
A Long Movement Story Cut Short

—
On the Compression of Trajectory Data

A Long Movement Story Cut Short

—

On the Compression of Trajectory Data

Inaugural-Dissertation

zur Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Markus Koegel

aus Düsseldorf

Düsseldorf, Dezember 2012

Aus dem Institut für Informatik

der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der

Mathematisch-Naturwissenschaftlichen Fakultät der

Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Martin Mauve

Heinrich-Heine-Universität Düsseldorf

Korreferent: Prof. Dr. Björn Scheuermann

Humboldt-Universität zu Berlin

Tag der mündlichen Prüfung: 25.01.2013

Abstract

In mobile computing, a technology is said to be ubiquitous, if it is integrated in everyday

life to such an extend that it is taken for granted instead of actually being recognized

as technology. There are already numerous examples for ubiquitous technologies, such

as navigation systems, cell phones, or notebook computers. Many of these enable the

users to participate in mobile networks and to benefit from location-aware applications.

A prominent use case of ubiquitous computing and networking is the research area of

inter-vehicular communication: road vehicles are planned to be equipped with com-

puting units that have access to the vehicles’ sensors and to wireless communication

interfaces, so that vehicles can share information about experienced situations among

each other. In doing so, the technique can be used to make road traffic safer, more

efficient, and to provide a higher level of convenience to the passengers. To achieve

these goals, a number of efficiency and convenience applications record and transmit

the vehicles’ trajectories, i. e., the sequence of positions over time. However, the trans-

mission of trajectories can induce a significant load to the communication channel and

may waste resources that are required by safety applications to work properly. To

avoid this situation, a number of lossy trajectory compression algorithms have been

proposed in literature that allow for an adjustable compression error bound.

In this thesis, we examine compression algorithms for trajectory data. Though these

algorithms are suitable for all sorts of movements, we focus on the use case of vehicular

trajectory compression. We take a close look at state-of-the-art solutions that are

based on geometric operations, namely line simplification and linear dead reckoning.

We argue that though achieving good results, these models can not be the best possible

approach with respect to the achieved compression ratio, because vehicular movements

are not linear. Instead, we motivate the use of nonlinear algorithms and propose two

geometric compression algorithms based on clothoid spline sketching and cubic spline

interpolation, respectively. By means of an evaluation based on real-world trajectory

data, we show that nonlinear algorithms can provide a better compression ratio than

the optimal line simplification solution.

v

Abstract

While our spline interpolation based algorithm provides the best compression ra-

tios, it implements a heuristic and therefore merely finds a locally optimal solution.

We therefore turn to an information-theoretic approach and aim at finding an algo-

rithm that provides the optimal compression ratio for a trajectory. We therefore use

the Shannon information content to define the information content of a trajectory and

propose a method to measure it, using a movement estimator, a discretization tech-

nique and a probability distribution. We suggest and evaluate different component

implementations and find out that implementing an arithmetic coder based on this

method yields significantly better compression ratios than the geometric approaches.

We finally turn to lossless compression algorithms and consider the use of conven-

tional byte string compression algorithms, such as several algorithms from the LZ

family, the bzip2 algorithm and arithmetic coding. A plain application of these al-

gorithms to the trajectories would not produce meaningful results, though, because

subsequently measured trajectory positions that are close to each other are not nec-

essarily represented by similar byte sequences that would be easy to compress. We

therefore propose a byte encoder that preprocesses a trajectory into a form that can

be compressed more effectively by the selected conventional compression algorithms.

We evaluate the byte coder based on the same trajectory set and see that the achieved

compression ratio nearly matches the results from the lossy arithmetic coder for the

lowest selected error tolerance.

With these results, we provide an answer to the question of how spatio-temporal

trajectories can be compressed so that a maximum compression ratio can be achieved

with respect to the application’s accuracy requirements.

vi

Zusammenfassung

Im Bereich der Mobilkommunikation werden Technologien als allgegenwärtig oder ubi-

quitär bezeichnet, wenn sie sich derart in den Alltag integrierten, dass sie nicht mehr

als Technologien wahrgenommen werden, wie zum Beispiel Navigationssysteme, Mo-

biltelefone oder Notebooks. Viele dieser Technologien sind vernetzt und bieten ih-

ren Benutzern ortsbezogene Dienste an. Ein prominenter Anwendungsfall hierfür ist

die Fahrzeug-zu-Fahrzeug Kommunikation, die derzeit noch erforscht und prototypisch

entwickelt wird. Hierbei werden reguläre Straßenfahrzeuge mit Computern ausgestat-

tet, die Zugriff zu den Fahrzeugsensoren und Funkkommunikationsmodulen haben und

somit Informationen aus vergangenen Situationen untereinander austauschen und ver-

breiten können; so sollen die Sicherheit, die Effizienz und der Komfort im Straßen-

verkehr gesteigert werden. Hierfür zeichnen eine Reihe von Effizienz- und Komfort-

anwendungen Zeit- und Bewegungsdaten (Trajektorien) auf und übertragen diese zur

Weiterverarbeitung an externe Server oder Netzwerke. Da solche Trajektorien jedoch

potentiell sehr groß werden, können deren Übertragungen eine erhebliche Datenlast

auf dem drahtlosen Medium verursachen. Dadurch entsteht die Gefahr, dass Ressour-

cen belegt werden, die von Sicherheitsanwendungen dringend benötigt werden. Um

solche Situationen zu vermeiden, wurden bereits verlustbehaftete Trajektoriekompres-

sionsmethoden in der Literatur vorgeschlagen, bei denen eine harte räumliche Fehler-

schranke frei einstellbar ist.

In dieser Arbeit untersuchen wir Kompressionsalgorithmen für Trajektorien. Auch

wenn diese Algorithmen für beliebige Bewegungen geeignet sind, konzentrieren wir

uns dabei auf Fahrzeugbewegungen. Wir betrachten den derzeitigen Stand der Tech-

nik, bei dem geometrische Operationen, nämlich Linienvereinfachung und lineare Be-

wegungsmodelle verwendet werden. Wir argumentieren, dass diese Modelle nicht die

bestmögliche Kompression erreichen können, da Fahrzeugbewegungen nicht linear sind

und bekräftigen stattdessen die Verwendung von nichtlinearen Modellen. Wir schlagen

zwei geometrische Kompressionsalgorithmen vor, die auf Klothoidensplines, bzw. kubi-

scher Splineinterpolation basieren. Unsere Auswertungen auf Basis von Realweltdaten

vii

Zusammenfassung

zeigen, dass nichtlineare Algorithmen eine bessere Kompressionsrate erzielen können

als die optimalen Linien vereinfachenden Ansätze.

Während unser auf Splineinterpolation basierender Algorithmus die beste Kompres-

sionsrate für geometrische Verfahren erreicht, arbeitet dieser heuristisch und findet

lediglich eine lokal optimale Lösung. Wir verwenden daher einen informationstheore-

tischen Ansatz, um einen Algorithmus zu finden, der eine bestmögliche Kompressi-

onsrate erreicht. Mithilfe des Shannon-Informationsgehalts definieren wir den Infor-

mationsgehalt einer Trajektorie und schlagen eine Methode vor, um diesen zu mes-

sen. Hierbei findet ein Bewegungsschätzer, eine Diskretisierung von Schätzfehlern und

eine Wahrscheinlichkeitsverteilung Anwendung. Wir beschreiben verschiedene Imple-

mentierungsalternativen für diese Komponenten und zeigen in unserer Auswertung,

dass die Umsetzung dieser Methode in einem arithmetischen Kodierer deutlich bessere

Kompressionsraten als die geometrischen Ansätze erzielt.

Als Abschluss wenden wir uns den konventionellen verlustfreien Kompressionsal-

gorithmen zu und untersuchen mehrere Algorithmen aus der LZ-Familie, den bzip2-

Algorithmus und die arithmetische Kodierung. Eine einfache Anwendung dieser Algo-

rithmen auf die Trajektorien ist allerdings nicht sinnvoll, weil sich die Binärrepräsenta-

tionen ähnlicher Trajektoriepositionen nicht zwangsläufig ähneln und somit nicht not-

wendigerweise gut zu komprimieren wären. Wir präsentieren daher einen Byte-Kodie-

rer, der in einem Vorverarbeitungsschritt den Bytecode einer Trajektorie derart umfor-

matiert, dass er besser durch die ausgewählten konventionellen Algorithmen kompri-

miert werden kann. Unsere Auswertung zeigt, dass die erreichte Kompressionsrate der

verlustfreien Algorithmen beinahe der des verlustbehafteten arithmetischen Kodierers

für die niedrigste untersuchte Fehlertoleranz entspricht.

Durch unsere Ergebnisse zeigen wir, wie eine Trajektorie komprimiert werden muss,

um eine möglichst hohe Kompressionsrate in Abhängigkeit von den Genauigkeitsan-

forderungen der jeweiligen Anwendung zu erreichen.

viii

Acknowledgments

First and foremost, I would like to express my gratitude to my doctoral advisor, Martin

Mauve, who offered me the opportunity to start my doctoral studies and to join the

computer networking group at the department of computer science at the Heinrich

Heine University of Düsseldorf. During my studies, he supported me with valuable

comments, suggestions and discussions, and thus helped me to stay on track and to

successfully complete my work. I could not have had a better doctoral advisor than

him and wish him all the best and many successful years and projects yet to come.

Even after his time at the Heinrich Heine University, Björn Scheuermann took his

time to discuss my new ideas and to suggest different perspectives to look at particular

problems. I would like to thank him very much for the past eight years, in which he

has been my advisor for the Bachelor and Master Thesis, and supported me in my

time as a research assistant.

I am also grateful to Volker Aurich, who helped me to improve the quality of my

articles and this dissertation by reading the drafts and providing valuable feedback.

I would like to thank my colleagues Daniel Baselt, Tobias Escher, Sabine Freese,

Norbert Goebel, Philipp Hagemeister, Yves Jerschow, Jedrzej Rybicki, Pascal Siegers,

and Thomas Spitzlei for the excellent working atmosphere that really counteracted a

lot of stressful situations and thus helped to get through some rather difficult times. I

was also very lucky to be able to work together with Gian Perrone, Michael Singhof,

Dennis Dobler, Erzen Hyko, Matthias Radig, and Andreas Disterhöft, who all did

great jobs in implementing and discussing the prototypes and ideas for the trajectory

compression algorithms; thank you all a lot!

I do not want and cannot forget to thank my friends Frank, Thomas, Eva, Steffi,

Ralf, Javi, Elena, Andreas, Raphaela, and Steffen for proofreading my paper and

dissertation drafts, sharing exciting and laid-back moments or simply for being there!

A very special “thank you” goes to my whole family and particularly to Astrid for

providing unique support especially in tough times and for listening to my gibberish

in all kinds of situations. I would not know what to do without you!

ix

Contents

List of Figures xv

List of Tables xvii

List of Algorithms xix

List of Abbreviations xxi

1 Introduction 1

2 Position Measurements and Applications 7
2.1 Applications Relying on Position Measurements 7

2.1.1 Basic Satellite Navigation . 8

2.1.2 Applications and Requirements 10

2.2 Setting up a Measurement Pool . 11

2.2.1 Collecting Trajectories . 11

2.2.2 Categorizing Movements . 13

3 Geometric Trajectory Point Reduction 17
3.1 Introduction . 17

3.2 Problem Statement and Notation . 18

3.3 Related Work . 19

3.3.1 Line Simplification Algorithms 20

3.3.2 Linear Trajectory Compression Approaches 25

3.3.3 Nonlinear Trajectory Compression Approaches 27

3.4 Clothoidal Trajectory Approximation . 27

3.4.1 Clothoidal Curve Fitting . 30

3.4.2 Deriving a Clothoidal Compression Scheme 33

3.4.3 Evaluation . 34

3.5 Cubic Spline Trajectory Point Reduction 39

3.5.1 Cubic Spline Interpolation . 40

3.5.2 Basic Trajectory Point Reduction 42

3.5.3 Adding Non-Geometric Data . 44

3.5.4 Unseaming Dimension Contexts 44

3.5.5 Evaluation . 46

xi

Contents

3.6 Conclusion . 54

4 Information Theoretic Approaches 57
4.1 Introduction . 57

4.2 Related Work . 58

4.3 Information Theory and Entropy Coding 59

4.3.1 Information Content and Entropy 59

4.3.2 Huffman Coding . 60

4.3.3 Arithmetic Coding . 61

4.3.4 Range Coding . 63

4.4 The Information Content of Trajectories 64

4.4.1 What is the Information Content of Trajectories? 64

4.4.2 How to determine the Information Content of Trajectories 66

4.5 Exemplary Implementation of Information Measurement 67

4.5.1 Movement Estimator . 68

4.5.2 The Discrete Alphabet AX . 68

4.5.3 The Probability Distribution PX 73

4.5.4 Model Implementation: An Arithmetic Coder 82

4.6 Evaluation . 82

4.6.1 Movement Estimation and Discretization 83

4.6.2 Gaussian Probability Distribution 85

4.6.3 Compression . 85

4.7 Conclusion . 94

5 Lossless Trajectory Compression 97
5.1 Introduction . 97

5.2 Related Work . 98

5.3 Conventional Lossless Compression Algorithms 99

5.3.1 LZ Algorithm Family . 99

5.3.2 bzip2 . 102

5.3.3 Arithmetic Coding with Prediction by Partial Matching (PPM) . 102

5.3.4 Compression Performance for Raw Trajectory Data 103

5.4 Lossless Byte Encoding . 105

5.4.1 Algorithmic Idea . 105

5.4.2 Field Width Profiles . 107

5.4.3 Byte Code Structure . 108

5.5 Evaluation . 110

5.5.1 Methodology . 110

5.5.2 Determination of Profile 3 Parameters 110

5.5.3 Determination of Profile 4 Parameters 112

5.5.4 Profile Performance Comparison 112

5.6 Conclusion . 114

6 Conclusions 117

xii

Contents

Bibliography 121

Index 132

xiii

List of Figures

3.1 Exemplary steps for line approximation algorithms. 21
3.2 Line simplification: compression analysis. 23
3.3 Line simplification: relative compression analysis. 24
3.4 Unit clothoid. 28
3.5 Roadway design using lines, circular arcs and clothoids. 29
3.6 Effective clothoid spline fitting errors. 36
3.7 Clothoid splines: compression analysis. 38
3.8 Cubic splines: compression analysis for varying error thresholds. 47
3.9 Cubic splines: relative compression analysis for varying error thresholds. 48
3.10 Total error analysis for the context-oriented spline approach 49
3.11 Total error analysis for the context-loosened spline approach 50
3.12 Longitudinal and lateral error components. 51
3.13 Lateral error analysis for the context-oriented spline approach 52
3.14 Lateral error analysis for the context-loosened spline approach 53

4.1 Arithmetic coding: exemplary coding of symbol string ccb. 62
4.2 Range coding: exemplary coding of symbol string ccb. 65
4.3 Regular tessellations for the discretization grid. 69
4.4 Discretization grid dimension analysis. 73
4.5 Discretization vector norm grid frame options. 74
4.6 Skewing of the probability distribution and mapping it to the grid nodes. 76
4.7 Acceleration Context Model: sectors around the logical grid center. . . . 81
4.8 Movement estimation error analysis for different movement models. . . . 83
4.9 Movement estimation error analysis for different grid node alignments. . 84
4.10 Cumulative distribution analysis of the probability distribution PX . . . 86
4.11 Basic compression ratios of geometric benchmark algorithms. 87
4.12 Basic compression ratios for uncut high velocity trajectory set (Shigh

2). . 88
4.13 Grid node counts over increasing accuracy threshold. 88
4.14 Compression ratios for different grid node alignments. 89
4.15 Compression ratios for different grid frames. 90
4.16 Compression ratios for non-contextual probability distributions. 91
4.17 Compression ratios for contextual probability distributions. 93

5.1 A selection of LZ family compression algorithms. 99
5.2 LZ78 dictionary example. 101

xv

List of Figures

5.3 Compression ratios for all algorithms and raw data. 104
5.4 Algorithmic overview for the byte encoder. 106
5.5 Compression ratios for profile 3 with p1 = 1.0 and over varying p2. . . . 111
5.6 Overview of difference vector degrees used with profile 3. 112
5.7 Compression ratios for all profiles and algorithms. 113
5.8 Comparison of usage ratio of the difference vector degrees for all profiles. 114

xvi

List of Tables

2.1 GPS C/A-Code Pseudorange Error Budget [VD00]. 9
2.2 Trajectory sets in our measurement pool. 15

3.1 Cornucopia parameters as used in CornuConsole. 35

4.1 Comparison of grid cell sizes for the regular tessellation schemes. 70
4.2 Reference values for the static friction coefficient μs. 72
4.3 Exemplary alphabet configurations and entropies. 77
4.4 Results of the distribution clustering for ε = 0.25m. 80

5.1 Field width profile overview. 107
5.2 Byte code structure: header information. 109
5.3 Lossless compression programs and configurations used for the evaluation.110

xvii

List of Algorithms

3.1 Basic greedy spline reduction. 43
3.2 Greedy spline reduction with an unseamed dimension context. 45

xix

List of Abbreviations

ASCII American Standard Code for Information Interchange

BWT Burrows-Wheeler Transformation

C2C Car to Car

C2I Car to Infrastructure

CDR Connection-preserving Dead Reckoning

DBN Dynamic Bayesian Network

DOP Dilution of Precision

FCD Floating Car Data

GIS Geographic Information System

GNSS Global Navigation Satellite System

GNSS Global Navigation Satellite System

GPL GNU General Public License

GPS Global Positioning System

HMM Hidden Markov Model

IEEE Institute of Electrical and Electronics Engineers

LDR Linear Dead Reckoning

LIDAR Light Detection and Ranging

LZ Lempel-Ziv

LZMA Lempel-Ziv-MArkov

LZW Lempel-Ziv-Welch

MOD Moving Objects Database

MTF Move-To-Front

NMEA National Marine Electronics Association

OBU On-Board Unit

ODbL Open Data Commons Open Database License

OSM OpenStreetMap

POMDP Partially Observable Markov Decision Process

xxi

List of Abbreviations

PPM Prediction by Partial Matching

RINEX Receiver Independent EXchange (Format)

RLE Run Length Encoding

RSU Road Side Unit

TDOA Time Difference of Arrival

UERE User Equivalent Range Errors

WLAN Wireless Local Area Network

XFCD eXtended Floating Car Data

xxii

1
Introduction

Computer networking and communications play an important and continuously in-

creasing role in modern life. These technologies not only enable a rapid exchange of all

sorts of information, such as voice or hypertext data, but have also evolved into being

central aspects of present-day businesses. Furthermore, computation devices are long

since mobile, and so is the communication between them. Of course, this encompasses

common and wide-spread every-day devices, like notebook computers or cell phones,

but in general, computing and networking has become more and more ubiquitous in

recent years. Doing so means, in accordance to Mark Weiser’s idea from 1988, that

computing devices “weave themselves into the fabric of everyday life until they are

indistinguishable from it” [Wei91, p. 1]. In his article from 1991 [Wei91], Weiser not

only envisioned the ubiquitousness of computing devices, but he realized that such

devices would need to participate in a network and be aware of their positions, either

in an absolute or at least relative sense to unfold their full potential.

As a prominent use case of ubiquitous computing and networking, inter-vehicular

communication, also known as car to car (C2C) or car to infrastructure (C2I) commu-

nication, has been researched and developed in various projects, such as [proa, prob,

proc, prod]. For inter-vehicular communication, road vehicles are equipped with on-

board units (OBUs) that are connected to a number of electronic sensors, for instance

to measure the distance to surrounding obstacles with Light Detection and Ranging

(LIDAR), to detect humidity, or to determine its current absolute position with a

Global Navigation Satellite System (GNSS). The OBUs may of course vary in their

performance, depending on the class of the vehicle in which they are installed; there

may be simpler units built into lower class vehicles on the one side, but for upper class

1

Chapter 1 Introduction

vehicles, there might be more powerful OBUs available that could host more complex

applications. Generally, OBUs also contain networking capabilities, so measurements

can be exchanged and shared among vicinal vehicles via wireless local area networking

(WLAN) techniques or sent via a mobile cell communication link for further processing

and distribution. Based on this shared information basis, applications can be imple-

mented to improve the safety and efficiency of road traffic or that provide convenient

services, such as information about local points of interest or multimedia streaming.

Some services, such as fleet management, roadway monitoring or map generation,

require vehicles to report their trajectories to a central unit, where these pieces of

information can be processed. However, the reported vehicles’ trajectories also mostly

contain temporal information, and may be extended with even more sensor data; so,

the data volume that is sent from the vehicles might become very large. Especially if

the employed medium is very limited or if the wireless communication comes with ad-

ditional costs, it is important to reduce the induced data load on the channel. In case

that cellular communication is not available, vehicles can only communicate via local

area networking and so, a connection to a central unit is usually only given through

Road Side Units (RSUs). Basically, RSUs are low-performance computing and com-

munication units that are mounted at the shoulder of the road or at overhead gantry

signs and that are connected to a backbone network. Therefore, they can serve as

gateways to relay certain types of messages. In such scenarios, when many vehicles

attempt to transmit their trajectory reports over the wireless link in the surrounding

of an RSU, the link can easily get congested; in this case, the necessary capacity for

more important safety applications that work on the same link might not remain. To

alleviate this situation, a number of lossy compression algorithms for spatio-temporal

trajectories, i. e., sequences of time-position tuples, have been proposed in the commu-

nity of ubiquitous computing. These algorithms provide an accuracy parameter that

determines the upper error threshold that must not be exceeded. The actual error

tolerance depends on the use case; for animal tracking, an accuracy of 100m may be

sufficient, while for the vehicular case, the bound might be set to a few centimeters.

Although these approaches have shown to achieve acceptable compression ratios, the

vast majority of proposed algorithms assume a linear movement and employs geometric

line simplification methods or linear dead reckoning (LDR) and thus do not model

vehicular mobility correctly. Based on this work, it remains unclear what compression

rate can optimally be obtained and how much room for improvement remains at the

moment. In this thesis, we address this issue and raise the question:

how do spatio-temporal trajectories need to be compressed so that a maxi-

mum compression ratio can be achieved?

2

As this question clearly states, our focus lies on maximizing the compression per-

formance; however, we also need to regard several requirements that will emerge in

realistic use case scenarios. It could, for instance, make a difference for particular

applications to compress the measured data in blocks or to handle it as a stream.

Also, one always needs to keep in mind that all compression algorithms need to work

on various platforms, as mentioned above, which again puts up requirements to the

runtime complexity of the respective algorithms. In this context, more complex al-

gorithms could be applicable to data blocks instead of data streams which could be

disadvantageous for certain use cases. Finally, the complexity of the decompression is

also an interesting factor that should not be forgotten.

To establish a solid understanding of the background to spatio-temporal trajectories,

we give an introduction into satellite positioning technologies in Chapter 2 and explain

how spatio-temporal measurements can be conducted. We also present an overview

of applications that rely on positioning information and discuss the requirements that

these applications put to the position measurements. Although we are especially in-

terested in the use case of vehicular communications, we will see in the overview that

the demand for trajectory compression is also present for other applications. Again,

as the compression algorithms should be employed in realistic scenarios, they need to

cope with noisy and potentially erroneous data. We therefore explain in detail how

we established a data basis of real-world spatio-temporal trajectories that we obtained

from the OpenStreetMap project [proe].

As already mentioned above, the major previous work in the area of trajectory com-

pression has been conducted with line simplification algorithms and other geometric

and linear models and therefore we regard this class of approaches more closely in

Chapter 3. All of these previously published geometric compression algorithms are

lossy and provide an accuracy parameter that can be used to adjust a strict error tol-

erance that defines the distance in which the decompressed trajectory may differ from

the original in a point-to-point comparison. We first present and review the main con-

tributions that have been published and discuss two representative line simplification

algorithms that have been used in this course: next to the heuristic Douglas-Peucker

algorithm, we introduce an optimal line simplification algorithm that constructs a

graph structure and calculates the simplification result by finding the shortest path

from the first to the last trajectory point representation in the graph. The evaluation

of the linear approaches shows a good compression performance of these algorithms,

especially for larger error tolerances of more than 1m. However, we argue that mod-

eling trajectories in a linear fashion does not match the principles of kinematics that

regard object movements as smooth functions over time. We therefore examine other

3

Chapter 1 Introduction

geometric approximation methods employing nonlinear functions. We first follow the

approach that if the road structure was known, the trajectories of vehicles following

this structure should be easily compressible. As roads are usually designed as composi-

tions of linear segments, circular arcs and so called clothoids that are used as transition

curves, we discuss two algorithms from the area of computer graphics that sketch such

compositions, also known as clothoid splines, based on noisy point sequences. However,

these algorithms do not regard a strict approximation error tolerance; because of this,

the resulting compression ratio does not reach the benchmark results achieved with

the linear approaches. We therefore propose a second algorithm that approximates

trajectories with cubic splines. Though the algorithm has a higher runtime complex-

ity, it achieves significantly better compression ratios than its linear counterparts and

thereby underlines our assumption that nonlinear models should be regarded when

trajectories are to be approximated geometrically.

Despite the better compression ratio that can be achieved with our method us-

ing cubic spline interpolation, the optimal compression method for spatio-temporal

trajectories remains unclear. Therefore, we propose to approach this topic from an

information-theoretic view in Chapter 4, which is our main contribution in this thesis.

In this chapter, we first introduce the information-theoretic fundamentals and describe

the entropy coding schemes Huffman coding, arithmetic coding, and range coding. The

latter is an implementation paradigm that approximates the arithmetic coding by using

integer intervals instead of real numbers for expressing probabilities. From the basics,

we then derive a definition of the information content of a spatio-temporal trajectory

and propose an abstract way of how to calculate it, employing a movement estimator.

While the abstract model is applicable to a wide range of movements, we also present

an exemplary implementation of the information measurement for which we suggest

realizations for all the model’s components and discuss different configuration possi-

bilities. We evaluate the proposed model and show that it significantly outperforms

the geometric compression algorithms.

As our final contribution in this thesis, we leave lossy compression approaches be-

hind and examine the potential of conventional lossless algorithms for the trajectory

compression in Chapter 5. We regard several algorithms from the LZ family, the bzip2

algorithm and the arithmetic coding. However, a plain application of these algorithms

to the trajectories would not produce meaningful results, because the conventional

algorithms work on byte streams; even if subsequently measured trajectory positions

should be reasonably close to each other, the binary representation of such chained

positions do not necessarily feature a large number of similar byte sequences due to

coding scheme effects. Therefore, we propose a lossless byte encoding scheme for spatio-

4

temporal trajectories, the output of which can better be compressed by the the selected

conventional compression algorithms. To achieve this, the coder basically implements

a delta encoding by calculating the difference vectors of up to second degree for the

trajectory elements, which should result in a majority of close-to-zero bytes. Our eval-

uation shows that our assumptions hold and that the preprocessing step with the delta

encoding results in compression ratios that are comparable to the ones achieved with

the lossy arithmetic coder at the lowest error tolerance of merely 5 cm.

5

2
Position Measurements and Applications

This chapter gives an introduction to the background of trajectory compression: we

first describe briefly how modern satellite self-positioning mechanisms work and how

spatio-temporal measurements can be conducted. We then give an overview of typical

applications that base on position measurements, and discuss their requirements with

respect to the employed position measurements. Finally, we explain how we collected

the spatio-temporal trajectories that we will use throughout this thesis for the design

and evaluation of our compression mechanisms.

2.1 Applications Relying on Position Measurements

Self-positioning by means of satellite signal measurements has evolved from a technique

that has almost exclusively been employed for professional naval and aerial navigation

and for military purposes to a service that is not only available to, but also widely

used by civilian use cases and applications. This covers straightforward application

scenarios, such as static measurements for exact land surveying or mobile measure-

ments for personal map navigation while driving in a car or while hiking in unknown

terrain. Also, a large number of more sophisticated applications have emerged that

not only display the positioning information, but process or store it for future use and

evaluation. It is obvious by this differentiation alone that such a variety of applications

yields a wide spectrum of requirements that need to be fit. In particular, we regard

the demands of the use cases for positioning accuracy and the timeliness of position

measurement reports of a mobile unit at a central entity.

In this context, it will often be referred to spatio-temporal trajectories and movement

measurements. While it is clear that static positioning describes the determination of

7

Chapter 2 Position Measurements and Applications

the current position at a halt, movement measurements can be understood as sub-

sequent position measurements while being in motion. Strictly speaking, the term

movement measurement is therefore not accurate, because the movement parameters,

such as velocity, heading and acceleration, are not necessarily measured. Primarily,

snapshots of the movement at certain points in time are recorded, on the basis of

which the movement parameters can then be approximated. In other words, we do

not measure the continuous function of a moving object’s position over time, but only

sample the position at discrete points in time. Then, the concatenation of (at least)

time and position tuples is named a (discrete) spatio-temporal trajectory.

Therefore, before focusing on the different applications themselves, we have a brief

look at the technical background of Global Navigation Satellite Systems (GNSSs).

Using the example of the Global Positioning System (GPS), we establish a basis for

understanding the opportunities and limitations of self-positioning. For a more detailed

explanation, please refer to [HWLC97].

2.1.1 Basic Satellite Navigation

The basic concept of satellite navigation systems is very straightforward: as the name

suggests, GNSSs employ a set of satellites to determine the position of a measuring

unit. These navigation satellites circuit Earth on well-defined orbits and emit radio

signals that carry the navigation information. The most important pieces of informa-

tion are the time at which the signal is sent and the satellite’s orbit parameters (the

ephemeris) that determine the satellite’s position, with respect to a transmission time.

A measuring unit then needs to receive the signals of at least four navigation satellites

to determine its own three-dimensional position by means of pseudoranging and mul-

tilateration: it calculates the time that the signal has traveled, the Time Difference of

Arrival (TDOA), and uses it, in conjunction with the speed of light, to determine its

distance (pseudorange) to each satellite. Once the distances are known, the receiver

constructs spheres around the satellites’ positions for the multilateration, using the

determined respective distances as radii. In a perfect setting, these spheres would

intersect in a single point, i. e., the receiver’s position. [Str95, HWLC97]

As straightforward as this description may seem, it is more complex when observed

more closely. Several effects almost certainly cause the spheres to not perfectly inter-

sect in one single point, caused by approximation errors in the pseudoranging (User

Equivalent Range Errors (UERE)): as described, a receiver needs to determine the dis-

tance to the navigation satellites by calculating the TDOA. For this purpose, both the

satellites and the receiver require highly accurate clocks. The clocks that are built into

8

2.1 Applications Relying on Position Measurements

GPS 1σ error (m)

Segment Source Error Source estimation conservative est.

Space

Satellite clock stability 3.0 3.0

Satellite perturbations 1.0 1.0

Other (thermal radiation, etc.) 0.5 0.5

Control
Ephemeris prediction error 4.2 4.2

Other (thruster performance, etc.) 0.9 0.9

User

Ionospheric delay 5.0 10.0

Tropospheric delay 1.5 2.0

Receiver noise and resolution 1.5 4.8

Multipath 2.5 1.2

Other (interchannel bias, etc.) 0.5 0.5

System UERE Total (root sum square) 8.0 12.5

Table 2.1: GPS C/A-Code Pseudorange Error Budget [VD00].

the navigation satellites provide such a high absolute correctness, but they are very

expensive, complex and huge, so most receivers need to cope with much simpler and

smaller clocks that still feature a high relative accuracy. The receiver’s clocks therefore

often implement methods to iteratively improve the correctness of their clocks and thus

improve the positioning accuracy. However, even the satellites’ clocks may suffer from

slight drifts that can impede an exact TDOA measurement. Additionally, the satel-

lite signals do not travel at a constant velocity, because they traverse different layers

of Earth’s atmosphere, such as the ionosphere and the troposphere. Depending on a

satellite’s position, the length of its signals’ way through these layers may differ sig-

nificantly and therefore may cause atmospheric errors in the pseudorange calculation.

