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Abstract

Background: Understanding the biological mechanisms used by microorganisms for plant biomass degradation is
of considerable biotechnological interest. Despite of the growing number of sequenced (meta)genomes of plant
biomass-degrading microbes, there is currently no technique for the systematic determination of the genomic
components of this process from these data.

Results: We describe a computational method for the discovery of the protein domains and CAZy families involved
in microbial plant biomass degradation. Our method furthermore accurately predicts the capability to degrade
plant biomass for microbial species from their genome sequences. Application to a large, manually curated data set
of microbial degraders and non-degraders identified gene families of enzymes known by physiological and
biochemical tests to be implicated in cellulose degradation, such as GH5 and GH6. Additionally, genes of enzymes
that degrade other plant polysaccharides, such as hemicellulose, pectins and oligosaccharides, were found, as well
as gene families which have not previously been related to the process. For draft genomes reconstructed from a
cow rumen metagenome our method predicted Bacteroidetes-affiliated species and a relative to a known plant
biomass degrader to be plant biomass degraders. This was supported by the presence of genes encoding
enzymatically active glycoside hydrolases in these genomes.

Conclusions: Our results show the potential of the method for generating novel insights into microbial plant
biomass degradation from (meta-)genome data, where there is an increasing production of genome assemblages
for uncultured microbes.
Background
Lignocellulosic biomass is the primary component of all
plants and one of the most abundant organic compounds
on earth. It is a renewable, geographically distributed and
a source of sugars, which can subsequently be converted
into biofuels with low greenhouse gas emissions, such as
ethanol. Chemically, it primarily consists of cellulose,
hemicellulose and lignin. Saccharification - the process
of degrading lignocellulose into the individual component
sugars - is of considerable biotechnological interest.
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Several mechanical and chemical procedures for saccha-
rification have been established; however, all are relatively
expensive, slow and inefficient [1]. An alternative approach
is realized in nature by various microorganisms, which
use enzyme-driven lignocellulose degradation to generate
sugars as sources of carbon and energy. The search for
novel enzymes allowing an efficient breakdown of plant
biomass has therefore attracted considerable interest
[2-5]. In particular, the discovery of novel cellulases for
saccharification is considered crucial in this context [6].
However, the complexity of the underlying biological
mechanisms and the lack of robust enzymes that can be
economically produced in larger quantities currently still
prevent industrial application.
For some lignocellulose-degrading species, carbohydrate-

active enzymes (CAZymes) and protein domains implicated
in lignocellulose degradation are well known. Many of
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these have been recognized by physiological and biochem-
ical tests as being relevant for the biochemical process of
cellulose degradation itself, such as the enzymes of the
glycoside hydrolase (GH) families GH6 and GH9 and the
endoglucanase-containing family GH5. Two well-studied
paradigms are currently known for microbial cellulose
degradation: The ‘free-enzyme system’ is realized in most
aerobic microbes and entails secretion of a set of cellulases
to the outside of the cell. In anaerobic microorganisms
large multi-enzyme complexes, known as cellulosomes, are
assembled on the cell surface and catalyze degradation. In
both cases, the complete hydrolysis of cellulose requires
endoglucanases (GH5 and GH9), which are believed
to target non-crystalline regions, and exo-acting
cellobiohydrolases, which attack crystalline structures
from either the reducing (GH7 and GH48) or non-
reducing (GH6) end of the beta-glucan chain. However,
in the genomes of some plant biomass-degrading spe-
cies, homologs of such enzymes have not been found.
Recent genome analyses of the lignocellulose-degrading
microorganisms, such as the aerobe Cytophaga hutchinsonii
[7], the anaerobe Fibrobacter succinogenes [8,9] and the
extreme thermophile anaerobe Dictyoglomus turgidum [10]
have revealed only GH5 and GH9 endoglucanases. Genes
encoding exo-acting cellobiohydrolases (GH6 and GH48)
and cellulosome structures (dockerins and cohesins) are
absent.
Metagenomics offers the possibility of studying the

genetic material of difficult-to-culture (i.e. uncultured)
species within microbial communities with the capability
to degrade plant biomass. Recent metagenome studies of
the gut microbiomes of the wood-degrading higher
termites (Nasutitermes), the Australian Tammar wallaby
(Macropus eugenii) [11,12] and two studies of the cow
rumen metagenome [13,14] have revealed new insights
into the mechanisms of cellulose degradation in uncul-
tured organisms and microbial communities. Microbial
communities of different herbivores have been shown to
be dominated by lineages affiliated to the Bacteroidetes
and Firmicutes, of which different Bacteroidetes lineages
exhibited endoglucanse activity [11,15]. Notably, exo-
acting families and cellulosomal structures have a low rep-
resentation or are entirely absent from gut metagenomes
sequenced to date. Thus, current knowledge about genes
and pathways involved in plant biomass degradation in
different species, particularly uncultured microbial ones, is
still incomplete.
We describe a method for the de novo discovery of

