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Preface 1 

I. Preface  

 

 This PhD thesis is divided into independent sections, written as manuscripts. The 

introduction to this work is given in form of the Manuscript 1, the review “Leaf development of 

reticulated and variegated mutants: metabolic vs. cellular syndromes and the role of the 

bundle sheath”. The review gives an overview of the reticulated mutants, including a section 

about dov1 and re, which are described in Manuscript 2 (Rosar et al., 2012) and in 

Manuscript 3, respectively. Manuscripts 1 and 3 are presented as submission-ready 

versions. Further experiments that were not described in the Manuscripts are included in the 

Addendum. The PhD thesis was organized this way to create publishable units.  
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II. Aim of the PhD thesis 

 

 The aim of the PhD thesis is to understand leaf development in the C3-plant 

Arabidopsis thaliana. While in C4-plants, photosynthesis is compartmentalized between 

mesophyll (M) and bundle sheath (BS), this is not the case for C3-photosynthesis. A series of 

reticulated Arabidopsis leaf mutants has a well differentiated vasculature and BS but an 

aberrant M, which is mirrored as a dark vein on a pale leaf lamina. The classical reticulated 

mutants are reticulata (re) (González-Bayón et al., 2006), chlorophyll a/b binding protein 

(CAB) gene underexpressed1 (cue1) (Streatfield et al., 1999), differential development of 

vasculature associated cells1 (dov1) (Kinsman and Pyke, 1998), and venosa3 and 6 (ven3 

and ven6) (Mollá-Morales et al., 2011). By the start of the project, only the function of cue1 

was identified. Cue1 is defective in the plastidic import of phosphoenolpyruvate (PEP) 

(Streatfield et al., 1999), a key substrate for the synthesis of aromatic amino acids and 

thereof derived secondary compounds. These metabolites were hypothesized to generate a 

signal that drives M differentiation (Streatfield et al., 1999). Our group hypothesizes that this 

signal is derived from the BS and a restriction of the signal causes the reticulated leaf 

phenotype (Manuscripts 1, 2, and 3). Ven3 and ven6 are defective in arginine metabolism 

(Mollá-Morales et al., 2011).  

 It was the goal to decipher the role of the BS in Arabidopsis with regard to the 

development of the inner leaf architecture. Two approaches complementing each other were 

performed. Two single gene approaches aimed at establishing the function of the gene 

products defective in (i) dov1 and (ii) re. A global un-biased approach aimed to determine the 

comparative transcriptional profiles of BS, vasculature and M in wild-type plants, using laser 

microdissection (LMD) coupled to downstream transcriptional profiling (iii). 

 (i) As a hallmark mutant, dov1 was used to dissect the differential development of BS 

and M cells. Studies with dov1 essentially contributed to the knowledge that the vasculature 

develops prior to the M (Kinsman and Pyke, 1998). The genetic nature of dov1, however, 

remained elusive. Hence, we aimed at genetically cloning the affected gene. The gene was 

mapped to encode for ATase2, the first enzyme in de novo purine biosynthesis. The effect of 

the purine-derived phytohormone cytokinin on plant performance was assessed by growth 

kinetic analysis, cytokinin profiling, and cytokinin activity determination (Rosar et al., 2012).  

 (ii) Re, first described more than fifty years ago (Rédei and Hironyo, 1964), was 

morphologically described, mapped and found to be allelic to lower cell density1-1 (lcd1-1) 

(González-Bayón et al., 2006). The function of RE, however, remains elusive. Using a 

combination of cluster analysis of publicly available data, microarray analysis, metabolic 

profiling and biochemical mutant complementation assays we narrowed down RE to be 

involved in basic amino acid metabolism (Manuscript 3). Experimental evidence promoted 
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that RE is a novel class of plastidic amino acid transporters (Addendum). Further work is 

required to ultimately assign a function to the RE protein.  

 (iii) The role of the BS in C3-plants has been largely neglected, while it`s role in C4-

plants is well established. A comparative transcriptional profile of the BS, the vasculature, 

and the M of Arabidopsis was initiated in order to get insights into the transcripts repertoire of 

the different cell types. RNA in leaf sectors was fixed with ethanol/acetic acid, dehydrated in 

an ethanolic dilution series, and embedded in paraffin. Microtome cut cross sections of 

embedded tissues were fixed on glass slides and deparaffinized. RNA of whole cross 

sections was isolated in a quality allowing subsequent cDNA synthesis and deep 

sequencing. Time limitation due to starting the project at the end of the second PhD year did 

not allow the sampling of enough tissue specific material for sequencing (Addendum). 
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III.1 Summary 

 

Reticulate Arabidopsis leaf mutants are defective in processes governing the 

development of the inner leaf architecture. These mutants are aberrant in the mesophyll (M) 

but have an intact vasculature and bundle sheath (BS). While the role of the BS in C4 plants 

is well established, knowledge about the BS in C3 plants is scarce. Reticulate mutants are 

defective in primary metabolism. While the molecular identity of the reticulated mutants cue1 

(Streatfield et al., 1999) and ven3/6 (Mollá-Morales et al., 2011) was established, the nature 

of dov1 (Kinsman and Pyke, 1998) and re (González-Bayón et al., 2006) was unknown at the 

beginning of the PhD project. In this study, we genetically mapped DOV1 and identified the 

function of the gene product as a key enzyme in purine biosynthesis (Rosar et al., 2012, 

Manuscript 2). In a comparative approach with cue1, we showed that RE is involved in amino 

acid metabolism (Manuscript 3). Due to strong experimental evidence RE is further 

hypothesized to transport amino acids across plastid envelopes (Addendum).  

By positional cloning, it was demonstrated that dov1 is defective in the ATase2 gene, 

encoding the glutamine phosphoribosyl aminotransferase 2 (ATase2), an enzyme of the first 

step of de novo purine biosynthesis (Manuscript 2). Enzyme activity tests demonstrated 

lowered activity for the mutated protein. The purine-derived cytokinins, phytohormones 

promoting plant growth, are present at lower levels in the mutant. Cytokinin feeding and 

hormone reporter assays showed that likely lowered purine levels and not decreased 

cytokinin concentrations are primarily responsible for the dov1 phenotype. The influence of 

purine metabolism was assessed with systematic growth screens. 

 Re was first described more than fifty years ago (Rédei and Hironyo, 1964), 

morphologically described and genetically mapped about forty years later (González-Bayón 

et al., 2006). Transcriptional profiling, extensive metabolite analysis, hormone level 

determination and hormone response patterns, and a comparison to the characterized cue1 

mutant, suggested that re is affected in leaf amino acid metabolism (Manuscript 3). Cue1, 

ven3, ven6, and other reticulated mutant are affected in amino acid metabolism. RE´s 

function, however, remains elusive.  

The basis of the reticulated phenotype is discussed as either caused by a limited 

supply of primary metabolites or an affected signaling event. These hypotheses and a 

hypothesis of a partitioned synthesis of amino acids between M and vasculature/BS are 

presented in Manuscript 1, a review. In this review, reticulated and variegated mutants are 

compared and underlying hypotheses are critically discussed. Further experimental evidence 

prompted us to hypothesize that RE is a novel plastidic amino acid transporter (Addendum).  
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 The thus far established experimental setup for tissue specific transcriptional profiling 

is summarized in the Addendum. High quality cross-sections of fixed and paraffinized leaf 

tissue were achieved, harboring RNA of high integrity for further transcriptional analysis. 
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III.2 Zusammenfassung 

 

 Retikulierte Arabidopsis-Mutanten sind in der Entwicklung der inneren Blattarchitektur 

gestört, denn sie weisen ein desintegriertes Mesophyll (M) aber intaktes Leitgewebe und 

eine intakte Bündelscheide (BS) auf. Im Gegensatz zu C4-Pflanzen ist die Rolle der BS in C3-

Pflanzen kaum untersucht. Retikulierte Mutanten sind im Primärmetabolismus stark 

beeinträchtigt. Während die molekulare Identität der klassischen retikulierten Mutante cue1 

(Streatfield et al., 1999), ven3 und ven6 (Mollá-Morales et al., 2011) auf Proteinebene 

aufgeklärt wurde, war der defekte Genlokus der Mutante dov1 (Kinsman and Pyke, 1998) zu 

Beginn des Projektes unbekannt. Zwar war RE genetisch lokalisiert, die Proteinfunktion 

jedoch unbekannt (González-Bayón et al., 2006).  

 In der vorliegenden Arbeit wurde die Funktion des DOV1-Proteins als 

Schlüsselenzym der Purin-Biosynthese identifiziert (Rosar et al., 2012, Manuscript 2) und die 

Funktion von RE in einer komparativen Studie auf den Aminosäurestoffwechsel 

eingeschränkt (Manuscript 3). Ferner liegen experimentelle Befunde vor, die RE als einen 

plastidären Aminosäuretransporter erscheinen lassen (Addendum). 

 Es konnte gezeigt werden, dass dov1 im ATase2 Gen mutiert ist, das für die 

Glutaminphosphoribosylaminotransferase 2 (ATase2) kodiert. Dieses Enzym katalysiert die 

erste Reaktion in der de novo Purinbiosynthese. Enzymaktivitätsmessungen zeigten, dass 

das mutierte Protein DOV1 in seiner Aktivität herabgesetzt ist. Die Konzentration von 

Zytokininen – Purinderivaten – war in dov1-Pflanzen erniedrigt. Zytokinine sind 

Pflanzenhormone, die das Wachstum positiv beeinflussen. Fütterung von Zytokinin und 

Hormon-Reporter-Experimente zeigten, dass sehr wahrscheinlich die erniedrigten 

Puringehalte und nicht die erniedrigten Zytokininkonzentrationen primär ursächlich für den 

dov1 Phänotyp sind. Der Einfluss des Purinstoffwechsels auf das Pflanzenwachstum wurde 

in systematisierten Wachstumsexperimenten gezeigt (Rosar et al., 2012, Manuscript 2).  

 Re-Mutanten wurden vor mehr als fünfzig Jahren das erste Mal beschrieben (Rédei 

and Hironyo, 1964), später genetisch kartiert und morphologisch charakterisiert (González-

Bayón et al., 2006). Transkriptionsstudien, intensive Metabolitanalysen, 

Hormonkonzentrationsbestimmungen, Hormon-Antworten in Reporter-Pflanzenlinien und ein 

Vergleich mit der gut charakterisierten cue1-Mutante zeigte, das re im 

Aminosäurestoffwechsel beeinflusst ist (Manuskript 2). Auch cue1, ven3 und ven6 sind im 

Aminosäurestoffwechsel beeinflusst. Die genaue Funktion von RE bleibt jedoch unbekannt. 

 Die Ursache des retikulierten Blattphänotyps wird im Zusammenhang einer limitierten 

Verfügbarkeit von Primärmetaboliten oder einem gestörten Signalweg diskutiert. Diese 

Hypothesen, und die einer Kompartimentierung des Aminosäurestoffwechsels zwischen 

Leitgewebe/BS und M, werden im Manuscript 1 diskutiert, welches als Review formuliert ist. 
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In diesem Review werden retikulierte und variegierte Mutanten verglichen und die 

zugrundeliegenden Hypothesen kritisch diskutiert. 

 Die soweit etablierten experimentellen Befunde und geschaffenen Grundlagen für 

das gewebsspezifische transkriptionelle Profil von M und BS werden im Addendum 

zusammengefasst. Es konnten in Paraffin fixierte Gewebeschnitte hoher Qualität erzeugt 

werden, die eine Isolation reiner RNA für transkriptionelle Analysen erlauben.  
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Abstract 

 Leaves are specialized planar organs for photosynthesis that act as solar panels. 

Light is converted into chemical energy, and organic metabolites are generated. Research 

has focused on the chloroplast as a key player in photosynthetic processes. However, less is 

known about the role of plastids in leaf development. Leaf development has been largely 

investigated at it`s early events, mainly in the shoot apical meristem (SAM) and leaf 

primordia. There are mutants that are defective in the overall organization of the leaf shape 

and in the organization of the internal leaf structure. The latter mutants were categorized as 

reticulated and variegated leaf mutants, which share an aberrant mesophyll (M). While most 

reticulated mutants have dark veins on a pale leaf lamina, variegated mutants show leaves 

with white and green patches spanning the vasculature. Nearly all reticulated and variegated 

mutants characterized to date are affected in proteins associated with a function in plastids. 

Because leaves are meaningful models for organ morphogenesis, these mutants are 

powerful tools to investigate leaf development. Reticulated mutants are either disturbed in 

plastidic amino acid-, nucleotide- or protein biosynthesis. The majority of variegated mutants 

is affected in thylakoid located proteins, affected in carotenoid biosynthesis, photoprotective 

mechanisms, or thylakoid formation. The discrimination of variegation and reticulation is not 

always distinct as compiled for ATase2 mutants in this review. Hypotheses explaining the 

mechanisms of variegation and reticulation will be presented and differences elaborated. The 

focus will be on the threshold model, supply and signaling hypotheses. The role of the bundle 

sheath (BS) in leaf development, as inferred from studies of reticulated mutants, is critically 

discussed. We concentrate on mutants of Arabidopsis thaliana, but also include other plant 

species.  
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Leaf morphogenesis and growth 

 Plants differentiate on their mother plant from a zygote, which grows and 

differentiates into the embryo. In dicotyledenous plants the embryo harbors the basal root 

meristem, a central region hypocotyl, and the SAM, which is flanked by two cotyledons 

(Barton, 2010). The SAM consists of a central and a peripheral zone that delivers founder 

cells (Furner and Pumfrey, 1992; Irish and Sussex, 1992; Schnittger et al., 1996; Barton, 

2010). Founder cells on the flanks of the SAM differentiate into leaf primordia, histologically 

identifiable bulbs that grow out to lateral organs such as leaves, stems, and the floral 

structures during the plant`s whole lifespan (Fleming, 2006; Barton, 2010; Byrne, 2012). In 

this developmental process most plants, including Arabidopsis, establish symmetric leaves. 

This symmetry consists of three components: (i) proximodistal (base to tip), (ii) dorso-ventral, 

i.e. adaxial (upper) and abaxial (lower) site, and (iii) mediolateral symmetry (from left to right).  

 In a typical leaf, the photosynthetic active M, i.e. spongy and palisade parenchyma, is 

wedged between the cuticulated upper and lower epidermis. The M cells are arranged 

adjacent to each other without large air spaces, which are restricted to the leaf inner space 

around the stomata. Embedded in the M, the vasculature, consisting of phloem, xylem and 

associated cells, forms a pipeline system that transports water, solutes and assimilates. The 

vasculature is surrounded by the BS, which is made of one, as for Arabidopsis, or multiple 

cell layers (Leegood, 2008).  

 To understand leaf development, mutants have been isolated and characterized in 

Arabidopsis (Rédei, 1963; Röbbelen, 1968). Among these are those with aberrant leaf shape 

and size, and those with aberrant internal leaf architecture (Rosar et al., 2012). The 

differentiation and growth of leaves is subdivided into three different stages: (i) leaf initiation, 

(ii) the development of the leaf lamina, and (iii) further modifications of the leaf lamina (Byrne, 

2012). The ultimate size of a leaf depends on meristematic growth, which fixes the upper 

boundary of leaf size. Leaf size is then realized by cell expansion (Fleming, 2006; Tsukaya, 

2006; Anastasiou and Lenhard, 2007). It was hypothesized that overall leaf size is regulated 

rather by epidermal cell growth than by M cell proliferation (González-Bayón et al., 2006; 

Bemis and Torii, 2007; Savaldi-Goldstein et al., 2007; Javelle et al., 2011; Pérez-Pérez et al., 

2011; Powell and Lenhard, 2012). 

During leaf initiation (i), the three cell layers L1, L2 and L3 of the SAM become 

transcriptionally distinct, and give rise to the leaf primordium (Fleming, 2002; Tsiantis and 

Hay, 2003; Byrne, 2005; Canales et al., 2005; Fleming, 2006; Byrne, 2012). This initial 

differentiation drives the spatial and temporal control of leaf development (Byrne, 2005; 

Fleming, 2006). The L1 layer gives rise to the epidermis, the multilayer of L3 cells to the 

vasculature, and L2 cells to the rest of the leaf, e.g. palisade and spongy parenchyma 

(Furner and Pumfrey, 1992; Irish and Sussex, 1992; Poethig, 1997; Barton, 2010). 
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Differentiation is based on transcription factors interacting with phytohormones, such as 

cytokinins (Yanai et al., 2005; Zhao et al., 2010; Yoshida et al., 2011), auxins (Reinhardt et 

al., 2003; Scanlon, 2003; Heisler et al., 2005; Zhao et al., 2010; Yoshida et al., 2011), and 

gibberellic acids (Jasinski et al., 2005). The role of phytohormones has been reviewed in 

detail (Byrne, 2012). It has been hypothesized that variegated phenotypes with 

undifferentiated or missing plastids are comparable to mosaic phenotypes of mammals and 

are thus fixed at the leaf initiation stage (Yu et al., 2007). 

The leaf lamina is established through polar growth and lateral expansion. Internal 

tissues differentiate and dorso-ventral symmetry is established by transcription factors, trans-

acting small interfering RNAs, and phytohormones (Byrne, 2012). The M of reticulated plants 

is altered by either a decreased cell number and/or cell size (Kinsman and Pyke, 1998; 

Streatfield et al., 1999; González-Bayón et al., 2006; Jing et al., 2009; Lepistö et al., 2009; 

Rosar et al., 2012). These parameters are governed by two successive processes, which are 

mainly controlled by cytokinins and auxins, respectively: cell proliferation and expansion 

(Mizukami, 2001; Anastasiou and Lenhard, 2007; Tsukaya, 2008). Reticulated and 

variegated mutants are affected in the differentiation of internal leaf structure and in leaf 

shape. Thus, the connection of lamina shape and internal tissue differentiation can be 

studied with these mutants as tools. 

 

 

 

Reticulated leaf mutants 

 Three morphological classes of reticulated mutants have been described (González-

Bayón et al., 2006), i.e. leaves with (i) dark green veins on a green lamina, (ii) green veins on 

a pale lamina, and (iii) a pale vasculature on a green lamina, with (i) and (ii) being similar. 

Most reticulated mutants belong to the classes (i) and (ii). The inverse reticulated pattern of 

the class (iii) is found in Arabidopsis mutants, in which RNAi-mediated cell-to-cell 

communication is affected (Dunoyer et al., 2010) and chlorophyll synthesis in the BS is 

silenced (Janacek et al., 2009). In classes (i) and (ii), the interveinal M cells are reduced in 

size and/or number, which causes the pale green color. The vasculature and the BS are well 

differentiated.  

