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CHAPTER 1

Introduction

With the beginning of the 21%¢ century, modern physics is split into a great
many, highly specialized disciplines. Each of them comes with a variety of thrilling
questions, fascinating discoveries and technological promises. Solid state physics
has provided great insight into the mechanisms of cristalline many-body systems,
and given modern society the gift of tremendous computing power. Plasma physics
studies the inner stucture of stars, illuminates the streets at night and upholds the
half-century old dream of civil nuclear fusion, the sun on earth. Atomic and molec-
ular physics are interwoven with modern chemistry and have had such remarkable
outcomes as Bose-Einstein condensation or the laser. The list could be extended
for many pages, and there are unnumbered potential applications within the grasp
of a lifetime.

From this point of view, high energy or particle physics was always like a faint
glimpse into the distant future. Exploring the very foundation of all matter, its
potent experimental approach is the particle accelerator. Per-particle energies far
ahead of any other physical field have always been the only way to expand the
horizon of the knowledge about matter’s inner structure. The Large Hadron Col-
lider located at CERN is the most prominent particle accelerator experiment. Here,
interdisciplinary knowledge and cutting-edge technology manifest in the largest ma-
chine ever built by man. In a 27 km circumference underground ring, protons or
lead ions are pushed to up to 7 TeV energy before collision. Particle accelera-
tors are also present in many smaller applications, e.g. material testing or nuclide
generation for medical applications.

Unfortunately, the electro-magnetic accelerator concept comes with a number
of problems. When built as a linear accelerator without curvature, the travelling
distance and therefore the final energy of the particles is limited. When designed as
aring, it is a lot more economic. But as particles with curved trajectories lose energy
through synchrotron radiation, there is an upper boundary to their final energy. On
the other hand, materials interacting with high fields eventually become destroyed
by break-down and ionization, which limits the accelerating fields to a few MV /m.
It is evident that, to keep up with the need for ever increasing particle energies,
accelerators must soon enter a new technological stage. Additionally, devices for
medical or industrial applications are expensive, which gives rise to the question
for a cheaper alternative.

A very interesting new accelerator concept comes from plasma physics. In a
quasineutral plasma, a displacement of electrons against the heavier ion background
leads to formation of strong electric fields. While the (at least 1836 times heavier)
ions do not move much, the electrons are drawn back, exciting new fields. This
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effect is known as plasma oscillation, and it happens with the plasma frequency

4dme?n,
Wy = )
P e

This equation is given in cgs units, with the electron number density n., elementary
charge e and electron mass m.. There is another process closely related to plasma
oscillations. If the electron displacement is caused by some driver moving with a
velocity close to ¢, local oscillations are excited along its path. The longitudinal
electric field takes on the structure of a travelling wave; this effect is called a wake
field. What makes it that interesting is the fact that its phases travel with about the
driver’s speed, and that amplitudes of 100 GV/m can be obtained. This means it
can be used as an accelerator by injecting other particles into it. [1, 2, 3, 4, 5, 6, 7]
Since its electric field is orders of magnitude higher, it can be far more efficient than
conventional electromagnetic accelerator devices. The drivers for wake fields can
be relativistic laser pulses, electron or proton bunches [8, 9, 10] as short as the

plasma wave length

2mc
)\p == 7

Particle bunches excite wake fields directly through their surrounding fields. Laser
pulses with relativistic intensities
eA

mecC
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push the background electrons via ponderomotive forces. By now, this technique
is regularly used to accelerate electrons to GeV energies [11, 6, 7, 12, 13, 14, 2].

The Laser wake-field accelerator (LWFA) concept is an active field of research.
Since the invention of the Chirped Pulse Amplification [15], high power laser sys-
tems are present in many research facilities. They reach intensities > 102°W /cm?2,
and pulse lengths in the range of a few femtoseconds. These systems can be built
with relatively small sizes, often filling just a room. Hence, they promise to become
an efficient alternative to the bulky and expensive electromagnetic accelerators.

Since its first proposal [1], the LWFA scheme has seen great progress: Electrons
can be externally injected into the wake [16], or even become self-injected due to
wave-breaking [12]. With even higher intensities (ap 2 5), the wake field enters a
new regime, where a region behind the pulse becomes entirely free of electrons. This
situation is called the bubble regime [11], involving heavy wave-breaking and the
possibility of strong self-injection. Additionally, the efficiency of the energy transfer
from the driver to the accelerated particles, known as the transformer ratio [17],
has been investigated.

A main drawback of laser wake-field accelerators is the fact that dispersion
makes the pulse slightly slower than c. It causes the injected particles to eventually
leave the accelerating field phase of the wake, and become decelerated instead. This
limiting effect is known as dephasing; it puts an upper bound to the acceleration
length.

Particle beams as drivers do not suffer from dispersion, but also steadily lose
their energy because of the wake field. Because of this transformer ratio limit[4, 18],
the accelerated particles cannot gain more energy than the driver initially had.
Since protons can be pushed towards high energies easier than electrons, proton
driven plasma wake field acceleration can be used to accelerate electrons [3, 19, 20].
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Such an experiment is currently being built up at CERN, using 450 GeV proton
bunches from the Super Proton Synchrotron (SPS) in order to drive the wake field.

However, there is a big challenge, which also greatly dominates the research
presented in this thesis: Even for thin plasmas of density 7 - 10'%cm ™3, the proton
bunches achievable today are much longer than a plasma wave length A\, = 1.2mm.
A way out of this problem is self-modulation. In the 80’s of the twentieth century,
the problem for laser wake field acceleration was very much the same. Here, the self-
modulation of long laser pulses was utilized to resonantly drive wake fields[21]. A
long proton beam propagating through plasma is also subject to the self-modulation
instability [22, 23, 19]. It works as follows: Even a slight wake field will impose
a force on the protons, slowly shifting them aside. Because of this, the proton
beam becomes longitudinally modulated, driving the wake field even stronger. This
effect can be utilized to make proton driven wake field acceleration feasible; it
has the easily recognizable name self-modulated proton driven plasma wake field
acceleration (SM-PDPWFA)[24]. The main part of this thesis will focus on the
SM-PDPWFA effect and the challenges in simulating it. To avoid the dephasing
problem, it is crucial to know - and control - the velocity of the accelerating phases
of the wake field. It turns out that this phase velocity is strongly connected to
the growth rate of the instability. Also, it can be modified by introducing a slight
longitudinal gradient into the plasma density. However, reliable simulations of this
regime are very difficult.

As most other physical fields, modern plasma physics relies heavily on computer
simulations. Between analytical theories with their limited area of validity, and ex-
periments with their few accessible measurable quantities, they fill the gap, giving
access to every quantity at all times. With the advent of TFlop/s scale parallel
computers commonly available, they can handle problems of fluid dynamics, quan-
tum physics, many-body systems, and even molecular biology and chemistry. The
most important simulation concept for non-equilibrium plasmas (and wake fields
in particular) is the Particle-in-cell (PIC) method (see e.g. [25, 26]). Going one
step further than hydrodynamics approaches, it constitutes a way to solve Vlasov’s
equation

O v f+ L (BtvxB)V,f =0
ot m

directly. This equation describes the temporal evolution of the phase space density
of a particle species in the collisionless limit. While the simplified fluid equations
reduce the dimension of the problem, failing e.g. in modeling wave-breaking, the
Vlasov equation works on the full six-dimensional phase space. The problem of this
partial differential equation is that maintaining a 6D grid with reasonable resolution
is hardly possible even on the largest supercomputers available. Here, the PIC algo-
rithm provides an elegant way to greatly reduce the computational effort. Instead
of the 6D mesh, a large number of so-called macroparticles is defined which repre-
sent the plasma. These particles are moved by solving kinetic equations of motion
for their center of mass. At the same moment, Maxwell’s equations are solved on a
3D grid. A moving particle acts back on the fields by creating currents on the cell
boundaries, and the momentum of a particle is updated according to Lorentz forces.
This simulation concept has been implemented in the form of a great many codes
like OSIRIS[27], OOPIC[28], WARP[29], VORPAL[30], LSP[31], VLPL[32] and
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many more. It is successfully used for computations in laser-plasma and plasma-
plasma interaction, magnetic and inertial confinement fusion, particle accelerator
and electron gun design (e.g. [33]), just to name a few. This work is mainly based
on the particle-in-cell method and its variations, namely the Virtual Laser Plasma
Laboratory (VLPL) code.

However, the numerical error of PIC can significantly influence the quality
of simulations: There is numerical dispersion of electromagnetic waves, artificial
noise due to sub-optimal phase space sampling, and diffusion effects because of
interpolation errors. Also, as most PIC codes use explicit time integrators, their
time steps most obey a Courant-Friedrichs-Levy (CFL) stability condition, which
can cause problems e.g. in the presence of high plasma densities. PIC simulations
of the abovementioned SM-PDPWFA effect are particularly difficult, because the
length of the driver corresponds to 200-500 plasma wave lengths. Repeated grid-
to-particle interpolations cause a continuous loss of information. This manifests as
numerical dispersion, unphysical broadening of the wake and damping. In its early
stage, the self-modulation instability is very sensitive, and these problems of PIC
can falsify the result entirely. On the other hand, methods of computational fluid
dynamics can be designed to avoid these issues.

The most auspicious solution is to combine the best of both worlds, by im-
plementing a PIC-hydrodynamic hybrid code[34, 31, 35]. Here, a plasma can
be represented by two means: First, as PIC macroparticles, with all the known
benefits and shortcomings. Second, as a fluid, storing the relevant variables on a
grid and using the computational methods for hyperbolic differential equations. At
the expense of physical generality, fluid schemes are usually much faster and more
accurate.

Within this work, two hybrid code concepts are presented. The first one uses a
linearized fluid model, which models local plasma oscillations. It employs a special
time integration scheme, a so-called mollified impulse method exponential integra-
tor. This integrator is unconditionally stable regardless of the plasma frequency,
and can be used for the simulation of high density plasmas. It is demonstrated that
it is well suited e.g. for the Target Normal Sheath Acceleration (TNSA) effect[36].
The latter is a promising idea for laser-based proton acceleration: A highly intense
laser pulse is incident onto a specially prepared foil, heats electrons from the front
surface and makes them propagate through that foil. Leaving the back surface, they
create strong electric fields, which then dissolve protons from the surface. Since the
foil has a relatively high density, the stability condition

At< 2
Wp
causes unnessecary computational load, and can be avoided with the exponential
integrator.

The second hybrid module uses a non-linear cold-fluid model, whose geometry
and spatial schemes have been designed for lossless wake field modeling. After
explaining the technical difficulties (sec. 6.4, [37]) its implementation details will
be presented, and its correctness is demonstrated using numerical analysis and
a variety of physical examples. This hybrid module gives VLPL the capability
to accurately simulate the SM-PDPWFA effect. Multiple large-scale hybrid SM-
PDPWFA simulations have been carried out, and given insights into the spatio-
temporal evolution of the wake phase velocity. We show that the phase velocity
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develops in a way beneficial to particle injection, and how it can even be optimized.
Also, we demonstrate that electron side injection into the wake works very robustly
and efficiently.

This work can be viewed as consisting of one medium-sized and one large-
sized project. The first one is the development, implementation, and benchmark
of the exponential integrator-based linear hybrid module (chap.5). The second,
largest project consists of the design, implementation and testing of the non-linear
H-VLPL3D hybrid module (shown in chap.6); afterwards, this code is used for the
investigation of the self-modulated proton driven wake field acceleration (chap.7).



CHAPTER 2

Principles of plasma physics

In this chapter, the basic equations of classical, ideal, relativistic plasma dy-
namics are derived and explained. We will briefly show the six-dimensional Vlasov
equation in an intuitive manner, and depict how its integral moments lead to the
well-known fluid equations. Both sets of equations will be of fundamental impor-
tance later in this thesis.

2.1. The Vlasov equation

For a wide range of setups, collisions between particles can be neglected, so one
can derive a macroscopical plasma model.

For a particle species j, let f; : I' = R be its phase space distribution function,
that is to say, the particle density defined on the 6-dimensional (in 3D geometry)
vector space I' := {(x,v) : x € R3,v € R3} consisting of positions and momenta.
We denote the per-particle mass with m;, and the per-particle charge with g;.
Although the time evolution for this distribution function can be derived from
kinetic equations of motion, we will follow a more intuitive approach here.

Without taking into account effects like ionisation or recombination, we can
assume that the total number of particles

N;i(t) = [ fi(x,v,t)d*xd*v
/

is a constant. Thus, there has to be a conservation law, a phase space continuity
equation, governing the time behaviour of f;. Conservation laws always take the
form

0

=U+V-(F{U))=0

SU+ V- (FU) =0,

with U : Q x [to,t1] — R™ and F : R® — R*" being a flux vector field. For the

case of the function f;, it reads

(2.1.1) %fj + Vo (Fu(f3)) + Vo - (Fu(f5) = 0.

Now, needing an expression for the fluxes F,, and F,, we consider the equations of
motion for a single particle, which read

X=vVv
(2.1.2) v=Y (E+vxB).
m;

10
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This means that the material is advected by equation (2.1.1). The velocity field for
this advection process must be v for the spatial directions and (g;/m;) (E + v x B)
for the momentum directions, see figure 2.1.1.

So, the flux fields can be written as follows:

(2.1.3) Fo(f5) = v fj,
(2.1.4) Fy(f;) = % (E+vxB)f

Inserting into 2.1.1 yields the Vlasov equation

9 ,
afijVx'(ij)JrVu- <gl]j(E+v><B)fj)

0 q;
(2.1.5) =—[i+VvVefi+ L (E+vxB)V,f; =0
ot J J m; J

This is the equation describing the
behaviour of a collisionless fluid under v
the influence of electromagnetic fields. A
It says that for each dynamical trajec-
tory (x(t),v(t)) obeying the equations of
motion (2.1.2), f;(x(t),v(t),t) is a con-
stant. The Vlasov equation, together —
with Maxwell’s equations, gives a com- ‘FU = (E+vx B)fj‘
plete description of the behaviour of a T
plasma in the collisionless limit.

It shall be pointed out that this equa-
tion is defined on a 6-dimensional phase
space. This makes analytical calculations
as well as numerical approaches very dif- >
ficult. In theory, it is possible to imple- T
ment so-called Vlasov codes, which solve
(2.1.5) numerically. Unfortunately, the
high dimension of the problem renders FIGURE
all direct grid-based efforts, using state- 2.1.1. Tlustration of
of-the-art CPUs, hopeless. This major the fluxes of the Vlasov
difficulty gives rise to the particle-in-cell Conservation Law
(PIC) method and fluid dynamical treat-
ments, which will both be discussed comprehensively in this thesis.

Nevertheless, a large number of effects in plasma physics can be understood
using moment equations of (2.1.5), which are much simpler to handle. Also, since
one of the main parts of this thesis focuses on numerical fluid dynamics for plasmas,
these moment equations will be derived in the next chapter.

2.2. Moment equations

For many distributions on the measure space (Q,.4,), 2 C R", moments
can be defined. Well known distribution moments include the center of mass and
inertia tensor for solid objects, or the expected value and the covariance matrix for
probability distributions.
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For phase space distributions, computing integral moments of just the v part
leads to equations for characteristic densities: The particle density p, the local mean
velocity density pu, and even more. This way, the dimensionality of the problem
can be greatly reduced.

We start with the Vlasov equation for a particle species j,

9 ,
afj +v Vo fi+ :TJJ (E+vxB)V,f; =0,
defined on the vector space I' =: I';, x I';,, where the I';, denotes the spatial part,
and I, is for the velocity subspace.
Let us define the densities mentioned above, namely

e the density p; := [ f; d’v,
Iy
e the local mean velocity (pu); := [ vf;d*v and
Ty
e the pressure tensor P; :=m; [ (v —u;)(v —u;)T f; dPv.
r,

First, by averaging the Vlasov equation over velocities, we get the continuity equa-
tion

5P TV (pv); =0

as the zeroth moment of the Vlasov equation.

For the first moment, we must compute the integral

(2.2.1) /v {a‘f]—vafoj-Fq](E—kv X B)Tvaj dv =0.
ot m;
Ty
We get the conservation law for the velocity density of a charged fluid,
9 Ty _ Pi% P
(2.2.2) ot (pu); + Va - (pjujuj) = m, (E+u; xB) -V, m;
In most cases, one works with the assumption of isotropic pressure. This means
that
where I denotes the unit tensor. Eq. (2.2.2) can then be simplified to

9 ™ _ Pid 1
ot (pu) j + Vo - (pjujuy) = m; (E+u; xB) m; Vapj.

This is the conservative form of the momentum equation. It can also be formulated
using so-called primitive variables:

(E+UjXB)—

0 q
Zouy (0 Vy)uy = — —
m; P

ot
These derivations can also be found in [38].

prj.



CHAPTER 3

Principles of the particle-in-cell method

3.1. Concept

The field of plasma physics offers a huge richness of interesting effects, com-
plex phenomena and useful technical applications. In high energy density plasma
research, one studies e.g. the interaction of extremely intense laser pulses (I >
10'*W /cm?) and particle bunches with plasma. In the presence of laser intensities
of more than 10'°-10'6 W /cm?, effects like barrier suppression ionization [39] or
multiphoton ionization [40] cause a gas to immediately enter plasma state.

Such scenarios typically involve large numbers of electrons and highly nonlinear
effects - pure analytical models are possible, but very difficult, involving severe
approximations and restrictions. In order to gain a deep understanding of the
phenomena, simulations are indispensable.

Within the problems investigated in this thesis, collective electromagnetic phe-
nomena are dominant. Densities are too low for quantum effects to be important,
and collisions can be included in a simplified fashion, if necessary.

Therefore, the relevant physical laws are the dimensionless Maxwell equations,

FIGURE 3.1.1. Three-dimensional particle-in-cell simulation of the
bubble regime of laser wake field acceleration. The yellow isosurface
represents the high intensity laser pulse, which completely pushes all
electrons away (blow-out regime), creating a bubble (blue isosurface).
This extremely nonlinear effect requires powerful simulation tools, which
can self-consistently treat non-equilibrium phenomena.

13
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(3.1.1) V-E = o
(3.1.2) V-B = 0
o
(3.1.3) 5E = VxB-J
o
(3.1.4) 5B = ~VxE

and the relativistic version of Vlasov’s equation,

0
(3.1.5) 50 +vI'Vefi+¢; (E4+v xB)V,f; =0,

where
p p

v(p) == = ———=
v V1+p?
and p is the relativistic momentum, given in units of mc.
Egs. (3.1.1)-(3.1.2) can be simplified even more: As it is generally known,
putting together (3.1.1) and (3.1.3) yields the charge continuity equation

0
1. = J=0.
(3.1.6) 5P TV 0

Conversely, if the simulation system we will use satisfies (3.1.6), thus conserving
the charges, it holds

0 0
gy E=VI=g0
0

EV'B—O.

This means that it is not necessary to repeatedly solve (3.1.1) and (3.1.2). If they
were fulfilled at the very beginning of the simulation, and our scheme satisfies
(3.1.6), they will always be fulfilled. We end up with

(3.1.7) %E = VxB-1J
3.1.8 98 - _vxE
ot
0
(3.1.9) 5l = VIVafi = (B4 v xB)V,f;.

In many setups of laser-plasma and plasma-plasma interaction, local thermal equi-
librium cannot be assumed, i.e. in general, momentum distributions are non-
gaussian. Eq. 3.1.9 could in theory be solved using finite-volume fluid methods
[41, 42, 43, 44, 45| or semi-Lagrange schemes [46], but requires a six-dimensional
mesh for 3D physics. Apart from being highly inefficient, even the most powerful
supercomputers available today will fail at simulating such a mesh with realistic
resolution.
How can this computational problem be reduced?
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FIGURE 3.1.2. The left picture shows a typical phase space distribu-
tion of a 1D wake field. This distribution is then represented by finite
sized macroparticles (right picture).

Looking closely at typical phase space diagrams reveals a possible solution: The
actual plasma covers only a very tiny subset of the phase space. An equidistant
grid on a rectangular fraction of I' =T', x I';, is not necessary at all.

The idea of the particle-in-cell method is to represent the plasma with macro-
particles, statistically populating the phase space with a finite number of samples.

This approach can be viewed as a lagrangian model, in contrast to eulerian
models: Instead of discretizing partial differential equations for the phase space
distribution functions, we track trajectories of small charge bunches. Thus, the
function f; is approximated as

N
f] ~ Z thsph(x —Xn, P — pn)7
n=1
where IV; is the total number of macroparticles of the species j, WPh is a weighting

coefficient, and SP" specifies the shape function of a particle. In the widely used
cloud-in-cell approach, we set

(3.1.10) SPh(x,p): =

17 if |x0¢|< A§a7a:x7yaz
i(p) . :
0 otherwise

The Dirac delta distribution in (3.1.10) simply means that one particle only has
one momentum. At the same time, it is smeared out in the spatial coordinates,
with a rectangular shape. In the actual PIC implementation, we store x,, p, and
the weight WP for each particle. Plasma movement is then modeled by solving
the equations of motion for each particle:
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9 Pr
3.1.11 O, =
( ) 6tx mj\/ler%
0

This is done by interpolating the electric and magnetic field onto the particles’
center of mass, and using them in order to update p,,. With the new momentum
information, the particle is then pushed to a new position, creating a current density

Juim [ WIS x = x,(0).p  pa(t).
I'x
That current density acts back on the grid-represented electric field.

Although the basic concept of the PIC algorithm can be depicted quickly, it
is necessary to explain its components with more detail. In the next chapter, we
will see how the self-consistent grid-based EM field solver works. Chapter 3.7 then
explains how particles are arranged, pushed, moved and how their currents must
be computed.

3.2. The Finite Difference Time Domain (FDTD) method

Full electromagnetic Particle-in-Cell simulation codes always feature a self-
consistent description of electric and magnetic fields involved. This means that
the full Maxwell’s equations are solved in the time domain. There are no sim-
plifications, or steady-state solutions such as Coulombs law for particle-particle
interactions.

This self-consistent modeling is one of the features making the PIC method
that powerful and versatile. It enables precise simulations of few-cycle laser pulses,
non-equilibrium electrical and magnetic phenomena, microwave devices and many
more.

In this section, we will focus on the FDTD method used in the VLPL code.
It is the most prominent, important, and by far most widely used electromagnetic
solution technique available. Since the scientific community working with FDTD
counts thousands of contributors, the method is well estabilished and tested with
good mathematical foundation, and offers a wide range of possible extensions. Some
of these extensions will also be discussed in this thesis.

The basic concept of FDTD was first proposed by Kane Yee in 1966 [47]. Tt
addresses solving the equations

B
5E = VxB
0

(3.2.1) 7B = ~VxE

The design takes into account the fact that the right-hand side only involves curls
of vector fields, and that the right-hand side for the E-components does not depend
onkE itself. This suggests the use of numerical splitting schemes as well as staggered
and leap-frog schemes. So, the algorithm consists of

(1) Defining the computational domain and creating a rectangular grid.
(2) Storing the full E- and H-fields for each grid cell.
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FIGURE 3.2.1. Structure of the Yee grid, where electric field compo-
nents are defined on the cell faces, while magnetic fields point along the
edges.

