Phytoremediation schwermetallbelasteter Böden durch einjährige Pflanzen in Einzel- und Mischkultur

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Judith Haensler

aus Remscheid

Wuppertal

2003
<table>
<thead>
<tr>
<th>INHALTSVERZEICHNIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 EINLEITUNG .. 1</td>
</tr>
<tr>
<td>2 ÖKOTOXIKOLOGIE DER SCHWERMETALLE ... 3</td>
</tr>
<tr>
<td>2.1 Toxizität von Schwermetallen .. 3</td>
</tr>
<tr>
<td>2.2 Schwermetalle in Böden .. 4</td>
</tr>
<tr>
<td>2.3 Notwendigkeit der Bodensanierung .. 5</td>
</tr>
<tr>
<td>2.4 Phytoremediation .. 6</td>
</tr>
<tr>
<td>2.5 Schwermetalle im pflanzlichen Stoffwechsel .. 8</td>
</tr>
<tr>
<td>2.5.1 Chelatgestützte Phytoextraktion ... 10</td>
</tr>
<tr>
<td>3 MATERIAL UND METHODEN ... 13</td>
</tr>
<tr>
<td>3.1 Pflanzenmaterial .. 13</td>
</tr>
<tr>
<td>3.2 Keimversuche ... 16</td>
</tr>
<tr>
<td>3.3 Kulturmethoden bei Topfversuchen ... 17</td>
</tr>
<tr>
<td>3.3.1 Versuche in Sand-Lewatit-Kultur ... 17</td>
</tr>
<tr>
<td>3.3.1.1 Herstellung des Schwermetall-Lewatis ... 17</td>
</tr>
<tr>
<td>3.3.1.2 Herstellung des Kultursubstrates ... 19</td>
</tr>
<tr>
<td>3.3.1.3 Ansetzen der Topfkulturen .. 20</td>
</tr>
<tr>
<td>3.3.1.4 Behandlung der Versuchskulturen und Ernte .. 21</td>
</tr>
<tr>
<td>3.3.2 Versuche mit Einzel- und Mischkulturpflanzen in belastetem Ackerboden (1998) .. 22</td>
</tr>
<tr>
<td>3.3.3 Versuche zum Chelateinfluß auf Mischkulturpflanzen in belastetem Ackerboden (1999) .. 24</td>
</tr>
<tr>
<td>3.4 Kulturmethoden der Freilandversuche ... 25</td>
</tr>
<tr>
<td>3.4.1 Untersuchungsfläche ... 25</td>
</tr>
<tr>
<td>3.4.2 Versuchspflanzen in Mischkultur (1999) ... 28</td>
</tr>
<tr>
<td>3.4.3 Versuche mit Symphytum officinale (1999) ... 30</td>
</tr>
<tr>
<td>3.4.4 Mais in Monokultur (2000) .. 31</td>
</tr>
<tr>
<td>3.5 Laboruntersuchungen ... 32</td>
</tr>
<tr>
<td>3.5.1 Bestimmung der Lagerungsdichte von Freiland-Böden 32</td>
</tr>
<tr>
<td>3.5.2 Bestimmung von pH-Werten .. 33</td>
</tr>
<tr>
<td>3.5.3 Mineralstoffanalytik .. 33</td>
</tr>
<tr>
<td>3.5.3.1 Pflanzenverfügbare Kationen in Erde oder Sand .. 34</td>
</tr>
<tr>
<td>3.5.3.2 Kationen in Pflanzenmaterial und Gesamtschwermetallgehalte von Substrat 34</td>
</tr>
</tbody>
</table>
INHALTSVERZEICHNIS

3.5.3.3 Messung von Kationengehalten am Atom-Absorptions-Spektrometer (AAS) 36
3.5.3.4 Phosphatbestimmung von Pflanzenmaterial ... 37
3.5.3.5 Bestimmung des Phosphatgehaltes von Bodenproben .. 38
3.5.4 Bestimmung der EDTA-bedingten Schwermetallauswaschung aus dem Bodenprofil ... 40
3.5.5 Bestimmung von EDTA ... 42

3.6 Statistische Methoden .. 43

4 ERGEBNISSE UND DISKUSSION .. 44

4.1 Keimversuche .. 44
 4.1.1 Keimungsrate ... 44
 4.1.2 Wurzel- und Sproßlängen ... 47
 4.1.3 Diskussion .. 50

4.2 Topfkultur-Versuche mit schwermetallbelastetem Sand-Lewatit-Substrat (1998) ... 53
 4.2.1 Morphologische Beobachtungen .. 53
 4.2.2 Überlebensrate ... 53
 4.2.3 Biomasse .. 55
 4.2.4 Ionengehalte .. 57
 4.2.4.1 Schwermetalle .. 57
 4.2.4.2 Nährstoffionen .. 60
 4.2.5 Schwermetalle im Kultursubstrat ... 71
 4.2.6 Schwermetallaufnahme .. 73
 4.2.7 Diskussion .. 80

4.3 Topfkultur-Versuche mit Pflanzen in Einzel- und Mischkultur in schwermetallbelasteter Erde (1998) .. 100
 4.3.1 Morphologische Beobachtungen und Konkurrenzverhalten 100
 4.3.2 Biomasse .. 101
 4.3.3 Ionengehalte .. 103
 4.3.3.1 Schwermetalle .. 103
 4.3.3.2 Nährstoffionen .. 105
 4.3.3.3 Korrelationen der Ionengehalte ... 107
 4.3.4 Schwermetalle im Kultursubstrat ... 108
 4.3.5 Schwermetallaufnahme .. 110
 4.3.6 Anteil der Pflanzen an der Schwermetallabnahme des Kultursubstrates 113
 4.3.7 Diskussion .. 115

II
4.4 Topfkultur-Versuche zum Einfluß verschiedener Chelatoren auf Mischkulturpflanzen in schwermetallbelasteter Erde (1999) 128

4.4.1 Morphologische Beobachtungen und Konkurrenzverhalten 128
4.4.2 Biomasse und Wassergehalt ... 129
4.4.3 Ionengehalte .. 132
 4.4.3.1 Schwermetalle .. 132
 4.4.3.2 Nährstoffionen .. 135
 4.4.3.2 Korrelationen der Ionengehalte ... 139
4.4.4 Schwermetalle im Kultursubstrat ... 140
4.4.5 Schwermetallaufnahme ... 142
4.4.6 Anteil der Pflanzen an der Schwermetallabnahme des Kultursubstrats 145
4.4.7 Diskussion ... 146

4.5 Freilandexperiment zum EDTA-Einfluß auf die Schwermetallaufnahme von Symphytum officinale (1999) 163

4.5.1 Morphologische Beobachtungen ... 163
4.5.2 Biomasse ... 164
4.5.3 Schwermetallgehalte .. 164
 4.5.3.1 Korrelationen der Ionengehalte ... 166
4.5.4 Schwermetallaufnahme ... 167
4.5.5 Diskussion ... 169

4.6 Freilandexperiment zum EDTA-Einfluß auf Pflanzen in Mischkultur (1999) ... 174

4.6.1 Morphologische Beobachtungen und Konkurrenzverhalten 174
4.6.2 Biomasse und Wasser gehalt ... 175
4.6.3 Ionengehalte .. 178
 4.6.3.1 Schwermetalle .. 178
 4.6.3.2 Nährstoffionen .. 182
 4.6.3.3 Korrelationen der Ionengehalte ... 186
4.6.4 Schwermetalle im Kultursubstrat ... 187
 4.6.4.1 Absolute Schwermetallgehalte .. 187
 4.6.4.2 Schwermetallgehalt pro m² ... 193
 4.6.4.3 Relative Veränderung der Schwermetallgehalte 195
 4.6.4.4 Anteil der pflanzenverfügbaren Fraktion am Gesamtgehalt 197
4.6.5 Schwermetallaufnahme ... 199
4.6.6 Anteil der Pflanzen an der Schwermetallabnahme des Kultursubstrats 204

4.7 Freilandexperiment zum EDTA-Einfluß auf Mais in Monokultur (2000) ... 206
<table>
<thead>
<tr>
<th>Unterpunkt</th>
<th>Seitennummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7.1 Morphologische Beobachtungen</td>
<td>206</td>
</tr>
<tr>
<td>4.7.2 Biomasse und Wassergehalt</td>
<td>206</td>
</tr>
<tr>
<td>4.7.3 Ionengehalte</td>
<td>207</td>
</tr>
<tr>
<td>4.7.3.1 Schwermetalle</td>
<td>207</td>
</tr>
<tr>
<td>4.7.3.2 Nährstoffionen</td>
<td>210</td>
</tr>
<tr>
<td>4.7.3.3 Korrelationen der Ionengehalte</td>
<td>214</td>
</tr>
<tr>
<td>4.7.4 Schwermetalle im Kultursubstrat</td>
<td>214</td>
</tr>
<tr>
<td>4.7.4.1 Absolute Schwermetallgehalte</td>
<td>215</td>
</tr>
<tr>
<td>4.7.4.2 Schwermetallgehalt pro m²</td>
<td>219</td>
</tr>
<tr>
<td>4.7.4.3 Relative Veränderung der Schwermetallgehalte</td>
<td>222</td>
</tr>
<tr>
<td>4.7.4.4 Anteil der pflanzenverfügbaren Fraktion am Gesamtgehalt</td>
<td>222</td>
</tr>
<tr>
<td>4.7.5 Schwermetallaufnahme</td>
<td>224</td>
</tr>
<tr>
<td>4.7.6 Anteil der Pflanzen am Schwermetallverlust des Kultursubstrats</td>
<td>227</td>
</tr>
<tr>
<td>4.8 Auswaschung von Schwermetallen und EDTA aus dem Bodenprofil</td>
<td>256</td>
</tr>
<tr>
<td>4.8.1 Monatliche Auswaschung</td>
<td>256</td>
</tr>
<tr>
<td>4.8.2 Gesamtauswaschung</td>
<td>257</td>
</tr>
<tr>
<td>4.8.3 Diskussion</td>
<td>259</td>
</tr>
<tr>
<td>5 BEURTEILUNG DES PHYTOEXTRAKTIONSPOTENTIALS</td>
<td>261</td>
</tr>
<tr>
<td>5.1 Allgemeine Bewertung</td>
<td>261</td>
</tr>
<tr>
<td>5.1.1 Anwendungsempfehlung</td>
<td>267</td>
</tr>
<tr>
<td>5.2 Standortbezogene Bewertung</td>
<td>268</td>
</tr>
<tr>
<td>6 ZUSAMMENFASSUNG</td>
<td>269</td>
</tr>
<tr>
<td>7 ANHANG</td>
<td>273</td>
</tr>
<tr>
<td>7.1 Abkürzungen</td>
<td>273</td>
</tr>
<tr>
<td>7.2 Nährstoffionen in den Kulturmedien</td>
<td>274</td>
</tr>
<tr>
<td>7.3 Abbildungsverzeichnis</td>
<td>275</td>
</tr>
<tr>
<td>7.4 Tabellenverzeichnis</td>
<td>281</td>
</tr>
<tr>
<td>8 LITERATURVERZEICHNIS</td>
<td>284</td>
</tr>
<tr>
<td>Danksgung</td>
<td>299</td>
</tr>
</tbody>
</table>

1 EINLEITUNG

LINGER et al. 2002). Jedoch sind diese im Hinblick auf die Anwendbarkeit solcher Reinigungsverfahren von zentraler Bedeutung, da Topfexperimente nur Anhaltspunkte liefern können und auf die Bedingungen in natürlichen Böden nur sehr eingeschränkt übertragbar sind.

Einen Schwerpunkt der Untersuchung stellte dabei die Analyse der chelatinduzierten Verlagerung der Schwermetalle im Bodenprofil dar, die bisher in keiner Studie berücksichtigt wurde.

Nach Ernte der Biomasse wäre eine Verbrennung der kontaminierten Biomasse zur Energiegewinnung möglich. Eine Ausfällung der Schwermetalle aus der Asche mit dem Ziel eines Recyclings wäre außerdem denkbar, da die Wiederverwendung der Metalle die Kosten der Remediation senken könnte.
2 ÖKOTOXIKOLOGIE DER SCHWERMETALLE

2.1 TOXIZITÄT VON SCHWERMETALLEN

Zink, das neben Cadmium und Blei Gegenstand der vorliegenden Untersuchung ist, stellt im Gegensatz zu diesen ein sog. Passagegift dar und ist ebenfalls im Überschuß für Mensch und

2.2 SCHWERMETALLE IN BÖDEN

Die vom Menschen aufgenommenen Schwermetalle stammen zu 90 bis 98 % aus der Nahrung (VETTER 1982), also mittelbar oder unmittelbar aus landwirtschaftlich genutzten Böden. Daher hat der Gesetzgeber, um die von belasteten Böden und Nahrungsmitteln ausgehenden Gefahren zu minimieren, Grenzwerte festgelegt. Die geltenden gesetzlichen Vorschriften sehen in pflanzlichen Nahrungsmitteln z.B. einen Höchstgehalt von 0,2 µg Cadmium und 0,5 µg Blei pro g Frischgewicht vor (SCHACHTSCHABEL et al. 1998). Für Böden gelten sogenannte Vorsorgewerte, die in industriell geprägten Regionen häufig

2.3 NOTWENDIGKEIT DER BODENSANIERUNG

2.4 PHYTOREMEDIATION

2.5 SCHWERMETALLE IM PFLANZLICHEN STOFFWECHSEL

2.5.1 Chelatgestützte Phytoextraktion

Abbildung 2: Kontinuierliches (a) und chelatgestütztes (b) Phytoextraktionsverfahren. Die durchgezogene Linie zeigt die Metallkonzentration im Sproß, die gestrichelte Linie repräsentiert die Sproßbiomasse (nach SALT et al. 1998, verändert).

Bodenlösung haben als das Schwermetall alleine. Somit wird die Aufnahme in die Wurzel und die Translokation in den Sproß wesentlich gesteigert. Die Schwermetalle werden dabei vermutlich als Komplex im Xylemsaft transportiert (BLAYLOCK et al. 1997).

Erkenntnisse über die chelatinduzierte Verlagerungen der Schwermetalle und ihre veränderte Mobilität in verschiedenen Bodenhorizonten, die für eine Bewertung der Anwendbarkeit solcher Phytoextractionsverfahren von großer Bedeutung sind, liegen bisher nicht vor und wurden im Rahmen der vorliegenden Arbeit ausführlich untersucht.
3 MATERIAL UND METHODEN

3.1 PFLANZENMATERIAL

Im Rahmen der vorliegenden Arbeit wurden zum einen Pflanzen untersucht, die bereits in anderen Untersuchungen die Fähigkeit zur Akkumulation von Schwermetallen bewiesen hatten (BUDDENDIEK 1994, KEHL 1994). Ein anderer Teil der Pflanzen gehörte zu Familien, aus denen bereits Pflanzen mit schwermetallakkumulierenden Eigenschaften bekannt waren und deren verbreitetes natürliches Vorkommen auf Äckern und Ruderalfluren, welche zu den häufig schwermetallbelasteten Standorten gehören, einem Einsatz zur Dekontamination entgegenkommen würde.

Abbildung 4: Antirrhinum majus L., Großes Löwenmaul (links) und Centaurea cyanus L., Kornblume (rechts).

Centaurea cyanus L. (Kornblume, Abbildung 4) ist in Südosteuropa beheimatet, gehört zur Familie der Asteraceae (Korbblütler) und kommt vorwiegend in Kornfeldern und auf Schuttfluren vor (SCHMEIL & FITSCHEN 1988).

Chenopodium album L. (Weißer Gänsefuß, Abbildung 5) wird zur Familie der Chenopodiaceae (Gänsefußgewächse) gezählt und tritt formenreich auf Äckern, Schuttplätzen und in Gärten auf. Papaver rhoeas L. (Klatsch-Mohn, Abbildung 5) kommt auf Äckern vor und gehört zur Familie der Papaveraceae (Mohngewächse) (SCHMEIL & FITSCHEN 1988).

arvense L. (Acker-Hellerkraut, Abbildung 6), welches vorwiegend auf Äckern und Ruderalfluren anzutreffen ist, nicht auszuschließen (SCHMEIL & FITSCHEN 1988).

Im Zusammenhang mit Phytoextraktionsverfahren sollte schließlich der landschaftsästhetische Aspekt nicht außer Acht gelassen werden. Da die meisten konventionellen Bodensanierungsverfahren nicht ohne eine zumindest zeitweise Entfernung von Erdreich (zur Deponierung oder ex-situ Reinigung) auskommen (SALT et al. 1998, WENZEL et al. 1999), hat eine Bepflanzung bei gleichzeitiger Reinigung durchaus auch optisch entscheidende Vorteile (SAXENA et al. 1999).

3.2 KEIMVERSUCHE

Versuche zur Keimung bei verschiedenen Schwermetallbelastungen können darüber Aufschluß geben, bei welcher Substratkonzentration eine Aussaat der Samen noch erfolgversprechend ist. Um einen sinnvollen Untersuchungsrahmen abzustecken, wurden daher Keimversuche mit *Z. mays* und *C. cyanus* bei verschiedenen Blei- und Cadmiumkonzentrationen durchgeführt, da diese beiden Spezies durch die Größe ihrer Samen bedingt gut quantifizierbar sind.

Material
- Glaspetri schalen mit Deckel, \varnothing innen = 185 mm
- Meßzylinder, $V = 25$ ml
- Minimum-Maximum-Thermometer
- Rundfilter, Qualität „Schwarzband“, $\varnothing = 185$ mm, Firma Schleicher und Schuell
- Styroporplatten
- Samen von *Centaurea cyanus*, Kornblume, Firma Wagner GmbH
- Cd(NO$_3$)$_2 \times 4$ H$_2$O-Lösungen, β (Cd) = 0, 3, 9, 18, 27, 36, 45, 54 mg/ l, Firma Merck
MATERIAL & METHODEN

• Pb(NO₃)₂-Lösungen, β (Pb) = 0, 100, 300, 600, 900, 1200, 1500, 1800 mg/ l, Firma Merck

Durchführung

Die Petrischalen wurden am Boden mit je zwei Lagen Filterpapier ausgelegt und 15 ml der jeweiligen Schwermetall-Lösung auf das Filterpapier gegeben. Für jedes Schwermetall wurden die o.g. sieben Konzentrationen und je eine Kontroll-Petrischale mit A. bidest. angesetzt. Auf dem Filterpapier wurden je 50 Samen von Z. mays oder 100 von C. cyanus gleichmäßig verteilt. Um größere Temperaturschwankungen zu verhindern wurden die Petrischalen mit Deckel verschlossen auf Styroporplatten in Fensternähe verteilt. Alle Versuche fanden bei etwa 22°C Raumtemperatur statt.

Die aufgelaufenen Samen wurden täglich gezählt und sonstige Beobachtungen protokolliert. Als Kennzeichen des Auflaufens wurde das Auftreten der Keimwurzel gewertet. Wenn die Summe der gekeimten Samen sich nicht mehr erhöhte, wurde der Versuch abgebrochen und von allen Keimlingen die Länge der Keimwurzeln und des Sprosses bestimmt.

3.3 KULTURMETHODEN BEI TOPFVERSUCHEN

3.3.1 Versuche in Sand-Lewatit-Kultur

3.3.1.1 Herstellung des Schwermetall-Lewatits

Der Ionenaustauscher wurde zum Austausch der an ihn gebundenen Kationen mit Schwermetallnitratlösung behandelt.

Material

• Erlenmeyerkolben
• Glaspetrischalen, Durchmesser 185 mm
MATERIAL & METHODEN

- Heizplatte mit Rührwerk, Firma Ikamag, Typ RTC
- Magnetrührstäbe
- Nutsche
- Parafilm
- Trockenschrank
- Unterdruckflasche
- Wasserstrahlpumpe

- \(\text{Cd(NO}_3\text{)}_2 \times 4 \text{H}_2\text{O} \)-Lösungen, \(c(\text{Cd}) = 0,2, 0,5 \text{ und } 1,0 \text{ mol/l} \), Firma Merck
- Lewatit HD 5, 48 h bei 60°C getrocknet, Firma Bayer AG
- \(\text{Pb(NO}_3\text{)}_2 \)-Lösungen, \(c(\text{Pb}) = 0,1, 0,2 \text{ und } 0,5 \text{ mol/l} \), Firma Merck

Durchführung

Um eine möglichst effektive Beladung des Ionenaustauschers mit Schwermetallkationen durchführen zu können, wurden verschieden konzentrierte Lösungen und unterschiedlich lange Behandlungszeiträume getestet.

Das unbehandelte Lewatit HD 5 wurde 48 Stunden bei 60°C im Trockenschrank getrocknet und in Portionen von 100 g in Erlenmeyerkolben eingewogen. Mit je 1000 ml der o.g. Konzentrationen wurde die Lösung jeweils für zwei mal eine und zwei Stunden bei einer mittleren Geschwindigkeit gerührt. Nach dem ersten Rührvorgang wurde die Lösung nach kurzem Absitzen des Ionenaustauschers dekantiert und der Vorgang mit frischer Lösung wiederholt.

<table>
<thead>
<tr>
<th>SM-Salz</th>
<th>Zeit [h]</th>
<th>c(SM-Salz) [mol/l]</th>
<th>pflanzenverfügbare SM-Konzentration [ppm]</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Pb(NO}_3\text{)}_2)</td>
<td>0</td>
<td>0,0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2 x 1</td>
<td>0,2</td>
<td>30219</td>
<td>3885</td>
</tr>
<tr>
<td></td>
<td>2 x 1</td>
<td>0,5</td>
<td>25557</td>
<td>4321</td>
</tr>
<tr>
<td></td>
<td>2 x 1</td>
<td>1,0</td>
<td>18812</td>
<td>8969</td>
</tr>
<tr>
<td></td>
<td>1 + 2</td>
<td>0,2</td>
<td>21471</td>
<td>8875</td>
</tr>
<tr>
<td></td>
<td>2 x 2</td>
<td>0,5</td>
<td>18386</td>
<td>7004</td>
</tr>
<tr>
<td></td>
<td>2 x 2</td>
<td>1,0</td>
<td>25931</td>
<td>10706</td>
</tr>
<tr>
<td>(\text{Cd(NO}_3\text{)}_2 \times 4 \text{H}_2\text{O})</td>
<td>0</td>
<td>0,0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2 x 1</td>
<td>0,2</td>
<td>16842</td>
<td>1397</td>
</tr>
<tr>
<td></td>
<td>2 x 1</td>
<td>0,5</td>
<td>16643</td>
<td>2477</td>
</tr>
<tr>
<td></td>
<td>2 x 2</td>
<td>0,2</td>
<td>14846</td>
<td>2749</td>
</tr>
<tr>
<td></td>
<td>2 x 2</td>
<td>0,5</td>
<td>14502</td>
<td>4053</td>
</tr>
</tbody>
</table>

Tabelle 1: Pflanzenverfügbare Schwermetallgehalte cadmium- und bleibehandelter Lewatitportionen (n=5). Es sind Mittelwert und Standardabweichung (SD) dargestellt. SM = Schwermetall.

Die mittleren pflanzenverfügbaren Blei- und Cadmiumgehalte waren bei zweimal einstündiger Behandlung mit 0,2 molarer Pb(NO₃)₂-bzw. Cd(NO₃)₂·4 H₂O-Lösung mit 30219 mg Blei und 16842 mg Cadmium pro kg Lewatit am höchsten. Mit diesen Herstellungsvarianten wurden größere Mengen Cadmium- und Bleilewatit für die Verwendung in Sand-Kultur-Versuchen hergestellt und mit einem Stichprobenumfang von n = 10 erneut untersucht. Hierbei ergaben sich mittlere pflanzenverfügbare Gehalte von 17741 mg Cadmium und 27698 mg Blei pro kg Lewatit. Diese Analyse-Ergebnisse wurden als Grundlage für die Berechnung der im Versuch einzusetzenden Schwermetall-Lewatit-Mengen verwendet.

3.3.1.2 Herstellung des Kultursubstrates

Quarzsand, Lewatit (als Nährstofflieferant) und Schwermetall-Lewatit wurden gründlich gemischt in Blumentöpfe eingefüllt.

Material
- Baumwollstoff
- Plastik-Blumentöpfe, schwarz, mit Abzugsloch, Öffnungsdurchmesser = 205 mm
- PE-Flaschen, 50 ml
- Waage
- Lewatit HD5, Firma Bayer AG
- Quarzsand, pH 4,7
- Schwermetall-Lewatit (Blei und Cadmium)
Durchführung

<table>
<thead>
<tr>
<th>Behandlungs-Gruppe</th>
<th>ppm Pb</th>
<th>ppm Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>1000</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>40</td>
</tr>
</tbody>
</table>

Tabelle 2: Behandlungsgruppen der Sand-Lewatit-Versuche.

3.3.1.3 Ansetzen der Topfkulturen

Material
- Gartenerde (Anhang)
- Korkbohrer
- Plastik-Blumentöpfe, schwarz, mit Abzugsloch, Öffnungsdurchmesser = 205 mm
- Rollrandgefäße
- Samen von
 - *Antirrhinum majus*, Großes Löwenmaul (Fam. Scrophulariaceae), Firma Wagner GmbH, Saatgutbetrieb
 - *Centaurea cyanus*, Kornblume (Fam. Asteraceae), Firma Wagner GmbH, Saatgutbetrieb
 - *Chenopodium album*, Weißer Gänsefuß (Fam. Chenopodiaceae), gesammelt auf einer Ackerbrache in Zons
MATERIAL & METHODEN

Papaver rhoeas, Klatsch-Mohn (Fam. Papaveraceae), Firma Wagner GmbH, Saatgutbetrieb

Thlaspi arvense, Acker-Hellerkraut (Fam. Brassicaceae), gesammelt auf dem Versuchsgelände hinter den botanischen Instituten der HHU

Viola arvensis, Acker-Stiefmütterchen (Fam. Violaceae), Firma Wagner GmbH, Saatgutbetrieb

Zea mays, „Popkornmais“ (Fam. Poaceae), Firma Grünes Land GmbH

- Trichter

Durchführung

3.3.1.4 Behandlung der Versuchskulturen und Ernte

Material

- Analysenwaage
- Bechergläser
- Exsikkator
- Schere
- Spritzflasche
- Trockenschrank
- Zellstofftücher
MATERIAL & METHODEN

- Blaugel

Durchführung

Die Versuchskulturen standen unter den Regendächern der Versuchsflächen der botanischen Institute der HHU.

Nach der Ernte wurde das im Kulturtopf verbliebene Substrat gründlich homogenisiert. Aus jedem Topf wurden fünf Einzelproben von je etwa 10 g entnommen und zur Aufbewahrung in Rollrandgefäße überführt. Die Proben wurden staubgeschützt luftgetrocknet.

3.3.2 Versuche mit Einzel- und Mischkulturpflanzen in belastetem Ackerboden (1998)

Um die Anwendung der Phytoremediationstechnik bei Freilandböden zu untersuchen, wurden 1998 und 1999 Versuche mit schwermetall-kontaminiert Erde gemacht.

Mit Unterstützung des Umweltamtes der Stadt Hagen, welches eine große Zahl schwermetallbelasteter Flächen verwaltet, konnte ein solches Areal zur Entnahme von Versuchserde und für Freilandexperimente gefunden werden.

Material

- Ackerboden, schwermetallbelastet
- Bechergläser
- Plastik-Blumentöpfe, schwarz, mit Abzugsloch, Öffnungsdurchmesser = 205 mm
- Samen: 3.2.1.3
- Sieb, Maschenweite 2 mm
- Spatel
Durchführung

<table>
<thead>
<tr>
<th>Topf-Nr.</th>
<th>eingesäte Pflanzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 4</td>
<td>keine Pflanzen (Kontrolle)</td>
</tr>
<tr>
<td>5 - 8</td>
<td>Antirrhinum majus</td>
</tr>
<tr>
<td>9 - 12</td>
<td>Centaurea cyanus</td>
</tr>
<tr>
<td>13 - 16</td>
<td>Chenopodium album</td>
</tr>
<tr>
<td>17 - 20</td>
<td>Papaver rhoeas</td>
</tr>
<tr>
<td>21 - 24</td>
<td>Zea mays</td>
</tr>
<tr>
<td>25 - 28</td>
<td>Mischkultur aller sieben Pflanzen</td>
</tr>
<tr>
<td>29 - 32</td>
<td>Thlaspi arvense + Viola arvensis</td>
</tr>
</tbody>
</table>

Tabelle 3: Aufteilung der Versuchsgefäße.

Aus jedem Topf wurden, vor der Aussaat und nach der Ernte der Pflanzen, fünf Bodenproben entnommen und in Bechergläsern staubsicher an der Luft getrocknet. Danach wurde die Feinerde durch ein Sieb der Maschenweite 2 mm vom Bodenskelett getrennt und für die weitere Analytik der Inhaltsstoffe verwendet.
MATERIAL & METHODEN

3.3.3 Versuche zum Chelateinfluß auf Mischkulturpflanzen in belastetem Ackerboden (1999)

Das belastete Substrat aus dem Versuch des Vorjahres (3.3.2) wurde erneut verwendet, um Experimente zur Wirkung verschiedener Chelatoren auf die Phytoremediation durchzuführen.

Material
- Ackerboden, schwermetallbelastet
- Bechergläser
- Plastik-Blumentöpfe, schwarz, mit Abzugsloch, Öffnungsdurchmesser = 205 mm
- Samen: siehe 3.2.1.3
- Sieb, Maschenweite 2 mm
- Spatel
- CDTA (Trans-1,2-Diaminocyclohexan-N,N,N’,N’-tetraessigsäure, Formel), Firma Sigma
- Citrat (HOC(COOH)(CH\textsubscript{2}COOH)\textsubscript{2} x H\textsubscript{2}O x C\textsubscript{6}H\textsubscript{5}O\textsubscript{7} x H\textsubscript{2}O), Firma Roth GmbH
- DTPA (Diethylentriaminpentaessigsäure, C\textsubscript{14}H\textsubscript{23}O\textsubscript{10}), Firma Acros
- EDTA (Ethylendiamintetraessigsäure, C\textsubscript{10}H\textsubscript{16}N\textsubscript{2}O\textsubscript{8}), Firma Acros
- EGTA (Ethylendiamintetraessigsäure, C\textsubscript{14}H\textsubscript{24}N\textsubscript{2}O\textsubscript{10}), Firma Acros
- KOH, Firma Merck

Durchführung

<table>
<thead>
<tr>
<th>Topf-Nr.</th>
<th>Behandlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 4</td>
<td>keine Pflanzen (Kontrolle)</td>
</tr>
<tr>
<td>5, 16, 29, 32</td>
<td>EDTA</td>
</tr>
<tr>
<td>8, 9, 25, 30</td>
<td>EGTA</td>
</tr>
<tr>
<td>10, 17, 18, 26</td>
<td>DTPA</td>
</tr>
<tr>
<td>11, 19, 27, 28</td>
<td>CDTA</td>
</tr>
<tr>
<td>5, 12, 14, 31</td>
<td>Citrat</td>
</tr>
<tr>
<td>6, 7, 13, 20</td>
<td>unbehandelt</td>
</tr>
</tbody>
</table>

Tabelle 4: Behandlung der Mischkulturen.

3.4 KULTURMETHODEN DER FREILANDVERSUCHE

3.4.1 Untersuchungsfläche

Auch die Gehalte anderer Schwermetalle (Cu, Zn, Ni, Cr, Hg, Pb) im Oberboden waren auf der gesamten Ackerfläche etwa zehn mal höher als übliche Hintergrunddaten (SCHRAMMECK & VIERECK 1997). Auf den beiden für die Untersuchung abgesteckten Teilflächen waren, außer dem Cadmiumgehalt, die Konzentrationen von Blei und Zink wesentlich erhöht. Diese drei Schwermetalle wurden daher für die Untersuchung ausgewählt. Das Areal soll zukünftig als nicht öffentlich zugängliche Waldersatzfläche mit Esche und Erle aufgeforstet werden (SCHRAMMECK & VIERECK 1997, Abbildung 8).

Bei der Entnahme von Bodenproben auf der schwermetallbelasteten Ackerfläche in Hagen-Vorhalle stellte sich heraus, daß unterhalb einer Bodentiefe von 50 cm das Substrat durch eine Ton- und Schlackeschicht nach unten begrenzt wurde. Das fand auch in dem über die Fläche verfaßten Gutachten Erwähnung (SCHRAMMECK & VIERECK 1997). Es konnte also angenommen werden, daß sich die auf die Bodenoberfläche aufgebrachte Flüssigkeit, im Wesentlichen in den obersten 50 cm des Erdreichs verteile. Bei der Berechnung der EDTA-Dosis pro m² wurde außer dieser Bodeneigenschaft die ermittelte durchschnittliche Lagerungsdichte von 1,3 kg/ l als Grundlage herangezogen.
3.4.2 Versuchspflanzen in Mischkultur (1999)

Unter Berücksichtigung der Ergebnisse aus den Topfversuchen mit schwermetallbelasteter Erde wurde in der Vegetationsperiode 1999 ein Freilandversuch auf dem kontaminierten Acker in Hagen-Vorhalle durchgeführt, um die Anwendbarkeit des Phytoremediationsansatzes im Feldmaßstab zu untersuchen.

Material

- Bambusstäbe
- Bodenbohrer, Innendurchmesser 13 mm
- Erdfräse
- Gartenband
- Gartenwerkzeug (Hacke, Handschuhe, Rechen, Schaufel)
- Holzpflöcke
- Maschendrahtzaun
- Maßband
- PE-Flaschen, 50 ml, 5 l und 10 l
- Spatel
- Vogelschutznetze
- Waage
- EDTA (Ethylendiamintetraessigsäure, C_{10}H_{16}N_{2}O_{8}), Firma Acros
- KOH, Firma Merck

Durchführung

Auf der vorbereiteten Fläche wurden drei Areale der Größe 3 m x 4 m ausgemessen und abgesteckt (Abbildung 9). Jede Einzelfläche wurde quadratmeterweise mit Hilfe von Bambusstäben und Gartenband abgesteckt.

Auf jedem m² wurde mittels eines Bodenbohrers ein Bohrkern der oberen 50 cm des Bodenprofils entnommen und der Profilbereich zwischen 0 und 10 cm sowie zwischen 40 und 50 cm als Probe entnommen, mit einem Spatel in PE-Flaschen überführt und staub sicher an der Luft getrocknet.

Die Aussaat fand an den folgenden Terminen statt:

- Fläche I 29. Mai 1999
- Fläche IIa und IIb 6. Juni 1999
- Fläche IIIa und IIIb 14. Juni 1999

MATERIAL & METHODEN

- Fläche I Kontrolle
- Fläche IIa 10 mmol EDTA/ kg Boden
- Fläche IIb 5 mmol EDTA/ kg Boden
- Fläche IIIa 2 mmol EDTA/ kg Boden
- Fläche IIIb 1 mmol EDTA/ kg Boden

Abbildung 10: Abgestecktes, gerodetes Versuchsareal (links) und durch Schutznetze gesicherte Teilfläche I, II und III (rechts, von oben nach unten) nach Aussaat der Pflanzen.

3.4.3 Versuche mit Symphytum officinale (1999)

MATERIAL & METHODEN

Chelatbildner EDTA behandelt, um die Möglichkeit einer chelatgestützten Phytoremediation bei dieser Spezies zu untersuchen.

Material
- Bodenbohrer, Innendurchmesser 13 mm
- Gartenband
- Holzpflöcke
- Maschendrahtzaun
- Maßband
- PE-Flaschen, 50 ml, 5 l und 10 l
- Spatel
- Waage
- EDTA (Ethylendiamintetraessigsäure, C_{10}H_{16}N_{2}O_{8}), Firma Acros
- KOH, Firma Merck

Durchführung

3.4.4 Mais in Monokultur (2000)
Da außer Mais in Mischkultur alle Pflanzen nach der EDTA-Behandlung abstarben, wurde der Mais in Monokultur weiter untersucht. Außerdem sollte in den nachfolgenden Freilandversuchen der Effekt geringerer EDTA-Konzentrationen für den Phytoremediationsansatz getestet werden.
Auf der schwermetallbelasteten Ackerfläche in Hagen-Vorhalle stand dafür 2000 ein anderes Teilstück des Areals auf dem mit D bezeichneten Teilstück (Abbildung 8) zur Verfügung.

Material
siehe 3.4.1

Durchführung

Am 1. November 2000 wurden die Pflanzen nach Organen getrennt beprobt. Je ein Viertel der Versuchsfläche wurde mit 0,1; 0,3 und 0,5 mmol EDTA/ kg Boden behandelt. Ein weiteres Viertel blieb als Kontrolle unbehandelt. Die EDTA-Lösungen wurden in einem Volumen von 1 l pro m² verabreicht.

3.5 LABORUNTERSUCHUNGEN

3.5.1 Bestimmung der Lagerungsdichte von Freiland-Böden

Damit eine Berechnung der einzusetzenden EDTA-Menge bezogen auf das Bodenvolumen erfolgen konnte, wurde die durchschnittliche Lagerungsdichte des Ackerbodens bestimmt.

Material
- Meßzyylinder, V=2000 ml
- Oberschalenwaage, Typ GS, Firma Kern, Max. 3200 g, Ablesegenauigkeit 0,01 g
Durchführung
Mischproben aus dem gesamten für eine Behandlung in Frage kommenden Bodenprofil wurden in einen Meßzylinder gefüllt. Aus der Masse und dem Volumen der Proben konnte die Lagerungsdichte bestimmt werden.

3.5.2 Bestimmung von pH-Werten

Material
- Dispensette, 50 ml
- Oberschalenwaage, Typ GS, Firma Kern, Max. 3200 g, Ablesegenauigkeit 0,01 g
- PE-Flaschen, 100 ml
- pH-Meter, Typ Digitalmeter Digi 610, Firma WTW, Weilheim
- Schüttler, Firma Ika-Werk
- Sieb, Maschenweite 2 mm

Durchführung

3.5.3 Mineralstoffanalytik
Alle Gefäße und Geräte für die Ermittlung von Kationengehalten wurden vor ihrer Verwendung einmal mit 10 %iger HNO₃ und zwei Mal bei 60°C mit A. demin. gespült (Laborspülmaschine) und anschließend im Trockenschrank getrocknet, um eventuell anhaftende Ionen so quantitativ wie möglich zu entfernen. Die zur Ermittlung von Phosphatgehalten benutzten Laborgefäße wurden zweimal bei 60°C mit A. demin. gesäubert.
3.5.3.1 Pflanzenverfügbare Kationen in Erde oder Sand

Die pflanzenverfügbaren Kationen der Substratproben müssen für ihre Bestimmung mit einem Ammoniumacetat-Auszug in Lösung gebracht werden.

Material
- Blauband Faltenfilter, Firma Schleicher & Schuell
- Gefrierschrank
- PE-Flaschen, 50 und 100 ml
- PE-Trichter, Fassungsvermögen 50 ml
- Schüttler, Firma Ika-Werk
- Sieb, Maschenweite 2 mm

- NH$_4$-Acetat-Lösung, $c = 1$ mol/l, NH$_4$-Acetat von Merck

Durchführung

Die Erde wurde zunächst mit einem Sieb der Maschenweite 2 mm vom Bodenskelett befreit. Etwa 5 g Feinerde oder Sand wurden in PE-Flaschen eingewogen, der genaue Wert notiert und pro Flasche 50 ml NH$_4$-Acetat-Lösung hinzugefügt. Für alle Messungen wurden zwei Blindproben angesetzt. Die Flaschen wurden zwei Stunden bei mittlerer Frequenz maschinell geschüttelt und die Suspension über Faltenfilter abfiltriert. Konnte die Messung des Elementgehaltes nicht sofort erfolgen, wurden die Extrakte bei -25°C aufbewahrt und einen Tag vor der Messung bei Raumtemperatur aufgetaut.

3.5.3.2 Kationen in Pflanzenmaterial und Gesamtschwermetallgehalte von Substrat

Da Kationen in Pflanzenmaterial innerhalb der Zelle größtenteils als Salze organischer Säuren vorliegen, muß das Pflanzenmaterial vollständig oxidiert werden, um diese in Lösung zu bringen. Auch der größte Teil der Kationen im Substrat ist in Verbindungen festgelegt, die nur durch eine vollständige Oxidation in Lösung gebracht werden können. Dies ist mittels eines sauren Aufschlusses mit konzentrierter Salpetersäure möglich.
MATERIAL & METHODEN

Material
- Analysenwaage, Typ MC 210 S, Firma Sartorius, Max. 210 g, Ablesegenauigkeit 0,01 mg
- Blauband Faltenfilter, Firma Schleicher & Schuell
- Exsikkator
- Glaskolben, 50 ml
- Kugelmühle, Typ Dangoumill 300, Firma Prolabo
- PE-Trichter
- Rollrandgefäße
- Teflon-Druckbomben
- Trockenschrank
- Blaugel
- HNO$_3$, 65 %-ig, Firma Merck
- Referenzmaterial Nr.107 und 304, Firma Winopal, Hannover

Durchführung
3.5.3.3 Messung von Kationengehalten am Atom-Absorptions-Spektrometer (AAS)

Der pflanzenverfügbare Kationengehalt der Sand- und Feinerdeproben wurde in einem Ammoniumacetat-Auszug, die Kationengesamtgehalte im Pflanzenmaterial und Erde nach einem Aufschluß in konzentrierter Salpetersäure an einem Atom-Absorptions-Spektrometer (AAS) ermittelt.

Material

- Atom-Absorptions-Spektrophotometer, Typ 2280 und Analyst 100, Firma Perkin-Elmer
- PE-Flaschen, 100 ml
- Elementstandard-Stammlösungen für Pb, Cd, K, Ca, Mg, Fe, Mn und Zn, β (Kation) = 1000 ppm, Firma Merck
- NH₄-Acetat-Lösung, c = 1 mol/l, NH₄-Acetat (C₂H₇NO₂), Firma Merck
- HNO₃, 3,9 %-ig, verdünnt aus 65%iger, Merck

3.5.3.4 Phosphatbestimmung von Pflanzenmaterial

Nach Anfärben mit Molybdänblau konnten die Phosphatgehalte der Pflanzenextrakte bei einer Wellenlänge von 600 nm photometrisch als Phosphorpentoxid (P$_2$O$_5$) bestimmt werden. Die aus der Kalibration resultierende Regressionsgerade wurde zur Berechnung der Phosphatkonzentration herangezogen.

Material

- Meßkolben, 100 ml
- Photometer, Typ 8452 A, Firma Hewlett Packard
- Reagengläser
- Vibrofix, Firma Ika-Werk
- Wasserbad
- Ammoniummolybdatlösung: β((NH$_4$)$_7$MoO$_{24}$ * 4 H$_2$O, Firma Acros) = 2,5 g/ 100 ml
- Ascorbinsäurelösung, β(Ascorbinsäure, Firma Roth) = 10 g/ 100 ml
- Nachweisreagens: Wird unmittelbar vor der Verwendung angesetzt:
 1 Teil Ammoniummolybdatlösung (2,5 g/ 100 ml) und
 1 Teil Ascorbinsäurelösung (10 g/ 100 ml)
 1 Teil H$_2$SO$_4$ (3 mol/ l), Firma Merck
 2 Teile A. bidest.
- Phosphat-Stammlösung, β(Phosphat) = 1000 ppm, KH$_2$PO$_4$ von Merck
- HNO$_3$-Lösung (3,9 %), aus 65%iger verdünnt, Firma Merck
- H$_2$SO$_4$-Lösung (3 mol/ l), aus 95%iger verdünnt, Firma Merck

Durchführung:

Aus der Phosphat-Stammlösung (1000 ppm) wurden Standards der Konzentrationen 0, 2, 4, 8, 12 und 20 ppm angesetzt. Je 1 ml Probe (Salpetersäure-Aufschlüsse von Pflanzenmaterial) oder Standard und 3 ml A. bidest. wurden in Reagengläser pipettiert und 4 ml Nachweisreagens hinzugegeben. Nach gründlichem Mischen wurden die Ansätze für 2 Stunden bei 37°C in einem Wasserbad inkubiert, dann erneut gemischt, auf Zimmertemperatur abgekühlt und bei 600 nm am Photometer gegen den Blindwert gemessen. Dieser wurde in regelmäßigen Abständen neu bestimmt, da der Farbstoffkomplex mit der Zeit seine Extinktion verändert.
3.5.3.5 Bestimmung des Phosphatgehaltes von Bodenproben

Material

- Analysenwaage, Typ MC 210 S, Firma Sartorius, Max. 210 g, Ablesegenaugigkeit 0,01 mg
- Blauband Faltenfilter, Firma Macherey Nagel
- Dispensette, 50 ml
- Einwegküvetten, 10 mm Kantenlänge, Firma Ratiolab
- Exsikkator
- Heizplatte mit Rührwerk, Firma Ika Labortechnik
- Kreis-Schüttler, Typ KS 50, Firma Ika Labortechnik
- Laborspülmaschine
- PE-Flaschen, 100 ml
- PE-Trichter, Fassungsvermögen 100 ml
- Photometer, Typ 8452 A, Firma Hewlett Packard
- Reagenzgläser
- Thermometer
- Trichter, 100 ml Fassungsvermögen
- Vibrofix, Firma Ika-Werk

- **Ammoniummolybdatlösung**: 50 g Ammoniumheptamolybdat ($\text{NH}_4\text{Mo}_7\text{O}_{24} \times 4 \text{H}_2\text{O}$, Firma Merck) wurden in etwa 800 ml A. bidest. bei etwa 50°C gelöst und nach dem Erkalten mit A. bidest. ad 1 l aufgefüllt. Die Lösung ist mehrere Wochen haltbar.
- **CAL-Vorratslösung**: 77,0 g Calciumlactat ($\text{C}_6\text{H}_{10}\text{CaO}_6 \times 5 \text{H}_2\text{O}$, zur Bodenuntersuchung, Firma Merck) und 39,5 g Calciumacetat ($\text{(CH}_3\text{COO})_2\text{Ca} \times 0,5 \text{H}_2\text{O}$, zur Bodenuntersuchung, Firma Merck, zwei Tage im Exsikkator getrocknet) wurden in je 300 ml heißem A. bidest. gelöst und beide Lösungen noch heiß vereinigt.
Nach dem Abkühlen auf Zimmertemperatur wurden 89,5 ml Essigsäure (ρ = 1,05 kg/ l, Riedel de Haën) hinzugefügt und die Lösung ad 1 l mit A. bidest. aufgefüllt.

- **CAL-Gebrauchslösung:** Die CAL-Vorratslösung wurde 1 : 5 mit A. bidest. verdünnt.
- **Reduktionslösung:** 1,25 g L (+) Ascorbinsäure (Firma Roth GmbH) und 350 mg Zinn(II)-chlorid (SnCl₂·2H₂O, Firma Merck) werden in 50 ml Salzsäure (37 %-ig, Firma Riedel de Haën) gelöst und ad 100 ml mit A. bidest. aufgefüllt.
- **Standard-Vorratslösung:** 3,835 g Kaliumdihydrogenphosphat (KH₂PO₄, Firma Merck) und 5,815 g Kaliumchlorid (KCl, Firma Janssen) wurden ad 1 l mit A. bidest. aufgefüllt. Die Lösung enthielt 2,0 mg P₂O₅ und 5,0 mg K₂O pro ml.
- **Standard-Gebrauchslösung:** 50 ml der Standard-Vorratslösung werden mit A. bidest. auf 1 l aufgefüllt. 1 ml dieser Lösung enthält 100 µg P₂O₅ und 250 µg K₂O.

Durchführung:

0; 1; 2,5; 5; 10; 15; 20; 25; 30 und 35 ml Standard-Gebrauchslösung wurden als Doppelansätze in 250 ml-Meßkolben mit je 20 ml CAL-Vorratslösung versetzt und mit A. bidest. ad 250 ml aufgefüllt. 10 ml jeder Lösung enthielten 0, 4, 10, 20, 40, 60, 80, 100, 120 und 140 µg P₂O₅ und entsprachen 0, 2, 5, 10, 20, 30, 40, 50, 60 und 70 mg P₂O₅/ 100 g Boden.

