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1 Introduction

The physics of a few or many identical quantum particles is a fascinating and chal-
lenging subject. The interplay of interactions and (anti-)symmetry leads to many
unexpected effects. However, the theoretical description of complex systems is dif-
ficult. Whereas the one- or two-particle problem can be addressed analytically, for
more than two particles, the treatment, i.e. trying to solve the Schrödinger equation
for a realistic model, mostly has to be numerical. Here, we have to differentiate: exact
methods are often computationally very expensive and their results might be hard
to interpret. Approximate methods can be suggestive but also misleading. Their
validity has to be checked by comparing them to exact results.

On the other hand, in the experiment there is usually a large number of particles
and it is difficult to isolate controllably a system which consists of a few particles. In
the last fifteen years progress in semiconductor microfabrication has made it possible
to confine a very small number of electrons in so-called nanostructures, e.g. quantum
wells or quantum wires. Modern technology allows for defining clean structures with
exact confinement which is often reduced in dimensionality. This means that electrons
are moving freely only in one or two dimensions. When the confinement is strong in
all three spatial dimensions we speak of zero-dimensional systems or quantum dots.

These finite electron systems have a lot in common with atoms where the con-
finement is given by the strong attractive potential of the nucleus. Yet for quantum
dots one cannot only control the electron number, but also engineer their shape and,
by doping the host material and tiny gate electrodes, their electronic density. This
is why quantum dots are also called artificial atoms. In real atoms the density is
very high, and the effect of the mutual Coulomb repulsion of electrons is rather small
against the attractive force from the nucleus. In contrast, the electronic density in
quantum dots can be much lower. While electrons are on average further apart from
each other, the electron-electron interaction becomes more important in comparison
to the confinement strength.

In quantum dots one can thus tune the Coulomb repulsion of a few confined elec-
trons. This makes them very interesting physical systems because they allow us
to study correlation effects which cannot be addressed in a controlled way in other
physical systems.

In this thesis we investigate a model of interacting electrons which are restricted to
move only in two dimensions. Furthermore, they are trapped by a harmonic potential
V ∝ r2. We illustrate this simple but realistic model for two limiting cases in Fig. 1.1.
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1 Introduction

?

Fig. 1.1: Two-dimensional electrons in an isotropic parabolic potential. For vanishing
Coulomb interaction the energetic shells of the harmonic oscillator are filled. Strongly
interacting electrons form a small crystal, a so-called Wigner molecule, to minimize their
mutual repulsion. In the present thesis we study the crossover between these two pictures.

The left hand side illustrates the situation for negligible interaction (strong confine-
ment). The electrons are filled into the oscillator states according to the degeneracy
of the 2D oscillator. Each orbital can be occupied with spin up and down. This
leads to an energetic shell filling, with open and closed shells. For a small interaction
one finds the lifting of some degeneracies and Hund’s rule in analogy to conventional
atomic physics. Therefore this electron system can be regarded as an artificial atom

where the external parabolic potential mimics the attraction of the nucleus.
The right hand side depicts the regime of very small density (weak confinement).

The electrons have negligible kinetic energy and are strongly correlated due to their
mutual Coulomb repulsion. In order to minimize this repulsion they arrange them-
selves on shells in real space. This small regular structure is called a Wigner molecule

because it is the finite size counterpart to the infinite 2D Wigner crystal (Wigner,
1934).

Note that in the first case we have used a one-particle picture, namely electrons
occupying orbitals. This description is intimately related to the Hartree-Fock (HF)
method. Here, one approximates the full wave function by a single Slater determinant
of self-consistent orbitals. HF is a traditional method of atomic and nuclear physics.
The application of the symmetry-breaking unrestricted version of HF to quantum
dots is one of the main subjects of this thesis. Breaking a symmetry implies that
correlations are partly taken into account. In this work, we investigate the validity
of HF when we increase the interaction and thereby move towards the picture on the
right.

In this second case, we are led to think of electrons as being classical point charges.
This is only correct in the limit of infinitely strong interaction. The full quantum-
mechanical treatment of the crossover between the two limiting cases is much more
difficult. The correct description by a wave function has to include many Slater
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determinants and respect the symmetries of the system. The second main method
employed in this thesis is to calculate not complete wave functions, but expecta-
tion values of physical observables using path-integral Monte Carlo. This numerical
method is essentially exact and can reliably describe the full crossover between both
regimes.

The previous discussion was rather from the theorist’s point of view. We have
explained our model of a quantum dot and the mathematical description of the
isolated N -electron system. Now, we want to relate the physics of quantum dots to a
broader context. For both theorists and experimentalists the relative isolation of the
quantum dot from the external world is a very important feature. However, in order
to take measurements, one has to contact the dot, for example to measure the energy
required to add one electron to it. This corresponds to determining the electron
affinity or the ionization energy for real atoms. In so-called transport experiments
one measures the conductance for a current through the quantum dot.

This leads to questions like the following (Thouless, 1977): what happens to
a conductor when its size and dimensions are made smaller and smaller? When a
metallic wire is made thinner until it finally reaches the limit of a few atoms the
situation is similar to the transport process through a quantum dot. This question is
not at all purely academic when we think of the immense progress in microelectronics.
Computer chips are getting faster and faster because one can integrate more, tinier
transistors on a chip. When the size of a transistor reaches the point that quantum
effects play a role (e.g. charge and energy quantization), we are in a new regime
which is called mesoscopic physics. It is a relatively new field in physics, only about
20 years old, and is situated somewhere between the macroscopic every day world
and the microscopic world of single atoms or molecules. In mesoscopic systems, the
Fermi wavelength is comparable to the dimension of the device. In addition, disorder
effects can play an important role. A quantum dot can be viewed as the prototype of
a very small transistor: it comprises still many hundreds or thousands of atoms but
can act as a single large atom with electronic properties that differ strongly from a
normal transistor.

Quantum dots as confined few- or many-particle quantum systems have various
interesting analogues in physics. Historically viewed, before the advent of quan-
tum mechanics and the atomic model of Bohr and Rutherford, the English physicist
J.J. Thomson (1904) proposed his plum-pudding model, where (classical) electrons
move in the homogeneous positive background charge which is distributed all over the
atom. This results in a three-dimensional harmonic confinement and explains why
artificial atoms are also called Thomson atoms. In real atoms the strong Coulomb
potential of the point-like nucleus gives rise to the shell structure of the periodic
table of elements. Also for atomic nuclei a shell structure has been found with magic
numbers of nucleons for very stable configurations. Clusters are systems of a few to
a few thousand atoms that have quite different properties with respect to the bulk
and the single atom. Clusters of Alkali atoms can be properly described within the
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1 Introduction

jellium model which is nothing else than a quantum-mechanical version of the Thom-
son atom. A more classical example of a confined system are ions in Paul traps for
which crystallization at low temperatures has been shown. Finally, a very quantum-
mechanical example is the Bose-Einstein condensation of weakly interacting neutral
atoms in magneto-optical traps.

In this thesis we investigate a quantum dot as a model of interacting two-dimensional
electrons in a harmonic potential. We perform calculations with two methods: exact
path-integral Monte Carlo (PIMC) and unrestricted Hartree-Fock (UHF). This work
consists of three main parts.

In the first part we give an introduction to the field of few-electron quantum dots
and present our model Hamiltonian. We explain the experiments that we want to
describe with our simulations: while atomlike properties have been probed in very
small dots, signatures of Wigner crystallization have been found in larger dots, so
the Wigner molecule is in reach of current technology. It is the purpose of this work
to understand better the nature of this crossover from weak to strong correlations.

The second part exposes a comprehensive PIMC study. We explain the method,
our implementation, and various checks that we carry out in order to improve the
understanding and assess the accuracy of the method. We then perform PIMC sim-
ulations for the most difficult, yet most interesting regime of the beginning Wigner-
molecule formation. This intermediate regime is not yet completely understood. In
these calculations we also include an impurity which deforms the quantum dot and
models the influence of disorder in quantum dots. We want to obtain results for
ground-state energies and see if the ground-state spin deviates from the expected
Hund’s rule scheme. Further, we address the question if magic numbers of enhanced
stability persist in presence of stronger interaction and deviations from the ideal ro-
tationally symmetric potential. We will quantify the degree of crystallization and
correlation by calculating the distributions of electron charge and spin. Another in-
teresting point concerns the formation of a local magnetic moment at the impurity
and its effect on the spin structure of the quantum dot.

In the third part we present extensive UHF calculations for clean quantum dots.
We briefly recall the method and our numerical implementation. We study the full
crossover from weak to strong interaction for zero and small magnetic field. We will
elucidate the mechanism of the symmetry-breaking UHF mean field and how far it
renders correctly the onset of Wigner crystallization. Fortunately, we can compare
our results to exact PIMC data and thereby assert the reliability of the UHF method.
Finally, it is an interesting question what happens to the concept of orbitals in the
strongly interacting limit. We will look for signatures of the Wigner molecule in the
UHF single-particle energies and show the connection between the continuous model
and a simple lattice Hamiltonian.
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2 Few-electron quantum dots

Quantum dots are low-dimensional nanometer-sized man-made systems where a few
or up to several thousands electrons are confined (Jacak et al., 1998). Usually
they are fabricated by restricting the two-dimensional (2D) electron gas in a semi-
conductor heterostructure laterally by tiny electrostatic gates or vertically by etching
techniques. One can control the confinement, the electron number and thus the den-
sity and the interaction strength.

In this chapter we want to give a brief introduction to the field of few-electron
quantum dots and motivate our calculations. We start historically with the exper-
iments on very small field-effect transistors which demonstrated nearly equidistant
conductance peaks. We explain these peaks with the simplest model of the so-called
Coulomb blockade which relies on the quantization of charge.

Then we introduce the Hamiltonian of a quantum dot as a system of interacting
2D electrons in a parabolic potential. The calculations in the present thesis start
from this model system. We go on by describing two groups of experiments more
specifically: First the experiments of Tarucha et al. (1996) and Kouwenhoven

et al. (2001) who performed measurements on very small dots with only a few
electrons starting from zero. They found a shell structure in the Coulomb blockade
peaks which shows the importance of energy quantization. Second we illustrate
the experiments of Ashoori (1996) and co-workers: Their experiments were done
with larger, more disordered dots where the interaction has a more important role.
Surprisingly, they found that Coulomb peaks can coincide, which appears to be a
violation of Coulomb blockade.

Our calculations model this experimental situation and we specify what interesting
physics we want to address with this work. In the present thesis we adopt a rather
microscopic perspective on the behavior of a few interacting confined 2D electrons.
We do not explicitly consider the contacts and the tunneling of electrons into the
quantum dot. For stronger coupling this tunneling can give rise to the Kondo effect
in quantum dots (Kouwenhoven and Glazman, 2001). We also do not consider
the statistical theory of quantum dots like quantum chaos or statistical mesoscopic
physics (Alhassid, 2000). These theories are rather for larger dots with stronger
disorder. Finally we can also only briefly mention here the important research on op-
tical studies of quantum dots that are expected to form the basis of a new generation
of lasers (see e.g. Gammon and Steel, 2002) or even the basic elements of quantum
computing (e.g. Loss and DiVincenzo, 1998). For an overview of Thomson atoms,
see Vorrath and Blümel (2000).
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2 Few-electron quantum dots

AlGaAs GaAs

Fig. 2.1: Single-electron transistor (lateral quantum dot) as built by Meirav et al.

(1991). In the GaAs, close to the interface to the insulating AlGaAs, electrons form a
2DEG whose density can be tuned by the positive bottom gate. The electrons are laterally
confined by the nano-structured negatively charged top gate which forms a small channel
with width of about 0.5µm and length ∼ 1µm between the two constrictions.

2.1 The single-electron transistor

The discovery of quantum dots took place when experimentalists measured the con-
ductance through very small semiconductor field-effect transistors (Kastner, 1992).
In Fig. 2.1 we show schematically such a device based on GaAs (semiconducting) and
AlGaAs (insulating). The active region of the transistor is a two-dimensional elec-
tron gas (2DEG): At the interface of AlGaAs/GaAs there is a strong electric field
so that electrons are confined in that plane. When a positive voltage is applied to
the bottom gate, more and more electrons accumulate. One can therefore tune the
density of the 2DEG1. By application of a negative voltage, electrons are repelled
from under the tiny lithographically patterned top gate. In Fig. 2.2 we show the
corresponding potential that the 2D electrons are subjected to. There are two strong
tunnel barriers due to the constriction in the top gate. The small lake of electrons
in the middle forms the quantum dot, their confinement in the plane can be ap-
proximated as parabolic. Excitations in this plane have energies about a few meV,
therefore the experiments require very low temperature. The Fermi level of the lake
can be tuned by the bottom gate voltage. One can measure the conductance through
the dot by applying a small voltage between source and drain. A conventional tran-
sistor turns on only once, when the gate voltage is raised. Here, the experimentalists
found nearly periodic peaks in the conductance when they increased the bottom gate

1The 2DEG has also become quite famous because in similar devices, for a very strong magnetic
field, the integer and fractional Quantum Hall effect have been discovered.
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2.2 Coulomb blockade and capacitance

Fig. 2.2: Potential landscape that the 2D electrons feel in the device of Fig. 2.1. The level
of the lake can be controlled by the positive bottom gate voltage and the height of the
barriers by the negative top gate. The central small lake is the quantum dot, also called
’controlled-barrier atom’ (Kastner, 1993).

voltage (Fig. 2.3). As we will now explain, the transistor turns on and off again every
time a single electron is added to it.

2.2 Coulomb blockade and capacitance

The phenomenon of the periodic conductance peaks is known as Coulomb blockade
oscillations and it is due to the quantization of charge. A similar behavior was known
before for the tunnel conductance through a small metallic particle embedded in an
insulator. As shown in Fig. 2.4, such a small metallic Coulomb island can also be
viewed as a quantum dot but contains ∼ 107 electrons2. The mesoscopic particle
is very well isolated by the tunnel barriers and thus the electron number on it is
well defined. The tunneling of one extra electron on the island is energetically costly
because of the Coulomb repulsion of all electrons on it. One can define a capacitance
C for the particle which depends on its dimensions and the geometry with respect to
the leads. The level spectrum of the metal particle is almost continuous. Adding one
electron to the dot requires an energy e2/2C above the Fermi energy µf and adding
a hole requires an energy e2/2C below µf . This results in a gap of width e2/C in the
tunneling density of states.

2The controlled-barrier atom in Fig. 2.1 contains about 30-60 electrons. Naturally, by this we
mean the free electrons, not bound to the ion cores. Only recently, experimentalists succeeded
in completely emptying a lateral dot defined in a 2DEG (Ciorga et al., 2000). We will later
show more examples of quantum dots which just contain very few electrons.

7



2 Few-electron quantum dots

Fig. 2.3: At low temperatures the current from source to drain through the controlled-
barrier atom shows distinct nearly periodic peaks. Between the peaks the number of
electrons in the dot is well defined.

For the lateral quantum dot in Fig. 2.1, the level spectrum can be shifted by the
bottom gate voltage Vg. The energy of the Coulomb island (i.e. the small electron
droplet between the constrictions) can be written semiclassically

E = QVg + Q2/2C . (2.1)

The first term is the attractive electrostatic interaction between the island and the
positive gate, the second term is the charging energy due to the repulsion of the
electrons on the island. Equation (2.1) is a parabola with its minimum at Qm =
−CVg. However, as charge is quantized, Q = −Ne, the energy (2.1) can only assume
discrete values. This is shown in Fig. 2.5. When Qm = −Ne the Coulomb interaction
results in the same energy difference e2/2C for increasing or decreasing N by one.
Only when the gate voltage is adjusted to Qm = −(N + 1/2)e, the state with N
and N + 1 electrons are degenerate and the charge fluctuates3. Therefore the peak
spacing in Fig. 2.3 is e/C, it thus increases inversely with the length between the two
constrictions.

In the all-metal atom of Fig. 2.4 the energy spectrum is effectively continuous.
Also in the controlled barrier atom the charging energy e2/C is much larger than the
mean quantum level spacing. We will later illustrate the experiments of Tarucha

et al. (1996) who succeeded in building very small quantum dots with very few
electrons. There, the single-particle level spacing is comparable to the charging
energy. This means that the quantum level structure is discernible in the conductance
peak spectrum.

3The capacitance C has also been calculated numerically for a realistic model of the lateral quantum
dot in Fig. 2.1 and so it has been assured that one conductance peak in Fig. 2.3 really corresponds
to the addition of one electron (Kastner, 1992).
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2.2 Coulomb blockade and capacitance
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Fig. 2.4: Metal particle in a tunnel junction and energy spectrum for that system. Due
to Coulomb repulsion, an electron (hole) from the leads can only tunnel onto the particle
if it has an energy e2/2C above (below) the Fermi energy µf .

NN−2 N+2 N+1 N+2N−1N−1 N+1 N

PSfrag replacements

e2/2C

EE

Q/eQ/e

Qm = −Ne Qm = −(N + 1
2
)e

Fig. 2.5: Coulomb blockade parabola, i.e. energy vs. charge on a semiclassical dot.

Actually in a correct quantum-mechanical description, the ground-state energy
E(N) enters, which is the energy of N interacting electrons in the quantum dot. The
chemical potential of the dot is defined as

µ(N) = E(N) − E(N − 1) . (2.2)

A current can only flow through the dot when its chemical potential is between the
chemical potentials of source and drain. For small voltages eVsd = µsource−µdrain ≈ 0
the N -th Coulomb peak is a direct measure of the chemical potential of the N -electron
quantum dot. The spacing between the N -th and (N + 1)-th peak is

∆(N)/e = [µ(N + 1) − µ(N)]/e = α[Vg(N + 1) − Vg(N)] (2.3)

where ∆(N) is the so-called addition energy. It is related to the gate voltage simply
by a dimensionless factor α which depends on the geometry of the device. Equation
(2.3) is the link between the gate voltages measured in the experiment and the E(N)
that we want to calculate.
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2 Few-electron quantum dots

2.3 Model Hamiltonian

Before we illustrate important experiments in more detail, we present a suitable
model Hamiltonian. It describes the quantum dot as a closed system of interacting
2D electrons in an external isotropic parabolic potential. We thus do not model the
tunneling and the leads, as we are interested in the case that tunneling is sufficiently
weak, so that the dot can be idealized as an isolated system with a well defined
electron number and we seek for their interacting ground state.

As one can guess from Fig. 2.2 the confinement potential in the plane can be
described as harmonic to a good approximation4. This model has also been checked
numerically in self-consistent calculations which solved the Poisson and Schrödinger
equations iteratively for realistic devices (Kumar et al., 1990; Bednarek et al.,
2000). Our model Hamiltonian for the quantum dot with magnetic field reads

H =

N
∑

i=1

{

1

2m∗ [pi + eA(xi)]
2 +

m∗ω2
0

2
x2

i

}

+
∑

i<j

e2/κ

|xi − xj|
. (2.4)

Here, m∗ is the effective mass of the electron, and e= |e| is the electron charge. The
harmonic oscillator frequency is ω0 and κ=4πεε0 is the Coulomb coupling with the
dielectric constant ε. The vector potential of a homogeneous magnetic field B orthog-
onal to the plane of the quantum dot in symmetric gauge reads A(x) = B

2
(−y, x, 0)

with the corresponding cyclotron frequency ωc = eB/m∗. In our Hamiltonian we
have omitted the Zeeman term, which can be easily included. We also neglect nor-
mal spin-orbit coupling (which is very small in GaAs) and the Rashba effect, which
is spin-orbit coupling due to the electric field in an asymmetric confining potential
in z-direction5.

Now we can introduce oscillator units, and describe the system dimensionless:
energies in units of the oscillator energy

~ω = ~

√

ω2
0 + ω2

c/4 , H = ~ωH , (2.5a)

and lengths in units of oscillator lengths

l0 =

√

~

m∗ω
, x = l0 r . (2.5b)

4This is not true for self-assembled quantum dots which can have disk, lens, pyramidal or even
ring shapes (see e.g. Lorke et al., 2000).

5Zeeman coupling, HZ = g∗µBBσz , in GaAs is rather weak and solely tends to polarize the
electrons. Rashba coupling, HR = kR(σxpy−σypx), can be tuned via externally applied voltages
and breaks the spin invariance (2.8). Governale (2002) has shown by a spin-density functional
study that it can affect the addition energies of a quantum dot by a suppression of Hund’s rule.
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2.3 Model Hamiltonian

Then the Hamiltonian is formally the same as without magnetic field

H =
N
∑

i=1

{

−1

2
4i +

1

2
r2

i −
ωc

2ω
L(i)

z

}

+
∑

i<j

λ

|ri − rj|
(2.6)

≡
N
∑

i=1

hi +

N
∑

i<j=1

wij ,

apart from an additional term proportional to the total angular momentum which
scales with the dimensionless cyclotron frequency Ωc := ωc/ω. Here, we have in-
troduced the dimensionless coupling constant which tunes the electron interaction6

λ =
l0
a∗

B

=
e2/κl0

~ω
, (2.7)

with the effective Bohr radius of the host material a∗
B = κ~2

m∗e2 = εme

m∗ aB. Since this
Hamiltonian is spin-independent and invariant under rotation about the z-axis,

[H, Ltot
z ] = [H, S2

tot] = [H, Stot
z ] = 0 , (2.8)

the exact eigenfunctions can be chosen as simultaneous eigenfunctions of the total an-
gular momentum Ltot

z , the total spin S2
tot and its z-component Stot

z . These eigenfunc-
tions and the corresponding densities are then rotationally invariant (cf. Sec. 4.1.3).
Later we also include an impurity to break the rotational symmetry of the 2D har-
monic oscillator.

To illustrate the parameters, we give some material constants (Sze, 1981) and the
corresponding λ for two different confinement strengths at zero magnetic field.

m∗/me ε a∗
B/nm l0/nm λ = l0/a

∗
B l0/nm λ = l0/a

∗
B

[~ω0 = 3meV] [~ω0 = 0.7meV]

GaAs 0.067 13 10 19 1.9 40 4

InSb 0.015 18 60 41 0.7 85 1.4

Si 0.3 12 2 9 4.5 13 6.5

We see that the interaction can be widely tuned by varying the material and the
confinement strength. Later we will also return to the point how λ is related to the
density and the Brueckner parameter rs. Experiments are mostly done with AlGaAs-
GaAs based dots which allows for very clean structures. Our task is now to calculate
the ground-state properties of this closed quantum dot, especially the ground-state
energy E(N).

6Note that Ωc ≤ 2. In other words, for a given material with effective Bohr radius a∗
B

and
given magnetic field ωc, there is a maximal coupling constant λ ≤ λm :=

√
2lm/a∗

B
, where

lm =
√

~/m∗ωc. In particular, λ → 0 for ωc → ∞.

11



2 Few-electron quantum dots

2.4 Non-interacting eigenstates and shell filling

As a starting point we introduce the non-interacting eigenstates of the isotropic
2D harmonic oscillator which are not changed by the magnetic field. Since Lz is a
constant of motion we give the angular momentum basis of the 2D harmonic oscillator
and a visualization of the eigenenergies. The Hartree-Fock calculation is performed
in this basis. The single-particle Hamiltonian of Eq. (2.6) reads

h = −1

2

(

4− r2 − ΩcLz

)

. (2.9)

The normalized eigenfunctions of h are the Fock-Darwin states (Fock, 1928; Dar-

win, 1930)

〈r|nM〉 =

√

n!

π(n + m)!
eiMφ rm L(m)

n (r2) e−r2/2 , (2.10)

where n is the non-negative integer radial quantum number. The angular momen-
tum quantum number M is integer, and m = |M |. L(m)

n are generalized Laguerre
polynomials (Gradstein and Ryshik, 1965)

L(m)
n (x) =

n
∑

k=0

(−1)k

(

n + m

n − k

)

xk

k!
(2.11)

The common eigenstates of h and Lz then fulfill

h |nM〉 = εnM |nM〉 and Lz |nM〉 = M |nM〉 (2.12)

with eigenenergies
εnM = (2n + m + 1) + MΩc/2 . (2.13)

We show a graphical illustration of these energy levels for zero magnetic field in
Fig. 2.6. In analogy to the hydrogen atom, their degeneracy leads to the energetic
shell structure for weak interaction. The degeneracy of the k-th level with energy
Ek = ~ω(k + 1) is 2k + 2 for spinful electrons. This gives the so-called magic

numbers which are total numbers of electrons in closed shells N(k) = (k+1)(k+2) =
2, 6, 12, 20, 30, . . . and correspond to energetically very stable fillings.

With these one-particle states one can now make the so-called constant interaction
approximation for the addition energies (2.3). One assumes that the total energy is
given by the sum over the occupied oscillator states plus the Coulomb interaction
which is parametrized by a constant capacity C. The addition energies (2.3) then
read

∆(N) = E(N +1)−2E(N)+E(N−1) =

{

e2/C + ~ω0 if N = 2, 6, 12, . . . ,

e2/C else,
(2.14)

and are maximal for closed shells. This is the ’atomic’ shell-structure of quantum
dots which relies on the symmetry of the 2D harmonic oscillator.
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2.5 Hund’s rule and ground-state spin
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Fig. 2.6: Energy levels Ek = EnM = ~ω(2n + |M | + 1) = ~ω(k + 1) of the 2D isotropic
harmonic oscillator at zero magnetic field; m = |M |. The inset shows the spectroscopic
notation: k is the energy quantum number, n and M are the radial and angular momentum
quantum numbers.