(3) Employing a special staggered space discretization scheme for the field
components.
(4) Using a Strang splitting or leap-frog scheme for time integration.

Modern Particle-in-Cell simulation codes always feature a self-consistent descrip-
tion of electric and magnetic fields involved. This means that the full Maxwell’s
equations are solved in time. There are no simplifications, or steady-state solutions
such as Coulombs law for particle-particle interactions.

This self-consistent modeling is one of the features making the PIC method
that powerful and versatile. It enables precise simulations of few-cycle laser pulses,
non-equilibrium electrical and magnetic phenomena, microwave devices and many
more.

In this section, we will focus on the FDTD method used in the VLPL code.
It is the most prominent, important, and by far most widely used electromagnetic
solution technique available. Since the scientific community working with FDTD
counts thousands of contributors, the method is well estabilished and tested with
good mathematical foundation, and offers a wide range of possible extensions. Some
of these extensions will also be discussed in this thesis.

3.3. Spatial discretization

The basic spatial discretization of the Yee FDTD scheme works as depicted
in figure 3.2.1. Intuitively, it might seem convenient to put all the fields at the
same position in the cell center. Unfortunately, such a scheme would lead to large
numerical errors and dispersion.

Instead, the field components are separated, with E components located at the
cell faces, and B components at the edges. Regarding those virtual positions, one
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often writes the discretized field components as follows:

Bolijryerys Bylivg goerds Belivg jugn

Bz|i+%,j,k’ By|i,j+%,ka B, i,4, k+3-

These quantities are defined on a rectangular grid

G :={0..n; — 1} x {0..n,, — 1} x {0..n, — 1} C Z°.

Note that the shifted indices represent the field component’s position in the cell.
This configuration must not be mistaken with the setup in the actual implemen-
tation: The choice of the virtual grid configuration has no impact on the way the
variables are stored in memory. It just serves as a necessary convention for the
numerical schemes employed.

For these variables, we can now easily define a symmetric, second order ap-
proximation for the curl operators.

0yB, — 0,8y
VxB=| 0.B,—0.B,
0By — 0B,
{
T« B ._ BZ'z‘,j+1,k+% _Bz|m‘,k+% By|i,j+%,k+1 _By|i,j+%,k
(V x )z|i7j+%,k+% - Ay - Az
(3.3.1) :dsz|i’j+%7k+% fdsz|l.7j+%7,€+%,

with the other components defined analogously.
The symmetric finite difference operators d, are defined as follows:

- 1
dw,f|a,b,c :E (f‘aJr%,b,c - f|a7%,b7c)

Czyf|a7b,c :Aiy (f a,b—%,c)

A 1
dzf'mb,c :E (fla,b,c-&-% - f|a,b7c—%) :

Using this appoximation for the other components similarly leads to the semi-
discrete Maxwell’s equations:

a,b+%,c - f

(3.3.2)
Er‘i,j+§,k+% C{sz‘i,jJr%,kJr% _CEsz‘iyj+%,k+% Jz‘i,j+%,k+%
O Ey|i+%,j, k+3 | = dzB93|i+%,j,k+% _dsz|i+%,j, k1|~ Jy|i+%,j, k+3
Ealiy1 41k dlBy‘i+%,j+%,k *Czwa|i+%,j+%,k Teliv L jaln
=VxB-1J
(3.3.3)
Balitrs,jn dyPelipy g~ GBuliys
Ot By|i’j+%7k =— UizEz'i,jJr%,k7&1Ez‘i,j+%,k = -V xE.
Bzl ;, kt g dA””E?!‘i,j, k+1 _‘ZyExh,j, k+1

Note that, when computing a discretized curl, the scheme applies a symmetric finite
difference using a stencil involving only two cells. This is not possible with a non-
staggered grid, as symmetric finite differences would ’jump’ over the middle cell
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of a three-cell stencil. This fact has major consequences for the behaviour of the
scheme, as will be shown later.

3.4. Time discretization

As soon as one has obtained a stable semi-discrete scheme for a partial differ-
ential equation, the latter transform into an ordinary differential equation (ODE)
with just a very large dimension. Thus, one can try to use any stable ODE solver
on it, e.g. Runge-Kutta methods or multistep methods. This is a common practice
in the numerical solution of PDEs.

However, looking closely at formulas (3.3.2,3.3.3) shows an interesting feature:
The right-hand side for E does not depend on E itself, while the right-hand side
for B again does not depend on B. If we could ignore the second line, which means
B = const, we could solve (3.3.2) exactly, and vice versa.

This means that Maxwell’s equations offer an excellent opportunity for Oper-
ator Splitting schemes. These schemes can constitute elegant solvers for ODEs,
exhibiting many advantages. Although a complete description is not possible here
(please see, e.g. [48]), we shall briefly summarize the concept.

Let there be an initial value problem

(3.4.1) v =f(y) + 9(y), ¥(0) = o

which can not be solved analytically for the given conditions, but whose right-hand
side can be separated as above. We define the ezact flow

D4 (yo) == y(t);

in other words, the mapping &, : R” — R"™ turns some initial condition yg into the
exact solution at time .

In order to introduce the operator splitting approach, we split (3.4.1) into two
different equations, ignoring either f(y) or g(y):

(3.4.2) v =f(), y(0) = yo
(3.4.3) ¥ =9(y), y(0) = yo

Then we can define exact flows @], ®¢ analogously for (3.4.2) and (3.4.3).
Splitting methods are most useful for the case where there is no exact solution

for (3.4.1), but exact solutions for (3.4.2,3.4.3) are easy. One can then construct

numerical solvers by concatenating the exact flows of the split equations, e.g.

(3.4.4) Dy(yo) ~ ¢r" (yo) = ] (Y (o))

This method is called the Lie-Trotter splitting. It can be shown to be 1st order
convergent, being just of academic interest at the moment.

A more important alternative, which will turn out to be VLPL’s Maxwell solver,
is the Strang splitting:

(3.4.5) ®4(y0) ~ 97 " (yo) 1= @ 5 (DY (] 1 (10))) = D] 0 B 0 B 1 (wo).



3.5. PROPERTIES OF THE FDTD YEE SCHEME: STABILITY 20

It is one of the most important methods in computational physics, having many
names in different fields of research. In molecular dynamics, it takes the form of
the Stormer-Verlet scheme, while it can also be rewritten as the well-known Leap-
Frog scheme. Its order of convergence is 2, and one of its useful properties is its
symmetry, meaning that if

y1 = 07" (yo)
then

o =92 ().
In other words, the Strang splitting is a reversible scheme. This yields important
consequences for its energy conservation.

Let us come back to the Maxwell equations. We take the semi-discrete formu-
lation (3.3.2,3.3.3) and apply the Strang splitting, obtaining

1 -

(3.4.6) Btz =B" — SALV X E"

(3.4.7) E"t! =E" + AtV x B2 — At J" 3
1 -

(3.4.8) B3 =B — FAV x BT

This is one of the most widely used FDTD electromagnetic field solvers, and, at
the same time, the field solver of the PIC code VLPL.

At this point, it appears convenient to characterize this scheme and investigate
its properties. Since it is explicit, one can expect it to have some stability condition.
Furthermore, we might want to quantify its approximation error. These questions
shall be answered by linear stability and dispersion analysis in the next chapter.

3.5. Properties of the FDTD Yee scheme: Stability

As is generally known, plain waves like

E(x,t) = Ege(kx—wt)
B(x,t) = Bpe!(k*7h),

Eq Lk, BgLk,with arbitrarily large wave vectors k are solutions to (3.2.1) in vac-
uum, with the dispersion relation

w? = Ak

Waves, apart from standing waves, always mean local coupled oscillations. Ex-
perience tells us that explicit time integrators will either resolve these oscillations
or explode. Hence, we expect the stability of the scheme to be connected to the
highest wave vector which can occur. In the semi-discrete scheme (3.3.2,3.3.3), the
set of possible k is, fortunately, bounded, but grows with decreasing grid steps
Az, Ay, Az.

The Courant-Friedrichs-Levy (CFL) stability condition can be derived via the
tool of Von Neumann linear stability analysis. It works as a sufficient stability
condition only for linear PDEs, and the orders of derivatives must not exceed two,
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but the problem at hand satisfies these requirements. In this chapter, we will
perform a Von Neumann linear stability analysis of the Maxwell solver, and derive
a stability condition.

Without the current term J"‘*‘%, and using periodic boundary conditions, the
Strang splitting step (3.4.6)-(3.4.8) can be viewed as a linear operator S : R6%="sm= —
R67=mym= on the field vector (E™, B™) such that

B En+1

n
A Ty Epli jrd ket
n+1 n
I I Eylivy e+t
n+1 n
E7 |i+%,j+%’k s E |i+%,j+%,k
Bg+1|i+l i, k Bn| 14k
3105 zlit+3,7,
n+1 n
By 1|m‘+%,k Byli j+i.k
Bl 1 B"|. . 1
z |“”“+5 4 (i.5.k)eg L z |Wv’“+§ 4 (i,5,k)€g

For stability, we require the numerical solution to be bounded for all times, which
is fulfilled if the operator norm||S||2 is less than one.

Every field F' € R6"="™": can be decomposed into plane waves by discrete 3D
fourier transform (which form an orthonormal basis on R%%="v"=), Thus, without
loss of generality, we will now investigate what effect the operator S has on a plane
wave

» Ik'r, )
Bul},y = Bik)e T ao,
® Ikr, . 1,
By|2j+%’k = B;(k)e 1J+2,k’
? Ik-r, .
(351) Em‘;i]+%7k+% = E;}(k)e Fz,]+%,k+%7

with the other components defined analogously. The positions are defined as

1Ax
ri k= | JAy
kAz

From Lemma 5 in the Appendix, we see that the operator S has the eigenvalues

As = [2Vat —a?—2a% +1,2Vat — a2 —2a% 4+ 1,1],
with azai—i—ai—&—a?, o = %.
For o? < 1, the term va? — a2 becomes purely imaginary, while —2a2 + 1 is
always real, hence

Ms1ol> =4 (a®—a*) + (222 +1)°
=1.

This is the important stability result for the Strang-split Yee EM algorithm. It tells
us that, given the condition

(3.5.2) & A< ((Alm)2 + (Aiy)Q + (Aly)Q) 71,

the operator S is an isometry.
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The implications of this feature are exact energy conservation (except for round-
off errors), and stability of the scheme (because the solution norm is constant, thus
bounded).

3.6. Properties of the FDTD Yee scheme: Dispersion

In the last chapters, we have seen that the Yee FDTD scheme is 2nd order
convergent in space and time and it conserves the electromagnetic field energy.
Furthermore, a plane wave with a wave vector k will be mapped onto a plane wave
with the same wave vector.

One might ask: Where is the numerical error?

It turns out that the error of the scheme lies not in the amplitudes of solutions,
but in their phases. The error manifests itself solely through numerical dispersion.
It causes the speed of light in vacuum to be smaller than ¢ in the simulation. For
the 3D Yee scheme, the dispersion relation of a plane wave with wave vector k is

s (2)]" o (bep)]* [oin (559017 o (08)]°
cAt N Az Ay Az ’

which is shown e.g. in [49].

3.7. Particle-in-cell numerics

In the last chapter, we have learned about the electromagnetic foundations of
the PIC method: How EM fields are handled, stored, and advanced in time, and
what are the advantages and shortcomings of the Yee scheme. This is the first
essential component of a self-consistent PIC code.

The second important component is the particle system. It has to solve the
equations

0 Pn
3.7.1 —-—x, = —0"
( ) ot mjy/ 1+ p%
0 q;
3.7.2 —p, = -~ (E+v,xB).
(3.7.2) 5P = (Bt vuxB)
for the particles, and, while advancing them in space, write the right currents to

the grid.

We start with the algorithm for particle kinetics. Typical simulations contain
108- 10%particles; therefore the integration of their equations of motion will take
a considerable part of the total CPU time. Additionally, such high numbers of
macroparticles will constitute the largest part to the total memory consumption. If
we just had to solve this part of the overall problem, namely tracking the particles’
trajectories with fixed EM fields, we could use high-order integration methods like
Runge-Kutta or multistep schemes. However, multistep algorithms would force
us to store a particle’s (x,, p,) multiple times. On the other hand, Runge-Kutta
methods require us to evaluate the right-hand sides too often.

It turns out that falling back to the fastest, and least memory-consuming in-
tegrators available is the most efficient choice. Looking at (3.7.1) and (3.7.2), one
observes that the right-hand side of (3.7.1) does not depend on x,,, while the right-
hand side of (3.7.2) only depends on p,, via the v, x B term. Again, this makes
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E:l/|i—%.j F;/—Y(Xnvpn)
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EZ/‘Hr%.j
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Ficure 3.7.1. PIC particle in 2D geometry. The surround-
ing electric field components are linearly interpolated onto the
macroparticle’s center of mass, pushing its momentum.

the use of splitting methods advisable. It will be shown that a leap-frog method
works very effectively here.

_1
Let (x™,pn_ 2) be the phase space coordinates at time mAt of a macroparticle
n belonging to species j. Following the leap-frog idea, the momentum is stored for
a time (m — 3)At shifted with respect to the time of the position mAt¢.
The momentum push for the particle looks as follows:
(1) Interpolate E™ and B™ linearly onto the particle’s center of mass.

_1 1
(2) Advance p, > — pn "2 using the interpolated values E", and BT",.
Unfortunately, step (2) is not trivial. We can apply another splitting and subdivide
step (2) into
_1 .
(1) py =pn * +5HEE],
(2) p, — p; (somehow for the v,, x B, term)

+1 .
(3) pn * =py + 5L EER

nt?

taking again advantage of the splitting concept for the electric lorentz force. The
intermediate push (2) can e.g. be done using some 2nd order accurate Runge-
Kutta method. However, this would have unpleasant consequences for the PIC
code’s energy conservation. The problem can be understood easily:

Set E =0, B = Bge,. Then the analytic solution for v,, is

el cosw.At  sinw At 0 v
vmj‘l = | —sinw.At cosw.At 0 o ,
pmtl 0 0 1 o™

nz nz

where w, = (¢;/m;)By is the well-known cyclotron frequency. Under these con-
ditions the particle undergoes cyclotron motion with constant amplitude ||v]?2.
Most explicit, non-symmetric integration schemes will make this amplitude grow
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instead, causing unphysical numerical heating. With in-simulation time passing,
the plasma will heat up itself under the influence of a magnetic field.

Since this has to be prevented, a physically reasonably algorithm will keep this
amplitude constant. The method which is actually used in the VLPL PIC code
has been proposed by Boris [50]. We will follow here the description given in [25].
Basically, it computes the rotation caused by the v,, x B], term. We know that
the velocity v rotates around the magnetic field component perpendicular to it,
B 1, by an angle of

9= A tquZ’LLt,J_
mj
This rotation can be constructed in a simple way without the need to resolve
trigonometric functions.

We denote the initial velocity by v~ and the rotated velocity by v*. In order
to compute v*t, we first want to find a t € R? such that v/ := v~ + v~ x t is
perpendicular to (v* —v~) and B}, | . The angle between v’ and v ™ must be 6/2,
so we see from figure 3.7.2 that t is

N 0 q; B At
t = —btan - = ~L—nt

Since vt — v~ is perpendicular to v/, we have vt = v~ + v’ x s, where s is parallel

to B™,, being chosen such that ||[vT||? = |v™|?,
2t
s = .
1+t2

It can be shown that this step for v~ — v~ exactly solves for the cyclotron rotation.
Putting the components together, the momentum push for a particle n reads

(1) Interpolate E™ and B™ linearly onto the particle’s center of mass

(2) py =i F o+ ALER, v = B

v =

int? m;
— Bl At
(3) vVii=v  4+v~ ><tw1tht Tt7
— m+3
(4) vt =v  +v' x 25 p, 2 i=myvT

(5) Pt =pf + SLLED,

int*

This scheme is readily generahzed to the relativistic case.

Still following the Leap-Frog approach, we then use the new particle momenta
N

(pnm+2) in order to advance the particle positions. This operation is easily
m=1
written down by

m+%
Xl = xm 4 Atpn—l.
L+ (pn " 2)?

Now, we are almost done with the particle system - except for the last, and probably
most challenging step. After the macroparticles’ positions have changed, the charge
density pznfkl will, in general, also be different.
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Early particle-in-cell simulation
codes relied on recomputing the total
charge density during each time step.
This density was then fed into a pois-
son’s equation solver, in order to ob-
tain the change in E. However, on
modern massively parallel computers,
such global methods, i.e. equation sys-
tem solvers with solutions depending
on global information, become increas-
ingly inefficient. Of course, there are
Fourier-based fast poisson solvers and

iterative methods such as multigrid or FIGURE

Krylov algorithms (see e.g. |51]), but 3.7.2. Geometrical

the former are difficult to paralellize, interpretation of the mag-
while the latter are not trivial to im- netic part of the Boris
plement. push.

In chapter 3, we have already seen
that solving Gauss’ law repeatedly is not necessary. As can be proven easily, the
finite difference approximations for the curl operators (3.3.1) also satisfy the exact
sequence property

(3.7.3) V-VxA=0,

with

VoAliygegary = D) dadalivg ity

a=x,Y,z

Thus, if V- E% 1 j11 041 = p?+%7j+%7k+%, and we find a charge conserving

1
mta 1,etc. such that

current scheme JF 7| P
,J+35, 3

m—+1 m

pi+%,j+%,k+% - pi+%,j+é7k+% _ @ ) JPIC'"H‘%

At EENAS LY
the discrete version of Gauss’ law will always be fulfilled. The simplest of such
schemes is the “zeroth-order current weighting” method (described in [25]), where
the particles are just counted when they pass the cell border. It achieves exact
charge conservation by generating a current impulse when a particle passes a cell

boundary. This approach, however, causes significant numerical noise.

The solution used in the VLPL code has been proposed in [52].

It resembles to integrating the currents on each cell boundary over the time
interval [t™,¢™T1]. Let the cells be indexed with (i,7,k) € G := {0..n, — 1} x
{0...ny, — 1} x {0...n, — 1} C Z3. For the sake of simplicity, we set the grid steps
Ax = Ay = Az = 1, and define particle positions (x,y, z) such that a particle with
x =1,y =7, 2=k lies in the center of cell (4, j, k). We then define the in-cell offset
(&,1m,¢) € [0,1[3; so a particle at (z,y,2) = (i + &, j+n, k+ () lies partly in the
eight cells {(c, 8,7) € [i,i + 1] x [j,5 + 1] x [k, k + 1]}.
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FIGURE 3.7.3. A particle in 2D always creates currents on four cell

boundaries at a moment. These currents must be integrated over
[t™, ™.

For a macroparticle with a rectangular shape function (cloud-in-cell), its frac-
tion inside a neighbouring cell is

S(T — Tpy Y — Yny 2 — 2n)da dy dz.

Cell

At the same time, the particle intersects with twelve boundaries. In order to shorten
the calculations, we just show the currents on the boundaries with €, normal, which
are given by

Jl"i+1,j+%,k+% = vy (1 —n)(1—-¢)
Jm‘i+1,j+%,k+% = vn(1 = ()
Jm\i+1,j+%,k+g =, (1 =n)¢
Jm\i+1,j+g,k+g = vg1C.

Let there be a particle with initial position (x,y, 2) = (i + &0, j + 0, k+ o), which
moves linearly within its initial cell without leaving the twelve boundaries it crossed
at the beginning. This means that the particle follows a trajectory

T i Eo + vt
y |@O=17 |+ mtuvt |,
z k Co +v,t
where
50 + Uxt
no + vyt | €[0,1[, for ¢t € [0, At[.
CO + ’Uzt

So, the currents are
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Jolivr, ot ey = va(l = (1m0 +vyt))(1 = (Co + v2t))
Jw‘i+17j+g,k+é = vz (M0 + vyt)(1 — (Co + v2:t))
(
(

<

L — (0 + vyt))(Co + vat)

Jalivr j2 ke = ve(no + vyt)(Go + vat).

Jw‘i+17j+%,k+% = Uz

Defining the intermediate positions

£ = (&L+&)/2 0= +m)/2, (= ((+0)/2

and setting the total distances travelled

Azx = v AL, Ay =v,At, Az = v, At

we integrate the current

Jm|i+1,j+g,k+g =

At
/Jw|i+1,j+%,k+%dt = Axi¢ + AzAyAzAt?/12.
0

This is the current contribution on the surface (i + 1, j+ %, k+ %) for one particle
of weight 1 passing linearly through it. The other contributions are

jz|i+1,j+%’k+% = Azip(l ) — AzAyAzAL? /12
jz|z‘+1,j+%’ k2 = Az(l-17) ( — AzAyAzAt? /12
Telisrgrters = Az(1=0)(1 =) + ArAyAzAL /12,

The other 8 currents follow analogously via cyclic permutation of spatial directions.

This is the simplest, and most common case of particle movement, where the
particle stays in its initial cell, generating currents on twelve boundaries. However,
there are cases in which a particle leaves its initial cell in one time step. In such
situations, the particle movement is decomposed into a number of eight-cell move-
ments, which are processed in the way depicted above. These algorithms are also
depicted in [25, 52].

3.8. Parallelization

Among the various simulation concepts presently known, the particle-in-cell
method is one of the most computationally expensive. Realistic, large scale sim-
ulations can easily take days, months or even years of CPU time. Trusting in
Moore’s law for increasing CPU clock frequency is hopeless here. This means that
simulation codes must be parallelized in order to aim for more complex setups.

Fortunately, the PIC concept is relatively easy to parallelize: The mesh based
field descriptions rely on linear stencil operations, which means that each grid
point is modified using other grid points in its neighborhood. The particles follow
relativistic equations of motion, making their velocity bounded by ¢. From the CFL
stability condition, it follows that the time step is restricted by
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FIGURE 3.8.1. Three-dimensional visualization of a simulation domain
split into 2 X 2 X 2 subdomains. Each subdomain is held by one compu-
tational process which again works with its designated part of the total
mesh. Interprocess communication and job launching is done with MPI.

At < min(Az, Ay, Az),

so a moving particle will never travel further than one cell per time step. These
features make the PIC algorithm a local one: The (rectangular) simulation domain
can be divided into a number of equally shaped subdomains. These subdomains
will then communicate with each other, but due to the locality of PIC, each of them
only has to exchange data with its direct neighbors. So, the number of send /receive
operations for each processor is O(1), which means that there is no theoretical limit
for the parallel scaling.

In this chapter, the parallelization scheme for the VLPL PIC code (and many
others) will be described.

It works in a simple way: After having defined the rectangular simulation
domain and chosen the grid steps, one chooses partition numbers for each spatial
diraction, e.g. P, = P, = P, = 2. The simulation box will then be divided into
P,equally sized parts along each direction o, which results in P, P, P, subdomains
of likewise rectangular shape, each of them held by one process.

