# Molecular and physiological characterisation of the two *Arabidopsis thaliana* mutants *atpd* and *petc*

In augural – Dissertation

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

> vorgelegt von Daniela Sabine Maiwald aus Hilden

Kopier Center Süd, Düsseldorf 2003

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf.

Refernt: Prof. Dr. P. Westhoff

- 1. Koreferent: Prof. Dr. W. Martin
- 2. Koreferent: Prof. Dr. F. Salamini

Tag der mündlichen Prüfung: 02.07.2003

# CONTENTS

| ABI                               | ABBREVIATIONSIV                                                                                                                                   |                                  |  |  |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|
| 1                                 | INTRODUCTION                                                                                                                                      |                                  |  |  |  |
| 1.1                               | The chloroplast and photosynthesis                                                                                                                | 1                                |  |  |  |
| 1.2                               | The photosynthetic electron transport chain                                                                                                       | 2                                |  |  |  |
| 1.3                               | The cytochrome $b_6/f$ complex (cyt $b_6/f$ )                                                                                                     | 4                                |  |  |  |
| 1.4                               | Mutational analysis of the cyt $b_6/f$ complex                                                                                                    | 5                                |  |  |  |
| 1.5                               | The chloroplast ATP synthase                                                                                                                      | 8                                |  |  |  |
| 1.6                               | The $\delta$ -subunit of the ATP synthase                                                                                                         | 11                               |  |  |  |
| 1.7                               | Mutational analysis of the ATP synthase                                                                                                           | 12                               |  |  |  |
| 1.8                               | Chlorophyll fluorescence, photochemical and non-photochemical quenching<br>and the role of the xanthophyll cycle                                  | 14                               |  |  |  |
| 1.9                               | Aim of the thesis                                                                                                                                 | 16                               |  |  |  |
| 2                                 | MATERIAL & METHODS                                                                                                                                | 17                               |  |  |  |
| 2.1                               | Chemicals and enzymes                                                                                                                             | 17                               |  |  |  |
| 2.2                               | Strains                                                                                                                                           | 17                               |  |  |  |
| 2.3<br>2.<br>2.<br>2.<br>2.       | Media and cultivation3.1E. coli: Luria Broth (LB) Medium3.2A. tumefaciens: YEB medium3.3A. thaliana axenic culture: Murashige & Skoog (MS) medium | 17<br>17<br>18<br>18             |  |  |  |
| 2.4<br>2.<br>2.                   | Plant propagation         4.1       On soil         4.2       Sterile culture                                                                     | 18<br>18<br>18                   |  |  |  |
| 2.5                               | Oligonucleotide sequences                                                                                                                         | 19                               |  |  |  |
| 2.6<br>2.<br>2.                   | Gel electrophoresis6.1Agarose gel electrophoresis6.2Polyacrylamide gel electrophoresis                                                            | 19<br>19<br>20                   |  |  |  |
| 2.7<br>2.<br>2.<br>2.<br>2.<br>2. | Enzymatic reactions7.1PCR7.2Ligation of DNA fragments7.3Restriction analysis7.4Radioactive labelling of DNA                                       | 20<br>20<br>20<br>20<br>20<br>20 |  |  |  |

| 2.7.5 | 5 cDNA single strand synthesis                                                | 21 |  |
|-------|-------------------------------------------------------------------------------|----|--|
| 2.8   | Sequence analyses                                                             |    |  |
| 2.9   | Plasmids                                                                      | 21 |  |
| 2.9.1 | l pGEM-Teasy                                                                  | 21 |  |
| 2.9.2 | 2 pPVC702                                                                     | 21 |  |
| 2.9.3 | 3 pPVC702- <i>AtpD</i>                                                        | 21 |  |
| 2.10  | Nucleic acid preparation                                                      | 22 |  |
| 2.10  | .1 DNA preparation                                                            | 22 |  |
| 2.10  | .2 RNA preparation                                                            | 22 |  |
| 2.11  | Northern analysis                                                             | 22 |  |
| 2.12  | Transformation of <i>E. coli</i>                                              | 23 |  |
| 2.13  | Complementation analysis of Arabidopsis plants via A. tumefaciens             |    |  |
| 0.10  | transformation                                                                | 23 |  |
| 2.13  | 2 Selection of transformed plants                                             | 23 |  |
| 2.13  | .2 Selection of transformed plants                                            | 23 |  |
| 2.14  | Thylakoid preparation from Arabidopsis leaves                                 | 23 |  |
| 2.14  | .1 For 2-D gel electrophoresis and Western analysis                           | 23 |  |
| 2.14  | .2 For electron transport measurements                                        | 24 |  |
| 2.15  | Western blot analysis                                                         | 24 |  |
| 2.16  | 2-D gel electrophoresis                                                       | 24 |  |
| 2.17  | Pigment analysis                                                              | 25 |  |
| 2.18  | Chlorophyll fluorescence measurements and redox state of P700                 | 25 |  |
| 2.19  | Membrane potential measurements                                               | 26 |  |
| 2.20  | Electron transport measurements                                               | 26 |  |
| 2.21  | Expression profiling                                                          | 27 |  |
| 2.21  | .1 Probe synthesis                                                            | 27 |  |
| 2.21  | .2 Hybridisation procedure                                                    | 27 |  |
| 2.21  | .3 Data analysis                                                              | 28 |  |
| 3 R   | ESULTS                                                                        | 29 |  |
| 3.1   | Characterisation of the <i>petc-2</i> mutant                                  | 29 |  |
| 3.1.  | I Identification of the Rieske protein mutant lines                           | 29 |  |
| 3.1.2 | 2 Phenotype of the <i>petc</i> mutant lines                                   | 30 |  |
| 3.1.3 | 3 Expression analysis of the <i>PetC</i> gene                                 | 31 |  |
| 3.1.4 | The pigment composition in the <i>petc-2</i> mutants                          | 32 |  |
| 3.1.5 | 5 The composition of the photosynthetic apparatus in the <i>petc-2</i> plants | 33 |  |

| 3.                                                                  | 3.1.6 Photosystems are functional in <i>petc-2</i> , but there is no linear electron transport |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <br>35                                     |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| <ul> <li>3.2 Characterisation of the <i>atpd-1</i> mutant</li></ul> |                                                                                                | racterisation of the <i>atpd-1</i> mutant<br>Phenotype of the <i>atpd-1</i> mutant line<br>Expression analysis of the <i>AtpD</i> gene and complementation analysis of the <i>atpd-1</i> mutation<br>ATP synthase activity in <i>atpd-1</i> mutant plants<br>Leaf pigment composition in the <i>atpd-1</i> mutants<br>The composition of the photosynthetic apparatus in the <i>atpd-1</i> plants<br>Photosystems are functional in <i>atpd-1</i> mutants, but linear electron transport<br>is impaired | 39<br>39<br>40<br>41<br>42<br>43<br><br>45 |
| 3.3                                                                 | mRN<br>petc                                                                                    | NA expression analysis for nucleus-encoded chloroplast proteins in the mutar -2 and <i>atpd-1</i>                                                                                                                                                                                                                                                                                                                                                                                                       | nts<br>51                                  |
| 4                                                                   | DISCU                                                                                          | USSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54                                         |
| 4.1<br>4.<br>4.                                                     | The<br>1.1<br>1.2                                                                              | <i>petc-2</i> mutant<br>The absence of the Rieske protein blocks the linear electron transport<br>The Rieske protein is involved in the stability of the cytochrome $b_6/f$                                                                                                                                                                                                                                                                                                                             | 54<br>54                                   |
| 4.                                                                  | 1.3                                                                                            | complex and has an effect on the thylakoid composition<br>The disruption of the cyt $b_6/f$ complex causes a relative increase of the chloroplast ATP synthase                                                                                                                                                                                                                                                                                                                                          | 55<br>57                                   |
| 4.2<br>4.<br>4.<br>4.                                               | The<br>2.1<br>2.2<br>2.3                                                                       | atpd-1 mutant<br>The $\delta$ -subunit is important for the stability of the chloroplast ATP synthase.<br>Absence of a functional ATP synthase changes the thylakoid composition<br>and favours a limited cyclic electron transport<br>The low luminal pH in the $atpd-1$ mutant induces non-photochemical<br>quenching even at low light intensities                                                                                                                                                   | 58<br>58<br><br>59<br>60                   |
| 4.3                                                                 | Effe                                                                                           | ects on plastid signalling in the <i>petc-2</i> and <i>atpd-1</i> mutants                                                                                                                                                                                                                                                                                                                                                                                                                               | 61                                         |
| 4.4                                                                 | Outl                                                                                           | look                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62                                         |
| 5                                                                   | SUMN                                                                                           | MARY / ZUSAMMENFASSUNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63                                         |
| 6                                                                   | REFE                                                                                           | RENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65                                         |
| 7                                                                   | APPE                                                                                           | NDIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 73                                         |
| 7.1                                                                 | Deta                                                                                           | ailed image of hierarchical clustering of the expression profiles                                                                                                                                                                                                                                                                                                                                                                                                                                       | 73                                         |
| 7.2                                                                 | Dire                                                                                           | ct comparison of the differential expression profiles of <i>petc-2</i> and <i>atpd-1</i> plants                                                                                                                                                                                                                                                                                                                                                                                                         | 78                                         |
| 7.3                                                                 | Con                                                                                            | nplete list of significantly differentially expressed genes                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84                                         |

# ABBREVIATIONS

| _as                     | anti-sense                                                  |
|-------------------------|-------------------------------------------------------------|
| _ <u>s</u>              | sense                                                       |
| °C                      | degree Celsius                                              |
| 1-D                     | one-dimensional                                             |
| 2-D                     | two-dimensional                                             |
| <i>A. th.</i>           | Arabidopsis thaliana                                        |
| aa                      | amino acid                                                  |
| Amp                     | ampicillin                                                  |
| ATP                     | adenosine triphosphate                                      |
| bp                      | base pairs                                                  |
| Bq                      | Becquerel                                                   |
| BŜA                     | bovine serum albumin                                        |
| Carb                    | carbenicillin                                               |
| Chl                     | chlorophyll                                                 |
| Col-0                   | Arabidonsis thaliana, ecotype Colmbia 0                     |
| cnTP                    | chloroplast transit peptide                                 |
| cvt                     | cytochrome                                                  |
| $cyt h_{\epsilon}/f$    | cytochrome $h_c/f$ complex                                  |
|                         | 3-(3-4-di-chlorophenyl)-1 1-dimethylurea                    |
| DEPS                    | de-enoxidation state = (violaxanthin + 0.5 antheraxanthin)/ |
| DLIG                    | (violaxanthin + antheraxanthin + zeaxanthin)                |
| DNA                     | deoxyribonucleic acid                                       |
| E coli                  | Escherichia coli                                            |
| E. CON FDTA             | ethylenediaminetetraacetic acid                             |
| ED IA<br>E              | minimal fluorescence                                        |
| For                     | initial fluorescence in the steady-state                    |
| Fd                      | soluble ferredovin                                          |
| Fu                      | maximal fluorescence                                        |
| ГM<br>Е,                | maximal fluorescence in light adopted logyes                |
| Г <sub>М</sub><br>Е     | stationary (quanched) level of maximum fluorescence         |
| Г <sub>MS</sub><br>ENID | formed ovin NADD <sup>+</sup> ovidered vates                |
|                         | transient fluoressence                                      |
| Γ <sub>T</sub><br>Ε/Ε   | manifelit fluorescence viold of DSH                         |
| $\Gamma_V/\Gamma_M$     |                                                             |
| g<br>CST                |                                                             |
| bof                     | bish shloronhyll flyeressenes                               |
|                         | high processing liquid chromato graphy                      |
| HPLC                    | nign pressure inquid chromatography                         |
| Kan                     |                                                             |
|                         | littlicene de de sed seclule etc.                           |
| LDS                     | lithium dodecyl sulphate                                    |
| Ler                     | Arabidopsis thaliana, ecotype Landsberg erecta              |
| LHC                     | light narvesting complex                                    |
| M                       | molar                                                       |
| mol                     | mole                                                        |
| mRNA                    | messenger RNA                                               |
| mV                      | milliVolt                                                   |
| NADP <sup>⊤</sup>       | oxidized nicotinamide adenine dinucleotide phosphate        |
| NPQ                     | non-photochemical quenching                                 |

•

| o/n                  | over night                                                         |
|----------------------|--------------------------------------------------------------------|
| OD                   | optical density                                                    |
| OEC                  | oxygen evolving complex                                            |
| $\Phi_{\mathrm{II}}$ | effective quantum yield of PSII                                    |
| P680                 | reaction centre of PSII                                            |
| P700                 | reaction centre of PSI                                             |
| PA                   | polyacrylamide                                                     |
| PAGE                 | polyacrylamide gel electrophoresis                                 |
| PAM                  | pulse amplitude modulation                                         |
| PBQ                  | 1-4 benzochinone                                                   |
| Pc                   | plastocyanin                                                       |
| PCR                  | polymerase chain reaction                                          |
| Pet                  | photosynthetic electron transport                                  |
| PFD                  | photon flux density                                                |
| Phe                  | pheophytin                                                         |
| PQ                   | plastoquinone                                                      |
| PQH <sub>2</sub>     | plastoquinol                                                       |
| PSI                  | photosystem I                                                      |
| PSII                 | photosystem II                                                     |
| Q <sub>A</sub>       | bound plastoquinone                                                |
| Q <sub>B</sub>       | plastoquinone able to exchange with plastoquinone (PQ) pool        |
| qE                   | energy-dependent quenching                                         |
| qI                   | photoinhibition                                                    |
| Qo                   | plastoquinol binding pocket                                        |
| qP                   | photochemical quenching                                            |
| RNA                  | ribonucleic acid                                                   |
| rpm                  | revolutions per minute                                             |
| RT                   | room temperature                                                   |
| rv                   | relative values                                                    |
| S                    | second                                                             |
| SD                   | standard deviation                                                 |
| SDS                  | sodium dodecyl sulphate                                            |
| T-DNA                | transfer DNA                                                       |
| TMPD                 | 2,3,5,6-tetramethyl-p-phenylen-diamine                             |
| Tris                 | Tris(hydroxymethane)aminomethane                                   |
| U                    | unit of enzyme activity given by supplier                          |
| v/v                  | volume per volume                                                  |
| VAZ                  | sum of xanthophyll cycle pigments (violaxanthin + antheraxanthin + |
|                      | zeaxanthin)                                                        |
| w/v                  | weight per volume                                                  |
| WT                   | wild-type                                                          |

# **1 INTRODUCTION**

# **1.1** The chloroplast and photosynthesis

By the process of photosynthesis solar light energy is converted into chemical energy, thereby enabling most life on earth. The photosynthetic reactions are performed in a specialized organelle, the chloroplast, which is enclosed by three systems of membranes (Figure 1.1). It is believed that chloroplasts derive from an ancestral cyanobacterial endosymbiont (Douglas, 1998). Chloroplasts have their own genome (plastome) and a transcription and translation apparatus which closely resembles that of the prokaryotes. The chloroplast is not only involved in photosynthesis, but also in the synthesis of compounds such as amino acids, nucleotides, fatty acids and lipids, vitamins, plant hormones and secondary metabolites and it also plays a central role in the assimilation of sulphur and nitrogen.



Figure 1.1 Structure of the chloroplast shown as a diagrammatical representation and an electron microscope micrograph.

Photosynthesis in higher plants consists of a series of light-driven reactions which in turn lead to the generation of ATP and NADPH used for the fixation of atmospheric CO<sub>2</sub> into organic compounds. The protein complexes involved in photosynthesis are photosystem II (PSII), the cytochrome (cyt)  $b_6/f$  complex, photosystem I (PSI) and the ATP synthase, all located in the thylakoid membranes of the chloroplast (Figure 1.2). Photons are absorbed mainly by the light-harvesting complexes (LHCs) of PSI and PSII.



Figure 1.2 Schematic view of the photosynthetic apparatus.

Membrane-located multi-protein complexes: LHCII, light harvesting complex of PSII; PSII, photosystem II; Cyt  $b_6/f$  complex, cytochrome  $b_6/f$  complex; PSI, photosystem I; LHCI, light harvesting complex of PSI. The soluble electron carriers: PC, plastocyanin; Fd, ferredoxin; Cyt  $c_6$ , cytochrome  $c_6$  and the membrane-bound electron carrier FNR, ferredoxin-NADPH-reductase. Nuclear-encoded subunits are indicated in grey, or black if they are plant specific. Chloroplast encoded subunits are drawn in white.

# **1.2** The photosynthetic electron transport chain

The first complex in the photosynthetic electron transport chain, accepting electrons from H<sub>2</sub>O, is PSII which acts as a water-plastoquinone oxireductase (Renger and Govindjee, 1985). When the reaction centre of PSII (P680) becomes photoexcited it reduces the quinone  $Q_A$  via a rapid oxidoreduction of a pheophytin molecule (Phe) (Figure 1.3).  $Q_A$  then reduces the two-electron carrier plastoquinone ( $Q_B$ ). When  $Q_B$  is fully reduced, it binds two protons and is thereby converted to plastoquinol (PQH<sub>2</sub>) which is not any longer bound to PSII. PQH<sub>2</sub> moves freely in the thylakoid membrane and connects PSII and the cyt  $b_6/f$  complex to which it transfers the electrons. The cyt  $b_6/f$  complex acts as a plastoquinol-plastocyanin oxidoreductase. It catalyses the oxidation of the lipophilic two-electron carrier donor PQH<sub>2</sub> and the reduction of the hydrophilic one-electron acceptor protein plastocyanin (Pc).



Figure 1.3 A scheme of the electron transport in oxygen evolving photosynthetic organisms (Hill and Bendall, 1960).

M, components of the oxygen evolving complex; Z, primary electron donor to P680; P680, the reaction centre of PSII; Phe, pheophytin;  $Q_A$ , bound plastoquinone;  $Q_B$ , plastoquinone able to exchange with the plastoquinone (PQ) pool; ReFeS, Rieske iron-sulphur centre; cyt, cytochrome; Pc, plastocyanin; P700, reaction centre of PSI; A<sub>0</sub>, A<sub>1</sub>, A<sub>2</sub>, primary and secondary electron acceptors of PSI; FeS<sub>A,B</sub>, bound iron-sulphur centres A and B; Fd, soluble ferredoxin; FNR, ferredoxin-NADP<sup>+</sup> oxidoreductase; NADP<sup>+</sup>, oxidized nicotinamide adenine dinucleotide phosphate.

Three subunits of the cyt  $b_6/f$  complex bear prosthetic groups necessary for the electron transport: cyt  $b_6$  bearing two *b*-type heme moieties ( $E_m = -84 \text{ mV}$  and -158 mV) (Pierre et al., 1995); cyt *f* bearing a covalently bound *c*-type heme moiety ( $E_m = +330 \text{ mV}$ ), (Pierre et al., 1995); and the Rieske protein bearing a [Fe<sub>2</sub>S<sub>2</sub>] cluster ( $E_m = +290 \text{ mV}$ ), (Nitschke et al., 1992). According to the Q-cycle model the transfer of the two electrons is branched in the complex between the low-potential chain (composed of the two  $b_6$  type hemes,  $b_l$  and  $b_h$ ) and the high-potential chain (formed by the Rieske protein and cyt *f*) (Mitchell, 1975; Crofts et al., 1983). This mechanism postulates both an oxidation and a reduction of plastoquinol at two distinct sites of the protein, the Q<sub>0</sub> and the Q<sub>i</sub> sites, on opposite sites of the membrane. The oxidation of plastoquinol at the Q<sub>0</sub> site is associated with the reduction of cyt *f* and cyt  $b_1$  (Hope, 1993; Hauska et al., 1996) and the release of two protons into the lumen. Two in-series turnovers of the complex are required to reduce both  $b_l$ - and  $b_h$ -hemes and trigger the generation of a PQH<sub>2</sub> molecule at the Q<sub>i</sub> site. The cyt *f* then finally reduces the plastocyanin which can (re-) reduce PSI. PSI acts as a plastocyanin-ferredoxin

oxidoreductase. Within PSI, light induces charge separation between the reaction centre chlorophyll dimer P700 and the primary chlorophyll A acceptor (A<sub>0</sub>) (Rutherford and Heathcope, 1985). The electrons flow then to the phylloquinone molecule A<sub>1</sub>, 4Fe-4S, A<sub>2</sub>, the FeS<sub>A</sub> and then to FeS<sub>B</sub>. This terminal electron acceptor reduces ferredoxin, which in turn reduces the membrane-bound ferredoxin-NADP<sup>+</sup> oxidoreductase (FNR) that transfers the electrons to NADP<sup>+</sup>.

As a net result of this process two molecules of water are split and two molecules of NADPH are synthesised. The linear electron transfer is coupled to proton translocation across the thylakoid membrane and contributes to the formation of the proton gradient, which can be utilised by the ATP-synthase to generate ATP (Cramer et al., 1991).

# 1.3 The cytochrome $b_6/f$ complex (cyt $b_6/f$ )

As already mentioned, the cyt  $b_6/f$  complex plays a central role in the photosynthetic electron transfer chain and it was shown for Chlamydomonas that it is active as a dimer (Breyton et al., 1997). It is similar to the mitochondrial ubiquinol-cytochrome c reductase complex (the  $bc_1$  complex) in its transmembrane domains, however the extra-membrane domains are markedly different (Breyton, 2000) and the cytochromes f and  $c_1$  of cyt  $b_6/f$  and cyt  $bc_1$  are completely dissimilar. Another major difference between the two complexes is that the cyt  $b_6/f$  complex contains a chlorophyll a and a  $\beta$ -carotene molecule. The postulated role of the  $\beta$ -carotene is to prevent generation of singlet O<sub>2</sub> from the photoexcited complex, whereas the role of the chlorophyll a molecule is still unclear (Pierre et al., 1997; Zhang et al., 1999).

The cyt  $b_6/f$  complex consists of at least eight subunits, which are encoded by the *Pet* genes (photosynthetic electron transport genes). The cyt  $b_6/f$  monomer contains one copy of each subunit (Pierre et al., 1995). In flowering plants, the nuclear genes *PetC* and *PetM* code for the Rieske iron-sulphur protein and a small peptide (subunit VII), respectively, whereas the chloroplast genes *petA*, *petB* and *petD* code for the cytochrome f(cyt f), cytochrome  $b_6$  (cyt  $b_6$ ) and the subunit IV (suIV), respectively. Two additional small subunits are encoded by chloroplast genes: PetG (*petG*) and subunit VI (*petL*); however, subunit VI is absent in cyanobacteria (Boronowsky et al., 2001). A third small subunit (subunit VIII) proposed to be encoded by the gene *ycf6 (petN*) was identified in tobacco by Hager et al., (1999).

Recently, another subunit was identified in *C. reinhardtii*: a 15.2 kDa polypeptide, encoded for by the nuclear *PetO* gene which is reversibly phosphorylated during state transitions. This points to a possible role in signal transduction during redox-controlled adaptation of the photosynthetic apparatus. However, a sequence homologous to the *PetO* gene has only been found in the green alga Volvox and it remains to be shown whether this subunit also exists in higher plants (Hamel et al., 2000).

The Rieske protein is encoded by the single-copy nuclear gene *PetC* in Arabidopsis, spinach and pea (Salter et al., 1992) and by two nuclear genes in tobacco (Palomares et al., 1991; Madueno et al., 1992) The Rieske protein is synthesised as a 27-28 kDa precursor protein consisting of the mature protein and 49-68 N-terminal amino acid residues responsible for targeting the protein to the chloroplast (Madueno et al., 1992; Salter et al., 1992). A high degree of sequence similarity exists among the Rieske proteins which have been investigated to date (de Vitry, 1994). In Arabidopsis, the *PetC* gene contains five exons.

# 1.4 Mutational analysis of the cyt $b_6/f$ complex

To date mutated alleles for several proteins of the cyt  $b_6/f$  complex have been analysed in Chlamydomonas, Lemna, tobacco and Arabidopsis: deletion strains for the three major chloroplast *Pet* genes *petA*, *petB* and *petD* have been constructed in *C. reinhardtii* (Kuras and Wollman, 1994). These deletion strains can be only grown heterotrophically and were unable to synthesize cyt *f*, cyt  $b_6$  or suIV, respectively. It was shown that mature cyt *f* is stable in the absence of cyt  $b_6$  or suIV, but that its rate of synthesis was severely decreased. In contrast, the presence of the other subunits of the complex is independent of the rate of synthesis of cyt  $b_6$  and suIV. Moreover, suIV accumulation is dependent on cyt  $b_6$ accumulation. Kuras and Wollman, (1994) concluded that the stoichiometric accumulation of the chloroplast-encoded subunits of the cyt  $b_6/f$  complex results from two regulatory processes: a post-translational regulation leading to the proteolytic disposal of unassembled cyt  $b_6$  and suIV and a co-translational regulation, which ensures the production of cyt *f* next to its site of assembly.

Similar work has been carried out on tobacco chloroplast mutants having interrupted *petA*, *petB* and *petD* genes. These mutants were non-photosynthetic and had about three times

less chlorophyll than the wild-type, leading to a pale-green leaf phenotype. In contrast, the corresponding C. reinhardtii mutants showed no reduction in chlorophyll. Also the chloroplast ultra structure was altered in all three tobacco mutants: 2-3 times less thylakoid membranes per unit chloroplast area were observed and the grana were comprised of many fewer thylakoid layers than in the wild-type. Another effect of the disrupted genes in the tobacco mutants was a high chlorophyll fluorescence phenotype and the loss of a functional cyt  $b_6/f$  complex. Unlike the Chlamydomonas mutant, the cyt f was barely detectable in  $\Delta petB$  or  $\Delta petD$  tobacco mutants. The amounts of *petB* and *petD* mRNA were reduced in the mutants, but the mRNAs were normally associated with polysomes. In contrast, there was a decrease in polysome accumulation of *petA* mRNA in  $\Delta petB$  or  $\Delta petD$ , suggesting that the synthesis of cyt f may be decreased in the absence of cyt  $b_6$  or suIV. This demonstrates that vascular plants and the green algae C. reinhardtii share certain chloroplast gene regulatory mechanisms. For the afore mentioned cyt f protein it was concluded that there may be an autoregulatory effector in tobacco chloroplast, as the protein was virtually undetectable in the  $\Delta petB$  or  $\Delta petD$  tobacco mutants in contrast to the observations in C. reinhardtii (Monde et al., 2000). Moreover, the deletion of the petG gene in *Chlamydomonas reinhardtii* results in markedly decreased levels of cyt  $b_6$ , cyt f, the Rieske protein and suIV and the mutants are unable to grow photosynthetically. This suggests that the absence of the PetG protein affects the assembly or stability of the cyt  $b_6/f$ complex (Berthold et al., 1995).

In a stable deletion mutant of the *C. reinhardtii* nuclear *PetC* gene (a TG deletion resulting in a 52 residue truncated version of the protein) lacking the Rieske protein, the other subunits of the cyt  $b_6/f$  complex still accumulate (de Vitry et al., 1999). However, without a functional Rieske protein photosynthetic electron flow was completely suppressed. Contradictory results were obtained with the photosynthetic mutant no. 1073 of *Lemna perpusilla*, in which accumulation of the Rieske protein was reduced by a factor 100. In this mutant less than 1% of the four proteins cyt *f*, cyt  $b_6$ , suIV and the Rieske protein are detectable (Bruce and Malkin, 1991). However, the chloroplast genes for the cyt *f*, cyt  $b_6$ and suIV proteins are normally transcribed and processed in the mutant. Interestingly, the cyt *f* and suIV proteins are synthesised at rates similar to the wild-type, indicating that the Rieske protein may function as a key assembly protein in an "all-or-none" assembly process. Thus, Bruce and Malkin, (1991) proposed that all cyt  $b_6/f$  components must be present for the stabilization of the complex.

In an Arabidopsis mutant having a point mutation in the *PetC* gene (Munekage et al., 2001) the electron transport rate was not affected at low light intensity. However, electron flow was significantly restricted at high light intensity. This indicates that the luminal acidification was not sufficient to induce thermal dissipation in this mutant. Furthermore the electron transfer from cyt  $b_6/f$  to PSI is not generally reduced in the mutant, but the pH dependence of this reaction is altered (Jahns et al., 2002).

Targeted inactivation of open-reading frames of the plastid genome has led to the discovery of the *petL* and *petN* gene in tobacco. The plants with a disruption in the *petL* gene display photoautotrophic growth, the amount of cyt  $b_6/f$  complex is reduced to 25-50% of wild-type level and the rate of transmembrane electron transfer by the cyt  $b_6/f$  complex *in vivo*; under saturating light, is three to four times slower than in wild-type. The remaining cyt  $b_6/f$  complex appeared more fragile than wild-type complexes, selectively loosing the Rieske iron-sulphur protein during purification. These observations indicate that PetL is an authentic subunit of the cyt  $b_6/f$  complex, which is required for its stability, accumulation and optimal efficiency (Takahashi et al., 1996). Tobacco plants having a targeted knock-out of the *PetN* gene display a photosynthetically incompetent phenotype (Hager et al., 1999). The photosystems are intact and physiologically active, but the electron transfer from PSII to PSI is interrupted as a result of the complete absence of the cyt  $b_6/f$  complex. These data indicate that the PetN protein plays a crucial role in complex assembly and/or stability.

In summary it has been shown by mutational analysis that the absence or mutation of one or more of the proteins of the cyt  $b_6/f$  complex may lead to a variety of phenotypes: to photosynthetically incompetent phenotypes, to a markedly reduced stability of the cyt  $b_6/f$ complex, or to the absence of the entire cyt  $b_6/f$  complex, but may also lead to markedly mild phenotypes with the phenotype observable only under stress conditions such as high light. These different phenotypes are thought to be caused by the effects of the mutation on transcription, translation, complex stability and/or function. However, although many such mutants have been studied, to date no stable null allele for the Rieske protein of flowering plants has been investigated.

#### **1.5** The chloroplast ATP synthase

Photosynthetic electron flow is coupled with proton translocation across the thylakoid membrane. This produces a transmembrane electrochemical proton potential difference, which is used to form ATP out of ADP and  $P_i$ . One ATP is formed when four protons (Van Walraven et al., 1996) flow down the gradient through the membrane-bound proton translocating ATP synthase (also called  $CF_0CF_1$  super-complex). This coupled process found in chloroplasts and cyanobacteria is called "photophosphorylation".



**Figure 1.4 A model of the chloroplast ATP synthase (Groth and Strotmann, 1999)** For more information on the individual subunits see Table 1.1.

The structure of the chloroplast ATP synthase most closely resembles the bacterial ATP synthase in its subunit composition (Hatefi, 1985). The chloroplast ATP synthase is localized in the thylakoid membrane and consists of nine subunits. These are organized into two separate sectors: the membrane-embedded proton-conducting CF<sub>0</sub>-complex and the water-soluble CF<sub>1</sub>-complex containing the nucleotide binding site (Engelbrecht and Junge, 1990). The CF<sub>0</sub> consists of four different polypeptides in a stoichiometry of  $a_1b_1b'_1c_{12}$  (Fromme et al., 1987) encoded by the chloroplast genes *atpI* (a) *atpF* (b) and *atpH* (c) and the nuclear *AtpG* (b') gene. The extrinsic catalytic CF<sub>1</sub> complex contains five different subunits in the stoichiometry of  $\alpha_3\beta_3\delta\gamma\epsilon$  encoded by the nuclear genes *AtpC* ( $\gamma$ ) and *AtpD* ( $\delta$ ) and the chloroplast genes *atpA* ( $\alpha$ ), *atpB* ( $\beta$ ) and *atpE* ( $\epsilon$ ) (Groth and Strotmann, 1999). In Arabidopsis, the  $\gamma$ -subunit is encoded by the two nuclear genes *AtpC1* and *AtpC2* (Inohara et al., 1991).

| *In Arabidopsis the $\gamma$ subunit is encoded by the <i>AtpC1</i> and <i>AtpC2</i> genes. |        |           |             |             |                                       |
|---------------------------------------------------------------------------------------------|--------|-----------|-------------|-------------|---------------------------------------|
| Symbol                                                                                      | Old    | Molecular | Gene        | Gene        | Main function                         |
|                                                                                             | symbol | weight    | name        | location    |                                       |
|                                                                                             |        | (kDa)     |             |             |                                       |
| а                                                                                           | IV     | 25.1      | atpI        | chloroplast | H <sup>+</sup> translocation          |
| b                                                                                           | Ι      | 20.9      | atpF        | chloroplast | binding of CF <sub>1</sub>            |
| b'                                                                                          | II     | 16.4      | AtpG        | nucleus     | binding of $CF_1$ (?)                 |
| с                                                                                           | III    | 7.9       | atpH        | chloroplast | H <sup>+</sup> translocation          |
| α                                                                                           | α      | 55.4      | atpA        | chloroplast | non catalytic nucleotide binding site |
| β                                                                                           | β      | 53.8      | atpB        | chloroplast | catalytic site                        |
| γ                                                                                           | γ      | 35.8      | <i>AtpC</i> | nucleus     | energy coupling, thiol modulation     |
| δ                                                                                           | δ      | 20.4      | AtpD        | nucleus     | binding to $CF_0$ anchor              |
| 3                                                                                           | 3      | 14.7      | atpE        | chloroplast | activation / deactivation             |
| γ*                                                                                          | γ      | 35,7      | AtpC1       | nucleus     | energy coupling, thiol modulation     |
| $\gamma^*$                                                                                  | γ      | 36,1      | AtpC2       | nucleus     | energy coupling, thiol modulation     |

 Table 1.1 Nomenclature and characteristics of the subunits of the chloroplast

 ATP synthase in spinach.

In the CF<sub>1</sub> complex, the a- and  $\beta$ -subunits are arranged alternatingly as a hexamer around a central ?-subunit (Figure 1.4). The  $\alpha$ - and  $\beta$ -subunits show high homology, but the catalytic nucleotide binding sites are mainly located on the  $\beta$ -subunits (Boyer, 1999). The central stalk of the complex is composed of the  $\gamma$ - and  $\varepsilon$ -subunits, which connects a central part of CF<sub>1</sub> with a slightly peripheral part of CF<sub>0</sub>. This central stalk builds, together with 12 copies of c-subunits, the rotating portion ("rotor") (Engelbrecht and Junge, 1997). The static part ("stator") is formed by a second stalk, which is composed of the subunits b, b' and d of the CF<sub>1</sub> complex (Boettcher et al., 1998). That means that the CF<sub>0</sub> complex is connected to the CF<sub>1</sub> complex by at least two stalks building the rotor-stator machinery, the so-called tentative model (Engelbrecht and Junge, 1997).



# Figure 1.5 Model of the generation of torque in $CF_0$ driven by proton-motive force.

A ring of proteolipid molecules (composed of c-subunits) and subunit-a carry two access channels for protons from either side of the membrane (Junge et al., 1997).

Synthesis of ATP takes place in the following sequence: ion flow  $\rightarrow$  intersubunit rotation  $\rightarrow$  extrusion of spontaneously formed ATP. The ion channel is formed by the a-subunit, which contacts the ring of c-subunits and provides groups that probably participate in proton transfer through the CF<sub>0</sub> complex (ion flow) (Figure 1.5). Such proton transfer is thought to cause the ring of c-subunits to move in a step-wise fashion relative to the a-subunit (Junge et al., 1997) and so in turn causes rotation of the  $\varepsilon$ - and  $\gamma$ -subunits (intersubunit rotation) (Boyer, 1999).

The chloroplast ATP synthase is unique among chloroplast, prokaryotic and mitochondrial ATP synthases in that it is a latent enzyme. Without preceding activation its activity is zero. The activity of the chloroplast enzyme is controlled by the proton gradient between the stroma and the thylakoid lumen, by thiol modulation of the  $\gamma$  subunit and by nucleotide binding (Richter et al., 2000). As soon as the transmembrane proton gradient exceeds a critical threshold upon energization of the thylakoid membrane, the CF<sub>1</sub>CF<sub>0</sub> super-complex undergoes a conformational change. This causes the disulfide bond of the  $\gamma$ -subunit to become significantly more exposed (Ketcham et al., 1984; Nalin and McCarty, 1984) and the disulfide bridge can be reduced by thioredoxin. Thioredoxin is, in turn, reduced by ferredoxin during active photosynthetic electron transport (Ort and Oxborough, 1992; Mills, 1995). Reduction of the  $\gamma$ -subunit disulfide bridge enhances the rate of activation of the CF<sub>1</sub> complex both for ATP hydrolysis and synthesis. Cyanobacteria lack this regulatory sequence in their  $\gamma$ -subunit and thus having no thiol modulation (Figure 1.6). Therefore this disulfide group is characteristic for higher plants and green algae (Hisabori et al., 2002).

|                                                                                                                           | 190                                                                                     | 200                                                        | 210                                                                                            | 220                                                                                            | 230                                                                                            | 240                                                                                |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| S.oleracea<br>P.sativum<br>A.thariana<br>C.reinhardtii<br>Syn.sp.PCC 6803<br>Syn.sp.PCC 6716<br>Ana.sp.PCC 7120<br>F.coli | LLPLSPKGE<br>LLPLSPKGE<br>LLPLSPKGE<br>LFPLSPQG-<br>LLPLDPQG-<br>LLPLDTQG-<br>LLPLDTQG- | ICDINGKOV<br>ICDINGNOV<br>ICDINGTOV<br>LCDVDGKOV<br>L<br>L | DAAEDELFRI<br>DAAEDELFRI<br>DAAEDEFFRI<br>DAADDEIFKI<br>EAPDDEIFRI<br>EAADDEIFRI<br>EAADDEIFRI | TTKEGKLTVE<br>TTKEGKLTVE<br>TTKEGKLTVE<br>ITKGGEFAVE<br>ITRGGKFQVE<br>TTRASHLEVN<br>TTRGGQFQVE | RDMIKTETPA<br>RDVIRSKTVD<br>RETFRTPTAD<br>REKTTIETEA<br>REKVEAPVES<br>REKVTSNLPA<br>ROTVTSOARF | FSPILEFE<br>FSPILQFE<br>LDPSLIFE<br>FPQDMIFE<br>LPPDMIFE<br>PLPRDSIFE<br>USSWDVIVE |
| Bacillus PS3                                                                                                              | LLPLT                                                                                   |                                                            |                                                                                                |                                                                                                | DLAENK                                                                                         | QRTVYEFE                                                                           |

# Figure 1.6 Comparison of the amino acid sequences of the **g**subunit from different species at and around the regulatory region.

Residue numbers are those from spinach  $CF_1$ - $\gamma$  subunit. The regulatory cysteines are indicated by black shading (Hisabori et al., 2002).

# **1.6** The **d**-subunit of the ATP synthase

The role of the  $\delta$ -subunit (in chloroplasts and *E. coli*), being a subunit of the second stalk, has been extensively studied. The  $\delta$ -subunit can be cross-linked to the  $(a\beta)_3$  portion of the CF<sub>1</sub> (Lill et al., 1996). The main feature of the  $\delta$ -subunit is a six alpha-helix bundle, composed of the N-terminal domain. This domain interacts with the CF<sub>1</sub> core via the Nterminal part of the a-subunit (Wilkens et al., 1997; Rodgers et al., 1997). It was shown by Beckers et al., (1992) that the  $\delta$ -subunit crosslinks also with the b-subunit, forming a connection between the second stalk and the CF<sub>0</sub> complex. In chloroplasts and bacteria it could be shown that the  $\delta$ -subunit plays a role in modulating proton conductance through the complex (Monticello and Brusilow, 1994; Engelbrecht and Junge, 1988).

The mitochondrial counterpart of the *E. coli* and chloroplast  $\delta$ -subunit is the OSCP-subunit (Devenish et al., 2000). The  $\delta$ -subunit of spinach and the porcine OSCP-subunit are composed of approximately 85% alpha helices, with practically no beta sheets and a very low sequence homology (~23% identity). But they are indistinguishable with respect to their secondary structure indicating a high degree of structural similarity between chloroplast  $\delta$ - and mitochondrial OSCP-subunits (Engelbrecht et al., 1991). It has been shown for isolated spinach thylakoids that the removal of the  $\delta$ -subunit of CF<sub>1</sub> has no effect on its catalytic properties but does weaken the binding between CF<sub>1</sub> and CF<sub>0</sub> (Patrie and McCarty, 1984). However an *S. cerevisiae* OSCP-subunit depletion mutant exhibits a significant reduction in subunit d accumulation (which does not have a chloroplast homologue) and this subunit failed to assemble or to be associated with the CF<sub>1</sub> complex. Furthermore a disruption of the gene coding for the OSCP-subunit lead to *S. cerevisiae* strains exhibiting a high level of genetic instability (petite formation). Taken together, these results indicate that the yeast OSCP-subunit plays a role in the assembly and function of the enzyme complex (Prescott et al., 1994; Straffon et al., 1998).

A  $\delta$ -subunit deletion strain in *E. coli* shows no ATP synthase activity in membrane vesicle preparation. In the absence of the CF<sub>1</sub> complex the membranes were impermeable to protons (Stack and Cain, 1994). In membrane preparations of the deletion strain lacking CF<sub>1</sub>, the ATP synthase could be reconstituted by adding partially purified CF<sub>1</sub> from wildtype cells. Interestingly the amount of the b-subunit in the deletion strain was 3% that of the wild-type. These data indicate either that the absence of the  $\delta$ -subunit, and thus the CF<sub>1</sub> complex, renders the b-subunit subject to proteolysis or that the incorporation of the b-subunit into CF<sub>0</sub> may be facilitated by the  $\delta$ -subunit.

These analysis have shown that the  $\delta$ -subunit plays a role in the modulation of the proton conductance, and in the assembly of CF<sub>1</sub> and its association with CF<sub>0</sub>. It may also play a role in the stabilization of certain subunits of the CF<sub>1</sub> complex.

# **1.7** Mutational analysis of the ATP synthase

Several mutants in the chloroplast ATP synthase have been characterised: the  $\Delta atpA$  and the  $\Delta atpB$  deletion mutants of *C. reinhardtii* cannot grow photoautotrophically and none of the subunits of CF<sub>1</sub> and of CF<sub>0</sub> were detectable (Fiedler et al., 1997). The PSII and PSI activities were not affected and thylakoids from the deletion mutants were able to maintain a light-induced proton gradient significantly higher than wild-type thylakoids. This shows that the absence of the  $\alpha$ - or  $\beta$ -subunit leads to the loss of a functional proton channel in the deletion mutants.

Lemaire and Wollman, (1989) carried out an analysis of *C. reinhardtii* mutants defective in photophosphorylation focusing on the biogenesis of the ATP synthase. Results of this analysis are listed in Table 1.2.

| Strain | Main characteristics                                   | Putative mutation                                                                                                           |
|--------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| FUD50  | No synthesis of the $\beta$ -subunit                   | Deletion in the <i>atpB</i> gene                                                                                            |
| FUD16  | Overproduction of the $\alpha$ - and $\beta$ -subunits | Altered in chloroplast gene regulating the expression of the <i>atpA</i> and <i>atpB</i> genes                              |
| FUD17  | No synthesis of subunit $\varepsilon$                  | Altered in the <i>atpE</i> gene                                                                                             |
| FUD18  | No synthesis of subunit I (b)                          | Altered in the <i>atpF</i> gene                                                                                             |
| FUD23  | No synthesis of subunit IV (a)                         | Altered in the <i>atpI</i> gene                                                                                             |
| thm24  | No synthesis of the $\alpha$ - and $\beta$ -subunits   | Altered in nuclear gene regulating either transcription or translation of the <i>atpA</i> and <i>atpB</i> chloroplast genes |
| F54    | No synthesis of subunit $\alpha$                       | Altered in nuclear gene regulating either transcription or translation of the <i>atpA</i> gene                              |
| ac46   | No synthesis of subunit III (c) and IV (a)             | Altered in nuclear gene regulating either transcription or translation of the <i>atpH</i> and <i>atpI</i> chloroplast genes |

Table 1.2 List of *C. reinhardtii* mutants defective in photophosphorylation analysed by Lemaire and Wollman (1989).

Of the mutants listed in Table 1.2, only the FUD16 mutant showed ATP synthase activity, whereas no activity was detectable in any of the other mutants. Further analyses gave evidence for a control of the rate of synthesis of the  $\beta$ -subunit by the  $\alpha$ -subunit in the absence of ATP synthase assembly and for an interaction between  $\alpha$ - and  $\beta$ -subunits in the stroma of the chloroplast. It was proposed that the  $\beta$ -subunit protects the  $\alpha$ -subunit from proteolytic degradation. The role of several chloroplast-encoded subunits of the CF<sub>1</sub> and CF<sub>0</sub> complexes in the stabilization of the partially assembled super-complex has also suggested that: subunit IV further stabilizes the complex and is required for ATP synthase activity; subunit III plays a major role in the formation of the  $CF_0$  complex and is required for membrane binding of the  $CF_1$  complex and subunit I is responsible for binding of  $\alpha$ and  $\beta$ -subunits. These results show that the assembly of the ATP synthase super-complex is dependent on the intricate cooperation of many factors. Further analyses of the mutant ac46 (lacking the *atpH* transcript; Table 1.2) revealed an increased sensitivity to light (Majeran et al., 2001). Exposure of ac46 to moderate light intensities, for a few minutes, leads to an inhibition of the electron transfer downstream of the primary quinone acceptor of PSII, accompanied by a thylakoid swelling. Longer exposure leads to a progressive loss of PSII core and the thylakoids deflate. The block in the electron transport is likely to result from the light induced acidification of the lumen. This acidification is caused by the release of protons, coupled to photosynthetic electron transfer, that cannot be translocated back to the stroma in the absence of the ATP synthase. Taken together, the analysed chloroplast ATP synthase mutants demonstrate that the ATP synthase assembly is dependent on the presence of particular subunits and a lack of ATP synthase activity leads to a lack of photoautotrophy and an increased transthylakoid pH-gradient.

In summary, it has been shown by mutational analysis that the absence or overproduction (Lemaire and Wollman; 1989) of one or more of the proteins of the ATP synthase supercomplex may lead to a variety of phenotypes: from a mild phenotype where the ATP synthase is functional and the plants appear normal, to photosynthetically incompetent phenotypes with no functional ATP synthase activity and a high transthylakoid pHgradient. These different phenotypes are thought to be caused by mutation-induced alteration of transcription, translation, complex stability and/or function. However, although many such mutants have been studied, to date no stable null allele for the  $\delta$ subunit of the ATP synthase of flowering plants has been reported.

# **1.8** Chlorophyll fluorescence, photochemical and non-photochemical quenching and the role of the xanthophyll cycle

Chlorophyll is the main antenna pigment, funnelling the absorbed light energy into the reaction centres. By the absorption of light, electrons of the chlorophyll molecule become excited. The de-excitation of the electrons can take place by three different mechanisms (Sauer, 1975) as depicted in Figure 1.7: dissipation into heat, photochemistry or reemission as fluorescence, which comes mainly from PSII.



Figure 1.7 Mechanisms for de-excitation of chlorophyll (Chl) molecules.

Dissipation of excitation energy can occur by an increased molecular vibration of the chlorophyll molecule (resulting in heat) or by the transfer of the energy to a chemical acceptor (photochemistry), which is the central event in photosynthesis. Under normal conditions, fluorescence emission can be regarded as being the only process competing with photochemistry. Therefore, there is a direct relationship between photochemistry and fluorescence: the higher the fluorescence yield, the lower the yield of photochemistry. As a result, chlorophyll fluorescence can be used as a tool to determine both the maximal and the effective efficiency of photon usage in photochemistry (Clayton, 1980). For quantifying chlorophyll fluorescence the Pulse Amplitude Modulation (PAM) fluorometer system has been developed (Schreiber et al., 1986). This system can be used to measure the parameters summarized in Figure 1.8. The minimal fluorescence of dark-adapted plants  $(F_0)$  is measured by illuminating the leaf with a light intensity, which is low enough that is does not drive photosynthesis. The maximal fluorescence (F<sub>M</sub>) is determined after illumination with a light saturating pulse (Krause and Weis, 1991). This saturating light pulse is so short that it does not allow photosynthetic electron transport (photochemical quenching) or heat dissipation (non-photochemical quenching) and hence the fluorescence is maximal. Therefore the ratio  $F_V/F_M = (F_M - F_0)/F_M$  is called the maximal fluorescence yield of PSII and indicates the maximal fraction of absorbed photons, that can theoretically be used to drive photosynthesis.



Figure 1.8 Fluorescence parameters measured by the Pulse Amplitude Modulation fluorometer system (PAM).

Meas. light, measuring light;  $F_0$ , minimal fluorescence of a dark-adapted leaf;  $F_M$ , maximal fluorescence of a dark-adapted leaf;  $F_V$ , variable fluorescence; sat. pulse, saturating light pulse;  $F_T$ , transient fluorescence of a light-adapted leaf;  $F_M$ ', maximal fluorescence of a light-adapted leaf.

These parameters can also be measured for light-adapted plants.  $F_0$  corresponds to  $F_t$  for light-adapted plants and  $F_M$  to  $F_M$ '. The effective fluorescence yield of PSII ( $\Phi_{II}$ ) is given by  $F_{II} = (F_M'-F_T)/F_M'$  (Genty et al., 1989). This parameter indicates the fraction of photons that is actually used to drive photosynthesis under illumination and is an indicator of the efficiency of photosynthesis in the plant. In addition,  $\Phi_{II}$  and the fluorescence quenching parameters: qP (photochemical quenching) =  $(F_M'-F_S)/(F_M'-F_0')$  and NPQ (non-photochemical quenching) =  $1 - (F_M'-F_0')/(F_M-F_0)$  (Schreiber et al., 1986) were recorded.

The dissipation of excess absorbed light energy is believed to play a central role in regulating light harvesting and electron transport and appears to be critical for the prevention of photo-oxidative damage to the photosynthetic apparatus. The dissipation of excess absorbed light energy proceeds through non-photochemical quenching (NPQ). The major component of the NPQ is the pH-dependent energy dissipation (qE). But decreases in PSII fluorescence due to state transition (qT) and photoinhibition (qI) also contribute to the measured NPQ (Krause and Weis, 1991).

Xanthophyll pigments in the LHCs appear to have a critical role in NPQ as the extent of qE in plants strongly correlates with the levels of zeaxanthin and antheraxanthin (Demmig-

Adams et al., 1990). Also the  $\Delta pH$  is absolutely necessary for the NPQ (Noctor et al., 1993) as in excessive light, when the  $\Delta pH$  reaches a critical threshold, violaxanthin is converted to zeaxanthin by the violaxanthin deepoxidase (Figure 1.9).



Figure 1.9 The xanthophyll cycle in the **b**-carotene branch of the carotenoid biosynthetic pathway in plants.

These non-photochemical quenching processes occur in almost all photosynthetic eukaryotes and they contribute to the regulation and protection of photosynthesis in environments in which light energy absorption exceeds the capacity for light utilization.

# **1.9** Aim of the thesis

The aim of this thesis was to analyse the two Arabidopsis mutants *petc-2* and *atpd-1* in terms of the assembly of the corresponding complexes (cyt  $b_6/f$  and ATP synthase, respectively). Furthermore, the overall effects of the mutations on the plants with specific attention to the photosynthetic parameters were analysed. Effects on photosynthesis, the thylakoid pigments and protein composition were characterised and interpreted. In addition, effects of the two photosynthetic lesion on nuclear gene expression were quantified and discussed in terms of plastid-to-nucleus signalling.

# 2 MATERIAL & METHODS

# 2.1 Chemicals and enzymes

The chemicals and kits used in this thesis were purchased from the following companies: Acros Organics (New Jersey, USA), Amersham International plc (Buckinghamshire, England), Baker (Deventer, Netherlands), BIOMOL (Hamburg, Germany), Biozym (Hess. Oldendorf, Germany), Difco-Laboratories (Detroit, USA), Fluka AG (Basel, Switzerland), Invitrogen (Karlsruhe, Germany), Merck (Darmstadt, Germany), Millipore (Eschborn, Germany), Pharmacia (Freiburg, Germany), Promega (Mannheim, Germany), Riedel-de-Haen (Seelze, Germany), Roth (Karlsruhe, Germany), Serva (Heidelberg, Germany), Sigma (St. Louis, USA), Qiagen (Hilden, Germany).

Enzymes were purchased from the following companies: Roche (Mannheim, Germany), Invitrogen (Karlsruhe, Germany) and New England Biolabs (Frankfurt, Germany).

## 2.2 Strains

E. coli: JM202 (Promega; Invitrogen, Karlsruhe, Germany).

*Agrobacterium tumefaciens*: Arabidopsis plants were transformed with the *A. tumefaciens* strain GV3101. This strain has a C58C1 chromosomal background with a rifampicin resistance mutation marker and carries the Ti helper plasmid pMP90RK, which encodes virulence functions for the T-DNA transfer from *A. tumefaciens* to the plant cells (Koncz et al., 1990).

# 2.3 Media and cultivation

#### 2.3.1 E. coli: Luria Broth (LB) Medium

*E. coli* cells were grown o/n at 37°C in LB medium [10 g/l casein-hydrolysate (Peptone No. 140, Gibco), 5 g/l yeast extract, 5 g/l NaCl] with shaking (150 rpm) for liquid cultures. LB medium was supplemented with 1.6% (w/v) agar-agar before autoclaving to produce solid LB medium. For the selection of transformants the medium was supplemented with 500  $\mu$ g/ml ampicillin (LB/amp).

#### 2.3.2 A. tumefaciens: YEB medium

YEB medium: 0.5% (w/v) beef extract, 0.1% (w/v) bacto yeast extract, 0.5% (w/v) bacto peptone, 0.5% (w/v) sucrose. For the selection of transformants 100 mg/l carbenicillin, 25 mg/l kanamycin and 100 mg/l rifampicin were added.

Solid YEB medium: YEB medium with 1.6% (w/v) agar-agar. The cells were incubated for 2-5 days at 28°C, in addition liquid cultures were shaken at 150 rpm.

#### 2.3.3 A. thaliana axenic culture: Murashige & Skoog (MS) medium

1x MS medium: 4.33 g/l Murashige & Skoog Basal Salt Mixture (Sigma, St. Louis, USA), 1 ml/l 1000x Murashige & Skoog Vitamin Solution (Sigma, St. Louis, USA), pH 5.7-5.8.

1x MS1 medium: 1x MS medium with 1% (w/v) sucrose.

1x MS2 medium: 1x MS medium with 2% (w/v) sucrose.

For making solid MS medium 1% (w/v) agar-agar was added to the medium before autoclaving.

# 2.4 Plant propagation

#### 2.4.1 On soil

Arabidopsis thaliana seeds were incubated for 1-2 days in the dark at 4°C to break the seed dormancy and then sown out in plastic trays with *Minitray* soil (Gebr. Patzer GmbH & CoKG, Sinntal-Jossa, Germany). Plants were grown in a greenhouse under long day conditions (day period of 16 h at 20°C with a photon flux density (PFD) of 80  $\mu$ mol photons m<sup>-2</sup> s<sup>-1</sup>, night period of 8 h at 15°C). Fertiliser was applied according to manufacturer's instructions with "Osmocote Plus" (15% N, 11% P<sub>2</sub>O<sub>5</sub>, 13% K<sub>2</sub>O, 2% MgO; Scotts Deutschland GmbH, Nordhorn, Germany).

#### 2.4.2 Sterile culture

Mutants that were lethal on soil were grown on MS medium supplemented with 2% sucrose. Seeds were surface sterilised with 10% (w/v) NaOCl and sown out on petri dishes containing 1x MS2 medium, 1% (w/v) agar-agar, pH 5.7-5.8. The plates were incubated for 1-2 days at  $4^{\circ}$ C in the dark and then transferred to the culture room under low light

conditions (day period of 16 h with PFD of 15  $\mu$ mol photons m<sup>-2</sup> s<sup>-1</sup> at 22°C, night period 8 h at 22°C).

Transformed plants were grown on 1x MS medium with 100 mg/l kanamycin in a culture room (day period of 16 h with PFD of 60  $\mu$ mol photons m<sup>-2</sup> s<sup>-1</sup> at 22°C, night period 8 h at 22°C) for 3-4 weeks and then transferred to soil and grown in the greenhouse as described in section 5.1.

| Primer name      | Sequence (5'-3')                  |
|------------------|-----------------------------------|
| AtpD_118180_s    | CACAGATATCACACCAATCA              |
| AtpD_118720_as   | TTCTTCTCGACGGTGATTGTT             |
| AtpD_Northern_as | TCAAGTAGCTAATTGAATCTCAC           |
| AtpD_Northern_s  | ATGGCGTCTCTTCAA CAAACT            |
| Compl_AtpD_as    | ACTTGGATCCTCAAGTAGCTAATTGAATCTCAC |
| Compl_AtpD_s     | ACTTGGATCCATGGCGTCTCTTCAACAAACT   |
| DsLb             | ATCGGGATGATCCCGTTTCG              |
| DsRb             | TTCCCGTCCGATTTCGACTT              |
| EnRb             | GTCGGCTTATTTCAGTAAGAGTGTGGG       |
| petc-1_as        | TACGGTATCAACGCAGTGTG              |
| petc-1_s         | TGGAGCATCACCTGACCTGA              |
| petc-2_as        | GACCCGATTGTTTCGATTCG              |
| petc-2_s         | CAGCCCAATAAGGCCCACT               |
| petc-3_as        | ATTCATCTTCGTTGGCTTC AC            |
| petc-3_s         | ACGCCATGCACATTTCATCAT             |
| PetC_Northern_as | ACCACCATGGAGCATCACCAGTC           |
| PetC_Northern_s  | CGTCGAGTATTCCAGCAGAC              |
| pROK2            | GCGTGGACCGCTTGCTGCAACT            |
| SKI015_lb        | CATGTAGATTTCCCG GACATG            |
| SKI015_rb3       | AGACGTTCCAACCACGTCTT              |

# 2.5 Oligonucleotide sequences

# 2.6 Gel electrophoresis

# 2.6.1 Agarose gel electrophoresis

Agarose gels for the electrophoresis of DNA or RNA contained 1-2% (w/v) agarose melted in 1x TAE (40 mM Tris-acetate, 20 mM sodium acetate, 2 mM EDTA. pH 8.2) buffer. Electrophoresis was performed in 1x TAE buffer at 80 V. After electrophoresis the gel was incubated for 15 minutes in  $0.5\mu$ g/ml ethidium bromide before being photographed.

#### 2.6.2 Polyacrylamide gel electrophoresis

Footprint analysis was performed on 6% polyacrylamide gels. Electrophoresis was performed in 1x TBE (90 mM Tris-HCl, pH 8.3, 90 mM sodium borate, 2 mM EDTA) buffer at 62 V for 4-6 hours. For visualizing the DNA fragments the gel was silver stained according to Sanguinetti et al., (1994)

# 2.7 Enzymatic reactions

#### 2.7.1 PCR

PCR reactions were performed according to the supplier's instructions with the PCR Expand Kit (Roche, Mannheim, Germany) or by using the Taq DNA polymerase (Roche, Mannheim, Germany). Standard conditions were:  $93^{\circ}$ C for 3 minutes followed by 35-40 cycles of:  $95^{\circ}$ C for 15 s;  $55^{\circ}$ C for 45 s;  $72^{\circ}$ C for 90 s. This was followed by  $72^{\circ}$ C for 5 minutes. Samples were used immediately or stored at  $-20^{\circ}$ C.

#### 2.7.2 Ligation of DNA fragments

For the ligation of DNA fragments a ratio of insert to vector of 3:1 was used. To the ligation assay 1U of T4-ligase (Roche, Mannheim, Germany) and  $^{1}/_{10}$  of the 10x ligation buffer were added and then incubated at 16°C o/n. 1-5 µl of the ligation assay were used for transformation (see material and methods, section 2.12).

#### 2.7.3 Restriction analysis

Restriction of DNA was performed according to manufacturer's instructions and in the recommended buffer at the appropriate temperature for 1-2 h. For each  $\mu$ g of DNA 1-10U of restriction enzyme were used.

#### 2.7.4 Radioactive labelling of DNA

Labelling of probes for Northern analysis was performed as described in Sambrook et al., (1989).

#### 2.7.5 cDNA single strand synthesis

cDNA single strand synthesis was performed with  $oligo(dT)_{12-18}$  according to the "Superscript<sup>TM</sup> First-Strand Synthesis System for RT-PCR" (Invitrogen, Karlsruhe, Germany).

# 2.8 Sequence analyses

Sequence data were analysed with the Wisconsin Package Version 10.0, Genetics Computer Group, Madison, Wisconsin (GCG) (Devereux et al., 1984) and amino acid sequences were aligned using the CLUSTAL-W program, (version 1.7) (Thompson et al., 1994). Chloroplast import sequence predictions were carried out using the TargetP program (version 1.0; <u>http://www.cbs.dtu.dk/services/TargetP/#submission</u>; Emanuelsson et al., 2000). For the protein and nucleotide sequence comparison, the databases at the NCBI (<u>http://www.ncbi.nlm.nih.gov</u>) and MIPS (<u>http://mips.gsf.de</u>) were employed.

# 2.9 Plasmids

#### 2.9.1 pGEM-Teasy

PCR products were cloned in the pGEM-Teasy vector according to manufacturer's instructions (Promega, Mannheim, Germany).

#### 2.9.2 pPVC702

pPVC702 was the binary expression vector used for complementation analysis with cDNA. The vector contains the cauliflower mosaic virus 35S promotor, a  $\beta$ -lactamase gene (amp<sup>R</sup>) und a carbenicillin resistance gene for the selection in *E. coli* and *A. tumefaciens* and a kanamycin resistance gene for the selection in Arabidopsis (Koncz et al., 1990).

# 2.9.3 pPVC702-AtpD

The cDNA of the *AtpD* gene was amplified with the primers Compl\_AtpD\_s and Compl\_AtpD\_as. The primers each contain an additional 5' sequence containing a *BamHI* 

site. The PCR product was subsequently digested with *BamHI* and then cloned into the *BamHI* linearised vector pPVC702.

# 2.10 Nucleic acid preparation

# 2.10.1 DNA preparation

#### A. thaliana

The isolation of DNA from A. thaliana was performed according to Liu et al., (1995).

# E. coli

The isolation of plasmid DNA from *E. coli* for restriction analysis was performed according to Sambrook et al. (1989). For sequencing reactions the preparation was performed with the Plasmid Mini Kit from Qiagen (Hilden, Germany) according to the manufacturer's instructions.

Isolation of DNA-fragments from agarose gels

The isolation of DNA fragments from agarose gels was performed with the PCR-Purification Kit (Roche, Mannheim, Germany) according to the supplied protocol.

# 2.10.2 RNA preparation

RNA for Northern analysis or microarray analysis was isolated according to Chomczynski and Sacchi, (1987). RNA for cDNA synthesis was isolated with the "Total RNA Isolation Reagent" from BIOMOL (Hamburg, Germany) according to the supplied protocol.

# 2.11 Northern analysis

Northern analyses were performed with 30  $\mu$ g of total RNA under stringent conditions according to Sambrook et al., (1989). For the hybridisation, probes complementary to the gene of interest were used.

# 2.12 Transformation of *E. coli*

Chemically competent *E. coli* cells, strain JM202, were purchased from Promega (Mannheim, Germany) and transformed according to the protocol of Hanahan, (1983).

# 2.13 Complementation analysis of Arabidopsis plants via *A*. *tumefaciens* transformation

#### 2.13.1 Transformation of Arabidopsis using A. tumefaciens

Heterozygous Arabidopsis plants were transformed as described by Clough and Bent, (1998). Plants for transformation were grown under short day conditions and then in order to induce flowering, transferred to long day conditions. Flowering plants were then dipped in an *A. tumefaciens* suspension containing 5% (w/v) sucrose and 0.0005 % Silwet L-77 as surfactant. After dipping, plants were sealed in plastic bags for 2 days and transferred to the greenhouse. The plastic bags were removed after two days and plants were kept in the greenhouse until seeds were harvested.

#### 2.13.2 Selection of transformed plants

Seeds of transformed plants were surface sterilized in 10% (w/v) NaOCl and sown out on 1x MS1 medium containing 50 mg/ml kanamycin. Transformants were transferred after 3-4 weeks to soil to generate seeds.

# 2.14 Thylakoid preparation from Arabidopsis leaves

#### 2.14.1 For 2-D gel electrophoresis and Western analysis

Leaves of 4-6 weeks old plants were harvested at 4°C and the isolation of the thylakoids was performed as described by Bassi et al., (1985). The amount of thylakoid membranes in the preparation was calculated according to Porra et al., (1989).

#### 2.14.2 For electron transport measurements

Leaves from 4-6 weeks old plants were homogenised in a medium containing 330 mM sorbitol; 20 mM Tricine/NaOH, pH 7.6; 5 mM EGTA; 5 mM NaCO<sub>3</sub>; 0.1% (w/v) BSA and 330 mg/l ascorbate, centrifuged for 5 minutes at 3000 rpm and the pellet was resuspended in 300 mM sorbitol; 20 mM HEPES/KOH, pH 7.6; 5 mM MgCl<sub>2</sub> and 2.5 mM EDTA according to Jahns et al., (2002).

# 2.15 Western blot analysis

Thylakoid membranes corresponding to 5  $\mu$ g of chlorophyll were separated on a denaturing SDS-PAGE gradient gel (10-16%) as described by Schagger and von Jagow, (1987).

For Western blot analysis the proteins were transferred to Immobilon-P membrane (Millipore, Eschborn, Germany) by wet-blot in 10% methanol containing 15 g/l Tris and 70 g/l glycine at 300 V for 16 hours. The membranes were blocked with 5% (w/v) milk powder in 1x TTBS buffer (10 mM Tris, pH 8.0; 150 mM NaCl; 1 ml/l Tween 20) for 16 hours at 4°C, before being incubated with antibodies specific for individual subunits of PSII (PSII-D1), PSI (PSI-F), cyt  $b_6/f$  (Cyt  $b_6$ , Rieske), ATPase ( $\alpha$ -/ $\beta$ -,  $\delta$ -, a- and b-subunits) in blocking solution. After the incubation with the 1<sup>st</sup> antibody the membranes were washed three times for 10 minutes at room temperature with 1x TTBS buffer, before incubating with the appropriate 2<sup>nd</sup> antibody, which had horseradish peroxidase attached. Signals were detected using the Enhanced Chemiluminescence Western-Blotting Kit (Amersham, Buckinghamshire, England).

# 2.16 2-D gel electrophoresis

In the first dimension, thylakoid membranes corresponding to 30  $\mu$ g of total chlorophyll were fractionated on a native polyacrylamide gradient gel (4-12% acrylamide) as described by Peter and Thornber, (1991) with the modification of using lithium dodecyl sulphate (LDS) instead of lauryl  $\beta$ -D imminopropionidate in the upper electrophoresis buffer. Lanes from the first dimension were cut, denatured (by incubating in 2% (w/v) SDS, 6 M urea for 45 minutes at RT) and overlayered on the second dimension which was run according to

the method described by Schagger and von Jagow, (1987). The 2<sup>nd</sup> dimension gel was stained with Comassie Brillant Blue R 250 as described by Sambrook et al., (1989). Densitometric analyses of protein gels after staining were performed by using the Lumi Analyst 3.0 (Roche, Mannheim, Germany).