protein domains and CAZy families associated with mi-
crobial plant biomass degradation from genome and
metagenome sequences. It uses protein domain and gene
family annotations as input and identifies those domains
or gene families, which in concert are most distinctive
for the lignocellulose degraders. Among the gene and
protein domains identified with our method were known
key genes of plant biomass degradation. Additionally, it
identified several novel protein domains and gene fam-
ilies as being relevant for the process. These might rep-
resent novel leads towards elucidating the mechanisms
of plant biomass degradation for the currently less well
understood microbial species. Our method furthermore
can be used to identify plant biomass-degrading species
from the genomes of cultured or uncultured microbes.
Application to draft genomes assembled from the
metagenome of a switchgrass-adherent microbial com-
munity in cow rumen predicted genomes from several
Bacteroidales lineages which encode active glycoside
hydrolases and a relative to a known plant biomass de-
grader to represent lignocellulose degraders.
In technical terms, our method selects the most infor-

mative features from an ensemble of L1-regularized
L2-loss linear Support Vector Machine (SVM) classifiers,
trained to distinguish genomes of cellulose-degrading
species from non-degrading species based on protein
family content. Protein domain annotations are available
in public databases and new protein sequences can be
rapidly annotated with Hidden Markov Models (HMMs)
or - somewhat slower - with BLAST searches of one pro-
tein versus the NCBI-nr database [16]. Co-occurrence of
protein families in the biomass-degrading fraction of
samples and an absence of these families within the
non-degrading fraction allows the classifier to link these
proteins to biomass degradation without requiring
sequence homology to known proteins involved in
lignocellulose degradation. Classification with SVMs has
been previously used successfully for phenotype predic-
tion from genetic variations in genomic data. In
Beerenwinkel et al. [17], support vector regression
models were used for predicting phenotypic drug resist-
ance from genotypes. SVM classification was used by
Yosef et al. [18] for predicting plasma lipid levels in
baboons based on single nucleotide polymorphism data.
In Someya et al. [19], SVMs were used to predict
carbohydrate-binding proteins from amino acid sequences.
The SVM [20,21] is a discriminative learning method that
infers, in a supervised fashion, the relationship between
input features (such as the distribution of conserved gene
clusters or single nucleotide polymorphisms across a set of
sequence samples) and a target variable, such as a certain
phenotype, from labeled training data. The inferred func-
tion is subsequently used to predict the value of this target
variable for new data points. This type of method makes no
a priori assumptions about the problem domain. SVMs can
be applied to datasets with millions of input features and
have good generalization abilities, in that models inferred
from small amounts of training data show good predictive
accuracy on novel data. The use of models that include an
L1-regularization term favors solutions in which few
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features are required for accurate prediction. There are
several reasons why sparseness is desirable: the high
dimensionality of many real datasets results in great
challenges for processing. Many features in these datasets
are usually non-informative or noisy, and a sparse classi-
fier can lead to a faster prediction. In some applications,
like ours, a small set of relevant features is desirable be-
cause it allows direct interpretation of the results.
Results
We trained an ensemble of SVM classifiers to distinguish
between plant biomass-degrading and non-degrading
microorganisms based on either Pfam domain or CAZY
gene family annotations (see Methods section for the
training and evaluation of the SVM classification ensem-
ble). We used a manually curated data set of 104 microbial
(meta-)genome sequence samples for this purpose, which
included 19 genomes and 3 metagenomes of lignocellu-
lose degraders and 82 genomes of non-degraders (Figure 1,
Figure 2, Additional file 1: Table S1). Fungi are known to
use several enzymes for plant biomass degradation for
which the corresponding genes are not found in prokary-
otic genomes and vice versa, while other genes are shared
by prokaryotic and eukaryotic degraders. To investigate
similarities and differences detectable with our method,
we included the genome of lignocellulose degrading
fungus Postia placenta into our analysis. After training,
we identified the most distinctive protein domains and
CAZy families of plant biomass degraders from the
resulting models. We compared these protein domains
and gene families with known plant biomass degradation
genes. We furthermore applied our method to identify
plant biomass degraders among 15 draft genomes from
the metagenome of a microbial community adherent to
switch grass in cow rumen.
Distinctive Pfam domains of microbial plant biomass
degraders
For the training of a classifier which distinguishes
between plant biomass-degrading and non-degrading
microorganisms we used Pfam annotations of 101 mi-
crobial genomes and two metagenomes. This included
metagenomes of microbial communities from the gut of a
wood-degrading higher termite and from the foregut of
the Australian Tammar Wallaby as examples for plant
biomass-degrading communities. Furthermore, 19 genomes
of microbial lignocellulose degraders were included -
of the phyla Firmicutes (7 isolate genome sequences),
Actinobacteria (5), Proteobacteria (3), Bacteroidetes (1),
Fibrobacteres (1), Dictyoglomi (1) and Basidiomycota (1).
Eighty-two microbial genomes annotated to not possess
the capability to degrade lignocellulose were used as
examples of non-lignocellulose-degrading microbial spe-
cies (Additional file 1: Table S1).
We assessed the value of information about the pre-

sence or absence of protein domains for distinguishing
lignocellulose degraders from non-degraders. With the
respective classifier, eSVMbPFAM, each microbial (meta-)
genome sequence was represented by a feature vector
with the features indicating the presence or absence of
Pfam domains (see Methods). The nested cross-validation
macro-accuracy of eSVMbPFAM in distinguishing plant
biomass-degrading from non-degrading microorganisms
was 0.91. This corresponds to 94% (97 of 103) of the
(meta-)genome sequences being classified correctly. Only
three of the 21 cellulose-degrading samples and three of
the non-degraders were misclassified (Table 1, Table 2).
Among these were four Actinobacteria and one genome
affiliated with the Basidiomycota and Theromotogae each.
We identified the Pfam domains with the greatest im-

