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Abstract

The invention of computers has a massive impact on our everyday life and the work of scientists.
Nowadays, we are able to collect, store, and process a huge amount of data. In order to analyze
these data, it is necessary to adapt and extend the classical statistical theory. For instance, today it
is possible to measure the expression pattern of all genes (approximately 23.000) from one person
at an arbitrary fixed time point. Measuring the expression pattern for 2 groups with 500 persons
per group results in approximately 2 - 107 measurements. And of course the aim is not only to
state whether the expression pattern between both groups is different but to determine those genes
that are differently expressed. From a more abstract point of view, for a set of null hypotheses the
aim is to decide which null hypotheses are true and which are false. One part within the multiple
testing framework is the development of procedures which make a decision for every single null
hypothesis and at the same time control a predefined error criterion. The main topic of this thesis
is to introduce a new error criterion and to develop procedures controlling this new criterion.

In Chapter 1 we state the general framework for this thesis and introduce some known error mea-
sures which are important for our theory. Additionally, we define a large class of test procedures
that are commonly applied to control miscellaneous error rates.

In Chapter 2 we motivate and define a new error criterion based on the expected number of false
rejections (ENFR). We investigate the ENFR with respect to least favorable parameter configura-
tions. Furthermore, the asymptotic relations between ENFR and a large class of test procedures
are investigated. Finally, a central limit theorem is formulated for the number of false rejections.
Chapter 3 is devoted to relationships and differences between ENFR and another important error
measure the so-called false discovery rate (FDR). It turns out that under some regularity conditions
control of the ENFR implies control of the FDR. And control of the FDR under independence
may also imply control of the ENFR. We also state situations where the FDR is controlled and the
ENFR is inflated and vice versa.

In Chapter 4 we investigate the ENFR behavior of different procedures which control the FDR for
a finite number of null hypotheses or asymptotically.

Chapter 5 is devoted to exact control of the ENFR for arbitrary bounding functions. We present
a recursive scheme that allows exact control of the ENFR. But, in general, the resulting solutions
are not feasible. Therefore, an algorithm is developed that yields feasible solutions with good
performance with respect to exact control.

Chapter 6 is concerned with an error measure based on the number of false rejections which is a
probabilistic counterpart to the ENFR. Ordinary differential equations will play an important role
in constructing procedures that asymptotically control this error measure. Moreover, the results
are carried over to the false discovery exceedance (FDX), a probabilistic counterpart to the FDR.
Chapter 7 concludes the thesis with an outlook that presents some possible approaches for con-

trolling the ENFR under dependence.
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Zusammenfassung

Die Erfindung des Computers hat unser alltdgliches Leben und die Arbeit von Wissenschaftlern
gravierend verdndert. Heutzutage ist man in der Lage, groBe Mengen an Daten zu sammeln, zu
speichern und zu verarbeiten. Die Analyse solcher Datenensétze erfordert es, die klassische Statis-
tik anzupassen und zu erweitern. Beispielsweise kann das Expressionsmuster aller Gene einer
einzelnen Person zu einem beliebigen Zeitpunkt gemessen werden. Mif3t man das Expressions-
muster aller Gene (ca. 23.000) bei 2 Gruppen mit je 500 Personen, erhilt man circa 2 - 107 Mess-
werte. Selbstverstindlich ist man nicht nur daran interessiert festzustellen, ob die Muster zwischen
den Gruppen sich unterscheiden, sondern insbesondere daran, einzelne Gene zu
bestimmen, die unterschiedlich exprimiert werden. Allgemeiner gesagt, fiir eine Menge von Null-
hypothesen ist es das Ziel zu entscheiden, welche wahr bzw. falsch sind. Die Entwicklung von
Prozeduren, die fiir jede einzele Nullhypothese eine Entscheidung treffen und gleichzeitig ein
vorgegebenes Fehlerkriterium einhalten, ist ein Teil der Theorie des multiplen Hypothesentestens.
Das Hauptthema dieser Dissertation ist die Einfithrung eines neuen Fehlerkriteriums und die En-
twicklung von Prozeduren, welche dieses Fehlerkriterium einhalten.

In Kapitel 1 geben wir allgemeine Rahmenbedingungen fiir die Dissertation an und fiihren einige
bekannte Fehlermal3e ein, die fiir unsere Theorie maBgeblich sind. Zudem definieren wir eine
grofe Klasse von Testprozeduren, welche iiblicherweise zur Kontrolle diverser Fehlerraten
eingesetzt werden.

In Kapitel 2 motivieren und definieren wir ein neues Fehlerkriterium, welches auf der erwarteten
Anzahl falscher Ablehnungen (engl: expected number of false rejections, kurz ENFR) basiert. Wir
untersuchen die ENFR hinsichtlich ungiinstigster Parameterkonstellationen. Desweiteren wird der
asymptotische Zusammenhang der ENFR mit einer grolen Klasse von Testprozeduren untersucht.
AbschlieBend wird ein zentraler Grenzwertsatz fiir die Anzahl falscher Ablehnung formuliert.
Kapitel 3 widmet sich den Beziehungen und Unterschieden zwischen der ENFR und einem
anderen wichtigen Fehlermal3, der sogenannten "False Discovery Rate" (FDR). Unter gewissen
Regularitdtsbedingungen wird sich zeigen, dass die Kontrolle der ENFR die Kontrolle der FDR
impliziert. Zudem kann die Kontrolle der FDR unter Unabhingigkeit auch die Kontrolle der ENFR
implizieren. Wir werden jedoch Situationen darlegen, in denen die FDR aber nicht die ENFR
kontrolliert wird und umgekehrt.

In Kapitel 4 untersuchen wir das Verhalten der ENFR fiir verschiedene Prozeduren, welche die
FDR fiir eine feste Anzahl von Nullhypothesen oder asymptotisch kontrollieren.

Kapitel 5 widmet sich der exakten Kontrolle der ENFR zu beliebigen vorgegebenen Schranken.
Wir stellen ein rekursives Schema dar, das die exakte Kontrolle der ENFR ermoglicht. Allerdings
sind die resultierenden Losungen im allgemeinen nicht zuldssig. Daher wird ein Algorithmus
entwickelt, der zuldssige Losungen liefert und gute Ergebnisse bzgl. der exakten Kontrolle zeigt.

Kapitel 6 befasst sich mit einem Fehlermal, das auf der Anzahl falscher Ablehnungen beruht
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und ein probabilistisches Gegenstiick zur ENFR darstellt. Gewohnliche Differentialgleichungen
werden fiir die Konstruktion von Prozeduren, welche dieses Fehlermalf} kontrollieren, eine wichtige
Rolle spielen. Ferner iibertragen wir die Resultate auf die "False Discovery Exceedance" (FDX),
welche ein probabilistisches Gegenstiick zur FDR darstellt.

Kapitel 7 schlieit die Dissertation ab mit einem Ausblick liber mégliche Ansitze die ENFR unter
Abhingigkeit zu kontrollieren.
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Chapter 1

Introduction

1.1 For non-statisticians

The science of multiple hypotheses testing is a very broad field. The main topic of this thesis is
only concerned with a small part of it. In order to introduce a reader, who is not statistically or
even mathematically versed, to this main topic, we will first look at one specific problem, that is,
testing the fairness of a coin within the classical hypotheses testing framework. Generalizing this
problem will lead to questions addressed in this thesis.

In this subsection, the author deliberately avoids some mathematical terms and conditions like
"independence". Therefore, mathematical accuracy is lost, but comprehensibility is hopefully
gained for people having little knowledge in statistics and mathematics.

Imagine two persons X and Y play head or tail with a coin. Person X tosses the coin, and while
the coin is in the air, person Y has to predict the outcome. In case of a correct prediction, person
Y wins 1 EURO, and in case of a false prediction person Y loses 1 EURO. If the coin is fair, the
probability to observe head equals the probability to observe tail, namely 1/2. A coin is not fair
if the two mentioned probabilities differ. In this case, person Y can try to exploit the situation to
earn some money. Thus, one may raise the question: “Is the coin fair?”. In classical hypotheses

testing this question leads to the formulation of two hypotheses denoted by Hy and H 4,
Hy : The coin is fair, H 4 : The coin is not fair.

We call Hy the null hypothesis and H 4 the alternative hypothesis.

Suppose the coin has been tossed a hundred times. Intuitively, if the outcome was head a hundred
times, we would say “The coin is not fair.” A statistician would say that the null hypothesis is
rejected. On the other hand, we probably would say that the coin is fair if the outcome was 50
times head and 50 times tail. Obviously, a subjective approach like this is inadvisable because
if we observe 65 times tail, probably some people will state that the coin is fair and some state
the opposite. Actually, one can expect that one person will judge the result of this experiment

differently at two different time points.



2 1.1. FOR NON-STATISTICIANS

Objective decisions can be made by using an appropriate statistical test. This means, the result of
the test depends solely on the data, which we can gather by experiments, for example, by tossing
the coin a hundred times and calculating the number of heads observed. Who applied the test at
which time has no influence on the result. Two different errors are possible. A type I error occurs
if the coin is fair and the statistical test (erroneously) rejects Hy and a type II error occurs if the
coin is not fair and the test (erroneously) accepts Hy. One tries to protect oneself against the type
I error. But roughly spoken, detecting an unfair coin is solely possible if we take the risk to make
a type I error. For instance, rejecting the null hypothesis (The coin is fair) only if we observe 100
times head or 100 times tail, the probability for a type I error is 2/2!% ~ 1073, An upper bound
for the risk we are willing to take is called significance level, commonly denoted by «. Standard
values for o are 0.05 or 0.01.

Although it is not important for this introduction, we want to state one possible statistical test
which tests the fairness of the coin at a significance level a = 0.05. In order to keep it simple, a
plain test out of many others is presented. Suppose we toss the coin again a hundred times. We
reject the null hypothesis (The coin is fair) if the number of heads or tails is larger than ¢ = 60 and
accept the null hypothesis otherwise. The threshold c can not be diminished further because if c is
smaller than 60 the probability of a type I error is larger than the significance level o = 0.05.

In summary, we have one null hypothesis, two different types of errors that can occur, either type
I error or type II error, and with a statistical test we control the (probability of a) type I error at a
fixed significance level.

In order to give a meaningful example in the context of multiple hypotheses testing, we adapt the
previous example. Imagine now an ill person X and a gene g on the human genome. How often a
gene is expressed, roughly spoken, how often the gene is used to build proteins, can be crucial for
the health status of a person. Let us now assume that the illness is caused by an over-expression
of the gene g. Implicitly, we assumed that we know what normal-expression of the gene g means.

Thus, we formulate the two hypotheses:
Hy : gene g is normally expressed, H 4 : gene g is over-expressed.

If we gather data, for example, we measure the expression of the gene g from 100 different persons
with the same illness as X, we can conduct a statistical test at significance level o to make an
objective decision about Hj and H 4. Discovering that this gene g is over-expressed in ill people is
a step towards curing the disease or at least any secondary disorders. The human genome consists
of thousands of genes and usually it is unclear which of those genes should be tested. Therefore,
for every gene g; of the genome a null hypothesis and an alternative hypothesis is formulated, that
is Ho; : gene g; is normally expressed, and H 4 ; : gene g; is not normally expressed. Sometimes,
it is possible to restrict oneself to a few "candidate" genes and formulate only hypotheses for
these few "candidates". Nevertheless, instead of testing one null hypothesis we now have to test

various null hypotheses at the same time in the sense that every null hypothesis must be rejected or
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CHAPTER 1. INTRODUCTION 3

accepted. Ideally, we reject all false null hypotheses and accept all true null hypotheses. Human
beings have about 23.000 genes and suppose we have no "candidates" and hence have to test
23.000 null hypotheses. One might be inclined to test every gene g;, or, to be more precise, every
null hypothesis Hy ; separately with a classical test and accept or reject Hy; according to the
classical test. To illustrate that this ad-hoc method is not a good solution, suppose for a moment
that all null hypotheses are true. This means, all genes are normally expressed. How many type
1 errors can we expect by applying this method? A statistical test that exhausts the significance
level o will reject a true hypothesis with probability . Therefore, we will erroneously reject
roughly a x 23.000 null hypotheses. For the common significance level of o = 0.05 this will
result in approximately 1150 type I errors, which is unacceptable. In fact, testing more than one
null hypothesis raises also another question: Which errors can be made? Of course, we can only
make type I errors and type II errors, but in general we will make the errors simultaneously and
every error type will occur multiple times. For example, let Hy 1 and Hy > be false and all other
null hypotheses be true. Rejecting Ho 2, Ho 3, Ho 42 and accepting all other hypotheses will yield
one type II error and two type I errors. At this point a suitable error rate is needed together with a
procedure controlling this error rate. These are the main challenges of multiple hypotheses testing.
In this thesis, a new error rate is introduced and related to other existing error rates. Furthermore,

procedures are provided to control the new error rate.

1.2 General framework for multiple testing

In this section, we introduce the basic notation and the general setup for this thesis. Let © denote
the parameter space and (€2,.4,Py) a parameterized statistical experiment, where ¥ € O is the
underlying true parameter. Any non-empty subset H C O is regarded as a null hypothesis which
is called a true null hypothesis if 9 € H and a false null hypothesis otherwise. We always assume
that null hypotheses Hy, ..., H,, are given with n > 1 and H; # H; for all ¢ # j. In general, it
will be convenient to subsume the indices of true null hypotheses and false null hypotheses under
Iy = Ip(Y¥) and I} = I (V) = {1,...,n}\Io, respectively. Hence, ng = |Iy| null hypotheses are
true and n; = n — ng are false. A p-value for testing the null hypothesis H; will be denoted by
pi, with p; = (Q,A) — ([0, 1], B), where B denotes the Borel-o-field over [0, 1]. A reasonable
assumption for all p-values corresponding to true null hypotheses is 0 < Py (p; < z) < x for all
x € (0, 1]. The empirical cumulative distribution function (ecdf) of the p-values py, . .., p,, will

be denoted by F;,, that is
Fa(t) =) i<ty
i=1

A function ¢ = (¢1,...,¢y,) : [0,1]" — {0,1}" is called a non-randomized multiple test proce-
dure, and we reject H; iff ¢; = 1. For the sake of simplicity, we usually speak of multiple test

procedures or simply procedures.
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4 1.3. STEP-WISE TESTS

Part of this thesis are asymptotic considerations (n — o0). In that case, we assume that the pa-
rameter space © is large enough such that i € © can be chosen fixed for all n € N. For example,
if X; ~ N(u;,1) are iid random variables, we can model this with ¥ = (y;);eny € © = R0,
where N is the cardinality of N and Py (X; < z) = ®(z — u;), where ®(z) is the cumulative
distribution function (cdf) of a standard normal random variable.

Note that, under asymptotic considerations, Ip(¢) and I;(¥) also depend on n, but for notational

simplicity this will be suppressed.

The very essential random variables for this dissertation are the number of rejected null hypotheses
R, = Ry(p) = >, ¢; and the number of false rejections V,, = V,,(¢) = Y ic 1, @i- In
realistic scenarios only R, is observable and V,, as well as ng are unknown. Further interesting
and in general unknown random variables are the number of rejected false null hypotheses S,, =
(1 — ¢;), and the number
of accepted false null hypotheses >, n (1 — ¢;). In this thesis, these objects play only a minor or

Sn(p) = > i1, ®i» the number of accepted true null hypotheses » ;. ;-

no role.

Frequently, we will work with ordered p-values p1., < ... < p,.,, and, for simplicity, we denote
by Hi.n, ..., Hy.pp the corresponding null hypotheses. For technical reasons, we define pp., = 0
and p,,+1., = 1. Before we define our new error rate in chapter 2, we introduce some important
error rates that are relevant for this thesis. Furthermore, we introduce a large class of multiple test

procedures, the so-called step-wise tests.

1.3 Step-wise tests

Step-wise tests constitute a large class of multiple test procedures. We distinguish between step-
down (SD), step-up (SU), and step-up-down (SUD) tests. Common to all step-wise procedures
are critical values 0 < ¢; < ... < ¢, < 1. For instance, a very classical set of critical values is
given by ¢; = «i/n fori = 1,...,n. For technical reasons, we define ¢y = 0 and ¢,41 = 1 if
not stated otherwise. A step-down (SD) test works as follows. If p1.,, < c1, then Hi., is rejected,
otherwise all null hypotheses are accepted. Suppose Hi.y, ..., H;_1., have already been rejected,
then H;., will be rejected if p;., < ¢, otherwise Hy.p, ..., Hy.,, will be accepted. Thus, a step-
down test rejects H; iff i < max{j|pr.n < ¢ forall k < j}, with max{(0} defined as zero; or
equivalently, H; is rejected if p; < max{c;|pg., < ¢ forall k& < j}. If one accepts the phrase:
"The significance of a null hypothesis increases if the corresponding p-value decreases.", one has
the following memory hook. The procedure is called step-down test because it starts with the most
significant null hypothesis, that is the null hypothesis with the smallest p-value, and at each step
the significance of the null hypothesis is non-increasing.

Similar, a step-up (SU) test starts with the least significant null hypothesis, that is the null hy-
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CHAPTER 1. INTRODUCTION 5

pothesis with the largest p-value, and at every step the significance of the null hypothesis is
non-decreasing. To be more precise, if p,., > cn, then Hy., is accepted, otherwise, all null
hypotheses are rejected. Suppose H,,., - . ., H;+1., have already been accepted, then H;.,, will be
accepted if p;., > ¢;, otherwise Hy.y, . .., H;., will be rejected. Thus, a step-up test rejects H; iff
i < max{j|p;.n < ¢;j}; or equivalently, H; is rejected iff p; < max{c;j|p;.n < ¢j}.

A step-up-down (SUD) test is a generalization of both a step-down and a step-up test. A fixed
index 1 < k£ < n must be chosen in advance. If pg.,, > ¢, then H.p, ..., Hy., are accepted,
and if £ > 1, the null hypotheses Hi.,, ..., Hr_1., are processed by a step-up test with critical
values ¢y, ...,cp_1. Otherwise, Hi.n, ..., Hy., are rejected, and if £ < n, the null hypotheses
Hyi1n, ..., Hy.y are processed by a step-down test with critical values c41,...,c,. We call
such a procedure a SUD(k) test. Obviously, a SUD(1) and a SUD(n) test is a regular SD and SU
test, respectively.

Let ¢ be a SUD(k) test. Then there exits a random variable 7 (depending on pq,...,py,) such
that H; is rejected iff p; < 7. We define Vi, (t) = >_.cp Lip<iys Snlt) = Xier, Ipi<sy» and
Ru(t) = 312 Iip<sy- Hence, Vi (@) = Vi (7), Su(p) = Su(7), and R, (¢) = Ry (7). Working

with 7 is very fruitful and this kind of notation will be used frequently in this thesis.

In the following sections we introduce well-studied error measures that are important for this
thesis. Every section contains a subsection for the corresponding literature. Instead of presenting
a complete overview about the existing literature, which would comprise hundreds of publications,
we give a short overview of key papers, publications relevant for this thesis, or publications that

contain a “nice” idea.

1.4 Family-wise error rate (FWER)

The family-wise error rate (FWER) is probably the oldest error measure in the context of multiple

hypotheses testing. It is defined as the probability to reject at least one true null hypothesis, that is
FWER () = Py (Va(p) > 0).

A procedure ¢ controls the FWER at level « (in the strong sense) if
FWERy(¢) <« forall ¥ € ©.

The FWER is applied in many different fields, for instance, clinical trails, functional neuroimag-
ing, and model selection. Furthermore, if the aim is not to reject a true null hypothesis with high
probability, the FWER is an appropriate candidate for an error measure. But it is frequently crit-
icized that procedures controlling the FWER are too conservative. For instance, assume we have

1.000.000 null hypotheses and only 10 of them are false. Of course, p-values corresponding to
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6 1.4. FAMILY-WISE ERROR RATE (FWER)

these 10 false null hypotheses typically tend to be smaller than p-values for true null hypotheses.
Assuming that these "false" p-values will be the ten smallest ones is unrealistic. Depending on the
"power" of the experiment, the smallest p-value corresponds to a true null hypothesis with high
probability. This shows that a null hypothesis has to be rejected with great caution in order to

control the FWER which often results in no rejection at all.

1.4.1 Literature

The Bonferroni procedure is the most famous procedure that corrects for simultaneously testing
more than one null hypothesis. It is often called the Bonferroni correction. For fixed o € (0,1)
this procedure simply rejects a null hypothesis if the corresponding p-value is less than a;/n, cf.
[7]. This guarantees under general dependence of the p-values that the FWER is less than or equal
to a. In 1979, Holm presented a SD procedure, with critical values ¢; = «/(n — i + 1), which
is uniformly more powerful than the Bonferroni correction and controls the FWER under gen-
eral dependence, cf. [33]. Hence, instead of the Bonferroni correction one should preferably use
Holm’s procedure. In 1986, Simes proposed a SU test with critical values ¢; = icr/n. He showed
that this SU test controls the FWER if all p-values are independent and uniformly distributed on
(0,1), cf. [56]. Although the procedure does not make any statements about the individual null
hypotheses he proposed for exploratory analysis to reject a null hypothesis if the corresponding p-
value is less than or equal to max{jo/n|p;., < jo/n}. Nowadays, this procedure is known as the
BH-procedure, due to the pioneering work [1] of Benjamini and Hochberg, see Section 1.6.1. It
will frequently appear in this thesis. Further, very classical FWER controlling procedures, which
were developed between 1967 and 1988, are Sidak’s test, Hommel’s test and Hochberg’s SU test,
cf. [55], [34], [31]. None of the so far mentioned procedures exploits the dependence structure
between the p-values. Usually, the p-values are calculated from some other test statistics. It is
sometimes possible to bootstrap the joint distribution of these test statistics. In 1993, Westfall
and Young [76] developed resampling strategies to (asymptotically) control the FWER under an
assumption called subset pivotality. Further resampling strategies without the subset pivotality
assumption were developed in 2003 by van der Laan, Dudoit, and Pollard, cf. [14] and [73].

A striking simple idea for controlling the FWER is the closure principle. The backbone of the
principle is a set H of null hypotheses that is closed under intersection and a corresponding set of
statistical tests such that every null hypothesis H € H can be tested at level «. The idea is that any
true null hypothesis is at most rejected if the intersection of all true null hypotheses is rejected.
By assumption, the intersection of all true null hypotheses is tested with a level « test and thus is
rejected only with probability less than or equal to . Therefore, any true null hypothesis is only

rejected with probability less than or equal to «, cf. [41; 59; 60].
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1.5 Ek-Family-wise error rate (k-FWER)

The k-family-wise error rate (k-FWER) is a generalization of the FWER. It is defined as the
probability to reject at least k true null hypothesis, that is

k-FWERy () = Py (Va(p) > k).
A procedure ¢ controls the k-FWER at level «v if
k-FWERy(¢) <« forall ¢ € O.

Obviously, k-FWERy(p) = FWERy(p) for & = 1. It may be appropriate to use the k-FWER
whenever the FWER is appropriate but additionally one is willing to tolerate % false rejections.
An advantage of this criteria is that it is not as conservative as the FWER. However, it seems odd
that one always allows to reject k true null hypotheses irrespective of how many null hypotheses

are actually false. Chapter 6 will be devoted to this issue.

1.5.1 Literature

It seems that the k-FWER was already introduced by Victor [75] in 1982, but he did not provide
any procedure that controls the k-FWER. In 1988, a first procedure controlling the £-FWER was
given by Hommel and Hoffmann [35]. Among other procedures, they showed that a generalized
version of Holm’s procedure, which is still a SD procedure, controls the k-FWER under general
dependence. In 2004, Korn et al. [38] reinvented this criterion and presented a permutation based
test procedure that controls the £-FWER. In the same year Dudoit et al. [14; 73] proposed bootstrap
methods that control the k-FWER asymptotically. Further, they presented an approach in [72]
called augmentation. The basic idea is to start with a procedure controlling the FWER and then
"augmenting" the rejected null hypotheses by additionally rejecting k& further null hypotheses.
One year later, Lehmann and Romano [40] introduced the term £-FWER and showed, unaware of
the publication of Hommel and Hoffmann [35], that a generalized version of Holm’s procedure
controls the k-FWER under general dependence. Furthermore, they showed that under general
dependence one cannot increase any of the critical values of the generalized Holm procedure
without violating the k-FWER criterion. This optimality property was improved by Gordon and
Salzmann two years later. In [28] they considered a class C of multiple test procedures being a
strict superset of the class of SD tests considered by Lehmann and Romano in [40]. Given a set of
p-values, they showed that all hypotheses rejected by any multiple test procedure M € C are also
rejected by the generalized Holm procedure. One year later, Romano and Shaikh [68] introduced
a SU test that controls the k-FWER under general dependence. In 2007, Gordon [27] provided
explicit formulas for the k-FWER under general dependence for SD procedures. This paper also

has a key role in deriving formulas for the expected number of false rejections EV;, () under
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general dependence for SUD tests ¢, cf. [29]. In the same year, Romano and Wolf [69] proposed
a bootstrap method that controls the k-FWER asymptotically. In 2008, Korn and Freidlin [39]
performed a simulation study indicating that the permutation based test introduced in 2004 by Korn
et al. [38] outperforms the generalized Holm procedure. Somerville and Hemmelmann had the
idea to restrict the number of steps in a SD/SU test, cf. [5S8]. Given an arbitrary set of critical values
they tried to determine the maximal number of steps such that the "restricted test" controls the k-
FWER. Recently, Romano and Wolf [71] developed another resampling procedure controlling the
k-FWER asymptotically. They generalize Beran’s idea in [5] of balanced confidence intervals.
By using Beran’s balanced confidence intervals it is possible to control the FWER. Romano and
Wolf [71] generalized the definition of the balanced confidence intervals and applied the bootstrap
methodology to derive procedures that control the k-FWER asymptotically.

1.6 False discovery rate (FDR) and false discovery proportion (FDP)

The false discovery proportion (FDP) is defined by

V()

PP = Rlp) v

and its expectation is called the false discovery rate (FDR), that is
FDRy(y) = Ey [FDP(p)].
A procedure ¢ controls the FDR at level v if
FDRy(¢) < a foralld € ©.

The FDR criterion is more liberal than the FWER criterion, that is FDRy () < FWERy(¢p), cf.
[1]. Genome-wide association studies are prime examples where FDR procedures are applied.
For example, the aim may be to find the genes associated with a disease. To prevent oneself of
making a type I error is not of primary interest. At a first stage, it is important to reduce the
number of potential "candidate genes" considerably. Suppose some procedure has rejected some
null hypotheses, then it does not matter if a small fraction of the corresponding "candidate genes"
are not associated with the disease. By controlling the FDR at level «, we allow on average a

fraction of « of the rejected null hypotheses to be true.

1.6.1 Literature

The most important and probably the most famous paper with respect to the FDR was published
in 1995 by Benjamini and Hochberg, cf. [1]. This is the first publication that provides a procedure
that controls the FDR for independent test statistics. This procedure is now often called the BH-

procedure. Neither the idea to relate V' and R nor the procedure is new. For instance, Soric [61]
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bounds the ratio of expected false discoveries divided by the number of rejected null hypotheses
for a very simple test under independence. According to [53] Eklund proposed the same procedure
as Benjamini and Hochberg for large exploratory analysis in the 1960’s. It was also discussed in
the 1960’s and 1970’s in [16], [52] and [66]. In 1986, Simes showed that this procedure controls
the FWER if all null hypotheses are true. Note, under this condition the FWER is identical to the
FDR. He also proposed this procedure for exploratory analysis. In 1997, it was proved that this test
controls the FWER under a type of positive dependence and the assumption that all null hypotheses
are true, cf. [48]. Four years later, Benjamini and Yekutieli [3] showed that the procedure also
controls the FDR under some specific dependence structures. They also state a rather conservative
procedure that controls the FDR under general dependence. One year later, Sarkar [49] extended
the results obtained in [3]. He showed that a SUD test based on the critical values of the BH-
procedure controls the FDR under the same dependence structure considered in [3].

A popular approach to improve the power of the BH-procedure is to estimate the number of true
null hypotheses by 7 and incorporate this into the BH-procedure. Such procedures are sometimes
called adaptive BH-procedures. Benjamini and Hochberg [2] proposed an adaptive BH-procedure
in 2000, but did not provide a proof that it controls the FDR. A first proof for one specific adaptive
BH-procerdure was given in 2004 by Storey, Taylor and Siegmund in [65]. In 2008, a thorough
answer to the question for which estimator 7 such adaptive BH-procedures still control the FDR
at a prespecified level is given in [50]. In the same year, resampling strategies for controlling
the FDR were developed by Romano, Shaikh, and Wolf, cf. [70]. Basically, they bootstrap the
distribution of the order statistics under the global null hypotheses and utilize this estimate to
sequentially calculate a set of critical values. The procedure is a SD test that controls the FDR
asymptotically.

Finner, Dickhaus, and Roters [21] developed a SUD test that controls the FDR asymptotically at
level v under the assumption of independence. They also proposed a method called -adjustment
in order to correct the SUD test and achieve control of the FDR for finite n. This adjusted SUD
test will also play a major role in this thesis.

Finally, we mention that Neuvial calculated the asymptotic distribution of the FDP for SU tests
under some regularity conditions in 2008, cf. [44] and [45].

1.7 False discovery exceedance (FDX)

For any FDR controlling procedure ¢, the case where FDP(y) is close to one is unpleasant, be-
cause most of the rejected null hypotheses are true. Genovese and Wasserman [25] note, "Because
the distribution of the FDP need not be concentrated around its expected value, controlling the
FDR does not necessarily offer high confidence that the FDP will be small.". They proposed the

following error measure, paying more attention to the tails of the FDP. We define the c—false
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10 1.8. REJECTION CURVES

discovery exceedance (c—FDX) of a procedure ¢ by
FDX(p,c) =Py (FDP(p) > ¢).
A procedure ¢ controls the c—FDX at level o if

FDX(p,c) <o forall v € ©.

1.7.1 Literature

Meanwhile, many FDR related measures have been proposed. The FDX is the only one relevant
for this thesis. It is motivated by the fact that controlling the FDR does not necessarily offer high
confidence that the FDP will be small. In 2004, Genovese and Wasserman [25] considered the
FDP as a stochastic process and constructed two confidence envelopes for the whole FDP process
under the assumption of independent test statistics. One envelope holds only asymptotically by
invariance principles. The other is valid in finite samples by inverting hypothesis tests. From
these envelopes control of the FDX is achieved asymptotically and in finite samples. At the same
time, Korn et al. [38] developed a permutation based test that controls the FDX. Basically, this
procedure is an iterative application of their permutation based test that controls the k-FWER,
which was also presented in that paper. Van der Laan et al. [72] presented, as for the k-FWER, an
"augmentation" procedure that controls the FDX. The following three papers, that were already
cited in Section 1.5.1, also investigated the k-FWER and FDX at the same time. In 2005, Lehmann
and Romano [40] provide two SD tests that control the FDX. One controls the FDX under mild
dependence conditions and the other under general dependence. One year later, Romano and
Shaikh [68] introduced a SU test that control the FDX under general dependence. Somerville and
Hemmelmann [58] also applied their idea to restrict the number of steps in order to control the
FDX. The idea to iteratively apply a procedure that controls the k-FWER in order to obtain a FDX
controlling procedure was presented by Korn et al. [38] in 2004. Recently, Romano and Wolf [71]
used this idea to develop a procedure controlling the FDX asymptotically utilizing a procedure

which asymptotically control the £-FWER developed by Romano and Wolf [69].

1.8 Rejection curves

Once a rejection curve is defined, we are able to conduct a step-wise test graphically (cf. Figure
1.1). Sometimes, it is technically easier to work with rejection curves, but it also helps to develop
an intuitive understanding of such tests.

By definition, a rejection curve is a continuous and strictly increasing function r : [0, 1] — [0, c0)
with 7(0) = 0 and (1) > 1, and the critical values induced by this curve for fixed n are
¢; = p(ifn) for 1 < i < n, where p : [0,1] — [0, 1] is the inverse of r. We call p the crit-

ical value curve. For instance, the very classical critical values ¢; = «i/n are induced by the
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so-called Simes line, which is r(t) = ¢t/a. Sometimes, the rejection curve itself is data driven and

thus random. Of course, this entails that the critical values are also random variables.

O crossing—point
X no crossing—point

|
1

Figure 1.1: The SD (SU) test induced by the rejection curve r rejects a null hypoth-

esis H; iff p; < 7sp (p; < Tsu). Thereby, T, denotes the asymptotic crossing-point

between F,(t) and r for n — oo assuming that F,,(t) — F(t) almost surely.

Remark 1.1

In the literature, sometimes the critical value curve p : [0,1] — [0, 1] is defined first. Assuming
that p is continuous and non-decreasing with p(0) = 0 and positive values on (0, 1], the rejection
curve 7 is defined by r(¢) = inf{u € [0,1] : p(u) = t} for t € [0, 1], where inf ) = co. Hence, r

is strictly increasing until it equals co and it also entails that » may be discontinuous.

Definition 1.2

For a rejection curve r we define

E=E(rp1,...,pn) ={ci:r(pim) <i/n,i€{1,...,n}} U{0}

and

E=E(rp1,...,pn) ={ci:r(pjm) <j/nforallj=1,...,ii€{l,...,n}}U{0}.
Observing that
{pjm < ¢j} & {pjm < p(j/n)} & {r(pjm) < j/n},
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12 1.8. REJECTION CURVES

the connection to a SD/SU test is obvious. A SD test rejects H; iff p; < max & and a SU test
rejects H; iff p; < max&.
It is interesting to note that r(max &) = F,,(max &) and r(max &) = Fy,(max ). Additionally,

max € and max £ are crossing-points in the following sense.

Definition 1.3
Letc;, v =1,...,n, be induced by a rejection curve r. We call a critical value c;, i = 0,...,n—1

a crossing-point between F,(t) and r(t) if

T(pi:n) < Fn(pln) and Fn(piJrl:n) < T(piJrl:n)

holds true. We call c,, a crossing-point between F,(t) and r(t) if

holds true.