# 2.17 Pigment analysis

For pigment extraction, leaves were harvested in liquid nitrogen, ground using metal beads and pigments were extracted with 80% (v/v) acetone. Pigment analyses were performed according to Farber et al., (1997) by reverse phase HPLC.

#### 2.18 Chlorophyll fluorescence measurements and redox state of P700

In vivo Chl fluorescence of single leaves was excited and detected by a pulse amplitude modulated fluorometer (PAM 101/103, Walz, Effeltrich, Germany) as described by Meurer et al., (1996). 800 ms white light pulses of 6000 µmol m<sup>-2</sup> s<sup>-1</sup> were used to determine the maximum fluorescence (F<sub>M</sub>) and the ratio (F<sub>M</sub>-F<sub>0</sub>)/F<sub>M</sub> = F<sub>V</sub>/F<sub>M</sub>. Actinic light of 12 µmol m<sup>-2</sup> s<sup>-1</sup> intensity was used to drive photosynthesis. In addition, fluorescence quenching parameters: qP (photochemical quenching) = (F<sub>M</sub>'-F<sub>S</sub>)/(F<sub>M</sub>'-F<sub>0</sub>'), NPQ (non-photochemical quenching) = 1 - (F<sub>M</sub>'-F<sub>0</sub>')/(F<sub>M</sub>-F<sub>0</sub>) (Schreiber et al., 1986) and  $\Phi_{II}$  were recorded.

For measuring qE (Thiele et al., 1997), leaves were stored in low light and placed in the thermostated (25°C) chamber of an electrode setup (Hansatech, Kings Lynn, Norfolk, UK) connected with a PAM 101 (WALZ, Effeltrich, Germany). A moist air stream of 20 1 h<sup>-1</sup> was passed over the leaf section. After 5 minutes dark adaptation, the initial fluorescence yield emitted during a saturating light pulse (1s),  $F_M$ , were determined. The leaf was then illuminated with continuous actinic red light ( $\lambda_{max}$ , 660 nm) of 12, 130, 450 and 900 µmol m<sup>-2</sup> s<sup>-1</sup> provided by photodiodes (Hansatech, Kings Lynn, Norfolk, UK). The decline in  $F_M$  was monitored by means of further saturating pulses applied every 100 seconds. After 20 minutes in actinic light, a stationary (quenched) level of maximum fluorescence,  $F_{MS}$ , was reached; the actinic light was switched off and weak far-red light was applied to record the initial fluorescence were followed in the dark until a new steady-state was reached (after 10 minutes darkness) and the fluorescence parameters  $F_0$ ' and  $F_M$ ' were recorded. The

energy-dependent quenching related to the transthylakoid proton gradient was calculated using the formula:  $qE = (F_M'/F_{MS} - 1)F_M/F_M' = F_M/F_{MS} - F_M/F_M'$ .

The redox-state of P700 under continuous white actinic light was calculated from measurements of changes in P700 absorption at 820 nm with the PAM 101 fluorometer connected to a dual-wavelength emitter-detector unit ED-P700/DW (Walz, Effeltrich, Germany) according to Barth et al., (2001).

For measuring fluorescence induction kinetics, plants were dark adapted o/n. The actinic beam (green light-emitting diodes HLMP-CM15) was concentrated on ~20 mm<sup>2</sup> of leaf fragment, and the fluorescence was detected from the opposite face of the sample. The time resolution of this method was 30  $\mu$ s. The saturating red light pulse (max. 680 nm, 400 ms) fully reduced Q<sub>A</sub> (Joliot and Joliot, 2002). The kinetics of the fluorescence induction curve was monitored within the first 20 s.

# 2.19 Membrane potential measurements

Spectroscopic measurements were performed with an apparatus similar to that described in Joliot et al., (1980). The variation of the delocalized membrane potential was measured by the electrochromic shift of membrane pigments as the difference in absorption (518-548 nm), which was assumed to be a reliable indicator of the membrane potential changes (Joliot and Joliot, 2001). For the measurements plants were kept in the dark o/n. Membrane potential changes were induced by a saturating light pulse (~690 nm) of 15ms (wild-type) or 25ms (*atpd-1* mutant). The membrane potential reached at the end of the pulse is ~equal for WT and mutant, and has been normalized to 10000 (at time=0 of the analyzed dark period following the illumination). The membrane potential is analyzed using 520 nm short light pulses, weak enough to have no actinic effect.

# **2.20** Electron transport measurements

Electron transport rates under illumination with saturating actinic light (150  $\mu$ mol photons m<sup>-2</sup> s<sup>-1</sup>) were derived from measurements of photosynthetic oxygen evolution using a Clark-type oxygen electrode (Hansatech Instruments Ltd., Laborbedarf Helmut Sauer, Reutlingen, Germany) at 20°C. Thylakoid concentrations equivalent to 10  $\mu$ g of

chlorophyll ml<sup>-1</sup> were used for all measurements. Linear electron transport (H<sub>2</sub>O  $\rightarrow$  K<sub>3</sub>[Fe(CN)<sub>6</sub>]) was measured in a medium containing 330 mM sorbitol, 40 mM HEPES/NaOH (pH 7.6), 10 mM NaCl, 5 mM MgCl<sub>2</sub>, 2 µM gramicidin D and 5 mM NH<sub>4</sub>Cl; using 0.5 mM K<sub>3</sub>[Fe(CN)<sub>6</sub>] as terminal electron acceptor. PSII activity (H<sub>2</sub>O  $\rightarrow$  1,4-benzoquinone) was measured in the same medium using 1 mM 1,4-benzoquinone instead of K<sub>3</sub>[Fe(CN)<sub>6</sub>] as terminal electron acceptor. PSI activity was measured in 40 mM Tricine/NaOH (pH 8.0), 60 mM KCl, 5 mM MgCl<sub>2</sub>, 1 mM NaN<sub>3</sub>, 1 mM sodium-ascorbate, 100U superoxide dismutase, 1 µM 3-(3-4-di-chlorophenyl)-1,1-dimethylurea (DCMU); using 0.5 mM 2,3,5,6-tetramethyl-p-phenylene-diamine (TMPD) as electron donor and 25 µM methyl viologen as electron acceptor.

# 2.21 Expression profiling

#### 2.21.1 Probe synthesis

A mixture of oligonucleotides (2.5 pmol each) matching the spotted genes in antisense orientation ('antisense primer mix') and 25–30 µg total RNA were denatured for 10 minutes at 70°C and then annealed by cooling to room temperature. 6 µl of 5x Superscript buffer (Invitrogen, Karlsruhe, Germany), 3 µl of 0.1 M DTT, 3 µl of 10 mM dNTP-mix (except for 50 µM dCTP), and 3 µl of  $^{33}$ PαdCTP ( $3.7x10^5$  Bq/µl) were added. After transfer of the mixture to 43°C, 1 µl of Superscript Reverse Transcriptase (200 U/µl, Invitrogen, Karlsruhe, Germany) was added and reverse transcription was performed for 1 hours. RNA was hydrolysed by adding 1 µl of 1% (w/v) SDS, 1 µl of 0.5 M EDTA, and 3 µl of 3 M NaOH, and incubating at 65°C for 30 minutes, followed by 15 minutes at room temperature. The mixture was neutralised by adding 1 µl of 1 M Tris-HCl (pH 5.3) and 3 µl of 2 M HCl. cDNAs were precipitated after addition of 5 µl of 3 M sodium acetate (pH 5.3), 5 µl of tRNA (10 mg/µl) and 60 µl of isopropanol at -20°C for 30 minutes. After centrifugation the labelled cDNA was dried and resuspended in 100 µl of sterile water.

#### 2.21.2 Hybridisation procedure

The 3292-GST array, representing genes known or predicted to code for proteins featuring a chloroplast transit peptide (cTP), has been described previously (Kurth et al., 2002; Richly et al., 2002). Filters were pre-hybridised for at least 30 minutes at 65°C in 30 ml of

Church buffer (0.5 M Na<sub>2</sub>HPO<sub>4</sub>, pH 7.2; 7% (w/v) SDS; 1 mM EDTA) including 300 µl of denatured salmon sperm DNA (10 mg/ml). Hybridisation was carried out at 65°C o/n after adding the labelled cDNA probe. Filters were washed at 65°C successively for 15 minutes and 30 minutes in 2x SSPE (300 mM NaCl, 20 mM NaH<sub>2</sub>PO<sub>4</sub>, 2 mM EDTA, pH 7.4), 0.1% (w/v) SDS, followed by a final washing step at room temperature in 50 mM NaH<sub>2</sub>PO<sub>4</sub> (pH 7.0), 1.2 mM EDTA, 0.2% (w/v) SDS for 30 minutes. Filters were finally wrapped in plastic foil and exposed to phosphoimager plates (Molecular Dynamics). At least three experiments with different filters and independent cDNA probes derived from plant material corresponding to pools of at least 50 individuals were performed for each condition or genotype, thus minimising variation between individual plants, filters or probes.

#### 2.21.3 Data analysis

Images were read using the Storm phosphoimager (Molecular Dynamics, Sunnyvale, CA, USA). Hybridization images were imported into the *ArrayVision* program (version 6; Imaging Research Inc., Ontario, Canada) and statistically evaluated using the *ArrayStat* program (version 1.0 Rev. 2.0; Imaging Research Inc., Ontario, Canada). Normalization of data was performed with reference to all spots on the array as described by Kurth et al., (2002) and Richly et al., (2002). Clustering of expression ratios was performed using *Genesis* Software (version 1.1.3) (Sturn et al., 2002).

## **3 RESULTS**

# 3.1 Characterisation of the *petc-2* mutant

#### 3.1.1 Identification of the Rieske protein mutant lines

The mutant *petc-1* (*PetC::En1*, ecotype Col-0) was identified by a reverse genetic screening approach as described (Wisman et al., 1998). This line has an *En* transposon inserted in the fourth intron of the *PetC* gene - coding for the Rieske protein - at position +1233 bp relative to the ATG codon. The insertion of the *En* transposon caused a duplication of three bps (Figure 3.1).



#### Figure 3.1 Mutations of the *PetC* locus.

In *petc-1*, the *PetC* gene (At4g03180) is disrupted by an insertion of the autonomous *En* transposon (Wisman et al., 1998). Progenies of *petc-1* resulted in three independent somatic revertants, exhibiting a wild-type phenotype. The sequences of the empty donor sites of DNA from three independent somatically revertant leaves (*REV1* to 3) were obtained by PCR; upper case letters indicate plant DNA sequences flanking the *En*, deletions are indicated by dots, insertion footprints left at each locus after *En* transposition are indicated by bold lowercase letters, and bold uppercase letters indicate the target site in the wild-type. In the other two mutant alleles, a copy of the non-autonomous *Ds* transposon (*petc-2*) and the *ROK2* T-DNA (*petc-3*), respectively, are inserted 5' of the start codon of the *PetC* gene. The *En*, *Ds* and T-DNA insertions are not drawn to scale.
Two additional independent mutations of the *PetC* locus have been identified: the second *petc* allele in the course of a phenotypic screen of *Ds* transposon mutagenized *Arabidopsis* thaliana lines (ecotype Ler). This is a seedling-lethal line with an insertion in the PetC locus and was described by Budziszewski et al., (2001). This line, designated petc-2, contains an insertion of the non-autonomous Ds element 98 bp 5' of the start codon ATG of the *PetC* gene (Figure 3.1). This insertion caused a duplication of eight bps. The third petc allele was identified when the insertion flanking database, SIGnAL (http://signal.salk.edu/cgi-bin/tdnaexpress) was searched for insertions at the PetC locus. This line (ecotype Col-0) had a copy of the 5.2 kb pROK2 T-DNA inserted 160 bp 5' of the start codon ATG of the *PetC* gene (Figure 3.1) and was designated *petc-3*.

#### 3.1.2 Phenotype of the *petc* mutant lines

All three *petc* mutants were seedling-lethal when grown on soil. In addition, they exhibit a yellowish pigmentation of the cotyledons. All three *petc* mutant alleles could, however, be propagated in sterile culture on 1x MS medium supplemented with 2% sucrose. However, heterotrophically-grown *petc* plants had light-green leaf coloration and exhibited a substantially reduced growth rate compared to wild-type plants (Figure 3.2a). The pigment deficiency was less severe under low light conditions (15  $\mu$ mol photons s<sup>-1</sup> m<sup>-2</sup>) than under higher light conditions (70  $\mu$ mol photons s<sup>-1</sup> m<sup>-2</sup>) (Figure 3.2b) indicating that the mutants are photosensitive.



## Figure 3.2 Phenotypes of wild-type and *petc* plants grown on 1x MS medium supplemented with 2% sucrose.

(a) Wild-type (WT) and *petc-1*, -2 and -3 plants, respectively.

(b) Wild-type (WT) and *petc-2* mutant plants grown under low light conditions (15  $\mu$ mol photons s<sup>-1</sup> m<sup>-2</sup>) and under higher light conditions (70  $\mu$ mol photons s<sup>-1</sup> m<sup>-2</sup>).

The *En*-tagged *petc-1* mutant displayed somatic wild-type reversions due to the excision of the *En* transposon (Figure 3.1). In each such wild-type sector, empty donor sites could be amplified by PCR and sequenced (Figure 3.1), confirming the tagging of the *PetC* locus. Upon illumination with UV-light, the *petc* mutants showed a high-chlorophyll-fluorescence (hcf) phenotype (Figure 3.3), indicating that a block in the photosynthetic electron flow exists in the absence of the Rieske protein. Crosses between heterozygous *petc-1*, *-2*, and *-3* plants resulted in progenies that segregated with a 1 to 3 ratio for the mutant phenotype, demonstrating that the three mutations are allelic (data not shown). Of the three *petc* alleles, *petc-2* was chosen for all further analyses.



Figure 3.3 Plants grown on 1x MS medium supplemented with 2% sucrose were illuminated with white light (a) or UV light (B-100AP/R, UVP Inc., CA, USA) (b).

### 3.1.3 Expression analysis of the *PetC* gene

Northern analysis of *petc-2* plants using a *PetC* specific probe revealed that the *Ds* insertion drastically destabilises the *PetC* transcript. As a loading control the blot was reprobed with a cDNA fragment derived from the *ACTIN1* gene (Figure 3.4a). Western analyses of thylakoid membranes demonstrated the absence of detectable amounts of the Rieske protein in the *petc-2* mutants (Figure 3.4b).



Figure 3.4 mRNA and protein expression of the PetC gene.

(a) Northern analysis of the *PetC* transcript in wild-type (WT) and *petc-2* plants. Thirty-microgram samples of total RNA were analysed using a fragment of the *PetC* transcript as a probe. As a loading control the blot was re-probed with a cDNA fragment derived from the *ACTIN1* gene.

(b) Western analysis of thylakoid membranes equivalent to 5  $\mu$ g chlorophyll of wildtype (WT) and *petc-2* plants. Decreasing amounts of wild-type thylakoid membranes (3.75  $\mu$ g; 2.5  $\mu$ g; 1.25  $\mu$ g chlorophyll) were loaded in the lanes marked 0.75x, 0.5x and 0.25x WT and fractionated by denaturing SDS-PAGE. Filters were probed with an antibody specific for the Rieske protein.

### 3.1.4 The pigment composition in the *petc-2* mutants

Pigments of wild-type and *petc-2* plants were extracted and analysed by HPLC analysis (Table 3.1). Absolute levels of pigments are provided (relative to the total amount of chlorophyll) and relative levels indicate the alteration of pigment concentrations based on the fresh weight of the plants.

### Table 3.1 Abundance of leaf pigments in wild-type and petc-2 plants.

The pigment content of WT (n = 5) and mutant (n = 5) plants was determined by HPLC. Total chlorophyll content is given in nmol Chl (a + b) g<sup>-1</sup> fresh weight. The carotenoid content is expressed as mmol per mol Chl (a + b). Mean values (+/- SD) are shown. Nx, neoxanthin;  $\beta$ -Car,  $\beta$ -carotene; VAZ, sum of xanthophyll cycle pigments (violaxanthin + antheraxanthin + zeaxanthin); DEPS, de-epoxidation state = (violaxanthin + 0.5 antheraxanthin ) / (violaxanthin + antheraxanthin + zeaxanthin).

|                      | Absolute a      | Relative      |            |
|----------------------|-----------------|---------------|------------|
|                      | (mmol per mo    | level in      |            |
| Pigment              | WT petc-2       |               | petc-2 (%) |
| Chl <i>a/b</i> ratio | $3.04\pm0.03$   | $2.72\pm0.07$ | -          |
| Chl $a + b$          | $1900 \pm 33$   | $845 \pm 24$  | 44         |
| Lutein               | $123 \pm 3$     | $164 \pm 7$   | 59         |
| Nx                   | $36 \pm 2$      | $44 \pm 3$    | 54         |
| VAZ                  | $27 \pm 1$      | $65 \pm 5$    | 106        |
| β-Car                | $70 \pm 2$      | $59 \pm 3$    | 37         |
| DEPS                 | $0.03 \pm 0.01$ | $0.08\pm0.01$ | -          |

As indicated by the pigment deficient phenotype the total chlorophyll concentration (Chl a + b) is decreased in the *petc-2* mutant to 44% of that of the wild-type (Table 3.1). Also the Chl a/b ratio is decreased in the mutant (WT: 3.04 ± 0.03; *petc-2*: 2.72 ± 0.07) which indicates a change in the photosystem composition and/or stoichiometry in the mutant. The mutant also shows a significant increase in the xanthophyll content and a reduction in  $\beta$ -carotene level in comparison to the wild-type. This implies the accumulation of antenna proteins relative to reaction centre core proteins. The disproportionate increase in the size of the xanthophyll cycle pigments (VAZ-pool) can be interpreted as a consequence of the higher photosensitivity in the mutant.



### 3.1.5 The composition of the photosynthetic apparatus in the *petc-2* plants

Figure 3.5 Protein composition of the thylakoid membranes in wild-type and *petc-2* mutant plants.

(a) Thylakoid membranes equivalent to 30  $\mu$ g of chlorophyll from wild-type (WT) and *petc-2* mutant plants were fractionated firstly by electrophoresis on a non-denaturing LDS-PA gel and secondly on a denaturing SDS-PA gel (Schagger and von Jagow, 1987). Positions of wild-type thylakoid proteins which were previously identified by Western analyses with appropriate antibodies (Pesaresi et al., 2001) are indicated by numbers to the right of the corresponding spots: 1,  $\alpha$ - and  $\beta$ -subunits of the ATPase complex; 2, D1-D2 dimers; 3, CP47; 4, CP43; 5, oxygen-evolving complex (OEC); 6, LHCII monomer; 7, LHCII trimer; 8, PSI-D; 9, PSI-F; 10, PSI-C; 11, PSI-H.

(b) Samples of thylakoid membranes equivalent to 5  $\mu$ g chlorophyll of WT and *petc-2* were fractionated by 1–D SDS-PAGE. Decreasing amounts of wild-type thylakoid membranes (3.75 $\mu$ g; 2.5  $\mu$ g; 1.25  $\mu$ g chlorophyll) were loaded in the lanes marked 0.75x, 0.5x and 0.25x WT. Replicate filters were probed with the corresponding antibodies. The alterations observed in the *petc-2* mutant compared to the wild-type are quantified in Table 3.2.

To analyse the effect of the absence of the Rieske protein on the thylakoid protein composition, thylakoid membranes of sterile-culture-grown wild-type and *petc-2* plants were isolated and analysed by 2-D PAGE (Figure 3.5a) and Western blot analyses (Figure 3.5b). Densitometric determination of 2-D PAGE and Western analyses were performed and are listed in Table 3.2.

### Table 3.2 Analyses of thylakoid protein levels and chlorophyll content (nmol Chl (a + b) g<sup>-1</sup> fresh weight) in wild-type (WT) and *petc-2* mutant plants.

Values for proteins are average optical densities ( $\pm$  SD) measured from three independent 2-D protein gel analyses (PSII core (spots 2, 3 and 4), PSI (spots 8, 9, 10 and 11), ATPase ( $\alpha$ + $\beta$ ) and LHCII (spots 6 and 7); see also Figure 3.5a) or from three independent Western analyses\* (PSII-D1\*, PSI-F\*, ATPase ( $\alpha$ + $\beta$ )\* and Cyt  $b_6$ \*; see also Figure 3.5b). In column 4, relative values for the mutants are expressed as percentages based on g fresh leaf weight.

|                             | Absolute optical density |                 | Relative               |
|-----------------------------|--------------------------|-----------------|------------------------|
| Pigment/protein             | WT                       | petc-2          | level in<br>petc-2 (%) |
| $\operatorname{Chl} a + b$  | $1900\pm33$              | $845 \pm 24$    | 44                     |
| PSII core                   | $4.93\pm0.32$            | $1.52\pm0.30$   | 14                     |
| PSII-D1*                    | $1.76\pm0.13$            | $0.18\pm0.02$   | 5                      |
| OEC                         | $0.97\pm0.01$            | $0.36\pm0.02$   | 16                     |
| PSI                         | $2.77\pm0.17$            | $2.11\pm0.35$   | 34                     |
| PSI-F*                      | $1.10\pm0.12$            | $1.15\pm0.06$   | 46                     |
| ATPase $(\alpha + \beta)$   | $2.92\pm0.25$            | $3.87\pm0.27$   | 58                     |
| ATPase $(\alpha + \beta)^*$ | $0.71\pm0.05$            | $1.02\pm0.02$   | 63                     |
| Rieske                      | $1.38\pm0.15$            | 0               | 0                      |
| $\operatorname{cyt} b_6^*$  | $1.34\pm0.46$            | $0.12 \pm 0.01$ | 4                      |
| LHCII                       | $8.07\pm0.30$            | $6.88\pm0.13$   | 38                     |
| Lhca4*                      | $2.10\pm0.08$            | $1.66\pm0.11$   | 35                     |

The abundance of the antenna proteins of both photosystems (LHCII and Lhca4) were decreased to 38% and 35% of wild-type levels, respectively. This change in the stoichiometry and composition of the photosystems was already indicated by the decreased Chl a/b ratio in the mutants. Also the accumulation of antenna proteins in relation to reaction core centre proteins, in particular PSI, was indicated by the reduced  $\beta$ -carotene levels in the mutant as well as by the increased xanthophyll content. Western analysis

using the cyt  $b_6$ -specific antibody revealed no detectable amount of the cyt  $b_6$  protein, indicating that the absence of the Rieske protein destabilised the entire complex.

Interestingly, the  $\alpha$ - and  $\beta$ -subunit of the ATPase are reduced to 58% and 63% of wildtype levels (2-D SDS-PAGE and Western analyses), respectively. This is a relative increase with respect to the photosystems.

#### 3.1.6 Photosystems are functional in *petc-2*, but there is no linear electron transport

The *petc-2* mutants are non photosynthetic, as they fail to grow on soil, and display a hcf phenotype. Photosynthetic electron flow was measured in wild-type and mutant plants by monitoring parameters of chlorophyll fluorescence and steady-state levels of the oxidized reaction centre chlorophyll in PSI (P700<sup>+</sup>) (Table 3.3, Figure 3.7).

Table 3.3 Spectroscopic analysis of wild-type (WT, n = 5) and *petc-2* (n = 5) plants.

Mean values ( $\pm$  SD) are shown. F<sub>V</sub>/F<sub>M</sub>, maximum quantum yield of PSII;  $\Phi_{II}$ , effective quantum yield of PSII; 1-qP, fraction of Q<sub>A</sub> (the primary electron acceptor of PSII) present in the reduced state; NPQ, non-photochemical quenching.

| Parameter            | WT            | petc-2        |
|----------------------|---------------|---------------|
| $F_V/F_M$            | $0.81\pm0.01$ | $0.42\pm0.01$ |
| $\Phi_{\mathrm{II}}$ | $0.77\pm0.01$ | $0.16\pm0.02$ |
| 1-qP                 | $0.03\pm0.01$ | $0.81\pm0.02$ |
| NPQ                  | $0.08\pm0.01$ | $0.01\pm0.00$ |

The maximal quantum efficiency of PSII ( $F_V/F_M$ ) was substantially reduced in the mutants ( $F_V/F_M = 0.42 \pm 0.01$ ) compared to wild-type ( $F_V/F_M = 0.81 \pm 0.01$ ), indicating the presence of inactive PSII centres. Moreover, the effective quantum yield of PSII ( $\Phi_{II}$ ) showed a strong decrease in the mutant ( $\Phi_{II} = 0.16 \pm 0.02$ ) compared to wild-type ( $\Phi_{II} = 0.77 \pm 0.01$ ), indicating a severe pertubation in electron flow. For increased light intensities  $\Phi_{II}$  decreases dramatically, suggesting a substantially increased photosensitivity of the mutants (Figure 3.6).



Figure 3.6 Effective quantum yield of PSII in the *petc-2* and WT plants illuminated at increasing light intensities.

Five wild-type (WT) and five mutant plants were incubated for 30 minutes in the dark prior to each measurement. Mean values are shown, bars indicate standard deviations.

In addition, the fraction of  $Q_A$  (the primary electron acceptor of PSII) present in the reduced state was, in *petc-2*, dramatically increased (1-qP = 0.81 ± 0.02) compared to the wild-type (1-qP = 0.03 ± 0.01), implying a block in subsequent electron transfer steps. In *petc-2* mutant plants no NPQ was detectable (Table 3.3). The oxidation state of P700 in intact leaves was determined by measuring the absorbance changes at 820 nm at four different light intensities (Figure 3.7).



Figure 3.7 Steady-state levels of oxidized reaction centre chlorophyll in PSI (P700<sup>+</sup>) for wild-type (WT) and *petc-2* mutant plants.

After five minutes of illumination with actinic light the steady-state level of P700 absorption changes at 820 nm ( $\Delta A/\Delta A_{MAX}$ ) were measured for wild-type (WT) and *petc-2* mutant plants (n = 3 each). Mean values are shown, bars indicate standard deviations.

In *petc-2* plants, P700 was fully oxidised even at the lowest light intensities, implying that the absence of the Rieske protein completely suppresses electron transport from PSII to PSI through the cyt  $b_6/f$  complex.

To analyse the intersystem electron transfer (PSII  $\rightarrow$  PSI), thylakoids from WT and *petc-2* mutant plants were isolated and the rate of uncoupled electron transport, the PSI activity and the PSII activity were analysed by measuring the photosynthetic oxygen evolution using a Clark type oxygen electrode. Using artificial electron acceptors and donors, the activity of both photosystems was recorded (Table 3.4). The PSII activity of the *petc-2* mutant is reduced to 4% compared to that of the wild-type. The reduction in activity is in line with the level of reduction of PSII core proteins. Surprisingly, the PSI activity is only slightly reduced (to 73% of wild-typ levels) even though the protein level of PSI is reduced to 34% (2-D PAGE) or 45% (Western analysis). These results indicate that the residual levels of PSI and PSII that accumulate in the mutant are functional. No linear electron transport could be recorded, supporting the conclusion derived from the P700 absorbance measurements (see above) that in the *petc-2* mutant the absence of the Rieske protein completely suppresses the electron transport via the cyt  $b_6/f$  complex.

### Table 3.4 Activity of PSII and PSI, and the rate of uncoupled linear electron transport in WT and *petc-2* thylakoids.

Values of average oxygen evolution (PSII activity and linear electron transport) or consumption (PSI activity) ( $\pm$  SD) in µmol O<sub>2</sub> (mg Chl<sup>-1</sup>) h<sup>-1</sup> were derived from three independent measurements of thylakoids equivalent to 10 µg chlorophyll ml<sup>-1</sup>. Relative levels provided in column 4 are calculated by the given formula ([absolute value<sub>petc-2</sub>/absolute value<sub>wT</sub>] x chlorophyll correction factor (0.44)). These are relative values for the mutants in percentage based on g fresh weight.

|                                       |                                                      |             | Relative          |
|---------------------------------------|------------------------------------------------------|-------------|-------------------|
|                                       | Absolute values $(\mu mol O_2 (mg Chl^{-1}) h^{-1})$ |             | level in          |
| Parameter                             | WT                                                   | petc-2      | <i>petc-2</i> (%) |
| PSII activity                         | $134 \pm 7$                                          | $12 \pm 0$  | 4.0               |
| PSI activity                          | $151 \pm 7$                                          | $251 \pm 8$ | 73                |
| Linear electron transport (uncoupled) | $84\pm7$                                             | 0           | 0                 |

Similar results were obtained analysing the linear electron transport in intact leaves by fluorescence induction kinetics (Figure 3.8). In the wild-type there is an initial rapid increase in fluorescence to a relative value (rv) of approx. 0.3 after 0.05 s and then a slower

increase in fluorescence, before reaching a maximum. This second, slower increase in fluorescence is caused by electron flow to PSI acceptors. After reaching the maximum fluorescence in the wild-type the fluorescence decreases. This is caused by NPQ and the Calvin cycle (=photochemistry). In the *petc-2* mutant only a rapid increase after 0.05 seconds in fluorescence to approx. 0.7 is observed. The absense of the second slower increase in fluorosecence in the mutant indicates that there is no electron transfer to PSI acceptors. After reaching the maximum fluorescence in the *petc-2* mutant no decay in the curve is visible, indicating the absence of an NPQ and the lack of an active Calvin cycle in this mutant. These results are consistent with a block in linear and cyclic electron flow and the existence of an over-reduced plastoquinol pool.



Figure 3.8 Induction kinetics of the fluorescence in intact leaves.

Plants were dark adapted o/n before being exposed to a saturating red-light pulse (max. 680 nm) for 400 ms that fully reduces  $Q_A$ . Values are the averages of three repetitions with a standard deviation less than 5%.

### 3.2 Characterisation of the *atpd-1* mutant

#### 3.2.1 Phenotype of the *atpd-1* mutant line

In the course of a phenotypic screen of T-DNA mutagenized *Arabidopsis thaliana* lines (ecotype Col-0) (Budziszewski et al., 2001), a seedling-lethal line having a T-DNA insertion in the promoter region of the *AtpD* gene was described. This line, designated *atpd-1*, contains an insertion of the *SKI015* T-DNA 49 bps before the ATG codon of the *AtpD* gene (Figure 3.9c). The T-DNA insertion caused a deletion of 7 bps adjacent to the right border of the T-DNA.



Figure 3.9 Mutation in the *AtpD* locus and phenotype of mutant plants.

(a) + (b) Phenotypes of WT and *atpd-1* plants. Plants grown on 1x MS medium supplemented with 2 % sucrose were illuminated with white light (a) or UV light (b) (B-100AP/R, UVP Inc., CA, USA).

(c) In the *atpd-1* mutant, a copy of the 5.2 kb *SKI015* is inserted in the promoter region of *AtpD* gene (At4g09650). PCR analysis indicated a small deletion of 7 bps adjacent to the right border of the *SKI015* insertion. The T-DNA insertion is not drawn to scale.

Greenhouse-grown *atpd-1* plants displayed pale-green leaf coloration and were seedlinglethal. When grown heterotrophically, the *atpd-1* mutants were not lethal but grew slower than the wild-type. Furthermore, the mutant plants displayed a light-green leaf coloration (Figure 3.9a) and an hcf phenotype upon illumination with UV light (Figure 3.9b), indicating an impaired electron transport.

## 3.2.2 Expression analysis of the *AtpD* gene and complementation analysis of the *atpd-1* mutation

Northern analysis using the full-length cDNA *AtpD* as a probe, revealed that the T-DNA insertion drastically destabilises the *AtpD* transcript (Figure 3.10a). Western analysis of thylakoid membranes of wild-type and *atpd-1* plants using an ATPase- $\delta$ -subunit specific antibody demonstrated the absence of detectable amounts of the ATPase- $\delta$ -subunit (Figure 3.10b).



Figure 3.10 mRNA and protein expression of the *AtpD* gene.

(a) Northern analysis of the *AtpD* transcript in *atpd-1* and wild-type (WT) plants. Thirty-microgram samples of total RNA were analysed using the *AtpD* transcript as a probe. As a loading control the blot was re-probed with a cDNA fragment derived from the *ACTIN1* gene.

(b) Samples of thylakoid membranes equivalent to 5  $\mu$ g chlorophyll of wild-type (WT) and *atpd-1* plants were fractionated by denaturing PAGE. Decreasing amounts of wild-type thylakoid membranes (3.75  $\mu$ g; 2.5  $\mu$ g; 1.25  $\mu$ g chlorophyll) were loaded in the lanes marked 0.75x, 0.5x and 0.25x WT. Filters were probed with an antibody specific for the  $\delta$ -subunit of the chloroplast ATPase.

To confirm that the *atpd-1* phenotype was due to the T-DNA insertion in the *AtpD* locus a complementation analysis was carried out. The *AtpD* cDNA was fused to the 35S promoter of the cauliflower mosaic virus and introduced into heterozygous plants by *A. tumefaciens* transformation. All obtained transformants were analysed by PCR for their genotypes and transformed homozygous mutant plants were transferred to soil to generate seeds. Ten independent transformants displaying the wild-type phenotype were obtained. In particular the growth, fluorescence yield ( $\Phi_{II}$ ) and leaf pigmentation of these transformants did not differ from wild-type plants (Figure 3.11a). Northern analysis of wild-type plants and the T1 generation of mutant plants using a full-length *AtpD*-specific probe showed the

presence of *AtpD* mRNA in the T1 plants (Figure 3.11b). These results demonstrate that the *atpd-1* phenotype was due to lack of *AtpD* function.



Figure 3.11 Complementation of the *atpd-1* mutation.

(a) 4 week-old wild-type (WT) plants and T1 transformants (*atpd-1* plants) transformed with the *AtpD* cDNA under the control of the 35S promotor (35S::*AtpD*).

(b) Northern analysis of the *AtpD* transcript in WT and T1 plants (35S::*AtpD*). Thirtymicrogram samples of total RNA were analysed using the *AtpD* transcript as a probe.

### 3.2.3 ATP synthase activity in *atpd-1* mutant plants

To analyse ATP synthase activity, membrane potential changes (518-548 nm) were measured.



Dark time after illumination (ms)

### Figure 3.12 Membrane potential changes measured in intact leaves using a saturating light pulse.

The variation of the delocalized membrane potential has been measured by the electrochromic shift of membrane pigments as the difference in absorption (518-548 nm) which was assumed to be a reliable indicator of the membrane potential changes (Joliot and Joliot, 2001).

As shown in Figure 3.12 wild-type and mutant plants exhibit a significant difference. In the wild-type the membrane potential decay is biphasic. A fast phase, completed in ~100 ms (the end of which is indicated in the insert by the black arrow in Figure 3.12), is ascribed to ATP synthase activity (Junge et al., 1992). After ~100 ms the threshold membrane potential is reached and ATPase synthase activity most likely ceases. After ~100 ms a slower membrane potential decay is observable (completed in ~3 s). This slower decay may be ascribed to ion leakage through the membrane. This biphasic decay has been already described and interpreted by Junge et al., (1992) for isolated thylakoids. In contrast, in the *atpd-1* mutant the fast decaying phase is specifically inhibited, indicating the absence of ATP synthase activity and only the slow decay remains and this may be ascribed to ion leakage through the membrane.

### 3.2.4 Leaf pigment composition in the *atpd-1* mutants

Sterile culture-grown wild-type and *atpd-1* mutant plants were analysed for their leaf pigments (Table 3.5).

#### Table 3.5 Abundance of leaf pigments in wild-type and *atpd-1* mutant plants.

The pigment content of WT (n = 5) and mutant (n = 5) plants was determined by HPLC. Total Chl content is given in nmol chlorophyll (a + b) g<sup>-1</sup> fresh weight. The carotenoid content is expressed as mmol per mol Chl (a + b). Mean values (+/- SD) are shown. Nx, neoxanthin;  $\beta$ -Car,  $\beta$ -carotene; VAZ, sum of xanthophyll cycle pigments (violaxanthin + antheraxanthin + zeaxanthin) and DEPS, de-epoxidation state = (violaxanthin + 0.5 antheraxanthin) / (violaxanthin + antheraxanthin + zeaxanthin).

|                | Absolute      | Relative      |            |
|----------------|---------------|---------------|------------|
|                | (mmol per m   | level in      |            |
| Pigment        | WT atpd-1     |               | atpd-1 (%) |
| Chl <i>a/b</i> | $3.02\pm0.07$ | $2.24\pm0.06$ | -          |
| Chl $a + b$    | $1999 \pm 40$ | $894 \pm 11$  | 45         |
| Lutein         | $129 \pm 4$   | $144 \pm 1$   | 50         |
| Nx             | $35 \pm 1$    | $46 \pm 3$    | 59         |
| VAZ            | $25 \pm 3$    | $95\pm 6$     | 171        |
| β-Car          | 71 ± 7        | $32 \pm 5$    | 20         |
| DEPS           | 0             | $0.30\pm0.02$ | -          |

Consistent with the light-green coloration of *atpd-1* mutant plants a decrease in the total chlorophyll concentration (Chl a + b) to 45% of that of the wild-type was observed. The Chl *a/b* ratio was also decreased in mutant plants (WT:  $3.02 \pm 0.07$ ; *atpd-1*:  $2.24 \pm 0.06$ ), indicating dramatic changes in the photosystem composition and/or stoichiometry. An accumulation of antenna proteins in relation to reaction centre core proteins is indicated by the reduced  $\beta$ -carotene level and a significantly increased xanthophyll content in comparison to wild-type plants. It should be noted that there is an over-proportional increase of the VAZ-pool size compared to the other leaf pigments, which could be due to higher photosensitivity and/or an increased transmembrane proton gradient in the mutant. Moreover, the high de-epoxidation state (DEPS) of the VAZ-pool for *atpd-1* plants (0.30 ± 0.02) indicates a permanently high transmembrane proton gradient in this mutant, as violaxanthin de-epoxidase activity is activated even at low light intensities such as 15 µmol photons m<sup>-2</sup> s<sup>-1</sup>.

### 3.2.5 The composition of the photosynthetic apparatus in the *atpd-1* plants

To study the effect of the absence of the ATPase-δ-subunit on the thylakoid protein composition, thylakoid membranes of sterile-culture-grown wild-type and *atpd-1* plants were isolated and analysed by 2-D PAGE (Figure 3.13a) and Western analyses (Figure 3.13b). Densitometric analyses of 2-D PAGE and Western analyses were performed and are shown in Table 3.6. The abundance of the cores of PSII and PSI were substantially reduced in the *atpd-1* mutant (to 29% and 17% of wild-type levels, respectively), while the abundance of the antenna proteins of both photosystems (LHCII and Lhca4) were decreased to 43% and 37% of wild-type levels, respectively. This accumulation of antenna proteins in relation to the reaction centre cores proteins was already indicated by the decreased Chl *a/b* ratio in the mutant. Western analysis of thylakoid proteins with specific antibodies for the D1 protein of PSII and PSI-F confirmed the trend in the thylakoid composition shown by 2-D protein gel analysis. The abundance of the cyt  $b_6$  and the Rieske protein is decreased to 23% and 29% of wild-type levels, respectively, which indicated that these proteins are decreased stoichiometrically with respect to the PSII and PSI core centres in the mutant. As already shown by Western analysis (Figure 3.10), there was no detectable amount of the  $\delta$ -subunit of the chloroplast ATP synthase. Interestingly, neither did the  $\alpha$ - and the  $\beta$ -subunits of the CF<sub>1</sub> complex, nor the a- and b-subunits of the  $CF_0$  complex of the ATPase, accumulate to detectable amounts in the *atpd-1* plants as shown by 2-D PAGE and Western analyses (Figure 3.13, Table 3.6). This indicates a destabilisation of the entire ATP synthase complex in this mutant.



### Figure 3.13 Protein composition of the thylakoid membranes in wild-type and *atpd-1* mutant plants.

(a) Thylakoid membranes corresponding to 30  $\mu$ g of chlorophyll from wild-type and *atpd-1* mutant plants were fractionated first by electrophoresis on a non-denaturing LDS-PA gel and then on a denaturing SDS-PA gel. Positions of wild-type thylakoid proteins previously identified by Western analyses with appropriate antibodies (Pesaresi et al., 2001) are indicated by numbers to the right of the corresponding spots: 1,  $\alpha$ - and  $\beta$ -subunits of the ATPase complex; 2, D1-D2 dimers; 3, CP47; 4, CP43; 5, oxygen-evolving complex (OEC); 6, LHCII monomer; 7, LHCII trimer; 8, PSI-D; 9, PSI-F; 10, PSI-C; 11, PSI-H.

(b) Samples of thylakoid membranes equivalent to 5  $\mu$ g chlorophyll of wild-type (WT) and *atpd-1* were fractionated by 1–D SDS-PAGE. Decreasing amounts of wild-type thylakoid membranes (3.75  $\mu$ g; 2.5  $\mu$ g; 1.25  $\mu$ g chlorophyll) were loaded in the lanes marked 0.75x, 0.5x and 0.25x WT. Replicate filters were probed with the corresponding antibodies. The alterations observed in the *atpd-1* mutant compared to the wild-type are quantified in Table 3.6.

## Table 3.6 Analyses of thylakoid protein levels and total chlorophyll content (in nmol Chl (a + b) g<sup>-1</sup> fresh weight) in wild-type (WT) and *atpd-1* mutant plants.

Values for proteins are average optical densities ( $\pm$  SD) measured from three independent 2-D protein gel analyses (PSII core (spots 2, 3 and 4), PSI (spots 8, 9, 10 and 11), ATPase ( $\alpha$ + $\beta$ ) and LHCII (spots 6 and 7); see also Figure 3.13a) or from three independent Western analyses\* (PSII-D1\*, PSI-F\*, ATPase ( $\alpha$  +  $\beta$ , a, b)\* and Cyt  $b_6$ \*; see also Figure 3.13b). Relative levels as given in column 4 are calculated by the given formula ([OD<sub>atpd-1</sub>/OD<sub>WT</sub>] x chlorophyll correction factor (0.45)) and these are the relative values for the mutants in percentage based on g fresh leaf weight.

-

|                             |                   |                | Relative level |
|-----------------------------|-------------------|----------------|----------------|
|                             | Absolute op<br>va | in             |                |
| Pigment/protein             | WT                | atpd-1         | atpd-1 (%)     |
| $\operatorname{Chl} a + b$  | $1999\pm40$       | $894 \pm 11$   | 45             |
| PSII core                   | $3.94\pm0.04$     | $2.55\pm0.30$  | 29             |
| PSII-D1*                    | $1.10\pm0.13$     | $0.47\pm0.06$  | 19             |
| OEC                         | $1.83\pm0.03$     | $0.76\pm0.02$  | 19             |
| PSI                         | $3.33\pm0.07$     | $1.23\pm0.06$  | 17             |
| PSI-F*                      | $0.75\pm0.07$     | $0.31\pm0.04$  | 19             |
| ATPase $(\alpha + \beta)$   | $1.58\pm0.10$     | 0              | 0              |
| ATPase (a)*                 | $1.04\pm0.14$     | 0              | 0              |
| ATPase (b)*                 | $1.45\pm0.08$     | 0              | 0              |
| ATPase $(\alpha + \beta)^*$ | $1.51\pm0.12$     | 0              | 0              |
| cyt $b_6^*$                 | $1.63\pm0.01$     | $0.84\pm0.001$ | 23             |
| Rieske*                     | $1.73\pm0.12$     | $1.12\pm0.07$  | 29             |
| LHCII                       | $10.64\pm0.25$    | $10.3\pm0.36$  | 43             |
| Lhca4*                      | $2.25\pm0.18$     | $1.83\pm0.12$  | 37             |
|                             |                   |                |                |

## 3.2.6 Photosystems are functional in *atpd-1* mutants, but linear electron transport is impaired

The rate of photosynthetic electron flow in the *atpd-1* mutants was measured by monitoring parameters of chlorophyll fluorescence, fluorescence induction kinetics and the oxidation state of P700 under continuous illumination of leaves from wild-type and mutant plants (Table 3.7, Figure 3.14, Figure 3.16).

| Table 3.7  | ' Spectroscopi | c analysis of | wild-type ( | $\mathbf{WT, n} = 5$ | and <i>atpd-1</i> | mutant (n = |
|------------|----------------|---------------|-------------|----------------------|-------------------|-------------|
| 5) plants. |                |               |             |                      |                   |             |

Mean values ( $\pm$  SD) are shown. F<sub>V</sub>/F<sub>M</sub>, maximum quantum yield of PSII;  $\Phi_{II}$ , effective quantum yield of PSII; 1-qP, fraction of Q<sub>A</sub> (the primary electron acceptor of PSII) present in the reduced state; NPQ, non-photochemical quenching.

| Parameter            | WT                                 | atpd-1                             |
|----------------------|------------------------------------|------------------------------------|
| $F_V/F_M$            | $0.82\pm0.01$                      | $0.39\pm0.01$                      |
| $\Phi_{\mathrm{II}}$ | $0.77\pm0.01$                      | $0.23\pm0.02$                      |
| 1-qP                 | $0.04\pm0.01$                      | $0.14\pm0.06$                      |
| NPQ                  | $0.07\pm0.01$                      | $0.26\pm0.03$                      |
| 1-qP<br>NPQ          | $0.04 \pm 0.01$<br>$0.07 \pm 0.01$ | $0.14 \pm 0.06$<br>$0.26 \pm 0.03$ |

The potential quantum efficiency of PSII ( $F_V/F_M$ ) was substantially reduced in the mutant (0.39 ± 0.01) with respect to the wild-type (0.82 ± 0.01), indicating the presence of inactive PSII centres. The effective quantum yield of PSII ( $\Phi_{II}$ ) showed a strong decrease in the mutant (0.23 ± 0.02) compared to the wild-type (0.77 ± 0.01) which was even stronger at increasing light intensities (Figure 3.14). This indicates a severe pertubation in electron flow which is consistent with the high photosensitivity of the mutant.



Figure 3.14 Effective quantum yield of PSII in wild-type and *atpd-1* plants illuminated at increasing light intensities.

Five wild-type (WT) and five mutant plants were kept for 30 minutes in the dark prior to measurements. Bars indicate standard deviations.

In addition, the fraction of  $Q_A$  (the primary electron acceptor of PSII) present in the reduced state (1-qP) was increased in the mutant (0.14 ± 0.03) in comparison to the wild-type (0.04 ± 0.01), implying a block in subsequent electron transfer steps. The non-photochemical quenching (NPQ) was increased in the *atpd-1* mutants (0.26 ± 0.03)

compared to the wild-type (0.07  $\pm$  0.01), indicating an increased acidification of the thylakoid lumen. Measuring the qE, the energy-dependent component of NPQ, indicated that the main portion of NPQ is due to qE (Figure 3.15). In additon to this, the maximum values for qE were inducible in the mutant at much lower light intensities (about 100-150  $\mu$ mol photons m<sup>-2</sup> s<sup>-1</sup>) than those required for wild-type plants (about 600-900  $\mu$ mol photons m<sup>-2</sup> s<sup>-1</sup>), indicating that maximal lumen acidification is obtained at significantly lower PFDs in the mutants (Figure 3.15).



Figure 3.15 qE values in wild-type (WT) and *atpd-1* plants at increasing actinic light intensities.

This result is consistent with the presence of an increased VAZ-pool and the high deepoxidation state of the VAZ-pool (Table 3.5) and could be related to the loss of ATPase function in the mutant. The oxidation state of P700 in intact leaves at different actinic light intensities was determined by measuring the absorbance changes at 820 nm (Figure 3.16). In *atpd-1* plants, the maximum oxidation of P700 was reached at much lower PFDs indicating that the electron transport was saturated at lower light intensities than in the wild-type.



Figure 3.16 Steady-state levels of oxidized reaction centre chlorophyll in PSI (P700<sup>+</sup>) in wild-type and *atpd-1* mutant plants.

After five minutes of illumination with actinic light the steady-state level of  $P700^+$  was measured for wild-type and *atpd-1* mutant plants (n = 3 each). Mean values are shown, bars indicate standard deviations.

Using artificial electron acceptors and donors, the activity of both photosystems was recorded. (Table 3.8). The activity of PSI and PSII and the rate of the uncoupled linear electron transport was monitored by oxygen electrode measurements in isolated thylakoid membranes of wild-type and mutant plants.

## Table 3.8 Activity of PSII and PSI, and the rate of uncoupled linear electron transport in WT and *atpd-1* thylakoids.

Values of average oxygen evolution (PSII activity and linear electron transport) or consumption (PSI activity) ( $\pm$  SD) in µmol O<sub>2</sub> (mg Chl<sup>-1</sup>) h<sup>-1</sup> were derived from three independent measurements of thylakoids equivalent to 10 µg chlorophyll ml<sup>-1</sup>. The relative levels in column 4 were calculated by the given formula ([activity<sub>atpd-1</sub>/activity<sub>WT</sub>] x chlorophyll correction factor (0.45)) and they express relative values for the mutants in percentage based on gram fresh leaf weight.

|                                       | Absolute values<br>( $\mu$ mol O <sub>2</sub> (mg Chl <sup>-1</sup> ) h <sup>-1</sup> ) |            | Relative<br>level in |
|---------------------------------------|-----------------------------------------------------------------------------------------|------------|----------------------|
| Parameter                             | WT                                                                                      | atpd-1     | atpd-1 (%)           |
| PSII activity                         | 137 ± 7                                                                                 | $84 \pm 7$ | 28                   |
| PSI activity                          | $147 \pm 7$                                                                             | $88\pm7$   | 27                   |
| Linear electron transport (uncoupled) | $85\pm7$                                                                                | $54 \pm 2$ | 29                   |

The relative levels of PSI and PSII activity were reduced to 27% and 28%, respectively, indicating that residual levels of functional PSI and PSII accumulate in the mutant. The

uncoupled linear electron flow was reduced to 29% compared with the wild-type. These reductions are in line with the reduced protein levels of PSII, the cyt  $b_6/f$  complex and PSI in the mutant analysed by 2-D gel electrophoresis and Western blot anaylses (Figure 3.13, Table 3.6). These results indicate that the complexes are functional in mutant plants and the observed decrease in electron transport rates is due to the reduced protein levels in the *atpd-1* mutant.



Figure 3.17 Fluorescence induction kinetics of intact leaves of wild-type and *atpd-1* leaves.

Plants were dark kept o/n before being exposed to a saturating red light pulse (max. 680 nm) for 400 ms that fully reduced  $Q_A$ . Values are the averages of three repetitions with a standard deviation less than 5%.

However, measuring the electron transport in intact leaves by fluorescence induction kinetics provided interesting results for the *atpd-1* mutant. The mutant shows a rapid increase in fluorescence after  $5.5 \times 10^{-5} \text{ s}$  (0.85) whereas in the wild-type the fluorescence is much lower (0.25). In addition, the wild-type dispays an initial rapid increase in fluorescence to a relative value of approximately 0.3 after 0.05 s and then a slower increase in fluorescence, before reaching a maximum after approximately 4 s. This second, slower increase in fluorescence, is caused by electron flow from PSII to PSI acceptors. However, the *atpd-1* mutant does not show this slower increase, indicating that no electron flow from PSII to PSI acceptors exists and therefore no linear electron transport. Moreover, the maximal fluorescence is reached earlier in the mutant (after 0.9 s) than in the wild-type (after 4 s) implying that the system is saturated immediately in the *atpd-1* mutant and/or a possible reduction in the plastoquinol pool. After reaching the maximal fluorescence in wild-type and mutant leaves a decay of the curve due to NPQ and activity of the Calvin

cycle is visible. As already shown by spectroscopic analysis (Table 3.7) the NPQ is increased in the *atpd-1* mutant. This means, that the lower decay in the fluorescence induction curve for the mutant in comparison to the wild-type is possibly due to a decreased activity in the Calvin cycle. Since linear electron flow is absent, the observed increase in  $\Delta$ pH, which results in the increased level of non-photochemical quenching in the mutant (Table 3.7), is most probably due to cyclic electron flow in the absence of proton gradient dissipation (ATP synthesis).

These results are consistent with an impaired, but not entirely blocked, cyclic electron flow. Due to the supression of proton flow through the ATP synthase, electron flow is saturated at significantly lower light intensities than in wild-type plants, resulting in an increased lumen acidification and an increased thermal energy dissipation at low light.

# 3.3 mRNA expression analysis for nucleus-encoded chloroplast proteins in the mutants *petc-2* and *atpd-1*

The data presented above showed that the absence of either the Rieske protein (*petc-2*) mutant) or of the  $\delta$ -subunit of the chloroplast ATP synthase (*atpd-1* mutant) strongly impairs photosynthesis. However, the two mutations have quite different effects on photosynthetic electron flow and the composition of thylakoid membranes. To test for further differences in the effects of the two mutations on photosynthesis and other chloroplast functions, the expression of nuclear genes contributing to chloroplast functions were analysed by determining the relative mRNA levels by DNA array analysis. Therefore the expression of 3292 nuclear genes were considered of which 81% are coding for chloroplast-targeted proteins. The expression patterns of the two mutants petc-2 and atpd-1 were compared with the expression pattern seen in wild-type plants as described in material and methods. As additional controls the psael-1, psadl-1, psan-1 and psao-1 lines (Varotto et al., 2000; Richly et al., 2003 and unpublished results of our laboratory) bearing knock-out alleles of the PSI genes PsaE1, PsaD1, PsaN and PsaO were also included in this analysis. Differential gene expression values (mutants versus wild-type) were determined by comparing hybridization signals. In all six mutant genotypes, a set of 344 genes was identified, all of which were expressed at significantly different levels from wild-type in at least 5 of the 6 genotypes. The hierarchical clustering of the 344 gene expression profiles revealed that the expression pattern of *petc-1* and *atpd-1* were substantially different: the *petc-2* profile was related to that of *psad1-1* and *psae1-1*, while the pattern of *atpd-1* was more similar to that of *psan-1* or *psao-1* (Figure 3.18a and appendix 7.1).

(a)

petc-2 psad1-

DSae.



Figure 3.18 Effects of *petc-2* and *atpd-1* mutations on the accumulation of nuclear transcripts for chloroplast proteins.

(a) Hierarchical clustering of the expression profiles of 344 genes that show significant differential expression in at least five of the six mutants *petc-2*, *atpd-1*, *psae1-1*, *psad1-1*, *psan-1* and *psao-1*. The cladogram at the top summarizes the degree of relatedness between the transcriptome responses in the six genotypes. Colours indicate up (red)- or down (green)-regulation of gene expression. Grey lines indicate non-significant differential expression. For a more detailed image, including gene accession numbers and annotations see appendix 7.1.

(b) Fraction of up- and down-regulated genes in 7 major functional categories. For a complete list of differentially expressed genes see appendix 7.3.

Direct comparison of the differential expression profiles of *petc-2* and *atpd-1* plants revealed that among all genes differentially expressed in the two genotypes, 451 genes

showed the same trend (379 up- and 72 down-regulated). A further set of 346 genes showed opposite trends in transcriptional regulation in the two lines: 49 genes were up-regulated in *petc-2* and down-regulated in *atpd-1*, whereas 297 genes were down-regulated in *petc-1* but up-regulated in *atpd-1* (see appendix 7.2).

The significantly differentially expressed genes in *petc-2* and *atpd-1* were grouped into 7 major functional categories, including metabolism, photosynthesis, transport, protein phosphorylation, stress response, transcription and translation and unclassified proteins (Figure 3.18b). Also by this analysis the two mutants showed a quite different trend in gene regulation: in *petc-2*, a balanced response of the nuclear chloroplast transcriptome was observed, with about an equal fraction of genes being up- or down-regulated (636 and 524 genes, respectively). Genes for photosynthesis were down-regulated with a higher frequency than others, while genes for protein phosphorylation and stress response represented the most up-regulated group of genes in this genotype. On the contrary, in the *atpd-1* mutant 87% of the differentially regulated genes were up-regulated. Most of the different functional gene classes followed this trend, with the exception of genes coding for proteins involved in photosynthesis (26% of which were up-regulated).

These results show that the two photosynthetic mutations, *petc-2* and *atpd-1*, result into very different transcriptional responses of the nuclear chloroplast transcriptome.

### **4 DISCUSSION**

### 4.1 The *petc-2* mutant

In the *petc-2* mutant the expression of the *PetC* gene was abolished due to a *Ds* element insertion in the promoter region of the gene. The absence of the *PetC* mRNA and the resulting Rieske protein was shown by Northern and Western blot analyses. Crosses between heterozygous *petc-1*, -2, and -3 plants resulted in progenies that segregated with a 1 to 3 ratio for the mutant phenotype, demonstrating that the three mutations are allelic and that the observed phenotype was due to the loss of the Rieske protein. The effects of this mutation on photosynthesis, thylakoid composition and nuclear chloroplast gene expression were analysed in this work.

Greenhouse-grown *petc-2* plants were seedling-lethal as they are photosynthetically incompetent. The plants could, however, be propagated heterotrophically and mutant plants displayed a pigmentation defective phenotype, which was even more severe when the mutants were grown under increased light conditions. This photosensitivity could have caused the over-proportional increase in the VAZ-pool observed in *petc-2*. The phenotype of the Arabidopsis *petc-2* mutants is reminiscent of both the tobacco mutants with disrupted chloroplast *petA*, *petB* and *petD* genes (Monde et al., 2000) and the maize mutants *crp1*, *pet2* and *pet3* (Barkan et al., 1994; Voelker and Barkan, 1995), all of which displayed a pale-green phenotype, a reduction in chlorophyll concentration and all lacked a functional cyt  $b_6/f$  complex. However, a similar reduction in chlorophyll accumulation was not observed in the corresponding Chlamydomonas mutants (Kuras and Wollman, 1994), possibly indicative of different control mechanisms between Chlamydomonas and higher plants.

#### 4.1.1 The absence of the Rieske protein blocks the linear electron transport

The observed hcf phenotype indicates a block in the intersystem electron flow. The effect of the absence of the Rieske protein on photosynthesis was further analysed by monitoring parameters of chlorophyll fluorescence, fluorescence induction kinetics and steady-state levels of the oxidized reaction centre chlorophyll in PSI. The maximum quantum yield of PSII ( $F_V/F_M$ ) was substantially reduced indicating the presence of inactive PSII centres.

The strong reduction in the effective quantum yield of PSII,  $\Phi_{II}$ , and its pronounced decrease with increasing light intensities imply a severe perturbation of electron flow, which is consistent with the high photosensitivity of the mutant. A substantial overreduction of the plastoquinone pool (reduced photochemical quenching) was observed for the mutant plants, and the reaction centre of PSI, P700, was fully oxidized even at low light intensities, implying that the electron transport from PSII to PSI though the cyt  $b_6/f$  complex is completely suppressed. The almost complete suppression of non-photochemical quenching, NPQ, in the *petc-2* mutant indicates a decrease in the thylakoid lumen acidification, as an acidified thylakoid lumen is required for inducing NPQ. Similar effects on the level of photochemical and non-photochemical quenching were observed for tobacco Rieske antisense plants (Price et al., 1995) and for the point mutation mutant, *pgr1*, in the Arabidopsis *PetC* gene (Munekage et al., 2001).

### 4.1.2 The Rieske protein is involved in the stability of the cytochrome $b_6/f$ complex and has an effect on the thylakoid composition

Western blot analyses confirmed the absence of the Rieske protein in the *petc-2* mutant. To test which role the Rieske protein plays in the stability of the entire complex, Western blot analyses were performed. An antibody against the cyt  $b_6$  subunit was chosen, as this subunit is very likely to be diagnostic for the entire complex. It had earlier been shown in the tobacco mutant  $\Delta petB$  that the absence of the cyt  $b_6$  protein results in a loss of the entire cyt  $b_6/f$  complex (Monde et al., 2000). As the *petc-2* mutant displays a strong decrease of the cyt  $b_6$  protein (to 4% of wild-type level) it is very likely that the absence of the Rieske protein leads to a strong decrease in the entire cyt  $b_6/f$  complex. However, no other antibodies specific for additional cyt  $b_6/f$  subunits were available in our laboratory, therefore the protein level of no other subunit of the cyt  $b_6/f$  complex could be tested. But the data presented here clearly indicate that the Rieske protein is essential for the stable assembly of this thylakoid membrane complex in Arabidopsis. This finding is compatible with previous analyses carried out in maize (Miles, 1982), Oenothera (Stubbe and Herrmann, 1982) and Lemna (Bruce and Malkin, 1991) mutants defective in the assembly of cyt  $b_6/f$ , and thus supports the conclusion of other authors, that the Rieske protein is required for the assembly of the cyt  $b_6/f$  complex. Bruce and Malkin, (1991) suggested an "all-or-none" mechanism for the assembly of this chloroplast complex, which seems more likely to take place, whereby all components must be present for the stabilization of the entire complex. However, in the Chlamydomonas *petc*- $\Delta 1$  mutant, lacking the Rieske protein, all other subunits of the cyt  $b_6/f$  complex assemble even in the absence of the Rieske protein and the complex could be isolated as a dimer (de Vitry et al., 1999). This implies that in algae different regulatory mechanisms, in the transcription or translation or in the degradation of unassembled proteins in response to the missing Rieske protein, operate. However, on the basis of this work, it cannot be decided if the knock-out of the Rieske protein in the *petc-2* mutant influences (i) the transcription, (ii) the translation of the other subunits of this complex, or (iii) if the absence of the cyt  $b_6$  protein is due to the proteolytic degradation of unassembled protein.

PSI core centre, LHCII and LHCI proteins had reduced levels similar in magnitude to the reduction in chlorophyll and furthermore little PSII was detectable in the *petc-2* mutant. This change in the stoichiometry of the photosystems was also indicated by the reduced Chl a/b ratio and the reduced  $\beta$ -carotene levels. This accumulation of antenna proteins relative to the reaction centre core proteins is in line with the increased xanthophyll content. Such a relative increase in the antenna proteins was also seen in the tobacco Rieske antisense plants with diminished cyt  $b_6/f$  complex content (Price et al., 1995) and is also observed during shade acclimation (Anderson, 1986; Anderson et al., 1988). Price et al., (1995) suggested that the relative increase in antenna proteins in the antisense plants could be due to their reduced ability for intersystem electron transport, thus explaining the relative increase of the antenna proteins in the *petc-2* mutants.

It was observed in this work that in the *petc-2* mutant, where there is little turn-over of the chemically reduced plastoquinol pool, the D1 protein is decreased over-proportionally with respect to the entire PSII complex. This could be due to an increased photoinhibition in these mutant plants. This is in contrast to the analysis of Shochat et al., (1990) of a Chlaymdomonas cyt  $b_6/f$ -less mutant where it was concluded that continuous PQ/PQH<sub>2</sub> turnover (redox reactions of the plastoquinol pool) is essential for the degradation of the D1 protein. In the *petc-2* mutant there is no cyt  $b_6/f$  complex present to oxidize the plastoquinol pool. However, the plastoquinol pool could be at least partly be oxidized by chlororespiration, an alternative oxidase activity, that can remove electrons from the plastoquinol pool, thus providing a turn-over of the plastoquinol pool (Niyogi, 2000; Bennoun, 1982; Cournac et al., 2000). Under normal conditions the electron flow to oxygen via the plastid oxidase is only marginal, but when the plastoquinol pool becomes

highly reduced the plastid oxygenase becomes highly active and thereby prevents the overreduction of the plastoquinol pool (Cournac et al., 2002). Thus, providing a plausible explaination for the observed over-proportional decrease of the D1 protein in the *petc-2* mutant.

## 4.1.3 The disruption of the cyt $b_6/f$ complex causes a relative increase of the chloroplast ATP synthase

In the *petc-2* mutant the accumulation of the  $\alpha$ - and  $\beta$ -subunits of the chloroplast ATP synthase were reduced to about 60% of the wild-type level based on fresh weight. Relative to chlorophyll levels the ATP synthase showed an accumulation of approximately 135% of the wild-type levels. Interestingly, a similar effect was observed in a tobacco Rieske antisense plant where an increased level of the  $\delta$ -subunit to 163% was observed in combination with an increased level of ATP hydrolysis (115%) (Price et al., 1995). It has been suggested that, in such mutants, the ATP synthase is directly involved in maintaining a transthylakoid  $\Delta pH$  gradient at the expense of ATP consumption. It is known that the chloroplast ATP synthase can potentially hydrolize ATP when the transmembrane electrochemical potential difference is small (Hisabori et al., 2002). One reason for generating a  $\Delta pH$  at the cost of ATP hydrolysis could be to faciliate the import of thylakoid proteins by the pH-dependent twin-arginine translocation (Tat) pathway. It was shown in *vitro* that the import of proteins via this pathway requires a  $\Delta pH$  (Robinson et al., 2001). However, Finazzi et al., (2003) have shown recently in Chlamydomonas and barley that it is likely that thylakoid targeting of Tat passenger proteins like the Rieske protein (Madueno et al., 1994; Molik et al., 2001) or the 16- and 23-kDa subunits of the oxygenevolving complex of PSII (Mould and Robinson, 1991; Cline et al., 1992) show no ΔpH dependence in vivo. Therefore, it is unclear if the relative increase in the quantity of the ATP synthase in the *petc-2* mutants can be interpreted as a mechanism to maintain the  $\Delta pH$ for protein import via the Tat pathway. Alternatively, another reason for maintaining the  $\Delta pH$  in the mutant plants is that it is thought that a  $\Delta pH$  is necessary to activate the elongation step of translation in the chloroplasts of vascular plants (Muhlbauer and Eichacker, 1998).

### 4.2 The *atpd-1* mutant

The *atpd-1* mutant was identified based on its seedling-lethal phenotype (Budziszewski et al., 2001). In the mutant the expression of the *AtpD* gene was abolished due to a T-DNA insertion in the promoter region of the gene. The absence of the *AtpD* mRNA and the resulting protein, the  $\delta$ -subunit of the chloroplast ATP synthase, was shown by Northern and Western analyses. The wild-type phenotype could be restored in the *atpd-1* mutant plants by introducing the *AtpD* gene under the control of the 35S promoter in the mutant plants thus proving that the observed phenotype was due to the lack of the  $\delta$ -subunit of the ATP synthase. The seedling-lethal phenotype, alone, indicates that loss of ATP synthase function results in a block in the photosynthetic electron flow. Measuring membrane potential changes in intact leaves have shown that dissipation of the  $\Delta pH$  in the *atpd-1* mutants results most likely only from proton leakage and that there is no active ATP synthase channel. However, mutant plants could be propagated on medium supplemented with 2% sucrose. The effects on photosynthesis, the thylakoid composition and nuclear chloroplast gene expression of the knock-out of the *AtpD* gene in Arabidopsis were analysed in this work.

### 4.2.1 The **d**-subunit is important for the stability of the chloroplast ATP synthase

To study the effect of the absence of the  $\delta$ -subunit on the stability of the ATP synthase, Western analyses were performed. The a- and b-subunits of the CF<sub>0</sub> complex did not accumulate to detectable amounts in the mutants. Also the  $\alpha$ - and  $\beta$ -subunits of the CF<sub>1</sub> complex could not be detected in thylakoid membranes. This indicates that the absence of the  $\delta$ -subunit leads to a loss of the entire ATP synthase complex. The increased VAZ-pool in the mutant - even at low light intensities - and the increased level of de-epoxidation of the VAZ-pool are indicative of an increased  $\Delta$ pH across the thylakoid membrane. This luminal acidification is most likely caused by the fact that the mutant plants cannot translocate protons across the thylakoid membrane by ATP synthase activity. Mutational analyses of the homologs of chloroplast ATPase- $\delta$  in *E. coli* (Hazard and Senior, 1994, 1994; Stack and Cain, 1994) or yeast (Prescott et al., 1994; Straffon et al., 1998) indicated that this protein is essential for the function of the ATPase complex.