2.5 Hund’s rule and ground-state spin

In addition to the ground-state energy, we are interested in the ground-state total
spin whose proper determination is a difficult task. For weak interaction, one expects
Hund’s rule for the shell filling of the orbitals in Fig. 2.6: Degenerate orbitals are
singly occupied with parallel spin which minimizes the Coulomb repulsion. Therefore,
half-filled shells are exceptionally stable7. This Hund’s rule shell filling is in complete
analogy to conventional atomic physics and has indeed been found in the experiment
for small few-electron dots (see Fig. 2.10).

On the theoretical side, we have to precise that approximative methods often
work in the subspace of fixed Stot

z and break the S2
tot symmetry. Sub-Hund’s rule

spin was predicted in a spin-density functional (SDFT) calculation by Hirose and
Wingreen (1999) for N > 22 and λ = 1.9. In general, restricted Hartree-Fock
(HF) calculations give unphysically high values for the spin of the interacting ground
state, whereas unrestricted HF can also underestimate the spin for small interaction.
We note also that a diffusion Monte Carlo calculation based on SDFT trial wave
functions (Pederiva et al., 2000) gave the wrong ground-state spin for N = 4 (cf.
Reimann and Manninen, 2002). Thus essentially exact methods are necessary to
obtain the correct spin ordering. A quantum Monte Carlo (QMC) study (Egger

7For stronger interaction however, there might be a competing mechanism: Orbitals in the same
shell with higher angular momentum are lower in energy because they are further apart from the
center. This would favor double occupancy of orbitals with higher angular momentum, e.g. for
nine electrons.

13



2 Few-electron quantum dots

et al., 1999) found for strong correlations several cases (N = 6, 7, 8) of spins larger
than the Hund’s rule value.

2.6 Brueckner parameter rs

Another parameter to characterize the interaction strength of the 2D electrons is the
so-called Brueckner or Wigner-Seitz dimensionless density parameter rs. In homo-
geneous systems it is defined by the radius of the circle that every electron occupies
effectively in units of a∗

B, so the homogeneous density is n0 = 1/[π(a∗
Brs)

2].

For few-electron quantum dots, it is difficult to define an overall density, but there
are many ways to define rs. Egger et al. (1999) determined rs numerically from
the first maximum of the two-particle correlation function. Koskinen et al. (1997)
used the formula r3

s = λ4/
√

N and Filinov et al. (2001) obtained r3
s = 2λ4. For

N < 10 and λ ≤ 10 all these dependencies agree qualitatively (apart from a trivial
factor of two because some authors define rs as the nearest-neighbor distance). We
define rs as half the nearest-neighbor distance. In Sec. 2.8 we also give the values of
rs for classical electrons.

2.7 Strongly interacting limit: Wigner molecule

Now we consider the limit of very strong correlations. For the case of the homoge-
neous electron gas, Wigner (1934, 1938) has shown that for low density (rs → ∞),
one can minimize the energy of the system by allowing the electrons to crystallize in
a so-called Wigner crystal. Accordingly, 2D interacting electrons form a hexagonal
lattice. This situation occurs because the zero-point energy associated with localizing
the electrons eventually becomes negligible in comparison to the electrostatic energy
of a classical lattice (Fetter and Walecka, 1971). QMC studies have predicted
the critical value of rs for the Wigner crystallization of the 2DEG as rcl

c ≈ 37 ± 5
for clean systems (Tanatar and Ceperley, 1989) and rdis

c ≈ 7.5 for disordered
systems (Chui and Tanatar, 1995). Wigner crystallization is also thought to be
related to the experimentally found apparent 2D metal-insulator transition (Abra-

hams et al., 2001). Wigner crystallization is a typical example for a quantum phase
transition. At zero temperature the melting of the crystal is driven by quantum fluc-
tuations, i.e. the oscillatory motion of the electrons about their lattice points.

In few-electron quantum dots, the crossover to the so-called Wigner molecule,
i.e. the small finite-size counterpart to the Wigner crystal, has been analyzed by
many authors with various methods in the last years. Bryant (1987) investigated
the behavior of two electrons in rectangular quantum-well boxes with hard-wall con-
finement. He found signatures of Wigner crystallization in the electronic structure
and the spatial correlation function. Polygonal dots without rotational symmetry

14



2.8 Classical electrons

have been considered in a recent SDFT study by Räsänen et al. (2003) and also
by Creffield et al. (1999), who showed that for low densities, the continuous
problem [analog to (2.6) with two electrons] can be mapped on a lattice model.

In the isotropic parabolic potential, there is no preferential orientation for crys-
tallization. The electrons form a Wigner molecule that consists of various spatial
shells, corresponding to electrons arranged on concentric circles. With path-integral
Monte Carlo (PIMC) simulations Egger et al. (1999) have determined the critical
parameter rc ≈ 2 for the formation of the Wigner molecule. In a subsequent PIMC
study for stronger interaction and higher electron number, Filinov et al. (2001)
have found that the crystallization is actually a two-stage process: After the radial
ordering of the electrons into shells, the freezing of inter-shell rotation proceeds at a
much higher rs.

Naturally, the exact value for the critical rs depends on the criterion which one
chooses to discriminate the Wigner crystallization. Egger et al. (1999) have con-
sidered the spin sensitivity of the two-particle correlation function, whereas Filinov

et al. (2001) used a Lindemann criterion for the radial and angular fluctuations.
Another interesting option for small dots or quantum rings is to seek for signatures of
rotations and vibrations of the molecule in the many-electron spectra (Yannouleas

and Landman, 2000a; Koskinen et al., 2001). Obviously, one can have a direct
look at the one- or two-particle densities which gives a qualitative impression of the
stage of crystallization. Here, however, mean-field methods have to be regarded with
care because of the symmetry breaking. In the following, we will cite other works
when we directly compare them with our calculations and refer to a recent review
article on the electronic structure of quantum dots by Reimann and Manninen

(2002).

2.8 Classical electrons

We are interested in the crossover to the strongly interacting regime and the charge
distribution in this case. Therefore, to understand the structure of the wave function,
we give the classical rest positions and energies for up to seven 2D electrons in a
parabolic confinement potential in Table 2.1. Here, ra is the distance of the outer
electrons from the center measured in oscillator length l0, while rs is half the nearest-
neighbor distance measured in effective Bohr radii a∗

B. Energies are given in units of
~ω0. These quantities depend only on N and λ.

For N = 5 and 6 we specify two isomers with higher energies. Due to the classical
virial theorem (cf. Sec. 3.1.6), there is a simple relationship between the energy and
ra. When we denote the distance of the i-th electron from the center by ra(i), we
have

E =
3

2

N
∑

i=1

ra(i)
2 . (2.15)
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2 Few-electron quantum dots

N Geometry r3
a/λ rs/λ

4/3 E/λ2/3 E/r2
a

2 dumbbell (2) 1
4

≈ 0.630 ≈ 1.191 3

3 triangle (3) 1√
3
≈ .577 ≈ 0.721 ≈ 3.120 9

2

4 square (4) 1
4

+ 1√
2
≈ .957 ≈ 0.697 ≈ 5.827 6

5 pentagon (5)
√

1 + 2√
5
≈ 1.376 ≈ 0.654 ≈ 9.280 15

2

5∗ square (4,1) 5
4

+ 1√
2
≈ 1.957 ≈ 0.625 ≈ 9.388 6

6 pentagon (5,1) 1 +
√

1 + 2√
5

≈ 0.667 ≈ 13.356 15
2

6∗ hexagon (6) 5
4

+ 1√
3
≈ 1.827 ≈ 0.611 ≈ 13.452 9

7 hexagon (6,1) 9
4

+ 1√
3
≈ 2.827 ≈ 0.707 ≈ 17.996 9

Table 2.1: Ground-state configurations and energies for classical point charges in the 2D
oscillator. For N = 5, 6 particles, we also give the values for isomers with higher energy.

This classical energy is a lower bound for the true quantum-mechanical ground-state
energy. The first semiclassical corrections would include vibrations, rotations, and
spin effects. The equilibrium configurations for higher electron numbers were ob-
tained by classical MC simulations (Bedanov and Peeters, 1994; Marlo et al.,
2002, e.g.). For N = 6, 16, 32, . . .. an electron enters the center and a new spatial
shell appears. However, closed spatial shells are not exceptionally stable because
isomers with different shell structure are very close in energy. For example, the nine-
and ten-electron classical ground-state configurations (2,7) and (2,8) lie energetically
only slightly below the (1,8) and (3,7) states8. For larger electron number there is
an interplay between these onion-like shells and the formation of a hexagonal lattice
in the interior of the dot9.

8Quantum and thermal fluctuations can induce transitions between these spatial shell-fillings (see
Egger et al., 1999; Filinov et al., 2001).

9For macroscopic realizations of 2D Wigner molecules see Mayer (1878); Saint Jean et al.

(2001). Classical molecular dynamics for a similar system (point charges confined by a magnetic
field) were performed by Reusch and Blümel (1998). Classical configurations for 3D were first
obtained analytically for up to N = 20 by Föppl (1912) who had been inspired by the atomic
model of Thomson (1904).
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2.9 Impurity

2.9 Impurity

In our path-integral Monte Carlo study we also include a single attractive impurity
which we model by a Gaussian

Vimp(r) = −w exp

{−(r − x)2

2σ2

}

. (2.16)

The impurity is located on the y-axis at x = (0, y0). The width of the Gaussian is σ
and its depth is controlled by w. It breaks the rotational symmetry of the parabolic
confinement but we still have the symmetry with respect to the y-axis. One expects
that this should enhance localization because the Wigner molecule is pinned at the
impurity. In the GaAs experiments the impurities are given by positively charged Si
donors. We state that the detailed form of the defect should not matter as long as
rotational symmetry is efficiently broken10.

For electron numbers N = 1-10, we have investigated the following parameters:
The coupling constant λ = 4 corresponds to a nearest-neighbor electron distance of
≈ 8aB (rs ≈ 4). The impurity is located at x = (0, 1.5) with radius 2σ = 0.75 =: ς
and strength w = 4 (Fig. 2.7). The choice of these parameters has been motivated as
follows: We are in an intermediate regime where Wigner crystallization sets in. At
this interaction strength only one electron enters the impurity (two classical electrons
with distance ς have the Coulomb energy λ/ς ≈ 5.3). The thermal energy (chosen
below) kBT = 0.125 is small compared with the impurity depth. The impurity is
located not too far away from the center and strong enough so that the electrons feel
its influence. The matrix element of the impurity potential with respect to the 2D
harmonic oscillator ground state is

〈00|Vimp |00〉 = − w ς2

ς2 + 2
exp

{ −2y2
0

ς2 + 2

}

≈ −0.152 , (2.17)

of the order of kBT . However, we expect that the influence of the defect is enhanced
because of the Coulomb interaction. By integrating the density over the radius ς we
obtain that for N > 1 about 75% of an electron charge is trapped by our impurity

10A parabolic quantum dot with up to three repulsive impurities of this form and N < 4 has
been studied with exact diagonalization by (Halonen et al., 1996). Some of their results
seem incorrect to us, when we compare them to first-order perturbation theory in w. Extensive
density functional theory studies (Hirose et al. 2001, 2002) have investigated this model with
stronger disorder. In the first work they considered spin-polarized dots with 10–20 impurities
with w ∈ [−6, 6] and fixed σ = l0/(2

√
2). They varied 0 ≤ λ < 4 (corresponding to 0 < rs

<∼ 4)
by changing κ and keeping ~ω0 = 3meV fixed. They then averaged over ∼ 1000 disorder
configurations and considered the fluctuations of the addition energy of the tenth electron ∆(10).
They found that these fluctuations are well described by a convolution of a Wigner-Dyson
distribution (which is predicted by Random Matrix theory for non-interacting particles) and a
Gaussian (for finite interaction).
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Fig. 2.7: Parabolic confinement potential with impurity along the y-axis of our dot. The
lowest single-particle energy is about ε0 ≈ 0.51.

(Sec. 3.4.2). Therefore we have also an interesting model for a localized spin which
interacts with the rest of the electrons, similar to the Kondo model. Our primary
interest, however, is how the ground-state spin and the addition energies are affected
by the impurity.

2.10 Temperature and thermal melting

In our calculations the Hartree-Fock method is for zero temperature. The path-
integral Monte Carlo (PIMC) is performed in the canonical ensemble for a given
inverse temperature β = 1/kBT . Here, as for all other energies, we measure kBT in
units of ~ω. We choose kBT = 0.125. With decreasing temperature, PIMC becomes
increasingly difficult, because of the fermion sign problem (see Sec. 3.1.8).

The temperature scale is thus directly related to the energy scale that one has
chosen: 1 meV corresponds to 11.6 K. On the other hand, for a given value of λ there
might be various values of ~ω0 depending on the host material (m∗, κ). For example,
T = 10K and ~ω0 = 3meV correspond to β ≈ 3.5 which are the parameters in the
PIMC simulation of Harting et al. (2000). At this temperature the fermionic sign
problem is still very weak. For our coupling constant λ = 4 and an energy scale of
~ω0 ≈ 0.7meV (GaAs), β = 8 corresponds to T ≈ 8K, and the sign problem is quite
strong.

In the experiments of Ashoori (1996) with GaAs based quantum dots the temper-
ature range is T =0.05–0.3K and the oscillator energy is estimated about ~ω0 =0.3–
2.5meV (Ashoori et al., 1992). This yields very high β ≈11.6–580. Kouwenhoven-

et al. (2001) estimate for their experiments ~ω0 ≈ 3meV and β ≈170.

We also want to mention briefly the thermal melting of a Wigner molecule. When
the temperature is increased, thermal fluctuations destroy the crystalline shell order-
ing. It is thus a different process than the quantum melting, where the density is
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Fig. 2.8: Thermal versus quantum melting as illustrated by the radial charge densities for
ten spinless electrons in a clean quantum dot. For strong interaction (λ = 8) the radial
ordering disappears with increasing temperature. For high density (λ = 2) the spatial shell
structure is not yet very pronounced.

increased. We illustrate these two processes in Fig. 2.8 for ten spin-polarized elec-
trons and various couplings and temperatures. The pronounced radial ordering for
λ = 8 vanishes when temperature is increased. On the other hand, for stronger
confinement (small λ) the electrons are delocalized and there are no radial shells.
However, as we are dealing with a small finite-size system, there seems to be no
sharp phase transition in this thermal melting (Harting et al., 2000).

2.11 Few-electron artificial atoms

In this section we describe experiments which have been performed by a cooperation
of the University of Delft in the Netherlands and the NTT research laboratories in
Japan by Kouwenhoven et al. (2001). In Fig. 2.9 we show a so-called vertical
quantum dot. It consists of a pillar which has been etched from the various layers
of a semiconductor heterostructure. The dot’s electrons accumulate in the central
InGaAs layer which has a thickness of about 12nm. Two insulating AlGaAs layers
each about 8 nm thick form the tunnel barriers. Source and drain contacts are made
of n-GaAs where the concentration of Si dopants increases away from the tunnel
barriers. The top contact is a metal circle which also initially defines the pillar
when the structure is etched from the heterostructure. Finally a metallic side gate
is evaporated on the pillar and surrounds it. By this side gate, one controls the
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2 Few-electron quantum dots

Fig. 2.9: Vertical quantum dot from the experiments of Tarucha et al. (1996). The
active InGaAs layer contains from zero to about one hundred confined electrons depending
on the strength of the repulsive side gate potential. The diameter of the pillar is ∼ 0.5µm.

confinement and the number of electrons in the dot. The electronic structure of the
system is such that at zero side gate voltage, there are about 80 electrons in the
dot. The electrons occupy only the lowest quantum state in vertical direction so that
the dot is two-dimensional. By applying an increasingly negative voltage to the side
gate, electrons are expelled from the dot one by one until their number is zero. The
conductance is measured by applying a very small voltage between source and drain.

In Fig. 2.10 the current is shown in dependence of the side gate voltage. The
conductance peaks have very different heights, but, above all, their spacings are not
equidistant. The distance between the peaks is (up to a geometric factor) the addition
energy which has maxima for the magic numbers of the 2D oscillator (see Sec. 2.4).
Further it shows smaller maxima for the half filled shells which is a consequence of
Hund’s Rule11. The experimentalists estimated the harmonic oscillator level spacing
~ω0 = 3meV (λ = 1.9) and the charging energy of about the same order. This atom-
like energetic shell filling for quantum dots was first discovered in 1996 (Tarucha

et al., 1996) and it is possible to reproduce these measurements which means that
it really has become feasible to produce artificial atoms with precise quantum states
in solid-state devices.

11Recently, Matagne et al. (2002) precised that due to small non-parabolicity effects, these
maxima can change even if Hund’s rule spin filling is not affected.
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2.12 Single-electron capacitance spectroscopy

Fig. 2.10: Conductance peaks for the few-electron quantum dots of Tarucha et al.

(1996). From the peak spacings, the addition spectrum can be obtained (inset), which
shows the shell structure of the 2D harmonic oscillator similar to Eq. (2.14).

2.12 Single-electron capacitance spectroscopy

As a second example, we want to illustrate experiments performed at the MIT by
the group of Ashoori (1996). Their quantum dots are similar to the vertical dots
described in the previous chapter. The electrons of the dot are confined in a thin
GaAs layer by two AlGaAs tunnel barriers. This vertical structure is sandwiched by a
top and a bottom gate which can be considered as two capacitor plates [Fig. 2.11(a)].
The upper plate is made positive and also shaped appropriately in order to confine
the electrons in the quantum well laterally. In some experiments also a side gate is
included by which the dot is even more strongly squeezed in the lateral direction.

When the top gate voltage is raised electrons enter the dot one by one. In contrast
to the experiments in the previous section, here, no conductance is measured, but
the capacitance of the structure is determined by measuring the charge induced by
the dot on the upper plate. This is done by adding a small AC voltage to the DC top
gate voltage Vt. When Vt is adjusted to a value at which an electron can be added to
the dot, the AC voltage causes the electron to tunnel back and forth between the dot
and the bottom gate. This is symbolized by the double arrow in Fig. 2.11(a). This
tunneling corresponds to a strongly enhanced capacitance and can be registered by
a synchronous detector.

In Fig. 2.11(c) such a capacitance peak spectrum is depicted in analogy to the
conductance peaks shown in the previous section. Many of these quite irregular
patterns are combined to one gray-scale plot in Fig. 2.11(b) for varying magnetic
field and in (c) for varying side gate voltage. As in the previous section the spacings
of these peaks are the addition energies. However, the dots of Ashoori and coworkers
are in general larger, with up to 1.2µm lithographic diameter and estimated single-
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2 Few-electron quantum dots

level spacings of 0.3 < ~ω0 < 2.5meV (Ashoori et al., 1992). For GaAs, this
corresponds to 6 >∼λ >∼ 2. Therefore the density is lower and interaction effects are
more important. Further, in their dots there is disorder caused by Si donors which
migrate by diffusion into the quantum well and form attractive impurities. Our
PIMC parameters are chosen to describe this situation.

2.13 Bunching of addition energies

In Fig. 2.11(b) the evolution of the addition spectrum for an intermediate sized dot
with magnetic field is shown. We consider first the case of zero magnetic field: The
first seven electrons enter the dot at largely spaced voltages. These spacing are no
longer necessarily equidistant nor do reflect the harmonic oscillator levels. Probably
the electrons enter into a single potential minimum or into several local minima that
are close enough so that Coulomb repulsion is sufficient to keep the peaks widely
spaced. Beyond the seventh electron trace there is a strange phenomenon: Three
electrons enter the dot at nearly the same gate voltage. Also the next two electrons
enter the dot in a bunch (pair). This behavior was fist seen in 1992 (Ashoori

et al., 1992). It appears to be a violation of Coulomb blockade and is called
bunching (Zhitenev et al., 1997).

After about 40 electrons are added, the bunching develops into a quasi periodic
pattern with a bunch appearing every 4th to 6th electron. For N > 80 the peaks are
spaced equidistantly because the density is already quite high and Coulomb blockade
behavior is found. This is connected to a crossover from localization to delocalization:
At high density the electronic states are spread out over the whole dot. However,
here the bunching reappears when a magnetic field is switched on, probably because
then electrons are further localized.

The experimentalists made a systematic study (Ashoori et al., 1998) and tried
to establish a phase diagram for the bunching phenomenon. The bunching is not
found for high densities, i.e. for small dots or large electron number. With a magnetic
field however, the bunching can be extended to regions of higher density. The authors
claim that it is an universal effect.

In a modified experiment, Zhitenev et al. (1999) also included a side gate [see
Figs. 2.11(a),(c)]. The addition spectra are less affected by the side gate than by the
top gate which can be seen when considering the different magnitudes of the voltages
in Fig. 2.11(c). The side gate voltage Vs has stronger influence on states which are
localized at the perimeter of the dot. It allows to detect these states because they
have a very large slope with respect to Vs. Other traces with small slope correspond to
interior states. In Fig. 2.11(c) the arrow points to a characteristic edge localized state.
It shows interesting ’avoided crossings’ with level splittings that are a measure of the
’interaction’ of this state with the interior states. The experimentalists deduced that
at the bunching points electrons tunnel into different puddles at the center and the
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2.13 Bunching of addition energies

PSfrag replacements

(b) (a)

(c)

Fig. 2.11: Single-electron capacitance spectroscopy. In (a) schematic picture of the device
similar to the one in Fig. 2.9. In (b) gray-scale plot of capacitance vs. top gate voltage
or equivalently electron number (from one to ∼ 140 electrons) for varying magnetic field
(Zhitenev et al., 1997). In (c) capacitance vs. top gate voltage for varying side gate
voltage (Zhitenev et al., 1999).
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2 Few-electron quantum dots

perimeter of the dot. Note that other localized states do not show this anti-crossing
splitting. They appear not to interact with the interior states, maybe because they
are out of reach.

Ashoori et al. interfered from the pattern of the anti-crossings that there exists an
effective attraction between electrons in different localized regions. They concluded
that the bunching is intrinsically linked to the localization-delocalization transition
and specified the critical density in the experiment at a Brueckner parameter of about
rc ≈ 1.8. This value is much lower than the values calculated for the crossover to the
Wigner crystal in the infinite 2DEG (see Sec. 2.7), instead it is in good agreement
with rc ≈ 2 as calculated by Egger et al. (1999) for the Wigner crystallization of
a few-electron quantum dot.

Finally, in another subsequent experiment with a dumbbell shaped top gate, the
same group investigated a quantum dot with two potential minima which represents
a system with artificial disorder (Brodsky et al., 2000). They found that pairings
of the addition peaks can be controlled by a strong magnetic field which splits up
the low-density droplet into two fragments, corresponding to the two local minima.
Apparently, once again, there exists a mechanism that cancels the Coulomb repulsion
of electrons in these fragments.

2.14 Theoretical approaches for the bunching

phenomenon

We have presented two different groups of experiments that mainly inspired our
calculations. While the effects for the small few-electron quantum dots of Kouwen-
hoven et al. are theoretically quite well understood, the phenomenon of bunching is
not yet clarified. Wan et al. (1995) tried to explain it by a polaronic effect due
to electron-phonon interaction. Raikh et al. (1996) found bunching when they
analyzed certain geometries of impurities and classical electrons with short-range
interaction. However, both approaches imply coherent tunneling while experimen-
talists found sequential tunneling, i.e. electrons enter the dot independently at very
close gate voltages.

A numerical study for a small system has been performed by Canali (2000). He
considered a tight-binding Hamiltonian with random disorder and nearest-neighbor
Coulomb repulsion

H =
∑

i

(εi − eVg)â
†
i âi + t

∑

<i,j>

(â†
i âj + H.c.) + V

∑

<i,j>

n̂in̂j + U
∑

i

n̂i↑n̂i↓ .

Here, εi ∈ [−W, W ] is the random site energy, t is the tunneling constant, V = e2/a
is the nearest-neighbor Coulomb interaction constant with a the lattice constant and
U is the Hubbard on-site repulsion. The electron number in the dot is controlled by
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2.14 Theoretical approaches for the bunching phenomenon

i<n > = 1

N = 7 N = 8

N = 9 N = 10

Fig. 2.12: Coulomb staircase, i.e. electron number in the dot versus gate voltage, for one
particular disorder realization and two slightly different U . The eighth and ninth electron,
are added to the dot at nearly the same Vg, i.e. ∆(8)/e = [Vg(9) − Vg(8)] ≈ 0 (arrow).
Corresponding ground-state site occupations < n̂i > for N = 7−10 and U = 30t. The gray
circles indicate the sites where the largest portion of the incoming electron, participating
in the pairing, is distributed (Canali, 2000).

the gate voltage Vg. With an exact diagonalization for N < 11 spinful electrons and
a 3×4 lattice he found indeed vanishing addition energies for eight or nine electrons.
He interpreted this finding for strong on-site repulsion with two different mechanisms:
(i) For intermediate Coulomb interaction two electrons tunnel to different sites in the
dot (at rs ≈ 0.5)12. (ii) For stronger Coulomb interaction one electron tunnels to the
center and forms a singlet, the other electron tunnels into an edge state (at rs ≈ 2,
see Fig. 2.12).

