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Abstract 

The present work investigated operant behavior of rats under the control of fixed-

interval reinforcement schedules from a dynamical perspective.  The central point is a newly 

invented analyzing tool, the “extended return map (ERM)”.  It is a modification of the original 

return map (also known as recurrent plot).  The ERM is a multi-dimensional diagram 

reconstructed out of an one-dimensional data set of the inter-response times (IRT) acquired, 

for example, from an operant lever-pressing experiment.  Our results indicated that there are 

certain patterns in the ERM, which cannot be seen using the original return map.  Further 

studies suggested that these patterns indeed reflect long term dynamics of the IRT data.  

Analytical considerations as well as simulation studies indicated that a model based on a 

“two-state” conception can describe the dynamics of FI-responding quite well.  However, the 

“two-state” conception in the original form as proposed by its inventors is not sufficient to 

describe FI-responding.  Additional properties, such as acceleration of rate of responses, or 

multiple switches during the inter-reinforcement period must be taken into consideration. 

A study, using amphetamine as an example, demonstrated that the ERM-patterns can 

serve as dependent variables in pharmacological studies.  Furthermore, the ERM-patterns 

change in different way as the rate of responses and the averaged scallop curve do.  These 

findings evoked concern about the use of rate of responses and the averaged scallop curve 

alone to measure the effects of pharmacological treatments.  The findings also evoked 

concern about the way to build groups, since animals might react qualitatively differently to 

the same treatment.  The simulation studies indicated that, in addition to the scalloped curve, 

the switching rate between behavioral states also plays an important role in accounting for 

behaviors under amphetamine treatment.  This new information can only be acquired using 

the ERM. 
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1. Introduction  

1.1 Basic concepts 

1.1.1 Predicting behavior 

From a certain perspective, natural science can be regarded as an art of prediction.  

The starting point of science is the experience that certain observations have always related to 

some conditions, which underlie the so-called principle of causality, namely, that the same 

experimental conditions always lead to the same outcomes.  Of course, modern science is 

more than merely creating a table of conditions and their corresponding outcomes.  Efforts 

were made to find logical and, when possible, mathematical relationships between the 

subjects of observation, leading to the building of models, which enable the prediction of 

results under a novel set of experimental conditions. 

In the study of operant behavior employing the Skinner-box, reinforcement schedules 

are one of the most important parameters for setting up experimental conditions.  Models such 

as Herrnstein’s “matching law” (1970; 1974), or Killeen’s “mathematical principles of 

reinforcement” (1994) address the relationship between schedules of reinforcement and the 

rate of operant behavior.  Such models can help us to calculate rate of responding, by 

employing a particular reinforcement schedule, without having previously observed behaviors 

under that condition. 

1.1.2 Learning as a kind of behavioral dynamics 

Conceptually the term “prediction” strongly suggests the involvement of “time“.  

Given that a rat in a Skinner-box has learned to respond under a certain reinforcement 

schedule, say, continuous reinforcement, to “predict” the rate of responding under a new 

schedule implies that the animal now faces a new situation and must adapt its behavior 

accordingly.  A static model such as the “matching law” (Herrnstein, 1974) or the 

“mathematical principles of reinforcement” (Killeen 1994), allows us to make predictions 
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about the final rate of responding, the so-called steady-state-behavior.  How the animal arrives 

at this steady-state-behavior is a problem of behavioral dynamics, which we might understand 

under the framework of learning theory.  The study of this dynamical process is obviously 

different from the static models mentioned above. 

Machado and his coworkers were one of the few groups to investigate this dynamical 

process (Machado, 1997; Machado & Cevik, 1998).  Unlike other researchers, Machado et al. 

did not shape the animal’s behavior through a stepwise increase of the inter-reinforcement-

period, but changed the reinforcement schedule abruptly from continuous reinforcement 

(CRF) to fixed-interval (FI).  They analyzed the average rate of responding versus time after 

reinforcements, and found that in the beginning of this learning process animals exhibited a 

higher response rate after they received a reinforcement, and a gradual decline in rate of 

responding until the onset of the next reinforcement.  After several sessions of training the 

pattern of responding was inversed.  The rate of responding became lower after a 

reinforcement and increased steadily until the onset of the next reinforcement.  Machado and 

         
Time after Reinforcement 

 
Figure 1:  Typical FI-responding seen in the averaged scallop curve.  In the first session
of the FI-schedule control animals tend to respond more frequently after the delivery of
foods, or more homogeneously during the inter-reinforcement period.  After intensive
learning (15 sessions), the rate of responses decreases after the delivery of foods, and
increases gradually to a maximal value shortly before the next food delivery. 
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Cevik also presented a model that could describe this transition (1998).  Similar results were 

also found in the present study.  An example is shown in figure 1.  

1.1.3 Behavior as a real-time dynamical system 

The use of “rate of responding” is a convenient way to describe operant behavior.  

However, behavior also changes with “real-time”.  Consequently, the concept of “behavioral 

dynamics” should also be understood in terms of real-time dynamical systems, similar to 

those known in classical mechanics.  Although Machado and Cevik’s model can describe the 

transition of behavior from one set of environmental conditions to another; it is still very 

remote from Newton’s “equation of motions” of classical mechanics. 

Our efforts to understand animal behavior in terms of real-time dynamical systems 

have been hampered by the irregularity of data acquired in our observations.  Several general 

styles of explanation for this chronic variability have been advanced.  For examples: in terms 

of overcompensating homeostatic processes, such as response strength mechanisms 

(Herrnstein & Morse, 1958) or stimulus control mechanisms (Ferster & Skinner, 1957), 

external perturbation or noise (Sidman, 1960), and intrinsic variability.  In conclusion, the 

irregularity of data has generally been regarded as a problem of the system’s complexity.  

Either there are too many intrinsic variables that influence the animal’s behavior, or there are 

difficulties with experimental control, that is, too many external variables interact and 

“disturb” the animal’s behavior.   

However, precisely why homeostatic mechanisms fail eventually to dampen is left 

unexplained, and how small amounts of noise can overpower the generally very strong 

schedule effects also remains unclear.  Finally, the postulation of intrinsic causes for 

variability has also failed to provide fruitful solutions.  Facing these problems, we try to find 

an alternative approach.  Our efforts begin by posing the following question: does a complex 

appearance necessarily result from a complex system? 
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1.2  Emergence of “Chaos Theory” 

1.2.1 Classical dynamics and determinism 

Ever since Galileo, one of the central problems of physics has been the description of 

acceleration: “How can a continuously varying speed be defined?”.  The answer to this 

question made use of developments in both physics and mathematics.  Progress in the 

research of planetary motion formed the physics-basement of Newton’s law of motion, and 

the invention of calculus provided the necessary mathematical tools.  Calculus introduced the 

concept of “infinitesimal quantities”, the result of a limiting process.  It is typically the 

variation in a quantity occurring between two successive instants when the time elapsed 

between these instants tends toward zero.  In this way the “acceleration”, that is, the change of 

the state of motion, becomes an “infinite” series of “infinitely” small changes. 

In Newtonian language, to study acceleration means to determine the various “forces” 

acting on the points in the system under examination.  Newton’s second law, F = ma, states 

that the force applied at any point is proportional to the acceleration it produces.  In the case 

of a system consisting of multiple points, the problem is more complicated, since the forces 

acting on a given point are determined at each instant by the relative distances between points 

of the system.  Such a problem in dynamics is expressed in the form of a set of differential 

equations: the instantaneous state of each point of the system is defined by means of its 

position as well as by its velocity and acceleration, that is, first and second derivatives of the 

position. 

While the differential equations constitute the problem of dynamics, their 

“integration” represents the solution of this problem.  It leads to the calculation of a trajectory 

in the phase space.  A trajectory contains all the information relevant for dynamics, and 

provides a complete description of the dynamical system.  The description includes two parts: 

the initial states and the equations of motion.  The initial state is the position and velocity of 
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each of the system’s points at one arbitrary instant.  The equations of motion relate the 

dynamic forces to the accelerations.  The integration of the dynamic equations starting from 

the initial state unfolds the succession of states, that is, the trajectory of its constitutive points 

(for an introduction to classical dynamics, see for example: Marion & Thornton 1995). 

The basic characteristic of trajectories are lawfulness, determinism, and reversibility.  

In order to calculate a trajectory we need an empirical definition of a single initial state of the 

system in addition to our knowledge of the law of motions.  The general law then deduces 

from the initial state the series of states the system passes through as time progresses.  Once 

the forces are known, any single state is sufficient to define the system completely, not only 

its future but also its past.  The reversibility of a dynamic trajectory implies that if the 

velocities of all the points of a system are reversed, the system will go “backward in time”.  

This orthodox was the central topic of a series of books by Prigogine (1980; Prigogine & 

Stengers 1984, 1997). 

Extrapolative interpretation of the deterministic nature of classical dynamics has a 

symbol- the “demon” imagined by Laplace, capable at any given instant of observing the 

position and velocity of each mass that forms part of the universe.  Of course, no one has ever 

dreamed that physicists might one day have this God-like power of knowledge.  The “demon”  

simply illuminates the fact that a deterministic prediction of the course of events is possible in 

principle.  Laplace himself only used this fiction to emphasize the extent of our ignorance of 

the initial state.  In the context of classical dynamics, a deterministic description may be 

unreachable in practice, nevertheless, this does not preclude the objective truth of 

determinism as it would be seen by Laplace’s demon. 

1.2.2 The breakdown of determinism 

Today classical dynamics can be formulated in a compact and elegant way.  All the 

properties of a dynamic system can be summarized in terms of a single function, the 
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Hamiltonian H.  This function is simply the total energy, the sum of the system’s potential 

and kinetic energy.  This energy is no longer expressed in terms of positions and velocities, 

but in terms of so-called canonical variables, coordinates q and momenta p.  The time 

variation of the coordinate and of the momenta is given by the derivatives of H(p, q) in 

respect to momenta p and coordinates q respectively (Marion & Thornton 1995). 

In dynamics the same system can have different representations.  In classical dynamics 

all these representations are equivalent, and they correspond to different sets of variables p 

and q.  We can go from one representation to another by a transformation of variables, 

without effecting the system itself.  One of the basic problems of classical dynamics is to 

select a set of variables p and q, so that the Hamiltonian H(p, q) has the simplest form.  For 

example, it is advantageous to look for canonical variables by which the Hamiltonian is 

reduced to kinetic energy and depends only on the momenta.  In this case, interactions 

between compartments of the same system are eliminated, and the momenta  become 

constants of motion.  Such systems can be regarded as consisting of multiple “free particles”, 

that is, consisting of particles that are isolated and free of interactions.  The behavior of a free-

particle-system is simple, and its solution is trivial.  Systems that can be reduced to free-

particle-systems by change of variables are called “integrable systems”. 

It was believed that integrable systems were the prototype of dynamic systems.  

Generations of physicists and mathematicians tried to find for every kind of system the right 

variables that could eliminate interactions.  One widely studied example was the three-body 

problem.  For example, the motion of the moon, influenced by both earth and sun, is a three-

body system.  At the end of the nineteenth century Bruns and Poincaré showed that it is 

impossible to find a set of canonical variables to transform the Hamiltonians of three-body 

systems to a free-particle representation (for a review of this history, see Prigogine 1980, pp. 

57-77).  If dynamics as simple as the three-body problem are not integrable systems, there is 
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little hope to expect dynamics in general to have simple behaviors like the free-particle-

system. 

1.2.3 The beginning of “Chaos Theory” 

The work of Bruns and Poincaré was not completely understood at that time.  It was 

more than half a century later, when Edward Lorenz found another system that possesses such 

complicated behavior.  He simplified a theoretical model of an experiment on the convection 

of fluid induced by temperature differences in a bounded space (Rayleigh 1916), and arrived 

at three differential equations with three independent variables (Lorenz 1962, 1963).  

Although the Lorenz system appeared to be very simple, it has been impossible to solve it 

analytically, due to its non-linear terms.  Under certain conditions, the system is neither stable 

nor periodical.  Furthermore, small deviations in the initial conditions will grow exponentially 

during the time evolution of the system.  As a consequence, long term prediction becomes 

impossible, unless infinite accuracy of the initial condition can be acquired.  Lorenz called 

this property: “sensitivity to the initial conditions”. 

As with Bruns and Poincaré, Lorenz’s work was not adequately appreciated in the 

beginning.  Decades later, some mathematicians also began to study nonlinear dynamical 

systems, and Lorenz’ work was rediscovered (Li & Yorke 1975).  This marked the beginning 

of “Chaos Theory”.  Almost twenty years after Lorenz’s discovery, Libchaber and Maurer 

(1982) accomplished the convection experiment.  They observed the convection of liquidized 

helium in a very small cell, and found indeed the non-periodical behaviors foreseen by Lorenz 

(for the history of Chaos Theory, see: Gleick, 1987). 

Lorenz’s finding changed the deterministic nature of classical dynamics.  In the view 

of Laplace, the problem of uncertainty is due to our ignorance about the initial conditions, that 

is, it is only a problem in practice.  Now, due to the property “sensitivity to the initial 

conditions” of non-linear dynamical systems, we need infinite accuracy about their initial 
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conditions in order to make a long-term prediction.  Since, principally, every measurement 

has limited resolution, our efforts to make a long term prediction about such a non-linear, 

non-periodical system will certainly fail.  So, this “sensitivity to the initial conditions” is a 

problem in principle.  This property forces us to give up deterministic trajectories and to use 

statistical descriptions instead. 

From another point of view, Lorenz’s finding suggested an alternative way to 

approach phenomena with complex appearance.  A traditional linear dynamical system’s 

approach would regard complex appearance as a problem of experimental control.  The 

causes of complexity are either external disturbances, or it is due to the system’s intrinsic 

complexity in terms of the large number of independent variables.  Lorenz’ finding suggested 

that simple, non-linear dynamical systems can have non-periodical, complex behavior.  Here 

the term “simple” means that the number of independent variables is low.  For example, 

Lorenz’s system has only three independent variables, and can be outlined with three 

differential equations.  However, the time series of the three variables have very complex 

appearance. 

1.2.4 Application of chaos theory  in neuroscience and psychology 

In recent years, the application of chaos theory has been extended beyond the fields of 

mathematics and physics.  It is also widely applied in the study of complicated phenomena in 

neuroscience and psychology. 

The beat-to-beat variation in the heart rate of man and other animals is generated by a 

complex process and displays inhomogeneous, irregular temporal organization.  Several 

studies have indicated that the physiological mechanism of this cardiac control is an 

autonomous, low-dimensional chaotic system under certain experimental conditions 

(Lefebvre et al. 1993; Yamamoto et al. 1993; Ivanov et al. 1996).  Chaos theory was also 

applied to the study of heart rate dynamics of patients with heart disease (Guzzetti et al. 1996; 
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Poon & Merrill 1997; Meyer et al. 2003). 

In the study of electro-physiology of single neurons, evidence of chaos was first found 

in the giant neuron of Onchidium (Hayashi et al. 1982), and later in the pacemaker neuron 

(Hayashi et al. 1983; Hayashi & Ishizuka 1992).  Recently, chaotic response was also found 

in neural systems of vertebrates.  For examples, neurons of the hippocampus (Hayashi & 

Ishizuka 1995; Ishizuka & Hayashi 1998) and cortex (Ishizuka & Hayashi 1996, 1998) 

showed chaotic response when they were periodically stimulated.  Furthermore, the post 

synaptic membrane potential, also known as post synaptic “noise”, was commonly considered 

to be stochastic (Softky & Koch 1993; Shadlen & Newsome 1994).  Faure and Korn (1997), 

however, found deterministic components in it, suggesting that the mechanism of post 

synaptic potential might have chaotic dynamics. 

Chaos theory has also been applied to analyze the electroencephalogram (EEG).  Early 

studies had led to quite different conclusions.  While some authors reported that EEGs are 

generated by nonlinear dynamical systems of low dimension (Babloyantz 1985; Röschke et al. 