## 4.2.2 Absence of a functional ATP synthase changes the thylakoid composition and favours a limited cyclic electron transport

Upon UV-illumination the mutant plants display a hcf phenotype, indicating a severe effect on photosynthesis. Therefore the effects on photosynthesis in the *atpd-1* mutant were further analysed by monitoring parameters of chlorophyll fluorescence, fluorescence induction kinetics and steady-state levels of the oxidized reaction centre chlorophyll in PSI.

The mutants displayed a substantially reduced maximum quantum efficiency of PSII,  $F_V/F_M$ , indicating the presence of inactive PSII centres. Moreover, the strong reduction in the effective quantum yield of PSII,  $\Phi_{II}$ , became even more pronounced at increasing light intensities. This is indicative of a severe perturbation of electron flow from PSII to PSI. The increased fraction of reduced plastoquinol QA indicates an impaired electron flow downstream of PSII. It has been shown in isolated thylakoids that when the pH is lowered from 7.5 to 5.5 the oxidation of plastoquinol is decreased 10-fold (Kramer et al., 1999). This leads, of course, to a slow down of the photosynthetic electron transport, which means that the electron transport can be controlled by the luminal pH (Kramer et al., 2003). However, in intact leaves these observations could not be made (Kramer et al., 1999). Kramer et al., (1999) therefore suggested that under normal conditions plants maintain a luminal pH at levels that do not substantially suppress cyt  $b_6/f$  activity. Therefore, it might be that in the *atpd-1* mutants these mechanisms, that control the luminal pH, are impaired resulting in a high  $\Delta pH$  in this mutant and, as a consequence, in an impaired electron flow. Such an impaired electron flow had already been indicated by the fact that in intact leaves the fraction of oxidized P700 is increased at low light intensities and the maximum oxidation of P700 was reached at much lower light intensities in the mutants.

By using gramidicin D, which forms a pore or channel in the membrane and thus eliminates the  $\Delta pH$  gradient, it was shown that linear electron flow is possible in the mutant. Similar results were shown for the Chlamydomonas deletion mutants  $\Delta atpA$  and  $\Delta atpB$  (Fiedler et al., 1997). In these mutants both photosystems were fully active, but linear electron transport was only detectable in mutant thylakoids by using the uncoupler nigericin. However, in this thesis fluorescence induction kinetics of intact leaves have been used to show that it is very likely that *in vivo* only cyclic electron transport takes place in the mutant plants, resulting in an increased  $\Delta pH$  in the *atpd-1* mutant.

In addition to the impaired electron flow, a marked alteration of the thylakoid protein composition was observed in the mutant plants. As already indicated by the decreased Chl a/b ratio in mutant plants there is an increased accumulation of the antenna proteins in relation to reaction centre core proteins. It was shown that cultivating plants at low concentrations of PSII inhibitors, which decreases the electron transport, triggers an increase in the light harvesting proteins (Anderson, 1986). It could, therefore, be that the impaired electron transport in the plant causes the relative increase in the antenna proteins in atpd-1 mutant plants.

## 4.2.3 The low luminal pH in the *atpd-1* mutant induces non-photochemical quenching even at low light intensities

In the *atpd-1* mutant plants a strong increase in NPQ was observed at low light intensities. The major portion of this NPQ was shown to be composed of the  $\Delta pH$ -dependent component, qE, this suggests an increase in acidification of the thylakoid lumen. A decrease of the luminal pH – as observed in the *atpd-1* mutant – activates the violaxanthin de-epoxidase, which converts violaxanthin to antheraxanthin and zeaxanthin (Niyogi et al., 1998) leading to the high de-epoxidation state of the VAZ-pool observed in the *atpd-1* mutant. These results indicate that in the *atpd-1* mutants, even at low light intensities, the luminal pH is high enough to initiate non-photochemical quenching. The Chlamydomonas mutant ac46, having a defect in the production or stability of the *atpH* mRNA, exhibited a loss of the CF<sub>0</sub> complex of the ATP synthase. In contrast to the data presented here no qE could be measured, although the Chlamydomonas mutant should theoretically accumulate a large electrochemical gradient upon illumination (Majeran et al., 2001). As the Chlaymdomonas mutants were grown under even lower light intensities than the *atpd-1* mutants, the cultivating light for Chlamydomonas could be too low to induce the formation of antheraxanthin and zeaxanthin. Moreover, the formation of antheraxanthin and zeaxanthin depends not only on the  $\Delta pH$ , but also on the light intensities used for cultivating the plants (Demmig-Adams et al., 1995) or algae (Niyogi et al., 1997).

These results indicate that in *atpd-1* plants the photosystems, cyt  $b_6/f$ , and thus linear electron flow, are still functional, while the chloroplast ATPase is missing. Since the transthylakoid protein gradient cannot be utilized to drive ATP synthesis, increased acidification of the lumen lead to an increased non-photochemical quenching of excitation energy at low light intensities as observed for the mutant.

### 4.3 Effects on plastid signalling in the *petc-2* and *atpd-1* mutants

The majority of chloroplast proteins are encoded in the nucleus (Abdallah et al., 2000), therefore, communication between the two organelles is necessary. Expression profiling of more than 3000 nuclear genes, most of them coding for chloroplast functions, in this study, showed that different transcriptional responses of the nuclear chloroplast transcriptome were induced by the two mutations, petc-2 and atpd-1. Since photosynthesis was abolished in both genotypes, many secondary effects due to loss of photoautotrophy should be similar in the mutants. This allows to conclude that many, if not most, differences in the expression profile of *petc-2* and *atpd-1* could be due to different types of plastid signaling pathways which are triggered by the physiological effects of the two mutations. So far there are at least two retrograde (from the plastid to the nucleus) signalling pathways identified, that control nuclear gene expression (Surpin et al., 2002; Pfannschmidt, 2003). Intermediates of the tetrapyrrole biosynthetic pathway (Strand et al., 2003), as well as the redox state of the photosynthetic apparatus (Pfannschmidt, 2003), have been associated with the generation of plastid signals which result in the modulation of the transcription of nuclear-encoded chloroplast proteins. The molecular mechanisms of these signals has remained thus far unknown (Strand et al., 2003).

In the *petc-2* mutant the reduction state of  $Q_A$ , the primary electron acceptor of PSII, is, in fact, substantially increased as observed in the *psad-1* (personal communication, D. Leister) and in *psae1-1* (Varotto et al., 2000) mutants, but not in *atpd-1* (this study) and *psao-1* (personal communication, D. Leister), as well as in PSI-N mutants (Haldrup et al., 1999). This different redox state of thylakoids in the two mutants (*petc-2* and *atpd-1*) could be responsible for the different transcriptional responses. Another possibility is that the different level of luminal acidification in the two mutants is sensed and produces, at least indirectly, a signal which modulates nuclear gene transcription of the chloroplast targeted proteins, resulting in differing responses.

### 4.4 Outlook

It is obvious that the destabilization of the entire cyt  $b_6/f$  and chloroplast ATP synthase complexes by loss of the Rieske or ATPase- $\delta$ -subunit proteins, respectively, complicates the functional analysis of the specific role(s) of the *PetC* and *AtpD* gene products. As a starting point for future functional studies *in planta*, the *petc-2* and *atpd-1* knock-out mutants characterized in this study should be complemented with mutagenized versions of these proteins which retain the ability to stabilize their multi-protein complexes, while being impaired by targeted mutations at specific sites affecting their specific functions.

### 5 SUMMARY / ZUSAMMENFASSUNG

In Arabidopsis thaliana, the nuclear genes PetC and AtpD code for the Rieske protein of the cytochrome  $b_6/f$  complex and the  $\delta$ -subunit of the chloroplast ATPase, respectively. Knock-out alleles for each of these loci have been identified by forward and reverse genetics. Greenhouse-grown petc-2 and atpd-1 mutants are seedling-lethal, while heterotrophically propagated plants display a high-chlorophyll-fluorescence phenotype, indicating that the products of *PetC* and *AtpD* are essential for photosynthesis. Additional effects of the mutations in axenic culture include altered leaf coloration and increased photosensitivity. Lack of the Rieske protein destabilizes the cytochrome  $b_6/f$  complex, and also affects the level of other thylakoid proteins, particularly those of photosystem II. In *petc-2*, linear electron flow is blocked, leading to an altered redox state of both the primary quinone acceptor Q<sub>A</sub> in photosystem II, and the reaction centre chlorophyll P700 in photosystem I. Absence of the chloroplast ATPase-δ-subunit destabilizes the ATP synthase complex, whereas residual accumulation of the cytochrome  $b_6/f$  complex and of the photosystems still allows electron flow. In *atpd-1*, the increase in non-photochemical quenching of chlorophyll fluorescence and a higher de-epoxidation state of xanthophyll cycle pigments under low light is compatible with increased lumen acidification associated with the defect in chloroplast ATPase activity. Further and clear differences between the two mutations are evident when mRNA expression profiles of nucleus-encoded chloroplast proteins were considered, suggesting that the physiological states conditioned by the two mutations trigger different modes of plastid signaling and nuclear response.

Bei Arabidopsis thaliana kodieren die Kern-Gene PetC und AtpD für das Rieske Protein des Cyt  $b_6/f$  Komplexes bzw. für die  $\delta$ -Untereinheit der chloroplastidären ATP Synthase. Null Allele für diese beiden Loci wurden mittels "Forward" und "Reverse" Genetik identifiziert. Im Gewächshaus kultivierte Pflanzen sind keimlings lethal, während heterotroph kultivierte Pflanzen hingegen einen "high-chlorophyll-fluorescence" Phänotyp zeigen. Dies weist darauf hin, daß die Produkte der PetC und AtpD Gene essentiell für die Photosynthese sind. In Sterilkultur wurden auch eine veränderte Pigmentierung der Blätter und erhöhte Photoinhibition beobachtet. Das Fehlen des Rieske Proteins destabilisiert den Cyt  $b_6/f$  Komplex und bewirkt eine veränderte Zusammensetzung der Thylakoidmembran Proteine Komplexe, besonders die von PSII. Bei der petc-2 Mutante ist der lineare Elektronenfluß blockiert, was zu einem verändertem Redoxstatus des primären Akzeptor  $Q_A$  von PSII und des P700 Chlorophyll im Reaktionszentrums in PSI führt. Das Fehlen der  $\delta$ -Untereinheit der chloroplastidären ATP Synthase führt zu einer Destabilisierung des ATP Synthase Komplexes. Der Cyt  $b_6/f$  Komplex und die Photosysteme hingegen sind vorhanden und erlauben unter bestimmten Bedingungen einen photosynthetischen Elektronenfluß. Bei der *atpd-1* Mutante wurde ein erhöhtes nicht-photosynthetisches Quenching der Chlorophyll Fluoreszenz and ein höherer De-epoxidationsstatus der Xanthophyll Zyklus Pigmente bei Niedrig-Licht Bedingungen beobachtet. Dies ist stimmig mit einer erhöhten Azidifizierung des Thylakoidlumens bedingt durch den Defekt in der chloroplastidären ATP Synthase. Weitere und klare Unterschiede zwischen den zwei Mutanten wurden bei Untersuchung von mRNA Expressionsprofilen von Kern kodierten Chloroplasten Proteinen deutlich: die veränderte Chloroplastenphysiologie beider Mutanten löst verschiedene Plastiden Signale und Kern-Antworten aus.

### **6 REFERENCES**

- Abdallah F, Salamini F, Leister D (2000) A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5: 141-142
- Anderson JM (1986) Photoregulation of the composition, function and structure of thylakoid membranes. Annu Rev Plant Physiology **37:** 93-136
- Anderson JM, Chow WS, Goodchild DJ (1988) Thylakoid membrane organization in sun/shade acclimation. Australian Journal of Plant Physiology 15: 11-26
- Barkan, A, Miles, D, Taylor, WC (1986) Chloroplast gene expression in nuclear, photosynthetic mutants of maize. Embo J 5: 1421-1427
- Barkan A, Walker M, Nolasco M, Johnson D (1994) A nuclear mutation in maize blocks the processing and translation of several chloroplast mRNAs and provides evidence for the differential translation of alternative mRNA forms. Embo J 13: 3170-3181
- Barth C, Krause GH, Winter K (2001) Responses of photosystem I compared with photosystem II to high-light stress in tropical shade and sun leaves. Plant Cell Environ 24: 163-176
- **Bassi R, dal Belin Peruffo A, Barbato R, Ghisi R** (1985) Differences in chlorophyllprotein complexes and composition of polypeptides between thylakoids from bundle sheaths and mesophyll cells in maize. Eur J Biochem **146:** 589-595
- Bassi R, Pineau B, Dainese P, Marquardt J (1993) Carotenoid-binding proteins of photosystem II. Eur J Biochem 212: 297-303
- Beckers G, Berzborn RJ, Strotmann H (1992) Zero-length crosslinking between subunits  $\delta$  and I of the H<sup>+</sup>-translocating ATPase of chloroplasts. Biochim Biophys Acta **1101:** 97-104
- Bennoun P (1982) A respiratory chain in the thylakoid membranes of *Chlamydomonas* reinhardtii. Prog Clin Biol Res 102 Pt B: 291-298
- Berthold DA, Schmidt CL, Malkin R (1995) The deletion of *petG* in *Chlamydomonas reinhardtii* disrupts the cytochrome *bf* complex. J Biol Chem 270: 29293-29298
- **Boettcher B, Schwarz L, Graber P** (1998) Direct indication for the existence of a double stalk in CF<sub>0</sub>F<sub>1</sub>. J Mol Biol **281:** 757-762
- Boronowsky U, Wenk S, Schneider D, Jager C, Rogner M (2001) Isolation of membrane protein subunits in their native state: evidence for selective binding of chlorophyll and carotenoid to the  $b_6$  subunit of the cytochrome  $b_6 f$  complex. Biochim Biophys Acta 1506: 55-66
- Boyer PD (1999) What makes ATP synthase spin? Nature 402: 247, 249
- Breyton C, Tribet C, Olive J, Dubacq JP, Popot JL (1997) Dimer to monomer conversion of the cytochrome  $b_6 f$  complex. Causes and consequences. J Biol Chem 272: 21892-21900
- **Breyton C** (2000) The cytochrome  $b_6 f$  complex: structural studies and comparison with the  $bc_1$  complex. Biochim Biophys Acta **1459**: 467-474
- **Bruce BD, Malkin R** (1991) Biosynthesis of the chloroplast cytochrome  $b_6 f$  complex: studies in a photosynthetic mutant of *Lemna*. Plant Cell **3**: 203-212
- Budziszewski GJ, Lewis SP, Glover LW, Reineke J, Jones G, Ziemnik LS, Lonowski J, Nyfeler B, Aux G, Zhou Q, McElver J, Patton DA, Martienssen R, Grossniklaus U, Ma H, Law M, Levin JZ (2001) Arabidopsis genes essential for seedling viability: isolation of insertional mutants and molecular cloning. Genetics 159: 1765-1778
- Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156-159
- **Clayton RK** (1980) Photosynthesis: Physical mechanisms and chemical patterns. Cambridge University Press Cambridge, England
- Cline K, Ettinger WF, Theg SM (1992) Protein-specific energy requirements for protein transport across or into thylakoid membranes. Two lumenal proteins are transported in the absence of ATP. J Biol Chem 267: 2688-2696
- Cline K, Henry R, Li C, Yuan J (1993) Multiple pathways for protein transport into or across the thylakoid membrane. Embo J 12: 4105-4114
- **Clough SJ, Bent AF** (1998) Floral dip: a simplified method for *Agrobacterium*-mediated transformation of *Arabidopsis thaliana*. Plant J **16:** 735-743
- Cournac L, Redding K, Ravenel J, Rumeau D, Josse EM, Kuntz M, Peltier G (2000) Electron flow between photosystem II and oxygen in chloroplasts of photosystem Ideficient algae is mediated by a quinol oxidase involved in chlororespiration. J Biol Chem 275: 17256-17262
- Cournac L, Latouche G, Cerovic Z, Redding K, Ravenel J, Peltier G (2002) In vivo interactions between photosynthesis, mitorespiration, and chlororespiration in *Chlamydomonas reinhardtii*. Plant Physiol **129**: 1921-1928
- Cramer WA, Furbacher PN, Szczepaniak A, Tae G-S (1991) Electron transport between photosystem II and photosystem I. In CP Lee, ed, Current Topics in Bioenergetics, Academic Press, San Diego 16: 179-222
- **Crofts AR, Meinhardt SW, Jones KR, Snozzi M** (1983) The Role of the Quinone Pool in the Cyclic Electron-Transfer Chain on *Rhodopseudomonas-Sphaeroides* - a Modified Q-Cycle Mechanism. Biochim Biophys Acta **723**: 202-218
- de Vitry C (1994) Characterization of the Gene of the Chloroplast Rieske Iron-Sulfur Protein in *Chlamydomonas reinhardtii*. J Biol Chem **269:** 7603-7609
- de Vitry C, Finazzi G, Baymann F, Kallas T (1999) Analysis of the nucleus-encoded and chloroplast-targeted rieske protein by classic and site-directed mutagenesis of *Chlamydomonas*. Plant Cell **11**: 2031-2044
- Demmig-Adams B, Adams WW, Heber U, Neimanis S, Winter K, Krüger A, Czygan F-C, Bilger W, Bjorkman O (1990) Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithioreitol in spinach leaves and chloroplasts. Plant Physiol 92: 293-301
- Demmig-Adams B, Adams WW, Logan BA, Verhoeven AS (1995) Xanthophyll Cycle-Dependent Energy-Dissipation and Flexible Photosystem-II Efficiency in Plants Acclimated to Light Stress. Austr J Plant Physiol 22: 249-260
- **Devenish RJ, Prescott M, Roucou X, Nagley P** (2000) Insight into ATP synthase assembly and function through the molecular genetic manipulation of subunits of the yeast mitochondrial enzyme complex. Biochim Biophys Acta **1458**: 428-442
- **Douglas SE** (1998) Plastid evolution: origins, diversity, trends. Curr. Opin. Genet. Dev. 8: 655-661
- **Engelbrecht S, Junge W** (1988) Purified Subunit-δ of Chloroplast Coupling Factor-CF<sub>1</sub> Reconstitutes Photophosphorylation in Partially CF<sub>1</sub>-Depleted Membranes. Europ J Biochem **172:** 213-218
- **Engelbrecht S, Junge W** (1990) Subunit- $\delta$  of H<sup>+</sup>-ATPases at the Interface between Proton Flow and ATP Synthesis. Biochim Biophys Acta **1015**: 379-390
- Engelbrecht S, Reed J, Penin F, Gautheron DC, Junge W (1991) Subunit  $\delta$  of chloroplast F<sub>0</sub>F<sub>1</sub>-ATPase and OSCP of mitochondrial F<sub>0</sub>F<sub>1</sub>-ATPase: a comparison by CD-spectroscopy. Z Naturforsch [C] **46:** 759-764

- Engelbrecht S, Junge W (1997) ATP synthase: a tentative structural model. FEBS Lett 414: 485-491
- Farber A, Young AJ, Ruban AV, Horton P, Jahns P (1997) Dynamics of Xanthophyll-Cycle Activity in Different Antenna Subcomplexes in the Photosynthetic Membranes of Higher Plants (The Relationship between Zeaxanthin Conversion and Nonphotochemical Fluorescence Quenching). Plant Physiol 115: 1609-1618
- **Fiedler HR, Schlesinger J, Strotmann H, Shavit N, Leu S** (1997) Characterisation of *atpA* and *atpB* deletion mutants produced in *Chlamydomonas reinharddtii* cw15: electron transport and photophosphorylation activities in isolated thylakoids. Biochim Biophys Acta **1319**: 109-118
- **Finazzi G, Chasen C, Wollman FA, de Vitry C** (2003) Thylakoid targeting of Tat passenger proteins shows no ΔpH dependence *in vivo*. Embo J **22**: 807-815
- **Fromme P, Boekema EJ, Graber P** (1987) Isolation and Characterization of a Supramolecular Complex of Subunit-Iii of the ATPSynthase from Chloroplasts. Z Naturforsch [C] **42:** 1239-1245
- **Futai M, Noumi T, Maeda M** (1989) ATP synthase (H+-ATPase): results by combined biochemical and molecular biological approaches. Annu Rev Biochem **58**: 111-136
- Genty B, Barrell JM, Baker NR (1989) The relationship between quantum yield of phototsynthetic electron tranport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990: 87-92
- **Groth G, Strotmann H** (1999) New results about structure, function and regulation of the chloroplast ATP synthase ( $CF_0CF_1$ ). Physiologia Plantarum **106:** 142-148
- **Hager M, Biehler K, Illerhaus J, Ruf S, Bock R** (1999) Targeted inactivation of the smallest plastid genome-encoded open reading frame reveals a novel and essential subunit of the cytochrome cyt *b*<sub>6</sub>*f* complex. Embo J **18**: 5834-5842
- Haldrup A, Naver H, Scheller HV (1999) The interaction between plastocyanin and photosystem I is inefficient in transgenic Arabidopsis plants lacking the PSI-N subunit of photosystem I. Plant J 17: 689-698
- Hamel P, Olive J, Pierre Y, Wollman FA, de Vitry C (2000) A new subunit of cytochrome  $b_6f$  complex undergoes reversible phosphorylation upon state transition. J Biol Chem 275: 17072-17079
- Hanahan D (1983) Studies on Transformation of *Escherischia coli* with Plasmids. J Mol Biol 166: 557-580
- Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54: 1015-1069
- Hauska G, Schutz M, Buttner M (1996) Oxygenic Photosynthesis: The light reactions. Kluwer Academic Publishers, Dordrecht, the Netherland: 377-398
- **Hazard AL, Senior AE** (1994) Defective energy coupling in δ-subunit mutants of *Escherichia coli* F<sub>1</sub>F<sub>0</sub>-ATP synthase. J Biol Chem **269:** 427-432
- Hazard AL, Senior AE (1994) Mutagenesis of subunit δ from *Escherichia coli* F<sub>1</sub>F<sub>0</sub>-ATP synthase. J Biol Chem 269: 418-426
- Hill R, Bendall F (1960) Function of the two cytochrome components in chloroplast: a working hypothesis. Nature 186: 136-137
- **Hisabori T, Konno H, Ichimura H, Strotmann H, Bald D** (2002) Molecular devices of chloroplast F<sub>1</sub>-ATP synthase for the regulation. Biochim Biophys Acta **1555**: 140-146
- Hope AB (1993) The chloroplast cytochrome *bf* complex: a critical focus on function. Biochim Biophys Acta **1143:** 1-22

- **Inohara N, Iwamoto A, Moriyama Y, Shimomura S, Maeda M, Futai M** (1991) Two genes, *atpC1* and *atpC2*, for the γ subunit of *Arabidopsis thaliana* chloroplast ATP synthase. J Biol Chem **266**: 7333-7338
- Jahns P, Graf M, Munekage Y, Shikanai T (2002) Single point mutation in the Rieske iron-sulfur subunit of cytochrome  $b_{6}f$  leads to an altered pH dependence of plastoquinol oxidation in Arabidopsis. FEBS Lett **519**: 99-102
- Joliot P, Beal D, Frilley B (1980) Une nouvelle methode spectrophotometrique destine a l'etude des reactions photosynthetiques. J Chim Phys 77: 209-216
- **Joliot P, Joliot A** (2001) Electrogenic events associated with electron and proton transfer within the cytochrome  $b_6/f$  complex. Biochim Biophys Acta **1503**: 369-376
- Joliot P, Joliot A (2002) Cyclic electron transfer in plant leaf. Proc Natl Acad Sci U S A 99: 10209-10214
- Junge W, Engelbrecht S, Griwatz C, Groth G (1992) The Chloroplast H<sup>+</sup>-ATPase: Partial Reactions of the proton. J Exp Biol **172:** 461-474
- Junge W, Lill H, Engelbrecht S (1997) ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci 22: 420-423
- Junge W, Panke O, Cherepanov DA, Gumbiowski K, Muller M, Engelbrecht S (2001) Inter-subunit rotation and elastic power transmission in F<sub>0</sub>F<sub>1</sub>-ATPase. FEBS Lett **504:** 152-160
- **Ketcham SR, Davenport JW, Warncke K, McCarty RE** (1984) Role of the γ subunit of chloroplast coupling factor 1 in the light-dependent activation of photophosphorylation and ATPase activity by dithiothreitol. J Biol Chem **259**: 7286-7293
- Knight JS, Duckett CM, Sullivan JA, Walker AR, Gray JC (2002) Tissue-specific, light-regulated and plastid-regulated expression of the single-copy nuclear gene encoding the chloroplast Rieske FeS protein of *Arabidopsis thaliana*. Plant Cell Physiol 43: 522-531
- Koncz C, Mayerhofer R, Koncz-Kalman Z, Nawrath C, Reiss B, Redei GP, Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in *Arabidopsis thaliana*. Embo J **9**: 1337-1346
- Kramer DM, Sacksteder, CA, Cruz JA (1999) How acidic is the lumen? Photosyn Res 60: 153-163
- Kramer DM, Cruz JA, Kanazawa A (2003) Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci 8: 27-32
- **Krause GH, Weis E** (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol **42:** 313-349
- Kuras R, Wollman FA (1994) The assembly of cytochrome b<sub>6</sub>f complexes: an approach using genetic transformation of the green alga *Chlamydomonas reinhardtii*. Embo J 13: 1019-1027
- Kurth J, Varotto C, Pesaresi P, Biehl A, Richly E, Salamini F, Leister D (2002) Genesequence-tag expression analyses of 1,800 genes related to chloroplast functions. Planta 215: 101-109
- Lavergne J, Briantais J-M (1995) Photosystem II heterogeneity. In DR Ort, CF Yocum, eds, Advances in Photosynthesis. Oxygenic Photosynthesis: The Light Reactions. Kluwer Academic Publishers, Dotrecht, The Netherlands: 265-287
- Lemaire C, Wollman FA (1989) The chloroplast ATP synthase in *Chlamydomonas reinhardtii*. II. Biochemical studies on its biogenesis using mutants defective in photophosphorylation. J Biol Chem 264: 10235-10242
- Lill H, Hensel F, Junge W, Engelbrecht S (1996) Cross-linking of engineered subunit  $\delta$  to  $(\alpha\beta)_3$  in chloroplast F-ATPase. J Biol Chem 271: 32737-32742

- Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of *Arabidopsis thaliana* T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8: 457-463
- Madueno F, Napier JA, Cejudo FJ, Gray JC (1992) Import and processing of the precursor of the Rieske FeS protein of tobacco chloroplasts. Plant Mol Biol 20: 289-299
- Madueno F, Bradshaw SA, Gray JC (1994) The thylakoid-targeting domain of the chloroplast Rieske iron-sulfur protein is located in the N-terminal hydrophobic region of the mature protein. J Biol Chem 269: 17458-17463
- Majeran W, Olive J, Drapier D, Vallon O, Wollman FA (2001) The light sensitivity of ATP synthase mutants of *Chlamydomonas reinhardtii*. Plant Physiol **126**: 421-433
- Meurer J, Meierhoff K, Westhoff P (1996) Isolation of high-chlorophyll-fluorescence mutants of *Arabidopsis thaliana* and their characterisation by spectroscopy, immunoblotting and northern hybridisation. Planta **198**: 385-396
- Miles D (1982) The use of mutations to probe photosynthesis in higher plants. In M Edelman, RB Hallick, N-H Chua, eds, Methods in Chloroplast Molecular Biology Elsevier Biomedical Press, Amsterdam: 75-107
- Mills DA, Richter ML (1991) Nucleotide binding to the isolated  $\beta$  subunit of the chloroplast ATP synthase. J Biol Chem 266: 7440-7444
- Mills JD (1995) The Regulation of Chloroplast ATP Synthase, CF<sub>0</sub>-CF<sub>1</sub>. in Ort, D. R., Yocum, C. Y.: Adv Photosyn 4: 469-485
- Mitchell P (1975) Protonmotive Q-cycle-general formulation. FEBS Lett 59: 137-139
- Molik S, Karnauchov I, Weidlich C, Herrmann RG, Klosgen RB (2001) The Rieske Fe/S protein of the cytochrome  $b_6 f$  complex in chloroplasts: missing link in the evolution of protein transport pathways in chloroplasts? J Biol Chem 276: 42761-42766
- Monde RA, Zito F, Olive J, Wollman FA, Stern DB (2000) Post-transcriptional defects in tobacco chloroplast mutants lacking the cytochrome  $b_6 f$  complex. Plant J 21: 61-72
- **Monticello RA, Brusilow WS** (1994) Role of the  $\delta$  subunit in enhancing proton conduction through the F<sub>0</sub> of the *Escherichia coli* F<sub>1</sub>F<sub>0</sub> ATPase. J Bacteriol **176**: 1383-1389
- Mould RM, Robinson C (1991) A proton gradient is required for the transport of two lumenal oxygen-evolving proteins across the thylakoid membrane. J Biol Chem 266: 12189-12193
- Muhlbauer SK, Eichacker LA (1998) Light-dependent formation of the photosynthetic proton gradient regulates translation elongation in chloroplasts. J Biol Chem 273: 20935-20940
- Muller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125: 1558-1566
- Munekage Y, Takeda S, Endo T, Jahns P, Hashimoto T, Shikanai T (2001) Cytochrome  $b_6 f$  mutation specifically affects thermal dissipation of absorbed light energy in Arabidopsis. Plant J 28: 351-359
- Nalin CM, McCarty RE (1984) Role of a disulfide bond in the γ subunit in activation of the ATPase of chloroplast coupling factor 1. J Biol Chem 259: 7275-7280
- Nitschke W, Joliot P, Liebl U, Rutherford AW, Hauska G, Muller A, Riedel A (1992) The pH-Dependence of the Redox Midpoint Potential of the 2fe2s Cluster from Cytochrome-*b*<sub>6</sub>*f* Complex (the Rieske Center). Biochim Biophys Acta **1102**: 266-268

- Niyogi KK, Bjorkman O, Grossman AR (1997) Chlamydomonas Xanthophyll Cycle Mutants Identified by Video Imaging of Chlorophyll Fluorescence Quenching. Plant Cell 9: 1369-1380
- Niyogi KK, Grossman AR, Bjorkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10: 1121-1134
- Niyogi KK (2000) Safety valves for photosynthesis. Curr Opin Plant Biol 3: 455-460
- Noctor G, Ruban AV, Horton P (1993) Modulation of ΔpH-dependent nonphotochemical quenching of chlorophyll fluorescence in isolated chloroplasts. Biochim Biophys Acta 1183: 339-344
- Ort DR, Oxborough K (1992) In Situ Regulation of Chloroplast Coupling Factor Activity Annu Rev Plant Mol Biol 43: 269-291
- Ovchinnikov YA, Modyanov NN, Grinkevich VA, Aldanova NA, Trubetskaya OE, Nazimov IV, Hundal T, Ernster L (1984) Amino acid sequence of the oligomycin sensitivity-conferring protein (OSCP) of beef-heart mitochondria and its homology with the delta-subunit of the F<sub>1</sub>-ATPase of *Escherichia coli*. FEBS Lett **166**: 19-22
- Palomares R, Herrmann RG, Oelmuller R (1991) Different blue-light requirement for the accumulation of transcripts from nuclear genes for thylakoid proteins in *Nicotiana tabacum* and *Lycopersicon esculentum*. J Photochem Photobiol B 11: 151-162
- **Patrie WJ, McCarty RE** (1984) Specific binding of coupling factor 1 lacking the  $\delta$  and  $\epsilon$  subunits to thylakoids. J Biol Chem **259:** 11121-11128
- Pesaresi P, Varotto C, Meurer J, Jahns P, Salamini F, Leister D (2001) Knock-out of the plastid ribosomal protein L11 in Arabidopsis: effects on mRNA translation and photosynthesis. Plant J 27: 179-189
- Peter GF, Thornber JP (1991) Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J Biol Chem 266: 16745-16754
- **Pfannschmidt T** (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8: 33-41
- **Pierre Y, Breyton C, Kramer D, Popot JL** (1995) Purification and characterization of the cytochrome *b*<sub>6</sub>*f* complex from *Chlamydomonas reinhardtii*. J Biol Chem **270**: 29342-29349
- Pierre Y, Breyton C, Lemoine Y, Robert B, Vernotte C, Popot JL (1997) On the presence and role of a molecule of chlorophyll a in the cytochrome b<sub>6</sub>f complex. J Biol Chem 272: 21901-21908
- **Porra R, Thompson W, Kriedemann P** (1989) Determination of accurate extiction coefficients and simultaneous equations for assaying chlorophyll *a* and *b* exctracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta **975**: 384-394
- **Prescott M, Bush NC, Nagley P, Devenish RJ** (1994) Properties of Yeast-Cells Depleted of the OSCP Subunit of Mitochondrial ATP Synthase by Regulated Expression of the *Atp5* Gene. Biochemistry and Molecular Biology International **34:** 789-799
- Price GD, Yu JW, Voncaemmerer S, Evans JR, Chow WS, Anderson JM, Hurry V, Badger MR (1995) Chloroplast Cytochrome  $b_6f$  and ATP Synthase Complexes in Tobacco - Transformation with Antisense RNA against Nuclear-Encoded Transcripts for the Rieske FeD and ATP- $\delta$  Polypeptides. Austr J Plant Physiol 22: 285-297
- **Renger G, Govindjee** (1985) The Mechanism of Photosynthetic Water Oxidation. Photosyn Res **6:** 33-55

- Richly E, Kurth J, Leister D (2002) Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol 19: 76-84
- Richly E, Dietzmann A, Biehl A, Kurth J, Laloi C, Apel K, Salamini F, Leister D. (2003) Covariations in the nuclear chloroplast transcriptome reveal a regulatory master-switch. EMBO Rep 4 1-8
- Richter ML, Hein R, Huchzermeyer B (2000) Important subunit interactions in the chloroplast ATP synthase. Biochim Biophys Acta 1458: 326-342
- Robertson D, Woessner JP, Gillham NW, Boynton JE (1989) Molecular characterization of two point mutants in the chloroplast *atpB* gene of the green alga *Chlamydomonas reinhardtii* defective in assembly of the ATP synthase complex. J Biol Chem 264: 2331-2337
- Robinson C, Thompson SJ, Woolhead C (2001) Multiple pathways used for the targeting of thylakoid proteins in chloroplasts. Traffic 2: 245-251
- Rodgers AJ, Wilkens S, Aggeler R, Morris MB, Howitt SM, Capaldi RA (1997) The subunit  $\delta$ -subunit b domain of the *Escherichia coli* F<sub>1</sub>F<sub>0</sub> ATPase. The b subunits interact with F<sub>1</sub> as a dimer and through the  $\delta$  subunit. J Biol Chem 272: 31058-31064
- **Rutherford AW, Heathcope P** (1985) Primary photochemistry in photosystem I. Photosynth Res: 295-316
- Salter AH, Newman BJ, Napier JA, Gray JC (1992) Import of the precursor of the chloroplast Rieske iron-sulphur protein by pea chloroplasts. Plant Mol Biol 20: 569-574
- Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press Ed., New York
- Sanguinetti CJ, Dias Neto E, Simpson AJ (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17: 914-921
- Sauer K (1975) Primary events and the trapping of energy. In: Bioenergetics of Photosynthesis, Govindjee, ed. Academic Press, New York: 116-181
- Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368-379
- Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10: 51-62
- Shochat S, Adir N, Gal A, Inoue Y, Mets L, Ohad I (1990) Photoinactivation of photosystem II and degradation of the D 1 protein are reduced in a cytochrome b<sub>6</sub>fless mutant of *Chlamydomonas reinhardtii*. Z Naturforsch [C] **45**: 395-401
- **Smart EJ, Selman BR** (1991) Isolation and Characterization of a *Chlamydomonas reinhardtii* Mutant Lacking the γ-Subunit of Chloroplast Coupling Factor-I (CF<sub>1</sub>). Mol Cell Biol **11**: 5053-5058
- **Smart EJ, Selman BR** (1993) Complementation of a *Chlamydomonas reinhardtii* mutant defective in the nuclear gene encoding the chloroplast coupling factor 1 (CF<sub>1</sub>)  $\gamma$ -subunit (*atpC*). J Bioenerg Biomembr **25:** 275-284
- Stack AE, Cain BD (1994) Mutations in the  $\delta$  subunit influence the assembly of  $F_1F_0$  ATP synthase in *Escherichia coli*. J Bacteriol **176:** 540-542
- Straffon AF, Prescott M, Nagley P, Devenish RJ (1998) The assembly of yeast mitochondrial ATP synthase: subunit depletion *in vivo* suggests ordered assembly of the stalk subunits b, OSCP and d. Biochim Biophys Acta **1371**: 157-162

- Strand A, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature 421: 79-83
- Stubbe W, Herrmann RG (1982) Selection and maintenance of plastome mutants and interspecific genome/plastome hybrids in *Oenothera*. In M Edelman, RB Hallick, N-H Chua, eds, Methods in Chloroplast Molecular Biology. Elsevier Biomedical Press, Amsterdam: 149-165
- Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18: 207-208
- Surpin M, Larkin RM, Chory J (2002) Signal transduction between the chloroplast and the nucleus. Plant Cell 14 Suppl: S327-338
- **Takahashi Y, Rahire M, Breyton C, Popot JL, Joliot P, Rochaix JD** (1996) The chloroplast *ycf*7 (petL) open reading frame of *Chlamydomonas reinhardtii* encodes a small functionally important subunit of the cytochrome  $b_6f$  complex. Embo Journal **15:** 3498-3506
- Thiele A, Winter K, Krause GH (1997) Low Inactivation of D1 Protein of Photosystem II in Young Canopy Leaves of Anacardium excelsum under High-Light Stress. J Plant Physiol 151: 286-292
- Van Walraven HS, Strotmann H, Schwarz O, Rumberg B (1996) The H<sup>+</sup>/ATP coupling ratio of the ATP synthase from thiol-modulated chloroplasts and two cyanobacterial strains is four. FEBS Lett **379**: 309-313
- Varotto C, Pesaresi P, Meurer J, Oelmuller R, Steiner-Lange S, Salamini F, Leister D (2000) Disruption of the Arabidopsis photosystem I gene *psaE1* affects photosynthesis and impairs growth. Plant J **22**: 115-124
- **Voelker R, Barkan A** (1995) Nuclear genes required for post-translational steps in the biogenesis of the chloroplast cytochrome  $b_{6}f$  complex in maize. Mol Gen Genet **249:** 507-514
- Walker JE, Cozens, A.L. (1986) Evolution of ATP synthase. Chem Scripta 26: 263-272
- Wilkens S, Rodgers A, Ogilvie I, Capaldi RA (1997) Structure and arrangement of the δ subunit in the *E. coli* ATP synthase (ECF<sub>1</sub>F<sub>0</sub>). Biophys Chem **68**: 95-102
- Wisman E, Hartmann U, Sagasser M, Baumann E, Palme K, Hahlbrock K, Saedler H, Weisshaar B (1998) Knock-out mutants from an *En-1* mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes. Proc Natl Acad Sci U S A 95: 12432-12437
- Yamamoto H, Bassi R (1996) Carotenoids: localization and function. In DR Ort, CF Yocum, eds, Oxygenic Photosynthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands: 539-583
- **Zhang H, Huang D, Cramer WA** (1999) Stoichiometrically bound  $\beta$ -carotene in the cytochrome  $b_6 f$  complex of oxygenic photosynthesis protects against oxygen damage. J Biol Chem **274:** 1581-1587

# 7 APPENDIX

#### 7.1 **Detailed image of hierarchical clustering of the expression profiles**

344 genes that show significant differential expression in at least five of the six mutants *petc-2*, *atpd-1*, *psae1-1*, *psad1-1*, *psan-1* and *psao-1*. The cladogram at the top summarizes the degree of relatedness between the transcriptome responses in the six genotypes. Colors indicate up (red)- or down (green)-regulation of gene expression. Grey lines indicate non-significant differential expression (see also Figure 3.18a)









| 3.0 1:1-3.0                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22-22                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cad a de                                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| pad<br>disc<br>part<br>part<br>part<br>part<br>part |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CT -                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                     | At la79960    | hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                     | At3q53860     | putative protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     | At4q25720     | glutamine cyclotransferase precursor - like protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | At5g03910     | ABC transporter -like protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                     | At3q52550     | hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                     | At3q11150     | hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                     | At3q18420     | unknown protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                     | At 1g30100    | 9-cis-epoxycarotenoid dioxygenase. putative; neoxanthin cleavage enzyme - like                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                     | At5g44750     | putative protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     | At lg12520    | unknown protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                     | At 4g 35 68 0 | putative protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     | At 1g63720    | hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                     | At3g04680     | unknown protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                     | At3g17700     | hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                     | At 1g62010    | hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                     | At 3g 45850   | kinesin-related protein - like                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                     | At3g57950     | putative protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     | At 1g68070    | putative RING zinc finger protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                     | At 3g 47200   | putative protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     | At5g07900     | putative protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     | At 1g27660    | hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                     | At5g46390     | carboxy-terminal proteinase D1-like protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                     | At 1g/9480    | hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                     | At 4g 29490   | putative protein, tragment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                     | At5g48370     | putative protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     | At2g40400     | unknown protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                     | At 3g 48 110  | gijcine tkiva liga se precursor, chloropia st (edd 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     | At 4g 19490   | putative protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     | At 4924860    | putative protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     | At4910100     | putative protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     | At4010750     | putative a kiela ze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | At3062520     | putative protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     | At3006850     | branched chain a loha -keto acid dehydrogena se E2 subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                     |               | CONTRACTOR STRATT STRATE STRATE STRATES STRATES AND STRATES |

| MIPS-code/GI                 | <i>petc-2</i><br>vs. WT | <i>atpd-1</i><br>vs. WT | MIPS-code/GI    | <i>petc-2</i><br>vs. WT      | <i>atpd-1</i><br>vs. WT | MIPS-code/GI | <i>petc-</i> 2<br>vs. WT     | <i>atpd-1</i><br>vs. WT |  |  |
|------------------------------|-------------------------|-------------------------|-----------------|------------------------------|-------------------------|--------------|------------------------------|-------------------------|--|--|
| up-regulated in both mutants |                         |                         | up-regulated in | up-regulated in both mutants |                         |              | up-regulated in both mutants |                         |  |  |
| At4g29060                    | 2.09                    | 1.65                    | At5g66210       | 1.47                         | 5.57                    | At5g06670    | 1.71                         | 1.79                    |  |  |
| At4g33170                    | 1.28                    | 4.55                    | At4g03410       | 1.57                         | 1.78                    | At1g78630    | 1.56                         | 2.05                    |  |  |
| At4g35170                    | 2.23                    | 2.26                    | At5g56050       | 1.76                         | 5.49                    | At1g74220    | 2.00                         | 2.70                    |  |  |
| At4g27990                    | 3.55                    | 2.13                    | At5g62840       | 1.41                         | 3.28                    | At2g37510    | 2.69                         | 4.75                    |  |  |
| At2g39670                    | 1.48                    | 2.78                    | At5g41380       | 1.64                         | 4.48                    | At1g65370    | 1.33                         | 4.44                    |  |  |
| At2g03220                    | 1.29                    | 1.57                    | At2g18820       | 1.64                         | 5.02                    | At4g08900    | 2.19                         | 1.46                    |  |  |
| At4g38660                    | 1.55                    | 1.86                    | At5g45980       | 1.37                         | 2.61                    | At2g39360    | 1.71                         | 2.97                    |  |  |
| At4g27510                    | 1.62                    | 7.93                    | At2g37750       | 1.67                         | 1.68                    | At1g05610    | 1.39                         | 2.20                    |  |  |
| At2g23800                    | 1.45                    | 1.58                    | At3g48000       | 1.44                         | 2.06                    | At2g33250    | 1.95                         | 2.38                    |  |  |
| At1g17740                    | 1.40                    | 6.26                    | At2g43870       | 2.60                         | 2.43                    | At4g08940    | 1.33                         | 2.09                    |  |  |
| At4g23890                    | 1.61                    | 1.51                    | At4g28840       | 1.42                         | 2.78                    | At4g11090    | 3.98                         | 1.95                    |  |  |
| At4g37890                    | 1.66                    | 7.24                    | At4g03310       | 1.35                         | 16.19                   | At5g04590    | 1.64                         | 1.39                    |  |  |
| At5g23070                    | 1.46                    | 5.40                    | At4g27250       | 1.31                         | 7.04                    | At2g38310    | 3.51                         | 1.53                    |  |  |
| At4g32040                    | 1.32                    | 1.67                    | At2g01760       | 1.50                         | 4.89                    | At2g21860    | 1.42                         | 1.77                    |  |  |
| At5g61450                    | 1.28                    | 2.78                    | At1g22680       | 3.27                         | 2.33                    | At3g21865    | 1.49                         | 4.47                    |  |  |
| At4g14910                    | 1.31                    | 3.48                    | At5g06290       | 1.29                         | 1.45                    | At2g45310    | 1.31                         | 2.12                    |  |  |
| At4g00170                    | 2.03                    | 1.60                    | At5g52810       | 2.03                         | 2.94                    | At4g25290    | 2.51                         | 3.09                    |  |  |
| At2g37330                    | 1.58                    | 2.08                    | At4g39940       | 5.28                         | 2.14                    | At2g31800    | 1.33                         | 1.38                    |  |  |
| At4g19900                    | 1.73                    | 13.20                   | At3g48320       | 1.84                         | 2.78                    | At4g25120    | 1.58                         | 2.02                    |  |  |
| At3g54900                    | 1.45                    | 1.61                    | At5g52250       | 2.75                         | 1.89                    | At3g22690    | 1.60                         | 2.13                    |  |  |
| At3g63410                    | 4.41                    | 1.61                    | At3g44570       | 2.27                         | 2.57                    | At2g17120    | 1.79                         | 7.81                    |  |  |
| At5g53920                    | 1.52                    | 13.39                   | At3g01370       | 1.70                         | 4.19                    | At4g35510    | 1.38                         | 2.30                    |  |  |
| At3g04650                    | 2.13                    | 4.05                    | At2g31040       | 1.89                         | 1.71                    | At3g57440    | 3.05                         | 7.61                    |  |  |
| At4g26860                    | 1.39                    | 2.54                    | At1g02060       | 1.59                         | 13.41                   | At4g00650    | 1.43                         | 3.51                    |  |  |
| At4g19010                    | 1.47                    | 3.68                    | At4g09620       | 2.81                         | 4.08                    | At3g26940    | 1.42                         | 1.67                    |  |  |
| At5g36860                    | 1.95                    | 10.44                   | At3g03880       | 1.43                         | 3.12                    | At5g66530    | 2.06                         | 2.02                    |  |  |
| At5g04770                    | 1.32                    | 2.45                    | At4g07990       | 2.86                         | 10.24                   | At3g49350    | 1.48                         | 16.29                   |  |  |
| At3g18190                    | 1.51                    | 2.71                    | At2g35650       | 1.40                         | 4.79                    | At4g08600    | 1.52                         | 8.34                    |  |  |
| At1g35510                    | 2.50                    | 15.91                   | At3g50770       | 1.41                         | 4.72                    | At1g01290    | 1.57                         | 5.61                    |  |  |
| At5g19850                    | 1.31                    | 4.64                    | At1g72520       | 1.82                         | 1.89                    | At2g17540    | 4.14                         | 4.28                    |  |  |
| At2g28070                    | 1.38                    | 3.39                    | At5g04600       | 2.68                         | 1.36                    | At2g26790    | 1.32                         | 2.70                    |  |  |
| At4g24840                    | 1.31                    | 2.56                    | At3g58190       | 1.71                         | 6.47                    | At3g02875    | 1.29                         | 2.47                    |  |  |
| At3g57780                    | 1.29                    | 2.32                    | At2g37040       | 1.86                         | 5.33                    | At2g32920    | 1.44                         | 2.97                    |  |  |
| At4g20360                    | 1.42                    | 1.53                    | At2g38470       | 1.45                         | 5.61                    | At4g25050    | 1.38                         | 1.99                    |  |  |
| At2g37230                    | 1.58                    | 1.38                    | At1g48490       | 1.67                         | 1.95                    | At4g29890    | 2.07                         | 4.93                    |  |  |
| At4g17070                    | 2.25                    | 8.18                    | At1g05190       | 1.44                         | 3.82                    | At2g23230    | 1.71                         | 2.61                    |  |  |
| At2g41460                    | 1.34                    | 3.96                    | At4g02740       | 1.35                         | 3.96                    | At4g26780    | 2.15                         | 12.47                   |  |  |
| At4g23190                    | 1.43                    | 1.72                    | At1g05140       | 3.70                         | 4.36                    | At2g22890    | 2.60                         | 2.95                    |  |  |
| At4g13550                    | 2.07                    | 4.23                    | At4g13260       | 1.39                         | 3.95                    | At3g21810    | 1.68                         | 3.17                    |  |  |
| At2g04240                    | 2.32                    | 3.28                    | At1g79380       | 1.39                         | 1.70                    | At1g20510    | 1.48                         | 4.69                    |  |  |
| At1g73110                    | 1.50                    | 2.81                    | At1g04570       | 1.47                         | 2.83                    | At3g07100    | 2.85                         | 1.64                    |  |  |
| At4g15910                    | 1.65                    | 3.35                    | At5g13280       | 1.44                         | 3.60                    | At2g41040    | 2.47                         | 3.79                    |  |  |
| At1g73150                    | 1.29                    | 4.07                    | At2g44570       | 1.30                         | 1.85                    | At1g65080    | 1.53                         | 5.53                    |  |  |
| At3g53350                    | 1.74                    | 2.29                    | At1g30950       | 2.00                         | 1.36                    | At3g63190    | 1.54                         | 1.75                    |  |  |
| At4g17650                    | 1.52                    | 3.59                    | At1g51350       | 1.53                         | 5.25                    | At3g02040    | 1.86                         | 5.89                    |  |  |
| At2g33980                    | 1.81                    | 6.08                    | At3g27740       | 1.59                         | 2.94                    | At1g24040    | 1.71                         | 2.00                    |  |  |
| At1g44575                    | 1.35                    | 2.04                    | At1g22040       | 1.41                         | 3.58                    | At5g19000    | 1.37                         | 3.58                    |  |  |
| At3g58990                    | 1.29                    | 1.77                    | At1g20070       | 2.30                         | 10.38                   | At4g17330    | 1.44                         | 5.64                    |  |  |
| At5g23120                    | 1.37                    | 1.56                    | At3g22700       | 1.54                         | 4.30                    | At4g22760    | 1.37                         | 3.18                    |  |  |
| At5g61440                    | 1.31                    | 5.34                    | At5g02860       | 1.51                         | 3.51                    | At4g32130    | 2.57                         | 1.88                    |  |  |
| At4g27670                    | 1.30                    | 2.12                    | At5g49910       | 1.43                         | 1.46                    | At4g04350    | 1.30                         | 5.27                    |  |  |
| At2g35600                    | 1.90                    | 3.68                    | At4g27020       | 3.80                         | 23.44                   | At4g32060    | 2.08                         | 10.16                   |  |  |
| At3g57110                    | 1.32                    | 1.44                    | At4g11170       | 1.62                         | 2.85                    | At1g24150    | 1.32                         | 1.78                    |  |  |

# 7.2 Direct comparison of the differential expression profiles of *petc-2* and *atpd-1* plants

| MIPS-code/GI    | <i>petc-2</i><br>vs. WT | <i>atpd-1</i><br>vs. WT | MIPS-code/GI    | <i>petc-2</i><br>vs. WT | <i>atpd-1</i><br>vs. WT | MIPS-code/GI    | <i>petc-2</i><br>vs. WT | <i>atpd-1</i><br>vs. WT |
|-----------------|-------------------------|-------------------------|-----------------|-------------------------|-------------------------|-----------------|-------------------------|-------------------------|
| up-regulated in | both mu                 | tants                   | up-regulated in | both mu                 | tants                   | up-regulated in | both mu                 | tants                   |
| At2g35400       | 1.41                    | 2.16                    | At5g14840       | 1.86                    | 2.68                    | At4g31530       | 2.32                    | 5.66                    |
| At3g26630       | 3.39                    | 1.46                    | At3g42100       | 1.36                    | 2.08                    | At5g04140       | 1.85                    | 4.04                    |
| At4g33350       | 1.99                    | 2.10                    | At4g36190       | 1.77                    | 1.97                    | At2g02740       | 1.55                    | 1.68                    |
| At1g78160       | 1.45                    | 6.03                    | At2g04790       | 1.67                    | 7.75                    | At4g30910       | 1.34                    | 4.11                    |
| At3g23940       | 2.14                    | 3.16                    | At5g38680       | 1.57                    | 1.80                    | At4g36150       | 1.31                    | 3.82                    |
| At3g10350       | 2.20                    | 6.30                    | At5g38190       | 1.88                    | 5.83                    | At4g20740       | 1.33                    | 4.87                    |
| At5g44820       | 1.51                    | 2.77                    | At1g07160       | 3.62                    | 1.70                    | At2g01480       | 1.88                    | 1.69                    |
| At3g01170       | 1.37                    | 2.10                    | At4g18810       | 1.34                    | 1.89                    | At4g08280       | 1.30                    | 2.27                    |
| At1g32900       | 2.04                    | 1.77                    | At2g33230       | 2.86                    | 1.62                    | At4g20930       | 2.61                    | 7.57                    |
| At1g66670       | 1.72                    | 5.55                    | At4g26220       | 1.36                    | 5.12                    | At2g16460       | 3.15                    | 3.06                    |
| At4g20090       | 2.46                    | 3.32                    | At1g62180       | 1.41                    | 5.71                    | At4g20690       | 1.89                    | 1.39                    |
| At5g32490       | 1.73                    | 1.49                    | At2g01150       | 1.39                    | 1.49                    | At5g17280       | 1.35                    | 2.30                    |
| At5g65840       | 1.87                    | 6.74                    | At3g09600       | 1.55                    | 1.38                    | At4g29790       | 1.41                    | 1.96                    |
| At4g27580       | 1.36                    | 4.07                    | At2g33100       | 2.18                    | 3.75                    | At1g80480       | 1.63                    | 1.61                    |
| At4g34440       | 1.34                    | 1.41                    | At4g26310       | 1.66                    | 2.74                    | At5g49590       | 1.40                    | 24.60                   |
| At1g23210       | 1.32                    | 11.41                   | At4g20120       | 1.34                    | 1.45                    | At4g09700       | 1.70                    | 1.65                    |
| At4g22320       | 2.32                    | 4.03                    | At4g01650       | 2.94                    | 2.33                    | At4g24930       | 1.49                    | 2.61                    |
| At1g64780       | 1.47                    | 5.64                    | At3g44670       | 1.34                    | 2.66                    | At4g28590       | 1.66                    | 2.39                    |
| At5g07540       | 2.07                    | 5.59                    | 3834303         | 1.81                    | 1.54                    | At4g31180       | 1.35                    | 1.45                    |
| At1g69370       | 1.44                    | 1.83                    | At1g21670       | 1.35                    | 13.27                   | At4g20230       | 3.34                    | 2.07                    |
| At2g43050       | 1.29                    | 1.98                    | At3g44880       | 1.37                    | 12.79                   | At4g12390       | 2.30                    | 14.97                   |
| At1g13990       | 1.36                    | 1.35                    | At2g18900       | 1.78                    | 1.36                    | At1g21600       | 1.80                    | 4.02                    |
| At4g18370       | 1.30                    | 1.35                    | At2g15820       | 2.21                    | 5.58                    | At1g10960       | 2.55                    | 1.40                    |
| At5g58330       | 1.33                    | 8.17                    | At2g18940       | 1.29                    | 1.53                    | At4g23200       | 1.29                    | 1.42                    |
| At1g12900       | 2.29                    | 2.43                    | At2g24820       | 1.38                    | 2.76                    | At5g35360       | 1.44                    | 4.82                    |
| At2g19940       | 1.53                    | 1.64                    | At1g03260       | 1.70                    | 2.09                    | At1g08770       | 1.60                    | 2.08                    |
| At4g24280       | 1.36                    | 2.27                    | At2g22230       | 1.46                    | 3.13                    | At2g05590       | 2.49                    | 1.68                    |
| At3g15780       | 1.42                    | 4.01                    | At2g30570       | 1.42                    | 2.77                    | At1g62250       | 1.40                    | 1.46                    |
| At1g01730       | 1.79                    | 1.90                    | At1g75690       | 1.39                    | 3.38                    | At5g39210       | 1.49                    | 3.22                    |
| At4g39540       | 1.66                    | 3.07                    | At2g27360       | 1.30                    | 3.93                    | At1g11470       | 1.47                    | 3.86                    |
| At2g19870       | 1.42                    | 16.07                   | At2g18980       | 1.61                    | 1.36                    | At4g22590       | 1.70                    | 9.76                    |
| At4g39980       | 1.36                    | 5.87                    | At1g03230       | 1.41                    | 1.60                    | At1g09780       | 1.45                    | 1.63                    |
| At3g58610       | 1.54                    | 2.30                    | At2g30460       | 2.99                    | 21.31                   | At3g07670       | 1.68                    | 1.80                    |
| At4g39030       | 1.40                    | 7.29                    | At2g27290       | 1.28                    | 4.04                    | At3g56410       | 1.31                    | 2.68                    |
| At4g29540       | 1.49                    | 4.05                    | At1g50770       | 2.38                    | 4.18                    | At3g52190       | 1.49                    | 2.82                    |
| At2g11380       | 1.55                    | 5.10                    | At3g59100       | 1.49                    | 1.85                    | At1g47520       | 1.52                    | 6.54                    |
| At1g34300       | 1.44                    | 4.44                    | At3g63130       | 1.30                    | 2.58                    | At3g26840       | 1.35                    | 2.27                    |
| At4g21210       | 1.33                    | 1.45                    | At5g02250       | 1.76                    | 1.60                    | At3g03580       | 1.43                    | 3.33                    |
| At4g29670       | 2.83                    | 12.87                   | At5g13090       | 1.33                    | 2.02                    | At5g22830       | 1.35                    | 1.42                    |
| At2g31160       | 1.38                    | 2.01                    | At1g16880       | 1.28                    | 1.42                    | At5g04360       | 1.57                    | 1.37                    |
| At4g29750       | 1.31                    | 2.13                    | At5g06990       | 3.72                    | 1.75                    | At3g63340       | 1.32                    | 1.37                    |
| At2g47860       | 1.37                    | 1.72                    | At2g04030       | 1.52                    | 7.87                    | At3g22780       | 1.62                    | 4.21                    |
| At2g47910       | 1.37                    | 3.02                    | At2g22210       | 1.31                    | 2.54                    | At5g46580       | 1.37                    | 2.80                    |
| At1g52220       | 1.36                    | 2.35                    | At3g63320       | 1.66                    | 1.43                    | At5g57930       | 1.51                    | 3.90                    |
| At5g03940       | 1.56                    | 1.47                    | At1g01500       | 2.19                    | 1.51                    | At3g24260       | 1.51                    | 2.68                    |
| At4g34830       | 1.62                    | 2.75                    | At1g79460       | 1.35                    | 1.85                    | At3g22430       | 1.30                    | 2.96                    |
| At4g34200       | 1.51                    | 2.17                    | At4g25970       | 1.38                    | 1.98                    | At2g21230       | 1.46                    | 1.59                    |
| At4g10060       | 1.47                    | 5.09                    | At5g26030       | 2.15                    | 4.15                    | At2g38340       | 1.35                    | 1.35                    |
| At5g10980       | 1.31                    | 1.43                    | At2g43100       | 1.36                    | 2.68                    | At4g36010       | 1.74                    | 6.20                    |
| At5g48990       | 1.53                    | 2.28                    | At2g11100       | 1.29                    | 6.77                    | At2g42310       | 1.52                    | 1.55                    |
| At1g06730       | 1.34                    | 1.45                    | At5g51460       | 1.80                    | 1.67                    | At3g44310       | 1.44                    | 1.63                    |
| At1g18890       | 1.49                    | 1.95                    | At1g54710       | 1.54                    | 2.46                    | At5g28750       | 1.41                    | 2.41                    |
| At4g38970       | 2.01                    | 2.41                    | At3g47650       | 1.45                    | 11.81                   | At1g49970       | 1.38                    | 6.08                    |

| MIPS-code/GI    | <i>petc-2</i><br>vs. WT | <i>atpd-1</i><br>vs. WT | MIPS-code/GI    | <i>petc-2</i><br>vs. WT | <i>atpd-1</i><br>vs. WT | MIPS-code/GI  | <i>petc-2</i><br>vs. WT | <i>atpd-1</i><br>vs. WT |
|-----------------|-------------------------|-------------------------|-----------------|-------------------------|-------------------------|---------------|-------------------------|-------------------------|
| up-regulated in | n both mu               | tants                   | up-regulated ir | n both mu               | tants                   | down-regulate | d in both i             | nutants                 |
| At2g28880       | 1.34                    | 1.82                    | At3g14900       | 1.72                    | 7.63                    | At5g54190     | 0.67                    | 0.46                    |
| At3g54870       | 2.25                    | 1.36                    | At1g24130       | 1.29                    | 3.08                    | At4g23930     | 0.68                    | 0.69                    |
| At1g55630       | 1.31                    | 3.40                    | At1g70180       | 1.55                    | 1.41                    | At3g50820     | 0.70                    | 0.49                    |
| At4g01280       | 2.25                    | 1.89                    | At2g34470       | 1.81                    | 2.61                    | At1g70350     | 0.74                    | 0.50                    |
| At4g34730       | 1.78                    | 2.02                    | At4g37270       | 1.39                    | 3.02                    | At1g12090     | 0.33                    | 0.39                    |
| At3g47100       | 2.41                    | 3.45                    | At2g13150       | 2.48                    | 3.09                    | At3g15360     | 0.54                    | 0.55                    |
| At4g21460       | 1.78                    | 2.01                    | At2g34540       | 1.38                    | 1.37                    | At1g80600     | 0.72                    | 0.47                    |
| At1g59940       | 1.68                    | 6.58                    | -               |                         |                         | At3g22970     | 0.63                    | 0.65                    |
| At1g05385       | 1.32                    | 1.42                    |                 |                         |                         | At2g37220     | 0.72                    | 0.66                    |
| At3g56710       | 1.38                    | 1.54                    |                 |                         |                         | At5g23440     | 0.49                    | 0.52                    |
| At3g05710       | 1.38                    | 5.74                    |                 |                         |                         | At4g17460     | 0.73                    | 0.63                    |
| At2g48130       | 1.38                    | 1.76                    |                 |                         |                         | At2g42540     | 0.25                    | 0.27                    |
| At1g15850       | 1.43                    | 4.23                    |                 |                         |                         | At4g19710     | 0.75                    | 0.65                    |
| At4g39690       | 5.45                    | 1.60                    |                 |                         |                         | At1g74960     | 0.71                    | 0.54                    |
| At1g19050       | 1.59                    | 1.51                    |                 |                         |                         | At5g66570     | 0.59                    | 0.17                    |
| At4g31870       | 1.55                    | 4.27                    |                 |                         |                         | At5g54270     | 0.65                    | 0.52                    |
| At5g49450       | 1.36                    | 2.77                    |                 |                         |                         | At4g03520     | 0.56                    | 0.60                    |
| At3g30780       | 1.52                    | 1.85                    |                 |                         |                         | At2g28900     | 0.42                    | 0.40                    |
| At5g61950       | 4.79                    | 3.09                    |                 |                         |                         | At4g09650     | 0.54                    | 0.45                    |
| At4g23450       | 1.39                    | 2.86                    |                 |                         |                         | At4g12520     | 0.65                    | 0.72                    |
| At5g64940       | 1.54                    | 2.78                    |                 |                         |                         | At3g05880     | 0.23                    | 0.17                    |
| At1g27540       | 1.37                    | 2.44                    |                 |                         |                         | At1g02730     | 0.15                    | 0.63                    |
| At1g67810       | 1.39                    | 4.51                    |                 |                         |                         | At3g43700     | 0.54                    | 0.56                    |
| At1g27380       | 1.28                    | 7.05                    |                 |                         |                         | At1g61520     | 0.60                    | 0.51                    |
| At5g52530       | 2.85                    | 2.29                    |                 |                         |                         | At1g51400     | 0.53                    | 0.14                    |
| At1g73650       | 1.70                    | 1.99                    |                 |                         |                         | At3g12120     | 0.68                    | 0.40                    |
| At1g65070       | 1.30                    | 3.13                    |                 |                         |                         | At2g20020     | 0.71                    | 0.62                    |
| At1g06280       | 2.80                    | 3.49                    |                 |                         |                         | At2g06030     | 0.14                    | 0.58                    |
| At5g58560       | 1.32                    | 2.68                    |                 |                         |                         | At3g62030     | 0.69                    | 0.59                    |
| At2g26280       | 1.48                    | 1.50                    |                 |                         |                         | At3g53460     | 0.78                    | 0.55                    |
| At3g56910       | 1.94                    | 1.59                    |                 |                         |                         | At2g39270     | 0.57                    | 0.51                    |
| At5g42070       | 1.34                    | 6.92                    |                 |                         |                         | At1g02560     | 0.70                    | 0.39                    |
| At4g13430       | 2.04                    | 1.77                    |                 |                         |                         | At2g45180     | 0.64                    | 0.54                    |
| At5g17710       | 1.49                    | 2.04                    |                 |                         |                         | At4g30620     | 0.75                    | 0.40                    |
| cob             | 1.43                    | 3.21                    |                 |                         |                         | At5g05590     | 0.68                    | 0.38                    |
| At4g37200       | 1.41                    | 2.69                    |                 |                         |                         | At1g77490     | 0.44                    | 0.44                    |
| At5g24120       | 1.36                    | 1.60                    |                 |                         |                         | At3g21055     | 0.72                    | 0.16                    |
| At1g54120       | 1.77                    | 2.21                    |                 |                         |                         | At5g44680     | 0.61                    | 0.53                    |
| At4g11980       | 1.49                    | 17.22                   |                 |                         |                         | 3695380       | 0.75                    | 0.74                    |
| At4g14210       | 2.30                    | 3.54                    |                 |                         |                         | At3g26740     | 0.54                    | 0.24                    |
| At1g68690       | 1.48                    | 2.32                    |                 |                         |                         | At2g34420     | 0.77                    | 0.32                    |
| At1g27210       | 4.79                    | 3.81                    |                 |                         |                         | At5g62000     | 0.76                    | 0.49                    |
| At4g12770       | 1.55                    | 1.67                    |                 |                         |                         | At5g11480     | 0.75                    | 0.36                    |
| At3g58010       | 1.41                    | 2.19                    |                 |                         |                         | At1g48860     | 0.59                    | 0.53                    |
| At5g30460       | 1.31                    | 1.71                    |                 |                         |                         | At1g75380     | 0.66                    | 0.61                    |
| At5g54430       | 1./1                    | 2.01                    |                 |                         |                         | At1g20340     | 0.77                    | 0.63                    |
| At3g08720       | 2.33                    | 7.17                    |                 |                         |                         | At2g24090     | 0.58                    | 0.47                    |
| At1g03060       | 1.69                    | 2.57                    |                 |                         |                         | At4g16780     | 0.58                    | 0.45                    |
| At5g49020       | 2.04                    | 3.16                    |                 |                         |                         | At1g80130     | 0.36                    | 0.63                    |
| A13900000       | 2.35                    | 1.94                    |                 |                         |                         | Alog19140     | 0.38                    | 0.49                    |
| AL194//30       | 1.51<br>1 <i>F</i> 4    | ∠.ŏŏ                    |                 |                         |                         | Alog4/4/0     | 0.72                    | 0.40                    |
| AISY23400       | 1.51                    | 1.00                    |                 |                         |                         | ALIY32000     | 0.39                    | 0.42                    |
| Aloy 19220      | 1.70                    | 5.00                    |                 |                         |                         | mizyz4020     | 0.70                    | 0.72                    |