Ca. 2,5 g luftgetrocknete Feinerde wurden in PE-Flaschen eingewogen und der genaue Wert notiert. Außerdem wurden zwei Blindproben angesetzt. Jeder eingewogenen Bodenportion wurde 50 ml CAL-Gebrauchslösung zugefügt und die Flaschen fest verschlossen 90 min maschinell geschüttelt.

Das Bodenextrakt wurde über Faltenfilter abfiltriert und dabei die ersten 5 bis 10 ml in Reagenzgläsern gesammelt und verworfen.

Zu je 5 ml Filtrat oder Standard wurden 7,5 ml Wasser, 0,5 ml Ammoniummolybdatlösung und 0,5 ml Reduktionslösung pipettiert und die Proben gut gemischt.

Lagen die Meßwerte der Proben nicht mehr im linearen Bereich der Standardgeraden, wurde das entsprechend verdünnte Filtrat erneut mit Ammoniummolybdat- und Reduktionslösung versetzt und die photometrische Messung wiederholt.
3.5.4 Bestimmung der EDTA-bedingten Schwermetallauswaschung aus dem Bodenprofil

Material

- Kfz-Ölfilterzange
- Kunststoffhammer
- Laborklemmen
- Meßkolben, 100 ml
- Muffen
- PE-Rohre, DIN 4102, 8 Stück, l = 105,5 cm, ∅ = 50 mm
- PE-Trichter, Fassungsvermögen 100 ml
- Standzylinder, V = 250 ml
- Stativstangen
- Zollstock

- EDTA (Ethylendiamintetraessigsäure, C_{10}H_{18}N_2O_8), Firma Acros
- KOH, Firma Merck

Durchführung

MATERIAL & METHODEN

<table>
<thead>
<tr>
<th>Monat</th>
<th>langjähriges Niederschlagsmittel [mm] = [l/ m²]</th>
<th>V(H₂O)/Rohr [ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oktober</td>
<td>61,9</td>
<td>121</td>
</tr>
<tr>
<td>November</td>
<td>77,9</td>
<td>153</td>
</tr>
<tr>
<td>Dezember</td>
<td>89,5</td>
<td>176</td>
</tr>
<tr>
<td>Januar</td>
<td>78,2</td>
<td>153</td>
</tr>
<tr>
<td>Februar</td>
<td>57,9</td>
<td>114</td>
</tr>
<tr>
<td>März</td>
<td>71,9</td>
<td>141</td>
</tr>
</tbody>
</table>

Tabelle 5: Langjähriges Niederschlagsmittel in Hagen-Fley (NITZSCHKE et al. 2000) und aufgetragenes Wasservolumen (Ø = 50 mm, A = 1962,5 mm²). Das Oktobervolumen wurde für den Versuch verdoppelt.

Abbildung 11: Entnahme von Profilsegmenten auf der Versuchsfläche in Hagen (links) und in PE-Rohren aufgenommene Profilsegmente während des Elutionsversuchs (rechts).

berechnet. Die EDTA-Lösung wurde in einem Volumen entsprechend 10 l/m² von oben auf
die Bodensäulen gegeben.

Den meteorologischen Daten der Wetterstation Hagen-Fley konnten langjährige monatliche
Mittel der regional üblichen Niederschläge entnommen werden (NITZSCHKE et al. 2000 und
2001). Das Mittel der Monate Oktober bis März wurde auf den Querschnitt der PE-Rohre
bezogen. Als Erntemonat wurde der Oktober angenommen und als ungewöhnlich hoher
Niederschlagswert das doppelte langjährige Mittel angenommen. Für alle anderen Monate
wurde das langjährige Mittel verwendet. Es wurde Leitungswasser benutzt und nach Zugabe
des entsprechenden Volumens jeweils etwa über sieben bis neun Tage die austretende
Flüssigkeitsmenge im Standzylinder gesammelt. Das Volumen wurde protokolliert und die
Flüssigkeit bis zur Bestimmung von EDTA- und Schwermetallgehalt im Kühlschrank
aufbewahrt.

3.5.5 Bestimmung von EDTA
Die Bestimmung der EDTA-Konzentration wurde nach einer von FLASCHKA (1959)
vorgeschlagenen Methode durchgeführt. Diese beruht darauf, daß EDTA mit Chrom sehr
stabile Komplexe bildet, die nach Erhitzen eine bestimmte, zu der EDTA-Konzentra-
 tion proportionale Farbe annehmen und sich dann photometrisch bestimmen lassen.

Material
- Blauband Faltenfilter, Firma Macherey Nagel
- PE-Trichter, Fassungsvermögen 100 ml
- Photometer, Typ 8452 A, Firma Hewlett-Packard
- Reagenzgläser mit Schraubverschluß
- Trockenschrank
- Vibrofix, Firma Ika-Werk
- Cr(NO₃)₃-Lösung, c = 0,1 mmol/ l, pH 3 bis 4, Chromnitrat von Firma Merck
- EDTA (Ethylendiamintetraessigsäure, C₁₀H₁₈N₂O₈), Firma Acros
- HCl, 37 %ig zur pH-Einstellung, Firma Merck

Durchführung
Die beim EDTA-Auswaschungsversuch (3.4.4) aus den PE-Rohren ausgetretene Lösung
wurde mit Faltenfiltern filtriert. Es wurden Standardlösungen mit Konzentrationen bis 1000

3.6 Statistische Methoden

Um Relationen zweier Wertegruppen zu untersuchen, wurden deren Korrelationen berechnet und mit einem Tabellenwert verglichen (KELLER 1982). Für alle Berechnungen lag die gewählte Irrtumswahrscheinlichkeit bei 5 %.

43
4 ERGEBNISSE UND DISKUSSION

4.1 KEIMVERSUCHE

Um Erkenntnisse über die Keimfähigkeit der ausgewählten Pflanzen unter dem Einfluß verschiedener Blei- und Cadmiumkonzentrationen zu gewinnen, wurde ihre Keimungsrate und die Entwicklung von Keimwurzel und Keimblatt untersucht.

4.1.1 Keimungsrate

Die Keimungsraten bei den Bleikonzentrationen 0, 100 und 300 ppm lagen relativ dicht zusammen (66 bis 85 %), während am Versuchsende die nächsthöhere Konzentration (600 ppm Blei) eine 25 % geringere Keimung zeigte. Bei *C. cyanus* und *Z. mays* war der Einfluss der verschieden konzentrierten Bleiösungen auf die Keimungsrate geringer als bei *A. majus*. Unterschiedliche Keimungsraten der verschiedenen Versuchsansätze zeigten sich bei *C. cyanus* und *Z. mays* ab Tag zwei. Es entwickelte sich jedoch keine konzentrationsabhängige Abfolge der Keimungsraten, die wie bei *A. majus* umgekehrt proportional zu der Versuchskonzentration war. Bei *C. cyanus* war der prozentuale Anteil der gekeimten Samen am letzten Beobachtungstag sogar beim Kontrollansatz von allen Versuchskonzentrationen am geringsten.

4.1.2 Wurzel- und Sproßlängen

Für eine weitere Bewertung des Schwermetalleinflusses wurden am Ende des Versuchszeitraumes die **Längen von Wurzel und Sproß** bei allen aufgelaufenen Samen von *C. cyanus* und *Z. mays* bestimmt (Abbildung 14).
Tabelle 6: Mittlere relative Wurzel- und Sproßlänge von *Z. mays* und *C. cyanus* in % der Mittelwerte der Kontrolle.

<table>
<thead>
<tr>
<th>Schwermetall</th>
<th>Pflanze</th>
<th>Zea mays</th>
<th>Centaurea cyanus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppm</td>
<td>Keimblatt</td>
<td>Keimwurzel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Cd</td>
<td>0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>106,5</td>
<td>80,3</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>110,7</td>
<td>54,3</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>146,2</td>
<td>54,0</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>117,8</td>
<td>32,5</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>88,0</td>
<td>32,0</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>117,2</td>
<td>30,7</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>68,0</td>
<td>27,2</td>
</tr>
<tr>
<td>Pb</td>
<td>0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>46,6</td>
<td>95,4</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>42,7</td>
<td>80,9</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>23,3</td>
<td>49,8</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>66,0</td>
<td>34,5</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>31,1</td>
<td>24,6</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>39,8</td>
<td>23,7</td>
</tr>
<tr>
<td></td>
<td>1800</td>
<td>40,8</td>
<td>22,2</td>
</tr>
</tbody>
</table>

Die Keimlinge von *A. majus* wurden aufgrund ihrer geringen Größe nicht ausgemessen.

Tabelle 6 illustriert die relativen mittleren Längen der Wurzel und Sprosse bezogen auf den Mittelwert der Kontrolle. Die mittleren Wurzellängen zeigten eine größere Variation und Wertestreuung sowie eine stärkere relative schwermetallinduzierte Reduktion als die durchschnittlichen Sproßlängen. Die prozentuale Abnahme der mittleren Wurzel- und Sproßlängen war unter Bleieinfluß stärker, als durch die Cadmiumbehandlung. Bei fast allen Versuchsansätzen war die mittlere Keimwurzel-Länge (1,5 bis 46,0 mm) größer, als die durchschnittliche Länge des Keimblattes (2,4 bis 14,4 mm). Die größte mittlere Keimwurzel-Länge wurde von *Z. mays* in einem Kontrollansatz erreicht (46,0 mm). Die geringste durchschnittliche Wurzellänge wurde bei *C. cyanus* unter dem Einfluß des am höchsten konzentrierten Blei-Versuchs-Ansatzes (1,5 mm) festgestellt.

Unter dem Einfluß verschiedener Cadmiumkonzentrationen zeigten die mittleren Keimblattlängen von *C. cyanus* keine signifikanten Unterschiede. Blei verursachte hauptsächlich signifikante Differenzen der mittleren Keimblattlängen bei 0 bis 900 ppm zu den höheren Konzentrationen.

4.1.3 Diskussion

Die prozentuale Keimungsrate von C. cyanus überschritt 70 % bei keiner der eingesetzten Konzentrationen, zeigte aber weder eine deutliche Reduktion der Keimfähigkeit durch die Schwermetalle noch einen Bezug zur Schwermetalkonzentration. Auch BUDDENDIEK (1994) konnte bei Keimversuchen mit C. cyanus bei verschiedenen Zinkkonzentrationen keine Keimungsrate von 100 % feststellen. Selbst die der unbelasteten Kontrollpflanzen lag bei dieser Untersuchung unterhalb von 85 %.

Einen deutlich umgekehrt zur Schwermetalkonzentration gestaffelten prozentualen Anteil der Keimungsrate zeigte A. majus nach dem dritten Versuchstag. Eine starke Hemmung setzte bei Schwermetalkonzentrationen ab 600 ppm Blei oder 18 ppm Cadmium ein.

mmol/l) feststellen konnten, wurden durch die hier beschriebenen Versuche demnach nicht bestätigt.

Schlußfolgerung

Da die deutlich unter 100 % liegende Keimfähigkeit aller *C. cyanus*-Samen möglicherweise auf eine schlechte Saatgut-Qualität zurückzuführen war, ist anzunehmen, daß *Z. mays* bei der Keimung auf blei- oder cadmiumkontaminierten Böden gegenüber der Kornblume zumindest in der frühen Entwicklung der Pflanze keinen entscheidenden Standortvorteil hätte. Dem Versuchsergebnis entsprechend dürfte hingegen von *A. majus* bei pflanzenverfügbaren Schwermetallkonzentrationen oberhalb von 1500 ppm Blei und 45 ppm Cadmium kaum noch eine nennenswerte Population heranwachsen.

Da die Elongation der Keimwurzeln deutlich schwermetallsensitiver reagierte als die der Keimblätter, konnte ihre relative Reduktion im Vergleich zur Länge der Kontrollwurzeln als Maß für die Vitalität von Keimlingen in schwermetallbelastetem Substrat und für die Abschätzung der Konzentrationsbereiche weiterführender Versuche herangezogen werden. Die Konzentrationen, bei denen etwa eine Halbierung der Keimwurzellänge eintrat, wurden nachfolgend als mittlerer Belastungsbereich für die Sandkulturversuche herangezogen. Eine solche Reduktion wurde bei 500 bis 600 ppm Blei oder 15 bis 20 ppm Cadmium erreicht. Die Maiskeimlinge reagierten hier jeweils etwas unempfindlicher. Die Schwermetall-Konzentrationsstufen für die Sandkulturversuche wurden folglich auf 500 und 1000 ppm Blei sowie 20 und 40 ppm Cadmium festgelegt.
4.2 Topfkultur-Versuche mit schwermetallbelastetem Sand-Lewatit-Substrat (1998)

Die Versuche mit diesem standardisierten Kultursystem sollten vergleichende Aussagen über die Dekontaminationsleistung der Versuchspflanzen ermöglichen, um diese im Hinblick auf den späteren Einsatz im Freiland bewerten zu können. Die in den Versuchen eingesetzten Samen der sieben Versuchspflanzen enthielten keine nachweisbaren Blei- oder Cadmiummengen.

4.2.1 Morphologische Beobachtungen

4.2.2 Überlebensrate

Abbildung 15 zeigt die prozentuale Überlebensrate der vier untersuchten Taxa im Sand-Lewatit-Kultur-Versuch zum Erntezeitpunkt. Alle Spezies wiesen unterschiedliche Überlebensraten zwischen 25 und 100 % auf.

Von *A. majus* überlebte keine Pflanze die Cadmiummonobelastungen, die *C. cyanus*-Pflanzen die Cadmiummonobelastung nicht in der höheren Konzentration (40 ppm). Die höchsten relativen Anteile überlebender Pflanzen zeigte *C. album*. Hier konnten alle eingesetzten Individuen lebend geerntet werden. Bei den anderen drei Pflanzenarten waren die Überlebensraten bei allen Behandlungen geringer als 100 %. Bei *A. majus* bewirkten beide Schwermetall-Kombinationsbelastungen eine starke Reduzierung der überlebenden Individuen auf 56,3 %. Die Kontrolle und die Monobleibelastungen wurden etwas weniger stark dezimiert (62,5 bis 81,3 %). Bei *C. cyanus* überlebten selbst ohne Schwermetallbelastung nur 25,0 %. Die beiden Schwermetall-Belastungskombinationen führten zu 37,5- und 68,8-prozentiger Überlebensrate. Hingegen erreichten die Blei- und Cadmiummonobelastungen Werte um die 90 %. Bei *Z. mays* zeigten die unbelasteten Versuchsansätze eine Überlebensrate von 93,8 %. Mit Ausnahme der 500 ppm Blei-Monobelastung (75,0 % Überlebensrate) lag der relative Anteil der übrigen überlebenden Individuen bei 25,0 bis 43,8 %.

4.2.3 Biomasse

4.2.4 Ionengehalte

4.2.4.1 Schwermetalle

Abbildung 17 zeigt vergleichend die mittleren Bleigehalte der Wurzeln und Sprosse von A. majus, C. cyanus, C. album und Z. mays.

C. cyanus hatte die höchsten Bleisproßgehalte (zwischen 100 und 1074 ppm) gefolgt von Z. mays (42 bis 646 ppm) und A. majus (zwischen 26 und 509 ppm). Die niedrigsten durchschnittlichen Bleigehalte im Sproß wies C. album auf (zwischen 26 und 191 ppm).

Abbildung 18 zeigt die mittleren Cadmiumgehalte der Wurzeln und Sprosse der vier Arten im Vergleich. Die Wurzeln enthielten bei einer stärkeren Streuung überwiegend bei allen Taxa deutlich höhere mittlere Cadmiumgehalte (0,9 bis 91,4 ppm) als die oberirdischen Pflanzenteile (0,4 bis 91,4 ppm). Z. mays zeigt die höchsten mittleren Wurzelcadmiumgehalte (bis zu 207,0 ppm) gefolgt von C. album (bis 202,2 ppm), C. cyanus (höchstens 156,1 ppm) und A. majus (maximal 112,3 ppm).

C. cyanus wies die höchsten mittleren Sproßcadmiumgehalte auf (maximal 91,4 ppm). Die durchschnittlichen Cadmiumgehalte in den oberirdischen Pflanzenteilen von Z. mays waren etwas geringer (bis 75,8 ppm), während die Cadmiumgehalte in den Sprossen von A. majus und C. album (bis 37,1 und 32,0 ppm) deutlich darunter lagen.

Auch alle nicht cadmiumbehandelten Versuchsansätze wiesen in der pflanzlichen Biomasse meßbare Cadmiumkonzentrationen auf. Im Falle der niedrigeren Bleimonobelastung überstieg dieser in der Wurzel sogar den Cadmiumgehalt der bei der niedrigen Doppel-Schwermetall-Belastung erreicht wurde.

4.2.4.2 Nährstoffionen

Außer den Magnesiumgehalten der Sprosse von *A. majus* unter dem Einfluß beider Schwermetalldoppelbelastungen unterschieden sich alle anderen Versuchsansätze signifikant untereinander.

Z. mays und A. majus erreichten im Vergleich deutlich höhere mittlere Wurzelspitzenwerte (797,3 und 763,8 ppm Zn) als C. album (155,7 ppm) und C. cyanus (132,7 ppm). C. cyanus hatte jedoch mit durchschnittlich 427,1 ppm Zink von allen vier untersuchten Taxa den höchsten Sproßmaximalwert. Es folgten A. majus (294,4 ppm) und Z. mays (297,4 ppm). Deutlich niedrigere Werte wurden von C. album erreicht (bis zu 77,8 ppm Zn).

Bei der niedrigen Bleimonobelastung und der Kontrollgruppe, zwischen denen ebenfalls ein statistisch belegbarer Unterschied bestand, zeigte A. majus signifikant höhere mittlere Wurzelzinkgehalte als unter den anderen Versuchsbedingungen.

Bei den durchschnittlichen Zinkgehalten der A. majus-Sprosse war der Meßwert bei 500 ppm Bleimonobelastung etwa sechs mal so groß, wie bei den anderen Versuchsgruppen. Dieser Unterschied war mit den verwendeten statistischen Methoden erfaßbar.

Bei C. album bestand ein signifikanter Unterschied zwischen den Zinkgehalten der Sprosse im unbelasteten Kultursubstrat und bei der hohen Bleimonobelastung.

ERGEBNISSE & DISKUSSION

Die höchsten durchschnittlichen Sproßmangangehalte wurden bei *C. cyanus* gemessen (26,2 bis 223,8 ppm). Die Kontrollpflanzen zeigten einen signifikant höheren Mangangehalt im Sproß als beide Monobleibehandlungen. Die *Z. mays*-Sprosse zeigten im Artvergleich die zweithöchsten Mangan-Spitzenwerte (bis 120,0 ppm).

Die niedrigsten mittleren Sproßmangangehalte wurden bei *A. majus* (35,2 bis 86,4 ppm) und *C. album* ermittelt, welches wie bei den Wurzelgehalten verglichen mit den übrigen drei Spezies, die niedrigsten, aber auch homogensten Mangankonzentrationen aufwies. Bei *A. majus* konnten die mit 500/0 ppm behandelten Pflanzen signifikant mehr Mangan im Sproß anreichern als die mit 1000/40 ppm Pb/Cd behandelten Pflanzen.

Z. mays erreichte von allen vier Taxa die höchsten mittleren Phosphatgehalte im Sproß (8867 bis 14227 ppm P$_2$O$_5$) gefolgt von *C. album* (7423 bis 9055 ppm) und *C. cyanus* (1381 bis 8146 ppm). *A. majus* erreichte die geringsten mittleren Sproßphosphatgehalte (3095 bis 4955 ppm). Bei *A. majus* war der bei der Kontrollbehandlung und den mit 500/0 ppm Pb/Cd behandelten Pflanzen gemessene Phosphatgehalt im Sproß signifikant höher als bei den anderen Versuchsgruppen. Bei *C. cyanus* war der durchschnittliche Sproßphosphatgehalt der mit der niedrigen Bleimonobelastung kultivierten Pflanzen im Vergleich zur Kontrolle deutlich reduziert.

4.2.5 Schwermetalle im Kultursubstrat

In Abbildung 26 sind die absoluten pflanzenverfügbaren Blei- und Cadmiumgehalte in den Sand-Lewatit-Kulturen vor Bepflanzen und nach der Ernte dargestellt.
Abbildung 26: Pflanzenverfügbare Schwermetallgehalte (a) in den schwermetallbelasteten Sand-Lewatit-Kulturen vor Bepflanzen und nach Ernte der Pflanzen sowie relative Veränderung der Schwermetallgehalte (b). Es sind Mittelwert und Standardabweichung dargestellt.
Der pH-Wert des Quarzsandes betrug 4,6 (Anhang). Das Versuchssubstrat war demnach als stark sauer einzustufen (SCHACHTSCHABEL et al. 1998).

In den nicht blei- und cadmiumhaltigen Versuchsansätzen lagen die Analyse-Ergebnisse jeweils knapp oberhalb der Nachweisgrenze. Die berechneten Blei- und Cadmiumkonzentrationen vor Einsetzen der Pflanzen wurden in keinem Fall erreicht. Die Sandkulturen, deren Bleigehalt 500 ppm betragen sollte, erreichten im Mittel nur 399,2 und 376,2 ppm. Die als 1000 ppm Bleikonzentration eingesetzten Sandkulturen enthielten durchschnittlich 722,7 bzw. 496,8 ppm Blei. Die realen Bleigehalte lagen somit etwa 20 bis 50 % unter den erwarteten. Die Kultursubstrate, deren Cadmiumgehalte 20 ppm betragen sollten, enthielten 17,4 und 17,5 ppm, während bei den 40 ppm-Konzentrationen Analyseergebnisse von 32,0 und 37,5 ppm resultierten. Die realen Cadmiumkonzentrationen unterschritten die beabsichtigten also um etwa 12 bis 20 %. Aufgrund der großen Streuung der Werte waren die Unterschiede der zwei Blei- und Cadmiumkonzentrationsstufen statistisch gar nicht zu erfassen. Die Ursachen für diese deutlich aus dem Erwartungsrahmen fallenden Befunde werden weiter unten diskutiert.

Nach Ernte von *C. album* und *Z. mays* enthielten die mit 500/20 ppm Pb/Cd beschickten Kulturgefäße knapp 1/5 weniger Blei als vor Einsetzen der Pflanzen (Abbildung 26). Bei allen Pflanzenarten kam es bei den Kultursubstraten mit den beabsichtigten Ausgangskonzentrationen 1000/40, 500/0 und 1000/0 ppm Pb/Cd zu einer leichten durchschnittlichen Abnahme der Bleikonzentration (zwischen 1,8 und 7,2 %) und in zwei Fällen zu einer leichten mittleren Zunahme (0,9 bis 2,5 %). Bei der hohen Bleimonokonzentration zeigte das Analyseergebnis bei allen Taxa eine deutliche durchschnittliche Zunahme der pflanzenverfügbaren Bleikonzentration zwischen 33,7 und 54,2 %. Nur in vier Fällen konnte hingegen eine durchschnittliche Abnahme des Cadmiumgehaltes gemessen werden (0,5 bis 11,2 %). In der Mehrzahl der Fälle zeigte die Untersuchung eine z.T. starke Zunahme des Cadmiumgehaltes im Kultursubstrat (4,6 bis 68,6 %).

4.2.6 Schwermetallaufnahme

Aus Biomasse und Ionengehalten der vier untersuchten Arten konnte die aufgenommene Schwermetallmenge pro Individuum bzw. Organ berechnet werden. Die Bleiaufnahme der Wurzeln und Sprosse ist in Abbildung 27 dargestellt. Mehrheitlich wurde in die Wurzeln mehr Blei aufgenommen als in den Sproß. Die Bleiaufnahme war je Pflanze und Behandlungsgruppe sehr verschieden und deckte mit Werten zwischen durchschnittlich 0,1 und 247,6 µg pro Wurzel einen viel größeren Wertebereich ab als die Blei-Aufnahme-Werte
ERGEBNISSE & DISKUSSION

der Sprosse (1,1 bis 58,6 µg pro Sproß). Die Wurzeln nahmen maximal somit etwa vier mal so viel Blei auf wie die Sprosse, jedoch unterlagen die Mittelwerte einer starken Streuung. Auch bei allen nicht-bleihaltigen Versuchsansätzen wurden geringe Bleimengen in Sproß und Wurzel akkumuliert. Die größten Bleimengen nahmen die Wurzeln von *C. album* aus allen bleihaltigen Kultursubstraten auf (im Mittel bis zu 247,6 µg pro Wurzel).

Die von den Kontrollpflanzen und den ausschließlich mit Cadmium behandelten Chenopodien in die Wurzel aufgenommenen Bleimengen waren signifikant geringer. Die zweitgrößte Bleiaufnahme in die Wurzeln erreichte *Z. mays* (durchschnittlich bis zu 120,2 µg pro Wurzel).

Die mit 500/20 und 1000/0 ppm Blei/ Cadmium behandelten Pflanzen konnten signifikant mehr Blei in die Wurzeln anreichern als die meisten anderen Versuchsgruppen. *A. majus* und *C. cyanus* akkumulierten die geringsten Bleimengen in ihrer Wurzelbiomasse (2,7 bis 54,0 und 0,1 bis 9,8 µg pro Wurzel).

Z. mays nahm von den vier beprobten Pflanzenarten die größten Bleimengen in die Sprosse auf. Die Bleiaufnahme aus den mit 1000/0 ppm Pb/ Cd beschickten Kulturgefäßen war signifikant größer als die der Kontrollpflanzen und der mit 0/20 ppm Pb/ Cd behandelten Versuchsgruppen.

C. album zeigte eine durchschnittlich etwas niedrigere Bleiaufnahme in den Sproß (10,8 bis 38,9 µg pro Sproß). Drei der vier bleihaltigen Versuchsgruppen (1000/40, 500/0 und 1000/0 ppm Pb/ Cd) nahmen signifikant mehr auf als die Kontrollgruppe. Die Bleiaufnahme in die Chenopodien-Sprosse war aus dem mit 1000/0 ppm Pb/ Cd belasteten Kultursubstrat signifikant stärker als aus dem unbelasteten und den mit 500/20, 0/20 und 0/40 ppm Pb/ Cd belasteten Versuchsansätzen.

Der höchste entzogene Anteil betrug 0,026 % und wurde von den Chenopodien erreicht (500/20 ppm Pb/ Cd). Es folgten *Z. mays* (0,005 bis 0,009 %) und *A. majus* (0,002 bis 0,009 %). *C. cyanus* nahm, bezogen auf den pflanzenverfügbaren Bleiausgangsgehalt, den geringsten Prozentsatz auf (zwischen 0,002 und 0,004 %). Aufgrund der starken Streuung konnten signifikante Unterschiede artintern nicht ermittelt werden.

Abbildung 29 zeigt die Cadmiumaufnahme der Wurzeln und Sprosse der vier Versuchspflanzen. Je Wurzel wurde im Mittel bis zu 18,58 µg Cadmium angereichert. Oberirdisch wurde durchschnittlich zwischen 0,01 und 4,75 µg Cadmium pro Sproß akkumuliert. Das Maximum der stark streuenden Wurzelwerte lag somit etwa vier mal so hoch wie im Sproß.
ERGEBNISSE & DISKUSSION

A. majus und C. cyanus, die insgesamt deutlich geringere Bleiaufnahmewerte zeigten als die beiden anderen Arten, nahmen in allen Behandlungsgruppen mehr Cadmium in die Sprosse als in die Wurzeln auf. C. album und Z. mays akkumulierten hingegen größere Mengen Cadmium in den Wurzeln.

Der Spitzenwert der Cadmiumaufnahme wurde mit durchschnittlich 18,55 µg pro Wurzel von Z. mays erreicht. Die diesem Mittelwert zugrundeliegenden Einzelmeßwerte wiesen jedoch eine sehr starke Streuung auf und waren so viel stärker variierend als dies bei allen anderen Cadmiumaufnahmewerten dieser Spezies der Fall war. Bei Cadmium nahm eine große Menge Behandlungsgruppen viel Cadmium in die Wurzeln auf. Alle cadmiumbehandelten Gruppen konnten eine signifikant größere Cadmiumaufnahme leisten als die nicht cadmiumbehandelten. Die Wurzeln von A. majus (0,00 bis 12,9 µg Cd pro Wurzel) und C. cyanus nahmen hingegen insgesamt viel weniger Cadmium auf. Die von den A. majus-Pflanzen aus den mit 500/20 ppm Blei/ Cadmium belasteten Kulturen in die Wurzeln aufgenommene Cadmiummenge war deutlich größer als bei den beiden bleimonobelasteten Gefäßen.

Z. mays konnte mit einem Wert von 4,77 µg Cadmium (bei 0/40 ppm Pb/ Cd) die stärkste Cadmiumaufnahme in den Sproß leisten, dicht gefolgt von C. album (4,75 µg bei 0/40 ppm Pb/ Cd). Die Chenopodien-Sprosse zeigten in den cadmiumbelasteten Versuchsgefäßen signifikant höhere durchschnittliche Aufnahmewerte als in den nicht cadmiumhaltigen. Die geringsten Cadmiumquantitäten wurden von C. cyanus (0,02 bis 1,77 µg) und A. majus (0,01 bis 1,72 µg) pro Sproß akkumuliert.

A. majus zeigte unter der niedrigen Doppelschwermetallbelastung eine signifikant stärkere Cadmiumaufnahme in den Sproß als bei 1000/0 ppm Pb/ Cd.

In Abbildung 30 ist die pflanzliche Gesamtcadmiumaufnahme pro Topf in Prozent des Ausgangsgehaltes im Kultursubstrat dargestellt. Wie auch bei der Bleiaufnahme lagen alle Werte unter 0,1 %. Den größten Anteil vom Ausgangsgehalt konnten die Chenopodien aufnehmen (zwischen 0,032 und 0,070 %), wobei aus den geringer cadmiumbelasteten Kulturgefäßen prozentual im Mittel etwa 1,5 bis zweimal so viel aufgenommen wurde wie aus den stärker belasteten. Signifikante Differenzen ließen sich zwischen den Substratbelastungen 500/20 und jeweils 1000/40 und 0/40 ppm Pb/ Cd errechnen.
Die anderen drei Taxa entzogen dem Kultursubstrat deutlich weniger Cadmium. *Z. mays* nahm mit 0,005 bis 0,014 % des pflanzenverfügbaren Ausgangsgehaltes ein wenig mehr auf als *C. cyanus* (0,004 bis 0,005 %) und *A. majus* (0,004 %).

4.2.7 Diskussion

Die 100 %ige Überlebensrate von *C. album* (Abbildung 15) kann also nur bedingt seiner im Vergleich zu den anderen Pflanzen größeren Schwermetalltoleranz zugeschrieben werden, weist aber auf eine insgesamt gute Streßtoleranz hin. *C. cyanus* zeigte zwar bei den

C. album ließ während der Kultivierung keine Schadsymptome erkennen. Zum Zeitpunkt der Ernte führten die Cadmiummonobelastungen im Vergleich mit den anderen Versuchsansätzen aber zu einer frühzeitigen Blütenbildung. Ähnlich war es bei den *C. cyanus*-Pflanzen, bei denen die Pflanzen in den mit 1000/40 und 1000/0 ppm Pb/Cd belasteten Kulturgefäßen gefolgt von den mit 500/0 und 500/20 ppm Pb/Cd behandelten Versuchsansätzen frühzeitig
ERGEBNISSE & DISKUSSION

BUDDENDIEK (1994) ermittelte in Kulturversuchen mit unterschiedlich zinkbelastetem Sand bei *C. cyanus* und *C. album* Sproßbiomassen von 50 bis 200 mg sowie 150 bis 700 mg pro Pflanze. Die in diesem Versuch festgestellten Sproßbiomassen von *C. cyanus* waren deutlich geringer, die von *C. album* ähnlich (Abbildung 16). *C. album* hatte vergleichsweise größere Wurzelbiomassen als in der genannten Untersuchung (etwa 20 bis 70 mg), *C. cyanus* geringere (etwa 5 bis 20 mg).

<table>
<thead>
<tr>
<th>Pflanze</th>
<th>Erde [mg]</th>
<th>Sand [mg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wurzel</td>
<td>Sproß</td>
</tr>
<tr>
<td>A. majus (Monokultur)</td>
<td>2 - 4</td>
<td>16 - 32</td>
</tr>
<tr>
<td>C. cyanus (Monokultur)</td>
<td>73 - 125</td>
<td>197 - 369</td>
</tr>
<tr>
<td>C. album (Monokultur)</td>
<td>58 - 133</td>
<td>53 - 92</td>
</tr>
<tr>
<td>Z. mays (Mischkultur)</td>
<td>12 - 25</td>
<td>17 - 87</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>155</td>
</tr>
</tbody>
</table>

HANWAY & RUSSELL (1969) ermittelten in einer Studie als durchschnittlichen Wert der reifen Trockenmasse von Mais 374 g. Die mittleren Sproßbiomassen bei Maispflanzen der im Rahmen dieser Arbeit durchgeführten Freilandversuche betrugen bei Pflanzen, die nicht mit
ERGEBNISSE & DISKUSSION

EDTA behandelt wurden, auf einer schwermetallbelasteten Ackerfläche zwischen 92 und 403 g. Die niedrigste Sproßbiomasse von diesen im Freiland ermittelten Werten war somit etwa 1000 mal so groß wie die größte in der Sandkultur ermittelte Sproßbiomasse. Der höchste Vergleichswert von Freilandsproßbiomassen war etwa 7600 mal so hoch wie der der geringsten Biomasse im Sandkulturversuch. Diese Differenz zu den unter Freilandbedingungen möglichen Biomassen ist natürlich entscheidend für die weiteren Bewertungen von Versuchsergebnissen aus Topfexperimenten. Zwar erreicht Mais unter natürlichen Bedingungen die größte Biomasse der vier in Sandkultur untersuchten Arten, jedoch sind auch die potentiellen Biomassen der übrigen drei Taxa im Freiland wesentlich größer als die in der Sandkultur erreichten.

Die Entwicklung der Biomasse ist ein wichtiges Kriterium für die Beurteilung der Vitalität von Pflanzen unter Schwermetallstreß. Die Aufrechterhaltung einer Schwermetalltoleranz benötigt sehr viel Energie, was sich in einer um 20 bis 50 % reduzierten Biomasseproduktion der Pflanze ausdrückt (ERNST 1976).

Unter Hyperakkumulatoren versteht man Metallophyten, die in ihrer oberirdischen Biomasse definitionsgemäß mehr als 0,1 % Blei (= 1000 ppm) oder 0,01 % Cadmium (= 100 ppm) bezogen auf das Trockengewicht anreichern können (CLEMENS 2001, RASKIN et al. 1994). Die Bleikonzentration der Sprosse von *C. cyanus* (Abbildung 17) überschritt diesen Gehalt leicht. Die Cadmiumkonzentration im Sproß kam, ebenfalls bei 500/20 ppm Pb/ Cd im Substrat, mit 91,4 ppm diesem Niveau sehr nahe. Die höchsten in Hyperakkumulatoren
jemals gemessenen Bleigehalte erreichte Minuartia verna mit 26300 ppm in der Wurzel und 11400 ppm Blei im Sproß (ERNST 1976 b).

Die Bleigehalte in den Wurzeln anderer Pflanzen schwermetallhaltiger Standorte (Tabelle 9a, 9b und 9c) liegen allerdings selten über 700 ppm und wurden somit in den Wurzeln der meisten Versuchsansätze von A. majus (bis 3226 ppm), C. cyanus (bis 3311 ppm) und C. album (bis 2713 ppm) deutlich überschritten und von Z. mays zumindest erreicht.

<table>
<thead>
<tr>
<th>Pflanze</th>
<th>Substratbelastung ppm Pb/Cd</th>
<th>TG [% von Kontrolle]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wurzel</td>
<td>Sproß</td>
</tr>
<tr>
<td>Antirrhinum majus</td>
<td>0/0</td>
<td>100,0</td>
</tr>
<tr>
<td></td>
<td>500/20</td>
<td>70,5</td>
</tr>
<tr>
<td></td>
<td>1000/40</td>
<td>65,0</td>
</tr>
<tr>
<td></td>
<td>500/0</td>
<td>125,8</td>
</tr>
<tr>
<td></td>
<td>1000/0</td>
<td>63,5</td>
</tr>
<tr>
<td></td>
<td>0/20</td>
<td>43,6</td>
</tr>
<tr>
<td></td>
<td>0/40</td>
<td>95,1</td>
</tr>
<tr>
<td>Centaurea cyanus</td>
<td>0/0</td>
<td>100,0</td>
</tr>
<tr>
<td></td>
<td>500/20</td>
<td>60,9</td>
</tr>
<tr>
<td></td>
<td>1000/40</td>
<td>69,7</td>
</tr>
<tr>
<td></td>
<td>500/0</td>
<td>65,9</td>
</tr>
<tr>
<td></td>
<td>1000/0</td>
<td>93,3</td>
</tr>
<tr>
<td></td>
<td>0/20</td>
<td>102,6</td>
</tr>
<tr>
<td></td>
<td>0/40</td>
<td>95,1</td>
</tr>
<tr>
<td>Chenopodium album</td>
<td>0/0</td>
<td>100,0</td>
</tr>
<tr>
<td></td>
<td>500/20</td>
<td>104,0</td>
</tr>
<tr>
<td></td>
<td>1000/40</td>
<td>83,8</td>
</tr>
<tr>
<td></td>
<td>500/0</td>
<td>66,7</td>
</tr>
<tr>
<td></td>
<td>1000/0</td>
<td>60,8</td>
</tr>
<tr>
<td></td>
<td>0/20</td>
<td>88,7</td>
</tr>
<tr>
<td></td>
<td>0/40</td>
<td>53,4</td>
</tr>
<tr>
<td>Zea mays</td>
<td>0/0</td>
<td>104,6</td>
</tr>
<tr>
<td></td>
<td>500/20</td>
<td>112,3</td>
</tr>
<tr>
<td></td>
<td>1000/40</td>
<td>81,8</td>
</tr>
<tr>
<td></td>
<td>500/0</td>
<td>61,7</td>
</tr>
<tr>
<td></td>
<td>1000/0</td>
<td>75,4</td>
</tr>
<tr>
<td></td>
<td>0/20</td>
<td>90,3</td>
</tr>
<tr>
<td></td>
<td>0/40</td>
<td>109,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QUELLE</th>
<th>Ort/Vormehl</th>
<th>Kommentar</th>
<th>Pflanzenorgan</th>
<th>Pflanzen</th>
<th>Pflanzen</th>
<th>[ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>lat. Name</td>
<td>dt. Name</td>
<td>Familie</td>
<td>Fe</td>
</tr>
</tbody>
</table>

BAUMSTEINER & ERNST 1978

- **Pechsande im Harz**
 - Hyperakkumulator Blatter
 - *Petersenia crassicornis* L. Schu-Schwingel
 - *Ageratia stolonifera* L. Weiß-Braunfarn
 - *Mussaenda veneta* L. Freihlings-Maire
 - Hyperakkumulator Blumen
 - *Silene vulgaris* L. Trennkopf-Lichtnelke
 - Sonnfrucht Wurzel
 - *Centauraea cyanus* L. Keimblume
 - *Chenopodium album* L. Weiße Gunsefuss
 - *Erodium cernuum* L. Karadisches Bandkraut
 - **Hydrokultur**
 - *Chenopodium album* L. Weiße Gunsefuss
 - *Erodium cernuum* L. Karadisches Bandkraut

BUDDENDEK 1994

- **Sonnkultur**
 - Wurzel
 - *Borago officinalis* L. Klötsch-Mohn

CUNNINGHAM & OW 1996

- **Freiland**
 - Hyperakkumulator Spross
 - *Thlaspi cressifolium* L. Wald-Hellerkraut
 - Hyperakkumulator Spross
 - *Thlaspi cressifolium* L. Wald-Hellerkraut

ERNST 1976 a

- **Freiland, unbelastet**
 - Hyperakkumulator Blatter
 - *Thlaspi alpestre* L. Vorfluss-Hellerkraut
 - Hyperakkumulator Wurzel
 - *Mussaenda veneta* L. Freihlings-Maire
 - *Erodium cernuum* L. Karadisches Bandkraut

ERNST 1976 b

- **Freiland, schwervermetaldbelastet**
 - Hyperakkumulator Blatter
 - *Thlaspi alpestre* L. Vorfluss-Hellerkraut
 - Hyperakkumulator Wurzel
 - *Mussaenda veneta* L. Freihlings-Maire

FARAGHOVA 2001

- **Nüblingsversuch**
 - Wurzel Spross
 - *Sinapis arvensis* L. Weißer Senf
 - Wurzel Spross
 - *Sinapis alba* L. Weißer Senf
 - Wurzel Spross
 - *Sinapis alba* L. Weißer Senf

HORAK 1979

- **Abraschule Bledberg**
 - Spross
 - *Taraxacum officinale* L. Edel-Gesneraude
 - Spross
 - *Geranium robertianum* L. Stinkende Storchschnabel
 - Spross
 - *Dianthus deltoides* L. Steine-Nelke

KOEPPE 1977

- **Nüblingsversuch**
 - Wurzel Spross
 - *Zea mays* L. Mais

MORISHITA & BORATYNIEKI 1992

- **stark schwervermetaldbelasteter Standort**
 - Wurzel Spross
 - *Aegopodium podagraria* L. Gemeiner Beifuß
 - *Aegopodium podagraria* L. Gemeiner Beifuß
 - Wurzel Spross
 - *Cynodon dactylon* L. Selbstbewusstes Gras
 - *Cynodon dactylon* L. Selbstbewusstes Gras
 - Wurzel Spross
 - *Cynodon dactylon* L. Selbstbewusstes Gras

- **unbelasteter Standort**
 - Wurzel Spross
 - *Cynodon dactylon* L. Selbstbewusstes Gras
 - Wurzel Spross
 - *Cynodon dactylon* L. Selbstbewusstes Gras

Tabelle 9a: Schwermetallgehalte verschiedener Pflanzen unterschiedlich belasteter Standorte.
<table>
<thead>
<tr>
<th>QUELLE</th>
<th>Ort/Versuch</th>
<th>Kommentar</th>
<th>Pflanzenorgan</th>
<th>Pflanzenarten</th>
<th>Pflanze</th>
<th>Famille</th>
<th>Pb</th>
<th>Cd</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>NANN & CHENG 2001</td>
<td>Freiland</td>
<td></td>
<td>Keimling</td>
<td>Pisum sativum L.</td>
<td>Keimling</td>
<td>Fabaceae</td>
<td>1,29</td>
<td>0,63</td>
<td>1,95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blätter</td>
<td>Allium cepa L.</td>
<td>Lauch</td>
<td>Liliaceae</td>
<td>18</td>
<td>6</td>
<td>6,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stengel</td>
<td>Solanum tuberosum L.</td>
<td>Kartoffel</td>
<td>Solanaceae</td>
<td>32</td>
<td>1,5</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wurzel</td>
<td>Phlox paniculata L.</td>
<td>Blume-Belke</td>
<td>Polemioideae</td>
<td>12</td>
<td>0,4</td>
<td>0,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blatt</td>
<td>Zea mays L.</td>
<td>Mais</td>
<td>Poaceae</td>
<td>18</td>
<td>1,9</td>
<td>0,6</td>
</tr>
<tr>
<td>WEIGEL 1991</td>
<td>Erde</td>
<td></td>
<td>Stengel</td>
<td>Brassica oleracea L. var sabellica L.</td>
<td>Stengel</td>
<td>Brassicaeae</td>
<td>18</td>
<td>4,5</td>
<td>6,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wurzel</td>
<td>Leucanthemum vulgare L.</td>
<td>Kopfsalat</td>
<td>Asteraceae</td>
<td>26</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blätter</td>
<td>Raphanus sativus L.</td>
<td>Radieschen</td>
<td>Brassicaeae</td>
<td>23</td>
<td>7,8</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wurzel</td>
<td>Beta vulgaris L.</td>
<td>Rübe</td>
<td>Chenopodiaceae</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blatte</td>
<td>Petroselinum crispum MILL</td>
<td>Petersilie</td>
<td>Apiaceae</td>
<td>12</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wurzel</td>
<td>Pisum sativum L.</td>
<td>Erbsen</td>
<td>Fabaceae</td>
<td>5,3</td>
<td>1,2</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Knolle</td>
<td>Brassica rapa L.</td>
<td>Kohl</td>
<td>Brassicaeae</td>
<td>10</td>
<td>3,5</td>
<td>2,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wurzel</td>
<td>Daucus carota L.</td>
<td>Möhre</td>
<td>Apiaceae</td>
<td>12</td>
<td>8,2</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stengel</td>
<td>Allium cepa L.</td>
<td>Zwiebel</td>
<td>Liliaceae</td>
<td>4,8</td>
<td>2,6</td>
<td>4,5</td>
</tr>
<tr>
<td>PAGE et al. 1972</td>
<td>Nährstoffversuch</td>
<td></td>
<td></td>
<td>Brassica rapa L.</td>
<td>Kohl</td>
<td>Brassicaeae</td>
<td>890</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Solanum lycopersicum L.</td>
<td>Tomate</td>
<td>Solanaceae</td>
<td>570</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hordeum vulgare L.</td>
<td>Gerste</td>
<td>Poaceae</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Papaver spec.</td>
<td>Pfiffner</td>
<td>Papaveraceae</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zea mays L.</td>
<td>Mais</td>
<td>Poaceae</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leucanthemum vulgare L.</td>
<td>Kopfsalat</td>
<td>Asteraceae</td>
<td>320</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beta vulgaris L.</td>
<td>Rübe</td>
<td>Chenopodiaceae</td>
<td>290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEROZEDO 2001</td>
<td>Wasserkultur</td>
<td></td>
<td></td>
<td>Phlox paniculata L.</td>
<td>Blume-Belke</td>
<td>Polemioideae</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beta vulgaris L.</td>
<td>Rübe</td>
<td>Chenopodiaceae</td>
<td>290</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hortensia parviductus L.</td>
<td>Portulaka-Salzmöden</td>
<td>Chenopodiaceae</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Armeria maritima L.</td>
<td>Strand-Grauwurz</td>
<td>Phloxaceae</td>
<td>283</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Marrubium vulgare L.</td>
<td>Frühlings-Moser</td>
<td>Caryophyllaceae</td>
<td>11</td>
<td>104</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 9b: Schwermetallgehalte verschiedener Pflanzen unterschiedlich belasteter Standorte.
<table>
<thead>
<tr>
<th>QUELLE</th>
<th>Ort/ Versuch</th>
<th>Kommentar</th>
<th>Pflanzenorgan</th>
<th>lat. Name</th>
<th>de. Name</th>
<th>Familie</th>
<th>Pb (ppm)</th>
<th>Cd (ppm)</th>
<th>Zn (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIEGHALDT 1987</td>
<td>belastete Erde, Bleiberg</td>
<td></td>
<td>Spross, Wurzel</td>
<td>Silybum marianum</td>
<td>Wiesenschafthaube</td>
<td>Brassicaceae</td>
<td>155</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unbe lasteter Standort</td>
<td></td>
<td>Spross, Wurzel</td>
<td>Raphanus sativus</td>
<td>Raps*</td>
<td>Brassicaceae</td>
<td>114</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>eigene Untersuchungen in Zusammenarbeit mit LINGER</td>
<td>belastete Ackerfläche in Hagen</td>
<td>Spross, Wurzel</td>
<td>Brassica campestris</td>
<td>Kohl*</td>
<td>Brassicaceae</td>
<td>10.7</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spross, Wurzel</td>
<td>Brassica rapa</td>
<td>Raps*</td>
<td>Brassicaceae</td>
<td>8.2</td>
<td>31.3</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spross, Wurzel</td>
<td>Silybum marianum</td>
<td>Wiesenschafthaube</td>
<td>Brassicaceae</td>
<td>17.7</td>
<td>24.8</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spross, Wurzel</td>
<td>Marrubium vulgare</td>
<td>Heuflinke</td>
<td>Veroniceae</td>
<td>5.3</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spross, Wurzel</td>
<td>Marrubium vulgare</td>
<td>Heuflinke</td>
<td>Veroniceae</td>
<td>7.8</td>
<td>15.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spross, Wurzel</td>
<td>Marrubium vulgare</td>
<td>Heuflinke</td>
<td>Veroniceae</td>
<td>18.7</td>
<td>19.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spross, Wurzel</td>
<td>Marrubium vulgare</td>
<td>Heuflinke</td>
<td>Veroniceae</td>
<td>6.4</td>
<td>27.6</td>
<td>20.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spross, Wurzel</td>
<td>Marrubium vulgare</td>
<td>Heuflinke</td>
<td>Veroniceae</td>
<td>5.3</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spross, Wurzel</td>
<td>Marrubium vulgare</td>
<td>Heuflinke</td>
<td>Veroniceae</td>
<td>7.8</td>
<td>15.3</td>
<td></td>
</tr>
<tr>
<td>XIONG 1997</td>
<td>schwere metall-belastete Streuformtehner</td>
<td></td>
<td>Spross, Wurzel</td>
<td>Silybum marianum</td>
<td>Kohl*</td>
<td>Brassicaceae</td>
<td>10.7</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>TACK & VERLOO 1996</td>
<td>Freiland</td>
<td></td>
<td>Spross, Wurzel</td>
<td>Silybum marianum</td>
<td>Kohl*</td>
<td>Brassicaceae</td>
<td>8.2</td>
<td>31.3</td>
<td>151</td>
</tr>
<tr>
<td>HARKANGOZO & KRALOVIC 1996</td>
<td>Freiland</td>
<td></td>
<td>Spross, Wurzel</td>
<td>Silybum marianum</td>
<td>Kohl*</td>
<td>Brassicaceae</td>
<td>17.7</td>
<td>24.8</td>
<td>19.4</td>
</tr>
<tr>
<td>JUNG & THORNTON 1996</td>
<td>belasteter Standort</td>
<td></td>
<td>Spross, Wurzel</td>
<td>Silybum marianum</td>
<td>Kohl*</td>
<td>Brassicaceae</td>
<td>5.3</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td>BECKETT & DAVIS 1977</td>
<td>Sandkultur</td>
<td></td>
<td>Spross, Wurzel</td>
<td>Silybum marianum</td>
<td>Kohl*</td>
<td>Brassicaceae</td>
<td>7.8</td>
<td>15.3</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 9c: Schwermetallgehalte verschiedener Pflanzen unterschiedlich belasteter Standorte.