Amino acids are crucial for leaf development and growth (Schurr et al., 2000; Ruuhola 

et al., 2003) and inhibition of their synthesis is fatal for plants (Muralla et al., 2007). The 

alteration of metabolic pathways, such as amino acid metabolism, affects leaf morphology 

(Fleming, 2006; Jing et al., 2009). Some amino acid biosynthesis mutants, e.g. in threonine 

synthesis (Bartlem et al., 2000), are retarded in growth but have green leaves. Cue1, ven3, 

ven6, and trp2 are affected in amino acid metabolism. Cue1 is defective in the shikimate 
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pathway, and thus in the synthesis of aromatic amino acids and derived secondary phenolic 

compounds (Streatfield et al., 1999; Voll et al., 2003). Ven3 and ven6 are impaired in 

arginine (Mollá-Morales et al., 2011) and trp2 in tryptophan (trp) synthesis (Last et al., 1991; 

Barczak et al., 1995; Jing et al., 2009). Overexpression of a phenylpropanoid enzyme in 

tobacco causes interveinal chlorosis and a disturbed M structure (Merali et al., 2012), 

corresponding to the definition of reticulation. Similar phenotypes are observed if 

phenylpropanoid metabolic pathways are altered (Elkind et al., 1990; Piquemal et al., 1998).  

 ATase2 mutants are disturbed in purine metabolism and have patchy reticulated 

leaves. That is, while white patches contain green major veins, the white leaf areas span 

minor veins. This is in stark contrast to the evenly reticulated mutants cue1, ven3, ven6, ntrc, 

and re. Several ATase2 alleles have been described: dov1, atd2, cia1, and alx13 (Kinsman 

and Pyke, 1998; Hung et al., 2004; Woo et al., 2011; Rosar et al., 2012). A tobacco mutant 

repressed in carbamoylphosphate synthase activity, and thus impaired in the de novo 

pyrimidine synthesis, is reticulated (Lein et al., 2008). Suppression of all known pyrimidine de 

novo synthesis genes in tobacco did not cause a visible phenotype besides growth reduction 

(Schröder et al., 2005). However, biochemical inhibition of the pyrimidine de novo pathway 

led to growth reduction and chlorosis but neither reticulation nor variegation (Bassett et al., 

2003). A mutant defective in uracil phosphoribosyltransferase, an enzyme of the pyrimidine 

salvage pathway, has chlorotic pale green leaves with decreased grana stacking (Mainguet 

et al., 2009). 

 Furthermore, reticulated and variegated mutants with deficiencies in the plastidic RNA 

synthesis and translational machinery have been described in Arabidopsis (Hricová et al., 

2006; Horiguchi et al., 2011; Tiller et al., 2012) and other species (Börner and Sears, 1986; 

Hagemann, 1986; Hess et al., 1994; Yaronskaya et al., 2003). If ribosomal proteins do not 

accumulate correctly, an impact on leaf shape and growth was described (Van Lijsebettens 

et al., 1994). Studies in animals prompted to an essential function of ribosomal proteins in 

organ growth (Fleming, 2006). Similarly, plants treated with antibiotics interfering with the 

plastid-translation machinery display an aberrant M structure (Wycliffe et al., 2005), and both 

cell size and number is decreased (Feng et al., 2007; Jing et al., 2009). A mutated regulator 

of multiple metabolic processes, ntrc (Lepistö et al., 2009), causes reticulation. Finally, a 

tobacco photorespiratory mutant defective in the glycine decarboxylase shows an inverse 

reticulate phenotype (Lein et al., 2008). 

Taken together, all characterized reticulated mutants are defective in either amino 

acid, purine synthesis or in plastid ribosomal activity. All processes are linked to each other 

and ultimately converge in the production of essential components of the cell. Amino acids 

are building blocks of proteins, which are synthesized by ribosomes, and need nucleic acids 
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for synthesis (Figure 1). This observation increases the chance of pleiotropic effects in the 

reticulated mutants, and drives the challenge to identify the primary cause of the phenotype.  

 

 

Cue1 (chlorophyll a/b binding protein (CAB) gene underexpressed1) 

 Cue1 is a hallmark reticulate mutant, which is used as a phenotypical reference in this 

review. All other mutants will be described starting with their molecular identities. All mutants 

are briefly described in Table 1.  

Cue1, of which six alleles are known, has reticulated cotyledons, rosette-, cauline-, 

young- and old leaves (Streatfield et al., 1999). This leaf pattern is caused by a decreased 

number of aberrant, smaller, and spherical rather than columellar palisade cells, which 

contain fewer and smaller chloroplasts (Li et al., 1995; Streatfield et al., 1999). The BS in 

cue1 is normally developed, i.e. neither affected in size nor morphology nor in it´s chloroplast 

morphology and number (Li et al., 1995; Streatfield et al., 1999). Cue1 is delayed in 

chloroplast and whole plant development, in line with much smaller leaves, a severe biomass 

(Li et al., 1995), and protein reduction (Voll et al., 2003). The penetrance of the phenotype is 

light intensity dependent. While cue1 is reticulated under high-light, it is rather green under 

low-light (Streatfield et al., 1999). Cue1 mutants have decreased chlorophyll and carotenoid 

levels (Li et al., 1995; Voll et al., 2003) along with a decreased photosystem II (PSII) capacity 

(López-Juez et al., 1998; Streatfield et al., 1999).  

The cue1 mutant was isolated in a genetic screen for decreased transcript levels of 

chlorophyll a/b binding proteins (Li et al., 1995; López-Juez et al., 1998). Cue1 is defective in 

the phosphoenolpyruvate/phosphate translocator (PPT1) of the chloroplast envelope 

membrane (Streatfield et al., 1999; Figure 1). PPT1 imports phosphoenolpyruvate (PEP) into 

the chloroplast stroma (Fischer et al., 1997; Streatfield et al., 1999; Voll et al., 2003), an 

essential process, because PEP cannot be generated from 3-phosphogylcerate (3-PGA) via 

glycolysis due to a lack of phosphoglycerate mutase and/or enolase (Bagge and Larsson, 

1986; Voll et al., 2003). PEP is required in the following processes: (i) fatty acid biosynthesis 

(Kleinig and Liedvogel, 1980; Benning, 2009); (ii) after conversion to pyruvate in branched 

chain amino acid synthesis (Schulze-Siebert et al., 1984; Kochevenko and Fernie, 2011), (iii) 

isoprenoid synthesis (Lichtenthaler et al., 1997), and (iv) the shikimate pathway for 

production of aromatic amino acids (Herrmann, 1995; Schmid and Amrhein, 1995; Herrmann 

and Weaver, 1999; Rippert et al., 2009; Maeda and Dudareva, 2012). Downstream reactions 

in phenylalanine metabolism produce phenolic secondary compounds (Schmid and Amrhein, 

1995; Fischer et al., 1997; Knappe et al., 2003; Voll et al., 2003; Tzin and Galili, 2010).  

While fatty acid contents are not lowered in cue1 leaves (Streatfield et al., 1999), 

amino acid levels are deregulated with allover higher amino acid concentrations. Particularly, 
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arginine, glutamine, asparagine, urea, and nitrate are increased three to four fold in cue1 

(Streatfield et al., 1999). Cue1 has decreased relative amounts of aromatic amino acids to 

total amino acids (Streatfield et al., 1999). However, quantitation showed that aromatic amino 

acids, apart from a 50% reduction of phenylalanine, are not dramatically lowered (Voll et al., 

2003). Consequently, only phenylalanine-derived phenylpropanoids including flavonoids, 

anthocyanins, hydroxycinnamic acids and simple phenolics are diminished (Streatfield et al., 

1999; Voll et al., 2003). If phenolic metabolism and monolignol biosynthesis in tobacco is 

impaired by overexpression of the transcription factor AmMY308, plants are reticulated 

(Tamagnone et al., 1998; Tamagnone et al., 1998). Phenylpropanoids exert a plethora of 

functions in plants (Vogt, 2010): they act as UV protectants (Schmelzer et al., 1988; 

Sheahan, 1996), antioxidants (Yamasaki et al., 1997; Grace and Logan, 2000; Pollastri and 

Tattini, 2011), constitute scaffold compounds like lignin or suberin (Holloway, 1983; Lewis 

and Yamamoto, 1990), are modulators of phytochrome responses (Murphy et al., 2000; 

Brown et al., 2001) and are involved in defense mechanisms (Kunkel and Brooks, 2002). In 

cue1, protective flavonoids are not produced, even under high-light conditions. Tyrosine is a 

precursor of tocopherol, vitamin K, and plastoquinone (Garcia et al., 1999; Hofius and 

Sonnewald, 2003). Due to a restriction of the shikimate pathway the plastoquinone (PQ) pool 

size is smaller and highly reduced (Streatfield et al., 1999). Possibly, a reduced PQ pool 

could generate a plastidic retrograde signal that leads to chlorosis in paraveinal regions.  

 The cue1 leaf phenotype was rescued by addition of phenylalanine, 

tryptophan, and tyrosine (all amino acids together) to the growth medium (Streatfield et al., 

1999; Voll et al., 2003). The PEP generation in cue1 plastids by transgenic overexpression of 

PPT restored the visual and biochemical phenotype (Voll et al., 2003). Similar results were 

obtained when targeting the pyruvate/orthophosphate dikinase (PPDK) from the C4 plant 

Flaveria trinervia to cue1 plastids (Voll et al., 2003). Both experiments indicate that the 

shortage of PEP in the plastid stroma is the primary cause of the cue1 phenotype (Voll et al., 

2003). The resulting lowered aromatic amino acid or downstream secondary metabolites 

levels likely cause the phenotype (Streatfield et al., 1999; Voll et al., 2003). Cue1 was also 

linked to a defect in cryptochrome mediated signaling (Voll et al., 2003). The Arabidopsis 

genome harbors two homologues: PPT1, expressed along the veins and PPT2, expressed in 

the whole leaf (Knappe et al., 2003). The PPT2 knockout cue2 has no visible phenotype (Li 

et al., 1995).  
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ipgam double mutants (ipgam1/ipgam2) 

An Arabidopsis ipgam1/ipgam2 double knock out of two isoforms of 2-3-

bisphosphoglycerate-independent phosphoglycerate mutases (iPGAMs) is reticulated (Zhao 

and Assmann, 2011). These plastidic enzymes catalyze the formation of 3-PGA form 2-PGA, 

and are hampered in the provision of PEP to the plastid (Figure 1). The reticulated 

phenotype was credited to an altered amino acid metabolism (Zhao and Assmann, 2011), 

similarly to cue1 (Voll et al., 2004). The double mutant was investigated in the context of 

disturbed stomatal movement (Zhao and Assmann, 2011). Additionally, they do not develop 

pollen and are male-sterile, a fact linked to a decreased energy provision (Li et al., 2010; 

Zhao and Assmann, 2011). PEP import into the plastid is essential for gametophyte and 

sporophyte development (Prabhakar et al., 2010). All other described reticulated and 

variegated mutants are fertile and do not show any constraints in reproduction.  

 

 

Ven3 and ven6 (Venosa3 and venosa6) 

A genetic screen for altered leaf phenotypes yielded the reticulated mutants ven1 to 

6, with ven2 allelic to reticulata (Berná et al., 1999). The nature of ven1, ven3, ven4, and 

ven5 remain elusive. Ven3 and ven6, however, were recently deciphered at the molecular 

level (Mollá-Morales et al., 2011). VEN3 and VEN6 encode for the small and the large 

subunit of the ornithine carbamoylphosphate synthase (CPS), synonymous to CarA and 

CarB, respectively (Mollá-Morales et al., 2011; Figure 1). Both genes are expressed in a 

vein-associated manner (Potel et al., 2009). Ornithine is converted by CPS to citrulline, which 

is further metabolized to arginine. Thus, in ven3 and 6 the formation of citrulline and arginine 

is hampered, proven by diminished arginine levels (Mollá-Morales et al., 2011). Biochemical 

inhibition of CPS led to ornithine accumulation and a chlorotic phenotype (Patil et al., 1972; 

Turner and Mitchell, 1985). Since each ven3 and 6 are not null alleles, they produce basal 

levels of arginine and survive (Mollá-Morales et al., 2011). The mutants` reticulated leaf 

phenotype is suppressed by exogenous application of citrulline and arginine. However, other 

phenotypic traits, such as a reduced leaf size, are partially restored (Mollá-Morales et al., 

2011). In Nicotiana tabacum, the repression of the CPS large subunit leads to a reticulated 

phenotype, which was discussed with a focus on an affected pyrimidine metabolism (Lein et 

al., 2008). Ven3 and ven6 could also be linked to a defect in the pyrimidine metabolism. In 

plants, a single CPS is involved in both arginine and pyrimidine biosynthesis, which thus 

requires tight coordination (Slocum, 2005). Pyrimidine levels were not determined in ven3 

and ven6 (Mollá-Morales et al., 2011).  

While VEN3 and VEN6 are single copy genes, and are not masked by their homologs 

(Mollá-Morales et al., 2011), the recessive mutants cue1, re, trp2, and ATase2 mutants have 
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at least two homologues (Last et al., 1991; Knappe et al., 2003; Hung et al., 2004; González-

Bayón et al., 2006; Zhang et al., 2008; Jing et al., 2009; Rosar et al., 2012). VEN3 and VEN6 

are semi-dominant, meaning that heterozygotes have phenotypes that are intermediate 

between homozygous parental lines and wild-type (Mollá-Morales et al., 2011). Ven3 and 

ven6 have a reduced number of smaller palisade cells (Mollá-Morales et al., 2011). Only 

ven6-1 did not show a reduction of the palisade cell size (Mollá-Morales et al., 2011). 

Particularly, ven3-3 displayed strong indentations (Mollá-Morales et al., 2011). The 

ven3/ven6 double mutants showed a very strong synergistic phenotype (Mollá-Morales et al., 

2011).  

 

 

trp2 (tryptophan2)  

 All Arabidopsis mutants that have a defect in trp biosynthesis have small, reticulated 

leaves, including the alleles trp2 and trp3 (Barczak et al., 1995; Radwanski et al., 1996; Jing 

et al., 2009). Root development was not affected in trp2 (Jing, Cui et al. 2009). Trp mutants 

are either defective in the �- or in the ß-subunit of trp-synthase (Figure 1). The �-subunit 

has two and the ß-subunit at least two homologues (Last et al., 1991; Zhang et al., 2008; 

Jing et al., 2009). Trp2 mutants have dramatically decreased trp levels (Ouyang et al., 2000; 

Jing et al., 2009). The T-DNA line trp2-301 is designated as small organ1 (smo1), with 

smo1/trp2-301 being a backcross without T-DNA insertion (Jing et al., 2009). Trp addition 

complemented the phenotype by normal palisade parenchyma development but caused a 

slight reduction in growth (Jing et al., 2009).  

The plastid borne trp is a precursor of the plant hormone auxin, which is involved in 

plant growth and development (Delarue et al., 1998; Zhao et al., 2001; Zhao et al., 2002; 

Cheng et al., 2006; Tao et al., 2008). Despite decreased trp contents, auxin levels were 

elevated in trp2 alleles (Normanly et al., 1993; Ouyang et al., 2000; Jing et al., 2009). Trp2 

did neither show an auxin responsive related phenotype nor did the application of auxin 

revert the phenotype. Thus, auxin is not causal for the phenotype (Jing et al., 2009). The 

auxin increase was attributed to a severely affected homeostasis in this mutant (Jing et al., 

2009). Since trp is essential in protein biosynthesis, which itself is linked to cell proliferation, 

protein levels were investigated in smo1/trp2, but not found to be diminished (Jing et al., 

2009). To conclude if protein biosynthesis per se could lead to a reticulated leaf phenotype, 

the translation inhibitor cyclohexemide was applied to wild-type plants. The drug, however, 

led to both smaller and less palisade cells, unlike smo1/trp2, which were only decreased in M 

cell size. Thus, (Jing et al., 2009) conclude that the trp2 phenotype was not caused by a 

reduction of protein biosynthesis. The ultimate answer, if reduction of protein biosynthesis 

causes the reticulation is still to be resolved. Hence, the trp2 phenotype was causally linked 
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to the lack of trp. This metabolic shortcut provoked a delay in chloroplast development in trp2 

with underdeveloped M thylakoids, with less chlorophyll, and a decreased photosynthetic 

performance at early stages (Jing et al., 2009). This coincides with reticulated cotyledons 

and young leaves, with a less penetrant, even partially restored wild-type like phenotype in 

older leaves (Jing et al., 2009). A less penetrant phenotype was found in old re leaves 

(González-Bayón et al., 2006). The number of chloroplasts with less and smaller starch 

granules, however, seemed to be the same in smo1/trp2 and wild-type (Jing et al., 2009). 

 

 

ATase2 mutants: dov1, cia1, atd2, and alx13 

 The recessive ATase2 mutants are defective in glutamine phosphoribosyl 

pyrophosphate aminotransferase2 (ATASE2), the enzyme catalyzing the first step of the de 

novo purine biosynthesis (Zrenner et al., 2006; Rosar et al., 2012; Figure 1). Arabidopsis 

harbors the three homologues ATASE1, 2 and 3 (Hung et al., 2004; Rosar et al., 2012). 

ATASE enzymes are conserved within and across species (Hung et al., 2004; Van der Graaff 

et al., 2004; Rosar et al., 2012). Several allelic ATase2 mutants have been described: dov1, 

cia1, atd2, and alx13. Dov1 was identified in a screen for reticulate leaf mutants of 

Arabidopsis, termed differential development of vasculature associated cells1 (Kinsman and 

Pyke, 1998). Cia1 (chloroplast import apparatus1) was discovered in a screen for mutants 

with defects in chloroplast protein (Sun et al., 2001; Hung et al., 2004), alx13 (altered APX2 

expression13) in a screen for high-light induced gene expression (Ball et al., 2004; Rossel et 

al., 2004).  

 Much like PPT (Streatfield et al., 1999), TRP (Jing et al., 2009), VEN3/VEN6 (Mollá-

Morales et al., 2011), and RE (González-Bayón et al., 2006) are plastid localized, ATASE2 is 

found in the chloroplast stroma (Hung et al., 2004). The de novo purine biosynthesis is 

shared between the plastid (Van der Graaff et al., 2004) and the cytosol in Arabidopsis (Witz 

et al., 2012). Cia1, which has lowered leaf purine levels, as indicated by decreased ATP/GTP 

levels, was biochemically complemented with purines, i.e. AMP and IMP (Hung et al., 2004), 

and atd2 by IMP (Hung et al., 2004; Van der Graaff et al., 2004). The purine building blocks 

aspartate and glycine were increased in dov1, likely due to a reduced purine production 

(Rosar et al., 2012). Purines are precursors of cytokinins (Mok and Mok, 2001), which drive 

metabolic events (Redig et al., 1996) and are abundant in meristematic tissues (Zhang et al., 

1996; Van der Graaff et al., 2004). In line with lowered purine levels (Hung et al., 2004; Van 

der Graaff et al., 2004), total cytokinin contents in dov1 leaves were decreased (Rosar et al., 

2012). External cytokinin application to dov1 and cia1, however, did not revert the phenotype 

(Hung et al., 2004; Rosar et al., 2012). De novo purine biosynthesis genes are highly 

expressed in meristematic and mitotically active tissues (Senecoff et al., 1996; Zhang et al., 
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1996; Van der Graaff et al., 2004; Zrenner et al., 2009). Cytokinin response activity assays 

revealed that cytokinin activity in dov1 is diminished, which is in agreement with growth 

retardation and lowered mitotic events (Rosar et al., 2012).  

