevant sind die Substrate Stärkehydrolysat (Glukose), Invertzucker (Glukose und Fruktose) sowie Saccharose. Bislang berichten aber nur wenige Quellen über die Besonderheiten bei Verwendung alternativer Substrate als Glukose (Dominguez *et al.*, 1998; Pelechova *et al.*, 1980). Die regulatorischen Prozesse dabei sind bislang noch weitgehend unverstanden (Kiefer *et al.*, 2002).

Abb. 2: Die physiologische Funktion des L-Lysinexportcarriers LysE in *C. glutamicum*. LysE katalysiert den Export von L-Lysin nach Deregulation der L-Lysinbiosynthese (Cremer *et al.*, 1991), als Ergebnis natürlicher Flußungleichgewichte (Vrljić, 1997) oder nach Aufnahme und zellinterner Hydrolyse von Peptiden (Vrljić *et al.*, 1996).

Ziel der vorliegenden Arbeit war es zu untersuchen, ob der Regulator LysG über die Kontrolle der *lysE*-Expression hinaus die L-Lysinbildung beeinflußt und ob es eine Interaktion mit dem Zuckerstoffwechsel gibt. Dazu sollte ein genetischer Ansatz gewählt werden, um über Titrationsexperimente Zugang zu möglichen weiteren Targets von LysG zu erlangen. Parallel dazu sollten Expressionsanalysen mit Hilfe der DNA-Chip Technologie durchgeführt werden. Dadurch sollte es gelingen eine Übersicht zu bekommen und Informationen zu erhalten, ob LysG an anderen Stellen als im *lysE*-Promotorbereich interagiert, und so den Stoffwechsel beeinflußt.

II Material und Methoden

1 Bakterienstämme und Plasmide

In Tabelle 1 und Tabelle 2 sind die in dieser Arbeit verwendeten Bakterienstämme und Plasmide unter Angabe ihrer Eigenschaften aufgeführt.

 Tab. 1:
 Bakterienstämme und ihre Eigenschaften

Stamm	Genotyp / Phänotyp	Referenz

C. glutamicum

ATCC13032	Wildtypisolat	Abe <i>et al</i> ., 1967
ATCC13032∆ <i>lysG</i>	chromosomale Deletion des Gens lysG	Vrljić, 1997
ATCC13032∆ <i>lysEG</i>	Deletion eines 1236 bp Stu-Mlul-	Vrljić, 1997
	Fragmentes mit größtem Teil der Gene <i>lysE</i> , <i>lysG</i>	
ATCC13032 <i>lysE</i>	lysE disruptiert durch Integration des Vektors	Vrljić, 1997
::pEM <i>lysE</i> _{int}	pEM1 <i>lysE</i> _{int}	
ATCC13032iolG	ioIG (ORF562) disruptiert durch Integration des	diese Arbeit
::pT18mob2 <i>iolG</i> _{int}	Vektors pT18mob2 <i>iolG</i> int	
ATCC13032ioID	ioID (ORF560) disruptiert durch Integration des	diese Arbeit
::pT18mob2 <i>ioID</i> _{int}	Vektors pT18mob2 <i>ioID</i> _{int}	
ATCC13032∆iolD	chromosomale Deletion des Gens iolD (ORF560)	diese Arbeit
ATCC13032∆ <i>iolT</i> II	chromosomale Deletion des Gens <i>iolT</i> I	diese Arbeit
	(ORF3431)	
ATCC13032∆ <i>iclR</i> 2	chromosomale Deletion des Gens iclR2	Gerstmeir, 2003
	(ORF3434)	
R127	Restriktionsdefekt. <i>res</i> -	Liebl <i>et al.</i> , 1989
R127 <i>ppc</i> ::pEM1	pEM1 <i>dppc</i> GE"/acZ stromabwärts des Gens	diese Arbeit
dppcGE"lacZ	ppc in das Chromosom von R127 integriert	

7

Tab. 1 (ff): Bakterienstämme und ihre Eigenschaften

Stamm	Genotyp / Phänotyp	Referenz
ATCC21527	Leucin- und Homoserin-auxotroph	degussa.
ATCC21527∆ <i>malGFE</i>	chromosomale Deletion der Gene malG	diese Arbeit
	(ORF1242), malF (ORF1243) und malE (ORF1245)	
ATCC21527∆ <i>iolD</i>	chromosomale Deletion des Gens iolD (ORF560)	diese Arbeit
ATCC21527∆ <i>iolT</i> I	chromosomale Deletion des Gens <i>iolT</i> I	diese Arbeit
	(ORF3542)	
ATCC21527∆ <i>iolT</i> II	chromosomale Deletion des Gens <i>iolT</i> II	diese Arbeit
	(ORF3431)	
ATCC21527∆ribR	chromosomale Deletion des Gens ribR (ORF568)	diese Arbeit
ATCC21527∆ <i>idh</i> II	chromosomale Deletion der Gene idhA	diese Arbeit
	(ORF3436), ioll (ORF3438), idhA (ORF3439)	
	und <i>idh</i> (ORF3440)	
ATCC21527∆ <i>idh</i> II	iolG (ORF562) disruptiert durch Integration des	diese Arbeit
iolG::pT18mob2iolG _{int}	Vektors pT18mob2 <i>iolG</i> _{int}	
E. coli		
DH5aMCR	F- endA1 supE44 thi-1 λ - recA1 gyrA96 relA1	Grant <i>et al.</i> , 1990
	deoR ∆(lacZYA-argF) U169థ80dlacZ∆M15	
	mcrA Δ (mrr hsdRMS mcrBC)	

Tab. 2: Plasmide, ihre Marker und ihre Eigenschaften

Plasmid	Marker / Eigenschaften	Referenz
pZ1 <i>lysC</i> _D	Pendelvektor, Kan ^R , <i>oriV</i> _{E.c.} , <i>oriV</i> _{C.g.} , mit 2,7 kb	Cremer <i>et al.</i> ,
	<i>Dra</i> I-Fragment <i>IysC</i> α und <i>IysC</i> β (D)	1991
pMV1 <i>lysG</i>	Pendelvektor, Kopienzahl in <i>C.g.</i> <5/Zelle, Kan ^R ,	Vrljić, 1997
	<i>oriV</i> _{E.c.} , <i>oriV</i> _{C.g.} mit <i>Bam</i> HI- <i>Aat</i> II-Fragment <i>lysG</i>	

Tab. 2 (ff): Plasmide, ihre Marker und ihre Eigenschaften

Plasmid	Marker / Eigenschaften	Referenz
pJC1	Pendelvektor, Kan ^R , <i>oriV</i> _{E.c.} , <i>oriV</i> _{C.g.}	Cremer <i>et al.</i> , 1991
pJC1'GE'	pJC1 mit 455 bp-Fragment aus pVWEx2, das	Bellmann, 2000
	155 bp von <i>lysG</i> und 239 bp von <i>lysE</i> sowie den	
	intergenischen Bereich von <i>lysEG</i> umfaßt	
pJC1 <i>ribR</i>	pJC1 mit 1104 bp PCR-Fragment aus	diese Arbeit
	chromosomaler DNA von ATCC13032, enthält ribR	
	(ORF568)	
pJC50	pJC1 mit 2,7 kb <i>Dra</i> l-Fragment <i>lysC</i> α und <i>lysC</i> β ,	Cremer <i>et al.</i> ,
	sowie 2,8 kb Fragment <i>dapA</i>	1991
pEKEx2	Expressionsvektor, Kan ^R , <i>oriV</i> _{E.c.} , <i>oriV</i> _{C.g.} ,	Eikmanns <i>et al</i> .,
	<i>tac</i> -Promotor	1991
pEKEx2 <i>icIR</i> 2	pEKEx2 mit <i>icIR</i> 2-Gen	Gerstmeir, 2003

aus Plasmidgenbank (C. glutamicum)

Vrljić, 1997

pJC1_3-1-24	pJC1 mit 3,92 kb Insert, enthält ORF2860 - ORF286	62	
pJC1_3-1-30	pJC1 mit 4,23 kb Insert, enthält ORF2656 - ORF2660		
pJC1_4-1-52	pJC1 mit 4,01 kb Insert, enthält ORF1162 - ORF116	5	
pJC1_5-1-02	pJC1 mit 4,40 kb Insert, enthält ORF3282 - ORF328	34	
pJC1_9-1-01	pJC1 mit 9,70 kb Insert, enthält ORF1864 - ORF187	2	
	(unter anderem auch die Gene <i>lysE</i> und <i>lysG</i>)		
pJC1_9-1-67	pJC1 mit 3,56 kb Insert, enthält ORF73 und ORF74		
pJC1_10-1-01	pJC1 mit 4,62 kb Insert, enthält ORF757 - ORF763		
pJC1_10-1-02	pJC1 mit 2,66 kb Insert, enthält ORF2345 und ORF2346		
pJC1_10-2-09	pJC1 mit 4,23 kb Insert, enthält ORF2102 - ORF210	16	
	(unter anderem auch das Gen mqo)		
pJC1_10-4-03	pJC1 mit 9,70 kb Insert, enthält ORF1864 - ORF187	2	
	(unter anderem auch die Gene lysE und lysG, siehe		
	auch pJC1_9-1-01)		
pJC1_10-4-04	pJC1 mit 13,00 kb Insert, enthält ORF1525 - ORF15	33	
pJC1' <i>purM</i> _p 1'	pJC1 mit 299 bp Insert aus pJC1_3-1-24	diese Arbeit	

Plasmid	Marker / Eigenschaften	Referenz
pJC1' <i>tnp1513</i> ₅1'	pJC1 mit 240 bp Insert aus pJC1_3-1-24	diese Arbeit
pJC1'Rv0810c₀1'	pJC1 mit 260 bp Insert aus pJC1_3-1-24	diese Arbeit
pJC1'sc6a11.15 _p 1'	pJC1 mit 264 bp Insert aus pJC1_3-1-30	diese Arbeit
pJC1'29,7K	pJC1 mit 256 bp Insert aus pJC1_3-1-30	diese Arbeit
-sc7a1.18c _p 1'		
pJC1'Rv1636 _p 1'	pJC1 mit 272 bp Insert aus pJC1_3-1-30	diese Arbeit
pJC1' <i>uvrB</i> _p 1'	pJC1 mit 224 bp Insert aus pJC1_3-1-30	diese Arbeit
pJC1' <i>gltA</i> _p 1'	pJC1 mit 167 bp Insert aus pJC1_4-1-52	diese Arbeit
pJC1' <i>yjmC</i> p1'	pJC1 mit 247 bp Insert aus pJC1_4-1-52	diese Arbeit
pJC1' <i>gntR</i> _p 1'	pJC1 mit 346 bp Insert aus pJC1_4-1-52	diese Arbeit
pJC1 <i>mal_</i> 1-1	pJC1 mit internem 1198 bp <i>mal_</i> 1-1-Fragment	diese Arbeit
pJC1 <i>mal_</i> 1-2	pJC1 mit internem 935 bp <i>mal</i> _1-2-Fragment	diese Arbeit
pJC1 <i>mal_</i> 2-1	pJC1 mit internem 717 bp <i>mal_</i> 2-1-Fragment	diese Arbeit
pK19 <i>mobsacB</i>	Integrationsvektor, <i>ori</i> _{E.c.} , <i>oriT mob sacB</i> , Kan ^R	Schäfer <i>et al.</i> , 1994
pK19 <i>mobsacB</i>	pK19 <i>mobsacB</i> mit <i>malG</i> - und <i>malE</i> -Sequenz,	diese Arbeit
∆malGFE	deletiert sind 3775 bp mit den Genen <i>malG</i>	
	(ORF1242), <i>malF</i> (ORF1243) und <i>malE</i> (ORF1245)	
pK19 <i>mobsacB∆iolD</i>	pK19 <i>mobsacB</i> mit <i>ioID</i> -Sequenz, deletiert ist ein	diese Arbeit
	internes 1861 bp Fragment von <i>iolD</i> (ORF560)	
pK19 <i>mobsacB∆iolT</i> I	pK19 <i>mobsacB</i> mit <i>iolT</i> I-Sequenz, deletiert ist	diese Arbeit
	ein internes 1422 bp Fragment von <i>iolT</i> I (ORF3542))
pK19 <i>mobsacB</i>	pK19 <i>mobsacB</i> mit <i>iolT</i> II-Sequenz, deletiert ist	diese Arbeit
∆ <i>iolT</i> II	ein internes 1472 bp Fragment von iolTII (ORF3431)
pK19 <i>mobsacB∆ribR</i>	pK19 <i>mobsacB</i> mit <i>ribR</i> -Sequenz, deletiert ist ein	diese Arbeit
	internes 941 bp Fragment von <i>ribR</i> (ORF568)	
pK19 <i>mobsacB</i>	pK19 <i>mobsacB</i> mit <i>idhA</i> - und <i>idh</i> - Sequenz,	diese Arbeit
∆idhll	deletiert sind 4072 bp mit den Genen idhA	
	(ORF3436), ORF3438, <i>ioll</i> (ORF3439) und <i>idhA</i>	
	(ORF3440)	

Tab. 2 (ff): Plasmide, ihre Marker und ihre Eigenschaften

Tab. 2 (ff): Plasmide, ihre Marker und ihre Eigenschaften

Plasmid	Marker / Eigenschaften	Referenz
pT18 <i>mob</i> 2	Integrationsvektor, $oriV_{E.c}$, $oriT_{E.c.}$ (RP4mob), Tet ^R	Tauch <i>et al.</i> , 2002
pT18 <i>mob2iolG_{int}</i> pT18 <i>mob2iolD_{int}</i>	pT18 <i>mob</i> 2 mit internem 408 bp <i>iolG</i> -Fragment pT18 <i>mob</i> 2 mit internem 427 bp <i>iolD</i> -Fragment	diese Arbeit diese Arbeit

Restriktionskarten der konstruierten Plasmide befinden sich in Anhang 2.

2 Nährmedien und Kultivierungsbedingungen

2.1 Chemikalien

Sofern nicht anders angegeben, wurden Chemikalien der Firmen Merck AG Darmstadt, Roche Diagnostics GmbH Mannheim, Sigma-Aldrich Chemie GmbH Taufkirchen und Amersham Pharmacia Biotech Inc. Freiburg verwendet. Die Bestandteile für komplexe Nährmedien stammten von den Difco-Laboratories Detroit, MI, USA.

2.2 Nährmedien

Nährmedien für Escherichia coli

Zur Kultivierung der *E. coli* Stämme wurde ausschließlich das Vollmedium LB verwendet (Sambrook *et al.*, 1989). Die Anzucht zur Herstellung chemisch kompetenter *E. coli* Zellen erfolgte auf SOB-Medium (Hanahan, 1985). Nach der Transformation wurden die Zellen zur Regeneration in LB-Medium überführt. Auch die Stammhaltung erfolgte in LB-Medium.

Nährmedien für Corynebacterium glutamicum

Zur Stammhaltung und DNA-Isolierung wurde *C. glutamicum* in 5 mL BHI-Komplexmedium (Brain-Heart-Infusion) kultiviert. Als Vollmedium für Vorkulturen wurde ebenfalls BHI-Medium eingesetzt. Zur Herstellung elektrokompetenter *C. glutamicum* Zellen wurde LB-Vollmedium unter Zugabe von Wachstumsinhibitoren verwendet (Haynes und Britz 1989, 1990). Als

Regenerationsmedium nach der Elektroporation wurde BHIS-Medium (BHI-Komplexmedium mit 0,5 M Sorbit) verwendet. Zur Aufnahme von Wachstumskurven, Quantifizierung von Aminosäuren, Bestimmung von Enzymaktivitäten und zur Isolierung von Gesamt-RNA wurde das aminosäure- und fettsäurefreie Minimalmedium CGXII mit 4 % (w/v) Kohlenstoffquelle und Protokatechusäure (30 mg/L) verwendet (Keilhauer *et al.*, 1993). Der Vorteil dieses Mediums liegt in der guten Pufferung durch 3-(N-Morpholino)propansulfonsäure (MOPS) bei pH 7,0.

Medienzusätze

Die Selektion rekombinanter *E. coli*-Stämme erfolgte durch Zugabe von 50 mg/L Kanamycin und 5 mg/L Tetracyclin zum Nährmedium bei frei replizierbaren Vektoren. Nach Transformation wurden jeweils 25 mg/L Kanamycin oder 5 mg/L Tetracyclin verwendet. Zur Selektion rekombinanter *C. glutamicum*-Stämme wurden dem Medium 50 mg/L Kanamycin bei frei replizierbaren Vektoren zugegeben, nach Integration eines Vektors in das Genom hingegen 25 mg/L Kanamycin sowie nach Elektroporation nur 15 mg/L Kanamycin. Tetracyclin-resistente *C. glutamicum*-Stämme wurden mit 5 mg/L Tetracyclin selektioniert. Die Selektion auf Exision der pK19*mobsacB*-Konstrukte aus dem Genom von *C. glutamicum* erfolgte auf LB-Medium mit 10 % Saccharose (Schäfer *et al.*, 1994). Zur Herstellung von Agarplatten wurden den Medien 1,5 % (w/v) Agar (Difco-Laboratories Detroit, MI, USA) zugesetzt.

C. glutamicum-Stämme, die eine *lysGE"lacZ*-Fusion enthielten, wurden auf LB-Agarplatten unter Zugabe von 60 mg/L 5-Bromo-4-chloro-3-indolyl-β-D-galactosid (Xgal) getestet. Bei Kultivierung des Leucin- und Homoserin-auxotrophen *C. glutamicum* Stammes ATCC21527 in CGXII-Minimalmedium enthielt das Medium die entsprechenden Aminosäuren in einer Endkonzentration von 0,4 g/L.

2.3 Kultivierung der Bakterien

Die Kultivierung von *E. coli* und *C. glutamicum* erfolgte in 500 mL Erlenmeyerkolben mit zwei seitlichen Schikanen. Zur Aufnahme von Wachstumskurven, Messung der Aminosäurebildung, Bestimmung von Enzymaktivitäten und zur Isolierung von Gesamt-RNA wurde *C. glutamicum* zunächst in 5 mL BHI-Komplexmedium über Tag vorkultiviert und anschließend eine über Nacht Vorkultur (60 mL CGXII-Minimalmedium + 4 % Glukose) mit 1 mL der über Tag Vorkultur angeimpft. Aliquots der Vorkulturen wurden steril entnommen, 10 min bei 4500 Upm und 4°C abzentrifugiert, mit 50 mL eiskaltem CGXII-Minimalmedium gewaschen und dann in das Hauptkulturmedium überführt (60 mL CGXII-Minimalmedium + 4 % Kohlenstoffquelle). Dabei wurde, wenn nicht anders angegeben, eine anfängliche optische Zelldichte von $OD_{600} = 1,0$ eingestellt. Für Kultivierungen zur Isolierung von Plasmid-DNA in größerem Maßstab wurden 50 mL Vollmedium verwendet, im kleineren Maßstab wurden 5 mL Vollmedium im Reagenzglas eingesetzt. Kulturen in Reagenzgläsern wurden bei 170 Upm, alle übrigen Kulturen bei 120 Upm inkubiert. Die Kultivierungstemperaturen betrugen 37°C für *E. coli* und 30°C für *C. glutamicum*.

Zur Stammhaltung wurden Dauerkulturen angelegt, die aus 75 % (v/v) einer auf Komplexmedium gezogenen Übernachtkultur und 25 % (v/v) sterilem Glycerin bestanden (Sambrook *et al.*, 1989). Die Dauerkulturen wurden bei –20°C gelagert und zum Animpfen von Agarplatten verwendet. Diese Animpfplatten wurden im Fall von *E. coli* für 18 Stunden bei 37°C bzw. im Fall von *C. glutamicum* für 48 Stunden bei 30°C inkubiert, dann bei 4°C gelagert und in einem 14-tägigem Rhythmus erneuert.

3 Molekulargenetische Methoden

3.1 Transformation von E. coli und C. glutamicum

Transformation von E. coli

Zur Transformation von *E. coli* wurde eine modifizierte Methode nach Hanahan (1983) eingesetzt. Dabei wurden die chemisch, Rubidiumchlorid-kompetenten Zellen mittels Hitzeschock nach Hanahan (1985) transformiert.

Transformation von C. glutamicum

Die Transformation von *C. glutamicum* erfolgte durch Elektroporation mit anschließendem Hitzeschock nach van der Rest *et al.* (1999). Zur Herstellung der elektrokompetenten *C. glutamicum* Zellen wurden zunächst 10 mL LB-Medium mit 2 % (w/v) Glukose (100 mL Erlenmeyerkolben mit zwei seitlichen Schikanen) von einer frischen LB-Agarplatte mit einer Einzelkolonie von *C. glutamicum* angeimpft und über Nacht bei 30°C inkubiert. Anschließend wurden 100 mL LB-Medium unter Zusatz der Wachstumsinhibitoren Glycin (2,5 % w/v), Isonicotinsäurehydrazid (4 mg/mL) und Tween 80 (0,1 % w/v) modifiziert nach Haynes und Britz (1989, 1990) mit einer optischen Zelldichte von $OD_{600} = 0.3$ oder, wie im Falle des Stammes R127ppc::pEM1dppcGE"lacZ, mit einer anfänglichen Zelldichte von OD₆₀₀ = 0,6 aus der Übernachtkultur angeimpft. Diese Kultur wurde für etwa 28 h bei 18°C bis zu einer optischen Dichte von OD_{600} = 1,0 inkubiert und anschließend für 10 min auf Eis abgekühlt. Danach erfolgte die Zellernte (4500 Upm, 4°C, 10 min). Die Zellen wurden im Folgenden viermal mit je 50 mL eiskaltem Glycerin (10 % v/v) gewaschen, anschließend in 0,5 mL eiskaltem 10 % igem Glycerin (v/v) resuspendiert und bis zur weiteren Verwendung in 100 µL Aliquots bei -70° C aufbewahrt. Zur Elektroporation wurden 100 µL Zellen mit 1 – 2 µL der zu transformierenden DNA gemischt und luftblasenfrei in eine vorgekühlte, sterile Elektroporationsküvette (Typ 16 S 2086, Biorad, München) überführt. Die Elektroportion wurde dann mit einem Puls bei einer Spannung von 2,5 kV, einem Widerstand von 600 Ω und einer Kondensatorkapazität von 25 µF in einem BIORAD GENE PULSER[™] (Biorad, München) durchgeführt. Zur Regeneration und Ausprägung der plasmidkodierten Antibiotikaresistenz wurden die transformierten Zellen sofort nach der Elektroporation in 1 mL BHIS-Medium (BHI-Komplexmedium mit 0,5 M Sorbit) aufgenommen, in ein 1,5 mL Eppendorfreaktionsgefäß überführt und für 6 min einem Hitzeschock bei 46°C unterzogen. Vermutlich wird durch diesen Hitzeschock die Restriktionsaktivität von C. glutamicum reduziert, so dass die Transformationseffizienz bei Verwendung heterologer DNA deutlich erhöht wurde (van der Rest et al., 1999). Anschließend wurden die Zellen zur Regeneration und Ausprägung der Antibiotikaresistenz für 1-2 h bei 30°C unter Schütteln im Thermomixer (Eppendorf) bei 100 Upm inkubiert, bevor sie auf Antibiotika-haltigen LBHIS-Agarplatten (Liebl et al., 1989) ausplattiert wurden.

3.2 Isolierung von DNA

Die Isolierung von Plasmid-DNA aus *E. coli* erfolgte durch alkalische Lyse nach einem modifizierten Protokoll nach Birnboim und Doly (1979). Zur Gewinnung einer größeren Menge Plasmid-DNA mit höherer Reinheit, die zur Sequenzierung oder präparativen Restriktion eingesetzt werden sollte, wurde der *QIAFilter Plasmid Purification Kit* der Firma QIAGEN (Hilden) eingesetzt. Die Präparation der Plasmid-DNA erfolgte hierbei gemäß den Angaben des Herstellers. Um Plasmid-DNA aus *C. glutamicum* zu isolieren wurde nach einem modifizierten Protokoll nach Schwarzer und Pühler (1991) verfahren. Auch hier erfolgte die Isolierung von Plasmid-DNA nach dem Prinzip der alkalischen Lyse. Allerdings ist bei *C. glutamicum* zur effektiven Lyse der Zellwand eine vorhergehende Behandlung der Zellen mit Lysozym erforderlich (15mg/mL). Chromosomale DNA wurde mithilfe des *DNeasy™Tissue Kit* (QIAGEN, Hilden) nach Angaben des Herstellers isoliert.

3.3 Restriktion, Modifikation und Rekombination von DNA

Alle Techniken zur Restriktion, Präzipitation, Phenol-Extraktion sowie Klenow- oder alkalischer Phosphatasebehandlung wurden nach Sambrook et al. (1989) durchgeführt. Für analytische Restriktionen wurde die DNA 1 h mit 2 U des entsprechenden Restriktionsenzyms pro µg DNA inkubiert, präparative Restriktionen wurden für mindestens 4 h mit 6 U Restriktionsenzym pro µg DNA inkubiert. Die gelelektrophoretische Auftrennung von DNA-Fragmenten erfolgte in Abhängigkeit ihrer Größe in 0,8 – 2,0 %igen TAE-Agarosegelen (Sambrook et al., 1989). Wurden die im Agarosegel aufgetrennten DNA-Fragmente für weitere Klonierungen benötigt, so wurde die DNA unter Verwendung des QIAExII Gel Extraction Kit (QIAGEN, Hilden) aus dem Gel isoliert und aufgereinigt. Zur Modifikation überhängender 5'-Enden wurden diese mittels Klenow-Polymerase (Roche Diagnostics, Mannheim) unter Zugabe von Desoxynukleotiden zu glatten Enden aufgefüllt, überhängende 3'-Enden wurden mit dem gleichen Enzym zu glatten Enden abgebaut (Sambrook et al., 1989). Linearisierte Vektoren wurden mit alkalischer Phosphatase (Roche Diagnostics, Mannheim) am 5'-Ende dephosphoryliert um in einer Ligation die Rezirkularisierung des Vektors zu verhindern. Ligationen wurden mit dem Rapid Ligation Kit (Roche Diagnostics, Mannheim) für 5 min bei Raumtemperatur durchgeführt. Zur Aufreinigung von PCR-Fragmenten wurde der QIAquick PCR Purification Kit (QIAGEN, Hilden) verwendet. Die Ligation der aufgereinigten PCR-Fragmente erfolgte mit dem QIAGEN PCR Cloning Kit (QIAGEN, Hilden) für 15 - 30 min bei 4°C.

3.4 Polymerasekettenreaktion

Die Polymerasekettenreaktion (PCR) wurde sowohl zur *in vitro* Vervielfältigung von DNA-Fragmenten (Saiki *et al.*, 1988; Tindall und Kunkel, 1988), als auch zur analytischen Überprüfung von Insertions- und Deletionsmutanten eingesetzt. Dabei wurden jeweils zwei synthetische Oligonukleotide als Primer eingesetzt, die den zu amplifizierenden DNA-Bereich flankierten. Als Matrizen-DNA wurde üblicherweise chromosomale DNA von *C. glutamicum* eingesetzt. Zum Nachweis einer Insertionsmutation oder einer Deletion, die die Untersuchung von mehreren Klonen parallel erforderte, wurde die chromosomale DNA zugänglich gemacht, indem die zu untersuchenden Bakterienkolonien in 100 µL sterilem Wasser resuspendiert und anschließend für 10 min bei 95°C aufgeschlossen wurden. Die Durchführung der PCR erfolgte mit Hilfe eines Thermocyclers der Firma Biozym Diagnostik (Oldendorf). Zur Denaturierung der DNA wurde eine Temperatur von 94°C verwendet. Die Anlagerungstemperatur der verwendeten Primer (Anhang 1) ergab sich aus der Basenzusammensetzung nach folgender Formel: T_(Anlagerung)= 2°C (pro A-T-Basenpaarung mit der Matrizen-DNA) + 4°C (pro G-C-Paarung) – 5°C (Sambrook et al., 1989). Die Polymerisation der DNA erfolgte bei 72°C, wobei sich die Elongationszeit nach der Länge des zu amplifizierenden DNA-Fragments richtete. Die Tag-Polymerase (QIAGEN, Hilden) ist in der Lage etwa 1000 Basen pro Minute zu synthetisieren, so dass sich die Polymerisationszeit durch Multiplikation der Länge des erwarteten PCR-Fragmentes (in kb) mit 1 min errechnen ließ. Soweit nicht anders angegeben wurden 30 Zyklen durchgeführt. Die Überprüfung von Insertions- und Deletionsmutanten wurde mit der Tag-Polymerase (QIAGEN, Hilden) nach Angaben des Herstellers durchgeführt. Zur Vervielfältigung fehlerfreier Gensequenzen, die für weitere Klonierungsschritte benötigt wurden, wurde das ExpandTM High Fidelity PCR Sytem der Firma Roche Diagnostics (Mannheim) nach Herstellerangaben verwendet. Dieser Kit enthält neben der Taq-Polymerase auch die Pwo-Polymerase, die durch ihre 3'-5'-Exonucleaseaktivität in der Lage ist Sequenzfehler zu korrigieren (Barnes, 1994). Nach Beendigung der PCR-Reaktion wurden 10 µL des Ansatzes entnommen und durch Agarosegelelektrophorese analysiert. Wurden die amplifizierten PCR-Fragmente für weitere Klonierungsschritte benötigt, wurden sie mit dem MinElute™PCR Purification Kit (QIAGEN, Hilden) aufgereinigt.

3.5 DNA-Sequenzierung und computergestützte Sequenzanalyse

Alle DNA-Sequenzierungen wurden nach dem Prinzip der Kettenabbruchmethode von Sanger *et al.* (1977) mit den in Anhang 1 aufgeführten Primern bei der Firma Agowa (Berlin) durchgeführt. Die so erhaltenen DNA-Sequenzen wurden mit dem Programm *Clone Manager 5 for Windows* (Version 5.02; Scientific & Educational Software) analysiert, wodurch Restriktionsschnittstellen und offene Leseraster identifiziert werden konnten. Die Analyse der abgeleiteten Aminosäuresequenzen wurde mit Hilfe des Programms *Protean* (Programmpaket Lasergene, Biocomputing Software for Windows, DNASTAR, Madison, USA) durchgeführt. Dieses Programm ermöglicht unter anderem die Bestimmung der Aminosäurezusammensetzung, der molaren Masse und des pl-Wertes eines Proteins. Datenbankvergleiche zur Suche nach DNA- und Proteinsequenzen mit Ähnlichkeiten zu den in dieser Arbeit ermittelten Sequenzen, wurden sowohl am *National Center for Biotechnology Information* (NCBI, Washington, USA) mit den Programmen *BLASTN*, *BLASTX* und *BLASTP* (Altschul *et al.*, 1997), als auch mit Hilfe von ERGO (Integrated Genomics, Chicago, USA) durchgeführt. Der Sequenzvergleich von Proteinen erfolgte mit dem *Multiple Sequence Alignment* Programm ClustalW.1.8 (Jeanmourgin *et al.*, 1998).

4 DNA-Chip Analyse

4.1 Herstellung von C. glutamicum DNA-Chips

Zur Analyse genomweiter Genexpressionsmuster wurden DNA-Chips verwendet, die mit PCR-Produkten der Gene von *C. glutamicum* hergestellt wurden (Lange *et al.*, 2003). Die Gene wurden in 96 well-Mikrotiterplatten mit genomischer DNA von *C. glutamicum* ATCC13032 als template und spezifischen Primern (degussa., Frankfurt) für das jeweilige Gen amplifziert (Zimmer *et al.*, 2000). Die Größe und die Qualität der PCR-Produkte wurde mittels Gelelektrophorese überprüft. Zur Reinigung wurden die PCR-Produkte in der 96 well-Mikrotiterplatte mit Isopropanol gefällt, das Pellet in 3 x SSC-Puffer (20 x SSC: 3 M NaCl, 0,3 M Natriumcitrat, pH 7,0) aufgenommen und auf eine 384 well-Mikrotiterplatte übertragen (Wendisch *et al.*, 2001). Die PCR-Proben wurden anschließend unter Verwendung eines speziell entwickelten Robotorsystems (Stanford University, USA) auf Poly-L-Lysin beschichtete handelsübliche Objektträger aus Glas gespottet (Shalon *et al.*, 1996; Shena *et al.*, 1995). Detaillierte Informationen sind zusätzlich unter der *Stanford Microarray Database* im Internet zu finden (Gollub *et al.*, 2003).

Bevor die hergestellten DNA-Chips in Hybridisierungsexperimenten eingesetzt wurden, erfolgte eine chemische und thermische Nachbehandlung (Shalon *et al.*, 1996). Zum Erhalt gleichmäßigerer Spots wurden die DNA-Chips in einem ersten Schritt in einer Feuchtigkeitskammer mit 1 x SSC-Puffer rehydratisiert. Zur anschließenden Fixierung der spots wurden die Objektträger anschließend mit UV-Licht bestrahlt (Straterlinker, 650 μ J). Anschließend erfolgte unter Verwendung von wasserfreiem Methyl-2-Pyrrolidinon-Solvens (0,6 M H₂0, 0,2 M Succinsäure-Anhydrid, 50 mM Natriumborat, pH 8,0) das Blocken der ϵ -Aminogruppen der freien Poly-L-Lysin beschichteten Oberfläche. Unmittelbar danach wurden die DNA-Doppelstränge durch das Aufkochen in 95°C heißem Wasser (2 min) denaturiert. Eine Renaturierung der DNA wurde verhindert, indem die hybridisierungskompetenten DNA-Einzelstränge anschließend in 95 % igem Ethanol (v/v) bei 4°C für 2 min fixiert wurden. Nach Trocknung durch Zentrifugation wurden die nachbehandelten DNA-Chips bis zu ihrer Verwendung in einem Exsikkator aufbewahrt (Shalon *et al.*, 1996). Je nach Serie enthielten die DNA-Chips PCR-Produkte von 3530 bis 3567 annotierten Genen von *C. glutamicum*. Bis zu 100 spots dienten der Qualitätskontrolle sowie der Normalisierung. Als Negativkontrollen wurden λ -DNA, genomische DNA von E. coli und das *E. coli* Gen *aceK* eingesetzt.