In VLPL, the Message Passing Interface (MPI) for communication and process
management is used. After the MPI job launcher has started P,P,P, processes,
they will start finding their in-box offsets according to their MPI ranks. At this
time, each process knows where its spatial domain is located, and which processes
are its direct neighbors. It will then allocate their subgrids in memory, with an
additional layer of 2 grid cells attached at the borders. This is shown in figure
3.8.2. Here, a 2D grid is divided into 2 x 2 subgrids. Each subgrid gets a two-cell
‘coastline’ at the borders. We make use of the fact that the stencil operations of the
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FIGURE 3.8.2. Sketch of the parallelization pattern for mesh-based
quantities. The mesh on the left side is decomposed into four equal parts,
which are held by different processes. A two-cell 'coastline’ is wrapped
around each subgrid in order to provide local boundary conditions for
stencil operations.

EM field solvers only access the direct neighbors of a cell. One boundary exchange
is done as follows.

Let there be a process pgrs, (¢,7,5) € {0..P, — 1} x {0..P, — 1} x {0..P, — 1}
holding a subgrid Ggrs 1= {—2...0p +1} x{—2...0,+1} x{—2...[,+1} with [, = ny/P,.
This process sends data to its left neighbor in x direction, pg—1 s, by

(1) writing the subset {0...1} x {—2...I,, + 1} x {—2...[, + 1} into a buffer

(2) submitting the buffer to process pg—1.rs

(3) within process py_1.r, s, writing the buffer contents into the subset {l,..l, +

1} x{=2..l, + 1} x {-2..1, + 1}.

This procedure is followed by each process for each of the 6 main spatial directions.
The outer grid information of neighboring processes has now been made available
for p,rs as boundary conditions for stencil operators. The exchange routine must
be executed after each substep of the EM solver.

Exchange of the macroparticles in done in a similar way. A particle is said
to have moved out of the processes’ subdomain if, after one movement step, it
resides in the outer region of the subgrid. This means, that is has left the region
{0..1; =1} x {0...l, — 1} x {0...l, — 1}. After the particle move step, each particle
for which this is true, is removed from the subgrid and put into a buffer in order to
be sent to the adjacent process.

3.9. Assembling the components / Summary and outlook

In the subsections before, the basic components for a self-consistent, relativis-
tic, energy- and charge-conserving electromagnetic particle-in-cell simulation code
have been described. According to figure 3.9.1, these form the fundamental com-
putational cycle passed within each time step.

Similar to most other simulation codes, the Virtual Laser Plasma Laboratory
(VLPL) PIC code also contains a parsing system for simulation job files (“.ini files”),
a versatile data storage module based on the Hierarchical Data Format (HDF5)
standard, and several initialization modules for simulation setup. Additionally,
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there are filtering algorithms for fields, the alternative Numerical Dispersion Free
(NDF) Maxwell solver, and a variety of diagnosis and in-process control routines
included.

Within the very elaborate PIC
technique, there are various useful ex-

. . . Interpolate
tensions to the algorithm which can be fields
thought of. Sor.ne of them have be(?n to particles \
developed and implemented, and will
be introduced, in this thesis. Others Integrate .
can be regarded as promising enhance- Maxwell's Push particles
ments in future projects. In this chap- equations
ter, a short overview of available con-
cepts will be given, which, of course, Deposit currents

cannot make any claim to be complete.

First of all, alternative field
solvers can be implemented based on
different numerical schemes. E.g., the
Finite Difference Time Domain - Alter-
nating Direction Implicit (FDTD-ADI)
[53] scheme employs a semi-implicit time discretization, causing tri-diagonal linear
equations systems to solve. This way, it becomes unconditionally stable - the time
step is no longer restricted by the grid steps. If the electromagnetic phenomena
involved have low characteristic frequencies, but fine features to be resolved, such
a scheme can provide significant speed-up. This scheme has been implemented into
the code.

In many simulation problems, there is a great demand for absorbing bound-
ary conditions. Boundary conditions in the VLPL code can assume the grid
functions only to be periodic or zero outside of the simulation box. Hence, there
is a priori no way to simulate a laser pulse leaving the simulation domain. This
problem can be solved with the perfectly matched layer technique [54], where ad-
ditional absorbing layers are wrapped around the simulation box. Within these
layers, Maxwell’s equations are modified, such that incident waves become atten-
uated. This scheme has also been implemented, in the form of the Convolutional
PML (CPML) [55] algorithm.

Furthermore, the investigation of ultra-short pulse induced laser plasma effects
needs special electromagnetic pulse representations. Initializing a laser pulse
as a product of a sine with a shape function is often insufficient. Such schemes,
which produce a focusable pulse truly satisfying Maxwell’s equations without di-
verging, have been developed and implemented by Daniel an der Briigge [56].

Adaptive Mesh refinement can prove to be worthwhile whenever a physical
setup contains fine spatial features to be resolved, but large regions with very
homogeneous behaviour. Usually, one would then be forced to resolve those fine
features with the equidistant grid, causing large computational load. On the other
hand, the fine resolution is just unnecessary in the ’boring’ regions, so subdividing
grid cells into smaller ones can provide significant speed-up.

FIGURE 3.9.1. Basic
computational cycle of a
self-consistent PIC code



CHAPTER 4

Principles of Computational Fluid Dynamics

In chapter 3, the PIC method, one of the most important concepts of com-
putational plasma research, was presented. Despite its physical richness, and its
capability of modeling highly nonlinear plasma effects, it has certain shortcomings,
like its high cost and intrinsic numerical noise. Also, there is a variety of problems
where kinetic modeling is not necessary, or not advisable. One of the most promi-
nent alternatives is the wide field of Computational Fluid Dynamics (CFD). Since
a major part of this work is dedicated to the development of a PIC/Fluid hybrid
code, some basic principles of CFD need to be introduced.

4.1. Introduction

From a physical point of view, a fluid is a material whose components are not
rigidly connected to each other, like in solids. While solids can be deformed perma-
nently through forces, the shape of a fluid changes due to velocity fields. Examples
for fluids are gases, liquids and -the reason why this chapter is included here- plas-
mas. In the introductory section 2.2, the first two momenta of Vlasov’s equation
have been derived. While computing the moments of the Vlasov equation, one no-
tices that each of them contains a term dependent on the next higher momentum.
Fortunately, this chain can be ended by introducing a closure relation, e.g. a gas
dynamics law.

By adding a conservation law for the energy density, we obtain the well-known
Euler equations:

0

(4.1.1) 5= =V - (pv)
(4.1.2) %(pv) = -V (pvvl) - %Vp
(4.13) = v (Btpv)

The electromagnetic forces have been put away for brevity; they will be reintroduced
later. Here, p denotes the number density of a respective particle species, pv is its
velocity density, m is one particles’ mass, and p is the pressure. The variable F
stands for the energy density, which is the sum

1
E= ipvz—i—pe

of the kinetic energy density %pv2 related to the average velocity and the internal
energy pe. Because of the closure problem mentioned above, we need an approxima-
tion which relates the unknown pressure p to the other variables. For a calorically

31
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ideal gas, it holds

_p
ply—1)
S p=ep(y—1)

= (E— ;pv2> (v—1).

The Euler equations (4.1.1)-(4.1.3) describe the behaviour of compressible, inviscid
fluids, like gases. As previously mentioned, they are conservation laws: They
predict the evolution of densities whose overall integral is constant. As previously
mentioned in chapter 2.1, conservation laws take the form

€ =

B
5 U+ V- F(U)=0.

Integrating over a measurable set M € R3 and using Gauss’ Law yields

0
a/UdA:—/V-F(U)dA
M

M

(4.1.4) _ / F(U)dA.

oM

This means that the total amount of the quantity related to U inside M changes
according to the flux on the surface.

For a long time, the Euler equations themselves were not that important for
hydrodynamic research. They could only be solved for a few special cases. Instead,
approximations and simplified variants were relied upon. With the advent of in-
creasingly powerful computers however, it became possible to directly apply the
basic fluid laws on problems.

In the second half of the twentieth century, Computational Fluid Dynamics
emerged as a versatile and potent tool for the investigation of a huge number of
problems in physics, chemistry, and engineering. Its fields of application include
predicting streamlines around an airfoil or the development of optimal shaping of
ships, aircraft, helicopters, automobiles and submarines. Methods of CFD are ap-
plied on radiation transport, heat transport, magnetohydrodynamics in tokamaks,
and many more.

In the time of its evolution, CFD research has used a number of variants of
the fluid equations. These include the Navier-Stokes equations for viscous fluids,
steady-state and incompressible fluid equations, Full Potential equations (for flu-
ids where the assumptions V-v = 0 and V x v = 0 hold), and equations with
gravitational and electromagnetic terms.

The methods used in the fields are also manifold. Among the oldest discretiza-
tion schemes are Finite Difference Methods (FDM), which apply stencil opera-
tions on (mostly one-dimensional) grids, but have lost much importance compared
to more modern methods. Finite Volume Methods (FVM) make use of the
relation (4.1.4); such schemes can be characterized solely by their specific flux ap-
proximation. They can be easily formulated on non-rectangular grids and are widely
used in many commercial CFD codes. The most sophisticated discretizations are
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Finite Element Methods (FEM), which define basis functions on the cells, trans-
form the fluid equations into weak formulations, and solve equation systems for the
coefficients.

In the next chapters, concepts from CFD will be used for the modeling of wake
fields. Since, in the VLPL code’s field of plasma research, the plasma particles
interact only collectively through fields (at most enhanced with collision terms),
we do not need the Navier-Stokes equations. Furthermore, FDM schemes are not
versatile enough for our 3D simulations, while FEMs are too costly. Thus, the next
chapters will focus on Finite Volume Methods.

Conservation laws like Euler’s equation belong to the family of hyperbolic par-
tial differential equations. They are rather difficult to solve - throughout its history,
CFD research has also seen a number of setbacks. Mostly, this due to spurious oscil-
lations, the fact that higher order discretizations cause unphysical ripples at sharp
borders. Many solutions have been devised for this problem, e.g. Total Varia-
tion Diminishing (TVD) (see e.g. [57, 58]), Essentially Non Oscillatory (ENO), or
Flux-Corrected Transport (FCT) [44] schemes.

In the next section, the concept of Finite Volume Methods is introduced and
explained. In (4.3), higher order extensions to the schemes are discussed.

The next chapters can only give a brief overview about the exhaustive theory of
TVD methods and the huge number of fluid schemes available. For further reading,
please see [57, 58|.

4.2. Finite Volume Methods (FVM)

Finite Volume Methods for Euler’s equations are widely used in many imple-
mentations, particularly for unsteady flows. They can be stable and accurate even
in the presence of discontinuities and shocks because they rely on integral formula-
tions. Let there be a three-dimensional conservation law

(4.2.1) %U—FV-F(U) =0,

with U : D x [0,T] — R%, D C R, F : R? — R3*?. Here, D is the simulation
domain, U(x, t) is the vector of hydrodynamic variables at a certain location x and
time ¢, F = (F,, F,, FZ)T is the flux function and

3
(V-F(U)), =) a%F (U
k=1

is meant as a columns-wise divergence. T € R is the simulation time. From (4.1.4),
we already know

;AZUd/\:—/F(U)dA.

oM

This immediately suggests to define discretized variables as integral averages rather
than point values. Analogously to what has been done in 3.2, we define a grid

G :={0..n; — 1} x {0..n, — 1} x {0..n, — 1} C Z?,
with grid cells
C:=A{ciyp = [iAz, (i + 1) Az[ x [jAy, (j + 1) Ay[ x [FAz, (k + 1) Az[: (i,j,k) € G} .



4.2. FINITE VOLUME METHODS (FVM) 34

Although FVMs can also be defined on non-rectangular grids, we choose a rectangu-
lar mesh here with regard to a later implementation into the existing, rectangular,
VLPL code. The discretized fluid variables are then defined as

1 3
Uirsjrtrry ()= Neor) / U (x,t) dz”,
Cijk
the Lebesgue integral average over the grid cell ¢;;;. The essence of Finite Volume

Methods is to find a flux approximation

(G+1)Ay (k+1)Az

AyA: Fe (U) dzdy X i it
jAy EAz

(k+1)Az (i+1)Ax

1
AzAzx Fy (U) dwdz 2fy 544 54
kAz iAx
(i+1)Az (j+1)Ay
1
m F, (U) dydz ~ z,i+5.5+5 .k

iAx jAy
The semi-discretized version of the conservation law (4.2.1) then simply reads

d -
aUH%,H%,H% =-V-f(U)

@i+l 5+4 k+1 T fz,i,j+%,k+%)

T
Az
b

yyitii+1k+1 T 1y, i+%,j,k+§)
Ay

_
|

(fz,i+%,j+%,k+1 - fz,i+%,j+%,k)
Az '
It can be easily seen that this form of a spatial discretization is always conservative,
ie.

Y Uiy ity = const,
(4,3,k)€G
provided that the boundary conditions are periodic or the boundary fluxes are
zero. This crucial advantage against finite difference formulations will gain even
more importance in the later hybrid implementation: Poisson’s law can then be
satisfied in a straightforward way.

There are plenty of such flux approximations available. A common approach is
to find a flux scheme in order to obtain the semi-discretized equations (4.2.1), and
apply standard ODE solvers, like Runge-Kutta methods, afterwards. This concept
is also called the method of lines and has proven to be very effective in practice.

It should however be mentioned that the design of such flux schemes is not
trivial. Let us briefly look at a common example for this, which involves the simple
one-dimensional conservation law

0 0
(4.2.2) (813 + aax) u(z,t) =0, a€R.
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FIGURE 4.2.2. Result of a short simulation after ¢t = 0 and ¢ = 1
with the scheme (4.2.3). This unconditionally unstable solver quickly
amplifies high-frequency modes.

Given an initial state u (z,t =0) =: ug (z), the solution is u (z,t) = ug (x — at),
which means that (4.2.2) is just a simple linear transport equation. Let us now try
to discretize it. The spatially discretized variable shall be

(i+1)Az

1
w1 (1) = s / u (x,t) dz,
iAx
so the semi-discrete form is
d 1
ity ()=~ (fir1 = fi).
Naively, one might choose the second order flux scheme

a
fir=3 (“i+é *“i—%) ’
and try the explicit Euler method for the time evolution. One gets

ntl _n At a
ity

With Von Neumann stability analysis it can be seen that this scheme is uncon-
ditionally unstable. A result obtained with this solver is depicted in fig. 4.2.2,
showing a rapid explosion.

The reason for this behaviour lies in the spatial discretization scheme. On
smooth solutions, the scheme works fairly accurate, but it tends to enlarge high-
frequency modes. Related to this is its incapability of modeling sharp edges. This
can be overcome by adding diffusive fluxes or using asymmetric fluxes, whose di-
rections depend on the velocity a:

(4.2.4) fy = au;_y
(425) U’k:_%l = u2+% — an (Ul_;'_% - ui_%) )

for a > 0. Equation (4.2.5) is called the upwind scheme, and again combined with
an explicit Euler time integrator. The results for the scheme (4.2.5), applied on the
problem (4.2.2) are shown in fig. (4.2.3). For At < Az/a it is stable, but restricted
to first order accuracy. Here, the numerical error takes the form of an artificial
diffusion.
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t=0.0 t=1.0
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FIGURE 4.2.3. Result of a short simulation after ¢ = 0 and ¢t = 1 with
the scheme (4.2.5). This solver is stable, but achieves only 1st order
accuracy and causes a numerical diffusion.

One might wonder now how to Flux through the cell surface with normal vector e,
obtain high-order flux schemes which
are stable and do not suffer from
spurious oscillations. It turns out
that most linear spatial discretiza-
tions of high order behave simi-
larly here. To make things worse,
there is Godunov’s theorem, which
states:

Any linear numerical scheme for
a partial differential equation, which
does not introduce new extrema to the
solution is at most first-order accu-
rate.

Y

FiGure  4.2.1. Sketch
of a grid cell for an
FVM scheme. The in-

Godunov published the proof for :frgral averaged  variable

this theorem in 1959. At the first i+3.+5k+s
s . . according to the surface
glance, it is discouraging. However, it
can be circumvented as it only describes
the properties of linear schemes. Hence,
a working method must always be non-linear; to be more precise, it must adapt in
some way to the local structure of the solution. In the next section, two important
approaches to the problem will be demonstrated.

changes

fluxes fi7j+%7k+% etc.

4.3. High-resolution spatial schemes

4.3.1. Total Variation Diminishing (TVD) methods and flux limit-
ing. From the last chapter it is obvious that the attempt to construct high-order
Finite Volume Discretizations has a substantial problem: Linear schemes of more
than first order will always fail in the presence of shocks and sharp borders. Their
typical behaviour is demonstrated in fig. 4.3.1. Whenever the assumption of differ-
entiability does not hold at some point in the initial condition, the schemes cause
under- and overshoots. This effect is related to Runge’s phenomenon present in
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FIGURE 4.3.1. Result of a simple simulation using the Lax-Wendroff
fluid scheme. Although the scheme is stable, it cannot handle shocks
and sharp borders, causing spurious oscillations here.

interpolation, and is usually referred to as spurious oscillations. In the best cases,
these schemes can still be quite useful - in the worst case, they are unstable, like
the scheme (4.2.3).

A central task of FVM research was, and still is to put together these two seem-
ingly contradicting features: High accuracy and the absence of spurious oscillations.
Since Godunov’s theorem tells us that this is not possible for linear schemes, one
must find non-linear adaptive ones.

First, we need a formal definition as close as possible to “spurious oscillation-
free”. There are two conditions which have proven to be extremely useful, namely
the preservation of monotonicity and the Total Variation Diminishing (TVD) fea-
ture.

DEFINITION 1. Monotonicity preserving scheme
A numerical scheme is called monotonicity preserving if for every non-decreasing

. N N-1 N-1 .
(or non-increasing) initial state [‘pg]j:o , the advanced state [gpﬂjzo is also non-
decreasing (non-increasing) in space.
Godunov’s order barrier theorem can be formulated for this condition:

THEOREM 2. Godunov’s order barrier theorem
A linear one-step second order numerical scheme for the transport equation(4.2.2)
cannot be monotonicity preserving, unless |a|At/h € N.

The proof can be found in various text books, e.g. [57, 58]. Of course, the
“magical” time step where |c|At/h = 1 does not alleviate the problem, since a varies
in realistic applications. Another important concept is the Total Variation:

DEFINITION 3. Total Variation
The total variation (TV) of a function ¢ : R — R is defined as

1 oo
TV (o(t,) = limsup © / o (t2) — o (t, — o) |dr.
— 00

e—0 €
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It can be easily seen that the exact solution of (4.2.2), ¢ (t,x) = ¢ (z — ct),
keeps the total variation constant, because

e—0 €

1 oo
TV (p(t,-) = limsup — / lpo (z —ct) — (0,2 —ct —¢) |de =TV (pg) .

DEFINITION 4. Discrete Total Variation

For a numerical solution [cpﬂ;iioo , the total variation is
o0
TV (e") = > le} —@jal.
j=—00

A scheme is called Total Variation Diminishing (TVD), if the total variation of
the solutions decreases with time,

TV (") < TV (9™).

Likewise, the solution to a conservation law is called TVD if the continuous total
variation decreases with time.
It can be shown that the weak solution of a general conservation law

0 0

E@JF %f@) =0,

made unique via additional entropy conditions, is TVD. At the same time, a numer-
ical scheme which causes spurious oscillations clearly increases the total variation of
the solution. This is why one tries to find schemes with the TVD property. There
is a great number of methods available having this property, e.g. Riemann solvers
like Godunovs method, the upwind scheme or central schemes with artifial diffusion
terms.

With the TVD criterion at one’s disposal, it is also possible to construct higher
order schemes. In some cases one can simply employ high-order interpolation
schemes for the border fluxes. Another widely used approach is called Monotone
Upstream-centered Schemes for Conservation Laws (MUSCL) [41]. Here, one re-
places the piecewise constant input data for a Riemann solver by reconstructed
states. These modified reconstructed data are then fed into a Riemann solver or
similar scheme, in order to obtain a flux approximation. Such a scheme provides
greater accuracy in regions where the solution is smooth. It is then usually made
TVD by introducing limiter functions, either in the form of slope limiters or flux
limiters.

At this point, the details of TVD high-resolution schemes shall be omitted.
Instead, we depict the Flux-corrected transport (FCT) algorithm, which serves a
similar purpose and has been used in the H-VLPL3D PIC/fluid implementation.

4.3.2. Flux-corrected transport (FCT). Instead of enforcing the TVD (or
a similar) condition on the solution, one can also prevent the formation of new
extrema directly. This concept has been followed in the FCT [44] method. This
procedure has proven to be very robust and less restrictive than many TVD methods
tested. Its main advantage lies in the fact that, once implemented, it can be used as
a closed module. While slope limiters must sometimes be adapted to the respective
scheme, one can freely and easily feed various flux approximations into the FCT
procedure.
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?+%,j+%,k+%’
F” and a high order flux F, looking closely at the local structure of the solution
at a given position (¢,j,k) € G. From the low order flux one must be sure that
it does not introduce spurious oscillations, which is easy to achieve with a great
number of first order upwind schemes.

In the first step, a “trusted” update u’

One starts with the state at time nAt, u a “trusted” low order flux

d . .
C1g+lety 18 computed using the flux

FZ; in the second step, we define the “antidiffusive flux”

A :=F" —FL
Over- and undershoots are prevented by limiting the “anti-diffusive” flux FH# — FL
in a way that the updated solution

n+1

n v FCT
U. . = U, . — (V- -F )
i+3+5k+d i+3.0+5.k+5 ( i gLkt

stays within pre-defined limits

min max
P%+%J+%k+%”%+%d+%k+%}'
The latter can be defined in various ways. One common choice is shown in algorithm
1, which is taken from [44]. It gives a moderately restrictive limiter, by computing
its u™max , value out of all neighboring points of the initial state ™ and the
it5.Jtkts
trusted solution u*?.
In the fourth step, we compute the sums of all antidiffusive fluxes going into,
and out of, the cell. It can be easily seen that by replacing the antidiffusive flux by
limit . _
At = Au et k1O ijr Ly otC,

where the coefficients

Coyijrtkrds Cpivd jrgs €[0,1]
are computed according to algorithm 1, the updated solution
s W (@ . Alimit)
i+5.+5.k+3

max

stays below u and above u™",



Algorithm 1 The flux-corrected transport (FCT) algorithm. Before execution, it needs the

initial value of the variable to be updated, u™ , . ; 1, the high and low order cell flux
it5,0t5.k+35

approximations FHand FZ, the grid steps Az, Ay, Az and the time step At. It provides as
output the coefficients (Ca:,i,j-q—%,k-‘—% , Cy7i+%7j7k+%, Cz’i_‘_%’j_‘_%’k) (k)eG for the limited flux

FFCT =FL + (FH — FL C .. 1,.1.
©,i5+ 5, k+ 5 z,i,5+% k+ 3 z,5,5+3 b+ 3 zij+5.k+5 ) T @bitgktg

(1) Compute a trusted low order solution

td n S L
u; . =u, . — At (V -F ) .
Z+%J+%vk+% Z*%J+%’k+% i+%,j+%,k+%

(2) Define the antidiffusive flux

A =FH _FL
(3) Define the minimum and maximum values
Yaitdg+terd T TAX (u?+%,j+%,k+%’u:i%,j+%,k+%> ’
Upitd g+l ketd T min (u?+%,j+%,k+%’uii%,j-&-%,k-‘r%)
UL iebeey T a BT |l 1Bl HAI<1 (u“v”%*avﬂ*%*ﬁv’ﬁéﬂ)
T S R S i (0.5 3 g3 13 0)

(4) Set the sum of all antidiffusive fluxes into grid cell [i,i 4+ 1[x[4,j + 1[x [k, k + 1[,

At
+ _ .
Fijx = Ap [max (0’ Ax,i,j+%,k+%> - (07 Ax,i+1,j+%,k+%>]
At .
T Ay [ma" (0’ Ayitd.d, k+%> — (0’ Ay,i+%,j+1,k+%>]
At .
AL [max (0, Az,i+%,1+%,k> ~min (0, Az,i+%,j+%,k+1>]
along with
+ — max _ o td
Qe = (ui+%,j+%,k+% “i+%,j+%$k+%) ’
: + pt e pt
R+ _ min (1, Qijk/Pijk) lfPijk >0
ijk T et
0 if P, = 0.

