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Abstract
In this work about density functional theory of hard colloidal particles, spheres, sphe-
rocylinders, and dumbbells are investigated in the bulk and at interfaces. Therefore, the
theoretical framework of density functional theory (DFT) and fundamental measure the-
ory (FMT) is introduced first. Then, FMT functionals are applied to hard-sphere systems
to obtain free energies and density distributions for the (fcc) crystal and the fluid phase.
The free energies are in good agreement with Monte Carlo (MC) simulation results, which
is also reflected in the density distributions around single lattice sites. From the studied
variants of FMT only the White Bear mark II (WBII) functional shows qualitatively cor-
rect behavior, which implies that only the WBII functional is a promising candidate for
further studies of problems involving crystallization.

Accordingly, accurate values for the anisotropic hard-sphere crystal-fluid surface tensions
and stiffnesses have been predicted by using the WBII approach in combination with
MC simulations. Quantitative agreement between FMT and simulations is found, where
FMT predicts a tension of 0.66 kBT/σ

2 with a small anisotropy of about 0.025 kBT . The
corresponding stiffnesses are determined with e.g. 0.53 kBT/σ

2 for the (001) orientation
and 1.03 kBT/σ

2 for the (111) orientation of the interface, where kBT is the thermal
energy and σ is the diameter of the hard spheres. However, the anisotropy in the tension is
crucial for the transformation to stiffnesses, which differ up to a factor of 4. Moreover, the
results from theory and simulation are compared with existing experimental findings and
classical nucleation theory is discussed in the context of analyzing experimental results.

In another sense, FMT has also been applied to non-spherical particles. For this pur-
pose, the recently developed extended deconvolution FMT (edFMT) has been applied
to systems of orientationally resolved spherocylinders and dumbbells. The spherocylin-
ders are assumed to constitute a fluid phase with the possibility of orientational ordering
and are subjected to an in-plane aligning field which rotates with a frequency ω0. Con-
sequently, the system is investigated by using dynamical DFT, an extension of DFT to
non-equilibrium, time-dependent situations. The setup causes a complex orientational re-
sponse of the colloidal liquid crystal with five different dynamical states which are charac-
terized by towing, breathing, splitting, overtaking, and unsplit overtaking, as ω0 increases.

Applied to hard dumbbells, inhomogeneous fluids are analyzed in a slit and under grav-
ity. The edFMT features a free parameter ζ, which has to be nonzero, to obtain a stable
nematic phase even for very elongated particles. Adjusting it has been shown to lead to
unrealistically large values for ζ, presumably because the theory is not valid for non-
convex particles like dumbbells. However, the theory with ζ = 0 gives excellent results
when compared to MC simulations for not too large packing fractions.

Finally, the highly localized density peaks in a crystal cause critical numerical behavior
where local packing fractions exceed meaningful values which leads to a divergence of
the FMT functional. For this reason, numerical methods are outlined in the appendix of
this work to avoid such problems and to ensure the convergence of solutions.
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Zusammenfassung
In der vorliegenden Dissertationsschrift werden die Eigenschaften harter kolloidaler
Kugeln, Sphärozylinder und Hanteln inmitten einer physikalischen Phase sowie an Grenz-
flächen mittels Dichtefunktionaltheorie (DFT) untersucht. Zunächst werden daher die
DFT sowie eine notwendige weitere Theorie eingeführt, welche die Fundamentalmaße der
Kolloide verwendet um im Rahmen der DFT ein benötigtes Funktional bereit zu stellen
und daher FMT (fundamental measure theory) genannt wird. Mit mehreren Funktionalen
dieser FMT werden dann die freien Energien und die Dichteprofile von (fcc) Kristallen
harter Kugeln sowie deren flüssiger Phasen bestimmt. Ein Vergleich der Ergebnisse mit
Monte Carlo (MC) Simulationen zeigt gute Übereinstimmung, auch wenn nur das White
Bear mark II (WBII) (white bear = weißer Bär) Funktional auch qualitativ korrekte Ergeb-
nisse liefert. Entsprechend ist für weitere Studien, welche sich mit der Kristallisation har-
ter Kugeln beschäftigen, nur das WBII Funktional geeignet.

Im Weiteren wird dieses daher verwendet, um durch eine freie Minimierung der Grenz-
fläche zwischen dem (fcc) Kristall und der Flüssigkeit präzise Werte für die zugehörige
anisotrope Oberflächenspannung sowie die Steifheit der Grenzfläche zu bestimmen. Ein
erneuter Vergleich mit MC Simulationen zeigt auch dieses Mal quantitative Überein-
stimmung. Dabei ergibt sich aus der Theorie eine mittlere Oberflächenspannung von
0.66 kBT/σ

2 mit einer geringen Anisotropie von ungefähr 0.025 kBT . Die zugehörigen
Steifheiten sind beispielsweise 0.53 kBT/σ

2 für eine Orientierung (001) der Grenzfläche
und 1.03 kBT/σ

2 für die Orientierung (111). Dabei ist kBT die thermische Energie des
Systems und σ der Durchmesser der Kugeln. Die Anisotropie der Oberflächenspan-
nung von ca. 10% beeinflusst dabei entscheidend die Umrechnung zwischen der Ober-
flächenspannung und der Steifheit. Natürlich werden die Ergebnisse auch mit vorhande-
nen experimentellen Daten verglichen, wobei insbesondere die Auswertung mittels klas-
sischer Nukleationstheorie kritisch diskutiert wird.

Während das WBII Funktional nur harte Kugeln beschreibt, ermöglicht die kürzlich ent-
wickelte extended deconvolution (extended deconvolution = erweiterte Entfaltung) FMT
(edFMT) auch die Beschreibung nicht kugelförmiger Kolloide. Sie wird auf ein Sys-
tem harter Sphärozylinder angewendet, welche sich in einer homogenen flüssigen Phase
befinden, so dass die Eigenschaften des Systems nur von ihren jeweiligen Orientierungen
abhängen. Auf letztere wirkt ein externes Feld, welches die Orientierungen in eine Rich-
tung ausrichtet und dabei mit einer Frequenz ω0 in einer Ebene rotiert. Das System wird
mit einer dynamischen DFT beschrieben, welche als Erweiterung der statischen DFT auf
Systeme außerhalb des Gleichgewichts zeitabhängig ist. Als Reaktion auf das externe
Feld ergibt sich eine komplexe Orientierungsverteilung des Flüssigkristalls, wobei mit
zunehmender Frequenz ω0 fünf dynamische Zustände auftreten, welche als towing (Ab-
schleppen), breathing (Atmen), splitting (Aufspalten), overtaking (Überholen) und unsplit
overtaking (nicht getrenntes Überholen) beschrieben werden können.

Die edFMT wird außerdem auf hantelförmige Kolloide angewendet, welche sich in einem
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Spalt beziehungsweise einem Gravitationsfeld befinden und somit eine imhomogene flüs-
sige Phase bilden. Der frei wählbaren Parameter ζ in der edFMT lässt sich dabei nur
schlecht bestimmen, was vermutlich darauf zurück zu führen ist, dass die Theorie für
nicht konvexe Teilchen wie Hanteln nicht gültig ist. Da der Parameter ζ nur für lange
Teilchen von Null verschieden sein muss, um stabile nematische Phasen zu beschreiben,
wird ζ = 0 verwendet, was im Vergleich mit MC Simulationen bei nicht zu hoher Sys-
temdichte auch zu sehr guten Ergebnissen führt.

Schließlich treten bei den Berechnungen der kristallinen Dichteprofile harter Kugeln nu-
merische Probleme auf, weil die lokale Packungsdichte der Teilchen unphysikalisch hohe
Werte annimmt. Dies führt zu numerisch kritischem Verhalten der FMT Funktionale. Im
Anhang dieser Arbeit werden daher numerische Methoden vorgestellt, mit denen sich
diese Probleme vermeiden lassen und mit welchen Konvergenz der Lösungen gewährleis-
tet werden kann.
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Daß ich erkenne, was die Welt

Im Innersten zusammenhält,

(To recognize what holds the world together in its inside)

(from: Faust, Johann Wolfgang von Goethe 1749 - 1832)
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1 Introduction

Ever since the beginning of humanity, people have been interested in the reasons behind
actions happening in nature. Thus, the ancient Greeks, Mayas, and other people already
applied calculations for constructions and more. However, along with Galileo Galilei
(1564-1642) Sir Isaac Newton (1643-1727) was one of the first scientists who founded
physical expectations on a basic, purely mathematical concept. His most important work,
the Philosophiae Naturalis Principia Mathematica from 1687, reflects this idea and con-
tains his famous laws of motion of bodies that, according to legend, have come to his
mind after an apple fell on his head. However, the importance of Newton’s understanding
of nature and his impact on people is expressed in Alexander Pope’s epitaph on Newton’s
tombstone in Westminster Abbey in London [1]:

Nature, and Nature’s Laws lay hid in Night.
God said, Let Newton be! and All was Light.

As outlined in the quotation at the top of this page, the driving force in natural science is
curiosity and the basic principle is measuring, collecting expectations, and deriving and
formulating predictive laws in a mathematical language. Hence, important ideas often
grow from a simple but fascinating expectation. For this reason, theoretical and mathe-
matical concepts are applied to recent topics in research in this thesis.

Humans have been using metallic alloys such as meteoric iron and bronze [2] for thou-
sands of years to produce tools, weapons, and jewelry. Over the years, people recognized
that the quality and hardness of these objects is enhanced, if certain materials are com-
bined. Today, metals are smelted and mixed in modern production processes to obtain
materials with specific properties. The final products, such as steel beams or screws, are
obtained by solidification and can be found everywhere in daily life. Similarly, crystals
take a considerable part in daily life. Common crystals are salt or diamonds and the lat-
ter are, as we know, in demand as jewelry. Moreover, crystals are the cores of lasers,
and large defect-free crystals are needed in neutron scattering experiments or to create
modern materials such as semiconductors. Similar to metallic alloys, crystals are grown
by solidification from an oversaturated melt. Accordingly, fundamental knowledge of the
melting and solidification process is an essential condition for working effectively with
such materials.



2 CHAPTER 1. INTRODUCTION

Figure 1.1: (Color) Schematic sketch of a two-dimensional hard-disk system to motivate
investigations on the crystal-fluid interface. If the crystalline phase (left) and the fluid phase
(right) are brought in contact with each other, an interface will constitute which separates
both phases. The properties of this interface are discussed in this work.

Melting and solidification are dynamic processes involving two physical phases of a ma-
terial. With respect to metallic alloys and crystals, these are a fluid and a solid (crystalline)
phase, respectively (see Fig. 1.1). They are separated by an interface that stores a certain
amount of energy per interface area, called the interfacial tension. For crystalline solids,
this tension depends on the orientation of the interface that is related to an interfacial
stiffness. Since this anisotropy controls changes of the interfacial shape, understanding
the crystal-fluid interface quantitatively on a microscopic scale can help to gain deeper
insight into the processes of melting and solidification as described above.

To obtain quantitative predictive results, it is useful to investigate a respectable model
that can serve as a reference system. In 1991, the Nobel prize in physics was awarded to
Pierre-Gilles de Gennes (1932-2007) “for discovering that methods developed for study-
ing order phenomena in simple systems can be generalized to more complex forms of
matter, in particular to liquid crystals and polymers” [3,4]. Thus, excellent model systems
are available in the rich field of soft matter, where typical length scales range from about
1nm up to 10μm. These mesoscopic length scales allow the observation of particles by
scattering measurements with visible light. Thus, single particle trajectories can be traced
in real-space measurements, which allows direct validation of theoretical approaches in
experiments. Soft matter [3, 5] includes most biological and daily used materials, for
example milk, honey, ink, and blood. Here, typical particles are colloids, polymers, or
tensides and, in contrast to granular matter or complex plasmas [6], they are solved in
microscopic solvents (i.e. blood cells in the blood plasm).1 Moreover, the macroscopic
behavior of soft matter strongly depends on the interactions between the mesoscopic (or
colloidal) particles which, in principle, are tunable. They can be adjusted by screening
electric forces or sterically stabilizing the colloidal particles2, for instance. Accordingly,
a wide set of applications arises, including tunable models and “intelligent” fluids such as

1Neither fluid nor solid, soft matter systems are also called complex fluids.
2Typically, polymers are attached to colloidal surfaces, which results in additional (entropic) repulsive

or attractive depletion forces, depending on the system.
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those being used in liquid crystal displays.

One of the most important model systems is the hard-core model, where particles only in-
teract when they are in contact (short-ranged interaction). Solely driven by entropic forces,
hard-particle systems state ideal model, benchmark, and reference systems and are being
intensely investigated over the last decades. Particle shapes are various and in principle,
soft interactions can be mapped onto effective hard-core interactions [7]. Here, shapes
range from simple spherical ones over rodlike, cubic, brig like, and dumbbell-like, to more
complex ones [8] and even in experiments, a large set of shapes is available. Of course,
the simplest shape is that of a hard sphere and for this reason, hard-sphere systems belong
to the most investigated soft matter systems. Consequently, hard spheres are known to
crystallize in a fcc structure, similar to metals like nickel and copper, and therefore, they
constitute perfect reference systems for the investigation of interfaces. However, quanti-
tative predictions for hard-sphere interfaces are needed to clarify apparent discrepancies
found in real-space experiments of sterically-stabilized colloidal suspensions [9–12].

In general, a theoretical description of soft matter systems must include the mesoscopic
particles as well as the microscopic solvent. Consequently, many-particle systems have
a huge number of parameters that must be described. For example, a state of a pint of
alcohol has about 1024 − 1025 coordinates [13], which are too many to apply calculations
with actual computational resources. Thus, simple models can be defined which contain
only a few macroscopic parameters, or experiments can be applied. For example, H. Ayr-
ton describes The Origin and Growth of Ripple-mark in 1904 [14], motivated by curiosity
about the existence of “sandy shore covered with innumerable ridges and furrows, as if
combed with a giant comb”.

Now, density functional theory (DFT) is a theory that is based on statistical physics and
describes a density distribution instead of single particles [15–18]. Developed in the con-
text of quantum mechanics by P. Hohenberg and W. Kohn [19], it has also been extended
to finite temperature [20] and classical systems [21,22]. In 1998, the Nobel prize in chem-
istry has been awarded to Walter Kohn3 (*1923) for his development of density-functional
theory [23, 24]. Moreover, DFT provides a theoretical framework to obtain the (grand
canonic) energy of a system in equilibrium. For this purpose, a functional is needed
that depends on the local one-particle density, but which is not known in general [20].
Accordingly, a huge family of approximate functionals has been obtained over the last
decades, including a family of fundamental measure theory (FMT) functionals [25–29]
which perfectly describe hard-core interactions, but whose properties are not known ab
initio. Consequently, they must be applied to physical models and a comparison must be
drawn to experiments and/or computer simulations. However, developed from statistical
physics, DFT is, in principle, a promising tool, if a reliable functional is known. In ad-
dition, DFT can also be extended to non-equilibrium situations. As the atomic motion of
the microscopic solvent is much faster than the movement of the mesoscopic particles,
the solvent particles can be integrated out. Then, they enter a dynamic DFT (DDFT) in

3The prize was shared by J. A. Pople.
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form of thermal noise [30] or diffusion [31]. Besides, hydrodynamics can also be taken
into account [32].

In this thesis, first an introduction to the theoretical framework is given in Chapter 2,
resulting in a detailed description of DFT. Then, particle interactions are discussed in
Chapter 3 and FMT is introduced, especially the very accurate White Bear version mark
II (WBII) and the extended deconvolution FMT (edFMT) which are both applied to phys-
ical systems in this work. In Chapter 4, the crystal and the fluid phase of hard-sphere sys-
tems are analyzed in detail in the framework of DFT and results are carefully compared to
Monte Carlo (MC) computer simulation and to available experimental data to obtain de-
tailed knowledge about the WBII approach. On this fundament, the crystal-fluid interface
in a hard-sphere system is investigated in Chapter 5. Performing free minimization of the
one-particle density, the orientation-resolved interfacial tensions and stiffnesses are ob-
tained for the equilibrated interface, supported again by MC computer simulations. The
results are compared with existing experimental findings. Finally, edFMT is applied to
non-spherical anisotropic spherocylinders and dumbbells in Chapter 6. As orientational
order plays an important role in switching processes of liquid crystal displays, the dy-
namic behavior of orientational resolved spherocylinders is analyzed by DDFT, while a
time-dependent external field is applied to the system that acts solely on the orientations
of the particles. Moreover, the model of non-convex dumbbells is investigated in the con-
text of edFMT to analyze the effects of non-convexity and is finally compared to computer
simulations.
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Go, wondrous creature! mount where science guides,

Go, measure earth, weigh air, and state the tides;

Instruct the planets in what orbs to run,

Correct old Time, and regulate the sun;

(from: An Essay on Man, Alexander Pope 1688 - 1744)
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2 Theory

The basic principle of natural science is measuring, collecting expectations, and deriving
and formulating predictive laws in a mathematical language. Accentuating this concept,
William Thomson (1824-1907, since 1892 Lord Kelvin) placed the above cited lines of
the poem An Essay on Man from Alexander Pope on the title page of an academic essay
On the Figure of the Earth in 1839/1840.1

Applying this principle, the French physicist (Nicolas Léonard) Sadi Carnot (1796-1832)
established thermodynamics2 in 1824 with the aim of increasing the efficiency of steam
machines.3 Later on, William Thomson formulated a first definition of thermodynamics
and heat4 and defined thermodynamics as the relation between heat and forces.5 Thus,
thermodynamics is a phenomenological theory of microscopic systems in equilibrium,
using macroscopic variables like entropy, temperature, or pressure,6 but the physics of the
microscopic constituents is not described.

In some sense, statistical physics fills the gap between Newton’s mechanics and the ther-
modynamics of Lord Kelvin and S. Carnot and describes the physical behavior of the
microscopic constituents, using variables like particle velocities and particle interactions.
The main idea of statistical physics7 is the calculation of the partition function that takes
into account all possible states or configurations of a system. Knowing this function, all
thermodynamic quantities can be deduced from it. Consequently, statistical physics has
been used to develop thermodynamics on a microscopic understanding. Thus, statistical
physics is an ideal and necessary starting point to develop microscopic theories for many
body systems, leading to a more fundamental understanding than by using phenomeno-
logical theories.

1S. P. Thompson in Ref. [33] on page 10. The poem is taken from An Essay on Man, Epistle II, pages
376f in Ref. [34].

2For example, see K. C. Cheng about the historical development of thermodynamics [35].
3The article from 1824 is about Reflections on the Motive Power of Fire and on Machines Fitted to

Develop that Power [36] (Orig. title: “Réflexions sur la puissance motrice du feu et sur les machines propres
à développer cette puissance”).

4Similarly, Joseph Fourier (1768-1830) developed a mathematical theory of heat [35].
5See The Life of Lord Kelvin by S. P. Thompson [33].
6A well-structured textbook is written by H. B. Callen [13].
7For example, see textbooks of F. Reif or J. E. Mayer and M. G. Mayer [37, 38].
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One of these theories based on statistical physics is the density functional theory (DFT).
It was developed in 1964 by P. Hohenberg and W. Kohn [19] and has been extended by
N. D. Mermin [20] to finite temperature one year later. Adapted to classical (colloidal)
systems [21, 22], DFT is a theoretical framework to describe the one-particle distribution
function (or density profile) of particles as well as the energy and structure of systems in
equilibrium. For this reason, a functional is introduced that returns the free energy which
corresponds to a particle density distribution function in a system.

In this chapter, thermodynamics and statistical physics are re-called in Sec. 2.1 and
Sec. 2.2, including the definitions of averages, thermodynamic potentials, and density
distributions. From this foundations, the framework of DFT is derived in Sec. 2.3, for the
moment without including particle interactions in an explicit form; this will be the topic of
chapter 3. Finally, the static framework of DFT is extended to non-equilibrium situations
in a dynamical density functional theory (DDFT) which is presented in Sec. 2.4.

This chapter is mainly based on textbooks of H. B. Callen [13], F. Reif [37], J. E. Mayer
and M. G. Mayer [38], and J.-P. Hansen and I. R. McDonald [39], as well as on articles
and lecture notes of R. van Roij8 and R. Evans9 [22].

2.1 Thermodynamics

In this section, the basic principles of thermodynamics are outlined [13, 39]. Referring to
the definition by William Thomson (1824-1907), [42]

thermo-dynamics falls naturally into two divisions, of which the subjects are
respectively, the relation of heat to the forces acting between contiguous parts
of bodies, and the relation of heat to electrical agency.

In equilibrium, a thermodynamic system is fully specified by so called state variables
that characterize the thermodynamical properties of the system and are either extensive
or intensive. Extensive state variables scale with the size of the system while the physical
properties of the system remain unchanged. Typical representatives are the volume V of
the system, the mass m of all particles, the total amount Ni of the particles of a certain
species i, the internal energy U , and the entropy S. On the other hand, representatives
of intensive variables are the temperature T , pressure p, and chemical potential μi of a
certain species i. These variables are independent of the size of the system.

Depending on the system and its surroundings, different sets of state variables can be
used to fully describe the thermodynamical properties, because the state variables are
not independent. For example, pressure and volume depend on each other and on the
environment of the system, as it is shown in Fig. 2.1. The environment can consist of a
heat reservoir to fix the temperature, a flexible wall or piston to fix the pressure, or a source

8Lecture notes of R. van Roij [40, 41] at Utrecht University.
9Lecture notes and private communication.
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Figure 2.1: (Color) Thermodynamical systems: a) Isolated system (S, V,N), b) sys-
tem (T, V,N) with heat exchange (canonical system), c) system (T, p,N) with additional
change in volume (Gibbs system), d) system (T, V, μ) with particle exchange (grand canon-
ical system).

or sink of particles. Moreover, a thermodynamic system with a special set of related state
variables is called a thermodynamical ensemble.

Furthermore, every ensemble is connected to a thermodynamic potential or, in other
words, to a kind of energy. Some potentials, as shown in Table 2.1, are the internal en-
ergy U(S, V, {Ni}) of a system with fixed entropy, volume, and particle numbers (see
Fig. 2.1a), the (Helmholtz) free energy F (T, V, {Ni}), differing from the latter in a fixed
temperature instead of a fixed entropy (see Fig. 2.1b), and the grand canonical energy
Ω(T, V, {μi}) with a fluctuating number of particles (see Fig. 2.1d).

Now, all relations between the state variables of an ensemble can be obtained from the
corresponding thermodynamic potential. As it becomes apparent from Table 2.1, two po-
tentials differ in the correspondence to their state variables. In other words, one or more
state variables are replaced by their, so called, conjugated ones to change between two
potentials. This change is performed by a Legendre transformation, where the product
of two conjugated variables enters. This product has the dimension of energy, where one
factor represents a measure of change in the system (volume, particle number, entropy),
while the other factor describes a quantity to perform this change. For example, the trans-
formation between the free energy and the grand canonical energy is applied by

Ω (T, V, {μi}) = F (T, V, {Ni}) −
∑

i

μiNi, (2.1)
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Table 2.1: Thermodynamic potentials and their corresponding state variables. In addition,
the Legendre transformation between the internal energy and the appropriate potential is
given.

Thermodynamic potential variables transformation

Internal energy U S, V , {Ni}
(Helmholtz) free energy F T , V , {Ni} U − TS
Enthalpy H S, p, {Ni} U + pV
Gibbs free energy G T , p, {Ni} U + pV − TS
Grand (canonical) energy Ω T , V , {μi} U − TS −

∑
i μiNi

using the product of the chemical potential μi and the particle number Ni, where the
particle number of species i depends implicitly on the chemical potential, the volume,
and temperature.

Consequently, it is of essential importance to know at least one relation that describes one
of the thermodynamical potentials. Indeed, the internal energy U(S, V,N) is known to
consist of heat TS, work pV , and chemical energy μN , and thus it reads

U(S, V,N) = TS − pV + μN. (2.2)

This fundamental relation is related to the first law of thermodynamics.

Hence, thermodynamics deals with four important postulates or laws, called the laws
of thermodynamics. The zeroth law of thermodynamics states that connected systems
equilibrate transitively, where the third law states that absolute zero temperature cannot
be reached. Additionally, the latter is attributed to W. Nernst.10

The first law of thermodynamics deals with the conservation of energy and is ascribed to
R. Clausius [43,44],11 who stated that in a thermodynamic process, the raise in the internal
energy of a system is equal to the difference between the raise of heat accumulated by the
system and the raise of work done by it.12 In other words, a change in internal energy
ΔU = Q + ΔW causes a conversion into work ΔW and into an amount of heat Q.13

The second law of thermodynamics defines the concept of entropy and its increase in
closed systems. Its first formulation is attributed to S. Carnot, but R. Clausius and Lord
Kelvin also drew equivalent formulations. Moreover, R. Clausius has introduced the con-
cept of entropy [45] and finally Ludwig Eduard Boltzmann (1844-1906) connected it with

10For further information see K. C. Cheng, Historical Development of the Theory of Heat and Thermo-
dynamics [35], page 29.

11The conservation of heat had been stated already before R. Clausius from several scientists.
12R. Clausius states in [43] on p. 373: “(...) es soll nur ein (...) Satz als Grundsatz hingestellt werden,

nämlich daß in allen Fällen, wo durch Wärme Arbeit entstehe, eine der erzeugten Arbeit proportionale
Wärmemenge verbraucht werde, und daß umgekehrt durch Verbrauch einer ebenso großen Arbeit dieselbe
Wärmemenge erzeugt werden könne. ”

13Following Eq. (2.2) it reads dU = TdS − pdV + μdN .
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statistical disorder14 in his famous law S = k logW , written on his gravestone. The law
connects the number of microstates via W with the macroscopic entity of entropy S,
where k = kB is the Boltzmann constant.

Furthermore, thermodynamics deals with the so-called equations of state that connect
the (state) variables of a physical system with each other in a certain way, such that the
equations describe a real physical state of the system. For example, the laws describing
an ideal gas are famous and well-known equations of state and they read15

pV = NkBT, E =
3

2
NkBT, (2.3)

where E is the energy of the system and kB denotes the Boltzmann constant, relating the
individual energy of particles with temperature that is defined on a macroscopic level.

However, the equations do not hold for real gases because interactions between the con-
stituents of the gases are not captured. For this reason, M. Thiesen [49] and H. Kamerlingh
Onnes [50] expressed the pressure of a thermodynamic system in equilibrium as a power
series in terms of the density ρ = N/V of the system,

p(ρ, T )

kBT
= ρ +

∞∑
n=2

Bn(T )ρn. (2.4)

Here, the temperature-dependent prefactors Bn are called nth virial coefficients. It should
be noted that the Nobel Prize in physics was awarded in 1913 to Heike Kamerlingh Onnes
(1853-1926) for his investigations on the properties of matter at low temperatures which
led, inter alia, to the production of liquid helium [51].

2.2 Statistical physics

Statistical physics16 deals with methods and laws of statistics17 that are applied to micro-
scopic quantities in physical systems, to achieve macroscopic observables that are able to
describe properties like energy and the number of particles in many particle systems with
particle numbers of about 1023. Hence, statistical methods are needed for their calculation
and, for this reason, statistical weights and averages of the physical system are necessary.

In principle, two kinds of averages are common: The time average and the ensemble
average.18 If both averages are equal, the system is called ergodic. The time average Ā

14From information theory also the Shannon entropy is known.
15The equation of state for the ideal gas was mentioned first by E. Clapeyron [46], A. Krönig [47], and

R. Clausius [48]; for further reading, e.g. see textbooks [13, 39].
16For further reading see textbooks [37, 38].
17For example, see textbook of Malcolm Goldman [52].
18For early discussions, e.g. see work of P. Hertz [53, 54].
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of an observable or operator A(ψ) of an physical state ψ of a system measures the mean
value of A on a certain time interval [t0, t0 + Δt] as

Ā =
1

Δt

∫ t0+Δt

t0

A (ψ(t)) dt. (2.5)

Following the spirit of the law of large numbers, this average is, in general, only indepen-
dent of t0 if Δt → ∞, and thus, the time average is sometimes directly defined in this
limit [39].

On the contrary, the ensemble (or configuration) average 〈A〉 of any operator A measures
the average over all possible configurations ψ ∈ Γ of the system. Here, the configuration
space or phase space Γ holds all possible configurations of the system. Likewise, a subset
ΓA ⊂ Γ is called an ensemble, if the macroscopic observable A is constant for all ψ ∈ ΓA.

Because some of the configurations ψ ∈ Γ appear more often than others, the configura-
tions of the system are weighted with a statistical weight f0(ψ, t), reflecting the probabil-
ity to find a certain state ψ of the set Γ at time t. Similarly, the distribution of phase points
ψ in a given ensemble ΓA is given by a phase space probability density fA(ψ ∈ ΓA, t),
where fA is defined on the ψ ∈ ΓA. Correspondingly, the ensemble average is calculated
by

〈A〉 = Trcl (f0A) (2.6)

as an average over all possible states Γ of the system. Here, the classical trace Trcl for an
operator A is defined by19

TrclA =
∞∑

N=0

1

h3NN !

∫
ΓN

Adψ, (2.7)

where h denotes the Planck constant. Furthermore, the weight f0 is normalized and there-
fore holds Trclf0 = 1.

It should be mentioned that the definition of the classical trace Eq. (2.7) is also possible
without the factor 1/(h3NN !), even without the sum over the number of particles. Then,
the definitions of the partition sums in the next subsection also alter. This change would
allow the more general definition of the classical trace by

∫
Γ
Adψ, but in literature and

with respect to classical N -particle systems the used definition is more common.

The time evolution of a probability density fA is given by the Liouville equation

∂fA(ψ, t)

∂t
+ ∇Γ (fA(ψ, t))

dψ

dt
= 0, (2.8)

where ∇Γ is the gradient in phase space. In other words, the Liouville equation states the
preservation of volumes (or areas) in phase space and, thus, it is similar to the continuity
equation. Consequently, the time evolution of a system is given by the time evolution of

19Compare the definitions of R. Evans [22] and J.-P. Hansen and I. R. McDonald (Appendix B) [39].
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its corresponding phase point ψ(t) ∈ Γ.

Applying the concept to a classical system of N particles in three dimensions, a phase
point contains the 3N positions �rN = {�ri} and momenta �pN = {�pi} of all particles.
Accordingly, the phase space has a dimension of dim(Γ) = 6N . The Hamiltonian of such
a system is then given by

H(ψ) = T (�pN) + U(�rN) + Vext(�r
N) (2.9)

and provides the energy to a given system state ψ = (�rN , �pN), where U = U(�rN) is the
particle interaction potential depending on all particle positions,

Vext(�r
N) =

N∑
i=1

Vext(�ri) (2.10)

is the energy due to an external potential Vext that acts on single particles, and

T (�pN) =
N∑

i=1

|�pi|2
2mi

(2.11)

is the kinetic energy of all particles.

2.2.1 Classical ensembles and connection to thermodynamics

Conserved quantities are of particular interest in physics. Since some variables of a ther-
modynamic system are conjugated, several ensembles exist that differ in their conserved
thermodynamic variables as well as their probability density and occupied volume in
phase space. In general, three ensembles of particular interest exist, by name the micro-
canonical, the canonical, and the grand canonical, that will be discussed in the following
paragraphs.20

First, the microcanonical ensemble combines all isolated systems that have fixed energy
E0, volume V , and particle number N . Its energy equals the Hamiltonian of every single
system. Consequently, its probability density

fm(ψ) =
δ (E0 −H(ψ))

ω(E0, V,N)
(2.12)

ω(E0, V,N) =

∫
ΓN

δ(E0 −H(ψ))dψ (2.13)

consists of a Dirac δ-function,21 that fixes the internal energy to a value E0, and of a
normalization factor ω. In principle, the latter is similar to a partition sum that counts all

20Following lecture notes by R. van Roij of Utrecht University [40, 41] and [39].
21This is not a function in a mathematical sense (see also Eq. (A.16)).
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possible states in an ensemble.

Furthermore, the microcanonical ensemble is linked to thermodynamics by the famous
law of J. Stefan and L. Boltzmann,

S(U, V,N) = kB log (Zm(U, V,N)) , (2.14)

and thus, it is characterized by entropy S. Here, Zm(U, V,N) = ω(U, V,N)kBT/(h
3NN !)

is the microcanonic partition sum.22

Second, the canonical ensemble describes systems that are connected to an external en-
ergy reservoir with fixed temperature. For this reason, such systems have a fixed tempera-
ture. It reflects everyday life in a more natural way than the microcanonical ensemble, be-
cause closed rooms normally have a fixed temperature T , volume V , and particle number
N . In the canonical ensemble, the total energy is distributed according to the Boltzmann
distribution and, therefore, its probability density fc and partition sum Zc read

fc(ψ) =
exp (−βH(ψ))

Zc(T, V,N)
(2.15)

Zc(T, V,N) =
1

h3NN !

∫
ΓN

dψ exp(−βH(ψ)) (2.16)

with β = 1/kBT denoting the inverse temperature.

Similar to Eq. (2.14), the link to thermodynamics is applied by the statistical logarithmic
law of Boltzmann. Since the corresponding thermodynamic potential for the canonical
ensemble is the (Helmholtz) free energy F (T, V,N), its connection to the partition sum
reads

F (T, V,N) = −kBT log (Zc(T, V,N)) . (2.17)

If the free energy is known, all thermodynamical parameters of the canonical ensemble
can be obtained by using the relations which are known from thermodynamics.

As an example, the ideal gas consists of non-interacting classical particles. In a canonical
ensemble, the partition sum Zc (Eq. 2.16) reduces to23

Z id
c (T, V,N) =

V N

h3NN !

∫
R3N

exp

(
−β

N∑
i=1

|�pi|2
2m

)
d�pN =

V N

N !Λ3N
(2.18)

with Λ = h/
√

2πmkBT denoting the thermal (De Broglie) wavelength [55]. Then, using

22In literature sometimes ω(U, V,N) is already defined as microcanonic partition sum.
23Remembering the definition of a phase point ψ = (�rN , �pN ), of the kinetic energy (2.11) of an ideal

gas, and
∫

exp(−x2/c)dx =
√
cπ.
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Stirling’s approximation,24 the free energy (2.17) for an ideal gas reads

F id(T, V,N) = NkBT

[
log

(
N

V
Λ3

)
− 1

]
. (2.19)

Following this result, the equations of state (2.3) are derived directly using the thermo-
dynamic relations p = −∂F (T, V,N)/∂V and E = ∂(βF (T, V,N))/∂β. In addition,
the chemical potential μid = ∂F id(T, V,N)/∂N = kBT log(Λ3N/V ) for an ideal gas is
obtained.

As third ensemble, the grand canonical ensemble describes systems that allow energy and
particle exchange at a fixed chemical potential and temperature. For example, houses have
a fixed volume V and allow particle and energy exchange with their environment that has
a fixed chemical potential μ and temperature T . Since the grand canonical ensemble can
be seen as a combination of canonical ensembles, in the grand canonical ensemble not
only the energy fluctuates but also the number of particles. Hence, the grand canoncial
probability density fg and partition sum Ξ reads

fg(ψ,N) =
exp (−β(H(ψ) − μN))

Ξ(T, V, μ)
, (2.20)

Ξ(T, V, μ) =
∞∑

N=0

exp(βNμ)

h3NN !

∫
Γ

exp (−βH(ψ)) dψ. (2.21)

As for the canonical ensemble, the link to thermodynamics is established by the law of
Boltzmann and, since the corresponding potential for the grand canonical ensemble is the
grand canonical energy Ω(T, V, μ), the connection to the partition sum follows as

Ω(T, V, μ) = −kBT log (Ξ(T, V, μ)) . (2.22)

At this point, it is also common to define the fugacity

z =
exp(βμ)

Λ3
(2.23)

to relate the canonical partition function fc to the grand canonical one, while applying the
integration over the momenta for both sums.

24Stirling’s approximation (in second order), also called Euler-McLaurin sum rule, reads log(N !) =
N log(N) −N + O(log(N)) (for example, see Ref. []).
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2.2.2 Particle densities and distributions

The particle density or particle distribution function at position �r is defined for a system
of N particles at positions �rN by

ρ̂(�r, �rN) =
N∑

i=1

δ(�r − �ri). (2.24)

In principle, it counts particles at a certain position �r and, thus, is a microscopic quantity.

Moreover, the one-particle density ρ(1)
N is defined as a macroscopic quantity as an ensem-

ble average of the particle distribution in an N -particle system and reads

ρ
(1)
N (�r) = 〈ρ̂(�r, �rN)〉. (2.25)

As it is apparent from its definition in Eq. (2.24), an integration over the one-particle
density yields

∫
V
ρ

(1)
N (�r)d�r = N , the number of particles in the system.25 Furthermore,

the one-particle density is a continuous and differentiable function, due to its definition in
the continuum limit of the classical trace (2.7). Accordingly, it is a bounded function with
respect to the supremum norm, if defined on a compact domain V ⊂ R3.26

Similar to the definition of the one-particle density, n-particle densities ρ(n)
N can be defined

as a trace of products of n independent sums of δ-distributions. At the same time, another
route uses the probability density of the corresponding statistical ensemble to define the
n-particle densities. Since the probability density f(ψ) holds all states of an ensemble,
the n-particle density is obtained by an integration over all momenta and (N − n) spatial
coordinates of phase space and reads

ρ
(n)
N (�r n) =

N !

(N − n)!

∫
V (N−n)

∫
R3N

f
(
ψ = (�rN , �pN)

)
d�pNd�r (N−n). (2.26)

Because the particles and its coordinates are indistinguishable in phase space, a multipli-
cation with a combinatorial factor N !/(N − n)! is necessary.

Nevertheless, the structure of a fluid often is analyzed using the n-particle distribution
function

g
(n)
N (�r n) =

ρ
(n)
N (�r n)∏n

i=1 ρ
(1)
N (�ri)

. (2.27)

This function measures the internal structure of a fluid that contains N particles. For
example, an ideal gas without any internal structure, due to missing particle interactions,
has a constant distribution function g ≡ 1. Thus, all particles in the system are distributed
randomly.

25Thus, an homogeneous system (like a fluid phase) features the spatial-independent one-particle density
ρ
(1)
N = N/V .

26In general, the definition on Rn is also possible.
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Because the total correlation is zero in this case, a total correlation function h = g − 1
can be defined, which gives the non-trivial part of the correlations. Furthermore, a direct
pair-correlation function c(2) is often defined by the Ornstein-Zernike relation27

h(�r, �r ′) = c(2)(�r, �r ′) +

∫
V

c(2)(�r, �r ′′)ρ(�r ′′)h(�r ′′, �r ′)d�r ′′ (2.28)

that can be solved recursively. As an obvious physical interpretation, J.-P. Hansen and
I. R. McDonald state:28

the “total” correlation between particles 1 and 2, represented by h(2)(1, 2), is
due in part to the “direct” correlation between 1 and 2 but also to the “indi-
rect” correlation propagated via increasingly large numbers of intermediate
particles.

2.3 Density functional theory

Density functional theory (DFT) provides a functional of the one-particle density (2.25) to
determine the free energy of a classical thermodynamic system. Once having knowledge
about this energy functional, all thermodynamic properties of the physical system can be
obtained.

In 1964, P. Hohenberg and W. Kohn published an article about the Inhomogeneous Elec-
tron Gas [19], where they introduced DFT for the ground state (T = 0) of the system. One
year later, N. D. Mermin expanded DFT to non-zero temperatures [20] in a grand canon-
ical ensemble.29 In the 1970’s, DFT has been applied to classical systems by C. Ebner,
W. F. Saam, and D. Stroud, in a work about Density-functional theory of simple classical
fluids (I. Surfaces) [21], and some years later by R. Evans in a work about The nature of
the liquid-vapour interface and other topics in the statistical mechanics of non-uniform,
classical fluids [22]. In 1998, the nobel prize in chemistry has been awarded30 to Walter
Kohn (*1923) for his development of density-functional theory [23, 24].

This section follows the original works of N. D. Mermin [20], R. Evans [22], and the
textbook of J.-P. Hansen and I. R. McDonald [39]. For furter reading, see also Refs. [15–
18]. In addition, Appendix A.2 gives an outline about the concept of functionals and its
derivatives.

27The direct correlation function as a derivative of the intrinsic free energy gives the function greater
physical meaning [39]; see also Eq. (2.50) and Ref. [22].