4.2 Isolierung von bakterieller Gesamt-RNA

Zur Isolierung von bakterieller Gesamt-RNA wurde ein Aliquot der Bakterienkultur (~ 25 mL) in der exponentiellen Wachstumsphase (OD₆₀₀ = 4,0 bis 6,0) mit 20 g Eis im Falcongefäß geerntet (4000 Upm, 4°C, 5 min). Das Zellpellet wurde dann entweder sofort weiterverarbeitet oder bis zur weiteren Verwendung in flüssigem Stickstoff schockgefroren und bei -70°C gelagert (Bernstein et al., 2002; Khodursky et al., 2003). Frisch abzentrifugierte oder gefrorene Pellets wurden nach dem RNeasy Mini Kit (QIAGEN, Hilden) weiterverarbeitet. Dazu wurden die Zellen in 350 µL des RNeasy-RLT-Puffers resuspendiert und mit 0,5 g Zirkonium/Silica-Kugeln (\emptyset 0,1-0,13 mm) der Firma Roth (Karlsruhe) mechanisch 1 x 30 s im Silamat S5 (Vivadent, Ellwangen) aufgeschlossen. Nach Zentrifugation (2 min, 13000 Upm) wurde der Überstand (maximal 700 µL) zur Isolierung der Gesamt-RNA auf die RNeasy-Säulchen aufgetragen (QIAGEN, Hilden). Die auf Silica-Gel basierenden Membranen der Säulchen binden in Anwesenheit von absolutem Ethanol (250 µL) und einer spezifischen Salzpufferkonzentration selektiv einzelsträngige RNA-Moleküle ab einer Größe von 200 Basenpaaren. Nach einem ersten Waschschritt nach Herstellerangaben wurde die adsorbierte RNA mit 30 U RNAse freier DNAse I (RNAse-Free DNAse Set, QIAGEN, Hilden) auf der Säulchenmembran für 15 min inkubiert. Danach folgten zwei weitere Waschschritte bevor die RNA mit zweimal 30 µL RNAse freiem Wasser vom Säulchen eluiert wurde.

Phenolextraktion

Für die DNA-Chip Analyse von mit *myo*-Inositol angezogenen Kulturen wurde die isolierte RNA im Folgenden durch eine zusätzliche Phenolextraktion weiter aufgereinigt (Sambrook *et al.*, 1989). Dazu wurden die 60 μL RNA mit RNAse freiem Wasser auf ein Volumen von 100 μL eingestellt, danach mit 100 μL Phenol/Chloroform/Isoamylalkohol (25:24:1) versetzt und durch Vortexen vermischt. Die phenolhaltige Lösung wurde daraufhin in ein entsprechend vorbereitetes sogenanntes PLG gegeben (*Phase Lock Gel*-Eppendorfreaktionsgefäß, Eppendorf, Hamburg) und für 15 min bei 12000 x g abzentrifugiert. Das im PLG verwendete Gel setzt sich dabei zwischen der wässrigen und phenolhaltigen Phase ab und ermöglicht auf diese Weise eine einfache und sichere Entnahme der wässrigen RNA-Lösung (Chirgwin *et al.*, 1979; Chomczynski *et al.*, 1987). Durch die Zugabe von 100 μL

Chloroform/Isoamylalkohol (24:1) erfolgte ein zusätzlicher Extraktionsschritt (15 min, 12000 x g). Der Überstand wurde vorsichtig in ein neues 1,5 mL Eppendorfreaktionsgefäß überführt und mit 1/10 Volumen 3 M Natriumacetat sowie 3 Volumen absolutem Ethanol versetzt. Über Nacht wurde das Gemisch bei –20°C inkubiert. Danach wurde abermals zentrifugiert und das Pellet durch Zugabe von 1 mL Ethanol (75 %) gewaschen (5 min, 7500 x g). Anschließend wurde das Pellet für zwei Minuten bei 70°C getrocknet und die RNA in 60 µL RNAse freiem Wasser aufgenommen.

Die RNA-Konzentration sowie die Reinheit ($E_{260}/E_{280} \sim 1,8-2,2$) der isolierten RNA-Lösungen wurde photometrisch bei den Wellenlängen 230 nm, 260 nm und 280 nm gemessen. Mittels denaturierender Formamid-Gelelektrophorese (Sambrook *et al.*, 1989) wurde die RNA-Konzentration und die Intaktheit der RNA zusätzlich überprüft. Die Lagerung von präparierter RNA erfolgte bei –20°C.

4.3 Synthese fluoreszenzmarkierter cDNA

Die Synthese fluoreszenzmarkierter cDNA erfolgte ausgehend von identischen Mengen der zu vergleichenden RNA-Proben (Wendisch *et al.*, 2001). Dazu wurden 15-25 µg der Gesamt-RNA durch reverse Transkription mit Zufalls-Hexamer-Primern und der reversen Transkriptase *Superscript II* (Invitrogen, Karlsruhe) in cDNA umgeschrieben und fluoreszenzmarkiert (Wendisch *et al.*, 2001). Als Nukleotidanaloga wurden dabei die Fluoreszenzfarbstoffe Cy3-dUTP (grüne Fluoreszenz) und Cy5-dUTP (rote Fluoreszenz) von Amersham Pharmacia Biotech (Freiburg) in einer Konzentration von 100 µM im Nukleotidmix (500 µM dATP, dGTP, dCTP, 200 µM dTTP) eingesetzt. Nach zweistündiger Synthese bei 42°C wurde die nicht umgeschriebene RNA in 25 mM NaOH hydrolisiert (10 min, 70°C) und anschließend mit 25 mM HCl neutralisiert. Die beiden markierten cDNA-Proben wurden daraufhin über Microconsäulchen (Microcon YM-30, Millipore, Schwalbach) aufgereinigt und ankonzentriert. Die in 5-15 µL vereinigten cDNA-Sonden wurden direkt zur Hybridisierung auf dem DNA-Chip eingesetzt oder bis zur weiteren Verwendung bei –20°C aufbewahrt.

4.4 DNA-Chip Hybridisierung

Zur Bestimmung relativer mRNA-Spiegel wurden die aus beiden zu vergleichenden RNA-Proben erhaltenen Cy3- und Cy5-fluoreszenzmarkierten cDNA-Sonden gleichzeitig auf einem DNA-Chip hybridisiert. Dazu wurden diese in einem Ansatz mit 1,2 µg/µL Poly-A als Kompetitor, sowie 30 mM HEPES (N-2-Hydroxyethylpiperazin-N'-2-Ethansulfonsäure) und

3 x SSC für 2 min bei genau 100°C denaturiert und für 5-10 min bei Raumtemperatur inkubiert (Zimmer et al., 2000). Zur gleichmäßigeren Verteilung der Hybridisierungslösung wurde über dem Bereich der immobilisierten DNA auf dem Chip ein Deckgläschen mit speziellen Abstandhaltern aufgelegt (LifterSlip, Erie Scientific, New Hampshire, USA). Anschließend wurde die Lösung am Rand des Deckgläschens (~ 20 µL) aufgetragen und der DNA-Chip in einer wasserdichten Hybridisierungskammer (Die Tech Inc., USA) für 16 h bei 65°C im Wasserbad inkubiert (Wendisch et al., 2001). Um während der Hybridisierung ein Austrocknen der Probenlösung zu verhindern wurden am linken und rechten Rand des DNA-Chips mehrfach kleine Tropfen von 3 x SSC aufgetragen. Nach der Hybridisierung wurde der DNA-Chip zur Entfernung der Probenlösung sowie unspezifisch gebundener fluoreszenzmarkierter cDNA stringent gewaschen. Dazu wurde der DNA-Chip im ersten Schritt für 3 min in 1 x SSC und 0.03 % SDS und danach für weitere 3 min in 0.05 % SSC gewaschen (Zimmer et al., 2000). Durch kurze Zentrifugation (5 min, 45 x g) wurde der DNA-Chip getrocknet und anschließend die Fluoreszenz bestimmt.

4.5 Messung und Quantifizierung der Fluoreszenz von DNA-Chips

Unmittelbar nach dem Waschen wurden die Fluoreszenzintensitäten bei 635 nm (rote Fluoreszenz) und 532 nm (grüne Fluoreszenz) mit einem GenePix 4000 Laserscanner ermittelt (Axon Inc., Union City, USA). Dieser bestrahlt die DNA-Chip-Oberfläche zum fluoreszierenden Molekülgruppe von Cy3-Anregen der und Cy5-dUTP mit monochromatischem Licht und registriert dabei die emittierten Photonen. Diese Signale werden daraufhin in ein elektrisches Signal umgewandelt und verstärkt. Die gemessene Stromstärke korreliert direkt mit der Cy3- bzw. Cy5-Fluoreszenz und wurde mit Hilfe der GenePix 3.0. Software als Fluogramm dargestellt und gespeichert (TIFF-Datei, 16 bit Format). Das Verhältnis von Cy3- und Cy5-Fluoreszenz wiederum korreliert direkt mit dem Verhältnis der Anzahl der mRNA-Moleküle in den zu vergleichenden mRNA-Proben und ist ein Maß für den relativen mRNA-Spiegel (Shalon et al., 1996). Die quantitative Analyse der Fluorogramme erfolgte mit der GenePix 3.0 Software. Dazu wurden die Fluoreszenzsignale des DNA-Chips zunächst normalisiert, um auch die relativen mRNA-Spiegel verschiedener Chip Experimente zuverlässig miteinander vergleichen zu können (Eisen et al., 1998). Außerdem konnten durch diesen Schritt Fehler eliminiert werden, die durch die unterschiedliche Einbaurate und Fluoreszenzstärke der verwendeten Farbstoffe bedingt sind. Ausgehend vom arithmetischen Mittel des numerischen Cy5-/Cy3-Fluoreszenz-Verhältnis genomischen DNA-spots von *C. glutamicum* (Positivkontrollen) wurde der der Normalisierungsfaktor so berechnet, dass nach Multiplikation das Fluoreszenzverhältnis der

genomischen DNA-spots im Mittel einen numerischen Wert von 1 ergab (Zimmer *et al.*, 2000). Dabei wurden nur genomische DNA-spots berücksichtigt, deren Signalintensitäten mindestens das Dreifache der jeweiligen Hintergrundfluoreszenz aufwiesen. Mit Hilfe des ermittelten Korrekturfaktors wurden anschließend die *Ratio of Medians*-Werte der spots auf dem DNA-Chip normalisiert. Bei der sogenannten *Ratio of Medians* (GenePix 3.0 Software) handelt es sich um die Berechnug des relativen mRNA-Levels eines spots aus dem Quotienten der vom Hintergrund subtrahierten mittleren Pixelintensität bei Wellenlänge 2 (rote Fluoreszenz) und der vom Hintergrund subtrahierten mittleren Pixelintensität bei Wellenlänge 1 (grüne Fluoreszenz). Zur weiteren Auswertung wurden nur spots herangezogen, deren roten und grünen Fluoreszenzsignale mindestens dreifach über dem Signal des Hintergrundes lagen (Khodursky *et al.*, 2000).

4.6 Archivierung von DNA-Chip Daten

Für die Archivierung von DNA-Chip Daten wurde die für das Computersystem Linux frei erhältliche relationale Datenbank mySQL verwendet (MySQL AB Company, Uppsala, Schweden). Alle Fluorogramme, Chip-Daten und relevanten Informationen zur Durchführung des jeweiligen Experimentes wurden mit Hilfe der von T. Polen am Institut entwickelten Software erfasst und in der mySQL-Datenbank auf dem Linux-Zentralrechner des IBT I gespeichert. Dort standen die elektronischen Daten dann für weitere Analysen und statistische Auswertungen zur Verfügung (Polen, 2003).

Hierarchische Cluster-Analyse

Bei der hierarchischen Cluster-Analyse wurde das Prinzip der Åhnlichkeit zweier numerischer Werte genutzt, für die nach einem bestimmten Algorithmus ein Korrelationskoeffizient berechnet wird. Die zwei ähnlichsten Werte werden paarweise angeordnet, und optisch so dargestellt, dass ein Dendrogramm entsteht, in dem die ähnlichsten Werte örtlich nah und unterschiedliche Werte örtlich entfernt voneinander liegen (Eisen *et al.*, 1998). Ausgehend von den in der mySQL-Datenbank gespeicherten Chip-Daten wurden mit Hilfe eines von T. Polen entwickelten Programms Tabellen mit den normalisierten mRNA-Spiegeln der zu analysierenden Experimente erstellt. Grundsätzlich wurden dazu nur mRNA-Spiegel von Genen berücksichtigt, deren spots bei der Bildauswertung von der Software (GenePix 3.0) automatisch erkannt wurden, deren PCR-Produkt anhand der Gelkontrolle als einwandfrei eingestuft wurde und deren Signalintensitäten mindestens dreifach über dem Signal des Hintergrundes lagen. Die logarithmierten relativen mRNA-Level wurden in der hierarchischen Cluster-Analyse zur bildlichen Darstellung in roten und grünen Farbwerten angezeigt (*average linkage*, Eisen *et al.*, 1998). Unveränderte mRNA-Spiegel wurden dabei in Schwarz, nach den Kriterien nicht auswertbare mRNA-Spiegel wurden in grau symbolisiert.

Statistische Analyse

Zur statistischen Analyse mehrerer unabhängiger Experimente (Arfin *et al.*, 2000; Hommais *et al.*, 2001) wurde ein Verfahren herangezogen, mit dem Wahrscheinlichkeiten bezüglich Übereinstimmung oder Unterschiedlichkeit von Datensätzen berechnet werden können. Bei diesem T-Test (T-TEST-Tabellenfunktion, EXCEL 2000, Microsoft) wurde die Streuung der mehrfach gemessenen und normalisierten Fluoreszenzverhältnisse (rot/grün) eines Gens mit der Streuung der mit 1 normalisierten Fluoreszenzverhältnisse der genomischen DNA verglichen (Lehnen *et al.*, 2002; Polen *et al.*, 2003). Veränderte relative mRNA-Spiegel von Genen mit p-Werten kleiner 0,05 wurden als statistisch signifikant betrachtet.

5 Bestimmung von Aminosäuren

5.1 Silikonölzentrifugation

Um gleichzeitig intrazelluläre und extrazelluläre L-Lysinkonzentrationen bestimmen zu können wurde die Methode der Silikonölzentrifugation nach Klingenberg und Pfaff (1977) verwendet. Zur Bestimmung der internen Metabolite ermöglicht diese Methode eine schnelle und vollständige Abtrennung der Bakterienzellen vom Kulturmedium. Um genügend Probenmaterial zu erhalten wurden pro Meßpunkt und Kultur jeweils 100 µL Zellsuspension in drei 400 µL-Mikrozentrifugenröhrchen (Beckmann Instruments GmbH, München) überführt, die zuvor mit je 30 µL 20 %-ige (v/v) Perchlorsäure und 65 µL Silikonöl mit der Dichte 1,04 g/cm³ bestückt worden waren. Anschließend wurden die Silkonölröhrchen unmittelbar für 30 s in der Mikrofuge E (Beckmann Industries GmbH, München) bei maximaler Geschwindigkeit (13750 Upm) zentrifugiert. So wurde eine Trennung der Zellen vom Kulturmedium erreicht. Das als Überstand auf der Silikonölphase verbliebene Kulturmedium wurde abpipettiert, vereinigt und die externe L-Lysinkonzentration direkt mittels HPLC bestimmt. Zur Bestimmung der zellinternen L-Lysinkonzentration musste das in der Perchlorsäure vorliegende Zellpellett in den Silikonölröhrchen aufgearbeitet werden. Die Aufarbeitung erfolgte nach Hoischen und Krämer (1989). Dabei wurden die Zellen für 5 min

im Ultraschallbad aufgeschlossen (Branson, Heusenstamm). Die Perchlorsäure wurde dann durch Zugabe von 25 µL 5 M KOH/Triethanolamin neutralisiert. Nach 30 min Inkubation auf Eis und 5-minütiger Zentrifugation bei 4°C wurden die Überstände der drei Proben pro Messpunkt (siehe oben) vereinigt und durch einen letzten Zentrifugationsschritt von Ölresten gereinigt. Die Bestimmung der internen L-Lysinkonzentrationen erfolgte mittels HPLC.

5.2 Quantifizierung von Aminosäuren

Die quantitative Bestimmung von Aminosäuren erfolgte mittels reversed phase HPLC (Lindroth und Mopper, 1979). Hierbei wurden 2,5 µL der zu analysierenden Probe in einer automatischen Vorsäulenderivatisierung mit 20 µL des Fertigreagenz o-Phthaldialdehyd / Mercaptoethanol (Pierce Europe BV, Niederlande) vermischt, und nach einminütiger Inkubation bei Raumtemperatur auf die Säule injiziert. Die bei der Derivatisierung entstandenen fluoreszierenden, thiosubstituierten Isoindole (Jones und Gilligan, 1983) wurden auf einer reversed phase Säule (Hypersil ODS 5 µm) über ein Gradientenprogramm mit zunehmend unpolarer Phase (Methanol) aufgetrennt. Als polare Phase wurde 0,1 M Natriumacetat (pH 7,2) verwendet. Die Flußrate betrug 0,80 mL/min (modifiziert nach Mopper, erfolgte Lindroth 1979). Die Fluoreszenzdetektion und bei einer Anregungswellenlänge von 230 nm und einer Emissionswellenlänge von 450 nm. Alle HPLC-Messungen wurden mit Hilfe eines HPLC-Gerätes vom Typ 1100 (Hewlett Packard, Waldbronn) mit angeschlossenem Fluoreszenzdetektor (G1321A) durchgeführt. Die Auswertung und Systemsteuerung erfolgte mit dem Programm HP Chemstation (Hewlett Packard, Waldbronn). Die L-Lysinkonzentrationen (c[Lys]) wurden über einen Vergleich mit einem externen Standard und L-Asparagin (Asn) als zusätzlichem internen Standard bestimmt. Die Berechnung der externen und intrazellulären L-Lysinkonzentrationen erfolgte mit der nachstehenden Formel:

```
c[Lysin]_{extern/intern} = \frac{A^{(*)}(Asn)Standard \times A(Lys)Probe \times F^{(**)} \times c[Lys]Standard}{A(Asn) Probe \times A(Lys) Standard}
```

[^(*)A: Fläche, ^(**)F: Verdünnungsfaktor]

Korrekturformel für interne Lysinkonzentrationen

 $c[Lysin]_{intern} = \underline{c[Lys]_{intern} \times 100 - c[Lys]_{extern} \times 0.059 \times OD_{600}}{0.04 \times OD_{600}}$

Durch diese Korrekturformel erfolgte die Berechnung der tatsächlichen intrazellulären L-Lysinkonzentration unter Berücksichtigung der bei der Aufarbeitung des Zellpellets durchgeführten Verdünnungsschritte (c[Lys]_{intern} x 100). Desweiteren wird ein Korrekturfaktor eingeführt, der den Fehler der an den Zellen haftenden Konzentration der Aminosäuren aus dem Medium berücksichtigt (c[Lys]extern x 0,059 x OD₆₀₀). Schließlich wurde nach Gutmann (1993) auch das intrazelluläre Zellvolumen der eingesetzten Zellen mit in die Berechnung einbezogen (0,04 x OD₆₀₀).

6 Bestimmung von Enzymaktivitäten

6.1 Herstellung von Rohextrakten

Die Herstellung zellfreier Extrakte für die Messung spezifischer β -Galactosidaseaktivitäten erfolgte ausgehend von einer über Tag Vorkultur in einem 5 mL BHI-Röhrchen. Eine 50 mL Kultur in BHI-Komplexmedium wurde mit 1 mL des vorkultivierten BHI-Röhrchens beimpft und bei 30°C über Nacht inkubiert. Anschließend wurden die Zellen geerntet (4500 Upm, 4°C, 10 min) und die 50 mL Hauptkultur (BHI) mit einer optischen Dichte von OD₆₀₀ = 2,0 angeimpft. Nach vier Stunden wurden 25 mL der Bakterienkultur zur Präparation des Rohextraktes geerntet (4500 Upm, 4°C, 10 min) und bis zur Verwendung bei –20°C aufbewahrt oder direkt weiterverarbeitet. Dazu wurde das Zellpellet zunächst mit KPP-Puffer (Kaliumphosphat-Puffer, 0,1 M, pH 7,0) gewaschen. Anschließend wurden die Zellen in 600 µL des Reaktionspuffers aufgenommen (5 mM Tris-HCl, 5 % (v/v) Glycerin, 10 mM KCl, pH 7,5) und mit 1,2 g Glasperlen (\emptyset 13-15 mm, Roth, Karlsruhe) versetzt. Der Zellaufschluß erfolgte mechanisch für einmal 30 s im Silamat S5 (Vivadent, Ellwangen). Durch Zentrifugation (45 min, 4°C, 13000 Upm) wurden die Zelltrümmer und Glasperlen vom Rohextrakt abgetrennt.

Die Proteinbestimmung zur Berechnung der Enzymaktivitäten erfolgte photometrisch nach Bensadoun und Weinstein (1976). Der Proteingehalt wurde dabei über eine mit Rinderserumalbumin (BSA) als Standard erstellte Eichgerade ermittelt.

6.2 Bestimmung der spezifischen β-Galactosidaseaktivität

Die spezifische β -Galactosidaseaktivität wurde nach Miller (1972) colorimetrisch bestimmt. Dabei wird die von der β -Galactosidase katalysierte Hydrolyse von dem farblosen Substrat o-Nitrophenyl- β -D-Galactosid (ONPG) in das Galactosid und das gelbe Nitrophenol, dessen Konzentration photometrisch bestimmt werden kann, quantifiziert. Zur Messung wurden in zwei parallelen Ansätzen je 20 µL Rohextrakt in einem Eppendorfreaktionsgefäß mit dem bereits genannten Reaktionspuffer auf 800 µL eingestellt. Die Ansätze wurden zunächst für eine Minute bei 30°C vorgewärmt, bevor die Reaktion durch die Zugabe von 200 µL des Substrates ONPG (4 mg/mL in 0,1 M Kaliumphosphatpuffer pH 7,0) gestartet wurde. Es folgte eine 10 minütige Inkubation bei 30°C für den ersten Ansatz, der parallele Ansatz wurde hingegen für 20 min bei 30°C inkubiert. Die Reaktion wurde jeweils durch die Zugabe von 500 µL Di-Natriumcarbonat (Na₂CO₃) gestoppt und die Extinktion bei 420 nm gemessen. Die spezifische β -Galactosidaseaktivität ergab sich aus folgender Berechnung:

 $\frac{1,5 \text{ x } \Delta(\text{E420})}{4,5 \text{ x t } \text{ x } V_{(\text{RE})} \text{ x } c_{(\text{Protein})}}$

1,5 :	Gesamtvolumen des Reaktionsansatzes [mL]
∆(E420):	Extinktion der Probe – Blindwert der Probe
4,5:	Extinktionskoeffizient [$\epsilon \ x \ cm^2 \ x \ \mu mol^{-1}$]
t:	Inkubationszeit [min]
V _(RE) :	eingesetztes Volumen Rohextrakt [mL]
C _(Protein) :	Proteinkonzentration [mg/mL]

III Ergebnisse

1 Isolierung LysG-bindender DNA-Fragmente

Um zu untersuchen ob LysG neben *lysE* die Expression weiterer Zielgene steuert, sollte ein genetischer Ansatz zur Isolierung weiterer LysG-bindender DNA-Fragmente durchgeführt werden. In transkriptionellen Fusionsstudien mit einer *lysE*"*lacZ*-Reporterfusion wurde bereits gezeigt, dass LysG im intergenischen Bereich von *lysG* und *lysE* bindet und so die Expression des Lysinexportcarriergens *lysE* bis zu 20 fach induziert (Bellmann *et al.*, 2001). Dieser Effekt sollte ausgenutzt werden, um über Titrationsanalysen (Stojiljkovic *et al.*, 1994; Patzer *et al.*, 2001) weitere LysG-bindende DNA-Fragmente zu identifizieren. Dabei sollte die Bindung von LysG an die Reporterfusion *lysE*"*lacZ* mit einer Plasmidgenbank von *C. glutamicum* geprüft werden. Enthält die Plasmidgenbank unbekannte LysG-bindende Fragmente, sollte dies zu reduzierter *lacZ*-Expression führen.

1.1 Konstruktion des Integrationsstammes R127ppc::pEM3dppcGE''lacZ

Um mögliche LysG-bindende DNA-Fragmente aus einer Plasmidgenbank von C. glutamicum isolieren zu können war es zunächst erforderlich das Integrationsplasmid pEM3dppcGE" lacZ herzustellen. Dieses Plasmid sollte anstatt der Kanamycinresistenz des Ausgangsplasmides pEM1dppc (Vašikova et al., 1998) eine Tetracyclinresistenz (Tauch et al., 2000) besitzen. Der Austausch der Antibiotikaresistenz war erforderlich, weil die zur Verfügung stehende Plasmidgenbank aus C. glutamicum (Vrljić, 1997) bereits Kanamycinresistenz vermittelt und deswegen eine anschließende Selektion auf die Plasmide der Genbank nicht mehr möglich gewesen wäre. Ferner war es erforderlich mit dem C. glutamicum Stamm R127 zu arbeiten, da mit diesem Stamm wesentlich höhere Transformationsraten erreicht werden als mit dem Wildtyp ATCC13032 (Liebl et al., 1989). Zu diesem Zweck wurde die lysGE'lacZ-Kassette als BamHI-Fragment aus dem Vektor pUC18GE"lacZ (Bellmann, 2000) isoliert und in die BamHI-Schnittstelle von pEM1dppc (Vašikova et al., 1998) ligiert. Das so entstandene Integrationsplasmid wurde pEM1dppcGE"/acZ genannt. Anschließend wurde das Tetracyclinresistenzgen tetA aus dem zur Verfügung stehenden Vektor pAG1 (Tauch et al., 2000) als 1683 bp großes Alul-Fragment isoliert. Zur Inaktivierung der Kanamycinresistenz wurde das tetA-Gen in die Ncol-Schnittstelle des Vektors pEM1dppcGE"/acZ ligiert. Das so konstruierte Integrationsplasmid wurde als pEM3dppcGE"lacZ bezeichnet. Mit Hilfe von Restriktionsanalysen konnten mehrere Klone als die gewünschten identifiziert werden. Plasmid-DNA von pEM3*dppcGE*''*lacZ* wurde in verschiedenen Ansätzen zur Elektroporation mit kompetenten Zellen des Stammes R127 eingesetzt (van der Rest *et al.*, 1999). Das Plasmid ist in *C. glutamicum* nicht replizierbar und kann aufgrund des *dppc*-Fragmentes (*dppc* = *downstream ppc*) stromabwärts des *ppc*-Gens über homologe Rekombination in das Chromosom integrieren (Eikmanns *et al.*, 1991). Die erhaltenen tetracyclinresistenten Klone wurden auf korrekte Integration des Plasmides geprüft (Abb. 3). Dazu wurde ein PCR-Ansatz gewählt, wo einer der Primer (ppc1) im Chromosom von *C. glutamicum* bindet und

Abb. 3: PCR-Nachweis des Stammes R127*ppc*::pEM3*dppc*GE''*lacZ*. Die Spuren 2-4 enthalten 10 μ L des entsprechenden PCR-Ansatzes. Die Banden in der Größe von 2,38 kb entsprechen dem mit den Primern tet1 und ppc1 amplifizierten DNA-Fragmenten (Primersequenzen, Anhang 1). Spur 1: Größenstandard von 14,3 kb bis 0,7 kb (λ -DNA, *Bst*EII-geschnitten).

der andere Primer (tet1) im Bereich des Tetracyclinresistenzgens *tetA* auf dem Plasmid. Die Lage der Primer ist in Abbildung 4 angegeben. Die Primer sind dort als Pfeilspitzen dargestellt. Drei der getesteten sechs Transformanden zeigten das zu erwartende amplifizierte DNA-Fragment in der Größe von 2,38 Kilobasen, so dass in dem erhaltenen Stamm R127*ppc*::pEM3*dppc*GE"*lacZ* nun *lysE* zusätzlich zur chromosomalen Kopie als unvollständige Kopie mit *lacZ* fusioniert vorlag. Dieser Indikatorstamm mit der *lysE*"*lacZ*-Fusion wird nachfolgend abgekürzt als R6 bezeichnet.

Abb. 4: Lage der zur Überprüfung von R127*ppc*::pEM3*dppc*GE"*lacZ* verwendeten Primer ppc1 und tet1 bei der homologen Rekombination des Plasmides pEM3*dppc*GE"*lacZ* ins Chromosom von *C. glutamicum*. Die Primer sind als Pfeilspitzen dargestellt. (Primersequenzen, Anhang 1)

1.2 Etablierung eines Platten-Screeningsystems zur Isolierung LysGbindender DNA-Fragmente

Um ein geeignetes System zur Isolierung LysG-bindender DNA-Fragmente zu etablieren, wurden die Zellen des Integrationsstammes R6 zunächst auf Xgal 40-enthaltenden LB-Platten ausgestrichen. Sie zeigten die erwartete Blaufärbung. Das heißt, dass der Regulator LysG im bekannten Bindebereich vor *lysE* bindet und so die *lacZ*-Expression induziert. Um eine noch intensivere Blaufärbung zu erzeugen, wurden außerdem auch LBHIS-Platten mit 50 oder 60 μ g/mL Xgal, sowie Minimalmedium-Platten mit 50 oder 60 μ g/mL Xgal unter Zusatz von 5 mM Methionin oder 0,25 mM Lysyl-Alanin getestet. Als Ergebnis stellte sich heraus, dass LB-Platten mit einer Konzentration von 60 μ g/mL Xgal am Besten geeignet waren, weil auf diesen Platten die intensivste Blaufärbung bei geringster Beeinträchtigung des Wachstums erhalten wurde. Um weiterhin die Funktion des aufgebauten Testsystems zu überprüfen, wurde zunächst Plasmid-DNA von pZ1*lysC*_D mit feedback-resistenter Aspartatkinase mit elektrokompetenten von R6 transformiert. Die

Kolonien wurden auf LB-Xgal 60-Platten intensiver blau als der Ausgangsstamm, was zeigt, dass durch die deregulierte L-Lysinsynthese in diesen Klonen und der dadurch erhöhten L-Lysinkonzentration (Cremer *et al.*, 1991, Schrumpf *et al.*, 1992) eine verbesserte Bindung von LysG im Promotorbereich der *lysE*"*lacZ*-Fusion von R6 erfolgte. Desweiteren wurde zur Kontrolle das Plasmid pJC1'GE' konstruiert. Dieses Plasmid enthält ein 455 bp großes DNA-Fragment des intergenen LysG-Bindebereiches vor *lysE* (Bellmann, 2000). Zur Konstruktion wurde das 'GE'-Fragment als *Bam*HI-Fragment aus dem Vektor pVWEx2'GE' (Bellmann, 2000) isoliert und mit dem ebenfalls *Bam*HI-geschnittenen Vektor pJC1 ligiert. Über Elektroporation wurde das so enstandene Plasmid pJC1'GE' in den Integrationsstamm R6 eingebracht. Wie zu erwarten zeigten die Transformanden auf den Testplatten in diesem Fall eine verringerte Blaufärbung, was zeigt, dass die Titration des Regulatorproteins durch das Einbringen zusätzlicher LysG-bindender DNA-Fragmente funktioniert und eine verringerte *lacZ*-Expression hervorruft.

Der so überprüfte Stamm R6 wurde anschließend zum Screenen der Plasmidgenbank auf mögliche LysG-Zielgene eingesetzt. Elektrokompetente Zellen des konstruierten Stammes wurden zur Elektroporation mit einer Plasmidgenbank von C. glutamicum eingesetzt (Vrljić, 1997). Zur Herstellung der Genbank wurde das Plasmid pJC1 genutzt, welches über eine moderate Kopienzahl von ca. 20-50 Kopien/Zelle verfügt. Die 5-8 kb großen chromosomalen DNA-Fragmente wurden als Sau3A-Fragmente in die BamHI-Schnittstelle von pJC1 ligiert. Bei einer Gesamtzahl von 4500 getesteten Klonen betrug der durchschnittliche Insertanteil 50 % (Vrljić, 1997). Es wurden in einem ersten Versuch insgesamt 3853 Kolonien erhalten die jeweils auf Xgal 60-enthaltende LB-Platten umgepickt wurden. Von diesen wurden 103 Kolonien zur weiteren Prüfung im Sektorenausstrich ausgewählt. Darunter waren solche mit geringerer Blaufärbung, aber auch einige, die intensiver blau waren. Die Platten wurden zuerst 24 h bei 30°C und anschließend über Nacht bei 4°C inkubiert, um dadurch eine optimale Ausprägung der Blaufärbung der Zellen zu erreichen. Auf diese Weise konnten von den 103 Kolonien 23 selektiert werden, die weiterhin auffällige Blaufärbung zeigten. Von diesen 23 Kolonien wurde die Plasmid-DNA präpariert und zunächst über verschiedene Restriktionsanätze geprüft, ob die Plasmide tatsächlich ein Insert enthalten. Die Plasmid-DNA von 17 der verbliebenen 23 Klone wurden zur Retransformation des Integrationsstammes R6 benutzt, um den beobachteten Effekt zu bestätigen. Dabei bestätigte sich der ursprünglich beobachtete Unterschied in der Blaufärbung bei 6 der Klone.

In einem zusätzlich durchgeführten leicht abgewandelten zweiten Screeningansatz konnten von weiteren 9712 Kolonien fünf Klone isoliert werden, die wiederum eine reproduzierbar

verringerte *lacZ*-Expression zeigten. Im Unterschied zum ersten Ansatz wurde hier zur Beschleunigung des Screenings und des höheren Durchsatzes von Transformanden mit Hilfe von Hybond-N⁺-Membranen (Amersham Pharmacia Biotech, Freiburg) ein Filterabklatsch der Kolonien angefertigt. Dabei wurde der Filter zur Übertragung der Kolonien etwa eine Minute lang auf die für 30 min bei 4°C vorgekühlten LB-Platten aufgelegt. Anschließend wurden die Filter mit der Kolonie-Seite nach oben auf die Xgal 60enthaltenden LB-Platten gelegt und für 24 h bei 30°C inkubiert. Zusammen mit den aus dem ersten Screeningansatz erhaltenen Klonen wurde aus insgesamt 11 Klonen die Plasmid-DNA isoliert und nach Umklonierung in den *E. coli* Stamm DH5 α sequenziert (AGOWA GmbH, Berlin).