Recall, ¢y = 0 and pg., = 0. Note, if ¢; is a crossing-point, then F),(¢;) = 7(¢;) holds, but
the opposite does not hold in general (cf. Figure 1.1). By plotting r and F},, it is very easy to
recognize whether a point is a crossing-point or not. Therefore, determining the smallest or largest

crossing-point graphically is easy. These points will be of special interest, see below.

Lemma 1.4

max & and max & are crossing-points between Fy, and r.

Proof: Let ¢; € {max& max&}. If ¢; = cp, then 7(pp.pn) < n/n = Fy(pnp). Otherwise, it
holds that r(p;.,) < i/n and (i + 1)/n < r(pi+1.n) Which imply that p;.,, < p;t1.,. Hence,

T(pi:n) < Z/’I’L = Fn(pzn) and Fn(pi+1:n) = (’L + 1)/n < r(pi+1:n)- ]
Lemma 1.5
If for some k = 0, ... n it holds that k p-values are zero and the remaining are larger than zero

and pairwise different, then max £ is the smallest crossing-point between F}, and r.

Proof: The case k = n is trivial, therefore we assume that k& < n. Denote by cs the smallest
crossing-point.

Assume that s < n. Since k p-values are zero and r(0) = 0, we have r(p;.,) < j/n for j =
0,...,kand k < s. Because 0 = pi:p < Prtin < --. < Pnem» We have Fy,(pj.,) = j/n for all
Jj =k,...,n. Itfollows that r(p;.,) < j/nforj =0,...,5s < nand r(pst1.n) > (s + 1)/n.
Hence ¢; = max &.

If s = n, then by definition, 7(pp.n) < n/n = Fy,(pn.n) and from r(0) = r(po.n) < Fn(po:n) we

conclude 7(p;.,) < j/nforall j =1,...,n — 1. In sum, ¢; = max&. O
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Corollary 1.6
Under the assumption of Lemma 1.5, a SD test induced by a rejection curve r rejects H; iff p; < T,

where T is the smallest crossing-point between F), and r.

Lemma 1.7

The largest crossing-point between F,, and r is given by max &.

Proof: Denote by ¢; the largest crossing-point. If [ < n, then r(p;.,,) < F,,(pi.n) and j/n <

Fo(pjn) < r(pjm) forall j = 1+ 1,...,n. This entails that p;.,, < pr+1.,. Together we get

r(pin) < l/mand j/n < r(pjy) forj =1+ 1,...,n. Hence ¢, = max&. If [ = n, then
<

7(Pnn) < n/n = Fu(pny) directly entails ¢; = max E. O

Corollary 1.8
A SU test induced by a rejection curve r rejects H; iff p; < 7, where T is the largest crossing-point

between F,, and r.

Remark 1.9

The assumption in Lemma 1.5 that p-values different from zero have to be pairwise different is
annoying with respect to the graphical determination of 7, see Corollary 1.6. Suppose we choose
D1, --.,Pnsuchthat p; € (¢j_1,¢;]iff p; € (¢j_1,¢5]foralli,j =1,...,nand pi., < ... < Prop.
For a SUD(k) test ¢ () let 7 (7) denote the random variable such that H; is rejected iff p; < 7
(pi < 7). Then, 7 = 7, ¢ = @, and T is a crossing-point between r and the ecdf of py, ..., pp.
Recall, a SUD(1) test is a SD test.

Remark 1.10

In the view of the last corollary the result obtained by Simes in 1989 is not new. He showed that a
SU test induced by r(t) = ¢/« controls the FWER if all p-values are independent and uniformly
distributed on (0,1), cf. [56]. But the FWER for this test can also be expressed as

1 —=Pun(Vi(t) <t/afor0 <t <1).

This expression was already investigated by Daniels in 1949, cf. [11], or Theorem 2, p. 345 in
[54]. And it holds that P, ,,(V,(t) < t/afor0 <t <1)=1-q.

It is not surprising that a SUD test can also be conducted graphically. By Remark 1.9 we assume
w.l.o.g. that the p-values are pairwise different. We choose an index k in advance, and if 7 (py.,,) <
F,.(k/n), then 7 is the first crossing-point after py.,, otherwise, the largest crossing-point smaller
than pg.,. Again, a null hypothesis H; is rejected iff p; < 7. Roughly spoken, the difference

between SD-, SU- and SUD-test is which crossing-point is chosen as 7 if there are more then one.
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Chapter 2

A new criterion based on the expected

number of false rejections

2.1 Background

Spjgtvoll investigated the ENFR in [62]. The author states his motivation very clearly in that pub-
lication, see page 398 and 399 in [62]:

“Instead of using the constraint that the probability of at least one false rejection is smaller than a
certain number «, an upper bound -y on the expected number of false rejections is used.

. if he uses @ = 0.05, then in average for every twentieth problem he makes false rejections,
but he does not know how many false rejections he makes. The author feels that it is important to

know this.”

Spjgtvoll considered a multidimensional random variable X with probability distribution depend-

ing on ¥ € © and a family of hypotheses testing problems
H; : 9 € Oy against K;:9 ¢ @17;, 1€ {1,...,n},

where ©¢; and ©1 ; are subsets of ©. For X = =z, let ¢;(x) be the probability to reject H;.
Spjgtvoll’s intention was to find (¢1, . . ., ¢y,) such that

n n
> Egdi(X) < forall de (O 2.1)
i=1 i=1
holds, and at the same time to maximize for certain subsets éli of ©1; the following expression
Cinf  inf Eye(X) 2.2)
i=1,...,n 9,
or alternatively,
n
> inf Egei(X). (2.3)
i=1 VEO;
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The main tool in deriving theoretical results concerning this issue was to assume that the multiple

test defined by

L ifeifi(x) > foi(x)
bi(z) = S a;, ifcifi(x) = foi(x), ie{l,...,n},
0, ifeifi(z) < foi(z)

fulfills (2.1), for appropriate constants aq, ..., Gy, C1, - .., C, and integrable functions f1,..., f,
and fo1, ..., fon. In [62], in Sections 3 and 4, Spjgtvoll used these assumptions to develop proce-
dures for the comparison of means of normal random variables with common known and unknown
variance. The findings result in rejecting H; if and only if the corresponding p-value is less or equal
«/n. This is the well-known Bonferroni correction which is frequently criticized of being too con-
servative.

In the following, we will also use the ENFR to define a new, more liberate, criterion. First, we
make some heuristic considerations. In general, the p-values corresponding to false null hypothe-
ses are not zero. These p-values hide between the p-values of the true null hypotheses. Usually, if
we know that n; is small, we are willing to allow only a few true null hypotheses to be rejected.
On the other hand, if we know that n; is large, we are inclined to allow a large number of true
null hypotheses to be rejected. In other words, we want to increase the risk of rejecting a true null
hypothesis if n; increases. Suppose we have 100.000 null hypotheses and we know that 1.000 null
hypotheses are false. How many true null hypotheses are we willing to reject in order to find some
of the 1.000 false null hypotheses? 5 or 10 or more? Let us further assume that we also know that
there is "lack of power". In such situation there is probably only one way to get hold of some false
null hypotheses. We have to increase the risk of rejecting true null hypotheses.

The FDR criterion relies on a similar philosophy. Recall, FDR control of a multiple test ¢,, =
(41, ..., ¢n) requires

Vi
FDRy(¢n) = Ey {(S—i—‘/)\/l} <a

where .5, is the number of correct rejections and V/, is the number of false rejections. Loosely
formulated, one can say, if S, is small, then on average V,, must be small in order to assure that
the FDR is smaller than «. And if .S, is large, we allow on average more false rejections.

In contrast to Spjgtvoll, we will discard the optimality criteria (2.2) and (2.3). And instead of
controlling the ENFR at a fixed level + under the global null hypothesis, see (2.1), we require
that the ENFR is controlled at different levels depending on n;. Thus, the following definition is

reasonable.

Definition 2.1
Letg:{0,...,n — 1} — [0,n]. The ENFR is said to be g-controlled by ,, if

sup ENFRy(¢n) < g(n1) forallny =0,...,n—1, 2.4)
9€O,,
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where ENFRy(p,) = EyVi(on). We refer to g as an ENFR bounding function. If g(ny) =
yn1 + o for some o > 0, g is referred to as a linear ENFR bounding function. The ENFR is said
to be (linearly) controlled at level ~ if (2.4) holds for g(n1) = (n1 + 1)7.

Remark 2.2
For n1 = n, equation (2.4) always holds because FyV,, = 0.

2.1.1 Literature

Although Spjgtvoll proposed a criterion based upon the ENFR nearly 40 years ago, it seems that
not many scientists investigated this measure in the meantime. At the first glance there seem to
be some publications which concern the ENFR. The title of many of these publications contain
the phrases like "type 1 error”, "control of false positives" or even "control of expected false
discoveries" but the topic is only related to the £-FWER or the FDR and their derivatives. Hence,
only a handful of publications remain which are concerned with the ENFR.

Thorough investigation of the ENFR was conducted by Finner and Roters in [17], [18] and [19].
In [17] they showed under some regularity conditions the existence of multiple test procedures ¢,
such that lim,, .o FWERy(¢,,) = « but lim,,_,oo ENFRy (¢, ) = co. In [18] and [19] they inves-
tigated the ENFR of procedures controlling the FWER or the FDR and partly provide astonishing
simple formulas for the ENFR. A very interesting result was obtained by Gordon in 2011 [29].
Given a SUD procedure he provides sharp upper bounds for the ENFR under general dependence.
Other publications usually provide minor results on the ENFR but focus on other measures. For
instance, in [71] a half page out of 36 pages is dedicated to the ENFR. Some only conduct heuristic
considerations. For instance, in [46] a mixture distribution is fitted to the observed p-values. This
mixture distribution contains a part representing the p-values corresponding to true null hypothe-
ses. From this part of the fitted model they extract their information about the number of false

rejections and especially the ENFR.

2.2 Least favorable configurations

In view of the ENFR bounding condition (2.4), a desirable situation is that SUPyeo,, EyV, =
Ey+V,, for some known ¥* = 9¥*(ny) forn; = 0,...,n — 1. Such a ¥*, which is not necessarily
an element of ©, is called a least favorable configuration (LFC). Important candidates are the so-
called Dirac-uniform (DU) configurations. A DU configuration denoted by DU(n, ng) appears if
p; = 0 almost surely (a.s.) for all ¢ € 7 and the remaining p-values are iid uniformly distributed
on [0,1]. DU configurations are often LFC for the ENFR. This can be seen as follows. If the "false"
p-values decrease, then, as can be seen from Figure 1.1, all crossing-points increase. Hence, the
probability of a type I error also increases and thus the ENFR. Note, we write ENFR,, ,,, (¢5,)
for short if the ENFR is calculated under DU(n, ng) and ENFRy ,,, (¢;,) for the ENFR calculated
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after the p-values corresponding to false null hypotheses have been set to zero. We refer to the
basic independence assumptions (BIA) if p; ~ U|0, 1] iid for i € I, and (p;)ic1, and (p;)ic1, are

mutually independent.

Remark 2.3
At this point, we want to distress that ENFRy ,,, (¢, ) only depends on ¢,, and the joint distribution

of the p-values corresponding to true null hypotheses under Py. Assuming that I; = {ng +

1,...,n} we have
ENFR’&nl QOn ZE'& ¢’L P1s---3DPngs 770)]
n ( )
= Z / Gi(T1, -+ Ty, 0,0, 0)dP P 2y, ),
i=1
with ¢, = (¢1,...,¢n). Note, for step wise procedures as defined in Section 1.3 it holds that

Gn(p1s- -3 Pn) = On(Pri1)s - - - > Pri(n)), Where Il maps {1,...,n} bijective into {1,...,n}.

The following lemma summarizes under which circumstances the DU(n, ng) configurations are
LFCs for the ENFR or where at least the ENFR increases by setting the p-values corresponding to

false null hypotheses to zero.

Lemma 2.4

(a) If o, = (@1, ..., bp) is non-increasing in each p;,i € I, then
ENFRy(2n) < ENFRy 1, ().

(b) If (BIA) applies and if ., = ($1, . . ., ¢n) is non-increasing in each p;,i € Iy, then
ENFRy(¢n) < ENFRy 5y (0n),

that is, DU(n, ng) is least favorable for ENFR.

Proof: W.l.0.g.assume that I1 = {ng+1,...,n}. Denote by (p1,. .., pn,) the vector of p-values
corresponding to true null hypotheses. The assertion (a) follows from

n

ENFRy () = Zh@mwwn Z 910i(p1, -+ Pngs 0, ., 0)] = ENFRy n, ().

Under BIA we have ENFRy ,,, (¢n,) = ENFR,, ,,, (¢r,) and thus the assertion (b). O

A similar argumentation fails for the FDR because V;,(t)/ max{ R, (), 1}, in general, is not in-
creasing a.s. if p; decreases for ¢ € I. So far, it is still difficult to determine LFCs for the FDR.
Only two results concerning this issue seem to exist. If a SU test is defined in terms of a critical

value curve p satisfying

Controlling the Number of False Rejections in Multiple Hypotheses Testing, Marsel Scheer



18 2.2. LEAST FAVORABLE CONFIGURATIONS

e p(t)/t non-decreasing in t,
e Py(p; <t)=tforallte|0,1],i € I,
e {pitier, is an independent sequence,

o (pi)ier, and (p;)icr, are mutually independent,

then DU(n, ng) is LEC for FDR. This follows by Theorem 5.3 in [3], cf. [21], p. 605. Recently,
in [47] it was proven that DU configurations are LFCs with respect to the FDR for SD procedures

under some restrictive assumptions.

Remark 2.5

If we assume that ¢, = (¢1,...,¢,) is non-increasing in each p;, i = 1,...,n, the BIA in
Lemma 2.4 (b) can be weakened to Py (p; <t) < ¢t forallt € [0,1] and i € Iy, {pi}icr, i an
independent sequence, with possible dependence between the two vectors (p;)icr, and (p;)ier, -

This follows from Proposition 17.A.1 in [42], which states that the condition
Ef(Y) <Ef(X) for all non-increasing functions f such that the expectations exist

is equivalent to P(Y < t) < P(X < t) forallt € R. Since p;, i € Iy, is an independent
sequence, the proposition can be applied separately to each p; with j € In given (pg)rer,\ (5}-

Assuming that I1 = {ng + 1,...,n} we get

n
ENFRy(¢n) <Y Egn, [6i(p1, Dy, 0, - -, 0)]
=1

n
S ZEn,n0[¢i(p17 <o 7pn0707' . 70)]
i=1

= ENFR,, 5., ().

Remark 2.6
Setting the p-values corresponding to false null hypotheses to zero is a first helpful step in bound-
ing the ENFR. As already mentioned in Remark 2.3, in order to calculate ENFRy ,,, (,,), only the
joint distribution of the p-values corresponding to true null hypotheses has to be considered. In the
case of dependence this distribution is sometimes known. In the many-one problem, test statistics
T; of the type

Ti=/1—pZi—\/pZo
may appear, where (Z)ren and Z are iid standard normally distributed random variables and
p € (0,1) is a known constant. Further information on the test statistic or the many-one problem
can be found in Section 3.3. Obviously, (7;)i=1,... » is a multivariate normally distributed random
variable with known equicorrelation p. Hence, for given n; and ¢, we are able to calculate
ENFRy . (n) exactly.

Controlling the Number of False Rejections in Multiple Hypotheses Testing, Marsel Scheer



CHAPTER 2. A NEW CRITERION BASED ON THE EXPECTED NUMBER OF FALSE REJECTIONS 19

2.3 Asymptotic rejection curves

Finner, Dickhaus, and Roters [21] used asymptotic considerations to motivate a rejection curve
called the asymptotically optimal rejection curve (AORC). The AORC is defined as f,(t) =
t/[t(1 — ) + a] for t € [0,1] and o € (0,1). This rejection curve has the important prop-
erty that for a large class of SUD tests induced by f, we obtain that the FDR converges under
DU configurations to «. It is the basis of powerful FDR controlling procedures with prespecified
fixed rejection curve, see [21]. This rejection curve will appear frequently in this thesis. In this
section we use similar techniques to investigate the asymptotic relations between rejection curves
and ENFR bounding functions. Thereby, we consider a sequence of multiple tests (¢, )nen. The

following definition is in accordance with Definition 2.1.

Definition 2.7
Let g : [0,1] — [0, 1]. The ENFR is said to be asymptotically g-controlled by (¢n )nen if

lim sup ENFRy (i2) /1 < g(C) 2.5)

n—oo

forall ¥ € © with ng/n — (. We refer to g as an asymptotic ENFR bounding function.

Remark 2.8

An alternative for the expression ENFRy (¢, )/n would be ENFRy(¢,,)/n1. The latter expression
may be fruitful if ng/n — 1 is considered. But in this section we only investigate ng/n — ¢ €
[0, 1) and thus lim sup,,_, .. ENFRy(¢,,)/n = (1 — ¢) limsup,,_,.. ENFRy(¢y,)/n1.

All calculations in this section are under DU configurations. In the first part we consider SUD
tests ¢, induced by a given rejection curve r and pursue the aim to state sufficient conditions such
that

lim ENFR;, »,(¢n)/n

n—oo
exists for ng/n — ¢ € [0,1) and calculate this limit provided that it exists. If this limit exists
for all ¢ € [0,1] and DU is LFC for the ENFR, then setting ¢(¢) = lim,,_,oc ENFR,, ,, (¢5,)/n
obviously yields that the ENFR is asymptotically g-controlled and inequality (2.5) holds with
equality.

In the second part we consider a given asymptotic ENFR bounding function g. Then the aim is
to construct SUD tests ¢, such that lim,,_..c ENFR,, ,,(¢r)/n = ¢(¢) under some regularity
conditions. By our construction, we will see that these SUD tests will be induced by a fixed
rejection curve r, which of course depends on g.

Consider now a fixed rejection curve r as given. As stated in Section 1.3, if ¢,, is a SUD test
induced by r, then there exists a random variable 7 such that H; is rejected iff p; < 7. By Section
1.8, this 7 is a crossing-point between r and F},. In our asymptotic settings we consider a sequence

of SUD(ky,) tests (¢, )nen induced by 7. The corresponding crossing-points are denoted by 7,,. A
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Figure 2.1: The figure shows (asymptotically/heuristically) the expected fraction of
false rejections (Ct¢ and nt,) for two different fractions of true null hypotheses (¢ and

1) under DU configurations.

first good impression of how r and g are connected is provided by Figure 2.1. Note, under DU

configurations and ¢, = ng/n — ¢ € [0, 1] it holds by the Theorem of Glivenko-Cantelli that
Fo(t) = Fe(t) =1—-¢+(t (2.6)

a.s. and uniformly in ¢ € [0,1]. The backbone of our investigations is the assumption that 7,
converges a.s. to a constant ¢ € (0, 1]. The following lemma states sufficient conditions such this

holds true.

Lemma 2.9

Let r(t) be a rejection curve, (pn)nen a sequence of SUD(ky,) tests induced by r with a cor-
responding sequence of random variables (T,)nen such that H; is rejected by ¢, iff pi < Tn,
i=1,...,n,n €N Further, let ng/n — ¢ € [0,1)and T = {t € [0,1] : r(t) =1 — ( + (t} be
a finite set. Suppose T\ {1} is a disjoint union of T and T, where

TH={teT\{1}|Fe>0:1(s) < Fe(s) fors € [t —€,t) and r(s) > F¢(s) fors € (t,t + €|}
and

T ={teT\{1}|Fe>0:7(s) > Fe(s)fors € [t — €, t) and r(s) < F¢(s) for s € (1,1 + €}
Let further F- Y(kn/n) — k. If one of the following conditions holds,

1. k€0, 1\T,
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2. k=1landr(l) >1,

3. k= 1 and there exists an € > 0 such that r(s) < F¢(s) for s € (1 —¢,1),

then under DU(n, ng) configurations, T, converges a.s. to a constant t; € T+ U {1}.

Proof: If x € T, the uniform a.s. convergence in (2.6) directly entails 7, —  almost surely.
If K € [0,1]\T, then r(rk) > F, (k) or (k) < F,(k) eventually for all n. Therefore, it holds
that 7(pr,,.n) > Fn(Pk,:n) O (Pk,m) < Fn(pk,.n) a.s. and eventually for all n, because py,,., =
FoYkn/n) = F Y(kn/n) + o(1) = k 4 o(1) a.s. by the uniform convergence of F,. In the
first case, r(k) > F¢(k), T, converges a.s. to tr = max{7 N [0, ]}. Note, t¢ is well-defined
because r(0) = 0 < F¢(0) and r(x) > F¢(x). Furthermore, by r(x) > F¢(k), the continuity
of r and the definition of ¢ there exists an € > 0 with r(s) < F¢(s) for s € [t — €,t¢) and
r(s) > F(s) for s € (t¢,tc + €], which entails ¢t € T, In the second case, (k) < F¢(k), we
have that 7,, converges a.s. to tc = min{7' N [, 1]}. In the same way we conclude that t; € T
if 7% N[k, 1] # 0. Otherwise, if T N [k, 1] = 0, then r(s) < F¢(s) for s € [k, 1), which entails
Tn, — 1 almost surely.
Finally, consider the case xk = 1. If (1) > 1, then k = 1 € [0,1]\7. This case has just been
investigated. If r(s) < F¢(s) on (1 — ¢, 1), then it follows by the Theorem of Glivenko-Cantelli

that 7,, — 1 almost surely. O

Note, if the rejection curve 7 is tangential to F¢ for at least one point in (0, 1], then the last lemma
is not applicable. We say that r is tangential to F¢ at a point t € (0, 1] if there exists a € > 0 such
that 7(s) > Fe(s) fors € I = [t —e,t + €]\{t} and r(t) = F¢(t) or r(s) < F¢(s) for s € I and
r(t) = Fe(t).

The next theorem states sufficient conditions for the existence of lim,,_..c E;, n, Vi (¢r)/n and

provides a formula for the limit, given that it exists. This concludes our first part.

Theorem 2.10
Under the assumptions of Lemma 2.9 and DU(n, ng) configurations it holds that

r(te) =1—(+Cte, 2.7)
nh—>nc:>lo En,no Vn(@n)/n = CtC7 (2.8)

where t; is the constant from Lemma 2.9.

Proof: By virtue of Lemma 2.9, we have 7,, — ¢ a.s. where 7, is the random variable from
Lemma 2.9 and ¢ fulfills (2.7). Observing that

wn/n—@ixﬂ{mm— Fum) — (1=

n no ¢ n

equation (2.8) follows from the Theorem of Glivenko-Cantelli and the dominated convergence

theorem. |

Controlling the Number of False Rejections in Multiple Hypotheses Testing, Marsel Scheer



22 2.3. ASYMPTOTIC REJECTION CURVES

For the second part suppose that the asymptotic ENFR bounding function g is given. The aim is

to construct SUD tests ,, such that

lim By, o Vi (n) /1 = 9(C) 2.9

n—oo

under some regularity conditions. Suppose that ¢,, is induced by an unknown rejection curve r. If
Theorem 2.10 is applicable for all ¢ € (0, 1), then combining the equations (2.7), (2.8), and (2.9)
yields

r(9(€)/¢) =1—=¢+9(C) (2.10)

for ¢ € (0,1). In the following, we will show that ¢,, induced by r, which is implicitly defined by

equation (2.10), will fulfill equation (2.9) under some regularity conditions.

Remark 2.11
If g(¢)/¢ = 1, then (2.10) becomes r(1) = 1. Obviously, if g(¢)/¢ > 1, then (2.10) is not

of interest because the domain of a rejection curve is [0, 1]. Hence, (2.10) is only relevant for

{¢€(0,1]: 9(Q)/¢ <1}

Remark 2.12
Similar investigations have already been conducted by Gontscharuk in [26] for the FDR. For a

given function g* : [0, 1] — [0, «] she considered the equation

lim FDRy, 5, (¢n) = ¢°(¢), ¢ €(0,1)

n—0o0

and derived an implicit equation for r, i.e.

g(QQO-¢\ _ 1-¢
T(CG—g*(C)))‘l_g*(ov ¢ €(0,1). (2.11)

In order to ensure that DU is LFC for the FDR using a SU test, it is necessary that p(t)/t is

non-decreasing, which is implied by equation (2.11) and the additional assumptions that 2*({) =
g*(¢)/¢ is non-increasing and lim¢_. g*(¢)/C € (0,1], cf. Lemma 3.12 in [26]. In the ENFR
setting it is also essential that 2(¢) = ¢g(¢)/( is non-increasing; additionally we need that H () =
1 — ¢ + g(C) is non-increasing to ensure that r is non-decreasing and therefore DU is LFC for
the ENFR. This set of assumptions is weaker than for the FDR because h non-increasing and
lim¢—09(¢)/¢ € (0,1] obviously imply that H({) = 1 — ¢(1 — g(¢)/() is strictly decreas-
ing. Although the assumptions on g and ¢g* are the same, that is g(¢)/( is non-increasing and
lim¢ . g(¢)/¢ € (0, 1] in the ENFR setting and ¢g*(¢) /¢ is non-increasing and lim:_.o g*(¢)/¢ €
(0,1] in the FDR setting, the different implicit equations yield different properties for p. For in-
stance, in the FDR setting we get that p(t)/t is non-decreasing and in the ENFR setting we get the
weaker property that r and thus p is non-decreasing. It is intuitively clear that the assumptions on

the rejection curve in an ENFR setting with respect to LFCs can be more liberal compared with
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the assumptions in the FDR setting because the LFCs issue is much more easier for the ENFR
than for the FDR.

Remark 2.13

If we assume that both h(¢) = ¢(¢)/¢ and 1 — ¢ + g(¢) are non-increasing and equation (2.10)
holds true, then h is strictly decreasing on Z = {¢ € (0,1] : ~A(¢) < 1}. This can be seen as
follows. Suppose 0 < ¢ < nand h(¢) = h(n). By 2.10) we get 1 — ( +g(¢) = 1 —n + g(n)
which is equivalent to g(n) = g(¢) + n — . Thus, by h(¢) = h(n), we get that

9(Q) _gtn) g Q+n—-¢_ g(OC, .
¢ n n =gttt o/

is equivalent to

92% ¢/ = (- /).

Since ¢/n # 1 we have h(() = 1 and hence h is strictly decreasing on Z. Note by Remark 2.11,

7 consists of the relevant (’s for the equation (2.10).

The following remark shows how r and p can be written as composition of functions of g and the

inverse functions of h and H.

Remark 2.14

Suppose that g is continuous. As we elucidated in Remark 2.11 the relevant (’s are given by the
setZ = {C € (0,1] : g(¢)/¢ < 1}. By Remark 2.13 we can assume that h(¢) = ¢(¢)/( is strictly
decreasing on Z. Then also the function H(() = 1 — ¢ + g(¢) = 1 — ((1 — h(()) is strictly
decreasing on Z. Suppose equation (2.10), that is r(h(¢)) = H((), holds for ( € Z. From this

equation it is possible to reobtain r and p. Since h(() is invertible we have

r(t) =r (W) —1—h M (t) + g(h(t)) forallt € h(T) (2.12)

and because H is strictly decreasing we get that r is strictly increasing. This also entails that p is

strictly increasing. Further, we have for ¢t = H((), with ¢ € Z, that

)} (2.13)

By the Sections 1.3 and 1.8, a step-wise test can be conducted with r or p solely. Hence, once
either b~ or H~! is explicitly known one can conduct the step-wise test. If both A~! and H ! are

not explicitly given, the test can be conducted graphically by hand, cf. Remark 2.15 and Figure 2.2.
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Figure 2.2: The left figure shows g({) = 0.6¢(1 — ¢ + 0.03sin(97()). The right figure
shows the corresponding rejection curve r(t) with an ecdf of a set of p-values and the T, for
a SUD(k,,) test.
Remark 2.15

Equation (2.10) also has a nice graphical application. Irrespective of the existence of explicit
inverse functions in Remark 2.14 we can easily plot the rejection curve r for t € {g({)/¢ : €
(0,1]} N0, 1], cf. Figure 2.2. Of course, for conducting a step-wise test automatically at least r or
the critical values must be given. But if the aim is to analyze only one set of p-values, it is possible
to do this by hand with little effort by plotting the rejection curve and the ecdf of the p-values, cf.

Figure 2.2 and see Section 1.8 for details.

Now we are able to answer the question under which circumstances step-wise tests ,, induced by
a function 7 that is implicitly defined by (2.10) fulfills lim,, ¢ Ey, 1o Vi (¢n)/n = g(¢). Lemma
2.9 is an important tool for answering this question. Therefore, we must state conditions on g such
that r fulfills the conditions of Lemma 2.9. Obviously, if g(1) = 0, then equation (2.10) yields that
r(0) = 0. The assumption on g means that if all null hypotheses are true, then the ENFR divided
by n must converge to zero. Further, if h({) = ¢({)/( is strictly decreasing, then r defined by
(2.10) is strictly increasing, cf. Remark 2.14. Later on we will see that the assumption on h has the
interpretation that the crossing-point between the resulting rejection curve r and F(t) = 1—(+(t
is strictly decreasing in (. Recall, it is important that p is at least non-decreasing because we want

to ensure that DU is LFC.
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Theorem 2.16

Let no/n — ¢, g : [0,1] — [0,1] be continuous with g(1) = 0. Suppose T = {( € (0,1] :
g(¢)/¢ < 1} is an interval and h : T — [0,1] with h(¢) = g(¢)/( is strictly decreasing, where
h(0) = lim¢—0 g(¢)/C if O € T and T denotes the topological closure. Let ¢ = h(minZ). For
H(() =1—C(+ g(Q) it holds that

H(h=(t), iftelo,c),
t/e, ift € [e, 1],

r(t) =

is strictly increasing and continuous. Further, for all ( € (0,1) the set TT = T*(¢) = {t €
[0,1] : 7(t) = Fe(t)} \ {1} contains only one element denoted by t:. For SUD(ky,) tests o,
induced by r with lim Fg_l(kn/n) = randall ¢ € [0,1), it holds

r(te) =1 —C+Cte, (2.14)
lim ENFR;, n,(n)/n = Ct¢ (2.15)

if (i) k € [0,1) or (ii)) Kk = 1 and r(1) > 1 or (iii) K = 1 and there exists an ¢ > 0 such that
r(s) < F¢(s) for s € (1 —¢€,1). Moreover,

Cte = 9(Q) (2.16)

Sorall { with0 < g(¢) < (e

Proof: Since g is continuous, so are h and h~!. It is easy to see that in both cases, 0 ¢ Z and
0 € Z, we have 7(c) = 1. In the first case we have h~!(c) # 0 and ¢ = 1, thus
)= 1=+ gl ) = 1 -0 - A g <1

In the second case we obtain from 1 > h(0) = lim¢_.0 g(¢)/¢ that g(0) = 0 and hence r(c) =
1 —0+ g(0) = 1. Therefore, r is continuous. Since g(1) = h(1) = 0 we also have (0) =
1—h=1(0)+g(h~1(0)) = 0. Note, H(¢) = 1 —¢(1 —h(()) is strictly decreasing on Z because h
is strictly decreasing and h(Z) = [0, c] C [0, 1]. Therefore, we conclude that r is strictly increasing
on [0, ¢]; and hence r is strictly increasing on [0, 1]. Thus, 7 is a rejection curve. We now show
that equation (2.16) holds true. Observe that ([0, c]) = [0, 1]. Hence, (0,¢) = Ueeo,yT ().
For t¢ € (0,c) we have

1—C+ e =r(te) =1—h"(te) + g(h™ (k)

T BT
Clte—1)
h=1(t¢) -1
& C=h ). (2.17)
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By definition of i ((), equation (2.17) provides g(¢) = (t¢ if t¢ € (0, ¢). This shows (2.16).

It remains to show that 7" contains only one element. Suppose that t¢ < ¢ < c and t¢,t' €
T7(¢). Then by (2.17) and the monotonicity of i, we have ¢ = h=1(t;) > h™1(¢') = 1 and thus
r(t') = F,(t'). We also assumed that ¢ € T ({) and hence F;(t') = r(t') = F,(t') which is
equivalent to ¢ = n because t' < ¢ (< 1), but this contradicts ¢ > 7. Applying Lemma 2.9 yields

the assertions. O

Remark 2.17

Using the notation from Theorem 2.16, the assumption that g(1) = 0 in Theorem 2.16 was impor-
tant to ensure that 7(0) = 0. If g(1) = a > 0, then h(Z) C |[a, c] and therefore if A is invertible
the function 1 — A =1(¢) + g(h~1(t)) is not defined for ¢+ < a. But one can define a new bounding

curve by
9(¢). if¢€[0,1—¢
(1=Qg(l—¢)/e, if¢ed—el],

where € € (0, 1). Theorem 2.16 can be applied to g and (t; = §(¢) = ¢g(¢) willhold for { < 1—¢
if 0 < g(¢) < Ce.

9(¢) =

We now apply the technique explained in Remark 2.17 to a concrete example with g(1) > 0 and

show how Theorem 2.16 can be applied in this case.

Example 2.18

An interesting asymptotic ENFR bounding function is g(¢) = « € (0,1). This means that we
roughly allow an true null hypotheses to be rejected. As in Remark 2.17, we have h({) > « for
¢ € T = [, 1] and therefore, if h is invertible the function h~1(¢) is not defined for t < «. For
e € (0,1 — a)weset §(¢) = min{a, a(1 — {)/e} which leads to

h(¢) = min{a/¢, a(1 = )/ (Ce)},
h=H(t) = min{a/t, o/ (a + €t)},

l—a/t+a,ift € (a/(1 —¢€),1]

1- 202D it e [0,0/(1 - €)).

F(t) =

Since /¢ and a(1 — ¢)/(Ce) are strictly decreasing in ¢ on (0, 1], g(¢)/( is strictly decreasing
on (0, 1]. Further, we have {C : §(¢)/¢ < 1} = (a, 1]. Hence, Theorem 2.16 is applicable. For
instance for a SUD(| kn ) test ¢,, induced by 7 with k € [0, 1), we get ENFR,, ,,, (¢5,) — §(() for
no/n — ¢ € [a,1). Note §(¢) = g(¢) = afor( € [0,1 — €.