 While in dov1 leaves, total ATASE activity was lowered (Van der Graaff et al., 2004; 

Rosar et al., 2012), it was higher in green and white leaf sectors of alx13 (Woo et al., 2011). 

The increased activity was attributed to the import deficient chloroplasts in alx13: ATASE2 

enzymes are not or less efficiently imported into the plastids and accumulate in the cytosol 

(Woo et al., 2011). We suppose that the deviant results are due to the leaf age at which the 

ATASE activity was determined. Rosar et al., 2012 used young leaves at the six leaf stage 

while Woo et al., 2011 used older leaves at the fourteen leaf stage. Since ATase2 is 

expressed preferentially in younger tissues (Ito et al., 1994; Hung et al., 2004), it`s activity is 

supposedly higher and the mutation in the gene affects the enzyme activity more severely in 

young tissues.  

 ATase2 mutants are delayed in whole plant development and growth. The reticulation 

is restricted to rosette leaves (Kinsman and Pyke, 1998; Woo et al., 2011; Rosar et al., 

2012). An ATase mutant of tobacco has a similar phenotype as the Arabidopsis mutants 

(Van der Graaff et al., 2004). ATASE2 is expressed in cotyledons (Hung et al., 2004), leaves, 

flowers, and roots (Ito et al., 1994; Hung et al., 2004). The M cell number is severely 

decreased but size only marginally lowered in dov1 (Kinsman and Pyke, 1998) and cia1 

(Hung et al., 2004). In dov1, BS cells and their chloroplasts appear normal, while the mostly 

pale chloroplasts of palisade and spongy M cells are reduced in number per cell, and lack 

internal thylakoid membrane structures (Kinsman and Pyke, 1998). Atd2 has residual 

thylakoid membranes and shows vesicle formation (Van der Graaff et al., 2004). Some M 

cells in white sectors are heteroplastidic, i.e. they contain normal chloroplasts (Kinsman and 

Pyke, 1998), a trait also found in variegated mutants (Tilney-Bassett, 1975; Hagemann, 

1986). Arabidopsis ATase1 mutants have no visible phenotype (Hung et al., 2004). 

 The leaf phenotype was described as strongly reticulated (Kinsman and Pyke, 1998), 

as “albino/pale-green mosaic”-like (Hung et al., 2004), and as variegated with occasionally 

reticulated patterns (Woo et al., 2011). These observations fit to the variable penetrance of 

the phenotype depending on growth and environmental conditions, seen in dov1 (Kinsman 

and Pyke, 1998; Rosar et al., 2012), cia1 (Hung et al., 2004), atd2 (Van der Graaff et al., 

2004), and alx13 (Woo et al., 2011). When grown under low-light, atd2 and alx13 leaves 

remain green (Van der Graaff et al., 2004; Woo et al., 2011), which is attributed to less 

photo-oxidative damage (Van der Graaff et al., 2004). However, Woo et al., 2011 concluded 

through growing plants in different light regimes and performing shift experiments, that green 

and white sectors are determined by the time of cell division and not caused by photo-

oxidative damage. Chlorotic sectors arise from green cells during leaf growth, when cells 
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divide rapidly and plastids are generated (Woo et al., 2011). This indicates that chlorosis is 

not a cell line heritable trait. Such heritability of progenitor cells, however, is attributed to 

many variegated mutants (Aluru and Rodermel, 2004; Rosso et al., 2006; Rosso et al., 

2009). It must be noted that the discovery of fully differentiated chloroplasts in the SAM 

(Charuvi et al., 2012) may challenge this hypothesis. Vascular patterning and density in dov1 

is not affected (Kinsman and Pyke, 1998). During development, photosynthesis was 

massively lowered at all stages in rosette leaves. However, photosynthesis increased in 

younger leaves of older plant rosettes (Woo et al., 2011; Rosar et al., 2012). This 

observation was explained by an increased uptake of or access to pools of purines 

generated via the salvage pathway (Rosar et al., 2012), which still occurs in ATase2 mutants 

(Hung et al., 2004). 

 In summary, the ATase2 phenotype is likely primarily caused by the lack of the 

primary metabolites purines and not by cytokinin deficiency (Rosar et al., 2012). However, 

other and/or secondary mechanisms cannot be excluded. GUN1- and/or photoreceptor 

mediated pathways were discussed to be impaired in alx13 (Woo et al., 2011).  

 

 

ntrc (NADPH-thioredoxin reductase) 

 Ntrc is defective in the plastid NADPH-thioredoxin reductase (Serrato et al., 2004; 

Lepistö et al., 2009), which belongs to the redox-active thioredoxin superfamily (Lepistö et 

al., 2009). Although their exact physiological role is poorly understood (Buchanan and 

Balmer, 2005; Gelhaye et al., 2005; Holmgren et al., 2005; Meyer et al., 2005; Meyer et al., 

2006; Reichheld et al., 2010), these proteins modulate the activity of target proteins in a 

photoperiod and redox-state dependent manner. NTRC, unique to oxygenic photosynthetic 

organisms and Mycobacterium leprae, regulates metabolic processes, such as the Calvin-

Benson cycle, chlorophyll biosynthesis, the shikimate pathway, and enzymes of the aromatic 

amino acids, such as 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase and trp 

synthase (Lepistö et al., 2009; Figure 1). The shikimate-derived aromatic amino acid pool 

size is increased in ntrc, while auxin and cytokinin levels are decreased under short-day 

conditions (Lepistö et al., 2009). Supplementation with aromatic amino acids reverts the 

phenotype and plant growth, likely due to the restoration of the aromatic amino biosynthesis 

homeostasis (Lepistö et al., 2009). Thus, we hypothesize that the ntrc phenotype may be 

caused by secondary means, i.e. via a constraint in the regulation of aromatic amino acid 

metabolism. Ntrc, decreased in the number of M cells with less chloroplast per cell, was 

linked to be affected in ROS-mediated signaling (Lepistö et al., 2009). Despite reduced 

chlorophyll levels, primary photosynthetic reactions are not affected, but carbon assimilation 

rate is decreased in ntrc (Lepistö et al., 2009). Additionally, ntrc plants were repressed in 
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expression of cryptochromes and phytochromes, which act in photoperiodic and 

photomorphogenic growth (Lepistö et al., 2009). An upregulation of genes related to 

chlorophyll biosynthesis was hypothesized to influence signals attenuating chloroplast 

biogenesis (Lepistö et al., 2009).  

 

 

re (reticulata) / lcd1 (lower cell density1) 

 The molecular function of RE has not been deciphered to date, although re mutants 

were first described almost fifty years ago (Rédei and Hironyo, 1964). Re has been used for 

decades as a visible marker for genetic mapping due to a low degree of pleiotropy (Rédei 

and Hironyo, 1964; González-Bayón et al., 2006). Thus far, nine alleles have been 

described: re-1 to re-7 (González-Bayón et al., 2006), re-8 (Overmyer et al., 2008), and lcd1 

(lower cell density1) (Barth and Conklin, 2003; González-Bayón et al., 2006). Ven 2-1, ven 2-

2 and ven 2-3 (Berná et al., 1999) are allelic to re-3, re-4, and re-5, respectively (González-

Bayón et al., 2006). Re/lcd1 displays a reduced number of spongy and particularly palisade 

cells, but the number of chloroplasts per cell and plastid morphology is not affected (Barth 

and Conklin, 2003; González-Bayón et al., 2006). The vascular bundle and BS is normally 

developed, with a larger number of chloroplasts in BS of re-1 (González-Bayón et al., 2006). 

Re has reticulated cotyledons, rosette and cauline leaves, but neither a phenotype in 

inflorescence, floral organs, fruit, seeds nor in the root was observed (Barth and Conklin, 

2003; González-Bayón et al., 2006). The leaves show a simpler venation pattern, with 

shorter vascular bundles only in fully expanded leaves (González-Bayón et al., 2006). Along 

with a slightly decreased biomass per leaf area in lcd1 (Barth and Conklin, 2003), the leaf 

area of re is slightly decreased (Gonzalez-Bayon, Kinsman et al. 2006). The rate of 

photosynthesis was slightly lower in lcd1 on an area, but not on a fresh weight basis (Barth 

and Conklin, 2003). RE may be regulated by light, as mutants do not exhibit the pale 

interveinal phenotype when grown under very low-light (Barth and Conklin, 2003; Overmyer 

et al., 2008). The reticulate phenotype becomes less apparent when leaves are aging 

(González-Bayón et al., 2006). The expression of RE is highest in young and meristematic 

leaf- and root tissues, and restricted to the leaf veins (González-Bayón et al., 2006). RE is 

predicted to be plastid localized (González-Bayón et al., 2006), as confirmed by proteomic 

analysis of the plastid envelope (Zybailov et al., 2008; Bräutigam and Weber, 2009; Ferro et 

al., 2010). Despite decreased chlorophyll contents, with no alteration of photosynthetic 

pigment composition, lcd1 is not affected in it`s photosynthetic performance (Barth and 

Conklin, 2003). Lcd1 is susceptible to pathogens, such as Pseudomonas syringae (Barth and 

Conklin, 2003). However, the ROS-scavening system, which is involved in mediating 

pathogen responses, is not affected in lcd1 (Barth and Conklin, 2003).  
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 Two hypotheses were provided to explain the re phenotype. Firstly, RE/LCD1 plays a 

role in cell division particularly of M cell (Barth and Conklin, 2003), resulting in leaves with a 

lower cell density. Secondly, RE/LCD1 is involved in several functions, and if mutated, has 

pleitropic effects besides that of lower cell density (Barth and Conklin 2003)(González-Bayón 

et al., 2006).  

 

 

PEND  

 When BnPEND, a plastid localized protein from rape seed (Brassica napus), is 

overexpressed in tobacco, leaves become patchy white-green to reticulate (Wycliffe et al., 

2005). BnPEND, and its homologues in other plant species have a N-terminal DNA-binding 

domain similar to bZIP transcription factors. The C-terminus is likely anchored to the plastid 

inner envelope (Wycliffe et al., 2005; Kodama, 2007). The PEND protein of Pisum sativum 

seedlings binds the plastid DNA to the inner envelope during replication and transcription, 

particularly during plastid development in young plants and leaves (Wycliffe et al., 2005). 

Thus, an overexpression disturbs processes in chloroplast development and causes the 

distorted organization of M cells (Wycliffe et al., 2005). BnPEND is also thought be involved 

in retrograde signaling (Wycliffe et al., 2005). 

 

 

Photorespiratory phenotypes 

 Photorespiration starts with the oxygenase activity of ribulose-1,5-bisphosphate-

carboxylase/oxygenase (RuBisCO) forming phosphogylcolate. Phosphoglycolate is recycled 

to the Calvin-Benson cycle intermediate phosphogylcerate in a coordinated process between 

cytosol, mitochondria, and peroxisomes (Maurino and Peterhänsel, 2010; Peterhansel et al., 

2010). When a subunit of the glycine decarboxylase (GDC) complex is downregulated in 

tobacco, leaves become chlorotic along their veins (Lein et al., 2008), corresponding to an 

inverse reticulated phenotype.  
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Figure 1: Affected pathways in reticulated mutants. All molecularly characterized reticulate 

mutants are defective in purine, amino acids or plastid ribosomal subunits. Dov1 is defective in 

ATase2 and thus in de novo purine metabolism. Cue1, deficient in the PPT1, cannot import PEP in the 

plastid.  PEP is a precursor for aromatic amino acid biosynthesis and thereof derived secondary 

metabolites, such as phenolics. Ipgam double mutants are defective in plastidic PEP generation. Ven3 

and ven6 are disturbed in arginine biosynthesis via defective CAR B and CAR A subunits, 

respectively. A mutant of the prephenate-DH is likely affected in tyrosine biosynthesis. NTRC 

regulates a plethora of metabolic processes, among them trp synthesis. Some ribosomal mutants are 

defective in plastidic protein synthesis. AMP: adenosine-5`-monophosphate; ADP: adenosine-5`-

diphosphate; ATP: adenosine-5`-triphosphate; Glu: glutamate; Gln: glutamine; HCO3
-
: 

Hydrogencarbonate; iPGAM: 2-3-bisphosphoglycerate-independent phosphoglycerate mutase; IMP: 

Inosine-5`-monophosphate; I-3-PG: indole-3-phosphoglycerate; IPGA: phosphoglyceric acid; PPT: 

phosphoenolpyruvate-phosphate translocator; PRA: 5-phosphoribosylamine; PRPP: 5-

phosphoribosyl-1-pyrophosphate; GMP: guanosine-5`-monophosphate; PEP: phosphoenolpyruvate; 

Phe: phenylalanine; Pi: phosphate. 
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Variegated mutants 

 The variegated phenotype is characterized by distinct green and white sectors that 

are most prominent in leaves but can be observed in the stem (Kirk and Tilney-Bassett, 

1978; Rodermel, 2001; Sakamoto, 2003; Miura et al., 2007; Rodermel, 2008). The green 

sectors contain fully and normally developed chloroplasts while the white sectors contain 

aberrant chloroplasts, which frequently lack an organized internal membrane structure, 

chlorophyll, and/or carotenoids (Miura et al., 2007; Rodermel, 2008). However, variegated 

and reticulated phenotypes cannot always be unambiguously distinguished, as outlined for 

ATase2 mutants in this review. 

 Variegation mutants are widespread in dicots and monocots, C3- and C4-plants. 

Variegation is found in nature and thus should have benefits for the plants (Tsukaya et al., 

2004; Kato et al., 2007; Sheue et al., 2012). Variegation in monocots is often referred to as 

striping (Sakamoto, 2003). There is a plethora of ca. 200 to several hundred Arabidopsis 

variegation mutants in the Arabidopsis stock centers at Nottingham and Ohio state (Yu et al., 

2007). Although many of these mutants were isolated and described (Rédei, 1963; 

Röbbelen, 1968), most of them have not been genetically or molecularly identified to date 

(Yu et al., 2007). Variegation mutants have been used in linkage studies and as 

morphological markers (Jenkins, 1924; Robertson, 1967; Sakamoto, 2003).  

 Two types of variegation mutants are distinguished: green and white sectors with (i) 

different genotypes and (ii) with the same genotype (Sakamoto, 2003; Yu et al., 2007). Case 

(i) is due to chimerism, transposable elements, RNA silencing, plastome mutators, plastome 

mutations, mitochondrial genome mutations, or plastid-nucleus incompatibility (Newton and 

Coe, 1986; Chatterjee et al., 1996; Keddie et al., 1996; Stoike and Sears, 1998; Bellaoui et 

al., 2003; Yu et al., 2007). Mutants defective in either plastid or mitochondrial genes do not 

obey to Mendel`s law and helped to discover the non-nuclear inheritance (Granick, 1955; 

Tilney-Bassett, 1975; Connett, 1986; Yu et al., 2007). One group of molecularly 

characterized nuclear-recessive variegated mutants is defective in the photo-protective 

machinery leading to white sectors. These mutants are often associated with carotenoid 

biosynthesis, such as im, var1, var2, and var3 (Wetzel et al., 1994; Aluru et al., 2006; Kato et 

al., 2007; Miura et al., 2007; Aluru et al., 2009; Rosso et al., 2009). Another group is impaired 

likely directly in proper thylakoid and thus chloroplast biogenesis, such as thf1 (Keren et al., 

2005; Huang et al., 2006). The variegated phenotype is probably pleiotropic because 

different metabolic pathways are affected. In this review, we will refer to nuclear recessive 

mutations. 
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im (immutans) and spotty 

 The nuclear recessive Arabidopsis mutant im was isolated more than fifty years ago 

(Rédei, 1963, 1967). Spotty, allelic to im, was isolated in an EMS screen, and was 

designated im (Wetzel et al., 1994; Rosso et al., 2009). Im, ubiquitously expressed 

throughout development (Aluru et al., 2001) is defective in the plastid terminal oxidase 

(PTOX) (Figure 2), a redox protein similar to the alternative oxidase (AOX) of the alternative 

(cyanide-resistent) pathway of mitochondrial respiration (Carol et al., 1999; Wu et al., 1999; 

Fu et al., 2012) where AOX oxidizes ubiquinol and reduces oxygen to water (Siedow and 

Umbach, 1995; Vanlerberghe and McIntosh, 1997). Similar reactions are involved in 

carotenoid biosynthesis: phytoene desaturase (PDS) oxidizes phytoene, and reduces PQ 

(Wetzel et al., 1994; Aluru et al., 2006). By recycling, i.e. oxidizing the PQ-pool and reducing 

oxygen, IM thus facilitates PDS function (Josse et al., 2000; Joët et al., 2002; Josse et al., 

2003, Figure 2). Hence, im is impaired in carotenoid biosynthesis, indicated by the 

accumulation of the non-colored phytoene in white tissues (Wetzel et al., 1994). Carotenoids 

protect plants from generated ROS-species. Thus, the white carotenoid-less sectors are 

triggered by photobleaching resulting from an increase in plastidic ROS (Wetzel et al., 1994; 

Wu et al., 1999; Aluru et al., 2009; Rosso et al., 2009).  

 Additionally to carotenoid biosynthesis, PTOX is involved in growing numbers of 

plastidic pathways, such as photosystem I (PSI) cyclic electron transport (Okegawa et al., 

2010; McDonald et al., 2011), central regulation of photosystem II (PSII) excitation pressure 

in early chloroplast biogenesis (Rosso et al., 2009), and chlororespiration mediating the 

oxidation of the plastidial PQ pool in the dark and reducing oxygen (Josse et al., 2000; 

Hirschberg, 2001; Joët et al., 2002; Peltier and Cournac, 2002; Fu et al., 2005; Shahbazi et 

al., 2007; Yu et al., 2007). IM is suggested to be an electron transport safety valve by acting 

as an alternative electron sink to detoxify excess electrons during photosynthetic 

overcapacity and thus lowering ROS production under unfavorable environmental conditions 

(Niyogi, 2000; Rizhsky et al., 2002; Yu et al., 2007; Rosso et al., 2009; McDonald et al., 

2011). However, under non-stressed steady-state photosynthesis, IM is suggested to have a 

role in development (Rosso et al., 2006). By combining both results, it was concluded that IM 

protects against photo-oxidation during the development of chloroplasts, amyloplasts and 

etioplasts (Aluru et al., 2001; Aluru et al., 2009). Despite intensive research on IM, it`s 

precise physiological function remains unclear (Inaba and Ito-Inaba, 2010). 