1.3 Charakterisierung von 11 Klonen mit veränderter *lacZ*-Expression

Mit dem Ziel Informationen zu den Inserts der 11 Klone zu erhalten, wurden mit den verfügbaren Sequenzen Datenbankvergleiche durchgeführt. Dazu wurden zur Bestimmung homologer DNA- und Proteinsequenzen die Programme BlastX und BlastN (Altschul et al., 1997) mit den am National Center for Biotechnology Information (NCBI, Washington, USA) zur Verfügung stehenden Datenbanken genutzt. Das Ergebnis ist zusammenfassend in Tabelle 3 dargestellt. Der Klon 3-1-24 beispielsweise besitzt ein 3,92 Kilobasen großes Insert. Nach der zur Verfügung stehenden Genomdatenbank von C. glutamicum (degussa.) liegen auf dem Insert drei open reading frame (ORF) vor, die als ORF2860, ORF2861 und ORF2862 bezeichnet werden. Um welches putative Genprodukt es sich bei den annotierten Genen handelt, ist jeweils der Spalte "Genprodukt" (Tab. 3) zu entnehmen. Zusätzlich wurde auch nach dem für die Bindung von LTTR-Regulatoren allgemeinen Bindemotif t-n₁₁-a, sowie nach dem bekannten LysG-Bindemotif (tga-n₇-tca) im intergenischen Bereich von lysG und lysE gesucht. Die Ergebnisse zu dieser Motifsuche sind in der letzten Spalte der Tabelle 3 dargestellt. Auffällig ist, dass Klon 9-1-01 und Klon 10-4-03 das gleiche Insert tragen. In beiden Fällen sind die Gene für den Regulator LysG und den Lysinexportcarrier LysE enthalten, deren intergenischer Bereich erwartungsgemäß das Regulatorprotein von der lysE"lacZ-Reporterfusion wegtitriert. Dass zwei der erhaltenen Klone diese Region des Genoms enthalten zeigt, dass das Plattenscreening grundsätzlich funktioniert. Unerwartet ist jedoch, dass die beiden Klone auf den Xgal 60-enthaltenden LB-Platten nahezu weiß erscheinen, während die Kontrolle mit dem Plasmid pJC1'GE', welches ein 455 bp DNA-Fragment des intergenischen Bereichs von lysG und lysE enthält, sowie die anderen auffälligen Klone nicht so weiß sind. Diese Tatsache könnte ein Hinweis darauf sein, dass LysG ein negativ autoregulierter Transkriptionsregulator ist. Es ist bekannt, dass viele LTTR-
Tab. 3: Charakterisierung der 11 Klone anhand ihrer Insertgröße, den Genen und putativenBindemotifen für den Regulator LysG (Plasmidkarten, Anhang 2)

	Insertgröße	Gene	Genprodukt	Bindemotif
3-1-24	3,92 kb	orf 2860: <i>purM</i> orf 2861: <i>tnp1513</i> (iscg2) orf 2862: Rv0810c	AIR-Synthetase Transposase 1513 	act-n ₇ -agt
3-1-30	4,23 kb	orf 2656: sc6a11.15 orf 2657: 29,7 K Protein orf 2658: sca1.18c orf 2659: Rv1636 orf 2660: <i>uvrB</i>	 Excinuclease B	tga-n ₇ -tca (s.o.) act-n ₇ -agt act-n ₇ -agt
4-1-52	4,01 kb	orf 1162: <i>gltA</i> orf 1164: <i>yjmC</i> orf 1165:scgd3.11 (<i>gntR</i>)	Citrat (si)-Synthase Malat-Dehydrogenase Gnt-Transkriptionsregulator	 t-n ₁₁ -a
5-1-02	4,40 kb	orf 3282: Rv3916c orf 3283: <i>parA</i> orf 3284: <i>parB</i>	 chrom. partitioning protein A chrom. partitioning protein B	
9-1-67	3,56 kb	orf 73: unbekannt orf 74: unbekannt		
9-1-01	9,70 kb	orf 1864: scc57a.26c orf 1865: <i>irp1</i> orf 1866: <i>yocS</i> orf 1867: <i>lysG</i> orf 1868: <i>lysE</i> orf 1869: orf3 orf 1871: <i>yknZ</i> orf 1872: unbekannt	putative Acetyl-Transferase Fe(III) reguliertes Lipoprotein putativer Sodiumtransporter LysG-Transkriptionsregulator Lysinexportcarrier putativer Kaliumkanal unbekannt unbekannt	tga-n ₇ -tca (im Gen) tga-n ₇ -tca tga-n ₇ -tca (s. o.)
10-1-01	4,62 kb	orf 757: <i>fabG</i> orf 759: <i>vImF</i> orf 760: <i>rmIB2</i> orf 762: Rv3632 orf 763: Rv3631	3-Oxoacyl-(ACP)-Reductase Valanimycin resistant protein dTDP-Glucose-4,6-Dehydratase putatives Membranprotein putative Glycosyltransferase	 tga-n ₇ -tca
10-1-02	2,66 kb	orf 2345: sc17.33 orf 2346: S77665	 Membranprotein HP0228	
10-2-09	4,23 kb	orf 2102: <i>cysG2</i> (<i>ylnD</i>) orf 2103: unbekannt orf 2104: sc5H1.10c orf 2106: <i>mqo</i>	Sirohem-Synthesegen Malat:Chinon-Oxidoreductase	tga-n ₇ -tca
10-4-03	9,70 kb	siehe Klon 9-1-01	siehe Klon 9-1-01	siehe Klon 9-1-01
10-4-04	13,00 kb	orf 1525: <i>ggtB</i> orf 1526: unbekannt orf 1527: TnpB orf 1528: unbekannt orf 1529: unbekannt orf 1530: Rv1019 orf 1531: <i>mfd</i> orf 1532: Rv1227c orf 1533: hypothetisch	γ-Glutamyltranspeptidase Transposase TetR-Transkriptionsregulator TRCF-Faktor putativer ABC-Transporter putativer ABC-Transporter	tga-n ₇ -tca

Regulatoren ihre Transkription herrunterregulieren, um einen konstanten Transkriptlevel in der Zelle aufrecht zu erhalten (Schell, 1993; Christman *et al.*, 1989). Ausserdem ist nicht auszuschließen, dass ein zusätzliches Bindemotif für LysG existiert, welches im Kontrollplasmid pJC1'GE' nicht enthalten ist, in den Inserts der Klone 9-1-01 und 10-4-03 aber vorkommt. Bei 7 der 10 unterschiedlichen Klone befindet sich innerhalb des Promotorbereiches der Gene das charakteristische Motif tga-n₇-tca, welches auch vor *lysE* anwesend ist, und wo der Regulator bindet (Bellmann, 2000). Dieses Motif kommt allerdings äußerst häufig im Genom von *C. glutamicum* vor.

Um die mögliche Interaktion von LysG mit den Sequenzen der oben aufgeführten Klone (Tab. 3) zu bestätigen, und mögliche Zielgene einzugrenzen wurden anschließend Subklonierungen durchgeführt. Diese wurden bei 3 Klonen durchgeführt. Dazu wurden 10 Promotorbereiche ausgewählt und entsprechende Primerpaare synthetisiert, um gezielt den möglichen Effekt dieser DNA-Bereiche auf die lacZ-Expression untersuchen zu können (Primersequenzen, Anhang 1). Die Primer wurden so gewählt, dass sie jeweils am 5'-Ende eine BamHI-Schnittstelle generierten, die eine gerichtete Klonierung in den shuttle Vektor pJC1 ermöglicht. Die Fragmentgrößen betrugen 179-345 bp. Die Amplifizierung der DNA-Fragmente erfolgte über PCR ausgehend von der Plasmid-DNA der jeweiligen Klone. Nach der Ligation der aufgereinigten PCR-Fragmente in den EcoRV blunt end geschnittenen pDrive Cloning Vector (QIAGEN) erfolgte die Transformation mit chemisch kompetenten Zellen von E. coli DH5a. Anschließend wurden die PCR-Produkte als BamHI-Fragmente isoliert und in den ebenfalls BamHI-geschnittenen Vektor pJC1 ligiert und wiederum zur Transformation von kompetenten DH5 α -Zellen eingesetzt. Nach der Verifizierung mehrerer Klone mit den richtigen Plasmidkonstrukten wurde die Plasmid-DNA mit elektrokompetenten Zellen des Integrationsstammes R6 transformiert. Bis auf eine Ausnahme konnten von allen Konstrukten Transformanden erhalten werden (Tab. 4). Jeweils 8 Transformanden der insgesamt 10 verschiedenen Promotorkonstrukte wurden daraufhin im Plattentest auf Xgal 60-enthaltenden LB-Platten mit einer Negativ- (R6pZ1) und einer Positivkontrolle (R6pJC'GE') hinsichtlich ihrer lacZ-Expression verglichen. Das detaillierte Ergebnis ist zusammenfassend in Tabelle 4 dargestellt. Es zeigte sich, dass die Mehrzahl der Transformanden eine Blaufärbung aufwies, die dem Phänotyp der Negativkontrolle entspricht. Einige Transformanden zeigten im Plattentest ein uneinheitliches Bild. Eine eindeutig geringere Blaufärbung als R6pZ1, vergleichbar mit der Blaufärbung von R6pJC1'GE' ergab das Plasmid pJC1'purM_p1' und pJC1'tnp1513_p1'. Hier zeigten alle Klone eine geringere Blaufärbung als der Kontrollstamm R6pZ1.

Über die mögliche Regulation dieser beiden putativen Promotorbereiche durch LysG und eine Verknüpfung mit der L-Lysinsynthese lassen sich derzeit nur Spekulationen anstellen. Im Zusammenhang mit der Verfügbarkeit von Aspartat könnte *purM* von Klon3-1-24 ein mögliches Zielgen von LysG sein. In *M. tuberculosis*, *B. subtilis* und vielen anderen Bakterien kodiert *purM* für die 5'-Phosphoribosyl-5-aminoimidazolsynthetase (AIR-Synthetase), einem Enzym der Purinbiosynthese (Smith *et al.*, 1986; Ebbole *et al.*, 1989; Zalkin, 1993).

Tab. 4: Ergebnis des Plattentestes zur Überprüfung der Transformanden aus den Subklonierungen der putativen Promotorbereiche. (-) geringere Blaufärbung als die Kontrolle (R6pZ1), (+/-) vergleichbare Blaufärbung wie die Kontrolle, (+) intensivere Blaufärbung als die Kontrolle

Ursprungklon	subklonierter	Phär	notyp d	der Tra	Insforn	nander	ו							
(Screening)	Promotorbereich (in pJC1)													
		1	2	3	4	5	6	7	8					
Klon 3-1-24	' <i>purM</i> ₅1'	_	-	-	-	-	-	-	-					
	' <i>tnp1513</i> _p 1'	-	-	-	-	-	-	-	-					
	'Rv0810c _p 1'	+/-	+	+/-	-	-	+/-	+/-	+/-					
Klon 3-1-30 '	sc6a11.15 _p 1'	+/-	+/-	-	+/-	+/-	+/-	+/-	+/-					
	'29,7K-sc7a1.18c _p 1'	+/-	+/-	-	+/-	+/-	+/-	+/-	+/-					
	'Rv1636 _p 1'	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-					
	' <i>uvrB</i> _p 1'	(kein				ine Transformanden)								
Klon 4-1-52	ʻ <i>gltA</i> _p 1'	+/-	+/-	+/-	+/-	+/-	-	+/-	+/-					
	ʻ <i>yjmC</i> p1'	+/-	+/-	+	+/-	+/-	+/-	+/-	+/-					
	ʻgntR _p 1'	+												

Im Verlauf der Synthese von Purinen wird Aspartat zur Bildung des Pyranoserings eingebaut. LysG hätte in diesem Fall keinen negativen, sondern einen positiven Einfluß auf die Bildung des Purins. Aspartat könnte so verstärkt in Richtung der Purinsynthese fließen und stünde weniger zur L-Lysinbiosynthese zur Verfügung. Der negative Effekt auf die interne L-Lysinkonzentration wäre somit indirekt. Inwiefern das Insertionselement *tnp1513* (Tauch *et al.*, 1998) durch LysG reguliert werden könnte ist unklar. Zumindest in diesem Falle könnte eine unspezifische Bindung erfolgen.

2 DNA-Chip Analysen bei Wachstum in BHI-Komplexmedium

Die Durchführung des Plattenscreenings ergab eine Vielzahl von Genen, die als mögliche LysG-bindende Targetsequenzen in Frage kamen. Allerdings war eine weitere Eingrenzung kaum möglich, da das bekannte Bindemotif von LysG häufig vorkommt und die Ergebnisse aus der Subklonierung ausgesuchter putativer Promotorbereiche kein eindeutiges Bild zeigten. Aus diesem Grund wurden in einem parallelen Ansatz DNA-Chip Analysen durchgeführt, wiederum mit dem Ziel LysG-abhängige Expressionsänderungen festzustellen. Die Chip-Technologie ermöglicht die gleichzeitige Untersuchung der Expressionsveränderungen aller Gene eines Organismus unter den gegebenen Kultivierungsbedingungen (Shena *et al.*, 1995; Shalon *et al.*, 1996). Unter Verwendung von Stammpaaren mit unterschiedlichem LysG-Status sollte es auf diese Weise möglich sein, neben *lysE*, weitere mögliche Zielgene von LysG aus dem Genom von *C. glutamicum* zu identifizieren.

2.1 Experimentelle Rahmenbedingungen

Da bekannt ist, dass genomweite Analysen mittels der DNA-Chip Technologie aus verschiedensten Gründen zu stark abweichenden Ergebnissen führen können, ist die statistische Absicherung außerordentlich notwendig (Conway *et al.*, 2003; Hatfield *et al.*, 2003). In der vorliegenden Arbeit wurde auf die experimentelle Absicherung besonderer Wert gelegt, und zum Beispiel statistische Analysen jeweils immer mit berücksichtigt. Die detaillierte Vorgehensweise ist deshalb in den ersten Experimenten etwas ausführlicher dargestellt.

Anzucht der C. glutamicum Stämme für die Expressionsanalyse

Um bei der Expressionsanalyse wachstumsspezifische Effekte auszuschließen (Magasanik, 2000), war es zunächst erforderlich, die Kultivierungsbedingungen der zu vergleichenden *C. glutamicum* Stämme so einzustellen, dass sie vergleichbare Wachstumsraten zeigten. Dazu wurden die entsprechenden Stammpaare in BHI-Komplexmedium angezogen, da bekannt ist, dass unter diesen Bedingungen der Regulator LysG funktionell ist (Bellmann *et al.*, 2001). Die zur Verfügung stehenden *C. glutamicum* Stämme ATCC13032, ATCC13032∆*lysG*, ATCC13032pMV1 und ATCC13032pMV1*lysG* wurden zunächst in 5 mL BHI-Komplexmedium vorkultiviert. Anschließend wurden sowohl die 50 mL über Nacht Vorkultur als auch die 50 mL Hauptkultur in BHI mit einer optischen Dichte (OD_{600nm}) von 0,5

beimpft und das Wachstum beobachtet. Wie in Abbildung 5 zu sehen ist, wuchsen alle Stämme mit vergleichbaren Wachstumsraten von $\mu = 0.54 \text{ h}^{-1}$ bis $\mu = 0.81 \text{ h}^{-1}$. Um überprüfen zu können, ob LysG unter diesen Bedingungen auch tatsächlich aktiv ist, wurden zur Kontrolle die Stämme ATCC13032 Δ EG::GE"*lacZ* und ATCC13032 Δ EG:: G^{Δ Narl}E"*lacZ* (Bellmann, 2000) in BHI-Komplexmedium angezogen (Wachstum nicht gezeigt). Diese unterscheiden sich durch die An- und Abwesenheit des *lysG*-Gens und mit Hilfe der *lysE*"*lacZ*-Reporterfusion konnte die spezifische Aktivität der β-Galactosidase unter den gegebenen Kultivierungsbedingungen bestimmt werden. Dazu wurden nach 4 h und 6 h aus

Wachstumsraten:	µ [h⁻¹]
13032	0,81
13032∆ <i>ly</i> sG	0,54
13032pMV1	0,75
13032pMV1 <i>lysG</i>	0,79

Abb. 5: Wachstum der isogenen *C. glutamicum* Stämme ATCC13032 (\blacklozenge), ATCC13032 Δ *lysG* (\blacksquare), ATCC13032pMV1 (\bullet) und ATCC13032pMV1*lysG* (\bigcirc) in BHI-Komplexmedium für Expressionsanalysen mit DNA-Chips. Rechts: Angabe der Wachstumsraten von den kultivierten Stämmen

beiden Kulturen Zellen entnommen und die spezifische β -Galactosidaseaktivität im Rohextrakt bestimmt. Die Ergebnisse der Messung zeigten, dass das Regulatorprotein LysG unter den gegebenen Kultivierungsbedingungen aktiv und funktionell ist. So zeigt der Stamm ATCC13032 Δ EG::GE"*lacZ* nach 4 h eine Enzymaktivität von 0,82 mU/mg Protein, die sich nach 6 h auf 1,58 mU/mg Protein erhöht. Im Vergleich dazu liegt die spezifische Aktivität der β -Galactosidase in dem Stamm ATCC13032 Δ EG::G^{Δ Narl}E"*lacZ*, wo die einzige Kopie von *lysG* nachträglich durch Restriktion mit *Nar*l deletiert wurde (Bellmann, 2000), nach 4 h nur bei 0,29 mU/mg Protein und nach 6 h bei 0,34 mU/mg Protein. Damit waren die Ausgangsbedingungen für eine DNA-Chip Analyse gegeben, in der LysG-spezifische Effekte genomweit untersucht werden konnten.

Exemplarische DNA-Chip Analyse von zwei Stammpaaren

Zur DNA-Chip Analyse der Stammpaare ATCC13032 und ATCC13032∆*lysG*, sowie ATCC 13032pMV1 und ATCC13032pMV1*lysG* erfolgte die Kultivierung wie oben beschrieben. Nach Erreichen einer optischen Dichte (OD_{600nm}) von 4-5 wurden die Zellen geerntet, und die Gesamt-RNA der Kulturen isoliert (nach *RNeasy Mini Kit*, QIAGEN, Hilden). Demnach konnten 1,10 µg/µL Gesamt-RNA aus dem *C. glutamicum* Wildtyp und 2,78 µg/µL Gesamt-RNA aus dem *IysG*-Deletionsstamm isoliert werden, sowie 2,59 µg/µL bzw. 0,8 µg/µL Gesamt-RNA aus den Kulturen ATCC13032pMV1 und dem *IysG*-überexprimierenden Stamm ATCC13032pMV1*IysG*. Anschließend wurden je 25 µg der isolierten Gesamt-RNA zur Durchführung der DNA-Chip Experimente mit den beiden Stammpaaren eingesetzt.

Tab. 5: Veränderungen der Genexpression in Abhängigkeit der An- bzw. Abwesenheit von LysG. Dargestellt sind die ORFs (*open reading frame*), deren mRNA-Spiegel ein gegenläufiges Fluoreszenzsignal zeigten. Berücksichtigt wurden nur spots, deren Signal/Rausch-Verhältnis >=3,0 waren.

ORF	Funktion des ORFs	13032/ 13032∆ <i>lysG</i>	13032pMV1 / 13032pMV1 <i>lysG</i>
1239	conserved hypothetical protein ywjB - Bacillus subtilis	0,37	3,60
1240	hypothetical protein SCJ9A.21 - Streptomyces coelicolor	0,47	2,98
1241	hypothetical protein	0,31	3,30
1242	trehalose/maltose transporter inner membrane protein malG - Th. litoralis	0,34	2,41
1243	trehalose/maltose transporter inner membrane protein malF - Th. litoralis	0,37	2,24
1244	hypothetical protein	0,35	3,84
1245	trehalose/maltose binding protein malE - Thermococcus litoralis	0,24	4,17
1246	multiple sugar import protein msiK - Streptomyces lividans	0,54	3,15
1247	hypothetical protein TcsEorf2 - Lactococcus lactis	0,50	5,62
1248	hypothetical protein	0,53	4,35
1249	probable RNA helicase - Deinococcus radiodurans	0,43	4,25
1250	hypothetical protein - Corynebacterium glutamicum	0,49	4,34
1251	hypothetical protein	0,56	4,54
1252	hypothetical protein Rv3268 - Mycobacterium tuberculosis	0,70	2,78
1678	hypothetical protein Rv1157c - Mycobacterium tuberculosis	2,31	0,48
3346	putative resolvase gcrR - Corynebacterium striatum	0,87	2,07

Der Vergleich der beiden DNA-Chip Experimente ist in Tabelle 5 dargestellt. Hier wurden nur die Gene aufgeführt, die in Abhängigkeit von der *lysG*-Deletion und Überexpression des Regulatorgens gegenläufige mRNA-Spiegel zeigten, also <= 0,5 oder >= 2,0 waren. Soweit nicht anders angegeben, wurden in der gesamten Arbeit die Namen der Gene entsprechend der Annotation aus der BIOMAXX-Datenbank (degussa.) verwendet. Auffällig ist, dass eine ganze Genregion von ORF1239 bis einschließlich ORF1252 offensichtlich LysG-abhängig exprimiert wird. Darunter befinden sich unter anderem drei Gene (ORF1242, ORF1243 und ORF1245), deren Genprodukte große Ähnlichkeiten zum Maltose ABC-Transporter aus *Thermococcus litoralis* zeigen (Xavier *et al.*, 1996; Horlacher *et al.*, 1998). Die Genprodukte der übrigen ORFs zeigen hingegen nur Homologien zu hypothetischen Proteinen unbekannter Funktion.

Reproduzierbarkeit von DNA-Chip Experimenten

Zur Einschätzung der Reproduzierbarkeit von DNA-Chip Experimenten wurde die lineare Abhängigkeit der numerischen Daten aus zwei unabhängigen DNA-Chip Analysen von C. glutamicum ATCC13032 und ATCC13032 //ysG bei Wachstum auf BHI-Komplexmedium mit Hilfe des dimensionslosen Pearsonschen Korrelationskoeffizienten R^2 (-1 $\leq R^2 \geq$ 1) bestimmt und graphisch dargestellt (Abb. 6). Dazu wurden die jeweiligen logarithmierten Fluoreszenzverhältnisse (log Cy5/Cy3) der Gene und der genomischen DNA aus den zwei unabhängig durchgeführten Experimenten gegeneinander aufgetragen. Wurden nur die Gene berücksichtigt, deren Expression in beiden Experimenten mindestens zweifach verändert war, zeigten diese eine hohe Korrelation von $R^2 = 0.81$ (Abb. 6A). Im Gegensatz dazu war die Korrelation bei der Betrachtung aller auswertbaren Gene, unabhängig von der Expressionsveränderung, mit $R^2 = 0.78$ etwas geringer, was insbesondere auf die biologische Streuung der Gene mit geringfügig differentieller Expression zurückzuführen ist (Abb. 6B). Die Korrelationskoeffizienten zeigten, dass die Daten der DNA-Chip Analysen gut reproduzierbar waren ($R^2 > 0.6$). Allerdings zeigte die Streuung der Hybridisierungssignale der genomischen DNA die mögliche Varianz mehrfach bestimmter relativer mRNA-Spiegel. Die im Mittel mit dem Erwartungswert von 1 als unverändert angenommene Streuung des Fluoreszenzverhältnis der genomischen DNA (Khodursky et al., 2000) betrug bei allen in dieser Arbeit aufgeführten DNA-Chip Analysen 10 % bis 20 %. Aus diesem Grund wurden Schlüsselexperimente unabhängig voneinander wiederholt und zur statistischen Absicherung für jedes Gen p-Werte im t-Test berechnet. Auf diese Weise konnten die erhaltenen Daten abgesichert und zuverlässig interpretiert werden.

(A) 1 $R^2 = 0.81$ 0,5 log (Cy5/Cy3) Exp I 0 0.5 -1 -0.5 1 ORF o genomische DNA -1 log (Cy5/Cy3) Exp II (B) 1 $R^2 = 0,78$ 0,5 log (Cy5/Cy3) Exp I -1 -0,5 0,5 1 ORF o genomische DNA -1 log (Cy5/Cy3) Exp II

Abb. 6: Korrelation doppelt bestimmter relativer mRNA-Spiegel von ATCC13032 und ATCC13032 Δ /ysG bei Wachstum auf BHI-Komplexmedium für Gene mit mindestens 2-fach veränderter Expression (A) und alle auswertbaren Gene (B).

Überraschenderweise sind die Gene *lysE* und *lysG* nicht unter den gefundenen (Tab. 5), obwohl sie in den Experimenten als interne Standards auf den DNA-Chips zur Verfügung standen. Dieses Phänomen ist sowohl im Institut als auch weltweit bekannt, und hängt offensichtlich direkt mit der Funktion von Regulatorgenen in der genomweiten Expression zusammen (Zheng *et al.*, 2001; Wiegert *et al.*, 2001). So läßt sich, ähnlich wie bei LysG, auch das Regulatorgen *Irp* (Leucine responsive protein) nicht zuverlässig auf DNA-Chips nachweisen (Christian Lange, persönliche Mitteilung). Da bekannt ist, dass der Regulator

LysG die Expression des Exportcarriergens *lysE* in Anwesenheit des Induktors L-Lysin steigern kann (Bellmann *et al.*, 2001), sollte der mRNA-Spiegel von *lysE* in der Deletionsmutante des Regulatorgens niedriger sein als vergleichsweise in dem Stamm, wo *lysG* plasmidkodiert überexprimiert wird. Entgegen der Erwartung liegt der mRNA-Spiegel von *lysE* in beiden Fällen bei einem Wert von 1, was dafür spräche, dass die *lysE*-Expression eher unbeeinflußt ist. Allerdings liegt eine mögliche Erklärung in der ungewöhnlichen genetischen Organisation von *lysE* und seinem benachbarten Gen ORF1869, dessen Transkript sich teilweise mit der Sequenz von *lysE* überlagert (Vrljić *et al.*, 1996). Daher ist möglicherweise das *lysE*-Signal auf den DNA-Chips vom Signal des ORF1869 überlagert.

2.2 LysG-spezifische Expressionsveränderungen

Im Folgenden wurden deshalb weitere DNA-Chip Analysen durchgeführt, um einerseits dieser Problematik nachzugehen und andererseits die erhaltenen Ergebnisse zu reproduzieren. Dazu wurden zusätzlich auch andere Stammpaare verwendet, die sich im LysG-Status unterscheiden. So wurde eine Deletionsmutante, wo die Gene lysE und lysG deletiert sind (Vrljić, 1997) mit dem C. glutamicum Wildtyp verglichen. Eine weitere Transkriptomanalyse wurde mit den Stämmen ATCC13032pJC1 und ATCC13032pJC1'GE' durchgeführt. Diese unterscheiden sich durch die plasmidkodierte Anwesenheit des intergenischen Bereichs von *lysG* und *lysE* wo das Regulatorprotein in Gegenwart des Induktors L-Lysin bindet und so die Expression des Lysinexportcarriers LysE steigert (Bellmann et al., 2001). Es war daher zu erwarten, dass in dem Stamm ATCC 13032pJC1'GE' der Regulator LysG verstärkt an diesem intergenischen Bereich bindet und auf diese Weise vom natürlichen Promotorbereich wegtitriert wird. Es sollten also Expressionsveränderungen, ähnlich wie in der Deletionsmutante von lysG zu beobachten sein. Durch den Vergleich der in den DNA-Chip Analysen bestimmten mRNA-Spiegel der C. glutamicum Stammpaare ATCC13032 / ATCC13032∆/ysG, ATCC13032pMV1 / ATCC13032pMV1/ysG und ATCC13032pJC1 / ATCC13032pJC1'GE' bei Wachstum auf BHI-Komplexmedium sollten die LysG-spezifischen Expressionsveränderungen überprüft werden.

Im Ergebnis zeigten 55 Gene Signalintensitäten, die mindestens dreifach über dem Hintergrund lagen und zumindest in einem der DNA-Chip Experimente eine zweifache Expressionsveränderung aufwiesen. Ergänzend wurden auch solche Spots berücksichtigt, die in bestimmten Stammpaaren konstant auffielen. Anschließend wurden die numerischen Werte der doppelt durchgeführten Analysen gemittelt. In einem nächsten Schritt wurden als weitere Eingrenzung nur solche Gene ausgewählt, deren mRNA Spiegel bei *lysG*-Überexpression erhöht und bei *lysG*-Deletion erniedrigt waren, oder aber sich genau entgegengesetzt verhielten. Dieser weiteren eingrenzenden Bedingung entsprachen noch 32 der Gene. In Tabelle 6 ist das Ergebnis der Auswertung dargestellt. Insgesamt zeigten

Tab. 6: LysG-spezifische Expressionsveränderungen von *C. glutamicum* Stämmen mit unterschiedlichem LysG-Status bei Wachstum in BHI-Komplexmedium. Dargestellt sind die ORFs (*open reading frames*), die bei einem Stammpaar mindestens einen zweifach veränderten mRNA-Spiegel zeigten. (n.a.) nicht auswertbar

ORF	Funktion des ORFs	pMV1 / pMV1 <i>ly</i> sG	wt / ∆ <i>ly</i> sG	wt / ∆lysEG	pJC1 / pJC1' <i>GE</i> '
31	hypothetical protein Rv1073 - Mycobacterium tuberculosis	0,7	1,2	n.a.	2,2
200	probable ferredoxin/ferredoxin-NADP reductase - S. coelicolor	0,6	2,4	n.a.	n.a.
282	probable UDP-galactopyranose mutase glf - M. tuberculosis	0,5	1,0	1,4	1,3
559	putative myo-inositol catabolism iolB - Bacillus subtilis	0,5	1,0	1,4	1,4
560	myo-inositol catabolism iolD - Bacillus subtilis	0,6	1,0	n.a.	1,2
561	myo-inositol catabolism iolE – Bacillus subtilis	0,5	1,2	n.a.	1,2
566	hypothetical protein	0,7	1,1	n.a.	0,9
763	probable glucosyltransferase Rv3631 - M. tuberculosis	0,7	1,0	0,8	1,2
1272	hypothetical 30.5K protein precursor - Enterococcus faecalis	0,6	1,3	1,4	1,4
1285	hypothetical protein Rv3231c - M. tuberculosis	0,7	1,3	1,2	1,4
1396	cysQ - Escherichia coli	0,7	1,6	n.a.	1,2
1608	probable GTP-binding protein Rv1112 - M. tuberculosis	0,7	0,9	n.a.	1,0
1714	hypothetical protein Rv1249c - M. tuberculosis	0,6	0,9	0,9	1,1
1864	putative acetyltransferase SCC57A.26c - S. coelicolor	0,7	1,1	1,0	1,0
1961	PS1 protein - Corynebacterium glutamicum	0,6	1,2	0,9	2,1
1239	conserved hypothetical protein ywjB - Bacillus subtilis	3,4	0,5	n.a.	0,2
1240	hypothetical protein SCJ9A.21 - Streptomyces coelicolor	2,7	0,6	n.a.	0,4
1241	hypothetical protein	3,4	0,4	0,4	0,2
1242	trehalose/maltose transporter inner membrane protein malG-Th. litoralis	4,0	0,4	0,6	0,2
1243	trehalose/maltose transporter inner membrane protein malF-Th. litoralis	3,2	0,4	0,4	0,3
1244	hypothetical protein	3,1	0,5	n.a.	0,4
1245	trehalose/maltose binding protein malE - Thermococcus litoralis	5,0	0,3	0,8	0,2
1246	multiple sugar import protein msiK - Streptomyces lividans	2,3	0,7	0,7	0,5
1247	hypothetical protein TcsEorf2 - Lactococcus lactis	4,1	0,6	0,5	0,3
1248	hypothetical protein	3,3	0,6	n.a.	0,6
1249	probable RNA helicase - Deinococcus radiodurans	4,2	0,4	0,8	0,4
1250	hypothetical protein - Corynebacterium glutamicum	3,3	0,5	0,8	0,4
1251	hypothetical protein	3,2	0,7	0,9	0,8
1252	hypothetical protein Rv3268 - Mycobacterium tuberculosis	2,3	0,7	n.a.	0,8
1867	lysine export regulator protein lysG - Corynebacterium glutamicum	2,5	0,6	0,6	1,3
1942	probable dehydrogenase - Mycobacterium tuberculosis	2,0	1,0	n.a.	0,8
3344	hypothetical protein APE0332 - Aeropyrum pernix	2,2	1,1	n.a.	n.a.

anhand der Auswahlkriterien 15 Gene einen erniedrigten mRNA-Spiegel bei plasmidkodierter *lysG*-Überexpression und erhöhte oder unveränderte mRNA-Spiegel bei Abwesenheit des Regulators (oberer Teil der Tabelle 6). Darunter waren auch drei Gene zu finden (ORF559 bis ORF 561), deren Genprodukte hohe Ähnlichkeiten zu möglicherweise *myo*-Inositol verstoffwechselnden Enzymen aus *Bacillus subtilis* zeigen (Yoshida *et al.*, 1997, 1999). Im unteren Teil der Tabelle 6 sind die Gene aufgeführt, deren mRNA-Spiegel im Stamm ATCC13032pMV1*lysG* erhöht und in den anderen Stämmen erniedrigt oder unverändert waren. Unter diesen 17 Genen befinden sich 14 Gene, die sich in einem Genort befinden (ORF1239 bis ORF1252). Dazu gehören auch die aus den vorherigen DNA-Chip Analysen bereits bekannten Gene, die für einen putativen Maltose ABC-Transporter kodieren.

Die Ergebnisse zeigen, dass unter den gewählten Kultivierungsbedingungen zu einem großen Teil Gene der Zuckeraufnahme und des Zuckerstoffwechsels LysG-spezifisch in ihrer Expression verändert sind.

3 DNA-Chip Analysen bei Wachstum in CGXII-Minimalmedium

3.1 Bestimmung der internen L-Lysinkonzentration

Die bisherigen Ergebnisse wurden erzielt, indem die verwendeten Stammpaare von *C. glutamicum* in BHI-Komplexmedium angezogen wurden, weil bekannt ist, dass unter diesen Bedingungen der Regulator LysG funktionell ist (Bellmann *et al.*, 2001). Allerdings enthält *C. glutamicum* bei Wachstum auf BHI-Medium interne L-Lysinkonzentrationen von bis zu 80 mM L-Lysin (Bellmann, 2000), so dass nicht klar ist, ob die in den bisherigen DNA-Chip Analysen beobachteten Effekte eine Folge von LysG in Verbindung mit internem L-Lysin, oder eine Folge von LysG allein sind.

In einem ersten Experiment wurden die *C. glutamicum* Stämme ATCC13032 und ATCC13032∆*lysG* zunächst in CGXII-Minimalmedium (+ 4 % Glukose) kultiviert und nach 3, 5, 7 und 9 Stunden jeweils Proben zur Bestimmung der internen L-Lysinkonzentration entnommen (Klingenberg und Pfaff, 1977). Wie die Messungen ergaben, liegen die internen L-Lysinkonzentrationen in den Stämmen ATCC13032 und ATCC13032∆*lysG* bis zu 5 h Kultivierungszeit unterhalb der Nachweisgrenze. Erst nach 7 h waren interne L-Lysinkonzentrationen nachweisbar, die mit 4,2 mM im Wildtyp und 4,1 mM im *lysG*-Deletionsstamm im Vergleich zu Komplexmedium (Bellmann, 2000) aber eher gering sind. Auch nach 9 h stiegen die internen L-Lysinkonzentrationen in beiden Stämmen nicht wesentlich an. Damit waren die Ausgangsbedingungen für weitere DNA-Chip Analysen gegeben, in denen LysG-spezifische Effekte ohne den Einfluß des internen L-Lysins untersucht werden konnten.