In the next two examples, we reproduce the Simes line and the AORC. The assumptions of Theo-

rem 2.16 can easily be verified.
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Example 2.19
As stated in Remark 4.15, we have lim,,_..o ENFR,, , (¢5,)/n1 = Ca/(1 — () for the LSD and
LSU test with a € (0, 1). Thus, by changing the norming variable from n; to n, we get

9(¢) = ENFRy, ng (on) /1 = (1 = ()Cer/ (1 = Cav),
h(¢) = 9(¢Q)/¢ = (1 = Qa/(1 = Ca),
and
L) = (8 — )/ (alt — 1).
Obviously, g(1) = 0 and ~(0) = «. Hence, by Theorem 2.16, we have
r(t)=1—h"tt) +g(h~(t)) =t/a foralltc [0,1]

and lim,,_, o, ENFR,, ,,, (¢,,)/n = g({) for SUD(k,,) tests ¢y, induced by r for ng/n — ¢ € [0,1)
and k € [0, 1].

Example 2.20
We pursuit to control the ENFR asymptotically at level
1 « o
= lim — 1 =(1-
g(¢) = lim —(ny +1)7—— = (1-¢)3——,

where « € (0, 1). Thus, we get

h(¢) = 9(Q)/¢ = (1 = Qa/(((1 — @) and h™H(t) = a/(t(1 — a) + ).

Again, by Theorem 2.16
t
t)=1—-h"1(t hi(t) = ———— forallt € [0,1
(1) (6 +9(h™(0) = j— gy g foralt e 0.1)
with limy, oo ENFR;, ,, () /1 = g(¢) for SUD(k,,) tests ¢y, induced by r with ng/n — ¢ €

[0,1), g(¢) < ¢,and k € [0,1). Note that g(¢) < ( is equivalent to « < (.

2.4 Asymptotic normality of the number of false rejections

In this section we state a few results with respect to the asymptotic distribution of V;, (¢, ), where

wn 1s a SU test induced by 7. These results are simple by-products of the considerations we

conduct in Chapter 6, cf. Remark 6.10. Nevertheless, for sake of completeness of this chapter, we

already state the assertions in this section.

The following function

V@O -1 - 0ROPRG0 - RH{) + CRO0-ORO1 - F®)
a'(t) = (1 = Q) fi(t) — Cfolt) ’

where 2’ is the first derivative of a differentiable function z : [0, 1] — R will appear in the next

s(x,(,t) =

theorem and frequently in Chapter 6.
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Corollary 2.21
Let oy, be a SU test induced by a continuously differentiable rejection curve r. Further, assume
that fo and fy are density functions on [0, 1] which are continuous on (0, 1). Denote by Fyy and Fy

the corresponding cdfs. If
1. p; are iid with density function fqo fori € I,
2. p; are iid with density function f1 fori € I,
3. (pi)ier, and (pi)icr, are mutually independent,
4. no/n =+ o(n"1?),

5. there existsat* € (0, 1) such that T* is the only point in (0, 1) with r(7*) = (1—() F1(7%)+
CFo(T7),

6. (%) > (1 = Q) f1(7*) + C fo(T*) for the first derivative " of T,
then
Vn(Va/n — CFy(17)) = V.
in distribution, where V' is a normally distributed random variable with zero mean and standard
deviation s(r,, T").

Proof: Follows directly from Corollary 6.9, cf. Remark 6.10. ]

A slightly more general version of Corollary 2.21, where a sequence of rejection curves ry, is
considered, is Corollary 6.9. The special case where we assume DU(n,ng) configurations in

Corollary 2.21 is summarized in the following remark.

Remark 2.22

Under DU configurations and the assumptions of Corollary 2.21 we get

V(Va(eon)/n— (%) =V (2.18)

in distribution, where V is a normally distributed random variable with zero mean and standard

deviation
P ()L = )
I COET

where 77 is the point defined in 5. of Corollary 2.21.

Alternatively, the limit distribution from Remark 2.22 could be easily obtained from the results in
[44]. In that paper, the asymptotic distribution of FDP((,,) was calculated for SU tests ¢,, induced
by a fixed rejection curve r; And under DU configurations we have FDP(p,,) = V,,(p,)/(n1 +
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Viu(¢n)). Hence, FDP(¢,,)/(1 —FDP(¢,)) = V,,/n1 holds and Remark 2.22 follows by applying
the delta method.

Note that the formulas for the variances given in [44] are not correct but a corrigendum exists, cf.
[45].

Remark 2.23
Equation (2.18) entails that E,, ,,,V;,(¢p)/n — ¢7*. This result is in accordance with (2.8) from
Theorem 2.10.

2.5 Summary

Actually, our ENFR criterion is a generalized version of the criterion that Spjgtvoll introduced
about 40 years ago. Instead of controlling the ENFR at a fixed level v, we allow that v depends
on the number of false hypotheses (n;). For instance, this provides us the flexibility to demand
that the ENFR should be small only if n; is small. A very useful property of a test procedure
with respect to the LFC issue is that the ENFR increases by setting the p-values corresponding
to false null hypotheses to zero. We have shown that this holds true under quite general assump-
tions. Furthermore, we investigated the asymptotic relation between rejection curves and bounding
curves. This asymptotic relation will be advantageously applied in Chapter 5. Finally, we formu-
lated a central limit theorem for the number of false rejections in the non-sparsity case, that is

no/n — ¢ € (0,1), and for a fixed rejection curve.
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Chapter 3

Relationships between ENFR and FDR

In the following, we will see that the ENFR and the FDR are naturally connected, especially under
some kind of independence. Furthermore, we show that under dependence it is possible that ENFR
control implies FDR control. However, we point out situations under dependence where the FDR

is controlled but the ENFR tends to infinity.

3.1 Asymptotic relation between ENFR and FDR

We now consider sequences of null hypotheses (H;);cn, p-values (p;);cn and multiple test pro-
cedures (¢n)nen. Suppose there exists a 7, such that ¢, rejects H; iff p; < 7, (1 = 1,...,n).
As a first assumption we suppose that the ecdf of the true (false) null hypotheses converges uni-
formly and a.s. to a distribution function Fy(¢) (Fy(t)). Sometimes, this relation is called weak
dependence, see for instance [64] or [65]. Furthermore, we assume that Fy(¢), F1(t) € (0,1) for
t € (0,1), {n = no/n — ¢, and 7,, converges a.s. to a constant ¢ € [0, 1], say.

Let us first consider the case where ¢ > 0. Due to the uniform convergence of the ecdf we have
limy,—o0 Vi (70) /10 = Fo(t¢) a.s. and limy, .o Sp(7n)/n1 = Fi(t¢) almost surely. The theorem

of dominating convergence yields

=Ey lim

;
lim FDRy(,) = lim Eﬂ[ n(7n) ]
n—oo n—oo

R, () V1

almost surely which is equivalent to

[Vn(tg) ] _ limy, oo Vi (te) /11
Ry (t¢) Fi(t¢) + limp oo Vi (tc) /1

FDRy (@,
lim Vj,(t)/ny = lim ENFRy(g,)/ny = Fi(t;) lim o(#n) 3.1)

n—oo 1 — FDR@((,On)

almost surely. Under DU configurations or simply if F(t;) = 1 this becomes

: _ : FDRn7nO (9077/)
2 ENFR o (004 = 00 TEDR ()

where FDR,, ,,, (¢y,) is the FDR calculated under DU(n, ng). Thus under DU, it is not surprising

that a sequence of multiple test procedures with lim,,_,oc FDR, »,, (¢0) = « fulfills

ENFR,, 10 (90) = n1(1 + o(1))a/(1 — a)
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and vice versa. As we have seen, ¢, determines the asymptotic ENFR and FDR. This means, if
we use two different procedures but ¢ is the same for both, then both procedures have the same

asymptotic ENFR and the same asymptotic FDR.

In contrast, the case ¢t = 0 causes serious problems. Usually, V,,(7,) does not converge to
limy, o Vi (t¢) = 0 and hence similar argumentations as for t- > 0 will fail. However, in
general, V,,(7,,) has a non-degenerated limiting distribution depending on (¢, ),en. For instance,
Theorem 4.8 and 4.11 state the asymptotic distribution and expectation of V,,(7;,) for a SD/SU
test induced by the rejection curve s(¢) = ¢/« under DU(n,ng) and n; fixed. For a SD test ¢,

induced by the rejection curve s(t) = ¢/« we have

a

lim ENFR,, »,, (¢n) = (n1 + 1)

n—o0 1-—a’

but for a SU test ,, induced by s(t) we have

[e%

. 1
lim ENFR,, ,,(¢n) = <n1 + >

Since ¢ equals zero for the SD test and SU test, this shows how sensitive the ENFR is with respect

to other factors besides t.

3.2 Simultaneous control of ENFR and FDR

We will now investigate the appealing case where g is a linear ENFR bounding function. For this
section let F; = O'(]I{pigs},t < s < 1,i=1,...,n) be a backward filtration. Note, as before,
Eg 7, [Va(©n)] = ENFRy ,,, (¢y,) is the ENFR calculated after the p-values corresponding to false

null hypotheses have been set to zero.

Theorem 3.1
Let @, be a multiple test such that the FDR increases by setting the p-values corresponding to
false null hypotheses to zero. If FWERy(pr,) < o under the global null hypothesis (0 € N}'_ H;)

and

sup ENFRy.p, (¢n) < ——ny  forallng =1,....n—1, (3.2)
1966711 -«

then

sup FDRy(vp) < a. (3.3)
YeO

Proof: Let ¢ € O with ng = ng(1) # n. We get from (3.2) and Jensen’s inequality that

Va
FDRﬂ(SOn) < Eﬂ,nl |:Tl1-|—v:|

]Eﬁ,nl [Vn]
ni + E19,n1 [Vn]
< o
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32 3.2. SIMULTANEOUS CONTROL OF ENFR AND FDR

For ¥ € NI H;, i.e., ng = no(¥) = n, we have FDRy () = FWERy(¢,) < . O

More restrictive assumptions even yield equivalence between "FDR control” and "ENFR control".

Theorem 3.2
Let o € (0,1) and suppose BIA applies. If a SU test p,, is defined in terms of the critical values
induced by fo 5, = (14 Bn/n)t/[t(1 — &) + o] for some (3, > O, then

Q
V9 €O : [FDRy(pn) < a <= ENFRy(py,) < - a(nl(ﬁ) + 6n)]- (3.4)
Moreover,
sup ENFRy(pn) < a (n1+ Bn) forallny =0,...,n—1, (3.5)
V€O, l-a
is equivalent to
sup FDRy(pn) < a, (3.6)

LIS(S)
where O = {90 € 0O : |[;(¥)| =k}, k=0,...,n— 1.

Note, fu,0 is the well-known AORC. In order to construct procedures which control the ENFR
linearly at a fixed level, it may be fruitful, in view of Theorems 3.1 and 3.2, to investigate con-
ventional FDR procedures. For instance, it is known that a SD test induced by the (3,,-adjusted
asymptotically optimal rejection curve f, g,, with 3, = 1, controls the FDR at level o under
BIA. The FDR level is nearly exhausted under DU configurations, especially for large n. In Sec-
tion 4.2 we show that this procedure also yields nearly perfect ENFR control at the level /(1 — ).
On the other hand, in Section 4.3 we try to employ plug-in techniques to develop an ENFR proce-
dure under BIA and end up with a known FDR procedure.

The three following auxiliary lemmas will simplify the proof of Theorem 3.2.

Lemma 3.3
Under (BIA), {V,(t)/t, Fi}ic(0,1) is @ backward martingale.

Proof: Confer [54], p. 136, Proposition 3.6.2. (I

Lemma 3.4

Let r denote a rejection curve. Then
7 =max{t € [0,1]: F,(t) V1/n = r(t)} 3.7)

is a stopping time with respect to the backward filtration {ft}te(o,u- Further it holds that 7 €

{c1,...,¢n} almost surely.
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Proof: Since ¢; = r~1(i/n) fori = 1,...,nand F,(t) V 1/n € {1/n,2/n,...,1} as. for all
t € [0,1] we have 7 € {c1,...,c,} almost surely. If ¢, < ¢t < 1, then {7 > t} = 0 € F;.
Suppose t € (0, ¢,]. Let i(t) = min{i : ¢ < ¢;}. Then,

n

{r>th={r>capt= U {pjn < ¢} C Feyyy C Fu 0

j=i(t)

Applying the optional sampling theorem to the time-continuous process V,,(t)/t is crucial for the
proof of Theorem 3.2. But this process is a right-continuous backward martingale. Thus, we have
to invert the time to get a martingale, but the resulting martingale is left-continuous. The (time-
continuous) optional sampling theorem is not applicable because of the lack of right-continuity of
the time-continuous martingale. Therefore, we resort to the time-discrete version of the optional
sampling theorem where the right-continuity is not important. The following remark elucidates
how the optional sampling theorem of the time-discrete theory can be applied to a time-continuous

backward martingale if the stopping time has only a finite number of values.

Remark 3.5

Let M} be a backward martingale with respect to the backward filtration A% on 0 < ¢ < 1.
Suppose we want to stop M? at 7, with Py (7 € {t1,...,t,}) =land 1 =1t; > ... > t, > 0.
Then M; = Mtbl is a time-discrete martingale with respect to the filtration A; = Abi, where
1 = 1,...,n. Note that at this point the time has already been inverted because ¢; decreases as ¢
increases. Defining v by {v = i} if and only if {7 = ¢;} fori = 1,..., n yields M, = M? almost
surely. Obviously, v is a stopping time with respect to A; if and only if {T > t;} € Af{i. By
definition, ¥ < n almost surely. Hence, the optional sampling theorem of the time-discrete theory
(cf. Theorem 10.10.(b) [77]) provided {7 > ¢;} € .Aff’i fori =1,...,nyields

EyM! = EgM, = EyM; = EgM} = EyM}.

Lemma 3.6

Under BIA and the assumption of Lemma 3.4 we have

[  [B00]

T 1

with T defined in (3.7).
Proof: The assertion follows immediately from Lemmas 3.3, 3.4, and Remark 3.5 |

Proof of Theorem 3.2. By virtue of Lemma 1.7, the SU test rejects H; iff p; < 7, where 7 is the
largest crossing-point between F), and f, g,. Noting that, V,,(7)/7 is not defined for 7 = 0, we
define

T=max{t € [0,1] : F,(t) V1/n = fop,(t)} =max{t € [0,1]: R,(t) V1 =nf.g,(t)},
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which is a stopping time, confer Lemma 3.4. In general, Py (7 # 7) > 0, but nevertheless

Di<TESp <T

still holds true. This can be seen as follows. If 7 = ¢; for some ¢ = 1,...,n, then obviously
7=r1.If 7 =0, then p;., > ¢; forallt = 1,...,n and therefore 7 = ¢;. Hence, p; > 7 = 0 for
alli=1,...,nandalsop; > 7 =cy foralli =1,...,n.

With Lemma 3.6 we immediately get for all ¥ € © that

FDRy(n) = Ey {}%}

1

=n+ﬂn01—@Emﬂﬂ+wmﬁvﬁﬂ]>

:nj@xu—ammwﬂ+aMWD-

Hence, (3.4) and the equivalence of (3.5) and (3.6) follow immediately. O

3.3 Differences between ENFR and FDR

The FDR and the ENFR seem to be closely linked for conventional multiple test procedures under
independence. But there are situations where a procedure controls the ENFR linearly and the FDR
gets inflated. It is also possible that the FDR is controlled at a fixed level and the ENFR gets
inflated.

Let v = o/(1 — «). Suppose we reject all null hypotheses H; with p; < ~/n, then the ENFR
equals yng/n under BIA, but under the global null hypothesis (all null hypotheses are true) and
BIA we obtain from equation (3.11) in [19] that FDR — 1 — exp(—~) > « for n — oo. Note that
1 —exp(—7) <1

A more serious issue is the fact that controlling the FDR under dependence may lead to an un-
desirable inflation of the ENFR. In order to illustrate this, we first consider an extreme example.
Suppose for a moment that all null hypotheses are true and all p-values are totally dependent, that
is, p1 = - -+ = pn. Then a multiple test which rejects all H; if p; < « controls the FWER at level
a while the ENFR equaling an can become very large. In order to ensure ENFR control at level
~ in this case, we have to replace the threshold « by v/n.

More realistic and important examples are many-one comparisons and pairwise comparisons.
Many-one comparison means that one compares many different groups with one control group.
For instance, let u;, 7 = 0, ..., n, be the mean effect of some treatment in group G;. Testing the

n null hypotheses H; : po = p4, @ = 0,...,n, is the so-called many-one problem. Finner and
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Distr. Z; Distr. Zy Test statistic types
NO,) | N@©,D P22 — p'2Z0; |pM 2 Z; — p'* Z;
(022 — p**24)/S; |p*2 Zi — p'* 20|/ S5 Zi) S5 | Zi] | S
Exp(1) Exp(1) Zi — Z0; | Zi — Zol; (Zi — Zo) /5%
X5 X5 log(Z;) —log(Zo)
Xo X (v>p) |log(Z;) —log(Zo) = 9| (9 € R)

Table 3.1: Many-One: (Zy)ren, Zo, and S are independent random variables, with vS? ~ x2, v € N, and
p=1—p € (0,1). Let T; be a sequence of test statistics of a fixed type with the corresponding distributions
for Z;. Then there exists a sequence of d,, € R such that FWER = P(max;=1, ., 1; > d,) — « but
E(Va) =E(XC;-, Ijr,>a,}) — oo under the global null hypothesis.

.....

Roters [17] showed the existence of multiple test procedures ¢,, for the many-one problem such
that FWERy () — o but ENFRy(¢p,) — oo as n — oo. For instance, let X;; ~ N(p;,02),
j=1,....,my i =0,...,n, and vS?/0? ~ x?2 be independently distributed. A common test

statistic 7; for testing H; is

/ _mimo
T, = g X — — g X
! m; +mg \ m; gl 07 /8

1 1/2
= U=-p)"P—=>_ Xy - § X
( Pz) \/”Tijzl ij 0j S,
where p; = m;/(m;+mo). lfm; =...=myand up = 1 = ... = pp, then p; = ... = p, and

(Ti,...,T,) has the same distribution as (((1 — p1)¥/?2; — ,01/2Z0)/§, (= p)V22, -
1/2Z0)/S) where Z; ~ N(0,1),i=0,...,n and vS ~ x?2 are independently distributed. This
corresponds to the first row and third type of test statistics in Table 3.1. This table summarizes
constellations for the many-one problem such that there exists multiple test procedures ¢, with
FWERy () — a and ENFRy(¢,,) — 00 as ng — oo, for details cf. [17].
Pairwise comparison means that one compares every group with every other group. Abusing the
notation introduced for the many-one comparison, the following (g) null hypotheses H;; : p; =
pi, 1 < @ < j < nis a classical set of null hypotheses occurring in pairwise comparisons.
Table 3.2 summarizes constellations for the pairwise comparison such that there exists multiple
test procedures ¢, with FWERy(yp,) — « and ENFRy(p,) — oo as ng — oo, for details cf.
[17].
We briefly investigate the ENFR inflation of an FDR controlling procedure in the classical many-
one multiple testing problem, that is, multiple comparisons with a control. Such models were
extensively studied in [20] with respect to the asymptotic behavior of the FDR and the "expected
error rate EER = ENFR /n" for the linear step-up (LSU) procedure under the global null hy-
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Distr. Z; Test statistic types
N(0,1) 12:)2Y2 — 7,212, | Z:/ (2V/28S) — 2;/(2/28)]
Exp(l) |Zi — Z;);12:/ S* - Z;/ 57|
Xo |log(Z;) — log(Z;)]
Cauchy(0, 1) Z:)2 — Z;)2|

Table 3.2: Pairwise comparison: (Zj)xen and S are independent random variables, with v.S? ~ X2,
v € N. Let T;; be a sequence of test statistics of a fixed type with the corresponding distributions for

Z;. Then there exists a sequence of d, € R such that FWER = P(maxi<;<;j<n Ti; > dn) — « but

E(Zl§i<j§n H{Tij>dn}) — 0.

pothesis. This procedure is a SU test induced by the rejection curve r(t) = t/a. In order
to illustrate the impact of dependence on the ENFR in this case, we consider a small simula-
tion study. Let X; ~ N(0,1), i € Ny, be a sequence of independent random variables and
pi=1—-o(/1T-pX;— \/EXO))]I{Hi is true} for i € N. Since p; equals zero if H; is false, the
p-values corresponding to the true null hypotheses are independent of the p-values corresponding
to the false null hypotheses. It is well known that an LSU procedure controls the FDR under this
type of dependence (PRDS: positive regression dependence on subsets; cf. [3]) at a fixed level for
all p € [0, 1].

p
— 0 — 03 — 06 — 09 095 — 1

10
|

ENFR

E=np/n

Figure 3.1: The ENFR as a function of ¢ for different (equi-)correlation coefficients
p for the LSU procedure with o./(1 — «) = v = 0.1. The dotted line is the ENFR
bounding function g(n1) = (ny + 1+ 7).
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In Section 4.1 we show that this procedure controls the ENFR under DU configurations with
bounding function g(n;) = (n; + 1 + ). But as Figure 3.1 illustrates for n = 100, control of
the ENFR at level v = 0.1 is typically far from being achieved under dependence. Other values

of n lead to similar pictures.

3.4 Summary

Assuming weak dependence and converging crossing-points, an asymptotic relation between the
ENFR and the FDR has been established. For fixed n, we proved that control of the ENFR com-
bined with weak control of the FWER implies control of the FDR, also under dependence, if the
FDR increases by setting the p-values corresponding to false null hypotheses to zero. Moreover,
for fixed n, we showed for a SU test induced by the $-adjusted AORC under BIA that control
of the FDR is equivalent to control of the ENFR. Nevertheless, under dependence it is possible
that a procedure controls the FWER but the ENFR tends to infinity. We pointed out that this may
occur in the many-one problem and for pairwise comparisons for very common distributions like

the standard normal distribution.
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Chapter 4

ENFR of some common multiple test

procedures

4.1 ENFR of linear step-up and linear step-down procedures

Benjamini and Hochberg [1] proved in 1995 that a SU test induced by r(¢t) = t/«, sometimes
called the Simes test, controls the FDR under BIA at level ang/n. Two years later, it was proven
that the Simes test controls the FWER under a type of positive dependence and the assumption
that all null hypotheses are true, cf. [48]. In 2001, Benjamini and Yekutieli [3] showed that the
procedure also controls the FDR under some specific dependence structure. Nowadays, this is
a standard procedure and often called the BH-procedure. It is well investigated as an FDR con-
trolling procedure. In this section we will further investigate this procedure with respect to the
ENFR. Some very useful properties for the BH-procedure with respect to the ENFR are already
known, cf. [18] and [19]. The original BH-procedure uses ¢; = ai/n as critical values in a SU
manner. Since ¢; depends linearly on ¢, we call the corresponding SD/SU test the linear SD/SU
test, LSD/LSU test for short. Further in this section, the number of false rejections for LSD and
LSU will be denoted by V;, sp and V,, siy. The results in this section will always refer to both

LSD and LSU, but since the proofs are very similar, usually only one proof will be presented.

Remark 4.1
We assume BIA and therefore, w.l.0.g., by Lemma 2.4 we state all theorems with respect to DU
configurations. Although there are different DU configurations, we simplify the notation by sup-

pressing the subscript that indicates DU configurations, thatis P = P, ,, and E = E,;, .

The following theorem is very helpful in finding the asymptotic distribution and expectation of

Vn,SD and Vn,SU'
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Theorem 4.2 (cf. Finner and Roters [18], p. 990 and 991)
Under DU(n,ng) and o € (0,1), it holds that

1 i1 1—1 11 no—i
P (Vosp = i) = <n°> mrl, <n1 s a> <1 = Woz) L@

1 n n n

N -\ no—i—1
P(Vasu =1i)=(1-0a) <r;0> <n1n+104> <1 - n1n+ ZOZ> ;

EVi.sp = (n1 + 1) il <” - ”1>Z‘! (%)Z

i=1

n—ni i
EV, su = Z (1 + 1) (n —Z m)i! (%) ,

i=1

where 0 < 1 < ng.

Since the formulas of Theorem 4.2 are stated in the publication without a proof we shortly elu-
cidate how these formulas can be obtained. The main tools are Lemma 4.1 for the SD case and
Lemma 4.2 for the SU case from [19]. These Lemmas give explicit formulas for the distribu-
tion/expectation of V;, gp and V,, sy under the global null hypothesis, that is all p-values are iid
UJ0, 1] distributed, and for critical values of the form ¢,—;+1 = § — (i — 1)7, with constants
B, € [0,1] such that 3 > (n — 1)7. Note, under DU(n, ny) we have

{plzn < CL’/TL, <o s Pnin < nla/n;pnl—‘rl:n < (nl + 1)0[/71, vy P < a}

={p1, < (i +)a/n,...,pne:1, < a,
where p;.7, denotes the ith order statistic of {p; };c1,. Hence, we can calculate under DU(ng, ng)
with critical values ¢py—i+1 = o — (i — 1)a/n, i = 1,...,ng. Note, ¢1 = (n1 + 1)a/n. Setting
B = aand 7 = o/n we immediately get from Lemma 4.1. in [19] that
no
1

<n0)n1+1 <n1+i+1 )’1< ny+i+1 )”Oi
= @ « l—-——«a .
1 n n n

In the same way, also with 5 = « and 7 = «/n, the other formulas of Theorem 4.2 are obtained.

P(Visp = i) = < ) (6 — (n0 — 1)7)(B — (no — i — )r)~ (1 = B+ (n— i — 1)r)™o—

Remark 4.3

Equation (4.1) was already obtained by Dempster, cf. [12] or Proposition 1, p. 344 in [54]. Con-
sidering DU(ng, ng) and choosing a = (ny + 1)a/n and b = «/n in Proposition 1, p. 344 from
[54] directly yields (4.1).

The decisive property for finding the asymptotic distribution and expectation of V;, sp and V;, st/
is the uniform integrability (w.i.) of {V,” ¢ /) }n>n, and {V,” o, }>n, forall p > 0, as stated in the

following theorem.
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Lemma 4.4
Under DU configurations with n fixed and o € (0,1), the sequences {V ¢p}n>n, and
{VrﬁSU}an are u.i. for all p > 0, that is, for every € > 0 there exists a ¢ > 0 such that

sup / VY spdP < e,
nzn1 J{|V) gpl>c}

sup / Vs,SUd]P) <e.
n>ni {\VT'ZSU|>C}

In order to proof the uniform integrability we will apply the following auxiliary lemma.

Lemma 4.5
It holds that

VkeNg:3C,>0:VneN,pel0,1]:E(Z,, — np)k < Ckmax{l,(np)Lk/QJ},
where Zy, ,, ~ B(n,p).

Remark 4.6

We want to distress that the inequality in Lemma 4.5 holds uniformly in p. This fact is essential
for the argumentation in the proof of Lemma 4.4 and will also be used in Section 4.3.

A similar inequality can be easily obtained by normal approximation, cf. Corollary 9.3.1. from

[8], but the inequality lacks to hold uniformly in p.

We are going to present two proofs for Lemma 4.5. The first proof is short and bases upon a

recursive formula for binomial moments. The second proof is somewhat longer but self-contained.

First proof of Lemma 4.5. We will proof the result by complete induction. Obviously, the inequal-
ity holds for K = 0 and £ = 1. Assume now that the assertion is true for all ¢ < k, where k£ > 2.
Following the notation of [36], let ;i = E (Z,, ), — np)k and ¢ = 1 — p. Then (3.13) from [36], p.
108, states that

k—1 k k—1 k
fk1 =npq Y ( -)Nj -py ( ->Mj+1-
j=0 =0

Hence, for suitable M7, M> > 0 we obtain that

k—1 L k—1 k
el <3 (ol + 3 (5w
j=0 J=0

k—1 k-1
< npMy Y max{L, (np)/2} + My > max{1, (np) TD/2)}
=0 §=0

< Oy1 max{1, (np) F=D/2IH1Y (say)

= Cky1 max{1, (np) L(k+1)/2] 1.
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This establishes the formula. O

Second proof of Lemma 4.5. It is well known that the moment generating function for Z,, , — np
is M(t) = (1 —p+ pexp(t))” exp(—tnp). Now

d® M (t)

| =MY0) =E(Zy, —np)*

t=0

holds. By defining n = np(1 — p), g(t) = 1 — p + pexp(t), and h(t) = (exp(t) — 1)/g(t), we
see that M (t) = g"(t) exp(—tnp) and

MW (t) = ng" " (t)pele ™™ — g™ (t)e™"Pnp

— Mty (g(; -1)

-t (S22

We prove the result by complete induction. Obviously, the inequality holds for k = 0 and k£ = 1.
Assume now that the assertion is true for all 7 < k, where k£ > 2. Additionally, we also assume for
now that 2 (0) < L forall 1 < i < k (this will be shown later). Setting Cy = 1, due to 2(0) =0

we get

k—1 k
=7 <z M@ (O)h(k_z)(O)
=0
k .
< _ . li/2]
<np(l—p)Lk max (Z>C max{1, (np)"*/*}

< Cjoyq max{1, (np)LE=D/2H1Y (say)
= Cjp1 max{1, (np)lF+1/21Y

It remains to show that h(i)(O) < Lforall 1 < ¢ < k. First note, suppressing t, that for every

differentiable function f and m € N we have

<f> _ T mfg 4.2)

gm gm gm+1 :
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Setting f(t) = exp(t) — 1, we see that b)) = (f/g)(®) = Z;fl f;/g’ for appropriate functions
fi,- -+, fus1. Because g(0) = 1, we get h()(0) = Z;J;ll fj(0). By (4.2), any f; can be written as
fj = Pj(fvf(l)v af(])agvg(l)v 7g(j))7
where P; denotes a polynomial in several variables. In our case g(t) = 1 —p+pexp(t), ¥ (t) =
pexp(t), f(t) = exp(t) — 1, and fU)(t) = exp(t) for j € N. Since ¢(0), 9)(0), £(0), f9(0) €
[0,1] for all p € [0, 1], and P; is a polynomial forall j = 1,..., k+1, we see that there must exist
aLE]Rsuchthath(i)(O)§Lf0r1§i§k:. O

Now, we are able to prove the uniform integrability of V;’ gp and Vé) gy for p > 0.

Proof of Lemma 4.4. Let € > 0 and p > 0 be arbitrary. For the step-down case let p; = a(ny +
i+1)/(no+n1) with 1 <i <ngand Z; ~ B(ng,p;). Then it holds for m = [p] that

. i—1 . no—1u
m - miat 1 (no) (mtitl NTRO mdid ]
EV.splym oy = > - a<2>< ——a 1 ——a

c<im<nit
™ ni + 1 no . .
=2 5 (+i+1)(i>p;(l_pi)no Z
c<im<ngt 1
< Y i"P(Zi=i).
c<im<ngt

For the step-up case let p; = a(ny +1)/(ng + n1) with 1 <14 < ngy and Z; ~ B(ng, p;)- Then it
holds that

m m no\ (ni+i \' ny+i \"™ 1
EV"’SUH{‘V;TSU|>C}: Z ! (1_a)<’i>< n a> (1_ n oz>

c<im<ngt

§ / Zm<n0> <n1+ia>l <1_ n1+ia>n0_l
;! 1 n n
c<im<ngt

< ¥ imp(z-:i).

c<im<ngt

IN

Obviously, p; < p; = a(n1 + i+ 1)/n < a(1 4+ (n1 + 1))i/n = Ci/n holds. Thus, by Markov
inequality and Lemma 4.5 for p} € {p;,pi}, Z; ~ B(no,p}), and k € N we get

imP(ZF =1i) <i"P(|Z] — nop;| > i — nop;)

< imE(Z — ngp;‘)zk

(i — nopi)™"

imCyr, max{1, (Ci)*}
Tk (1 g /L) 0

n
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Note, the Markov inequality is only applicable if ¢ — nop; > 0. This holds true for fixed n if 7 is
large enough because ¢ — nop; > i — a(n; +i+1) = i(1 — ) — a(ng + 1). Hence, ¢ must be at
least (a(n1+1)/(1 — «))™, which is a constant because n1, m, and « are fixed. Further note that
the constant C'5;, does not depend on ¢ or p; since the inequality in Lemma 4.5 holds uniformly in

p. Choosing k = m + 2 yields

sup Z i"P(Z;7 =1i) < K sup Z 1/i? <,

> - > .
n=mni nyt>im>c NZNL imsc

where K > 0. Since p < m, we get uniform integrability of {Vnp SU} and {VTf g D} . O
’ n ’ n

Because {V}, 5 D}n>n1 and {ansU}n>n1 are uniformly integrable we also get the following result

on tightness.

Corollary 4.7
Under DU(n,ng) for ny fixed, the sequences of probability measures {IP)V"vSD }n>n1 and
{PVr.sul, 5, are tight.
Proof: By Lemma 4.4, for every ¢ > 0 we can choose a ¢ > 0 such that
PYn5D (No\[0, c]) = / dP < / V.spdP < e
{IVn,sD[>c} {IVn,spl>c}
holds for all n > n;. The tightness of {IP’V"vS v }n>m is established in the same way. ]

Calculating the limits of the probabilities in Theorem 4.2 will give us a possible limit distribution
for Vi, sp (Vi,sv). These limit distributions appearing in (4.3) and (4.4) will be denoted by
LSD(n1, o) and LSU(n1, cv), respectively. The uniform integrability of V;, sp (V,, s7) or to be
more precise the tightness of the corresponding distribution will ensure that the calculated limits

are actually probability distributions.