However, we find that the lattice model is not entirely convincing. The lattice is
quite small and also it does not model the (smooth) external potential. For example
there is an artificial maximum in the addition energy for a half filled lattice (large
∆(6) in Fig. 2.12)13. Furthermore, the Coulomb interaction potential in the dot
should not show significant screening. In any case, it is not screened in a Hubbard-U
way.

12He determined rs = 2√
πn

(V a/4t) by the overall density of the rectangular dot n = N/(6a2).
13Such magic fillings coinciding with the related classical charge model were investigated within

the Hartree-Fock approximation for a 16 × 16 lattice and short-range interaction by Walker

et al. (2003). We cite other calculations for lattice models at the end of Sec. 3.4.1.
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2 Few-electron quantum dots

2.15 Open questions addressed in this thesis

In the present thesis we study the importance of correlations in few-electron quantum
dots within the unrestricted Hartree-Fock (UHF) approximation and the exact path-
integral Monte Carlo (PIMC) method. For weak correlations, the confined electrons
can show atom-like properties. Here, the Hartree-Fock method is expected to give
qualitatively correct results. For stronger interaction, the electrons in the dot form
a Wigner molecule which shows spatial ordering and correlation. Signatures of the
onset of this crystallization have been found in recent experiments.

The formation of the Wigner molecule is expected to be strongly affected by the
influence of disorder. We therefore include a defect in the confinement potential for
the PIMC study. This single attractive impurity breaks the rotational symmetry
of the external oscillator and can localize an electron and thereby pin the Wigner
molecule. We underline the importance to study a generic model for weak disorder
and interaction in 2D to take into account the experimental situation and note that
the localization-delocalization transition has been probed recently in larger quantum
dots. so Wigner molecule spectroscopy is within reach of current technology.

We are treating the full continuum problem, and the PIMC allows us to investigate
any form of the impurity potential and long-range interaction, though we cannot
afford to do the calculation for many disorder configurations. In our realistic model
of a quantum dot, electrons arrange in spatial shells and are not restricted to the
lattice points of a discrete model. In this context we are especially interested to
know if the bunching phenomenon can be found and explained with our model. In
general, it is an open question how ground-state energies and spins are influenced by
an impurity.

While Hartree-Fock is a traditional method of many-electron quantum mechanics,
the application of its spin- and space-unrestricted version for a few strongly correlated
2D electrons is new. We show and explain how the symmetry-violating UHF mean
field mirrors the Wigner crystallization in the clean quantum dot. We compare our
UHF findings with exact PIMC results, which enables us to assess quantitatively the
accuracy of the computationally less demanding mean-field method.
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3 Path-integral Monte Carlo

simulation

In the present chapter we describe in detail our path-integral Monte Carlo (PIMC)
simulations. We start by introducing the basic idea of Monte Carlo integration
and the Metropolis algorithm, by which it is often implemented. Then we apply
this computation scheme to the many-electron discretized path-integral (PI) which
allows us to calculate in an essentially exact numeric way expectation values for the
interacting electron system. A serious limitation to quantum Monte Carlo simulations
in general is the so-called sign problem. It results in a signal-to-noise ratio which
vanishes exponentially with increasing electron number and inverse temperature.
We show that the expectation value of the sign can be understood as a measure of
quantum effects for the many-fermion system.

Having introduced the method, we report various tests and crosschecks that we
have performed for our PIMC simulations. We also explain the extrapolation that
we use to eliminate the error due to an approximate short-time propagator, the so-
called Trotter error. We have obtained analytical results and performed an exact
diagonalization for the two-electron quantum dot. These calculations illustrate the
temperature dependence and the problem of finite-temperature spin contamination.
For three and four electrons in the clean dot, we compare with the results of recent
configuration-interaction calculations (Mikhailov, 2002a,b). For a dot with impu-
rity, to date, there are no numerically exact results in the literature. We show that we
can obtain high precision data for low temperatures with the Trotter extrapolation
method and specify the details of our procedure.

Finally, in the last part we present the results of our PIMC study for a parabolic
quantum dot with a single attractive impurity. We focus on the case of intermediate
interaction where the Wigner crystallization sets in. This crossover regime is very
difficult to treat numerically, and PIMC is probably the only method which can
reliably resolve the tiny energy differences which determine the spin ordering and the
addition energies. We investigate the effect of the impurity on ground-state energies
an spins. Remnants of the energetic shell structure, which are seen despite of the
relatively strong interaction, are washed out by the impurity. For N = 8, we find a
new peak in the addition spectrum. Its appearance is accompanied by the transition
to a very unexpected sub-Hund’s rule spin S = 0. We discuss in detail the onset of
Wigner crystallization for the six-electron Wigner molecule. The spin sensitivity of
this process is significantly enhanced in the presence of the defect. We also consider
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3 Path-integral Monte Carlo simulation

the behavior of the impurity’s susceptibility which is reminiscent of the Kondo model.

3.1 Path-integral Monte Carlo

3.1.1 Monte Carlo method

The Monte Carlo (MC) technique is probably the most important and powerful
computation method in statistical physics. Here, we briefly recall the idea of MC
integration and refer to the literature for more complete introductions and reviews.

Often the expectation values that one wants to calculate in statistical or quantum
mechanics are integrals of the form

I =

∫

ddX ρ(X) A(X) = 〈A〉ρ . (3.1)

Here, X is a microstate in a d-dimensional configuration space, and A is an ob-
servable, or, more generally speaking, a function whose average is calculated. It is
calculated with respect to a weight function, a probability density ρ(X) which is non
negative ρ(X) ≥ 0 and normalized

∫

ddX ρ(X) = 1. A typical example is the energy
of a classical gas of N particles at temperature kBT = 1/β,

E = 〈H〉 =
1

Z

∫

d3r1 · · ·d3rN d3p1 · · ·d3pN H(P , R) e−βH(P ,R) . (3.2)

In order to perform the integration numerically in a direct way, e.g. with the Simpson
rule, one has to sum up the integrand at a number of points which grows exponentially
with d. This is impossible not only for a gas with d ∼ 1023 but for any system with
many degrees of freedom, say d >∼ 100.

Also, the weight ρ(X) will be very small in most parts of configuration space and
thus give only very small contributions to the integral. Now, the idea of Monte Carlo
integration is to sum up the integral (3.1) stochastically: The function A is evaluated
at a number of configurations which are supposed to be the most important ones,
yielding an estimate for I

〈A〉MC
ρ =

1

M

M
∑

i=1

A(X i) =: A . (3.3)

This importance sampling means that the X1 · · ·XM are distributed according to
ρ(X). In the next section we will show how we can produce such a stochastic
trajectory {X1, . . . , XM} in configuration space.

Obviously, the number of points M should also be quite large and the points X i

decorrelated. This is important when we want to estimate the error of the MC
method: One can consider the X i and the A(X i) as random variables. A is an
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3.1 Path-integral Monte Carlo

estimator for I. It can be shown under quite general conditions1 that A is distributed
according to a Gaussian with expectation value 〈A〉 = I, i.e.

P (A) =
1√

2πσ2
exp

{−(A− I)2

2σ2

}

. (3.4)

The variance scales like M−1 times the variance of A,

σ2 =
1

M

{

〈

A2
〉

ρ
− 〈A〉2ρ

}

=
1

M







1

M

M
∑

i=1

A(X i)
2 −

(

1

M

M
∑

i=1

A(X i)

)2






. (3.5)

The MC estimate for the integral (3.1) is therefore I ≈ 〈A〉MC
ρ ±σ. The one-standard-

deviation error bar is σ, thus the probability that the true value lies within this range
is ∼68%. The probability that it lies within a two-σ range is ∼95%.

3.1.2 Markov chain and Metropolis algorithm

Now, one has to think about how to generate a stochastic trajectory {X 1, . . . , XM}
where the X i are statistically independent and distributed according to ρ(X). It
turns out that this random walk through configuration space is basically a Markov
process, i.e. a stochastic process where the probability to hop from X i to X i+1 as
the i-th step does not depend on the history of the process (see e.g. Römer and
Filk, 1994). The statistical independence is important in order to obtain a correct
estimate for the error bar. Furthermore the trajectory should in principle be able to
reach every point in the configuration space. This is called ergodicity of the Markov
process.

One can show that it is sufficient to require that the transition probabilities
W (X → X ′) of the Markov process fulfill the condition of detailed balance (also
called microreversibility)

W (X → X ′)ρ(X) = W (X ′ → X)ρ(X ′) . (3.6)

The proof can be found in the literature (e.g. Negele and Orland, 1988, p.408).
Detailed balance means a dynamic equilibrium, namely that the process X → X ′

(i.e. being at X and hopping to X ′) has the same probability as the inverse process
X ′ → X.

The most important way to implement this random walk is the Metropolis method
(Metropolis et al., 1953). It consists of two steps:

1See e.g. Negele and Orland (1988). The underlying mathematical theorem is the central limit
theorem. Actually, it is sufficient to require that the Ai = A(Xi) which are summed to A are
independent and identically distributed and have non-vanishing first and second momenta.
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3 Path-integral Monte Carlo simulation

� First, starting from a configuration X i a new configuration X ′ is proposed.
This is often done in the following way: One chooses a component of X i at
random, let’s say the m-th component. Then (X i)m is updated,

(X ′)m = (X i)m + r ∆x, with r ∈ [−1, 1] . (3.7)

Here, r is an equally distributed random number2 and ∆x > 0 is a step-size
which should be chosen appropriately3.

� Second, one decides whether to accept this proposed move. This is done by
comparing the weights of X ′ and X i. The new configuration is then

X i+1 =

{

X ′ if ρ(X ′)/ρ(X i) ≥ s, with s ∈ [0, 1],

X i else.
(3.8)

One thus compares the ratio of the weights with an equally distributed random
number s. Often ρ(X i) ∝ exp (−βEi) is just the Boltzmann factor. Then
the Metropolis method means that the proposed step is accepted with prob-
ability one, if it lowers the energy. Else it is only accepted with probability
exp [β(Ei − E ′)]. One can check that this rule fulfills detailed balance.

The step-size ∆x controls the ratio of accepted moves which should normally be
adjusted to about 30% to make the sampling most effective. However, ∆x must
always be chosen large enough so that the MC trajectory can explore efficiently the
full configuration space. This is important e.g. for tunneling processes.

In the MC simulation, one starts from an arbitrary configuration and iterates the
Metropolis algorithm. A number of steps is necessary in order to reach detailed
balance. This is called equilibration or thermalization. In general, a badly thermal-
ized MC system can give biased data. In our simulation we checked that the energy
has dropped to the expected range, which was typically achieved after a few steps
(∼ 1000d simple Metropolis steps).

3.1.3 Discretized path integral

Now we apply the MC method to finite-temperature quantum mechanics. The ex-
pectation value of an observable A in the canonical ensemble is given by

〈A〉 =
1

Z
Tr(A e−βH) =

1

Z

∫

A({x}) 〈{x}| e−βH |{x}〉 d{x} (3.9)

2In our simulation we use the minimal random generator of Park and Miller combined with a
Marsaglia shift (Press et al., 1996) with a period of about 3×1018.

3In a discrete problem, one for example flips a spin at a random lattice point.

30



3.1 Path-integral Monte Carlo

with the partition function Z = Tr(e−βH). The trace is performed in position space
representation, thus {x} = {x1, . . . , xN} corresponds to the coordinates of all elec-
trons and d{x} = d2x1 · · ·d2xN . Further we have assumed that A is diagonal in that
basis. This is the case throughout our simulation, but the approach can be easily
generalized for an observable depending also on the momenta.

At this point we have to state an important remark about spin: without loss of
generality, we take the first N↑ electrons to have spin up, and the remaining N↓ =
N − N↑ to have spin down. We are thus working in the subspace of fixed total spin
projection4 Sz = (N↑ − N↓)/2. In other words, spin-up electrons are distinguishable
from spin-down electrons5. This yields the problem of spin contamination: we do not
have a true eigenstate of Stot, but at finite temperature, each state with Stot ≥ Sz

contributes (see Sec. 3.1.7).
Now, we introduce the Trotter imaginary-time step size ε = β/P . It holds e−βH =

(e−εH)P . The construction of a discretized path-integral representation of (3.9) is
obtained by inserting the identity operator

1α =

∫

d{x}α |{x}α〉〈{x}α| (3.10)

at each discretization point (time slice) εα = αε, where α = 1, . . . , P − 1, yielding

〈A〉 =
1

Z

∫

d{x}1 · · ·d{x}P A({x}1)
〈

{x}1
∣

∣ e−εH
∣

∣{x}2
〉

· · ·
〈

{x}P
∣

∣ e−εH
∣

∣{x}1
〉

.

(3.11)
We can also evaluate A at every time-slice which is done by replacing A({x}1) with
A[X] =

∑P
α=1 A({x}α)/P . This improves both statistics and ergodicity. The expec-

tation value (3.11) is a high-dimensional integral over d = 2PN space coordinates in
analogy to Eq. (3.1). We will calculate it by stochastic sampling on all the many-
particle paths X = ({x}1 · · · {x}P ) with the MC technique.

3.1.4 Trotter break-up and short-time propagator

Unfortunately, in most cases the exact short-time propagator (also called high-
temperature propagator) 〈{x}| e−εH |{x}′〉 is not known. For sufficiently small ε and
a Hamiltonian H = H1 + H2, one may use the following Trotter-Suzuki break-ups as
approximants

exp(−εH) ' exp(−εH1) exp(−εH2) + O(ε2)

' exp(−εH2/2) exp(−εH1) exp(−εH2/2) + O(ε3) . (3.12)

4Similar to Hartree-Fock but here we are dealing with an exact method for finite temperature.
5Another possibility would be to extend the trace in Eq. (3.9) also over all possible spin configu-

rations (Lyubartsev and Vorontsov-Velyaminov, 1993). Still another possibility would be
to work in an ensemble of fixed total spin. This approach leads to particle statistics that have
mixed symmetry (in general neither bosonic nor fermionic). It seems to make the sign problem
worse, probably because then spin-up and down electrons are no longer distinguishable.
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The first is called ’naive’ break-up. We have employed the second which is symmetric
and Hermitian6. In our case H2 contains the Coulomb interaction and the impurity
potential, and is diagonal in real space [see Eq. (2.6)]. We only need to evaluate the
matrix elements of exp(−εH1), where H1 =

∑N
i=1 hi is the harmonic oscillator part

(2.9). Taking into account the indistinguishability of equal-spin electrons and the
Pauli principle, they read

〈{x′}| exp(−εH1)|{x}〉 =
1

N↑!N↓!





∑

P↑

(−1)sgn(P↑)

N↑
∏

j=1

〈x′
P↑(j)| exp(−εh)|xj〉





×





∑

P↓

(−1)sgn(P↓)

N
∏

j=N↑+1

〈x′
P↓(j)| exp(−εh)|xj〉



 . (3.13)

Here, P↑(j) denotes a permutation of the indices j associated with the spin-up elec-
trons, and likewise for P↓. In these expressions, the so-called Fock-Darwin propagator
for zero magnetic field (Ωc = 0) reads (Feynman, 1972, p.49)

〈x′| exp(−εh)|x〉 =
1

2π sinh(ε)
exp[−S0(x, x′)/~] (3.14)

with the classical action7

S0 =
~

2 sinh(ε)

{

(x2 + x′2) cosh(ε) − 2xx′
}

. (3.15)

A more compact notation for the non-interacting short-time propagator follows by
introducing the Nσ × Nσ matrices Mσ, where σ =↑ and σ =↓,

Mσ
ij = 〈x′

i| exp(−εh)|xj〉 , (3.16)

where the indices i, j run over the allowed labels for spin-σ electrons as defined above.
The many-electron propagator is then a product of two determinants for spin up and
down

〈{x′
j}| exp(−εH1)|{xj}〉 = det M↑ det M↓ . (3.17)

Since det Mσ can be negative we have to deal with the fermionic sign problem.
At this point two comments are in order: (i) Since the evaluation of determinants

for large N becomes computationally rather expensive, one might be tempted to
sample the permutations stochastically instead of summing them up analytically

6Both expressions are the same when they are put under the trace. A systematic study of the
accuracy of different break-ups for simple quantum systems has been carried out by De Raedt

and De Raedt (1983).
7Note that in the presence of a magnetic field the action S0 becomes complex-valued (Jones and

Papadopoulos, 1971).
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(i.e., computing the determinant). This will however worsen the sign problem. (ii)
One does not have to keep the permutations at every time slice. The minimum
requirement is to keep them at the time slices where observables are accumulated,
and of course at least at one time slice. Unfortunately, it turns out that the sign
problem behaves most favorably when the determinants are kept at every single time
slice. The computational effort spent with computing determinants at every time
slice is therefore worthwhile8.

The use of an approximate propagator introduces a systematic error in the PIMC
simulation. One can try to make this error very small by choosing a very tiny
Trotter discretization ε. A better way, however, to eliminate this error is to perform
simulations for various rather large ε, and then extrapolate ε → 0, as we will explain
in Sec. 3.3.

3.1.5 Path-integral ring polymer

Before we evaluate the many-electron path integral (PI) with the Monte Carlo tech-
nique, we want to remember an important interpretational analogy. For this we first
forget about anti-symmetrization and consider the discretized PI for distinguishable

quantum particles. For ε → 0, the action S0 in (3.15) coincides with the so-called
primitive approximation for the action

Sp.a. =
~ε

4

{

x2 + x′2 +
2(x − x′)2

ε2

}

(3.18)

which is obtained by applying (3.12) to the simple 2D oscillator. In this form it is
easy to see that the expression in the exponent of the PI has the form of the potential
energy of N interacting classical ring polymers

〈A〉 =
1

Z

∫

d{x}1 · · ·d{x}PA({x}1) e−ε
PP

α=1
1

2ε2
({x}α−{x}α+1)2+V ({x}α)+W ({x}α) .

(3.19)
The trace leads to the boundary condition {x}P+1 ≡ {x}1. This correspondence
is called quantum-classical isomorphism (Chandler and Wolynes, 1981). Each
quantum particle is represented by a classical ring polymer with P beads. The spread
of the ring is of the order of the thermal wavelength of the particle λtherm ∼

√
β. The

polymers interact in a peculiar way because only beads on the same time slice feel
their mutual Coulomb repulsion W . All beads are subjected to the external potential
V . Beads on adjacent time slices which form the ring interact via a harmonic force
with spring constant ∝ ε−2. This term comes from the kinetic energy of the original
Hamiltonian. When choosing a very fine discretization, thus a small value for ε, the

8We use the BLAS and LINPACK routines in FORTRAN, which factor a matrix by Gaussian
elimination.
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ring polymer becomes very rigid. This can make it hard to sample the path integral
ergodically.

Now, for identical particles ones has to (anti-)symmetrize at least at one time
slice. For example the boundary condition in Eq. (3.19) would be {x}P+1 = P{x}1,
where P is any permutation of N particles and one has to sum over all possible
permutations9 with the appropriate sign for bosons and fermions. This leads to linked
polymers, i.e. ring polymers of length nP , where n means an n-cycle permutation.
The weight of these linked polymers in Eq. (3.19) is a measure for the importance
of exchange, i.e. a measure of quantum degeneracy. For bosons, this exchange is
crucial for superfluidity and Bose-Einstein condensation (see Ceperley, 1995). For
fermions, the near cancellations of permutations with opposite sign make it difficult
to sum up Eq. (3.19) which gives rise to the fermion sign problem. Before we explain
this in more detail, we describe how important quantities are accumulated.

3.1.6 Monte Carlo observables

Most important is the virial estimator for the energy. It permits us to calculate the
total energy as a function of space coordinates only, independent of momenta. Other
quantities that we sample are directly accessible, e.g. the charge density,

n(r) =

〈

N
∑

i=1

δ(r − ri)

〉

, (3.20)

is simply obtained by sampling the positions of all particles on all time slices. A
more complete characterization of the density distribution is possible by means of
the two-particle correlation function,

g(r) =
1

N(N − 1)

〈

N
∑

i6=j=1

δ(r − ri + rj)

〉

, (3.21)

which is normalized,
∫

d2r g(r) = 1. For the clean quantum dot both quantities
(3.20),(3.21) are rotationally symmetric and can be sampled angle averaged in the
PIMC. With impurity these densities have to be sampled on a 2D grid which requires
very good statistics.

It is even more difficult to sample spin-dependent spatial functions like the spin
density and spatial spin correlation functions: By the simple single-particle single-
slice moves in our PIMC, spin is not driven very efficiently through configuration

9For a large number of particles, e.g. N ∼ 1000, this summation cannot be done directly by
building the determinant or the permanent. The MC random walk then has to go through
configuration and permutation space.
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space10. So, when we perform e.g. ten different runs, we get similar results for
all observables, except for spatially spin depending ones. To control this error we
compute the impurity spin, which is a space dependent observable

S imp
z =

∫

d2r S imp
z (r) =

∫

d2r δr∈Bς (x) Sz , (3.22)

or the corresponding quantity for the center, Sc
z. For spin ergodicity, a small error

bar for these local spins is mandatory. In particular, for unpolarized spin Sz = 0
the spin density should also vanish locally. We precise that we sample these local
quantities, like (3.22) or the amount of charge accumulated at the impurity, directly
in the MC in order to avoid the error related to the finite discretization size of the
2D grid for the corresponding densities.

Virial estimator for the energy

For the sake of completeness we first recall the Euler theorem (see e.g. Cohen-

Tannoudji et al., 1977). Consider a homogeneous function f of degree s, i.e.
f(γr1, . . . , γrN) = γsf(r1, . . . , rN), then for its virial holds

N
∑

i=1

ri ·
∂f

∂ri

= s f(r1, . . . , rN ) . (3.23)

This identity is very useful in the context of the virial theorem because the Coulomb
and the harmonic potential are homogeneous functions.

The basic theorem which underlies the virial estimator is given by the so-called
quantum-mechanical Hypervirial theorem of Hirschfelder (1960) [see also Heinze

et al. (1997)]: Consider a Hamiltonian H and any linear operator W , both time-
independent. The expectation value of the commutator [H, W ] in any stationary
state vanishes,

〈[H, W ]〉 = 0 . (3.24)

This is true for a pure state (T = 0) as well as for a mixed state (finite T ). Now, the
usual choice for W is the linear operator

W =

N
∑

i=1

ri · pi . (3.25)

Note that W is not Hermitian. With the help of Eqs. (3.24) and (3.23) we obtain
an expression for the ground state kinetic energy of the clean dot which does not

10In order to enhance spin ergodicity we also tried to include spin swap steps in the Metropolis
algorithm by swapping the coordinates of two antiparalell spins on the same time slice. These
steps do not change the energy, however, they are hardly ever accepted because they strain the
springs of the ring-polymer.
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depend on the momenta

1

2

〈

N
∑

i=1

p2
i

〉

=
1

2

〈

N
∑

i=1

r2
i

〉

− 1

2

〈

N
∑

i<j

λ

|ri − rj|

〉

. (3.26)

This equation holds also in presence of a transversal magnetic field but is no longer
of any use since then there is an additional term proportional to the total angular
momentum [see (2.6)] which is not diagonal in real space. In the presence of a
Gaussian impurity (2.16), the following term has to be added to the right-hand-side
of (3.26):

〈

w

2σ2

N
∑

i=1

ri · (ri − x) exp

{−(ri − x)2

2σ2

}

〉

. (3.27)

The advantage of the virial estimator is that we can sample the total energy on a
single time slice. We also want to mention that the averages in (3.26) and (3.27) can
be formulated with the one- and two-particle densities. For example we can write
the expectation value of the Coulomb energy as an integral over the two-particle
correlation function (3.21),

〈

N
∑

i<j

λ

|ri − rj|

〉

=
N2 − N

2

∫

d2r
λ

|r| g(r) . (3.28)

In this fashion (with spin dependent densities) Harting et al. (2000) formulate
their Hypervirial estimator, which is nothing else than the normal virial estimator.
For a discretized PI derivation of the virial estimator see Ceperley (1995).

Thermodynamic estimator

Another estimator for the energy can be derived from the thermodynamic dependence

E(N) = − ∂

∂β
ln Z(N) . (3.29)

This yields an expression which contains the fermion determinants. Its accumulation
is thus computationally more expensive. The thermodynamic estimator has to be
employed when a finite magnetic field is included, since there is no virial expression for
the kinetic energy in the presence of a magnetic field. For B = 0, within statistical
noise, this estimator yields the same results as the virial estimator. However, its
variance is larger because its fluctuations scale ∝ τ−2.