3.2 Analyse der Genexpression

Um die LysG-spezifische Genexpression ohne den Einfluß internen L-Lysins im *C. glutamicum* Wildtyp und *lysG*-Deletionsstamm zu untersuchen, wurden für die Transkriptionsanalysen zwei unabhängige Kultivierungen durchgeführt. Die Wachstumsraten waren mit 0,34 h⁻¹ und 0,31 h⁻¹ bei ATCC13032, sowie 0,37 h⁻¹ und 0,28 h⁻¹ bei ATCC13032 Δ /*ysG* zum Zeitpunkt der Ernte für die Isolierung der Gesamt-RNA vergleichbar. Aus den zwei unabhängigen DNA-Chip Analysen wurden die gesamten auswertbaren Spots herausgesucht und miteinander verglichen. In Tabelle 7 sind die Spots dargestellt, deren

mRNA-Spiegel in beiden Experimenten mindestens zweifach verändert waren. Es zeigt sich, dass die Ergebnisse von 6 Genen reproduzierbar waren. Darunter befinden sich auch wieder drei ORFs (*open reading frames*) des putativen *mal*-Lokus (ORF1239 bis ORF1252), der bereits in den DNA-Chip Analysen bei Wachstum auf BHI-Komplexmedium auffällig war. Zusätzlich tauchen auch noch drei ORFs mit stark reduziertem mRNA-Spiegel bei Abwesenheit von LysG auf. Während ORF298 und ORF1818 jedoch für Proteine unbekannter Funktion kodieren, zeigt das Genprodukt von ORF 2410 Ähnlichkeiten zu *mutB* einer Methyl-Malonyl-CoA Mutase aus *S. cinnamonensis*. Allerdings verhält sich dieses Gen in zahlreichen am Institut durchgeführten DNA-Chip Analysen (siehe JMD-Datenbank) auffällig, so dass es im Folgenden nicht weiter berücksichtigt wurde.

Tab. 7: LysG-spezifische Expressionsveränderungen bei Wachstum in CGXII-Minimalmedium. Dargestellt sind die ORFs (*open reading frames*), deren mRNA-Spiegel in beiden Analysen mindestens zweifach verändert waren.

ORF	Funktion des ORFs	wt/∆ <i>lysG</i> (Exp I)	wt/∆ <i>ly</i> sG (Exp II)
298	hypothetical protein 372 - Streptomyces lavendulae	0,47	0,47
1242	trehalose/maltose transporter inner membrane protein malG - Th. litoralis	0,29	0,40
1244	hypothetical protein	0,27	0,28
1245	trehalose/maltose binding protein malE - Thermococcus litoralis	0,21	0,46
1818	hypothetical protein B1549_F2_87 - Mycobacterium leprae	0,20	0,39
2410	methylmalonyl-CoA mutase mutB chain - Streptomyces cinnamonensis	0,35	0,45

Anhand dieser Ergebnisse existieren somit erste Hinweise darauf, dass die Expressionsveränderungen der putativen Maltosetransportgene tatsächlich von LysG allein und nicht von internem L-Lysin abhängig sind.

4 Untersuchungen zur Maltoseverwertung in C. glutamicum

Da bisherige DNA-Chip Analysen bei Wachstum auf BHI-Komplexmedium und CGXII-Minimalmedium einen Hinweis auf den Zusammenhang zwischen dem Regulator LysG und putativen Genen eines Maltose ABC-Transporters gaben, sollten im Folgenden Informationen zum Maltosestoffwechsel und -transport in *C. glutamicum* gesammelt werden.

Der Maltosestoffwechsel und -transport ist in *E. coli* sehr gut untersucht. Eine Schlüsselfunktion bei der Verwertung des Disaccharids hat die Maltosepermease, die aus den Untereinheiten MalG und MalF, sowie der energieliefernden Untereinheit MalK besteht (Schlegel *et al.*, 2002; Boos *et al.*, 1998; Death *et al.*, 1993). Obwohl in einigen Grampositiven Bakterien offensichtlich ähnliche Maltosetransportsysteme existieren (Quentin *et al.*, 1999; Schlösser *et al.*, 1997), ist in *C. glutamicum* zur Maltoseverwertung zur Zeit jedoch noch nichts bekannt. Es wurden deswegen zunächst Wachstumsversuche in CGXII-Minimalmedium mit 4 % Glukose und 4 % Maltose als Kohlenstoffquelle durchgeführt. Es zeigte sich, dass das Bakterium in der Lage ist, auf dieser alternativen Kohlenstoffquelle mit einer vergleichbaren Wachstumsrate von $\mu = 0.35$ h⁻¹ wie auf Glukose mit $\mu = 0.38$ h⁻¹ zu wachsen (nicht gezeigt).

4.1 Konstruktion und Charakterisierung einer *malGFE*-Deletionsmutante

Um zu prüfen, ob es sich bei den Genen ORF1242 (*malG*), ORF1243 (*malF*) und ORF1245 (*malE*) tatsächlich um Gene eines ABC-Transporters für Maltose handelt, wurde zunächst eine Deletionsmutante nach Link *et al.* (1997) konstruiert (Abb. 7). Dazu wurden zunächst mit Hilfe der PCR-Reaktion zwei DNA-Fragmente amplifziert, die die zu deletierenden Gene *malG*, *malF* und *malE* in der 5'- bzw. 3'-Region flankierten (Ni-/No- bzw. Ci-/Co-Primerpaar). Bei der Auswahl der Primer war es entscheidend, dass die amplifizierten DNA-Fragmente etwa gleich lang sind und das Leseraster erhalten blieb. Aus diesem Grund bindet der ausgewählte Ni-Primer 36 bp stromaufwärts des *malG*-Gens und der Ci-Primer 18 bp stromabwärts von *malE*. Weiterhin wurden die Primer so gewählt, dass beide eine Schmelztemperatur von 68°C haben. Die Sequenzen der verwendeten Primer befinden sich in Anhang 1. Die beiden erhaltenen PCR-Produkte (N- und C-Term, Abb. 7) wurden dann in einem zweiten PCR-Ansatz, der sogenannten *cross over*-PCR, als template eingesetzt. Aufgrund des durch die Primer in die PCR-Produkte eingefügten *linkers* (Abb. 7) hybridisieren die beiden templates bei einer Temperatur von 55°C, so dass bei Verwendung

des No-/Co-Primerpaares ein DNA-Fragment amplifiziert wurde, welches nahezu den gesamten Genort deletiert hat.

1.PCR

Abb. 7: Schematische Darstellung der Konstruktion einer *malGFE*-Deletionsmutante nach Link *et al.* (1997). Die Sequenzen der verwendeten Primer befinden sich im Anhang 1.

Über die generierten *Bam*HI-Schnittstellen wurde dieses $\Delta malGFE$ -Fragment mit *Bam*HI geschnitten, mit dem ebenfalls *Bam*HI-geschnittenen Deletionsvektor pK19*mobsacB* (Schäfer *et al.*, 1994) ligiert und anschließend für die Transformation chemisch kompetenter Zellen von DH5 α benutzt. Das so erhaltene Deletionsplasmid pK19*mobsacB* $\Delta malGFE$ wurde durch Elektroporation in den *C. glutamicum* Stamm ATCC21527 (degussa.) eingebracht und die Deletion mit dem bei Schäfer *et al.* (1994) beschriebenen System zum Genaustausch durchgeführt. Dabei wurden im ersten Schritt kanamycinresistente Klone erhalten, bei denen das Deletionsplasmid pK19*mobsacB* $\Delta malGFE$ durch eine homologe Rekombination im Chromosom integriert vorlag. Um auf ein zweites Rekombinationsereignis, das heißt auf die Excision des Plasmides zu selektieren, wurden diese Klone auf Saccharose-haltigem Medium ausplattiert. Die Expression des im Deletionsvektor vorhandenen *sacB*-Gens ist bei

Anwesenheit von Saccharose toxisch für *C. glutamicum* (Jäger *et al.*, 1992), so dass nur solche Klone wachsen können, die den Vektor durch ein zweites Rekombinationsereignis wieder verloren haben. Bei diesem Schritt wurden insgesamt 27 Klone erhalten, die durch Excision des Vektors wieder kanamycinsensitiv geworden waren. Um die korrekte Deletion zu bestätigen, wurden die 27 Klone anschließend mit Hilfe der PCR-Reaktion geprüft. Dazu wurden die Primer $\Delta malGFE_U1$ und $\Delta malGFE_L1$ verwendet, welche die *mal*-Gene außerhalb des zur Konstruktion der Deletion verwendeten Genbereiches flankierten (Primersequenzen, Anhang 1). Im Falle einer erfolgreichen Deletion sollte dabei ein 1025 bp großes DNA-Fragment amplifiziert werden, im Fall der wiederhergestellten Wildtypsituation ein 4800 bp Fragment. Bei 3 der 27 überprüften Klone wurde ein etwa 1000 bp großes DNA-Fragment erhalten, welches dem um 3775 bp verkürzten *malGFE*-Genort entsprach.

Die so konstruierte Deletionsmutante ATCC21527 Δ *malGFE* wurde anschließend hinsichtlich ihres Wachstums auf Maltose geprüft. Dazu wurden die 3 Klone auf CGXII-Minimalmediumplatten mit Maltose ausgestrichen. Überraschenderweise zeigte sich, dass die Mutanten auf Maltose genauso gut wachsen konnten wie der Ausgangsstamm ATCC21527. Damit konnten die Gene ORF1242 bis ORF1245 als Gene des Maltosetransports in *C. glutamicum* ausgeschlossen werden. Um dennoch Zugang zur Funktion dieser Gene zu bekommen wurden zusätzlich auch die in Tabelle 11 aufgeführten Zucker als mögliche Substrate getestet. Dazu wurden Wachstumsexperimente mit der Deletionsmutante und dem Ausgangsstamm ATCC21527 in CGXII-Minimalmedium unter Zusatz von 100 mM des jeweiligen Substrates durchgeführt. Aber auch hier zeigten sich vergleichbare Wachstumsraten (angegeben in $\mu = h^{-1}$ für ATCC21527/ATCC21527 Δ *malGFE*) auf D(+)-Ribose (0,15/0,16), D(+)-Fruktose (0,37/0,37), D(+)-Arabit (0,19/0,19), K-Glukonat (0,36/0,37) und Saccharose (0,39/0,41). Auch das Wachstum auf den Maltodextrinen Maltotriose und Maltotetraose blieb unbeinflußt. Somit ist zur Zeit völlig unklar, welche Funktion die als *malGFE* annotierten Gene in *C. glutamicum* ausüben.

4.2 Maltose-abhängige Expressionsveränderungen

Um Zugang zu spezifischen Genen der Maltoseverwertung zu erhalten, wurden vergleichende Expressionsanalysen im *C. glutamicum* Wildtyp bei Wachstum auf Glukose und Maltose als Kohlenstoffquelle durchgeführt. Zur statistischen Absicherung wurden insgesamt drei unabhängige Transkriptomanalysen mit Gesamt-RNA aus drei unabhängigen Kultivierungen erstellt. Die Ergebnisse des Vergleichs der Transkriptomanalysen sind in Tabelle 8 dargestellt. Bei der Auswertung wurden nur die Gene berücksichtigt deren mRNA-

Spiegel in mindestens einem der Experimente zweifach verändert waren. Von diesen insgesamt 8 Genen zeigten 5 einen bei Wachstum auf Maltose erniedrigten mRNA-Spiegel.

Tab. 8: mRNA-Spiegel der Gene, die bei Wachstum auf Maltose in 3 unabhängig durchgeführten DNA-Chip Analysen eine zweifache Expressionsveränderung zeigten. In Experiment II wurde ein *colour swap* (csw) durchgeführt.

ORF	Funktion des ORFs	Exp I	Exp II	Exp III	average
1646	nicotinate-nucleotide pyrophosphatase nadC - C. glutamicum	0,35	0,38	0,52	0,42
1647	quinolate synthase A nadA - C. glutamicum	0,44	0,31	0,52	0,42
1728	similarity to dimethylaniline monooxygenase 3 - Homo sapiens	0,49	0,78	0,39	0,55
2460	strong similarity to hypothetical protein - M. leprae	0,91	0,48	0,49	0,62
3444	proline/ectoine carrier proP - C. glutamicum	0,22	0,97	0,39	0,53
1677	strong similarity to hypothetical protein Rv1632c - M. tuberculosis	2,12	2,13	1,16	1,80
3506	similarity to hypothetical protein Rv1343c - M. tuberculosis	2,11	2,22	0,87	1,73
67019	AX067019.fas .0.84 (permease of the major facilitator superfamily)	2,61	2,04	1,50	2,05

Darunter befinden sich unter anderem die Gene ORF1646 und ORF1647, die für die Proteine NadA und NadC von C. glutamicum kodieren. NadA und NadC sind Enzyme der de novo Biosynthese von Nicotinamid-Adenin-Dinucleotid (NAD), welches ausgehend von L-Aspartat und Dihydroxy-Acetonphosphat (DHAP) in der Zelle gebildet wird, wie es für E. coli und T. maritima bereits beschrieben wurde (Yang et al., 2003; Ceciliani et al., 2000; Hughes et al., 1993). Welcher funktionelle Zusammenhang zur Maltoseverwertung besteht ist unklar. Desweiteren wird offensichtlich auch das Gen ORF3444 Maltose-abhängig exprimiert. Dabei handelt es sich um das Gen proP, welches für einen Prolin/Ectoin-Transporter in C. glutamicum kodiert (Peter et al., 1998), und bei Wachstum auf Maltose einen erniedrigten mRNA-Spiegel in zwei der drei DNA-Chip Analysen zeigte. In E. coli wird ProP unter osmotischem Stress synthetisiert, um dem Bakterium durch die Aufnahme kompatibler Solute wie Prolin die Anpassung an die osmotischen Veränderungen zu ermöglichen (Culham et al., 2003). Auch hier ist nicht klar, warum in C. glutamicum die Expression von proP bei Wachstum auf Maltose erniedrigt ist. Bei den Genen ORF1728 und ORF2460 handelt es sich um Gene unbekannter Funktion. Unter den 3 Genen, deren mRNA-Spiegel bei Wachstum auf Maltose erhöht ist befindet sich ORF67019, dessen Genprodukt Ähnlichkeiten zu einer Permease der MFS-Familie (major facilitator superfamily) zeigt (Pao et al., 1998), so dass unter Umständen der Maltosetransport nicht über den vermuteten ABC-Transporter abläuft, sondern über diese bisher unbekannte Permease. Die

beiden anderen Gene ORF1677 und ORF3506 kodieren für hypothetische Proteine mit unbekannter Funktion.

4.3 Überprüfung von mal-Promotorkonstrukten auf LysG-Bindung

Mit dem Ziel, unabhängig von den DNA-Chip Analysen die mögliche direkte Interaktion des Regulators LysG mit den putativen Promotorbereichen der Gene ORF1239 bis ORF1252 zu prüfen, sollten im Folgenden Titrationsexperimente mit dem bekannten Integrationsstamm R127*ppc*::pEM3*dppc*GE"*lacZ* (R6) durchgeführt werden.

Da nicht bekannt war, ob die Gene des gesamten Genortes oder aber tatsächlich nur die zu *malGFEK* homologen exprimiert werden, wurden zunächst zwei putative Promotorbereiche zur Amplifizierung von 3 Fragmenten ausgewählt (Abb. 8). Wie in der Abbildung zu sehen ist, liegt der erste putative Promotorbereich unmittelbar vor den *malGFEK* homologen Genen. Mit Hilfe der PCR-Reaktion wurden aus diesem Bereich zwei Fragmente amplifiziert (*mal_1-1* und *mal_1-2*). Das dritte amplifizierte Fragment *mal_2-1* wurde aus dem zweiten putativen Promotorbereich gewählt, welcher sich unmittelbar am Ende des gesamten Genortes befindet (Abb. 8). Über eine präparative *Bam*HI-Restriktion wurden die PCR-Fragmente anschließend mit dem ebenfalls *Bam*HI-geschnittenen Vektor pJC1 (Cremer

Abb. 8: Genetische Organisation des *mal*-Lokus. Die Lage der zur Subklonierung ausgewählten putativen Promotorbereiche ist in den Boxen (■) *mal*_1-1, *mal*_1-2 und *mal*_2-1 angegeben. Die Primersequenzen befinden sich im Anhang 1.

et al., 1990) ligiert und mit chemisch kompetenten Zellen von *E. coli* DH5 α transformiert. Nach der Verifizierung mehrerer Klone mit richtigem Plasmidkonstrukt wurde die PlasmidDNA von pJC1mal 1-1, pJC1mal 1-2 und pJC1mal 2-1 mit elektrokompetenten Zellen des Integrationsstammes R6 transformiert. Je 16 der erhaltenen Klone wurden anschließend in einem Plattentest auf mögliche LysG-Bindung geprüft. Dazu wurden die Transformanden zusammen mit der Positiv- und Negativkontrolle auf Xgal enthaltende LB-Agarplatten ausgestrichen und 24 h bei 30°C inkubiert. Bei der Auswertung des Plattentests fiel auf, dass in dem Stamm mit dem überexprimierten mal_2-1 Konstrukt 11 von 16 getesteten Transformanden eine geringere Blaufärbung zeigten. Die Vermutung lag also nahe, dass es sich hierbei um eine tatsächliche Interaktion von LysG mit diesem Fragment handelte. Zur Überprüfung dieses Ergebnis wurde deshalb eine Retransformation durchgeführt. Dazu wurde die Plasmid-DNA von Klon 4 und Klon 5 verwendet um wiederum mit elektrokompetenten Zellen des Integrationsstammes transformiert zu werden. Klon 5 gehört eigentlich zu denen, die keine geringere Blaufärbung aufwiesen und wurde deshalb zur Kontrolle ausgewählt. Zwölf der jeweils bei der Retransformation erhaltenen Klone wurden wiederum auf Xgal-enthaltenen LB-Agarplatten hinsichtlich ihrer LysG-Bindung getestet. So zeigten 9 der 12 Retransformanden von Klon 4 eine geringere Blaufärbung als die Kontrolle. Allerdings zeigten auch 9 der 12 Retransformanden von Klon 5 wider Erwarten diesen Phänotyp.

Diese Ergebnisse weisen also nicht auf eine spezifische Interaktion von LysG mit den geprüften DNA-Bereichen des *mal*-Lokus hin. Es ist deswegen sehr wahrscheinlich, dass die Gene ORF1239 bis ORF1252 weder mit der Maltoseverwertung noch mit LysG in direktem Zusammenhang stehen.

5 Der myo-Inositol-Stoffwechsel in C. glutamicum

In den DNA-Chip Experimenten zur genomweiten Untersuchung LysG-spezifischer Effekte in *C. glutamicum* waren bei Wachstum auf BHI-Komplexmedium bei plasmidkodierter Überexpression des *lysG*-Gens die mRNA-Spiegel putativer Gene des *myo*-Inositol-stoffwechsels erniedrigt. Zum *myo*-Inositolstoffwechsel in Bakterien ist bisher außerordentlich wenig bekannt. Biochemische Arbeiten zur Verwertung dieses Hexitols in *B. subtilis* zeigten, dass ein *iolABCDEFGHIJ* und ein *iolRS* Operon (Divergon) existieren (Yoshida *et al.*, 1997, 1999), sowie getrennt im Chromosom *iolT* (Yoshida *et al.*, 2002).

5.1 Expressionsanalysen bei Wachstum auf *myo*-Inositol

Um Zugang zur Funktion der putativen *iol*-Gene zu erhalten, sollten deshalb Expressionsanalysen bei Wachstum auf dem Zuckeralkohol durchgeführt werden. Zu diesem Zweck wurde der *C. glutamicum* Wildtyp ATCC13032 einerseits in CGXII-Minimalmedium mit 4 % Glukose und andererseits in CGXII-Minimalmedium mit 4 % *myo*-Inositol kultiviert. Dabei waren die Wachstumsraten mit 0,33 h⁻¹ bei Wachstum auf Glukose und 0,29 h⁻¹ auf *myo*-Inositol vergleichbar. In drei unabhängigen Experimenten wurden die Zellen bei einer optischen Dichte (OD₆₀₀) von etwa 5,0 geerntet und die Gesamt-RNA isoliert (nach *RNeasy Mini Kit*, QIAGEN, Hilden). Da vorherige Versuche daran scheiterten, dass die mRNA von den mit *myo*-Inositol angezogenen Kulturen nicht erfolgreich in markierte cDNA umgeschrieben werden konnte und somit keine Hybridisierungssignale auf dem DNA-Chip zu sehen waren, wurde die isolierte RNA beider Kulturen im Folgenden durch eine zusätzliche Phenolextraktion weiter aufgereinigt. Für die Expressionsanalysen wurden wiederum 25 µg RNA zur Umschreibung in fluoreszenzmarkierte cDNA verwendet (Wendisch *et al.*, 2001) und auf dem DNA-Chip hybridisiert.

Die Auswertung der drei unabhängig durchgeführten Experimente zeigte, dass bei Wachstum auf *myo*-Inositol die Expression von 54 Genen signifikant (p-value < 0,05) verändert ist (siehe Tab. 9). Darunter befinden sich 21 Gene, deren mRNA-Spiegel etwa 3bis 27-fach erhöht sind. Auffällig dabei ist, dass neben dem bereits bekannten *iol*-Genort (ORF555 bis ORF569) ein zweiter Genort auftaucht, dessen Gene ebenfalls deutlich erhöhte mRNA-Spiegel zeigen (ORF3430 bis ORF3442). Für Wachstum auf *myo*-Inositol könnten also ähnlich wie in *B. subtilis* zwei *iol*-Operone nötig sein (Yoshida *et al.*, 1997). Dabei handelt es sich meist um Gene, deren Genprodukte bisweilen starke Ähnlichkeiten zu Enzymen des *myo*-Inositolabbaus aus *B. subtilis* zeigen. Wie in Abbildung 9 zu sehen ist, befinden sich unter den Genen des *iol*-Operons I neben den aus den DNA-Chip Analysen in BHI-Komplexmedium bekannten ORFs (*open reading frames*) 558 bis 569 auch ein putativer Regulator (ORF568) sowie ein putativer *myo*-Inositoltransporter (ORF3542), der in allen drei Experimenten stark erhöhte mRNA-Spiegel zeigte (Tab. 9). Im *iol*-Operon II befindet sich ebenfalls ein putativer Regulator (ORF3434) sowie ein weiterer möglicher *myo*-Inositoltransporter (ORF3431).

(A) iol-Operon I (24700 bp)

Abb. 9: Genetische Organisation der *iol*-Operons I (A) und II (B) in *C. glutamicum*. In den DNA-Chip Analysen zeigten die Gene ORF555 bis ORF569 und ORF3542 des Operons I sowie die Gene ORF3430 bis ORF3442 des Operons II zum Teil stark erhöhte mRNA-Spiegel (in schwarz hervorgehoben).

Das in der Tabelle 9 aufgeführte Gen ORF1875 fällt auf, weil es offensichtlich sehr stark erniedrigte mRNA-Spiegel bei Wachstum auf dem Zuckeralkohol zeigt. Dabei handelt es sich um ein Gen, dessen Genprodukt in der BIOMAXX-Annotation hohe Ähnlichkeiten zu einem hypothetischen Protein aus *M. tuberculosis* zeigt (Rv0046c). In der ERGO-Datenbank jedoch zeigt dieses Gen hohe Ähnlichkeit zur *myo*-Inositol-1-Phosphat-Synthase, einem Enzym der *myo*-Inositolbiosynthese aus *M. tuberculosis*. Dieses Enzym katalysiert in der *de novo*

Tab. 9: *myo*-Inositol abhängige Expressionsveränderungen im *C. glutamicum* Wildtyp. Dargestellt sind die mRNA-Spiegel von 54 Genen, die mindestens zweifach signifikant (p-value < 0,05) veränderte Expression in den drei unabhängig durchgeführten Experimenten zeigten. In schwarz hervorgehoben sind die Gene, die in den zwei *iol*-Operons organisiert sind. (μ) Mittelwert der mRNA-Spiegel, (n) Anzahl der auswertbaren Signale für die statistische Auswertung

ORF	Funktion des ORFs	Exp I	Exp II	Exp III	μ	n	p-value
65	porin porA - Corynebacterium glutamicum	0,524	0,329	0,623	0,49	3	0,038
190	hypothetical protein	0,228	0,398	0,102	0,24	3	0,033
304	hypothetical protein	0,525	0,323	0,36	0,40	3	0,012
381	similarity to multicopper oxidase cumA - Pseudomonas putida	4,385	3,475	5,327	4,40	3	0,001
555	hypothetical protein	5,402		4,469	4,94	2	0,007
558	strong similarity to putative myo-inositol catabolism ioIA – Bacillus subtilis	19,195	12,351	18,401	16,65	3	0,001
559	similarity to putative myo-inositol catabolism iolB - Bacillus subtilis	11,32	15,221	23,108	16,55	3	0,002
560	strong similarity to myo-inositol catabolism ioID - Bacillus subtilis	12,348	2,984	20,691	12,01	3	0,028
561	strong similarity to myo-inositol catabolism iolE – Bacillus subtilis	11,38	15,222	29,313	18,64	3	0,004
562	strong similarity to myo-inositol 2-dehydrogenase iolG - Bacillus subtilis	14,213	5,977	29,448	16,55	3	0,013
563	strong similarity to myo-inositol catabolism protein iolH - Bacillus subtilis	6,03	2,093	16,837	8,32	3	0,043
564	strong similarity to multidrug resistance protein emrA - Escherichia coli	12,004	14,453	25,521	17,33	3	0,002
565	similarity to myo-inositol dehydrogenase idhA - Sinorhizobium meliloti	1,98	1,556	5,01	2,85	3	0,050
568	strong similarity to transcriptional regulator protein ribR – Bacillus subtilis	5,23	11,608	6,94	7,93	3	0,005
569	strong similarity to probable oxidoreductase - Streptomyces coelicolor	3,503	14,342	10,273	9,37	3	0,017
922	similarity to cytochrome c-type synthesis protein ccsA - Chlamydomonas reinhardtii chloroplast	2,52	2,029	2,218	2,26	3	0,000
1245	strong similarity to trehalose/maltose binding protein malE - Thermococcus litoralis	0,16	0,103	0,475	0,25	3	0,040
1525	strong similarity to gamma-glutamyltransferase ggt - Escherichia coli		0,298	0,384	0,34	2	0,029
1546	similarity to hypothetical protein - Corynebacterium glutamicum	0,21	0,166	0,362	0,25	3	0,013
1568	strong similarity to undecaprenyl diphosphate synthase upps - Micrococcus luteus	2,065	2,405	1,655	2,04	3	0,004
1727	hypothetical protein	0,363	0,262	0,245	0,29	3	0,003
1875	strong similarity to hypothetical protein Rv0046c - Mycobacterium tuberculosis	0,153	0,054	0,048	0,09	3	0,010
1888	malic enzyme mez - Corynebacterium glutamicum	0,284	0,191	0,527	0,33	3	0,033
1948	strong similarity to hydroxyquinol 1,2-dioxygenase - Arthrobacter sp.	6,904	16,871	4,668	9,48	3	0,013
2041	glutamate-binding protein gluB precursor - Corynebacterium glutamicum	0,346	0,249	0,571	0,39	3	0,032
2092	similarity to oligopeptide-binding protein oppA - Escherichia coli	0,287	0,477	0,275	0,35	3	0,013

Tab. 9 (ff): myo-Inositol abhängige Expressionsveränderungen im C. glutamicum Wildtyp

ORF	Funktion des ORF	Exp I	Exp II	Exp III	μ	n	p-value
2093	similarity to oligopeptide-binding protein oppA - Escherichia coli [putative frameshift]	0,278	0,303	0,233	0,27	3	0,000
2095	strong similarity to oligopeptide ABC transporter (permease) oppC - Bacillus subtilis	0,314	0,274	0,273	0,29	3	0,000
2096	similarity to oligopeptide transport ATP-binding protein oppD - Bacillus subtilis	0,511	0,16	0,316	0,33	3	0,040
2112	similarity to hypothetical protein - Corynebacterium glutamicum	0,376	0,295	0,683	0,45	3	0,047
2268	weak similarity to cellulase - Cellulomonas fimi	2,477	1,968	1,848	2,10	3	0,002
2596	weak similarity to putative acetyltranferase - Streptomyces coelicolor	0,346	0,062	0,227	0,21	3	0,042
2671	glucose-phosphotransferase-system enzyme II (glucose-permease) ptsM - Corynebacterium glutamicum	0,634	0,311	0,426	0,46	3	0,035
2672	questionable ORF	0,358	0,4	0,463	0,41	3	0,001
2754	hypothetical protein	0,32	0,4	0,28	0,33	3	0,002
2789	hypothetical protein	2,69	3,243		2,97	2	0,011
2886	succinyl-CoA-synthetase (beta-chain) sucC - Corynebacterium glutamicum	0,347	0,159	0,191	0,23	3	0,012
3430	strong similarity to maleylacetate reductase - Pseudomonas cepacia	6,996	2,619	13,06	7,56	3	0,026
3431	strong similarity to myo-inositol transport permease ioIT – Bacillus subtilis	6,731	12,056	23,02	13,94	3	0,008
3432	hypothetical protein	6,532	2,968	10,091	6,53	3	0,016
3436	strong similarity to myo-inositol dehydrogenase idhA - Sinorhizobium meliloti	16,345	9,66	30,498	18,83	3	0,006
3438	strong similarity to myo-inositol hexulose-6-phosphate-isomerase ioll – Bacillus subtilis	11,723	8,544	42,785	21,02	3	0,013
3439	strong similarity to myo-inositol dehydrogenase idhA - Sinorhizobium meliloti	16,894	12,776	50,823	26,83	3	0,008
3440	strong similarity to myo-inositol dehydrogenase idh - Sinorhizobium meliloti	6,612	13,82	17,179	12,54	3	0,006
3441	hypothetical protein	2,63	2,339	5,581	3,52	3	0,019
3442	strong similarity to probable phosphoesterase yvnB - Bacillus subtilis		4,235	4,454	4,34	2	0,000
3444	proline/ectoine carrier proP - Corynebacterium glutamicum	0,196	0,471	0,225	0,30	3	0,024
3533	strong similarity to probable ABC transporter solute-binding lipoprotein SC8F11.05 - Streptomyces coelicolor	0,453	0,111	0,154	0,24	3	0,035
3542	strong similarity to myo-inositol transport permease ioIT – Bacillus subtilis	15,948	6,356	16,281	12,86	3	0,006
3551	strong similarity to ferric enterobactin transport protein fepD - Escherichia coli	0,398	0,282	0,583	0,42	3	0,029
3712	similarity to mitochondrial 3-oxoacid CoA-transferase - Sus scrofa	1,841	2,56	1,773	2,06	3	0,006
3735	strong similarity to phosphotransferase system enzyme II sacB - Lactococcus lactis	0,371	0,476	0,547	0,46	3	0,009
65315	similarity to probable ABC-transporter - Corynebacterium glutamicum	0,314	0,12	0,132	0,19	3	0,015
66855	strong similarity to myo-inositol transport permease ioIT - Bacillus subtilis	14,997	4,338	21,665	13,67	3	0,017

Synthese von *myo*-Inositol den ersten Reaktionsschritt des zweistufigen Prozesses, in dem Glukose-6-Phosphat zu *myo*-Inositol-1-Phosphat zyklisiert wird (Nigou *et al.*, 2002). Da unter den gewählten Bedingungen zur Durchführung der DNA-Chip Experimente *myo*-Inositol im Medium zur Verfügung stand, wird in *C. glutamicum* offensichtlich die Biosynthese des Hexitols verhindert, oder stark herunterreguliert, wie der stark erniedrigte mRNA-Spiegel dieses ORFs zeigt.

Hierarchische Cluster Analyse

Zur Identifizierung von Gruppen ähnlich exprimierter Gene wurde eine hierarchische Cluster Analyse nach Eisen et al. (1998) mit den Genen aus Tabelle 9 durchgeführt. Neben den mRNA-Spiegeln der 54 Gene wurden dazu auch die mRNA-Spiegel dieser Gene aus allen weiteren im Institut durchgeführten DNA-Chip Analysen herangezogen. Damit umfaßte die Cluster Analyse die mRNA-Spiegel der 54 Gene mit signifikant veränderter Expression aus insgesamt 223 DNA-Chip Analysen (JMD-Datenbank). In Abbildung 10 ist das Ergebnis dieser hierarchischen Cluster Analyse dargestellt. In dem gezeigten Ausschnitt ist zu erkennen, dass 28 Gene ein sehr ähnliches Expressionsverhalten in den 223 DNA-Chip Experimenten aufweisen. Davon wiederum sind 25 Gene in den zwei bekannten iol-Operons organisiert. Es fällt weiterhin auf, dass es zwei Arten von DNA-Chip Experiment waren, in denen diese 28 Gene ähnlich exprimiert sind. Einerseits handelte es sich um die drei unabhängig durchgeführten DNA-Chip Analysen zur Untersuchung des Wachstums auf myo-Inositol, andererseits waren es Expressionsanalysen aus anderen Arbeitsgruppen im Institut, in denen das Wachstum des C. glutamicum Wildtyps auf BHI-Komplexmedium mit dem Wachstum von ATCC13032 auf CGC-Minimalmedium verglichen wurde. In diesen DNA-Chip Analysen zeigten alle Gene der beiden iol-Operons erhöhte mRNA-Spiegel bei Wachstum auf BHI-Komplexmedium. Da in dem verwendeten Komplexmedium sehr wahrscheinlich erhebliche Mengen von myo-Inositol vorhanden sind, ist davon auszugehen, dass die verstärkte Expression der Gene des myo-Inositolstoffwechsels für den Abbau des Hexitols nötig ist.