28See p. 59, Sec. 3.5, in Ref. [39].
29N. D. Mermin noted that the theory also works in a canonical ensemble.
30The prize was shared by J. A. Pople.
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2.3.1 Existence of the energy functional

For a Hamiltonian H, an intrinsic chemical potential μ, and a number N of particles of a
system, the functional

Ω[f ] = Trcl [f (H− μN + kBT log(f))] (2.29)

can be considered, re-calling the definitions of the classical trace (2.7) and of the proba-
bility density f (e.g. Eq. (2.20) for the grand canonical ensemble). Due to the definition
of this functional, the grand potential (2.22) is obtained, if the equilibrium probability
density (2.20) is inserted in the functional. Thus, remembering Tr(fg) = 1, it follows

Ω[fg] = −kBT log (Ξ(T, V, μ)) ≡ Ω. (2.30)

Moreover, the equilibrium probability density minimizes the functional Ω. Accordingly,
it satisfies the inequality

Ω[f ] > Ω[fg] (2.31)

for a given probability density f �= fg. This can be seen easily from the definition of the
functional (2.29) in combination with Eq. (2.30),

Ω[f ] = Ω[fg] + kBT log(Ξ(T, V, μ))Trcl(f) + Trcl [f(H− μN + kBT log(f))]

= Ω[fg] + kBT Trcl

[
−f log

(
exp(−(Hn − μN)/kBT )

Ξ(T, V, μ)

)
+ f log(f)

]
= Ω[fg] + kBT Trcl [f log(f) − f log(fg)] , (2.32)

and using Gibbs inequality (A.7) from the appendix.

In the following, it is proven that the functional (2.29) is also determined by the one-
particle density ρ. Therefore, it is necessary to prove that the probability density f is a
functional of the one-particle density ρ. This is done by following the original proof as
given in Refs. [20, 22, 39].

Theorem: For a system with given temperature T , volume V , chemical potential μ, inter-
action potential U , and an external potential of the form (2.10), the probability density is
a functional of the one-particle density. The proof can be structured into three parts:

1. The probability density f is a unique function of the external potential Vext.

2. The one-particle density ρ is a functional of the probability density f .

3. The probability density f is a functional of the one-particle density ρ.

The second part of the proof is trivial, since the one-particle density ρ is defined as a
functional of the probability density f in Eq. (2.25). The third part is equivalent to the
existence of a surjective map from ρ to f . In other words, if two probability densities
are given with f �= f ′, then the corresponding one-particle densities must hold ρ �= ρ′.
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Moreover, it will be sufficient to proof that Vext is determined by ρ, due to part 1 of this
proof.

If f is shown to be a functional of ρ, then it follows that the functional (2.29) also is a
functional of the corresponding density ρ and Ω[f ] = Ω[ρ]. Consequently, Eq. (2.29) can
be written as

Ω[f ] = Trcl [fVext] + Trcl [f(T + U + kBT log(f))] − Trcl [fμN ] . (2.33)

Using the definition (2.10) of the external potential Vext and the definition of the one-
particle density in Eq. (2.24) and Eq. (2.25), the identity

Trcl [fVext] = Trcl

[
f

(∫
V

N∑
i=1

Vext(�r)δ(�r − �ri)d�r

)]
=

∫
V

ρ(�r)Vext(�r)d�r (2.34)

can be shown. Similarly, the second identity Trcl[fμN ] = μ
∫

V
ρ(�r)d�r follows.

Proof (part 1): The probability distribution fg is a function of the external potential Vext,
due to its definition in Eq. (2.20). Furthermore, let Δ ∈ C(V ) be a continuous variation
of the external potential V ′

ext(�r) = Vext(�r) + Δ(�r). Thus, the corresponding probability
density reads

f ′
g(ψN , N) =

exp
(
−β
∑N

i=1 Δ(�ri)
)

exp (−β(H(ψN) − μN))

Trcl

[
exp
(
−β
∑N

i=1 Δ(�ri)
)

exp (−β(H(ψN) − μN))
] (2.35)

with ψN ∈ ΓN . It is not possible to achieve f ′
g = fg for any variation Δ �= 0, because

Δ(�r) solely has spatial dependency and in particular is independent of the particle number
N . Consequently, an external potential Vext(�r) uniquely determines a probability density
fg. �

Proof (part 3): Two external potentials Vext and V ′
ext with Vext �= V ′

ext are supposed
and give rise to the same equilibrium density ρ0. According to part 1 of the proof, the
corresponding probability densities hold f0 �= f ′

0 and the corresponding Hamiltonians are
denoted with H and H′. Thus, inequality (2.31) also holds and the functional (2.29) reads

Ω[f ′
0] = Trcl [f

′
0 (H′ − μN + kBT log(f ′

0))]

< Trcl [f0 (H′ − μN + kBT log(f0))]

= Ω[f0] + Trcl [f0 (V ′
ext − Vext)] . (2.36)

Because both probability densities are assumed to lead to the same equilibrium density ρ0,
the result is also valid if primed and unprimed quantities are interchanged. Accordingly,
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the addition of Ω[f ′
0] and Ω[f0] with interchanged quantities leads to the contradiction

Ω[f ′
0] + Ω[f0] < Ω[f0] +

∫
V

ρ0(�r) (V ′
ext(�r) − Vext(�r)) d�r

+ Ω[f ′
0] +

∫
V

ρ0(�r) (Vext(�r) − V ′
ext(�r)) d�r, (2.37)

re-calling (2.34). Considering this result, it follows that the external potential Vext is de-
termined by the equilibrium density ρ0. �

2.3.2 Properties of the energy functional

Now, the functional (2.29) can be rewritten by using Eq. (2.33) with a dependency of the
one-particle density ρ instead of the probability density f by

ΩV [ρ] =

∫
V

ρ(�r)Vext(�r)d�r + F [ρ] − μ

∫
V

ρ(�r)d�r. (2.38)

Incidentally, the term containing the chemical potential μ is often added to the term con-
taining the external potential Vext by introducing the quantity Φ(�r) = μ − Vext(�r). This
quantity also states a unique functional of the equilibrium density. Moreover, in Eq. (2.38)
a functional

F [ρ] = Trcl [f (T + U + kBT log(f))] (2.39)

is defined that is also determined by the one-particle density ρ. Due to its definition,
the functional (2.38) has the same properties as the original functional (2.29). For an
equilibrium density ρ0 it provides the grand potential Ω = ΩV [ρ0] and it is minimized by
the density ρ0, which can be expressed by

δΩV [ρ]

δρ(�r)

∣∣∣∣
ρ=ρ0

= 0. (2.40)

The second functional (2.39) describes the intrinsic Helmholtz free energy that is con-
nected with the grand potential via a Legendre transformation (2.1). Thus, the Helmholtz
free energy F reads

F = F [ρ0] +

∫
V

ρ0(�r)Vext(�r)d�r, (2.41)

including an external potential Vext.

Finally, the derivative (2.40) of the grand energy functional yields the Euler-Lagrange
equation in DFT. This expression for the chemical potential is “the fundamental equation
in the theory of non-uniform fluids” [22] and reads

μ = Vext(�r) + μin[ρ0;�r ]. (2.42)
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By this, an intrinsic chemical potential

μin[ρ;�r ] =
δF [ρ]

δρ(�r)
(2.43)

has been defined that corresponds to the intrinsic Helmholtz free energy (2.39).

If the intrinsic free energy functional (2.39) is known, Eq. (2.42) is an implicit equation to
determine the equilibrium density ρ0, Thus, knowledge of the functional provides entire
information of all physical properties of the system. For example, the functional F [ρ] is
known for a system of non-interacting particles (an ideal gas), as shown in Eq. (2.19) for
the case Vext(�r) = 0. For the inhomogeneous case, the ideal gas free-energy functional
reads

Fid[ρ] = kBT

∫
V

ρ(�r)
[
log
(
ρ(�r)Λ3

)
− 1
]
d�r (2.44)

and the intrinsic chemical potential μin[ρ;�r ] = kBT log (ρ(�r)Λ3) results from Eq. (2.43).
Now, the equilibrium density directly follows from Eq. (2.42) as

ρ0(�r) = z exp (−βVext(�r)) , (2.45)

where the fugacity z has been used that is defined in Eq. (2.23). This result is also known
as the barometric law. However, if particle interactions are considered, this simple con-
nection between μ and ρ becomes much more complicated.31

2.3.3 Particle interactions

In the presence of particle interactions, it is common to split the intrinsic free energy
functional

F [ρ] ≡ Fid[ρ] + Fexc[ρ] (2.46)

into an ideal gas part (2.44) without particle interactions and an over-ideal or excess part
Fexc that includes the interactions. Just as for the intrinsic free energy functional, both
parts are unique functionals of the density ρ for a given interaction potential U .

Similarly, the intrinsic chemical potential (2.43) can be written as

βμin[ρ;�r ] = log
(
ρ(�r)Λ3

)
− c[ρ;�r ], (2.47)

which is a sum of an ideal part and of an excess part

−c[ρ;�r ] ≡ β
δFexc[ρ]

δρ(�r)
(2.48)

that is also called additional, effective one-body potential [22]. Similar to the ideal
gas equation of state (2.45), the equilibrium density follows from the Euler-Lagrange

31See also the discussion by R. Evans in chapter 2 of Ref. [22].
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Eq. (2.42) and reads
ρ0(�r) = z exp (−βVext(�r) + c[ρ0;�r ]) . (2.49)

Thus, Eq. (2.48) determines the equilibrium density in a self-consistent way and provides
an iterative solving-method for numerical implementation.32

Moreover, c[ρ;�r ] only represents the first member in a hierarchy of direct correlation
functions c(n)[ρ;�r n] that provide full information about the structural properties of a sys-
tem and are defined by

c(n)[ρ;�rn] = −β δnFexc[ρ]

δρ(�r1)...δρ(�rn)
. (2.50)

In contrast, the direct pair-correlation function c(2)[ρ;�r ] is often defined via the Ornstein-
Zernike relation in Eq. (2.28).

To sum up, the density and the physical properties of the system are determined by the
grand energy functional Ω[ρ], or equivalently by the intrinsic (Helmholtz) free energy
functional F [ρ], as seen for the ideal gas in the previous paragraphs. Moreover, the free
energy functional consists of an ideal part (2.44) and of an excess part Fexc[ρ] that is not
known in an explicit form in general. Since Fexc contains the whole particle interactions,
its determination is an important part of research. For this reason, (mostly approximate)
functionals are introduced and discussed for Fexc in in chapter 3.

2.3.4 Several species and orientations

The framework of DFT can be extended to systems that contain more than one species of
particles or to an orientational dependency of the particles [22]. Then, the (total) density
consists of density profiles ρν for every species and orientation. Moreover, μν and Vext

are the corresponding chemical and external potentials. If orientational dependency is
assumed for one species of particles, the total density ρ(�r, û) is resolved into density
profiles ρû(�r) for every orientation û of one particle. Of course, the chemical potentials
are equal for density profiles that solely differ in their corresponding orientation (and not
in the species of particles).

Now, the grand canonical energy functional from Eq. (2.38) can be rewritten for several
species and/or orientations by

ΩV [ρ] = F [ρ] +
∑

ν

∫
V

ρν(�r) (Vext,ν(�r) − μν) d�r. (2.51)

The notation is taken from Ref. [56], where ν denotes a specific shape, size, and orienta-
tion, for brevity. Accordingly, the sum over ν denotes a sum over all species and, for each
anisotropic species, an integral over its orientation.

32Such methods are presented in Appendix C.1.
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2.4 Dynamical Density Functional Theory

Dynamical density functional theory (DDFT) has been presented by U. M. B. Marconi
and P. Tarazona in 1999 [30] “to study the relaxational dynamics of an assembly of inter-
acting particles subject to thermal noise. Starting from the Langevin stochastic equations
of motion for the velocities of the particles” they were able “to derive a self-consistent
deterministic equation for the temporal evolution of the average particle density”.

In 2004, A. J. Archer and R. Evans “presented an alternative derivation (...) that elucidates
further some of the physical assumptions inherent in the theory and shows that it is not
restricted to fluids composed of particles interacting solely via pair potentials; rather it
applies to general, multibody interactions. The starting point for (their) derivation is the
Smoluchowski equation and the theory is therefore one for Brownian particles and as such
is applicable to colloidal fluids” [31].

Moreover, M. Rex et al. introduced a dynamical density functional theory for anisotropic
colloidal particles [57], where they “generalize the formalism of (DDFT) for transla-
tional Brownian dynamics toward that of anisotropic colloidal particles which perform
both translational and rotational Brownian motion.” In a later work, M. Rex and H. Löwen
presented “a density functional theory for colloidal dynamics (...) which includes hydro-
dynamic interactions between the colloidal particles” [32].

The basic approximation in the derivation of DDFT is to use the framework of equilib-
rium DFT in nonequilibrium situations. Referring to the work of M. Rex et al. [57], this
may be called an adiabatic approximation, since the underlying idea is to identify the dy-
namical one-particle density profile ρ(�r, ω̂, t) with an equilibrium density profile ρ(�r, ω̂)
and a suitably prescribed external potential at a certain time t. Hence, nonequilibrium
correlations are approximated by equilibrium correlations of a suitable equilibrium refer-
ence system that possesses the same one-particle density (see also Refs. [30, 57]). Since
it is derived from statistical equations that are based on the continuity equation, DDFT
preserves the particle number and consequently describes a canonical system.

Now, DDFT is obtained within this adiabatic approximation and without taking hydrody-
namics into account by [57]

∂ρ(�r, û, t)

∂t
= ∇�r ·

↔
D(û)

[
ρ(�r, û, t)∇�r

δF [ρ]

δρ(�r, û, t)

]

+DrR̂ ·
[
ρ(�r, û, t)R̂ δF [ρ]

δρ(�r, û, t)

]
. (2.52)

Here, ∇�r is the gradient w.r.t. �r ∈ R3, R̂ = û × ∇û is the rotational operator acting
on the orientation û ∈ R3, Dr is the rotational short-time diffusion constant, which sets
the Brownian time scale τB = 1/Dr and includes rotational friction, and

↔
D(û) is the

translational diffusion tensor. For uniaxial (cylindrical) anisotropic particles this tensor
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may be expressed as [57]

↔
D(û) = D‖û · ût + D⊥[ I

↔
− û · ût] (2.53)

in terms of the translational diffusion constants D‖ and D⊥, parallel and perpendicular to
the main particle axis ûi. Here, I is the unit matrix and ût is the transpose of û.

If the particles are rotationally invariant and the translational diffusion is isotropic, the
diffusion tensor simplifies to

↔
D = D I

↔
and the DDFT equation reads

kBT

D

∂ρ(�r, t)

∂t
= ∇ ·

[
ρ(�r, t)∇

(
δF [ρ]

δρ(�r, t)
+ Vext(�r, t)

)]

= kBT∇2ρ(�r, t) + ∇ ·
[
ρ(�r, t)∇

(
δFexc[ρ]

δρ(�r, t)
+ Vext(�r, t)

)]
.(2.54)

Conversely, if particles are distributed homogeneously in space, the density ρ(�r, û, t) can
be split into a spatial bulk part ρ̄ and an orientational part f(û, t). The latter is normalized
on the sphere S2 by

∫
S2 f(û, t)dû = 1. Accordingly, the DDFT equation reduces to

kBT ρ̄
∂f(û, t)

∂t
= DrR̂ ·

[
f(û, t)R̂ δF [f ]

δf(û, t)

]
. (2.55)
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What is the meaning of interactions

– in an ideal world?
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3 Particle interactions

In nature, four fundamental forces are known that describe the way in which elementary
particles interact with each other. These forces are electromagnetism, strong interaction,
weak interaction, and gravitation, and they generate all physical properties of our sur-
roundings. Knowledge of these interactions allows precise calculations and predictions,
but fundamental particle interactions are often not of primary interest. Instead, interac-
tions between more complex composites (like cells, colloids, or planets) are of concern.
These interactions result from the constitution of the complex compounds of particles in
bodies and can be characterized as an effective interaction. Due to the diversity of possible
compounds of particles, effective particle interactions are various.

A rich field of these effective interactions is the one of colloidal soft matter [3, 5]. Also
called complex fluids, soft matter systems have significant physical properties on ther-
mal length scales that are comparable with room temperature. Moreover, objects typi-
cally have mesoscopic length scales that range from 1nm to 10μm. Now, Pierre-Gilles de
Gennes discovered “that methods developed for studying order phenomena in simple sys-
tems can be generalized to more complex forms of matter, in particular to liquid crystals
and polymers” [3]. Thus, soft matter systems are ideal model systems to investigate basic
physics and to model properties of systems by tuning their effective interactions. For his
discovery, the 1991 Nobel prize in physics was awarded to Pierre-Gilles de Gennes.

Classical colloidal soft matter physics deals with objects containing a huge amount of
elementary particles. It is quite common to define effective interaction forces for these
objects containing all elementary forces. Thus, a colloid is typically described by a ra-
dius and a charge, but not by all atomic constituents. Accordingly, individual forces are
said to be integrated out or coarse grained. For example, atoms that consist of electrons,
positrons, and neutrons are also described by only one mass and one electric charge. In-
deed, this description is valid in many situations.

In this context, the hard-core model is an important theoretical model, where particles are
not allowed to overlap; thus, they only interact when they are in contact. Accordingly, the
phase properties of this model can be described using pure entropic arguments. Moreover,
the model has the advantage to be a quite simple one, since interactions are short-ranged
and the potential only takes the values 0 and ∞. Thus, hard-core systems are an ideal
starting point to investigate fundamental properties in physics, for example the physics
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of freezing. Accordingly, a lot of theoretical approaches have been developed during the
last century, like scaled particle theory [58] or the Carnahan-Starling equation of state
[59]. The model has also been analyzed in detail using Brownian dynamics and Monte
Carlo computer simulations. Even in experiments, the preparation of nearly hard-core
like particles is possible, but it is a challenging work.

In this sense, density functional theory is an ideal theoretical framework to describe sta-
tistical many-particle systems, as mentioned in the former chapter. Thereby, particle inter-
actions are collected in the excess part (over ideal gas part) of the density functional that
is not known exactly in most cases. Accordingly, a collection of approximate functionals
has grown over the last decades. During this process, Y. Rosenfeld set up the quite accu-
rate fundamental measure theory (FMT) for spherical hard-core particles [25] which has
become an important theoretical tool to study hard-core interactions in the framework of
DFT.

In this chapter, first particle interactions are discussed in Sec. 3.1, in particular effec-
tive and pairwise interactions. Next, in Sec. 3.2, hard-core interactions and theoretical
approaches are introduced, especially in the case of spherical particle shapes. Finally,
realizations in DFT are outlined in Sec. 3.3 and FMT is presented, coming along with
several functional approaches in Sec. 3.4.

3.1 Soft matter interactions

Soft matter objects, like colloids, live on various length scales [5] that typically range from
1nm to 10μm (mesoscopic), where fluid particles in the solvent usually have atomic sizes
(microscopic). Consequently, the particles of the solvent are much faster than the meso-
scopic particles and the small solvent particles can be coarse grained; their interactions
are collected in effective potentials which are acting between the mesoscopic particles.
This process of coarse graining reduces the amount of degrees of freedom enormously.

As a consequence, effective particle interactions can be tuned by varying the properties of
the solvent and of the colloidal particles, i.e. concentration, materials, or shapes. Accord-
ingly, various types of interaction potentials exist: Some are purely repulsive or purely
attractive, such as the Coulomb potential; and some are mixed, repulsive and attractive,
such as the Lennard-Jones potential (see Fig. 3.1). Hence, soft matter is of great interest,
due to this possibility of manipulating the macroscopic behavior of physical systems.

To give an example, the Asakura-Oosawa model [60, 61] describes a system of big col-
loidal particles and small polymer spheres. The colloids are neither allowed to overlap
each other nor with the polymers, but the polymers do not interact with each other. Con-
sequently, a short-ranged attraction occurs between the colloids, because the colloidal
particles like to group together to rise the free volume which is available to the polymers.
The resulting effective interaction is purely entropic.

If all particle interactions in a physical system are known, in principle all properties of the
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Figure 3.1: (Color) Interaction potentials: a) Lennard-Jones potential, parametrizing a
combination of Van der Waals attraction and particle repulsion, b) Coulomb potential 1/r
(red) and DLVO potential with screening constant κ (blue), c) hard-core potential. The
sketch d) visualizes the effective particle diameter and the radial distance of one particle,
measured from its center.

system can be obtained. These properties are in general, correlated to the structure of the
system in equilibrium. Moreover, for pairwise interactions, the structure is also correlated
with the direct pair-correlation function c(2) that is introduced in Sec. 2.2.2 and Sec. 2.3.3.
In reciprocal space, this connection reads1

S(�k) =

〈
1

N
ρ̃(�k)ρ̃(−�k)

〉
=

1

1 − ρc̃(2)(�k)
(3.1)

and is known as the structure factor S(�k) of the system. The second identity in Eq. (3.1)
follows from the Ornstein-Zernike relation (2.28) by applying a Fourier transformation.

Accordingly, the restriction to pairwise interaction potentials is of strong interest. Since
the structure factor can be measured directly from scattering experiments, the properties of
the whole system are available from a single measurement via the direct pair-correlation
function. Moreover, pairwise interactions simplify theoretical descriptions and are neces-

1For example, see the textbook of J.-P. Hansen and I. R. McDonald [39].
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sary to apply the framework of DFT. For this reason, in the following sections pairwise
interactions are discussed.

3.1.1 Pair potentials and the Mayer function

In general, the particle interaction potential U(�rN) depends on all N particles of a system.
For example, three conducting spheres that carry the same electric charge must be de-
scribed by charge distributions instead of point charges. Accordingly, the presence of one
sphere affects the charge distribution of the other two spheres and it alters their interaction
on each other. Nevertheless, if all charges are assumed to be point charges, localized at
the center of each sphere, the interactions become pairwise additive. In fact, this assump-
tion of pairwise interactions is (approximately) valid in most situations. And even more,
the advantage of considering only two sets of coordinates over the full dependency of all
particle coordinates is a significant simplification of the theoretical description.

For this reason, the interaction potential U(�rN) that enters the Hamiltonian (2.9) is of-
ten assumed to be a sum only of pair potentials φij , acting between particles i and j.
Accordingly, the Hamiltonian of such systems reads

H(ψ) =
N∑

i=1

|�pi|2
2m

+
∑

1≤i<j≤N

φij (�ri, �rj) +
N∑

i=1

Vext(�ri) (3.2)

and the grand partition function from Eq. (2.21) takes the form

Ξ(T, V, μ) =
∞∑

N=0

1

N !

∫
V N

( ∏
1≤i<j≤N

e−βφij

)(
N∏

i=1

ze−βVext(�ri)

)
d�rN . (3.3)

Particles of the same species have the same interaction behavior be definition. Conse-
quently, one interaction potential is defined for all particles i and j of one species. Thus, a
one-component system has only one interaction potential φ ≡ φij ∀i, j. Furthermore, the
pair interaction φ(�ri − �rj) of “simple” fluids has a spherical symmetry and it simplifies
to φ(rij), where rij = |�ri − �rj| denotes the absolute distance between both particles. In
fact, this approximation makes sense for many species of particles, for example for small
molecules, as appearing in air.2

For calculations, it is useful to illustrate the sum of products, appearing in Eq. (3.3), by
diagrams, similar to Feynman diagrams that are known from Quantum electrodynam-
ics. Such diagrams consist of bonds and circles, where circles are illustrating a factor
that solely depends on one single particle position. On the other hand, a bond represents
a factor that depends on two particle positions, corresponding to the circles which are
connected through the bond. Hence, a product f(x)f(y)g(x, y) can be depicted by two

2This approximation is also known as reference average Mayer (RAM) approximation [62, 63].
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f -circles and one g-bond. Moreover, filled (or black) circles represent an additional inte-
gration over the coordinate that is represented by the circle. The textbook of J.-P. Hansen
and I. R. McDonald [39] is recommended for further reading about diagrammatic methods
and about transformation rules of such diagrams.3

It is important to note that the contribution of the N th term in Eq. (3.3) is of the order
V N . Accordingly, the whole sum in Eq. (3.3) diverges if N → ∞, because the interaction
potential φij vanishes in the limit of far separated particles i and j [38, 39]. Thus, a re-
formulation of the series in (3.3) is useful, where the exp(−βφij)-bonds are replaced by
so-called Mayer-f functions4

fij(r) ≡ f(|�ri − �rj|) = exp [−βφij(r)] − 1 (3.4)

that tend to vanish fast for an increasing distance r = |�ri − �rj| between two particles and
that vanish in the limit of r → ∞.

Now, the grand potential (3.3) can be expressed in a series of f -bonds and z�-circles,
where z� = z exp(−βVext) is a local activity (compare to the definition of the fugacity
z in Eq. 2.23). Furthermore, a change to ρ(1)-circles allows the expression of the direct
correlation function c(1) (see definition in Eq. 2.50) in terms of f -bonds and ρ(1)-circles.
Accordingly, an expression of the excess free energy Fexc (see Sec. 2.3.3) follows and its
expansion in terms of the density ρ(1) reads

βFexc [{ρi}] = −1

2

∑
i,j

∫
V

∫
V

ρi(�r1)ρj(�r2)fij(�r12)d�r1d�r2

−1

6

∑
i,j,k

∫
V

∫
V

∫
V

ρi(�r1)ρj(�r2)ρk(�r3)fij(�r12)fik(�r13)fjk(�r23)d�r1d�r2d�r3

+O(ρ4), (3.5)

where �rkl = �rk − �rl denotes the vector between positions �rl and �rk.

The series expansion of c(1) also yields the virial expansion (2.4) of an homogeneous
fluid.5 For instance, the first two virial coefficients Bn read

B2(T ) = − 1

2V

∫
V

∫
V

[exp (−βφ(r12)) − 1] d�r1d�r2 (3.6)

= −1

2

∫
V

f(�r)d�r (3.7)

B3(T ) = − 1

3V

∫
V

∫
V

∫
V

f(�r12)f(�r13)f(�r23)d�r1d�r2d�r3. (3.8)

3An earlier description is also given in chapter 8d of the textbook of J. E. Mayer and M. G. Mayer [38].
4The Mayer-f function has already been introduced in 1940 by J. E. Mayer and M. G. Mayer [38, 64]

and is defined in [38], Sec. 8d, Dense Gases. The Cluster Development.
5For further reading see textbook of J.-P. Hansen and I. R. McDonald [39], chapter 3.9, Virial expansion

of the equation of state.
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The third virial coefficient B3(T ) already contains the contribution of three interacting
particles. Accordingly, the contribution of B3(T ) vanishes, if all three contributing parti-
cles are not located close to each other. In the limit of low densities only the second virial
coefficient contributes.

3.2 Hard spheres

An important interaction is given by the hard-core interaction, shown in Fig. 3.1(c,d). In
this model, the particles are not allowed to overlap each other and therefore, interactions
are purely entropic. Thus, the internal energy U vanishes, and the free energy follows with
F = −TS [65]. In the case of spherical shapes, the particles “are treated as though they
were minute marbles, exerting no forces except when in contact” [38].

As the most simple kind of interaction, the hard-core potential states an ideal model for
fundamental studies. Furthermore, “the structure factor curves S(q)” (see Eq. (3.1)) “are
very similar” for several types of interactions and they “can be simulated by the hard-
sphere structure factor” [66] (in the homogeneous fluid). For example, one of these inter-
actions is given by Nickel.6

3.2.1 The hard-core interactions

In general, hard particle shapes are various. Starting with shapes of high symmetry like
spheres in three dimensions or disks in two dimensions, there exist cubes, spherocubes,7

elliptical particles, spherocylinders,8 dumbbells,9 and many more particle shapes. A huge
collection is listed in the article of S. Glotzer and M. J. Solomon [8], where the packing
of several species of hard particles is investigated.

The interaction potential φij of two hard-core particles Bi and Bj is defined as

βφij(Bi,Bj) =

{
∞ for Bi ∩ Bj �= ∅

0 for Bi ∩ Bj = ∅
. (3.9)

Consequently, the Mayer-f function, as defined in Eq. (3.4), takes the simple form

fij =

{
−1 for Bi ∩ Bj �= ∅

0 for Bi ∩ Bj = ∅
(3.10)

6For example, see Capillary wave analysis of rough solid-liquid interfaces in nickel by R. E. Rozas and
J. Horbach [67].

7Spherocubes have a shape somewhere in between that of a sphere and a cube.
8Spherocylinders have a cylindrical part with two hemispherical caps.
9Dumbbells consist of two overlapping spheres.
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for hard-core interactions. For hard spheres the Mayer-f function becomes −fij(�rij) =
Θ((Rj + Ri) − |�rij|), where �rij denotes the core-to-core distance of both spheres and Ri

and Rj denote their radii. Furthermore, the Heavyside step function Θ is defined by10

Θ(x) =

{
1 for x > 0

0 for x < 0
. (3.11)

Note that temperature does not affect the qualitative behavior of an hard-particle system,
because the interaction potential only takes the values 0 and ∞. Thus, temperature only
scales the quantitative behavior of such systems. Since entropic forces do effect hard-
sphere systems, it is useful to study the packing behavior of hard particles, which is done
for spheres in Sec. 4.1.3.

3.2.2 Experimental realization and simulations

It is difficult to set up hard-core particle interactions in experiments, for example due to
electrical charges of the particles. Often, hard spheres are made of polymethylmethacry-
late (PMMA) and thus have a little attraction due to Van der Waals interactions. To avoid
clustering, the particles are sterically stabilized by thin polymer layers.11

The PMMA particles are typically of slightly different sizes. This polydispersity alters
the phase diagram of the system, as schematically shown in Fig. 4.1. Nevertheless, the
polydispersity is typically of about 4% or 5%, where the phase transition is not much
altered. In addition, polydispersity can be adopted in DFT by using several species of
spheres that differ in their radii (see also Sec. 4.2.4).

Early experiments on A Dynamic Hard Sphere Model [69] have been developed by
D. Turnbull and R. L. Cormia, who state:

MODELS which simulate many atoms interacting together can be useful for
giving insight on what assumptions may be satisfactory to treat multiatomic
interactions and for teaching. (...) We have developed a dynamic hard sphere
model which is very simple and flexible. In this model many uniform spheres
are fenced in on a round horizontal glass plate and agitated by the vibrations
of a wooden board, suspended from springs, on which the plate is mounted.

The spheres have diameters of about 4mm and are made of glass, iron, aluminum, or
polyethylene. However, the system only has two dimensions, like a billard table.

In simulations, hard interactions are special. On the one hand, it is tough to implement the
discontinuous interaction potential and to avoid overlap, because a small movement of a
single sphere instantaneously changes the potential from 0 to ∞. On the other hand, hard

10For x = 0 the function is sometimes defined as 1
2 , as 0, or as 1. However, the choice for x = 0 is

irrelevant in most cases, because its measure is zero.
11For example, see K. Sandomirski et al. in Ref. [68].
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interactions are short-ranged and the movement of a single sphere only affects its direct
neighbors, which significantly improves their implementation.

For example, simulations have been applied by B. J. Alder and T. E. Wainwright [70] to
study the Phase Transition for a Hard Sphere System or by J. A. Barker and D. Henderson
[71] to understand the (liquid) states of matter. Recent simulations have been performed
by T. Zykova-Timan et al. [72, 73] and by R. Rozas and co-workers (see Ref. [74]).

3.2.3 Theoretical approaches

The hard-sphere model is motivated from a theoretical background. Various theoretical
approaches exist for this model and some of them are discussed in this section.12 In the
following, the radius of a hard sphere of a certain species i is denoted by Ri, where its
diameter is σi = 2Ri. The index i is omitted, if a monodisperse system is assumed.
Moreover, ρ denotes the mean bulk density and η = π

6
σ3ρ the corresponding volume

fraction of the observed hard-sphere system.

The equation of state and Statistical Mechanics of Rigid Spheres has already been ana-
lyzed in 1959 by H. Reiss, H. L. Frisch, and J. L. Lebowitz [58, 75]. They extracted the
pair distribution function g(r) and the surface tension from a fluid phase system by intro-
ducing a coupling parameter to add or remove a single sphere. Therefore, this method is
also known as Scaled Particle Theory (SPT). In more detail, H. Reiss and co-workers ana-
lyzed the work that is needed to expand a spherical cavity (a sphere devoid of particles) in
a fluid phase [58]. Then, the scaled particle equation follows in the limit of infinite radius
Ri → ∞ of this cavity (or of one sphere) and reads13

lim
Ri→∞

βμi,exc

Vi

= βp, (3.12)

where Vi is the omitted volume and μi,exc the excess chemical potential of species i.

However, the virial coefficients Bn(T ), appearing in the virial expansion (2.4) and in
Eq. (3.8), obviously are constants for the temperature-independent hard-sphere model
[13, 39, 76]. Thus, the first terms of the expansion become [39]

p(ρ, T )

kBTρ
= 1 + 4η + 10η2 + 18.365η3 + 28.225η4 + 39.74η5

+53.5η6 + 70.8η7 + O(η8). (3.13)

Guided by this expansion, N. F. Carnahan and K. E. Starling constructed a simple but quite
accurate Equation of State for Nonattracting Rigid Spheres [59]. They replaced the sum
in Eq. (2.4) by the term

∑∞
i=1(i

2 + 3i)ηiρ, which results in integer coefficients 1, 4, 10,

12A wide review about What is ”liquid”? Understanding the states of matter is given by J. A. Barker
and D. Henderson [71].

13See also the works of Y. Rosenfeld [25] and R. Roth [29] and Sec. B.2 in this work.
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Figure 3.2: Virial pressure p/(kBTρ) for given volume fractions η = ρπ/6 for hard
spheres of diameter σ. Shown are the virial expansion (3.13) up to 7th order, the Carnahan-
Starling equation of state (3.14), and the Percus-Yevick equation of state obtained via the
virial route (3.18) and via the compressibility route (see footnote 18). Freezing starts above
a volume fraction of η ≈ 0.494 and close packing predicts a maximal packing of η ≈ 0.74.

18, 28, 40 for the expansion (3.13). This expression can be written as a linear combination
of the first and second derivative of the geometric series and therefore, can be summed up
explicitly to give14

Z =
p

ρkBT
=

1 + η + η2 − η3

(1 − η)3
. (3.14)

Indeed, the so-called Carnahan-Starling equation provides an excellent fit to the results
of computer simulations over the entire fluid range and therefore, it is widely used, even
today.15 In comparison with computer simulations, its largest discrepancies are of the
order of 1%,16 as shown in Fig. 3.2.

In particular, a closed expression for the excess Helmholtz free energy is obtained by com-
bining Eq. (3.14) with the thermodynamic relation p = −∂F/∂V |T,N (also compare with
the fundamental equation (3.15) of thermodynamics and Table 2.1) so that the expression
reads [39]

Fexc

kBTN
=

η(4 − 3η)

(1 − η)2
. (3.15)

From Sec. 2.2.2 the direct pair-correlation function and the pair-distribution functions are

14See also Sec. 3.9.17 in the textbook of J.-P. Hansen and I. R. McDonald [39].
15For example in FMT by H. Hansen-Goos and R. Roth [77] to expand the functional to higher densities.
16See textbook of J. P. Hansen and I. R. McDonald [39], Fig. 3.3 and Eq. 3.9.17.
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known to describe the internal structure of a physical system. They are connected by the
Ornstein-Zernike relation (2.28).

J. K. Percus and G. J. Yevick calculated the pair-distribution function g(r) using approx-
imate integral equations for a fluid with pairwise-additive interaction forces [78, 79].
They interpreted the quantity ρg(r) as the one-particle density at position �r in the
presence of a single particle that is pinned at the origin �r = 0 by an external pin-
ning field Vpin. Accordingly, the one-particle density in presence of the field become
ρ(1)(�r |Vpin) = ρ(2)(�0, �r |Vpin = 0)/ρ and the identity ρ(1)(�r) = ρg(r) directly follows.

However, the Ornstein-Zernike relation (2.28) is an open relation that can not be solved
without knowing c(2)(�r). Using the previous identity, a relation can be deduced to close
it by applying the Ornstein-Zernike equation to the DFT equation of state (2.49).17 This
so-called closure follows with

g(�r ) = exp (−βVext(�r )) exp
(
h(�r ) − c(2)(�r )

)
(3.16)

and it is known as the hypernetted-chain (HNC) approximation [80].

Furthermore, the term exp(c(1)) can be expanded in terms of Δρ = ρ− ρref around a ref-
erence density ρref instead of expanding the direct correlation function c(1) (see Eq. 3.5).
This leads to the Percus-Yevick (PY) approximation

g(�r ) = exp (−βVext(�r )) exp
(
1 + h(�r ) − c(2)(�r )

)
. (3.17)

Even more, the equations of state for a hard-sphere fluid can be obtained from this closure.
For example, the virial equation of state follows with18 [39]

p

kBTρ
=

1 + 2η + 3η2

(1 − η)2
. (3.18)

To learn more about distribution-function theories, see the review of J. A. Barker and
D. Henderson [71] and the textbook of J.-P. Hansen and I. R. McDonald [39]. In Sec. 4.3
and Sec. 4.4 of Ref. [39] a comparison between the PY equations of state and the more
precise Carnahan-Starling equation of state is given (see also Fig. 3.2). In addition, L. Ver-
let and J.-J. Weis presented a correction of the Percus-Yevick equation of state, to obtain
agreement with the Carnahan-Starling equation of state [83].

3.3 Interactions in density functional theory

Particle interactions are assumed to be solely pairwise interactions in density functional
theory (DFT) and they enter the theory via the excess free energy functional Fexc (see

17The relation can also be deduced from the functional derivative (3.21) by using Δρ = (g − 1)ρ.
18 Alternatively, M. S. Wertheim calculated the exact compressibility solution of the Percus-Yevick

equation of state [81, 82], βp/ρ = (1 + η + η2)/(1 − η)3.
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Sec. 2.3). Thus, the determination of this energy functional is an important problem to
apply DFT to over-ideal gas systems that contain particle interactions in addition to the
ideal gas terms.

The exact energy functional is only known for the system of one-dimensional hard rods
[15, 16, 84–86]. For this reason, a lot of approaches exist to deduce accurate, but always
approximate energy functionals, which are only valid for special types of particle interac-
tions sometimes [22, 87].

An important ansatz is given by the low-density expansion of the excess free energy func-
tional in Eq. (3.5) in terms of the density (density circles and Mayer-f bonds). Thus, the
exact low-density limit is given by the first term of this expansion in the limit ρ → 0 of
vanishing bulk density. Accordingly, the second functional derivative yields

c(2)[ρ;�r1, �r2] = f(�r1 − �r2) + O(ρ) (3.19)

and only the Mayer-f function remains in the limit of vanishing density.

Similarly, the excess free energy functional Fexc can be achieved by applying a Tay-
lor expansion around a certain reference density ρref , as mentioned in Ref. [88]. In gen-
eral, the expansion must be defined by integrating along a path between ρref and ρ using
ρ(�r;λ) = ρref(�r ) + λΔρ(�r ).19 While integrating the direct correlation function c(n) from
Eq. (2.50) with respect to this density, the identity

c(n)(�r n;λ) = c
(n)
ref (�r

n) +

∫ λ

0

∫
V n

Δρ(�r ′)c(n+1)(�r n, �r ′;λ′)d�r ′dλ′ (3.20)

follows, where c(n)
ref denotes the direct correlation function that only depends on the refer-

ence density. From this result, the Taylor expansion follows recursively with

Fexc[ρ] = Fexc[ρref ] −
N−1∑
n=1

1

n!

∫
V n

c(n) [�r n; ρref ]

(
n∏

ν=1

Δρ(�rν)

)
d�r n (3.21)

−
∫ 1

0

∫ λ1

0

...

∫ λN−1

0

∫
V N

c(N)
[
�rN ; ρ

]( N∏
ν=1

Δρ(�rν)

)
d�rNdλN ...dλ1.

Furthermore, it is important to note that the direct correlation function in the remainder
term corresponds to the density ρ and not to the reference density ρref [22, 39].

A truncation of the series after the third term yields the approach known from T. V. Ra-
makrishnan and M. Yussouff [66].20 In their work they show that the fluid-solid coex-
istence of a hard-sphere system can be described by using a liquid bulk density as a
reference density.

Indeed, a truncation of the series in Eq. (3.21) after the third term provides the advantage
19This is shown by J.-P. Hansen and I. R. McDonald in Sec. 3.5, page 61 of Ref. [39].
20See also M. Oettel et al. [88], Eq. (12), or S. van Teeffelen et al. [89].
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that only the direct pair-correlation function c(2) and the excess free energy of the refer-
ence density are needed as an external input. Thereby, the first-order direct correlation
function is already given by −c(1)[ρref ] = βμexc = βμ − log(ρref). Thus, the functional
derivative of the excess free energy follows from Eq. (3.21) with

δFexc[ρ]

δρ(�r )
=

δFexc[ρref ]

δρ(�r )
− c(1)[�r; ρref ] −

∫
V

c(2)[�r, �r ′; ρref ]Δρ(�r ′)d�r ′, (3.22)

where δFexc[ρref ]/δρ(�r ) vanishes for a fluid-like reference density.