|                | petc-2      | atpd-1  |              | petc-2 | atpd-1 |                          | petc-2 | atpd-1 |
|----------------|-------------|---------|--------------|--------|--------|--------------------------|--------|--------|
| MIPS-code/GI   | vs. WT      | vs. WT  | MIPS-code/GI | vs. WT | vs. WT | MIPS-code/GI             | vs. WT | vs. WT |
| down-regulated | d in both i | mutants | up/down      |        |        | down/up                  |        |        |
| At2g04700      | 0.61        | 0.42    | At5g13630    | 2.34   | 0.66   | At4g38460                | 0.69   | 1.91   |
| At2g21660      | 0.34        | 0.32    | At2g25080    | 1.46   | 0.52   | At2g17265                | 0.75   | 7.56   |
| At2g25320      | 0.67        | 0.63    | At2g34640    | 2.03   | 0.52   | At1g77250                | 0.78   | 3.26   |
| At2g42530      | 0.14        | 0.21    | At4g14690    | 1.30   | 0.36   | At1g09420                | 0.54   | 8.94   |
| At2g15890      | 0.25        | 0.27    | At1g08380    | 1.51   | 0.58   | At2g03200                | 0.73   | 2.02   |
| At5g43930      | 0.48        | 0.55    | At1g25220    | 1.28   | 0.56   | At4g37470                | 0.72   | 2.00   |
| Al3g60490      | 0.59        | 0.70    | Al 1955490   | 1.40   | 0.57   | Alby02650                | 0.07   | 2.00   |
| At2a26410      | 0.55        | 0.21    | A12914750    | 1.55   | 0.40   | Allg27010                | 0.70   | 2.40   |
| At5a11550      | 0.50        | 0.30    | A14902520    | 1.04   | 0.71   | A14910490                | 0.01   | 2.00   |
| At1a03970      | 0.01        | 0.03    | At2g05100    | 2.21   | 0.30   | At 1907440<br>At 2031350 | 0.77   | 2 77   |
| Attg03970      | 0.70        | 0.05    | At3a27690    | 1 75   | 0.27   | At2g31330                | 0.47   | 1 77   |
| At4a32340      | 0.77        | 0.50    | At4a24770    | 1.75   | 0.00   | At4a16590                | 0.40   | 2.16   |
| At4a28750      | 0.59        | 0.53    | At1a48880    | 3.06   | 0.29   | At2a30880                | 0.62   | 1.62   |
| At2a20750      | 0.00        | 0.68    | rnoC1        | 1 45   | 0.20   | At1a12520                | 0.02   | 1.02   |
| At3q66654      | 0.60        | 0.52    | At4a12500    | 1.40   | 0.69   | At3q57950                | 0.77   | 1.00   |
| At3q08760      | 0.59        | 0.73    | At4q03920    | 1.44   | 0.67   | At1a29070                | 0.67   | 2.54   |
| At1a79040      | 0.52        | 0.42    | At1q58290    | 1.67   | 0.59   | At2g24730                | 0.38   | 4.88   |
| At1a55670      | 0.60        | 0.26    | At4q08870    | 2.59   | 0.60   | At4q16820                | 0.56   | 3.28   |
|                |             |         | At4q34350    | 2.95   | 0.42   | At4q12620                | 0.65   | 8.03   |
|                |             |         | At5q52440    | 1.75   | 0.47   | At4q15870                | 0.55   | 1.67   |
|                |             |         | At3q48850    | 1.39   | 0.46   | At5q07760                | 0.71   | 2.67   |
|                |             |         | At4g32020    | 1.43   | 0.55   | At4g14620                | 0.72   | 1.46   |
|                |             |         | At4q33780    | 1.87   | 0.71   | At5q51670                | 0.63   | 2.12   |
|                |             |         | At2g47730    | 1.53   | 0.45   | At3g55070                | 0.52   | 1.60   |
|                |             |         | At5g14320    | 1.34   | 0.58   | At3g18870                | 0.75   | 3.27   |
|                |             |         | 3695393      | 2.41   | 0.58   | At5g14040                | 0.78   | 3.58   |
|                |             |         | At2g35240    | 1.32   | 0.58   | At5g48370                | 0.76   | 6.05   |
|                |             |         | At1g17420    | 2.19   | 0.69   | At4g16080                | 0.55   | 1.38   |
|                |             |         | At4g10810    | 1.85   | 0.67   | At5g11930                | 0.76   | 2.48   |
|                |             |         | At2g43090    | 1.38   | 0.46   | At5g15530                | 0.76   | 2.49   |
|                |             |         | At2g14890    | 1.37   | 0.28   | At5g61200                | 0.75   | 1.94   |
|                |             |         | At1g54520    | 1.35   | 0.74   | At3g56700                | 0.59   | 2.00   |
|                |             |         | At1g06680    | 1.37   | 0.56   | At1g48620                | 0.69   | 3.04   |
|                |             |         | At4g01800    | 1.29   | 0.65   | At1g79360                | 0.64   | 2.45   |
|                |             |         | At1g79050    | 2.84   | 0.57   | At1g80450                | 0.46   | 1.80   |
|                |             |         | At1g54580    | 1.32   | 0.68   | At2g44040                | 0.71   | 2.75   |
|                |             |         | At1g54630    | 2.00   | 0.62   | At3g52150                | 0.68   | 1.49   |
|                |             |         | rbcL         | 1.30   | 0.27   | At1g74850                | 0.71   | 2.35   |
|                |             |         | At2g40000    | 1.46   | 0.66   | At2g41950                | 0.77   | 4.03   |
|                |             |         | At2g28760    | 1.96   | 0.60   | At1g79960                | 0.77   | 2.19   |
|                |             |         | At2g44030    | 2.65   | 0.62   | At4g34590                | 0.68   | 1.58   |
|                |             |         | At5g50280    | 1.47   | 0.59   | At4g17740                | 0.50   | 1.94   |
|                |             |         | At3g18110    | 1.55   | 0.56   | At4g26900                | 0.57   | 3.29   |
|                |             |         | At4g01050    | 2.29   | 0.71   | At2g17300                | 0.50   | 1.69   |
|                |             |         | At2g39000    | 1.37   | 0.70   | At1g03810                | 0.58   | 3.53   |
|                |             |         | At4g05070    | 1.70   | 0.51   | At2g33430                | 0.69   | 1.85   |
|                |             |         | At1g05860    | 1.76   | 0.38   | At2g17420                | 0.31   | 1.46   |
|                |             |         | At5g23010    | 1.37   | 0.34   | At5g57990                | 0.46   | 1.57   |
|                |             |         |              |        |        | At3g09490                | 0.56   | 1.95   |
|                |             |         |              |        |        | At5g19900                | 0.45   | 1.41   |
|                |             |         |              |        |        | At2g19240                | 0.38   | 5.11   |
|                |             |         |              |        |        | At3g16000                | 0.65   | 2.43   |
|                |             |         | 1            |        |        |                          |        |        |

| MIPS-code/GI | <i>petc-2</i><br>vs. WT | <i>atpd-1</i><br>vs. WT | MIPS-code/GI | <i>petc-2</i><br>vs. WT | <i>atpd-1</i><br>vs. WT | MIPS-code/GI | <i>petc-2</i><br>vs. WT | <i>atpd-1</i><br>vs. WT |
|--------------|-------------------------|-------------------------|--------------|-------------------------|-------------------------|--------------|-------------------------|-------------------------|
| down/up      |                         |                         | down/up      |                         |                         | down/up      |                         |                         |
| At1q15410    | 0.53                    | 2.16                    | At1g60550    | 0.78                    | 1.38                    | At1q51560    | 0.42                    | 1.90                    |
| At5g02750    | 0.42                    | 3.78                    | At2g44560    | 0.67                    | 1.39                    | At4g19100    | 0.50                    | 4.02                    |
| At5g12150    | 0.70                    | 2.45                    | At2g15740    | 0.72                    | 2.77                    | At4g30210    | 0.77                    | 2.41                    |
| At4g18540    | 0.75                    | 3.65                    | At3g06860    | 0.70                    | 1.57                    | At4g33520    | 0.31                    | 1.69                    |
| At3g56010    | 0.71                    | 3.58                    | At1g01520    | 0.77                    | 5.57                    | At3g25110    | 0.75                    | 1.84                    |
| At5g50640    | 0.60                    | 1.71                    | At1g61980    | 0.65                    | 3.52                    | At1g44350    | 0.69                    | 2.12                    |
| At3g42490    | 0.34                    | 9.82                    | At1g11820    | 0.65                    | 2.18                    | At4g39970    | 0.73                    | 2.70                    |
| At3g24190    | 0.76                    | 2.13                    | At3g22160    | 0.76                    | 3.25                    | At2g29630    | 0.75                    | 3.52                    |
| At4q04730    | 0.75                    | 1.42                    | At1g62010    | 0.65                    | 1.80                    | At2q29670    | 0.58                    | 1.81                    |
| At4g03150    | 0.32                    | 14.56                   | At3g09070    | 0.70                    | 3.17                    | At5g03910    | 0.47                    | 2.62                    |
| At4g27230    | 0.74                    | 1.61                    | At3g06590    | 0.50                    | 2.53                    | At3g18420    | 0.48                    | 2.93                    |
| At3g09050    | 0.49                    | 1.81                    | At4g04770    | 0.66                    | 1.96                    | At2g33720    | 0.78                    | 2.44                    |
| At5g15700    | 0.36                    | 4.34                    | At5g25900    | 0.72                    | 3.89                    | At4g37380    | 0.28                    | 2.97                    |
| At5q55210    | 0.73                    | 7.17                    | At1g01550    | 0.73                    | 5.29                    | At1q08050    | 0.61                    | 2.99                    |
| At3q03710    | 0.77                    | 3.63                    | At1g30100    | 0.72                    | 1.50                    | At1q30320    | 0.56                    | 2.25                    |
| At3g11490    | 0.58                    | 2.62                    | At1g70990    | 0.74                    | 5.21                    | At4g10750    | 0.62                    | 4.05                    |
| At3q05020    | 0.71                    | 1.40                    | At1g30120    | 0.39                    | 3.25                    | At1q52500    | 0.62                    | 2.02                    |
| At3q03630    | 0.71                    | 2.68                    | At4g37000    | 0.74                    | 7.74                    | At4q33030    | 0.46                    | 1.95                    |
| At1g73250    | 0.74                    | 1.60                    | At2g28450    | 0.71                    | 2.05                    | At2q14880    | 0.68                    | 2.14                    |
| At2q01610    | 0.73                    | 2.19                    | At3q52490    | 0.73                    | 2.85                    | At3q22890    | 0.61                    | 1.62                    |
| At3a11150    | 0.76                    | 2.18                    | At2q43430    | 0.62                    | 3.09                    | At1a13970    | 0.69                    | 2.05                    |
| At1a33250    | 0.42                    | 1.39                    | At2q46590    | 0.70                    | 2.94                    | At4g31430    | 0.54                    | 1.72                    |
| At3q57280    | 0.40                    | 1.37                    | At1q18680    | 0.40                    | 3.11                    | At1q64890    | 0.74                    | 4.70                    |
| At1a27660    | 0.67                    | 2.50                    | At3q06850    | 0.58                    | 5.40                    | At2g20600    | 0.61                    | 3.49                    |
| At5a65490    | 0.74                    | 9.33                    | At5q18910    | 0.64                    | 6.85                    | At1g31160    | 0.75                    | 2.19                    |
| At3a17550    | 0.56                    | 3.88                    | At5q59610    | 0.43                    | 5.52                    | At3q08660    | 0.71                    | 1.51                    |
| At1a60000    | 0.77                    | 1.96                    | At3q54320    | 0.56                    | 1.50                    | At5a61470    | 0.70                    | 3.11                    |
| At2a48090    | 0.74                    | 6.40                    | At2q31170    | 0.70                    | 4.50                    | At3g20230    | 0.71                    | 10.39                   |
| At5a26570    | 0.29                    | 2.18                    | At1g32760    | 0.71                    | 5.23                    | At1g33780    | 0.60                    | 6.60                    |
| At3a01550    | 0.76                    | 3.74                    | At1q12980    | 0.54                    | 3.64                    | At1q43840    | 0.77                    | 4.65                    |
| At3a44720    | 0.73                    | 2.61                    | At2q38450    | 0.69                    | 4.32                    | At1g13280    | 0.51                    | 1.37                    |
| At1a79840    | 0.57                    | 4.37                    | At3q52550    | 0.77                    | 2.37                    | At1g80830    | 0.53                    | 2.48                    |
| At2g30320    | 0.73                    | 1.74                    | At2g26840    | 0.57                    | 2.94                    | At3q30190    | 0.77                    | 3.83                    |
| At2a05180    | 0.73                    | 1.59                    | At4g24860    | 0.66                    | 2.45                    | At5a35100    | 0.74                    | 1.56                    |
| At4q08630    | 0.69                    | 2.21                    | At4g24860    | 0.59                    | 2.45                    | At2g36010    | 0.21                    | 5.61                    |
| At1g80670    | 0.73                    | 1.84                    | At2q37880    | 0.71                    | 4.98                    | At4q39550    | 0.77                    | 7.80                    |
| At2a13810    | 0.67                    | 6.50                    | At4g24860    | 0.66                    | 1.40                    | At1g29910    | 0.75                    | 3.28                    |
| At2q07710    | 0.67                    | 1.52                    | At4g24860    | 0.59                    | 1.40                    | At5q25930    | 0.72                    | 3.68                    |
| At1g75390    | 0.66                    | 2.58                    | At1g50960    | 0.75                    | 14.39                   | At2g24070    | 0.77                    | 1.35                    |
| At4g23140    | 0.65                    | 2.17                    | At2g23330    | 0.75                    | 4.31                    | At4q39050    | 0.68                    | 2.05                    |
| At5q18260    | 0.78                    | 7.72                    | At2g30020    | 0.60                    | 1.82                    | At4g21230    | 0.66                    | 3.78                    |
| At5g10910    | 0.72                    | 5.48                    | At2g32840    | 0.78                    | 2.39                    | At1g15070    | 0.68                    | 11.93                   |
| At3q20970    | 0.58                    | 1.80                    | At2g26900    | 0.69                    | 3.01                    | At1q19890    | 0.61                    | 4.33                    |
| At2g34020    | 0.61                    | 5.70                    | At4g24910    | 0.78                    | 3.67                    | At5q41960    | 0.60                    | 1.65                    |
| At1g30700    | 0.43                    | 4.74                    | At5q56760    | 0.74                    | 2.57                    | At4q19490    | 0.53                    | 3.62                    |
| At4a07960    | 0.46                    | 9.59                    | At4g29920    | 0.66                    | 1.90                    | At4g39000    | 0.36                    | 2.47                    |
| At4g22920    | 0.75                    | 12.33                   | At4q34310    | 0.34                    | 2.66                    | At5q23300    | 0.55                    | 7.20                    |
| At2g37090    | 0.52                    | 2.86                    | At5g44750    | 0.70                    | 2.09                    | At4g26010    | 0.67                    | 9.51                    |
| At2g15470    | 0.57                    | 2.47                    | At3g48110    | 0.37                    | 7.11                    | At1g54690    | 0.74                    | 1.93                    |
| At2g37080    | 0.63                    | 1.47                    | At2g44940    | 0.40                    | 5.12                    | At4g23100    | 0.75                    | 2.33                    |
| At2q31720    | 0.75                    | 3.85                    | At2q39710    | 0.77                    | 6.24                    | At4q01770    | 0.70                    | 3.53                    |
| At2q34370    | 0.71                    | 1.92                    | At5q07900    | 0.58                    | 5.78                    | At3q44990    | 0.67                    | 4.75                    |
| At2q44550    | 0.54                    | 2.09                    | At1q19870    | 0.60                    | 8.62                    | At4g25540    | 0.66                    | 2.09                    |
| At2g40980    | 0.63                    | 1.96                    | At1g21060    | 0.76                    | 1.90                    | At1g79760    | 0.68                    | 3.86                    |
| <b>v</b> -   | -                       | -                       |              | -                       | -                       |              | -                       | -                       |

|              | petc-2 | atpd-1 |              | petc-2 | atpd-1 |
|--------------|--------|--------|--------------|--------|--------|
| MIPS-code/GI | vs. WT | vs. WT | MIPS-code/GI | vs. WT | vs. WT |
| down/up      |        |        | down/up      |        |        |
| At4g18760    | 0.58   | 2.79   | At4g24090    | 0.71   | 1.52   |
| At5g51770    | 0.33   | 2.42   | At4g15410    | 0.74   | 14.41  |
| At4g29490    | 0.78   | 7.27   | At4g19390    | 0.75   | 1.42   |
| At1g69240    | 0.51   | 1.57   | At1g79110    | 0.55   | 1.82   |
| At5g19280    | 0.49   | 3.46   | At5g65350    | 0.71   | 1.59   |
| At3g17700    | 0.71   | 2.78   | At2g34700    | 0.50   | 3.52   |
| At5g56660    | 0.76   | 1.61   | At4g37130    | 0.69   | 3.77   |
| At1g04360    | 0.17   | 3.11   | At4g12000    | 0.38   | 10.37  |
| At2g27770    | 0.76   | 2.23   | At1g68730    | 0.76   | 3.56   |
| At1g80560    | 0.67   | 3.15   | At4g14380    | 0.65   | 1.51   |
| At3g24810    | 0.28   | 4.01   | At2g04540    | 0.66   | 1.83   |
| At5g27070    | 0.58   | 2.29   | At4g36910    | 0.57   | 3.26   |
| At3g09850    | 0.51   | 4.45   | At4g36580    | 0.64   | 2.01   |
| At4g23170    | 0.62   | 1.72   | At1g05030    | 0.64   | 2.53   |
| At4g07560    | 0.72   | 1.81   | At2g14120    | 0.64   | 2.64   |
| At3g62520    | 0.40   | 6.79   | At5g40470    | 0.42   | 6.66   |
| At1g79250    | 0.77   | 1.67   | At2g40400    | 0.40   | 3.60   |
| At2g21590    | 0.71   | 4.36   | At4g32260    | 0.71   | 3.46   |
| At2g32400    | 0.55   | 4.64   | At1g16160    | 0.67   | 3.62   |
| At2g36480    | 0.26   | 2.45   | At5g38290    | 0.59   | 10.58  |
| At2g20090    | 0.57   | 3.00   | At3g47200    | 0.72   | 3.98   |
| At5g55570    | 0.62   | 1.38   | At1g31790    | 0.76   | 2.58   |
| At2g28755    | 0.75   | 2.78   | At4g35450    | 0.54   | 1.41   |
| At5g64290    | 0.46   | 3.72   | At3g04680    | 0.75   | 5.27   |
| At2g28790    | 0.65   | 2.72   | At3g50190    | 0.48   | 1.58   |
| At3g60860    | 0.58   | 2.18   | At3g20920    | 0.67   | 6.48   |
| At3g50140    | 0.46   | 1.54   | At1g73470    | 0.38   | 3.59   |
| At3g54610    | 0.53   | 5.31   | At1g70170    | 0.49   | 1.49   |
| At4g00610    | 0.77   | 2.01   | _            |        |        |
| At2g36920    | 0.70   | 2.03   |              |        |        |
| At5g64580    | 0.57   | 1.62   |              |        |        |
| At1g62110    | 0.75   | 3.40   |              |        |        |
| At2g38810    | 0.64   | 4.59   |              |        |        |
| At1g51780    | 0.69   | 2.67   |              |        |        |
| At5g17840    | 0.78   | 2.56   |              |        |        |
| At4g39710    | 0.69   | 1.63   |              |        |        |
| At2g44500    | 0.48   | 7.04   |              |        |        |
| At5g10330    | 0.71   | 3.46   |              |        |        |
| At1g67770    | 0.37   | 2.04   |              |        |        |
| At3g51820    | 0.76   | 3.07   |              |        |        |
| At1q76240    | 0.64   | 2.94   |              |        |        |
| At5g07770    | 0.73   | 1.82   |              |        |        |
| At3q28460    | 0.60   | 1.73   |              |        |        |
| At2q24210    | 0.74   | 2.16   |              |        |        |
| At4q35690    | 0.72   | 3.48   |              |        |        |
| At2g38070    | 0.77   | 4.82   |              |        |        |
| At4q03800    | 0.67   | 2.43   |              |        |        |
| At1g72010    | 0.64   | 2.37   |              |        |        |
| At4q13270    | 0.45   | 1.58   |              |        |        |
| At1q13460    | 0.68   | 4.06   |              |        |        |
| At1q56020    | 0.61   | 1.41   |              |        |        |
| At1q55440    | 0.53   | 4.31   |              |        |        |
| At1a30920    | 0.65   | 2 49   |              |        |        |
| At5a60050    | 0.48   | 2.14   |              |        |        |
|              |        |        |              |        |        |
|              |        |        |              |        |        |

# 7.3 Complete list of significantly differentially expressed genes

petc-2 and atpd-1 genes grouped into 7 major functional categories (see also Figure 3.18b).

# petc-2

| MIPS-<br>code          | Description                                                                            | Control<br>(WT) | D<br>(data=mutant) | D/C          |
|------------------------|----------------------------------------------------------------------------------------|-----------------|--------------------|--------------|
| Metaboli               | sm                                                                                     |                 |                    |              |
| At4g39940              | adenosine-5-phosphosulfate-kinase                                                      | 0.71            | 3.76               | 5.30         |
| At3g55120              | chalcone isomerase                                                                     | 0.81            | 2.76               | 3.41         |
| At4g20230              | terpene cyclase like protein                                                           | 0.47            | 1.56               | 3.32         |
| At2g21330              | putative fructose bisphosphate aldolase                                                | 0.27            | 0.85               | 3.15         |
| At2g33230              | putative flavin-containing monooxygenase                                               | 0.32            | 0.91               | 2.84         |
| At4g20930              | 3-hydroxyisobutyrate dehydrogenase -like protein                                       | 1.11            | 2.88               | 2.59         |
| At4g08870              | putative arginase                                                                      | 0.12            | 0.31               | 2.58         |
| At1g62640              | 3-ketoacyl-acyl carrier protein synthase III (KAS III)                                 | 0.24            | 0.62               | 2.58         |
| At4g14210              | phytoene dehydrogenase precursor (phytoene desaturase)                                 | 1.39            | 3.2                | 2.30         |
| At4g08900              | arginase                                                                               | 0.1             | 0.22               | 2.20         |
| At2g33100              | putative cellulose synthase                                                            | 2.21            | 4.82               | 2.18         |
| At5g26030              | ferrochelatase-I                                                                       | 0.7             | 1.5                | 2.14         |
| At1g32900              | starch synthase                                                                        | 0.12            | 0.25               | 2.08         |
| At4g29890              | choline monooxygenase - like protein                                                   | 2.01            | 4.17               | 2.07         |
| At4g38970              | putative fructose-bisphosphate aldolase                                                | 1.51            | 3.03               | 2.01         |
| At5g36790              | p-nitrophenylphosphatase-like protein                                                  | 0.13            | 0.26               | 2.00         |
| At3g57050              | cysthationine beta-lyase precursor (CBL)                                               | 0.08            | 0.15               | 1.88         |
| At4g23660              | polyprenyltransferase like protein                                                     | 0.39            | 0.73               | 1.87         |
| At1g25410              | tRNA isopentenyl transferase                                                           | 0.23            | 0.43               | 1.87         |
| At5g04140              | ferredoxin-dependent glutamate synthase                                                | 0.94            | 1.75               | 1.86         |
| At3g48320              | cytochrome P450 - like protein                                                         | 0.17            | 0.31               | 1.82         |
| At2g37690<br>At5g51460 | putative phosphoribosylaminoimidazole carboxylase<br>trehalose-6-phosphate phosphatase | 0.27<br>1.04    | 0.49<br>1.87       | 1.81<br>1.80 |
| At5g19220              | glucose-1-phosphate adenylyltransferase                                                | 0.2             | 0.35               | 1.75         |
| At4g00620              | putative tetrahydrofolate synthase                                                     | 0.07            | 0.12               | 1.71         |
| At4g22590              | trehalose-6-phosphate phosphatase - like protein                                       | 3.86            | 6.54               | 1.69         |
| At2g36390              | starch branching enzyme II                                                             | 0.39            | 0.66               | 1.69         |
| At5g04590              | sulphite reductase                                                                     | 0.36            | 0.6                | 1.67         |
| At3g07670              | putative ribulose-1                                                                    | 0.11            | 0.18               | 1.64         |
| At3g60880              | dihydrodipicolinate synthase precursor                                                 | 6.86            | 10.79              | 1.57         |
| At1g01290              | molybdopterin biosynthesis CNX3 protein                                                | 1.4             | 2.19               | 1.56         |
| At4g34200              | Phosphoglycerate dehydrogenase - like protein                                          | 0.26            | 0.4                | 1.54         |
| At5g04360<br>At2g29690 | pullulanase-like protein (starch debranching enzyme)<br>anthranilate synthase          | 0.15<br>0.17    | 0.23<br>0.26       | 1.53<br>1.53 |
| At3g48560              | acetolactate synthase                                                                  | 0.36            | 0.55               | 1.53         |
| At4g02520              | Atpm24.1 glutathione S transferase                                                     | 0.69            | 1.05               | 1.52         |
| At3g58610              | ketol-acid reductoisomerase                                                            | 0.35            | 0.53               | 1.51         |
| At2g47730              | glutathione S-transferase (GST6)                                                       | 0.26            | 0.39               | 1.50         |
| At4g19010              | 4-coumarate-CoA ligase - like                                                          | 0.24            | 0.36               | 1.50         |
| At5g13280              | aspartate kinase                                                                       | 0.19            | 0.28               | 1.47         |

| At4g29540<br>At2g23800 | UDP-N-acetylglucosamine O-acyltransferase - like protein<br>pregeranylgeranyl pyrophosphate synthase | 0.13<br>0.22 | 0.19<br>0.32 | 1.46<br>1.45 |
|------------------------|------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|
| At5a35360              | acetyl-CoA carboxylase                                                                               | 0.38         | 0.55         | 1.45         |
| At3q48000              | aldehyde dehydrogenase (NAD+)-like protein                                                           | 0.64         | 0.92         | 1.44         |
| At2a27860              | putative dTDP-glucose 4-6-dehydratase                                                                | 0.46         | 0.66         | 1.43         |
| At4a26860              | putative Proline synthetase associated protein                                                       | 0.39         | 0.55         | 1 41         |
| At5a04710              | aspartyl aminopentidase                                                                              | 0.05         | 0.07         | 1 40         |
| At3a54640              | tryptonhan synthase alpha chain                                                                      | 0.05         | 0.07         | 1.10         |
| At2a43090              | 3-isopropylmalate debydratase                                                                        | 0.74         | 1.03         | 1 39         |
| At4a25970              |                                                                                                      | 0.95         | 1 31         | 1 38         |
| Δt4a25050              | acyl carrier - like protein                                                                          | 1.09         | 1.5          | 1 38         |
| At3a16950              | dibydrolinoamide debydrogenase Ind1                                                                  | 0.08         | 0.11         | 1.30         |
| At2a28880              | nutative para-aminobenzoate synthese and dutamine                                                    | 0.08         | 0.11         | 1.30         |
| Alzyz0000              | amidotransferase                                                                                     | 0.00         | 0.11         | 1.50         |
| At1g25220              | anthranilate synthase beta subunit                                                                   | 0.11         | 0.15         | 1.36         |
| At2g43100              | 3-isopropylmalate dehydratase                                                                        | 0.8          | 1.09         | 1.36         |
| At2g14750              | putative adenosine phosphosulfate kinase                                                             | 0.14         | 0.19         | 1.36         |
| At2g20860              | lipoic acid synthase (LIP1)                                                                          | 0.29         | 0.39         | 1.34         |
| At5g58330              | NADP-dependent malate dehydrogenase                                                                  | 1.03         | 1.38         | 1.34         |
| At1g05610              | putative ADP-glucose pyrophosphorylase                                                               | 0.06         | 0.08         | 1.33         |
| At1g54580              | acyl-carrier protein (ACP)                                                                           | 1.43         | 1.89         | 1.32         |
| At4g14910              | imidazoleglycerol-phosphate dehydratase                                                              | 0.46         | 0.6          | 1.30         |
| At1g06730              | sugar kinase                                                                                         | 0.2          | 0.26         | 1.30         |
| At3g58990              | 3-isopropylmalate dehydratase-like protein (small subunit)                                           | 1.51         | 1.95         | 1.29         |
| At1g74040              | putative 2-isopropylmalate synthase                                                                  | 0.14         | 0.11         | 0.79         |
| At4g38990              | putative endo-1                                                                                      | 0.76         | 0.59         | 0.78         |
| At1g03630              | putative protochlorophyllide reductase                                                               | 0.53         | 0.41         | 0.77         |
| At5g38530              | tryptophan synthase beta chain                                                                       | 0.43         | 0.33         | 0.77         |
| At1g72810              | threonine synthase                                                                                   | 0.92         | 0.7          | 0.76         |
| At5g11930              | glutaredoxin - like protein                                                                          | 1            | 0.76         | 0.76         |
| At3g51820              | chlorophyll synthetase                                                                               | 0.66         | 0.5          | 0.76         |
| At4g23100              | gamma-glutamylcysteine synthetase                                                                    | 1.51         | 1.14         | 0.75         |
| At5g15530              | biotin carboxyl carrier protein precursor-like protein                                               | 0.65         | 0.49         | 0.75         |
| At4g19710              | aspartate kinase-homoserine dehydrogenase - like protein                                             | 1.4          | 1.05         | 0.75         |
| At2g29630              | putative thiamin biosynthesis protein                                                                | 0.48         | 0.36         | 0.75         |
| At3g20330              | aspartate carbamoyltransferase precursor                                                             | 0.12         | 0.09         | 0.75         |
| At3g53900              | uracil phosphoribosyltransferase-like protein                                                        | 0.11         | 0.08         | 0.73         |
| At5g25900              | cytochrome P450 GA3                                                                                  | 0.44         | 0.32         | 0.73         |
| At3g05020              | acyl carrier protein 1 precursor (ACP)                                                               | 0.5          | 0.36         | 0.72         |
| At4g16590              | cellulose synthase like protein                                                                      | 0.21         | 0.15         | 0.71         |
| At5g10330              | histidinol-phosphate aminotransferase-like protein                                                   | 0.24         | 0.17         | 0.71         |
| At3g03630              | O-acetylserine (thiol) lyase                                                                         | 0.48         | 0.34         | 0.71         |
| At4g29840              | threonine synthase                                                                                   | 0.77         | 0.54         | 0.70         |
| At3g06860              | fatty acid multifunctional protein (AtMFP2)                                                          | 0.53         | 0.37         | 0.70         |
| At4g12740              | adenine DNA glycosylase like protein                                                                 | 0.49         | 0.34         | 0.69         |
| At5g20830              | sucrose-UDP glucosyltransferase                                                                      | 0.19         | 0.13         | 0.68         |
| At3g44990              | xyloglucan endo-transglycosylase                                                                     | 0.68         | 0.46         | 0.68         |
| At4g38460              | geranylgeranyl pyrophosphate synthase-related protein                                                | 0.15         | 0.1          | 0.67         |
| At5g20990              | molybdopterin biosynthesis CNX1 protein                                                              | 0.3          | 0.2          | 0.67         |
| At1g80600              | putative acetylornithine transaminase                                                                | 0.09         | 0.06         | 0.67         |
| At4g36810              | geranylgeranyl pyrophosphate synthase                                                                | 0.72         | 0.47         | 0.65         |
| At2g29990              | putative NADH dehydrogenase (ubiquinone oxidoreductase)                                              | 0.63         | 0.39         | 0.62         |

| At3g22890 | ATP sulfurylase                                         | 0.41   | 0.25   | 0.61 |
|-----------|---------------------------------------------------------|--------|--------|------|
| At2g43430 | putative glyoxalase II                                  | 0.32   | 0.19   | 0.59 |
| At1g42970 | glyceraldehyde-3-phosphate dehydrogenase                | 1.94   | 1.14   | 0.59 |
| At1g11870 | putative seryl-tRNA synthetase                          | 0.45   | 0.26   | 0.58 |
| At2g15470 | putative polygalacturonase                              | 0.4    | 0.23   | 0.58 |
| At3g06850 | branched chain alpha-keto acid dehydrogenase E2 subunit | 0.77   | 0.44   | 0.57 |
| At4g26900 | glutamine amidotransferase/cyclase                      | 1.77   | 1.01   | 0.57 |
| At4g16820 | triacylglycerol lipase like protein                     | 0.58   | 0.32   | 0.55 |
| At4g15870 | delta-cadinene synthase like protein                    | 1.97   | 1.08   | 0.55 |
| At1g08510 | acyl-(acyl carrier protein) thioesterase                | 0.19   | 0.1    | 0.53 |
| At1g04610 | putative dimethylaniline monooxygenase                  | 0.16   | 0.08   | 0.50 |
| At4g33030 | sulfolipid biosynthesis protein SQD1                    | 0.19   | 0.09   | 0.47 |
| At4g07960 | putative glucosyltransferase                            | 251.97 | 114.84 | 0.46 |
| At5g10100 | trehalose-6-phosphate phosphatase -like protein         | 0.59   | 0.26   | 0.44 |
| At2g02970 | putative nucleoside triphosphatase                      | 1.15   | 0.47   | 0.41 |
| At1g30120 | pyruvate dehydrogenase E1 beta subunit                  | 1.42   | 0.55   | 0.39 |
| At2g31950 | molybdopterin synthase (CNX2)                           | 0.57   | 0.22   | 0.39 |
| At5g19140 | aluminium-induced protein - like                        | 0.37   | 0.14   | 0.38 |
| At4g39000 | putative endo-1                                         | 0.86   | 0.31   | 0.36 |
| At2g17420 | thioredoxin reductase                                   | 2.05   | 0.65   | 0.32 |
| At1g14230 | putative nucleoside triphosphatase                      | 1.66   | 0.5    | 0.30 |
| At1g08490 | nitrogen fixation protein (nifS)                        | 1.31   | 0.38   | 0.29 |
| At2g43750 | cysteine synthase (cpACS1)                              | 0.4    | 0.06   | 0.15 |

#### Photosynthesis

| - |           |                                                                  |       |       |      |
|---|-----------|------------------------------------------------------------------|-------|-------|------|
|   | At2g39730 | Rubisco activase                                                 | 0.16  | 0.49  | 3.06 |
|   | At1g10960 | PetF2; ferredoxin precusor isolog (1 mRNA)                       | 1.8   | 4.59  | 2.55 |
|   | At2g05070 | Lhcb2.2                                                          | 2.61  | 5.75  | 2.20 |
|   | At2g05100 | Lhcb2.1 (oder Lhcb2.3)                                           | 5.09  | 9.66  | 1.90 |
|   | At3g27690 | Lhcb2.4                                                          | 16.31 | 28.47 | 1.75 |
|   | At1g30380 | PsaK                                                             | 1.21  | 2.1   | 1.74 |
|   | At1g19150 | Lhca6                                                            | 0.2   | 0.33  | 1.65 |
|   | At1g08380 | PsaO                                                             | 6.7   | 10.09 | 1.51 |
|   | At1g73110 | rubisco activase                                                 | 0.92  | 1.38  | 1.50 |
|   | At2g30570 | PsbW                                                             | 18.52 | 26.24 | 1.42 |
|   | At1g55490 | Rubisco subunit binding-protein beta subunit                     | 0.13  | 0.18  | 1.38 |
|   | At1g06680 | PsbP1 (3 mRNAs)                                                  | 2.29  | 3.13  | 1.37 |
|   | At1g44575 | PsbS protein                                                     | 0.47  | 0.63  | 1.34 |
|   | At2g34420 | Lhcb1.5                                                          | 30.37 | 23.35 | 0.77 |
|   | At1g20340 | PetE2 (plastocyanin) (5 mRNAs)                                   | 0.81  | 0.62  | 0.77 |
|   | At1g29910 | Lhcb1.2 (LHCP AB 180)                                            | 48.54 | 36.4  | 0.75 |
|   | At3g21055 | PsbT1                                                            | 2.33  | 1.68  | 0.72 |
|   | At3g47470 | Lhca4                                                            | 13.83 | 9.95  | 0.72 |
|   | At4g32260 | AtpG; ATP synthase beta\\\' chain (old nomenclature: subunit II) | 3.06  | 2.18  | 0.71 |
|   | At4g21280 | PsbQ1 (1 mRNA)                                                   | 6.03  | 4.28  | 0.71 |
|   | At3g50820 | PsbO2                                                            | 2.85  | 2     | 0.70 |
|   | At3g61470 | Lhca2                                                            | 2.31  | 1.55  | 0.67 |
|   | At5g54270 | Lhcb3 chlorophyll a/b binding protein                            | 6.19  | 4.04  | 0.65 |
|   | At2g20260 | PsaE2 (2 mRNAs)                                                  | 3.41  | 2.06  | 0.60 |
|   | At1g55670 | PsaG                                                             | 6.29  | 3.78  | 0.60 |
|   | At1g61520 | Lhca3                                                            | 4.98  | 2.99  | 0.60 |
|   |           |                                                                  |       |       |      |

### 7 APPENDIX

| At5g66570 | PsbO1                             | 5.71 | 3.39 | 0.59 |
|-----------|-----------------------------------|------|------|------|
| At4g28750 | PsaE1 (2 mRNAs)                   | 3.33 | 1.95 | 0.59 |
| At4g05180 | PsbQ2 (1 mRNA)                    | 6.93 | 3.8  | 0.55 |
| At4g09650 | AtpD; ATP synthase delta subunit  | 0.74 | 0.4  | 0.54 |
| At1g51400 | PsbT2 (2 mRNAs)                   | 2.7  | 1.44 | 0.53 |
| At1g79040 | PsbR                              | 9.45 | 4.93 | 0.52 |
| At4g17740 | PSII D1 protein processing enzyme | 0.33 | 0.17 | 0.52 |
|           |                                   |      |      |      |

### Transport

| At5g09930 | ABC transporter                                                                            | 0.12 | 0.45  | 3.75 |
|-----------|--------------------------------------------------------------------------------------------|------|-------|------|
| At5g64840 | ABC transporter protein 1-like                                                             | 0.22 | 0.74  | 3.36 |
| At5g52250 | putative protein                                                                           | 3.55 | 9.75  | 2.75 |
| At2g44030 | hypothetical protein                                                                       | 0.81 | 2.14  | 2.64 |
| At4g25290 | hypothetical protein                                                                       | 0.27 | 0.68  | 2.52 |
| At3g10350 | putative ATPase                                                                            | 1.41 | 3.11  | 2.21 |
| At5g55630 | outward rectifying potassium channel KCO                                                   | 0.26 | 0.57  | 2.19 |
| At5g59250 | D-xylose-H+ symporter - like protein                                                       | 0.16 | 0.33  | 2.06 |
| At3g10670 | putative ABC transporter ATPase                                                            | 0.03 | 0.06  | 2.00 |
| At4g33350 | Tic110                                                                                     | 13   | 25.94 | 2.00 |
| At4g32650 | potassium channel protein AtKC                                                             | 0.18 | 0.32  | 1.78 |
| At2g38170 | high affinity Ca2+ antiporter                                                              | 0.16 | 0.27  | 1.69 |
| At1g03060 | putataive transport protein                                                                | 0.21 | 0.35  | 1.67 |
| At4g12030 | putative transport protein                                                                 | 0.1  | 0.16  | 1.60 |
| At5g64940 | ABC transporter-like                                                                       | 1.93 | 2.96  | 1.53 |
| At4g24390 | transport inhibitor response-like protein                                                  | 4.6  | 6.73  | 1.46 |
| At1g64780 | ammonium transporter                                                                       | 0.39 | 0.57  | 1.46 |
| At2g18710 | putative preprotein translocase SECY protein                                               | 0.07 | 0.1   | 1.43 |
| At4g00630 | putative potassium/H+ antiporter                                                           | 0.12 | 0.17  | 1.42 |
| At3g48850 | mitochondrial phosphate transporter                                                        | 0.43 | 0.6   | 1.40 |
| At2g28070 | putative ABC transporter                                                                   | 0.18 | 0.25  | 1.39 |
| At2g24820 | Toc75                                                                                      | 0.6  | 0.82  | 1.37 |
| At4g37270 | Cu2+-transporting ATPase-like protein                                                      | 0.25 | 0.34  | 1.36 |
| At4g01800 | putative SecA-type chloroplast protein transport factor                                    | 0.28 | 0.37  | 1.32 |
| At5g04770 | amino acid transporter-like protein                                                        | 0.43 | 0.56  | 1.30 |
| At5g59030 | copper transport protein                                                                   | 0.14 | 0.18  | 1.29 |
| At5g14040 | mitochondrial phosphate translocator                                                       | 0.88 | 0.69  | 0.78 |
| At4g01810 | putative protein transport factor                                                          | 0.12 | 0.09  | 0.75 |
| At3g08580 | adenylate translocator                                                                     | 2.3  | 1.71  | 0.74 |
| At3g01550 | putative phosphate/phosphoenolpyruvate (PPT) translocator                                  | 0.3  | 0.22  | 0.73 |
| At4g37130 | nucleoporin-like protein                                                                   | 0.49 | 0.34  | 0.69 |
| At2g26900 | putative Na+ dependent ileal bile acid transporter                                         | 0.32 | 0.22  | 0.69 |
| At4g32500 | potassium channel - protein                                                                | 1.03 | 0.69  | 0.67 |
| At4g04770 | putative ABC transporter                                                                   | 0.83 | 0.54  | 0.65 |
| At1g05030 | putative sugar transporter protein                                                         | 0.4  | 0.26  | 0.65 |
| At2g32400 | putative ligand-gated ion channel subunit                                                  | 0.89 | 0.49  | 0.55 |
| At1g80830 | metal ion transporter                                                                      | 0.58 | 0.31  | 0.53 |
| At5g03910 | ABC transporter -like protein                                                              | 1.62 | 0.76  | 0.47 |
| At5g64290 | 2-oxoglutarate/malate translocator; corrected anotation: glutamate/malate translocator (Di | 0.78 | 0.36  | 0.46 |
| At2g31530 | putative preprotein translocase SECY protein                                               | 0.39 | 0.17  | 0.44 |
| At5g54800 | glucose-6-phosphate/phosphate translocator (GPT)                                           | 0.53 | 0.2   | 0.38 |

| At1g67770 | putative ABC transporter         | 1.39 | 0.52 | 0.37 |
|-----------|----------------------------------|------|------|------|
| At4g03320 | Tic20.1                          | 0.61 | 0.22 | 0.36 |
| At4g33520 | metal-transporting P-type ATPase | 3.9  | 1.22 | 0.31 |

# Protein phosphorylation

| At1g07160 | protein phosphatase 2C                                               | 0.04  | 0.15  | 3.75 |
|-----------|----------------------------------------------------------------------|-------|-------|------|
| At3g25840 | protein kinase                                                       | 0.17  | 0.5   | 2.94 |
| At2g39360 | putative protein kinase                                              | 0.8   | 1.37  | 1.71 |
| At1g72540 | putative protein kinase                                              | 0.06  | 0.1   | 1.67 |
| At4g39540 | shikimate kinase - like protein                                      | 0.11  | 0.18  | 1.64 |
| At1g18890 | calcium-dependent protein kinase                                     | 0.33  | 0.49  | 1.48 |
| At1g68690 | protein kinase                                                       | 0.23  | 0.34  | 1.48 |
| At3g26940 | protein kinase                                                       | 0.18  | 0.26  | 1.44 |
| At4g23190 | serine/threonine kinase - like protein                               | 0.17  | 0.24  | 1.41 |
| At5g66210 | calcium-dependent protein kinase                                     | 0.15  | 0.21  | 1.40 |
| At4g34440 | putative serine/threonine protein kinase                             | 0.22  | 0.3   | 1.36 |
| At2g45910 | putative protein kinase                                              | 0.8   | 1.09  | 1.36 |
| At2g31800 | putative protein kinase                                              | 0.37  | 0.49  | 1.32 |
| At4g23200 | serine /threonine kinase - like protein                              | 0.29  | 0.38  | 1.31 |
| At1g31160 | putative protein kinase C inhibitor (Zinc-binding protein)           | 0.35  | 0.27  | 0.77 |
| At5g02290 | serine/threonine-specific protein kinase NAK                         | 0.17  | 0.13  | 0.76 |
| At1g79250 | serine/threonine protein kinase                                      | 0.72  | 0.55  | 0.76 |
| At2g17265 | homoserine kinase; 3-hydroxy-3-methylglutaryl-coenzyme A reductase 2 | . 1.1 | 0.82  | 0.75 |
| At4g15410 | phosphatase like protein                                             | 8.47  | 6.25  | 0.74 |
| At5g25930 | receptor-like protein kinase - like                                  | 15.73 | 11.28 | 0.72 |
| At4g21230 | receptor kinase - like protein                                       | 0.52  | 0.34  | 0.65 |
| At4g23140 | serine/threonine kinase - like protein                               | 1.04  | 0.68  | 0.65 |
| At5g18910 | protein kinase - like protein                                        | 1     | 0.64  | 0.64 |
| At2g30020 | putative protein phosphatase 2C                                      | 0.51  | 0.3   | 0.59 |
| At3g08760 | putative protein kinase                                              | 0.68  | 0.4   | 0.59 |
| At4g25160 | putative Ser/Thr protein kinase                                      | 1.55  | 0.77  | 0.50 |
| At4g36950 | MAP3K-like protein kinase                                            | 1.2   | 0.59  | 0.49 |

### **Stress response**

|           | -                                               |      |      |      |
|-----------|-------------------------------------------------|------|------|------|
| At4g29670 | thioredoxin-like protein                        | 0.97 | 2.75 | 2.84 |
| At4g20090 | membrane-associated salt-inducible-like protein | 2.35 | 5.77 | 2.46 |
| At1g05480 | hypothetical protein                            | 0.44 | 1.08 | 2.45 |
| At4g36430 | peroxidase like protein                         | 0.24 | 0.52 | 2.17 |
| At4g37910 | heat shock protein 70 like protein              | 0.88 | 1.89 | 2.15 |
| At5g18360 | disease resistance protein -like                | 0.43 | 0.74 | 1.72 |
| At4g15910 | drought-induced protein like                    | 0.12 | 0.2  | 1.67 |
| At4g11170 | RPP1-WsA-like disease resistance protein        | 0.92 | 1.49 | 1.62 |
| At4g25130 | protein-methionine-S-oxide reductase            | 0.21 | 0.34 | 1.62 |
| At2g18980 | peroxidase (ATP22a)                             | 1.04 | 1.67 | 1.61 |
| At4g31870 | glutathione peroxidase - like protein           | 0.19 | 0.29 | 1.53 |
| At2g04030 | putative heat shock protein                     | 0.56 | 0.84 | 1.50 |
| At3g18190 | chaperonin subunit                              | 0.37 | 0.55 | 1.49 |
| At5g15450 | ClpB heat shock protein-like                    | 0.15 | 0.22 | 1.47 |
| At2g40000 | putative nematode-resistance protein            | 1.27 | 1.85 | 1.46 |
| At5g49910 | heat shock protein 70                           | 1.62 | 2.31 | 1.43 |
|           |                                                 |      |      |      |

| At2g25080 | putative glutathione peroxidase                   | 0.26 | 0.37 | 1.42 |
|-----------|---------------------------------------------------|------|------|------|
| At4g24280 | Hsp70-like protein                                | 1    | 1.36 | 1.36 |
| At3g13470 | chaperonin 60 beta                                | 0.31 | 0.42 | 1.35 |
| At3g44670 | disease resistance protein homlog                 | 0.74 | 0.99 | 1.34 |
| At2g26790 | putative salt-inducible protein                   | 0.56 | 0.74 | 1.32 |
| At4g36150 | putative disease resistance protein               | 1.01 | 1.33 | 1.32 |
| At2g18940 | putative salt-inducible protein                   | 0.23 | 0.3  | 1.30 |
| At4g27670 | heat shock protein 21                             | 0.33 | 0.43 | 1.30 |
| At5g61440 | thioredoxin-like 3                                | 0.34 | 0.44 | 1.29 |
| At1g10910 | membrane-associated salt-inducible protein isolog | 0.19 | 0.14 | 0.74 |
| At1g75380 | wound-responsive protein                          | 1.38 | 0.9  | 0.65 |
| At1g09420 | putative glucose-6-phosphate dehydrogenase        | 1.21 | 0.66 | 0.55 |
| At2g19280 | putative salt-inducible protein                   | 3.2  | 1.56 | 0.49 |
| At1g77490 | thylakoid-bound ascorbate peroxidase              | 0.27 | 0.12 | 0.44 |
| At2g42540 | cold-regulated protein cor15a precursor           | 1.22 | 0.3  | 0.25 |
| At3g05880 | low temperature and salt responsive protein LTI6A | 2.96 | 0.69 | 0.23 |
| At2g42530 | cold-regulated protein cor15b precursor           | 0.8  | 0.11 | 0.14 |

# **Transcription/Translation**

|           | •                                                    |      |      |      |
|-----------|------------------------------------------------------|------|------|------|
| At5g03415 | transcription factor - like protein                  | 0.09 | 0.47 | 5.22 |
| At1g48880 | hypothetical protein                                 | 0.46 | 1.41 | 3.07 |
| At2g37510 | putative RNA-binding protein                         | 0.28 | 0.75 | 2.68 |
| At5g04600 | RNA binding protein - like                           | 0.06 | 0.16 | 2.67 |
| At2g13150 | putative bZIP transcription factor                   | 0.43 | 1.06 | 2.47 |
| At3g04450 | transfactor                                          | 0.08 | 0.19 | 2.38 |
| At3g08720 | putative ribosomal-protein S6 kinase (ATPK19)        | 1.04 | 2.43 | 2.34 |
| At4g01280 | putative myb-related DNA-binding protein             | 0.09 | 0.21 | 2.33 |
| At2g04240 | putative RING zinc finger protein                    | 1.98 | 4.59 | 2.32 |
| At1g14410 | DNA-binding protein p24                              | 0.05 | 0.1  | 2.00 |
| At3g56910 | ribosomal protein PSRP5                              | 2.76 | 5.34 | 1.93 |
| At4g21660 | spliceosome associated protein - like                | 0.5  | 0.92 | 1.84 |
| At4g24770 | RNA-binding protein RNP-T precursor                  | 1.88 | 3.39 | 1.80 |
| At3g18290 | zinc finger protein                                  | 0.08 | 0.14 | 1.75 |
| At5g54600 | chloroplast ribosomal protein L24                    | 0.9  | 1.55 | 1.72 |
| At1g48490 | transcription factor IRE                             | 0.36 | 0.6  | 1.67 |
| At3g58570 | ATP-dependent RNA helicase-like protein              | 0.08 | 0.13 | 1.63 |
| At3g22780 | putative DNA binding protein                         | 0.55 | 0.88 | 1.60 |
| At2g39100 | putative C3HC4-type RING zinc finger protein         | 0.42 | 0.66 | 1.57 |
| At1g78630 | putative chloroplast ribosomal protein L13           | 0.65 | 1.01 | 1.55 |
| At3g09600 | putative MYB-related protein                         | 0.15 | 0.23 | 1.53 |
| At5g53920 | ribosomal protein L11 methyltransferase-like protein | 0.38 | 0.57 | 1.50 |
| At2g21230 | putative bZIP transcription factor                   | 0.45 | 0.66 | 1.47 |
| At2g38470 | putative WRKY-type DNA-binding protein               | 0.39 | 0.57 | 1.46 |
| rpoC1     | plastid gene product; RNA polymerase                 | 1.92 | 2.78 | 1.45 |
| At2g22360 | putative DnaJ protein                                | 0.25 | 0.36 | 1.44 |
| At4g30680 | translation initiation factor-like protein           | 0.16 | 0.23 | 1.44 |
| At1g05190 | putative chloroplast ribosomal protein L6            | 1.05 | 1.5  | 1.43 |
| At2g37600 | 60S ribosomal protein L36                            | 0.29 | 0.41 | 1.41 |
| At1g78160 | putative RNA-binding protein                         | 0.17 | 0.24 | 1.41 |
| At4g20360 | translation elongation factor EF-Tu precursor        | 0.34 | 0.48 | 1.41 |
| At2g01150 | RING-H2 zinc finger protein (RHA2b)                  | 0.79 | 1.1  | 1.39 |
|           |                                                      |      |      |      |

| At1g80420 | putative DNA repair protein                                                         | 0.18 | 0.25 | 1.39 |
|-----------|-------------------------------------------------------------------------------------|------|------|------|
| At2g47520 | putative AP2 domain transcription factor                                            | 0.26 | 0.36 | 1.38 |
| At1g64510 | putative chloroplast plastid ribosomal protein S6                                   | 0.56 | 0.77 | 1.38 |
| At2g38340 | DREB-like AP2 domain transcription factor                                           | 0.11 | 0.15 | 1.36 |
| At5g14320 | very similar to chloroplast ribosomal protein S13                                   | 1.64 | 2.2  | 1.34 |
| At5g45110 | regulatory protein NPR1-like; transcription factor inhibitor I kappa B-like protein | 0.18 | 0.24 | 1.33 |
| At4g32040 | homeodomain containing protein 1                                                    | 0.37 | 0.49 | 1.32 |
| At4g04350 | putative leucyl tRNA synthetase                                                     | 0.28 | 0.37 | 1.32 |
| At5g10980 | histon H3 protein                                                                   | 0.69 | 0.91 | 1.32 |
| At2g41460 | DNA-(apurinic or apyrimidinic site) lyase (ARP)                                     | 0.22 | 0.29 | 1.32 |
| At5g14460 | tRNA synthase - like protein                                                        | 0.13 | 0.17 | 1.31 |
| At5g26710 | glutamyl-tRNA synthetase                                                            | 1.66 | 2.15 | 1.30 |
| At1g49400 | 40S ribosomal protein S17                                                           | 0.14 | 0.18 | 1.29 |
| At5g02320 | myb-like protein                                                                    | 1.01 | 1.29 | 1.28 |
| At3g58140 | phenylalanine-tRNA synthetase-like protein                                          | 0.26 | 0.33 | 1.27 |
| At1g13960 | putative DNA-binding protein                                                        | 0.04 | 0.05 | 1.25 |
| At3g53460 | RNA-binding protein cp29 protein                                                    | 1.16 | 0.9  | 0.78 |
| At4g26770 | putative CDP-diacylglycerol synthetase                                              | 0.26 | 0.2  | 0.77 |
| At1g60000 | nucleic acid-binding protein                                                        | 0.91 | 0.7  | 0.77 |
| At3g03710 | putative polynucleotide phosphorylase                                               | 0.56 | 0.43 | 0.77 |
| At1g68730 | putative transcription factor                                                       | 1.11 | 0.85 | 0.77 |
| At3g08000 | putative RNA-binding protein                                                        | 0.17 | 0.13 | 0.76 |
| At1g01520 | myb-related protein                                                                 | 0.25 | 0.19 | 0.76 |
| At4g04730 | putative zinc finger protein                                                        | 0.53 | 0.4  | 0.75 |
| At1g73250 | GDP-4-keto-6-deoxy-D-mannose-3                                                      | 0.44 | 0.33 | 0.75 |
| At1g54690 | histone H2A                                                                         | 0.64 | 0.48 | 0.75 |
| At4g34590 | bZIP transcription factor ATB2                                                      | 0.08 | 0.06 | 0.75 |
| At1g03970 | G-box binding factor                                                                | 0.19 | 0.14 | 0.74 |
| At4g27230 | histone H2A- like protein                                                           | 0.45 | 0.33 | 0.73 |
| At2g30320 | putative pseudouridine synthase                                                     | 0.86 | 0.63 | 0.73 |
| At2g15740 | putative C2H2-type zinc finger protein                                              | 0.66 | 0.48 | 0.73 |
| At2g28450 | putative RNA methyltransferase                                                      | 0.33 | 0.24 | 0.73 |
| At4g17460 | homeobox-leucine zipper protein HAT1                                                | 0.98 | 0.71 | 0.72 |
| At2g03200 | putative chloroplast nucleoid DNA-binding protein                                   | 0.9  | 0.65 | 0.72 |
| At2g37220 | putative RNA-binding protein                                                        | 2.05 | 1.48 | 0.72 |
| At5g65350 | histone H3                                                                          | 2.59 | 1.85 | 0.71 |
| At1g80670 | mRNA export protein                                                                 | 0.28 | 0.2  | 0.71 |
| At5g15760 | ribosomal protein PSRP3                                                             | 0.73 | 0.52 | 0.71 |
| At2g31170 | putative cysteinyl-tRNA synthetase                                                  | 0.17 | 0.12 | 0.71 |
| At2g46590 | putative DOF zinc finger protein                                                    | 0.71 | 0.5  | 0.70 |
| At4g39410 | putative WRKY DNA-binding protein                                                   | 0.26 | 0.18 | 0.69 |
| At1g29070 | putative plastid ribosomal protein L34                                              | 0.41 | 0.28 | 0.68 |
| At3g52150 | chloroplast ribosomal protein PSRP2                                                 | 1.09 | 0.74 | 0.68 |
| At1g13460 | B\\\' regulatory subunit of protein phosphatase 2A                                  | 0.52 | 0.35 | 0.67 |
| At1g80560 | putative 3-isopropylmalate dehydrogenase                                            | 0.47 | 0.31 | 0.66 |
| At1g75390 | bZIP transcription factor ATB2                                                      | 0.94 | 0.62 | 0.66 |
| At4g25540 | putative DNA mismatch repair protein                                                | 1.35 | 0.89 | 0.66 |
| At1g48350 | putative chloroplast ribosomal protein L18                                          | 0.7  | 0.46 | 0.66 |
| At2g38810 | histone H2A                                                                         | 0.56 | 0.36 | 0.64 |
| At4g12620 | origin recognition complex subunit 1 -like protein                                  | 0.36 | 0.23 | 0.64 |
| At4a20980 | translation initiation factor eIF3 - like protein                                   | 0.11 | 0.07 | 0.64 |

| At1g35560 | DNA binding protein                         | 0.33  | 0.21  | 0.64 |
|-----------|---------------------------------------------|-------|-------|------|
| At1g13270 | methionine aminopeptidase I (MAP1)          | 0.55  | 0.34  | 0.62 |
| At2g39990 | 26S proteasome regulatory subunit           | 0.18  | 0.11  | 0.61 |
| At1g19890 | histone H3                                  | 1.21  | 0.73  | 0.60 |
| At2g24090 | putative chloroplast ribosomal protein L35  | 0.34  | 0.2   | 0.59 |
| At4g03090 | NDX1 homeobox protein homolog               | 0.17  | 0.1   | 0.59 |
| At4g16780 | DNA-binding homeotic protein Athb-2         | 0.9   | 0.52  | 0.58 |
| At3g60490 | transcription factor - like protein         | 0.07  | 0.04  | 0.57 |
| At3g54210 | putative chloroplast ribosomal protein L17  | 1.13  | 0.64  | 0.57 |
| At1g79840 | homeobox protein (GLABRA2)                  | 0.25  | 0.14  | 0.56 |
| At1g34380 | DNA polymerase type I                       | 0.87  | 0.47  | 0.54 |
| At3g54610 | histon acetyltransferase HAT1               | 1.82  | 0.97  | 0.53 |
| At1g14580 | zinc finger protein                         | 40.69 | 18.15 | 0.45 |
| At2g44940 | putative AP2 domain transcription factor    | 1.61  | 0.65  | 0.40 |
| At5g15700 | DNA-directed RNA polymerase (mitochondrial) | 0.39  | 0.14  | 0.36 |
| At2g21660 | glycine-rich RNA binding protein 7          | 13.75 | 4.69  | 0.34 |
| At2g36010 | putative E2F5 family transcription factor   | 4.09  | 0.84  | 0.21 |