3.1.7 Spin contamination

Note that at T = 0 for a superposition of two energy eigenstates |Ψ〉 = α |1〉+ β |2〉,
Eq. (3.24) does not hold,

〈Ψ| [H, W ] |Ψ〉 = 2i(E1 − E2) Im(α∗β 〈1|p · r |2〉) . (3.30)
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Still, we are doing the PIMC in the canonical ensemble and (3.24) does hold for the
mixed state

ρ =
1

Z
(e−βE1 |1〉〈1| + e−βE2 |2〉〈2|) . (3.31)

This is important in the context of ’spin-contamination’: Since the PIMC proceeds
at fixed Stot

z , the calculated energy receives contributions from higher spins at finite
temperatures [cf. erratum to Egger et al. (1999)]. For example when we want to
calculate the two-electron ground state which is a singlet, in (3.31) we have |1〉 =
|Stot = 0, Stot

z = 0〉 and |2〉 = |Stot = 1, Stot
z = 0〉. In fact not only these two but all

the states with higher energy and Stot
z = 0 contribute. This difference to the true

singlet (which receives contributions only from the Stot = 0 states) vanishes when T
goes to zero. We give a detailed discussion of spin contamination in Sec. 3.2.3 when
we compare exact diagonalization at finite T and PIMC. Summarizing, we can say
that the virial estimator is exact also for spinful electrons and it has the same spin
contamination problem as, e.g., the thermodynamic estimator.

3.1.8 Fermionic sign problem

As already pointed out, due to the anti-symmetry principle for fermions, the weight,
i.e. the product of propagators in Eq. (3.11) can be negative. Thus we cannot sample
A[X] directly, but we have to use a reweighting technique. This is in general done
as follows. Another normalized positive weight W(X) is inserted in the integral
expression (3.1)

〈A〉ρ =

∫

ddX W (X)
ρ(X)

W (X)
A(X) =

〈

A
ρ

W

〉

W
. (3.32)

Now, the importance sampling according to W will be very effective if W and ρ are
distributions of a similar form. Otherwise the sampling will be suboptimal with a
larger variance for the MC estimate 〈A〉MC

W .
Specifically, for the fermionic PIMC, the usual choice for the non-negative weight

in order to sample Eq. (3.11), is to take the absolute value of all the propagators11

W [X] =
∣

∣

〈

{x}1
∣

∣ e−εH
∣

∣{x}2
〉

· · ·
〈

{x}P
∣

∣ e−εH
∣

∣{x}1
〉∣

∣ . (3.33)

The expectation value (3.11) now reads (d = 2PN)

〈A〉 =

∫

ddX A[X]Φ[X ]W [X]
∫

ddX Φ[X ]W [X]
=

〈AΦ〉W
〈Φ〉W

, (3.34)

11Actually it is very advantageous that this weight factorizes. So, when we change the electron
positions on a single time slice, we do not have to recompute the whole product but only two

short-time propagators.
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where we have also introduced the sign of the path X

Φ[X] = sgn
(〈

{x}1
∣

∣ e−εH
∣

∣{x}2
〉

· · ·
〈

{x}P
∣

∣ e−εH
∣

∣{x}1
〉)

= ±1 . (3.35)

This is exactly the quotient in Eq. (3.32) and is oscillatory. The MC estimate for A
now reads

〈A〉MC =

∑

i A[X i]Φ[X i]
∑

i Φ[X i]
, (3.36)

where the X i are distributed according to W . Note that W is not normalized but
the normalization cancels out in Eqs. (3.34), (3.36).

The problem arises now because of the numerator: we will show that the expec-
tation value of the sign (with respect to W ) vanishes exponentially with inverse
temperature β and electron number N whereas its variance increases exponentially
(see e.g. Hatano and Suzuki, 1993; Ceperley, 1996). For this we can introduce
a partition function Z ′ for the system with weight W and the corresponding free
energy F ′ = − ln(Z ′)/β and write

〈Φ〉W =
Z

∫

ddX W [X]
=

Z

Z ′ = e−β(F−F ′), (3.37)

where F is the free energy for the true fermion system. When permutations are
also sampled stochastically and thus W is simply the unsymmetrized propagator
for boltzmanons, F ′ is the free energy of the boson system. Consequently, also the
relative error of the sign increases exponentially,

√

〈Φ2〉W / 〈Φ〉2W − 1 ≈ eβ(F−F ′) (3.38)

with inverse temperature and, due to the extensitivity of the free energy, also with
particle number.

The sign problem is a serious limitation in many-fermion MC, see e.g. Loh Jr.

et al. (1990) for lattice fermions. The same problem is encountered in T = 0
diffusion Monte Carlo for fermion systems. It occurs also in real time dynamical
PIMC simulations, where the propagator is complex. Recently, Mak et al. (1998)
have proposed a Multilevel Blocking (MLB) algorithm to alleviate the sign problem.
It relies on the idea that the sign problem is weak for small systems (i.e. small N, β).
Blocking paths into small groups and then sampling over these blocks can therefore
improve the sign. The MLB method is a hierarchical, recursive implementation of
this concept. For a comprehensive introduction to MLB, see Dikovsky and Mak

(2001). MLB has been used for clean quantum dot by Egger et al. (1999). In
the present thesis, however, we use the conventional approach which allows us to
choose an arbitrary P for the Trotter extrapolation and to sample the imaginary-
time spin correlation function. Other methods avoid the fermion sign problem by
making an assumption about the nodes of the wave-function like e.g. the restricted
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Fig. 3.1: PIMC sign 〈Φ〉 of ten interacting electrons in a 2D oscillator at finite temperature
β = 8 versus values of ε2 = (β/P )2 and linear regression fit. Error bars are of symbol size.

PIMC (Ceperley, 1996) or the variational and fixed-node diffusion MC (Foulkes

et al., 2001). By this assumption the methods loose their exactness but still give
upper bound limits for the true ground-state energies. In fact QMC methods often
give benchmark results for other, computationally less demanding calculations. They
are successfully applied in many fields of quantum chemistry and solid state physics,
e.g. for the simulation of fundamental systems like the electron gas or condensed
Helium (Ceperley, 1995).

The sign 〈Φ〉W has a physical meaning: It measures the difference between bosons
and fermions, and so it is also a measure of quantum effects. In Sec. 3.2.2, we derive
the partition functions for two non-interacting bosons/fermions in a 2D oscillator.
Building the quotient yields the sign

〈Φ〉W =
ZF

ZB
=

1

cosh(β)
(3.39)

which in fact vanishes exponentially with β. For very high temperatures, there is no
difference between bosons and fermions.

In our simulation, however, W is the absolute value of the anti-symmetrized prop-
agator, so our 〈Φ〉 does not directly have that meaning. In Fig. 3.1 we show that
instead our 〈Φ〉 depends strongly on P : it converges ∝ ε2 [cf. Sec. 3.3]. In the other
case, 〈Φ〉 = ZF /ZB would be expected to depend rather weakly on P .

Finally, in Fig. 3.2, we illustrate how 〈Φ〉 decays exponentially with the number of
electrons. One can see that the sign is worse for higher spin because there are more
indistinguishable (equal spin) electrons. The impurity slightly improves the behavior
of the sign, making the system more classical (cf. Fig. 3.1).
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Fig. 3.2: PIMC sign 〈Φ〉 of up to ten interacting electrons in a 2D oscillator at finite
temperature β = 8 with and without impurity; P = 65. Error bars are of symbol size.

3.1.9 Monte Carlo error bars

Since Monte Carlo integration is a stochastic method, the proper determination of
the statistical error is very important. This error bar then tells us up to which
degree we can be confident in the numerical precision of the result. The naive error
estimate from the variance (3.5) is only correct if the measurement points Ai = A(X i)
(i = 1, . . . , M) of the MC sampling are completely decorrelated, i.e. statistically
independent.

In our program the sampling is done as follows: In a single Metropolis sweep, we
only change the coordinates of one arbitrary particle on one arbitrary time slice. A
single MC sweep then consists of d = 2PN (the dimensionality of configuration space)
simple Metropolis sweeps, so that on average we have changed every coordinate of the
whole many-electron path. Only after a number Mout of MC sweeps the observables
are accumulated. The total number of MC steps is thus Mtot = MMout. Thus, if the
number of intermediate steps Mout between two measurements Ai and Ai+1 is large
enough, one obtains uncorrelated measurements.

It is difficult though to determine the proper decorrelation length Mout which also
might be depending on the observables under consideration. On the other hand, a
too high value for Mout means a waste of computation time. This problem of proper
determination of error bars is extensively discussed in the literature about statistics
and the MC method. For a nice review which is illustrated for the Ising model,
see Janke (2002). Here, we want to present shortly three ways in which we have
handled the problem. The first is to analyze the time series Ai and to calculate the
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normalized auto-correlation function of the observable,

ck =
1

σ2







1

M − k

M−k
∑

i=1

AiAi+k −
(

1

M

M
∑

i=1

Ai

)2






, (3.40)

where c0 = 1 and 0 < k � M . It decays roughly exponentially ck ∼ exp−k/τ and
the so-called integrated auto-correlation time is

τcorr =
∑

k=1

ck +
1

2
≈ τ − 1

2
. (3.41)

The naive error estimate (3.5) is correct if τcorr = 1/2. In general, it can be shown
that the corrected variance which takes the correlation length into account is given
by

σ2
corr = 2τcorr σ2 . (3.42)

In Fig. 3.3(a) we show a MC time series for the energy of two electrons (singlet)
in a quantum dot. The average with the naive error estimate is 3.70(1). Here,
the bracketed number stands for the error in the last digits, i.e. 3.70 ± 0.01. The
corresponding auto-correlation function [Fig. 3.3(c)] gives 2τcorr ≈ 9, thus the result
with correct error bar is 3.70(3).

A second method to obtain correct error bars from correlated data is the blocking
or binning technique. For the blocking technique of Flyvbjerg and Petersen

(1989), the length of the MC trajectory is chosen to be M = 2L. Then, on L − 1

levels, new series {A(l)
i } with length M/2, M/4, . . . are recursively built by taking the

arithmetic mean of two adjacent points as a new point,

A
(l+1)
i =

1

2

(

A
(l)
2i−1 + A

(l)
2i

)

, l = 0, . . . , L − 1 . (3.43)

These points are more and more decorrelated, and should approach independent
Gaussian variables as the blocking level l increases. The mean of the whole series
remains the same, but its error can be correctly estimated. In Fig. 3.3(d) the result

of such a blocking is shown. From level l = 5 on, the standard deviation σ
(l)
corr is

constant. Note that the error bar of the standard deviation is increasing, because
the size of the sample is decreasing M/2, M/4, . . .. Thus the error bar is also 0.03,
in consistence with the previous analysis.

The third method, which is also a kind of block building, has been adopted for
most of our calculations. In fact since we have to deal with the sign-problem we are
always accumulating the sign Φ and observables A = A′Φ. The final result is the
quotient of the estimates for these two. A thorough analysis should investigate the
auto-correlation of Φ, A and their cross-correlation. However, we choose a simpler
way: We run a number of independent identical simulations (usually ten) in parallel
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Fig. 3.3: Statistical analysis of MC data obtained for N = 2, S = 0, β = 6, P = 80 with the
permanent propagator (cf. Sec. 3.2.3). The energy was accumulated after every Mout = 50-
th step. (a) MC data for the energy Ei with i = 1, . . . ,M = 4096. (b) Histogram for Ei. (c)
Auto-correlation function ck (straight line), which is roughly exponential ck ∼ exp (−k/5)
(dotted). (d) Standard deviations of blocked data (see text).

and then estimate the error bar from the fluctuations of these uncorrelated results.
As the accumulation does not take much computer time, we choose a rather low
Mout = 20. Also all the accumulated densities are the means of these different runs.
We estimate their errors by integrating over a circle at the center or at the impurity
and check the error of these integrals.
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3.2 Tests for the PIMC simulation

In order to perform a check for the validity of our PIMC simulation we have obtained
analytical and independent numerical results. For the isotropic clean two-electron
quantum dot, we have first calculated analytically the energies for zero interaction.
Furthermore, we have performed an exact diagonalization for finite temperature.
These first tests give us a better understanding of our system, e.g. in view of the spin
contamination problem, and show that we can produce high accuracy PIMC results
for arbitrary interaction and temperature.

3.2.1 Isotropic clean quantum-dot Helium

The Hamiltonian for an isotropic clean quantum dot with two electrons is

HQHe =
∑

i=1,2

(
p2

i

2m∗ +
1

2
m∗ω2

0x
2
i ) +

e2/κ

|x1 − x2|
. (3.44)

This so-called quantum-dot Helium has been studied by many authors, first by
Merkt et al. (1991). We will also discuss it later in the (un)restricted Hartree-Fock
approximation (Sec. 4.2). Now we transform according to

r = x1 − x2, p =
1

2
(p1 − p2),

R =
1

2
(x1 + x2), P = p1 + p2 . (3.45)

The Hamiltonian separates into two parts which represent the relative and the center-
of-mass motion,

HQHe = HR + Hr . (3.46)

Remarkably, the center-of-mass part is a harmonic oscillator

HR = − ~
2

2M
4R +

M

2
ω2

0R
2 (3.47a)

with M = 2m∗ and for the relative motion we have

Hr = − ~
2

2µ
4r +

µ

2
ω2

0r
2 +

e2

κr
(3.47b)

with the reduced mass µ = m∗

2
. The problem is thus classically integrable because

the angular momenta of relative and c.m. parts are constants of motion. Equation
(3.47b) reads in oscillator units [see Eqs. (2.5)]

hr = −1

2
4r +

1

2
r2 +

λr

r
, (3.48)
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where λr = e2

κ
µlr
~2 = λ√

2
is the coupling constant and the oscillator length is lr =

√

~

µω0
=

√
2l0. The eigenfunctions of (3.48) can be expanded in terms of harmonic

oscillator functions (2.10) with fixed angular momentum M rel. Now it is important
to think about anti-symmetry: One combines odd M rel = ±1,±3, ... with a spin
singlet and even M rel = 0,±2,±4, ... with a spin triplet state. The problem can now
be solved by an exact diagonalization12 of hr. The matrix elements 〈nM | r−1 |n′M〉
of the Coulomb potential are obtained with a Gauss-Legendre quadrature (Reusch,
1998). However, before giving results with interaction, we also want to include finite
temperatures.

3.2.2 Finite temperature, zero interaction

Here, we want to derive briefly partition functions for two non-interacting electrons in
a harmonic potential. These expressions serve as a check for the exact diagonalization
at finite temperature and the PIMC. The separation of relative and c.m. motion is
also useful in this context. The total partition function factorizes Z tot = Zc.m.Zrel.
Now Zc.m. is the partition function of a normal 2D oscillator (2.9)

Zc.m. = Tr(e−βh) =
∑

n=0,∞
M=−∞,∞

e−β(2n+|M |+1) = [2 sinh(β/2)]−2 . (3.49)

For the relative motion we have to distinguish the singlet and triplet contributions,
thus the sum of the trace extends only over odd or even M which gives

Zrel
sin =

cosh(β)

2 sinh2(β)
, Zrel

tri =
1

2 sinh2(β)
. (3.50)

These expressions can also be obtained with the Fock-Darwin propagator (3.14) in
the (anti)-symmetric two-particle coordinate space. In fact, the two cases correspond
to two spinless bosons for the singlet and fermions for the triplet. However, the
PIMC for Sz = 0 works in the product Hilbert space of two distinguishable particles
(boltzmanons). In this third case the total partition function is just the product of
two normal 2D oscillators

Ztot = [2 sinh(β/2)]−4 . (3.51)

The total energy is then given by E = −∂/∂β ln Z tot. In Fig. 3.4 we show the analytic
dependence of the energies for the three cases and compare with the numerical results
of the PIMC. One sees that the PIMC works correctly for zero interaction13. The

12 We mention that for special values of λr , exact analytical solutions for the Hamiltonian (3.48)
were given by Taut (1993).
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Fig. 3.4: Energies of two non-interacting electrons in a 2D oscillator at finite temperature.
We show the analytic dependence (drawn lines) and PIMC results (symbols) for three
different spin states. The error bars for the PIMC are smaller than the symbol size.

virial and the thermodynamic energy estimators give the same results in all three
cases. At higher temperatures β <∼ 5, the S = 0 state lies somewhat lower than the
Sz = 0 state, because the latter receives contributions from the triplet state with
Sz = 0. This is exactly the problem of spin contamination mentioned above. For
two electrons, we can easily obtain the correct S = 0 ground state by taking the
permanent in the PIMC. For higher electron numbers and not fully polarized spin,
e.g. N = 3, S = 1/2, this approach can be generalized, but has to include a more
elaborate group-theoretical analysis (Lyubartsev and Vorontsov-Velyaminov,
1993). In our PIMC, we only anti-symmetrize for equal spin electrons [cf. Eq. (3.17)].

3.2.3 Finite temperature, non-zero interaction

The next check for the PIMC is for non-zero interaction. Exact diagonalization
data are obtained with the help of the spectrum of the Hamiltonian for the relative
motion (3.48). hr has eigenstates with good relative angular momentum M , thus its
eigenenergies can be labeled ε̃nM . The total energy for two interacting electrons then

13 Remember that without interaction there is no Trotter discretization error since we are working
with the exact propagator for the 2D oscillator.
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Fig. 3.5: Energies of two interacting electrons in a 2D oscillator at finite temperature and
λ = 2. Exact diagonalization data (×, lines are guides to the eye only) and PIMC results
(◦) for the three spin states. The error bars for the PIMC are of the order of the symbol
size.

reads

E = coth(β/2) +
1

Zrel

∑

n=0,∞
M=−∞,∞

ε̃nM e−βε̃nM , (3.52)

where the first term is the energy of the c.m. motion and Z rel =
∑

nM e−βε̃nM . Now,
as above for the Sz = 0 state the sum extends over all M , whereas for the singlet it
extends only over the even M and for the triplet only over the odd M . To ensure
convergence we included states with n < 110 and |M | ≤ 8 in the sum (3.52).

In Fig. 3.5 we show the agreement between exact and PIMC data for a rela-
tively small coupling constant λ = 2. Again for the singlet, the PIMC works with
the permanent (corresponding to bosons), for Sz = 0 with the product propaga-
tor(boltzmanons) and for the triplet with the determinant (spinless fermions). Here,
Trotter convergence has to be achieved (see Sec. 3.3). All the results in this section
have been obtained with the virial estimator [see Eq. (3.26)]. The spin contamination
problem is clearly visible: For β = 10, the energy of the Sz = 0 state is 0.4% higher
than the energy of the singlet, while for β = 6, the difference is already 1.6%.

We also show similar results for stronger interaction λ = 6, 8 in Fig. 3.6, which
also demonstrates the good agreement between diagonalization and PIMC.
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Fig. 3.6: Energies of two interacting electrons in a 2D oscillator at finite temperature.
Exact diagonalization data (×, lines are guides to the eye only) versus PIMC results (◦)
for two cases: S = 0 (permanent propagator) and λ = 6 (left); and S = 1 (determinant),
λ = 8 (right). The error bars for the PIMC are of the order of the symbol size.

3.3 Trotter convergence

3.3.1 Trotter convergence for clean quantum-dot Helium

As already mentioned in Sec. 3.1.4, the PIMC results are essentially exact if the
Trotter break-up has been done for a small enough imaginary-time step ε = β/P . Else
this approximation introduces a systematic error in the data, the so-called Trotter
error, in addition to the statistical error due to the MC method.

One way to cope with this problem is to produce results (with very good statistics)
for higher and higher P and check if the systematic error has vanished, i.e. if the
result stays the same. For the results in the previous section, Trotter convergence
has been achieved in order to obtain high precision data, with relative errors in the
energy of a few per mill. However, the Trotter numbers for the three different spin
states differ strongly. For β = 10 and λ = 2 convergence has been achieved for
Trotter numbers

� P = 133 for S = 0 (permanent propagator)

� P = 100 for Sz = 0 (product propagator)

� P = 30 for S = 1 (determinant propagator)
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Fig. 3.7: Trotter convergence of the energy of clean quantum-dot Helium at finite tem-
perature β = 6. The finite Trotter step size is ε = (β/P ). For two different interaction
strengths λ = 2 (up) and 8 (down) and different spins we show exact diagonalization data
(©, for ε = 0) and PIMC results (with error bars). For small enough ε, a linear regression
has been performed, to extrapolate the PIMC results. Exact values for S = 0 (�) illustrate
the problem of spin contamination.

Convergence for other temperatures is obtained by keeping ε = β/P constant (except
for β = 1, where we choose a slightly higher P ).

A more systematic method consists in eliminating the Trotter error by an ex-
trapolation. It was shown by Fye (1986) that under very general conditions for a
Hermitian observable, the error resulting from the discretized PI with second-order
Trotter break-up (3.12) should scale as ε2 for ε → 0. This might be verified e.g. for
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3.3 Trotter convergence

the single harmonic oscillator, where this Trotter error can be calculated analytically
(Scalettar, 1999). Fortunately, for the clean dot with small electron number, we
also have exact data to compare.

We illustrate this convergence behavior in Fig. 3.7, showing the PIMC energy
versus ε2 for two different interaction strengths and two spin polarizations. Within
two standard deviations (two error bars), for low enough ε, the data fit on a line
which goes through the exact value (ε = 0) obtained with finite-temperature exact
diagonalization. From the slopes of the different lines, one clearly notices that con-
vergence is very slow for the Sz = 0 and λ = 2 state (note the different x-axis scale).
Thus, building the determinant seems to enhance convergence, whereas the product
(or permanent) propagator seems to give a worse approximation for the interacting
two-particle propagator.

In the graph for Sz = 0, λ = 2, we also plot the exact energy for S = 0, which
is 1.6% lower than the spin contaminated Sz = 0 energy. This may induce one to
underestimate the Trotter convergence. Interestingly, for S = 1, the energy converges
from above14 giving thus too high energies for too small P . In contrast, for S = 0
and Sz = 0, one obtains too low energies for small P . This latter fact is unpleasant
because we do not have upper bounds to the true energy.

Finally, it is quite surprising that convergence for stronger interaction λ = 8
(Fig. 3.7) is obtained for lower Trotter numbers than for λ = 2. One would ex-
pect that higher P are necessary for the Trotter break-up at stronger interactions,
because naively, the error should scale as λε2. For λ = 8 and S = 1 the convergence is
very smooth (consider the small error bars) from below but for higher ε the energies
go up again. In all cases (except possibly Sz = 0, λ = 2), we are sure to be in the
linear regime for ε2 < 0.15.

3.3.2 Trotter convergence for N = 2 with impurity

Now, we study the Trotter convergence with and without the impurity potential
(2.16) for low temperature β = 8 and intermediate interaction strength λ = 4. These
are the relevant parameters for our extended numerical study for higher electron
number.

Figure 3.8 shows a linear regression as a fit to the PIMC data. For the clean dot, the
extrapolated energies match perfectly the exact diagonalization result. Convergence
for Sz = 0 is achieved for ε2 = 0.032 corresponding to a Trotter number P = 45.
For S = 1 the correct energy is obtained with P = 22. With impurity, the slopes of
the two curves show clearly that the convergence is much slower. Now, the polarized
S = 1 state has approximately the same slope as the Sz = 0 state, it converges also
from below and we have to choose at least P = 65.

14This is also the case for more than two polarized electrons. However, as we will see below, with
impurity the convergence behavior changes.
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Fig. 3.8: Energies of two interacting electrons in a 2D oscillator for finite temperature
β = 8 and λ = 4 versus values of ε2 = (β/P )2. PIMC results (with error bars and linear
regression fits) with (w = 4) and without impurity (w = 0, exact diagonalization result ©,
� shown for ε = 0).

We note that with impurity the difference between the two spin states has halved.
However the ground state is still the singlet. We conjecture that this is also the
case for two interacting electrons in an arbitrary, spin-independent potential (without
magnetic field) because the singlet state thus corresponds to spinless (spin-polarized)
bosons, and a bosonic ground state is always lower or equal in energy with respect
to the fermionic ground state15.

3.3.3 Trotter convergence for higher electron numbers

For three and four electrons in the clean quantum dot at λ = 4, exact zero tem-
perature data from configuration interaction calculations are available (Mikhailov,
2002a,b). We now discuss the Trotter convergence for these higher electron numbers
and different spin states.

For the clean N = 3 case an interaction-induced transition to a spin-polarized
ground state has been predicted by a previous PIMC study (Egger et al., 1999)

15There is no such statement for higher electron number. For example, three electrons with S = 3/2
have a completely antisymmetric spatial wave-function which corresponds to spinless fermions.
However, the S = 1/2 state does not correspond to a simple permutational symmetry, it does
not even factorize into a spatial and a spin part (Ruan et al., 1995).
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Fig. 3.9: Energies of three interacting electrons in a 2D oscillator for finite temperature
β = 8 and λ = 4 versus values of ε2 = (β/P )2. PIMC results (with error bars and
linear regression fits) with (w = 4) and without impurity (w = 0, zero temperature exact
diagonalization results ©, � shown for ε = 0).

and also by a semiclassical analysis (Häusler, 2000). At T = 0 Mikhailov (2002a)
determined the transition point λc = 4.343. We are thus very close to this point.
Again, as for two electrons, the Trotter convergence for the polarized S = 3/2 state
is fast (Fig. 3.9): the exact result (T = 0, depicted by a © at ε = 0) lies already in
the range of the P = 16 (ε2 = 0.25) result and very close to the extrapolated value.
The fitted line for the unpolarized state is much steeper. Its intersection with the
energy axis lies slightly above the exact zero temperature value (�). This is expected
in view of the spin contamination. For finite temperature the energies of both spin
states thus are the same within the range of the small (1 per mill) error bars.