Abb. 10: Hierarchische Cluster Analyse zur Identifzierung von Gen-Gruppen mit ähnlicher Expression. Berücksichtigt wurden die mRNA-Spiegel der 54 signifikant bei Wachstum auf *myo*-Inositol veränderten Gene. Verglichen wurde die Expression in insgesamt 223 DNA-Chip Experimenten. (\checkmark) Gene, die auch in Tabelle 9 aufgeführt sind

5.2 Funktionsanalyse putativer myo-Inositolstoffwechselgene

Zur Überprüfung der Ergebnisse aus den Expressionsanalysen zum Wachstum auf *myo*-Inositol sollten Inaktivierungsmutanten konstruiert werden. Dazu wurden zunächst zwei Gene aus dem *iol*-Operon I ausgewählt. Dabei handelte es sich um die als *iolD* und *iolG* annotierten Gene ORF560 und ORF562 (Abb. 9). Obwohl wie bereits erwähnt wenig über den *myo*-Inositolstoffwechsel in Bakterien bekannt ist, gibt es erste Hinweise zum Abbauweg in *Bacillus subtilis* (Yoshida *et al.*, 1997). Dort katalysiert *iolG* als Inositol-Dehydrogenase vermutlich die erste enzymatische Reaktion nach dem Import des Hexitols in die Zelle. Zur Funktion von *iolD* ist bisher nur bekannt, dass es Homologien zu einer putativen Inositol-Hydrolase zeigt (Yoshida *et al.*, 2001).

Zur Inaktivierung dieser beiden ausgewählten Gene wurden interne Fragmente mit ausgesuchten Primern in einer PCR-Reaktion amplifiziert (Primersequenzen, Anhang 1) und über die generierte BamHI-Schnittstelle mit dem ebenfalls BamHI geschnittenen tetracyclinresistenten Vektor pT18mob2 (degussa.) ligiert. Anschließend wurde der Ligationsansatz mit chemisch kompetenten Zellen von DH5 α transformiert. Die erhaltenen Klone wurden mit Hilfe von Restriktionsanalysen auf ihre Korrektheit geprüft. Die Plasmid-DNA von je einem Klon pT18mob2ioID_{int} und pT18mob2ioIG_{int} wurde zur Transformation mit elektrokompetenten Zellen des Stammes ATCC13032 eingesetzt. Das Plasmid pT18mob2 ist in C. glutamicum nicht replizierbar und integriert deshalb über homologe Rekombination in das Chromosom (Abb. 11). Die korrekte Integration wurde durch mehrere PCR- Reaktionen überprüft. Hierbei wurden zwei Primerpaare so gewählt, dass jeweils einer der Primer im Chromosom und der andere Primer innerhalb des verwendeten Plasmids binden konnte. Dadurch sollte im Falle einer Integration von pT18mob2iolD_{int} ein 1696 bp sowie ein 879 bp großes DNA-Fragment amplifiziert werden, bei Integration von pT18mob2iolGint ein 1682 bp sowie ein 865 bp großes DNA-Fragment. Die Integration war bei den untersuchten Klonen erfolgreich, und die Fragmente in der erwarteten Größe wurden erhalten.

Abb. 11: Schematische Darstellung zur Konstruktion der *iolG*- und *iolD*-Inaktivierungsmutanten am Beispiel von ATCC13032*iolG*::pT18*mob2iolG*_{int}. Die zur Überprüfung der Integration verwendeten Primer sind als Pfeilspitzen dargestellt (Primersequenzen, Anhang 1).

Die erhaltenen Integrationsklone wurden daraufhin hinsichtlich ihres Wachstums geprüft und auf CGXII-Minimalmedium Platten mit 4 % Glukose oder 4 % *myo*-Inositol ausgestrichen und über Nacht bei 30°C inkubiert. Wie sich herausstellte wuchsen sowohl die getesteten Transformanden von ATCC13032*iolD*::pT18*mob2iolD*_{int} als auch die Transformanden von ATCC13032*iolG*::pT18*mob2iolG*_{int} gut auf den Glukose enthaltenden Platten. Auf *myo*-Inositol hingegen wuchsen die *iolD*-Inaktivierungsmutanten gar nicht, die *iolG*-Inaktivierungsmutanten hingegen deutlich verzögert an. Das war ein erster Hinweis darauf, dass die inaktivierten Gene tatsächlich mit dem *myo*-Inositolstoffwechsel in Verbindung gebracht werden können.

Um dieses Ergebnis zu bestätigen, wurden zusätzlich auch Wachstumskurven aufgenommen. Dazu wurden die Zellen aus über Tag Vorkulturen in BHI-Komplexmedium in einer über Nacht Vorkultur in CGXII-Minimalmedium mit 4 % Glukose vorkultiviert. Anschließend wurden die Hauptkulturen in CGXII-Minimalmedium mit 4 % Glukose oder 4 % myo-Inositol als Kohlenstoffquelle mit einer optischen Dichte (OD₆₀₀) von 0,5 angeimpft und bei 30°C inkubiert. Wie aus Abbildung 12 ersichtlich, wachsen die konstruierten Inaktivierungsmutanten auf dem Zuckeralkohol schlechter als der Wildtyp. Dabei ist auffällig, dass der negative Effekt im iolG-Inaktivierungsstamm nicht so deutlich ist, wie in dem Stamm, wo das ioID homologe Gen inaktiviert wurde. Während ATCC13032ioIG:: pT18*mob2iolG*_{int} mit einer Wachstumsrate von $\mu = 0.22$ h⁻¹ auf *myo*-Inositol etwas langsamer wächst als auf Glukose (μ = 0,39 h⁻¹), wächst die Inaktivierungsmutante von *iolD* praktisch gar nicht auf dem Hexitol. Offensichtlich ist das iolD-Gen essentiell zur Verstoffwechslung von myo-Inositol, ebenso wie in *R. leguminosarum*, einem phytopathogenen Bakterium (Fry et al., 2001). Dort konnte gezeigt werden, dass eine Mutation im iolD-Gen die Transkription der nachfolgenden Gene im Abbauweg von myo-Inositol verhindert, so dass der Zuckeralkohol nicht weiterverwertet werden kann. Weiterhin ist zu bemerken, dass die iolD-Inaktivierung in C. glutamicum anscheinend auch einen Einfluß auf das Wachstum auf Glukose hat. Im Vergleich zum Wildtyp wuchs die iolD-Mutante wesentlich schlechter (Abb. 12) auf Glukose und erreicht nur eine End-OD von etwa 30, während ATCC13032 eine End-OD von etwa 40 erreichen konnte. Offensichtlich besteht ein Zusammenhang zwischen dem Abbauweg von myo-Inositol und dem Zentralstoffwechsel in C. glutamicum, der zur Zeit aber völlig unbekannt ist.

Abb. 12: Wachstumsverhalten der *C. glutamicum* Stämme ATCC13032iolG::pT18*mob2 iolG*_{int} (A) und ATCC13032*iolD*::pT18mob2*iolD*_{int} (B) im Vergleich zum Wildtyp ATCC13032 bei Kultivierung auf CGXII-Minimalmedium mit 4 % Glukose (Glc) oder 4 % *myo*-Inositol (Ino).

Konstruktion und Charakterisierung einer ioID-Deletionsmutante

Es gab Hinweise, dass *myo*-Inositol bei der großtechnischen Produktion von L-Lysin einen Einfluß auf die Produktausbeute hat (degussa., persönliche Mitteilung). Aus diesem Grund war es interessant, das *iolD*-Gen in einem Produktionsstamm der degussa. (ATCC21527) über die *cross over*-PCR-Methode zu deletieren, und diese Mutante auf Produktbildung zu prüfen.

Zur Herstellung der iolD-Deletionsmutante wurde die Methode modifiziert nach Link et al. (1997) eingesetzt. Das Deletionsfragment wurde mit BamHI geschnitten und mit dem ebenfalls BamHI-geschnittenen Vektor pK19mobsacB ligiert (Schäfer et al., 1994). Beim zweiten Rekombinationsschritt (Abb. 7) wurden insgesamt 47 Klone erhalten, die durch Excision des Vektors wieder kanamycinsensitiv geworden waren. Diese Klone wurden anschließend hinsichtlich ihres Wachstums auf myo-Inositol geprüft. Dazu wurden Zellen der einzelnen Klone auf CGXII-Minimalmediumplatten mit 4 % myo-Inositol und 4 % Glukose als Kohlenstoffguelle ausgestrichen und über Nacht bei 30°C inkubiert. Bei 12 der 47 Klone war kein Wachstum auf myo-Inositol zu sehen. Das war ein erster Hinweis darauf, dass das iolD-Gen in diesen Klonen tatsächlich deletiert worden war. Um dieses Ergebnis zu bestätigen, wurden die 12 Klone anschließend mit Hilfe der PCR-Reaktion geprüft. (Primersequenzen, Anhang 1). Im Falle einer erfolgreichen Deletion sollte dabei ein 513 bp großes DNA-Fragment amplifiziert werden, im Fall der wiederhergestellten Wildtypsituation ein 2352 bp Fragment. Bei allen 12 überprüften Klonen wurde ein etwa 500 bp großes DNA-Fragment erhalten, welches dem um 1861 bp verkürzten iolD-Gen entsprach. In Abbildung 13 ist für einen dieser Klone das durch PCR amplifizierte DNA-Fragment gezeigt. Somit ist die erfolgreiche Konstruktion des C. glutamicum Stammes ATCC 21527∆iolD belegt.

Abb. 13: PCR-Nachweis der *iolD*-Deletion. Die unterschiedliche Größe der erhaltenen PCR-Produkte bestätigt die Deletion von *iolD* in einem Klon von ATCC21527 Δ *iolD*. Spur 1: Größenstandard (100 bp-Leiter, DNA-Längenstandard XIV, Roche, Mannheim), Spur 2: amplifizierte DNA aus ATCC21527 Δ *iolD* (um 1861 bp verkürztes Deletionsfragment), Spur 3: amplifizierte DNA aus ATCC21527 (Wildtypsituation), Spur 4: Größenstandard (λ -DNA, *Bst*EII-geschnitten) Anschließend wurde der Deletionsstamm ATCC21527 *iolD* bei der degussa. auf seine L-Lysinbildung überprüft. Dazu wurden in einem ersten Versuch der iolD-Deletionsstamm und der Ausgangsstamm in CGXII-Minimalmedium kultiviert, welches insgesamt 4 % Kohlenstoffquelle in unterschiedlichen Konzentrationen von Glukose und myo-Inositol enthielt. In Tabelle 10 ist diese Konzentrationsreihe zusammen mit der Produktausbeute und den optischen Dichten (OD₆₆₀) in Mittelwerten aus drei unabhängig durchgeführten Experimenten dargestellt. Das Ergebnis zeigt, dass die Zugabe von myo-Inositol bis zu 0,5 % die L-Lysinkonzentration im Modellstamm deutlich steigert. So wurden bei Wachstum auf Glukose ohne Zugabe des Zuckeralkohols nach 24 h Kultivierungszeit 7,6 g/L L-Lysin gebildet. Im Vergleich dazu wurden bei Zugabe von 0,5 % myo-Inositol zum selben Zeitpunkt bereits 9,0 g/L L-Lysin ausgeschieden. Nach 48 h Kultivierung wurden in derselben Kultur sogar 10,3 g/L L-Lysin gegenüber 4,9 g/L in der Kultur ohne myo-Inositol erhalten (Tab. 10). Bei Wachstum auf CGXII-Minimalmedium mit myo-Inositol als alleiniger Kohlenstoffquelle wurde praktisch gar kein L-Lysin gebildet. Weiterhin fällt auf, dass die iolD-Mutante überraschend stark verzögert anwächst, unabhängig von der Anwesenheit von myo-Inositol im Fermentationsmedium. Aber auch der Modellstamm ATCC21527 wächst mit steigenden *myo*-Inositolmengen schlechter (Tab. 10) als vergleichsweise der C. glutamicum Wildtypstamm ATCC13032, wie in Abbildung 12 zu sehen ist. Insofern ist nicht zu entscheiden, ob die beobachteten Effekte von myo-Inositol auf die L-Lysinbildung des Modellstammes ATCC 21527 direkt auf Stoffwechseleffekte oder aber auf verändertes Wachstumsverhalten zurückzuführen sind.

Um diese Experimente in einem System durchführen zu können, wo das Wachstum auf Glukose vergleichbar mit dem Wachstum auf *myo*-Inositol ist, wurden im Folgendem ausgehend vom *C. glutamicum* Wildtyp ATCC13032 die Stämme ATCC13032 Δ io/DpJC50 konstruiert. Die Konstruktion der *iolD*-Deletionsmutante erfolgte wie bereits beschrieben modifiziert nach der Methode von Link *et al.* (1997). Auf diese Weise konnten von 45 Klonen 11 Klone erhalten werden, in denen das um 1839 bp verkürzte *iolD*-Gen vorlag. Anschließend wurden elektrokompetente Zellen der *C. glutamicum* Stämme ATCC13032 Δ io/D mit Plasmid-DNA von pJC50 (Cremer *et al.*, 1991) elektroporiert. Dieses Plasmid enthält ein 2,7 kb *Dral*-Fragment der für die Untereinheiten der Aspartatkinase kodierenden Gene *IysC* α und *IysC* β sowie ein 2,8 kb Fragment des Dihydrodipicolinat-Synthetasegens *dapA*. Aufgrund der plasmidkodierten Überexpression dieser Gene wird die L-Lysinbildung auch im Wildtyphintergrund ermöglicht. Es konnten 7 Transformanden von ATCC13032 Δ *io/D*pJC50 und ein Klon von ATCC13032pJ50 erhalten werden. Alle Klone hatten nach Überprüfung durch verschiedene Restriktionen das

Tab. 10: Wachstum und Lysinbildung mit den *C. glutamicum* Stämmen ATCC21527 und ATCC21527∆*iolD*. Dargestellt sind die Mittelwerte aus drei unabhängig durchgeführten Experimenten mit den errechneten Produktausbeuten für L-Lysin nach 24 h und 48 h Kultivierungszeit.

	CGXII-Mi	nimalmedium	24h Kultivi	erungszeit	48h Kultivi	erungszeit	
	Glukose [%]	myo-Inositol [%]	Lys*HCI [g/L]	OD [660nm]	Lys*HCI [g/L]	OD [660nm]	
21527	4 000	0.000	7,60	11,20	4,90	6,10	
21527∆ <i>iolD</i>	4,000	0,000	2,00	3,90	5,00	10,00	
21527	3 050	0.050	8,10	11,60	7,40	7,45	
21527∆ <i>iolD</i>	3,950	0,050	4,30	7,80	7,40	9,50	
21527	3 0 2 5	0.075	8,70	12,80	7,20	6,40	
21527∆ <i>iolD</i>	5,925	0,075	4,40	7,80	7,00	7,70	
21527	3 000	0 100	9,40	13,40	8,60	8,65	
21527∆ <i>iolD</i>	3,900	0,100	4,00	6,60	4,30	7,40	
21527	2 500	0 500	9,00	12,30	10,30	9,20	
21527∆ <i>iolD</i>	3,500	0,500	2,30	4,10	3,70	6,80	
21527	0.000	4 000	2,50	4,80	0,80	6,70	
21527∆ <i>iolD</i>	0,000	4,000	0,00	0,10	0,00	0,20	

richtige Plasmidkonstrukt integriert. Je ein Klon wurde daraufhin bei der degussa. erneut auf die Produktbildung von L-Lysin überprüft. Auch in dieser Versuchsreihe wurden drei unabhängige Experimente durchgeführt, in denen die beiden *C. glutamicum* Stämme in CGXII-Minimalmedium mit unterschiedlichen Konzentrationen von Glukose und *myo*-Inositol kultiviert (Tab. 10), sowie nach 24 h und 48 h die L-Lysin Produktausbeute gemessen wurden. In Abbildung 14 ist das Ergebnis dieser Experimente dargestellt. Bei den angegebenen Produktkonzentrationen handelt es sich wiederum um die Mittelwerte der drei unabhängig durchgeführten Experimente.

Es stellte sich heraus, dass bei vergleichbarem Wachstum in den Kulturen die *myo*-Inositol in einer Konzentration von 0,05 –0,5 % enthielten, immer mehr L-Lysin im Stamm ATCC-13032∆*iolD*pJC50 gebildet wurde, als im Vergleich zum Kontrollstamm ATCC13032pJC50. Wurden die beiden *C. glutamicum* Stämme ausschließlich auf *myo*-Inositol kultiviert, wurde wie schon im Stamm ATCC21527 gar kein Produkt gebildet. Die Ergebnisse zeigen, dass für den beobachteten positiven Effekt auf die L-Lysinbildung durch die Zugabe geringer Mengen des Zuckeralkohols in das Medium keine vollständige Verstoffwechslung des *myo*-Inositols nötig ist. Tatsächlich wirkt sich die Deletion des *iolD*-Gens positiv auf die Produktbildung im Wildtyphintergrund aus.

Abb. 14: Lysinakkumulation in den *C. glutamicum* Stämmen ATCC13032pJC50 (\blacksquare) und ATCC13032 Δ *iolD*pJ50 (\blacksquare) nach 24 h (A) und 48 h (B) Kultivierungszeit. Dargestellt sind die L-Lysin Produktkonzentrationen (g/L) bei Kultivierung auf CGXII-Minimalmedium unter Zugabe unterschiedlicher Konzentrationen Glukose und *myo*-Inositol. Die Balken 1-6 auf der X-Achse stehen für die unterschiedlichen Konzentrationen an Kohlenstoffquelle im Fermentationsmedium:

- 1 4 % Glukose
- 2 3,95 % Glukose + 0,05 % *myo*-Inositol
- 3 3,925 % Glukose + 0,075 % *myo*-Inositol
- 4 3,9 % Glukose + 0,1 % *myo*-Inositol
- 5 3,5 % Glukose + 0,5 % *myo*-Inositol
- 6 4 % myo-Inositol

Untersuchungen zur Regulation des myo-Inositolstoffwechsels

Im Rahmen der Experimente zu *myo*-Inositol abhängigen Expressionsveränderungen in *C. glutamicum* wurden zwei *iol*-Operons identifiziert, die unter anderem je ein Gen enthielten, das für einen putativen Transkriptionsregulator kodierte und in seiner Expression verändert war. Um Informationen über die mögliche Funktion dieser Gene in der Regulation des *myo*-Inositolstoffwechsels in *C. glutamicum* zu erhalten, wurden diese Gene *ribR* (ORF568, *iol*-Operon I) und *iclR*2 (ORF3434, *iol*-Operon II) weiter untersucht.

Das Gen *iclR*2 ist im Zusammenhang mit Arbeiten zur Acetatverwertung in *C. glutamicum* bereits untersucht (Prof. Eikmanns, Universität zu Ulm) worden. Dadurch standen unter anderem eine Deletionsmutante und durch Einbringen des *iclR*2-Gens in den Expressionsvektor pEKEx2 (Gerstmeir, 2003) auch eine Mutante, in der das Gen des putativen Transkriptionsregulators überexprimiert wird, zur Verfügung. Um das Wachstum auf *myo*-Inositol zu bestimmen, wurden die beiden rekombinanten *iclR*2-Stämme in CGXII-Minimalmedium mit 4 % Glukose oder 4 % *myo*-Inositol zusammen mit dem *C. glutamicum* Wildtyp und ATCC13032pEKEx2 kultiviert. Zur Induktion des *tac*-Promotors in den *C. glutamicum* Stämmen ATCC13032pEKEx2*iclR*2 und ATCC 13032pEKEx2 wurde nach einer Stunde Kultivierungszeit 1 mM IPTG (IsopropyI-β-D-thiogalaktosid) zu den Kolben gegeben.

Die verwendeten Stämme wuchsen vergleichbar gut auf *myo*-Inositol, unabhängig davon, ob das Gen *iclR*2 deletiert oder überexprimiert ist, und auch unabhängig davon, ob mit IPTG induziert wurde oder nicht. Auch die unabhängige Wiederholung des Experimentes mit einer geringeren Konzentration von 1 % *myo*-Inositol in den Hauptkulturen und im Vergleich zu Kulturen mit 1 % Glukose im Medium zeigte keine *myo*-Inositol abhängigen Veränderungen im Wachstum der *iclR*2-Mutanten. Somit handelt es sich bei *iclR*2 offensichtlich nicht um einen Transkriptionsregulator des *myo*-Inositolstoffwechsels. Auffällig war hingegen, dass die Zellen der *iclR*2-Deletionsmutante bei gleichem Wachstumsverhalten wie der Wildtyp und die anderen verwendeten Stämme vom Beginn der Kultivierungen an bis zu einer Kultivierungszeit von etwa 6 h einen rosafarbenen Phänotyp auf CGXII-Minimalmedium mit *myo*-Inositol zeigten. Inwiefern dieses Phänomen mit der generellen Beobachtung zusammenhängt, dass sich das Medium in Schüttelkolben von *C. glutamicum* bei Wachstum auf *myo*-Inositol mit der Zeit schwarz verfärbt, ist zur Zeit unklar.

Das Gen *ribR* (ORF568), dessen Genprodukt Ähnlichkeiten zu Transkriptionsregulatoren der *ribR*-Familie zeigte, sollte in Untersuchungen zur Regulation des *myo*-Inositolstoffwechsels im *C. glutamicum* Wildtypstamm ATCC13032 sowohl deletiert als auch überexprimiert werden, um es näher charakterisieren zu können. Zur Konstruktion einer Mutante, in der das *ribR*-Gen plasmidkodiert überexprimiert wird, wurde mit Hilfe der PCR-Reaktion ein 1104 bp großes DNA-Fragment amplifiziert, und über die angefügten *Xba*I-Schnittstellen mit dem ebenfalls *Xba*I-geschnittenen Vektor pJC1 (Cremer *et al.*, 1990) ligiert und mit elektropkompetenten Zellen von ATCC13032 transformiert. Durch Überprüfung mit Restriktion konnte von 4 getesteten Transformanden ein Klon als ATCC13032pJC1*ribR* identifiziert werden.

Allerdings war es nicht möglich, das ribR-Gen im Wildtyp von C. glutamicum nach der bekannten Methode (Link et al., 1997) zu deletieren. Es wurde deshalb in einem parallelen Ansatz auch der C. glutamicum L-Lysinproduktionsstamm ATCC21527 (degussa.) zur Klonierung einer Mutante, die ribR überexprimiert, sowie zur Klonierung einer ribR-Deletionsmutante herangezogen, da die Beobachtung dafür sprach, dass elektrokompetente Zellen dieses Modellstammes besser transformiert werden konnten. Die Klonierung von ATCC21527pJC1ribR erfolgte wie bereits beschrieben. Alle vier in Restriktionen getesteten Transformanden trugen das richtige Plasmid. Zur Konstruktion der Deletion wurde das DNA-Fragment, welches nahezu den gesamten Genort deletiert hat, mit Xbal geschnitten und mit dem ebenfalls Xbal-geschnittenen Deletionsvektor pK19mobsacB (Schäfer et al., 1994) ligiert. Plasmid-DNA von pK19*mobsacB∆ribR* wurde anschließend zur Transformation von elektrokompetenten Zellen des C. glutamicum Stammes ATCC21527 eingesetzt und die Deletion mit dem bei Schäfer et al. (1994) beschriebenen System zum Genaustausch durchgeführt. Beim zweiten Rekombinationsschritt, in dem auf die Excision des Deletionsplasmides geprüft wird, wurden insgesamt 45 Klone erhalten, die wieder kanamycinsensitiv geworden waren.

Diese Klone wurden anschließend hinsichtlich ihres Wachstums auf *myo*-Inositol-haltigen Agarplatten mit CGXII-Minimalmedium im Vergleich mit dem Wachstum auf Glukose-haltigen CGXII-Platten geprüft. Dabei war auffällig, dass alle getesteten Klone gut auf dem Zuckeralkohol wachsen konnten. Im Gegensatz dazu gab es aber überraschenderweise 5 Klone, die nicht mehr in Lage waren, auf Glukose zu wachsen. Diese Klone wurden neben anderen Klonen als Kontrolle zum Nachweis der erfolgreichen Deletion in einer PCR-Reaktion mit ausserhalb des zur Konstruktion verwendeten Genbereiches liegenden Primern (Anhang 1) überprüft. Im Falle der erfolgreichen Deletion sollte dabei ein 958 bp großes

DNA-Fragment amplifiziert werden, im Falle der wiederhergestellten Wildtypsituation aber ein 1873 bp Fragment. Überraschend wurde bei allen 5 überprüften Klonen ein etwa 1000 bp großes DNA-Fragment erhalten, welches dem um 941 bp verkürzten *ribR*-Gen entsprach. Das schlechte Wachstum der *ribR*-Deletionsmutante auf Glukose ist also auf Abwesenheit von *ribR* zurückzuführen. Dieser Effekt ist nicht verstanden, deutet aber auf einen Zusammenhang zwischen *myo*-Inositol- und Glukosestoffwechsel hin.

Aufgrund des schlechten Wachstums auf Glukose-haltigen CGXII-Platten, sollten die konstruierten *ribR*-Mutanten von ATCC21527 weiter charakterisiert werden. Dazu wurden Wachstumsexperimente in Flüssigkultur durchgeführt, um zu prüfen ob sich der Effekt auch in Flüssigkultur beobachten läßt. In Abbildung 15 sind die Wachstumskurven dargestellt. Man sieht deutlich, dass der L-Lysinproduzent ATCC21527 wieder schlechter auf dem Zuckeralkohol wächst als auf Glukose. Ein *ribR*-spezifischer Wachstumsunterschied, konnte jedoch überraschenderweise nicht festgestellt werden. Auch zusätzliche Wachstumsexperimente mit Saccharose und Ribose als Kohlenstoffquelle in CGXII-Minimalmedium zeigten keine *rib*-spezifischen Unterschiede (nicht gezeigt).

Abb. 15: Wachstumkurven der *C. glutamicum* Stämme ATCC21527, ATCC21527pJC1, ATCC21527pJC1*ribR* und ATCC21527∆*ribR* in CGXII-Minimalmedium mit 100 mM Glukose (Glc) oder 100 mM *myo*-Inositol (Ino). Es wurden zwei Klone des *ribR*-Deletionsstammes kultiviert, Klon 1-14 und Klon 20-41.
Zusammenfassend läßt sich feststellen, dass der *ribR*-Phänotyp offensichtlich nicht stabil ist. Interessanterweise zeigte sich auch auf den original Selektionsplatten die zur Identifizierung der der *ribR*-Deletionsklone führten, bereits nach 4 bis 6 Tagen Wachstum auch auf den Glukose-enthaltenden CGXII-Platten. Offensichtlich setzt sich sehr schnell eine Suppressormutation durch, die die Charakterisierung eines einfachen Deletionsstammes nicht möglich macht. Das Gen *ribR* scheint für den Zuckerstoffwechsel interessant. Für dessen Untersuchung sind dann aber aufwendigere Konstruktionen nötig.

5.3 Untersuchung von Deletionsmutanten putativer myo-Inositoltransporter

Zwei der 20 Gene aus den beiden *iol*-Operons, die in den DNA-Chipanalysen bei Wachstum auf *myo*-Inositol signifikante Expressionsveränderungen zeigten, wiesen Ähnlichkeiten zu Genen auf, die unter anderem für die *myo*-Inositoltransporter aus *B. subtilis* kodieren (ORF3542 und ORF3431). Ein weiteres Gen (ORF564) zeigte Ähnlichkeiten zu *emr*A, dessen Genprodukt ein *Multidrug* Exporterprotein aus *B. subtilis* ist.

Konstruktion von Deletionsmutanten putativer myo-Inositoltransporter

Um zu überprüfen, ob es sich bei den Genen ORF3542 und ORF3431 tatsächlich um putative Transporter für den Import von myo-Inositol in die Zelle handelt wurden zunächst Deletionsmutanten nach Link et al. (1997) konstruiert (Tab. 12). Grundsätzlich wurden die Deletionen parallel in den C. glutamicum Stämmen ATCC13032 und ATCC21527 versucht. Während beide Deletionsmutanten im Stammhintergrund von ATCC21527 erhalten werden konnten, gelang im Wildtyphintergrund trotz mehrmaliger Ansätze nur die Deletion von ORF3431. Hier wurde ein 1472 bp großes internes Fragment von ORF3431 mit Hilfe der bekannten PCR-Reaktionen und nachfolgenden Rekombinationsschritten (Schäfer et al.; 1994) deletiert (Primersequenzen, Anhang 1). Dabei entsprachen die PCR-Produkte von 2 der 12 getesteten Klone aus ATCC13032 und das PCR-Produkt von einem der 30 getesteten Klone aus ATCC21527 dem um 1472 bp verkürzten ORF3431, welcher im Folgenden iol711 genannt wird. Zur Konstruktion der Deletion von ORF3542 wurde ein 1422 bp großes internes Fragment des Gens deletiert. Von 85 getesteten Klonen konnte so ein Klon erhalten werden, in dem das putative myo-Inositoltransportergen deletiert war, welches im Folgenden iolTI genannt wird. Allerdings konnten die Deletionsmutanten bereits auf myo-Inositol-haltigen Agarplatten gut wachsen, was sich auch mit Wachstumsexperimenten in Flüssigkultur bestätigen ließ. Arbeiten zum myo-Inositoltransport in B. subtilis konnten zeigen, dass zwei Transporter für myo-Inositol existieren, wobei iolF gegenüber iolT geringere Affinitäten zum Hexitol zeigt, was sich in einem deutlichen

Wachstumsdefekt einer *iolF*-Mutante äußert (Yoshida *et al.*, 2002). Das scheint für *C. glutamicum* nicht der Fall zu sein, vorrausgesetzt beide *iolT* homologen Gene kodieren für *myo*-Inositoltransporter. Denkbar ist, dass in *C. glutamicum* beide Gene gegenseitig den Phänotyp einer einzelnen Deletion komplementieren können. Aus diesem Grund wurde in mehreren Ansätzen versucht, eine Doppeldeletion der beiden *iolT*-Gene zu konstruieren. Das war jedoch nicht möglich, unabhängig davon, ob zur Klonierung von ATCC21527 Δ *iolT*I oder ATCC21527 Δ *iolT*I ausgegangen wurde. Somit konnte auf diese Weise nicht gezeigt werden, ob die beiden Gene *iolT*I und *iolT*II am *myo*-Inositoltransport beteiligt sind.

Wachstum der Transportermutanten auf verschiedenen Kohlenstoffquellen

Eine andere Möglichkeit zur Überprüfung der Funktion der konstruierten Deletionsmutanten war das Wachstum der Stämme ATCC21527∆*io*/*T*I und ATCC21527∆*io*/*T*II im Vergleich mit dem Modellstamm ATCC21527 auf unterschiedlichen Kohlenstoffquellen zu untersuchen. Dazu wurden im Wesentlichen Zucker und Zuckeralkohole verwendet, die ebenso wie *myo*-Inositol als Substrate für die Transporter in Frage kommen. Zur Durchführung dieser Wachstumsexperimente wurden Zellen derselben Vorkultur parallel in mehreren Wachstumsexperimenten eingesetzt, indem mehrere Aliquots der Vorkultur mit 30 % (v/v) Glycerin versetzt, und bis zur weiteren Kultivierung eingefroren wurden. In Tabelle 11 sind die Ergebnisse der Versuche schematisch dargestellt.

Tab. 11: Wachstum der *C. glutamicum* ATCC13032, ATCC13032 Δ *io*/*T*II, ATCC21527, ATCC21527 Δ *io*/*T*I und ATCC21527 Δ *io*/*T*II auf unterschiedlichen Substraten. Es wurden jeweils Konzentrationen von 100 mM in CGXII-Minimalmedium eingesetzt. Im Falle von Wachstum wurden die Wachstumsraten ($\mu = h^{-1}$) angegeben. (-) bedeutet kein Wachstum.

	13032	13032∆ <i>iolT</i> II	21527	21527∆ <i>iolT</i> I	21527∆ <i>iolT</i> II
L-Arabinose D(+)-Ribose	- 0,19	- 0,21	- 0,15	- 0,16	- 0,16
D(+)-Xylose D(+)-Fruktose D(+)-Galaktose D(+)-Mannose	0,37 - -	0,37 - -	- 0,37 - -	0,38 - -	0,36 - -
D(+)-Mannit D(+)-Arabit Sorbit	- 0,20 -	0,22 -	- 0,19 -	0,19 -	0,19 -
K-Glukonat	0,38	0,36	0,36	0,38	0,36
Saccharose Raffinose (Pentahydrat) α-Cyclodextrin	0,38 - -	0,40 - -	0,39 - -	0,41 - -	0,42 - -

Es stellte sich heraus, dass in den Kulturen, die mit der angebotenen Kohlenstoffquelle wachsen konnten, keine Wachstumsunterschiede zu erkennen waren, die auf die konstruierte Deletion der Transporterhomologen zurückzuführen sind.

Die *C. glutamicum* Stämme wurden auch hinsichtlich ihres Wachstums auf Maltodextrinen untersucht. Dazu wurden CGXII-Agarplatten hergestellt, die entweder 20 mM Maltotriose oder 20 mM Maltotetraose enthielten. Es ließ sich ein Phänotyp bei Wachstum auf Maltotetraose feststellen. Allerdings handelt es sich dabei um Unterschiede im Wachstum von ATCC13032 gegenüber ATCC21527. So wächst der Modellstamm nur sehr schlecht gegenüber dem Wildtyp (Abb. 16). Wachstumsunterschiede, die auf die Deletion der Gene der Transporterhomologen zurückzuführen sind, waren nicht feststellbar.

Abb. 16: Plattentest zur Überprüfung des Wachstums von ATCC13032 und ATCC21527 auf CGXII-Minimalmediumplatten mit 20 mM Maltotriose oder 20 mM Maltotetraose.

5.4 Charakterisierung des iol-Operons II

Um Hinweise über die Funktion der Gene zu erlangen, die sich im zweiten *iol*-Operon befinden, sollte eine Mutante konstruiert werden, in der die vier Gene, die Homologien zu *myo*-Inositolstoffwechselgenen zeigten, deletiert sind.

Konstruktion von ATCC21527∆idhlliolG::pT18mob2iolGint

Dazu wurde nach der bekannten Methode (Link *et al.*, 1997; Schäfer *et al.*, 1994) ein 4072 bp großes internes Fragment der Gene ORF3436 bis ORF3440 deletiert (Tab. 12).

Auch hier gelang die Deletion nur unter Verwendung des *C. glutamicum* Modellstammes ATCC21527. Mit dem *C. glutamicum* Wildtyp konnten keine Deletionsklone hergestellt werden. Von insgesamt 61 getesteten Klonen konnte einer über die PCR-Reaktion als korrekter Stamm ATCC21527 Δ *idh*II identifiziert werden. Allerdings zeigte sich kein eindeutiger Phänotyp bei Wachstum der Deletionsklone auf *myo*-Inositol, so dass zunächst davon auszugehen war, dass es sich nicht um Gene handelte, die zur Verstoffwechslung des Hexitols benötigt werden. Jedoch trat die schwarze Verfärbung der Kulturen während des Wachstums auf *myo*-Inositol nicht ein (Tab. 12).