As a last example of error sources, satellite signals are subject to the same multipath

effects, as they are also known from radio signals used for wireless networking with

IEEE 802.11 or 3G/4G communication. As a result of these inaccuracies in the pseu-

doranging, the spheres around the satellites do not intersect in a single point, but the

receiver needs to approximate the position as the point with the minimal distance to

all spheres. In general, one refers to the final positioning inaccuracy caused by these

error sources as position measurement noise. Table 2.1 gives an overview of 1σ UERE

error values for the GPS navigation system, as published in [VD00].

9

Chapter 2 Position Measurements and Applications

2.1.2 Applications and Requirements

Commercial Systems

An important branch for spatio-temporal use cases compasses commercial systems,

with the prominent example of fleet management: vehicles are equipped with GPS

receivers and communication devices and report their position to a central station,

as in [THR07]. Here, the focus lies on the timeliness of the data, i. e., the position

information maintained in the central station must be as current as possible, so the fleet

management can utilize vehicles at locations close to their respective current positions.

This is especially essential for police patrol car or taxi management [KWRKM05,

STBW02]. A spatially high resolution is not crucial in these cases, as the reported

position is most likely to be projected on map material, where a position error of

several meters is mostly tolerable.

In the area of vehicular communications, application scenarios are considered that

aim at improving the safety, efficiency and the comfort of traffic. To achieve these

objectives, the vehicles exchange Floating Car Data (FCD) or eXtended Floating Car

Data (XFCD) [HLO99] that basically contain detailed spatio-temporal information,

enhanced with additional sensor data in the case of XFCD. The applications that

are realized upon the exchange of such data are diverse and cover, for example, road

weather monitoring [MPS02] and map refinement or generation applications [SWR+04,

BEJS05, KP08]. While the first requires a timely event report and merely a rough

localization, the characteristics of the latter applications are quite the opposite: probe

vehicles act as measurement entities and are supposed to collect their spatio-temporal

trajectory data at a high accuracy, but may transmit it at a later point in time.

Research Assistance

In the research sector, position measurements are also used very often, especially to

monitor longsome evolutions, where measurement points might be hard to reach or

might be spread over a large area, such as for tectonic plate movement measurements

for earth quake research [DAC+08]. For such measurements, intervals in the range of

seconds are unnecessary, while the measurement accuracy is more important. For the

tracking of flocks or herds, on the other hand, position inaccuracies of up to ten meters

are tolerable at varying measurement intervals, depending on the achievable velocity

of the tracked unit [JOW+02, SBM+07].

10

2.2 Setting up a Measurement Pool

Community Applications

The impressive development is best illustrated by the spreading of applications with po-

sitioning requirements in non-commercial communities or recreational contexts. While

semi-professional application visions, such as peer-to-peer network based traffic infor-

mation systems [RSKM09] feature requirements comparable to commercial systems,

the requirements of applications from other backgrounds may vary heavily. In sports

communities, such as smartrunner [sma], applications are likely to be delay-tolerant

and focus on logging trajectories without hard accuracy bounds, as they can be cor-

rected with or mapped onto map material afterwards. Other use cases include the

recovery of broken-down model aircrafts, which again demands a higher position res-

olution.

We see that applications with spatio-temporal backgrounds are used in variety of

contexts. Although these contexts may be diverse, so are the requirements of the

respectively covered applications, regarding spatial and temporal accuracies. Tech-

niques that are to be applicable in a wide range of use cases should therefore provide

the possibilities to adapt to a wide range of requirements.

2.2 Setting up a Measurement Pool

In this thesis, we present and discuss algorithms for the compression of spatio-temporal

trajectories. Like other algorithms that have a strong binding to real-world measure-

ments, these need to be tested and validated with suitable data sets. To ensure that

these algorithms perform well in realistic scenarios and to gain reliable and represen-

tative results, it is important to work with a real-world measurement pool instead of

purely simulative models. Such models merely resemble the effects that may occur and

may neglect others which could result in a biased algorithmic design or in an evalua-

tion that does not show the true behavior of an algorithm in a realistic environment.

In this section, we therefore explain how the measurement pool is set up that is used

throughout this thesis.

2.2.1 Collecting Trajectories

For our collection of real-world trajectories, we accessed the data base of the Open-

StreetMap (OSM) project [proe]. In this project, volunteer contributors and donators

work together to create a world map that is free for use, distribution and altering,

licensed under an open data license, the Open Data Commons Open Database License

(ODbL) [ope]. The map generation process can roughly be split up into the data col-

11

Chapter 2 Position Measurements and Applications

lection, uploading, and the editing. For the data collection, contributors mostly record

movement trajectories (or tracks), e. g., with GNSS receivers. Alternatively, tracks can

be retrieved as donations from municipalities or from other sources that are compati-

ble with the ODbL. The data is then uploaded to the project website and thus made

available to all other contributors and the public. Finally, the raw data can be edited

and integrated into the map material. In this step, special tags can be defined for

new or existing street segments that, for instance, give information about whether the

segment belongs to a highway or to a pedestrian precinct.

For a meaningful evaluation of the algorithms discussed and developed in this thesis,

a data base with a large number of trajectories is required. The OSM project does

not provide an easy-to-use interface over which the raw measurement tracks could

be retrieved: Instead, the project website is organized with a page-based download

section, thus making a certain number of tracks accessible per page. To automatically

access the download section, we implemented a web crawler that scans through the

pages and downloads the raw data.

As already mentioned, the data on the OSM website is potentially recorded with a

wide spectrum of positioning devices, so the traces themselves also feature a variety

of measurement frequencies, detail degrees and accuracies. Though the concepts in

this thesis are applicable to trajectories that originate from all sorts of movements,

we focus on vehicular trajectories that meet the requirements of high-end commercial

applications that basically request a high data resolution. We therefore limit the data

basis for our studies to contain only trajectory descriptions that have been recorded at

a fixed measurement frequency of 1Hz. This is provided even by current off-the-shelf

GPS hardware, while more sophisticated positioning systems that use e. g., Kalman

filters [Bro98] or inertial navigation systems [Woo07], can easily accomplish this task

anyway. We are also only interested in trajectories with at least 100 measurements.

To odd out trajectories that are unlikely to originate from motorized vehicles, we

implemented a rough pre-filter that dropped all trajectories with a majority of their

velocities being below a threshold of 8.3m/s; in this way, a total trajectory set S0,

containing 20191 trajectories, was collected.

For our evaluations in the next chapters, three different types of trajectory sets are

needed: for the algorithms with a high runtime complexity that are examined in Chap-

ter 3, we need a set of short trajectories and choose with our experience from previous

publications [KKKM11, KBMS11] a trajectory length of 250 elements for this set, S1.

However, the trajectories for S1 are not directly obtained from the OSM website, but

extracted as subsequences from the OSM trajectories, instead: we initialize a sliding

window with size 250 and place it at the beginning of longer trajectories. In each

12

2.2 Setting up a Measurement Pool

step, the content of the window is then stored as a new trajectory and the window

is shifted forward by 125 measurements. Thereby, the influence of edge effects due to

disadvantageous window positions is weakened. For the longer trajectories, we use all

trajectories with a measurement count between 1000 and 1300 that were obtained with

the crawler. This window approach further simulates a realistic data collection policy:

position measurements are pushed into a buffer and once the buffer is full, its content

is passed to the compression algorithm, the buffer is cleared and the data collection

starts over. In contrast to that, we assemble a set of uncut trajectories, S2, for the

evaluation of algorithms that feature a comparably low runtime complexity. These tra-

jectories are directly taken from the data that the crawler has collected. Further, both

the sets S1 and S2 are split into subsets according to special movement characteristics.

The determination of these characteristics and the selection process based on them is

described in Subsection 2.2.2. Finally, we regard a compression techniques that need

to absolve training phases before being applied on movement data. Therefor, a set S3

is prepared that is composed of two subsets: a training set Strain
3 , and a test set Stest

3 ,

the composition of which is described in the next subsection.

2.2.2 Categorizing Movements

In general, compression algorithms aim at identifying and removing redundancy of

a data set and thereby optimizing the data encoding. We are focusing on vehicular

trajectories, so we need to regard kinematic factors that determine the movements of

the measurement units and examine in how far these factors influence the performance

of the compression algorithms. In a next step, we can then cluster the trajectories from

our measurement pool according to these factors and analyze the regarded algorithms’

compression performance for these clusters.

The procedure of analyzing the nature of an object’s movement has been intensively

studied before. In the field of context recognition, one prominent challenge is to detect

the means of transportation on the basis of the moving objects’ trajectories and other

sensor data. In doing so, many sophisticated approaches have been regarded that all

provide satisfactory results: in [LPFK05], the authors use a Dynamic Bayesian Network

(DBN) to learn and estimate a tracked person’s location and activity, and Zheng et al.

propose to split trajectories at points of halts and to process the separate segments

separately in [ZCL+10]. Therefore, they analyze the nature of walking (especially

low velocities), car driving (higher velocities, limited heading changes), bus driving

(like car, but more frequent stops), and cycling (moderate velocity, more irregular

heading changes) and use these, together with transport mode transition probabilities

13

Chapter 2 Position Measurements and Applications

to determine the transportation mode. In [RMB+10], Reddy et al. follow a similar

philosophy in using a moving object’s velocity, acceleration and a transportation mode

transition probability model in the form of a preliminarily trained hidden Markov

model to infer whether the movement is by walking, cycling or driving with a motorized

vehicle. They also show that especially the velocity is a reliable criterion to make

a classification decision. This is also highlighted in [SA09], as the authors set up

a classification system purely based on the maximum and average velocity and the

acceleration derived from GPS measurements. In addition to the information that can

directly be gained from the positioning and from the acceleration sensors, Geographic

Information System (GIS) data bases that contain map information are also used for

classification purposes, such as in [BLvO12].

The above-mentioned excerpt of relevant literature makes clear that the question for

the transportation mode context can be answered in a very high degree: the accuracies

of the proposed algorithms vary between 70% and more than 99%, a good and detailed

overview can be found in [BLvO12]. However, to achieve such a high accuracy, most

algorithms make use of at least the velocity and the measured acceleration. In our case,

it is even debatable whether the question for the actual transportation means fully

applies; we aim at only regarding vehicular traces and in accordance with the above-

mentioned publications, we argue that in the vehicular context, velocity is the most

influential factor on a vehicle’s movement and kinematic characteristics. Furthermore,

there are no acceleration measurements attached to the trajectories in our data basis

and we would limit the generality of our approach if these sensor data would be added to

the required inputs. Also, it is not clear to be a good idea to calculate the acceleration

as the second derivative over time from the positioning data, because the result is

likely to be noisy—we will learn more about the influence of this noise in Sections 3.4

and 4.6. The authors of [SA09] follow this approach nevertheless and use a Gaussian

smoothing for the acceleration and employ the result in a fuzzy logic model. They

achieve good results, but their fuzzy rules indicate that the acceleration is mainly used

as an indicator for the determination of what kind of motorized vehicle is used.

In summary, instead of using sophisticated solutions that need further work in cal-

ibrating or training a model, we differentiate trajectories along with their velocity

profiles: we set up two velocity classes for low and high velocities and follow interna-

tional velocity guidelines in setting up the threshold between these two classes. The

low velocity class covers the velocity interval [8.3; 16.7)m/s, and the high velocity class

covers all velocities in [16.7,∞)m/s. Thereby, the low velocity class should roughly

cover urban movements with lower velocities and narrower corners, and we expect

the high velocity class to contain trajectories that mostly cover extra urban move-

14

2.2 Setting up a Measurement Pool

Set Description Measurement
frequency

Trajectory
sizes

Set
cardinality

Slow
1 cut, low velocity traces 1Hz 250 5536

Shigh
1 cut, high velocity traces 1Hz 250 4599

Slow
2 uncut, low velocity traces 1Hz ≥ 100 3257

Shigh
2 uncut, high velocity traces 1Hz ≥ 100 6839

Strain
3 uncut, training traces 1Hz ≥ 100 10095

Stest
3 uncut, validation traces 1Hz ≥ 100 10096

Table 2.2: Trajectory sets in our measurement pool.

ments that took place on highways, for example. We classify a trajectory to one of

the two classes, according to which of the two intervals covers more of the respective

trajectory’s velocities.

Table 2.2 summarizes the properties of the compiled trajectory sets in our measure-

ment pool. We applied our classification first to the total trajectory set S0. As a result,

6513 trajectories were classified as low velocity, and 13678 as high velocity trajectories.

These sets were then randomized and split in half, using one half of each as Slow
2 and

Shigh
2 . Then, we set Stest

3 = Slow
2 ∪Shigh

2 and Strain
3 = S0\Stest

3 . The trajectory sets Slow
1

and Shigh
1 were finally calculated from the trajectories with 1000 up to 1300 positions

from Slow
2 and Shigh

2 , respectively, following the sliding window approach as explained

above.

15

3
Geometric Trajectory Point Reduction

3.1 Introduction

The most wide-spread class of trajectory compression techniques covers geometric

methods. These methods employ geometric structures, such as polygonal curves or cir-

cular arcs for the compression process. There are some advantages to such techniques

over more abstract methods like those that are discussed in Chapter 4: not only are

geometric approaches rather concrete, because it is easier to follow the algorithm on a

visual basis. Additionally, it is often beneficial to store a geometric context—position

coordinates of a simplified trajectory, for instance—when this form of information is

easier to process by a particular application. Fleet management systems, such as the

one being used in [GSTW04], could maintain a database containing the fleet vehicles’

trajectories for various request types. Now, for an exemplary use case, the user could

be interested in a specific vehicle’s trajectory for a particular time period to evaluate

the route selection from the starting point to the destination. Alternatively, the fleet

vehicles’ current positions might be of interest to estimate remaining travel times or

the time until the fleet will return to the base. In both cases, it is very easy to work

with geometric information rather than with binary data streams that would need to

be decoded initially.

Geometric trajectory compression methods often work by means of trajectory ap-

proximations that can be encoded with a reduced point set. To obtain such sets, one

basically attempts to find a geometric curve that approximates the particular trajec-

tory within a specific error corridor defined by an error tolerance ε. The reduced set

shall contain only those trajectory points or other parameters that are necessary to

17

Chapter 3 Geometric Trajectory Point Reduction

reconstruct this geometric curve and thus to retrieve the omitted points, typically by

means of simple interpolation.

In this chapter, geometric compression approaches are discussed and their perfor-

mance is evaluated. To establish a sound basis for our argumentation, we first present

a clear formulation of the problem statement, and review related work. Since a major-

ity of the contributions from the related work employs linear approaches, we directly

apply two representative linear compression algorithms to our trajectory data basis to

establish a benchmark to which the new algorithms that are described in this work

can directly be compared. We then increase the algorithmic complexity by turning to

nonlinear methods, employing clothoids and circular arcs and finally regard a solution

based on cubic splines. For each approach, it is also defined how the compression ratio

is calculated, so that the compression techniques can be easily compared among each

other in the evaluation sections.

3.2 Problem Statement and Notation

For the geometric compression methods, we consider both linear and nonlinear ap-

proaches, and therefore need a clear problem statement that is applicable in both

cases. This statement is kept universally, so that it can be easily applied it to all

regarded approaches, thus establishing a comparability between them.

In the following, we will denote a movement trajectory or position measurement

trace as a sequence 〈mj〉j∈J , mapping the elements of an (ordered) index set J to

d-dimensional measurement tuples:

m : J → Rd, j �→ mj = (a0, . . . , ad−1) .

The discussed techniques are more generally applicable, but for the sake of simplicity

we focus on the two-dimensional case of geographic coordinate pairs here:

m : J → R2, j �→ mj = (xj , yj) . (3.1)

Furthermore, we assume that a metric accuracy bound ε ≥ 0 is given.

Then, generally speaking, we aim to find a compact representation in the form of

another point sequence 〈m′
j〉j∈J ′ that allows us to reconstruct all elements from 〈mj〉

with a maximum error of ε; 〈m′
j〉 does not necessarily need to be a subsequence of

〈mj〉. The reconstructed element sequence will be references as 〈m̂j〉j∈J and in analogy

18

3.3 Related Work

to (3.1), the sequences 〈m′
j〉 and 〈m̂j〉 are defined as

m′ : J ′ → R2, j �→ mj = (x′j , y
′
j) ,

m̂ : J → R2, j �→ mj = (x̂j , ŷj) .

To find 〈m′
j〉, we use different, purpose-tailored compression and decompression algo-

rithms; let us denote such an ensemble by E(c, r, ε). Here, c denotes the compression

mapping:

c : (R2)|J | → P(J)× (R2)|J
′|, c(〈mj〉) = (J ′, 〈m′

j〉), |J ′| ≤ |J |

with P(J) being the power set of J . The corresponding decompression mapping is

denoted by r:

r : P(J)× (R2)|J
′| → (R2)|J |, r(J ′, 〈m′

j〉) = 〈m̂j〉 .

so that the sequences 〈mj〉 and 〈m̂j〉 do not differ by more than ε element by element

corresponding to a specific distance metric. As we are dealing with metric positions,

we use the Euclidean distance metric; formally,

∀j ∈ J :
√

(xj − x̂j)2 + (yj − ŷj)2 ≤ ε .

Different versions for the compression and decompression mappings c and r will be

presented in the following sections.

Under this notation for geometric compression schemes, the compression ratio σ is

defined by

σ = 1− |J ′|
|J | , (3.2)

as long as the mapping r does not require additional data for the reconstruction.

3.3 Related Work

The previous work published for linear and nonlinear geometric compression methods

represents the main previous work in the area of trajectory compression. We there-

fore review these contributions in-depth in this section. As many approaches employ

linear simplification, we first present two representative algorithms and evaluate the

compression performance that they achieve and that we use as a benchmark for the

nonlinear approaches.

19

Chapter 3 Geometric Trajectory Point Reduction

3.3.1 Line Simplification Algorithms

Optimal Line Simplification

A line simplification algorithm that finds the minimal subsequence of 〈mj〉, where

the minimal subsequence approximates 〈mj〉 with a maximal approximation error ε

as defined above is said to solve the minimum subsequence approximation problem or

minimum-# problem; in our notation, this minimal subsequence represents the se-

quence 〈m′
j〉. Such an algorithm has been proposed in [II86]: in a first step, the

algorithm creates a directed graph G(V,E), where V includes all nodes from the orig-

inal polygonal curve, 〈mj〉. An edge e = (i, j) ∈ E, iff i < j and the distances of

mi+1, . . . ,mj−1 to the line segment between mi and mj are smaller than ε. Formally,

∀k : i < k < j : dli,j (mk) ≤ ε .

with the distance metric dli,j (·) of a point to the line segment from mi to mj . If only

the shortest distance to the line matters, then an orthogonal projection can be used

that determines the shortest distance to the line. As we deal with spatio-temporal

trajectories, though, we need to consider that omitted points will be recovered by

mere linear interpolation. Therefore, if a line segment of length l bypasses b points,

our distance metric determines the Euclidean distance from the i-th bypassed point to

the position on the line segment with the proportional offset i·l
b+1 . Once this graph has

been constructed, the minimal subsequence is determined by finding the shortest path

from m0 to mn−1, for example with the Dijkstra shortest path algorithm [Dij59].

As shown in [FT84], the shortest path problem can be solved inO(|V | log |V |+|E|), if
Fibonacci heaps are used. However, the creation of G, using a brute force algorithm as

originally proposed, runs in O(|E|3). The latter runtime complexity could be improved

to O(|E|2) in [CC92], so that the overall complexity of the algorithm is O(|E|2).
With the optimal linear approximation, the compression mapping c is the simplifi-

cation process itself. For the decompression mapping r, the omitted nodes from 〈mj〉
can be approximated by linear interpolation, for which reason the indexes of the nodes

need to be preserved.

Douglas-Peucker – A Heuristic Approach

The Douglas-Peucker algorithm [DP73] implements a line simplification heuristic and

finds a subsequence of a given polygonal curve 〈mj〉 with a maximal approximation

error ε using a divide-and-conquer strategy: first, the first and last node of a polygonal

chain are taken as end points of a line segment. For all nodes in between, the distances

20

3.3 Related Work

(a) Initial polygonal chain. (b) Douglas-Peucker algorithm, step 1.

(c) Douglas-Peucker algorithm, step 2. (d) Douglas-Peucker algorithm, step 3.

(e) Douglas-Peucker algorithm, step 4. (f) Optimal line approximation result.

Figure 3.1: Exemplary steps for line approximation algorithms.

to this line segment are determined with respect to a specific distance metric. Here,

the above discussion on the distance metric applies as well. If any distance exceeds

the accuracy bound ε, the polygonal chain is separated in such a way that the point

with the greatest distance is both the end and the start node for the new created

subchains, respectively. Then, the algorithm starts anew for each of these subchains

and terminates, once no point-line distance exceeds ε any more.

Figures 3.1a–3.1e show a simple example for a polygonal chain consisting of eight

nodes: the original polygonal curve is separated (Figure 3.1c) and the two resulting

subchains are each separated as well (Figure 3.1d). As the result of the algorithm,

the remaining nodes set up the sequence 〈m′
j〉. Please note that in this example, the

proportional distance metric from above has been used and the dotted circles on the line

segments denote the proportional projections (and thus the potential interpolations)

of the currently omitted points. As mentioned before, the Douglas-Peucker algorithm

merely employs a heuristic, i. e., the result c(〈mj〉) = 〈m′
j〉 is not necessarily the global

optimum. Its advantage, on the other hand, is its runtime complexity, which lies in

O(nk) with n = |J |, k = |J ′| in a simple implementation, but can be improved for

two-dimensional polygonal curves to O(n log n) [HS92]. Finally, Figure 3.1f shows a

possible result of the optimal line simplification algorithm for the example polygonal

chain from Figure 3.1a. It clearly differs from the result obtained with the Douglas-

Peucker algorithm, and is, in this example, slightly more compact.

For the Douglas-Peucker algorithm, c and r are defined by analogy with the optimal

line simplification algorithm: the compression mapping c is the line simplification itself

and the decompression mapping r is realized by means of linear interpolation.

21

Chapter 3 Geometric Trajectory Point Reduction

To reconstruct the removed points from 〈mj〉 at the correct positions, the original

indexes need to be stored. In literature, this is achieved by encoding temporal context

data either explicitly with timestamps or implicitly with sequence numbers for periodic

update protocols. Since we handle periodic position measurements, as pointed out in

Section 2.2, we can reduce the overhead even further by using a bit field of length |J |
for this purpose. In such a bit field, a bit indicates whether the position measurement

at the respective position has been kept. This implies an extra effort of merely one bit

per measurement.

Additionally, we need to store the point of time for the first position measurement;

in combination with the bit field—that is in this context not only an overhead for the

spatial reconstruction—we can reconstruct the temporal information of the trajectory.

This allows, for instance, to conclude on a passed road segment’s position within a fun-

damental diagram of traffic flow or to monitor the average speed for it as in [STBW02].

A fundamental diagram correlates the traffic flux (vehicles per hour) and the traffic

density (vehicles per kilometer) for traffic flow estimations.

Evaluation

A short note on the compression overhead For the evaluation of the line simplifica-

tion compression schemes, we need to regard the overhead for the compression perfor-

mance that is caused by the discussed bit field. To achieve effective data compression,

enough positions need to be removed from 〈mj〉, so the sum of the compression result

size and the bit field size is less than |J |, and thus to compensate this overhead. The

actual amount of nodes that need to be removed depends on the size of the binary

representation for each position, 2 · sn, the overhead size so =
⌈ |J |

8

⌉
(both given in

bytes), and the reduced knot sequence length |J ′|. Given these parameters, we can

formally describe that the size of the reduced node sequence and the overhead need to

be smaller than the original sequence’s size:

2 · sn · |J | > 2 · sn · |J ′|+ so . (3.3)

From this, we can derive the absolute threshold that needs to be underrun for the

particular line simplifications to result in successful compressions:

|J | − |J ′| > so
2sn

(3.4)

For the evaluation, we use trajectories with |J | = 250 elements, and assume a binary

position size of 2·sn = 8bytes. This encoding results in a maximal initial representation

22

3.3 Related Work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
m

pr
es

si
on

 r
at

io
 σ

error tolerance ε [m]

Linear Optimum
Douglas Peucker

(a) Low velocity trajectories (Slow
1).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
m

pr
es

si
on

 r
at

io
 σ

error tolerance ε [m]

Linear Optimum
Douglas Peucker

(b) High velocity trajectories (Shigh
1).

Figure 3.2: Line simplification: compression analysis.

error of ≈ 0.7862 cm for any geodetic coordinate, which we accept as insignificant.

Under these conditions,

|J | − |J ′| >
32

8
= 4

and
|J ′|
|J | < 1− 32

8 · 250 = 0.984 .

This means that for this configuration, at least 4 positions need to be removed in the

simplification process and the raw compression ratio, as defined in (3.2), of σ = 0.016

needs to be exceeded to achieve an effective compression.

23

Chapter 3 Geometric Trajectory Point Reduction

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

σ
D

P
 /

σ
O

pt

error tolerance ε [m]

Douglas-Peucker

(a) Low velocity trajectories (Slow
1).

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

σ
D

P
 /

σ
O

pt

error tolerance ε [m]

Douglas-Peucker

(b) High velocity trajectories (Shigh
1).

Figure 3.3: Line simplification: relative compression analysis.

Compression Performance The compression results for the linear approaches, calcu-

lated according to Statement (3.2), are interpreted as mapping of the error bound ε to

the mean compression ratio achieved under this condition. This mapping is shown in

Figure 3.2 for the low (Slow
1) and high (Shigh

1) velocity trajectory sets. Both approaches

benefit particularly from error tolerances of up to 50 cm, as the higher slopes of the

compression performance curves indicate. For larger ε, the curves flatten and error

tolerances of more than 1m have merely a minor impact on the compression ratio.

This behavior can be explained with the noise that underlies the position measure-

ments. Once the error bound is larger than the mean positioning noise, the algorithms

can approximate the trajectories with higher tolerances, so the trajectories can be

encoded more efficiently. The figures do not provide information about the accuracy

of the mean value, because the 95% confidence intervals for both approaches have an

average width of approximately 0.6% and would not even be visible in the figures.

24

3.3 Related Work

The performance of the Douglas-Peucker algorithm comes very close to the upper

bound set up by the optimal line simplification. Figure 3.3 depicts the compression per-

formance of the Douglas-Peucker algorithm relative to the optimal line simplification:
σDP
σOpt

. Overall, for ε > 0.1m, the Douglas-Peucker algorithm performs approximately

5% to 15% worse than the optimum in both the low and the high velocity settings.

3.3.2 Linear Trajectory Compression Approaches

Linear trajectory compression methods have almost exclusively been presented in the

fields of Mobile Objects Databases (MODs) and mobile tracking [CLFG+03, GS05].

Such databases are employed for the tracking of mobile objects as discussed above

in the exemplary use cases: for these, all participating mobile units send position

updates to a server hosting an MOD; again, depending on the application or the use

case, such update transmissions may be triggered by different circumstances. In the

simplest case, a mobile node sends update notifications periodically. In more complex

scenarios, mobile nodes reconstruct the tracking information base that is maintained

on the server side and send update messages once it is recognized that the server can

no longer approximate the mobile node’s position within the afore-mentioned upper

uncertainty bound ε.

In general, mobile objects can perform the position updates in an offline or online

fashion, according to the requirements of the particular application. Offline approaches

are applied in the event that it is unnecessary for the database or the tracking unit to

be accurately current: a mobile node collects its trajectory data until, for instance, a

spatial or temporal threshold has been exceeded since the most recent update. Then,

the node compresses the trajectory data using its post-factum knowledge. This can be

achieved using linear dead reckoning (LDR) mechanisms; with LDR, the movement of

an object is linearly extrapolated on the basis of past position measurements. This

kind of movement estimation is very simple but effective, especially if the position

measurement frequency is reasonably high. In literature, numerous publications on

position tracking have made use of LDR: in earlier work, Wolfson et al. presented a

cost model that took into account the communication cost, the tracking unit’s uncer-

tainty of the mobile unit’s position and the LDR estimation error [WSCY99]. The

authors of [LR01] focus on the efficiency of location information update protocols us-

ing LDR and analyze the minimum and mean tracking accuracy at the tracking unit.

In [CJP05], the authors apply LDR tracking techniques in combination with shared

map material and present an evaluation based on real GPS data. Other publications

propose the compression of spatio-temporal trajectories by means of heuristic or opti-

25

Chapter 3 Geometric Trajectory Point Reduction

mal line simplification algorithms that we discussed above. In [MdB04], Meratnia and

de By propose spatio-temporal compression techniques and compare their performance

to the performance of the Douglas-Peucker algorithm and so-called Opening Window

algorithms. The latter basically perform ongoing line simplifications with an anchor

node and the current measured position until the uncertainty bound ε is exceeded.

The authors of [CWT06] define specific query classes, discuss and analyze several dis-

tance metrics for the Douglas-Peucker algorithm for spatio-temporal data reduction

and focus on the aging of trajectories by allowing larger uncertainties for older tra-

jectories. Motivated by this publication, Gudmundsson et al. improve and extend the

proposed ideas in [GKM+07], so all query classes can definitely be answered regarding

an uncertainty bound; finally, they present a modified Douglas-Peucker algorithm that

performs better for self-intersecting trajectories. Trajectory compression can also be

employed for data storage preprocessing, as proposed in [HGNMs08]: incoming po-

sition updates are buffered and the buffer is then compressed by offline compression

techniques. Obviously, the line simplifications found by the optimal line simplification

approach are upper bounds for all approximations calculated by the approaches based

on linear movement modeling and LDR discussed here. We therefore do not evaluate

each single approach from the related work but regard the results achieved with the

optimal approach instead.

In contrast to that, online trajectory data reduction mechanisms aim at compress-

ing collected position measurements in real-time, thus allowing for up-to-date spatio-

temporal information at the tracking unit while reducing the network and communi-

cation load at the same time. For online trajectory data reduction, LDR mechanisms

are widely used, because they are less complex than performing line simplification

algorithms after each newly taken position measurement: Trajcevski et al. proposed

the first online algorithm in [TCS+06] that employs LDR and regards a previously

defined uncertainty bound ε. The authors of [LDR08] adapt the idea of using LDR

for online trajectory reduction and present a Connection-preserving Dead Reckoning

(CDR) that reduces the communication load and the remaining trajectory data vol-

ume. In [LFDR09], they subsequently present a generic tracking scheme by separating

tracking from simplification and combine their approach with heuristic and optimal

line simplifications. Finally, the authors of [HGRM10] compare simple line simplifi-

cation algorithms to more complex algorithms and ones working with map material

and conclude with recommendations for the use of algorithms with a view to several

requirements.

In conclusion of the literature review, it can be stated that the offline linear algo-

rithms generally achieve a better compression performance than online algorithms; on

26

3.4 Clothoidal Trajectory Approximation

the other hand, online algorithms allow for low communication loads at higher update

frequencies, thus helping to save channel capacities, while providing more up-to-date

position information in the tracking or storage unit.