(5) Set the sum of all antidiffusive fluxes away from grid cell [3,4 + 1[x[4, j + 1[x [k, k + 1[,
- At .
Pijk = Az [max (0, Ax,i+1,j+%,k+%) — min <0, A:c,i,j-&-%,k—&-%)]
g e (0 A ) i (04, )]
At
Az

[max <0’ Az,z‘+%,j+%,k+1> — min <0’ Az,i+%,j+%,k)]

+
along with
- _ td _ ,,min
Quje = (“i+%,j+%,k+§ “i+§,j+§,k+§) ’
o, = fmn (1, Q5/P5i) iP5, >0
ijk . - _
0 if P, = 0.

(6) Determine the coefficients for the flux convex combination

. + — .
min (R0 R ja) A5ty 20

min Rj_l’wR if A <0

Coig+dh+l = - L '
W5,k @i g+ kg

with cyclically permuted indices for the other two components.




CHAPTER 5

Exponential integrator for highly overdense plasma
simulations

5.1. Introduction

The particle-in-cell method is by far the most widely used, and most important
method for investigating the rich field of laser-plasma and plasma-plasma interac-
tion. It works for a broad parameter regime, and has contributed significantly to
our understanding of this complex research area.

However, there is a number of unpleasant technical restrictions to its appli-
cability. These are e.g. its high computational cost, its grid-related limitations
(Non-adaptive, boundary conditions), and, maybe most important, its various sta-
bility conditions. Possible extensions to the algorithm have already been mentioned
in chapter 3.9. An important stability condition for electromagnetic material sim-
ulations like PIC is the one related to plasma oscillations, i.e.

2

Wp

At <

where w, = \/4me?n./me is the (local) plasma frequency, n. is the electron number
density and m. is the electron rest mass. While for laser-gas interaction simula-
tions, it almost never becomes important, it causes severe time step restrictions if
materials of solid-state density are involved.

There is a variety of physical mechanisms which involve such high densities,
e.g. Target Normal Sheath Acceleration (TNSA) [36], the Fast Ignition scheme
in inertial confinement fusion [59], or generation of high harmonics on solid-state
surfaces [60]. Here, conventional PIC simulations can be become extremely costly:
The time step must be adjusted according to the stability condition, but lowering
the grid steps might also be necessary if numerical dispersion is an issue. One could
ask here if this waste of computational resources can be circumvented somehow.

As a brief excursus, we take a look on the TNSA process, which is a candidate
for laser-based ion acceleration. A few fs-short laser pulse with ag about 2 is incident
on a foil target. The target consists of a bulk part with n. =~ 1000 n., a pre-plasma
of about 1.5um length, and a thin proton layer on its back surface.

The laser pulse hits the pre-plasma, creating a blow-off region in front of the foil.
This results in a large cloud of hot electrons, which, partly, propagates through the
foil and passes the coating of the back surface. As the electrons leave the surface, a
strong electrostatic field is built up, and the protons are pulled out of the foil and
eventually accelerated to high energies.

Looking closely on this effect, one notices that the bulk part of the foil is not
involved in the mechanism. The pre-plasma must be modeled kinetically, as well as

41
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the proton layer, but the contribution of the middle region can be understood just
by its linear electrostatic response.

This gives rise to the idea of im-
plementing a hybrid code, where the
plasma can be modeled with two dis-
tinct numerical methods. First, the Preplasma
conventional PIC algorithm, which will
simulate the hot, low density particles.
Second, a fluid model, which, although
resembling a strong simplification, does
not suffer from any plasma frequency-
related stability conditions.

In last years PIC-hydrodynamic
hybrid techniques have emerged as an Plasma target
efficient solution to large scale ultra
high density plasma simulations, e.g.,
FI physics, solid state density plasma
interactions, high energy ion generation
etc. Most of these codes work in the
Darwin approximation and thus exclude the electromagnetic wave propagation com-
pletely. They also exclude electrostatic waves keeping the collisional magnetohy-
drodynamics (MHD) only. Further, an implicit electrostatic particle-fluid hybrid
plasma code has been developed by Rambo and Denavit [61], which has been used
to study interpenetration and ion separation in colliding plasmas [62]. There is
also the implicit electromagnetic PIC code LSP [31]. This code uses an implicit
global scheme which overcomes such restrictions of the time-step. The LSP code
also employs a field solver based on an unconditionally Courant-stable algorithm
for electromagnetic calculations[63]. Recently, we have presented a 1D version of
the code Hybrid Virtual Laser Plasma Laboratory (H-VLPL) [35] that unites a
hydrodynamic model for overdense plasmas and the full kinetic description of hot
low-density electrons and ions. In this code, the linear plasma response was simu-
lated using an implicit scheme. The implementation involved the solution of linear
systems, which have been done in a very efficient way using the Schur complement.

Since the latter cannot be efficiently generalized to 3D, we propose a different
scheme here, which is based on an exponential integrator.

Among the various available techniques for ordinary differential equations (
ODEs ), exponential integrators constitute an interesting new concept [64, 65, 66].
They can be an efficient alternative for ODEs consisting of a highly oscillatory linear
and a smooth nonlinear part, like

Hot electron
cloud

Thin proton
layer

FIGURE 5.1.1. Sketch of
the Target Normal Sheath
Acceleration

(5.1.1) y' = Ay + f(y).

Many classical schemes, like Runge-Kutta or multistep methods, can be generalized
to an exponential integrator for (5.1.1). While it becomes necessary to compute
matrix-vector products like p(A)z, with matrix functions ¢, these schemes contain
[|A]| neither in their stability conditions nor in their error bounds.

For our problem, we will employ a modified version of the Mollified Impulse
method [67]. It is a variant of the above mentioned splitting methods, containing
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F1GURE 5.2.1. 3D grid cell configuration for the Mollified Impulse
hybrid code. The additional fluid momentum py, is defined on the
same positions as E.

exact solutions also for oscillatory terms. For the formulation used, the high fre-
quencies involved stem from a diagonal linear operator, which means that matrix
functions can be easily calculated.

In the next subsections, the basic model for the fluid plasma will be introduced,
and the numerical scheme derived. Challenges in the algorithm, as well as their so-
lutions, will be shown. Afterwards, the scheme’s correctness shall be demonstrated
using error analysis and several physical examples. We will then describe how it
has been implemented into the existing VLPL PIC code, and show first results.

5.1.1. Physical model and numerical algorithm. The hybrid concept in-
troduced here will combine an existing PIC algorithm with an additional hydrody-
namic model. In this section, the equations of this model as well as the numerical
scheme will be shown and discussed.

Since the hydrodynamic model is used for plasmas with a high frequency elec-
trostatic response, we can assume the local momentum amplitudes to be rather low.
Likewise, we assume that transport phenomena are negligible. Hence, we modify
Maxwell’s equations to

(5.1.2) %E — VxB-_JgPic_nnt
Yh
(5.1.3) %B = -VxE
)
(5.1.4) 5P = eE.

Again, we have used dimensionless relativistic units in order to simplify calculations.
We denote the local fluid momentum by pj, the electron charge by e, the fluid
density by nj, and its relativistic factor by v, := /1 + p7. As mentioned before,
we assume py, to stay low and therefore the magnetic lorentz force to be negligible.
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5.2. Spatial discretization

Since we want to keep the Yee discretization for E and B described in chapter
3.2, we align the fluid momentum py, with the Yee grid. Hence, py, is defined exactly
the same way as E: Each grid cell stores the values

Phowli, j+4, k+3

Phylivy jres |

Phzlitd,j+1k
as shown in figure 5.2.1. The curl operators do not change, and the fluid current
in (5.1.2) as well as the electric force in (5.1.4) are act on the same grid cell. Thus,
the semi-discretized equations read

0

(5.2.1) SE = VxB-JPC0 ?ph
h
(5.2.2) %B = —VxE
o
(5.2.3) 5P = eE.

5.3. Time discretization / Splitting

We have now obtained the usual large ordinary differential equation system.
One notices that, when neglecting B, and assuming low p; such that v, = 1,
eqs. (5.1.2) and (5.1.4) form an harmonic oscillator on each grid cell interface.
This is where the exponential integrator concept shall be employed. The following
considerations are also depicted in [68].

Removing the PIC currents for now, we can put the system formally into one
vector,

9 E @ X ]% — w}%ph
(5.3.1) 5| B | = ~V xE ,
P ek

substituting the hydrodynamic plasma frequency w? = npe/y,. We recall the
method in section 3.2, where Maxwell’s equations have been split into two distinct
parts. Each of these parts formed a much simpler ODE, which could be solved
exactly just by adding the right-hand side. This time, (5.3.1) is split into three
different ODEs, namely

o E V xB
(5.3.2) e B = 0 ,
| P | i 0
9 [ E [ ~0
(5.3.3) g B = -VxE |,
i P | i 0
9 [ E [ fw,zlph
| P | cE
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If we make the approximation 7, = 1, which resembles to the case of a quadratic
potential for the oscillatory part, we can write down exact solutions.

Let us denote by ¥ the exact flow for the ODE (5.3.2), ¢ the one for (5.3.3),
and ¢! the one for (5.3.4). (For a brief introduction to numerical flows, see section
6.7 or [48].) We can construct a splitting scheme as a concatenation of the split
exact flows.

. B E F E B
PAL = Patj2 © PAt/2 © YAt © PAt/2 © PAt/2:
Written down as a one-step method, the scheme reads

(5.3.5) kick: B"*2 =B" — %AN x E"

(5.3.6) E* =E" + %At@ <« B*t3

(5.3.7) oscillate: [ p%tl } = [ —(j:ssiﬁtzgwh coAstZiz(jh ] [ Epg }
(5.3.8) gt _E 4 %AN o« B+

(5.3.9) kick: B"*! =B"t3 — %AN x Bt

It has been shown that this scheme is symmetrical for fixed v, = 1.

This idea of splitting an ordinary differential equation and putting an ’oscillate’
step in the middle originates from [69, 70]. As a two-term splitting scheme, it is
called the impulse method, a simple exponential scheme which allows for large time
steps independently of wy. However, in [71, 67| the authors point out that the
method exhibits unstable behaviour if the product Atwy, is a multiple of 7. It turns
out that this issue causes problems in our integrator too, and must be adressed.

In order to investigate the correctness of (5.3.5)-(5.3.9), the scheme was reduced
to one dimension by setting transversal derivatives to zero and restricting to 1D
geometry. A simple laser pulse reflection experiment serves as the test problem:

We define the pulse as

—(z; + t Az — x,)? 1
Ey|?::a0exp< ( 2 ) )cos(xi—i—Aa:—xc)
o 2
g — )2
B.|? : = agexp <(JU2C)) cos(z; — 1)

with ag = 0.05, Az = 0.05, 0 = 2 and x. = 7. The pulse wave length A is 1. The
simulation box length is L = 20. In the right section of the simulation domain, we
set the plasma density p; = 16, which implies a plasma frequency wy, = 8.

This pulse then propagates through the vacuum, hits the plasma border, and
becomes reflected. As can be seen in figure 5.3.1, the expected behaviour is accu-
rately reproduced.

For a second test, we use the same configuration, changing the plasma density
to pp, = 0.64. We expect the pulse to be reflected partly, with the greater fraction
of its energy passing through the plasma and undergoing dispersion. Figure 5.3.2
shows six snapshots of this 1D simulation. As expected, the transmitted fraction
of the pulse becomes decelerated, and its wave number drops.
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FIGURE 5.3.1. 6 Snapshots of E, (red), B. (blue) and the fluid plasma
density pp, (black) in a simple test of the Impulse splitting method with
a high plasma density p;, = 16. The plasma density has been rescaled
for visualization purposes.

The algorithm’s properties were then analyzed quantitatively, by setting up a
simulation of a 1D plane wave with high plasma pj, density. The incoming laser
pulse is modeled via inhomogeneous, time dependent Dirichlet boundary conditions
and zero as initial values. A spatial grid size of 0.5 for z € [0,200] is used. The
hybrid density is set to n;, = 10%n. and the system is integrated over the time
interval [0,200]. Using these parameters, we have performed a trusted reference
simulation with an extremely low time step. Afterwards, a large number of simu-
lations was launched, scanning an interval with their time steps. Each of the latter
was compared to the reference results, and the error plotted in figure 5.3.3.

Although this splitting method is of classical order two (since it is a symmetric
scheme), it suffers from resonances, which arise in E, B, and p; if the density
becomes large. In fact, the errors of this scheme are of order zero for certain
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FIGURE 5.3.2. 6 Snapshots of E, (red), B. (blue) and the fluid plasma
density pp, (black) in a simple test of the Impulse splitting method with
a low plasma density p, = 0.64. The plasma density has been rescaled
for visualization purposes.

time steps. The blue curves in Fig. 5.3.3 show the errors in E,, B, and pj , of
the standard splitting method (5.3.5)-(5.3.9) as a function of the time step size,
while the red line corresponds to a second-order error behavior. To improve the
presentation, we only show the interval [0.25,0.5] for the time steps, but we would
like to emphasize that the same effects have been obtained for much smaller time
steps as well.

Similar resonance effects have also been observed for multiple time stepping
schemes in molecular dynamics simulations [71] and for numerical methods for
solving second-order differential equations [64, 66, 67]. Motivated by these papers,
we suggest to apply filter functions and averaging operators to the Maxwellian part
and modify the impulse splitting method (5.3.5)-(5.3.9) in the following way:
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0.1 0.2 0.3 04 0.5
FIGURE 5.3.3. Numerical error for a simple laser plasma interaction
setup involving very high fluid density, simulated with the Impulse
method. Time steps are scanned through the interval [0.1,0.5]. While
the classical order of the method is 2, high frequency resonances cause
large errors at certain time steps, and reduce the scheme’s effective order

to 0.
1 1 -
(5.3.10) B""z2 =B" - 5AWB(AMJ)V X ¢p(Atw) ) E™
1 ~ 1
(5.3.11) ET =E" + §At¢E(Atw;})V X ¢p(Atw))B" 2
n+1 . n
P, _ cos Atwy, Atsinc py
(5.3.12) [ E/ } - { —wp, sin Atwy,  cos Atwy, E+
(5.3.13) E"! =E' + %Atsz(Atw;})@ X ¢B(Atwg)B”+%
(5.3.14) B! =B"t3 — %Ath(Atng X pp(Atw) )E"T

This modification introduces filter functions ¢g, ¢B, ¥E, ¥p at several points in
the scheme. The necessity of filtering can be understood by keeping in mind that
eq. (5.3.12) solves for a high frequency oscillation. Thus, when using the updated
E-field from (5.3.12) for the Maxwell solver steps, to pass on the filtering would
mean to use the value at the end of that oscillation, which can be significant even
when the average E is low. This problem can be tackled e.g. by averaging the
electric field. In [68], the choice

(5.3.15) ¢p(z) = sinc(g)
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FIGURE 5.3.4. Numerical error of the Mollified Impulse method with
one filter function. The three plots show the error of E,, B. and ps,y,
respectively.

is motivated. At the same time, the choice ¢ = 1y = 1 is indispensable in order
to fullfill

V-B=0.

The error analysis shown in figure 5.3.3 was then repeated with the filter (5.3.15).
Results are shown in figure 5.3.4, which indicates a significantly improved approx-
imation. For B, and pj, ., the order of convergence is now 2, and the number of
unpleasant resonances for F, is also lower.

Unfortunately, the choice of the last filter function ¥ g is not trivial to motivate.
It would certainly involve a comprehensive local error analysis of the scheme, which
has not been done up to now. However, one can try the most obvious choice

Vp(x) = ¢p(z) = sinc(g).

This has been implemented, and tested again in the same setup as figure 5.3.3 and
5.3.4. The result shown in figure 5.3.5 is surprisingly nice - the error curve clearly
indicates second order accuracy in time. This order could be obtained even for
extremely high plasma frequencies.

With these choices, we have obtained the linearized fluid Mollified Impulse
scheme. It takes on the final form
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FIGURE 5.3.5. Numerical error of the Mollified Impulse scheme, using
two filter functions ¥g(z) = ¢r(x) = sinc(x/2). The three plots show
the error of Ey,, B, and ps 4, respectively.

0.3 04 05

1 1 . At
(5.3.16) Bz =B" — 5Atq/)B(Ato.)g)V X sinc(7wZ)E"
1 A -
(5.3.17) ET =E" + iAtsinc(gw;)V x B2
n+1 : n
o8 _ cos Atwy, Atsinc py
(5.3.18) { 1:3’ ] - { —wp, sin Atwy,  cos Atwy, Et
1 At =
(5.3.19) E"! =E' + iAtsinc(jw;)V x B2
1, = A
(5.3.20) B! =B""z — 5Atv X sinc(gw;})E"“.

The theoretical properties of the numerical method including a detailed error anal-
ysis are currently investigated and will be reported elsewhere.

5.4. Properties of the algorithm

5.4.1. H-VLPL implementation / Results. The numerical integrator which
was described in the previous sections has been implemented into the VLPL code
as a three- dimensional, parallelized version, and is now operational. In order to ex-
amine its accuracy and reliability, we have benchmarked it with a variety of physical
processes. First, we check if it correctly models laser propagation through linearly
dispersive plasma as well as reflection from overdense plasma. Second, we verify the
conservation of the total energy of the system by the hybrid algorithm. Third, our
code is applied to the Target Normal Sheath Acceleration (TNSA) process, which
would have been very difficult to treat just using PIC means since it uses materials
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FIGURE 5.4.1. Snapshots of the simulation setup taken with an in-
teractive VR visualization software, which is a part of H-VLPL. The
left picture shows the laser pulse (isosurfaces of fixed positive and nega-
tive electric field amplitudes) as it enters the hybrid plasma. The right
picture demonstrates the dispersive effect.

of solid state density. We check if our hybrid integrator correctly describes the
exponential decay of a wave in overdense plasma. Finally, we show its applicability
to study the Weibel instability.

5.4.2. Reflection of an incident pulse. As the simplest test one can imag-
ine, we will show that our integrator accurately models refraction in underdense
plasma and reflection from overdense plasma. First, we set up a plasma slab of den-
sity 0.85n.(where n, = mw? /4me? is the critical density with respect to the laser)
and send a 26fs Gaussian laser pulse through it. As the pulse hits the surface
of the purely hybrid plasma, a part of the wave is transmitted while a significant
reflection also occurs.

On the other hand, when the experiment was modified by setting the density
to 1.2n., we observe a reflection of the entire electromagnetic wave by the plasma.

We point out that these simulations have been performed using just the fluid
part of our combined code without any PIC macroparticles. Still, the effect has
been described correctly.

5.4.3. Energy conservation. An important property we require from the
new integrator is the conservation of the total energy of the system, comprising
PIC macroparticles, electromagnetic fields, and the hybrid fluid. A very simple
setup with a laser pulse being reflected from an overdense surface is used for this
benchmark. We expect the total energy

Eior = Zmlc )+ 3 /V(E2 + B%)dV + /V w(yn — mpc2dV

to be constant, where m; are the masses of the respective particle species and
v = +/1+ (p;/myc)? is the relativistic gamma factor. We denote the hybrid density
by n, and its gamma factor by 5. Figure 5.4.2 shows the total energy of the
simulation versus time, which is measured in units of laser periods.
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FIGURE 5.4.2. Plot of the total energy, the energy of the electromag-
netic field and of the hybrid plasma versus time.

During the laser propagation in vacuum, the energy stays constant except for
small fluctuations within the order of magnitude of the machine precision. When
the pulse hits the overdense hybrid plasma surface, it is reflected, as can be seen at
the time of 45 laser periods. While this reflection occurs, energy fluctuations are
limited by 0.04 of the total energy.

5.4.4. Target Normal Sheath Acceleration (TNSA). For a more realistic
benchmark we model a physical setup our hybrid code is very suitable for: We use
it for the investigation of the TNSA process. TNSA provides a possible way of
laser ion acceleration out of solids by utilizing the electrostatic fields generated by
the space charge of thermal electrons. The process is shown schematically in figure
5.1.1: A 10fs laser pulse of normalized amplitude ay = 2 is focused on a thin foil
which can be assumed to have been pre-ionized by the laser. The foil consists of a
bulk part of 1000n., a preplasma on its front surface, and an 80 nm thick proton
layer on its back surface. The preplasma is modeled as a density ramp reaching
from 0 to 2n. over a distance of 2 laser wavelengths (1.6 um) and treated entirely
by the PIC method. Analogously, we use PIC macroparticles for the back surface
protons. On the contrary, any attempt to describe the highly overdense main part
of the foil as macroparticles would result in numerical problems. Here we use the
hydrodynamic feature of H-VLPL, setting the hybrid density on the grid to 1000n..

The intense laser radiation creates a blow-off region in the front of the foil,
resulting in a large cloud of hot electrons, which, in parts, propagates through the
foil and passes the coating of the back surface. As the electrons leave the surface, a
strong electrostatic field is built up, and the protons are pulled out of the foil and
eventually accelerated to high energies. Figure 5.4.3 shows a 3D visualization of
the hybrid simulation after 10 and 380 laser periods, respectively. In Fig. 5.4.4, the
spectrum of the accelerated ions is shown. A maximum energy of about 0.9 MeV is
reached, which is quite remarkable considering the laser intensity in the setup. We
conclude that our hybrid algorithm succeeded well and efficiently in treating this
numerically challenging physical situation.
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FI1GURE 5.4.3. Snapshot of the TNSA benchmark simulation after
10 (left) and 380 (right) laser periods. PIC macroparticles con-
taining electrons are displayed blue, while those with protons are
rendered red. One observes the thin coating of protons dissolving
from the back of the foil in the right image.
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FIGURE 5.4.4. Spectrum of the accelerated ions in the TNSA simulation.