portance for assignment to the lignocellulose-degrading
class by eSVMbPFAM (Figure 1; see Methods for the feature
selection algorithm). Among these are several protein
domains known to be relevant for plant biomass degrad-
ation. One of them is the GH5 family, which is present in
all of the plant biomass-degrading samples. Almost all
activities determined within this family are relevant to
plant biomass degradation. Because of its functional diver-
sity, a subfamily classification of the GH5 family was re-
cently proposed [24]. The carbohydrate-binding modules
CBM_6 and CBM_4_9 were also selected. Both families
are Type B carbohydrate-binding modules (CBMs), which
exhibit a wide range of specificities, recognizing single
glycan chains comprising hemicellulose (xylans, mannans,
galactans and glucans of mixed linkages) and/or non-
crystalline cellulose [25]. Type A CBMs (e.g. CBM2 and
CBM3), which are more commonly associated with bind-
ing to insoluble, highly crystalline cellulose, were not iden-
tified as relevant by eSVMbPFAM. Furthermore, numerous
enzymes that degrade non-cellulosic plant structural
polysaccharides were identified, including those that
attack the backbone and side chains of hemicellulosic
polysaccharides. Examples include the GH10 xylanases
and GH26 mannanases. Additionally, enzymes that
generally display specificity for oligosaccharides were
selected, including GH39 β-xylosidases and GH3
enzymes.
We subsequently trained a classifier - eSVMfPFAM - with

a weighted representation of Pfam domain frequencies for
the same data set. The macro-accuracy of eSVMfPFAM was
0.84 (Table 2); lower than that of the eSVMbPFAM;
with nine misclassified samples (4 Actinobacteria, 2
Bacteroidetes, 1 Basidiomycota, 1 Thermotogae phyla and
the Tammar Wallaby metagenome). Again, we determined
the most relevant protein domains for identifying a plant
biomass-degrading sequence sample from the models by
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Figure 1 Frequencies of the selected Pfam families in the individual genomes and metagenomes. The data for each entry are rescaled by
the total number of Pfam domains annotated to the microbial genome or metagenome. The color scale from grey to black indicates domain
families that are present in low to high amounts, respectively. White indicates absent protein domains. The signs “+” and “-” indicate whether a
protein domain was chosen in the respective experiment.
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feature selection. Among the most important protein fam-
ilies were, as before, GH5, GH10 and GH88 (PF07221: N-
acylglucosamine 2-epimerase) (Figure 1). GH6, GH67 and
CE4 acetyl xylan esterases (“accessory enzymes” that con-
tribute towards complete hydrolysis of xylan) were only
relevant for prediction with the eSVMfPFAM classifier.
Additionally, both models specified protein domains not
commonly associated with plant biomass degradation as
being relevant for assignment, such as the lipoproteins
DUF4352 and PF00877 (NlpC/P60 family) and binding
domains PF10509 (galactose-binding signature domain)
and PF03793 (PASTA domain) (Figure 1).
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Figure 2 Frequencies of selected glycoside hydrolase (GH) families and carbohydrate binding modules (CBMs) in the (meta-) genome
sequences. The data for each entry are rescaled by the total number of GH and CBM domains annotated to the microbial genome or
metagenome. The coloring from black to grey indicates domains that are present in high to low amounts, respectively. White indicates absent
domain families (“A”, “a”, “B”, “b”, “C”, “c” as described in Table 1).

Weimann et al. Biotechnology for Biofuels 2013, 6:24 Page 5 of 13
http://www.biotechnologyforbiofuels.com/content/6/1/24



Table 1 Misclassified species in the SVM analyses

eSVMbPFAM eSVMCAZY_B

False negatives Postia placenta Mad-698-R Thermomonospora curvata DSM 43183

Xylanimonas cellulosilytica DSM 15894

Thermomonospora curvata DSM 43183

False positives Actinosynnema mirum 101 Actinosynnema mirum 101

Arthrobacter aurescens TC1

Thermotoga lettingae TMO

Shown are species which were misclassified with the eSVMCAZY_B and the eSVMbPFAM classifiers. Contrary to previous beliefs [22], recent literature indicates in
agreement with our predictions that T. curvata is a non-degrader. Furthermore, recent evidence supports that A. mirum is a lignocellulose degrader, which has not
been previously described [23].
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Distinctive CAZy families of microbial plant biomass
degraders
We searched for distinctive CAZy families of microbial
plant biomass degraders with our method. CAZy fam-
ilies include glycoside hydrolases (GH), carbohydrate-
binding modules (CBM), glycosyltransferases (GT),
polysaccharide lyases (PL) and carbohydrate esterases
(CE). The annotations from the CAZy database
comprised 64 genomes of non-lignocellulose-degrading
species and 16 genomes of lignocellulose-degraders.
There were no CAZy annotations available for the
remaining genomes. In addition, we included the
metagenomes of the gut microbiomes of the Tammar
wallaby (TW), the wood-degrading higher termite and
of the cow rumen microbiome (Additional file 1: Table
S1). We evaluated the value of information about the
presence or absence of CAZy domains, or of their rela-
tive frequencies for identification of lignocellulose-
degrading microbial (meta-)genomes in the following
experiments:

1) By training of the classifiers eSVMCAZY_A (presence/
absence) and eSVMCAZY_a (counts), based on
genome annotations with all CAZy families.