3.3.3 Nonlinear Trajectory Compression Approaches

None of the discussed publications consider the use of nonlinear movement modeling

or polyline simplification. The only previous work on trajectory data reduction with

nonlinear functions has been presented in the context of spatio-temporal data base

indexing: in [CN04], the authors motivate that a good representation for spatial ve-

hicular trajectories are so-called minimax polynomials. These approximate an original

function in such a way that the maximum approximation error is minimal for the given

approximation parameters. They propose the use of Chebyshev polynomials that have

been shown to be a very good approximation of optimal minimax polynomials. How-

ever, they focus on the spatial dimension of a trajectory and disregard the influence of

time. The authors of [NR07] extend this work by focusing on the temporal dimension

and optimizing the degree of the polynomials. Both contributions use the degree of

the Chebyshev polynomial as input parameter and calculate the resulting approxima-

tion error after the calculation. They do not present an efficient way of constructing

a Chebyshev or other polynomial representation with a higher-than-linear degree for

moving object trajectories, for which the maximal approximation error does not exceed

a previously set up upper bound ε.

3.4 Clothoidal Trajectory Approximation

In the previous section, we have seen that vehicular trajectories can be well-approxima-

ted with linear curves. However, we also have seen limitations of the regarded ap-

proaches, especially in low velocity environments, that are curvy rather than linear.

On such road segments, more line segments are necessary to satisfy the accuracy bound

ε. This, and the fact that vehicular movements are not linear, motivate the use of non-

linear geometric methods for trajectory compression schemes.

A promising approach for the compression of vehicular trajectories is to regard

the design of the roads on which vehicles travel. Once it is determined of which

basic geometric elements a road is composed, it can be assumed that any vehicular

movements along such roadways can likewise be expressed or at least approximated by

variations of these elements.

In the design and construction of roadways, linear segments, circular arcs, and

clothoid segments—often referred to as curve primitives—are widely used to achieve

27

Chapter 3 Geometric Trajectory Point Reduction

-1

 0

 1

-1 0 1

y

x

Figure 3.4: Unit clothoid.

optimal trafficability [Baa84, MW92]. This is achieved, when the curve primitives

are fitted together in such a way that vehicles can drive on a such constructed road

smoothly, that is, without any jolts or shocks that would result from abrupt, but

necessary steering changes. These curve primitives reflect the nature of fundamental

vehicular movements as they can be experienced in everyday traffic: for yaw rates equal

to zero, i. e., the steering wheel is constantly at a neutral position, a vehicle obviously

moves ahead on a straight line. With a uniformly varying yaw rate, i. e., a constant

steering wheel angle other than the neutral position, the vehicle’s movement describes

a circular arc with a radius determined by the steering angle. Finally, for the smooth

transition between linear and circular movements or between circular movements with

different curve radii, vehicles move on clothoidal curve segments. Clothoids are curves

the arc length L of which is inversely proportional to the curve radius R, and thus

proportional to the curvature κ:

L = A2/R = κ/A2 ,

where A is a constant scaling factor. Figure 3.4 shows the double-ended unit clothoid,

i. e., A = 1.

28

3.4 Clothoidal Trajectory Approximation

(a) Roadway design.

(b) Curvature plot.

Figure 3.5: Roadway design using lines, circular arcs and clothoids.

The relation between road segments and the resulting steering behavior is shown in

Figure 3.5: Figure 3.5a shows a part of a schematic, but typical highway interchange.

An exemplary trajectory of a vehicle coming from the left and changing onto the

highway segment towards the top is depicted and its curve primitive components are

color-coded: linear sections are marked in red, clothoidal segments in blue and circular

arcs are highlighted in green. Figure 3.5b plots the corresponding schematic curvature

κ over the covered distance L: the road curvature starts with zero for the line segment,

linearly decreases1 to κ = − 1
R in the clothoidal section and then remains constant for

the circular arc. Finally, the arc passes into a linear segment via a clothoid with a

linear increase of the curvature up to zero.

As mentioned above, clothoid splines are used to guarantee the smoothness of a

vehicle’s drive along a roadway. In the following, we will express this smoothness with

the help of mathematical continuity definitions: a smooth function is Cd (d-th order

parametric) continuous, iff its first d derivatives exist and are continuous. Then, two

curves are said to meet at a joint point with Gd (d-th order geometric) continuity, iff

their parameterized functions meet at this joint point with Cd continuity [BD84].

1Left turns feature a positive curvature, whereas for right turns it is negative.

29

Chapter 3 Geometric Trajectory Point Reduction

3.4.1 Clothoidal Curve Fitting

In [LNRL06], the authors focus on smooth trajectory planning for autonomous vehicles

based on given map material. The map material uses a geometric description of the

road segments in terms of straight lines and circular arc segments with given curve

radii. Using these elements, Labakhua et al. propose fitting clothoidal splines to the

map material by calculating the clothoid curvature and rotation parameters so that a

vehicle can smoothly drive along its route with an optimal velocity profile.

This approach basically shows that a trajectory reconstruction with clothoid splines

is indeed reasonable and feasible, although the preconditions are quite different to our

situation: instead of highly-accurate map material, we are working with noisy position

measurements that merely roughly describe the underlying road topology, if at all. We

therefore need to find algorithms that approximate such polylines with clothoid splines

instead of simply calculating transition curves between well-known line and circular

arc segments.

Since the discussed curve primitives are uniquely defined by their curvature descrip-

tions, a promising approach is to derive the sought-after curve primitive composition

based on the collected way point measurements (〈mj〉) with a curvature analysis for

this polygonal chain. We will next focus on two realizations of this idea from computer

graphics and then work out how the compression and decompression mappings c and

r in analogy to Section 3.2 can be implemented using these approaches.

Basic Clothoid Curve Sketching

In [MS09], McCrae and Singh present an approach for modeling piecewise clothoid

curves (clothoid splines) to improve the fairness of polylines. Their motivation is to

process input originating from free-hand drawings or other comparably noisy sources.

They propose to approximate the curvature over the arc length by means of linear

regression: for each pair of curvature points κi, κj , i < j−1, a linear regression and the

resulting mean error is calculated. Then, using penalties for both regression errors and

regression line counts, they minimize the number of resulting curvature segments and

the overall regression line fitting error, thus obtaining a cost-optimal approximation

of the curvature that may consist of multiple regression line segments. While the

fitting error penalty is derived from the regression result itself, the penalty value for

the number of additional regression line segments is an important accuracy parameter

of the algorithm. With this curvature approximation, the authors attempt to remove

most of the input noise in order to fair the data: once the characteristic curvature

progressions are freed from noise, the curve primitives can directly be read off. This

30

3.4 Clothoidal Trajectory Approximation

simple linear regression will, however, rarely result in curvature approximations that

perfectly indicate circular arcs or line segments; in fact, many regression line segments

corresponding to noised arcs or lines will rather feature slopes close, but not equal to

zero and will thus result in the construction of clothoids. To alleviate this, regression

line segments with a slope beneath a threshold threshs are turned into parallels to

the x-axis and those parallels with an offset to the x-axis beneath a threshold thresho

are shifted onto the x-axis. After this step, the curve primitive parameters can easily

be read from the curvature approximation. Using a smoothness criterion such as G2

continuity for the complete spline, the primitives are aligned, concatenated and scaled

to fit the original polyline with a minimal distance.

This approach works well for short polylines with weak noise levels, as they typically

result from free-hand sketching. However, both higher noise levels and longer polylines

affect the quality of the clothoid splines computed with this algorithm: first, the errors

from the linear curvature regression are integrated twice during the computation of

the primitive parameters, therefore having a great impact on the final curve. This

effect is amplified by errors resulting from the curvature estimation process: though

relatively good statistical curvature estimation methods for discrete curves exist, such

as in [KSNS07], curvature calculation for noisy discrete curves still implies at least

small errors, especially when the average noise is large in comparison to the distance

between adjacent measurement points or even exceeds it. Finally, the clothoid spline,

as created by the algorithm by McCrae and Singh, can not be modified once the

curvature estimation is complete, regardless of the fitting accuracy. Thus, the twice

integrated inaccuracies from the curvature regression accumulate over the arc length

of the final spline and can result in high fitting errors that can not be corrected;

this is a critical point especially for long and noisy polylines. Moreover, this basic

approach does not provide a direct way to set up a threshold for the resulting fitting

or measurement point approximation error as demanded in the problem statement.

Instead, the only accuracy parameter is the penalty value for the number of additional

regression lines for the curvature approximation. The second clothoid spline sketching

approach does not only resolve the problem that a once constructed clothoid spline

cannot be modified any more; it also provides a fitting error threshold parameter; this

approach is discussed in the following.

Clothoid Curve Sketching using Shortest Paths

Shortly after the publication of McCrae’s and Singh’s algorithm, Baran et al. proposed

another method to sketch a polyline with clothoid splines based on a shortest path

31

Chapter 3 Geometric Trajectory Point Reduction

algorithm [BLP10]. Their algorithm is able to correct inaccuracies of a constructed

clothoid spline and provides an approximation error threshold that is regarded during

the sketching process. The approach of Baran et al. comprises a complex seven-step

algorithm to fair polylines using lines, arcs, and clothoids: first, the algorithm closes

polylines for which the distance between the first and last point falls below a certain

threshold. Second, the algorithm splits the polyline at corners, i. e., positions with

G0 continuity, and processes each isolated sub-polyline separately. Each polyline is

then resampled to adapt the point distribution to the curvature situation. As a result,

the resampled curve features a higher point density in regions with a high curvature.

Afterwards, the algorithm performs a curve fitting on the resampled point sequence:

for every subsequence of points, curve primitives are constructed regarding an error

tolerance. So, instead of simplifying the curvature to find one specific sequence of curve

primitives as for the basic approach, a huge number of curve primitives are created that

could possibly be used in the final spline. In the fifth step, a directed, weighted graph

is constructed from the fitted primitives: for every curve primitive, a vertex is created;

an edge is inserted between two vertices if the respective curve primitives can be

interconnected. The edge weight indicates the quality of the transitions and depends

on the fitting errors of the connected curve and possible transition primitives, and

the curve primitive transition continuity (Gd: the greater d, the smaller the weight).

Unlike the fourth step, the fitting errors caused from this step on are not ensured to

stay within the error threshold; fitting errors due to new primitive transitions that

exceed the threshold are merely penalized more severely to ensure that the primitives

from the shortest path can definitely be connected. The shortest path through the

graph is then calculated based on the edge weights and their transitions between the

curve primitives are verified. Since the graph G(V,E) is directed and acyclic, this can

be achieved in (O)(|E|) with a breadth-first search [Lee61]. Due to the cost function

and depending on the choice of parameters, it is in fact possible that not only desired

G2 transitions are used, but also G1 or G0 transitions, in case these imply a lower

fitting error. The found path contains the minimal sequence of curve primitives that

approximate the given polyline. In the seventh step, the found curve primitives are

finally merged.

This algorithm constitutes a more promising approach than the basic one presented

in the previous subsection, because it does not completely rely on a curvature approx-

imation and thus does not result in accumulating approximation errors. Instead, a

sequence of curve primitives is found which takes the effective fitting error into ac-

count already during the calculation. However, despite this advantage this algorithm

also can not guarantee compliance with the error threshold. Also, since our motivation

32

3.4 Clothoidal Trajectory Approximation

is to find a compression mapping, which is to be executed in mobile (e. g., vehicular)

on-board units with limited computational capabilities, the high algorithmic complex-

ity is a clear disadvantage. Furthermore, the algorithm has numerous parameters that

influence performance and accuracy; the source code provided by the authors [Bar]

defines more than 30, at least five parameters need to be chosen very carefully. These

compass the Gd continuity costs, the approximation error costs and the approximation

error threshold. Finally, both approaches suffer from the same problem as the linear

approaches presented in Subsection 3.3.1: without any further information about the

measurement point distribution along the curve, a uniform distribution has to be as-

sumed, which is unlikely to match reality. While the line simplification methods can

directly take the uniform distribution assumption into account, this is not possible for

the clothoid sketching methods. So, even if the accuracy threshold were definitely not

exceeded, assuming a wrong point distribution could easily cause offset shifts along

the clothoid spline’s arc, and would thus result in massive approximation errors.

3.4.2 Deriving a Clothoidal Compression Scheme

Although these clothoid sketching approaches originally serve the purpose to fair a

noisy polygonal chain, and despite the discussed disadvantages, it is nevertheless pos-

sible to derive a simple compression scheme based on clothoid sketching. Basically,

both approaches fulfill the formal requirements for the compression mapping c: given

a polygonal chain 〈mj〉, they compute a clothoid spline, i. e., a structure consisting of

one or more G1 or G2 continuous sequences of parameterized curve primitives as com-

pression result. In the following, we will only refer to G1 continuous curve sequences,

because every clothoid spline that can be constructed by the above algorithms can

also be split at corners (G0 continuous positions) into separate G1 continuous curves.

However, due to the severe shortcomings of the basic clothoid spline version, only the

shortest-path approach is considered for a compression scheme.

To set up a compression scheme, we need to find a compact description for such

clothoid splines. Since all curve primitives are well-defined by their respective curvature

descriptions, we will use it as one component of the clothoid spline description: every

edge point of the curvature graph is encoded as a two-dimensional point; in case of

discontinuities, e. g., for merely G1 clothoid splines, two points are assigned to the arc

length, where the discontinuity occurs. Thus, in general, each of these G1 continuous

sequences can be uniquely identified by the start and end positions as reference points

and a curvature graph: by means of the curvature graph, the curve primitives can be

defined and concatenated. Once this is accomplished, the raw clothoid spline can be

33

Chapter 3 Geometric Trajectory Point Reduction

scaled, rotated and shifted using the stored start and end points. We need to store the

reference points for each transition with G0 continuity, because in this case, adjoining

curves’ orientations are ambiguous and need to be stored explicitly by intermediate

points. Given this information, the whole curve primitive spline can be restored,

regardless of the continuity degree or what primitives the spline contains in detail.

For a simple encoding, we propose to store both the coordinates and curvature

progression data elements as two-dimensional points. Without loss of generality, let us

assume that a spline is found consisting of u primitive subsequences with G1 continuity;

furthermore, let the i-th subsequence consist of vi primitives and let its curvature graph

feature wi discontinuities. Then, there need to be u + 1 necessary two-dimensional

reference points and vi + wi + 1 points for the curvature graph description of the i-th

subsequence. The overall compression result 〈m′
j〉 thus consists of

|J ′| = (u+ 1) +

u∑
i=1

(vi + wi + 1)

two-dimensional points. The compression ratio can therefore be stated as defined in

Section 3.2.

The only missing information is the point distribution along the spline that approx-

imate the original measurement tuples in 〈mj〉. As mentioned before, an additional

structure would be necessary, such as a mapping of the original measurements’ indexes

to the respective arc length. There are recent publications using such mappings, such

as [Kro09], but their combination with the clothoid sketching approaches in a data

compression manner is non-trivial and out of the scope of our research. We are aware,

however, that the achieved compression ratios with this compression scheme serve as

an upper bound due to the missing overhead.

3.4.3 Evaluation

To evaluate the compression performance of the presented clothoid spline approxima-

tion algorithms, we first briefly describe the implementation and parameter choices of

the clothoidal compression scheme. We then analyze the effective fitting error that

occurred during the compressions, because this may exceed the particular used uncer-

tainty bound ε, as discussed in Subsection 3.4.1. Finally, we evaluate the compression

performance of the clothoidal spline approximation.

34

3.4 Clothoidal Trajectory Approximation

Parameter Used value Default

G0 transition cost 101.0 ∞
G1 transition cost 51.0 ∞
Error cost 52.0 5.0

Shortness cost 1.0 2.0

Points per circle 50.0 20.0

Scaling factor S 10.0 n.a.

Curvature estimation region S · 10 20.0

Error threshold S · ε 4.0

Table 3.1: Cornucopia parameters as used in CornuConsole.

Compression Scheme Implementation

As mentioned earlier, the clothoid sketching software Cornucopia [Bar] that imple-

ments the shortest-path based algorithm from Subsection 3.4.1, requires approximately

30 parameters that are preset with default values. For our evaluation, we implemented

a wrapper to Cornucopia, CornuConsole [Koe], which enabled us to perform the com-

pression of the input data in a batch processing manner. As Cornucopia, CornuConsole

is licensed under GPL3 [gpl]. To optimize the handling of vehicular movement traces,

we made a number of parameter adjustments (cf. Table 3.1), the most important of

which are as follows: the costs for G0 and G1 transitions were lowered, because the

algorithm failed for several subsequences and error tolerances due to too high default

smoothness demands. Also, we needed to increase the error cost, i. e., the amplifica-

tion factor for fitting errors in the cost model, thus increasing fitting error penalties.

In doing so, the accuracy of the final clothoid splines to the original trajectory could

be improved. Also, a factor S was introduced with which the input coordinates and

consequentially the curvature estimation region and the error threshold were scaled.

This scaling was necessary, because we used input traces in a metric coordinate format

and the original software could not cope with the high accuracy bounds in the range

of centimeters, since it was designed to work not on meters and centimeters but on

pixels.

With this configuration, the algorithm was able to compress the collected trajectory

data. However, for some traces, the Cornucopia software failed reproducibly due to

erroneous memory handling. These cases are therefore not included in the results

presented in the following.

35

Chapter 3 Geometric Trajectory Point Reduction

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ef
fe

ct
iv

e
er

ro
r

ε
e

[m
]

error tolerance ε [m]

(a) Low velocity trajectories (Slow
1).

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ef
fe

ct
iv

e
er

ro
r

ε
e

[m
]

error tolerance ε [m]

(b) High velocity trajectories (Shigh
1).

Figure 3.6: Effective clothoid spline fitting errors.

Fitting Error

To validate the error bound compliance of the clothoid sketching approach and thus

to make sure that it generates valid compression results, we first analyze the effective

fitting error εe over an increasing error threshold ε. This check for the clothoid sketching

approach needs to be performed, because it does not regard the error threshold directly

throughout the complete approximation.

For the analysis, we group the effective errors of all trajectory approximations for

each specific error tolerance value and then examine the resulting distributions. The

results of this evaluation are shown in Figure 3.6 as box plots; the points below and

above the whiskers show the minimum and maximum values, the whisker ends mark

the 0.02 and 0.98 percentiles. The box itself covers the percentiles from 0.25 to 0.75

and the band within the box marks the median of the determined approximation errors

per ε value. Dotted lines from the whisker ends to the points merely help to assign

36

3.4 Clothoidal Trajectory Approximation

the points to the corresponding whiskers. Please note that all maximum values for

the low velocity trajectories lie around 3.3m and thus far outside of the displayed

error range, while for the high velocity trajectories, most maximum errors for the ε

steps are smaller than 2.0m. The diagonal line is the static space diagonal with a

slope equal to 1.0 and marks the validation criterion: for the algorithm to produce

valid compression results for a given error tolerance, the upper point of the particular

box plot, representing the highest occurred effective error, needs to lie underneath

the diagonal. However, the plots reveal two interesting patterns: first, the effective

fitting errors are hardly affected by the value of the error threshold for any topology

at all. In fact, it appears that the algorithm quickly reaches an equilibrium for the

trade-off between the number of curve primitives and the total fitting cost including

error penalties and remains in or close to this equilibrium from there on. As a result,

the approximation errors quickly stagnate for ε > 0.5m. Second, we see that for every

error tolerance value, parts of the box plot diagrams lie above the space diagonal, i. e.,

there were always at least some trajectories for which approximation errors εe occurred

that were larger than the tolerance ε. This means that even the clothoid spline fitting

algorithm presented in [BLP10] heavily violates the error tolerance in some cases and

therefore is not completely suitable for being employed for trajectory compression in its

current state. To take the cases in which the error threshold is violated into account,

we reduce the compression ratio for each of these cases, where εe > ε, to 0.0%.

Compression Performance

For both the low and high velocity trajectory sets, the compression results of the

clothoid-based method that are depicted in Figure 3.7 show a different pattern than

the ones obtained by the linear simplification methods: due to the discussed high

effective fitting errors and the resulting compression ratios of 0.0 for a huge number

of trajectories, the compression curve remains below 0.05 until ε ≈ 0.3m and then

rises up to 0.6. This compression ratio is reached at ε ≈ 0.9m for the low velocity

trajectory sets and at ε ≈ 0.75m for the high velocity trajectory sets. At this point,

the curve flattens out and rises up to approximately 0.65. From this it is apparent

that the compression performance is slightly better for the high velocity trajectories;

this is the same effect that we can see in the results of the linear approaches and that

results from more regular and smooth movements at higher velocities. Overall, the

compression scheme based on the clothoid spline sketching therefore does not reach

the benchmark performance of the linear simplification methods for any error tolerance

value or topology.

37

Chapter 3 Geometric Trajectory Point Reduction

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
m

pr
es

si
on

 r
at

io
 σ

error tolerance ε [m]

Linear Optimum
Douglas Peucker
Clothoid Splines

(a) Low velocity trajectories (Slow
1).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
m

pr
es

si
on

 r
at

io
 σ

error tolerance ε [m]

Linear Optimum
Douglas Peucker
Clothoid Splines

(b) High velocity trajectories (Shigh
1).

Figure 3.7: Clothoid splines: compression analysis.

As mentioned, the clothoid spline approach seems to run into an equilibrium state, as

the effective fitting error results from Figure 3.6 indicate. This makes the comparison

to other techniques not appear completely fair, as these regard the error tolerance

ε directly. However, we see that though the equilibrium is reached at ε > 0.5m, the

compression ratios rise up to ε ≈ 0.9m, because the final calculation of the compression

ratio directly includes the error tolerance, as well. It should be kept in mind that a

competitive clothoid compression approach should rather work with respect to the

error tolerance.

Since the poor compression results of the clothoid spline approach originate from

the large approximation errors, keeping these within the preset error bound is the key

38

3.5 Cubic Spline Trajectory Point Reduction

challenge on the way to create a clothoid spline compression scheme with a better

performance. Please also keep in mind that for the employed clothoid spline approach,

we can merely plot the results for ε constraining the fitting error, not the approximation

error ; for a necessary encoding of the measurement distribution over the arc length, a

significant additional overhead is anticipated, the exact amount of which depends on

the employed encoding scheme, though.

3.5 Cubic Spline Trajectory Point Reduction

Though the trajectory compression using clothoid splines does not work as well as

expected, the idea of using smooth functions for the representation of vehicular move-

ments still suggests itself: in vehicle dynamics [Gil92], the movement of vehicles is

modeled on the basis of the principles of kinematics, covering detailed calculations of

longitudinal and lateral acceleration forces, among others. Vehicle trajectories in these

models are directly influenced by the moving object’s speed, acceleration and steering

angle. These components can be described as smooth functions, because their chang-

ing rates are continuous. This implies that basically, vehicle trajectories themselves

can also be expressed as smooth functions s ∈ C2, mapping a progress variable to a

geographical position:

s : R −→ R
2, s(t) = (x, y)

Due to its weight and the mass inertia, for example, a vehicle is not able to per-

form an instant turnaround at a high speed but has to adjust its path and velocity

continuously. With respect to the above mentioned position measurements, this con-

tinuity translates to redundancy: there is a pattern (based on kinematics) underlying

these measurements. We propose to take advantage of this property to compress the

information about the vehicle’s trajectory.

Against this background, it is not surprising that in the context of autonomous

robots and vehicles, smooth higher degree polynomial functions are used for trajectory

planning. In [SK07, CE08], for example, the authors use Bézier curves, but emphasize

that polynomials of higher degree tend to be unstable and exhibit higher oscillations.

Therefore, Bézier curves with a degree of three are often employed, as they provide

a satisfying smoothness and a low oscillation behavior. Another way of trajectory

planning is by means of splines [LNRL06, DMF+06, Keh07]. In numerics, splines are

employed to approximate points that lie in-between the elements of a sequence of given

data points, also referred to as knots. To this end, it is assumed that the underlying

and unknown function can be approximated with a higher-polynomial smooth con-

39

Chapter 3 Geometric Trajectory Point Reduction

catenation of curves that pass through the knot sequence, so polynomials are defined

between each two succeeding knots under certain conditions that ensure the spline’s

smoothness.

Though the publications cited above strengthen the argument that higher order

polynomials are basically suited for the approximation of trajectories, they do not

provide a solution to the problem of reducing the descriptive data volume for such

structures. In contrast, the basic assumptions of the work in this field include an

exact knowledge of the road geometry and partially even equidistant points, which is

contrary to the nature of the position measurements that we can expect.

In this section, we discuss the interpolation of pure geometric data with two-dimen-

sional cubic splines and present a greedy algorithm that finds a locally optimal solution

for the error-aware reduction of a spline knot sequence. This algorithm has been

published in [KKKM11]. Since sophisticated vehicular applications report more than

just spatial data, as already discussed in Subsection 2.1.2, we also show that non-

geometric data can easily be added and present a very efficient way to encode spatio-

temporal information sets by spline interpolation. We then turn towards modifications

that we proposed in [KBMS11] and that improve the compression performance of

the basic algorithm and evaluate the results in comparison to the line simplification

approaches from Subsection 3.3.1.

3.5.1 Cubic Spline Interpolation

Before we turn to our compression scheme that is built upon spline interpolation, we

give a brief insight into the origin and mathematical background of splines. For a more

detailed introduction to the theory and applications of splines, please refer to [JAW67].

The design of splines originates from elastic stripes often made of wood that were

used by draftsmen to construct smooth and elegant curves that should pass through a

given sequence of points. In numerics, this concept was adapted to interpolate points

that lie on the curve of an unknown function, the exact values of which are only known

at a finite number of places. In analogy to the technical drawing tools, the known place-

value tuples are used as fixed points for the curve. Between each two of these fixed

knots, polynomials are defined that fit together smoothly. The smoothness criteria

translate into the demand for Cn−1 continuity for n-th degree polynomial splines at

the knots. A prominent example for splines are cubic splines, i. e., splines that employ

third-degree polynomials and fulfill the C2 smoothness criterion.

Formally, given positions Δ : x1, . . . , xN and corresponding values Y : y1, . . . , yN ,

40

3.5 Cubic Spline Trajectory Point Reduction

we are looking for a spline function SΔ,Y (x) with

SΔ,Y (xi) = yi , 1 ≤ i ≤ N .

The spline function is piecewise defined by a set of polynomial functions sj , 1 ≤ j < N

that are defined on the respective intervals [xj ;xj+1] and that satisfy

sj(xj) = yj , (3.5)

sj(xj+1) = yj+1 .

Furthermore, the smoothness criteria need to be met for 1 ≤ j < N − 1:

s
(k)
j (xj+1) = s

(k)
j+1(xj+1) , 1 ≤ k < n (3.6)

for n-th degree polynomial splines. Let us in the following fix on cubic splines. As there

is a function for each of the N−1 intervals and each function has four (= n+1) degrees

of freedom, this results in a linear system of 4N − 6 equations with 4N − 4 unknowns.

There are two degrees of freedom, because for nonperiodic splines, i. e., splines that

do not repeat themselves so that yi = yi+c·N , c ∈ N>0 does not apply, the smoothness

criteria for the border knots at x1, xN are undefined. There are several strategies to

resolve this situation, for example to demand s′′0(x1) = s′′N−1(xN) = 0 as for natural

splines. We employ not-a-knot splines, though, that attempt to determine the spline’s

boundary behavior based on the context of the inner parameters to achieve a more

meaningful approximation; therefore, they require the third derivatives to match as

well:

s′′′1 (x2) = s′′′2 (x2) , s′′′N−2(xN−1) = s′′′N−1(xN−1) .

The solution to this linear system can be found in O(N).

In our use case, it is necessary to work with two-dimensional data, as our measure-

ments contain longitudinal and lateral coordinates. Therefore, we use two-dimensional

splines: using an index variable t, the dimensions are split, but still mapped using

the same indexes. Then, both dimensions are handled by independent spline functions

SΔ,Ylon
and SΔ,Ylat

. For several reasons, two-dimensional cubic splines are well-suited

to our demands: first, due to the C2 continuity, their continuous curvature κ, given as

κ =
S′
Δ,Ylon

(t) · S′′
Δ,Ylat

(t)− S′′
Δ,Ylon

(t) · S′
Δ,Ylat

(t)(
S′
Δ,Ylon

(t)2 + S′
Δ,Ylat

(t)2
)3/2

,

ensures that a realistic steering behavior can be modeled as argued above. Second,

41

Chapter 3 Geometric Trajectory Point Reduction

cubic splines provide an especially low oscillation behavior due to their minimal cur-

vature between two successive knots, resulting in a special smoothness of the final

spline curve. Third, with the index variable, skipped points between two remaining

knots can be very accurately interpolated with only minimal effort. Finally, with this

systematic reconstruction, an error bound can easily be implemented; we therefore set

up a compression scheme based on cubic spline interpolation in this section.

3.5.2 Basic Trajectory Point Reduction

To encode vehicle trajectories, we approximate the input dimensions of a measured

trajectory 〈mj〉 separately and seek a two-dimensional cubic spline that interpolates

every taken position measurement. Given an accuracy bound ε, we compress the

trajectory by removing redundant elements that can later be reconstructed by means

of spline interpolation without violating the accuracy bound. In this context, a data

point is redundant if it can be approximated by the cubic spline with a maximum error

of ε. Then, the resulting subsequence of spline knots is the sought-after point sequence

〈m′
j〉.
We can now state the problem as follows: given a sequence of position measurements

〈mj〉 as defined in (3.1) and ε ≥ 0. What is the minimal knot subsequence 〈m′
j〉

that can approximate 〈mj〉 by means of cubic spline interpolation within the upper

interpolation error bound ε?

To find a globally optimal solution to this problem, one would need to determine the

interpolation error for every subsequence of 〈mj〉 and then select 〈m′
j〉 as the small-

est subsequence with an interpolation error not exceeding ε. Given the length of the

original measurement sequence n = |J |, there are 2n possible mutually distinct subse-

quences of 〈mj〉. Since the calculation of the interpolation error has a linear complexity

in n, the overall complexity of this approach of finding a globally optimal solution lies

within O(n ·2n). In the domain of vehicular communication, however, several hundred

positions can easily be included within a single measurement sequence. This makes

the described naive approach unfeasible. Instead, we propose to approximate the opti-

mal solution for the stated problem. Following this premise, we now propose a greedy

algorithm running in O(n3) that finds such an approximate solution, referred to as

〈m′
j〉.
Our algorithm uses a greedy iterative search to reduce 〈mj〉 down to 〈m′

j〉 as pre-

sented in Algorithm listing 3.1: given the measurement sequence 〈mj〉 and an error

bound ε ≥ 0, the algorithm checks in each iteration for each but the first and last

remaining element in 〈mj〉 what the highest resulting interpolation error will be, if

42

3.5 Cubic Spline Trajectory Point Reduction

Algorithm 3.1 Basic greedy spline reduction.