5.4.5. Comparison of skin depths. As a further benchmark for our hybrid
code we check the decay of a wave in an overdense plasma. According to the linear
theory, it should scale as E(x) ~ exp(—xz/d;) in the plasma, where §; = ¢/, /w2 — w?
is the skin length. Several simulations have been set up using a circularly polarized
laser pulse with duration 6\ and amplitude ag = 0.01 in order to avoid relativistic
nonlinearities. The densities of the plasma surfaces used for this benchmark range
from 1.5n, to 500n.. We show the decay of the wave inside the plasma for three
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FIGURE 5.4.5. Snapshot of the logarithm of the fields log(\/EZ + E2)
(solid lines) inside the plasma for three different densities. The dashed
lines show the theoretical prediction.

densities; the agreement with the theoretical predictions up to densities of 500n, is
very good.

Additionally, by fitting exponentials through the measured field data, one can
compute the skin depths of the decay. In figure , the results are shown and we get
an excellent agreement. One has to mention that even though these simulations
have been done with a grid step of 0.05\, the skin depths match remarkably well
with the theory up to a density of 500n., where 6, = 0.007\.

5.4.6. Investigation of Weibel instabilities. When studying the fast igni-
tion (FI) scenario in inertial confinement fusion, one is interested in the behaviour
of the beam of electrons propagating into the target, particulary the amount of en-
ergy deposited and the shaping of the beam over time. Generally, electron beams
running through a background plasma suffer from the major problem of the Weibel
instability [72], which is a very important issue to be studied if one wants to un-
derstand the FI scheme. The ratio of the beam density to that of the background
ny/Myp, as well as the density gradient in propagation direction, is likely to influence
the evolution of the beam, its filamentation and the increase of electromagnetic
fields as the instability builds up.

For low densities, roughly about 100n., PIC simulations can be carried out
to perform these investigations. However, as the electron beam approaches the
core of an ICF pellet, the density will exceed multiple times solid density and
conventional PIC codes must be applied with extremely small time steps in order to
avoid numerical instability, and thus cannot be used with reasonable computational
effort.

We are going to study the phenomenon of the Weibel instability with our new
hybrid code, using standard PIC macroparticles for the electron beam and the fluid
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FIGURE 5.4.6. Plot of the skin depth versus the plasma density. The
blue line shows the grid step used in the simulation.

part in order to model the background plasma. Since H-VLPL has no restrictions
for the hybrid densities used, we can perform such simulations within a moderate
amount of CPU time.

In order to obtain a proof for the physical correctness of our code within the
linear regime, we have launched tests with H-VLPL comparing a classical PIC
computation to a hybrid simulation of this setup. An electron beam with density
ny propagates through a background plasma with n, = 100n;. The momentum of
the beam electrons is p, = mc with a thermal spread of 10~#mc, and the momentum
of the background is chosen such that its current compensates for that of the beam
plasma, meaning

npvp + npvp = 0.

The setup is restricted to a 2D geometry, with the beams traveling perpendicu-
larly to the xz-y-plane; this is necessary in order to exclude two-stream instabilities.
After about 3.3 beam plasma periods 27 /wyp, with w = y/47nye?/m, one observes a
strong filamentation of the beam, and a magnetic field builds up. When launching
the same simulation with and without the hybrid model, we notice that the latter
succeeds well in describing the filamentation effect at the initial, linear stage. We
compare the integral of the squared magnetic field

/ B2av
v

of the two models. At this point it has to be mentioned that during the nonlin-
ear stage of the instability, the present version of H-VLPL will fail in describing the



5.4. PROPERTIES OF THE ALGORITHM

3.5 plasma periods 3.5 plasma periods

0 0

0.5 AR AR AN 1 0.5

11 1

5‘0 1.5 1 (S'Q 1.5
> >

2 2

25 ] 25

3 B 3

0 1 2 3 0 1 2
x/?»b X/)ub

6 plasma periods

| MMM TS TS LN
. . ol oy

FIGURE 5.4.7. Snapshot of the Weibel instability benchmark simula-
tions with PIC (left) and the hybrid code (right) at 3.5, 6, and 20 beam
plasma periods. We observe very similar behaviour, although the insta-
bility starts approximately 0.5 period later with the hybrid model due
to the lower numerical noise.
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FIGURE 5.4.8. Integral of the squared B-field over the simulation
plane. During the linear stage of the instability, we observe an ex-
ponential growth with almost the same growth rate.

filamentation of the background plasma since it does not treat its continuity equa-
tion and convective term of momentum evolution. Additionally, the fluid plasma
does not react to magnetic fields directly. Nevertheless, the behaviour, and the
growth rate of the Weibel instability during the linear stage are accurately repro-
duced. This result indicates the applicability of H-VLPL to the Weibel instability
scenario, and makes further investigations of the effect with an advanced, fully
hydrodynamic hybrid code appear promising.

5.5. Summary

Conventional particle-in-cell implementations are limited by a stability condi-
tion, which is connected to the plasma frequency. In order to overcome this restric-
tion, a PIC/fluid hybrid code was developed. In addition to the well-known PIC
part, it can also model a plasma as a linearized fluid, using a specially designed ex-
ponential integrator scheme. This scheme was implemented into the existing VLPL

PIC code, and successfully tested on a variety of physical examples. The results
have been published in [73].



CHAPTER 6

H-VLPL3D PIC/fluid hybrid code

In this chapter, the second PIC/fluid hybrid code implementation is introduced.
In contrast to the scheme from chapter 5, the full non-linear cold, relativistic fluid
equations are solved. The algorithm has been designed for the efficient simulation
of long wake fields. Hence, no exponential integrator is involved here, but a novel
spatial discretization scheme is used.

6.1. Introduction

The idea of utilizing wake fields as particle accelerators becomes increasingly
promising [9, 5] . While conventional accelerators are limited by characteristic
breakdown fields, plasma waves do not suffer from such restrictions. They reach
field strengths orders of magnitude higher. In this context, TeV proton bunches
as drivers have recently gained much attention [3]. Due to their high energy, they
may remove the need for multiple acceleration stages.

In order to achieve longitudinal electric fields in the GV /m-range, electron
densities of at least n, = 10'*cm ™3 are required. Thus, one needs proton bunches

2TC ~

as short as half of the plasma wave length A\, = ¢ ~ 3mm. Unfortunately, there

are no proton accelerators in the TeV class capable of producing bunches this short.
This drawback can be overcome by making use of the self-modulation effect on the
driving pulse [22].

Recent results show that phase velocity control by altering the background
plasma density appears feasible. Also, side injection of the particles to accelerate
can be efficient. Because of the complexity of such setups as well as the large scale
of experiments involving TeV proton beams, reliable simulations are crucial. A
commonly preferred method for wake field simulations is the particle-in-cell (PIC)
algorithm.

However, the self-modulated proton driver plasma wakefield acceleration (SM-
PDPWA) process under investigation has special requirements on the numerical
algorithms employed. It involves about 200-500 plasma wavelengths of the back-
ground together with very long propagation distances > 10m. PIC treatments tend
to be very costly in CPU time. They also suffer from numerical noise and diffusion,
which renders them ineffective for this regime.

We show that a PIC/fluid hybrid code concept is very well suited for this
problem. The basic idea is again to represent the plasma under investigation by
two distinct means: First, as a set of PIC macroparticles for parts undergoing
kinetic effects. Second, as a fluid through numerical solution of conservation laws.
For wake field simulations, the algorithm from section 5 is not sufficient, since non-
linear density modulation effects must be considered. Hence, one can think of a
hybrid implementation which solves Euler’s gas equations for the fluid part.
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The latter offers a number of advantages over the PIC method: It is far more
efficient, with low noise and less numerical diffusion. In the last years, hybrid
techniques have gained importance in high density plasma simulations, including
fast ignition (FI) experiments and solid state density plasma interactions. Most
of these codes do not model the propagation of electromagnetic waves as well as
electrostatic waves, instead using magnetohydrodynamic (MHD) descriptions. The
hybrid PIC code LSP [31] uses a particle-in-cell algorithm along with a fluid model
and an implicit electromagnetic field solver. Also, the OSIRIS and the dHybrid[34]
code comprise hybrid functionality, treating ions kinetically and electrons as a fluid,
under the assumption V x B= Moj-

For the new hybrid system presented here, we choose a more general fluid
approach. No MHD assumptions are made. Instead, the background plasma is
a true cold fluid, covering density modulations and convection. For the spatial
discretization, we adopt the flux-corrected transport (FCT)[44] method. It is com-
bined with a modified quadratic upstream interpolation for convective kinematics
(QUICK)[74] scheme.

In the next sections, we shall give a detailed description of the algorithm. Sub
section 6.2 introduces the fluid equations which are added to the existing PIC
model, section 6.3 explains the spatial scheme used. The general challenge of such
a simulation code design is clarified in chapter 6.4, its solution for the final 3D code
is shown in chapter 6.5. In section 6.7, we discuss the various time integrators which
can be applied. The H-VLPL implementation is verified first on simple physical
examples. Afterwards, more application-oriented setups are tested. Results are
depicted in chapter 6.9.

6.2. Fluid Model

In the new H-VLPL implementation, a plasma can be modeled by two distinct
means: First, using a kinetic description and statistically populating the phase
space with PIC macroparticles. It is capable of simulating effects like wave-breaking
while trading speed for accuracy and suffering from damping effects. Second, it also
contains a cold-fluid model. The latter, despite the fact it fails in the presence of
wave-breaking, works far more smoothly and efficiently. The equations related to
the fluid part read

0 PIC 4 h_h
6.2.1 —E=VxB-J"“—- Z)'p
( ) ot ,yhp
(6.2.2) %ph = —(v"-V)p" + ¢(E + v" x B)
9 4 Ph h
2. = _v. (!
(6.2.3) pri v (’th ),

where p” denotes the relativistic fluid momentum and p” is the fluid density. v" is
the fluid velocity, JFI is the current caused by the PIC algorithm. The cold-fluid
plasma model implies that pressure terms can be neglected; the second equation
has been obtained from the momentum density conservation law. This model is
used in addition to the kinetic description. It is intended for the cold parts of
the plasma, where thermal effects can be neglected. Therefore one must carefully
decide for each particle species which model is appropriate.
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6.3. Spatial discretization

It is a widely known fact that the solution of conservation laws such as Eu-
ler’s gas equations is not trivial. The hyperbolic nature of the partial differential
equations involved causes problems related to Runge’s phenomenon, like spurious
oscillations, for linear high order schemes. By now, after decades of research in the
large field of Computational Fluid Dynamics (CFD), there are now many efficient
non-linear numerical methods available.

The simulation of electromagnetic fluid phenomena, like plasma wake fields,
however, adds another requirement to the schemes used: The approximation error
of the flux in a FVM can cause unphysical modulations in the density profile. This
results in artificial higher harmonics of the wake, eventually destroying the overall
wake field structure.

After extensive testing and careful design of multiple discretization schemes,
several algorithms were found which were capable of modeling wake fields with low
or no distortions. Among the uniform (non-staggered) schemes with this property
is the Kurganov-Tadmor central scheme [42]. Still, using non-staggered schemes
always enforces interpolation of the electric field onto the cell centers, causing an
unphysical diffusion of the wake structure. Hence, we have designed a new, simple,
staggered scheme for the FVM charge flux.

In the next chapters, the details of this algorithm will be depicted. Subsec-
tion 6.4 will explain the challenges encountered with various CFD schemes, and
discuss possible solutions. In 6.5, the spatial discretization for the charge density
flux is shown. Subsection 6.6 describes how the problem of solving the convective
momentum term in (6.2.2) is tackled.

6.4. General considerations

The well-established field of Computational Fluid Dynamics (CFD) offers a
wide range of spatial discretization methods. Examples include the MUSCL [41],
PPM [45] and QUICKEST [74] schemes as well as finite element approaches. Since
the grid geometry is rectangular, there is no need for finite element algorithms.
Given this simplification, one might argue that standard finite-volume schemes
should be used. For example, MUSCL Riemann solvers appear appropriate. How-
ever, the computational task of wake field modeling causes certain restrictions to
the discretization pattern employed. The structure of the Yee discretization for
electromagnetic fields involves electric fields located at the cell faces. Thus, any
nonstaggered hydrodynamic space discretization implies interpolating electric fields
to the cell centers.

Additionally, many schemes can cause unphysical high frequency distortions to
the wake field structure. Thorough investigations showed that this is the case e.g.
for upwind methods and their MUSCL generalizations.

It is crucial to find an efficient method which preserves the wake field as long as
possible. For this purpose, a simple one-dimensional plasma wake field benchmark
was created. It works as follows:

We define a 1D wake field setup, starting with a density offset py = 472. The
plasma frequency associated with pg will then be wg = 27. We introduce a small
density modulation p; < pg, and set the total electron density to

p(x,t =0) = pg + p1 cos(2mx).
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The longitudinal electric field is

E,(x,t =0) = Eysin(27x),

where Ey = p1/(27) because of Poisson’s law, and the initial momentum (in the
non-relativistic limit) is

E
Do(z,t=0) = 72—72 cos(2mx) = 74%2 cos(2mx).
These conditions assume an immobile ion background of charge density pion = po-
The three variables F,, p, p, at t = 0 are shown in figure 6.4.1. The 1D partial

differential equations to be solved for this setup are

d
(641) &Ew = —pPoVz
o d
(6.4.2) 5t (PPa) = =5 (pvaps) + pEa
) d
(6.4.3) 5P = gy PUe);

where v, = p, /7 is the fluid velocity and v = /1 + p2 is the relativistic factor.
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FIGURE 6.4.1. Initial setup for the wake field test problem at ¢ = 0.
The upper graph shows the longitudinal electric field E,(z) (red), the
density modulation p1(x) (black) and the initial momentum p, (green).
The lower graph shows the (trivial) initial spectrum of E,.

In the limit p; < pg, and p, < 1, we can simplify the set of equations to
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(6.4.4) aEz = —pPoPz
0
(6.4.5) 5t (popz) = poEy
0
(646) ap =0, (Popx)-

For the initial conditions given above, the solution is

(6.4.7) Ey(z,t) = % sin(27(z — t))
(6.4.8) p(x,t) = po + p1 cos(2m(x — 1))
(6.4.9) pe(x,t) = P cos(2m(x —t)).

472

The solution (6.4.7)-(6.4.9) essentially resembles a wake field without a driver, which
extends to infinity. The solution is separable in space and time, i.e. the problem
can be viewed as being composed of separated harmonic oscillators at each spatial
position. Still, it looks like a propagating wave due to the phase shift between the
locations.

This simple problem is then used to test several fluid schemes for their basic
capability of simulating wake fields. We define a 1D simulation domain D = [0, L],
with L € N. The grid step is chosen to be Az = %, which is a realistic value for
further simulations. The grid points are then denoted by

L

A

Boundary conditions are set to be periodic for each discretized spatial differential
operator. The standard finite volume semi-discretization

0
SPnt = 2 Urn(® = £0)

j€{0..n}, n:=

is used, where the spatially discretized variables p; 1 (pp2) j4+1 are defined as cell
averages:

(+1)Az
Pipd = p(z)dz.
jAx
(74+1)Az
(ppz) (x)da.

(ppx)j+% :
jAx
The electric field E, is defined on the cell edges:
E; ;= E(jAx)
Eq. (6.4.5) is discretized as
0

1
57 PPa)jvy = Pivs g (Baj + Bojia).
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Ea:,j—l Ez,j Ew,j+1
fi—1 f fi+1
I pj*% I ijr% I pj+% I
| — T - | p— T >
Jj—1 J J+1 T

(PP)j—y  (PP)jez (PP)jrs

FIGURE 6.4.2. Spatial discretization scheme for the 1D benchmark
setup. The electric field is located at the cell face, as given by the Yee
scheme. The density p as well as the momentum density (pp,) is defined
at the cell center.

We start with the simplest scheme available, namely the upwind scheme, which
defines the flux to be
Pj—1Vz,j—1 i pzj1+Dz ;>0
PjVz, i otherwise '

(6.4.10) 1= {

The semi-discretization of the problem reads
0 1 U

(6.4.11) 5P =agy G = 1)
9 1
(6.4.12) 51 PPa)jry =Pirss (Baj+ Eu i)
9
(6.4.13) 53 ei == 17

In eq. (6.4.12), the convective term has been neglected (which is legitimate for
wake fields in the linear regime). One also notices that this discretization readily
fulfills Poisson’s theorem. Since (6.4.11)-(6.4.13) will show oscillatory behaviour
with relatively low frequency, we can use a simple Strang splitting scheme (see
chapter (3.4)) for the time integration:

n—‘—l 1 7
(6:4.14)  (ppa)j 7 =(ppa)fy s + 7 A7 (L + EL j11)

(6.4.15) (o2, ET ;) — (o), EZHY)

with e.g. trapezoidal-leapfrog integrator or explicit Euler
n n 1 n mn n
(6.4.16)  (ppa)]f1 =(opa)i T + G AL (B + ETEL).

The results are shown in fig. 6.4.3, with the initial condition given in fig. 6.4.1. It is
generally known that for advection problems, the upwind scheme tends to smoothen
the solutions, smearing out fine structures through artificial diffusion. The wake
field solution (6.4.7)-(6.4.9) also looks like a wave travelling with the speed of light.
Naively, one could expect the wake field to be smoothened, too.

However, this is not the case. While looking similar, the essential part of the
problem at hand is not advective. We want to accurately resolve local oscillations,
so the quality of the fluid scheme depends strongly on its ability to preserve the
oscillation phase. The Upwind scheme performs exceptionally bad at this task, and
the consequence is a high frequency distortion. It adds a significant noise to every
variable involved, eventually destroying the wake structure. The phase information
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contained in p, and FE, is lost due to the repeated interpolations onto the cell
centers or edges (midpoint rule in (6.4.12), and Upwind in eq. (6.4.11),(6.4.13) ).
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FIGURE 6.4.3. Plots of the result of the Upwind scheme, applied on
the linear wake field problem (6.4.1)-(6.4.3) with Az = 0.05, At = 0.025.
One observes that, while the scheme is stable, it causes a severe distor-
tion to the wake field structure.
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The obvious bug-fix for this issue is to improve the interpolation schemes.
Hence, we replace the midpoint rule in (6.4.12) by higher order interpolation, and
the Upwind scheme by a flux-limited high-order method. We begin with deriving
the interpolation coefficients.

First, we must not forget that we are using finite-volume fluid schemes. Thus,
we must perform the interpolation with an integral condition. For p; L1 we perform
quadratic interpolation in order to keep the stencil symmetrical. Without loss of
generality, the grid points are assumed to lie around j = 0, and the grid cell length
is Az = 1. The interpolation polynomial is named

pp(z) = az® + bx + c.

The conditions are

This yields

L Ll R
2
b=py—r-y
C:—p% +5p% +2p 1
6 )
so the interpolation polynomial reads
ps —2p1+p_1 —ps +op1+2p_1
pp(x):%ﬁ—i—(p%—pf%)x—i— 62 2.z €[0,1],
and for an arbitrary grid index j it is
. Pirs —2p 41 tpi_1 —Pj+3 +5p1 +2p5 1
pp(x) = : 5 =2+ (pﬁ% _pjfé) T+ : — 2,

z € [0,1].

Because the electric field is staggered with respect to Pjy1, We use cubic interpo-
lation for F, to keep the interpolating functions symmetrical. The cubic hermite
interpolation polynomial can be written as a linear combination of cubic basis func-
tions. The coefficients are the interpolants’ values or derivatives. The interpolation
scheme reads

pe(t) =2t = 3t* + 1)E, o+
(t* —2t* +1) (Ey1 — By, 1)
+ (=2t + 3t E, 1+
(t* = 1) (Ey,2 — Ey,0), t € [0,1].
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We can then approximate

5 (G+1) Az
1
a1 (PP2) j11 = Ax p(x)E,(x)dx
jAz
(G+1)Az A A
1 x—jAx, . x—jAx
N — E!
Az p,],)( Az VB Az )dz
jAz

1
"~ 360
—16p;,8 Eo jp1 —211pj 1 Ep ja +17p5 1 By i
t17Ee,jpjyg —2Fe, j-1Pj43 — 211 pj4 1 Bo j —16p; 1 Eo

(Pjy2Eu jr2+31pj 1By jio—2p; 1 By jio

2

+ 31 By o1 pypy + 05y Eajr)

(6.4.17) = (pEw);?f%

To obtain a high resolution for the continuity equation, one can e.g. employ fourth-
order flux interpolation:

It is generally known from Computational Fluid Dynamics research that such a
scheme cannot be used as the flux approximation without any modifications. Doing
so would result in spurious oscillations and instability.

Hence, we combine this scheme with the Upwind flux (6.4.10) via the Flux-
Corrected Transport (FCT) algorithm [44]. Essentially, it takes as input the den-

N—1
sity (p?JF%)j—o to be updated, the time step At, a low order flux approximation

N— Lo . .
( leo) j:ol which is known to smoothen advected solutions, and a high order flux

(fjhi)j‘v:_ol'
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FIGURE 6.4.4. Plots of the result of the enhanced scheme (6.4.20)-
(6.4.21), applied on the linear wake field problem (6.4.1)-(6.4.3) with
Az = 0.05, At = 0.025. The plots show the field F,(red), the density
modulation p; (black) and the fluid momentum p, (green). The lower
plots show the Fourier spectrum of E,. Distortions of the wake field
structure are significantly lower; still, one observes a slight damping.

67



6.4. GENERAL CONSIDERATIONS 68

It provides as output a linear combination

N-1

N— .
(FFem)) = (= fle+ i)

J )J:()
such that a finite volume update

n+1

At
_ n Al L peT _ FCT
Pivt =Pivy t A i)

j+1
will create no new extrema in the updated solution. As the high order flux, we take
the 4th order approximation (6.4.18), and for the low order flux, we stick to the

Upwind scheme (6.4.10).
The new scheme reads

n+i n 1 int
(6.4.19) (ppa)i i =(op2)}y s + 5AL(PEL)T
At
n+l _ n FCT FCT
(6.4.20) Piv: =Pivs T AL (fia =)
n+l _ mn FCT
(6.4.21) B =Ey ;+ At f;
(6.4.22) (pe)T1 =(opa)} 1 + 5 (PEa)jY -

The steps (6.4.20)-(6.4.21) constitute an explicit Euler update, but can also be
replaced by a second order scheme, such as the trapezoidal leapfrog method. It
should be emphasized that for small density modulations p; (linear wake field
regime), this specific choice does not make any notable difference. The scheme
was implemented similarly to (6.4.14)-(6.4.16) as a numerical Python test script
using NumPy. The result is shown in fig. (6.4.4). One can see that the picture has
improved: The distortions are significantly weaker and the wake field structure is
preserved nicely even after 50 plasma oscillation periods. This indicates that this
high order scheme is a candidate for a fluid integrator which could be implemented
into a PIC/hydrodynamic hybrid code.

However, a finite driven three-dimensional wake field also involves plasma-
oscillations which look like a standing wave. This can be observed in a plane
perpendicular to the propagation direction of the driver. In full 3D simulations
with Upwind-based schemes like (6.4.19)-(6.4.22), it was observed that even if 1D
linear wake fields are accurately preserved, transversal distortion can occur.