2) By training of the classifiers eSVMCAZY_B (presence/
absence) and eSVMCAZY_b (counts), based on the
annotations of the genomes and the TW sample with
all CAZy families, except for the GT family
members, which were not annotated for the TW
sample.

3) By training of the classifiers eSVMCAZY_C (presence/
absence) and eSVMCAZY_c (counts) with the entire
data set based on GH family and CBM annotations,
as these were the only ones available for the three
metagenomes.

The macro-accuracy of these classifiers ranged from
0.87 to 0.96, similar to the Pfam-domain-based models
(Table 2). Notably, almost exclusively Actinobacteria
were misclassified by the eSVMCAZY classifiers, except
for the Firmicute Caldicellulosiruptor saccharolyticus.
The best classification results were obtained with the
presence-absence information for all CAZy families ex-
cept for the GT families of the microbial genomes and
the TW sample. In this setting (eSVMCAZY_B) only two
species (Thermomonospora curvata and Actinosynnema
mirum) were misclassified (Table 1). These species
remained misclassified with all six classifiers.
Using feature selection, we determined the CAZy fam-

ilies from the six eSVMCAZy classifiers that are most rele-
vant for identifying microbial cellulose-degraders. Many of
these GH families and CBMs are present in all (meta-)
genomes (Figure 2). This analysis identified further gene
families known to be relevant for plant biomass degrad-
ation. Among them are cellulase-containing families
(GH5, GH6, GH12, GH44, GH74), hemicellulase-
containing families (GH10, GH11, GH26, GH55, GH81,
GH115), families with known oligosaccharide/side-chain-
degrading activities (GH43, GH65, GH67, GH95) and
several CBMs (CBM3, -4, -6, -9, -10, -16, -22, -56). Several
of these (GH6, GH11, GH44, GH67, GH74, CBM4,
CBM6, CBM9) were consistently identified by at least half
of the six classifiers as distinctive for plant biomass
degraders. These might be considered signature genes of
the plant biomass-degrading microorganisms we analyzed.
Additionally, several GT, PL and CE domains were identi-
fied as relevant (eSVMCAZY_A: PL1, PL11 and CE5,
“eSVMCAZY_B: CE5; eSVMCAZY_a: GT39, PL1 and CE2,
eSVMCAZY_b: none). These CAZy families, as well as
GH115 and CBM56, are not included in Figure 2, as they
are not annotated for all sequences.

Identification of plant biomass degraders from a cow
rumen metagenome
We used our method to predict the plant biomass-
degrading capabilities for 15 draft genomes of uncul-
tured microbes reconstructed from the metagenome of a
microbial community adherent to switchgrass in cow
rumen [14] (see Methods for the classification with an
ensemble of SVM classifiers). The draft genomes repre-
sent genomes with more than 50% of the sequence
reconstructed by taxonomic binning of the metagenome



Table 2 Accuracy of classifying microbes as lignocellulose-degraders or non-degraders

Presence/absence
of Pfam
domains

Weighted Pfam
domain

representation

Presence/absence CAZy
family representation

Weighted CAZy
family representation

A B C a b c

nCV macro-accuracy 0.91 0.84 0.90 0.96 0.94 0.91 0.93 0.87

nCV recall 0.86 0.73 0.81 0.94 0.90 0.88 0.88 0.79

nCV true negative rate 0.96 0.96 0.98 0.98 0.98 0.95 0.98 0.95

L1-regularized SVMs were trained with Pfam domain or CAZY family (meta-)genome annotations. Capital letters denote classifiers trained based on the presence
or absence of CAZy families and small letters indicate classifiers trained based on the relative abundances of CAZy families in annotations. Abbreviations “A”, “a”,”
B”, “b”, “C”, “c” denote the following: Classifiers “A“,“a“ were trained with annotations of all CAZy families for 16 microbial genomes; Classifiers “B“,“b“ were trained
with annotations for all CAZy families, except for the GT family members (which were not annotated for the Tammar Wallaby metagenome), for 16 genomes and
the TW metagenome of plant biomass degraders; Classifiers “C“,“c“ were trained with annotations for the GH families and CBMs for the 16 microbial genomes and
three metagenomes of plant biomass degraders, as only these were annotated for the metagenomes. All CAZy-based classifiers were trained with available
annotations for 64 genomes of non-biomass degraders. The Pfam-based classifiers were trained with 21 (meta-)genomes of biomass-degraders and 82 microbial
genomes of non-degraders. For more details on the experimental set-up and the evaluation measures shown see the Methods section on performance evaluation.
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sample. The microbial community adherent to switch-
grass is likely to be enriched with plant biomass
degraders, as it was found to differ from the rumen fluid
community in its taxonomic composition and degrad-
ation of switch grass after incubation in cow rumen had
occurred. For identification of plant biomass-degrading
microbes, we classified each draft genome individually
with the eSVMbPFAM and eSVMCAZY_B models, which had
the highest macro-accuracy based on Pfam domain or
CAZy family annotations, respectively. The eSVMbPFAM

