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Chapter 1 
 

 

Introduction 
 

 

Over the past decade it has been a common goal in theoretical chemistry to perform calculations on 

ever larger molecules. The improvements in hardware performance (by about one order of 

magnitude every five years) are not sufficient to reach this objective since the available methods in 

their conventional implementations show a steep scaling of the computational effort with molecular 

size. If the latter is characterized by a parameter N (e.g., the number of atoms or the number of 

electrons), the computation times of standard quantum-chemical calculations scale formally as 

O(N3) for semiempirical molecular orbital (MO) methods, O(N4) for ab initio MO or density 

functional methods, and at least O(N5) for correlated ab initio methods. To extend quantum-

chemical treatments to large molecules with thousands of atoms, it is therefore mandatory to 

develop new methods and techniques that overcome this prohibitive scaling behavior. 

 

One such approach involves the combination of quantum mechanics (QM) and molecular 

mechanics (MM). The QM/MM methods [1,2,3] (for reviews see [4,5,6,7]) partition a large system 

into a small active center where electronic events such as chemical reactions or electronic 

excitations take place, and an environment that influences these events. The active center is then 

treated at an appropriate QM level (as accurately as needed) whereas the environment is described 

at the classical MM level. This pragmatic strategy allows computations for large systems because 

the expensive QM calculation with an adverse scaling is restricted to a relatively small region while 

modelling the effects of the environment through an efficient MM treatment. 

 

An alternative approach is the attempt to achieve linear scaling of the computational effort in pure 

QM calculations. This concept rests on the principle of locality or "nearsightedness" [8]: most of 

the chemically relevant interactions (e.g., covalent bonding) are short-ranged, and it must therefore 

be possible to describe them by O(N) algorithms which exploit this locality through suitable 
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truncation schemes, while the long-range electrostatic interactions can be handled separately by 

special techniques. 

 

Linear scaling algorithms have been proposed for most standard quantum-chemical methods (for 

reviews see [9,10,11,12,13]). Generally speaking, linear scaling code is required both for the 

computation of the Hamiltonian matrix (including integral evaluation) and the determination of the 

wave function or the density from a given Hamiltonian matrix. In ab initio methods and density 

functional theory (DFT) both these issues need to be addressed, whereas linear scaling 

developments for semiempirical and tight-binding MO schemes normally focus on the second issue 

(since integral evaluation is very efficient and usually not a limiting factor in practice). 

 

The present work describes the implementation and application of linear scaling techniques in 

semiempirical quantum-chemical methods. At the outset of this project, three such linear scaling 

approaches had already been discussed in the literature: the divide-and-conquer (DC) method 

originally introduced by Yang [14] and later extended to semiempirical methods [15,16], the 

localized molecular orbital (LMO) of Stewart [17], and the direct minimization of the density 

matrix originally proposed for tight-binding (TB) methods by Li, Nunes and Vanderbilt [18] and 

later implemented for semiempirical methods by Scuseria [19]. Each of these approaches has its 

merits, but the latter seems most attractive: the conjugate gradient density matrix search (CG-DMS) 

employs reliable and well-established minimization procedures and offers a transparent route 

towards linear scaling through the use of cutoffs in the density matrix and the Fock matrix. We 

have therefore chosen this approach. Our main goal was to provide an efficient and robust 

implementation of CG-DMS in our semiempirical code [20] such that linear scaling MO 

calculations can be done for all semiempirical Hamiltonians available in this code (including new 

methods with explicit orthogonalization corrections [21,22,23]). From an application-oriented point 

of view, this development was motivated by the desire to treat enzymes and enzymatic reactions 

both at the QM/MM and the pure QM level. 

 

This thesis is organized as follows. After reviewing the theoretical background of semiempirical 

MO methods (section 2) the linear scaling algorithms for obtaining self-consistent-field (SCF) 

solutions are described in some detail (section 3). Our CG-DMS implementation is reported in 

section 4 which addresses a number of technical issues such as sparse matrix handling and SCF 

convergence. Test calculations on small molecules have been used to establish the correctness of 

our implementation and to determine optimum CG-DMS control parameters (section 5). After 

validating the code and checking its performance for several series of larger test molecules (section 
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6) it has been applied to study minima and transition states in two enzymatic reactions (section 7). 

The thesis concludes with a brief summary and outlook (section 8). 
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Chapter 2 
 

 

Theoretical background 
 

 

2.1 Ab initio molecular orbital theory 
 

We start from the nonrelativistic time-independent Schrödinger equation and introduce the Born-

Oppenheimer approximation to separate electronic and nuclear motion. The resulting electronic 

Schrödinger equation (Hamiltonian Hel, wave function Ψel, electronic energy Eel) 

 

Hel Ψel = Eel Ψel (1) 

 

needs to be solved at given nuclear coordinates. In orbital approximation, the n-electron wave 

function Ψel is represented as an antisymmetric Slater determinant built from one-electron orbitals 

which are determined variationally (Hartree-Fock method). In the case of molecules, these orbitals 

ψi are normally written as linear combination of atomic orbitals ϕµ (LCAO-MO ansatz): 

 

ψi = Σµ Cµi ϕµ (2) 

 

Variational minimization of the electronic energy Eel with respect to the coefficients Cµi leads to the 

Roothaan-Hall-equations: 

 

F C = S C E (3) 

 

where C denotes the coefficient matrix, E is a diagonal matrix containing the orbital energies εi, 

and S is the overlap matrix with the elements 

 

Sµν = <ϕµ |ϕν> (4) 
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Using standard notation and atomic units, the Fock matrix elements for closed-shell systems are 

given by 

 

Fµν = Hµν + Gµν (5) 

 

Gµν = Σλ Σσ Pλσ [<µν|λσ> - 1/2 <µλ|νσ>] (6) 

 

The one-electron integrals Hµν include the kinetic energy term and the nucleus-electron attractions, 

while the two-electron integrals <µν|λσ> represent the repulsion between the corresponding charge 

distributions. The density matrix elements Pλσ are defined by the following summation over 

occupied orbitals: 

 

Pλσ = 2 Σi
Nocc Cλi Cσi (7) 

 

The electronic energy is given by: 

 

Eel =1/2 Σµ Σν Pµν ( Hµν + Fµν ) (8) 

 

The total energy is obtained by adding the Coulomb repulsion energy between the nuclei to the 

electronic energy. 

 

Two points are obvious from this brief overview: 

 

(a) For N basis functions, there are O(N4) two-electron integrals, and the computational effort will 

thus formally scale as O(N4). 

 

(b) An iterative solution of the secular equations (3) is required since the computation of the Fock 

matrix according to eqs. (5)-(7) makes use of the LCAO coefficients that are determined from eq. 

(3). Each such SCF iteration involves the solution of a generalized eigenvalue problem, typically 

through diagonalization, which is known to scale as O(N3) in computational effort. 

 

In conventional implementations of ab initio MO theory, the most demanding steps are the 

computation and the handling of the O(N4) two-electron integrals. 
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2.2 Semiempirical molecular orbital methods 
 

Semiempirical MO methods introduce integral approximations to neglect most of the small 

integrals that appear in the ab initio MO formalism. To compensate for the errors caused by these 

approximations, the remaining integrals are described by parametric expressions and then 

calibrated against reliable experimental or theoretical reference data. 

 

All semiempirical methods are based on the zero-differential-overlap (ZDO) approximation which 

is invoked to a different extent in different schemes. We shall only consider the most advanced 

NDDO variant (neglect of diatomic differential overlap) where products of basis functions 

depending on the same electronic coordinates are neglected if they are located on different atoms. 

This has the following consequences: 

 

- The overlap matrix S is a unit matrix. 

- All three-center one-electron integrals vanish. 

- All three-center and four-center two-electron integrals are neglected. 

 

The secular equations thus assume a simplified form 

 

F C = C E (9) 

 

but their iterative solution still requires O(N3) steps. On the other hand, only one-center and two-

center integrals are retained at the NDDO level, and therefore integral evaluation and integral 

processing during the formation of the Fock matrix scales as O(N2), and is no longer the 

computational bottleneck. Using the convention that the basis functions µ and ν are assigned to 

atom A, and basis functions λ and σ are assigned to atom B, the closed-shell NDDO Fock matrix 

elements can be written as: 

 

Fµµ = Hµµ       one-electron part 

+ Σν [Pνν <µµ|νν> - 1/2 Pνν <µν|µν>]  two-electron part 

+ ΣB≠A Σλ Σσ Pλσ <µµ|λσ> (10) 

 

Fµν = Hµν       one-electron part 

+ 1/2 Pµν [ 3 <µν|µν> - <µµ|νν>]   two-electron part 

+ ΣB≠A Σλ Σσ Pλσ <µν|λσ> (11) 
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Fµλ = Hµλ        one-electron part 

 -1/2 Σν Σσ Pµλ <µν|λσ> two-electron part (12) 

 

Eqs. (9)-(12) specify the theoretical model that underlies the established semiempirical valence-

electron methods MNDO [24], AM1 [25] and PM3 [26,27]. These methods employ the same 

strategies and the same parametric expressions to represent the integrals in eqs. (10)-(12). Briefly, 

the one-center terms are treated as adjustable parameters or are determined empirically from atomic 

spectra. The two-center two-electron integrals are evaluated from a semiempirical multipole-

multipole interaction model with the correct asymptotic behavior at small and large distances. The 

two-center core-core repulsions and the two-center one-electron attraction integrals are expressed in 

terms of certain two-center two-electron integrals, and the two-center one-electron resonance 

integrals are parametric functions that are taken to be proportional to the overlap integrals. Hence, 

MNDO, AM1 and PM3 share the same theoretical model: they differ only in the parametric 

expressions for the core-core repulsions (more flexible in AM1 and PM3), and of course in the 

actual values of the optimized parameters. 

 

The more recent semiempirical methods OM1 [28], OM2 [22], and OM3 [23] also obey eqs. (9)-

(12), but they employ different representations for the terms in eqs. (10)-(12) and incorporate 

explicit orthogonalization corrections to the one-electron integrals. 

 

In the context of linear scaling, the solution of the secular equations needs to be addressed first 

since this is the dominating O(N3) step for all of the above NDDO-based methods. In the following 

sections we shall focus on implementing an alternative approach (CG-DMS) to replace the O(N3) 

diagonalization procedure. However, to arrive at truly linear scaling, it is also necessary to avoid 

the O(N2) operations during integral evaluation and formation of the Fock matrix, particularly with 

regard to the two-center two-electron integrals. Corresponding algorithms such as fast multipole 

methods or tree codes are known (for reviews see [9,11b]) which are based on a hierarchical 

partition of the electron density and the use of multipole expansions for the interactions between 

well-separated partitions. We have not yet implemented these algorithms in our semiempirical 

code, but have included the option of using simple cutoffs for the two-center two-electron integrals 

(see also [15,17,19,29]) which has been sufficient for the molecules studied presently. 
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2.3 Conventional SCF-MO approach 
 

As mentioned above, the secular equations must be solved iteratively both in ab initio and 

semiempirical MO theory, see eqs. (3)-(7) and (9)-(12). Since the one-electron and two-electron 

integrals remain unchanged during these iterations, they can be precomputed. The conventional 

implementation of a semiempirical MO calculation thus involves the following steps (see also 

Scheme 1): 

 

a) Calculation of one-electron and two-electron integrals. 

b) Formation of an initial guess for the density matrix. 

c) Formation of the Fock matrix, eqs. (10)-(12). 

d) Fock matrix diagonalization to solve the eigenvalue problem, eq. (9). 

e) Formation of a new density matrix, eq. (7). 

f) Check for convergence, otherwise start next iteration with step (c). 

 

 
Initial density matrix 

guess  

 

 
Fock matrix construction 

Fock matrix 
diagonalization 

One- and two-electron integrals 

New density matrix 

 

 

 

 

 

 

 

 

Scheme 1. Iterative solution of Hartree-Fock LCAO-MO equations. 

 

There is no guarantee that the fixed-point iterations outlined above will converge to a self-

consistent solution. Experience indicates that convergence is normally not a problem in 

semiempirical MO calculations which employ minimal valence-electron basis sets with limited 

flexibility. Convergence is usually fast for closed-shell molecules in undistorted geometries, but 

problems may occasionally arise for open-shell species or transition metal compounds. Since SCF 

convergence will be an issue in CG-DMS (see section 4) we briefly address some procedures that 

are used in conventional SCF-MO calculations to assist and accelerate SCF convergence [30,31]. 
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Extrapolation: The idea is to form a new Fock matrix, during selected SCF steps, not just from the 

current density matrix, but from a modified density matrix obtained by extrapolating those from the 

preceding SCF iterations. If this extrapolation is done properly, the number of required SCF 

iterations will be reduced. A common practice is to use up to three previous density matrices for 

extrapolation. 

 

Damping: This technique aims at eliminating problems due to oscillations. If the density matrix 

from iteration k tends to be very close to that of iteration k+2, and quite different from that of 

iteration k+1, the variations can be damped by employing (during Fock matrix formation) the linear 

combination α*Pk+ (1-α)*Pk+1 instead of the current density matrix. This may overcome 

convergence problems. The mixing parameter α can either be constant or changed dynamically 

(decreased) during the SCF procedure. 

 

Level shifting [32]: Between two SCF iterations, there is orbital mixing between occupied and 

virtual orbitals. Convergence problems may arise if this mixing is too pronounced and causes 

oscillations. A remedy is to artificially increase the energy of the virtual orbitals and thereby reduce 

this mixing. This will make the SCF iterations smoother and thus assist convergence in difficult 

cases, but may also reduce the rate of convergence in uncritical cases. 

 

Direct inversion in the iterative subspace (DIIS) [33,34,35]: This is an extrapolation technique 

which accelerates convergence and moreover may lead to convergence even in difficult cases 

where other procedures fail. It focuses on the sequence of Fock matrices that are formed during the 

SCF treatment, and computes an error matrix at each iteration (FPS-SPF in the ab initio case, FP-

PF in the semiempirical case). It proceeds to determine the linear combination of previously 

available Fock matrices that minimizes the error function (via the solution of an appropriate linear 

system of equations) and then uses this linear combination as the next Fock matrix in the SCF 

procedure. 

 

The relative cost for the DIIS extrapolation is negligible in ab initio MO calculations, but 

substantial in the semiempirical case. Therefore, semiempirical MO calculations normally employ 

the simpler techniques for SCF convergence acceleration first (see above) and turn to DIIS only if 

these simpler techniques do not work. 

 

Another important issue for SCF convergence is the initial guess of the density matrix. Obviously, 

a high-quality initial guess will facilitate and speed up convergence. This is particularly relevant for 

ab initio and density functional calculations with large basis sets where it is established practice to 
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derive a realistic initial density matrix from lower-level calculations. Since semiempirical MO 

methods are normally rather robust with regard to SCF convergence, one usually starts from a 

diagonal density matrix guess (with the correct number of electrons distributed such that the atoms 

tend to be neutral). A slightly more sophisticated guess can be obtained by diagonalizing the one-

electron core Hamiltonian matrix. In the context of the linear scaling LMO approach [17] it has 

been suggested to start from localized bonding, nonbonding, and antibonding orbitals generated 

from the classical Lewis structures. 
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Chapter 3 
 

 

Linear scaling SCF approaches 
 

 

3.1 Overview 
 

In conventional semiempirical SCF-MO treatments, the solution of the secular equations through 

matrix diagonalization is the computational bottleneck with an O(N3) scaling. As already 

mentioned, several linear scaling algorithms have been proposed in recent years as a replacement 

for matrix diagonalization (for reviews see [10,11b,12]). In this section we shall first give an 

overview over the available methods and then describe those in more detail that are of particular 

relevance for semiempirical SCF-MO treatments. 

 

The linear scaling SCF approaches focus on the density matrix. Due to the short-range nature of 

quantum interactions, the density matrix is known [10,13,36] to decay exponentially for systems 

with a HOMO-LUMO gap Egap (molecules, insulators): 

 

ρ( r,r′ ) ~ exp (- gapΕ ) | r-r′ |) (13) 

 

Consequently, the discrete representation Pµν of the density matrix in a basis of local functions φ 

has similar localization properties and must form a sparse matrix for large systems. 

 

ρ( r,r′ ) = Σµν Pµν φµ ( r ) φν ( r′ ) (14) 

 

For an approximate description of such systems, we thus need to determine only the non-negligible 

density matrix elements Pµν whose number will scale linearly for a sufficiently large system. 

Broadly speaking, there are two general strategies available [11b]: local Hamiltonian and 

variational principle approaches. 
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In the first case, local Hamiltonians and local properties are defined and determined within a local 

region, and the global properties are then derived therefrom. The best example for this approach is 

the divide-and-conquer method [14,15,16,29,37,38,39,40] which constructs the global density of 

the system from local densities that are determined for the chosen subsystems by standard separate 

calculations for each subsystem and its immediate surroundings (buffer regions). There are other 

such methods [11b], most notably the Fermi operator expansion method [10]: in this case, the local 

Hamiltonian is constructed by truncation in the atomic orbital space, and the density matrix is 

obtained by an iterative diagonalization based on the Chebyshev polynomial approximation [10]. 

 

Variational principle approaches determine the density matrix directly by minimizing a suitable 

energy functional with regard to the density matrix (while imposing the required constraints of 

normalization and idempotency); linear scaling is achieved by truncating the density matrix (i.e., 

computing only the non-negligible elements above a certain threshold). Such direct minimization of 

the density matrix has first been suggested and implemented for simple tight-binding approaches 

[18,41,42,43,44] and has later been extended to self-consistent DFT methods [45,46], 

semiempirical MO methods [19,47] and ab initio MO methods [46,48,49]. These minimizations 

usually employ steepest descent or conjugate gradient algorithms, but a quadratically convergent 

scheme has also been introduced [48]. The idempotency constraint is normally imposed through a 

McWeeny purification transformation [50] (see also [51,52,53,54] for possible generalizations) or 

alternatively through the use of penalty functions [8,55]. Another recent method for the direct 

optimization of the atomic-orbital density matrix makes use of an exponential parameterization in 

the framework of Hartree-Fock and Kohn-Sham theory [56,57,58]. Finally, it should be noted that 

some of the variational principle approaches are formulated not in terms of the density matrix, but 

in terms of localized orbitals (see the reviews [10,11b,12,13] for further details). 

 

In the following we shall describe three representative linear scaling approaches for semiempirical 

MO methods in more detail: the divide-and-conquer technique [15,29,59] and the conjugate 

gradient density matrix search [19,47] are examples for the two general strategies outlined above, 

while the local molecular orbital approach [17] is essentially a linear scaling variant of the 

pseudodiagonalization scheme [60] that is commonly used in semiempirical codes. Comparisons 

between different approaches are found in the literature [47,61,62,63]. 
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3.2 Divide-and-conquer method 
 

The basic idea in the divide-and-conquer method is to divide a system into disjoint subsystems α 

which contain only a small number of atoms. A partition matrix pα
µν is defined in the space of 

atomic orbitals as follows [11b]: 

 

pα
µν =  1   if µ ∈ α  and  ν ∈ α 

pα
µν = 1/2 if µ ∈ α and ν ∉ α (15) 

pα
µν = 1/2  if µ ∉ α  and  ν ∈ α 

pα
µν =  0   if µ ∉ α  and  ν ∉ α 

 

where µ∈α means that the atomic orbital ϕµ is located at an atom in subsystem α. The partition 

matrix is normalized, 

 

Σα pα
µν = 1, (16) 

 

and connects the subsystem density matrix Pα to the global density matrix P: 

 

Pα
µν = pα

µν Pµν (17) 

 

Pµν = Σα Pα
µν (18) 

 

The subsystem density matrices are not computed from the global eigenvectors of the system, but 

from the local eigenvectors Cα
i of the subsystem and the surrounding buffer region (local SCF 

region, see Figure 1). 

 
 
 
 
 

 

r r 

rr 

 

 

  
 

Figure 1. Example of system subdivision in d
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µν = pα
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ν
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The local eigenvectors Cα
i and the associate local eigenvalues εα

i are obtained from a standard MO 

calculation for the local SCF region (subsystem plus buffer) by solving secular equations of the 

type: 

 

Fα Cα = Cα Eα (20) 

 

The occupation number nα
i for each localized eigenstate is approximated by a Fermi function with a 

low but finite temperature T: 

 

nα
i = 2 / [ 1 + exp ( -x / k T ) ] (21) 

 

x = εF - εα
i (22) 

 

where εF is the Fermi energy that is common to all of the subsystems. It is determined such that the 

global density matrix yields the correct number of electrons for the entire system. The requirement 

of a common Fermi energy enables electron flow between different subsystems and ensures the 

proper normalization of the electron density. 

 

Linear scaling is achieved in this approach by the trivial fact that an enlargement of the system 

leads to a linear increase in the number of subsystems (assuming a consistent partitioning), and 

therefore the effort for computing the subsystem density matrices will also increase linearly. The 

overhead for assembling the global density matrix and for computing the total energy and gradient 

is small and can likewise be handled in a linear scaling fashion [11]. 

 

It is obvious that the divide-and-conquer approach neglects all density matrix elements that do not 

simultaneously belong to any local SCF region (see Figure 1) so that the global density matrix is 

sparse. In a given iteration of the divide-and-conquer SCF procedure, the following steps are 

performed (see [11a] for a flowchart): 

 

(a) use the currently available sparse global density matrix to construct a corresponding sparse 

global Fock matrix; 

(b) compute the electronic energy and check for convergence; 

(c) extract the appropriate elements to form local Fock matrices for the local SCF regions; 

(d) solve the Roothaan-Hall equations for these local SCF regions, eq. (20); 

(e) construct the subsystem density matrices, eq. (19), from the computed local eigenvectors 

and eigenvalues using the Fermi energy of the previous iteration; 
 14



(f) generate a new sparse global density matrix, eq. (18); 

(g) determine the new Fermi energy from the normalization requirement. 

 

The divide-and-conquer method is an approximate method since it neglects the density matrix 

elements between distant atoms and truncates other matrix elements in an analogous manner [11]. 

Its accuracy can be improved systematically by enlarging the subsystems and/or the buffer regions. 

For better control of the accuracy, one may also use dual buffer regions [11a,29]. The convergence 

of the DC results towards the exact results from full matrix diagonalization and the influence of 

various computational parameters (subsystem and buffer, cutoffs, temperature) have been 

investigated in several papers [11,15,16,29,40,59] so that divide-and-conquer semiempirical MO 

calculations have now become a well-established technique. Recent applications include geometry 

optimizations for proteins [40], investigations of the active site in enzymatic reactions [64,65], 

solvation energies and electrostatic potentials in DNA [66], charge fluctuations in DNA and RNA 

[67], and studies of charge transfer between biomolecules and solvent [68]. 