With impurity the convergence is again slower with approximately the same slopes
for both spin states. The two extrapolated energies are very close, but the Sz = 1/2
state lies still distinctly lower.

A similar behavior is encountered for four electrons. Here, the ground-state spin
is found S = 1 for all λ with and without impurity. The convergence is shown in
Fig. 3.10. Again, the clean polarized S = 2 state converges rapidly, convergence for
Sz = 1 is slower, and is slowest with impurity.

Performing the PIMC for Sz = 0 yields the same results as Sz = 1 for all Trotter
numbers investigated. This is quite important because we are especially interested in
the ground-state spin and the spin ordering which we can thus resolve at lower Trotter
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Fig. 3.10: Energies of four interacting electrons in a 2D oscillator for finite temperature
β = 8 and λ = 4 versus values of ε2 = (β/P )2. PIMC results (with error bars and linear
regression fits) with (w = 4) and without impurity [w = 0, zero temperature diagonalization
results (S = 1 © and S = 2 �) shown for ε = 0].

number. For example, for N = 3, w = 0 and λ = 6, the ground state is spin-polarized
with an exact energy E = 13.4373 [T = 0; the unpolarized state has E = 13.4658,
(Mikhailov, 2002a)]. Now, for P = 25, where we do not expect the energies to
be converged the PIMC gives E = 13.436(1) for Sz = 3/2 and E = 13.457(1) for
Sz = 1/2, which is in impressive accordance for the polarized state. In contrast, the
Sz = 1/2 state lies lower than the exact T = 0, S = 1/2 state probably because
it receives contributions from below (S = 3/2, Sz = 1/2). Thus we can reliably
determine the spin ordering of the energies for quite low P . Finally, in Figs. 3.11 and
3.12 we display the convergence for higher electron number.

3.3.4 Convergence for other quantities

In the PIMC we do not only sample the energy but also many other quantities,
especially the charge density and other correlation densities. We checked convergence
for the density by integrating n(r) over some parts of space, e.g. over a disk at
the center. Here, the convergence is much faster than for the energy, except at
the impurity (see Fig. 3.13), which can be qualitatively understood because the
propagator is locally less accurate. Interestingly, the charge in the center converges
from below, whereas the charge at the impurity converges from above. In general,
the charge densities shown in this work are for P = 22 in the clean case, but with
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Fig. 3.11: Energies of five interacting electrons in a 2D oscillator with impurity at finite
temperature β = 8 versus values of ε2 = (β/P )2 with error bars and linear regression fits.

0 0.03 0.06 0.09 0.12 0.15
100

100.1

100.2

100.3

100.4

100.5

100.6

100.7

100.8

100.9

101

Sz=0

P=65

P=35
P=28

P=22PSfrag replacements

ε2

E

Fig. 3.12: Energies of ten interacting electrons in a 2D oscillator with impurity at finite
temperature β = 8 versus values of ε2 = (β/P )2 with error bars and linear regression fit.
The extrapolated value (ε → 0) is 100.68(9).
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Fig. 3.13: Trotter convergence of the density for N = 10, w = 4, and Sz = 0. Amount
of charge n× integrated over a circle of radius ς at the center and at the impurity versus
values of ε2 = (β/P )2, with error bars and linear regression fit.

impurity we have to choose higher trotter numbers (ε ≈ 0.12), elsewhere the density
at the defect is overestimated.

3.3.5 General procedure

Summarizing, for our choice of parameters, we are sure to be in the regime of
quadratic Trotter convergence for Trotter discretization ε2 <∼ 0.15. In general the
simulation proceeds as follows: For an acceptance rate for the Metropolis algorithm
of about 30%, the MC step-size is chosen as ∆x ≈ 2. Since our problem is symmetric
to one axis, we once in a while reflect all coordinates with respect to this axis in
order to obtain symmetric densities which corresponds to averaging. Very long runs
are necessary to obtain small error bars, ergodicity for the spin and good statistics
for the 2D densities. For each data point, we perform ten independent simulations
with each up to M = 4 × 106 samples. The result with error bar is then estimated
from these ten runs. For the Trotter extrapolation, we do this calculation for three
to four different Trotter numbers P . The exact value for ε = 0 with error bar is then
obtained by a linear regression (Press et al., 1992, p. 659). We recapitulate the
two main advantages of the Trotter extrapolation method: First, for smaller P , it
is easier to perform an ergodic sampling because the ring polymer described by the
discretized PI is more elastic (cf. Sec. 3.1.5). Second, the fermionic sign problem is
less severe for smaller P as shown in Fig. 3.1.
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3.4 PIMC study for a quantum dot with a single

attractive impurity

In this section we present the central results of our PIMC study for a parabolic
quantum dot with a single attractive impurity (cf. Sec. 2.9). Our focus is the regime
of the incipient Wigner molecule which can hardly be treated with any other method.
It is the crossover regime between the quantum and classical limits, therefore the
interpretation of our results is sometimes complicated. A shorter version of this
work will be published in Reusch and Egger (2003).

We start by giving the numerical values for the calculated energies of the dot for
N ≤ 10 and different spins. For the clean dot, despite of the strong interaction,
remnants of the energetic shell structure can be identified. With impurity, these
cusps in the addition energies disappear. However we find a new, very interesting
peak for N = 8, which is the only case where the impurity changes the ground-state
spin from the expected Hund’s rule scheme.

We discuss the onset of Wigner crystallization in real space as depicted by the
charge densities. For N = 6 we show that spatial ordering is sensitive to spin and
this effect is rather enhanced by the impurity. In general, the spin-polarized cases
show localization more clearly. In this context we also show spin densities and the
correlation function of the impurity’s spin with the local spin density. We fathom the
possible description of the system with effective spin or lattice Hamiltonians. Our
interacting quantum dot with impurity is an intrinsic model for a localized spin so
we speculate if we can see some signature of a finite-size Kondo effect as we tune the
temperature.

With the present work we also want to give benchmarks to compare with approxi-
mative methods. We emphasize that the computationally expensive but exact PIMC
method is necessary in order to resolve the tiny energy differences which determine
the spin ordering and the addition energies.

3.4.1 Ground-state energies and spins

In Table 3.1 we show our numerical results for the energies for different spins Sz

starting with the ground state. For N > 6, we cannot afford to calculate all the
higher spins states because the sign problem becomes too severe. For N = 9, 10, the
ground-state spins were derived from finite-ε data. In these two cases we also give
energies for sub ground-state spin which are more affected by the spin contamination
problem but have a smaller error bar (see. Sec. 3.3.3).

For one electron in the deformed dot, the energy is clearly below the first-order
perturbation estimate [cf. Eq. (2.17)], but the impurity is not strong enough to bind
an electron. For N = 2 − 4, the energies without defect were already compared to
the literature when we discussed the Trotter convergence (Sec. 3.3.3). Despite of the
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N Sz Eimp/~ω0 Eclean/~ω0 N Sz Eimp/~ω0 Eclean/~ω0

1 1/2 0.51(1) 1.00 7 1/2 52.49(2) 53.71(2)
2 0 3.911(7) 4.893(7) 7 3/2 52.555(23) 53.80(2)
2 1 3.960(6) 5.118(8) 7 5/2 52.72(4) 53.93(5)
3 1/2 9.857(8) 11.055(8) 7 7/2 – 54.20(11)
3 3/2 9.880(8) 11.050(10) 8 0 67.12(2) 68.52(2)
4 1 17.89(2) 19.104(6) 8 1 67.18(2) 68.44(1)
4 2 18.05(1) 19.34(1) 8 2 67.30(5) 68.51(5)
5 1/2 27.75(1) 29.01(2) 9 1/2 83.22(3) 84.48(3)
5 3/2 27.84(2) 29.12(2) 9 3/2 83.22(4) 84.45(6)
5 5/2 28.00(3) 29.33(2) 9 5/2 83.37(17) 84.61(17)
6 0 39.30(2) 40.53(1) 10 0 100.68(9) 101.99(7)
6 1 39.37(2) 40.62(2) 10 1 100.59(11) 101.96(14)
6 2 39.48(2) 40.69(2)
6 3 39.84(7) 40.83(4)

Table 3.1: Ground-state energies for the quantum dot with and without impurity. Brack-
eted numbers are one standard deviation error bars for the last digit(s).

strong interaction, for up to N = 10 electrons the ground-state spin of the clean dot
follows the expectation from the energetic shell-filling and Hund’s rule (Sec. 2.5).
With impurity, the spin ordering is not changed except for N = 8. We discuss this
now in more detail.

For N = 3 without impurity, the two spin states have the same energy within
error bars (see also Fig. 3.9). An interaction-induced transition to a spin-polarized
ground state was predicted in a configuration-interaction (CI) study for λ > 4.343 at
zero temperature (Mikhailov, 2002a). For λ = 4, we are still below this transition
point. However, at finite temperature, the difference between the first excited state
and the ground state is diminished due to spin contamination. Furthermore, it seems
that the impurity tends to depolarize the system, since the gap between the two spin
states becomes larger. Thus, the transition point is shifted to a higher λ. Maybe this
is due to the geometrical influence of the impurity which is located rather close to
the center: Mikhailov (2002a) showed that in the clean case the crossover from the
S = 1/2 to the S = 3/2 state corresponds to a change from a linear to a threefold
geometry, which is then also the classical configuration.

For N = 6 in the clean dot with strong interaction (λ = 8), a PIMC study (Egger

et al., 1999) and also semiclassics (Häusler, 2000) predicted a S = 1 ground state
in contrast to the closed shell S = 0 for weak interaction. Reimann et al. (2000)
found by means of CI calculations that the ground state was unpolarized up to at
least λ ≈ 3.5 (see below). Now, we state that both with and without impurity the
ground state for λ = 4 is S = 0 but only with a small gap to the next higher state.

56
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For six electrons, there is also an interesting spin-dependent geometric transition
between the five- and the sixfold configurations (see below Subsec. 3.4.2). For the
clean seven-electron dot, Egger et al. (1999) predicted a S = 5/2 ground state
for λ = 8 instead of the expected S = 1/2. We find S = 1/2. The gap to the next
higher state is rather diminished by the impurity.

For N = 8, the prediction for the clean dot and strong interaction (λ >∼ 6) was
S = 2 (Egger et al., 1999). We find that at λ = 4 the impurity changes the
ground-state spin from S = 1 (Hund’s rule) to S = 0. Probably this depolarization
can be attributed to the formation of local momenta at the defect and in the center
on the dot16. This case of sub-Hund’s rule spin is very unexpected because, normally,
interaction tends to drive the system versus a spin polarization. Below, we see in the
addition energies that the eight-electron dot becomes relatively stable in presence of
the impurity, while it is very unstable in the clean case.

This sub-Hund’s rule spin has also an important consequence, which can be probed
experimentally. Since for N = 9, we have S = 3/2, this change in ground-state spin
∆S > 1/2 should lead to the suppression of the conductance peak for the addition of
the ninth electron in a transport experiment (cf. Sec. 2.2). The effect is called spin

blockade (Weinmann et al., 1995) in analogy to the normal Coulomb blockade.
It cannot occur in the weakly interacting regime where electrons together with their
spins are accommodated in shells of orbitals. We thus predict this spin blockade for
a weakly disordered dot with N = 8 when the electron density is low enough.

With the ground-state energies we obtain the addition energies ∆(N) [Eq. (2.3),
Eq. (2.14)], which can be measured in experiments. In Fig. 3.14(a) we show the
addition energies for N < 10. The curves go down nearly monotonically, although
with some very interesting remnants of the energetic shell-structure. In the clean
case, in spite of the strong interaction, one can still recognize the enhanced stability
of the completely filled second shells (N = 6) and the half filled shells (N = 4, 9).
Nine electrons appear to be exceptionally stable and eight electrons very unstable.
This could be possibly attributed to the spin transition S = 1 → 2 for N = 8
mentioned above, or to the stability of the classical configurations. We note that
the peak at N = 2, which corresponds to the closure of the first shell (cf. Fig. 2.10)
is absent already for λ >∼ 2. The addition energy for the first electron is very high.
In fact, ∆(1) can be understood as the Coulomb repulsion for two electrons in the
constant interaction model, so classically it would be ∆(1) ≈ 2λ/rs ≈ 2.

The impurity strongly affects the addition energies, most drastically for N = 8.
This configuration is now exceptionally stable17. The cusp for N = 4 has disappeared,

16By monitoring the spin-spin correlation we can see a strong antiferromagnetic coupling between
electrons at the impurity and the center (see below Sec. 3.4.2). Unfortunately our data is quite
noisy and supposedly, still lower temperatures are necessary to see a pronounced effect.

17We speculate that this new peak might be generic as its appearance is accompanied by the
transition to a new ground-state spin. Ciorga et al. (2000) have found a N = 8 peak in their
experiments and the shape of their lateral dot bears some similarities to our deformed potential.
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Fig. 3.14: PIMC results with impurity (squares) and for a clean dot (circles), for (a) the
addition energy ∆(N) and (b) the spin gap δE(N) for N < 8. In (c) ∆E(N) is the amount
by which the impurity has lowered the energy. Error bars, unless shown explicitly, are of
the order of the symbol size. Dashed and dotted lines are guides to the eye only.

and for N = 6 the shell structure is nearly completely washed out. Interestingly, the
values of ∆(N) for the relatively stable electron numbers N = 1, 4, 6 are almost
not changed by the impurity. Therefore, we can say that magic numbers are not
only astonishingly stable against interaction effects, but their addition energies are
also nearly unaffected by the impurity, while the rest of the spectrum is altered
substantially.

We were seeking for the phenomenon of bunching, i.e. experimentally found vanish-
ing addition energies for certain values of N (Sec. 2.13). In our simple but realistic
model, bunching is not observed for N < 10 (Fig. 3.14). In experiments, level
bunching was found only for N > 7 (Ashoori et al., 1998). Our calculated addi-
tion energies are also most strongly changed by the impurity for N = 8, 9. However,
we do not find vanishing ∆(N). Maybe one has to consider even larger electron num-

58



3.4 PIMC study for a quantum dot with a single attractive impurity

bers or to assume stronger disorder or other mechanisms not contained in our model.
Canali (2000) emphasized that he found bunching in his lattice model only for
short-range interaction (cf. Sec. 2.14). We can only speculate if a screened Coulomb
interaction potential would lead to bunching in our continuous model. Zhitenev

et al. (1997) estimate the screening length in their dots roughly about 10nm, but
this is surely a lower bound and not an exact value for the few-electron limit. We
note that bunching and pairing is believed to be a generic effect, though it has been
found exclusively in one special kind of experiments.

Since except for N = 8, the ground-state spin is not changed by the impurity, its
effect on the spin polarization seems to be rather weak. Nevertheless, our results
indicate that the defect tends to decrease the “spin gap”

δE(N) = ES+1 − ES , (3.53)

where S is the ground-state spin. This is seen in Fig. 3.14(b), most strikingly for
N = 2, 4. It indicates a weak tendency towards spin polarization in disordered
dots. The role of impurities on the spin polarization of interacting quantum dots
has recently been studied by various groups, suggesting either a tendency towards
spin polarization (Berkovits, 1998; Benenti et al., 2001; Jiang et al., 2003),
depolarization (Jacquod and Stone, 2000), or strongly N -dependent behaviors
without general trend (Hirose and Wingreen, 2002)18. We also rather adopt this
latter point of view, as we found in general a decreased spin gap but also two cases
of a trend towards depolarization.

The influence of the impurity can also be quantified when we consider the energy
difference between the clean and the deformed dot,

∆E(N) = Eclean − Eimp . (3.54)

In Fig. 3.14(c) ∆E(N) is nearly constant for N > 2, however with a cusp for N = 8
where we found the spin transition. Thus the impurity lowers the energy of the
eight-electron dot most efficiently.

18The cited works investigated lattice models, except Jiang et al. (2003) and Hirose and
Wingreen (2002) who studied continuous models with spin-density functional theory (SDFT).
Canali (2000) related the bunching for the energies of his lattice model to the formation of
local singlets (see Sec. 2.14), but did not comment in more detail on ground-state spin. The
model of Hirose and Wingreen (2002) is similar to ours but they include many impurities (see
footnote in Sec. 2.9). They considered fluctuations in the addition energies ∆(10) and ∆(11) for
0 ≤ λ < 3. They found that the probability for non-minimal ground-state spin increases with
λ, but never exceeds 50%, and show with a two-orbital model that off-diagonal Coulomb matrix
elements stabilize the minimal ground-state spin, as predicted by Jacquod and Stone (2000).
- It would be interesting to test the SDFT method against our results.
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Fig. 3.15: Radial densities for the clean dot with λ = 4 and minimal spin (P = 22).
Although Wigner crystallization is not yet very pronounced one can see that the sixth
electron enters the center.

3.4.2 Charge and spin densities

With the PIMC we can easily sample two-dimensional one- and two-particle densities
like the charge density or the spatial correlation function. We also monitor spatial
spin-spin correlation densities (cf. Sec. 3.1.6).

Clean dot, incipient Wigner crystallization

We start with showing the radial charge densities 2πrn(r) for six to eleven electrons
with minimal spin in the clean dot (Fig. 3.15). Densities for the ground state look
the same. We are in the incipient Wigner molecule regime, so the density in the
center of the dot is nearly constant with a weak modulation. There is no pronounced
radial ordering as seen for λ = 8 in Fig. 2.8 (for spin-polarized electrons) or in Fig. 1
of Egger et al. (1999). However from the curvature for N = 5, 6 one can infer
that the sixth electron is accommodated rather in the center (see detailed discussion
below). With increasing electron number the dot expands laterally and the inner
modulation becomes stronger. For N ≥ 8 the curves have nearly the same slope
which indicates that the charge in the center depends only weakly on N .
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Fig. 3.16: Amount of electron charge nimp trapped by the impurity vs. impurity depth
w for (a) x = (0, 1.5), ς = 0.75 and (b) x = (0, 3), ς = 0.82 in a quantum dot with two
(circles) and five electrons (squares) and λ = 4.

Localization at the impurity

Now we study the influence of the symmetry-breaking impurity. First we show the
amount of charge nimp =

∫

Bς(x)
d2r n(r) within the effective radius ς of the impurity

when we vary the impurity depth w. For our parameters [Fig. 3.16(a)] this amount of
charge increases roughly linear with w, and by fixing w = 4 we obtain that about 75%
of an electron is trapped by the impurity. For higher electron number, this fraction
does not depend too strongly on N . (For one electron the corresponding values is
about 41%.) In contrast we show the localization when the impurity is put farer
away from the center [Fig. 3.16(b)]: Now, there is a barrier in the outer potential,
we have to choose a much higher w to trap an electron. Localization starts abruptly
for w >∼ 5 and seems to saturate for w ≈ 10.

Charge and spin densities with impurity

Next we show contour plots of the 2D charge densities n(r) for N = 2 − 5 with our
standard impurity [w = 4, x = (0, 1.5), ς = 0.75]. It is apparent that rotational
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Fig. 3.17: Shadowed contour plots of the charge densities n(r) for λ = 4, ground-state
spin, w = 4, β = 8, N = 2 − 5. P = 65. Contours lie at integral multiples of 0.1 times the
maximal density. Darker shading signals higher density.
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Fig. 3.18: Ground-state charge densities n(r) for N = 2 − 5 as above but λ = 10.

62



3.4 PIMC study for a quantum dot with a single attractive impurity

symmetry is efficiently broken. The density at the defect is more than three times
higher than at the rest of the dot. The molecule-like structure with the single localized
electrons which are arranged around the impurity is evident, although the electrons
still have strong overlap.

By looking at the corresponding spin densities sz(r), we see very similar distribu-
tions only with a deeper depression in the center (see also below, for N = 6). This
means that we are in a regime where the spin follows mostly the charge distribution.
Note, that this is not the case for vanishing interaction where the spin density is de-
termined by the singly occupied orbitals. In the deep Wigner-molecule regime, charge
and spin have very similar distributions19, as already known for the clean quantum
dot (Egger et al., 1999; Mikhailov, 2002b). Obviously, for spin-polarized dots
holds sz(r) = n(r)/2.

To illustrate the case of strong crystallization we present in Fig. 3.18 the same
ground-state densities for λ = 10. The corresponding Brueckner parameter20 is
rs ≈ 15. The peak at the defect is nearly unchanged, but now the maxima for the
other electrons are more pronounced and separated from each other. While with
increasing electron number and λ, the electron molecule expands, the electron at the
impurity remains at its position and for N = 5 [Fig. 3.18(d)] it is nearly embraced
by a molecule-like ring.

Spin correlation density and effective Hamiltonians

Another interesting observable is the correlation of the impurity spin (3.22) with the
spin density

ξ(r) =
〈

S imp
z sz(r)

〉

(3.55)

which we show in Fig. 3.19. It holds
∫

d2r ξ(r) = SzS
imp
z . The densities display a large

peak at the defect, which means that there is really only one electron trapped. One
can see a correlation hole around the impurity for N > 3. For N = 2, 3 the minima
coincide with the maxima of the charge densities in Fig. 3.17, the spin ordering is
clearly antiferromagnetic. In the case of four and five electrons the behavior is not
so clear, ξ(r) has its maxima at different positions than n(r). For N = 4, Sz = 1,
negative spin is distributed in the center, close to the impurity. For N = 5, Sz = 1/2,

19To quantify this we tried to compute the function I =
∫

d2r [sz(r)− (Sz/N)n(r)]2 for given N, λ
and Sz . This I vanishes when charge and spin are identically distributed, so we expect I to
decay with increasing interaction. However, there are problems with noise and proper sampling
of sz(r) (cf. Sec. 3.1.6). Also, Trotter convergence has to be checked carefully when doing the
simulation for different λ.

20Such densities are not yet in experimental reach for quantum dots. However this quasi-classical
regime is tempting for PIMC studies because there is hardly any sign problem. Filinov et al.

(2001) studied thermal and quantum melting for densities as low as rs ≈ 35. Bernu et al.

(2001) investigated the 2D electron gas with PIMC up to rs ≈ 200. Our PIMC code with
anti-symmetrization at every time slice is best adapted to the crossover regime where the sign
problem is worst.
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Fig. 3.19: Spin correlation density ξ(r) corresponding to the ground states shown in
Fig. 3.17, N = 2 − 5. P = 22, but results for higher P are qualitatively the same. For
N > 2 the maximum at the impurity is cut at a value of 0.005 in order to resolve the tiny
correlation ξ(r) outside the impurity. The gray shade outside the dot corresponds to zero
correlation, whereas brighter gray shades mean negative correlation.

negative spin correlation extends nearly over the area of the dot, with two pronounced
minima close to the impurity.

It would be interesting to know if the system maps on an effective Hamiltonian,
e.g. of Heisenberg type, H =

∑

〈i,j〉 Ji,j SiSj, where the charge degrees of freedom
have been eliminated. For three electrons in Fig. 3.19, this would give a frustrated
antiferromagnet for the low-energy spectrum. However, at rs = 4 we are still far from
this regime, we have high mobility of charge and spin. Bernu et al. (2001) calcu-
lated exchange energies for the 2D Wigner crystal with PIMC (45 ≤ rs ≤ 200). They
obtained an effective spin Hamiltonian which can be diagonalized and stated that at
zero temperature and very low density, rs ≈ 175, the system undergoes a phase tran-
sition from a spin liquid to a ferromagnetic ground state. Creffield et al. (1999)
performed an exact diagonalization in real space for two electrons in polygonal dots
(rs

<∼ 100). They found that the spectra could be reproduced very well by an effective
Hubbard-type Hamiltonian with hopping, exchange, superexchange and Coulomb re-
pulsion (tJV model). For some geometries they had to include three-site terms of
combined hopping and spin-flips, so their model is quite elaborate. Unfortunately,
with PIMC we do not obtain a complete spectrum, but in general, constructing an ef-
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3.4 PIMC study for a quantum dot with a single attractive impurity

fective Hamiltonian can help to understand the low-energy excitations of the Wigner
molecule (cf. Sec. 2.7)21.

Charge and spin order for N = 6

The case N = 6 is especially interesting because now one electron can enter the
center of the dot. Classically, the fivefold geometry has a lower energy than the
hexagon (Table 2.1). The clean six-electron Wigner molecule has also been studied
by Reimann et al. (2000), who found by means of CI calculations that the true
ground state is unpolarized antiferromagnetic with a sixfold symmetry up to at least
λ ≈ 3.5, whereas the polarized state has already fivefold symmetry at this inter-
action strength22. They quantified this by computing the pair correlation function
gσσ′(φ) for (anti-)parallel spins at the outer maximum of the density distribution. In
Sec. 4.3.5 we will discuss how the Wigner crystallization of the six-electron molecule
takes place within the Hartree-Fock approximation.

We start by showing charge and spin distributions for the clean dot in Fig. 3.20.
The 2D contour plots show radial ordering, however, for Sz = 0, 1 the densities
are rather flat in the center [Fig. 3.20(a),(b)]. Only in the spin-polarized case
[Fig. 3.20(c)] a pronounced peak appears in the center, putting in evidence the five-
fold geometry. The spin correlation density ξ(r) for the ground state is shown in
Fig. 3.20(d) and suggests antiferromagnetic spin order. Here, ξ(r) has been defined
for the same position as above with impurity, Sec. 3.4.2, which for the clean six-
electron dot lies at the maximum of the outer ring. However, ξ(r) decays quickly
when we move away from the considered region. The spin density for Sz = 0 van-
ishes within the statistical error. For the state with Sz = 1, the distribution of sz(r)
[Fig. 3.20(e)] is similar to the corresponding charge density, except at the center,
where it displays a clear minimum. This means that spin mobility in the center is
enhanced.