classifier assigned seven of the draft genomes to plant bio-
mass degraders (Table 3). One of these, genome APb, was
found by 16S rRNA analysis to be related to the fibrolytic
species Butyrivibrio fibrisolvens. Four others (AC2a, AGa,
AJ and AH) are of the order of Bacteroidales, and include
all but one draft genomes affiliated to the Bacteroidales.
The 6th and 7th predicted degrader, represented by gen-
ome AIa and AWa, belong to the Clostridiales, like
genome APb. The eSVMCAZY_B classifier also assigned five
of these genomes to the plant biomass degraders. Add-
itionally it classified genome AH as plant biomass-
degrading, while being ambiguous in the assignment of
AFa (Table 3). To validate these predictions, we searched
the draft genomes for genes encoding 51 enzymatically
active glycoside hydrolases characterized from the same
rumen dataset (for the results of these experiments see
Figure three in Hess et al. [14]). Genomes AGa, AC2a, AJ
and AIa were all linked to different enzymes of varying
specificities (Table 3). AC2a was linked to cellulose deg-
radation, specifically to a carboxymethyl cellulose (CMC)-
degrading GH5 endoglucanase as well as GH9 enzyme
capable of degrading insoluble cellulosic substrates such
as AvicelW. AIa demonstrated capabilities towards xylan
and soluble cellulosic substrates with affiliations to four
GH10 xylanases. Both AGa and AJ demonstrated
broader substrate versatility and were linked to enzymes
with capabilities towards cellulosic substrates CMC and
AvicelW (GH5, GH9 and GH26), hemicellulosic
substrates lichenan (β-1,3, β-1,4 β-glucan) and xylan
(GH5, GH9 and GH10), as well as the natural feedstocks
miscanthus and switchgrass (GH5 and GH9). Import-
antly, no carbohydrate-active enzymes were affiliated
to draft genomes that were predicted to not possess
plant biomass-degrading capabilities (Table 3). Overall,
assignments were largely consistent between the two
classifiers and supporting evidence for the capability to
degrade plant biomass was found for five of the
predicted degraders.

Timing experiments
Our method uses annotations with Pfam domains or
CAZy families as input. Generating these by similarity-
searches with profile HMMs rather than with BLAST
provides a better scalability for next-generation sequen-
cing data sets. HMM databases such as dbCAN contain
a representation of entire protein families rather than of
individual gene family members, which largely decreases
the number of entries one has to compare against.
For example, searching the ORFs of the Fibrobacter
succinogenes genome [26] for similarities to CAZy
families with the dbCAN HMM models took 23 seconds
on an IntelW XeonW 1.6 GHz CPU. In comparison,
searching for similarities to CAZy families by BLASTing
the same set of ORFs against all sequences with CAZy
family annotation of the NCBI non-redundant protein
database (downloaded from http://csbl.bmb.uga.edu/
dbCAN/ on April 19th 2011) on the same machine
required approximately 1 hour and 55 minutes, a differ-
ence of two orders of magnitude. Because of their better
scalability and also because they are well-established for
identifying protein domains or gene families [27-29], we
recommend the use of HMM-based similarities and
annotations as input to our method.

Discussion
We investigated the value of information about the
presence-or-absence of CAZy families and Pfam protein
domains, as well as information about their relative
abundances, for the identification of lignocellulose
degraders. Classifiers trained with CAZy family or Pfam

http://csbl.bmb.uga.edu/dbCAN/
http://csbl.bmb.uga.edu/dbCAN/


Table 3 Prediction of the plant biomass degradation capabilities for 15 draft genomes

AC2a AGa AIa-2 AJ APb AFa AH AWa ADa AMa AN AQ AS1 ATa BOa

eSVMCAZY_B ++ ++ ++ + ++ ++ 0 - - - - - - - - - - - - - - - -

eSVMbPFAM ++ ++ ++ ++ ++ - ++ + - - - - - - - - - - - -

CMC GH5 (TW-33) GH5 (TW-40) GH10 (TW-34) GH5 (TW-39)
GH26 (TW-10)
GH10 (TW-8)GH5 (MH-2)

XYL GH10 (TW-25) GH10 (TW-30) GH10 (TW-8)
GH10 (TW-31)
GH10 (TW-37)

SWG GH5 (TW-40)
GH5 (MH-2)

MIS GH9 (TW-64) GH5 (TW-40) GH5 (TW-39)
GH5 (MH-2)
GH9 (TW-50)

AVI GH9 (TW-64) GH5 (TW-40) GH5 (TW-39)
GH5 (MH-2)
GH9 (TW-50)

LIC GH5 (TW-40) GH5 (TW-39)
GH5 (MH-2)
GH9 (TW-50)