Im Rahmen der Untersuchungen zum *myo*-Inositolstoffwechsel wurde bereits eine Insertionsmutante konstruiert, in der *iolG* durch die Integration des Vektors pT18*mob2iolG*_{int} inaktiviert ist. Klone des Stammes ATCC13032*iolG*::pT18*mob2iolG*_{int} sind in der Lage auf dem Hexitol zu wachsen, sie zeigten aber verzögertes Wachstum (siehe Kapitel 5.2). Da die Vermutung nahe lag, dass die Inaktivierung der *myo*-Inositoldehydrogenase IolG durch homologe Genprodukte aus dem *iol*-Operon II ersetzt werden kann, wurde im Folgenden der Stamm ATCC21527∆*idh*II*iolG*::pT18*mob2iolG*_{int} konstruiert. Sollten die Gene ORF3439 und ORF3440 des *idh*II-Bereich (Tab. 12) tatsächlich für *myo*-Inositoldehydrogenasen kodieren, war zu erwarten, dass bei zusätzlicher Inaktivierung von *iolG* kein Wachstum auf *myo*-Inositol möglich ist. Dazu wurden zunächst elektrokompetente Zellen von ATCC 21527∆*idh*III nach Kirchner (1999) hergestellt. Anschließend wurden die elektrokompetenten Zellen mit Plasmid-DNA von pT18*mob2iolG*_{int} transformiert. Die drei erhaltenen Klone wurden auf die korrekte Integration des Plasmides mit verschiedenen PCR-Ansätzen geprüft. Alle drei Klone zeigten Banden in der zu erwartenden Größe von 1682 bp und 865 bp.

Wachstum der Mutante ATCC21527∆*idh*ll*iolG*::pT18*mob2iolG*_{int} auf *myo*-Inositol

Die Klone wurden daraufhin in einem Plattentest auf CGXII-Minimalmediumplatten mit 4 % Glukose oder 4 % *myo*-Inositol geprüft. Wie in Abbildung 17 deutlich zu sehen ist, sind die Klone von ATCC∆*idh*II in denen nachträglich das *iolG*-Gen aus dem *iol*-Operon I inaktiviert wurde, nicht mehr in der Lage auf *myo*-Inositol zu wachsen. Auch im Vergleich mit den *C. glutamicum* Stämmen ATCC21527 und ATCC21527∆*idh*II zeigte sich, dass zumindest zwei der drei getesteten Klone nicht mehr auf dem Zuckeralkohol wuchsen (Abb. 17). Das Wachstum auf Glukose als Kohlenstoffquelle war hingegen unbeeinflußt.

Tab. 12: Auflistung der in dieser Arbeit konstruierten *iol*-Deletionsstämme von *C. glutamicum* ATCC13032 und ATCC21527 mit der dazugehörigen Annotation aus den drei Datenbanken BIOMAXX (degussa.), NCBI (National Institute of Health) und ERGO (Integrated Genomics), sowie der putativen Funktion des Genproduktes und der Phänotyp unter Kultivierungsbedingungen in *myo*-Inositol-haltigem CGXII-Minimalmedium

Stamm	BIOMAXX	NCBI	ERGO	Funktion des ORF	Phänotyp
13032∆ <i>iolD</i>	ORF560	NCgl0159	RCGL00175	Acetolactat-Synthase (ioID, B. subtilis)	kein Wachstum auf 4% myo-Inositol
13032∆ <i>iolT</i> II	ORF3431	NCgl2953	RCGL00196	putativer Zuckertransporter (iolT, B. subtilis)	kein Phänotyp
^(*) 13032∆ <i>icIR</i> 2	ORF3434	NCgl2954	RCGL03718	Transkriptionsregulator (icIR2, kdgR E. carotovora)	im Vergleich zum Wildtyp rosafarben
					auf 4 % <i>myo</i> -Inositol
21527∆ <i>iolD</i>	ORF560	NCgl0159	RCGL00175	putative myo-Inositol-Hydrolase (B. subtilis)	kein Wachstum auf 4% myo-Inositol
21527∆ <i>rib</i> R	ORF568	NCgl0167	RCGL00183	Transkriptionsregulator (ribR, B. stearothermophilus)	kein Wachstum auf 4% Glukose direkt
					nach der Transformation
21527∆ <i>emrA</i>	ORF564	NCgl0163	RCGL00179	emrA (mutidrug resistance protein, B. subtilis)	kein Phänotyp
21527∆ <i>iolT</i> I	ORF3542	NCgl0178	RCGL00196	Hexosetransporter (araE / ioIT, B. subtilis)	kein Phänotyp
21527∆ <i>iolT</i> II	ORF3431	NCgl2953	RCGL00196	putativer Zuckertransporter (xyIT, ioIT, B. subtilis)	kein Phänotyp
21527∆ <i>idh</i> ll	ORF3436	NCgl2955	RCGL03719	Di-Hydro-Diol-DH (<i>M. fuscata</i>); yva (<i>M. tuberculosis</i>)	keine Braun- bzw. Schwarzfärbung der
	ORF3438	NCgl2956	RCGL03720	Hexulose-6P-Isomerase (ioll, B. subtilis)	Kulturen
	ORF3439	NCgl2975	RCGL03721	myo-Inositol-Dehydrogenase (idhA, S. meliloti)	
	ORF3440	NCgl2958	RCGL03722	myo-Inositol-Dehydrogenase (idh, S. meliloti)	

^(*) wurde zur Verfügung gestellt von der Arbeitsgruppe Prof. Eikmanns, Universität Ulm

Abb. 17: Plattentest zur Überprüfung des Wachstums der Mutante ATCC21527 $\Delta idhIIiolG$::pT18*mob2iolG*_{int} auf CGXII-Minimalmediumplatten mit 4 % Glukose oder 4 % *myo*-Inositol. ohne Selektionsdruck im direkten Vergleich mit ATCC21527 und ATCC21527 $\Delta idhII$.

Somit besteht ein erster Hinweis darauf, dass *C. glutamicum*, ähnlich wie *B. subtilis* zwei *iol*-Operone besitzt, die zur Verstoffwechslung von *myo*-Inositol nötig sind (Yoshida *et al.*, 1997). Die Ergebnisse des Plattentests sprechen außerdem dafür, dass Gene des ersten *iol*-Operons, wie *iolG*, die Funktion eines oder aller deletierten *idh*II-Gene wenigstens partiell übernehmen können.

5.5 LysG-spezifische Expression bei Wachstum auf myo-Inositol

Die Gene der beiden *iol*-Operons wurden in Untersuchungen zu genomweiten Effekten von LysG auf *C. glutamicum* gefunden. Deshalb sollte in DNA-Chip Analysen speziell der Einfluß des Regulatorproteins bei Wachstum auf *myo*-Inositol untersucht werden. Dazu wurden die Stammpaare ATCC13032 und ATCC13032 Δ *lysG* sowie ATCC13032pMV1 und ATCC 13032pMV1/*lysG* in zwei unabhängigen Experimenten kultiviert. Die Zellen der verwendeten *C. glutamicum* Stämme wuchsen unter den gewählten Bedingungen auf CGXII-Minimalmedium mit 4 % *myo*-Inositol alle mit einer vergleichbaren Wachstumsrate von 0,2 h⁻¹ bis 0,3 h⁻¹. Sie wurden für die Expressionsanalysen entsprechend bei einer optischen Dichte (OD₆₀₀) von etwa 5,0 geerntet und weiter aufgearbeitet (Wendisch *et al.*, 2001). Während der Vergleich der DNA-Chip Analysen von dem *lysG*-überexprimierenden Stamm nicht eindeutig ist, da sich die Ergebnisse der unabhängig durchgeführten Experimente teilweise widersprechen, ergaben sich reproduzierbare Ergebnisse beim Vergleich der DNA-Chip Analysen von ATCC13032 Δ *lysG*. In Tabelle 13 sind die Gene aufgeführt, deren mRNA-

Spiegel in beiden unabhängig durchgeführten Experimente mindestens zweifach verändert waren. Die Gene des *iol*-Operon II (ORF3430-ORF3441) zeigen deutlich höhere mRNA-Spiegel bei *lysG*-Deletion, von *iol*-Operon I aber nur ORF568 und ORF569. Obwohl bereits aus vorhergehenden DNA-Chip Experimenten bekannt ist, dass die zwei *iol*-Operone deutlich erhöhte mRNA-Spiegel bei Wachstum auf *myo*-Inositol im *C. glutamicum* Wildtyp zeigen, konnte bisher kein Zusammenhang zu LysG hergestellt werden. Der Vergleich von Wildtyp und *lysG*-Deletionsmutante bei Wachstum auf dem Zuckeralkohol zeigt aber, dass das Regulatorprotein offensichtlich doch einen Einfluß auf die mRNA-Spiegel ausübt.

Tab. 13: Vergleich der mRNA-Spiegel von zwei unabhängig durchgeführten DNA-Chip Analysen des Stammpaares ATCC13032 und ATCC13032 Δ *lysG* bei Wachstum auf *myo*-Inositol. Dargestellt sind die Gene deren Signal mindestens dreifach über dem Hintergrund lagen und die in mindestens einem Experiment zweifach in ihrer Expression verändert waren. (n.a.) nicht auswertbar

Name	Funktion des ORFs	13032 / 13032∆ <i>lysG</i> (Exp I)	13032 / 13032∆ <i>lysG</i> (Exp II)
312	shikimate transport protein shiA-E. coli	0,37	0,27
313	L-lactate dehydrogenase IIdA-N. meningitidis	0,35	0,22
906	periplasmic-iron-binding protein bitA-S.hyodys.	0,50	0,49
1816	hypothetical protein Rv1321-M.tuberculosis	0,44	(n.a.)
1818	hypothetical protein B1549_F2_87-M.tub.	0,40	0,34
2409	hypothetical protein Rv1496-M.tuberculosis	0,43	(n.a.)
2410	methylmalonyl-CoA mutase mutB chain-S.cinn.	(n.a.)	0,49
2411	methylmalonyl-CoA mutase mutA chain-S.cinn.	0,40	(n.a.)
3021	transposase (insertion sequence IS31831)-C.glutamicum	0,40	0,43
3735	phosphotransferase system II sacB-L.lactis	0,45	0,43
568	transcriptional regulator protein ribR – B. subtilis	3,24	(n.a.)
569	probable oxidoreductase - S. coelicolor	2,46	2,33
3430	maleylacetate reductase-P. caepacia	3,21	2,41
3431	myo-inositol transport permease ioIT – B. subtilis	2,59	2,05
3432	hypothetical protein	2,88	(n.a.)
3436	myo-inositol dehydrogenase idhA – S. meliloti	2,62	(n.a.)
3438	myo-inositol hexulose-6-phosphate-isomerase ioll – B.s.	2,87	2,25
3439	myo-inositol dehydrogenase idhA - S. meliloti	2,37	(n.a.)
3441	hypothetical protein	2,27	(n.a.)
66055	AX066055.fas.0.40	2,92	2,45

Das wird auch aus Abbildung 18 deutlich. Hier wurden die relativen mRNA-Spiegel der Gene beider *iol*-Operons aus allen in dieser Arbeit durchgeführten DNA-Chip Analysen gegeneinander aufgetragen. Während in der Hauptsache die Effekte bei Wachstum des *C. glutamicum* Wildtyps auf *myo*-Inositol eine Rolle spielen, so ist der zusätzliche Einfluß von LysG auf die *iol*-Expression deutlich zu sehen (Abb. 18). Bei Wachstum auf CGXII-Minimalmedium oder BHI-Komplexmedium sind hingegen keine LysG-spezifischen Veränderungen in der Expression der *iol*-Gene zu erkennen.

IV Diskussion

1 LysG-abhängige Expression im Zuckertransport

Corynebacterium glutamicum zählt mit seinen Subspezies flavum und lactofermentum zu den bedeutendsten Mikroorganismen der industriellen Produktion von Aminosäuren (Eggeling und Sahm, 1999; Kircher und Leuchtenberger, 1998). So wird zum Beispiel L-Lysin ausschließlich mit diesem Mikroorganismus produziert. Die schrittweise Verbesserung der Fermentationsverfahren sowie die Optimierung der Produktionsstämme führte dabei stets zu einer Verbesserung der Produktbildung (Pfefferle et al., 2003; Kumagai, 2000). Während der Syntheseweg und auch die Bereitstellung von Vorstufen und Reduktionsäquivalenten sehr gut untersucht ist, trifft dies für die Aufnahme verschiedener Zucker und die Folgen auf die Produktbildung eher weniger zu (Dominguez und Lindley, 1996). Obwohl die meisten Untersuchungen mit Glukose als Kohlenstoffguelle durchgeführt wurden, ist die Bedeutung der industriell relevanten Substrate Stärkehydrolysat (Glukose), Invertzucker (Glukose und Fruktose) und Saccharose während der L-Lysinproduktion nur vergleichsweise wenig berücksichtigt und untersucht (Dominguez et al., 1998; Pelechova et al., 1980). Erst kürzlich konnte der Einfluß der Zucker auf verringerte L-Lysinbildung bei Nutzung von Fruktose gegenüber Glukose gezeigt werden (Kiefer et al., 2002). Möglicherweise ist dies in einer geringeren Nutzung des Pentose-Phosphat-Weges bei Wachstum auf Fruktose begründet, wodurch zu wenig NADPH für die L-Lysinsynthese bereitgestellt wird (Sahm et al., 2000; Moritz et al., 2000; Sugimoto et al., 1989). Andererseits ist bekannt, dass über PTS-Systeme (Phosphotransferase-Systeme) Interaktionen mit dem Gesamtstoffwechsel erfolgen können (Saier, 1989). C. glutamicum besitzt PTS-Systeme für Glukose, Fruktose und Saccharose (Stülke und Hillen, 2000; Titgemeyer und Hillen, 2002). Interessanterweise ist kürzlich für Bradyrhizobium japonicum eine direkte Interaktion des L-Lysinsyntheseweges mit der Zuckeraufnahme gefunden worden, bei der das Aspartatkinaseprotein LysC den Phosphorylierungsgrad des EI^{Ntr}-Komplexes beeinflusst (King und O'Brian, 2001). In C. glutamicum konnte ein direkter Zusammenhang zwischen Zuckeraufnahme und L-Lysinsynthese bisher nicht nachgewiesen werden.

Die in dieser Arbeit durchgeführten Expressionsanalysen auf BHI-Komplexmedium zeigen, dass in Abhängigkeit der An- oder Abwesenheit des Regulatorproteins LysG Gene des putativen Maltosetransportes reagieren. LysG ist der einzige bisher bekannte Regulator, der für die L-Lysinsynthese relevant ist. LysG gehört zur Gruppe der prokaryontischen LysRähnlichen Transkriptionsregulatoren (Schell, 1993) und es konnte inzwischen eindeutig gezeigt werden, dass das Protein in Anwesenheit erhöhter L-Lysinkonzentrationen die Expression des L-Lysinexportcarriergens *lysE* steigert (Bellmann *et al.*, 2001). In den in der vorliegenden Arbeit durchgeführten DNA-Chip Analysen waren die mRNA-Spiegel der Gene ORF1239 bis ORF1252 bei Überexpression des *lysG*-Gens erhöht im Vergleich zu den mRNA-Spiegeln des *C. glutamicum* Wildtypstammes. Zusätzlich waren die gleichen Gene bei Abwesenheit von LysG erniedrigt. Diese unabhängig durchgeführten und mehrfach wiederholten Experimente, sowie insbesondere die gegenläufige Expression bei An- bzw. Abwesenheit des Regulatorproteins LysG bekräftigen, dass tatsächlich LysG die mRNA-Spiegel dieser Gene beeinflusst.

Wie die DNA-Chip Experimente bei Wachstum auf CGXII-Minimalmedium zeigen, wo nachweisbar niedrige zellinterne L-Lysinkonzentrationen vorherrschen, sind die beobachteten positiven Effekte auf die putativen Gene des mal-Operons ausschließlich eine Folge von LysG und nicht etwa von LysG in Verbindung mit erhöhter interner L-Lysinkonzentration. Zwar ist bekannt, dass Transkriptionsregulatoren der LTTR-Familie mehrere Zielgene haben, auf die sie einen sowohl positiven als auch negativen Einfluß ausüben (Harris et al., 1998; Schell, 1996), es wirkt jedoch in allen überprüften Fällen ein niedermolekularer Effektor als Induktor oder Repressor (Schell, 1993). Diese Tatsache, sowie der Befund, dass auch ohne internes L-Lysin die mRNA-Spiegel verändert werden, sprechen für einen unspezifischen Effekt von LysG auf die Expression des putativen mal-Operons. Dies erklärt vielleicht auch, warum die Prüfung auf die direkte Interaktion von LysG mit putativen Promotorbereichen der mal-homologen Gene in Titrationsanalysen uneindeutig verlief. Da in DNA-Microarrays lediglich relative mRNA-Spiegel gemessen werden, ist prinzipiell auch denkbar, dass das LysG Protein ähnlich wie in Arbeiten von Glanemann et al. (2003) gezeigt, die Stabilität der mRNA des putativen mal-Operons erhöht, und tatsächlich gar keine gesteigerte Expression der Gene bewirkt. Das für LTTRs bekannte Bindemotif t-n₁₁-a war jedenfalls in den geprüften DNA-Fragmenten enthalten (Hugouvieux-Cotte-Pattat et al., 1996; Parsek et al., 1995).

Neben gesteigerter Expression und gesteigerter Stabilität der mRNA, wäre als eine weitere Möglichkeit die sogenannte Kreuzaktivierung mit heterologen Promotoren als Grund für den Einfluß von LysG auf die *mal*-homologen Gene denkbar (Vedler *et al.*, 2000; McFall *et al.*, 1997; Jourdan und Stauffer, 1999; Parsek *et al.*, 1995). In *Pseudomonas putida* konnte beispielsweise gezeigt werden, dass die LTTR-Regulatoren CatR und ClcR beide in der

Lage sind, im Promotorbereich des *clcABD*-Operons zu binden und so die Expression der Gene des Abbaus von Benzoaten zu induzieren (McFall *et al.*, 1997). Im Falle von LysG müßte also die Existenz eines zu LysG ähnlichen weiteren LysR-Regulatorproteins angenommen werden, das im Wildtyp von *C. glutamicum* die Expression der putativen *mal*-Gene kontrolliert und zusätzlich auch in der Lage ist, das t-n₁₁-a Bindemotif vor *lysE* zu binden. Im *lysG*-Deletionsstamm könnte dieser bislang unbekannte Regulator von seinem nativen Promotor wegtitriert werden und bevorzugt auch vor *lysE* binden. Eine verringerte Expression der putativen Gene des Maltosetransportes wäre die Folge.

Im putativen mal-Operon befinden sich die bereits erwähnten Gene (ORF1242, ORF1243 und ORF1245), deren Polypeptide hohe Ähnlichkeiten zu den Untereinheiten des Maltosetransporters MalGFE aus dem hyperthermophilen Archaebakterium Thermococcus litoralis zeigen (Xavier et al., 1996; Horlacher et al., 1998). Spezifische ABC-Transporter für die Aufnahme von Maltose und Maltodextrinen sind unter Bakterien weit verbreitet (Schneider, 2001; Saier, 2000) und zumindest im Fall von E. coli intensiv untersucht (Schlegel et al., 2002; Boos et al., 1998). Der Transporter aus E. coli besteht im Wesentlichen dem periplasmatischen Maltosebindeprotein aus (MalE), zwei membranständigen Untereinheiten (MaIF und MaIG), die die Transportpore bilden, sowie zwei zusätzlichen Untereinheiten (MalK) im Zellinneren, die durch ATP-Hydrolyse die Energie für den Transport der Maltose liefern (Boos et al., 1998). Obwohl in E. coli sehr gut untersucht (Boos und Böhm, 2000), ist zur Regulation des Maltosetransports in Archaebakterien und Gram-Positiven Bakterien nur wenig bekannt (Andersson und Rådström, 2002; Lee et al., 2003; Schlösser et al., 2001; Puyet et al., 1993). In einigen Gram-positiven Bakterien, wie Lactococcus lactis und Streptomyces lividans wird das mal-Operon durch MalR kontrolliert, einem Transkriptionsregulator, welcher zur Familie der Lacl-GalR-Repressoren gehört (Weickert und Adhya, 1992). Mögliche Interaktionen eines LysRähnlichen Regulators mit Zuckertransportern des ABC-Typs wurden bislang allerdings nicht beschrieben.

Um den als *mal*-homolog annotierten Genen ORF1242, ORF1243 und ORF1245 eine Funktion zuzuordnen, waren die putativen Transportergene deletiert worden. Das Wachstum der *malGFE*-Deletionsmutante war auf Maltose jedoch unbeeinflusst, was wahrscheinlich macht, dass diese Gene nicht für die Maltoseaufnahme in *C. glutamicum* verantwortlich sind. Da die Annotation bezüglich der Substratklasse, in diesem Falle Zucker, aber häufig korrekt ist (Saier, 2000), wurde das Wachstum der Deletionsmutante von *malGFE* auch auf einer

Reihe von anderen Zuckern als Maltose geprüft. In keinem Fall war das Wachstum verändert, so dass die Funktion der *mal*-homologen Gene weiterhin unbekannt bleibt.

Um direkt Zugang zu spezifischen Genen der Maltoseaufnahme und -verwertung zu bekommen wurden in der vorliegenden Arbeit auch vergleichende Expressionsanalysen im *C. glutamicum* Wildtyp bei Wachstum auf Glukose und Maltose als Kohlenstoffquelle durchgeführt. Erwartungsgemäß zeigten die als *malG*, *malF* und *malE* annotierten Gene (ORF1242, ORF1243 und ORF1245) keine Maltose-abhängigen Expressionsveränderungen. Überraschenderweise zeigten sich aber auch keine Gene bekannter Funktion, deren mRNA-Spiegel Maltose-spezifisch erhöht waren. Deswegen wird wahrscheinlich das noch unbekannte Transportprotein, sowie eine wahrscheinliche Kinase konstitutiv gebildet. Ähnlich zeigte sich in DNA-Chip Analysen zur Kohlenhydratverwertung bei *Thermotoga maritima*, dass das Expressionsmuster von Genen verschiedener ABC-Transporter für Kohlenhydrate kaum verändert ist, unabhängig davon, ob das Bakterium mit dem spezifischen Zucker kultiviert wurde (Chhabra *et al.*, 2003). Somit ist trotz des guten Wachstums von *C. glutamicum* auf Maltose und der Bedeutung von Maltose und Maltodextrinen für die Produktbildung die Verwertung dieser Substrate noch nicht klar.

2 Der myo-Inositolstoffwechsel in C. glutamicum

Die in dieser Arbeit durchgeführten DNA-Chip Analysen haben gezeigt, dass in Abhängigkeit des Regulators LysG, Gene des *myo*-Inositolstoffwechsels in ihrem Expressionsmuster verändert sind. *myo*-Inositol ist ein ubiquitär verbreiteter Zuckeralkohol, der speziell im Boden in erheblichen Mengen vorkommt (Miwa und Fujita, 2001; Yoshida *et al.*, 1997). In Eukaryonten ist *myo*-Inositol Bestandteil der Zellwand, aber auch an der Signaltransduktion und Stressantwort beteiligt (York *et al.*, 2001; Lamosa *et al.*, 1998; Shears, 1998; Majerus, 1992; Loewus *et al.*, 1990). Bei vielen thermo- und hyperthermophilen *Archaebakterien* ist das Hexitol essentiell für die Bildung der kompatiblen Solute Di-*myo*-Inositolphosphat oder Di-Mannosyl-Di-*myo*-Inositolphosphat (Santos und da Costa, 2002). In der Unterordnung der *Corynebacterianeae*, zu der *C. glutamicum*, aber auch *Mycobacterium tuberculosis* und *M. smegmatis* gehört, spielt *myo*-Inositol als Baustein eine herausragende Rolle. Es ist unter anderem ein Bestandteil des essentiellen Mycothiols (1-D-*myo*-Inosityl-2-(*N*-Acetyl-L-cysteinyl)Amino-2-Deoxy-a-D-Glukopyranosid), welches ähnlich wie Glutathion, das aber in den *Corynebacterianeae* abwesend ist, für die Homöostase des Redoxhaushalts notwendig

ist (Bornemann et al., 1997; Koledin et al., 2002; Fahey, 2001). Darüberhinaus ist myo-Inositol auch Baustein des Phosphatidylinositols (PI) und seiner Mannosid-Derivate (PIMs) (Lee et al., 1996; Brennan und Nikaido, 1995; Hunter und Brennan, 1990; Goren, 1984). Wie für M. smegmatis gezeigt, ist die Synthese von PI ebenfalls essentiell für die Corvnebacterianeae (Parish et al., 1997; Nigou und Besra, 2002). Erst kürzlich konnte gezeigt werden, dass die de novo Synthese von myo-Inositol von Glukose-6-Phosphat ausgeht (Salman et al., 1999; Nigou et al., 2002). Der erste irreversible Schritt des zweistufigen Prozesses wird durch die Inositol-1-Phosphat-Synthase (IPS) katalysiert (Nigou et al., 2002). Wie in dieser Arbeit gezeigt werden konnte, wird die Expression des entsprechenden Gens ORF1875 in C. glutamicum bei Wachstum auf dem Zuckeralkohol stark reprimiert. Dies bestätigt die Schlüsselrolle der IPS für die myo-Inositolsynthese sowie die Bedeutung der kontrollierten myo-Inositol Verfügbarkeit (Culbertson et al., 1976; Majumder et al., 1997; Chen et al., 2000). Im Rahmen der Suche nach Targets in der Tuberkulosetherapie ist vor kurzem die Struktur der IPS aus M. tuberculosis aufgeklärt worden (Norman et al., 2002). Da in den Corynebacterianeae, wie in dieser Arbeit erstmals gezeigt, auch eine strikte Kontrolle des entsprechenden *ips*-Gens erfolgt, bietet sich auch an, in weiteren Arbeiten über die Interaktion mit dem noch zu klärenden Regulationsprozess die Verfügbarkeit des essentiellen myo-Inositols zu reduzieren.

Obwohl myo-Inositol in der Natur weit verbreitet ist, gibt es nur wenige Untersuchungen zu dessen Verstoffwechslung. Bekannt ist, dass verschiedene Mikroorganismen, wie B. subtilis, Cryptococcus melibiosum, Klebsiella aerogens und Rhizobium leguminosarum in der Lage sind auf myo-Inositol als einziger Kohlenstoffguelle zu wachsen (Yoshida et al., 1997; Vidal-Leiria und van Unden, 1973; Berman und Magasanik, 1966a; Poole et al., 1994). Es konnte gezeigt werden, dass auch C. glutamicum auf diesem Zuckeralkohol mit praktisch identischer Wachstumsrate wie auf Glukose als einziger Energie- und Kohlenstoffquelle wächst. Ein Abbauweg für myo-Inositol (Abb. 19) ist in älteren Arbeiten für K. aerogenes vorgeschlagen (Berman und Magasanik1966a, 1966b; Anderson und Magasanik 1971a, 1971b). Allerdings sind die molekularen Grundlagen dieses Stoffwechsels noch wenig verstanden (Yoshida et al., 1999). DNA-Chip Analysen mit B. subtilis ergaben zwei divergente Operons mit insgesamt 13 Genen (Yoshida et al., 2001). Überraschenderweise konnten die in dieser Arbeit durchgeführten DNA-Chip Analysen zeigen, dass in C. glutamicum zwei Operons existieren, in denen sogar 21 Gene myo-Inositol-spezifisch reagieren, was möglicherweise bedeutet, das Gene redundanter Funktion mehrfach vorkommen, oder der Stoffwechselweg doch anders ist, als für K. aerogenes postuliert. Für B. subtilis konnte tatsächlich gezeigt werden, dass zwei iol-Transporter unterschiedlicher

Abb. 19: Übersicht über die zentrale Stellung des essentiellen *myo*-Inositols in *C. glutamicum. Myo*-Inositol wird entweder unter Beteiligung des ORF1875 (IPS) synthetisiert, oder über Transporter aufgenommen, um daraus die essentiellen Zellbestandteile Mycothiol und Phosphatidylinositol zu synthetisieren. Bei Wachstum auf *myo*-Inositol als einziger Kohlenstoffquelle wird es über den vorgeschlagenen Weg in Anlehnung an *K. aerogenes* abgebaut (Anderson und Magasanik 1971a). Die bei Wachstum auf *myo*-Inositol spezifische Verfärbung könnte ein Polymerisationsprodukt der Glukonsäure-Intermediate sein.

Affinität vorkommen (Yoshida *et al.*, 2002). Wie in dieser Arbeit gezeigt, gibt es in *C. glutamicum* sogar drei Transportergene, die bei Wachstum auf dem Hexitol verstärkt exprimiert werden. Auch hier scheinen redundante Systeme vorzuliegen, da bei alleiniger Deletion von *iolT*I (ORF3542) oder *iolT*II (ORF3431) Wachstum auf dem Hexitol noch unverändert möglich war. Der dritte Transporter (ORF564) zeigt Ähnlichkeiten zu einem *Multidrug* Exporterprotein aus *B. subtilis*. Kombinierte Deletionen sind offensichtlich nötig um diese Transportergene weiter charakterisieren zu können.

Nach dem Transport in die Zelle erfolgt der Abbau des myo-Inositols in B. subtilis und K. aerogenes nicht über die Glykolyse oder den Pentose-Phosphat-Weg, sondern über einen völlig eigenständigen Weg, der wahrscheinlich über spezifische Intermediate bis zum 2-Deoxy-5-Keto-D-Glukonsäure-6-Phosphat, welches anschließend zu Dihydroxyaceton-Phosphat (DHAP) und Malonat-Semialdehyd gespalten wird, erfolgt (Abb. 19). Die durch iolG kodierte Inositoldehydrogenase katalysiert in *B. subtilis* sehr wahrscheinlich nach dem Import des Hexitols den ersten Oxidationsschritt zum 2-Keto-myo-Inositol (Ramaley et al., 1979; Berman und Magasanik, 1971b). Die offensichtlich große Bedeutung der Inositoldehydrogenase IoIG spiegelt sich in der strikten Kontrolle des Enzyms in B. subtilis wieder. So wird die Synthese von IolG einerseits durch myo-Inositol induziert und unterliegt andererseits der Katabolitrepression durch Glukose (Nihashi und Fujita, 1984; Yoshida et al., 1997). Darüber hinaus konnte kürzlich gezeigt werden, dass eine funktionierende Inositoldehydrogenase für die effiziente Stickstofffixierung und Knöllchenbildung in dem phytopathogenen Bakterium Sinorhizobium fredii essentiell ist (Jiang et al., 2001). Während in den genannten Beispielen jeweils eine einzige Inositoldehydrogenase entscheidend für die Funktion im Stoffwechsel ist, hatte die Inaktivierung von iolG (ORF562) in C. glutamicum keinen Einfluß auf den Abbau des Zuckeralkohols. Die iolG-Mutanten waren nach wie vor in der Lage auf myo-Inositol zu wachsen. Erst nach zusätzlicher Deletion der vier Gene ORF3436 bis ORF3440 war kein Wachstum mehr möglich, wobei die alleinige Deletion der vier Gene noch Wachstum erlaubte. Da diese ORFs sehr ähnlich zueinander sind und als Inositoldehydrogenasen annotiert wurden, sind die Gene entweder redundant oder die entsprechenden Enzyme haben eine überlappende Funktion. Auch in *B. subtilis* konnten in der Genomsequenz zwei weitere idh-homologe Gene identifiziert werden (Kunst et al., 1997), allerdings ist nicht bekannt, ob yucG und yrbE tatsächlich eine Rolle im myo-Inositolstoffwechsel spielen (Galbraith et al., 1998).

Neben den Wachstumsexperimenten, die klar dafür sprechen, dass die Gene ORF3436 bis ORF3440 für den *myo*-Inositolabbau benötigt werden, spricht auch die veränderte

Verfärbung des Mediums bei der Kultivierung dieser Mutanten für eine Beteiligung am Abbau. In allen in der vorliegenden Arbeit durchgeführten Wachstumsexperimenten mit dem Hexitol als einziger Kohlenstoffquelle, war eine braun-schwarze Verfärbung des Mediums mit beobachten. fortschreitender Kultivierungszeit zu Nur in der Deletionsmutante ATCC21527 *didh* II verfärbte sich das Medium nicht bzw. nur stark verzögert. Solch eine Verfärbung deutet auf eine Polymerbildung aus einem Intermediat (Abb. 19), das nach Oxidation oder Wasserentzug leicht entstehen könnte (Michael Müller, persönliche Mitteilung). Offensichtlich kann dieses Intermediat in dem Stamm mit den deletierten Genen des iol-Operons II nicht mehr gebildet werden. Unter Umständen ist über eine Charakterisierung des Polymerisationsprodukts ein Zugang zum Abbauweg von myo-Inositol in C. glutamicum möglich.

In dieser Arbeit konnte gezeigt werden, dass das Gen iolD (ORF560) in C. glutamicum für die Verwertung von myo-Inositol essentiell ist. Überraschenderweise wurde auch verschlechtertes Wachstum auf Glukose festgestellt. Es besteht also offensichtlich ein Zusammenhang zwischen dem Abbauweg von myo-Inositol und dem Zentralstoffwechsel in C. glutamicum, der zur Zeit aber völlig unklar ist. Der Einfluß von myo-Inositol auf den Stoffwechsel wurde auch in Untersuchungen zur L-Lysinbildung mit der iolD-Deletionsmutante deutlich. Es gibt Hinweise, dass die Anwesenheit von myo-Inositol im Stärkehydrolysat bei der großtechnischen Produktion von L-Lysin einen Einfluß auf die Produktausbeute hat (degussa., persönliche Mitteilung). Deshalb war es interessant, die konstruierte iolD-Deletionsmutante hinsichtlich ihrer L-Lysinbildung zu prüfen. Die Ergebnisse zeigen, dass schon Spuren (0,05-0,5 %) des Zuckeralkohols im Medium eine positive Auswirkung auf die L-Lysinproduktion haben. Dieser positive Effekt wird durch die Deletion des iolD-Gens zusätzlich verstärkt. Ungewöhnlich ist, dass dem Genprodukt von iolD weder in B. subtilis noch K. aerogenes eine spezifische Funktion zugeordnet werden konnte, obwohl es zumindest in C. glutamicum eine entscheidende Rolle im myo-Inositolstoffwechsel zu spielen scheint. Mit iolD aus dem phytopathogenen Bakterium R. legominosarum ist bislang nur ein einziges Beispiel bekannt, wo die Deletion von iolD den weiteren Abbau von myo-Inositol verhindert (Fry et al., 2001). In B. subtilis konnten für IoID lediglich Homologien zu einer putativen Inositol-Hydrolase gezeigt werden (Yoshida et al., 2001). Weitere Hinweise auf den Zusammenhang zwischen Glukose- und myo-Inositolstoffwechsel ergaben sich aus den Arbeiten mit der ribR-Deletionsmutante von C. glutamicum. Das Genprodukt von ribR (ORF568) zeigt Ähnlichkeiten zu Transkriptionsregulatoren der ribR-Familie, die in B. subtilis die Expression der Gene des Ribose-Operons kontrollieren (Rodionov et al., 2001; Woodson und Devine, 1994). Ein ähnlicher Regulationsmechanismus wurde deshalb auch in

C. glutamicum vermutet. Allerdings ließ sich in den durchgeführten Experimenten zum Wachstum der Deletions- und Überexpressionsmutanten kein *ribR*-spezifischer Wachstumsunterschied feststellen. Stattdessen zeigte sich, dass die Deletion des *ribR*-Gens offensichtlich schlechteres Wachstum auf Glukose bewirkt. Dieser Phänotyp war jedoch nicht stabil. Für eine genauere Analyse des *ribR*-Phänotyps wären andere experimentelle Überprüfungen mit aufwendigeren Stammkonstruktionen notwendig. Auf jeden Fall weist der Phänotyp der *iolD*- und *ribR*-Deletionsmutante auf einen interessanten Zusammenhang zwischen der Verwertung der Kohlenhydrate *myo*-Inositol und Glukose einerseits und der Produktbildung andererseits hin.