In Fig. 3.21 we present the same densities for the dot with the defect. Now, a high
peak is surrounded by a nearby plateau which exhibits small modulation. The cusps
in the plateau show the crystalline structure of the pinned Wigner molecule. As before
in the clean case, localization becomes stronger with increasing spin [Fig. 3.21(a)-(c)].
We will quantify this below. However at first glance, Wigner crystallization is en-
hanced by the defect. Also, the spin correlation ξ(r) for the ground state [Fig. 3.21(d)]
shows stronger antiferromagnetic coupling than in the clean case. This becomes still
more evident for lower temperature, e.g. β = 12 (see Fig. 3.24). The spin density for
Sz = 1 [Fig. 3.21(e)] does not too well follow the charge density. It is increased at
the impurity’s next neighbors and smaller at the center and away from the impurity.

21In Sec. 4.3.4 we show that the UHF Hamiltonian for strong interaction is equivalent to one particle
hopping between the different sites of a Wigner molecule.

22They cannot perform calculations for higher coupling constants, because the truncation of Hilbert
space becomes too severe a problem. Their energies agree quite well with PIMC results.
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Fig. 3.20: Six electrons in the clean quantum dot. Charge density n(r) for Sz = 0, 1, 3
[(a)-(c)]. (d) Spin correlation density ξ(r), Sz = 0. (e) Spin density sz(r), Sz = 1. In (f)
radial charge densities for different spins.
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Fig. 3.21: Same as in Fig. 3.20 but with impurity. In (f) ξ(r) for Sz = 1. Note that
shading and contours refer to the height relative to the maximum of each single density
plot, they do not have a common scale.
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Fig. 3.22: Amount nc of electron charge localized in the center integrated over a radius
ς = 0.75 for N = 6 and different spins.

This typical pattern for sz(r) is also seen for higher electron number which indicates
that the impurity strongly affects the spin structure. The respective ξ(r) [Fig. 3.21(f)]
displays an antiferromagnetic coupling close to the defect and a tiny ferromagnetic
correlation farer away from it, similar to the case N = 4, Sz = 1.

Figure 3.22 summarizes our findings for N = 6 quantitatively. We calculate the
amount of charge in the center nc =

∫

Bς (0)
d2r n(r) and plot it versus the spin quantum

number. Here, we see that indeed this amount is bigger for higher spin. The nearby
impurity draws off charge from the center, therefore the values for the clean dot are
higher. When Sz is increased, more and more charge goes into the central region.
For the clean dot, comparing S = 0 and S = 3, this amounts to a ≈ 25% increase in
nc, but with the defect, this increase is ≈ 40%. That implies that the spin sensitivity
of the incipient crystallization process is significantly enhanced by the impurity. The
strong dependence on spin means that there is no clear separation of energy scales
for spin and charge fluctuations. Such behavior is only found in the incipient Wigner
molecule regime, and invalidates the commonly used lattice-spin models appropriate
in the deep Wigner-crystallized limit.

Charge densities for N > 6

Figure 3.23 shows contour plots for the ground-state charge density for N = 7 to 10
electrons. At the defect, the density is about three times larger than elsewhere in
the dot. Although there are large quantum fluctuations, a spatial shell structure is
already discernible. The classical prediction for clean dots at these electron numbers
is as follows (cf. Sec. 2.8). For N = 7 and N = 8, just one electron is in the center,
while for N = 9 and N = 10, the spatial filling is (2, 7) and (2, 8), respectively, with
the configurations (1, 8) and (3, 7) very close in energy. Quantum-mechanically, for
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Fig. 3.23: Quantum dot with impurity. Charge densities n(r) for β = 4 and N = 7, 8, 9,
and 10 electrons [(a)-(d)]. P = 33. For lower temperature the densities look very similar
although with more noise. The incoming electrons are accommodated in the outer ring
(also for N = 11) which merges and for N = 10 nearly embraces the impurity. Note that
the density at the impurity is more than three times higher than at the rest of the dot. Its
Trotter convergence is slow, therefore we cannot show the densities for lower P .

λ = 4, the radial ordering is not yet very pronounced in the clean dot (cf. Fig. 3.15
and Reimann et al., 2000). With impurity, however, our data in Fig. 3.23 displays
spatial shells, although with a rather different filling sequence. A detailed examina-
tion of the central region shows that only one to two electrons are accommodated in
this part. Therefore incoming electrons enter the outer ring for N = 7, 8, 9, and 10,
with the ring expanding and, for N = 10, nearly embracing the impurity.

3.4.3 Impurity susceptibility - finite-size Kondo effect?

The impurity captures an electron which carries a magnetic momentum. We therefore
have an intrinsic model for a localized spin with a surrounding bath, which bears some
similarities with the Kondo problem23. One can define a magnetic momentum of the

23The Kondo effect has indeed been found in quantum dots (Kouwenhoven and Glazman, 2001).
However, there, the whole dot with one unpaired electron serves as an artificial magnetic impu-
rity. In these experiments, the dot is more strongly coupled to the leads and, at low temper-
atures, the conductance through it is enhanced by the Kondo effect. (In metals with magnetic
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impurity M imp [cf. Eq. (3.22)] and a susceptibility

χimp
z =

∂M imp

∂B
=

∫ β

0

dτ
{

〈

S imp
z (τ)S imp

z (0)
〉

−
〈

S imp
z

〉2
}

. (3.56)

This expression is obtained by introducing a coupling V = −M imp ·B to an external
magnetic field and then letting B → 0. It is the integral over the imaginary-time auto
correlation function of the impurity’s spin, which has the period β. We can sample
the first part of the integrand quite well (fast Trotter convergence), but we also
have to sample S imp

z decently! This second term matters because the susceptibility
decreases with increasing spin polarization.

If one electron is isolated on the impurity its susceptibility reads χCurie
z = β/4. We

have about 3/4 of an electron charge localised within a radius of ς = 0.75, so we
expect χimp

z to be diminished. In the classical Kondo problem, a localized spin of
a magnetic impurity is coupled to the spin of the conduction electrons in a metal.
Its susceptibility is diminished according to χKondo

z = β/4[1− 1/ ln(T/TK) + . . .], for
T � TK , where TK is the Kondo temperature. The impurity is surrounded by a
screening cloud and at low temperatures T � TK a total spin singlet forms and the
susceptibility saturates TKχKondo

z = 1 − (T/TK)2.
In our system the impurity’s spin is coupled to a small, strongly correlated bath.

For our parameters the susceptibility does not show a clear dependence on the elec-
tron number. In Fig. 3.24 we plot χimp

z for the unpolarized six electron dot. It
decays with increasing temperature and seems to saturate when T → 0 which is the
expected behavior. However, we do not find a clear signature of Curie or Kondo
behavior because our system is far from these ideal cases: the impurity is screened
by the bath, but it is not completely localized and the bath is very small and truly
not a Fermi liquid.

In the inset of Fig. 3.24 we display the spin correlation density ξ(r) for β = 12. It
shows nicely the antiferromagnetic ordering of the unpolarized six-electron Wigner
molecule which is pinned by the impurity. At higher temperature the tiny positive
correlation at the next-nearest-neighbor sites are washed out (cf. Fig. 3.21).

3.5 Conclusion

To conclude, we have presented an extensive path-integral Monte Carlo (PIMC) study
for interacting electrons in a parabolic quantum dot. We have obtained high-precision
results for clean dots and in the presence of a symmetry-breaking impurity. First, we
have explained comprehensively the basic idea of PIMC and our implementation and
procedure. Due to the fermion sign problem, CPU times are very long, we therefore
restricted our calculation to N ≤ 10.

impurities, the resistance increases at low temperatures due to the Kondo effect.)
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Fig. 3.24: Impurity susceptibility versus kBT for N = 6, Sz = 0 (circles). Error bars
are smaller than the symbol size. The straight line is a fit for higher temperature with the
expected Curie law ∝ 0.11T−1. The inset shows the spatial spin-spin correlation density
ξ(r) for the lowest temperature, β = 12.

For small electron number in the clean dot, we checked our PIMC results against
other exact results that we obtained ourselves or were available from the literature.
An important step to achieve high accuracy is our extrapolation procedure: simula-
tions are done for different discretization step sizes ε of the path integral. We can
then eliminate the systematic Trotter error by a linear regression for ε → 0. Perform-
ing the PIMC with different Trotter numbers has also the advantages of improving
ergodicity and the sign problem.

We have then applied this simulation method to investigate impurity effects for
a quantum dot in the incipient Wigner molecule regime. In this stage of beginning
crystallization, the numerical description and the physical interpretation are most
difficult, yet most interesting. We found that in the clean case, despite of rather
strong interactions, the energetic shell structure is still discernible by tiny cusps in
the addition energies. The impurity alters the addition spectrum substantially. The
shell structure is destroyed, instead we find a new peak at N = 8 which comes along
with a very unexpected sub-Hund’s rule spin S = 0. For other electron numbers, the
ground-state spin is not altered by the defect. By looking at the spin gap between the
low-lying energies we find a tendency towards spin polarization, however, this seems
to be a rather weak effect depending on N . The interplay of disorder and interaction
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in quantum dots is currently subject of intense theoretical and experimental research;
our deformed dot is probably not an example for real disorder, but we can treat the
few-electron problem with rather strong interaction and impurity in an exact fashion.

The PIMC method enables us to monitor spin and charge spatial distributions
and correlation functions. The onset of Wigner crystallization is clearly enhanced by
the symmetry-breaking defect, although we still have strong quantum fluctuations.
The charge densities show a peak at the impurity with a surrounding weakly mod-
ulated plateau which represents the Wigner molecule. We also investigated the spin
sensitivity of the beginning crystallization. Interestingly, this dependency, which is
not found in the deep Wigner molecule case, is reinforced by the impurity. The
spatial spin-spin correlation function shows rather a Fermi hole than a clear spin
ordering. However for small electron number and low temperatures, we were able to
monitor this tiny correlation: for our parameters we do not have strong separation
of the energy scales of charge an spin fluctuations. Such behavior is only found in
the incipient Wigner molecule regime and invalidates a possible lattice-spin model
description. These effective Hamiltonians are only appropriate in the deep Wigner-
crystallized limit.

We illustrated these findings extensively for the six-electron Wigner molecule.
Here, the classical configuration is a pentagon with an electron in the center. We
found that both with and without impurity the ground state is unpolarized with
antiferromagnetic spin ordering, which mirrors the sixfold geometry. Conversely, for
polarized spin one electron clearly enters the center of dot. Enhanced spin sensitivity
can also be seen in the spin densities which do not simply follow the charge densities.
These spin effects are increased in presence of the defect. Finally, for N = 6 we have
considered the impurity’s susceptibility as a function of temperature. Its behavior is
indeed reminiscent of the Kondo effect, i.e. a saturation for low T and a decay for
higher T . The detailed form χimp

z (T ), however, deviates from the idealized model.
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4 Unrestricted Hartree-Fock for

quantum dots

In the present chapter we discuss properties, predictions, and limitations of Hartree-
Fock (HF) calculations for clean quantum dots. This method has a long tradition
in atomic and nuclear physics. Unrestricted Hartree-Fock is the best one-particle
approximation which takes into account the anti-symmetry of the many-fermion wave
function and the interaction. While quantum dots may be considered as tunable two-
dimensional (2D) artificial atoms, the electron density can be much smaller than in
real atoms and correlations play a more prominent role. This is why for quantum
dots the HF method has to be regarded with care. In this work we focus on the
crossover from weak to strong Coulomb interaction, i.e. from higher to lower electronic
densities. This is equivalent to weakening the external confinement potential for a
given host material of the quantum dot.

The physics of this crossover can be sketched as follows. In the case of weak in-
teraction (high density) a one-particle picture is valid: Electrons are filled into the
energy shells of the 2D isotropic harmonic oscillator. Here, the appropriate method is
Restricted Hartree-Fock (RHF), where every orbital belongs to an energetic shell and
has good orbital momentum. This shell filling with Hund’s rule was found experimen-
tally in small dots (Tarucha et al., 1996). In the case of strong interaction (low
density), one can no longer stay within this simple one-particle picture. Wigner

(1934) has shown that for strong correlation the ground state of the 2D electron gas
is described by localized electrons, which form a classical hexagonal crystal. Accord-
ingly, in this limit the electrons in the dot form a small crystal, a so-called Wigner
molecule. Therefore the picture of energetic shells is no longer meaningful. One has
to improve the HF approximation, and this is done by passing over to unrestricted
Hartree-Fock (UHF). This means that the space of the HF trial wave functions is
extended, leading to considerably lower energies than with RHF. At the same time
the UHF Slater determinant breaks the symmetry of the problem, i.e. spatial and
spin rotational invariance. This complicates the interpretation of the UHF solution.

For very strong interaction, UHF is also expected to give reasonable results be-
cause a one-particle picture of localized orbitals (e.g. a Slater determinant of spatially
localized orbitals) should model the Wigner molecule quite well. In fact, the UHF
energies become nearly spin-independent, in accordance with semiclassical and quan-
tum Monte Carlo studies, while this is not the case with RHF. We show that the UHF
Hamiltonian for strong interaction has the same spectrum as a tight-binding Hamil-
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tonian of a particle hopping between the sites of a Wigner molecule. The hopping
matrix element and on-site energies can be extracted from the UHF orbital energies.

The application of the HF method to quantum dots is natural and has been dis-
cussed in various recent papers. By comparing to exact PIMC results, we will demon-
strate that some of the conclusions drawn on the basis of HF calculations are not
based on firm grounds. This is in particular the case, when the HF wave functions are
used to describe charge and spin density distributions in a quantum dot. The onset
of Wigner crystallization cannot directly be determined from these quantities. On
the other hand, UHF will be shown to give rather reliable estimates for the ground-
state energies, although the method cannot correctly resolve spin order and addition
energies.

In this chapter we give a complete account of UHF calculations for clean quantum
dots (Reusch and Grabert, 2003). To our knowledge, we are first to discuss the
UHF two-electron problem in detail and give an elaborate analysis of the strongly
interacting limit and a weak magnetic field. An incomplete version of our results
has been presented in an earlier short communication (Reusch et al., 2001). In
Sect. 4.1 we present the method and introduce the basic notation. In Sect. 4.2 we
obtain explicit results for quantum-dot Helium that already show many features of
HF solutions for higher electron numbers presented in Sect. 4.3. In Sect. 4.4 we also
discuss the effect of a magnetic field.

4.1 Unrestricted Hartree-Fock method

4.1.1 Hartree-Fock Slater determinant

The HF approximation (Fock, 1930) consists in approximating the interacting many-
electron ground state by a single, optimal Slater determinant

∣

∣ΨHF
〉

=

(

N
∏

i=1

ĉ†i (HF)

)

|0〉 . (4.1)

Optimal means that this trial wave function gives the lowest ground-state energy
EHF =

〈

ΨHF
∣

∣ Ĥ
∣

∣ΨHF
〉

according to the variational principle. Then, the HF one-

particle functions, the orbitals |i〉 = ĉ†i(HF) |0〉, fulfill the HF equations (see below),
that means they are determined self-consistently1. In other words, the orbitals form
a mean field that acts effectively on every single electron. The orbitals do not have to
correspond to the unperturbed (atomic or harmonic oscillator) orbitals, which would

1The derivation of the HF equations can be found in any text book on quantum mechanics. In
quantum chemistry (e.g. Szabo and Ostlund, 1982; Primas and Müller-Herold, 1990),
(restricted) HF calculations often serve as a reference point for more refined methods. We
emphasize, however, that we want to describe a system that is much stronger correlated than
electrons in atoms or molecules.
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4.1 Unrestricted Hartree-Fock method

only be true in the weakly interacting case. Furthermore, we want to remark that
HF, though being an approximation, is a fully quantum-mechanical method. It is
not a semiclassical method, although we are interested in the crossover to the regime
of classical electrons.

4.1.2 Hartree-Fock orbitals

The HF orbitals are expanded in a known basis. In our calculation, we have chosen
the angular momentum basis of the two-dimensional harmonic oscillator, the Fock-
Darwin states Eq. (2.10). The expansion then reads

|i〉 = ĉ†i(HF) |0〉 =
∑

n=0,∞
M=−∞,∞

ui
nM |nMσi〉 . (4.2)

Here, M is the angular and n the radial quantum number of the Fock-Darwin basis
and σi = ±1/2 is the electron spin of the i-th orbital2. Thus only the z-component
of the total spin is fixed, Stot

z =
∑

i σi ≡ Sz. In a practical calculation, the number
of basis functions is finite. For N ≤ 8 we used up to 55 basis functions per spin
direction (up to an energy of 10~ω0).

We want to point to some features of the expansion (4.2). The orbitals are no
longer eigenfunctions of the one-particle angular momentum. Therefore, as we shall
see explicitly below, the HF Slater determinant is not an eigenstate of the total
angular momentum, it breaks the symmetry of the original Hamiltonian. Another
possibility is to give each orbital i a fixed angular momentum Mi. This restricted HF
(Reusch, 1998) preserves the total angular momentum but yields higher ground-
state energies. Giving up the symmetry is thus necessary to obtain useful results
within the one-particle picture of HF3. Still another possibility would be to build
a Slater determinant of spatially localized orbitals for the strongly interacting case
(Sundqvist et al., 2002) or of multicenter localized orbitals in high magnetic field
(Szafran et al., 2003) and vary position and shape of these orbitals to minimize the
HF energy. Our orbitals fulfill the HF equations (see below), they are self-consistent
and best adapted to study the crossover from weak to strong correlation.

4.1.3 Breaking of rotational symmetry

To show explicitly the breaking of rotational symmetry, we consider the total angular
momentum Ltot

z =
∑N

i=1 L
(i)
z in the HF basis ĉ†i (HF) =

∑

α ui
αâ†

α (where â†
α is the

2Each orbital has its own fixed spin, that is to say there is no double occupancy of orbitals with
spin up and down, but there are different orbitals for different spins.

3One can say that breaking a symmetry implies that correlations are partly taken into account in
spite of the one-particle description (see e.g. Ring and Schuck, 1980; Lipkin, 1960).
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4 Unrestricted Hartree-Fock for quantum dots

creator in the angular momentum basis, i.e. â†
α |0〉 ≡ |nαMα〉)

L̂tot
z =

∑

i,j

〈i|Lz |j〉 ĉ†i (HF)ĉj(HF) ≡ L̂. (4.3)

As Ĥ and L̂ commute, the exact, non-degenerate ground state must be an eigenstate
state of L̂. On the other hand, if we calculate the expectation value for the UHF
ground state

〈

ΨHF
∣

∣ L̂
∣

∣ΨHF
〉

=
N
∑

i=1

〈i|Lz |i〉 =
N
∑

i=1

∑

α

|ui
α|2 Mα , (4.4)

one sees that the result is not necessarily integer. However, only eigenstates of the
total angular momentum are rotationally invariant, since Ltot

z is the infinitesimal
generator of a rotation of the system. A finite rotation by angle α is given by

exp
{

iαLtot
z

}

Ψ = exp
{

iαM tot
}

Ψ , (4.5)

if and only if Ltot
z Ψ = M tot Ψ.

4.1.4 Numerical procedure

In the diploma thesis (Reusch, 1998) the RHF ground state was found by parame-
terizing and minimizing the RHF energy functional. Now, with the UHF approach
the dimensionality of the problem is strongly increased, in particular the matrix ui

nM

is no longer block diagonal (except with respect to spin). Thus the parameter space
gets to big and a minimization is no longer effective. Therefore we seek for the UHF
ground state by iterative diagonalization of the HF equations,

∑

α

{

〈γ|h |α〉 +
∑

ββ′

(γβ|w|αβ ′)ρβ′β

}

uk
α = εku

k
γ . (4.6)

Here, Greek indices abbreviate the quantum numbers of the basis (2.10), e.g. α ≡
(nαMασα), and 〈γ|h |α〉 is the matrix element of the one-particle Hamiltonian (2.9).
Further,

(αα′|w|ββ ′) = 〈αα′|w |ββ ′〉 − 〈αα′|w |β ′β〉 (4.7)

is the anti-symmetrized Coulomb matrix element, which we have obtained by trans-
formation to relative and center of mass coordinates (Reusch, 1998). Now, we start
with an initial guess for the density matrix

ραα′ =

N
∑

i=1

ui
αui

α′

∗
. (4.8)
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Then we diagonalize (4.6) and obtain new expansion coefficients ui
nM and from these

a new density matrix (4.8). This process is iterated until a stable, self-consistent
solution is obtained.

Clearly, this solution could be merely a local minimum and not the HF ground
state. Therefore the iteration has to be stable over many cycles and, above all, one
has to try several initial guesses for the density matrix ραα′ . The initial guess should
not contain any symmetries which would pass over to the HF Hamiltonian Eq. (4.6)
and steadily be iterated. Typically we used about 500 to 1000 iterations. The true
minimum can also be identified by its one-particle density,

nHF(r) =

N
∑

i=1

|ϕi(r)|2 , (4.9)

which in the strong coupling limit mirrors the geometry of classical electrostatic
point-charges as we discuss below.

4.1.5 Orientational degeneracy

In principle the orientation of the deformed symmetry-breaking HF solution is ar-
bitrary. This fact is due to the rotational invariance of the original Hamiltonian
and can be called orientational degeneracy. The HF solution one finds has a special
orientation and depends on the initial guess for the density matrix ραα′ . Any desired
orientation can be obtained by applying exp(iαLtot

z ) to the Slater determinant.

At this point we have to add a remark which is also of relevance for numerics. When
we consider a quantum dot in zero magnetic field, our Hamiltonian is invariant under
time reversal. Thus we can choose real expansion coefficients ui

nM in (4.2). However,
then the HF one-particle density is always symmetric to one axis. We show this for
the density of one orbital ϕi(r) ≡ 〈r|i〉

|ϕi(r)|2 =
∑

α,β

ui
α
∗
ui

β ei(Mβ−Mα)ϕRα(r)Rβ(r) , (4.10)

where R stands for the radial part of the basis. If the coefficients ui
α are real

|ϕi(r)|2 = 2
∑

α>β

ui
αui

β cos[(Mβ − Mα)ϕ]Rα(r)Rβ(r) +
∑

α

[ui
αRα(r)]2 (4.11)

and the total density is symmetric to the axis from where the polar angle ϕ is
measured. Only with complex coefficients ui

α does one obtain an arbitrary orientation
of the density.
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4.2 Unrestricted Hartree-Fock for quantum-dot

Helium

In this section, we present UHF energies and densities for the two-electron quantum
dot (quantum-dot Helium). This illustrates the basic concepts and properties of the
HF approximation, and reveals features that are also important for higher electron
numbers. We compare with exact results obtained by diagonalization of the relative
motion (cf. Sec. 3.2.1). We also compare with the RHF method, in order to illustrate
the differences to UHF.

The UHF two-electron problem has been treated previously by Yannouleas and
Landman (2000b). However, we find some deviations from their results. An exten-
sive discussion of the properties of the RHF quantum-dot Helium for λ ≈ 2 can be
found in Pfannkuche et al. (1993).

4.2.1 Two-electron Slater determinant

The Slater determinant for two electrons with Sz = 0 is

ΨHF =
1√
2

[

ϕ1(r1)ϕ2(r2)χ
1
+χ2

− − ϕ1(r2)ϕ2(r1)χ
2
+χ1

−
]

. (4.12)

Here we have displayed the orbital and spin parts of the wave function explicitly, χi
±

is the spin of the i-th electron. The state ΨHF is generally not an eigenstate of the
total spin S2

ges. In order to obtain a singlet one has to set ϕ1 =ϕ2, and thus

ΨHF = ϕ1(r1)ϕ1(r2)χsinglet. (4.13)

This restriction is also called closed-shell HF (CSHF), because if every orbital is
filled with spin up and down, open shells are impossible. One sees very clearly from
(4.12) that the Slater determinant violates the symmetry of the problem. For two
electrons, the spin symmetry is easily restored, namely by a superposition of two
Slater determinants with spin up/down and down/up. For the polarized case Sz = 1,
total spin is conserved, and the HF wave function is a product of a symmetric spin
function and an anti-symmetric orbital function.

4.2.2 Different HF approximations

Now we want to compare the energies of different HF approximations. These differ in
the numerical effort, however, for today’s computer, the most general solution of the
problem involves diagonalizing a 50x50 matrix a thousand times, which is a child’s
play. We compare with the results of an exact diagonalization4.

4Since we know the Coulomb matrix elements explicitly, a diagonalization of the relative motion of
two electrons (Sec. 3.2.1) is easier than an evaluation of the analytic solution in terms of power
series (Taut, 1993).
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Fig. 4.1: Comparison of different HF energies with the exact energies vs. the coupling
constant λ. (a) S = 0, (b) S = 1.