 

 

3.3 Conjugate gradient density matrix search 
 

It has long been recognized [50,69] that the eigensolution of the Roothaan-Hall equations can be 

avoided by a direct minimization of the electronic energy with respect to the density matrix (under 

certain constraints). For the sake of convenience, we formulate the following derivations in terms 

of the one-electron atomic-orbital density matrix P that does not contain the closed-shell occupancy 

factor of 2, see eq. (7), and that is thus related to the occupied LCAO-MO coefficients Cocc by 

 

P = Cocc CT
occ (23) 

 

where a superscript T denotes the transpose of a matrix. This density matrix is symmetric, 

normalized to the number of electrons (Ne), and idempotent: 

 

P = PT (24) 

 

Tr ( P ) = Ne / 2 (25) 

 

P P = P (26) 
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The trace Tr ( P ) of matrix P is the sum of its diagonal elements. The idempotency condition, eq. 

(26), follows from the orthonormality of the LCAO-MO eigenvectors: 

 

P P = Cocc ( CT
occ Cocc ) CT

occ = Cocc CT
occ = P (27) 

 

The three conditions, eqs. (24)-(26), must be fulfilled by any density matrix that represents a 

closed-shell determinant [50,69], and will therefore serve as constraints. 

 

The electronic energy, eq. (8), can be written as the trace of the following matrix product: 

 

Eel = Tr [ ( h + F ) P ] (28) 

 

involving the one-electron core Hamiltonian matrix h and the Fock matrix F (the latter depending 

on P). First-order variation of P [50] leads to the stationarity condition 

 

ε = 2 Tr ( F P ) = stationary (29) 

 

subject to the constraints of eqs. (24)-(26), with the Fock matrix F being regarded as fixed during 

the variation. This implies [50,69] that the solution of the Roothaan-Hall generalized eigenvalue 

problem, eq. (3), is equivalent to the optimization of the sum of the orbital energies of the occupied 

MOs (subject to the orthonormality constraints on the occupied MOs). 

 

The normalization constraint, eq. (25), can easily be incorporated into eq. (29) through a 

Lagrangian term. The idempotency constraint, eq. (26), is harder to satisfy. The first practical 

solution to this problem was achieved in direct minimizations at the tight-binding level [18,41] 

which imposed the idempotency constraint implicitly through substitution of the McWeeny 

purification [50] 

 

P → 3 PP - 2 PPP   (for orthogonal basis functions) (30) 

 

into eq. (29). This purification transform brings an approximately idempotent matrix closer to 

idempotency through a process that is quadratically convergent upon fixed-point iteration [50]. The 

form of eq. (30) is derived from a steepest-descent minimization of the trace Tr[(PP-P)(PP-P)] 

which must become zero [50]. The convergence properties of this transform are best studied [69] 

by considering the scalar fixed-point iteration 
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xn+1 = f ( xn )    with f ( x ) = 3 x2 - 2 x3. (31) 

 

This function has a minimum at x=0 and a maximum at x=1, and it is easily verified that the 

sequence (31) will convergence to x=0 from above for starting values between (1 - 3 )/2 and 1/2, 

and to x=1 from below for starting values between 1/2 and (1 + 3 )/2. The purification transform 

(30) is therefore expected to converge as desired if the eigenvalues of the current non-idempotent 

density matrix are sufficiently close to 0 and 1 (see the intervals above). For an idempotent density 

matrix P, the eigenvalues must be either 0 or 1, of course. 

 

Including the Lagrangian normalization constraint and the McWeeny purification transformation 

into eq. (29) yields the functional that needs to be minimized: 

 

Ω ( P ) = Tr [( 3 PP - 2 PPP ) F ] + µ ( Tr ( P ) – Ne/2 ) (32) 

 

where µ is a Lagrangian multiplier. To be consistent with previous formulations [46,49], we have 

made use of the identity Tr(AB) = Tr(BA) in the first term. The functional (32) differs slightly from 

the one originally proposed for tight-binding methods [18,41]. The present form is more suitable 

for semiempirical and ab initio MO methods, for reasons that are discussed elsewhere [46]. 

 

The minimization of the functional (32) needs to be carried out during each SCF iteration after 

forming the new Fock matrix. Any established minimization technique can be applied for this 

purpose. The simplest choice is the steepest descent (SD) method where the minimization follows 

the negative gradient G of the functional: 

 

G ( P ) = - ∇ Ω ( P ) (33) 

 

A preferred alternative is the conjugate gradient (CG) method which implicitly employs properties 

of the Hessian to generate a sequence of orthogonal search directions Hk [70]. Line searches are 

performed along Hk to determine an optimum step length λk such that the updated density matrix 

 

Pk+1 = Pk + λk Hk (34) 

 

minimizes the given functional. When using exact line searches, each gradient in the CG sequence 

will be orthogonal to the others which leads to an efficient minimization [70]; however, numerical 

inaccuracies and deviations of the functional from quadratic behavior can impair conjugacy and the 
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rate of convergence [70]. The initial CG search direction H0 is taken to be the steepest descent 

direction G0(P0), and subsequent search directions Hk are obtained from 

 

Hk+1 = Gk+1 ( Pk+1 ) + γk Hk (35) 

 

The factor γk is determined from the current and the previous gradient using one of several 

alternative update formulas [70] (see section 4). 

 

Both the SD and CG methods as well as more refined quadratically convergent schemes [48] 

require the gradient of the functional which can be derived using trace algebra [46,49]: 

 

∇Ω = 3 ( PF + FP ) - 2 ( PPF + PFP + FPP ) + µ I (36) 

 

where I is the NxN unit matrix (N basis functions). The Lagrange multiplier µ is chosen such that 

the gradient, eq. (36), is traceless [43,46]: 

 

µ = - Tr [3 ( PF + FP ) - 2 ( PPF + PFP + FPP )] / N (37) 

 

This ensures that the search direction derived from the gradient (see above) is traceless. As a 

consequence, the line search according to eq. (34) will preserve the number of electrons. This line 

search can be carried out analytically: since the functional (32) has a cubic dependence on the 

density matrix, its value during the line search (34) can be expressed as a cubic polynomial of the 

step length λk: 

 

Ω ( λk ) = a + b λk + c λ2
k + d λ3

k (38) 

 

The coefficients can be derived by inserting eq. (34) into eq. (32): 

 

a = - Gk ( Pk ) (39) 

 

b = - Tr [ Hk Gk ( Pk )] (40) 

 

c = 3 Tr [ Hk Hk F ] - 2 Tr [ Hk Hk Pk F + Hk P Hk F + P Hk Hk F ] (41) 

 

d = - 2 Tr [ Hk Hk Hk F ] (42) 
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The minimum of eq. (38) with respect to λk is found by taking the corresponding derivative and 

setting it to zero: 

 

b + 2 c λk + 3 d λ2
k = 0 (43) 

 

Solution of this quadratic equation yields two roots, and the root that corresponds to the minimum 

provides the optimum step size λk for the line search, eq. (34). The idempotency of the density 

matrix is not preserved exactly during the line search, and it is therefore necessary to restore 

idempotency of the updated density matrix, eq. (34), to the desired accuracy through a sequence of 

purification transforms, eq. (30). 

 

In summary, a given iteration of the SCF procedure with CG-DMS will thus involve the following 

steps: 

 

(a) use the currently available density matrix to construct a corresponding Fock matrix; 

(b) compute the electronic energy and check for convergence; 

(c) apply an iterative CG search to determine a new density matrix that minimizes the 

functional (32) by performing the following operations in each CG cycle: 

- compute the current gradient, eq. (33); 

- define the current search direction, eq. (35); 

- update the density through a line search, eq. (34), which requires the determination of the 

optimum step length, eqs. (40)-(43); 

- purify the resulting density matrix, eq. (30). 

 

If no further approximations are introduced, the CG-DMS approach outlined above will yield the 

correct solution to the SCF-MO treatment (i.e., the same electronic energy and the same density 

matrix as obtained from a conventional solution of the Roothaan-Hall equations through matrix 

diagonalization). Essentially all the computational work in this approach consists of matrix 

operations (mostly matrix multiplications). In large systems, most elements of the relevant matrices 

(P, F, h) are very small and can be neglected (see section 3.1). By introducing suitable cutoffs, one 

obtains sparse matrices which give rise to linear scaling of the computational cost in the CG-DMS 

approach. 

 

A number of modifications can be made to the basic CG-DMS algorithm, e.g., concerning 

preconditioning [46], DIIS convergence acceleration [19], and simplifications due to a special 

choice of the initial density matrix [49]. Some of these topics and other technical issues will be 
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discussed in more detail later (see section 4). It has been established that the CG-DMS results 

converge to the exact results from matrix diagonalization when the cutoffs tend to zero, and 

suitable values for these cutoffs have been recommended [19,46,47,49]. Linear scaling CG-DMS 

calculations have been reported in a number of solid-state studies, mostly at the tight-binding level 

(for reviews see [10,13,71]). The relatively few applications to molecules include geometry 

optimizations for giant fullerenes at the tight-binding level [44] and for a small protein at the 

semiempirical PM3 level [72]. 

 

 

3.4 Localized molecular orbital approach 
 

The idea behind this linear scaling technique is best appreciated by first considering the 

pseudodiagonalization scheme [60] that is commonly used in standard semiempirical MO 

calculations as a replacement for full matrix diagonalization. In a given SCF iteration, this scheme 

builds the Fock matrix F in the AO basis from the currently available density matrix, eqs. (10)-(12), 

and then generates the Fock matrix FMO in the MO basis by transforming with the currently 

available MO eigenvectors C. More precisely, only the occupied-virtual block of FMO is 

constructed using the occupied and virtual MO eigenvectors (Cocc and Cvirt, respectively): 

 

FMO (occ-virt) = CT
occ F Cvirt (44) 

 

To obtain the solution of the Roothaan-Hall equations, it is sufficient to annihilate all Fock matrix 

elements Fia in eq. (44) connecting the occupied MOs Ci and the virtual MOs Ca. An approximate 

elimination of these matrix elements is achieved by a series of 2x2 unitary transformations that 

diagonalize the corresponding 2x2 secular problem: 

 

Ci (new) = α Ci + β Ca (45) 

 

Ca (new) = - β Ci + α Ca (46) 

 

Explicit formulas for the coefficients α and β are given in the literature [17,60]. This procedure is 

essentially a series of Jacobi transformations which, however, are restricted to the occupied-virtual 

block and are not iterated. The resulting new eigenvectors are used to build a new density matrix, 

eq. (7), and the next SCF cycle is entered. It has been established that the combined use of SCF 

iterations and non-iterative 2x2 Jacobi transformations for the occupied-virtual block is normally 

sufficient to reach SCF convergence in semiempirical MO calculations and that the number of 
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required SCF iterations is similar as in calculations with full matrix diagonalization [60]. A 

prerequisite is, however, that this pseudodiagonalization scheme starts from realistic initial MOs 

that are usually obtained by matrix diagonalization during the first SCF iteration(s). 

 

Standard pseudodiagonalization schemes employ delocalized canonical MOs. Since the ground-

state determinant is invariant to unitary transformations between the occupied MOs, it can equally 

well be described by localized molecular orbitals (LMOs). For large molecules, the use of LMOs in 

the pseudodiagonalization scheme outlined above is particularly attractive, for the following 

reasons [17]: 

 

- The annihilation of all occupied-virtual interactions becomes much easier because most of 

them will automatically be zero (i.e., all those separated by a large distance). The 

computations according to eqs. (44)-(46) can be restricted to those pairs of occupied and 

virtual LMOs that are close enough to each other (according to some cutoff criterion). 

 

- For each occupied LMO, the calculation of the contributions to the density matrix can be 

limited to a small number of matrix elements. 

 

These and related arguments [17] show that the computational effort for the pseudodiagonalization 

scheme and some other time-consuming steps in the SCF procedure will scale linearly with the size 

of the system when LMOs are used. An overall linear scaling can only be achieved, however, if this 

is true for all steps of the calculation, particularly also for the generation of the LMOs. 

 

To avoid the initial full diagonalizations (see above) a special procedure has been developed that 

provides starting LMOs based on the classical Lewis structure of the system studied [17]. These 

starting LMOs are built from suitable hybrid orbitals at each atom that are combined with those 

from the neighboring atoms in a bonding or antibonding fashion to give (diatomic) occupied and 

virtual LMOs, respectively; hybrid orbitals not used in this process are considered to be 

nonbonding (monoatomic) LMOs. This algorithm [17] will produce a set of orthonormal starting 

LMOs for all systems that can be represented by Lewis structures (but may fail in more 

complicated electronic situations). 

 

When these starting LMOs are subjected to the SCF iterations in the pseudodiagonalization LMO 

scheme described above, the LMOs spread over more than two atoms during the SCF cycles, but 

they tend to remain localized for large molecules in a region that is small compared with the whole 

molecule [17]. Linear scaling can be achieved by "tidying" the LMOs (neglecting small coefficients 
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at distant atoms) with subsequent renormalization [17]. The overall LMO approach has been found 

to converge well [17]. 

 

Each SCF iteration that employs the pseudodiagonalization LMO scheme requires following steps 

(see also the flowchart [17] in Scheme 2): 

 

(a) use the currently available density matrix to construct a corresponding Fock matrix in the 

AO basis; 

(b) compute the electronic energy and check for convergence; 

(c) tidy and renormalize the currently available LMOs; 

(d) use these LMOs to transform the Fock matrix to the MO basis, eq. (44); 

(e) annihilate occupied-virtual interaction matrix elements and generate improved LMOs, eqs. 

(45)-(46); 

(f) compute a new density matrix from these LMOs. 
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3.5 Conclusion 
 

At the outset of the project, the three linear scaling approaches for semiempirical MO calculations 

described above had already been proposed, and it had become clear that they could be used to treat 

large molecules. All of these methods attempt to achieve linear scaling by neglecting small matrix 

elements so that their results will generally show some deviations from the exact results which, 

however, can be controlled through the choice of the relevant cutoffs. All of them require some 

overhead so that conventional calculations with full diagonalization remain faster for small 

molecules; the crossover point beyond which the linear scaling approaches become faster depends 

on a number of factors (such as the chosen cutoffs). Looking at the underlying algorithms it is not 

obvious which of the three approaches is expected to perform best in general, and even though 

there have been a number of benchmark studies published more recently (see above) this question 

has not yet settled. 

 

Given this situation, we decided at the outset of the project to implement the conjugate gradient 

density matrix search. The main reason was that it is the most straightforward approach from a 

conceptual point of view. It is based on the direct minimization of the electronic energy with regard 

to the density matrix (under suitable constraints) and achieves linear scaling simply by truncating 

matrix elements below a user-chosen threshold. By contrast, the divide-and-conquer approach has 

to introduce a partitioning of the system into subsystems (with associated buffer regions), and the 

LMO approach requires the validity of Lewis structures during the initial LMO generation. Such 

additional constructs are not needed in the conjugate gradient density matrix search which is 

therefore conceptually the simplest of the three approaches. Its implementation is discussed in the 

next section. 
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Chapter 4 
 

 

Implementation 
 

 

4.1 Overview 
 

The program package MNDO99 [20] performs semiempirical quantum-chemical calculations of 

molecular properties. It provides all the standard semiempirical methods (e.g., MNDO [24], AM1 

[25], PM3 [26,27], and MNDO/d [77,78]) as well as the recently developed methods with 

orthogonalization corrections (OM1 [28], OM2 [22], and OM3 [23]). Electron correlation can be 

treated explicitly by perturbation theory or various forms of configuration interaction (CI) up to full 

CI within a given active space (GUGACI formalism). Analytic gradients are available for most 

methods both at the SCF and the CI level, while an analytic Hessian can be computed only for 

MNDO-type methods at the SCF level. Potential energy surfaces can be explored by a variety of 

techniques including geometry optimization for minima or transition states and force constant 

analysis. Scheme 3 shows the overall program structure. 
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Scheme 3: The modular structure of the MNDO99 code. 

 

The task of the present work was to implement a linear scaling approach for the evaluation of the 

energy and gradient in semiempirical SCF-MO methods. For reasons discussed above (section 3) 

the conjugate gradient density matrix search (CG-DMS) was chosen for this purpose. The module 
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for SCF-MO calculations (labeled "Hartree-Fock methods" in Scheme 3) thus had to be extended 

by a CG-DMS implementation. 

 

The previously available SCF-MO code in MNDO99 offered the choice between a conventional 

calculation with precomputation of the required integrals (HCORE) followed by the SCF iterations 

(ITER) and an integral-direct calculation with on-the-fly integral evaluation during the SCF 

iterations (DIRECT). In the present work, three CG-DMS variants were implemented. The first two 

employ a conventional strategy (HCORE followed by ITERCG) and an integral-direct strategy 

(DIRCG), respectively, in combination with full two-dimensional arrays for all relevant matrices, in 

order to allow for direct comparisons with the previously existing versions with matrix 

diagonalization. The third CG-DMS variant (DIRCGS) is again integral-direct, but makes use of 

sparse matrix technology in order to achieve linear scaling. The first two CG-DMS 

implementations may thus be regarded as test versions, since they are analogous to the previously 

available code, except for replacing matrix diagonalization by direct minimization of the density 

matrix. The third implementation is designed as linear scaling production version. 

 

In any case, an initial guess of the density matrix is required at the start of the SCF iterations. The 

default in the existing code is a simple diagonal guess (GUESSP) which can also be generated in 

sparse matrix format (SPARSP). In the course of this work, it became evident that SCF 

convergence is less robust when using CG-DMS instead of matrix diagonalization (see below), and 

therefore an alternative block-diagonal guess was developed for CG-DMS that provides an 

improved initial density matrix either in square matrix or sparse matrix format (FRAGMT). 

 

A successful SCF-MO treatment yields a converged density matrix that may be used to compute 

molecular properties. The first two CG-DMS implementations (HCORE/ITERCG and DIRCG) 

provide the results in the same format as usual so that the standard routines can be used for 

postprocessing without any changes. The third variant (DIRCGS) produces the density matrix as a 

sparse matrix which makes it necessary to adapt the routines for postprocessing correspondingly 

(e.g., for the dipole moment and other properties). The most important changes concern the 

gradient of the energy with respect to the nuclear coordinates which is required for the efficient 

exploration of potential surfaces. The simplest evaluation of the Cartesian gradient for closed-shell 

SCF-MO calculations in MNDO99 is numerical and involves a finite-difference computation of all 

relevant integral derivatives which are then contracted with the corresponding density matrix 

elements to accumulate the Cartesian gradient. The corresponding standard routine (DCART) was 

modified such that the gradient can be computed with a sparse input density matrix (DCARTS). 
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Scheme 4: Structure of the SCF-MO module (see text). 

 

Scheme 4 shows the program structure of the SCF-MO module after including the new CG-DMS 

routines. In the following, we shall first discuss the CG-DMS implementation as such (common to 

ITERCG, DIRCG, and DIRCGS), before we address the sparse matrix version in more detail 

(DIRCGS). 
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4.2 Conjugate gradient density matrix search 
 

In section 3.3, the SCF procedure with direct minimization of the density matrix has been described 

in general terms, and the CG-DMS approach has been specified through eqs. (23)-(43). The 

corresponding implementation is presented in this section (see Schemes 5 and 6). 

 

At the beginning of each SCF iteration, the currently available density matrix (either from the 

initial guess or the preceding iteration) is used to build a new Fock matrix. In the conventional 

approach (ITERCG), the Fock matrix is constructed from the density matrix and precomputed 

integrals using standard MNDO99 routines, followed by the calculation of the electronic energy. In 

the integral-direct approach (DIRCG), the calculation of the Fock matrix is done in a loop over 

atom pairs with on-the-fly integral evaluation and concomitant calculation of the corresponding 

contributions to the electronic energy. Thereafter, both implementations (ITERCG, DIRCG) follow 

the same course. SCF convergence is checked both with regard to the electronic energy and the 

density matrix (using data obtained from the latest density update, see below). If convergence has 

not yet been reached, there is an option to perform a DIIS extrapolation for convergence 

acceleration (normally not done). The Fock matrix is then brought into the form of a square 

symmetric matrix before entering the CG-DMS procedure (see below) which generates an updated 

density matrix. This new density matrix is then compared with the previous one to extract 

convergence data (maximum and rms deviations), and there is the option to modify the density 

matrix through extrapolation or damping. Thereafter, the next SCF iteration starts. 
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Scheme 5: SCF procedure with CG-DMS (see text). 

 

This SCF procedure is analogous to the standard one, except that the diagonalization of the Fock 

matrix and the subsequent computation of the density matrix from the eigenvectors are replaced by 

the CG-DMS procedure. Both implementations (ITERCG, DIRCG) use the same routine 

(CGDMS) for this procedure (see Scheme 6). 
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U = F P (intermediate array) (47) 

 

V = F P + P F = U + UT    (intermediate array) (48) 

 

∇Ω = 3 V - 2 P V - 2 U P + µ I (49) 

 

Hence, only three (expensive) matrix multiplications are needed to evaluate the gradient from eqs. 

(36)-(37), along with some other (cheaper) matrix operations (e.g., addition and calculation of the 

trace). Under special circumstances, further simplifications are possible [49] which have been 

implemented, but are normally not used in practice. The negative gradient of the functional defines 

the initial steepest-descent search direction. 

 

The conjugate gradient method is an iterative procedure to minimize the functional Ω, eq. (32), 

with respect to all density matrix elements. In each CG cycle, the density matrix Pk is updated by a 

line search along the search direction Hk, see eq. (34). The procedure is terminated after Ncg cycles, 

either if the density matrix has converged to the required accuracy or if the maximum number of 

allowed CG cycles (maxcg) has been exceeded. 

 

Each CG cycle starts with an analytic line search, eqs. (38)-(43), using the currently available 

matrices Pk, Hk, and Gk (negative gradient). The latter two matrices are obtained either from the 

initialization (see above) or from the preceding CG cycle (see below). The line search requires 

determination of the coefficients b, c, and d in the cubic polynomial representation of Ω 

(DMSCOF): exploiting the symmetry of the matrices involved and introducing some auxiliary 

matrices, this can be achieved essentially through four matrix multiplications and four evaluations 

of the trace of a product matrix. Dropping the cycle index k, we have: 

 

 W = H F (50) 

 

X = H W = H H F (51) 

 

Y = H P (52) 

 

Z = ( Y+YT ) F = ( H P + P H ) F (53) 

 

b = - Tr ( H G ) (54) 
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c = 3 Tr ( W ) - 2 Tr ( H Z ) - 2 Tr ( P X ) (55) 

 

d = - 2 Tr ( H X ) (56) 

 

Using the computed coefficients, the optimum step size λ in the line search can be found by solving 

a simple quadratic equation, see eq. (43). The corresponding routine (CGROOT) first checks 

whether the linear term dominates (coefficient d vanishingly small) such that the solution of the 

corresponding linear equation can be adopted; if this is not the case, it rejects any physically 

unacceptable root of the quadratic equation that would yield unphysical diagonal density matrix 

elements; if both roots are acceptable, it computes the corresponding values of the functional, eq. 