For an external input, T. V. Ramakrishnan and M. Yussouff used the analytically known
direct pair-correlation function c(2) that follows from the Ornstein-Zernicke relation us-
ing the Percus-Yevick closure (see Sec. 3.2.3) [66]. Likewise, the direct pair-correlation
function and the excess free energy for a hard-sphere fluid are known from the Carnahan-
Starling Eq. (3.14) of state. In combination with fundamental measure density functional
approaches (see Sec. 3.4 and Ref. [88]), the truncation approach (or Ramakrishnan-
Yussouff approach) is a quite powerful tool that allows fast numerical calculations (for
example, see Sec. 4.2 and 5.2).

A recent development is also given by the phase-field-crystal (PFC) theory, first intro-
duced as a phenomenological approach in 2002 and 2004 by K. R. Elder et al. in works
about Modeling Elasticity in Crystal Growth and Modeling elastic and plastic deforma-
tions in nonequilibrium processing using phase field crystals [90,91].21 In later work, the
PFC model has been deduced as an approximation from DFT and DDFT [89, 93, 94].
Moreover, “the crystalline density field is described basically in terms of a single Fourier
mode within the PFC model” [93].

Finally, fundamental measure theory (FMT) provides an accurate functional approach
for hard-shaped particles [15], e.g. spheres, cubes, or more general particle shapes. The
functional depends on so-called weighted densities that are motivated from fundamental
(geometric) measures of the particles.22 Then, starting from the low-density expansion
in Eq. (3.5), the functional is expanded to higher densities using additional theoretical
approaches like the Carnahan-Starling equation of state or others. FMT is presented in
detail in the following section.

3.4 Fundamental Measure Theory

The fundamental measure theory (FMT) has been set up by Y. Rosenfeld in 1989 for a
hard sphere mixture [25]. It provides a framework to determine an excess free energy
functional for hard pair-interaction potentials in density functional theory (DFT).

21See also Ref. [92] by H. Emmerich for an overview over the essentials of the conceptual background
of the PFC method.

22Also compare with the Weighted density approximation (WDA), introduced by W. A. Curtin and
N. W. Ashcroft [95] and applications to it, i.e. in Ref. [96, 97].
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To achieve a functional, the low-density limit of the excess free energy functional is taken
as a starting point. For vanishing density ρ0 → 0, the exact limit directly follows from the
diagrammatic expansion (3.19) of the direct pair-correlation function c(2) in terms of the
density ρ and reads

βFexc[ρ] = −1

2

∑
i,j

∫
V

∫
V

ρ(�r)ρ(�r ′)fij(|�r − �r ′|)d�rd�r ′. (3.23)

Recalling Sec. 3.2, the Mayer-f function (3.4) includes the hard particle interaction
between two particles i and j. Thus, the Mayer-f function reads −fij(|�ri − �rj|) =
Θ((Ri + Rj) − |�ri − �rj|) in the case of hard spheres with constant particle radii Ri and
Rj . The Heavyside step function Θ is defined in Eq. (3.11).

The above mentioned Mayer-f function in principle states a measure for the overlap
volume of two contributing particles i and j. As known from Hadwiger’s volume the-
orem [98, 99], a continuous rigid motion invariant valuation can be written as a linear
combination of intrinsic volumes, also known as fundamental measures. In principle, the
latter depict m-dimensional measures in an n-dimensional space with m ≤ n. For exam-
ple, in a three-dimensional space there are the geometrical fundamental measures volume,
surface area, curvature, and Euler characteristic.

However, Y. Rosenfeld recognized that the Mayer-f function of hard spheres can be writ-
ten in terms of these fundamental measures, which gives rise to the naming of FMT
[25, 29, 100]. Moreover, he noticed that this sum of fundamental measures can be de-
composed into a sum of convolutions of geometrical motivated weight functions, where
each weight function w(α) solely corresponds to one single particle, respectively [25].
Furthermore, these weight functions are related to the already mentioned fundamental
measures.

In later work, Y. Rosenfeld extended his version of FMT for spheres to general anisotropic
particle shapes [56] and he observed [101] that the deconvolution of the Mayer-f function
in weighted densities is a special case of the Gauss-Bonnet theorem [102, 103]∫

S

KdA +

∫
∂S

kgds = 2πχ(S), (3.24)

where S is a compact surface, K is the Gaussian curvature, and kg the geodesic curvature
along the edge ∂S of the surface S. The Euler characteristic χ(S) describes the topology
of the surface S (also see [104]).

This observation gives an interpretation of the prefactors 1/Ri and 1/R2
i appearing in the

original weight functions for hard spheres, as introduced by Y. Rosenfeld.23 These factors
describe the mean curvature Hi and the Gaussian curvature Ki at a certain position on the
surface of the particle [28, 105].

23Compare the more general weight functions (3.25)-(3.30) with the original ones for hard spheres listed
in Sec. B.3.
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The deconvolution via the Gauss-Bonnet theorem allows a more general formulation of
the weight functions for arbitrary convex hard particles, as noted by Y. Rosenfeld in
Refs. [56, 101]. Following this formulation, H. Hansen-Goos and K. Mecke introduced
the so-called extended deconvolution FMT (edFMT)24 for convex non-spherical hard-
body fluids [28, 105], using the Gauss-Bonnet theorem (3.24) with a constant Euler char-
acteristic χ = 2. As already mentioned by Y. Rosenfeld, this is only valid for convex
particles, because the surface of a general intersection volume of two non-convex parti-
cles is not always a single, convex body [104,106]. For example, the intersection between
two dumbbells (see Sec. 6.3) can consist of n = 1, 2, 3, 4 disjoint convex bodies, which
lead to an Euler characteristic χ(∂[Bi ∩ Bj]) = 2n, and it can also be a single body with
a hole in it, leading to χ(∂[Bi ∩ Bj]) = 0.25 So, setting the Mayer function equal to
−χ(∂[Bi ∩ Bj])/2, as is done in edFMT, is an approximation for non-convex particles.
However, this is not a bad approximation as long as the intersection between the particles
in most of the possible configurations is a single simply connected body (i.e. without any
holes) with Euler characteristic two. The difficulties that arise when edFMT is applied
to non-convex particles are explicitly discussed in the work of M. Marechal et al. [104].
Moreover, in Sec. 6.3 and in Ref. [104] it is shown that edFMT is still a surprisingly good
density functional theory, in spite of these difficulties.

In another sense, convexity is useful while performing a parametrization of a particle Bi.
Convexity assumes that every point of a connected set B of points can be connected with
all points of the surface ∂B of the set by a straight line such that all points of the line
are in B. Consequently, the surface ∂Bi can be parametrized by a radial function �Ri(r̂),
pointing from a certain reference point Ci to the surface of the particle along the direction
r̂, where r̂ denotes a vector �r/|�r | of unit length [28].

Applying this parametrization, the weighted densities for convex particles read [56, 101,
105]

w
(3)
i (�r ) = Θ

(
|�Ri(r̂)| − |�r |

)
, (3.25)

w
(2)
i (�r ) = δ

(
|�Ri(r̂)| − |�r |

) 1

n̂i(r̂) · r̂
, (3.26)

w
(1)
i (�r ) =

Hi(r̂)

4π
w

(2)
i (�r ), (3.27)

w
(0)
i (�r ) =

Ki(r̂)

4π
w

(2)
i (�r ), (3.28)

�w
(2)
i (�r ) = n̂i(r̂)w

(2)
i (�r ), (3.29)

�w
(1)
i (�r ) = n̂i(r̂)w

(1)
i (�r ), (3.30)

where n̂i(r̂) denotes the outward normal vector to the surface ∂Bi at the position indicated

24For details, see Sec. 3.4.1 about the construction of FMT functionals.
25Discussed by M. Marechal et al. in Ref. [104].
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by r̂ via the radial function �Ri(r̂).26 The mean and Gaussian curvature in this point are
denoted by Hi(r̂) and Ki(r̂) and they follow from the local principal curvatures κI

i and
κII

i by Hi = 1
2
(κI

i + κII
i ) and Ki = κI

iκ
II
i .

As already mentioned, for hard spheres the principal curvatures are equal to 1/Ri and
n̂i(r̂)·r̂ = 1 (if the reference point Ci is located in the center of a sphere). Thus, the weight
functions (3.25)-(3.30) simplify and result in the original hard-sphere weight functions,
shown in Sec. B.3. In addition, their Fourier transforms are also listed in the appendix,
because they are required for explicit numerical calculations.

To sum up, as a fundamental step Y. Rosenfeld recognized that the Θ function (or Mayer-f
function for hard-spheres) can be decomposed into the form27

Θ ((Ri + Rj) − |�rij|) = (w
(0)
i � w

(3)
j )(�rij) + (w

(1)
i � w

(2)
j )(�rij)

+ (w
(2)
i � w

(1)
j )(�rij) + (w

(3)
i � w

(0)
j )(�rij)

− (�w
(1)
i � �w

(2)
j )(�rij) − (�w

(2)
i � �w

(1)
j )(�rij), (3.31)

where �rij ≡ �ri − �rj .28 Furthermore, the convolution product � of two functions wi and
wj is defined as

(wi � wj)(�rij) =

∫
V

wi(�r − �ri)wj(�r − �rj)d�r (3.32)

and differs from the definition of the standard convolution product ∗, defined in (A.29).

Nevertheless, the choice of weight functions and the resulting decomposition of the
Mayer-f function is not unique. In 1990, E. Kierlik and M. L. Rosinberg presented an
alternative decomposition [108] using only scalar weight functions. This alternative de-
composition is equivalent to that one of Y. Rosenfeld, as shown by S. Phan et al. three
years later [109].

Moreover, H. Hansen-Goos and K. Mecke introduced two additional tensorial weight
functions that have been achieved from the deconvolution via the Gauss-Bonnet theorem
(3.24). These tensorial weight functions read [105]

↔w(1)
i =

Δκi(r̂)

4π

(
(v̂I

i ) · (v̂I
i )

t − (v̂II
i ) · (v̂II

i )t
)
w

(2)
i (�r ), (3.33)

↔w(2)
i = n̂i(r̂) · n̂i(�r)

tw
(2)
i (�r ), (3.34)

where v̂I
i and �vII

i are tangential unit vectors to the surface ∂Bi, which point along
the directions of principal curvature, and v̂t denotes the transposed of v̂. In addition,
Δκ = 1

2
(κI

i − κII
i ) denotes the deviatoric curvature. Now, the decomposition (3.31) is

extended by the terms −ζ↔w(1)
i � ↔w(2)

j and −ζ↔w(2)
i � ↔w(1)

j . This result goes beyond the

26The Dirac δ-distribution is defined around Eq. (A.16), the Heaviside step function in Eq. (3.11).
27Either the decomposition (Eq. 2) or the definition of the convolution are erroneous in the original work

of Y. Rosenfeld [25]. Later this mistake has been corrected (see e.g. Ref. [107]).
28The proof is re-written in Sec. B.4.
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previous one in Eq. (3.31), but remains approximative for non-spherical particles, due to
the parameter ζ = (1 + ninj)

−1 that must be set to a constant mean value to allow the
terms to be written as a convolution product of only rank two tensorial weight functions.
The deviatoric curvature Δκ vanishes in the case of hard spheres and thus, the previous
result of Y. Rosenfeld is obtained (for any ζ).

The deconvolution (3.31) in combination with the starting point of FMT, the excess free
energy (3.23) in the low density limit, gives rise to the definition of so-called weighted
densities

nα(�r ) =
ν∑

i=1

(
ρi ∗ w(α)

i

)
(�r ) =

ν∑
i=1

∫
V

ρi(�r
′)w(α)

i (�r − �r ′)d�r ′. (3.35)

On the contrary to previous usage, now the index i refers to the density ρi and weight
functions w(α)

i of different particle species and orientations in general. Thus, the whole
system consists of ν species of particles, for example spheres of different radii.

Accordingly, the combination of Eq. (3.23) and Eq. (3.31) leads to the low density limit

βFexc[ρ] =

∫
V

(n0(�r )n3(�r ) + n1(�r )n2(�r ) − �n1(�r ) · �n2(�r )) d�r. (3.36)

Thus, a strong motivation is given to construct the excess free energy functional as

βFexc[{ρi}] =

∫
V

Φ({nα(�r )})d�r, (3.37)

introducing an excess free energy density Φ that is a regular function of the weighted
densities nα. Of course, the construction must respect the low density limit (3.36).

In recent works, S. Korden derived “the Rosenfeld functional from the virial expansion”
[110, 111]. Re-summing the cluster integrals of the diagrammatic virial expansion [39,
112], he found the first term yielding the Rosenfeld functional that is given in Eqn. (3.50-
3.52). Going beyond the first term, he also obtained the Tarazona replacement, given
in Eq. (3.54), as part of higher order terms. However, his results and its discussion are
topic of present research and should be applied to simple models, to learn more about its
relevance and about the improvement of FMT.

3.4.1 Construction of FMT functionals

In this section, excess free energy functionals are constructed, following the work of
Y. Rosenfeld [25], R. Roth et al. [113], H. Hansen-Goos et al. [27, 28, 105], and P. Tara-
zona et al. [26, 114, 115]. Moreover, a well-written review about Fundamental Measure
Theory for Hard-Sphere Mixtures by R. Roth has appeared in 2010 [29].

As outlined in the previous section, a strong motivation is given by the result of Eq. (3.36)
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to construct the excess free energy density Φ as a function of the weighted densities nα.
Since these densities differ in their dimension, Y. Rosenfeld established the ansatz [25]

Φ = f1(n3)n0 + f2(n3)n1n2 + f3(n3)�n1 · �n2

+ f4(n3)n
3
2 + f5(n3)n2�n2 · �n2, (3.38)

where Φ has the dimension of an energy density. Since n3 is the only dimensionless
weighted density, the coefficient functions fi can only depend on it.29

Moreover, the general identities f3 = −f2 and f5 = −3f4 follow from the equivalence
between the weight functions introduced by Y. Rosenfeld and the scalar ones introduced
by E. Kierlik and M. L. Rosinberg [108], because a connection between the scalar and
vectorial weight functions arises due to this equivalence [109]. To recover the low density
limit (3.36) and the direct pair-correlation function up to first order, the functions fi must
have low density expansions [29]

f1(n3) = n3 +
n2

3

2
+ O(n3

3), (3.39)

f2(n3) = 1 + n3 + O(n2
3), (3.40)

f3(n3) = −1 − n3 + O(n2
3), (3.41)

f4(n3) =
1

24π
+ O(n3), (3.42)

f5(n3) = − 3

24π
+ O(n3). (3.43)

Nevertheless, Y. Rosenfeld used the SPT equation (3.12) to achieve an extrapolation of the
functional that is also valid for higher densities. The left-hand side of Eq. (3.12) is given
by the functional derivative δΦ/δρ and the right-hand side is given by the thermodynamic
bulk relation Ω = −pV . It follows [25, 29]

∂Φ

∂n3

= −Φ +
∑

α

∂Φ

∂nα

nα + n0. (3.44)

With respect to the above mentioned restrictions to the functions fi(n3), the solution as

29See Sec. B.2 for further information regarding the dimensions of the weighted densities.
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obtained by Y. Rosenfeld [25] and therefore denoted with RF reads

fRF
1 (n3) = − log(1 − n3), (3.45)

fRF
2 (n3) =

1

1 − n3

, (3.46)

fRF
3 (n3) = −fRF

2 (n3), (3.47)

fRF
4 (n3) =

1

24π(1 − n3)2
, (3.48)

fRF
5 (n3) = −3fRF

4 (n3), (3.49)

Introducing the sum Φ = Φ1 + Φ2 + Φ3, the excess free energy density follows with

ΦRF
1 = −n0 log(1 − n3), (3.50)

ΦRF
2 =

n1n2 − �n1 · �n2

1 − n3

, (3.51)

ΦRF
3 =

n3
2 − 3n2�n2 · �n2

24π(1 − n3)2
. (3.52)

However, this result fails to predict the fluid-solid phase transition of the pure hard-
sphere system, as already mentioned by Y. Rosenfeld in 1989. Thus, the functional has
been investigated intensively within the following years [100, 107, 108, 116, 117]. During
this research, it has also been applied to systems in other dimensions, for example to a
two-dimensional space (plane). To allow for this, the powerful concept of dimensional
crossover can be applied, where the three-dimensional density ρ(x, y, z) is restricted to
less dimensions by external fields. This is done by introducing δ-functions and, for exam-
ple, the two-dimensional density follows as ρ(2d)(x, y)δ(z) = ρ(x, y, z). Even more, this
system is equivalent to a system of hard disks.30 However, the freezing transition is not
well described within this framework, but reasonable functionals for hard-disk systems
exist [118].

Due to these investigations, the third term ΦRF
3 of the functional was found to diverge in

the exact one-dimensional limit. Accordingly, new approaches have been developed that
yield the exact zero- and one-dimensional limit [114]. Then, P. Tarazona presented [26]

a new free energy density functional for hard spheres (...), which reproduces
the Percus-Yevick equation of state and direct correlation function for the
fluid, with a tensor weighted density. The functional, based on the zero-
dimension limit, is exact for any one-dimensional density distribution of the
spheres. The application to the hard sphere crystals gives excellent results,
solving all of the qualitative problems of previous density functional approx-
imations, including the unit cell anisotropy in the fcc lattice and the descrip-
tion of the metastable bcc lattice.

30Compare also chapter 6 and the review of R. Roth [29].
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In this work, P. Tarazona introduced the tensorial weight function31

↔w(m2)
i (�r ) =

(
�r · �r t

|�r |2 − I
↔

3

)
δ(Ri − |�r |) =

(
�r · �r t

|�r |2 − I
↔

3

)
w

(2)
i (�r ) (3.53)

and he replaced the numerator of the third term ΦRF
3 of the excess free energy density

by32

n3
2 − 3n2�n2 · �n2 ⇒ n3

2 − 3n2�n2 · �n2 +
9

2

(
�nt

2 · n
↔

m2 · �n2 − Tr(n↔3
m2

)
)
. (3.54)

Here, �r t is the transposed of �r, I is the unit matrix in 3 × 3-dimensional space, and Tr
denotes the trace of matrices.

In 2002, R. Roth et al. presented the White Bear version of a fundamental measure den-
sity functional, named after a local institution. The functional “keeps the structure of
Rosenfeld’s FMT whilst inputting the Mansoori-Carnahan-Starling-Leland bulk equa-
tion of state” [113].33 The structure of the functional follows from the new functions
fWB

i (n3) = fRF
i (n3) for i ∈ {1, 2, 3} and fWB

5 (n3) = −3fWB
4 (n3) with

fWB
4 (n3) =

n3 + (1 − n3)
2 log(1 − n3)

36πn2
3(1 − n3)2

. (3.55)

Since the result is similar to that one of the White Bear mark II version that is introduced in
the next paragraph, both functionals are presented together, only differing in the functions
φ2 and φ3. For the White Bear version, their values are φWB

2 = 0 and34

φWB
3 (n3) =

9n2
3 − 6n3 − 6(1 − n3)

2 log(1 − n3)

4n3
3

. (3.56)

The White Bear version mark II has been introduced by H. Hansen-Goos and R. Roth
“in the spirit of the White Bear version”. It is based on the Carnahan-Starling equation of
state (see Eq. 3.14) and “improves upon consistency with an exact scaled-particle theory
relation in the case of the pure fluid” [27]. The White Bear II excess free energy density

31The tensor has originally been defined without the term I
↔
/3. The notation that is used in this work is

ascribed to a work of M. Schmidt et al. [119].
32Erroneously, a factor 1/2 is often missing in this replacement in literature.
33In Eq. (24) of Ref. [113] a bracket is misplaced in the replacement of P. Tarazona.
34Its expansion reads φWB

3 (n3) = 1
2 + 1

8n3 + O(n2
3).
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follows with

ΦWBII
1 = ΦRF

1 = −n0 log(1 − n3), (3.57)

ΦWBII
2 =

(
1 +

1

9
n2

3φ2(n3)

)
n1n2 − �n1 · �n2

1 − n3

, (3.58)

ΦWBII
3 =

(
1 − 4

9
n3φ3(n3)

)
n3

2 − 3n2�n2 · �n2

24π(1 − n3)2
, (3.59)

where the functions φ2 and φ3 are defined by

φ2(n3) =
6n3 − 3n2

3 + 6(1 − n3) log(1 − n3)

n3
3

, (3.60)

φ3(n3) =
6n3 − 9n2

3 + 6n3
3 + 6(1 − n3)

2 log(1 − n3)

4n3
3

. (3.61)

Of course, the replacement (3.54), introduced by P. Tarazona, can be applied. And due to
the construction of the functional, its fluid properties follow directly from the Carnahan-
Starling results, like its excess free energy (3.15).35 In addition, the functional is given in
an explicit form in Sec. B.1, including its low-density expansion and its derivative with
respect to the density.

In 2009, H. Hansen-Goos and K. Mecke presented a Fundamental Measure Theory for
Inhomogeneous Fluids of Nonspherical Hard Particles [28]. They deconvolute the Mayer-
f function in not only those weight functions introduced by Y. Rosenfeld, but also a series
of ever higher rank tensorial weight functions, using the Gauss-Bonnet theorem (3.24).
Thereby, the first terms of this expansion are given in Eq. (3.33) and Eq. (3.34). “The
functional captures the isotropic-nematic transition for hard spherocylinders” [28], as also
shown in Sec. 6.2, and is still a surprisingly good functional for non-convex dumbbells,36

as discussed by M. Marechal in Ref. [104] and also shown in Sec. 6.3.

Due to the deconvolution in additional tensorial weight functions, the theory is named
extended deconvolution FMT. Consequently, the excess free energy density Φ contains
an additional term ΦΔκ = −ζTr[n↔1 · n↔2]/(1 − n3), which follows from the tensorial
weight functions (3.33) and (3.34) [28, 105]. Here, the parameter ζ that enters edFMT is
a renormalization factor to correct for errors due to the truncation of the expansion of the
Mayer-f function in tensorial weight functions after the term involving rank two tensors.
In addition, the term Φ3 follows with

ΦedFMT
3 =

3

16π

�nt
2 · n

↔
2 · �n2 − n2�n2 · �n2 − Tr[n↔3

2] + n2Tr[n↔2
2]

(1 − n3)2
. (3.62)

Comparing this result with that one of the White Bear version mark II (with the replace-

35The equation of state can be obtained for FMT functionals in general, such as shown in Ref. [104].
36For non-convex particles the Euler characteristic of the intersection volume of two particles can differ

from 2, which is not considered in edFMT.
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ment of P. Tarazona), the tensor n↔m2 has simply been exchanged by the tensor n↔2.37 Of
course, for hard spheres the result of Y. Rosenfeld and P. Tarazona is obtained, because
the deviatoric curvature Δκ vanishes.

In recent works, S. Korden re-summed the cluster integrals of the diagrammatic virial ex-
pansion [39,112] and obtained the approach (3.50-3.52) of Y. Rosenfeld as a first term of
the new series [110]. Higher orders are going beyond this result and, for example, contain
the term (3.54), introduced by P. Tarazona [111]. However, higher orders of this FMT ex-
pansion have not been applied to any physical model up to now, which is a recommended
topic of future work.

3.4.2 Functional derivatives and direct correlation functions

To solve the equation of state (2.49) in DFT, the functional derivative of the excess free
energy functional is needed as an input. In another sense, the direct correlation functions
c(1) and c(2) of a reference density are needed in the Ramakrishnan-Yussouff approach
(3.22). Accordingly, it is necessary to determine direct correlation functions (2.50) in the
framework of FMT.

Since the excess free energy functional (3.37) is a function of weighted densities, the
direct correlation function in FMT follows from the excess free energy density Φ and its
corresponding weighted densities nα for species i with

−c(1)
i [ρ;�r ] =

∑
α

∫
V

∂Φ

∂nα

(�r ′)w(α)
i (�r ′ − �r )d�r ′, (3.63)

−c(2)
ij [ρ;�r, �r ′] =

∑
α,β

∫
V

∂2Φ

∂nα∂nβ

(�r ′′)w(α)
i (�r ′′ − �r )w

(β)
j (�r ′′ − �r ′)d�r ′′. (3.64)

In the case of non-scalar weighted densities, the notation is explained in more detail in
Sec. B.1. In addition, the functional derivatives are listed there for the White Bear mark
II functional in an explicit form.

Furthermore, the excess free energy density Φ becomes constant in space for a homoge-
neous density ρfl of a fluid. Accordingly, Eq. (3.64) simplifies to

−c(2)
ij [ρfl;�r ] =

∑
α,β

∂2Φ

∂nα∂nβ

w
(α)
i � w

(β)
j (�r ). (3.65)

For example, the explicit result for the direct pair-correlation function is given for the
White Bear functional in Eq. 41 of Ref. [113]. Like the Percus-Yevick direct pair-
correlation function, this result is given by a polynom of third order in r.

37Remember the additional term I
↔
/3 in Eq. (3.53) in contrast to Eq. (3.34).
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Indeed, the polynomial form is of the same order for all functionals with the same choice
of weight functions. Thus, M. Oettel et al. also list the direct pair-correlation functions
[88]

c(2)[ρ0; r] =

(
a1 + a2

r

σ
+ a3

r3

σ3

)
Θ(σ − r) (3.66)

in the one component case for the White Bear II functional and for the tensor version of
the Rosenfeld functional, introduced by P. Tarazona. However, the latter is equal to the
Percus-Yevick solution38 by construction.39

Following Ref. [88], the coefficients ai for the tensor version of the White Bear II func-
tional read40

a1 = −1 + 4η + 4η2 − 4η3 + η4

(1 − η)4
, (3.67)

a2 =
−2 + 25η + 12η2 − 10η3 + 2η4

3(1 − η)4
− 2 log(1 − η)

3η
, (3.68)

a3 =
1 − 4η + 2η2 − 3η3 + η4

(1 − η)4
+

log(1 − η)

η
. (3.69)

Its Fourier transform is given in Appendix B.2.

38“Percus-Yevick equation of state” usually means the one obtained via the compressibility route in DFT
works, unless mentioned otherwise.

39For example, see Eq. (31) in the work of M. Oettel et al. [88].
40In Ref. [88], a wrong sign is noted for the second term in the coefficient a2.
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Stand still you ever moving spheres (...)

(from: Doctor Faustus [120], scene 13, l. 64,

Christopher Marlowe 1564 - 1593)
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4 Bulk phases and the
hard-sphere crystal

The particles in a physical system generate different states of aggregation, depending
on the (thermodynamic) properties of the system and the particles. The states are called
phases and the parameters allowing to distinguish between different phases are called
order parameters. Typically, one phase is stable in equilibrium, but several phases can
also coexist next to each other, when they are energetically equivalent.

As known from water, in principle, three states of matter exist: the gas phase (or vapor
phase), the liquid phase, and the solid phase. Moreover, the gas and the liquid phase are
sometimes combined to a fluid phase, if both phases are indistinguishable due to the lack
of a phase transition, for example in the case of hard spheres. Furthermore, especially the
solid phase often splits up into additional and more special phases, for example different
types of crystalline structures, multi-crystalline structures, ceramic or amorphous materi-
als, glas phases, or grains.1 Of course, many more kinds of phases may exist (see Sec. 6
for orientational phases).

Phases (and their properties) are usually displayed in so-called phase diagrams, where
every point is characterized by the order parameters of the system. Regions that denote
different phases are separated by lines. For example, the phase diagram of polydisperse
hard spheres is schematically sketched in Fig. 4.1. In this diagram, the macroscopic vari-
ables are given by the amount δ of polydispersity2 and by the mean density ρ of the
hard-sphere system. The illustrated phases are the fluid and the solid phase. In between
these regions of pure, unmixed phases, there are also regions where phases would coexist
in equilibrium, for instance solid and fluid or even solid and solid with different crys-
talline structures or lattice orientations. In the limit δ → 0 of vanishing polydispersity,
the phase diagram of monodisperse hard spheres is obtained which solely depends on the
mean density ρ. Its fluid-solid transition takes place in between densities of ρflσ

3 ≈ 0.944
and ρsσ

3 ≈ 1.04.

1The monodisperse hard-sphere system builds a glassy phase around a mean density of 1.22/σ3 (vol-
ume fraction 0.637), as shown in Refs. [121, 122]. However, the nature of glasses is not completely under-
stood (see e.g. Ref. [123] by Y. Rahmani et al.).

2For further reading about polydispersity, see Sec. 4.2.4.
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Figure 4.1: Schematic sketch of the phase diagram for polydisperse hard spheres. For
monodisperse (δ = 0) spheres, the fluid and solid (fcc crystal) transition points are shown
with data from W. G. Hoover and F. H. Ree [124] and results from this work, using the White
Bear mark II FMT approach and the Ramakrishnan-Yussouff DFT approach (see Sec. 4.2).
The regions with stable phases in equilibrium are marked (fluid, solid), in the other regions
phases are coexisting in equilibrium (fluid-solid, fluid-solid-solid, ..., solid-solid, ...). The
range of polydispersity, sketched here, is about [0,0.1]. For further information about the
Equilibrium Phase Behavior of Polydisperse Hard Spheres, see Ref. [65] by M. Fasolo and
P. Sollich.

Different phases can be distinguished and characterized by their internal structure. For
example, a fluid hard-sphere phase has less structure than the corresponding crystalline
phase. In general, the internal structure can be measured by the structure factor S(�k)
that is known from Sec. 3.1. Moreover, it is connected with the direct pair-correlation
function c(2)(r) and with the particle distribution function g(r) (also cmp. Sec. 2.2.2). In
this context, T. V. Ramakrishnan and M. Yussouff wrote an article about First-principles
order-parameter theory of freezing [66] (qm is the position in reciprocal space of the first
maximum of the graph of S(q)) and state:3

Verlet observed that near freezing, S(qm) is nearly 2.85 for all classical fluids.
Computer results for the Lennard-Jones liquid along the melting curve, for
the hard-sphere fluid, the one-component plasma, and experimental results
for Ar, Na, Rb, Pb, all show S(qm) to be between 2.8 and 3.1 near freezing.
The S(qm) values for fluids freezing into fcc and bcc structures cluster around
2.8 and 3.0, respectively. In the solid phase, the analogue of Verlet’s rule is
perhaps the Lindemann criterion of melting, i.e. the criterion that the mean-
square displacement 〈u2〉 scaled by the square of the interatomic separation
r2
int has nearly a constant value (0.01).

For this reason, the hard-sphere system is an ideal model system to learn more about
internal structures, phases, and transitions between them. Theoretical approaches to the

3All references have been removed from this quotation
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hard-sphere system have been discussed in Sec. 3.2.3.

However, external fields or phase borders change the local properties of a physical system,
for example in the vicinity of a wall or next to other coexisting phases.4 For this reason,
phases are typically analyzed in the bulk, which is a region deep inside the phase of
interest, where no effects from the borders affect its properties.5

Finally, comprehensive literature about liquids and fluids exists. For example, J. A. Barker
and D. Henderson have discussed the question What is ”liquid”? Understanding the states
of matter [71] and textbooks are available from H. L. Frisch and J. L. Lebowitz about the
equilibrium theory of classical fluids [127] and from J.-P. Hansen and I. R. McDonald
about the theory of simple liquids [39].

In this chapter, first crystalline (periodic) structures are introduced, in particular lattices,
unit cells, packing problems, and density distributions. Next, hard spheres are discussed,
starting with an outline of the historical progress in research. Then, density distributions,
obtained by DFT calculations, are analyzed and compared to simulation results. Finally,
the crystal-fluid phase transition is explained, including the effects due to polydispersity,
and a conclusion is drawn.

4.1 Crystalline structures

Crystals or materials with a crystalline structure are solids. They are characterized by a
repeating pattern of the arrangement of their constituents in all spatial directions. Using
mathematics, a crystalline structure is described by a lattice, defined by its translational
symmetries and by a basis. However, it is important to distinguish between crystalline
structures and quasicrystalline ones [128] that have long-range orientational order but no
translational symmetry (only local). “For the discovery of quasicrystals”, the Nobel Prize
in Chemistry 2011 was awarded to Dan Shechtman.

In nature, crystalline solids typically consist of grains, several crystalline regions that dif-
fer in orientation or structure, and they are not expanded infinitely, as assumed in perfect
lattices. Moreover, the constituents in a crystalline region are usually not exactly located
on lattice positions, due to temperature and impurities. For example, single constituents
can be removed from a perfect structure (vacancies) or they can be added (additional par-
ticles), as known from doping semiconductors. In another sense, lattice points can be dis-
located, if e.g. one lattice plane is shifted against another. However, this crystallographic
defects have an important influence on the physical properties of the material6 and their
study bares interesting phenomena, for example about the dynamics of dislocations [129].

4For example, a hard-sphere fluid next to a planar wall is discussed by R. Roth [29] and spherocylin-
ders and dumbbells between two hard walls are discussed by H. Hansen-Goos and K. Mecke [105] and
M. Marechal et al. [104] (see also Sec. 6).

5External fields can also be present in the bulk (compare Sec. 6.2 and A. Härtel et al. [125, 126]).
6Doping semiconductors allows the construction of diodes and transistors (and consequently of modern

computers) due to a total change in the electrical properties of the material.
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Figure 4.2: (Color) Sketches of the cubic unit cells, spanned by the vectors {�vi}, i = 1, 2, 3:
a) simple cubic crystal (scc) structure, where the unit cell already is a primitive cell, b) body-
centered cubic (bcc) structure, where the primitive vectors �a2 and �a3 point to the central
lattice point of two neighbour cells (not included in this figure), and c) face-centered cubic
(fcc) structure, where all primitive lattice vectors {�ai} of the infinite lattice are shown. The
lattice positions are indicated by circles.

If crystalline regions are big enough, their properties correspond well with those of an
infinite perfect crystal. Such a mono-crystalline structure is described by a lattice, where
the constituents of the crystal (e.g. atoms, molecules, or colloidal particles) are located
on (or around) the lattice points. The mathematical concept of lattices is introduced in the
following section, to describe crystalline structures. For further reading, the textbooks of
N. W. Ashcroft and N. D. Mermin [130] or J. M. Ziman [131] are recommended.

4.1.1 Crystalline lattices

An n-dimensional lattice L is defined by the symmetry group of a translational symmetry
in n directions, corresponding to a set of n translation operators Ti, i = 1, .., n. Due to
their symmetries, these operators preserve the lattice and L = TiL holds ∀i. For example,
the integer numbers Z represent a lattice in the Euclidean space Rn and are generated by
the translation operators Ti that add 1 to the ith component (�x)i of elements �x in Euclidean
space.

A lattice is spanned by so-called primitive vectors �ai that correspond to the directions
of the translational symmetries (for example, see Fig. 4.2). Thus, a lattice consisting of
discrete points can be defined by

L =

{
n∑

i=1

mi�ai | mi ∈ Z

}
, (4.1)

where mi ∈ Z are integer numbers. Such discrete lattices have been studied by Auguste
Bravais (1811-1863)7 and therefore, are called Bravais lattices.

7See Lexikon der Physik, Ref. [132].
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To describe directions and planes in (Bravais) lattices, William Hallowes Miller (1801-
1880)8 introduced Millerian indices, commonly called Miller indices. They are defined
by using a reciprocal (or dual9) lattice L̃.

The reciprocal lattice L̃ consists of all those wave vectors �k that correspond to a wave
with the same symmetry as the lattice L. For elements �R ∈ L, such plane waves fulfill the
condition

eı�k·�r = eı�k·(�r+�R). (4.2)

Thereby, it is useful to define the vectors �k of the reciprocal lattice without the factor 2π
that enters the wave vectors due to its periodic definition exp(ı�k · �R) = 1 in Eq. (4.2).
Consequently, the primitive vectors�bi of the reciprocal lattice are obtained from the matrix
product [�b1..�bn]T · [�a1..�an] = I

↔
, where I

↔
denotes the n × n-dimensional unit matrix and

[�a1..�an] is the matrix with the columns �ai. In other words, a multiplication of primitive
vectors �a of the lattice L and �b of the reciprocal lattice L̃ results in integer values. In
conclusion, in three dimensions the reciprocal primitive vectors of an infinite lattice L

read
�b1 =

�a2 × �a3

�a1 · (�a2 × �a3)
, �b2 =

�a3 × �a1

�a1 · (�a2 × �a3)
, �b3 =

�a1 × �a2

�a1 · (�a2 × �a3)
, (4.3)

where × denotes the cross product in three dimensions.

Now, the Miller indices (ijl) define a plane perpendicular to the reciprocal lattice vector
(or wave vector) �K = i�b1+j�b2+ l�b3 in a reciprocal three-dimensional lattice L̃. Similarly,
[ijl] defines a vector �R = i�a1 + j�a2 + l�a3 in the three-dimensional lattice L in terms of
the primitive lattice vectors �ai. In general, [ijl] is not perpendicular to (ijl). Furthermore,
it is common to present negative indices −i by its positive value ī, marked with a bar.

In cubic structures (as shown in Fig. 4.2), planes like (100), (010), (001), and (1̄00),
(01̄0), (001̄) are equivalent, due to symmetry. Accordingly, all equivalent planes (ijl)
are collectively addressed by {ijl}. Similarly, the directions [1̄00], [001], and [01̄0] are
equivalent in a cubic structure. Thus, equivalent directions [ijl] are denoted by 〈ijl〉.

In addition to this, in a three-dimensional space, 14 possible Bravais lattices exist and are
ordered in 7 lattice systems, called triclinic, monoclinic, orthorhombic, tetragonal, rhom-
bohedral, hexagonal, and cubic. They are named like the shapes of their corresponding
repeated pattern in space. These patterns are called unit cells and are discussed in the
next section. In Fig. 4.2, the three cubic patterns and their Bravais lattices are shown.
The most simple structure is the simple cubic crystal (scc) structure, shown in Fig. 4.2(a).
More important, the body-centered cubic (bcc) structure and the face-centered cubic (fcc)
structure are shown in Fig. 4.2(b) and Fig. 4.2(c). They often occur in nature, for example
in elements like Fe and Na (bcc) or Ar, Cu, and Ni (fcc).

8See Obituary Notices of Fellows Deceased in the R. Soc. Lond. [133].
9The concept of dual lattices is more general than needed in this context.
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4.1.2 Unit cells

A unit cell is the volume Vc ⊂ Rn in space that fills the whole space by translations along
a set Lc of vectors of the underlying lattice L. In other words, the whole space is tiled by
a unit cell. Accordingly, a crystal is completely defined by the definition of one of its unit
cells. However, the choice of a unit cell is not unique, because the cell must not have the
smallest amount of volume that is possible (see Fig. 4.3, for example). It can be defined
translated in space as well. Thus, the half-open intervals [−1

2
, 1

2
) and [0, 1) both define

equivalent unit cells for the lattice Z in R.

All lattice points inside a unit cell are called the basis of this cell. Accordingly, the lattice
L can be split into a basis B and a sublattice Lc that holds all possible translations of
the basis (to achieve the original lattice). Thus, the corresponding unit cell fills the whole
volume without spacing in between cells or intersections of them, if translated along the
sublattice Lc. The precise definition reads

L = Lc ⊗ B =
{
�l +�b

∣∣∣�l ∈ Lc,�b ∈ B
}
. (4.4)

However, a unit cell is called a primitive cell, if it has the smallest volume that is possible.
Because it is a unit cell, a primitive cell also tiles space by translations along all vectors
of the lattice. Moreover, a primitive cell only contains one lattice point, but its construc-
tion is still not unique. Therefore, the two most common kinds of constructions will be
introduced in the following paragraphs.

First, a primitive cell can be spanned by the primitive lattice vectors of the underlying
lattice. An example is given in Fig. 4.2(a) for the simple cubic (scc) structure. In compari-
son to the body-centered cubic (bcc) structure in Fig. 4.2(b) and to the face-centered cubic
(fcc) structure in Fig. 4.2(c), the simple cubic structure only has one lattice point in its
unit cell (the other seven corners in Fig. 4.2(a) correspond to the neighbouring cells). For
the fcc structure, the primitive lattice vectors that span a primitive cell are also shown.10

Second, a Wigner-Seitz cell11 is a primitive cell. Its construction is based on the mathe-
matical concept of the fundamental domain or the construction of a Voronoi cell12, where
the space is split up into regions around discrete points. The Wigner-Seitz cell is con-
structed around one lattice point p and contains all space points with a smaller distance to
the point p as to any other point of the lattice. Therefore, it can be constructed by placing
planes in the center between the point p and all other lattice points, respectively. Then,
a Wigner-Seitz cell is formed by the resulting volume that is confined by all planes. In
addition, the Wigner-Seitz cell of the reciprocal lattice is called the first Brillouine zone.