First we consider the case Sz = 0. The most general ansatz for the HF orbitals
is the UHF state (4.2), a spin-dependent expansion which includes arbitrary angular
momentum. Less general is the RHF ansatz, where angular momentum is preserved.
And still less general is CSHF (4.13), when we force the two electrons to occupy
two identical (rotationally symmetric) orbitals. In Fig. 4.1 one can clearly see the
importance of breaking the symmetry to obtain lower HF energies. Up to λ ≈ 1 all
three methods give nearly the same result. Up to λ ≈ 3 the closed-shell energy is
equal to the RHF energy. This means that from this point on the two RHF orbitals
are no longer identical. As expected, the UHF energy is lowest. For Sz = 1, one has
a triplet, and total spin is conserved. One needs two different orbitals, there is no
CSHF.

In Fig. 4.2 we show the differences of the HF energies from the energy of the
exact ground state which is the singlet. In the spin-polarized case, UHF gives lower
energies than RHF, but the gain in energy is not as big as in the unpolarized case.
Interestingly, the UHF energies become spin-independent with increasing λ: Above
λ ≈ 4 they agree within about 0.3%, the Sz = 1 state is somewhat lower than
the Sz = 0 state5. The exact energies merge more slowly: For λ = 20 the energy
difference between singlet and triplet is still about 1%. Note that the RHF energies
fail to become spin-independent for large λ, which leads to overestimate the spin gap.

5This is probably due to the exchange term which lowers the HF energy for parallel spins. In fact,
exchange integrals are always positive (for a proof see Slater, 1960, App. 19).
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Fig. 4.2: Absolute energy differences with respect to the exact ground state ∆E = ES −
Eexact

GS . Above λ ≈ 4 the two UHF energies are nearly the same.

Of course, one expects spin-independent energies in the classical limit of localized
electrons without overlap. However, as we will illustrate below, the UHF orbitals are
not localized.

4.2.3 UHF one-particle densities

Now we want to have a closer look at the one-particle density which is just the sum
of the densities of the two orbitals,

nHF(r) = |ϕ1(r)|2 + |ϕ2(r)|2 . (4.14)

In Fig. 4.3 we show this density for different values of the coupling parameter λ.
Already for a relatively small λ, we detect two azimuthal maxima. The density is
strongly anisotropic which is due to the symmetry breaking (see Sec. 4.1.5). In the
case of Sz = 1 the two maxima are more distinct as a consequence of the Pauli
principle because polarized electrons are stronger correlated. However, the direct
interpretation of the two dips as localized electrons is questionable: with increasing
λ the azimuthal modulation first decreases, then for λ >∼ 8 (λ >∼ 10 for Sz = 1) it
increases again. For very high λ the densities become almost spin-independent. A
closer view reveals that the azimuthal maxima are more distinct for the case Sz = 0.
This can be understood by remembering the exchange term in the HF energy which
lowers the energy for strong interaction and overlapping spin-polarized orbitals. Thus
the orbitals are less localized for Sz = 1 as we show explicitly below.

While the azimuthal modulation is an artifact of the HF approximation, the den-
sities display correctly a minimum in the center which gets deeper with stronger
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Fig. 4.3: Shadowed contour plots of the HF single particle densities for quantum-dot
Helium and different values of the interaction. Sz = 0 upper part, and Sz = 1 lower part.
One contour corresponds to 1/10 of the maximal density.
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interaction. Also, the maxima are in very good agreement with the classical posi-
tions ra = 3

√

λ/4 (see Sec. 2.8).

4.2.4 UHF orbitals

In order to understand the form of the UHF densities it is necessary to have a closer
look at the UHF orbitals. For Sz = 0, we obtain two orbitals that are exactly
complex conjugate, ϕ1 = ϕ∗

2 (Fig. 4.4). This can be seen by studying the expansion
coefficients unM in Eq. (4.2) and means that the Slater determinant is symmetric
under time reversal6.

For Sz = 1, the two orbitals depicted in Fig. 4.5 are always different and can be
chosen real. One can easily see how the total density is composed of the two orbital
densities. For λ = 2, one can still interpret the orbitals in the energy shell picture
like with RHF: The first orbital is (approximately) round, S-like, and the second
one is dumbbell formed, P-like7. This gives (again approximately) a total angular
momentum Mtot = ±1. The deformed Slater determinant and the dumbbell formed
density can be seen as a superposition of opposite angular momenta, resulting in a
standing wave (see below).

For very high λ >∼ 14, there is a simple relation between the orbitals for both spin
polarizations. If for Sz = 1 we choose both orbitals real, we find

ϕS=0
1/2 ≈ 1√

2
(ϕS=1

1 ± iϕS=1
2 ) . (4.15)

In this fashion, we see that ϕS=0
1/2 are complex conjugate and approximately orthonor-

mal, since we have made an unitary transformation. We have thus obtained orthogo-
nal Hartree orbitals, because there is no exchange term for Sz = 0. In Fig. 4.6 we show
that the overlap 〈ϕS=0

1 |ϕS=0
2 〉 vanishes exponentially with increasing λ (cf. Fig. 4.13).

To shed more light on this behavior we consider now the orbital energies8. We
start with the HF Hamiltonian in the HF basis for Sz = 1

(

ε1 0
0 ε2

)

=

(

h11 + w1212 0
0 h22 + w1212

)

. (4.16)

6This finding is in conflict with the results of Yannouleas and Landman (2000b). They find
two different UHF orbitals, which then give rise to another conditional probability density (see
Sec. 4.2.5). Seemingly (see also Yannouleas and Landman, 2002) they find (or use) spatially
localized orbitals. We do not find localized orbitals and this is to be expected in view of the
rotational invariance of the problem (e.g. there are no localized orbitals in a benzene ring).
However, in the limit of strong interaction one can build a Slater determinant of spatially
localized orbitals, e.g. of Gaussians located at the classical positions (Sundqvist et al., 2002)
and this should give nearly the same variational energy (see comment in Sec. 4.4.3).

7An orbital with angular momentum M = 1 has an isotropic density. Superposition of M = ±1
orbitals gives a dumbbell formed density.

8For an interesting exact property of HF orbital energies see Bach et al. (1994).
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Fig. 4.4: UHF orbitals for N = 2, Sz = 0. (a), (b) real and imaginary part of ϕ1 at λ = 2.
(c), (d) real and imaginary part at λ = 8. The second orbital is always complex conjugate.
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Fig. 4.5: Pairs of real UHF orbitals for N = 2, Sz = 1. (a), (b) at λ = 2. (c), (d) at
λ = 10.
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2 〉 vs. λ2/3. For λ ≥ 8, the line of best fit is
shown.

Here, we use the notation hij = 〈i|h |j〉 and wijkl = (ij|w|kl) for matrix elements in
the HF basis. When we apply the unitary transform (4.15),

1

2

(

1 i
1 −i

)(

ε1 0
0 ε2

)(

1 1
−i i

)

=

(

U −t
−t U

)

= H2 , (4.17)

we obtain a two-state Hamiltonian H2, with on-site energy U = (h11 +h22 +2w1212)/2
and tunnel splitting t = (h22−h11)/2. Thereby, we have mapped the HF Hamiltonian
on a lattice model. It is intuitive that for strong interaction the two electrons localize,
and thus a tight-binding approach should become physically correct.

Now we want to show that the transformation (4.15) is just the one which yields
so-called localized orbitals. It is known from quantum chemistry that HF orbitals
are always very badly localized, because they should maximize the exchange term
of the HF energy (Primas and Müller-Herold, 1990). In order to obtain local-
ized orbitals, one can make a unitary transformation within occupied states, e.g. by
minimizing the exchange energy9.

For Sz = 0, there is no exchange term in the HF equations, and these lead to
the Hartree orbitals of Eq. (4.15). On the other hand, the transformed Hamiltonian
(4.17) for Sz = 1 reduces for very small tunneling, i.e. strong interaction, to

H ′
2 =

(

U 0
0 U

)

≡ 1

2

(

ε1 + ε2 0
0 ε1 + ε2

)

. (4.18)

9This is the criterion of localization given by Edmindston and Ruedenberg (1963). These new
orbitals then no longer fulfill the HF equations, but form the same Slater determinant, and thus
give the same expectation values for the energy and densities. Localization in this sense does
not necessarily mean that these orbitals are restricted to certain parts of space (Edmindston

and Ruedenberg, 1963).
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Hence, for large λ, it coincides with the HF Hamiltonian for Sz = 0, so that εS=0
1/2 ≈

(εS=1
1 + εS=1

2 )/2. Already for λ = 14, we have εS=0
1/2 = 6.83 and εS=1

1 = 6.71, εS=1
2 =

6.95 corresponding to a small splitting t = 0.12 in H2. We will discuss in general how
the HF Hamiltonian maps on a lattice model in Sec. 4.3.4 and show how t depends
on λ.

4.2.5 UHF two-particle densities

Here we examine the conditional probability density (CPD) for finding one electron
at x, under the condition that another electron is at y. For quantum-dot Helium
and Sz = 0 the CPD reads

nHF(x|y) =
|ϕ1(x)|2|ϕ2(y)|2 + |ϕ1(y)|2|ϕ2(x)|2

nHF(y)
. (4.19)

Now, since we found complex conjugate orbitals, ϕ1 = ϕ∗
2, we have nHF(x|y) =

nHF(x), i.e. the CPD is independent of the condition. This is not too astonishing,
because within the HF method two electrons are only correlated by the exchange
term, which vanishes here.

For Sz = 1, the orbitals are different from each other and the CPD is given by

nHF(x|y) = {|ϕ1(x)|2|ϕ2(y)|2 + |ϕ1(y)|2|ϕ2(x)|2

−2Re[ϕ∗
1(x)ϕ2(x)ϕ1(y)ϕ∗

2(y)]}/nHF(y) . (4.20)

In Fig. 4.7 we show contour plots of UHF CPDs for different coupling constants and
given positions y. In the upper row, for y = (2, 0), we find for small λ = 2 a suggestive
result: the density has a single maximum at a distinct distance of the fixed coordinate
y. With increasing λ, however, we obtain two maxima, which develop more and more
and are not at all located at the classical position.

The situation is likewise irritating when one chooses y = (0, 2) as fixed coordinate
(lower row). While the exact CPD is rotationally symmetric when both x and y

are rotated, the UHF CPD does not respect this symmetry. The reason for this lies
in the symmetry-breaking and because the UHF approximation cannot completely
account for correlations10. The UHF Slater determinant is deformed and derived
quantities do not have necessarily a direct physical meaning, except for the UHF
energy which is a true upper bound for the exact energy. Furthermore, it is clear
how one could improve the situation, namely by restoring the symmetry. This can

10Here we disagree with Yannouleas and Landman (2000b) who state that the degree of Wigner
crystallization can be extracted from the UHF CPD. Building a Slater determinant a priori from
spatially localized orbitals may lead to a reasonable CPD, but the UHF orbitals are determined
self-consistently.
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Fig. 4.7: Conditional probability density nHF(x|y). In the upper row y = (2, 0) (⊗) and
(a) λ = 2, (b) λ = 6, (c) λ = 10. Lower row y = (0, 2) (⊗) with (d) λ = 2, (e) λ = 10, (f)
λ = 18.

be done by projecting the single Slater determinant on a multi Slater determinant
state with good total angular momentum (Ring and Schuck, 1980)

ΨSymm =

∫ 2π

0

dα

2π
exp

{

iα
(

Lges
z − M tot

)}

ΨHF. (4.21)

This projection has been performed for two electrons in a recent work by Yan-

nouleas and Landman (2002).

4.3 Unrestricted Hartree-Fock for higher electron

numbers

In this section we show further results of UHF calculations, namely energies and
densities for up to eight electrons. Many effects are similar to what we have already
seen for two electrons, for example the errors of the UHF energies and their spin
dependence. An interesting phenomenon shown by the UHF densities is the even-
odd effect discussed below.
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4.3.1 UHF energies

For N > 2, we compare the UHF energies with results of a Quantum Monte Carlo
(QMC) simulation by Egger et al. (1999) and our own QMC results. This data was
obtained for a very low temperatures, kBT ≤0.125~ω. The QMC energies are always
below the HF energies and can therefore be considered as effective zero temperature
reference points. In Fig. 4.8 we show the relative error for various electron numbers
and spins.

For N = 3, QMC and also a semiclassical analysis (Häusler, 2000) as well as
an exact diagonalization study (Mikhailov, 2002a), predict a transition from the
S = 1/2 ground state in the weakly interacting case to a S = 3/2 ground state
for λ >∼ 4. The UHF ground state, however, is already spin-polarized for λ >∼ 2. In
Fig. 4.8 one can see that the relative error for Sz = 3/2 is small, less than 3% . In
the non-polarized case, the error is higher, about 7% for λ = 2. With increasing N
and λ, the relative error becomes smaller because the absolute energies are higher.
In general, we can say that for the non-polarized states at λ = 2, the relative error
is largest, whereas it is much smaller for the spin-polarized states. Therefore UHF
also fails to give correct addition energies (2.3), e.g. ∆HF(2) = 1.34, for λ = 2, while
the exact value is ∆(2) = 1.72.

In Fig. 4.9 we show the absolute energy differences from the QMC ground state
for five and eight electrons. For intermediate values of λ, the UHF energies become
already nearly spin-independent, whereas the QMC energies approach this semiclas-
sical behavior more slowly. For stronger interaction, the UHF ground state is always
spin-polarized11. Thus the UHF method can not resolve the correct spin ordering of
the energies. For N = 5, QMC and also semiclassics predict a total spin S = 1/2
for all coupling constants λ. This is also the spin in the energy shell model. HF can
find this ground-state spin only up to λ ≈ 2. For N =8 the QMC method predicts a
transition of the total spin from S =1 to S =2 near λ ≈ 6. The UHF method finds
a polarized ground state with S =4 for λ >∼ 4. Here, however, the energy differences
for different spins are already quite small.

Thus one can conclude that the UHF Slater determinant with fixed spin structure
is still a poor description of the total many-electron wave function. Essentially, UHF
renders the properties of the spin-polarized solution for larger λ. This can also be
seen in the UHF densities which become spin-independent for larger interaction (see
below). Finally we briefly mention the RHF results: There the HF energies do
not become spin-independent (Reusch, 1998), but the energies for lower spins are
considerably higher for large λ. For large λ, RHF does not give a satisfying estimate
of the ground-state energy (see Fig. 4.2).

11For small interaction, UHF can also underestimate the spin, e.g. for N = 4, λ = 2 the UHF
ground state has Sz = 0 (see Fig. 4.8) instead of the correct S = 1 (Hund’s rule).
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S for various electron
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Fig. 4.10: HF one-particle densities nHF for λ = 6, various electron numbers N and
polarized spin Sz = N/2.

4.3.2 HF densities: Even-odd effect

In this subsection we consider the UHF densities for higher electron numbers. We
find an even-odd effect that may seem quite counter-intuitive at first glance, but can
be explained easily. We first show in Fig. 4.10 the densities for rather strong coupling
constant λ = 6, various electron numbers N and Sz = N/2. Above this interaction
strength, the UHF densities are essentially the same for all Sz and do not change
qualitatively with increasing λ (except for N = 2, see above).

Surprisingly, only for some N one obtains a molecule-like structure, i.e. an az-
imuthal modulation that we had already seen for two electrons. For three and five
electrons the density is apparently rotationally symmetric, and also for six electrons,
where we have a pronounced maximum in the center. The naively expected structure
shows up only for N = 2, 4 and 7. Thus, when we consider also N = 8 (see below)
we recognize that the azimuthal maxima occur only for an even number of electrons
per spatial shell. In stating this we want to emphasize that all the densities shown
belong to symmetry-breaking, deformed Slater determinants.

This even-odd effect is also surprising, because UHF calculations for quantum
dots in a strong magnetic field, Müller and Koonin (1996) found molecule-like
densities for all electron numbers. Naively, one would expect a similar behavior in
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the case of strong interaction. We also have performed calculations with a magnetic
field that reproduce the densities of Müller and Koonin (1996)12 and show that
the molecule-like structure disappears for odd N and vanishing field. In the UHF
study of Yannouleas and Landman (1999) the even-odd effect is not mentioned.
They show in Fig. 2(c) for N =6 a density with five maxima on a ring and a central
maximum which disagrees with our results.

A physical explanation of the even-odd effect combines the geometry of the classical
system with the symmetry of quantum mechanics (Ruan et al., 1995). Consider
the exact spin-polarized N -electron wave function ΨN for the Wigner molecule case.
Due to the strong Coulomb repulsion, the electrons move on an N -fold equilateral
polygon (for N < 6, for N = 6 one electron enters the center of the dot). A rotation
by 2π/N therefore corresponds to a cyclic permutation

exp

{

2πi

N
Ltot

z

}

ΨN = (−1)N−1 ΨN , (4.22)

where we have used that a cyclic permutation of an even (odd) number of electrons
is odd (even). From Eq. (4.22), the allowed total angular momenta of the Wigner
molecule can be easily read off: For an odd number of electrons the minimal angular
momentum is zero, whereas it is nonzero and degenerate for an even electron num-
ber13, e.g. M tot = ±2 for N = 4. Hence the UHF wave functions for N = 2, 4, 7 can
be interpreted as standing waves, i.e. superpositions of opposite angular momentum
states. For odd numbers of electrons in a spatial shell, there is no angular momentum
degeneracy, and therefore no standing wave and no modulation in the densities. With
a similar argument, Hirose and Wingreen (1999) explain the charge-density-waves
which they found for odd number of electrons in the weakly interacting regime (open
shell configurations) from density functional calculations. We will come back on this
point for seven electrons in Sec. 4.3.6.

Equation (4.22) does not hold anymore when the spin is not polarized, because
the total wave function is not a product of spin and orbital wave functions. However,
within UHF we do not fix the exact spin but only subspaces with fixed Sz. For
Sz < N/2 the UHF solution mainly renders the properties of the spin-polarized
solution, as the energies and densities are essentially the same for λ >∼ 6. The even-
odd effect is thus not a physical effect but an artifact of the UHF symmetry-breaking.
Therefore great caution must be taken when interpreting the UHF densities. In
particular, the exact onset of Wigner crystallization cannot be determined reliably
from UHF calculations.

12In their study the interaction constant was λ ≈ 1.9.
13In this fashion, Ruan et al. (1995) determine magic numbers, i.e. the fractional filling factors

in the quantum Hall effect.
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Fig. 4.11: UHF single-particle density nHF for N = 3, Sz = 3/2 and λ = 6 as a contour
plot with 30 contour lines.

4.3.3 Closer look at three electrons

For three electrons at strong interaction, we do not find the naively expected density
with three maxima but a nearly round density. We want to study this further and
show the case N = 3 of Fig. 4.10 once more with 30 contour lines in Fig. 4.11. A tiny
sixfold modulation of the density is now discernible. This can be understood by going
back to equation (4.22): After M tot = 0 the next allowed total angular momentum
values are M tot = ±3, which give rise to a standing wave with six maxima. This
becomes also clear from the densities of the single orbitals building the UHF single-
particle density. In Fig. 4.12 we show the orbital densities for λ = 4 and λ = 6. We
find a sixfold orbital, as well as two diametrically oriented threefold orbitals. One
clearly recognizes how the sixfold density in Fig. 4.11 results from this. Note that
the HF orbitals are not localized (for example at the angles of a triangle).

At this point we want to address a related issue, the uniqueness of the HF orbitals.
One can easily show with the help of the HF equations (4.6) that HF orbitals with
the same spin are no longer unique, if the corresponding one-particle energies εi

are degenerate. In this case, any unitary transformation of degenerate orbitals also
fulfills the HF equations. In Fig. 4.12, the respective energies εi are degenerate
for the two states (b),(c) and (e),(f). Therefore these two orbitals are no longer
uniquely determined, in addition to the orientational degeneracy of the total Slater
determinant which is physically obvious.

Now, it is natural to presume that the degeneracies of the orbital energies are a
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Fig. 4.12: UHF orbital densities |ϕi|2 (i = 1, 2, 3) for N = 3 and Sz = 3/2. Upper row
λ = 4, lower row λ = 6. For the single-particle energies we obtain (a) ε1 = 4.92 and (b),
(c) ε2 = ε3 = 5.84; (d) ε1 = 6.44 and (e), (f) ε2 = ε3 = 7.11.

signature of Wigner crystallization, i.e. the geometry of the Wigner molecule. For
strong interaction one should be able to represent the system as a lattice problem on
an equilateral triangle. The corresponding Hamiltonian for N = 3, Sz = 3/2 then
reads

H3 =





U −t −t
−t U −t
−t −t U



 , (4.23)

where U is the on-site energy and t is the tunneling matrix element between localized
states. The eigenvalues of H3 are in fact degenerate, ε1 = U−2t and twice ε2/3 = U+t.

On the other hand, for Sz = 1/2 the tight-binding Hamiltonian involves tunneling
only between the two spin up states and takes the form

H ′
3 =





U −t 0
−t U 0
0 0 U



 . (4.24)

The eigenvalues are ε1/2 = U ± t (spin up) and ε3 = U (spin down), with the same
U , t as in Eq. (4.23). For instance, for λ = 6, we have ε1 = 6.65, ε2 = 7.10 and
ε3 = 6.87, which has to be compared with the orbital energies for the polarized state
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given in Fig. 4.12 and yields t ≈ 0.22. For higher λ the agreement still becomes
better, e.g. for λ = 12 we find ε1 = 10.140, ε2 = 10.309 and ε3 = 10.224 for
Sz = 1/2, while ε1 = 10.06 and ε2/3 = 10.313 for Sz = 3/2, which gives t = 0.085 in
both cases.

4.3.4 Lattice Hamiltonian and localized orbitals

For large λ we find the same eigenvalues for a lattice Hamiltonian and the HF Hamil-
tonian. Thus, there must be a one-to-one correspondence between these two. Re-
member, however, that HF is a one-particle picture and thus the tight-binding Hamil-
tonian describes one particle hopping on a grid. The HF Hamiltonian is diagonal in
the HF basis (4.2),

〈i| h |j〉 +
N
∑

k

(ik|w|jk) = εiδij . (4.25)

Now, if these eigenvalues coincide with those of a lattice Hamiltonian, e.g. H3 in
(4.23), this means that we have to transform the UHF orbitals with the inverse of
the orthogonal transformation which diagonalizes the lattice Hamiltonian to pass
over to localized orbitals. The Slater determinant (4.1) is not changed when we
transform among occupied orbitals (Edmindston and Ruedenberg, 1963),

|p〉 =

N
∑

i

oi
p |i〉 . (4.26)

In this new basis the HF equations read

N
∑

q

{

〈p|h |q〉 +
N
∑

r

(pr|w|qr)
}

oi
q = εio

i
p . (4.27)

Now, in the basis |p〉, we should have non-vanishing 〈p| h |q〉 only for nearest neigh-
bors14, and the contribution of the two-particle matrix element should essentially be
given by the direct term, i.e. diagonal elements of the Coulomb interaction. Then
(4.27) reduces to

N
∑

q

{

〈p|h |q〉 + δpq

N
∑

r

(pr|w|pr)
}

oi
q = εio

i
p , (4.28)

which is now of the form of a lattice Hamiltonian, we were looking for. According to
Edmindston and Ruedenberg (1963), the transformation (4.26) leads to localized

14Note that in (4.26) we transform only among occupied orbitals with the same spin, oi
p ∝ δσpσi

and thus 〈p|h |q〉 ∝ δσpσq
.
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orbitals, which minimize the exchange energy. We do not perform this transformation
explicitly, except in the case N = 2 in Sec. 4.2.4 and for N = 4 (see below), where
we show that the tunneling matrix element for non-next neighbours really vanishes.
For N = 2 we had seen that the orthogonal transformation leads us to orthogonal
Hartree orbitals, i.e. to a vanishing exchange energy. However, the most important
argument for this correspondence to localized orbitals is the near spin-independence
of the HF energies, which is expected semiclassically. It was not obtained with RHF,
which means that the RHF orbitals are not equivalent to localized orbitals.

We want to illustrate our strong numerical evidence for this connection between
the UHF Hamiltonian and a lattice Hamiltonian for N = 4 and 5 which are the
simplest cases of electrons on a ring. For N = 4, Sz = 2 we have

H4 =









U −t 0 −t
−t U −t 0
0 −t U −t

−t 0 −t U









, (4.29)

with the eigenvalues ε1 = U − 2t, ε2/3 = U and ε4 = U + 2t. The eigenvectors of
H4 determine the transformation (4.26). Applying this transformation to the HF
Hamiltonian, as we did in (4.17), we obtain for λ = 8 an Hamiltonian of the form
(4.29) with U = 10.924 and t = 0.195. The next-nearest-neighbor hopping matrix
element (hopping along the diagonal of the square) is t∗ = 2ε2 − ε1 − ε4 = 0.003,
which is indeed already very small.