Da alle Versuchsgefäße regengeschützt untergestellt waren, kann davon ausgegangen werden, daß für die bei fast allen nicht schwermetallbehandelten Pflanzen in Wurzel und Sproß gefundenen Schwermetallmengen als Kontaminationsquelle nur Flugstaub aus der Luft in Frage kommt. Auch HORAK (1979) konnte bei Versuchen zur Bleiaufnahme von Pflanzen feststellen, daß Kontrollpflanzen Blei akkumulierten und nahm an, daß dieses aus der Luft

Die von MARSCHNER (1997) für ein adäquates Pflanzenwachstum für notwendig erachteten Calcium- und Magnesiumgehalte im Sproß betragen 0,5 % (Calcium = 5000 ppm) und 0,2 % (Magnesium = 2000 ppm). Alle Pflanzen zeigten eine mehr oder weniger deutliche Magnesiumunterversorgung (301 bis 1926 ppm, Abbildung 21). Auch für alle Sprosse von A. majus und besonders stark von Z. mays sowie einige von C. cyanus gilt, daß sie keinen für ein ungestörtes Pflanzenwachstum ausreichenden Calciumgehalt enthielten (Abbildung 20). Die in der Literatur beschriebenen Calciumgehalte von Pflanzenwurzeln reichen von 0,2 % (= 2000 ppm, BERGMANN & NEUBERT 1976) bis 4,22 % (= 27200 ppm, BAUMEISTER & ERNST 1978. Auch hier lagen die Wurzelgehalte der vier untersuchten Arten (554 bis 6422 ppm Calcium, 409 bis 2168 ppm Magnesium) vergleichsweise am unteren Ende der
angegebenen Mineralstoffbereiche. Die fast einheitliche Unterversorgung mit beiden Elementen weist auf eine substratbedingte Nachlieferungsschwierigkeit hin.

500/ 20 ppm Pb/ Cd und die 1000 ppm Bleimonobelastung führten zu einer statistisch relevanten Senkung des Sproßcalciumgehaltes von A. majus, 1000/ 40 ppm Pb/ Cd zu einer Steigerung verglichen mit den Kontrollpflanzen. Im Sproß von C. album war im Vergleich mit der niedrig dosierten Doppelbelastung der Calciumgehalt durch die 40 ppm Cadmiummonobelastung deutlich gesenkt. Eine Konkurrenz von Cadmium und Calcium am selben Carrier um die Aufnahme in die Wurzel (ERNST 1976 a) könnte die veränderten Calciumgehalte im Sproß erklären.

Den für ein normales Pflanzenwachstum nötigen Eisengehalt von 100 ppm im Sproß (MARSCHNER 1997) erreichten alle Taxa unter den verschiedenen Versuchsbedingungen.
ERGEBNISSE & DISKUSSION

zinkabhängige Stoffwechselaktivität, während die aller anderen Versuchsgruppen im Vergleich zu dieser und zur Kontrolle bedeutend geringer war. Möglicherweise kann dieser Umstand aber auch durch eine von GERRITSE et al. (1983) gemachte Beobachtung erklärt werden. Die Autoren stellten fest, daß von allen Metallen in der Bodenlösung Zink am stärksten mit Cadmium um die Aufnahme in die Wurzel konkurriert. Das würde erklären, warum bei der niedrigen Bleimonobelastung so viel mehr Zink in die gesamte Pflanze gelangte, als bei den beiden cadmiumhaltigen Versuchsansätzen.

Nach MARSCHNER (1997) ist für ein adäquates Pflanzenwachstum ein Phosphorgehalt von 0,2 % im Sproß notwendig. Das entspricht knapp 9200 ppm P₂O₅ und wurde nur bei Z. mays-Versuchsansätzen in den oberirdischen Pflanzenteilen erreicht (Abbildung 25). BAUMEISTER & ERNST (1978) nennen für die Wurzeln verschiedener Pflanzenarten Phosphorgehalte zwischen 0,62 % (= 28415 ppm) und 5,37 % (= 246114 ppm). Nach AMBERGER (1996) betragen die Phosphorgehalte in verschiedenen Pflanzenteilen zwischen 0,15 und 0,8 %. Das entspricht einem Mindestgehalt von knapp 6900 ppm P₂O₅. Diese

Eine Beurteilung der Remediationseigenschaften der untersuchten Taxa kann für diesen Teilversuch anhand der aus Biomasse und Schwermetallkonzentration berechneten Schwermetallaufnahme durchgeführt werden. Die unter Freilandbedingungen mögliche Biomasse wird u.a. aufgrund der unbehinderten Wurzelbildung und besseren Nährstoffversorgung bei den meisten Pflanzen viel größer sein, als die unter den Bedingungen im Kulturgefäß erreichte. Z. mays hat z.B. in den Sandkulturversuchen nach Vergleichen mit anderen Studien (HANWAY & RUSSELL 1969) und eigenen später im Freiland ermittelten Ergebnissen höchstens 1/1000 seiner potentiell möglichen oberirdischen Biomasse entwickelt. Insofern ist davon auszugehen, daß unter normalen Freilandbedingungen auch viel größere Schwermetallsummen entzogen worden wären. Die pro Maispflanze akkumulierten Schwermetallmengen lagen in der Sandkultur zwischen 73,3 und 151,2 µg Blei (Abbildung 27) und zwischen 3,44 bis 22,02 µg Cadmium (Abbildung 29). Im Freiland akkumulierten unbehandelte Maispflanzen später je Individuum zwischen 0,6 und 10 mg Blei und zwischen 2,0 und 28,0 mg Cadmium (4.6 & 4.7). Vergleicht man die höchsten jeweils angereicherten Mengen beider Versuche, so konnten die im Freiland auf schwermetallbelastetem Substrat gewachsenen Pflanzen knapp 70 mal so viel Blei und fast 1300 mal so viel Cadmium pro
Pflanze aufnehmen wie in Sandkultur. Zwar war die Schwermetallbelastung auf der Versuchsfläche deutlich stärker als in den Sandkulturen, jedoch hatten die Schwermetallaufnahmen bereits aufgrund der extrem verschiedenen Biomasseentwicklung eine ganz andere Dimension. Daher bietet sich ein Vergleich der Schwermetallaufnahme der Sandkulturversuche mit im gleichen Jahr in Topfexperimenten ermittelten Ergebnissen in ähnlich schwebmetallbelasteter Erde in Monokultur an.

<table>
<thead>
<tr>
<th>Pflanze</th>
<th>Schwermetallaufnahme/ Pflanze [µg]</th>
<th>Schwermetall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sand</td>
<td>Erde</td>
</tr>
<tr>
<td></td>
<td>Wurzel</td>
<td>Sproß</td>
</tr>
<tr>
<td>A. majus</td>
<td>0,78 - 1,29</td>
<td>0,98 - 1,72</td>
</tr>
<tr>
<td>C. cyanus</td>
<td>0,07 - 0,47</td>
<td>1,53 - 1,77</td>
</tr>
<tr>
<td>C. album</td>
<td>9,28 - 14,11</td>
<td>2,87 - 4,75</td>
</tr>
<tr>
<td>Z. mays (Erde: Mischkultur)</td>
<td>2,88 - 18,58</td>
<td>0,56 - 4,77</td>
</tr>
<tr>
<td>A. majus</td>
<td>29,5 - 54,0</td>
<td>8,1 - 17,1</td>
</tr>
<tr>
<td>C. cyanus</td>
<td>1,3 - 9,4</td>
<td>18,1 - 27,0</td>
</tr>
<tr>
<td>C. album</td>
<td>124,0 - 247,6</td>
<td>14,3 - 38,9</td>
</tr>
<tr>
<td>Z. mays (Erde: Mischkultur)</td>
<td>53,0 - 120,2</td>
<td>23,2 - 58,6</td>
</tr>
</tbody>
</table>

ERGEBNISSE & DISKUSSION

HUANG et al. (1997) postulierten, daß eine effektive Phytoremediation innerhalb von drei bis 20 Jahren zu einer Senkung der Konzentration des betreffenden Schwermetalls auf ein akzeptables Niveau führen müsse. Die relativ entzogene Schwermetallmenge müßte demnach bei zweimaliger Aussaat annueller Pflanzen pro Vegetationsperiode bis zur Entfernung der Belastung etwa 5 % je Ernte betragen.

prozentuale Cadmiumaufnahme von 0,014 % bei ähnlicher Bodenbelastung unter Freilandbedingungen wenigstens nicht unterschritten wird.

Eine realistische Einschätzung des Anteils der Pflanzen am Schwermetallverlust des Substrats konnte im hier referierten Experiment nicht vorgenommen werden, da die Analyse der Schwermetallkonzentrationen im Kultursubstrat widersprüchliche Ergebnisse lieferte. Die meisten pflanzenverfügbbaren Bleigehalte waren zu Versuchsbeginn höher als vor Einsetzen der Pflanzen. Dort, wo eine tatsächliche relative Reduktion des Schwermetallgehaltes ermittelt werden konnte (um 1,8 bis 19,7 % Blei und 0,5 bis 11,2 % Cadmium), lagen die Substratverluste deutlich oberhalb der durch die Pflanzen aufgenommenen Mengen. Ob hier auf eine Auswaschung geschlossen werden kann ist aber fraglich. Da bereits an der vollständigen Verfügbarkeit der an den Ionenaustauscher gebundenen Schwermetalle durch die bereits zu Versuchsbeginn deutlich unterschrittenen Substratkonzentrationen gezweifelt werden konnte, waren hier möglicherweise auch Festlegungsprozesse für die Reduktion verantwortlich.

Schlußfolgerung

Aufgrund der substratbedingten Schwierigkeiten und der im Topfversuch stark eingeschränkten Wachstumsmöglichkeiten zeigen die untersuchten Pflanzen viel niedrigere Schwermetallaufnahmeraten als dies im Freiland möglich wäre. Da alle Taxa hohe Schwermetallkonzentrationen erreichen, aber nicht zu den Hyperakkumulatoren zählen, ist
Eine weitere Untersuchung ihres Phytoexaktionspotentials unter freilandnahen Bedingungen in jedem Fall notwendig. Dabei muß auch ein Mischkultureinsatz untersucht werden, um festzustellen, ob es durch die Kombination der unterschiedlichen schwermetallentziehenden Eigenschaften zu einer gegenseitigen Förderung kommt.
4.3 Topfkultur-Versuche mit Pflanzen in Einzel- und Mischkultur in schwermetallbelasteter Erde (1998)

4.3.1 Morphologische Beobachtungen und Konkurrenzerhalten

<table>
<thead>
<tr>
<th>Topf</th>
<th>Pflanzen</th>
<th>Anteil der Individuen [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>A. majus</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>C. cyanus</td>
<td>37,7</td>
</tr>
<tr>
<td></td>
<td>C. album</td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td>P. rhoeas</td>
<td>59,4</td>
</tr>
<tr>
<td></td>
<td>V. arvensis</td>
<td>0,9</td>
</tr>
<tr>
<td></td>
<td>Z. mays</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>A. majus</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>C. cyanus</td>
<td>64,9</td>
</tr>
<tr>
<td></td>
<td>C. album</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>P. rhoeas</td>
<td>33,8</td>
</tr>
<tr>
<td></td>
<td>V. arvensis</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Z. mays</td>
<td>1,4</td>
</tr>
<tr>
<td>27</td>
<td>A. majus</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td>C. cyanus</td>
<td>56,4</td>
</tr>
<tr>
<td></td>
<td>C. album</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>P. rhoeas</td>
<td>38,6</td>
</tr>
<tr>
<td></td>
<td>V. arvensis</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Z. mays</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>A. majus</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>C. cyanus</td>
<td>68,7</td>
</tr>
<tr>
<td></td>
<td>C. album</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>P. rhoeas</td>
<td>3,6</td>
</tr>
<tr>
<td></td>
<td>V. arvensis</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Z. mays</td>
<td>27,7</td>
</tr>
</tbody>
</table>

Im Vergleich mit den anderen Arten bildete *A. majus* in der Monokultur nur ein schwaches Wurzelwerk aus. *C. cyanus* zeigte in Einzel- und Mischkultur einen im Vergleich zu den anderen Arten auffallend kräftigen Wuchs von Sproß und Wurzel. Der Habitus von *C. album* fiel hingegen in beiden Ansätzen insgesamt schwach aus.

P. rhoeas zeichnete sich in Monokultur durch kräftige Individuen aus, die z.T. bei Ernte sehr verschieden groß ausfielen. In Mischkultur blieb *P. rhoeas* im Artvergleich bemerkenswert klein. *V. arvensis* zeigte in Mono- und Mischkultur einen extrem schwachen Wuchs.

Z. mays wurde in Monokultur zu 100 % durch Tierfraß dezimiert. In den gemischten Kulturtöpfen wies die Pflanze bei Ernte häufig vertrocknete Blattspitzen auf.

Die stärkste Konkurrenzkraft der sechs in Mischkultur gewachsenen Pflanzen hatten *C. cyanus* und *P. rhoeas* (Tabelle 11). *C. cyanus* machte in drei der vier Versuchstopf e gut die Hälfte bis 2/3 der Individuen aus (56,4 bis 68,7 %), in einem Topf war sie mit 37,7 % vertreten. Etwas weniger gut war *P. rhoeas* den Bedingungen des schwermetallbelasteten Bodens gewachsen. Der Anteil an der Gesamtindividuenzahl betrug 3,6 bis 59,4 %. Die anderen gewachsenen Versuchspflanzen waren deutlich weniger häufig. Der Anteil von *Z. mays* lag zwischen 1,4 und 27,7 %. *A. majus*, *C. album* und *V. arvensis* erreichten im Einzelfall je 5,0, 1,9 und 0,9 % der Individuen.

4.3.2 Biomasse

![Abbildung 31: Biomasse zum Erntezeitpunkt der Wurzeln und Sprossen von A. majus (A. m.), C. cyanus (C. c.), C. album (C. a.), P. rhoeas (P. r.), V. arvensis (V. a.) und Z. mays (Z. m.) in Mono- und Mischkultur auf schwermetallhaltigem Ackerboden. Oberhalb der x-Achse sind die Sproß- unterhalb die Wurzelbiomassen dargestellt. Die Zahlen oberhalb der Säulen bezeichnen die Gesamtbiomasse. Die kleineren Zahlen geben die Wurzel- und Sproßbiomasse an. Es sind Mittelwerte und Standardabweichungen dargestellt. Gleiche Buchstaben zeigen ein Fehlen signifikanter Unterschiede.](image-url)
Abbildung 31 zeigt vergleichend die mittleren Biomassen von Mono- und Mischkulturen, deren überwiegender Anteil bei allen Versuchskulturen von den Sprossen ausgemacht wurde. Die Gesamtbiomasse der Monokultur von *C. cyanus* war am größten (12,79 g pro Topf). Die Mischkultur und die *P. rhoeas*-Monokultur erreichten durchschnittlich gut 2/3 bzw. reichlich die Hälfte des maximalen Wertes. Deutlich geringere Biomassen zeigten *A. majus*, *V. arvensis* und *C. album* (0,25, 0,7 und 0,03 g/ Topf), deren Biomassen signifikant von denen von *C. cyanus* überschritten wurden.

Abbildung 32 zeigt die durchschnittlichen ober- und unterirdischen Biomassen pro Pflanze. Die Biomasse der Sprossen war in beiden Fällen deutlich größer als die der Wurzeln. *C. album* und *V. arvensis* erreichten bei beiden Ansätzen die geringste
ERGEBNISSE & DISKUSSION

Gesamtbiomasse. Pro Individuum hatte *P. rhoeas* in Monokultur die größte durchschnittliche Biomasse, gefolgt von *C. cyanus* (110,4) und *A. majus* (32,1). *V. arvensis* und *C. album* zeigten pro Individuum Gesamtbiomassen von 16,5 und 4,2 mg. Signifikante Unterschiede bestanden zwischen der Gesamtbiomasse von *C. album* und *C. cyanus* sowie *P. rhoeas*.

Die kräftigste mittlere Gesamtbiomasse-Entwicklung pro Pflanze zeigte in Mischkultur *Z. mays* (204,9 mg/ Pflanze). Die zweitstärkste Gesamtbiomasse pro Pflanze wurde wie in Monokultur von *C. cyanus* erreicht (86,0). Eine signifikant geringere Biomasse als diese entwickelte *P. rhoeas* (27,0). *A. majus*, *C. album* und *V. arvensis* hatten deutlich geringere individuelle Biomassen (6,8, 6,0 und 3,7 mg/ Pflanze). Anhand des vorhandenen Probenmaterials konnten artintern keine statistisch gesicherten Differenzen der Biomasseentwicklungen der vorhandenen Gesamtpflanzen im Vergleich von Mono- und Mischkulturen errechnet werden.

4.3.3 Ionengehalte

4.3.3.1 Schwermetalle

In Abbildung 33 sind die Schwermetallgehalte der Wurzeln und Sprosse der sechs Pflanzen in Mono- und Mischkultur dargestellt. Die Wurzeln erreichten in beiden Kulturansätzen im Mittel höhere Gehalte aller drei Elemente als die Sprosse. Mit Ausnahme der Wurzelzinkgehalte waren die Maxima der durchschnittlichen Schwermetallgehalte der ober- und unterirdischen Pflanzenteile in Mono- größer als in Mischkultur. Die mittleren Bleigehalte der Pflanzenwurzeln nahmen in Monokultur Werte zwischen 23 und 2113 ppm an. Im Sproß wurden durchschnittlich 49 bis 991 ppm gemessen.

ERGEBNISSE & DISKUSSION

Bleigehalte der oberirdischen Pflanzenteile von *C. cyanus*, *P. rhoeas* und *Z. mays* unterschieden sich untereinander ebenfalls signifikant.

Abbildung 33: Schwermetallgehalte von *A. majus* (*A. m.*), *C. cyanus* (*C. c.*), *C. album* (*C. a.*), *P. rhoeas* (*P. r.*), *V. arvensis* (*V. a.*) und *Z. mays* (*Z. m.*) in Mono- und Mischkultur zum Erntezeitpunkt. Oberhalb der x-Achse sind die Sproß-, unterhalb die Wurzelgehalte dargestellt. Probenmaterial von *C. album* fehlte in Mischkultur, das der Wurzeln von *V. arvensis* in Mono- sowie *A. majus* in Mischkultur ebenso. Gleiche Buchstaben zeigen das Fehlen signifikanter Unterschiede. * zeigt einen signifikanten Unterschied zum korrespondierenden Wert im anderen Kulturansatz.

Die Wurzeln der Versuchspflanzen enthielten im Mittel zwischen 59,3 und 343,0 ppm Cadmium. In den oberirdischen Pflanzenteilen wurden 14,4 bis 63,2 ppm Cadmium ermittelt. *C. cyanus* zeigte von den in Monokultur beproben Arten den höchsten Wurzelcadmiumgehalt (343 ppm), gefolgt von *A. majus* (194,3) und *P. rhoeas* (155,9) zu denen signifikante Unterschiede bestanden. Deutlich geringer war die Cadmiumkonzentration in den Wurzeln
von *C. album* (85,8). Auch in Mischkultur konnte bei *C. cyanus* (254,4) der höchste durchschnittliche Wurzelpbiumgehalt, gefolgt von *P. rhoeas* (95,6) und *Z. mays* (59,3 ppm) gemessen werden, die signifikant geringere Werte aufwiesen als die erstgenannte Pflanze.

Die Wurzelwerte von *C. cyanus* und *P. rhoeas* zeigten statistisch abgesicherte Differenzen zwischen den Kulturansätzen. Die höchsten Cadmiumgehalte im Sproß wurden in Monokultur von *V. arvensis* erreicht (86,8 ppm). Die Konzentrationen in den übrigen Taxa lagen zwischen 14,4 und 63,2 ppm Cadmium und waren - außer bei *C. cyanus*, deren Sproßcadmiumgehalte die von *A. majus* und *P. rhoeas* signifikant überstiegen - im Mittel signifikant geringer als bei *V. arvensis*.

Die Sproßkonzentration von *Z. mays* (60,7 ppm) überstieg in Mischkultur im Mittel die der anderen Arten (24,3 bis 50,1 ppm) und war signifikant größer als die von *A. majus* und *P. rhoeas*, deren Sproßcadmiumgehalt auch eine statistisch relevante Differenz zu *C. cyanus* aufwies. Die Cadmiumkonzentrationen in den oberirdischen Pflanzenteilen von *C. cyanus* waren in beiden Kulturansätzen signifikant verschieden.

4.3.3.2 Nährstoffionen

Abbildung 34 zeigt die Wurzel- und Sproßgehalte der Elemente Kalium, Calcium, Magnesium, Eisen und Mangan sowie von P$_2$O$_5$ der sechs in Mono- und Mischkultur gewachsenen Pflanzenarten. In beiden Kulturansätzen wurden mehrheitlich höhere Ionengehalte im Sproß als in der Wurzel gemessen. Die Mehrheit der durchschnittlichen Maxima und Minima der Elementgehalte wurden in Monokultur gemessen.

Außer beim Element Calcium erreichte *C. album* bei den übrigen Ionen jeweils die geringsten mittleren Sproßgehalte.
Sie unterschieden sich in diesen Fällen von mindestens je zwei anderen mittleren Ionengehalten signifikant. *C. album* nahm bei drei der sechs untersuchten Ionen (Kalium,Magnesium, Phosphat) die niedrigsten mittleren Wurzelkonzentrationen an.

In Mischkultur zeigte *Z. mays* von allen vier gewachsenen Arten die niedrigsten Mangan- und Phosphatgehalte. Diese Minimalwerte unterscheiden sich signifikant von mindestens zwei anderen. Außerdem erreichte *Z. mays* die niedrigsten mittleren Sproßleisengehalte und Wurzelcalciumgehalte, die sich jeweils von mindestens einem anderen Wert signifikant unterschieden.

Eine besondere Häufung maximaler Elementgehalte trat bei *P. rhoeas* auf. Innerhalb der Mischkultur erreichte *P. rhoeas* bei allen untersuchten Ionen die höchsten durchschnittlichen Sproßwerte. In fünf der sechs Fälle unterschieden sich die Sproßspitzenwerte von mindestens zwei der anderen Taxa, bei Kalium, Eisen und Phosphat auch die höchsten Wurzelwerte, wobei sich der mittlere *P. rhoeas*-Wurzelgehalt jeweils von mindestens einem anderen unterschied.

4.4.3.3 Korrelationen der Ionengehalte

Die signifikanten Korrelationen der drei im Substrat dominierenden Schwermetalle mit den anderen getesteten Ionen sind in Tabelle 12 aufgelistet.

Tabelle 12: Korrelationen der Ionengehalte in den Wurzeln und Sprossen von *A. majus*, *C. cyanus*, *C. album*, *P. rhoeas*, *V. arvensis* und *Z. mays* zum Erntezeitpunkt. Der Stichprobenumfang der Wurzelmesswerte von *C. album* in Monokultur und von *P. rhoeas* in Mischkultur war für eine Berechnung nicht ausreichend. Negative Korrelationen sind grau unterlegt, p = 0,05.

4.3.4 Schwermetalle im Kultursubstrat

Die absoluten pflanzenverfügbaren Schwermetallgehalte des Kultursubstrats vor Aussaat und nach Ernte sowie deren relative Veränderung bezogen auf den pflanzenverfügbaren Ausgangsgehalt sind in Abbildung 35 dargestellt. Das Versuchssubstrat hatte pH-Werte zwischen 5,5 und 5,7 und war somit als mäßig sauer anzusprechen (SCHACHTSCHABEL et al. 1998).

Bei allen drei Schwermetallen zeigte jeder Versuchsansatz eine mehr oder weniger starke Abnahme des mittleren pflanzenverfügbaren Schwermetallgehaltes. Vor Aussaat betrug der mittlere pflanzenverfügbare Bleigehalt zwischen 106,4 und 674,8 ppm. Nach Ernte der Pflanzen war dieser auf 20,3 bis 70,0 ppm z.T. deutlich gesunken. Der durchschnittliche pflanzenverfügbare Cadmiumgehalt vor Aussaat der Pflanzen betrug zwischen 9,7 und 33,2 ppm. Nach Ernte der Pflanzen resultierten mittlere Cadmiumgehalte von 7,0 bis 10,0 ppm. Der pflanzenverfügbare Zinkgehalt reduzierte sich von durchschnittlich 40,6 bis 52,9 ppm auf Werte zwischen 37,6 und 44,6 ppm Zink.

Bezogen auf den Ausgangsgehalt zeigte die prozentuale Abnahme der Bleigehalte im Vergleich der drei Schwermetalle Spitzenwerte (28,4 bis 89,6 %). Etwas geringer war die maximale prozentuale Abnahme des pflanzenverfügbaren Cadmiumgehaltes (19,0 bis 78,6 %). Am wenigsten stark war im Mittel die Abnahme der Zinkgehalte (0,5 bis 28,9 %).

Bzgl. Cadmium waren statistisch erfaßbare Differenzen von Kontrolle, *C. cyanus*, *P. rhoeas* und Mischkultur zu *V. arvensis* vorhanden. Außerdem zeigte *C. album* eine signifikant geringere relative Abnahme des pflanzenverfügbaren Cadmiumgehaltes als die Mischkultur. Die durchschnittliche prozentuale Abnahme des pflanzenverfügbaren Zinkgehaltes der *C. cyanus*-Monokultur war signifikant stärker als die der *V. arvensis*-Monokultur (0,5 %) und der Mischkultur.

4.3.5 Schwermetallaufnahme

In Abbildung 36 sind die individuenbezogenen Aufnahmen der drei untersuchten Schwermetalle der verschiedenen Taxa in Mono- und Mischkultur dargestellt. Bei allen drei Elementen waren in beiden Versuchsansätzen die mittleren Schwermetallaufnahmen in die Sprosse größer als in die Wurzel. Die stärkste Aufnahme aller drei Schwermetalle pro Pflanze wurde von *P. rhoeas* in Mischkultur geleistet (340,1, 18,0 und 342,3 µg Pb/ Cd/ Zn pro Pflanze). *Z. mays* stand in Mischkultur an zweiter Stelle (34,4, 12,9, 101,0 µg Pb/ Cd/ Zn pro Pflanze) gefolgt von *C. cyanus* (27,7, 5,9, 68,1 µg Pb/ Cd/ Zn pro Pflanze). Die niedrigsten individuellen Schwermetallaufnahmen erreichte *A. majus* (0,3, 0,0, 0,2 µg Pb/ Cd/ Zn pro Pflanze).

C. cyanus zeigte in Monokultur die stärkste durchschnittliche Bleiaufnahme (187,9). Die größten Cadmium- und Zinkmengen pro Pflanze nahm *P. rhoeas* auf (9,0, 191,4 µg Cd/ Zn pro Pflanze), welcher auch die zweitstärkste Bleiaufnahme pro Pflanze leistete (158,9 µg Pb pro Pflanze). Die zweitgrößten Cadmium- und Zinkmengen wurden je Pflanze von *C. cyanus* aufgenommen (8,4, 85,8 µg Cd/ Zn pro Pflanze). Bei Blei und Zink standen an dritter bis fünfter Stelle der mittleren Aufnahmemenge pro Pflanze *A. majus*, *V. arvensis* und *C. album* (13,4, 4,8, 0,3 µg Pb, 18,2, 5,6, 2,0 µg Zn pro Pflanze).

Bzgl. der Cadmiumaufnahme stand an dritter Stelle *V. arvensis* gefolgt von *A. majus* und *C. album* (1,3, 0,9, 0,3 µg Cd pro Pflanze). Artvergleichend innerhalb der Kulturansätze und artbezogen zwischen diesen gab es bei keinem der drei Schwermetalle signifikante Unterschiede. Die aus der Summe der Schwermetallaufnahmen aller Individuen pro Versuchsgefäß resultierende durchschnittliche absolute Aufnahme pro Topf sowie die relative Aufnahme bezogen auf die pflanzenverfügbare Ausgangsmenge ist in Abbildung 37 dargestellt.

Es fiel auf, daß die durchschnittlich aufgenommenen Gesamtmengen der *C. cyanus*- und *P. rhoeas*-Pflanzen in Monokultur sowie der Mischkultur bei allen drei Schwermetallen deutlich oberhalb der mittleren Schwermetallaufnahme von *A. majus*, *C. album* und *V. arvensis* lagen.

Die Aufnahme in die oberirdischen Pflanzenteile überstieg deutlich die Aufnahme in die Wurzel. *C. cyanus* nahm jeweils die größte Menge Blei (21,808 mg), Cadmium (0,937 mg) und Zink (9,412 mg) pro Topf auf; im Fall von Blei und Zink gefolgt von *P. rhoeas* (5,245/
6,396 mg Pb/ Zn pro Topf) und der Mischkultur (1,855/ 4,205 mg Pb/ Zn pro Topf). Die zweitgrößte durchschnittliche Cadmiummenge wurde von der Mischkultur (0,350 mg/ Topf) aufgenommen, gefolgt von P. rhoeas (0,298 mg). Signifikant verschieden waren die durchschnittlichen Cadmium- und Bleiaufnahmewerte von A. majus und C. cyanus, bei Cadmium außerdem von C. cyanus und P. rhoeas.

Am stärksten war die mittlere prozentuale Zinkaufnahme (bis zu 5,34 %). Es wurden maximal 0,98 % Blei und höchstens 0,96 % Cadmium aus dem Substrat aufgenommen. Alle Höchstwerte wurden von C. cyanus erreicht. Die mittlere prozentuale Schwermetallaufnahme von P. rhoeas war bei allen drei Schwermetallen geringer (3,28 % Zn, 0,38 % Cd, 0,48 % Pb). Die Mischkultur stand bzgl. der mittleren Schwermetallaufnahme an dritter Stelle (2,97 % Zn, 0,32 % Cd, 0,08 % Pb). A. majus, C. album und V. arvensis nahmen im Mittel wesentlich geringere prozentuale Anteile der Ausgangskonzentration auf, die alle deutlich unter 1 % betrugen (0,01 bis 0,09 % Zn, 0,01 bis 0,02 % Cd, 0,00 bis 0,01 % Pb). Signifikante Unterschiede bestanden zwischen der Zink- und Cadmiumaufnahme von A. majus und C. cyanus.

4.3.6 Anteil der Pflanzen an der Schwermetallabnahme des Kultursubstrates

Aus der pflanzenverfügbaren Schwermetallgesamtmengen pro Kulturgefäß vor Aussaat und nach Ernte der Pflanzen konnte die durchschnittliche Gesamtdifferenz des Schwermetallgehaltes errechnet werden. Aus Biomasse und Schwermetallgehalt der Pflanzen wurde außerdem die Gesamtschwermetallaufnahme der verschiedenen Spezies ermittelt. So war auch die Bestimmung des relativen Teils der Veränderung des Schwermetallgehaltes möglich, der im Mittel von den Pflanzen getragen wurde (Abbildung 38). Die absolute Abnahme des pflanzenverfügbaren Gehaltes zeigte bei Blei Spitzenwerte (87 bis 2105 mg pro Topf). Deutlich weniger stark war der durchschnittliche Cadmium- (zwischen 6,6 und 91,8 mg pro Kulturgefäß) und Zinkgesamtverlust (6,1 bis 51,1 mg pro Topf). Es lagen nach Ende der Kultivierung statistisch gesicherte Differenzen der durchschnittlichen pflanzenverfügbaren Gesamtkulturen aller drei Schwermetalle der A. majus- und C. album-Monokulturen zur Mischkultur vor, die bei Zink signifikant geringere, bei den anderen Schwermetallen signifikant höhere Werte als die beiden Erstgenannten aufwiesen. Bei der durchschnittlichen Abnahme des Blei- und Zinkgehaltes bestand außerdem ein signifikanter Unterschied zwischen Mischkultur und Kontrollansatz. Die Abnahme des pflanzenverfügbaren Blei- und Cadmiumgehaltes war jeweils in der Mischkultur am stärksten und bei der Chenopodien-Einzelkultur am schwächsten. Beim durchschnittlichen Zinkentzug war der Wert der Mischkultur am geringsten, der der Centaureen am höchsten.

ERGEBNISSE & DISKUSSION
ERGEBNISSE & DISKUSSION

Die Pflanzen hatten an der durchschnittlichen Abnahme des pflanzenverfügbaren Gesamtgehaltes einen meist unbedeutenden Anteil. Bei Blei und Cadmium betrug der relative Anteil der Pflanzen am Schwermetallentzug bei allen Kulturansätzen unter 1,5 %. Die Anteile von *A. majus*, *C. album*, *P. rhoeas* und der Pflanzen in Mischkultur zeigten bei Blei (0,00 bis 0,71 %) und Cadmium (0,03 bis 0,65 %) nur geringe Anteile, während *C. cyanus* bei beiden Schwermetallen zu 1,48 (Pb) bzw. 1,44 % (Cd) an der mittleren Schwermetallabnahme beteiligt war. Der Anteil der Centaureen an der Cadmiumverarmung des Substrats unterschied sich signifikant von *A. majus* und *C. album* in Monokultur. Der mittlere Anteil von *A. majus* und *C. album* an der Zinkabnahme (0,65 und 0,00 %) war ähnlich gering wie bei Blei und Cadmium. Der relative Anteil am Zinkentzug lag z.T. sehr viel höher (bis 53,31 %). *P. rhoeas* war für knapp 15 %, *C. cyanus* für fast 1/5 der Zink-Abnahme des Kultursubstrates verantwortlich. Die Pflanzen der Mischkultur nahmen zusammen sogar mehr als die Hälfte der pflanzenverfügbaren Zinkmenge, um die das Kultursubstrat verarmte, auf.

4.3.7 Diskussion

Um Erkenntnisse über Vitalität und Schwermetallakkumulationsfähigkeit der ausgewählten Pflanzen in natürlichem Substrat zu erhalten, wurden diese in Kulturgefäßen ausgesät, die mit Oberboden von der schwermetallbelasteten Ackerfläche in Hagen gefüllt waren. Ergänzend wurden die Versuchstaxa außer in Mono- auch in Mischkultur untersucht.

T. arvense, das in Sand-Lewatit-Kultur bereits nach wenigen Tagen abstarb, lief in dem schwermetallbelasteten natürlichen Substrat nicht auf. Somit waren die in Sandkultur aufgetretenen Vitalitätsprobleme bei dieser Art nicht nur durch die substratbedingten

Die Beispiele von *Thlaspi arvense* und *Viola arvensis* zeigen, daß Schwermetalltoleranz keine Familien- oder Gattungseigenschaft ist, sondern auch in nahe verwandten Arten ganz unterschiedlich ausgeprägt sein kann.

C. album, welches in Sandkultur durch eine starke Überlebensrate, Biomasse-Entwicklung und kräftige Schwermetall-Akkumulationseigenschaften auffiel, zeigte im freilandnahen Einsatz deutliche Defizite. Neben einer auffallend geringeren Vitalität, die sich in einem sowohl in Einzel- als auch in Mischkultur schwach ausgeprägten Habitus und einer geringen Biomasse ausdrückte, hatte es außerdem eine sehr schwache Konkurrenzkraft in Mischkultur von nicht mal 2 % und trat wie *A. majus* in ¼ der Mischkulturen überhaupt nicht auf. In Kulturversuchen mit zinkbelastetem Sand (BUDDENDIEK 1994) zeigte *C. album* deutlich größere Biomassen pro Pflanze (170 bis 770 mg), als in beiden Kulturansätzen in Erde (4,2 und 6,0 mg).

A. majus zeigte in Sand- und Erdkultur schwermetallbedingte Schadsymptome wie Chlorosen, ein schwach ausgeprägtes Wurzelwerk und eine geringe Biomasseentwicklung und war in der Konkurrenz den anderen Taxa unterlegen und dementsprechend dem Schwermetallstreß unter freilandnahen Bedingungen nicht gewachsen.
P. rhoeas war in natürlichem Kultursubstrat dem Schwermetallstreß besser gewachsen als in Sandkultur und hatte wie C. cyanus überwiegend kräftigen Wuchs und eine starke Konkurrenzkraft. Z. mays war hingegen nicht besonders konkurrenzkräftig. C. cyanus (86,0 und 110,4 mg/ Pflanze) zeigte denen in einer Untersuchung von BUDDENDIEK (1994) ermittelten Biomassen ähnliche Werte (etwa 55 bis 220 mg/ Pflanze).

Die Biomasse, die bei allen Taxa noch stärker sproßlastig war als in Sandkultur (Abbildung 31), war bei C. cyanus, P. rhoeas und in der Mischkultur pro Kulturgefäß und in der Monokultur pro Pflanze am stärksten ausgeprägt. In Mischkultur hatte Z. mays trotz der eher geringen Konkurrenzkraft die stärkste Biomasseentwicklung. Unterschiede der individuellen Biomasseentwicklung waren zwischen den beiden Versuchsansätzen statistisch nicht erfaßbar. Im Mittel waren die Monokulturpflanzen kräftiger. Vor allem P. rhoeas fiel in Monokultur durch eine fast acht mal so große mittlere Biomasse je Pflanze im Vergleich zur Mischkultur auf (27,0 und 206,6 mg/ Pflanze).

Die meisten nicht hyperakkumulierenden Pflanzen enthalten selten mehr als 20 ppm **Cadmium** im Sproß und 30 ppm in der Wurzel (Tabelle 9a bis 9c). Die hier in Einzel- und Mischkultur untersuchten Pflanzen erreichten vor allen Dingen in der Wurzel meist wesentlich höhere Konzentrationen. Eine bemerkenswerte Überschreitung der in Sandkultur festgestellten Wurzelkonzentrationen, die bei *C. cyanus* bis 156,9 ppm betrug, wurde in beiden Erdkultur-Ansätzen festgestellt (343,0 in Mono- und 254,4 ppm Wurzel in Mischkultur). Der in Monokultur in der *C. cyanus*-Wurzel festgestellte Gehalt war somit die höchste im Rahmen dieser Arbeit überhaupt festgestellte Cadmiumgewebekonzentration. Herauszustellen ist außerdem, daß die äußerst vitalitätsgestörte und konkurrenzschwache *V. arvensis* in Monokultur die höchste Cadmiumsproßkonzentration erreichen konnte. Des weiteren fällt auf, daß *Z. mays*, welche in Mischkultur die stärkste ober- und unterirdische Individualbiomasse zeigte, hier auch den höchsten oberirdischen Cadmiumgehalt aufwies, der darüber hinaus im Mittel leicht den der Wurzel überschritt. Der gute Cadmiumtransfer in den Sproß ist besonders aufgrund der potentiell von *Z. mays* erreichten Biomasse für die Anwendung dieser Spezies bei Phytoremediations-Maßnahmen von Interesse.

Die **Zinkgehalte** der in Mono- und Mischansatz kultivierten Pflanzen sind denen von Pflanzen schwermetallreicher Standorte ähnlich, welche selten Konzentrationen von 400 ppm in den Blättern und 2000 ppm in den Wurzeln überschreiten (Tabelle 9a bis 9c).

<table>
<thead>
<tr>
<th>Versuchsansatz</th>
<th>Pflanze</th>
<th>Konzentration (Pflanze)/ Konzentration (Boden)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pb</td>
</tr>
<tr>
<td>Monokultur</td>
<td>A. majus</td>
<td>3,6</td>
</tr>
<tr>
<td></td>
<td>C. cyanus</td>
<td>4,4</td>
</tr>
<tr>
<td></td>
<td>C. album</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td>P. rhoeas</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td>V. arvensis</td>
<td>-</td>
</tr>
<tr>
<td>Mischkultur</td>
<td>A. majus</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>C. cyanus</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>P. rhoeas</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>Z. mays</td>
<td>0,6</td>
</tr>
</tbody>
</table>

ERGEBNISSE & DISKUSSION

ERGEBNISSE & DISKUSSION

Nach Ernte der Mono- und Mischkulturen waren die um bis zu 90 % gesenkten Konzentrationswerte der Schwermetalle wesentlich homogener als vorher, wobei die Reduktion der Bleikonzentrationen am stärksten, die der Zinkgehalte am schwächsten war. Jedoch zeigten auch die unbepflanzten Kontrollansätze, wie die überwiegende Mehrheit aller Kulturgefäße, bei Versuchsende signifikant geringere pflanzenzugängliche Schwermetalkonzentrationen als vor dem Experiment. Auch unterschied sich die relative Abnahme der Gehalte der Kontrollsubstrate nicht von denen der meisten bepflanzten Töpfe.

Die Abnahme der Schwermetall-Konzentrationen während der Versuchsdauer war somit vorwiegend ein Resultat der Auswaschung von Schwermetallen. Nur ein geringer Teil der Schwermetallverluste kann auf die Aufnahme durch die Pflanzen zurückgeführt werden. Mit knapp 1,5 % dieser Blei- und Cadmiumverluste nahmen die Centaureen noch deutlich mehr
von dieser Differenz auf als die übrigen Pflanzen und die Mischkultur. Etwas über die Hälfte

der Zinkverluste des Bodens wurde in den Mischkulturen durch die Pflanzen aufgenommen,
knapp 1/5 noch von *C. cyanus* (Abbildung 35).

Metalle liegen im Boden in fünf Fraktionen vor. Am stärksten sind Bodenkomponenten in der
Silikatstruktur der Bodenmineralien als sog. primärer Mineralpool (5) gebunden. Etwas
weniger kräftig ist die Bindung an Carbonate, Hydroxide oder Oxide als sekundäre Minerale
(4). Auch organisch gebundene Metalle (3) haben in der Regel noch eine hohe Affinität zu
Sorptionsstellen und sind nicht pflanzenverfügbar. Die Fraktionen der austauschbaren (2) und

der wasserlöslichen Metalle (1) hingegen sind für Pflanzen kurzfristig zugänglich und stehen
mit Fraktion (2) und (3) im Austausch (SALT et al. 1995, VIETS 1962). Ein großer Teil der
pflanzenverfügbaren Schwermetalle in den Versuchsgefäßen konnte also aufgrund der starken
Auswaschung der wasserlöslichen Fraktion zugerechnet werden. Das steht im Widerspruch zu
der im Rahmen eines umwelthygienischen Gutachtens über die belastete Fläche, von der das
Versuchssubstrat stammte, ermittelten Schwermetallfestlegung (SCHRAMMECK &
VIERECK 1997). Hier wurde ein wasserlöslicher Gesamtanteil von nur 0,03 bis 0,06 % für
das Hauptbelastungselement Cadmium ermittelt. Die im Oberboden der Fläche, auf der auch
die Entnahmestelle lag, gemessenen Gesamtgehalte im Oberboden betrugen 276 ppm
Cadmium (SCHRAMMECK & VIERECK 1997). Unter der Annahme, daß die etwa 15 bis 30
ppm pflanzenverfügbares Cadmium, welche in den untersuchten Bodenportionen festgestellt
wurden, fast komplett wasserlöslich waren, ergab sich zumindest für die untersuchten Oberbodenportionen ein ungefährrer wasserlöslicher Anteil von 5 bis 10 % der
Gesamtbelastung, also deutlich mehr, als die von SCHRAMMECK & VIERECK (1997)
angegebenen Werte. Anthropogene Schwermetalleinträge in die pflanzlichen Wuchssubstrate
sind in der Regel stark mobilisierbar (SUKOPP & WITTING 1993). Nach Eintritt einer
Bodenbelastung dauert es auch oft Jahre oder Jahrzehnte bis sich durch langsame
Diffusionsprozesse ein Gleichgewicht von gelösten und festgelegten Ionen einstellt
(HORNBURG & BRÜMMER 1993). Die Gründe für die unterschiedlichen Befunde und
Feststellungen zur Schwermetallmobilität auf der beprobten Fläche können so in einer noch
nicht abgeschlossenen Festlegung der sehr mobilen anthropogenen Schwermetallbelastung im
Boden liegen. Der niedrige Anteil der Pflanzen am relativ hohen Schwermetallentzug ist also
offensichtlich eine Folge des problematisch belasteten Versuchssubstrats, welches sich durch
den hohen Anteil wasserlöslicher Schwermetalle auszeichnete.

Da die oberirdischen Pflanzenteile eine deutlich stärkere Biomasseproduktion als die Wurzeln
erreichten, wurde die absolute *Schwermetallaufnahme* aus dem Ackerboden anders als bei
den Sandkulturversuchen bei allen Pflanzen hauptsächlich vom Sproß getragen (Abbildung

125

Schlußfolgerung

4.4 Topfkultur-Versuche zum Einfluß verschiedener Chelatoren auf Mischkulturpflanzen in schwermetallbelasteter Erde (1999)

Parallel zu den chelatgestützten Phytoremediationsexperimenten im Freiland wurden Topfkulturversuche zur Wirkung unterschiedlicher Chelate auf die Entwicklung von Konkurrenzverhalten, Biomasse, Ionengehalt und Schwermetallaufnahme von A. majus, C. cyanus, C. album, P. rhoeas und Z. mays durchgeführt.

4.4.1 Morphologische Beobachtungen und Konkurrenzverhalten

ERGEBNISSE & Diskussion

4.4.2 Biomasse und Wassergehalt

Abbildung 40 zeigt die Einzelbiomassen der vier Arten pro Sproß und Kulturgefäß sowie die Gesamtbiomassen der unterschiedlich behandelten Versuchsansätze. Eine getrennte Beprobung von ober- und unterirdischen Pflanztelten in den kompakt durchwurzelten Kulturtöpfen erwies sich aufgrund der dichten Lagerung im Substrat als undurchführbar.

Die durchschnittliche Biomasse pro Kulturgefäβ (a) betrug zwischen 13,6 (CDTA) und 26,2 g (EDTA) und war nach EDTA-Behandlung signifikant größer als ohne Chelatverabreichung und bei CDTA-Applikation (durchschnittlich 16,5 und 13,6 g/Topf).