10For non monoatomic systems, where the face-centered particles belong to another species, the cubic
unit cell may be primitive in general. In this case only the corners belong to the lattice, so the lattice is a
simple cubic one and the unit cell again contains only one lattice point, but two particles.

11Named after Eugen(e) Paul Wigner (1902-1995) and Frederick Seitz (1911-2008) [134, 135].
12These concepts decompose space around general subsets in space and are more general than the de-

composition with respect to a highly symmetric lattice.
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Figure 4.3: (Color) Schematic sketches of the fcc-crystal lattice sites for (minimal) rect-
angular cuboid cells. The orientations in z-direction are: a) [001 ] (colors correspond to
panel c), b) [011 ], c) [112 ] (in x-direction also [1̄ 1̄ 1 ]), d) [210 ].

To run numerical calculations, it is useful to construct a rectangular cuboid box with
periodic boundary conditions that recovers the crystalline fcc lattice. Of course, this box
should have minimal volume in order to decrease computational time. If interfaces are
involved in calculations, the rectangular cuboid box must also reflect the symmetry of the
interface. Thus, one face of the unit cell is required to be oriented parallel to the interfacial
plane. For this reason, lattice properties are listed in Table 4.1 for the five interfacial
orientations (001), (011), (111), (012), and (112) that are of interest in the context of this
work (see Chapter 5). The properties are obtained in Sec. A.3, where rotated unit cells
are constructed by using a mathematical scheme. In addition, schematic sketches of the
lattice sites of these five cells are shown in Fig. 4.3.

4.1.3 Packing of hard spheres

For a given system, the nature of packing [136,137] is an interesting and highly non-trivial
problem, especially for hard-core bodies, where no overlap between particles is allowed
and a maximal number of particles per volume exists. This close packing limit defines an
upper boundary for the mean particle density of the system. For this reason, knowledge
about close packing is interesting, e.g. for shipping or storing. For example, cannonballs
have been piled in pyramids for centuries, similar to oranges on the market nowadays.
The question, if this packing is the best or not, as well as which way of packing is the
energetically preferred one in nature, is actual until today.

In 1611, Johannes Kepler (1572-1630) formulated a theorem for hard spheres, known as
the Kepler conjecture [137, 138]:

No packing of congruent balls in Euclidean three space has density greater
than that of the face-centered cubic packing. This density is π√

18
≈ 0.74.
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Table 4.1: Properties of an fcc lattice and a rectangular cuboid unit cell for five interfacial
orientations of one face, respectively (001), (011), (111), (012), (112). To obtain the listed
properties, a mathematical schema is given in Sec. A.3. Using the notation from the example
in Sec. A.3.4, n̂ is the normal vector on the interface of given orientation and φ and θ are
angles that are used for its parametrization. The angles αz and αx determine the rotation
of the lattice around the axis z and x, to obtain the given interface orientation parallel to a
Cartesian coordinate plane. The vectors �v1, �v2, and �v3 are the edges that span the unit cell,
given in terms of the primitive vectors �a1, �a2, and �a3 (see Fig. 4.2). Finally, Vc is the volume
of the unit cell in terms of the lattice constant a, given as a product of the length of the three
edges of the unit-cell.
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About 400 years later, T. C. Hales carried out a proof of this conjecture [137–139], but
his proof could not yet be fully validated [140]. 13

However, close packing is achieved by a structure formed by hexagonal layers. If the
first two layers are labeled by A and B, the third layer can either be placed as the first
one (A) or on a third position (C). So, two stacking sequences are possible, where the
sequence ABCABC results in a fcc structure. On the contrary, the sequence ABAB is
called hexagonal close packed (hcp). The hcp structure is not correlated to a Bravais
lattice, but several elements like Mg, Ti, and Zn crystallize in it [130]. Till this day it is
discussed which of both structures is the more stable one (with respect to energy) and
why, but the fcc structure seems to be more stable [141, 142].

In another sense, a maximal limit of the packing fraction can be achieved by randomly
packing particles together. In a recent work about jammed matter, C. Song et al. found the
random close packing limit to be about 0.634 [143]. In addition, J. D. Bernal and J. Mason
studied the packing of rigid spheres in a given volume in 1960 and found 0.64 for random

13The simple cubic lattice has a maximal packing fraction of 4
3πR

3/(2R)3 = π
6 ≈ 0.5236.
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close packing and 0.60 for loose packing [144].14 Also, J. G. Berryman performed an
early work about random close packing of hard spheres and disks [145] and for disks he
published a value of η = π/

√
12 ≈ 0.9069 for close packing.

4.1.4 Crystalline density profiles and order parameters

This subsection is a re-formulation of parts of Sec. V.C from Ref. [146] by M. Oettel and
co-workers; defects in hard-sphere crystals in FMT have been discussed in Sec. II of this
reference.

The density profile ρ(�r) of a hard sphere crystal consists of nearly isolated and identical
density peaks ρpeak at the lattice points of the lattice L and reads

ρ(�r ) =
∑
�ri∈L

ρpeak(�r − �ri). (4.5)

Thus, one of these density peaks describes one particle i that is located around15 the cor-
responding lattice position �ri. Accordingly, an integration of the density peak distribution
should result in one particle.

The density peak �rpeak also contains crystalline defects like vacancies, occurring in some
of the unit cells of the whole crystal. For this reason, an integration of a crystalline peak
follows with ∫

V

ρpeak(�r )d�r = 1 − nvac, (4.6)

defining the concentration nvac of vacancies in the crystal.16

To allow analytical and/or fast calculations, an approximate description of the density
peaks ρpeak is useful, e.g. in the form of a trial function, where solely a few order pa-
rameters enter the approximation.17 Thus, a single peak ρpeak can be assumed to have the
normalized Gaussian form

ρpeak(�r ) ≈ ρG(|�r |) =
(α
π

) 3
2
exp
(
−α|�r |2

)
(4.7)

with a width parameter α in first approximation.

14Loose packing is obtained by randomly packing spheres and random close packing is obtained by
shaking a loose packed system.

15A density peaks is similar to a distribution of particles around the peak position.
16For further reading, see e.g. the works by C. H. Bennett and B. J. Alder [147] about Vacancies in

Hard Sphere Crystals, by S. Pronk and D. Frenkel [148] about Point Defects in Hard-Sphere Crystals, or
by S. K. Kwak et al. [149] about the Characterization of mono- and divacancy in fcc and hcp hard-sphere
crystals.

17For example, T. V. Ramakrishnan and M. Yussouff analyzed the solid-liquid phase transition with one
single order parameter [66].
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In order to analyze the deviations from the Gaussian form, the density distribution can be
assembled in terms of an average radial deviation fΔG(r) and of a directional anisotropic
deviation faniso(�r ), in addition to the Gaussian form ρG(r) itself [26, 146]. Thus, the
density distribution of a crystalline peak follows with

ρpeak(�r ) = ρG(r)fΔG(r)faniso(�r ). (4.8)

M. Oettel et al. parametrized and expanded both deviations in the form [146]

fΔG(r) ≈ exp
[
b2 αr

2 + b4(αr
2)2 + b6(αr

2)3
]
, (4.9)

faniso(�r ) ≈ 1 + K4α
2

(
x4 + y4 + z4 − 3

5
r4

)

+K6α
3

(
x6 + y6 + z6 − 3

7
r6

)
, (4.10)

where �r = (x, y, z)t and b2, b4, b6 � 1 are expected to be small. This result corresponds
to the leading two terms in the cubic cell asymmetry (consistent with the point symmetry
of the fcc lattice), what is explained in more detail in a footnote on page 10 of Ref. [146].

Furthermore, it is convenient to quantify the spread of the density distribution around a
solid peak by the Lindemann parameter [150, 151] that is defined as the dimensionless
root mean-square displacement by

L =
1

rnn

√∫
WSC

rr2ρ(�r )d�r. (4.11)

Here the spatial integration is over a Wigner-Seitz cell (WSC), centered around a lattice
position at the origin, and rnn = σ

(√
2/ρ0

)1/3
denotes the distance between two nearest

neighbours in the crystal lattice (the length of the shortest primitive lattice vector).

Finally, an analysis of the bond-orientational order can be used to distinguish between
crystalline and fluid particles and gives rise to the definition of a rotational-invariant bond-
order parameter q6q6(i) of a particle i [152, 153]. For example, a particle i is identified as
a crystalline particle in several works (see also Sec. 5.2), if q6q6(i) > 0.68 [72–74]. How-
ever, other conditions or other order parameters are available and they may be preferred
for crystalline structures differing from fcc.

4.2 Hard-sphere phases

The system of rigid (or hard) spheres is one of the systems that have been investigated
the most intensely in the field of soft matter and constitutes an important benchmark
system for the investigation of more complex particle shapes or interactions. Solely driven
by entropic forces, the internal energy U of a hard-sphere system vanishes, which gives
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raise to a separation of the free energy in an entropic part and an internal energy part, in
general [96]. Moreover, the packing of hard spheres has been a controversial issue and
a stringent proof is owing to this day, as known from the previous section. Similarly,
the question has been discussed intensely, whether a hard-sphere system has a fluid-solid
phase transition or not.

In this section, the historical progress of investigations in hard spheres is outlined first.
Next, recent results from DFT and MC simulations are presented and density profiles as
well as the crystal-fluid phase transition are discussed. Finally, the polydispersity of hard
spheres and outcomes for the properties of hard-sphere systems are outlined.

Parts of this section are rewritten from the work Free energies, vacancy concentrations,
and density distribution anisotropies in hard-sphere crystals: A combined density func-
tional and simulation study by M. Oettel et al. [146] c©2010, The American physical
Society, especially Subsections 4.2.2 and 4.2.3 about density profiles and phase transi-
tions. In addition, a statement about the individual contributions of the authors is given in
the preface of this work.

4.2.1 Historical progress

Already in 1914, P. W. Bridgman investigated the melting line in several substances by ex-
periments [154, 155] and he was convinced that molecules of any “shape” would crystal-
lize at sufficiently high pressure.18 Later, in 1954, Further Results on Monte Carlo Equa-
tions of State has been presented for hard spheres by M. N. Rosenbluth and A. W. Rosen-
bluth [156]. They found “a clear evolution with increasing volume from a crystalline
structure to a liquid type structure” and outlined “that the Monte Carlo method is a useful
tool for solving statistical mechanical problems”.19 Moreover, in 1957, an order-disorder
transition at about 15% below close packing was found in a combined work by Molec-
ular Dynamics and Monte Carlo computer simulations of W. W. Wood and J. D. Jacob-
sen [157] and B. J. Adler and T. E. Wainwright [70].

Thus, a discussion about the existence of a phase transition can be referred in the Round
Table on Statistical Mechanics discussion, held in New Jersey in 1957 [158]. An excerpt
from pages 497f reads:

G. E. Uhlenbeck: Recently, there has been some indication, numerically, that
a gas of hard spheres has a transition point. (...)

J. G. Kirkwood: We are now again speaking of the classical case for hard
spheres, and the question comes up as to whether, for sufficiently high densi-
ties, the fluid of hard spheres will crystallize. (...)

G. E. Uhlenbeck: Last fall, there was something similar (...) and there I fin-
ished the discussion on hard spheres with a vote. The vote was simply on the

18This is outlined by W. G. Hoover and F. H. Ree in 1968 on page 3609 in Ref. [124].
19See conclusion of M. N. Rosenbluth and A. W. Rosenbluth on page 884 in Ref. [156].
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matter of your belief in what you have heard, whether a gas of hard spheres
has a transition point or not; at Seattle, the vote was even. (...) May I ask first
of the panel to put up their hands if they believe there is a transition in the
classical case.... Now those who believe there is not a transition.... Even
again!

Later during the discussion, J. G. Kirkwood noted, “Well, I think we are all aware that we
have to take numerical calculations relating to transitions with a grain of salt.”

As requested, W. G. Hoover and F. H. Ree performed Monte Carlo computer measure-
ments in 1968, “in order to confirm the existence of a first-order melting transition for a
classical many-body system of hard spheres and to discover the densities of the coexist-
ing phases” [124]. For an equilibrated system with 12 up to 780 particles, they found
a coexistence pressure of about pco = 11.70(18)kBT/σ

3, a Lindemann parameter of
L = 0.126, and coexistence bulk densities (volume fractions) of ρfl,coσ

3 = 0.943(4)
(ηfl,co = 0.494(2)) for the fluid and of ρfcc,coσ

3 = 1.041(4) (ηfcc,co = 0.545(2)) for the
solid (fcc crystal) phase. Even more, these results are valid till this day.

At the same time, early experiments have been performed on hard spheres in two dimen-
sions: D. Turnbull and R. L. Cormia investigated A Dynamic Hard Sphere Model using
stain balls on a flat plate [69] (see also Sec. 3.2.2). Moreover, the equation of state and
Statistical Mechanics of Rigid Spheres have been analyzed for fluid phases by H. Reiss,
H. L. Frisch, and J. L. Lebowitz in 1959 [58, 75]. From their scaled particle theory, they
extracted the pair distribution function g(r) and the surface tension of a fluid. Even more,
the Equation of State for Nonattracting Rigid Spheres has been developed by N. F. Car-
nahan and K. E. Starling [59] from an analysis of the reduced virial series.20

In 1979, T. V. Ramakrishnan and M. Yussouff presented a First-principles order-
parameter theory of freezing [66]. In 1985, G. L. Jones and U. Mohanty performed
a density functional-variational treatment of the hard sphere transition [159], includ-
ing a comparison with simulation results from a review about Computer Simulations
of Freezing and Supercooled Liquids of D. Frenkel and J. P. McTague [160] and addi-
tional theoretical approaches by A. D. J. Haymet [161] and P. Tarazona [162]. In 1990,
M. Baus compared “the results obtained for the freezing of hard-core systems” from
Refs. [95,124,163,164] in a work about the present status of the density-functional theory
of the liquid-solid transition [165]. All results predict a phase transition from a fluid bulk
density of ρflσ

3 = 0.8917..0.993 to a (fcc) crystal density of ρcrσ
3 = 0.9662..1.083 and

a Lindemann parameter in the range of 0.048..0.145. Moreover, vacancy concentrations
have been compared in Ref. [159], but they are much higher than in recent works (see
Sec. 4.2.2 or Ref. [146]).

Then, in 1986 the theoretical results concerning the phase transition could be confirmed
in experiments by P. N. Pusey and W. van Megen [121]. Using polymethylmethacrylate
(PMMA) spheres with radii of 305±10nm (a polydispersity of about 0.03), they measured
the Phase behavior of concentrated suspensions of nearly hard colloidal spheres, result-

20More details about these theoretical approaches are discussed in Sec. 3.2.3.
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Figure 4.4: Schematic view of a periodic one-particle density (distribution). Left: Single
particles in a 2-dimensional system, structured in unit cells that correspond to the period-
icity of the whole system. Center: All particle positions of the 4 cells, mapped to one unit
cell. Right: The same map as for the 4 cells, but for n → ∞ cells of an infinitely expanded
system, divided by the volume of the total system. Such periodic density distributions are
used in DFT.

ing in effective volume fractions21 of ηfl,co = 0.494 for the fluid and of ηfcc,co = 0.536 for
the solid. Moreover, they found glass phases that have fluid-like structure, but mechanical
properties of an (amorphous) solid. Showing the colloidal patterns at different volume
fractions, the photograph of their experiment is well known and a more accurate version
has recently been published in a work about Hard sphere crystals and glasses [122].

On the contrary of previous descriptions of the solid hard-sphere phase, R. Ohnesorge
et al. performed a free minimization of the density distribution on a cuboid rectangular
grid [97,166], similar to that used in this work. However, the (M)WDA approach predicted
very small values of the surface tension (see next chapter). In another sense, H. Dong and
G. T. Evans analyzed the freezing transition of a hard sphere fluid subject to the Percus-
Yevick approximation, but they also obtained a Lindemann parameter that in comparison
to simulation results is too low.

In 2000, P. Tarazona introduced a Density Functional for Hard Sphere Crystals: A Funda-
mental Measure Approach, improving the original FMT of Y. Rosenfeld [25] that failed
to predict the fluid-solid phase transition for hard spheres. Finally, the White Bear ver-
sion of FMT of R. Roth et al. [113] and the mark II approach from H. Hansen-Goos and
R. Roth [27] predict quite accurate values for the fluid-solid phase transition [146] and
are discussed in the next section.

4.2.2 Density distributions

As known from Sec. 2.3, particles are described in DFT by one-particle density distri-
butions ρ(�r ) that range over the whole volume V of a system. Accordingly, infinitely
expanded crystalline lattices and bulk phases are described on volumes, which take the

21Done by including a hard-sphere interaction radius of about 20nm, that is roughly the thickness of the
stabilizer layer, to achieve the scaling value of ηfl,co = 0.494.
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whole R3. However, periodic density distributions are fully described by their values on
one single unit cell (see Sec. 4.1). For this reason, the density profiles ρ are only defined
on a subset Vuc ⊂ V of the total volume, as schematically illustrated in Fig. 4.4.

The fluid phase gives a description of the simplest density distribution, because it has no
spatial dependence. Consequently, the system is described by one mean density value ρfl.
On the contrary, a crystalline phase must be described on one or more unit cells, depend-
ing on its symmetries. If now density profiles are calculated that minimize the energy of
the system, this is done on a given volume Vuc that itself again depends on the density.
Therefore, either the symmetry must be known during a calculation or the volume Vuc

must be handled as a free minimization parameter. For example, Fig. 4.10 shows the ener-
gies of minimized density profiles for given volumes Vuc = a3, respectively. Apparently,
the system results in an equilibrium situation only for a volume Vuc that corresponds to
the periodicity of the crystalline lattice (for one lattice constant a).

Now, the equation of state in Eq. (2.49) must be solved to achieve a physical density pro-
file of a system in equilibrium. For this purpose, the White Bear version mark II functional
from Sec. 3.4.1 is used in the framework of FMT and DFT. Due to the complexity of this
functional, analytical solutions can only be obtained for the fluid phase and are given in
Sec. B.2. To achieve general solutions, the equation of state must be solved numerically,
as outlined in Sec. C.1. At the same time, the chemical potential μ is used as an order
parameter of the system. It contains the (irrelevant) thermal wavelength Λ that has no ef-
fect on velocity-independent properties of a system in equilibrium, such as those that are
investigated in this work. Thus, in this work the chemical potential is used in a shifted
form, where the shift − log(Λ3/σ3) removes the terms that result from the integrals over
the translational momenta in the partition sum (see also Sec. 2.2.1).

To apply numerical methods, the density profile ρ(�r ) must be parametrized. The most
simple parametrization is given by Eq. (4.7), where density peaks are assumed to have a
Gaussian form. Moreover, a free minimization (or full minimization) is performed in this
work, where the density profile ρ(�r ) is parametrized on a cubic rectangular grid consisting
of Nx × Ny × Nz grid points [74, 97, 146]. This method allows the description of nearly
arbitrary density profiles ρ(�r ). For example, a typical profile is given in Fig. 4.5, where
contour plots of plane cuts through the three-dimensional density are shown. Apparently, a
second cut of the contour plots at very low density ρσ3 = 0.003 proves the more explicit
structure of the one-particle density ρ(�r ): Anisotropies are clearly visible on different
scales and for different positions in the unit cell and they depict possible ways of particle
movement inside the crystalline structure. So, the most preferred uncertainty in positional
ordering seems to be along the nearest neighbour distances inside a face of the unit cell,
respectively, or from one face-centered particle to another one (with exception of the
opposite face).

Using the Gaussian parametrization in Eq. (4.7), the width α is the only parameter, if the
normalization of the density peaks is given. The latter follows from the mean bulk density
ρσ3, including vacancies. A minimization of the grand energy of the system results in an
equilibrium width parameter α that is shown in Fig. 4.6(a) [146]. Moreover, the results
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Figure 4.5: (Color) Contour plots of plane cuts through a three-dimensional density dis-
tribution of a crystalline hard-sphere fcc phase in equilibrium. The density has been ob-
tained by full minimization on a numerical grid with 643 points with a chemical poten-
tial of μco = 16.3787kBT . The resulting density distribution has a lattice constant of
a = 1.5671σ, a mean density of ρfcc,coσ

3 = 1.0393465(1), and a vacancy concentra-
tion nvac,co = 2.18(1) × 10−5. In (a) the full profile at z/σ = 0 is shown, in (b-d) the
profile is cut at a maximal value of ρσ3 = 0.003. The position of the plane cuts is shown
schematically in the sketch of a unit cell and positions are (a,b) z/σ = 0, (c) z/σ = 12/64,
and (d) z/σ = 16/64.
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Figure 4.6: (Color) (a): Logarithm of the Gaussian width parameter α vs. bulk density ρ0:
DFT–WBII in Gaussian approximation (full line), DFT–WBII in full minimization (circles),
extrapolation to the thermodynamic limit in MC (+ symbols) and results from Ref. [167]
(squares). (b): radial probability r2ρ(r) in [100] direction for the bulk density ρ0σ

3 = 1.04.
Comparison between DFT and MC simulations. This figure is reprinted with permission
from Ref. [146] by M. Oettel et al. c©2010, The American Physical Society.

from a Gaussian parametrization are compared to data, extracted from a full minimiza-
tion of the density profile, to Monte Carlo simulation results from S. Görig, M. Radu,
and T. Schilling, and to Molecular Dynamics simulation results from D. A. Young and
B. J. Alder [167]. In all cases, the Gaussian width parameter is extracted by a global fit
with Eq. (4.7). Furthermore, the MC simulation results are given in the thermodynamic
limit that is extracted from values at finite box length.22 Figure 4.6(b) shows a comparison
of the radial probability r2ρ(r) along the [100] direction between DFT and MC results.

The Gaussian form Eq. (4.7) only states an approximation to the real form of a crystalline
density peak. In principle, there are two effects that cause this deviation. First, a real den-
sity profile can be more localized or less localized around one crystalline lattice position.
This amount of localization of the distribution around one peak is called kurtosis and its
deviation from the Gaussian form can be measured by using Eq. (4.9), especially by the
leading term b4. Second, the radial distribution of a single peak depends on its angular
direction and this anisotropy can be measured by using Eq. (4.10). Both deviations are
analyzed in Fig. 4.7 for a mean bulk density of ρ0σ

3 = 1.04 near fluid-solid phase coexis-
tence, comparing MC results (panels a,b) and DFT free minimization results (panels c,d).
In addition, the same figure is also given for a bulk density of ρ0σ

3 = 1.20 in Ref. [146].

Following Ref. [146], a comparison between different bulk densities states that the kur-
tosis (panels a,c in Fig. 4.7) is higher for DFT results than for a corresponding Gaussian
peak for all bulk densities, while this behavior depends on density for MC simulations.23

22For further information, see works of M. Oettel et al [146] and of D. A. Young and B. J. Alder [167].
23For ρσ3 = 1.20, the kurtosis is smaller for MC results than for a corresponding Gaussian form [146].
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Figure 4.7: (Color) Density distributions at a bulk density ρ0σ
3 = 1.04 around a lat-

tice position along the lattice directions [100], [110], and [111]. Panels (a) and (b) show
MC results (N = 8788), panels (c) and (d) results from DFT–WBII. In panels (a) and (c)
the density ρ is shown vs. r2 in logarithmic scale, thus illustrating the deviation from a
Gaussian form (straight line). Here, the full line is a fit to the Gaussian form ρG (Eq. 4.7)
with parameter α = 77.5 (MC) and α = 84.4 (DFT–WBII). The dashed line is a fit to
the non–Gaussian form ρG fΔG (Eq. 4.9) with parameters b2 = −0.011, b4 = 0.0021,
b6 = −0.0002 (MC) and b2 = 0.090, b4 = −0.029, b6 = 0.0009 (DFT–WBII). In panels
(b) and (d) the density is shown along the three lattice directions relative to the radial fit
ρradialfit = ρG fΔG. Here, the corresponding anisotropies along the three lattice directions
are clarified that result from a fit by faniso (Eq. 4.10) with parameter K4 = 0.022 (MC) and
K4 = 0.039 (DFT–WBII). This figure is reprinted with permission from Ref. [146] c©2010,
The American Physical Society.
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Figure 4.8: (Color) (a): Leading anisotropy coefficient K4 vs. bulk density ρ0 as obtained
from a fit to the density distributions from MC simulations (circles) and from DFT–WBII
(squares). (b): Lindemann parameter L vs. bulk density ρ0 for Monte Carlo simulation
(MC) and DFT, also in comparison with Ref. [166] (Ohnesorge et al.). Results for (M)WDA
from Ref. [166] are achieved by full minimization. This figure is reprinted with permission
from Ref. [146] c©2010, The American Physical Society.

Though, the parameter b4 from Eq. (4.9) changes sign at a density of about ρ0σ
3 = 1.10,

as mentioned in Ref. [146]. Concerning the anisotropies, shown in panels (b,d), the trends
are similar for MC simulations (panel b) and DFT results (panel d); only the magnitude
of the leading anisotropy coefficient K4 is larger in DFT by a factor of 1.7, as mentioned
in Ref. [146].

The leading anisotropy parameter K4 is shown in Fig. 4.8(a) for given bulk densities.
Ignoring the spread in data due to the fitting process, the trend of decreasing parameter
K4 for increasing density is consistent with the observation that density peaks become
Gaussian ones (K4 = 0) next to close packing [167].

The Lindemann parameter L, as defined in Eq. (4.11), is shown in Fig. 4.8(b) for several
bulk densities and for fixed vacancy concentrations of nvac = 10−4 and nvac = 10−5, com-
paring DFT results and MC simulation data from M. Oettel et al. [146] to MC results [166]
and to (M)WDA results [166] from R. Ohnesorge and co-workers. Apparently, the Linde-
mann parameter is about L = 0.13 at the melting density ρσ3 = 1.04 and decreases with
increasing bulk density. In other words, the density distribution becomes more localized
for higher bulk densities ρ. However, re-calling the quotation on page 46, the Lindemann
parameter has a slightly higher value than mentioned in the work of T. V. Ramakrishnan
and M. Yussouff [66].

Finally, an analysis of the vacancy concentration nvac, as defined in Eq. (4.6), is given in
Fig. 4.9, taken from Ref. [146]. The analysis is performed for DFT results, using three
different density functionals, and for simulation results from S. K. Kwak et al. [149] and
from C. H. Bennet and B. J. Alder [147]. In comparison to simulation results, vacancy
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Figure 4.9: (Color) (a): The constrained chemical potential μ′(ρ0, nvac) as obtained by
full minimization of the three DFT models at the bulk density ρ0σ

3 = 1.04. The dashed line
shows the value for the chemical potential following from the thermodynamic definition of
μ = dfcr/dρ0 where fcr is the free energy density. It is equal for the three DFT models to
the given accuracy. If and only if μ′(ρ0, nvac) = μ, the free energy per particle is minimal
and thus thermodynamic consistency holds. (b): Equilibrium vacancy concentration vs. bulk
density as obtained for the White Bear mark II functional (full line–Gaussian approxima-
tion, filled diamonds–full minimization) and compared to available simulation results (open
diamonds–Ref. [149], filled squares–Ref. [147]). This figure is reprinted with permission
from Ref. [146] c©2010, The American Physical Society.

concentrations are smaller for DFT results, which matches more localized density peaks in
DFT calculations. As expected, the vacancy densities decrease for increasing bulk density.

4.2.3 The crystal-fluid phase transition

The phase diagram of a monodisperse system of hard spheres is shown in Fig. 4.1 for
vanishing polydispersity δ = 0. Though, every point of the phase diagram corresponds
to system states in equilibrium, having minimal energy and fulfilling the constraints that
are given by the phase diagram. Thus, the phase transition occurs at that point, where the
energies Ωfl and Ωcr of the fluid and of the crystalline phase are equal.

Now, calculations are applied by using the White Bear version mark II of FMT. Thus,
the energy Ωfl of the fluid phase is given by Eq. (2.38) and by the Carnahan-Starling
free energy in Eq. (3.15).24 The grand energy Ωfl(μ) of the fluid phase can be obtained
(numerically) as a function of the chemical potential, using the fundamental equation of
state (2.42) of DFT.

24Also see Fig. 3.2 in the context of the Carnahan-Starling equation of state.
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Figure 4.10: (Color) Phase coexistence results for the hard-sphere fcc and fluid phase. In
the left plot, squares give the grand energy difference between a fcc phase with a lattice
constant a and a corresponding fluid phase at the same chemical potential μ/kBT that is
shown in the legend of the plot. Moreover, the lines are parabolic fits (y = a0(x−a1)2+a2)
and their minima are marked by circles. In the right plot, the minima from the left plot
are shown in combination with a linear fit. Accordingly, the zero-crossing value gives the
coexistence chemical potential μ/kBT = 16.3787.

At the same time, crystalline equilibrium density profiles must be generated to obtain
similar results for the crystalline phase. The simplest method is the parametrization of
the density profile, for example with the Gaussian form in Eq. (4.7). Resulting energies
are listed in Table I of Ref. [146], in comparison to results from MC simulations and
from free minimization. To obtain the latter, an initial guess is iterated numerically to an
equilibrium situation, using numerical methods from Sec. C.1. Since this guess already
contains the crystalline structure, knowledge of the crystal is necessary a priori; testing all
possible structures does not seem to be a useful option. Hence, the fcc structure is chosen
in this work, since it is known as most stable structure from Sec. 4.1.3.

However, the lattice constant is generally unknown for a given chemical potential. Ac-
cordingly, a minimization is necessary with respect to the lattice constant or the volume
of the unit cell, respectively. Such minimizations are shown in Fig. 4.10 for the White
Bear II (WBII) functional and in Fig. 4.11 for the Ramakrishnan-Yussouff (RY) approach
from Sec. 3.3. Here, the energy of the corresponding fluid phase is already subtracted,
since it is independent from the lattice constant a.

Now, the coexistence chemical potential can be obtained as illustrated in the right
panel of Fig. 4.10 and Fig. 4.11. It follows with μco/kBT = 16.3787 (WBII) and
μco/kBT = 21.5070 (RY). A calculation with this chemical potential yields a lattice
constant aco = 1.5671σ (WBII) and aco = 1.47845σ (RY) and a coexistence pressure of
pco = 11.86760(3)kBT/σ

3 (WBII) and pco = 16.92013(3)kBT/σ
3 (RY); the coexistence
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Figure 4.11: (Color) Phase coexistence results for the hard-sphere fcc and fluid phase
using the Ramakrishnan-Yussouff functional. In the left plot, squares give the grand energy
difference between a fcc phase (lattice constant a) and a corresponding fluid phase at the
same chemical potential μ/kBT that is shown in the legend of the plot. Moreover, the lines
are parabolic fits (y = a0(x−a1)2+a2) and their minima are marked by circles. In the right
plot, the minima from the left plot are shown in combination with a linear fit. Accordingly,
the zero-crossing value gives the coexistence chemical potential μ/kBT = 21.507.

densities (and volume fractions) read ρfcc,coσ
3 = 1.0393465(1) (ηfcc,co = 0.5442006)

and ρfl,coσ
3 = 0.9451061 (ηfl,co = 0.4948564) (WBII), and ρfcc,coσ

3 = 1.1225767(1)
(ηfcc,co = 0.5877798) and ρfl,coσ

3 = 1.0213797 (ηfl,co = 0.5347931) (RY). Consequently,
the vacancy density in the fcc phase follows with nvac,co = 2.18(1) × 10−5 (WBII) and
nvac,co = 0.0930(1) (RY).25

In addition, the results are collected in Table 4.2 that is partly re-printed from Table I
in Ref. [146] by M. Oettel and co-workers. Moreover, a comparison is drawn between
several functional approaches and recent MC computer simulations of T. Zykova-Timan
et al. [73]. Further coexistence values can be found in Table 2 of Ref. [159] by G. L. Jones
and U. Mohanty, in Table I of Ref. [165] by M. Baus, and in Table I of Ref. [29] by
R. Roth, where additional results are listed comparatively.

4.2.4 Polydispersity

Following P. N. Pusey and W. van Megen, W. C. K. Poon et al. mention in a work On
measuring colloidal volume fractions [168] (see also Ref. [169]) that the

determination of (the volume fraction) φ is emphatically not unproblematic,
because: (1) no real colloid is truly ’hard’, since there is always some softness

25For details about calculations see Sec. C.1.6.
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Table 4.2: Coexisting fluid (ρfl) and crystal (ρcr) densities (the corresponding packing
fractions are given in brackets), as well as the chemical potential μco and the pressure pco at
coexistence for the investigated DFT models in Ref. [146] and in this work. Here, RF is the
tensor modified Rosenfeld functional, WB is the tensor modified White Bear functional, and
WBII is the tensor modified White Bear II functional (the functionals are listed in Sec. 3.4.1
and the tensor modification in Eq. 3.54 has been used). RY is the Ramakrishnan-Yussouff
approach with the direct correlation functions of the White Bear II functional, as mentioned
in Sec. 3.4.2. The MC results are taken from Ref. [73]. In order to obtain numbers, Λ = σ
has been used for the thermal de Broglie wavelength. This table is partly re-printed from
Ref. [146].

ρflσ
3 (ηfl) ρcrσ

3 (ηcr) βμco βpcoσ
3

RF 0.892 (0.467) 0.984 (0.515) 14.42 9.92
WB 0.934 (0.489) 1.022 (0.535) 15.75 11.28
WBII 0.945 (0.495) 1.039 (0.544) 16.38 11.867
RY 1.021 (0.535) 1.123 (0.588) 21.51 16.92
MC 0.940 (0.492) 1.041 (0.545) 11.576

in the interparticle potential; and (2) real colloids always have a finite size
distribution, i.e. they are polydisperse.

Likewise, R. Kurita and E. R. Weeks discussed this problems carefully in a work about
measuring every particle’s size from three-dimensional imaging experiments [170].

Accordingly, the effect of polydispersity on a hard-sphere model system has been inves-
tigated for years. Detailed references are discussed in the works of S.-E. Phan et al. [171]
and of M. Fasolo and P. Sollich [65] about the effects of polydispersity on hard sphere
crystals and about the equilibrium phase behavior of polydisperse hard spheres. In this
context, P. G. Bolhuis and D. A. Kofke [172] mention:

Pusey [121] performed experiments in which he observed that dispersions
with a polydispersity of 7.5% would (partly) freeze, while those with a poly-
dispersity of 12% did not.

Moreover, R. McRae and A. D. J. Haymet analyzed the Freezing of polydisperse hard
spheres with DFT methods [173]. In general, this analysis is possible when using a set
of density distributions ρσ that differ in the diameter of the hard spheres. Similarly, the
density distribution can by extended with a particle-size distribution function f(σ). Ap-
plying this concept to FMT, the function f enters the equation of state (2.42) and only
additional numerical integrations of the product between weight functions w(α) and f(σ)
are necessary with respect to the particle size.26

To allow theoretical description, “the width of the diameter distribution can be character-
ized by a polydispersity parameter δ, defined as the standard deviation of the size distri-

26The particle-size distribution only enters the free energy functional. With respect to Eq. (3.63), the
equation of state follows with μσ = ln(ρ) − kBTc

(1)[ρ;�r].
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bution divided by its mean” [65]. Accordingly, it reads

δ =

√
〈σ2〉 − 〈σ〉2

〈σ〉 . (4.12)

A sketch of the corresponding phase diagram of polydisperse hard spheres is shown in
Fig. 4.1. Detailed results are given by M. Fasolo and P. Sollich in a work about the
Equilibrium Phase Behavior of Polydisperse Hard Spheres [65] and the phase diagram is
discussed in a recent work about Polydispersity induced solid-solid transitions in model
colloids by P. Sollich and N. B. Wilding [174].

4.3 Conclusion

In conclusion, free energies and density distributions of the hard-sphere system have been
obtained for the (fcc) crystal and fluid phase by applying FMT functionals. The free en-
ergies are in good agreement with Monte Carlo (MC) simulation results and demonstrate
the applicability of the functionals to the treatment of other problems involving crystal-
lization. Moreover, the agreement between FMT and simulations on the level of the free
energies is also reflected in the density distributions around single lattice sites. While the
peak widths and anisotropic shapes for different lattice directions agree, it is found that
FMT gives slightly narrower peaks with more anisotropy than seen in the simulations. In
addition to this, from the studied variants of FMT only the White Bear mark II (WBII)
functional shows qualitative correct behavior, whereas the Rosenfeld and the White Bear
functional give qualitative incorrect results. This implies that only the WBII functional is
a promising candidate for further studies, such as the free minimization of the crystal-fluid
interface or nucleation processes.

However, the deviations that have been observed between simulation and FMT results
point to possibilities of further improvement in the FMT functionals. Tarazona’s con-
struction of the tensor part of these functionals is an approximate representation of the
three-cavity overlap situation which leads to a complicated expression. It would be in-
teresting to study the close-packing limit of this expression in a systematic manner. In
this sense, a promising ansatz is given by re-summing the virial expansion to obtain the
Rosenfeld functional as the first order term [110, 111].
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5 The crystal-fluid interface

Solidification and melting processes involve crystal-fluid interfaces that separate the dis-
ordered from the ordered phase. Understanding the properties of such interfaces on a mi-
croscopic scale is pivotal to control and optimize crystal nucleation and the emerging mi-
crostructure of the material. Important applications include the fabrication of defect-free
metallic alloys [175] and of photonic [176], phononic [177], and protein [178] crystals. In
equilibrium, i.e. between a coexisting crystal and fluid phase, creating a crystal-fluid inter-
face results in a free energy penalty per area which is called interfacial tension. Unlike the
liquid-gas or fluid-fluid interface, the structure of the solid-fluid interface depends on its
orientation [179]. This anisotropy is associated with a difference between the interfacial
tension and the interfacial stiffness of a crystalline surface.

Predicting crystal-fluid interfacial tensions by a molecular theory is a very challenging
task. Classical density functional theory of freezing provides a unifying framework to de-
scribe the solid and liquid on the same footing and in principle, it is a promising tool.
In this respect, the simple athermal hard sphere system which exhibits a freezing tran-
sition from a fluid into a face-centered-cubic (fcc) crystal, is an important reference and
benchmark system [180, 181]. The accuracy of previous density functional calculations
of the hard sphere solid-fluid interface [97,182–184], however, was hampered by the lack
of knowledge of a reliable functional and severe restrictions in the parametrization of the
trial density profile (see Fig. 5.1). Thus, U. Gasser reviewed the “recent progress in the
study of homogeneous and heterogeneous crystal nucleation in colloids and the controlled
growth of crystalline colloidal structures” [185] that “is also relevant for a deeper under-
standing of soft matter materials in general as well as for possible applications based on
colloidal suspensions.”

In this chapter, interfacial tensions and stiffnesses of the equilibrium hard-sphere crystal-
fluid interface are predicted by using the fundamental measure density functional the-
ory [27] that is introduced in Sec. 3.4, which has been shown to predict accurate bulk
freezing data in Sec. 4.2 [146]. The interfacial tension and stiffness for five different ori-
entations are obtained, namely along the (001), (011), (111), (012), and (112) orientations
(see Fig. 5.3). Moreover, Monte Carlo simulations have been conducted to extract the
stiffness from capillary wave fluctuations for the above mentioned orientations, except
(012). Thereby, the accuracy of earlier data [72,186–191] is improved. The history of the
interfacial tension is sketched in Fig. 5.1.
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Figure 5.1: Selected interfacial tensions presented against the date (month and year),
the containing work has been published. If no error bars are shown, the errors have not
been available. The dotted line marks May 2012, when Ref. [74] by A. Härtel et al. has
been published. The related Monte Carlo (MC) simulation results have been applied via
capillary wave analysis (CW), using the expansion in Eq. (5.3).

This chapter mostly is a revised version of the work Tension and stiffness of the hard
sphere crystal-fluid interface [74] c©2012, The American physical Society. First, inter-
faces and their theoretical descriptions are discussed, including definitions for the tension
and the stiffness. In Sec. 5.2, calculations in theory and simulation are explained and
discussed, as well as the analysis of resulting data. In addition, experimental results are
analyzed using classical nucleation theory. Then, interfacial tensions and stiffnesses, as
obtained in this work, are discussed in Sec. 5.3 and are compared to existing results, as
shown in Fig. 5.1. Finally, conclusions regarding this chapter are outlined in Sec. 5.4.