1993; Takigawa et al. 1994), others showed that EEGs are more likely the production of 

stochastic processes (Osborne and Provenzale 1989; Achermann et al. 1994).  Later works 

concentrated on the comparison between EEGs recorded from healthy human subjects and 

from epileptic patients.  It was shown that the EEG from epileptic patients possessed highly 

significant non-linearity (Lehnertz & Elger 1995; Casdagli et al. 1997; Röschke et al. 1997; 

Jing & Takigawa, 2000). 

The early years of chaos theory in psychology can be traced back to catastrophe 

theory.  Catastrophe theory originated from the works of Thom (1975).  It provided 

interesting mathematical concepts for many phenomena in biology and social science (for an 

introduction see: Castrigiano & Hayes 1993).  After a period of waning in the later 1980s, the 

application of non-linear dynamic systems approaches extended to the fields of psychological 
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theory in an extensive way.  The concept of chaos can be found, for example, in the study of 

psychophysics (Gregson 1995, 1998, 1999), perception (Stewart & Peregoy 1983; Ta’eed et 

al. 1988; Guastello 1995), learning (Guastello 1995, 1998) and response time (Heath 2000; 

Heath et al. 2000; Kelly et al. 2001).  In a special issue of the “Journal of the Experimental 

Analysis of Behavior” in 1992, several groups presented results of using the concept of 

nonlinear dynamic systems in behavioral experiments.  For example, operant behaviors of 

pigeons under different reinforcement schedules were analyzed using phase diagrams 

reconstructed from inter-response time (IRT) data (Palya 1992).  A hypothetical, deterministic 

model of operant responding under fixed-interval (FI) reinforcement schedules was also 

presented (Hoyert 1992). 

These efforts marked only the beginning of the application of chaos theory in the study 

of life sciences.  There remains a host of open questions in the study of non-linear properties 

of living organisms.  For example, the application of the return map (RM), a tool used to 

reconstruct the multi-dimensional phase space out of one dimensional inter-response time 

data, in the study of operant behaviors of pigeons has only led to limited success (Weiss, 

1970; Palya, 1992), encouraging the author to modify the RM, and to invent a new analyzing 

tool, the Extended Return Map (ERM, Li & Huston 2002).  The application of the ERM in the 

analysis of operant behavior of rats under the fixed-interval (FI) reinforcement schedules, the 

dynamical mechanisms governing this behavior as well as the application of this new 

analyzing tool to behavioral pharmacological studies are the central topics of the present 

work.  

1.3   Tools for nonlinear dynamical systems’ analysis 

1.3.1  Phase space 

From one point of view, Lorenz’s discovery implies the end of any hope for long-term 

prediction of non-linear dynamical systems.  From another point of view, his works showed 
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us a new way to deal with systems with irregular appearances.  If we look at the time series of 

any of the three variables in Lorenz’s equations, we will fail to find any regularity.  However, 

if we use the three variables as coordinates to construct a 3-dimensional Euclidean space, that 

is, the phase space, we will find that Lorenz’s system is bounded, and its trajectory has a 

distinct form.  The phase space of a dynamical system is a mathematical space with 

orthogonal coordinate directions representing each of the variables needed to specify the 

instantaneous state of that system.  The bounded structure of a trajectory in the phase space is 

the “attractor” of the system.  Within the basin of the attractor, no matter where the system 

initially starts,  its time evolution will eventually fall into this bounded area. 

The structure of attractors reflects the mechanism that governs the dynamics of the 

system.  Simple dynamical systems, such as linear oscillators, or idealized pendulums, have 

simple geometrical forms, such as closed loops.  Non-linear dynamical systems, for example, 

Lorenz’s system, have very complex structures.  The construction of phase space can be 

regarded as the first step in the nonlinear dynamical systems approach, and the ultimate goal 

is to find a theoretical model of the dynamical mechanism. 

1.3.2 Reconstruction of a phase space from one-dimensional time series 

To construct a phase space, the position of each variable must be known with infinite 

precision through time.  Unfortunately, in most behavioral experiments, only few of the 

variables involved in a particular experimental situation are known.  Even less understood is 

how these variables change over time.  In order to circumvent this problem, we can 

reconstruct a multi-dimensional space with delay-coordinate vectors, which are vectors of 

time series measurements of one observable of a system.  Analyses of this type were 

suggested in physics (Packard et al. 1980) and their validity has been demonstrated 

mathematically (Takens 1981).  The delay-coordinate method is widely used in all fields of 

studies employing nonlinear dynamics. 

 - 17 - 



  

The Skinner box experiment faces another problem when applying the delayed-

coordinate method.  The data set recorded here, the inter-response-times (IRT), is in fact a 

time series with time itself as the observable, and it is sampled in irregular time intervals 

along the time-axis.  This problem is common for all systems that can be classified as “point 

processes”, such as the inter-spike-interval of neuronal firing (e.g. Suzuki et al. 2000), or the 

R-R interval from electrocardiogram (ECG) studies (e.g. Guzzetti et al. 1996).  Although it is 

possible to first convert the IRT data into response rates, thus making it uniform along the 

time axis, there are many settings where it is more interesting to analyze the IRT data directly 

(Kantz & Schreiber 1997 pp. 145-148).  Instead of the time-coordinate, the basic idea of a 

delayed-coordinate method can be extended to the order-coordinate.  A diagram drawn in this 

manner is the so-called “Return Map (RM)” (e.g. Shaw 1984; Braun & Lisbôa 1994). 

In some early applications to operant experiments the same tool was in use, and was 

called “recurrent plots” (Weiss 1970; Palya 1992).  Such diagrams were said to show the 

sequential dependence of IRTs.  If IRTs are bounded by some kind of dynamic mechanism 

with low dimensionality, the variation of IRTs should be deterministic and the RM should be 

able to capture the structure of the function that describes the dynamic mechanism (Kantz & 

Schreiber 1997 pp. 145-148).  However, these applications of the RM in Skinner-box 

experiments achieved only limited success (Palya 1992).  It seems that the adjacent IRT data 

might not possess a low-dimensional, deterministic relationship.  However, it is still possible 

that there is a “long term” relationship in the sequence of a IRT data set, and its assessment 

demands improvement of the analyzing ability of this tool.  Therefore, we modified the 

original definition of the RM and developed the “Extended Return Map (ERM)” (Li & 

Huston 2002).  Formal definition of the ERM will be introduced later in section 2. 

1.3.3 Fractals and fractal dimension 

Attractors of nonlinear dynamical systems possess complex geometrical structures.  
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Direct interpretation is usually very difficult.  It is often advantageous to first run simulation 

studies of theoretical models, and then compare the simulated attractors with the experimental 

results.  Thus, a complete nonlinear dynamical system’s approach should include both 

experimental and simulation studies.  Nevertheless, there are some geometrical properties of 

the attractors that don’t need simulations.  These properties could be helpful in the study of 

nonlinear dynamics of the system.  

The geometrical structures of chaotic attractors belong to a special class of geometrical 

forms called “fractals”.  As the magnification of a fractal object increases, more fine 

structures will be revealed.  Furthermore, the shape of the finer structures looks similar under 

different scales.  This property is called the “self-similarity”, and it can be quantitatively 

measured using the fractal dimension.  Unlike the topological dimension, which is always an 

integer, the fractal dimension can be an integer or a fraction.  It describes how an object fills 

up space.   

Several mathematical definitions of fractal dimension have been suggested.  

According to the works of Grassberger (1983) and of Hentschel and Procaccia (1983), the 

correlation dimension of a point set {X1, X2, ..., XM} is defined through the following 

equation: 

   ln C(ε) 
   ν  =  lim     .         (1) 
   ε → 0 ln (ε) 
 
Here C(ε) is defined as  

C(ε) =  lim M -2 × { number of pairs (Xi , Xj) with | Xi- Xj| < ε}. 
M→ ∝ 

M is the amount of data in the time series; ε is a value predefined to calculate C(ε). 

In practice, several ε values between the resolution of measurements and the size of 

attractors are chosen.  Then the corresponding lnC(ε) are calculated and plotted against ln(ε).  
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The slope of the resulting regression line is taken as the correlation dimension ν.  In the 

present work, the resolution of the IRT data is 0.01 sec, and the size of ERM-patterns is in the 

order of 10 sec.  Although it is not certain, whether or not the extended return map is a 

topologically equivalent reconstruction of the phase diagram, it is still possible to calculate 

the fractal dimension, because the mathematical definition in equation (1) is applicable to any 

point sets.  The only constraint is the number of data points.  Theoretically, infinitely many 

data points are required in order to obtain an exact value.  In practice, the amount of data 

should be reasonably large (Ott et al. 1994).  For Skinner-box experiments, this condition is 

relatively easy to fulfill.  

Even if the meaning of this value calculated from the ERM differs from the dimension 

of attractors found in a real phase space, it is still interesting to determine, whether or not it 

can serve as a quantitative measure of behavioral patterns in animals receiving different 

reinforcement schedules and/or physiological treatments.  In the present studies, the 

correlation dimension serves as a quantitative measure of the geometrical features of the 

ERM-patterns, and enables a quantitative comparison between experimental ERMs and ERMs 

of surrogate data sets (see below). 

1.3.4 Study with surrogate data sets 

Since experimental data is always contaminated with noise, the differentiation of 

information of a system’s dynamics from disturbance by noise becomes a critical point in a 

non-linear analysis.  We wish to determine whether our findings in the extended return map 

really reflect the system’s dynamical properties, or whether they are simply caused by the 

analyzing procedure.  One way to clarify this, is to test the results with surrogate data sets 

which have the same statistical properties as the original data, such as mean, variance and 

power spectra, while the deterministic dynamical information is destroyed. 

As mentioned in section 1.2, a deterministic dynamical process correlates the present 
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state of the system to its history.  Mathematically it can be expressed by the following general 

form: X(t) = f [X(t-1)].  Here X(t) and X(t-1) are two sets of measurements of the system’s 

state variables that are observed at time t and at a previous time t-1.  The function f represents 

the deterministic dynamical process.  In other words, if we assume that there is deterministic 

dynamics in our system, the time series data recorded in the experiment should possess 

sequential dependences described by f.  Randomly shuffling the sequential order of the time 

series data will destroy this correlation.  Now, if the patterns in the reconstructed phase space 

somehow represent the deterministic dynamical correlation f, these patterns will also be 

different after changing the sequential order of the time series data.  If, however, the patterns 

remain unchanged in the phase space reconstructed using the surrogate data set, then we can 

say that the original time series data does not have sequential dependence. 

It was found that random shuffling the sequence of time series data is a very severe 

method to generate surrogate data, since it will destroy all the sequential correlation.  Theiler 

suggested that, for the testing of deterministic relationships in dynamical processes, it might 

be sufficient to generate surrogate data sets which have the same first order correlation as the 

original one, but all higher order correlations are removed (Theiler et. al. 1992; Liebovitch 

1998 pp. 220-221).  For simplicity, and in order to avoid achieving false positive results for 

the test of the newly developed method ERM, we applied only the random shuffling method 

to generate the surrogate data sets. 

In the present study, 9999 surrogate data sets were generated.  Together with the 

experimental IRT data, 10000 values of correlation dimension can be calculated.  Thus a 

frequency distribution of the surrogate dimensions could be established.  The location of the 

experimental fractal dimension on the diagram of the surrogate distribution quantitatively 

estimates the probability of acquiring the experimental IRT data by chance.  This value will 
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be called the “by-chance-probability” throughout the present work. 

1.4 The Extended Return Map (ERM) 

1.4.1 The delayed-coordinate method 

Suppose that there is a set of one-dimensional time series data X = {X(t) | t = time} 

whose elements X(t) are results of a scalar measurement on a system at time t.  Then the d-

dimensional reconstruction of phase space using the delayed coordinate method with a time 

lag L is given by  

{ (X(t), X(t + L), …, X(t + (d-1)L) }        (2) 

Takens (1981) was able to show that if d = 2D + 1, here D is the dimension of the 

original phase space, and if the measurement X fulfilled some conditions, then the attractor in 

a delayed-coordinate-reconstruction would have the same topological properties as the 

attractor in a real phase space.  Takens’ work is known as the “delayed embedding theorem”.  

Sauer et. al. (1991) were able to generalize this theorem to conditions with d > 2Dbox, where 

Dbox is the box counting dimension, a kind of fractal dimension, of the attractor.  They call 

this theorem the “fractal delay embedding prevalence theorem”. 

1.4.2 The Return Map (RM) and the Integrate-and-Fire model 

In the embedding theorem the time series X is the measurement of one of the system’s 

variables.  In some situations, the recorded signal itself is quite uninteresting and the relevant 

information is contained in the time intervals between certain characteristic events.  Such a 

system is known as a “Point Process”.  The R-R intervals obtained from electrocardiograms, 

or the inter-response time (IRT) data from Skinner-box experiments are examples of such 

systems.  This kind of “time” series is, in fact, a “sequence” series, since the indices of data 

are the sequential orders of the events, and the data itself are the “true” times. 

Although it is theoretically possible to convert such time series to frequencies of 
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events at different instances, hence making the data uniformly spaced along the time axis, it is 

often more interesting for non-linear dynamical analysis to reconstruct a multi-dimensional 

space using the inter-event intervals directly.  The d-dimensional reconstruction with time lag 

L of a series of inter-event-times: { IETn } will be given by the following point set:  

{(IETn, IETn-L, ... IETn-(d-1)L) | where n indicates the sequential order of events}  (3) 
 

A reconstruction of this kind is the “Return-Map (RM)”, and it is widely used in many 

fields, for example, in the study of physical systems (Shaw, 1984), heart rate (Guzzetti et al., 

1996), and neuronal firing (Hayashi & Ishizuka, 1995).  It was also applied in the study of 

operant responses in a Skinner-box (Palya, 1992). 

From a mathematical point of view, it is not sure whether or not the RM fulfills the 

requirement of Taken’s embedding theorem.  This implies that the attractor in a RM might be 

topologically different from that in the original phase space.  In the studies of non-linear 

dynamical models of neuronal firing Sauer (1994) introduced an “Integrate-and-Fire” model.  

It was assumed that a time series S(t) from the dynamical system is integrated with respect to 

time, and when it reaches a threshold θ, a spike is generated.  He showed that if the firing 

times Ti and the neuronal signal S(t) satisfy the relationship, 

∫
+

=
1

)(
Ti

Ti
dttS θ

 i = 1 to end of the data set     (4), 

then the embedding theorem can be applied to RMs constructed by interspike intervals 

ISI(i) = Ti+1 – Ti.  However, it was suggested both in the study of real neuron-firing and in the 

study of computer simulations, that the conditions stated by the “Integrate-and-Fire” model 

are very difficult to fulfill.  Even if it is possible to build a RM using the inter-spike interval 

of neuronal firing, the reconstructed attractors might have an appearance different from the 

one in the real phase space (Suzuki et al., 2000).   
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Previous application of the RM in Skinner-box experiments achieved only limited 

success (Palya, 1992).  Apparently such operant behaviors cannot be fitted into Sauer’s 

“Integrate-and-Fire” model.  In fact, the frequency distributions of most of the IRT data from 

Skinner-box experiments resemble exponential curves (see figure 21), which suggested that 

the IRT-data might be created by a Poisson process.  In other words, it seemed better to 

describe the operant behavior by using a probability function of occurrence rather than using a 

deterministic function that computes the length of IRTs.  On the other hand, animals do show 

some kinds of behavioral rhythms under certain experimental conditions, such as under the 

control of FI-schedules.  Can the non-linear dynamical analyzing tools extract information 

about the dynamic of this rhythmical behavior?  In order to accomplish this task, we modified 

the original RM, and invented the “Extended Return Map (ERM)”. 