Hence, a second 1D test simulation was set up. The equations do not change,
and the initial conditions are almost the same. As the only difference, we set the
initial momentum p, to zero. In the linear regime with p; < pg, pr < 1, the
approximate solution is

(6.4.23) E,(z,t) = Epsin(2nz) cos(2nt)

(6.4.24) p(x,t) = po + p1 cos(2mx) cos(2mt)
P1 .

(6.4.25) P (2, t) = s cos(2mx) sin(27t),

which corresponds to a standing wave. The result for this problem obtained with
the enhanced scheme (6.4.19)-(6.4.22) is shown in fig. (6.4.5).
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FIGURE 6.4.5. Plots of the result of the enhanced scheme (6.4.20)-
(6.4.21), applied on a linear plasma oscillation problem (6.4.1)-(6.4.3)
with Az = 0.05, At = 0.025. The plots show the field E,(red), the
density modulation p; (black) and the fluid momentum p, (green). The
lower plots show the Fourier spectrum of F,. After 5 plasma oscillations,
a significant distortion is observed; after 50 periods, the initial structure
is almost entirely lost.
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Although the behaviour of this scheme for one-dimensional wake fields is promis-
ing, it clearly fails at modeling standing plasma oscillations. After ¢ = 5(27/w,),
one sees higher harmonics of the initial F, profile, and after 50 plasma oscillations,
the structure is lost entirely. Moreover, there is also a significant damping of the
amplitude of the fundamental wave.

Thorough investigations have shown that, at the maxima and minima of the
initial density modulation, the FCT algorithm sets its weighting coefficient C; to
zero, thus de-activating the high order scheme. This is mostly where the unphysical
distortions first occur. With passing simulation time, those distortions make the
FCT algorithm set C; = 0 in quickly growing regions. Due to this process, the
whole spatial structure becomes randomly distorted, rendering the scheme useless.
One can, of course, disable the FCT, and retreat to the high-order scheme. For this
case (not shown in the figures), the wake field and standing oscillation modeling is
excellent, with low damping and without any distortions. Unfortunately, this is not
a feasible alternative, since such a scheme would - as previously mentioned - cause
ripples, spurious oscillations e.g. at plasma boundaries, and unstable behaviour.
The schemes mentioned above as well as various MUSCL-based upwind schemes,
have also been tested in full 3D simulations. Likewise, significant distortions were
observed.

At this point, finding a fluid scheme which works for wake fields might appear
impossible.

Fortunately, it is not. Looking again closely at the problem reveals at least two
possible ways out of the distortion predicament:

(1) Avoid the upwind scheme. Just a slight perturbation of the initial smooth
data is enough to make FCT retreat to the Upwind flux, causing distor-
tions, and making FCT use the Upwind flux even more, with the conse-
quence of more distortions. So, it might suffice to find another stable, To-
tal Variation Diminishing (TVD) scheme, which causes less perturbations
than Upwind. It turns out that the Kurganov-Tadmor central scheme [42]
is such a method.

(2) Avoid the interpolations completely. One can try to get rid of the necessity
to interpolate the fields onto the cell centers, and approximate the fluxes
(which resembles an interpolation onto the cell border). This can be
achieved by staggering the grid, and relocating the fluid momenta from
the cell centers to the cell borders, as shown in fig. 6.4.6.

For designing the new H-VLPL3D PIC/fluid hybrid code, we follow the second
approach. The new grid is constructed according to fig. 6.4.6. We reformulate the
equations 6.4.1-6.4.3 to primitive variables E,, p., p:

0 0
(6.4.27) aPe =~ <vx . 890) Pz + By
0 0
(6.4.28) i —%(pvx).

Note that the momentum equation (6.4.27) is now written in a non-conservative
form. Since the momentum variables are now located at the same position as the
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electric field, no interpolation is necessary anymore. However, we need a new flux
approximation.

Here, we choose to adopt the FCT method again. As before, it needs a trusted
low order flux and a high order flux as inputs. For the low order flux, we use the
Upwind scheme again:

Upw p|?f%7vl’|j 20
fj 1= Vgl; n
pj+%,vm|j <0

One might object that an Upwind method caused a lot of distortion in the previous
investigations - so why use it here? The reason is that only the fluid density p
undergoes this nearest-neighbour interpolation. The momenta are kept and their
information is preserved. For the high-order scheme, several methods can be used.
We chose to use a modified version of the Quadratic Upstream Interpolation for
Convective Kinematics (QUICK) scheme [74]. It works by quadratic interpolation
using a three-point stencil. Since one wants to interpolate the data from three cells
onto a grid cell border, this stencil is not symmetrical. The three points which go
into the flux scheme are chosen dynamically, dependent on the direction of the flow.
This is shown in fig. 6.4.7.

Let us now derive the scheme for one grid cell. The flux we would like to

derive is f;, and the adjacent densities are {pjfg...ijr%} . Without loss of gener-
ality, we assume p, ; > 0. According to the upstream concept, the density values
Pj—3:Pj—1,PjyL are used for the quadratic interpolation. The polynomial is de-
noted by

po(t) = az® + bx + ¢,
and we again set Ax = 1 for the sake of simplicity. The interpolation conditions
are

pq(x)dx =Pj-1

.
+ L\b

Jj+1

pq(z)dx =Pj+1

b_\

j+2
pq(x)dx =Pji+3-
j+1
The solution is

Piy3 — 2P 1t P 1

pQ(l‘): 2 (Ji—j)2+<pj+%—pj_%>(l‘—j)+

hence the interpolated density is

—Pj43 FOp; L+ 205 1
6 b

int 1 5 1
Pj forw = pQ(0) = —6/’];% + épj,% + gPH%.

The momentum does not need to be interpolated because it is already located

at the cell interface. The coefficients for the case p, < 0 are derived analogously.
Thus, the final QUICK scheme reads
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FIGURE 6.4.6. Sketch of the staggered grid approach for the fluid
scheme. In contrast to the scheme depicted in fig. 6.4.2, the fluid mo-
menta p,,; are now written as primitive variables, and located at the
cell border.

QUICK _%puﬂ,%—’—%pw,% +%p‘?+%vvfr‘j >0
f; =l {1 5 |n 1n 0
§p|j,% + 5p‘j+% - 6p|j+%7 Ua:|j <

Using Taylor expansion for v > 0, one obtains
1
p(iAT) = pint hiali — 0(3)(0)EA$3 +0(4)

for the interpolation error of the modified QUICK discretization for smooth p, while
the order of the upwind scheme is 1. Now we have an expression for a low order
Upwind flux and a third order accurate QUICK flux. These fluxes are fed into the
FCT algorithm, which returns a ripple-free high-resolution flux

fJFCT _ (1 _ C]) fJU;D + ijjQUIC’K.

Omitting the convective term for now, we can write down a time-discretized split-
ting scheme:

"74“1’l n 1 n

(6.4.29) v =P+ G ALEL
At

n+l _ n FCT FCT
(6.4.30) Piri =Pjr3 T Az (fia =)
(6.4.31) By =By + AT

n+l _ n+3 1 n+1
(6.4.32) Payj =Pa,; + 5 AEL

Similar to the steps (6.4.20)-(6.4.21) of the non-staggered scheme, the steps (6.4.30)-
(6.4.31) in the middle constitute an explicit Euler substep. In order to make the
overall scheme 2nd order accurate, one can easily employ a e.g. trapezoidal leap-frog
integrator here. However, the differences are negligible in our numerical small-signal
experiment. The solver (6.4.29)-(6.4.32) was again implemented as a NumPy test
script and run on the plasma oscillation problem and the wake field setup.

The result for the standing plasma oscillation is shown in fig. (6.4.9). One
observes an excellent modeling of the effect. There is no distortion of the spatial
structure at all. Also, no damping was seen even after 200 plasma oscillation
periods. Fig. 6.4.8 shows the result for the wake field test. Likewise, there is
neither any distortion of the structure nor damping effects.

These outcomes make the method (6.4.29)-(6.4.32) a candidate for a fluid solver
for the new hybrid code H-VLPL3D.
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FIGURE 6.4.7. Principle of the modified QUICK flux scheme. If p, ; >
0, a quadratic interpolation polynomial is computed from two values on
the left side and one on the right side. Vice versa, if p,,; < 0, the
polynomial is computed from one left and two right values.

=Y

Of course, it must be evaluated whether the scheme also works in the non-
linear wake field regime. In the next chapters, the scheme will be generalized to

multidimensions, and tested with a variety of physical examples.
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FIGURE 6.4.9. Plots of the result of the staggered scheme (6.4.29)-
(6.4.32), tested with the linear plasma oscillation problem. The plots
show the field F,(red), the density modulation p; (black) and the fluid
momentum p, (green). The lower plots show the Fourier spectrum of
E,. Similarly to the wake field result shown in fig. (6.4.8), the algorithm
excels at modeling the plasma oscillation.
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FIGURE 6.4.8. Plots of the result of the staggered scheme (6.4.29)-
(6.4.32), applied on the linear plasma wake field problem. The plots
show the field F,(red), the density modulation p; (black) and the fluid
momentum p, (green). The lower plots show the Fourier spectrum of
E,. There is no distortion or damping present; the spatial structure is
unaltered even after 200 oscillation periods.
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FIGURE 6.5.1. Geometry of the spatial discretization scheme for elec-
tromagnetic field quantities as well as fluid variables. Losses are mini-
mized by aligning the positions of the fluid momentum components with
the electric field locations.

6.5. Spatial scheme for the continuity equation

The scheme developed in chapter 6.4 has been shown to work exceptionally well
in the linear wake regime of one-dimensional wake fields and plasma oscillations.
So, the next task will be to generalize it to three dimensions and test its capability
in the linear as well as the non-linear regimes. This will be done in the next sections.

For the 3D discretization, we again choose a staggered grid for the spatial
fluid modeling, with the numerical density as an integral over the cell volume, but
momenta located on the cell faces:

PTe sy ::/ / /P(ﬁ”At)d?’T

Cell
(G+1)Ay (k+1)Az

pli(iAz, y, z,nAt)dzdy,

hn —
Pelij+intd =

JjAy kAz

with the other two momentum components defined analogously. This grid config-
uration is depicted in figure 6.5.1. Analogously to the 1D case, the staggered grid
is chosen in a way that the fluid momenta are collocated with the respective elec-
tric field components. This is done in order to avoid interpolations of the electric
fields and momenta and significantly improve the modeling of plasma oscillations.
Since, for this special grid scheme, spatial discretization schemes are rare, we have
constructed a new scheme, following the concept of the QUICKEST technique.

The FCT [44] method used in the 1D scheme in chapter 6.4 is readily gener-
alized to three dimensions. The multidimensional algorithm again takes as input a
low order flux f; low, & high order flux f; ni, & quantity p to be updated, and the
time step At.
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A general semi-discretized 1D Finite Volume Method (FVM) for a quantity
n—1
U= (ui+;) is defined as
2/ i=0
0 1
otlits T T Ag (lefl(u) - filD(U)) ;
the whole algorithm is then contained in the approximated flux function f!P(u).
Such a method can be easily generalized to multidimensions by computing the 1D
fluxes of each variable along each spatial direction,

a=0
Ny —1
f | 1 . 1 —f-lD U; 1 1 1 ’
yl+§’]7k)+§ —Jyg ’L+§,Oé+§,k+§ a=0 ’
n,—1
f | 1, :le U, 1 1 ’
zlit+5,5+35,k k it5,j+5,at5 =0 )
and arrange these fluxes as a vector:
1D
7D 1D
(6.5.1) f = Iy
le
z

It should be pointed out that in the literature one often distinguishes the abovemen-
tioned concept from inherently multidimensional schemes. The latter ones always
stem from multidimensional considerations from the very beginning. Thus, they can
usually not be written as a vector with 1D fluxes as components (as in eq.(6.5.1)).
They are generally considered to be more accurate and stable. Numerical artifacts
like smearing in transverse motions are avoided to some degree.

However, they are not necessary unless complicated fluid problems are to be
simulated. It will turn out that our scheme works satisfactory even with the simple
generalization (6.5.1). Following that idea, the 3D upwind flux reads

(fp,low,x|i,j+%,k+% s fp,low,y|i+%7j7k+% ’ .fp,lo’w,z|i+%”j+%,k) L=

n h

' . Vol s >
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P sk Ol ey <0
h p|?+l,j+l,kfl’Ug|i+%,j+%,k >0
U2 lit 1,4 5ok . ~0 )

h
p|?+%,j+%,k+% 9 vz |i+%,j+%,k
Similarly, the high order QUICK scheme is computed by arranging three one-
dimensional flux schemes into a vector.

h ) )
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where
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The FCT algorithm then provides coefficients
Cp,z|i,j+%,k+%»Cp,y|z‘+%,j,k+%7Cp,z|i+%,j+%,ka
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will achieve high accuracy in regions with low gradients in density while maintaining
positivity and monotonicity. It should be mentioned that charge conservation is
maintained very easily, since with the finite difference operator

1 p—

Ao (Wit g4l kel — Yigilptt)y @=2
. B ) -
da“|i+%”j+%,k+% = Ay (ui+%,j+l,k+% T Uil k+l), =

1 p—

(Wi Ll e — Win gy p), =2

for a staggered-grid variable u, Gauss’ law can be rewritten into the discrete form

( D daBality et nes) = Pliysjri s = const.

a=x,y,z

This will always be satisfied if, given a flux approximation
(Fowlijgasts Foulivs jprdfozlivt jrin)s

one keeps updating the electric field and density at the same time.
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6.6. Semi-Lagrange convective scheme

For high-accuracy wake field simulations, the scheme for the density equation

constitutes the most critical part of the spatial discretization. This is why the
staggered grid convention was chosen, combining the advantages of an interpolation-
free momentum update, simple flux calculation and perfect charge conservation.
However, this grid poses a challenge regarding the design of a discretization of the
convective term in the momentum update. That problem is adressed via a semi-
Lagrange advection scheme, processing each momentum component independently.
It reads as follows:

(1) Given « € {z,y, 2z}, interpolate the remaining two momentum components
symmetrically to the position of p”, precisely
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for the x-component; the other momentum components are computed
analogously.
(2) From these three localized momentum vectors, calculate three velocities

h
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(3) Using these velocities, back-track the trajectories of virtual particles:
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. At
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etc.
(4) Obtain the interpolated momenta at the new positions r*® r’¥ r!* and

use them as the updated solution.
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Since the error of the semi-Lagrange scheme can also cause significant damping
in the solution, the interpolation scheme for 4 must be chosen carefully. Since
trilinear interpolation does not suffice, we use the monotonicity preserving cubic
interpolation scheme from [75]. This scheme is then extended to a 3D monotone
tricubic method by cycling through the dimensions.

The semi-Lagrangian solver for the hydrodynamic momentum is then arranged
symmetrically around a central part consisting of the differential equations stated
below. These equations can be written in a spatially discretized, semi-discrete form:

0
(661) &E$|i,j+%,k+% = _qu,FCT,:c|i’j+%,k+%
a h 7
(6.6.2) gp |i+%,j+%,k+% == Z dfp,rer,a i+5,0+3.kt+3
a=x,Y,z
9
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6.7. Time discretization

The new H-VLPL3D simulation code follows a modular concept, which means
that there are few cross-dependencies between different numerical code sections.
This is why various time integrator schemes can be implemented very easily.

The fluid integrator is nested into the Maxwell solver as follows:

(1) Bn%Bn+1/2

2) E" — Ent1/2
3) p"" — p™4(Semi-Lagrange step)
4) ph4 — p™B(Magnetic Lorentz force push)

el o~~~ o~
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p™B — p"*(Electric force)

(ph,n’ En+1/2) — (ph,n+1’ E*)

p™* — p"(Electric force)

p"¢ — p"P(Magnetic Lorentz force push)
p™P — p/"t1(Semi-Lagrange step)

E* — E"t!

Bn+1/2 N Bn+1

—
O © 00

—~
—_
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The steps 1,2,10,11 implement a splitting solver for the well known FDTD Yee
scheme. As stated in section 3.4, splitting schemes are constructed from exact
solutions of reduced differential equations. Thus, steps 1 and 11 solve the reduced
equation

0
EB__VXE

0
—E=0
ot
exactly. Steps 2 and 10 work in a similar fashion. Considering the steps 5 and 7
shows one main advantage of
the staggered scheme with primitive variables, because the reduced equation
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can as well be solved exactly in a straightforward manner. The steps 4 and 8
implement a Boris push.

As opposed to the steps mentioned before, there are no simple exact solutions
for step 6. Instead, we need a one-step time integrator of at least second order
accuracy. Up to now, H-VLPL3D contains a 2nd order Runge solver as well as 2nd
and 3rd order Heun schemes for this step.

In the remaining steps 3 and 9, the reduced differential equation

Spl= (V)
resembles a relativistic inviscid Burgers equation. It was found that the semi-
Lagrange algorithm depicted above, arranged as a predictor-corrector scheme, achieves
good results.

6.8. Implementation

This optimized fluid discretization scheme has been combined with the existing
particle-in-cell implementation of VLPL, forming the H-VLPL3D hybrid code. The
fluid solver is nested into the existing time step. Fluid densities and momenta
are stored using the Grid<T> grid storage template class, hence the algorithms
are readily parallelized with MPI. The grid information can be naturally fed into
VLPLs existing data storage system in order to achieve easy output of simulation
results.

The fluid system allows for the definition of arbitrary boundary conditions, e.g.
in order to let plasma flow into the box from its border. This is also possible when
the moving box mode is enabled. If desired, new time integrators for (6.6.1)-(6.6.3)
can be implemented within minutes, and the v.ini files then let the user choose
between the schemes. Inside the job initialization files, fluid plasma species can
be defined the same way as PIC species. With recent enhancements, one can also
define multiple fluid species.

The hybrid functionality of H-VLPL3D can be turned on and off easily.

6.9. Properties and benchmarking results

The novel H-VLPL PIC-fluid hybrid code unites the simulational capabilities
and richness of the particle-in-cell algorithm with the efficiency, smoothness and
speed of a hydrodynamic plasma description. In this section, we demonstrate its
correctness using various physical examples. The grid geometry convention of the
fluid data as well as the spatial discretization pattern has been designed with partic-
ular emphasis on noiseless, highly accurate simulations of driven plasma oscillations,
which are encountered in the laser wake field acceleration (LWFA) or the plasma
wake field acceleration (PWFA) regimes. Therefore, we pay particular attention to
the code’s performance in modeling wake field setups.

In order to quantify the new system’s spatial accuracy, we have carried out a
sequence of one-dimensional test computations. The grid step h, is varied from
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0.1 to 0.01, and the result for the electric field is compared to a high-resolution
reference simulation. The max norm of the error is shown in figure 6.9.1.

FIGURE 6.9.1. Error analysis using a series of wake field test simula-
tions. The error curve indicates second order spatial accuracy.

6.10. Interaction with electromagnetic waves

Asg a first test for the code’s correctness, it is benchmarked against a conven-
tional PIC code (VLPL) in a simple refraction experiment. A narrow, short virtual
laser beam is targeted onto a plasma surface dividing the simulation box into two
equal parts. The plasma consists of electrons, with a density of zero in the left half
and n. = n./2 in the right half, where n. denotes the critical density corresponding
to the laser frequency. This plasma is modeled with the conventional PIC code for
a reference simulation as well as the new hybrid extension. The results are shown
in figure 6.10.1; as it can be easily seen, the linear plasma response is reproduced
very accurately.

6.11. Wake field simulations

The test simulation for the driven wake field regime is set up as follows: Given
the background plasma wavelength \,,, we choose a virtual box of size (L, Ly, L,) =
(32,1.5,1.5)\, covered by an equidistant grid with resolution

(ha, hy, h2) = (0.05,0.06,0.06) A,.

A homogeneous background with density pi, = pplasma With pplasma = (mmc?)/ (62)\12))
is set to consist of electrons, represented as a fluid. A proton bunch is put next to the
right wall of the box, with p, = 0.1ppjasma exp(—(2/02)? — (z/0y)?), 0o = 0.17),,
or = 0.2\, and momentum p = (479mc, 0,0). The simulation runs with a moving
frame, keeping the position of the proton bunch in virtual grid coordinates constant.
Figure 6.11.1 shows a snapshot of this setup after ¢ = 407, where T, = \,/c.
The 3D visualization has been cut to show only the right part of the box, with
x € [25.6,32], for the sake of simplicity. As depicted, the proton bunch excites a
wake field with a background density modulation of ~ 15%. One observes a very
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FIGURE 6.10.1. Snapshot of a linear refraction test of the hybrid code.
The plasma surface is a jump discontinuity from n. = 0 to n. = %nc.

smooth and accurate modeling of the effect, with very short simulation time. In or-
der to cross-check and accentuate the advantage of this model, we initialize hybrid
and conventional PIC simulations of the same geometry, with n, = 0.001, with a
comparison shown in figure 6.11.2. The first picture shows the result obtained with
the H-VLPL code, while the second one has been created replacing the fluid repre-
sentation by PIC macroparticles. This simulation suffers from heavy diffusion due
to repeated interpolations required by the kinetic scheme. Now one could expect
that increasing the number of particles per cell could alleviate this effect; on the
contrary, the diffusion becomes worse with more macroparticles changing their grid
cell location more frequently and causing additional loss of information.

For the sake of clarity about the solution of this problem, we repeat the simulation
with one half of the initial grid steps (causing a 16 times longer simulation, third
image in figure 6.11.2) and one quarter of the initial step (causing a 256 times
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FIGURE 6.11.1. Snapshot of a hybrid simulation of a proton driven
wake field at time ¢ = 407},1,515- The color plot attached to the bottom
wall shows the density modulation of the fluid. The back wall image as
well as the blue and orange iso surfaces illustrate the E, electric field
component.

longer simulation, fourth image). A convergent behaviour of this data is obvious.
We again point out that while PIC algorithms are still unmatched in their richness,
their continuous loss of information makes them need an overall simulation size
orders of magnitude larger in order to reproduce the hybrid result.

An additional benchmark is done by testing the hybrid code in the highly non-
linear regime of wake field excitation. A dense, high energy gaussian proton bunch
with 1) max = 0.3nplasmals made to propagate through a background plasma with
constant density ppof- Results at ¢ = 207}, are shown in figure 6.11.3. Here, the
density fluctuation is as high as %pplasma; making convective effects significant.
Again, one notices that the hydrodynamic algorithm succeeds at reproducing the
nonlinear steepening of the wave, but without the noise a PIC code would generate.

As a last benchmark, we have measured quantitatively the non-physical damp-
ing in driven plasma oscillations. Again, a driver pulse was made to propagate
through a fluid plasma, exciting wake fields. The on-axis E, component was ex-
tracted and its amplitude was calculated via FFT. Then, a parametric exponential
function E, yit(x) := Eo exp(—2/Ngecay) Was fitted to E, with linear regression for
the constants Eo, Agecay- A typical result is shown in figure (6.11.4), where for a
driver density of ng = 0.1 the 1/e length was as large as 5559\,,.