5.1 Theoretical description of interfaces

Interfaces are very common and can be found everywhere in our live. For example, the
interface between water and air occurs in a glas of drinking water as well as in form of
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(a) (b) (c)

Figure 5.2: (Color) Liquid-air interfaces in nature of (a,b) the Mediterranean Sea and
of (c) boiling nitrogen. Both interfaces exist due to the gravitational field of earth. In (a,b),
surface waves can be seen on several length scales (partly due to external forces, like wind).
In (c), the liquid-air surface is disturbed by gaseous nitrogen bubbles that form because the
system is not in equilibrium. However, the structure of the surface depends on the tension of
the interface, while considering all external effects.

the rough surface of the sea on a windy day, as shown in Fig. 5.2(a,b). Interfaces are often
curved and separate droplets as well as clusters from the surrounding phase, for instance
gas bubbles in a liquid phase or nuclei in a melt (i.e. of metals). In this case, both phases
that are separated by the interface are of the same material, where the liquid-air interfaces
that are shown in Fig. 5.2 are not.

The knowledge about the properties of interfaces is of great relevance to understand the
processes of freezing and melting that are necessary for the production of solid workpieces
like motors, turbines, screws, or steel beams. In such processes, the solids are made by
solidification from melted material (often metallic alloys). To obtain pure and defect-free
materials, detailed knowledge about energy barriers and phase transitions of the used
materials is important.

Interfaces separate two phases from each other and, in particular, the crystal-fluid interface
separates the ordered from the disordered phase. In general, an interface is an area with
a certain thickness that stores an amount of energy per area (of the interface), called
interfacial tension.1 Even if the involved bulk phases usually have a lower energy than the
coexisting phases that are separated by the interface, the interface can be stable, because
breaking it up needs to overcome an energy barrier. Moreover, both involved phases admix
in the interface in a certain way. As shown in Fig. 5.2, waves and oscillations are existing
inside and along the interface, due to external forces (like wind) and temperature. These
waves are called capillary waves (CW) and they are provide a measure for the stiffness of
the interface.

In equilibrium, the principle of minimizing the energy of a system also causes the in-
terfacial tension to be minimal. For example, this principle leads to the occurrence of a
meniscus, if water is filled in a glass, and is responsible to the round shape of soap bub-

1For definitions, see for example chapter II of the textbook by A. W. Adamson and A. P. Gast [201].
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bles. Unlike the liquid-gas or fluid-fluid interface, the structure of the solid-fluid interface
depends on its orientation [179], which i.e. leads to the existence of surface facets of crys-
tals. This anisotropy is associated with a difference between the interfacial tension and
the interfacial stiffness of a crystalline surface.

Typically, the surface tension is shown in so-called γ-plots or Wulff plots [179, 202], as
given for the hard-sphere crystal(fcc)-fluid interface in Fig. 5.3. Moreover, the resulting
surface structure of clusters or interfaces can be obtained by a Wulff construction, where
minima in the γ-plot (with respect to the orientation of the surface) are used to construct
surface facets [179]. In addition, the surface tension of small droplets is related to the
Tolman length [203], “a quantity related to the curvature dependence of the interface free
energy” [204].2

As known from previous chapters, the athermal hard sphere model in equilibrium is solely
characterized by the volume fraction φ and the thermal energy kBT just sets the energy
scale. The fluid-solid(fcc) freezing transition is first-order with coexisting fluid and solid
volume fractions of φf = 0.492 and φs = 0.545, respectively, and a coexistence pressure
of pc = 11.576 kBT/σ

3 [73]. For a given volume V that contains coexisting bulk fluid and
solid phases, and a planar fluid-solid interface of area A, the excess grand free energy per
area is the surface or interface tension, given by

γ =
Ω + pV

A
, (5.1)

where Ω is the grand-canonical free energy. For crystal-fluid interfaces, γ depends on
the orientation of the interface, characterized by a normal unit vector n̂ relative to the
crystal lattice. The latter is fixed with the fcc cubic unit cell edges parallel to the Cartesian
coordinate axes of the system.3 Additionally, it should be mentioned that the volume V
contains two interfaces, due to the periodic boundary conditions.

The central quantity to describe thermal fluctuations, i.e. capillary waves, along the
anisotropic crystal-fluid interface, is the interfacial stiffness, defined tensorially [205] as

γ̄αβ(n̂) = γ(n̂) +
∂2γ(n̂)

∂n̂α∂n̂β

(5.2)

for two directions n̂α and n̂β that are orthogonal to n̂. In some sense, the amount of
capillary waves also defines an interfacial width. However, this definition is problematic,
because the structure of the interface in general depends on the extent of the system and
diverges for infinite extended interfaces.

To compare tensions and stiffnesses, the orientationally resolved interfacial tension can
be well-fitted by a cubic harmonic expansion [67, 206]. If the anisotropy in the tension is

2The Tolman length enters, for example, in classical nucleation theory (CNT), where small clusters are
of interest.

3See Fig. 5.3, Table 4.1 in Sec. 4.1.2, and Sec. A.3 about the construction of rotated unit cells.
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Figure 5.3: (Color) In the left panel, the surface orientations, such as listed in Table 5.1,
are indicated on an octant of the unit sphere. The right panel shows a Wulff plot of the
corresponding interfacial tension γ(n̂); here, the colors display the value of the tension for
a given orientation. This figure is reprinted with permission from Ref. [74] c©2012, The
American Physical Society.

weak, the expansion reads

γ(n̂)

γ0

= 1 + ε1

(
Q− 3

5

)
+ ε2

(
3Q + 66S − 17

7

)

+ε3

(
5Q2 − 16S − 94

13
Q +

33

13

)
(5.3)

with n̂ = (n1, n2, n3), Q = n4
1 + n4

2 + n4
3, S = n2

1n
2
2n

2
3 and four fit parameters γ0, ε1,

ε2, and ε3. Now, the expansion (5.3) can be used to obtain the interfacial stiffness (5.2)
from the DFT data of the anisotropic interfacial tension [67, 73], as listed in Table 5.1.
The resulting anisotropy of the stiffness is considerably larger than the one of the tension
(thus, the resulting errors of γ̄αβ(n̂) are also larger). For the five considered orientations
in this work, the resulting data for the interfacial stiffness and for the fit parameters are
also listed in Table 5.1.

Starting from the tensions γ(nα) ± γerr(nα) for α being one of the five directions of
interest, the four parameters γ0, ε1, ε2, and ε3 have been determined via a least-squares fit
with Eq. (5.3) for all combinations of γ(nα)−γerr(nα), γ(nα), and γ(nα)+γerr(nα). From
the set of all resulting (γ0, ε1, ε2, ε3)i, i ∈ [1, ..,m], the stiffness for a certain tangential



74 CHAPTER 5. THE CRYSTAL-FLUID INTERFACE

direction β has been determined as γ̄ββ(nα) ± γ̄err
ββ (nα), respectively, where

γ̄ββ(nα) =
1

m

m∑
i=1

[
γ̄ββ(nα)

](
(γ0, ε1, ε2, ε3)i

)
, (5.4)

γ̄ββ(nα) − γ̄err
ββ (nα) = min

i

[
γ̄ββ(nα)

](
(γ0, ε1, ε2, ε3)i

)
, (5.5)

γ̄ββ(nα) + γ̄err
ββ (nα) = max

i

[
γ̄ββ(nα)

](
(γ0, ε1, ε2, ε3)i

)
. (5.6)

Similarly, starting from the stiffnesses, the four parameters have been determined via a
minimization of ∑

α,β

(
γ̄ββ(nα) − [γ̄ββ(nα)]

(
(γ0, ε1, ε2, ε3)i

))2

, (5.7)

again for all combinations of γ̄ββ(nα)− γ̄err
ββ (nα), γ̄ββ(nα), and γ̄ββ(nα)− γ̄err

ββ (nα). Then,
the resulting tensions follow similarly to the calculations in Eq. (5.4-5.6).

In principle, enough data is available to determine more than four fit parameters, using the
expansion in Ref. [206] for up to ten parameters. However, this is only recommended, if
the εi decrease for increasing index i and can be illustrated by analyzing the terms of the
expansion that correspond to the εi (the cubic harmonic functions). Calculations with five
parameters show that this principle is not given, so the amount of parameters has been
limited to four in this work.

Finally, a theoretical description must, at least, describe both phases that are involved. For
this reason, density functional theory (DFT) and simulations provide adequate theoretical
description, as observed in the previous chapters of this work. For a hard-sphere system,
results from DFT and simulations are shown in the next sections.

5.2 The interface in theory and simulations

In this section, the hard-sphere crystal-fluid interface is investigated by applying den-
sity functional theory (DFT) and MC computer simulations. The results are presented in
Sec. 5.2.1 for DFT and in Sec. 5.2.2 for simulations. Here, the White Bear mark II func-
tional is used to determine the interfacial tension within DFT, where in simulations the
frequently used capillary wave theory that has been applied already to liquid-vapor in-
terfaces [207] or nickel [208], is used to determine the interfacial stiffness. The stiffness
has also been extracted from confocal microscope images [209], but, more often, classical
nucleation theory is used to obtain the interfacial tension from the distribution of small
clusters in experiments, as discussed in Sec. 5.2.3.
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5.2.1 Density functional theory

Classical density functional theory (DFT) provides direct access to the grand-canonical
free energy Ω (see Sec. 2.3). Thus, the tension of the hard-sphere crystal-fluid interface
is directly calculated from an equilibrium density profile that contains the interface. To
employ DFT, the geometric fundamental measure approach first established by Rosenfeld
[25, 26] and most accurately refined in the so-called White Bear version mark II [27] is
used, as explained in Sec. 3.4. A free minimization of this theory in the bulk phases (see
Ref. [146] and Sec. 4.2) gives accurate hard sphere bulk coexistence data which is needed
as a reliable input for the calculation of the interface and its tensions. To repeat, the crystal-
fluid phase transition occurs at a coexistence chemical potential4 μc/kBT = 16.3787 and
at a coexistence pressure pcσ

3/kBT = 11.8676. The coexistence packing fractions of the
fluid and solid are respectively φf = 0.495 and φs = 0.544, in close agreement with the
aforementioned computer simulation data [73].

At the prescribed coexistence chemical potential μc, the grand free energy functional is
numerically minimized inside a rectangular cuboid box of lengths Lx, Ly, and Lz with
periodic boundary conditions in all three directions [97]. The surface normal is pointing
along the z-direction and the box length Lz is chosen large enough (about 50 − 60σ) to
ensure a large part of bulk crystal and fluid phase at coexistence, which are separated by
two interfaces. The lateral dimensions Lx and Ly of the box depend on the surface orien-
tation, relative to the fcc crystal. They are determined by the minimal size of a periodic
rectangular cross section which accommodates the prescribed relative orientation.5 As de-
scribed in the previous chapter, the density field is resolved on a fine rectangular grid in
real space with a spacing of about 0.02σ. Starting from an initial profile, the density func-
tional is minimized by using a Picard iteration scheme combined with a direct inversion
in the iterative subspace method [210, 211] and a simulated annealing technique [97].6

Finite size effects due to the finite grid size were excluded by also using smaller grid
spacings to ensure free minimization of the density functional in practice.

The initial profile contains the two bulk parts of pre-minimized crystal and fluid, as
obtained in Sec. 4.2. To constitute an initial crossover between the bulk phases, a
variation f(z) is introduced that is one in the crystalline and zero in the fluid phase
[182–184,212,213]. For instance, W. A. Curtin has applied such variations to parametrize
the entire crystal-fluid interface by using only two parameters [182, 183]. Now, common
variations f(z) are

1

2

[
1 + tanh

(
−z − z0

Δz

)]
and (5.8)

1

2

[
1 + cos

(
π
z − z0

Δz

)]
for z0 ≤ z ≤ z0 + Δz. (5.9)

4In this work, the chemical potential is used in a shifted form, where the shift − log(Λ3/σ3) removes the
terms that result from the integrals over the translational momenta in the partition sum (see also Sec. 2.2.1).

5For further information about the properties of this unit cells see Sec. 4.1.2.
6See also Sec. C.1 for further information about the numerical methods.
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Here, the first variation is centered around the position z0 and reaches the values one or
zero only in the limit of infinite |z|. The second equation only varies between z0 and
z0 + Δz and must be set to 1 for z < z0 and to 0 for z > z0 + Δz. These distinct borders
are of benefit, because two interfaces cannot interact with each other. Now, the mean bulk
variation of the density, ρ̄(z), and the spatial resolved version ρ(�r ) between the fcc and
the fluid bulk phases are defined similarly to the definitions in Refs. [182–184] as

ρ̄(z) = ρfl + (ρcr − ρfl)f(z), (5.10)
ρ(�r) = ρ̄(z) + (ρcr(�r) − ρ̄(z)) f(z), (5.11)

where ρfl and ρcr are the mean bulk densities of the fluid and crystal phase and ρcr(�r )
is the density profile of the fcc crystal. In contrary to parametrizations with Gaussian
peaks [182–184], the broadening of the crystalline layers in the interface is not included in
this variation. However, including the broadening of the crystalline layers in the interface
could improve the minimization process.7

On contrary to the variation in Eq. (5.9), the interfacial width cannot be defined in real
systems, because the envelope function of the density profile decays exponentially; only
an approximative mean width can be defined, if (very) long capillary waves in the inter-
face are ignored.8 Thus, the variation from Eq. (5.8) has been used in this work. For both
interfaces, contained in the periodic volume, the used variation reads f(z) + f(Lz − z).
Typical values are z0 = Lz/4 and Δz ≈ 1.65σ.

Having established an initial density profile for the interface, the profile is brought to an
equilibrium situation by minimizing the grand canonical energy of the system for a given
chemical potential. The energy is given by the White Bear mark II energy functional
that is introduced in Sec. 3.4.1, and the numerical methods are described in Sec. C.1.
Nevertheless, obtaining convergence is a demanding task due to the term 1/(1 − n3)
that enters the functional. The term diverges already for small numerical errors at the
lattice sites of the crystal, which results in a local packing fraction of about n3 ≈ 1 (or
higher). On the other side, comparatively large changes must be applied in the interface
region to obtain convergence. Thus, the amount of variation in the density profile per
iteration step has been varied along the z-direction, being quite small in the bulk phases
and much higher in the interfaces. The convergence is monitored by order parameters, like
the total energy per volume or by a quadratic norm, defined on the space of density profiles
(see Sec. C.1.5). In addition, almost no numerical problems occur, if the Ramakrishnan-
Yussouff approach is used instead of the White Bear mark II FMT.

Small perturbations have often been observed in the fluid phase and in the valleys of the
density profile of the crystalline phase during minimization. These fluctuations amplify

7Broadening the crystal in the interface also changes the local packing fraction, which must not exceed
one! Since the local packing already is critical during the minimization, the broadening has not been applied
in this work.

8In general, the interfacial width would diverge for an infinitely extended interface, due to the existence
of long capillary waves.
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themselves during the calculations and lead to numerical instabilities (or unphysical local
packing) finally. Similar fluctuations9 can be observed in the presence of hard walls, even
if only fluid densities are assumed. Thus, a more detailed analysis of this phenomenon
should be part of future work.

Results for the minimized density profiles are displayed in Fig. 5.4 for five orientations.
Both, the laterally integrated (z-resolved) density field

ρ̄(z) =
1

LxLy

∫ Lx

0

∫ Ly

0

ρ(x, y, z)dydx (5.12)

and contour plots ρ(x = 0, y, z), are shown. A direct comparison of the laterally inte-
grated density profile from Fig. 5.4(a) for the (001) orientation to a corresponding density
profile that has been obtained by MC simulations [72] shows that the density peaks in
DFT are about 15% higher than in simulations, while structure and crystal broadening are
fitting very well. However, a direct comparison is problematic, because capillary waves
are captured in both approaches in different ways. In addition, the contour plot of the
(012) interface in Fig. 5.4(b) shows an ansatz of facets in the interface region, where the
crystalline structure crashes along a certain direction10 first. However, detailed analysis of
structural breakdown in the interface would require a much bigger system in the lateral
directions to eliminate effects due to periodicity.

Another powerful method, to analyze the structure of density profiles, has been intro-
duced recently by M. Oettel [214]. He applied a Mode expansion for the density profile
of crystal-fluid interfaces and used Hard spheres as a test case. For example, he found “a
density depletion zone just in front of the bulk crystal”. In a second work, M. Oettel et
al. [88] discussed the Description of hard-sphere crystals and crystal-fluid interfaces as
A comparison between density functional approaches and a phase-field crystal model.

The DFT results for the interfacial tension are summarized in Table 5.1 for the five orien-
tations analyzed in this work. With a slight orientational dependence, all the values vary
around 0.66 kBT/σ

2. The errors given in Table 5.1 are estimated from several independent
minimization runs. Since the anisotropy is weak, the orientational resolved interfacial ten-
sion can be well-fitted by the cubic harmonic expansion, as given in Eq. (5.3). The expan-
sion is used to obtain the interfacial stiffness (5.2) from the DFT data for the anisotropic
interfacial tension [67,73]. The resulting anisotropy of the stiffness is considerably larger
than the one of the tension (thus, the resulting errors of γ̄αβ(n̂) are also larger). For the
five orientations considered in this work, the resulting data for the interfacial stiffness and
for the fit parameters are also listed in Table 5.1.

9Often, the fluctuations have a periodic length of the order of the spacing of the grid.
10The direction seems to be [001], but this is only a plane cut, ignoring vertical structure.
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Figure 5.4: (Color) DFT results: a) Laterally integrated density profiles ρ̄(z) for the five
surface orientations, as indicated; b) contour plots at x = 0. The periodic length of the
total profiles in z-direction is 50.15σ (001), 53.19σ (011), 65.15σ (111), 56.07σ (012), and
61.42σ (112). This figure is reprinted with permission from Ref. [74] c©2012, The American
Physical Society.



5.2. THE INTERFACE IN THEORY AND SIMULATIONS 79

5.2.2 Monte Carlo simulations

In the Monte Carlo (MC) simulations, similar to the procedure in [72, 73], inhomoge-
neous hard-sphere systems at the coexistence pressure pc are prepared, followed by pro-
duction runs in the canonical ensemble. The canonical MC simulation consists of particle
displacement moves according to a standard Metropolis criterion, where the trial dis-
placements of the particles are randomly chosen from the interval [-0.11 σ,+0.11σ]. The
inhomogeneous solid-fluid systems are placed in rectangular cuboid simulation boxes of
nominal size L × L × 5L (L ≈ 25σ), containing about 105 particles. Moreover, peri-
odic boundary conditions are applied in all three dimensions. Here, the fcc crystal with
z-extension of about 2L resides in the middle of the box and is separated from the fluid by
two planar interfaces. Since the system is in equilibrium, the amount of crystal and fluid
phase, as well as the interfaces, remain stable during the simulation. The five considered
crystal orientations are (001), (011), (111), and (112), see Fig. 5.3. At each orientation,
10 independent runs are performed and in each of these runs, 10,000 independent config-
urations are generated that are used for the analysis of the interfaces.

The stiffnesses γ̄ are extracted from the capillary wave spectrum 〈h2(�q )〉 [67,215], i.e. the
correlation function of the interface height fluctuation h(�q ). Here, �q = (qx, qy) is the two-
dimensional wave-vector along the lateral extension of the interface. In order to determine
h(�q ), a criterion has to be introduced according to which one can distinguish between
fluid and crystal particles. Following the works [72, 73], the rotational-invariant bond-
order parameter q6q6(i) was used [152, 153]. To distinguish between crystalline and fluid
particles, the same criterion as in Refs. [72,73] is adopted, where a particle iwas identified
as one with crystalline order if q6q6(i) > 0.68, otherwise it was defined as a liquid-like
particle. Moreover, the local position of the interface is defined by the set of crystalline
particles at the interface (particles which have less than 11 crystalline neighbors). Some
particles in the liquid bulk identified as crystalline were removed by searching the largest
cluster among the particles identified as interface-particles. The fluctuation of the local
interface position is defined as h(xi, yi) = zi − 〈z〉, with i the index of a particle on
the surface and 〈z〉 the instantaneous average location of the interface. The irregularly
distributed particle coordinates (xi, yi) are then mapped onto a regular grid in the xy plane
with grid spacing Δx = Δy = σ using Shepard interpolation [67]. Finally, the height
fluctuation h(�q ) is obtained from a Fourier transformation of the interpolated heights.

Figure 5.5 shows the q-dependent interfacial stiffness,11 as defined by the equation

γ̄1(qx)q
2
x + γ̄2(qy)q

2
y =

kBT

LxLy〈h2(�q )〉 . (5.13)

For the (001) and (111) orientation, γ̄(q) = γ̄1(qx) = γ̄2(qy) holds, whereas for the (011)
and (112) orientation there are two different coefficients γ̄1(qx) and γ̄2(qy) that can be
determined from the latter equation by considering qy = 0 or qx = 0, respectively. The

11See also Ref. [215] by R. L. C. Vink et al. about Capillary waves in a colloid-polymer interface.
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Figure 5.5: (Color) q-dependent interfacial stiffness γ̄(q) for (a) the (001) and (111) orien-
tation as well as (b) the (011) and (112) orientation for the indicated directions. Note that
for (112) only the [1̄ 10 ] direction is shown because γ̄(q) for the [11 1̄ ] direction is very
similar to that of the latter direction. This figure is reprinted with permission from Ref. [74]
c©2012, The American Physical Society.

solid lines in Fig. 5.5 are fits of the data for q < 1.5 σ−1 with the function γ̄(q) =
γ̄ + aq2 + bq4 yielding the values for the stiffness γ̄ for q → 0.

5.2.3 Classical nucleation theory and experiments

In classical nucleation theory (CNT) [9, 179, 185, 201], the size distribution of nuclei is
observed in a metastable liquid phase that will (partly) crystallize. The nuclei are clusters
of N crystalline particles and their size distribution P (N) that is shown in Fig. 5.6 is
related to the free-energy difference

ΔG(N) = −kBT log

(
P (N)

P0

)
= −NΔμ + A(N)γ, (5.14)

where A is the surface area of a cluster that contains N particles. Here, the difference in
the chemical potential between the inside and outside of the clusters is Δμ = μfl − μfcc.
Assuming a spherical cluster with radius Rcl and with the volume of the N contained
particles, the surface area

A(N) = 4πRcl = πσ2η
3/2
fcc N

2/3γ (5.15)
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Figure 5.6: Distribution P (N) of nuclei sizes as a function of the number of particles N
in the nuclei for a sample with volume fraction φ = 0.53 and a time after homogenization
t = 240 min. (diamonds). The solid and dashed lines are fits to P (N) following Eq. (5.14)
for small nuclei for interfacial tensions γσ2/kBT = 0.5 and 0.65. Data are shown linear
(a) and in a logarithmic plot (b).

follows from ηfcc = N π
6
σ3/(4

3
πR3

cl). This is a quite rough assumption, because small
clusters are observed to not have a spherical [9], but an elliptical shape.12 Now, following
U. Gasser et al. [9], the surface tension γ can be obtained from investigating the occur-
rence of small nuclei, which is demonstrated in Fig. 5.6. However, next to the approxima-
tions that enter the classical nucleation theory, small nuclei have a strongly curved surface
and the correct surface tension should only be obtained in the limit of big clusters.

To analyze the experimental data13 shown in Fig. 5.6, the chemical potential difference
Δμ must be obtained. For instance, V. D. Nguyen et al. [12] found a value of Δμ =
0.41kBT for a hard-sphere system. However, the White Bear mark II functional states a
chemical potential of μfl = 20.80kBT at a pressure p = 20.206kBT/σ

3 for a fluid phase
with a volume fraction eta = 0.53. For the same pressure, calculations yield μrmfcc =
20.38kBT for a crystalline fcc phase. Thus, the difference in chemical potential during
nucleation is Δμ = 0.42kBT for the experimental system, described in the next paragraph.

The following paragraph and the resulting data are taken from K. Sandomirski and
S. U. Egelhaaf [private communication]. For further details of the samples, imaging, and
analysis procedures see Ref. [68]. Experimental measurements have been applied (by
K. Sandomirski) for systems with η = 0.53 of hard-sphere like colloids made of poly-
methylmetacrylate (PMMA) with a diameter σ = 1.83 μm and a polydispersity of less
than 4 %, which are sterically stabilized and fluorescently labelled. They are suspended in
a mixture of cis-decalin and cycloheptylbromide to match their density and approximate
their refractive index. To reduce and screen the particles’ charges, the solvents are distilled

12Possibly, a function for a mean surface could be obtained by weighing all possible shapes of clusters
with a probability of their occurrence.

13Experiments are applied by K. Sandomirski, see next paragraph.
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and salt (tetrabutylammonium chloride) added, respectively. Samples are prepared by di-
luting a stock solution, which is obtained by centrifugation and assumed to be a random
close-packed sediment with φ = 0.64 [216]. About 0.3 ml of the samples are kept and
imaged in glass vials with a diameter of about 1 cm whose bottoms are replaced by cover
slips, which are covered by an inhomogeneous film of polydisperse PMMA particles with
a different size to avoid heterogeneous nucleation [217]. The samples are imaged by using
an Olympus FluoView FV1000 confocal microscope equipped with an Ar ion laser oper-
ated at a wavelength of 488 nm and connected to an Olympus IX81 inverted microscope
with an 1.35 NA 60× oil-immersion objective. A volume of 96× 96× 60 μm3 is imaged
at a distance of 10 – 70 μm from the cover slip. Particle positions are determined [218]
and the local orientational-order parameter �q6(i) calculated for each particle i [152, 153].
Two neighboring particles i and j, where particles are declared neighbors if their centers
are within 1.17σ, are considered connected in a crystalline cluster, if �q6(i) · �q6(j) ≥ 0.5.
If a particle has at least 8 connected neighbours, it is regarded a crystalline particle.

For a volume fraction of η = 0.53, three independent sets of data have been obtained
from the experiments (by K. Sandomirski), each set listing numbers of clusters that have
been found in the system for a given cluster-size N . Combining all three sets, a dis-
tribution P (N) of clusters can be determined, which is shown in Fig. 5.6. In addition,
the distribution P (N), obtained by CNT, from Eq. (5.14) is shown for two surface ten-
sions γ = 0.50kBT/σ

2 and γ = 0.65kBT/σ
2, using Δμ = 0.42kBT and the condition

P (1) = 140; the latter results in P0 = 1012.4 and P0 = 2079.0, respectively. Regarding
Fig. 5.6, the solid line adapts the first two data points for N = 1 and N = 2, where the
dashed line adapts better to the tail of the data. Thus, it is a challenge to fit the curve P (N)
from Eq. (5.14) to the data without making arbitrary assumptions. Finally, the system is
not in equilibrium when the clusters are counted. So, the result will also depend on the
time, when the measurement is applied. However, values, obtained from literature, predict
very low tensions of about γ ≈ 0.1kBT [9].

5.3 Interfacial tensions and stiffnesses

Searching in literature, over the last decades various results can be found regarding the
crystal-fluid surface tension of hard-sphere systems.14,15 A selection is listed in Fig. 5.1,
where the tensions, presented by several works, are represented against the date (month
and year), when the containing work has been published.

Apparently, early results by W. A. Curtin [182, 183] and D. W. Marr and A. P. Gast [184]
are in good agreement with the results obtained in this work. The results are obtained
using the weighted density approximation (WDA) in the framework of DFT and are quite

14Of course, the interfacial tension and stiffness has also been investigated for other systems, like
Lennard-Jones [219, 220] or nickel (Ni) [67, 208, 221]. The methods are often similar.

15The structure of the hard-sphere interface has also been investigated without determining the interfacial
tensions and stiffnesses in previous studies, for example in Refs. [186, 222, 223].
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Table 5.1: Interfacial tensions γ and stiffnesses γ̄ ≡ γ̄αα in units of kBT/σ
2 for differ-

ent surface normal vectors (round brackets) and tangential directions nα (square brack-
ets). In DFT the tensions are measured directly, in the simulation the stiffnesses. The
other data are listed italicized and are calculated using the fit function (5.3). The fit pa-
rameters are obtained from a least square fit to the measured data. For DFT they are
γ0 = 0.664(2)kBT/σ

2, ε1 = 0.1076(120), ε2 = −0.01364(292), ε3 = −0.0023(209)
and for simulation γ0 = 0.618(11)kBT/σ

2, ε1 = 0.0905(32), ε2 = −0.00547(44),
ε3 = 0.0054(25). As a reference, previous simulation results for tensions [191] and stiff-
nesses [189] are shown in the last column. The numbers in parentheses indicate the uncer-
tainty in the last digit(s).

orientation theory simulation Ref. [189, 191]

γ (001) 0.687(1) 0 .639 (11 ) 0.5820(19)
γ̄ (001) 0 .53 (14 ) 0.419(5) 0.44(3)

γ (011) 0.665(1) 0 .616 (11 ) 0.5590(20)
γ̄ (011)[1̄00] 0 .283 (35 ) 0.401(5) 0.42(3)
γ̄ (011)[011̄] 0 .86 (14 ) 0.769(5) 0.70(3)

γ (111) 0.636(1) 0 .600 (11 ) 0.5416(31)
γ̄ (111) 1 .025 (79 ) 0.810(5) 0.67(4) 17

γ (012) 0.674(5) 0 .623 (11 ) 0.5669(20)
γ̄ (012)[1̄00] 0 .454 (57 ) 0.575(5) 0.59(3)
γ̄ (012)[021̄] 0 .71 (12 ) 0.420(5) 0.43(3)

γ (112) 0.654(1) 0 .611 (11 )
γ̄ (112)[1̄10] 0 .973 (41 ) 0.606(5)
γ̄ (112)[111̄] 0 .704 (50 ) 0.550(5)

interesting, because a parametrization of the interface density profile is used that only con-
tains two parameters.16 Moreover, the WDA predicts much smaller values, if the density
profile is minimized freely (on a grid) [97]. In Monte Carlo (MC) and Molecular Dynam-
ics (MD) simulations, either the interfacial stiffness is measured through a capillary wave
(CW) analysis of the interface [74, 188–190], or the interfacial tension is measured di-
rectly via integration methods (cleaving walls [187, 191], umbrella sampling [200, 224]).
If the stiffness is obtained, an additional transfer to tensions is necessary that is described
in the following section. In experiments, the tension is often extracted by classical nu-
cleation theory (CNT) [9, 193], as shown in Sec. 5.2.3, but also using the capillary wave
analysis [12].

Now, this work [74] presents interfacial tensions and stiffnesses that have been obtained

16See also Ref. [214] by M. Oettel, for a discussion of density modes and simple parametrizations.
17This value is for the rhcp-crystal-liquid interface, rather than for the fcc-crystal-liquid interface. See

Ref. [189] for details.
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from density functional theory (White Bear mark II) and MC computer simulations.
Quantitative agreement has been found between both methods. In Table 5.1, the values
of γ̄, as obtained from simulations, are given in comparison to previous simulation re-
sults and to DFT. A direct comparison is not possible, since in DFT the tensions are
calculated whereas in MC simulations the stiffnesses are measured. A comparison is only
possible when using a tension-stiffness conversion through a least-square fit to the tension
anisotropy expansion (5.3) and the corresponding expression for the stiffnesses (through
a combination of (5.3) and (5.2)), giving the average tension γ0 and the parameters εi
(i=1,2,3).18 Here, an element of uncertainty is added by the truncation of the expansion
since the single terms, especially in the stiffness expansion are not small (note also the
associated error bars in the converted quantities).

As expected for a fcc crystal-fluid interface, DFT shows the largest interfacial tension
for the (001) interface orientation and the lowest one for the (111) orientation, giv-
ing the tension anisotropy (γ(001) − γ(111))/2 = 0.025kBT/σ

2. The average tension
γ0 = 0.664 kBT/σ

2 is 7.4% higher than that one from the simulation.19 Most likely,
this deviation stems from the fact that in DFT (long-ranged) fluctuations in the interface
are averaged out. For the stiffnesses the data is spread in a much wider range between
0.28 kBT/σ

2 for the (011) orientation with lateral direction [1̄00] and 1.03 kBT/σ
2 for the

(111) orientation. A comparison between the stiffnesses obtained from theory and simu-
lations shows deviations from up to 0.36kBT/σ

2 for the (112)[1̄10] direction to less than
one percent for the (012)[021̄] direction.

Previous simulations obtained the values 0.559(17) kBT/σ
2 [189] and

0.5610(12) kBT/σ
2 [191] for γ0 (see also Fig. 5.1). These values are 10% smaller

than the simulation results presented in this work. An obvious discrepancy appears for the
(111) interface orientation, where deviations from a fcc packing have not been observed
in contrast to [189]. Further differences to previous simulations are the use of a different
geometry and of a rotational-invariant order parameter for the identification of crystalline
particles.

Now, the resulting data is compared to real-space experiments on dispersions of hard-
sphere-like colloids (see also Fig. 5.1). They often carry residual charges and are polydis-
perse. This renders a comparison with theoretical results on hard spheres difficult. Hith-
erto, the interfacial tension was indirectly measured by interpreting the probability to find
small (non-spherical) clusters in terms of classical nucleation theory (CNT) [9], yielding
data for a mean tension of about γ0 = 0.1 kBT/σ

2.20 Clearly, given the limitations of the
hard-sphere model due to particle charging and the inherent assumption of small spherical
crystalline nuclei, this is just a rough estimate of γ0. An alternative experimental route is

18Because the fit function (5.3) can not reproduce the inner anisotropy for the (012) orientation (shown
in the theory column of Table 5.1), the simulation data for the stiffnesses at the orientations (012) and (112)
have not been taken into account for the least-square fit. The different inner anisotropy therefore is not a
shortcoming of DFT.

19Using the Ramakrishnan-Yussouff approach, a tension of γ(001) = 1.31kBT/sigma
2 was found.

20Compare also to Sec. 5.2.3 about CNT in experiments.
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via the analysis of the capillary-wave spectrum, similar to what is done in the MC sim-
ulations of this work [10–12] and providing direct access to the interfacial stiffnesses. In
Ref. [10], the reported stiffness of 1.2kBT/σ

2 for an interface between a randomly stacked
hexagonal close packed (hcp) crystal and its melt is significantly higher, compared to the
results of this work, which might reflect the slight charge, the limited ensemble averag-
ing, and an ad-hoc value for the viscosity required for the analysis in this experiment. In
Ref. [11], the reported stiffnesses are in the range of about (0.7 − 1.3)kBT/σ

2. Interest-
ingly, the stiffness for the (011) interface is found to be isotropic and the highest value
for the stiffness is found for the (001) orientation, oppositely to what the authors have
expected and what has been found for hard spheres in this work. This might be due to a
limited number of crystalline layers and the small gravitational length of σ/7, which lim-
its the thickness of the liquid. Finally, V. D. Nguyen et al. [12] grew crystals of PNIPAM
particles in a temperature gradient and analyzed the capillary waves along crystal-fluid
interfaces after the removal of the temperature gradient. They measured averaged stiff-
nesses for several interface orientations in the range of (0.19 − 1.13)kBT/σ

2 that show
the best agreement with the results of this work. Nevertheless, the latter experiment is not
accurate enough to validate theory and simulation on a quantitative level but shows that
more experimental explorations are required.

5.4 Conclusion

Accurate values for the anisotropic crystal-fluid surface tensions and stiffnesses of a hard
sphere system have been predicted by using both, fundamental measure density func-
tional theory and Monte Carlo simulations. A small anisotropy in the tensions of about
10% is found which is, however, crucial for the transformation to stiffnesses which differ
up to a factor of 4. These predictions can help to clarify apparent discrepancies found
in real-space experiments of sterically-stabilized colloidal suspensions [9–12]. Since
the anisotropic tensions control changes of the interfacial shape, their precise quanti-
tative determination help to understand crystal nucleation [185, 225] and the transport
of larger carriers through the interface. They may also serve as further input to phase-
field-crystal calculations, which explore solidification processes on larger length and time
scales [90, 226, 227].

Future work should address soft interactions and attractions (as relevant, e.g. for colloid-
polymer mixtures), in order to scan the full range from a fluid-crystal to a vapor-crystal
interface. Further extensions can be done along similar ideas as used and proposed here
for binary mixtures. Finally, the recent extension of DFT towards dynamics for Brow-
nian systems can be used to explore the time-dependent growth kinetics and relaxation
towards equilibrium for the hard-sphere interface [228]. In this context, an analysis of the
numerical perturbations is also of interest, to ensure the usage of relatively big time steps.
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Liquid crystals are beautiful and mysterious;

(from preface of Ref. [229], Pierre-Gilles

de Gennes 1932-2007)
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6 Anisotropic colloidal
particles

Anisotropic colloidal particles have additional orientational degrees of freedom, if com-
pared to spherical particles. Thus, spherocylinders, discs or platelets, needles, cubes, or
dumbbells generate isotropic (no orientational order) and nematic (orientations aligned
along a certain direction, called nematic director) phases, when the spatial order remains
fluid-like. Combinations of spatial and orientational ordering are possible and lead to
so-called smectic phases. Additionally, orientations are of import for plastic crystals or
rotator phases. However, orientational ordering is in some sense similar to translational
freezing and thus, liquids with orientational ordering are called liquid crystals [229]. Liq-
uid crystals can be composed either of anisotropic molecular or colloidal particles with
orientational degrees of freedom. The latter have the advantage that they can be studied
directly in real-space [230–232].

The key mechanisms in optical displays and switching devices are governed by the dy-
namical response of liquid crystals to external aligning fields [233, 234].1 In particular,
it is essential to understand and control the switching dynamics of the nematic director
upon a change of the externally imposed alignment field [236]. However, due to their
orientational degrees of freedom, the rheological behavior and nonequilibrium dynam-
ics of rod-like particles are much more complex than that of spherical particles [237].
For imposed shear flow, for instance, the nematic director exhibits an intricate dynam-
ical behavior which can be classified as tumbling, wagging, kayaking, log-rolling, and
flow-aligning [238–244].

Moreover, wall effects and effects of gravity are typically very important in colloidal
suspensions, which can be exploited to steer crystallization, for instance by sedimentation
onto a substrate [245–247]. Therefore, it is paramount to investigate the effects of gravity
and of the confining walls on colloidal suspensions. Simulation studies on crystallization
of spheres [248, 249], spherocylinders [250], and dumbbells [251] have shown that the
phase behavior of the system under gravity can be understood by a mapping onto the
bulk phase diagram. Comparisons between the density profiles for fluids in the presence

1For example, already in 1927 V. Fréedericksz and A. Repiewa investigated the transition of a isotropic
phase within a external (magnetic) field (called Fréedericksz-Transition) [235].



88 CHAPTER 6. ANISOTROPIC COLLOIDAL PARTICLES

of external fields obtained from DFT calculations and those measured in simulations are
often used to validate the theoretical approach. For instance, the FMT for hard spheres
has been very successful in describing the density profile near a hard wall [113] and
edFMT is equally successful for (convex) spherocylinders [28, 105]. The density profile
obtained from an older semi-empirical weighted density approach, specifically tailored to
dumbbells, has also shown quite good agreement with simulation results [252]. However,
the deviation between the simulations and the semi-empirical DFT for dumbbells [252] is
larger than the deviation between results from simulations and edFMT for spherocylinders
[105].

Simultaneously, the interest in liquid crystals has been a motivation to apply DFT to
anisotropic particles, for instance to hard spherocylinders as idealized rod-like molecules.
The isotropic–smectic and nematic–smectic phase transitions of these rods were deter-
mined using a weighted density version of DFT for anisotropic particles [253, 254] and
showed reasonable agreement with the essentially exact simulations results of Ref. [255].
However, the construction of the free energy functional of this theory is ad hoc and not
solely based on the geometry of the particles, such as FMT is (see Sec. 3.4).2 Now,
edFMT provides excellent agreement with simulations for the isotropic-nematic transi-
tion [105, 125]. The theory has also been applied to fluids of spherocylinders under the
influence of an external field that couples to the orientations of the particles and a dynamic
version of edFMT has been derived for time dependent external fields [125, 126], such as
shown in Sec. 6.2. In addition, FMT approaches also exist for parallel cubes [258–260],
parallel spherocubes [261],3 or disks [107, 118].4 In two dimensions, the latter can be
obtained by dimensional crossover [29, 107], where spheres are trapped in one dimen-
sion, for example in between two glas plates [107]. Similarly, cubes can be reduced two
squares [260].

Historically, hard-core interaction potentials have been very useful as the basis for theo-
ries that apply to more general atomic and molecular systems. More recently, the realiza-
tion of hard-particle systems in the form of colloidal suspensions has given the study of
anisotropic hard particles a new incentive. Colloids have been synthesized in an impres-
sive number of shapes [8], many of which have no atomic or molecular analogue. Many
of these colloidal shapes are non-convex and a theory predicting the phase behavior of
non-convex particles would be of great value. Although convexity of the particle-shape
is assumed in their derivations and so far only convex shapes have been studied, the re-
cent edFMT [105] and the older version of FMT [56] for anisotropic particles are ex-
pected to approximately hold for non-convex particles as well. This expectation is tested
in Ref. [104] and Sec. 6.3 by investigating the accuracy of edFMT for non-convex parti-
cles.