1.4.3 Formal definition of the Extended Return Map (ERM) 

Data suitable for the application of the ERM is the same as for the original RM, and 

consists of sequences of time intervals between events, the inter-event-time (IET), or, in the 

case of Skinner-Box experiments, the inter-response-time (IRT).  The first step in the 

construction of an ERM was to calculate a new data set consisting of the moving average of 

the original IRTs according to the following equation (Li & Huston, 2002): 

n+f-1 
f MVn = Σ  IRTk / f          (5) 

k= n 

The parameter f specifies the range within which the moving average is computed.  In the 

nomenclature of traditional time series analysis, parameter f would be called the “window” of 

the moving average.  A d-dimensional ERM is constructed using the following point set:  

 
{(f MVn, f MVn-L, f MVn-2L, ...f MVn-(d-1)L) | n indicates the time order of data points }(6) 
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The total width of the moving-average-windows (X+Y) will be equal to the length of an IRP.  

This relationship remains true even if the moving-average-windows move forward; for 

example the windows X”Y” in situation II in figure 2a.  Here the symbols X, X’, X’’ and Y, 

Y’, Y” refer sometimes to the moving average windows themselves, sometimes to the “width” 

of the windows.  However, it is usually clear which meanings the symbols shall have.  Unless 

under ambiguous situations, the exact meanings of the symbols will not be specifically noted. 

Usually the Non-LP behavioral state is much longer than the averaged lengths of IRTs 

in an LP-state as shown in figure 2b.  Thus we have conditions that X’>>Y’ and X”<<Y”.  

This results in the clusters of points I and II shown in figure 2d.  Furthermore, since the 

coordinates of data points in an ERM are defined by “moving average / f “, the x-coordinate 

of cluster I is X’/f, and the y-coordinate of cluster II is Y”/f. 

In the examples in figures 2a and 2b, we assume that the LP-number in each IRP 

remains constant.  In real data, however, the LP-number varies from IRP to IRP, like the 

example shown in figure 2c.  If we define the parameters f and L to be equal to the averaged 

LP-number per IRP, we will observe situation III in figure 2c, where the momentary LP-

number in that IRP is smaller than the average.  We will also observe situation IV, where the 

momentary LP-number in that IRP is larger than the average.  Situations III and IV in figure 

2c lead to the formation of clusters III and IV in figure 2d. 

Furthermore, if the length of Non-LP is much larger than the width of windows Y’ and 

X” in figure 2b (windows Y’ and X” cover only shorter IRTs in the LP-state), we can neglect 

Y’ and X”, and the width of the windows X’ and Y” will be approximately equal to the length 

of an IRP.  Thus, the x-coordinate of cluster I will approximate “IRP/f “.  The same is valid 

for the y-coordinate of cluster II.  Under the same conditions we can also neglect the 

contributions of the shorter IRTs in the LP-state in the averaging windows X and Y in 

situation III of figure 2c.  As a result, windows X and Y will both approximate the length of 
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an IRP.  This leads to the result that the x- and y-positions of cluster III in figure 2d will 

approximate “IRP/f “. 

We can make use of this property and adjust the maximal scale of ERM-diagrams in 

such a way that the cluster III always remains in the same position in the image.  For example, 

if the IRP is 60 seconds, and the averaged LP-number per IRP is 20, then we can define f = L 

= 10, and the position of cluster III will be 6 seconds.  Then we can set the maximal scale of 

the ERM-diagram to be 12.  This setting results in an image, in which cluster III is located in 

the center.  Now if another animal (or the same animal in another session) produces on the 

average 10 LPs per IRP under a reinforcement schedule of FI-40s, we can define f = L = 5 

and scale the ERM-diagram to have maximally 16 seconds in both axes.  This setting will also 

produce an image with the cluster III located in the center.  The advantage of this setting is 

that we can easily compare ERMs of different animals, or different sessions run on one 

animal, even if the structures in the ERMs are different from that shown in figure 2d. 

Throughout the present work we follow this choice of parameters and define f as one 

half of the averaged number of lever presses per IRP in a session.  Usually, the averaged LP-

number per IRP is not an integer.  In that case, we round the value to the closest integer.  

Parameter L is set to be equal to f.  The maximal scale of ERM-diagrams is adjusted to be 

approximately three and a half times the value of “IRP/f “. 

1.5 Organization of the present work 

The application of the newly developed analyzing tool, the ERM, to analyze the 

dynamics of operant behavior of rats under the fixed-interval (FI) reinforcement schedules is 

the central topic of the present study.  Since the ERM is a modification of the widely used 

return map (recurrent plot), and since previous application of the return map did not achieve 

fruitful results, we were first interested in whether or not the ERM can reveal distinct patterns 

that cannot be seen in the original return map.  If the ERM can really reveal distinct patterns, 
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we have to test the relationship of these ERM-patterns and the dynamics of our experimental 

data by using the studies with surrogate sets.  Furthermore, we wished to study the process of 

acquisition of these “FI-dynamics”.  This process can be regarded as a learning process, and is 

by definition a dynamical process, since it expresses how the behavior adapted to a change in 

environmental parameters.  We set out to assess this process by use of the ERM. 

The ERM-patterns alone are not sufficient to understand the FI-dynamics, since we 

have to somehow interpret the patterns in terms of behavioral, and, if possible, physiological 

terms.  To accomplish this task, we need to combine the experimental results with analytical 

as well as simulation studies.  This part of our work is summarized by a comprehensive 

dynamical model of FI-responding.  In addition to pure behavioral studies, we also wished to 

use this method in practical applications.  For example, using the ERM-patterns as dependent 

variables might be very interesting in a behavioral pharmacological study.  To test this 

possibility, we chose a well known substance, amphetamine, and observed changes of the 

ERM-patterns after animals received IP-injection of this drug.  Furthermore, we tried to 

interpret this effect by using the dynamical model we proposed for FI-responding. 
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2 Experimental studies on the dynamics of FI-responding 

2.1 Introduction to Skinner-box experiments 

2.1.1 Operant behavior and Skinner-box 

The origin of the study of operant behavior can be traced back to the works of 

Thorndike (1911).  In his experiments, cats had to learn to escape from a small cage by 

operating a particular mechanism to open a door.  In the beginning animals needed a lot of 

time to try out numbers of different ways, until finally the correct response was found by 

chance.  After repeated training the time the animals required to escape from the cage became 

shorter.  What the animals apparently learned was to drop out unsuccessful behaviors until 

little or nothing remained except the necessary response for operating the door-opening 

mechanism. 

Later B. F. Skinner trained rats to press a lever in a small box, now known as the 

Skinner-box, to acquire food.  Unlike Thorndike’s cat, the rats in the Skinner-box exhibited 

little unnecessary behaviors prior to the beginning of learning, because Skinner adjusted the 

experimental conditions in such a way that unnecessary behaviors were reduced to a 

minimum.  What Skinner observed was an increase in the rate of responding that led to food 

reward.  Initially Skinner formulated his theory in terms of the “conditioned reflexes” 

originating from Pavlov (Skinner 1935).  Later he left this line of stimulus-response 

conception and emphasized the fact that food delivery, as a stimulus, did not elicit the lever 

pressing behavior, but increased the frequency of it.  Thus, instead of “conditioning”, he used 

the term “reinforcement” to designate the effect of foods in strengthening the lever pressing 

behavior.  Stimuli having similar effects like food were called “reinforcers”.  Instead of 

“reflex”, he used the term “operant” to emphasize that lever pressing behavior need not be 

elicited by a stimulus.  However, the presence of certain stimuli could influence the rate of 

lever pressing (Skinner 1937, 1938). 
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2.1.2  Fixed-Interval (FI) reinforcement schedules 

One of the most important variables that influences operant behavior is the schedule 

by which the reinforcers are made available.  In the original conception of operant, “right” 

behaviors are always rewarded and “wrong” ones remain always un-rewarded.  This kind of 

reinforcement schedule is called “continuous reinforcement (CRF)”.  This is, however, quite 

untypical in a natural environment, where most reinforcements are available intermittently.  In 

Skinner’s early studies, the effects of different intermittent reinforcement schedules, including 

the fixed-interval (FI) schedule of reinforcement, were examined (Ferster & Skinner 1957). 

In a FI-schedule the first response after a designated interval of time, the inter-

reinforcement period (IRP), is followed by the delivery of a reinforcer.  The first effect caused 

by this setting is the extinction of non-rewarded operant responses during the IRP.  In addition 

to extinction, several contingencies are taken into consideration in the building of theoretical 

models: 1) Length of inter-response time.  Since reinforcement is programmed by elapsed 

time in a FI-schedule, the longer the interval since the last response, the more likely the next 

response will be reinforced.  This contingency leads to the differential reinforcement of low 

rates.  2) Responding rate.  After a long time of training under the control of FI-schedules, 

animals usually show higher rates of responding before each food delivery (figure 1).  This 

leads to differential reinforcement of relatively higher rates of responses.  3) Total number of 

responses per reinforcement.  The average number of responses during a IRP could also be 

differentially reinforced, so that animals would be conditioned to emit a certain number of 

responses. 

2.2 Traditional analysis of FI-responding 

2.2.1 The cumulative record 

In the early studies by Skinner (Ferster & Skinner 1957), cumulative records played an 

important role for the analysis of responding dynamics of operant behavior.  In a cumulative 
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Figure 3:  An example of cumulative 
records of FI-responding. 
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record, a pen is installed on a band of constantly 

rolling paper.  Each time when an operant response 

is registered, the pen shifts one unit along the 

vertical direction.  Thus, the course of operant 

responding is charted cumulatively over time on the 

paper.  The cumulative record can be regarded as a 

plot of “number of responses“ versus “runtime”; 

hence, it is a kind of “time series” data set. 

After several sessions of training under the control of FI-schedules, it is often found 

that animals make a short pause after the delivery of a reinforcer, which is called the post 

reinforcement pause.  After the post reinforcement pause, the rate of responding increases 

gradually, and arrives at a constant “final-speed” before the delivery of the next reinforcer.  

This type of responding dynamic can be seen in a cumulative record as a concave-upward 

curve, which is often called the “scallop-curve” (see an example in figure 3).  However, the 

regularity is constantly interrupted by variability in the length of the pause, the degree of 

acceleration, the total number of responses in the inter-reinforcement period, etc..  The whole 

picture of operant behavior found under the control of FI-schedules is, thus, a mixture of 

periodicity and irregularity.  Variability can be seen not only between different individuals, 

but also within the same animal between different sessions, or even during different inter-

reinforcement periods within a session. 

2.2.2 The averaged scallop-curve 

In the traditional analysis, an averaging process is usually applied to overcome the 

problem of variability.  The inter-reinforcement period is first divided into several time-blocks 

with constant width.  Then the number of responses in each block is counted throughout the 

whole session, and subsequently divided by the number of food rewards animals received in 
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the session.  The final result is a plot of averaged rate of responses versus time after 

reinforcements, which shows the typical “scalloped-curve” (figure 1).  The appearance of this 

curve suggests a sigmoid-like function, and constitutes the basis of several theoretical studies 

on FI-responding (Gibbon, 1977; Killeen & Fetterman 1988).  However, several authors 

indicated that the averaged scalloped-curve might be created by dynamical mechanisms other 

than a continuous sigmoid-function (Schneider 1969; Dews 1978; Shull 1991).  Nevertheless, 

it is still a convenient way to get an overview of the dynamics of FI-responding, and has 

played an essential role in the works by Machado and his co-workers (Machado 1997; 

Machado & Cevik 1998). 

2.2.3 Summary of the traditional analysis 

In conclusion, the traditional analysis can roughly reveal the following picture of 

operant responses under the FI-schedules: After intensive training of the FI-schedules, 

animals will learn to cease responding after receiving a reinforcer.  Then the probability of 

responding will gradually increase, and arrive at its maximum before the onset of the next 

reinforcer.  Exactly how the response probability varied with time, is still under study. 

Although the analyzing tool and the conception of the nonlinear behavior dynamics 

are very different from those of the traditional analysis, the experimental setups remain almost 

the same.  The non-linear dynamical analysis provides simply a different point of view. 

2.3 Materials and methods 

2.3.1 Animals and apparatus 

Experimentally naive white Wistar rats obtained from the TVA (Tierversuchsanlage) 

at the University of Düsseldorf were used in the present study.  They were 2 months old and 

weighed between 220 and 260 g at the beginning of the experiment.  They were housed in 

individual cages with free access to water.  Illumination was controlled artificially under a 12 

hours day/night period.  During the experiments, the amount of food was restricted to 
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maintain the animals’ weight at about 

85~90% of their free-feeding levels.  

The food pellets consumed during trials 

in the Skinner-Box were also taken into 

account. 

Three Skinner-Boxes (28 cm × 

27 cm × 29 cm) made of metal were 

placed separately into wooden sound 

attenuating chambers (130 cm × 59 cm × 103 cm).  A 5 cm wide, 1 cm thick lever of metal 

was installed about 3 cm above the floor.  It was located in the middle of the wall to the right 

of the door.  The opening of the food-delivery machinery was about 2.5 cm above the floor, 

and was located at the right side of the lever, with a distance of 7 cm measured from the 

center of the lever (see figure 4 for a sketch).  A 40 W bulb was used in each chamber as a 

source of light.  Luminance measured in the middle of the Skinner-Boxes was about 12 LUX.  

Experiments were executed and controlled by a personal computer.  A program running under 

MS DOS 6.2 was developed to control the hardware and to record data.  The program was 

written and compiled with the programming language Turbo Pascal 7.0. 

Figure 4:  Sketch of a Skinner-box used in our 
experiments. 

2.3.2 Time schedules of experiments 

Experiments for the study of non-linear dynamics of FI-responding were conducted in 

four blocks (A ~ D).  Each block consisted of at least three phases: shaping-, CRF-, and 

schedule-controlled phases.  Blocks B, C and D included an additional treatment-phase in 

which amphetamine or saline were applied.  Detailed description of amphetamine treatments 

will be described later in the section concerning pharmacological studies.  The numeration of 

animals as well as the summary of experimental phases can be found in table 1 and 2. 
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Table 1  Time schedules of experiments 

Experimental Phases A B C D 

Shaping 5 x 20 min 5 x 20 min 5 x 20 min 5 x 20 min 

Pause 3 days 3 days 3 days 3 days 

CRF 1 x 90 min 1 x 90 min 1 x 90 min 1 x 90 min 

FI-Schedule Control 15 x 90 min 15 x 90 min 15 x 90 �in 26 x 90 min 

Drug Treatment --- 2 x 90 min 2 x 90 min 5 x 90 min 

Table 2  Numeration and groups of animals 

FI-Schedules A B C D 

FI-20s A1, A6 --- --- D3, D4, D8 

FI-40s A2, A4 B3, B5 C2, C4 D2, D6, D7 

FI-60s A3, A5 B2, B4 C1, C6 D1, D5, D9 

FI-90s --- B1, B6 C3, C5 --- 

The operant response in the present work is the pressing of a lever, which is not a 

natural behavior of rats.  As a result, the probability was very low that animals pressed the 

lever before they had learned the connection between lever pressing and food-delivery.  In 

order to accelerate the speed of learning, it is advantageous to install a so-called shaping 

phase in the beginning of each experiment.  The detailed procedure of shaping used in the 

present work was similar to that described in the original work of Skinner (1938, pp. 61).  The 

shaping phase lasted five days.  Each rat stayed at least 20 minutes in the box every day.  If an 

animal had learned the operant response and received 100 food pellets as reinforcement, the 

session was interrupted before the 20-minute runtime ran out. 

After the end of shaping, the animals were subjected to a CRF-phase, in which they 

had to complete one 90-minute session under the continuous reinforcement schedule (CRF).  

The CRF-phase ensured the success of shaping, and allowed the animals to adjust to the 

extended duration (90 minutes) of the sessions in the schedule-controlled phase as well as in 

the treatment-phase of blocks B, C and D. 
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In the schedule-controlled phase the animals were assigned to one of the following 

groups: FI20s, FI40s, FI60s, and FI90s, and they had to complete a 90-minute session under 

the control of one of these FI reinforcement schedules every day.  The designation of each 

group also specified the length of the inter-reinforcement period, namely 20, 40, 60 and 90 

seconds.  Each animal received the same FI-schedule during the whole schedule-controlled 

phase, but the length of the inter-reinforcement period differed between groups.  In blocks A, 

B and C, the schedule-controlled phase lasted 15 days, and in block D it lasted 26 days. 