Theorem 4.8 (Asymptotic distribution)
Under DU(n, ng) with fixed n1 = n — no, the limiting probability mass function (pmf) of V,, sp is
given by

nli_{I;OP(Vn,SD =1i) =qsp(i) = a(nl +1)((ny +i+ 1)a)i_1 exp(—(n1+i+1)a) (4.3)

il
and the limiting pmf of V,, su is given by

(1 + 1)) exp(—(n1 + i)a). (4.4)

lim P (Vo su =) = qsu(i) = —;
n—00 1.
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Proof: Obviously, by (") /n’ = (1/i!) [Tj_(n — n1 — k)/n we have

1 . 1 i—1 . 1 no—1
P(Vsp = i) = <n.o>n1+ N <n1+z+ a) (1_n1+z+a>

1 n n n
+i+l \7 il
_ o . i (1-"0a) n—ny—k
=5 (m1+1)((n1 +i+1)a) | _ mikil )\t n
( n a) k=0

- %(nl F1)((n1 + i+ D) Lexp(—(n1 +i+ 1))

= qsp(i)

. g . no—i—1
P(Vysy =) = (1 - a) <”2°) ("j%) (1 _ "1; Za)

and

S O et = PP

= il ((nl + Z)OZ) (1 B anHa)nl'HH_l kl;](:) n
l-« . i .

— —— (1 +9)a) exp(—(n1 +1)a)

= qsu (i)

At the moment it is not clear whether gsp and gsy are probability measures. By Corollary 4.7
and Prohorov’s Theorem [6], we know that {IP’V”’SD}WM contains a subsequence {]P’V"j’SD} .
= J
converging to a probability measure. But we also know that
lim P (V,,, sp =) = lim P (Vy.sp = i) = qsp(i)
J—00 n—oo
for all 7 € Ny. Thus, the limiting probability measure must be gsp. In the same way, we conclude

that ggy is a probability measure. O

Remark 4.9
The distribution LSD(n1, ) belongs to the class of so-called generalized Poisson distributions. In

[10], Consul defined for A; > 0 and Ay € [0, 1) the generalized Poisson distribution by
p(z| A1, A2) = AL\ + 2Xp)* tem Mt @A) g g e N,

For Ay = (n1 + 1)ar and A2 = « we obtain p(z|A\1, A\2) = gsp(z). According to [9] the first
moment and the variance of LSD(n,«) are A\ /(1 — A2) = (n1 + 1)a/(1 — «) and (n1 +
Da/(1 - a).

We want to remark that Consul et al. originally introduced the generalized Poisson distribution in

[9] and allowed A2 € (—1,1). In the next remark we will see that this assumption is to liberal.
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Remark 4.10

Let L be implicitly defined by Le!=™* = —1. We have L ~ —0.27. Further, let S(k, A1, \2) =
2% o (A1 + 2Ag) TR Lem(MiFmA2) /1 We now show that S(k, A1, A2) < oo for (k, A1, \2) €
{0} x R\{0} x (L,1) UN x R x (L, 1). Suppose k& € N and denote by s, the zth summand of
S(k, A1, A2). We have

Sp+1 M+ (z+ 1))\2)$+k€—(>\1+(m+1)>\2)/(:C +1)!

Sz (A1 + xAg)zth—le=(Aitada) /o]

()\1 + x Ao + /\2)z+k (/\1 + .T)\Q)e_AQ

(A1 + zAg)*th r+1
(14 Ao =tk e~ ()\1 + x)\g)
AL+ x Ao r+1
— 61_>\2 /\2.

Since |e!™*2Xy| < 1 for all Ay € (L, 1), the ratio test yields that S(k, A1, o) = 322 s, is
absolute convergent. For k& = 0 we conduct the same calculation in order to show that )7, s,
is absolute convergent. Note, that sg = A\ e~ € R. Thus, S(0, A1, \2) < oo for A\; € R\{0}
and Ay € (L,1). Furthermore, by the ratio test we get that y_>° | s, is divergent if Ay € R\[L, 1].
For \y € {L, 1} nothing is known. The fact that it is possible to consider \y € (L, 1) instead of
A2 € [0,1), as Consul did in [10], is not new. Tuenter showed this in [67] for &k = 0, 1.

Extending the definition of the generalized Poisson distribution to

1

A A +k—1_—(A1+zA2) ! N
75(]{7)\17/\2)( 1+ 1)) e Jz!,  x € Ny,

p(lk, A1, Ag) =

for (k, A1, A2) € {0} xR\{0} x (L, 1) UNXxR x (L, 1) we get gsp(z) = p(z|0, (n1+ 1), @) and
gsu(z) = p(x|l,ni1, «). By this identification it is possible to apply the techniques developed
in [9] in order to calculate the first moment and the variance of LSU(n;, ). Nevertheless, in
the proof of Theorem 4.11 we show a different technique to (re)obtain the first two (centered)
moments of LSD(n, &) and LSU(ny, «).

We want to note that both techniques, the one developed by Consul et al. and the one presented
in the proof of Theorem 4.11 can be used to calculate arbitrary moments of LSD(nq, «) and
LSU(n1, «). Both techniques have the disadvantage that the kth moment can only be calculated
if all previous moments are known. The author prefers neither of the two techniques because both

involve tedious calculations.

The uniform integrability of V", (V. o,;) will also ensure that the moments of V" o, (V¥ )

will converge to the moments of the corresponding limit distribution.
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Theorem 4.11 (Asymptotic expectation)
Let Vgp ~ LSD(ny, ) and Vsy ~ LSU(ny, o). Under DU(n,ng) for ny fixed and o € (0,1) it
holds for all p > 0 that

lim EV/ ), = EVEp,

n—~oo

lim BV 5, = BV,

In particular, it holds for the first moments

(%

EV,.sp T EVsp = (n1 + 1) T

EVmSUTEVSU:(nlﬁ-l%— @ > a ,
l-a/)1l—-«

and the variance

1
lim VarV,, sp = VarVsp = M,
n—o0 ’ (1 — a)3

. a(ng +1) —a?(n; — 1 ny + 1)a 2a°
i Varti s = VarVsy = O < QR

Proof: Since V,, sp converges in distribution to Vsp and Lemma 4.4 (uniform integrability)
holds, we have by Theorem 5.4, p. 32 in [6], lim,, IEVTfSD = EVSPD for p > 0. The same
arguments yield lim,, o, EV” su = IEVSPU for p > 0. For the first moments we conclude by the

monotone convergence theorem that

EVi.sp = (n1 + 1) il (” ) ”1>i! (%)

=1

i—1
n—ny—k|
= (’I’Ll + 1) Z [H nll alﬂ{ign_nl}

ieN Lk=0
T (n1+1) Z o
€N
«

= 1
(1 + )1—a
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and

n—mni i
EVisy = Y (n1 +1) (" § ”1>z’! (%)

i=1
=> (n1+1)
ieN

1 Z(nl + i)ai

ieN

i—1

n—ni—k| ;
II— | o Tiznny
k=0

[0 + [0
n
"T—a " (1-a)?

le' n 1
= ny+ ——
l—a\ ' "1-a)’

where the third equality follows from the last equality in [63]. We will now calculate the variance

and start with the step-down case. For ) = exp(—(n1+1)a), ¢;(x) = (n1+1)(ng+i+1)" 12 /il
and g(z) = xexp(—z) we get

asp(i) = 5 (n1 +1)((m +i + 1)) exp(—(n1 +i+ 1)a)
=exp(—(n1 + 1)a) nl;!_ 1 (n1+i+ 1)1‘71 (v exp(—a))i

= nci(g(a)).

Since Y2, ¢i(g(e)) = 1 — ¢gsp(0) for all @ € (0, 1), the radius of convergence of h(z) =
>, ci(x) is at least g(1) = exp(—1). Due to zc}(z) = ic;(x)and 22c}(x) = i(i — 1)c;(x) we
get

nh(g(a)) =1—qsp(0) =1 —exp(—(n1 + 1)a),

ng(@h(g(a)) = 3 inei(g(a) = EVsp = (m + 1) 7=,
i=1
ng* ()" (9(a)) = Y (i = Dnei(g(@)) = E[Vsp(Vsp — 1))
1=1

Controlling the Number of False Rejections in Multiple Hypotheses Testing, Marsel Scheer



48 4.1. ENFR OF LINEAR STEP-UP AND LINEAR STEP-DOWN PROCEDURES

By the chainrule (ho g)"” = (k' o g') = (h" 0 g) - (¢')? + (k' o g) - g", we see that

EVZp — EVsp = ng?(a)h" (g(e))

& ((m+Da _ 1y _ _(mutDa oy
ey e ) T @)
(¢9'(a))?

ni+1)e % (a—2
(nq + 1)%elm+Do _ (1(7;)67)(,11#)%2&

67204(1 _ Oé)2

— a2€—(n1+3)a

) (nl + 1)2 _ (n1+1)(a—2)

W =)
a (1—-a)?

_ 2t 1)?(1—a) = (m +1)(a—2)
B (1—a)?

and therefore
VarVsp = EVZ, — (EVsp)?

=ng*(a)h"(9(c)) + EVsp — (EVsp)?

n 21 —a)—(n o — o a \?
Sl e 0D gy 0 ()
_ (mta
C (1—a)’

Calculating the variance for the step-up case follows the same scheme. The only difference is that

now 1 = (1 — a) exp(—nja) and ¢;(z) = (nq + i)'z /i!. Again, we get
nh(g(a)) =1—qsu(0) =1— (1 — a) exp(—nia),

)

(07

ng(a)h'(g(a)) = EVsy = (n1 +

l—a’l—a’

ng*(a)h"(g(a)) = E[Vsy (Vsy — 1)].

As before, we conclude from the chain rule

(h o g)"(e) — W (g(a))g"(e)
(¢'(e))?

= ng*(a (e /(1= ) — 1) — SRR ()
(9'(a))?
(1—a)

EVZ; — EVsy = ng°(a)
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and
VarVsy = EVZ, — (EVsy)?
= ng*(a)h"(g(@)) + EVsy — (EVsy)?
22l -—a)+nd—a)(l—a)+4—a
el rmE )i —a) taa) gy
(1-a)

ani+1) —a?(ng — 1)

a (I —a) '
This is our claim. |
Remark 4.12

Note, that the techniques applied in the proof of Theorem 4.11 can be used to calculate EVTf D
(EV,, g7) for arbitrary p € N.

With the exact and explicit formulas for EV,, sp (EV;, st7) given in Theorem 4.2 we are able to

derive some results for the case where n; — oo and ng/n — ( including the case { = 1.

Corollary 4.13
Under DU(n,ny) for ay, — a € (0, 1) and no/n — ¢ € [0, 1] it holds for ny — oo that
: : Ca
lim EV, sp/n1 = lim EV, sy/n1 =
n—00 ' n—00 ' 1- CO‘
and if lim,_,.on1 = N1 < 00, then
EVpsp — (N1 + 1)1 o’
a a
EVhsu — | N1+ 1+ ;
l-a/)1l-«

where V,, sp (Vy,.su) corresponds to a SD (SU) test induced by 1,(t) = t/ou,.

Proof: Let h,(i) = afz}l{ign_n ! HZ;_:IO(” —n1 —k)/n and p denote the counting measure. Then,

as in the proof of Theorem 4.11, we have

i—1

, n—ny—k ) )

BV, s = (m+1) 2 b Tscng [] =2 = (1) [ ha(i(a)
ieN k=0 N

Suppose ng is bounded, then EV;, gp/n1 — 0 which equals (ao/(1 — (o) since ( = 0. Now we

assume that ng is not bounded. There exists an € > 0 and an NV € N such that o, < oo+ € < 1 for

n > N. Obviously, hy,(i) < (a+e€)" forn > N, [(a+€)'u(di) < oo, and hy, (i) — (' for all

1 € N. Hence, the dominated convergence theorem yields

Jim BV, sp/ms =l (14 1/m) [ (i) = Jim (14 1/m) [ (CaYp(ai)

which is the assertion. For EV,, s the argumentation is similar and omitted here. [l
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Remark 4.14
Of course, if N{ = liminf, ..o n1 < limsup,_,, n1 < oo = N{, then liminf, . EV;, sp =

(N} + 1)1 and limsup,, . EV;, sp = (N} + 1) 1% A similar assertion is true for EV}, s

In Corollary 4.13 we have calculated the asymptotic first moment of V,, sp (V;,.sv) for ¢ € [0, 1].
We explicitly used the structure of EV}, sp (EV,, si7). If ¢ < 1, the asymptotic first moments can
be calculated more easily as elucidated in the next remark. Further, this simple technique may be

applied to other rejection curves beside Simes line ¢ /.

Remark 4.15
Under DU(n, ng) with ng/n — ¢ € [0,1) and a € (0,1), we have

V. V,
lim EYSD _ gy gYusU __C@
n—oo Mg n—oo Mg 1—Ca

Obviously, t¢ /o =1 — ¢ + (t¢ is equivalent to ¢ = (1 — {)a/(1 — (x). Hence, the assertion is

a direct consequence of Theorem 2.10.

If ¢ < 1 the asymptotic distribution of a LSU procedure can easily be obtained from Corollary
2.21. After the following corollary we will heuristically compare the asymptotic variances we

obtained for n; fixed and for ¢ < 1.

Corollary 4.16
Under DU(n, ng) for ng/n = ¢ + o(n="2) with ¢ € (0,1) it holds that

Vit (Vasufm = %) =V @3

in distribution, where V.~ N (0, 02) with

o2 = ¢a(l—a)
(1= =)™

Proof: Following Remark 2.22 we have to determine 7* such that 7(7*) = 1 —(+{7*, where r is
the rejection curve of the LSU test, i.e. r(f) = ¢/a. Obviously, we have 7" = (1 — () /(1 — ()
and hence the asymptotic normality as stated in (4.5) follows from Remark 2.22. Note that in
Remark 2.22 V},(¢y,) /n was considered but we calculate the asymptotic distribution for V;, st /n;.

It remains to calculate the variance of V. Since the first derivative r'(7*) equals 1/c, we get from
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Remark 2.22 that
Ve Jim Vo /mi] = ¢ E a Var lim /v
1 ()% (1 —1)
1-0* () —¢)?
1 1/0‘2C(1 Ca = o
TU-07 (ta-0p
1 C(l Qa 1 C
ST -G
__ Ga(l-0)
1= 00 = ¢t
This proves the theorem. U
Remark 4.17

We have calculated the variance of the ENFR of the LSU test for the two cases nq fixed and
no/n — ¢ € (0,1). Comparing heuristically these two variances for fixed n; and “large” n shows

that the variances are similar. Theorem 4.11 yields

Var[\/nV, /mi] = n/niVar(Vy,)

a(ng +1) —a?(ny — 1)

~n/nj 1= o)
. a—a?
T ng/n(l—a)t
 a(l-aw)
~ng/n(l—a)t
Corollary 4.16 provides us
: _ Ga(l-0)
Var[nan;O VnVy,/ni| = A= O =ca)i”

Note that under the assumption of Theorem 4.11 that n; is fixed, one can consider 1 — ( ~ 0 =

ni/nand 1 —a~1—a.

4.2 ENFR and asymptotically optimal rejection curve (AORC)

Finner et al. [21] developed the AORC to control the FDR at exact level « € (0,1). A large class
of SUD tests, but no SU test, induced by f,(t) = t/[t(1 — ) + «] yields that the FDR under DU
configurations converges to « if ng/n — ¢ > «. Thus, different methods have been proposed to

achieve FDR control for finite n. One method is to consider f, g, = (1+3,/n) fo, Where 3, > 0.
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This new rejection curve is called the 3, -adjusted AORC. Choosing 3,, = 1 yields control of the
FDR for finite n under BIA if a SD test induced by the 3,-adjusted AORC is used, see [24]. In
this chapter, we will see that this procedure also controls the ENFR at level o/(1 — o). Again, we
assume BIA and suppress the subscript that indicates a DU configuration, that is P = P, ,,, and
E = E,, », The critical values of the 3,,-adjusted AORC with 3,, = 1 are denoted by

1e
n+1—1i(l—a)

ci = , t=1,...,n.

Recall, we set ¢, 41 = 1.

Theorem 4.18
The SD test induced by the (Gy,-adjusted AORC with 3, = 1 fulfills

« «o
< 1
1_@_(7”&1-1—)

EV, < ((1 —P (Vn = no))(m + 1) — nglP (Vn = no)) 1~ 4

under DU(n,ng) with o € (0, 1).

Proof: The proof of the theorem is longish but the single steps are very elementary and the
techniques are similar to those in [24]. We abuse the notation slightly by setting ¢,, = 0
in order to simplify the formulas. The case ng = 0 is trivial, since V;, = 0 almost surely
in this case. Let pi,...,pyn, denote the p-values corresponding to true null hypotheses and
on = (é1,...,0¢n) the SD test induced by the 3,-adjusted AORC. For ny = 1, we note that
EV, =P (V,, = ng) = ¢, = na/(1 4+ na) and

«
(1 =P (Vs =n0))(n1 +1) = noP (Vo = o)l ——
«
=((1 —cn)n—cn)1 —
_( n no ) «
M4 na 14na’l—a
= cp-
Thus, we assume ng > 1 for the rest of the proof.
It holds that
no no
EVy = noEn, =no » P (dny =LV =k) =10 P(pn, <yt Vo = k). (46)
k=1 k=1

Controlling the Number of False Rejections in Multiple Hypotheses Testing, Marsel Scheer



CHAPTER 4. ENFR OF SOME COMMON MULTIPLE TEST PROCEDURES

53

Further we have, using ¢, 11 = 1,

o

ZP (pno < Cpytks Vo = k)

k=1
no
< ]P)(pno < Cni4+k+1, Vn = k)
k=1
no no—1
=) Pn < cnythi1, Vo 2 k) — Z P(Pno < enytkt1, Vo = k+1)
k=1 k=1
ng—1 no—1
= Z P (pny < Cnytkr2, Vo 2 k+1) - Z P (pny < Cnytkt1, Vo 2 k+1)
k=0 k=1
no—1
=P (pno < nyv2, Vo 2 1) + Z P(Va =2 k+1, cnytkt1 < Png < Cnytht2)
k=1
no
=P (pny < cnyi2, Va2 1) + ZP(Vn >k, cnitk < Png < Cnytkit1)
k=2
no
= ]P)(pno < Cn1+1?Vn > 1) + ZP(VH > k, Cny+k < Png < C”1+k+1)
k=1
1o
= ZIPU/H >k, Cnyi+k < Png < Cn1+k+1)>
k=0

where the last equality is due to ¢,, = 0 and
{0 < Png < Cnl—l—l} N {V:n > 1} = {0 < Png < Cnl—l-l} N {Vn > 0} .

So we get from (4.6) the bound
no

EVn S nOZ]P)(Vn Z k) Cni+k < Pno S Cnﬁ—k:—i—l) .
k=0

“.7

We now take a closer look at the events appearing in (4.7). Let V! be defined by {V,! = k} if and

only if {pl:nofl < Cny+1y -+ -3 Phing—1 < Cny+ks Pk+1limg—1 > Cn1+k+1} forallk =1,...,m9—1

with ppong—1 = 1, and {V,! = 0} if and only if {p1.4y—1 > ¢pn,+1} - By definition, V! represents

the number of rejected true null hypotheses after discarding py,, but still using c1,...,cp—1 as

critical values. For k = 1,...,ng we have
WV > ky ek < Prg < Cnytkrt}
= {plino < Cni+1y -5 Pking < Cni+ks Cni+k < Png < Cnl+k+1}
= {plmo—l < Cni+1s -5 Pking—1 < Cnyi+k> Cni+k < Png < Cn1+k+1}

= {VT/L Z k’ Cni+k < Pno S Cn1+k‘+1} .

4.8)
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By (4.8) and noting that {V;, > 0} = {V,! > 0}, (4.7) can be reformulate as

0

EV, < nOZP (Vrlb > k, Cni+k < Png < Cn1+k+1) .
k=0

Since {V,} > k} and {¢p, 1% < Pny < Cny+k+1} are independent events, noting that ¢,, = 0 and

{V!" > ng} = 0, the sum can be further transformed to

no

Z]P) (V'/; Z k? Cni+k < Pnyg S Cn1+k+l)
k=0

7o

=Y P (Vi > k) (Cay b1 — Cnyih)

B
o

1
P (Vi > k) Coykrn — ZP Vi 2 k) oyt

S

0

k=0
no no
=3 P(Vp=k—1)cnyur— > P (Vi 2 k) cnyyn
k=1 k=1
no
=Y PV, =k—1)co s
k=1

Note that ¢, = ak(1 — ¢x)/(n — k + 1) entails

EV, <no» P(Vp=k—1)cnn

_ n1+k Cn1+k) I
noz — n1+k)+1 P(V)=k—1)

_anoz (n1 + k) P(V,;:k:—L Pro > Cnitk)

n— n1+l<:
no
(n1+k)
= ]PJ n:k_]-a n n ) 4.
anok:1n_(nl+k)+1 Vi Pno > Cni+k) (4.9)

where the second equality follows from independence of the events {V,! = k — 1} and {p,, >
Cny+k - and the last equality follows from a similar argumentation as for (4.8). Considering now

the probability in (4.9), we see that
P(Vi,=k—1, png > Cny+k) =P (Png > cny1klVo =k —1)P(V, =k —1)

_P(¢n0 :O|Vn:k_1)P(Vn:k_1)

:7”0_(k_1)19>(vn:k—1).
no

Controlling the Number of False Rejections in Multiple Hypotheses Testing, Marsel Scheer



CHAPTER 4. ENFR OF SOME COMMON MULTIPLE TEST PROCEDURES 55

n=25,v=0.05

‘_ min(no, (lll +1 ) Y) === [-adj. AORC(sD) = LSD

Figure 4.1: Comparison of the ENFR (exactly calculated) under DU configurations
for the LSD test and the SD test based on [3,,-adjusted AORC with 3,, = 1 forn = 25
and v = 0.05.

Altogether, we get that

no

(n1+ k)
]En< P n:k_lu n n
V—O‘”Ozkln—(n1+k)+1 W, Pao > Cna-tk)

no

(n1+ k) no—k+1
= P(V,=k—-1
anokzzzln—(nl—kk)+l no ( )

no
=a) (m+1+k=1P(V,=Fk-1)
k=1

=a((n +1)(1 =PV, =ngp)) +EV;, —noP (V,, = nog)) .

This is equivalent to

a

EV, < ((1—P(Vn:n0))(n1+1)—no]P’(Vn:no))l_a. 0

As Figure 4.1 illustrates, the ENFR of this SD procedure nearly perfectly fits the ENFR bounding
curve. But a SU test is preferred to a SD test because if p1., > ¢, the SD test would immediately
stop without rejecting any null hypothesis. Therefore, it is also interesting to study how (3, has to
be chosen for a SU test in order to achieve control of the ENFR for finite n.

Gontscharuk [26] studied the behavior of 3,, for finite control of the FDR. She showed under DU
configurations for SU tests and the optimal 3 that 3 — oo and 3} /n = o(1), cf. Lemma 3.24
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and 3.25 in [26]. A 3} is optimal for the FDR if the SU test induced by the (3;;-adjusted AORC is
less or equal than « for all 0 < ng < n and equal « for at least one ng. Theorem 3.2 together with
Theorem 4.22 below provides an alternative proof of 3} /n = o(1).

We say that 3 is optimal with respect to linear ENFR control if the SU test induced by the
B -adjusted AORC is less or equal than (n; + 1)a/(1 — «) for all 0 < ng < n and equal
(n1+ 1)a/(1 — «) for at least one ng. In contrast to the FDR, we will only obtain M* > 3% /n >
M, > 0 and not 3}, /n = o(1). Obviously, we also have 3 — oc.

Till the end of this section, if not stated otherwise, we denote by ENFR,, ,,, () the ENFR under
DU configurations of a SU test induced by the rejection curve r. Let f, g, denote the 3,,-adjusted
AORC.

Lemma 4.19
There exists a k > 0 such that ENFRy, o (fank) < (m1 + 1)a/(1 — a) for all ny,n € N with
ny < nand o € (0,1).

Proof: Lety = a/(1—a). Choosing ¥ = /v + 1/4—1/2yields (n1 +1+7)7 < (n1 + 1) for
all 0 < n1 < n. By virtue of Theorem 4.11, we conclude for the SU case that ENFR,, ,,, (s*) <
(n1 + 1), where s*(t) = t(1 + 7)/7. Setting & = /(1 + 7) we see that f, ,x(t) > t/a for
t € [0,1] is equivalent to fq ,%(1) > 1/é& which holds iff k£ > (1 — &)/a&. For such k we have
ENFRy, o (famk) < ENFR,, o (%) < (1 4 14+ 4)7 < (n1 + 1)7. O

Lemma 4.20
Let o, € (0,1) and 3, > O with o, — aand (3,,/n — 0. Then, liminf,,_,oc ENFR,, o (fan,8,) >
(n1 + 1)a/(1 — «) holds for fixed ny € Nand a € (0,1).

Proof: Let s,(t) = (1 + 3,/n)/c,. Since the derivative f/, 5 (0) equals (1 + 3,/n)/az, we
have s,,(t) > fa, 8. (t) fort > 0. By Corollary 4.13, we conclude

ENFRy, ng (fan,6,) 2 ENFRy 5o (sn) — (n1 + 14+ 79)y > (n1 + 1),
withy = a/(1 — ). O
We summarize Lemma 4.19 and 4.20 as the following theorem.

Theorem 4.21

Let o € (0,1). A SU test induced by the [3,,-adjusted AORC, the optimal 3}, with respect to linear
ENFR control fulfills 0 < M, < 3% /n < M* < oo forn > N and appropriate constants N, M.,
and M* possibly depending on .

Proof: This is a direct consequence of Lemma 4.19 and 4.20. ]

Changing the bounding function from (n; + 1)v to (ny + 1 + ~)y yields 3% /n — 0, where
y=a/(1-a)
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Theorem 4.22

Let o € (0,1), v = /(1 — «), and 3, > 0 such that ENFRy, ,_p+ (fap5) = (0] + 1+ 7)y
for some ny = nj(n) and ENFRy no(fap:) < (n1+ 1+ )y forall ny € {0,...,n}. Then
Be/n— 0.

Proof: Suppose /n — b > 0 and define n, = n — nj. In each case we will show that the
assumption b > 0 contradicts the assertion that ENFR,, ;,—ns(fa,6:) = (n] + 1 + )y for all
n € N.

Case 1: lim sup,,_,, ng < 0o:

Suppose lim sup,,_,, ng < oo, then limsup,,_, o ENFRy, 2 (fa,6:) < 00 = limy,oo(n] + 1+
7). Hence, we assume that ngj is not bounded in n.

Case 2: limsup,,_, . ng/n € [0,1), ng not bounded:

If lim sup,,_,o, n5/n = ¢* < 1 we can assume w.l.o.g. that n§/n — ¢*. If (* = 0, then as before
we get limy, oo ENFR;, s (fa, 5 ) /7 = 0 < 1 = limy, (2] + 1 + 7)7/n. Hence, we assume
that ¢* > 0.

By the Theorem of Glivenko-Cantelli and uniform convergence of fq g: to fu, we get

lim ENFR,, s+ (f, 5.)/7} = lim ENFRy ;s (fa)/7] = ‘

Jim A) Jim o (4.10)

where t¢+ is the unique point with fo p(te<) = 1 — ¢* + (*t¢+, cf. Theorem 2.10. Note that the
ENFR in (4.10) is the ENFR of the SU procedure induced by f,, 3; but the limit in (4.10) does not
change if we conduct a SD test instead of a SU test. For 2, = min(y(1 — ¢*)/¢*,1) we get by
the Theorem of Glivenko-Cantelli

¢ tg* = min(vy, 1E<*),

lim ENFRy, s (fa,0)/1] = 4.11)

n—00 1—(*

where ENFR,, ,,+ (fa,0) is the ENFR of a SD test induced by f, . Note, a SU test induced by f o
will always reject all null hypotheses. Since fo, = (1 +b) fa,0, We get tex < tg* and thus

lim ENFRn?ﬁS (fa B*)/HT < lim ENFRn,ﬁg(fa,O)/nT <7~
n n—oo

n—oo
by (4.10) and (4.11). Recall, (4.10) holds for the SU and SD case and (4.11) only for the SD case.
Case 3: limsup,, . ng/n = 1:
W.Lo.g. let nf;/n — 1. Denote by F) the ecdf of {p;}icz,. By the DKW inequality [54], p. 12
we have

P ( sup Fgg (t) —t> €n> < Cexp(—2niel) = C(1/ng)?, (4.12)
t€(0,1]

where €, = /log(n})/ng = o(1) and C' > 0. Obviously, we have Fr?g; (t) —t = (Fu(t) —
ni/n —tng/n)n/ng. Let Ap, = {sup;c(o1)(Fn(t) — ni/n —tng/n) < e;ni/n} and t, € (0,1)
the unique point such that f, g: (t,) = ni/n + (t, + €,)ng/n. Since ni/n — 0and e, — 0

Controlling the Number of False Rejections in Multiple Hypotheses Testing, Marsel Scheer



58 4.3. LINEAR PLUG-IN TEST

we have t,, — 0. Further, let a,, = (fa,8:(tn) — fa,5:(0))/t, and define s,,(t) = a,t. Since
By /n — b > 0, we get that a,, — (1 + b)/«, which is the derivative of f, (t) at t = 0. Hence,
$n(t) converges uniformly to s(¢) = (1 + b)t/«. We have,

ENFR;, s (fa,8:) = E[Vi(fo,55) 1 acy] + ElVi(fa: )i a,]

<C/nj+ ENFR;, (sn),

where V,(fa,s:) is the number of rejected true null hypotheses using a SU test induced by f, s .
If lim sup,,_,,, n} = oo, then Corollary 4.13 provides

lim sup ENFRy, s (sn) /0] = lim sup ENFR,, ;.= (s) /n] = 7,

n—oo n—oo
withy = (a/(1+0))/(1 —a/(1+b)) < a/(1 — ) = 7.
If lim sup,, ., n} < oo, then choose a subsequence 7} (7)) such that 7} = lim sup,,_, .. n} holds
true. This entails

lim sup ENFR,, 5+ (s,,) = limsup ENFR,, 7 (s) = (7] + 1 4+ 7)7,

n—oo n—oo

withy = (a/(1+0))/(1 —a/(1+b)) < a/(1 — a) = . O

4.3 Linear Plug-in test

The plug-in approach has a long tradition in statistics. Probably most famous in this context is
the t-test, which evolves from a standardized test statistic (z — u) /o by substituting the standard
deviation o by the empirical standard deviation.

Schweder and Spjgtvoll introduced and discussed in [51] an estimator 7 for ng. In that paper
they mentioned that the FWER is controlled at level « if a Bonferroni test with «/ng instead of
a/n is applied. In general, ng is unknown and thus they proposed to use « /7 but did not give
a proof that this procedure actually controls the FWER. Finner and Gontscharuk showed under
some regularity conditions in [22] that a slightly different version of the estimator proposed by
Schweder and Spjgtvoll controls the FWER at a predefined level.

Under some regularity conditions the FDR of the LSU procedure equals ang/n. Hence, increasing
a to an/ng is desirable. Procedures using 7#(t) = (fig/n)t/« are sometimes called adaptive
BH-procedures. A thorough answer to the question for which estimator ng such adaptive BH-
procedures still control the FDR at level « is given in [50].

In this section, we apply the plug-in methodology in order to define a stopping time 7, such
that Ey [V,(7,)] < (n1 + 1)7. We start with some heuristic considerations. Suppose we have
an estimate ng for ng and reject any null hypothesis with a p-value below the fixed threshold ¢.
Thus, it is reasonable to estimate EV/,(¢) by ngt. After estimating n; by 7; we can try to choose

t as large as possible, that is 7, = sup{t € [0,1] : npt < (11 + 1)y}. One way of estimating
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ny is 11 = n — ng, then 7, = y(n — fg + 1)/fy. Obviously, if we underestimate ny, we
will overestimate n1. A little example illustrates this drawback. Suppose n = ng = 100, then
Tn = 7/100 would be a correct threshold, but ng = 95 will yield 7,, = 67/95. This is more
than 6 fold above ~/100. Evidently, one way to handle this problem is to underestimate n; and
overestimate ng. Suppose the p-values follow the mixture distribution F'(¢) = tng/n+ Fy(t)n1/n
and Eng = ng. We now define a "conservative" estimator for n;. Instead choosing n; = n — ng,
we define n1(t) = R(t) — not — 1. Then for fixed ¢ we have E(R(t) — not) = ni1F1(t) < ny.
Hence, n; = R(t) — npt — 1 is a "conservative" estimator for n;. Note, for ¢ = 1 we get

R(1) — ng = n — np. Defining 7, as before we get
T, = sup {t € [0,1] : ngt < (n1(t) + 1)v}

=sup{t € [0,1] : not < (R(t) — not)7}

= sup {t €[0,1]: Aot(1 +7) < R(t)}

Y
Cat(1
—sup{te 0,1 2D o g gyl
Y
where fn = fp/n. Thus, rejecting any null hypothesis H; with p; < 7, is equivalent to a linear
step-up procedure with rejection curve r(t/C,) = Cut/or, where o = ﬁ This is an adaptive

BH-procedure. Recall that our aim is to create a procedure controlling the ENFR at a specific
level, but our heuristic considerations also lead to procedures developed for FDR control. Since
every SU test can also easily be converted to a SD test, we are going to investigate both variants
and call them linear step-down/step-up plug-in (LSDPI/LSUPI) procedures.

One appealing estimator for ng is

(n = R(AN)/(1 =),

where A € [0,1) is a fixed tuning parameter. This estimator was proposed by Schweder and

Spjgtvoll [51] nearly 30 years ago. For a slightly different estimator, that is,
no=(n—RA)+1)/(1—-N), (4.13)

Storey, Taylor and Siegmund proved that a SU test induced by 7 (t|ng/n) = (ng/n)t/« controls
the FDR at level a, cf. [65]. Although the estimator (4.13) is essentially the estimator proposed
by Schweder and Spjgtvoll, the common name is Storey’s estimator. It has the property that if
Fi(\) =1, then

Eng = (n—n1 —noA)/(1 = X) +1/(1 —=X) =no+1/(1 = ).