(32), and adopts the root with the lower value. The latter (general) case requires four matrix 

multiplications so that each line search will typically involve eight matrix multiplications. The root-

finding routine (CGROOT) returns the updated density matrix, eq. (34), and also the corresponding 

purified version 3 PP - 2 PPP, eq. (30), which is automatically obtained when computing the value 

of the functional, eq. (32). 

 

After the line search, the maximum and rms deviations between the updated and the previous 

density matrix are determined (MAXDEV) to see whether the iterative CG procedure has 

converged. If this is the case or if the maximum number of CG cycles has been reached, an iterative 

McWeeny purification of the current density matrix is carried out, eq. (30), in order to restore the 

idempotency of the density matrix that is not preserved exactly during the CG update; such 

purification can be enforced in every CG cycle via input, but this is normally not done. Each 

McWeeny purification requires two matrix multiplications (PURIFY). The iterative procedure 

starts from the purified matrix that is available after the CG update (CGROOT, see above) and 

terminates after Npur cycles, either if the convergence criteria for the purification are satisfied 

(concerning the maximum allowed change in the density matrix, mcmax, and the maximum 

allowed violation of idempotency, midemp) or if the maximum number of allowed McWeeny 

cycles (maxpur) has been exceeded. The McWeeny purification thus involves a total of 2 Npur 

matrix multiplications. 

 

The currently available purified density matrix (from CGROOT or PURIFY) is adopted as the 

density matrix Pk+1 resulting from the current CG cycle. The maximum and rms deviations from the 

previous density matrix Pk are determined (MAXDEV) to check for CG convergence, applying the 

same convergence criteria as for the overall SCF procedure (iplscf). If convergence has not yet 

been attained and if the maximum number of allowed CG cycles have not yet been completed, the 

next CG cycle is prepared: the gradient Gk+1 is computed for the new density matrix Pk+1 according 
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to eqs. (32)-(33) and (36)-(37), which requires three matrix multiplications (DMSGRD, see above). 

In addition, the new search direction vector Hk+1 is determined from Gk+1 and Hk through an 

update, eq. (35), where the factor γ is taken either from the Polak-Ribiere or the Fletcher-Reeves 

formula [70] which are given in terms of dot products of gradients: 

 

γ = [ Gk+1 Gk+1 – Gk Gk+1 ] / Gk Gk     (Polak-Ribiere) (54) 

 

γ = Gk+1 Gk+1 / Gk Gk     (Fletcher-Reeves) (55) 

 

The two formulas are mathematically equivalent if the CG minimization is applied to exact 

quadratic forms [70]. Our functional, eq. (32), will certainly not show an exact quadratic 

dependence on the density matrix elements, and therefore the performance of these two updates 

may be different in practice. Systematic tests have shown, however, that there is no significant 

difference in our case. We have adopted the Polak-Ribiere update as default based on the general 

recommendations in the literature [70]. At this point, the k-th CG cycle is completed, and all 

information is available (Pk+1, Gk+1, Hk+1) to enter the next CG cycle. 

 

If CG convergence has been reached or if the maximum number of allowed CG cycles have been 

carried out, the program returns to the calling routine. Before doing so, the density matrix is 

symmetrized in order to remove numerical "noise" that may have appeared due to the finite 

numerical precision of the computation. Experience has shown that numerical noise may otherwise 

accumulate during the SCF/CG-DMS iterations and cause problems. There is also an option to 

scale the final density matrix in order to impose the correct trace in case of numerical inaccuracies, 

but this is normally not needed. 

 

Looking at the overall procedure, the SCF/CG-DMS approach involves three nested loops (see 

Schemes 5 and 6): the outer SCF iterations, the CG cycles within each SCF iteration, and the 

McWeeny purification cycles at the end of each CG cycle. It would seem inefficient to converge 

the CG and McWeeny cycles tightly when the SCF iterations are still far away from convergence. 

On the other hand, if the overall SCF procedure is close to convergence, only very few CG and 

McWeeny cycles will be needed since the density matrix will then change only very slightly and 

both approaches converge very fast in this case (quadratic convergence for the McWeeny iterations 

[50,69]). Under these circumstances, it makes sense to allow only a small maximum number of CG 

cycles (maxng) and McWeeny cycles (maxpur) during the whole calculation: convergence may 

then be incomplete during initial SCF iterations, but will be reached later on. Recommended values 

of these input options (maxng, maxpur) can be derived from systematic tests (see below). 
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As already mentioned, the computational effort in the CG-DMS approach is dominated by matrix 

multiplications. In the current implementation, the total number of such matrix multiplications 

during each SCF iteration is typically Ncg (11 + 2 Npur); for Ncg = Npur = 2 (see below) this amounts 

to typically 30 matrix multiplications per SCF iteration. This has to be contrasted with the standard 

SCF approach using matrix diagonalization: the usual semiempirical implementations employ the 

pseudodiagonalization scheme (see section 3.4) which requires two matrix multiplications for the 

transformation of the Fock matrix, eq. (44), roughly the equivalent of one matrix multiplication for 

the Jacobi-type transformations, eqs. (45)-(46), and another matrix multiplication for the 

subsequent formation of the density matrix, eq. (7). Hence, the computational effort of the 

pseudodiagonalization scheme amounts to approximately only four matrix multiplications. It is 

therefore about an order of magnitude smaller than in the CG-DMS approach, especially when 

considering that the matrix operations in CG-DMS always involve full NxN matrices (N basis 

functions) whereas those in the pseudodiagonalization mostly work with smaller matrices of 

dimension NxNocc or NxNvirt (Nocc occupied MOs, Nvirt virtual MOs). To be fair, one also has to 

take into account that the standard SCF approach needs some full matrix diagonalizations (e.g., at 

the outset, see section 3.4) which are more expensive. In an overall assessment, however, the fact 

remains that the standard SCF approach is much less demanding computationally than the 

SCF/CG-DMS approach: with regard to the most time-consuming O(N3) matrix operations, there is 

about one order of magnitude difference in the computational effort. 

 

It is therefore not surprising that the direct minimization of the density matrix is normally not 

employed in standard semiempirical SCF-MO codes, even though the basic theory behind this 

approach has long been known [50]. The recent interest in the SCF/CG-DMS approach arises from 

the fact, of course, that it enables us to exploit matrix sparsity rather easily (see section 3). It should 

also be clear from the preceding discussion, however, that the relevant matrices must become very 

sparse before SCF/CG-DMS becomes more efficient than the standard SCF approach: the latter 

requires intrinsically much less computation and can make use of highly optimized library routines 

(BLAS, LAPACK) which will always be more efficient than sparse matrix routines. In spite of 

these caveats, it is also clear that an O(N) SCF/CG-DMS code must win over a standard O(N3) SCF 

code at some point when the molecules become large enough. 
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4.3 Sparse matrix version 
 

The algorithms discussed in the preceding section form the basis of all three CG-DMS 

implementations that we have developed. This section will address the issues that are specific to the 

sparse matrix version (DIRCGS). 

 

The sparsity of a matrix is defined as the percentage of zero elements. For large molecules, density 

matrix elements connecting distant atoms will become vanishingly small (see section 3), and it is 

therefore a reasonable approximation to neglect them if their absolute value is smaller than a user-

defined cutoff (mcutp). In the limit of very large molecules, this leads to sparse density matrices for 

which the number of non-zero elements increases linearly with system size. The Fock matrix shows 

a similar behavior and can therefore also be truncated by applying another user-defined cutoff 

(mcutf). Moreover, the distribution of nonvanishing elements is similar in the density matrix and 

the Fock matrix. 

 

To take advantage of such truncations it is obvious that one should only store and process the 

nonzero elements of these sparse matrices. This makes it necessary to define the corresponding data 

structures and to choose standard procedures for sparse matrix operations. While there are general 

books on sparse matrix technology [79,80,81] and specific studies on sparse matrix multiplication 

[82,83,84,85], this field is much less developed than that of standard matrix operations, and there is 

no generally accepted sparse matrix software that would be comparable to the highly optimized 

BLAS and LAPACK libraries for standard matrix operations. 

 

A variety of data structures have been suggested for sparse matrices [79,80,81,86] which include 

the compressed sparse row (CSR) format, the compressed sparse column (CSC) format, the 

coordinate format, and the linked list storage format. We have adopted the CSR scheme which 

seems to be the most common format for sparse matrices that do not have a special regular 

structure. In this scheme three one-dimensional arrays are used to define a sparse matrix: all 

nonzero matrix elements are stored row by row in a real (or double precision) array A, their column 

indices are collected in an integer array JA, and the pointers to the beginning of each row in A and 

JA are given in another integer array IA. The dimension of A and JA is equal to the total number of 

nonzero matrix elements (NNZ), and the length of IA is equal to N+1 if there are N rows. IA(i) 

defines the position in A and JA where the i-th row starts (for i=1,...,N), and IA(N+1) contains 

IA(1)+NNZ such that IA(N+1)-1 is the address of the last entry in A and JA. It should be stressed 

that the data in A and JA must match perfectly. The order of the elements within a given row does 
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not matter: the i-th row is stored between A(i) and A(i+1)-1, and the corresponding column indices 

are found between JA(i) and JA(i+1)-1. 

 

An example of CSR storage for a square matrix is shown in Figure 2. 

 

A  

0500
0630
3004
0201

 

Figure 2: Square matrix A (left) in CSR format (right
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After carrying out a sparse matrix operation such as an addition or multiplication, the resulting 

matrix will generally tend to have more nonzero elements than the two original matrices. After 

several such operations, matrix sparsity may be lowered significantly, and eventually the linear 

scaling behavior may be lost if no countermeasures are taken. There are two possible 

counterstrategies [19] that have been termed "let it grow" (LIG) and "fixed format" (FF). The LIG 

approach allows matrix elements to appear in the result matrix "wherever they like": initially the 

matrix operation is carried out only symbolically to determine the number of resulting nonzero 

matrix elements so that memory can be allocated; thereafter, the actual operation is performed, and 

finally the result matrix is subjected to filtration, i.e., the elements that are smaller than a suitable 

user-defined cutoff are neglected. This produces a matrix whose sparsity is compatible with that of 

the original matrices. The FF approach, on the other hand, analyzes the structure of the original two 

matrices beforehand; in our case of CG-DMS, for example, the density matrix P and the Fock 

matrix F have a similar structure (zero blocks for distant atoms) so that the structure of the product 

matrix FP can be fixed. Extending this idea one may define a fixed format of all relevant matrices 

for a certain portion of a CG-DMS calculation, e.g., within one CG cycle, before allowing the 

structures to change again when entering the next SCF iteration [19]. It is obvious that the FF 

scheme will be faster than the LIG scheme in general because the use of fixed format obviates the 

need for the initial symbolic operations. On the other hand, the FF scheme is more difficult to 

implement and introduces extra (small) numerical errors that need to be controlled in an appropriate 

manner. Since the gain in speed is less than a factor of 2 [19], we have decided against the FF 

approach and in favor of the LIG scheme, with filtration at the level of individual matrix elements. 

An alternative is to apply the filtration at the level of atom-atom blocks where a whole block is 

disregarded if its Frobenius norm is less than the chosen cutoff [49,82]. 

 

Based on these general considerations, a sparse matrix version of the CG-DMS code has been 

implemented. It is essentially a translation of the integral-direct Fortran77 version with full two-

dimensional arrays (DIRCG) into a corresponding Fortran90 code (DIRCGS) with sparse matrices 

in CSR format using SPARSKIT2 library routines when possible. For the sake of documentation, 

the routines that implement the CG-DMS approach with full two-dimensional arrays and with 

sparse matrices are listed in Appendix 1 and Appendix 2, respectively, along with a brief 

description of their functionality. 
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4.4 Initial density matrix 
 

The quality of the initial guess for the density matrix will affect the number of SCF iterations that 

are needed until convergence. In the extreme case of a very poor guess, the SCF procedure may 

even fail to converge. Fortunately, standard diagonalization methods for solving the eigenvalue 

problem in semiempirical SCF-MO approaches are quite robust so that a simple diagonal guess is 

normally sufficient. The following variants have been considered in this work. 

 

D1: In the case of neutral molecules, each single atom is assumed to be neutral. For atoms with 

an s or sp basis set, the valence electrons are distributed evenly over the atomic orbitals (i.e., 

over the corresponding diagonal density matrix elements). For atoms with an spd basis in 

MNDO/d, d-orbitals (p-orbitals) are initially not populated for main-group elements 

(transition metals), and the valence electrons are evenly distributed over the remaining 

atomic orbitals. In the case of charged systems, the molecular charge is evenly distributed 

over all orbitals. These conventions specify the default initial guess in MNDO99 [20]. This 

diagonal density matrix has the correct number of electrons, but is generally not idempotent. 

 

D2: Following a recent suggestion [49] for a simplified density matrix minimization, we have 

also implemented an initial diagonal guess where all electrons are evenly distributed over all 

atomic orbitals. Hence, the initial density matrix is the unit matrix scaled by an overall 

factor (Ne / N). 

 

D3: In the case of neutral molecules, each single atom is assumed to be neutral. For each atom, 

the valence electrons are distributed evenly over the atomic orbitals. In the case of charged 

systems, the molecular charge is evenly distributed over all orbitals. This is obviously a 

modification of D1 and differs from D1 only in the treatment of atoms with an spd basis. 

 

In the course of our work, it became apparent that the SCF/CG-DMS approach converges less 

reliably than the standard diagonalization approach (see section 5). It would thus be desirable to use 

an initial guess for the density matrix that is not merely diagonal, but includes some nondiagonal 

elements that reflect the bonding situation around a given atom. This basic idea is in the spirit of the 

LMO approach [17] which starts the SCF procedure from initial LMOs that are derived from the 

classical Lewis structures and represent diatomic bonding and antibonding interactions (see section 

3.4). Moreover, the success of the divide-and-conquer method indicates that it is possible to 

assemble the density of the whole system from subsystem density matrices (see section 3.2). 
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We introduce a related concept and build an initial block-diagonal density matrix for the whole 

system from non-converged fragment densities that are obtained as follows in the case of closed-

shell molecules: The system is partitioned into user-defined fragments, and each fragment is 

assigned an even number of electrons such that each fragment is neutral or at least approximately 

neutral (details see below) subject to the condition that the total number of all electrons is 

preserved. For each (small) fragment, a standard closed-shell SCF-MO calculation with matrix 

diagonalization is started and terminated after a few (linfrg) SCF iterations (typically linfrg = 1 or 

2). The resulting non-converged density matrix is copied into the corresponding block of the initial 

density matrix for the whole system. 

 

Some remarks are appropriate. First, the partitioning might yield rather unphysical fragments that 

might be hard to converge; this is no problem since the idea is not to reach SCF convergence in the 

fragment, but just do one or two diagonalizations to generate a local fragment density with a 

sensible topology. Second, the computational effort for this procedure scales linearly in the same 

sense as the divide-and-conquer method, since an increase in the system size will lead to a linear 

increase in the number of fragments. Third, the effort is small on an absolute scale since only small 

matrices need to be diagonalized in the fragments. Fourth, by construction, the resulting block-

diagonal guess for the density matrix is sparse, normalized to the correct number of electrons, and 

idempotent. The latter property follows from the fact that each of the disjoint blocks is derived from 

matrix diagonalization of a fragment, see eqs. (9) and (27). 

 

Technically, the generation of the block-diagonal initial guess has been implemented in a separate 

module (FRAGMT). Some input is needed to define the fragments (see below). Thereafter, the 

program loops over all fragments and performs one or few iterations of an RHF-SCF calculation 

(SCFFRG) which makes use of many existing standard routines from MNDO99. The fragment 

densities are then copied into the molecular density array which can be generated as a two-

dimensional array (ITERCG, DIRCG) or as a sparse matrix in CSR format (DIRCGS). For the sake 

of documentation, Appendix 3 lists and describes the corresponding new routines. 

 

In the remainder of this section, we address some issues related to the fragmentation. We cover 

clusters of isolated molecules which can be partitioned in a natural manner into fragments, and 

polymers where the partitioning is more difficult since covalent bonds must be cut. 

 

In the first case, the block-diagonal guess outlined above works easily. If we have, for instance, a 

cluster of water molecules we can perform one or several SCF iterations for each molecule at the 

given coordinates. Combining the resulting densities of all water molecules trivially yields the 
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initial density matrix for the cluster, with each block corresponding to a particular isolated water 

molecule. The only open issue is then the number of SCF iterations to be performed on each 

fragment. It seems reasonable to use the same number (linfrg) on all fragments. We found in our 

tests that the SCF convergence for water clusters of different size is about equally fast for linfrg=1 

and linfrg=2, and that nothing significant could be gained by converging the separate SCF 

calculations for the isolated water molecules (which is easy here, but might be problematic in other 

cases, see above). As a result of these tests, we have adopted the option linfrg=1 for all SCF/CG-

DMS calculations on water clusters (see section 6). 

 

The situation becomes more complicated when dealing with large covalent systems which need to 

be divided into subsystems. In general, the choice of suitable subsystems is not trivial and must be 

left to the user who has to define the subsystems via input (see below). In the case of polymers, the 

obvious choice is to partition the system into its natural subunits - the monomers. Homolytic cuts 

through covalent bonds in a long-chain polymer will formally give rise to two radicals at the two 

ends, and many biradicals in between. The latter might create problems if we insist on converging 

the fragment SCF calculations, but since we perform only a few SCF iterations we can treat these 

biradicals (with an even number of electrons) as closed-shell species when generating an initial 

density matrix guess. We find that this procedure works well in practice (better and simpler than an 

alternative open-shell treatment). The two terminal fragments are radicals in the case of homolytic 

cuts, but for the purpose of the initial guess, they can formally also be treated as closed-shell 

cation/anion or a anion/cation pairs (by shifting one electron from one terminus to the other). In the 

case of peptides, we have studied these three possibilities in detail, and we find it best to employ 

charged closed-shell terminal fragments, i.e., a cation at the N-terminus and an anion at the C-

terminus. The block-diagonal initial density matrix generated in this manner leads to reliable and 

fast SCF/CG-DMS convergence for peptides, whereas the two alternative choices normally 

converge a bit more slowly and may occasionally even fail to converge. Therefore, we have 

adopted the closed-shell residue-based partitioning with a cationic N-terminal group and an anionic 

C-terminal group as our default fragmentation for peptides and proteins (see also Figure 3). 
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subsystems: 

             1                    2                   3                  4                  5                       6 
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Figure 3: Subdivision of a peptide chain into residue-based fragments. 

 

Some additional conventions have been established for calculations on peptides and proteins. First, 

when there is more than one chain of amino acids, it is obvious that the subdivision needs to be 

done for each chain separately. Second, the correct protonation state of each residue must be 

chosen, both for the overall calculation and for the generation of the initial guess: at pH 7, arginine 

(ARG) and lysine (LYS) normally occur in the protonated form, whereas glutamic acid (GLU) and 

aspartic acid (ASP) are usually deprotonated (see Figure 4). Third, some proteins contain disulfide 

bridges connecting two cystein residues [H2N-CH(CH2SH)-COOH]; in this case, it is 

advantageous for the initial guess to put the two cystein molecules with the disulfide bridge into the 

same fragment (see Figure 5). Fourth, if there is a metal ion (e.g., the zinc dication coordinated to 

the sulfur atom of cystein or the nitrogen atom of histidine), it is best to define a fragment that 

includes both the metal ion and the residue to which it is coordinated. Finally, any solvent 

molecules in the protein (e.g., water) are treated as separate subsystems, of course. 
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Figure 4: Formulas of selected amino acids (see text). 
 42



The conventions outlined above have been adopted for the SCF/CG-DMS calculations on peptides 

and proteins (see section 6). Starting from the resulting block-diagonal initial density matrices, SCF 

convergence has regularly been achieved without the need for additional measures (such as DIIS, 

extrapolation, or damping). We have not studied other large covalent systems as extensively as 

proteins, but we expect that an analogous block-diagonal guess will also work elsewhere - at least 

there is no evidence to the contrary. 
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Figure 5: Recommended subdivision in bridged systems (see text). 

 

In order to generate the block-diagonal guess, the user has to assign each atom in the molecule to a 

particular fragment. In general, this input can be provided manually, but in the case of 

biomacromolecules such as proteins, the assignment of atoms to residues (fragments) is included in 

structural databases (e.g., PDB) and can be retrieved by automatic tools that provide the required 

input information in a suitable format. In addition, the user has to specify the number of electrons 

assigned to each fragment. Since most fragments are neutral, the actual input contains only any 

nonzero charges of the fragments. Finally, the user has to choose the number (linfrg) of SCF 

iterations that will be performed for each fragment. 

 

For the sake of documentation, Appendix 4 summarizes all input options that are relevant for 

SCF/CG-DMS calculations. 
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Chapter 5 
 

 

SCF convergence and CG-DMS parameters 
 

 

5.1 Overview 
 

This section describes the tests of our CG-DMS implementation with regard to its correctness and 

its performance for small molecules. Two test sets were employed. 

 

a) The CHNO set consists of 218 closed-shell molecules containing the elements hydrogen, 

carbon, nitrogen, and oxygen. It is derived from the original MNDO validation set [24] and 

is essentially identical to the CHNO-File used in the recent OM3 validation [23]. The size 

of the test molecules ranges from hydrogen H2 to adamantane C10H16 (see [23] for a detailed 

list). MNDO single-point calculations were carried out using a standard sp minimal basis. 

 

b) The MNDO/d set is comprised of 366 closed-shell molecules containing at least one heavier 

atom (P, S, Cl, Br, or I). It is a union of the sets used during the evaluation of the MNDO/d 

method for these elements [78,87]. The size of the test molecules ranges from hydrogen 

chloride HCl to triphenylphosphine oxide (C6H5)3PO (see [78,87] for a detailed list). The 

tests involved MNDO/d single-point calculations with d orbitals included at the heavier 

atoms. 

 

The correctness of the SCF/CG-DMS results was judged by comparison against standard SCF 

results obtained by matrix diagonalization or pseudodiagonalization (see section 2). All calculations 

were done with the same general SCF convergence criteria: 10-6 eV for the electronic energy 

(iscf=6) and 10-6 for the diagonal elements of the density matrix (iplscf=6). Two separate 

calculations were considered to agree with each other if the deviations were smaller than these 

convergence criteria. 
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SCF/CG-DMS computations are controlled by a large number of options (see Appendix 4), and 

optimum choices for these options need to be established. In the following we shall discuss how the 

results depend on the choice of the initial density matrix (linfrg, ktrial), on the maximum number of 

conjugate gradient cycles per SCF iteration (maxcg), on the maximum number of McWeeny 

purification transformations per conjugate gradient cycle (maxpur), and on the conditions when 

these transformations are applied during a conjugate gradient minimization (mpurif). We have also 

studied the influence of general SCF options such as extrapolation of the density matrix between 

SCF iterations, but have not considered damping, level shifting, or DIIS convergence acceleration 

(see section 2.3). 