Genome reconstructions from the metagenome of a microbial community adherent to switchgrass in the cow rumen were obtained by taxonomic binning of assembled sequences in the original study. Symbols
depict the prediction outcome of a voting committee of the 5 eSVMCAZY_B and the eSVMbPFAM classifiers with the best macro-accuracy (see text for the description of the classifiers). ++: genome classified as plant
biomass degrader by all classifiers; +: genome classified as plant biomass degrader by 4 out of 5 classifiers; 0: ambiguous prediction; -: genome classified as not plant biomass degrader by 4 out of 5 classifiers; --:
genome classified as not plant biomass degrader by all classifiers. For every draft genome, the presence of genes encoding glycoside hydrolases with verified enzymatic activity for different substrates in this study
[14] is indicated. The genome and substrate names correspond to those of Figure 3 and Table S6 of the study.
Hydrolytic activity detected on:
(CMC) 1% (w/v) carboxymethyl cellulose agar.
(XYL) 1% (w/v) Xylan.
(SWG) 1% (w/v) IL-Switchgrass.
(MIS) 1% (w/v) IL-Miscanthus.
(AVI) 1% (w/v) IL-Avicel.
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domain annotations allowed an accurate identification
of plant biomass degraders and determined similar
domains and CAZy families as being most distinctive.
Many of these are recognized by physiological and
biochemical tests as being relevant for the biochemical
process of cellulose degradation itself, such as GH6,
members of the GH5 family and to a lesser extent GH44
and GH74. In contrast to widely accepted paradigms for
microbial cellulose degradation, recent genome analysis
of cellulolytic bacteria has identified examples (i.e.
Fibrobacter) where there is an absence of genes encoding
exo-acting cellobiohydrolases (GH6 and GH48) and
cellulosome structures [30]. In addition, these exo-acting
families and cellulosomal structures have had a low rep-
resentation or are entirely absent from sequenced gut
metagenomes. Our method also finds the exo-acting
cellobiohydrolases GH7 and GH48 to be less important.
GH7 represents fungal enzymes, so its absence makes
sense; however, the lower importance assigned to GH48
is interesting. The role of GH48 is believed to be of high
importance, although recent research has raised
questions. Olson et al. [31] have found that a complete
solubilization of crystalline cellulose can occur in
Clostridium thermocellum without the expression
of GH48, albeit at significantly lower rates. Further-
more, genome analysis of cellulose-degrading microbes
Cellvibrio japonicus [32] and Saccharophagus degradans
[33] have determined the presence of only non-reducing
end enzymes (GH6) and an absence of a reducing end
cellobiohydrolase (GH48), suggesting that the latter are
not essential for all cellulolytic enzyme systems.
While we have focused on cellulose degradation, our

method has also identified enzymes that degrade other
plant polysaccharides as being relevant, such as hemicellu-
lose (GH10, GH11, GH12, GH26, GH55, GH81, CE4),
pectins (PL1, GH88 and GH43), oligosaccharides (GH3,
GH30, GH39, GH43, GH65, GH95) and the side-chains
attached to noncellulosic polysaccharides (GH67, GH88,
GH106). This was expected, since many cellulose-
degrading microbes produce a repertoire of different glyco-
side hydrolases, lyases and esterases (see, for example,
[32,33]) that target the numerous linkages that are present
within different plant polysaccharides, which often exist in
tight cross-linked forms within the plant cell wall. The
results from our method add further weight to this. The
observation of numerous CBMs being relevant in the
CAZy analysis also agrees with previous findings that many
different CBM-GH combinations are possible in bacteria.
Moreover, recent reports have demonstrated that the
targeting actions of CBMs have strong proximity effects
within cell wall structures, i.e. CBMs directed to a cell wall
polysaccharide (e.g. cellulose) other than the target sub-
strate of their appended glycoside hydrolase (e.g. xylanase)
can promote enzyme action against the target substrate
(e.g. xylan) within the cell wall [34]. This provides
explanations as to why cellulose-directed CBMs are
appended to many non-cellulase cell wall hydrolases.
Several Pfam domains of unknown function (DUFs) or

protein domains which have not previously been associated
with cellulose degradation are predicted as being relevant.
These include transferases (PF01704) and several putative
lipoproteins (DUF4352), some of which have predicted
binding properties (NlpC/P60 family: PF00877, PASTA do-
main: PF03793). The functions of these domains in relation
to cellulose degradation are not known, but possibilities in-
clude binding to cellulose, binding to other components of
the cellulolytic machinery or interaction with the cell
surface.
Another result of our study are the classifiers for

identifying microbial lignocellulose-degraders from ge-
nomes of cultured and uncultured microbial species
reconstructed from metagenomes. Classification of draft
genomes reconstructed from switchgrass-adherent mi-
crobes from cow rumen with the most accurate clas-
sifiers predicted six or seven of these to represent
plant biomass-degrading microbes, including a close
relative to the fibrolytic species Butyrivibrio fibrisolvens.
Cross-referencing of all draft genomes against a catalogue
of enzymatically active glycoside hydrolases provided a
degree of method validation and was in majority agree-
ment with our predictions. Four genomes (AGa, AC2a, AJ
and AIa) predicted positive were linked to cellulolytic
and/or hemicellulolytic enzymes, and importantly no
genomes that were predicted negative were linked to
carbohydrate-active enzymes from that catalogue of
enzymatically active enzymes. Also, no connections to
carbohydrate-active enzymes from that catalogue were
observed for the three genomes (AFa,AH and AWa)
where ambiguous predictions were made. As both draft
genomes as well as the catalogue of carbohydrate active
enzymes in cow rumen are incomplete, in addition to our
training data not covering all plant-biomass-degrading
taxa, such ambiguous assignments might be better resolv-
able with more information in the future.
We trained a previous version of our classifier with the

genome of Methanosarcina barkeri fusaro incorrectly
labeled as a plant biomass degrader, according to informa-
tion provided by IMG. In cross-validation experiments, our
method correctly assigned M. barkeri to be a non-plant
biomass-degrading species. We labeled Thermonospora
curvata as a plant biomass degrader and Actinosynnema
mirum as non-degrader according to information from the
literature (see Additional file 1: Table S1). Both were
misassigned by all classifiers in the cross-validation
experiments. However, in a recent work by Anderson et al.
[23] it was shown that in cellulose activity assays A. mirum
could degrade various cellulose substrates. In the same
study, T. curvata did not show cellulolytic activity against