Otherwise, we have Eng > ng + 1/(1 — A). This means that on average we overestimate ng and

underestimate n;. In this chapter we will see that LSDPI and LSUPI using Storey’s estimator,
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in general, only provide asymptotic ENFR control, but the violations are negligible for practical
purpose. Again, by assuming BIA the DU configurations are LFC’s for the ENFR because R(\)
increases if we set the p-values corresponding to false null hypotheses to zero. Thus,

n—RA\)+11+7y
Con(l-=N) v

Tp = SUp {t € [0,1] t< Fn(t)} 4.14)

increases if R(\) increases. Hence, under BIA the DU configurations are LFC for the ENFR.
Like before, we suppress the subscript that indicates DU configuration, that is P = P, ,,,. In the

following, we are going to investigate the ENFR-Plug-in-Algorithm which has four major steps:
1. Fix A € (0,1).
2. Estimate ng by ng = (n — R(\) +1)/(1 — \).
3. Calculate 7, as defined in (4.14).

4. Reject any null hypothesis H; with p; < 7,,.

4.3.1 Exact formulas

We now derive formulas for P (V,,(7,,) < @) for the LSDPI and LSUPI procedure based on Storey’s
estimator.
A common choice for A is 1/2 or even larger and one hopes that {p; > A} is a very rare event for
¢ € I;. Thus it might be reasonable not to reject any null hypothesis with a p-value larger than A.
Therefore, we also derive formulas for P (V,,(7,, A A) < ¢) for the LSDPI and LSUPL
Throughout this section denote the (random) critical values by

a i ail-A) ai(l-A)
no/nn n—R,(A\)+1  ng—V,(\)+1

C; =

(4.15)

and by ¢} = «i(1 — \)/(ng — s + 1) the critical values given V,,(\) = s. Since we consider n
fixed in this section, we will suppress the index n of the stopping time 7,,. The following facts will
be used later and are very elementary, so that proofs are omitted.

LetUy,...,U,iid U[0,1],U{,..., U]} iid U[0, \],and U7, ..., U/ iid U[A, 1], then

PWL-Un)|[UL X, .Un<X _ p(Uf,.,U7) (4.16)

P(U17--~7Un)‘U1>>\,-~~7Un>)\ — P(U{’V"’UT/{)' (417)

A very helpful notation is the following. Let J C {1,...,n}. We denote by X;.; the ith order
statistic of {X;},c.
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Remark 4.23
Given that Xq,..., X; < Xand X¢iq,...,X, > X we have

Xpy,  ifi <s,
Xi:n =
Xifs:Jéa ifi > s,

where J; = {1,...,s}and J, = {s+1,...,no}.

The following theorem is stated in terms of the joint cdf of order statistics. Let Uy, < ... < Upip
denote the order statistics of n independent and uniformly distributed random variables Uy, . .., U,
on [0, 1]. We define forn € Nand 0 < k <n — 1,

FFay, . zng) =P (U < @1, oo, Up—pon < Tni) s (4.18)
F)=1. (4.19)

Remark 4.24
Bolshev’s recursion can be applied to evaluate (4.18), see Shorack and Wellner [54], p. 366-367.

Remark 4.25
Let Uy, ..., U, ~ UJ0, 1] be independent, then

FFAl—zp, ..o 1 —2p1) =P U <1 =2y, Uppon < 1 — 2p41)

= P(Unn > Tpyeees Uk+1:n > l’k+1) .
In the proofs of this section we assume that py, ..., pp, are the p-values corresponding to the true
null hypotheses.
Theorem 4.26

In a DU(n, ng)-model we have for the LSUPI test that P (V,,(1) < ng) = 1 and for 0 < i < ng

we get

P(Vi(r) <i)= > boFi®, (dg, . ,dfﬁ(nofi)H)
s=0

no
0 S S i s s
+ Z bSFnofs (dn7 T 7dn—(n0—s)+1) Fs (an—(no—s)’ te 7an—(n0—i)+1>
s=i+1

with by = ()X (1= A% 0 =1~ G and d =1~ 5.
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Proof: First note that {V,,(\) = s} is the disjoint union U; ¢y, 03, 71=5 A1 Where
AI - {pi < )\,’L S Ia Dbj > >\a.] € {1,,%0}\1}

We write Ag = {p; > \,i =1,...,n0} and Ay = Ay 4y for short. We immediately get that

ng

s=0 5
no

=N b, (Vi(7) < i|As).
s=0

We now investigate P (V,,(7) < i|As). Setting
ASS = {pl < )\a"'vps S)\}andA? = {ps+1 > Av"'apno >A}

we get A; = AS N A7 . Further, we define J; = {1,...,s}and J. = {s +1,...,n0}.
First consider the case @ < s < ng. This means that the null hypotheses corresponding to all

p-values greater than A and some that are smaller than A will be accepted. Let
Bs,> = {pno—s:Jg > CfL, -y PLJ > Ci_(n0_5)+1}
and
<
By = {ps:JS > cfz—(ng—s)’ sy Ditlidg > Cfl—(no—i)+1}’
Note, ppg—s.g75 - - - P1:g; @and ps. g, - -+, Dit1.J, are the p-values larger than and less than A corre-

sponding to the ny — ¢ true null hypotheses that will be accepted for sure. With Remark 4.23 we
get that

P(Va(r) <ilAs) =P (pno:no > Cpye e Pitling > ny,—(no—i)+1‘A§ N A?)

P (B, N BS|AS N A7)
P (B N A7 N Bs N AS)
P <AS> mAsS)

Note that AZ and B depend only on ps1, ..., Pny» and AS and BS depend only on py, . .., ps.

It holds that

P(B; NA7)P (Bs N AS)
P(A>)P <A§)

P(Va(r) < ilA,) = — P (B3 |43) P (BE|AS).
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Till the end of this prooflet U7, ..., Ul and U7, ..., U}

no—s

beiid U[0, \] and U[A, 1], respectively.
From equations (4.17) and (4.16) we get

P(B|AZ) =P <U7’L’O_5:n0_s >, Ul o> sz—(no-sm)
P (BS|AS) =P (U;:S > (gsyse e s Ulia > cgf(noﬂ.m) .

Note that UTZ/ ~ U|0, 1] and % ~ U]0, 1]. With Remark 4.25 we get
P(B2|AZ) = F _, (d;, . ,d;_(no_s)+1>
P (BsS’AsS) = F§ (a;—(no—s)’ = "afr,—(no—i)-l—l) .
This yields
P(Va(r) < ilAg) = By (@ 8 ngi1) o (@ Gy ) -

We now consider the case i < s = ny, that is, all p-values are below A and therefore A; = A,%O

and {V,,(7) < i} = B . Similar as before, we get

P (Vo(r) < i|As) =P (B5 | A5)
=P (U;Lo:no > Cfm R z{+1:no > cfz—(no—i)—i-l)

= iy (@ @iy -
Finally, for s < 7 < ng note that p-values corresponding to the null hypotheses that are accepted

for sure lie above \. Therefore, we have
{Vn(T) < Z} = {pno—s:J; > Cfp cosy Diesy1:d, > Cif(n071)+1}-
Since A< is independent of {V;,(7) < i} and independent of A2, we obtain

P (Vo (1) < ilAs) =P (Va(1) < i|AY)

1! 1/
=P (Uno—s:no—s > wa ey Vi—stlimg—s > sz—(no—i)—&-l)
_ ri—s S S
— Fi (dn, o n—(no—i)-i-l) .
This establishes the formula. [l

Theorem 4.27
In a DU(n, ng)-model we have for the LSDPI test that P (V,,(7) > 0) = 1 and for 0 < i < ng we
get

i—1
P (Vn(T) Z Z) = Z bstO ( fz—no—i-l’ ey hfz—no—i-s) FTTLLOO—_SZ ( fz—n0+s+17 ] 7S'L—n0+i)
s=0

0
s—1 s s
+ Z bSFs ( n—nmo+1s* > hn—no—l—i)
s=1

Controlling the Number of False Rejections in Multiple Hypotheses Testing, Marsel Scheer



64 4.3. LINEAR PLUG-IN TEST

with by = (")AS(1 — A)"05, he = 5 and kf = S

Proof: The calculations and arguments for the SD case are quite similar to those for the SU case.

Like in the proof of Theorem 4.26 we conclude
no
P (Vi(ma) > 0) = Y P (Va(r) > i|A,)
s=0

with As = {p1,...,ps < A\, Pst1,.--,D0ne > A}. We first consider s < i. As in the proof of
Theorem 4.26, we define J; = {1,...,s}, J. = {s+1,...,n0}, AS = {p1,...,ps < A}, and
AZ ={pst1,---,Pny > A} Additionally, we define

<
Bs_ = {plst < sz—no-i-lv s Psigg S sz—ng—l—s}
and
> _
Bs = {pI:Jg < Cz_n0+s+1a -y Pi—s:J! < Cfl_n0+i}-
Now, p1.J.s -+ Ds:, @and p1.gz, ..., pi—s.g; are the p-values corresponding to the 4 true null hy-

potheses that are rejected for sure. By the same arguments as in the proof of Theorem 4.26, we

see for s < ¢ that

=P (BF|AT) P (B A7)

s - A e =)\
xIP(Ul.J/ < _nonotstl 7 ---,Ui_s;J;S%

s T 1—A ’ 1—A
_ FO Cfm—no—l—l sz—no—l—s Fno—z‘ sz—no—l—s—l—l - A sz—ng—l—i —A
8 ) D} no—s 1-A B 1-A ’
where Uy, ..., Uy, ~ U|0, 1] are independent.
For s > i we conclude
P (Vi(1n) > i]Ay)
=P (plst < c;1+17 cey Ping, < ch«H‘Asg)

c’ c’ :
=P <U1:Js < n—;o-ﬁ-l P Uvi:JS < n_;\lO—H)

S S
_ Fs—i cn—no—l-l Cn—no—l—i
s AT A

This completes the proof. O
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One of the heuristic arguments behind Storey’s estimator ny was that for a well-chosen A virtually
all p-values in (A, 1] correspond to true null hypotheses . Therefore, a natural restriction seems to
reject only hypotheses H; if p; < 7 A A. The next goal is to determine the distribution function of
V,.(T A X\). Fortunately, we can again use the expressions evaluated in the proof of Theorems 4.26
and 4.27.

Lemma 4.28
Under DU configurations we have for the LSDPI/LSUPI test that P (V,,(T A X) < ng) = 1 and

P (Va(r AX) < i) =P (Vo (M) < i)+ i P(Va(r) <0, Va(A) = 5) (4.20)
s=i+1
1Y B 24 L) =) (“21)
s=i+1

for 0 < i < nyg.
Proof: Obviously, V,,(A) = s implies V,,(7 A X) < s. Hence,
Vit AX) <0, V(X)) = s} = {Vi(\) = s} forall i > s.
Since {V,,(1 AX) <4,V (N) = s} C {7 < A} foralli < s, we get
{Va(r AX) <0, V,(N) = s} ={Vo(r) <0, V(X)) = s} foralli < s.

Altogether, we conclude that

1o

P(Va(r AX) i)=Y P(Va(r AN < i, Va(N) = s)

=Y P(Va(N) =5)+ Y P(Va(r) <i,Vo(N) = s).

s=0 s=i+1

This is (4.20) and can be further transformed to

P(Va(r AN <i)=P(V,(\) <i)+ Z P(Va(A) =8) =P (Vi(r) > i, V(X)) = s)
s=1+1
=1= > PVn(r) >4, Va(N) = s)
s=i+1
This finishes the proof. O

Remark 4.29
The assumptions of Lemma 4.28 can be weakend. It would be sufficient to assume that V,,(¢) is

a.s. non-decreasing in ¢ € [0, 1], 7 is a random variable from 2 to [0, 1], and A € [0, 1].
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Alternative expressions for the right hand terms in (4.20) and (4.21) were obtained in the proof
of Theorems 4.26 and 4.27. Plugging in these alternative expressions immediately leads to the

following formulas for P (V,,(T A X) < i).

Corollary 4.30
Under DU configurations we have for the LSUPI test that P (V,,(T A X) < ng) = 1 and for 0 <

1 < ng we get

no
+ Z bSFr(L)O—s <dfw AR dfz—(no—s)—l—l) F; (afz—(no—s)7 T 7afz—(n0—i)+1>
s=i+1
ci—A

with by = (")AS(1 = N5, af =1~ § and df = 1 — 55

Corollary 4.31
Under DU configurations we have for the LSDPI test that P (V,,(T A X\) < ng) = 1 and for 0 <
1 < ng we get

ng

P(Va(r AN i) =1= > bF (B ins o g i)
s=i+1

with by = ("0)AS(1 — \)"0~* and h$ = .

Applying these formulas in numerical calculations demonstrates that the LSDPI test and LSUPI
test do not control the ENFR under DU configurations at level v = /(1 + «). But the violation
is very weak. For instance, it would not be possible to distinguish the ENFR of the LSDPI/LSUPI
test in Figure 4.1 from the ENFR of the (,,-adjusted AORC.

4.3.2 Asymptotic behavior

In order to investigate the asymptotic behavior of the plug-in method, we assume for this section

that ng/n — ¢ € [0, 1] for n — oo. For the special case ( = 1 we assume that n; is fixed.

Theorem 4.32 (Asymptotic distribution)

Let Vsp ~ LSD(ny,«), Vsy ~ LSU(ny, ), and én — 1 in distribution. Then, for n; fixed
and o € (0,1) we have under DU(n, ng) that Vy,(1,) — Vsp in distribution for the LSDPI and
V() — Vsu in distribution for the LSUPI.

Proof: Let ¢ > 0 be arbitrary and B,, = {1 — € < np/n <1+ €}. Since p/n — 1 in distribu-
tion, there exists a N € N such that P (Bf;) < e for n > N. Denote by V,, , the number of false

rejections if one uses ¢/« as a rejection curve in a step-up manner. From Theorem 4.8 and 4.2 we
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already know the asymptotic and finite distribution of V,, ,. We conclude for n > N that

k . i , no—i—1
no Q ni+1 « n+1: «
< 1-— 1-—
_;<z>( 1+6>< n 1+6> ( n 1+e> te

k i
1 «Q « «
;E Z 1 - = ; — ] )
izoi!< 1+e> <(n1 Z)l—i—e) exp( (1 Z)l—i—e) ‘

Because € > 0 can be chosen arbitrary small, we get

limsup P (Vi () < k) < Z 1= ®((ny + D)a)iexp (—(n1 +)a) = lim P (Voo < k).

k
n—00 —o 7! n—00

On the other hand, we also have

P (Vi(1n) < k) > P (Vio(7) < k, By

zp(mﬁxng% +PQ@£,<mB@-f

Yl—e T

" o a ni+i a \ ni4i oa ™!
=> () (1- 1— —¢€
—\1 1—c¢ n 1l—e n 1—e

—i:j‘ (1—10‘_6> ((nlﬂ')l:)iexp (-(nlﬂ)lfe) e

=0

With the same argumentation as before, this yields

liminfP (V,,(7,) < k) > lim P(V, o <k).

n—oo n—oo
This means that the asymptotic distributions of V},(7;,) and V;, ,, are equal.

Similar arguments for the SD case together with the results from Theorems 4.8 and 4.2 entail

k
lo} ) - .
nli_)rgo]P’(Vn(Tn) <k)= ;(nl + D) ((n1 474 1) Lexp(—(ny + i+ 1)a).
i=0
This is our assertion. |

Remark 4.33
Under BIA and for n; fixed, by the law of large numbers, Storey’s estimator 729 /n converges a.s.
to 1. Furthermore, under some regularity conditions the py.,-estimator
A In—k+1
b=t
n 11— Pk:n

also converges in distribution to 1, cf. Theorem 4.37.
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Theorem 4.34 (Asymptotic expectation)
For n fixed, m € Ng, and a € (0,1) we have under DU(n, ng) that

lim EV)"(1,) = EV{};,  for LSDPI,

n—oo

lim EV)"(r,) = EV{p, for LSUPI,

n—oo
ifng‘IP’(CAn < 1—¢€) — 0 holds for all € > 0 and additionally (o — 1 weakly, where Vs and Vsy
are the random variables from Theorem 4.11. In particular, if noIP)(fn <1 —¢€) — 0 holds for all
€ > 0 and additionally CAn — 1 weakly, then

ny+1 , for LSDPI,
lim EVy () = (1 +1)y f

nee (n1+1+7~)y ,for LSUPI,
where v = a /(1 — ).

Before we proof Theorem 4.34 we investigate the conditions appearing in Theorem 4.34. Theo-
rems 4.35 and 4.36 are concerned with sufficient conditions for ng’ (fn < 1—¢) — 0 for Storey’s
estimator and the pg.,,-estimator. In Corollary 4.38 we summarize when Theorems 4.32 and 4.34

hold true.

Theorem 4.35
Under DU(n,ng) Storey’s estimator for X € [0, 1) fulfills for all m € N, e > 0, and ny € N fixed

the condition nom]P’(CAn <1—¢€) — 0forn — oo

Proof: Let ¢, = ng/n. We have

P(@Lgl_g):P(Tlo—VWSl_e)

n(l— M)

_ 50 (-6 —-A)
Sp(l Fro¥) < ¢, )
B B B _(1—6)(1—)\)
— (F,?O(A) A>1- )\ c. )

ooy - (12 - C=A0=0Y’Y,

where the last inequality is due to the DKW inequality [54], p. 12 and ¢ > 0 is a constant. Since
Cn—>1,wegetn0m]P’(CAn§ 1—¢€) — 0forn — oo. O

Theorem 4.36
Let m € Ny be fixed and k(n) = k € N with k < n. If there exists an r € N with n™~" /(1 —
k/n)?* — 0, then the py., estimator fulfills under DU(n,ng) for all ¢ € (0,1) and ny € N fixed

the condition nTP((, <1 —€) — 0 forn — .
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Proof: First note that o(1) = n™~" /(1 — k/n)?" = n™*" /(n — k)" implies that n — k — oo.

Denote by p;.z, the ith order statistic of (p;);cz,. Obviously, for x € [0, 1] we have

P (pi:[o < «T) =P Z H{pjgx} > =P (B > Z) ,
Jj€lo

where B ~ B(ng, z). In general, we have

P(éngl—e)zlp<"_k+1<1—e>

~

First, we examine the simple case where limsup k/n € [0,€). Obviously, we have P((, <
1 — €) = 0 eventually for all n and thus nj'P (fn <1l- e) — 0.

Now, let ¢, = (k/n —¢€)/(1 — €) and B,, ~ B(ng,q,). Note, w.l.o.g. we can assume in the
following that liminf k/n > e. Since n; is fixed and n — k — oo, we can further assume that

k > n1 + noqy, eventually for all n because
E>ni+nogn<=k>n+ng, < k(l—¢)>ni(l—¢)+k—en<en—=Fk)>ni(l—e).
Thus, we get

P(Cu<1—€) <P (phn < gn)

=P (pk—nlzlo < Qn)
= P(Bn — NoQn > k—mny — nO‘]n)

E(B, — nogn)?"
T (k=n+no(l—qn)?’

Note, since ¢, — 1, the inequality ¢,,/(1 —€) — 1 > ¢/(2(1 — €)) holds eventually for all n. Fur-

thermore, we have liminf g, > 0 because lim inf £/n > € and thus ngg, — oo. By Lemma 4.5
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we get

Cy, max{l, (nOQn)T}
(k—n+no(l — qn))?

P(Cnﬁl—e)ﬁ

Cop (nOQn)T

C2r(nOQn)r
(k —n+ G f=5)%

_ 027"( ann)r
((n=k)(C/(1 =) = 1))

g
Coy (Cann)
S G /0——1Z (n—k)Z

~ (/0 fzer ( k{n_—ee)r n? (1 7—f’/f/n)”“

S vas k/n)2r

where K > 0. O

Theorem 4.37 (Lemma 2.15 in Gontscharuk [26])
Let k = k(n) € N and ng be the py.,, estimator with k < n and

—Nn
L 1.

-n k
lim inf ! > 0 and lim sup
n—oo no n—00 no

Then, under DU(n, ny), for all € > 0 there exist constants Cy,Co > 0 such that for all n € N

— 1‘ > e> < Cyem0C2

holds true.

Corollary 4.38
Theorems 4.32 and 4.34 hold true for

1. Storey’s estimator

. n—R(A\)+1
n1=—-—-—

1—A
if A€ [0,1),
2. the pg., estimator
R n—k+1
ng2 = —————
1- Pk:n

if imsup,, k(ngbo_"l <1,
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3. the truncated py.,, estimator

n—k‘—i—l}

fp,3 = min {n, =
— Pk:n

if k < nand for all m € N there exists anr = r(m) € Nwithn™"" /(1 — k/n)* — 0.

Proof: The first assertion follows directly from Remark 4.33 and Theorem 4.35.
Since n; is considered fixed we have lim inf, .o (k — n1)/n > 0. Theorem 4.37 yields for all
m € Nand € > 0 that

n6”[P’n7n0 (|ﬁ0,2/n —1] >¢€) — 0,

which entails the second assertion.

The last assertion follows from Theorem 4.36 and Py, ,,, (7i0.3/n > 1+¢€) =0foralle > 0. O

Remark 4.39

Note that the case k/n — 1 is possible for the truncated py.,, estimator from Corollary 4.38.

The key in the proof of Theorem 4.34 is the uniform integrability of {V,(7,,)} for

n>ni

LSDPI/LSUPI test.  The next theorem will establish this by using the property that

ng'P (é‘n <1-— e) converges to zero to reduce the uniform integrability of {V"(7,)} to

n>ni

the uniform integrability of {V,;" (¢;,)}
4.4 the sequence {V,"*(¢n)}

where ¢y, is LSD or LSU procedure. But by Lemma

n>ni’

n>n, 18 uniform integrable.

Theorem 4.40
Suppose for fixed m,n; € N and all ¢ > 0 that n?'P(C, < 1 —€) — 0 for n — oo under
DU(n,ng). Then {V,"(7,,)}

n>n, 18 uniformly integrable under DU(n, ny).

Proof: Let ¢ > 0 be arbitrary and § > 1 such that Sa < 1. Denote by ¢,, the LSU test induced
by the rejection curve t/(«). The argumentation for the step-up case is the same as for the

step-down case, so in the proof we only consider the step-up case. For all ¢ > 0 we have

/ VT:”(Tn)dIP’:/ R V,:”(Tn)dIF’—F/ R V(1) dP
{vir(ra)>ch {Var(mn)>e, ¢a>1/B} {Var(mm)>e, ¢a<1/B}

=1 + I
There exits a M > 0 such that for all ng > M we have

I < / ) ngldP < n'P(C, < 1/8) < €/2.
(Vi (rn)>c, Gn<1/8}

Since 7(t|¢,) = Cut/ar > t/(Ba) on {C, > 1/}, we also have

VI (o) dP < / VI (on)dP < /2

I S/ )
{Vir(en)>c, Cn>1/8} {Vir(e)>c}
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for ¢ large enough because {V,)"(v,,)} is uniformly integrable, cf. Lemma 4.4. Altogether,

n>ni
we have
sup / Vi) <€
n>ny J{V,*(rp)>max(c,M™)}
because for all K € N and ng < K the set {|V,)"(7,,)| > K™} is empty. O

Proof of Theorem 4.34. Theorem 4.32 shows V,,(7,) — Vg in distribution and with Theorem
4.40 (uniform integrability) we have by Theorem 5.4, [6], p. 32 lim,, .o EV,*(7,,) = EV{};. In

particular, for the first moment we directly conclude from Theorem 4.11 for the step-up case

. 1 «
nh_{goEVn(Tn) = <n1 + 1— a) 1— o = (nl +1 +7)77

and with the same argumentation we conclude for the step-down case

lim EV,(7,) = (n1 + 1)% = (n1 + 1). 0

n—o0 1-—
Theorem 4.41 (Asymptotic expectation)
If we assume ¢, = ng/n — ¢ € [0,1), then under DU(n,ng) we get for the LSDPI test and
LSUPI test that

lim E;, »,
n—oo

{V';Ef")] = min{y,/(1 - ¢)}

if (, — C in distribution, where ~ = a/(l—a).

Proof: For ¢ < 1 the argumentation, irrespective of step-up or step-down, is a little easier than
for ¢ = 1. Since ( is constant, we have fn — ( in probability. Thus, for every subsequence 7,

there exists another subsequence ny, of n) such that én , — ¢ almost surely. It holds that:
1. Vp, (t)/no — t almost surely and uniformly,
2. Fp,(t) — Fe(t) = (1 = ¢) + ¢t almost surely and uniformly,
3. fnkt Ja — (t/a almost surely and uniformly.

In fact, ng in 1. depends now on subsequence 7, but for notational convenience we suppress this
fact. The first step is to calculate the asymptotic intersection point ¢- of F},, (t) and (t/«, that
is, the point for which 7,,, — ¢, almost surely. Obviously, by 2. and 3., ¢, is characterized by
Fe(t¢) = Cte/a. Solving for t¢ yields t = v(1 — ()/¢. We have Vy,, (73,,.)/no — min{t¢, 1}

a.s., and thus we obtain

Vi (Tnk)/nl = noﬁnvnk (Tnk)/no - 15( min{tC? 1} = min{% C/(l - g)}
ni/n

almost surely. Thus, for every subsequence n, exists another subsequence ny, of nj such that
Vg (Tny.) /1 — min{~y, /(1 — )} almost surely. This entails that V;,(7,,) — min{~v, /(1 —()}

in probability. The assertion follows by the dominated convergence theorem. ]
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4.4 Summary

In this chapter, we have investigated different procedures that control the FDR for finite n with
respect to their ENFR behavior. Since for all considered procedures DU is LFC for the ENFR, all
calculations were conducted under DU. The first two procedures investigated were the LSD and
LSU. We computed the finite and asymptotic distribution of V,,, where in the asymptotic setting
ny is kept fixed or ng/n — ¢ € (0,1). Since the ENFR for finite n was already calculated
by Finner and Roters [18], the asymptotic ENFR was determined for the two cases where the
fraction of true null hypotheses converges to a constant smaller than one (non-sparsity) and for n;
fixed. For the non-sparsity situation we established that V,, is asymptotically normally distributed.
Additionally, for n; fixed, we computed the asymptotic variance. A heuristic comparison shows
that both expressions are similar. Further, we calculated the ENFR for LSD/LSU test for the
"intermediate" case, that is for n; — oo but ng/n — 1.

Then, we focused on the AORC. It is well known that a SD test induced by the 3, -adjusted AORC
with 8, = 1 controls the FDR and that the level « is nearly exhausted. We showed that this
procedure also controls the ENFR with level function min{ng, (n; + 1)a;/(1 — a))} and nearly
exhausts this level. The purpose of [, is to achieve finite control of the FDR. The behavior of
By, in the FDR context was already investigated in [26]. It turned out that for a SU test 3,, tends
to infinity but 3, /n converges to zero. In the ENFR context, using min{ng, (n; + 1)} as the
bounding function, we proved that /3, /n is bounded but does not converge to zero unless the
bounding function is min{ng, (n; + 1 + )7}

Attempting to develop a procedure controlling the ENFR at level (n; + 1) using plug-in tech-
niques we rediscovered plug-in procedures which are nowadays known as adaptive BH-procedures.
Because there is a tight relation to LSD and LSU, we call them LSDPI and LSUPI, respectively.
The finite distribution of V;, in the SD and SU case was established for a popular estimator some-
times known as Storey’s estimator, which estimates the fraction of true null hypotheses. Although
the LSDPI and LSUPI procedure controls the FDR at level « for finite n, it slightly violates the
bounding function (n; + 1)a/(1 — «). Asymptotic considerations have been conducted under
a more general setting. Assuming that the estimator converges in distribution to the fraction of
true null hypotheses, the LSDPI and LSUPI exhaust the level asymptotically for the non-sparsity
case. And if n; is kept fixed, even the asymptotic distribution coincides with the corresponding
asymptotic distribution of LSD and LSU. With further regularity conditions on the estimator we
showed that also all asymptotic moments of V,, are equal to the corresponding moments calculated
for LSD and LSU. It was proven that all required conditions are fulfilled by Storey’s estimator.
Additionally, we stated sufficient conditions for another popular estimator, sometimes called pg.,,-

estimator, such that the asymptotic results also hold true for this estimator.
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Chapter 5

Exact SU procedures

In the latter chapter we have investigated well-known procedures, controlling the FDR, with re-
spect to the ENFR. This means, that the rejection curve was given and then for instance we deter-
mined the corresponding ENFR. Now, we consider the ENFR bounding function g fixed. The aim
is to determine a rejection curve such that for finite n the corresponding ENFR equals or at least

approximately is g.

5.1 Exact solving

For a prespecified ENFR bounding function g we try to determine critical values c; such that
ENFR,, ,(¢n) = g(n1), forallmg=1,...,n, 5.1

where ¢,, is a SU test with critical values c;. But ¢,, is only a useful procedure if the DU configu-

rations are indeed LFCs for ENFRy(¢,,). Otherwise, there exist ¢ € O such that
g(n1(9)) = ENFRy, () < ENFRy(0p,).

For example, suppose an algorithm returned critical values c; which are decreasing in %, then also
the corresponding rejection curve is decreasing. As it can be seen from Figure 5.1, in this case the
crossing-points move to the left after setting the p-values corresponding to false null hypotheses
to zero. Hence, the DU configurations are not LFCs for the ENFR. Of course, if the critical values
are increasing in 4, then the DU configurations are LFCs. Under DU(n, ng), given the critical
values, we are able to calculate the ENFR exactly. Therefore, for a fixed ENFR bounding curve
g we can try to determine the critical values by these exact formulas. Unfortunately, we will see
that usually (5.1) can not be achieved and we also can not state simple and useful conditions on g

which guarantee that critical values fulfilling (5.1) exist. All issues of the “determining process”
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Figure 5.1: The crossing-points decrease for a decreasing rejection curve (red line)
if p-values are set to zero. The black line is the ecdf of all p-values and the blue line

is the ecdf of all p-values with p; = 0 fori € I;.

can be illustrated for n = 2. For this simple setting the ENFR can be calculated as follows,
EooV, =0,
Eo 1V =P (Vi = 1) = co,
Ep oV =Poo(Vy, = 1) + 2Py 5(V,, = 2)
= 2Py 2(p1 < c1,p2 > ¢2) +2P22(p1 < ¢2,p2 < ¢2)

=2¢1(1 — c) + 263,

Thereby, (5.1) is equivalent to

ca=g(n—1)=g(1) (5.2)
e = M (5.3)
1-— C2

In order to recursively solve these equations, one starts with the first equation (5.2). A problem
already occurs at this first step. If co = g(1) > 1, a SU test always rejects all null hypotheses.
Especially, for large n it is not unusual that g(n — 1) is larger than one. For instance, consider the
bounding function g(ni) = (n1 + 1)y for n; = 100 and v = 0.05. Again, let n = 2. Suppose

for a moment that g(n — 1) = g(1) < 1, then we directly encounter the next problem. Obviously,
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if g(0)/2 < ¢3 = g*(1), then ¢; < 0. Under the global null hypothesis {p1.o < c;} equals
{p1:2 < 0} and the SU test with critical values ¢; and co will exceed the bounding function g

under the global null hypothesis, that is
EQ’QVR = 2(0(1 - 02) + C%) > 2(61(1 — 02) + Cg) = g(O)

if co € (0,1). As mentioned at the beginning, it is essential that the resulting SU test has the DU
configurations as LFCs. Thus, we also must ensure that ¢; < co. In our simple example, this leads

to
9(0)/2 — ¢

=c1 <ca <= 9g(0)/2 < ca.
1—62

Furthermore, we have seen that we need ¢g(0)/2 > c in order to ensure ¢; > 0. Assuming

co = g(1) we get
g*(1) < g(0)/2 < 9(1) (5.4)

or in words, g may not increase or decrease too fast. In sum, for n = 2 we need g(n — 1) =
g(1) < 1 and (5.4) in order to avoid any problems.

We now turn to the general case where n > 2. In principle, conditions like (5.4) can be formulated
for larger n, but in general we will have n — 1 of such conditions. Every of these conditions
would be very complicated and useless for practical purpose. Nevertheless, we now formulate the

recursive schema for arbitrary n > 2. By virtue of Lemma 3.21 in [13], we have

. no .
Pr,ng (Valpn) =J) = 70n1+j]?n,no—1(vn(80n) =j—1) (5.5)
forallmng=1,...,nand j = 1,...,n, where ¢, is a SU test with critical values 0 < ¢; < ... <
¢n, < 1. This is the main tool for our recursive schema. For ng = 1,...,n we have

min{ng, g(n1)} = Ep o Va

no
= ijn,no (V;L = .7)
Jj=1

no
.1 .
= Z]?OCM—FJ'ano—I(Vn =j-1)

7=1
no—1
=10 ) Cayrjr1Prno—1(Va = 4)
7=0
no—1
=10 | cny+1Pnng-1(Vo = 0) + Z Cn1+j+1Pn7no—1(Vn =7)
7j=1
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We use min{ng, g(n1)} as the bounding function to indicate that there are the natural restrictions

that ENFR,, ,,, (¢r) < ng forall ng =0, ..., n. Solving for ¢, 41 yields

min{1, g(n1)/no} — Z?i]l ny+j+1Prno—1(Va = 4)
1-—- Z;lizl C7L1+j+1]P)n,n0—1(I/n = ]) '

Similar to the case with n = 2, equation (5.6) becomes ¢,, = min{1, g(n—1)} for ng = 1. Choos-

(5.6)

cn1+1 -

ing ¢ < cgyr1 < ... < ¢y < 1in advance and conducting the recursion for n; = 0,...,k — 2,
starting with n; = k — 2 can solve the problem that the last critical values are larger than
one. Another idea is to approximate min{ng, g(n1)} by g*(n1) such that g*(n;) < no and
g*(n1) < g(ny) and solve (5.1) for g*. Nevertheless, the relations between the critical values
and the bounding curve stay very complex. Both ideas lead to the same problem, we realize that
Cm > Cm+1 OF ¢y < 0 solely at the very moment when we compute c,,. In the first case we
could set ¢, = ¢p41, but then for ny = m — 1 we may not exhaust the level specified by the
bounding function. The second case is also unpleasant, in particular if m is large. If ¢,,, < 0, then
c1, ..., Cym < 0 by monotonicity. Such a SU test will reject no null hypothesis or at least m + 1,
thatis R, € {0,m+ 1,...,n} almost surely. Furthermore, at least for n; = m — 1 the procedure
may exceed the bounding curve. It seems that by the complexity of the conditions one has to be
lucky to find critical values such that (5.1) is fulfilled. Gontscharuk [26] pursued a similar aim for
the FDR with a similar unsatisfactory result.