Require: sequence of position measurements 〈mj〉j∈J
Require: error tolerance ε ≥ 0
1: Irem ← ∅
2: repeat
3: εmin ← ∞
4: jmin ← −1
5: for all j ∈ J \ Irem do
6: if j ∈ [1; |J | − 2] then
7: Irem ← Irem ∪ {j}
8: 〈m̂j〉 ← interp(〈mj〉, Irem)
9: εj ← compare(〈mj〉, 〈m̂j〉)

10: if εj < εmin then
11: jmin ← j
12: εmin ← εj
13: end if
14: Irem ← Irem \ {j}
15: end if
16: end for
17: if εjmin ≤ ε then
18: Irem ← Irem ∪ {jmin}
19: end if
20: until no further knot could be removed (Irem remains unchanged)
21: 〈m′

j〉 ← remove knots(〈mj〉, Irem)
22: return reduced knot sequence 〈m′

j〉

this element is removed from the spline knot sequence (cf. line 8f). For this purpose,

the method interp(·, ·) calculates the spline of a knot sequence, interpolating the knots

at the indexes from a given set. Then, the method compare(·, ·) compares two knot

sequences and returns the largest pointwise Euclidean distance. The index of the se-

quence element with the smallest of these interpolation errors is then stored in Irem

(cf. line 18). The algorithm stops once no further element can be removed without

violating the error bound ε. Then, the elements at the indexes stored in Irem are

removed from 〈mj〉 and the resulting reduced subsequence 〈m′
j〉 is returned. This al-

gorithm can be denoted as a simplification algorithm that keeps original data points

and removes redundant ones, similar to the line simplification algorithms discussed in

Subsection 3.3.1. Therefore, we also need to maintain a bit field memory to restore

the removed knots from 〈mj〉 and the compression ratio achieved by this algorithm

can analogously be defined as in Statement (3.2).

43

Chapter 3 Geometric Trajectory Point Reduction

3.5.3 Adding Non-Geometric Data

In the discussion of the Douglas-Peucker algorithm, we already introduced how tem-

poral information can be attached to the pure spatial description contained in 〈mj〉
or 〈m′

j〉. More sophisticated applications extend the spatio-temporal vehicular tra-

jectories by adding more sensor data, e. g., measurements of temperature, humidity

or friction coefficients. Such data is, for example, included in the Floating Car Data

(FCD) that has already been discussed in Section 2.1.

In case that non-geometric information is added to the trajectory description, the

dimensionality d of the data collection increases and we can generalize our previous

definition of a measurement sequence from Statement (3.1) accordingly to

m : J → Rd .

The above-stated upper bounds for such measurement collections can be generalized

as well: assuming a measurement tuple size of d · sn, and since the overhead so is inde-

pendent of d, Statement (3.4) for the upper bound, respectively, needs to be adapted,

so that

|J | − |J ′| > so
d · sn

needs to hold for a successful reduction. This implies that the necessary effective

reduction ratio of the measurement set decreases for an increasing dimensionality d of

the measurement tuples.

Please note that though cubic splines are considered exceedingly useful for trajectory

interpolation in particular, the reduction technique should always fit the particular

context. For example, friction parameters might be interpolated by a much simpler

construct than cubic splines. Furthermore, the dimensionality d of the input data

is irrelevant for the algorithm’s asymptotic runtime complexity: as long as the error

determination per reduction step does not exceed O(n), the algorithm’s complexity

remains in O(n3), since a fixed dimensionality does not affect its asymptotic behavior.

The only supplement that has to be added to the algorithm is a further error threshold

for each new dimension or combination of new dimensions.

As mentioned earlier, the focus will from now be on temporal information as non-

geometric data due to its special interrelation with spatial information.

3.5.4 Unseaming Dimension Contexts

The basic version that has just been presented has a drawback that may inhibit a

better compression performance: in the first step, we compute the interpolation errors

44

3.5 Cubic Spline Trajectory Point Reduction

Algorithm 3.2 Greedy spline reduction with an unseamed dimension context.

Require: sequence of position measurements 〈mj〉j∈J
Require: error tolerance ε ≥ 0
1: I0rem, I

1
rem ← ∅

2: 〈m0
j 〉, 〈m1

j 〉 ← separate dimensions(〈mj〉)
3: repeat
4: for all d ∈ {0, 1} do
5: εmin ← ∞
6: jmin ← −1
7: for all j ∈ J \ Idrem do
8: if j ∈ [1; |J | − 2] then
9: Idrem ← Idrem ∪ {j}

10: 〈m̂j〉 ← merge dimensions(interp(〈m0
j 〉, I0rem)), interp(〈m1

j 〉, I1rem))
11: εj ← compare(〈mj〉, 〈m̂j〉)
12: if εj < εmin then
13: jmin ← j
14: εmin ← εj
15: end if
16: Idrem ← Idrem \ {j}
17: end if
18: end for
19: if εjmin ≤ ε then
20: Idrem ← Idrem ∪ {jmin}
21: end if
22: end for
23: until no further knot could be removed (I0rem and I1rem remain unchanged)
24: 〈m′

j〉 ← merge dimensions(remove knots(〈m0
j 〉, I0rem), remove knots(〈m1

j 〉, I1rem))
25: return reduced knot sequence 〈m′

j〉

for possibly-removed knots (cf. line 8f in Algorithm listing 3.1). For this, the absolute

Euclidean distance between an original knot and its interpolated counterpart is calcu-

lated, i. e., both dimensions of the spline are compressed simultaneously as a context.

In doing so, the basic algorithm does not take into account that one of the dimensions

may be more complex and therefore harder to compress than the other; in fact, the

compression result of the two-dimensional context can only be as good as the one of

the more complex dimension.

To overcome this issue, we propose a modified version of our algorithm that com-

presses each dimension separately. This version is shown in Algorithm listing 3.2, the

modified and new lines are highlighted: the two steps of the outer loop, namely the

determination of the highest resulting interpolation errors for each knot (cf. lines 7-

18) and the removal of the knot that minimizes these errors (cf. lines 19-21), are now

45

Chapter 3 Geometric Trajectory Point Reduction

applied to the dimensions sequentially. In doing so, instead of removing a knot at

the same index in both dimensions at the same time, one index for each dimension

is determined independently. The dimensions are thus compressed separately, still

regarding the threshold ε for the total interpolation error (cf. line 19). In the code

listing, the index for the longitudinal (or x, index 0) dimension is determined first,

and the lateral (or y, index 1) dimension second. The changes performed on the first

dimension influence the compression of the second one and therefore a changed order

of dimensions is likely to affect the overall compression, albeit marginally. Note that

it is now possible that, at some point, one dimension can not be compressed any more,

whereas the other still can. The algorithm may then skip one dimension in the re-

maining cycles until the compression of the second dimension has also reached a local

optimum. The runtime complexity of our algorithm is not affected by this modifica-

tion, since we merely multiply the quadratic effort of determining the interpolation

error by the (fixed) number of dimensions: O(d · n3) = O(n3). Even though this

context-loosened compression is likely to provide better results, it also causes a higher

overhead in one respect: since the dimensions are compressed in a largely decoupled

fashion, it is now necessary to provide one bit field per dimension to remember the

removed knot indexes. We verify this by describing the absolute overhead threshold for

the context-loosened compression mapping by analogy with (3.3) and (3.4) as follows:

2 · sn · |J | > 2 · sn · k + 2 · so
⇔ |J | − k >

so
sn

(3.7)

where k is now the mean dimension knot sequence length for 〈m′
j〉. As expected, the

comparison to the basic algorithm according to (3.4) shows that with the context-

loosened compression, twice as many knots need to be removed from 〈mj〉 to achieve

a compression.

3.5.5 Evaluation

Compression Performance

We first take a closer look at the compression performance of the discussed approaches.

The compression results for the cubic spline compression schemes are shown in Fig-

ure 3.8. Basically, the compression ratio curves are similar to those for the line sim-

plification approaches: for small error tolerance values, there is a steep increase of the

compression ratio, but the curves flatten out from ε ≈ 50-100 cm on. Again, this is

true for both the low and the high velocity trajectory sets.

46

3.5 Cubic Spline Trajectory Point Reduction

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
m

pr
es

si
on

 r
at

io
 σ

error tolerance ε [m]

Splines -c
Splines +c

Linear Optimum
Douglas Peucker

(a) Low velocity trajectories (Slow
1).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
m

pr
es

si
on

 r
at

io
 σ

error tolerance ε [m]

Splines -c
Splines +c

Linear Optimum
Douglas Peucker

(b) High velocity trajectories (Shigh
1).

Figure 3.8: Cubic splines: compression analysis for varying error thresholds.

The basic context-oriented cubic spline compression approach (Splines +c) does not

perform significantly better than the line simplification approaches, it sometimes even

performs slightly worse. This result differs clearly from previous studies published

in [KBMS11], but is similar to our more recent results from [KM11]. The reason is

that we used vehicular trajectories with a much better quality for the first-mentioned

publication, i. e., the trajectories were recorded with a high-quality GPS receiver with a

very low positioning noise. More currently, our data base is considerably larger, but, as

already mentioned in Section 2.2, originates from the OpenStreetMap project where

a very heterogeneous set of community member GPS receivers is used. Of course,

the better the quality of the trajectory, the better the compression ratio. Since the

47

Chapter 3 Geometric Trajectory Point Reduction

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

σ
...

 /
σ

O
pt

error tolerance ε [m]

Splines -c Splines +c Douglas-Peucker

(a) Low velocity trajectories (Slow
1).

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

σ
...

 /
σ

O
pt

error tolerance ε [m]

Splines -c Splines +c Douglas-Peucker

(b) High velocity trajectories (Shigh
1).

Figure 3.9: Cubic splines: relative compression analysis for varying error thresholds.

performance of the cubic spline approaches depends heavily on the smoothness of the

trajectory, these approaches suffer more from coarser position measurements.

The context-loosened variant of the cubic spline approach (Splines -c), however,

shows a clear improvement of the compression ratio in comparison to the basic version.

The improvement is better visible in Figure 3.9 that shows a relative compression

performance analysis over a varying error tolerance: once the compression ratios of

the approaches are stable (ε ≈ 0.1), the basic spline approach performs approximately

as well as the the optimal line simplification approach. The context-loosened spline

approach outperforms all other approaches and provides a more than 10% better

compression ratio than the optimal line simplification for ε < 0.8m. This clearly

underlines our fundamental hypothesis that, if geometric approaches are employed,

vehicular trajectories should be approximated with smooth instead of linear functions.

48

3.5 Cubic Spline Trajectory Point Reduction

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

cd
f

relative total error

ε=0.5 m
ε=1.0 m
ε=1.5 m
ε=2.0 m

(a) Low velocity trajectories (Slow
1).

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

cd
f

relative total error

ε=0.5 m
ε=1.0 m
ε=1.5 m
ε=2.0 m

(b) High velocity trajectories (Shigh
1).

Figure 3.10: Total error analysis (Splines +c).

Interpolation Error Analysis

We have seen that even a relatively small interpolation error threshold allows for high

compression ratios for the collected trajectories. In the next step, we take a closer look

at the nature and distribution of this interpolation error.

Figures 3.10 and 3.11 show the cumulative distribution functions (cdf) of the total

relative interpolation error for the low and high velocity trajectories and for a selection

of interpolation error bounds. The relative interpolation error describes the ratio of the

occurred interpolation error to the interpolation error bound. A negative interpolation

error occurs, if the original point lies on the left hand side of the interpolation, in the

direction of movement. The results show a symmetric interpolation error distribution,

i. e., positive and negative interpolation errors are distributed alike. Only for the low

velocity trajectories, there is a slight overbalance of the negative interpolation errors;

this is visible for both the basic and the context-loosened approach and therefore seems

49

Chapter 3 Geometric Trajectory Point Reduction

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

cd
f

relative total error

ε=0.5 m
ε=1.0 m
ε=1.5 m
ε=2.0 m

(a) Low velocity trajectories (Slow
1).

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

cd
f

relative total error

ε=0.5 m
ε=1.0 m
ε=1.5 m
ε=2.0 m

(b) High velocity trajectories (Shigh
1).

Figure 3.11: Total error analysis (Splines -c).

to be topology-specific. Additionally, we see that with an increasing error tolerance,

the distributions become narrower to the center (i. e., to a relative total error = 0). This

is because the interpolation errors are not spread evenly, but only few measurement

points are interpolated at a close-to-maximum interpolation error. This effect is more

distinctive for the basic approach; the context-loosened approach yields rather evenly

distributed interpolation errors, which finds expression in a closer distance to the

dotted diagonal with the function expression f(x) = 0.5x+ 0.5.

Though the total interpolation error distribution is a good indicator for the quality

of the trajectory interpolation, it is not enough to make clear statements. A more

thorough understanding can be provided by differentiating the components of the in-

terpolation error, instead. Therefore, we will regard its longitudinal and lateral parts

for our considerations as well, Figure 3.12 gives a schematic overview: it shows a polyg-

onal chain as a dotted gray polyline and the corresponding spline approximation as a

50

3.5 Cubic Spline Trajectory Point Reduction

Figure 3.12: Longitudinal and lateral error components.

solid black curve. Additionally, the mentioned error components for the interpolated

knot m′
j of the original position measurement mj are depicted. While the longitudinal

interpolation error describes the divergence along the movement direction, the lateral

error refers to the part perpendicular to it.

As mentioned in the beginning of this section, cubic splines provide an especially

low oscillation behavior due to a minimal curvature κ between two successive knots.

Therefore, it is surely possible that systemic errors in relation to the curvature of

the spline interpolation occur, so that curves and bends are interpolated tighter than

they actually were in the original data. In this case, a clear correlation between the

curvature of the spline and the lateral error would exist: for κ < 0 (i. e., right turns),

one would expect mostly negative lateral errors (i. e., original measurements lying on

the left side of the interpolation) and for k > 0, positive lateral errors should prevail.

This is why especially the lateral error is a good metric for the accuracy for the spline

interpolation of trajectories.

Figures 3.13 and 3.14 show the lateral error distributions as box plots in relation to

the spline’s curvature; again, the points indicate the minimum and maximum values,

the whisker ends mark the 0.02 and 0.98 percentiles, the box itself covers the percentiles

from 0.25 to 0.75 and the band within the box marks the median. Since the curvature

κ = 1
R is the inverse of the curve radius R, a high absolute curvature value translates

into a tight curve or bend. The figure covers curvatures of up to |κ| = 0.04, resulting in

curve radii of up to 25m that correspond to tight curves with respect to the measured

velocities. The figures show a balanced lateral error distribution, but with a slight

systemic error by shifts of mostly less than 5%. However, this error has the exact

opposite nature of what is expected: for κ < 0, the median of most box plots is

positive, while for k > 0, most error medians are negative. This means that the splines

tend to approximate curves in the trajectories wider than they actually are. Though

this behavior occurs for both versions of the algorithm, the results for the context-

loosened variant appear slightly more regular, while the errors of the context-oriented

version seem to be a little more distorted.

51

Chapter 3 Geometric Trajectory Point Reduction

-0.50

-0.25

0.00

0.25

0.50

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

av
g.

 la
te

ra
l e

rr
or

curvature κ

(a) ε = 0.50m

-1.00

-0.50

0.00

0.50

1.00

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

av
g.

 la
te

ra
l e

rr
or

curvature κ

(b) ε = 1.00m

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

av
g.

 la
te

ra
l e

rr
or

curvature κ

(c) ε = 1.50m

-2.00

-1.00

0.00

1.00

2.00

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

av
g.

 la
te

ra
l e

rr
or

curvature κ

(d) ε = 2.00m

Figure 3.13: Lateral error analysis for high velocity trajectories (Splines +c).

52

3.5 Cubic Spline Trajectory Point Reduction

-0.50

-0.25

0.00

0.25

0.50

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

av
g.

 la
te

ra
l e

rr
or

curvature κ

(a) ε = 0.50m

-1.00

-0.50

0.00

0.50

1.00

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

av
g.

 la
te

ra
l e

rr
or

curvature κ

(b) ε = 1.00m

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

av
g.

 la
te

ra
l e

rr
or

curvature κ

(c) ε = 1.50m

-2.00

-1.00

0.00

1.00

2.00

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

av
g.

 la
te

ra
l e

rr
or

curvature κ

(d) ε = 2.00m

Figure 3.14: Lateral error analysis for high velocity trajectories (Splines -c).

53

Chapter 3 Geometric Trajectory Point Reduction

3.6 Conclusion

In this chapter, we investigated lossy geometric compression schemes for the encoding

of spatio-temporal vehicular trajectories that are able to compress trajectories regard-

ing an upper approximation error bound ε. We analyzed the compression performances

of optimal and heuristic line simplification algorithms that are currently the state of

the art for the remote tracking of object movement.

We then regarded geometrical design patterns of roadways, clothoidal splines, that

are compositions of clothoidal curve segments, circular arcs and line segments. We

examined the suitability of clothoidal splines and proposed a new compression scheme

on the basis of a clothoid spline fitting algorithm from the area of computer graphics.

However, the problem statements that serve as foundations for these algorithms differ

essentially from ours, as they do not involve a strict error bound, but rest upon rather

fuzzy error cost models. Therefore, the resulting clothoid splines often violated the

error bound so that the compression results that were achieved with these approaches

were significantly worse than the ones of the line simplification algorithms.

Finally, we proposed a trajectory compression scheme based on cubic spline inter-

polation. We presented a basic version of a greedy algorithm that approximates a

given trajectory with a runtime complexity of O(n3). We also stated the possibilities

to handle trajectories with additional non-geometrical data dimensions without the

need of extensive modifications of the algorithm. We also presented a modification

to the algorithm that compresses the spatial dimensions of a trajectory not bundled

as a context, but separately. Our evaluation showed that the basic spline approach

could not perform significantly better than the linear compression schemes and even

performed slightly worse than the optimal line simplification algorithm. However, the

proposed context-loosened modification outperformed all regarded compression algo-

rithms and achieved constantly around 18% to 22% better compression ratios than

the optimal linear simplification algorithm. This result clearly shows the suitability of

smooth geometric functions for the compression of spatio-temporal trajectories.

Although we could achieve very good compression ratios, it is not clear what the

best possible compression technique is or what the upper compression bound for spatio-

temporal trajectories is. It is possible, for instance, that a compression scheme based

on clothoid splines is the best-suitable approach and there is simply no algorithm

yet that is capable of approximating polygonal chains efficiently within a strict error

bound. Viewed from a different perspective, there are still open questions: how much

information does a spatio-temporal trajectory contain and how can this information

content be measured? If we could find an approach to answer these questions, it

54

3.6 Conclusion

would be easier to approximate an optimal compression scheme for spatio-temporal

trajectories. We will therefore leave the geometric context to tackle these questions in

the next chapter from an information-theoretic point of view.

55

4
Information Theoretic Approaches

4.1 Introduction

In the previous chapter, we described compression techniques for moving object tra-

jectories that are based on geometric approaches, such as line simplifications, circular

arcs or cubic spline interpolation. We could show that the use of these methods provide

very good compression results and that the use of smooth functions can improve the

compression performance, especially for high-accuracy constraints. However, it was

not possible to derive a general upper bound for trajectory compression that is given

by the information content, of such a movement trace.

In this chapter, we therefore leave the geometric context and focus on trajectory

compression from an information-theoretic point of view. First, we review previous

related work on trajectory compression and probabilistic positioning. Also, a brief

introduction into Shannon’s information theory is given and it is explained how these

concepts can be used to find optimal stream codes that can be produced by an arith-

metic coder. We then focus on the following question: given a prediction model for

object movements, how much information does a trajectory contain with respect to this

model and what upper compression bound does this imply? We introduce our idea of in-

formation content for moving object trajectories and present a method to measure this

information content. This knowledge is then used to discuss how to apply this idea to

vehicular trajectories and describe details of a basic arithmetic coder implementing the

proposed model. The practical implementation consists of multiple components that

we will regard more closely and discuss several alternative realizations of them. Finally,

we present a detailed evaluation of the arithmetic coding model and its components.

57

Chapter 4 Information Theoretic Approaches

Again, we will use the vehicular domain as an example to illustrate our findings and

to prove its applicability to real world data. However, the ideas presented here can be

used to analyze and compress any form of trajectory, provided that a prediction model

for the respective mobility can be constructed.

Parts of the content of this chapter were previously published in [KRHM12], but we

will present more details about the code model and its components in here. Also, we

discuss our findings on the symbol alphabet and the probability distribution in more

detail, as well as their impact on the arithmetic coding performance. In particular,

we put emphasize on the trained probability distributions and how these could be

retrieved.

4.2 Related Work

The probability of the outcome of a position determination is an important factor in

probabilistic positioning. This self-positioning technique is widely used for the naviga-

tion of autonomous mobile robots, mostly within buildings: a robot, equipped with

distance sensors and map material, explores its surrounding and finds its position on

the map. An early publication of probabilistic robot positioning is [NPB95]; the au-

thors describe the algorithms and the setup of their robot DERVISH that knows its

initial position and navigates to a particular destination, thereby avoiding obstacles on

its way. The robot uses rudimentary probabilistic positioning by matching its sensor

measurements to its approximate position, thus deducting its position on the map. The

authors of [SK95] improve on the positioning by introducing uncertainty into the sys-

tem: they propose to use a partially observable Markov decision process (POMDP) to

express the robot’s position by a probability distribution over a given map. In [CKK96],

the authors propose the use of Markov Localization instead POMDPs due to its lesser

computational complexity. Markov Localization is also employed in [Fox98, RBFT99],

in which the presented robot navigation systems determine the routes with respect to

a minimal-entropy policy, i. e., the uncertainty of the position along the route is mini-

mized. In our work, we follow a similar concept in defining a probability distribution

over a limited region, but we do not rely on previously known map material, but only

on position estimations and spatial boundaries set based on kinematic assumption.

Two publications from the area of machine learning and mobile communication are

close to our contribution: in [RGRB04], the authors analyze navigation decisions of

homing pigeons on their way between pigeon lofts. From the navigation decisions,

they derive the routing uncertainties of the pigeons using a window approach, where

a window is moved along a pigeon’s trajectory. The navigational uncertainty is then

58

4.3 Information Theory and Entropy Coding

calculated based on the stochastic complexity of the regarded trajectory sections with

a Hidden Markov Model (HMM). Though the concept of positional entropy is close to

our work, the study itself is merely loosely connected to ours: though the presented

model allows to estimate the movement uncertainty, the probabilities are determined a

posteriori by an abstract window scheme, which is hardly applicable to general moving

object trajectories. The authors of [BD99] apply Shannon’s concept of information

content and entropy to the movement of users in a cellular network. The gained

knowledge is then used to implement an intelligent location update protocol, LeZi-

Update. In their work, they use Markov models to calculate the information content of

the user movement and determine the state transition probabilities based on relative

location frequencies. With this model, the authors derive compressed position update

messages. This approach is a special case of information content measurements and

gives good hints on how to approach the area of spatio-temporal entropy. However,

it also can not directly be generalized to arbitrary movements. In this chapter, we

present a formal information content measurement model that can not only be seen

as a generalization of these two approaches but can also be adapted to any other

application area or object movement.

None of the existing approaches consider a general upper bound for trajectory com-

pression that is given by the information content of a movement trace. In this chapter,

we will show that doing so will lead to significant improvements in the compression

ratio for trajectories.

4.3 Information Theory and Entropy Coding

In this section, we introduce the information-theoretic concepts that we will need to

develop our model for the determination of the spatio-temporal information content

of trajectories. We then explain how this knowledge can be used to derive an optimal

symbol and streaming code with Huffman and arithmetic coding, respectively. Finally,

we introduce range coding, an efficient way to implement arithmetic coding.

4.3.1 Information Content and Entropy

Let us begin with the necessary information-theoretic concepts that can be studied in

more depth in [Sha48]; for our terminology, we follow [Mac02]: given a random variable

X with a finite sample space AX , that we will also refer to as the (discrete) alphabet

of X,

AX = {a1, . . . , aN}

59

Chapter 4 Information Theoretic Approaches

and a probability distribution

PX = {p1, . . . , pN}

so that

pi = P (x = ai), ∀1 ≤ i ≤ N : pi > 0 and
N∑
i=1

pi = 1 .

The concept of Shannon then states that the higher the outcome probability of an

event, i. e., an alphabet symbol, the lower is its information content. In addition to

that, the information content is not proportional to the inverse probability, but it

decreases logarithmically, the more probable the outcome. Formally, the Shannon

information content h(x) (given in bits) of an event x ∈ AX is defined as

h(x) = log2
1

P (x)
,

where P (x) is the probability of its occurrence. Then, the entropy of a random variable

X refers to the average information content of an outcome of X and is weighted

according to the respective probabilities. The entropy H(X) is defined as

H(X) =
∑
x∈Ax

P (x) · h(x) =
∑
x∈Ax

P (x) · log2
1

P (x)
.

In other words, the entropy is the average number of necessary bits to represent a

random outcome x ∈ AX .

4.3.2 Huffman Coding

In his fundamental paper on what he established as information theory [Sha48], Shan-

non describes the information contents that lie within symbol sets with attached prob-

abilities and how to measure them. Based on this work, Huffman presents a way

to calculate an optimal symbol code in the form of a set of binary code words cor-

responding to such a given alphabet and a probability distribution [Huf52]. In this

context, an optimal code yields minimum redundancy as defined by Shannon, and a

minimum expected code word length. To achieve this, Huffman proposes an algorithm

to construct a tree structure that holds all alphabet symbols as leafs and defines the

code words corresponding to the symbols as the paths from the root to the respective

leaf. Such trees define prefix codes, i. e., codes in which no code word is the prefix to

another. With this property, code words are always uniquely determinable from the

code message. This structure can be constructed for codes with arbitrary positional

notation radixes, but again, we focus on the binary case.

60

4.3 Information Theory and Entropy Coding

For the code tree construction, one tree node is initially set up for each alphabet

symbol. In general, the algorithm follows the philosophy that the longest code word

lengths are assigned to the symbols with the lowest probabilities. To this end, the

symbol nodes are then inserted into a priority queue that regards the symbol probabil-

ities for the ordering: the nodes are ordered by increasing symbol probabilities. If two

nodes contain symbols of equal probabilities, the order of these two nodes is irrelevant,

as the expected code word length (the entropy) will be the same. Then, the following

steps are repeated until there is only one node left in the queue:

1. Take the first two nodes from the queue and create a parent node for them. The

probability of the parent node is the sum of the two nodes’ probabilities.

2. Insert the parent node into the priority queue.

Once there is only one node left in the priority queue, the algorithm terminates; this

node is the root node of the code tree. The code words for the alphabet symbols can

then directly be read as the binary path descriptors of the respective leafs, as seen

from the root node.

The Huffman code provides optimal symbol codes, i. e., each symbol is encoded with

minimal integer bit number. However, there are two main disadvantages, as stated

in [Mac02]: first, the original Huffman coding works with a static code tree that can not

react on changing symbol probabilities and needs to be known to all decoding instances,

if it is not to be transmitted ahead of every code word sequence. Although adaptive

strategies can be implemented by rebuilding or altering the code tree periodically, as

proposed in [Gal78, Vit87], these solutions cause an extra management overhead by

additional pointers in the tree. Additionally, the code tree alterations are suggested

to be made after every R-th read symbol (with a larger R) to avoid noticeable coding

slowdowns, thereby accepting suboptimal codes in the meantime. Second, since the

Huffman code is a symbol code and each code word consists of an integer number of

bits, there is always an encoding overhead of up to one bit per symbol. This can be

alleviated by defining a Huffman code not only for the symbol unigrams, but for all

symbol combinations of a certain length. For symbol strings of a known length M ,

this overhead could therefore be minimized by defining a Huffman code for all possible

symbol combinations of size M . As M is usually unknown in practice, it is beneficial

to use stream codes, such as arithmetic codes instead of symbol codes.

4.3.3 Arithmetic Coding

In [Abr60], the author proposes a stream code algorithm that separates the probabilistic

model from the actual encoding step. To this end, the probability distribution of the

61

Chapter 4 Information Theoretic Approaches

Figure 4.1: Arithmetic coding: exemplary coding of symbol string ccb.

input data needs to be estimated first and can then be updated upon each read input

symbol. The approach of the Huffman coding, where the correct distribution can be

determined by analyzing the input is not applicable here, as the arithmetic coding was

designed to work on symbol streams. However, due to the separated probability and

coding steps, it is very easy to adapt the probability distribution on the fly. In the

worst case, the encoder can prepend an identifier for the used distribution to the code

output stream, as it is necessary for Huffman codes. The probability in the encoder

and decoder need to be kept synchronized, which can easily be achieved in feeding the

probability model with the most recently read or just decoded symbol in the encoder

and decoder, respectively.

Basically, an arithmetic coder encodes a sequence of input symbols ak1 , ak2 , . . . , akS
as a conditional probability P (akS |ak1 , . . . , akS−1

). In other words, it views the se-

quence of input symbols as a particular subinterval within the probability range [0; 1).

Therefore, it divides the whole probability range [0; 1), according to the probabili-

ties given in PX . After the first symbol is read, say symbol ak1 , the corresponding

probability interval [l1, h1), with

l1 =

k1−1∑
i=1

pi, h1 =

k1∑
i=1

pi

is further regarded. Next, after reading ak2 , the regarded subinterval is recalculated

62

4.3 Information Theory and Entropy Coding

as [l2, h2), with

l2 = l1 + (h1 − l1) ·
k2−1∑
i=1

pi, h2 = l1 + (h1 − l1) ·
k2∑
i=1

pi .

In general, after reading the input symbol akj , the interval [lj , hj) is regarded, with

lj = lj−1 + (hj−1 − lj−1) ·
kj−1∑
i=1

pi, hj = lj−1 + (hj−1 − lj−1) ·
kj∑
i=1

pi , (4.1)

and l0 = 0, h0 = 1, initially. For the encoding, the final subinterval needs to be

identified with a minimum number of bits. Therefor, the initial probability interval

[0; 1) is binary subdivided: on the first level, the interval [0; 0.5) would be described by

the identifier 0, while [0.5; 1) is referred to by 1. Analogically, the subinterval [0.25; 0.5)

would be described by 01, and so on. This procedure is repeated until the largest binary

interval is found that completely fits into the final probability interval. In doing so,

the input symbols are not necessarily encoded by an integer number of bits. In fact, it

could even be that less than one bit per symbol is necessary to encode a symbol input

sequence, e. g., if the input is the repetition of a symbol aj with probability pj > 0.5.

So, the issue of the Huffman coding that up to one bit overhead may occur, does not

apply for the arithmetic coding.

The exemplary subdivision of the probability and the binary coding interval for the

symbol string ccb, with AX = {a, b, c},PX = {0.1, 0.15, 0.75} is shown in Figure 4.1:

the probability interval for the symbol string is deducted in steps (i) - (iii) and is finally

given by [0.49375; 0.578125). In step (iv), the binary interval is subdivided until the

largest interval is found that fits completely into the probability interval. In our case,

this interval is described by the binary string 1000. In practice, step (iv) is performed

in parallel to steps (i)-(iii).

4.3.4 Range Coding

When it comes to practical realizations, one problem of the arithmetic coding is that

it deals with decimal numbers of arbitrary high precision. Since it is not possible to

implement such decimal numbers efficiently (if at all), the authors of [Mar79] propose

an approximative algorithm that does not work on an actual decimal probability in-

terval, but uses approximative integer arithmetic instead. To this end, the probability

distribution interval [0; 1) is modeled by an integer interval [0; 2l) with l being the

available word length for the integer data type in bits. Then, the probability intervals

63

Chapter 4 Information Theoretic Approaches

of the particular symbols that need to be encoded are projected onto this integer in-

terval. The actual probability interval is then no longer given as real numbers but as

quotients of integers, which causes the approximation errors. The calculation of the

interval boundaries is done in analogy to (4.1) for the interval [lj , hj):

lj = lj−1 +

⎢⎢⎢⎣(hj−1 − lj−1) ·
kj−1∑
i=1

pi

⎥⎥⎥⎦ , hj = lj−1 +

⎢⎢⎢⎣(hj−1 − lj−1) ·
kj∑
i=1

pi

⎥⎥⎥⎦ ,

where l0 = 0, h0 = 2l, initially. Of course, the approximation errors can grow large

over time, once the absolute integer value range of the interval
hj−lj
2l

gets too small. To

avoid this, l should be chosen appropriately large; in fact, the larger the alphabet, the

larger should l be selected to minimize the effect of rounding and approximation errors.