For blocks B, C and D the schedule-controlled phase was followed by an additional 

treatment-phase, in which IP-amphetamine and/or saline injection was applied.  Detailed 

descriptions of the time schedule of the treatment-phase will be described in section 4.2. 

2.4 Results 

2.4.1 Comparison between the RM and the ERM  

Figures 5~8 show both the original “Return Maps” (upper panel) and the “Extended 

Return Maps” (lower panel) of all the groups from session 15.  The parameters f and L of the 

ERMs are outlined in table 3.  The choice of these parameters follows the rules discussed in 

section 1.4.4. 

In the RMs, most of the data points are located near the zero point and along the two 

axes.  In some RMs a slightly higher concentration of data points at position near the inter-

reinforcement-period (IRP) along both axes can be seen.  For example, in the RM of rat D3 

(FI20s-group) the distribution of data points is denser between 10 and 20 seconds along both 

axes.  Similar results can be seen at position from 25 to 40 seconds in RMs of rat A2, B3, C2, 

D6 and D7 (FI40s-group), at position from 30 to 60 seconds in RMs of rat B2 and D9 (FI60s-

group) as well as at position from 50 to 90 seconds in RMs of rat C5 (FI90s-group).  These 

data points might correspond to the first lever pressing after the post-reinforcement pause.  

Except for this, no other distinct structures can be identified.   
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Table 3  Parameters f, L and the “by-chance-probability” of experimental ERMs 
Abbreviation: IRP/f = inter-reinforcement period / f;  ExpD = experimental correlation 
dimension;  MSurD = mean surrogate correlation dimension;  ChP = by-chance-probability. 

Schedule Number Response Reward f & L IRP/f ExpD MSurD Ch. P. 
A1 7704 243 16 1.3 0.7011 0.9166 0.01% 

A6 2243 250 4 5 1.4358 1.5259 0.09% 

D3 1762 253 3 6.7 1.3035 1.3945 0.01% 

D4 5616 263 11 1.8 1.1417 1.4064 0.01% 

FI-20s 

D8 1686 254 3 6.7 1.2419 1.1856 3.86% 

A2 1386 122 6 6.7 1.3878 1.4431 1.22% 

A4 7179 90 40 1 0.4365 0.8022 0.01% 

B3 838 129 3 13.3 1.2977 1.3443 1.86% 

B5 3413 132 13 3.1 1.5097 1.5796 1.32% 

C2 1039 127 4 10 1.2921 1.3744 0.02% 

C4 2252 132 9 4.4 1.5272 1.7054 0.01% 

D2 2492 131 10 4 1.3572 1.6046 0.01% 

D6 1697 131 6 6.7 0.7778 1.0015 0.01% 

FI-40s 

D7 1465 131 6 6.7 1.3480 1.4190 0.23% 

A3 1635 87 9 6.7 1.0424 1.2229 0.01% 

A5 1072 86 6 10 1.3570 1.3130 6.12% 

B2 3136 88 18 3.3 0.9341 1.0828 0.81% 

B4 4222 89 24 2.5 1.5886 1.3881 0.01% 

C1 2585 87 15 4 1.6202 1.5631 2.93% 

C6 5904 89 33 1.8 1.1203 1.2159 11.60% 

D1 2642 88 15 4 1.3133 1.5046 0.01% 

D5 1813 87 10 6 1.6039 1.6398 5.31% 

FI-60s 

D9 765 87 4 15 1.0069 1.0654 5.75% 

B1 1521 58 13 6.9 0.9857 1.3009 0.01% 

B6 636 55 6 15 0.8404 1.1036 0.01% 

C3 788 58 7 12.9 1.0218 1.2544 0.01% 
FI-90s 

C5 1224 58 11 8.2 1.0281 1.1845 0.03% 

 

The ERMs of the FI20s-group are shown in the lower panel in figure 5.  The five 

ERMs can be roughly classified into three types according to their patterns.  The ERMs of rats 

A1 and D4 show a big cluster near the left-bottom corner with approximately a triangle form.  

In the ERM of rat D4 there is an additional “center cluster” at the position X=Y=1.8 seconds.  
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Figure 6:  the original return maps (upper panels) and the extended return maps (lower 
panels) of FI40s-group from session 15.    (continued in next page) 
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FI40s Session 15 (continued) 
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FI60s Session 15 (continued) 
Return Maps 

      
Inter-Response Time IRTk (sec.) 

 
Extended Return Maps 
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Figure 7:  (continued from the previous page) The original return maps (upper panels) and 
the extended return maps (lower panels) of FI60s-group from session 15. 
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positioning of the clusters.  Firstly, the “center cluster” at position X=Y= IRP/f can be 

identified.  Secondly, the distance between clusters approximately equals the term IRP/f.  In 

addition to the position of the clusters, the geometrical form of the cluster is also important.  

Especially the cluster at position X=IRP/f, Y~0 (analog to the cluster I in figure 2d) shall be 

examined with more care.  Here the point-density along the diagonal direction plays an 

important role in the dynamics of FI-responding (see section 3.2 for detail). 

Figure 6 shows the results of the FI40s-group.  The ERM-patterns also have some 

distinct structures similar to those of the FI20s-group: 1) a triangle (number A4, B5, C4, D2 

and D7) or L-form (number A2 and B3) cluster near the left-bottom corner, 2) a center cluster  
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Figure 8:  The original return maps (upper panels) 
and the extended return maps (lower panels) of FI9
group from session 15. 
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at position IRP/f (all rats except number A4),  and 3) lattice structure formed by several 

clusters with distance ≈ IRP/f (number B3, C2, D6 and D7).  The separation between types 

has no clear-cut boundary.  For example, data points in the ERM of number A2 are very 

diffuse and form only a very diffuse L-form cluster.  The ERM of number D7 shows both a 

triangle cluster at left-bottom corner, and the lattice structure.  The result of number A4 can 

be regarded as an exception, because of the lack of the “center cluster”, and because of the 

extreme concentration of data points in the cluster near the left-bottom corner.   

The lower panels in figure 7 show the ERMs of the FI60s-group.  Similarly, a triangle 

cluster at left-bottom corner can be found in ERMs of rats B4, C1, C6, D1 and D5.  However, 

the triangles of rats C1 and D1 look different from those of rats B4, C6 and D5.  The former 

are empty triangles, and the later are solid ones.  The center cluster at position IRP/f can be 

found in ERMs of all other rats, but their form and density differ slightly.  In the ERM of rat 

B4, the large cluster at the left-bottom corner almost fuses with the “center cluster”, so that 

they look together more like a square.  A L-form cluster can be seen in the ERM of rat A3.  

However, it is difficult to separate it from a lattice structure.  In addition to rat A3, distinct 

lattice structures can be found in the ERMs of rat A5, B2 and D9.  The lattice structure in the 

ERM of rat B2 is particularly clear and dense, especially when it is compared with the ERM 

of rat A5.  The distance between clusters is again equal to the value of the term IRP/f. 

The ERMs of the FI90s-group are shown in the lower panel of figure 8.  The “center 

cluster” at position X=Y=IRP/f can be found in the ERMs of B1 and C5.  These show also a 

clear lattice structure.  The ERMs of rats B6 and C3 are very different.  In general, the 

distributions of data points are very diffuse in comparison with the ERMs of all the other rats, 

and the “center cluster” at position IRP/f cannot be definitely identified.  Nevertheless, an 

empty triangle cluster can still be recognized in the ERM of C3. 
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2.4.2 ERMs of the surrogate data sets 

The comparison between RMs and ERMs in section 2.4.1 clearly shows that distinct 

patterns can be seen only in the ERMs.  Do these patterns really reflect dynamical properties 

of the IRT-data from the Skinner-box experiments?  To answer this question, we compared 

the experimental ERMs with ERMs created from surrogate data sets.  The surrogate data sets 

in the present study are generated by randomly reorganizing the sequential order of the 

experimental IRT-data.  We applied a pseudo-random-number-generator called Mersenne 

Twister (Matsumoto & Nishimura 1998) in the generation of surrogate data sets.  The same 

generator was also applied in all the simulation studies.  Figure 9 right column shows four 

typical examples of the surrogate ERMs.  The left column shows the corresponding 

experimental ERMs.  They are all created by using IRT-data from session 15.   

The first surrogate ERM comes from rat B2.  The original ERM shows a clear lattice 

structure consisting of 6 clusters.  The cluster at position X = IRP/f, Y≈ 0 (analog to the 

cluster I in figure 2d) shows some data points along the diagonal direction.  In the surrogate 

ERM the clusters are interconnected with each other.  The “center-cluster” at position 

X=Y=IRP/f becomes very diffuse and extends along vertical direction.  The distribution of 

data points along the diagonal direction vanishes.  The second example comes from rat A6.  

The original ERM shows a L-form cluster with relatively clear-cut boundary near the left-

bottom corner and a “center-cluster“ at position IRP/f.  In the surrogate ERM the “center- 

cluster” disappears, and the edge of the “L”-cluster becomes more diffuse.  It now looks 

triangle-formed.  The third and fourth examples come from rats D1 and B5 respectively.  Both 

experimental ERMs have a large triangle cluster near the left-bottom corner, and a “center-

cluster” at position X=Y=IRP/f.  The ERM of rat D1 has an empty triangle cluster- a lot of 

data points are distributed along the diagonal direction.  The triangle cluster in the ERM of rat 

B5 is a solid triangle and has a very clear-cut boundary.  In both of the surrogate ERMs the 
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center cluster disappears.  The distribution of data points along the diagonal direction also 

decreases, so that the empty triangle almost completely vanishes.  The boundary of the solid 

triangle becomes very diffuse. 

These results suggest that: 1) the separation of clusters, 2) the form and density of the 

“center-cluster”, and 3) the data points distributed along the diagonal direction are important 

elements that reflect the dynamical properties of the IRT-data.  The meaning of the large 

cluster near the left-bottom corner, both L- and triangle form, on the other hand, might be 

relatively unclear.  The randomization of the sequence of the IRT-data does not destroy this 

cluster completely.  However, the clear-cut boundary becomes more diffuse and the form 

might be changed.  These examples demonstrate qualitatively what kind of changes can be 

caused by the randomization of the sequential order of the experimental IRT-data.  They 

suggest that, the ERM-patterns can indeed reflect dynamical properties of the FI-responding.  

Particularly, the “center-cluster”, the data points along the diagonal direction, and the clear 

separable lattice structure are important elements in the ERM-patterns of FI-responding. 

2.4.3 Distribution of the surrogate correlation dimension 

The direct comparison between the surrogate and the experimental ERMs in figure 9 

cannot tell us quantitatively how much change is caused by the process of randomization.  

Theoretically, the process of randomization is capable of producing exactly the same, or even 

better “structured” ERM-patterns.  We need a quantitative measurement of the probability that 

the experimental, “well structured” ERM-patterns are acquired simply by chance.  To 

accomplish this goal, we repeated the process of randomization and generated a distribution 

of surrogate correlation dimensions out of 10000 values.  Comparing this distribution with the 

experimental correlation dimension gives us the probability of acquiring the experimental 

ERM-patterns simply by chance (the “by-chance-probability”).  The definition and meaning 

of the correlation dimension have been discussed earlier in section 1.3.3. 
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The results are summarized in table 3 (page 35).  If the experimental correlation 

dimension is smaller than the mean of the surrogate dimension, then the “by-chance-

probability” is defined by the percentage of surrogate data sets that have a correlation 

dimension no larger than the experimental value.  If the experimental correlation dimension is 
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Figure 10:   
Comparison of the 
experimental (left) and 
the surrogate (right) 
ERMs of rats A5 and 
C6.  Their “by-chance-
probabilities” acquired 
in the study using the 
distribution of surrogate 
correlation dimension 
are 6.12% and 11.60% 
respectively. 
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arger than the mean of the surrogate dimension, then the “by-chance-probability” is defined 

y the percentage of surrogate data sets that have a correlation dimension no smaller than the 

xperimental value.  Most of the data have a quite small “by-chance-probability”.  There are, 

owever,  some exceptions.  The “by-chance-probability” of rats A5 and C6 reveal values of 

.12% and 11.6% respectively.  For these two animals, especially rat C6, the “well structured” 

atterns shown in their ERMs maybe do not reflect the dynamics of their operant behavior, 

ut are acquired simply by chance.  A qualitative comparison between the experimental and 
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the surrogate ERMs of these data are shown in figure 10. 

2.4.4 Comparison between ERMs from session 15 and 26 

The animals in block D have completed 26 sessions under the FI-schedules.  We can 

compare results from sessions 15 and 26, and find out, whether or not there are some changes 

of behavioral dynamics after the animals have completed 11 more sessions under the FI 

reinforcement schedules.  The results are shown in figure 11.  Clearly the main features of the 

ERMs from session 15 are preserved in session 26. For example, the big cluster near the left-

bottom corner, the center cluster and the lattice structures can be found in ERMs from both 

session 15 and 26.  In addition to the appearance of these structures, the similarity in their 

geometrical forms and density distribution of data points also indicate the stability of 

behavioral dynamics.  Nevertheless, minor differences can be seen in ERMs of rat D8 (FI20s- 
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Figure 11:  Comparison of ERMs from session 15 and session 26. (continued in the next 
page).  The ERM of rat D8 showed a L-type structure in session 15, and the patterns 
changed to a solid triangle in session 26. 
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Figure 11:  (continued from the previous page) Comparison of ERMs from session 15 and 
session 26.  Except for rat D8, there are few changes in the ERM-patterns 
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 group), D2, D7 (FI40s-group), D1 and D5 (FI60s-group).   

In the ERM of rat D8 there are more data points in session 26 than in session 15.  That 

implies increased overall operant activities in session 26.  The big cluster near the left-bottom 

corner in the ERM from session 26 is much bigger than the L-form cluster at analog position 

in the ERM from session 15, and it looks now like a mixture of L-form and solid triangle.  In 

the ERMs of rats D2 and D7 the point density in the big cluster near the left-bottom corner 

decreases slightly in session 26.  The basic structures of the ERM-patterns do not change.  In 

the ERMs of rats D1 and D5 the distribution of data points along the diagonal direction shifts 

slightly toward the left-bottom corner, so that in the ERM of rat D1 the empty triangle cluster 

near the left-bottom corner now looks more like a solid triangle. 

In conclusion, these results suggested that the behavioral dynamics might have arrived 

at a steady state after the animals received 15, 90-minute sessions of FI-schedules. 