Bei allen Versuchsvarianten war die mittlere Biomasse von *Z. mays* (11,8 g bei CDTA und 29,4 g bei DTPA) pro Versuchsgefäβ deutlich größer als die der anderen Pflanzen (0,1 bis 1,5 g/Topf, Abbildung 40 (b)). Bei fünf der sechs Kultursätze lagen signifikante Unterschiede der mittleren Biomasse (*Z. mays*) der Sprossen pro Topf zu mindestens einer anderen Art vor; ohne Behandlung, nach Citrat- und EDTA-Verabreichung sogar zu allen anderen Pflanzen. Auch bezogen auf die Sproßbiomasse des Einzelindividuums (Abbildung 40 (c)) zeigte *Z. mays* in allen Versuchsansätzen die höchsten Werte (1241 bis 1906 mg pro Sproß). Die durchschnittlichen Biomassen aller anderen Taxa lagen hingegen unter 100 mg pro Sproß. Außer bei DTPA-Applikation war jedoch die durchschnittliche Biomasse pro *Z. mays*-Sproß von mindestens einer anderen Art jeweils signifikant verschieden, bei Behandlung mit EDTA und ohne Chelatapplikation sogar von allen anderen drei Spezies. Artintern konnten keine signifikanten Differenzen der Biomassen je Topf und Sproß infolge der verschiedenen Chelatapplikationen nachgewiesen werden.

In Abbildung 41 ist der durchschnittliche Wassergehalt der vier Pflanzenarten am Tag der Ernte dargestellt.
Abbildung 40: Sproßbiomasse (a) und nach Pflanzenart (A. majus, C. cyanus, C. album, Z. mays) differenzierte Sproßbiomasse pro Topf (b) sowie individuelle Biomasse je Sproß (c). Es sind Mittelwerte und Standardabweichung dargestellt. Gleiche Buchstaben zeigen das Fehlen signifikanter Differenzen.
A. majus hatte einmalig nach DTPA-Applikation nicht den höchsten mittleren Wassergehalt im Vergleich der Taxa und enthielt nach Applikation der fünf verschiedenen Chelate zwischen 68,6 und 81,3 % Wasser im Sproß. Artintern war der Wassergehalt von A. majus bei DTPA-Gabe signifikant geringer als bei den anderen Versuchsansätzen. Der durchschnittliche Wassergehalt in den oberirdischen Pflanzenteilen von Z. mays (59,3 bis 65,3 %) zeigte im Behandlungsvergleich von allen vier untersuchten Arten die geringste Variation. Die geringste mittlere Sproßfeuchte wurde bei allen Versuchsansätzen von C. cyanus erreicht (11,6 bis 32,2 %) und lag bei fünf der sechs Behandlungsgruppen signifikant niedriger als die mindestens einer anderen.

4.4.3 Ionengehalte

4.4.3.1 Schwermetalle

Die Blei-, Cadmium- und Zinkgehalte der oberirdischen Pflanzenteile von A. majus, C. cyanus, C. album und Z. mays vor Applikation der Chelatoren und nach Ernte der Pflanzen sind in Abbildung...
dargestellt. Ergänzend sind in Tabelle 14 vergleichend die Mittelwerte der absoluten Veränderung der Schwermetallkonzentrationen zusammengefaßt.

<table>
<thead>
<tr>
<th>Behandlung</th>
<th>Pflanze</th>
<th>Zn</th>
<th>Cd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td></td>
<td>98</td>
<td>29</td>
<td>45</td>
</tr>
<tr>
<td>CDTA</td>
<td></td>
<td>956</td>
<td>2061</td>
<td>846</td>
</tr>
<tr>
<td>Citrat</td>
<td>Z. mays</td>
<td>-5</td>
<td>-10,8</td>
<td>-18</td>
</tr>
<tr>
<td>DTPA</td>
<td>C. cyanus</td>
<td>-5</td>
<td>-10,8</td>
<td>-18</td>
</tr>
<tr>
<td>EDTA</td>
<td></td>
<td>29</td>
<td>2061</td>
<td>36</td>
</tr>
<tr>
<td>EGTA</td>
<td></td>
<td>29</td>
<td>2061</td>
<td>36</td>
</tr>
</tbody>
</table>

Zum Zeitpunkt der Ernte zeigten die Sprosse je nach Behandlung und Spezies eine z.T. dramatische Steigerung der durchschnittlichen Schwermetallgehalte. Die mittleren Bleispitzenwerte in der pflanzlichen Trockensubstanz nach Behandlung waren etwa 100 mal, die durchschnittlichen maximalen Cadmium- und Zinkgehalte etwa 10 mal so hoch wie vor der Behandlung. Sie betrugen bei allen Pflanzen im Mittel zwischen 20,8 und 7163 ppm Blei, 4,6 und 413,9 ppm Cadmium und zwischen 159 und 3609 ppm Zink. Es fiel auf, daß die Applikation von Citrat häufig zu einer Senkung der Schwermetallkonzentrationen führte und bei allen drei Ionen die niedrigsten Elementgehalte zur Folge hatte (26,2 bis 55,8 ppm Pb, 4,6 bis 65,1 ppm Cd und 223 bis 367 ppm Zn). Sie waren somit niedriger als die jeweils ohne Behandlung resultierenden mittleren Schwermetallkonzentrationen (20,8 bis 80,5 ppm, 7,0 bis 73,5 ppm und 212 bis 479 ppm Pb/ Cd/ Zn). Die durchschnittlich höchsten Werte der Bleianreicherung ergeben sich bei A. majus nach DTPA-Applikation (7163 ppm), welches auch die kräftigste Steigerung eines absoluten Schwermetallgehaltes zur Folge hatte (Tabelle 14). Eine weitere nennenswerte Steigerung des Bleigehaltes zeigte auch C. cyanus nach EGTA-Gabe (+1574 ppm).

Die mittleren Schwermetallgehalte der Sprossen lagen nach EDTA- und EGTA-Gabe im Behandlungsvergleich im Mittelfeld der Ionengehalte (Abbildung 40). *C. cyanus* erreichte bei mindestens 2/3 aller Behandlungsgruppen die höchsten durchschnittlichen Schwermetallenkonzentrationen im Sproß, gefolgt von *A. majus* ohne Behandlung. Nach DTPA-, EDTA- und EGTA-Applikation wurde in den *C. cyanus*-Pflanzen signifikant mehr Blei und Zink nachgewiesen als bei *Z. mays*. Im Falle von Cadmium war dies auch noch bei Citratapplikation der Fall.

4.4.3.2 Nährstoffionen

Die Kaliumgehalte der Pflanzen erhöhten sich nach Chelatoren-Behandlung auf beinahe doppelt so hohe Spitzenwerte (14273 bis 57490 ppm). Im Vergleich wurden hier auch die stärksten Veränderungen der Ionengehalte gemessen. Die höchsten durchschnittlichen Kaliummengen enthielt *A. majus* nach DTPA-Gabe (57490 ppm) sowie *C. album* nach EDTA-Einsatz (45968 ppm). Allerdings war in diesem Fall der Kalium-Gehalt auch extrem hoch (42679 ppm). Sofern *C. album* in den Kultursätzen vorhanden war, erreichte es den

4.4.3.2 Korrelationen der Ionengehalte

<table>
<thead>
<tr>
<th>Pflanze</th>
<th>Korrelationen mit</th>
<th>vor Behandlung</th>
<th>keine Behandlung</th>
<th>CDTA</th>
<th>Citrat</th>
<th>DTPA</th>
<th>EDTA</th>
<th>EGTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antirrhinum majus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>Mg</td>
<td>Zn</td>
<td>Zn</td>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centaurea cyanus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>-</td>
<td>Cd</td>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>-</td>
<td>Ca</td>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chenopodium album</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zea mays</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>Ca</td>
<td>P₂O₅</td>
<td>Cd</td>
<td>Zn</td>
<td>Mn</td>
<td></td>
<td></td>
<td>Zn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zn</td>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>Ca</td>
<td>P₂O₅</td>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zn</td>
</tr>
<tr>
<td></td>
<td>Fe</td>
<td></td>
<td>Zn</td>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>Fe</td>
<td></td>
<td>Zn</td>
<td>K</td>
<td>Mg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Der Cadmiumgehalt war nach EDTA-Gabe bei *A. majus* und *Z. mays* mit Zink korreliert. Außerdem traten bei beiden Taxa insgesamt in sieben Fällen rechnerische Zusammenhänge zwischen den Gehalten der Schwermetalle und den Kalium- und Magnesiumgehalten auf. Im

4.4.4 Schwermetalle im Kultursubstrat

![Diagramm der Schwerverfüglichen Metalle](image)

ERGEBNISSE & DISKUSSION

Die absolute pflanzenverfügbare Schwermetallfraktion in den Versuchsansätzen vor Aussaat der Pflanzen und nach Ernte der oberirdischen Pflanzenorgane sowie die mittlere prozentuale Veränderung des Gehaltes der einzelnen Töpfe sind in Abbildung 45 dargestellt.

Der pH-Wert der Substratportionen lag zwischen 5,7 und 5,9 (Anhang) und konnte somit als mäßig sauer eingestuft werden (SCHACHTSCHABEL et al. 1998).

Auch nach EDTA- und DTPA-Applikation waren durchschnittliche Steigerungen der pflanzenverfügbaren Bleigehalte von 81,0 und 21,8 % nachweisbar. Relativ zum mittleren Anfangswert wurde der verbleibende mittlere pflanzenverfügbare Bleigehalt nach Citratgabe (-63,3 %) sowie nach EGTA- (-52,3 %), CDTA- (-9,0 %) und beim Kontrollansatz kräftig gesenkt. Signifikant verschieden waren die Gehaltsveränderungen nach Citrat- und EDTA-Anwendung.

Alle absoluten pflanzenverfügbaren Cadmiumgehalte lagen nach der Ernte der oberirdischen Biomasse im Mittel höher als vor Aussaat der Pflanzen. Signifikant war die Steigerung nach CDTA- und EDTA-Gabe. Das entsprach einer durchschnittlichen Erhöhung des pflanzenverfügbaren Cadmiumgehaltes relativ zum Ausgangsgehalt um 4,6 % bis 80,6 %.

Vor Aussaat der Pflanzen zeigten alle Versuchsgefäße relativ homogene pflanzenverfügbare Zinkgehalte (im Mittel 37,6 bis 44,0 ppm). Alle Chelatoren führten zu einer signifikanten Steigerung des absoluten verfügbaren Zinkgehaltes auf 98,8 bis 171,4 ppm. Das entsprach dem 2,5- bis 4-fachen des Ausgangsgehaltes. Zu einer geringfügigen Senkung des mittleren pflanzenverfügbaren Gehaltes, entsprechend 1,7 %, führte die Kontrollbehandlung. Der nach Citratapplikation erreichte pflanzenverfügbare Zinkgehalt entsprach knapp 150 % des Ausgangsgehaltes und war wie nach CDTA-Applikation (188,2 %) im Mittel signifikant größer als bei den vegetationsfreien und unbehandelten Versuchs- und Signifikant geringer als nach DTPA-, EDTA- und EGTA-Gabe (282,0 bis 321,5 %). Die drei
letzten genannten Chelatoren führten außerdem zu einer signifikant stärkeren Veränderung des mittleren pflanzenverfügbaren Zinkgehaltes als bei den vegetations- und behandlungslosen Kulturen.

4.4.5 Schwermetallaufnahme

Die Cadmium- und Zinkaufnahme von Z. mays war bei fünf der sechs Versuchsansätze durchschnittlich am höchsten relativ zu den anderen Taxa. Überwiegend waren Differenzen zu mindestens einem anderen Wert signifikant.

In Abbildung 47 sind die durchschnittlichen absoluten Summen der Schwermetallaufnahme pro Pflanzenart additiv für jede Versuchsvariante und die mittlere Gesamtaufnahme je Topf als relativter Anteil der pflanzenverfügbaren Gesamtmengen zu Versuchsbeginn dargestellt. Die Gesamtaufnahmewerte bewegten sich zwischen 0,53 und 11,29 mg Blei pro Kulturgefäβ. Die Pflanzen entzogen dem Substrat außerdem zwischen 0,34 und 0,84 mg Cadmium und 4,45 bis 11,06 mg Zink pro Versuchsgefäβ.

ERGEBNISSE & DISKUSSION

Pb	Cd	Zn

keine Behandlung: 1,8 ± 4,5 | 152,0 ± 435,2
CDTA: 45,7 ± 113,1
Citrat: 3,9 ± 84,2 ± 184,5
DTPA: 41,8 ± 84,2 ± 142,4
EDTA: 67,7 ± 41,8 ± 69,0
EGTA: 9,7 ± 39,1 ± 56,9

Schwermetallaufnahme/Pflanze [µg]

Höchstens 9,5 und mindestens 3,5 % der ursprünglichen pflanzenverfügbaren Zinkmenge wurde insgesamt durchschnittlich aus den Kulturgefäßen in die oberirdischen Pflanzenteile aufgenommen. Die relativen, dem Substrat entzogenen Blei- und Cadmiummengen betrugen 0,8 bis 5,8 und 1,4 bis 4,0 %. Im Mittel wurde durch die Pflanzen aus den Kontrollansätzen nie der niedrigste relative Schwermetallanteil entzogen. Die höchsten relativen Pflanzenaufnahmeanteile resultierten jeweils nach Citrat- oder DTPA-Gabe, die niedrigsten nach EDTA- oder EGTA-Applikation.

4.4.6 Anteil der Pflanzen an der Schwermetallabnahme des Kultursubstrats

<table>
<thead>
<tr>
<th>Behandlung</th>
<th>Pb</th>
<th>Cd</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>k. B.</td>
<td>0,8</td>
<td>0,8</td>
<td>176,9</td>
</tr>
<tr>
<td>CDTA</td>
<td>9,0</td>
<td></td>
<td>824,3</td>
</tr>
<tr>
<td>Citrat</td>
<td>1,3</td>
<td>0,7</td>
<td>824,3</td>
</tr>
<tr>
<td>DTPA</td>
<td>8,1</td>
<td>7,4</td>
<td></td>
</tr>
<tr>
<td>EDTA</td>
<td>2,2</td>
<td>2,5</td>
<td>9,0</td>
</tr>
<tr>
<td>EGTA</td>
<td></td>
<td></td>
<td>9,0</td>
</tr>
</tbody>
</table>

Tabelle 17: Prozentualer Anteil der oberirdischen Pflanzenteile am Verlust der pflanzenverfügbaren Schwermetalle des Kultursubstrats. Sofern vorhanden sind Mittelwert und Standardabweichung (SD) dargestellt. k. B. = keine Behandlung.

Sofern eine Abnahme der pflanzenverfügbaren Schwermetalle in den Versuchsgefäßen erfolgte, wurde der relative pflanzliche Anteil an dieser ermittelt (Tabelle 17).

Der relative Anteil der oberirdischen Phytobiomasse am Bleiverlust des Substrates war nach CDTA- und DTPA-Gabe am höchsten (9,0 und 8,1 %). Bei EGTA- und Citrat-Applikation sowie ohne Behandlung war dieser Anteil deutlich geringer (2,2, 1,3 und 0,8 %). Ohne Behandlung betrug der pflanzliche Anteil an der Cadmiumverarmung des Substrats 44,9 %. Ein den Cadmiumverlust des Substrats deutlich übersteigender Anteil, wurde von den Pflanzen nach Citratbehandlung aufgenommen (824,3 %). Gleichzeitig konnten oberirdischen Pflanzenteile ohne Chelatbehandlung im Mittel deutlich mehr als die pflanzenverfügbare Zinkmenge aufnehmen (176,9 %). Diese wenigen besonders hohen Einzelwerte sind wahrscheinlich das Resultat der Analyse von Bodenproben, die für die Substratverhältnisse nicht typisch waren und können daher nicht als repräsentativ angesehen werden.
4.4.7 Diskussion

<table>
<thead>
<tr>
<th>Pflanze</th>
<th>Schwermetall</th>
<th>Schwermetallgehalt [ppm]</th>
<th>1998</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. majus</td>
<td>Pb</td>
<td>290</td>
<td>10,6 - 66,5</td>
<td></td>
</tr>
<tr>
<td>C. cyanus</td>
<td>249</td>
<td>8,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z. mays</td>
<td>92</td>
<td>24,0 - 39,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. majus</td>
<td>Cd</td>
<td>24,3</td>
<td>0,8 - 22,6</td>
<td></td>
</tr>
<tr>
<td>C. cyanus</td>
<td>50,1</td>
<td>42,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z. mays</td>
<td>60,7</td>
<td>4,9 - 18,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. majus</td>
<td>Zn</td>
<td>134</td>
<td>94 - 228</td>
<td></td>
</tr>
<tr>
<td>C. cyanus</td>
<td>393</td>
<td>376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z. mays</td>
<td>350</td>
<td>145 - 260</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Versuch</th>
<th>Ansatz</th>
<th>Pb</th>
<th>Cd</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>Ko.</td>
<td>156</td>
<td>19,6</td>
<td>52,9</td>
</tr>
<tr>
<td>A. majus</td>
<td>178</td>
<td>15,4</td>
<td>49,3</td>
<td></td>
</tr>
<tr>
<td>C. cyanus</td>
<td>468</td>
<td>29,3</td>
<td>52,8</td>
<td></td>
</tr>
<tr>
<td>C. album</td>
<td>242</td>
<td>17,0</td>
<td>51,1</td>
<td></td>
</tr>
<tr>
<td>P. rhoeas</td>
<td>258</td>
<td>23,3</td>
<td>50,5</td>
<td></td>
</tr>
<tr>
<td>V. arvensis</td>
<td>106</td>
<td>9,7</td>
<td>45,2</td>
<td></td>
</tr>
<tr>
<td>M. k. B.</td>
<td>675</td>
<td>33,2</td>
<td>40,6</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>Ko.</td>
<td>37</td>
<td>7,6</td>
<td>43,8</td>
</tr>
<tr>
<td>k. B.</td>
<td>57</td>
<td>8,7</td>
<td>42,3</td>
<td></td>
</tr>
<tr>
<td>CDTA</td>
<td>68</td>
<td>7,7</td>
<td>37,6</td>
<td></td>
</tr>
<tr>
<td>Citrat</td>
<td>51</td>
<td>7,8</td>
<td>40,5</td>
<td></td>
</tr>
<tr>
<td>DTPA</td>
<td>54</td>
<td>8,2</td>
<td>40,9</td>
<td></td>
</tr>
<tr>
<td>EDTA</td>
<td>67</td>
<td>7,9</td>
<td>41,1</td>
<td></td>
</tr>
<tr>
<td>EGTA</td>
<td>58</td>
<td>9,4</td>
<td>44,0</td>
<td></td>
</tr>
</tbody>
</table>

Verglichen mit den in Mischkultur gewachsenen Pflanzen des Vorjahres waren die vor der Behandlung mit den Chelaten im Sproß gemessenen **Schwermetallgehalte** z.T. wesentlich geringer (Abbildung 42). Maximal wurde gut 40 % der Zinkkonzentration erreicht. Weniger groß waren die Unterschiede im Blei- und Cadmiumgehalt (Tabelle 18). Die Differenzen zu den Vorjahreswerten lassen sich durch die spezielle Situation der Festlegung bzw. Mobilität der Schwermetalle des verwendeten Versuchssubstrats erklären. Zu Beginn der Vorjahresexperimente waren die pflanzenverfügbaren Schwermetallfraktionen zum größten Teil wasserlöslich, was sich in einem starken Verlust der pflanzenverfügbaren Schwermetalle durch Auswaschung auch aus den Kontrollgefäßen und in einem sehr geringen Anteil der Pflanzen am Schwermetallverlust äußerte.

Dementsprechend waren die verbliebenen pflanzenzugänglichen Schwermetalle hauptsächlich der austauschbaren Fraktion zuzurechnen (SALT et al. 1995, VIETS 1962). Vor allem die biologische Verfügbarkeit von Blei war weniger gut (Tabelle 19) als im Vorjahr. Die erreichten Sproßkonzentrationen lagen so im Bereich anderer Pflanzen unbelasteter Standorte (Tabelle 9a bis 9c).

ERGEBNISSE & Diskussion

In einigen Topfexperimen
ten wurden bisher besonders hohe Schwermetallgehalte nach Chelatbehandlung gemessen. HUANG et al. (1997) konnten bei *Z. mays* in Topfexperimenten mit Erde, die zu Versuchszwecken mit insgesamt 600 ppm Blei oder 100 ppm Cadmium belastet worden war, nach EDTA-Gabe einen Bleigehalt von 11000 ppm messen. BLAYLOCK et al. (1997) ermittelten ebenfalls in Kulturgefäßer
tersuchungen nach EDTA-Gabe bis zu 15000 ppm Blei, nach CDTA-Behandlung bis zu 1000 und nach EGTA-Applikation sogar 2800 ppm Cadmium im Sproß von *Brassica juncea* L.. DTPA erhöhte in dieser Untersuchung jedoch die Cadmiumaufnahme nicht. Die von *A. majus* und *C. cyanus* erreichten Bleikonzentrationen (CDTA und DTPA) sowie die bei *C. cyanus* gemessene Cadmiumkonzentration (CDTA) sind hier durchaus den Resultaten anderer Topfversuche ähnlich, da bis zu 70 % von den in der Literatur genannten Höchstwerten der Schwermetallkonzentrationen erreicht wurden.

Die Beispiele zeigen, daß generelle Aussagen über das Phytoremediationspotential einer Pflanze oder gar über das mittels eines Chelators zu erreichende Dekontaminationsergebnis

CDTA und DTPA und EGTA förderten die Zunahme der Ionengehalte am stärksten (Tabelle 20). Stärker als die übrigen Ionenkonzentrationen wurden die von Eisen und Mangan gefördert.

Da Chelatkomplexe in der Regel von der Pflanze bereitwilliger aufgenommen werden als Kationen (SALT et al. 1998), spricht alles dafür, daß dort, wo eine sehr starke relative Zunahme der Ionen zu beobachten war, diese als Komplex in die Pflanze aufgenommen wurden. Der Eisen-EDTA-Komplex z.B. hat eine deutlich höhere Gleichgewichtskonstante (Kc = 25,1) als die Komplexe mit Kalium (Kc = 0,8), Magnesium (Kc = 8,85) und Calcium (Kc = 10,65) und wird daher bevorzugt gebildet und aufgenommen (POHLMEIER 1999).

<table>
<thead>
<tr>
<th>Konzentrations-Veränderung [%]</th>
<th>Pflanze</th>
<th>Behandlung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>keine</td>
</tr>
<tr>
<td>K</td>
<td>A. majus</td>
<td>-1240</td>
</tr>
<tr>
<td></td>
<td>Z. mays</td>
<td>-21</td>
</tr>
<tr>
<td></td>
<td>C. cyanus</td>
<td>-50</td>
</tr>
<tr>
<td>Ca</td>
<td>A. majus</td>
<td>-5</td>
</tr>
<tr>
<td></td>
<td>Z. mays</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>C. cyanus</td>
<td>18</td>
</tr>
<tr>
<td>Mg</td>
<td>A. majus</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Z. mays</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>C. cyanus</td>
<td>49</td>
</tr>
<tr>
<td>Fe</td>
<td>A. majus</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Z. mays</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>C. cyanus</td>
<td>-11</td>
</tr>
<tr>
<td>Mn</td>
<td>A. majus</td>
<td>-27</td>
</tr>
<tr>
<td></td>
<td>Z. mays</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>C. cyanus</td>
<td>246</td>
</tr>
<tr>
<td>P2O5</td>
<td>A. majus</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Z. mays</td>
<td>-25</td>
</tr>
<tr>
<td></td>
<td>C. cyanus</td>
<td>141</td>
</tr>
</tbody>
</table>

Tabelle 20: Prozentuale Veränderung der Ionengehalte bezogen auf die Konzentration vor der Chelatbehandlung. Es sind Mittelwerte dargestellt. Negative Werte sind grau unterlegt.

Da Komplexsalze verschieden hohe Komplexbildungskonstanten haben, wird ihre Entstehung im Boden unterschiedlich stark energetisch begünstigt sein (MORTIMER 1987). Die Häufigkeit bestimmter Paarungen spricht aber dafür, daß nicht nur die stöchiometrische Wahrscheinlichkeit der Komplexbildung, sondern auch eine artspezifisch verschiedene Aufnahme und Verteilung in der Pflanze hier eine Rolle spielt. So hat z.B. die zum Eisen-EDTA-Komplex führende Reaktion mit 25,1 eine relativ hohe Gleichgewichtskonstante im Vergleich zu der von Kalium-EDTA, die mit 0,8 angegeben wird (POHLMEIER 1999).

al. (1998), daß die Eisen-Chelat-Reduktase in der Pflanzenwurzel eine Spaltung des Chelatkomplexes bewirkt, wobei das reduzierte Eisen (II) allein in die Wurzel aufgenommen wird. Möglicherweise führt also eine Integration von Eisenkationen in den Stoffwechsel der Pflanzenwurzel zu einer Reduktion der Beteiligung an metabolischen Prozessen der oberirdischen Pflanzenteile.

Cadmium und Zink konnten zu Versuchsbeginn beim aktuellen pH-Wert der Substratportionen (5,7 bis 5,9) als relativ mobil betrachtet werden, während davon auszugehen war, daß Blei bei diesem pH-Wert überwiegend nicht verfügbar war (SCHACHTSCHABEL et. al. 1998). Die *pflanzenverfügbaren Schwermetallgehalte im Kultursubstrat* waren am Ende der Vegetationsperiode mehrheitlich deutlich höher als vor Aussaat der Pflanzen (Abbildung 45). Besonders deutlich war die Zunahme bei den Zinkgehalten vor allem nach Anwendung von DTPA, EDTA und EGTA, wo sich die pflanzenzugänglichen Gehalte etwa vervierfachten. Auch die Blei- und Cadmiumgehalte stiegen um bis zu 100 % an. Bei den unbepflanzten und den unbehandelten Kulturgefäßen kam es meist nur zu einer moderaten Zunahme oder zu einer Abnahme der Schwermetallkonzentrationen. Lediglich nach Citrat- und EGTA-Applikation nahmen die pflanzenverfügbaren Bleigehalte um bis zu 63 % ab. Die Anwendung der Chelatoren führte

155

Die absolute Gesamtschwermetallaufnahme in den Sproß war bei den DTPA-behandelten Kulturgefäßen am größten. Den größten Teil der Gesamtcadmium- und -zinkaufnahme trugen überwiegend die Maispflanzen, während die größten absoluten Bleimengen je Versuchsgefaß häufig von A. majus oder C. cyanus akkumuliert wurden. Relativ bezogen auf den pflanzenverfügbarer Ausgangsgehalt erreichten die citratbehandelten Pflanzen durchschnittlich den stärksten Cadmium- und Zinkentzug. Im Mittel war die relative Bleiaufnahme in den Sproß nach DTPA-Applikation am intensivsten. Jedoch waren signifikante Unterschiede zu den anderen Behandlungsvarianten nicht erfaßbar. Maximal wurden 5,8 % Blei, 4,0 % Cadmium und 9,5 % Zink bezogen auf die pflanzenverfügbaren Ausgangsgehalte, bei verschiedenen Chelatbehandlungen aus dem Substrat entfernt. Das war wesentlich mehr als die Zink- (5,3 %), Blei- und Cadmiumaufnahme (1 %) der Gesamtpflanzen im Vorjahr. Ohne Behandlung konnten 2,2 % Blei und Cadmium sowie 6,0
Quantifizierung der durch Auswaschung dem Substrat entzogenen Schwermetalle und in den Wurzeln angereicherten Schwermetallmenge erfolgte.

\[
Faktor = \frac{\Delta Pflanze [mg]}{\Delta Boden [mg] - \Delta Pflanze [mg]}
\]

\(\Delta Pflanze [mg] = \) Differenz (Schwermetallaufnahme chelatbehandelte – Schwermetallaufnahme Kontrollpflanzen) pro Topf

\(\Delta Boden [mg] = \) Differenz (pflanzenverfügbare Schwermetallmenge chelatbehandelt – pflanzenverfügbare Schwermetallmenge Kontrolle) pro Topf

<table>
<thead>
<tr>
<th>Behandlung</th>
<th>(\Delta Boden) ges. [mg]</th>
<th>(\Sigma) Aufl. durch Pflanzen [mg]</th>
<th>Faktor</th>
<th>neue Konzentr. [mmol/kg Erde]</th>
<th>Schwermetall</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine Pflanzen</td>
<td>-20,8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Pb</td>
</tr>
<tr>
<td>keine Behandlung</td>
<td>-</td>
<td>1,0</td>
<td>-</td>
<td>-</td>
<td>Cd</td>
</tr>
<tr>
<td>DTPA</td>
<td>1,2</td>
<td>9,3</td>
<td>0,275</td>
<td>2,75</td>
<td></td>
</tr>
<tr>
<td>EDTA</td>
<td>188,5</td>
<td>4,3</td>
<td>0,015</td>
<td>0,15</td>
<td></td>
</tr>
<tr>
<td>keine Pflanzen</td>
<td>6,4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>keine Behandlung</td>
<td>-</td>
<td>0,7</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DTPA</td>
<td>7,3</td>
<td>0,8</td>
<td>0,118</td>
<td>1,18</td>
<td>Zn</td>
</tr>
<tr>
<td>keine Pflanzen</td>
<td>5,2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>keine Behandlung</td>
<td>-</td>
<td>8,8</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Citrat</td>
<td>204,4</td>
<td>13,7</td>
<td>0,024</td>
<td>0,24</td>
<td></td>
</tr>
<tr>
<td>DTPA</td>
<td>456,6</td>
<td>10,5</td>
<td>0,004</td>
<td>0,04</td>
<td></td>
</tr>
</tbody>
</table>

Vorversuche mit verschiedenen (zu hohen) Chelatkonzentrationen und der beabsichtigten Saatmischung in großen Bodenportionen sind für Phytoremediationsstrategien eine ratsame Planungsmaßnahme, da sie entscheidende Vorteile haben: Der Einfluß der chelatinduzierten Mobilisierung anderer Kationen wie Kalium, Calcium und Magnesium, die ebenso einen Einfluß auf die Effizienz der Methode haben, kann nur so bei den spezifischen Bodenbedingungen erfaßt werden. Eine Berechnung der Komplexierung aller möglichen in verschiedenen Mengen vorliegenden Ionen ist sonst ohne aufwendige Analysen der Bodenfraktionen und Bindungsverhältnisse nicht möglich.

Ein weiteres wichtiges Entscheidungskriterium für chelatgestützte Phytoextraktionsverfahren sind die Kosten der Dekontamination (BRENNAN & SHELLEY 1999). Würde beispielsweise lediglich eine Bleiverschmutzung des Bodens vorliegen, so müßte entschieden werden, welche der in Frage kommenden Chemikalien kostengünstiger ist. Würde man die vorliegende Kalkulation zugrunde legen, so lägen die Kosten für die einmalige Mobilisierung der durch die Sprosse der Mischkultur entziehbaren Bleimenge bei Anwendung von DTPA (MW = 393,35 g/ mol, 61,07 €/ kg Substanz, Firma Sigma) bei 66,08 € je Tonne Erdbreich, während bei Einsatz von EDTA (MW = 292,25 g/ mol, 18,40 €/ kg Substanz, Firma Sigma) lediglich 0,81 €/ t einzusetzen wäre. Hier müßte unter ökonomischen Gesichtspunkten klar zugunsten von EDTA entschieden werden. Läge ausschließlich eine Zinkkontamination vor, so würden für die einmalige Mobilisierung der durch die Sprosse der Mischkultur entziehbaren Zinkmenge bei Anwendung von Citrat (MW = 420,28 g/ mol, 15,60 €/ kg Substanz, Firma Roth) Kosten von 1,70 €/ t anfallen, während bei DTPA-Applikation lediglich 0,98 €/ t eingesetzt werden müßte. Für CDTA und EGTA müßten in Vorversuchen besonders effiziente pflanzliche Schwermetallentzüge nachgewiesen werden, da beide mit Preisen von etwa 2360 €/ kg (CDTA, Firma Sigma) und etwa 1930 €/ kg (EGTA, Firma Roth) etwa 30 bis 130 mal so teuer sind wie die anderen drei untersuchten Chelatoren.

Schlußfolgerung

Die eingesetzte Konzentration von 10 mmol Chelator/ kg Erde führt zu einer Zunahme der pflanzenverfügbaren Schwermetallkonzentration im Boden, da die Pflanzen die mobilisierten Schwermetallmengen nicht vollständig aufnehmen können. Es ist daher sinnvoll, in Vorversuchen eine geeignete Konzentration zu ermitteln, um die Auswaschung mobilisierter Schwermetallkomplexe zu verhindern.

Abweichend von den Ergebnissen des Vorjahres soll nach dem vorliegenden Versuchsergebnis *A. majus* in Mischkultur für eine chelatgestützte Phytoremediation ebenfalls ausgesät werden, da es sich durch eine besondere Empfänglichkeit für die Chelatanwendung auszeichnete.
4.5 Freilandexperiment zum EDTA-Einfluß auf die Schwermetallaufnahme von *Symphytum officinale* (1999)

Das Substrat der Untersuchungsstelle hatte einen pH-Wert von 6,5 und war demnach als schwach sauer zu bewerten (SCHACHTSCHABEL et al. 1998). Die Schwermetallkonzentrationen sind der folgenden Tabelle 22 zu entnehmen:

<table>
<thead>
<tr>
<th>Schwermetall</th>
<th>Fraktion</th>
<th>Profiltiefe [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 - 10</td>
<td>40 - 50</td>
</tr>
<tr>
<td>Zn</td>
<td>gesamt</td>
<td>2761</td>
</tr>
<tr>
<td></td>
<td></td>
<td>139</td>
</tr>
<tr>
<td></td>
<td></td>
<td>575</td>
</tr>
<tr>
<td>Cd</td>
<td>pflanzen-verfügbar</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16,8</td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td>3,0</td>
</tr>
</tbody>
</table>

Tabelle 22: Schwermetallkonzentrationen am Versuchsstandort.

4.5.1 Morphologische Beobachtungen

4.5.2 Biomasse

Die auf dem EDTA-behandelten Areal geerntete Gesamtbiomasse (501 g/m²) lag insgesamt etwa 1/3 unter der auf der Kontrollfläche (759 g/m², Abbildung 49). Die Wurzelbiomasse war auf beiden Flächen mehr als doppelt so groß wie die der Sprosse. Die Kontrollbiomasse von Wurzel und Sproß war signifikant größer als die der EDTA-behandelten Pflanzen.

Abbildung 49: Biomasse der ober- und unterirdischen Pflanzenorgane von S. officinale; Kontrolle und EDTA-Behandlung (c = 10 mmol/kg Erde). Die mit * gekennzeichneten Werte unterscheiden sich signifikant vom Kontrollwert.

4.5.3 Schwermetallgehalte

164

4.5.3.1 Korrelationen der Ionengehalte

<table>
<thead>
<tr>
<th>Element</th>
<th>Wurzel</th>
<th>SD</th>
<th>Stengel</th>
<th>SD</th>
<th>Blätter</th>
<th>SD</th>
<th>Blüten</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>39,4</td>
<td>38,3</td>
<td>29,5</td>
<td>20,6</td>
<td>13,0</td>
<td>9,8</td>
<td>24,9</td>
<td>38,9</td>
</tr>
<tr>
<td>Cd</td>
<td>27,7</td>
<td>15,0</td>
<td>5,3</td>
<td>3,5</td>
<td>8,9</td>
<td>3,9</td>
<td>3,7</td>
<td>1,4</td>
</tr>
<tr>
<td>Zn</td>
<td>354</td>
<td>82</td>
<td>160</td>
<td>40</td>
<td>190</td>
<td>45</td>
<td>107</td>
<td>32</td>
</tr>
<tr>
<td>K</td>
<td>26674</td>
<td>5659</td>
<td>56704</td>
<td>5537</td>
<td>53069</td>
<td>5673</td>
<td>41607</td>
<td>5128</td>
</tr>
<tr>
<td>Ca</td>
<td>4311</td>
<td>1870</td>
<td>8681</td>
<td>7668</td>
<td>17289</td>
<td>5769</td>
<td>8565</td>
<td>2446</td>
</tr>
<tr>
<td>Mg</td>
<td>674</td>
<td>186</td>
<td>1055</td>
<td>543</td>
<td>2050</td>
<td>704</td>
<td>2579</td>
<td>420</td>
</tr>
<tr>
<td>Fe</td>
<td>2291</td>
<td>1735</td>
<td>964</td>
<td>631</td>
<td>1750</td>
<td>781</td>
<td>853</td>
<td>583</td>
</tr>
<tr>
<td>Mn</td>
<td>62,4</td>
<td>34,0</td>
<td>62,8</td>
<td>44,4</td>
<td>114,9</td>
<td>36,7</td>
<td>52,5</td>
<td>14,2</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>6497</td>
<td>2369</td>
<td>10123</td>
<td>5189</td>
<td>12291</td>
<td>2426</td>
<td>20503</td>
<td>3095</td>
</tr>
</tbody>
</table>

Um einen Einblick in den Mineralstoffwechsel des offensichtlich sehr cadmiumtoleranten S. officinale zu gewinnen, wurden die Ionengehalte zehn repräsentativer Pflanzen, die auf der Teillfläche B (Abbildung 8) vor Beginn der Bearbeitung im Frühjahr 1999 wuchsen, bestimmt. Tabelle 23 zeigt die Ergebnisse dieser Analyse. In Tabelle 24 sind die Ergebnisse der statistischen Auswertung der Ionengehalte dieser zehn S. officinale-Pflanzen und des EDTA-
ERGEBNISSE & DISKUSSION

<table>
<thead>
<tr>
<th>Korrelationen mit</th>
<th>Versuchsfläche B</th>
<th>EDTA-Versuch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurzel</td>
<td>Stengel</td>
<td>Blätter</td>
</tr>
<tr>
<td>Pb</td>
<td>Ca</td>
<td>Mg, Fe, Mn</td>
</tr>
<tr>
<td>Cd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.5.4 Schwermetallaufnahme

In Abbildung 51 ist die Schwermetallaufnahme der S. officinale-Pflanzen je m² dargestellt. Die Pflanzen nahmen bis zu 18,2 g Blei, bis zu 14,9 g Cadmium und 235,0 g Zink pro m² auf. Von den Kontrollpflanzen wurde pro Flächeneinheit etwa ¼ mehr Blei und 1/5 mehr Zink, aber fast 1/5 weniger Cadmium als von den chelatbehandelten Pflanzen aufgenommen. Der größte Teil der Schwermetallaufnahme wurde von den Wurzeln geleistet.

Die Wurzeln der EDTA-behandelten Pflanzen nahmen etwa drei, fünf und 17 mal so viel Zink, Cadmium und Blei pro m² auf wie die Sprosse. Die Kontrollwurzeln zeigten im Vergleich mit den oberirdischen Pflanzenteilen eine etwa fünf mal so hohe Zink- und zehn mal so hohe Cadmiumaufnahme. Zur Bleiaufnahme trugen die Sprosse der Kontrollpflanzen gar nicht bei.

In Abbildung 52 ist der prozentuale Anteil der pflanzlichen Schwermetallaufnahme vom Gesamtgehalt und der pflanzenverfügbaren Fraktion durch die EDTA-behandelten und die Kontrollpflanzen dargestellt. Es wurden zwischen 0,004 und 0,030 % der Schwermetallgesamtmenge und zwischen 0,15 und 0,67 % der pflanzenverfügbaren Schwermetallmenge durch die Pflanzen aufgenommen.

ERGEBNISSE & DISKUSSION

Abbildung 52: Prozentuale Schwermetallaufnahme der Gesamtpflanzen der EDTA-behandelten und der *S. officinale*-Kontrollpflanzen am Erntetag bezogen auf den Bodenausgangsgehalt pro m².

4.5.5 Diskussion

Da $S. officinale$ unter ungünstigen Substratbedingungen eine starke Konkurrenzkraft und Biomasseproduktion zeigte, schien eine Behandlung mit Chelatbildnern trotz der relativ geringen Schwermetallallokation im Sproß eine attraktive Option zu sein. Die EDTA-behandelten Pflanzen zeigten jedoch ab Tag zwei nach der Behandlung starke Schadsymptome in Form von Nekrosen, obwohl vor allem die Blei- und Cadmiumkonzentrationen, die in den Topfversuchen nach EDTA-Applikation bei $A. majus$, $C. cyanus$, $C. album$ und $Z. mays$ resultierten, nicht annähernd erreicht wurden.
statistische Auswertung der Ionengehalte im Sproß zeigte u.a. eine Korrelation von Cadmium mit Zink, Kalium und Mangan (Tabelle 24). Es ist daher wahrscheinlich, daß die genannten Kationen genau wie die Cadmium bei den EDTA-behandelten Pflanzen als Chelatkomplex transportiert werden.

<table>
<thead>
<tr>
<th>Schwermetall</th>
<th>Reinigungszeit [a]</th>
<th>Gesamtgehalt</th>
<th>pflanzenverfügbare Fraktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>EDTA</td>
<td>Kontrolle</td>
<td>EDTA</td>
</tr>
<tr>
<td>Pb</td>
<td>9488</td>
<td>11995</td>
<td>74</td>
</tr>
<tr>
<td>Cd</td>
<td>1984</td>
<td>1647</td>
<td>329</td>
</tr>
<tr>
<td>Zn</td>
<td>3204</td>
<td>3767</td>
<td>232</td>
</tr>
</tbody>
</table>

Die Kontrollpflanzen von S. officinale konnten absolut etwas mehr Blei und Zink, aber etwas weniger Cadmium pro m² aufnehmen als die EDTA-behandelten (Abbildung 51). Jedoch waren die relativ aus den obersten 50 cm des Bodens aufgenommenen Schwermetallmengen sehr gering und mit und ohne Behandlung kaum verschieden (Abbildung 52). Die Aufnahme bezogen auf die Schwermetallgesamtkonzentration betrug höchstens 0,03 % (Cadmium). Von der pflanzenverfügbaren Schwermetallfraktion wurden maximal 0,67 % aufgenommen. Tabelle
ERGEBNISSE & DISKUSSION

Schlußfolgerung

4.6 **Freilandexperiment zum EDTA-Einfluß auf Pflanzen in Mischkultur (1999)**

4.6.1 Morphologische Beobachtungen und Konkurrenzverhalten

Abbildung 53: Maispflanzen auf der Versuchsfläche B (*Abbildung 8*) unmittelbar vor der Behandlung mit EDTA.

Die Applikation unterschiedlich konzentrierter EDTA-Lösungen überlebte nur *Z. mays*. Während bei dieser Pflanze auf den mit 0 und 1 mmol EDTA/ kg Boden behandelten Flächen

4.6.2 Biomasse und Wassergehalt

Abbildung 54 zeigt additiv die durchschnittliche Trockenmasse der Pflanzenorgane vor und nach Applikation der verschiedenen konzentrierten EDTA-Lösungen und die pro m² erreichten Biomassen nach Ernte der verschiedenen behandelten Teilflächen. Die Gesamttrockenmasse pro Pflanze lag vor der Behandlung zwischen 418 und 490 g. Der Anteil der Wurzeln an der Biomasse betrug im Mittel zwischen 80 g (1 mmol EDTA/kg Erde) und 101 g (5 mmol EDTA/kg Erde) pro Pflanze. Pro Stengel, Blatt und Kolben wurden durchschnittlich zwischen 142 und 173 g, bis 157 und 191 g sowie 29 bis 42 g je Individuum gemessen. Die Summe der nach Ernte ermittelten durchschnittlichen Trockengewichte pro Pflanze betrug 223 bis 455 g und war somit z.T. niedriger als vor der EDTA-Applikation. Einzig die 1 mmolare EDTA-Behandlung führte nicht zu einer signifikanten Senkung der durchschnittlichen individuellen Gesamtbiomasse im Vergleich zum Ausgangswert.

Die 5 mmolare EDTA-Gabe hatte eine signifikant niedrigere mittleren Gesamtbiomasse als die 1- und 2 mmolare EDTA-Behandlung zur Folge. Die durchschnittliche Wurzelbiomasse wurde auf Werte zwischen 53 und 81 g pro Individuum gesenkt und war außer nach Anwendung von EDTA in 10 mmolaren Endkonzentration signifikant geringer als die korrespondierenden Werte vor EDTA-Gabe. Die Trockenmasse der Stengel pro Maispflanze war nach der EDTA-Applikation außer bei den Kontrollpflanzen signifikant niedriger. Die mittlere Stengelbiomasse der Maispflanzen auf den mit 5 mmol EDTA/kg Erde behandelten Arealen war signifikant geringer als bei 0,1 und 2 mmol EDTA/kg Substrat. Auch die Biomasse der Blätter pro Individuum (74 bis 149 g/Pflanze) wurde im Mittel durch die Behandlung reduziert. Bei den Kontrollpflanzen und den mit 2 und 5 mmol/kg Erde behandelten Maispflanzen war die Senkung im Vergleich zum Ausgangswert der mittleren Blattbiomasse und zwischen den beiden Letztgenannten nach Behandlung signifikant verschieden. Als einzige Pflanzenteile waren die Kolben nach der EDTA-Behandlung gewachsen.

Die resultierenden Biomassen pro Individuum betrugen durchschnittlich 28 bis 99 g und waren außer bei den Kontrollpflanzen im Mittel gestiegen. Nach der 1- und 2 mmolaren EDTA-Gabe war diese Steigerung signifikant. Die Fruchtentwicklung nach 1 mmolarer EDTA-Applikation war signifikant stärker als nach 5 mmolarer EDTA-Behandlung. Mit
durchschnittlich 5,2 kg/ m² resultiert nach Applikation von 1 mmol EDTA/ kg Erde die höchste flächenbezogene Trockenmasseentwicklung, gefolgt von durchschnittlich 4,3 (2 mmol/ kg Erde) und 3,9 kg/ m² (0 mmol/ kg Erde). Die drei genannten Behandlungen erreichten signifikant größere Gesamtbiomassen pro Flächeneinheit als nach 5 mmolarer EDTA-Gabe, die zur vergleichsweise geringsten mittleren Biomasseentwicklung führte (2,9 kg/ m²).

Die Maispflanzen zeigten infolge der am niedrigsten konzentrierten Chelatapplikation die höchsten mittleren Biomassen aller pflanzlichen Organe. Wurzel, Stengel und Blätter hatten nach dieser Behandlung eine signifikant höhere Biomasse als bei jeweils zwei anderen Behandlungen. Auch die Gesamtbiomasse pro beprober Fläche war nach 1 mmolarer EDTA-Gabe signifikant größer als nach Applikation von 5 und 10 mmol/ kg Erdreich.

Der Wassergehalt der Wurzeln lag vor der Behandlung im Mittel bei 49,4 bis 55,6 % des Frischgewichtes (Abbildung 55) und war niedriger als der durchschnittliche Wassergehalt der oberirdischen Pflanzenteile (56,3 bis 67,5 %). Zum Erntezeitpunkt lag der Wassergehalt der unterirdischen Pflanzenteile mit 48,5 bis 61,5 % meist niedriger als im Sproß. Die 10 mmolare EDTA-Gabe führte zu einer signifikanten Anhebung der Wurzelfeuchte im Vergleich zum Ausgangswert. Die 5 mmolare Behandlung hatte eine signifikante Steigerung der Wassergehalte aller oberirdischen Pflanzenteile zur Folge.

4.6.3 Ionengehalte

4.6.3.1 Schwermetalle

Die Maispflanzen enthielten vor EDTA-Gabe die höchsten Bleigehalte in den Wurzeln (81,4 bis 118,4 ppm), meist gefolgt von den Blättern (11,5 bis 23,6 ppm) und Stengeln (2,5 bis 20,4 ppm). Die Kolben enthielten von allen Pflanzenteilen am wenigsten Blei (1,7 bis 11,8 ppm). Durch die Chelatverabreichung veränderten sich von allen Pflanzenteilen die Schwermetallgehalte in den Wurzeln am stärksten (-61,2 bis +74,4 ppm) und enthielten durchschnittlich weiterhin höhere Bleimengen (29,0 bis 175,6 ppm) als die anderen Pflanzenorgane (5,7 bis 17,5 ppm), die nun bezgl. der Höhe ihrer Bleibelastung keine deutliche Abfolge mehr zeigten. 1- und 2 mmolare EDTA-Applikationen führten im Vergleich zum Ausgangsgehalt zu einer signifikanten Steigerung, die anderen drei Versuchsvarianten zu einer signifikanten Senkung des mittleren Bleigehaltes der oberirdischen Pflanzenteile. Die
Bleigehalte der Blätter wurden durch die Behandlungen im Mittel ausschließlich gesenkt, die der Kolben ausnahmslos gefördert.