A slightly different way to consider the problem is to minimize

(s en) = |Epa[Vils o B [Vi]) = (g(n = 1), ..., g(0))]] (5.7)

with respectto 0 < ¢; < ... < ¢, < 1 for some R™-norm || - ||. Since we already know that exact

solving in general is not achievable, we are now interested in minimizing the function in (5.7).

5.2 An algorithm for computing exact critical values

In this section we present an algorithm for the construction of critical values 0 < ¢; < ... < ¢, <
1 such that

max |Ep 5o Vi (¢n) — min{g,(n — ng), no}| (5.8)

no=~k,...,n

is "minimal", where £k > 1 is a predetermined constant, ¢, is SU test with critical values
(¢i)i=1,..n and g, : {0,...,n — 1} — [0,n]. Indeed, it is a minimization problem in an n-
dimensional space and we will not provide any mathematical statement about the optimality of
our algorithm, but at least the performance in practice is admissible. The rough structure of the

algorithm for a given ENFR bounding curve is the following.

1. Fix k between 1 and n and a constant ¢ € (0,1). Determine critical values with the tech-

niques from Section 2.3 and set ng = k.
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2. Calculate/approximate ENFR,, ,,, for the critical values.

3. Determine/approximate the critical value that has the "largest impact” on ENFR,, ,,,,.
4. Update that critical value found in Step 3 and increase ng by one.

5. Go to Step 2 until ng = n.

This was one iteration of the algorithm. Of course, a new iteration can be initiated by starting at

Step 2 and setting again ng = k.

5.2.1 The first step

With the first step we try to find a point in the n-dimensional space, that is a set of critical values,
that serves as a "good" starting value for the minimization. At this point, the asymptotic relation
between bounding functions and rejection curves, investigated in Section 2.3, are very helpful. In
order to find an asymptotic critical value curve, we reformulate the problem. We assume that a

function ¢ : [0, 1] — [0, 1] exists such that

nlirgo gn(n —ng)/n = g(C)

holds for ng/n — ¢ and g(¢)/¢ and H(¢) = 1 — ¢ + g(C) are strictly decreasing in . If
we know the inverse of H(() explicitly, then we can directly determine the critical values ¢; for
i/n € H([0,1]) by g(H~*(i/n))/H~'(i/n), cf. Section 2.3. As in Example 2.18, it is possible
that H(1) = o > 0. Then H~'(i/n) is not defined for i/n < a. This can be solved by defining
g(¢) = min{g(¢), (1 — ¢)g(1 — €)/e} like in Remark 2.17. Recall that we are just interested in
critical values in order to go to Step 2. Thus, we are somewhat free in choosing the missing critical
values.

Any critical value equaling one, must be changed before going to the next step. For instance, two
simple methods that seem to work well is to choose min{c;, ¢} or c¢; as critical values for Step 2,

where ¢ € (0,1).

5.2.2 The second and third step

In order to calculate the ENFR,, ,,,, we must evaluate P,, ,,(V;, = j) for all j, which can be done
by the recursion we apply in (5.9), confer (5.5).

From Section 5.1 we know that

no no
. . .1 .
EnnoVn =Y iPane(Va = j) = 2370n1+ﬂf"n,no—1(‘/n =j—1). (5.9)
=1 =1

For a fixed ng we say ¢, +j+ has the largest impact on ENFR,, ,,,, where

J° =minargmax,_; ., Py,o-1(V, =k —1).
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Obviously, we ignore that IP,,L% (V,, = j) may depend on ¢y, 4 j+ for some n( and j. The minimum
in the definition of j* saves computation time if argmax is not unique.

At this point we want to make some remarks with respect to the computational effort. In the first
step we set ng = k and before we enter Step 2 for the first time, P, ,,,(V;, = j) has not been
calculated for any m or j. Sometimes, it may be possible to calculate directly P, ,,,(V;, = j). For
instance, if ¢p,— 11 = ..., = ¢, then Py, ,,, (V,, = j) = (’;‘)cj(l—c)m_j forj=0,...,m(<n).
But in general, we have to use the recursion and we see that, in order to calculate ENFR,, ,,,, we
must calculate P, ,,(V,, = j) forallm = 0,...,k —1and j = 0,...,m. Fortunately, this
recursion starts with m = 0 only at the first time we enter the second step. This can be seen
as follows. Suppose we did not alter any critical value in the fourth step. Then we can directly
calculate Py, ,+1(Vy, = ) from Py, ,,,(V;, = -). And even if we alter a critical value in the
fourth step, and this can only be ¢, 4+, then this affects only P, n,(V;, = -) with m > ng — j*
because Py, ,,, (V;, = -) depends only on ¢;,—sy 41, - - ., ¢,,. Therefore, the recursion can start using
Py, no—j+ (Vi = ) to update the probability mass functions of P, ,,,(V;, = -) for m = ng — j* +

1,...,ng instead of starting from scratch, that is P, o(V,, = -).

5.2.3 The fourth step
Suppose ¢y, +j+ is a critical value with the largest impact on ENFR,, ;,, found in the foregoing
step. The update rule is

) min{g,(n —ng),no} — ENFR,,
Cny+j* < mln{max{cnl+j* + TIZIP) 1(‘7/ = j* — 1) nn07cn1+j*—1}7cn1+j*+1}7
n,no— n —

where ¢g = 0 and ¢,+1 = ¢ < 1; c is the predetermined constant from Step 1. The idea behind

this rule is the following heuristic equation

gn(n - nO) = nocnl-l—j*Pn,no—l(Vn = ]* - 1) + ng Z Cn1+j]P)n,no—1(Vn :] - 1)a

where the right-hand side is the ENFR for the critical values 0 < ¢; < ... < ¢pyqjx-1 <

Cnitj* < Cny+jr+1 < ... < ¢y. Solving this heuristic equation for ¢, 4 j+ yields the essential part

of the update rule by observing that

no > Cny4iPong—1(Va =j = 1) = ENFRy, 5y — 1€, 45+ Prng—1 (Ve = j* = 1).

Obviously, we simplify the complex functional relation of ENFR,, ,,, and ¢, 4« to a linear re-
lation. It is possible to apply the recursion (5.5) many times to get a more sophisticated relation
between the ENFR and the critical values and therefore to improve the update rule, but it seems
that the simple update rule already yields good results. Furthermore, a more sophisticated relation

will also lead to an update rule that would be more time consuming.
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In order to ensure monotonicity of the critical values, other update rules may be possible at this

step. For instance, one can first set

min{g,(n — ng),no} — ENFR,, }

Cny+j4* < MiN{ ¢, Cp 44+ + -
ni1+j { s Cni+jg nOPn,n,O—l(Vn — % _ 1)

and then ¢, < min{c,, 4;+,¢,} for k = 1,...,n; + j* — 1 and ¢ < max{cy, 4, ci} for
k=mn1+75"+1,...,n. In general, this will update more than one critical value but the algorithm

is not very stable in the sense that the resulting ENFR curve does not “converge”.

Remark 5.1

It may seem odd that the algorithm does not search an n( such that the difference between the
ENFR and g,, is maximal and tries to correct this as much as possible. The reason is that in
order to find this largest difference, we have to calculate ENFR,, ,,, for all ny and by our recursive
formulas we must start with ng = 1. Updating more than one critical value seems to lead in
many situations to unstable ENFR curves. But calculating ENFR,, ,,, for all ng only to update one
critical value and then again calculating ENFR,, ,,, for all ng to find the new largest difference is

very time consuming.

Remark 5.2

The computational effort is considerable. One important factor is the accuracy of the computa-
tions. As n grows the accuracy of the calculations had to be increased because Py, ,,, (V,, = j) gets
very small or even tends to zero. But as can be seen from Figure 5.6, at least for this example, the
asymptotic rejection curve obtained in Step 1 is already suitable for n = 200. The computation
time for Figure 5.6 was only a few minutes. But for n = 2000 the computation time would be a
few hours. Unfortunately, the algorithm is not suitable for parallelization because of its recursive
nature. An idea to save computation time could be to determine and update ¢y, 4 j+ in Step 3 and 4

only if the ENFR differs from g,,(n1) by a certain amount.

5.2.4 Examples

Now, we apply the algorithm for fixed n in order to obtain critical values c;, such that
_max {|ENFR;, 5 (n) — min{gn(n —no), no}l}
0=FRy-ey

is “minimal” for SU test ¢,, with critical values c;. Figure 5.2 shows three different asymptotic
ENFR bounding curves and the corresponding asymptotic rejection curves. The next three exam-
ples will refer to theses functions.

For all examples we choose £ = 1. In the first example, with n = 50, we consider the ENFR
bounding function g ,(n1) = (n1 + 1)0.05/(1 — 0.05) which leads to the asymptotic ENFR
bounding function g1 (¢) = (1 — ¢)0.05/(1 — 0.05) with the corresponding asymptotic rejection
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Figure 5.2: The left figure shows the asymptotic ENFR bounding functions g1 ({) =
(1 — €)0.05/(1 — 0.05) (blue), g2(C) = 0.05 (red) and g3(¢) = 0.6¢(1 — ¢ +
0.03sin(97¢)) (black). The right figure shows the corresponding asymptotic re-
Jjection curves, cf. Remarks 2.14 and 2.15, ro(t) = t/(t(1 — 0.05) + 0.05) and
ri(t) = 1 —0.05/t + 0.05 (red) defined only for t € [0.05,1]. Note, r3(t) has

no explicit representation.

curve 7 (t) = t/(t(1 — 0.05) + 0.05). The initial critical values for the algorithm are ¢; =
min{c,r; *(i/n)} and we choose ¢ = 0.7. Figure 5.3 visualize the ENFR after Step 1, after one

iteration and after three iterations.

In the next example, again with n = 50, we consider the ENFR bounding function g3 ,(n1) =
0.05n, which leads to g2(¢) = 0.05. In this case, following Remark 2.14, the corresponding
asymptotic rejection curve is ra(¢) = 1 — 0.05/t 4+ 0.05 for ¢ € [0.05, 1]. Actually, 72 is not a
rejection curve in our sense because the domain of 7 is [0.05, 1] instead of [0, 1]. Nevertheless, in
order to create a set of critical values, we define ¢; = cry ' (i/n) fori = 1,...,n and set ¢ = 0.98.
Note, 1 — 0.05/t + 0.05 is injective on (0, 1]. Hence, ¢; is defined for ¢ = 1,...,n. Figure 5.4

shows the ENFR again after Step 1, after one iteration and after three iterations.

The last example contains the "odd" ENFR bounding function g3, (n1) = 0.6(n — ng)(1 —
no/n + 0.03sin(97np/n)) where no explicit representation of the asymptotic rejection curve or
the asymptotic critical value curve exists. This bounding function is not of practical relevance,
but it demonstrates that the algorithm can not cope fast changes in the bounding function. But
this seems to hold only for small sample sizes. One reason may be that the critical values were
obtained by asymptotic considerations and the update rule is too “stiff”. Another reason may be an
effect we already observed in Section 5.1, where we have seen that g may not increase or decrease
too fast in the case n = 2, cf. (5.4). For n = 50 only three iterations were conducted, but more

iterations did not improve the result, cf. Figure 5.5. For n = 200 we directly see that the critical
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3,5

2,57

ENFR

Figure 5.3: The ENFR of a SU test with critical values min{c,r'(i/n)}(i =
1,...,50) (black), where r(t) = t/(t(1 — 0.05) + 0.05), k = 1, ¢ = 0.7 and
the ENFR of the SU test after one (green) and after three (blue) iterations. The red
line is the ENFR bounding function min{ng, (ny + 1)0.05/(1 — 0.05)}.

44

ENFR —

Figure 5.4: The ENFR of a SU test with critical values cry ' (i/n)(i = 1,...,50)
(black), k = 1, ¢ = 0.98, where ro(t) = 1 — 0.05/t + 0.05, and the ENFR of the
SU test after one (green) and after three (blue) iterations. The red line is the ENFR

bounding function min{ng,0.05n}.
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ny

Figure 5.5: The ENFR of a SU test (black) with critical values that are implicitly
defined by equation (2.10), with g(¢) = g3(¢) = 0.6¢(1 — ¢ + 0.03sin(97()), k =
1, ¢ = 0.98 and the ENFR of the SU test after one (green) and after three (blue)
iterations. The red line is the ENFR bounding function min{ng, 0.6nq(1 — ng/n +
0.03sin(97ng/n))}.

values from Step 1 already provide a SU test that is close to the ENFR bounding curve. Step 1 of
the algorithm seems to be very important. It seems that the asymptotic rejection curve provides
critical values that are beneficial for the iterations. Using other critical values, for instance induced
by the Simes line, yields for n = 200 even after 10 iterations results that are worse, cf. Figure 5.7.
The reason for this is the update rule, because the updated critical value c;,, 1 ;+ is constrained by
the critical values in the neighborhood to ensure monotonicity. An algorithm which decreases or

increases the critical values around ¢, 1 j« is also possible but it yields worse results.

5.3 Summary

This chapter started with the aim to construct a SU procedure that fulfills perfect ENFR control,
that is (5.1), for fixed n and for arbitrary bounding functions. But even the case n = 2 shows that
this aim is not achievable in general. Therefore, we developed an algorithm in order to achieve
that the ENFR is as close as possible to the bounding function. This algorithm showed good
performance in different situations but no mathematical results concerning its performance are

derived.
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Figure 5.6: The ENFR of a SU test (black) with critical values that are implicitly
defined by equation (2.10), with g(¢) = g3(¢) = 0.6¢(1 — ¢ + 0.03sin(97¢)), k =
1, ¢ = 0.98 and the ENFR of the SU test after one (green) and after three (blue)
iterations. The red line is the ENFR bounding function min{ng, 0.6n¢(1 — no/n +
0.03sin(97ng/n))}.
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Figure 5.7: The ENFR of a SU test (black) with critical values ¢; = 0.5i/n, k = 1,
¢ = 0.98 and the ENFR of the SU test after one (green) and after ten (blue) it-
erations. The red line is the ENFR bounding function min{ng, 0.6nqo(1 — ng/n +
0.03sin(97ng/n))}.
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Chapter 6

Excess probabilities and differential

equations

As already mentioned in Section 1.7, Genovese and Wasserman proposed

Py (FDP(¢y,) > ¢) =Py (}m > c) <o«

as an error criterion instead of

FDRy(¢y,) :m( Va(pn) ) <a

R, (pn) V1
Their argument was that controlling the FDR does not necessarily offer high confidence that the

FDP will be small. For the ENFR this argument leads to the following error criterion,
Py (Vi(en) > gn(n1(9))) < aforall ¥ € O, (6.1)

instead of EyV,,(¢n) < gn(ni(9)) for all ¥ € ©. We say that a SU procedure ¢,, controls the
gn-NFRX at level « if (6.1) holds. NFRX is an abbreviation for the number of false rejections
exceedance. In this chapter, we show for a sequence of suitable SU tests (,, that

lim Py (Vi (on) > gn(n1)) =« (6.2)

n—oo

is connected to a sequence of ordinary differential equations (ODEs). As far as the author knows
this is the first result that relates a specific probabilistic error measure to the field of differential
equations. The aim is to construct SU tests ¢,, such that (6.2) holds true for a given sequence of
functions g,,. We start by investigating the crossing-point of ¢,, and establish that the crossing-
point is asymptotically normal. Then we investigate lim, .o Py (Vy,(¢n) > gn(n1)) and state
sufficient conditions such that (6.2) holds. These conditions will lead to a sequence of ODEs that
implicitly define a sequence of rejection curves. The existence of solutions is investigated and it

is shown that an interval I C (0, 1) (independent of n) exists such that the sequence of ODEs
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are solvable eventually for all n on I. Solutions of the ODEs will provide, under some regularity
conditions, a sequence of rejection curves r, such that (6.2) holds for SU tests ¢,, induced by r,.
In our considerations ng/n — ¢ € (0, 1) is kept fixed. Nevertheless, solutions of the ODE on the
interval I will provide rejection curves such that (6.2) holds for ¢ € Z, where Z = (a,b) with
0 < a < b < 1. For the important case g, (n1) = (n1 + 1), with y € (0, 1), we exemplify three

different methods to obtain a sequence of rejection curves such that

lim Py (Vi(on) > gn(ny)) = a (6.3)

n—oc
holds for ( € Z. At the end of this chapter, we discuss how our findings can be adapted if the
error measure is the c—FDX.

The key property for the connection between (6.2) and ODE:s is the fact that the crossing-point
between a rejection curve and an ecdf asymptotically follows a normal distribution. This asymp-
totic normality was first observed by Neuvial in [44]. In the aforementioned publication a SU test
induced by a fixed rejection curve and LSUPI tests were considered. In our case, a sequence of

rejection curves has to be considered which is not covered by the theorems developed in [44].

6.1 General assumptions

In this chapter we assume that (p;);cn is an independent sequence with p; ~ Fp if i € Iy and
pi ~ Fyifi € I, with Fy(t) < Fi(t) for all ¢t € (0,1). There is a little slip in the notation
because in this dissertation we assumed that F;, denotes the ecdf of the p-values pq, ..., p,. For
the sake of simplicity we ignore that F}, is ambiguous forn = 0 and n = 1.

We consider ¥ € © and lim,,_oc ng/n = ¢ € (0, 1) fixed and define F'(t) = (Fy(t)+(1—C) F1(t).
Denote by f(t) = (fo(t) + (1 — ¢) f1(t) the corresponding density function and assume that fj
and f; are continuous on (0, 1).

In the following, we always consider a sequence of continuously differentiable rejection curves
ry, such that r,, converges uniformly to a rejection curve r. Further, we always assume that 7/,
converges uniformly to 7/, where 7, (') denotes the first derivative of r,, (r). Denote by C|0, 1] the
set of all continuous functions z : [0, 1] — R and by D]0, 1] the set of all functions z : [0, 1] — R
that are right continuous and whose limits from the left exist everywhere in [0, 1]. Both spaces are

endowed with the supremum norm, that is ||x||(g 1) = sup{|z(¢)| : t € [0, 1]}. Further, define
D, = {z € D[0,1] : F + n~ /22 is a distribution function on [0,1]},
which we also endow with the supremum norm. We denote the largest crossing-point by
T.(G) = sup{t € [0,1] : G(t) = rn(t)},

where G is an arbitrary distribution function on [0, 1]. Note, T},(G) is well-defined because r, is

assumed to be continuous, r,,(0) = 0, and r,(1) > 1.
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For technical reasons we also assume the following condition for the entire chapter.

Unique crossing-point condition: There exists a 7* € (0, 1) such that
1. 7* is the only point in (0, 1] with r(7*) = F(7*),
2. 7(1%) > f().

We want to distress that by condition 1 of the unique crossing-point condition we exclude the case

that (1) = 1. SU tests induced by such a rejection curve will always reject all null hypotheses.

Remark 6.1
From r,(T,,(F)) = F(T(F)) = CFo(To(F)) + (1 — Q) F1(T,(F)) it follows that

_ RU(TW(F)) = ra(Tu(F))

= R(Tu(F) ~ BolT(F))
for T,,(F) € (0,1). Define
_ F(Ta(F)) — m(Ta(F))
QTP = 7 7Py~ BT (F)
for short. Similar, we have . .
C:Q(T*): Fl(T )_T(T )

Fl(T*) — F()(T*) '
Note, ), depends on 7, and () depends on r. These two relations will be used frequently. The
main purpose of these expressions is to obtain results that are not formulated in ¢ but solely in

terms of crossing-points T, (F') or 7.

As usual, we denote by ®(z) the standard normal distribution function.

6.2 Asymptotic normality of crossing-points

The aim is to proof that \/n (T, (F,)—T,(F)) converges to a normally distributed random variable.
In order to sketch the proof, we start with a similar but simpler case. Let X, be real-valued random
variables and € R with \/n(X,, — #) — X in distribution, where X ~ N (0, c?). Suppose we
have a differentiable function h : R — R, then the delta method, see Chapter 3 in [74], directly
yields v/n(h(X,) — h(6)) — B'(6)X in distribution, where h’ denotes the derivative of h.
For our purpose, we have to allow that X, is a stochastic process and £ is a statistical functional.
Of course, if it is possible to establish a similar result as above, it is natural to ask what the meaning
of A’ is if h is a functional. The decisive term in this context is the Hadamard differentiability,
which is defined as follows. Let D be a metric space. A functional T' : Dy — R, Dy C D, is
Hadamard differentiable at 6 € Dr if there exists a linear map 7 : D — R such that

T(60+tHy) —T(0)

t

— Ty(H), ast |0, H — H € D, and § + tH; € Dr. (6.4)
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Suppose now that X, : © — Dy is a stochastic process, # € Dp, and /n(X,, —0) — X in
distribution, then the functional delta method yields \/n(T(X,,) —T'(0)) — T,(X) in distribution.
Now, we are almost done. In our case, X,, = F,, 0 = F and v/n(F,, — F') — B in distribution,
where B denotes a Brownian bridge. However, we have a sequence of statistical functionals,
namely 7;,. But following the proof of the functional delta method (Theorem 20.8 in [74]) will
allow to establish the asymptotic normality of 7,,(F;,) as follows. We have

T, (F +n=12 [nY2(F, — F)]) — T,(F)
n—1/2 :

nl/z(Tn(Fn) —Tw(F)) =

Denote by
T (F +n~Y2%g) — Tp,(F)
n—1/2

Ap(x) =
a functional that maps D,, to R. Recall,
D, = {z € D[0,1] : F +n~"/2z is a distribution function on [0,1]}.

First, in Lemma 6.2 we show the existence of a functional A : C'[0, 1] — R such that A,,(H,,) —
A(H) if H, — H in D|0,1], where H, € D, and H € C|0,1]. Second, assuming that the
stochastic process n!/? (F,,— F') converges to B in distribution, we apply the extended continuous-
mapping theorem (Theorem B.4) to obtain A, (n'/?(F,, — F)) — A(B) in distribution and con-
clude by establishing the normality of A(B). To sum up,

(T, (F,) — To(F)) = Ap(n'/?(E, — F)) — A(B).

Note, A, is very similar to the ratio in (6.4) and thus A is some kind of Hadamard derivative.
Virtually, we follow the standard technique: calculate the (Hadamard) derivative and apply the

(functional) delta method.

Lemma 6.2
Let H € C[0,1] and H,, € D,, C DI0,1] be an arbitrary sequence such that Hy,, converges to H
in D[0,1]. Then

T.(F +n"Y2H,) — T,(F H(r*
T )‘*T«Tﬂs—}@ww

Furthermore, for all n € N it holds that

B H, ()
M) = ey~ ity

where 7, = T,,(F + n_l/an) and t,, lies between 1, and T, (F).

Proof: For short, let 7,7 = T,,(F'). Obviously, 7, and 7,5 converge to 7* by the uniform conver-
gence of H,, and r, to H and r, respectively. We define ¥,,(t) = r,,(¢t) — F(¢). By the mean value
theorem we have

(1) — V(1) = W, (ta) (0 — 7)),

Controlling the Number of False Rejections in Multiple Hypotheses Testing, Marsel Scheer



CHAPTER 6. EXCESS PROBABILITIES AND DIFFERENTIAL EQUATIONS 89

where t,, is between 7,, and 7,5, Since f and r’ are continuous and 7/, converges uniformly to 7,
we have that U/, (¢,,) converges to ' (7*) — f(7*). Note that U,,(7,¥) = r,,(7,5) — F(7,}) = 0 and
hence
o U (70)

" T;'L(tn) - f(tn) '

For the numerator it follows that

‘I]n(Tn) = Tn(Tn) - F(Tn)
= rn() — (F +n"Y2H,) (1) + (F +n~Y2H,) (1) — F(7)

=n"Y2H, ().

Altogether we have
H, (1)

An(Hn) = n 2l = 7] = sy

n

We finally conclude that H,,(7,,) — H(7*) by the uniform convergence of H,, and the continuity
of H. [

Theorem 6.3 ( Asymptotic normality of the crossing-points )
Ifng/n = ¢+ o(n~Y2), then

1/2Tn(Fn) - Tn(F)
5(r, ¢, 7)

lim Py (n

n—oo

< z) = O(2)

forall z € R, where

Sz, C,t) = VER (1 - R@)+ (1 - R - )
- FGEN0 :

with &' denoting the first derivative of x. Furthermore, the representation

Tn(Fn)) — F(Tn(Fn))

W (T () — T()] = /2720 () = F(r)

+0o(1) (6.5)

holds almost surely.

Proof: We first determine the limit process of H,, = n!/ 2(F,, — F) and then apply Lemma 6.2

together with the extended continuous-mapping theorem. We decompose the ecdf in

1 & 1 & 1 & no n
Fa(t) =~ Lp<ny = - D Lpesrieny + — > Lpizvieny = - Fug () + - Fy (£) (say).
=1 =1 =1
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Note,

Hy = n'2[22F), = CRo+ LF), — (1= O]

= B2 = 0\ [0, - R

n n
FE A -1 Qo (- O (E - R)

\f Cnl2(FO )+\/Z(l—c)ni/Q(Fil—FlHo(l)-

Since (p;)ie1, and (p;i)ier, are independent, we obtain by Donsker’s Theorem from [74], p. 266,
that H, — X = /(Bpg, + /1 — (Bp, in distribution in D[0, 1], where B denotes an F'-

Brownian bridge, that is a Gaussian process with zero mean and covariances

COV(BF(tl), Bp(tg)) = F(min{tl, tQ}) — F(tl)F(tQ).

By Theorem B.4 (extended continuous-mapping theorem) and Lemma 6.2 we conclude
X(7*)
()~ 1)
in distribution. Obviously, X (7*) ~ N (0, (Fo(7*)(1 — Fo(7*)) + (1 — Q) F1(7*)(1 — Fy(7*)) by

the independence of B, and Bf, .

n1/2(Tn(FN) —To(F)) —

The representation (6.5) directly follows by the definition of H,,, continuity of f and r’ at 7%, the

uniform convergence of r},, and Lemma 6.2. U

Remark 6.4
Consider a fixed rejection curve r and the corresponding SU tests ¢,, induced by r,, = r. Denote
by ¢(¢) = lim,, . ENFRy (¢, )/n. If Theorem 6.3 is applicable, then

1/2Tn(Fn) _Tn(F) 1
MG S O)

This means that with a probability of 1/2 the random crossing-point is asymptotically larger than

lim Py (n

n—oo

the asymptotic crossing-point. Thereby, it is reasonable to expect that

. 1
lim Py (V;, > gn(n1)) = =,
n—o0 2
where g,,(n1) = ng(1 —ny/n). Theorem 6.5 and Remark 6.17 will show that this loosely formu-

lated conjecture is true.

Controlling the Number of False Rejections in Multiple Hypotheses Testing, Marsel Scheer



CHAPTER 6. EXCESS PROBABILITIES AND DIFFERENTIAL EQUATIONS 91

6.3 Quantile equation

We are now able to prove that under some regularity conditions equation (6.2), that is,
lim Py (Vi (on) > gn(ny)) =«
n—oo

holds true for suitable SU tests ,,. Although the proof is longish and technical, the idea is very
simple and based on
Valon) > gn(n) € Wa(Tn(Fr)) > dy,

for suitable W, and d,,. Applying Taylor’s theorem to W, shows that W,,(T,,(F},)) is asymptot-
ically normal since T, (F},) is asymptotically normal. Finally, we show that V,,(¢,) > gn(n1) is

equivalent to

1/2(1 — Qn(Tn(F>))F1(Tn(F)) +9(Qn(Tn(F>)) — Tn(Tn(F)) (6.6)
r(Tn(F)) ’ '

where Q,,(t) = (F1(t)—rp(t))/(F1(t)—Fp(t)) and g(¢) = limy, 00 gn(n1)/n. Thereby, (Vi )nen
is a sequence of random variables which will will be shown to converge in distribution to a nor-

Y,>n

mally distributed random variable with mean zero and standard deviation s(r, ¢, 7*) /r'(7*), where

s is the function already introduced in Section 2.4, i.e.

V(@' () — (1= fi(t)*CFo(t) (1 — Fo(t) + L) (1 - QFi(t)(1 - Fi(t))
(t) = Cfo(t) = (1 =€) f1(t) '

In the following, a helpful notation will be

172 (1= @n(Ta(F))) Fa (T (F)) + 9(Qn(Tn(F))) — rn(Tn(F))

s(x,(,t) =

4n Tn F)) = ’ (67)

(alF) (s QuTn(F)), Tu(F))

which is the right-hand side of (6.6) divided by s(7,, Q. (T (F)), Tr,(F)) /1, (Tn(F)).

Theorem 6.5 (Quantile equation theorem)

If on is a SU test induced by T, no/n = ¢ + o(n~'/?), gn(n1)/n = g(¢) + o(n~?), and
Qn(Tn(F)) =q+ 0(1) (6.8)

forq=®"1(1 - ), a € (0,1), then (6.2) holds, that is,

lim Pﬁ (Vn(@n) > gn(nl)) =

n—~oo

We call equation (6.8) the quantile equation. Before we present the proof, we want to make two

remarks with respect to this theorem.

Remark 6.6
As stated at the beginning of this chapter we aim for equation (6.2), that is,

nh—{go Py (Va(on) > gn(n1)) = a,
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where ¢, are SU tests and « € (0, 1). Suppose we have a sequence of rejection curves 7, such that
qn(Ty(F)) = @ 1(1—a)+o(1). Theorem 6.5 guarantees that (6.2) holds true. Of course, we have
no information about Py (V;,(¢y,) > gn(n1)) for fixed n. So, if r, fulfills g, (T,,(F)) = ® (1 —
a), both Py (Vi,(¢n) > gn(n1)) < a or Py (Vi(¢n) > gn(n1)) > « is possible. Nevertheless,
later in the thesis we try to obtain 7, such that ¢,, (T}, (F)) is as close as possible to ® ~!(1—c). This
is in accordance with the usual approach in asymptotic statistic. For instance, if the distribution of
some test statistic X,, converges to ¢ and we aim for lim,, ., P (X,, > ¢) = «, then it is common

to choose ¢ = ®~1(1 — a).

Remark 6.7

Asymptotic tests are always unsatisfactory in the sense that they provide no information for fixed
n. Of course, if Py (Vi (¢n) > gn(n1)) = 1 — (®(q) + ¥(q)//n) + o(1), we would try to
determine 7, such that ¢, (7,,(F)) = gand 1 — (®(q) + ¥(q)/+/n) = a. Although this would
not provide any information about Py (V,,(¢n) > gn(n1)) for fixed n, it could be expected that
now the expression is closer to « than it would be if only ¢, (7,,(F)) = ®!(1 — «) holds true.

Determining such a ¥ in Theorem 6.5 may be a field of future research.

Proof of Theorem 6.5. Denote by F}) (t) (F,y (t)) the ecdf of the p-values corresponding to true
(false) null hypotheses. Then,

Vn(gpn) > gn(nl)

A nOFr(L]O (Tn(Fn)) > gn(n1)

o nOFSO (Th(Fn)) + anril (T0(Fr)) _ anrll (Th(Fy)) > gn(n1)

anél (Th(Fn)) > gn(nl).

S rp(Th(Fn)) — - -

We now investigate the last inequality and virtually collect all deterministic terms on the right-hand
side and all terms on the left-hand side that depend on the p-values. After standardizing, the left-
hand side will converge in distribution to a standard normal random variable. In order to simplify
the notation, we suppress 1, (F,) and write solely m for m(7,(F,)). Hence, V,,(¢n) > g(n1) is
equivalent to 7, — ”lFrlq /n > gn(n1)/n. Substituting 7, by its Taylor expansion at 7;,(F’) in the

latter inequality, that is,
o (Tn(F)) = 1o (Tn(F)) + 7 (T (F)(Tn(Fp) — Th(F)) 4 op(n™Y?),

and multiplying by n'/? yields

1/2 Fl

nl/2 _ - ™
Tn(Fn) = TolF)] = e s i (Ta(F)) - r(Ta(F))
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For short, we rewrite (6.9) as

An
B = o T (F))

n

+ Op(l) > nl/QDl,n.
First, we center A,, which results in a deterministic expression, that is,
A= [2EL — (1= OR] +n 21 - OR
=" [ =o)L, — (1= OF | +0' 21 - OR
n 1/2
= [ (= Ony [FL = B 4021 = Q(F = Fi(Tu(F))

+n2(1 = OF(To(F)) + op(1).