Even for higher driver densities, the damping was very low, with the lowest 1/e
length observed being ~ 750,,.

6.12. Summary

In this chapter, a comprehensive description of the novel H-VLPL3D PIC/fluid
hybrid code was given. The basic fluid equations as well as the schemes for the spa-
tial and temporal discretization have been presented. Furthermore, I have described
the challenges, and the solutions for finding an algorithm capable of modeling wake
fields with low distortions. The H-VLPL3D implementation was then successfully
tested on various physical examples.
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FIGURE 6.11.2. Snapshot of the E, component of four simulations of
the setup depicted on page 82 after ¢ = 40T;.s. The wake field was
excited by a proton bunch driver, which is located just at the right
box wall. The PIC simulations have been computed with increasing
resolution, showing clearly that the latter suffer from numerical diffusion
of the electric field information while converging towards the hybrid
result.

The results depicted above give a good justification for the H-VLPL3D code.
For the regime of very long wake fields without wave-breaking, it is far more accurate
and efficient than the PIC method.

Its break-out capability of modeling such high numbers of plasma oscillations
immediately finds its first application: Chapter 7 describes how this code has been
used in the simulation of self~-modulation effects of long proton bunches in plasma.
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FIGURE 6.11.3. First three plots: Comparison of E,/FEin the non-
linear regime, with a density fluctuation of ~50%. The upper plot shows
the PIC result, and the middle plot depicts the outcome from the hybrid
simulation. The lower plot shows a 1D cross-section at y = 0, for PIC
(blue) and hybrid (red) results.

Last three plots: Comparison of PIC (top) against hybrid (middle) re-
sult for the F,-component in units of the wave-breaking field F,; in
the nonlinear regime with a maximum density fluctuation of 100%. The
lower plot shows a one-dimensional cross-section of the same quantity
at y =0.
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CHAPTER 7

Simulation of Self~-Modulated Proton Driven
Plasma Wake Field Acceleration

7.1. Introduction

Plasma is a promising medium for high gradient acceleration of charged par-
ticles. It can sustain fields orders of magnitude higher than the breakdown fields
of the conventional accelerators [1]. One can excite strong plasma waves either by
lasers or by charged particle beams [8, 9]. One of the very attractive approaches
is to use already existing TeV proton beams as a driver to generate plasma wake
fields. Due to the limitation set by the transformer ratio, the energy gain of the
witness beam cannot be much larger than the driver energy [18]. Employing a TeV
proton driver allows in principle to accelerate an electron bunch to TeV energies in
one single stage thus alleviating technical burden of multistaging.

It has recently been shown using detailed simulations [3, 20] that a high gradi-
ent plasma wake field can be generated with an ultra-short bunch of protons. In that
scenario, the proton bunch was shorter than the plasma wavelength. Unfortunately,
such ultra-short proton bunches are not available presently. The bunch length of the
existing TeV-class proton beams are of order L ~ 10cm. The characteristic plasma
field, the so called wave breaking field is Ewp = mcw,/e = 96+/n.(cm~3)eV, where
wp = \/4mnee? /m is the plasma frequency defined by the electron density n.. Accel-
erating gradients of a GeV /m-scale require plasma density of at least n, = 10'4cm =3
corresponding to the plasma wavelength A\, = 27c/w, ~ 3mm. Thus, the existing
proton beams correspond to L = (10 —100)A, and cannot efficiently generate wake
fields in such plasma. The situation with the proton beams is very much the same
as it was with laser pulses in the 80’s of the previous century. The availability
of long laser pulses necessitated the invention of a self-modulated laser wakefield
accelerator (SM-LWFA)[21]. Subsequent progress in ultra-short pulse laser tech-
nology removed the need for self-modulation and lead to successful mono-energetic
electron acceleration in the bubble regime [11] that reached GeV energies.

A long proton beam propagating in overdense plasma is also subject to self-
modulation at the background plasma wavelength [22]. The effect of self-modulation
opens a possibility to use existing proton beams for large amplitude wake field ex-
citation. An experimental program is currently under consideration at CERN. The
Super Proton Synchrotron at Large Hadron Collider (SPS) beam with 450 GeV
protons is proposed as the driver for the initial stage of the experimental campaign.
The wake field will be used for accelerating externally injected electrons. The par-
ticles must be trapped in the wake field. The trapping condition depends on the
wake field amplitude and phase velocity [4]. Because it is expected that the SPS
beam will generate a weakly-nonlinear plasma wave with the same phase velocity
Uph as the speed of the driver, it is natural to assume that the gamma-factor of the
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injected electrons v, must be comparable to that of the proton driver -y, for them
to be trapped. As demonstrated below, that is not the case because the spatio-
temporal nature of the self-focusing instability of the proton bunch considerably
reduces vph.

Although it has been realized for some time[76] that the phase velocity of the
plasma wake produced by the self-modulation instability of a laser pulse is slower
than the pulse’s group velocity, this was not an important issue because the laser
group velocity was usually modest. For the self-modulated proton driver plasma
wakefield accelerator (SM-PDPWA), the wake slowdown is of critical importance.
In the next chapters, we show that the phase velocity of the unstable wave is defined
not so much by the driver velocity, but mainly by the instability growth rate. The
wake field is greatly slowed down at the linear instability stage when the growth
rate is at its maximum. At the nonlinear saturation stage, the wake reaches the
driver phase velocity. We also show a way how one can manipulate the wake phase
velocity by smooth longitudinal density gradients.

Self-consistent simulations of the SM-PDPWFA effect are difficult and impose
special conditions on the simulation code. Classical particle-in-cell codes suffer
from numerical dispersion and field-to-particle interpolation errors. This takes the
form of a wake field damping which has a strong impact on the modeling of the
self-modulation.

Hence, the simulations are carried out with the new hybrid code H-VLPL3D,
which was presented in chapter 6. While the proton beam can be described with
the conventional PIC model, the background is represented numerically as a fluid.

The following chapters will be organized as follows. The general simulation
setup is described in chapter 7.2, which will also show the self-modulation process
qualitatively. In section 7.3, analytical models of the self-modulation instability are
introduced.
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7.2. Simulation setup

The testing phase of the envisioned experimental program at CERN will use
the SPS beam. It delivers 1.15 - 101! protons at 450 GeV /c with the normalized
emittance €, = 3.5um and the length o, = 12cm. We use these beam parameters in
our 3D PIC simulations with the newly developed hybrid code H-VLPL3D, chapter
6. This new code simulates the background plasma hydrodynamically while the
high energy beams are treated with the full kinetic algorithm. The hydrodynamic
part of the code introduces much less numerical dispersion into the plasma waves
than a PIC code with the same resolution. The beam has been focused down
to 0, = 0.19mm and sent through plasma with the free electron density n. =
7.76 - 10" cm~3. The maximum beam density on axis is n, = 1.5- 102 cm~3. To
avoid the beam hosing and to pre-seed the self-modulation instability, we assumed
the beam being hard-cut in the middle [22]. The basic setup is shown in fig. 7.2.1.
For the background density n., the plasma wave length is

Ap = 1.2mm.

Protons (PIC)

Plasma (Fluid)

FIGURE 7.2.1. Basic setup of the SM-PDPWFA simulations. The pro-
ton bunch consists of PIC macroparticles, while the plasma is modeled
with the new fluid module of H-VLPL3D.

We chose a computational domain
D = [0,256,] x [0,1.56X,] x [0,1.56X,],
the cell size
(Az, Ay, Az) = (0.05,0.06,0.06)
and the initial time step
At = 0.03.

A moving frame was used, shifting cell contents in the —xz direction with a velocity
VMF = C.

The course of events of a typical simulation can qualitatively be described as
follows: The sharp border of the half-cut Gauss beam immediately excites a weak
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wake field. Along a propagation distance of roughly 5 meters, the wake field slowly
displaces the protons. At the same time, this introduces a modulation of the local
radius o, (x) of the Gauss distribution. The modulated beam again drives the wake
field more resonantly, which causes the field amplitudes to rise. The structure of
the densities and the F, field component is shown in fig. 7.2.2.

i |
| |

50 100 150 200
z/\

o

p

ppTOtons | - - - - - - - - - - - - %

Pl

Ffeeecececece e ceeee—— =

144 148 152
x/A

P

FIGURE 7.2.2. Snapshot of a typical SM-PDPWFA simulation. The
upper plot shows the whole simulation domain, and the lower plot visu-
alizes a small fraction of the total length.

In section 7.4, the important local phase velocity vy, will be extracted from
this data.

7.3. Self-Modulation instability

To describe the wake slowdown analytically, we adopt the formalism devel-
oped within the framework of the envelope description of the driver [22]. We
assume an axis-symmetric beam driver and utilize the co-moving and propagation
distance variables £ = Spct — z and 7 = z /¢, respectively, where Sy = v./c (v, is
the velocity of the bunch), and the beam’s propagation direction is z. Further, the
driver beam is assumed stiff enough so that its evolution time is slow 0, < c0Og.
The beam occupying the 0 < £ < L space is assumed to be long: w,L/c > 1. The
beam density profile is assumed in the form of p(r, &) = po ¥ (r) f(§), where py = npe
is the charge density of the proton bunch. For simplicity, the step-like radial profile
P(r) = O(rp — r) is assumed, where 74(&, 7) is the evolving radius of the beam’s
envelope, and ©(r, — r) is the Heaviside step-function. The betatron frequency
of the self-focused beam is defined as wgy = ckgy = /4mnye?/2y,my, where m,,
is the proton mass. In the limit of thin beam (k,r;, < 1) and linear plasma re-
sponse, the equation of motion for the beam’s radius (in normalized coordinates
Fp = 73/Th0, T = WpoT, € = kp€) is given by [22]

(7.3.1) sin(€ — £)d¢’,

PrE) & /f (&)
0

orr B9 ()
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where ag, 70 and I(€) = f(€)72(€,7) are the beam angular divergence, initial
radius, and longitudinal current profile, respectively, and €, = og/(kgors0). Per-
turbing Eq.(7.3.1) about the initial radius 7, = 147y, yields the linearized equation
[22]:

0? 0%, 9 o .

Following the approach of Bers [77], we find an asymptotic solution of this
equation for sufficiently late times, 7 > L., where L, ~ 1/T" is the e-folding length,
and I is the growth rate of the instability. Substitution of dr, = 07 exp(—idwT +
ik€) into Eq. (7.3.2) yields the dispersion equation dw(k). The peak growth rate is
calculated [77] by introducing dw' = dw — vk, where v = ¢/7, and requiring that
D(0w', k) = 0 and dD(6w’, k)/dk = 0:

(7.3.3) (1—K*)(=0w?+3&) = 1,
(7.3.4) —k(—0w? 4+ 38%) — dwu(l — k*) = 0.
Equations (7.3.3) and (7.3.4) lead to the standard dispersion relation typical of the
beam-breakup instability which is known [78] to always possess a growing mode
with $(dw) > 0. To simplify the algebra, we assume that 3¢2 = O(1) and consider
the initial stage of instability corresponding to k = 1 + 0k, where 0k < 1. In

this limit dw > €,, and Egs. (7.3.3),(7.3.4) are reduced to the dispersion relation
dw3 = —v, and 46wvdk? = —1. The complex roots are given by

. =\ 1/3 . o\ 1/3
C1+iV3 (¢ 143 (72
(7.3.5) dws = — <T> Ok = ——— (52) :

In physical units, the condition for dw > €, can be expressed as

3

& ngm [ kyr2
736 4 ts ort = 27 M 9
( ) & Fohort =% cneM \ ey,
where €, = Y097 is the normalizgd beam emittance. The number of e-foldings
is given by N, = $(0w)7T — F(0k)¢ = 33(dw)7/2, and therefore the growth rate

~ - 1/3

I' = 33(6w)/2 = 33 (5](5)/%) /4. In dimensional variables, the instability
growth rate is expressed as

(7.3.7) r

_3\/§ ( nym 5)1/3
= wp = ,

4 2nemyp Y ct

and the maximum number of e-foldings achieved at ¢t = tgport 1S
N, =~ (3V/3/4)EY/372/% = (3v/3/4)k, Le&; */°.

Note that for the typical parameters of the SPS beam and plasma density n, =
10'4...10®em ™3, N, ~ 100. Therefore, it is most likely that the self-modulation
instability will enter the nonlinear regime prior to ¢ = tghort, and the above assump-
tions will remain valid throughout the linear stage of the instability.

The crucial observation is that dw and Jk have not only imaginary parts re-
sponsible for instability growth, but also real parts. It is this real part that changes
the wake phase velocity. The wake phase is ¥, = (1 + R(0k))€ — R(0w)7, and the
phase velocity vpn = vy + (99 /97) /(09 /O€)wgo /w,. Substituting (7.3.5) for dw and



7.4. SIMULATION RESULTS 93

0k and neglecting small terms on the order of v=2/3, we obtain the phase velocity
of the growing mode

L 1©nym
3. =y |l1—-=(=> VAL L ,
(7.3.8) Uph = b [ 2 (ct) 2neMmp Yy
The wake phase velocity (7.3.8) can be significantly lower than the speed of the
beam due to the instability dispersion. The relativistic y—factor of the wake phase

—1/2
velocity ypn = (1 —v,/ (32) can be an order of magnitude lower than that of

the driving beam. This effect will prohibit electron acceleration to high energies
at the instability stage. Yet, one can easily see from the formulas that the phase
velocity decrease is closely connected with the instability growth rate. Thus, one
may expect that when the instability saturates, the phase velocity of the wake
becomes close to that of the beam. This effect might help to inject low energy
electrons into the wake of a highly relativistic proton beam at a later stage of the
instability, just before the nonlinear saturation.

7.4. Simulation results

The main subject of this investigation is the wake field’s phase velocity vy,
which is important for a later injection of particles. Also, we aim for a way of
controlling v, via plasma density gradients. Hence, one needs a proper definition
of such a phase velocity first. A natural approach is to define it through the motion
of the accelerating phases of the field component E,.

In practice, we have obtained a good approximation by tracking the zeros of F,
from on-axis data extracts. This is done by linearly interpolating F, and retrieving
the positions of the zeros at a time n. These positions are then matched to the
former ones at time n — 1. From this procedure we have obtained one-dimensional
trajectories

(7.4.1) (zn) Nz Nr

a/a,n=1,1
of the E, field zeros. Here, « is the index of the zero and, Nz is the total number
of zeros tracked and Nt is the number of recorded snapshots. The phase velocity
was obtained by computing the numerical derivative of (7.4.1).

The results are presented in Fig. 7.4.1. From the frame (a) we see that the
linear instability stage lasts during the first 5 meters of propagation. Then, the
beam is completely modulated and the nonlinear saturation is reached. The wake
phase velocity is shown in the frame (b). A significant slowdown of the wake
is observed during the instability. The lowest phase velocity is registered to be
Uph & (1 —3.5-107%) c. This corresponds to the wake y—factor v, ~ 38. This is
an order of magnitude lower than the y—factor of the driving beam. The frame (c)
compares the simulation result (the solid red curve) with the analytic expression
(7.3.8), where we substituted the SPS beam parameters. This snapshot of the wake
phase velocity has been taken at Z = 2.5m, in the middle of the linear instability
stage. A reasonable agreement between the simulation and the analytical theory is
seen.

The wake slowdown has a dramatic impact on the electron trapping and ac-
celeration. First, it allows to trap low energy electrons whose velocities are com-
parable with the wake velocity. However, the energy gain in the slow wake is very
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(vpn—c)/ ¢, x10* (b)

FIGURE 7.4.1. (color online) 3D hybrid PIC simulation of SPS beam
self-modulation in plasma with constant density n. = 7.76 - 10" em™3.
Frame (a) shows evolution of the maximum accelerating field. The lin-
ear instability persists for some 5 meters before the nonlinear saturation.
Frame (b) shows the phase velocity of the wake as a surface in depen-
dence on the propagation distance Z and the beam coordinate £&. The
phase velocity experiences a deep drop towards the tail of the beam at
the linear stage of the instability. When the beam is completely modu-
lated and the instability saturates at Z > 5m, the wake phase velocity
surges up to that of the driving beam. Frame (c) gives a snapshot of the
wake phase velocity after 2.5 meters of propagation distance (the solid
red line). The broken line gives the analytical expression (7.3.8).

limited due to the fast dephasing. The energy gain is given by the formula [4]
AW =~ 4'yghmc2(Emm/EWB). At the linear stage we have E,,,, < Ewp and the
energy gain is low for small .. The dephasing, however, has a much worse effect.
If the electrons have been injected into the early instability phase of the slow wake,
they can be lost when they overtake the wave and enter the defocusing phase. The
dephasing distance is k,Lq ~ 27rfy§h and for the slow wake field it can be shorter
than the instability time. For this reason, the electrons must be injected at the late
time of the instability, when the phase velocity begins to grow. In our simulation,
the saddle point for injection is located around z = 5m. The wake phase velocity is
still low here, but starts to grow rapidly as the beam reaches complete modulation.

7.5. Electron side injection

A possibility to inject electrons into the wake is the side injection [79]. In this
case, a beam of electrons is propagating at a small angle with respect to the driver.
The advantage of the side injection over the on-axis injection is that electrons are
gradually “sucked-in” by the wake transverse field at the right phase. This leads to
a high quality quasi-monoenergetic acceleration of electrons.
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The energy of the accelerated electrons is quite sensitive to their initial con-
ditions. However, because of the negligible charge of an electron “witness” beam,
one can perform greatly simplified test particle simulations here. The idea is to run
two-staged computations:

First, a large scale self-consistent simulation of the plasma wake field of a
self-modulating proton bunch in done. The parameters are the same as for the
investigation depicted above. From this simulation, two-dimensional snapshots of
the electromagnetic fields were saved with a high resolution in time.

Then, the VLPL code was run with its recently implemented test particle mode.
The stored data from the first simulation were read by the second simulation,
and re-interpreted as cylindrically symmetric fields. VLPL’s particle module was
adapted for this purpose, skipping the current deposition step. Since the need for
grid operations and current calculation was removed, such a job could be executed
on one single processor core. Thus, a great number of witness beam simulations
was run simultaneously in order to scan through the injection angles and injection
points. For an injection angle 6;,and relativistic factor ~;,, the initial momentum
of the witness bunch must be set to

cos 0;,,
Pin = mecy/72, — 1| sinby,
0

We denote by xp;; the distance the proton bunch has propagated in the plasma
until it meets the electron witness bunch; zsn;¢¢ > 0 is the distance between the
proton beam’s head and the theoretical point where the electron bunch meets the
protons. Additionally, we need the position of the head of the proton bunch, xpcqq.
The initial electron velocity is

1 cos 0;,
Vin = ¢y |1 — — | sinby, |,
’Yin 0

and the time of collision between the two bunches is approximately

Thit
thit = .
C

Then the initial position of the electrons must be set to

Thead — Tshift + (C - Uin,x) thit
e
rg = _thitvin,y
0

In general, this position lies outside of the simulation box. A straightforward seed-
ing of particles at the domain border in each time step leads to unphysical density
fluctuations. Therefore, it was necessary to implement a generalized particle injec-
tion system. This module keeps track of the motion of virtual PIC macroparticles
in order to put them into the border of the simulation domain just at the right
moment; it also works in the moving frame mode.

We show two of these simulations, where we have injected two beams of test
electrons. The first beam of 20 MeV electrons was injected on-axis together with
the driving beam. This electron energy roughly corresponded to the minimum wake
phase velocity at the tail of the driver. We found that during the linear growing
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FIGURE 7.5.1. (color online) Electron energy spectra at z = 10 m.
There were two groups of electrons. The one was injected on-axis
together with the driving beam. The another was side-injected at
the angle of 0.005 radian, the electron beam trajectory should cross
the driver axis at z = 6 m, £ = 20cm behind the beam head. The
on-axis injection lead to a broad spectrum and low energy gain.
The side injection resulted in a quasi-monoenergetic beam at 1.2
GeV energy and about 1% energy spread. Initial electron energy
was 20 MeV for on-axis injection and 10 MeV for side injection.

instability stage, these electrons did more that one oscillation in the wake pondero-
motive bucket. Finally, after 10 meters of propagation, the maximum energy gain
was about 200 MeV with a rather broad energy spectrum, as seen in Fig. 7.5.1.
The second electron beam with 10 MeV energy has been side-injected at the
angle of 0.005 radian. The electron beam trajectory was designed to cross the
driver axis at z = 6m, £ = 20 cm behind the beam head. Due to the small injection
angle, however, the electrons have been sucked in into the wake much earlier, at the
position z &~ 5m. The wake transverse fields have put most of the beam electrons
into the focusing and accelerating phase. The electron beam and field configuration
just after the electrons entered the wake is shown in Fig. 7.5.2. The electron beam
is split into micro-bunches located exactly in the accelerating and focusing phases
of the wake. Due to this configuration, the side injected beam resulted in the
maximum energy gain of 1.2 GeV and a rather narrow energy spectrum.

FIGURE 7.5.2. (color online) Test electron beam (dark green discs) and
the accelerating field (the red-blue wave) just after the side injection at

z = 5m. The electron beam is split into micro bunches located exactly
in the accelerating and focusing phases of the wake.
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The low energy spread and efficient acceleration of the side injected electrons
are also due to fast rise in the wake phase velocity just after the injection position,
as seen in Fig. 7.4.1(b). The electrons gain energy while staying in the accelerating
phase of the wake.

7.6. Phase velocity control

We have seen above that the growing mode (7.3.5) has the low phase velocity
(7.3.8). There is a way, however, to manage the phase velocity of the wake by
employing a gentle longitudinal plasma density gradient as it has been discussed in
[80]. To elucidate the effect, we have performed an additional simulation with the
same beam parameters, but introducing a positive plasma density gradient:

ne(2) = neo(1+ 2/d),

with the characteristic length d = 200m. The phase velocity obtained in this
simulation is shown in Fig. 7.6.1.

(Vph =G )/ G X 10-4 [O)

L (vpn—c)/ ¢, x10% (b)
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FiGure 7.6.1. (color online) Phase velocity control by positive
plasma density gradient. a) Phase velocity at z=2.5 m. b) Full dy-
namics picture; the transparent plane marks the speed of light.

The phase velocity at the head of the beam takes a dive as defined by the
growing mode dispersion. However, the positive plasma density gradient compen-
sates for the mode dispersion and at the tail of the beam the wake phase velocity
becomes equal to the speed of light and even superluminous.