2.4.5 Investigating the process of development of FI-responding 

The process of acquisition of these specific behavioral dynamics can be assessed using 

ERMs.  The ERMs of the experimental block “D” from sessions 1, 2, 3, 6, 9, 12, 15, 18, 21, 

24, 25 and 26 are shown in figures 12-20.  Sessions 1, 2, 3 and 24, 25, 26 are chosen because 

they represent the beginning as well as the end of the schedule-controlled phase.  The other 

sessions are chosen in constant distance, namely 3 sessions.  Initially, all animals show similar 

behavioral dynamics, as indicated by the similar ERM-pattern of session 1.  Some also share 

similar intermediate stages, such as session 9 for rats D1, D3, D6 and D9.  Gradually each rat 

develops its individual dynamics of FI-responding.  A careful examination on the ERMs of 

sessions in the end-phase of this process (sessions 24-26) reveals that even the fine structures 

seen in the ERM-patterns are preserved from session to session, which is indicative for the 

stabilization of the behavioral dynamics of the animals under the given experimental 

conditions.
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Figure 12  Rat D1 FI60s 
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Figures 12-20 (pages 50-58):  Using ERMs to assess the process of acquisition of the
specific behavioral dynamics under the control of the FI-schedules.  ERMs of animals in
group D from sessions  1, 2, 3, 6, 9, 12, 15, 18, 21, 24, 25, 26 are shown.  The patterns
of ERMs of all animals looked similar in the beginning sessions (1, 2, and 3).
Individual characters of ERM-patterns gradually developed, and the patterns stabilized
in the last few sessions. 
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Figure 13  Rat D2 FI60s 
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Figure 14  Rat D3 FI60s 
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Figure 15  Rat D4 FI60s 
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Figure 16  Rat D5 FI60s 
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Figure 17  Rat D6 FI60s 
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Figure 18  Rat D7 FI60s 
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Figure 19  Rat D8 FI60s 
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Figure 20  Rat D9 FI60s 
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3 Simulation studies on the dynamics of FI-responding 

3.1 Simulation I: Basic behavioral patterns  

3.1.1 The strategy of the initial simulation studies  

Our next step is to construct a model that can produce artificial IRTs which match the 

experimental results from session 15.  The model is to be basically a kind of “point process”; 

that is, it is intended to describe the time dependent changes of the probability of emitting 

operant behavior.  The first idea for the construction of such a model comes from the 

averaged scallop-curve.  Similar to the lattice structures in the ERMs, this stereotypical 

pattern also develops over the course of the learning process (Machado, 1997; Machado & 

Cevik, 1998).  In addition to that, the frequency distribution of IRT is another source of 

information.  Since this model is basically a kind of point process, the frequency distribution 

of IRT can provide important hints for the behavior of the function that describes the 

probability of emitting a response. 

Theoretically, there is an infinite number of different ways to build models that can 

generate IRTs to match such experimental cumulative records and IRT distributions.  The 

question is, whether these two conditions are sufficient to completely describe the operant 

behavior under the interval-schedule.  If, for example, we can build a model that can 

successfully simulate the cumulative records and IRT distributions, but fails to generate 

ERMs that can match the experimental results, then we can be sure that the ERM is able to 

show some properties that are not visible in the cumulative records and the IRT distributions.  

Furthermore, if a small modification can make this model fulfill all the three conditions, then 

this modification might represent a very important feature for the dynamics of the operant 

behavior under these conditions. 
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3.1.2 “Continuous scallop” versus “two state conception” 

Following the strategy discussed , we have designed two models, both of which are 

able to generate IRT data sets that match the IRT distributions and the cumulative records.  

However, they differ in the way in which they generate the averaged scallop curve.  The first 

model implements a continuous sigmoid-function, to describe the probability of lever pressing 

responses.  Because of the form of the sigmoid function, the averaged scallop curve comes 

out.  The second model implements the “two-state” conception of operant behavior, which has 

been suggested in several works (for example: Schneider 1969; Dews 1978; Shull 1991).  The 

two-state model states that operant behavior can be viewed as alternation between two 

behavioral states, the “pause” and the “response (engagement)” states.  When the animal is in 

response-state, lever pressing behavior will be emitted with an approximately constant rate,  

while in the pause-state no lever press can be observed.  The design of both models will be 

now discussed in more detail. 

3.1.3 Definition of the models in simulation I 

The algorithms of the models can be divided into two parts.  The first part F0(ta) 

depends on the time after the delivery and the consumption of food rewards.   

F0(ta) = F0(ta - 1) +A0 × F0(ta - 1) × [M0 - F0(ta - 1)]     (7) 
 
with initial condition: 

F0(0) = O0            (8) 

The second subunit consists of three sigmoid functions which are dependent on the 

time after each response. 

F1(tb) = R1(tb) – R2(tb) + R3(tb)        (9) 
 
The functions R1(tb), R2(tb) and R3(tb) are defined as follows:  

R1(tb) = R1(tb - 1) +A1 × R1(tb - 1) × [M1 - R1(tb - 1)]     (10) 
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R2(tb) = R2(tb - 1) + A2 × R2(tb - 1) × [M2 - R2(tb - 1)]     (11) 
 
R3(tb) = R3(tb - 1) + A3 × R3(tb - 1) × [M3- R3(tb - 1)]     (12) 
 
with initial conditions: 

R1 (0) = O1, R2 (0) = O2 and R3 (0) = O3        (13) 
 

Here ta and tb are discrete counters which represent the time after the taking of or the 

consumption of a reward (ta), and the time after an operant response (tb), respectively.  When 

a reward is consumed, the counter ta is reset to 0.  Similarly, when an operant response is 

emitted, the counters tb is reset to 0. 

How these two subunits are interconnected, represents the main difference between the 

two models.  While in the first model the two subunits are interconnected with a 

multiplication-operation, in the second model they are interconnected with a switch-operation.  

That is, after the reward is consumed and before the first operant response occurs, the final 

probability of an operant behavior to occur is decided by the first subunit F0(ta).  After the 

first response, it is decided by the second subunit F1(tb).  We can regard this switch between 

reacting modi as a switch between behavioral states.  The first model, on the contrary, is 

defined by a continuous function. 

Model I : Φ (t) =  F0(ta) × F1(tb)        (14) 
 
Model II: Φ (t) = F0(ta)  after the taking or consumption of a reward and 
 
    before the occurrence of the first response 
 
  or F1(tb) after the first response     (15) 
 

Here Φ (t) is the probability for an operant response to occur.  The definitions of the 

two models differ only in equations (14) and (15).  All other equations are valid for both 

models.  The unit of both time counters ta and tb is 0.01 second. 
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T
SLQ denotes the sum of leas
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M0 0.1364 

A0 0.00153 
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Experiment (B2 Session15) Model I (continuous) Model II (two-states) 

     
Time after Reinforcement (sec) 

 

    
Length of IRT (sec) 

 

    
Moving Average of  Inter-Response Time MVk (sec) 

 
Figure 21:  Results of simulation I.  The averaged scallop curve, the IRT distribution and 
the ERM are shown.  The IRT data of rat B2 from session 15 is the target.  Both models I 
and II have similar forms of averaged scallop curve and IRT distribution.  However, only 
model II can produce similar ERM-patterns as the experimental target does. 
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In summary, this simulation suggests that the averaged cumulative records and the 

IRT distribution alone are not sufficient to completely describe the dynamics of the operant 

behavior under FI-schedules, whereas the ERM accomplishes this task.  Furthermore, the 
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simulation also suggests that a switch between two behavioral states plays an important role 

in the operant behavior under FI-schedules. 

3.2 Analytical explanations for the ERM- patterns 

The results in simulation I indicate that an abrupt switching between behavioral states 

during the inter-reinforcement period is essential for the lattice patterns to appear in the 

ERMs.  This finding is consistent with our precious work (Li & Huston, 2002).  Employing 

this idea as a starting point, we now present some analytical explanations for the formation of 

the lattice, L-type and triangle structures seen in the ERMs shown in figures 5-8. 
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igure 22:  Switching between behavioral states. Behavioral 
atterns shown in (a) can produce the three clusters a, b and c
hown in (b).  (Xa-c , Ya-c) = pairs of moving average 
indows; R = reinforcements.  
.2.1 Lattice structures 

We begin our discussion with a regular alternation between the non-lever-press (Non-

P) and the lever-press (LP) sections, as shown in figure 22a.  For simplicity, we also initially 

resume that the rate of lever pressing within the LP-sections is approximately constant, and 

he length of Non-LP sections is much longer than the averaged IRTs within LP sections.  

nder these conditions, and using parameters f and L smaller than one half of the averaged 

umber of lever presses per reinforcement, we obtained three clusters of points in the ERM, 

s shown in figure 22b.  The points in the cluster “a” have both X- and Y-coordinates within 

he LP-sections (windows Xa and Ya).  If either the X- or the Y-window crosses a Non-LP-
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(a)       (b) 

     

     

     

          
 
 

Figure 23:  Additional clusters d, e 
and f appear, when one of the window 
pairs, X or Y, crosses two Non-LP 
states (clusters d and f), or when they 
both cross a Non-LP state (cluster e). 
 

section, clusters “b” (with windows Xb,Yb) and “c” (with windows Xc,Yc) appear (figure 

22b). 

Now we must further consider the situation that some data points have Y- or X-

windows across two or more Non-LP-sections (Yd and Xf in figure 23a), or that both X- and 

Y- windows cross at least one Non-LP-section (XeYe in figure 23a).  Since the length of Non-

LP sections is usually much longer than the averaged IRTs in LP-sections, the resulting 

magnitude of one of the coordinates (X or Y) in the former cases will be about twice that of 

the situations Yb and Xc discussed in figure 22a.  In the latter case, the magnitude of both X- 

and Y-coordinates (Xe and Ye) will be about the same as that of the situations Yb and Xc.  As 

a consequence, additional clusters “d”, “e”, and “f” will appear in the ERM (figure 23b).  

They form, together with the clusters “a”, “b”, “c” in figure 22b, a lattice structure (figure 

23b). 
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(a)        (b) 

       

     
 
Figure 24:  The clusters elongate along the x- and y-
axes, when the length of the Non-LP states varies.  As a 
consequence, the L-type structure appears. 

3.2.2 L-structures 

The distance between clusters has a value of Non-LP/f (figure 22b), so it is 

proportional to the length of Non-LP-sections.  In most of the IRT-data, the length of Non-LP 

varies from IRP to IRP, as indicated by the windows YS and YL in figure 24a, where YS 

covers a shorter and YL a longer Non-LP section.  This variation results in an elongation of 

clusters, as shown in figure 24b.  In extreme cases all three clusters are interconnected and a 

L-type structure appears.  This type of ERM-patterns can often be found in earlier sessions in 

the experimental data, for example rat D1 session 9 (figure 12), rat D3 session 2, 3, 12 (figure 

14), rat D4 session 3, 6 (figure 15), rat D6 session 3, 6, 9 (figure 17) and rat D9 session 9 

(figure 20).  It is sometimes found in ERMs from session 15, for example rat A6, D8 (figure 

5), A2 (figure 6), A3 and D5 (figure 7). 

3.2.3 Acceleration-state and triangle structures 

We now consider the situation in which the rate of lever pressing is not constant, but 

accelerates in the beginning of the LP-sections, as shown in figure 25a.  This results in 

smaller Non-LP-sections followed by some relatively longer IRTs in the LP-sections.  When 

the averaging windows Xg and Yg move forwards, the resulting Y-coordinates of data points 

in the ERM increase gradually, while the X- coordinates remain approximately constant and 

small.  This corresponds to the elongated cluster “g” along the Y-axis shown in figure 25b.  
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(a)        (b) 

       

   
 
Figure 25:  In the beginning of the LP-state, the rate of 
responses accelerates.  This leads to the gradual increase of Y 
in situation “g”, the gradual decrease of X in situation “i”, 
and the simultaneous increase of X and decrease of Y in 
situation “h”.  The result is a broken triangle in diagram (b). 

Next we consider what will happen when the averaging windows Xh and Yh move forwards.  

In this case the X-coordinates of data points in the ERM increase, while the Y-coordinates 

decrease.  The result is the cluster “h” in the ERM shown in figure25b, which elongates along 

the diagonal direction.  Finally, we consider the case of windows Xi and Yi, where the X-

coordinates decrease gradually and the Y-coordinates remain approximately constant and 

small when the averaging windows move forwards.  This leads to the cluster “i” in the ERM, 

which elongates along the X-axis (figure 25b).  Thus, there appears an empty triangle-pattern 

in the ERMs.  Sometimes the distribution of data points along the diagonal direction does not 

completely interconnect the clusters g and h, so that only a short “tail” stretched out from the 

cluster g along the diagonal direction can be seen.  This kind of ERM-patterns can be found, 

for example, in rat D3 (figure 5)  and B2 (figure 7). 

3.2.4 Multiple-switches during the inter-reinforcement-periods 

The triangle-structure in the ERMs can also be explained by an alternative behavioral 

pattern shown in figure 26.  In this pattern, multiple switches between Non-LP and LP states 

exist during the inter-reinforcement period.  We first consider the moving of windows Xg and 

Yg in figure 26a.  Similar to the situation “g” in figure 25, Y-coordinates of data points in the 

ERM increase gradually when the windows move from the range marked by solid line and 
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(a)        (b) 

     

      
 
Figure 26:  Multiple-switches between behavioral states during the inter-reinforcement
periods.  Under this condition, there are complicated lengthening and shortening of the
window pairs X and Y.  As a result, the triangle structure appears.  Dashed lines indicate the
new situations when the window pairs drawn in solid lines move forward. 

 

filled arrowhead, to the range marked by dashed line and empty arrowhead, while the X-

coordinates remain approximately constant and small.  Thus, the cluster “g” in the ERM will 

appear (figure 26b).  Similar consideration for the moving of windows Xi and Yi from the 

range marked by solid line and filled arrowhead, to dashed line and empty arrowhead will 

reveal the cluster “i” in the ERM shown in figure 26b.  The situation for the moving of 

windows Xh and Yh is more complicated.  In situation “h” both averaging windows Xh and 

Yh include some Non-LP-states.  The resulting data points have comparable X- and Y- 

coordinates, thus, they locate between clusters “g” and “i”.   Depending on the location of the 

averaging windows and on the distribution of Non-LP-states, we might have situation (1), in 

which X-coordinates increase while Y-coordinates decrease, or situation (2), in which X-

coordinates decrease while Y-coordinates increase.  The resulting points could uniformly 

distribute between X- and Y-axes as in the cluster “h” (1) and (2) in the ERM shown in figure 

26b, or it could be more concentrated along the diagonal direction.  The resulting ERM-

patterns will look like a solid or an empty triangle. 
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3.3 A dynamical model of FI-responding 

3.3.1 Overview 

We now propose a comprehensive dynamical model for the operant behavior under the 

control of FI-schedules.  It is not a purely deterministic model, as in most of the studies 

implementing the concepts of chaos theory.  Nor is it a purely stochastic model, since the 

conception of the model bases on the findings in simulation I and the analytical discussion in 

section 3.2, in which some kinds of dynamical patterns play an important role.  In fact, the 

failure to find distinct patterns in the original return map (recurrent plot) suggests that the IRT 

data might not possess a “short-ranged”, low-dimensional, deterministic dependence.  

However, it is still possible that there is a “long term” dependence in the sequence of a IRT 

data set.  In previous sections, the results of the application of ERM in the analysis of 

experimental data also support this idea. 

Most of the contemporary theories of operant behavior deal with the rate of responses 

(for example: Killeen & Fetterman 1988; Hoyert 1992), and, thus bypass the problem of the 

generation of the events of operant behavior itself.  Our model, however, is designed to 

generate the IRT data sets.  To overcome the gap between the “rate” and the actual “events” 

of responses, there must be a mechanism for emitting operant events with a certain “rate”.  On 

the other hand, most of the IRT distributions from the experimental data show, except the 

region near the zero point, an exponential-like curve.  This is an indication for a Poisson 

process.  It seems plausible to assume that the mechanism of emitting operant events is a 

stochastic process with complicated probability functions. 

The goal of this part of the simulation study is to find out these functions, and to 

generate the “correct” IRT data sets that can reproduce the main geometrical characters seen 

in the experimental ERM-patterns, namely, the lattice, the L-type structures, and both the 

empty and solid types of triangle structures.  These patterns can be regarded as representing 
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the steady state behaviors of the 

animals, after they have been well 

trained under the given reinforcement 

schedules (see sections 2.4.4 and 

2.5.5).   

The basic organization of the 

model is summarized in figure 27.  It 

consists of four major components: 1) 

a pacemaker, 2) the associative links, 

3) two behavioral states, and 4) a 

mechanism for generating operant 

responses.  The pacemaker generates 

pulses tP that drive forward an array of weights, which links the temporal states to the 

probability of switching between two behavioral states: the P-(pause) state and the R-

(responding) state.  Only in the R-state the mechanism for generating operant responses will 

be active.  In the P-state, alternative behaviors are shown.  Note that the word “pause” does 

not automatically imply quiescence, but indicates behaviors other than the operant response, 

in the case of the present studies, the lever pressing behavior. 

 
 
Figure 27:  Overview of the dynamical model.  It 
consists of four major parts: a pacemaker, the 
associative links (weights array), behavioral states 
and the mechanism for emitting operant responses. 