In this chapter, first, additional theoretical foundations are discussed in Sec. 6.1, con-

2Such density functional theories have also been constructed for specific shapes with zero volume,
namely infinitely thin rods [256] and disks [257].

3Cubes with rounded edges that are spheres in one limit and cubes in the other.
4Distinguish between hard spheres in two and three dimensions and platelets.
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cerning the orientational degrees of freedom and the edFMT approach. Next, a system of
colloidal spherocylinders is exposed to an external rotating field that solely couples to the
particle orientations. And finally, edFMT is applied to non-convex dumbbells in Sec. 6.3,
where density profiles of dumbbell fluids in between two walls or under gravity obtained
from edFMT are compared to those measured in simulations.

6.1 Additional theoretical foundations

The extended deconvolution fundamental measure theory (edFMT) has been developed
by H. Hansen-Goos and K. Mecke to describe inhomogeneous fluids of anisotropic hard
particles [28, 105].5 The factor ζ that enters edFMT is a free parameter and stems from
the truncation of the expansion of the Mayer-f function in tensorial weight functions (see
also Sec. 6.3 and Refs. [28, 104, 105]). It should be independently determined for every
particle shape by minimizing the mean squared difference between the exact excluded
volume vexcl

ν,o and the edFMT approximation vedFMT
ν,o of two particles ν and o. Here, the

excluded volume is given by

vexcl
ν,o = − 1

V

∫
V

∫
V

fνo(�rν − �ro)d�rνd�ro (6.1)

and the edFMT approximation vedFMT
ν,o is obtained in the same way with fνo replaced

by the approximated Mayer-f function f edFMT
νo , which depends on ζ . Results for this

approximate excluded volume can be found for spherocylinders in the work by H. Hansen-
Goos et al. [105] and in the work of A. Härtel and H. Löwen [125], and for dumbbells
in the work by M. Marechal et al. [104]. On the other side, the exact excluded volume
has been calculated by L. Onsager for spherocylinders [262] and by M. Marechal for
dumbbells [104].6

The structure of very elongated particles is affected largely by the excluded volume, which
justifies its use for determining ζ for spherocylinders with a total length-over-diameter
ratio larger than 3.5, to which edFMT was applied in Refs. [28, 105, 125, 126]. For less
elongated particles, the excluded volume is not the only important quantity as the structure
is determined by both translational and positional ordering. For instance, this can be seen
in the phase diagram of spherocylinders in Refs. [255, 264].

For this reason, it is somewhat arbitrary to fit ζ by minimizing the difference between the
exact and the edFMT excluded volumes for dumbbells. However, for spherocylinders an
optimal parameter ζ is determined in Refs. [105,125] depending on the orientational state
of the system. For an isotropic system, ζ = 5/4 is found to be optimal and for a total

5For further information about the construction of the extended deconvolution FMT functional, see the
passage around Eq. (3.62).

6For dumbbells, A. Isihara calculated the second virial coefficient, including the integration over the
angle between the dumbbells [263].
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nematic state (all particles oriented parallel), ζ = 2. Therefore, in Refs. [125,126] a value
of ζ = 1.6 is chosen for the investigation of the isotropic-nematic phase transition.

Nevertheless, for any non-convex shape, ζCE can be defined as the value for ζ that mini-
mizes the difference between the exact and the edFMT excluded volumes for its convex
envelope (CE).7 For dumbbells, this value ζ = 5/4 turns out to be the value that gives the
smallest deviation, where the convex envelope of a dumbbell is a spherocylinder. How-
ever, the result for ζ = 1 is nearly indistinguishable from the result for ζ = 5/4. So,
it would be interesting to consider other non-convex shapes to investigate the conjecture
that ζCE is the optimal value for ζ for any non-convex particle.

Furthermore, other approximations are made than the truncation of the tensor-expansion
at first order when edFMT is applied to non-convex particles [104]. In Ref. [104] it is
shown that the most pronounced effects of these additional approximations can not be
decreased by choosing an appropriate value for ζ . Moreover, the tensor n↔1 does not have
to be calculated if ζ is set to zero. Considering the limited improvement achieved by a
non-zero ζ , choosing a non-zero ζ seems not to be worth the extra effort of calculating the
tensor n↔1. Therefore, ζ = 0 has been used in Ref. [104] and in Sec. 6.3. However, edFMT
still yields reasonable results for inhomogeneous fluids of dumbbells even with ζ = 0.

6.2 Driven colloidal liquid crystals [126]

This section is mostly rewritten from the work Towing, breathing, splitting and overtak-
ing in driven colloidal liquid crystals by A. Härtel et al. [126] c©2010, The American
physical society. A statement about the individual contributions of the authors is given in
the preface of this work.

Motivated by the importance of changing alignment fields, the dynamics of a colloidal ne-
matic phase is investigated in the presence of an orientation-aligning field which rotates in
a plane with a frequency ω0. A wealth of different dynamical states is found as a function
of the system density and the external drive frequency. For very small frequencies, the
field tows the nematic director such that the latter is rotating with the same external fre-
quency ω0 as the field and in the same plane. During this towing process, the orientational
distribution function keeps a time-independent internal shape. Then, above a threshold
frequency the width of the orientational distribution exhibits an internal oscillation with
another frequency ωb, which is called orientational breathing and linked to particles in
oscillating traps [32, 265]. Further, above a higher threshold frequency, the peak of the
orientational distribution splits into two peaks, which is referred to as splitting. For an
even higher external rotation frequency ω0, the driven nematics cannot follow the drive
any longer and is decelerated; rotating with another angular velocity ωp it is overtaken
by the external field. Finally, for even higher ω0, the monopeak is reentrant before the
orientational distribution becomes static in the limit ω0 → ∞.

7See M. Marechal et al. in Ref. [104].
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This work is based on the microscopic DDFT for Brownian rod-like particles [266] with
the recently-developed edFMT equilibrium density functional [28, 105], which accounts
for nontrivial correlations in the inhomogeneous system.8 The functional is employed
for hard spherocylinders in an external time-dependent driving field and has been tested
carefully in previous work [125]. Thereby, a microscopic approach for nonequilibrium
dynamics in dense liquid crystals has been established.

The dynamical states of towing, breathing, splitting, and overtaking, which are predicted
by DDFT, can be confirmed in various systems using different experimental set-ups. Apart
from molecular liquid crystals in rotating aligning fields [267–270], rod-like colloidal
particles form nematic phases and can be exposed to rotating electric [271] or mag-
netic [232, 272] aligning fields. A similar effect occurs in ferrofluids in rotating magnetic
fields [273], or in complex plasmas of rod-like particles in rotating electric fields [274].
As an equivalent set-up, one can rotate the sample and keep the aligning field static which
was proposed recently in Ref. [273]. The different dynamical states in the switching re-
sponse of the colloidal liquid crystal can be exploited to fabricate new smart devices which
generate polarization amplification and mixing.

6.2.1 The model of hard spherocylinders

In this model, hard spherocylinders are employed for lyotropic colloidal liquid crystals in
the absence of system boundaries. The spherocylinders have a fixed aspect ratio L/σ =
5,9 where L is the length of the cylindrical part and σ the diameter. The averaged number
density of the spherocylinders ρ̄ is typically chosen in the region where the bulk phases
are isotropic or nematic [255].

In the following, the density ρ̄ is expressed in a reduced form via ρ� = ρ̄/ρcp with the
close packing density ρcpσ

3 = 2√
2+L/σ

√
3
. The spherocylinders perform completely over-

damped Brownian motion in a solvent which keeps them at finite temperature T . Then, a
time-dependent external driving field is applied which brings the suspension into nonequi-
librium. The nonequilibrium dynamics are characterized in terms of a time-dependent
one-particle density field ρ(û, t) = ρ̄f(û, t) (the one-body density is a statistical aver-
age over different directors in domains) which is homogeneous in the translational but
heterogeneous in the orientational variable given by an orientational vector û on the
unit sphere S2. It should be mentioned that although the density field is translational
homogeneous, the density functional still contains nontrivial positional correlations. In
polar coordinates, the unit vector û can be expressed by the polar and azimuthal angles,
û(ϕ, ϑ) = (cosϕ sinϑ, sinϕ sinϑ, cosϑ). The dimensionless and normalized quantity
f(û, t) measures the distribution of orientations of the spherocylinders at a given time t
on the unit sphere. Clearly, as particles are apolar, f(−û, t) = f(û, t).

8In detail, the theoretical foundations are presented in the previous chapters of this work.
9Larger aspect ratios do not change the qualitative dynamical scenario of the dynamical state diagram.
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Figure 6.1: (Color) Schematic view of an orientational profile f(ϕ, ϑ) in the equatorial
plane. The surface of the shaded area is given by f(ϕ, ϑ)û with û, i.e. it is a polar plot
of f(û); fp is the peak value in the direction ûp of the maximum of f . The amplitude of
the driving field is maximal along the unit vector û0. The external frequency ω0 and the
peak angular velocity ωp are also indicated. This figure is reprinted with permission from
Ref. [126] c©2010, The American Physical Society.

As for a microscopic theory for nonequilibrium dynamics, dynamical density func-
tional theory is applied which provides a deterministic equation for f(û, t) in a time-
dependent external potential. For orientational degrees of freedom, the evolution equa-
tion of DDFT in the absence of hydrodynamic interactions is given in Eq. (2.55).
Note that hydrodynamic interactions can be neglected if the physical volume fraction
is smaller than the effective volume fraction of the interactions, as realized e.g. for
charged rods. Backflow effects [275] are also not considered. However, it is clear that
hydrodynamic interactions between the spherocylinders are important for large physi-
cal volume fractions and would lead to more complex dynamical response. Finally, all
microscopic information is contained in the equilibrium free energy density functional
F [f(û)]. As shown in Sec. 2.3, the latter is conveniently decomposed into three terms
F [f ] = Fid[f ] + Fext[f ] + Fexc[f ], where Fid[f ] = kBT

∫
S2
f(û)[ln(f(û)) − 1]dû is the

entropy of ideal rotators, Fext[f ] =
∫

S2
f(û)Vext(û, t)dû describes the coupling to an ex-

ternal time-dependent potential Vext(û, t), and Fexc[f ] involves the particle correlations.
For the latter, the recently proposed edFMT is used that is presented in Sec. 3.4. The tech-
nical parameter ζ is fixed to 1.6 in this work. Moreover, the external aligning potential is
chosen as

Vext(û, t) = −V0 · cos2(ω0t− ϕ) sin2(ϑ) (6.2)

and describes a rotation of an optimal alignment direction û0(t) = ±(cosω0t, sinω0t, 0)
in the equatorial plane of the unit sphere with an external frequency ω0 and an amplitude
V0 = 5kBT . The ± sign reflects the symmetry of apolar particles, which is schematically
shown in Fig. 6.1.
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6.2.2 Towing, breathing, splitting, and overtaking

The DDFT Eq. (2.55) has been solved numerically10 for f(û, t) by using a finite difference
scheme with a time-step of Δt = 5 × 10−5τB. Various combinations of reduced densi-
ties ρ� and external frequencies ω0 were explored by starting with a homogeneous ori-
entational distribution. After typically 500 cycles, the system reaches a dynamical steady
state, which is characterized by several order parameters. In fact, five qualitative different
dynamical orientational distributions are found for increasing frequency. They are first
described step-by-step before the full nonequilibrium state diagram is represented in the
ρ� − ω0 parameter space.

For vanishing ω0, the external potential is static and leads, at any density ρ�, to a ne-
matic state with a director along the x-axis. For ω0 → ∞, on the other hand, the system
effectively feels a static time-averaged external potential −V0 sin2(ϑ)/2. Here the sys-
tem undergoes a paranematic-nematic transition at about ρ� = 0.3717 [266]. Apart from
these two bracketing equilibrium limits, the system shows a complex nonequilibrium re-
sponse at finite frequencies ω0. For small ω0, the external field drags the orientational
field f(û, t) slowly such that its peak position ûp(t) follows the optimal orientation û0(t)
with the same angular velocity ω0 and keeps a constant internal shape. This dynamical
state is called “towing”. The characteristic dynamics in the towing state is summarized in
Fig. 6.2(a). In the left panels, the unit sphere is mapped onto a rectangular stripe showing
the height of f(û, t) for a fixed time. The latter is indicated by an arrow on the time axis
of the right panels. The white cross in the left panels indicates the position of û0(t) at this
time and reveals the towing behavior.11 Full time-dependent movies for f(û, t) are also
available.12 During the towing process, the peak amplitude fp(t) = maxϕ,ϑ f(ϕ, ϑ, t) is
constant and its polar angle ϕp(t) is lagging behind the polar angle ϕ0(t) of û0(t) as given
by the solid and dotted lines in the right panel of Fig. 6.2(a). Obviously, the polar angles
are only unique up to a multiple of π, therefore multiple lines are shown in the left panel
of Fig. 6.2(a).

Above a threshold frequency, the peak amplitude fp(t) starts to oscillate with another
internal “breathing” frequency ωb different from ω0, see the dashed line in the right panel
of Fig. 6.2(b). The position of the maximum ϕp(t) follows the drive position ϕ0(t) with
the same speed on average but has an internal breathing oscillation on top of that, see
the solid line in the right panel of Fig. 6.2(b). The intuitive explanation of the breathing
process is that the peak is dragged and pushed periodically by the two bracketing minima
of the rotating potential.

If ω0 is increased further, the peak of f(ϕ, ϑ, t) splits into two peaks in solid angle (ϕ, ϑ)-
space. For this “splitting” a convenient order parameter is the maximal peak number

10See also chapter C for further information.
11The towing behavior is qualitatively similar to the propagating soliton state found in a confined liquid

crystal by C. Zheng and R. B. Meyer in Ref. [276].
12See supplementary material at http://link.aps.org/supplemental/10.1103/PhysRevE.81.051703 for

movies of the five phases over some cycles of the internal frequency in a dynamical state.
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Figure 6.2: (Color) Left figures: orientational distribution function f(ϕ, ϑ, t) for fixed time
given by the arrow on the time axis in the right figure. The cross shows the position of û0(t).
Right figures: polar angles of the peak maximum (solid line) and of û0(t) (dotted line) and
the peak amplitude fp (dashed line) versus reduced time t/T0 along one cycle of the driving
potential. The parameters are ρ� = 0.5 and ω0τB/2π = 0.8 (a), 0.9 (b), 1.02 (c), 1.07 (d),
1.16 (e). This figure is reprinted with permission from Ref. [126] c©2010, The American
Physical Society.
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Table 6.1: Characterization of the different dynamical states via the breathing frequency
ωb, the splitting parameter N and the averaged angular velocity ωp of the peak.

ωb N ωp

towing = 0 = 1 = ω0

breathing > 0 = 1 = ω0

splitting > 0 = 2 = ω0

overtaking > 0 = 2 < ω0

unsplit and overtaking > 0 = 1 < ω0

N = maxt Nmax[f(ϕ, ϑ, t)], where Nmax[f(ϕ, ϑ, t)] counts any maxima on a hemisphere
(such that Nmax = 1 describes a monopeak and Nmax = 2 a split peak). A splitting state
is shown in Fig. 6.2(c). The function Nmax[f(ϕ, ϑ, t)] is periodic in time with the internal
breathing frequency ωb. Since the angle ϕp(t) corresponds to the peak of f(ϕ, ϑ, t) with
maximal amplitude, it jumps during the splitting process (see right panel of Fig. 6.2(c))
which is associated with a cusp in fp(t). At higher ω0, this jump exceeds π/2. A unique
function ϕp(t) is composed by coupling branches of ϕp(t) together such that their jump
is always smaller than π/2. Using this function, a mean angular velocity of the peak max-
imum is defined by ωp = 1

Tb

∫ Tb

0
ϕ̇p(t)dt, where Tb = 2π/ωb is the breathing period.

Therefore, when the jump exceeded π/2, the averaged angular velocity of the peak be-
comes ωp < ω0. This state is called “overtaking”, since the external field is faster than
the orientational peak. A characteristic situation is plotted in Fig. 6.2(d). Finally, for even
higher ω0, there is a monopeak again, a situation referred to as “unsplit and overtaking”.
Here, there is no ambiguity in ϕp(t) and again ωp < ω0. In this dynamical state, there is
a simple relation between ω0, ωb and ωp which comes from the fact that during one cycle
of breathing (cf. Fig. 6.2(e)) the peak position moves from one minimum of the potential
backwards to the next one. This means a backward angular velocity of π/Tb = ωb/2.
Hence, the difference between the angular velocity of the driving potential and the back-
ward velocity of ωb/2 is then equal to the angular velocity ωp of the peak, resulting in

ω0 =
1

2
ωb + ωp. (6.3)

The relation (6.3) holds also in the towing state as a special case, where ωb = 0.

The different dynamical states are summarized in Table 6.1 together with their character-
izing order parameters ωb, N and ωp.

A nonequilibrium state diagram is shown in Fig. 6.3 as a function of external frequency
ω0 and reduced density ρ�. There is a small density-dependent frequency band in which
the cascade of different dynamical states occurs. In fact, the splitting phase is only found
stable above a critical value of ρ� ≈ 0.38. For large ω0, the transitions tends to the equi-
librium paranematic-nematic transition as shown by the arrow in Fig. 6.3.

In Fig. 6.4 the three order parameters are shown for a fixed density ρ� = 0.5 (along the
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Figure 6.3: (Color) Nonequilibrium state diagram in the plane of driving frequency ω0 and
reduced density ρ�. The double headed arrow at ρ� = 0.5 is marking the range of (ω0, ρ

�)
for that snapshots were taken in Fig. 6.2. The arrow at the right side gives the position
(ρ� ≈ 0.3717) of the static paranematic-nematic transition in the limit ω0 → ∞. This
figure is reprinted with permission from Ref. [126] c©2010, The American Physical Society.
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Figure 6.4: (Color) Behaviour of a) the breathing frequency ωb, b) the splitting parameter
N and c) the averaged angular velocity ωp of the peak, shown against the external driv-
ing frequency ω0. The transitions are marked by the vertical slashed lines and the arrows
are pointing at those frequencies ω0 shown in Fig. 6.2. The density is ρ� = 0.5 (double
headed line in Fig. 6.3). This figure is reprinted with permission from Ref. [126] c©2010,
The American Physical Society.
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double headed line in Fig. 6.3). While the breathing frequency ωb jumps discontinuously
from the towing to the breathing state, it behaves continuously across the following transi-
tions. Conversely, the angular velocity ωp of the peak jumps twice discontinuously across
the splitting→overtaking and the overtaking→unsplit transition.

6.2.3 Conclusion

In conclusion, an in-plane aligning field, which rotates with an external frequency ω0,
gives rise to a complex dynamical orientational response of a colloidal liquid crystal with
five different states characterized by towing, breathing, splitting, overtaking, and unsplit
overtaking, as ω0 increases. Finally, two applications of the dynamical response can be
mentioned: First, in microfluidic devices, filled with a nematic liquid crystal [277], lo-
calized rotating driving fields can be used as micromixers, whose mixing efficiency can
be conveniently steered by the external driving frequency, in particular in the regime of
the unsplit and overtaking state. Second, if an electromagnetic wave is passing through
a rotating nematic liquid crystal [278], its polarization can be amplified and nonlinearly
changed by tuning the external drive frequency. The internal breathing state will mix
another frequency to the wave coming out and the splitting state will induce further non-
linearities. Therefore, the dynamical states can in principle be exploited for the construc-
tion of smart switching and mixing devices. Moreover, dynamical states are expected for
spherical colloids in traveling colloidal wave fields [279], where the equations of motion
are formally similar [280]. It also would be interesting to resolve the spatial dependence
of the density field. This is particularly important if system boundaries are included. Fi-
nally, a comparison to Brownian dynamics computer simulations of hard spherocylin-
ders [281, 282] would provide a test for the dynamical theory proposed in this work.

6.3 Inhomogeneous fluids of colloidal hard
dumbbells [104]

This section is mostly rewritten from the work Inhomogeneous fluids of colloidal hard
dumbbells: Fundamental measure theory and Monte Carlo simulations by M. Marechal
et al. [104], c©2011, American Institute of Physics. A statement about the individual con-
tributions of the authors is given in the preface of this work.

Dumbbells, that consist of two fused hard spheres, are arguably the simplest non-convex
colloids. A reason for investigating this model, apart form its simplicity, is that colloids
with the exact shape of the dumbbell can be fairly easily synthesized. In fact, quite a few
different synthesis methods have been successfully applied [283–285]. Colloidal dumb-
bells have been used to experimentally investigate bulk crystallization [286], quasi-two-
dimensional degenerate crystals [285, 287, 288] and the effects of charge and an external
electric field on a bulk crystal [289]. Furthermore, the phase behavior of bulk systems of
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the dumbbells is well-known from simulations [290–294], which is convenient for further
studies.

This section quotes the work of M. Marechal et al. [104] and is organized as follows:
First, dumbbells are defined and the model of a system of dumbbells is described. Then,
the additional approximations are shortly pointed out, which are made when considering
non-convex particles instead of convex ones. Next, the Monte Carlo simulations are briefly
described, including a definition of the density and orientational order profiles which are
employed. Turning to the results, the reasonable agreement between edFMT results and
simulation data for a dumbbell fluid near a wall is presented, when the adjustable param-
eter ζ in edFMT is set to zero. Finally, the effects of applying a gravitational field are
briefly discussed.

6.3.1 Model and system parameters

In Ref. [104], a system of hard dumbbells is investigated, where the dumbbells are con-
sisting of spheres of diameter σ, whose centers are separated by a distance L ≤ σ. Ac-
cordingly, L∗ ≡ L/σ = 0 corresponds to a single sphere, while the dumbbell consists of
two touching spheres for L∗ = 1. Moreover, the volume of a dumbbell is given by

vdb =
π

6

(
σ3 +

3

2
Lσ2 − 1

2
L3

)
. (6.4)

The systems of interest are considered to be inhomogeneous due to the presence of an ex-
ternal potential, resulting either from a gravitational field and a hard bottom wall or from
two hard walls. Here, the direction of gravity and the normals to the walls are oriented
along the z-direction. Moreover, only densities or chemical potentials below the crystal-
lization transition are investigated [251, 294], such that the system is always fluid-like.

Now, the averaged packing fraction is fixed at η = vdbN/(HA), if the external potential
solely represents two hard walls. Here, N is the number of particles, H is the distance
between the walls, and A is the area of the system perpendicular to the z direction. On
the other hand, the averaged packing fraction η is zero, if the system is subjected to a
gravitational field, because the system extends up to infinity in the positive z-direction. In
this case, the chemical potential μ is held fixed.

The dimensionless chemical potential μ∗ is defined as μ∗ = β[μ − log(V/4πσ3)], where
V is the (irrelevant) thermal volume13 and β = 1/kBT an inverse temperature. The shift
− log(V/σ3) removes the terms in the chemical potential that result from the integrals
over the translational and angular momenta in the partition sum.14 The thermal wavelength
has no effect on velocity-independent properties of the system in equilibrium, such as
those that are investigated here. Moreover, the dimensionless strength of the gravitational

13For hard spheres, the thermal volume is V = Λ3 with Λ denoting the thermal de Broglie wavelength.
14See also Sec. 2.2.1.
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field is defined as g∗ = mgσ/kBT , where m is the (buoyant) mass of the dumbbell and
g is the gravitational acceleration. The definitions of μ∗ and g∗ are such that the density
ρ(z) at large z is given by limz→∞ ρ(z)σ3 = exp(μ∗ − g∗z/σ), a dimensionless form of
the barometric formula (also compare with Eq. (2.45)).

The systems are investigated using the edFMT approach from Sec. 3.4, extended to dumb-
bells as shown in the next section. In addition, standard Monte Carlo (MC) simulations in
the NV T ensemble are applied for dumbbells between two walls [295]. In both methods,
periodic boundary conditions are employed in the lateral directions.15

In principle, three values for L∗ have been analyzed in Ref. [104]: 0.3, 0.6, and 0.9. The
shape of the corresponding dumbbells varies from basically convex and similar to a sphe-
rocylinder for L∗ = 0.3, to highly non-convex for L∗ = 0.9. Additionally, a few other val-
ues of L∗ have briefly been investigated, but no qualitative differences have been found.
However, in this work only results for L∗ = 0.6 are presented.

As shown in the next section, the density profile ρ(z, θ) is obtained from edFMT as a
function of z and θ (see also Sec. C.1), due to the dependency of the orientations of the
dumbbells. In principle, this profile can also be measured in Monte Carlo simulations, but
as this is a function of two variables, plotting the results from Monte Carlo and edFMT
in the same figure is difficult. Instead, the center-of-mass (com) density profile is shown,
that is only a function of z. It reads

ηcom(z) =

〈
vdb

A

∑
i

δ(z − zi)

〉
=

∫
sin(θ)η(z, θ)dθ, (6.5)

where the first term denotes the method by which ηcom is measured in the simulations
and the second term the way of obtaining it from the local packing fraction η(z, θ) ≡
vdbρ(z, θ) which is obtained from edFMT.

6.3.2 Application of FMT to dumbbells

If edFMT (see Sec. 3.4) is applied to non-convex particles like dumbbells, some difficul-
ties arise that are explicitly written down in Ref. [104]. Now, the distance Rν(r̂) is defined
as a vector which points from a reference point Ci = �r

(0)
ν in the center of a particle along

a ray r̂ to the surface of the particle. It should be noted that the definition of the surface
in terms of this vector Rν(r̂) is ambiguous for some non-convex particles, as some rays
may cross the surface of the particle in more than one point. In this case, the weighted
densities can no longer be written as a convolution such as in Eq. (3.35), and they should
be defined as

nα(�r ) =
∑

ν

{∫
Bν
ρν(�r − �r ′)d�r ′ for α = 3∫

∂Bν
ρν(�r − �Rν(ŝ ))w̄

(α)
ν (ŝ )d�s otherwise,

(6.6)

15For further information about the methods, see Ref. [104].
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Figure 6.5: (a) The surface ∂Bν of a body Bν is parametrized by a unit vector r̂, such
that the corresponding point on the surface is �Rν(r̂) = Rν(r̂)r̂. The normal at this point is
denoted by n̂ν(r̂). (b) The kink in the surface of a dumbbell is regularized by replacing it
by a section of a torus, as indicated by the small arcs. The torus has a tube radius of b and
the dumbbell is recovered in the limit b → 0. This figure is reprinted with permission from
Ref. [104] by M. Marechal et al. c©2011, American Institute of Physics.

where Bν is a particle of species/orientation ν and ŝ ≡ �s/|�s|. Here, ∂Bν is its surface,
parametrized by ŝ, and d�s is a surface element. Furthermore, the functions w̄(α)

ν denote the
weight functions w(α)

ν for α �= 3, where the factor w(2)
ν has been removed (w̄(2)

ν (�s) = 1).16

Now, one-component systems of dumbbells is considered, where û ∈ S2 is the orienta-
tion of a dumbbell on the unit sphere S2. Accordingly, the sum over ν is replaced by an
integration

∫
dû and the density profile becomes ρ(�r, û). A difficulty arises for dumbbells

in evaluating the weight functions at the “neck” of the particle, i.e., the intersection circle
between the partial spherical shells that the surface of the dumbbell consists of, since the
curvature on this circle is ill-defined. To circumvent this problem, the dumbbell is rede-
fined as the limit of a particle with a smooth surface for which the “neck” is replaced by
some inner section of a torus, as shown in Fig. 6.5(b). After performing this limit, the
scalar, the vector, and the tensor weighted densities nα for α = 0, 1, 2 can be expressed as

nα(�r ) =

∫
S2

{ ∑
m=+,−

∫
S2

m(û)

R2w̄
(α)
h (ŝ, û)ρ

(
�r −m

L

2
û− ŝ

σ

2
, û

)
dŝ

+

∫
C(û)

w̄(α)
c (l, û)ρ (�r −Rcn̂c(l, û), û) dl

}
dû, (6.7)

where S2
m(û) consist of all ŝ on the unit sphere, such that m�s · û > −L/σ (this is one

half of the surface of a dumbbell). Here, C(û) is the circle where the curvature has a
singularity, l parametrizes C(û), Rc ≡

√
R2 − L2/4 is the radius of the circle C(û), and

n̂c(l) is the outward normal to this circle in the plane perpendicular to û. The functions

16In detail, the functions are listed in Ref. [104] for dumbbells.
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w̄
(α)
h are integrated over one half of the surface of a dumbbell in Eq. (6.7) and they read

w̄
(0)
h (ŝ, û) = 1/(4πR2), (6.8)

w̄
(1)
h (ŝ, û) = 1/(4πR), w̄

(2)
h (ŝ, û) = 1, (6.9)

�̄w
(1)
h (ŝ, û) = ŝ/(4πR), �̄w

(2)
h (ŝ, û) = ŝ, (6.10)

↔
w̄

(1)
h (ŝ, û) = 0

↔
,

↔
w̄

(2)
h (ŝ, û) = ŝ · ŝ t, (6.11)

which are just the weight functions of a sphere (compare with Eq. B.1-B.7). The functions
w̄

(α)
c are integrated over the “neck” of the dumbbell and are given by

w̄(0)
c (l, û) = − L∗/(2πRc), (6.12)

w̄(1)
c (l, û) = − α0/(4π), (6.13)

w̄(2)
c (l, û) = 0, (6.14)

�̄w(1)
c (l, û) = − nc(l)L

∗/(4π), (6.15)
�̄w(2)

c (l, û) =�0, (6.16)
↔
w̄(1)

c (l, û) =
1

4π

[
α0I −

(
3

2
α0 +

1

4
sin(2α0)

)
û · ût

−
(

3

2
α0 −

1

4
sin(2α0)

)
n̂c(l) · n̂c(l)

t

]
, (6.17)

↔
w̄(2)

c (l, û) = 0
↔
. (6.18)

Here, L∗ = L/σ, α0 = limb→0 α(b) = arcsin(L/σ), and I is the 3 × 3 unit matrix.

Moreover, the systems of inhomogeneous fluids are subjected to a one-dimensional exter-
nal potential Vext(z), where ẑ is the direction in which the external potential varies. For
this reason, the density profile only depends on z and on the angle θ between ẑ and the
orientational vector û of a particle. Accordingly, the integral over ŝ in Eq. (6.7) reduces
to an integral over z′ and θ and follows as

nα(z) =

∫∫
v(α)(z′, θ)ρ(z − z′, θ)dz′dθ, (6.19)

where the modified weight functions v(α) are obtained analytically by splitting the inte-
grals in Eq. (6.7) into slices perpendicular to the z-axis, over which the weight functions
can be integrated as the density only depends on z. Finally, the density profile is normal-
ized such that A

∫∫
ρ(z, θ)dzdθ = N , where θ runs from 0 to π/2 due to the up–down

symmetry of the dumbbells.

The difficulties that arise due to the intersections of non-convex particles are discussed
in detail in Ref. [104]. As already mentioned in Sec. 6.1, the free parameter ζ that enters
the theory is set to zero for the calculations concerning dumbbells [104]. However, in the
Results section of Ref. [104] and in the next section, it is shown that edFMT is still a
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Figure 6.6: The center-of-mass density profile of dumbbells with an aspect ratio L∗ =
0.6 for three different packing fractions: η = 0.1, 0.3, and 0.5. The black lines denote
the edFMT results, while the circles denote the MC results. The results for η = 0.3 and
0.5 are shifted upwards by 0.5 and 1.5, respectively, for clarity of display. This figure is
reprinted with permission from Ref. [104] by M. Marechal et al. c©2011, American Institute
of Physics.

surprisingly good density functional theory, in spite of these difficulties.

6.3.3 Results for hard walls and gravity

The results shown in this section are rewritten from the work Inhomogeneous fluids of
colloidal hard dumbbells: Fundamental measure theory and Monte Carlo simulations
by M. Marechal et al. [104]. The fluid equation of state for hard dumbbells has been
analyzed in Ref. [104] to learn more about the extended edFMT functional approach for
non-convex particles. The edFMT features a free parameter ζ , which has to be nonzero,
to obtain a stable nematic phase even for very elongated particles. Adjusting it has been
shown to lead to unrealistically large values for ζ, presumably because the full theory is
not valid for non-convex particles like dumbbells.17 However, the theory with ζ = 0 gives
excellent results when compared to MC simulations for not too large packing fractions.
The agreement is somewhat worse than that obtained for spherocylinders in Ref. [105],
but it is better than the results obtained for dumbbells in a slit compared to a previous
DFT study of hard dumbbells near a hard wall [252]. For this reason, the free parameter
ζ is used with ζ = 0 in this section. Moreover, the minimization of the grand potential Ω
(2.38) is performed iteratively, as described in Sec. C.1.

17See also Sec. 6.1 and Ref. [104].
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The structure of a fluid confined between two hard walls has been investigated by means
of simulations and edFMT. The resulting center-of-mass density profile for L∗ = 0.6 is
shown in Fig. 6.6 for three packing fractions η (results for additional aspect ratios L/σ are
shown in Ref. [104]). At the lowest packing fraction, the main effect of the elongation of
the particles is an entropy reduction when particles are close to the wall, due to a decrease
in the available orientations. This effect pushes the particles away from the wall, while
the presence of the other particles pushes them towards the wall. This competition causes
the first peak to be located slightly away from z = σ/2, which is the position of the first
peak for hard spheres near a hard wall. As the density increases, more peaks in the density
profile appear, indicative of layering. For the larger aspect ratios L/σ = 0.6 and 0.9 and
at the highest packing fraction η = 0.5, the density profile shows an intricate structure
as the layering of the spheres of which the dumbbells consist competes with the layering
of the center of mass [251]. This causes a splitting of the first peak near the wall, where
the two resulting peaks can be ascribed to the primarily horizontal (z � σ/2) and vertical
(z � (σ + L)/2) orientations.

All observed peaks in the profiles obtained from the simulations are reproduced in the
FMT results and the agreement between the two profiles is excellent for all but the high-
est density near the wall. This highest density η = 0.5 is considerably higher than the
densities investigated by H. Hansen-Goos and K. Mecke for hard spherocylinders, which
is 0.346 at most [28, 105]. For this reason, the deviations from the MC results can not
certainly be said to be caused by the non-convex nature of the dumbbells, as the theory
has not been tested for inhomogeneous systems of convex particles at such high densities.

Moreover, the results for the center-of-mass profile have been compared with the results
obtained by D. Henderson et al. [252] (not shown) and both DFT approaches show a
reasonable qualitative agreement for all aspect ratios and densities considered. Although,
the characteristic splitting of the first peak seems to be absent in the theory of Ref. [252]
for the larger aspect ratios. Quantitatively, edFMT also seems to perform a bit better than
the older DFT approach [252].

In addition, results from MC simulations are compared with results from edFMT for
dumbbells under gravity in Fig. 6.7. As presented in Ref. [104], only the results for g∗ = 2,
μ∗ = 20, and L∗ = 0.6 are shown, because the density profiles for different gravitational
force, chemical potential, and L are similar (except for the behavior at the wall). However,
the behavior at the wall is similar to the results obtained in the absence of gravity, which
becomes apparent by comparing Fig. 6.6 for η = 0.5 with Fig. 6.7. The bulk density
that corresponds to μ∗ = 20 is η = 0.491 for FMT and the MC bulk packing fraction is
0.500, which differs from the FMT packing fraction due to the differences between the
bulk equations of state [104]. The difference of about 0.01 between these volume fractions
causes an additional small error in the edFMT density profile under gravity if compared to
the results with two hard walls, where the average packing fraction was used as an input
parameter. This effect seems to be small, which can be seen by comparing the deviation
between the MC data and the theory in the absence of gravity with that for dumbbells
under gravity, shown in Fig. 6.6 for η = 0.5 and in Fig. 6.7.
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Figure 6.7: The center-of-mass density profile for dumbbells (L∗ = 0.6, μ∗ = 20) under
gravity (g∗ = 2) in units of the volume of a dumbbell and as a function of the height z.
Simulation results are denoted by the gray crosses and the edFMT results (with ζ = 0) by
the black line. This figure is reprinted with permission from Ref. [104] by M. Marechal et
al. c©2011, American Institute of Physics.

6.3.4 Conclusion

Inhomogeneous fluids of hard dumbbells have been analyzed in a slit and under grav-
ity [104] by using the extended deconvolution FMT [28]. The edFMT features a free
parameter ζ, which has to be nonzero, to obtain a stable nematic phase even for very
elongated particles. Adjusting it has been shown to lead to unrealistically large values
for ζ, presumably because the theory is not valid for non-convex particles like dumbbells.
However, the theory with ζ = 0 gives excellent results when compared to MC simulations
for not too large packing fractions. The agreement is somewhat worse than that obtained
for spherocylinders in Ref. [105], but it is better than the results obtained for dumbbells in
a slit compared to a previous DFT study of hard dumbbells near a hard wall [252]. At very
large packing fraction (η = 0.5), the theory still predicts the positions of the various den-
sity peaks well, but does not always predict the correct height for the peaks. Additionally,
the possibility of choosing a nonzero value for ζ is investigated, but it leads to additional
effort in evaluating the free energy functional, which does not seem justified considering
the limited effect for inhomogeneous fluids of dumbbells that are not very elongated.

The FMT-density functional for hard dumbbells, which was constructed and explored in
Ref. [104], can serve as a starting point for further studies. These future topics should
include the full bulk freezing diagram including plastic and full crystalline phases of hard
dumbbells. The functional itself might be improved by adjusting it such that it yields the
excellent Carnahan-Starling equation (see Sec. 3.2.3) for the homogeneous fluid in the
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hard-sphere limit [27, 113].

Moreover, the functional can be used as a reference system for an additional attractive
interaction, which possibly leads to gas-liquid phase separation. For instance, the attrac-
tions are treatable within a mean-field perturbation theory [96, 296–298]. Furthermore,
a dipolar interaction force [299] can be added on top of the dumbbell and can again be
treated in DFT by a mean-field theory [300]. Moreover, Brownian dynamics (both trans-
lational and orientational) [301] can be explored by dynamical density functional theory,
where a good static functional is needed as an input [57, 125, 126]. Finally, other parti-
cle shapes can be described using FMT-like functionals, like platelets [302], cubes [303],
tetrahedra [304], or helical particles [305]. This finally leads to a full microscopic theory
of the phase behavior of anisometric particles.
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Have fun on sea and land

Unhappy it is to become famous

Riches, honors, false glitters of this world

All is but soap bubbles

(from: Nobel Lectures, Pierre-Gilles

de Gennes 1932 - 2007)
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7 Conclusion

In this work about density functional theory of hard colloidal particles, spheres, sphero-
cylinders, and dumbbells have been investigated in the bulk and at interfaces. Therefore,
the theoretical framework of density functional theory (DFT) and fundamental measure
theory (FMT) has been applied to hard-sphere systems, where free energies and den-
sity distributions were obtained for the (fcc) crystal and the fluid phase by using FMT
functionals. The free energies are in good agreement with Monte Carlo (MC) simulation
results and demonstrate the applicability of the functionals to the treatment of other prob-
lems involving crystallization. Moreover, the agreement between FMT and simulations on
the level of free energies is also reflected in the density distributions around single lattice
sites. While the peak widths and anisotropy shapes for different lattice directions agree,
it is found that FMT gives slightly narrower peaks with more anisotropy than seen in the
simulations. In addition, from the studied variants of FMT only the White Bear mark II
(WBII) functional shows qualitatively correct behavior, whereas the Rosenfeld and the
White Bear functional give qualitative incorrect results. This implies that only the WBII
functional is a promising candidate for further studies, such as the free minimization of
the crystal-fluid interface or nucleation processes.

Accordingly, accurate values for the anisotropic hard-sphere crystal-fluid surface tensions
and stiffnesses have been predicted by using the accurate WBII approach in combination
with MC computer simulations. The full equilibrium density profiles have been obtained
within FMT from a free minimization. Thus, the complete structure of the crystal-fluid
phase transition is available. Regarding the interfacial tensions and stiffnesses, quantita-
tive agreement between FMT and simulations is found and FMT predicts a tension of
0.66 kBT/σ

2 with a small anisotropy of about 0.025 kBT . The corresponding stiffnesses
are determined with e.g. 0.53 kBT/σ

2 for the (001) orientation and 1.03 kBT/σ
2 for the

(111) orientation of the interface, where kBT is the thermal energy and σ is the diame-
ter of the hard spheres. However, the anisotropy in the tension of about 10% is crucial
for the transformation to stiffnesses, which differ up to a factor of 4. Moreover, the re-
sults from theory and simulation are compared with existing experimental findings and
classical nucleation theory is discussed in the context of analyzing experimental results.