 

 

5.2 Initial density matrix from diagonal guess 
 

Starting from the default diagonal guess for the density matrix (D1, linfrg=0, ktrial=0; see section 

4.4) and using standard CG-DMS options (maxcg=2, maxpur=2, mpurif=0), the SCF/CG-DMS 

calculations converge for all 218 molecules from the CHNO set. However, the computed heats of 

formation are correct only in 207 cases, and incorrect in the remaining 11 cases where they are 

much higher than the MNDO reference values obtained from matrix diagonalization. Closer 

inspection shows that the SCF/CG-DMS procedure converges to the dianion in these problem cases 

(ozone, several peroxides, p-quinone, dinitrogen tetroxide, and nitric acid). 

 

Taking ozone as an example, we describe the course of such faulty SCF/CG-DMS calculations in 

more detail. The default initial diagonal density matrix (D1) for ozone is the unit matrix multiplied 

by 0.75 (closed-shell occupation factor of 2 not included; the trace of 9 thus corresponds to half the 

number of valence electrons). This initial density matrix has the correct trace, by construction, but 

it is far from idempotent: all its eigenvalues are 0.75 rather than 0 or 1 as in a proper idempotent 

density matrix. The trace is retained during the first CG update, by definition, but not during the 

subsequent first McWeeny purification: allowing for a single McWeeny transformation after the 

first CG update (default) yields a trace of 9.843 and eigenvalues of the density matrix in the range 

of 0.651-1.000. During the first three SCF iterations with the chosen CG-DMS options (maxcg=2, 

maxpur=2, mpurif=0; see Appendix 4), the trace settles to values around 10 while the minimum 

and maximum eigenvalues of the density matrix approach 0 and 1, respectively. From the fourth 

SCF iteration onwards, there is smooth convergence, with the trace stable at 10 and the eigenvalues 

stable at 0 and 1, and after 22 SCF iterations the chosen convergence criteria are satisfied. The SCF 

solution with a trace of 10 represents the ozone dianion with 20 valence electrons. 
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The transition from ozone to the ozone dianion is thus caused by the very first McWeeny 

purification: a single such transformation increases the trace from 9 to around 10, and the iterative 

SCF/CG-DMS procedure does not recover from this initial change. It should be stressed that under 

our default criteria (maxcg=2, maxpur=2, mpurif=0) the first purification is incomplete: when 

completing this first McWeeny purification in 8 steps one obtains an idempotent density matrix 

with a trace of 12 and eigenvalues of 0 and 1 (yielding an ozone hexaanion that is converged after 3 

SCF iterations). Hence, one may arrive at SCF/CG-DMS solutions with different numbers of 

electrons depending on how the McWeeny purification is invoked (remember that the CG update 

preserves the number of electrons). 

 

The problems encountered arise from the fact that our default diagonal guess for the initial density 

matrix is far from idempotent. The McWeeny purification transformation is designed for "almost 

idempotent" matrices which are then rendered "more idempotent". It should therefore be applied 

only with caution in the initial stages of the SCF/CG-DMS minimization with a diagonal initial 

estimate of the density matrix, but it cannot be completely avoided since idempotency needs to be 

imposed in order to get a physically valid density matrix. 

 

We have carried out systematic test calculations to find out whether there is a reliable procedure for 

converging SCF/CG-DMS calculations starting from a diagonal initial guess. The following options 

were investigated both for the CHNO set and the MNDO/d set: 

 

- different initial guesses D1, D2, and D3 (see section 4.4; note that D1 and D3 are identical 

for the CHNO set with an sp basis); 

- maximum number of allowed CG cycles per SCF iteration (maxcg=1-5); 

- maximum number of allowed McWeeny transformations per CG cycle (maxpur=1-3); 

- performing maxpur McWeeny transformation in each CG cycle (mpurif=1), or doing so 

only in the last CG cycle while performing a single McWeeny transformation otherwise 

(mpurif=0), or allowing McWeeny transformations only when the CG search is essentially 

converged (mpurif=-1); 

- calculations without or with density matrix extrapolation between SCF iterations ("std" or 

"ext", respectively). 

 

Tables 1-4 list the results for the CHNO set with 218 molecules. They specify the number of 

molecules that were computed successfully for a given combination of options. It is immediately 

obvious that it has not been possible to converge all 218 molecules simultaneously in any such 

case. There are some trends: The initial guess D1 performs slightly worse than D2 for maxcg=1, 
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but appears to be better for maxcg>1. The number of successful calculations tends to decrease for 

higher values of maxcg and maxpur. Performing McWeeny transformations mainly in the last CG 

cycle (mpurif=0) seems to be better than doing them always (mpurif=1), and much better than 

doing them almost never (mpurif=-1, data not shown). Finally, density matrix extrapolation may be 

helpful in some cases, but the overall benefits are certainly small. The main finding from these tests 

is, however, that there is no robust and reliable procedure for SCF/CG-DMS convergence when 

starting from a diagonal density matrix guess. 

 

This conclusion is corroborated by the results for the MNDO/d set with 366 molecules (see Tables 

5-10). Due to the presence of d orbitals at the heavier elements, these molecules are more difficult 

to converge: the electrons can be distributed over more basis orbitals, and the populations are 

normally less uniform for an spd basis compared with an sp basis. Consequently, the proportion of 

successful calculations is significantly smaller. The unsuccessful cases again involve a change of 

the trace during McWeeny transformations which then usually leads to dianions or even more 

highly charged polyanions. The performance of the initial guess improves in the sequence D1 < D2 

< D3. The relative merits of the other options are similar as in the case of the CHNO set and thus 

need not be discussed again. 

 

In summary, the systematic tests in Tables 1-10 clearly indicate that the diagonal guesses for the 

initial density matrix that are commonly used in conventional semiempirical SCF calculations are 

not sufficient for the SCF/CG-DMS approach. A better initial guess is required to provide robust 

and reliable convergence. 

 

Table 1: Number of successful MNDO calculations for the CHNO set with 218 molecules for 

different options (maxcg, maxpur): CG-DMS approach without and with extrapolation, 

initial guess D1, McWeeny transformations in the last CG cycle (mpurif=0). 

 
+-------+-----------+-----------+-----------+
|maxpur | 1 | 2 | 3 |
+-------+-----+-----+-----+-----+-----+-----+
| maxcg | std | ext | std | ext | std | ext |
+-------+-----+-----+-----+-----+-----+-----+
| 1 | 214 | 214 | 205 | 205 | 205 | 205 |
| 2 | 208 | 208 | 207 | 209 | 203 | 205 |
| 3 | 206 | 208 | 202 | 203 | 201 | 202 |
| 4 | 192 | 194 | 193 | 195 | 190 | 192 |
| 5 | 169 | 172 | 155 | 159 | 148 | 152 |
+-------+-----+-----+-----+-----+-----+-----+
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Table 2: Number of successful MNDO calculations for the CHNO set with 218 molecules for 

different options (maxcg, maxpur): CG-DMS approach without and with extrapolation, 

initial guess D1, McWeeny transformations in each CG cycle (mpurif=1). 

 
+-------+-----------+-----------+-----------+
|maxpur | 1 | 2 | 3 |
+-------+-----+-----+-----+-----+-----+-----+
| maxcg | std | ext | std | ext | std | ext |
|-------+-----+-----+-----+-----+-----+-----+
| 1 | 214 | 214 | 205 | 205 | 205 | 205 |
| 2 | 204 | 205 | 197 | 197 | 164 | 164 |
| 3 | 195 | 195 | 193 | 193 | 159 | 159 |
| 4 | 185 | 185 | 188 | 188 | 169 | 169 |
| 5 | 174 | 174 | 187 | 187 | 169 | 169 |
+-------+-----+-----+-----+-----+-----+-----+

 

 

Table 3: Number of successful MNDO calculations for the CHNO set with 218 molecules for 

different options (maxcg, maxpur): CG-DMS approach without and with extrapolation, 

initial guess D2, McWeeny transformations in the last CG cycle (mpurif=0). 

 
+-------+-----------+-----------+-----------+
|maxpur | 1 | 2 | 3 |
+-------+-----+-----+-----+-----+-----+-----+
| maxcg | std | ext | std | ext | std | ext |
+-------+-----+-----+-----+-----+-----+-----+
| 1 | 217 | 217 | 212 | 212 | 190 | 190 |
| 2 | 210 | 210 | 185 | 189 | 174 | 175 |
| 3 | 183 | 189 | 178 | 186 | 168 | 179 |
| 4 | 150 | 168 | 141 | 158 | 138 | 155 |
| 5 | 97 | 123 | 95 | 110 | 98 | 109 |
+-------+-----+-----+-----+-----+-----+-----+

 

 

Table 4: Number of successful MNDO calculations for the CHNO set with 218 molecules for 

different options (maxcg, maxpur): CG-DMS approach without and with extrapolation, 

initial guess D2, McWeeny transformations in each CG cycle (mpurif=1). 

 
+-------+-----------+-----------+-----------+
|maxpur | 1 | 2 | 3 |
+-------+-----+-----+-----+-----+-----+-----+
| maxcg | std | ext | std | ext | std | ext |
+-------+-----+-----+-----+-----+-----+-----|
| 1 | 217 | 217 | 212 | 212 | 190 | 190 |
| 2 | 181 | 186 | 177 | 178 | 142 | 145 |
| 3 | 153 | 158 | 140 | 145 | 112 | 116 |
| 4 | 101 | 108 | 111 | 110 | 111 | 111 |
| 5 | 89 | 93 | 105 | 107 | 110 | 112 |
+-------+-----+-----+-----+-----+-----+-----+
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Table 5: Number of successful MNDO/d calculations for the MNDO/d set with 366 molecules for 

different options (maxcg, maxpur): CG-DMS approach without and with extrapolation, 

initial guess D1, McWeeny transformations in the last CG cycle (mpurif=0). 

 
+-------+-----------+-----------+-----------+
|maxpur | 1 | 2 | 3 |
+-------+-----+-----+-----+-----+-----+-----+
| maxcg | std | ext | std | ext | std | ext |
+-------+-----+-----+-----+-----+-----+-----+
| 1 | 246 | 248 | 200 | 201 | 143 | 143 |
| 2 | 199 | 177 | 142 | 144 | 111 | 116 |
| 3 | 121 | 132 | 105 | 113 | 80 | 94 |
| 4 | 81 | 97 | 46 | 71 | 25 | 55 |
| 5 | 11 | 44 | 13 | 41 | 7 | 34 |
+-------+-----+-----+-----+-----+-----+-----+

 

 

Table 6: Number of successful MNDO/d calculations for the MNDO/d set with 366 molecules for 

different options (maxcg, maxpur): CG-DMS approach without and with extrapolation, 

initial guess D1, McWeeny transformations in each CG cycle (mpurif=1). 

 
+-------+-----------+-----------+-----------+
|maxpur | 1 | 2 | 3 |
+-------+-----+-----+-----+-----+-----+-----+
| maxcg | std | ext | std | ext | std | ext |
+-------+-----+-----+-----+-----+-----+-----+
| 1 | 246 | 248 | 200 | 201 | 143 | 143 |
| 2 | 137 | 141 | 94 | 97 | 64 | 65 |
| 3 | 59 | 62 | 29 | 31 | 33 | 37 |
| 4 | 6 | 18 | 9 | 15 | 26 | 32 |
| 5 | 6 | 12 | 9 | 14 | 24 | 29 |
+-------+-----+-----+-----+-----+-----+-----+

 

 

Table 7: Number of successful MNDO/d calculations for the MNDO/d set with 366 molecules for 

different options (maxcg, maxpur): CG-DMS approach without and with extrapolation, 

initial guess D2, McWeeny transformations in the last CG cycle (mpurif=0). 

 
+-------+-----------+-----------+-----------+
|maxpur | 1 | 2 | 3 |
+-------+-----+-----+-----+-----+-----+-----+
| maxcg | std | ext | std | ext | std | ext |
+-------+-----+-----+-----+-----+-----+-----+
| 1 | 293 | 298 | 235 | 240 | 153 | 157 |
| 2 | 224 | 230 | 170 | 173 | 134 | 142 |
| 3 | 137 | 148 | 120 | 140 | 89 | 113 |
| 4 | 78 | 104 | 69 | 100 | 69 | 97 |
| 5 | 61 | 100 | 47 | 87 | 39 | 85 |
+-------+-----+-----+-----+-----+-----+-----+

 49



Table 8: Number of successful MNDO/d calculations for the MNDO/d set with 366 molecules for 

different options (maxcg, maxpur): CG-DMS approach without and with extrapolation, 

initial guess D2, McWeeny transformations in each CG cycle (mpurif=1). 

 
+-------+-----------+-----------+-----------+
|maxpur | 1 | 2 | 3 |
+-------+-----+-----+-----+-----+-----+-----+
| maxcg | std | ext | std | ext | std | ext |
+-------+-----+-----+-----+-----+-----+-----+
| 1 | 293 | 298 | 235 | 240 | 153 | 157 |
| 2 | 153 | 163 | 84 | 91 | 71 | 78 |
| 3 | 72 | 88 | 60 | 60 | 47 | 49 |
| 4 | 47 | 58 | 38 | 41 | 39 | 39 |
| 5 | 28 | 40 | 31 | 36 | 40 | 44 |
+-------+-----+-----+-----+-----+-----+-----+

 

 

Table 9: Number of successful MNDO/d calculations for the MNDO/d set with 366 molecules for 

different options (maxcg, maxpur): CG-DMS approach without and with extrapolation, 

initial guess D3, McWeeny transformations in the last CG cycle (mpurif=0). 

 
+-------+-----------+-----------+-----------+
|maxpur | 1 | 2 | 3 |
+-------+-----+-----+-----+-----+-----+-----+
| maxcg | std | ext | std | ext | std | ext |
+-------+-----+-----+-----+-----+-----+-----+
| 1 | 303 | 307 | 231 | 237 | 185 | 186 |
| 2 | 274 | 275 | 225 | 227 | 187 | 188 |
| 3 | 197 | 206 | 183 | 186 | 173 | 174 |
| 4 | 161 | 169 | 134 | 145 | 118 | 136 |
| 5 | 99 | 116 | 75 | 90 | 54 | 73 |
+-------+-----+-----+-----+-----+-----+-----+

 

 

Table 10: Number of successful MNDO/d calculations for the MNDO/d set with 366 molecules for 

different options (maxcg, maxpur): CG-DMS approach without and with extrapolation, 

initial guess D3, McWeeny transformations in each CG cycle (mpurif=1). 

 
+-------+-----------+-----------+-----------+
|maxpur | 1 | 2 | 3 |
+-------+-----+-----+-----+-----+-----+-----+
| maxcg | std | ext | std | ext | std | ext |
+-------+-----+-----+-----+-----+-----+-----+
| 1 | 303 | 307 | 231 | 237 | 185 | 186 |
| 2 | 215 | 218 | 144 | 146 | 112 | 112 |
| 3 | 149 | 153 | 100 | 100 | 91 | 92 |
| 4 | 97 | 103 | 81 | 84 | 81 | 86 |
| 5 | 61 | 69 | 72 | 78 | 81 | 83 |
+-------+-----+-----+-----+-----+-----+-----+
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5.3 Initial density matrix from diagonalization 
 

As discussed previously (see section 4.4) we have implemented another alternative option to 

construct an initial density matrix for large molecules: a block-diagonal guess is assembled from 

non-converged fragment density matrices which are obtained by performing one or more 

conventional SCF iterations for user-defined fragments. In the case of small molecules, 

fragmentation is not sensible, and the conventional SCF iterations are carried out for the whole 

molecule to generate the initial density matrix for the SCF/CG-DMS procedure by Fock matrix 

diagonalization. This is done for testing purposes only, of course, since there is no practical need 

for SCF/CG-DMS when a conventional SCF calculation can be performed for the whole molecule. 

 

We have investigated the convergence of the SCF/CG-DMS procedure when starting from such 

initial density matrices that are generated through linfrg conventional SCF iterations. The full range 

of options presented in Tables 1-10 (maxcg, maxpur, mpurif, extrapolation) were tested both for the 

CHNO set and the MNDO/d set. In all cases, all SCF/CG-DMS runs converged and provided the 

correct results. This is true already for linfrg=1 and also holds for linfrg>1, of course. Hence, we 

find robust and reliable convergence for this initial guess which is therefore adopted as our 

standard. In an overall assessment, the convergence behaviour is similar for different values of 

linfrg, and it is thus recommended to use linfrg=1 as the default value. 

 

The reasons for this safe convergence become clear if we look again at the example of ozone (see 

section 5.2). The initial guess obtained by a single Fock matrix diagonalization is idempotent and 

has the correct trace, by construction. The density matrix updates in the CG search perturb the 

idempotency only slightly since the eigenvalues of the resulting density matrix deviate from the 

proper values of 0 and 1 only slightly (always by less than 0.01). Consequently, the McWeeny 

purification can be applied with confidence, and the resulting trace remains essentially at the 

correct value of 9 (deviations of less than 0.000001 throughout). The problems encountered with 

the diagonal guess (see section 5.2) are thus avoided from the very beginning because the initial 

guess from diagonalization is properly idempotent. 

 

All further SCF/CG-DMS results in this thesis are based on initial density matrices obtained 

through matrix diagonalization. 
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5.4 Comparison of CG-DMS implementations and options 
 

Having established reliable convergence, we now turn to a comparison of the different CG-DMS 

implementations in our code (see section 4). 

 

a) ITERCG: Full-matrix version with precomputation of all integrals. 

b) DIRCG : Integral-direct full-matrix version. 

c) DIRCGS: Integral-direct sparse-matrix version. 

 

Using a variety of CG-DMS options (see above) and applying no cutoffs, all three implementations 

yield identical results for all 218 molecules of the CHNO set and for all 366 molecules of the 

MNDO/d set. The computed heats of formation agree with each other and with those from 

conventional SCF calculations (within the limits of the SCF convergence criteria). Moreover, for a 

given choice of CG-DMS options, the three implementations require essentially the same overall 

number of SCF iterations, CG cycles, and matrix multiplications for the whole CHNO and 

MNDO/d set, respectively, apart from very rare exceptions due to different rounding. 

 

Tables 11 and 12 document these numbers as obtained from the ITERCG code, to indicate how 

they depend on the CG-DMS options; those from DIRCG and DIRCGS are mostly the same (with 

occasional differences of the order of 1). Increasing the allowed number of CG cycles per SCF 

iteration (maxcg) generally reduces the overall number of SCF iterations needed, both for the 

CHNO set (Table 11) and the MNDO/d set (Table 12), but also tends to increase the overall 

number of CG cycles and matrix multiplications. An exception to the latter trend is the transition 

from maxcg=1 to maxcg=2 in the MNDO/d set where all these numbers decrease: in this case, the 

overall SCF/CG-DMS convergence is obviously improved by allowing more CG cycles in the inner 

loop, whereas a further increase (maxcg>2) may be counterproductive as far as the overall 

workload is concerned (cf. the overall number of matrix multiplications). The maximum number of 

allowed McWeeny transformations (maxpur) has almost no influence on the overall number of SCF 

and CG steps that are required, and it also affects the overall number of matrix multiplications only 

to a small extent. 
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Table 11: Total number of SCF iterations, CG cycles, and matrix multiplications (MM) for all 218 

molecules of the CHNO set for different CG-DMS options (maxcg=1-5, maxpur=1-3, 

mpurif=0): MNDO single-point energy calculations, initial guess from matrix 

diagonalization, standard SCF convergence criteria (iscf=6, iplscf=6), no density matrix 

extrapolation, no cutoffs, ITERCG code. 

 
+-----+-------------------+-------------------+-------------------+
|maxcg| maxpur = 1 | maxpur = 2 | maxpur = 3 |
+-----+-------------------+-------------------+-------------------+
| | SCF CG MM | SCF CG MM | SCF CG MM |
| | | | |
| 1 | 6731 6731 74147 | 6731 6731 74839 | 6731 6731 74879 |
| 2 | 4354 8289 91295 | 4354 8289 92211 | 4354 8289 92251 |
| 3 | 4001 10317 113591 | 4001 10317 114377 | 4001 10317 114417 |
| 4 | 3917 12514 137760 | 3917 12514 138536 | 3917 12514 138576 |
| 5 | 3901 14439 158935 | 3901 14439 159727 | 3901 14439 159727 |
+-----+-------------------+-------------------+-------------------+
 

 

Table 12: Total number of SCF iterations, CG cycles, and matrix multiplications (MM) for all 366 

molecules of the MNDO/d set for different CG-DMS options (maxcg=1-5, maxpur=1-3, 

mpurif=0): MNDO/d single-point energy calculations, initial guess from matrix 

diagonalization, standard SCF convergence criteria (iscf=6, iplscf=6), no density matrix 

extrapolation, no cutoffs, ITERCG code. 

 
+-----+-------------------+-------------------+-------------------+
|maxcg| maxpur = 1 | maxpur = 2 | maxpur = 3 |
+-----+-------------------+-------------------+-------------------+
| | SCF CG MM | SCF CG MM | SCF CG MM |
| | | | |
| 1 |19579 19579 215587 |19579 19579 217423 |19579 19579 217457 |
| 2 | 9824 18977 209009 | 9825 18983 211483 | 9825 18983 211517 |
| 3 | 8496 21870 240828 | 8495 21867 242899 | 8495 21867 242933 |
| 4 | 8203 26545 292237 | 8203 26545 294437 | 8203 26545 294471 |
| 5 | 8116 30954 340744 | 8116 30954 343002 | 8116 30954 343036 |
+-----+-------------------+-------------------+-------------------+
 

 

In a triply iterative scheme with nested SCF, CG, and McWeeny cycles (see section 4.2, schemes 5 

and 6) it is obviously important to establish an optimum approach towards convergence. As 

discussed before (see section 4.2) it may be efficient not to insist on convergence in the inner loops 

during the initial stage of the overall SCF procedure and thus allow only few CG and McWeeny 

cycles in general (which will be sufficient for convergence in the final SCF stage). The data in 

Tables 11 and 12 are useful for an optimum choice of the relevant CG-DMS options (maxcg, 
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maxpur), but a more direct assessment is possible on the basis of the actual computation times 

which are listed in Tables 13 and 14. 