3.3.2 Detailed description of the model 

The existence of internal clocks that, among other functions, influence the temporal 

behaviors has been proposed by a number of authors (see e.g. Gibbon, 1977; Church, 1984; 

Killeen and Fetterman 1988; Church et. al. 1994).  For convenience in describing our 

dynamical model, we speak of a pacemaker-like mechanism that generates pulses of signals 

which, in turn, drive the temporal states of the animals forward.  The mathematical properties 

of this pacemaker is described by the following equation: 
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tP =  0 if reinforcement is being delivered      (16) 

 tP +1 if reinforcement is NOT being delivered and random(1) < kP . 

 tP  otherwise. 

The pseudo random number generator “random(1)” can generate a real number 

between 0 and 1 with constant probability.  We applied the algorithm suggested by 

Matsumoto and Nishimura to implement the generator (1998).  The pulses of the pacemaker 

are represented by an integer counter tP.  Each pulse has a constant probability “kP” of 

occurring (0< kP <1).  The delivery of reinforcement resets the counter tP to zero. 

The pacemaker and the probability of switching between behavioral states are linked 

by an array of weights, W[tP].  Two constants MP and MR define the switching rate from one 

behavior state to the other.  Both MP and MR, as well as the weights array W[tP] shall have 

values between 0 and 1.  In the present simulation studies we further assume that W[tP] is 

described by a sigmoid function: 

W[tP ] = W[tP -1] + AW × (1 - W[tP -1]) 0<AW<1     (17) 
 
where the parameter AW decides how fast the weight increases with pulses tP.  The first value 

of the weights array W[0] is defined by another parameter OW (0<OW<1). 

Equation (17) is chosen to simulate the behavior of animals having already received 

intensive training of schedule control under the FI-schedules.  If a suitable learning rule for 

the adaptation of the weights-array can be found, the model will also be able to simulate the 

process of acquisition of these behavior dynamics.  

Theoretically, there could be a number of different behaviors during the inter-

reinforcement period (IRP).  For example, eating, drinking, grooming etc. (Roper 1978).  For 

simplification of modeling, we summarize all the non-operant behaviors into one class.  Thus, 

we define two behavioral states during the inter-reinforcement period in this dynamical 

model, the P-(pause) state and the R-(responding) state.  Only when the simulation program is 
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in the R-state, operant responses will be generated. 

After the delivery of reinforcement, the pacemaker, that is, the pulse tP will be reset to 

zero, and the model will be started with the P-state.  When a new pulse comes in, the counter 

tP will be increased by one, and at the same time the behavioral state of the model will have a 

certain chance to switch to the R-state.  The probability of switching is defined by MR × 

W[tP].  If the model does switch to the R-state, the mechanism for generating operant 

responses will become active.  Detailed description will be outlined in the next section.  

During the visit in the R-state and each time when a new pulse comes in, the model has also a 

probability to switch back to the P-state.  Its magnitude is defined by MP × (1 - W[tP]).  The 

cycles of switching back and forth between the P- and R-states are repeated until the delivery 

of the next reinforcement. 

When the model is in the R-state, the mechanism for generating operant responses will 

become active.  The probability ΦR(tR) is defined by the combination of two sigmoid 

functions: 

ΦR(tR) = M1×S1(tR) – M2×S2 (tR)        (18) 
 
Functions S1 and S2 are defined as follows: 

S1(tR) = S1(tR -1) + A1×[1- S1(tR -1)]       (19) 
 
S2(tR) = S2(tR -1) + A2×[1- S2(tR -1)]       (20) 
 

The initial values of S1(0) and S2(0) are defined by parameters O1 and O2.  All the parameters 

M1-2 and A1-2, as well as the initial values O1-2 shall have values between (0,1).  Suitable 

values of the parameters were first found by visually matching the experimental and simulated 

scallop curves and IRT-distribution.  Then the values were given in the Levenberg-Marquardt 

algorithm as starting point (Marquardt,1963; Press et al., 1992).  The algorithm optimised the 

parameters by minimizing the sum of least squares (SLQ) of the residual vector.  In the 
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present study, the IRT-distribution and the averaged scallop curve were each divided into 21 

columns.  The resulting 42 values of the columns were treated as a 42-dimensional vector.  

The residual vector is calculated by subtracting the experimental vector from the simulated 

one. 

3.3.3 Results of simulation II 

The experimental data of rat D6 from session 26,  rat D8 from session 15, rat C1 from 

session 15  and rat B5 from session 15 are chosen as targets for the simulations IIa – IId.  

They are chosen to represent the lattice type, the L-type, the empty and solid triangle types of 

ERM-patterns respectively.  The data of rat D8 from session 26 is additionally taken as the 

target for simulation IIe, since rat D8 was used in the studies on the effects of amphetamine 

treatment, and the results from session 26 will be compared with those on the treatment days 

(see section 4.3).  The parameters and the SLQ of the simulations are outlined in table 5.  The 

results are presented with three different forms of analysis: the averaged scallop curve, the 

SLQ = sum of least squ

Simulation IIa 

Targets D6 sessio

kP 0.014

MP 0.826

MR 0.802

AW 0.217

OW 0.00007

M1 0.059

A1 0.150

O1 0.020

M2 0.030

A2 0.296

O2 0.0010

SLQ 0.016

 

Table 5 Parameters for simulation II 
ares 

IIb IIc IId IIe 

n 26 D8 session 15 C1 session 15 B5 session 15 D8 session 26 

9 0.00776 0.00713 0,00594 0,00551 

8 0.7646 0.8152 0,8311 0,8785 

9 0.7211 0.8079 0,7818 0,7686 

9 0.6369 0.2536 0,3048 0,6346 

12 0.00479 0.0101 0,0798 0,0735 

7 0.2474 0.0503 0,0501 0,1608 

1 0.0304 0.2875 0,2771 0,0558 

2 0.00704 0.0105 0,0249 0,0188 

6 0.1152 0.0418 0,0399 0,1319 

3 0.0439 0.2940 0,3013 0,0668 

1 0.00253 0.000993 0,00302 0,00931 

0 0.0612 0.0215 0,0221 0,0158 
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frequency distribution of IRT, and the ERMs.  They are shown in figures 28 to 32.  The 

simulations are shown in the upper panels, and the experimental results in the bottom panels. 

Roughly speaking, all four simulations can fit the experimental data quite well.  This 

can be seen in the graphical presentation and the SLQ.  Nevertheless, minor differences can 

be seen in the averaged scallop curve.  The experimental data show clearly the so-called 

overshooting.  That is, non-zero probability of operant responses directly after the delivery of 

reinforcement.  In the simulations, however, the number of operant responses drops to zero 

after each reinforcement.  Possible explanations for this phenomenon could be: delay in the 

delivery of food pellets due to the feeding machine, delay due to not noticing the presence of 

foods, or, animals’ inability to stop their operant responding.  Some of these factors might be 

depressed by changing experimental setups, for example, by installing a retractable lever. 

Minor differences can also be seen in the frequency distribution of IRT, especially the 
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Figure 28:  Results of simulation IIa.  Data of rat D6 in session 26 was chosen as 
target.  This data represents the lattice-type of ERM-patterns. 
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Simulation IIb 

    
Experiment (Rat D8 Session 15) 

  
 
Figure 29:  Results of simulation IIb.  Data of rat D8 in session 15 was chosen as 
target.  This data represents the L-type of ERM-patterns. 
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Simulation IIc 

    
Experiment (Rat C1 Session 15) 
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Figure 30:  Results of simulation IIc.  Data of rat C1 in session 15 was chosen as 
target.  This data represents the empty-triangle-type of ERM-patterns. 



  

 

 

Simulation IId 

    
Experiment (Rat B5 Session 15) 

  
 
Figure 31:  Results of simulation IId.  Data of rat B5 in session 15 was chosen as 
target.  This data represents the solid-triangle-type of ERM-patterns. 
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Simulation IIe 

   
Experiment (Rat D8 Session 26) 

    

Figure 32:  The IRT data of rat D8 from session 26 is additionally taken as a target of
simulation.  This simulation will be used to be compared with behavioral dynamics 
under the influences of amphetamine. 
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results of rat D8.  While the other three distributions show roughly an exponential decrease of 

occurring frequency with increasing length of IRT, the peak of the IRT-distribution of rat D8 

is located at a position of about 0.5~1.5 seconds.  In other words, the distribution of this IRT 

data does not fit well to a Poisson process, which is the basic conception of the mechanism for 

generating operant responses in our model (see equations 18-20).  The parameter setting of 

equations 18-20 (parameters M1, A1, O1, M2, A2 and O2) also gives hints to this particularity.  

While the simulations IIa, IIc and IId have very similar values for the parameters M1, A1, O1, 

M2, A2 and O2, the values for the same parameters in simulation IIb and IIe are located in a 

completely different range (see table 5 for parameters M1, A1, O1, M2, A2 and O2).  Similar 

form of IRT distribution can be seen in the data of rat D8 from both sessions 15 and 26.  The 

parameters M1, A1, O1, M2, A2 and O2 in both simulations are also located in the similar 

range. 

The simulated ERMs differ also slightly from the corresponding experimental targets.  

Nevertheless, the essential geometrical properties of the ERM-patterns, namely, the lattice, 

the L-form, the empty and solid triangles, can be unambiguously recognized in the simulated 

ERMs.  The rat D8 revealed slightly different experimental ERM-patterns in session 26 as in 

session 15.  This difference is also quite well simulated using the present parameter settings, 

as indicated by the comparison between figures 29 and 32. 

3.3.4 The parameters used in simulation II 

The parameters used in simulation II show some interesting findings which will be 

discussed here.  Firstly, it shall be noted that the constant kP (for setting the speed of the 

pacemaker) and the constants AW and OW  together decide the form of the sigmoid function 

that describes the weights array.  Effects of decreasing the value of kP can be compensated by 

increasing the values of AW and/or OW.  This can be seen in the results of simulation III in 

figure 33, in which three different sets of kP and AW values were used.  The other parameters 
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Figure 33:  Effects of varying kP, and AW.  The other parameters are the same as in the
simulation IIa.  Both the averaged scallop curves and the ERMs look similar, except that
the dispersion of data points in the ERMs decreases when the values of kP increase. 
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sed in simulation III are the same as in simulation IIa.  The three sets of kP and AW in 

imulation III all reveal similar “averaged scallop curves” and ERM-patterns.  However, the 

egree of dispersion of data points in the ERMs decreases slightly with increasing kP. 

Secondly it is remarkable that similar switching rates (MP ≈ MR ≈ 0.8) were used to 

imulate all the target animals in the simulations IIa-d.  The effects of using smaller MP and 

R are investigated in the simulations IV and V.  In both simulations all parameters except 

he MP and MR are the same as in the simulation II.  The new values of MP or  MR, as well as 

he results of simulations are shown in figures 34 and 35. 

The averaged scallop curve and the IRT distribution are relatively insensitive to the 
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change of MP (results not shown here).  The ERMs, on the contrary, are effected by varying 

the value of MP.  The degrees of the apparent changes of the ERM-patterns depend on the 

type of the patterns (figure 34).  The main structures of the lattice and L-type ERM-patterns in 

simulations IIa and IIb remain almost unchanged after the value of MP is reduced from 0.8 to 

0.1 and 0.01.  Only the dispersion of data points in the ERM decreases slightly (the first and 

second panels in figure 34).  The same changes of parameter MP transform the empty triangle 

ERM-patterns in simulation IIc to L-type ones (the third panel in figure 34).  Also the solid 

triangle ERM-patterns undergo a structural change from triangle to a “thick” L-type when the 

MP is reduced to 0.01 (the last panel in figure 34). 

The decrease of MR from 0.8 to 0.3 delays the onset of operant activity, and at the 

same time decreases its magnitude.  These effects can be observed in the “averaged scallop 

curve” in figure 35.  Increase of dispersions of data points in the ERMs can also be observed.  

However, the main structures of ERM-patterns, that is, the lattice, the L-type, and both the 

empty and solid triangles, can still be recognized (figure 35). 

The forms of the averaged scallop curve and the IRT distribution seem to be controlled 

by two different sets of parameters.  Namely, the parameters kP, MP, MR, AW and OW for the 

averaged scallop curve, and M1-2, A1-2 and O1-2 for the IRT distribution.  This finding 

suggests that the mechanism for generating operant responses, that is, component IV (figure 

27), seems to work, at least to a certain degree, independently from the other parts of the 

model (components I-III in figure 27).  This impression is further supported by the simulation 

VI, whose results are shown in figure 36.  In simulation VI the parameters are the same as in 

simulation IIb and IIc.  However, the settings for M1-2, A1-2 and O1-2 are interchanged 

between the two simulations, so that simulation VIa has the same parameters kP, MP,  MR, 
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 Simulation IIa,  MP=0.8  MP = 0.1  MP = 0.01 

    
 Simulation IIb  

   
Simulation IIc 

    
 Simulation IId 

    
Moving Average of Inter-Response Time MVk (sec) 

 
Figure 34:  Effects of varying parameter MP.  The dispersion of data points decreases 
with decreasing MP.  Only the ERMs of simulation IIc show clear structural changes. 
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 MR=0.8 MR = 0.3  MR=0.8 MR = 0.3 
 Simulation IIa 

   
 Simulation IIb  

   
 Simulation IIc 

   
 Simulation IId 

   
Moving Average of Inter-Response Time MVk (sec) Time after Reinforcement (sec) 
 
 
Figure 35: Effects of varying parameter MR.  Smaller MR values induce later onset of operant
responses.  So the averaged scallop curves shift toward right.  However, the main characters of
the ERM-patterns are still intact. 
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 Simulation VIa 

    

 Simulation VIb 
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Figure 36:  Effects of interchanging parameter sets.  The parameters used here are the same
as in simulations IIb and IIc, but the parameters M1-2, A1-2 and O1-2 are interchanged.  As a
result, simulation VIa has a similar form of the scallop curve as the simulation IIb, but its
IRT distribution is similar to that of simulation IIc.  Simulation VIb, on the contrary, has a
similar form of the scallop curve as that of simulation IIc, but its IRT distribution looks
similar to that of the simulation IIb. 

 AW and OW as simulation IIb, but its parameters M1-2, A1-2 and O1-2 are the same as 

simulation IIc.  Simulation VIb, on the contrary, has the same parameters kP, MP, MR, AW 

and OW as simulation IIc, but its parameters M1-2, A1-2 and O1-2 are the same as simulation 

IIb. 

In figure 36 we can see that simulations VIa and IIb have very similar averaged 

scallop curves.  However, simulation VIa’s IRT-distribution looks very similar to that of 

simulation IIc.  Analogically, simulations VIb and IIc have very similar averaged scallop 
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curves, but simulation VIb’s IRT-distribution looks very similar to that of simulation IIb.  In 

the ERMs of simulation VI we can see that, although the patterns look neither like simulation 

IIb, nor simulation IIc, the main geometrical features, namely the L-type structure of 

simulation IIb and the empty triangle structure of simulation IIc, can be discovered in 

simulations VIa and VIb respectively.  This finding implies that the parameters kP, MP, MR, 

AW and OW have more influence on the main structures of the ERM-patterns. 

The form of the averaged scallop curve is controlled by many parameters.  They seem 

to be able to partly compensate the effects of each others, which makes it more difficult to fit 

the simulated curve to the experimental data.  The present work provides only some initial 

hints to the complete understanding of the model.  Further studies in the future will be 

required.  
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4 Applications in behavioral pharmacology 

4.1 Basic concepts 

4.1.1 ERM-pattern as a dependent variable 

After seeing the pure behavioral and theoretical sections discussed above, we now turn 

our interest to more practical applications of non-linear dynamical analysis.  The operant 

behavior observed in the Skinner-box have been used in many practical applications.  For 

example, the rate of responses can serve as a dependent variable to measure the strength of 

reinforcement, which might be induced or facilitated by pharmacological treatments.  