ERGEBNISSE & DISKUSSION

<table>
<thead>
<tr>
<th>absolute Konzentrations-</th>
<th>EDTA-</th>
<th>Wurzel</th>
<th>Stengel</th>
<th>Blätter</th>
<th>Kolben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konzentrations-</td>
<td>Behandlung</td>
<td>[ppm]</td>
<td>[mmol/ kg Erde]</td>
<td>[mmol/ kg Substrat]</td>
<td>[mmol/ kg Substrat]</td>
</tr>
<tr>
<td>veränderung [ppm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>163,7</td>
<td>-2,3</td>
<td>86,4</td>
<td>21,3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>309,6</td>
<td>21,2</td>
<td>-41,2</td>
<td>11,8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>266,9</td>
<td>-33,9</td>
<td>15,7</td>
<td>14,3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-53,9</td>
<td>-23,3</td>
<td>90,3</td>
<td>-24,2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11,8</td>
<td>-21,0</td>
<td>48,2</td>
<td>24,3</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-7,5</td>
<td>7,2</td>
<td>6,0</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>49,7</td>
<td>27,7</td>
<td>15,1</td>
<td>-0,4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>63,9</td>
<td>33,0</td>
<td>30,0</td>
<td>-1,2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>80,7</td>
<td>42,3</td>
<td>38,5</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>103,2</td>
<td>54,0</td>
<td>42,8</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-37,7</td>
<td>-9,9</td>
<td>-11,8</td>
<td>10,0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>74,4</td>
<td>-5,0</td>
<td>-7,2</td>
<td>8,4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25,8</td>
<td>6,6</td>
<td>-4,8</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-61,2</td>
<td>1,3</td>
<td>-3,0</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-19,4</td>
<td>1,6</td>
<td>-9,2</td>
<td>6,8</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Außer bei den Kontrollen und den mit 10 mmol EDTA/ kg Erde behandelten Pflanzen erreichten alle Versuchsgruppen in einem Behandlungsvergleich signifikant voneinander verschiedene Wurzelbleigehalte. Der durchschnittliche Bleigehalt der Kontrollstengel war signifikant höher als bei den meisten anderen Versuchsansätzen, der mittlere Bleigehalt des Kolbens nach 0, 1 und 2 mmolaler EDTA-Behandlung war signifikant höher als nach der 5 mmolaren Chelatverabreichung.

Die Wurzeln enthielten im Mittel vor Chelatgabe Cadmiumgehalte zwischen 28,2 und 39,3 ppm und zeigten, wie auch nach EDTA-Applikation, im Organvergleich die höchsten Cadmiumgehalte, gefolgt von Stengeln, Blättern und Kolben (46,3 bis 88,7 ppm, 36,3 bis 67,8 ppm und 0,7 bis 3,3 ppm). Die mittlere Veränderung der Cadmiumgehalte in den Wurzeln war im Organvergleich am auffälligsten (Tabelle 26). Die EDTA-Applikation resultierte in jedem Fall in einer signifikanten Steigerung des Wurzelcadmiumgehaltes (auf 84,6 bis 132,2 ppm) im Vergleich zur Kontrolle und zu den Ausgangswerten. Nach 10 mmolarer EDTA-Gabe konnte ein signifikant höherer Wert gemessen werden als nach 1- und 2 mmolarer Chelatapplikation. Nach Behandlung mit 5 mmol EDTA/ kg Substrat resultierte ein signifikant höherer Cadmiumgehalt als nach Gabe von 1 mmol EDTA/ kg Substrat. Lediglich die Wurzeln der Kontrollpflanzen enthielten im Mittel signifikant weniger Cadmium als vorher.

Zum Erntezeitpunkt waren die mittleren Cadmiumgehalte aller Maisstengel und -blätter (46,3 bis 88,7 ppm und 36,3 bis 67,8 ppm) signifikant höher als vor der Behandlung. Eine
statistisch erfaßbare Differenz bestand zwischen den Cadmiumgehalten in den Stengeln der Kontrollpflanzen (36,3 ppm) und nach 2 mmolarer EDTA-Gabe. Die Blätter enthielten nach der Kontrollbehandlung und nach 1 mmolarer Chelatgabe signifikant geringere Cadmiummengen als jede der anderen Versuchsgruppen, die Cadmiumgehalte in den Blättern der mit 2 mmol EDTA/ kg Erde behandelten signifikant weniger Cadmium als die mit 10 mmol EDTA/ kg Erde behandelten Pflanzen. Die Cadmiumgehalte im Kolben veränderten sich im Vergleich mit den Ausgangswerten nicht wesentlich.

Vor EDTA-Verabreichung zeigten die Wurzeln höhere Zinkgehalte (im Mittel 271,1 bis 312,2 ppm) als Blätter (174,6 bis 243,2 ppm) und Stengel (183,7 bis 252,8 ppm). Die Kolben reicherten durchschnittlich die geringsten Zinkmengen an (114,9 bis 123,8 ppm). Nach Behandlung erreichten die Wurzelgehalte organvergleichend die stärksten Veränderungen und mehrheitlich deutlich höhere mittlere Zinkgehalte (222,2 bis 592,7 ppm). Die mit 5 und 10 mmol/ kg Substrat behandelten Pflanzen erreichten aber signifikant geringere Zinkkonzentrationen als die übrigen drei Versuchsgruppen. Die Blätter zeigten mit 222,0 bis 321,1 ppm überwiegend höhere Zinkgehalte als die Stengel (159,2 bis 250,1 ppm) und Kolben (116,1 bis 152,3 ppm). Ohne Behandlung und nach Applikation der beiden hochkonzentrierten Chelatgaben enthielten die Blätter signifikant mehr Zink als vor der Behandlung. Die Kontrollpflanzen erreichten in den Stengeln signifikant höhere Zinkkonzentrationen als alle EDTA-behandelten Individuen.

Die Schwermetallgehalte der oberirdischen Pflanzenteile der übrigen in Mischkultur ausgesäten Pflanzen und des als Beikraut auftretenden S. officinale wurden für alle auf den verschiedenen Teilflächen genommenen Proben nach den Taxa getrennt gemittelt (Tabelle 27).

<table>
<thead>
<tr>
<th>Pflanze</th>
<th>Schwermetallgehalt in TG [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pb</td>
</tr>
<tr>
<td></td>
<td>MW SD</td>
</tr>
<tr>
<td>A. majus</td>
<td>35 49</td>
</tr>
<tr>
<td>C. cyanus</td>
<td>13 30</td>
</tr>
<tr>
<td>C. album</td>
<td>24 22</td>
</tr>
<tr>
<td>P. rhoeas</td>
<td>25 1,5</td>
</tr>
<tr>
<td>S. officinale</td>
<td>42 44</td>
</tr>
</tbody>
</table>

Tabelle 27: Schwermetallgehalte der übrigen auf der nicht unkrautfrei gehaltenen Maiskulturfläche gewachsenen Pflanzen. Es sind Mittelwerte (MW) und Standardabweichungen (SD) dargestellt.

Durchschnittlich wurden Bleigehalte zwischen 12,5 (C. cyanus) und 42,5 ppm (S. officinale) erreicht. Die Centaureen konnten mit 25,5 ppm Cadmium in den oberirdischen Pflanzenteilen
mehr als *C. album*, *S. officinale* und *A. majus* anreichern (9,7, 7,9 und 2,6 ppm Cadmium).
Beim *A. majus* wurden geringere Cadmiumgehalte gemessen als bei *C. album* und *S. officinale*.
Die höchsten Zinkgehalte wurden von *C. cyanus* (508,5 ppm) gefolgt von *C. album* (332,3 ppm), *S. officinale* (282,5 ppm) und *A. majus* (159,2 ppm) erreicht.

4.6.3.2 Nährstoffionen

Vor und nach der Behandlung enthielten die Wurzeln der Maispflanzen im Organvergleich meist niedrigere Kalium- (1865 bis 6618 ppm), Calcium- (4 bis 267 ppm), Magnesium- (468 bis 1300 ppm) und Phosphatgehalte (2820 bis 7543 ppm) als Stengel, Blätter und Kolben. Die Eisen- und Mangangehalte der Wurzeln waren hingegen deutlich höher als die der oberirdischen Pflanzenteile. Etwa 1/3 der Kaliumgehalte aller Pflanzenteile waren nach der EDTA-Behandlung angehoben (Tabelle 28). Die Kaliumgehalte der Wurzeln lagen nach allen Behandlungsvarianten signifikant oberhalb der Ausgangswerte (2560 bis 6618 ppm).

Vor und nach Behandlung mit EDTA war Calcium in den Blättern der Maispflanzen am stärksten vertreten, gefolgt von den deutlich geringeren Gehalten in Stengel, Kolben und Wurzel. Vor der Behandlung betrugen die Calciumgehalte der Wurzeln zwischen 363 und 517 ppm und wurden mit und ohne Chelatapplikation z.T. dramatisch auf Werte zwischen 4 und 267 ppm signifikant gesenkt. Die Blätter enthielten vor Behandlung zwischen 7461 und 12362 ppm Calcium und erfuhren ohne Behandlung und durch die 10 mmolare EDTA-Gabe eine statistisch relevante Steigerung über den Ausgangsgehalt. Der Calciumgehalt der Stengel wurde durch die Applikation von 5 mmol EDTA im Vergleich zum Anfangswert signifikant gesenkt. Die Höhe des Calciumgehaltes der Kolben wurde durch das EDTA in 10 mmolarer
Konzentration signifikant gesteigert. Die stärkste absolute Steigerung der Calciumgehalte wurde bei den Blättern beobachtet.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P<sub>2</sub>O<sub>5</sub></td>
<td>0</td>
<td>2056</td>
<td>-1098</td>
<td>-720</td>
<td>-190</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4722</td>
<td>-3453</td>
<td>81</td>
<td>-3590</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3806</td>
<td>-424</td>
<td>-591</td>
<td>-2064</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>633</td>
<td>-362</td>
<td>-634</td>
<td>-7301</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1187</td>
<td>688</td>
<td>-827</td>
<td>-300</td>
</tr>
<tr>
<td>Mn</td>
<td>0</td>
<td>54,1</td>
<td>2,4</td>
<td>10,1</td>
<td>4,7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>230,0</td>
<td>3,8</td>
<td>-1,1</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>193,8</td>
<td>0,4</td>
<td>-6,3</td>
<td>-0,6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-25,3</td>
<td>5,7</td>
<td>7,2</td>
<td>3,8</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>52,4</td>
<td>15,8</td>
<td>9,3</td>
<td>2,2</td>
</tr>
<tr>
<td>Fe</td>
<td>0</td>
<td>4802</td>
<td>387</td>
<td>216</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>16460</td>
<td>1147</td>
<td>63</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9553</td>
<td>195</td>
<td>-37</td>
<td>-49</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>212</td>
<td>436</td>
<td>189</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4635</td>
<td>2580</td>
<td>419</td>
<td>93</td>
</tr>
<tr>
<td>Mg</td>
<td>0</td>
<td>265</td>
<td>-41</td>
<td>97</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>777</td>
<td>211</td>
<td>-152</td>
<td>-218</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>552</td>
<td>106</td>
<td>121</td>
<td>-116</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>348</td>
<td>-38</td>
<td>-73</td>
<td>-933</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>516</td>
<td>213</td>
<td>332</td>
<td>767</td>
</tr>
<tr>
<td>Ca</td>
<td>0</td>
<td>-246</td>
<td>187</td>
<td>517</td>
<td>631</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-269</td>
<td>349</td>
<td>-2267</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-394</td>
<td>-305</td>
<td>853</td>
<td>-19</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-348</td>
<td>-1611</td>
<td>2489</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-360</td>
<td>-760</td>
<td>-109</td>
<td>1213</td>
</tr>
<tr>
<td>K</td>
<td>0</td>
<td>747</td>
<td>3370</td>
<td>-286</td>
<td>8113</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3342</td>
<td>109</td>
<td>764</td>
<td>-1868</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3847</td>
<td>-3948</td>
<td>2876</td>
<td>-1331</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2898</td>
<td>-2376</td>
<td>1404</td>
<td>-10275</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4274</td>
<td>4024</td>
<td>-4212</td>
<td>9693</td>
</tr>
</tbody>
</table>

ERGEBNISSE & DISKUSSION

Die Eisengehalte erfuhren meist in allen Pflanzenorganen eine Förderung. Sie betrugen in den Wurzeln, deren Gehalte am stärksten gesteigert wurden, vor der Behandlung zwischen 5643
und 6195 ppm und unterlagen mit und ohne Chelatgabe einer meist statistisch relevanten Steigerung auf 6478 bis 22413 ppm. Die beiden höchsten EDTA-Anwendungen hatten eine signifikant geringere Eisenkonzentration als die übrigen zur Folge.

Die Eisengehalte der Blätter (250 bis 439 ppm) und Stengel (218 bis 1742 ppm) wurden nach der Behandlung etwas höher (348 bis 666 und 624 bis 3432 ppm). Die Eisengehalte der
Stengel wurden durch die niedrigste EDTA-Konzentration sowie die der Blätter durch die 5 mmolare EDTA-Gabe signifikant erhöht. Der Eisengehalt der Kolben erfuhr durch die 10 mmolare EDTA-Applikation eine signifikante Senkung.

Die mittleren Manganausgangshealte der Wurzeln (98,8 bis 128,2 ppm) wurden, mit Ausnahme der 5 mmolaren EDTA-Applikation, nach der signifikant geringere Wurzelmangangehalte resultierten als vorher (95,1 ppm) und nach allen anderen Behandlungen (162,3 bis 328,8 ppm Mangan), durch die EDTA-Gabe signifikant gesteigert. Kontrolle und 10 mmolare EDTA-Applikation hatten signifikant unter 1 und 2 mmolarer EDTA-Behandlung liegende durchschnittliche Wurzelmanganhealte zur Folge.

Die Ausgangskonzentrationen in Kolben (4,5 bis 12,5 ppm) und Stengeln (14,7 bis 23,3 ppm) wurden durch die Chelatanwendung im Mittel überwiegend angehoben (5,7 bis 24,5 und 9,3 bis 11,0 ppm). Der zum Erntezeitpunkt resultierende Mangangehalt der Blätter (17,7 bis 26,1 ppm) lag bei den Kontrollpflanzen signifikant höher als nach allen Chelatanwendungen.

Im Kolben wurden vor EDTA-Anwendung (9238 bis 14172 ppm) höhere Phosphatgehalte ermittelt als in Blättern (7859 bis 9662 ppm), Stengeln (3528 ppm) und Wurzeln (2810 bis 3140 ppm). Mit und ohne Chelatanwendung resultierte im Gegensatz zu den oberirdischen Pflanzenteilen in den Wurzeln eine statistisch relevante Steigerung des Phosphatgehaltes. Kontrolle, sowie 1 und 2 mmolare EDTA-Behandlung erreichten höhere Wurzel- als Sproßgehalte sowie signifikant mehr als nach 5 und 10 mmolarer EDTA-Gabe. Im Mittel sanken hingegen mit wenigen Ausnahmen die Phosphatgehalte von Stengel (3206 bis 4952 ppm), Blättern (6536 bis 8503 ppm) und Kolben (8705 bis 12130 ppm).

4.6.3.3 Korrelationen der Ionengehalte

<table>
<thead>
<tr>
<th>Organ</th>
<th>Korrelation mit vor Behandlung</th>
<th>c(EDTA) [mmol/ kg Erde]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Kolben</td>
<td>Pb</td>
<td>K, P₂O₅</td>
</tr>
<tr>
<td></td>
<td>Cd</td>
<td>K, P₂O₅</td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>K, Ca, Mg, P₂O₅</td>
</tr>
<tr>
<td>Blätter</td>
<td>Pb</td>
<td>P₂O₅</td>
</tr>
<tr>
<td></td>
<td>Cd</td>
<td>Ca, Mn</td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>Ca, Mn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ca, Mg, P₂O₅</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ca, Mn</td>
</tr>
<tr>
<td>Stengel</td>
<td>Pb</td>
<td>Zn, Ca</td>
</tr>
<tr>
<td></td>
<td>Cd</td>
<td>Zn</td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>Ca, Mg, Mg, P₂O₅</td>
</tr>
<tr>
<td>Wurzel</td>
<td>Pb</td>
<td>Zn, Mg, Fe</td>
</tr>
<tr>
<td></td>
<td>Cd</td>
<td>Zn</td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>P₂O₅</td>
</tr>
</tbody>
</table>

Tabelle 29: Korrelationen der Ionengehalte in den Pflanzenorganen von Z. mays in Mischkultur. Negative Korrelationen sind grau unterlegt. $p = 0.05$.

186

4.6.4 Schwermetalle im Kultursubstrat

Der pH-Wert in den unterschiedlichen Bodentiefen zeigte sich durch die EDTA-Behandlung weitgehend unbeeinflußt und betrug im Oberboden (0 bis 10 cm) zwischen 6,1 und 6,4. In einer Tiefe von 40 bis 50 cm wurden Werte von 6,7 bis 6,9 ermittelt (Anhang). Der Boden war also im gesamten untersuchten Profil sehr schwach sauer. Bei dieser Bodenacidität kann Cadmium als relativ mobil, Blei und Zink hingegen als immobil bewertet werden (SCHACHTSCHABEL et al. 1998).

4.6.4.1 Absolute Schwermetallgehalte

In Abbildung 59 sind die Gesamtbleigehalte und die pflanzenverfügbare Fraktion des Schwermetalls im Bodensegment zwischen 0 und 10, sowie zwischen 40 und 50 cm Tiefe vor Aussaat und nach Behandlung und Ernte der Pflanzen dargestellt. Die Bleigesamtgehalte erreichten, unabhängig von Bodentiefe und Behandlung, Werte zwischen 422 und 585 ppm. Die pflanzenverfügbare Bleifraktion betrug zwischen 1,2 und 11,0 ppm, also jeweils deutlich
ERGEBNISSE & DISKUSSION

unter 1 % der Gesamtgehalte. Der Oberboden (0 bis 10 cm) enthielt vor Aussaat der Pflanzen
durchschnittlich zwischen 531 und 585 ppm Blei. Zum Erntezeitpunkt hatte dieses
Bodensegment Gesamtbleigehalte zwischen 451 und 552 ppm. Auf den mit 10 mmol EDTA/
kg Erde behandelten Flächen sank der Gesamtbleigehalt signifikant im Vergleich zum
Ausgangsgehalt, zu den unbepflanzten und den mit 0 und 2 mmol EDTA/ kg Substrat
behandelten Flächenstücken. Hier kam es zu einer deutlich stärkeren Abnahme des
Bleigesamtmgehaltes als nach 5 mmol/arem Behandlung, da der anfangs bestehende signifikante
Unterschied nach Ernte der Pflanzen nicht mehr bestand. Ebenso zeigte sich nach der 5
mmolaren EDTA-Gabe ein stärkerer Bleiverlust aus dem Oberbodensegment als auf den
Kontrollflächen. Im Bodensegment zwischen 40 und 50 cm Tiefe waren die
Bleigesamtgehalte meist etwas geringer (422 bis 578 ppm) als im Oberbodensegment.
Mehrheitlich lagen in 40 bis 50 cm Tiefe die durchschnittlichen Bleigesamtgehalte nach Ernte
(506 bis 553 ppm) etwas höher als vor dem Bepflanzen. Die durch die 2 mmolare erreichte
Förderung des durchschnittlichen Gesamtbleigehaltes führte zu einem Wegfall der vorher
bestehenden signifikanten Unterschiede.

Im Oberboden veränderten sich die pflanzenverfügbaren Bleigehalte (zwischen 2,0 und 2,7
ppm) auf durchschnittlich 1,2 bis 7,8 ppm. Die 2 mmolare EDTA-Behandlung hatte hier eine
signifikante Steigerung des pflanzenverfügbaren Bleigehaltes zur Folge. In einer Tiefe von 40
bis 50 cm lagen diese vor den Experimenten etwa zwei bis dreimal so hoch wie im Oberboden
(5,3 bis 6,8 ppm). Zum Erntezeitpunkt betrugen sie 2,6 bis 11,0 ppm. Auf unbepflanzter
Fläche lag der pflanzenverfügbare Bleigehalt signifikant über, auf den mit 0 und 1 mmol
EDTA/ kg Substrat behandelten Flächen signifikant unter dem Ausgangswert.

In Abbildung 60 sind die Gesamthehalte und die pflanzenverfügbare Fraktion des
Schwermetalls Cadmium im Bodensegment zwischen 0 und 10, sowie zwischen 40 und 50
cm Bodentiefe vor Aussaat und nach Ernte der Pflanzen dargestellt. Alle Gesamthehalte
bewegten sich, unabhängig von Behandlung und Bodentiefe, zwischen 20,8 und 121,9 ppm;
die pflanzenverfügbare Cadmiumfraktion erreichte Werte zwischen 1,5 und 32,0 ppm. Die
oberen 10 cm des Bodenprofils enthielten insgesamt durchschnittlich 110,5 bis 121,9 ppm
Cadmium. Zum Erntezeitpunkt waren alle Cadmiumgehalte gesunken (75,7 bis 120,3 ppm).
1- und 5- mmolare EDTA-Gabe hatten eine signifikante Senkung unter den Ausgangswert zur
Folge. 5 und 10 mmol EDTA/ kg Erde resultierten in einem signifikant niedrigeren Wert als
auf den unbepflanzten, den unbehandelten und den mit 2 mmol EDTA behandelten Arealen.
In 40 bis 50 cm Tiefe wurden vor Aussaat der Pflanzen Cadmiumgesamthehalte zwischen
20,8 und 39,8 ppm gemessen, also etwa 1/3 bis 1/4 der jeweiligen Oberbodengesamthehalte.
Alle Flächen zeigten nach Ernte einen signifikanten, z.T. dramatischen Anstieg des Gesamtgehaltes auf Werte zwischen 25,7 und 104,3 ppm Cadmium. Die mit den beiden höchstkonzentrierten Chelatlösungen behandelten Areale wiesen im unteren beprobten Bodensegment somit nach Ernte höhere Cadmiumgesamtgehalte auf als in der Bodenschicht in 0 bis 10 cm Tiefe.

Die unbehandelten und die mit 5 und 10 mmol EDTA/ kg Substrat behandelten Flächen hatten im Bodensegment zwischen 40 und 50 cm Tiefe signifikant höhere Cadmiumgehalte als die unbebepflanzt und die mit 1 mmol EDTA/ kg Erde behandelte Fläche. In 0 bis 10 cm Tiefe enthielt der Boden zwischen 14,0 und 19,6 ppm den Pflanzen zugängliches Cadmium. Das unbebepflanzt Areal wies zum Erntezeitpunkt einen signifikant im Vergleich zum Beginn des Experiments gestiegenen Wert auf. Die mit 0, 1 und 2 mmol EDTA/ kg Erdreich behandelten Areale hatten nach Ernte signifikant geringere pflanzenverfügbare Cadmiumgehalte. Da einige gesicherte Unterschiede zwischen den unterschiedlich behandelten Teilflächen bereits vor der Behandlung bestanden, kann davon ausgegangen werden, daß nach der Behandlung das unbebepflanzt Areal im Bodensegment zwischen 0 und 10 cm einen signifikant höheren pflanzenverfügibaren Cadmiumgehalt aufwies als die mit 1 mmol EDTA/ kg Erde behandelte Fläche. Im Bodensegment zwischen 40 und 50 cm war den Pflanzen vor Aussaat der Pflanzen eine Cadmiummenge von durchschnittlich 1,5 bis 10,3 ppm zugänglich. Bis auf die mit 2 und 5 mmol behandelten Flächen waren die Gehalte aller anderen zum Erntezeitpunkt signifikant angestiegen (4,4 bis 32,0 ppm), so daß vielfach der pflanzenverfügbare Cadmiumgehalt in dieser Tiefe nach Ernte den Oberbodengehalt überstieg. Unter Einbeziehung der bereits anfangs bestehenden Differenzen konnte festgestellt werden, daß die unbebepflanzt Kontrollfläche einen signifikant unter dem der unbehandelten und der mit 10 mmol EDTA/ kg Erde behandelten Flächen liegenden pflanzenverfügibaren Cadmiumgehalt aufwies. Des weiteren lag der pflanzenverfügbare Cadmiumgehalt im Profilsegment zwischen 40 und 50 cm nach Ernte bei den mit 2 mmol höher als bei den mit 0 und 1 mmol EDTA/ kg Substrat behandelten Flächen.

Abbildung 62 zeigt die pflanzenverfügbaren und Gesamtgehalte des Schwermetalls Zink in 0 bis 10 und in 40 bis 50 cm Tiefe vor Bepflanzen und nach Ernte. Unabhängig von Behandlung und Bodentiefe wurden Gesamtgehalte zwischen 1630 und 3479 ppm Zink gemessen. In pflanzenverfügbaren Form lagen zwischen 114 und 334 ppm Zink vor. Im Profilsegment zwischen 0 und 10 cm betrug der Gesamtzinkgehalt vor Behandlung 2429 bis 2739 ppm. Signifikant stieg der Gesamtzinkgehalt im Vergleich zum Ausgangswert auf der unbehandelten Fläche. Die 2 mmolare Behandlung führte zu einem signifikant höheren Zinkgesamtgehalt als die mit 0-, 5- und 10 mmolaren EDTA-Gabe.

190
Unter allen anderen Bedingungen wurden im Vergleich zum Anfangswert signifikant gestiegene Werte gemessen (2280 bis 2789 ppm), die auf den mit 5 und 10 mmol behandelten Flächen den Oberbodengehalt sogar überstiegen.

Der nach der niedrigstdosierten EDTA-Behandlung resultierende Zinkgesamtgehalt war signifikant geringer als unter allen anderen pflanzenbestandenen Flächen in dieser Tiefe. Der pflanzenverfügbare Zinkgehalt im oberen beprobten Bodensegment (0 bis 10 cm) lag vor Behandlung zwischen 168,2 und 238,8 ppm. Der Wert nach 2 mmolarer EDTA-Gabe lag signifikant oberhalb des Ausgangswertes und der 10 mmolaren Behandlung.

Der pflanzenverfügbare Zinkgehalt im Unterboden lag mit Werten von 113,9 bis 187,2 ppm an allen beprobten Stellen unterhalb der Oberbodenwerte. Der Zinkgehalt war zum Zeitpunkt der Ernte nur auf dem unbepflanzten Teilareal signifikant gestiegen. Mehrheitlich überstiegen die pflanzenverfügbaren Zinkgehalte im unteren beprobten Profilsegment nach der Vegetationsperiode (132,6 bis 333,7 ppm) den Gehalt des Oberbodens.

4.6.4.2 Schwermetallgehalt pro m²

Die in den Profilsegmenten zwischen 0 und 10 cm sowie zwischen 40 und 50 cm ermittelten Schwermetallgehalte wurden als Berechnungsgrundlage für die Interpolation der Schwermetallgehalte der dazwischen liegenden Bodenschichten herangezogen. Da in etwa 50 cm Tiefe eine stauende Bodenschicht das den Pflanzenwurzeln unmittelbar zugängliche Erdreich nach unten begrenzte, wurde die gesamte Schwermetallquantität pro m² bis zu dieser Tiefe berechnet (Abbildung 62). Volumenbezogen ergeben sich so jeweils doppelt so große Zahlenwerte pro m³.

Vor Behandlung wurden durchschnittlich zwischen 311 und 370 g Blei pro m² ermittelt, davon waren zwischen 2,4 und 3,1 g pflanzenverfügbar. Zum Erntezeitpunkt betrugen die Gesamtbleigehalte pro m² 324 bis 354 g. Nach der 2 mmolaren EDTA-Behandlung erreichte der Gesamtbleigehalt einen im Vergleich zum Ausgangsgehalt signifikant gestiegenen Wert, nach der 10 mmolaren Behandlung einen signifikant gesenkten Wert. Kontrollbehandlung und 1 mmolare EDTA-Behandlung führten zu einer signifikanten Senkung der pflanzenverfügbaren Bleimenge je m². Die unbepflanzten und die mit 2 mmol EDTA/kg Substrat behandelten Flächen zeigten eine signifikante Steigerung über den Ausgangswert.

Pro m² wurde vor den Experimenten eine Cadmiummenge von durchschnittlich 44,9 bis 49,5 g/ m², davon 5,0 bis 9,6 g in pflanzenverfügbarer Form nachgewiesen. Nach den Experimenten betrug der Cadmiumgesamtgehalt im Mittel 39,5 bis 64,5 g/ m², davon zwischen 4,6 und 15,7 g in pflanzenverfügbarer Form. Sowohl der Gesamtgehalt als auch die pflanzenverfügbare Cadmiummenge wurden ausschließlich auf den mit 1 mmol EDTA/kg Substrat behandelten Flächen gemessen.

Aufgrund der bereits vorher bestehenden signifikanten Unterschiede konnte nur ein signifikant geringerer Cadmiumgesamtgehalt nach 1 mmolarer EDTA-Behandlung im
Vergleich zur Kontrollbehandlung und dem nach 10 mmolaler EDTA-Gabe gemessenen Cadmium-Gesamtgehalt festgestellt werden.

Die Zinkgesamtmenge pro m² betrug 1319 bis 1605 g/ m², davon waren 96,0 bis 138,4 g pflanzenverfügbar. Nach der Vegetationsperiode enthielten die obersten 50 cm des Bodenprofils im Mittel insgesamt 1442 bis 1915 g Zink, davon waren 85,9 bis 151,4 g den Pflanzen zugänglich. Der Gesamtgehalt stieg auf der unbehandelten Fläche signifikant an, die nachfolgend im Mittel signifikant mehr Zink enthielt als das unbehandelte und das mit 1, 5 und 10 mmol EDTA/ kg Substrat behandelte Areal.

4.6.4.3 Relative Veränderung der Schwermetallgehalte

In Abbildung 63 ist die prozentuale Veränderung der pflanzenverfügbaren und Gesamt-Schwermetallgehalte in beiden untersuchten Profilsegmenten dargestellt. Maximal wurde nach der Vegetationsperiode ein knapp 4½ mal so hoher Schwermetallwert wie vor Bepflanzen der Versuchsflächen festgestellt (10 mmol, pflanzenverfügbares Cadmium, Unterboden). Die stärkste gemessene durchschnittliche Abnahme wurde nach Applikation von 10 mmol EDTA/ kg Erde bei der pflanzverfügbaren Zinkfraktion im Oberboden gemessen (40,8 %).

Die Schwermetallgehalte im Oberboden nahmen relativ bezogen auf den Ausgangsgehalt mit wenigen Ausnahmen um bis zu 29,4 % ab. Signifikant höhere Werte des Cadmium- und Zinkgehaltes fanden sich jeweils bei der Kontrollbehandlung (+0,9, +12,5 %). Aber auch nach 2 mmolaler EDTA-Applikation lagen die Blei- und Zink-Gesamtgehalte im Mittel höher (+60,0, +43,6 %). Im unteren beprobten Bodensegment kam es meist zu einer durchschnittlichen relativen Zunahme des Gesamtmetallgehaltes. Diese war bei den Cadmium- und Zinkwerten in den meisten Fällen stärker (bis 416,3 und 57,3 %), als beim Bleigesamtgehalt (meist + 0,3 bis 6,1 %). Die Zunahme des Schwermetallgesamtgehaltes im Bodensegment zwischen 40 und 50 cm war nach 1 mmolaler EDTA-Gabe im Vergleich zu den anderen Versuchsvarianten gering oder nahm als einziger Wert im Mittel ab und zeigte eine signifikant weniger starke Zunahme als mindestens eine andere Versuchsfläche.

Die pflanzverfügbaren Zinkgehalte im Oberbodensegment (0 bis 10 cm) nahmen im Mittel um höchstens 67,6 % zu und um maximal 40,8 % ab. Beinahe alle pflanzverfügbaren Cadmiumgehalte im Oberboden nahmen im Mittel ab (-31,2 bis +8,6 %), wobei die 1 mmolare EDTA-Applikation die relativ stärkste mittlere Abnahme verursachte und signifikant vom Wert der unbepflanzten Kontrollflächen verschieden war (+8,6 %). Alle pflanzverfügbaren Bleigehalte im Oberboden waren zum Zeitpunkt der Ernte durchschnittlich größer als vor Aussaat der Pflanzen (+18,8 bis +225,3 %).
Abbildung 63: Relative Veränderung der pflanzenverfügbaren und Gesamtgehalte in 0 bis 10 cm und 40 bis 50 cm Tiefe bezogen auf die Konzentration vor Aussaat nach den unterschiedlichen EDTA-Behandlungen (1999). Gleiche oder fehlende Buchstaben zeigen ein Fehlen signifikanter Unterschiede.
Im unteren beprobten Bodensegment kam es jedoch mehrheitlich zu einer relativen Senkung des pflanzenverfügbaren Bleigehaltes um bis zu 38,6 % (1 mmolare Behandlung). Lediglich nach Anwendung der 10 mmolaren Behandlung zeigte sich nach der Vegetationsperiode ein beinahe verdoppelter pflanzenverfügbare Bleigehalt.

Alle pflanzenverfügbaren Bleigehalte nahmen im Oberboden im Mittel im Bezug zum Ausgangsgehalt zu (+18,8 bis +225,3 %). Im Bodensegment zwischen 40 und 50 cm nahmen alle pflanzenverfügbaren Cadmium- und Bleige halte im Vergleich zum Ausgangswert zu (zwischen +14,8 und +446,7 %). Die Zunahme des pflanzenverfügbaren Cadmiumgehaltes war ohne EDTA stärker als bei der unbepflanzten Kontrollfläche. Der pflanzenverfügbare Zinkgehalt der unbehandelten Versuchsflächen stieg im Unterboden stärker als nach Gabe von 1 mmol EDTA/ kg Erde.

4.6.4.4 Anteil der pflanzenverfügbaren Fraktion am Gesamtgehalt

Der relative Anteil der den Pflanzenwurzeln zugänglichen Schwermetalle am Gesamtgehalt in den Profilsegmenten zwischen 0 und 10 sowie zwischen 40 und 50 cm ist in Abbildung 64 dargestellt. Blei ist von den drei untersuchten Schwermetallen am wenigsten mobil. Unabhängig von Behandlung und Profiltiefe war zwischen 0,21 und 1,88 % der Gesamtmenge den Pflanzen zugänglich. Im oberen untersuchten Bodensegment waren zwischen 0,35 und 0,49 % des gesamten Bleis vor der Aussaat pflanzenverfügbar. Zwar stieg auf fast allen Versuchsflächen der mobile Bleigehalt im Mittel an (0,21 bis 1,63 %), aber nur im Falle der 2 mmolaren EDTA-Gabe war die Steigerung im Vergleich zum Ausgangsgehalt signifikant. Im Bodensegment zwischen 40 und 50 cm war der relative pflanzenverfügbare Bleianteil im Mittel meist höher als im Oberboden. Vor den Experimenten wurden dort Werte zwischen 1,06 und 1,63 % des Gesamtgehaltes gemessen.
Die unbepflanzte Kontrollfläche zeigte zum Erntezeitpunkt einen signifikant oberhalb der Anfangswerte liegenden relativen mobilen Bleianteil. Kontrollbehandlung und 1 mmolare Chelatapplikation wurden im Vergleich zum Ausgangswert signifikant gesenkt. Einen höheren relativen Anteil der mobilen Fraktion als Blei zeigte Zink. Unabhängig von Bodentiefe und Behandlung waren zwischen 4,9 und 11,8 % des Schwermetalls den Pflanzenwurzeln in den oberen 50 cm des Bodenprofils zugänglich. 6,7 bis 8,8 % der Zinkgesamtmenge lagen vor Behandlung in pflanzenverfügbarer Form vor. Nach der Vegetationsperiode betrug der mobile Zinkanteil 4,9 bis 8,8 %. Auf den unbehandelten Flächen wurde im Oberboden eine signifikante Senkung im Vergleich zum Ausgangswert gemessen.

Im Unterboden erreichten die relativen mobilen Anteile des Gesamtzinkgehaltes mit wenigen Ausnahmen etwa die Werte im Oberbodensegment. Vor Versuchsbeginn wurden 7,0 bis 8,5 %, zum Erntezeitpunkt 5,4 bis 11,8 % mobiles Zink gemessen. Cadmium zeigte von den untersuchten Schwermetallen die höchsten pflanzenverfüggbaren Anteile. Unabhängig von Behandlung und Bodentiefe betrugen diese mit Werten zwischen 11,0 und 65,1 % immer mehr als 1/10 des Gesamtgehaltes. Auf beinahe allen Versuchsflächen war der mobile Cadmiumanteil im Oberboden geringer als im Unterboden. Vor den Experimenten war der Cadmiumgehalt des Oberbodens zu 11,8 bis 17,5 % pflanzenverfügbar. Zum Erntezeitpunkt konnten 11,0 bis 22,3 % des gesamten Cadmiumgehaltes als pflanzenverfügbar identifiziert werden. Aufgrund der bereits vor Behandlung festgestellten signifikanten Differenzen konnte lediglich festgestellt werden, daß die unbehandelten Versuchsflächen im Vergleich zum Ausgangswert und zur unbehandelten Kontrollfläche einen signifikant niedrigeren Wert aufwiesen. Die 5 mmolare EDTA-Applikation hatte einen im Vergleich zum Ausgangswert signifikant gesteigerten Wert zur Folge. Im Unterboden wurden vor Aussaat der Pflanzen 10,9 bis 65,3 % pflanzenverfügbarer Cadmiumgehalt ermittelt. Meist zeigte sich nach der Ernte ein höherer mobiler Cadmiumanteil als vor den Versuchen (19,9 bis 35,1 %). Die vegetablesfreien und die mit 1 mmol EDTA/ kg Substrat behandelten Areale zeigten signifikant im Vergleich zum Ausgangsgehalt angestiegene Werte.

4.6.5 Schwermetallaufnahme

Die Maispflanzen nahmen aus dem Substrat je nach Behandlung durchschnittlich zwischen 3,1 und 17,6 mg Blei pro Individuum auf (Abbildung 65). Der nach 1 mmolarer EDTA-Applikation resultierende mittlere Höchstwert lag signifikant oberhalb aller anderen Behandlungen.

Die durchschnittliche Cadmiumaufnahme je Pflanze lag bei der Kontrolle (12,6 mg) signifikant niedriger als bei den übrigen Behandlungen (14,5 bis 24,4 mg). Die Applikation von 2 und 10 mmol EDTA/ kg Erdreich resultierte in einer signifikant stärkeren mittleren Cadmiumaufnahme pro Pflanze als die 5 mmolare EDTA-Gabe.

Die Zinkaufnahme je Maispflanze war nach Zugabe von 5 mmol EDTA/ kg Substrat durchschnittlich am geringsten (48,6 mg) und lag signifikant niedriger, als ohne Behandlung (104,8 mg) und nach Applikation von 1 mmol EDTA/ kg Erde (125,5 mg).
Abbildung 66 zeigt die Schwermetallaufnahme der Pflanzen pro m² Bodenfläche. Die durchschnittliche Blaufnahme durch die Pflanzen nach Zugabe von 1 mmol EDTA/ kg Substrat (200,0 mg/ m²) war signifikant größer als nach allen anderen Behandlungen. Am geringsten war die Blaufnahme auf den mit 5 mmol EDTA/ kg Erde behandelten Flächen. Sie betrug genau 1/5 der Maximalaufnahme (40,0 mg/ m²). Der größte Teil des Schwermetalls wurde von den Wurzeln aufgenommen (ca. 50 bis 80 %). Signifikant geringer als bei 0, 1 und 2 mmol EDTA/ kg Erde ist die Blaufnahme der Wurzeln nach Applikation von 5 mmol EDTA/ kg Substrat.

Kontrolle und 1 mmolare Chelatgabe hatten eine signifikant größere Blaufnahme als nach Anwendung von 2 und 10 mmol EDTA/ kg Erde zur Folge. Die Stengel (8,6 bis 22,7 mg Blei/ m²) nahmen oft mehr Blei auf als die Blätter (4,8 bis 15,2 mg/ m²). Die Kolben akkumulierten meist die geringsten Bleimengen pro Fläche (3,9 bis 15,3 mg/ m²). Kontrolle, 1 und 2 mmol EDTA nahmen signifikant mehr in die Früchte auf als nach Gabe von 5 mmol EDTA/ kg Erde.

Die durchschnittlich höchste flächenbezogene Cadmiumaufnahme hatte die 10 mmolare EDTA-Gabe (272,2 mg/ m²) zur Folge. Sie lag signifikant höher als die Werte nach Gaben von 0 und 5 mmol/ kg Erde (183,7 und 139,4 mg Cadmium/ m²), unterschied sich jedoch nicht von den nach 1 und 2 mmolare EDTA-Gaben resultierenden Cadmiumgesamtaufnahmen (240,0 und 244 mg/ m²). Der größte Teil der Aufnahme wurde meist von den Stengeln getragen (54 bis 106 mg/ m²). Nach Gabe von 5 mmol EDTA/ kg Erde war ihre absolute Cadmiumaufnahme signifikant geringer als bei den übrigen EDTA-Behandlungen. Die Cadmiumakkumulation der Kontrolle war signifikant geringer als bei der höchsten EDTA-Konzentration. Von den Blättern wurde meist durchschnittlich etwas weniger Cadmium aufgenommen (51 bis 81 mg/ m²). 2 und 10 mmolare EDTA-Konzentration bewirkten eine signifikant größere flächenbezogene Cadmiumaufnahme in den Stengel als 0 und 5 mmolare EDTA-Gabe. Die Wurzeln reicherten pro m² zwischen 21 und 91 mg Cd an. Die Kontrollpflanzen nahmen durchschnittlich signifikant weniger Cadmium in ihre Wurzeln auf als alle anderen Versuchsgruppen. Die Kolben trugen in allen Fällen zu weniger als 1 % zur Gesamtaufnahme pro m² bei (0,5 bis 2,3 mg/ m²).

Pro m² nahmen die Maispflanzen insgesamt zwischen durchschnittlich 611 (5 mmol EDTA/ kg Erde) und 1422 mg Zink auf. Die nach der 1 mmolare Chelatgabe resultierende Zinkaufnahme war signifikant höher als nach Zugabe der anderen EDTA-Konzentrationen.

Verglichen mit Kontrolle und 1 mmolarer EDTA-Gabe wurde nach Verabreichung der 5 mmolaren Konzentration eine signifikant geringere flächenbezogene Zinkgesamtanreicherung gemessen.

Die Blätter trugen meist durchschnittlich am stärksten zur Zinkaufnahme bei (249 bis 467 mg/m²), bei der Kontrolle signifikant stärker als bei den Chelatgaben. 1 und 2 mmolare EDTA-Gaben resultierten im Vergleich zur 5 mmolaren in einer stärkeren Zinkaufnahme in die Blätter. Ein signifikanter Unterschied konnte des weiteren auch zwischen 1 und 5 mmolarer EDTA-Applikation ermittelt werden. Nach 1 mmolarer EDTA-Gabe nahmen die Stengel im Mittel mehr Zink auf als nach Gabe der beiden höchstkonzentrierten EDTA-Anwendungen und ohne EDTA. Die Kolben trugen auch zur Zinkaufnahme nur in geringem Maße bei (zwischen 42 und 166 mg/m²) bei.
Die relativen durch die Maispflanzen entzogenen Schwermetallmengen sind, bezogen auf die durchschnittlichen Ausgangswerte der Gesamtgehalte und der pflanzenverfügbaren Fraktion, in Abbildung 67 dargestellt. Alle entzogenen Mengen betrugen weniger als 1 % des Gesamtgehaltes. Am stärksten wurden die Cadmiumgesamtgehalte gesenkt (0,32 bis 0,64 %). Durch die 1 und 2 mmolare EDTA-Gabe resultierte eine stärkere relative Abnahme als nach Applikation von 5 mmol EDTA/ kg Erde. Der Zinkgesamtgehalt wurde um durchschnittlich 0,04 bis 0,10 % reduziert. Kontrolle und 1 mmolare Chelatgabe zeigten signifikant stärkere prozentuale Zinkentzugs mengen als die 5 mmolare EDTA-Gabe.

Der Einsatz der niedrigsten EDTA-Konzentration führte zur stärksten relativen Verarmung aller pflanzenverfügbaren Schwermetallgehalte. Es wurden dann maximal knapp 7 % Bleiverlust infolge der Behandlung mit 1 mmol EDTA/ kg Substrat gemessen. Das war signifikant mehr als nach 5 und 10 mmolarer Chelatbehandlung. Relativ zum Ausgangsgehalt der pflanzenverfügbaren Cadmiummenge wurde nach 1 mmol EDTA-Gabe mit 4,76 % der signifikant höchste relative Cadmiumanteil entzogen. Auch der relativ entzogene Zinkanteil war nach Applikation von 1 mmol EDTA/ kg Erde durchschnittlich am höchsten, unterschied sich jedoch nicht von der unbehandelten und der mit 2 mmol EDTA/ kg Substrat behandelten Fläche. Nach Gabe von 5 mmol EDTA resultierte ein signifikant geringerer Anteil als bei den übrigen Versuchsvarianten.

4.6.6 Anteil der Pflanzen an der Schwermetallabnahme des Kultursubstrats

Soweit es zu einer Abnahme des Schwermetallgehaltes pro m² kam, wurde der prozentuale Anteil der Maispflanzen an der Reduktion der Belastung berechnet (Abbildung 68). Der pflanzliche Anteil am Austrag der pflanzenverfügbaren Schwermetalle (1,2 bis 177,8 %) war deutlich größer als an der Reduktion des Gesamtgehaltes (0,1 bis 12,0 %). Nach 2 mmolarer EDTA-Behandlung nahmen die Maispflanzen mit 52,3 % einen weitaus größeren Teil der pflanzenverfügbaren Schwermetalle auf, um die die Belastung während einer Vegetationsperiode abgenommen hatte, als bei allen anderen Behandlungen. Den größten Teil des dem Substrat entzogenen Zinkgehaltes nahmen die Maispflanzen nach Applikation von 10 mmol/ kg aus dem Substrat auf (3,2 %). Alle anderen Verluste der pflanzenverfügbaren und Schwermetallgesamtgehalte des Erdreichs wurden im Vergleich durchschnittlich nach 1 mmolarer EDTA-Gabe am stärksten von den Maispflanzen getragen. Jedoch konnten nur im Falle der Bleiverluste signifikante Unterschiede zu mindestens einer anderen Behandlung nachgewiesen werden. Der höchste durch die Pflanzen aufgenommene prozentuale Anteil vom Gesamtgehalt wurde nach 1 mmolarer EDTA-Gabe bei Cadmium gemessen (12,0 %).
Bis zu ¾ des Verlustes des pflanzenverfügbaren Cadmiumgehaltes aus dem Substrat kann auf die Aufnahme in die Maispflanzen zurückgeführt werden (14,7 bis 76,9 %). Bei Betrachtung des pflanzlichen Anteils am Austrag der den Pflanzen zugänglichen Zinkfraktion fällt auf, daß die Maispflanzen nach 1 mmolarer EDTA-Gabe deutlich mehr als nach allen anderen Behandlungen (1,5 bis 5,4 %) aufnahmen und mehr als den vor Beginn der Experimente im Substrat überhaupt pflanzenverfügbaren Zinkgehalt (177,8 %). Das weist auf eine Mobilisierung und damit Verringerung auch des ursprünglich nicht pflanzenverfügbaren Zinks hin.