# Unclassified

| At4g11230 | respiratory burst oxidase homolog F - like protein | 0.3  | 2.94  | 9.80 |
|-----------|----------------------------------------------------|------|-------|------|
| At4g39690 | putative protein                                   | 0.86 | 4.68  | 5.44 |
| At5g61950 | putative protein                                   | 0.08 | 0.4   | 5.00 |
| At1g27210 | unknown protein                                    | 3.33 | 15.95 | 4.79 |
| At3g63410 | putative chloroplast inner envelope protein        | 0.56 | 2.49  | 4.45 |
| At2g17540 | unknown protein                                    | 1.1  | 4.53  | 4.12 |
| At4g12470 | pEARLI 1-like protein                              | 0.39 | 1.57  | 4.03 |
| At3g56290 | putative protein                                   | 0.05 | 0.2   | 4.00 |
| At4g11090 | putative protein                                   | 0.53 | 2.11  | 3.98 |
| At4g27020 | putative protein                                   | 3.98 | 15.14 | 3.80 |
| At1g05140 | unknown protein                                    | 0.94 | 3.5   | 3.72 |
| At5g06990 | putative protein                                   | 0.18 | 0.67  | 3.72 |
| At4g27990 | putative protein                                   | 0.42 | 1.51  | 3.60 |
| At2g38310 | unknown protein                                    | 0.63 | 2.23  | 3.54 |
| At3g26630 | unknown protein                                    | 1.1  | 3.72  | 3.38 |
| At1g09940 | putative glutamyl-tRNA reductase 2 precursor       | 0.14 | 0.47  | 3.36 |
| At1g22680 | hypothetical protein                               | 0.98 | 3.21  | 3.28 |
| At4g12490 | pEARLI 1-like protein                              | 0.51 | 1.67  | 3.27 |
| At2g16460 | unknown protein                                    | 2.06 | 6.48  | 3.15 |
| At3g57440 | hypothetical protein                               | 0.47 | 1.43  | 3.04 |
| At3g52760 | putative protein                                   | 1.42 | 4.27  | 3.01 |
| At3g56040 | putative protein                                   | 0.02 | 0.06  | 3.00 |
| At2g30460 | putative integral membrane protein                 | 2.35 | 7.05  | 3.00 |
| At4g34350 | putative protein                                   | 0.79 | 2.35  | 2.97 |
| At4g01650 | hypothetical protein                               | 2.64 | 7.76  | 2.94 |
| At5g52530 | putative protein                                   | 0.69 | 1.97  | 2.86 |
| At1g06280 | hypothetical protein                               | 0.23 | 0.65  | 2.83 |
| At4g09620 | putative protein                                   | 0.56 | 1.58  | 2.82 |
| At1g79050 | replicase                                          | 0.3  | 0.84  | 2.80 |
| At4g07990 | hypothetical protein                               | 0.1  | 0.27  | 2.70 |
| At1g23730 | putative carbonic anhydrase                        | 0.03 | 0.08  | 2.67 |
| At3g07100 | putative Sec24-like COPII protein                  | 0.06 | 0.16  | 2.67 |

| At4g32130 | hypothetical protein                                 | 0.18  | 0.47         | 2.61 |
|-----------|------------------------------------------------------|-------|--------------|------|
| At2g22890 | unknown protein                                      | 0.58  | 1.5          | 2.59 |
| At2g43870 | putative polygalacturonase                           | 0.36  | 0.93         | 2.58 |
| At4g21990 | PRH26 protein                                        | 0.57  | 1.46         | 2.56 |
| At1g76620 | unknown protein                                      | 0.74  | 1.88         | 2.54 |
| At1g31410 | hypothetical protein                                 | 0.2   | 0.5          | 2.50 |
| At3g08010 | unknown protein                                      | 0.02  | 0.05         | 2.50 |
| At1g35510 | growth regulator                                     | 0.74  | 1.84         | 2.49 |
| At2g41040 | hypothetical protein                                 | 0.75  | 1.86         | 2.48 |
| At3g47100 | hypothetical protein                                 | 0.19  | 0.47         | 2.47 |
| At2g26110 | unknown protein                                      | 0.64  | 1.55         | 2.42 |
| 3695393   | contains similarity to retroviral aspartyl proteases | 1.44  | 3.48         | 2.42 |
| rpoB      | plastid gene product; RNA polymerase                 | 4.4   | 10.51        | 2.39 |
| At1g72430 | hypothetical protein                                 | 1.01  | 2.4          | 2.38 |
| At1g50490 | cyclin-specific ubiquitin carrier protein            | 2.48  | 5.88         | 2.37 |
| At3g60000 | putative protein                                     | 0.25  | 0.59         | 2.36 |
| At5g55580 | putative protein                                     | 0.67  | 1.58         | 2.36 |
| At1g50770 | hypothetical protein                                 | 0.38  | 0.89         | 2.34 |
| At5g13630 | cobalamin biosynthesis protein                       | 1.04  | 2.42         | 2.33 |
| At5g26110 | endopeptidase - like protein                         | 0.95  | 2.21         | 2.33 |
| At4g31530 | putative protein                                     | 32.42 | 75.31        | 2.32 |
| At1g12900 | putative calcium-binding protein                     | 0.84  | 1.94         | 2.31 |
| At3g03760 | unknown protein                                      | 0.91  | 2.1          | 2.31 |
| At1g20070 | hypothetical protein                                 | 1.69  | 3.9          | 2.31 |
| At4g12390 | putative protein                                     | 1.89  | 4.35         | 2.30 |
| At4g01050 | hypothetical protein                                 | 0.37  | 0.85         | 2.30 |
| At4g22320 | hypothetical protein                                 | 0.27  | 0.62         | 2.30 |
| At1g03160 | fructokinase                                         | 0.69  | 1.58         | 2.29 |
| At1g17420 | lipoxygenase                                         | 0.07  | 0.16         | 2.29 |
| At1g01500 | hypothetical protein                                 | 0.15  | 0.34         | 2.27 |
| At3q44570 | putative protein                                     | 0.34  | 0.77         | 2.26 |
| at3q54870 | kinesin-like protein                                 | 0.31  | 0.7          | 2.26 |
| At2q34330 | unknown protein                                      | 0.08  | 0.18         | 2.25 |
| At4a17070 | hypothetical protein                                 | 3.67  | 8.25         | 2.25 |
| At2a26190 | unknown protein                                      | 0.13  | 0.29         | 2.23 |
| At2a15820 | unknown protein                                      | 5.45  | 12.04        | 2.21 |
| At1a27560 | unknown protein                                      | 2.9   | 6.39         | 2.20 |
| At2a05590 | hypothetical protein                                 | 0.05  | 0.11         | 2.20 |
| At4a35170 | putative protein                                     | 0.05  | 0.11         | 2.20 |
| At1a23500 | hypothetical protein                                 | 0.2   | 0.43         | 2.15 |
| At4a26780 | arpE like protein                                    | 7.86  | 16.87        | 2.15 |
| At3a04650 | unknown protein                                      | 0.84  | 1.79         | 2.13 |
| At1a34270 | unknown protein                                      | 0.09  | 0.19         | 2.11 |
| At4a13550 | putative protein                                     | 0.42  | 0.88         | 2 10 |
| At4a29060 | putative protein                                     | 2.13  | 4 46         | 2.09 |
| At4a32060 | putative protein                                     | 3.37  | 7.01         | 2.08 |
| At4a00170 | putative protein                                     | 0.14  | 0.29         | 2.00 |
| At2a12500 | pseudogene: similar to GR: AAA75253                  | 0.14  | 0.29         | 2.07 |
| At5a66520 | anosnony-associated protein C-like                   | 0.15  | 0.31         | 2.07 |
| At/a11060 | nutative protein                                     | 0.10  | 0.37<br>A 11 | 2.00 |
| At5a07540 | alvoine-rich protein atGRP-6                         | 0.46  | 4.11         | 2.04 |
| Alog07040 | givente non protein alone -0                         | 0.40  | 0.94         | 2.04 |

| At4g13430 | putative protein                        | 0.46  | 0.94  | 2.04 |
|-----------|-----------------------------------------|-------|-------|------|
| At5g49020 | arginine methyltransferase-like protein | 0.47  | 0.96  | 2.04 |
| At5g52810 | putative protein                        | 0.58  | 1.18  | 2.03 |
| At1g74220 | hypothetical protein                    | 0.34  | 0.69  | 2.03 |
| At1g54630 | hypothetical protein                    | 0.94  | 1.89  | 2.01 |
| At2g34640 | unknown protein                         | 0.14  | 0.28  | 2.00 |
| At2g28760 | putative nucleotide-sugar dehydratase   | 0.23  | 0.46  | 2.00 |
| 3834303   | hypothetical protein                    | 0.02  | 0.04  | 2.00 |
| At1g30950 | putative unusual floral organ (UFO)     | 1.44  | 2.87  | 1.99 |
| At5g36860 | putative protein                        | 1.38  | 2.7   | 1.96 |
| At4g20690 | putative protein                        | 0.18  | 0.35  | 1.94 |
| At2g35600 | hypothetical protein                    | 0.15  | 0.29  | 1.93 |
| At3g63300 | putative protein                        | 0.14  | 0.27  | 1.93 |
| At2g33250 | unknown protein                         | 0.21  | 0.4   | 1.90 |
| At2g43970 | unknown protein                         | 0.97  | 1.84  | 1.90 |
| At5g38190 | putative protein                        | 0.48  | 0.91  | 1.90 |
| At2g42870 | unknown protein                         | 0.19  | 0.36  | 1.89 |
| At2g37040 | phenylalanine ammonia lyase (PAL1)      | 0.19  | 0.36  | 1.89 |
| At1g47230 | cyclin                                  | 0.44  | 0.83  | 1.89 |
| At4g12500 | pEARLI 1-like protein                   | 0.68  | 1.28  | 1.88 |
| At2g01480 | axi 1-like protein                      | 0.25  | 0.47  | 1.88 |
| At2g31040 | hypothetical protein                    | 0.08  | 0.15  | 1.88 |
| At1g21600 | unknown protein                         | 0.16  | 0.3   | 1.88 |
| At4g33780 | putative protein                        | 2.53  | 4.73  | 1.87 |
| At5g14840 | putative protein                        | 0.38  | 0.71  | 1.87 |
| At5g65840 | unknown protein                         | 0.53  | 0.99  | 1.87 |
| At2g15680 | putative calmodulin-like protein        | 0.79  | 1.47  | 1.86 |
| At3g02040 | hypothetical protein                    | 2.64  | 4.91  | 1.86 |
| At4g10810 | putative protein                        | 13.67 | 25.36 | 1.86 |
| At1g72520 | putative lipoxygenase                   | 0.2   | 0.37  | 1.85 |
| At5g58870 | cell division protein - like            | 0.26  | 0.48  | 1.85 |
| At5g03110 | putative protein                        | 0.06  | 0.11  | 1.83 |
| At2g26220 | pseudogene; similar to AraPPT           | 14.63 | 26.74 | 1.83 |
| At2g04530 | hypothetical protein                    | 0.43  | 0.78  | 1.81 |
| At1g23360 | spore germination protein c2            | 0.63  | 1.14  | 1.81 |
| At2g33980 | hypothetical protein                    | 0.68  | 1.23  | 1.81 |
| At4g25190 | putative protein                        | 0.31  | 0.56  | 1.81 |
| At2g18900 | unknown protein                         | 0.56  | 1.01  | 1.80 |
| At4g28430 | hypothetical protein                    | 0.15  | 0.27  | 1.80 |
| At2g34470 | putative urease accessory protein       | 0.25  | 0.45  | 1.80 |
| At5g65480 | putative protein                        | 0.25  | 0.45  | 1.80 |
| At2g17120 | unknown protein                         | 3.08  | 5.53  | 1.80 |
| At1g01730 | unknown protein                         | 0.72  | 1.29  | 1.79 |
| At1g54120 | hypothetical protein                    | 0.23  | 0.41  | 1.78 |
| At4g21460 | putative protein                        | 0.64  | 1.14  | 1.78 |
| At5g25380 | cyclin 3a                               | 0.45  | 0.8   | 1.78 |
| At4g34730 | putative protein                        | 0.48  | 0.85  | 1.77 |
| At4g36190 | putative protein                        | 1.59  | 2.81  | 1.77 |
| At5g56050 | unknown protein                         | 0.55  | 0.97  | 1.76 |
| At2g17070 | hypothetical protein                    | 2.02  | 3.56  | 1.76 |
| At4g20850 | putative protein                        | 0.25  | 0.44  | 1.76 |

| At4g36010 | thaumatin-like protein                                    | 0.64 | 1.12  | 1.75         |
|-----------|-----------------------------------------------------------|------|-------|--------------|
| At1g66670 | ATP-dependent Clp protease (nClpP3)                       | 0.12 | 0.21  | 1.75         |
| At5g32490 | putative protein                                          | 0.35 | 0.61  | 1.74         |
| At3g53350 | putative protein                                          | 0.92 | 1.6   | 1.74         |
| At3g47380 | putative protein                                          | 0.83 | 1.44  | 1.73         |
| At5g52440 | HCF106                                                    | 0.49 | 0.85  | 1.73         |
| At2g37660 | unknown protein                                           | 0.94 | 1.63  | 1.73         |
| At3g42060 | putative protein                                          | 0.11 | 0.19  | 1.73         |
| At5g02250 | ribonuclease II-like protein                              | 0.11 | 0.19  | 1.73         |
| At4g19900 | putative protein                                          | 8.6  | 14.85 | 1.73         |
| At3g01370 | unknown protein                                           | 0.32 | 0.55  | 1.72         |
| At1g24040 | unknown protein                                           | 0.39 | 0.67  | 1.72         |
| At5g45290 | unknown protein                                           | 0.14 | 0.24  | 1.71         |
| At3g04890 | hypothetical protein                                      | 0.07 | 0.12  | 1.71         |
| At5g54430 | putative protein                                          | 1.39 | 2.38  | 1.71         |
| At3g14900 | hypothetical protein                                      | 0.71 | 1.21  | 1.70         |
| At3g63320 | putative protein                                          | 0.27 | 0.46  | 1.70         |
| At1g73650 | unknown protein                                           | 0.47 | 0.8   | 1.70         |
| At2g27440 | putative rac GTPase activating protein                    | 0.1  | 0.17  | 1.70         |
| At4g05070 | expressed protein                                         | 0.42 | 0.71  | 1.69         |
| At1g59940 | response regulator 3                                      | 1.15 | 1.94  | 1.69         |
| At5g11270 | putative protein                                          | 0.19 | 0.32  | 1.68         |
| At4g02480 | unknown protein                                           | 0.19 | 0.32  | 1.68         |
| At3g11170 | omega-3 fatty acid desaturase                             | 0.47 | 0.79  | 1.68         |
| At1g68725 | hypothetical protein                                      | 1.22 | 2.05  | 1.68         |
| At2g04790 | hypothetical protein                                      | 0.84 | 1.41  | 1.68         |
| At1g58290 | glutamyl-tRNA reductase                                   | 0.4  | 0.67  | 1.68         |
| At1g05860 | hypothetical protein                                      | 0.03 | 0.05  | 1.67         |
| At5g06670 | kinesin heavy chain-like protein                          | 0.18 | 0.3   | 1.67         |
| At1g03260 | hypothetical protein                                      | 0.06 | 0.1   | 1.67         |
| At3g21810 | unknown protein                                           | 0.12 | 0.2   | 1.67         |
| At4g26310 | putative protein                                          | 0.79 | 1.31  | 1.66         |
| At4g37890 | putative protein                                          | 0.7  | 1.16  | 1.66         |
| At2g18820 | putative non-LTR retroelement reverse transcriptase       | 0.29 | 0.48  | 1.66         |
| At5g12040 |                                                           | 0.26 | 0.43  | 1.65         |
| At2g37750 |                                                           | 0.28 | 0.46  | 1.64         |
| At5g63290 | oxygen-independent coproporphyrinogen-like protein        | 0.47 | 0.77  | 1.64<br>1.64 |
| At/200700 |                                                           | 0.11 | 0.10  | 1.04         |
| At4909700 | AMP hinding protoin                                       | 0.11 | 0.10  | 1.04         |
| At5a02040 | signal recognition particle 54CP (SPP54) protein procurse | 0.22 | 0.30  | 1.04         |
| Δt/a28590 | hypothetical protain                                      | 0.19 | 0.10  | 1.04         |
| At1a50880 | hypothetical protein                                      | 0.46 | 0.75  | 1.00         |
| At5a/1380 |                                                           | 0.40 | 1 32  | 1.00         |
| Δt4q00300 | contains weak similarity to S cerevisiae BOB1 protein     | 1 72 | 2.78  | 1.00         |
| At1g80480 | hypothetical protein                                      | 0.26 | 0.42  | 1.62         |
| At2g02740 | hypothetical protein                                      | 0.13 | 0.21  | 1.62         |
| At4g17650 | putative protein                                          | 0.13 | 0.21  | 1.62         |
| At4g23890 | putative protein                                          | 3.45 | 5.56  | 1.61         |
| At2g45990 | unknown protein                                           | 0.18 | 0.29  | 1.61         |
| At5g38680 | putative protein                                          | 0.18 | 0.29  | 1.61         |
| At4g34830 | putative protein                                          | 0.23 | 0.37  | 1.61         |

| At4g27510              | hypothetical protein                                 | 0.4            | 0.64        | 1.60         |
|------------------------|------------------------------------------------------|----------------|-------------|--------------|
| At1g08770              | unknown protein                                      | 0.4            | 0.64        | 1.60         |
| At1g61820              | beta-glucosidase                                     | 0.05           | 0.08        | 1.60         |
| At2g15870              | putative retroelement pol polyprotein                | 3.56           | 5.64        | 1.58         |
| At2g37230              | unknown protein                                      | 0.55           | 0.87        | 1.58         |
| At1g02060              | unknown protein                                      | 1.41           | 2.23        | 1.58         |
| At4g25120              | putative protein                                     | 0.64           | 1.01        | 1.58         |
| At3g27740              | carbamoyl phosphate synthetase small subunit         | 0.21           | 0.33        | 1.57         |
| At2g37330              | unknown protein                                      | 0.42           | 0.66        | 1.57         |
| At1g19050              | response regulator 5                                 | 0.14           | 0.22        | 1.57         |
| At2g42310              | unknown protein                                      | 0.07           | 0.11        | 1.57         |
| At3g59100              | putative protein                                     | 0.07           | 0.11        | 1.57         |
| At2g23670              | hypothetical protein                                 | 0.55           | 0.86        | 1.56         |
| At4g12770              | auxilin-like protein                                 | 0.41           | 0.64        | 1.56         |
| At5g23240              | putative protein                                     | 1.11           | 1.73        | 1.56         |
| At3g22690              | hypothetical protein                                 | 0.18           | 0.28        | 1.56         |
| At5g05580              | temperature-sensitive omega-3 fatty acid desaturase  | 0.36           | 0.56        | 1.56         |
| At4g03410              | hypothetical protein                                 | 0.65           | 1.01        | 1.55         |
| At3g18110              | hypothetical protein                                 | 0.29           | 0.45        | 1.55         |
| At2g35260              | unknown protein                                      | 0.4            | 0.62        | 1.55         |
| At5g48990              | putative protein                                     | 0.2            | 0.31        | 1.55         |
| At1g70180              | hypothetical protein                                 | 0.11           | 0.17        | 1.55         |
| At2g25040              | hypothetical protein                                 | 0.33           | 0.51        | 1.55         |
| At2g19940<br>At1g65080 | putative N-acetyl-gamma-glutamyl-phosphate reductase | e 0.83<br>0.26 | 1.28<br>0.4 | 1.54<br>1.54 |
| At4a38660              | putative thaumatin-like protein                      | 0.15           | 0.23        | 1.53         |
| At2a39670              |                                                      | 0.15           | 0.20        | 1.00         |
| At2a11380              | nseudogene                                           | 0.66           | 1.01        | 1.00         |
| At4a04480              | hypothetical protein                                 | 3.96           | 6.06        | 1.00         |
| At5a66780              |                                                      | 0.17           | 0.00        | 1.53         |
| At1a47520              |                                                      | 0.76           | 1 16        | 1.53         |
| At5a23060              |                                                      | 0.19           | 0.29        | 1.53         |
| At3a22700              | hypothetical protein                                 | 0.21           | 0.20        | 1.50         |
| At1a51350              | hypothetical protein                                 | 1.07           | 1.63        | 1.52         |
| At2a26280              |                                                      | 0.23           | 0.35        | 1.52         |
| At3a06350              | nutative debydroquinase shikimate debydroqenase      | 0.20           | 0.00        | 1.52         |
| At5a02860              |                                                      | 0.62           | 0.41        | 1.52         |
| At3a63190              |                                                      | 0.33           | 0.5         | 1.52         |
| At4a08600              | hypothetical protein                                 | 2              | 3.03        | 1.52         |
| At3a24260              | hypothetical protein                                 | 1 38           | 2.00        | 1.52         |
| At3a23400              |                                                      | 0.43           | 0.65        | 1.51         |
| At5a57930              |                                                      | 0.43           | 1.01        | 1.51         |
| At3a57630              |                                                      | 0.07           | 0.27        | 1.51         |
| At1a5/710              |                                                      | 0.10           | 0.27        | 1.50         |
| At/a2/030              | nypolitelical protein                                | 0.12           | 0.10        | 1.50         |
| At5a50280              |                                                      | 0.44           | 0.00        | 1.50         |
| At/a22220              |                                                      | 0.04           | 0.00        | 1.50         |
| At4922030              |                                                      | 0.12           | 0.10        | 1.50         |
| Δt2a27710              | putative protein                                     | 0.00           | 0.12        | 1.50         |
| At2020700              |                                                      | 0.00           | 0.09        | 1.50         |
| At5a11020              |                                                      | 0.14           | 0.21        | 1.50         |
| At1a/7720              |                                                      | 0.2            | 0.3         | 1.50         |
| AU94//30               | nypotnetical protein                                 | 06.0           | 0.04        | 1.50         |

| At3g10130  | unknown protein                                   | 0.1   | 0.15  | 1.50 |
|------------|---------------------------------------------------|-------|-------|------|
| At2g42620  | unknown protein                                   | 7.9   | 11.81 | 1.49 |
| At4g11980  | putative protein                                  | 13.17 | 19.61 | 1.49 |
| At1g30680  | hypothetical protein                              | 0.31  | 0.46  | 1.48 |
| At2g01760  | putative two-component response regulator protein | 0.29  | 0.43  | 1.48 |
| At3g21865  | unknown protein                                   | 0.77  | 1.14  | 1.48 |
| At3g49350  | GTPase activating -like protein                   | 0.25  | 0.37  | 1.48 |
| At2g21280  | unknown protein                                   | 0.25  | 0.37  | 1.48 |
| At5g39210  | hypothetical protein                              | 0.42  | 0.62  | 1.48 |
| At4g10060  | putative protein                                  | 0.78  | 1.15  | 1.47 |
| At1g75230  | 3-methyladenine DNA glycosylase                   | 0.19  | 0.28  | 1.47 |
| At1g20510  | hypothetical protein                              | 2.41  | 3.55  | 1.47 |
| At1g62140  | hypothetical protein                              | 0.89  | 1.31  | 1.47 |
| At3g52190  | putative protein                                  | 0.15  | 0.22  | 1.47 |
| At4g22370  | hypothetical protein                              | 0.45  | 0.66  | 1.47 |
| At1g54130  | RSH3 (ReIA/SpoT homolog)                          | 0.15  | 0.22  | 1.47 |
| At5g17710  | chloroplast GrpE protein                          | 0.43  | 0.63  | 1.47 |
| At5g20070  | putative protein                                  | 1.25  | 1.83  | 1.46 |
| At5g23070  | putative protein                                  | 0.97  | 1.42  | 1.46 |
| At1g69370  | chorismate mutase                                 | 0.13  | 0.19  | 1.46 |
| At5q09820  | putative protein                                  | 0.13  | 0.19  | 1.46 |
| At1q11470  | hypothetical protein                              | 0.5   | 0.73  | 1.46 |
| At3q47650  | putative protein                                  | 1.14  | 1.66  | 1.46 |
| At5a35220  | putative protein                                  | 0.22  | 0.32  | 1.45 |
| At1a09780  | putative 2                                        | 0.71  | 1.03  | 1 45 |
| At2a26440  |                                                   | 1 11  | 1.60  | 1.10 |
| Δt3α44310  | nitrilase 1                                       | 0.2   | 0.29  | 1.45 |
| At5a24020  | sentum site-determining MinD                      | 0.2   | 0.20  | 1.45 |
| At5a/35/0  |                                                   | 0.2   | 0.29  | 1.45 |
| A+2a22020  |                                                   | 0.2   | 0.23  | 1.45 |
| At/202020  |                                                   | 0.49  | 0.71  | 1.45 |
| At4 ~09250 |                                                   | 0.56  | 0.04  | 1.43 |
| At 1908250 |                                                   | 0.09  | 0.13  | 1.44 |
| At2g47940  | putative serine protease                          | 0.34  | 0.49  | 1.44 |
| At1g34300  |                                                   | 0.5   | 0.72  | 1.44 |
| At4g00650  | hypothetical protein                              | 0.25  | 0.36  | 1.44 |
| At4g29790  | putative protein                                  | 0.25  | 0.36  | 1.44 |
| At4g17330  | G2484-1 protein                                   | 1.78  | 2.56  | 1.44 |
| At2g22230  | putative beta-hydroxyacyl-ACP dehydratase         | 0.16  | 0.23  | 1.44 |
| cob        | mitochondrial gene; cytochrome b                  | 1.12  | 1.61  | 1.44 |
| At3g54900  | putative protein                                  | 0.55  | 0.79  | 1.44 |
| At5g27280  | putative protein                                  | 0.39  | 0.56  | 1.44 |
| At1g60990  | hypothetical protein                              | 0.14  | 0.2   | 1.43 |
| At2g35650  | putative glucosyltransferase                      | 0.38  | 0.54  | 1.42 |
| At1g03230  | unknown protein                                   | 0.31  | 0.44  | 1.42 |
| At3g03880  | hypothetical protein                              | 1.29  | 1.83  | 1.42 |
| At5g62840  | putative protein                                  | 0.43  | 0.61  | 1.42 |
| At1g15850  | mitotic checkpoint protein                        | 0.55  | 0.78  | 1.42 |
| At1g04420  | hypothetical protein                              | 0.12  | 0.17  | 1.42 |
| At4g28840  | putative protein                                  | 0.36  | 0.51  | 1.42 |
| At2g21860  | unknown protein                                   | 0.36  | 0.51  | 1.42 |
| At5g47870  | putative protein                                  | 0.12  | 0.17  | 1.42 |

| At3g32930 | unknown protein                                  | 0.12 | 0.17 | 1.42 |
|-----------|--------------------------------------------------|------|------|------|
| At5g01920 | putative protein                                 | 0.65 | 0.92 | 1.42 |
| At3g15780 | unknown protein                                  | 0.7  | 0.99 | 1.41 |
| At4g37200 | HCF164; thiol-disulfide interchange like protein | 0.46 | 0.65 | 1.41 |
| At3g50770 | calmodulin-like protein                          | 0.46 | 0.65 | 1.41 |
| At1g04570 | hypothetical protein                             | 0.17 | 0.24 | 1.41 |
| At2g19870 | hypothetical protein                             | 0.39 | 0.55 | 1.41 |
| At1g62180 | 5\\\'-adenylylphosphosulfate reductase           | 0.83 | 1.17 | 1.41 |
| At3g03580 | hypothetical protein                             | 0.22 | 0.31 | 1.41 |
| At5g63570 | glutamate-1-semialdehyde 2                       | 0.22 | 0.31 | 1.41 |
| At2g31920 | hypothetical protein                             | 0.27 | 0.38 | 1.41 |
| At1g44446 | chlorophyll a oxygenase                          | 0.86 | 1.21 | 1.41 |
| At5g28750 | Tha4 protein - like                              | 0.32 | 0.45 | 1.41 |
| At1g17740 | unknown protein                                  | 0.2  | 0.28 | 1.40 |
| At2g25130 | hypothetical protein                             | 0.1  | 0.14 | 1.40 |
| At1g73090 | hypothetical protein                             | 0.05 | 0.07 | 1.40 |
| At4g32020 | putative protein                                 | 0.25 | 0.35 | 1.40 |
| At5g49590 | putative protein                                 | 0.3  | 0.42 | 1.40 |
| At2q46010 | hypothetical protein                             | 1.05 | 1.47 | 1.40 |
| At1q62250 | unknown protein                                  | 0.25 | 0.35 | 1.40 |
| At1q26150 | Pto kinase interactor                            | 0.55 | 0.77 | 1.40 |
| At3a42100 | putative protein                                 | 0.15 | 0.21 | 1.40 |
| At1a22040 | hypothetical protein                             | 0.38 | 0.53 | 1.39 |
| At1a49970 | nCloP5                                           | 0.33 | 0.46 | 1.39 |
| At1a75690 | unknown protein                                  | 3.33 | 4.64 | 1.39 |
| At5a24700 | unknown protein                                  | 0.23 | 0.32 | 1.39 |
| At1q79380 | unknown protein                                  | 1.23 | 1.71 | 1.39 |
| At3a58010 | putative protein                                 | 0.18 | 0.25 | 1.39 |
| At3a01170 | unknown protein                                  | 0.18 | 0.25 | 1.39 |
| At4a20120 | hypothetical protein                             | 0.18 | 0.25 | 1.39 |
| At4a18810 | putative protein                                 | 0.18 | 0.25 | 1.39 |
| At3a05710 | putative syntaxin protein                        | 1.37 | 1.9  | 1.39 |
| At5a24120 | sigma-like factor                                | 0.44 | 0.61 | 1.39 |
| At1a63680 | putative UDP-N-acetylmuramovlalanyl-D-glutamate2 | 0.13 | 0.18 | 1.38 |
| At1g67810 | putative protein                                 | 2.24 | 3.1  | 1.38 |
| At4g39030 | putative protein                                 | 0.34 | 0.47 | 1.38 |
| At4g13260 | putative protein                                 | 0.34 | 0.47 | 1.38 |
| At2g47910 | unknown protein                                  | 0.34 | 0.47 | 1.38 |
| At2g31160 | unknown protein                                  | 1.26 | 1.74 | 1.38 |
| At2g14890 | putative proline-rich protein                    | 0.42 | 0.58 | 1.38 |
| At1g49510 | unknown protein                                  | 0.37 | 0.51 | 1.38 |
| At4g35510 | putative protein                                 | 0.53 | 0.73 | 1.38 |
| At2g35400 | unknown protein                                  | 0.32 | 0.44 | 1.38 |
| At5g04740 | unknown protein                                  | 0.08 | 0.11 | 1.38 |
| At4g39980 | 2-dehydro-3-deoxyphosphoheptonate aldolase       | 0.4  | 0.55 | 1.38 |
| At4g31180 | aspartatetRNA ligase - like protein              | 0.08 | 0.11 | 1.38 |
| At3g25770 | hypothetical protein                             | 0.27 | 0.37 | 1.37 |
| At5g49450 | putative protein                                 | 0.92 | 1.26 | 1.37 |
| At5g17280 | putative protein                                 | 0.38 | 0.52 | 1.37 |
| At4g26220 | caffeoyl-CoA O-methyltransferase - like protein  | 0.41 | 0.56 | 1.37 |
| At1g27540 | unknown protein                                  | 0.52 | 0.71 | 1.37 |
| At4g27580 | putative protein                                 | 0.85 | 1.16 | 1.36 |
|           |                                                  |      |      |      |

| At2g48130 | unknown protein                                                     | 0.11 | 0.15 | 1.36 |
|-----------|---------------------------------------------------------------------|------|------|------|
| At3g59640 | putative protein                                                    | 0.11 | 0.15 | 1.36 |
| At5g46580 | putative protein                                                    | 0.22 | 0.3  | 1.36 |
| At3g26840 | unknown protein                                                     | 0.11 | 0.15 | 1.36 |
| At1g52220 | unknown protein                                                     | 0.69 | 0.94 | 1.36 |
| At5g19000 | putative protein                                                    | 1.16 | 1.58 | 1.36 |
| At5g23120 | HCF136                                                              | 0.86 | 1.17 | 1.36 |
| At3g57120 | putative protein                                                    | 1.03 | 1.4  | 1.36 |
| At4g22760 | predicted protein                                                   | 0.14 | 0.19 | 1.36 |
| At1g13990 | unknown protein                                                     | 0.56 | 0.76 | 1.36 |
| At1g21670 | hypothetical protein                                                | 0.14 | 0.19 | 1.36 |
| At5g42070 | putative protein                                                    | 0.45 | 0.61 | 1.36 |
| At5g01590 | hypothetical protein                                                | 0.31 | 0.42 | 1.35 |
| At1g41750 | hypothetical protein                                                | 0.34 | 0.46 | 1.35 |
| At4g03310 | hypothetical protein                                                | 5.08 | 6.87 | 1.35 |
| At2g34540 | hypothetical protein                                                | 0.2  | 0.27 | 1.35 |
| At4g20740 | similarity to CRP1                                                  | 0.4  | 0.54 | 1.35 |
| At4g37710 | putative protein                                                    | 0.23 | 0.31 | 1.35 |
| At5g27560 | putative protein                                                    | 0.23 | 0.31 | 1.35 |
| At4g02740 | hypothetical protein                                                | 0.23 | 0.31 | 1.35 |
| At1g65370 | unknown protein                                                     | 0.23 | 0.31 | 1.35 |
| At3g12930 | hypothetical protein                                                | 0.78 | 1.05 | 1.35 |
| At1g51440 | hypothetical protein                                                | 0.26 | 0.35 | 1.35 |
| At3g44880 | lethal leaf-spot 1 homolog LIs1                                     | 0.29 | 0.39 | 1.34 |
| At4g30910 | leucyl aminopeptidase - like protein (partial)                      | 0.53 | 0.71 | 1.34 |
| At5g66480 | putative protein                                                    | 0.06 | 0.08 | 1.33 |
| At4g23450 | putative protein                                                    | 0.15 | 0.2  | 1.33 |
| At5g45980 | putative protein                                                    | 0.15 | 0.2  | 1.33 |
| At3g19590 | mitotic checkpoint protein                                          | 0.03 | 0.04 | 1.33 |
| At3g11590 | unknown protein                                                     | 0.15 | 0.2  | 1.33 |
| At1g54520 | unknown protein                                                     | 0.06 | 0.08 | 1.33 |
| At5g39520 | putative protein                                                    | 0.03 | 0.04 | 1.33 |
| At3g23490 | cyanate lyase (CYN)                                                 | 2.67 | 3.56 | 1.33 |
| At5g03000 | putative protein                                                    | 0.21 | 0.28 | 1.33 |
| At2g35240 | unknown protein                                                     | 0.24 | 0.32 | 1.33 |
| At4g18370 | putative HhoA protease precursor; proteomics: lumenal DegQ protease | 0.21 | 0.28 | 1.33 |
| At5g61450 | putative protein                                                    | 0.15 | 0.2  | 1.33 |
| At2g39000 | unknown protein                                                     | 0.09 | 0.12 | 1.33 |
| At2g47860 | unknown protein                                                     | 0.09 | 0.12 | 1.33 |
| At2g40310 | putative polygalacturonase                                          | 0.09 | 0.12 | 1.33 |
| At1g05385 | expressed protein                                                   | 0.18 | 0.24 | 1.33 |
| At3g07430 | unknown protein                                                     | 0.27 | 0.36 | 1.33 |
| At4g15560 | DEF (CLA1) protein                                                  | 0.61 | 0.81 | 1.33 |
| At4g08940 | hypothetical protein                                                | 1.22 | 1.62 | 1.33 |
| At4g21210 | putative protein                                                    | 0.49 | 0.65 | 1.33 |
| At5g13090 | putative protein                                                    | 0.95 | 1.26 | 1.33 |
| At1g23210 | hypothetical protein                                                | 0.34 | 0.45 | 1.32 |
| At2g45310 | putative nucleotide sugar epimerase                                 | 0.34 | 0.45 | 1.32 |
| At3g17930 | hypothetical protein                                                | 0.99 | 1.31 | 1.32 |
| At1g24150 | unknown protein                                                     | 0.84 | 1.11 | 1.32 |
| At5g22830 | putative protein                                                    | 0.25 | 0.33 | 1.32 |
|           |                                                                     |      |      |      |

| At5g63830      | unknown protein                                | 0.25   | 0.33  | 1.32 |
|----------------|------------------------------------------------|--------|-------|------|
| At3g57110      | hypothetical protein                           | 0.25   | 0.33  | 1.32 |
| At3g16855      | ARR1 protein                                   | 0.25   | 0.33  | 1.32 |
| At1g55630      | hypothetical protein                           | 0.44   | 0.58  | 1.32 |
| At4g08280      | putative protein                               | 0.22   | 0.29  | 1.32 |
| At4g27250      | putative protein                               | 0.98   | 1.29  | 1.32 |
| At4g27390      | putative protein                               | 0.38   | 0.5   | 1.32 |
| At3g44810      | hypothetical protein                           | 0.16   | 0.21  | 1.31 |
| At1g79460      | ent-kaurene synthase                           | 0.16   | 0.21  | 1.31 |
| At1g79460      | ent-kaurene synthase                           | 0.16   | 0.21  | 1.31 |
| At4g29750      | putative protein                               | 0.16   | 0.21  | 1.31 |
| At5g50920      | ATP-dependent Clp protease                     | 3.08   | 4.03  | 1.31 |
| At3g63130      | RAN GTPase activating protein 1 protein        | 0.39   | 0.51  | 1.31 |
| At3g57780      | putative protein                               | 0.52   | 0.68  | 1.31 |
| At3g56410      | putative protein                               | 0.36   | 0.47  | 1.31 |
| At2g27360      | putative lipase                                | 0.36   | 0.47  | 1.31 |
| At3g13110      | serine acetyltransferase (Sat-1)               | 0.33   | 0.43  | 1.30 |
| At2q44570      | putative glucanase                             | 0.33   | 0.43  | 1.30 |
| rbcL           | plastid gene product: large subunit of Rubisco | 137.12 | 178.6 | 1.30 |
| At3q56710      | SigA binding protein                           | 0.1    | 0.13  | 1.30 |
| At5a19460      | putative protein                               | 0.1    | 0.13  | 1.30 |
| At1a21390      | hypothetical protein                           | 0.1    | 0.13  | 1.30 |
| At2a11100      | pseudogene                                     | 1.12   | 1.45  | 1.29 |
| At3a02875      | IAA-amino acid hydrolase (ILR1)                | 1.29   | 1.67  | 1.29 |
| At2a23890      | hypothetical protein                           | 0.17   | 0.22  | 1.29 |
| At5q30460      | putative protein                               | 0.34   | 0.44  | 1 29 |
| At4a24840      | brefeldin A-sensitive Golgi protein - like     | 0.24   | 0.31  | 1 29 |
| At1a65070      | hypothetical protein                           | 0.45   | 0.58  | 1 29 |
| At4a33170      |                                                | 0.59   | 0.76  | 1.20 |
| At2a22210      | pseudogene                                     | 0.35   | 0.45  | 1 29 |
| At3a63340      |                                                | 0.07   | 0.40  | 1.20 |
| Δt4a30150      | hypothetical protein                           | 0.07   | 0.09  | 1.20 |
| Δt3a22430      | hypothetical protein                           | 0.28   | 0.00  | 1.20 |
| At5a27300      |                                                | 1.62   | 2.08  | 1.20 |
| At1a2/130      | hypothetical protein                           | 0.74   | 0.95  | 1.20 |
| At2a/3050      |                                                | 0.74   | 0.95  | 1.20 |
| At5a10850      |                                                | 0.39   | 0.5   | 1.20 |
| At2a27200      | by nother tical protein                        | 43.52  | 55.62 | 1.20 |
| At/a37510      |                                                | 45.52  | 0.23  | 1.20 |
| At5a58560      |                                                | 0.18   | 0.23  | 1.20 |
| At1 a1 6 9 9 0 |                                                | 0.11   | 0.14  | 1.27 |
| ALIY10000      | by nother tigel protein                        | 0.22   | 0.20  | 1.27 |
| At1 ~ 65 600   | hypothetical protein                           | 0.23   | 0.29  | 1.20 |
| At 1905090     |                                                | 0.23   | 0.29  | 1.20 |
| At2947450      | CAO (cpSRP43)                                  | 0.27   | 0.34  | 1.20 |
| ALT927360      | nypothetical protein                           | 0.30   | 0.45  | 1.20 |
| A14914690      | eany light-induced protein ELIP.2 (LII1.2)     | 0.07   | 0.08  | 1.14 |
| Alog17840      |                                                | 0.2    | 0.16  | 0.80 |
| AT1010600      |                                                | 0.05   | 0.04  | 0.80 |
| At1g22240      |                                                | 0.19   | 0.15  | 0.79 |
| At3g57950      | putative protein                               | 0.56   | 0.44  | 0.79 |
| At2g24070      | unknown protein                                | 0.14   | 0.11  | 0.79 |

| At4g19390 | putative protein                                      |         | 0.14 | 0.11 | 0.79 |
|-----------|-------------------------------------------------------|---------|------|------|------|
| At5g18260 | putative protein                                      |         | 0.73 | 0.57 | 0.78 |
| At4g24910 | putative protein                                      |         | 0.5  | 0.39 | 0.78 |
| At2g32840 | hypothetical protein                                  |         | 0.59 | 0.46 | 0.78 |
| At1g66890 | hypothetical protein                                  |         | 0.59 | 0.46 | 0.78 |
| At3g52550 | hypothetical protein                                  |         | 0.59 | 0.46 | 0.78 |
| At2g41950 | hypothetical protein                                  |         | 0.68 | 0.53 | 0.78 |
| At1g60550 | hypothetical protein                                  |         | 0.36 | 0.28 | 0.78 |
| At3g53860 | putative protein                                      |         | 0.18 | 0.14 | 0.78 |
| At1g27610 | hypothetical protein                                  |         | 1.07 | 0.83 | 0.78 |
| At3g19540 | unknown protein                                       |         | 0.89 | 0.69 | 0.78 |
| At1g77250 | hypothetical protein                                  |         | 0.8  | 0.62 | 0.78 |
| At4g39550 | putative protein                                      |         | 1.11 | 0.86 | 0.77 |
| At3g57680 | carboxyl terminal protease - like protein             |         | 0.31 | 0.24 | 0.77 |
| At1g79960 | hypothetical protein                                  |         | 0.53 | 0.41 | 0.77 |
| At1g15490 | hypothetical protein                                  |         | 0.22 | 0.17 | 0.77 |
| At1g12520 | unknown protein                                       |         | 0.22 | 0.17 | 0.77 |
| At5g62000 | auxin response factor - like protein                  |         | 0.35 | 0.27 | 0.77 |
| At2g39710 | unknown protein                                       |         | 1.05 | 0.81 | 0.77 |
| At4g38150 | putative protein                                      |         | 5.85 | 4.51 | 0.77 |
| At4g29490 | putative protein                                      |         | 0.48 | 0.37 | 0.77 |
| At5g48370 | putative protein                                      |         | 0.61 | 0.47 | 0.77 |
| At2g24210 | putative limonene cyclase                             |         | 0.13 | 0.1  | 0.77 |
| At5a65490 | putative protein                                      |         | 0.13 | 0.1  | 0.77 |
| At1a43840 | hypothetical protein                                  |         | 0.39 | 0.3  | 0.77 |
| At1a67440 | hypothetical protein                                  |         | 1.47 | 1.13 | 0.77 |
| At4a32340 | putative protein                                      |         | 0.43 | 0.33 | 0.77 |
| At3a11150 | hypothetical protein                                  |         | 0.86 | 0.66 | 0.77 |
| At4q00610 | hypothetical protein                                  |         | 0.6  | 0.46 | 0.77 |
| At3q30190 | hypothetical protein                                  |         | 0.6  | 0.46 | 0.77 |
| At1q19350 | unknown protein                                       |         | 0.34 | 0.26 | 0.76 |
| At5q11480 | putative GTP-binding protein                          |         | 0.17 | 0.13 | 0.76 |
| At2a23330 | putative retroelement pol polyprotein                 |         | 0.55 | 0.42 | 0.76 |
| At3a24190 | unknown protein                                       |         | 1 01 | 0.77 | 0.76 |
| At1a31790 | hypothetical protein                                  |         | 1 38 | 1.05 | 0.76 |
| At2a38070 | hypothetical protein                                  |         | 0.46 | 0.35 | 0.76 |
| 3695380   | nartial CDS: contains similarity to Nicotiana tabacum |         | 0.71 | 0.54 | 0.76 |
| 0000000   | membrane-associated salt-inducible protein            |         | 0.71 | 0.04 | 0.70 |
| At1g21060 | unknown protein                                       |         | 0.25 | 0.19 | 0.76 |
| 7939562   |                                                       | 7939562 | 0.54 | 0.41 | 0.76 |
| At1g64890 | unknown protein                                       |         | 0.45 | 0.34 | 0.76 |
| At2g38360 | unknown protein                                       |         | 0.45 | 0.34 | 0.76 |
| At2g27770 | hypothetical protein                                  |         | 1.06 | 0.8  | 0.75 |
| At5g56660 | IAA-amino acid hydrolase                              |         | 0.69 | 0.52 | 0.75 |
| At4g27320 | putative protein                                      |         | 0.81 | 0.61 | 0.75 |
| At3g22160 | unknown protein                                       |         | 0.16 | 0.12 | 0.75 |
| At4g30620 | putative protein                                      |         | 0.68 | 0.51 | 0.75 |
| At1g62110 | hypothetical protein                                  |         | 0.48 | 0.36 | 0.75 |
| At2g05310 | unknown protein                                       |         | 0.24 | 0.18 | 0.75 |
| At2g39470 | proteomics: thylakoid lumen protein                   |         | 0.96 | 0.72 | 0.75 |
| At1g50960 | gibberellin 20-oxidase                                |         | 0.44 | 0.33 | 0.75 |
| At5g13840 | cell cycle switch protein                             |         | 0.32 | 0.24 | 0.75 |

| At4g14620  | hypothetical protein                             | 0.12 | 0.09 | 0.75 |
|------------|--------------------------------------------------|------|------|------|
| At3g19960  | myosin                                           | 0.28 | 0.21 | 0.75 |
| At5g07770  | unknown protein                                  | 0.28 | 0.21 | 0.75 |
| At4g18540  | hypothetical protein                             | 0.75 | 0.56 | 0.75 |
| At4g00890  | hypothetical protein                             | 0.67 | 0.5  | 0.75 |
| At5g61200  | putative protein                                 | 1.02 | 0.76 | 0.75 |
| At3g18870  | hypothetical protein                             | 0.94 | 0.7  | 0.74 |
| At3g04680  | unknown protein                                  | 0.39 | 0.29 | 0.74 |
| At1g70990  | hypothetical protein                             | 1.28 | 0.95 | 0.74 |
| At2g31720  | hypothetical protein                             | 0.31 | 0.23 | 0.74 |
| At3g15840  | unknown protein                                  | 0.31 | 0.23 | 0.74 |
| At3g47200  | putative protein                                 | 0.31 | 0.23 | 0.74 |
| At3g18230  | unknown protein                                  | 1.16 | 0.86 | 0.74 |
| At4g22920  | hypothetical protein                             | 0.85 | 0.63 | 0.74 |
| At1g74940  | unknown protein                                  | 0.27 | 0.2  | 0.74 |
| At5g56760  | serine O-acetyltransferase                       | 0.5  | 0.37 | 0.74 |
| At2g33720  | hypothetical protein                             | 0.23 | 0.17 | 0.74 |
| At5a35100  | putative protein                                 | 0.88 | 0.65 | 0.74 |
| At3q44720  | putative chloroplast prephenate dehydratase      | 0.61 | 0.45 | 0.74 |
| At2q33280  | hypothetical protein                             | 0.61 | 0.45 | 0.74 |
| At2a28755  | putative dTDP-glucose 4-6-dehvdratase            | 0.38 | 0.28 | 0.74 |
| At3a25110  | acvl-(acvl carrier protein) thioesterase         | 0.57 | 0.42 | 0.74 |
| At5q60600  | putative protein                                 | 1.1  | 0.81 | 0.74 |
| At2q48090  | unknown protein                                  | 0.68 | 0.5  | 0.74 |
| At2q41330  | unknown protein                                  | 0.00 | 0.55 | 0.73 |
| At1a01550  | hypothetical protein                             | 0.97 | 0.00 | 0.70 |
| At4a39970  |                                                  | 1 04 | 0.76 | 0.70 |
| At5a55210  |                                                  | 0.48 | 0.35 | 0.73 |
| At1a28960  | hypothetical protein                             | 0.40 | 0.55 | 0.73 |
| At2a05180  | nutative outochrome P450                         | 0.22 | 0.32 | 0.73 |
| At2g03100  | putative veticniradiana synthase                 | 0.44 | 0.32 | 0.73 |
| At2a52400  |                                                  | 0.44 | 0.52 | 0.73 |
| At/a22110  | butative protein                                 | 0.62 | 0.45 | 0.73 |
| At4923110  |                                                  | 0.02 | 0.45 | 0.73 |
| At4937000  |                                                  | 0.4  | 0.29 | 0.73 |
| At2a02720  | thisrodovin f1                                   | 1.01 | 0.29 | 0.73 |
| At2~10270  |                                                  | 0.18 | 0.73 | 0.72 |
| Alog 19370 |                                                  | 0.18 | 0.13 | 0.72 |
| A12936950  |                                                  | 0.18 | 0.13 | 0.72 |
| Alby52660  |                                                  | 0.36 | 0.26 | 0.72 |
| At1g30100  | 9-cis-epoxycarotenoid dioxygenase                | 0.9  | 0.05 | 0.72 |
| At2g01610  | unknown protein                                  | 0.43 | 0.31 | 0.72 |
| At2g44530  | putative pnosphoribosyl pyrophosphate synthetase | 0.43 | 0.31 | 0.72 |
| At2g15440  |                                                  | 0.57 | 0.41 | 0.72 |
| At1g23980  | hypothetical protein                             | 0.71 | 0.51 | 0.72 |
| At2g06970  | nypotnetical protein                             | 0.78 | 0.56 | 0.72 |
| At1g03660  |                                                  | 1.24 | 0.89 | 0.72 |
| At1g74850  | hypothetical protein                             | 0.85 | 0.61 | 0.72 |
| At4g07560  | putative transposon protein                      | 0.53 | 0.38 | 0.72 |
| At2g37880  | hypothetical protein                             | 0.53 | 0.38 | 0.72 |
| At1g70350  | hypothetical protein                             | 0.21 | 0.15 | 0.71 |
| At4g35980  | putative protein                                 | 0.14 | 0.1  | 0.71 |
| 1 | 02 |  |
|---|----|--|
| T | 02 |  |

| At1g32760              | unknown protein                                                                           | 1.47            | 1.05         | 0.71         |
|------------------------|-------------------------------------------------------------------------------------------|-----------------|--------------|--------------|
| At1g74960              | putative 3-ketoacyl-ACP synthase                                                          | 0.14            | 0.1          | 0.71         |
| At1g54320              | unknown protein                                                                           | 0.42            | 0.3          | 0.71         |
| At5g48590              | putative protein                                                                          | 0.14            | 0.1          | 0.71         |
| At1g75330              | ornithine carbamoyltransferase precursor                                                  | 0.07            | 0.05         | 0.71         |
| At3g56010              | putative protein                                                                          | 0.45            | 0.32         | 0.71         |
| At1g68450              | unknown protein                                                                           | 0.45            | 0.32         | 0.71         |
| At5g07760              | putative protein                                                                          | 2.93            | 2.08         | 0.71         |
| At2g03220              | xyloglucan fucosyltransferase AtFT1                                                       | 2.93            | 2.08         | 0.71         |
| At3g20230              | hypothetical protein                                                                      | 7.06            | 5.01         | 0.71         |
| At5g67030              | zeaxanthin epoxidase precursor                                                            | 7.06            | 5.01         | 0.71         |
| At2g24020              | unknown protein                                                                           | 0.48            | 0.34         | 0.71         |
| At5g38560              | putative protein                                                                          | 3.99            | 2.82         | 0.71         |
| At1g51390              | unknown protein                                                                           | 0.34            | 0.24         | 0.71         |
| At1g02560<br>At4g35690 | ATP-dependent Clp protease proteolytic subunit (nClpP putative protein                    | 1) 0.68<br>0.61 | 0.48<br>0.43 | 0.71<br>0.70 |
| At2g20020              | hypothetical protein                                                                      | 0.88            | 0.62         | 0.70         |
| At5g10910              | putative protein                                                                          | 0.64            | 0.45         | 0.70         |
| At5g12150              | putative protein                                                                          | 0.37            | 0.26         | 0.70         |
| At5g44750              | putative protein                                                                          | 0.37            | 0.26         | 0.70         |
| At2g44040              | unknown protein                                                                           | 0.47            | 0.33         | 0.70         |
| At4g11630              | putative protein                                                                          | 0.2             | 0.14         | 0.70         |
| At2g14230              | hypothetical protein                                                                      | 0.4             | 0.28         | 0.70         |
| At3g11050              | putative ferritin subunit precursor                                                       | 0.1             | 0.07         | 0.70         |
| At4g01770              | hypothetical protein                                                                      | 0.6             | 0.42         | 0.70         |
| At2g36920              | hypothetical protein                                                                      | 0.83            | 0.58         | 0.70         |
| At4g24090              | hypothetical protein                                                                      | 0.53            | 0.37         | 0.70         |
| At2g33430              | plastid protein                                                                           | 0.96            | 0.67         | 0.70         |
| At3g09070              | unknown protein                                                                           | 0.43            | 0.3          | 0.70         |
| At2g21590<br>At2g30100 | putative ADP-glucose pyrophosphorylase large subunit putative leucine-rich repeat protein | 0.56<br>1.91    | 0.39<br>1.33 | 0.70<br>0.70 |
| At1g51780              | hypothetical protein                                                                      | 1.25            | 0.87         | 0.70         |
| At5g61470              | putative protein                                                                          | 0.69            | 0.48         | 0.70         |
| At3g62030              | peptidylprolyl isomerase ROC4                                                             | 0.46            | 0.32         | 0.70         |
| At1g48620              | unknown protein                                                                           | 0.46            | 0.32         | 0.70         |
| At5g67490              | unknown protein                                                                           | 0.46            | 0.32         | 0.70         |
| At4g08630              | hypothetical protein                                                                      | 0.49            | 0.34         | 0.69         |
| At4g39710              | proteomics: thylakloid lumen FKBP-like protein                                            | 0.55            | 0.38         | 0.69         |
| At4g25990              | putative protein                                                                          | 0.55            | 0.38         | 0.69         |
| At3g12400              | hypothetical protein                                                                      | 0.74            | 0.51         | 0.69         |
| At5g06140              | sorting nexin-like protein                                                                | 0.93            | 0.64         | 0.69         |
| At3g15095              | unknown protein                                                                           | 0.16            | 0.11         | 0.69         |
| At1g27660              | hypothetical protein                                                                      | 0.32            | 0.22         | 0.69         |
| At3g08660              | putative non-phototropic hypocotyl                                                        | 0.19            | 0.13         | 0.68         |
| At2g25320              | unknown protein                                                                           | 0.19            | 0.13         | 0.68         |
| At1g13970              | hypothetical protein                                                                      | 0.41            | 0.28         | 0.68         |
| At3g17700              | hypothetical protein                                                                      | 0.22            | 0.15         | 0.68         |
| At5g11890              | putative protein                                                                          | 1.35            | 0.92         | 0.68         |
| At1g02020              | hypothetical protein                                                                      | 0.25            | 0.17         | 0.68         |
| At2g14880              | unknown protein                                                                           | 0.9             | 0.61         | 0.68         |
| At1g15070              | unknown protein                                                                           | 6.96            | 4.71         | 0.68         |
| At4g23930              | putative protein                                                                          | 0.34            | 0.23         | 0.68         |
|                        |                                                                                           |                 |              |              |

| A+0 = 4 45 CO |                                             | 0.00 | 0.40 | 0.00 |
|---------------|---------------------------------------------|------|------|------|
| At2g44560     | putative glucanase                          | 0.08 | 0.46 | 0.68 |
| Alog12120     |                                             | 2.00 | 1.93 | 0.67 |
| At4g39050     | kinesin like protein                        | 0.43 | 0.29 | 0.67 |
| At1g79760     | nypotnetical protein                        | 0.64 | 0.43 | 0.67 |
| At4g26010     | putative peroxidase                         | 1./2 | 1.15 | 0.67 |
| At4g23060     | putative protein                            | 0.12 | 0.08 | 0.67 |
| At1g44350     | putative IAA-amino acid hydrolase           | 0.21 | 0.14 | 0.67 |
| At5g05590     | phosphoribosylanthranilate isomerase        | 0.3  | 0.2  | 0.67 |
| At2g07710     | hypothetical protein                        | 0.6  | 0.4  | 0.67 |
| At3g48420     | putative protein                            | 0.09 | 0.06 | 0.67 |
| At2g38450     | unknown protein                             | 0.33 | 0.22 | 0.67 |
| At3g20920     | hypothetical protein                        | 0.39 | 0.26 | 0.67 |
| At2g13810     | putative aspartate aminotransferase         | 0.39 | 0.26 | 0.67 |
| 4559339       | 4559339                                     | 3.99 | 2.64 | 0.66 |
| At5g54190     | NADPH:protochlorophyllide oxidoreductase A  | 0.62 | 0.41 | 0.66 |
| At5g45390     | ATP-dependent Clp protease-like protein     | 0.53 | 0.35 | 0.66 |
| At1g76560     | hypothetical protein                        | 1.53 | 1.01 | 0.66 |
| At5g02850     | putative protein                            | 0.41 | 0.27 | 0.66 |
| At4g24860     | putative protein                            | 0.41 | 0.27 | 0.66 |
| At1g30920     | F17F8.21                                    | 1.23 | 0.81 | 0.66 |
| At4g03800     | hypothetical protein                        | 0.35 | 0.23 | 0.66 |
| At2g04540     | 3-oxoacyl carrier protein synthase          | 0.29 | 0.19 | 0.66 |
| At1g03680     | putative thioredoxin m1                     | 2.29 | 1.5  | 0.66 |
| At4a29920     | putative protein                            | 0.49 | 0.32 | 0.65 |
| At3a16250     | putative 2Fe-2S iron-sulfur cluster protein | 0.43 | 0.28 | 0.65 |
| At1a61980     | hypothetical protein                        | 1.06 | 0.69 | 0.65 |
| At4a14380     | hypothetical protein                        | 0.57 | 0.37 | 0.65 |
| At1a62010     | hypothetical protein                        | 1 11 | 0.72 | 0.65 |
| At2a14120     | dynamin-like protein                        | 1 19 | 0.72 | 0.65 |
| At1a16160     | hypothetical protein                        | 0.17 | 0.11 | 0.65 |
| At1a11820     |                                             | 0.17 | 0.11 | 0.65 |
| Attg11020     | hypothetical protein                        | 0.04 | 0.22 | 0.05 |
| At2a/5180     |                                             | 0.39 | 2.71 | 0.05 |
| At/a12520     |                                             | 4.2  | 2.71 | 0.05 |
| Al4912520     | pEARLI I-like protein                       | 1.04 | 0.67 | 0.64 |
| At5g22270     | putative protein                            | 1.12 | 0.72 | 0.64 |
| At1g77090     | proteomics: triviakold lumen protein        | 0.14 | 0.09 | 0.64 |
| At1g77390     | mitotic cyclin a2-type                      | 0.28 | 0.18 | 0.64 |
| At4g36580     | A I Pase-like protein                       | 0.53 | 0.34 | 0.64 |
| At3g16000     | myosin heavy chain-like protein             | 0.36 | 0.23 | 0.64 |
| At1g72010     | unknown protein                             | 0.66 | 0.42 | 0.64 |
| At1g61990     | hypothetical protein                        | 1.21 | 0.77 | 0.64 |
| At1g76240     | hypothetical protein                        | 1.1  | 0.7  | 0.64 |
| At4g10980     | putative protein                            | 0.96 | 0.61 | 0.64 |
| At4g37460     | putative protein                            | 0.3  | 0.19 | 0.63 |
| At1g79360     | hypothetical protein                        | 0.9  | 0.57 | 0.63 |
| At1g53280     | hypothetical protein                        | 0.27 | 0.17 | 0.63 |
| At2g37080     | putative myosin heavy chain                 | 0.94 | 0.59 | 0.63 |
| At3g22970     | unknown protein                             | 1.34 | 0.84 | 0.63 |
| At2g04700     | FTR; ferredoxin-thioredoxin reductase       | 0.32 | 0.2  | 0.63 |
| At3g04260     | hypothetical protein                        | 0.69 | 0.43 | 0.62 |
| At2g40980     | unknown protein                             | 0.53 | 0.33 | 0.62 |

| At4g10750 | putative aldolase                                 | 0.98  | 0.61 | 0.62 |
|-----------|---------------------------------------------------|-------|------|------|
| At5g51670 | putative protein                                  | 0.45  | 0.28 | 0.62 |
| At4g23170 | putative protein                                  | 18.56 | 11.5 | 0.62 |
| At5g55570 | unknown protein                                   | 1.18  | 0.73 | 0.62 |
| At2g30880 | unknown protein                                   | 0.55  | 0.34 | 0.62 |
| At2g28790 | putative thaumatin                                | 0.13  | 0.08 | 0.62 |
| At5g50640 | putative protein                                  | 0.26  | 0.16 | 0.62 |
| At1g56020 | unknown protein                                   | 0.78  | 0.48 | 0.62 |
| At5g11550 | putative protein                                  | 2.31  | 1.42 | 0.61 |
| At2g44540 | putative glucanase                                | 0.44  | 0.27 | 0.61 |
| At2g34020 | unknown protein                                   | 1.03  | 0.63 | 0.61 |
| At1g52500 | hypothetical protein                              | 0.18  | 0.11 | 0.61 |
| At3g66654 | unknown protein                                   | 0.18  | 0.11 | 0.61 |
| At4g11080 | 98b like protein                                  | 0.54  | 0.33 | 0.61 |
| At1g19870 | hypothetical protein                              | 1.28  | 0.78 | 0.61 |
| At4g30210 | NADPH-ferrihemoprotein reductase (ATR2)           | 1.28  | 0.78 | 0.61 |
| At1g55420 | hypothetical protein                              | 0.46  | 0.28 | 0.61 |
| At2g20600 | hypothetical protein                              | 1.45  | 0.88 | 0.61 |
| At4g16490 | hypothetical protein                              | 1.36  | 0.82 | 0.60 |
| At1g08050 | unknown protein                                   | 0.25  | 0.15 | 0.60 |
| At2g24490 | putative replication protein A1                   | 0.25  | 0.15 | 0.60 |
| At1g33780 | hypothetical protein                              | 0.95  | 0.57 | 0.60 |
| At5g41960 | unknown protein                                   | 0.15  | 0.09 | 0.60 |
| At5g38290 | CRS2 -like protein                                | 1.04  | 0.62 | 0.60 |
| At3q56700 | putative protein                                  | 0.32  | 0.19 | 0.59 |
| At2q36410 | unknown protein                                   | 0.32  | 0.19 | 0.59 |
| At4a24860 | putative protein                                  | 0.39  | 0.23 | 0.59 |
| At1q01080 | ribonucleoprotein                                 | 0.17  | 0.1  | 0.59 |
| At3a17810 | dehvdrogenase                                     | 0.29  | 0.17 | 0.59 |
| At4a15120 | hypothetical protein                              | 1.11  | 0.65 | 0.59 |
| At4q18760 | putative protein                                  | 0.79  | 0.46 | 0.58 |
| At3q11490 | putative rac GTPase activating protein            | 0.98  | 0.57 | 0.58 |
| At5a07900 | putative protein                                  | 1 38  | 0.8  | 0.58 |
| At1a03810 |                                                   | 0.88  | 0.51 | 0.58 |
| At5q44680 |                                                   | 0.00  | 0.01 | 0.50 |
| At1a48860 | hypothetical protein                              | 0.19  | 0.11 | 0.58 |
| At2a20670 |                                                   | 0.57  | 0.11 | 0.50 |
| At2a15050 | hypothetical protein                              | 0.57  | 0.55 | 0.50 |
| At5a11000 |                                                   | 0.19  | 0.11 | 0.50 |
| At2~60860 | putative protein                                  | 0.52  | 0.3  | 0.50 |
| Al3900000 | guarine nucleotide exchange factor - like protein | 0.00  | 0.9  | 0.56 |
| Al3g20970 |                                                   | 0.00  | 0.36 | 0.50 |
| At2g39270 | putative adenyiate kinase                         | 0.33  | 0.19 | 0.58 |
| At5g27070 |                                                   | 1.01  | 0.58 | 0.57 |
| At5g64580 | putative protein                                  | 0.61  | 0.35 | 0.57 |
| At2g20090 | unknown protein                                   | 0.61  | 0.35 | 0.57 |
| At3g28460 | unknown protein                                   | 0.07  | 0.04 | 0.57 |
| At3g22840 | early light-induced protein ELIP.1 (Lil1.1)       | 0.14  | 0.08 | 0.57 |
| At2g26840 | unknown protein                                   | 0.34  | 0.19 | 0.56 |
| At3g09490 | hypothetical protein                              | 0.68  | 0.38 | 0.56 |
| At1g12250 | hypothetical protein                              | 0.52  | 0.29 | 0.56 |
| At1g30320 | hypothetical protein                              | 0.97  | 0.54 | 0.56 |

| At4g03520 | m-type thioredoxin                     | 1.94   | 1.08  | 0.56 |
|-----------|----------------------------------------|--------|-------|------|
| At5g16730 | putative protein                       | 0.18   | 0.1   | 0.56 |
| At3g54320 | aintegumaenta-like protein             | 0.36   | 0.2   | 0.56 |
| At3g17550 | hypothetical protein                   | 0.36   | 0.2   | 0.56 |
| At1g79110 | hypothetical protein                   | 0.83   | 0.46  | 0.55 |
| At4g16080 | hypothetical protein                   | 1      | 0.55  | 0.55 |
| At1g08540 | sigma factor                           | 0.71   | 0.39  | 0.55 |
| At4g36910 | putative protein                       | 0.31   | 0.17  | 0.55 |
| ratpBr    | plastid gene product; ATP synthase     | 10.43  | 5.71  | 0.55 |
| At3g12970 | unknown protein                        | 0.22   | 0.12  | 0.55 |
| At5g40160 | ankyrin repeat protein EMB506          | 0.77   | 0.42  | 0.55 |
| At3g26740 | light regulated protein                | 9.69   | 5.26  | 0.54 |
| At3g15360 | thioredoxin m4                         | 1.09   | 0.59  | 0.54 |
| At1g80920 | J8-like protein                        | 0.37   | 0.2   | 0.54 |
| At4g31430 | predicted protein                      | 0.5    | 0.27  | 0.54 |
| At5g27860 | putative protein                       | 0.13   | 0.07  | 0.54 |
| At1g12980 | hypothetical protein                   | 1.19   | 0.64  | 0.54 |
| At1g15410 | hypothetical protein                   | 0.28   | 0.15  | 0.54 |
| At4g35450 | ankyrin repeat-containing protein 2    | 1.27   | 0.68  | 0.54 |
| At1g50040 | hypothetical protein                   | 0.73   | 0.39  | 0.53 |
| At2g44550 | putative glucanase                     | 0.32   | 0.17  | 0.53 |
| At5g46640 | putative protein                       | 0.32   | 0.17  | 0.53 |
| At1g67460 | hypothetical protein                   | 0.83   | 0.44  | 0.53 |
| At4g19490 | putative protein                       | 0.68   | 0.36  | 0.53 |
| At2g42300 | unknown protein                        | 0.38   | 0.2   | 0.53 |
| At1g13280 | allene oxide cyclase                   | 0.42   | 0.22  | 0.52 |
| At5g42480 | putative protein                       | 1.07   | 0.56  | 0.52 |
| At3g55070 | putative protein                       | 0.65   | 0.34  | 0.52 |
| At3g43700 | putative protein                       | 0.23   | 0.12  | 0.52 |
| At1g55440 | hypothetical protein                   | 0.71   | 0.37  | 0.52 |
| At1g48570 | hypothetical protein                   | 0.48   | 0.25  | 0.52 |
| At2g37090 | unknown protein                        | 0.5    | 0.26  | 0.52 |
| At1g69240 | putative alpha/beta hydrolase          | 0.29   | 0.15  | 0.52 |
| At3g09850 | hypothetical protein                   | 127.72 | 65.69 | 0.51 |
| At5g23300 | dihydroorotate dehydrogenase precursor | 127.72 | 65.69 | 0.51 |
| At4g19100 | putative protein                       | 0.39   | 0.2   | 0.51 |
| At5g41110 | unknown protein                        | 2.5    | 1.27  | 0.51 |
| At3g06590 | unknown protein                        | 1.28   | 0.64  | 0.50 |
| At1g72260 | thionin                                | 0.52   | 0.26  | 0.50 |
| At2g17300 | unknown protein                        | 2.44   | 1.22  | 0.50 |
| At2g34700 | putative proline-rich glycoprotein     | 0.24   | 0.12  | 0.50 |
| At1g70170 | matrix metalloproteinase               | 0.58   | 0.29  | 0.50 |
| At5g19280 | kinase associated protein phosphatase  | 0.24   | 0.12  | 0.50 |
| At3g09050 | unknown protein                        | 1.14   | 0.56  | 0.49 |
| At5g23440 | putative protein                       | 0.47   | 0.23  | 0.49 |
| At5g12120 | putative protein                       | 3.95   | 1.91  | 0.48 |
| At2g17230 | unknown protein                        | 0.27   | 0.13  | 0.48 |
| At3g50190 | putative protein                       | 4.93   | 2.36  | 0.48 |
| At5g60050 | putative protein                       | 1.4    | 0.67  | 0.48 |
| At4g14930 | hypothetical protein                   | 0.23   | 0.11  | 0.48 |
| At3g18420 | unknown protein                        | 0.9    | 0.43  | 0.48 |

| At5g26600 | putative protein                         | 0.42   | 0.2   | 0.48 |
|-----------|------------------------------------------|--------|-------|------|
| At2g44500 | axi 1-like protein                       | 2.9    | 1.38  | 0.48 |
| At3g23160 | hypothetical protein                     | 0.19   | 0.09  | 0.47 |
| At2g31350 | putative glyoxalase II                   | 1.67   | 0.79  | 0.47 |
| At1g04330 | unknown protein                          | 0.72   | 0.34  | 0.47 |
| At4g17680 | hypothetical protein                     | 2.38   | 1.12  | 0.47 |
| At2g37250 | putative adenylate kinase                | 0.32   | 0.15  | 0.47 |
| At3g50140 | putative protein                         | 5.64   | 2.58  | 0.46 |
| At1g80450 | unknown protein                          | 0.7    | 0.32  | 0.46 |
| At5g43930 | putative protein                         | 0.22   | 0.1   | 0.45 |
| At5g39860 | putative protein                         | 0.11   | 0.05  | 0.45 |
| At5g38750 | putative protein                         | 1.04   | 0.47  | 0.45 |
| At3g23940 | dihydroxyacid dehydratase                | 1.04   | 0.47  | 0.45 |
| At5g57990 | putative protein                         | 0.29   | 0.13  | 0.45 |
| At5g19900 | putative protein                         | 0.29   | 0.13  | 0.45 |
| At4g13270 | hypothetical protein                     | 0.87   | 0.39  | 0.45 |
| At3g01700 | unknown protein                          | 0.48   | 0.21  | 0.44 |
| At5g59610 | putative protein                         | 0.81   | 0.35  | 0.43 |
| At1g30700 | putative reticuline oxidase-like protein | 1.49   | 0.64  | 0.43 |
| At1g51560 | unknown protein                          | 0.47   | 0.2   | 0.43 |
| At5g40470 | putative protein                         | 2.01   | 0.85  | 0.42 |
| At2g28900 | outer envelope protein24                 | 0.38   | 0.16  | 0.42 |
| At1g33250 | unknown protein                          | 2.32   | 0.97  | 0.42 |
| At5g02750 | putative protein                         | 2.13   | 0.89  | 0.42 |
| At4q11780 | putative protein                         | 1.54   | 0.64  | 0.42 |
| At1q79730 | unknown protein                          | 1.95   | 0.8   | 0.41 |
| At2a01650 | unknown protein                          | 0.22   | 0.09  | 0.41 |
| At1a18680 | unknown protein                          | 4.72   | 1.9   | 0.40 |
| At3a62520 | putative protein                         | 1.64   | 0.66  | 0.40 |
| At2q40400 | unknown protein                          | 0.98   | 0.39  | 0.40 |
| At5a64090 | unknown protein                          | 0.48   | 0.19  | 0.40 |
| At1a32060 | phosphoribulokinase precursor            | 1.79   | 0.69  | 0.39 |
| At2a24730 | pseudogene                               | 0.78   | 0.3   | 0.38 |
| At1a73470 | expressed protein                        | 3.23   | 1.24  | 0.38 |
| At2a34370 | putative selenium-binding protein        | 3.23   | 1.24  | 0.38 |
| At4a12000 | putative protein                         | 101.22 | 38.49 | 0.38 |
| At2a19240 | hypothetical protein                     | 2.34   | 0.88  | 0.38 |
| At3a19680 | unknown protein                          | 0.16   | 0.06  | 0.38 |
| At1q05420 | hypothetical protein                     | 1.95   | 0.72  | 0.37 |
| At3q48110 | alvcinetRNA ligase precursor             | 2 23   | 0.82  | 0.37 |
| At4a25250 | putative protein                         | 146 64 | 52.5  | 0.36 |
| At1g80130 | unknown protein                          | 0.65   | 0.23  | 0.35 |
| At3q42490 |                                          | 1 29   | 0.44  | 0.34 |
| At4a34310 | hypothetical protein                     | 1      | 0.44  | 0.04 |
| At3a57280 | hypothetical protein                     | 0.03   | 0.04  | 0.04 |
| At5a61120 | nutative protein                         | 0.09   | 0.03  | 0.00 |
| At1a12090 | hypothetical protein                     | 3.1    | 1.01  | 0.33 |
| At5a51770 | putative protein                         | 0.4    | 0.13  | 0.33 |
| At4a03150 | hypothetical protein                     | 2.3    | 0.72  | 0.31 |
| At5a26570 | putative protein                         | 0.23   | 0.07  | 0.30 |
| At4a35890 | putative protein                         | 1.84   | 0.55  | 0.30 |
|           | I Freienn                                |        | 2.00  | 0.00 |

| At1g54930 | hypothetical protein             | 0.34 | 0.1  | 0.29 |
|-----------|----------------------------------|------|------|------|
| At3g24810 | unknown protein                  | 0.67 | 0.19 | 0.28 |
| At4g37380 | putative protein                 | 1.37 | 0.38 | 0.28 |
| At2g36480 | hypothetical protein             | 4.27 | 1.12 | 0.26 |
| At2g15890 | unknown protein                  | 2.99 | 0.74 | 0.25 |
| At1g02730 | hypothetical protein             | 0.06 | 0.01 | 0.17 |
| At2g06030 | hypothetical protein             | 0.06 | 0.01 | 0.17 |
| At5g06290 | 2-Cys peroxiredoxin-like protein | 0.06 | 0.01 | 0.17 |
| At1g04360 | hypothetical protein             | 1.76 | 0.29 | 0.16 |