The Taylor expansion of Fy at T, (F') yields

A, = \/Z(l _ Qn}/Q [Er — Fi] + (1= O ATU(F)A,

+ 02 (1 = Q) Fi(T(F)) + op(1)
= A1,n + DQ,nAn + n1/2D3,n + OP(l) (SaY)~

Therefore, (6.9) is equivalent to

__Dan B o nl/2 _ D3n
(1= o) & sty Hor > (gt ) 610

n
In the following, we show that the left-hand side of (6.10) is asymptotically normally distributed.
After introducing an appropriate standardizing factor in (6.10) the right-hand side will converge to
q. This will finish the proof. We start with the left-hand side of (6.10) and common terms of A,

and A1 ,,. Using the representation (6.5) we see

1/2[F F]

S ey

r! +0P(1)

The numerator was investigated at the beginning of the proof of Theorem 6.3 and equals

28, = R+ [0 = Onl (B, = F) +o(1) = B+ Av (1)

where Mg = /7e(n 1/2(1*"0 — Fy). Denote by Dy, = (1 — D2, /7, (T5,(F)), then

Al,n o D4,nAO,n D4,nA1,n . A1 n
Danlin = rh(Tu(F)) (%) — f(7%) " rp(m) = f(7) ()1 +o(1))
_ D47nA0,n (D4,n - ) ( ) f( ) 0
S — 1) e - fey et ort)
= hn(AO,ru A1,n) + OP(l) (saY)- (611)
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We now show that h,, (Ao, A1) is asymptotically normally distributed. Note, Ay, (Agpn, A1r)
corresponds to Y;, in (6.6). So far, we have

Vi > gn(n1) € hp(Don, A1) +op(1) > nl/? (%

1 (Tn(F))

What follows now is the same argumentation as in the proof of Theorem 6.3. Again by Donsker’s

Theorem, (Ao (+), A11(-)) — (V{Br,(:), /1 — (Bp,(+)) in distribution, where By denotes an

F'-Brownian bridge. By the extended continuous-mapping theorem (Theorem B.4) we obtain that

+ Dl,n) .

hin (Ao, A1) converges in distribution to

Dy Xy (Dy = Dr' () + £(77)
P — 1) ) — 1)
with Dy = limy, o0 Dy, = 1—(1—C) limy, o0 f1(T0(F)) /70 (To(F)) = 1—(1=C) f1(7%) /7' (7%),
where X ~ N (0, (Fy(7*)(1—Fp(7*))) is independent of X; ~ N (0, (1-C)F1(7%)(1—F1(7%)))
by the independence of Bp, and B, . The variance of X is

(S(T, C,T*))z _ () = A= QA CF () (L = Fo(r))
(1) [ (7)) (' () = F (7))

n CREA = QR (A = Fi(r))
[P () () = FENPE

X =

le

The right-hand side of (6.10) equals

2 <<1 ~ OF(TA(F)) + 91+ on™1/2) ~ T”(T"(F))> N

r(Tn(F))

which differs from the left-hand side of the quantile equation (6.8) by the factor
$(rn, Qun(Th(F)), T (F)) /7, (Tn(F)). By Remark 6.1 we have ( = Q, (7, (F')) and hence by
the quantile equation (6.8) we get

Vn > gn(nl)

2 (1= QR(T(F)) + 9(O)(1 + o) = ralTu(F)
= ol ) o) =0 ( L (T(F)) )

& hy (Do, A1) (T (F))/8(rn, Qu(Tn(F)), T,(F)) + op(1) > g + o(1).

Since 7, (r],) converges uniformly to r (r'), T,,(F) — 7*, and Q,(T,,(F)) = Q(7*) = (, we

have s(rp, Qn(Th(F)), Tn(F)) — s(r, ¢, 7*) and ), (T,,(F)) — r'(7*). Altogether, we get
1—®(q) =Py (Xr’(T*)/s(T,C,T*) > q)

= lim ]Pq? (hn(AO,mAl,n)T;—L(Tn(F))/S(TmQn(Tn(F))an(F)) >q+ OP(l)))

n—oo

= lim Py (Vo (¢n) > gn(n1)).

n—oo

This completes the proof. U
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Remark 6.8

The last theorem provides Py (V,,(¢p) > gn(n1)) = 1 — ®(gn(Th(F'))) + o(1). For fixed ¢ and
a known rejection curve r,, we can calculate 1 — ®(q,,(7,,(F))). Note, in the cases considered
in this thesis there will always be a one to one map from ¢ to 7,,(F"). For large n plotting 1 —
®(q, (T, (F))) against ¢ can be interpreted as a plot of Py (V,,(,) > gn(n1)) against . Such

plots will appear a couple of times.

Corollary 6.9 (Asymptotic distribution of V},)
Let @, be the SU test induced by ry,. If ng/n = ¢ + o(n~Y/2), then

V(Va(en)/n = CFo(77)) = V

in distribution, where V' is normally distributed with zero mean and standard deviation s(r,(, 7*).

Proof: Reflecting the proof of Theorem 6.5 it is obvious that

Valga)/n — ralTo(F)) + (1 — OF (To(F))
vn (L0 (F))

n

= hn(AO,'rIJ Al,'n) + OP(l)a

where hy,(Agpn, A1) is defined in the proof of Theorem 6.5 (cf. (6.11)) and converges in dis-
tribution to a normal random variable with zero mean and standard deviation s(r, {, 7*)/r'(7%).

Since

m(Tn(F)) — (1 = QF1(Th(F)) = CFo(Tn(F)) = CFo(77) + o(1)
the assertion follows. U

Remark 6.10
Obviously, if r,, equals r, then Corollary 6.9 reduces to Corollary 2.21.

Theorem 6.11
If Go(To(F)) = q + o(1) holds, then r,(T,(F)) = 7(Tn(F)) + O(n~/?). If additionally
sup{rl)(z) :n €N, z € [T* —¢, 7" + €|} < oo for some € > 0, then 1, (7%) = r(7%) +O(n~1/?).

Proof: By the unique crossing-point condition it follows that 0 < s(r,(,7*) < oo. Since
$(rp, Qn(Th(F)), To(F)) — s(r, ¢, ), we see for the numerator of g, (7, (F)) that

O(1) = V(1 = QFu(Tn(F)) + 9(C) — ra(To(F))) = Vn(g(C) — CE (T (F))).-

Therefore, g({) = (Fo(7*). Furthermore, by Taylor’s theorem and the continuity of fj it follows
that

9(Q) = CFo(Tn(F)) = Cfo(T"NTu(F) = 77) 4+ o(1)(Tn(F)) — 77).

Thus, T;,(F) —7* = O(n~'/?) holds. Similarly, it follows that F} (7*) — Fy (T},(F)) = O(n~1/?),

Controlling the Number of False Rejections in Multiple Hypotheses Testing, Marsel Scheer



96 6.3. QUANTILE EQUATION

r(7*) — r(T,(F)) = O(n~'/?), and
O(1) = vn((1 = OF(Tu(F)) + () = rn(Tn(F)))
= Vn((1 = OF(T7) + CFo(77) — ra(Tn(F))) + O(1)
= Vn(r(r") = ra(Tu(F)))
= Vn(r(Ta(F)) = ra(Ta(F)))-

This proves the first assertion.

Again, we obtain from Taylor’s theorem that
T(Tn(F)) = rn(77) + ()T (F) = 77) + (r, (0T (F))) = iy () (Tn(F) = 77),

where 7(1,(F)) lies between T, (F') and 7*. Since T,,(F') — 7" and we assume that M =
sup{r/(z) :n €N, z € [7* — ¢, 7" + €]} < 0o we get

P (T (F)) = mo(7%)] < 2M (T (F) — 7%) = O(n~Y/?).
Similar as before, we conclude

O(1) = V(1 = QF(Tw(F)) + 9(C) — ra(Tu(F))) = Vn(r(77) — ra(77)) + O(1).

This proves the second assertion. O

Obviously, Theorem 6.11 encourages one to determine a 6 € R such that r,,(7*) = r(7*) +d/y/n
holds. Ideally, we want to determine a differentiable function d;(¢) such that r,(t) = r(t) +
81(t)/+/n holds for all ¢ € (0,1). We start by investigating ¢, (t) = ¢ for r(¢t) + 1(¢)/+/n and
t € (0,1). Denote by 07 (¢) the first derivative of 41 (¢) with respect to ¢. Assuming &} (¢) € R for
allt € (0,1), we show that it is possible to obtain a 01 (¢) such that &} (¢) € R and ¢, (t) = g+o(1)
forallt € (0,1).
Let the asymptotic ENFR bounding function ¢(¢) = lim,—cc gn(n1)/n be known and fixed.
Suppose that 7(t) = 1 — Q(¢) + ¢g(Q(t)) holds true. For instance, if g({) = (1 — {)a/(1 — «),
then r(t) equals the AORC, that is r(t) = fu(t) = t/(t(1 — ) + «). The asymptotic relation
between bounding functions and rejection curves was studied in Section 2.3. The Remarks 6.17
and 6.18 are also devoted to this asymptotic relation and their consequences for the NFRX. Next,
we try to determine 01(¢). Under DU configurations we have Fy(t) = t, fo(t) = 1, Fi(t) = 1,
and fi(t) = 0fort € (0,1) and thus we get
12 (= Qu)F(D) 4+ 9(@u(0) — ra(t)
8(rn, Qn(t),t)
e 10 Qu)1 +9(@n(0) — ra(]irh(t) — Qul)L — (1~ Qu(1)0
V() = (1= Qu(1))0)?Qu(t)t(1 — 1) + Qn(t)*12(1 — Qu(1)1(1 — 1)
_ 121 = @n() +9(Qn(t) — (1)) (rn(t) — Qu(?))
() @n(t)t(1 =)

q = qn(t)

(6.13)

Controlling the Number of False Rejections in Multiple Hypotheses Testing, Marsel Scheer



CHAPTER 6. EXCESS PROBABILITIES AND DIFFERENTIAL EQUATIONS 97

By definition, see Remark 6.1, we have

Cl—r(t)  1—r(t) O 51(t)
@l === =71 _\/5(11—75)—Q(t)_\/ﬁ(11—t)'

Suppose ¢ is continuously differentiable at (%), then a Taylor expansion yields that

1= Qu(t) + (Qult) = 1= Q) + 21 +0(@(0) - 9 QM) + olV] 2t
= r(t) + 61(¢) 1\%‘2 1(?(:))) + \/ﬁd(ll(tz o).
Hence, equation (6.13) becomes
OO a0/ Vi+ Zii o)) - Qa(t)
" ONEENONG
_uedi®) (FEEE o) () — Qu (1) 6.14)

Vn r(t)y/1 = (t)VE
= 01(t)An(t) (say).

Note, if ¢ is linear in ¢ or even constant, then the term o(1) in (6.14) can be discarded. This
fact will be explicitly used later when we generalize our calculations. By assumption 7/, (t) =
' (t) + O(1/4/n) and this entails

- g(QW) T -Q1)

L=t rt)y1-rt)Vt

If A(t) # 0 forall ¢ € (0,1), then we obtain §,(t) = q/A(t). At the beginning we made the
assumption that d (¢) is differentiable and &} () € R. Clearly, this is equivalent to the assumption
that A(t) is differentiable and A’(t)/A%(t) € R. We summarize our findings in the next theorem

q=01(t) 51(t)A(t) (say).

in a slightly generalized version.

Theorem 6.12
Let g denote a continuously differentiable asymptotic ENFR bounding function with corresponding
rejection curve r, thatis 1 —Q(t) +g(Q(t)) = r(t) forall t € (a,b) with0 < a < b < 1. Suppose
A - =@ 0 -0

NN
is differentiable, nonzero, and A'(t)/A%(t) € R fort € (a,b). For rn(t) = r(t) + q/(A(t)\/n) it
holds that ¢, (t) = q¢+ o(1) forall t € (a,b).

Example 6.13

Let g(¢) = (1 — ¢)Ca/(1 — (). The corresponding rejection curve is the Simes line, that is
r(t) = t/a, cf. Example 2.19. We have

ala—1t)

BTN
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which is nonzero on (0, o), differentiable, and fulfills A’(t)/A2(t) € R for t € (0, ). Theorem
6.12 states that ¢, (t) = ¢ + o(1) for

., g (1-=t)Vt
n(t) = (t)"‘\/ﬁ ala—1)

fort € (0, ).
In the next example we apply Theorem 6.12 to the important special case g(¢) = (1—()a/(1—a).

Example 6.14
Consider the asymptotic ENFR bounding function g(¢) = (1 — {)a/(1 — «) with « € (0, 1). Let
r be the AORC, that is r(t) = t/(¢(1 — ) + «). The equation 1 — Q(t) + g(Q(t)) = r(t) can

easily be verified and the function A(¢) from Theorem 6.12 becomes

(t(1 — a) + a)3/?
at(l—t)

A(t) =

This function is differentiable and nonzero on (0,1). Let 6;(t) = ¢/A(t) for t € (0,1). Ele-
mentary calculations show that §](¢) € R for all ¢ € (0,1). Hence, Theorem 6.12 shows that

for
at(l —t)

(t(1 — a) + a)3/2\/n
we have that ¢,,(t) = ¢ + o(1). In Figure 6.1 the expression 1 — ®(q,(T,,(F'))) is visualized for
n = 103,10%, and 10°.

Tn(t) = T(t) +4q

Figure 6.1 shows that ¢,,(T,,(F')) # q. As we explained in Remark 6.6, we aim for ¢,,(7,,(F')) = ¢
for fixed n. Instead of setting r,(t) = r(t) 4+ d1(t)/+/n we consider a generalized version, that
is rp,(t) = r(t) + Ap(t), where A, (t) is a differentiable function. Then, the same steps that lead
from (6.13) to (6.14) provide now that

(2Q0) 4 o(1))(r () — Qu(t))
!l (t)y/1 —rn(t)\/f

It is reasonable to set A, (t) = Zle 8;(t)/n"/?, where k € N is fixed and 6;(t) are differentiable

functions. Obviously, for £ = 1 we get the case we already treated and which led to Theorem 6.12.

4= Vit(t) 615

We restrict our attention to a special case and assume that g(¢) = (1 — ¢)y withy = /(1 — ),

where « € (0, 1). Thus, Equation 6.15 becomes
(7)) (1) = Qu(1))
! (t)\/1 — rp(t)Vt

Note, ¢'(Q(t)) and o(1) in (t — ¢'(Q(t)))/(1 —t) + o(1) in the numerator of (6.15) evolve from a
Taylor expansion of g at Q(t). Thus, (t—¢'(Q(t)))/(1—t)4o(1) can be replaced by (t+7)/(1—t)

"o

q= \/ﬁAn(t) = \/ﬁAn(t)An(t) (say). (6.16)

because g is linear in ¢ and thus g 0 in the Taylor expansion of g at Q(t). We exemplify
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9 .-
s | -
0
Q —]
o
—~ ©
= 2
E_/ o
5 ..................................
=
& <
| o
- o
S ;1(t) + 8,()/v
S <o n=10%;r(t) + & (t)/Vh + 8y(t)/n
— n=10";r(t) + &(1)/vn
<o n=10%;r(t) + & (t)/VA + 8y(t)/n
° — n=10%;r(t) + &(t)/Vn
S A <o n=10%;r() + & (t)/vA + 8y(t)/n
T T T T T T
0.05 0.2 0.4 0.6 0.8 1.0

Figure 6.1: The figure shows 1 — ®(q,, (T, (F))) forr,(t) = fao(t) + 01(t)/+/n and
Tn(t) = fo(t) +61(t)//n+ 62(t)/n for ¢ = 1.645, a = 0.05 and n = 10°,10*, and
10°, where 01 (t) and 62 (t) are defined in (6.18) and (6.19), respectively.

now how d2(¢) and d3(¢) may be obtained. Similarly as before, we assume that 6;(¢) € R for all
i=1,...,kandt € (0,1). Like before, A,,(t) — A(t) and thus Equation (6.16) directly provides
us d1(t) by ¢ = 01(t) A(t) if A(t) is nonzero on (0, 1). Since ¢ is considered fixed we suppress the

dependence on ¢ for simplicity. Again, from Equation (6.16) we get

(62 + O(L/v/R)) An = V(g — 81 4n) = Vi (q - q’j) —mA- A 61

We now focus on v/n(A — A,,). First, define

t+yy—(—=2)/(1-1)

1—-t  yJ/I—zvt

Hence, A = B(r(t),r'(t)) and A,, = B(r(t) + Ap(t),r'(t) + A}, (t)) and thus, suppressing ¢,
Vn(A — A4,) = /n(B(r,r") — B(r + Ay, + Al)). By assumption A, Al = O(1/y/n).
Since B(z,y) is infinitely often differentiable with respect to = and y, it is obvious to apply the

B(x,y) =

multivariate version of Taylor’s Theorem, cf. Corollary 7.1. in [23], that is

V(A —An) = Vn(B(r,r") = B(r + Ap, 1" + A}))
( é An aBg;’”Amou/\/ﬁ))
(7, ) _0B(r,1")
T b oy 1
= L (say),
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where 0B(r,r")/0x (0B(r,r")/dy) denotes the partial derivative of B with respect to x (y) at the
point (r(t),7/(t)). Altogether, we have dy = gL /A?. The calculation of d3 is even more tedious.

We have

(53 + 0(1/\/%))1471 = \/ﬁ(\/ﬁ(q - 51An) - 52An>

= vatviala — L 4,) — 473 Au)

=23 L Jn(Avn(A — Ay) — LiAy)
= E\/H(A[Ll +vn(A - Ap) — L] — LiAy)
jQ VA(ALL = LiAw) + VRAWA(A = Ay) = L)
B+ o(1) + VRAWR(A = Ay) = L)),
Now we focus on v/n(y/n(A— A,,) — Ly). Again, Taylor’s Theorem is the main tool. It holds that

OB(r,r") OB(r,r") 10?B(r,r") .5  10°B(r,r")
A—ay=— (LTI L OB0T) o ZOBUT) p2  —OPULT)
< Ox * oy nt 2 Ox? nty 2 Oy?

%A A’) + o(1/n).

(A7)?

By definition of L; we have

dB(r,r’) dB(r,7") ., OB(r,1") o~ &  OB(r,r') o~ 4
- A, — AL =— i i
Ox Oy " 1/ Vn Ox 22:; nt/2 Oy Zz; ni/2
= La, (say).
Thus, we get

VA(VA(A = Ap) = L1) = Va(V/A(A = Ay — Li/v/R))

19?B(r,r") 5  10?B(r,r") 1 \2

LSBT C) Vs, ) + o)

oB(r,r") OB(r,v") ,  10°B(r,r") 4
—>_< Oz o2+ dy 52+§ Ox? o1

10?B(r,r")

- /\2
T3 g OV

= L3 (say).
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Altogether, we conclude
(85 + O(L/v/m) Au = 5L + VRA(A(A = An) = L1) + o(1)] — <5 (L3 + AL

and hence 634 = (q/A3)[L? + ALs). This leads to

_ qy/at(1—1)
P —-a)Pt - (1—a)?t? + (1 - a?)t+ a?
N (T Sy By Ty s Ry B 1%
and
3 5 i
55t = L iz %t (6.20)

8 (1—a)2(1—t)2(t(1 —a)+ a)3/2/t(1 —t)a’

with ag = 203, a1 = 20%(3 — 3a + 4a?), ag = (1 — a)(1 + 3a — 4a? + 32a3), ag = —2(1 +
40)(1 — 60)(1 — @)?, ag = (5 + 26a — 32a2)(1 — a)?, and a5 = 2(3 — 4a)(1 — a)3. We
want to remind that we assumed that 0/(t) € Rfori = 1,...,k, ¢t € (0,1). Now, after we
obtained expressions for 6;(t), d2(t), and d3(t) we need to verify that 6;(t) € R fori = 1,2,3
and t € (0,1). This can be verified but is omitted here. Figure 6.1 shows 1 — ®(g,,(T,,(F"))) for
rn(t) = r(t) + 61(t)//n and r,(t) = r(t) + d1(t)//n + d2(t)/n. As can be seen from that
figure, the benefit of the additional term 02 () is considerable only for moderate number of null

hypotheses, that is . = 103 or 10%.

Remark 6.15

We conducted a simulation for n = 10.000, « = 0.05, and ¢ = 1.645 with r1(t) = r(t) +
01(8) /v, ra(t) = r(t)+01(1) //i+02(t) /n, and 75 (t) = r(8)+01(£)//n+82(t) /n+05(t) /n?/?
and visualized the results in Figure 6.2. For a definition of 41, d2, and d3 see (6.18), (6.19), and
(6.20), respectively. It is possible to conduct a SU test induced by a rejection curve r by determin-
ing the largest crossing-point between F), and r, cf. Corollary 1.8. A SU test induced by r; will
always reject all null hypotheses because 71 (1) = 1. Hence, we determined the largest crossing-
point between F;, and 71 (7, r3) only on [0, 77 (0.98)] ~ [0,0.673]. Thus, null hypotheses with
p-values larger than 0.673 are never rejected, which is not a severe restriction. It should be noted
that ro and 73 actually are no rejection curves. We have that r2(0) # 0 and r3(0) # 0. Further-
more, o and r3 are decreasing on [0.93, 1] and [0, 1075], respectively. But seeking the largest
crossing-point only on [0,0.673] and considering only ¢ < 0.95 solve these problems for our

specific situation.

Remark 6.16
On the right hand side of the quantile equation (6.8) we have ¢ + o(1). As explained in Remark
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0.06 0.08 0.10
I I I

Pano(Va(®) > g(ni(9)))

0.04
1

0.02
1

0.00
1
c

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6.2: The figure shows the empirical probabilities (solid lines; number of
replications = 500.000) of V,,(¢n) > (n1+1)a/(1—a) forn = 10.000 and o« = 0.05,
where @, is a test based on r1 (black), ro (blue), and r3 (magenta), respectively, as
explained in Remark 6.15. Additionaly the dashed lines show 1 — ®(q, (T,,(F))) for

r1 (black), ro (blue), and r3 (magenta), respectively.

6.6, we conducted our calculation only with ¢ discarding the term o(1). Equation (6.16) defines
01(t) by ¢ = V/nAp(t)An(t) — 01(t)A(t). Obviously, the definition of d;(¢) is not affected
irrespective of the presence or absence of the term o(1), that is ¢ + o(1) = /nA,,(t) A, (t) will
also yield ¢ = 91(t)A(¢). This is not true for §;(¢) and ¢ > 1. For instance, Equation (6.17)
defines 85(t) by (62(t) + O(1/y/m) Au(t) = valg — 81D A()) = Vialg — gA(H)/AD)).
Obviously, considering ¢,(t) = ¢ + 1/y/n instead of ¢,(t) = ¢ we get d2(t) = 1/A(t) +
qL1(t)/A%(t) instead of do(t) = qL1(t)/A(t). If further knowledge is available, for instance,
Py (Vi(on) > gn(n1)) = 1—(P(q)+¥,(g))+o(1) it may be possible that the “quantile equation”
reads like ¢, (T,,(F)) = qo + q1/+/n + O(1/n). In this case, it would hold that gy = &, (t) A(t)
and 02A(t) = q1 + qoL1(t)/A(t). Both 1(¢) and d2(t) would be unique but J3(¢) may not be

unique.

In the next subsection we will see that it is also possible to solve an ordinary differential equa-
tion in order to achieve ¢, (7,,(F')) = g and we present two further techniques such that at least

an (T, (F)) =~ q holds true. Now, we investigate a further consequence of the quantile equation.

The following two remarks are devoted to the special case r, = r for all n € N and show that the

conjecture from Remark 6.4 is true.

Remark 6.17
Suppose 7, = r for all n € N and no/n = ¢ + o(n~'/2). Further, suppose that g(¢) =
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gn(n1) g(¢) r(t) I
an « max{7(t),C(t)} (1%, 1—¢)
"01(:;;?)/ Z)O‘ C(lljcfga Simes line : ¢/« (0,1)
(nij;)a (11__2& AORC : max{ fa,0(t), C(t)} | (1=553ac+ 1)

Table 6.1: At least for ¢ € I it holds for SU tests ,, induced by r that Py, o (V,,(¢n) > gn(n1)) — 1/2
ifng/n = ¢ + o(n~'/?), where ¢ > 0 is appropriate small and C(t) = 2 + (t — 1) /e. For the definition of
7(t) see Example 2.18.

lim,,—,oo ENFRy(py,)/n for SU tests ¢, induced by r,. Then, by Corollary 6.9 we have
lim,, oo ENFRy(¢y,)/n = (Fy(7), thatis g(¢) = (Fy(7*). Since r,, = r, we have T),(F) = 7*
for all n € N. Remark 6.1 states that ( = Q,, (1, (F')). Therefore, we conclude for the numerator
of ¢, (T, (F")) that

(1 = Qu(T0(F)))Fi(Tn(F)) + g(Qn(To(F))) — ro(To(F))
=1 =Qr (") +9() —r(r")
=9(¢) — CFo(77)

=0,

where the second equality holds because r(7*) = F(7*). Altogether, the left-hand side of the
quantile equation (6.8) is zero and therefore ¢ = 0. Setting g,,(n1) = ng(np/n) and assuming

gn(n1)/n = g(¢) + o(n=1/?), we see that
Py (VTL(SOH) > gn(nl)) —1-— CI)((]) = 1/2

Note, if g is differentiable and the derivative ¢’ is continuous at ¢, then it easily follows that
gn(n1)/n = g(no/n) = g(¢) + o(n™1/2).

Remark 6.18

In Examples 2.18, 2.19 and 2.20 we considered three different bounding functions and derived the
corresponding asymptotic rejection curves. In Example 2.19 we obtained the Simes line and in
Example 2.20 we obtained the AORC. Unfortunately, the results from Remark 6.17 do not hold
true for Example 2.18 and 2.20 because the corresponding rejection curves equal one at ¢ = 1.
Obviously, a rejection curve r with (1) = 1 does not fulfill the unique crossing-point condition.
And of course, a SU test induced by r always rejects all null hypotheses if (1) = 1. But this
can simply be solved by using a modified rejection curve defined as max{r(t), C(t)}, where
C(t) = (t—1)/e+2withe € (0,1). Applying the results of Remark 6.17 to Examples 2.18, 2.19
and 2.20 with this modification in case of (1) = 1, yields Table 6.1.
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Asymptotic considerations in Section 2.3 led to the equation (2.10), which implicitly defines a
rejection curve. In this chapter we are in a similar situation. Equation (6.8) implicitly defines the
rejection curve of interest. But now also the derivative of the rejection curve is involved, which

now leads to an ODE.

6.4 The ordinary differential equation

The quantile equation can be easily transformed into an ODE. In this section we will investigate
the resulting ODE and numerically solve a transformed version of the ODE. Appendix A gives a

short introduction to the field of ordinary differential equations.

Again, DU is LFC, that is, for ¢ € © and n; = n;(J) we have that

Py (Vo > gn(n1)) < Prng (Vi > gn(n1)).

Under DU the quantile equation can easily be solved for r/,. This will lead to the following
differential equation (6.21) which is the basis for the construction of SU tests ¢, such that (6.2)
holds. The two functions Q,,(t) = (1 — 7,(t))/(1 —t) and H,,(t) = 1 — Q,,(t) + g(Qn(t)) will

be used in the next corollary.

Corollary 6.19
Theorem 6.5 holds true under DU for q # 0, if equation (6.8) is replaced by the assumption that

H,(t) — rn(t)

() = Qn(t) Hy(t) = rn(t) = n=12q/Qn(t)t(1 — )

6.21)

holds at T,,(F') forn > N.

Proof: Under DU, we have Fi(t) = 1, fi(t) = 0, Fo(t) = t, fo(t) = 1fort € (0,1). This
simplifies the quantile equation (6.8) considerably. Recall, at T},(F") we have Q, (7T, (F)) = (.
Thus, f(t) = Cfo(t) + (1 — ¢) fi(t) = Qn(t) att = T,,(F). Hence,

() Qn(H)(1 — )
rp(t) — Qn(t)

at T,,(F'). Discarding the o(1) term in the quantile equation (6.8) and substituting 7,,(F’) by ¢

$(rn, Qn(t),t) =

yields

qg=n

1721 = Qu(t) + 9(Qn(1)) = 7a(t) _ 172 (Ha(t) =7a())(rn(t) = @u(t))
S(Tnan(t)vt) T;L(t) Qn(t)t(l - t)

Solving this equation with respect to r/, () provides (6.21). Hence, (6.21) at t = T,,(F) implies
the quantile equation (6.8). ]
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There seems to be no analytical solution of the ODE (6.21). Nevertheless, we are going to in-
vestigate the ODE from a mathematical point of view in the next subsection. Afterwards, we
present two methods for constructing r,, such that (6.21) (approximately) holds. This is done for

the important special case where g,,(n1) = (n1 + 1)7.

6.4.1 Existence of solutions

We rewrite the ODE (6.21) under DU as

_ H(z,y)—y
H(z,y) —y—n"12¢S(z,y)’

where Q(z,y) = (1 —y)/(1 —2),H(z,y) = (1 = Q(z,9)) + 9(Q(x,y)), and So(z,y) =
VQ(z,y)x(l — x).

In the next theorem we provide sufficient conditions such that an interval I C (0, 1) (independent

Y = wn(z,y) = Qz,y) (6.22)

of n) exists such that the sequence of ODEs (6.22) are solvable on I eventually for all nn. The main

tool for this is the Theorem of Peano.

Theorem 6.20

Let g(¢) > 0 for ¢ € (0,1), ¢ > 0, and assume that H(z,y) — y is strictly increasing in y and
that there exists a function z : (0,1) — (0, 1) such that H(z, 2(z)) — 2(z) = 0 for all = € (0, 1).
Then, there exist an interval I = [xo,xo + M] C (0,1), M > 0, yo € (0,1) and N € N such
that for all n > N there exists a solution ry, of (6.22) on I with r,,(xo) = yo. Furthermore, there
exists an ¢ > 0 such that v, (i /n) is defined for alln > N ifi/n € [yo,vo + €.

Recall, a critical value is defined by r,, 1 (i/n).

The proof comprises the following steps:
1. VneN 3G, C(0,1) x (0,1) : wp(x,y) is continuous on Gy,
2. G, CGpifn <m.
3. wp(x,y) > wy(z,y) ifn <mand (z,y) € G,.

4. For fixed N there exists an interval I = [zg, o + M] such that (6.22) has at least one

solution r with 7 (z9) = yo.
5. Forn > N there exists a solution r,, on I such that (6.22) holds true and r,,(xo) = yo.
6. inf,> N infyerr) (z) > 0.

Remark 6.21
In Remark 6.17 we elucidated when H (x, z()) — z(x) = 0. For instance, if g(¢) = (1—¢)a/(1—
«), then z(z) = z/(x(1 — o) + «), which is the AORC.
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Step 1.
We are going to define G,, such that the numerator and denominator of w, (z, y) are positive and
not zero. Note, H(z,y) is continuous on (0,1) x (0,1) because g and Q) are continuous. By

definition of z and since H (z,y) — y is strictly increasing in y, we see that
H(z,z(x)) — 2(z) = n Y2q/(1 — 2(z))z < 0and H(z,1) — 1 —n"2¢ /(1 = 1)z > 0
because ¢ > 0 and z(z) < 1 for z € (0, 1) and therefore,
H(z,dop(2)) — don(x) — gy /(1 — dop(z))z =0

if and only if dy ,,(z) € (2(z),1). Let G, = {(x,y) : x € (0,1), y € (0,1), y > don(z)}. For

all (z,y) € Gy, we have w,, is continuous on G,,.

Remark 6.22
Although it is not important for the proof of Theorem 6.20 we want to note that for fixed x
0, ify— land(x,y)e€ G,
wn(x,y) =
0o, ify— don(z)and (z,y) € G,.
Confer Figure 6.3 for a schematic sketch of the subset G, for g(¢) = (1 — )a/(1 — «). It seems
intuitively clear that a possible solution y,,(z) may leave the set G,, at z* because y,(z) — 1

when x — z*, but y,, () — do,(z*) for x — 2* does not seem to be possible.

Step 2.
We only have to show that dj () is pointwise decreasing in n. Note, by ¢ > 0 it holds true that

H(z,don(x)) — dop(x) —m™Y2q /(1 = dop(a))z > 0

for m > n. Since H (x,y) —y is strictly increasing in y we have do »(z) > dom () for z € (0,1).

Step 3.

Let n,m € N be arbitrary and fixed. If n < m, then G,, C G,,,. By ¢ > 0 the denominator on
the right-hand side of (6.22) is increasing in n for all (z,y) € G,, C G,,. Hence, the assertion
follows directly.

Step 4.
Let N € N, (z9,y0) € Gn be arbitrary and fixed. Choose a,b > 0 such that the compact set
K = [zo,x0 + a] X [yo — b,yo + b] C Gn. Peano’s Theorem guarantees that there exists an ry

that solves (6.22) with r (z) = yo at least on I = [z, 29 + M], where

b
> 0.
SUP(z4)eK |wn($, y)|

M = min {a,
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Figure 6.3: The figure shows a schematic sketch of the set G,, = {(z,y) : © €
(0,1), y€(0,1), y>donu(e)} ifg(C) = (1 — /(1 - ).

Step 5.
From Step 3 we conclude that sup(, ,ycx [WN (2, Y)| > Sup, ek [wn(z,y)| forn > N. There-
fore, again by Peano’s Theorem, for n > N it is guaranteed that an r, solves (6.22) with

rn(x0) = yo at least on 1.

Step 6.
This is obvious because wy,(x,y) > Q(x,y) = (1 — y)/(1 — z) for all n € N. Therefore,

inf inf Jwn(z,y)| > inf Qa,y) = (1 —yo—b)/(1— ) >0.
inf inf (9] 2 inf QGe,y) = (1= g0 = b)/(1 ~ x0)

Step 6 ensures that 7/, (x) > 0 for x € I and n > N. Hence r,, is invertible on [ and it exists an

¢ > 0 independent of n such that 7, (i /n) is defined for all n. > N and i/n € [yo,yo + €.

Remark 6.23
The Theorem of Peano guarantees the existence of a solution but not its uniqueness. If g((1 —
y)/(1 — x)) is continuously differentiable with respect to y on G, then for all fixed n > N the

solution is also unique by virtue of the Theorem of Picard-Lindelof.