Additionally, in [Mar79] Martin proposes to rescale the interval once a certain size is

underrun. An easy and efficient way to do this is to wait until hj < 2l−1 or lj ≥ 2l−1.

In the first case, the interval completely lies in the lower half of the value domain and

one may simply continue with hj = 2 · hj + 1 and lj = 2 · lj . In the second case, the

interval completely lies in the upper half, so the interval first needs to be shifted to

the lower half, before one can continue as in the first case: hj = 2 · (hj − 2l−1) + 1,

lj = 2 · (li − 2l−1). A more sophisticated algorithm for rescaling the integer interval

can be found in Bob Carpenter’s implementation [Car02], as an example.

Figure 4.2 visualizes this principle with l = 14 for the symbol sequence from the

above example in Figure 4.1. It can be seen that due to l being chosen too small, there

is a rounding error of 0.4 already after step (iii), because
⌊
(h2 − l2) ·

∑k3−1
i=1 pi

⌋
=

�(4096− 1792) · 0.1� = �230.4�. This error increases dramatically in the next encoding

step, if the interval is not rescaled. However, hj < 2l−1 or lj ≥ 2l−1 do not apply,

so more complex rescaling rules need to be applied which is left to the reader’s own

research of [Car02].

4.4 The Information Content of Trajectories

In this section, we explain our idea of what the information content of a trajectory is

and propose a way how it can be measured. To this end, we introduce a formal model

for the entropy calculation of trajectories and discuss its components and parameters.

4.4.1 What is the Information Content of Trajectories?

Any object movement, such as the migration patterns of flocks, the movement of astro-

nomical objects or the trajectories of road vehicles can each be described by a formal

64

4.4 The Information Content of Trajectories

Figure 4.2: Range coding: exemplary coding of symbol string ccb.

model. In general, such models can be used to reconstruct or predict the movement pa-

rameters of particular objects. This is done based on previous position or other sensor

measurements, exploiting the redundancy and predictability of movements. Typically,

not all factors that influence the mobility of a mobile object can be modeled per-

fectly, as models can only approximate a real process with regard to a certain degree

of inaccuracy. Therefore, the actual position of the object might always differ from

the respective prediction. This deviation is commonly referred to as innovation and

describes the uncertainty of the prediction process.

Of course, the outcomes for the actual innovations depend heavily on the choice and

quality of the prediction model. Also, the choice of the model defines the semantic

of the information that shall be extracted from a trajectory. In our case, we regard

the spatio-temporal predictability as this information, but we have also seen in the

discussion of the related work in the previous section that different models can allow

for different deductions; for instance when a model is used to derive information about

the navigational uncertainty of a moving object.

In this section, we investigate the information content of spatio-temporal innovations

that describe the spatial deviations of a movement prediction for a distinct point in

time. If this is applied to our previous discussion on the Shannon Information Content,

we can identify the combination of the movement estimation, the positioning, and the

innovation determination as random process that can be mapped to a random variable

X. Then, each estimation innovation, being the outcome of an estimation step, refers

to a symbol from the alphabet AX : it represents the estimation uncertainty and bears

the information that was missing when the prediction was made. So, if the innovations

of all position estimation steps are regarded, we can derive the information content of

65

Chapter 4 Information Theoretic Approaches

a whole movement trace. Second, the alphabet AX and the probability distribution

PX over AX yield the entropy of the outcome, being the average information content.

4.4.2 How to determine the Information Content of Trajectories

We now have explained our idea of how the information content of spatio-temporal

trajectories can be described. In the next step, we want to discuss how it can be

measured. Basically, we have argued that each outcome x of the random variable X is

determined by the employed movement estimator. To proceed with this terminology,

we need to formalize all involved components: the movement estimator and the parts

of X, namely the alphabet of possible outcome values AX and the set of corresponding

probabilities PX .

The movement estimator is a function θ that determines a two-dimensional position

based on an observation vector m = (m1, . . . ,mM−1) containing previously collected

position measurements1:

θ : (R2)M−1 → R2 , θ(m) = m̂M .

Then, the innovation iM is the spatial difference between the estimation and the actual

measurement:

iM = mM − m̂M , iM ∈ R2 .

We see that the innovation is a two-dimensional real vector itself and can not directly

be used for the outcome x, because R2 is uncountably infinite, i. e., neither countable

nor bounded. In order to transfer the innovation into an outcome x, we now suggest

a method on how to overcome these two issues.

The innovation domain can be made countable by means of simple discretization:

the real innovation vector is mapped onto a grid, with each grid node referring to a

particular symbol in AX . The grid cell width and form are accuracy parameters, their

choice is influenced by several aspects. For example, the grid cell size is influenced by

the highest tolerable discretization error, i. e., the highest discretization error under

which the movement model still produces reasonable results.

Once it is countable, the innovation domain can be made bounded, while still keeping

all reasonable innovations covered by AX . That is, all possible positions within reach

in the time period since the recent measurement need to be mappable to AX . Which

positions can be reached depends, for example, on the movement model or the assumed

position measurement noise. The limitation of the innovation domain is important,

1As we assume a constant measurement interval, we refer to two-dimensional observation vector
elements; in case that the measurement interval is not constant, the definition needs to be adapted.

66

4.5 Exemplary Implementation of Information Measurement

because the most probable innovations for any valid trajectory need to be mappable

on it: if the limits are set too narrow, i. e., AX misses reasonable innovations, such

innovations could not be covered by the random variable X. Contrariwise, too wide

limits would include implausible innovations in AX , thus increasing its entropy, which

then could be higher than the actual entropy of the trajectory.

Once the movement estimator and the alphabet are known, the probability distri-

bution PX is set up by assigning a probability to each symbol in AX . The probability

distribution is crucial for the result of the entropy determination; while effects due to

an oversize alphabet can be balanced by assigning especially small probabilities to the

surplus symbols, an imprecise probability distribution will have a much stronger effect

on the estimation of the information content of a symbol.

The entropy of a random variable X over the alphabet AX and with a probability

distribution PX can be determined directly using AX and PX using (4.3.1). On the

other hand, in order to measure the information content of a trajectory, it is necessary

to determine the deviations between the predicted positions and to map actual position

measurements to AX . Then, the information content of each measurement can be

determined. The information content of a complete trajectory can be stated as the

sum over the information contents of all position measurements.

4.5 Exemplary Implementation of Information Measurement

We can now apply the information-theoretic model for the determination of a trajec-

tory’s information content from the previous section to a specific use case and show

how to implement these components for vehicular trajectories. For this purpose, we

state a number of assumptions, upon which we build our model:

1. We assume that the movement of vehicles is regular, i. e., vehicular movements

can be expressed by the formulae from kinematics or Newton’s laws of motion.

2. We expect that due to this regularity in movement, we can estimate a vehicle’s

future movement based on past position measurements and limit the area around

this estimate containing all reasonable deviations.

3. We assume that, within this area, the positions closer to the estimate are more

likely to match the vehicle’s next position than those at the border and that the

deviations from the estimate are regular as well, so that they can be learned.

67

Chapter 4 Information Theoretic Approaches

4.5.1 Movement Estimator

As trajectory data, we consider periodic position measurements mi = (xi, yi) ∈ R2

with a constant measurement interval Δ t; then, the velocity (�v) and acceleration (�a)

vectors of a vehicle at the position mi at the time ti can be approximated by the

respective difference quotients over the previous measurement intervals:

�vi =
mi −mi−1

Δ t
, �ai =

�vi − �vi−1

Δ t
.

With these quantities, some simple movement models, e. g., from [Kuc07], can be set

up to determine the next position estimate m̂M : the first model merely considers the

most recent position and velocity vector, as known from the LDR methods discussed

in Section 3.3:

θvel = mM−1 + �vM−1Δ t . (4.2)

For the second model, it is additionally approximated that the acceleration of the

moving object and extend (4.2) using the acceleration vector:

θacc = mM−1 + �vM−1Δ t+
�aM−1

2
Δ t2 . (4.3)

Obviously, more complex and accurate movement models that use more detailed

difference equations or sensor data fusion, for instance, are conceivable. However, for

the context of the arithmetic coding that we will face later on, this means that all data

that is used for the estimation needs to be transmitted to the remote receiver side as

well. This would increase the communication load and would require also to encode

or compress the additional sensor data. Therefore, we aim at a minimal data basis for

the movement estimator and thus at simple movement models. Moreover, it will be

shown that these simple models already perform very well and allow the compression

schemes to achieve very good results.

4.5.2 The Discrete Alphabet AX

As described above, the innovation domain can be made countable and bounded by

projecting each innovation to a grid of limited size. In this section, possible config-

urations for the discretization grid will be presented: we discuss several grid node

alignments, how to determine reasonable grid dimensions and how to set up the grid

frame.

In [PPS06], a similar technique is presented, in the form of a constructed space

limited by two concentric circles and two half-lines, beginning in the two circles’ center.

68

4.5 Exemplary Implementation of Information Measurement

(a) Triangular. (b) Square. (c) Hexagonal.

Figure 4.3: Regular tessellations for the discretization grid.

The half-lines are aligned according to the movement estimation. However, this so-

called safe area merely serves as a boolean uncertainty measure by checking whether

the next position measurement lies in the safe area or not. Thus, it is an alternative

to a distance and angle-based threshold measure. In their implementation of a line

simplification algorithm, a measurement is dropped, if it lies in the corresponding safe

area; a discretization or any further measurement coding is not performed.

Discretization Grid Node Alignment

It is clear that the specific grid design depends on the application context; in the

vehicular domain, for example, a uniform approximation error for any region of the grid

is desirable; this makes regularly tessellated grids—i. e., using regular triangles, squares

and hexagons as shown in Figure 4.3—an interesting option. Also, the dimensions and

the density of such grid cells can be easily adjusted by a maximum discretization error

ε that directly influences the edge length of the polygons.

Each tessellation method has several influences on the model performance: with

increasing number of cell edges, both the enclosed cell area and the average discretiza-

tion error increase as well (cf. Figure 4.3); this leads to a smaller average discretization

error of a triangular grid compared to a square or hexagonal tessellation. In turn, the

smaller the average discretization error, the better the movement estimation is likely

to work. Finally, the number of resulting cells is inversely proportional to the cell size;

this means that the alphabet size will decrease with an increasing number of edges per

cell, resulting in a smaller entropy of X. Table 4.1 lists a comparison of the grid cell

sizes for the regular tessellation schemes.

69

Chapter 4 Information Theoretic Approaches

A3=
3
√
3ε2

4 A4=2ε2 A6=
3
√
3ε2

2

A3 : A4 A4 : A6 A3 : A6

= 3
√
3ε2

4 : 2ε2 2ε2 : 3
√
3ε2

2
3
√
3ε2

4 : 3
√
3ε2

2

= 3
√
3

8 : 1 = 1 : 3
√
3

4

= 0.6495 : 1 = 1 : 1.2990 = 1 : 2

Table 4.1: Comparison of grid cell sizes for the regular tessellation schemes.

Discretization Grid Dimensions

While setting up the grid cells is a comparably straightforward task, the limitation of

the grid scope is more challenging, because the grid needs to cover all reasonable (and

only those!) measurement innovations. For the use case of vehicular movements, the

grid boundaries strongly depend on the possible movements of a vehicle. Therefore, in

the following, a kinematic model to determine these boundaries is introduced.

For the determination of the discretization grid dimensions, we refer to a logical—not

necessarily geometric—grid center, at which the grid is aligned along the movement

direction. This grid center is set to the estimated next position according to the non-

accelerated movement model (4.2), disregarding both acceleration and steering. Given

this logical center, the maximal achievable spatial deviations under our model can be

calculated, following a straightforward line of simple kinematic arguments:

The longitudinal dimension of the grid—i. e., the dimension along the movement

direction—directly results from the highest possible deceleration decmax and accelera-

tion accmax that could cause a deviation from the predictand within one measurement

interval. Then, according to (4.3), the longitudinal grid dimension interval relative to

the logical grid center is

Dlon = [−w−
lon ;w

+
lon]

with

w−
lon =

|decmax |
2

Δ t2, w+
lon =

accmax

2
Δ t2 .

70

4.5 Exemplary Implementation of Information Measurement

For the lateral grid dimensioning, we need to regard an extreme steering behavior to

derive the highest achievable lateral deviation from the estimated position. Therefore,

the vehicle is considered to pass through a curve, with the vehicle’s velocity and the

radius of the curve being chosen to such an extent that the lateral deviation is maxi-

mized. This deviation is limited, however, by the vehicle’s velocity and the radius of

the curve: given a curve radius r, a vehicle’s speed is upper-bounded by the critical

cornering speed

vc(r) =
√
al · r ,

where al refers to the highest possible lateral acceleration [SH82]. For the determina-

tion of al, we state according to Coulomb’s friction law:

al ≤ μs · g ,

where μs is the static friction coefficient and g ≈ 9.81 m
s2

is the earth’s standard gravity

acceleration. For the choice of μs, default reference values as in [Kuc07] can be used,

representative examples are listed in Table 4.2. With the critical cornering speed, we

can calculate the maximum lateral deviation: at a cornering of more than 90◦ within

the time interval Δ t, the lateral deviation equals the sum of the curve radius and

the distance that could be driven perpendicular to the assumed driving direction (cf.

Figure 4.4a). Otherwise, the lateral deviation is merely the width of the curve that

has been passed thus far (cf. Figure 4.4a). Formally, the maximum lateral deviation

can be expressed by the function dl : R
>0 → R ,

dl(r) =

⎧⎨⎩ r + vc(r)Δ t− πr
2 vc(r)Δ t > πr

2

r · (1− cos(vc(r)Δ t
r)) else

As depicted in Figure 4.4c, the graph of dl resembles a square root curve: after a

rapid growth with an increasing curve radius of up to approximately 80m, the curve

stagnates and features merely a minor slope. The heavy drop of all curves results from

an upper bound for vc(r) that has been set to 70m/s. With a friction of μ = 0.55 (tire

on tar/asphalt), it can be derived from this analytical model that the grid would need

to be at least 2 · 2.7m = 5.4m wide. Figure 4.5a shows an exemplary discretization

grid with previous position measurements, the position estimate and the measures on

the longitudinal and lateral dimension. In the following, the lateral grid size will be

referred to as 2 · wlat .

However, though these grid dimensions are analytically set up, they do not neces-

sarily need to be optimal. Further influences such as increased positioning noise levels

71

Chapter 4 Information Theoretic Approaches

Tire on... dry wet, clean wet, fouled iced

farmland 0.45 0.2 <0.2

asphalt 0.55 0.3 0.2 <0.2

concrete 0.65 0.5 0.3 <0.2

cobblestone 0.6 0.4 0.3 <0.2

gravel 0.7 0.5 0.4 <0.2

tar surface 0.55 0.4 0.3 <0.2

Table 4.2: Reference values for the static friction coefficient μs [Kuc07].

may cause innovations to lie outside the analytically deduced boundaries. A simple

countermeasure for such situations would be to add a single extra symbol to AX , rep-

resenting outliers, which only minimally increases the alphabet size and the entropy of

the random variable X. Complementary, expected or current noise statistics, such as

dilution of precision (DOP) values that are provided by some GPS devices, could be

regarded for the grid dimensioning: the grid dimensions could be simply increased by a

certain size to set up a guard zone around the analytically determined grid dimensions,

thus allowing for a higher noise level by increasing the alphabet. However, the setup

of such a guard zone is nontrivial, if not only arbitrary values shall be used. For this

reason, it is omitted and deferred to future work.

Discretization Grid Frame

In Figure 4.4c, a rectangular frame shape for the discretization grid is assumed. While

this is demonstrative and easy to implement, it does at the same time not accurately

reflect a true analytic boundary for the measurement deviations from the predictand.

For such a boundary, one would have to account for Coulomb’s law, which proves that

vehicles can not progress as far on the longitudinal dimension when cornering; if this

is regarded, the resulting grid frame would feature an elliptic form.

This elliptic frame is not derived analytically, but approximated by means of p-

norms, which are less complex to calculate at runtime; a grid node with the metric

offset (δlon , δlat) from the logical grid center (the predictand) is mapped to an alphabet

symbol iff

(δ′lon
p
+ δ′lat

p
)
1
p ≤ 1

with

δ′lon =

⎧⎨⎩
δlon
w−

lon

if δlon < 0

δlon
w+

lon

else
, δ′lat =

δlat
wlat

.

72

4.5 Exemplary Implementation of Information Measurement

(a) Cornering > 90◦. (b) Cornering ≤ 90◦.

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800 900 1000

m
ax

. l
at

. d
ev

ia
tio

n:
 d

l(r
)

[m
]

curve radius r [m]

μ = 0.70
μ = 0.65
μ = 0.60
μ = 0.55
μ = 0.50

(c) Maximal lateral deviation over curve radii.

Figure 4.4: Discretization grid dimension analysis.

Figure 4.5b shows exemplary vector norm grid frames for p ∈ {1.0, 2.0, 4.0,∞}. The

∞-norm results in a rectangular frame as shown in Figure 4.5a.

4.5.3 The Probability Distribution PX

The probability distribution PX of the random variable X assigns a probability pi to

each symbol ai ∈ AX , as described in Section 4.4. As mentioned earlier, the proba-

bility distribution is an important factor in the system, even more important than the

alphabet. While an alphabet with more symbols than necessary can be balanced by a

probability distribution that assigns very low probabilities to the unnecessary symbols,

a badly chosen probability distribution can not be compensated for. Therefore, choos-

ing the correct probability distribution that fits the actual nature of the innovations

is non-trivial and needs to be regarded more closely. We now discuss several possible

choices for PX that we will evaluate with our arithmetic coding scheme in Section 4.6.

73

Chapter 4 Information Theoretic Approaches

(a) Grid dimension measures.

(b) Vector norm grid frame options.

Figure 4.5: Discretization vector norm grid frame options.

Uniform Distribution

The simplest possible distribution is the uniform distribution that assigns the same

probability to all symbols. Formally,

∀1 ≤ i ≤ N : pi =
1

N
, N = |AX | .

Under the assumption that the employed movement estimator satisfies a reasonable

degree of accuracy, small deviations from the position estimate are more likely than

large ones. Therefore, this distribution does not resemble what one would expect from

PX in reality. However, it is a good lower-bound benchmark that can be used to

validate the performance of other probability distributions.

Normal Distribution

Since we expect the large majority of position estimates to be accurate, we also assume

PX to be reasonably close to the normal distribution which is commonly referred to

in the context of noisy position measurements [vD98]. We are aware that during an

estimation process, the innovations are unlikely to be perfectly normal distributed;

still, the approximation is considered adequate.

74

4.5 Exemplary Implementation of Information Measurement

As explained above, we derive the alphabet from a two-dimensional grid, so we need

to employ a bivariate normal distribution

N (μ,Σ), μ = (μx, μy), Σ =

(
σ2
x ρσxσy

ρσxσy σ2
y

)

with the standard deviations σx, σy and the correlation coefficient ρ [Tim02]. The

distribution’s mean is set according to the estimated next position: μ = θP (m). While

the grid always needs to be aligned using the non-accelerated movement model (4.2),

because its dimensions have been derived by acceleration estimations, the mean μ of

the probability distribution can be determined using other models, e. g., the accelerated

movement model (4.3).

The dimensions of the innovation domain are not expected to correlate, so ρ = 0.

However, the normal distribution is symmetric, which does not necessarily need to

apply to the grid as well. Therefore, we need to find a mapping (skewing) of the

probability distribution to the dimensions of the grid and propose a projection of the

grid that is schematically depicted in Figure 4.6: the mean μ separates the grid into

four quadrants (cf. Figure 4.6a), each of which is scaled to the dimensions [sx; sy],

where sk is the number of standard deviations that are supposed to cover the k axis

of each quadrant (cf. Figure 4.6b). Due to the scaling, the standard deviation of the

distribution can be set to σ = 1 and so, the probabilities for the grid nodes can be

determined using the simplified density function

f(x, y) =
1

2π
exp(−1

2

(
x2 + y2

)
)

(cf. Figure 4.6c). Afterwards, the assigned probabilities need to be normalized to

eliminate scaling effects, so that
∑N

i=1 pi = 1 applies again (cf. Figure 4.6d).

Alternatively, asymmetric probability (e. g., log-normal) distributions could also be

employed, which are partially much more complicated to configure, though.

Given these first two distributions, we can now determine the respective entropy of

the random variable X, i. e., the expected information content per position measure-

ment for a given alphabet and probability distribution. and can get a first concrete

impression of possible entropy values. Table 4.3 shows exemplary entropies for varying

measurement intervals and accuracy bounds. For the regular square grid setup we

assumed an acceleration interval [decmax; accmax] = [−11; 8]m/s2 . Also, we calculated

the entropies for probability distributions with two different standard deviations: we

chose sx = sy = 3σ and sx = sy = 4σ, thus assuming that approximately 99.7% and

99.99% of all measurement innovations will lie within the grid, respectively. Please

75

Chapter 4 Information Theoretic Approaches

(a) Determine μ = θP (m). (b) Scale each grid quadrant to size [sx; sy].

(c) Calculate the grid node probabilities pi. (d) Normalize probabilities, so
∑

i pi = 1.

Figure 4.6: Skewing of the probability distribution and mapping it to the grid nodes.

note that the entropy, as a predictand, solely depends on the used movement model θ,

the alphabet AX and the probability distribution PX of the random variable X, and

not on actual measurements.

It is obvious from the table that even for very high accuracy demands, the expected

average information content per symbol is very low: while off-the-shelf GPS receivers

provide position measurements as fixed-point numbers with six digital places and thus

can be encoded with 57 bits, the expected average information content at an accuracy

bound of 0.1m and for 1.0Hz measurements, for example, always lies below 12 bits.

This would even apply if the probability distribution of the alphabet is considered

uniform. According to our model, the entropy becomes smaller with the measurement

interval. This is reasonable, because the more information is provided by measure-

ments, the lower is the missing information for a perfect estimation.

76

4.5 Exemplary Implementation of Information Measurement

entropy [bits]

Δ t ε |AX | uniform normal (3σ) normal (4σ)

0.1m 199 7.64 6.32 5.55

0.5 s 0.5m 16 4.00 2.38 1.77

1.0m 7 2.81 1.83 1.61

0.1m 2761 11.43 10.25 9.47

1.0 s 0.5m 136 7.09 5.73 4.97

1.0m 41 5.36 3.86 3.20

0.1m 41580 15.34 14.20 13.42

2.0 s 0.5m 1760 10.78 9.59 8.80

1.0m 476 8.89 7.65 6.86

Table 4.3: Exemplary alphabet configurations and entropies.

Trained Distributions

Under the assumption that vehicular movements, disregarding the terrain or surround-

ing, follow a general principle or pattern, we also suppose that there is a generally fitting

distribution that can be found, or learned. Since the alphabet is discrete and finite,

such a distribution can be obtained from a collection of previously observed traces,

referred to as the training set (Strain
3).

To create such a learned distribution, every position measurement in the training

set is mapped to its corresponding alphabet symbol using a movement estimator,

for instance one of those presented in Subsection 4.5.1, and the grid as described in

Subsection 4.5.2. For each symbol ai ∈ AX , a counter ni is maintained, which is

increased upon every occurrence of the respective symbol in the training set. After all

training measurements have been processed, the probability pi can be stated as

pi =
ni∑N
i=1 ni

.

According to the definition in Subsection 4.4.1, all symbol probabilities need to be

nonzero. We therefore define n′
i := max{ni, 1} and p′i analogously to pi, resulting in

a close approximation of pi that can be used for the determination of the information

content and for the arithmetic coding of trajectories. If each symbol occurs at least

once in the training set, n′
i = ni and thus p′i = pi.

77

Chapter 4 Information Theoretic Approaches

A Posteriori Distributions

A special case of the trained distributions is the a posteriori distribution. For this, one

particular trajectory is used to train the distribution, i. e., the result reflects exactly

the innovation distribution for this trajectory. With this knowledge, an arithmetic

coder will be able to determine an excellent code. Though this kind of distribution

can not be used for real-world implementations, because the distribution is obviously

unknown unless the complete trajectory has been collected, it can serve as an upper

bound approximation for the compression performance for a trajectory, especially to

evaluate the compression ratio achieved with other probability distribution settings.

However, even the usage of a posteriori distributions does not guarantee optimal

compression results; an optimal result could be achieved, if the next measurement

with a discretization to the symbol ak would be known; in this case,

pi ∈ PX , pi =

{
1 if i = k

0 else
.

Then, this particular PX would be the Dirac measure for ak ∈ AX .

Contextual Distributions

Next to the probability models that apply the same probability distribution to ev-

ery observed measurement innovation, it could be beneficial to work with probability

distributions that are purpose-made and tailored to a set of distinctive contexts or

situations. For example, when a vehicle is measuring its position while standing at

a red traffic light, a different probability distribution might fit best than for the sit-

uation when the same vehicle drives on an on-ramp to enter a high-speed motorway.

Therefore, in the following, we discuss contextual distributions: a contextual distribu-

tion is, strictly speaking, no self-contained probability distribution but rather a way to

combine multiple distributions into a single probability model and thus can be used as

an extension instead of a stand-alone and exclusive alternative. Also, different kinds

of distributions can be employed within each context in order to assemble the optimal

fit for each context.

For the contextual distributions, it can be assumed that the actual distribution of

measurement innovations correlates with the measurement vehicles’ current movement

parameters, i. e., velocity or acceleration.

The Movement Context Model: cntxtM The simplest regarded contextual distribu-

tion differentiates between two situations with a movement filter: there is one trained

78

4.5 Exemplary Implementation of Information Measurement

distribution each for measured velocities of up to 1m/s and for velocities above this

threshold. With this model, we want to make use of the assumptions that at such very

low velocities or halts, the probability distribution will be significantly different from

those for movement periods with higher velocities and that the movement estimator

will likely provide good results at close-to-zero velocities.

The Velocity Context Model: cntxtV Going one step further, one could argue that

the probability distributions for every velocity or at least velocity range of a certain,

regular width differs significantly from the others. To examine this assumption, this

contextual distribution contains ten trained probability distributions, the first nine

of which cover the increasingly ordered scalar velocity ranges of 3m/s each. The last

distribution covers velocities of 27m/s and larger. So, a measurement in the trajectory

is assigned to the distribution Di with

i = min

(⌊ |�v|
3

⌋
+ 1, 10

)
where �v is the previously observed velocity.

The Clustered Velocity Model: cntxtC After we had a first look at the probability

distributions created with the velocity context model, we recognized that many of

them, of course especially the ones for close velocities, were very similar to each other.

It was therefore decided to analyze this similarity further and calculated distributions

for 40 scalar velocity classes with a coverage of 1m/s each. Again, the last class covers

all velocities of 39m/s and larger.

The goal is to find groups of distributions that are similar enough, so that they can

be aggregated or clustered. This should reduce the number of distributions so that

these can be trained more efficiently. Therefore, after the distributions were created,

a k-means clustering was applied to the data. With the k-means clustering algorithm,

a set of data points can be clustered into k groups, so that all points have a minimal

distance to the center points (centroids) of the group they belong to, with respect to a

particular distance metric. Before the algorithm starts, initial centroids are selected,

which are then iteratively updated until a stop criterion, for example after a certain

number of iterations, applies. The k-means algorithm is a little problematic, because

the initial centroids need to be chosen carefully, because a bad choice could result in

empty clusters at the end of the run.

An N -dimensional linear space, N = |AX |, was set up, whereby each calculated

distribution represents a single point in this space and the Euclidean metric can

79

Chapter 4 Information Theoretic Approaches

k
2 3 4 5 6 7 8 9 10

v
el
o
ci
ty

cl
a
ss

in
d
ex

i

0 1 1 1 1 1 1 1 1 1
1 1 2 2 2 2 2 2 2 2
2 1 2 2 2 3 3 3 3 3
3 1 2 2 3 3 3 3 4 4
4 1 2 2 3 3 3 4 4 4
5 1 2 2 3 3 3 4 4 4
6 1 2 2 3 3 3 4 4 4
7 1 2 2 3 3 3 4 4 4
8 1 2 2 3 3 3 3 4 4
9 1 2 2 3 3 3 3 4 4
10 1 2 2 3 3 3 3 5 4
11 1 2 2 3 4 3 4 5 5
12 1 2 2 3 4 3 5 5 5
13 1 2 2 3 4 3 5 5 5
14 1 2 3 3 4 4 5 5 5
15 1 2 3 4 5 4 6 6 6
16 1 2 3 4 5 4 6 6 6
17 1 1 3 4 5 4 6 6 6
18 1 1 3 4 5 4 6 6 6
19 1 1 3 4 5 4 6 6 6
20 1 1 3 4 5 4 6 6 6
21 1 1 3 4 5 4 6 6 6
22 1 1 3 4 5 4 6 6 6
23 1 1 3 4 5 4 6 6 6
24 1 1 3 4 5 4 6 6 6
25 1 1 3 4 5 5 6 7 6
26 1 1 3 4 5 5 6 7 6
27 1 1 3 4 5 5 6 7 7
28 1 1 3 4 5 5 6 7 7
29 1 1 3 4 5 5 6 7 6
30 1 1 3 4 5 5 6 7 7
31 1 1 3 4 5 5 7 7 7
32 1 1 3 4 5 5 7 7 7
33 1 1 3 4 5 5 7 7 7
34 1 1 3 4 5 5 7 7 7
35 1 1 3 4 5 5 7 7 7
36 1 1 3 4 5 5 7 7 7
37 1 1 3 4 5 5 7 7 7
38 1 1 3 4 5 5 7 7 7
39 1 2 2 3 4 6 5 4 8

Table 4.4: Results of the distribution clustering for ε = 0.25m and a square-tiled grid.

be employed for the distance calculations in the linear space. For the choice of

the initial centroids, we calculate both the mean average μ′ over all distributions’

means μj , 1 ≤ j ≤ 40—which are all at least very close to the logical grid center,

anyway—and the standard deviations σj for each distribution. Then, the interval

[min(σ1, . . . , σ40),max(σ1, . . . , σ40)] is segmented evenly from the smallest to the largest

standard deviation into k − 1 subintervals, thereby retrieving k standard deviations

〈σ′
i〉1≤i≤k. Finally, k distributions are constructed by calculating Normal distributions

with the mean average μ′ and the standard deviations 〈σ′〉, as described on pages 74f.

We use these distributions as initial centroids.

We ran the algorithm with 1000 iterations and for 1 < k ≤ 10. Exemplary repre-

sentative results of the clustering for ε = 0.25m and a square-tiled grid are shown in

Table 4.4; the created clusters are highlighted in color. It clearly shows that for i = 0

80

4.5 Exemplary Implementation of Information Measurement

Figure 4.7: Acceleration Context Model: sectors around the logical grid center.

and i = 39, i. e., for the classes covering halts and the highest velocities, respectively,

separate clusters were identified. Also, for k > 2, there is an obvious cluster thresh-

old around i = 15. Based on this results, we decided on using the velocity clusters

found with k = 4; we merely made two minor adaptations, after we had reviewed

the distributions of the resulting clusters: first, we created 4 independent clusters and

did not use one cluster for two velocity ranges, as the clustering algorithm indicated.