 

In the case of the CHNO set (Table 13), the cpu times tend to increase slightly between maxcg=1 

and maxcg=2 (in spite of the overall reduction in the number of SCF cycles, Table 11), and they 

increase further for larger values of maxcg. In the case of the MNDO/d set (Table 14), the overall 

cpu times decrease when going from maxcg=1 to maxcg=2, and then start to increase again, 

particularly for maxcg=4 and maxcg=5. On the basis of these results, we adopt maxcg=2 as default 

value. The MNDO/d calculations are generally somewhat harder to converge than the MNDO 

calculations, and one is probably on the safe side when choosing the default value to reflect the 

more difficult cases. As anticipated from the earlier discussion, the choice of maxpur affects the 

cpu times only to a very minor extent, and its exact value thus seems less important. We adopt 

maxpur=2 as our standard. 

 

Comparing the three different CG-DMS implementations, the cpu times increase in the order 

ITERCG < DIRCG << DIRCGS. The higher workload in DIRCG relative to ITERCG is due to the 

repeated integral evaluations in the integral-direct mode. The large increase between DIRCG and 

DIRCGS is caused by the different handling of matrix operations: DIRCG employs highly 

optimized BLAS routines (e.g., DGEMM for matrix multiplication) that work with full square 

matrices, whereas DIRCGS uses sparse-matrix techniques with considerable overhead and 

unoptimized routines from the SPARSKIT2 library [86] (see section 4.3). These differences 

increase the overall cpu times roughly by an order of magnitude (Tables 13 and 14). 
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Table 13: Cpu times (sec) for all 218 molecules of the CHNO set for different CG-DMS options 

(maxcg=1-5, maxpur=1-3, mpurif=0): MNDO single-point energy calculations, initial 

guess from matrix diagonalization, standard SCF convergence criteria (iscf=6, iplscf=6), 

no density matrix extrapolation, no cutoffs, ITERCG vs DIRCG vs DIRCGS 

implementation (see text). The cpu times were measured on a Compaq XP1000 

workstation (ath4, 667 MHz). 

 
+-----+-------------------+-------------------+-------------------+
|maxcg| maxpur = 1 | maxpur = 2 | maxpur = 3 |
+-----+-------------------+-------------------+-------------------+
| |ITERCG DIRCG DIRCGS|ITERCG DIRCG DIRCGS|ITERCG DIRCG DIRCGS|
| | | | |
| 1 | 5.2 8.3 67.4 | 5.3 7.4 67.9 | 5.2 7.3 67.9 |
| 2 | 6.3 7.3 73.9 | 6.4 7.6 74.3 | 6.4 7.6 74.4 |
| 3 | 6.7 8.0 89.4 | 6.7 7.9 89.8 | 6.7 8.0 89.8 |
| 4 | 9.1 10.3 107.2 | 9.2 10.4 107.5 | 9.2 10.4 107.7 |
| 5 | 9.2 10.4 122.3 | 9.2 10.4 123.1 | 9.2 10.5 123.1 |
+-----+-------------------+-------------------+-------------------+
 

 

Table 14: Cpu times (sec) for all 366 molecules of the MNDO/d set for different CG-DMS options 

(maxcg=1-5, maxpur=1-3, mpurif=0): MNDO/d single-point energy calculations, initial 

guess from matrix diagonalization, standard SCF convergence criteria (iscf=6, iplscf=6), 

no density matrix extrapolation, no cutoffs, ITERCG vs DIRCG vs DIRCGS 

implementation (see text). The cpu times were measured on a Compaq XP1000 

workstation (ath4, 667 MHz). 

 
+-----+-------------------+-------------------+-------------------+
|maxcg| maxpur = 1 | maxpur = 2 | maxpur = 3 |
+-----+-------------------+-------------------+-------------------+
| |ITERCG DIRCG DIRCGS|ITERCG DIRCG DIRCGS|ITERCG DIRCG DIRCGS|
| | | | |
| 1 | 49.3 101.4 734.0 | 49.6 100.8 737.5 | 49.6 101.0 733.0 |
| 2 | 41.9 68.3 618.3 | 42.3 68.4 625.8 | 42.2 68.8 627.3 |
| 3 | 46.1 67.5 683.7 | 46.3 67.8 692.9 | 46.3 68.0 689.3 |
| 4 | 54.1 74.4 817.7 | 54.5 74.9 821.3 | 54.4 75.0 823.7 |
| 5 | 62.0 83.7 941.9 | 62.5 82.8 951.2 | 62.3 80.7 944.8 |
+-----+-------------------+-------------------+-------------------+
 

 

Finally it is instructive to compare the performance of our three CG-DMS implementations also 

with that of conventional SCF implementations using Fock matrix diagonalization or 

pseudodiagonalization, i.e., the standard version ITER and the integral-direct version DIRECT (see 

section 4.1). Some relevant data are collected in Table 15. The total number of required SCF 

iterations is somewhat higher in SCF/CG-DMS than in the conventional SCF approach, by almost 
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10 % for the CHNO test set and by around 20 % for the MNDO/d test set. The computational effort 

increases more strongly, as expected from the inherent workload of the two approaches, e.g., with 

regard to the number of matrix multiplications (see section 4.2). Comparing the two most efficient 

variants, ITER and ITERCG, the former is faster by a factor of about 4 for both test sets. On the 

other hand, the linear scaling SCF/CG-DMS version, DIRCGS, is intrinsically slower than ITER by 

about a factor of about 50, and therefore a high degree of sparsity is expected to be necessary 

before the linear scaling implementation becomes most efficient. 

 

Table 15: Total number of SCF cycles and cpu times (sec) for all molecules of the CHNO and 

MNDO/d sets for different SCF procedures: ITER vs DIRECT vs ITERCG vs DIRCG 

vs DIRCGS (see text): Single-point energy calculations, standard options (iscf=6, 

iplscf=6, linfrg=1, maxcg=2, maxpur=2, mpurif=0), no density matrix extrapolation, no 

cutoffs. The cpu times were measured on a Compaq XP1000 workstation (ath1, 667 

MHz). 

 
+-----+--------+--------------------------------------------+
| | Set | ITER DIRECT ITERCG DIRCG DIRCGS |
+-----+--------+--------------------------------------------+
| SCF | CHNO | 4020 4020 4354 4354 4354 |
| | MNDO/d | 8055 8056 9823 9823 9823 |
+-----+--------+--------------------------------------------+
| cpu | CHNO | 1.3 2.5 5.2 6.7 68.4 |
| | MNDO/d | 9.1 29.3 40.7 66.9 567.8 |
+-----+--------+--------------------------------------------+
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Chapter 6 
 

 

Validation and performance for large systems 
 

 

6.1 Overview 
 

This section reports SCF/CG-DMS calculations on polyglycines, water clusters, proteins, and DNA 

molecules which were carried out to study the performance of the code for large molecules, 

particularly with regard to its scaling behaviour. Unless noted otherwise in the following 

subsections, we used the following conventions and options (see section 5 and Appendix 4). 

 

Single-point AM1 computations were done at fixed input geometries that were mostly taken from 

the literature (details see below). Standard SCF convergence criteria were normally applied (iscf=6, 

iplscf=6). The initial density matrix was obtained from a block-diagonal guess (usually with 

linfrg=1). The SCF/CG-DMS calculations employed the sparse-matrix integral-direct version of the 

code (DIRCGS). In the CG-DMS procedure, the maximum number of allowed GC cycles and 

McWeeny transformations was set to maxcg=4 and maxpur=2, respectively. In addition to the 

maxpur McWeeny transformations at the end of each CG cycle, one such purification step was 

included at each GC step (mpurif=0). The chosen options correspond to those recommended in 

section 5, except for maxcg=4, which was originally adopted to be on the safe side with regard to 

convergence. The experience gained in later timing studies suggests (see section 5.4) that the use of 

maxcg=4 instead of maxcg=2 slows down DIRCGS calculations by about 30 % (see Tables 13 and 

14). This should be taken into account when judging the cpu times reported below. 

 

The validation work on small molecules (section 5) did not employ any cutoffs. The use of cutoffs 

is essential in large systems, of course, in order to achieve linear scaling (section 3). We have 

chosen a single cutoff parameter (cutoff=X) which is applied to the density matrix P, the Fock 

matrix F, and other intermediate matrices such as the product matrix FP. Density matrix elements 

are neglected if their absolute value is smaller than the cutoff X. Likewise, Fock matrix elements 
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are discarded if their absolute value in eV is smaller than X. In intermediates such as FP, the matrix 

elements are removed if their absolute value is smaller than X/10 (i.e., the cutoff is tighter in this 

case, and there is also an option to completely avoid the filtering of intermediates). Typical values 

of X range between 10-4 and 10-8. 

 

 

6.2 Polyglycines 
 

The input files for linear-chain polyglycines of the general formula NH2-CH2-CO-(NH-CH2-CO)n-

NH-CH2-COOH (7n+17 atoms) were generated by an automatic program written for this purpose. 

AM1 calculations were carried out for the systems up to n = 138 (983 atoms) using both the 

SCF/CG-DMS approach (DIRCGS, see above) with cutoffs (X = 10-4, 5*10-5, 10-5) and the 

conventional SCF procedure (ITER). The results are plotted in Figures 6 and 7. 

 

The use of cutoffs invariably causes some error. Figure 6 shows that, for the computed heats of 

formation, the deviations from the reference results without cutoffs (ITER) increase with the 

chosen value of the cutoff, as expected. They also increase with molecular size, more or less in a 

linear fashion (with some fluctuations for X=10-5). On an absolute scale, the deviations seem 

tolerable: for the largest cutoff of X=10-4, they are of the order of 0.03 kcal/mol per 100 atoms. 

 

Figure 6: Differences between computed heats of formation (kcal/mol), DIRCGS vs ITER (see 

text), as a function of system size (number of atoms in polyglycines). Three different 

cutoffs were employed. 
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measured cpu times for corresponding conventional SCF calculations which scale more steeply 

(cubically, see section 2.2). They are faster than the SCF/CG-DMS calculations for small 

polyglycines and become slower only beyond a certain molecular size which depends on the chosen 

cutoff: for X=10-4, this crossover occurs around 750 atoms. 

 

Figure 7: Cpu times (min) for one SCF iteration as a function of system size (number of atoms in 

polyglycines). The conventional SCF treatment (ITER) is compared to CG-DMS 

calculations (DIRCGS) with three different cutoffs. 
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commended options: maxcg=2, maxpur=2, mpurif=0, 

G-DMS approach [19]. However, this comparison is not 

al-direct sparse-matrix code (with cutoffs) that can also 

ve therefore run the closest analogue to the published 

(DIRCGS, integral-direct sparse-matrix version; same 

trix, X=5*10-5 for the density matrix, hard atom-atom 
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cutoff of 10 Å for the integrals; same CG-DMS options [19]: maxcg=4, maxpur=2, mpurif=0; 

linfrg=1). In this CG-DMS calculation, our implementation is about five times slower. Profiling 

shows that in this case more than 85% of the cpu time are spent on sparse matrix multiplications 

(including the symbolic multiplications needed for allocation purposes in the LIG scheme, see 

section 4.3). The corresponding routines (amubp, amubdgp) have been taken from the SPARSKIT2 

library [86] without change. It would thus seem possible to improve the performance of the 

DIRCGS code significantly by optimizing or rewriting these routines using techniques recently 

suggested in the literature for sparse matrix multiplication [82,83]. The implementation of the FF 

scheme may yield further improvements (see section 4.3). 

 

In summary, the lower crossover points reported for polyglycines [19] are due to the fact that the 

published work employs a slower conventional SCF treatment and a faster SCF/CG-DMS 

treatment. It should also be noted that the chosen cutoffs [19] (particularly the hard atom-atom 

integral cutoff) cause a significant deviation (12 kcal/mol) of the computed heat of formation of 

glycine decapeptide from the reference value. This deviation can be reduced by tighter cutoffs, of 

course, which however lead to higher cpu times for SCF/CG-DMS and thus to later crossover. 

 

 

6.3 Water clusters 
 

The input geometries for the water clusters (H2O)n were taken from the internet [89]. These 

geometries are three-dimensional (3D) in the sense that they are globular and extend into all 

directions, in contrast to the linear-chain polyglycines which are essentially one-dimensional (1D) 

in their shape. 

 

We have carried out AM1 calculations for the clusters up to n = 1195 (3585 atoms) using again 

both the SCF/CG-DMS approach (DIRCGS) with cutoffs (X = 10-4, 5*10-5, 10-5) and the 

conventional SCF procedure (ITER). The results are plotted in Figures 8 and 9. In most aspects, 

they are qualitatively similar to those for the polyglycines so that the discussion can be brief. 

 

The deviations of the computed heats of formation from the reference results (Figure 8) again 

increases with the chosen value of the cutoff and with molecular size (as before typically by 0.03 

kcal/mol per 100 atoms for X=10-4). The cpu times (Figure 9) for the SCF/CG-DMS again exhibit 

approximately linear scaling with molecular size. The gains from exploiting sparsity are less 

pronounced in compact 3D systems than in extended 1D systems, and it is therefore not surprising 

that the crossover point between the SCF and SCF/CG-DMS calculations occurs considerably later 
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in the water clusters than in the polyglycine chains (see Figure 9, around 2800 vs 750 atoms for 

X=10-4). For the same reason, tightening the cutoff from X=10-4 to X=10-5 increases the cpu time 

for the water clusters more strongly, by a factor of about 2.5 (compared with 1.5 for the 

polyglycines). 

 

Figure 8: Differences between computed heats of formation (kcal/mol), DIRCGS vs ITER (see 

text), as a function of system size (number of atoms in water clusters). Three different 

cutoffs were employed. 
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6.4 Proteins and DNA molecules 
 

Large biochemical molecules are a natural application area for linear scaling semiempirical SCF 

methods. We have selected a set of 47 such molecules for further testing and validation which 

includes peptides, proteins, and DNA molecules as well as protein-metal and protein-DNA 

complexes. The size of the selected systems ranges from 137 to 9595 atoms. Geometries were taken 

from the Protein Data Bank (PDB) [90,91] and labeled by the corresponding PDB entry. Missing 

hydrogen atoms were added to these structures using the Insight II modelling software [92] 

(assuming a pH value of 7). The adopted SCF convergence criteria (iscf=4, iplscf=4) were less tight 

than usual. Otherwise standard CG-DMS options were employed throughout (see sections 4.4 and 

6.1), except for the specifications given below. 

 

Three series of AM1 single-point calculations were carried out that differ in the chosen cutoffs (X) 

and the number of conventional diagonalizations during the formation of the initial block-diagonal 

guess for the density matrix (linfrg). 

 

a) Cutoff X=10-4, linfrg=1 (see Table 16). 

b) Cutoff X=10-4, linfrg=2 (see Table 17). 

c) Cutoff X=10-5, linfrg=1 (see Table 18). 

 

In each series, the SCF/CG-DMS calculations were done both without and with density matrix 

extrapolation (in the latter case starting at the second SCF iteration, nstart=2). Tables 16-18 list the 

cpu time (t), the final heat of formation (H), and the number of required SCF iterations (IT) for 

each of these calculations. At the beginning of each entry, the corresponding molecule is identified, 

usually by its PDB label, the number of atoms (N), and the total charge (Z) (see footnotes for 

further details). Appendix 5 specifies the chemical names for all entries in Tables 16-18. 

 

Table 16: Single-point SCF/CG-DMS calculations on 47 biochemical molecules: AM1, first series, 

X=10-4, linfrg=1 (see text). 

 
+---------------+----------------------+----------------------+
| Identification| without extrapolation| with extrapolation |
+-----+-----+---+------+------------+--+------+------------+--+
| PDB | N | Z |t(min)| H(kcal/mol)|IT|t(min)| H(kcal/mol)|IT|
+-----+-----+---+------+------------+--+------+------------+--+
| 1B32| 9595|-16|5895.8|-44011.47602|31|5292.6|-44011.53534|28|
+-----+-----+---+------+------------+--+------+------------+--+
| 2QWE| 7151| -4|3232.6|-36229.21710|19|3054.3|-36229.28753|27|
+-----+-----+---+------+------------+--+------+------------+--+
| 1IXH| 4855| 0|1466.8| 6002.05321|29| 985.6| 6002.16781|16|
+-----+-----+---+------+------------+--+------+------------+--+
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+-----+-----+---+------+------------+--+------+------------+--+
|subta | 3854| -2|1216.8|-11549.42858|18|1341.7|-11549.57321|33|
+-----+-----+---+------+------------+--+------+------------+--+
| 1IAU| 3607|+14|3068.0| -4856.93852|29|3545.6| -4857.11190|49|
+-----+-----+---+------+------------+--+------+------------+--+
| 1E3B| 2582| +3| 912.5| -6349.56898|28| 772.1| -6349.57486|27|
+-----+-----+---+------+------------+--+------+------------+--+
|lysoa | 1960| +8| 610.9| -3622.13671|16| 579.4| -3622.31184|19|
+-----+-----+---+------+------------+--+------+------------+--+
| 1EV3| 1776| -9| 387.8| -8273.80984|20| 334.6| -8273.84748|20|
+-----+-----+---+------+------------+--+------+------------+--+
| 1A3K| 1577| +3| 256.0| -3464.58875|15| 219.0| -3464.73527|17|
+-----+-----+---+------+------------+--+------+------------+--+
| 1CC8| 1550| +3| 435.2| -8378.18116|42| 321.9| -8378.18824|23|
+-----+-----+---+------+------------+--+------+------------+--+
|riboa | 1470| +6| 215.7| -1877.09172|15| 206.4| -1877.29931|19|
+-----+-----+---+------+------------+--+------+------------+--+
| 1AOY| 1239| +3| 237.1| -2837.82796|32| 164.8| -2837.81213|16|
+-----+-----+---+------+------------+--+------+------------+--+
| 1IKL| 1149| +3| 209.7| -1341.75040|22| 163.4| -1341.72862|21|
+-----+-----+---+------+------------+--+------+------------+--+
| 1A43| 1145| -2| 201.2| -3232.17277|22| 164.5| -3232.20431|19|
+-----+-----+---+------+------------+--+------+------------+--+
| 1AFJ| 1071| +3| 273.0| -1619.67309|16| 258.1| -1619.80575|19|
+-----+-----+---+------+------------+--+------+------------+--+
| 1IRN| 1042|-11| 166.2| -2612.49743|19| 150.9| -2612.50792|21|
+-----+-----+---+------+------------+--+------+------------+--+
|cspaa | 1010| 0| 201.7| -2581.11459|16| 179.7| -2581.12059|20|
+-----+-----+---+------+------------+--+------+------------+--+
| 2R63| 989| +2| 170.4| -2678.84633|32| 118.3| -2678.84397|17|
+-----+-----+---+------+------------+--+------+------------+--+
| 5EBX| 916| +1| 153.9| -2339.14029|14| 130.3| -2339.25655|15|
+-----+-----+---+------+------------+--+------+------------+--+
| 2OVO| 904| -1| 145.4| -3757.62790|18| 127.2| -3757.64477|20|
+-----+-----+---+------+------------+--+------+------------+--+
|bptia | 892| +6| 177.4| -458.05219|15| 206.8| -458.18736|31|
+-----+-----+---+------+------------+--+------+------------+--+
| 1A4T| 836| -9| 442.8| -3881.30483|31| 413.9| -3881.29924|29|
+-----+-----+---+------+------------+--+------+------------+--+
| 2REL| 829| +2| 78.4| -1081.26337|13| 73.7| -1081.43196|21|
+-----+-----+---+------+------------+--+------+------------+--+
| 1A7F| 751| -5| 97.1| -1815.69770|19| 86.7| -1815.69465|21|
+-----+-----+---+------+------------+--+------+------------+--+
| 2SH1| 695| -1| 120.0| -1708.31576|18| 98.5| -1708.34752|16|
+-----+-----+---+------+------------+--+------+------------+--+
| 1B8W| 668| +4| 118.9| 54.91029|25| 102.9| 54.90974|24|
+-----+-----+---+------+------------+--+------+------------+--+
|crama | 642| 0| 91.9| 750.78709|22| 68.7| 750.80002|17|
+-----+-----+---+------+------------+--+------+------------+--+
| 1ATO| 605|-18| 199.7| -2332.30406|23| 190.1| -2332.31462|20|
+-----+-----+---+------+------------+--+------+------------+--+
| 1AML| 597| -4| 35.3| -901.41865|15| 30.6| -901.44081|16|
+-----+-----+---+------+------------+--+------+------------+--+
| 1OKA| 574|-16| 107.7| -2006.86354|20| 107.6| -2006.87050|20|
+-----+-----+---+------+------------+--+------+------------+--+
| 2PTA| 550| +6| 97.1| 295.36607|25| 89.6| 295.35973|24|
+-----+-----+---+------+------------+--+------+------------+--+
| 1AXH| 523| -2| 68.6| -1640.88420|16| 59.3| -1640.90060|17|
+-----+-----+---+------+------------+--+------+------------+--+
| 1BH0| 469| 0| 32.6| -889.73692|17| 26.7| -889.73671|19|
+-----+-----+---+------+------------+--+------+------------+--+
| 1ATF| 450| -2| 23.7| -1735.54803|14| 17.8| -1735.64312|10|
+-----+-----+---+------+------------+--+------+------------+--+
| 1BXJ| 438| -1| 42.0| -513.20568|17| 36.7| -513.21782|19|
+-----+-----+---+------+------------+--+------+------------+--+
|toxia | 410| -3| 57.4| -1202.16611|23| 45.7| -1202.16507|19|
+-----+-----+---+------+------------+--+------+------------+--+
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+-----+-----+---+------+------------+--+------+------------+--+
| 1AFX| 387|-11| 143.4| -1598.95171|29| 134.1| -1598.94879|24|
+-----+-----+---+------+------------+--+------+------------+--+
| 1BQF| 371| +1| 28.3| -451.22706|24| 24.5| -451.23441|23|
+-----+-----+---+------+------------+--+------+------------+--+
| 2MAG| 359| +4| 22.5| 171.11162|13| 18.4| 171.08777|12|
+-----+-----+---+------+------------+--+------+------------+--+
| 8TFV| 351| +6| 19.9| 680.06031|11| 17.0| 680.12373|11|
+-----+-----+---+------+------------+--+------+------------+--+
| 2NR1| 339| -2| 21.4| -842.66298|20| 14.7| -842.65950|13|
+-----+-----+---+------+------------+--+------+------------+--+
| 1ALE| 293| -2| 14.1| -613.93705|14| 12.1| -613.94101|15|
+-----+-----+---+------+------------+--+------+------------+--+
| 1BCV| 281| 0| 6.1| -709.71559|14| 4.3| -709.70113| 9|
+-----+-----+---+------+------------+--+------+------------+--+
| 1A3J| 265| -2| 14.8| -634.38842|13| 12.2| -634.40678|12|
+-----+-----+---+------+------------+--+------+------------+--+
| 3CMH| 260| -3| 12.9| -477.68942|15| 10.5| -477.69742|13|
+-----+-----+---+------+------------+--+------+------------+--+
| 1CB3| 193| +1| 8.6| 61.59949|14| 7.4| 61.58593|15|
+-----+-----+---+------+------------+--+------+------------+--+
| 2SOC| 137| 0| 4.7| -209.29484|12| 3.9| -209.31967|12|
+-----+-----+---+------+------------+--+------+------------+--+
 

(a) Input geometries obtained from K. M. Merz, private communication (1999). 
 