# atpd-1

| MIPS-<br>code | Description                                             | Control<br>(WT) | D<br>(data=mutant) |       |
|---------------|---------------------------------------------------------|-----------------|--------------------|-------|
| Metaboli      | sm                                                      | <b>、</b>        | <b>,</b>           |       |
| At4g12270     | copper amine oxidase like protein (fragment1)           | 0.06            | 0.74               | 12.33 |
| At4g22590     | trehalose-6-phosphate phosphatase - like protein        | 0.49            | 4.76               | 9.71  |
| At4g07960     | putative glucosyltransferase                            | 10.25           | 98.31              | 9.59  |
| At4g24040     | trehalase - like protein                                | 0.09            | 0.84               | 9.33  |
| At5g27090     | putative protein                                        | 0.14            | 1.16               | 8.29  |
| At5g58330     | NADP-dependent malate dehydrogenase                     | 0.18            | 1.44               | 8.00  |
| At2g15620     | ferredoxinnitrite reductase                             | 0.22            | 1.73               | 7.86  |
| At4g20930     | 3-hydroxyisobutyrate dehydrogenase -like protein        | 0.21            | 1.57               | 7.48  |
| At4g00490     | putative beta-amylase                                   | 0.08            | 0.58               | 7.25  |
| At1g50390     | fructokinase                                            | 0.2             | 1.25               | 6.25  |
| At1g17740     | unknown protein                                         | 0.09            | 0.56               | 6.22  |
| At4g13050     | oleoyl-[acyl-carrier-protein] hydrolase-like protein    | 0.15            | 0.92               | 6.13  |
| At4g38880     | amidophosphoribosyltransferase - like protein           | 0.17            | 1                  | 5.88  |
| At3g10390     | hypothetical protein                                    | 0.11            | 0.64               | 5.82  |
| At3g10050     | threonine dehydratase/deaminase (OMR1)                  | 0.13            | 0.74               | 5.69  |
| At1g01290     | molybdopterin biosynthesis CNX3 protein                 | 0.32            | 1.78               | 5.56  |
| At5g23070     | putative protein                                        | 0.21            | 1.15               | 5.48  |
| At1g74030     | putative enolase                                        | 0.19            | 1.03               | 5.42  |
| At4g20840     | reticuline oxidase - like protein                       | 0.18            | 0.96               | 5.33  |
| At1g77730     | hypothetical protein                                    | 0.1             | 0.53               | 5.30  |
| At3g06850     | branched chain alpha-keto acid dehydrogenase E2 subunit | 0.18            | 0.95               | 5.28  |
| At3g54660     | gluthatione reductase                                   | 0.14            | 0.73               | 5.21  |
| At4g20210     | cadinene synthase like protein                          | 0.17            | 0.88               | 5.18  |
| At2g34590     | putative pyruvate dehydrogenase E1 beta subunit         | 0.54            | 2.79               | 5.17  |
| At4g29890     | choline monooxygenase - like protein                    | 0.63            | 3.13               | 4.97  |
| At5g35360     | acetyl-CoA carboxylase                                  | 0.21            | 1                  | 4.76  |
| At1g01090     | pyruvate dehydrogenase E1 alpha subunit                 | 0.24            | 1.12               | 4.67  |
| At3g44990     | xyloglucan endo-transglycosylase                        | 0.14            | 0.65               | 4.64  |
| At5g19850     | putative protein                                        | 0.22            | 1                  | 4.55  |
| At4g10260     | fructokinase - like protein                             | 0.08            | 0.36               | 4.50  |
| At2g25620     | putative protein phosphatase 2C                         | 0.3             | 1.33               | 4.43  |
| At4g29120     | putative protein                                        | 0.18            | 0.76               | 4.22  |
| At5g26030     | ferrochelatase-I                                        | 0.29            | 1.22               | 4.21  |
| At3g57610     | adenylosuccinate synthetase                             | 0.2             | 0.83               | 4.15  |
| At4g13550     | putative protein                                        | 0.14            | 0.58               | 4.14  |
| At5g04140     | ferredoxin-dependent glutamate synthase                 | 0.39            | 1.56               | 4.00  |
| At4g13260     | putative protein                                        | 0.31            | 1.24               | 4.00  |

| At1g07780              | phosphoribosylanthranilate isomerase                                                              | 0.28         | 1.11         | 3.96         |
|------------------------|---------------------------------------------------------------------------------------------------|--------------|--------------|--------------|
| At4g25700              | beta-carotene hydroxylase                                                                         | 0.38         | 1.49         | 3.92         |
| At4g19010              | 4-coumarate-CoA ligase - like                                                                     | 0.09         | 0.35         | 3.89         |
| At3g54090              | fructokinase - like protein                                                                       | 0.42         | 1.63         | 3.88         |
| At2g30390              | putative ferrochelatase precusor                                                                  | 0.29         | 1.12         | 3.86         |
| At5g25900              | cytochrome P450 GA3                                                                               | 0.18         | 0.68         | 3.78         |
| At5g24760              | alcohol dehydrogenase - like protein                                                              | 0.1          | 0.37         | 3.70         |
| At2g25710              | biotin holocarboxylase synthetase                                                                 | 0.16         | 0.59         | 3.69         |
| At3g56090              | putative protein                                                                                  | 0.12         | 0.44         | 3.67         |
| At5g19220<br>At1g78090 | Glucose-1-phosphate adenylyltransferase (ApL1/adg2)<br>trehalose-6-phosphate phosphatase (AtTPPB) | 0.18<br>0.16 | 0.65<br>0.57 | 3.61<br>3.56 |
| At4g14210<br>At4g14910 | phytoene dehydrogenase precursor (phytoene desaturase)<br>imidazoleglycerol-phosphate dehydratase | 0.82<br>0.19 | 2.9<br>0.67  | 3.54<br>3.53 |
| At4g36390              | putative protein                                                                                  | 0.21         | 0.74         | 3.52         |
| At5g62790              | 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR)                                             | 0.25         | 0.88         | 3.52         |
| AL1900090              | biotidinel phoephete eminetropeference like protein                                               | 0.35         | 0.20         | 3.49<br>2.45 |
| Alby 10330             |                                                                                                   | 0.11         | 0.30         | 3.40         |
| At4g34710              | arginine decarboxylase SPE2                                                                       | 0.37         | 1.24         | 3.35         |
| At4g33510              | 2-denydro-3-deoxyphosphoneptonate aldolase                                                        | 0.36         | 1.2          | 3.33         |
| At4g16820              | triacyigiyceroi lipase like protein                                                               | 0.22         | 0.73         | 3.32         |
| At4g26900              | giutamine amidotransferase/cyclase                                                                | 0.66         | 2.17         | 3.29         |
| At1g30120              | pyruvate denydrogenase E1 beta subunit                                                            | 0.32         | 1.05         | 3.28         |
| At4g39230              | NAD(P)H oxidoreductase                                                                            | 0.12         | 0.39         | 3.25         |
| At4g25910              |                                                                                                   | 0.26         | 0.84         | 3.23         |
| At1g17160              |                                                                                                   | 0.56         | 1.8          | 3.21         |
| At3g18890              |                                                                                                   | 0.12         | 0.38         | 3.17         |
| At1g03310              |                                                                                                   | 0.38         | 1.2          | 3.16         |
| At2g43430              | putative glyoxalase II                                                                            | 0.21         | 0.66         | 3.14         |
| At4g39540              | shikimate kinase - like protein                                                                   | 0.14         | 0.44         | 3.14         |
| At4g24620              | glucose-6-phosphate isomerase                                                                     | 0.28         | 0.86         | 3.07         |
| At4g20820              | reticuline oxidase - like protein                                                                 | 0.17         | 0.52         | 3.06         |
| At2g42070              | unknown protein                                                                                   | 0.19         | 0.57         | 3.00         |
| At5g52810              | putative protein                                                                                  | 0.47         | 1.4          | 2.98         |
| At4g34860              | invertase - like protein                                                                          | 0.14         | 0.41         | 2.93         |
| At1g24360              | putative 3-oxoacyl [acyl-carrier protein] reductase                                               | 0.13         | 0.38         | 2.92         |
| At4g37670              | putative protein                                                                                  | 0.35         | 1.01         | 2.89         |
| At2g33880              | putative homeodomain transcription factor                                                         | 0.65         | 1.87         | 2.88         |
| At4g30950              | chloroplast omega-6 fatty acid desaturase (fad6)                                                  | 0.55         | 1.53         | 2.78         |
| At3g48320              | cytochrome P450 - like protein                                                                    | 0.18         | 0.49         | 2.72         |
| At3g03630              | O-acetylserine (thiol) lyase                                                                      | 0.21         | 0.57         | 2.71         |
| At2g34460              | unknown protein                                                                                   | 0.3          | 0.81         | 2.70         |
| At3g24260              | hypothetical protein                                                                              | 0.72         | 1.93         | 2.68         |
| At2g43100              | 3-isopropylmalate dehydratase                                                                     | 0.39         | 1.04         | 2.67         |
| At2g43180              | putative carboxyphosphonoenolpyruvate mutase                                                      | 0.29         | 0.77         | 2.66         |
| At4g15550              | glucosyltransferase like protein                                                                  | 0.28         | 0.74         | 2.64         |
| At3g07020              | UDP-glucose:sterol glucosyltransferase                                                            | 0.13         | 0.34         | 2.62         |
| At1g10640              | polygalacturonase PG1                                                                             | 0.23         | 0.6          | 2.61         |
| At1g76760              | thioredoxin-like protein                                                                          | 0.19         | 0.49         | 2.58         |
| At1g11720              | putative glycogen synthase                                                                        | 0.18         | 0.46         | 2.56         |
| At4g38550              | phospholipase like protein                                                                        | 0.36         | 0.92         | 2.56         |
| At5g08100              | asparaginase                                                                                      | 0.12         | 0.3          | 2.50         |

0.28

0.7

2.50

At4g26860 putative Proline synthetase associated protein

| At5g11930 | glutaredoxin - like protein                                       | 0.59 | 1.47 | 2.49 |
|-----------|-------------------------------------------------------------------|------|------|------|
| At5g15530 | biotin carboxyl carrier protein precursor-like protein            | 0.33 | 0.82 | 2.48 |
| At3g29320 | alpha-glucan phosphorylase                                        | 0.31 | 0.77 | 2.48 |
| At4g39000 | putative endo-1                                                   | 0.32 | 0.78 | 2.44 |
| At2g15470 | putative polygalacturonase                                        | 0.21 | 0.51 | 2.43 |
| At5g18660 | putative protein                                                  | 0.35 | 0.85 | 2.43 |
| At4g38970 | putative fructose-bisphosphate aldolase                           | 0.94 | 2.28 | 2.43 |
| At1g12900 | putative calcium-binding protein                                  | 0.57 | 1.38 | 2.42 |
| At1g79480 | hypothetical protein                                              | 0.31 | 0.75 | 2.42 |
| At3g14440 | 9-cis-epoxycarotenoid dioxygenase                                 | 0.15 | 0.36 | 2.40 |
| At1g31190 | unknown protein                                                   | 0.15 | 0.36 | 2.40 |
| At5g65750 | 2-oxoglutarate dehydrogenase                                      | 0.15 | 0.36 | 2.40 |
| At3g22960 | pyruvate kinase                                                   | 0.72 | 1.72 | 2.39 |
| At2g33250 | unknown protein                                                   | 0.27 | 0.64 | 2.37 |
| At4g23100 | gamma-glutamylcysteine synthetase                                 | 0.74 | 1.73 | 2.34 |
| At4g08790 | nitrilase 1 like protein                                          | 0.12 | 0.28 | 2.33 |
| At3g14050 | putative GTP pyrophosphokinase                                    | 0.36 | 0.83 | 2.31 |
| At2g43760 | putative molybdopterin synthase large subunit                     | 0.53 | 1.21 | 2.28 |
| At1g05610 | putative ADP-glucose pyrophosphorylase                            | 0.11 | 0.25 | 2.27 |
| At3g58610 | ketol-acid reductoisomerase                                       | 0.24 | 0.54 | 2.25 |
| At3g50270 | anthranilate N-hydroxycinnamoyl/benzoyltransferase - like protein | 0.45 | 1.01 | 2.24 |
| At4g02260 | putative GTP pyrophosphokinase                                    | 0.39 | 0.87 | 2.23 |
| At4g35640 | putative protein                                                  | 0.14 | 0.31 | 2.21 |
| At1g06410 | trehalose-6-phosphate synthase                                    | 0.35 | 0.77 | 2.20 |
| At4g16130 | galactokinase like protein                                        | 0.77 | 1.69 | 2.19 |
| At4g27600 | carbohydrate kinase - like protein                                | 0.62 | 1.35 | 2.18 |
| At3g47390 | putative protein                                                  | 0.17 | 0.37 | 2.18 |
| At4g34200 | phosphoglycerate dehydrogenase - like protein                     | 0.46 | 1    | 2.17 |
| At5g13450 | delta subunit of mitochondrial F1-ATPase                          | 0.3  | 0.65 | 2.17 |
| At5g08300 | succinyl-CoA-ligase alpha subunit                                 | 0.31 | 0.67 | 2.16 |
| At5g14980 | lysophospholipase -like protein                                   | 0.27 | 0.58 | 2.15 |
| At4g39940 | adenosine-5-phosphosulfate-kinase                                 | 0.55 | 1.18 | 2.15 |
| At3g25860 | dihydrolipoamide S-acetyltransferase                              | 0.4  | 0.85 | 2.13 |
| At4g16590 | cellulose synthase like protein                                   | 0.17 | 0.36 | 2.12 |
| At4g00560 | putative dTDP-6-deoxy-L-mannose-dehydrogenase                     | 0.24 | 0.5  | 2.08 |
| At5g46290 | 3-oxoacyl-[acyl-carrier-protein] synthase I precursor             | 0.54 | 1.11 | 2.06 |
| At4g20230 | terpene cyclase like protein                                      | 0.37 | 0.76 | 2.05 |
| At5g62220 | putative protein                                                  | 0.49 | 1    | 2.04 |
| At2g46090 | unknown protein                                                   | 0.26 | 0.53 | 2.04 |
| At5g11650 | lysophospholipase - like protein                                  | 0.32 | 0.65 | 2.03 |
| At5g35790 | glucose-6-phosphate dehydrogenase                                 | 0.32 | 0.65 | 2.03 |
| At4g25080 | magnesium-protoporphyrin IX methyltransferase - like protein      | 0.43 | 0.87 | 2.02 |
| At/a11010 | putative protein                                                  | 0.23 | 0.48 | 2.00 |
| At425070  |                                                                   | 0.30 | 1.62 | 1.02 |
| At/200500 |                                                                   | 0.02 | 1.02 | 1.90 |
| At/027470 | putative giyoosylasparagiriase                                    | 0.32 | 0.03 | 1.97 |
| At/a16200 | enoul-CoA hydratase                                               | 0.27 | 0.00 | 1.90 |
| At1a15140 |                                                                   | 0.17 | 0.55 | 1.94 |
| At/a12240 | starch synthase_like protoin                                      | 0.24 | 0.40 | 1.92 |
| At5002200 |                                                                   | 0.55 | 0.07 | 1.91 |
| r10y0020U | nyuruxyineuryibilane synundse                                     | 0.51 | 0.97 | 1.90 |

| At1g73160              | putative glycosyl transferase                                                                            | 0.39            | 0.74         | 1.90         |
|------------------------|----------------------------------------------------------------------------------------------------------|-----------------|--------------|--------------|
| At4g38460              | geranylgeranyl pyrophosphate synthase-related protein                                                    | 0.36            | 0.68         | 1.89         |
| At2g28880              | putative para-aminobenzoate synthase and glutamine                                                       | 0.09            | 0.17         | 1.89         |
| A+4=22020              |                                                                                                          | 0.45            | 0.00         | 4.07         |
| At4g33030              | sulfolipid biosynthesis protein SQD1                                                                     | 0.15            | 0.28         | 1.87         |
| At5g34930              |                                                                                                          | 0.79            | 1.46         | 1.85         |
| At1g22170              | unknown protein                                                                                          | 0.32            | 0.59         | 1.84         |
| At4g10120              | sucrose-phosphate synthase - like protein                                                                | 0.56            | 1.03         | 1.84         |
| At2g30020              | putative protein phosphatase 2C                                                                          | 0.29            | 0.53         | 1.83         |
| At3g07670              | putative ribulose-1                                                                                      | 0.22            | 0.4          | 1.82         |
| At1g32900              | starch synthase                                                                                          | 0.3             | 0.54         | 1.80         |
| At4g13430              | putative protein                                                                                         | 0.52            | 0.92         | 1.77         |
| At3g58990<br>At5g03650 | 3-isopropylmalate dehydratase-like protein (small subunit<br>1.4-alpha-glucan branching enzyme precursor | t) 1.06<br>0.64 | 1.87<br>1.12 | 1.76<br>1.75 |
| At2q28660              | unknown protein                                                                                          | 0.23            | 0.4          | 1.74         |
| At3a02750              | putative protein phosphatase-2C (PP2C)                                                                   | 0.53            | 0.92         | 1.74         |
| At4a17360              | phosphoribosylalycinamide formyltransferase-like protein                                                 | 0.41            | 0.7          | 1.71         |
| At1g07160              | protein phosphatase 2C                                                                                   | 0.19            | 0.32         | 1.68         |
| At4g15870              | delta-cadinene synthase like protein                                                                     | 0.78            | 1.3          | 1.67         |
| At5g51460              | trehalose-6-phosphate phosphatase                                                                        | 1.02            | 1.7          | 1.67         |
| At4g39010              | putative endo-1                                                                                          | 0.41            | 0.68         | 1.66         |
| At4g02780              | ent-kaurene synthetase A - like protein                                                                  | 0.39            | 0.64         | 1.64         |
| At3g22890              | ATP sulfurylase                                                                                          | 0.38            | 0.62         | 1.63         |
| At2g33230              | putative flavin-containing monooxygenase                                                                 | 0.54            | 0.88         | 1.63         |
| At3a04790              | putative ribose 5-phosphate isomerase                                                                    | 1.31            | 2.13         | 1.63         |
| At2a02380              | putative glutathione S-transferase                                                                       | 0.15            | 0.24         | 1.60         |
| At3q55010              | phosphoribosylformylalycinamidine cyclo-ligase precurso                                                  | r 0.36          | 0.57         | 1.58         |
| At4g04610              | 5-adenylylsulfate reductase                                                                              | 1.07            | 1.69         | 1.58         |
| At3g29200              | chorismate mutase                                                                                        | 0.14            | 0.22         | 1.57         |
| At3g06860              | fatty acid multifunctional protein (AtMFP2)                                                              | 0.37            | 0.58         | 1.57         |
| At2g23800              | pregeranylgeranyl pyrophosphate synthase                                                                 | 0.23            | 0.36         | 1.57         |
| At3g51160              | GDP-D-mannose-4                                                                                          | 0.34            | 0.53         | 1.56         |
| At4g14680              | ATP-sulfurylase                                                                                          | 0.62            | 0.96         | 1.55         |
| At4q19170              | neoxanthin cleavage enzyme-like protein                                                                  | 1.16            | 1.78         | 1.53         |
| At4a39210              | glucose-1-phosphate adenvlvltransferase (APL3)                                                           | 0.3             | 0.45         | 1.50         |
| At4a35630              | phosphoserine aminotransferase                                                                           | 0.28            | 0.42         | 1.50         |
| At4a10500              | putative Fe(II)/ascorbate oxidase                                                                        | 0.63            | 0.92         | 1.46         |
| At4a08900              | arginase                                                                                                 | 0.24            | 0.35         | 1.46         |
| At1a52420              | hypothetical protein                                                                                     | 0.48            | 0.7          | 1.46         |
| At3q47930              | I -galactono-1 4-lactone debydrogenase - like protein                                                    | 0.35            | 0.51         | 1 46         |
| At2g17420              | thioredoxin reductase                                                                                    | 0.93            | 1.35         | 1.45         |
| At2g40490              | putative uroporphyrinogen decarboxylase                                                                  | 0.4             | 0.58         | 1.45         |
| At3g59760              | cysteine synthase                                                                                        | 0.59            | 0.85         | 1.44         |
| At1g06730              | sugar kinase                                                                                             | 0.25            | 0.36         | 1.44         |
| At3q04000              | putative short-chain type dehydrogenase/reductase                                                        | 0.26            | 0.37         | 1.42         |
| At2g16570              | amidophosphoribosyltransferase                                                                           | 0.95            | 1.35         | 1.42         |
| At5g04360              | pullulanase-like protein (starch debranching enzyme)                                                     | 0.17            | 0.24         | 1.41         |
| At2g44050              | 7-dimethyl-8-ribityllumazine synthase precursor                                                          | 0.41            | 0.57         | 1.39         |
| At5g04590              | sulphite reductase                                                                                       | 0.57            | 0.79         | 1.39         |
| At5g27380              | glutathione synthetase gsh2                                                                              | 0.47            | 0.65         | 1.38         |
| At4g20830              | reticuline oxidase -like protein                                                                         | 0.79            | 1.09         | 1.38         |
| At4g34740              | amidophosphoribosyltransferase 2 precursor                                                               | 0.95            | 1.31         | 1.38         |
| At1g24500              | unknown protein                                                                                          | 0.32            | 0.44         | 1.38         |

| At4g16700              | decarboxylase like protein                                                                       | 0.92         | 1.26         | 1.37         |
|------------------------|--------------------------------------------------------------------------------------------------|--------------|--------------|--------------|
| At5g43830              | aluminum-induced protein-like                                                                    | 0.19         | 0.26         | 1.37         |
| At3g63340              | putative protein                                                                                 | 0.13         | 0.17         | 1.31         |
| At5g49190              | sucrose synthase                                                                                 | 0.07         | 0.09         | 1.29         |
| At4g02520              | Atpm24.1 glutathione S transferase                                                               | 1.37         | 0.97         | 0.71         |
| At1g18500              | 2-isopropylmalate synthase                                                                       | 0.34         | 0.24         | 0.71         |
| At4g18440              | adenylosuccinate lyase - like protein                                                            | 0.39         | 0.27         | 0.69         |
| At1g56190              | phosphoglycerate kinase                                                                          | 1.42         | 0.93         | 0.65         |
| At4g19710<br>At4g08870 | aspartate kinase-homoserine dehydrogenase - like protein putative arginase                       | 2.87<br>0.58 | 1.85<br>0.35 | 0.64<br>0.60 |
| At1g29900<br>At2g41220 | carbamoyl phosphate synthetase large chain (carB) ferredoxin-dependent glutamate synthase (GLU2) | 0.44<br>2.77 | 0.26<br>1.63 | 0.59<br>0.59 |
| At1g25220              | anthranilate synthase beta subunit                                                               | 0.29         | 0.17         | 0.59         |
| At1g18360              | lysophospholipase homolog                                                                        | 0.14         | 0.08         | 0.57         |
| At3g49680<br>At5g23440 | branched-chain-amino-acid transaminase -like protein putative protein                            | 0.59<br>0.74 | 0.32<br>0.39 | 0.54<br>0.53 |
| At3g26650<br>At1g80600 | glyceraldehyde 3-phosphate dehydrogenase A subunit (GapA) putative acetylornithine transaminase  | 5<br>0.27    | 2.59<br>0.13 | 0.52<br>0.48 |
| At3g04870              | putative zeta-carotene desaturase precursor                                                      | 0.44         | 0.21         | 0.48         |
| At5g19140              | aluminium-induced protein - like                                                                 | 0.3          | 0.14         | 0.47         |
| At2g43090              | 3-isopropylmalate dehydratase                                                                    | 1.62         | 0.75         | 0.46         |
| At2g47730              | glutathione S-transferase (GST6)                                                                 | 0.72         | 0.32         | 0.44         |
| At2g31810              | putative acetolactate synthase                                                                   | 0.84         | 0.34         | 0.40         |
| At2g14750              | putative adenosine phosphosulfate kinase                                                         | 0.64         | 0.25         | 0.39         |
| At5g09650              | inorganic pyrophosphatase - like protein                                                         | 0.18         | 0.07         | 0.39         |
| At3g12780              | phosphoglycerate kinase                                                                          | 14.41        | 3.83         | 0.27         |
| At3g45140              | lipoxygenase AtLOX2                                                                              | 2.34         | 0.62         | 0.26         |
|                        |                                                                                                  |              |              |              |

### Photosynthesis

| At5g10000 | PetF4; putative ferredoxin (0 mRNA)                              | 0.42  | 1.89  | 4.50 |
|-----------|------------------------------------------------------------------|-------|-------|------|
| At4g32260 | AtpG; ATP synthase beta\\\' chain (old nomenclature: subunit II) | 0.74  | 2.55  | 3.45 |
| At1g29910 | Lhcb1.2 (LHCP AB 180)                                            | 11.73 | 38.52 | 3.28 |
| At4g14890 | PetF5; ferredoxin (1 mRNA)                                       | 0.55  | 1.63  | 2.96 |
| At2g30570 | PsbW                                                             | 10.04 | 27.85 | 2.77 |
| At1g76570 | putative Lhcb1 (similar to Petunia CAB 22R)                      | 0.37  | 0.97  | 2.62 |
| At1g15700 | AtpC2; ATP synthase gamma subunit (1 mRNA)                       | 0.28  | 0.66  | 2.36 |
| At1g15820 | Lhcb6 (CP24)                                                     | 0.64  | 1.49  | 2.33 |
| At1g03600 | proteomics: putative new PSII subunit                            | 0.49  | 1.06  | 2.16 |
| At1g44575 | PsbS protein                                                     | 0.38  | 0.76  | 2.00 |
| At4g17740 | PSII D1 protein processing enzyme                                | 0.27  | 0.52  | 1.93 |
| At4g37230 | PsbO-like; probably pseudogene                                   | 0.15  | 0.26  | 1.73 |
| At4g15510 | thylakoid lumenal 21.5 kDa protein (PsbP related)                | 0.42  | 0.72  | 1.71 |
| At5g23120 | HCF136                                                           | 0.73  | 1.14  | 1.56 |
| At1g10960 | PetF2; ferredoxin precusor isolog (1 mRNA)                       | 2.07  | 2.91  | 1.41 |
| At4g10340 | Lhcb5 (CP26)                                                     | 2.61  | 1.87  | 0.72 |
| At1g52230 | PsaH2                                                            | 1.06  | 0.75  | 0.71 |
| At2g30790 | PsbP2 (0 mRNA)                                                   | 2.4   | 1.68  | 0.70 |
| At2g20260 | PsaE2 (2 mRNAs)                                                  | 3.19  | 2.18  | 0.68 |
| At3g27690 | Lhcb2.4                                                          | 39.85 | 26.97 | 0.68 |
| At1g67740 | PsbY                                                             | 2.52  | 1.7   | 0.67 |
| At1g20340 | PetE2 (plastocyanin) (5 mRNAs)                                   | 1.2   | 0.76  | 0.63 |

#### 7 APPENDIX

| At5g38430 | ribulose bisphosphate carboxylase small chain 1b precursor<br>(RuBisCO small subunit 1b) | 67.35  | 42.54 | 0.63 |
|-----------|------------------------------------------------------------------------------------------|--------|-------|------|
| psaA      | plastid gene product; PSI-A                                                              | 32.91  | 20.73 | 0.63 |
| At3g54890 | Lhca1                                                                                    | 19.41  | 11.92 | 0.61 |
| At1g08380 | PsaO                                                                                     | 11.66  | 6.79  | 0.58 |
| At1g55490 | Rubisco subunit binding-protein beta subunit                                             | 0.4    | 0.23  | 0.58 |
| At1g06680 | PsbP1 (3 mRNAs)                                                                          | 4.65   | 2.59  | 0.56 |
| At4g28750 | PsaE1 (2 mRNAs)                                                                          | 4.32   | 2.28  | 0.53 |
| At5g54270 | Lhcb3 chlorophyll a/b binding protein                                                    | 10.8   | 5.6   | 0.52 |
| At5g38420 | ribulose bisphosphate carboxylase small chain 2b precursor (RuBisCO small subunit 2b)    | 64.27  | 32.92 | 0.51 |
| At1g61520 | Lhca3                                                                                    | 10.62  | 5.43  | 0.51 |
| At1g76100 | PetE1 (plastocyanin) (0 mRNAs)                                                           | 0.87   | 0.43  | 0.49 |
| At3g50820 | PsbO2                                                                                    | 5.21   | 2.57  | 0.49 |
| At3g08940 | Lhcb4.2 (CP29)                                                                           | 2.6    | 1.28  | 0.49 |
| At5g01530 | Lhcb4.1 (CP29)                                                                           | 2.7    | 1.31  | 0.49 |
| At1g29920 | Lhcb1.1 (LHCP AB 160)                                                                    | 50.86  | 23.61 | 0.46 |
| At1g67090 | ribulose-bisphosphate carboxylase small unit                                             | 55.23  | 24.04 | 0.44 |
| At1g79040 | PsbR                                                                                     | 14.87  | 6.17  | 0.41 |
| At2g40100 | Lhcb4.3 (CP29)                                                                           | 1.79   | 0.73  | 0.41 |
| At3g47470 | Lhca4                                                                                    | 39.92  | 15.99 | 0.40 |
| At1g60950 | PetF1; ferredoxin precursor (3 mRNAs)                                                    | 7.13   | 2.76  | 0.39 |
| At4g02770 | PsaD1 (4 mRNAs)                                                                          | 18.91  | 7.21  | 0.38 |
| At4g21280 | PsbQ1 (1 mRNA)                                                                           | 10.97  | 3.96  | 0.36 |
| At3g56650 | proteomics: thylakoid lumen protein                                                      | 0.24   | 0.08  | 0.33 |
| At2g34420 | Lhcb1.5                                                                                  | 62.21  | 20.08 | 0.32 |
| At5g64040 | PsaN                                                                                     | 13.44  | 4.27  | 0.32 |
| At1g03130 | PsaD2 (4 mRNAs)                                                                          | 18.52  | 5.84  | 0.32 |
| At2g34430 | Lhcb1.4                                                                                  | 65.99  | 20.71 | 0.31 |
| At2g05100 | Lhcb2.1 (oder Lhcb2.3)                                                                   | 33.56  | 10.05 | 0.30 |
| At2g05070 | Lhcb2.2                                                                                  | 19.41  | 5.29  | 0.27 |
| rbcL      | plastid gene product; large subunit of Rubisco                                           | 197.31 | 53.17 | 0.27 |
| At2g06520 | PsbX                                                                                     | 17.43  | 4.55  | 0.26 |
| At1g55670 | PsaG                                                                                     | 14.89  | 3.83  | 0.26 |
| At4g05180 | PsbQ2 (1 mRNA)                                                                           | 18.31  | 3.9   | 0.21 |
| At5g66570 | PsbO1                                                                                    | 29.11  | 5.03  | 0.17 |
| At3g21055 | PsbT1                                                                                    | 10.23  | 1.63  | 0.16 |
| At1g51400 | PsbT2 (2 mRNAs)                                                                          | 13.01  | 1.83  | 0.14 |

## Transport

| At2g30460 | putative integral membrane protein                            | 0.2  | 4.25 | 21.25 |
|-----------|---------------------------------------------------------------|------|------|-------|
| At1g66950 | ABC transporter                                               | 0.33 | 5.46 | 16.55 |
| At3g47760 | ABC-type transport protein-like protein                       | 0.07 | 0.88 | 12.57 |
| At1g47840 | hexokinase                                                    | 0.17 | 1.85 | 10.88 |
| At1g10540 | putative permease                                             | 0.02 | 0.19 | 9.50  |
| At2g45770 | putative signal recognition particle receptor (alpha subunit) | 0.3  | 2.74 | 9.13  |
| At5g12860 | 2-oxoglutarate/malate translocator (DiT1) protein             | 0.14 | 1.15 | 8.21  |
| At1g09960 | putative sucrose/H+ symporter                                 | 0.16 | 1.2  | 7.50  |
| At1g15520 | ABC transporter                                               | 0.14 | 0.91 | 6.50  |
| At3g10350 | putative ATPase                                               | 0.38 | 2.42 | 6.37  |
| At4g01840 | putative potassium channel                                    | 0.18 | 1.02 | 5.67  |
| At1g64780 | ammonium transporter                                          | 0.18 | 1.01 | 5.61  |
|           |                                                               |      |      |       |

| At1g51350              | hypothetical protein                                                               | 0.25            | 1.32        | 5.28         |
|------------------------|------------------------------------------------------------------------------------|-----------------|-------------|--------------|
| At4g36520              | trichohyalin like protein                                                          | 0.19            | 1           | 5.26         |
| At4g32400              | adenylate translocator (brittle-1) - like protein                                  | 0.21            | 1.1         | 5.24         |
| At3g10290              | putative protein                                                                   | 0.09            | 0.42        | 4.67         |
| At5g13550              | sulfate transporter                                                                | 0.08            | 0.37        | 4.63         |
| At2g32400              | putative ligand-gated ion channel subunit                                          | 0.18            | 0.83        | 4.61         |
| At1g06950              | Tic110                                                                             | 0.2             | 0.92        | 4.60         |
| At3g55150              | putative protein                                                                   | 0.59            | 2.71        | 4.59         |
| At1g59660              | nucleoporin 98-like protein                                                        | 0.16            | 0.73        | 4.56         |
| At2g39190              | putative ABC transporter                                                           | 0.11            | 0.47        | 4.27         |
| At3g47440              | aquaporin-like protein                                                             | 0.37            | 1.58        | 4.27         |
| At1g78560              | unknown protein                                                                    | 0.13            | 0.54        | 4.15         |
| At1g04940              | Tic20.2                                                                            | 0.2             | 0.82        | 4.10         |
| At3g26570              | chloroplast envelope-localized phosphate transporter                               | 0.27            | 1.1         | 4.07         |
| At4g21820              | putative protein                                                                   | 0.2             | 0.81        | 4.05         |
| At5g19500              | putative protein                                                                   | 0.39            | 1.56        | 4.00         |
| At2g17270              | putative mitochondrial phosphate translocator protein                              | 0.08            | 0.32        | 4.00         |
| At2g29870              | putative aquaporin (plasma membrane intrinsic protein)                             | 0.36            | 1.39        | 3.86         |
| ALT905450              |                                                                                    | 0.19            | 0.72        | 3.19         |
| At/a27120              |                                                                                    | 0.22            | 0.01        | 3.00         |
| At5a14040              |                                                                                    | 0.10            | 0.00        | 3.07         |
| Albg14040              | chlorenlast Xul 5 Dich contrast translocator                                       | 0.27            | 0.98        | 3.03         |
| At5g17630              | chloroplast XuI-5-P/phosphate translocator (XPT)                                   | 0.42            | 1.52        | 3.62         |
| At2g29100              | putative ligand-gated ion channel protein                                          | 0.15            | 0.52        | 3.47         |
| At1g59870              | ABC transporter                                                                    | 0.16            | 0.55        | 3.44         |
| At2g31020              | putative oxysterol-binding protein                                                 | 0.07            | 0.24        | 3.43         |
| At2g29650<br>At2g28070 | putative Na+-dependent inorganic phosphate cotransport<br>putative ABC transporter | er 0.15<br>0.21 | 0.51<br>0.7 | 3.40<br>3.33 |
| At2g43950              | Tic22                                                                              | 0.36            | 1.13        | 3.14         |
| At3q57180              | putative protein                                                                   | 0.3             | 0.94        | 3.13         |
| At1q15500              | adenine nucleotide translocase                                                     | 0.34            | 1.05        | 3.09         |
| At4a37270              | Cu2+-transporting ATPase-like protein                                              | 0.27            | 0.8         | 2.96         |
| At2q26900              | putative Na+ dependent ileal bile acid transporter                                 | 0.11            | 0.32        | 2.91         |
| At1a26230              | chaperonin precursor                                                               | 0.16            | 0.46        | 2.88         |
| At5a01500              | putative protein                                                                   | 0.13            | 0.36        | 2.77         |
| At5q64940              | ABC transporter-like                                                               | 0.85            | 2.35        | 2.76         |
| At2a24820              | Toc75                                                                              | 0.28            | 0.77        | 2.75         |
| At1a10390              | unknown protein                                                                    | 0.91            | 2.41        | 2.65         |
| At2a38060              | putative Na+-dependent inorganic phosphate cotransport                             | er 0.25         | 0.66        | 2.64         |
| At3g63130              | RAN GTPase activating protein 1 protein                                            | 0.33            | 0.86        | 2.61         |
| At5g03910              | ABC transporter -like protein                                                      | 0.34            | 0.88        | 2.59         |
| At1g03060              | putataive transport protein                                                        | 0.24            | 0.62        | 2.58         |
| At1g80830              | metal ion transporter                                                              | 0.23            | 0.58        | 2.52         |
| At5g26980              | tSNARE AtTLG2a                                                                     | 0.26            | 0.65        | 2.50         |
| At1g05030              | putative sugar transporter protein                                                 | 0.25            | 0.62        | 2.48         |
| At5g04770              | amino acid transporter-like protein                                                | 0.38            | 0.94        | 2.47         |
| At1g79360              | hypothetical protein                                                               | 0.26            | 0.64        | 2.46         |
| At5g28750              | Tha4 protein - like                                                                | 0.26            | 0.62        | 2.38         |
| At2g26650              | K <sup>+</sup> transporter                                                         | 0.34            | 0.81        | 2.38         |
| At5g01490              | Ca2+/H+ exchanger-like protein                                                     | 0.11            | 0.25        | 2.27         |
| At2g32390              | putative ligand-gated ion channel subunit                                          | 0.39            | 0.88        | 2.26         |
| At1g15210              | putative ABC transporter                                                           | 0.34            | 0.76        | 2.24         |
| At2g17260              | putative ligand-gated ion channel protein                                          | 0.61            | 1.34        | 2.20         |

| At2g16980  | putative tetracycline transporter protein               | 0.36         | 0.79         | 2.19 |
|------------|---------------------------------------------------------|--------------|--------------|------|
| At3g23710  | Tic22                                                   | 0.46         | 1            | 2.17 |
| At4g33350  | Tic110                                                  | 11.26        | 23.61        | 2.10 |
| At1g08770  | unknown protein                                         | 0.51         | 1.06         | 2.08 |
| At5g43070  | putative protein                                        | 0.46         | 0.94         | 2.04 |
| At4g36580  | ATPase-like protein                                     | 0.44         | 0.88         | 2.00 |
| At4g04850  | putative potassium transporter                          | 0.17         | 0.34         | 2.00 |
| At4g04770  | putative ABC transporter                                | 0.38         | 0.75         | 1.97 |
| At2g02590  | putative transport protein                              | 0.27         | 0.52         | 1.93 |
| At2g27810  | putative membrane transporter                           | 0.25         | 0.48         | 1.92 |
| At5g03900  | putative protein                                        | 0.28         | 0.53         | 1.89 |
| At2g38330  | hypothetical protein                                    | 0.33         | 0.61         | 1.85 |
| At1g67800  | unknown protein                                         | 0.34         | 0.61         | 1.79 |
| At2g21020  | putative major intrinsic (channel) protein              | 0.09         | 0.16         | 1.78 |
| At3g03720  | putative cationic amino acid transporter                | 0.17         | 0.3          | 1.76 |
| At3g25410  | unknown protein                                         | 0.37         | 0.65         | 1.76 |
| At1g79380  | unknown protein                                         | 0.69         | 1.18         | 1.71 |
| At4g33520  | metal-transporting P-type ATPase                        | 0.98         | 1.66         | 1.69 |
| At4g18290  | potassium channel protein KAT2                          | 0.19         | 0.32         | 1.68 |
| At4g39460  | mitochondrial carrier - like protein                    | 0.41         | 0.69         | 1.68 |
| At4g12770  | auxilin-like protein                                    | 0.38         | 0.63         | 1.66 |
| At3g07100  | putative Sec24-like COPII protein                       | 0.16         | 0.26         | 1.63 |
| At2g34390  | putative aquaporin (plasma membrane intrinsic protein   | ) 0.34       | 0.52         | 1.53 |
| At3g46980  | putative protein                                        | 0.53         | 0.81         | 1.53 |
| At3g25620  | membrane transporter                                    | 0.2          | 0.3          | 1.50 |
| At4g02510  | Toc159                                                  | 0.6          | 0.88         | 1.47 |
| At3g44340  | putative protein                                        | 0.18         | 0.26         | 1.44 |
| At4g01800  | putative SecA-type chloroplast protein transport factor | 0.53<br>1.43 | 0.35<br>0.67 | 0.66 |
| At3a/8850  | mitochondrial phosphate transporter                     | 1.43         | 0.07         | 0.47 |
| At2a28000  |                                                         | 0.02         | 0.72         | 0.40 |
| At5a11/20  |                                                         | 0.52         | 0.57         | 0.40 |
| Alby 11460 | pulative GTF-billuling protein                          | 0.42         | 0.15         | 0.30 |

### Protein phosphorylation

| At4g15410 | phosphatase like protein                                             | 0.38 | 5.51 | 14.50 |
|-----------|----------------------------------------------------------------------|------|------|-------|
| At5g59220 | protein phosphatase 2C - like                                        | 0.05 | 0.7  | 14.00 |
| At4g32000 | serine/threonine protein kinase like protein                         | 0.08 | 1.1  | 13.75 |
| At2g39660 | putative protein kinase                                              | 0.1  | 0.99 | 9.90  |
| At2g28930 | putative protein kinase                                              | 0.07 | 0.53 | 7.57  |
| At2g17265 | homoserine kinase; 3-hydroxy-3-methylglutaryl-coenzyme A reductase 2 | 0.14 | 1.03 | 7.36  |
| At3g08720 | putative ribosomal-protein S6 kinase (ATPK19)                        | 0.3  | 2.16 | 7.20  |
| At5g18910 | protein kinase - like protein                                        | 0.14 | 0.97 | 6.93  |
| At3g19100 | CDPK-related kinase                                                  | 0.23 | 1.43 | 6.22  |
| At2g41140 | CPDK-related protein kinase                                          | 0.08 | 0.46 | 5.75  |
| At4g02410 | contains similarity to a protein kinase domain                       | 0.58 | 3.17 | 5.47  |
| At5g66210 | calcium-dependent protein kinase                                     | 0.07 | 0.37 | 5.29  |
| At4g23150 | serine/threonine kinase - like protein                               | 0.36 | 1.76 | 4.89  |
| At2g46850 | putative Ser/Thr protein kinase                                      | 0.19 | 0.88 | 4.63  |
| At2g31500 | putative calcium-dependent protein kinase                            | 0.16 | 0.64 | 4.00  |
| At3g44610 | protein kinase-like protein                                          | 0.25 | 0.93 | 3.72  |
| At4g21230 | receptor kinase - like protein                                       | 0.21 | 0.78 | 3.71  |

| At5g25930              | receptor-like protein kinase - like                                                               | 2.73        | 10.05        | 3.68         |
|------------------------|---------------------------------------------------------------------------------------------------|-------------|--------------|--------------|
| At5g13280              | aspartate kinase                                                                                  | 0.17        | 0.62         | 3.65         |
| At5g36250              | protein phosphatase-2C PP2C-like                                                                  | 0.2         | 0.72         | 3.60         |
| At5g47750              | protein kinase                                                                                    | 0.28        | 0.95         | 3.39         |
| At3g54930              | protein phosphatase 2A regulatory subunit B\\\'-like protein                                      | 0.23        | 0.77         | 3.35         |
| At5g19280              | kinase associated protein phosphatase                                                             | 0.12        | 0.4          | 3.33         |
| At1g09840              | shaggy-like protien kinase                                                                        | 0.17        | 0.55         | 3.24         |
| At4g25390              | receptor kinase-like protein                                                                      | 0.15        | 0.46         | 3.07         |
| At1g11300              | serine/threonine kinase                                                                           | 0.16        | 0.49         | 3.06         |
| At2g18470              | putative protein kinase                                                                           | 0.15        | 0.45         | 3.00         |
| At2g39360              | putative protein kinase                                                                           | 0.56        | 1.65         | 2.95         |
| At3g44050              | kinesin -like protein                                                                             | 0.25        | 0.71         | 2.84         |
| At1g53700              | auxin-induced protein kinase                                                                      | 0.33        | 0.9          | 2.73         |
| At4g23180              | serine/threonine kinase -like protein                                                             | 0.58        | 1.55         | 2.67         |
| At4g23130              | protein kinase - like protein                                                                     | 0.41        | 1.09         | 2.66         |
| At3g46920              | protein kinase - like protein                                                                     | 0.08        | 0.21         | 2.63         |
| At4g31220              | protein kinase-like protein                                                                       | 0.23        | 0.59         | 2.57         |
| At3g45670              | putative protein kinase                                                                           | 0.49        | 1.23         | 2.51         |
| At3g51990              | putative serine/threonine protein kinase                                                          | 0.14        | 0.35         | 2.50         |
| At1g68690              | protein kinase                                                                                    | 0.29        | 0.67         | 2.31         |
| At4g04570              | receptor-like protein kinase                                                                      | 0.29        | 0.66         | 2.28         |
| At4g38830              | receptor-like protein kinase - like protein                                                       | 0.41        | 0.93         | 2.27         |
| At1g31160<br>At4g23140 | putative protein kinase C inhibitor (Zinc-binding protein) serine/threonine kinase - like protein | 0.2<br>0.47 | 0.44<br>1.03 | 2.20<br>2.19 |
| At2g23070              | putative casein kinase II catalytic (alpha) subunit                                               | 0.37        | 0.81         | 2.19         |
| At1g71860              | protein tyrosine phosphatase                                                                      | 0.19        | 0.41         | 2.16         |
| At1g23540              | putative serine/threonine protein kinase                                                          | 0.73        | 1.48         | 2.03         |
| At1g18890              | calcium-dependent protein kinase                                                                  | 0.48        | 0.94         | 1.96         |
| At4g23280              | serine /threonine kinase - like protein                                                           | 0.66        | 1.29         | 1.95         |
| At1g61610              | receptor-like kinase                                                                              | 0.33        | 0.62         | 1.88         |
| At2g23770              | putative protein kinase                                                                           | 0.87        | 1.53         | 1.76         |
| At3g18040              | putative MAP kinase                                                                               | 0.44        | 0.76         | 1.73         |
| At5g55910              | serine/threonine-specific protein kinase ATPK64                                                   | 0.73        | 1.26         | 1.73         |
| At4g23190              | serine/threonine kinase - like protein                                                            | 0.37        | 0.63         | 1.70         |
| At3g26940              | protein kinase                                                                                    | 0.22        | 0.37         | 1.68         |
| At4g32710              | putative protein kinase                                                                           | 0.37        | 0.62         | 1.68         |
| At1g79250              | serine/threonine protein kinase                                                                   | 0.67        | 1.12         | 1.67         |
| At3g27580              | serine/threonine-protein kinase                                                                   | 0.6         | 0.94         | 1.57         |
| At4g16360              | kinase like protein                                                                               | 0.24        | 0.36         | 1.50         |
| At3g21220              | MAP kinase kinase 5                                                                               | 0.52        | 0.75         | 1.44         |
| At4g23200              | serine /threonine kinase - like protein                                                           | 0.65        | 0.92         | 1.42         |
| At2g34180              | putative protein kinase                                                                           | 0.66        | 0.93         | 1.41         |
| At4g34440              | putative serine/threonine protein kinase                                                          | 0.3         | 0.42         | 1.40         |
| At2g31800              | putative protein kinase                                                                           | 0.33        | 0.46         | 1.39         |
| At1g61550              | receptor kinase                                                                                   | 0.64        | 0.88         | 1.38         |
| At1g61590              | serine/threonine protein kinase                                                                   | 0.49        | 0.67         | 1.37         |
| At5g63310              | nucleotide diphosphate kinase la                                                                  | 0.32        | 0.43         | 1.34         |
| At3g08760              | putative protein kinase                                                                           | 0.66        | 0.48         | 0.73         |
| At2g17220              | putative protein kinase                                                                           | 0.56        | 0.38         | 0.68         |
| At3g20410              | calmodulin-domain protein kinase CDPK isoform 9                                                   | 1.29        | 0.82         | 0.64         |
| At2g30040              | putative protein kinase                                                                           | 0.51        | 0.28         | 0.55         |
| At1g32060              | phosphoribulokinase precursor                                                                     | 3.75        | 1.59         | 0.42         |
|                        |                                                                                                   |             |              |              |

### Stress response

| At3g44880 | lethal leaf-spot 1 homolog Lls1                | 0.04 | 0.55 | 13.75 |
|-----------|------------------------------------------------|------|------|-------|
| At4g26010 | putative peroxidase                            | 0.14 | 1.3  | 9.29  |
| At1g09420 | putative glucose-6-phosphate dehydrogenase     | 0.14 | 1.25 | 8.93  |
| At5g11250 | RPP1 disease resistance protein – like protein | 0.09 | 0.68 | 7.56  |
| At2g04030 | putative heat shock protein                    | 0.11 | 0.83 | 7.55  |
| At4g37890 | putative protein                               | 0.22 | 1.58 | 7.18  |
| At2g13810 | putative aspartate aminotransferase            | 0.07 | 0.44 | 6.29  |
| At2g22330 | putative cytochrome P450                       | 0.44 | 2.76 | 6.27  |
| At5g59610 | putative protein                               | 0.1  | 0.57 | 5.70  |
| At2g03740 | putative cold-regulated protein                | 0.27 | 1.32 | 4.89  |
| At5g05400 | NBS/LRR disease resistance protein             | 0.15 | 0.71 | 4.73  |
| At5g28100 | putative protein                               | 0.08 | 0.37 | 4.63  |
| At1g71000 | heat shock protein DnaJ                        | 0.21 | 0.93 | 4.43  |
| At4g31470 | pathogenesis-related protein homolog           | 0.17 | 0.71 | 4.18  |
| At4g31870 | glutathione peroxidase - like protein          | 0.12 | 0.5  | 4.17  |
| At4g19100 | putative protein                               | 0.11 | 0.44 | 4.00  |
| At1g78490 | cytochrome P450                                | 0.36 | 1.43 | 3.97  |
| At4g36150 | putative disease resistance protein            | 0.39 | 1.49 | 3.82  |
| At5g53460 | NADH-dependent glutamate synthase              | 0.23 | 0.82 | 3.57  |
| At2g03850 | putative cold-regulated protein                | 0.08 | 0.28 | 3.50  |
| At4g15910 | drought-induced protein like                   | 0.11 | 0.38 | 3.45  |
| At4g28730 | putative protein                               | 0.16 | 0.55 | 3.44  |
| At3g51570 | propable disease resistance protein            | 0.26 | 0.88 | 3.38  |
| At3g14490 | terpene synthase-related protein               | 0.17 | 0.51 | 3.00  |
| At5g48110 | terpene synthase                               | 0.29 | 0.85 | 2.93  |
| At4g11170 | RPP1-WsA-like disease resistance protein       | 0.48 | 1.38 | 2.88  |
| At2g44800 | putative flavonol synthase                     | 0.15 | 0.42 | 2.80  |
| At2g26790 | putative salt-inducible protein                | 0.46 | 1.25 | 2.72  |
| At3g18190 | chaperonin subunit                             | 0.21 | 0.57 | 2.71  |
| At3g44670 | disease resistance protein homlog              | 0.42 | 1.12 | 2.67  |
| At2g32140 | putative disease resistance protein            | 0.35 | 0.93 | 2.66  |
| At2g23230 | putative vetispiradiene synthase               | 1.24 | 3.22 | 2.60  |
| At4g19660 | putative protein                               | 0.42 | 1    | 2.38  |
| At4g08390 | stromal ascorbate peroxidase                   | 0.49 | 1.15 | 2.35  |
| At3g04210 | putative disease resistance protein            | 1.02 | 2.3  | 2.25  |
| At5g18820 | chaperonin 60 alpha chain - like protein       | 0.04 | 0.09 | 2.25  |
| At5g15870 | putative protein                               | 0.41 | 0.92 | 2.24  |
| At2g01610 | unknown protein                                | 0.36 | 0.79 | 2.19  |
| At2g24210 | putative limonene cyclase                      | 0.11 | 0.24 | 2.18  |
| At4g27670 | heat shock protein 21                          | 0.26 | 0.55 | 2.12  |
| At5g17820 | peroxidase ATP13a                              | 0.09 | 0.18 | 2.00  |
| At5g46470 | disease resistance protein-like                | 0.34 | 0.65 | 1.91  |
| At4g38660 | putative thaumatin-like protein                | 0.32 | 0.6  | 1.88  |
| At1g79460 | ent-kaurene synthase                           | 0.17 | 0.31 | 1.82  |
| At4g14690 | early light-induced protein ELIP.2 (Lil1.2)    | 0.4  | 0.72 | 1.80  |
| At4g38670 | putative thaumatin-like protein                | 0.4  | 0.72 | 1.80  |
| At4g39960 | DnaJ - like protein                            | 0.49 | 0.87 | 1.78  |
| At1g63880 | putative disease resistance protein            | 0.49 | 0.86 | 1.76  |
| At5g62360 | DC1.2 homologue - like protein                 | 0.67 | 1.15 | 1.72  |

| At2g01480              | axi 1-like protein                                                                                       | 0.27         | 0.46         | 1.70         |
|------------------------|----------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|
| At1g68840              | putative DNA-binding protein (RAV2-like)                                                                 | 0.9          | 1.45         | 1.61         |
| At4g13270              | hypothetical protein                                                                                     | 0.55         | 0.88         | 1.60         |
| At2g28190<br>At5g17680 | putative chloroplast Cu/Zn superoxide dismutase (SOD) disease resistance protein RPP1-WsB - like protein | 0.07<br>0.57 | 0.11<br>0.88 | 1.57<br>1.54 |
| At2g18940              | putative salt-inducible protein                                                                          | 0.5          | 0.76         | 1.52         |
| At3g23230              | ethylene responsive element binding protein                                                              | 0.7          | 1.02         | 1.46         |
| At5g49910              | heat shock protein 70                                                                                    | 1.69         | 2.46         | 1.46         |
| At2g18980              | peroxidase (ATP22a)                                                                                      | 1.02         | 1.38         | 1.35         |
| At2g40000              | putative nematode-resistance protein                                                                     | 1.95         | 1.28         | 0.66         |
| At1g75380              | wound-responsive protein                                                                                 | 2.08         | 1.27         | 0.61         |
| At2g25080              | putative glutathione peroxidase                                                                          | 0.87         | 0.45         | 0.52         |
| At4g05070              | expressed protein                                                                                        | 2.62         | 1.34         | 0.51         |
| At1g77490              | thylakoid-bound ascorbate peroxidase                                                                     | 0.31         | 0.14         | 0.45         |
| At3g48100              | response reactor 2 (ATRR2)                                                                               | 1.64         | 0.73         | 0.45         |
| At2g42540              | cold-regulated protein cor15a precursor                                                                  | 2.29         | 0.63         | 0.28         |
| At2g42530              | cold-regulated protein cor15b precursor                                                                  | 1.54         | 0.32         | 0.21         |
| At3g05880              | low temperature and salt responsive protein LTI6A                                                        | 7.51         | 1.27         | 0.17         |

#### **Transcription/Translation**

| At2g47680              | putative ATP-dependent RNA helicase A                                     | 0.02        | 0.44         | 22.00        |
|------------------------|---------------------------------------------------------------------------|-------------|--------------|--------------|
| At4g31210              | DNA topoisomerase like- protein                                           | 0.06        | 0.92         | 15.33        |
| At2g19870              | hypothetical protein                                                      | 0.06        | 0.91         | 15.17        |
| At4g19900              | putative protein                                                          | 0.55        | 7.21         | 13.11        |
| At5g53920              | ribosomal protein L11 methyltransferase-like protein                      | 0.07        | 0.89         | 12.71        |
| At5g38290              | CRS2 -like protein                                                        | 0.09        | 1            | 11.11        |
| At1g32150              | G-Box binding protein                                                     | 0.07        | 0.5          | 7.14         |
| At3g46440              | dTDP-glucose 4-6-dehydratases-like protein                                | 0.09        | 0.62         | 6.89         |
| At3g62910              | translation releasing factor RF-1 -like protein                           | 0.11        | 0.75         | 6.82         |
| At3g63140              | mRNA binding protein precursor - like                                     | 0.08        | 0.51         | 6.38         |
| At1g78160              | putative RNA-binding protein                                              | 0.1         | 0.6          | 6.00         |
| At2g40620              | putative bZIP transcription factor                                        | 0.13        | 0.76         | 5.85         |
| At1g01520              | myb-related protein                                                       | 0.08        | 0.46         | 5.75         |
| At1g31220<br>At4g27330 | putative phosphoribosylglycinamide formyltransferase NOZZLE/SPOROCYTELESS | 0.2<br>0.21 | 1.14<br>1.17 | 5.70<br>5.57 |
| At2g36010              | putative E2F5 family transcription factor                                 | 0.23        | 1.28         | 5.57         |
| At2g38470              | putative WRKY-type DNA-binding protein                                    | 0.15        | 0.83         | 5.53         |
| At2g02070              | putative C2H2-type zinc finger protein                                    | 2.18        | 11.69        | 5.36         |
| At4g04350              | putative leucyl tRNA synthetase                                           | 0.12        | 0.64         | 5.33         |
| At3g54610              | histon acetyltransferase HAT1                                             | 0.29        | 1.54         | 5.31         |
| At4g16750              | apetala2 domain TINY like protein                                         | 0.27        | 1.37         | 5.07         |
| At2g44940              | putative AP2 domain transcription factor                                  | 0.31        | 1.57         | 5.06         |
| At2g42080              | unknown protein                                                           | 0.14        | 0.7          | 5.00         |
| At2g38810              | histone H2A                                                               | 0.14        | 0.66         | 4.71         |
| At2g37510              | putative RNA-binding protein                                              | 0.17        | 0.8          | 4.71         |
| At2g12900              | putative VSF-1-like b-ZIP transcription factor                            | 0.07        | 0.32         | 4.57         |
| At1g79840              | homeobox protein (GLABRA2)                                                | 0.1         | 0.45         | 4.50         |
| At1g19890              | histone H3                                                                | 0.33        | 1.44         | 4.36         |
| At1g17590              | transcription factor                                                      | 0.17        | 0.73         | 4.29         |
| At5g15700              | DNA-directed RNA polymerase (mitochondrial)                               | 0.13        | 0.55         | 4.23         |
| At3g22780              | putative DNA binding protein                                              | 0.23        | 0.96         | 4.17         |

| A + 4 = 4 7 0 7 0      | transmistics foots                                                               | 0.40        | 0.54         | 4 4 5        |
|------------------------|----------------------------------------------------------------------------------|-------------|--------------|--------------|
| At1g47870              | Transcription factor                                                             | 0.13        | 0.54         | 4.15         |
| At1g15400              | Bill regulatory suburit of protein phosphatase 2A                                | 0.17        | 0.09         | 4.00         |
| ALIGUD190              | putative chloroplast hosomal protein Lo                                          | 0.3         | 1.10         | 3.07<br>2.70 |
| At5 = 00750            |                                                                                  | 0.16        | 0.00         | 3.70<br>2.77 |
| Alog02750              | putative protein                                                                 | 0.44        | 1.00         | 3.11<br>2.76 |
| Alou04 470             |                                                                                  | 0.25        | 0.94         | 3.70         |
| At3g01470              | nomeopox-leucine zipper protein HA15                                             | 0.28        | 1.04         | 3.71         |
| At5g54090              | DNA mismatch repair protein MutS2-like                                           | 0.3         | 1.11         | 3.70         |
| At3g10690              | putative DNA gyrase subunit A                                                    | 0.2         | 0.72         | 3.60         |
| At1g68730              | putative transcription factor                                                    | 0.33        | 1.18         | 3.58         |
| At3g03710              | putative polynucleotide phosphorylase                                            | 0.2         | 0.71         | 3.55         |
| At5g02860              | putative protein                                                                 | 0.44        | 1.54         | 3.50         |
| At4g01310              | putative chloroplast ribosomal protein L5                                        | 0.22        | 0.76         | 3.45         |
| At4g17300              | asparaginetRNA ligase                                                            | 0.35        | 1.2          | 3.43         |
| At1g22660              | putative tRNA adenylyltransferase                                                | 0.17        | 0.58         | 3.41         |
| At4g30690              | putative protein                                                                 | 0.29        | 0.98         | 3.38         |
| At5g40950              | putative chloroplast ribosomal protein L27                                       | 1.13        | 3.74         | 3.31         |
| At2g04240              | putative RING zinc finger protein                                                | 0.72        | 2.37         | 3.29         |
| At4g20330              | putative protein                                                                 | 0.15        | 0.48         | 3.20         |
| At1g79080              | hypothetical protein                                                             | 0.23        | 0.73         | 3.17         |
| At5g61470              | putative protein                                                                 | 0.24        | 0.75         | 3.13         |
| At5g59730              | putative protein                                                                 | 0.1         | 0.31         | 3.10         |
| At2g13150              | putative bZIP transcription factor                                               | 0.25        | 0.77         | 3.08         |
| At1g10480              | zinc finger protein 5                                                            | 0.24        | 0.73         | 3.04         |
| At5g08070              | putative helix-loop-helix DNA binding protein                                    | 0.38        | 1.14         | 3.00         |
| At2g46590              | putative DOF zinc finger protein                                                 | 0.34        | 1.01         | 2.97         |
| At1g63040              | transcription factor DREB1A                                                      | 0.19        | 0.56         | 2.95         |
| At1g26370              | hypothetical protein                                                             | 0.18        | 0.53         | 2.94         |
| At2g01440              | putative ATP-dependent DNA helicase (RECG)                                       | 0.24        | 0.7          | 2.92         |
| At2g15740              | putative C2H2-type zinc finger protein                                           | 0.28        | 0.78         | 2.79         |
| At5g49450              | putative protein                                                                 | 0.56        | 1.54         | 2.75         |
| At1g74970<br>At1g62680 | putative ribosomal protein S9 (secretory pathway prediced)<br>PPR-repeat protein | 0.16<br>0.2 | 0.44<br>0.55 | 2.75<br>2.75 |
| At1g71720              | putative chloroplast ribosomal protein S1                                        | 0.15        | 0.4          | 2.67         |
| At2g22090              | putative RNA-binding protein                                                     | 0.41        | 1.09         | 2.66         |
| At2g24050              | putative eukaryotic initiation factor 4                                          | 0.25        | 0.66         | 2.64         |
| At5g10370              | putative protein                                                                 | 0.28        | 0.73         | 2.61         |
| At1g30480              | DNA damage repair protein                                                        | 0.12        | 0.31         | 2.58         |
| At1g75390              | bZIP transcription factor ATB2                                                   | 0.61        | 1.56         | 2.56         |
| At2g24120              | chloroplast single subunit DNA-dependent RNA polymerase                          | 0.57        | 1.44         | 2.53         |
| At1g29070              | putative plastid ribosomal protein L34                                           | 0.23        | 0.58         | 2.52         |
| At3g16350              | putative MYB family transcription factor                                         | 0.36        | 0.9          | 2.50         |
| At2g20060              | putative chloroplast ribosomal protein L4                                        | 0.13        | 0.32         | 2.46         |
| At2g18670              | putative C3HC4-type RING zinc finger protein                                     | 0.22        | 0.54         | 2.45         |
| At4g10030              | putative protein                                                                 | 0.25        | 0.61         | 2.44         |
| At1g08880              | putative histone H2A                                                             | 0.5         | 1.22         | 2.44         |
| At3g54620              | bZIP transcription factor -like protein                                          | 0.19        | 0.46         | 2.42         |
| At1g68460              | putative tRNA isopentenyl transferase                                            | 0.48        | 1.13         | 2.35         |
| At2g34520              | mitochondrial ribosomal protein S14                                              | 0.24        | 0.56         | 2.33         |
| At1g06070              | transcriptional activator RF2a                                                   | 0.2         | 0.46         | 2.30         |
| At2g18650              | putative C3HC4-type RING zinc finger protein                                     | 0.58        | 1.31         | 2.26         |
| At4g27340              | putative protein                                                                 | 0.44        | 0.97         | 2.20         |
| -                      |                                                                                  |             |              |              |

| At3g03590 | hypothetical protein                                    | 0.28   | 0.61 | 2.18 |
|-----------|---------------------------------------------------------|--------|------|------|
| At2g14880 | unknown protein                                         | 0.31   | 0.67 | 2.16 |
| At3g13180 | sun (RNA-binding) protein (fmu protein)                 | 0.26   | 0.56 | 2.15 |
| At4g25880 | pumilio-like protein                                    | 0.26   | 0.56 | 2.15 |
| At5g18560 | AP2 domain -like protein                                | 0.49   | 1.04 | 2.12 |
| At4g25540 | putative DNA mismatch repair protein                    | 0.73   | 1.53 | 2.10 |
| At5g51990 | AP2 domain transcription factor-like protein            | 0.21   | 0.44 | 2.10 |
| At3g19160 | tRNA isopentenyl transferase                            | 0.11   | 0.23 | 2.09 |
| At4g00150 | scarecrow-like 6 (SCL6)                                 | 0.55   | 1.15 | 2.09 |
| At1g13970 | hypothetical protein                                    | 0.33   | 0.68 | 2.06 |
| At1g78630 | putative chloroplast ribosomal protein L13              | 0.56   | 1.15 | 2.05 |
| At1g50200 | alaninetRNA ligase                                      | 0.39   | 0.8  | 2.05 |
| At4g21460 | putative protein                                        | 0.58   | 1.18 | 2.03 |
| At2g28450 | putative RNA methyltransferase                          | 0.32   | 0.65 | 2.03 |
| At1g67770 | putative ABC transporter                                | 0.41   | 0.83 | 2.02 |
| At2g03200 | putative chloroplast nucleoid DNA-binding protein       | 0.5    | 1.01 | 2.02 |
| At3g16080 | putative chloroplast ribosomal protein (L37e signature) | 0.83   | 1.63 | 1.96 |
| At1g48490 | transcription factor IRE                                | 0.26   | 0.51 | 1.96 |
| At2g37580 | putative C3HC4-type RING zinc finger protein            | 0.54   | 1.05 | 1.94 |
| At1g60000 | nucleic acid-binding protein                            | 0.47   | 0.91 | 1.94 |
| At4g01280 | putative myb-related DNA-binding protein                | 0.15   | 0.29 | 1.93 |
| At1g54690 | histone H2A                                             | 0.45   | 0.86 | 1.91 |
| At3g52380 | RNA-binding protein cp33 precursor                      | 0.73   | 1.39 | 1.90 |
| At4g14220 | RING-H2 finger protein RHF1a                            | 0.14   | 0.26 | 1.86 |
| At1g52300 | 60S ribosomal protein L37                               | 0.92   | 1.7  | 1.85 |
| At1g80670 | mRNA export protein                                     | 0.19   | 0.35 | 1.84 |
| At4g39250 | putative protein                                        | 0.26   | 0.47 | 1.81 |
| At4g34290 | putative protein                                        | 0.25   | 0.45 | 1.80 |
| At2g34830 | putative WRKY-type DNA-binding protein                  | 0.39   | 0.7  | 1.79 |
| At2g30320 | putative pseudouridine synthase                         | 0.67   | 1.16 | 1.73 |
| At3g53920 | sigma factor SigC                                       | 0.25   | 0.43 | 1.72 |
| At2g13440 | GIDA-like protein                                       | 0.45   | 0.76 | 1.69 |
| At4g32040 | homeodomain containing protein 1                        | 0.48   | 0.8  | 1.67 |
| At3g14890 | DNA nick sensor                                         | 0.09   | 0.15 | 1.67 |
| At1g29280 | DNA binding protein                                     | 0.45   | 0.75 | 1.67 |
| At4g00730 | homeodomain protein AHDP                                | 0.42   | 0.7  | 1.67 |
| At3g01790 | putative chloroplast ribosomal protein L13              | 0.41   | 0.68 | 1.66 |
| At2g45330 | unknown protein                                         | 0.32   | 0.53 | 1.66 |
| At4g29060 | putative protein                                        | 1.62   | 2.68 | 1.65 |
| At1g68990 | DNA-directed RNA polymerase (mitochondrial precursor    | ) 0.55 | 0.9  | 1.64 |
| At2g39380 | hypothetical protein                                    | 0.49   | 0.8  | 1.63 |
| At4g11120 | putative translation elongation factor ts               | 0.24   | 0.39 | 1.63 |
| At4g27230 | histone H2A- like protein                               | 0.61   | 0.98 | 1.61 |
| At5g65350 | histone H3                                              | 1.39   | 2.22 | 1.60 |
| At1g73250 | GDP-4-keto-6-deoxy-D-mannose-3                          | 0.32   | 0.51 | 1.59 |
| At2g21230 | putative bZIP transcription factor                      | 0.54   | 0.85 | 1.57 |
| At4g34590 | bZIP transcription factor ATB2                          | 0.16   | 0.25 | 1.56 |
| At4g20360 | translation elongation factor EF-Tu precursor           | 0.32   | 0.49 | 1.53 |
| At4g01250 | putative DNA-binding protein                            | 0.17   | 0.26 | 1.53 |
| At1g68880 | putative bZIP transcription factor                      | 0.65   | 0.98 | 1.51 |
| At3g52150 | chloroplast ribosomal protein PSRP2                     | 0.72   | 1.08 | 1.50 |
| At2g01150 | RING-H2 zinc finger protein (RHA2b)                     | 1.09   | 1.62 | 1.49 |

| At5g15390 | rRNA methylase - like protein                     | 0.4   | 0.59 | 1.48 |
|-----------|---------------------------------------------------|-------|------|------|
| At4g31180 | aspartatetRNA ligase - like protein               | 0.2   | 0.29 | 1.45 |
| At4g04730 | putative zinc finger protein                      | 0.57  | 0.82 | 1.44 |
| At5g10980 | histon H3 protein                                 | 0.91  | 1.3  | 1.43 |
| At1g64860 | plastid RNA polymerase sigma-subunit (SIG2)       | 0.62  | 0.87 | 1.40 |
| At3g09600 | putative MYB-related protein                      | 0.31  | 0.43 | 1.39 |
| At4g29860 | putative protein                                  | 0.21  | 0.29 | 1.38 |
| At1g53670 | transcriptional regulator                         | 0.21  | 0.29 | 1.38 |
| At2g07750 | putative ATP-dependent RNA helicase               | 0.32  | 0.44 | 1.38 |
| At2g38340 | DREB-like AP2 domain transcription factor         | 0.23  | 0.31 | 1.35 |
| At5g04600 | RNA binding protein - like                        | 0.12  | 0.16 | 1.33 |
| At1g79850 | chloroplast ribosomal protein S17; HCF60 (maize)  | 0.85  | 0.62 | 0.73 |
| At1g66810 | C-x8-C-x5-C-x3-H type Zinc finger protein         | 0.81  | 0.59 | 0.73 |
| At5g50250 | RNA-binding protein-like                          | 1.14  | 0.81 | 0.71 |
| At3g60490 | transcription factor - like protein               | 0.23  | 0.16 | 0.70 |
| At5g55300 | DNA topoisomerase I                               | 1.51  | 1.05 | 0.70 |
| At4g24770 | RNA-binding protein RNP-T precursor               | 3.36  | 2.24 | 0.67 |
| At2g37220 | putative RNA-binding protein                      | 2.19  | 1.44 | 0.66 |
| At1g02680 | transcription factor TFIID                        | 0.36  | 0.23 | 0.64 |
| At1g74840 | myb-related transcription activator               | 0.8   | 0.51 | 0.64 |
| At1g03970 | G-box binding factor                              | 0.38  | 0.24 | 0.63 |
| At4g17460 | homeobox-leucine zipper protein HAT1              | 2.1   | 1.32 | 0.63 |
| At3g20910 | CCAAT-binding factor B chain                      | 1.52  | 0.91 | 0.60 |
| At5g14320 | very similar to chloroplast ribosomal protein S13 | 3.7   | 2.16 | 0.58 |
| At5g19210 | eIF-4AII - like protein                           | 0.11  | 0.06 | 0.55 |
| At3g53460 | RNA-binding protein cp29 protein                  | 1.8   | 0.98 | 0.54 |
| At1g09200 | histone H3                                        | 2.31  | 1.24 | 0.54 |
| rpoC1     | plastid gene product; RNA polymerase              | 4.96  | 2.47 | 0.50 |
| At5g62000 | auxin response factor - like protein              | 0.65  | 0.32 | 0.49 |
| At4g40040 | Histon H3                                         | 2.88  | 1.39 | 0.48 |
| At3g58120 | putative protein                                  | 0.56  | 0.27 | 0.48 |
| At2g24090 | putative chloroplast ribosomal protein L35        | 0.79  | 0.37 | 0.47 |
| At1g32990 | chloroplast ribosomal protein L11                 | 1.7   | 0.79 | 0.46 |
| At4g16780 | DNA-binding homeotic protein Athb-2               | 1.89  | 0.85 | 0.45 |
| At3g27850 | putative chloroplast 50S ribosomal protein L12-C  | 4.94  | 2.1  | 0.43 |
| At2g33450 | putative chloroplast ribosomal protein L28        | 2.61  | 0.97 | 0.37 |
| At2g21660 | glycine-rich RNA binding protein 7                | 18.94 | 6.12 | 0.32 |
| At2g38140 | chloroplast ribosomal protein PSRP4               | 0.09  | 0.02 | 0.22 |