Likewise we can determine the lattice Hamiltonians for other electron numbers and
spin configurations and we have collected results for t and U for stronger interaction
up to λ = 20. For N = 4, Sz = 1 the lattice Hamiltonian reads

H ′
4 =









U −t 0 0
−t U −t 0
0 −t U 0
0 0 0 U









, (4.30)

with the eigenvalues ε1 = U −
√

2t, ε2 = U and ε3 = U +
√

2t (spin up) and ε4 = U
(spin down), while for N = 4, Sz = 0 we have

H ′′
4 =









U −t 0 0
−t U 0 0
0 0 U −t
0 0 −t U









, (4.31)

with ε1/2 = U ± t (spin up), ε3/4 = U ± t (spin down). Here, we have to assume
that the four states are occupied with two pairs of nearest-neighbor parallel spins in
order to obtain agreement with the UHF orbital energies. The values of t we obtain
in this way for the three spins states Sz = 0, 1, 2 agree within 1% for λ = 8 .
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For N = 5, we have a pentagon and again three different spin states. For Sz = 5/2,
the lattice Hamiltonian with nearest-neighbor hopping is

H5 =













U −t 0 0 −t
−t U −t 0 0
0 −t U −t 0
0 0 −t U −t

−t 0 0 −t U













, (4.32)

with the eigenvalues ε1 = U −2t, ε2/3 = U + t/2(1−
√

5) and ε4/5 = U + t/2(1+
√

5),
while for Sz = 3/2 we have

H ′
5 =













U −t 0 0 0
−t U −t 0 0
0 −t U −t 0
0 0 −t U 0
0 0 0 0 U













, (4.33)

with ε1/2 = U − t/2(
√

5 ± 1), ε3/4 = U + t/2(
√

5 ∓ 1) (spin up) and ε5 = U (spin
down). Finally for Sz = 1/2 we have

H ′′
5 =













U 0 0 0 0
0 U −t 0 0
0 −t U 0 0
0 0 0 U 0
0 0 0 0 U













, (4.34)

with the eigenvalues ε1/3 = U ± t, ε2 = U (spin up) and ε4/5 = U (spin down).
Note that here the values of the UHF orbital energies suggest a model with only two
nearest-neighbor parallel spins. For λ = 6 the values of t for all three spin states
coincide within 1%.

Figure 4.13 summarizes our findings about the tunnel matrix elements. Häusler

(2000) predicted t ∝ exp(−√
rs), where rs is the nearest-neighbor distance of the

electrons measured in units of the effective Bohr radius. Since classically rs ∝ λ4/3

(cf. Sec. 2.8), we plot ln t against λ2/3. For λ >∼ 8 we find indeed a linear behavior.
For lower λ, the tunneling matrix element is not really defined, since the lattice
model is not appropriate. The tunneling matrix element is largest for N = 2 because
two electrons are always closest (see Table Sec. 2.1). Three electrons always have
the smallest value of t because the corresponding equilateral triangle has a longer
side than the square and the pentagon. For higher electron numbers one electron
enters the center of the dot, and the UHF spectra are more complicate though they
still show the typical degeneracy. However, now the lattice Hamiltonian has various
tunneling constants and on-site energies, which we cannot determine without further
assumptions.
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Fig. 4.13: Log-linear plot of tunnel matrix element t vs. λ2/3 for various electron numbers.
For λ ≥ 8, the line of best fit is shown.

4.3.5 Geometric crossover for six electrons

In Fig. 4.14 we show how Wigner crystallization is mirrored by the UHF densities
in the case N = 6 and Sz = 0. This unpolarized case is interesting because it de-
picts a crossover in the geometry from an equilateral hexagon to a pentagon with a
central electron. Classically the pentagon is the most stable configuration for all λ
(see Sec. 2.8). For weak interaction, six electrons are just the closure of the second
shell. The six-electron molecule was also studied by Reimann et al. (2000), who
found by means of configuration-interaction calculations that the true ground-state
is unpolarized with a sixfold symmetry up to at least λ ≈ 3.5 (cf. Sec. 3.4.2). They
stated by comparing with Yannouleas and Landman (1999) that the crystalliza-
tion occurs too early in the UHF approximation. We confirm this conclusion and
find that within UHF the Sz = 0 state acquires a fivefold symmetry for λ ≥ 2.85.
For larger λ the UHF density is distorted [λ = 4 in Fig. 4.14(c)] and then apparently
round for higher λ with a central maximum [λ = 6 in Fig. 4.14(d)]. Figure 4.14(b)
shows the sixfold isomer for λ = 4, which is by 0.33 higher in energy15. Within
UHF the Sz = 0 state is the ground state for weak interaction while one finds a
spin-polarized ground state for λ ≥ 2.5. On the other hand, for N = 6 and λ = 8,
QMC gives a S = 1 ground state. The UHF spin-polarized state exhibits fivefold
symmetry throughout the whole parameter range. In general, the polarized states

15Also the sixfold electron molecule shown in Fig. 2(c) of Yannouleas and Landman (1999) for
λ = 3.2 is an excited state. We are not able to reproduce the spin density in Fig. 2(a) of the
same work.
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Fig. 4.14: UHF one-particle densities for N = 6 and Sz = 0. Rearrangement from a
sixfold [(a) λ = 2] to a (deformed) fivefold geometry [(c) λ = 4 with energy E = 41.509,
(d) λ = 6]. In (b), sixfold isomer at λ = 4 with energy E∗ = 41.838.

show most clearly the classical crystalline filling, which can be understood because
of the stronger correlation of electrons with parallel spins due to the Pauli principle.

4.3.6 Seven- and eight-electron Wigner molecules

Here we want to present the Wigner crystallization for a larger Wigner molecule, as
shown by the UHF densities. Seven classical electrons form an equilateral hexagon
with one central electron, which is a fragment of a hexagonal lattice. In Fig. 4.15
we start with a small λ, that is the quantum-mechanical limit of high density. The
UHF ground state is Sz = 1/2 up to λ <∼ 3, then spin-polarized. In Fig. 4.15(a) for
λ = 1 we see a fourfold modulated density. How is that possible for seven electrons?
The answer is that in this case the energy shell picture of the harmonic oscillator is
still valid: Six electrons are just a shell closure and the next electron is put in the
new shell in an orbital with maximal angular momentum (cf. Sec. 2.4). This angular
momentum is M = ±2 and from the superposition one obtains a fourfold standing
wave. Here the energy is basically the same as in RHF, but the Slater determinant
breaks the symmetry. The same phenomenon can be found for weak interaction and
N = 3 or 5, which are also open-shell configurations. In this fashion, Hirose and
Wingreen (1999) explain the deformed densities (charge-density-waves) in their
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Fig. 4.15: One-particle densities for the UHF ground state of N = 7 electrons. (a) λ = 1,
(b) λ = 2, both Sz = 1/2. (c) λ = 4, (d) λ = 10, both Sz = 7/2.

density-functional study with coupling constant λ = 1.91.

We want to emphasize that for high λ the UHF densities mirror the classical
shell filling. This can even be quantified: The positions of the maxima (even in the
’round’ densities) agree very well with the classical configurations in Sec. 2.8. From
the UHF density the nearest-neighbor distance r̃s can be determined. For example
from Fig. 4.15(d) we find r̃s ≈ 3.0, which is also the classical value. Here we have
to take into account that we measure length in oscillator units. Frequently, one is
interested in the density parameter rs given in effective Bohr radii. Then Fig. 4.15(d)
gives rs = r̃sl0/a

∗
B = λr̃s ≈ 30. The rs values we obtain in this way agree also well

with the results of PIMC.

Finally, for N = 8 we want to confront the HF densities with the exact PIMC
data. The UHF densities for eight spin-polarized electrons are nearly azimuthally
symmetric and thus suggest a (1, 7) spatial shell filling, which is also expected clas-
sically (see Sec. 2.8). We therefore can naively compare radial charge densities for
symmetry breaking UHF and symmetry preserving RHF and PIMC. This is shown
for two different interaction strengths in Fig. 4.16. For λ = 2 UHF and RHF nearly
coincide and agree rather well with the PIMC except for the small shoulder in the
HF densities. For λ = 8 the radial ordering is clearly exagerated by HF. Suprisingly
UHF fits much worse to the exact data than RHF, which renders the outer peak and
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Fig. 4.16: Radial charge densities for N = 8 spin-polarized electrons and λ = 2, 8 as
shown by RHF, UHF, and QMC.

the decay correctly. We therefore conclude that for an adequate comparision of UHF
and exact densities one has to carry out the restoration of symmetry as mentioned
in Sec. 4.2.5. This proceeding should give a much better agreement.

4.4 Unrestricted Hartree-Fock with a magnetic field

In this section we want to present some calculations with a magnetic field orthogonal
to the plane of the quantum dot. This system has been discussed extensively in the
literature, especially in connection with the quantum Hall effect. UHF calculations
by Müller and Koonin (1996) have shown a magnetic field induced Wigner crys-

tallization. However, they only considered the limiting case of a strong magnetic
field and therefore included in the basis for expanding the UHF orbitals only states
from the lowest Landau level (Fock-Darwin levels with n = 0). To study smaller
magnetic fields, our basis is better adjusted to the problem. It is intuitively clear,
that electrons are further localized by the magnetic field. Indeed we do not find an
even-odd effect for UHF densities but molecule-like densities for all electron numbers.

4.4.1 Quantum dot energies with magnetic field

In Sec. 2.3 the Hamiltonian of the clean quantum dot with magnetic field was given
in Eq. (2.6). It depends on the dimensionless cyclotron frequency H = H(Ωc) and
has the property

H(Ω′
c) = H(Ωc) +

1

2
(Ωc − Ω′

c)L
tot
z . (4.35)
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Fig. 4.17: Exact ground-state energies in units of ~ω0 for two electrons and λ = 2 vs. the
cyclotron frequency Ωc. The ground state is singlet or triplet, depending on whether the
relative angular momentum is even or odd. Also shown UHF energies for S = 1.

This means that if we know the entire spectrum of H for one magnetic field, then
we know the spectrum of H for any magnetic field. The eigenfunctions, which are
also eigenfunctions of the total angular momentum, do not change. We want to
take advantage of this property: In Fig. 4.17 we show the evolution of the ground
state of two electrons with increasing magnetic field strength. For this we have used
the spectrum of the exact diagonalization for Ωc = 0 (Sec. 3.2.1) and Eq. (4.35).
With increasing magnetic field the ground state acquires higher and higher angular
momentum. These crossings are accompanied by a change from singlet to triplet,
depending on whether the relative angular momentum is even or odd. Singlet-triplet
transitions have been identified in the experiment as cusps in the addition energies
(Ashoori et al., 1993; Kouwenhoven et al., 2001)16.

16 Recently, Kyriakidis et al. (2002) have shown for a lateral dot that these transitions can also
be engineered by deforming the external confinement potential at fixed magnetic field.
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Fig. 4.18: Evolution of the UHF one-particle densities for N = 3, Sz = 3/2 and λ = 10
with increasing magnetic field strength ω̃c = ωc/ω0. (a) ω̃c = 0, (b) ω̃c = 0.5, (c) ω̃c = 1.5,
(d) ω̃c = 2.5.

The property (4.35) does not help us for higher electron number, because we do
not know the entire spectrum. With HF or QMC we only obtain a ground state17.
The evolution of this state can be followed for a small range of magnetic fields, as we
will show below.

Numerically, thanks to the similar form of the Hamiltonian (2.6) to the one without
magnetic field, the generalization of our UHF code is straightforward. All we need
are the matrix elements of the angular momentum, and we are already working in the
angular momentum basis. However the magnetic field breaks time-reversal symmetry,
and left and right turning solutions are no longer energetically degenerate. Therefore,
in the expansion of the UHF orbitals (4.2), we have to use complex coefficients.

4.4.2 UHF densities with magnetic field

In this section we show the UHF one-particle densities with magnetic field. At higher
magnetic field there is no even-odd effect and the densities are molecule-like for all
electron numbers.

17For UHF we normally do not even have an eigenstate of angular momentum. Anyway, if we have
good total angular momentum, (4.35) holds also for the HF Hamiltonian.
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4.4 Unrestricted Hartree-Fock with a magnetic field

We first consider three electrons and a large interaction parameter λ = 10. This
means that we have a shallow quantum dot where the Coulomb interaction dominates
and the magnetic field is relatively weak [see footnote to Eq. (2.7)]. In Fig. 4.18 we
display the evolution of the UHF one-particle densities with increasing magnetic
field strength ω̃c = ωc/ω at fixed λ. This is not exactly the physical situation,
corresponding to a quantum dot exposed to an increasing magnetic field, since the
coupling constant λ becomes smaller with increasing field. Here we just want to show
that a magnetic field does not have the same effect on the UHF density as a strong
interaction.

In Fig. 4.18(d) we see three distinct, localized electrons in the UHF density. The
three single orbital densities have nearly the same form. Thus, the orbitals are
not localized, they are similar to the orbitals chosen by Szafran et al. (2003)
appositely for strong magnetic field. With decreasing magnetic field strength the
maxima in azimuthal direction vanish slowly, until we have again a nearly round
density for ωc = 0 as in Fig. 4.10. The density in Fig. 4.18(a) has been obtained from
an initial guess with threefold symmetry. Therefore we can be sure that we have not
obtained a local minimum but the true UHF ground state.

As a second example we show the evolution of the UHF density of six electrons
at intermediate coupling strength18 λ = 3.2. Without magnetic field the density is
round, Fig. 4.19(a), and with a weak magnetic field fivefold with a central electron,
Figs. 4.19(b),(c).

Here we find an additional interesting phenomenon: For intermediate magnetic
field ω̃c ≈ 1 . . . 1.5, the UHF ground state has a perfectly round density, Fig. 4.19(d),
and also a rotationally symmetric Slater determinant. This is the so-called maximum-
density-droplet of MacDonald et al. (1993), where the electrons occupy the lowest
orbitals with increasing angular momentum. Here the orbitals with M = 0 . . . 5 are
occupied, and the UHF solution is identical to the RHF solution with total angular
momentum M tot = 15. In this magnetic field range, the Slater determinant stays
always the same and the HF energy evolves as given by Eq. (4.35).

Finally, in Fig. 4.19(e) for strong magnetic field we have a distinctly localized
fivefold Wigner molecule. Figure 4.19(f) for ω̃c = 2.5 shows a sixfold isomer which is
higher in energy by 0.009 than the fivefold ground state.

4.4.3 Relation to other results

We briefly want to comment on the discrepancies to Yannouleas and Landman

(1999, 2000b, 2002). We have found densities that differ from theirs (e.g. they do not
find the even-odd effect and they find different conditional probability densities), this

18This corresponds to the value used by Yannouleas and Landman (1999) to obtain the densities
in Fig. 2(c) that supposedly were calculated without magnetic field but resemble our densities
with field.
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Fig. 4.19: Evolution of the UHF one-particle density for N = 6, Sz = 3 and λ = 3.2 with
increasing magnetic field strength, (a) ω̃c = 0, (b) ω̃c = 0.1, (c) ω̃c = 0.5, (d) ω̃c = 1, (e)
ω̃c = 2, (f) ω̃c = 2.5. In (f) sixfold isomer with energy E∗

HF = 45.182.

means that we have found different Slater determinants. This is mysterious because
UHF is supposed to be a well-defined approximation. As a starting point to under-
stand this it would have been interesting to compare our energies. Unfortunately, in
their papers they give only very few explicit numerical values for the energy, e.g. they
give two values for the RHF and UHF energies of quantum-dot Helium which we can
reproduce. They did not comment on our UHF energies tabulated in Reusch et al.

(2001) and did not send us their numerical results when we courteously asked them
to. A solution to this mystery could be that they use a-priori chosen orbitals (see
also Szafran et al., 2003; Sundqvist et al., 2002) and thus perform rather
a variational approach (so-called variational HF) than the true self-consistent HF
method. In certain regimes (strong interaction, high magnetic field) this variational
method should lead to the same energy although coming from different Slater deter-
minants. If they really self-consistently solved the UHF equations this would mean
that there might be an ambiguity for the UHF solution19. However, we can only

19Similar to CSHF and RHF (or RHF and UHF) solutions which are different Slater determinants
but give the same energies for (very) small interaction (cf. Secs. 4.2.2, 4.3.6). In this sense, HF
is unambiguous only when exactly the same symmetries are preserved. Seemingly, our UHF
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speculate but have no real hint that the UHF Slater determinant is not unique in the
strong interaction limit apart from the orientational degeneracy, which is physically
obvious.

4.5 Conclusion

In conclusion, we have discussed the properties of unrestricted Hartree-Fock (UHF)
calculations for electrons in a quantum dot, focussing on the crossover to strong
correlations, when electrons begin to form a Wigner molecule. The UHF energies
are good estimates of the true ground-state energies, especially for the polarized
states, even at strong interaction. However, the energy differences between different
spin states cannot be resolved correctly, the polarized state is unphysically favored
for stronger interaction. The UHF energies become nearly spin-independent in this
regime, faster than it is the case for the true energies. UHF also fails to give correct
addition energies for λ >∼ 2.

Regarding the interpretation of other quantities obtained from the UHF Slater
determinant, we have shown that considerable caution must be taken: We find de-
formed densities in the regime of intermediate interaction λ ≈ 1 . . . 4. For stronger
interaction, the densities are azimuthally modulated for an even number of electrons
per spatial shell, and round for an odd number per shell. The onset of this mod-
ulation is enhanced within UHF, so that UHF leads to an overestimation for the
value of the critical density for the crossover to the Wigner molecule. This explains
the discrepancies between Yannouleas and Landman (1999) based on UHF and
the exact QMC results of Egger et al. (1999). We want to emphasize that the
even-odd effect we found for the densities is an artifact of the symmetry-breaking of
UHF and arises from a degeneracy of states with opposite total angular momentum.

For very strong interaction, we have shown that the UHF Hamiltonian corre-
sponds to a tight-binding model of a particle hopping between the sites of the
Wigner molecule. From the UHF orbital energies we have obtained the hopping
matrix elements and on-site energies. This explains why the UHF energies become
spin-independent, while this is not the case for restricted Hartree-Fock (RHF). The
maxima of the UHF densities mirror the classical filling scheme with the electrons
arranged in spatial shells. One has to pay attention to avoid isomers with slightly
higher energy, that are local minima for the HF iteration. In contrast, the UHF two-
particle density (conditional probability density) has no direct physical meaning,
because the UHF method cannot take correlations properly into account. Finally, in
a strong magnetic field, the UHF densities are always molecule-like and there is no
even-odd effect.

solutions without magnetic field preserve time reversal symmetry (see Sec. 4.2.4). For some
exact properties of HF theory, see references in Bach et al. (1994).
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We have investigated correlations in few-electron quantum dots. We considered a
model of interacting two-dimensional electrons confined by a harmonic isotropic po-
tential. In these systems one can tune the electron-electron interaction. In the
weakly interacting limit a one-particle description is valid, where electrons are ac-
commodated in orbitals. This results in an energetic shell filling. In the other limit of
very strong interaction the system behaves almost like classical electrons which form a
small crystal, the Wigner molecule. In this work we focused on the crossover between
these two limits. This intermediate regime is difficult to address numerically, it is
yet the most interesting and least understood. We performed calculations by means
of two methods: path-integral Monte Carlo (PIMC) simulations and unrestricted
Hartree-Fock (UHF).

In the first part of this thesis we have given an introduction to the field of few-
electron quantum dots and sketched the experiments which inspired our calcula-
tions. Atomlike properties with Hund’s rule shell filling have been found for very
small quantum dots. Experiments on larger and more disordered dots probed the
localization-delocalization transition, i.e. the onset of Wigner crystallization. In this
regime, bunching was observed, which means vanishing addition energies for special
electron numbers.

In the second part we have presented a comprehensive PIMC simulation. This
method is computationally very demanding but numerically exact and best adapted
to study the whole range of interaction strengths. In this calculation we also in-
cluded a single attractive impurity which breaks the symmetry of the isotropic two-
dimensional oscillator potential. We have shown that by the Trotter extrapolation
procedure we can obtain high-accuracy results which have benchmark character. The
main difficulty is of course the fermion sign problem. Due to it, we had to restrict
our calculations to N ≤ 10 electrons. In turn, we were working at a very low tem-
perature, so the spin contamination problem is very small and we are sure that we
calculate essentially ground-state energies.

For the incipient Wigner molecule regime with a Brueckner parameter rs ≈ 4
(λ = 4), we made several exciting predictions. Despite of the rather strong interaction
we still found remnants of the shell structure of weakly interacting dots (artificial
atoms) in the addition energies. With impurity, the addition spectrum is profoundly
altered. The cusps at the magic numbers of the clean dot disappear. Instead we
found a new peak and a new ground-state spin for eight electrons. The sub-Hund’s
rule spin S = 0 at N = 8 is very unexpected because interactions normally drive the

107



5 Conclusions

system towards spin polarization. In this case (and less pronounced for N = 3) the
defect depolarizes the ground state whereas for other electron numbers the spin gap
is diminished and the ground-state spin is unchanged. We did not find the bunching
phenomenon in our calculations. Maybe one has to include stronger disorder or other
features not contained in our model or consider higher electron numbers to reproduce
it numerically. The onset of Wigner crystallization is mirrored in the charge densities
and this process is clearly amplified by the impurity. In the meantime, the spin order
does not yet follow the charge order. Interestingly, this effect is also enhanced by the
defect, which is probably due to the formation of a local momentum at the impurity.
For six electrons we have shown quantitatively that the Wigner crystallization process
is spin dependent, and that once again this dependency is reinforced by the impurity.
We also considered the impurity’s susceptibility as a function of temperature. Its
behavior is indeed reminiscent of the Kondo effect. Altogether it is surprising that
a single rather weak impurity leads to large effects. This is due to the breaking of
rotational symmetry.

Finally, in the third part we performed unrestricted Hartree-Fock (UHF) calcula-
tions for rotationally symmetric clean quantum dots. This mean-field method is com-
putationally less demanding, so it can be regarded as complementary to the PIMC
simulations. However, we have shown that considerable caution has to be taken,
when interpreting the results of UHF. The absolute values of the UHF energies are
rather reliable estimates for the true ground-state energies. On the other hand, the
method cannot resolve correctly the tiny energy differences which determine spin
ordering and addition energies. For example, the energetic shell structure of the
addition energies disappears too early within UHF when the interaction strength is
increased. We found an even-odd artifact for the symmetry-breaking UHF densities.
For an even number of electrons per spatial shell the densities are azimuthally mod-
ulated. This happens already for a very small interaction strength and might lead
to underestimate the critical rs parameter for the onset of Wigner crystallization.
Conversely, for odd electron numbers the UHF densities are fairly round and thus
mirror the Wigner crystallization only indirectly. We explained that the even-odd
effect is determined by the ground-state angular momentum of the Wigner molecule.
Furthermore, we have shown the equivalence of the UHF Hamiltonian to a tight-
binding model for very strong interaction. Finally, with a small magnetic field, there
is no even-odd effect. This indicates a different mechanism for the UHF symmetry
breaking than in the strongly interacting case.

Quantum dots are and continue to be a fast-growing area of study in condensed-
matter physics. While there is only a small number of experiments on few-electron
quantum dots worldwide, many theoretical groups are investigating parabolic quan-
tum dots (or similar models) with various methods. This makes it possible to compare
with other results, often even quantitatively; this concurrence is very stimulating. In
this sense, regarding the methods, our purpose was twofold. On the one hand, we
have reconsidered the Hartree-Fock method. Its unrestricted version is the most
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general form of the one-particle concept. By means of symmetry breaking it can in-
corporate correlations to some extent. However it remains an approximation and we
have analyzed its properties and limitations for the full range of coupling constants.
On the other hand, path-integral Monte Carlo is a state-of-the-art method, probably
the only one which can give exact results in the crossover regime and for very strong
interaction and higher electron number. In our simulation we focused on the regime
of beginning Wigner crystallization, which has been reached recently in experiments.
We have given numerical benchmark results in this regime and in the presence of a
defect which deforms the ideal rotationally symmetric confinement.

Summarizing, we wanted to improve our understanding of the formation of Wigner
molecules in few-electron quantum dots. This process can be regarded as a crossover
from the quantum to the classical world. Coming from the classical limit it can also
be viewed as (a finite-size analogue of) a quantum phase transition where fluctu-
ations at zero temperature destroy the crystallized ordered state. Though we are
dealing with a very small system, this transition appears to be a relatively sharp
crossover. By studying Wigner crystallization in detail, we have gained much insight
into how quantum effects interplay with Coulomb interactions in a few-particle con-
fined system. The symmetry of the external confinement has a predominant effect
on the electronic structure. Correlations strongly influence the energetic spectra, the
stability and the charge ordering in real space. Spin has an important role in the
crystallization process, and, conversely, interaction and confinement determine the
ground-state spin in a nontrivial way. All together these ingredients add up to a
fascinating mosaic which continues to be a challenging field for the physicist.
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Parts of this work have been presented on the following conferences and workshops:

� 22nd International Conference on Low Temperature Physics, poster, see Häusler

et al. (2000), Espoo and Helsinki, Finland, August 1999

� Frühjahrstagung der Deutschen Physikalischen Gesellschaft, poster, Regens-
burg March 2000

� Arbeitsgruppenseminar Prof. Dr. U. Rössler, talk, Regensburg 18.07.2000

� Frühjahrstagung der Deutschen Physikalischen Gesellschaft, poster, Hamburg
March 2001

� CECAM tutorial on Quantum Monte Carlo, talk, Lyon, France October 2001

� NIC Winter School on Quantum simulation of Complex Many-Body Systems,
poster, Kerkrade, Netherlands February 2003
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& Sons, 1977.
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