In summary, we have shown that the self-modulational instability of a charged
beam in plasma corresponds to a growing mode with a slow phase velocity. The
wake velocity is much lower than that of the driver. The wake slowdown is due
to the real part of the frequency of the unstable mode. Although this effect limits
electron energy gain at the stage of the linear instability growth, the low phase
velcoity can be harnessed to inject low energy electrons into the wake of a highly
relativistic driver. We also have shown that the side injection of electrons at a
small angle with respect to the driver axis may drastically improve the quality of
acceleration. The transverse field of the wake sucks in the injected electrons and
automatically puts them into the right acceleration phase. Finally, we show that
the wake phase velocity can be controlled by a longitudinal plasma density gradient.
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7.7. Coherent Transition Radiation for Self-Modulation Measurement

As mentioned above, there is a collaboration for a plasma wake field accel-
eration experiment based on the SM-PDPWFA effect. It aims at building up an
experimental setup at CERN, which utilizes 450 GeV proton bunches from the SPS
accelerator. There is a number of open questions concerning the plasma generation,
the geometry of the devices and the methods of measurement. One interesting prob-
lem is how to detect the state of the driving bunch after it has passed the plasma
channel. The self-modulation effect causes the driver to be constricted - however
the total current through a plane perpendicular to the propagation direction is not
altered. Additionally, the bunch may suffer from the hosing instability, which shifts
the bunch periodically in transversal direction. This results in a snake-like shape,
being an undesirable outcome. Here, one needs a diagnosis tool for the longitudinal
structure of the bunch.

One of the most common techniques for this problem is the Coherent Transition
Radiation method[81, 82, 83, 84, 85]. It has proven particularly useful in the
structural investigation of laser-plasma accelerated electron bunches [86, 87, 88|.
When a charged particle propagates through a dielectric medium for some time,
its surrounding field reaches a steady-state solution. A sharp boundary in the
background permittivity causes a different surrounding field; the unmatched field
is radiated.

Let us consider a transition radiation emitted by a particle bunch as it tra-
verses normally a conductor plate. The interaction geometry is illustrated in Fig.
7.7.1. When an elementary charge dq exits from the conducting plate in the normal
direction with the velocity v, the radiated field is given by the formula (63.8) from
the Landau textbook [89]:

E = — " Ry (R-R) x ad
2 (R — RY) c dt’
dq v dv
7.1 _ - —_—
(7.7.1) + 02(R+RV)BRX[(R+CR)><(#,}
where ¢’ is the retarded time so that
(7.7.2) t'+R(t)/c=t.

The second term in Eq. (7.7.1) is generated by the image of the physical charge in
the conducting plate.

For a simple derivation of the radiated fields, we assume the field inside the
plate as well as the current, to be zero. Thus, when a charge fraction exits the
surface, its current has a jump discontinuity v(t') = voO(t' — t.), where ¢, is the
time the charge exits into vacuum and ©O(¢) is the Heaviside step function. The
denominators in (7.7.1) indicate that the strongest radiation can be expected in the
angle 6 ~ 1/~. However, the radiation on the transverse plane yields more coherent
information about the bunch structure, so we will focus on the latter. By setting
v L R, we get

2 dv
2Rdt"™
2

= 7@V05 (tl — te) dq

dE =
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observer
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FIGURE 7.7.1. Geometry of the transverse coherent transition radia-
tion. A charged particle bunch exits a conductor plate normally to the
surface. The observer looks at the emitted radiation from side to the
beam, in the plane of the surface.

For a continuous bunch, the differential form for the charge contribution is
dg = en (t,r) vodSdt = en (t,r) vor dr dy dt,

where n (t,r) is the charge density. The field is polarized in the bunch propagation
direction and normal to the metal plate surface. The observed radiated field is thus

(7.7.3) E(t, Ry) = / B = —fflgi // n(t',r)ds.

Here, we have used the assumption that the observer is far away from the radiation
source, thus R ~ Ry. The geometry is conveniently expressed in cylindrical coordi-
nates. It will turn out that the modulation of the field is caused by the modulation
of its propagation distance. This information is contained in the retarded time

R(t R
BE) oy Bo T s
c ¢

(7.7.4) t'=t—

Eq. (7.7.3) can now be applied on different bunch profiles. A transversally con-
stricted or hosed particle bunch may have the same total transverse current

Ir = evo//n(t’,r)dS

as an unaltered bunch. Still, we will see that these effects have clearly different
radiation signatures.

7.7.1. TCTR emitted by modulated axially symmetric bunches with
constant current. Let there be a Gauss-shaped bunch with a longitudinal radius
modulation

2
o 00 —r2 /202 t/,z
(7.7.5) n(t'r, z) = Mo a5y /203t 2)

o(t',2) = oo [L +ef (k(z — vot"))]
=0y [1 +ef <kz — kvot + k:ROU—O — k’f‘@ cosw)} .
c c
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FIGURE 7.7.2. TCTR emitted by a proton bunch exiting from a
metallic foil. Only the radius of the proton bunch is modulated, not the
current. The colored surfaces show the electric field component normal
to the metal foil.

The position of the metal plate surface can be set to z = —Rgpvg/c. To get an
analytic expression for the electric field, we shall use some approximations for the
density. First, we Taylor-expand with respect to kr:

f (—kvgt - kr%o cos 30) = f (—k‘vot) — (kr) %0 cos () f' (—kvot)

+ (kr) % cos? () f”(—kvot)+(9((kr)3).

Second, we expand the density w1th respect the relative perturbation amplitudee:
2

2
99 —r? /202 t'z) _ —r? /20, t'z r 2
me / ( )—6 /270( )|:1+€f()<a_g_2>:|+0(6)
We obtain
7"2 77,2/202
(7.7.6) n(t,r,z)~ng |[1+eA| = —-2]]e o

)
where

A= f(=kvot) — (kr) ’U_Co cos () f' (=kvot) + (kr) —2 9 cos? () f" (—kvot) .

The second and the third terms in (7.7.6) origlnate from the time retardation (7.7.2)
and are essential for the radiation emission.
The field excited by the axisymmetric particle bunch is then

2ev2 [
E(t7 RO) = CzR(()) / dg@/

(7.7.7) [1 Led <— _ 2)] %1203 g,

90
The integrand in (7.7.7) contains terms with different powers of kr. The terms
independent on kr are not retarded. The oscillatory part of the integral of these
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FIGURE 7.7.3. TCTR emitted by a hosed proton bunch exiting from
a metallic foil. The radiated field is shaken off anti-symmetrically in the
plane of hosing.

terms vanishes because we assumed the total current of the particle bunch being
constant. The terms linear in kr contain the factor cos ¢ and disappear when we
integrate in the angle ¢ over the bunch cross-section. This is due to the axial sym-
metry of current distribution in the bunch. The first oscillatory terms that do not
vanish after the integration are quadratic in kr. Collecting the terms proportional
to (kr)? at the first time harmonic, we get

osc " 26“3 o 2
E°(t,Ry) = enof"” (kvot) Roct cos” pdpx
0

[e'e] 2 _ r2
(7.7.8) X / r(kr)® (1 - ;—2) e 270dr.
0

0

for the first order oscillatory components of the field. We compute this integral and
obtain

J
(7.7.9) E(t,Ry) = —2e—— (koo)” B2 f" (—kvot) .
CR()
where J = 27mgengvo is the total bunch current andfBy = vg/c. We can insert the
case of a simple cosine modulation, f (x) := cos (z), getting

(7.7.10) E(t,Ry) = 26% (k00)2 BS COS Wyqqdl.
)

The radiation frequency is wy.q = kvg. This expression is valid only for narrow
bunches, where kog < 1. The case present in our previous investigations in chapter
(7.4) (with kog =~ 1) is difficult to treat analytically.

Still, a simulation clearly showed the presence of the TCTR in this regime.
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7.7.2. TCTR emitted by hosed bunches with constant current. The
second case we will describe here is that of a hosed proton bunch: The radius
remains unaltered, but the transversal center position varies with z. The density is
given by

, 2
(7.7.11) n(t',r,z) = nge(Fre(t’.2))"/20%
The center position is
ro(t',z) = reoh(k(z—wvot)))
(7.7.12) = rqoh(kz — kvt + ERovo/c — kr(vg/c) cos ) .
Again, the surface position is assumed to be z = —Rgvg/c. We use a taylor expan-

sion similar to the one in section 7.7.1. Expanding h (—kvot — kr?2 cos cp) linearly
in (kr) and n (', r, 2) linearly in r.g, we get

(7.7.13) n(t,r,z) ~ ng (1 + r;(;rAh> e*TQ/%g,

where

(7.7.14) Ay = h(—kvot) — fer 2 1y (—kvg) tcos
c

and

(7.7.15) reor = reo7 cos( — ¢p)-

o is the angle between the plane of hosing and the direction to the observer. The
field excited by the axisymmetric particle bunch is then

2ev2 [T o
E(t,Ry) = —ng—2 d / rx
(8, Ro) "R, Jo 4 0
(o — _ 2
(7.7.16) x <1 + WAh) ¢ 28 dr.
g
Again, we are only interested in the oscillating part of the field, which is
3
E(t,Rg) = 2mcospoh’ (kugt) 00 52y,
R()C3
J 2 /
(7717) = 7ﬂ0k7‘0 COS (poh (kﬂ]ot).
CRO

The radiation amplitude is proportional to the hosing amplitude kry and the first
derivative of the hosing function A’ (wyeqt). In the case of a periodic harmonic
hosing of the particle bunch radius, h(kvot) = cos(kvot), the expression (7.7.17)
becomes

J
(7.7.18) E(t,Ry) = ﬁﬁgkro cos g sin (kvot)
0

From (7.7.17)-(7.7.18) we see that the hosed bunch radiation is not axially sym-
metric. The main lobes are located in the hosing plane as described by the factor
cos ¢ and are antisymmetric to each other.
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7.7.3. Numerical examples. We performed two test numerical simulations
to illustrate the effect of TCTR. The simulations have been done with the hybrid
code H-VLPL3D [73, 32](chap. 5). It can handle plasmas of arbitrary high densi-
ties as fluids. In these test simulations, we take a model proton bunch that carries
the current of an optimized Super-Proton-Synchrotron (SPS) bunch, Iy = 50A and
the protons have the longitudinal momentum p = 450GeV /c. The self-modulation
wavelength is A = 1.2mm. The length of the model bunch was chosen short,
0, = 2\ = 2.4mm, for illustration purposes. The final result does not depend on
the bunch length. It was done with the domain

D = [0,20A] x [0, 15A] x [0, 15)]

and the grid steps
Az = Ay = Az = 0.05),

We define the critical density associated with A, n, = wc?m./e? 2. A short, self-
modulated gaussian proton bunch given by 7.7.5 passes through a dense electron
plasma with n. = 100n. = 7 - 106, The parameters of the bunch are ny = 0.01,
ne = 7-1012em =3, 0 = 0.17A (1 + 0.5 cos (k,2)). Here, kyis the plasma wave number.
The latter represents the metal foil. The result is shown in fig. 7.7.2. The 2D color
plot on the bottom plane as well as the blue and cyan iso surfaces show the E,, field
component. The radiation is emitted axisymmetrically in the transverse direction.
The radiation field magnitude reaches several 100kV/m values at 1mm distance
from the bunch axis.

In the second simulation we used a hosed proton bunch with the model density
profile

(7.7.19) n(t,r, z) = noe (F=w0(t:2))* /208 =% /207

with ng = 1.4 - 10"%2cm 3,00 = 0.2mm and the time dependent centroid zy, =
0 cos kpz, where the hosing amplitude was ro = 0.2mm. The result is shown in fig.
7.7.3. The field is modulated only in the direction of the centroid shift.

7.8. Summary

In this chapter, several investigations on the SM-PDPWFA regime of plasma
wake field acceleration have been presented. For the simulations, the novel PIC/fluid
hybrid code H-VLPL3D (sec. 6) was used, which performed very well in model-
ing this difficult setup. By extracting the phase velocity of the wake, it could be
shown that the latter, although starting with relatively low values, rises during
the non-linear stage of the self-modulation instability. This could be beneficial for
electron side injection. Furthermore, the possibility of altering the phase velocity
through slight background density gradients was demonstrated. Also, the possible
scenario of side injection was investigated via multi-staged simulations; for the right
parameters, a great fraction of electrons was ’sucked’ into the wake, and acceler-
ated efficiently. These findings further indicate that SM-PDPWFA is a promising
candidate for a large-scale plasma-based particle acceleration mechanism, and have
been published in [19].



CHAPTER 8

Summary

The main focus of this thesis is the development, implementation and applica-
tion of hybrid modules for the particle-in-cell (PIC) plasma simulation code Virtual
Laser Plasma Lab (VLPL). Within this PIC/fluid hybrid concept, a plasma can be
modeled either with the PIC method, or via methods of grid-based computational
fluid dynamics(CFEFD).

Based on a linearized fluid model, a Mollified Impulse exponential integrator
was developed and implemented in collaboration with the Institute for Applied
Mathematics, HHU Diisseldorf. It uses a three-component push-oscillate-splitting
scheme, as well as filter functions to avoid unphysical resonances. The stability of
this integrator does not depend on the plasma frequency, hence plasmas of arbitrary
densities can be simulated. After the implementation, it has been successfully tested
using several physical examples.

Another, non-linear, hybrid scheme was designed specially for the simulation
of extremely long wake fields. This module uses primitive fluid variables on a
staggered grid to avoid interpolations. It was implemented into the VLPL code,
forming the H-VLPL3D hybrid code. We demonstrate its superior capabilities in
wake field modeling, presenting various physical benchmarks.

This code was then used for the simulation of the self-modulated proton driven
plasma wake field acceleration effect (SM-PDPWFA). Within this concept, a long
proton bunch as delivered by the Super Proton Synchrotron (SPS) at CERN prop-
agates through plasma. Small wake fields lead to self-modulation of the proton
bunch; this causes strong longitudinal electric fields, which can be used for elec-
tron acceleration. We show that the phase velocity of the wake depends on, and
is strongly connected to the growth rate of the self-modulation instability. Con-
trasting previous results on the phase velocity, we demonstrate that it rises during
the non-linear stage, giving good conditions for electron injection. Using multi-
staged simulations, the effectiveness of electron side injection into that wake is
shown. Also, the wake phase velocity can be altered via background density gradi-
ents; with additional simulations, we demonstrate the significant change in phase
velocity achieved by this method.

The detection of self-modulation and/or hosing of the proton bunch can be done
using Coherent Transition Radiation. The problem of the total current not being
altered by self-modulation is overcome by utilizing Transverse Coherent Transition
Radiation (TCTR). We present approximate analytical descriptions for the radiated
field, and illustrate the radiation patterns for both beam shapes.
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Zusammenfassung

Das Hauptaugenmerk dieser Arbeit ist die Entwicklung, Implementierung und
Anwendung von Hybridmodulen fiir den Particle-in-cell (PIC) Plasma - Simulation-
scode Virtual Laser Plasma Lab (VLPL). Der PIC/Fluid - Hybridansatz ermdoglicht
die Modellierung von Plasmen sowohl durch die bekannte PIC - Methode, als auch
durch gitterbasierte Fluiddynamik.

Ausgehend von einem linearisierten Fluidmodell wurde in Zusammenarbeit
mit dem Institut fiir angewandte Mathematik der HHU Diisseldorf ein Mollified
Impulse-Léser, eine Variante eines exponentiellen Integrators entwickelt und im-
plementiert. Er verwendet ein dreistufiges Push-Oscillate-Splitting-Schema sowie
Filterfunktionen, um unphysikalische Resonanzen zu vermeiden. Der bedeutende
Vorteil dieses Verfahrens liegt in der Tatsache, dafs seine Stabilitdt nicht mehr von
der Fluid-Plasmafrequenz abhingt; somit kdnnen Plasmen beliebig hoher Dichte
simuliert werden. Nach der Implementierung in den existierenden VLPL - Code
wurde das Modul erfolgreich mit Hilfe verschiedener physikalischer Beispiele getestet.

Ein weiteres, nicht-lineares Hybridschema wurde dann speziell fiir die Simula-
tion extrem langer Plasma-Kielwellenfelder (Wake Fields) entwickelt. Dieses Modul
verwendet primitive Fluidvariablen auf einem versetzten Gitter, um Interpolations-
fehler zu vermeiden. Es wurde mit dem VLPL-Code zum H-VLPL3D - Hybridcode
kombiniert. Seine bei der Kielwellenfeldmodellierung iiberlegenen Eigenschaften
wurden danach an verschiedenen physikalischen Testproblemen nachgewiesen.

Dieser Code wurde dann bei der Simulation der Kielwellenfeldbeschleunigung
durch selbstmodulierte Protonenstrahlen (self-modulated proton driven plasma wake
field acceleration, SM-PDPWFA) eingesetzt. Bei diesem Mechanismus propagiert
ein relativ langer Protonenbunch, wie er durch das Super Proton Synchrotron (SPS)
am CERN erzeugt werden kann, durch ein Plasma. Plasmaoszillationen fiihren zur
Selbstmodulation des bunches; dabei werden starke elektrische Felder angeregt, die
fiir die Beschleunigung von Elektronen genutzt werden kénnen. Durch Simulationen
mit dem Code H-VLPL3D, sowie theoretische Modelle wurde nachgewiesen, dass
die Phasengeschwindigkeit des Wake Fields von der Anstiegsrate der Selbstmodula-
tionsinstabilitdt abhingt und stark mit ihr verkniipft ist. Im Gegensatz zu fritheren
Resultaten iiber diese Phasengeschwindigkeit konnte aufserdem gezeigt werden, dass
sie wihrend des nichtlinearen Stadiums der Instabilitit ansteigt. Das macht den SM-
PDPWFA-Effekt im Hinblick auf eine spatere Elektroneninjektion vielversprechend.
Mit Hilfe mehrstufiger Simulationen wurde die Effektivitét seitlicher Injektion
demonstriert. Weiterhin kann die Phasengeschwindigkeit gesteuert werden, indem
die Dichte des Hintergrundplasmas leicht variiert wird; dieser Ansatz wurde mit
zusdtzlichen Simulationen untersucht.

Um die Strahl-Selbstmodulation und auch das sogenannte Hosing zu detek-
tieren, kann der Effekt der kohirenten Ubergangsstrahlung (Coherent Transition
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Radiation, CTR) verwendet werden. Diese Strahlung entsteht, wenn der Teilchen-
puls durch eine leitfihige Oberfliche tritt. Das bekannte Problem, dass sich der
transversale Gesamtstrom durch die Selbstmodulation nicht dndert, wird durch
die transversale kohirente Ubergangsstrahlung (TCTR) umgangen. Fiir das abges-
trahlte Feld wurde eine gen&dherte analytische Beschreibung angegeben, sowie mit
H-VLPL3D-Simulationen verglichen.
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Proofs for the FDTD method

LEMMA 5. For a plane wave (3.5.1), the linear operator S of one FDTD Strang
splitting step has the eigenvalues

As = [2Vat —a?2—2a* + 1,2Vt — a2 — 20 +1,1].

Substituting the field vector into (3.4.6) yields

N 1 A . .
(B;l+2 _ B;L) L ((i+3) Azky+j Ayky +kAzk:)

At ( Bl (D) Anket (43 Ayky +kAzks) _ fn I((i4+5) Ak, +(— })Ayky +hAzk.)

27y
+% (E;lel((iJr%)Azkx+jAyky+(k+%)Asz) _ E;Lel((iJr%)AxszrjAyker(kf%)Azkz))
2
= _eIk'ri+%,j,k2ATt (Ege%IAyky _E;Le—%IAyky)
y
JreIk'r”%«f v At (E” s 1Azky, 7En€%IAzkk>
2Az Y
=
B;L‘*‘% = pBr_ AA En —Ik- (Ene%IAyky _Ene—%IAyky)
—I—% (E" 3IAzk. _ E’;le—%IAzkz>
30 . At ~n . 1 At .
= Bl - Ism(§Ayky)A—yEz + Ism(iAzkz)A—ZEy,

where I denotes the imaginary constant.
Likewise, we have

At
Ay

At pni

n+
2 =21 Azk
sm( z )Az y

Ertl = Em o sin( Ayk,) —

Results for the other components are similarly obtained, with cyclically per-
muted indices. We notice that the substeps of S turns a plane wave with wave
vector k into another plane wave with the same wave vector, but changed coeffi-
cients. This means that S can be block-diagonalized this way, making the remaining
problem six-dimensional instead of 6n,nyn,D.

For simplification, we define the quantities A\, := At/Azx, £, = k. Az, a, =
Az sm(g‘) and oy, o, Ay... analogously.

Then we have
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fptla 1 At - 1 At -
Btz — B — Isin(§Ayky)A—yE? + Isin(§Azkz )A E”
(.0.1)
= Bg — IayE" + IazE”
n+; . At n+2

Entl = Er 491 sin( Ayk, ) —2I sm( Azk,)—

A B Az By
. , At [~ . At . At
=Er+2I sm( Ayk, )Ay <Bz - 181n(§Axkz)A—xEy + Ism( Ayk, )AyEz)

At 1 At - At
72Isin( Azk )A <B” Isin(iAzkz)A—zE: +Isin( Azxk, )A >
= Ag + 2IayBg + 2awozyE;L — 20412/1:7; — QIQZB;‘ — ZO@EQ + 2aza$E?
(.0.2)

= (1 — 2(043 + ai)) E;f + 2[0@532 + 2awayE‘; — QIaZB;L + 2aZaIEA'f
. Al o1 At 1 At
Bl = Bite —151n(§Ayky)A—yE?+1 —&—Ism(§Azkz )A E’”"‘1

= B —Io,E"+ IazEg
— I, [(1 - 2(0412/ + ai)) EQ + QIang + 2azo¢l.E'g - 2]041,3;? + 2ayazﬁ'ﬂ
+ Ia, [(1 —2(a? + ai)) E‘LL + QIaZB;L + 2ayaZE;L — 2]0@3? + 2awayEA'§}
= B (1- 2(a§ +a2)) + Qawayég + 20,0, B”

(0.3)+ Toy (=24 202 + 202 +2a2) EF + Ia, (2 — 2(a? + a2 + a2)) B

y*

The effect of S on the plane wave can then be expressed as

_ EAQH _ _ Eg _
Entt En
E‘%-s—l R E%
(04) BZZ’J’_l == S B;} 3
Byt By
| Byt [ Br
with

. { SEE SEB }

Spe Spp
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R [1-2 (aiJra?]) 2 0 ay 20, o,
Sgg = 2 0 1-2 (a?—t—ai) 2ay 0,
i 20 o, 20y a; 1-2 (ai—i—ai)
A [0 —2ia, 2y
SEB = 2iOéZ 0 —2i0¢x
| —2iay  2iay 0
) [ 0 2ia, (1-0a?) —2iay, (1-0a?)
Spp = | —2ia. (1—a?) 0 2ia, (1—a?)
2iay (1-0?) —2iag (1-a?) 0
) [ 1—-2 (aﬁ—kai) 2, ay 2 0y Oy
Spp = 20, ay 1-2 (ag—&—ag) 2ay a, ,
i 20 oy 20y 0, 1-2 (aflJrai)

2. 2 2 2
where a® 1= o + a +a3.

Computing the eigenvalues of S, one obtains

As :(

L,
—2\/a§+(2a§+2a§—1) a2+ad+ (202 -1)a2+ak—a2—2al—2a) —2a2+1,

2\/a§+(2a§+2a%fl) a2 +af+(2a2-1) a§+a%fa%f2a272a572ai+l)

with multiplicity 2 for each Ag;. We get

As=[-2Vat—a2—2a2+1,2Va* —a2 — 202+ 1,1].
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