V Zusammenfassung

Es ist bekannt, dass bei der L-Lysinproduktion mit *C. glutamicum* die Art der Kohlenstoffquelle einen Einfluß auf die L-Lysinbildung hat. Die Regulation der L-Lysinausscheidung in *C. glutamicum* erfolgt auf genetischer Ebene durch den Transkriptionsregulator LysG, welcher in Verbindung mit dem Induktor L-Lysin die Expression des L-Lysinexportcarriergens *lysE* induziert. Eine mögliche Verknüpfung zwischen der Regulation des L-Lysinexports und dem Zuckerstoffwechsel war unbekannt. Es war deswegen das Ziel dieser Arbeit zu untersuchen ob LysG über die Kontrolle von *lysE* hinaus möglicherweise mit dem Zuckerstoffwechsel interagiert.

- 1 Um LysG-bindende DNA-Fragmente aus dem Genom von *C. glutamicum* zu isolieren, wurden Titrationsanalysen mit dem Indikatorstamm R127*ppc*::pEM3 *dppc*GE''*lacZ* durchgeführt. Auf diese Weise konnten von etwa 13 600 Klonen ausgehend 11 Klone identifiziert werden, deren verringerte *lacZ*-Expression auf LysG-Bindung schließen ließ. Zur weiteren Einengung der LysG-bindenden Bereiche wurden anschließend 10 Promotoren der sequenzierten DNA-Bereiche ausgewählt und erneut auf LysG-Bindung geprüft. Auf diese Weise gelang es, einen Transposon-Promotor (*tnp1513*_p1), sowie einen Promotor der Purinbiosynthese (*purM*_p1) zu identifizieren, an dem LysG bindet.
- 2 Parallel zu diesem *lacZ*-Ansatz, wurden DNA-Chip Analysen bei Wachstum auf Komplexmedium durchgeführt. Aus mehreren unabhängigen Experimenten ergab sich, dass bei *lysG*-Überexpression ein Cluster von 10 Genen etwa 3- bis 5-fach stärker exprimiert wurde als im Wildtyp. Dieses Cluster enthielt unter anderem putative Gene für den ABC-Transport von Maltose. Ein weiteres Cluster von 4 Genen wird 2 bis 3-fach verringert exprimiert. Dieses Cluster enthält putative Gene des Stoffwechsels von *myo*-Inositol, einem Zuckeralkohol, der ebenso wie Glukose und Maltose von *C. glutamicum* als Energie- und Kohlenstoffquelle verwertet werden kann.
- 3 Wie DNA-Chip Analysen bei Wachstum in Minimalmedium zeigten, ist der beobachtete Einfluß von LysG auf die putativen Gene des Maltosetransports von LysG allein und nicht von LysG in Verbindung mit der zellinternen L-Lysinkonzentration abhängig. Durch die Charakterisierung einer *malGFE*-Deletionsmutante sowie DNA-Chip Analysen bei Wachstum auf Maltose konnte ausgeschlossen werden, dass die Gene ORF1242, ORF1243 und ORF1245 direkt am Maltosestoffwechsel beteiligt sind.
- 4 Die Untersuchungen zur spezifischen Genexpression bei Wachstum auf *myo*-Inositol zeigten dagegen, dass in *C. glutamicum* zwei *iol*-Operons (*iol*-Operon I: ORF555-ORF3542; *iol*-Operon II: ORF3430-ORF3442) existieren, deren Gene zur Verwertung des Zuckeralkohols nötig sind. Unter den insgesamt 21 Genen zeigen allein 4 Gene hohe Ähnlichkeiten zu *myo*-Inositoldehydrogenasen. Nur deren gemeinsame Deletion resultierte im Verlust der Mutanten auf dem Hexitol zu wachsen.
- 5 Wie die Charkterisierung einer *iolD*-Deletionsmutante zeigte, ist *iolD* (ORF560) für den *myo*-Inositolstoffwechsel in *C. glutamicum* essentiell. Darüberhinaus wirkt sich die Deletion von *iolD* positiv auf die Bildung von L-Lysin aus. Da die *iolD*-Deletionsmutante außerdem schlechter auf Glukose als alleiniger Kohlenstoffquelle wächst als der Wildtyp, ist ein Zusammenhang zwischen der Verwertung der Kohlenhydrate Glukose und *myo*-Inositol einerseits und der Produktbildung andererseits anzunehmen.

VI Literaturverzeichnis

Abe S., Takayama K-I., Kinoshita S. (1967). Taxonomical studies on glutamic acidproducing bacteria. J. Gen. Appl. Microbiol. 13: 279-301

Aleshin V.V., Zakataeva N.P., Livshits V.A. (1999). A new family of amino-acid-efflux proteins. TIBS 24: 133-135

Altschul S.F., Madden T.L., Schaffer A.A., Zahng J., Zhang Z., Miller W., Lipman D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402

Anderson W.A., Magasanik B. (1971a). The Pathway of *myo*-Inositol Degradation in *Aeroglobus aerogenes*. Identification of the Intermediate 2-Deoxy-5-Keto-D-Gluconic acid. J. Biol. Chem. 246: 5653-5661

Anderson W.A., Magasanik B. (1971b). The Pathway of *myo*-Inositol Degradation in *Aeroglobus aerogenes*. Conversion of 2-Deoxy-5-Keto-D-Gluconic acid to Glycolytic Intermediates. J. Biol. Chem. 246: 5662-5675

Andersson U., Rådström P. (2002). Physiological function of the maltose operon regulator, MaIR, in *Lactococcus lactis*. BMC Microbiology 2: 28

Arfin S.M., Long A.D., Ito E.T., Tolleri L., Riehle M.M., Paegle E.S., Hatfield G.W. (2000). Global gene expression profiling in *escherichia coli* K12. The effects of integration host factor. J. Biol. Chem. 275: 29672-29684

Barnes W.M. (1994). PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc. Natl. Acad. Sci. USA 91: 2216-2220

Bellmann A. (2000). Der Lysinexportcarrier in *Corynebacterium glutamicum*: Topologie und Regulation. Dissertation, Heinrich-Heine-Universität Düsseldorf

Bellmann A., Vrljić M. Pátek M., Sahm H., Krämer R., Eggeling L. (2001). Expression control and specificity of the basic amino acid exporter LysE of *Corynebacterium glutamicum*. Microbiology 147: 1765-1774

Bensadoun A. und Weinstein D. (1976). Assay of proteins in the presence of interfering material. Anal. Biochem. 70: 241-250

Berman T., Magasanik B. (1966a). The pathway of *myo*-inositol degradation in *Aerobacter aerogenes*. Dehydrogenation and deydration. J. Biol. Chem. 241: 800-806

Berman T., Magasanik B. (1966b). The Pathway of *myo*-Inositol Degradation in *Aeroglobus aerogenes*. Ring Scission. J. Biol. Chem. 241: 807-813

Bernstein J.A., Khodursky A.B., Lin P.H., Lin-Chao S., Cohen S.N. (2002). Global analysis of mRNA decay and abundance in *Escherichia coli* at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl. Acad. Sci. USA 99: 9697-9702

Birnboim H.C. und Doly J. (1979). A rapid alcaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acid Res. 7: 1513-1523

Boos W. und Shuman H. (1998). Maltose/Maltodextrin System of *Escherichia coli*: Transport, Metabolism, and Regulation. Mic. Mol. Biol. Rev. 62: 204-229

Boos W., Böhm A. (2000). Learning new tricks from an old dog – MalT of the *Escherichia coli* maltose system is part of a complex regulatory network. Trends in Genetics 16: 404-409

Bornemann C., Jardine M.A., Spies H.S.C., Steenkamp D.J. (1997). Biosynthesis of mycothiol: elucidation of the sequence of steps in *Mycobacterium smegmatis*. Biochem. J. 325: 623-629

Brennan P.J., Nikaido H. (1995). The envelope of mycobacteria. Annu. Rev. Biochem. 64: 29-63

Bröer S., Eggeling L., Krämer R. (1993). Strains of *Corynebacterium glutamicum* with different lysine productivities may have different lysine excretion systems. Appl. Environ. Microbiol. 59: 316-321

Bröer S., Krämer R. (1991). Lysine excretion by *Corynebacterium glutamicum*. 1. Identification of a specific secretion carrier system. Eur. J. Biochem. 202: 131-135

Bundy B.M., Collier L.S., Hoover T.R., Neidle E.L. (2002). Synergistic transcriptional activation by one regulatory protein in response to two metabolites. Proc. Natl. Acad. Sci USA 99: 7693-7698

Ceciliani F., Caramori T., Ronchi S., Tedeschi G., Mortarino M., Galizzi A. (2000). Cloning, Overexpresssion, and Purification of *Escherichia coli* Quinolinate Synthetase. Protein Expression and Purification 18: 64-70 **Chaouni L.B., Etienne J., Greenland T., Vandenesch F. (1996).** Nucleic acid sequence and affilation of pLUG10, a novel cadmium resistance plasmid from *Staphylococcus lugdunensis*. Plasmid 36: 1-8

Chen C.-C., Hu F.-M., Paulus H. (1987). Nucleotide sequence of the overlapping genes from the subunits of *Bacillus subtilis* aspertokinase II and their control regions. J. Biol. Chem. 262: 8787-8798

Chen L., Zhou C., Yang H., Roberts M.F. (2000). Inositol-1-phosphate Synthase from *Archaeoglobus fulgidus* Is a Class II Aldolase. Biochemistry 39: 12415-12423

Chhabra S.R., Shockley K.R., Conners S.B., Scott K.L., Wolfingers R.D., Kelly R.M. (2003). Carbohydrate-induced Differential Gene Expression Patterns in the Hyperthermophilic Bacterium *Thermotoga maritima*. J. Biol. Chem. 278: 7540-7552

Chirgwin J.M., Przybyla A.E., MacDonald R.J., Rutter W.J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochem. 18: 5294-5299

Chomczynski, P. und Sacchi N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159

Christman M.F., Storz G., Ames B.N. (1989). OxyR, a positive regulator of hydrogen peroxide-inducible genes in *Escherichia coli* and *Salmonella typhimurium* is homologous to a family of bacterial regulatory proteins. Proc. Natl. Acad. Sci. USA 86: 3484-3488

Cohen G.N., Saint-Girons I. (1987). Biosynthesis of threonine, lysine and methionine, In: Neidhard (ed.), *Escherischia coli* and *Salmonella typhimurium*

Conway T., Schoolnik G.K. (2003). Microarray expression profiling: capturing a genomewide portrait of the transcriptome. Mol. Microbiol. 47: 879-889

Cremer J., Eggeling L., Sahm H. (1991). Control of the Lysine Biosynthesis Sequence in *Corynebacterium glutamicum* as Analyzed by Overexpression of the Individual Corresponding Genes. Appl. Environ. Microbiol. 57 :1746-1752

Cremer J., Treptow C., Eggeling L., Sahm H. (1988). Regulation of enzymes of lysine biosynthesis in *Corynebacterium glutamicum*. J. Gen. Microbiol. 134: 3221-3229

Culham D.E., Henderson J., Crane R.A., Wood J.M. (2003). Osmosensor ProP of *Escherichia coli* Responds to the Concentration, Chemistry, and Molecular Size of Osmolytes in the Proteoliposome Lumen. Biochemistry 42: 410-420

Dautry-Varsat A., Cohen G.N. (1977). Proteolysis of the bifunctional methionine-repressible aspartokinase II-homoserine dehydrogenase II of *Escherischia coli* K12. Production of an active homoserine dehydrogenase fragment. J. Biol. Chem. 252: 7685-7689

Death A., Notley L., Ferenci T. (1993). Derepression of LamB protein facilitates outer membrane permeation of carbohydrates into *Escherichia coli* under conditions of nutrient stress. J. Bacteriol. 175: 1475-1483

Dominguez H., Lindley N.D. (1996). Complete sucrose metabolism requires fructose phosphotransferase activity in *Corynebacterium glutamicum* to ensure phosphorylation of liberated fructose. Appl. Environ. Microbiol. 62: 3878-3880

Dominguez H., Rollin C., Guyonvarch A., Guerquin-Kern J-L., Cogaign-Bousquet M., Lindley N.D. (1998). Carbon-flux distribution in the central metabolic pathways of *Corynebacterium glutamicum* during growth on fructose. Eur. J. Biochem. 254: 96-102

Dover N., Higgins C.F., Carmel O., Rimon A., Pinner E., Padan E. (1996). Na⁺-induced transcription of *nhaA*, which encodes an Na⁺/H⁺ antiporter in *Escherichia coli*, is positively regulated by *nhaR* and affected by *hns*. J. Bacteriol. 178: 6508-17

Ebbole D.J., Zalkin H. (1989). *Bacillus subtilis pur* operon expression and regulation. J. Bacteriol. 171: 2136-2141

Eggeling L., (1994). Biology of L-lysine overproduction by *Corynebacterium glutamicum*. Amino acids 6: 261-271

Eggeling L., (1996). Quantifiying and directing metabolite flux: Application to amino acid overproduction. Adv. Biochem. Enginering 54: 2-30

Eggeling L., Krumbach K., Sahm H. (2001). I-Glutamate efflux with *Corynebacterium glutamicum*: why is penicillin treatment or tween addition doing the same? J. Mol. Microbiol. Biotechnol. 3: 67-68

Eggeling L., Oberle S., Sahm H. (1998). Improved L-lysine yield with *Corynebacterium glutamicum*: Use of *dapA* resulting in resulting in increased flux combined with growth limitation. Appl. Microbiol. Biotechnol. 49: 24-30

Eggeling L., Sahm H. (1999). L-Glutamate and L-Lysine: traditional products with impetuous developments. Appl. Microbiol. Biotechnol. 52: 146-153

Eikmanns B., Kleinertz E., Liebl W., Sahm H. (1991). A family of *Corynebacterium glutamicum/Escherischia coli* shuttle vectors for gene cloning, controlled gene expression and promotor probing. Gene 102: 93-98

Eisen M.B., Spellmann P.T., Brown P.O., Botstein D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95: 14863-14868

Erdmann A., Weil B., Krämer R. (1993). Lysine secretion by wildtype *Corynebacterium* glutamicum triggered by dipeptide uptake. J. Gen. Microbiol. 139: 3115-3122

Erdmann A., Weil B., Krämer R. (1995). Regulation of lysine producer strain *Corynebacterium glutamicum* MH20-22B. Biotechnol. Lett. 17: 927-932

Fahey R.C. (2001). Novel Thiols of Prokaryotes. Annu. Rev. Microbiol. 55: 333-356

Fellay R., Hanin M., Montorzi G., Frey J., Freiberg C., Golinowski W., Staehelin C., Broughton W.J., Jabbouri S. (1998). *nodD*2 of *Rhizobium* sp. NGR234 is involved in the repression of the *nodABC* operon. Mol. Microbiol. 27: 1039-1050

Fernandez-Gonzalez C., Gil J.A., Mateos L.M., Schwarzer A., Schäfer A., Kalinowski J., Pühler A., Martin J.F. (1996). Construction of L-lysine-overproducing strains of *Brevibacterium lactofermentum* by targeted disruption of the *hom* and *thrB* genes. Appl. Microbiol. Biotechnol. 46:554-558

Follettie M.T., Shin H.K., Sinskey A.J. (1988). Organization and regulation of the *Corynebacterium glutamicum hom-thrB* and *thrC* loci. Mol. Microbiol. 2: 53-62

Franke I., Resch A., Daßler T., Maier T., Böck A. (2003). YfiK from *Escherichia coli* Promotes Export of O-Acetrylserine and Cysteine. J. Bacteriol. 185: 1161-1166

Fry J., Wood M., Poole P.S. (2001). Investigation of *myo*-inositol catabolism in *Rhizobium leguminosarum* bv. *viciae* and its effect on nodulation competitiveness. Mol. Plant. Microbe. Interact. 14: 1016-1025

Galbraith M.P., Feng S.F., Borneman J., Triplett E.W., de Bruijn F.J., Rossbach S. (1998). A functional *myo*-inositol catabolism pathway is essential for rhizopine utilization by *Sinorhizobium meliloti*. Microbiology 144: 2915-2924

Gerstmeir R. (2003). Regulation des Acetatstoffwechsels von *Corynebacterium glutamicum*. Dissertation, Universität Ulm

Glanemann C., Loos A., Gorret N., Willis L.B., O'Brien X.M., Lessard P.A., Sinskey A.J. (2003). Disparity between changes in mRNA abundance and enzyme activity in *Corynebacterium glutamicum*: implications for DNA microarray analyses. Appl. Microbiol. Biotechnol. 61: 61-68

Gollub J., Ball C.A., Binkley G., Demter J., Finkelstein D.B., Hebert J.M., Hernandez-Boussard T., Jin H., Kaloper M., Matese J.C., Schroeder M., Brown P.O., Botstein D., Sherlock G. (2003). The Stanford Microarray Database: data access and qualitiy assessment tools. Nucleic Acids Research 31: 94-96

Goren M. (1984). Biosynthesis and structure of phospholipids and sulfatides. In: Kubica P., Wayne L.G. (Eds.). The Mycobacteria, part A; Microbiology Series, Vol. 15, Dekker M., New York, 379-415

Grant S.G.N., Jessee J., Bloom F.R. und Hanahan D. (1990). Differential plasmid rescue from transgenic mouse dans into *Escherichia coli* methylation-restriction mutants. Proc. Natl. Acad. Sci. USA 87: 4645-4649

Graves L.M., Switzer R.L. (1990). Aspartokinase III, a new isozyme in *Bacillus subtilis* 168. J. Bacteriol. 172: 218-223

Gutmann M. (1993). Glutamatsekretion bei *Corynebacterium glutamicum*: Mechanismus und physiologische Bedeutung des Carrier-vermittelten Exports. Dissertation, Heinrich-Heine-Universität Düsseldorf

Hanahan D. (1983). Studies on transformation of *E. coli* with plasmids. J. Mol. Biol. 166: 557-580

Hanahan D. (1985). Techniques for transformation of *E. coli*. In: Glover D.M. (ed.), DNAcloning IRL-press, Oxford/Washington DC Vol. 1: 109-135

Harris S.J., Shih Y-L., Bentley S.D., Salmond P.C. (1998). The *hexA* gene of *Erwinia carotovora* encodes a LysR homologue and regulates motility and the expression of multiple virulence determinants. Mol. Microbiol. 28: 705-717

Hatfield G.W., Hung S-p., Baldi P. (2003). Differential analysis of DNA microarray gene expression data. Mol. Microbiol. 47: 871-877

Haynes J.A., Britz M.L. (1989). Electrotransformation of *Brevibacterium Ictofermentum* and *Corynebacterium glutamicum*: growth in tween 80 increases transformation frequencies. FEMS Microbiol. Lett. 61: 329-334

Haynes J.A., Britz M.L. (1990). The effect of growth conditions of *Corynebacterium glutamicum* on the transformation frequency obtained by electroporation. J. Gen. Microbiol. 136: 255-263

Henikoff S., Haughn G.W., Calvo J.M., Wallace J.C. (1988). A large family of bacterial activator proteins. Biochemistry 83: 6602-6606

Hoischen C. und Krämer R. (1989). Evidence for anefflux carrier system involved in the secretion of glutamate by *Corynebacterium glutamicum*. Arch. Microbiol. 151: 342-347

Hommais F., Krin E., Laurent-Winter C., Soutourina O., Malpertuy A., Le Caer J.P., Danchin A., Bertin P. (2001). Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol. Microbiol. 40: 20-36

Horlacher R., Xavier K.B., Santos H., DiRuggiero J., Kossmann M., Boos W. (1998). Archaeal binding protein-dependent ABC transporter: molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic archaeon *Thermococcus litoralis*. J. Bacteriol. 180: 680-689

Huang J., Yindeeyoungyeon W., Garg R.P., Denny T.P., Schell M.A. (1998). Joint transcriptional control of *xpsR*, the unusual signal integrator of the Ralstonia solanacearum virulence gene regulatory network, by a response regulator and a LysR-type transcriptional activator. J. Bacteriol. 180: 2736-2743

Hughes K.T., Dessen A., Gray J.P., Grubmeyer C. (1993). The Salmonella typhimurium *nadC* gene: sequence determination by use of Mud-P22 and purification of quinolinate phosphoribosytransferase. J. Bacteriol. 175: 479-486

Hugouvieux-Cotte-Pattat N., Condemine G., Nasser W., Reverchon S. (1996). Regulation of Pectinolysis in *Erwinia chrysanthemi*. Annu. Rev. Microbiol. 50: 213-257

Hunter S.W., Brennan P.J. (1990). Evidence for the presence of a phosphatidylinositol anchor on the lipoarabinmannan and lipomannan of *Mycobacterium tuberculosis*. J. Biol. Chem. 265: 9272-9279

Hwang D.S., Kornberg A. (1990). A novel protein binds a key origin sequence to block replication of an *E. coli* minichromosome. Cell 63: 325-331

Jeanmourgin F., Thompson J.D., Gouy M., Higgins D.G., Gibson T.J. (1998). Multiple sequence alignment with ClustalX. Trends Biochem. Sci. 23: 403-405

Jiang G., Krishnan A.H., Kim Y-W., Wacek T.J., Krishnan H.B. (2001). A Functional *myo*-Inositol Dehydrogenase Gene Is Required for Efficient Nitrogen Fixation and Competitiveness of *Sinorhizobium fredii* USDA191 To Nodulate Soybean (Glycine max [L.] Merr.). J. Bacteriol. 183: 2595-2604

Jones B.M. und Gilligan J.P. (1983). o-phthaldialdehyde precolumn derivatization and reversed-phase-high-performance liquid chromatography of polypeptide hydrolysates and physiological fluids. J. Chromatogr. 266: 471-482

Jourdan A.D., Stauffer G.V. (1999). GcvA-mediated activation of *gcvT-lacZ* expression involves the carboxy-terminal domain of the α subunit of RNA polymerase. FEMS Microbiology Letters 181: 307-312

Junker F., Kiewitz R., Cook A.M. (1997). Characterization of the p-toluensulfonate operon *tsaMBCD* and *tsaR* in *Comamonas testosteroni* T-2. J. Bacteriol. 179: 919-927

Kalinowski J., Cremer J., Bachmann B., Eggeling L., Sahm H., Pühler A. (1991). Genetic and biochemical analysis of the aspartokinase from *Corynebacterium glutamicum*. Mol. Microbiol. 5: 1197-1204

Keilhauer C., Eggeling L., Sahm H. (1993). Isoleucine synthesis in *Corynebacterium glutamicum*: Molecular analysis of the *ilvB-ilvN-ilvC*-Operon. J. Bacteriol. 175: 5595-5603

Kennerknecht N., Sahm H., Yen M-R., Patek M., Saier M.H. Jr., Eggeling L. (2002). Export of L-Isoleucine from *Corynebacterium glutamicum*: a Two-Gene-Encoded Member of a New Translocator Family. J. Bacteriol. 184: 3947-3956

Khodursky A.B., Bernstein J.A. (2003). Life after transcription – revisiting the fate of messenger RNA. Trends Genet. 19: 113-115

Khodursky A.B., Peter B.J., Cozzarelli N.R., Botstein D., Brown P.O., Yanofsky C. (2000). DNA microarray analysis of gene expression in response to physiological and genetic changes that affect tryptophan metabolism in *Escherichia coli*. Proc. Natl. Acad. Sci. USA 97: 12170-12175

Kiefer P. Heinzle E., Wittmann C. (2002). Influence of glucose, fructose and sucrose as carbon sources on kinetics and stoichiometry of lysine production by *Corynebacterium glutamicum*. J. Ind. Microbiol. Biotechnol. 28: 338-343

Kinoshita S., Udaka S., Shimono M. (1957). Studies in the amino acid fermentation, I. Production of L-glutamic acid by various microorganism. J. Gen. Appl. Microbiol. 3: 193-205

Kircher M., Leuchtenberger W. (1998). Aminosäuren – ein Beitrag zur Welternährung. Biologie in unserer Zeit. 28: 281-293

Klingenberg M. und Pfaff E. (1977). Means of terminating reactions. In: Estabrook R.W., Pullmann M.R. (Eds.), Methods in Enzymnology Vol. 10. Academic press Inc., London, New York, 680-684

Koledin T., Newton G.L., Fahey R.C. (2002). Identification of the mycothiol synthase gene (mshD) encoding the acetyltransferase producing mycothiol in actinomyces. Arch. Microbiol. 178: 331-337

Kreusch D., von Lintig J., Schroder J. (1995). Ti plasmid-encoded octopine and nopaline catabolism in *Agrobacterium*: specificities of the LysR-type regulators OccR and NocR, and protein-induced DNA bending. Mol. Gen. Genet. 249: 102-110

Kruse D., Krämer R., Eggeling L., Rieping M., Pfefferle W., Tchieu J.H., Chung Y.J., Saier M.H. Jr., Burkovski A. (2002). Influence of threonine exporters on threonine production in *Escherichia coli*. Appl. Microbiol. Biotechnol. 59: 205-210

Kullik I., Stevens J., Toledano M.B., Storz G. (1995). Mutational analysis of the redoxsensitive transcriptional regulator OxyR: regions important for DNA binding and multimerization. J. Bacteriol. 177: 1285-1291

Kumagai H. (2000). Microbial production of amino acids in Japan. Adv. Biochem. Eng. Biotechnol. 69: 71-85

Kunst F., Ogasawaka N., Mozer I. *et al.* (1997). The complete genome sequence of the Gram-positive bacterium *Bacillus subtilis*. Nature 390: 249-256

Lange C., Rittmann D., Wendisch V.F., Bott M., Sahm H. (2003). Global Expression Profiling and Physiological Characterization of *Corynebacterium glutamicum* grown in the Presence of L-Valine. Appl. Env. Microbiol. 69: 2521-2532

Lee R.E., Brennan P.J., Besra G.S. (1996). *Mycobacterium tuberculosis* cell envelope. Curr. Top. Microbiol. Immunol. 215: 1-27

Lee Y.S., Kim H., Hwang D.S. (1996). Transcriptional activation of the *dnaA* gene encoding the initiator for *oriC* replication by IciA protein, an inhibitor of *in vitro oriC* replication in *Escherichia coli*. Mol. Microbiol. 19: 389-396

Lehnen D., Blumer C., Polen T., Wackwitz B., Wendisch V.F., Unden G. (2002). LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in *Escherichia coli*. Mol. Microbiol. 45: 521-532

Leuchtenberger W. (1996). Amino acids – technical production and use. In: Rehm H.J., Reed G., Pühler A., Stadler P. (Eds.), Biotechnology, Vol. 6, 466-502. VCH-Verlagsgesellschaft, Weinheim

Liebl W., Bayerl A., Schein B., Stillner U., Schleifer K.H. (1989). High efficiency electroporation of intact *Corynebacterium glutamicum* cells. FEMS Microbiol. Lett. 65: 299-300

Liebl W., Ehrmann M., Ludwig W., Schleifer K.H. (1991). Transfer of *Brevibacterium divaricatum* DSM 20297T, "*Brevibacterium flavum*" DSM 20411, "*Brevibacterium lactofermentum*" DSM 20412 and DSM1412, and *Corynebacterium lilium* DSM 20137T to *Corynebacterium glutamicum* and their distinction by rRNA gene restriction patterns. Int. J. Syst. Bacteriol. 41: 255-260

Lindroth P. und Mopper K. (1979). High performance liquid chromatograpic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde. Anal. Chem. 51: 1167-1174

Link A.J., Phillips D., Church G.M. (1997). Methods for Generating Precise Deletions and Insertions in the Genome of Wild-Type *Escherichia coli*: Application to Open Reading Frame Characterization. J. Bacteriol. 179: 6228-6237

Lochowska A., Iwanicka-Nowicka R., Plochocka D., Hryniewicz M.M. (2001). Functional dissection of the LysR-type CysB transcriptional regulator. Regions important for DNA binding, inducer response, oligomerization and positive control. J. Biol. Chem. 276: 2098-2107

Loewus F.A., Everard J.D., Young K.A. (1990). Inositol Metabolism in plants. 21-45. Wiley-Liss. Inc.