In another sense, FMT has also been applied to non-spherical particles. For this pur-
pose, the recently developed extended deconvolution FMT (edFMT) has been applied
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to systems of orientationally resolved spherocylinders and dumbbells. The spherocylin-
ders are assumed to constitute a fluid phase with the possibility of orientational ordering
and are subjected to an in-plane aligning field which rotates with an external frequency
ω0. Consequently, the system is investigated by using dynamical DFT, an extension of
DFT to non-equilibrium, time-dependent situations. The setup causes a complex orienta-
tional response of the colloidal liquid crystal with five different dynamical states which
are characterized by towing, breathing, splitting, overtaking, and unsplit overtaking, as ω0

increases.

Applied to hard dumbbells, inhomogeneous fluids are analyzed in a slit and under gravity
[104]. The edFMT features a free parameter ζ , which has to be nonzero, to obtain a stable
nematic phase even for very elongated particles. Adjusting it has been shown to lead to
unrealistically large values for ζ , presumably because the theory is not valid for non-
convex particles like dumbbells. However, the theory with ζ = 0 gives excellent results
when compared to MC simulations for not too large packing fractions. The agreement is
somewhat worse than the one obtained for spherocylinders in Ref. [105], but it is better
than the results obtained for dumbbells in a slit compared to a previous DFT study of hard
dumbbells near a hard wall [252]. At very large packing fraction (η = 0.5), the theory still
predicts the positions of the various density peaks well, but does not always predict the
correct height for the peaks. Additionally, the possibility of choosing a nonzero value for
ζ is investigated, but it leads to additional effort in evaluating the free energy functional,
which does not seem justified considering the limited effect for inhomogeneous fluids of
dumbbells that are not very elongated.

Finally, numerical methods to solve the equation of state in DFT are discussed in the
appendix of this work. Due to the structure of FMT functionals, the highly localized
density peaks in a crystal cause critical numerical behavior where local packing fractions
exceed physical values. Unfortunately, this behavior leads to a divergence of the FMT
functional. For this reason, methods are outlined to avoid problems within this critical
limit and to ensure convergence of solutions.

This numerical knowledge can help to set up adequate software packages, such as Tra-
monto. The software project provides DFT based “computational tools for predicting the
structure and properties of fluids at the nanoscale near surfaces and macromolecules”.1

In this context, a detailed analysis of the numerical perturbations that were observed
within FMT may help to perform further numerical studies, for example in the pres-
ence of walls, where similar instabilities occur as observed in calculations regarding the
crystalline phase. The observed deviations between simulations and FMT also point to
possibilities of further improvement in the FMT functionals. In this sense, a promising
ansatz is given by re-summing the virial expansion to obtain the Rosenfeld functional
as the first order term of an expansion [110, 111]. As the knowledge of accurate func-
tionals is important, the FMT functional for hard dumbbells can serve as a starting point
for future studies, which should contain the full bulk freezing diagram including plastic

1See Sandia National Laboratories web page, https://software.sandia.gov/DFTfluids/
.
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and full crystalline phases. Moreover, other particle shapes should be described by using
FMT-like functionals, for example platelets [302], cubes [261,303], tetrahedra [304], and
helical particles [305]. This finally will lead to a full microscopic theory of the phase
behavior of anisometric particles.

In another sense, regarding the observation of the five dynamical phases in the system
of hard spherocylinders, two applications of the dynamical response could be mentioned:
First, in microfluidic devices filled with a nematic liquid crystal [277] localized rotating
driving fields may be used as micromixers. Their mixing efficiency can be conveniently
controlled by the driving frequency of the external fields, in particular in the regime of
the unsplit and overtaking state. Second, if an electromagnetic wave is passing through
a rotating nematic liquid crystal [278], its polarization can be amplified and nonlinearly
changed by tuning the frequency of the external driving field. Then, the internal breathing
state will add a second frequency to the original wave and the splitting state will induce
further nonlinearities. Therefore, the dynamical states can in principle be exploited for the
construction of smart switching and mixing devices. Moreover, dynamical states are ex-
pected for spherical colloids in traveling colloidal wave fields [279], where the equations
of motion are formally similar [280]. It would also be interesting to resolve the spatial
dependence of the spherocylinders’ density field, which is particularly important if sys-
tem boundaries are included. Furthermore, a comparison to Brownian dynamics computer
simulations of hard spherocylinders [281,282] would provide a test for the dynamical the-
ory proposed in this work.

However, changes of the shape of the crystal-fluid interface are controlled by the
anisotropic tensions of the hard-sphere system. Thus, the precise quantitative determina-
tion of the tensions helps to understand crystal nucleation [185, 225] and the transport of
larger carriers through the interface. Furthermore, the obtained results can help to clarify
apparent discrepancies found in real-space experiments of sterically-stabilized colloidal
suspensions [9–12]. At the same time, results can serve as input to phase-field-crystal cal-
culations which explore dynamics such as solidification processes on very large length and
time scales [90, 226, 227]. For this reason, it is necessary to improve the methods that are
used in experiments to determine the interfacial tensions and stiffnesses precisely, since
further studies are needed to confirm the results obtained for the hard-sphere crystal-fluid
interface in this work.

Future work should also address soft interactions and attractions (as relevant, e.g. for
colloid-polymer mixtures), in order to scan the full range from a fluid-crystal to a vapor-
crystal interface. Further extensions may be done along similar ideas as used and proposed
here for binary mixtures as well as for crystalline structures different from fcc, such as bcc
and hcp. Furthermore, the recent extension of DFT towards translational and orientational
Brownian dynamics was used to describe the growth of tumors [306], which may be of
great significance for medical science. Accordingly, accurate static functionals are needed
as an input. And finally, DDFT can be used to explore the time-dependent growth kinetics
and relaxation towards equilibrium for the hard-sphere crystal-fluid interface.
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Il libro della natura è scritto in lingua matematica.

(from Il Sagiattore, Galileo Galilei 1564-1642)
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A Mathematics

In this chapter, mathematical topics are introduced and discussed, supporting the content
of this work. Almost all topics can be found in mathematical textbooks, as for example
Ref. [307] by E. H. Lieb and M. Loss. However, two important definitions are given right
now before the begin of the first section, because they are of import for all following
contents.

First, function spaces are used in this work to define functional derivatives and the density
profiles that are used in DFT. In this context, the Lp-space of measurable functions is an
important function space. It is defined as [307]

Lp(Rn) =

{
f : Rn → C

∣∣∣∣f measureable (thus > 0),

∫
|f |p < ∞

}
(A.1)

along with the Lp-norm

‖f‖p =

(∫
Rn

|f(x)|pdx
)1/p

. (A.2)

Second, a spherical parametrization is used to apply explicit calculations as performed in
Chapter B. In this work, it is defined as

�r =

⎛
⎝rx

ry

rz

⎞
⎠ = |�r |

⎛
⎝cos(ϕ) sin(ϑ)

sin(ϕ) sin(ϑ)
cos(ϑ)

⎞
⎠ , (A.3)

parametrizing the three-dimensional vector �r ∈ R3 with the spherical coordinates
(|�r |, ϕ, ϑ). The locally defined and normalized unit vectors in Euclidean space, pointing
along the variations of the spherical coordinates, are

êϑ =

⎛
⎝cos(ϑ) cos(ϕ)

cos(ϑ) sin(ϕ)
− sin(ϑ)

⎞
⎠ , êϕ =

⎛
⎝− sin(ϕ)

cos(ϕ)
0

⎞
⎠ , and êr =

�r

|�r | , (A.4)
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where |�r | = r. In addition, the metric tensor follows with

g =

⎛
⎝1 0 0

0 r2 sin2(ϑ) 0
0 0 r2

⎞
⎠ (A.5)

and the corresponding gradient operator reads

∇ = êr
∂

∂r
+ êϑ

1

r

∂

∂ϑ
+ êϕ

1

r sin(ϑ)

∂

∂ϕ
. (A.6)

In the following sections, first Gibbs inequality is explained in Sec. A.1, which is
needed while presenting DFT. Functionals and its derivatives are defined and discussed
in Sec. A.2. Then, rotated unit cells are constructed in Sec. A.3 in close connection to the
definition of unit cells and crystalline structures in Sec. 4.1. In addition, the properties
of an fcc lattice and a rectangular cuboid unit cell are summarized in Table 4.1. Finally,
Fourier transformations and convolutions are defined in Sec. A.4.

A.1 Gibbs inequality

Let Tr be a trace on a measurable space Γ and let p and q be probability distributions on
Γ with p �= q that are locally nonzero.1 Accordingly, they hold Tr p = Tr q = 1. Then the
inequality

Tr (p log(q)) < Tr (p log(p)) (A.7)

is called a Gibbs inequality (or Gibbs-Bogoliubov inequality)2 and is a consequence of the
convexity of the negative logarithm function. This becomes obvious by deducing Gibbs
inequality from Jensen’s inequality that reads [307]

〈J ◦ f〉 ≥ J (〈f〉) (A.8)

for J : R → R being a convex function, f being a real-valued and integrable function
on some set Ω that is measurable and has finite measure, and an average 〈...〉. Moreover,
equality only holds for a constant function f .

To perform the deduction,3 the convex function is set to J = − log and the real-valued
function to f = q/p that is not constant due to the assumption q �= p. Thus, Jensen’s

1The assumption of a local non-vanishing probability distributions is needed for the deduction. For
ergodic systems, the phase space distribution function is locally nonzero.

2See Appendix B in the textbook of J.-P. Hansen and I. R. McDonald [39].
3An outline of the deduction is given in Wikipedia, Jensen’s inequality, accessed on August 25th 2012.
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inequality (A.8) reads∫
Γ

p(ψ) log

(
p(ψ)

q(ψ)

)
dψ > − log

(∫
Γ

p(ψ)
q(ψ)

p(ψ)
dψ

)
. (A.9)

Due to Tr q = 1, the right-hand side of Eq. (A.9) is zero and consequently, it follows

⇒
∫

Γ

p(ψ) log

(
p(ψ)

q(ψ)

)
dψ > 0 (A.10)

⇒ −
∫

Γ

p(ψ) log (q(ψ)) dψ > −
∫

Γ

p(ψ) log (p(ψ)) dψ. (A.11)

Finally, using Tr[A] ≡
∫

Γ
Adψ (for an integrand A) Gibbs inequality (A.7) follows.

A.2 Functionals and its derivatives

A functional is a scalar valued mapping F defined on a subset D(F ) of a vector space.
Thus, functionals are a limited form of operators, since operators are mappings between
general vector spaces, where functionals only have a scalar valued range, usually real or
complex valued. Nevertheless, the domain D(F ) typically is a function space.

Examples for functionals are various. Thus, a simple functional is given by the function
δx : f �→ f(x) that maps a function f to its value at position x. A second example is given
by the Lp-norm f �→ (

∫
|f |pdx)1/p on a normed function space.4 And last, functionals are

often given by integration operations, as used for the determination of the area below a
graph of a positive function f on a certain interval I , given by f �→

∫
I
f(x)dx.

Functionals are often found in the field of optimization. For example, the principle of
minimal action is well-known from physics, where a Lagrangian function is searched that
minimizes the action functional. In the context of this work, the minimization of the en-
ergy functional w.r.t. a density distribution function is of interest, because the minimizing
function represents a stable solution of the corresponding physical system in equilibrium.
Accordingly, the variation of functions becomes important and gives rise to the defini-
tion of a functional derivative, to find extremal curves that minimize (or maximize) the
functional.5

This section is structured as follows: First, variations are defined, following the textbook
of D. R. Smith [309] that gives a well-written introduction to functionals and to the whole
concept of variations and functional derivatives. Second, functional derivatives are defined
based on distributions,6 following Chapter 6 of the textbook of E. H. Lieb and M. Loss

4See E. H. Lieb and H. Loss [307], page 42.
5A well-written outline about the calculus of variations is given in a German textbook by H. Fischer

and H. Kaul [308].
6Distributions are continuous linear functionals and are useful for a rigid mathematical definitions of

functional derivatives.
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[307]. Finally, examples are given that are of impact in the context of this work.

In addition, the particle density or particle distribution function (2.25) of a system with
volume V is an element of the space C(V ) of continuous functions on V . It is defined
as a real-ranged function on a compact Hausdorff space. Since it is a complete7 normed
vector space, C(V ) also is a Banach space.8 Thus, it satisfies the assumptions required in
the following definitions.

A.2.1 Variations and generalized derivative

For functions between Banach spaces, the Fréchet derivative can be defined.9 Hence, a
functional F : Π → R is called Fréchet differentiable at a point f ∈ Π on an open subset
Π ⊂ C(V ), if a bounded linear operator Af : C(V ) → R exists with

lim
n→∞

|F [f + hn] − F [f ] − Af (hn)|
‖hn‖C(V )

= 0 (A.12)

for all sequences {hn}∞n=0 with limn→∞ hn = 0 and hn ∈ Π. If the limit exists, the
operator δF [f ] := Af is called the (Fréchet) derivative of the functional F and is unique.
Even more, the chain rule is valid for the Fréchet derivative, due to its linearity.

The Gâteaux variation or Gâteaux differential provides a generalization of the directional
derivative of functions, more general than the Fréchet derivative.10 Thus, a functional F on
an open subset U of a normed real vector space X has a Gâteaux variation (or differential)
δF [f ] at f , if the limit

lim
ε→0

F [f + εh] − F [f ]

ε
= δF [f ;h] (A.13)

exists for all vectors h ∈ X and ε ∈ R. Its values δF [f ;h] are defined for all vectors
h ∈ X and the functional is said to be Gâteaux differentiable at f .

If the Fréchet derivative δF [f ] exists at a point f ∈ Π, then the Gâteaux differential
also exists at f and they are equal (identifying C(V ) with X). Thus, the same notation
is used for the Gâteaux variation and for the Fréchet derivative. Consequently, if Fréchet
differentiability is given, the derivative can also be calculated by a Gâteaux variation for
one certain vector h ∈ C(V ).

The Gâteaux differential can be written in a more simple form for a real-valued functional
F with existing Gâteaux differential. Then, the Gâteaux differential of F is a functional

7A space X is complete, if every Cauchy sequence has a limit in X .
8See D. G. Luenberger in Ref. [310], Example 3 in Sec. 2.11.
9See Optimization by vector space methods by D. G. Luenberger [310], Chapter 7.

10See D. R. Smith in Ref. [309], p. 35, Sec. 2.2, and D. G. Luenberger in [310], Chapter 7.
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with respect to h ∈ X for each fixed f ∈ U and reads11

δF [f ;h] =
d

dε
F [f + εh]

∣∣∣∣
ε=0

. (A.14)

A.2.2 Functional derivatives

The term δF/δf denotes the functional derivative of the functional F with respect to a
function f . In general, it is already given by the derivative δF [f ]. Per definition, it is
a distribution, if the Fréchet derivative is continuous.12 Thus, it can be written for all
continuous functions f ∈ C(V ) as

δF [f ]

δf
[h] = lim

ε→0

F [f + εh] − F [f ]

ε
. (A.15)

In addition, the functions h represent a class of variational vectors13 that can be restricted
to a subset of the whole function space C(V ) to apply boundary conditions.

However, the common functional derivative denotes a variation solely around a single
point y in the domain of the functions in C(V ), where the general derivative is defined
for variations εh on the total domain. Accordingly, the variations must be restricted to
local variations around a single point. For comparison, a similar concept is given by the
definition of partial derivatives that only represent one single point of the whole gradient.

Such local variations can be obtained by special (test) functions or distributions h, for
example by the Dirac δ-distribution. The Dirac δ-distribution around a fixed point y is
defined as δy(f) = f(y) [307] and can formally be written as [311]∫

f(x)δ(x− y)dx = f(y), (A.16)

using the δ-function with
∫
δ(x − a) = 1. It is important that the Dirac δ-function δ(x)

is not a function in mathematical sense, but it can be achieved as the limit of a sequence
{hn}∞n=0 of functions hn ∈ C(V ).

For example, in a one-dimensional form this sequence reads hn(x − y) =
n√
π

exp (−(x− y)2n2).14 Similarly, the sequence can be achieved in a multi-dimensional
form by applying a Fourier transformation to the constant unit function.

Applying this concept to Eq. (A.15), the common local form of the functional derivative

11This form is also given in the German textbook [308] by H. Fischer and H. Kaul.
12See E. H. Lieb and M. Loss [307], Sec. 6.3 on page 138.
13Compare Section 1.2 in Chapter §2 of the German textbook [308] by H. Fischer and H. Kaul.
14If the functions hn are defined on a compact set V , its normalization factor differs for different n. But,

in the limit n → ∞ this does not matter.
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can be defined by

δF [f ]

δf(y)
(x) = lim

n→∞
δF [f ]

δf
[hn(◦ − y)](x)

= lim
n→∞

lim
ε→0

F [f(x) + εhn(x− y)] − F [f(x)]

ε
, (A.17)

where ◦ denotes a placeholder with the meaning of f(◦, y)(x) = f(x, y).

Because the functional derivative δF [f ] is assumed to be continuous, the derivative and
the limits in Eq. (A.17) exist for all hn. Consequently, the limits can be interchanged and
the common functional derivative follows with

δF [f ]

δf(y)
(x) = lim

ε→0

F [f(x) + εδ(x− y)] − F [f(x)]

ε
(A.18)

=
d

dε
F [f(x) + εδ(x− y)]

∣∣∣∣
ε=0

. (A.19)

A.2.3 Examples for functional derivatives

In the following, two examples of explicit calculations are given for typical functionals
and its derivatives. The first corresponds to the definition of the weighted densities in
Eq. (3.35), used in FMT. The second states a part of the derivative of the ideal free energy
functional, given in Eq. (2.44).

First, assume F [f ] =
∫

V
F [f ](z)dz =

∫
V
f(z)w(x−z)dz. Then, the functional derivative

follows from (A.18) and reads

δF [f ]

δf(y)
(z) = lim

ε→0

∫
V

f(z)w(x− z) + εδ(z − y)w(x− z) − f(z)w(x− z)

ε
dz

=

∫
V

δ(z − y)w(x− z)dz

= w(x− y). (A.20)

Second, assume F [f ] =
∫

V
f(x) log[f(x)]dx. Then, applying the law of l’Hospital, the

functional derivative reads

δF [f ]

δf(y)
(x) = lim

ε→0

∫
V

(f(x) + εδ(x− y)) log[f(x) + εδ(x− y)] − f(x) log[f(x)]

ε
dx

=

∫
V

δ(x− y) (log[f(x)] + 1) dx

= log[f(y)] + 1. (A.21)
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A.3 Construction of rotated unit cells

To run numerical calculations, it is useful to construct a rectangular cuboid box with
periodic boundary conditions that recovers the crystalline fcc lattice. Of course, this box
should have minimal volume with respect to computational time. If interfaces are involved
in calculations, the rectangular cuboid box must also reflect the symmetry of the interface.
Thus, one face of the unit cell is required to be oriented parallel to the interfacial plane.

Accordingly, the following proof draws out a scheme to find such periodic rectangular
cuboid boxes for a given orientation of an fcc lattice, where notations and definitions
are taken from Sec. 4.1.2. In fact, the restriction to an fcc lattice does not change the
fundamental principle of the theorem, but it provides clarity. In addition, resulting lattice
properties are listed in Table 4.1 for the five interfacial orientations (001), (011), (111),
(012), and (112) which are of interest in the context of this work.

A.3.1 Definition: fcc-lattice

Let L be a (fcc) lattice as defined in Eq. (4.1). Its basis A := {�a1,�a2,�a3} consists of the
primitive lattice vectors �ai and generates the infinite fcc-lattice, as sketched in Fig. 4.2(c).
Accordingly, the lattice positions �l ∈ L can be represented by the coordinate vector m =
{mi}, i = 1, 2, 3 in terms of the basis A.

Moreover, let {�v1, �v2, �v3} be an orthogonal basis that spans the periodic cuboid (001)
unit cell volume Vc of this lattice. In terms of this basis, the primitive vectors are �a1 =
1
2
�v1 + 1

2
�v2, �a2 = 1

2
�v2 + 1

2
�v3, and �a3 = 1

2
�v1 + 1

2
�v3.

A.3.2 Definition: rotation of the lattice

Furthermore, let R be a rotational matrix around a certain axis and a certain angle. Then,
the rotated lattice L′ has the basis A′ = {R·�a1, R·�a2, R·�a3}. Nevertheless, a new periodic
volume V ′

c must be found that is spanned by vectors �v′i := λ′
i�vi for i = 1, 2, 3. Therefore,

sets Mi are defined by

Mi :=

{
(m1,m2,m3)

∣∣∣∣∣
3∑

j=1

mjR · �aj = λ�vi,mj ∈ Z, j ∈ {1, 2, 3}, λ ∈ R

}
, (A.22)

such that every m ∈ Mi in terms of the basis A′ spans a vector parallel to �vi, respectively
for all i = 1, 2, 3. Since (0, 0, 0) ∈ M �= ∅, the Mi are well-defined.
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A.3.3 Theorem: irreducible coordinate vectors

Theorem: If an m = (m1,m2,m3) ∈ Mi exists with m �= (0, 0, 0), respectively, then
an m′ = (m′

j) ∈ Mi exists such that there is no number k ∈ N with k > 1 that fulfills
{m′

j/k} ⊂ N (the set {m′
j} is irreducible).

Moreover, if this holds for all i = 1, 2, 3, the corresponding λ′
i are minimal, positive, and

not zero and the set {�v′i := λ′
i�vi} spans the minimal periodic unit cell volume V ′

c that
recovers the rotated lattice with its basis A′.

Proof: Without loss of generality the proof is done for i = 1. Accepting the existence
of a (0, 0, 0) �= m ∈ M1, the existence of a λ follows with m1�a

′
1 + m2�a

′
2 + m3�a

′
3 = λ�v1

and λ �= 0. If λ < 0, the element m = (m1,m2,m3) is replaced by its negative one
(−m1,−m2,−m3) ∈ M1. Now, let C be the greatest common divisor of the mi, so
C ≥ 1 is an integer. Thus, the irreducible m′ is {m′

j = mj/C} and the corresponding
λ′ = λ/C. �

A.3.4 Example

Let R be a rotational matrix around axis x and z of a Cartesian coordinate system by
angles αx and αz. Its matrix follows with

R =

⎛
⎝1 0 0

0 cos(αx) − sin(αx)
0 sin(αx) cos(αx)

⎞
⎠ ·

⎛
⎝cos(αz) − sin(αz) 0

sin(αz) cos(αz) 0
0 0 1

⎞
⎠ . (A.23)

Furthermore, the normal vector of the interface is defined by n̂ =
(cos(φ) sin(θ), sin(φ) sin(θ), cos(θ))T , using the spherical parametrization Eq. (A.3).

A rotation around the axis �v3 with an angle π/4 results in a set of equations,

�a′1 − �a′2 + �a′3 = �v1, (A.24)
(�a′1 − �a′3)/(

√
2/2) = �v2, (A.25)

�a′2/(
√

2/2) = �v3. (A.26)

From this equations the new minimal unit cell with xy-face parallel to the (011) lattice
plane follows. Its volume is Vc = a × (a/

√
2) × (a/

√
2), where a = |�vi| for i = 1, 2, 3.

For all five orientations of interest, the results are listed in Table 4.1.
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A.4 Fourier transformation and convolution

Mainly, this section follows chapter 5 of the textbook by E. H. Lieb and M. Loss [307].

Let f be a function in L1(Rn). The Fourier transform of f is denoted by f̃ and it is a L∞

function on Rn given by

f̃(�k) =
1√
2π

n

∫
Rn

e−ı�k·�xf(�x)d�x. (A.27)

The map f �→ f̃ is linear in f and a translation is applied by a translation operator τ�h with
(τ�hf)(�x) = f(�x− �h), which results in a rotation in the complex phase of f̃ and reads

∼
(τ�hf) (�k) = e−ı�k·�hf̃(�k), �h ∈ Rn. (A.28)

The convolution of two functions f and g in L1(Rn) is denoted by f ∗ g and defined by

(f ∗ g)(�x) =

∫
Rn

f(�y)g(�x− �y)d�y. (A.29)

Using definition (A.27) and Fubini’s theorem, the convolution theorem follows with [307]

(̃f ∗ g)(�k) =
1√
2π

n

∫
Rn

e−ı�k·�x
∫

Rn

f(�y)g(�x− �y)d�yd�x

=
1√
2π

n

∫
Rn

e−ı�k·�yf(�y)

∫
Rn

e−ı�k·(�x−�y)g(�x− �y)d�xd�y

=
√

2π
n
f̃(�k)g̃(�k). (A.30)

The Fourier transformation can also be extended to functions in Lp(Rn), as shown, for
example, in Chapter 5 of Ref. [307]. Similarly, the convolution theorem (A.30) also holds
for functions f ∈ Lp(Rn) and g ∈ Lq(Rn) with 1 + 1/r = 1/p+ 1/q for 1 ≤ p, q, r ≤ 2.

In general, the L1 Fourier transformation is not an invertible mapping, i.e. not every func-
tion in L∞(Rn) is the Fourier transform of some function in L1(R). But, for f ∈ L2(Rn)
it is possible to define an inverse to the Fourier transformation by

f∼(�x) := f̃(−�x) =
1√
2π

n

∫
Rn

eı�x·�kf(�k)d�k (A.31)

and it follows f = (f̃)∼. This result offers the effort that a convolution can be calculated
by a simple product in Fourier space instead of performing the full integration for every
point in space.

In addition, a real-valued function f has the complex conjugate symmetry f̃(−�k) = f̃(�k)∗

due to the properties of eız = cos(z) + ı sin(z), where f ∗ is the complex conjugate of f .
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An equation is worth a thousand words.

(in similar form maybe by P. J. Reuter 1816-1899)

A
P

P
E

N
D

I
X

B Explicit terms in FMT

In this Chapter, explicit terms of the White Bear mark II functional are written down, in-
cluding all necessary calculations. The corresponding weight functions for a hard-sphere
system are defined by Y. Rosenfeld [25] and the tensorial weight function ↔w(m2) has been
introduced later by P. Tarazona [26] to recover the correct bulk limit. These weight func-
tions are given by

w
(3)
i (�r ) = Θ(Ri − |�r |), (B.1)

w
(2)
i (�r ) = δ(Ri − |�r |), (B.2)

w
(1)
i (�r ) =

1

4πRi

δ(Ri − |�r |) =
1

4πRi

w
(2)
i (�r ), (B.3)

w
(0)
i (�r ) =

1

4πR2
i

δ(Ri − |�r |) =
1

4πR2
i

w
(2)
i (�r ), (B.4)

�w
(2)
i (�r ) =

�r

|�r |δ(Ri − |�r |) =
�r

|�r |w
(2)
i (�r ), (B.5)

�w
(1)
i (�r ) =

�r

4πRi|�r |
δ(Ri − |�r |) =

�r

|�r |w
(1)
i (�r ), (B.6)

↔w(m2)
i (�r ) =

(
�r · �r t

|�r |2 − I
↔

3

)
δ(Ri − |�r |) =

(
�r · �r t

|�r |2 − I
↔

3

)
w

(2)
i (�r ), (B.7)

where �r t denotes the transposed of a vector �r and I
↔

denotes the unit matrix in R3×3.

First, the derivative of the White Bear II functional is given in Sec. B.1. In Sec. B.2, limits
of the functional are listed in the bulk limit of a fluid phase. Then, necessary Fourier
transforms of the weight functions for hard spheres are calculated in Sec. B.3. And finally,
the decomposition into weight functions is re-called in Sec. B.4, to ensure completeness.

B.1 Derivative of the White Bear II functional

In this section, an explicit form of the functional derivative of the White Bear II excess free
energy functional is given, as it is defined in Sec. 3.4.1. Of course, the tensor extension is
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used that has been introduced by P. Tarazona. For this reason, it is necessary to define the
derivative with respect to non-scalar quantities, like vectors or tensors.

Non-scalar quantities A can be written in the form
∑

i aiêi, where ai are the components
of A in a parametrization with the basis {êi}. Now, a derivative ∂Φ(A)/∂A is defined as

∂Φ(A)

∂A
=
∑

i

∂Φ(A)

∂ai

êi. (B.8)

To give some examples, let
↔
A,

↔
B, and

↔
C be n×n-matrices, �v a n-dimensional vector, and↔

At the transpose of the matrix
↔
A. Moreover, a symmetric matrix

↔
A has the quality

↔
At =

↔
A

and the trace Tr is invariant for cyclic changes, Tr(
↔
A ·

↔
B ·

↔
C) = Tr(

↔
B ·

↔
C ·

↔
A). Then, the

following equalities hold:1

∂

∂(�v)i

(
�v t ·

↔
A · �v
)

= êt
i ·

↔
A · �v + �v t ·

↔
A · êi

A
↔

symm.
= 2êt

i ·
↔
A · �v, (B.9)

∂

∂
↔
A

Tr(
↔
A ·

↔
B) =

↔
Bt, (B.10)

∂

∂
↔
A

Tr(
↔
A ·

↔
A ·

↔
A) = 3

↔
At ·

↔
At A

↔
symm.
= 3

↔
A ·

↔
A, (B.11)

�v t ·
↔
A · �v = Tr(�v t ·

↔
A · �v) = Tr(

↔
A · �v · �v t), (B.12)

∂

∂(
↔
A)ij

(�v t ·
↔
A · �v) = (�v)i(�v)j. (B.13)

Some of the underlying weight functions, as listed in Eq. (3.25)-(3.30) and (3.53), dif-
fer from each other only by a simple factor. Since numerical calculations take a lot of
calculation time, it is useful to reduce the set of weighted densities by considering these
dependencies. Accordingly, the set of independent weighted densities only holds n3, n2,
�n2, and n↔m2 , where the remaining weighted densities are achieved using the relations

n1 =
n2

4πR
, n0 =

n2

4πR2
, and �n1 =

�n2

4πR
. (B.14)

Applying these replacements, the tensor version of the White Bear II excess free energy
density can be re-written in the form

ΦWBII
1 = − n2

4πR2
log(1 − n3), (B.15)

ΦWBII
2 =

(
1 +

1

9
n2

3φ2(n3)

)
n2

2 − �n2 · �n2

4πR(1 − n3)
, (B.16)

ΦWBII
3 =

(
1 − 4

9
n3φ3(n3)

)
n3

2 − 3n2�n2 · �n2 + 9
2

(
�nt

2 · n
↔

m2 · �n2 − Tr(n↔3
m2

)
)

24π(1 − n3)2
. (B.17)

1Explicit formulations are also given in the appendix of Ref. [312].
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For implementation of the White Bear II functional, it is reasonable to use the functions

φnum
2 (n3) = 1 +

1

9
n2

3φ2(n3) =
5

3
+

2

3

1 − n3

n3

log(1 − n3) −
n3

3
(B.18)

= 1 +
1

9
n2

3 +
1

18
n3

3 +
1

30
n4

3 +
1

45
n5

3 + O(n6
3), (B.19)

φnum
3 (n3) = 1 − 4

9
n3φ3(n3) = 2 − 2

3

(
1

n3

+ n3 +
(1 − n3)

2

n2
3

log(1 − n3)

)
(B.20)

= 1 − 4

9
n3 +

1

18
n2

3 +
1

45
n3

3 +
1

90
n4

3 + O(n3) (B.21)

instead of the original ones that are given in in Eqn. (3.60) and (3.61). For completeness,
their expansions can also be calculated using the expansion of the natural logarithm2 and
they follow with

φ2(n3) =
6n3 − 3n2

3 + 6(1 − n3) log(1 − n3)

n3
3

(B.22)

= 1 +
1

2
n3 +

3

10
n2

3 +
1

5
n3

3 + O(n4
3), (B.23)

φ3(n3) =
6n3 − 9n2

3 + 6n3
3 + 6(1 − n3)

2 log(1 − n3)

4n3
3

(B.24)

= 1 − 1

8
n3 −

1

20
n2

3 −
1

40
n3

3 −O(n4
3). (B.25)

Moreover, the partial derivatives of these functions with respect to the weighted density
n3 simply reads

∂φ2(n3)

∂n3

= −6
n3 + log(1 − n3)

n3
3

− 3

n3

φ2(n3) (B.26)

=
1

2
+

3

5
n3 +

3

5
n2

3 + O(n3
3), (B.27)

∂φ3(n3)

∂n3

=
3

2

3n2
3 − 2n3 − 2(1 − n3) log(1 − n3)

n3
3

− 3

n3

φ3(n3) (B.28)

= −1

8
− 1

10
n3 −

3

40
n2

3 −O(n3
3), (B.29)

2The natural logarithm can be expanded like log(1 + x) =
∑∞

k=0(−1)k xk+1

k+1 , but convergence is bad.
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∂φnum
2 (n3)

∂n3

= −2

3

(
1

n2
3

log(1 − n3) +
1

n3

+
1

2

)
(B.30)

=
2

9
n3 +

1

6
n2

3 +
2

15
n3

3 +
1

9
n4

3 + O(n5
3), (B.31)

∂φnum
3 (n3)

∂n3

=
2

3n2
3

(
2 − n3 − n2

3 + 2
1 − n3

n3

log(1 − n3)

)
(B.32)

= −4

9
+

1

9
n3 +

1

15
n2

3 +
2

45
n3

3 + O(n4
3). (B.33)

However, to calculate the functional derivative given in Eq. (3.63), it is reasonable to re-
place the integration over the complete space V by a convolution, as defined in Eq. (A.29).
For this reason, the convolution product (or cross-correlation product) �, defined in
Eq. (3.32) and used in the definition of Eq. (3.63), must been replaced by the standard
convolution product ∗ that differs from � in the sign of the argument of the second con-
volution factor. Thus, the sign of the argument of the weight function must be switched,
what gives rise to the definition of a sign function

sign(w
(α)
i ) =

{
1 for symmetric functions w(α)

i (−�r ) = w
(α)
i (�r )

−1 for asymmetric functions w(α)
i (−�r ) = −w(α)

i (�r )
. (B.34)

Accordingly, the functional derivative of the excess free energy functional, given in
Eq. (3.63), now reads

−c(1)
i [ρ;�r ] =

∑
α

sign
(
w

(α)
i

) ∂Φ

∂nα

∗ w(α)
i (�r ). (B.35)

Here, the convolution product is defined for every coordinate, respectively, especially if
nα is a non-scalar quantity. Then, Eq. (B.35) also contains a contraction over the vectorial
or tensorial functions. Moreover, for a homogeneous density profile ρfl that corresponds
to a fluid phase, the direct pair-correlation function, as given in Eq. (3.65), follows with

−c(2)
ij [ρfl;�r − �r ′] =

∑
α,β

sign
(
w

(β)
j

) ∂2Φ

∂nα∂nβ

w
(α)
i ∗ w(β)

j (�r − �r ′). (B.36)

Finally, the functional derivative (B.35) follows with the partial derivatives3

∂ΦWBII
1

∂n2

= − 1

4πR2
log(1 − n3), (B.37)

∂ΦWBII
1

∂n3

=
n2

4πR2(1 − n3)
, (B.38)

3Keep in mind that the tensor n↔m2 is symmetric.
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∂ΦWBII
2

∂n2

= φnum
2 (n3)

2n2

4πR(1 − n3)
, (B.39)

∂ΦWBII
2

∂n3

=

(
φnum

2 (n3)

1 − n3

+
∂φnum

2 (n3)

∂n3

)
n2n2 − �n2 · �n2

4πR(1 − n3)
, (B.40)

∂ΦWBII
2

∂�n2

= −2φnum
2 (n3)

�n2

4πR(1 − n3)
, (B.41)

∂ΦWBII
3

∂n2

= φnum
3 (n3)

3n2
2 − 3�n2 · �n2

24π(1 − n3)2
, (B.42)

∂ΦWBII
3

∂n3

=

(
2φnum

3 (n3)

1 − n3

+
∂φnum

3 (n3)

∂n3

)
(B.43)

×
n3

2 − 3n2�n2 · �n2 + 9
2

(
�nt

2 · n
↔

m2 · �n2 − Tr
(
n↔3

m2

))
24π(1 − n3)2

, (B.44)

∂ΦWBII
3

∂�n2

= φnum
3 (n3)

9n↔m2 · �n2 − 6n2�n2

24π(1 − n3)2
, (B.45)

∂ΦWBII
3

∂n↔m2

=
9

2
φnum

3 (n3)
�n2 · �nt

2 − 3(n↔m2)
2

24π(1 − n3)2
. (B.46)

B.2 Fluid bulk limit of the White Bear II functional

In the fluid bulk limit, the density profiles ρi(�r ) become homogeneous in space. Accord-
ingly, the weighted densities, as defined in Eq. (3.35), directly follow from the weight
functions (B.1)-(B.7) by integration. Apparently, the tensorial and vectorial weighted den-
sities vanish, where the scalar weighted densities reduce to the so-called SPT variables4

n3 =
ν∑

i=1

1

6
πσ3ρi = η, (B.47)

n2 =
ν∑

i=1

πσ2ρi, (B.48)

n1 =
n2

2πσ
=

ν∑
i=1

σ

2
ρi, (B.49)

n0 =
n2

πσ2
=

ν∑
i=1

ρi (B.50)

4See Review by R. Roth [29], bottom of page 12065. For further reading about Scaled Particle Theory
see Sec. 3.2.3 and the original work of H. Reiss et al. [58].
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in a ν component hard-sphere system. In principle, these are the fundamental measures
of one single sphere multiplied with the mean bulk density of the fluid: the volume V , the
surface 4πR2, the radius R, and the Euler characteristic χ = 1.

Since the weighted densities nα become constant in space, the excess free energy also
becomes constant and reads

βFexc[ρi] = βΦWBII = −3πσ3ρ2
i

πσ3ρi − 8

(πσ3ρi − 6)2
. (B.51)

Due to the construction of the White Bear functional, this result is equal to the Carnahan-
Starling excess free energy, given in Eq. (3.15). Consequently, the grand canonic en-
ergy Ω follows directly from the Carnahan-Starling equation of state (3.14). Moreover,
the convolution (∂Φ/∂nα) ∗ w

(α)
i in the functional derivative Eq. (B.35) simplifies to

(∂Φ/∂nα)nα/ρi. Thus, the functional derivative in a fluid bulk phase follows with

β
∂Fexc

∂ρi

= β
∂ΦWBII

∂ρi

= −3πσ3ρi
96 − 18πσ3ρi + π2σ6ρ2

i

(πσ3ρi − 6)3
. (B.52)

The chemical potential can be obtained from the derivative μ = dF/dρ0 [146], where ρ0

denotes the bulk density (see also Sec. C.1). Accordingly, the chemical potential can be
obtained by

β
δFexc

δρ0

=
4

3
πR3 β

V

∫
V

δFexc

δn3(�r )
d�r + 4πR2 β

V

∫
V

δFexc

δn2(�r )
d�r. (B.53)

Finally, the direct pair-correlation function is listed by M. Oettel et al. [88] and is re-
written in Eq. (3.66) in Sec. 3.4.2. The Fourier transforms of the coefficients from
Eq. (3.66) read

a1 =
2√
2π

[
sin(|�k|σ) − |�k|σ cos(|�k|σ)

] 1

|�k|3
, (B.54)

a2 =
2√
2π

[
2|�k|σ sin(|�k|σ) + (2 − |�k|2σ2) cos(|�k|σ) − 2

] 1

|�k|4σ
, (B.55)

a3 =
2√
2π

[
4
(
6 + |�kσ(|�k|2σ2 − 6) sin(|�k|σ)

)
−(24 − 12|�k|2σ2 + |�k|4σ4) cos(|�k|σ)

] 1

|�k|6σ3
. (B.56)
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For numerical implementation, the limits of these coefficients are needed and follow with

a1
k→0−−→ 2√

2π

σ3

3
, (B.57)

a2
k→0−−→ 2√

2π

σ3

4
, (B.58)

a3
k→0−−→ 2√

2π

σ3

6
. (B.59)

B.3 Fourier transforms of the weight functions for
hard spheres

For explicit numerical calculations, the Fourier transforms of the weight functions (B.1)-
(B.7) are needed,5 as shown in Sec. B.1. Their explicit calculations are given in Sec. B.3.1
for the Fourier transform of the weight function w(3)

i , in Sec. B.3.2 for w(2)
i , in Sec. B.3.3

for �w(2)
i , and in Sec. B.3.4 for the tensor ↔w(m2)

i . To sum up, the results are

w̃
(3)
i (�k) =

4π

|�k|3
√

2π
3

(
sin(|�k|Ri) − |�k|Ri cos(|�k|Ri)

)
, (B.60)

w̃
(2)
i (�k) =

4πRi

|�k|
√

2π
3 sin(|�k|Ri), (B.61)

�̃w
(2)
i (�k) = −ı�kw̃3(�k), (B.62)

↔̃w
(m2)

i (�k) =

(
w̃

(2)
i (�k) − 3

Ri

w̃
(3)
i (�k)

)(�k · �k t

|�k|2
− I

↔

3

)
, (B.63)

where the Fourier transformation from Eq. (A.27) has been applied with a reciprocal
vector �k = (kx, ky, kz). Here, �kt is the transpose of �k and the product in Eq. (B.63) reads
(�k · �kt)ij ≡ kikj for i, j ∈ {x, y, z}.