#### unclassified

| At4g27020 | putative protein                | 0.45 | 10.64 | 23.64 |
|-----------|---------------------------------|------|-------|-------|
| At5g49590 | putative protein                | 0.05 | 1.14  | 22.80 |
| At4g20750 | hypothetical protein            | 0.04 | 0.75  | 18.75 |
| At4g13680 | hypothetical protein            | 0.11 | 2.01  | 18.27 |
| At3g49350 | GTPase activating -like protein | 0.03 | 0.54  | 18.00 |
| At4g11980 | putative protein                | 0.78 | 13.43 | 17.22 |
| At1g35510 | growth regulator                | 0.1  | 1.64  | 16.40 |
| At4g03310 | hypothetical protein            | 0.37 | 6.03  | 16.30 |
| At4g11680 | putative protein                | 0.56 | 8.41  | 15.02 |
| At4g12390 | putative protein                | 0.21 | 3.13  | 14.90 |
| At1g50960 | gibberellin 20-oxidase          | 0.04 | 0.57  | 14.25 |
|           |                                 |      |       |       |

| At4g03150 | hypothetical protein                                                 | 0.07   | 0.99  | 14.14 |
|-----------|----------------------------------------------------------------------|--------|-------|-------|
| At1g21670 | hypothetical protein                                                 | 0.02   | 0.28  | 14.00 |
| At1g02060 | unknown protein                                                      | 0.16   | 2.11  | 13.19 |
| At4g29670 | thioredoxin-like protein                                             | 0.13   | 1.68  | 12.92 |
| At3g20930 | unknown protein                                                      | 0.16   | 2.03  | 12.69 |
| At4g26780 | grpE like protein                                                    | 0.87   | 10.81 | 12.43 |
| At1g05530 | putative UDP-glucose:indole-3-acetate beta-D-<br>glucosyltransferase | 1.57   | 19.24 | 12.25 |
| At1g15070 | unknown protein                                                      | 0.41   | 4.94  | 12.05 |
| At4g22920 | hypothetical protein                                                 | 0.09   | 1.08  | 12.00 |
| At4g04370 | hypothetical protein                                                 | 0.1    | 1.17  | 11.70 |
| At3g47650 | putative protein                                                     | 0.15   | 1.74  | 11.60 |
| At5g40070 | putative protein                                                     | 0.15   | 1.7   | 11.33 |
| At2g42750 | unknown protein                                                      | 0.07   | 0.78  | 11.14 |
| At3g05970 | putative long-chain-fatty-acidCoA ligase                             | 0.23   | 2.55  | 11.09 |
| At1g23210 | Hypothetical protein                                                 | 0.05   | 0.54  | 10.80 |
| At3g47860 | putative protein                                                     | 0.08   | 0.85  | 10.63 |
| At5g36860 | putative protein                                                     | 0.18   | 1.91  | 10.61 |
| At1g63610 | unknown protein                                                      | 0.12   | 1.27  | 10.58 |
| At4g12000 | putative protein                                                     | 2.94   | 30.51 | 10.38 |
| At3g20230 | hypothetical protein                                                 | 0.44   | 4.56  | 10.36 |
| At2g34130 | En/Spm-like transposon protein                                       | 0.23   | 2.38  | 10.35 |
| At1g20070 | hypothetical protein                                                 | 0.32   | 3.31  | 10.34 |
| At4g32060 | putative protein                                                     | 0.31   | 3.18  | 10.26 |
| At1g32010 | hypothetical protein                                                 | 0.09   | 0.89  | 9.89  |
| At4g18180 | polygalacturonase-like protein                                       | 0.2    | 1.95  | 9.75  |
| At2g46050 | hypothetical protein                                                 | 0.11   | 1.07  | 9.73  |
| At2g23160 | hypothetical protein                                                 | 0.13   | 1.26  | 9.69  |
| At2g45270 | putative O-sialoglycoprotein endopeptidase                           | 0.07   | 0.67  | 9.57  |
| At1g20060 | hypothetical protein                                                 | 0.11   | 1.04  | 9.45  |
| At5g48470 | unknown protein                                                      | 0.12   | 1.13  | 9.42  |
| At5g65770 | nuclear matrix constituent protein 1 (NMCP1)-like                    | 0.22   | 2.07  | 9.41  |
| At3g42490 | putative protein                                                     | 0.08   | 0.75  | 9.38  |
| At1g22650 | putative invertase                                                   | 0.08   | 0.75  | 9.38  |
| At5g24390 | GTPase activator-like protein of Rab-like small GTPase               | s 0.14 | 1.29  | 9.21  |
| At1g68750 | putative phosphoenolpyruvate carboxylase                             | 0.06   | 0.55  | 9.17  |
| At4g13070 | putative protein                                                     | 0.11   | 1     | 9.09  |
| At4g07990 | hypothetical protein                                                 | 0.04   | 0.36  | 9.00  |
| At3g17690 | hypothetical protein                                                 | 0.07   | 0.63  | 9.00  |
| At1g19870 | hypothetical protein                                                 | 0.17   | 1.5   | 8.82  |
| At5g35840 | phytochrome C                                                        | 0.33   | 2.89  | 8.76  |
| At3g02620 | putative stearoyl-acyl carrier protein desaturase                    | 0.07   | 0.61  | 8.71  |
| At4g08600 | hypothetical protein                                                 | 0.3    | 2.51  | 8.37  |
| At5g65490 | putative protein                                                     | 0.03   | 0.25  | 8.33  |
| At4g14330 | kinesin like protein                                                 | 0.11   | 0.91  | 8.27  |
| At4g17070 | hypothetical protein                                                 | 0.75   | 6.16  | 8.21  |
| At3g25680 | hypothetical protein                                                 | 0.1    | 0.8   | 8.00  |
| At4g12620 | origin recognition complex subunit 1 -like protein                   | 0.07   | 0.56  | 8.00  |
| At1g31080 | hypothetical protein                                                 | 0.06   | 0.48  | 8.00  |
| At4g39550 | putative protein                                                     | 0.2    | 1.58  | 7.90  |
| At3g14900 | hypothetical protein                                                 | 0.13   | 1.02  | 7.85  |
| At2g17120 | unknown protein                                                      | 0.34   | 2.66  | 7.82  |
|           |                                                                      |        |       |       |

| At5g57390 | putative protein                       | 0.58 | 4.51 | 7.78 |
|-----------|----------------------------------------|------|------|------|
| At4g27510 |                                        | 0.08 | 0.62 | 7.75 |
| At3g57440 | hypothetical protein                   | 0.11 | 0.84 | 7.64 |
| At5g18260 | putative protein                       | 0.13 | 0.99 | 7.62 |
| At2g04790 | hypothetical protein                   | 0.22 | 1.67 | 7.59 |
| At4g37000 | putative protein                       | 0.12 | 0.91 | 7.58 |
| At5g03040 | putative protein                       | 0.16 | 1.21 | 7.56 |
| At4g22910 | putative fizzy-related protein         | 0.09 | 0.68 | 7.56 |
| At5g15510 | putative protein                       | 0.12 | 0.9  | 7.50 |
| At1g30150 | En/Spm-like transposon protein         | 0.11 | 0.82 | 7.45 |
| At3g06020 | hypothetical protein                   | 0.09 | 0.66 | 7.33 |
| At1g05690 | hypothetical protein                   | 0.27 | 1.98 | 7.33 |
| At3g17950 | hypothetical protein                   | 0.12 | 0.87 | 7.25 |
| At4g39030 | putative protein                       | 0.12 | 0.87 | 7.25 |
| At5g23300 | dihydroorotate dehydrogenase precursor | 0.2  | 1.45 | 7.25 |
| At2g37980 | axi 1-like protein                     | 0.04 | 0.29 | 7.25 |
| At4g34790 | putative protein                       | 0.17 | 1.22 | 7.18 |
| At1g27380 | hypothetical protein                   | 0.06 | 0.43 | 7.17 |
| At4g29490 | putative protein                       | 0.07 | 0.5  | 7.14 |
| At5g55210 | putative protein                       | 0.14 | 1    | 7.14 |
| At2g26610 | unknown protein                        | 0.15 | 1.07 | 7.13 |
| At2g44500 | axi 1-like protein                     | 0.27 | 1.92 | 7.11 |
| At3g48110 | glycinetRNA ligase precursor           | 0.25 | 1.76 | 7.04 |
| At2g44520 | putative heme A: farnesyltransferase   | 0.12 | 0.84 | 7.00 |
| At1g76220 | hypothetical protein                   | 0.2  | 1.4  | 7.00 |
| At4g02790 | hypothetical protein                   | 0.1  | 0.7  | 7.00 |
| At4g27250 | putative protein                       | 0.27 | 1.87 | 6.93 |
| At5g42070 | putative protein                       | 0.13 | 0.89 | 6.85 |
| At3g62520 | putative protein                       | 0.17 | 1.16 | 6.82 |
| At5g60750 | putative protein                       | 0.11 | 0.75 | 6.82 |
| At2g11100 | pseudogene                             | 0.32 | 2.16 | 6.75 |
| At5g55710 | putative protein                       | 0.07 | 0.47 | 6.71 |
| At1g47520 | polyprotein                            | 0.19 | 1.27 | 6.68 |
| At5g43160 | putative protein                       | 0.06 | 0.4  | 6.67 |
| At1q33780 | hypothetical protein                   | 0.21 | 1.4  | 6.67 |
| At2q20920 | unknown protein                        | 0.14 | 0.93 | 6.64 |
| At1a34000 | putative protein                       | 0.13 | 0.86 | 6.62 |
| At5a65840 | unknown protein                        | 0.18 | 1.19 | 6.61 |
| At5a50350 | unknown protein                        | 0.16 | 1.05 | 6.56 |
| At3q12740 | unknown protein                        | 0.41 | 2.69 | 6.56 |
| At1a59940 | response regulator 3                   | 0.27 | 1.77 | 6.56 |
| At5q40470 | putative protein                       | 0.22 | 1.44 | 6.55 |
| At3q58190 | putative protein                       | 0.06 | 0.39 | 6.50 |
| At2q48090 | unknown protein                        | 0.00 | 1 1  | 6 47 |
| At3q16310 | unknown protein                        | 0.21 | 1.35 | 6.43 |
| At5a13820 | H-protein promoter binding factor-1    | 0.21 | 0.9  | 6 43 |
| At1a70710 | endo-1                                 | 0.14 | 1 22 | 6.42 |
| At5a13300 | putative protein                       | 0.19 | 1.22 | 6 41 |
| At4a38610 | putative protein                       | 0.17 | 1 21 | 6 37 |
| At2n30710 |                                        | 0.19 | 1 /  | 6.36 |
| Δt/a02/60 | Similar to DNA mismatch repair protein | 0.22 | 0.38 | 6.33 |
| ,yuz+00   |                                        | 0.00 | 0.00 | 0.00 |

| At1g59840 | hypothetical protein                                             | 0.19  | 1.2   | 6.32 |
|-----------|------------------------------------------------------------------|-------|-------|------|
| At4g24310 | putative protein                                                 | 0.2   | 1.26  | 6.30 |
| At2g14530 | hypothetical protein                                             | 0.18  | 1.13  | 6.28 |
| At2g15760 | hypothetical protein                                             | 0.11  | 0.69  | 6.27 |
| At3g20920 | hypothetical protein                                             | 0.08  | 0.5   | 6.25 |
| At5g20730 | putative protein                                                 | 0.12  | 0.75  | 6.25 |
| At1g75460 | protease                                                         | 0.64  | 3.99  | 6.23 |
| At2g13870 | En/Spm-like transposon protein                                   | 0.1   | 0.62  | 6.20 |
| At1g75010 | hypothetical protein                                             | 0.12  | 0.74  | 6.17 |
| At5g65780 | branched-chain amino acid aminotransferase                       | 0.21  | 1.29  | 6.14 |
| At4g36010 | thaumatin-like protein                                           | 0.16  | 0.98  | 6.13 |
| At4g13670 | hypothetical protein                                             | 0.12  | 0.73  | 6.08 |
| At2g33980 | hypothetical protein                                             | 0.25  | 1.52  | 6.08 |
| At4g11050 | putative glucanase                                               | 0.13  | 0.79  | 6.08 |
| At1g48510 | cytochrome c oxidase assembly protein Surfeit 1                  | 0.06  | 0.36  | 6.00 |
| At5g48370 | putative protein                                                 | 0.16  | 0.95  | 5.94 |
| At4g02290 | putative endo-1                                                  | 0.24  | 1.42  | 5.92 |
| At4g39980 | 2-dehydro-3-deoxyphosphoheptonate aldolase                       | 0.11  | 0.65  | 5.91 |
| At1g49970 | nClpP5                                                           | 0.1   | 0.59  | 5.90 |
| At3g54920 | pectate lyase - like protein                                     | 1.16  | 6.84  | 5.90 |
| At3g02040 | hypothetical protein                                             | 0.6   | 3.52  | 5.87 |
| At5g38190 | putative protein                                                 | 0.16  | 0.93  | 5.81 |
| At3g05710 | putative syntaxin protein                                        | 0.36  | 2.09  | 5.81 |
| At4g17280 | hypothetical protein                                             | 0.24  | 1.38  | 5.75 |
| At5g14500 | putative protein                                                 | 0.16  | 0.92  | 5.75 |
| At2g34020 | unknown protein                                                  | 0.19  | 1.09  | 5.74 |
| At5g05460 | putative protein                                                 | 0.15  | 0.86  | 5.73 |
| At4g17330 | G2484-1 protein                                                  | 0.38  | 2.17  | 5.71 |
| At5g07900 | putative protein                                                 | 0.23  | 1.31  | 5.70 |
| At4g31530 | putative protein                                                 | 11.34 | 64.15 | 5.66 |
| At4g33500 | putative protein                                                 | 0.28  | 1.58  | 5.64 |
| At1g62180 | 5\\\'-adenylylphosphosulfate reductase                           | 0.24  | 1.35  | 5.63 |
| At2g15820 | unknown protein                                                  | 1.6   | 8.93  | 5.58 |
| At2g37000 | unknown protein                                                  | 0.14  | 0.78  | 5.57 |
| At5g07540 | glycine-rich protein atGRP-6                                     | 0.12  | 0.66  | 5.50 |
| At5g10910 | putative protein                                                 | 0.18  | 0.99  | 5.50 |
| At3g04680 | unknown protein                                                  | 0.11  | 0.6   | 5.45 |
| At1g65080 | hypothetical protein                                             | 0.16  | 0.87  | 5.44 |
| At5g56050 | unknown protein                                                  | 0.16  | 0.87  | 5.44 |
| At1g66670 | ATP-dependent Clp protease (nClpP3)                              | 0.07  | 0.38  | 5.43 |
| At1g01550 | hypothetical protein                                             | 0.25  | 1.35  | 5.40 |
| At2g01580 | hypothetical protein                                             | 0.19  | 1.02  | 5.37 |
| At1g35420 | unknown protein                                                  | 0.17  | 0.91  | 5.35 |
| At5g61440 | thioredoxin-like 3                                               | 0.17  | 0.91  | 5.35 |
| At5g04980 | putative protein                                                 | 0.12  | 0.64  | 5.33 |
| At2g25860 | hypothetical protein                                             | 0.16  | 0.85  | 5.31 |
| At1g32760 | unknown protein                                                  | 0.27  | 1.43  | 5.30 |
| At1g70990 | hypothetical protein                                             | 0.27  | 1.43  | 5.30 |
| At1g59590 | hypothetical protein                                             | 0.18  | 0.95  | 5.28 |
| At5g46560 | unknown protein                                                  | 0.18  | 0.95  | 5.28 |
| At3g52070 | putative protein                                                 | 0.34  | 1.79  | 5.26 |
| At2g33740 | putative related to microbial divalent cation tolerance proteins | 0.23  | 1.21  | 5.26 |
|           |                                                                  |       |       |      |

| At2g37040              | phenylalanine ammonia lyase (PAL1)                                                 | 0.14         | 0.73         | 5.21         |
|------------------------|------------------------------------------------------------------------------------|--------------|--------------|--------------|
| At5g54110              | membrane associated protein                                                        | 0.19         | 0.99         | 5.21         |
| At5g56220              | putative protein                                                                   | 0.1          | 0.52         | 5.20         |
| At1g22110              | hypothetical protein                                                               | 0.1          | 0.52         | 5.20         |
| At4g21170              | putative protein                                                                   | 0.28         | 1.45         | 5.18         |
| At2g39790              | hypothetical protein                                                               | 0.17         | 0.88         | 5.18         |
| At2g30100              | putative leucine-rich repeat protein                                               | 0.24         | 1.24         | 5.17         |
| At1g27500              | hypothetical protein                                                               | 0.25         | 1.29         | 5.16         |
| At3g12000              | hypothetical protein                                                               | 0.13         | 0.67         | 5.15         |
| At1g75310              | unknown protein                                                                    | 0.28         | 1.44         | 5.14         |
| At5g05730              | anthranilate synthase component I-1 precursor                                      | 0.08         | 0.41         | 5.13         |
| At2g35450              | unknown protein                                                                    | 0.2          | 1.02         | 5.10         |
| At1g19920              | sulfate adenylyltransferase                                                        | 0.48         | 2.44         | 5.08         |
| At2g47590              | photolyase/blue-light receptor (PHR2)                                              | 0.12         | 0.61         | 5.08         |
| At2g19240              | hypothetical protein                                                               | 0.25         | 1.27         | 5.08         |
| At2g11380              | pseudogene                                                                         | 0.22         | 1.11         | 5.05         |
| At4g26220              | caffeoyl-CoA O-methyltransferase - like protein                                    | 0.19         | 0.95         | 5.00         |
| At1g79490              | hypothetical protein                                                               | 0.29         | 1.45         | 5.00         |
| At1g12430              | hypothetical protein                                                               | 0.09         | 0.45         | 5.00         |
| At2g25180              | putative two-component response regulator protein                                  | 0.16         | 0.8          | 5.00         |
| At2g38070              | hypothetical protein                                                               | 0.11         | 0.55         | 5.00         |
| At4g10060              | putative protein                                                                   | 0.23         | 1.15         | 5.00         |
| At2g37880              | hypothetical protein                                                               | 0.17         | 0.85         | 5.00         |
| At2g48140              | unknown protein                                                                    | 0.15         | 0.74         | 4.93         |
| At2g18820              | putative non-LTR retroelement reverse transcriptase                                | 0.14         | 0.69         | 4.93         |
| At1g64890              | unknown protein                                                                    | 0.12         | 0.59         | 4.92         |
| At1g67980              | putative S-adenosyl-L-methionine:trans-caffeoyl-Coenzyme A 3-O-methyltransferase   | 0.11         | 0.54         | 4.91         |
| At2g01760              | putative two-component response regulator protein                                  | 0.17         | 0.83         | 4.88         |
| At1g08520              | Mg-chelatase                                                                       | 0.19         | 0.92         | 4.84         |
| At5g09840              | putative protein                                                                   | 0.18         | 0.87         | 4.83         |
| At4g00290              | hypothetical protein                                                               | 0.16         | 0.77         | 4.81         |
| At1g31230<br>At2g35650 | putative aspartate kinase-homoserine dehydrogenase<br>putative glucosyltransferase | 0.21<br>0.21 | 1.01<br>1.01 | 4.81<br>4.81 |
| At4g31590              | putative protein                                                                   | 0.22         | 1.05         | 4.77         |
| At4g20740              | similarity to CRP1                                                                 | 0.13         | 0.62         | 4.77         |
| At1g30700              | putative reticuline oxidase-like protein                                           | 0.25         | 1.19         | 4.76         |
| At5g61920              | putative protein                                                                   | 0.22         | 1.04         | 4.73         |
| At1g20510              | hypothetical protein                                                               | 0.58         | 2.74         | 4.72         |
| At2g47670              | putative pectinesterase                                                            | 0.17         | 0.8          | 4.71         |
| At5g58990              | putative protein                                                                   | 0.17         | 0.8          | 4.71         |
| At3g54160              | putative protein                                                                   | 0.27         | 1.27         | 4.70         |
| At1g72020              | unknown protein                                                                    | 0.36         | 1.69         | 4.69         |
| At3g17800              | unknown protein                                                                    | 0.12         | 0.56         | 4.67         |
| At3g50770              | calmodulin-like protein                                                            | 0.16         | 0.74         | 4.63         |
| At2g44990              | hypothetical protein                                                               | 0.37         | 1.71         | 4.62         |
| At1g65100              | hypothetical protein                                                               | 0.13         | 0.6          | 4.62         |
| At2g31170              | putative cysteinyl-tRNA synthetase                                                 | 0.1          | 0.46         | 4.60         |
| At1g65370              | unknown protein                                                                    | 0.14         | 0.64         | 4.57         |
| At4g39570              | putative protein                                                                   | 0.27         | 1.23         | 4.56         |
| At4g33170              | putative protein                                                                   | 0.31         | 1.41         | 4.55         |
| -                      |                                                                                    |              |              |              |
| At1g34300              | hypothetical protein                                                               | 0.24         | 1.09         | 4.54         |

| At1g75400   | hypothetical protein                                    | 0.17 | 0.77  | 4.53 |
|-------------|---------------------------------------------------------|------|-------|------|
| At1g62310   | hypothetical protein                                    | 0.19 | 0.86  | 4.53 |
| At1g43840   | hypothetical protein                                    | 0.12 | 0.54  | 4.50 |
| At3g52540   | hypothetical protein                                    | 0.5  | 2.25  | 4.50 |
| At4g17310   | hypothetical protein                                    | 0.1  | 0.45  | 4.50 |
| At3g21140   | unknown protein                                         | 0.1  | 0.45  | 4.50 |
| At4g12240   | hypothetical proteins                                   | 0.14 | 0.63  | 4.50 |
| At3g21865   | unknown protein                                         | 0.35 | 1.57  | 4.49 |
| At1g67810   | putative protein                                        | 0.64 | 2.87  | 4.48 |
| At1g24350   | hypothetical protein                                    | 0.27 | 1.21  | 4.48 |
| At2g42130   | unknown protein                                         | 0.13 | 0.58  | 4.46 |
| At3g09850   | hypothetical protein                                    | 7.51 | 33.43 | 4.45 |
| At2g24810   | putative thaumatin-like pathogenesis-related protein    | 0.09 | 0.4   | 4.44 |
| At4g22180   | putative protein                                        | 0.25 | 1.11  | 4.44 |
| At1g29410   | phosphoribosylanthranilate isomerase                    | 0.3  | 1.33  | 4.43 |
| At2q47830   | unknown protein                                         | 0.21 | 0.93  | 4.43 |
| At4q39590   | putative protein                                        | 0.28 | 1.24  | 4.43 |
| At5q41380   | putative protein                                        | 0.32 | 1.41  | 4.41 |
| At3q56250   | putative protein                                        | 0.15 | 0.66  | 4.40 |
| At1g05140   | unknown protein                                         | 0.62 | 2.72  | 4.39 |
| At2a38450   | unknown protein                                         | 0.21 | 0.92  | 4.38 |
| At1a22850   |                                                         | 0.16 | 0.7   | 4 38 |
| Δt2a21590   | putative ADP-ducase pyrophosphorylase large subunit     | 0.16 | 0.7   | 4.00 |
| At3q19490   | unknown protein                                         | 0.2  | 0.7   | 4.35 |
| At4a21020   | putative protein                                        | 0.29 | 1 26  | 4.34 |
| At1a02260   | hypothetical protein                                    | 0.4  | 1.20  | 4.33 |
| At1a15850   | mitotic checkpoint protein                              | 0.23 | 0.99  | 4 30 |
| At4a34100   |                                                         | 0.17 | 0.00  | 4.00 |
| Δt2q17540   |                                                         | 0.73 | 3 13  | 4.20 |
| At/a16110   | hypothetical protein                                    | 0.14 | 0.10  | 4.20 |
| A+2a27100   | hypothetical protein                                    | 0.14 | 1.24  | 4.23 |
| At2422220   |                                                         | 0.29 | 0.04  | 4.20 |
| At/a27020   |                                                         | 0.22 | 0.94  | 4.27 |
| At1 a 50770 |                                                         | 0.22 | 0.94  | 4.27 |
| At1950770   |                                                         | 0.19 | 0.61  | 4.20 |
| At4~20540   | UDD N cost delycocomine O coultransference like protein | 0.12 | 0.20  | 4.20 |
| At3g22700   | hypothetical protein                                    | 0.14 | 0.59  | 4.22 |
| At2g47390   | unknown protein                                         | 0.19 | 0.8   | 4.21 |
| At1g55440   | hypothetical protein                                    | 0.15 | 0.63  | 4.20 |
| At2g36680   | unknown protein                                         | 0.21 | 0.88  | 4.19 |
| At3g01370   | unknown protein                                         | 0.17 | 0.71  | 4.18 |
| At5g35150   | putative protein                                        | 0.23 | 0.96  | 4.17 |
| At3g61870   | putative protein                                        | 0.24 | 1     | 4.17 |
| At1g27510   | unknown protein                                         | 0.18 | 0.75  | 4.17 |
| At1g64150   | unknown protein                                         | 0.12 | 0.5   | 4.17 |
| At4g02040   | hypothetical protein                                    | 0.13 | 0.54  | 4.15 |
| At1g21600   | unknown protein                                         | 0.13 | 0.54  | 4.15 |
| At1g09970   | unknown protein                                         | 0.2  | 0.83  | 4.15 |
| At5g57670   | putative protein                                        | 0.21 | 0.87  | 4.14 |
| At4g09620   | putative protein                                        | 0.35 | 1.45  | 4.14 |
| At2g34790   | putative berberine bridge enzyme                        | 0.08 | 0.33  | 4.13 |
| At1g07900   | unknown protein                                         | 0.08 | 0.33  | 4.13 |
| -           | •                                                       |      |       |      |

| At2g41950 | hypothetical protein                            | 0.24  | 0.99         | 4.13         |
|-----------|-------------------------------------------------|-------|--------------|--------------|
| At4g18570 | hypothetical protein                            | 0.27  | 1.11         | 4.11         |
| At4g10750 | putative aldolase                               | 0.32  | 1.31         | 4.09         |
| At3g24810 | unknown protein                                 | 0.11  | 0.45         | 4.09         |
| At3g04650 | unknown protein                                 | 0.35  | 1.43         | 4.09         |
| At4g08330 | putative protein                                | 0.13  | 0.53         | 4.08         |
| At5g13800 | putative protein                                | 0.29  | 1.18         | 4.07         |
| At4g30910 | leucyl aminopeptidase - like protein (partial)  | 0.29  | 1.18         | 4.07         |
| At1g73150 | hypothetical protein                            | 0.15  | 0.61         | 4.07         |
| At5g50390 | selenium-binding protein-like                   | 0.16  | 0.65         | 4.06         |
| At1g48990 | hypothetical protein                            | 0.17  | 0.69         | 4.06         |
| At2g27290 | hypothetical protein                            | 13.04 | 52.71        | 4.04         |
| At5g65250 | unknown protein                                 | 0.24  | 0.97         | 4.04         |
| At1g78110 | unknown protein                                 | 0.74  | 2.99         | 4.04         |
| At4g27580 | putative protein                                | 0.26  | 1.05         | 4.04         |
| At5g07110 | putative protein                                | 0.1   | 0.4          | 4.00         |
| At5g43780 | ATP sulfurylase precursor                       | 0.12  | 0.48         | 4.00         |
| At2g38500 | hypothetical protein                            | 0.15  | 0.6          | 4.00         |
| At5g24000 | putative protein                                | 0.12  | 0.48         | 4.00         |
| At2g17240 | unknown protein                                 | 0.14  | 0.56         | 4.00         |
| At1g04620 | unknown protein                                 | 0.08  | 0.32         | 4.00         |
| At5g52020 | putative protein                                | 0.12  | 0.48         | 4.00         |
| At1g44110 | mitotic cyclin a2-type                          | 0.16  | 0.64         | 4.00         |
| At3g15780 | unknown protein                                 | 0.23  | 0.91         | 3.96         |
| At4q08650 | hypothetical protein                            | 0.44  | 1.74         | 3.95         |
| At3q06180 | unknown protein                                 | 0.37  | 1.46         | 3.95         |
| At4q02740 | hypothetical protein                            | 0.15  | 0.59         | 3.93         |
| At1g32080 | hypothetical protein                            | 0.15  | 0.59         | 3.93         |
| At4g22320 | hypothetical protein                            | 0.14  | 0.55         | 3.93         |
| At3q49170 | putative protein                                | 0.27  | 1.06         | 3.93         |
| At3q17550 | hypothetical protein                            | 0.12  | 0.47         | 3.92         |
| At5q51200 | putative protein                                | 0.12  | 0.47         | 3.92         |
| At2q41460 | DNA-(apurinic or apyrimidinic site) lyase (ARP) | 0.11  | 0.43         | 3.91         |
| At3q47200 | putative protein                                | 0.1   | 0.39         | 3.90         |
| At2a31720 | hypothetical protein                            | 0.2   | 0.78         | 3.90         |
| At2a30490 | cinnamate-4-hydroxylase                         | 0.3   | 1.17         | 3.90         |
| At1a09830 | putative phosphoribosylglycinamide synthetase   | 0.48  | 1.87         | 3.90         |
| At4a16250 | phytochrome D                                   | 0.36  | 1.4          | 3.89         |
| At5a20640 | putative protein                                | 0.18  | 0.7          | 3.89         |
| At2a32040 | unknown protein                                 | 0.42  | 1.63         | 3.88         |
| At5q57930 | putative protein                                | 0.42  | 1.63         | 3.88         |
| At2g24630 | putative ducosyltransferase                     | 0.57  | 2.21         | 3.88         |
| At3a20490 | hypothetical protein                            | 0.16  | 0.62         | 3.88         |
| At5a28430 |                                                 | 0.15  | 0.58         | 3.87         |
| At3a55800 | sedobentulose-bisnbosnbatase precursor          | 0.10  | 0.81         | 3.86         |
| At2a34620 | hypothetical protein                            | 0.21  | 0.81         | 3 86         |
| At1a16160 | hypothetical protein                            | 0.21  | 0.01         | 3.00<br>2.86 |
| At2n41660 | hypothetical protein                            | 0.07  | 1.04         | 3.00         |
| At2a27360 | nutative lipase                                 | 0.27  | 0.73         | 3.05<br>2.84 |
| At1052550 | hypothetical protein                            | 0.19  | 1 /6         | 3.04<br>2.04 |
| Δt1α11470 | hypothetical protein                            | 0.30  | 1.40<br>0.65 | 3.04<br>2.20 |
| Aug 1470  | nypomenical protein                             | 0.17  | 0.05         | 0.02         |

| At1g51550 | hypothetical protein                                                 | 0.16    | 0.61 | 3.81 |
|-----------|----------------------------------------------------------------------|---------|------|------|
| At3g30190 | hypothetical protein                                                 | 0.21    | 0.8  | 3.81 |
| At1g27210 | unknown protein                                                      | 1.71    | 6.51 | 3.81 |
| At4g39620 | putative protein                                                     | 0.15    | 0.57 | 3.80 |
| At1g54570 | hypothetical protein                                                 | 0.14    | 0.53 | 3.79 |
| At5g15280 | putative protein                                                     | 0.18    | 0.68 | 3.78 |
| At2g33100 | putative cellulose synthase                                          | 0.84    | 3.17 | 3.77 |
| At1g79760 | hypothetical protein                                                 | 0.22    | 0.83 | 3.77 |
| At2g41040 | hypothetical protein                                                 | 0.35    | 1.32 | 3.77 |
| At2g15290 | unknown protein                                                      | 0.21    | 0.79 | 3.76 |
| At1g09720 | hypothetical protein                                                 | 0.2     | 0.75 | 3.75 |
| At2g43400 | putative electron transfer flavoprotein ubiquinone<br>oxidoreductase | 0.2     | 0.75 | 3.75 |
| At1g69090 | hypothetical protein                                                 | 0.2     | 0.75 | 3.75 |
| At1g51080 | hypothetical protein                                                 | 0.26    | 0.97 | 3.73 |
| At2g35600 | hypothetical protein                                                 | 0.18    | 0.67 | 3.72 |
| At4g17650 | putative protein                                                     | 0.14    | 0.52 | 3.71 |
| At4g24910 | putative protein                                                     | 0.24    | 0.89 | 3.71 |
| At4g31510 | putative protein                                                     | 0.3     | 1.11 | 3.70 |
| At4g18540 | hypothetical protein                                                 | 0.33    | 1.22 | 3.70 |
| At4g19490 | putative protein                                                     | 0.19    | 0.7  | 3.68 |
| At2g40400 | unknown protein                                                      | 0.28    | 1.03 | 3.68 |
| At1g47720 | hypothetical protein                                                 | 0.12    | 0.44 | 3.67 |
| At1g12980 | hypothetical protein                                                 | 0.41    | 1.5  | 3.66 |
| At4g37420 | putative protein                                                     | 0.26    | 0.95 | 3.65 |
| At5g48730 | putative protein                                                     | 0.31    | 1.13 | 3.65 |
| At5g42680 | putative protein                                                     | 0.53    | 1.93 | 3.64 |
| At4g12060 | putative protein                                                     | 0.25    | 0.91 | 3.64 |
| At3g01550 | putative phosphate/phosphoenolpyruvate (PPT) translocat              | or 0.13 | 0.47 | 3.62 |
| At3g49660 | putative WD-40 repeat - protein                                      | 0.05    | 0.18 | 3.60 |
| At3g19120 | hypothetical protein                                                 | 0.22    | 0.79 | 3.59 |
| At3g22550 | unknown protein                                                      | 0.22    | 0.79 | 3.59 |
| At1g73470 | expressed protein                                                    | 0.62    | 2.22 | 3.58 |
| At5g19000 | putative protein                                                     | 0.47    | 1.68 | 3.57 |
| At1g79220 | hypothetical protein                                                 | 0.42    | 1.5  | 3.57 |
| At1g18170 | unknown protein                                                      | 0.14    | 0.5  | 3.57 |
| At3g47100 | hypothetical protein                                                 | 0.14    | 0.5  | 3.57 |
| At2g29630 | putative thiamin biosynthesis protein                                | 0.16    | 0.57 | 3.56 |
| At5g44780 | unknown protein                                                      | 0.25    | 0.89 | 3.56 |
| At1g49380 | hypothetical protein                                                 | 0.34    | 1.21 | 3.56 |
| At1g03810 | hypothetical protein                                                 | 0.29    | 1.03 | 3.55 |
| At1g06280 | hypothetical protein                                                 | 0.17    | 0.6  | 3.53 |
| At4g25060 | hypothetical protein                                                 | 0.38    | 1.34 | 3.53 |
| At4g01770 | hypothetical protein                                                 | 0.21    | 0.74 | 3.52 |
| At1g22040 | hypothetical protein                                                 | 0.27    | 0.95 | 3.52 |
| At3g56010 | putative protein                                                     | 0.16    | 0.56 | 3.50 |
| At1g21710 | 8-oxoguanine DNA glycosylase-like protein                            | 0.26    | 0.91 | 3.50 |
| At4g00650 | hypothetical protein                                                 | 0.18    | 0.63 | 3.50 |
| At1g75260 | unknown protein                                                      | 0.2     | 0.7  | 3.50 |
| At2g34700 | putative proline-rich glycoprotein                                   | 0.1     | 0.35 | 3.50 |
| At3g18770 | unknown protein                                                      | 0.2     | 0.7  | 3.50 |
| At3g59300 | putative protein                                                     | 0.1     | 0.35 | 3.50 |
|           |                                                                      |         |      |      |

| At2g39020 | unknown protein                                                                              | 0.28 | 0.98 | 3.50 |
|-----------|----------------------------------------------------------------------------------------------|------|------|------|
| At2g26680 | unknown protein                                                                              | 0.2  | 0.7  | 3.50 |
| At1g61980 | hypothetical protein                                                                         | 0.31 | 1.08 | 3.48 |
| At1g61800 | glucose-6-phosphate/phosphate-translocator (GPT) precursor-<br>like                          | 0.31 | 1.08 | 3.48 |
| At2g20600 | hypothetical protein                                                                         | 0.23 | 0.8  | 3.48 |
| At2g26580 | hypothetical protein                                                                         | 0.15 | 0.52 | 3.47 |
| At4g26160 | thioredoxin                                                                                  | 0.13 | 0.45 | 3.46 |
| At4g13200 | putative protein                                                                             | 0.24 | 0.83 | 3.46 |
| At4g22560 | putative protein                                                                             | 0.22 | 0.76 | 3.45 |
| At3g01670 | unknown protein                                                                              | 0.2  | 0.69 | 3.45 |
| At4g11910 | putative protein                                                                             | 0.2  | 0.69 | 3.45 |
| At1g10470 | putative response regulator 3                                                                | 0.29 | 1    | 3.45 |
| At1g61970 | hypothetical protein                                                                         | 0.34 | 1.17 | 3.44 |
| At1g53000 | CMP-KDO synthetase                                                                           | 0.25 | 0.86 | 3.44 |
| At1g55630 | hypothetical protein                                                                         | 0.21 | 0.72 | 3.43 |
| At2g41680 | thioredoxin reductase                                                                        | 0.21 | 0.72 | 3.43 |
| At5g09570 | putative protein                                                                             | 0.14 | 0.48 | 3.43 |
| At4g35690 | putative protein                                                                             | 0.26 | 0.89 | 3.42 |
| At5g52010 | putative protein                                                                             | 0.31 | 1.06 | 3.42 |
| At2g31480 | hypothetical protein                                                                         | 0.24 | 0.82 | 3.42 |
| At2g34050 | hypothetical protein                                                                         | 0.12 | 0.41 | 3.42 |
| At1g62110 | hypothetical protein                                                                         | 0.22 | 0.75 | 3.41 |
| At3g21580 | hypothetical protein                                                                         | 0.2  | 0.68 | 3.40 |
| At3g03580 | hypothetical protein                                                                         | 0.2  | 0.68 | 3.40 |
| At1g75690 | unknown protein                                                                              | 0.99 | 3.36 | 3.39 |
| At5g56250 | unknown protein                                                                              | 0.23 | 0.78 | 3.39 |
| At2g07370 | unknown protein                                                                              | 0.22 | 0.74 | 3.36 |
| At2g32990 | putative glucanse                                                                            | 0.11 | 0.37 | 3.36 |
| At5g11450 | putative protein                                                                             | 0.25 | 0.84 | 3.36 |
| At2g42920 | hypothetical protein                                                                         | 0.37 | 1.24 | 3.35 |
| At2g01140 | putative fructose-bisphosphate aldolase                                                      | 0.35 | 1.17 | 3.34 |
| At1g07310 | unknown protein                                                                              | 0.39 | 1.3  | 3.33 |
| At1g73740 | putative UDP-N-acetylglucosamineN-acetylmuramyl-<br>(pentapeptide)-pyrophosphoryl-undecapren | 0.3  | 1    | 3.33 |
| At3g18870 | hypothetical protein                                                                         | 0.31 | 1.03 | 3.32 |
| At5g62840 | putative protein                                                                             | 0.28 | 0.93 | 3.32 |
| At2g19490 | putative recA protein                                                                        | 0.22 | 0.73 | 3.32 |
| At4g20090 | membrane-associated salt-inducible-like protein                                              | 1.42 | 4.71 | 3.32 |
| At2g39830 | hypothetical protein                                                                         | 0.13 | 0.43 | 3.31 |
| At3g02610 | putative stearoyl-acyl carrier protein desaturase                                            | 0.2  | 0.66 | 3.30 |
| At2g36000 | hypothetical protein                                                                         | 0.24 | 0.79 | 3.29 |
| At3g11960 | hypothetical protein                                                                         | 0.07 | 0.23 | 3.29 |
| At1g69690 | unknown protein                                                                              | 0.35 | 1.15 | 3.29 |
| At1g15710 | embryo abundance protein (EMB20)                                                             | 0.07 | 0.23 | 3.29 |
| At3g03050 | putative cellulose synthase catalytic subunit                                                | 0.29 | 0.95 | 3.28 |
| At4g02330 | hypothetical protein                                                                         | 0.4  | 1.31 | 3.28 |
| At5g10160 | (3R)-hydroxymyristoyl-[acyl carrier protein] dehydratase -like protein                       | 0.11 | 0.36 | 3.27 |
| At1g80560 | putative 3-isopropylmalate dehydrogenase                                                     | 0.15 | 0.49 | 3.27 |
| At5g64150 | putative protein                                                                             | 0.2  | 0.65 | 3.25 |
| At1g32540 | zinc-finger protein                                                                          | 0.2  | 0.65 | 3.25 |
| At2g22410 | hypothetical protein                                                                         | 0.16 | 0.52 | 3.25 |

| At3g46050 | putative protein                            | 0.45 | 1.46 | 3.24 |
|-----------|---------------------------------------------|------|------|------|
| At4g14770 | hypothetical protein                        | 0.46 | 1.49 | 3.24 |
| At1g77250 | hypothetical protein                        | 0.26 | 0.84 | 3.23 |
| At4g22760 | predicted protein                           | 0.13 | 0.42 | 3.23 |
| At1g51100 | hypothetical protein                        | 0.18 | 0.58 | 3.22 |
| At5g61950 | putative protein                            | 0.09 | 0.29 | 3.22 |
| At5g39210 | hypothetical protein                        | 0.32 | 1.03 | 3.22 |
| At4g22430 | putative protein                            | 0.14 | 0.45 | 3.21 |
| At2g26850 | unknown protein                             | 0.29 | 0.93 | 3.21 |
| At1g51150 | hypothetical protein                        | 0.15 | 0.48 | 3.20 |
| At4g36910 | putative protein                            | 0.2  | 0.64 | 3.20 |
| At5g52110 | putative protein                            | 0.2  | 0.64 | 3.20 |
| cob       | mitochondrial gene; cytochrome b            | 0.57 | 1.82 | 3.19 |
| At3g46880 | hypothetical protein                        | 0.22 | 0.7  | 3.18 |
| At1g67910 | hypothetical protein                        | 0.17 | 0.54 | 3.18 |
| At3g23940 | dihydroxyacid dehydratase                   | 0.34 | 1.08 | 3.18 |
| At5g02830 | putative protein                            | 0.17 | 0.54 | 3.18 |
| At1g80230 | cytochrome c oxidase subunit                | 0.23 | 0.73 | 3.17 |
| At1g65410 | hypothetical protein                        | 0.29 | 0.92 | 3.17 |
| At1g34590 | hypothetical protein                        | 0.06 | 0.19 | 3.17 |
| At3g22160 | unknown protein                             | 0.12 | 0.38 | 3.17 |
| At1g48620 | unknown protein                             | 0.12 | 0.38 | 3.17 |
| At1g78080 | AP2 domain containing protein               | 0.45 | 1.42 | 3.16 |
| At1g48950 | hypothetical protein                        | 0.13 | 0.41 | 3.15 |
| At5g49020 | arginine methyltransferase-like protein     | 0.46 | 1.45 | 3.15 |
| At1g65070 | hypothetical protein                        | 0.27 | 0.85 | 3.15 |
| At4g25290 | hypothetical protein                        | 0.21 | 0.66 | 3.14 |
| At3g63170 | hypothetical protein                        | 0.14 | 0.44 | 3.14 |
| At5g15260 | putative protein                            | 0.15 | 0.47 | 3.13 |
| At1g65500 | unknown protein                             | 0.15 | 0.47 | 3.13 |
| At5g12900 | putative protein                            | 0.23 | 0.72 | 3.13 |
| At3g09070 | unknown protein                             | 0.23 | 0.72 | 3.13 |
| At3g02930 | unknown protein                             | 0.25 | 0.78 | 3.12 |
| At5g02050 | putative protein                            | 0.17 | 0.53 | 3.12 |
| At2g14620 | putative endoxyloglucan glycosyltransferase | 0.18 | 0.56 | 3.11 |
| At5g58210 | similar to unknown protein                  | 0.19 | 0.59 | 3.11 |
| At1g18680 | unknown protein                             | 0.78 | 2.42 | 3.10 |
| At3g03880 | hypothetical protein                        | 0.59 | 1.83 | 3.10 |
| At2g47910 | unknown protein                             | 0.2  | 0.62 | 3.10 |
| At1g08050 | unknown protein                             | 0.1  | 0.31 | 3.10 |
| At2g26920 | unknown protein                             | 0.21 | 0.65 | 3.10 |
| At1g24130 | hypothetical protein                        | 0.43 | 1.33 | 3.09 |
| At3g21810 | unknown protein                             | 0.11 | 0.34 | 3.09 |
| At2g26520 | hypothetical protein                        | 0.34 | 1.05 | 3.09 |
| At1g04360 | hypothetical protein                        | 0.13 | 0.4  | 3.08 |
| At3q51820 | chlorophyll synthetase                      | 0.27 | 0.83 | 3.07 |
| At4g00870 | expressed protein                           | 0.28 | 0.86 | 3.07 |
| At2g30370 | hypothetical protein                        | 0.17 | 0.52 | 3.06 |
| At2g22230 | putative beta-hydroxyacyl-ACP dehvdratase   | 0.17 | 0.52 | 3.06 |
| At2g47290 | hypothetical protein                        | 0.35 | 1.07 | 3.06 |
| At4g17440 | hypothetical protein                        | 0.55 | 1.68 | 3.05 |
|           | 21 ····· 1 ···· 1                           |      |      | 5.00 |

| At2g16460   | unknown protein                              | 0.81 | 2.47 | 3.05 |
|-------------|----------------------------------------------|------|------|------|
| At5g26850   | putative protein                             | 0.22 | 0.67 | 3.05 |
| At1g11810   | hypothetical protein                         | 0.22 | 0.67 | 3.05 |
| At3g50880   | putative DNA-3-methyladenine glycosidase     | 0.22 | 0.67 | 3.05 |
| At2g20090   | unknown protein                              | 0.23 | 0.7  | 3.04 |
| At1g60790   | hypothetical protein                         | 0.25 | 0.76 | 3.04 |
| At2g02770   | unknown protein                              | 0.28 | 0.85 | 3.04 |
| At2g17600   | unknown protein                              | 0.39 | 1.18 | 3.03 |
| At3g21290   | unknown protein                              | 0.12 | 0.36 | 3.00 |
| At2g01110   | TatC-like protein                            | 0.13 | 0.39 | 3.00 |
| At1g10522   | expressed protein                            | 0.08 | 0.24 | 3.00 |
| At5g51110   | putative protein                             | 0.25 | 0.75 | 3.00 |
| At5g54810   | tryptophan synthase beta chain 1 precursor   | 0.32 | 0.96 | 3.00 |
| At5g08010   | putative protein                             | 0.25 | 0.75 | 3.00 |
| At3g20830   | unknown protein                              | 0.17 | 0.51 | 3.00 |
| At3g11670   | digalactosyldiacylglycerol synthase          | 0.12 | 0.36 | 3.00 |
| At3g27740   | carbamoyl phosphate synthetase small subunit | 0.16 | 0.48 | 3.00 |
| At4g37380   | putative protein                             | 0.28 | 0.84 | 3.00 |
| At1g10830   | unknown protein                              | 0.44 | 1.31 | 2.98 |
| At1g76240   | hypothetical protein                         | 0.43 | 1.28 | 2.98 |
| At3g22430   | hypothetical protein                         | 0.3  | 0.89 | 2.97 |
| At3g19170   | metalloprotease                              | 0.22 | 0.65 | 2.95 |
| At3g50530   | CDPK-related protein kinase                  | 0.39 | 1.15 | 2.95 |
| At5g49120   | putative protein                             | 0.36 | 1.06 | 2.94 |
| At5g18810   | Serine/arginine rich protein - like          | 0.71 | 2.09 | 2.94 |
| At4g08670   | putative lipid transfer protein              | 0.17 | 0.5  | 2.94 |
| At1q64880   | hypothetical protein                         | 0.33 | 0.97 | 2.94 |
| At3q18420   | unknown protein                              | 0.31 | 0.91 | 2.94 |
| At5a03470   | AtB\\\'alpha regulatory subunit of PP2A      | 0.3  | 0.88 | 2.93 |
| At2q32920   | putative protein disulfide isomerase         | 0.44 | 1.29 | 2.93 |
| At1a74730   | unknown protein                              | 0.14 | 0.41 | 2.93 |
| At2a22890   | unknown protein                              | 0.48 | 1.4  | 2.92 |
| At1g76730   | hypothetical protein                         | 0.24 | 0.7  | 2.92 |
| At3q52190   | putative protein                             | 0.11 | 0.32 | 2.91 |
| At1g12760   | unknown protein                              | 0.33 | 0.96 | 2.91 |
| At3q17700   | hypothetical protein                         | 0.09 | 0.26 | 2 89 |
| At2a32210   |                                              | 0.44 | 1 27 | 2.89 |
| At1q47730   | hypothetical protein                         | 0.4  | 1 15 | 2.88 |
| At3a52490   |                                              | 0.4  | 1.10 | 2.88 |
| At1a14840   |                                              | 0.4  | 0.66 | 2.00 |
| Δt2a38970   | nutative retroelement not polyprotein        | 0.15 | 0.43 | 2.07 |
| At2g30370   |                                              | 0.13 | 0.43 | 2.07 |
| At2a/78/0   | hypothetical protein                         | 0.22 | 0.05 | 2.00 |
| At1a67080   |                                              | 0.21 | 1.09 | 2.00 |
| ALT907000   | CTR hinding protein obg. like                | 0.58 | 1.00 | 2.04 |
| Alby 16570  | GTF-binding protein obg-like                 | 0.55 | 1.50 | 2.04 |
| At1 c=0.420 |                                              | 0.24 | 0.00 | 2.03 |
| ALIYOU420   | Suareuruw-like S                             | 0.3  | 0.00 | 2.03 |
| ALOUT0830   |                                              | 0.18 | 0.51 | 2.83 |
| At1g73110   |                                              | 0.41 | 1.16 | 2.83 |
| At1g55800   |                                              | 0.23 | 0.65 | 2.83 |
| At2g37090   | unknown protein                              | 0.23 | 0.65 | 2.83 |

| At5g46580 | putative protein                                             | 0.17 | 0.48 | 2.82 |
|-----------|--------------------------------------------------------------|------|------|------|
| At1g04570 | hypothetical protein                                         | 0.16 | 0.45 | 2.81 |
| At4g23450 | putative protein                                             | 0.21 | 0.59 | 2.81 |
| At3g45850 | kinesin-related protein - like                               | 0.15 | 0.42 | 2.80 |
| At2g21960 | putative protein                                             | 0.15 | 0.42 | 2.80 |
| At3g55250 | putative protein                                             | 0.24 | 0.67 | 2.79 |
| At2g28755 | putative dTDP-glucose 4-6-dehydratase                        | 0.19 | 0.53 | 2.79 |
| At2g39670 | unknown protein                                              | 0.19 | 0.53 | 2.79 |
| At5g54180 | putative protein                                             | 0.45 | 1.25 | 2.78 |
| At2g31350 | putative glyoxalase II                                       | 0.44 | 1.22 | 2.77 |
| At5g55980 | unknown protein                                              | 0.26 | 0.72 | 2.77 |
| At4g18760 | putative protein                                             | 0.26 | 0.72 | 2.77 |
| At4g24460 | hypothetical protein                                         | 0.3  | 0.83 | 2.77 |
| At2g26550 | heme oxygenase 2 (HO2)                                       | 0.47 | 1.3  | 2.77 |
| At4g28840 | putative protein                                             | 0.17 | 0.47 | 2.76 |
| At2g02500 | putative sugar nucleotide phosphorylase                      | 0.17 | 0.47 | 2.76 |
| At1g10510 | unknown protein                                              | 0.12 | 0.33 | 2.75 |
| At3g02450 | cell division protein FtsH-like protein                      | 0.28 | 0.77 | 2.75 |
| At2g44040 | unknown protein                                              | 0.32 | 0.88 | 2.75 |
| At3g10100 | hypothetical protein                                         | 0.3  | 0.82 | 2.73 |
| At2g28790 | putative thaumatin                                           | 0.15 | 0.41 | 2.73 |
| At4g22660 | putative protein                                             | 0.37 | 1.01 | 2.73 |
| At1g68070 | putative RING zinc finger protein                            | 0.22 | 0.6  | 2.73 |
| At1g74220 | hypothetical protein                                         | 0.33 | 0.9  | 2.73 |
| At3g56410 | putative protein                                             | 0.33 | 0.9  | 2.73 |
| At2g44920 | proteomics: thylakoid lumen protein with pentapeptide repeat | 0.22 | 0.6  | 2.73 |
| At5g61450 | putative protein                                             | 0.18 | 0.49 | 2.72 |
| At3g46790 | putative protein                                             | 0.32 | 0.87 | 2.72 |
| At4g23230 | putative protein                                             | 0.28 | 0.76 | 2.71 |
| At3g02410 | hypothetical protein                                         | 0.07 | 0.19 | 2.71 |
| At5g63390 | auxin-independent growth promoter-like protein               | 0.14 | 0.38 | 2.71 |
| At5g14840 | putative protein                                             | 0.45 | 1.22 | 2.71 |
| At4g26310 | putative protein                                             | 0.38 | 1.03 | 2.71 |
| At1g49840 | unknown protein                                              | 0.24 | 0.65 | 2.71 |
| At5g45980 | putative protein                                             | 0.17 | 0.46 | 2.71 |
| At4g34310 | hypothetical protein                                         | 0.3  | 0.81 | 2.70 |
| At5g17840 | putative protein                                             | 0.1  | 0.27 | 2.70 |
| At5g50210 | putative protein                                             | 0.32 | 0.86 | 2.69 |
| At2g28390 | hypothetical protein                                         | 0.35 | 0.94 | 2.69 |
| At4g37200 | HCF164; thiol-disulfide interchange like protein             | 0.35 | 0.94 | 2.69 |
| At5g44820 | putative protein                                             | 0.19 | 0.51 | 2.68 |
| At4g22190 | hypothetical protein                                         | 0.38 | 1.02 | 2.68 |
| At5g39410 | unknown protein                                              | 0.25 | 0.67 | 2.68 |
| At4g39970 | putative protein                                             | 0.37 | 0.99 | 2.68 |
| At5g07760 | putative protein                                             | 0.77 | 2.06 | 2.68 |
| At1g51780 | hypothetical protein                                         | 0.64 | 1.71 | 2.67 |
| At4g34830 | putative protein                                             | 0.15 | 0.4  | 2.67 |
| At1g43920 | hypothetical protein                                         | 0.3  | 0.8  | 2.67 |
| At4q19160 | putative protein                                             | 0.18 | 0.48 | 2.67 |
| 2827716   | predicted protein                                            | 0.17 | 0.45 | 2.65 |
| At2q14120 | dynamin-like protein                                         | 0.42 | 1.11 | 2.64 |
| 0         | · ·                                                          |      |      |      |

| At/a16/90 | hypothetical protein                                                             | 0.53 | 1 /  | 2.64                      |
|-----------|----------------------------------------------------------------------------------|------|------|---------------------------|
| Δt3a14940 | nypothetical protein                                                             | 0.55 | 0.66 | 2.04                      |
| At/a00060 | hypothetical protein                                                             | 0.25 | 0.66 | 2.04                      |
| Δt3a11490 | nutative rac GTPase activating protein                                           | 0.29 | 1 29 | 2.04                      |
| A+1a50020 |                                                                                  | 0.49 | 0.5  | 2.00                      |
| ALT950020 | nutotive outochrome B450                                                         | 0.19 | 0.3  | 2.03                      |
| AL2945560 |                                                                                  | 0.27 | 0.71 | 2.03                      |
| At5g58560 | putative protein                                                                 | 0.08 | 0.21 | 2.63                      |
| At3g16260 |                                                                                  | 0.24 | 0.63 | 2.63                      |
| At2g45870 |                                                                                  | 0.4  | 1.05 | 2.63                      |
| At5g07890 |                                                                                  | 0.32 | 0.84 | 2.63                      |
| At2g18500 | hypothetical protein                                                             | 0.26 | 0.68 | 2.62                      |
| At1g70470 | hypothetical protein                                                             | 0.49 | 1.28 | 2.61                      |
| At5g02850 | putative protein                                                                 | 0.28 | 0.73 | 2.61                      |
| At2g40760 | unknown protein                                                                  | 0.35 | 0.91 | 2.60                      |
| At5g57030 | lycopene epsilon cyclase                                                         | 0.32 | 0.83 | 2.59                      |
| At2g34470 | putative urease accessory protein                                                | 0.27 | 0.7  | 2.59                      |
| At3g44720 | putative chloroplast prephenate dehydratase                                      | 0.34 | 0.88 | 2.59                      |
| At3g04550 | unknown protein                                                                  | 0.26 | 0.67 | 2.58                      |
| At4g25720 | glutamine cyclotransferase precursor - like protein                              | 0.61 | 1.57 | 2.57                      |
| At1g27660 | hypothetical protein                                                             | 0.21 | 0.54 | 2.57                      |
| At1g17210 | hypothetical protein                                                             | 0.14 | 0.36 | 2.57                      |
| At1g07990 | unknown protein                                                                  | 0.14 | 0.36 | 2.57                      |
| At3g04440 | hypothetical protein                                                             | 0.3  | 0.77 | 2.57                      |
| At1g65260 | HCF155; Similar to chloroplast membrane-associated 30KD protein precursor (IM30) | 0.53 | 1.36 | 2.57                      |
| At1g31790 | hypothetical protein                                                             | 0.62 | 1.59 | 2.56                      |
| At2g21370 | putative xylulose kinase                                                         | 0.16 | 0.41 | 2.56                      |
| At4g24930 | proteomics: thylakoid lumen protein                                              | 0.25 | 0.64 | 2.56                      |
| At2g22210 | pseudogene                                                                       | 0.25 | 0.64 | 2.56                      |
| At3g06590 | unknown protein                                                                  | 0.4  | 1.02 | 2.55                      |
| At3g44570 | putative protein                                                                 | 0.31 | 0.79 | 2.55                      |
| At3g16290 | putative FtsH-like metalloprotease                                               | 0.53 | 1.35 | 2.55                      |
| 3249106   | unknown protein                                                                  | 0.44 | 1.12 | 2.55                      |
| At5g56760 | serine O-acetyltransferase Sat-52                                                | 0.3  | 0.76 | 2.53                      |
| At5g59400 | putative protein                                                                 | 0.15 | 0.38 | 2.53                      |
| At4g24840 | brefeldin A-sensitive Golgi protein - like                                       | 0.15 | 0.38 | 2.53                      |
| At2g38270 | unknown protein                                                                  | 0.74 | 1.87 | 2.53                      |
| At5g23540 | 26S proteasome                                                                   | 0.25 | 0.63 | 2.52                      |
| At4g35390 | putative protein                                                                 | 0.56 | 1.41 | 2.52                      |
| At5g04490 | putative protein                                                                 | 0.1  | 0.25 | 2.50                      |
| At4q30710 | putative protein                                                                 | 0.18 | 0.45 | 2.50                      |
| At2a14910 | unknown protein                                                                  | 0.24 | 0.6  | 2.50                      |
| At1a30920 | F17F8.21                                                                         | 0.54 | 1.35 | 2.50                      |
| At1a15390 | hypothetical protein                                                             | 0.18 | 0.45 | 2.50                      |
| At4a24860 | putative protein                                                                 | 0.26 | 0.65 | 2.50                      |
| At1a27610 | hypothetical protein                                                             | 0.55 | 1 37 | 2.00                      |
| At5q12150 | putative protein                                                                 | 0.23 | 0.57 | 2 48                      |
| At1a10450 | unknown protein                                                                  | 0.21 | 0.52 | 2.10                      |
| At3a16000 | myosin heavy chain-like protein                                                  | 0.21 | 0.52 | 2.40<br>2.48              |
| At3a02875 | IAA-amino acid hydrolase (II R1)                                                 | 0.72 | 1 78 | 2. <del>1</del> 0<br>2.47 |
| At3a45800 |                                                                                  | 0.72 | 1 16 | 2.77<br>2 <i>1</i> 7      |
| Δt2a28080 |                                                                                  | 0.15 | 0.37 | 2.47<br>2.47              |
| AIZ920900 | parame non-environement reverse transcriptase                                    | 0.15 | 0.57 | 2.47                      |