Furthermore, the FI-schedules can be used to study temporal behavior, or even as a diagnostic 

tool for diseases that are thought to be related to impairments of the temporal function of the 

brain.  An example of these kinds of diseases is the attention deficit/hyperactivity disorder 

(ADHD).  One of its characteristics is the earlier onset of operant activities under the control 

of FI-schedules (Sagvolden et al. 1998).  If pharmacological treatments can lead to changes of 

the ERM-patterns, the ERM-patterns might be able to serve as a dependent variable to study 

the effects of pharmacological substances.  The difference between using the rate of responses 

and using the ERM-patterns as dependent variable is, that the changes of ERM-patterns might 

provide more insight into the dynamical mechanism that leads to these behavioral changes. 

One strategy to explore this possibility is to apply a well known treatment to the 

animals, and to see whether there are changes in the ERM-patterns.  The treatment shall have 

been positively tested by traditional analysis.  In case that there is no change in the ERM-

patterns after the treatment, we can be sure that the negative result is not due to the failure of 

the treatment itself.  To accomplish this goal we chose the intra-peritoneal injection of a 

medium dosage of amphetamine as our testing treatment. 

4.1.2 Amphetamine and FI-responding 

Considerable attention has been paid to the effects of amphetamine on operant 
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behavior.  Evidence that amphetamine increases the rewarding property of food as well as of 

brain-stimulation has been reported in numerous studies (Dews 1958; Wenger and Dews 

1976; Greenshaw et al. 1985; Hunt & Dale 1992).  For FI-responding, the direction and 

magnitude of amphetamine-induced changes in rate of responses depends on the dosage of 

amphetamine.   

When high doses of amphetamine are applied, the overall rate of responses is 

decreased.  When a medium dosage of amphetamine is applied, the overall rate of responding 

increases.  However, the magnitude of changes is not uniformly distributed over the inter-

reinforcement period.  In the segments after the delivery of reinforcements, where the rate of 

responses is lower prior to the treatment, the magnitude of increase is larger.  In the segments 

before the delivery of reinforcements, where the rate of responses is higher prior to the 

treatment, the magnitude of increase is smaller, or sometimes the rate of responses even 

decreases slightly (Dews 1958; Branch & Gollub 1974; Segal et al. 1981; Tewes & Fischman 

1982).  As a result, medium dosages of amphetamine flatten the scallop-curve seen in the 

traditional analysis of FI-responding. 

In the following experiment we use the ERM to observe the effect of medium dosages 

of intra-peritoneal amphetamine treatment.  If changes of ERM-patterns appear after the 

treatment, we will further simulate the new ERM-patterns by setting a different set of 

parameters of the dynamical model.  Then we can interpret the effects of amphetamine by 

comparing the two sets of parameters. 

4.2 Experiments 

4.2.1 Materials and methods  

The animals from blocks B, C and D of the previous experiments described in section 

2 continued to take part in the studies involving amphetamine.  The animals from blocks B 

and C received only one injection of either amphetamine (B1, B3, B4, C1~C6) or saline (B2, 
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B5, B6) solution.  The animals from block D received both the saline and the amphetamine 

injections.  The detailed time schedules of the treatments will be discussed in section 4.2.2.  

The conditions for the maintenance of animals, including the procedure of food deprivation 

were the same as that described in section 2.  Apparatus and software were also unchanged. 

The amphetamine is obtained from the company SIGMA, and the chemical form of 

the compound is: d-amphetamine sulfate.  For the intra-peritoneal injection, the typical range 

for the medium dosage is about 1 mg amphetamine per kg body weight (1mg/kg).  The range 

of high dosage is about 10 mg/kg.  In the present studies we wished to test the effects of a 

medium dosage of amphetamine.  Thus, 1 mg amphetamine per kg body weight was applied.  

The solutions for the injection were prepared one day before the treatment.  To prepare the 

solutions, 1mg amphetamine sulfate was dissolved in 1 ml saline, and the volume of injection 

depended on the body weight of the animals, which was measured daily during the whole 

experiment.  The saline solution was prepared by dissolving 0,9 g NaCl in 1000 ml water. 

4.2.2 Time schedule of experiments 

Before the beginning of the treatment phase, the animals had been trained intensively 

under the control of FI-schedules.  For animals in blocks B and C the training lasted 15 days, 

with one daily 90-minute session.  For animals in block D, the training lasted 26 days. 

Animals in blocks B and C received only one injection in the treatment phase.  The 

solutions were either saline (B2, B5 and B6) or 1 mg/kg amphetamine (B1, B3 and B4, and all 

animals in block C) injection.  After the injection they were brought back to their home cages, 

and could stay there for about 15 minutes to recover from the shock caused by the injection 

procedure.  Then they were subjected to a 90-minute session under the same FI-schedules 

they had been trained.  One day after the treatment they accomplished another 90-minute 

session without injections. 
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Animals in block D received totally two injections during the treatment phase, and 

these were applied on different days: the first and the third days of the treatment phase.  The 

solutions were saline for the first injection, and 1mg/kg amphetamine for the second one.  

Similar to animals in blocks B and C, the animals in block D were allowed to recover after the 

treatment for 15 minutes, and then they were subjected to a 90-minute session in the Skinner-

box.  On the day between the first and second injections, as well as on the next day after the 

second injection, they also accomplished a 90-minute session with no injection. 

4.2.3 Results and Discussions 

The effects of saline injections are shown in figure 37.  The comparison between 

treatment day and the day before reveals that the saline injection caused very little qualitative 

changes in the main structures, that is, the lattice, triangle and L-type structures of the ERM-

patterns.  Nor were the ERM-patterns considerably changed on the next day after the saline 

treatment.  These results suggest that the saline solution as well as the procedure of injection 

do not noticeably alter the dynamics of the FI-responding. 

The results of amphetamine injections are shown in figure 38.  The effects are not 

uniform among the animals.  Rats B4, C6, D3 and D9 showed very little changes in the ERM-

patterns under the influences of amphetamine.  The other animals showed at least the 

tendency that more data points were concentrated near the left bottom corner.  Some animals 

showed noticeable qualitative changes in the ERM-patterns under the influences of 

amphetamine.  The ERM-patterns of rats B3, C2, C5 and D6 had lattice structures under the 

drug-free conditions.  On the day of amphetamine treatment, the lattice structures in the 

ERMs of rats B3, C2 and C5 almost completely vanished.  Instead of the lattice patterns, a 

very dense cluster with a triangle form could be observed near the left bottom corner.  The 

ERM-pattern of rat D6 on the treatment day still revealed lattice structures.  However, a clear 
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 Before  Treatment (Saline) After 
 Rat B2 

     
 Rat B5 

   

    
Moving Average of Inter-Response Time MVk (sec) 

 
Figure 37:  Effects of saline injection on the patterns of the ERMs.  Injections were
given at about 15 minutes before the beginning of the trials on the day of treatment.
Their ERMs are shown in the middle column.  The ERMs on the day before and after
the treatment are shown in the left and right columns.  Very few changes in the ERM-
patterns can be seen. (continued in the next page) 
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 Before  Treatment (Saline) After 
 Rat D2 

     
 Rat D3 

   
Rat D4 

   
 Rat D5 

    
Moving Average of Inter-Response Time MVk (sec) 

 
Figure 37:  (continued from the previous page) Effects of saline injection on the
patterns of the ERMs.  The ERMs on the day before and after the treatment are shown in
the left and right columns.  (continued in the next page) 
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 Rat D8 

    
 Rat D9 
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Figure 37:  (continued from the previous page) Effects of saline injection on the
patterns of the ERMs. The ERMs on the day before and after the treatment are shown in
the left and right columns. 
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 Before  Treatment (Amphetamine) After 
 Rat B1 

     
 Rat B3 

   
Rat B4 

   
 Rat C1 

    
Moving Average of Inter-Response Time MVk (sec) 

 
Figure 38:  Effects of amphetamine injection on the patterns of the ERMs.  The
treatments was given 15 minutes before the trial.  The ERMs on the day before and after
the treatment are shown in the left and right columns.  The reactions to amphetamine
treatment were not the same for each animal.  However, all the ERMs on the day after
treatment were recovered to the original patterns on the day before treatment. (continued
in the next page) 
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Figure 38:  (continued from the previous page) Effects of amphetamine injection on the
patterns of the ERMs.  The treatments was given 15 minutes before the trial.  The ERMs
on the day before and after the treatment are shown in the left and right columns.  The
reactions to amphetamine treatment were not the same for each animal.  However, all
the ERMs on the day after treatment were recovered to the original patterns on the day
before treatment. (continued in the next page) 
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 Before  Treatment (Amphetamine) After 
 Rat C6 

     
 Rat D1 

   
Rat D2 

   
 Rat D3 

    
Moving Average of Inter-Response Time MVk (sec) 

 
Figure 38:  (continued from the previous page) Effects of amphetamine injection on the
patterns of the ERMs.  The treatments was given 15 minutes before the trial.  The ERMs
on the day before and after the treatment are shown in the left and right columns.  The
reactions to amphetamine treatment were not the same for each animal.  However, all
the ERMs on the day after treatment were recovered to the original patterns on the day
before treatment. (continued in the next page) 
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 Before  Treatment (Amphetamine) After 
 Rat D4 

     
 Rat D5 

   
Rat D6 

   
 Rat D7 

    
Moving Average of Inter-Response Time MVk (sec) 

 
Figure 38:  (continued from the previous page) Effects of amphetamine injection on the
patterns of the ERMs.  The treatments was given 15 minutes before the trial.  The ERMs
on the day before and after the treatment are shown in the left and right columns.  The
reactions to amphetamine treatment were not the same for each animal.  However, all
the ERMs on the day after treatment were recovered to the original patterns on the day
before treatment. (continued in the next page) 
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Figure 38: (continued from the previous page) Effects of amphetamine injection on the
patterns of the ERMs.  The treatments was given 15 minutes before the trial.  The
ERMs on the day before and after the treatment are shown in the left and right columns.
The reactions to amphetamine treatment were not the same for each animal.  However,
all the ERMs on the day after treatment were recovered to the original patterns on the
day before treatment.  
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 L-type structure can be identified in addition to the lattice.  The changes of the ERM-patterns 

of rats C1, C4 and D8 are also interesting.  Under the drug-free conditions their ERM-patterns 

revealed triangle structures.  After receiving amphetamine injection, the ERM-patterns were 

changed to L-types. 

The total number of responses in the 90-minute sessions during the whole treatment 

phase are outlined in table 6.  In addition to the absolute number of responses, the percentage 

changes in the number of responses on the treatment days in comparison with the days before 

them are shown in the parenthesis.  First we can see that, although no major changes in the 

ERM-patterns are observed on the day of saline-treatment, there are still several animals that 
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revealed a quite different amount of operant activity on that day.  For example, rats B6, D5, 

D6 and D8 had 20% ~ 38% increases or decreases in the total number of responses.  Under 

the influence of amphetamine some animals showed comparable, or even smaller changes in 

the number of responses.  However, their ERM-patterns revealed qualitative changes.  For 

example, rats C4 and D8 showed clear qualitative changes of ERM-patterns from triangle to 

L-type structures, and the changes in their number of responses were 34% and 0.3% 

respectively.  The latter implies practically no changes in the amount of operant activity.  

However, the quality of the operant behavior was different, since the ERM-patterns had 

changed.  On the other hand, rats B4, C6 and D9 showed very little changes in the structures 

of ERM-patterns, and their changes in the number of responses were 23%, 2%, and 19% 

respectively.  It seems that qualitative changes of ERM-patterns, which imply changes of 

behavioral dynamics, are not necessarily correlated with changes in the amount of responses. 

Furthermore, it is interesting to note that rats B3, C2 and C5 showed more than 100% 

increase in the number of responses, and they also had similar qualitative changes in the 

structures of ERM-patterns, namely, from lattice structures to a very dense triangle cluster 

near the left bottom corner.  Finally, one animal, rat D3, lowered its number of operant 

responses for about 12% under the influence of 1mg/kg amphetamine, and this animal also 

showed very little changes in ERM-patterns.  Since it is the only animal that decreases its 

operant activity on the day of amphetamine treatment, it is not possible to tell how this 

decrease is correlated with changes (or no change) in the ERM-patterns.  It might be 

interesting to compare this case with rats C6 and D8.  Both animals showed hardly any 

changes in the number of responses (2% and 0.3% respectively) under the influence of 

amphetamine.  While rat C6 had very little changes in the ERM-patterns, that of rat D8 

changed from triangle to L-type on the day of amphetamine treatment. 
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Table 6  Number of responses per session in the treatment phase 

hedule Before  Saline Between  Amphetamine  After  

I90s 1521 --- --- 2059 (35%) 1106 

I60s 3136 3012 (- 4%) --- --- 2832 

I40s 838 --- --- 4538 (442%) 974 

I60s 4222 --- --- 5198 (23%) 3803 

I40s 3413 3427 (0.4%) --- --- 3274 

I90s 636 495 (- 22%) --- --- 476 

I60s 2585 --- --- 3920 (52%) 2645 

I40s 1039 --- --- 3610 (247%) 1230 

I90s 788 --- --- 1113 (41%) 672 

I40s 2252 --- --- 3014 (34%) 2781 

I90s 1224 --- --- 2607 (113%) 1663 

I60s 5904 --- --- 6025 (2%) 5052 

I60s 3201 3163 (-1%) 2978 4190 (41%) 2669 

I40s 3141 3638 (16%) 3267 4094 (25%) 3505 

I20s 2345 2047 (-13%) 2179 1927 (-12%) 1562 

I20s 3984 3618 (-9%) 3576 4493 (26%) 3491 

I60s 3761 4511 (20%) 3971 5266 (33%) 3049 

I40s 1796 1358 (-25%) 1679 2976 (77%) 1404 

I40s 1097 682 (-38%) 886 1605 (81%) 950 

I20s 2990 3161 (6%) 3086 3096 (0.3%) 3185 

I60s 996 896 (-10%) 1144 1360 (19%) 968 
lly it should be noted that the comparisons between changes in the number of 

nd in the ERM-patterns discussed above are only partially quantitative, since there 

 definition to quantify the changes of ERM-patterns from session to session.  This 

necessary step in the further development of the ERM as an analyzing tool in the 

mputer simulation VII 

 data of three rats C1, D6 and D8 were used as targets in the simulation VII to 

ffects of amphetamine treatments.  Their IRT data sets were already the targets in 
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simulation II.  Rat B5 also took part in 

simulation II.  However, it was not treated 

with amphetamine.  The parameters used in 

simulation VII are outlined in table 7.  They 

were acquired using similar procedures 

discussed in section 3.3.2.  The averaged 

scallop curve, the IRT-distribution and the 

ERMs are shown in figures 39.  Roughly 

speaking, the results of simulations VIIa and 

VIIc can match their experimental targets 

quite well.  The averaged scallop curve and 

the IRT distribution of simulation VIIb show 

relatively larger deviations from their 

experimental targets.  Nevertheless, the main fea

this case the L-type structures, are still clearly iden

T

The target data sets in simulation VII are 

under the influence of amphetamine, while those 

of the same animals prior to the treatment.  Thus,

of those pairs of simulations, whose target data se

give hints to the understanding of the effects 

responding.  Several findings are interesting, and w

Firstly, the values of MP in simulations V

those in simulations IIa, IIe and IIc.  At the sa

approximately the same in both simulations II 
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Table 7  Parameters for simulation VII 
 

 VIIa VIIb VIIc 

arget D6  D8  C1  

kP 0.0151 0.00574 0,00701 

MP 0.0103 0.1796 0,0101 

MR 0.8118 0.7575 0,7979 

AW 0.1311 0.8907 0,1151 

OW 0.00202 0.0154 0,0161 

M1 0.0411 0.1669 0,0550 

A1 0.5112 0.0574 0,1491 

O1 0.00303 0.0287 0,0497 

M2 0.0300 0.1276 0,0399 

A2 0.3147 0.0792 0,3046 

O2 0.00201 0.0111 0,00101 

SLQ 0.0119 0.0423 0,0032 
tures of the experimental ERM-patterns, in 

tifiable in the simulated ERM. 

from sessions in which animals ran the trial 

in simulation II are the products of behavior 

 comparison between the parameter settings 

ts are produced by the same animals, might 

of amphetamine on the dynamics of FI-

ill be discussed below: 

IIa, VIIb and VIIc are much smaller than 

me time, the values of parameter MR are 

and VII.  The parameter MP decides the 
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 Simulation VIIa  

     
 Experiment (Rat D6 Amphetamine) 

   
 
 Simulation VIIb 

    
 Experiment (Rat D8 Amphetamine)  

    
      Time after Reinforcement      Length of IRT (sec)                 MVk (sec) 
 
Figure 39:  Simulation studies on the effects of amphetamine.  Results of simulation VIIa
can be fitted to its experimental target quite well.  Results of simulation VIIb have small
but identifiable deviations from its targets in the IRT distribution.  However, the main
characters of the experimental ERM-patterns are still quite well simulated. (continued in
the next page) 

M
V

k+
L (

se
c)

 
 

 
M

V
k+

L (
se

c)
 

 
 

 
M

V
k+

L (
se

c)
 

 
 

M
V

k+
L (

se
c)

 

Fr
eq

ue
nc

y 
 

 
   

Fr
eq

ue
nc

y 
 

 
 

Fr
eq

ue
nc

y 
 

 
 F

re
qu

en
cy

 

 

N
um

be
r o

f R
es

po
ns

es
 

 
N

um
be

r o
f R

es
po

ns
es

 
 

   
   

   
  N

um
be

r o
f R

es
po

ns
es

 
 

N
um

be
r o

f R
es

po
ns

es
 



  

 Simulation VIIc  

     
 Experiment (Rat C1 Amphetamine) 

    
      Time after Reinforcement      Length of IRT (sec)                 MVk (sec) 
 
Figure 39: (continued from the previous page) Simulation studies on the effects of 
amphetamine.  Results of simulation VIIc can be fitted to its experimental target quite 
well.   
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 probability of switching of behavioral states from “responding” to “pause”.  The smaller 

values can be interpreted as decreasing the tendency of animals’ returning back to the “pause” 

state when they are under the influence of amphetamine. 