6.5 Practical considerations

The standard routines implemented in Maple for solving the ODE (6.22) numerically yield ei-

ther no solutions or useless ones. In this section we present two different methods for obtaining
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rejection curves 7, such that

lim Py, no (Vi(en) > (n1 + 1)a/(1 — a)) = B,

n—oo

where ¢y, is a SU test induced by r,,. Throughout this section we consider

9(¢) = lim (1/n)(n1 + Da/(1 —a) = (1 = (a/(1 — ).

n—oo

6.5.1 Utilizing the quantile equation

This method is promising if the ODE cannot be solved analytically or numerically. Following
Remark 6.18, we know that lim,, . P(V;,(¢n) > (n1 4+ 1)a/(1 — «v)) = 0.5 holds for a SU test
induced by a slightly adjusted AORC, see Remark 6.18 for details. Asymptotically, the solution
must be near the AORC and above dy ,, for fixed n. Therefore, it is reasonable to search for the
solution near (above) do ,,. In general, dy ,, can easily be obtained numerically. Fortunately, in our

case we can solve
H(z,don(x)) — dop(z) —n 2,/ (1 — don(z))z =0 (6.23)

for do (), where H(x,y) =1— (1 —1vy)/(1 —z) + g((1 — y)/(1 — x)). This yields

(1l +)(z+ )z — (. — 222 + 23)¢® + ¢(1 — )W ()

fonl) = 20z + 7P

with

W(z) = Vz(1 — 2)(472n + (¢ + 4ny)x — ¢222?)

and v = a/(1 — «). Note, the left-hand side of (6.23) is the denominator of the ODE (6.22).
Hence, it is pointless to substitute y by do () in (6.22). Recall that we are actually not interested
in solving the ODE but to find a function r,, such that (6.8) holds. Therefore, it is interesting to
calculate the left-hand side of (6.8),that is ¢, (T, (F')), for 7, = do,. It is very astonishing that
this expression virtually seems to depend linearly on T),(F) = {t € [0,1] : 1 — ( + (t = r(t) }
as n increases, cf. Figure 6.4. Below we argue that 7,,(F') € (0,0.1) corresponds roughly to
¢ € (1/3,1). Looking at Figure 6.4 we notice that for 7,,(F') € (0, 0.1) the left-hand side of (6.8)
lies between [1.7, 2]. According to the quantile equation (6.8) this can be roughly interpreted as
lim Py (Vi(on) > gn(n1)) € 1 — ®([1.7,2]) =~ [0.02,0.05]

n—oo

for ¢ € (1/3,1), where ¢, is a SU test induced by do,,(x) with ¢ = 2. Thereby, we consider
dp,,, as a “good” starting point for an optimization step. Quite decent results can be obtained by
modifying the parameter ¢ in dy,. Hence, as a simple adjustment we choose for now 7, (t) =

don(t) + n~Y2(a + bt) and consider (¢,a,b) as parameters for an optimization process. This
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10 100 10.000 1.000.000

Figure 6.4: The figure shows g, (T, (F)) for r, = do, forn = 10, 10%, 104, 10°
with ¢ = 2.

choice is motivated by the following observation. Figure 6.4 indicates that for r,, = dy, there

exists @ and b such that

\Fl_Qn( n( ))+Q(Qn( n( ))) dOn(Tn(F))
s(don(Tn(F)), Qn(Tn(F)), Tn(F))

Ignoring the fact that the denominator and @),, of the last expression is a complicated function of

+ a4 0T, (F) ~ q.

dp,, we assume that there exist a and b such that

\/ﬁl_Qn(T (F))+9(Qn( n( ))) dO, (Tn(F))
$(don(Tn(F)), Qu(Tn(F)), Tn(F))

%\/ﬁl_Qn(Tn(F))"'g(Qn( T, (F))) — don( n(F))_n_l/Q(a“‘an(F))
$(rn(Tn(F)), Qu(Th(F)), Tn(F)) ’

where 7, (t) = do.n(t) +n~2(a + bt) and Q,,(t) = (1 — 7,(t))/(1 — ).

Instead of “minimizing”

+ @+ bT,, (F)

)
)

| 1/21 Qn( )+9(Qn(t)) ( )
s(rn(t), @n(t),t)

in (¢, a,b), where q;_g is the 1 — (3 quantile of the standard normal distribution, we “minimize”

| — q1-p|lter (6.24)

the equivalent expression

nl/2 1 — Qn(t) + 9(Qn(t)) — ra(t) e
I O gD =) 1 = Bl (6:25)
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== 1.000 == 1.000.000 === 1.000.000.000|
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e
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Figure 6.5: The figure shows 1 — ®(q,, (T, (F'))) for the rejection curves obtained by

the minimization process forn = 103, n = 10° and 10°.

in (q,a,b), where I is some predefined interval. The only reason to work with (6.25) instead
of (6.24) is because in practice it yields better results. In order to calculate concrete rejection
curves, let « = 8 = 0.05. Now, we discuss a reasonable choice for the interval /. Obviously,
Py (Vo >n1+1) = 0if ng + 1 > ng. This happens asymptotically if g(¢) > ¢, which is
under our assumptions equivalent to 0.05 = a > (. Therefore, choosing I = [0, 1] is not a good
idea. It is theoretically possible to state (6.25) in terms of ¢ because ( = Q,, (T, (F')). Ideally, we
would specify I as a set of ¢’s and minimize (6.25) in terms of ¢ for I, but in our case no explicit
representation of @, ! (¢) exists and therefore we use (6.25).

We set I = (0,0.1] which virtually corresponds to ( € (1/3,1). This can be seen as follows.
We remind that 1 — ¢ + (T, (F') = (T, (F')) is equivalent to (1 — r,,(T,(F)))/(1 — T, (F)) =
Qn(T,(F)) = ¢. We know that r,(¢) will be near (and above) r(t) = ¢t/(¢(1 — «) + «) . This
means that the set of ('s considered in our minimization will contain {(1 — r(t))/(1 —t) : t €

I} =~ (1/3,1). In our numerical example we minimized the following function

& 1 — Qu(i/10%) + g(Qn(i/10%)) — 7, (i/10%) ?
Via.eh) =2 [@ (”1/2 5(ra(i/10%), Qu(i/10%). i/10%) )‘“ﬁ ] |

i=1

Figure 6.5 shows the result of the minimization for n = 103, 10%, 10°. Finite sample simulations
have been conducted for n = 10.000 and are visualized in Figure 6.6.
Extending [ for instance to (0, 0.3], which corresponds to a set of (s that is roughly [0.14, 1), is

possible, but in order to get a “good” solution one should raise the degree of freedom, for instance
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0.10
|
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Figure 6.6: The figure shows the empirical probability (solid black line; number of
replications = 500.000) of V,,(¢5,) > (n1+1)a/(1—a) forn = 10.000 and o = 0.05,
where @, is a SU test induced by the rejection curve r obtained by the minimization
process described in Section 6.5.1 The solid red line is 1 — ®(q,,(T,,(F"))) forr.

by setting 7, (t) = don(t) + n~%(a 4 bt 4 ct?), with the simple restriction that ¢, a,b + ¢ > 0

in order to ensure that r, is strictly increasing.

Remark 6.24

In section 6.3 we elucidate how the quantile equation may be used to determine 6;(t),7 = 1,..., k,
k € N, such that g, (T, (F)) = g for 7,(t) = r(t) + S-¥_, 8i(t)/n'/2. These rejection curves may
provide better results than the approach presented in this section. In this case better means that
qn (T, (F)) is closer to q for r, (t) = r(t) + Z,’f:l 6:(t)/n*/? than for the rejection curves obtained
in this section, compare Figure 6.1 and 6.5. The advantage of the approach in this section is that g

has not to be continuously differentiable. This assumption is essential for the derivation of d;(¢).

After the following subsection we have three methods for constructing rejection curves such that

qn (T (F)) =~ q. At the end of this section we compare all three methods briefly.

6.5.2 Solving by substitution

It turns out that substituting (1 — y)/(1 — x) by z in (6.22) yields the possibility to solve the ODE
numerically. This substitution yields the ODE

l—2z+4+g9(z)—(1—(1—2x)2)

S e (- (L 2)7) —n P D):
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0.10
|

0.02
|

0.00
!

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6.7: The figure shows the empirical probability (solid black line; number of
replications = 500.000) of V,,(¢5,) > (n1+1)a/(1—«) forn = 10.000 and o = 0.05,
where @, is a SU test induced by the rejection curve r obtained by numerically solving
the ODE (6.26). The solid red line is 1 — ®(q,,(T,,(F))) forr.

which is equivalent to

—1/2 —
o z n g/x(l —x)z . (6.26)
l—2g(2) — 2z —nY2q/z(1 — 2)z

Ideally we would choose the initial value as y(0) = 0 which corresponds to z(0) = 1. But this
entails that the denominator of the ODE (6.26) becomes zero. For the numerical solution we set
2(5/10'9) = 0.9998 which corresponds to y(5/101%) ~ 0.0002. Changing 5/10° to 5/10*! or
0.9998 to 0.09999 results in no feasible solution. Of course, at this point further optimization
is possible. Nevertheless, we conducted a similar simulation study as in the foregoing section
for n = 10.000. In order to obtain the critical values for the simulation we calculated the two
dimensional points (i/10%,1 — (1 —/10°)2(i/10°)) fori = 1,...,10% — 1, where z(x) denotes
the numerical solution of the ODE (6.26). After a linear interpolation using the set of the two
dimensional points extended by the points (0,0) and (1, 1+1/10'9) the critical values ¢, . . . , ¢4
were obtained numerically from this linear interpolation. The critical values for the SU test used
in the simulation study are min(cy, cgggo), - - - , min(cyge, c9s00). The reason for the truncation of
the critical values is that a SU test with critical values c1, .. ., cjgs rejects all null hypotheses with
high probability because the last critical values are near one. The chosen critical value cggqg is
approximately 0.673. Hence, only null hypothesis with a corresponding p-value of less than 0.673
may be rejected. The simulation study is visualized in Figure 6.7. As can be seen from Figure
6.7 the empirical probability of P, ,,, (V5, > gn(n1)) increases if ¢ tends to zero. If, for instance,

no/n = 0.075, then ng = n - 0.075 = 750. This is the point at which the empirical probability
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(black line in Figure 6.7) is maximal. For such constellations it is not surprising that the results

of the asymptotic theory did not provide a good approximation. Of course, if ng/n < 0.05, then
]P)n,no (‘/n > gn(nl)) = 0.

6.5.3 Discussion

Altogether, we have presented three techniques to obtain a sequence of rejection curves r,, such
that ¢,,(7,,(F)) = g. In the first method we set r,,(t) = r(t) + Zf:o &i(t)/n'/?, k € N. By
considering ¢,(t) = ¢ for t € (0,1) it may be possible to determine d;(¢) such that ¢, (¢) — ¢
for all ¢ € (0,1). The second method used the function dp ,,(¢) such that the numerator of the
ODE (6.21) becomes zero. As a simple adjustment, cf. Subsection 6.5.1 for the motivation, we
chose 7,,(t) = don(t) +n~'/?(a + bt) and considered (a,b) and a further parameter that is part
of dy , as parameters for an optimization process. Of course, the three parameters are chosen such
that ||g,(t) — ¢||ter is minimized for some prespecified interval I and norm || - ||;c;. In the third

method we calculate a numerical solution for the ODE.

The validity of the following comparison of the three techniques is restricted to the important case
where the asymptotic ENFR bounding function is g({) = (1 — {)a/(1 — «). SU tests (©n)nen
induced by rejection curves (r,,)nen that fulfill ¢, (7, (F)) = ®1(1 — ) for a € (0,1) and
n € N will provide lim,, . Py (Vi,(¢n) > gn(n1)) = «. Hence, the main goal is to construct
rejection curves 7, such that g, (7}, (F)) is as close as possible to ®~1(1 — «/). From that point of
view, solving the ODE numerically seems to give the best result, cf. Figure 6.7. This procedure
has two disadvantages. First, we were not able to solve the original ODE (6.21) numerically but a
transformed version. Whether this transformation enables one to solve the ODE numerically for
other g is not clear. Second, choosing r(0) = 0 as initial value for the ODE is not possible because
the ODE is not defined at (0, 0). The first method yields also good results if k& is large enough and
01(t), ..., 0x(t) exist, cf. Figure 6.1. The necessary condition that g has to be k-times continuously
differentiable is a disadvantage compared with the second and the third method. The worst results
are provided by the second method which is not surprising by its ad hoc approach. Of course, if
an(Tn(F')) = g, no statement can be made for Py (V,,(¢r) > gn(n1)) for fixed n € N. But it is
also important that for fixed n € N the probability Py (V,,(r) > gn(n1)) is as close as possible
to 1 — ®(q). Comparing Figures 6.2, 6.6 and 6.7, we can say that the second and the third method
perform well because 1 — ®(g,,(7,,(F'))) and the empirical probability Py (V,,(¢n) > gn(n1)) are
close at least for ¢ not to small. With respect to this goal the simulation indicates that both the
second and the third method perform well and the first method is somewhat unsatisfactory.

Again, we want to distress that the validity of this comparison is restricted since we considered

only one asymptotic ENFR bounding function for a fixed number of null hypotheses and a few

different fraction of true null hypotheses.
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6.6 Asymptotic control of the FDX

The topic of this thesis is the number of false rejections. Nevertheless, from the results of the

foregoing sections a “quantile equation” and an ODE can easily be derived for the FDP.

In general, DU is not LFC for the FDP, as can be seen from the next (counter) example or heuris-
tically from Figure 6.8. It is not clear under which condition DU becomes LFC. In the following,

we are interested in SU tests ¢, such that

. Vi (n) _
nlLrgO Py <max{Sn(g0n) Ve 1) > c) = a. (6.27)

One thing is very clear: if ng/(ng + n1) < ¢, then P, ,,, (FDP > ¢) = 0. This already shows that
DU in general is not an LFC for the FDP because Py (FDP > ¢) > 0 is possible.

Example 6.25 (Counter example)
DU is not LFC for a SD or SU test if one null hypothesis is false, one is true and ¢ > 1/2. Denote
by p (gq) the p-value corresponding to the true (false) null hypothesis. We have

Py (FDP> C) =Py (pS c1,q > CQ)

which in general is not zero, but becomes zero under DU configuration. A similar result can be

obtained for a SU test.

Example 6.26
DU is a LFC for a SD test if one null hypothesis is false, one is true and ¢ < 1/2. Denote by p (q)
the p-value corresponding to the true (false) null hypothesis and by ¢; and ¢ the critical values of

the SD test. We have

P, (FDP > c)
=Py(p<ci,g>c)+Py({p<cr,g< e} U{p<erqg<cr})
=Py(p<crg>c2) +Py(p<cr,q< ) +Py(p<ca,g<c1) —Py(p<ecr,qg<er)

=Py(p<c)+Pys(p<c2,g<c1) —Py(p<cr,g<cr).

Note, it holds

Py(p<ca,q<c1)=Py(p<ca) +Py(g<ci) —Py({p <2} U{g < er}).
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Figure 6.8: The circles denote possible positions where Py (S = s,V = v) may be
positive. The 1-Zone denotes the region where L, /(yys)>c; = 1 for ¢ = 0.45 and

n=20 and thus only circles in this region may contribute something to Py (FDP > ¢).

Thus,

Py (FDP > ¢) =Py (p<c1) +Py(p<c2) +Py(g<c1) —Py({p < o} U{g < en})
—Py(p<c)+Py(g<c) —Py({p<atu{g<al)

=Py(p<c2) —Py({p<ca}U{g<a})—Py({p <} U{g < er})

< Py n, (FDP > ¢),

hence DU(2, 1) is LFC in this special case.

Remark 6.27
We conducted explicit calculations for two other scenarios, that is for a SU test with one true
and one false null hypothesis and for a SU test with two true null hypotheses and one false null

hypothesis. In both cases DU is a LFC if ¢ < 1/2.

‘We now conduct some heuristic considerations. It holds that
P(FDP > ¢) = > Y T/wrs)saP (S =5,V =0) =D > Tuosa-opP (S =35V =10).
v S v S

Considering Figure 6.8 we see that P (FDP > c¢) increases only if the sum of the probabilities of

points in the 1-Zone increases. A point (s, v) is in the 1-Zone if v > sc/(1 — ¢). But under DU, all
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points with a positive probability are on the vertical at S = n;. For large n1, depending on ¢, only
a few points lie in the 1-Zone. Hence, only a few points contribute to P (FDP > ¢). On the other
hand, the figure indicates that P (FDP > c¢) increases if the p-values corresponding to false null
hypotheses are set to 1, because then all points except (v,s) = (0,0) lie in the 1-Zone. Hence,
many points contribute to P (FDP > ¢). Of course, assuming that a p-value corresponding to a
false null hypothesis equals 1 a.s. is pointless, but it indicates that in order to increase P (FDP > ¢)
one should stochastically increase the p-values corresponding to false null hypotheses instead of
stochastically decrease these p-values. Nevertheless, for ¢ < 1/2 and a few simple cases we
were able to prove that DU is LFC for the FDX. However, we easily obtain the following theorem

containing a “quantile equation” for the FDX.

Theorem 6.28 (Quantile equation for the c—FDX)
Assume that ng/n = ¢ + o(n='/?) and ¢ € (0,¢). If

172 (1= Qn(Tn(E)) P (Tn(F)) — (1 — )ra(Tn(F))
§(rn, @n(Tn(F)), Tn(F))(1 = ¢)r,(Tn(F))

and Sy, (on)+Va(pn) > 0a.s. eventually for all n, where Q,,(t) = (F1(t)—rn(t))/(F1(t)—Fo(t))

and

=q+o(1) (6.28)

gWCTw:Kuwwww—u—>fwmcawwu—%ww
' (@ = o () (F() — [
| ') = ()P0~ QR = Fi(r))
A= or (o)) — e

then

: ) L
P (o TV T~ ) T

where @, is a SU test induced by r,.

Before we proof Theorem 6.28 we want to make two remarks.

Remark 6.29
Equation (6.28) can not hold if ¢ € [¢,1). This can be seen as follows. By Equation (6.28), we

have

O(1) = n'2(1 = Qu(Tu(F)) FL(Tn(F)) — (1 = o)ra(Tu(F)).

Hence, we get (1 — Q(7%))F1(7*) — (1 — ¢)r(7*) = 0. Since Q(7*) = (, we obtain

2 Fi () = 1(r7).

Because ¢ < ¢, this entails that F (7*) < r(7*) = (1=)F1(7*)+(Fo(7*) < F1(7*). Therefore,
we assumed ¢ € (0, ¢) instead of ¢ € (0, 1).
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Remark 6.30
Note, cr’(7*) — Cfo(7*) = 0and (1 — )7’ (7*) — (1 = ¢) f1(7*) = 0 would entail r'(7*) = f(7%)

which contradicts the unique crossing-point condition. Hence, s(r, {, 7*) # 0.

Proof of Theorem 6.28. The proof is very similar to the proof of Theorem 6.5. Denote by FSO (t)
and F! . (t) the ecdf of the p-values corresponding to true and false null hypotheses, respectively.
Since Sy, (¢n) + Vi(pn) > 0 a.s. eventually for all n, we directly consider

ni Fﬁl
n(l—c)

suppressing the dependence on T),(F},). In the proof of Theorem 6.5 we obtained a very similar

n

Sn+ Vo

>ce (1—c)ngFd + (1 - c)anél - anél >0, —

no

>0,

expression, namely,

Vi > gn(my) & 1y, —

ML gu(n)
n n
Therefore, using the notation from the proof of Theorem 6.5, that is A,,, Ao, A1, Doy, and

D3 ,,, and following the calculations in the proof of Theorem 6.5 we obtain

Va
Sn+ Vi

>c
_ n1/2n1Fm _pl/2 o (Tn(F))
n(L = e)ry, (Tu(F)) r(Tu(F)
Aip + Dol + 0! 2Dg 1 jo7a(Ta(F))
(1 = )i (Tu(F)) rn(Tu(F))

A1,n > ’I’L1/2 ( D3,n _ Tn(Tn(F)))
(1 =)y, (Tn(F)) (1= ) (Tu(F)) i (Tn(F)) )7

where Dy n(c) =1 — Dy, /((1 — ¢)r},(T5,(F))). Again, using the calculation from the proof of

A n1/2(Tn(Fn) = Tn(F))

S A, —

= D4’n(C)An —

Theorem 6.5, we see that

A1,n
D1l = = g (13, (F)
D4,n(C)AO,n D4,n(c)Al,n Al,n

S = f) ) = f) (=o' () (1 o(1))
Dan(c)Bon (1= ¢)Dan(c) = Dr'(7") + f(r7)
r(m) = f(77) (L= e)r'(m)(r'(7*) = f(7%))

= hn(AO,na Al,n) + OP(l) (SaY)-

Al,n + Op(l)

The same argumentation as in the proof of Theorem 6.5 provides that h, (A, A1) converges
in distribution to a random normal variable with zero mean and variance
(1 =)' (7%) = (1 = O f(7")PCFo(m) (1 = Fo(T¥))
(1 =)' (r*) (' (%) — f(7*))]?
[er'(7%) = Cho(T)P(1 = O F (7)) (1 = Fi(1%))
[(L =) (7)(r' (%) — f(7))]?

SQ(T‘,C,T*) =
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Since we assumed that

nl/2 ( D3n _ (T (F))
(1 =)y (Tu(F)) o (To(F))

we conclude again as in the proof of Theorem 6.5 that

< Vi (on)
max{Sy(en) + Va(en), 1}

) /5, Qu(Ta(F)). Tu(F)) = g + o(1),

lim Py

n—oo

>c>:1—<1>(q). 0

Remark 6.31
Similar as in Remark 6.17, for » = f, 0 and ¢ = « we have that the numerator of (6.28) equals
zero. Hence, SU tests ,, induced by 7(t) = max{fo0(t),2+ (t — 1)/e} yield

Py.ne (FDP(py,) > ) — 1/2

forng/n — ¢ € (a/(1 —2e+ 2ae), 1), where € € (0, ). As in Remark 6.18 we have to consider

7 instead of f, o because the AORC does not fulfill the unique crossing-point condition.

In general, DU is not LFC for the FDP. Nevertheless, we want to state the corresponding ODE. As
before, we solve (6.28) for r],(T,,(F')) which provides the following corollary.

Corollary 6.32
Theorem 6.28 holds true under DU for q # 0, if equation (6.8) is replaced by the assumption that

Hn(t) — (1 = c)ra(t)

(6.29)
Hy(t) — (L= c)ra(t) — n~12q/Qu(t)t(1 — 1)

m(t) = Qn(?)
holds at T, (F) forn > N with

Hy(t) =1—Qn(),
Qn(t) = (1 —ra(t))/(1 = 1).

6.7 Summary

In this chapter we considered an error measure based on the number of false rejections that is very
closely related to the ENFR criterion. All results were derived under independence assumptions
for SU tests and exclusively for the non-sparsity case. First, we showed that the (random) crossing-
point is asymptotically normally distributed. Then, we derived quantile equations guaranteeing
that a sequence of rejection curves (r,,),en Which fulfill the quantile equations and some further
regularity conditions ensure (6.2) for SU tests ¢,, induced by 7,. For a special case it turns out
that the AORC fulfills all quantile equations. The quantile equations implicitly define rejection
curves 7, and also contain the derivative 7/,. Solving the equations for r], yields ODEs. Since

DU is in general LFC for this error measure, we investigated the ODEs under DU configurations
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and showed that solutions exist such that for growing n the number of critical values that can
be determined tends to infinity. Moreover, we exemplified with three different techniques how a
sequence of rejection curves can be obtained (numerically) under DU. In a small simulation study
these solutions show a "good" performance. Based on these results we briefly compared the three
techniques.

In the final part of this chapter we elucidated how the results carry over to the FDP. Unfortunately,
DU is in general not LFC for the FDP.

Controlling the Number of False Rejections in Multiple Hypotheses Testing, Marsel Scheer



Chapter 7

Outlook

In this thesis we primarily focused on independent p-values. The independent case is an idealized
situation and theorems developed under independence may serve as a reference point. But depen-
dence between p-values is an important aspect that has to be taken into account because usually
the test statistics are dependent. For instance, two adjacent SNPs will have similar test statistics
compared to two SNPs with very different locations; and genes that encode enzyme cascades will
probably provide similar expression patterns.

It is reasonable to investigate different types of dependence. If it is possible to exclude negative
correlation one may loose "power" by using a procedure that controls some error rate under general
dependence. In the following sections, we sketch some ideas/proofs with respect to the ENFR and

dependent p-values.

7.1 Weak dependence

Roughly spoken, under weak dependence the ecdfs of the p-values corresponding to true and false
null hypotheses converge to distribution functions Fy and F7, respectively. This can be interpreted
that for large n the p-values behave like independent random variables. This dependence structure
was thoroughly investigated in the thesis of Gontscharuk [26]. For example, weak dependence
may hold if the p-values are "block dependent". She also elucidates procedures, which were
developed under independence and control the FWER or FDR, still work under weak dependence.
Of course, her results may be carried over to the ENFR. This probably will yield procedures that
control the ENFR asymptotically if ng/n — ¢ € [0,1).

7.2 Resampling

The resampling methodology is very well established and has already been applied to multiple
testing situations, for instance cf. [15], [69], [70], [71], [76], and [78]. We sketch now how

120



CHAPTER 7. OUTLOOK 121

resampling methods may be applied in order to ensure asymptotic ENFR control.
Suppose we have m persons and every person provides n measurements. We want to test if the

mean of the jth measurement is larger than zero. More precisely, we assume that
Xi:(Xila-'-yxin)NF, i:l,_"’m

are iid and that the null hypotheses are given by Hy; : p;(F) = 0 versus Hy; : p;(F) > 0 for
Jj =1,...,n, where £1;(G) is the mean of the jth component under an arbitrary n-dimensional
distribution function G. In the same way, 11(G) denotes the mean vector under an arbitrary n-
dimensional distribution function G. Denote by F;,, the n-dimensional ecdf of {Xi}izl,,_,,m. Un-

der the global null hypothesis we assume that
Ty = vVm(u(F) —0) — T in distribution  (m — c0),

where T' denotes a centered multivariate normal random variable with covariance matrix X, that is

T ~ N,(0,%). The bootstrap version of T}, is

T = Vm(u(Fy,) = p(Fm)),

where F}r is the ecdf of {X};—1 . which were sampled with replacement from {X; }i—1 . m.
Then, given {X,},:1m the bootstrap version 777, converges in distribution to a random vari-
able T* ~ N, (0,%) as m — oo. Denote by P*(A) and E*(Y) the probability of an event A
and the expectation of a random variable Y given {X;};—=1 . In a first step we construct an

asymptotic upper confidence bound for n;. Let ¢ = (c1,...,¢,) € R™ be fixed and V,,(¢) =
Zj:uj(F):o L7, >¢;}- It holds that

lim P(V,(2) > k)= lim P| > Tip oey >k

m—oQ m—0oQ .
Jrpi (F)=0

- n%gnoop Z ]I{T;:Lj>cj} >k
J:m5 (F)=0

Choosing k such that P* (Z?Zl ]I{T* e} k:) < a/2 provides that lim,,, oo P (V,,(¢) > k) <
mj g
«/2. Therefore,

P (Rpn(6) =k >m1) SP(Rp(6) = k> R (€) = Vin(€)) < P (Vin(€) > k),

that is n; = R,,(€) — k is asymptotically an 1 — «/2 upper confidence bound for n;. A similar

upper confidence bound was already proposed in [43] for permutation tests. With 7; it may be
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7.2. RESAMPLING

possible to achieve that either lim,,, o P (V;, > g(n1)) < a or limy,—o0 EV,, < g(nq). If g is

non-decreasing in n, then it holds that

lim P

m—0o0

m—0o0

g(n1)

Zn=1 I T* . :
fim pr [ = Tnemd
m—c0 g(n1)

Z?:l I[{T’" >T]}

< lim P* ({ g(nl) > 1} N {fll < n1}> + P* (fll > 77,1)

TN
() 1) = lim P (Z”"“F)O CEGIER 1)

IN

m—0o0

Z 1]I T.
< lim IE”*( EUATLTE ) o,

m—00 9(7n)

Choosing 7 = (71,...,7,) € R" such that P* (Z?Zl ]I{T* _>Tj}/g(ﬁ1) > 1) < «/2 provides
mj

that lim,,, oo P (Vp(7) > g(n1)) < «. At this point we also would have achieved a similar aim

we pursued in Chapter 6, confer (6.2).

Let V)

Note,

= Z?:l H{T;Lj>7'j}’ then

lim £V < lim EE*22\") Vi (1)
m—00 g(nl) m—0o0 ( 1)

Vo) 1
lim EE + —EE*V (1) ia,on
m—oo " g(1)  ¢(0) (g >m)

IN

1
< lim G + —=EV; (7)ia, 5003

“m—oo T g(0)
< hm C(ml"i_ L (Eﬂ{ﬁ1>n1})l/q(EVn*(T)p>1/p
—00 9(0)
S lim Cm,l + L(04/2)1/(1(I}E]E*‘/rzk(7_)1))1/10
m—o0 9(0)
. 1 1/
< lim Cp, +—o¢21/qC’mp.
o ,1 g(())( /) 2
Z? l]I{ >T} - ’
. E*— 'm.o = E* Iy
Cm.1 g(f1) and U,z = ; {T5,>7}

can be calculated/approximated for every fixed 7 € R™. Therefore o, p,q = p/(1 — p), and 7
can be chosen such that Cyy, 1 + (v/2)'/4 C% P/g(0) < 1 which would establish asymptotic ENFR
control, that is lim,, oo EV,,(7) < g(nq).

Remark 7.1

We want to distress that the kind of asymptotic occurred in this section is very different from the

asymptotic considerations done so far. Careful reading shows that m, the sample size, must tend

Controlling the Number of False Rejections in Multiple Hypotheses Testing, Marsel Scheer



CHAPTER 7. OUTLOOK 123

1.0

3 - SD, corrected AORC
—— LSDandLSU
—— MIN(ny, (n;+1)0.05)

40

r(t)
0.6
|

20
Il

Gordon bounds for the ENFR
0.4

10
Il
0.2

—— corrected AORC
—— AORC

—— Simes line
= Holm

T T T T T T T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.01 0.02 0.03 0.04 0.05

0.0
L

C=no/n t

Figure 7.1: The left figure shows the ENFR of a “corrected” SD, LSD, and LSU
procedure under general dependence. The right figure shows the corresponding re-
jection curves on (0,0.05) with additional rejection curves (green and magenta) for

comparative purpose.

to infinity and n, the number of null hypotheses, must be kept fixed. This is also a disadvantage
of this approach. For example, in SNP experiments one usually has n =~ 10°® SNPs and only
m ~ 103 persons. Of course, in such a situation it is doubtful whether resampling techniques are

appropriate tools.

7.3 General dependence

Under general dependence any kind of dependence is allowed, that is
© = {IP: P is a probability distribution on [0, 1]"}.

Of course, procedures that control the ENFR under general dependence will be conservative. Nev-
ertheless, if nothing is known about the dependence structure or even if nothing can be guessed,
then we have to retreat to general dependence. Furthermore, for a fixed procedure it is interesting
to evaluate the worst case for the ENFR. Due to Alexander Gordon, cf. [29], we have formulas
for the ENFR under general dependence for SUD tests. Here we briefly exemplify a possibility to
correct a set of critical values to achieve nearly ENFR control under general dependence.
According to [29] we have for a SD test ¢,, with critical values 0 < ¢; < ... < ¢, <1 that

. C j
sup ENFRy(¢,) = max nZ min —277,
€O 1<np<n 1<i<ng

Consider the critical values

ci(a,b) = (Hl_i‘;(l_a))b (i=1,....n)
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with parameters a and b. Note, ¢;(«, 1) is the ith critical value of the -adjusted AORC with
B = 1. Figure 7.1 visualizes the resulting ENFR curve under general dependence for a ~ 0.031

and b ~ 1.449 which minimize

1000
Z Ing min (cn,4i(a,b)/i) — (n1 + Da/(1 — o)
no—200  ='Smo

for & = 0.05 and n = 1.000. The resulting ENFR curve is not perfect but represents a good
starting point for further correction steps. It should be mentioned that the resulting critical values
are very small even compared to the critical values of Holm’s procedure. For instance, ¢ (a, b) ~
3 - 1077 and the first critical value of Holm’s procedure is o - 1073 = 5 - 107°. See Figure 7.1 in
order to compare the rejection curve obtained by the minimization process and the rejection curve
that corresponds to Holm’s procedure. A reason for this fact is that FWERy < ENFRy and in
general we have that the ENFRy is much larger than the FWERy. But for instance for n; = 0 we
require that ENFRy < /(1 — «). Finally, we want to mention that by the simplicity of Gordon’s

formulas it would be worth to investigate them from a more analytical point of view.
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Appendix A

Ordinary differential equations

Let G C R? be open and
w:G—=R, (z,y)— w(z,y).

Then
y'(z) = w(z,y(z)) orsimply y =w(z,y) (A.1)
is called an ordinary differential equation. A differentiable function
g:I—-R
is called a solution of (A.1) if
{(z,g(x)):x €I} CG and ¢ (z)=w(x, g(z))forallz e I.

Theorem A.1 (Peano’s Theorem (cf. Theorem 2.1 in [30]))
Suppose w(zx,y) is continuous on K = [xg,z0 + a] X [yo — b,yo + b] C G and M is a bound
for |w(z,y)| on K. Then (A.1) possesses at least one solution y(x) with y(xo) = yo on I =

[0, zo + a, where o = min(a, b/M).

Definition A.2
A function w(zx,y) defined on G is uniformly Lipschitz continuous with respect to y on D C G if

there exists a constant C satisfying

lw(z,y2) —w(x,y1)| < Clyr —y2| forall (z,31), (x,y2) € D.

Theorem A.3 (Theorem of Picard-Lindelof (cf. Theorem 1.1 in [30]))
Suppose w(zx,y) is continuous on K = [x¢,xo+a] X [yo — b, yo +b] C G and uniformly Lipschitz
continuous with respect to y on K. Let M be a bound for |w(x,y)| on K. Then, (A.1) has a unique

solution y(x) with y(z¢) = yo on I = [x9, xo + ], where « = min(a, b/M).
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Appendix B

Stochastic supplementary

Definition B.1
The space D[—o0, 0] is the set of all functions F : R — R that are right continuous and whose

limits from the left exist everywhere in R endowed with the supremums norm.

Definition B.2
Let F be a distribution function. An F'-Brownian bridge B is a Gaussian process with zero mean

and covariance
E[Br(t1)Br(t2)] = F(min{ty, ta}) — F(t1)F(t2).

Theorem B.3 (Donsker’s Theorem (cf. Theorem 19.3 in [74])
If X1, X5, ... areiid random variables with distribution function F, then the sequence of empiri-

cal processes \/n(F,, — F') converges in distribution in D]|—00, c0] to an F-Brownian bridge.

Theorem B.4 (Extended continuous mapping theorem (cf. Theorem 18.11 in [74]))

Let D, E be arbitrary metric spaces, D,, C D be arbitrary subsets and g,, - D,, — FE be arbitrary
maps (n > 0) such that for every sequence x,, € Dy: if x,, — x along a subsequence and
x € Dy, then g,/(x,) — go(x). Then, for arbitrary maps X,, : Q, — D,, and every random
element X with values in Dg such that go(X) is a random element in E it holds that X,, — X in
distribution implies g,,(X,) — go(X) in distribution.
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