Weimann et al. Biotechnology for Biofuels 2013, 6:24 Page 10 of 13
http://www.biotechnologyforbiofuels.com/content/6/1/24
any of these substrates, contrary to previous beliefs [22].
The authors found out that the cellulolytic T. curvata strain
was in fact a T. fusca strain. Thus, our method could
correctly assign both strains despite of the incorrect pheno-
typic labeling. The genome of Postia placenta, the only
fungal plant biomass degrader of our data set was
misassigned in the Pfam-based SVM analyses. Fungi pos-
sess cellulases not found in prokaryotic species [35] and
might employ a different mechanism for plant biomass
degradation [36,37]. Indeed, in our data set, Postia placenta
is annotated with the cellulase-containing GH5 family and
xylanase GH10, but the hemicellulase family GH26 does
not occur. Furthermore, the (hemi-)cellulose binding CBM
domains CBM6 and CBM_4_9, which were identified as
being relevant for assignment to lignocellulose degraders
with the eSVMbPFAM classifier, are absent. All of the latter
ones, GH26, CBM6 and especially CBM4 and CBM9, occur
very rarely in eukaryotic genome annotations, according to
the CAZy database.

Conclusions
We have developed a computational technique for the
identification of Pfam protein domains and CAZy families
that are distinctive for microbial plant biomass degra-
dation from (meta-)genome sequences and for predicting
whether a (draft) genome of cultured or uncultured
microorganisms encodes a plant biomass-degrading or-
ganism. Our method is based on feature selection from an
ensemble of linear L1-regularized SVMs. It is sufficiently
accurate to detect errors in phenotype assignments of
microbial genomes. However, some microbial species
remained misclassified in our analysis, which indicates
that further distinctive genes and pathways for plant
biomass degradation are currently poorly represented in
the data and could therefore not be identified.
To identify a lignocellulose degrader from the currently

available data, the presence of a few domains, many of
which are already known, is sufficient. The identification
of several protein domains which have so far not been
associated with microbial plant biomass degradation in
the Pfam-based SVM analyses as being relevant may
warrant further scrutiny. A difficulty in our study was to
generate a sufficiently large and correctly annotated
dataset to reach reliable conclusions. This means that the
results could probably be further improved in the future,
as more sequences and information on plant biomass
degraders become available. The method will probably
also be suitable for identifying relevant gene and protein
families of other phenotypes.
The prediction and subsequent validation of three

Bacteroidales genomes to represent cellulose-degrading
species demonstrates the value of our technique for the
identification of plant biomass degraders from draft
genomes from complex microbial communities, where
there is an increasing production of genome assemblages
for uncultured microbes. These to our knowledge repre-
sent the first cellulolytic Bacteroidetes-affiliated lineages
described from herbivore gut environments. This finding
has the potential to influence future cellulolytic activity
investigations within rumen microbiomes, which has for
the greater part been attributed to the metabolic capabil-
ities of species affiliated to the bacterial phyla Firmicutes
and Fibrobacteres.

Methods
Annotation
We annotated all protein coding sequences of microbial
genomes and metagenomes with Pfam protein do-
mains (Pfam-A 26.0) and Carbohydrate-Active Enzymes
(CAZymes) [28,38]. The CAZy database contains infor-
mation on families of structurally related catalytic
modules and carbohydrate binding modules (CBMs) or
(functional) domains of enzymes that degrade, modify or
create glycosidic bonds. HMMs for the Pfam domains
were downloaded from the Pfam database. Microbial
and metagenomic protein sequences were retrieved from
IMG 3.4 and IMG/M 3.3 [39,40]. HMMER 3 [41] with
gathering thresholds was used to annotate the samples
with Pfam domains. Each Pfam family has a manually
defined gathering threshold for the bit score that was set
in such a way that there were no false-positives detected.
For annotation of protein sequences with CAZy families,
the available annotations from the database were used.
For annotations not available in the database, HMMs for
the CAZy families were downloaded from dbCAN
(http://csbl.bmb.uga.edu/dbcan) [42]. To be considered a
valid annotation, matches to Pfam and dbCAN protein
domain HMMs in the protein sequences were required
to be supported by an e-value of at least 1e-02 and a bit
score of at least 25. Additionally, we excluded matches
to dbCAN HMMs with an alignment longer than 100 bp
that did not exceed an e-value of 1e-04. Multiple
matches of one and the same protein sequence against a
single Pfam or dbCAN HMM exceeding the thresholds
were counted as one annotation.

Phenotype annotation of lignocellulose-degrading and
non-degrading microbes
We defined genomes and metagenomes as originating
from either lignocellulose-degrading or non-lignocellulose-
degrading microbial species based on information provided
by IMG/M and in the literature. For every microbial
genome and metagenome, we downloaded the genome
publication and further available articles (Additional file 1:
Table S1). We did not consider genomes for which no
publications were available. For cellulose-degrading spe-
cies annotated in IMG, we verified these assignments
based on these publications. We used text search to

http://csbl.bmb.uga.edu/dbcan
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identify the keywords “cellulose”, “cellulase”, “carbon
source”, “plant cell wall” or “polysaccharide” in the
publications for non-cellulose-degrading species. We
subsequently read all articles that contained these
keywords in detail to classify the respective organism as
either cellulose-degrading or non-degrading. Genomes
that could not be unambiguously classified in this manner
were excluded from our study.