 The variegated im phenotype is restricted to leaves and not found in cotyledons and 

other organs (Aluru et al., 2001). Green sectors are thicker than wild-type, due to an increase 

in air space, epidermal and M cell size. Chloroplasts are morphologically normal, while white 

sectors harbor vacuolated plastids lacking lamellar structures (Wetzel et al., 1994). In white 

leaf sectors, wild-type like leaf thickness was observed, and palisade cells failed to expand 
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properly (Aluru et al., 2001). The variegated ghost mutant in tomato (Lycopersicon 

esculentum) (Barr et al., 2004) lacks the IM-orthologue GH (Rick et al., 1959; Wetzel et al., 

1994). GH is important in chloroplast and chromoplast differentiation (Barr et al., 2004). 

However, amyloplasts, etioplasts, and chromoplasts are well developed in im (Aluru et al., 

2001) and ghost (Barr et al., 2004).  

 

 

var2 (yellow variegated2) and var1 (yellow variegated 1) 

 The recessive yellow variegated2 (var2) mutant is defective in the ATP-dependent 

metalloprotease FtsH2 (Kato et al., 2007) and the yellow variegated1 (var1) in FtsH5 (Aluru 

et al., 2006; Miura et al., 2007; Figure 2). FtsH2 and FtsH5 are components of the thylakoid 

membrane localized FtsH heterocomplex (Zaltsman et al., 2005; Kato et al., 2007). FtsH 

degrades, among various chloroplast proteins (Ostersetzer and Adam, 1997; Lindahl et al., 

2000; Zelisko et al., 2005; Adam et al., 2006; Komenda et al., 2006; Sakamoto, 2006), the 

D1 protein of PSII, e.g. in the case of photodamage (Aluru et al., 2006; Miura et al., 2007). 

Variegation is likely caused by an imbalance between biosynthesis and degradation of the 

D1 protein (Miura et al., 2007). The D1 protein is the plastoquinone B (Qb) binding pocket of 

PSII where electrons are transferred to the PQ pool (Miura et al., 2007). FtsH participates in 

the PSII repair cycle (Lindahl et al., 2000; Bailey et al., 2002; Sakamoto et al., 2004).  

 Var2 mutants, first isolated by Redei in the 1950s (Yu et al., 2007), have normally 

developed cotyledons. While the first true leaves are white, the next appearing rosette leaves 

become variegated. Variegation in var2 affects all green organs, i.e. leaves, stems, sepals, 

and siliques (Koornneeff et al., 1982). An EMS-mutagenized allele of var2 (Koornneeff et al., 

1982; Martínez-Zapater, 1993) and a T-DNA tagged allele were genetically identified 

(Takechi et al., 2000). Var4 is allelic to var2 (Koornneeff et al., 1982). The var1 variegation is 

restricted to leaves (Martínez-Zapater, 1993). The white sectors of var2 consist of viable 

cells, which are defective in chloroplast differentiation (Kato et al., 2007). 

The enhanced phenotype of the var1/2 double mutant indicates that both mutants are 

involved in the same process (Sakamoto et al., 2002). However, despite high similarity to 

each other, FtsH2 (VAR2)- and FtsH5 (VAR1)-proteins, were proposed to have different 

roles (Yu et al., 2005; Zaltsman et al., 2005).  

 

 

var3 (variegated3) 

 The nuclear recessive Arabidopsis var3 is a transposon-insertion mutant (Næsted et 

al., 2004). Three VAR3 homologs are encoded in the genome, of which VAR3 and another 

homologue is likely chloroplast envelope localized (Naested et al., 2004). VAR3 interacts in 
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vitro and in yeast with nine-cis-epoxy carotenoid dioxygenase4 (NCED4) (Iuchi et al., 2001; 

Figure 2), suggesting that VAR3 is involved in the regulation of carotenoid biosynthesis 

(Naested et al., 2004). All determined carotenoids in var3 were reduced (Naested et al., 

2004). Var3 has green cotyledons and yellow variegated rosette leaves. In yellow sectors, 

the number of palisade cells, whose chloroplasts lack the thylakoid membrane structure, is 

reduced. In green sectors the chloroplast is wild-type like (Næsted et al., 2004). The 

variegation is already visible during early chloroplast biogenesis, shortly before leaves 

emerge.  

 

 

pac (pale cress) 

 The exact molecular function of PAC has not been corroborated to date. However, 

the chloroplast localized light-regulated PAC protein (Reiter et al., 1994; Tirlapur et al., 1999) 

is hypothesized to be involved in plastid-encoded mRNA maturation/processing (Meurer et 

al., 1998), and thereby in synthesis or stability of carotenoids (Holding et al., 2000; Figure 2). 

In analogy to im, the pac phenotype is likely partially caused by a carotenoid deficiency 

(Holding et al., 2000). Pac has decreased abscisic acid (ABA) levels, a plant hormone 

derived from carotenoids (DellaPenna and Pogson, 2006) and involved in stomata 

movement. In accordance, the PAC protein was located exclusively to epidermal guard cells 

(Reiter et al., 1994; Holding et al., 2000) where ABA is primarily involved in stomata 

movement (Raschke and Hedrich, 1985; Schroeder et al., 2001; Kim et al., 2010). Since ABA 

is required for proper determination of leaf identity in heterophyllous aquatic leaves (Ueno, 

1998), the changed leaf cell morphology in pac could be due to inhibited ABA function 

(Holding et al., 2000). Pac was rescued by exogenous application of cytokinin (Grevelding et 

al., 1996). Two T-DNA tagged pac alleles are isolated: pac-1 and pac-2 (Feldmann, 1991; 

Reiter et al., 1994; Grevelding et al., 1996). The pale green pac-1 has a poorly differentiated 

palisade parenchyma, enlarged epidermal cells and almost thylakoid-less plastids (Reiter et 

al., 1994). Contrarily, pac-2 is variegated with normal green chloroplasts in green and 

abnormal plastids in white sectors (Grevelding et al., 1996). Despite both alleles are putative 

null, the phenotypes are quite different likely due to leaky expression and/or the different 

mutant ecotypes (Yu et al., 2007). Pac plants accumulate more chlorophyll and have greener 

leaves when grown under low-light (Holding et al., 2000).  
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cla1 (cloroplastos alterados1) and cas1 (cycloartenol-synthase) 

 Three cla1 alleles were isolated in Arabidopsis: cla1 as a T-DNA line (Mandel et al., 

1996; Estévez et al., 2000), lovostatin-resistant111 (lvr111) (Crowell et al., 2003), and chilling 

sensitive5 (chs5) (Araki et al., 2000). While the null-allele cla1 is albino, lvr111 shows a 

variegated dwarf phenotype. Chs5 is chlorotic when grown at 15°C. The affected gene 

encodes 1-deoxy-D-xylulose 5-phosphate synthase (DXP), the rate-limiting enzyme of the 

plastidic 2-C-methyl-erythritol-4-P (MEP) pathway for isoprenoid biosynthesis, such as 

carotenoids and quinones (Lichtenthaler et al., 1997; Lichtenthaler et al., 1997; Araki et al., 

2000; Estévez et al., 2000; Estévez et al., 2001; Figure 2). Total isoprenoids were massively  

decreased in cla1-1 and lvr111 (Crowell et al., 2003). Cla1-1 harbors white thylakoid less 

plastids that accumulate vesicles. The white and variegated phenotype is linked to 

photoinhibition due to the lack of photoprotective carotenoids (Crowell et al., 2003). CLA1 

has a homologous gene (Araki et al., 2000). Mutants of the cycloartenol-synthase (cas1), 

defective in an enzyme of the sterol biosynthesis, have an albino stem and petiole 

(Babiychuk et al., 2008). 

 

 

thf1 (thyalkoid formation1) and ispf 

 The THF1 protein interacts with PSII and is suggested to regulate PSII biogenesis 

(Keren et al., 2005). THF1 was detected in the stroma, the outer envelope, and in stromules 

(Keren et al., 2005). Stromules are plastidic extensions that likely mediate intracellular 

signaling (Kwok and Hanson, 2004). Additionally, THF1 interacts with a plasma membrane 

bound G-protein at sites of stromule/plasma membrane interaction, favoring a role of THF1 in 

G-protein-linked D-glucose sugar signaling (Huang et al., 2006). Thf1 is stunted and 

variegated, while antisense plants are of variant penetrance, depending on line and light 

conditions (Wang et al., 2004). White and yellow sectors of thf1 accumulate vesicles in their 

thylakoid lacking chloroplasts, suggesting that thf1 is defective in thylakoid biogenesis (Wang 

et al., 2004). Thylakoids likely develop from vesicles from the inner envelope (Westphal et 

al., 2001; Andersson and Sandelius, 2004). Thylakoid vesicle formation is prominent in ispf1, 

a variegated mutant defective in the plastidic non-mevalonate isoprenoid biosynthesis (Hsieh 

and Goodman, 2006), giving rise to the phytol side chain of chlorophyll and carotenoids. The 

non-mevalonate pathway is likely arrested in early leaf and plastid biogenesis (Hsieh and 

Goodman, 2006). THF1 is homologous to the Synechocystis protein PSB29 (Keren et al., 

2005). 
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hma1 (heavy metal P1B-ATPase) 

 The variegated Arabidopsis mutant hma1 is defective in the copper transporter 

HMA1, a heavy metal P1B-ATPase, that imports iron across the plastid membrane 

(Seigneurin-Berny et al., 2006). Copper is a cofactor in various plastid enzymes involved in 

ROS scavenging (Seigneurin-Berny et al., 2006). The variegation, most prominent under 

high-light, is attributed to photobleaching. The striping maize mutant yellow stripe1 (ys1) is 

defective in the uptake of iron and other heavy metal ions across the plasmamembrane into 

the cytosol (Von Wirén et al., 1994; Schaaf et al., 2004). 

 

 

kas1 (ß-Keto-[Acyl Carrier Protein] Synthase1) 

 The Arabidopsis kas1 mutant has multiple morphological impairments, including 

chlorotic, netted patches on small leaves (Wu and Xue, 2010), similar to reticulated leaves. 

ß-Keto-[Acyl Carrier Protein] Synthase1 (KAS1) elongates fatty acids. The gene is expressed 

at high levels during early developmental stages and in the whole rosette leaf (Shimakata 

and Stumpf, 1982; Wu and Xue, 2010).  

 

 

albino3 (alb3) and white cotyledons (wco)  

 Although being Arabidopsis albino mutants, alb3 and wco are often described in the 

context of variegation. Alb3 is defective in ALB3, which builds a pore in the thylakoid 

membrane for protein import (Figure 2). ALB 3 interacts with diverse proteins (Cai et al., 

2010; Dünschede et al., 2011; Ingelsson and Vener, 2012). Alb3 has both white cotyledons 

and true leaves (Sundberg et al., 1997). The nuclear recessive Arabidopsis mutant white 

cotyledons (wco) has white/pale cotyledons and green leaves, but is not variegated 

(Yamamoto et al., 2000). Plastids in white tissues contain plastoglobuli and have only 

rudimentary thylakoids (Yamamoto et al., 2000). Likely, this mutant is primarily affected in 

cotyledon specific 16 sRNA maturation (Yamamoto et al., 2000). 

 

 

chm (chloroplast mutator), mdl (maternal distorted leaf), osb1 (organellar single 

strand binding protein1), msh1 (mutS homolog1), and am (albomaculans) 

 The variegated chloroplast mutator alleles chm1 and chm2 of Arabidopsis were 

isolated in an EMS screen (Rédei, 1967; Rédei and Plurad, 1973) and chm3 was isolated by 

(Martínez-Zapater et al., 1992). The leaves of homozygous recessive plants have a 

reticulated rough-leaf phenotype (Mourad and White, 1992). CHM encodes AtMSH1, a 

mitochondrial protein that is involved in DNA mismatch repair and recombination and likely 
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controls mitochondrial genome copy number (Abdelnoor et al., 2003; Figure 2). The defective 

mitochondria affect chloroplasts secondarily. Mdl mutants, derived as a cross between chm 

and wild-type, confirm the role in mitochondrial gene rearrangement (Sakamoto et al., 1996). 

The mechanism of variegation is considered to be similar to that of non-chromosomal stripe 

(ncs) maize mutants (Newton and Coe, 1986; Gabay-Laughnan and Newton, 2005; Yu et al., 

2007). Organellar single strand binding protein1 (OSB1) was identified to be responsible for 

regulation of the plant mitochondrial genome via correct stoichiometric mtDNA transmission 

(Figure 2). In the case of instable mtDNA, plants appeared variegated. OSB1 expression is 

restricted to gametophytic cells (Zaegel et al., 2006), in line with the hypothesis that the 

variegated phenotype is caused in very early developmental stages. Msh1 is defective in it´s 

putative function in mitochondrial replication (Abdelnoor et al., 2003; Arrieta-Montiel et al., 

2009). The recessive am mutants of Arabidopsis were generated almost 50 years ago 

(Röbbelen, 1966). The plastids are permanently defective and maternally inherited. White 

sectors contain heteroplastidic cells with normal green chloroplasts and abnormal, non-

pigmented vesiculated, thylakoid less and plastoglobuli-rich white plastids. The 

heteroplastidity is likely a consequence of incomplete sorting out. It was suggested that am is 

a form of plastome mutator, i.e. a nuclear mutation leading to a plastidic mutation (Tilney-

Bassett, 1975; Hagemann, 1986).  

 

 

 

Variegated mutants in dicotyledonous non-Arabidopsis species 

 

dcl (defective chloroplasts and leaf-mutable) and vdl (variegated and distorted leaf)  

 The tomato dcl variegated phenotype is defective in the DCL protein, which is 

required for rRNA processing and plastid ribosome assembly (Bellaoui et al., 2003; Bellaoui 

and Gruissem, 2004). The Arabidopsis dcl allele is pale green but not variegated (Bellaoui 

and Gruissem, 2004). The nuclear recessive vdl mutant is defective in a putative plastid 

targeted DEAD-box RNA helicase (Wang et al., 2000). DEAD-box RNA helicases are 

involved in ribosomal synthesis (Cordin et al., 2006). Arabidopsis mutants of ribosomal 

subunits also display altered leaf morphology (Börner and Sears, 1986; Hagemann, 1986; 

Hess et al., 1994; Yaronskaya et al., 2003; Hricová et al., 2006; Horiguchi et al., 2011; Tiller 

et al., 2012). Vdl is characterized by variegated leaves, aberrant inflorescences and roots. 

The white leaf sectors are distorted, lack palisade cells and have undifferentiated plastids 

lacking internal membrane structure (Wang et al., 2000).  
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mcd1 (mesophyll cell defective1)  

 Despite the molecular function has not been identified, the recessive variegated mcd1 

of sunflower is discussed as being similar to var3 (Næsted et al., 2004; Fambrini et al., 

2010). Mcd1 displays aberrant, poorly shaped palisade and spongy M cells with prominent 

intracellular spaces, in some areas without M cells (Fambrini et al., 2010). Palisade cells are 

highly vacuolated and reduced in number of chloroplasts. Also cotyledons are affected. 

Photosynthetic capacity is largely decreased in white/yellow leaf sectors while it is at wild-

type level in green patches (Fambrini et al., 2010).  

 

 

 

Mutants in monocots 

 This chapter briefly gives an overview of striped mutants of both C4- and C3-

monocotyledonous plants. Despite they are often referred to be analogous to variegated 

mutants, we think that they correspond to reticulated phenotypes. If these corresponded to 

variegated dicot mutants, the sectoring should also be chaotic and should not include veinal 

structures. 

 

Maize iojap, and barley albostrians and saskatoon mutants  

 The white stripes of the recessive iojap mutants are caused by missing components 

of the plastid 50S-ribosome (Han et al., 1992). Additionally, plastidic RNA editing is disturbed 

(Halter et al., 2004). The barley albostrians and saskatoon mutants lack the 70S ribosome 

due to a nuclear recessive mutation (Börner and Sears, 1986; Hagemann, 1986; Hess et al., 

1994; Yaronskaya et al., 2003).  

 

 

z2 (rice zebra2) 

 The z2 mutant of rice (Oryza sativa), first reported more than 70 years ago (Chai et 

al., 2011), has leaves with transverse white/yellow and green stripes. The mutant is defective 

in carotenoid isomerase, which is expressed in root M and vascular bundles (Chai et al., 

2011). Z2 plants are likely corroborated in photoprotective mechanisms due to low levels of 

lutein (Chai et al., 2011). However, the z2 phenotype is suppressed by continuous light under 

which no excess levels of ROS species accumulate. Under short day conditions, the plants 

show the phenotype and accumulate high ROS levels (Han et al., 2012). The deficiency of 

the carotenoids was thus not causal for the phenotype. In z2 leaves, the substrate of 

carotenoid isomerase, tetra-cis-lycopene, accumulated under short day and not under 

continuous light (Han et al., 2012). Since this substance is positively correlated with ROS 
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accumulation and subsequent expression of cell death related genes, the phenotype was 

linked to a photoperiodic accumulation of tetra-cis-lycopene (Han et al., 2012). These 

observations may also shed a new light on variegated Arabidopsis mutants that are defective 

in carotenoid biosynthesis.  

 

 

 

Uncharacterized reticulated and variegated mutants 

 A lot of variegated and reticulated mutants have not been mapped and/or molecularly 

identified to date. Phenome databases using publicly available seed stocks were established 

(Kuromori et al., 2006; Kuromori et al., 2009; Myouga et al., 2010; Yamaguchi et al., 2012). 

Allelic and thus redundant listing of mutants cannot be excluded. We screened these 

databases for variegated and reticulated phenotypes.  

 (Feldmann, 1991) categorized T-DNA insertional mutations morphologically, among 

them variegated and reticulated plants. However, no exact description or identity is provided.  

 (Kuromori et al., 2006) selected 4000 transposon-insertion lines and observed the 

visible phenotype, including both novel and previously reported mutants. Four variegated and 

four reticulated leaf mutants were detected. The mutants listed in this chapter were inferred 

from the database http://rarge.psc.riken.jp/phenome, and are not exclusively listed in the 

publication by Kuromori et al., 2006. The reticulated lines are listed as pale green leaves in 

the database. Thus, we defined the reticulation after inspection of the photographs in the 

database. The lines are listed in Table 1 (reticulated: At1g15710, At1g65260, At1g32080, 

At5g27010; At1g75030; variegated leaves: At4g21060, At4g01690, At2g20860; variegated 

seedlings/pale leaves: At4g27600; At1g32080 is listed as pale green, appears, however, 

reticulated; At1g75030 is listed as pale green, looks reticulated/variegated). A reticulated 

insertion line in a gene of a prephenate dehydrogenase family protein (At1g15710) is likely 

defective in the plastidic trp biosynthesis (Figure 1), like trp2 (Last et al., 1991; Zhang et al., 

2008; Jing et al., 2009). VIPP1 (At1g65260) is a vesicle inducing protein in thylakoid and 

plastid formation (Kroll et al., 2001; Westphal et al., 2001). The six remaining mutants were 

not molecularly characterized at the date of publication (Kuromori et al., 2006). At1g32080 is 

predicted to encode for LRGB, a plastidic protein involved in chloroplast development (Yang 

et al., 2012). At1g75030 encodes a PR5-like protein, whose function is unknown (Hu and 

Reddy, 1997). At5g27010 has not been identified yet. The variegated mutant with an 

insertion in At4g21060 is assigned to be defective in a putative ß-1,3-galactosyltransferase 

(Qu et al., 2008). The line inserted into At4g01690 is deficient in protoporphyrinogen oxidase 

(PPOX) (Lermontova and Grimm, 2006; Tanaka et al., 2011). The T-DNA line in At4g27600 

is likely corrupted in phosphofructokinase B-type carbohydrate kinase family protein NARA5, 
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which is expressed in the plastid (Ogawa et al., 2009). The function of NARA5, however, is 

unknown. At2g20860 encodes the lipoic acid synthase1 (LIP1) (Yasuno and Wada, 2002; Li-

Beisson et al., 2010). 