4.7 FREILANDEXPERIMENT ZUM EDTA-EINFLUß AUF MAIS IN MONOKULTUR (2000)

4.7.1 Morphologische Beobachtungen

4.7.2 Biomasse und Wassergehalt

Abbildung 69 zeigt die individuellen und flächenbezogenen, nach den Pflanzenorganen differenzierten Biomassen der Maispflanzen. Mit durchschnittlich 485 g pro Pflanze erreichten die zwei Wochen vor Ernte mit 0,1 mmol EDTA/ kg Erde behandelten Maispflanzen eine signifikant größere Biomasse pro Individuum als nach den übrigen Behandlungen (329 bis 356 g/ Pflanze). Die pro m² von den Pflanzen erreichte Gesamtbiomasse (3,2 bis 4,2 kg/ m²) war auf dem mit 0,1 mmol EDTA/ kg Erde behandelten Areal signifikant größer als auf dem mit 0,5 mmol behandelten. Der größte Anteil der Biomasse pro Maispflanze wurde sowohl individuell als auch flächenbezogen meist von den Stengeln (128 bis 198 g/ Pflanze, 1,2 bis 1,9 kg/ m²) erreicht gefolgt von Blättern (99 bis 169 g/ Pflanze, 1,0 bis 1,6 kg/ m²) und Wurzeln (55 bis 118 g/ Pflanze, 0,6 bis 1,2 kg/ m²).

Die Wurzeln der mit 0,1 mmol EDTA/ kg Erdreich behandelten Maispflanzen erreichten individuen- und flächenbezogen signifikant größere Biomassen als die der Kontrolle. Die Blätter erreichten pro m² am Erntetag auf der mit 0,5 mmol/ kg Erde behandelten Fläche eine signifikant geringere Biomasse (1,0 kg/ m²), als auf den übrigen Flächen (1,5 bis 1,6 kg/ m²).

Abbildung 70 zeigt die durchschnittlichen Wassergehalte von Wurzel, Stengel und Blättern unter den verschiedenen Versuchsbedingungen. Die höchsten Wassergehalte wiesen die Blätter auf (56,4 bis 80,2 %). Die Stengel enthielten zum Erntezeitpunkt zwischen 50,2 und 62,4 % Wasser. In den Wurzeln wurde ein Wassergehalt von 39,5 bis 54,2 % gemessen. Signifikante Unterschiede konnten behandlungsvergleichend in keinem Fall festgestellt werden.
4.7.3 Ionengehalte

4.7.3.1 Schwermetalle

Die Schwermetallgehalte der Maispflanzen vor Chelatapplikation und nach Ernte der Maispflanzen zeigt Abbildung 71. Die absoluten Veränderungen der Schwermetallgehalte sind Tabelle 30 zu entnehmen. Die Schwermetallgehalte aller Pflanzenorgane nahmen infolge der 0,1 mmolaren EDTA-Behandlung im Vergleich mit den anderen Behandlungen stark zu. Mit wenigen Ausnahmen wurde in den Wurzeln die meist stärkste
ERGEBNISSE & DISKUSSION

Schwermetallgehaltszunahme festgestellt. Infolge dessen enthielten sie deutlich mehr Blei, Cadmium und Zink als Stengel und Blätter.

Die Maiswurzeln hatten vor der Behandlung die Bleigehalte zwischen 63,8 und 69,8 ppm. In den Stengeln und Blättern wurden zwischen 0,0 und 9,3, sowie 2,0 bis 10,0 ppm Blei nachgewiesen. Alle Teile der Pflanzen enthielten mit und ohne EDTA zum Zeitpunkt der Ernte im Mittel mehr Blei als vorher.

<table>
<thead>
<tr>
<th>absolute Konzentrationsveränderung [ppm]</th>
<th>EDTA-Behandlung [mmol/kg Erde]</th>
<th>Wurzel</th>
<th>Stengel</th>
<th>Blätter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,0</td>
<td>5,0</td>
<td>17,4</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>0,1</td>
<td>253,6</td>
<td>48,7</td>
<td>61,0</td>
</tr>
<tr>
<td></td>
<td>0,3</td>
<td>101,3</td>
<td>39,8</td>
<td>14,8</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>43,2</td>
<td>19,8</td>
<td>3,9</td>
</tr>
<tr>
<td>Pb</td>
<td>0,0</td>
<td>8,7</td>
<td>10,4</td>
<td>10,5</td>
</tr>
<tr>
<td></td>
<td>0,1</td>
<td>106,4</td>
<td>72,6</td>
<td>18,2</td>
</tr>
<tr>
<td></td>
<td>0,3</td>
<td>23,1</td>
<td>14,9</td>
<td>3,7</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>15,0</td>
<td>5,8</td>
<td>5,3</td>
</tr>
<tr>
<td>Cd</td>
<td>0,0</td>
<td>-40</td>
<td>296</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>0,1</td>
<td>863</td>
<td>450</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>0,3</td>
<td>358</td>
<td>164</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>259</td>
<td>310</td>
<td>-202</td>
</tr>
</tbody>
</table>

Nach Behandlung mit 0,1 mmol EDTA/kg Erde waren die Bleigehalte in allen Pflanzenorganen signifikant höher als vor der Behandlung.

Die Wurzeln erreichten nach der Chelatbehandlung Bleigehalte von 72,2 bis 322,3 ppm. Nach Applikation der 0,1 mmolaren EDTA-Lösung enthielten die Wurzeln fast 4½ mal so viel Blei wie vor dem Experiment und signifikant mehr Blei als alle anders behandelten Proben.
Stengel erreichten zum Erntezeitpunkt Bleigehalte von 17,4 bis 58,0 ppm, die Blätter 3,0 bis 69,2 ppm. Die nach Gabe von 0,1 mmol EDTA erreichten Spitzenwerte in den oberirdischen Pflanzenteilen überstiegen die Ausgangsgehalte signifikant; der Bleigehalt der Blätter lag nach dieser Behandlung außerdem signifikant oberhalb des Kontrollgehaltes.

Vor der Chelatbehandlung hatten die Maiswurzeln Cadmiumgehalte zwischen 44,0 und 55,2 ppm. Stengel und Blätter enthielten zwischen 43,3 und 51,8, sowie 24,5 bis 60,9 ppm. Wurzel und Stengel von unbehandelten und mit 0,1 mmol EDTA behandelten Maispflanzen sowie die Stengel der mit 0,3 mmol EDTA/ kg Substrat behandelten Individuen zeigten signifikant über den Ausgangswerten liegende Cadmiumgehalte. Der Cadmiumgehalt der Blätter nach 0,3 mmolarer EDTA-Applikation (28,2 ppm) war signifikant geringer als nach Behandlung mit den übrigen Chelatkonzentrationen.

Die Zinkkonzentration in den Wurzeln, Stengeln und Blättern vor Behandlung betrug zwischen 502 und 1501 ppm sowie 490 bis 1079 ppm und 415 bis 633 ppm. Mehrheitlich stiegen alle Zinkgehalte mit und ohne EDTA-Gabe auf 760 bis 2363 ppm in den Wurzeln, 793 bis 1461 ppm in den Stengeln und 416 bis 862 ppm in den Blättern an. Nach 0,1 und 0,5 mmolarer EDTA-Gabe waren die Steigerungen in allen Pflanzenteilen, bei den Kontrollpflanzen nur in den oberirdischen Pflanzenteilen signifikant. Die bereits vorher bestehenden signifikanten Differenzen eingerechnet, konnte nach Applikation von 0,1 mmol EDTA/ kg Substrat ein signifikant höherer Zinkgehalt in den Wurzeln (2362 ppm) als auf der Kontrollfläche (1245 ppm) festgestellt werden. Die oberirdischen Pflanzenteile enthielten nach 0,1 mmolarer EDTA-Gabe signifikant mehr Zink als nach 0,5 mmolarer Anwendung.

4.7.3.2 Nährstoffionen

In den Wurzeln wurden vor der EDTA-Behandlung Kaliumgehalte zwischen durchschnittlich 10202 und 14369 ppm gemessen. Stengel und Blätter enthielten 26184 bis 36062 ppm bzw. 10247 bis 12382 ppm Kalium. Die deutlichste Zunahme der Kaliumgehalte erfolgte in den Blättern nach Applikation von 0,1 mmol EDTA/ kg Erde (+11150 ppm). In Wurzeln und Blättern war die Kaliumkonzentration nach 0,1 mmolarer Chelatgabe signifikant höher als vor dem Experiment.

Der Einsatz der beiden höchsten EDTA-Konzentrationen hatte in Folge einer starken Konzentrationsabnahme (-9176 bis -14122 ppm) signifikant unter den Ausgangsgehalten liegende Stengelkaliumgehalte zur Folge. Die Applikation von 0,5 mmol EDTA/kg Erde führte zu einer signifikanten Steigerung des durchschnittlichen Wurzel-Kaliumgehaltes über den Ausgangsgehalt und den Wurzelgehalt nach 0,3 mmolarer EDTA-Verabreichung.

Die Wurzeln enthielten vor der Behandlung durchschnittlich 2361 bis 2941 ppm Calcium. In Stengeln und Blättern betrug der Calciumgehalt 13583 bis 15962 bzw. 9936 bis 14929 ppm. In den oberirdischen Pflanzenteilen kam es mehrheitlich zu einer stärkeren Veränderung der
Calciumgehalte (-3661 bis +4097 ppm) als in den Wurzeln (-688 bis +308 ppm). Die Stengel enthielten nach der niedrigdosierten EDTA-Gabe signifikant mehr als vor Behandlung. Nach 0,3 mmolarer Behandlung hingegen lag der Stengelcalciumgehalt signifikant unter seinem Anfangswert und unter dem der Kontrollstengel.

<table>
<thead>
<tr>
<th>absolute Konzentrationsveränderung [ppm]</th>
<th>EDTA-Behandlung [mmol/kg Erde]</th>
<th>Wurzel</th>
<th>Stengel</th>
<th>Blätter</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0,0</td>
<td>1463</td>
<td>2627</td>
<td>3067</td>
</tr>
<tr>
<td></td>
<td>0,1</td>
<td>3397</td>
<td>1811</td>
<td>11150</td>
</tr>
<tr>
<td></td>
<td>0,3</td>
<td>-348</td>
<td>-14122</td>
<td>2089</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>4054</td>
<td>-9176</td>
<td>-149</td>
</tr>
<tr>
<td>Ca</td>
<td>0,0</td>
<td>308</td>
<td>1933</td>
<td>718</td>
</tr>
<tr>
<td></td>
<td>0,1</td>
<td>7</td>
<td>2500</td>
<td>-784</td>
</tr>
<tr>
<td></td>
<td>0,3</td>
<td>-614</td>
<td>-3661</td>
<td>4097</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>-688</td>
<td>523</td>
<td>2760</td>
</tr>
<tr>
<td>Mg</td>
<td>0,0</td>
<td>242</td>
<td>385</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>0,1</td>
<td>752</td>
<td>370</td>
<td>-93</td>
</tr>
<tr>
<td></td>
<td>0,3</td>
<td>100</td>
<td>542</td>
<td>865</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>429</td>
<td>757</td>
<td>162</td>
</tr>
<tr>
<td>Fe</td>
<td>0,0</td>
<td>1879</td>
<td>188</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>0,1</td>
<td>15814</td>
<td>31</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>0,3</td>
<td>4907</td>
<td>-84</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>11100</td>
<td>-11</td>
<td>59</td>
</tr>
<tr>
<td>Mn</td>
<td>0,0</td>
<td>36,3</td>
<td>1,8</td>
<td>4,5</td>
</tr>
<tr>
<td></td>
<td>0,1</td>
<td>142,2</td>
<td>-4,2</td>
<td>0,7</td>
</tr>
<tr>
<td></td>
<td>0,3</td>
<td>72,1</td>
<td>-5,9</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>72,8</td>
<td>-12,0</td>
<td>4,2</td>
</tr>
<tr>
<td>P2O5</td>
<td>0,0</td>
<td>1356</td>
<td>1562</td>
<td>652</td>
</tr>
<tr>
<td></td>
<td>0,1</td>
<td>8293</td>
<td>1363</td>
<td>4203</td>
</tr>
<tr>
<td></td>
<td>0,3</td>
<td>5641</td>
<td>-224</td>
<td>1267</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>6736</td>
<td>331</td>
<td>1892</td>
</tr>
</tbody>
</table>

Der Magnesiumgehalt von Wurzeln (1145 bis 1252 ppm), Stengeln (2665 bis 3199 ppm) und Blättern (2004 bis 2336 ppm) wurde durch die Behandlung fast ausschließlich angehoben. Außer nach 0,1 mmolarer EDTA-Gabe lag der Magnesiumgehalt der Stengel (3035 ppm bis 3754 ppm) signifikant über dem Anfangsgehalt. In den Blättern wurde nach 0,3 mmolarer Chelatbehandlung signifikant mehr Magnesium als nach 0,1- und 0,5 mmolarer Verabreichung festgestellt.

Im Vergleich mit den Veränderungen der Mangan- und Eisengehalte in Stengeln und Blättern (-12,0 bis +4,5 ppm bzw. -84 bis +226 ppm) waren die Veränderungen der Wurzelgehalte durchschnittlich viel stärker positiv (+36,3 bis +142,2 und +1879 bis +15814 ppm).

Der Eisengehalt der Wurzeln vor dem Experiment (10064 bis 12052 ppm) stieg bei jedem der Versuchsansätze im Mittel an (13931 bis 26677 ppm). Die deutlich niedrigeren Gehalte der
oberirdischen Pflanzenteile (50 bis 659 ppm) sanken lediglich in den Stengeln nach der Verabreichung der beiden höchskonzentrierten EDTA-Konzentrationen.

Der Mangangehalt war am Erntetag in allen Wurzeln höher (216,4 bis 424,7 ppm) als vor der Chelatbehandlung (180,2 bis 282,5 ppm). Die deutlich geringeren Mangangehalte von Stengeln und Blättern sanken nach 0,3 und 0,5 mmolarer EDTA-Behandlung signifikant unter den Ausgangsgehalt, so daß die Stengel der Kontrollpflanzen (18,0 ppm) einen signifikant
höheren Mangangehalt als die mit 0,3 mmol EDTA/kg Erde behandelten aufwiesen (4,3 ppm).

4.7.3.3 Korrelationen der Ionengehalte

In Tabelle 32 sind die Ergebnisse der Korrelationsanalysen der Schwermetalle untereinander und mit den anderen Ionen in den Organen der Maispflanzen dargestellt.

<table>
<thead>
<tr>
<th>Organ</th>
<th>Korrelation mit</th>
<th>vor Behandlung</th>
<th>c(EDTA) [mmol/kg Erde]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pb</td>
<td>Cd</td>
<td>Zn</td>
</tr>
<tr>
<td>Kolben</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Blätter</td>
<td>Pb</td>
<td>Cd</td>
<td>Zn</td>
</tr>
<tr>
<td>Stengel</td>
<td>Pb</td>
<td>Cd</td>
<td>Zn</td>
</tr>
<tr>
<td>Wurzel</td>
<td>Pb</td>
<td>Cd</td>
<td>Zn</td>
</tr>
</tbody>
</table>

Zunächst fällt auf, daß die Summe der ermittelten mathematischen Relationen vor Behandlung und bei den Kontrollpflanzen am größten war, gefolgt von der 0,3 mmolaren Behandlung (fünf Beziehungen). Am geringsten war die Summe der festgestellten Zusammenhänge nach 0,1 und 0,5 mmolaren EDTA-Gabe. Besonders häufig waren Korrelationen der Veränderungen in der Konzentration der drei Schwermetalle mit entsprechenden Veränderungen bei Kalium, Calcium und Magnesium.

4.7.4 Schwermetalle im Kultursubstrat

In den beiden Bodensegmenten wurde der pH-Wert infolge der EDTA-Behandlung überwiegend nicht verändert. Im Oberboden (0 bis 10 cm) lag er zwischen 6,3 und 6,6. In 40 bis 50 cm Tiefe wurden Werte von 6,6 bis 6,8 ermittelt (Anhang). Der Boden war also im
gesamten untersuchten Profil sehr schwach sauer. Bei dieser Bodenacidität kann Cadmium als relativ mobil, Blei und Zink hingegen als immobil bewertet werden (SCHACHTSCHABEL et al. 1998).

4.7.4.1 Absolute Schwermetallgehalte

Die Gesamtbliegehalte und die pflanzenverfügbare Fraktion des Schwermetalls im Substrats vor Aussaat der Pflanzen und nach Ernte in den Profilsegmenten zwischen 0 und 10 bzw. 40 bis 50 cm sind in Abbildung 74 dargestellt. Die Gesamtgehalte betrugen unabhängig von Bodentiefe und Behandlung zwischen 300 und 768 ppm Blei. Davon waren 0,5 bis 3,2 ppm pflanzenverfügbar. Der im oberen Bodensegment vor der Aussaat gemessene Gesamtbliegehalt (709 bis 768 ppm) war meist etwa doppelt so hoch wie die korrespondierenden Konzentrationen im Bodensegment zwischen 40 und 50 cm (300 bis 393 ppm). Zum Erntezeitpunkt war unter den leicht gesunkenen Oberbodengesamtgehalten (695 bis 711 ppm) die Abnahme der Gesamtbleikoncentration nach 0,1 mmolarer EDTA-Behandlung signifikant. Die Gesamtbliegehalte im Unterboden zeigten unter Berücksichtigung der bereits vorher bestehenden signifikanten Differenz eine Nivellierung der mit 0,5 mmol EDTA/ kg Erde behandelten und der unbehandelten Fläche. Die deutlich geringeren pflanzenverfügbaren Bleigehalte waren im oberen untersuchten Bodensegment (2,0 bis 3,2 ppm) höher als im unteren (1,6 bis 1,6 ppm).

In der Mehrheit kam es zu einer Senkung der pflanzenverfügbaren Bleigehalte, die zum Erntezeitpunkt im Unterboden alle signifikant unter den Anfangswert sanken (0,5 bis 0,7 ppm). Im Bodensegment zwischen 0 und 10 cm sank der pflanzenverfügbare Bleigehalt nach Behandlung mit 0,1 mmol EDTA/ kg Erde signifikant unter den Ausgangsgehalt. Der im Mittel geringste Gehalt im Oberboden resultierte auf der unbehandelten Fläche und war deutlich geringer als nach Verabreichung von 0,1 und 0,5 mmol EDTA/ kg Substrat.

Die Cadmiumgesamtgehalte (Abbildung 75) betrugen unabhängig von Bodentiefe und Behandlung zwischen 50,7 und 350 ppm. Davon waren zwischen 1,6 und 35,1 ppm den Pflanzen zugänglich. Im Profilsegment zwischen 0 und 10 cm Tiefe waren die Gesamtcadmiumgehalte zu Versuchsbeginn (287 bis 361 ppm) etwa sechs mal so groß wie in 40 bis 50 cm Tiefe (50,7 bis 59,3 ppm). Die pflanzenverfügbare Cadmiummenge im Oberboden (29,2 bis 35,1 ppm) war vor Versuchsbeginn etwa zehn mal so groß wie im Unterboden (1,6 bis 4,5 ppm).
Am Erntetag hatten die meisten Oberbodengehalte beider Schwermetallfraktionen etwas abgenommen (274 bis 350 und 22,5 bis 29,4 ppm) während sie im Profilsegment zwischen 40 und 50 cm gleichzeitig anstiegen (52,3 bis 76,5 und 3,3 bis 15,9 ppm), so daß die Gesamtgehalte im Oberboden noch etwa fünf mal so groß waren wie im Unterboden und die pflanzenverfügbaren Oberbodenengehalte z.T. nur noch doppelt so groß wie die korrespondierenden signifikant angestiegenen Gehalte im Profilsegment zwischen 40 und 50 cm. Zu einer deutlichen Senkung des pflanzenzugänglichen Cadmiumgehaltes kam es nach 0,5 mmolarer EDTA-Applikation im Oberboden.

Die im Substrat gemessenen Gesamtzinkgehalte lagen zwischen 1411 und 4361 ppm (Abbildung 76). Davon waren 26,1 bis 170 ppm pflanzenverfügbar. Sowohl der Gesamt- als auch der pflanzenverfügbare Zinkgehalt im Oberbodensegment lagen nach Ernte der Pflanzen (3751 bis 4323 und 121 bis 151 ppm Zink) unter den Ausgangswerten (3823 bis 4361 und 149 bis 170 ppm Zink). Eine statistisch relevante Senkung konnte nur beim pflanzenverfügbaren Zinkgehalt der mit 0,5 mmol EDTA/ kg Substrat ermittelt werden. Die Gesamt- und pflanzenverfügbaren Zinkgehalte im unteren beprobten Bodensegment machten vor der EDTA-Behandlung etwa 1/3 bzw. 1/5 der Werte im Oberboden aus (1439 bis 1535 und 26,1 bis 43,6 ppm). Hier war zum Erntezeitpunkt im Vergleich zum Versuchsbeginn meist ein Anstieg der mittleren Zinkgehalte zu beobachten, die zum Versuchsende bei beiden untersuchten Zinkfraktionen etwa 1/3 des Oberbodengehaltes ausmachten (1411 bis 1567 und 29,3 bis 43,5 ppm).

4.7.4.2 Schwermetallgehalt pro m²

Die hochgerechneten Schwermetallgehalte in den oberen 50 cm des Substrats pro m² sind in Abbildung 77 dargestellt. Insgesamt enthielt das Erdreich vor Aussaat der Maispflanzen zwischen 333 und 360 g Blei pro m², davon 1,1 bis 1,4 g in pflanzenverfügbarer Form. Während die Gesamtgehalte nach Ernte der Pflanzen fast unverändert waren (333 bis 355 ppm), sanken die pflanzenverfügbaren Bleimengen pro m². Kontrolle und 0,1 mmolare EDTA-Behandlung hatten eine signifikante Senkung zur Folge. Die unbehandelte Fläche zeigte die niedrigste pflanzenverfügbare Bleikonzentration pro m².

Die beprobten Areale enthielten insgesamt vor der Behandlung 110 bis 137 ppm Gesamtcadmium je m². Während diese Cadmiumkonzentrationen zum Erntezeitpunkt weitgehend unverändert waren (106 bis 137 g/ m²), zeigten die pflanzenverfügbaren Cadmiumgehalte zum Erntezeitpunkt meist etwas höhere Werte (9,6 bis 11,3 g/ m²) als vor der Behandlung mit EDTA (10,0 bis 12,9 g/ m²).
Insgesamt betrug der Zinkgehalt vor der Chelatbehandlung 1741 bis 1893 ppm. Nach der Chelatverabreichung wurden überall leicht gesunkene Werte gemessen (1728 bis 1863 ppm). Auch die pflanzenverfügbaren Zinkgehalte waren zum Zeitpunkt der Ernte (52,2 bis 63,2 g/ m²) etwas niedriger als vor Aussaat der Maispflanzen (zwischen 57,0 und 68,4 g/ m²). Die 0,5 mmolare EDTA-Gabe hatte eine signifikante Senkung des mittleren Zinkgehaltes zur Folge.

Abbildung 78: Relative Veränderung der pflanzenverfügbarer und Gesamtgehalte in 0 bis 10 und 40 bis 50 cm Tiefe bezogen auf die Konzentration vor Aussaat nach den unterschiedlichen EDTA-Behandlungen (2000).
4.7.4.3 Relative Veränderung der Schwermetallgehalte

4.7.4.4 Anteil der pflanzenverfügbaren Fraktion am Gesamtgehalt

Abbildung 79 zeigt die relativen Anteile pflanzenverfügbaren Schwermetalls in den beiden untersuchten Profilsegmenten zwischen 0 und 10 sowie zwischen 40 und 50 cm Tiefe auf den unterschiedlich behandelten Versuchsflächen vor der Aussaat der Pflanzen und zum Zeitpunkt der Ernte. Unabhängig von Bodentiefe und verabreichter Chelatkonzentration war Blei mit relativen pflanzenverfügbaren Anteilen zwischen 0,13 und 0,52 % von allen drei untersuchten Elementen am wenigst mobil. Die Ausgangswerte im Ober- und Unterboden (0,31 bis 0,52 bzw. 0,28 bis 0,42 %) sanken auf allen untersuchten Flächen auf 0,13 bis 0,18 % im Ober- und signifikant auf 0,22 bis 0,41 % im Unterboden. Der pflanzenverfügbare Bleiannteil der Kontrollfläche verarmte im Vergleich mit der mit 0,3 mmol EDTA/ kg Substrat behandelten Fläche im Oberboden stärker und im Unterboden weniger stark. Auf beinahe allen Flächen war Blei im unteren untersuchten Bodensegment sowohl vor als auch nach dem Experiment mobiler, als im Profilteil zwischen 0 und 10 cm. So verhielt es sich auch beim relativen Anteil mobilen Zinks, welcher insgesamt zwischen 1,7 und 4,2 % lag. Die relative pflanzenverfügbare Zinkfraktion im Oberboden (1,7 bis 3,0 %) war zum Erntezeitpunkt mehrheitlich angestiegen (1,9 bis 3,0 %). Im Unterboden wurden die mobilen Zinkanteile von 3,5 bis 4,2 % durch die Behandlung auf Werte zwischen 2,8 und 3,9 % gesenkt.
ERGEBNISSE & DISKUSSION

Von den drei untersuchten Schwermetallen zeigte Cadmium vor und nach Behandlung die höchsten pflanzenverfügaren Anteile (3,1 bis 20,8 %). Vor der Aussaat der Pflanzen waren die mobilen Anteile im Oberboden (3,1 bis 8,8 %) auf allen Flächen geringer als im Unterboden (8,1 bis 12,0 %). Im Proflisegment zwischen 0 und 10 cm Tiefe kam es durch alle Chelatkonzentrationen und die Kontrollbehandlung zu einem Anstieg der mittleren relativen Anteile der pflanzenverfügaren Cadmiumfraktion (5,1 bis 20,8 %). Außer auf der unbehandelten Fläche war der relative mobile Anteil vom Gesamtcadmiumgehalt nun höher als im unteren untersuchten Bodensegment (8,2 bis 9,0 %), wo es unter den mit 0,3 und 0,5 mmol EDTA/kg Erdreich behandelten Arealen zu einer signifikanten Senkung im Vergleich zum Ausgangsniveau kam.

4.7.5 Schwermetallaufnahme

Pro Maispflanze wurde je nach Behandlung im Mittel zwischen 10,0 und 73,6 mg Blei, 22,5 bis 67,0 mg Cadmium bzw. 291 bis 859 mg Zink aufgenommen (Abbildung 80). Nach 0,1 mmolärer Behandlung wurde von den Maispflanzen signifikant mehr Cadmium und Blei als nach den übrigen Behandlungen und der Kontrolle aufgenommen. Pro m² wurde von allen Maispflanzen je nach Versuchsansatz zusammen durchschnittlich zwischen 76,8 und 596,1 mg Blei, 167,8 bis 532,4 mg Cadmium und 2056 bis 6875 mg Zink aus dem Substrat aufgenommen (Abbildung 81). An der flächenbezogenen Bleiaufnahme hatten die Wurzeln auf allen untersuchten Flächen den größten und die Blätter den geringsten Anteil. Den größten Anteil an der Cadmium- und Zinkaufnahme hatten hingegen meist die Stengel. Die Bleiaufnahme aus dem mit 0,1 mmol EDTA/kg behandelten Substrat überstieg signifikant die Aufnahme von der Kontrollfläche, die Cadmium- und Zinkaufnahme die aller übrigen Behandlungen.

Auch die von den Stengeln aufgenommenen Cadmium- und Zinkquantitäten zeigten nach dieser Behandlung den signifikant höchsten Aufnahmewert pro Flächeneinheit. Die Schwermetallaufnahme der Blätter unterschied sich nach Applikation von 0,1 mmol EDTA signifikant von mindestens je einer anderen Behandlungsvariante.

Die durch die Maispflanzen aus dem belasteten Erdreich aufgenommene Schwermetallmenge (Abbildung 82) entsprach in jedem Fall weniger als einem halben Prozent des Gesamtgehaltes (0,02 bis 0,41 %). Der Anteil an der pflanzenverfügaren Fraktion erreichte hingegen Werte bis knapp der Hälfte des Ausgangsgehaltes in den oberen 50 cm des Bodenprofils. Die höchsten relativen Blei-, Cadmium und Zinkmengen (0,17 bzw. 0,41 und 0,40 %) des Gesamtgehaltes wurden nach Gabe von 0,1 mmol EDTA/kg aus dem Substrat aufgenommen.
und überstiegen die Reduktion der Schwermetall-Gesamtmenge infolge mindestens einer anderen Behandlung signifikant.

Die durch die Pflanzen aufgenommene Bleimenge entsprach je nach Versuchsansatz 6,7 bis 44,5 % der vor Versuchsbeginn vorhandenen Bleiverfügbarkeit. Der relativ entzogene Zink- und Cadmiumgehalt war geringer (3,2 bis 12,3 und 1,4 bis 5,1 %). Nach Verabreichung der niedrigsten EDTA-Konzentrationen resultierte in jedem Fall ein signifikant höherer relativer Anteil als nach mindestens einer anderen Behandlung. Bei Cadmium wurde, wie auch beim
ERGEBNISSE & DISKUSSION

Gesamtgehalt, nach dieser Behandlung eine statistisch relevante Differenz zu allen anderen Versuchsansätzen gemessen.

4.7.6 Anteil der Pflanzen am Schwermetallverlust des Kultursubstrats

Soweit es zu einer Abnahme des Schwermetallgehaltes pro m² kam, wurde der prozentuale Anteil der Maispflanzen an der Reduktion der Belastung berechnet (Abbildung 83). Der pflanzliche Anteil am Verlust der pflanzenverfügbaren Schwermetalle (12,0 bis 263,3 %) war deutlich größer als an der Reduktion des Gesamtgehaltes (0,6 bis 86,0 %). Die höchsten pflanzlichen Anteile am Verlust vom Gesamtgehalt wurden für Cadmium nach Applikation von 0,1 mmol EDTA/ kg Substrat errechnet, wo die Schwermetallabnahme pro Flächenstück bis zu 86,0 % von den Maispflanzen getragen wurde. Das war signifikant mehr als der Anteil, den die Pflanzen auf dem mit 0,5 mmol EDTA/ kg Erde und dem nicht behandelten Teilstück
aufnahmen (2,4 und 2,6 %). Die durch die Pflanzen entfernte relative Menge vom Zinkgesamtgehalt war auf allen untersuchten Teilstücken geringer als 1/10 (1,4 bis 8,4 %).

Abbildung 83: Anteil der Pflanzen am Verlust der pflanzenverfügbaren und Gesamtschwermetallmenge pro m². Es sind Mittelwerte und Standardabweichungen dargestellt. Gleiche oder fehlende Buchstaben zeigen ein Fehlen signifikanter Unterschiede.

Auch der Verlust des Gesamtleigehaltes aus dem Boden wurde nur zu 0,6 bis 7,1 % von Z. mays getragen. Nach Verabreichung der 0,1 mmolaren EDTA-Behandlung war der pflanzliche Anteil signifikant größer als auf den übrigen beprobten Versuchsflächen. Höchstens 2/3 der Abnahme der pflanzenverfügbaren Cadmiummenge (12,6 bis 66,6 %) je m² wurde von den Maispflanzen nach Anwendung der niedrigstkonzentrierten Chelatgabe geleistet. Diese war signifikant größer als nach der 0,3 mmolaren EDTA-Behandlung. Die niedrigste Chelatkonzentration hatte maximal sogar eine über die ursprüngliche pflanzenverfügbare Bleimenge pro m² hinausgehende Aufnahme durch die Pflanzen zur Folge.
ERGEBNISSE & DISKUSSION

(200,9 %) und erreichte einen deutlich größeren Wert als bei der unbehandelten Kontrollfläche, auf der die Pflanzen mit knapp 1/5 des Verlustes behandlungsvergleichend den geringsten Anteil an der Abnahme der pflanzenverfügbaren Bleimenge pro Flächenstück hatten. Gleichzeitig konnten die Pflanzen mit Ausnahme der 0,5 mmolaren EDTA-Gabe (19,9 %) durchschnittlich mindestens so viel Zink aufnehmen wie pro m² vor Aussaat der Pflanzen in den oberen 50 cm des Bodenprofils vorhanden war (99,4 bis 269,3 %).

Bedingt durch eine Aufforstung der Versuchsfläche zu Sanierungszwecken (SCHRAMMECK & VIERECK 1997) stand 2000 nur eine andere Teilfläche für Experimente zur Verfügung (Fläche D, Abbildung 8). Hier wurden etwas abweichende Schwermetallbelastungen gemessen (Tabelle 33).
Tabelle 33: Schwermetallkonzentrationen zu Beginn der Freilandexperimente 1999 (Fläche B) und 2000 (Fläche D, Abbildung 8). Es sind Mittelwerte dargestellt.

<table>
<thead>
<tr>
<th>Fraktion</th>
<th>Schwermetall</th>
<th>Profiltiefe [cm]</th>
<th>Konzentration [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pb</td>
<td>0 - 10</td>
<td>531 - 585</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 - 50</td>
<td>422 - 578</td>
</tr>
<tr>
<td></td>
<td>Cd</td>
<td>0 - 10</td>
<td>111 - 122</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 - 50</td>
<td>20,8 - 39,8</td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>0 - 10</td>
<td>2429 - 2739</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 - 50</td>
<td>1630 - 2201</td>
</tr>
<tr>
<td>pflanzen-verfügbar</td>
<td>Pb</td>
<td>0 - 10</td>
<td>2,0 - 2,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 - 50</td>
<td>5,3 - 6,8</td>
</tr>
<tr>
<td></td>
<td>Cd</td>
<td>0 - 10</td>
<td>14,0 - 19,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 - 50</td>
<td>1,5 - 10,3</td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>0 - 10</td>
<td>168 - 239</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 - 50</td>
<td>114 - 187</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Probe</th>
<th>Fraktion</th>
<th>Schwermetall</th>
<th>Profilsegment</th>
<th>Konzentration [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landesumweltamt NRW 1998</td>
<td>Hintergrundwerte, Ackerboden</td>
<td>gesamt</td>
<td>Pb</td>
<td>Oberboden</td>
<td>27 - 44</td>
</tr>
<tr>
<td>SCHILLING 2000</td>
<td>Vorsorgewerte, schluffig-lehmige Ackerböden</td>
<td>gesamt</td>
<td>Pb</td>
<td>Oberboden</td>
<td>70</td>
</tr>
<tr>
<td>KINZEL 1982</td>
<td>Bergbau-Standorte, weltweit</td>
<td>gesamt</td>
<td>Pb</td>
<td>Oberboden</td>
<td>bis 49997</td>
</tr>
<tr>
<td>SCHRAMMECK & VIERECK 1997</td>
<td>RKS 1, Untersuchungsfläche Hagen, s. Abb.8</td>
<td>gesamt</td>
<td>Cd</td>
<td>0,0 - 0,3 m</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>RKS 3, Untersuchungsfläche Hagen, s. Abb.8</td>
<td>gesamt</td>
<td>Cd</td>
<td>0,3 - 0,5 m</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>F2, Untersuchungsfläche Hagen, s. Abb.8</td>
<td>gesamt</td>
<td>Pb</td>
<td>Oberboden</td>
<td>454</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cd</td>
<td>Oberboden</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zn</td>
<td>Oberboden</td>
<td>2851</td>
</tr>
<tr>
<td>SUKOPP & WITTIG 1993</td>
<td>Standorte in direkter Nähe metallverarbeitender Industriebetriebe</td>
<td>gesamt</td>
<td>Pb</td>
<td>Oberboden</td>
<td>bis 8000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cd</td>
<td>Oberboden</td>
<td>bis 168</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zn</td>
<td>Oberboden</td>
<td>bis 10000</td>
</tr>
</tbody>
</table>

Während die Blei- und Zinkgesamtgehalte im unteren, 2000 beprobten Bodensegment niedriger waren als auf dem 1999 untersuchten Teilareal, lagen alle übrigen Gesamtgehalte z.T. deutlich darüber. Die Cadmiumkonzentrationen waren zwei bis drei mal so hoch wie auf
der Vorjahresfläche. Die pflanzenverfügbaren Blei- und Zinkkonzentrationen waren hingegen überwiegend niedriger als auf der 1999 untersuchten Fläche.

Die Gesamtgehalte der Oberböden überstiegen deutlich die 1997 auf der Fläche F2 und bei RKS 1 und RKS 3 (Abbildung 8) gemessenen Gehalte (SCHRAMM ECK & VIERECK 1997). Sowohl die Gesamtlei- und -zinkbelastungen, als auch die pflanzenverfügbare Fraktion überstiegen im Oberboden beider Versuchsflächen die Vorsorgewerte (Tabelle 34) um ein Vielfaches, waren aber, verglichen mit Spitzenwerten bergbaulicher Regionen, moderat. Die Cadmiumkonzentrationen können für beide Versuchsflächen als extrem hoch angesehen werden.

Wassergehalte der Wurzeln auf als die Kontrollpflanzen (71,8 bis 80,2 %). Das weist wie bereits die Ergebnisse des Vorjahres, auf eine Senkung des Wasserpotentials in den Pflanzenorganen hin. Der Grund könnte eine Zunahme osmotisch wirksamer Teilchen in der Pflanze durch eine Spaltung der Chelatkomplexe sein.

<table>
<thead>
<tr>
<th>TG</th>
<th>Versuch 1999</th>
<th>1999</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c(EDTA) [mmol/kg Erde]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolben</td>
<td>28</td>
<td>86</td>
<td>81</td>
</tr>
<tr>
<td>Blätter</td>
<td>129</td>
<td>149</td>
<td>142</td>
</tr>
<tr>
<td>Stengel</td>
<td>131</td>
<td>140</td>
<td>131</td>
</tr>
<tr>
<td>Wurzel</td>
<td>57</td>
<td>81</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pro Pflanze [g]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolben</td>
<td>0,3</td>
<td>1,0</td>
<td>0,8</td>
</tr>
<tr>
<td>Blätter</td>
<td>1,5</td>
<td>1,7</td>
<td>1,5</td>
</tr>
<tr>
<td>Stengel</td>
<td>1,5</td>
<td>1,6</td>
<td>1,4</td>
</tr>
<tr>
<td>Wurzel</td>
<td>0,6</td>
<td>0,9</td>
<td>0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pro m² [kg]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtpflanze</td>
<td>3,9</td>
<td>5,2</td>
<td>4,3</td>
</tr>
</tbody>
</table>

Tabelle 35: Individuelle und flächenbezogene Biomasse (TG) der Maispflanzen zum Erntezeitpunkt auf den Untersuchungsflächen B und D (Abbildung 8). Es sind Mittelwerte dargestellt.

Vor allem Blei, aber auch EDTA zeigten im Versuch zur Auswaschung aus dem Bodenprofil (3.4.4) bei 5 mmolarer EDTA-Gabe eine geringere Gesamtauswaschung als Cadmium und Zink. Das weist darauf hin, daß Blei-EDTA-Komplexe bei dieser Konzentration im Boden weniger löslich sind als Cadmium und Zink (Abbildung 87). Die bessere Verfügbarkeit kann eine stärkere Aufnahme von Cadmium bei 5 mmolarer Konzentration im Vergleich mit Blei zur Folge haben. Da Cadmium sehr viel phytootoxischer ist als Blei und Zink (HOCK & ELSTNER 1995), könnte eine stärkere Aufnahme von Cadmium bei einer weniger starken...

Die oberirdische Biomasseentwicklung erbrachte 1999 und 2000 (Abbildung 54 & 69) bei den verschiedenen Behandlungen zwischen 22,2 und 48,5 t/ha. Das würde nach Kalkulationen von HUANG et al. (1997), die eine Sproßbiomasse von mindestens 20 t/ha für eine effiziente Phytoextraction postulierten, ausreichen.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Experiment</th>
<th>Chelator</th>
<th>Pflanze</th>
<th>Wurzel/ Sproß</th>
<th>Schwermetall</th>
<th>Pflanzenkonzentration [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUANG et al. 1997</td>
<td>kontaminierter Boden, Labor</td>
<td>EDTA</td>
<td>Z. mays, Pisum sativum</td>
<td>Sproß</td>
<td>Pb</td>
<td>10000</td>
</tr>
<tr>
<td>BLAYLOCK et al. 1997</td>
<td>Hydrokultur</td>
<td>EDTA</td>
<td>Brassica juncea</td>
<td>Sproß</td>
<td>Pb</td>
<td>15000</td>
</tr>
<tr>
<td></td>
<td>kontaminierter Boden, Labor</td>
<td>CDTA, 5 mmol/kg Erde</td>
<td>Brassica juncea</td>
<td>Sproß</td>
<td>Cd</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CDTA, 10 mmol/kg Erde</td>
<td>EDTA + Acetat</td>
<td></td>
<td>Pb</td>
<td>785</td>
</tr>
<tr>
<td>CUNNINGHAM & OW 1996</td>
<td>Labor</td>
<td>EDTA</td>
<td>Z. mays</td>
<td>Sproß</td>
<td>Pb</td>
<td>10000</td>
</tr>
<tr>
<td>GREGER & LINDBERG 1986</td>
<td>Hydrokultur</td>
<td>EDTA</td>
<td>Beta vulgaris</td>
<td>Sproß</td>
<td>Cd</td>
<td>reduziert im Vergleich zur Kontrolle</td>
</tr>
<tr>
<td>HUANG & CUNNINGHAM 1996</td>
<td>Hydrokultur</td>
<td>HEDTA</td>
<td>Ambrosia artemisifolia</td>
<td>Wurzel Sproß</td>
<td>Pb</td>
<td>24000</td>
</tr>
<tr>
<td></td>
<td>kontaminierter Boden, Labor</td>
<td>HEDTA</td>
<td>Z. mays</td>
<td>Wurzel Sproß</td>
<td>Pb</td>
<td>4900</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Z. mays</td>
<td>Wurzel Sproß</td>
<td>Pb</td>
<td>8000</td>
</tr>
</tbody>
</table>

Tabelle 36: Blei- und Cadmiumgehalte in Wurzel und Sproß verschiedener Pflanzen bei chelatgestützten Phytoextraktionsversuchen.

<table>
<thead>
<tr>
<th>Schwermetall</th>
<th>Versuch</th>
<th>Schwermetallkonzentration [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c(EDTA) [mmol/kg Erde]</td>
<td>0 1 2 5 10 0,0 0,1 0,3 0,5</td>
</tr>
<tr>
<td>Zn</td>
<td>Kolben</td>
<td>137 128 120 116 152 - - - -</td>
</tr>
<tr>
<td></td>
<td>Blätter</td>
<td>321 222 260 268 247 551 862 490 416</td>
</tr>
<tr>
<td></td>
<td>Stengel</td>
<td>250 238 186 159 170 1375 1461 793 799</td>
</tr>
<tr>
<td></td>
<td>Wurzel</td>
<td>483 593 562 222 317 1245 2263 916 760</td>
</tr>
<tr>
<td>Cd</td>
<td>Kolben</td>
<td>1,8 2,4 2,2 2,2 2,9 - - - -</td>
</tr>
<tr>
<td></td>
<td>Blätter</td>
<td>36,3 40,5 53,1 58,8 67,8 53,9 79,0 28,2 44,1</td>
</tr>
<tr>
<td></td>
<td>Stengel</td>
<td>46,3 57,4 74,4 74,1 88,7 62,1 121,2 65,7 49,2</td>
</tr>
<tr>
<td></td>
<td>Wurzel</td>
<td>34,7 84,6 98,0 117,3 132,3 62,5 156,3 67,1 70,2</td>
</tr>
<tr>
<td>Pb</td>
<td>Kolben</td>
<td>17,5 10,2 10,3 7,9 14,4 - - - -</td>
</tr>
<tr>
<td></td>
<td>Blätter</td>
<td>11,2 9,5 18,4 13,1 5,7 3,0 69,2 17,1 13,9</td>
</tr>
<tr>
<td></td>
<td>Stengel</td>
<td>12,6 8,8 8,6 6,4 13,9 17,4 58,0 41,8 20,0</td>
</tr>
<tr>
<td></td>
<td>Wurzel</td>
<td>81,5 175,6 107,6 29,0 67,8 72,2 322,3 165,0 112,9</td>
</tr>
</tbody>
</table>

235
ERGEBNISSE & DISKUSSION

Wurzeln waren bei 5- und 10-mmolarer EDTA-Behandlung sogar geringer als bei den Kontrollpflanzen.

Die vom Gesetzgeber für Getreide bestimmten Richtwerte betragen für Blei 0,3 ppm und für Cadmium 0,1 ppm bezogen auf das Frischgewicht (SCHACHTSCHABEL et al. 1998). Unter Einbeziehung der Wassergehalte der Kolben betrugen ihre Bleigehalte zum Erntezeitpunkt 1999 zwischen 16 und 35 ppm, ihre Cadmiumgehalte 3,6 bis 5,8 ppm bezogen auf das Frischgewicht. Somit wäre eine Nutzung der Früchte als Nahrungsmittel, zumindest bezogen auf das Versuchsareal bei Aussaat von Mais, ausgeschlossen.

Anders als von VASSIL et al. (1998) bei Brassica juncea beobachtet, ist hier naheliegend, daß die Stabilisierung der Plasmamembranen der Wurzel durch Calcium und Zink nur in einem bestimmten Konzentrationsbereich und nicht oberhalb einer bestimmten Schwermetall-
EDTA-Konzentration stattfindet, da die Schwermetallkonzentrationen in allen Pflanzenteilen bei 0,3 und 0,5 mmol EDTA/ kg Erde niedriger sind als bei 0,1 mmolarer Anwendung.

ERGEBNISSE & DISKUSSION

<table>
<thead>
<tr>
<th>Versuch</th>
<th>Zeitpunkt</th>
<th>c(EDTA) [mmol/kg Erde]</th>
<th>Schwermetallkonzentration (Stengel : Wurzel)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vor Behandlung</td>
<td>0</td>
<td>Pb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0,14</td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td>2</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0,17</td>
</tr>
<tr>
<td></td>
<td>nach Behandlung</td>
<td>0</td>
<td>0,15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0,08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0,22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0,21</td>
</tr>
<tr>
<td>2000</td>
<td>vor Behandlung</td>
<td>0,0</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1</td>
<td>0,13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,3</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,5</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>nach Behandlung</td>
<td>0,0</td>
<td>0,24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1</td>
<td>0,18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,3</td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,5</td>
<td>0,18</td>
</tr>
</tbody>
</table>

Tabelle 38: Quotient der Schwermetallkonzentrationen von Stengel und Wurzel als Maß für die Translokation in die oberirdischen Pflanzenteile. Es sind Mittelwerte dargestellt.

Unabhängig von der Chelatbehandlung zeigten die Maispflanzen 1999 einen auffallend defizitäre Mineralstoffhaushalt. Verglichen mit typischen Elementgehalten (AMBERGER

ERGEBNISSE & DISKUSSION

Da die meisten essentiellen Elemente bereits vor der Chelatgabe nicht in ausreichendem Maße vorhanden waren, ist es erstaunlich, daß die Maispflanzen vollkommen schadsymptomfrei wuchsen, einen kräftigen Habitus, und verglichen mit Referenzwerten, keine reduzierte Biomasseentwicklung zeigten, was den Mais als leistungsfähigen Phytoremediationspflanze charakterisiert. Das weist auch darauf hin, daß Z. mays sich flexibel auf sehr ungünstige Standortbedingungen einstellen und unter diesen ein neues Stoffwechselgleichgewicht etablieren kann, das ein konkurrenzkräftiges Überleben sichert.