Secondly, the values of parameter kP in simulation VII are approximately the same as 

in simulation II, when compared between simulations using the same target animal.  At the 

same time, the parameters AW and OW change.  The parameter kP controls the speed of the 

internal clock of the model, and the parameters AW and OW adjust the form of the weights 

array (figure 27).  Since their effects on the averaged scallop curve compensate each other, it 

is still possible, that similar effects can be achieved by simultaneously changing kP, and 
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 MP = 0.05  

     
 MP = 0.1 

    
 MP = 0.4 

    
 MP = 0.8  

    
      Time after Reinforcement      Length of IRT (sec)                 MVk (sec) 
 
Figure 40:  Effects of using different values of MP.  The averaged scallop curve shifts 
towards the right with increasing MP, and at the same time the distribution of data points
in the ERMs becomes more diffuse.  However, the main characters of the ERM-patterns 
are conserved.  The IRT distributions are hardly affected. 
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 OW = 0.012  

     
 OW = 0.008 

    
 OW = 0.004 

    
 OW = 0.002  

    
      Time after Reinforcement      Length of IRT (sec)                 MVk (sec) 
 
Figure 41:  Effects of using different values of OW.  The averaged scallop curve shifts 
towards the right with decreasing OW.  At the same time, both the distribution of data 
points and the main characters of patterns are changed in the ERMs.  As in figure 51, the
IRT distributions are hardly affected. 
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 adjusting AW and OW accordingly.  However, as discussed previously in section 3.7.7, the 

dispersion of  data points in ERMs will differ slightly, if the parameter kP changes (figure 33). 

The effects of varying MP are demonstrated again in figure 40, in which the same 

parameter settings as in simulation VIIc, except for MP, were in use.  We can clearly see that 

the L-type structure with clear-cut boundary changes to a diffuse triangle when MP increases.  

Furthermore, the form of the averaged scallop curve also changes.  The same changes of the 

averaged scallop curve can be achieved by decreasing the values of OW, as demonstrated by 

the examples shown in figure 41.  At the same time, the distribution of IRT remains relatively 

unchanged in all parameter settings.  However, figures 40 and 41 show completely different 

changes of  ERM-patterns.  This is another example to demonstrate that the averaged scallop 

curve and the IRT-distribution are not sufficient to describe the dynamics of FI-responding.   
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5 General Discussions 

5.1 Conclusions of the present study 

5.1.1 ERM: A new method for the non-linear dynamical analysis of 
operant behavior 

One achievement of the present work is the improved analyzing ability of the 

“extended return map (ERM)” over the original “return map (RM)”.  Comparison between the 

two analyzing tools shown in figures 5-8 reveals that the well organized lattice, triangle and 

L-type structures in the ERMs of rats under the control of fixed-interval (FI) schedules are not 

visible in RMs.  The patterns seen in the ERMs are comparable to the trajectory in the phase 

space and reflect dynamic properties of the system under study (Kantz & Schreiber 1997; 

Liebovitch 1998).  Thus, we can state that the ERM-patterns are traces of the behavioral state 

of the animals during the experiment.  The regular structures in the ERMs of FI-schedule 

controlled behaviors suggest a kind of periodicity. 

However, since time series data from an experimental study contain only a limited 

number of elements and are often contaminated with noise, the absolute value of a nonlinear 

dynamic analysis could be erroneous and might indicate false deterministic relationships of 

the system’s dynamics.  To exclude this possibility, it is necessary to look at the surrogate 

data sets, which share the same first order correlation with the experimental data, but have the 

higher order correlation destroyed (Theiler et al. 1992; Liebovitch 1998).  In the present work, 

we produced surrogate data sets using exactly the same data as the experiments.  We simply 

randomized their sequential order.  The direct comparison between the surrogate and the 

experimental ERMs suggests: 1) the separation of clusters, 2) the form and density of the 

“center-cluster”, and 3) the data points distributed along the diagonal direction are important 

elements that reflect the dynamic properties of FI-responding.  The meaning of the large 

cluster near the left-bottom corner, both L- and triangle form, on the other hand, might be 

relatively unclear.  Furthermore, the calculation of the surrogate distribution of correlation 
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dimension, and the comparison of the experimental value with this distribution, show that the 

probability to obtain the experimental sequence of IRT data is very low for almost all of the 

animals.  Only one rat showed about 12% of this “by-chance-probability”.  Another rat 

showed about 6% by-chance-probability. 

There are several explanations for the varieties of ERM-patterns found.  For one, 

different ERM-patterns might reflect subgroups within the animals.  Since the Wistar rats 

used are genetically heterogeneous, and it is possible to breed special subtypes out of 

genetically heterogeneous strains of rats (for example: Okamoto & Aoki 1963), it would not 

be surprising that different subtypes of behaviors can be found under similar experimental 

conditions.  On the other hand, different ERM-patterns could be co-existent stable states of 

behavior under the same experimental conditions.  This phenomenon is well known in the 

study of nonlinear dynamics.  For example, when a chemical system is pulled away from its 

equilibrium point to a far-from-equilibrium state, it might undergo several so-called 

bifurcations (Prigogine & Lefever, 1968; Nicolis & Prigogine, 1977; Prigogine, 1980).  In a 

bifurcation point, systems can evolve into one of several stable states.  The phenomenon of 

bifurcation was also studied mathematically, for example, in catastrophe theory (Thom 1975; 

Castrigiano & Hayes 1993). 

The acquisition process underlying schedule control over operant behavior could be 

regarded as such a process of evolution.  Upon the abrupt change of reinforcement schedules, 

the animals must adapt their behavior accordingly.  This process is analog to the pulling of 

chemical systems from their equilibrium state.  Even under the control of the same 

reinforcement schedule, and under the presumption that the individual differences are small, 

animals could be expected to develop different types of stable behaviors according to a 

mechanism analog to the bifurcation discussed above.  The ERM could serve as a tool to 

assess such processes, as revealed by figures 12-20. 
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Although we can see how the specific patterns of behavioral dynamics of the animals 

developed over time under the control of given reinforcement schedules, the patterns in the 

ERMs do not give quantitative measures of the “progress” of the animal’s behavior.  Nor can 

we quantitatively describe whether or not the animal’s behavior has arrived at a steady state.  

For example, it would be very helpful if we could have a measure to quantify the “difference” 

of ERM-patterns from session 15 and session 26 shown in figure 11.  This will be our next 

step in the further development of the ERM as an analyzing tool. 

5.1.2 Dynamics of FI-responding 

The dynamics of FI-responding reflected in the different ERM-patterns can be better 

understood using theoretical models and simulation studies.  The first simulation in the 

present work supports the so-called “two-state” conception suggested by other authors 

(Schneider 1969; Dews 1978; Shull 1991).  However, it might be wrong to declare that the 

“two-state” conception is sufficient to describe FI-responding.  Further analytical 

considerations and simulation studies suggest that at least the acceleration of the rate of 

responses, and multiple switches of behavioral states during the inter-reinforcement periods 

are necessary elements of FI-responding.  Furthermore, the traditional analyzing tools, namely 

the averaged scallop curve and the IRT distribution, are not sufficient to assess these 

additional elements.  The ERM can serve as a useful supplement to the analysis of operant 

behavior. 

We also proposed a comprehensive dynamical model to simulate different types of 

experimental ERM-patterns.  The model is not purely deterministic, as in most of the 

theoretical studies on chaotic systems.  However, the model consists of a set of complicated 

functions which possess a “long term” dynamical relationship.  It can generate IRT data that 

can simulate the main features, namely the lattice, L-type and triangle structures of the 

experimental ERM-patterns.  The simulation studies suggest that the mechanism responsible 
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for the long term dynamics of FI-responding, and that for the generation of operant events 

under a given “rate” of responses might work relatively independently.  While the speed of a 

hypothetical internal clock and the switches between behavioral states affect the main 

structures of ERM-patterns considerably, the same type of ERM-patterns can be generated by 

two different parameter settings of the events-generating mechanism that produce very 

different forms of IRT-distributions. 

5.1.3 Application in behavioral pharmacological studies 

We also tested the possibility of using the ERMs in behavioral pharmacological 

applications.  We applied the ERM to analyze FI-responding of rats that were injected intra-

peritoneally with 1mg/kg amphetamine 15 minutes before they started a 90-minute session in 

Skinner boxes.  Since amphetamine with this dosage has been reliably shown to have effects 

on FI-responding of rats, it is quite certain that the behavior of animals would change.  The 

only question is, whether or not there are changes in the dynamics of FI-responding, and 

whether or not the ERM is able to assess these changes. 

The results clearly indicate that considerable changes of ERM-patterns could be 

observed after animals received 1 mg/kg amphetamine injection.  Only very few and non-

qualitative changes were observed when the animals were treated with saline, although some 

animals decreased or increased the total number of responses in the 90-minute session up to 

38%.  On the other hand, some animals increased the total number of responses in the 90-

minute session after amphetamine treatment only about 40% or even less, but the changes in 

their ERMs were large.  In other words, changes in the total number of responses might not 

automatically imply changes in ERM-patterns, and vice versa.  While the former is equivalent 

to changes in the averaged rate of responses, the latter can be regarded as a change in 

behavioral modus.  Besides, the results of the ERM-analysis suggest at least qualitatively that 

different types of reactions upon the treatment with amphetamine under this dosage can be 
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observed among a group of animals, and the reacting types might not be correctly represented 

by a single value, namely, the rate of response.  All these finding arouse the concern of using 

rate of responses as a measure of the effect of pharmacological treatments, such as 

amphetamine. 

The simulation studies on the effect of amphetamine treatment were performed only 

on three animals that had already been used in the previous simulation studies.  Qualitatively 

the simulated and experimental results matched well.  Again, the lack of a quantitative 

measure of the differences between ERM-patterns is a problem that requires solving; this shall 

be the goal in future studies.  In addition to the shape of the averaged scallop curve, 

comparisons between parameter settings of simulations using the same animal’s “drug-free” 

and “amphetamine” data sets as targets indicates the importance of parameter MP, which 

decides the rate of switching from the “response” back to the “pause” behavioral states.  

While the traditional analysis has already suggested that 1 mg/kg amphetamine intra-

peritoneal injection can on the average increase the rate of responding, and flatten the scallop 

curve of FI-responding, the analysis using the ERM, in combination with simulation studies 

using our dynamical model, can additionally indicate the change of the probability that a 

animal will switch between behavioral states. 

It is true that the analysis using rate of responses or the averaged scallop curve is more 

useful than the ERM-analysis for providing an averaged measurement of the behavior of a 

“group” of animals under the same conditions.  On the other hand, whether or not this 

“group” of animals shall be regarded as a “group”, given that they react not only 

quantitatively, but also qualitatively heterogeneous, is also a fundamental question, that can 

be addressed via an ERM-analysis. 

5.2 Perspectives  

The application of the new analyzing tool, the extended return map (ERM), to operant 
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behavior under the control of fixed-interval (FI-) schedules has successfully been shown to be 

superior to the original return map (recurrent plot).  Furthermore, analytical considerations as 

well as simulation studies showed that the ERM can deliver new information about the 

dynamics of FI-responding which traditional analyses, such as the averaged scallop curve and 

IRT distribution, fail to do.  This tool provides a new possibility to study behavior from the 

aspect of dynamics.  In the present work only FI-schedules were investigated.  Many other 

schedules, for example the variable-interval schedules, could also be analyzed in terms of 

behavioral dynamics.  Furthermore, it could be interesting to look at switching behavior of 

animals between two levers in a Skinner box, since animals tend to switch between two 

levers.  Many efforts have been made to study the relationship between the rate of responses 

on two levers and the different schedules associated with the levers, for example Herrnstein’s  

equation (1970).  It would, therefore, also be interesting to look at the dynamics of switching 

between two such levers. 

The dynamical analysis of amphetamine effects on behavior also produced fruitful 

results.  However, it probably raised a number of unanswered questions.  Firstly, the weights 

array of the dynamical model was assumed to be defined by a sigmoid function, for 

simplicity.  It would be important to find a learning rule that can adapt the weights 

automatically, so that the model can “learn” to respond to new reinforcement schedules, for 

example from a continuous reinforcement to a FI-schedule.  Secondly, it might be interesting 

to compare the model of the present work with existing theories proposed by other authors, 

for example Killeen and Fetterman’s model or Hoyert’s model (Killeen & Fetterman 1988; 

Hoyert 1992).  The model proposed by Hoyert is a deterministic model, under the constraint 

that it deals with rate of responses.  In order to proceed with such a comparison, there must be 

a way to quantify the goodness of fit of simulated and experimental data.  In other words, we 

need a definition to quantify the differences between two ERMs.  The lack of such a method 
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is a major problem, since it might also be important to quantify the difference between ERM-

patterns in pharmacological studies, or from ERMs acquired in different sessions during the 

process of learning of the specific behavioral dynamics under a certain experimental 

condition. 

Finally, the progress in the present work provides a possibility to look at many 

physiological as well as pharmacological studies on operant behavior from a different point of 

view.  Previous studies usually implemented the rate of responding, or sometimes the changes 

in the averaged scallop curve as dependent variables.  Our studies on the effects of 

amphetamine, however, raise questions about this approach.  Firstly, there might be changes 

in behavior that can be seen in the ERM-patterns, but are not manifested in rate of responses.  

Secondly, some changes of behavior induced by amphetamine have both quantitative as well 

as qualitative characters.  In any case, we have demonstrated that by using ERMs as an 

analyzing tool, it is possible to gain information from pharmacological and behavioral studies, 

which is not provided by the conventional analytical techniques.  An ideal tactic might be to 

apply both conventional and non-linear dynamic tools in parallel in order to maximize 

information in cases where the latter techniques are applicable. 
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