| At1g27540 | unknown protein                                           | 0.3  | 0.74 | 2.47 |
|-----------|-----------------------------------------------------------|------|------|------|
| At3g56110 | putative protein                                          | 0.26 | 0.64 | 2.46 |
| At4g33650 | Arabidopsis dynamin-like protein ADL2                     | 0.13 | 0.32 | 2.46 |
| At4g13460 | putative protein                                          | 0.26 | 0.64 | 2.46 |
| At3g10420 | unknown protein                                           | 0.22 | 0.54 | 2.45 |
| At2g36480 | hypothetical protein                                      | 0.97 | 2.38 | 2.45 |
| At3g07565 | unknown protein                                           | 0.18 | 0.44 | 2.44 |
| At1g79500 | 2-dehydro-3-deoxyphosphooctonate aldolase                 | 0.18 | 0.44 | 2.44 |
| At4g30210 | NADPH-ferrihemoprotein reductase (ATR2)                   | 0.36 | 0.88 | 2.44 |
| At1g61960 | hypothetical protein                                      | 0.43 | 1.05 | 2.44 |
| At2g43870 | putative polygalacturonase                                | 0.25 | 0.61 | 2.44 |
| At1g54710 | hypothetical protein                                      | 0.16 | 0.39 | 2.44 |
| At2g33720 | hypothetical protein                                      | 0.16 | 0.39 | 2.44 |
| At5g57520 | CCHH finger protein 2-like protein                        | 0.3  | 0.73 | 2.43 |
| At5g38310 | hypothetical protein                                      | 0.21 | 0.51 | 2.43 |
| At2g21990 | hypothetical protein                                      | 0.42 | 1.02 | 2.43 |
| At2g47360 | hypothetical protein                                      | 0.52 | 1.26 | 2.42 |
| At3g43070 | putative protein                                          | 0.38 | 0.92 | 2.42 |
| At2g28620 | putative kinesin-like spindle protein                     | 0.24 | 0.58 | 2.42 |
| At2g22470 | unknown protein                                           | 0.48 | 1.16 | 2.42 |
| At3g29410 | terpene synthase                                          | 0.12 | 0.29 | 2.42 |
| At3g48870 | AtClpC                                                    | 0.34 | 0.82 | 2.41 |
| At2g45290 | putative transketolase precursor                          | 0.56 | 1.35 | 2.41 |
| At4g03800 | hypothetical protein                                      | 0.27 | 0.65 | 2.41 |
| At5g57970 | putative protein                                          | 0.15 | 0.36 | 2.40 |
| At2g43990 | hypothetical protein                                      | 0.33 | 0.79 | 2.39 |
| At5g01110 | putative protein                                          | 0.18 | 0.43 | 2.39 |
| At1g55580 | hypothetical protein                                      | 0.39 | 0.93 | 2.38 |
| At2g32840 | hypothetical protein                                      | 0.34 | 0.81 | 2.38 |
| At3g52550 | hypothetical protein                                      | 0.42 | 1    | 2.38 |
| At2g22050 | hypothetical protein                                      | 0.24 | 0.57 | 2.38 |
| At5g13340 | putative protein                                          | 0.19 | 0.45 | 2.37 |
| At5q51770 | putative protein                                          | 0.11 | 0.26 | 2.36 |
| At2q02390 | putative glutathione S-transferase                        | 0.11 | 0.26 | 2.36 |
| At5q03340 | transitional endoplasmic reticulum ATPase                 | 0.5  | 1.18 | 2.36 |
| At1g72010 | unknown protein                                           | 0.28 | 0.66 | 2.36 |
| At4q19830 | putative protein                                          | 0.31 | 0.73 | 2.35 |
| At3g17470 | hypothetical protein                                      | 7.01 | 16.5 | 2.35 |
| At4q28590 | hypothetical protein                                      | 0.2  | 0.47 | 2.35 |
| At2g29020 | unknown protein                                           | 0.78 | 1.83 | 2.35 |
| At3q45780 | nonphototropic hypocotyl 1                                | 0.39 | 0.91 | 2.33 |
| At5q14830 | putative protein                                          | 0.24 | 0.56 | 2.33 |
| At4q01650 | hypothetical protein                                      | 1.41 | 3.29 | 2.33 |
| At4q35170 | putative protein                                          | 0.15 | 0.35 | 2.33 |
| At5q57880 | unknown protein                                           | 0.06 | 0.14 | 2.33 |
| At1q74850 | hypothetical protein                                      | 0.49 | 1.14 | 2.33 |
| At5g17280 | putative protein                                          | 0.34 | 0.79 | 2.32 |
| At1g52220 | unknown protein                                           | 0.56 | 1.3  | 2.32 |
| At3g16480 | putative mitochondrial processing peptidase alpha subunit | 0.25 | 0.58 | 2.32 |
| At1g22680 | hypothetical protein                                      | 0.75 | 1.74 | 2.32 |
| At2g41410 | calmodulin-like protein                                   | 0.66 | 1.53 | 2.32 |
| At2g21720 | hypothetical protein                                      | 0.19 | 0.44 | 2.32 |

| At2g25660              | unknown protein                                                             | 0.45             | 1.04         | 2.31         |
|------------------------|-----------------------------------------------------------------------------|------------------|--------------|--------------|
| At5g48990              | putative protein                                                            | 0.26             | 0.6          | 2.31         |
| At5g59080              | putative protein                                                            | 0.49             | 1.13         | 2.31         |
| At3g57780              | putative protein                                                            | 0.36             | 0.83         | 2.31         |
| At2g29760              | hypothetical protein                                                        | 0.23             | 0.53         | 2.30         |
| At5g19150              | putative protein                                                            | 0.23             | 0.53         | 2.30         |
| At3g53350              | putative protein                                                            | 0.63             | 1.45         | 2.30         |
| At2g03400              | unknown protein                                                             | 0.4              | 0.92         | 2.30         |
| At4g35510              | putative protein                                                            | 0.67             | 1.54         | 2.30         |
| At5g52530              | putative protein                                                            | 0.47             | 1.08         | 2.30         |
| At3g10060              | unknown protein                                                             | 0.24             | 0.55         | 2.29         |
| At3g26060              | putative peroxiredoxin                                                      | 0.24             | 0.55         | 2.29         |
| At1g02170              | unknown protein                                                             | 0.66             | 1.51         | 2.29         |
| At4g35250              | putative protein                                                            | 0.28             | 0.64         | 2.29         |
| At3g15690<br>At4g08280 | putative acetyl-CoA carboxylase biotin-containing subur<br>putative protein | nit 0.14<br>0.28 | 0.32<br>0.64 | 2.29<br>2.29 |
| At5g06410              | putative protein                                                            | 0.07             | 0.16         | 2.29         |
| At4g27700              | hypothetical protein                                                        | 0.5              | 1.14         | 2.28         |
| At2g05990              | enoyl-ACP reductase (enr-A)                                                 | 0.18             | 0.41         | 2.28         |
| At3g24780              | hypothetical protein                                                        | 0.29             | 0.66         | 2.28         |
| At1g30610              | hypothetical protein                                                        | 0.29             | 0.66         | 2.28         |
| At4g13590              | putative protein                                                            | 0.22             | 0.5          | 2.27         |
| At5g27070              | putative protein                                                            | 0.44             | 1            | 2.27         |
| At5g44540              | putative protein                                                            | 0.66             | 1.5          | 2.27         |
| At4g22650              | putative protein                                                            | 0.26             | 0.59         | 2.27         |
| At3g26710              | unknown protein                                                             | 0.41             | 0.93         | 2.27         |
| At1g30320              | hypothetical protein                                                        | 0.34             | 0.77         | 2.26         |
| At4g23940              | cell division protein - like                                                | 0.19             | 0.43         | 2.26         |
| At3g61540              | prolyl aminopeptidase-like protein                                          | 0.38             | 0.86         | 2.26         |
| At3g09150              | hypothetical protein                                                        | 0.19             | 0.43         | 2.26         |
| At3g26840              | unknown protein                                                             | 0.12             | 0.27         | 2.25         |
| At2g45450              | unknown protein                                                             | 0.64             | 1.44         | 2.25         |
| At1g44920              | hypothetical protein                                                        | 0.16             | 0.36         | 2.25         |
| At2g27770              | hypothetical protein                                                        | 0.57             | 1.28         | 2.25         |
| At5g46390              | carboxy-terminal proteinase D1-like protein                                 | 0.29             | 0.65         | 2.24         |
| At1g50840              | DNA polymerase A family protein                                             | 0.29             | 0.65         | 2.24         |
| At2g29180              | unknown protein                                                             | 0.25             | 0.56         | 2.24         |
| At1g62190              | hypothetical protein                                                        | 0.21             | 0.47         | 2.24         |
| At4g10840              | putative protein                                                            | 0.3              | 0.67         | 2.23         |
| At5g04440              | putative protein                                                            | 0.13             | 0.29         | 2.23         |
| At3g58010              | putative protein                                                            | 0.13             | 0.29         | 2.23         |
| At5g07530              | glycine-rich protein atGRP-7                                                | 0.22             | 0.49         | 2.23         |
| At5g26880              | putative protein                                                            | 0.49             | 1.09         | 2.22         |
| At2g24850              | putative tyrosine aminotransferase                                          | 0.09             | 0.2          | 2.22         |
| At1g15410              | hypothetical protein                                                        | 0.14             | 0.31         | 2.21         |
| At3g02690              | unknown protein                                                             | 0.62             | 1.37         | 2.21         |
| At2g30200              | putative malonyl-CoA:Acyl carrier protein transacylase                      | 0.39             | 0.86         | 2.21         |
| At4g27520              | putative protein                                                            | 0.49             | 1.08         | 2.20         |
| At2g14430              | putative non-LTR retroelement reverse transcriptase                         | 0.3              | 0.66         | 2.20         |
| At3g53130              | Cytochrom P450 -like protein                                                | 0.1              | 0.22         | 2.20         |
| At1g79960              | hypothetical protein                                                        | 0.4              | 0.88         | 2.20         |
| At4g08630              | hypothetical protein                                                        | 0.41             | 0.9          | 2.20         |
|                        |                                                                             |                  |              |              |

| At3g60860  | guanine nucleotide exchange factor - like protein | 0.57 | 1.25 | 2.19 |
|------------|---------------------------------------------------|------|------|------|
| At1g74600  | hypothetical protein                              | 0.32 | 0.7  | 2.19 |
| At1g12100  | hybrid proline-rich protein                       | 0.27 | 0.59 | 2.19 |
| At3g11150  | hypothetical protein                              | 0.6  | 1.31 | 2.18 |
| At1g54120  | hypothetical protein                              | 0.22 | 0.48 | 2.18 |
| At1g19480  | hypothetical protein                              | 0.33 | 0.72 | 2.18 |
| At4g02940  | hypothetical protein                              | 0.22 | 0.48 | 2.18 |
| At3g52050  | putative protein                                  | 0.4  | 0.87 | 2.18 |
| At3g43640  | putative protein                                  | 0.12 | 0.26 | 2.17 |
| At1g11820  | unknown protein                                   | 0.3  | 0.65 | 2.17 |
| At2g35400  | unknown protein                                   | 0.19 | 0.41 | 2.16 |
| At5g60050  | putative protein                                  | 0.52 | 1.12 | 2.15 |
| At5g51020  | putative protein                                  | 0.2  | 0.43 | 2.15 |
| At5g53930  | putative protein                                  | 0.4  | 0.86 | 2.15 |
| At5g26570  | putative protein                                  | 0.21 | 0.45 | 2.14 |
| At1g05340  | unknown protein                                   | 0.42 | 0.9  | 2.14 |
| At1g44350  | putative IAA-amino acid hydrolase                 | 0.14 | 0.3  | 2.14 |
| At1g75080  | unknown protein                                   | 0.29 | 0.62 | 2.14 |
| At3g24190  | unknown protein                                   | 0.52 | 1.11 | 2.13 |
| At2g10550  | hypothetical protein                              | 0.15 | 0.32 | 2.13 |
| At5g58630  | putative protein                                  | 0.38 | 0.81 | 2.13 |
| At2g45310  | putative nucleotide sugar epimerase               | 0.47 | 1    | 2.13 |
| At4g29750  | putative protein                                  | 0.24 | 0.51 | 2.13 |
| At3g01170  | unknown protein                                   | 0.24 | 0.51 | 2.13 |
| At2g44550  | putative glucanase                                | 0.25 | 0.53 | 2.12 |
| At1g67280  | unknown protein                                   | 0.46 | 0.97 | 2.11 |
| At4a14450  | hypothetical protein                              | 0.28 | 0.59 | 2.11 |
| At4q27990  | putative protein                                  | 0.38 | 0.8  | 2.11 |
| At4a08940  | hypothetical protein                              | 0.6  | 1.26 | 2.10 |
| At3a22690  | hypothetical protein                              | 0.22 | 0.46 | 2.09 |
| At1a03260  | hypothetical protein                              | 0.11 | 0.23 | 2.09 |
| At5a44750  | putative protein                                  | 0.22 | 0.46 | 2.09 |
| At3q04110  | putative glutamate receptor (GLR1)                | 0.22 | 0.46 | 2.09 |
| At1a63970  | 2C-methyl-D-erythritol 2                          | 0.33 | 0.69 | 2.09 |
| At1g07850  | hypothetical protein                              | 0.22 | 0.46 | 2.09 |
| At4a23040  |                                                   | 0.24 | 0.5  | 2.00 |
| At3a15900  | unknown protein                                   | 0.37 | 0.77 | 2.00 |
| At1a52500  | hypothetical protein                              | 0.13 | 0.27 | 2.00 |
| At3a29185  | hypothetical protein                              | 0.41 | 0.27 | 2.00 |
| At4a25460  | hypothetical protein                              | 0.55 | 1 14 | 2.07 |
| At5a51670  |                                                   | 0.33 | 0.58 | 2.07 |
| A+5a/8120  |                                                   | 0.20 | 0.50 | 2.07 |
| At1a21170  |                                                   | 0.28 | 0.50 | 2.07 |
| ALIYS1170  |                                                   | 0.31 | 0.64 | 2.00 |
| Atry 14590 | chloroplact CrpE protoin                          | 0.31 | 0.64 | 2.00 |
| At2c27220  |                                                   | 0.31 | 0.04 | 2.00 |
| At4~22000  |                                                   | 0.30 | 0.74 | 2.06 |
| A14923080  |                                                   | 0.38 | 0.78 | 2.05 |
| At4g25120  | putative protein                                  | 0.38 | 0.78 | 2.05 |
| At4g32590  | nypolnetical protein                              | 0.39 | 0.8  | 2.05 |
| At3g42100  | putative protein                                  | 0.2  | 0.41 | 2.05 |
| At4g09680  | putative protein                                  | 0.43 | 0.88 | 2.05 |

| At1g70200 | unknown protein                                                                | 0.68 | 1.39 | 2.04 |
|-----------|--------------------------------------------------------------------------------|------|------|------|
| At3g48000 | aldehyde dehydrogenase (NAD+)-like protein                                     | 0.5  | 1.02 | 2.04 |
| At3g32940 | hypothetical protein                                                           | 0.26 | 0.53 | 2.04 |
| At1g24040 | unknown protein                                                                | 0.27 | 0.55 | 2.04 |
| At1g23400 | unknown protein                                                                | 0.28 | 0.57 | 2.04 |
| At1g73650 | unknown protein                                                                | 0.28 | 0.57 | 2.04 |
| At3g24430 | mrp protein                                                                    | 0.29 | 0.59 | 2.03 |
| At4g39050 | kinesin like protein                                                           | 0.31 | 0.63 | 2.03 |
| At5g54140 | IAA-amino acid hydrolase homolog ILL3                                          | 0.38 | 0.77 | 2.03 |
| At4g01360 | hypothetical protein                                                           | 0.38 | 0.77 | 2.03 |
| At3g15140 | hypothetical protein                                                           | 0.39 | 0.79 | 2.03 |
| At4g00610 | hypothetical protein                                                           | 0.41 | 0.83 | 2.02 |
| At2g36920 | hypothetical protein                                                           | 0.49 | 0.99 | 2.02 |
| At5g13090 | putative protein                                                               | 0.62 | 1.25 | 2.02 |
| At2g31160 | unknown protein                                                                | 0.65 | 1.31 | 2.02 |
| At2g32480 | unknown protein                                                                | 0.81 | 1.63 | 2.01 |
| At5g48440 | putative protein                                                               | 0.16 | 0.32 | 2.00 |
| At3g18270 | unknown protein                                                                | 0.15 | 0.3  | 2.00 |
| At1g05750 | hypothetical protein                                                           | 0.17 | 0.34 | 2.00 |
| At4g34730 | putative protein                                                               | 0.41 | 0.82 | 2.00 |
| At5g66530 | apospory-associated protein C-like                                             | 0.23 | 0.46 | 2.00 |
| At2g39290 | putative CDP-diacylglycerol-glycerol-3-phosphate 3-<br>phosphatidyltransferase | 0.19 | 0.38 | 2.00 |
| At5g54430 | putative protein                                                               | 0.76 | 1.52 | 2.00 |
| At1g41670 | hypothetical protein                                                           | 0.27 | 0.54 | 2.00 |
| At3g18680 | uridylate kinase                                                               | 0.09 | 0.18 | 2.00 |
| At1g63720 | hypothetical protein                                                           | 0.19 | 0.38 | 2.00 |
| At2g40300 | putative ferritin                                                              | 0.16 | 0.32 | 2.00 |
| At5g17170 | unknown protein                                                                | 0.14 | 0.28 | 2.00 |
| At4g08510 | hypothetical protein                                                           | 0.19 | 0.38 | 2.00 |
| At5g16110 | putative protein                                                               | 0.17 | 0.34 | 2.00 |
| At1g69740 | putative aminolevulinate dehydratase                                           | 0.14 | 0.28 | 2.00 |
| At4g25050 | acyl carrier - like protein                                                    | 0.72 | 1.43 | 1.99 |
| At2g44140 | unknown protein                                                                | 0.48 | 0.95 | 1.98 |
| At2g43050 | putative pectinesterase                                                        | 0.48 | 0.95 | 1.98 |
| At5g43770 | unknown protein                                                                | 0.43 | 0.85 | 1.98 |
| At4g36190 | putative protein                                                               | 0.8  | 1.58 | 1.98 |
| At3g11690 | unknown protein                                                                | 0.74 | 1.46 | 1.97 |
| At1g62290 | aspartic protease                                                              | 0.32 | 0.63 | 1.97 |
| At2g05120 | unknown protein                                                                | 0.31 | 0.61 | 1.97 |
| At2g35490 | putative fibrillin                                                             | 0.29 | 0.57 | 1.97 |
| At5g53490 | thylakoid lumenal 17.4 kD protein                                              | 0.28 | 0.55 | 1.96 |
| At3g24860 | unknown protein                                                                | 0.69 | 1.35 | 1.96 |
| At3g04560 | unknown protein                                                                | 0.46 | 0.9  | 1.96 |
| At2g27660 | hypothetical protein                                                           | 0.44 | 0.86 | 1.95 |
| At4g22520 | putative protein                                                               | 0.43 | 0.84 | 1.95 |
| At3g06360 | hypothetical protein                                                           | 0.62 | 1.21 | 1.95 |
| At5g61200 | putative protein                                                               | 0.61 | 1.19 | 1.95 |
| At2g40980 | unknown protein                                                                | 0.39 | 0.76 | 1.95 |
| At4g38400 | putative pollen allergen                                                       | 0.38 | 0.74 | 1.95 |
| At4g11090 | putative protein                                                               | 0.36 | 0.7  | 1.94 |
| At2g25800 | unknown protein                                                                | 0.62 | 1.2  | 1.94 |

| At3g04340 | unknown protein                          | 0.44 | 0.85 | 1.93 |
|-----------|------------------------------------------|------|------|------|
| At4g29790 | putative protein                         | 0.28 | 0.54 | 1.93 |
| At1g18060 | unknown protein                          | 0.14 | 0.27 | 1.93 |
| At4g18130 | phytochrome E                            | 0.28 | 0.54 | 1.93 |
| At2g34370 | putative selenium-binding protein        | 0.67 | 1.29 | 1.93 |
| At2g35010 | thioredoxin                              | 0.13 | 0.25 | 1.92 |
| At4g22980 | putative protein                         | 0.39 | 0.75 | 1.92 |
| At1g51560 | unknown protein                          | 0.25 | 0.48 | 1.92 |
| At3g09490 | hypothetical protein                     | 0.37 | 0.71 | 1.92 |
| At1g65010 | hypothetical protein                     | 0.24 | 0.46 | 1.92 |
| At4g04020 | putative fibrillin                       | 0.36 | 0.69 | 1.92 |
| At4g25270 | putative protein                         | 0.36 | 0.69 | 1.92 |
| At3g01360 | hypothetical protein                     | 0.46 | 0.88 | 1.91 |
| At1g21060 | unknown protein                          | 0.23 | 0.44 | 1.91 |
| At1g61690 | hypothetical protein                     | 0.57 | 1.09 | 1.91 |
| At3g59100 | putative protein                         | 0.11 | 0.21 | 1.91 |
| At3g60000 | putative protein                         | 0.21 | 0.4  | 1.90 |
| At3g11330 | hypothetical protein                     | 0.41 | 0.78 | 1.90 |
| At1g32200 | glycerol-3-phosphate acyltransferase     | 0.4  | 0.76 | 1.90 |
| At1g01730 | unknown protein                          | 0.38 | 0.72 | 1.89 |
| At5g52250 | putative protein                         | 2.34 | 4.43 | 1.89 |
| At4g29920 | putative protein                         | 0.37 | 0.7  | 1.89 |
| At2g14340 | hypothetical protein                     | 0.27 | 0.51 | 1.89 |
| At4g38190 | putative protein                         | 0.44 | 0.83 | 1.89 |
| At5g51070 | Erd1 protein precursor                   | 0.52 | 0.98 | 1.88 |
| At3g30780 | hypothetical protein                     | 0.17 | 0.32 | 1.88 |
| At1g67930 | putative golgi transport complex protein | 0.33 | 0.62 | 1.88 |
| At1g47340 | hypothetical protein                     | 0.46 | 0.86 | 1.87 |
| At4g28210 | hypothetical protein                     | 0.53 | 0.99 | 1.87 |
| At3g23400 | unknown protein                          | 0.3  | 0.56 | 1.87 |
| At2g44230 | hypothetical protein                     | 0.15 | 0.28 | 1.87 |
| At4g18810 | putative protein                         | 0.22 | 0.41 | 1.86 |
| At2g43890 | putative polygalacturonase               | 0.43 | 0.8  | 1.86 |
| At2g35660 | putative monooxygenase                   | 0.14 | 0.26 | 1.86 |
| At1g72520 | putative lipoxygenase                    | 0.27 | 0.5  | 1.85 |
| At2g45470 | unknown protein                          | 0.67 | 1.24 | 1.85 |
| At2g44570 | putative glucanase                       | 0.39 | 0.72 | 1.85 |
| At2g40800 | unknown protein                          | 0.26 | 0.48 | 1.85 |
| At3g26900 | putative shikimate kinase                | 0.13 | 0.24 | 1.85 |
| At2g32640 | hypothetical protein                     | 0.19 | 0.35 | 1.84 |
| At2g37380 | unknown protein                          | 0.63 | 1.16 | 1.84 |
| At2g33430 | plastid protein                          | 0.44 | 0.81 | 1.84 |
| At5g02020 | putative protein                         | 0.43 | 0.79 | 1.84 |
| At1g62750 | unknown protein                          | 0.97 | 1.78 | 1.84 |
| At1g65610 | endo-1                                   | 0.12 | 0.22 | 1.83 |
| At1g11800 | unknown protein                          | 0.18 | 0.33 | 1.83 |
| At3g25110 | acyl-(acyl carrier protein) thioesterase | 0.48 | 0.88 | 1.83 |
| At2g04540 | 3-oxoacyl carrier protein synthase       | 0.18 | 0.33 | 1.83 |
| At1g69370 | chorismate mutase                        | 0.24 | 0.44 | 1.83 |
| At3g27550 | hypothetical protein                     | 0.18 | 0.33 | 1.83 |
| At3g56140 | putative protein                         | 0.47 | 0.86 | 1.83 |
| At2a46790              | hypothetical protein                                               | 0.29         | 0.53         | 1 83         |
|------------------------|--------------------------------------------------------------------|--------------|--------------|--------------|
| At2a27950              | unknown protein                                                    | 0.29         | 0.53         | 1.83         |
| At4q07560              | putative transposon protein                                        | 0.4          | 0.73         | 1.83         |
| At5q09760              | pectin methylesterase - like protein                               | 0.97         | 1 77         | 1.80         |
| At2q19340              |                                                                    | 0.34         | 0.62         | 1.82         |
| At3q57580              |                                                                    | 0.34         | 0.62         | 1.82         |
| At3q09050              |                                                                    | 0.54         | 0.02         | 1.02         |
| At1a78790              | hypothetical protein                                               | 0.32         | 0.50         | 1.01         |
| A+5a06670              | kinosin boowy chain like protoin                                   | 0.32         | 0.00         | 1.01         |
| At1a05380              | hypothetical protein                                               | 0.21         | 0.50         | 1.01         |
| At/a19420              |                                                                    | 0.31         | 0.30         | 1.01         |
| At2a20800              |                                                                    | 0.41         | 0.74         | 1.00         |
| At220090               |                                                                    | 0.40         | 0.03         | 1.00         |
| Al2929070              |                                                                    | 0.51         | 0.92         | 1.00         |
| ALI979110              |                                                                    | 0.50         | 1.01         | 1.00         |
| At4g32130              |                                                                    | 0.15         | 0.27         | 1.80         |
| At5g07770              |                                                                    | 0.15         | 0.27         | 1.80         |
| At4g00180              | putative YABBY3 axial regulator                                    | 0.35         | 0.63         | 1.80         |
| At3g20970              | unknown protein                                                    | 0.5          | 0.9          | 1.80         |
| At1g80450              | unknown protein                                                    | 0.45         | 0.81         | 1.80         |
| At5g38680              | putative protein                                                   | 0.25         | 0.45         | 1.80         |
| At1g62780              | unknown protein                                                    | 0.1          | 0.18         | 1.80         |
| At3g10730              | hypothetical protein                                               | 0.2          | 0.36         | 1.80         |
| At3g47970              | hypothetical protein                                               | 0.2          | 0.36         | 1.80         |
| At3g23740              | unknown protein                                                    | 0.49         | 0.88         | 1.80         |
| At1g21910              | TINY-like protein                                                  | 0.39         | 0.7          | 1.79         |
| At2g20270              | putative glutaredoxin                                              | 0.29         | 0.52         | 1.79         |
| At1g62010              | hypothetical protein                                               | 0.67         | 1.2          | 1.79         |
| At5g54360              | unknown protein                                                    | 0.19         | 0.34         | 1.79         |
| At2g48130              | unknown protein                                                    | 0.23         | 0.41         | 1.78         |
| At2g20080              | unknown protein                                                    | 0.32         | 0.57         | 1.78         |
| At4g30720              | putative protein                                                   | 0.45         | 0.8          | 1.78         |
| At1g44030              | unknown protein                                                    | 0.36         | 0.64         | 1.78         |
| At5g06990              | putative protein                                                   | 0.27         | 0.48         | 1.78         |
| At2g45300<br>At1g24150 | 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase unknown protein | 0.35<br>0.61 | 0.62<br>1.08 | 1.77<br>1.77 |
| At5a66100              | putative protein                                                   | 0.26         | 0.46         | 1.77         |
| At4a03410              | hypothetical protein                                               | 0.52         | 0.92         | 1.77         |
| At4a14930              | hypothetical protein                                               | 0.26         | 0.46         | 1.77         |
| At5q19620              | putative protein                                                   | 0.13         | 0.23         | 1.77         |
| At2q18190              | putative AAA-type ATPase                                           | 0.25         | 0.44         | 1.76         |
| At3q04760              | hypothetical protein                                               | 0.41         | 0.72         | 1.76         |
| At2a22880              | hypothetical protein                                               | 0.49         | 0.86         | 1 76         |
| At2a03140              | nutative LEA (late embryogenesis abundant) protein                 | 0.45         | 0.00         | 1.76         |
| At1g07460              | lectin                                                             | 0.16         | 0.28         | 1.75         |
| At2g05590              | hypothetical protein                                               | 0.08         | 0.14         | 1.75         |
| At1g50000              | hypothetical protein                                               | 0.08         | 0.14         | 1.75         |
| At3g10620              | putative diadenosine 5\\\'                                         | 0.36         | 0.63         | 1.75         |
| At1g78910              | hypothetical protein                                               | 0.52         | 0.91         | 1.75         |
| At5g66090              | unknown protein                                                    | 0.24         | 0.42         | 1.75         |
| At2g21860              | unknown protein                                                    | 0.4          | 0.7          | 1.75         |
| At5g09790              | putative protein                                                   | 0.28         | 0.49         | 1.75         |
| At3g63190              | putative protein                                                   | 0.34         | 0.59         | 1.74         |

At4g09700 putative protein

At2g02740 hypothetical protein

At1g80480 hypothetical protein

protein

At3g02900 unknown protein

At2g30880 unknown protein

At3g44310 nitrilase 1

putative N-acetyl-gamma-glutamyl-phosphate reductase

At5g53570 GTPase activator protein of Rab-like small GTPases-like

At3g63410 putative chloroplast inner envelope protein

At2g19940

| At3g53470 | putative protein                               | 0.68  | 1.18 | 1.74 |
|-----------|------------------------------------------------|-------|------|------|
| At1g52510 | hypothetical protein                           | 0.49  | 0.85 | 1.73 |
| At5g47890 | NADH dehydrogenase 10.5K chain-like protein    | 0.26  | 0.45 | 1.73 |
| At3g15330 | hypothetical protein                           | 0.26  | 0.45 | 1.73 |
| At3g24440 | hypothetical protein                           | 0.48  | 0.83 | 1.73 |
| At2g47860 | unknown protein                                | 0.22  | 0.38 | 1.73 |
| At4g23170 | putative protein                               | 12.71 | 21.9 | 1.72 |
| At5g11010 | putative protein                               | 0.46  | 0.79 | 1.72 |
| At3g28460 | unknown protein                                | 0.07  | 0.12 | 1.71 |
| At3g43520 | hypothetical protein                           | 1.04  | 1.78 | 1.71 |
| At5g45680 | putative protein                               | 0.45  | 0.77 | 1.71 |
| At4g31430 | predicted protein                              | 0.24  | 0.41 | 1.71 |
| At1g52870 | unknown protein                                | 0.17  | 0.29 | 1.71 |
| At5g30460 | putative protein                               | 0.64  | 1.09 | 1.70 |
| At5g40850 | urophorphyrin III methylase                    | 0.2   | 0.34 | 1.70 |
| At3g27180 | hypothetical protein                           | 0.2   | 0.34 | 1.70 |
| At5g41960 | unknown protein                                | 0.1   | 0.17 | 1.70 |
| At3g56600 | putative protein                               | 0.86  | 1.46 | 1.70 |
| At5g05850 | putative protein                               | 0.36  | 0.61 | 1.69 |
| At1g05650 | putative polygalacturonase                     | 0.39  | 0.66 | 1.69 |
| At3g57950 | putative protein                               | 0.45  | 0.76 | 1.69 |
| At2g13710 | pseudogene                                     | 0.61  | 1.03 | 1.69 |
| At4g39610 | putative protein                               | 0.48  | 0.81 | 1.69 |
| At5g50640 | putative protein                               | 0.22  | 0.37 | 1.68 |
| At4g35680 | putative protein                               | 0.44  | 0.74 | 1.68 |
| At1g02070 | hypothetical protein                           | 0.47  | 0.79 | 1.68 |
| At2g17300 | unknown protein                                | 1.02  | 1.71 | 1.68 |
| At1g71910 | hypothetical protein                           | 0.4   | 0.67 | 1.68 |
| At2g37750 | unknown protein                                | 0.43  | 0.72 | 1.67 |
| At3g13850 | hypothetical protein                           | 0.52  | 0.87 | 1.67 |
| At1g78310 | hypothetical protein                           | 0.61  | 1.02 | 1.67 |
| At2g31040 | hypothetical protein                           | 0.15  | 0.25 | 1.67 |
| At3g14390 | putative diaminopimelate decarboxylase         | 0.36  | 0.6  | 1.67 |
| At3g11810 | unknown protein                                | 0.48  | 0.8  | 1.67 |
| At3g13570 | serine/arginine-rich protein                   | 0.15  | 0.25 | 1.67 |
| At1g09130 | unknown protein                                | 0.71  | 1.18 | 1.66 |
| At4g22030 | putative protein                               | 0.46  | 0.76 | 1.65 |
| At1g56180 | hypothetical protein                           | 0.4   | 0.66 | 1.65 |
| At1g60670 | expressed protein                              | 0.74  | 1.22 | 1.65 |
| At2g31250 | putative glutamyl tRNA reductase               | 0.82  | 1.35 | 1.65 |
| At1g09780 | putative 2                                     | 0.69  | 1.13 | 1.64 |
| At4g39710 | proteomics: thylakloid lumen FKBP-like protein | 0.66  | 1.08 | 1.64 |

0.22

0.57

0.19

0.19

0.65

0.27

0.27

0.16

0.42

0.36

0.93

0.31

0.31

1.06

0.44

0.44

0.26

0.68

1.64

1.63

1.63

1.63

1.63

1.63

1.63

1.63

1.62

| At3g54900 | putative protein                      | 0.65 | 1.05 | 1.62 |
|-----------|---------------------------------------|------|------|------|
| At1g56200 | unknown protein                       | 0.31 | 0.5  | 1.61 |
| At1g61200 | hypothetical protein                  | 0.9  | 1.45 | 1.61 |
| At5g15980 | putative protein                      | 0.28 | 0.45 | 1.61 |
| At5g56660 | IAA-amino acid hydrolase              | 0.71 | 1.14 | 1.61 |
| At3g55070 | putative protein                      | 0.43 | 0.69 | 1.60 |
| At2g05180 | putative cytochrome P450              | 0.43 | 0.69 | 1.60 |
| At5g66660 | At14a protein-like                    | 0.78 | 1.25 | 1.60 |
| At2g45440 | putative dihydrodipicolinate synthase | 0.4  | 0.64 | 1.60 |
| At4g39690 | putative protein                      | 1.02 | 1.63 | 1.60 |
| At5g38060 | hypothetical protein                  | 0.47 | 0.75 | 1.60 |
| At3g56910 | ribosomal protein PSRP5               | 1.8  | 2.87 | 1.59 |
| At5g64580 | putative protein                      | 0.32 | 0.51 | 1.59 |
| At3g63370 | putative protein                      | 0.27 | 0.43 | 1.59 |
| At4g00170 | putative proline-rich protein         | 0.22 | 0.35 | 1.59 |
| At2g31840 | hypothetical protein                  | 0.63 | 1    | 1.59 |
| At5g24120 | sigma-like factor                     | 0.46 | 0.73 | 1.59 |
| At2g21340 | unknown protein                       | 0.29 | 0.46 | 1.59 |
| At2g18950 | hypothetical protein                  | 0.58 | 0.92 | 1.59 |
| At5g64860 | 4-alpha-glucanotransferase            | 0.29 | 0.46 | 1.59 |
| At1g73060 | unknown protein                       | 0.24 | 0.38 | 1.58 |
| At1g02890 | hypothetical protein                  | 0.12 | 0.19 | 1.58 |
| At4g20300 | putative protein                      | 0.31 | 0.49 | 1.58 |
| At4g19460 | putative protein                      | 0.38 | 0.6  | 1.58 |
| At3g50190 | putative protein                      | 1.33 | 2.1  | 1.58 |
| At1g03230 | unknown protein                       | 0.45 | 0.71 | 1.58 |
| At3g51510 | putative protein                      | 0.45 | 0.71 | 1.58 |
| At5g51100 | putative chloroplast Mn SOD           | 0.61 | 0.96 | 1.57 |
| At2g03220 | xyloglucan fucosyltransferase AtFT1   | 0.96 | 1.51 | 1.57 |
| At1g10410 | unknown protein                       | 0.42 | 0.66 | 1.57 |
| At2g43710 | stearoyl-ACP desaturase               | 0.14 | 0.22 | 1.57 |
| At4g35710 | putative protein                      | 0.28 | 0.44 | 1.57 |
| At4g25370 | putative protein                      | 0.28 | 0.44 | 1.57 |
| 3834303   | hypothetical protein                  | 0.07 | 0.11 | 1.57 |
| At3g42200 | putative protein                      | 0.88 | 1.38 | 1.57 |
| At5g02250 | ribonuclease II-like protein          | 0.23 | 0.36 | 1.57 |
| At3g58660 | putative protein                      | 0.39 | 0.61 | 1.56 |
| At5g35100 | putative protein                      | 0.55 | 0.86 | 1.56 |
| At1g10140 | unknown protein                       | 0.52 | 0.81 | 1.56 |
| At1g69240 | putative alpha/beta hydrolase         | 0.18 | 0.28 | 1.56 |
| At2g16650 | hypothetical protein                  | 0.36 | 0.56 | 1.56 |
| At1g70070 | hypothetical protein                  | 0.18 | 0.28 | 1.56 |
| At4g40080 | putative protein                      | 0.56 | 0.87 | 1.55 |
| At3g46950 | putative protein                      | 0.73 | 1.13 | 1.55 |
| At1g21730 | kinesin-like protein                  | 0.22 | 0.34 | 1.55 |
| At3g14310 | putative pectin methylesterase        | 0.33 | 0.51 | 1.55 |
| At3g50140 | putative protein                      | 1.64 | 2.53 | 1.54 |
| At1g79350 | hypothetical protein                  | 0.94 | 1.45 | 1.54 |
| At2g32650 | hypothetical protein                  | 0.65 | 1    | 1.54 |
| At2g29980 | omega-3 fatty acid desaturase         | 0.39 | 0.6  | 1.54 |
| At1g61040 | unknown protein                       | 0.56 | 0.86 | 1.54 |

| At4g14510  | hypothetical protein                                             | 0.56    | 0.86 | 1.54 |
|------------|------------------------------------------------------------------|---------|------|------|
| At1g80590  | hypothetical protein                                             | 0.15    | 0.23 | 1.53 |
| At4g38080  | putative protein                                                 | 0.77    | 1.18 | 1.53 |
| At2g38310  | unknown protein                                                  | 1.09    | 1.67 | 1.53 |
| At4g14380  | hypothetical protein                                             | 0.49    | 0.75 | 1.53 |
| At2g44190  | hypothetical protein                                             | 0.83    | 1.27 | 1.53 |
| At5g57990  | putative protein                                                 | 0.17    | 0.26 | 1.53 |
| At4g18750  | putative protein                                                 | 0.17    | 0.26 | 1.53 |
| At1g01500  | hypothetical protein                                             | 0.34    | 0.52 | 1.53 |
| At5g01080  | putative protein                                                 | 0.76    | 1.16 | 1.53 |
| At2g42310  | unknown protein                                                  | 0.21    | 0.32 | 1.52 |
| At2g25330  | unknown protein                                                  | 0.44    | 0.67 | 1.52 |
| At5g16440  | isopentenyl pyrophosphate:dimethyllallyl pyrophosphate isomerase | 0.46    | 0.7  | 1.52 |
| At4g29400  | putative protein                                                 | 0.23    | 0.35 | 1.52 |
| At5g59800  | putative protein                                                 | 0.48    | 0.73 | 1.52 |
| At3g56710  | SigA binding protein                                             | 0.31    | 0.47 | 1.52 |
| At2g31980  | putative cysteine proteinase inhibitor B (cystatin B)            | 0.62    | 0.94 | 1.52 |
| At2g07710  | hypothetical protein                                             | 0.7     | 1.06 | 1.51 |
| At2g26280  | unknown protein                                                  | 0.37    | 0.56 | 1.51 |
| At4g23890  | putative protein                                                 | 2.22    | 3.36 | 1.51 |
| At2q22830  | putative squalene epoxidase                                      | 0.73    | 1.1  | 1.51 |
| At4q24090  | hypothetical protein                                             | 0.42    | 0.63 | 1.50 |
| At3q08660  | putative non-phototropic hypocotyl                               | 0.16    | 0.24 | 1.50 |
| At2q44700  | hypothetical protein                                             | 0.48    | 0.72 | 1.50 |
| At1a19050  | response regulator 5                                             | 0.24    | 0.36 | 1.50 |
| At1a70170  | matrix metalloproteinase                                         | 0.5     | 0.75 | 1.50 |
| At4a10000  | putative protein                                                 | 0.24    | 0.36 | 1.50 |
| At2a42940  | hypothetical protein                                             | 0.14    | 0.21 | 1.50 |
| At5a18070  | N-acetylglucosamine-phosphate mutase                             | 0.87    | 1.3  | 1.49 |
| At1a05150  | putative O-GlcNAc transferase                                    | 0.69    | 1.03 | 1.49 |
| At5a32490  | putative protein                                                 | 0.96    | 1.43 | 1.49 |
| At5a08050  | putative protein                                                 | 0.27    | 0.4  | 1.48 |
| At1a53140  | dynamin-like protein                                             | 0.27    | 0.4  | 1.48 |
| At1a08640  | hypothetical protein                                             | 0.48    | 0.71 | 1.48 |
| At3a54320  | aintegumaenta-like protein                                       | 0.23    | 0.34 | 1.48 |
| At5a52100  | dihydrodipicolinate reductase-like protein                       | 0.23    | 0.34 | 1.48 |
| At2a23390  | hypothetical protein                                             | 0.23    | 0.34 | 1.48 |
| At1a54070  | unknown protein                                                  | 0.42    | 0.62 | 1 48 |
| At1a12520  |                                                                  | 0.12    | 0.28 | 1 47 |
| At1a74880  |                                                                  | 1 04    | 1.53 | 1 47 |
| At5a03940  | signal recognition particle 54CP (SRP54) protein precurse        | or 0.17 | 0.25 | 1 47 |
| 7.10900040 |                                                                  | 0.11    | 0.20 | 1.47 |
| At2g35840  | putative sucrose-6F-phosphate phosphohydrolase                   | 0.94    | 1.38 | 1.47 |
| At3g18390  | unknown protein                                                  | 1.39    | 2.04 | 1.47 |
| At2g01400  | hypothetical protein                                             | 0.45    | 0.66 | 1.47 |
| At3g26630  | unknown protein                                                  | 1.31    | 1.92 | 1.47 |
| At2g42870  | unknown protein                                                  | 0.28    | 0.41 | 1.46 |
| At3g06570  | unknown protein                                                  | 0.41    | 0.6  | 1.46 |
| At2g37080  | putative myosin heavy chain                                      | 0.8     | 1.17 | 1.46 |
| At2g37240  | unknown protein                                                  | 0.13    | 0.19 | 1.46 |
| At4g20120  | hypothetical protein                                             | 0.26    | 0.38 | 1.46 |

## 7 APPENDIX

| At1g65580 | unknown protein                                         | 0.13 | 0.19 | 1.46 |
|-----------|---------------------------------------------------------|------|------|------|
| At5g06290 | 2-Cys peroxiredoxin-like protein                        | 0.89 | 1.3  | 1.46 |
| At3g51790 | putative transmembrane protein G1p                      | 0.35 | 0.51 | 1.46 |
| At1g67710 | response regulator                                      | 0.35 | 0.51 | 1.46 |
| At2g15720 | putative non-LTR retroelement reverse transcriptase     | 0.46 | 0.67 | 1.46 |
|           |                                                         |      |      |      |
| At4g31040 | hypothetical protein                                    | 0.55 | 0.8  | 1.45 |
| At1g68430 | hypothetical protein                                    | 0.64 | 0.93 | 1.45 |
| At4g22260 | putative protein                                        | 0.4  | 0.58 | 1.45 |
| At3g14750 | unknown protein                                         | 0.2  | 0.29 | 1.45 |
| At2g02980 | hypothetical protein                                    | 0.29 | 0.42 | 1.45 |
| At1g68660 | unknown protein                                         | 0.38 | 0.55 | 1.45 |
| At4g14620 | hypothetical protein                                    | 0.18 | 0.26 | 1.44 |
| At1g50320 | thioredoxin                                             | 0.18 | 0.26 | 1.44 |
| At4g01220 | hypothetical protein                                    | 0.09 | 0.13 | 1.44 |
| At4g19390 | putative protein                                        | 0.27 | 0.39 | 1.44 |
| At1g62250 | unknown protein                                         | 0.52 | 0.75 | 1.44 |
| At2g22010 | unknown protein                                         | 0.52 | 0.75 | 1.44 |
| At4g21210 | putative protein                                        | 0.43 | 0.62 | 1.44 |
| At4g02070 | G/T DNA mismatch repair enzyme                          | 0.34 | 0.49 | 1.44 |
| At3g57110 | hypothetical protein                                    | 0.57 | 0.82 | 1.44 |
| At1g11430 | DAG protein                                             | 0.16 | 0.23 | 1.44 |
| At1g72640 | hypothetical protein                                    | 0.48 | 0.69 | 1.44 |
| At1g16880 | unknown protein                                         | 0.23 | 0.33 | 1.43 |
| At4g31060 | putative protein                                        | 0.53 | 0.76 | 1.43 |
| At3g23290 | hypothetical protein                                    | 0.51 | 0.73 | 1.43 |
| At5g08400 | putative protein                                        | 0.28 | 0.4  | 1.43 |
| At3g63320 | putative protein                                        | 0.63 | 0.9  | 1.43 |
| At3g26020 | putative B regulatory subunit of protein phosphatase 2A | 0.42 | 0.6  | 1.43 |
| At1g05385 | expressed protein                                       | 0.42 | 0.6  | 1.43 |
| At4g04430 | putative transposon protein                             | 0.35 | 0.5  | 1.43 |
| At1g78150 | unknown protein                                         | 0.26 | 0.37 | 1.42 |
| At1g62150 | hypothetical protein                                    | 0.83 | 1.18 | 1.42 |
| At3g50570 | proline-rich protein                                    | 0.5  | 0.71 | 1.42 |
| At1g70180 | hypothetical protein                                    | 0.31 | 0.44 | 1.42 |
| At4g35450 | ankyrin repeat-containing protein 2                     | 0.62 | 0.88 | 1.42 |
| At4g20690 | putative protein                                        | 0.31 | 0.44 | 1.42 |
| At4g32770 | putative protein                                        | 0.36 | 0.51 | 1.42 |
| At4g02340 | expressed protein                                       | 0.24 | 0.34 | 1.42 |
| At5g22830 | putative protein                                        | 0.29 | 0.41 | 1.41 |
| At1g67440 | hypothetical protein                                    | 1.26 | 1.78 | 1.41 |
| At5g16290 | acetolactate synthase-like protein                      | 0.37 | 0.52 | 1.41 |
| At4g24860 | putative protein                                        | 0.72 | 1.01 | 1.40 |
| At5g60370 | putative protein                                        | 0.82 | 1.15 | 1.40 |
| At3g43610 | putative protein                                        | 0.05 | 0.07 | 1.40 |
| At1g56020 | unknown protein                                         | 0.6  | 0.84 | 1.40 |
| At1g13280 | allene oxide cyclase                                    | 0.3  | 0.42 | 1.40 |
| At1g73170 | putative ATPase                                         | 0.68 | 0.95 | 1.40 |
| At5g01760 | putative protein                                        | 0.33 | 0.46 | 1.39 |
| At1g33250 | unknown protein                                         | 0.99 | 1.38 | 1.39 |
| At3g02660 | putative tyrosyl-tRNA synthetase                        | 0.94 | 1.31 | 1.39 |
| At2g44560 | putative glucanase                                      | 0.69 | 0.96 | 1.39 |

| At2g37230 | unknown protein                                            | 0.69 | 0.96 | 1.39 |
|-----------|------------------------------------------------------------|------|------|------|
| At5g27880 | putative protein                                           | 2.31 | 3.21 | 1.39 |
| At5g19900 | putative protein                                           | 0.18 | 0.25 | 1.39 |
| At1g62390 | hypothetical protein                                       | 1.08 | 1.5  | 1.39 |
| At4g16080 | hypothetical protein                                       | 0.83 | 1.15 | 1.39 |
| At3g05020 | acyl carrier protein 1 precursor (ACP)                     | 0.47 | 0.65 | 1.38 |
| At5g58260 | similar to unknown protein                                 | 0.47 | 0.65 | 1.38 |
| At2g38550 | putative non-green plastid inner envelope membrane protein | 0.97 | 1.34 | 1.38 |
| At2g34540 | hypothetical protein                                       | 0.5  | 0.69 | 1.38 |
| At1g60550 | hypothetical protein                                       | 0.37 | 0.51 | 1.38 |
| At5g55570 | unknown protein                                            | 0.77 | 1.06 | 1.38 |
| At4g21300 | putative protein                                           | 0.8  | 1.1  | 1.38 |
| At2g28030 | putative chloroplast nucleoid DNA-binding protein          | 0.67 | 0.92 | 1.37 |
| At4g14860 | hypothetical protein                                       | 0.7  | 0.96 | 1.37 |
| At1g28150 | unknown protein                                            | 0.54 | 0.74 | 1.37 |
| At3g46780 | putative protein                                           | 0.46 | 0.63 | 1.37 |
| At1g28280 | hypothetical protein                                       | 0.38 | 0.52 | 1.37 |
| At1g35210 | hypothetical protein                                       | 0.52 | 0.71 | 1.37 |
| At1g51660 | hypothetical protein                                       | 0.74 | 1.01 | 1.36 |
| At3g52140 | putative protein                                           | 0.11 | 0.15 | 1.36 |
| At1g30950 | putative unusual floral organ (UFO)                        | 1.35 | 1.84 | 1.36 |
| At2g01300 | unknown protein                                            | 0.8  | 1.09 | 1.36 |
| At3q57040 | responce reactor 4                                         | 0.61 | 0.83 | 1.36 |
| At5q35710 | unknown protein                                            | 1.14 | 1.55 | 1.36 |
| At5a02190 | putative protein                                           | 0.39 | 0.53 | 1.36 |
| At1a13990 | unknown protein                                            | 0.39 | 0.53 | 1.36 |
| At3a16760 | unknown protein                                            | 0.9  | 1.22 | 1.36 |
| At5a62550 | unknown protein                                            | 0.93 | 1.26 | 1.35 |
| At2a18900 | unknown protein                                            | 0.93 | 1.26 | 1.35 |
| At3q06870 | unknown protein                                            | 0.68 | 0.92 | 1.35 |
| At4a16410 | hypothetical protein                                       | 0.6  | 0.81 | 1.35 |
| At2a24070 | unknown protein                                            | 0.2  | 0.27 | 1.35 |
| At3a54870 | kinesin-like protein                                       | 0.43 | 0.58 | 1.35 |
| At3a12020 | hypothetical protein                                       | 0.40 | 0.00 | 1 33 |
| At5a58410 |                                                            | 0.10 | 0.25 | 1.00 |
| At1a23640 | outative OBP32pen protein                                  | 0.13 | 0.23 | 1.32 |
| At/a10200 |                                                            | 0.13 | 0.17 | 1.01 |
| At2a57280 | butative protein                                           | 0.05 | 0.10 | 1.23 |
| Alby57200 | trigger factor like protein                                | 0.05 | 0.00 | 0.75 |
| Alby55220 | ingger lactor-like protein                                 | 0.10 | 0.12 | 0.75 |
| 3095360   | salt-inducible protein                                     | 1.17 | 0.87 | 0.74 |
| At1g11750 | hypothetical protein                                       | 0.42 | 0.31 | 0.74 |
| At1g80370 | putative cyclin                                            | 0.64 | 0.47 | 0.73 |
| At2g20460 | putative retroelement pol polyprotein                      | 0.41 | 0.3  | 0.73 |
| At1g55480 | unknown protein                                            | 0.78 | 0.57 | 0.73 |
| At1g79450 | hypothetical protein                                       | 0.52 | 0.38 | 0.73 |
| At4g12520 | pEARLI 1-like protein                                      | 1.88 | 1.37 | 0.73 |
| At4g19870 | putative protein                                           | 0.36 | 0.26 | 0.72 |
| At2g24020 | unknown protein                                            | 0.86 | 0.62 | 0.72 |
| At1g54520 | unknown protein                                            | 0.25 | 0.18 | 0.72 |
| At1g74790 | hypothetical protein                                       | 1.03 | 0.74 | 0.72 |
| At2g01380 | hypothetical protein                                       | 1.25 | 0.89 | 0.71 |

| At4g32640   | putative protein                                | 0.31  | 0.22  | 0.71 |
|-------------|-------------------------------------------------|-------|-------|------|
| At4g01050   | hypothetical protein                            | 0.92  | 0.65  | 0.71 |
| At4g33780   | putative protein                                | 4.07  | 2.87  | 0.71 |
| At2g39000   | unknown protein                                 | 0.27  | 0.19  | 0.70 |
| At4g23930   | putative protein                                | 0.66  | 0.46  | 0.70 |
| At4g12500   | pEARLI 1-like protein                           | 1.53  | 1.06  | 0.69 |
| At5g42380   | putative protein                                | 0.26  | 0.18  | 0.69 |
| At4g22840   | predicted protein                               | 0.54  | 0.37  | 0.69 |
| At2g26670   | heme oxygenase 1 (HO1)                          | 1.36  | 0.93  | 0.68 |
| At1g54580   | acyl-carrier protein (ACP)                      | 2.15  | 1.47  | 0.68 |
| At3g02030   | hypothetical protein                            | 0.63  | 0.43  | 0.68 |
| At2g01590   | unknown protein                                 | 0.22  | 0.15  | 0.68 |
| At5g06270   | putative protein                                | 1.44  | 0.98  | 0.68 |
| At4g23840   | putative protein                                | 0.34  | 0.23  | 0.68 |
| At2g21170   | putative triosephosphate isomerase              | 0.37  | 0.25  | 0.68 |
| At4g21010   | putative protein                                | 0.89  | 0.6   | 0.67 |
| At2g35370   | glycine decarboxylase complex H-protein         | 1.31  | 0.88  | 0.67 |
| At4q03920   | putative protein                                | 1.31  | 0.88  | 0.67 |
| At4a10810   | putative protein                                | 15.61 | 10.44 | 0.67 |
| At1a17420   | lipoxygenase                                    | 0.24  | 0.16  | 0.67 |
| At1a30910   | hypothetical protein                            | 0.57  | 0.38  | 0.67 |
| At1a02730   | hypothetical protein                            | 0.15  | 0.1   | 0.67 |
| At4q01150   | hypothetical protein                            | 3.39  | 2.26  | 0.67 |
| At1a32420   | hypothetical protein                            | 0.86  | 0.57  | 0.66 |
| At3a50180   |                                                 | 3.42  | 2.26  | 0.66 |
| At5a13630   | cobalamin biosynthesis protein                  | 2.97  | 1.5   | 0.66 |
| At4a34050   | caffeovl-CoA O-methyltransferase - like protein | 1.09  | 0.72  | 0.00 |
| Δt5a48920   |                                                 | 2.03  | 1 34  | 0.66 |
| At5a16620   |                                                 | 0.55  | 0.36  | 0.65 |
| At3a61680   |                                                 | 0.35  | 0.50  | 0.05 |
| At/a22800   |                                                 | 3.07  | 1 08  | 0.03 |
| At5a11550   |                                                 | 3.01  | 1.90  | 0.04 |
| At2a22070   |                                                 | 1 19  | 0.76  | 0.04 |
| A13922970   |                                                 | 1.10  | 1 17  | 0.04 |
| A13920000   |                                                 | 0.20  | 0.25  | 0.04 |
| At2g20520   |                                                 | 0.39  | 0.23  | 0.64 |
| At1 ~ 20120 |                                                 | 2.21  | 0.21  | 0.03 |
| AL1980130   |                                                 | 0.49  | 0.31  | 0.63 |
| At5 ~ 47960 |                                                 | 1.16  | 0.74  | 0.63 |
| At5g47860   | putative protein                                | 0.16  | 0.1   | 0.63 |
| At1g54630   | nypotnetical protein                            | 2.18  | 1.35  | 0.62 |
| At2g44030   | nypotnetical protein                            | 1.83  | 1.13  | 0.62 |
| At2g30950   | putative ftsH chloroplast protease              | 0.81  | 0.5   | 0.62 |
| At2g20020   | hypothetical protein                            | 1.53  | 0.94  | 0.61 |
| At2g47400   | putative chloroplast protein CP12               | 2.88  | 1.76  | 0.61 |
| At2g28760   | putative nucleotide-sugar dehydratase           | 0.72  | 0.44  | 0.61 |
| At5g50280   | putative protein                                | 0.18  | 0.11  | 0.61 |
| At4g03520   | m-type thioredoxin                              | 1.81  | 1.09  | 0.60 |
| At5g05380   | putative protein                                | 0.32  | 0.19  | 0.59 |
| At1g58290   | glutamyl-tRNA reductase                         | 1.54  | 0.91  | 0.59 |
| At4g17600   | Lil3 protein (similar to LHC group of proteins) | 2.33  | 1.37  | 0.59 |
| At2g41180   | unknown protein                                 | 8.69  | 5.1   | 0.59 |

| 3695393   | contains similarity to retroviral aspartyl proteases    | 3.43  | 2.01  | 0.59 |
|-----------|---------------------------------------------------------|-------|-------|------|
| At3g62030 | peptidylprolyl isomerase ROC4                           | 0.93  | 0.54  | 0.58 |
| At1g79050 | replicase                                               | 0.85  | 0.49  | 0.58 |
| At2g35240 | unknown protein                                         | 0.56  | 0.32  | 0.57 |
| At5g27330 | glutamic acid-rich protein                              | 0.93  | 0.53  | 0.57 |
| At2g18920 | hypothetical protein                                    | 0.88  | 0.5   | 0.57 |
| At3g18110 | hypothetical protein                                    | 0.68  | 0.38  | 0.56 |
| At2g06030 | hypothetical protein                                    | 0.18  | 0.1   | 0.56 |
| At4g32020 | putative protein                                        | 0.74  | 0.41  | 0.55 |
| At1g74960 | putative 3-ketoacyl-ACP synthase                        | 0.31  | 0.17  | 0.55 |
| At5g44680 | putative protein                                        | 0.31  | 0.17  | 0.55 |
| At2g28800 | chloroplast membrane protein ALBINO3 (ALB3)             | 0.97  | 0.53  | 0.55 |
| At3g43700 | putative protein                                        | 0.44  | 0.24  | 0.55 |
| At4g32340 | putative protein                                        | 0.83  | 0.45  | 0.54 |
| At5g43930 | putative protein                                        | 0.37  | 0.2   | 0.54 |
| At2g45180 | putative proline-rich protein                           | 7.52  | 4.06  | 0.54 |
| At2g31400 | unknown protein                                         | 0.56  | 0.3   | 0.54 |
| At4q26430 | putative protein                                        | 0.51  | 0.27  | 0.53 |
| At1q74420 | putative xyloglucan fucosyltransferase                  | 0.17  | 0.09  | 0.53 |
| At4a31990 | aspartate aminotransferase                              | 0.34  | 0.18  | 0.53 |
| At1a48860 | hypothetical protein                                    | 0.42  | 0.22  | 0.52 |
| At2a34640 | unknown protein                                         | 0.33  | 0.17  | 0.52 |
| At5a35630 | glutamate-ammonia ligase (EC 6.3.1.2) precursor         | 2.06  | 1.06  | 0.51 |
| At3a66654 | unknown protein                                         | 0.7   | 0.36  | 0.51 |
| At3a16770 | AP2 domain containing protein RAP2.3                    | 1.27  | 0.65  | 0.51 |
| At2a39270 | putative adenvlate kinase                               | 0.83  | 0.42  | 0.51 |
| At1a54780 | proteomics: thylakloid lumen protein                    | 4.3   | 2.13  | 0.50 |
| At1g70350 | hypothetical protein                                    | 0.89  | 0.44  | 0.49 |
| At3q20060 | ubiquitin-conjugating enzyme                            | 0.69  | 0.34  | 0.49 |
| At4a38440 | putative protein                                        | 0.27  | 0.13  | 0.48 |
| At2a27400 | pseudogene                                              | 5     | 2.36  | 0.47 |
| At3q59400 | putative protein                                        | 1 65  | 0.76  | 0.46 |
| At3q17100 | unknown protein                                         | 1.59  | 0.73  | 0.46 |
| At1a21500 | unknown protein                                         | 1.7   | 0.78  | 0.46 |
| At3q06330 | unknown protein                                         | 1.33  | 0.61  | 0.46 |
| At5a54190 | NADPH:protochlorophyllide oxidoreductase A              | 1.6   | 0.73  | 0.46 |
| At3q23670 | hypothetical protein                                    | 1.04  | 0.47  | 0.45 |
| At4a26500 | putative protein                                        | 0.94  | 0.42  | 0.45 |
| At3q07780 | unknown protein                                         | 0.23  | 0.1   | 0.43 |
| At1a29810 | hypothetical protein                                    | 39.05 | 16.74 | 0.43 |
| At5q44230 | selenium-binding protein-like                           | 0.07  | 0.03  | 0.43 |
| At4a34350 | putative protein                                        | 3.85  | 1.6   | 0.42 |
| At5q47840 |                                                         | 0.53  | 0.22  | 0.42 |
| At4a30620 |                                                         | 1 67  | 0.68  | 0.41 |
| At3q12120 | hypothetical protein                                    | 5.4   | 2.15  | 0.40 |
| At3q09080 | hypothetical protein                                    | 17 64 | 6.97  | 0.40 |
| At1054500 | rubredoxin                                              | 0.99  | 0.39  | 0.39 |
| At1a12090 | hypothetical protein                                    | 4.93  | 1.91  | 0.39 |
| At3a26580 | unknown protein                                         | 5 44  | 21    | 0.00 |
| At1002560 | ATP-dependent Clp protease proteolytic subunit (nClpP1) | 1.23  | 0.47  | 0.38 |
| At5g05590 | phosphoribosylanthranilate isomerase                    | 0.66  | 0.25  | 0.38 |
| At1g05860 | hypothetical protein                                    | 0.48  | 0.18  | 0.38 |

| At5g2014 | 0 putative protein                             | 0.08  | 0.03 | 0.38 |
|----------|------------------------------------------------|-------|------|------|
| At1g2434 | 0 hypothetical protein                         | 1.53  | 0.56 | 0.37 |
| At5g4830 | 0 ADPG pyrophosphorylase small subunit         | 0.33  | 0.11 | 0.33 |
| At5g5629 | 0 peroxisomal targeting signal type 1 receptor | 3.31  | 1.04 | 0.31 |
| At4g0258 | 0 predicted NADH dehydrogenase 24 kD subunit   | 0.3   | 0.09 | 0.30 |
| At2g3641 | 0 unknown protein                              | 1.01  | 0.3  | 0.30 |
| At1g4888 | 0 hypothetical protein                         | 2.24  | 0.65 | 0.29 |
| At2g1489 | 0 putative proline-rich protein                | 1.42  | 0.4  | 0.28 |
| At2g1589 | 0 unknown protein                              | 4.34  | 1.19 | 0.27 |
| At2g1375 | 0 En/Spm-like transposon protein               | 4.45  | 1.22 | 0.27 |
| At1g0513 | 0 unknown protein                              | 24.36 | 5.96 | 0.24 |
| At3g2674 | 0 light regulated protein                      | 24.38 | 5.73 | 0.24 |
| At5g5241 | 0 unknown protein                              | 4.03  | 0.88 | 0.22 |
|          |                                                |       |      |      |

## DANKSAGUNG

Ich danke Herrn Professor Dr. F. Salamini, daß er mir die Möglichkeit gegeben hat, diese Doktorarbeit am Max-Planck-Institut für Züchtungsforschung anzufertigen.

Ich danke Herrn Dr. D. Leister für die Themenstellung, die Betreuung der Arbeit und die vielen Hilfen, die zum Gelingen dieser Arbeit beigetragen haben.

Ich danke externen Kolaborationspartnern für ihre Hilfe: Herrn Dr. P. Jahns für die HPLC-Analysen und die Anleitung zu den P700-Messungen; Herrn Dr. J. Meurer für die Antikörper gegen die ATPase-a und –b Untereinheit, sowie den Western mit der ATPase- $\delta$ Untereinheit und Herrn Prof. Dr. F. A. Wollmann, seinen Mitarbeitern und P. Pesaresi für die Hilfe bei den Messungen der Fluoreszenz-Induktionskinetiken und des Membranpotentials.

Ich danke meinen Kollegen Joachim Kurth, Angela Dietzmann, Claudio Varotto, Martin Weigel, Erik Richly, Alexander Biehl, Paolo Pesaresi und Ania Laskowska.

Besonders danke ich Joachim und Claudio für die vielen Diskussionen, Erik für die Hilfe bei der Bioinformatik und Angela für die vielen kleinen Hilfen im Labor.

Ganz besonderer Dank gilt meinen Eltern, die mich selten zu sehen bekamen und trotzdem auch in diesem Lebensabschnitt immer bei mir waren.

Außerdem danke ich meiner Tante Lotte, die immer sehr viel Anteil an meiner Doktorabeit genommen hat und leider nicht mehr erleben durfte wie sie fertig wurde.

Besonders danke ich auch meinem Bruder Carsten für die stete ärztliche Versorgung meines Computers und den Rückhalt, den er mir immer wieder aufs neue gegeben hat.

Ich danke ganz besonders Tim dafür, daß er immer für mich da war.

As one shepherd said to the other.....

## Eidesstattliche Erklärung

Hiermit erkläre ich, daß ich die vorliegende Dissertation selbstständig und mit keinen anderen, als den hier angegebenen Quellen und Hilfmittels angefertigt habe.

Daniela Sabine Maiwald

Düsseldorf, den 02.07.03