Second, we started the third cluster at i = 15, because this threshold dominated in

the clustering results over all values of k. So, we trained probability distributions for

the velocity intervals [0; 1), [1; 15), [15, 39), and [39,∞) (in m/s).

The Acceleration Vector Context Model: cntxtA The last contextual distribution

that we consider does not regard scalar velocities, but acceleration vectors. Technically,

the acceleration vectors can be visualized by drawing a vector from the logical grid

center (the non-accelerated position estimation) to the actual position measurement

within the grid. So, the space around the logical grid center is divided into five sectors,

as shown in Figure 4.7. Sector I catches all position measurements with a small derived

acceleration, the diameter depends on a scalar threshold, which is set to 0.3m/s2 . For

each of the sectors, we maintain a trained probability distribution. Once a position

measurement is mapped onto the grid, the distribution into the sector of which the

measurement has been mapped, is used for PX .

Adaptive Distributions

In contrast to predefined distributions, we also regard distributions that evolve over

time. Such adaptive distribution models start with an initial setup, e. g., a uniform

distribution, and evaluate the observed symbol occurrences to converge towards the

actual distribution. Of course, more realistic distributions can also be used as initial

setups. Common adaptive distribution models regard n-gram relations in the symbol

stream, e. g., constructing a unigram probability distribution in the simplest case.

81

Chapter 4 Information Theoretic Approaches

The advantage of this approach is that the resulting distribution is an optimal match

for all previously, and at best upcoming symbol occurrences. Of course, this will only

pay off for sufficiently long trajectories, i. e., if the ratio of trajectory length to the

alphabet size satisfies a particular threshold value; otherwise, the learned distribution

reaches a representative version too lately. Then, too few position measurements in

the trajectory can benefit from the learned distribution to compensate for the learning

phase, during which the distribution may be far from being an acceptable fit.

4.5.4 Model Implementation: An Arithmetic Coder

The estimation results presented in Table 4.3 encouraged us to build an arithmetic

coder [Abr60] based on our formal model, since compression rates of approximately

90% could be expected, even at tight accuracy bounds. For the implementation, we

used the arithmetic coding project of Bob Carpenter [Car02], version 1.1 as a basis.

The only modification to our formal model lies in the handling of outlier measure-

ments: instead of adding an extra symbol to AX , the encoding stops upon outlier

measurements. This is inevitable, because the mapping of a discretized innovation to

a symbol needs to be bijective; this is not fulfilled in case of outliers. Once an inno-

vation can not be mapped to a grid node, it is not possible to retrieve a valid grid

node in the decoding process. Therefore, in this case the symbol stream is terminated

with the End Of Stream symbol, the probability distribution PX and the estimator

are reset and a new encoding begins. This is an undesirable situation, because at least

two measured positions need to be transmitted uncoded; so, even with the mentioned

guard zone, using a robust estimator is crucial for the compression performance.

4.6 Evaluation

In the previous section, we presented an exemplary implementation for the measure-

ment of the information content for vehicular movement trajectories and also described

the realization of an arithmetic coder based on our model. In doing so, we proposed

many options for the movement estimator, the alphabet setup, i. e., the grid node

arrangement and grid frame shape, and the probability distribution. In this section,

we evaluate the model with regard to all these options. We analyze the movement

estimator to begin with and find the best one to use in our context. We then focus

on the alphabet and examine the influences of the different parameters discussed in

Subsection 4.5.2. Finally, we turn on the probability distributions and their impact on

the compression performance of the arithmetic coder.

82

4.6 Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -8 -6 -4 -2 0 2 4 6 8 10

cd
f

movement estimation error [m]

w/o acc
acc exp

acc

(a) ε = 0.00m

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -8 -6 -4 -2 0 2 4 6 8 10

cd
f

movement estimation error [m]

w/o acc
acc exp

acc

(b) ε = 0.50m

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -8 -6 -4 -2 0 2 4 6 8 10

cd
f

movement estimation error [m]

w/o acc
acc exp

acc

(c) ε = 1.00m

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -8 -6 -4 -2 0 2 4 6 8 10

cd
f

movement estimation error [m]

w/o acc
acc exp

acc

(d) ε = 2.00m

Figure 4.8: Movement estimation error analysis for different movement models (high

velocity trajectory set Shigh
2).

4.6.1 Movement Estimation and Discretization

Since it is essential to use an accurate and robust movement model, we performed

movement estimations with the non-accelerated and accelerated movement estimators.

In particular, we were interested in the influence of the discretization and therefore

regard the movement estimation inaccuracies for varying discretization steps; the re-

sults are shown as cumulative distribution functions in Figure 4.8. A negative error

occurs, when the movement estimation overshoots the actual measurement (i. e., the

longitudinal error is negative, as viewed from the estimation). Without discretization

(i. e., ε = 0), the absolute error is below 2m in 90-95% of the cases, with slightly worse

results for the low velocity topologies, which we left out due to the strong similarity.

With increasing discretization tolerance ε, the grid gets coarser and the discretized

measurements become slightly distorted. This distortion lowers the quality of the es-

timator’s observation vector and has a direct influence on the information content and

the compression performance.

83

Chapter 4 Information Theoretic Approaches

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -8 -6 -4 -2 0 2 4 6 8 10

cd
f

movement estimation error [m]

hex
tri
sq

(a) ε = 0.05m

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -8 -6 -4 -2 0 2 4 6 8 10

cd
f

movement estimation error [m]

hex
tri
sq

(b) ε = 0.50m

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -8 -6 -4 -2 0 2 4 6 8 10

cd
f

movement estimation error [m]

hex
tri
sq

(c) ε = 1.00m

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -8 -6 -4 -2 0 2 4 6 8 10

cd
f

movement estimation error [m]

hex
tri
sq

(d) ε = 2.00m

Figure 4.9: Movement estimation error analysis for non-acc. movements and different
grid node alignments (high velocity trajectory set Shigh

2).

Though the distributions are basically point symmetric, there is a minor bias for all

accuracy bounds and estimators, so the inflection points (for ε = 0.0) and saddle points

(for ε > 0.0) of all cumulative distributions functions lie above 0.5. This indicates that

the movement estimators tend to overshoot, causing the negative estimation errors to

prevail.

Unexpectedly, the non-accelerated estimator (w/o acc) provides more accurate re-

sults than the accelerated variant (acc). The latter is more impaired by the discretiza-

tion, because it derives acceleration values from distorted velocities. To reduce this

effect, we amended the accelerated estimator by smoothing the computed acceleration

values exponentially (acc exp). According to (4.3), this new estimator can be described

as

θacc = mM−1 + �vM−1Δ t+
�a′M−1

2
Δ t2 ,

�a′M−1 = w · �a′M−2 + (1− w) · �aM−1 .

(4.4)

84

4.6 Evaluation

For our experiments, we used w = 0.5. This improves the situation, as the cdf graph is

now denser around an error of 0m, but does not provide the same robustness as the non-

accelerated estimator (cf. Figure 4.8). The movement estimator is a key component

within the model and in all of our tests, the worse results for the acceleration-supported

estimators directly resulted in lower compression ratios. We therefore only regard the

non-accelerated model in the remainder of our evaluation.

The discretization grid node alignment also influences the performance of the move-

ment estimator as discussed in Subsection 4.5.2. Figure 4.9 shows the movement

estimation error analysis for the non-accelerated movement estimator and the three

discussed tessellation schemes with triangular (tri), square (sq), and hexagonal (hex)

grid tessellation. The estimation results are very close to each other, but the differences

are still clearly to be seen: the regular triangular tessellation provides the highest node

density and thus, the movement estimations are better than for the other two tessel-

lations. For the extreme, the hexagonal tessellation results in the worst estimation

accuracy, because of the lowest grid node density.

4.6.2 Gaussian Probability Distribution

To evaluate the goodness of fit for the assumed Gaussian probability distribution,

we compare it to the actual cumulative distribution functions for both topologies

over the respective discrete alphabet in Figure 4.10. To this end, we serialized the

two-dimensional distributions over the grid to one-dimensional distributions over the

ordered symbol set to gain a better overview: we concatenated the symbols from cross-

sections along the lateral grid axis, causing stepped curves, where each “step” refers

to one such cross-section. The cdf graphs for the normal distribution resemble the

empirically determined ones, though the distributions for both the low and high ve-

locity topologies are denser, especially for lower values of ε. This basically confirms

our assumption that the Gaussian distribution is a reasonable approximation for PX ,

though it is also quite obvious that there is room for improvements. We will evaluate

the impact of the other distribution models at the end of the next subsection.

4.6.3 Compression

Basic Configuration and Benchmarks

At first, we evaluate the compression performance of our proposed arithmetic coding

scheme in a basic configuration; that is, we use a rectangular shaped discretization

grid with a grid node alignment following the square grid cell tessellation. We run

the encodings with the uniform and a posteriori distributions to retrieve lower and

85

Chapter 4 Information Theoretic Approaches

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000

cd
f

symbol id

high vel.
low vel.

gaussian

(a) ε = 0.05m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

cd
f

symbol id

high vel.
low vel.

gaussian

(b) ε = 0.50m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

cd
f

symbol id

high vel.
low vel.

gaussian

(c) ε = 1.00m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

cd
f

symbol id

high vel.
low vel.

gaussian

(d) ε = 2.00m

Figure 4.10: Cumulative distribution analysis of the probability distribution PX .

upper bounds for the compression performance, respectively and use the normal dis-

tribution as a more realistic candidate for PX . With this setup, we compress the

vehicular trajectories with 250 elements each that we already used for the evaluation

of the geometric compression algorithms. In doing so, we can directly evaluate the

compression performances of the arithmetic coder, using the optimal linear and the

context-loosened spline approaches from Chapter 3 as benchmarks.

Figure 4.11 shows the compression results for this basic arithmetic setup and for

the geometric benchmark results against the discretization threshold ε. For both the

low and high velocity trajectory sets, the same ranking of compression techniques is

visible: the optimal line simplification algorithm performs worst, being outperformed

by the cubic spline approach, as we have already seen in Figure 3.8. The arithmetic

coding approach performs best, especially for very tight accuracy bounds of ε < 1.0m.

We can see that even if a uniform probability distribution is used for the probability

distribution PX , the arithmetic coding achieves better compression ratios than the

spline-based approach. For the normal distribution, the compression ratios improve

significantly once more, with respect to the uniform distribution. The results for

86

4.6 Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
m

pr
es

si
on

 r
at

io
 σ

error tolerance ε [m]

post-factum
gaussian

uniform
Splines -c

Linear Optimum

(a) Low velocity trajectories (Slow
1).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
m

pr
es

si
on

 r
at

io
 σ

error tolerance ε [m]

post-factum
gaussian

uniform
Splines -c

Linear Optimum

(b) High velocity trajectories (Shigh
1).

Figure 4.11: Basic compression ratios of geometric benchmark algorithms.

using a posteriori knowledge are clearly best, especially for ε < 0.5m; thereafter, they

are almost reached by the compression ratios with the normal distribution assumption.

This underlines our findings from the probability distribution analysis that for growing

ε, the impact of exactly meeting the probability distribution decreases. Because the

basic arithmetic coding configuration already outperforms the current state-of-the-

art compression schemes, we will use it as benchmark for all enhanced code model

configurations in the remainder of this chapter.

In general, the compression ratio graphs are very close to each other, so the following

figures only show the σ interval [0.6; 1.0]. The figures also show only the results for

the high velocity trajectories. This is because all effects that we could find occurred

87

Chapter 4 Information Theoretic Approaches

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
m

pr
es

si
on

 r
at

io
 σ

error tolerance ε [m]

post-factum
gaussian

uniform

Figure 4.12: Basic compression ratios for uncut high velocity trajectory set (Shigh
2).

 1

 10

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

gr
id

 n
od

e
co

un
t

error threshold ε [m]

lateral
longitudinal

Figure 4.13: Grid node counts over increasing accuracy threshold.

equally for both the low and high velocity settings; the only difference is that for

our complete evaluation, the compression results for the low velocity trajectories were

slightly worse, by a difference of approximately 1.0 to 1.5 percent. For this reason, we

only regard the high velocity trajectory set in our evaluation.

Figure 4.12 shows the compression results for uncut trajectories. The results do not

differ considerably, because the input stream length is less relevant for the arithmetic

coding, in case a static probability distribution is used. In contrast to that, we have

seen in [KKKM11] that the trajectory size does in fact influence the compression

performance of geometric schemes.

An interesting effect is the clearly visible drops of the compression ratios for higher

ε that occur for all distributions and trajectory classes alike. These drops originate

from the discretization grid that is getting coarser for growing ε. As we have seen

in Figure 4.8, this reduces the quality of the movement estimations, which in turn

causes larger and noisier predictions. The basic cause can be seen in Figure 4.13

88

4.6 Evaluation

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
m

pr
es

si
on

 r
at

io
 σ

error tolerance ε [m]

tri
sq

hex

Figure 4.14: Compression ratios for different grid node alignments (high velocity tra-

jectory set Shigh
2).

that depicts the number of discretization grid cells per dimension over an increasing

accuracy threshold.

Impact of Discretization Grid Nodes Alignments

As we have seen in Subsection 4.6.1, the alignment of the grid nodes has a direct effect

on the movement estimator in making the estimations less accurate. However, the

node density is affected as well, which could balance this effect, so that good compres-

sion results could nevertheless be achieved. Therefore, we evaluated the compression

performance for the three tessellation schemes using the uncut low and high velocity

trajectories, the results are depicted in Figure 4.14.

While the compression ratios are again slightly better for the high velocity trajec-

tories, the compression result ranking is the same for both settings: the hexagonal

grid node alignment performs slightly best for ε ≤ 0.6 and then drops below the per-

formance curve for the square tessellation. This shows that the low node density

may cause inaccurate movement estimations, but the lower entropy resulting from

the smaller alphabet outbalances this effect. For ε > 1.0, the discretization inaccura-

cies are too immense to be compensated by the node density and as a consequence,

the compression ratio drops and is worse than for the other two tessellation schemes.

Though the triangular grid node alignment allows for better movement estimations,

the node density with this scheme is twice as high as for its hexagonal counterpart.

This results in the worst compression ratios for ε < 1.0, and the performance of the

square gridding can only be exceeded for ε > 1.9. Thus, the square tessellation turns

89

Chapter 4 Information Theoretic Approaches

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
m

pr
es

si
on

 r
at

io
 σ

error tolerance ε [m]

p=∞

p=4.0
p=2.0
p=1.0

Figure 4.15: Compression ratios for different grid frames (high velocity trajectory set

Shigh
2).

out to be a very good choice overall, as it is a good trade-off between the alphabet size

and the estimation accuracy.

Based on this impact of the discretization node alignments, one can not simply

state a generally optimal choice of the discretization node alignments. However, we

prefer the square grid tessellation for practical implementations due to its algorithmic

simplicity and its good overall performance.

Impact of Discretization Grid Frame Shape

At the end of Subsection 4.5.2, we presented a way to determine a more realistic

shape of the discretization grid by using p-vector norms. According to our param-

eter selection, Figure 4.15 depicts the compression ratios for the grid vector norm

frame parameters p ∈ {1.0, 2.0, 4.0,∞}. It can clearly be seen that the compression

performance improves with increasing p, i. e., with a grid frame more similar to the

rectangular shape of the basic configuration. Since a larger p causes a larger alphabet,

this result is a good indicator that a more tolerant choice of the grid frame (and thus

the alphabet) size is rather beneficial than disadvantageous. This is an interesting

result, because it confirms our assumption that a higher tolerance for outlier mea-

surements is more important to the overall compression performance than an exact

determination and dimensioning of the code symbol alphabet and that the effects of

an oversize alphabet are outbalanced by a fitting probability distribution.

90

4.6 Evaluation

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
m

pr
es

si
on

 r
at

io
 σ

error tolerance ε [m]

post-factum
trained

gaussian
adaptive
uniform

(a) Absolute results.

 0

 0.25

 0.5

 0.75

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

re
la

tiv
e

co
m

pr
es

si
on

 p
er

fo
rm

an
ce

error tolerance ε [m]

trained
gaussian
adaptive

(b) Relative results.

Figure 4.16: Compression ratios for non-contextual probability distributions.

Impact of Probability Distributions

In this section we will analyze the compression performance of the trained, adaptive,

and contextual distributions as described above. We trained each distribution with

the training set Strain
3 as described in Section 2.2 and used these trained distributions

for the arithmetic coding for all traces in the test set Stest
3 .

Figure 4.16a shows the compression results of the non-contextual, i. e., the trained

and the adaptive, probability distributions compared to the ones obtained with the

basic configuration. At first sight, the compression results seem to be quite close to

each other, but it can be seen that the trained distribution yields a better compression

than the normal distribution and that its result graph quickly converges against the

91

Chapter 4 Information Theoretic Approaches

upper bound set up by the post-factum distribution results. This shows that the train-

ing of distributions in fact brings a benefit over the assumption that the innovations

follow the normal distribution. The adaptive distribution initially performs worse,

which is due to the size of the alphabet for small values of ε. Naturally, it takes long

trajectories to learn the correct distribution for large alphabets and for ε < 1.3, the

trajectories are not long enough (or the alphabet is too large) to bring a benefit over

the Gaussian distribution. After that, the alphabet is small enough so the distribution

can be adapted fast enough and the resulting compression ratio exceeds the ration ob-

tained with the normal distribution. Figure 4.16b shows the compression performance

in relation to the interval spanned by the lower and upper bounds, given by the a

posteriori and uniform distribution results, respectively: in this figure, a zero value

means that a compression equals the achievement with a uniform distribution and a

value of one means that a compression ratio as good as with a posteriori knowledge

could be achieved. In this scaling, the effects described above can be seen more clearly.

The compression results for the contextual distributions can be seen in Figure 4.17,

again both absolute and relative to the upper and lower compression bounds. For the

relative analysis, we have focused on the ratios from 0.75 to 1.25 to see the effects

more clearly. We directly see that all contextual distributions yield better compression

results than the normal and the simple trained distribution. Though no result clearly

stands out for ε < 1.0, the acceleration vector context model (cntxtA) achieves the best

compression rates for ε > 0.8. It even exceeds the performance of the compression with

post-factum distributions. This is possible, because of the multitude of distributions

that are selected depending on the current movement class and that are optimized

views on the symbol distributions. Of course, if an a posteriori distribution with

acceleration vector classes would have been used, this could not have been exceeded.

The figure also shows the compression performances of the contextual distributions

based on velocity categorizations and allows for a clear statement: the smaller the

velocity intervals, the better the compression ratios that can be achieved. In the group

of velocity-based contextual distributions, the distribution with 1m/s steps that we

used for the clustering performs best, the distribution with 3m/s steps follows in the

ranking. Both of these distribution models exceed the performance achieved with the

post-factum distribution. Finally, there is hardly a compression ratio difference for

the clustered distribution and the one that merely differentiates between movements

and halts. For ε > 1.3, these are only minimally better than the results of the trained

distribution.

From these results, we learn how to setup the probability distributions for infor-

mation determination and arithmetic coding: first, we see that assuming a normal

92

4.6 Evaluation

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
m

pr
es

si
on

 r
at

io
 σ

error tolerance ε [m]

post-factum
aclasses

vclasses 1
vclasses 3

vclusters
movement

trained
gaussian

uniform

(a) Absolute results.

 0.75

 1

 1.25

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

re
la

tiv
e

co
m

pr
es

si
on

 p
er

fo
rm

an
ce

error tolerance ε [m]

aclasses
vclasses 1
vclasses 3

vclusters
movement

trained
gaussian

(b) Relative results.

Figure 4.17: Compression ratios for contextual probability distributions.

distribution of measurement innovations actually provides useful results, if no train-

ing set is given. Second, unless small alphabets are used, simple adaptive algorithms

do not provide as much of a benefit for the compression ratio as well-trained static

distributions. It simply requires very long trajectories to establish a representative

distribution, and such lengths are rarely given. Third, contextual distribution models

are the best means to be applied. In particular, trained distributions based on the

acceleration vector of the moving vehicles provide the most promising results, and in

case that velocity contexts should be employed, every aggregation of velocity classes

significantly reduces the compression performance of the used coder.

93

Chapter 4 Information Theoretic Approaches

4.7 Conclusion

In the previous chapter, we analyzed several geometric trajectory compression algo-

rithms with respect to the compression ratios they can achieve. We found out that

nonlinear compression models are able to achieve better compression ratios than state-

of-the art approaches that use linear simplification. However, we could not make any

statements on the quality of the regarded algorithms with respect to the best possible

compression ratio any algorithm could possibly achieve.

In general, the upper bound for the compression ratio for some data is given by

the information that is contained within the data; one can not reduce the data to

less than the size of the optimal encoding of this information, without losing parts

of the information. This concept of an information content was introduced in Claude

Shannon’s information theory in [Sha48] and is the foundation of the coding theory.

We make use of this theoretical background to view the compression of trajectories

from another perspective.

In this chapter, we focused on the determination of the actual information content

of trajectories and the expected information content of object movements with respect

to a prediction model. We introduced a formal model as a fundamental framework for

measuring the information content of movement data and described the components

that it consists of, namely the movement estimator, the symbol alphabet and the

probability distribution. We pointed out the influences of the respective components

on the whole system and used these findings to design practical implementations of the

components based on this argumentation. In particular, we proposed three different

movement estimators and discussed the setup of a discretization grid that is necessary

to guarantee a finite and countable symbol alphabet. Finally, we took a close look at

static, adaptive and contextual probability distributions that may be used to fit the

actual symbol distribution of a regarded trajectory as good as possible. As a result,

we assembled an implementation suite of the presented components that can be used

in real-world setting for trajectory information content measurements.

Using these findings, we were able to specify an arithmetic coding and compres-

sion scheme. We demonstrated the practical applicability of our ideas by using them

to compress vehicular trajectories and applied them to a large number of heteroge-

neous real-world vehicular movement traces. We performed an in-depth evaluation

of the whole system and collected a number of interesting findings: first, the results

from our evaluation show that our approach is superior to the best existing and state-

of-the-art compression scheme for vehicular trajectories that were discussed in the

previous chapter. Second, it could be seen that for movement estimation based on

94

4.7 Conclusion

position measurement traces, a simple linear movement extrapolation works best, be-

cause the movement parameters that are more detailed than the velocity vector suffer

intensively from the original positioning noise. This result fits the findings from the

clothoid sketching by means of curvature analysis that we discussed in Section 3.4.

Third, a basic square-tessellated discretization grid yields the most stable compression

results and, due to noisy position measurements, an adaption of the grid frame to

a realistic shape is rather disadvantageous than helpful. Finally, we found out that

though simple probability distributions such as the normal distribution result in very

good compression ratios, trained distributions that regard a movement context, pro-

vide the best compression performances. In particular, distribution schemes regarding

movement vectors worked best, even better than models working on velocity intervals.

With the findings from this chapter, we answer the question for an upper compression

bound or at least provide an approximation for this bound. We realized that it is very

hard to set up an accurate, absolute upper bound, because such would always depend

on many factors, e. g., the positioning noise, the individual driving behavior in case of

vehicular trajectories. Although, we found out that it can be described using prediction

and probability models, instead, that need to be carefully adjusted to the use case.

95

5
Lossless Trajectory Compression

5.1 Introduction

The contributions on trajectory compressions that we have discussed in the previous

chapters only regard lossy compression techniques with a configurable error threshold ε.

While the geometric compression algorithms are able to compress the trajectories in a

lossless manner, i. e., ε = 0.0, this is not possible for the arithmetic coding, because this

would imply an infinitely large symbol alphabet due to a discretization node distance

of 0.0. However, we have also seen that for ε = 0.0, the geometric algorithms do not

perform very well, as the average compression ratios do not exceed 6%.

An alternative to the presented algorithms are conventional compression techniques

that have been proposed for text or byte string data. In general, those algorithms

reduce the redundancy of the data by efficiently encoding repeating byte patterns in

the input data. The trajectory data that we have regarded so far consists of geodetic

coordination pairs that are encoded as floating point numbers, for instance following

the IEEE 754 standard [iee08]. With such encodings, however, numbers with small

differences are usually not represented by similar byte sequence, so that the direct use

of conventional compression techniques is unlikely to be beneficial.

The next section contains an overview of previous work on lossless trajectory com-

pression. Next to those contributions, conventional compression algorithms can also be

considered as promising means to implement lossless trajectory encoding. Therefore,

we then briefly present and discuss a selection of such algorithms and evaluate their

compression performance, when applied to raw, i. e., non-preprocessed and binary tra-

jectory data. However, the results from this evaluation are far from being satisfying.

97

Chapter 5 Lossless Trajectory Compression

For this reason, in the subsequent section, we will describe a way to prepare trajecto-

ries and encode them by following a trajectory byte encoding scheme, the output of

which is better suitable to the conventional compression approaches. Subsequently, we

evaluate the achieved compression performances for the output of our byte coder and

use the real-world trajectory test set Stest
3 for a direct comparability.

5.2 Related Work

In contrast to lossy trajectory compression, comparably little work has been published

on lossless trajectory data compression. In [LHB06], the authors discuss the compres-

sion of ASCII-coded NMEA-0183 position measurement log files [Ass95] on the basis

of separate records. In doing so, they distinguish between stationary and movement

estimations: if the single elements of a sequence of position measurements do not differ

significantly from a moving average value that is calculated over an initial set of po-

sitions, all following position measurements are discarded. If, on the other hand, the

positions differ, the data sentences are encoded using the direct binary representations

and compressed with conventional algorithms. However, since position measurements

are actually dropped, this approach implements merely a quasi-lossless compression.

Also, neither the binary encoding nor the used compression algorithms are explained,

which makes the result hard to be compared to ours.

For high-precision and long term position measurements, the Receiver Independent

Exchange Format (RINEX) [GE09] is often used as a logging format. With this format

no actual positions, but raw GNSS signal information, i. e., information about the signal

phase, the pseudorange1 and the doppler shift, are encoded. Storing raw information

enables researchers to derive the measurement device’s position post-factum, using

different techniques, for instance for evaluation purposes of new developed algorithms.

Due to the immense volume of data, the observational data files containing the raw data

easily become very large and need to be compressed. In [VMR+10], the authors present

an approach to compress the raw RINEX data using different prediction models and

the FAPEC entropy encoder [PV09] for the observables and a conventional dictionary

compressor for the composition of observable byte code and the text-formatted headers.

Although it appears meaningful to use a tailored preprocessor, the approach presented

in this contribution is not applicable to the trajectory data we are handling.

Finally, in [RHS09], Reinhardt et al. propose a compression layer for wireless sensor

network nodes that implements a stream encoding for network packets that contain

1A pseudorange is a systemic error for the distance estimation between a GNSS receiver and all
regarded satellites due to an offset of the receiver’s clock to the synchronized clocks of the satellites.

98

5.3 Conventional Lossless Compression Algorithms

Figure 5.1: A selection of LZ family compression algorithms.

sensor measurements, such as timestamps, positions, and temperature. The authors

assume that measurements may change slowly or repeatedly take similar values over

time and thus packets may differ only marginally from previously occurred packets.

Therefore, they calculate the difference between a packet and the most similar packet

in a history table and encode this difference, assuming that the resulting byte stream

that can be compressed easily due to a presumably large number of contained zero

bytes. As a result, the authors find that significant compressions can be achieved even

for simple difference functions being used. We adapt the idea of preprocessing the data

to acquire a large number of equal bytes, but instead of working with simple difference

functions, we propose a data-specific encoding that makes use of difference vectors of

first and second degree to benefit from presumably slowly and continuously changing

position measurements.

5.3 Conventional Lossless Compression Algorithms

5.3.1 LZ Algorithm Family

The LZ algorithm family compasses the group of compression algorithms that are

derivatives of the lossless compression algorithm designed by Abraham Lempel and

Jacob Ziv. All of these algorithms use some sort of dictionary and aim at compressing

a symbol string by replacing repeating symbol sequences in the string with pointers to

the dictionary entry that already holds the respective, previously inserted sequence.

Because of this, algorithms from the LZ family are also said to implement dictionary

or substitution compression. In the following, we will go through the LZ algorithm

family in the order of derivation that is also visualized in Figure 5.1.

99

Chapter 5 Lossless Trajectory Compression

LZ 77

The LZ77 algorithm, as published in [ZL77], implements the dictionary in the form

of a sliding window using a fix-sized buffer. This buffer is split into a prefix part in

the front and an extension part in the back. Initially, the symbol string is shifted

into the extension part and from then on, the algorithm looks in each iteration for

the longest string subsequence in the prefix part that matches the first symbols at the

head of the extension part. Once such a subsequence with length li − 1 and starting

at position pi is found in the i-th iteration, the algorithm produces the compression

output (pi − 1, l1 − 1, ci), where ci is the first symbol in the extension part that could

not be matched. The sliding window is then shifted by li symbols, i. e., the first li

symbols from the prefix part are removed and li further symbols are shifted into the

extension part, and the encoding starts anew. The compression ends, once the last

symbol is shifted out of the extension part.

LZ 78

As an extension of LZ77, the LZ78 [ZL78] algorithm uses a dedicated dictionary instead

of the temporary memory based on the sliding window. Basically, the LZ78 algorithm

also looks in each step for the longest dictionary entry that is a prefix of the current

content of the input buffer. It then constructs a tuple (ei, ci), where ei is a reference

to the found dictionary entry and ci is the first symbol that extends ei in the buffer,

as we know it from the LZ77 algorithm. The algorithm then appends this tuple to the

encoding result and also inserts it into the dictionary as a new entry. This way, the

dictionary that is initially empty, is filled on the fly during the encoding or decoding.

Technically, the LZ78 dictionary can be understood as a tree-like structure, where

each entry is also referable to with an index: the first (root) entry 1:(0, λ) contains an

invalid reference and the empty symbol λ with length 0. Further entries then create

reference chains, at the end of which the root entry is always referred to. The input

symbol string “aababcadade”, for example, would be processed in the steps “a–ab–

abc–ad–ade” and result in the dictionary shown in Figure 5.2.

LZW

In [Wel84], the author presents the LZW algorithm, an extension to LZ78, along with

implementation details. As main difference, LZW works with a dictionary that is not

initially empty, but is filled with all unigram symbol instances from the input alphabet.

For a byte coder, this would mean that the dictionary would initially be filled with the

values 0 to 255. This reduces the overhead in the initialization phase that would occur

100

5.3 Conventional Lossless Compression Algorithms

(a) Tree structure.

index entry

1 (0, λ)

2 (1, a)

3 (2, b)

4 (3, c)

5 (2, d)

6 (5, e)

(b) Table structure.

Figure 5.2: LZ78 dictionary example for the symbol string “aababcadade”.

for the LZ78 algorithm. The LZW algorithm is implemented by the UNIX software

compress in the ncompress project [Fry].

DEFLATE

The DEFLATE algorithm applies a Huffman encoding (cf. Subsection 4.3.2) to the

results of a modified LZ77 encoding. In doing so, characters and symbol strings

that may occur often in the LZ77 code are further compressed with a Huffman en-

tropy encoder. The DEFLATE algorithm is implemented in the gzip compression

program [GA, Deu96].