 (Myouga et al., 2010) established a database of tagged insertion lines from seed 

stock centers and from their own laboratory stocks. Insertions for 1369 plastid-localized 

nuclear encoded genes were taken into account. Five defective genes for variegated, 24 for 

pale leaf mutants and six for weak pale mutants were described. Among the five variegated 

mutants, one was allelic to thf1 and one to cia1. The class of pale and weakly pale mutants 

was not subdivided and not categorized as reticulated.  

 Through screening the database established by Yamaguchi et al., 2012 we found six 

variegated T-DNA insertion mutants in the following genes: At4g34740 (Atase2), At4g27600 

(pfkB-like carbohydrate kinase family protein), At4g34830 (pentatricopeptide repeat protein), 

At4g18750 (pentatricopeptide repeat protein), At2g20890 (THF1), and At1g32080 (AtLrgb).  

 (Lloyd and Meinke, 2012) established a database of yet described and published but 

also mutants from their lab stock. Most of the mutants described in this review are also listed 

by (Lloyd and Meinke, 2012): cue1, ven3, ven6, trp2, ATase2-mutants, ntrc, re, im, var1, 

var2, pac, cla1, thf1, hma1, kas1, alb3, chm, osb1, and msh1.  

Antirrhinum majus mutants were described as displaying leaf coloration (Hammer et 

al., 1990). These descriptions correspond to the definitions of variegation and reticulation 

phenotypes. The molecular identity of the mutants, however, has not been corroborated yet.  

 

 

 

 

 

Hypotheses explaining variegation and reticulation  

 The most challenging task is to explain the variegated and reticulated phenotype 

based on the molecular constraints. Different hypotheses have been presented by various 

research groups to link the molecular defect to the phenotype. The hypotheses are not 

always excluding each other. We try to integrate the hypotheses to draw a bigger picture and 

will also present our point of view. The overview of reticulated mutants depicted in Figure 3.  

 Variegated and reticulated mutants cannot always be distinguished unambiguously, 

as depicted for ATase2 mutants in this review. It will be challenging to categorize novel 

mutants in the future. Variegated mutants are mostly defective in thylakoid localized proteins 

and/or in proteins involved in carotenoid biosynthesis and/or are defective in scavenging 

excitation energy/ROS. These defects end in deficiencies of thylakoid and chloroplast 

differentiation, as it is also observed for M chloroplasts of ATase2 mutants (Kinsman and 
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Pyke, 1998; Hung et al., 2004). Reticulated mutants are either associated with 

primary/secondary metabolic, regulatory or protein biosynthesis defects, all due to 

unfunctional stroma or plastid envelope proteins. At least the evenly reticulated trp2 mutant is 

not changed in M chloroplast ultrastructure (Jing et al., 2009), indicating that chloroplast 

development is unaffected. Mutations initially identified due to their similarity in leaf 

morphology, are affected in a single pathway or molecular mechanism, making gene-

morphological relations reproducible (Pérez-Pérez et al., 2011). Thus, variegated and 

reticulated mutants are powerful tools to investigate metabolic defects.  

 

 

Retrograde signaling 

 Plastids are semi-autonomous organelles, i.e. they harbor plastid and nuclear 

encoded proteins. Thus, a communication between the nucleus and the plastid is essential to 

ensure the coordinated interlocking of metabolic and developmental programs. This 

communication occurs from the nucleus to the plastid (anterograde signaling) and from the 

plastid to the nucleus (retrograde signaling) (Nott et al., 2006; Pogson et al., 2008). Reactive 

oxygen species (ROS) are key signaling molecules in retrograde signaling, which serves two 

functions: (i) signals for developmental control and (ii) signals involved in integration of 

environmental stimuli (Pogson et al., 2008; Woodson and Chory, 2008; Pfannschmidt, 2010). 

In particular, the first mechanism is likely affected in variegated and reticulated 

mutants. In im and var2 the impairment in chloroplast biogenesis is correlated with the 

retrograde suppression of nuclear encoded photosynthetic genes (Wetzel et al., 1994; Aluru 

et al., 2001; Kato et al., 2007; Miura et al., 2010), specifically in white sectors of var2 (Kato et 

al., 2007). Plastid-encoded genes accumulate to wild-type levels in var2 (Takechi et al., 

2000). The lack of palisade M in cla1 (Estevez et al., 2000) and the var3 phenotype (Yu et 

al., 2007) are linked to disturbed retrograde signaling.  

 Cue1, isolated in a screen for suppressed nuclear encoded photosynthesis genes, is 

hypothesized to be defective in retrograde developmental signals that specify M 

development (Knappe et al., 2003). Dov1 is likely affected in retrograde signaling (Yu et al., 

2007). It`s allele alx13, however, does not have decreased nuclear encoded transcripts of 

photosynthesis genes, indicating that the retrograde signaling is not affected (Woo et al., 

2011). Ntrc is linked to a deficiency in antioxidant activities (Lepistö et al., 2009), because 

ntrc and also it´s rice homologue show hypersensitive responses to abiotic stresses (Serrato 

et al., 2004; Pérez-Ruiz et al., 2006), similar to the ozone-susceptible lcd1 (Overmyer et al., 

2008). Accumulation of ROS leads to chlorosis, restricted to interveinal regions. However, 

superoxide or hydrogen peroxide is not accumulated in ntrc (Lepistö et al., 2009). Lcd1 is 

discussed as being affected in retrograde signaling. The impaired defense responses are 
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interpreted as being secondary (Barth and Conklin, 2003): lcd1 leaves contain more 

apoplast, in which ozone dissolves preferentially into ROS, leading to higher ROS 

concentrations. These increased ROS concentrations in turn attack the decreased number of 

M cells, which are prone to pronounced tissue damage. Ribosome deficient plastids are 

hypothesized to be downregulated in plastid-derived signals, i.e. affected in retrograde 

signaling (Hess et al., 1994).  

 

 

The threshold model of variegated phenotypes 

 The threshold model of photooxidation links the molecular defects to the variegated 

phenotype (Rosso et al., 2009). The model was refined later by the same group (Fu et al., 

2012). The threshold model states that, if IM is present above a threshold, proplastids will 

develop to green chloroplasts, giving rise to green leaf sectors. If IM is below this threshold, 

the plastid will be damaged by photoinhibition and will not develop correctly, giving rise to 

white sectors (Rosso et al., 2006; Rosso et al., 2009). The redoxactive plastid terminal 

oxidase IM is active in carotenoid synthesis primarily in early chloroplast biogenesis. If IM 

lacks, phytoene accumulates due to an overreduction of the PQ-pool (Baerr et al., 2005; 

Rosso et al., 2006). Thus, carotenoids are not synthesized and ROS species are not 

scavenged. The plastids are vulnerable to photooxidation particularly under high-light by 

newly accumulating chlorophyll. In the revised threshold model, above threshold levels of IM 

correspond to below threshold levels in terms of excitation pressure, a means of the 

reduction state of the PQ pool (Fu et al., 2012). Developing chloroplasts are subjected to 

different excitation pressures due to intrinsic differences in their biochemistry, which in turn 

are caused by leaf gradients of light and determinants of light capture and use (Smith et al., 

1997). It is argued that cells in the leaf primordia are exposed to different light regimes by 

shading through neighboring tissues. Superimposed, individual cells in the meristematic 

tissues of the primordia undergo individual circadian rhythms independently from each other 

(Velez-Ramirez et al., 2011; Fu et al., 2012). Outputs of the circadian clock are reflected in 

regulating ROS scavenging, even under the same light regime (Velez-Ramirez et al., 2011). 

If a cell or cell population is below the excitation pressure threshold, it develops green intact 

plastids in its cell lineage, and thus green sectors. If it is above the excitation threshold, the 

early plastids do not develop internal membrane structures, stay white and form white 

sectors as the outcome of the cell lineage. Thus, the chaotic patterning in im is a magnified 

version of different cell patterns already established in early leaf development, such as in the 

primoridia. If grown in low-light, im variegation is alleviated and thus photooxidative pressure 

lowered, giving rise to green tissue (Rédei, 1963; Wetzel et al., 1994; Aluru and Rodermel, 

2004; Rosso et al., 2006; Yu et al., 2007; Rosso et al., 2009). When im is grown under low- 
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light and transferred to high-light, the plants stay green, indicating that the developmental 

stage is crucial for establishing variegation (Rosso et al., 2006; Rosso et al., 2009). At low 

temperatures and relatively high irradiance, leaves became variegated (Rosso et al., 2009). 

Light shift experiments indicate that the excitation pressure is positively correlated with extent 

of variegation in var2, var1, and spotty (Rosso et al., 2009).  

 In analogy to im, a threshold model is proposed for var2 and var1 (Yu et al., 2004, 

2005; Yu et al., 2007). The thylakoid and the light triggered chloroplast development is 

believed to be a cell-autonomous process determined by overall FtsH levels. The 

differentiation of proplastids into chloroplasts only occurs if the two pairs of FtsH-proteins - 

AtFtsH1 and 5 and AtFtsH2 and 8 – oligomerize above a threshold level (Yu et al., 2005; 

Zaltsman et al., 2005; Kato et al., 2007). If a certain FtsH level is not reached, the plastids 

become arrested at later developmental stages, meaning they stay white and create white 

sectors (Kato et al., 2007). These plastids lack the thylakoid structure but show no further 

abnormalities (Chen et al., 2000; Takechi et al., 2000; Sakamoto et al., 2002; Kato et al., 

2007). White sectors are not associated with senescence (Kato et al., 2007) and the sector 

formation was, unlike reported by (Sakamoto et al., 2002), not seen as resulting from 

impaired D1 turnover induced photobleaching (Zaltsman et al., 2005; Kato et al., 2007). 

Photobleaching as a sensitive response to high-light is interpreted as solely characteristic for 

green and not for white tissue of var2 (Kato et al., 2007). Sector boundaries are fixed at full 

expansion in var2, i.e. the variegation pattern is irreversible once developed.  
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Figure 3: Affected pathways in variegated mutants. All molecularly characterized variegated 

mutants are defective in carotenoid biosynthesis, proteins in thylakoid membrane formation, 

replication, and mRNA processing. The var3 mutant is defective in NCED4, i.e. in 2,3-hydroxy-ß-

ionone and 2 ß-ionone synthesis, and thus in ß-carotene degradation. Cla1 mutants are defective in 

the synthesis of the ß-carotene precursor phytoene. IM is indirectly involved as a redox-enzyme in the 

�-carotene synthesis. Var1 and var3, defective in FtsH-subunits, are disturbed in thylakoid biogenesis 

as much as alb3 mutants are. If plastidic mRNA processing is disturbed in pac mutants, leaves are 

variegated. The mitochondrial genome replication mutants osb1 and chm1 are variegated. ABA: 

abscisic acid; alb3: albino 3; chm1: chloroplast mutator1; cla1: cloroplastos alterados; DXP: 1-deoxy-

D-xylulose 5-phosphate synthase; FtsH: filamentation temperature sensitive; nced 4:nine-cis-epoxy 

carotenoid diooxygenase 4; osb1: organellar single strand binding protein 1; pac: pale cress; PDS: 

phytoene desaturase; PS I: photosystem I, PS II: photosystem II, var: variegated. 

 

 

 

How the mesophyll development affects leaf size 

 Reticulated mutants have smaller leaves with prominent leaf teeth (Kinsman and 

Pyke, 1998; Berná et al., 1999; Hung et al., 2004; Van der Graaff et al., 2004; González-

Bayón et al., 2006; Lepistö et al., 2009; Horiguchi et al., 2011; Mollá-Morales et al., 2011; 

Byrne, 2012; Rosar et al., 2012). These indentations are likely due to the disturbed M 

structure in interveinal fields (González-Bayón et al., 2006). The reticulated phenotype is 

established early during development. Re was affected in early stages of leaf primordial 

development but not in the SAM (González-Bayón et al., 2006), and cue1 discussed as 

affected in leaf primordia (Streatfield et al., 1999). The exact time point of leaf morphology 
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establishment was not assessed. Despite epidermal cell size contributes most, M cells also 

contribute to leaf size (Bemis and Torii, 2007; Powell and Lenhard, 2012). The growth of a 

leaf to its final size depends on two successive processes: (i) cell proliferation and (ii) cell 

expansion, with the number of cells and cell size as outcomes, respectively. Both processes 

are differentially regulated by cytokinins and auxins, respectively (Mizukami and Fischer, 

2000; Mizukami, 2001; Anastasiou and Lenhard, 2007; Tsukaya, 2008; Jing et al., 2009). 

Reticulation can be either caused by decreased cell number and/or cell size. Thus, the 

phenotype can be either mediated by impaired cell proliferation or cell expansion. 

 Trp2 plants have smaller M cells but are not decreased in cell number. 

Determination of trp2 growth kinetics reveal that leaf size increased at comparatively late 

stages of early leaf development, consistent with an alteration of cell expansion and/or 

prolongation of cell proliferation (Jing et al., 2009). Conclusively with this finding, trp2 has a 

lower polyploidy level resulting from less endo-reduplication (Jing et al., 2009). Endo-

reduplication and polyploidy levels correlate with plant cell size (Sugimoto-Shirasu and 

Roberts, 2003; Jing et al., 2009). Since cell elongation and proliferation are separately 

controlled processes (Mizukami and Fischer, 2000), trp is growth limiting only during 

elongation process (Jing et al., 2009). A both reduced M cell number and size in ven3 and 6, 

with the exception of ven6-1 being not reduced in cell size (Mollá-Morales et al., 2011), 

indicates a decelerated proliferation and expansion. Dov1 and cia1 have a severely 

decreased M cell number but only marginally lowered cell size (Kinsman and Pyke, 1998; 

Hung et al., 2004). This observation is in line with growth kinetics of dov1, which is affected 

in rather early leaf expansion (Rosar et al., 2012). Thus, we conclude that the affected purine 

and cytokinin metabolism (Rosar et al., 2012) affects dov1 early in development, before cell 

expansion occurs. The slightly reduced M cell size indicates that cell elongation is not 

severely affected, which is line with auxin response activities being at least partially active in 

dov1 (Rosar, Kanonenberg et al. 2012). We propose that the metabolic constraints in cue1 

might be effective very early in development, similar to dov1, because cue1 plants are 

decreased in M cell number but not in size (Streatfield et al., 1999). Ntrc is likely affected in 

early and late leaf development because cell number and size is decreased (Lepistö et al., 

2009). Re plants, strongly lowered in M number but rarely decreased in size (González-

Bayón et al., 2006), might thus be affected in very early events, similar to dov1 but contrarily 

to trp2.  
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Supply and signaling hypothesis 

 A threshold model, as proposed for variegated mutants, seems not to be applicable to 

reticulated mutants. While variegation is patchy and chaotic, reticulation is coordinated and 

evenly distributed, i.e. pale sectors are constrained to interveinal fields with a well 

differentiated vasculature and BS. Thus, it is more likely, that a defect in leaf development is 

established in a certain cell population that develops either into the M, BS or vasculature. 

Two hypotheses have been published to explain the reticulated phenotype: the signaling and 

the supply hypothesis  

 The supply hypothesis states that reticulated mutants are defective in providing the 

plant with metabolites (Streatfield et al., 1999; Rosar et al., 2012). While cue1, trp2, ven3 and 

6 have lowered levels of the respective amino acid, ATase2 mutants are lowered in purine 

levels. Exogenous application of appropriate metabolites reverts the phenotypes. The joint 

interpretation of these results points to a limited supply of metabolites, such as amino acids 

and purines, to the M, which does not develop properly.  

 The signaling hypothesis, first presented by Streatfield et al., 1999, states that 

metabolic signals are generated in BS or vein and/or associated cells. If the signal is 

interrupted, the M will not able to follow leaf growth and will become aberrant (Figure 3). 

Veins and the BS likely differentiate together, since they form during early leaf development 

and differentiate prior to the M because it`s differentiation precludes minor vein formation 

(Pyke et al., 1991; Kinsman and Pyke, 1998; Candela et al., 1999; Hoffmann and Poorter, 

2002). Some reticulated mutants have at least one homologue of which one is expressed 

along the veins. If this gene is defective, such as in in cue1, ven3 and 6, and re, plants 

exhibit a reticulate phenotype (Knappe et al., 2003; González-Bayón et al., 2006; Rosar et 

al., 2012). The nature of the metabolic signal is unknown. As discussed for cue1, aromatic 

amino acids per se might be a signal or derived secondary phenylpropanoid compounds, 

such as dehydrodiconiferyl alcohol glucoside (DCG) (Voll et al., 2003). Amino acids and 

nucleotides have a signaling function (Dennison and Spalding, 2000; Jeter et al., 2004; Joshi 

et al., 2010; Chivasa and Slabas, 2012; Sun et al., 2012). Hormones cannot be excluded as 

signal molecules, despite direct evidence is missing to date. Auxin, derived from trp, is 

possibly involved in vascular differentiation and the adjacent BS (Kinsman and Pyke, 1998). 

Phytohormones, found in the phloem sap, travel through the plant to exert their functions at 

the site of unloading (Komor et al., 1993; Kamboj et al., 1998; Lough and Lucas, 2006). Yet 

unidentified primary or secondary metabolites could act as signaling molecules. Small 

peptides are involved in regulating cell proliferation and organ growth. The knowledge about 

these processes is largely confined to the early leaf development in the SAM (Fukuda and 

Higashiyama, 2011). Proteins, such as the leaf development transcription factor KNOTTED1, 

can move across plasmodesmata (Schobert et al., 2004). Thus, proteins might interfere with 
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M development, and could establish a morphological gradient (Fleming, 2006). The 

biochemical complementation of phenotypes does not preclude a signaling hypothesis. The 

metabolites are thus taken up by the plant, and substitute the missing metabolite and thus 

the signal.  

 Both the signaling and the supply hypothesis are interwoven with the role of the BS 

and/or associated tissue in C3-plants. However, only little is known about this tissue type 

(Leegood, 2008). Reticulated mutants are thus candidates not only for understanding internal 

leaf development but also for deciphering the physiological role of the BS.  