Moreover, the limits of the Fourier transformed weight functions (B.60) - (B.63) exist for
vanishing �k → �0 and they read

w̃
(3)
i (�0) =

4πRi√
2π

3

R2
i

3
, (B.64)

w̃
(2)
i (�0) =

4πR2
i√

2π
3 , (B.65)

�̃w
(2)
i (�0) = �0, (B.66)

↔̃w
(m2)

i (�0) = 0 I
↔
. (B.67)

5For example, they are listed by M. Schmidt et al. [313] in Appendix A of their work.
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B.3.1 Fourier transform of the spherical Heaviside step
function

In this section, the spherical Heaviside step function w(3)(�r ) = Θ(R − |�r |) is Fourier
transformed analytically. Applying the Fourier transformation (A.27) yields

w̃(3)(�k) =
1

√
2π

3

∫
R3

Θ(R− |�r |)e−ı�k·�rd�r. (B.68)

Therefore, the real-space vector �r is parametrized such that its z-component is aligned
parallel to �k, thus �k ‖ êz, using the spherical parametrization (A.3) with r = |�r |. Then,
Eq. (B.68) becomes

w̃(3)(�k) =
2π

√
2π

3

∫ R

0

∫ π

0

r2 sin(ϑ)e−ı|�k|r cos(ϑ)dϑdr

=
2π

√
2π

3

∫ R

0

[
r

ı|�k|
e−ı|�k|r cos(ϑ)

]π

ϑ=0

dr

=
2π

√
2π

3

∫ R

0

r

ı|�k|

(
eı|�k|r − e−ı|�k|r

)
dr

=
2π

√
2π

3

∫ R

0

2

|�k|3
|�k|2r sin(|�k|r)dr. (B.69)

Using the identity ∂/∂x[sin(kx)− kx cos(kx)] = k2x sin(kx), the final result is obtained
as

w̃(3)(�k) =
4π

|�k|3
√

2π
3

(
sin(|�k|R) − |�k|R cos(|�k|R)

)
. (B.70)

B.3.2 Fourier transform of the spherical Dirac function

Similar to the transformation of the Heaviside step function in Sec. B.3.1, in this section
the spherical Dirac δ-function w(2)(�r) = δ(R−|�r |) is Fourier transformed. The transform
reads

w̃(2)(�k) =
1

√
2π

3

∫
R3

δ(R− |�r |)e−ı�k·�rd�r

=
2π

√
2π

3

∫ π

0

R2 sin(ϑ)e−ı|�k|R cos(ϑ)dϑ, (B.71)
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where the same parametrization has been used as in the previous section. The final result
directly follows from Eq. (B.69) with

w̃(2)(�k) =
4πR

|�k|
√

2π
3 sin(|�k|R). (B.72)

B.3.3 Fourier transform of the vectorial weight function

In this section, the vectorial weight function �w(2)(�r) = �r
|�r |δ(R − |�r |) is Fourier trans-

formed. The transform reads

�̃w(2)(�k) =
1

√
2π

3

∫
R3

�r

|�r |δ(R− |�r |)e−ı�k·�rd�r

=
1

√
2π

3

∫
R3

�r

|�r |δ(R− |�r |)e−ı(R↔(−)�k)·(R↔(−)�r )d�r. (B.73)

Apparently, the rotation
↔
R(−), that has been applied in the second step of Eq. (B.73),

does not change the result of the product �k · �r. Here, the rotation is defined such that↔
R(−)�k = êz and

↔
R(−)

↔
R(+) = I

↔
. Moreover, the transposed of a rotational matrix is equal

to its inverse.6

In contrast to the previous sections, now the quantity
↔
R(−)�r/|�r | is parametrized, as de-

scribed in Eq. (A.3). Inserting a unit I
↔

, the transform reads

�̃w(2)(�k) =

↔
R(+)

√
2π

3

∫ 2π

0

∫ π

0

R2 sin(ϑ)

⎛
⎝cos(ϕ) sin(ϑ)

sin(ϕ) sin(ϑ)
cos(ϑ)

⎞
⎠ e−ı|�k|R cos(ϑ)dϑdϕ

=
2πR2

√
2π

3

↔
R(+)êz

∫ π

0

sin(ϑ) cos(ϑ)e−ı|�k|R cos(ϑ)dϑ, (B.74)

where the components of êx and êy vanish, due to
∫ 2π

0
sin(α)dα = 0 (and consequently

also for cos(α)). Moreover, the rotation
↔
R(+)êz is aligned parallel to �k and the identity∫ π

0

sin(β) cos(β)e−ıy cos(β)dβ = (y cos(y) − sin(y))
2ı

y2
(B.75)

is known from mathematics software Mathematica. Thus, the calculation results in

�̃w(2)(�k) =
�k

|�k|3
4πı
√

2π
3

[
|�k|R cos(|�k|R) − sin(|�k|R)

]
. (B.76)

6An explicit example for a rotational matrix is given in Eq. (A.23).
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B.3.4 Fourier transform of the tensorial weight function

In this section, the tensorial function ↔w(m2)(�r ) =
(

�r·�r t

|�r |2 − I
↔

3

)
δ(R− |�r |) is Fourier trans-

formed. Because the transform of I
↔

3
δ(R − |�r |) is already known from Sec. B.3.2, solely

the remaining summand ↔w(m2,I)(�r ) = �r·�r t

|�r |2 δ(R − |�r |) must be transformed. Thus, the
transform of the tensorial part reads

↔̃w
(m2,I)

(�k) =
1

√
2π

3

∫
R3

�r · �r t

|�r |2 δ(R− |�r |)e−ı�k·�rd�r

=
1

√
2π

3

∫
R3

�r · �r t

|�r |2 δ(R− |�r |)e−ı(R↔(−)�k)·(R↔(−)�r )d�r (B.77)

=

↔
R(+)

√
2π

3

∫ 2π

0

∫ π

0

R2 sin(ϑ)

“
R↔(−)�r

”
·

“
R↔(−)�r

”t

|�r |2 e−ı|�k|R cos(ϑ)dϑdϕ
(↔
R(+)
)t

.

Similar to Sec. B.3.3, the rotation
↔
R has been applied and a unit I

↔
has been inserted.

Moreover,
↔
R(−)�r is again parametrized using Eq. (A.3). Thus, re-calling the comment

after Eq. (B.74), the tensorial kernel can be integrated and follows with

∫ 2π

0

sin(ϑ)

⎛
⎝cos(ϕ) sin(ϑ)

sin(ϕ) sin(ϑ)
cos(ϑ)

⎞
⎠ ·

⎛
⎝cos(ϕ) sin(ϑ)

sin(ϕ) sin(ϑ)
cos(ϑ)

⎞
⎠

t

dϕ

=

⎛
⎝π sin3(ϑ) 0 0

0 π sin3(ϑ) 0
0 0 2π sin(ϑ) cos2(ϑ)

⎞
⎠

= 2π sin(ϑ)êz · êt
z + π sin3(ϑ)

(
I
↔
− 3êz · êt

z

)
. (B.78)

However,
↔
R(+) · I

↔
· (

↔
R(+))t = I

↔
follows from the definition of the rotation in the

previous section and
↔
R(+) · êz · êt

z · (
↔
R(+))t = �k · �kt/|�k|2 holds. Moreover, the first

summand of the right-hand side in Eq. (B.78) corresponds to Eq. (B.71) and conse-
quently results in w̃(2)(�k)�k · �kt/|�k|2, if re-placed in Eq. (B.77). Finally, the identity∫ π

0
sin3(β)e−ıy cos(β)dβ = 4[sin(y) − y cos(y)]/y3 is known from mathematics software

Mathematica and a comparison with Eq. (B.70) shows that the scalar part of the sec-
ond summand of the right-hand side in Eq. (B.78) corresponds to w̃(3)(�k)/R. Thus, the
complete Fourier transformed tensorial weight function follows with

↔̃w
(m2)

(�k) = w̃(2)(�k)
�k · �kt

|�k|2
+
w̃(3)(�k)

R

(
I
↔
− 3

�k · �kt

|�k|2

)
− w̃(2)(�k)

3
I
↔

=

(
w̃(2)(�k) − 3

R
w̃(3)(�k)

)(�k · �k t

|�k|2
− I

↔

3

)
. (B.79)
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B.4 Decomposition into weight functions

The decomposition into weight functions, given in Eq. (3.31), can simply be proven in
Fourier space. For example, the explicit calculation is given is this section. To show
equality, both sides of the equation are Fourier transformed in the following. However,
it should be recognized that in the original article from Y. Rosenfeld [25] the definition of
the convolution �, as defined in Eq. (3.32), differs from that of the standard convolution
product ∗, defined in Eq. (A.29), for non-symmetric functions f(x) �= f(−x). Accord-
ingly, the signs of the vectorial convolution terms (that are non-symmetric) are erroneous
in equation (2) of Ref. [25].

Left-hand side: The Fourier transform of the Θ function is given in Sec. B.3.1 and the
replacement R = Ri + Rj can be applied by the theorems of summation for Sine and
Cosine.7 Applying the abbreviations Si = sin(|�k|Ri) and Ci = cos(|�k|Ri), the left-hand
side reads

Θ̃(�k) =
4π

|�k|3
√

2π
3

(
sin(|�k|(Ri + Rj) − |�k|(Ri + Rj) cos(|�k|(Ri + Rj))

)

=
4π

|�k|3
√

2π
3

(
SiCj + CiSj − |�k|(Ri + Rj)(CiCj − SiSj)

)

=
4π

|�k|3
√

2π
3

(
(Si − |�k|RiCi)Cj + (Sj − |�k|RjCj)Ci + |�k|(Ri + Rj)SiSj

)
.

Right-hand side: The relation between the Fourier transform and the convolution is given
by the convolution theorem in Eq. (A.30). Using the Fourier transforms of the weight
functions, given in Sec. B.3, the right-hand side reads

w̃
(0)
i (�k)w̃

(3)
j (�k) + w̃

(1)
i (�k)w̃

(2)
j (�k) + �̃w

(1)
i (�k) · �̃w(2)

j (�k) + (i ↔ j)

=
4π

|�k|4
√

2π
6

Si

Ri

(Sj − |�k|RjCj) +
4π

|�k|2
√

2π
6RjSiCj

− 4π

|�k|4
√

2π
6

1

Ri

(
|�k|2RiRjCiCj − |�k|RiCiSj − |�k|RjCjSi + SiSj

)
+ (i ↔ j)

=
4π

|�k|2
√

2π
6 (Ri + Rj)(SiSj − CiCj) +

4π

|�k|3
√

2π
6 (CiSj + CjSi)

=
4π

|�k|3
√

2π
6

(
(Si − |�k|RiCi)Cj + (Sj − |�k|RjCj)Ci + |�k|(Ri + Rj)SiSj

)
,

where (i ↔ j) denotes a repetition of the previous terms, where the indices i and j are
interchanged.

Apparently, both sides are equal. �
7Is is sin(a+ b) = sin(a) cos(b) + cos(a) sin(b) and cos(a+ b) = cos(a) cos(b) − sin(a) sin(b).
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����� ��� (panta rhei) "everything flows"

(Heraclitus around 520 B.C. - 460 B.C.)

A
P

P
E

N
D

I
X

C Numerics

Numerics is an important part of thesis, because the free energy functional that is used
must be calculated numerically and the calculations of the equilibrium density profiles are
time-consuming. To achieve free minimization of the density profiles, the profiles ρ(�r ) are
discretized (or parametrized) on a rectangular cuboid grid of dimensions Nx ×Ny ×Nz.
In general, several spacings of the numerical grid have been implemented to avoid results
due to numerical errors, but especially for the interfaces, most calculations have been re-
stricted to the typical spacings as listed in Table C.1. Moreover, it would be possible to
apply intelligent mesh coarsening, to achieve optimal resolutions for the strongly peaked
crystalline density profiles, but the effort in programming would be enormous. In addi-
tion to this, well optimized fast Fourier transform methods exist for equidistant grids. An
exception is done for the calculation of the Lindemann parameter in Sec. 4.2.2, where an
integration over a Wigner-Seitz cell must be applied. In this situation, the numerical grid
is refined at the borders of the cell.

A well-written collection about numerics is given by the Numerical Recipes in C [314].
Moreover, D. Frenkel and J. P. McTague wrote a review about Computer Simulations of
Freezing and Supercooled Liquids [160] and L. J. D. Frinka and A. G. Salinger discussed
numerical approaches regarding mesh coarsening, iteration methods, and parallelization
in Refs. [315, 316]. In these works about Two- and Three-Dimensional Nonlocal Density
Functional Theory for Inhomogeneous Fluids they state:

Table C.1: Typical dimensions Nx ×Ny ×Nz and grid spacings dx, dy, dz of numerical
grids that correspond to unit cells and interfaces of given cell orientation. In contrast to
unit cells, for an interface cell only its length in z direction changes. The grid spacings are
rounded to the last digits that are displayed.

Nx Ny Nunit cell
z N interface

z dx dy dz

(001) 64 64 64 32 × 64 = 2048 0.0245σ 0.0245σ 0.0245σ
(011) 64 64 64 48 × 64 = 3072 0.0245σ 0.0173σ 0.0173σ
(111) 64 128 128 24 × 128 = 3072 0.0169σ 0.0150σ 0.0212σ
(012) 64 192 192 16 × 192 = 3072 0.0245σ 0.0183σ 0.0183σ
(112) 64 128 128 32 × 128 = 4096 0.0173σ 0.0212σ 0.0150σ
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One of the key methods for studying the properties of inhomogeneous fluids
in simple geometries has been density functional theory (DFT). (...) The com-
putational difficulty arises from the need to perform nested integrals that are
due to nonlocal terms in the free energy functional. These integral equations
are expensive both in evaluation time and in memory requirements; however,
the expense can be mitigated by intelligent algorithms and the use of parallel
computers.

Thus, simple parallelization via OpenMP (Open Multiprocessing) has been used in this
thesis and results in a speedup of about 3.0 while using 5 parallel cores, for example
(speedup of about 4 to 5 if 12 cores are used). In principle, the convolutions can be run on
different cores and the calculation of the functional can be carried out independently for
each grid point. Of course, further improvements are possible, but it seems not to be worth
the effort in programming. In another sense, data storage could perhaps be performed with
more efficiency, to allow the usage of bigger volumes. As several weighted densities are
needed simultaneously, an amount of about 4 GB of memory is required to minimize a
(001) unit cell and 17.5 GB for an interface with (012) orientation (for grid-sizes as listed
in Table C.1). One density profile takes about 70 MB memory for the (001) orientation
and about 300 MB for (012).

The convolutions, that enter the calculations of the weighted densities in Eq. (3.35) and
the functional derivative in Eq. (3.63), are applied in Fourier space. As an advantage, the
weight functions δ and Θ have less singular forms than in real space. In addition, R. Roth
discusses numerical corrections of the weight functions in Ref. [29]. However, numerical
corrections can, in general, cause other problems that have unknown meaning. Thus, they
have been avoided in this work, if possible.

In his review, R. Roth also gives examples how to check FMT implementations. Here, it
is important to check all implementations twice. For example, small changes in one of the
non-scalar weight functions can lead to small differences in the crystal energies, but do
not alter liquid properties. Nevertheless, the variation can cause huge errors in quantities
like the surface tension. At this position it also should be mentioned that the components
of the vectorial and the off-diagonal components of the tensorial weight functions must
be set to zero, if kα = ± 2π

Lα

Nα

2
for α ∈ {x, y, z}. Thus, the symmetry of the vectorial

weight functions is kept.

In this chapter, first various methods are discussed to solve the equation of state. Then, the
discrete Fourier transformation is presented. In addition, an explicit library is introduced
and also used to implement numerical convolutions.

C.1 Solving the equation of state

In Sec. 2.3, the fundamental equation of state (2.42) is introduced and leads to the implicit
Eq. (2.49),

log
(
ρeq(�r )Λ3

)
= βμ− βVext(�r ) + c[ρeq;�r ], (C.1)
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where −c[ρ;�r ] is the functional derivative of the excess free energy functional Fexc[ρ]
with respect to the density profile ρ(�r ) and Λ the (irrelevant) thermal wavelength. In
principle, iterative methods are used to solve Eq. (C.1). Thus, first an initial guess for the
density profile must be obtained.

In general, it is not possible to obtain an inhomogeneous density profile, if the initial
profile is a homogeneous one and no external fields are applied, because the necessary
fluctuations are not included explicitly in DFT to achieve inhomogeneities. Moreover,
it is important to choose a physical density profile that has no local packing fractions
n3(�r ) higher than 1. On the one hand, a unit cell can be filled up with Gaussian peaks
as described in Sec. 4.1.4, to obtain a crystalline unit cell. On the other hand, it is much
more difficult to achieve an initial interface profile. First, the volume can be filled with,
i.e. 32, copies of a minimized density profile of a unit cell. Then, the variation between
the crystalline phase and a constant, homogeneous fluid phase density can be applied by
a variational function, as described in Sec. 5.2.1. However, it is important not to exceed
the local limit of n3(�r ) ≤ 1 due to the terms log(1 − n3) and (1 − n3)

−1 that enter the
excess free energy functional.

Now, a self-consistent solution of Eq. (C.1) can be achieved by applying the numerical
methods, explained in this section. In every step, the given density profile ρ(i) is used to
calculate the weighted densities n(i)

α via a convolution with the weight functions wα, the
energy functional Φ(i), its functional derivative δF/δρ(i), again via a convolution, and
finally a new density profile ρ(i+1). While the latter is obtained using one of the numer-
ical methods, it is important to prevent the local packing fraction n3(�r ) from exceeding
1, for example by controlling the mixing parameter of the Picard iteration scheme (see
Sec. C.1.1). However, the best method to avoid unphysical situations is the reduction of
the speed of convergence (depending on the numerical method), because manipulations of
the density profile certainly cause other problems and have no physical meaning. Thus, in-
terventions like smoothing the density profile1 should be avoided, even if numerical fluc-
tuations appear. In such situations, changing the numerical method can establish stability
again. Besides, a discussion of instabilities is given by J. R. Henderson and Z. A. Sabeur
in Ref. [317].

In another sense, solving Eq. (C.1) leads to an equilibrium density profile ρeq(�r ) with
a μ-dependent bulk density ρ0(μ) =

∫
V
ρeq(�r )d�r/V in a unit cell of volume V = a3.

The lattice constant a (side length of the unit cell) and the vacancy concentration nvac,
defined in Eq. (4.6), should in principle adjust itself to comply with Eq. (C.1), as out-
lined in Ref. [146]. However, in practice, such a procedure is not feasible. Rather, for a
given chemical potential μ or bulk density ρ0, also the vacancy concentration (or unit-
cell volume) is prescribed and only a constrained solution of Eq. (C.1) is obtained, where
ρ0(μ, nvac) or μ ≡ μ(ρ0, nvac) play the role of a Lagrangian multiplier to ensure the defi-
nition of the vacancy concentration in Eq. (4.6).2

1A lot of methods have been tried, for example cutting frequencies in Fourier space or convolving with
kernels.

2Formulation in parts by M. Oettel; also compare with Sec. III.A of Ref. [146].
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In Sec.C.1.1, Picard iterations are explained. This iteration scheme can be sped up by ap-
plying the Direct inversion in iterative subspace (DIIS) method, introduced in Sec. C.1.2.
Then, in Sec. C.1.3 a gradient descent method is explained that applies a kind of pseudo-
dynamics. Dynamical DFT is discussed for solving the equation of motion in Sec. C.1.4,
and the convergence of solutions is discussed in Sec. C.1.5, where also a measure for con-
vergence is defined. Finally, an example for a calculation procedure is given in Sec. C.1.6.

C.1.1 Picard iterations

The Picard iteration schema is named after Charles Émile Picard (1856-1941). It provides
a solution method for implicit equations that, in principle, are solvable by iterations. Here,
the Picard-Lindelöf theorem and other mathematical existence theorems predict the ex-
istence of solutions to such equations as the limit of a convergent sequence, obtained by
iterations.

In this sense, the conditional Eq. (C.1) states an iterative equation of the form

Af = f, (C.2)

where A is a (non-linear) operator on a function space and f a real valued function. Now,
the Picard iteration schema follows with

fn+1 = Afn, n ∈ N (C.3)

and an initial guess for f0. If the sequence converges, the limiting element will be a solu-
tion of (C.2).3

In a numerical sense, the sequence fn often diverges or oscillates. This problem can be
avoided by decreasing the amount of change of fn per iteration step. Thus, the results
obtained from fn by Eq. (C.2) are not directly set as new elements fn+1 of the iterative se-
quence, but they are intermixed with the previous solutions fn. For this purpose, a mixing
parameter α ∈ [0, 1] is defined and the scheme reads

fn+1 = αAfn + (1 − α)fn. (C.4)

The optimal choice of the mixing parameter α must be determined empirically. In addi-
tion, the convergence can be speed up by Broyles’ extrapolation in the final stages of the
iteration, when the sequence converges very slowly [319].

However, a lot of effort can be raised to optimize the iteration process and speed it up. For
example, the mixing parameter α can dynamically be adapted with respect to the speed
of convergence. In this sense, R. Roth suggests to determine a maximal mixing parameter
αmax to prevent the local packing fraction n3 in FMT from exceeding a value of 1 [29].

3For example, see the appendix of Ref. [318] by K.-C. Ng.
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Because the weighted density n3 is linear in ρ, a local αmax follows with

n3[ρi+1] = (1 − αmax)n3[ρi] + αmaxn3[Aρi]
!
= 1

⇒ αmax =
1 − n3[ρi]

n3[Aρi] − n3[ρi]
(C.5)

and its minimum is chosen as a global one. Accordingly, an optimal α is obtained by
minimizing the grand energy Ω[ρi+1(α)] with respect to α.

To sum up, the optimal choice of the mixing parameter depends on the problem and on
the operator A. By experience with crystalline density profiles and with the White Bear
mark II functional, α ranges from about 1% down to 10−5 and should be chosen constant
(without dynamical adaption). However, an enormous speed up can be obtained by using
the Direct inversion in the iterative subspace method, introduced in the following.

C.1.2 Direct inversion in iterative subspace (DIIS)

The Direct inversion in the iterative subspace (DIIS) method is a combination of a direct
and of an iterative method, “developed in the context of ab initio molecular orbital calcu-
lations” [211] by P. Pulay [210, 320]. Following Eq. (C.2) and the notation in Ref. [318]
by K.-C. Ng, the DIIS output functions are defined for n ∈ N by

gn = Afn. (C.6)

Now, DIIS requires a set of N input functions fn and output functions gn, for example
obtained by simple Picard iterations via fn+1 = gn, respectively. Then, the residuum
vectors are defined by4

dn = gn − fn, n ∈ [1, N ], (C.7)

d =
N∑

n=1

cndn (C.8)

and d is assumed to approximate the zero vector in a mean-square sense, while
∑

ci = 1
holds. Accordingly, a set of N + 1 equations is given by⎛

⎜⎜⎜⎜⎜⎝

〈d1|d1〉 〈d1|d2〉 . . . 〈d1|dN〉 −1
〈d2|d1〉 〈d2|d2〉 . . . 〈d2|dN〉 −1

...
... . . . ...

...
〈dN |d1〉 〈dN |d2〉 . . . 〈dN |dN〉 −1
−1 −1 . . . −1 0

⎞
⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎝

c1
c2
...
cN

λ

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0
0
...
0
−1

⎞
⎟⎟⎟⎟⎟⎠ , (C.9)

4The method has been adapted to this special problem by M. Oettel.



138 APPENDIX C. NUMERICS

where 〈f |g〉 defines a scalar product in the parameter space and λ is a Lagrangian multi-
plier. Then, the DIIS result fN+1 reads

fN+1 =
N∑

n=1

cngn. (C.10)

C.1.3 Gradient descent dynamics or simulated quenching

Instead of solving Eq. (C.1) by using iterations, the equilibrium condition
δΩ[ρ]/δρ|ρ=ρeq = 0 can be solved directly by minimizing the energy functional Ω[ρ]
with respect to the density profile ρ. For this purpose, a variety of numerical minimizing
methods is available, for example the simulated annealing method, the gradient descent
method, the Newton algorithm, or the Levenberg-Marquardt algorithm (as a combination
of the previous two algorithms). Thereby, all methods have their pros and cons.

R. Ohnesorge et al. introduced a variation of the gradient descent method that might
be called simulated quenching and is inspired by simulated annealing [97]. For a
parametrization of ρ on a numerical grid with N = Nx × Ny × Nz points, the method
assumes a virtual particle with a certain mass m on this N -dimensional space that fol-
lows Newton’s second law of motion. Thereby, the functional derivative δΩ[ρ]/δρ acts as
a driving force.

Starting from an initial density profile ρ0, the particle moves through the N -dimensional
space and is stopped, if its kinetic energy reaches a maximum (the “quenching” [97]).
Then, the particle is released again, until it reaches the minimum within a given numerical
uncertainty.

The dynamics of the virtual particle are discretized using finite timesteps Δt. Here, the
position at t = 0 is ρ0 and the acceleration a0 is determined by

an =
Fn

m
= − 1

m

δΩ[ρ]

δρn

. (C.11)

If the acceleration an is assumed to be constant on the time interval [tn− 1
2
Δtn, tn+ 1

2
Δtn],

then the velocity in between to positions ρn and ρn+1 can be determined by

vn+ 1
2

= vn− 1
2

+ Δtnan. (C.12)

Of course, v− 1
2

is assumed to be 0. To avoid the implicit form

ρn+1 = ρn +
1

2

(
Δtn
2

)2

an +
1

2

(
Δtn+1

2

)2

an+1, (C.13)

the velocity vn+ 1
2

is assumed to be constant on the time interval [tn, tn+1], what is only
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correct in the limit of Δt → 0. Hence, an approximative rule follows with

ρn+1 = ρn +
1

2
(Δtn + Δtn+1) vn+ 1

2

= ρn + (ρn − ρn−1)
Δtn + Δtn+1

Δtn−1 + Δtn
+

1

2
(Δtn + Δtn+1) Δtnan. (C.14)

Apparently, negative density values can occur during such a numerical time step (C.14).
To avoid them, a negative value (ρn+1)i at time tn+1 is replaced by 1

2
(ρn)i. Thus, the

tendency of decreasing the value is kept. Moreover, typical masses range from 0.01kBTσ
3

up to 10kBTσ
3 for a dimensionless time unit.

When the energy profile is too flat around the minimum, the determination of the maxi-
mum of the kinetic energy becomes difficult. In such situations, the calculation of a scalar
product between the velocity vn− 1

2
and the acceleration an might be helpful, because it

can indicate large directional changes of the driving force. Furthermore, a cubic fit can be
used to determine the position of the maximum in the kinetic energy.

C.1.4 Dynamical DFT algorithm

In general, an equilibrium density profile can also be obtained by applying dynamical
density functional theory (DDFT), as described in Sec. 2.4. For this purpose, the partial
derivatives with respect to time and all spatial coordinates must be discretized to allow
numerical calculations.

The most simple discretization scheme is the centered-time or centered-space discretiza-
tion of a differential operator ∂x ≡ ∂

∂x
,5 acting on a function f : R3 → R. On a numerical

grid with positions xi, the scheme reads

∂

∂x
f(xi, y, z, t) =

f(xi+1, y, z, t) − f(xi−1, y, z, t)

xi+1 − xi−1

= g(xi, y, z, t). (C.15)

However, the centered-time discretization is not stable for the diffusive part of the DDFT
Eq. (2.54) when combined with the centered-space discretization, as also observed for the
physical model of orientational resolved spherocylinders, which has been introduced in
Sec. 6.2. So, negative densities appear already after a few hundred time steps. Thus, for
the calculations regarding Sec. 6.2, a forward-time centered-space discretization has been
used that remains stable for sufficiently long times and adequate time steps.

Conversely, this simple discretization of the gradient is not stable, if applied to the spatial
resolved hard-sphere system, investigated in Sec. 4.2 and Chapter 5 of this work. First
investigations show that it could be necessary to decouple the different parts of the DDFT
Eq. (2.54) and to solve them by implicit and explicit discretization schemes, respectively.

5The parameter x can either denote a spatial coordinate or time.
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Especially the Laplacian of the density profile6 seems to be unstable for explicit methods,
while the remaining terms, involving the excess free energy functional, seem to be stable
for explicit methods. For further reading, the Numerical Recipes [314] also intensely dis-
cuss the discretization and stabilization of the diffusion equation and similar equations.
In this context, interesting topics are for example the Lax-Wendroff scheme and operator
splitting.

C.1.5 Convergence of solutions

While solving Eq. (C.2), the existence of a convergence parameter is useful to monitor the
order of convergence of the solution. For example, the grand energy of the system states
a simple but poor parameter, because its value in the limit of convergence is not known.
A more reasonable convergence parameter is defined by

ε = ‖Af − f‖2, (C.16)

using the Lp-norm ‖f‖p that is defined in Eq. (A.2). For example, a Gaussian fcc density
profile (on a unit cell) starts with convergence values of around ε ≈ 105 and ends after a
few hundred iteration cycles at a value of around ε ≈ 10−7. However, the mixing parame-
ter α must be chosen appropriately: Too small mixing parameters cause slow convergence
and too large values cause the solution to diverge. In this sense, an automatically chosen
mixing parameter easily tends to cause problems.

In another sense, the convergence parameter ε is extremely sensitive with respect to the
minimization method discussed in Sec. C.1.3. Here, other parameters might be more ap-
propriate that are not (like ε) defined via Eq. (C.2).

Sometimes, the process of convergence (ε → 0) is very slow or the limit of ε = 0 can not
be reached, typically due to the numerical implementation. If now properties of the exact
solution are of interest, an extrapolation is possible, where parameters like the energy of
the system are plotted against the convergence ε. From this plot, the value for vanishing ε
can be extracted easily.

In addition, the constrained chemical potential (following from Eq. (C.1)) can be obtained
by [146]

μ(ρ0, nvac) =
1

V

∫
V

(
log(ρeq(�r )Λ3) − c[ρeq;�r ]

)
d�r (C.17)

and provides an additional (mean) quantity to monitor convergence.7 In principle, an
analysis of this quantity also allows a statement about the local convergence of the density
profile.8

6Appearing in the ideal free energy part of the DDFT equation.
7An explicit form obtained from reciprocal space (see Ref. [146]) is given in Sec. B.2 for the White

Bear mark II functional.
8Observations show that regions of low density in the profile ρ converge much slower than other regions.
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However, if the bulk density is fixed during calculations, the chemical potential swings
from a low value up to a value above its final one and than slowly decreases. Because
high chemical potentials correspond to high bulk densities, the local packing fraction
could exceed one. In general, this phenomenon marks a problem in FMT, because the
functional diverges for local packings that exceed one. To avoid such situations, the best
method is to reduce the speed of convergence. In principle, manipulations of the density
profile also seem to be a solution, but every manipulation causes other problems. And
because manipulations are usually not physical, it is better to avoid them.

C.1.6 Example for a calculation

To give an example, the calculations are described now that have been applied to an initial
density profile to achieve the results that are explained in Sec. 4.2.3.

Initial density profiles are achieved by setting up a crystalline fcc structure of a unit cell by
using the Gaussian density peak approximation in Eq. (4.7). Then, the equilibrium density
profiles are obtained by a combination of ordinary Picard iterations and DIIS steps.

Using the White Bear mark II functional, 300 ordinary Picard iteration steps are applied
to the density profiles to achieve a stable starting point for the usage of the DIIS method.
Then, 500 steps of Picard iterations and DIIS steps are applied, where at least 20 Picard
steps are run before starting a DIIS step. During these 20 waiting steps, the convergence
ε (see Sec. C.1.5) is not allowed to raise. Moreover, additional 8 Picard steps are needed
to obtain the residual vectors, needed to run the DIIS interpolation. Finally, 200 ordinary
Picard steps are applied to the density profile to avoid numerical effects due to the DIIS
method.

In principle, the same results could be achieved with much less effort, but this procedure
ensures convergence even if the procedure is applied to many different parameter settings
of a system. Furthermore, only 300 ordinary Picard iteration steps are sufficient to obtain
similar results when using the Ramakrishnan-Yussouff functional approach.

The calculations are run on 18 computational cores, using a grid in (001) orientation as
described in Table C.1. The Picard iterations were applied with a maximal mixing factor
α = 0.001.

If calculations are applied to an interface, much more computational effort is needed.
Then, the gradient descent dynamics method also is needed to obtain results in reasonable
computational time.
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C.2 Discrete Fourier transformation and
convolution

In this section, the discrete Fourier transformation is introduced, as it is used for numer-
ical calculations. It is especially used to apply convolutions with weight functions from
FMT in the context of this work. For further information see also Chapters 12 and 13 of
the textbook Numerical Recipes in C by W. H. Press et al. [314] about the Fast Fourier
Transform and Fourier and Spectral Applications.

Let f : Rn → R be a continuous periodic function with vectors �Lν (1 ≤ ν ≤ n) that span
the periodicity of the function and point along the basis vectors êν of Rn. Accordingly, f
holds

f(�x) = f

(
�x +

n∑
ν=1

iν�Lν

)
. (C.18)

Then, the periodic function f can be expanded in a Fourier series that only contains re-
ciprocal vectors which are compatible with the periodicity of the function f . Accordingly,
the remaining reciprocal vectors �k are

(�k)ν = kν ∈
{
± 2π

|�Lν |
iν

∣∣∣∣∣ iν = 0, 1, 2, ...

}
, ν = 1, ..., n. (C.19)

Moreover, let V be the volume spanned by the periodicity vectors {�Lν}. Then, the previ-
ous result can also be deduced by rewriting the Fourier transform from Eq. (A.27) in the
form

f̃(�k) =
n∑

ν=1

∑
iν

∫
V

f

(
�x +

n∑
α=1

iα�Lα

)
e−ı�k·(�x+

Pn
α=1 iα�Lα)d�x

= 2
n∑

ν=1

∑
iν

cos

(
�k ·
(

n∑
α=1

iα�Lα

))∫
V

f (�x) e−ı�k·�xd�x. (C.20)

Using arguments from representation theory, only the above mentioned elements (C.19)
yield terms that do not vanish. Thus, the transformation of a periodic function is a trans-
formation between the Euclidean space and a trigonometric function space.

Now, the n-dimensional volume V is discretized in real space on a numerical equidistant
grid G of dimensions N1× ...×Nn. Recalling the formalism of unit cells from Sec. 4.1.2,
V is the volume of the unit cell and the vectors that denote periodicity are the basis of the
corresponding lattice L. Combining the grid G and the lattice L, the complete space is
discretized by the numerical grid resulting from the tensor product L ⊗ G. For numerical
reasons, the Nν should be even integers with small prime factors, best a power of 2.
Consequently, the finite step sizes Δxν of the grid follow with Δxν = |�Lν |/Nν .
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Figure C.1: (Color) Possible wave vectors on a periodic length L shown for a grid of N =
8 points and a grid length of Δx = L/8. The waves are of the form (a) cos((2π/L)ix) and
(b) sin((2π/L)ix). The green stroked lines (index i on the right axis) are copies of the first
4 waves (from bottom to top). Apparently, on this grid the waves with i ∈ {0, 1, 2, 3, 4} lead
to the same values as the waves with i ∈ {8, 7, 6, 5, 4}. Moreover, the upper 4 waves are
corresponding to negative frequencies, because (a) cos(−(2π/N)i) = cos((2π/N)[N−i])
and (b) sin(−(2π/N)i) = sin((2π/N)[N − i]). For (b), the wave vectors with i ∈ {0, 4, 8}
are vanishing.

The maximal resolution of such a numerical grid is given by the grid spacings
Δx1,...,Δxn. For this reason, the reciprocal wave vectors �k from Eq. (C.19) are limited by
maximum components π/Δxν for 1 ≤ ν ≤ n. Accordingly, the reciprocal Fourier space
can be discretized by Nν +1 grid points in every coordinate or dimension. This restriction
becomes apparent in Fig. C.1, where wave functions are shown for one dimension n = 1.
Though, the functions corresponding to k = (2π/L)N/2 and to k = (2π/L)(N/2 − N)
already contain identical information on the grid G. Of course, the statement also holds
for all higher frequencies.

To sum up, the discretizations read �xin =
∑

ν iνΔxν�eν and �kin =
∑

ν aν2π/|�Lν |�eν , where
in = (i1, ..., in) and an = (a1, ..., an) denote multi-indices. Here, negative frequencies
in Fourier space are moved to positive ones, what does not change any results due to
the periodicity of the trigonometric functions sin and cos. Using these discretizations, the
discrete Fourier transform9 of a periodic function f and its inverse follow from Eq. (A.27)
with10

f̃
(
�kan

)
=

1
√

2π
3

N1−1∑
i1=0

...

Nn−1∑
in=0

(
n∏

i=ν

Δxνe
−2πıiνaν/Nν

)
f (�xin) , (C.21)

f∼ (�xin) =
1

√
2π

3

N1∑
a1=0

...

Nn∑
an=0

(
n∏

a=ν

2π

|�Lν |
e2πıiνaν/Nν

)
f
(
�kan

)
. (C.22)

9The abbreviation DFT is avoided in this work due to the equal shortcut for density functional theory.
10The sums over the indices in in real space must run until Nν instead of Nν −1 for a finite non-periodic

volume, because the borders of a non-periodic volume differs, similar to the discretization in Fourier space.
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These transformations are changes between two vector spaces, namely the discrete Eu-
clidean space and the discrete Fourier space, spanned by the basis functions sin and cos.
The latter enter via the identity exp(ıx) = cos(x)+ı sin(x). Accordingly, the transform of
a real-valued function f : R → R has the complex conjugate symmetry f̃(−�k) = f̃(�k)∗,
where f ∗ denotes the complex conjugate of f .

The discrete Fourier transformation can be calculated using efficient fast Fourier trans-
formation (FFT) methods. In this work, the FFT package “Fastest Fourier Transform in
the West” (FFTW) is used (version 3.2.2) that was developed at MIT by M. Frigo and
S. G. Johnson.11

Now, the FFTW routines FFTWf(f) and FFTWb(g) denote the forward and backward
fast Fourier transforms of the functions f and g. In three dimensions, the routines read

FFTWf(f)
(
�ka1a2a3

)
=

N1−1∑
i1=0

N2−1∑
i2=0

N3−1∑
i3=0

f (�xi1i2i3) e
−2πı(i1a1/N1+i2a2/N2+i3a3/N3)

=

√
2π

3

Δx1Δx2Δx3

f̃(�ka1a2a3), (C.23)

FFTWb(g) (�xi1i2i3) =

N1∑
a1=0

N2∑
a2=0

N3∑
a3=0

g
(
�ka1a2a3

)
e2πı(i1a1/N1+i2a2/N2+i3a3/N3)

=
|�L1||�L2||�L3|√

2π
3 g∼(�xi1i2i3). (C.24)

Apparently, for the FFTW routines the identity FFTWb(FFTWf(f)) = NxNyNzf holds.

If the function f is a real-valued function, the transform of f has the Hermitian symmetry
f̃(�ka1,a2,a3) = f̃ �(�ka1,a2,N3−a3), where (u+ ıv)� = (u− ıv) defines the complex conjugate
operation. Moreover, the transform f̃ is periodic with f̃(�ka1,a2,0) = f̃(�ka1,a2,N3). For this
reason, the FFTW routines only store values for a3 ∈ {0, ..., N3/2}.

Finally, the convolution from Eq. (A.30) can be rewritten in terms of the FFTW routines.

11Visit the webpage http://www.fftw.org/ for further information about FFTW.
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If the Fourier transform w̃ is known, the convolution f ∗ w follows with

(f ∗ w)(�x) =

∫
R3

f(�y)w(�x− �y)d�y

=
(√

2π
3
f̃(�k)w̃(�k)

)∼
=

√
2π

6

L1L2L3

FFTWb

(
f̃(�k)w̃(�k)

)
(�x)

=

√
2π

6

L1L2L3

FFTWb

(
Δx1Δx2Δx3√

2π
3 FFTWf(f)(�k)w̃(�k)

)
(�x)

=

√
2π

3

N1N2N3

FFTWb

(
FFTWf(f)(�k)w̃(�k)

)
(�x). (C.25)
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