LZMA/LZMA2

Another algorithm that uses an entropy coder to further compress the output of a

dictionary compression is LZMA [Pav]. Like the DEFLATE algorithm, it uses the

LZ77 coder and further compresses the output of which using a range encoder (cf.

Subsection 4.3.4). The range encoder employs an adaptive probability model for the

input symbol alphabet that is controlled by an estimator, using a Markov chain.

The second version of LZMA, LZMA2, introduces the possibility to split the input

sequence in several subsequences that are then encoded separately. While this allows

for a parallel subsequence encoding to enhance the runtime performance, a segmen-

tation of the input stream may also be beneficial for the compression ratio: LZMA2

supports segments of uncompressed data that would otherwise be inflated in size if

being encoded with the original version of LZMA, due to the encoding overhead.

A more recent LZMA implementation is provided in the xz utils collection [Col].

In all of our tests, xz achieved significantly better compression results, although both

101

Chapter 5 Lossless Trajectory Compression

programs used the same amount of memory for the dictionary. The implementation

difference is not clear to us, but we use the xz software for our evaluation.

5.3.2 bzip2

The bzip2 compression program [Sewa] employs an algorithm that consists of nine

steps—we will only regard the most important steps2: first, the code is sorted accord-

ing to the Burrows-Wheeler Transformation (BWT) [BW94] that can be reverted for

decoding without any overhead. The purpose of a BWT is to reorder the symbols in

such a way that afterwards, there are multiple sequences of repetitive symbols in the

string, which is beneficial for later compression steps. The third step already profits

from this transformation, as the symbol string is now encoded with the Move-To-Front

(MTF) algorithm [BSTW86]. In its original version, MTF reads a text and inserts new

words at the end of a list, if they are not contained in the list already. The algorithm

then encodes the words with the index of the list entry and moves the entry to the

front, so that repeating words will have especially low indexes. Also, words are encoded

only once in their original form, all following occurrences are encoded with integer list

indexes. Instead of using words, the bzip2 algorithm applies MTF on the basis of

symbols. If the assumption holds that there is a set—which of course may vary over

time—of continuously reoccurring symbols, these will be encoded by a small set of

indexes, with no regard of the actual symbol values. Obviously, this would decrease

the entropy of the resulting code string. After another Run Length Encoding (RLE)

phase, the code string is compressed using a Huffman code.

5.3.3 Arithmetic Coding with Prediction by Partial Matching (PPM)

As last compression scheme, we will use an arithmetic coder (cf. Subsection 4.3.3).

For the probability model, we will use the Prediction by Partial Matching (PPM)

model [CW84] that adapts with every read symbol from the input stream. The PPM

model regards conditional occurrence probabilities of symbol n-grams (i. e., symbol

chains of size n) and always tries to encode as long symbol sequences as possible. To

this end, the PPM model is initialized with a parameter N (PPM-N) that determines

the maximum value for n. The model then maintains N tables, one for each value of

n, in which the n-gram frequencies are recorded; let us denote the particular table for

n-grams as Tn. Then, if a symbol is read, the PPM model looks up the frequency f

of the n-gram that consists of the last N read symbols (in order) in table TN . If the

2We skip the actual first step, namely the preparation with a Run Length Encoding, because the
author of bzip2 states on the project website that this first step “is entirely irrelevant” [Sewb], as
the Burrows-Wheeler transformation can safely handle repetitions in the symbol string.

102

5.3 Conventional Lossless Compression Algorithms

algorithm does not find a match in TN , it repeats the search for the respective n-gram

that consists of the last N − 1 read symbols in TN−1. This procedure is repeated

until a frequency f can be retrieved. If even T1 does not contain the unigram of the

last read symbol, the frequency if set to f = 1
AX

, with AX referring to the input

symbol unigram alphabet. The tables are then updated and the symbol is passed

to the arithmetic coder, along with the frequency f which is then interpreted as the

symbol’s probability of occurrence.

5.3.4 Compression Performance for Raw Trajectory Data

We apply the compression algorithms described in this section to raw, i. e., non-

preprocessed, binary trajectory data to evaluate the basic compression performance

that can be achieved without any prior data preparation. To this end, we encode the

trajectories from the test set Stest
3 that we already used in Chapter 4 by storing the

first reference timestamp and the measurement interval once and the position mea-

surements as a sequence of absolute value pairs. As floating point representations may

be disadvantageous for the compression, we use two versions for this simple byte code,

specifically a floating point and a fixed point raw trajectory format. For the floating

point format, we use the IEEE 754 format [iee08] with double precision, so eight bytes

are used for each position measurement coordinate. For the fixed point format, we use

four or eight bytes per coordinate, depending on the number of digital places of the

input data. In the following, we refer to the number of bytes used to encode a single

spatial measurement pair as field width, or w0.

The conventional compression algorithms are applied to these simple byte codes and

the achieved compression ratios for each algorithm are analyzed. For the determination

of the compression ratio, we need to regard the length of the decimal parts of the

trajectory coordinates, because these directly influence the minimal necessary field

width to store a coordinate (w0). We refer to the maximum number of decimal places

for the longitudinal and the lateral coordinates as nlon, nlat, respectively. Then, the

optimal field width (in bits) for a trajectory element in an uncompressed reference

binary file is determined by

w0 = �log2 360 · 10nlon�+ �log2 180 · 10nlat� . (5.1)

Given wtime as the number of bytes necessary to encode the reference timestamp and

the measurement frequency, the byte size sref of the reference file holding npos position

103

Chapter 5 Lossless Trajectory Compression

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

LZW
(compress)

DEFLATE
(gzip)

LZMA
(xz)

bzip2 PPM-16

co
m

pr
es

si
on

 r
at

io

compression algorithm/program

fixed point
floating point

Figure 5.3: Compression ratios for all algorithms and raw data.

measurements can be calculated as

sref = wtime +
⌈npos · w0

8

⌉
. (5.2)

Finally, the compression ratio is defined as

σ = 1− sc
sref

, (5.3)

where sc is the size of the coded or compressed file. Thus, a negative compression ratio

indicates that the respective algorithm’s output is larger than the input.

The achieved compression ratios are visualized in Figure 5.3: for each compression

algorithm, the figure shows the results for the fixed and floating point format. Next

to the minimum, average, and maximum, two thin horizontal lines each between the

average and the minimum/maximum mark the 2-, 25-, 75-, and 98-percentile values,

as we know it from the box plots in the previous chapters. As expected, the trajectory

files in the floating point format could not be compressed as well as the trajectories

in the fixed point format. In general, the compression results are unsatisfying, as only

the LZMA algorithm achieved a compression ratio of more than 0.5, which is due to

the LZMA2 extension, with which uncompressible data chunks can be stored with

fewer overhead. Obviously, the conventional algorithms do not provide an appropriate

compression performance for raw binary files; we therefore propose to preprocess the

trajectory data to make it better compressible.

104

5.4 Lossless Byte Encoding

5.4 Lossless Byte Encoding

In the previous section, we discussed the functioning of conventional compression algo-

rithms. The byte coder that we are presenting in the following aims at converting the

input data, namely the spatio-temporal trajectories, into a data format that, applied

to which, the discussed compression algorithms can achieve a good compression ratio.

Although the positions in the trajectories may appear similar in their original decimal

notation, these similarities do not necessarily occur in the respective byte stream rep-

resentation as well. The information from the trajectories thus needs to be encoded

in such a way that its redundancy is reflected by the bytes in the symbol stream. We

therefore implement a delta encoding scheme, similar to the way that we have already

designed the lossy arithmetic coding model in Chapter 4 and that extends the delta

encoding proposed in [RHS09].

5.4.1 Algorithmic Idea

The delta encoded byte stream is very likely to allow for a good compression, because

in general, position measurements for moving objects do not differ very much over

time. Further, these differences are presumably steady by trend, as we still expect

object movements to be smooth and regular to a certain degree. Therefore, we use

difference vectors of first and second degree, in the following referred to as Δ1 and Δ2.

Accordingly, we will denote absolute position data sets by Δ0 vectors.

For the encoding of the trajectory elements, we use a fixed point arithmetic instead

of a floating point arithmetic, for multiple reasons: first, with a floating point arith-

metic, changes of small difference vectors could more easily affect multiple bytes in the

resulting code stream than with a fixed point arithmetic. Second, possible rounding er-

rors with the floating point arithmetic could result in an erroneous coding or decoding

of the byte stream. Additionally, the encoder produces an aligned byte code, i. e., data

are always encoded in full bytes, because all of the presented compression algorithms

work on a byte basis. For the fixed-point arithmetic, we basically multiply each posi-

tion coordinate with a factor 10d, where d is the number of the decimal places that the

encoder should regard. This means that for positioning devices that provide a higher

coordinate resolution, the encoder needs to use more bytes per position encoding. The

same applies for Δ1 and Δ2 vectors, of course: since with fixed point arithmetic, every

number can be understood as an integer and as the difference between two positions

most likely requires significantly less bits to be represented than the original data, it

makes sense to reserve fewer bytes for difference vectors as well. Again, we refer to the

number of bytes used to encode a Δn vector as the n-th degree field width, or wn.

105

Chapter 5 Lossless Trajectory Compression

Figure 5.4: Algorithmic overview for the byte encoder.

Figure 5.4 visualizes the algorithm of the byte coder as a control flow diagram:

the first position is encoded as Δ0 vector and serves as reference point. From the

second read position on, the encoder then attempts to calculate a Δ1 vector as the

difference of the last two calculated Δ0 vectors. If successful, the encoder then tries

from the following position on to calculate first a Δ1 and then the respective Δ2 vector.

Whenever an attempt to calculate a Δn vector fails, the algorithm continues with the

Δn−1 vector. The calculation of a Δn vector fails, if the difference between two Δn−1

vectors requires more bytes to be represented correctly than are reserved for the n-th

degree. The algorithm terminates once no further position can be read. Since every

position in the trajectory is only regarded once, the runtime complexity of the byte

coder is O(n).

The choice of the field widths is not as trivial as it occurs. Of course, the simplest way

for the encoding is to always use the maximum number of bytes that would be necessary

to encode a Δ0 vector. However, this would very probably cause an overweight of 0x00

or 0xFF bytes in the code stream, which again would bias and distort the frequency

distribution for the Huffman coding, for example. This could artificially increase the

byte stream’s entropy and lead to a worse compression ratio. Therefore, we discuss

the choice of appropriate field widths in the following subsection.

3depends on number of decimal places of position measurements
4determined by cumulative distribution analysis

106

5.4 Lossless Byte Encoding

Profile Information Longitude Latitude

1 ∗ 8 8

2

Δ0 4/83 4/83

Δ1 2/4 2/4

Δ2 1/2 1/2

3

Δ0 1/2/4/83 1/2/4/83

Δ1 1/2/4/84 1/2/4/84

Δ2 1/2/4/84 1/2/4/84

Table 5.1: Field width profile overview.

5.4.2 Field Width Profiles

In this subsection, we present and discuss three field width profiles; Table 5.1 shows a

summary of the particular field widths.

Profile 1

The first profile implements the already mentioned, very simple field width policy: the

difference vectors for all degrees are encoded with an 8 byte fixed point arithmetic. In

doing so, a position’s latitude and longitude coordinates can be encoded with up to 17

and 16 decimal places, respectively; such a high positional resolution is unrealistic, as

it corresponds to a global maximal positioning error of approximately 1 · 10−9mm; in

contrast to that, recent DGPS accuracy measurements and improvement estimations

work in the magnitude of centimeters or millimeters, at the best [MMH05]. With

this profile, every difference vector will fit into the respective fields, with no occurring

overflows. Therefore, every trajectory will be encoded with one Δ0 vector for the first

position, one Δ1 vector for the second positions and with Δ2 vectors for the remaining

trajectory elements.

Profile 2

For the second profile, the encoder checks the trajectory for the positioning resolution:

if eight or more decimal places need to be supported, the field width is set to w0 = 8,

otherwise w0 = 4. Following the assumption that the value domain of each difference

degree decreases significantly, we halve the field widths with respect to the previous

degree. Formally, n = 1, 2 : wn = wn−1

2 .

107

Chapter 5 Lossless Trajectory Compression

Profile 3

The third profile determines the field widths on an empirical basis: for the Δ0 vectors,

the encoder scans the trajectory elements and chooses the best field widths for the lon-

gitude and latitude coordinates. For the determination of the field widths w1 and w2,

all difference vectors of first and second degree are calculated and analyzed by means

of their cumulative distribution functions. Then, according to threshold parameters

p1, p2 ∈ R, 0 < p1, p2 ≤ 1, the field widths w1, w2 are set so that the ratio of difference

vectors of the particular degree, that are codable with these settings, does not exceed

the respective threshold value. For example, if p2 = 0.6, then w2 is set to the smallest

number of bytes that are necessary to encode 60% of the observed Δ2 vectors.

Obviously, this profile can not be applied in real-world scenarios, but merely serves

as reference for the individually best-fitting profile. We assume that it will provide the

best compression ratios and we will therefore use it as an upper performance bound.

So, in our evaluation, we can compare the compression ratios for the other profiles

with this.

Profile 4

With the results from the analyses performed with profile 3, we derive the fourth

profile: we analyze the distribution of the field widths used for the third profile and

set w1, w2 for the fourth profile to the field widths that appear most promising for the

approximation of the compression ratios achieved with the third profile. The fourth

profile can therefore be understood as a trained profile that should fit the majority of

all trajectories.

5.4.3 Byte Code Structure

To interpret the byte code correctly, the decoder first reads the coder configuration that

is transmitted in the byte stream header. This contains the number of decimal places

for the longitudinal and lateral coordinate components, the reference time stamp, the

measurement frequency, and finally the coding profile. If profile 3 is employed, the

header also contains a 2-byte field that holds the field widths for all difference vector

stages. Table 5.2 gives a summary over the header fields and the respectively used

byte counts.

The structure of the remaining byte code is straightforward, as it merely contains a

sequence of Δn vectors. We remember that the encoding algorithm follows a greedy

philosophy in always attempting to increase the delta degree once the encoding of a

difference vector of the current degree has been successful. Therefore, the decoder

108

5.4 Lossless Byte Encoding

header field field width in bytes

decimal places for longitudinal coordinate 1

decimal places for longitudinal coordinate 1

reference time stamp 8

measurement frequency 1

coding profile 1

field widths (profile 3 only) 2

Total 14

Table 5.2: Byte code structure: header information.

also knows that it needs to interpret the next bytes in the byte code from the current

position on as a difference vector of the degree that would be used if the accordingly

attempted delta encoding step had been successful. However, there needs to be a way

to signal the decoder that the calculation of a difference vector has actually failed.

Therefore, whenever a range overflow occurs and so the intended difference vector

could not be coded, the encoder inserts a control byte into the byte code stream. This

byte can hold three different values to determine the degree of the next difference

vector.

Using control bytes and thus implementing an irregular and semantic-dependent byte

code structure has a positive effect on the entropy of the code, because in the other

case, each difference vector would be announced by such a control byte. Especially in

cases when an input trajectory is encoded with a majority of difference vectors of a

particular degree, such regularly occurring control bytes would tamper the resulting

code’s entropy, thus causing a worse compression result. The dynamic approach that

we suggest inserts the control bytes only when necessary and therefore minimizes the

control byte overhead. Even in cases, when every difference vector encoding attempt

fails in profiles 2 and 3, the dynamic approach causes one byte less overhead than the

static approach, because the first difference vector degree is always 0 and therefore

does not need to be announced.

The dynamic approach makes the encoding and decoding steps a little more com-

plex, though: Since the decoder needs to identify the control bytes with certainty,

the encoder has to make sure that no ambiguities occur in the byte code. Therefore,

in case that no control byte needs to inserted that would clarify the semantic of the

following bytes, the encoder needs to analyze the first byte of the each delta vector

that is to be encoded. If this first byte equals one of the three reserved control byte

values, it inserts a control byte for the current difference degree before appending the

109

Chapter 5 Lossless Trajectory Compression

Algorithm Linux application Version Parameters

LZW compress [Fry] 4.2.4.3

DEFLATE gzip [GA, Deu96] 1.3.12 -9

LZMA xz [Col] 5.0.0 -9

BWT+MTF+RLE+Huffman bzip2 [Sewa] 1.0.5 -9

arithmetic coding w/ PPM-N arithcode [Car02] 1.1 16

Table 5.3: Lossless compression programs and configurations used for the evaluation.

difference vector. In doing so, the encoder uses the control byte as an escape sequence

to resolve ambiguities. To reduce the necessity of such situations, we need to choose

the reserved control bytes carefully. For instance, small values would be disadvanta-

geous, as we expect many small difference vectors to occur as well. We therefore use

the three largest positive numbers as control byte values.

5.5 Evaluation

5.5.1 Methodology

In this section, we evaluate our proposed byte coding algorithm and the profiles that

we have implemented. Again, we encode the trajectories from the test set Stest
3 for

this purpose. The byte codes are then compressed with the conventional compression

algorithms that we discussed in Section 5.3. We evaluate both the sizes of the com-

pressed byte codes and the steps from the byte encoding process to gain a thorough

understanding and use the overall compression ratio as a general quality measure. We

use the definition of the compression ratio from Statements (5.1), (5.2), and (5.3).

Table 5.3 shows the lossless compression programs and their configurations, as they

are used for this evaluation. We configured the programs gzip, xz, and bzip2 with the

-9 parameter to use the largest-possible amount of memory that the implementations

provide for the compression process. For the PPM encoding, we set N = 16.

5.5.2 Determination of Profile 3 Parameters

First, we turn towards the third profile that we proposed as an upper performance

bound estimate. In this profile, the field widths w1, w2 for the difference vectors of

first and second degree, respectively, are chosen in such a way that a ratio of pn of

all Δn vectors, n = 1, 2 can be stored. We determined the compression rates for all

combinations of 0 < p1, p2 ≤ 1.0 in steps of 0.1, resulting in 100 compression perfor-

110

5.5 Evaluation

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

co
m

pr
es

si
on

 r
at

io

p2 value

bytecode
LZW (compress)
DEFLATE (gzip)

LZMA (xz)
bzip2

PPM-16

Figure 5.5: Compression ratios for profile 3 with p1 = 1.0 and over varying p2.

mances for each used program. Without showing all of these results, we discovered

that p1 = 1.0 led to the best results, i. e., setting w1 in such a way that all difference

vectors of the first degree can be encoded and only the first position measurement

needs to be stored as absolute value.

The determination of the optimal value for p2 is more complex. Figure 5.5 shows

the compression performances of the selected programs for p1 = 1.0 and the complete

range of p2. For each value of p2, the compression result of a particular program is

shown as an average with vertical range bars. At each bar, a particularly shaped point

marks the average, and the topmost and lowermost limitations mark the best and

worst achieved compression results, respectively. At first glance, the ranking of the

compression results within each p2 value group can be seen: beginning with the delta

byte encoder that provides an average compression ratio between 0.54 and 0.66, the

LZW, DEFLATE and LZMA algorithms achieve better results, in this order. bzip2

performs slightly worse than LZMA and finally, the arithmetic coding with the PPM-16

model always achieves the best compression.

The second effect is that the compression performances vary over the range of p2.

Instead of continuously increasing, we see that at some point, they reach an optimum

and decrease from there on. The byte coder reaches this maximum at p2 = 0.6, LZW,

DEFLATE, LZMA, and the arithmetic coder perform best for p2 = 0.7, and bzip2 has

the best compression for p2 = 0.8. As the maximum compression ratios of the byte

coder and bzip2 differ only marginally from their performances with p = 0.7, we select

p1 = 1.0, p2 = 0.7 as the parameter set for the third profile of our byte coder.

111

Chapter 5 Lossless Trajectory Compression

 0

 0.25

 0.5

 0.75

 1

8 4 2 1 8 4 2 1

ra
tio

 Δ1 Δ2

(a) w0 = 4

 0

 0.25

 0.5

 0.75

 1

8 4 2 1 8 4 2 1

ra
tio

 Δ1 Δ2

(b) w0 = 8

Figure 5.6: Overview of difference vector degrees used with profile 3.

5.5.3 Determination of Profile 4 Parameters

Based on the results achieved with profile 3, we can now derive the parameters for

profile 4. As previously stated, we therefore regard the field widths that were used in

the byte coder runs with profile 3. Figure 5.6 shows the usage ratios of the available

field widths for the difference vectors and for w0 = 4 (cf. Figure 5.6a) and w0 = 8

(cf. Figure 5.6b). We see that for both cases, the majority of field widths are cut in

half with each increasing step of the difference vector degree. This is exactly what

we modeled with the field width settings for profile 2, so we can expect that profile 2

already provides a very good approximation of the compression performance achieved

by profile 3. However, for w0 = 4, approximately 15.75% of all trajectories required

higher field widths for the Δ2 vectors. In these cases, profile 2 would need to step down

to the respectively lower difference degree, causing a higher data entropy and a worse

compression ratio. For this reason, we choose to set w2 = w1 = w0
2 . w0 is always set

according to the coordinates’ number of decimal places in a trajectory. We are aware

that, in the case w0 = 8, approximately 7.18% of the trajectories require field widths

of 8 instead of 4 byte for the Δ1 vectors, but we consciously do not increase w1 even

more, because this would over inflate the byte code with zero bytes which would cause

a heavy shift in the symbol frequencies.

5.5.4 Profile Performance Comparison

Figure 5.7 shows the compression ratios of all implemented field width profiles, grouped

by the used compression method. The figure shows the distribution details with the

horizontal marks at the maximum, minimum, and the 2-, 25-, 75-, and 98-percentile

112

5.5 Evaluation

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

byte coder LZW
(compress)

DEFLATE
(gzip)

LZMA
(xz)

bzip2 PPM-16

co
m

pr
es

si
on

 r
at

io

compression algorithm/program

profile 1
profile 2

profile 3 (p1=1.0, p2=0.7)
profile 4

Figure 5.7: Compression ratios for all profiles and algorithms.

values, so it can be read like Figure 5.3. Overall, the compression with the arithmetic

coder featuring the PPM-16 probability model performs best, while the xz utils and

bzip2 provide a very close compression ratio. For every compression method, the av-

erage compression performance increases from the first to the third profile, while the

results for the fourth profile always lie between the ones from the second and third.

Actually, the difference of the fourth to the third profile is almost negligible for the

maximum down to the 25-percentile mark. The 2-percentile marks show recognizable

differences and for the fourth profile (as for the second), there are clearly worse mini-

mum outliers, though. The circumstance that these outliers could not be eliminated is

due to the relatively large amount of Δ1 vectors for w0 = 8, that we saw in Figure 5.6.

This can also be seen in Figure 5.8 that shows the ratios of difference vectors over all

encoded trajectories as box plots. We can see for profile 4, for example, that for 98%

of all trajectories, less than 18% of the respectively contained positions needed to be

encoded as Δ0 vectors. It can also be seen that Δ1 vectors are rarely used for the

fourth profile, but Δ2 vectors dominates, instead.

To put the lossless compression results into a global context, we want to point out

that for the fourth profile, the arithmetic coder with the PPM-16 model achieves an

average compression ratio of approximately 0.7770. This result is very close to the

compression ratios achieved with the lossy arithmetic coder presented in the previous

chapter, for ε = 0.05m. Actually, the lossless coder outperforms the lossy version

with a uniform distribution (0.7305) and a Gaussian distribution (0.7717), but lies

below the lowest results of the trained distributions (0.7891). Furthermore, it achieves

113

Chapter 5 Lossless Trajectory Compression

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Δ0 Δ1 Δ2 Δ0 Δ1 Δ2 Δ0 Δ1 Δ2 Δ0 Δ1 Δ2

di
ffe

re
nc

e
de

gr
ee

 r
at

io

 profile 1 profile 2 profile 3 (p1=1.0, p2=0.7) profile 4

Figure 5.8: Comparison of usage ratio of the difference vector degrees for all profiles.

compression ratios that roughly match those obtained with the spline-based and op-

timal line simplification algorithms for error thresholds of ε = 0.65m and ε = 1.00m,

respectively.

5.6 Conclusion

While our previous work deals with compression schemes with adjustable accuracy,

we presented a lossless encoding scheme for vehicular trajectories in this chapter. For

this scheme, we discussed the suitability of existing, conventional compression algo-

rithms, namely the LZ77 algorithm and its derivatives, the bzip2 algorithm, as well

as the Huffman and arithmetic entropy encoders. However, these algorithms do not

perform well when applied to raw binary trajectory descriptions that contain a mere

list of absolute spatio-temporal measurements, because similar measurements do not

necessarily result in similar byte representations, especially when they are stored in a

floating point format.

We therefore proposed a byte coder that is applied to the trajectory data as a

preprocessor. For this byte coder, we use the experience that we gained with the

arithmetic coder from the previous chapter: instead of encoding absolute positions,

merely the differences of the current positions from the expected values were regarded.

For smooth and regular movements, such differences should be small. For the lossless

trajectory compression, we realized this approach in the form of a delta encoder that

aims at outputting only difference vectors of up to second degree. In doing so, it needs

to regard the field widths for the difference vectors, i. e., the number of bytes that are

available for the encoding of difference vectors of a certain degree. The field widths for

higher-degree difference vectors should be smaller to avoid an overweight of unnecessary

114

5.6 Conclusion

leading 0x00 or 0xFF bytes in the resulting byte code for positive and negative vectors,

respectively. Such bytes would cause a bias in the byte occurrence frequency and thus

distort determined probability distributions. In such cases, the resulting compression is

most likely significantly suboptimal. To examine the influence of different field widths

on the compressibility of the byte code, we specified four profiles: the first uses the

maximal possible amount of bytes for the fields, the second one halves the field widths

with each increment of the difference vector degree, the third analyzes the requirement

of a trajectory to dimension the field widths to the optimal values accordingly, and

the fourth approximates the performance of the third profile. The output of the byte

encoder can directly be fed into conventional compression algorithms.

We evaluated the developed byte coder and the proposed profiles on the basis of the

trajectory test set that we already used for the evaluation of the arithmetic coder in

Chapter 4. We first found the best set of parameters for the third profile that we then

used as an upper bound benchmark for the rest of the evaluation. In the next step, we

examined the field widths of the third profile in detail and saw that the design of the

second profile almost features the main characteristics of the third profile, promising

very good compression results. To improve those even further, we set up the fourth

profile with an especially high ratio of second-order difference vectors. In our last step

of the evaluation, we compared the achieved compression ratios for the conventional

compression programs and algorithms that we had applied to the byte coder’s output.

We saw that though all algorithms had comparably good performances, the best result

was achieved with the fourth byte coder profile and subsequent arithmetic coding with

a PPM probability model. The average overall compression ratios that we achieved

with the lossless algorithms are close to the ones of the lossy arithmetic coders with

trained probability distributions at an approximation error tolerance ε = 0.05m that

we have presented in Chapter 4. Also, they roughly match the compression ratios

achieved with the spline-based and optimal line simplification algorithms for error

thresholds of ε = 0.65m and ε = 1.00m, respectively.

The byte coding scheme presented in this chapter is tailored to the needs of the

employed conventional compression algorithms. For future work, a coding scheme

could be regarded that can be directly integrated into an arithmetic coder, because

the arithmetic entropy encoding provides the best results for the lossless and lossy

trajectory encoding and is therefore the most promising approach to follow.

115

6
Conclusions

In this thesis, we focused on the question of how to compress spatio-temporal trajec-

tories in such a way that a maximum compression ratio can be achieved. For vari-

ous applications or use cases in ubiquitous computing or, for instance, inter-vehicular

communications, spatio-temporal trajectories, i. e., sequences of time and position mea-

surements, need to be reported by mobile nodes to a central unit. However, as many

applications require a high temporal and spatial measurement resolution, the sizes of

uncompressed trajectory report messages easily become very large. Thus, valuable

wireless channel resources are wasted or costs may incur, should the transmission take

place via cellular mobile communication. To reduce the data load that occurs during

transmission, several lossy compression algorithms for trajectories have previously been

published. In this thesis, we reviewed and evaluated existing compression algorithms

and developed new ones on the basis of a large number of real-world trajectories that

we retrieved from the OpenStreetMap project.

As a first step, we reviewed the related work on previously published compres-

sion mechanisms for spatio-temporal trajectories in Chapter 3. The majority of these

contributions originate from the area of mobile object databases (MODs) and employ

line simplification algorithms and other geometric and linear models. We evaluated

two representative algorithms, specifically the Douglas-Peucker algorithm and an al-

gorithm that calculates the optimal line simplification for a trajectory. We saw that

the heuristic Douglas-Peucker algorithm performed 10-15% worse than the optimum,

while having a better runtime complexity. Both algorithms are widely used in the

related work and form a de-facto standard; furthermore, the results of the optimal line

simplification algorithm denote an upper bound for all linear geometric compression

117

Chapter 6 Conclusions

approaches. For these reasons, we used these compression results as benchmark values

throughout the thesis. Although the compression results obtained with the linear algo-

rithms were basically satisfying, we argued that vehicular movements are naturally not

necessarily linear, but rather obey the principles of kinematics. In kinematics, object

movements are described with smooth curves, so we assumed that, in analogy to that,

geometric compression algorithms should be designed with nonlinear models as well.

Additionally, we argued that once the underlying geometrical design patterns and com-

ponents of roadways were known, trajectories could basically be compressed by simply

approximating concatenations of these roadway components. In fact, so called clothoid

splines, i. e., smooth combinations of line segments, circular arcs and clothoids (tran-

sition curves), are used to construct roadways, especially when a joltless movement

is desired, such as on highway exits. We therefore attempted to sketch our collected

trajectories with clothoid splines and used an algorithm from computer graphics for

this purpose. However, even the best currently existing algorithm is not designed to

strictly stick to an approximation error bound as we use it, but the accuracy is only

adjustable via a penalty cost model. Due to this cost model, the algorithm can not

guarantee that the demanded error threshold is not violated and thus achieved worse

compression results than even the Douglas-Peucker linear algorithm. Finally, we pre-

sented a trajectory compression algorithm based on cubic spline interpolation. Cubic

splines have a number of advantageous features that suit our use case: first, the cubic

polynomials meet at the supporting knots under the C2 criterion that ensures special

smoothness. Second, the cubic polynomials allow for a good approximation of the

steering behavior that is usually modeled using the second derivative, and finally, the

complete spline has a minimal oscillation behavior and curvature between the knots,

which resembles a smooth and regular movement. Our evaluation strengthens our as-

sumption that vehicular trajectories can indeed be approximated more accurately with

nonlinear functions than with linear models: for ε < 0.1m, our spline approach per-

forms more than 10% better than the linear benchmark algorithm; this compression

gain, however, comes at the cost of a higher algorithmic complexity of O(n3).

The compression results that we achieved with the spline interpolation based ap-

proach showed that geometric linear simplification and modeling that is used in lit-

erature as de-facto standard compression technology for trajectories, can significantly

be outperformed once nonlinear models are employed. However, the results did not

allow for the estimation of an upper bound for the compressibility ratio of a trajectory,

because first, we are aware that the algorithm merely finds a locally optimal solution,

and second, we can not prove that the approach of using cubic splines is optimal itself.