Die **Aufnahme aller drei Schwermetalle** pro Maispflanze war 1999 entsprechend der geringen Biomasseproduktion bei 5 mmolarer EDTA-Behandlung signifikant am niedrigsten. Bezüglich der Zinkaufnahme konnte kein deutlicher Unterschied der übrigen Versuchsansätze, inclusive Kontrollbehandlung, festgestellt werden. Auch die Cadmiumaufnahme nach 1, 2 und 10 mmolarer EDTA-Behandlung war sehr ähnlich. Die signifikant größte individuelle und flächenbezogene Bleiaufnahme resultierte jedoch nach der 1 mmolaren EDTA-Behandlung. Ähnliche Beobachtungen machten BLAYLOCK et al. (1997), die bei *Brassica juncea* bei Boden-EDTA-Konzentrationen zwischen 1 und 5 mmol/kg eine dramatische Erhöhung der Bleiaufnahme messen konnten. Bezogen auf die Fläche (Tabelle 39) war 1999 die Zinkaufnahme der Kontrollbehandlung und nach 1 mmolarer EDTA-Gabe am größten, während eine Entscheidung über die stärksten flächenbezogenen Cadmiumaufnahmewerte nicht getroffen werden konnte, da signifikante Unterschiede nicht vorhanden waren. Da eine möglichst geringe Chelatkonzentration im Sinne einer umweltverträglichen Reinigung gewählt werden soll (HUANG et al. 1997), würde sich hier aufgrund der mangelnden gesicherten Unterschiede der Cadmium- und Zinkaufnahmewerte für die gleichzeitige Entfernung der verschiedenen Schwermetalle die 1 mmolare Behandlung anbieten. Allerdings war die Schwermetallaufnahme der mit 0,1 mmol EDTA/kg Erde behandelten Pflanzen im Jahr 2000 signifikant größer als die aller übrigen
Versuchsansätze. Die unbehandelten Pflanzen reicherten die größten Schwermetallmengen in Stengeln und Blättern an, während die EDTA-Behandlung die Akkumulation auf die Wurzeln konzentrierte. Auch die 0,3 mmolare Chelatbehandlung resultierte in diesem Jahr in Schwermetallentzugswerten, die den meisten anderen Versuchsansätzen überlegen waren.

Vergleiche mit anderen Phytoextraktionsexperimenten gestalten sich schwierig, da häufig Ergebnisse aus Laborexperimenten auf die Anwendung im Freiland extrapoliert wurden. Daß eine solche Übertragung nicht ohne weiteres möglich ist, wurde auch im Rahmen dieser Untersuchung bereits mehrfach unterstrichen. Außerdem sind die individuellen Substratcharakteristika und auch die Schwermetallbelastungen nie vergleichbar. Daher können Ergebnisse anderer Untersuchungen nur Anhaltspunkte bieten.

<table>
<thead>
<tr>
<th>Schwermetall</th>
<th>Versuch</th>
<th>Schwermetallaufnahme [kg/ (ha x Vegetationsperiode)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c(EDTA) [mmol/ kg Erde]</td>
<td>0</td>
</tr>
<tr>
<td>Zn</td>
<td>Kolben</td>
<td>0,420</td>
</tr>
<tr>
<td></td>
<td>Blätter</td>
<td>4,670</td>
</tr>
<tr>
<td></td>
<td>Stengel</td>
<td>3,220</td>
</tr>
<tr>
<td></td>
<td>Wurzel</td>
<td>3,220</td>
</tr>
<tr>
<td></td>
<td>Sproß</td>
<td>8,310</td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td>11,530</td>
</tr>
<tr>
<td>Cd</td>
<td>Kolben</td>
<td>0,005</td>
</tr>
<tr>
<td></td>
<td>Blätter</td>
<td>0,513</td>
</tr>
<tr>
<td></td>
<td>Stengel</td>
<td>0,652</td>
</tr>
<tr>
<td></td>
<td>Wurzel</td>
<td>0,209</td>
</tr>
<tr>
<td></td>
<td>Sproß</td>
<td>1,170</td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td>1,394</td>
</tr>
<tr>
<td>Pb</td>
<td>Kolben</td>
<td>0,076</td>
</tr>
<tr>
<td></td>
<td>Blätter</td>
<td>0,114</td>
</tr>
<tr>
<td></td>
<td>Stengel</td>
<td>0,225</td>
</tr>
<tr>
<td></td>
<td>Wurzel</td>
<td>0,496</td>
</tr>
<tr>
<td></td>
<td>Sproß</td>
<td>0,415</td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td>0,868</td>
</tr>
</tbody>
</table>

Verglichen mit dem in anderen Studien abgeschätzten Phytoextraktionspotential verschiedener Pflanzen (Tabelle 40) würden die Maispflanzen bezogen auf 1 Hektar Fläche und unter den gegebenen Versuchsbedingungen, selbst ohne Unterstützung synthetischer Chelatoren deutlich mehr Cadmium entziehen können als viele andere Pflanzen. Die oberirdische Zinkaufnahme war 2000 bis zu 164 mal so groß wie im Mittel bei anderen Nutzpflanzen unserer Regionen. Verglichen mit geschätzten Bleiaufnahmewerten von...

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Pflanze</th>
<th>Schwermetall</th>
<th>Kommentar</th>
<th>Aufnahme [kg/ (ha x Veg.periode)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMBERGER 1996</td>
<td>Nutzpflanzen</td>
<td>Zn</td>
<td>normale landwirtschfl. Nutzung</td>
<td>0,25 - 0,90</td>
</tr>
<tr>
<td>BLAYLOCK et al. 1997</td>
<td>Brassica juncea</td>
<td>Pb</td>
<td>EDTA, 3-malige Aussaat/ a</td>
<td>180</td>
</tr>
<tr>
<td>CHEN et al. 2000</td>
<td>Vetiveria zizanioides</td>
<td>Cd</td>
<td></td>
<td>0,218</td>
</tr>
<tr>
<td>FELIX 1997</td>
<td>Cannabis sativa</td>
<td>Cd</td>
<td></td>
<td>0,143</td>
</tr>
<tr>
<td></td>
<td>Thlaspi caerulescens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zea mays</td>
<td>Cd</td>
<td></td>
<td>0,002 -0,222</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,192</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,038 - 0,074</td>
</tr>
<tr>
<td>LINGER et al. 2002</td>
<td>Cannabis sativa</td>
<td>Cd</td>
<td></td>
<td>0,126</td>
</tr>
<tr>
<td>LINGER et al. 2002, unpubliziert</td>
<td>Zea mays</td>
<td>Cd</td>
<td></td>
<td>0,95</td>
</tr>
<tr>
<td>ROBINSON et al. 1998</td>
<td>Thlaspi caerulescens</td>
<td>Cd</td>
<td>gedüngt</td>
<td>8,40</td>
</tr>
<tr>
<td>ROBINSON et al. 2000</td>
<td>Populus deltoides</td>
<td>Cd</td>
<td>EDTA</td>
<td>1,06</td>
</tr>
<tr>
<td>SALT et al. 1998</td>
<td>verschiedene Pflanzen</td>
<td>Pb</td>
<td>EDTA oder EGTA, Schätzung</td>
<td>180 - 530</td>
</tr>
<tr>
<td>SAXENA et al. 1999</td>
<td>Thlaspi caerulescens</td>
<td>Cd</td>
<td></td>
<td>2,00</td>
</tr>
</tbody>
</table>

Bei den Kontrollpflanzen hatten die Wurzeln in beiden Versuchsahren einen Anteil von höchstens 60 % an der Bleiaufnahme, etwa 15 % an der Cadmiumaufnahme und knapp 30 % an der Zinkaufnahme. Nach der Chelatbehandlung trugen die Wurzeln bis zu 40 % zur gesamten Zinkaufnahme und bis zu 42 % zur Gesamtcadmiumaufnahme bei. Ihr Anteil an der Bleiaufnahme erhöhte sich sogar auf maximal 81 %. Das zeigt, daß die beschriebene chelatinduzierte Mobilitätserhöhung von Blei im Sproß (BEGONIA et al. 2002, BLAYLOCK et al. 1997, HUANG et al. 1997, SALT et al. 1998, VASSIL et al. 1998) zumindest für die Maispflanzen unter den gegebenen Versuchsbedingungen nicht bestätigt werden kann, da die Akkumulation besonders von Blei gerade durch die EDTA-Behandlung auf die Wurzeln...

Das Bodenprofil der untersuchten Ackerfläche zeigte in einer Tiefe von etwa 50 cm eine sehr dichte tonige Schicht, die als Grenzschicht des den Pflanzenwurzeln zugänglichen Erdreichs betrachtet wurde. Auf dieser Grundlage wurden die Gesamtschwermetallmengen im oberen halben Meter des Bodenprofils extrapoliert und darauf der relative Entzug durch die Maispflanzen bezogen (Tabelle 41).

<table>
<thead>
<tr>
<th>Schwermetall</th>
<th>c(EDTA) [mmol/kg Erde]</th>
<th>01 25 10 0,0 0,1 0,3 0,5</th>
<th>0,0 0,1 0,3 0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>0,09 0,10 0,08 0,04 0,05</td>
<td>0,20 0,40 0,15 0,11</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>0,32 0,54 0,50 0,39 0,64</td>
<td>0,16 0,41 0,16 0,15</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0,03 0,05 0,03 0,01 0,02</td>
<td>0,02 0,17 0,06 0,04</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>1,3 1,6 1,2 0,5 0,6</td>
<td>6,3 12,3 3,9 3,2</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>2,1 4,8 2,8 2,2 3,0</td>
<td>2,2 5,1 1,5 1,4</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>4,6 7,0 5,4 1,8 3,5</td>
<td>6,7 44,5 15,9 11,9</td>
<td></td>
</tr>
</tbody>
</table>

Die Aufnahme in die Pflanzen entsprach höchstens 0,64 % der Gesamtcadmiummenge. Das war deutlich mehr als in einer Freilandstudie ohne Chelatbehandlung von KURZ et al. (1997), die einen Cadmiumentzug aus den oberen 30 cm des Bodenprofils von 0,03 bis 0,09 % des Gesamtgehaltes feststellten. WILKE & METZ (1992) konnten hingegen eine Cadmiumaufnahme von 0,3 bis 6 % des Gesamtgehaltes durch unbehandelten Mais ermitteln. Von diesen Blei- und Zinkgesamtmengen wurden höchsten 0,17 und 0,40 % aufgenommen.
Hingegen konnten bezogen auf die pflanzenverfügbare Fraktion bis 44,5 % Blei, 5 % Cadmium und 12,3 % Zink aufgenommen werden.

<table>
<thead>
<tr>
<th>Versuch</th>
<th>Schwer- metall</th>
<th>c(EDTA) [mmol/kg Erde]</th>
<th>1 Ernte/a</th>
<th>2 Ernten/a</th>
<th>1 Ernte/a</th>
<th>2 Ernten/a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pb</td>
<td></td>
<td>4149</td>
<td>2075</td>
<td>32,3</td>
<td>16,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1712</td>
<td>856</td>
<td>15,8</td>
<td>7,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3340</td>
<td>1670</td>
<td>29,2</td>
<td>14,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>9349</td>
<td>4674</td>
<td>86,7</td>
<td>43,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>4471</td>
<td>2236</td>
<td>32,0</td>
<td>16,0</td>
</tr>
<tr>
<td>1999</td>
<td>Cd</td>
<td>0</td>
<td>318</td>
<td>159</td>
<td>50,3</td>
<td>25,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>190</td>
<td>95</td>
<td>21,3</td>
<td>10,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>206</td>
<td>103</td>
<td>38,0</td>
<td>19,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>269</td>
<td>134</td>
<td>55,2</td>
<td>27,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>170</td>
<td>85</td>
<td>33,4</td>
<td>16,7</td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>0</td>
<td>1101</td>
<td>550</td>
<td>91,0</td>
<td>45,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1002</td>
<td>501</td>
<td>75,8</td>
<td>37,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1347</td>
<td>674</td>
<td>98,1</td>
<td>49,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>2341</td>
<td>1171</td>
<td>211,0</td>
<td>105,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>1795</td>
<td>897</td>
<td>162,9</td>
<td>81,5</td>
</tr>
<tr>
<td>2000</td>
<td>Pb</td>
<td>0,0</td>
<td>3797</td>
<td>1899</td>
<td>15,3</td>
<td>7,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1</td>
<td>564</td>
<td>282</td>
<td>2,4</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,3</td>
<td>1732</td>
<td>866</td>
<td>8,0</td>
<td>4,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,5</td>
<td>2189</td>
<td>1095</td>
<td>8,8</td>
<td>4,4</td>
</tr>
<tr>
<td></td>
<td>Cd</td>
<td>0,0</td>
<td>644</td>
<td>322</td>
<td>47,7</td>
<td>23,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1</td>
<td>245</td>
<td>122</td>
<td>19,8</td>
<td>9,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,3</td>
<td>678</td>
<td>339</td>
<td>66,5</td>
<td>33,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,5</td>
<td>659</td>
<td>329</td>
<td>73,2</td>
<td>36,6</td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>0,0</td>
<td>499</td>
<td>250</td>
<td>16,8</td>
<td>8,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1</td>
<td>250</td>
<td>125</td>
<td>8,7</td>
<td>4,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,3</td>
<td>686</td>
<td>343</td>
<td>27,2</td>
<td>13,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,5</td>
<td>884</td>
<td>442</td>
<td>32,4</td>
<td>16,2</td>
</tr>
</tbody>
</table>

Tabelle 42: Für die stark kontaminierte Ackerfläche in Hagen berechnete Reinigungszeit durch Mais-Remediation für das Erreichen der Vorsorgewerte und zur Entfernung der pflanzenverfügbaren Schwermetallfraktion in den oberen 50 cm des Bodenprofils bei ein- und zweimaliger Ernte jährlich. Es sind Mittelwerte dargestellt.

Die Reinigung der oberen 50 cm des Bodenprofils bis auf den Schwermetallgrenzwert von 70 ppm Blei, 1,0 ppm Cd und 150 ppm Zink (SCHILLING 2000) würde auf der Versuchsfläche des ersten Jahres, selbst bei zweimaliger jährlicher Ernte, mindestens 856 (Blei), 95 (Cadmium) oder 501 Jahre (Zink) dauern (Tabelle 42). Auf dem zweiten Areal wären bei zweimaliger jährlicher Ernte 282 Jahre für die Blei-, 122 Jahre für die Cadmium- und 125 Jahren für die Zinkdekontamination bis auf die Vorsorgewerte notwendig. Das ist etwa ¼ der für die Blei- und Zinkreinigung des Vorjahres notwendigen Zeiträume. Das Reinigungsverfahren würde somit für die Phytoextraktion der

Nun erfolgt aber eine Nachlieferung vorwiegend aus der Fraktion der gebundenen Kationen bis die Chelate gesättigt sind (BLAYLOCK et al. 1997). Das hat zur Folge, daß selbst bei Kenntnis der genauen pflanzenverfügbaren Konzentration eines Schwermetalls immer etwas mehr aus der nachlieferbaren Schwermetallfraktion entbunden wird. Es wäre daher denkbar, zur Entfernung der pflanzenverfügbaren Schwermetalle abwechselnd behandelte und unbehandelte Pflanzenpopulationen einzusetzen oder im Anschluß an die letzte Chelatbehandlung ein bis mehrere nicht chelatbehandelte Generationen zu ernten, um den mobilisierten Schwermetallrest zu entfernen.

Häufig werden in chelatgestützten Phytoextraktionsstudien prozentuale Entzüge von der Ausgangsschwermetallbelastung eines Bodens genannt. Jedoch wurden bisher in diesem...
ERGEBNISSE & DISKUSSION

Die Schwermetallkonzentrationen unterlagen komplizierten, nicht ganz einheitlichen Umlagerungen, die teilweise schwierig zu interpretieren sind (Abbildung 59, 60 & 61). Auf der 1999 untersuchten Fläche B (Abbildung 8) zeichnete sich bei den Gesamtmengen der Schwermetalle, aber auch bei den pflanzenverfügbaren Fraktionen eine Tendenz zur Senkung der Oberbodengehalte bei gleichzeitigem Anstieg der Konzentrationen im unteren beprobten Bodensegment ab. Die Gesamtgehalte im Oberboden segment sanken um bis zu 30 %, die pflanzenverfügbaren Konzentrationen um bis zu 40 %. Besonders stark war im unteren beprobten Bodensegment die Zunahme beider Cadmiumfraktionen um bis zu 416 (Gesamtgehalt) und 447 % (pflanzenverfügbare Fraktion). Die Blei- und Zinkgesamtgehalte nahmen hier hingegen um höchstens 60 % zu, die pflanzenverfügbaren Blei- und Zinkmengen stiegen um maximal 100 %. Die Schwermetallumlagerungen waren generell bei den höheren EDTA-Konzentrationen stärker. Das läßt den Schluß zu, daß hier durch EDTA verursachte Mobilisierungsvorgänge im Oberboden (LI & SHUMAN 1996) bei der Verlagerung eine große Rolle spielen. Abweichend wurde im Mittel eine deutliche Steigerung des pflanzenverfügbaren Bleigehaltes im oberen Bodensegment um bis zu 225 % (5 mmol EDTA/kg Erde) bei gleichzeitiger Senkung im unteren Bodensegment bei allen Chelatbehandlungen festgestellt.

Auf der zweiten Untersuchungsfläche wurden im Jahr 2000 bei den geringeren EDTA-Konzentrationen überwiegend Senkungen der Bleigehalte um bis zu 2,6 (Gesamtgehalt) und gut 60 % (pflanzenverfügbare Fraktion) im Ober- und im Unterboden festgestellt. Übereinstimmend mit den Ergebnissen von 1999 sank auch auf der 2000er Fläche die Mehrheit beider Cadmium- und Zinkfraktionen im Oberboden um bis zu 4,4 (Gesamtgehalt) und 33,2 % (pflanzenverfügbar) bei gestiegenen Unterbodengehalten (bis 28,5 % Gesamtgehalt und bis 245 % pflanzenverfügbar). Beim pflanzenverfügbaren Bleianteil im Unterboden kam es zu einer einheitlich signifikanten Senkung.

Auffällend war, daß auf den unbepflanzten Flächenstücken 1999 im Unterboden segment überwiegend signifikante Steigerungen der Gesamtgehalte (0,5 bis 11,9 %) sowie der

Der relative Anteil des pflanzenverfügbaren Cadmium am Gesamtgehalt war im Vergleich mit den anderen Schwermetallen besonders hoch und betrug zu Beginn der Versuche durchschnittlich zwischen 11,0 und 65,3 % (1999, Abbildung 64) und 3,1 bis 12,0 % (2000,

ERGEBNISSE & DISKUSSION

Interessant ist in diesem Zusammenhang, daß sowohl im Ober- als auch im Unterboden fast alle mit 1 mmol EDTA/ kg Substrat behandelten Teilflächen signifikant geringere relative Anstiege der Schwermetallgesamtgehalte zeigten, als die unbehandelten (Abbildung 59, 60 & 61). Das war im Mittel auch bei den Zinkgehalten im Folgejahr festzustellen (Abbildung 76). Einzig auf den mit 1 mmol EDTA/ kg Erde behandelten Flächen wurde außerdem einheitlich eine überwiegend signifikante Abnahme der pflanzenverfügbaren und

<table>
<thead>
<tr>
<th>c(EDTA) [mmol/kg Erde]</th>
<th>Cd-Konzentration [mg/m²]</th>
<th>Faktor</th>
<th>c(Chelat)neu [mmol/kg Erde]</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. Ch.</td>
<td>Zun. Bo. Ch.</td>
<td>A. Ko.</td>
<td>∆ Boden Ko.</td>
</tr>
<tr>
<td>1</td>
<td>240,0</td>
<td>-462</td>
<td></td>
<td>139,4</td>
</tr>
<tr>
<td>2</td>
<td>244,3</td>
<td>2250</td>
<td></td>
<td>0,375</td>
</tr>
<tr>
<td>5</td>
<td>183,7</td>
<td>2569</td>
<td></td>
<td>0,082</td>
</tr>
<tr>
<td>10</td>
<td>272,2</td>
<td>6986</td>
<td></td>
<td>0,026</td>
</tr>
</tbody>
</table>

Die aus den verschiedenen angewendeten Konzentrationen resultierenden Chelatkonzentrationen ergaben gemittelt eine neue EDTA-Konzentration von knapp 0,5 mmol EDTA/kg Erde, bei deren Anwendung die Pflanzen theoretisch die mobilisierte Cadmiummenge aufnehmen können (Tabelle 43). Dem wurde in dem Folgeversuch im Jahr 2000 mit der Anwendung von EDTA-Konzentrationen von 0,1 bis 0,5 mmol/kg Erde Rechnung getragen. Als optimal erwies sich hierbei die 0,1 mmolare EDTA-Behandlung. Der Anteil am Verlust des Gesamtbleigehaltes betrug zwar nur höchstens 7 %, war damit aber fünf mal so hoch wie 1999. Auf mehr als das Siebenfache konnte mit 86 % der Anteil der Maispflanzen am Cadmiumverlust gesteigert werden (Abbildung 83). Bei Anwendung von 0,1 mmol EDTA/kg Substrat würde demnach die überwiegende Mehrheit des komplexierten Cadmium vom Mais aufgenommen und eine Tiefen-Auswaschung von Cadmiumkomplexen in Höhe von etwa 14 % der insgesamt mobilisierten Menge erfolgen. Somit könnte eine für die Reinigung des Versuchsubstrats von der Leitbelastung Cadmium optimale EDTA-Konzentration in der Nähe von 0,1 mmol/kg Substrat angesiedelt sein. Da eine Erniedrigung der Chelatkonzentration zu einer Zunahme des pflanzlichen Anteils an der Aufnahme führte, würde vermutlich eine zwischen 0,0 und 0,1 mmol EDTA/kg Erde liegende Konzentration zu einer optimalen Verfügbarkeit der Cadmiumkomplexe bzw. zu einer nahezu 100 %-igen Aufnahme der mobilisierten Cadmiummenge durch Maispflanzen am untersuchten Standort führen.

Der Anteil der Pflanzen am Verlust der pflanzenverfügbaren Schwermetalle war deutlich größer als der auf die Gesamtmenge bezogene Anteil. Die Maispflanzen trugen im Jahr 1999...

Der Anteil der durch den Mais im Jahr 2000 aufgenommenen Boden-Verluste an pflanzenverfügbar Blei und Cadmium war bei 0,1 mmolaren Behandlung am größten. Die Pflanzen konnten 67 % der Menge an pflanzenverfügbar Cadmium und das Doppelte des Verlustes der pflanzenverfügbar Bleikonzentration aufnehmen. Das war etwas weniger als der Cadmiumanteil unter den Behandlungsbedingungen des Vorjahres (76 %), aber gut das Vierfache des höchsten Vorjahresanteils am pflanzenverfügbar-mobilren Bleiverlust. Bei 0,1 mmolaren EDTA-Behandlung kann demnach auch eine Mobilisierung aus dem adsorbiert und komplexiert vorliegenden Bleivorrat angenommen werden.

4.8 AUSWASCHUNG VON SCHWERMETTALLEN UND EDTA AUS DEM BODENPROFIL

4.8.1 Monatliche Auswaschung

Die an ungestörten Bodenprofilsäulen durch simulierte Niederschläge hervorgerufene monatliche Auswaschung von Blei, Cadmium, Zink und EDTA zeigt Abbildung 85.

Zunächst fällt ein Unterschied der Zinkauswaschung im Vergleich mit dem Verhalten der übrigen drei Ionen auf. Mit wenigen Ausnahmen reduzierten sich die ausgewaschenen Zinkmengen monatlich. Die 5 mmolare EDTA-Konzentration führte bei Cadmium und EDTA, die 2 mmolare bei Blei, Cadmium und EDTA zunächst bei der Novemberauswaschung zu einem Anstieg des Austrags im Vergleich zum Oktober. Nachfolgend sank die Auswaschung bei den beiden genannten und bei allen übrigen EDTA-Konzentrationen monatlich ab. Bei allen EDTA-Behandlungen zwischen 0,3 und 1 mmolarer Konzentration war die Höhe der Werte kaum unterscheidbar. Bei 0,0 und 0,1 mmolarer

Abbildung 85: Simulierte monatliche Auswaschung von Blei, Cadmium, Zink und EDTA aus den Bodensäulen.
Chelatbehandlung lagen die über den gesamten Beobachtungszeitraum ausgewaschenen Blei-, Cadmium und Zinkmengen knapp oberhalb der Nachweisgrenze.

Die 10 mmolare EDTA-Behandlung führte zu einem auffallend anderen Auswaschungsverhalten als die übrigen Behandlungen. Zunächst kam es bei der November- im Vergleich zur Oktoberauswaschung zu einem Abfall des Wertes, der im Verlauf der weiteren Beobachtung z. T. dramatisch anstieg und bei Untersuchung der Januar- oder Februarauswaschung einen im Vergleich zu allen anderen Behandlungen sehr hohen Wert annahm (etwa 550 mg EDTA, 5 mg Cd, 6 mg Zn, 1,6 mg Pb) und noch nach Zugabe einer dem durchschnittlichen Märzniederschlag entsprechenden Wassermenge größer als alle anderen Werte war. Die durch die simulierten Niederschläge verursachten maximalen monatlichen Auswaschungen nach 0,0 bis 5 mmolaren EDTA-Behandlungen erreichten Werte von etwa 230 mg EDTA, 3 mg Cadmium und 0,35 mg Blei. Die stärkste Zinkauswaschung wurde bei der mit 5 mmol EDTA/ kg Erdreich behandelten Bodensäule direkt zu Beginn erreicht (ca. 10 mg).

4.8.2 Gesamtauswaschung

Abbildung 87: Zusammenhang der ausgewaschenen Gesamt mengen mit der zugegebenen EDTA-Menge. R² = Bestimmtheitsmaß.

Zwischen der verabreichten EDTA-Konzentration und der während des Beobachtungszeitraums aufgetretenen Gesamtauswaschung von Blei, Cadmium und EDTA bestanden verschiedene Zusammenhänge (Abbildung 87). Die Summen der ausgewaschenen EDTA-, Blei- und Cadmiummengen waren signifikant mit der verabreichten EDTA-

4.8.3 Diskussion

259
ERGEBNISSE & DISKUSSION
zeigen und Cadmium beim aktuellen pH-Wert des untersuchten Bodens zwischen 6,3 und 6,6 mobiler einzuschätzen ist, als Zink (SCHACHTSCHABEL et al. 1998), unterlag die Auswaschung somit ganz anderen Kriterien. Es kann angenommen werden, daß die Bildung von Blei- und Cadmium-EDTA-Komplexen im Vergleich zu Zink im Substrat begünstigt ist. Die monatliche Auswaschung von Blei, Cadmium, Zink und EDTA nach 0,1 mmolarer EDTA-Behandlung waren kaum nachweisbar. Die Gesamtauswaschung unterschied sich kaum von der Kontrolle. Vor allem diese Konzentration wird also nach der Ernte keinen bedeutenden Einfluß im Boden haben. Hingegen ist die bei der 0,3 mmolaren Behandlung ausgetragene EDTA-Gesamtmenge bereits fast 4 ½ mal so groß, die ausgewaschene Cadmiummenge sogar zehn mal und die Zinkmenge sogar 200 mal so groß wie infolge der 0,1 mmolaren EDTA-Behandlung (Abbildung 86). Somit kann die 0,3 mmolare EDTA-Konzentration bereits nicht mehr als unbedenklich eingeschätzt werden.

5 BEURTEILUNG DES PHYTOEXTRAKTIONSPOTENTIALS

5.1 ALLGEMEINE BEWERTUNG

Bei 0,1 mmolarer EDTA-Behandlung war die Schwermetallaufnahme durch der Maispflanzen besonders effektiv während die Verlagerung von Blei, Cadmium und Zink im Bodenprofil sich kaum von der Kontrollbehandlung unterschied. Im Versuch zur Auswaschung aus dem Bodenprofil war bei Anwendung dieser Konzentration die ausgetragene Blei-, Cadmium-, Zink- und EDTA-Menge kaum meßbar. Die Behandlung mit 0,1 mmol EDTA/ kg Substrat dürfte daher bei einer hohen Effizienz des Schwermetallentzugs nicht als umweltgefährdend einzustufen sein.

Die Freilandexperimente mit EDTA-behandelten Maispflanzen auf einem Boden mit extrem hoher Cadmiumbelastung, zeigen, daß die Art durch eine große Biomasseproduktion bei vergleichsweise niedrigen Schwermetallkonzentrationen der Cadmiumreinigungsleistung von Hyperakkumulatoren durchaus überlegen sind. Die Bleidekontamination war hingegen vergleichsweise gering und die EDTA-Behandlung für die Zinkreinigung nicht förderlich. Der Vorteil der Maispflanze für Remediationszwecke ist hier auch in der Durchwurzelungstiefe zu sehen, die die Reinigung eines größeren Teils des Bodenprofils ermöglicht als bei meist kleinwüchsigen Hyperakkumulatoren mit weniger tiefreichendem Wurzelwerk. Der Mais erfüllt die in diesem Zusammenhang von einigen Autoren genannten Bedingungen für eine Anwendung im Großmaßstab. Die Pflanze entwickelt eine große oberirdisch erntbare Biomasse von mindestens 20 t je Hektar und ist als Kulturpflanze für agrikulturelle

Zur Abschätzung des Zeit- und Kostenrahmens der Phytoextraktion von Cadmium durch EDTA-behandelten Mais soll nachfolgend auf der Grundlage der im Rahmen dieser Arbeit gewonnenen Erkenntnisse eine Kalkulation mit den bereits bekannten Eigenschaften dieser Methode durchgeführt werden. Es wurde folgende Bedingungen angenommen:

(1) Der Ackerboden hat einer Lagerungsdichte von 1,3 g/ cm³
(2) Die Cadmiumbelastung reicht bis in eine Tiefe von 50 cm
(3) Die Cadmiumkonzentration nimmt von oben nach unten gleichmäßig ab
(4) Der Cadmiumgesamtgehalt im Oberboden liegt im Bereich häufig auftretender Belastungen zwischen 5 und 25 ppm
(5) Die Biomasseproduktion der Maispflanzen entspricht bei evtl. Düngemaßnahmen mindestens 4,7 kg/ m² (= Freilandexperiment im Jahr 2000)

(7) Die Cadmiumaufnahme (Basis und EDTA-induziert) wurde auf die geringere Biomasse nach 90 Tage Standzeit bezogen.

(8) Die Behandlung wird mit 0,1 mmol EDTA/ kg Erde durchgeführt (1 Behandlung = 650 kg/ m² x 0,1 mmol EDTA/ kg = 65 mmol EDTA/ m² = 19 g EDTA/ m²).

(9) Es finden zwei Ernten der Sprosse und Wurzeln jährlich statt.

(10) Das Reinigungsziel ist der Vorsorgewert von 1 ppm Cd im Oberboden (= 381 mg Restbelastung/ m²).

(11) Der EDTA-Preis je kg beträgt 18,40 €, MW = 292,25 g/ mol.

Abbildung 88: Zusammenhang der Cadmiumaufnahme (Mittelwert) der Kontrollpflanzen mit der Gesamtcadmiummenge pro m² bis in 50 cm Tiefe. Die Cadmiumaufnahme vor EDTA-Behandlung für die Kalkulation wurde nach der o.g. Gleichung berechnet. SM = Schwermetall.

Tabelle 44: Gesamtcadmiumkonzentration/ m², standortbezogene Basisaufnahme und EDTA-induzierte Additivaufnahme bei einem Cadmiumgesamtgehalt von 10 ppm im Oberboden. Das Reinigungsziel ist der Vorsorgewert von 1 ppm Cd im Oberboden.

<table>
<thead>
<tr>
<th>Zeit [a]</th>
<th>Kosten (EDTA) [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4,31</td>
</tr>
<tr>
<td>10</td>
<td>8,62</td>
</tr>
<tr>
<td>15</td>
<td>12,38</td>
</tr>
<tr>
<td>20</td>
<td>16,69</td>
</tr>
<tr>
<td>25</td>
<td>19,92</td>
</tr>
<tr>
<td>30</td>
<td>23,69</td>
</tr>
<tr>
<td>50</td>
<td>36,62</td>
</tr>
<tr>
<td>100</td>
<td>63,00</td>
</tr>
<tr>
<td>340</td>
<td>148,08</td>
</tr>
</tbody>
</table>

Tabelle 45: Reinigungszeit und EDTA-Materialkosten bei verschiedenen Cadmiumgesamtgehalten im Oberboden. Das Reinigungsziel ist der Vorsorgewert von 1 ppm Cd im Oberboden.

Der von HUANG et al. (1997) für eine Reinigung postulierte Zeitraum von drei bis 20 Jahren kann also nur bis zu einer bestimmten Oberbodenkonzentration bzw. im Boden befindlichen Gesamtmenge geleistet werden (Tabelle 45). Im vorliegenden Berechnungsbeispiel, welches

Der untersuchte chelatgestützte Phytoextraktionsansatz bietet also eine ökologisch verträgliche Methode an, um cadmiumbelastete Standorte mit einer Oberbodenkonzentration bis zu 25 ppm innerhalb eines Zeitraums von bis zu 20 Jahren bei geringen Materialkosten zu reinigen.

5.1.1 Anwendungsempfehlung

5.2 Standortbezogene Bewertung

6 ZUSAMMENFASSUNG

Z. mays und *C. cyanus* zeigten bei Konzentrationen zwischen 0 und 1800 ppm Blei sowie 0 bis 54 ppm Cadmium keine der Konzentration entsprechend reduzierte Keimungsrate. Bei *A. majus* war diese ab 600 ppm Pb und 18 ppm Cd deutlich vermindert. Die Längen von Keimwurzel und Keimblatt erwiesen sich bei den Keimlingen von *Z. mays* und *C. cyanus* stärker blei- als cadmiumsensitiv. Die Elongation der Keimblätter war weniger empfindlicher als die der Keimwurzeln, welche bei beiden Arten ab 900 ppm Pb und ab 18 ppm Cd mit deutlichen Längenreduktionen reagierten.

Die Konzentrationen, bei denen die Keimwurzellänge noch der der Hälfte der Kontrollpflanzen entsprach, wurden als mittlerer Belastungsbereich für anschließende Kulturversuche herangezogen. Das Kultursubstrat bestand aus Quarzsand und einem als Dünger fungierenden Ionenaustauscher. Neben einem schwermetallfreien Kontrollansatz wurden 500 und 1000 ppm Blei oder 20 und 40 ppm Cadmium einzeln und kombiniert an diesen Ionenaustauscher gebunden zugegeben. Das Substratgemisch erwies sich im Bezug auf die definierte Höhe der Schwermetallbelastung und die Nährstoffversorgung nicht als optimal.

Parallel wurden die sieben Versuchspflanzen in Mono- und Mischkultur auf natürlichem Boden-Substrat von einer schwermetallbelasteten Ackerfläche ausgesät (pflanzenverfügbar 106 bis 675 ppm Pb, 9,7 bis 33,2 ppm Cd, 40,6 bis 52,9 ppm Zn).

Bezogen auf die anfänglichen pflanzenverfügbaren Blei- und Cadmiummengen nahmen alle Pflanzen aus den Sandkulturen deutlich weniger als 1 % pro Kulturgefäß auf. Die *C. cyanus*- und *P. rhoeas*-Monokulturen konnten hingegen aus dem natürlichen Substrat durchschnittlich 5,3 % und 3,3 % Zink und die *C. cyanus*-Monokultur knapp 1% der pflanzenverfügbaren Blei- und Cadmiummenge aufnehmen. Da die potentiell möglichen Biomassen deutlich größer wären, kann unter Freilandbedingungen eine größere Schwermetallaufnahme erwartet werden. Eine Aussaat in Mischkultur im Freiland schien sinnvoll, um die verschiedenen schwermetallentziehenden Eigenschaften der Pflanzen zu kombinieren.

Durch die Chelatoren wurden mehr Schwermetalle mobilisiert, als die Pflanzen aufnehmen konnten. Die pflanzenverfügbaren Schwermetallkonzentrationen, besonders von Zink und infolge der DTPA-, EDTA- und EGTA-Behandlung, waren nach Ernte deutlich höher als vor Aussaat der Pflanzen. Aufgrund der zu hoch konzentrierten Chelatbehandlungen konnte unter Einbeziehung der mobilisierten und der durch die Pflanzen aufgenommenen
ZUSAMMENFASSUNG

Schwermetallmenge jedoch eine Formel zur Abschätzung einer sinnvollen Chelatkonzentration erstellt werden. Da CDTA, DTPA und EGTA um ein Vielfaches teurer sind als EDTA und Citrat, die Effizienz der durch sie erreichten Bodenreinigung aber nicht signifikant größer ist, kommen sie für die chelatgestützte Phytoremediation des Versuchssubstrats nicht in Frage. EDTA ist bei gleichem Materialpreis der Vorzug gegenüber Citrat zu geben, da es als einziger Chelatbildner die oberirdische Biomasse der Mischkultur signifikant über den Wert der Kontrolle hob.

In einem Freilandexperiment zur chelatgestützten Phytoremediation wurde sodann auf der Ackerfläche eine Mischkultur aus *A. majus, C. album, C. cyanus, P. rhoeas* und *Z. mays* ausgesät. Die Anwendung von EDTA überlebte nur *Z. mays* in allen verabreichten Konzentrationen (1 bis 10 mmol/kg Substrat). Da bereits die niedrigste verwendete Chelatkonzentration zu einer starken vertikalen Verlagerung der Schwermetallbelastung führte und die Pflanzen nur einen Teil der mobilisierten Schwermetalle aufnahmen, wurde im Folgejahr eine Mais-Monokultur mit geringeren EDTA-Konzentrationen (0,1 bis 0,5 mmol/kg Erde) behandelt. Aufgrund einer Sanierungsmaßnahme auf dem Gelände mußte dabei im Jahr 2000 ein anderes Flächenstück untersucht werden. Auf beiden Arealen war die Cadmiumbelastung extrem hoch (bis 120 und bis 360 ppm im Oberboden), die Blei- und Zinkbelastung moderat. Die mit 1- (1999) und die 0,1 mmol EDTA/kg Substrat (2000) behandelten Maispflanzen entwickelten die größte Biomasse (5,2 und 4,7 kg TG/m²). Da die Schwermetallkonzentrationen der Wurzeln mehr als ein Maximum aufwiesen, kommen für die Aufnahme von Schwermetall-Chelatkomplexen mindestens zwei Mechanismen in Frage. Die in beiden Jahren gemessenen Blei- und Cadmiumkonzentrationen der Maispflanzen waren im Vergleich mit den in anderen Untersuchungen erzielten Werten gering. Aufgrund der großen Biomasse von Mais wurde jedoch bei den mit 0,1 mmol EDTA/kg Erde
behandelten Maispflanzen mit 3,6 kg (Sprosse) bzw. 5,3 kg Cd (Gesamtpflanze) je Hektar und Vegetationsperiode eine mit Hyperakkumulatoren vergleichbare Cadmiumaufnahme gemessen. Die EDTA-Behandlung erhöhte jedoch lediglich die Schwermetallkonzentrationen, Sproßtranslokation und Xylemmobilität wurde im Gegensatz zu anderen Studien nicht gesteigert. Die Maispflanzen hatten unabhängig von der Chelatbehandlung einen stark defizitären Mineralstoffhaushalt, welcher als Resultat einer durch Cadmium behinderten Aufnahme und Weiterleitung von Nähr-Elementen betrachtet werden kann.

Eine Entfernung der Cadmiumbelastung des untersuchten Ackers durch die chelatgestützte Phytoextraktion wäre nur auf einem gering belasteten Teilareal möglich. Der größte Teil der Fläche ist so stark belastet, daß eine Reinigung mit der hier diskutierten Methode über 100 Jahre dauern würde. Als Sanierungsmaßnahme ist aufgrund der problematisch hohen Cadmiumkonzentration und vor allem aufgrund der starken Mobilität und Verlagerungstendenz der Schwermetalle zum Ausschluß einer Umweltgefährdung eine bereits früher empfohlene Entfernung und Sicherung des Erdreichs über dem Grundwasserspiegel zu empfehlen.

Die hier diskutierte Methode der chelatgestützten Phytoextraktion mit Maispflanzen stellt im Vergleich mit gängigen thermischen und chemischen Methoden zur Schwermetalldekontamination eine ökologisch sinnvolle, kostengünstige Alternative dar, die für die Reinigung cadmiumbelasteter Böden bis 25 ppm Gesamtgehalt im Oberboden während eines überschaubaren Zeitrahmens von bis zu 20 Jahren bei geringen Materialkosten von 20 € je Tonne Erdreich realisierbar ist.
7 ANHANG

7.1 ABKÜRZUNGEN

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>Atom-Absorptions-Spektrometer</td>
</tr>
<tr>
<td>A. bidest.</td>
<td>Aqua bidest.</td>
</tr>
<tr>
<td>A. demin.</td>
<td>Aqua demin.</td>
</tr>
<tr>
<td>CDTA</td>
<td>Trans-1,2-Diaminocyclohexan-N,N,N’,N’-tetraessigsäure</td>
</tr>
<tr>
<td>DTPA</td>
<td>Diethylentriaminpentaessigsäure</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenbis(oxyethylennitrilo)tetraessigsäure</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethylenbis(oxyethylennitrilo)tetraessigsäure</td>
</tr>
<tr>
<td>Fam.</td>
<td>Familie</td>
</tr>
<tr>
<td>HHU</td>
<td>Heinrich-Heine-Universität</td>
</tr>
<tr>
<td>Max.</td>
<td>Maximalgewicht</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>n</td>
<td>Stichprobenumfang</td>
</tr>
<tr>
<td>Nr.</td>
<td>Nummer</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylen</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>TG</td>
<td>Trockengewicht</td>
</tr>
</tbody>
</table>
7.2 Nährstoffionen in den Kulturmedien

<table>
<thead>
<tr>
<th>Untersuchung</th>
<th>A. majus, C. cyanus, P. rhoeas, T. arvense, Z. mays (4.2)</th>
<th>C. album (4.2)</th>
<th>Sand (4.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW</td>
<td>SD</td>
<td>MW</td>
</tr>
<tr>
<td>pH(H₂O)</td>
<td>7,2</td>
<td>0,0</td>
<td>6,6</td>
</tr>
<tr>
<td>Dichte [g/ ml]</td>
<td>1,2</td>
<td>0,0</td>
<td>1,2</td>
</tr>
<tr>
<td>Feinerde-Anteil [%]</td>
<td>58,5</td>
<td>1,9</td>
<td>55,3</td>
</tr>
<tr>
<td>NH₄⁺ [ppm]</td>
<td>0,11</td>
<td>0,15</td>
<td>0,35</td>
</tr>
<tr>
<td>NO₃⁻ [ppm]</td>
<td>498</td>
<td>106</td>
<td>250</td>
</tr>
<tr>
<td>P₂O₅ [ppm]</td>
<td>263</td>
<td>21</td>
<td>331</td>
</tr>
<tr>
<td>K [ppm]</td>
<td>668</td>
<td>500</td>
<td>482</td>
</tr>
<tr>
<td>Ca [ppm]</td>
<td>183</td>
<td>48</td>
<td>256</td>
</tr>
<tr>
<td>Mg [ppm]</td>
<td>340</td>
<td>24</td>
<td>385</td>
</tr>
<tr>
<td>Pb [ppm]</td>
<td>4,2</td>
<td>4,1</td>
<td>0,8</td>
</tr>
<tr>
<td>Cd [ppm]</td>
<td>0,0</td>
<td>0,1</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Untersuchung</th>
<th>Erdkultur 1998 (4.3)</th>
<th>Erdkultur/ Chelatversuch 1999 (4.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW</td>
<td>SD</td>
</tr>
<tr>
<td>pH(H₂O) (0 - 10 cm Tiefe)</td>
<td>6,5</td>
<td>0,5</td>
</tr>
<tr>
<td>pH(H₂O) (40 - 50 cm Tiefe)</td>
<td>1,4</td>
<td>0,3</td>
</tr>
<tr>
<td>Dichte [g/ ml]</td>
<td>69,5</td>
<td>8,9</td>
</tr>
<tr>
<td>Feinerde-Anteil [%]</td>
<td>0,55</td>
<td>0,12</td>
</tr>
<tr>
<td>NH₄⁺ [ppm]</td>
<td>326</td>
<td>86</td>
</tr>
<tr>
<td>NO₃⁻ [ppm]</td>
<td>279</td>
<td>59</td>
</tr>
<tr>
<td>K [ppm]</td>
<td>712</td>
<td>51</td>
</tr>
<tr>
<td>Ca [ppm]</td>
<td>241</td>
<td>77</td>
</tr>
<tr>
<td>Mg [ppm]</td>
<td>451</td>
<td>158</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Untersuchung</th>
<th>Freiland 1999 (4.6) und Symphytum-Experiment (4.5)</th>
<th>Freiland 2000 (4.7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW</td>
<td>SD</td>
</tr>
<tr>
<td>pH(H₂O) (0 - 10 cm Tiefe)</td>
<td>6,1 - 6,4</td>
<td>6,3 - 6,6</td>
</tr>
<tr>
<td>pH(H₂O) (40 - 50 cm Tiefe)</td>
<td>6,7 - 6,9</td>
<td>6,6 - 6,8</td>
</tr>
<tr>
<td>Dichte [g/ ml]</td>
<td>1,3</td>
<td>0,2</td>
</tr>
<tr>
<td>Feinerde-Anteil [%]</td>
<td>59,3</td>
<td>10,1</td>
</tr>
<tr>
<td>NH₄⁺ [ppm]</td>
<td>0,62</td>
<td>0,07</td>
</tr>
<tr>
<td>NO₃⁻ [ppm]</td>
<td>423</td>
<td>95</td>
</tr>
<tr>
<td>P₂O₅ [ppm]</td>
<td>552</td>
<td>85</td>
</tr>
<tr>
<td>K [ppm]</td>
<td>725</td>
<td>228</td>
</tr>
<tr>
<td>Ca [ppm]</td>
<td>328</td>
<td>102</td>
</tr>
<tr>
<td>Mg [ppm]</td>
<td>467</td>
<td>131</td>
</tr>
</tbody>
</table>

7.3 ABBILDUNGSVERZEICHNIS

Abbildung 1: Belastungspfade und Wirkungswege von Schwermetallen in der Umwelt. 6
Abbildung 2: Kontinuierliches (a) und chelatgestütztes (b) Phytoextraktionsverfahren. 10
Abbildung 3: Struktur eines Metallchelats der Ethylendiamintetraessigsäure (EDTA). 11
Abbildung 4: *Antirrhinum majus* L., Großes Löwenmaul (links) und *Centaurea cyanus* L., Kornblume (rechts). 13
Abbildung 7: *Zea mays* L., Mais. 15
Abbildung 8: Übersicht der schwermetallbelasteten Fläche in Hagen-Vorhalle. 27
Abbildung 9: Schema der Versuchsflächen. 29
Abbildung 10: Abgestecktes, gerodetes Versuchsareal (links) und durch Schutznetze gesicherte Teilfläche I, II und III (rechts, von oben nach unten) nach Aussaat der Pflanzen. 30
Abbildung 11: Entnahme von Profilsegmenten auf der Versuchsfläche in Hagen (links) und in PE-Rohren aufgenommene Profilsegmente während des Elutionsversuchs (rechts). 41
Abbildung 12: Prozentualer Anteil aufgelaufener Samen von *A. majus*, *C. cyanus* und *Z. mays* bei acht verschiedenen Bleikonzentrationen nach null bis sieben Tagen. 45
Abbildung 13: Prozentualer Anteil aufgelaufener Samen von *A. majus*, *C. cyanus* und *Z. mays* bei acht verschiedenen Cadmiumkonzentrationen nach null bis sieben Tagen. 46
Abbildung 14: Längen von Keimwurzel und Keimblatt von *C. cyanus* und *Z. mays* nach sieben und sechs Tagen bei acht verschiedenen Blei- und Cadmiumkonzentrationen. 48
Abbildung 15: Prozentuale Überlebensrate von *A. majus*, *C. cyanus*, *C. album* und *Z. mays* in den schwermetallbelasteten Sand-Lewatit-Kulturen zum Erntezeitpunkt. 54
Abbildung 16: Wurzel- und Sproßbiomasse von *A. majus*, *C. cyanus*, *C. album* und *Z. mays* in den schwermetallbelasteten Sand-Lewatit-Kulturen zum Erntezeitpunkt. 56
Abbildung 17: Bleigehalte in Wurzel und Sproß von *A. majus*, *C. cyanus*, *C. album* und *Z. mays* in den schwermetallbelasteten Sand-Lewatit-Kulturen zum Erntezeitpunkt. 58
Abbildung 18: Cadmiumgehalte in Wurzel und Sproß von *A. majus*, *C. cyanus*, *C. album* und *Z. mays* in den schwermetallbelasteten Sand-Lewatit-Kulturen zum Erntezeitpunkt. 59
Abbildung 19: Kaliumgehalte in Wurzel und Sproß von *A. majus*, *C. cyanus*, *C. album* und *Z. mays* in den schwermetallbelasteten Sand-Lewatit-Kulturen zum Erntezeitpunkt. 62
Abbildung 20: Calciumgehalte in Wurzel und Sproß von *A. majus*, *C. cyanus*, *C. album* und *Z. mays* in den schwermetallbelasteten Sand-Lewatit-Kulturen zum Erntezeitpunkt. 63
Abbildung 21: Magnesiumgehalte in Wurzel und Sproß von *A. majus*, *C. cyanus*, *C. album* und *Z. mays* in den schwermetallbelasteten Sand-Lewatit-Kulturen zum Erntezeitpunkt. .. 64
Abbildung 23: Zinkgehalte in Wurzel und Sproß von *A. majus*, *C. cyanus*, *C. album* und *Z. mays* in den schwermetallbelasteten Sand-Lewatit-Kulturen zum Erntezeitpunkt............ 68
Abbildung 25: Phosphatgehalte in Wurzel und Sproß von *A. majus*, *C. cyanus*, *C. album* und *Z. mays* in den schwermetallbelasteten Sand-Lewatit-Kulturen zum Erntezeitpunkt. 70
Abbildung 26: Pflanzenverfügbare Schwermetallgehalte (a) in den schwermetallbelasteten Sand-Lewatit-Kulturen vor Bepflanzen und nach Ernte der Pflanzen sowie relative Veränderung der Schwermetallgehalte (b). ... 72
Abbildung 27: Bleiaufnahme pro Individuum aus den schwermetallbelasteten Sand-Lewatit-Kulturen zum Zeitpunkt der Ernte von *A. majus*, *C. cyanus*, *C. album* und *Z. mays*. 75
Abbildung 28: Prozentuale Bleiaufnahme von *A. majus*, *C. cyanus*, *C. album* und *Z. mays* pro Kulturgefäβ aus den schwermetallbelasteten Sand-Lewatit-Kulturen zum Zeitpunkt der Ernte. ... 76
Abbildung 29: Cadmiumaufnahme pro Individuum aus den schwermetallbelasteten Sand-Lewatit-Kulturen zum Zeitpunkt der Ernte von *A. majus*, *C. cyanus*, *C. album* und *Z. mays*. ... 78
Abbildung 31: Biomasse zum Erntezeitpunkt der Wurzeln und Sprossen von *A. majus* (*A. m.*), *C. cyanus* (*C. c.*), *C. album* (*C. a.*), *P. rhoeas* (*P. r.*), *V. arvensis* (*V. a.*) und *Z. mays* (*Z. m.*) in Mono- und Mischkultur auf schwermetallhaltigem Ackerboden. 100
Abbildung 32: Biomasse der Wurzeln und Sprossen von *A. majus* (*A. m.*), *C. cyanus* (*C. c.*), *C. album* (*C. a.*), *P. rhoeas* (*P. r.*), *V. arvensis* (*V. a.*) und *Z. mays* (*Z. m.*) pro Pflanze in Mono- und Mischkultur zum Erntezeitpunkt. .. 101
Abbildung 33: Schwermetallgehalte von A. majus (A. m.), C. cyanus (C. c.), C. album (C. a.), P. rhoeas (P. r.), V. arvensis (V. a.) und Z. mays (Z. m.) in Mono- und Mischkultur zum Erntezeitpunkt

Abbildung 34: Ionengehalte von A. majus (A. m.), C. cyanus (C. c.), C. album (C. a.), P. rhoeas (P. r.), V. arvensis (V. a.) und Z. mays (Z. m.) in Mono- und Mischkultur zum Erntezeitpunkt

Abbildung 35: Absolute pflanzenverfügbare Schwermetallgehalte (links) vor Aussaat (unterbrochene Begrenzungslinie) und nach Ernte (durchgezogene Begrenzungslinie) sowie ihre relative Veränderung nach Ernte von A. majus (A. m.), C. cyanus (C. c.), C. album (C. a.), P. rhoeas (P. r.), V. arvensis (V. a.) und Z. mays (Z. m.) in Mono- und Mischkultur

Abbildung 36: Schwermetallaufnahme nach Ernte von A. majus (A. m.), C. cyanus (C. c.), C. album (C. a.), P. rhoeas (P. r.), V. arvensis (V. a.) und Z. mays (Z. m.) in Mono- und Mischkultur

Abbildung 37: Absolute und relative Schwermetallaufnahme pro Kulturgefäß nach Ernte von A. majus (A. m.), C. cyanus (C. c.), C. album (C. a.), P. rhoeas (P. r.), V. arvensis (V. a.) und Z. mays (Z. m.) in Mono- und Mischkultur

Abbildung 38: Absolute Abnahme der pflanzenverfügbaren Schwermetallmenge und relativer Anteil der Pflanzen (unbepflanzte Kontrollgefäße = Ko., A. majus = A. m., C. cyanus = C. c., C. album = C. a., P. rhoeas = P. r., Mischkultur = M.)