Magasanik B. (2000). Global regulation of gene expression. Proc. Natl. Acad. Sci. USA 97: 14044-14045

Majerus P.W. (1992). Inositol phosphate biochemistry. Annu. Rev. Biochem. 61: 225-250

McFall S.M., Chugani S.A., Chakrabarty A.M (1998). Transcritpional activation of the catechol and chlorocatechol operons: variations on a theme. Gene 223: 257-267

McFall S.M., Klem T.J., Fujita N., Ishihama A., Chakrabarty A.M. (1997). Dnase I footprinting, DNA bending and *in vitro* transcription analyses of ClcR and CatR interactions with the *clcABD* promotor: Evidence of a conserved transcriptional activation mechanism. Mol. Microbiol. 24: 965-976

McFall S.M., Parsek M.R., Chakrabarty A.M (1997). 2-Chloromuconate and ClcR-Mediated Activation of the *clcABD* Operon: In Vitro Transcriptional and Dnase I Footprint analyses. J. Bacteriol. 179: 3655-3663

Miller J.H. (1972). Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor New York, USA

Miwa Y., Fujita Y. (2001). Involvement of Two Distinct Catabolite-Responsive Elements in Catabolite Repression of the *Bacillus subtilis myo*-Inositol (*iol*) Operon. J. Bacteriol. 183: 5877-5884

Miyajima R., Shiio I. (1970). Regulation of aspartate family amino acid biosynthesis in *Brevibacterium flavum*. 3. Properties of homoserine dehydrogenase. J. Biochem., Tokyo. 68: 311-319

Miyajima R., Shiio I. (1971). Regulation of aspartate family amino acid biosynthesis in *Brevibacterium flavum.* 4. Repression of the enzyme in threonine biosynthesis. Agr. Biol. Chem. 35: 424-430

Moritz B., Striegel K., de Graaf A.A., Sahm H. (2000). Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from *C. glutamicum* and their application for predicting pentose phosphate pathway flux *in vivo*. Eur. J. Biochem. 267: 3442-3452

Nakayama K. (1985). Lysine. In: Comprehensive Biotechnology. Moo-Young M. (ed.) Oxford: Pergamon Press, Vol. 3. 607-620

Nakayama K., Tanaka H., Hagino H., Kinoshita S. (1966). Studies on lysine fermentation. 5. Concerted feedback inhibition of aspartokinase and the absence of inhibition on aspartic semialdehyde-pyruvate condensation in *Micrococcus glutamicus*. Agr. Biol. Chem. 30: 611-616

Nigou J., Besra G.S. (2002). Characterization and regulation of inositol monophosphatase activity in *Mycobacterium smegmatis*. Biochem. J. 361: 385-390

Nigou J., Dover L.G., Besra G.S. (2002). Purification and Biochemical Characterization of *Mycobacterium tuberculosis* SuhB, an Inositol Monophosphatase Involved in Inositol Biosynthesis. Biochemistry 41: 4392-4398

Nihashi J., Fujita Y. (1984). Catabolite repression of inositol dehydrogenase and gluconate kinase syntheses in *Bacillus subtilis*. Biochim. Biophys. Acta 798: 88-95

Norman R.A., McAlister M.S., Rust-Murray J., Movahedzadeh F., Stoker N.G., McDonald N.Q. (2002). Crystal structure of inositol 1-phosphate synthase from *Mycobacterium tuberculosis*, a key enzyme in phosphatidylinositol synthesis. Structure (Camb). 10: 393-402

Pao S.S., Paulsen I.T., Saier M.H. Jr. (1998). Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62: 1-34

Paradkar A.S., Aidoo K.A., Jensen S.E. (1998). A pathway-specific transcriptional activator regulates late steps of clavulanic acid biosynthesis in *Streptomyces clavuligerus*. Mol. Microbiol. 27:831-843

Parish T., Liu J., Nikaido H., Stoker N.G. (1997). A *Mycobacterium smegmatis* Mutant with a Defective Inositol Monophosphate Phosphatase Gene Homolog Has Altered Cell Envelope Permeability. J.Bacteriol. 179: 7827-7833

Parsek M.R., Coco W.M., Chakrabarty A.M. (1994). Gel-shift assay and DNase I footprinting in analysis of transcriptional regulation of biodegradative genes. Methods Mol. Genet. 3: 273-290

Parsek M.R., Kivisaar M., Chakrabarty A.M. (1995). Differential DNA bending introduced by the *Pseudomonas putida* LysR-type regulator, CatR, at the plasmid-borne *pheBA* and chromosomal *catBC* promotors. Mol. Microbiol. 15: 819-828

Parsek M.R., McFall S.M., Shinaberger D.L., Chakrabarty A.M. (1994). Interaction of two LysR-type regulatory proteins CatR and ClcR with heterologus promotors: Functional and evolutionary implications. Proc. Natl. Acad. Sci. USA. 91: 12393-12397

Pascual C., Lawson P.A., Farrow J.A., Gimenez M.N., Collins M.D. (1995). Phylogenetic analysis of the genus *Corynebacterium* based on 16S rRNA gene sequences. Int. Syst. Bacteriol. 45: 724-728

Patte J.C. (1996). Biosynthesis of threonine and lysine. In: *Escherischia coli* and *Salmonella*. Cellular and Molecular Biology. ASM Press, Waschington D.C. Second Edition, Vol. 1: 528-541

Patzer S. und Hantke K. (2001). Dual Repressionby Fe²⁺-Fur and Mn²⁺-MntR of the *mntH* Gene, Encoding an NRAMP-Like Mn²⁺ Transporter in *Escherichia coli*. J. Bac. 183: 4806-4813

Paulsen I.T., Saier Jr. M.H. (1997). A novel family of ubiquitous heavy metal ion transport proteins. J. Membr. Biol. 156: 99-103

Pelechova J., Smekal F., Koura V., Plachy J., Krumphanzl V. (1980). Biosynthesis of L-lysine in *Corynebacterium glutamicum* on sucrose, ethanol and acetic acid. Folia Microbiol. 25: 341-346

Peter H., Weil B., Burkovski A., Krämer R., Morbach S. (1998). *Corynebacterium glutamicum* Is Equipped with Four Secondary Carriers for Compatible Solutes: Identification, Sequencing, and Characerization of the Proline/Ectoine Uptake System, ProP, and the Ectoine/Proline/Glycine Betaine Carrier, EctP. J. Bacteriol. 180: 6005-6012

Pfefferle W., Möckel B., Bathe B., Marx A. (2003). Biotechnological Manufacture of Lysine. In: T. Scheper (ed), Advances in Biochemical Engineering/Biotecnology, Vol. 79, 59-112. Springer-Verlag, Berlin Heidelberg 2003

Plamann L.S., Stauffer G.V. (1987). Nucleotide sequence of the *Salmonella typhimurium metR* gene and the *metR-metE* control region. J. Bacteriol 169: 3932-3937

Polen T. (2003). Genomweite Genexpressionsanalysen mit DNA-Chips zur Charakterisierung des Glucose-Überflußmetabolismus von *Escherichia coli*. Dissertation, Heinrich-Heine-Universität Düsseldorf

Polen T., Rittmann D., Wendisch V.F., Sahm H. (2003). DNA microarray Analyses of the long term Adaptive Response of *Escherichia coli* to Acetate and Propionate. Appl. Environ. Microbiol. 69: 1759-1774

Poole P.S., Blyth A., Reid C.J., Walters K. (1994). *myo*-Inositol catabolism and catabolite regulation in *Rhizobium leguminosarum* bv. viciae. Microbiology 140: 2787-2795

Postma P.W., Lengeler J.W., Jacobson G.R. (1993). Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57: 543-594

Puyet A., Ibanez A.M., Espinosa M. (1993). Characterization of the *Streptococcus pneumonia* maltosaccharide regulator MaIR, a member of the LacI-GaIR family of repressors displaying distinctive genetic features. J. Biol. Chem. 268: 25402-25408

Quentin Y., Fichant G., Denizot F. (1999). Inventory, assembly and analysis of *Bacillus subtilis* ABC transport systems. J. Mol. Biol. 287: 467-484

Rahav-Manor O., Carmel O., Karpel R., Taglicht D., Glaser G., Schuldiner S., Padan E. (1992). NhaR, a protein homologous to a family of bacterial regulatory proteins (LysR), regulates *nhaA*, the sodium proton antiporter gene in *Escherischia coli*. Proc. Natl Acad. Sci., USA 267: 10433-10438

Richaud F., Phuc N.H., Cassan M., Patte J.C. (1980). Regulation of aspartokinase III synthesis in *Escherichia coli*: isolation of mutants containing *lysC*-lac fusions. J. Bacteriol. 143: 513-515

Richaud F., Richaud C., Ratet P., Patte J.C. (1986). Chromosomal location and nucleotide sequence of the *Escherichia coli dapA* gene. J. Bacteriol. 166: 297-300

Sahm H. (1995). Metabolic design in the amino-acid-producing bacterium *Corynebacterium glutamicum*. Folia Microbiol. 40: 23-30

Sahm H., Eggeling L., de Graaf A.A. (2000). Pathway analysis and metabolic engineering in *Corynebacterium glutamicum*. J. Biol. Chem. 381: 899-910

Saier M.H. (1989). Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate:sugar phosphotransferase system. Microbiol. Rev. 53: 109-120

Saier M.H. Jr. (1994). Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis and evolution. Microbiol. Rev. 58: 71-93

Saier M.H. Jr. (2000). Families of transmembrane sugar transport proteins. Mol. Microbiol. 35: 699-710

Saier M.H. Jr., Tam R., Reizer J. (1994). Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol. Microbiol. 11: 841-847

Saiki R.K., Gelfand D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis K.B., Erlich H.A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491

Salman M., Lonsdale J.T., Besra G.S., Brennan P.J. (1999). Biochim. Biophys. Acta 1436: 437-450

Sambrook J., Fritsch E.F., Maniatis T. (1989). Molecular cloning: A Laboratory manual. Cold Spring Harbor Laboratory Press

Sanger F., Nicklen C., Coulsen A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467

Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A. (1994). Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plsmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. Gene 145: 69-73

Schell M.A. (1993). Molecular biology of the LysR family of transcriptional regulators. Annu. Rev. Microbiol. 47: 597-626

Schell M.A. (1996). To be or not to be: How *Pseudomonas solanacearum* decides whether or not to express virulence genes. Eur. J. Plant Pathology 102: 459-469

Schena M., Shalon D., Davis R.W., Brown P.O. (1995). Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray. Science 270: 467-470

Schlegel A., Böhm A., Lee S-J., Peist R., Decker K., Boos W. (2002). Network Regulation of the *Escherichia coli* Maltose System. J. Mol. Microbiol. Biotechnol. 4: 301-307

Schlösser A., Kampers T., Schrempf H. (1997). The *Streptomyces* ATP-binding component MsiK assists in cellobiose and maltose transport. J. Bacteriol. 179: 2092-2095

Schlösser A., Weber A., Schrempf H. (2001). Synthesis of the *Streptomyces lividans* maltodextrin ABC transporter depends on the presence of the regulator MaIR. FEMS Microbiology letters 196: 77-83

Schneider E. (2001). ABC transporters catalyzing carbohydrate uptake. Res. Microbiol. 152: 303-310

Schrumpf B., Eggeling L., Sahm H. (1992). Isolation and prominent characteristics of an Llysine hyperproducing strain of *Corynebacterium glutamicum*. Appl. Microbiol. Biotechnol. 37: 566-571

Schrumpf B., Schwarzer A., Kalinowski J., Pühler A., Eggeling L., Sahm H. (1991). A functionally split pathway for lysine synthesis in *Corynebacterium glutamicium*. J. Bacteriol. 173: 4510-4516

Schwarzer A., Pühler A. (1991). Manipulation of *Corynebacterium glutamicum* by gene disruption and replacement. Bio/Technology 9: 84-87

Shalon D., Smith S.J., Brown P.O. (1996). A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 7: 639-645

Shears S.B. (1998). The versatility of inositol phosphates as cellular signals. Biochim. Biophys. Acta 1436: 49-67

Shiio I., Sano K. (1969). Microbial production of L-lysine. 2. Production by mutants sensitive to threonine or methionine. J. Appl. Microbiol. 15: 267-287

Simič P., Sahm H., Eggeling L. (2001). L-Threonine Export: Use of Peptides To Identify a New Translocator from *Corynebacterium glutamicum*. J. Bacteriol. 183: 5317-5324

Smith J.M., Daum H.A. (1986). Nucleotide sequence of the purM gene encoding 5'-phosphoribosyl-5-aminoimidazole synthetase of *Escherischia coli* K12. J. Biol. Chem. 261: 10632-10636

Spaink H.P., Wijffelman C.A., Okker R.J., Lugtenberg B.J. (1989). Localization of functional regions of the *Rhizobium nodD* product using hybrid *nodD* genes. Plant. Mol. Biol. 12: 59-73

Stackebrandt E., Rainey F.A., Ward-Rainey N.L. (1997). Proposal for a new hierarchic classification system, *Actinobacteria* classis nov. Int. Syst. Bacteriol. 47: 479-491

Stojiljkovic I., Bäumler A., Hantke K. (1994) Identification and Characterization of New Iron-regulated *Escherichia coli* Genes by a Fur Titration Assay. J. Mol. Biol. 236: 531-545

Stülke J., Hillen W. (2000). Regulation of Carbon Catabolism in *Bacillus* Species. Annu. Rev. Microbiol. 54: 849-880

Sugimoto S., Shiio I. (1989). Fructose metabolism and regulation of 1-phosphofructokinase and 6-phosphofructokinase in *Brevibacterium flavum*. Agric. Biol. Chem. 53: 1261-1268

Tauch A., Kirchner O., Loffler B., Gotker S., Puhler A., Kalinowski J. (2002). Efficient electrotransformation of *corynebacterium diphtheriae* with a mini-replicon derived from the *Corynebacterium glutamicum* plasmid pGA1. Curr. Microbiol. 2002 Nov 45:362-367

Tauch A., Pühler A., Kalinowski J., Thierbach G. (2000). TetZ, a New Tetracycline Resistance Determinant Discovered in Gram-Positive Bacteria, Shows High Homology to Gram-Negative Regulated Efflux Systems. Plasmid 44: 285-291

Thöny B., Hwang D.S., Fradkin L., Kornberg A. (1991). *iciA*, an *Escherichia coli* gene encoding a specific inhibitor of chromosomal initiation of replication *in vitro*. Proc. Natl. Acad. Sci. USA 88: 4066-4070

Tindall K.R. und Kunkel T.A. (1988). Fidelity of DNA synthesis by the *Thermus aquaticus* DNA polymerase. Biochemistry 27: 6008-6013

Titgemeyer F., Hillen W. (2002). Global control of sugar metabolism: a Gram-positive solution. Antonie van Leeuwenhoek 82: 59-71

Truffa-Bachi P., van Rapenbusch R., Janin J., Gros C., Cohen G.-N. (1968). The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of *Escherischia coli* K12. Eur. J. Biochem. 5: 73-80

Tyrell R., Verschueren K.H., Dodson E.J., Murshudov G.N., Addy C., Wilkinson A.J. (1997). The structure of the cofactor-binding fragment of the LysR family member, CysB: a familiar fold with a surprising subunit arrangement. Structure 5: 1017-1032

van der Rest M.E., Lange C., Molenaar D. (1999). A heat shock following electroporation induces highly efficient transformation of *Corynebacterium glutamicum* with xenogenic plasmid-DNA. Appl. Microbiol. Biotechnol. 52: 541-545

Vašicova P., Abrámová Z., Nešvera J., Pátek M., Sahm H., Eikmanns B. (1998). Integrative and autonomously replicating vectors for analysis of promoters in *Corynebacterium glutamicum*. Biotechnol. Techn. 12: 743-746

Vedler E., Kõiv V., Heinrau A. (2000). TfdR, the LysR-type transcriptional activator, is responsible for the activation of the *tfdCB* operon of *Pseudomonas putida* 2,4-dichloro-phenoxyacetic acid degradative plasmid pEST4011. Gene 245: 161-168

Vidal-Leiria M., van Unden N. (1973). Inositoldehydrogenase from the yeast *Cryptococcus melibiosum*. Biochim. Biophys. Acta 293: 295-303

Vrljić M. (1997). L-Lysinexport bei *Corynebacterium glutamicum*: Physiologische und molekularbiologische Charakterisierung des Carrier-vermittelten Exportes eines Primärmetaboliten. Dissertation, Heinrich-Heine-Universität Düsseldorf

Vrljić M., Garg J., Bellmann A., Wachi S., Freudl R., Malecki M.J., Sahm H., Kozina V.J., Eggeling L., Saier Jr. M.H. (1999). The LysE superfamily: Topology of the Lysine Exporter LysE of *Corynebacterium glutamicum*, a Paradyme for a Novel Superfamily of Transmembrane Solute Translocators. J. Mol. Microbiol. Biotechnol. 1: 327-336

Vrljić M., Sahm H., Eggeling L. (1996). A new type of transporter with a new type of cellular function: L-lysine export from *Corynebacterium glutamicum*. Mol. Microbiol. 22: 815-26

Weickert M.J., Adhya S. (1992). A Family of Bacterial Regulators Homologous to Gal and Lac Repressors. J. Biol. Chem. 267: 15869-15874

Wek R.C., Hatfield G.W. (1986). Examination of the internal promotor, PE, in the *ilvGMEDA* operon of *E. coli* K12. Nucleic Acids Res. 14: 2763-2777

Wendisch V.F., Zimmer D.P., Khodursky A., Peter B., Cozzarelli N., Kustu S. (2001). Isolation of *Escherichia coli* mRNA and comparism of expression using mRNA and total RNA on DNA microarrays. Anal. Biochem. 290: 205-213

Wiegert T., Homuth G., Versteeg S., Schumann W. (2001). Alkaline shock induces the *Bacillus subtilis* sigma (W) regulon. Mol. Microbiol. 41: 59-71

Xavier K.B., Martins L.O., Peist R., Kossmann M., Boos W., Santos H. (1996). Highaffinity maltose/trehalose transport system in the hyperthermophilic archaeon *Thermococcus litoralis*. J. Bacteriol. 178: 4773-4777 Yang Z., Savchenko A., Yakunin A., Zhang R., Edwards A., Arrowsmith C., Tong L. (2003). Aspartate Dehydrogenase, a Novel Enzyme Identified from Structural and Functional Studies of TM1643. J. Biol. Chem. 278: 8804-8808

York J.D., Guo S., Odom A.R., Spiegelberg B.D., Stolz L.E. (2001). An Expanded View of Inositol Signaling. Advan. Enzyme Regul. 41: 57-71

Yoshida K-I., Aoyama D., Ishio I., Shibayama T., Fujita Y. (1997). Organization and Transcription of the *myo*-Inositol Operon, *iol*, of *Bacillus subtilis*. J. Bacteriol. 179: 4591-4598

Yoshida K-I., Kobayashi K., Miwa Y., Kang C-M., Matsunaga M., Yamaguchi H., Tojo S., Yamamoto M., Nishi R., Ogasawara N., Nakayama T., Fujita Y. (2001). Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in *Bacillus subtilis*. Nucleic Acids Research 29: 683-692

Yoshida K-I., Shibayama T., Aoyama D., Fujita Y. (1999). Interaction of a Repressor and its Binding Sites for Regulation of the *Bacillus subtilis iol* Divergon. J. Mol. Biol. 285: 917-929

Yoshida K-I., Yamamoto Y., Omae K., Yamamoto M., Fuita Y. (2002). Identification of Two *myo*-Inositol Transporter Genes of *Bacillus subtilis*. J. Bacteriol. 184: 983-991

Zaim J., Kierzek A.M. (2003). The structure of full-length LysR-type transcriptional regulators. Modeling of the full-length OxyR transcription factor dimer. Nucleic Acids Research 31: 1444-1454

Zakataeva N.P., Aleshin V.V., Tokmakova I.L., Troshin P.V., Livshits V.A. (1999). The novel transmembrane *Escherichia coli* proteins involved in the amino acid efflux. FEBS Lett. 452: 228-232

Zalkin H. (1993). *De Novo* Purine Nucleotide Synthesis. In: Sonenshein (ed.), *Bacillus subtilis* and Other Gram-Positive Bacteria

Zheng M., Wang X., Templeton L.J., Smulski D.R., LaRossa R.A., Storz G. (2001). DNA microarray-mediated transcriptional profiling of the *Escherichia coli* response to hydrogen peroxide. J. Bacteriol. 183: 4562-4570

Zimmer D.P., Soupene E., Lee H.L., Wendisch V.F., Khodursky A.B., Peter B.J., Bender R.A., Kustu S. (2000). Nitrogen reglatory protein C-controlled genes of *Escherichia coli*: scavenging as a defense agaianst nitrogen limitation. Proc. Natl. Acad. Sci. USA 97: 14674-14679
VII Anhang

1 PCR- und Sequenzierprimer

Primer zum Nachweis der Insertionsmutante R127ppc::pEM3dppcGE"/acZ (R6):

ррс 1	5'-GAC CAA AGC GAG CAA	GTG TCC-3'
ppc i	J-GAC CAA AGC GAG CAA	616100-5

tet 1 5'-GCG CGG GCG AGG TAA AAG AC-3'

Primer zur Ansequenzierung der Plasmide aus der Plasmidgenbank von C. glutamicum:

upper primer	5'-GAG GGC GAT CAG CGA CGC CG-3'
lower primer	5'-CAA CGT TGT TGC CAT TGC TGC-3'

Primer zur Amplifizierung der putativen Promotorbereiche (aus dem *lacZ*-Screening):

	BamHI
3-1-24-purM_U1	5'-CGC GGA TCC GCG CCG TAT GCG TGG GGG TTG TC-3'
3-1-24-purM_L1	5'-CGC GGA TCC GCG CTG CTG CGA GGA TTG GCT TCT-3'
3-1-24-tnp1513_U1	5'-CGC GGA TCC GCG CCG TTA GAG AGG CCT ACA AAA C-3'
3-1-24-tnp1513-L1	5'-CGC GGA TCC GCG GCC GTA CGG CTT TCC TCT GG-3'
3-1-24-Rv0810c_U1	5'-CGC GGA TCC GCG CTG CCA CGG GCT GAA ATC CT-3'
3-1-24-Rv0810c_L1	5'-CGC GGA TCC GCG GAG GAC GAC ACC GAC AAT CG-3'
3-1-30-sc6a11.15_U1	5'-CGC GGA TCC GCG CCT GGA CGT TCT TAG TTC ATC A-3'
3-1-30-sc6a11.15_L1	5'-CGC GGA TCC GCG CAT CCA TCG CGA AGG GCT AC-3'
3-1-30-sc7a1.1 8c_U1	5'-CGC GGA TCC GCG GCT GCG ACG CCC TTG TTT AG-3'
3-1-30-sc7a1.1 8c_L1	5'-CGC GGA TCC GCG ACG CGC CAC GTG AAG AAC AC-3'
3-1-30-Rv1636_U1	5'-CGC GGA TCC GCG CGA TTC GGG CAG CTC GTT CA-3'
3-1-30-Rv1636 L1	5'-CGC GGA TCC GCG CGA GCT CAA GAA GGA ACT GAG-3'

<u>BamHI</u>

3-1-30-uvrB_U1	5'-CGC GGA TCC GCG CCC TCC CCA CGT CCA TCA AT-3'
3-1-30-uvrB_L1	5'-CGC GGA TCC GCG CTA TGT TGC GGG ACC TGA GC-3'
4-1-52-gltA1_U1	5'-CGC GGA TCC GCG AGC TGC TGC GCT ACA ACG AG-3'
4-1-52-gltA1_L1	5'-CGC GGA TCC GCG CCG TAG AGC CCT TTG CGA AC-3'
4-1-52-yjmC_U1	5'-CGC GGA TCC GCG AGT GAG TTG TTG GGC GTT GAC-3'
4-1-52-yjmC_L1	5'-CGC GGA TCC GCG GCA GGC GCT GCG TGT AGA C-3'
4-1-52-gntR_U1	5'-CGC GGA TCC GCG ACC TGA TCT GCT TTT CTC GTA-3'
4-1-52-gntR_L1	5'-CGC GGA TCC GCG GAC CGC ACC GAT GAT TAC AAC-3'

Primer zur Konstruktion von *mal*-Promotorkonstrukten:

<u>BamHI</u>

mal_1-U1B	5'-CGC GGA TCC GCG GCA CCA AAA ACT CGC CAT CAG-3'
mal_1-L1B	5'-CGC GGA TCC GCG GTG TTG TTC GAT ACT GTT CCT G-3'
mal_1-U2B	5'-CGC GGA TCC GCG CGC CAT ATG GTG AAG CAA GTC-3'
mal_1-L2B	5'-CGC GGA TCC GCG CCT GGT GCG GAG TTA GTA GC-3'
mal_2-U1B	5'-CGC \textbf{GGA} \textbf{TCC} GCG GCC TCG GGA TCA TCA AAA GAG-3'
mal_2-L1B	5'-CGC GGA TCC GCG GAA CCC CGA GAT GAT GAA CTC-3'

Primer zur Inaktivierung von *ioID* und *ioIG* und deren Nachweis:

	<u>BamHI</u>
ioID_U1B	5'-CGC GGA TCC GCG CAG GCA CTT GTG GAG CAG AC-3'
ioID_L1B	5'-CGC GGA TCC GCG GAC CGG AGG GGG CAA AAG AC-3'
ioID_U2	5'-GCA CTG GTT GAA TTC CTT GGT C-3'
ioID_L2	5'-GGT TGC CAT CGC TGC TTT GAG-3'
	<u>BamHI</u>
iolG_U1B	5'-CGC GGA TCC GCG CGG CGA AGC TGG CGA ACT GC-3'
iolG_L1B	5'-CGC \mathbf{GGA} \mathbf{TCC} GCG CGG TAG CGA AAC GGG TGG TGA-3'
iolG_U2	5'-GCA TCA ACA ACC GCA CCT CTG-3'

Primer zur Konstruktion von ATCC21527pJC1ribR:

<u>Xbal</u>

- ribR₍₅₆₈₎_U1 5'-GCT CTA GAG CGG TAG CTA TCC ACG TGG CGC G-3'
- ribR₍₅₆₈₎_L1 5'-GCT C**TA GAG C**GA CCA TGT GGA TCC GGT ATT GTG-3'

Primersequenzen zur Konstruktion von Deletionen und deren Nachweis:

<u>BamHI</u>

- malGFE_No 5'-CGC GGA TCC CAA CCG CTC CAT CTG CAC CTA AC-3'
- malGFE_Co 5'-CGC GGA TCC CTC GCC GTC CAT GAA CCT CTT CC-3'

<u>linker</u>

- malGFE_Ni 5'-CCC ATC CAC TAA ACT TAA ACA AGG TGG CGT GAA AGC CTA GAC TAG-3'
- malGFE_Ci 5'-TGT TTA AGT TTA GTG GAT GGG CAA GTG ACG CGC CGG TCT TGC G-3'
- $\Delta malGFE_U1~5^{\circ}\text{-}CTC~CGG~ATG~GAC~ATT~CTC~GGG~TG-3^{\circ}$
- ∆malGFE_L1 5'-CAG CAG GTC GCA CCG CCC AGG-3'

<u>BamHI</u>

- ioD_No 5'-CGC **GGA TCC** AAG TAA TCA CCC CAG GTG AAA ACT GGA G-3'
- iolD_Co 5'-CGC GGA TCC AAC GAG GTG CTC AGC ACC CAG C-3'

<u>linker</u>

- ioID_Ni 5'-CCC ATC CAC TAA ACT TAA ACA TCT CTT CGT TTC AGC CAT GAA ATT TTA-3'
- ioID_Ci 5'-TGT TTA AGT TTA GTG GAT GGG AAA AAC CAA GCC CTC CAG CGT CC-3'
- $\Delta iolD_U1$ 5'-CAG CGC ACG CCT GGG TTC GA-3'
- Δ ioID_L1 5'-CGC GCT TCC ACT GCT CTT CAC C-3'

<u>BamHI</u>

- iolTl_{(3542)}No $\,$ 5'-CGC GGA TCC CTG AGT CGT CGT ATT ATT GCG TAT TTT-3' $\,$
- iolTI₍₃₅₄₂₎Co 5'-CGC GGA TCC ACA TTA GGA TCT TTA AGC AGT GAA TGA-3'

<u>linker</u>

- $iolTI_{(3542)} Ni \quad 5`-\text{CCC ATC CAC TAA ACT TAA ACA} \text{ AAA GGA AAG GTG CAC TAA AAA CCC AG-3}`$
- iolTI₍₃₅₄₂₎Ci 5'-TGT TTA AGT TTA GTG GAT GGG TTT CAG GGC TGT CGG CCT GAA TGA-3'
- Δ ioITI_U1 5'-GGG CCA AAG GAA ATG ACA GTT CTT G-3'
- Δ iolTI_L1 5'-GCC CAC TTT GAC ACA AGT GGT CGA-3'

<u>EcoRl</u>

iolTII₍₃₄₃₁₎No 5'-CCG GAA TTC TGC TTT GGC CAA ACC TAT GGT GGA-3'

iolTII(3431)_Co 5'-CCG GAA TTC ACG GCT AAA CAG GTT GTC TTG GGT A-3'

<u>linker</u>

ioITII₍₃₄₃₁₎Ni 5'-CCC ATC CAC TAA ACT TAA ACA ATC TTC AAG AAG GCT TAA ACC CCC T-3'

<u>linker</u>

- iolTII(3431)_Ci 5'-TGT TTA AGT TTA GTG GAT GGG GGC CGA TGT ACT TGA TGT GGC CTT-3'
- Δ iolTII_U1 5'-CCT GCG TAG GTG GTG GGG ATC G-3'
- $\Delta ioITII_L1 \qquad 5`-GCC\ CTG\ CCG\ AAA\ GTG\ CGT\ CTA\ CT-3`$

<u>Xbal</u>

- $ribR_{(568)} No \qquad 5`-\text{GCT CTA GAG C} \text{CG AGT TAG TTC CTC GCC CGC GC-3}`$
- $ribR_{(568)} Co \qquad 5`\text{-GCT CTA GAG C}\text{C}\text{G} \text{ C}\text{T}\text{G} \text{ A}\text{C}\text{A} \text{ A}\text{C}\text{A} \text{ T}\text{C}\text{G} \text{ A}\text{T}\text{G} \text{ A}\text{C}\text{A} \text{ T}\text{C}\text{G} \text{ A}\text{C}\text{A} \text{ }\text{C}\text{G} \text{ }\text{A}\text{C}\text{A} \text{ }\text{C}\text{C}\text{G} \text{ }\text{C}\text{C}\text{G} \text{ }\text{C} \text$

<u>linker</u>

- ribR₍₅₆₈₎Ni 5'-CCC ATC CAC TAA ACT TAA ACA TCG CTG ATT GAA CGG GGC ACG TG-3'
- ribR₍₅₆₈₎Ci 5'-TGT TTA AGT TTA GTG GAT GGG TGT GGG GCG GGA TGT GCT CAT CT-3'
- $\Delta ribR_U1$ 5'-GCT CTA GAG CAT CTG CAG TGG TAC GAC GAT CCG-3'
- ∆ribR_L1 5'-GCT CTA GAG CGC ACA GCA CAT GCT TGC CGG ATG-3'

<u>Xmal</u>

- idhll_No 5'-TCC CCC CGG GGG ATC GCC GCT GTA GGA GCA C-3'
- idhll_Co 5'-TCC CCC CGG GGG TTA GGC AGG ATG AGG TTG AGA A-3'

linker

- idhll_Ni 5'-CCC ATC CAC TAA ACT TAA ACA AAT TTT TTG ATC ACT CAT GGG AAT TCT-3'
- idhll_Ci 5'-TGT TTA AGT TTA GTG GAT GGG CCA GTT GAG GTG CGT GCG CTG-3'
- $\Delta idhII_U1$ 5'-GGA TTC GAG GGC CAT AAC TGG-3'
- $\Delta idhII_L1$ 5'-CAG TCC GAG CTT TGA GAT GTT C-3'

2 Restriktionskarten der konstruierten Plasmide

Abb. 20: Integrationsplasmid pEM3*dppc*GE"*lacZ* (pEM1*dppc* mit GE"*lacZ*-Fusionskassette als *Bam*HI-Fragment aus pUC18GE"*lacZ* und *Alu*I-Fragment von *tetA*(Z) aus pAG1 in *Nco*I-Schnittstelle von pEM1*dppc*)

Abb. 21: Plasmid pJC1_3-1-24 (aus der Plasmidgenbank von *C. glutamicum*, Insert mit darauf gelegenen Genen als Region markiert)

Abb. 22: Plasmid pJC1_3-1-30 (aus der Plasmidgenbank von *C. glutamicum*, Insert mit darauf gelegenen Genen als Region markiert)

Abb. 23: Plasmid pJC1_4-1-52 (aus der Plasmidgenbank von *C. glutamicum*, Insert mit darauf gelegenen Genen als Region markiert)

Abb. 24: Plasmid pJC1_5-1-02 (aus der Plasmidgenbank von *C. glutamicum*, Insert mit darauf gelegenen Genen als Region markiert)

Abb. 25: Plasmid pJC1_9-1-01 (aus der Plasmidgenbank von *C. glutamicum*, Insert mit darauf gelegenen Genen als Region markiert; enthält *lysG* und *lysE*; siehe auch Plasmid 10-4-03)

Abb. 26: Plasmid pJC1_9-1-67 (aus der Plasmidgenbank von *C. glutamicum*, Insert mit darauf gelegenen Genen als Region markiert)

Abb. 27: Plasmid pJC1_10-1-01 (aus der Plasmidgenbank von *C. glutamicum*, Insert mit darauf gelegenen Genen als Region markiert)

Abb. 28: Plasmid pJC1_10-1-02 (aus der Plasmidgenbank von *C. glutamicum*, Insert mit darauf gelegenen Genen als Region markiert)

Abb. 29: Plasmid pJC1_10-2-09 (aus der Plasmidgenbank von *C. glutamicum*, Insert mit darauf gelegenen Genen als Region markiert)

Abb. 30: Plasmid pJC1_10-4-03 (aus der Plasmidgenbank von *C. glutamicum*, Insert mit darauf gelegenen Genen als Region markiert; enthält *lysE* und *lysG*; siehe auch Plasmid 9-1-01)

Abb. 31: Plasmid pJC1_10-4-04 (aus der Plasmidgenbank von *C. glutamicum*, Insert mit darauf gelegenen Genen als Region markiert; enthält *lysE* und *lysG*; siehe auch Plasmid 9-1-01)

Abb. 32: Kontrollplasmid pJC1'GE' (455 bp *Bam*HI-Fragment mit integenischem LysG-Bindebereich vor *lysE*, in die *Bam*HI-Schnittstelle von pJC1 kloniert)

Abb. 33: Plasmid pJC1*ribR* (pJC1 mit 1104 bp PCR-Fragment aus chromosomaler DNA von *C. glutamicum* ATCC13032, enthält *ribR* (ORF568))

Abb. 34: Plasmid pJC1*mal_*1-1 (pJC1 mit internem 1198 bp *mal_*1-1-Fragment, in die *Bam*HI-Schnittstelle von pJC1 kloniert)

Abb. 35: Plasmid pJC1*mal*_1-2 (pJC1 mit internem 935 bp *mal*_1-2-Fragment, in die *Bam*HI-Schnittstelle von pJC1 kloniert)

Abb. 36: Plasmid pJC1*mal_*2-1 (pJC1 mit internem 717 bp *mal_*2-1-Fragment, in die *Bam*HI-Schnittstelle von pJC1 kloniert)

Abb. 37: Plasmid pK19*mobsacB*∆*malGFE* (pK19*mobsacB* mit *malG* (ORF1242)- und *malE* (ORF1245)-Sequenz, deletiert sind 3775 bp mit den Genen *malG* (ORF1242), *malF* (ORF1243) und *malE* (ORF1245))

Abb. 38: Plasmid pK19*mobsacB*∆*iolD* (pK19*mobsacB* mit *iolD*-Sequenz, deletiert ist ein internes 1861 bp Fragment von *iolD* (ORF560))

Abb. 39: Plasmid pK19*mobsacB*∆*iolT*I (pK19*mobsacB* mit *iolT*I-Sequenz, deletiert ist ein internes 1422 bp Fragment von *iolT*I (ORF3542))

Abb. 40: Plasmid pK19*mobsacB*∆*ioIT*II (pK19*mobsacB* mit *ioIT*II-Sequenz, deletiert ist ein internes 1472 bp Fragment von *ioIT*II (ORF3431))

Abb. 41: Plasmid pK19*mobsacB*∆*ribR* (pK19*mobsacB* mit *ribR*-Sequenz, deletiert ist ein internes 941 bp Fragment von *ribR* (ORF568))

Abb. 42: Plasmid pK19*mobsacB*∆*idh*II (pK19*mobsacB* mit *idhA* (ORF3436)- und *idh* (ORF3440)-Sequenz, deletiert sind 4072 bp mit den Genen *idhA* (ORF3436), ORF3438, *iolI* (ORF3439) und *idhA* (ORF3440))

Abb. 43: Plasmid pT18*mob2iolG*_{int} (pT18*mob2* mit internem 408 bp *iolG*-Fragment, in die *Bam*HI-Schnittstelle von pT18*mob2* kloniert)

Abb. 44: Plasmid pT18*mob2iolD*_{int} (pT18*mob2* mit internem 427 bp *iolD*-Fragment, in die *Bam*HI-Schnittstelle von pT18*mob2* kloniert)

Die vorliegende Arbeit wurde am Institut für Biotechnologie 1 des Forschungszentrums Jülich angefertigt.

Herrn Prof. Dr. Hermann Sahm danke ich für die Überlassung des Themas, für seine Anregungen und für das Interesse am Fortgang der Arbeit.

Herrn Prof. Dr. Johannes H. Hegemann danke ich für die freundliche Übernahme des Korreferats.

Bei der degussa. bedanke ich mich für die finanzielle Unterstützung und das Interesse an dieser Arbeit. Frau Dr. Brigitte Bathe danke ich für die Durchführung der L-Lysin-fermentationen und die uneingeschränkte Kooperation.

Mein besonderer Dank gilt Herrn Dr. Lothar Eggeling, der durch seine engagierte Betreuung, seine konstruktive Kritik und seinen schier unerschütterlichen Optimismus einen großen Teil zum Gelingen dieser Arbeit beigetragen hat.

Bei Volker, Tino, Christian und Georg möchte ich mich sehr herzlich für die tatkräftige Hilfe beim Einstieg in die DNA-Chip Technologie bedanken. Der gesamten AG Wendisch (Doris, Corinna, Andrea und Andreas) danke ich für die netten Gespräche im Labor und die stete Diskussionsbereitschaft.

Helga, Eva, Roman und Michael möchte ich dafür danken, dass sie mein Einsiedlerdasein in Labor 228 beendet haben. Die freundschaftliche Atmosphäre und der bisweilen chaotische Trubel werden mir stets in guter Erinnerung bleiben.

Karin, Nicole, Petra P.-W., Petra S., Yvonne, Eva, Corinna, Tanja, Maren, Mirja, Christina, Kerstin, Oliver, Roland, Steffen, Roman, Michael, Volker, Tino, Christian, Georg, Axel, Thomas, Lothar und allen übrigen Insitutsangehörigen danke ich für die freundliche Aufnahme, die stete Hilfsbereitschaft und die angenehme Arbeitsatmosphäre.

Ganz besonders möchte ich mich bei meiner Familie, Doris und Anne Krings, dafür bedanken, dass sie mich immer in jeder Hinsicht unterstützt und ermutigt haben. Mein besonderer Dank gilt vor allem Lutz Strohschneider für das liebevolle Vertrauen und sein Verständnis während meiner gesamten Promotionszeit.