 

Table 17: Single-point SCF/CG-DMS calculations on 40 biochemical molecules: AM1, second 

series, X=10-4, linfrg=2 (see text). 

 
+---------------+----------------------+----------------------+
| Identification| without extrapolation| with extrapolation |
+-----+-----+---+------+------------+--+------+------------+--+
| PDB | N | Z |t(min)| H(kcal/mol)|IT|t(min)| H(kcal/mol)|IT|
+-----+-----+---+------+------------+--+------+------------+--+
| 1IXH| 4855| 0|1584.4| 6002.11883|27|1278.4| 6002.06409|23|
+-----+-----+---+------+------------+--+------+------------+--+
|subta | 3854| -2|1334.8|-11549.34639|19|1336.0|-11549.62743|24|
+-----+-----+---+------+------------+--+------+------------+--+
| 1E3B| 2582| +3|1049.7| -6349.50583|24| 900.0| -6349.52766|25|
+-----+-----+---+------+------------+--+------+------------+--+
|lysoa | 1960| +8| 852.8| -3622.30156|37| 697.1| -3622.29495|21|
+-----+-----+---+------+------------+--+------+------------+--+
| 1EV3| 1776| -9| 444.6| -8273.79906|18| 410.2| -8273.85179|21|
+-----+-----+---+------+------------+--+------+------------+--+
| 1A3K| 1577| +3| 325.1| -3464.83812|18| 271.7| -3464.88205|15|
+-----+-----+---+------+------------+--+------+------------+--+
| 1CC8| 1550| +3| 411.5| -8378.18191|21| 337.7| -8378.16961|16|
+-----+-----+---+------+------------+--+------+------------+--+
|riboa | 1470| +6| 279.8| -1877.26340|23| 217.4| -1877.30811|17|
+-----+-----+---+------+------------+--+------+------------+--+
| 1AOY| 1239| +3| 242.6| -2837.85040|20| 209.1| -2837.88547|21|
+-----+-----+---+------+------------+--+------+------------+--+
| 1IKL| 1149| +3| 237.4| -1341.70509|19| 200.9| -1341.72428|17|
+-----+-----+---+------+------------+--+------+------------+--+
| 1A43| 1145| -2| 218.8| -3232.15887|15| 186.3| -3232.20706|16|
+-----+-----+---+------+------------+--+------+------------+--+
| 1AFJ| 1071| +3| 358.9| -1619.80115|21| 307.2| -1619.77826|19|
+-----+-----+---+------+------------+--+------+------------+--+
| 1IRN| 1042|-11| 206.1| -2612.49345|22| 183.2| -2612.49535|24|
+-----+-----+---+------+------------+--+------+------------+--+
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+-----+-----+---+------+------------+--+------+------------+--+
|cspaa | 1010| 0| 253.1| -2581.07893|18| 208.5| -2581.12627|15|
+-----+-----+---+------+------------+--+------+------------+--+
| 2R63| 989| +2| 181.7| -2678.86926|19| 133.5| -2678.80975|13|
+-----+-----+---+------+------------+--+------+------------+--+
| 5EBX| 916| +1| 196.0| -2339.29464|19| 165.7| -2339.31506|16|
+-----+-----+---+------+------------+--+------+------------+--+
| 2OVO| 904| -1| 161.6| -3757.61476|17| 138.2| -3757.63881|16|
+-----+-----+---+------+------------+--+------+------------+--+
|bptia | 892| +6| 237.0| -458.16681|19| 206.2| -458.09570|15|
+-----+-----+---+------+------------+--+------+------------+--+
| 2REL| 829| +2| 101.6| -1081.44675|17| 77.3| -1081.36056|12|
+-----+-----+---+------+------------+--+------+------------+--+
| 1A7F| 751| -5| 99.2| -1815.69296|17| 95.0| -1815.70656|17|
+-----+-----+---+------+------------+--+------+------------+--+
| 2SH1| 695| -1| 215.1| -1708.19315|27| 198.5| -1708.17520|24|
+-----+-----+---+------+------------+--+------+------------+--+
| 1B8W| 668| +4| 145.2| 54.97109|14| 149.8| 54.98757|16|
+-----+-----+---+------+------------+--+------+------------+--+
|crama | 642| 0| 91.6| 750.80572|16| 80.4| 750.77152|17|
+-----+-----+---+------+------------+--+------+------------+--+
| 1AML| 597| -4| 40.4| -901.40324|13| 37.8| -901.43211|19|
+-----+-----+---+------+------------+--+------+------------+--+
| 2PTA| 550| +6| 128.6| 295.50053|16| 140.6| 295.33284|23|
+-----+-----+---+------+------------+--+------+------------+--+
| 1AXH| 523| -2| 73.8| -1640.86745|16| 64.4| -1640.88841|16|
+-----+-----+---+------+------------+--+------+------------+--+
| 1BH0| 469| 0| 32.9| -889.72785|15| 27.9| -889.75832|15|
+-----+-----+---+------+------------+--+------+------------+--+
| 1ATF| 450| -2| 31.7| -1735.35199|13| 44.0| -1735.60185|43|
+-----+-----+---+------+------------+--+------+------------+--+
| 1BXJ| 438| -1| 44.1| -513.19526|15| 37.6| -513.21206|15|
+-----+-----+---+------+------------+--+------+------------+--+
|toxia | 410| -3| 51.7| -1202.15704|17| 44.3| -1202.17198|17|
+-----+-----+---+------+------------+--+------+------------+--+
| 1BQF| 371| +1| 25.9| -451.18744|15| 27.7| -451.23034|20|
+-----+-----+---+------+------------+--+------+------------+--+
| 2MAG| 359| +4| 24.3| 171.20760|12| 19.9| 171.10895|12|
+-----+-----+---+------+------------+--+------+------------+--+
| 8TFV| 351| +6| 23.1| 680.10140|15| 21.7| 680.09050|20|
+-----+-----+---+------+------------+--+------+------------+--+
| 2NR1| 339| -2| 20.8| -842.65434|16| 14.9| -842.63631|11|
+-----+-----+---+------+------------+--+------+------------+--+
| 1ALE| 293| -2| 14.2| -613.92437|14| 12.4| -613.93567|15|
+-----+-----+---+------+------------+--+------+------------+--+
| 1BCV| 281| 0| 6.5| -709.71047|13| 5.7| -709.72480|13|
+-----+-----+---+------+------------+--+------+------------+--+
| 1A3J| 265| -2| 16.6| -634.40924|20| 12.2| -634.39805|11|
+-----+-----+---+------+------------+--+------+------------+--+
| 3CMH| 260| -3| 30.0| -477.68029|29| 22.4| -477.69194|21|
+-----+-----+---+------+------------+--+------+------------+--+
| 1CB3| 193| +1| 9.8| 61.57804|15| 7.5| 61.58661|12|
+-----+-----+---+------+------------+--+------+------------+--+
| 2SOC| 137| 0| 5.3| -209.32218|14| 4.0| -209.31519|12|
+-----+-----+---+------+------------+--+------+------------+--+
 

(a) See footnote of Table 16. 
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Table 18: Single-point SCF/CG-DMS calculations on 44 biochemical molecules: AM1, third series, 

X=10-5, linfrg=1 (see text). 

 
+---------------+----------------------+----------------------+
| Identification| without extrapolation| with extrapolation |
+-----+-----+---+------+------------+--+------+------------+--+
| PDB | N | Z |t(min)| H(kcal/mol)|IT|t(min)| H(kcal/mol)|IT|
+-----+-----+---+------+------------+--+------+------------+--+
| 1IXH| 4855| 0|6062.0| 5999.46580|34|4178.3| 5999.43803|12|
+-----+-----+---+------+------------+--+------+------------+--+
|subta | 3854| -2|5309.8|-11551.54931|32|4048.9|-11551.50290|15|
+-----+-----+---+------+------------+--+------+------------+--+
| 1E3B| 2582| +3|3724.4| -6351.09644|31|2804.4| -6351.10051|24|
+-----+-----+---+------+------------+--+------+------------+--+
|lysoa | 1960| +8|2748.8| -3623.68993|40|1703.0| -3623.64307|15|
+-----+-----+---+------+------------+--+------+------------+--+
| 1EV3| 1776| -9|1642.4| -8274.47860|26|1167.4| -8274.48256|12|
+-----+-----+---+------+------------+--+------+------------+--+
| 1A3K| 1577| +3| 870.8| -3465.58896|25| 696.9| -3465.60293|24|
+-----+-----+---+------+------------+--+------+------------+--+
| 1CC8| 1550| +3|1404.1| -8378.98312|23|1132.0| -8378.98386|21|
+-----+-----+---+------+------------+--+------+------------+--+
|riboa | 1470| +6| 742.2| -1878.05133|25| 571.3| -1878.05255|21|
+-----+-----+---+------+------------+--+------+------------+--+
| 1AOY| 1239| +3| 801.0| -2838.45964|24| 598.2| -2838.45967|19|
+-----+-----+---+------+------------+--+------+------------+--+
| 1IKL| 1149| +3| 737.8| -1342.28685|24| 554.7| -1342.28302|18|
+-----+-----+---+------+------------+--+------+------------+--+
| 1A43| 1145| -2| 800.1| -3232.69960|24| 612.4| -3232.69365|15|
+-----+-----+---+------+------------+--+------+------------+--+
| 1AFJ| 1071| +3|1096.3| -1620.43986|29| 815.2| -1620.42957|15|
+-----+-----+---+------+------------+--+------+------------+--+
| 1IRN| 1042|-11| 574.7| -2612.87587|22| 465.9| -2612.87988|16|
+-----+-----+---+------+------------+--+------+------------+--+
|cspaa | 1010| 0| 742.7| -2581.58479|22| 605.6| -2581.58546|15|
+-----+-----+---+------+------------+--+------+------------+--+
| 2R63| 989| +2| 515.8| -2679.35535|23| 392.2| -2679.35682|18|
+-----+-----+---+------+------------+--+------+------------+--+
| 5EBX| 916| +1| 577.1| -2339.76626|22| 476.6| -2339.76438|15|
+-----+-----+---+------+------------+--+------+------------+--+
| 2OVO| 904| -1| 505.1| -3758.01972|22| 409.8| -3758.02170|17|
+-----+-----+---+------+------------+--+------+------------+--+
|bptia | 892| +6| 613.1| -458.67513|30| 466.7| -458.67518|19|
+-----+-----+---+------+------------+--+------+------------+--+
| 1A4T| 836| -9|1159.4| -3881.59514|22|1117.3| -3881.59572|20|
+-----+-----+---+------+------------+--+------+------------+--+
| 2REL| 829| +2| 263.1| -1081.78179|19| 211.3| -1081.79087|15|
+-----+-----+---+------+------------+--+------+------------+--+
| 1A7F| 751| -5| 265.1| -1815.92983|14| 221.7| -1815.93466|12|
+-----+-----+---+------+------------+--+------+------------+--+
| 2SH1| 695| -1| 390.0| -1708.66664|22| 307.8| -1708.66300|15|
+-----+-----+---+------+------------+--+------+------------+--+
| 1B8W| 668| +4| 357.4| 54.61136|21| 262.6| 54.61720|11|
+-----+-----+---+------+------------+--+------+------------+--+
|crama | 642| 0| 291.0| 750.48985|20| 221.6| 750.49287|11|
+-----+-----+---+------+------------+--+------+------------+--+
| 1ATO| 605|-18| 622.8| -2332.53739|17| 609.6| -2332.55132|16|
+-----+-----+---+------+------------+--+------+------------+--+
| 1AML| 597| -4| 86.2| -901.62306|19| 68.7| -901.62157|13|
+-----+-----+---+------+------------+--+------+------------+--+
| 1OKA| 574|-16| 306.9| -2007.08546|16| 311.6| -2007.07874|16|
+-----+-----+---+------+------------+--+------+------------+--+
| 2PTA| 550| +6| 259.6| 295.05907|16| 206.8| 295.05233|11|
+-----+-----+---+------+------------+--+------+------------+--+
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+-----+-----+---+------+------------+--+------+------------+--+
| 1AXH| 523| -2| 218.6| -1641.12152|20| 171.0| -1641.11741|13|
+-----+-----+---+------+------------+--+------+------------+--+
| 1BH0| 469| 0| 65.3| -889.90236|17| 49.8| -889.90282|11|
+-----+-----+---+------+------------+--+------+------------+--+
| 1ATF| 450| -2| 56.3| -1735.82037|19| 42.9| -1735.82598|16|
+-----+-----+---+------+------------+--+------+------------+--+
| 1BXJ| 438| -1| 119.8| -513.35274|16| 99.9| -513.35486|13|
+-----+-----+---+------+------------+--+------+------------+--+
|toxia | 410| -3| 115.8| -1202.29724|14| 98.0| -1202.29784|12|
+-----+-----+---+------+------------+--+------+------------+--+
| 1AFX| 387|-11| 303.5| -1599.08199|19| 295.8| -1599.07968|16|
+-----+-----+---+------+------------+--+------+------------+--+
| 1BQF| 371| +1| 53.4| -451.34266|14| 45.8| -451.34410|12|
+-----+-----+---+------+------------+--+------+------------+--+
| 2MAG| 359| +4| 53.7| 170.90675|21| 42.7| 170.89922|16|
+-----+-----+---+------+------------+--+------+------------+--+
| 8TFV| 351| +6| 44.1| 679.90767|18| 33.9| 679.90604|12|
+-----+-----+---+------+------------+--+------+------------+--+
| 2NR1| 339| -2| 39.9| -842.76738|16| 32.8| -842.77537|16|
+-----+-----+---+------+------------+--+------+------------+--+
| 1ALE| 293| -2| 26.6| -614.00378|14| 21.5| -614.00727|11|
+-----+-----+---+------+------------+--+------+------------+--+
| 1BCV| 281| 0| 11.1| -709.77000|15| 8.7| -709.77115|11|
+-----+-----+---+------+------------+--+------+------------+--+
| 1A3J| 265| -2| 31.3| -634.50105|13| 25.6| -634.50221|11|
+-----+-----+---+------+------------+--+------+------------+--+
| 3CMH| 260| -3| 23.3| -477.75952|14| 18.6| -477.76188|11|
+-----+-----+---+------+------------+--+------+------------+--+
| 1CB3| 193| +1| 15.5| 61.52620|13| 12.0| 61.53008|10|
+-----+-----+---+------+------------+--+------+------------+--+
| 2SOC| 137| 0| 8.0| -209.35889|13| 7.0| -209.36157|11|
+-----+-----+---+------+------------+--+------+------------+--+
 
(a) See footnote of Table 16. 
 

Comparing the results without and with extrapolation, it is obvious that the final heats of formation 

generally differ by more than the adopted SCF convergence criterion for the energy (0.0001 eV = 

0.0023 kcal/mol). When using relatively large cutoffs (Tables 16 and 17), these deviations are 

typically in the order of 0.01 kcal/mol for the smaller systems and 0.1 kcal/mol for the larger 

systems. With tighter cutoffs (Table 18) these deviations are generally smaller, often by factor of 

about 10, such that the results for the smaller systems now often agree within the SCF convergence 

criteria. To avoid premature SCF convergence, it is thus advisable to tighten either the CG-DMS 

cutoffs or the SCF convergence criteria (or both). 

 

In the majority of cases (34 out of 47 in Table 16, 28 out of 40 in Table 17, and 30 out of 44 in 

Table 18) the calculations with extrapolation yield a lower total energy. The overall number of 

required SCF iterations is either lower or similar compared to calculations without extrapolation 

(871 vs 868 in Table 16, 800 vs 811 in Table 17, and 657 vs 980 in Table 18). Both these findings 

support the use of density matrix extrapolation in SCF/CG-DMS calculations on large molecules. 
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Comparing the results for different initial block-diagonal density matrices (linfrg=1 vs linfrg=2, 

Tables 16 and 17) it seems generally somewhat better to use two initial matrix diagonalizations 

(linfrg=2) rather than only one (linfrg=1) since the total number of required SCF iterations 

decreases when performing a second initial diagonalization, from 868/871 (Table 16) to 811/800 

(Table 17) in calculations without/with extrapolation (for the 40 molecules that appear in both 

tables). Refinement of the initial intra-fragment density thus tends to facilitate convergence, but the 

gains are not dramatic. 

 

Comparing the results for different cutoffs (Tables 16 and 18) it is obvious that smaller cutoffs lead 

to lower energies and that this lowering becomes more pronounced with increasing molecular size. 

This is consistent with our previous results for polyglycines (Figure 6) and water clusters (Figure 

8). The price to be paid for this better precision is a higher cpu time and a higher memory demand: 

when tightening the cutoffs from X=10-4 to X=10-5, for example, the cpu times per SCF iteration 

typically rise by a factor of 2-3 for the systems studied (Tables 16 and 18) which is again 

compatible with analogous comparisons for 3D water clusters (Figure 9). 

 

For further analysis of cutoff effects, we have carried out conventional SCF reference calculations 

for five peptides with 137-450 atoms (Table 19). Comparing the resulting heats of formation with 

the corresponding values for a cutoff of X=10-4 (Table 16) confirms the rule of thumb that the latter 

are higher by about 0.03 kcal/mol per 100 atoms (see section 6.2 and 6.3). For three of these 

peptides, additional SCF/CG-DMS calculations were done for cutoffs ranging from X=10-4 to 

X=10-8, all other options being standard. The results are shown in Figures 10-12. It is obvious that a 

change of the cutoff from X=10-4 to X=5*10-5 reduces the error in the heat of formation by 60-75 % 

(at the expense of an increase in the cpu time by 19-63 % per SCF iteration). A further tightening of 

the cutoff beyond X=10-5 yields heats of formation that would seem precise enough for most 

practical purposes. The choice X=5*10-5 appears to be a reasonable compromise between precision 

and computational effort in semiempirical SCF/CG-DMS studies of large biomolecules. 
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Table 19: Conventional single-point AM1 calculations on peptides (see text and Tables 16-18 for 

notation). 

 
+------+-----+---+------------+------+
| PDB | N | Z | H(kcal/mol)| IT |
+------+-----+---+------------+------+
| 1ATF | 450| -2| -1735.83222| 26 |
+------+-----+---+------------+------+
| 1BCV | 286| 0| -709.78068| 20 |
+------+-----+---+------------+------+
| 1A3J | 265| -2| -634.51243| 18 |
+------+-----+---+------------+------+
| 1CB3 | 193| +1| 61.51952| 22 |
+------+-----+---+------------+------+
| 2SOC | 137| 0| -209.36601| 20 |
+------+-----+---+------------+------+

 

 

Figure 10: SCF/CG-DMS heat of formation (kcal/mol) as function of the cutoff X: Peptide 2SOC 

(see text). The exponent m of the cutoffs X=10-m is given at the top. 
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igure 11: SCF/CG-DMS heat of formation (kcal/mol) as function of the cutoff X: Peptide 1A3J 

(see text). The exponent m of the cutoffs X=10-m is given at the top. 
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Figure 12: SCF/CG-DMS heat of formation (kcal/mol) as function of the cutoff X: Peptide 1ATF 

(see text). The exponent m of the cutoffs X=10-m is given at the top. 
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simulations often employ classical force fields such as CHARMM [93,94] or 

,96] which normally assume fixed atomic charges that sum to an integer value for 

no acid residue (i.e., to zero for neutral residues). The single-point SCF/CG-DMS 

 peptides and proteins reported in this subsection provide self-consistent quantum-

e distributions that can be used to check this assumption. Hence, for all peptides and 

ble 16, the net atomic charges from an AM1 Mulliken population analysis were 

er each residue and subjected to a statistical evaluation. The results are collected in 

 cover all 20 naturally occurring amino acids, because each of them appears in our 

between 56 and 353 times). It is obvious that the mean total charges per residue from 

ulations are indeed close to the expected values from standard force fields: the 

at most 0.02 for neutral residues and 0.05-0.10 for charged residues. The root-mean-

ons from the expected values are typically around 0.05 which indicates moderate 

tions between the different residues. The maximum deviations encountered are 

 order of 0.20 for a given residue (usually somewhat higher for charged residues, up 

sp). The maximum fluctuations (i.e., the differences between the corresponding 

 minimum total charges in Table 20) are usually around 0.30-0.40; these values 

me individual cases, of course, but nevertheless they serve as a reminder that charge 

d charge transfers do occur in proteins which are not captured by the standard force 

 of the merits of linear scaling semiempirical SCF methods that such effects can be 

ed in any specific application. The importance of these effects has already been 

n several cases [67,68,75,76]. 
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Table 20: Sum of net atomic charges per residue from AM1 calculations on peptides and proteins 

(see Table 16). 

 
+----------+------+--------+--------+---------+--------+
| Label(a) | N(b) | max(c) | min(d) | mean(e) | rms(f) |
+----------+------+--------+--------+---------+--------+
| Gly | 353 | 0.15 | -0.19 | 0.00 | 0.0543 |
| Ala | 340 | 0.15 | -0.22 | 0.00 | 0.0543 |
| Asn | 244 | 0.15 | -0.21 | -0.02 | 0.0636 |
| Ile | 222 | 0.24 | -0.16 | -0.01 | 0.0565 |
| Leu | 311 | 0.14 | -0.15 | 0.00 | 0.0560 |
| Phe | 181 | 0.11 | -0.16 | 0.00 | 0.0423 |
| Val | 322 | 0.16 | -0.15 | 0.00 | 0.0470 |
| Pro | 253 | 0.11 | -0.23 | -0.02 | 0.0636 |
| His | 94 | 0.15 | -0.11 | 0.00 | 0.0548 |
| Gln | 146 | 0.13 | -0.15 | -0.01 | 0.0517 |
| Trp | 80 | 0.09 | -0.11 | 0.00 | 0.0482 |
| Thr | 293 | 0.22 | -0.15 | -0.01 | 0.0540 |
| Met | 56 | 0.09 | -0.11 | -0.01 | 0.0475 |
| Ser | 352 | 0.18 | -0.18 | -0.01 | 0.0595 |
| Tyr | 172 | 0.23 | -0.16 | 0.00 | 0.0585 |
| Arg | 176 | 1.10 | 0.76 | 0.94 | 0.0549 |
| Cys (g)| 135 | 0.24 | -0.38 | -0.03 | 0.0908 |
| Lys | 305 | 1.08 | 0.73 | 0.95 | 0.0502 |
| Asp | 269 | -0.68 | -1.11 | -0.90 | 0.0645 |
| Glu | 224 | -0.76 | -1.12 | -0.92 | 0.0571 |
+----------+------+--------+--------+---------+--------+

 

(a) Standard symbols for amino acids [97]. 