Therefore, we approached the trajectory compression from an information-theoretic

118

point of view in Chapter 3: we gave an introduction into the Shannon information

theory and proposed a generic method of measuring the information content of a

spatio-temporal trajectory. This method uses a movement estimator to predict the

next position measurement and derives the information content of a single measure-

ment from the deviation to the respective estimation. To this end, the measurement is

mapped to a symbol alphabet for the symbols of which a probability distribution needs

to be given. We then returned to the use case of vehicular movements and presented a

complete and detailed implementation example for the movement estimator, the dis-

cretization means that we use to map the innovation to the symbol alphabet, and the

probability distribution. We proposed several alternatives for each model component,

implemented these within an arithmetic coder and evaluated their influences on the

compression performance; in doing so, we found out that simple component realiza-

tions, e. g., a movement estimator that does not regard the calculated acceleration and

a simple square-tiled discretization grid, often provide the best compression ratios and

that for the use in practice, trained probability distributions should be used that de-

pend on the respective vehicle’s last detected heading angle. While the choice of model

parameters can improve the compression performance, even the simplest model config-

uration enables the arithmetic coder to clearly outperform the geometric compression

algorithms discussed in Chapter 3.

While only lossy compression schemes were regarded up to this point, we examined

the performances of a selection of conventional lossless algorithms as the final contribu-

tion of this thesis. For this selection, the compression algorithms from the LZ family,

the bzip2 algorithm, and the Huffman and arithmetic entropy encoders were regarded.

All these algorithms work on byte streams and achieve good compression results if

the input contains numerous equal symbols or symbol strings. For this reason, they

would not perform well when directly applied to trajectories that were encoded in the

traditional binary formats, such as the IEEE 754 floating point representation [iee08],

because even if two decimal numbers are within close proximity in the real domain,

for example, their binary representations are not necessarily as similar to the same de-

gree. Therefore, we proposed a byte encoding scheme that preprocesses the trajectory

data; thereby, it preserves the contained information, but changes the byte content so

that afterwards, there is presumably a large amount of equal bytes in the code. To

achieve this, it performs a delta encoding: if possible, the encoder does not store the

absolute trajectory element, but only a difference vector of first or even second degree.

In this context, the preprocessor encodes the difference vectors of each stage with a

particular number of bytes: the higher the difference degree, the fewer bytes are pre-

sumably necessary and therefore the fewer bytes are used. This is done to reduce the

119

Chapter 6 Conclusions

number of unnecessary 0x00 or 0xFF bytes that would distort the byte distribution.

Therefore, the preprocessor can only encode a trajectory element as difference vector,

if the value of the vector can be encoded with the respective number of available bytes.

We applied the conventional compression algorithms to the output of the byte encoder

and found out that all algorithms achieved comparable results, where the arithmetic

coding with a PPM adaptive probability model performed best. Compared to the lossy

algorithms that we discussed in the previous chapter, we found out that the lossless

compression achieves nearly as good a result as the lossy arithmetic coder at the lower

error tolerance, the spline interpolation based geometric approach at an error threshold

ε = 0.65m or line simplification algorithms at ε = 1.00m.

From the results collected in this thesis, we can deduce some clear statements: if ge-

ometric methods are to be used, it makes sense to use nonlinear methods for movement

modeling; these provide a better approximation for vehicular movements, thus allow-

ing for higher compression ratios, as we have seen at the spline interpolation results

in Chapter 3. Conjunctively, we only proposed a method with a significantly higher

runtime complexity than its linear counterparts, so that it can merely be applied on

buffered trajectories with less measurements than those being handled by linear tech-

niques. Furthermore, information-theoretic approaches, i. e., entropy coding, provided

the best compression results that we could achieve in our evaluations. This came

at the cost of a more complex model, the components in which need to be tailored

to the particular use case. Also, though our model has a linear asymptotic runtime

complexity over the number of trajectory elements, it is slower than, for example, the

heuristic Douglas-Peucker algorithm, due to the employed movement estimation and

discretization steps. This would result in a higher power consumption for a mobile

device’s computing unit and requires further research to evaluate the actual impact in

real-world environments. It is therefore necessary to optimize the algorithm for the

particular use case to reduce the actual power consumption. Finally, even lossless com-

pression techniques can be successfully applied, if the trajectory data is preprocessed,

for instance with a delta encoding scheme.

By using arithmetic coding, we could achieve compression results that are optimal

for the respective choice of model parameters in Chapter 4. Though this provides

only a partial answer to our initial question of how spatio-temporal trajectories can be

compressed so that a maximum compression ratio can be achieved, our findings have a

strong practical relevance and can be used directly to significantly reduce the channel

load for the wireless transmission of trajectories. By means of compression, movement

report protocols can be optimized to cut a long movement story short and to transmit

only the essence of it.

120

Bibliography

Own Publications

[KBMS11] Markus Koegel, Daniel Baselt, Martin Mauve, and Björn Scheuermann.

A Comparison of Vehicular Trajectory Encoding Techniques. In Med-

HocNet ’11: Proceedings of the 10th Annual Mediterranean Ad Hoc Net-

working Workshop, June 2011.

[KKKM10] Markus Koegel, Wolfgang Kiess, Markus Kerper, and Martin Mauve.

Compact Vehicular Trajectory Encoding (extended version). Technical

Report TR-2010-002, Computer Science Department, Heinrich Heine

University, Düsseldorf, Germany, September 2010.

[KKKM11] Markus Koegel, Wolfgang Kiess, Markus Kerper, and Martin Mauve.

Compact Vehicular Trajectory Encoding. In VTC ’11-Spring: Proceed-

ings of the 73rd IEEE Vehicular Technology Conference, May 2011.

[KM11] Markus Koegel and Martin Mauve. On the Spatio-Temporal Informa-

tion Content and Arithmetic Coding of Discrete Trajectories. In Mo-

biQuitous ’11: Proceedings of the 8th Annual International Conference

on Mobile and Ubiquitous Systems: Computing, Networking & Services,

December 2011.

[KOKM10] Markus Koegel, Thomas Ogilvie, Wolfgang Kiess, and Martin Mauve.

Real-World Evaluation of C2X-Road Side Warning Devices. In IS-

WPC ’10: IEEE International Symposium on Wireless Pervasive Com-

puting, pages 180–185, May 2010.

[KRHM12] Markus Koegel, Matthias Radig, Erzen Hyko, and Martin Mauve. A

Detailed View on the Spatio-Temporal Information Content and the

121

Chapter 6 Conclusions

Arithmetic Coding of Discrete Trajectories. Mobile Networks and Ap-

plications, pages 1–16, October 2012.

[RSKM09] Jedrzej Rybicki, Björn Scheuermann, Markus Koegel, and Martin Mauve.

PeerTIS - A Peer-to-Peer Traffic Information System. In VANET ’09:

Proceedings of the 6th ACM International Workshop on VehiculAr Inter-

NETworking, pages 23–32, September 2009.

Other References

[Abr60] Norman Abramson. Information Theory and Coding. McGraw-Hill

Book Co., 1960.

[Ass95] National Marine Electronics Association. NMEA 0183, Standard for

Interfacing Marine Electronic Devices: version 2.1. NMEA National

Office, October 1995.

[Baa84] K. G. Baass. The use of clothoid templates in highway design. Trans-

portation Forum, 1:47–52, 1984.

[Bar] Ilya Baran. Cornucopia: a clothiod sketching software. Online resource.

http://code.google.com/p/cornucopia-lib.

[BD84] Brian A. Barsky and Anthony D. DeRose. Geometric Continuity of

Parametric Curves. Technical Report UCB/CSD-84-205, EECS De-

partment, University of California, Berkeley, October 1984.

[BD99] Amiya Bhattacharya and Sajal K. Das. LeZi-update: an information-

theoretic approach to track mobile users in PCS networks. In Mobi-

Com ’99: Proceedings of the 5th Annual ACM/IEEE Int’l Conf. on

Mobile Computing and Networking, July 1999.

[BEJS05] Rene Brüntrup, Stefan Edelkamp, Shahid Jabbar, and Björn Scholz.

Incremental map generation with gps traces. In ITSC ’05: Proceedings

of the 8th International IEEE Conference on Intelligent Transportation

Systems, September 2005.

[BLP10] Ilya Baran, Jaakko Lehtinen, and Jovan Popovic. Sketching Clothoid

Splines Using Shortest Paths. Computer Graphics Forum, pages 655–

664, 2010.

122

[BLvO12] Filip Biljecki, Hugo Ledoux, and Peter van Oosterom. Transportation

mode-based segmentation and classification of movement trajectories.

International Journal of Geographical Information Science, pages 1–23,

October 2012.

[Bro98] Eli Brookner. Tracking and Kalman Filtering Made Easy. Wiley-

Interscience, April 1998.

[BSTW86] Jon Louis Bentley, Daniel Dominic Sleator, Robert Endre Tarjan, and

Victor K. Wei. A locally adaptive data compression scheme. Commun.

ACM, 29(4):320–330, 1986.

[BW94] M. Burrows and D. J. Wheeler. A block-sorting lossless data com-

pression algorithm. Technical report, Digital Systems Research Center,

1994.

[Car02] Bob Carpenter. Arithcode project: Compression via arithmetic coding

in java, version 1.1, 2002. Online resource:

http://www.colloquial.com/ArithmeticCoding/.

[CC92] W.S. Chan and F. Chin. Approximation of polygonal curves with min-

imum number of line segments. Proceedings of the 3rd International

Symposium on Algorithms and Computation, in: Lecture Notes in Com-

puter Science, 650:378–387, 1992.

[CE08] Ji-Wung Choi and Gabriel Hugh Elkaim. Bézier curves for trajectory

guidance. In WCECS ’08: Proceedings of the World Congress on Engi-

neering and Computer Science, pages 625–630, October 2008.

[CJP05] Alminas Civilis, Christian S. Jensen, and Stardas Pakalnis. Techniques

for efficient road-network-based tracking of moving objects. IEEE

Transactions on Knowledge and Data Engineering, 17(5):698–712, May

2005.

[CKK96] A.R. Cassandra, L.P. Kaelbling, and J.A. Kurien. Acting under un-

certainty: discrete bayesian models for mobile-robot navigation. In

IROS ’96: Proceedings of the 1996 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 963–972, November 1996.

[CLFG+03] José Antonio Cotelo Lema, Luca Forlizzi, Ralf Hartmut Güting, En-

rico Nardelli, and Markus Schneider. Algorithms for moving objects

databases. The Computer Journal, 46(6):680–712, 2003.

123

Chapter 6 Conclusions

[CN04] Yuhan Cai and Raymond Ng. Indexing spatio-temporal trajectories

with Chebyshev polynomials. In SIGMOD ’04: Proceedings of the ACM

SIGMOD International Conference on Management of Data, June 2004.

[Col] Lasse Collin. XZ Utils. Online resource. http://tukaani.org/xz.

[CW84] J. Cleary and I. Witten. Data compression using adaptive coding

and partial string matching. IEEE Transactions on Communications,

32(4):396–402, April 1984.

[CWT06] Hu Cao, Ouri Wolfson, and Goce Trajcevski. Spatio-temporal data

reduction with deterministic error bounds. VLDB Journal, 15(3):211–

228, September 2006.

[DAC+08] N. D’Agostino, A. Avallone, D. Cheloni, E. D’Anastasio, S. Mantenuto,

and G. Selvaggi. Active tectonics of the adriatic region from gps and

earthquake slip vectors. Journal of Geophysical Research (Solid Earth),

113(B12), December 2008.

[Deu96] P. Deutsch. GZIP file format specification version 4.3. RFC 1952

(Informational), May 1996.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs.

Numerische Mathematik, 1(1):269–271, December 1959.

[DMF+06] Chris Dever, Bernard Mettler, Eric Feron, Jovan Popović, and Marc

Mcconley. Nonlinear trajectory generation for autonomous vehicles via

parameterized maneuver classes. Journal of Guidance, Control and

Dynamics, 29:289–302, 2006.

[DP73] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature.

Canadian Cartographer, 10(2):112–122, December 1973.

[Fox98] Dieter Fox. Markov Localization: A Probabilistic Framework for Mobile

Robot Localization and Navigation. PhD thesis, University of Bonn,

Germany, 1998.

[Fry] Mike Frysinger. ncompress: a public domain project. Online resource.

http://ncompress.sourceforge.net.

124

[FT84] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in

improved network optimization algorithms. Foundations of Computer

Science, IEEE Annual Symposium on, 0:338–346, 1984.

[GA] Jean-Loup Gailly and Mark Adler. The gzip home page. Online

resource. http://www.gzip.org.

[Gal78] Robert G. Gallager. Variations on a theme by huffman. IEEE Trans-

actions on Information Theory, 24(6):668–674, November 1978.

[GE09] Werner Gurtner and Lou Estey. Rinex – the receiver independent ex-

change format, version 3.01. Online resource, June 2009.

http://igscb.jpl.nasa.gov/igscb/data/format/rinex301.pdf (as of 2012-

10-15).

[Gil92] Thomas D. Gillespie. Fundamentals of Vehicle Dynamics. SAE Inter-

national, March 1992.

[GKM+07] Joachim Gudmundsson, Jyrki Katajainen, Damian Merrick, Cahya Ong,

and Thomas Wolle. Compressing spatio-temporal trajectories. In

ISAAC ’07: Proceedings of the 18th International Symposium on Algo-

rithms and Computation, pages 763–775, December 2007.

[gpl] GNU General Public License, version 3.

http://www.gnu.org/licenses/gpl-3.0.html.

[GS05] Ralf Hartmut Güting and Markus Schneider. Moving Objects Databases.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[GSTW04] Astrid Gühnemann, Ralf-Peter Schäfer, Kai-Uwe Thiessenhusen, and

Peter Wagner. Monitoring Traffic and Emissions by Floating Car Data.

Technical Report ITS-WP-04-07, DLR – German Aerospace Centre, In-

stitute of Transport Research, Berlin, 2004.

[HGNMs08] Nicola Hönle, Matthias Großmann, Daniela Nicklas, and Bernhard Mit-

schang. Preprocessing position data of mobile objects. In MDM ’08:

Proceedings of the 9th IEEE International Conference on Mobile Data

Management, April 2008.

[HGRM10] Nicola Hönle, Matthias Großmann, Steffen Reimann, and Bernhard

Mitschang. Usability analysis of compression algorithms for position

data streams. In GIS ’10: Proceedings of the 18th ACM SIGSPATIAL

125

Chapter 6 Conclusions

international conference on Advances in Geographic Information Sys-

tems, November 2010.

[HLO99] Werner Huber, Michael Lädke, and Rainer Ogger. Extended floating-

car data for the acquisition of traffic information. In ITSWC ’99:

Proceedings of the 6th World Congress and Exhibition on Intelligent

Transportation Systems and Services (ITS), November 1999.

[HS92] John Hershberger and Jack Snoeyink. Speeding Up the Douglas-Peucker

Line-Simplification Algorithm. In SDH ’92: Proceedings of the 5th In-

ternational Symposium on Spatial Data Handling, pages 134–143, 1992.

[Huf52] David Huffman. A method for the construction of Minimum-Redundan-

cy codes. Proceedings of the IRE, 40(9):1098–1101, September 1952.

[HWLC97] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins. Global Posi-

tioning System: theory and practice. Springer-Verlag, 1997.

[iee08] IEEE Standard for Floating-Point Arithmetic. Technical report, Micro-

processor Standards Committee of the IEEE Computer Society, August

2008.

[II86] H. Imai and M. Iri. Computational-geometric methods for polygonal

approximations of a curve. Computer Vision, Graphics, and Image

Processing, 36(1):31–41, 1986.

[JAW67] E.N. Nilson J.H. Ahlberg and J.L. Walsh. The Theory of Splines and

Their Applications, volume 38 of Mathematics in Science and Engineer-

ing. Academic Press (Elsevier), 1967.

[JOW+02] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shi-

uan Peh, and Daniel Rubenstein. Energy-efficient computing for wildlife

tracking: design tradeoffs and early experiences with zebranet. In ASP-

LOS ’02: Proceedings of the 10th International Conference on Architec-

tural Support for Programming Languages and Operating Systems, pages

96–107, 2002.

[Keh07] Steffen Kehl. Querregelung eines Versuchsfahrzeugs entlang vorgegebe-

ner Bahnen. PhD thesis, University of Stuttgart, Institute for System

Dynamics, November 2007. In German language.

126

[Koe] Markus Koegel. Cornuconsole: A trajectory compression scheme using

clothoidal spline curve fitting. Online resource. http://www.cn.uni-

duesseldorf.de/staff/koegel/software/cornuconsole.

[KP08] Florian Kranke and Holger Poppe. Traffic Guard - Merging Sensor Data

and C2I/C2C Information for proactive, Congestion avoiding Driver As-

sistance Systems. In FISITA ’08: World Automotive Congress of the

Int’l Federation of Automotive Engineering Societies, September 2008.

[Kro09] Lieuwe Krol. The reconstruction of vehicle trajectories with dynamic

macroscopic data. Master’s thesis, University of Twente, Enschede,

Netherlands, August 2009.

[KSNS07] E. Kalogerakis, P. Simari, D. Nowrouzezahrai, and K. Singh. Ro-

bust statistical estimation of curvature on discretized surfaces. In ES-

SGP ’07: Proceedings of the Eurographics/ACM Siggraph Symposium

on Geometry Processing, 2007.

[Kuc07] Horst Kuchling. Taschenbuch der Physik. Fachbuchverlag Leipzig im

Carl Hanser Verlag, 17 edition, August 2007. In German language.

[KWRKM05] S. Y. Kim, K. Wilson-Remmer, A. L. Kun, and W. T. III Miller. Remote

fleet management for police cruisers. In IV ’05: Proceedings of the IEEE

Intelligent Vehicles Symposium, pages 30–35, June 2005.

[LDR08] Ralph Lange, Frank Dürr, and Kurt Rothermel. Online trajectory

data reduction using connection-preserving dead reckoning. In Mo-

biQuitous ’08: Proceedings of the 5th Annual International Conference

on Mobile and Ubiquitous Systems: Computing, Networking & Services,

July 2008.

[Lee61] C. Y. Lee. An Algorithm for Path Connections and Its Applica-

tions. Electronic Computers, IRE Transactions on, EC-10(3):346–365,

September 1961.

[LFDR09] Ralph Lange, Tobias Farrell, Frank Dürr, and Kurt Rothermel. Remote

Real-Time Trajectory Simplification. In PerCom ’09: Proceedings of

the 7th IEEE International Conference on Pervasive Computing and

Communications, pages 184–193, March 2009.

[LHB06] Ryan Lever, Annika Hinze, and George Buchanan. Compressing gps

data on mobile devices. In OTM ’06: Proceedings of the Conference On

127

Chapter 6 Conclusions

the Move to Meaningful Internet Systems, volume 4278 of Lecture Notes

in Computer Science, pages 1944–1947. Springer, November 2006.

[LNRL06] Larissa Labakhua, Urbano Nunes, Rui Rodrigues, and Fátima S. Leite.

Smooth trajectory planning for fully automated passengers vehicles —

spline and clothoid based methods and its simulation. In ICINCO ’06:

Proceedings of the 3rd International Conference on Informatics in Con-

trol, Automation and Robotics, pages 89–96, August 2006.

[LPFK05] Lin Liao, Donald J. Patterson, Dieter Fox, and Henry Kautz. Building

personal maps from gps data. In MOO ’05: Proceedings of the IJCAI

Workshop on Modeling Others from Observation, July 2005.

[LR01] Alexander Leonhardi and Kurt Rothermel. A comparison of protocols

for updating location information. Cluster Computing: The Journal of

Networks, Software Tools and Applications, 4(4):355–367, October 2001.

[Mac02] David J. C. MacKay. Information Theory, Inference & Learning Algo-

rithms. Cambridge University Press, New York, NY, USA, 2002.

[Mar79] G. Nigel N. Martin. Range encoding: An algorithm for removing re-

dundancy from a digitised message. July 1979.

[MdB04] Nirvana Meratnia and Rolf A. de By. Spatiotemporal compression

techniques for moving point objects. In EDBT ’04: Proceedings of the

9th International Conference on Extending Database Technology, March

2004.

[MMH05] Luis Sardinha Monteiro, Terry Moore, and Chris Hill. What is the

accuracy of DGPS? The Journal of Navigation, 58:207–225, May 2005.

[MPS02] Jaakko Myllylä and Yrjö Pilli-Sihvola. Floating car road weather mon-

itoring. In SIRWEC ’02: Proceedings of the 11th International Road

Weather Congress, January 2002.

[MS09] James McCrae and Karan Singh. Sketching piecewise clothoid curves.

Computers & Graphics, 33(4):452–461, 2009.

[MW92] D. S. Meek and D. J. Walton. Clothoid spline transition spirals. Math-

ematics of Computation, 59(199):117–133, July 1992.

[NPB95] Illah Nourbakhsh, Rob Powers, and Stan Birchfield. DERVISH – an

office-navigating robot. The AI magazine, 16(2):53–60, 1995.

128

[NR07] Jinfeng Ni and Chinya V. Ravishankar. Indexing Spatio-Temporal Tra-

jectories with Efficient Polynomial Approximations. IEEE Transactions

on Knowledge and Data Engineering, 19:663–678, May 2007.

[ope] Open Data Commons Open Database License (ODbL).

http://opendatacommons.org/licenses/odbl/.

[Pav] Igor Pavlov. 7-zip. Online resource. http://7-zip.org.

[PPS06] Michalis Potamias, Kostas Patroumpas, and Timos Sellis. Sampling tra-

jectory streams with spatiotemporal criteria. In SSDBM ’06: Proceed-

ings of the 18th International Conference on Scientific and Statistical

Database Management, pages 275–284, July 2006.

[proa] The AKTIV project. http://www.aktiv-online.org.

[prob] The COMeSafety project. http://www.comesafety.org.

[proc] The Network on Wheels project. http://www.network-on-wheels.de.

[prod] The simTD project: Safe and Intelligent Mobility – Test Field Germany.

http://www.simtd.de.

[proe] The OpenStreetMap Project. Online resource:

http://www.openstreetmap.org/.

[PV09] J. Portell and A. G.and Garcia-Berro Villafranca. A resilient and quick

data compression method of prediction errors for space missions. In

B. Huang, A. J. Plaza, and R. Vitulli, editors, Satellite Data Compres-

sion, Communication, and Processing V, 2009. vol. 745505.

[RBFT99] Nicholas Roy, Wolfram Burgard, Dieter Fox, and Sebastian Thrun.

Coastal navigation – mobile robot navigation with uncertainty in dy-

namic environments. In ICRA ’99: Proceedings of the IEEE Int’l Con-

ference on Robotics and Automation, pages 35–40, August 1999.

[RGRB04] S. Roberts, T. Guilford, I. Rezek, and D. Biro. Positional entropy

during pigeon homing i: application of bayesian latent state modelling.

Journal of Theoretical Biology, 227(1):39–50, 2004.

[RHS09] A. Reinhardt, M. Hollick, and R. Steinmetz. Stream-oriented lossless

packet compression in wireless sensor networks. In SECON ’09: Pro-

ceedings of the 6rd Annual IEEE Communications Society Conference

129

Chapter 6 Conclusions

on Sensor and Ad Hoc Communications and Networks, pages 1–9, June

2009.

[RMB+10] Sasank Reddy, Min Mun, Jeff Burke, Deborah Estrin, Mark Hansen,

and Mani Srivastava. Using mobile phones to determine transportation

modes. ACM Transactions Sensor Networking, 6(2):13:1–13:27, March

2010.

[SA09] N. Schüssler and K.W. Axhausen. Processing raw data from global po-

sitioning systems without additional information. Transportation Re-

search Record: Journal of the Transportation Research Board, 2105:28–

36, October 2009.

[SBM+07] Gail Schofield, Charles M. Bishop, Grant MacLean, Peter Brown, Mar-

tyn Baker, Kostas A. Katselidis, Panayotis Dimopoulos, John D. Pantis,

and Graeme C. Hays. Novel gps tracking of sea turtles as a tool for con-

servation management. Journal of Experimental Marine Biology and

Ecology, 347(1–2):58–68, 2007.

[Sewa] Julian Seward. bzip2. Online resource. http://www.bzip.org.

[Sewb] Julian Seward. bzip2 documentation, Section 4.1. Limitations of the

compressed file format, version 1.0.5. Online resource, as of 10/25/2012.

http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.html#limits.

[SH82] Karl-Heinz Schimmelpfennig and Norbert Hebing. Geschwindigkeiten

bei kreisförmiger Kurvenfahrt – Stabilitäts- und Sicherheitsgrenze. Der

Verkehrsunfall, 20(5):97–99, May 1982. In German language.

[Sha48] Claude Elwood Shannon. A Mathematical Theory of Communication.

Bell System Technical Journal, 27:379–423, July 1948.

[SK95] Reid Simmons and Sven Koenig. Probabilistic robot navigation in

partially observable environments. In IJCAI ’95: Proceedings of the

14th international joint conference on Artificial intelligence – Volume

2, pages 1080–1087, August 1995.

[SK07] Igor Skrjanc and Gregor Klancar. Cooperative collision avoidance be-

tween multiple robots based on bézier curves. In ITI ’07: Proceedings

of the 29th International Conference on Information Technology Inter-

faces, pages 451–456, June 2007.

130

[sma] Smartrunner: Marathon, running, sports tracker, gps, trails. Online

resource: http://www.smartrunner.com/.

[STBW02] Ralf-Peter Schäfer, Kai-Uwe Thiessenhusen, Elmar Brockfeld, and Peter

Wagner. A traffic information system by means of real-time floating-

car data. In ITSWC ’02: Proceedings of the 9th World Congress and

Exhibition on Intelligent Transportation Systems and Services (ITS),

October 2002.

[Str95] Jürgen Strobel. Global-Positioning-System : GPS; Technik und Anwen-

dung der Satellitennavigation; mit 6 Tabellen. Franzis, Poing, 1995.

[SWR+04] Stefan Schroedl, Kiri Wagstaff, Seth Rogers, Pat Langley, and Christo-

pher Wilson. Mining GPS Traces for Map Refinement. Data Mining

and Knowledge Discovery, 9(1):59–87, July 2004.

[TCS+06] Goce Trajcevski, Hu Cao, Peter Scheuermann, Ouri Wolfson, and Den-

nis Vaccaro. Online data reduction and the quality of history in moving

objects databases. InMobiDE ’06: Proceedings of the 5th ACM Interna-

tional Workshop on Data Engineering for Wireless and Mobile Access,

June 2006.

[THR07] S.T.S. Thong, Chua Tien Han, and T.A. Rahman. Intelligent fleet

management system with concurrent gps gsm real-time positioning tech-

nology. In ITST ’07: Proceedings of the 7th International Conference

on Intelligent Transportation Systems (ITS) Telecommunications, pages

1–6, June 2007.

[Tim02] N.H. Timm. Applied multivariate analysis. Texts in statistics. Springer,

2002.

[vD98] Frank van Diggelen. GPS Accuracy: Lies, Damn Lies and Statistics.

GPS World, 9(1):41–45, November 1998.

[VD00] K.L. Van Dyke. The world after sa: benefits to gps integrity. In

Proceedings of the IEEE 2000 Position Location and Navigation Sym-

posium, pages 387–394, March 2000.

[Vit87] Jeffrey Scott Vitter. Design and analysis of dynamic huffman codes.

Journal of the ACM, 34(4):825–845, October 1987.

131

Chapter 6 Conclusions

[VMR+10] Alberto Villafranca, Iu Mora, Patrizia Ruiz, Jordi Portell, and Enrique

Garćıa-Berro. Optimizing gps data transmission using entropy coding

compression. In SDCCP ’10: Proceedings of the 6th SPIE Conference on

Satellite Data Compression, Communications, and Processing, August

2010.

[Wei91] Mark Weiser. The computer for the 21st century. Scientific American,

265(3):66–75, January 1991.

[Wel84] Terry A. Welch. A technique for high-performance data compression.

IEEE Computer, 17(6):8–19, 1984.

[Woo07] Oliver J. Woodman. An introduction to inertial navigation. Tech-

nical Report UCAM-CL-TR-696, University of Cambridge, Computer

Laboratory, August 2007.

[WSCY99] Ouri Wolfson, A. Prasad Sistla, Sam Chamberlain, and Yelena Yesha.

Updating and querying databases that track mobile units. Distributed

and Parallel Databases, 7(3):257–287, July 1999.

[ZCL+10] Yu Zheng, Yukun Chen, Quannan Li, Xing Xie, and Wei-Ying Ma.

Understanding transportation modes based on gps data for web appli-

cations. ACM Transactions on the Web, 4(1):1:1–1:36, January 2010.

[ZL77] Jacob Ziv and Abraham Lempel. A universal algorithm for sequen-

tial data compression. IEEE Transactions on Information Theory,

23(3):337–343, 1977.

[ZL78] Jacob Ziv and Abraham Lempel. Compression of individual sequences

via variable-rate coding. IEEE Transactions on Information Theory,

24:530–536, September 1978.

132

Index

arithmetic coding, 4, 57, 59, 61, 61,
102, 113, 119

bzip2, 4, 102, 104, 110, 111, 113, 120

car to car communication, see inter-vehicular
communication

car to infrastructure communication, see
inter-vehicular communication

cellular mobile communication, 2, 9, 59,
117

clothoid, 28

clothoid spline, 4, 27, 30–39, 54, 118

compress, 101, 104, 110, 111

compression

∼ overhead, 22

∼ ratio, 19, 23, 24, 34, 37, 46, 85,
104

connection-preserving dead reckoning, 26

continuity

geometric, 29, 31–35

parametric, 29, 40

CornuConsole, 35

Cornucopia, 33, 35

cubic spline interpolation, 4, 40–42, 54,
118

curve primitive, 27

data field width, see field width

delta encoding, 105

discretization grid, 68

dimensioning, 70

frame, 72, 90

node tessellation, 69, 89

Douglas-Peucker, see line simplification

entropy coding, 4, 59, 101

field width, 103, 107
floating car data, 10, 44

extended ∼, 10

geographic information system, 14
global navigation satellite system, 1, 8,

98
global positioning system, 8, 25, 47, 72
gzip, 101, 104, 110, 111

Huffman codes, 4, 59, 60

IEEE 802.11, 2, 9
information theory, 57, 59, 119

alphabet, 59, 66, 68
entropy, 59, 60
information content, 59, 60, 64
probability distribution, 60, 66, 73,

91
a posteriori, 78, 91
adaptive, 81, 91
contextual, 78–81, 91
Gaussian, 74, 85
trained, 77, 91
uniform, 74

inter-vehicular communication, 1, 10

ka, 19

Lempel-Ziv compression algorithms, 4,
99–102

DEFLATE, 101, 104, 110, 111
LZ 77, 100
LZ 78, 100

133

Index

LZMA/LZMA2, 101, 104, 110, 111
LZW, 100, 104, 110, 111

light detection and ranging, 1
line simplification

Douglas-Peucker, 3, 20, 25, 26, 54,
117

optimal, 3, 20, 25, 54, 117
linear dead reckoning, 2, 25

mobile object databases, 25
mobile tracking, 25
movement estimation, 66, 68, 83
multilateration, 8

ncompress, see compress

on-board unit, 1
OpenStreetMap, 3, 11, 47, 117

prediction by partial matching, 102, 104,
110, 111, 113, 120

probabilistic positioning, 58
pseudoranging, 8, 98

range coding, 4, 63
road side unit, 2

shortest path algorithm, 20
stream code, 61
symbol code, 60

time difference of arrival, 8
trajectory, 8, 18, 117

ubiquitous computing, 1
user equivalent range error, 8

wireless local area networks, see IEEE
802.11

xz utils, 101, 104, 110, 111, 113

134