Abbildung 39: Relativer Anteil der Individuen von A. majus, C. cyanus, C. album und Z. mays an der Gesamtpopulation zum Erntezeitpunkt

Abbildung 40: Sproßbiomasse (a) und nach Pflanzenart (A. majus, C. cyanus, C. album, Z. mays) differenzierte Sproßbiomasse pro Topf (b) sowie individuelle Biomasse je Sproß (c)

Abbildung 41: Prozentualer Wasseranteil vom Frischgewicht zum Erntezeitpunkt von A. majus, C. cyanus, C. album, Z. mays

Abbildung 42: Schwermetallgehalte der Sprosse von A. majus, C. cyanus, C. album und Z. mays vor und nach Behandlung mit verschiedenen Chelatoren (c = 10 mmol/ kg Erde)

Abbildung 43: Kalium-, Calcium- und Magnesiumgehalte der Sprosse von A. majus, C. cyanus, C. album und Z. mays vor und nach Behandlung mit verschiedenen Chelatoren (c = 10 mmol/ kg Erde)
Abbildung 44: Eisen-, Mangan- und Phosphatgehalte der Sprosse von *A. majus*, *C. cyanus*, *C. album* und *Z. mays* vor und nach Behandlung mit verschiedenen Chelatoren (c = 10 mmol/kg Erde). ... 137

Abbildung 45: Absolute pflanzenverfügbare Schwermetallgehalte vor Aussaat (unterbrochene Begrenzungslinie) und nach Ernte (durchgezogene Begrenzungslinie) einer Mischkultur aus *A. majus*, *C. cyanus*, *C. album* und *Z. mays* sowie ihre relative Veränderung nach Ernte .. 140

Abbildung 46: Schwermetallaufnahme pro Sproß nach Ernte von *A. majus*, *C. cyanus*, *C. album* und *Z. mays* in Mischkultur .. 143

Abbildung 47: Oberirdische Schwermetallaufnahme von *A. majus*, *C. cyanus*, *C. album* und *Z. mays* pro Mischkulturgefäβ differenziert nach den Pflanzen und relativ bezogen auf den pflanzenverfügbaren Ausgangsgehalt ... 144

Abbildung 48: Schwermetallbelastete Ackerfläche im Frühjahr 1999 (links). 163

Abbildung 49: Biomasse der ober- und unterirdischen Pflanzenorgane von *S. officinale*; Kontrolle und EDTA-Behandlung (c = 10 mmol/kg Erde) .. 164

Abbildung 50: Veränderung des Schwermetallgehaltes im Sproß EDTA-behandelter im Vergleich mit unbehandelten *S. officinale*-Pflanzen über einen Beobachtungszeitraum von 36 Tagen (n = 2) ... 165

Abbildung 51: Flächenbezogene Schwermetallaufnahme der EDTA-behandelten und der *S. officinale*-Kontrollpflanzen am Erntetag .. 168

Abbildung 52: Prozentuale Schwermetallaufnahme der Gesamtpflanzen der EDTA-behandelten und der *S. officinale*-Kontrollpflanzen am Erntetag bezogen auf den Bodenausgangsgehalt pro m² .. 169

Abbildung 53: Maispflanzen auf der Versuchsfläche B (Abbildung 8) unmittelbar vor der Behandlung mit EDTA .. 174

Abbildung 54: Biomasse der Pflanzenorgane von Mais pro Individuum vor und nach den EDTA-Behandlungen sowie flächenbezogen bei Ernte .. 176

Abbildung 55: Wassergehalt der Pflanzenorgane vor Behandlung der Maispflanzen und zum Erntezeitpunkt ... 177

Abbildung 56: Schwermetallgehalte in den Pflanzenorganen von *Z. mays* 179

Abbildung 57: Kalium-, Calcium- und Magnesiumgehalte in den Pflanzenorganen von *Z. mays* .. 184

Abbildung 58: Eisen-, Mangan- und Phosphatgehalte in den Pflanzenorganen von *Z. mays* 185

278
Abbildung 59: Gesamtleigehalte und pflanzenverfügbare Fraktion im Profilsegment zwischen 0 bis 10 und 40 bis 50 cm des Bodens vor Bepflanzen und nach Ernte (1999).

Abbildung 60: Gesamtcadmiumgehalte und pflanzenverfügbare Fraktion im Profilsegment zwischen 0 und 10 und 40 bis 50 cm des Bodens vor Bepflanzen und nach Ernte (1999).

Abbildung 61: Gesamtzinkgehalte und pflanzenverfügbare Fraktion im Profilsegment zwischen 0 bis 10 und 40 bis 50 cm des Bodens vor Bepflanzen und nach Ernte (1999).

Abbildung 62: Extrapolierte pflanzenverfügbare und Gesamtgehalte von Blei, Cadmium und Zink pro m² bis zu einer Bodentiefe von 50 cm vor Aussaat und nach Ernte (1999).

Abbildung 63: Relative Veränderung der pflanzenverfügbaren und Gesamtgehalte in 0 bis 10 cm und 40 bis 50 cm Tiefe bezogen auf die Konzentration vor Aussaat nach den unterschiedlichen EDTA-Behandlungen (1999).

Abbildung 64: Relativer Anteil der pflanzenverfügbaren Fraktion am Gesamtgehalt der Schwermetalle vor Aussaat und nach Ernte der Pflanzen (1999).

Abbildung 65: Schwermetallaufnahme pro Maispflanze zum Erntezeitpunkt.

Abbildung 66: Schwermetallaufnahme der Maispflanzen pro m² differenziert nach den Pflanzenorganen.

Abbildung 67: Relativer Anteil der aufgenommenen Schwermetalle vom Gesamtgehalt und der pflanzenverfügbaren Fraktion.

Abbildung 68: Anteil der Pflanzen am Verlust der pflanzenverfügbaren und Gesamtschwermetallmenge pro m².

Abbildung 74: Gesamtleigehalte und pflanzenverfügbare Fraktion im Profilsegment zwischen 0 bis 10 und 40 bis 50 cm des Bodens vor Bepflanzen und nach Ernte (2000).
Abbildung 75: Gesamtcadmiumgehalte und pflanzenverfügbare Fraktion im Profilsegment zwischen 0 bis 10 und 40 bis 50 cm des Bodens vor Bepflanzen und nach Ernte (2000). ... 217

Abbildung 76: Gesamtzinkgehalte und pflanzenverfügbare Fraktion im Profilsegment zwischen 0 bis 10 und 40 bis 50 cm des Bodens vor Bepflanzen und nach Ernte (2000). ... 218

Abbildung 77: Extrapolierte pflanzenverfügbare und Gesamtgehalte von Blei, Cadmium und Zink pro m² bis zu einer Bodentiefe von 50 cm vor Aussaat und nach Ernte (2000) .. 220

Abbildung 78: Relative Veränderung der pflanzenverfügbaren und Gesamtgehalte in 0 bis 10 und 40 bis 50 cm Tiefe bezogen auf die Konzentration vor Aussaat nach den unterschiedlichen EDTA-Behandlungen (2000) ... 221

Abbildung 79: Relativer Anteil der pflanzenverfügbaren Fraktion am Gesamtgehalt der Schwermetalle vor Aussaat und nach Ernte der Pflanzen (2000) .. 223

Abbildung 80: Schwermetallaufnahme pro Maispflanze zum Erntezeitpunkt. .. 225

Abbildung 81: Schwermetallaufnahme der Maispflanzen pro m² differenziert nach den Pflanzenorganen .. 226

Abbildung 82: Relativer Anteil der aufgenommenen Schwermetalle vom Gesamtgehalt und der pflanzenverfügbaren Fraktion .. 227

Abbildung 83: Anteil der Pflanzen am Verlust der pflanzenverfügbaren und Gesamtschwermetallmenge pro m² .. 228

Abbildung 85: Simulierte monatliche Auswaschung von Blei, Cadmium, Zink und EDTA aus den Bodensäulen .. 256

Abbildung 86: Über den Beobachtungszeitraum ausgewaschene Gesamtmengen von EDTA, Blei, Cadmium und Zink differenziert nach den monatlichen Anteilen .. 257

Abbildung 87: Zusammenhang der ausgewaschene Gesamtmengen mit der zugegebenen EDTA-Menge .. 258

Abbildung 88: Zusammenhang der Cadmiumaufnahme (Mittelwert) der Kontrollpflanzen mit der Gesamtcadmiummenge pro m² bis in 50 cm Tiefe .. 265
7.4 TABELLENVERZEICHNIS

Tabelle 1: Pflanzenverfügbare Schwermetallgehalte cadmium- und bleibehandelter Lewatitportionen (n=5) .. 18
Tabelle 2: Behandlungsgruppen der Sand-Lewatit-Versuche. .. 20
Tabelle 3: Aufteilung der Versuchsgänge. .. 23
Tabelle 4: Behandlung der Mischkulturen. .. 24
Tabelle 5: Langjähriges Niederschlagsmittel in Hagen-Fley (NITZSCHKE et al. 2000) und aufgetragenes Wasservolumen (Ø = 50 mm, A = 1962,5 mm²). .. 41
Tabelle 6: Mittlere relative Wurzel- und Sproßlänge von Z. mays und C. cyanus in % der Mittelwerte der Kontrolle. .. 49
Tabelle 9a: Schwermetallgehalte verschiedener Pflanzen unterschiedlich belasteter Standorte. .. 85
Tabelle 9b: Schwermetallgehalte verschiedener Pflanzen unterschiedlich belasteter Standorte. .. 86
Tabelle 9c: Schwermetallgehalte verschiedener Pflanzen unterschiedlich belasteter Standorte. .. 87
Tabelle 13: Quotient aus Schwiermetallkonzentration in Pflanze und Boden (pflanzenverfügbar). .. 119
Tabelle 14: Absolute Veränderung der Schwermetallgehalte im Sproß von A. majus, Z. mays und C. cyanus bezogen auf den Ausgangsgehalt vor der Chelatbehandlung. 133
Tabelle 15: Absolute Veränderung der Ionengehalte im Sproß von A. majus, Z. mays und C. cyanus bezogen auf den Ausgangsgehalt vor der Chelatbehandlung. 135

281
Tabelle 16: Korrelationen der Ionengehalte in den Wurzeln und Sprossen von *A. majus*, *C. cyanus*, *C. album* und *Z. mays* in Mischkultur in schwermetallbelasteter Erde zum Erntezeitpunkt.

Tabelle 17: Prozentualer Anteil der oberirdischen Pflanzenteile am Verlust der pflanzenverfügbaren Schwermetalle des Kultursubstrats.

Tabelle 20: Prozentuale Veränderung der Ionengehalte bezogen auf die Konzentration vor der Chelatbehandlung.

Tabelle 21: Berechnung der maximal einzusetzenden Chelatmenge.

Tabelle 22: Schwermetallkonzentrationen am Versuchsstandort.

Tabelle 24: Korrelationen der Schwermetalle untereinander und mit den Nährstoffionen bei *S. officinale*.

Tabelle 25: Hypothetische Reinigungszeit bei jährlich zweimaliger Ernte von *S. officinale*.

Tabelle 26: Mittelwerte der absoluten Veränderungen der Schwermetallgehalte.

Tabelle 27: Schwermetallgehalte der übrigen gewachsenen Pflanzen.

Tabelle 28: Mittelwerte der absoluten Veränderungen der Ionengehalte.

Tabelle 29: Korrelationen der Ionengehalte in den Pflanzenorganen von *Z. mays* in Mischkultur.

Tabelle 33: Schwermetallkonzentrationen zu Beginn der Freilandexperimente 1999 (Fläche B) und 2000 (Fläche D, Abbildung 8).

Tabelle 34: Schwermetallgehalte verschiedener belasteter Böden.

Tabelle 35: Individuelle und flächenbezogene Biomasse (TG) der Maispflanzen zum Erntezeitpunkt auf den Untersuchungsflächen B und D (Abbildung 8).

Tabelle 36: Blei- und Cadmiumgehalte in Wurzel und Sproß verschiedener Pflanzen bei chelatgestützten Phytoextraktionsversuchen.

Tabelle 38: Quotient der Schwermetallkonzentrationen von Stengel und Wurzel als Maß für die Translokation in die oberirdischen Pflanzenteile. ...238
Tabelle 39: Schwermetallaufnahme der Maispflanzen 1999 und 2000.244
Tabelle 40: Schwermetallaufnahme von Pflanzen bei Phytoextraktionsversuchen245
Tabelle 41: Prozentualer Schwermetallentzug von der Gesamtschwermetallfraktion und der pflanzenverfügbaren Fraktion ...246
Tabelle 42: Reinigungszeit für das Erreichen der Vorsorgewertes und zur Entfernung der pflanzenverfügbaren Schwermetallfraktion in den oberen 50 cm des Bodenprofils bei ein- und zweimaliger Ernte jährlich. ...247
Tabelle 43: Berechnung der theoretisch geeigneten Chelatkonzentration für das Freilandexperiment im Jahr 2000..253
Tabelle 44: Gesamtcadmiumkonzentration/ m², standortbezogene Basisaufnahme und EDTA-induzierte Additivaufnahme bei einem Cadmiumgesamtgehalt von 10 ppm im Oberboden. ..266
Tabelle 45: ..266
Tabelle 48: Kultursubstrat der Freilandexperimente 1999 und 2000274
8 LITERATURVERZEICHNIS

AHLBERG, J., RAMAH, C., WACHTMEISTER, C.A. 1972:
Organ lead compounds shown to be genetically active.
Ambio. 1: 29-31

ALDAG, R. 1997:
Possibilities of agricultural management practice for reduction on transfer of heavy metals and organic pollutants from contaminated soils to plants.
Plant impact at contaminated sites, International Workshop, abstracts of presentation.

ALDER, A.C., SIEGRIST, H. GUJER, W., GIGER, W. 1990:
Behaviour of NTA and EDTA in biological waste water treatment.
Water Res. 24: 733-742

AMBERGER, A. 1996:
Pflanzenernährung, 4. Aufl.
Ulmer (Stuttgart)

AMBLER, J.E., BROWN, J.C., GAUCH, H.G. 1970:
Effect of zinc on translocation of iron in soybean plants.
Plant Physiol. 46: 320-323

ATHALYE, V. V., RAMACHANDRAN, V., D`SOUZA, T.J. 1995:
Influence of chelating agents on plant uptake of 51Cr, 210Pb and 210Po.
Environ. Pollut. 89: 47-53

BAHADIR, M., PARLAR, H., SPITELLER, M. 1995:
Springer Umweltlexikon.
Springer (Berlin, Heidelberg)

BAKER, A.J.M. 1987:
Metal tolerance.
New Phytop. 106: 93-111

BAKER, A.J.M., REEVES, R.D., MC GRATH, S.P. 1991:
Butterworth-Heinemann (Boston, London)

Ann Arbor Press

BARBER, S.A. 1984:
Soil nutrient bioavailability.
Wiley-Interscience Publications (New York, Chichester, Brisbane, Toronto, Singapore)
LITERATURVERZEICHNIS

BARCELÓ, M., VÁZQUEZ, M., POSCHENRIEDER, C. 1988:
Cadmium-induced structural and ultrastructural changes in the vascular system of bush bean stems.

BAUMEISTER, W. & ERNST, W.H.O. 1978:
Mineralstoffe und Pflanzenwachstum, 3. Aufl.
Fischer (Stuttgart, New York)

BECKETT, P.H.T. & DAVIS, R.D. 1977:
Upper critical levels of toxic elements in plants.
New Phytol. 79: 95-106

BEGONIA, M.F.T., BEGONIA, G.A., BUTLER, M., IGHOAVODHA, O., CRUDUP, B. 2002:
Chelate-assisted phytoextraction of lead from a contaminated soil using wheat (*Triticum aestivum* L.).
Bull. Environ. Contam. Toxicol. 68: 705-711

BERGMANN, W. & NEUBERT, P. 1976:
Pflanzendiagnose und Pflanzenanalyse.
Fischer (Stuttgart, New York)

BLAYLOCK, M.J., SALT, D.E., DUSHENKOV, S., ZAKHARANOVA, O., GUSSMAN, C., KAPULNIK, Y., ENSLEY, B.D., RASKIN, I. 1997:
Enhanced accumulation of Pb in Indian Mustard by soil-applied chelating agents.
Environ. Sci. Technol. 31: 860-865

BOLTON, H., LI, S.W., WORKMAN, D.J., GIRVIN, D.C. 1993:
Biodegradation of synthetic chelates in subsurface sediments from the southeast coastal plane.
J. Environ. Qual. 22: 125-132

BOWEN, J.E. 1969:
Absorption of copper, zinc an manganese by sugarcane leaf tissue.
Plant Physiol. 26: 255-261

BOYD, R.S. & MARTENS, S.N. 1998:
The significance of metal hyperaccumulation for biotic interactions.
Chemoecology 8: 1-7

BRENNAN, M.A. & SHELLEY, M.L. 1999:
A model of uptake, translocation and accumulation of lead (Pb) by maize for the purpose of phytoextraction;

BRIAT, J.F. & LEBRUN, M. 1999:
Plant responses to metal toxicity.
BRIERLEY, G.P. 1977:
Ann Arbor Science

BROWN, K.S. 1995:
The green clean - The emerging field of phytoremediation takes root.
Bioscience 45: 579-582

BROWN, P.H., DUNEMANN, L., SCHULZ, R., MARSCHNER, H. 1989:
Influence of redox potential and plant species on the uptake of Ni and Cd from soils.

BUDDENDIEK, J. 1994:
Untersuchungen zur Vitalität annueller Acker- und Ruderalpflanzen unter erhöhter Zinkbelastung - Möglichkeiten der Entgiftung schwermetallkontaminiertter Böden auf biologischem Wege.
Dipl.-Arbeit, Univ. Düsseldorf

BURZYNSKI, M. 1987:
The influence of lead and calcium on the absorption and distribution of potassium, calcium, magnesium and iron in cucumber seedlings.
Acta Physiol. Plant. 9: 229–238

CHANEY, R.L., BROWN, J.C., TIFFIN, L.O. 1972:
Obligatory reduction of ferric chelates in iron uptake by soybeans.
Plant Physiol. 50: 208-213

CHEN, Z.S., LEE, G.J., LIU, J.C. 2000 a:
The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils.
Chemosphere 41: 235-242

CHEN, H.M., ZHENG, C.R., TU, C., SHEN, Z.G. 2000 b:
Chemical methods and phytoremediation of soil contaminated with heavy metals.
Chemosphere 41: 229-234

CHRISTEN, H. R. 1972:
Einführung in die Chemie.
Diesterweg Salle (Franfurt, Berlin, München)

CLEMENS, C. 2001:
Molecular mechanisms of plant metal tolerance and homeostasis.
Planta 212: 475-486

CUNNINGHAM, S.D., BERTI, W.R., HUANG, J.W. 1995:
Phytoremediation of contaminated soils.
Trends Biotechnol. 13: 393-397

CUNNINGHAM, S. & OW, D. 1996:
Promises and prospects of phytoremediation.
Plant Physiol. 110: 715-719
CUNNINGHAM, S. D., SHANN, J. R., CROWLEY, D., ANDERSON, T. A. 1997:

DABAS, S. 1992:
Thesis;
Dept.of Biosciences. M.D. (Indien)

DAS, P., SAMANTARAY, S., ROUT, G.R. 1997:
Studies on cadmium toxicity in plants: a review.
Environ. Pollut. 98: 29-36

DELSCHEN, T. & WERNER, W. 1989:
Zur Aussagekraft der Schwermetallgrenzwerte in klärslammgedüngten Böden.
Landwirt. Forschung 42: 29-32

ENGENHART, M. 1984:
Der Einfluß von Bleiionen auf die Produktivität und den Mineralstoffhaushalt von Phaseolus vulgaris L. in Hydroponik und Aeroponik.
Flora 175: 273-282

ERNST, W.H.O. 1974 a:
Schwermetallvegetation der Erde.
Fischer (Stuttgart)

ERNST, W.H.O. 1974 b:
Mechanismen der Schwermetallresistenz.
Bd.23: 189-197
Ver. Ges. Ökol. (Erlangen)

ERNST, W.H.O. 1976 a:
Physiological and biochemical aspects of metal tolerance. In: MANSFIELD, T..A. (Hrsg.):
Effects of air pollutants on plants.

ERNST, W.H.O. 1976 b:
Wieviel Schwermetalle können Pflanzen „vertragen“?
Umschau 76: 355-356

ERNST, W.H.O. 1983:
Ökologische Anpassungsstrategien an Bodenfaktoren.

EZN GmbH 1995:
Sanierung klärschlammbelasteter Flächen in Hagen.
Hannover

FARGAŠOVA, A. 2001:
Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapis alba L. seedlings and their accumulation in roots and shoots.
Biol. Plant. 44: 471-473
LITERATURVERZEICHNIS

FELIX, H. 1997:
Field trials for in situ decontamination of heavy metal polluted soils using crops of heavy metal-accumulating plants.
Z. Pflanzenernähr. Bodenk. 160: 525-529

FLASCHKA, A. 1959:
EDTA Titration – an introduction to the theory and practice.
Pergamon Press (New York)

FOROUGHI, M. TEICHER, K., VENTER, F. 1978:
Die Wirkung steigender Gaben von Blei, Cadmium, Nickel und Zink auf Spinat in Nährösung.
Landwirt. Forschung SH 35: 599-606

FRIEDLAND, A.J. 1990:
The movement of metals through soils and ecosystems. In: SHAW A.J. (Hrsg.): Heavy metal tolerance in plants: evolutionary aspects: 7-19
CRC Press (Boca Raton)

GERRITSE, R.G., VAN DRIEL, W., SMILDE, K.W., VAN LUIT, B. 1983:
Uptake of heavy metals by crops in relation to their concentration in the soil solution.
Plant Soil 75: 393-404

GODBOLD, D. L. & KETTNER, C. 1991:
Lead influences root growth and mineral nutrition of Picea abies seedlings.
J. Plant Physiol. 139: 95-99

GREGER, M., LINDBERG, S. 1986:
Effects of Cd\(^{2+}\) and EDTA on young sugar beets (Beta vulgaris), I. Cd\(^{2+}\) uptake and sugar accumulation;
Physiol. Plant. 66: 69-74

GREGER, M. 1999:
Springer (Heidelberg)

GRIES, G. E.& WAGNER, G.J. 1998:
Association of nickel versus transport of cadmium and calcium in tonoplast vesicles of oat roots.
Planta 204: 390-396

GUPTA, U.C. & GUPTA, S.C. 1998:
Trace element toxicity relationship to crop production and livestock and human health.

HAGEMEYER, J. 1999:
Springer (Heidelberg)
HAGHIRI, F. 1973:
Cadmium uptake by plants.
J. Environ. Qual. 2: 93-96

HAGHIRI, F. 1974:
Plant uptake of cadmium as influenced by cation exchange capacity, organic matter, zinc and soil temperature.
J. Environ. Qual. 3: 180-183

HAEUPLER, H. & MUER, T. 2000:
Bildatlas der Farn- und Blütenpflanzen Deutschlands.
Ulmer (Stuttgart)

HALL, J.L. 2002:
Cellular mechanisms for heavy metal detoxification and tolerance.
J. Exp. Bot. 53: 1-11

HANWAY, J.J. & RUSSELL, W.A. 1969:
Dry matter accumulation in corn (Zea mays L.), plant comparison among single cross hybrids.
Agronomy J. 61: 947-951

HEIN, H. 1981:
Perkin-Elmer & Co. GmbH (Frankfurt)

HILL-COTTINGHAM, D.G. & LLOYD-JONES, C.P. 1961:
Absorption and breakdown of iron-ethylenediamine tetraacetic acid by tomato plants.
Nature 189: 189-312

HINCHEE, R.E. & OLFENBUTTEL, R.F. 1991:
In situ bioreclamation: Applications and investigations for hydrocarbon and contaminated site remediation.
Butterworth-Heinemann (Boston, London)

HOCK, B. & ELSTNER, E.F. 1984:
Pflanzentoxikologie, 1. Aufl.
Wissenschaftsverlag (Mannheim, Wien, Zürich)

HOCK, B. & ELSTNER, E.F. (Hrsg.) 1995:
Schadwirkung auf Pflanzen, 3. Aufl.
Spektrum (Heidelberg, Berlin, Oxford)

HONG, P.K., LI, C., BANERJI, I.S.K., REGMI, T. 1999:
Extraction, recovery and biostability of EDTA for remediation of heavy metal-contaminated soil.
J. Soil contam. 8: 81-103.
HORAK, O. 1979:
Untersuchungen zur Bleiaufnahme der Pflanze.
Die Bodenkultur 30: 120-126

HORBURG, V. & BRÜMMER, W. 1993:
Verhalten von Schwermetallen in Böden. 1.) Untersuchungen zur Schwermetallmobilität.
Z. Pflanzenernähr. Bodenk. 156: 467-477

HUANG, J.W. & CUNNINGHAM, S.D. 1996:
Lead phytoextraction: Species variation in lead uptake and translocation.
New Phytol. 134: 75-84

HUANG, J.W., CHEN, J., BERTI, W.R., CUNNINGHAM, S.D. 1997:
Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction.
Environ. Sci. Technol. 31: 800-805

KABATA-PENDIAS, A. & PENDIAS, H. 1984:
Trace elements in soils and plants.
CRC Press (Boca Raton)

KAHLE, H., BRECKLE, W., 1985:
Blei- und Cadmium-Belastung von Buchenwäldern.
Bielefelder ökol. Beitr. 1:3–6

KEHL, A. 1994:
Dipl.-Arbeit, Univ. Düsseldorf.

KELLER, F. 1982:
Statistik für naturwissenschaftliche Berufe, 3. Aufl.
pmi-pharm & medical inform. Verlags GmbH (Frankfurt/ Main, Zürich)

KHAN, A.G., KUEK, C., CHAUDHRY, T.M., KHOO, C.S., HAYES, W.J. 2000:
Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation.
Chemosphere 41: 197-207

KINZEL, H. 1982:
Pflanzenökologie und Mineralstoffwechsel.
Ulmer (Stuttgart)

KLEIN, H., JENSCH, U.E., JÄGER, H.J. 1979:
Die Schwermetallaufnahme von Maispflanzen aus Zink-, Cadmium- und Kupferoxid-kontaminierten Böden.
Angew. Botanik 53: 19-30

KÖHL, K. 1995:
Ökophysiologische Grundlagen der Sippendifferenzierung bei Armeria maritima (Mill.) Willd.: Evolution von Dürre-, Kochsalz- und Schwermetallresistenz.
Diss. Univ. Düsseldorf
KÖHL, K., KEHL, A., BUDDENDIECK, J., LÖSCH, R. 1995:
Zinkanreicherung in anuellen und biennen Wildkräutern und Zierpflanzen.

KÖNIG, W. 1985:
Blei und Cadmium in Grünkohl und Weizen.
LÖLF-Mitteilungen, Heft 2: 3-8
Recklinghausen

KOEPPE, D.E. 1977:
The uptake, distribution and effect of cadmium lead in plants.
The science of the total environment 7: 197-206

KRETZSCHMAR, R. 1991:
Kulturtechnisch-bodenkundliches Praktikum. Ausgewählte Laboratoriumsmethoden. Eine
Anleitung zum selbstständigen Arbeiten an Böden, 7. Aufl.
Selbstverlag, Univ. Kiel.

KURZ, H., SCHULZ R., RÖMHELD, V. 1997:
Influence of genotypical differences of the phytoremediation of soils contaminated with
Cadmium and Thallium.
Plant impact at contaminated sites, International Workshop, abstracts of presentation.

LANDESUMWELTAMT NRW 1998:
Hintergrundwerte für Böden in Nordrhein-Westfalen, Anlage 6.

LANE, T.W. & MOREL, F.M. 2000:
A biological function for cadmium in marine diatoms.

Degradation of the ferric chelate of EDTA by a pure culture of an Agrobacterium sp.
Appl. Environ. Microbiol. 56: 3346-3353

Influence of EDTA complexation on plant uptake of manganese (II).
Plant Sci. 109, 231-235

LEE, K.C., CUNNINGHAM, B.A., PAULSEN, G.M., LIANG, G.H., MOORE, R.B. 1976:
Effects of cadmium on respiration rate and activities of several enzymes in soybean
seedlings.
Physiol. Plant 36: 4-6

LEHOCZKY, É., SZABO, L., HORVATH, S. 1998:
Cadmium uptake by lettuce in different soils.

LEVITT, J. 1980:
Responses of plants to environmental stresses; 2. Aufl.
Academic Press (New York)
LINDBERG, S. & WINGSTRAND, G. 1985:
Mechanism for Cd\(^{2+}\) inhibition of (K\(^{+}\) + mg\(^{2+}\))ATPase activity and K\(^{+}\)(\(^{86}\)Rb\(^{+}\)) uptake join roots of sugar beet (Beta vulgaris).
Physiol. Plant. 63: 181-186

LINGER, P., MÜSSIG, J., FISCHER, H., KOBERT, J. 2002:
Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: Fibre quality and phytoremediation potential.
Ind. Crops Prod. 16: 33-42

LINGER, P., OSTWALD, A., HAENSLER, J. 2002 (eingereicht bei Plant and soil, unpubliziert):
Cannabis sativa L. growing on heavy metal contaminated soil: Growth, cadmium uptake and accumulation.

LI, Z. & SHUMAN, L.M. 1996:
Extractability of zinc, cadmium and nickel in soils amended with EDTA.
Soil Sci. 161: 226-232

LÖSCH, R. 2001:
Wasserhaushalt der Pflanzen.
Quelle & Meyer (Wiebelsheim)

MARSCHNER, H. 1997:
Mineral nutrition of higher plants, 2. Aufl.
Academic Press (London)

MARTIN, G.C. & HAMMOND, P.B. 1966:
Lead uptake by bromegrass from contaminated soil.
Agron. J. 58: 553-554

MC BRIDE, M.B. 1994:
Environmental chemistry of soils.
Oxford University Press (New York)

MEAGHER, R.B., 2000:
Phytoremediation of toxic elemental and organic pollutants.
Curr. Opin. Plant Biol. 3: 153-162

MENGEL, K. 1991:
Ernährung und Stoffwechsel der Pflanze.
Fischer (Jena)

MILLER, J.E., HASSAT, J.J., KOEPPE, D.E. 1977:
Interaction of lead and cadmium on metal uptake and growth of corn plants.
J. Environ. Qual. 6: 18-20

MORISHITA, T. & BORATYNISKI, J.K. 1992:
Accumulation of cadmium and other metals in organs of plants growing around metal smelters in Japan.

292
LITERATURVERZEICHNIS

MORTIMER, C.E. 1987:
Chemie. Das Basiswissen der Chemie.
Thieme (Stuttgart)

MORZEK, J.E. & FUNICELLI, N.A., 1982:
Effect of lead and zinc in germination of Spartina alterniflora L., seeds at various salinities.

MÜLLER, G., 1965:
Bodenbiologie.
Fischer (Jena)

MUKHERJEE, S. & MAITRA, P. 1976:
The effect of lead on growth and metabolism of germinating rice seeds and on mitosis of onion root tips.
Ind. J. Exp. Biol. 14: 519-521

NAN, Z., CHENG, G. 2001:
Accumulation of Cd and Pb in spring wheat (Triticum aestivum L.) grown in calcareous soil irrigated with wastewater.
Bull. Environ. Contam. Toxicol. 66: 748-754

NITZSCHKE, A., KAPS, M., SCHMACK, H., STRASBURGER, W., MEISTER, M., MEIBURG, A. 2000:
Deutscher Wetterdienst Offenbach: Witterungsreport Daten, Ausgabe 1–3 und 10–12.
Frankfurt/Main

NOSBERS, R. 1968:
Die Aufnahme von Blei, Chrom, Nickel und Zink durch landwirtschaftliche Nutzpflanzen bei Anwendung von Abwasserklärslamm.
Diss. Univ. Bonn

OUZOUNIDOU, G. 1995:
Effect of copper on germination and seedling growth of Minuartia, Silene, Alyssum and Thlaspi.
Biol. Plant. 37: 411-416

PAGE, A.L., BINGHAM, F.T., NELSON, C. 1972:
Cadmium absorption and growth of various plant species as influenced by solution cadmium concentration.
J. Environ. Qual. 1, 288-292

PALUMBO, A.V., LEE, S.Y., BOERMAN, P. 1994:
The effect of media composition on EDTA degradation by Agrobacterium sp.

The molecular physiology of heavy metal transport in the Zn/ Cd hyperaccumulator Thlaspi caerulescens.
PNAS 97: 4956-4960
LITERATURVERZEICHNIS

PETERSON, P.J. & ALLOWAY, B.J. 1979:
Cadmium in soils and vegetation. In: WEBB, M. (Hrsg.) 1979: The chemistry,
biochemistry and biology of cadmium: 45-93
Elsevier North Holland Biomedical Press (Amsterdam)

POHLMEIER, A., 1999:
Metal speciation, chelation and complexing ligands in plants. In: PRASAD, M.N.V. &
HAGEMEYER, J. (Hrsg.): Heavy metal stress in plants: 29-50.
Springer (Heidelberg)

PRASAD, M.N.V., 1999:
Metallothioneins and metal binding complexes in plants. In: PRASAD, M.N.V. &
HAGEMEYER, J. (Hrsg.): Heavy metal stress in plants: 51-72.
Springer (Heidelberg)

PRASAD, M.N.V. & STRZAŁKA, K., 1999:
Impact of heavy metals on photosynthesis. In: PRASAD, M.N.V. & HAGEMEYER, J.
(Hrsg.): Heavy metal stress in plants: 117-138.
Springer (Heidelberg)

RASKIN, I., KUMAR, N., DUSHENKOV, S., SALT, D.E. 1994:
Bioconcentration of heavy metals by plants.
Curr. Opin. Biotechnol. 5: 285-290

REBOREDO, F. 2001:
Cadmium uptake by Halimione portulacoides: An ecophysiological study.
Bull. Environ. Contam. Toxicol. 67: 926-933

RENGEL, Z. 1999:
Heavy metals as essential nutrients. In: PRASAD, M.N.V. & HAGEMEYER, J. (Hrsg.)
Springer (Heidelberg)

RICHTER, D. 1985:
Allgemeine Geologie.
De Gruyter (Berlin, New York)

RITCHIE, S.W., HANWAY, J.J., BENSON, G.O. 1997:
How a corn plant develops, Special Report Number 48.
Iowa State University of science and technology. Cooperative Extension Service, Ames,
IA

ROBINSON, B.H., LEBLANC, M., PETIT, D., KIRKHAM, D., GREGG, P.E.H. 1998:
The potential of Thlaspi caerulescens for phytoremediation of contaminated soils.
Plant Soil 203: 47-56

ROBINSON, B.H., MILLS, T.M., PETIT, D., FUNG, L.E., GREEN, S.R., CLOTHIER,
B.E. 2000:
Natural and induced cadmium-accumulation in poplar and willow: Implications for
phytoremediation.
Plant Soil 227: 301-306

294
ROLLER, A., KLUMPP, A., ZELTNER, G.-H. 1998:
Ber. Inst. Landschafts- Pflanzenökologie Univ. Hohenheim Heft 7: 35-42

SAAN, B., WERNER, W. 1996:
Metal contents in fern leaves and roots and in associated soils.

SACHS, L. 1992:
Angewandte Statistik.
Springer (Heidelberg)

Phytoremediation, a novel strategy for the removal of toxic metals from the environment using plants.
Biotechnol. 13: 468-474

SALT, D.E., SMITH, R.D., RASKIN, I. 1998:
Phytoremediation.

SAXENA, P.K., KRISHNARAJ, S., DAN, T., PERRAS, M.R., VETTAKKORUMAKANKAV, N.N. 1999:
Springer (Heidelberg)

SCHACHTSCHABEL, P., BLUME, H.P., BRÜMMER, G., HARTGE, K.H., SCHWERTMANN, U. 1998:
Lehrbuch der Bodenkunde.
Enke (Stuttgart)

SCHILLING, G. 2000:
Pflanzenernährung und Düngung.
Ulmer (Stuttgart)

SCHMEIL, O. & FITSCHEN, J. 1988:
Flora von Deutschland, 88. Aufl.
Quelle & Meyer (Heidelberg Wiesbaden)

SCHRAMMECK, E. & VIERECK, L. 1997:
Gutachten zur Ermittlung des Gefährdungspotentials schwermetallhaltiger Böden im Raum Hagen.
Hygiene-Institut des Ruhrgebietes (Gelsenkirchen)

SCHROEDER, D. 1992:
Bodenkunde in Stichworten.
Hirt (Berlin, Stuttgart)
SCHÜLLER, H. 1969:
Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphats in Böden.
Z. Pflanzenern. Bodenk. 123: 48-63

SIEGHARDT, H. 1981:
Ein histochemischer Nachweis zur Bleiverteilung in juvenilen Wurzeln von Zea mays L.
Mikroskopie (Wien) 38: 193-199

SIEGHARDT, H. 1987:
Z. Pflanzenernähr. Bodenk. 150: 129-134

SILLANPÄÄ, M. 1996:
Complexing agents in waste water effluents of six Finnish pulp and paper mills.
Chemosphere 33: 293-302

SILLANPÄÄ, M. 1997:
Environmental fate of EDTA and DTPA.
Rev. Environ. Contam. Toxicol. 152: 85-111

SINGH, R.P., TRIPATHI, R.D., SINHA, S.K., MAHESHWARI, R., SRIVASTAVA, H.S. 1997:
Response of higher plants to lead contaminated environment.
Chemosphere 34: 2467-2493

SUKOPP, H. & WITTIG, R. (Hrsg.) 1993:
Stadtökologie.
Fischer (Stuttgart)

STEUBING, L. & FANGMEIER, A. 1992:
Pflanzenökologisches Praktikum.
Ulmer (Stuttgart)

STRASBURGER, E., NOLL, F., SCHENCK, H., SCHIMPER, A.F.W., SITTE, P., ZIEGLER, H., EHRENDORFER, F., BRESINSKY, A. 1991:
Lehrbuch der Botanik, 33. Aufl.
Fischer (Stuttgart)

TACK, F.M. & VERLOO, M.G. 1996:
Metal contents in stinging nettle (Urtica dioica L.) as affected by soil characteristics.
The science of the total environment 192: 31-39

TEJOWULAN, R.S. & HENDERSHOT, W.H. 1998:
Removal of trace metals from contaminated soils using EDTA incorporating resin trapping techniques.
Environ. Pollut. 103: 135-142
TIEDJE, J.M. 1975:
Microbial degradation of ethylenediaminetetraacetate in soils and sediments.
Appl. Microbiol. 30: 327-329

TIEDJE, J.M. 1977:
Influence of environmental parameters on EDTA in soils and sediments.
J. Environ. Qual. 6: 21-26

TIFFIN, L.O., BROWN, J.C., KRAUSS, R.W. 1960:
Differential absorption of metal chelate components by plant roots.
Plant Physiol. 35: 362-367

TOMSING, J.L. & SUZKVI, J.B. 1991:
Permeation of Pb$^{2+}$ through calcium channels: Furo-2 measurement of voltage and
dihydropitidine sensitive Pb$^{2+}$ entry in isolated bovine chromaffin cells.
Biochim. Biophys. Acta 1069: 197-200

VASSIL, A.D., KAPULNIK, Y., RASKIN, I., SALT, D. 1998:
The role of EDTA in lead transport and accumulation by Indian mustard.
Plant Physiol. 117: 447-453

VDLUFA (Verein Deutscher Landwirtschaftl. Unters.- u. Forschungsanstalten) 1991:
Methodenbuch I. Die Untersuchung von Böden.
DLG-Verlag (Frankfurt/Main)

VETTER, H. 1982:
Schwermetalle in der Nahrungskette – Belastungsgrenzen für Pflanzen.
Landwirt. Forschung SH 39, Kongressband

VIETS, F.G. 1962:
Chemistry and availability of micronutrients in soils;
J. agric. food chem. 10: 174-178

WALKER, W.M., MILLER, J.E., HASSETT, J.J. 1977:
Effect of lead and cadmium upon the calcium, magnesium, potassium and phosphorus
concentration in young corn plants.
Soil Sci. 124: 145-152

WEIGEL, H.J. 1991:
Zur Ökotoxikologie des Schwermetalls Cadmium: Untersuchungen über Aufnahme,
Verteilung und Wirkung des Metalls bei Pflanze und Tier.
Habilitationsschrift TU Braunschweig

WEINSTEIN, L.H., ROBBINS, W.R., PERKINS, H.F. 1954:
Chelating agents and plant nutrition.
Science 120: 41-43

WENZEL, W.W., LOMBI, E., ADRIANO, D.C. 1999:
Biogeochemical processes in the rhizosphere: Role in phytoremediation of metal-polluted
soils. In: PRASAD, M.N.V. & HAGEMEYER, J. (Hrsg.): Heavy metal stress in plants:
273-304.
Springer (Heidelberg)
Whittle, A.J., Dyson, A.J. 2002:
The fate of heavy metals in green waste composting.
The environmentalist 22: 13-21

Wild, A. 1995:
Umweltorientierte Bodenkunde.
Spektrum (Heidelberg, Berlin, Oxford)

Wilke, B.M. & Metz, R. 1992:
Einfluß der Bodenbelastung von Rieselfeldern auf Wachstum, Ertrag und
Schwermetallentzug von Mais (Zea mays) im Gefäßversuch.
Wiss. Z. der Humboldt-Universität zu Berlin, R. Agrarwissenschaften 41: 29-33

Xiong, Z.-T. 1997:
Bioaccumulation and physiological effects of excess lead in a roadside pioneer species
Sonchus oleraceus, L.
Environ. Pollut. 3: 275-279

Remobilization of zinc from ell-ren river sediment fraction affected by EDTA, DTPA and
EGTA.
Wat. Sci., Tech. 34, 125-132

Zodrow, J.J. 1999:
Recent applications of phytoremediation technologies.
Remediation 2: 29-36
DANKSAGUNG

Herrn Professor Dr. R. Lösch danke ich für die Überlassung des interessanten und vielschichtigen Themas und die Betreuung der Arbeit.

Des weiteren gilt mein Dank Herrn De Myn aus Hagen, der freundlicherweise die Nutzung seiner Ackerfläche gestattete. Bedanken möchte ich mich außerdem bei Peter Linger aus der Abteilung Botanik der Universität Wuppertal für die gute Zusammenarbeit bei der Freilandarbeit und die sonstige freundschaftliche Unterstützung.

Meinen Kolleginnen und Kollegen danke ich für die vielen hilfreichen Gespräche und die vielfältige Unterstützung während der gesamten Promotionszeit.

Meinen Eltern danke ich herzlich für die Hilfe in allen Lebenslagen und vor allem meinem Vater für die engagierte Unterstützung bei den umfangreichen Erntearbeiten.

Mein besonderer Dank gilt auch meinen Freundinnen und Freunden, vor allem meinem Freund Uli und meiner Freundin Grit, die gerade während der letzten Phase durch sehr viel Verständnis, liebevolle Unterstützung aller Art und erfrischend unfachliche Gespräche zum Gelingen der Arbeit beigetragen haben. Auch allen anderen, die hier nicht namentlich genannt sind, sei an dieser Stelle herzlich für ihren Beitrag zum Gelingen der Arbeit gedankt.