(b) Number of occurrencies of the given residue in the molecules studied (Table 16). 

(c) Maximum total charge. 

(d) Minimum total charge. 

(e) Mean total charge. 

(f) Root-mean-square deviation of the computed total charges from the values expected for the 

given residue (0 in most cases; 1 for Arg and Lys; -1 for Asp and Glu). 

(g) For a bridged fragment consisting of two cystein residues (see section 4.4). 
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Chapter 7 
 

 

Biochemical applications 
 

 

7.1 Introduction 
 

Combined quantum mechanical / molecular mechanical (QM/MM) studies have recently been 

carried out in our group for several enzymatic reactions. This work has provided optimized 

QM/MM geometries of the relevant minima and transition states, e.g., for the oxygenation reaction 

catalyzed by p-hydroxybenzoate hydroxylase [98] and for the proton transfers catalyzed by 

triosephosphate isomerase [99]. It is of interest to perform single-point QM calculations at these 

optimized QM/MM geometries in order to check the validity of the QM/MM partitioning (e.g., with 

regard to the number of electrons assigned to the QM region) and to compare the computed 

QM/MM energy profiles with the corresponding pure QM results. 

 

The QM/MM investigations on p-hydroxybenzoate hydroxylase and triosephosphate isomerase 

employed AM1/GROMOS and AM1/CHARMM, respectively. Pure AM1 data are thus needed for 

direct comparisons. Conventional SCF calculations are no longer affordable for these systems with 

7004 and 8326 atoms, respectively, and therefore the linear scaling SCF/CG-DMS approach was 

applied for this purpose as implemented. Unless noted otherwise below, standard SCF/CG-DMS 

options were used (see sections 4.4, 6.1, and 6.4; iscf=4, iplscf=4, maxcg=4, maxpur=2, mpurif=0, 

cutoff X=10-4, block-diagonal initial guess with linfrg=1). 

 

 

7.2 p-Hydroxybenzoate hydroxylase 
 

p-Hydroxybenzoate hydroxylase (PHBH) is a flavoprotein involved in the degradation of aromatic 

compounds [100]. It catalyzes the monooxygenation of p-hydroxybenzoate (p-OHB) into 3,4-

dihydroxybenzoate (3,4-DOHB). The catalytic cycle consists of reductive and oxidative half-
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reactions [101,102]. During the reductive phase, p-OHB and reduced nicotinamide adenine 

dinucleotide (NADPH) bind to the enzyme, and NADPH reduces the cofactor (flavin adenine 

dinucleotide, FAD). In the subsequent oxidative phase, the reduced flavin reacts with oxygen to 

form flavin-4a-hydroperoxide (FADHOOH) which then oxygenates p-OHB. The oxygen transfer to 

p-OHB yields flavin-4a-hydroxide (FADHOH) and an intermediate which tautomerizes to the 

product 3,4-DOHB. The catalytic cycle is then completed by the release of the product and the 

elimination of water from FADHOH to regenerate the oxidized enzyme. 

 

The oxygen transfer from FADHOOH to p-OHB is the rate-determining step in the cycle. The 

accepted mechanism is electrophilic substitution at the aromatic ring of the substrate, with 

heterolytic cleavage of the peroxide bond [100,103], although alternative pathways have been 

considered in the literature (see [98] for references). It is generally believed that p-OHB reacts as a 

deprotonated dianion during hydroxylation since the reaction is much slower if the deprotonation is 

suppressed [101]. We have therefore studied the reaction between the p-OHB dianion and 

FADHOOH (see Figure 13). 

 

Figure 13: PHBH-catalyzed monooxygenation reaction between the p-OHB dianion and 

FADHOOH (R = ribityl side chain). 

 

                                                           

+ + 

 

The previous AM1/GROMOS calculations [98] employed a QM region with 102 atoms (p-OHB + 

FADHOOH) and an MM region with 6902 atoms (protein environment + crystal water). The QM 

region was assigned a total charge of -4 arising from the two extra electrons on the p-OHB 

substrate and the doubly charged phosphate group in the ribityl side chain of FADHOOH. Charge 

transfer between the QM and MM regions is ruled out by definition in the standard QM/MM 

treatments. It is thus desirable to check whether this total charge of -4 is actually found in pure QM 

calculations that allow for such charge transfer. Table 21 lists the corresponding results from 

single-point AM1 calculations. 

 

Starting with the data for the isolated QM region (102 atoms) it is obvious that conventional SCF 

calculations yield essentially the same charge distributions as SCF/CG-DMS calculations with 

standard cutoffs, see (c) vs (d) in Table 21 (maximum differences of 0.001 e in reactant and 
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product, and 0.004 e in the transition state TS). Addition of the external MM point charges leads to 

relatively minor modifications in the subsystem charges, see (c) vs (e) (up to 0.010 e). Performing 

an SCF/CG-DMS calculation for the full system (7004 atoms) causes somewhat larger changes, see 

(e) vs (f), which are however not excessive (up to 0.042 e). The total charges of the QM region 

remain close to -4 in the full SCF/CG-DMS treatment (f) and vary only slightly during the reaction 

(from -3.958 to -3.972 e). This offers a convincing justification (a posteriori) for the chosen 

QM/MM approach [98]. 

 

The subsystem charges in Table 21 clearly show that the reaction under study is indeed an 

electrophilic substitution. Going from reactant to product, the substrate p-OHB loses a charge of 

about 0.94 e while the cofactor FADHOOH gains about the same amount of charge. At the 

transition state, there is an intermediate charge transfer of about 0.28 e (more reactant-like). Both 

the AM1/GROMOS and the pure AM1 calculation yield essentially the same electronic 

characterization of the reaction, see (e) vs (f). 

 

Table 21: Charge distributions (au) from AM1 calculations (see text). 

 
+--------------------------------------------------------------+
| System Subsystem Sum of atomic charges |
| (a) (b) (c) (d) (e) (f) |
+--------------------------------------------------------------+
| Reactant p-OHB -1.952 -1.952 -1.957 -1.931 |
| FADHOOH -2.048 -2.048 -2.043 -2.027 |
| Op -0.174 -0.173 -0.166 -0.163 |
| Od-Hd 0.085 0.085 0.084 0.084 |
| QM region -4.000 -4.000 -4.000 -3.958 |
+--------------------------------------------------------------+
| TS p-OHB -1.673 -1.669 -1.681 -1.639 |
| FADHOOH -2.327 -2.331 -2.319 -2.323 |
| Op -0.361 -0.362 -0.352 -0.355 |
| Od-Hd 0.080 0.079 0.082 0.079 |
| QM region -4.000 -4.000 -4.000 -3.963 |
+--------------------------------------------------------------+
| Product 3,4-DOHB -1.012 -1.012 -1.011 -1.003 |
| FADHO(-) -2.988 -2.988 -2.990 -2.969 |
| Op -0.636 -0.635 -0.626 -0.615 |
| Od-Hd -0.079 -0.079 -0.077 -0.079 |
| QM region -4.000 -4.000 -4.000 -3.972 |
+--------------------------------------------------------------+

 

(a) Geometries taken from optimizations of the complete system (7004 atoms) at the 

AM1/GROMOS level. 

(b) p-OHB substrate (p-oxybenzoate dianion); FADHOOH cofactor; Op proximal oxygen atom 

of OOH group; Od-Hd distal oxygen atom plus bound H atom of OOH group; QM region 

consisting of substrate plus cofactor (102 atoms). 
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(c) Net subsystem charges, AM1 calculation of QM region (102 atoms), conventional SCF. 

(d) Net subsystem charges, AM1 calculation of QM region (102 atoms), SCF/CG-DMS with 

cutoff. 

(e) Net subsystem charges, AM1 calculation of QM region (102 atoms) with external MM 

charges (GROMOS) included, conventional SCF. 

(f) Net subsystem charges, AM1 calculation of the complete system (7004 atoms), SCF/CG-

DMS with cutoff. 

 

Table 22 compares the barriers obtained for the monooxygenation reaction (Figure 13). The 

experimental ∆G value [104] corresponds most closely to the theoretical free-energy barrier (∆F) 

that has been determined by molecular dynamics simulations with thermodynamic integration at the 

AM1/GROMOS level [98]. The excellent agreement between these two values (11.7 vs 11.8 

kcal/mol) must be considered fortuitous. The energy barrier (∆E) of 21.3 kcal/mol from 

AM1/GROMOS geometry optimizations can be compared directly with the single-point AM1 value 

of 15.0 kcal/mol obtained with standard cutoffs; tightening the cutoffs from X=10-4 to X=10-5 

leaves the barrier essentially unchanged (15.1 kcal/mol). In an overall assessment, the pure AM1 

value for the barrier is of the same order as the AM1/GROMOS values and thus confirms the 

previous AM1/GROMOS results. Given the limited accuracy of the applied methods and inherent 

technical limitations [98,99] we believe that we cannot prefer one theoretical value over the other 

and that it is more appropriate to stress the internal consistency of the AM1/GROMOS and pure 

AM1 results for PHBH. 

 

Table 22: Barriers (kcal/mol) for the PHBH-catalyzed reaction (see Figure 13). 

 
+--------------------------------------------------+
| Method Quantity(a) Barrier Reference |
+--------------------------------------------------+
| Experiment ∆G 11.7 104 |
| AM1/GROMOS ∆F, MD 11.8 98 |
| AM1/GROMOS ∆E, opt 21.3 98 |
| AM1 ∆E, s-p 15.0 b |
| AM1 ∆E, s-p 15.1 c |
+--------------------------------------------------+

 

(a) MD molecular dynamics, opt geometry optimization, s-p single-point calculations (see text). 

(b) SCF/CG-DMS with cutoff X=10-4; heats of formation for reactant, TS, and product:  

-31139.74, -31124.73, and -31206.81 kcal/mol. 

(c) SCF/CG-DMS with cutoff X=10-5. 
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7.3 Triosephosphate isomerase 
 

Triosephosphate isomerase (TIM) catalyzes the conversion of dihydroxyacetone phosphate 

(DHAP) to glycerinaldehyde-3-phosphate (GAP). This conversion is a key step on the glycolytic 

pathway [97]. It is accelerated in TIM by a factor of 1010 compared with the rate in aqueous 

solution under acetate ion catalysis [97]. The corresponding reactions have been the subject of 

several reviews and many detailed experimental and theoretical studies (see the references cited in 

[99]). It is generally accepted that the conversion proceeds by a proton shuttle mechanism [97] 

although there is still some debate over the detailed nature of these proton transfers [105,106]. 

 

The most widely accepted mechanism [97,107] is shown in Figure 14. The first step involves the 

abstraction of the pro-R proton of DHAP (I) by the Glu 165 side chain carboxylic group to form an 

enediolate intermediate (II). A subsequent proton transfer from the pyrrolic nitrogen of the 

imidazole ring in the side chain of the His 95 residue then gives an enediol intermediate (III). The 

imidazolate can be reprotonated by the terminal hydroxyl group of DHAP which produces another 

enediolate intermediate (IV) with the oxy and hydroxy positions interchanged compared to (II). In 

the final step, the enediolate (IV) is reprotonated by the glutamic acid side chain to form the 

product GAP (V). 

 

Figure 14: TIM-catalyzed conversion of DHAP to GAP (see text). 

 

 
 

The reactions depicted in Figure 14 have been investigated through QM/MM calculations at 

different levels [99,105-107] addressing both mechanistic and methodological issues. In the work 

from our group [99], the main objective has been to study the sensitivity of the QM/MM results 

towards variations in the QM/MM model, including the choice of the QM method (semiempirical 
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vs. density functional vs. ab initio methods, i.e., AM1 vs. BP86 / B3LYP vs. MP2), the size of the 

QM region, and the treatment of the QM/MM boundary. In the following, we extend this 

methodological work by comparing the previous AM1/CHARMM results [99] with pure AM1 

results from single-point SCF/CG-DMS calculations at the available optimized AM1/CHARMM 

geometries. These comparisons will again focus on charge distributions and relative energies. 

 

The reference AM1/CHARMM calculations [99] employed a QM region with 37 atoms including 

the substrate, the His 95 side chain, the Glu 165 side chain, and two hydrogen link atoms to saturate 

the dangling bonds at each side chain (i.e., for the reactant I: DHAP, 2-methyl imidazole, and 

propionate). Due to the successive proton transfers, the number of atoms in the components of the 

QM region and the corresponding formal charges do not remain constant in the intermediates I-V. 

These data are collected in Table 23 for easy reference. 

 

Table 23: Number of atoms (N) and formal charges (Z) for QM region (a): Intermediates I-V (see 

Figure 14 and text). 

 
+-------+----------------+---------+---------+---------+--------+
| Label | Intermediate |Substrate| His 95 | Glu 165 | Sum |
| | | N Z | N Z | N Z | N Z |
+-------+----------------+---------+---------+---------+--------+
| I | educt | 15 -2 | 11 0 | 9 -1 | 35 -3 |
| II | enediolate | 14 -3 | 11 0 | 10 0 | 35 -3 |
| III | enediol | 15 -2 | 12 -1 | 10 0 | 35 -3 |
| IV | enediolate | 14 -3 | 11 0 | 10 0 | 35 -3 |
| V | product | 15 -2 | 11 0 | 9 -1 | 35 -3 |
+-------+----------------+---------+---------+---------+--------+

 

(a) Note that the two link atoms are not counted. Including these link atoms will increase N by 

1 for His 95 and Glu 165, and by 2 for the sum. 

 

For each of the minima and transition states in the reaction scheme (see Figure 14), charge 

distributions have been determined from two separate single-point AM1 calculations. The first one 

was a conventional SCF calculation for the QM region plus the two link atoms (for a total of 37 

atoms) whereas the second one used an SCF/CG-DMS treatment of the full enzyme (8326 atoms). 

In both cases, the Cartesian input coordinates were taken from the available optimized 

AM1/CHARMM geometries for the full enzyme. In the calculations for the QM region, the two 

link atoms were put into the corresponding C-C frontier bonds being cut, at a fixed C-H distance of 

1.1 Å. 
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The resulting charge distributions are given in Tables 24 and 25, respectively. Since the link atoms 

are only present in the model calculations for the QM region, but not in the calculations for the 

enzyme, our evaluation will cover only the 35 atoms from the QM region that are included in both 

cases. The link atoms carry a small positive charge, and therefore, in the first case, the sum of the 

net atomic charges deviates somewhat from the formal charge of -3, by 0.08-0.10 e (Table 24). In 

the second case, this deviation is much larger and amounts to 0.34-0.37 e (Table 25). Evidently the 

protein environment withdraws considerable electron density from the QM region, at least at the 

AM1 level, which is not reflected by the model calculations for the isolated QM region. Adding 

external MM point charges will not remedy this situation because all QM electrons are constrained 

to stay within the QM region in the standard QM/MM approach, by definition, so that the external 

MM point charges can only lead to polarization within the QM region (and not to charge transfer 

outside this region). 

 

While the large amount of charge transfer to the protein environment in the pure AM1 calculations 

may seem alarming at first sight, it should also be pointed out that this effect appears to be fairly 

uniform for all nine species studied. Taking the differences between the data in Tables 24 and 25 as 

a measure, the total charge transfer out of the QM region ranges from 0.42-0.47 e (mostly around 

0.43 e). The charge transfers out of the individual subsystems vary somewhat more, but still tend to 

be rather similar (substrate 0.08-0.20 e, often around 0.08-0.12, higher for I and II; His 0.14-0.24 e, 

at the lower end for I and TS I->II; Glu 0.09-0.14 e). As long as the overall charge transfers remain 

uniform, there is a chance that the differences between the QM/MM and the pure QM calculations 

may also be uniform which can then lead to error compensation (e.g., for relative energies). 

 

Finally it should be noted that the computed charges for the subsystems (Tables 24 and 25) 

resemble the corresponding formal charges (Table 23) qualitatively, but may deviate quantitatively. 

For example, the computed charges for the substrate are indeed reasonably close to -2 for I, III, and 

V, but they do not reach -3 for II and IV (the deviations from -3 being larger in Table 25 than in 

Table 24 due to higher charge transfer in the enzyme, see above). Similar remarks apply to the 

histidine subsystem (see III with a formal charge of -1). 
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Table 24: Charge distributions (au) from AM1 calculations (see text): Conventional SCF treatment 

for the QM region (a). 

 
+-----+-----------------------+-----------+-------+-------+-------+
|Label| Species | Substrate | His | Glu | Sum |
+-----+-----------------------+-----------+-------+-------+-------+
| I | educt | -2.01 | -0.07 | -1.00 | -3.08 |
| TS | educt to enediolate | -2.23 | -0.08 | -0.77 | -3.08 |
| II | enediolate | -2.60 | -0.10 | -0.40 | -3.10 |
| TS | enediolate to enediol | -2.25 | -0.47 | -0.37 | -3.09 |
| III | enediol | -1.94 | -0.79 | -0.35 | -3.08 |
| TS | enediol to enediolate | -2.10 | -0.62 | -0.36 | -3.08 |
| IV | enediolate | -2.41 | -0.30 | -0.39 | -3.10 |
| TS | enediolate to product | -2.05 | -0.23 | -0.80 | -3.08 |
| V | product | -1.89 | -0.20 | -1.00 | -3.09 |
+-----+-----------------------+-----------+-------+-------+-------+

 

(a) For the definition of the subsystems see Table 23. In the case of transition states, the 

migrating hydrogen atom is assigned to the subsystem from where it comes. 

 

 

Table 25: Charge distributions (au) from AM1 calculations (see text): SCF/CG-DMS treatment for 

the entire enzyme (a). 

 
+-----+-----------------------+-----------+-------+-------+-------+
|Label| Species | Substrate | His | Glu | Sum |
+-----+-----------------------+-----------+-------+-------+-------+
| I | educt | -1.81 | 0.07 | -0.91 | -2.65 |
| TS | educt to enediolate | -2.08 | 0.06 | -0.64 | -2.66 |
| II | enediolate | -2.41 | 0.06 | -0.28 | -2.63 |
| TS | enediolate to enediol | -2.13 | -0.26 | -0.26 | -2.65 |
| III | enediol | -1.83 | -0.58 | -0.24 | -2.65 |
| TS | enediol to enediolate | -2.02 | -0.39 | -0.24 | -2.65 |
| IV | enediolate | -2.33 | -0.06 | -0.27 | -2.66 |
| TS | enediolate to product | -1.99 | 0.00 | -0.66 | -2.65 |
| V | product | -1.79 | 0.03 | -0.89 | -2.65 |
+-----+-----------------------+-----------+-------+-------+-------+
 

(a) See footnote of the Table 24. 

 

The heats of formation and the corresponding relative energies from the single-point AM1 

calculations for the full enzyme are given in Table 26. The relative energies from the 

AM1/GROMOS calculations [99] are included for comparison. The resulting energy profiles are 

shown in Figure 15 using intermediate II to define the common origin of the energy scale. The 

AM1 and AM1/GROMOS energy profiles for the three last proton transfers (II -> III -> IV -> V) 

are surprisingly similar, with typical deviations on the order of 3 kcal/mol. Larger discrepancies 
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occur for the first proton transfer (I -> II) where the relative stability of the educt I is more 

pronounced in AM1 than in AM1/GROMOS. In an overall assessment, the two energy profiles in 

Figure 15 appear qualitatively similar, in spite of the considerable charge transfer to the protein 

environment observed in the pure AM1 calculations. This would seem to suggest that the results 

may indeed benefit from error compensation (see above) which might be less effective for the first 

proton transfer (I -> II) with less uniform charge transfers (see Tables 24 and 25). 

 

Table 26: AM1 heats of formation ∆Hf (kcal/mol) and relative energies Erel (kcal/mol) from single-

point SCF/CG-DMS calculations on the entire enzyme (see text). QM/MM 

(AM1/GROMOS) relative energies (kcal/mol) are given for comparison. 

 
+-----+-----------------------+-----------+-------+-------+
|Label| Species | ∆Hf | Erel | Erel |
| | | AM1 | AM1 | QM/MM |
+-----+-----------------------+-----------+-------+-------+
| I | educt | -34913.94 | -11.3 | -6.0 |
| TS | educt to enediolate | -34904.45 | -1.8 | 5.6 |
| II | enediolate | -34902.62 | 0.0 | 0.0 |
| TS | enediolate to enediol | -34889.13 | 13.5 | 13.8 |
| III | enediol | -34893.06 | 9.6 | 7.8 |
| TS | enediol to enediolate | -34884.79 | 17.8 | 14.4 |
| IV | enediolate | -34902.01 | 2.4 | -1.6 |
| TS | enediolate to product | -34892.20 | 10.4 | 8.2 |
| V | product | -34895.66 | 7.0 | 0.2 |
+-----+-----------------------+-----------+-------+-------+
 

 

Figure 15: Computed energy profiles for TIM-catalyzed reactions (see text). 
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Chapter 8 
 

 

Conclusions and outlook 
 

 

Given the need to extend current quantum-chemical treatments to large molecules with thousands 

of atoms, the main goal of this work was the implementation of linear scaling approaches in the 

context of semiempirical molecular orbital theory. At the outset of this project, three such 

approaches had already been suggested in the literature. We have chosen the conjugate gradient 

density matrix search (CG-DMS) because it employs reliable and well-established minimization 

procedures and offers a transparent route towards linear scaling through the use of cutoffs in the 

density matrix and the Fock matrix. 

 

Three versions of the CG-DMS code have been implemented. The full-matrix versions with 

precomputation (ITERCG) and on-the-fly computation (DIRCG) of the required integrals serve 

mainly for testing purposes, whereas the sparse-matrix integral-direct version (DIRCGS) is 

designed for linear scaling production work on large molecules. DIRCGS employs the compressed 

sparse row format and subroutines for matrix operations from the public-domain SPARSKIT2 

library. In systematic test calculations on small molecules without cutoffs, the three versions of the 

code yield identical results, which are in full agreement with the results from conventional SCF 

calculations using matrix diagonalization. 

 

When starting from a diagonal initial density matrix (as commonly done in conventional 

semiempirical calculations), the SCF/CG-DMS approach does not converge reliably. This failure 

can be traced to the fact that such an initial density matrix is far from idempotent, which may cause 

the McWeeny idempotency transformation to behave erratically such that the number of electrons 

is not conserved. To circumvent such problems, an alternative option to generate an initial density 

matrix for large molecules has been implemented: a block-diagonal guess is assembled from non-

converged fragment density matrices which are obtained by performing typically one conventional 
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SCF iteration for user-defined fragments. This initial guess is idempotent and normalized, by 

construction, and leads to reliable and robust convergence in all cases considered so far. 