 

 

The emerging role of the bundle sheath in mesophyll development 

 In both the supply and the signaling hypothesis the BS and/or the vasculature plays a 

crucial role. The BS of Arabidopsis is a chlorenchymatic cell layer surrounding the xylem, 

phloem and some adjacent cell such as companion cells. BS cells constitute ca. 15% of 

chloroplast-containing cells in Arabidopsis (Kinsman and Pyke, 1998), are found in BS of 

further dicotyledonous plants (Crookston and Moss, 1970), and are photosynthetically active 

in barley, including dark reactions (Williams et al., 1989; Koroleva et al., 2000; Fryer et al., 

2003). Despite being smaller and occurring in a lower density than M chloroplasts, BS 

chloroplasts have the same ultrastructure as M chloroplasts with a well developed thylakoid 

structure and grana stacking (Kinsman and Pyke, 1998). The BS likely differentiates in a 

position-dependent manner, rather than from a cell lineage since they already form during 

leaf initiation along the xylem and phloem (Kinsman and Pyke, 1998). The BS is involved in 

both loading and unloading of phloem and xylem, and prevents air entering the xylem (Sage, 

2001; Leegood, 2008). Already Haberlandt concluded from the presence of chloroplasts in 

the BS that these cells may have an additional function other than being just an efferent 

tissue and an unimportant addition to the photosynthetic apparatus (Haberlandt, 

1914)(Leegood and Walker, 2003). Due to its central position within the leaf, the BS is prone 

to control the flux of information within a leaf, for example as discussed in the context of light-

dependent acclimation (Kangasjärvi et al., 2009). The BS has been hypothesized to be 

relevant for leaf development (Kinsman and Pyke, 1998; Streatfield et al., 1999; González-

Bayón et al., 2006; Rosar et al., 2012) by generating a signal that triggers M differentiation 

(see above). 

 By now, there is increasing evidence, that metabolism and thus potential signaling 

processes are differentially compartmentalized between different leaf tissues (Bechtold et al., 

2008; Leegood, 2008; Kangasjärvi et al., 2009). The carbohydrate and nitrogen metabolism 

of xylem, phloem, and the BS is different from that of the M (Leegood, 2008). The phloem, 

containing plastids (Schobert et al., 2004), plays an important role in carbohydrate 
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metabolism (Nolte and Koch, 1993). Cells around the vein of C3-plants play a crucial role in 

the synthesis of metabolites associated with carbohydrate metabolism (Janacek et al., 2009). 

The barley BS likely removes assimilates from the M and the apoplast, and thus buffers 

carbohydrates and malate between M cells and phloem (Leegood, 2008). In C3-plants, high 

activities of three decarboxylases, which are also found in the C4-BS, are abundant in vein-

associated tissues (Hibberd and Quick, 2002). Pyruvate orthophosphate dikinase (PPDK) 

has a higher activity in the vasculature of tobacco and celery stems (Hibberd and Quick, 

2002). PPDK converts pyruvate into PEP, which is fed into the shikimate pathway (Hibberd 

and Quick, 2002).  

 Not only is there evidence of a compartmentalized carbohydrate metabolism, also 

amino acid metabolism seems to be compartmentalized. Threonine aldolase2, catalyzing the 

degradation of threonine into glycine, is expressed around the vasculature (Joshi et al., 

2006). The shikimate pathway for aromatic amino acid biosynthesis is more prominent in 

vein associated tissues (Janacek et al., 2009). Enzymes of amino acid biosynthesis are 

expressed along the veins, and if defective, result in a reticulated phenotype: CUE1 (Knappe 

et al., 2003), VEN3 and VEN6 (Potel et al., 2009). Particular amino acid transporters are 

expressed along the veins in Arabidopsis, preferentially in the BS (Kwart et al., 1993; Fischer 

et al., 1995; Rentsch et al., 1996; Hirner et al., 1998). In cucumber, the M and phloem sap 

composition differs during day/night cycle, suggesting that amino acid metabolism is 

occurring in the vast majority within vasculature or cells around it (Mitchell et al., 1992). 

Additionally, the transport metabolites arginine and citrulline occur in different concentrations 

around the veins in curcubits. The nitrogen in the phloem sap mainly consists of amino acids, 

with arginine and glutamine being the most abundant amino acids (Schobert et al., 2004). In 

a recent review it was argued that amino acid composition of the M and phloem differ 

(Turgeon, 2010). Nitrogen assimilation is differently compartmentalized between vascular 

tissue and M in wheat and tobacco during transition from sink to source leaves (Brugière et 

al., 2000; Kichey et al., 2005). It was proposed that glutamine is produced in higher amounts 

in vascular cells (BS, xylem parenchyma, mestome sheath and epidermis) of wheat and 

transported via those cells into the M (Kichey et al., 2005). However, similar amino acid 

compositions of phloem and M sap in spinach, barley, and sugar beet were detected (Riens 

et al., 1991; Winter et al., 1992; Lohaus et al., 1994), indicating that no amino acid 

metabolism between both cell types occurs and that amino acid metabolism is not 

compartmentalized between these cell types. Amino acids may use apoplastic and/or 

symplastic routes for final phloem loading (Schobert et al., 2004), depending on the nitrogen 

availability. The xylem is involved in amino acid uptake (Okumoto et al., 2002).  

 Additionally, the phloem contributes to secondary product biosynthesis (Burlat et al., 

2004), particularly in the plastidic MEP pathway, giving rise to isoprenoids. These cell types 
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are also involved in wound signaling in rice via lignification of the xylem wall (Hilaire et al., 

2001) and via the prosystemin protein in tomato (Hilaire et al., 2001; Narváez-Vásquez and 

Ryan, 2004). Lignin biosynthesis bases on phenylpropanoid metabolism and thus on the 

shikimate pathway (Lewis and Yamamoto, 1990).  

 Similarities in BS and M enzyme distribution between C3-and C4-plants are in 

agreement with a pre-adaption to C4-photosynthesis, in which photosynthesis is 

compartmentalized between M and BS (Christin et al., 2010; Langdale, 2011; Sage et al., 

2011). Carbon is fixed into a C4-acid in the RuBisCo lacking M, and decarboxylated in the 

BS. The released CO2 is consumed in the Calvin-Benson cycle. The sulfate metabolism, 

predominantly occurring in the C4-BS, is also predominant in the C3-BS (Leegood, 2008). 

Light dependent acclimation processes in C3-plants, mainly mediated by ROS as central 

players, are likely compartmentalized between M and BS. The BS plays a pivotal role in 

generating ROS signals that are involved in plant development. These topics are reviewed 

elsewhere (Kangasjärvi et al., 2009). ABA, whose plastidic and cytosolic synthesis is 

concentrated in the vasculature parenchyma cells (Cheng et al., 2002; Koiwai et al., 2004; 

Christmann et al., 2005; Nambara and Marion-Poll, 2005; Kanno et al., 2012), is involved in 

BS specific ROS signaling (Galvez-Valdivieso et al., 2009). ABA transporters are found in the 

vasculature (Kanno et al., 2012). ABA is a key player in initiating a redox-retrograde signal 

from BSC chloroplasts to activate APX2 expression (Ascorbate peroxidase2) (Galvez-

Valdivieso et al., 2009). APX2 is expressed specifically and ascorbate synthesis initiated in 

the BS (Fryer et al., 2003; Mullineaux et al., 2006). Arabidopsis BS cells differ from 

neighboring cells in hydrogen peroxide and antioxidant metabolism. Thus, hydrogen peroxide 

from BS cell chloroplasts may be part of wider signaling network (Fryer et al., 2003; 

Kangasjärvi et al., 2009). However, ABA signaling in veins was observed under high-light 

conditions and not under physiological conditions. Consequently, an involvement of ROS 

signaling in the sense of the signaling hypothesis is at least less unlikely. The ATase2 allele 

alx13 was found in screen for mutations that alter regulation of the high-light inducible APX2 

gene.  

 In summary, we conclude that the variegated phenotype originates from a disturbed 

chloroplast biogenesis per se and starts very early during leaf development already in the 

SAM or primordia formation. A defect in plastid development in certain cells/tissues thus is 

magnified on the adult leaves by patchy white/green leaves. The reticulated phenotype, in 

contrast, is either caused early in development or later during leaf initiation by being specific 

to a genetically inherited trait in certain cell types. We think that the inhibition of amino acid 

and/or purine biosynthesis around the veins is causal for the reticulated phenotype. If the 

signaling or supply hypothesis is more likely, has to be tested. The signaling hypothesis 

assumes that the intact BS chloroplasts generate a metabolic signal that triggers M 
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differentiation. If BS chloroplasts are, however, rendered specifically unfunctional by 

respressing the BS-chloroplast chlorophyll biosynthesis, the M still develops normally. This 

observation, at least, makes the signaling hypothesis less likely To deepen the 

understanding of the BS`s role in C3-plants, tissue specific profiling techniques, such as laser 

microdissection (LMD) (Asano et al., 2002; Kehr, 2003; Kerk et al., 2003; Nakazono et al., 

2003; Inada and Wildermuth, 2005; Galbraith and Birnbaum, 2006; Wuest et al., 2010; 

Schmid et al., 2012) will be of importance. 

 

 

Figure 3: Signaling and supply hypothesis. The schematic cross-sections show the central 

vasculature, the bundle sheath (BS), and the mesophyll (M). (A) The signaling hypothesis states that a 

metabolic signal is generated in the vasculature/and or the BS. This signal triggers differentiation of 

the M. If the signal is disturbed, as hypothesized for the reticulated mutants, the M does not develop 

correctly and becomes aberrant with smaller and/or less cells. (B) The supply hypothesis states that 

metabolites transported through the vasculature are shuffled to the developing M in young plants. If 

the supply with metabolites is disturbed, the M becomes aberrant. 
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Table 1. Reticulated and variegated mutants. Table 1 is split and shown on the next five pages. 

A.t.: Arabidopsis thaliana; Z.m.: Zea mays; N.t. Nicotiana tabacum; B.: Begonia; S.l.: Solanum 

lycopersicum, A.m.: Anthirrrhinum majus; O.s.: Oryza sativa; H.a.: Helianthus annus. M: mesophyll; 

BS: bundle sheath; E: epidermis; P: palisade parenchyma; EM: electron microscopy; WT: wild-type; ?: 

either no information was found or the information was not established; Database (Kuromori et al., 

2006): /http://rarge.psc.riken.jp/phenome; database (Yamaguchi et al., 2012) 

:http://rarge.psc.riken.jp/chloroplast.  
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Supplemental Data 

 

 
Supplemental Figure 1: Chlorophyll content of En-2 and dov1. n = 4. (A) Chlorophyll a and 

Chlorophyll b concentration (B) Chlorophyll a/b-ratio.  

 

 

 
Supplemental Figure 2: Cross-taxa alignment of Atases. The last row represents to consensus 

sequence.  
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Supplemental Figure 3: Absolute values of tissue specific expression patterns of ATase1, ATase2, 

and ATase3. Data taken from the Arabidopsis eFP browser (Winter et al., 2007). The error bars 

represent S.D. 

 

 

 
Supplemental Figure 4: Absolute values of cell type specific expression patterns of ATase1 

(At2g16570), ATase2 (At4g34740), ATase3 (At4g38880), VEN3 (At1g29900), VEN6 (At3g27740), RE 

(At2g37860), CUE1 (At5g33320), and CUE2 (At3g01550). Data taken from the cell type specific 

Arabidopsis eFP browser (Mustroph et al., 2009).  
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Supplemental Table 1: Total leaf area and simultaneously measured Fv/Fm of En-2 and dov1 plants. 

Plants were monitored for 9 days, beginning at 21 days post germination (21 d.p.g.). Errors are 

indicated as S.E.; n � 15; N.D.: data points were not determined. p-values are shown. 

 Leaf area Fv/Fm 

En-2 dov1  En-2 dov1  

d.p.g. Average ± S.E Average ± S.E p-value Average ± S.E Average ± S.E p-value 

21 0.91 0.07 0.36 0.03 <0.0001 0.76 0.00 0.52 0.01 <0.0001 
22 1.23 0.03 0.41 0.10 <0.0001 0.76 0.00 0.49 0.03 <0.0001 
23 1.51 0.11 0.48 0.04 <0.0001 0.76 0.00 0.49 0.01 <0.0001 

24 2.15 0.13 0.58 0.05 <0.0001 0.76 0.00 0.50 0.01 <0.0001 
25 2.73 0.18 0.74 0.06 <0.0001 0.76 0.00 0.50 0.01 <0.0001 
26 N.D. N.D. N.D N.D. N.D. N.D. N.D. N.D N.D. N.D. 

27 4.6 0.29 1.12 0.07 <0.0001 0.77 0.00 0.51 0.01 <0.0001 
28 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 
29 7.4 0.46 1.73 0.11 <0.0001 0.77 0.00 0.59 0.02 <0.0001 

 

 

Supplemental Table 2: Relative growth rate (RGR) of plants. RGRs were calculated between two 

subsequent observation points. p-values are shown. 

 Relative Growth Rate (RGR) 

En-2 dov1  

d.p.g. Average ± S.E. Average ± S.E p-value 
21 to 22 38.04 9.16 17.14 2.60 0.0150 
22 to 23 16.13 6.80 11.02 1.91 0.04105 

23 to 24 28.80 3.64 18.44 1.59 0.0075 
24 to 25 32.70 5.89 26.54 5.57 0.4632 
25 to 27 25.86 0.93 18.89 0.97 < 0.0001 

27 to 29 21.54 4.73 15.21 5.53 0.3948 
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Supplemental Table 3: Markers used for mapping of dov1. L.A.: Lower Arm; U.A.: Upper Arm; Chr.: 

Chromosome, M: Marker 
Quality of 
PCR- 
products 

Name of marker Sequence of primers (5´- primer - 3´) location Product size [bp] 

Col-0 En-2 

no amplifi-
cation of 
products 

M1 – LUGSSLP647 CCTTTGAGAGTGAAAACTGAAACG Chr. 1 – 
L.A. 

128 - 

CAATTTGACCAAACTATTTATTTACACAATTA 

M11 –  
CIW11 

CCCCGAGTTGAGGTATT Chr. 3 –  
U.A. 

- - 

GAAGAAATTCCTAAAGCATTC 

M14 –  
CIW5 

AGATTTACGTGGAAGCAAT Chr. 4 – 
U.A. 

- - 

CACCGCCACCATACGAGCAT 

M18 –  
F5O24(A) 

CGCCGTTTCCGTAACAAGC Chr.5 –  
U.A. 

- - 

TGACCGCCACCAGTATCGC 

suitable 
markers 

M6 –  
LUGSSLP712 

TTTTCAATGTTGTCTAAGGACGCT Chr.2 – 
L.A. 

160 160 

CAGGAACGTATAACCTGAGTATAATAAAACT 

M7 –  
LUGSSLP41 

TGCATCAGTTTTGGTTGTGTGATCT Chr. 2 – 
U.A. 

210 210 

GCTGTATTTTCCATAGGGGGCA 

M13 –  
TGSSLP2 

GGGAGATTAAAGAAGCCTTTGC Chr. 4 –  
L.A. 

1300 1300 

GTGCGGTTAACTGTTCGGTTACC 

M15 –  
CER456385 

CACCGCCACCATACGAGCAT Chr. 5 –  
L.A. 

210 210 

TTCTGGCGGAGGATACTTCTTGAA  

M16 –  
LUGSSLP861 

TGGTAAGCACATGCGGCGTGAT Chr. 5 –  
L.A 

210 210 

AGCTTTGGGTTTCTCTTAGATTTACT 

M20 –  
NPR1 

GTTGATGTACATAAATATATATTACAAATC Chr. 20 – 
L.A. 

600 600 

CCGGGTGTAAAGATAGCACCTT 

M21 –  
on BAC F4C21 

TGACGATGGAGATTGCTCTG Chr. 4 –  
U.A. 

379 379 

AGTGGCTCATCGTTCGAGAT 

M22 –  
on BAC F7D11 

TTGGAGAACTATACCGCATCG Chr. 2 – 
U.A.  

393 393 

GCACAAAATAGTTTTATTCTGATTGG 

M23 –  
on BAC F4C21 

TGACGATGGAGATTGCTCTG Chr. 4 –  
U.A. 

379 379 

AGTGGCTCATCGTTCGAGAT 

M24 –  
on BAC T5L23 

CGTCACAAAGCTGCCTACAA Chr. 4 –  
U.A: 

396 396 

CATCGGGTTTAATTGGTTGG 

M25 –  
on BAC F24B18 

TTCAGGATTTCGAGGTAGCC Chr. 5 –  
L.A. 

215 215 

AGCAGACAGCTGCAATTTCC 

M26 –  
on BAC MYN8 

GGATTTTCCTTGCAAGTCGT Chr. 5 – 
L.A. 

240 240 

TGAAATTTGCAAGGTGTTTCT 

M27 –  
on BAC F15A18 

CGAAACTGGTTCGGTCTTTC Chr. 5 –  
U.A. 

184 184 

CGCTTGAAGGTGAGGAAGAA 

M30 –  
CIW5 

GGTTAAAAATTAGGGTTACGA Chr. 4 – 
U.A. 

164 - 

AGATTTACGTGGAAGCAAT 

M31 –  
JV30/31 

CATTAAAATCACCGCCAAAAA Chr. 4 – 
U.A. 

194 - 

TTTTGTTACATCGAACCACACA 

M35 – 
CIW15 

TCCAAAGCTAAATCGCTAT Chr. 5 – 
U.A. 

177 177 

CTCCGTCTATTCAAGATGC 

M2 – 
NGA280 

GGCTCCATAAAAAGTGCACC Chr. 1 – 
L.A. 

110 90 

CTGATCTCACGGACAATAGTGC 

M3 – 
F22O13A 

GCCGGCCGCTCCTCCAT Chr.1 – 
U.A. 

>300 210 

GCGTTCCCAAATTGTTATCTCCAT 

M4 – 
LUGSSLP809 

TGTGTCGTCCATGCTTCACTCT Chr.1 – 
U.A. 

130 135 

CCGAGGAATGAATTTATTTATGGTACTT 

M5 – 
NGA168 

GAGGACATGTATAGGAGCCTCG Chr.2 – 
L.A. 

160 140 

TCGTCTACTGCACTGCCG 

M8- 
CIW21 

TGATTTTGAAGAGTTGAAACC Chr.3 – 
L.A. 

220 >300 

TTGAGCAAAGACACTACTGAA 

M9- 
T16K5-TGF 

TTGTCGAAATAAAAATTGACCGTTA Chr.3 – 
L.A. 

190 150 

TGGATGTGGATTCTATTGTTTCTCA 

M10 – 
NGA162 

CTCTGTCACTCTTTTCCTCTGG Chr.3 – 
U.A. 

110 90 

CATGCAATTTGCATCTGAGG 

M12 – 
LUGSSLP841 

TGATTAAGGATTCTAACTACATTGGGA Chr. 4 – 
L.A. 

210 160 

GGCTCATCTTGATTATATCTACACACATAAG 

M17 – 
CIW14 

CATGATCCATCGTCTTAGT Chr. 5 – 
U.A. 