Classification with an ensemble of support vector
machine classifiers
The SVM is a supervised learning method that can be
used for data classification [20,21]. Here, we use an L1-
regularized L2-loss SVM, which solves the following
optimization problem for a set of instance-label pairs
→xi; yið Þ, →xi∈Rn, yi ∈ { -1, + 1}, i = 1, . . ., l:

min
→w

jj→w jj1þC
Xl

i¼1

ðmaxð0; 1� yi→w
T→xiÞÞ2; ð1Þ

where C ≥ 0 is a penalty parameter. This choice of the
classifier and regularization term results in sparse
models, where non-zero components of the weight vec-
tor →w are important for discrimination between the
classes [43]. SVM classification was performed using the
LIBLINEAR package [44]. The components of →xi are
either binary valued and represent the presence or ab-
sence of protein domains, or continuous-valued and rep-
resent the frequency of a particular protein domain or
gene family relative to the total number of annotations.
All features were normalized by dividing by the sum of
all vector entries and subsequently scaled, such that the
value of each feature was within the range [0,1]. The
label +1 was assigned to genomes and metagenomes of
plant biomass-degrading microorganisms, the label -1 to
all sequences from non-degrading ones. Classification of
the draft genomes assembled from the fiber-adherent
microbial community from cow rumen was performed
with a voting committee of multiple models with differ-
ent settings for the penalty parameter C that performed
comparably well. A majority vote of the 5 most accurate
models was used here obtained in a single cross-
validation run with different settings of the penalty
parameter C.

Performance evaluation
The assignment accuracy of a classifier was determined
with a standard nested cross-validation (nCV) setup
[45]. In nCV, an outer cross-validation loop is organized
according to the leave-one-out principle: In each step,
one data point is left out. In an inner loop, the optimal
parameters for the model (here, the penalty parameter
C) are sought, in a second cross-validation experiment
with the remaining data points. For determination of the
best setting for the penalty parameter C, values for C =
10x, x = -3.0, -2.5, -2.25, . . ., 0 were tried. Values of the
parameter C larger than 1 were not tested extensively, as
we found that they resulted in models with similar ac-
curacies. This is in agreement with the Liblinear tutorial
in the appendix of [44] which states that once the par-
ameter C exceeds a certain value, the obtained models
have a similar accuracy. The SVM with the penalty par-
ameter setting yielding the best assignment accuracy was
used to predict the class membership of the left out data
point. The class membership predictions for all data
points were used to determine the assignment accuracy
of the classifier, based on their agreement with the
correct assignments. For this purpose, the result of each
leave-one-out experiment was classified as either a true
positive (TP - correctly predicted lignocellulose degraders),
true negative (TN - correctly predicted non-degraders),
false positive (FP - non-degraders predicted to be
degraders) or a false negative assignment (FN - degraders
predicted to be non-degraders). The recall of the positive
class and the true negative rate of the classifier were
calculated according to the following equations:

Recall ¼ TP
TP þ FN

ð2Þ

True negative rate ¼ TN
TN þ FP

ð3Þ

The average of the recall and the true negative rate,
the macro-accuracy, was used as the assignment accur-
acy to assess the overall performance:

MACC ¼ Recall þ True negative rate
2

ð4Þ

Subsequently, we identified the settings for the penalty
parameter C with the best macro-accuracy by leave-one
-out cross-validation. The parameter settings resulting in
the most accurate models were used to each train a sep-
arate model on the entire data set. Prediction of the five
best models were combined to form a voting committee
and used for the classification of novel sequence samples
such as the partial genome reconstructions from the
cow rumen metagenome of switch-grass adherent
microbes (see Additional file 2: Table S2 for an evalu-
ation and meta-parameter settings of these ensembles of
classifiers).

Feature selection
An SVM model can be represented by a sparse weight
vector →w . The positive and negative components of
→w , the ‘feature weights’, specify the relative importance
of the protein domains or CAZy families for discrimin-
ation between plant biomass-degrading and non-plant
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biomass-degrading microorganisms. To determine the
most distinctive features for the positive class (that is,
the lignocellulose degraders), we selected all features
that received a positive weight in weight vectors of the
majority of the five most accurate models. This ensemble
of models was also used for classification of the cow rumen
draft genomes of uncultured microbes (see Classification
with a SVM).

Additional files

Additional file 1: Table S1. Isolate strains and metagenome samples
used in this study. The signs “+” and “-” indicate availability of CAZy or
Pfam annotation data. The symbol * marks strains for which we provide
another reference than the genome publication characterizing the
metabolic capacities of the respective strain.

Additional file 2: Table S2: Evaluation and meta-parameter settings of
the ensembles of classifiers. The ensembles were used for feature
selection and phenotype classification of the (draft) genomes and
metagenomes. The macro-accuracy for each model for a discrete set of
values for the parameter C was calculated in cross-validation experiments.
The five best models were selected based on macro-accuracy. The mean
of the exponentially transformed parameter C and the mean macro-
accuracy for these five models are shown for all trained classifiers. For
details on the different ensemble classifiers, see the Results section in the
manuscript.
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