 

The SCF/CG-DMS procedure involves a triply nested loop of iterations (SCF, CG, McWeeny) that 

are controlled by a large number of parameters. To establish recommended default values for these 

control parameters, systematic tests have been carried out using three sets of calculations: MNDO 

for 218 small organic molecules, MNDO/d for 366 small inorganic molecules, and AM1 for 47 

large biochemical molecules. Default values for all options have been chosen on this basis. The 

tests have shown in particular that it is not efficient to converge the inner CG and McWeeny cycles 

tightly when the outer SCF cycles are still far from convergence: imposing a maximum number of 

two CG and McWeeny cycles is found to be the best choice. 

 

For validation purposes, the sparse-matrix integral-direct code has been applied to several series of 

large molecules including polyglycines, water clusters, and proteins. For suitable cutoffs, the 

computational effort for SCF/CG-DMS calculations is found to scale linearly with molecular size, 

as expected. The crossover points with conventional SCF calculations occur later than in other 

published implementations which is probably at least partly due to the use of non-optimized sparse 

matrix routines from the SPARSKIT2 library. In the case of the AM1 calculations on proteins, rms 

charge fluctuations of the order of 0.05 e per residue are found which cannot be captured by the 

usual classical force fields with fixed charges. 

 

The new linear scaling code has been applied to study reactions in the enzymes p-hydroxybenzoate 

hydroxylase (PHBH) and triosephosphate isomerase (TIM) which had previously been investigated 

in our group by combined quantum mechanical / molecular mechanical (QM/MM) methods. These 

single-point AM1 calculations at the available optimized QM/MM geometries would not have been 

possible with the conventional SCF code due to the size of these systems (7004 and 8326 atoms, 

respectively). The AM1 relative energies and activation barriers are consistent with the previous 

AM1/GROMOS and AM1/CHARMM results. An analysis of the charge distributions justifies the 

chosen QM/MM approach for PHBH since the total charge of the QM region remains close to the 

formal value of -4 e throughout the reaction. In the case of TIM, the AM1 charges from the full 

enzyme calculations indicate a considerable charge transfer from the QM region to the protein 

environment (about 0.4 e) which is however rather uniform for all species involved so that the 

QM/MM results may benefit from error compensation. 

 

As a result of this thesis, a validated and working semiempirical SCF/CG-DMS code is available 

that exhibits linear scaling in the computational effort for large molecules. Further optimization and 
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tuning of this code seems possible, in particular with regard to the sparse matrix library routines 

(especially for sparse matrix multiplication). In its present form, the code can already be used in 

studies on enzymes to complement corresponding QM/MM work. 
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Appendix 1 Subroutines for conjugate gradient density matrix search: 

test version with full two-dimensional matrices. 

 

All matrices are handled as two-dimensional arrays to allow for full calculations without neglecting 

any matrix elements (for comparison with calculations employing matrix diagonalization). There is 

an option to neglect matrix elements below user-defined cutoffs (for comparison with the sparse-

matrix version of the code). 

 

The one-electron and two-electron integrals can either be precomputed and used as stored 

(ITERCG) or calculated on-the-fly as needed in an integral-direct manner (DIRCG). The latter 

approach forms the basis for the sparse-matrix version (see appendix 2). 

 

 

Routine Brief description 

 

ITERCG Control routine for SCF iterations using the conjugate gradient density matrix search 

(CG-DMS), conventional version with precomputed one- and two-electron integrals. 

DIRCG Control routine for SCF iterations using the conjugate gradient density matrix search 

(CG-DMS), integral-direct version with on-the-fly calculation of the integrals. 

CGDMS Control routine for conjugate gradient density matrix search. Standard Fortran code 

using full square matrices. 

DMSGRD Compute gradient of the functional used in CG-DMS. 

PRECO Generate diagonal preconditioner for CG-DMS. 

DMSCOF Compute coefficients for analytic line search. 

CGROOT Select proper root in line search for CG update. Choose root with lower value of the 

functional. 

PURIFY McWeeny purification transformation: R = 3 PP - 2 PPP. 

PSCAL Scale density matrix such that it has the correct trace. 

BORDCG Determine changes in the density matrix for later convergence checks and perform 

extrapolation or damping (optional). 

COMMUT Find the maximum absolute value of commutator matrix elements of two symmetric 

matrices: [B,C] = BC - CB. 
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DOTMAT Compute dot product between two vectors containing the matrix elements of two 

symmetric matrices that are stored either as full two-dimensional arrays or as upper 

triangles. 

MATCOP Matrix copy: B = A or B = -A. 

MATCUT Set matrix elements below a given cutoff to zero. 

MATDEB Debug print for a two-dimensional matrix array. 

MATDEV Evaluate deviations between two matrices A and B. 

MATDIF Difference of two matrices: C = A - B. 

MATSCL Scale matrix by a factor. 

MATUPD Perform matrix update: C = A + FACTOR*B. 

MATUPM Perform matrix update: C = A + FACTOR*B, for diagonal elements only, and 

return minimum and maximum diagonal elements. 

TRACE1 Compute trace of matrix A. 

TRACE2 Compute trace of matrix product AB. 

TRMSUM Sum of a square matrix and its transpose: B = A + AT. 

 

 

There are about 2100 lines of code in these new routines. 
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Appendix 2 Subroutines for conjugate gradient density matrix search: 

 linear scaling version with sparse matrices. 

 

All sparse matrices are handled in the CSR format. All one-electron and two-electron integrals are 

computed on-the-fly as needed. The sparse-matrix code is derived from the integral-direct test 

version (see appendix 1). 

 

The new sparse-matrix routines can be grouped as follows: 

 

(a) Routines that are essentially equivalent to corresponding CG-DMS routines in the test 

version (appendix 1). 

(b) Routines that are introduced for convenience in connection with sparse-matrix operations. 

(c) Routines for integral-direct calculations and for postprocessing that are essentially 

equivalent to existing standard routines. 

(d) Modified versions of routines from the SPARSKIT2 library to allow for the use of 

Fortran90 data types. 

 

 

Routine Brief description 

 

(a) Sparse-matrix CG-DMS routines. 

 

DIRCGS Control routine for SCF iterations using the conjugate gradient density matrix search 

(CG-DMS), integral-direct version with on-the-fly calculation of the integrals. 

CGDMSS Control routine for conjugate gradient density matrix search. 

DMSGRDS Compute gradient of the functional used in CG-DMS. 

DIAPRC Generate diagonal preconditioner for CG-DMS. 

DMSCOFS Compute coefficients for analytic line search. 

CGROOTS Select proper root in line search for CG update. Choose root with lower value of the 

functional. 

PURIFYN McWeeny purification transformation: R = 3 PP - 2 PPP. Input matrix P 

overwritten by output matrix R. 
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PURIFYP McWeeny purification transformation: R = 3 PP - 2 PPP. Input matrix P kept, 

separate output matrix R. 

BORDS1 Determine changes in the density matrix for later convergence checks and perform 

extrapolation or damping (optional). 

DDOTS1 Compute dot product A⋅A for a sparse symmetric matrix. 

DDOTS2 Compute dot product A⋅B for two sparse symmetric matrices. 

MATDEVS Evaluate deviations between two sparse matrices A and B. 

SPAUPM Perform sparse matrix update: C = A + FACTOR*B, for diagonal elements only, 

and return minimum and maximum diagonal elements. 

 

(b) Sparse-matrix utility routines. 

 

CGUPD Update of density matrix after CG line search (combining code from DIRCG and 

MATUPD, see appendix 1). 

IDAMAXP Find the index of an element in a pointer array with the largest maximum value 

(equivalent to the BLAS1 routine IDAMAX). 

SPAPRT Print a sparse matrix. 

UTIL Count non-zero entries per column in a sparse matrix. 

XERALL Error handling for ALLOCATE and DEALLOCATE. 

XERSPA Error handling for sparse-matrix operations. 

module1 Fortran90 interface definition, first set of routines. 

module2 Fortran90 interface definition, second set of routines. 

module3 Fortran90 interface definition, third set of routines. 

 

(c) Sparse-matrix versions of routines from the standard program. 

 

HFOCKS Calculate a block of the core Hamiltonian and Fock matrix and evaluate the 

corresponding energy contributions in an integral-direct fashion. 

PONES Extract one-center density matrix elements from the sparse density matrix. 

PSORTS Extract two-center density matrix elements for a given atom pair from the sparse 

density matrix. 

DCARTS Evaluate the Cartesian gradient using the sparse density matrix. 

DIPOLS Evaluate the dipole moment using the sparse density matrix. 

PRTSCFS Print SCF results available in sparse-matrix format. 

SPARSP Generate initial diagonal density matrix. 
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(d) Modified versions of routines from the SPARSKIT2 library. 

 

amubdgp Perform symbolic multiplication and count the number of nonzero elements in the 

product. 

amubp Perform actual multiplication, AB. 

aplbdgp Perform symbolic summation and count the number of nonzero elements in the sum. 

aplbp Perform actual summation, A+B. 

coicsrp Convert sparse matrix from coordinate to CSR format. 

copmatp Copy matrix. 

csrcscp Convert sparse matrix from CSR to CSC (transpose) format. 

filterp Perform numerical thresholding on matrix elements. 

traceap Calculate trace of matrix A. 

tracenp Calculate trace of matrix product AB without computing the product itself. 

transpp Transpose matrix. 

 

 

There are about 5300 lines of code in these new routines. 
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Appendix 3 Subroutines for generating an initial block-diagonal density matrix from 

fragment RHF-SCF calculations. 

 

The fragment RHF-SCF calculations make use of many existing standard routines. New code is 

required for setting up and controlling these calculations, and for assembling a suitable molecular 

density matrix. The latter can be generated either as a standard two-dimensional array (for use in 

ITERCG and DIRCG) or as a sparse matrix in CSR format (for use in DIRCGS). 

 

 

Routine Brief description 

 

FRAGMT Control routine for fragment RHF-SCF calculations. 

INFRG Read data to define the fragments. 

DEFFRG Extract fragment data from the available molecular data. 

INPUTS Define control variables from fragment input data. 

DYNFRG Dynamic memory allocation for fragment RHF-SCF calculation. 

SCFFRG Perform RHF-SCF calculation for a given fragment. 

ITFRG RHF-SCF iterations for a given fragment. 

COPFRG Copy fragment density into molecular density array. 

FILFRG Fill sparse density matrix with fragment density. 

SRTFRG Sort sparse density matrix by reordering columns. 

 

 

There are about 1300 lines of code in these new routines. 
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Appendix 4 Input options for linear scaling SCF-MO calculations. 

 

This appendix documents those input options that are particularly relevant for linear scaling SCF-

MO calculations. The MNDO99 input is generally keyword-oriented, but it also supports fixed-

format input. The first table specifies the keywords for the input options, the unique internal 

number of each option, the Fortran format, and a short description. The second table gives a full 

description for each option. 

 

Table A.4.1: Overview over available options. 

 

Option No. Format Short description 

 

intdir 55 i2 Integral direct SCF procedure. 

lindms 56 i2 Linear scaling CG-DMS approach. 

lindia 57 i2 Choice of full diagonalization after CG-DMS. 

linfrg 58 i2 Initial density from fragment calculations. 

inpfrg 59 i2 Read extra input for fragments. 

inp24 63 i2 Read extra input for options (171-186). 

maxcg 171 i5 Maximum number of CG cycles during DMS. 

maxpur 172 i5 Maximum number of McWeeny purifications. 

mcmax 173 i5 Convergence criterion for purification (P). 

midemp 174 i5 Convergence criterion for purification (PP). 

mpurif 175 i5 CG cycle where purification starts. 

mlroot 176 i5 Choice of root for the CG density update. 

mcgpre 177 i5 Preconditioning of CG gradient matrix. 

mcgupd 178 i5 Choice of update for search direction. 

mpscal 180 i5 Scaling of intermediate density matrices. 

mcuth 181 i5 Cutoff for core Hamiltonian matrix (eV). 

mcutf 182 i5 Cutoff for Fock matrix (eV). 

mcutp 183 i5 Cutoff for density matrix. 

mcut1 184 i5 Cutoff for one-electron integrals (eV). 

mcut2 185 i5 Cutoff for two-electron integrals (eV). 
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mcutr 186 i5 Cutoff for interatomic distances (A). 

 

Table A.4.2: Specification of the available options. 

 

Option Full description 

 

intdir Choice of integral-direct SCF procedure. 

= 0 Conventional integral handling. 

= 1 Direct approach, without thresholds. 

= 2 Direct approach, default thresholds. 

= 3 Direct approach, special thresholds from input. 

= 4 Sparse approach, default thresholds. 

= 5 Sparse approach, special thresholds from input. 

lindms Choice of linear scaling CG-DMS approach: conjugate gradient density matrix 

search. 

= 0 Conventional SCF treatment. 

= 1 CG-DMS approach, without thresholds. 

= 2 CG-DMS approach, default thresholds. 

= 3 CG-DMS approach, special thresholds from input. 

= 4 Sparse approach, default thresholds. 

= 5 Sparse approach, special thresholds from input. 

lindia One conventional diagonalization after CG-DMS convergence to obtain MO 

eigenvalues and eigenvectors. 

= 0 No such diagonalization. 

= 1 Allow such diagonalization. 

*** Note that this will not work for really large molecules. 

*** Useful for any postprocessing that requires MOs. 

linfrg Block-diagonal initial density matrix from separate RHF-SCF calculations on user-

defined fragments using the same convergence criteria as in the molecular case. 

= 0 Do not build such an initial density matrix. 

= n Number of SCF iterations allowed for each fragment. 

Recommended values are n=1 and n=2 to obtain a sufficiently accurate initial guess 

for CG-DMS. Normally (unless inpfrg=-1) the definition of the fragments requires 

some extra input (section 3.14). 

inpfrg Input to define the fragments for CG-DMS in section 3.14. 
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=-1 Do not read such input, treat the whole molecule as a single fragment (only 

useful for testing purposes). 

= 0 Read such extra input using the default format. 

= n Read such extra input using other formats. 

inp24 One line of extra input for options 171-186. Special options for linear scaling and 

direct SCF methods. 

= 0 Do not read such extra input, use default options. 

= 1 Read such extra input. 

*** Set internally for intdir=3,5 or lindms=3,5 (see above). 

maxcg Maximum number of conjugate gradient (CG) cycles during density matrix search. 

Default 2. 

maxpur Maximum number of McWeeny purifications during one CG cycle. Default 2. 

mcmax Convergence criterion for purification. Maximum allowed change of diagonal 

density matrix elements: pmcmax=10**(-mcmax). Default for mcmax.le.0: Ignore 

criterion, use pmcmax=pcgmax/2 where pcgmax is the corresponding global 

criterion. 

midemp Convergence criterion for purification. Maximum allowed violation of idempotency 

for diagonal density matrix elements: pidemp=10**(-midemp). Default for 

midemp.le.0: pidemp=1, i.e. the criterion is effectively ignored. 

mpurif CG cycle where purification starts. 

= n Purification starting at CG cycle n. 

= 0 Use default value of mpurif=99. 

=-1 Purification turned off, activated automatically only when the CG search 

approaches convergence (as measured by the magnitude of the CG update). 

*** For mpurif.ge.0, a purified density matrix is always used, available either 

from a single transformation (before CG cycle n) or from repeated 

transformations (thereafter). 

*** For mpurif.gt.maxcg, purification will be turned on in the last CG cycle 

(maxcg) even if CG convergence is not reached. 

*** For mpurif=-1, the linear CG update for the density matrix is used as long as 

the purification has not been activated. Option mpurif=-1 is NOT 

recommended. 

mlroot Choice of root for the CG density update. 

The step size for the CG density update is given by the root of a quadratic equation. 

The root-finding algorithm is as follows: 
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(a) Check whether linear term dominates such that the solution of the linear 

equation can be adopted. 

(b) Reject any physically unacceptable root of the quadratic equation with any 

diagonal density matrix element below 0 or above 1. 

(c) Compute the functional value for both roots of the quadratic equation and 

adopt the lower root. 

Option mlroot controls the first step. 

= n Check (a) is done, and the solution of the linear equation is adopted if the 

absolute value of x in the term x1+  of the quadratic equation is smaller 

than the threshold: xsqmax = 10**(-mlroot). Errors will then be of the order 

x**2. 

= 0 Use default value of mlroot=5. 

=-1 Check (a) is not done. Step size determined from (b)-(c). 

mcgpre Preconditioning of CG gradient matrix. 

= 0 Not used. 

= 1 Diagonal preconditioning applied. 

mcgupd Choice of update for search direction. 

= 0 Polak-Ribiere formula for CG. 

= 1 Fletcher-Reeves formula for CG. 

mpscal Scaling of intermediate density matrices to enforce normalization which may be lost 

due to purification. 

= 0 No such scaling. 

= 1 Restore correct trace of the density matrix after each CG search by adding a 

constant to each diagonal element. 

= 2 Restore correct trace of the density matrix after each CG search by scaling 

each diagonal element. 

= 3 Analogous to mpscale=2, but apply the scaling to the complete matrix. 

mcuth Cutoff for core Hamiltonian matrix (eV). 

=-1 No such cutoff. 

= 0 Use default value of mcuth=20. 

= n Cutoff 10**(-n) eV. 

mcutf Cutoff for Fock matrix (eV). 

=-1 No such cutoff. 

= 0 Use default value of mcutf=20. 

= n Cutoff 10**(-n) eV. 

mcutp Cutoff for density matrix. 
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=-1 No such cutoff. 

= 0 Use default value of mcutp=20. 

= n Cutoff 10**(-n). 

mcut1 Cutoff for one-electron integrals (eV). 

=-1 No such cutoff. 

= 0 Use default value of mcut1=20. 

= n Cutoff 10**(-n) eV. 

 

mcut2 Cutoff for two-electron integrals (eV). 

=-1 No such cutoff. 

= 0 Use default value of mcut2=20. 

= n Cutoff 10**(-n) eV. 

mcutr Cutoff for interatomic distances (Angstrom). 

=-1 No such cutoff. 

= 0 Use default value of mcutr=10000. 

= n Cutoff of 0.1*n Angstrom. 

Two-center integrals are not computed if the corresponding distance exceeds 

the cutoff. 

 

 

Explicit definition of fragments for block-diagonal density matrix guess. 

 

Note: Only the general default input is described here (inpfrg=0). 

Note: Other input formats are available for special cases (inpfrg>0). 

 

- First and following lines (to assign atoms to fragments) 

 

nfrags(i) 10i5 Number of fragment containing atom i. Use as many lines as necessary. 

 

- Subsequent lines (to assign nonzero charges) 

 

i i5 Number of atom bearing a formal charge. 

  = 0 End of this section of input. 

ndum i5 Formal charge of atom i, nchrgs(i)=ndum. 

  The array nchrgs is initialized to zero. Only nonzero values are needed from 

input. Fragment charges are computed from nchrgs(i). 
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Appendix 5 List of biomolecules studied. 

 

The biomolecules studied in section 6.4 were identified only by their PDB entry or another four-

character symbol. The corresponding names are given in the following. 

 
PDB Name 
 
1B32 Oligo-peptide binding protein (OPPA) complexed with KMK. 
 
2QWE A complex of 4-Guanidino-NEU5AC2EN and A drug resistant variant R292K of 

TERN N9 influenza virus neuraminidase. 
 
1IXH Phosphate-binding protein (PBP) complexed with phosphate. 
 
subt Subtilisim E. Wild type. 
 
1IAU Human Granzyme B in complex with AC-IEPD-CHO. 
 
1E3B Cyclophilin 3 from C. Elegans complexed with AUP(ET)3. 
 
lyso Lysozyme. 
 
1EV3 Rhombohedral form of the m-cresol/Insulin. 
 
1A3K Human Galectin-3 carbohydrate recognition domain (CRD). 
 
1CC8 ATX1 Metallochaperone protein. 
 
ribo Ribose. 
 
1AOY N-terminal domain of Escherichia Coli arginine repressor. 
 
1IKL Monomeric human Interleukin-8. 
 
1A43 HIV-1 capsid protein dimerization domain. 
 
1AFJ Mercury-bound form of MERP, the periplasmic protein from the bacterial mercury 

detoxification system. 
 
1IRN Rubredoxin (Zn-substituted). 
 
cspa CspA, the major cold shock protein of Escherichia Coli. 
 
2R63 Buried salt bridge in the 434 repressor DNA-binding domain. 
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5EBX Erabutoxin. 



2OVO Third domain of silver pheasant Ovomucoid (OMSVP3). 
 
bpti Bovine pancreatic trypsin inhibitor. 
 
1A4T Phage P22 N peptide-box B RNA complex. 
 
2REL R-Elafin, A specific inhibitor of Elastase. 
 
1A7F Insulin mutant B16 Glu, B24 Gly, Des-B30. 
 
2SH1 Neurotoxin I from the sea anemone Stichodactyla Helianthus. 
 
1B8W Defensin-like peptide 1. 
 
cram Crambin. 
 
1ATO Isolated, Central hairpin of the Hdv antigenomic ribozyme. 
 
1AML The Alzheimer`s disease amyloid A4 peptide (residues 1-40). 
 
1OKA RNA/DNA chimera. 
 
2PTA Pandinus toxin K-A (Pitx-Ka) from Pandinus Imperator. 
 
1AXH Atracotoxin-Hvi from Hadronyche Versuta. 
 
1BH0 Glucagon analog. 
 
1ATF Transactivation domain of Cre-Bp1/Atf-2. 
 
1BXJ M8L mutant of squash trypsin inhibitor Cmti-I. 
 
toxi Toxin. 
 
1AFX Ugaa eukaryotic ribosomal RNA tetraloop. 
 
1BQF Growth-blocking peptide (Gbp) from Pseudaletia Separata. 
 
2MAG Magainin 2 in Dpc micelles. 
 
8TFV Insect defense peptide. 
 
2NR1 Transmembrane segment 2 of Nmda receptor Nr1. 
 
1ALE Conformation of two peptides corresponding to human apolipoprotein C-I residues 

7-24 and 35-53 in the presence of sodium dodecyl sulfate. 
 
1BCV Synthetic peptide corresponding to the major immunogen site of Fmd virus. 
 
1A3J Collagen-like peptide with the repeating sequence (Pro-Pro-Gly). 
 
3CMH Synthetic linear truncated Endothelin-1 agonist. 
 
1CB3 Non-native structure in the denatured state of human α-Lactalbumin. 
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2SOC Backbone conformational equilibria of Sandostatin. 
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