190 180 

AATATCGCTTGTTTTTGC 

M19 – 
LT5 

AGATGCAACAATAAGATGTTGAGG Chr. 4 – 
L.A. 

550 500 

GAGATCTGCGATGGTGAAATTG 

M28 – 
CIW2 

CCCAAAAGTTAATTATACTGT Chr. 2 – 
U.A. 

105 90 

CCGGGTTAATAATAAATGT 

M29  GCACATACCCACAACCAGAA Chr. 2 – 
U.A. 

213 smaller 

CCTTCACATCCAAAACCCAC 

M32 – 
CIW9 

CAGACGTATCAAATGACAAATG Chr. 5 – 
L.A. 

165 145 

GACTACTGCTCAAACTATTCGG 

M33 – 
CIW10 

CCACATTTTCCTTCTTTCATA Chr. 5 – 
L.A. 

140 larger 

CAACATTTAGCAAATCAACTT 

M34 – 
U.A. 

CAGTCTAAAAGCGAGAGTATGATG Chr. 5 – 
U.A. 

150 120 

GTTTTGGGAAGTTTTGCTGG 

M45 CGACGAATCGACAGAATTAGG  150 140 

GCGAAAAAACAAAAAAATCCA 

M47 TTAAAAGACAAACACTGCACGA    

CCGGTCGATCTGGTTAGAG 
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Supplemental Table 4: Relative steady state metabolite levels of seven week old rosettes of En-2 

and dov1 before budding and flowering. Plants were grown under 12h/12h light/dark cycle at 100 

μE/m
2
/s. Samples were taken in the middle of the light period. S.E. is shown. n (En-2) = 8, n (dov1) = 

7. p-values are shown. Asterisks (*) indicate the significance level. 

Metabolite 
En-2 dov1 

p-value 
Significanc

e level Average ± S.E. Average ± S.E. 

�-Alanine 9.977 0.448 25.234 6.392 0.0239 * 
Leucine 0.398 0.082 0.849 0.416 0.2764 ns 
Valine 1.022 0.159 1.890 0.572 0.1225 ns 

Glutamate 13.753 2.980 34.508 11.820 0.0930 ns 
Proline 0.775 0.175 8.885 1.515 <0.0001 *** 
Aspartate 5.861 0.479 24.010 8.747 0.0443 * 
Asparagine 2.568 0.362 54.813 21.260 0.0203 * 

Isoleucine 0.505 0.127 0.865 0.333 0.3066 ns 
Lysine 0.107 0.026 0.735 0.266 0.0256 * 
Methionine 0.154 0.066 0.486 0.208 0.1319 ns 

Phenylalanine 0.465 0.085 0.901 0.381 0.2861 ns 
Glycine 3.128 0.546 7.323 1.840 0.0373 * 
Serine 12.835 1.909 34.560 11.45 0.0666 ns 

�-Alanine 0.049 0.017 0.076 0.018 0.3104 ns 
Ornithine 0.055 0.011 0.951 0.355 0.0179 * 
(Iso)-Citric Acid 14.164 1.539 42.364 16.120 0.0843 ns 

Shikimate 0.941 0.300 1.080 0.310 0.7535 ns 
Glucose 3.993 0.715 9.379 2.808 0.0695 ns 
Fructose 1.230 0.260 3.247 1.545 0.1915 ns 

Mannose 0.068 0.044 0.025 0.013 0.3847 ns 
Xylose 0.108 0.041 0.063 0.039 0.4410 ns 
Sorbitole 0.447 0.196 0.597 0.478 0.7543 ns 

Myoinositol 12.448 0.733 12.790 4.063 0.9315 ns 
Maltose 0.584 0.161 0.376 0.107 0.3167 ns 
Sucrose 76.534 1.923 159.660 43.530 0.0611 ns 

Raffinose 0.484 0.126 1.706 0.865 0.1582 ns 
Lactate 2.903 0.6397 8.564 3.675 0.1285 ns 
Succinic Acid 0.724 0.074 0.724 0.232 0.9973 ns 

Fumaric Acid 26.672 3.566 24.753 10.470 0.8574 ns 
Glycerole 1.978 0.318 4.167 1.180 0.0788 ns 
Glyceric Acid 1.375 0.189 2.228 0.666 0.2134 ns 

Glycolic acid 1.050 0.286 1.437 0.433 0.4606 ns 
Maleic Acid 0.473 0.039 0.857 0.2496 0.1478 ns 
Malic Acid 12.085 0.435 28.997 8.834 0.0606 ns 

Malonic acid 0.004 0.002 0.004 0.002 0.9738 ns 
Gluconic Acid 0.113 0.037 0.098 0.044 0.7963 ns 
Oxalate 3.923 0.627 9.662 3.926 0.1463 ns 

GABA 0.075 0.024 0.033 0.009 0.1390 ns 
Hydroxybutyric Acid 0.255 0.139 0.131 0.04399 0.4382 ns 
Phosphoric Acid 0.376 0.041 4.915 1.880 0.0222 * 
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Supplemental Table 5: Steady state cytokinin contents of seven week old rosettes of En-2 and dov1 

before flowering. Plants were grown under 12h/12h light/dark cycle at 100 μE/m
2
/s. Samples were 

taken in the middle of the light period. S.E. is shown. n (En-2) = 5, n (dov1) = 5. Abbreviations used 

can be found in (Novak et al., 2008). tZ = trans-zeatin; cZ: cis-zeatin; iP: N6-(�
2
-isopently)adenine; 

DHZ: dihydrozeatin; R: riboside; OG: O-glucoside; 7G: 7-glucoside; 9G: 9-glucoside; 5`MP: 5`-

monophosphate 

Cytokinin 
En-2 [pmol/g] dov1 [pmol/g] 

p-value 
Significance 

level Average ± S.E. Average ± S.E. 

tZ 1.62 0.08 4.65 0.60 0.001 ** 
tZOG 1.07 0.08 0.98 0.01 0.52 ns 
tZR 0.72 0.08 1.22 0.09 0.0033 ** 

tZROG 0.90 0.12 1.27 0.07 0.0308 * 
tZ7G 221.53 18.62 143.32 8.88 0.0053 ** 
tZ9G 25.20 0.47 15.38 0.94 <0.0001 ns 

tZR5`MP 4.63 0.70 1.99 0.25 0.0066 ** 

Total trans cytokinins 255.67 18.90 168.81 9.82 0.0035 ** 

cZ 0.23 0.03 0.24 0.03 0.8122 ns 
cZOG 0.27 0.02 0.26 0.02 0.7215 ns 
cZR 0.05 0.01 0.06 0.01 0.2687 ns 

cZROG 0.88 0.07 1.56 0.07 0.0001 * 
cZ9G 0.13 0.01 0.12 0.02 0.7983 ns 
cZR5`MP 0.86 0.06 0.52 0.05 0.0027 ** 

Total cis cytokinins 2.42 0.08 2.76 0.14 0.0759 * 

DHZ7G 
DHZ9G 

15.80 
0.13 

2.48 14.11 
0.19 

1.48 0.5752 ns 
ns 0.02 0.03 0.1148 

Total dehydro cytokinins 15.93 2.48 14.30 1.50 0.5914 ns 

iP   0.11 0.01 0.08 0.08 0.0841 ns 
iPR 0.11 0.02 0.21 0.03 0.0182 * 

iP7G 57.42 6.53 71.02 4.47 0.1237 ns 
iP9G 0.92 0.05 1.30 0.07 0.0026 ** 
iPR5`MP 5.05 0.16 4.96 0.40 0.8380 ns 

Total isopentyl 
cytokinins 

63.61 6.52 77.57 4.70 0.1213 ns 

Total cytokinins 337.63 26.01 263.44 14.00 0.0363 * 
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Abstract 

A series of reticulated mutants with green veins on a pale leaf lamina has been 

described. These mutants are disturbed in mesophyll (M) architecture and are models for 

investigating leaf development. All but one of these mutants is deregulated in amino acid 

metabolism and two mutants showed altered phytohormone patterns. The hallmark mutant 

cue1 is defective in the plastidic import of phosphoenolpyruvate (PEP), a substrate for 

aromatic amino acids. Cue1 is discussed as being defective either in the supply with 

aromatic amino acids or metabolic signals that mediate M development. These alternatives 

gave rise to the supply and the signaling hypotheses, respectively. A second mutant, re, has 

been known for more than fifty years but the function of it`s gene products remains elusive. 

In this study, we compare re and cue1 with regard to both hypotheses. Transcriptional 

profiling, phytohormone determination and activity tests reinforced the hypothesis that cue1 

is more likely defective in signaling events because phytohormone genes and levels are 

deregulated. Re, however, shows a balanced homeostasis on the transcriptional level and on 

the phytohormone level. Metabolite analysis revealed that re is severely affected in amino 

acid homeostasis and lysine (lys) feeding reverted the phenotype. This indicates, that re is 

probably not due to signaling events, rendering a supply phenotype at least more likely. A 

role of amino acids as being essential in M development is discussed.  
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Introduction 

 The development and growth of the leaf is dependent upon a complex interplay of 

various metabolic and signaling processes integrating external and internal stimuli (Byrne, 

2005; Tsukaya, 2006; Tsukaya, 2008; Byrne, 2012). Amino acids, plant hormones and other 

molecules are involved in determining leaf size, shape and architecture (Bartlem et al., 2000; 

Mattsson et al., 2003; Ruuhola et al., 2003; Dimitrov and Zucker, 2006; De Smet and 

Jürgens, 2007; Muralla et al., 2007; Jing et al., 2009). Leaf development depends on 

processes governing overall leaf shape and processes establishing the inner leaf 

architecture (Rosar et al., 2012). Leaf reticulate mutants belong to the latter group, because 

they have less and/or smaller mesophyll (M) cells but an intact vasculature and bundle 

sheath (BS) (Kinsman and Pyke, 1998; Streatfield et al., 1999; González-Bayón et al., 2006; 

Jing et al., 2009; Rosar et al., 2012).  

 Various reticulated mutants have been described: reticulata (re) (Rédei and Hironyo, 

1964; González-Bayón et al., 2006), chlorophyll a/b binding protein (CAB) gene 

underexpressed1 (cue1) (Li et al., 1995; Streatfield et al., 1999; Voll et al., 2003), venosa 3 

and 6 (Mollá-Morales et al., 2011), tryptophan2 (trp2) (Last et al., 1991; Barczak et al., 1995; 

Jing et al., 2009), NADPH-thioredoxin reductase (ntrc) (Lepistö et al., 2009), and differential 

development of vasculature associated cells1 (dov1) (Kinsman and Pyke, 1998).  

 While cue1, ven3, ven6, trp2 are defective in plastid amino acid biosynthesis, dov1 

(differential development of vasculature associated cells1) is disturbed in the de novo purine 

biosynthesis and is affected in phytohormone levels and responses (Rosar et al., 2012). 

Cue1 is deficient in the plastidic import of phosphoenolpyruvate (PEP) (Streatfield et al., 

1999), a precursor of aromatic amino acid biosynthesis in the shikimic acid pathway (Schmid 

and Amrhein, 1995; Fischer et al., 1997; Knappe et al., 2003; Voll et al., 2003; Tzin and 

Galili, 2010). Cue1, with high aromatic amino acid level on a relative scale (Streatfield et al., 

1999), has a massively decreased phenylalanine concentration (Voll et al., 2003). Secondary 

phenylpropanoid compounds such as flavonoids, anthocyanins, hydroxycinnamic acids and 

simple phenolics are decreased (Streatfield et al., 1999; Voll et al., 2003). The cue1 

phenotype was reverted by application of all three aromatic amino acids at once (Streatfield 

et al., 1999). The authors concluded that the cue1 phenotype is due to a limited supply with 

aromatic amino acids or thereof derived metabolites (Streatfield et al., 1999; Voll et al., 

2003). They further hypothesized, that a chloroplast-derived signal, that is dependent on 



Manuscript 3 

�

90 

PEP or it`s derived products, causes M differentiation and, if disrupted, leads to the 

reticulated phenotype (Streatfield et al., 1999). The signal could be generated in the BS/vein, 

since this tissue is well differentiated, and CUE1 likely exerts it`s function along the veins 

(Streatfield et al., 1999; Knappe et al., 2003; Rosar et al., 2012). This interpretation 

represents the signaling hypothesis of reticulation. Ven3 and ven6, defective in the small and 

large carbamoylphosphate synthase subunit, respectively, are hampered in arginine (arg) 

biosynthesis (Mollá-Morales et al., 2011). Feeding of citrulline and arg reverted the 

phenotype (Mollá-Morales et al., 2011). The authors concluded that the supply of amino 

acids limits M development, and causes a growth retardation and leaf reticulation. This 

interpretation represents the supply hypothesis. Trp2, deficient in plastidic tryptophan (trp) 

synthesis, has reduced trp levels (Barczak et al., 1995; Radwanski et al., 1996; Ouyang et 

al., 2000; Jing et al., 2009). Trp supplementation rescued the phenotype resulting in normal 

M development, making the authors argue that the lack of trp is responsible for the 

phenotype (Jing et al., 2009). Much like cue1, trp2, ven3 and ven6, ntrc is debalanced in 

amino acid metabolism. Ntrc is defective in the plastidic NADPH-thioredoxin reductase, a 

redox-active thioredoxin, regulating amongst others the shikimate pathway, enzymes of the 

aromatic amino acid biosynthesis and the trp synthase (Serrato et al., 2004; Lepistö et al., 

2009). In ntrc plants the aromatic amino acid pool is increased and feeding of aromatic 

amino acids restores the phenotype (Lepistö et al., 2009). Auxin and cytokinin levels are 

decreased in ntrc (Lepistö et al., 2009), while auxin levels are increased in trp2 (Jing et al., 

2009).  

Re, first described more than fifty years ago (Rédei and Hironyo, 1964), has been 

used as a morphological marker (González-Bayón et al., 2006). Nine alleles of re are known: 

re-1 to re-7 (González-Bayón et al., 2006), re-8 (Overmyer et al., 2008) and lower cell 

density1-1 (lcd1-1) (Barth and Conklin, 2003; González-Bayón et al., 2006). Although 

molecularly cloned (González-Bayón et al., 2006), the function of the protein has not been 

established. Re mutants were studied with regard to their morphology, photosynthetic 

performance and ROS-signaling (Barth and Conklin, 2003; González-Bayón et al., 2006; 

Overmyer et al., 2008). While the number of spongy and particularly palisade M cells is 

reduced without significant loss of cell size, vasculature and the BS is fully developed 

(González-Bayón et al., 2006). The number of chloroplasts per M cell and plastid morphology 

is not affected (Barth and Conklin, 2003; González-Bayón et al., 2006). The phenotype is 

restricted to cotyledons and leaves (Barth and Conklin, 2003; González-Bayón et al., 2006).  

Taken together, cue1, trp2, ven3, ven6, and ntrc show a deregulated amino acid 

metabolism. Furthermore, dov1, ntrc and trp2 are affected in phytohormone levels (Jing et 

al., 2009; Lepistö et al., 2009; Rosar et al., 2012). In this study, we compare re and cue1 in 

order to shed light on the supply and signaling hypothesis.  
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Results 

 

Genetic complementation of re, phylogeny, and plastid localization of RE  

Although the defective gene was cloned (González-Bayón et al., 2006), re has not 

been genetically complemented with the wild-type gene. Complementation is important 

because the gene is present in two splice isoforms (Swarbreck et al. 2009; Supplemental 

Figure 1). The fifth exon contains a facultative STOP codon at it`s end, giving rise to two 

alternative proteins: RElong (423 amino acids (AAs)) and REshort (347 AAs) including the 

chloroplast transit peptide (cTP). RElong is predicted to have two to six, and REshort two to four 

transmembrane (TM) helices, depending on the algorithms (http://aramemnon.uni-koeln.de; 

Schwacke et al., 2003). The cTP is predicted to consist of 47 AAs (Chloro P1.1; 

(Emanuelsson et al., 2000). 

PCR analysis showed that both splice isoforms are found in planta (Supplemental 

Figure 1 B, C). Thus, to assess which of the these is of functional relevance, re-6 was 

transformed by stably introducing RE-gDNA (35S::RE), and the cDNA based constructs 

35S::RElong and 35S::REshort, each under the control of the 35S promoter. While 35S::RE and 

35S::RElong complemented the mutant to be visually indistinguishable from wild-type, re-6 

was transformed with 35S::REshort remained reticulated (Figure 1). Expressing RElong without 

the predicted cTP (35S::RElong,�cTP) in re-6 did not revert the phenotype (data not shown), 

indicating that the cTP is essential for RE`s function. RE overexpressor lines in the col-0 

background (35S::RE; OX) showed wild-type like appearance (Figure 1) and contained 

higher transcript levels than wild-type (Supplemental Figure 2). 

RE is specific to the green lineage of plants (González-Bayón et al., 2006) and 

belongs to a family in Arabidopsis with seven additional members (Supplemental Figure 3, 

Supplemental Table 1), all containing the domain of unknown function (DUF) 3411. 

Phylogenetic analysis demonstrates that the RE family of proteins is divided into three 

branches. Dicots, monocots and one green alga have family members on all three branches, 

while moss and fern species have members on only two branches. 
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Figure 1: Wild-type, re-6, transformed plants and genotyping. Figure 1-1 (A-E). Rosettes of col-0, re-

6, transformed re-6 and OX-plants. Plants are eight weeks old. Scale bar indicates 1.0 cm. (A) col-0. 

(B) re-6. (C) re-6 with 35S::RE. (D) re-6 with 35S::RElong. (E) col-0 with 35S::RE (OX). Figure 1-2 (G-

M). PCR-confirmation of complemented re-6 and overexpressor col-0 pants. PCRs were performed on 

gDNA. (F) col-0. (G) re-6. (H) re-6 with 35S::RE. (I) re-6 with 35S::RElong. (K) col-0 with 35S::RE (OX). 

Figure 1-3 (L-P). PCR-confirmation of genetically complemented re-6 and overexpressor col-0 pants. 

PCRs were performed on cDNA. (L) col-0. (M) re-6. (N) re-6 with 35S::RE. (O) re-6 with 35S::RElong. 

(P) col-0 with 35S::RE (OX). Asterisks indicate band. L: DNA ladder in kbp; 1: Actin control 

(CR39/CR40). 2: Hygromycin control (CR 43/CR37). 3: RE (Start to STOP, CR 161/162). 4: 5
th
 exon 

to NOS-terminator in pmDC32 vector (CR48/CR49). 5: T-DNA insertion of re-6 (CR53/CR52). 6: col-0 

background (CR51/CR52). 7: non binding primers (CR51/CR53). 

 

 

 

RE was proposed to be plastid localized as it`s sequence contains a putative cTP 

(González-Bayón et al., 2006). RE was found in the plastid envelope fraction in proteomic 

analyses (Zybailov et al., 2008; Bräutigam and Weber, 2009; Ferro et al., 2010), but this to 

date has not been verified in planta. Hence, we transiently expressed RE (35S::RE::GFP) 

and RElong (35S::RElong::GFP), each C-terminally fused to GFP, in tobacco, confirming 

localization to the plastid envelope (Figure 2). The cTP fused to a GFP under control of the 

35S-promoter (35S::TPRE::GFP), localized to the plastid envelope. When the cTP was 

omitted, the GFP-tagged protein (ub10::�cTP::RE) showed a cytosolic and the empty vector 

control (ub10::GFP) an accumulation of the GFP-protein within the epidermal cytoplasma 

(Figure 2).  
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Figure 2. Transiently expressed RE-protein in tobacco localized to the chloroplast envelope of M cells. 

GFP-fluorescence, chlorophyll autofluorescence, and the merge is shown in the upper, middle and 

lower panels, respectively. (A) UB10::RE::GFP, (B) UB10::RElong::GFP, and (C) 35S::cTP::GFP 

localize to the chloroplast envelope. (D) UB10::RE�cTP::GFP localizes to the cytosol. (E) The empty 

vector control (UB10::GFP) shows clumpy GFP accumulation. Scale bar: 10 �m. Arrow heads indicate 

plastidic (A-D) and cytosolic localization (E).  

 

 

Plant growth rates and photosynthetic performance 

 Leaves of cue1 and re are decreased in leaf area compared to wild-type, with re 

being slightly (González-Bayón et al., 2006) and cue1 being much smaller (Li et al., 1995). 

The penetrance of the cue1 and re leaf phenotype is dependent on growth and light 

conditions (Streatfield et al., 1999; González-Bayón et al., 2006). While lcd1 was not affected 

in photosynthetic performance (Barth and Conklin, 2003), cue1, was severely lowered in 

photosystem II (PSII) capacity (Streatfield et al., 1999; this study). To investigate the growth 

dynamics and photosynthetic performance, plant rosettes were investigated by simultaneous 

non-destructive growth and photosynthetic performance measurements under controlled 

conditions for ten days. Photosynthetic capacity was determined as the ratio of variable 

fluorescence to maximum fluorescence (Fv/Fm), reflecting PSII activity. To assess whether a 

change was obtained from data point to data point, the relative growth rate (RGR) was 

determined (Hoffmann and Poorter, 2002; Jansen et al., 2009). We started at the earliest day 

possible, i.e. 21 days post germination (dpg), due to resolution constraints regarding the very 

small size of cue1 plants (Figure 3A, Supplemental Table 2). Along the observation period, 

col-0 increased most in total leaf area, followed by re-6, which was significantly smaller than 

col-0, except to 21 dpg. Cue1 was already smaller than col-0 at 21 dpg and stayed much 

smaller than col-0 and re-6 over the whole observation period. The cue1 leaf area increased 

by the factor 2.9 from 21 dpg to 30 dpg. In the same time period the col-0 and re-6 leaf area 
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increased 13.07 and 11.89 times, respectively (Figure 3A, Supplemental Table 2). At the first 

observation points the difference in leaf area of re-6 and col-0 was not as big as at the end of 

the monitoring period. While the RGR of re-6 significantly exceeded that of col-0 at three 

observation points, i.e. from 22 to 23 dpg, from 24 to 25 dpg, and from 27 to 28 dpg the RGR 

of cue1 was at wild-type level at all time points (Figure 3B, Supplemental Table 3). 

Fv/Fm of col-0 and re-6 stayed at a constant level of about 0.78 over the whole 

observation period (Figure 3C, Supplemental Table 4), with re-6 slightly exceeding  col-0 at 

the first four time points. The photosynthetic capacity of cue1 was decreased during the 

recording period and stayed at a fairly constant level around 0.65, thus was decreased by ca. 

17% compared to wild-type.  

 Neither did the photosynthetic performance of re-6 nor cue1 vary over time nor with 

plant age. Within a rosette, all re-6 leaves had a potential photosynthetic performance across 

different leaf ages of the plant rosette comparable to wild-type as indicated by the close to 

red color of the Fv/Fm false color image (Figure 3D). All leaves were reticulated at 

approximately the same level. The lowered chlorophyll amounts in re-6 were not reflected in 

the photosynthetic capacity (Figure 10). The ratios of Chl a to Chl b in re-6 and cue1 were at 

wild-type level (Supplemental Figure 4), indicating that the stoichiometry of PSII to PSI was 

not altered (Ort, 1986).  

 

Figure 3: Growth kinetics and photosynthetic activity of col-0, re-6 and cue1 plants. (A) Total leaf area 

of col-0, re-6 and cue1 plants from 21 to 30 days post germination (dpg). (B) Relative growth rate 

(RGR) along 10 days of observation. RGR refers to two subsequent monitoring points. Upper row 

shows significance levels between col-0 and re-6, lower row between col-0 and cue1. (C) 

Photosynthetic capacity indicated by Fv/Fm from 21 to 30 dpg. (D) False color image of col-0, and re-6 

rosettes displaying Fv/Fm ratios. Plants shown are representative for plants of 30 dpg. (n > 15). Error 

bars represent S.E. Asterisks indicate significance levels. 

 



Manuscript 3 

�

95 

DISP analysis – diel growth patterns in re-6 are wild-type like 

The penetrance of the re phenotype is dependent on the photoperiod and light-

intensity (Overmyer et al., 2008; own observation). While the re-8 allele was reticulated 

under standard conditions (12-h light/12-h dark), it was indistinguishable from wild-type under 

8-h light/16-h dark cycle (Overmyer et al., 2008). To test if (i) the photoperiod influences the 

leaf growth pattern of re-6 and if (ii) the observed delay in the growth of re-6 was caused at 

certain time points within the photoperiod, diel growth patterns for re-6 were determined 

under two different light regimes. The cue1 mutant was too small to attach threads on the 

leaf surface, which is necessary to perform DISP analysis (Wiese et al., 2007). We used 

white light and red light since light qualities were linked to signaling processes for example in 

the reticulated mutant ntrc (Lepistö et al., 2009; Lepistö and Rintamäki, 2012). No difference 

between the diel growth pattern of col-0 and re-6 was detected (Figure 4), indicating that the 

photoperiod and light quality does affect the growth pattern of re-6.  

 

Figure 4. Relative diel growth patterns of col-0 (A, B) and re-6 (C, D) during 12-h light/12-h dark cycle. 

Plants were grown in white (A, C) and red light (B, D). Grey areas indicate night, white areas day.  

 

 

Comparative transcript profiling of re and cue1 

Reticulated mutants are discussed in the context of supply or signaling events 

(Streatfield et al., 1999; Rosar et al., 2012). Signaling in plants is attributed to 

phytohormones (Rubio et al., 2009; Santner and Estelle, 2009), nucleotides (Jeter et al., 

2004; Chivasa and Slabas, 2012; Sun et al., 2012), carbohydrates (Eveland and Jackson, 

2012), ROS (Streatfield et al., 1999; Overmyer et al., 2008; Kangasjärvi et al., 2009; Lepistö 

et al., 2009) and other molecules (Rubio et al., 2009). Reticulated mutants are deregulated in 

amino acid biosynthesis (Streatfield et al., 1999; Jing et al., 2009; Lepistö et al., 2009; Mollá-

Morales et al., 2011). Thus, to decipher potential players of signaling or supply events, we 

carried out comparative transcript profiling of lcd1, cue1 and col-0 of four-week old aerial 

parts. 
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 Cue1 deviated in nine metabolic categories from wild-type, while lcd1 was different in 

three groups (Figure 5A, 5C, Supplemental Data 1). Three cellular processes in cue1 are 

overrepresented in upregulated genes: (i) cellular processes/RNA, (ii) nucleotide synthesis, 

and (iii) cytosolic ribosomes (Figure 5A, 5C). Category (i) includes all metabolic processes 

that are needed to synthesize RNAs of all kinds. Four processes are overrepresented in 

downregulated genes: (i) cell wall/cell wall proteins and the three photosynthetic categories 

(ii) photosynthesis/PSII, (iii) photosynthesis/cyclic electron flow and (iv) central carbon 

metabolism/Calvin Cycle. While one category, heat shock/protein folding was 

overrepresented in upregulated genes, the category protein degradation/ubiquitin was 

underrepresented in down-regulated genes (Figure 5A).  

 While genes regulated by zeatin and ethylene (ACC is an ethylene precursor) did not 

show a response in cue1, genes regulated by auxin, methyljasmonate and abscisic acid 

(ABA) displayed deviating response patterns in cue1 compared to wild-type (Figure 5B). 

Genes controlled by auxin were massively downregulated in cue1 plants.  

 In lcd1, two groups of overrepresented, upregulated genes were detected: (i) 

regulation/calcium and (ii) regulation kinase/phosphatase (Figure 5C). The category (iii) 

cellular processes/RNA was underrepresented in upregulated genes. All other remaining 

groups stayed at the wild-type levels, indicating that lcd1 keeps the homeostasis at a stable 

level. While auxin responsive genes were overrepresented by up- and downregulation in 

lcd1, zeatin responsive genes were not changed in the transcriptional level (Figure 5D). Like 

in cue1, genes affected by methlyjasmonate and ABA were deregulated in lcd1 (Figure 5D). 

Re-8 is depressed in jasmonate-responsive gene expression (Overmyer et al., 2008).  
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Figure 5: Genes representing functional categories are significantly altered in cue1 (A, B) and lcd1 

(C, D) compared to col-0. (A, B) Cellular processes that are significantly altered are presented. (C, D) 

Responses to hormone treatments are shown. 0.5 and 1.0 indicate 0.5 and 1.0 hours of hormone 

treatment, respectively. Black lines represent percentage of category in genome. Stars indicate 

statistically significant difference (p<0.01; Bonferroni multiple testing correction for 190 categories). 

Protein synth: protein synthesis; protein deg.: protein degradation; regul.: regulation; kin.: kinase; 

MJas: methyl jasmonate; BL: brassinolide; ACC: 1-aminocyclopropane-1-carboxylic acid (ethylene 

precursor). 

 

 

Cytokinin and auxin levels are mostly deregulated in cue1 and not in re 

 Plant growth is dependent upon cytokinins and auxins (DeMason, 2005; Efroni et al., 

2010; Mok and Mok, 2001). Both cue1 and lcd1 were affected on the transcripts level of 

auxin responsive genes (Figure 5B, 5D). To test if these observations were detectable on the 

metabolite levels, the steady state concentrations of cytokinins and auxins were determined 

(Figure 6, Supplemental Tables 5 and 6). 

 In cue1 total cytokinins were increased by 16.9 % (p= 0.0058), cZ by 51.5% (p= 

0.0008), and tZ was decreased by 51.5% (p= 0.0008), each compared to wild -type. One 

cytokinin derivate, namely tz9G, was not changed in cue1. All other derivates were either 

increased or decreased (Supplemental Table 5). 
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 In re-6 total cytokinins, tZ and cZ were not changed (Figure 6). Six out of 25 

determined cytokinin derivates were significantly elevated, found in each cytokinin class 

(Supplemental Table 5). The trans zeatins represented the majority of cytokinins in wild-type, 

re-6 and cue1 (Supplemental Table 5). The cis cyctokinins, however, were overrepresented 

in the cue1 plants with an increase of 72.3%, while these cytokinins were not changed in re-6 

(Supplemental Table 5).  

 All determined auxin derivates were increased in re-6 and cue1 rosettes compared to 

wild-type, with a pronounciation on cue1 (Figure 6, Supplemental Figure 5). While total 

auxins, i.e. the sum of IAA, IAAasp, and IAAGlu, were increased by 20.1% (p= 0.0238) in re-

6, they were increased by 117.4% (p< 0.0001) in cue1. Re-6 rosettes displayed an increase 

of 29.2% (p= 0.0315), 37.6% (p= 0.0230), and 80.0% (p= 0.0073) for IAA, IAAasp, and 

IAAGlu, respectively. The same derivates were increased in cue1 by 86.2% (0.0005), 

429.3% (<0.0001), and 736.4% (<0.0001), respectively.  

 

 

Figure 6. Phytohormone levels of col-0, re-6 and cue1 rosettes. (A) Total cytokinin levels. (B) trans-

zeatin. (C) cis-zeatin. (D) Total auxin levels. (E) Indole-3-acetic acid (IAA), IAAsp, and IAA-Glu 

concentrations. IAAsp: indole-3-acetyl-aspartate. IAAGlu: indole-3-acetyl-glutamate. Error bars 

represent S.E. Asterisks indicate significance levels. n � 5. 

 

 

Auxin responses are more pronounced in the re-6 background  

To unravel the impact of phytohormone responses on leaf growth of re-6 plants over 

a developmental time course, re-6 was crossed into DR5-GUS and ARR5-GUS reporter lines 

(Figure 7). The DR-5-GUS reporter displays physiological response patterns of auxin (Robles 

et al., 2010; Ulmasov et al., 1997) and the ARR5-GUS-reporter of cytokinin (D'Agostino et 

al., 2000). Additionally, cell cycle activity was investigated by crossing the re-6 into a 
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cycB1;1-GUS reporter line (Colon-Carmona et al., 1999; Sanchez-Calderon et al., 2005) 

(Supplemental Figure 5). Eight-week old rosettes with wild-type and re-6 morphology were 

selected for GUS-activity and investigated by taking pictures immediately before and after 

staining. The ARR5-GUS reporter activity was not different between wild-type and re-6 plants 

at all leaf ages. Leaves of every developmental stage of wild-type and re-6 plants showed 

GUS activity (Figure 7A, 7B). The highest activity was detected in middle aged and old 

leaves in wild-type and re-6 plants (e.g. leaf 4, Figure 7A and leaf 7, Figure 7B, lower 

panels). The staining patterns were patchy over the leaf lamina, but more pronounced 

around the veins, the margins, the distal part of the leaf lamina, and the hydathodes. A high 

staining intensity was detected at the petioles in the wild-type and re-6 background. A high 

GUS activity was detected around the SAM and the leaf bases of young leaves in wild-type 

and re-6 plants (Figure 7A, 7B). Wild-type and re-6 plants have a restriction of the auxin 

activity to the leaf margins and the hydathodes (eg. leaf 5, Figure 7C and leaf 7, Figure 7B) 

with a generally higher activity in younger re-6 leaves. No activity was detected around the 

SAM in neither wild-type nor re-6. The activity of the DR5-GUS reporter is higher in the re-6 

background, in line with increased auxin levels in re-6 (Figure 6D and 6E).  

 

Figure 7. Cytokinin (ARR5-GUS) (A,B) and Auxin (DR5-GUS) (C,D) reporter assays in col-0 and re-6 

genetic background of seeven-week old plants. Pictures were taken immediately before and after 

GUS-staining. The leaves are numbered from oldest to youngest leaves starting with 1. The 

magnification of single representative leaves is shown right to the whole rosettes. The scale bars 

belonging to the rosette pictures and magnifications correspond to 1 cm  and 0.5 cm, respectively.  
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 The cycB1;1-GUS reporter in wild-type and re-6 plants did not display distinguishable 

response patterns. Cell cycle activity was restricted to the SAM and the basis of developing 

young leaves. Activity was completely absent form middle aged and older rosette leaves 

(Supplemental Figure 5).  

 

 

Amino acid and purine levels are deregulated 

Despite transcriptional changes of genes involved in amino acid and purine 

metabolism were not detected, comparison to the molecularly identified reticulated mutants 

suggested a deregulation of amino acid and/or purine metabolism. These mutants, including 

cue1, are disturbed in primary metabolism, and restored by application of the appropriate 

metabolite (Streatfield et al., 1999; Hung et al., 2004; Jing et al., 2009; Lepistö et al., 2009; 

Mollá-Morales et al., 2011). Additionally, cue1 is epistatic to re, suggesting the involvement in 

the same pathway (González-Bayón et al., 2006) 

Thus, we hypothesized that re is affected in primary metabolism. To test if amino acid 

levels are altered in re-6, polar metabolites were extracted (Fiehn, 2006) of eight-week old 

rosette leaves grown under short day (SD, 12-h light/12-h dark cycle) and long day 

conditions (LD, 16-h light/8-h dark cycle). Two photoperiodic conditions were used because 

the extent of reticulation is dependent upon light conditions (Overmyer et al., 2008) and is 

stronger under LD (own observation, data not shown).  

 While almost all determined metabolites, either carbohydrates, amino acids or 

dicarboxylic acids, were upregulated in their amount under LD conditions, only little changes 

were observed for these metabolites under SD conditions (Supplemental Table 7, 

Supplemental Figure 6). Total amino acid contents, i.e. the sum of all amino acids 

determined, was significantly increased under LD but not under SD conditions (Figure 8 A, B, 

C, D). The only metabolite that was decreased under LD and SD conditions, both on a fresh 

weight and leaf area basis, was the amino acid lysine (lys) (Figure 8). Lys contents in re-6 

were decreased to the following levels compared to wild-type: 77.8 % for SD on FW basis, 

69.4% for SD on leaf area basis, 59.4 % for LD on FW basis, and 56.3% for SD on leaf area 

basis (Figure 8E, 8F, 8G, 8H).  

 To investigate if metabolite accumulation patterns were differently regulated during 

day/night cycles, metabolite levels were determined at four sample points (Figure 8, 

Supplemental Figure 7): in the middle of the light period (14:00), one hour before darkness 

(21:00), in the middle of the night period (2:00), and one hour before transition to light (5:00). 

Generally, only minor differences in the metabolite contents of wild-type and re-6 were 

observed. While some metabolites did not change with light and darkness, others responded 

to illumination. The amino acids phenylalanine, glycine, and serine changed in their relative 
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amount during the day/night cycle, with a general decrease during night and increase during 

day (Supplemental Figure 7, Supplemental Table 7). A similar behavior was observed for the 

carbohydrates sucrose, maltose, and the carboxylic acids fumaric acid, malic acid and maleic 

acid and the triol glycerol (Supplemental Figure 7). As for SD and LD, the only metabolite 

decreased at all observations points was lys (Figure 8I). The lys levels of the wild-type and 

the mutant stayed fairly stable during the whole observation period. 

 

 

Figure 8. Relative steady state lysine contents of eight week old col-0 and re-6 rosettes before 

transition to budding and flowering. Metabolite levels displayed in (A) – (H) were determined in the 

middle of the light period. All plants (A) - (H) were grown under 100μE m
-2

-s
-1

 light intensity. (A, B, E, 

F) Plants grown under 16-h/8-h light-dark cycle (LD). (B, D, G, H) Plants grown under 12-h/12-h light-

dark cycle (SD). (A) Total amino acids per FW; LD. (B) Total amino acids per area; LD. (C) Total 

amino acids per FW; SD. (D) Total amino acids per area; SD. (E) Lysine levels per FW; LD. (F) Lysine 

levels per area, LD. (G) Lysine levels per FW; SD.  (H) Lysine levels  per area; SD. (I) Time course 

metabolite profiling during 16-h/8-h light/dark cycle with sampling in the middle of the light period 

(14:00), one hour before dark (21:00), middle of the dark period (2:00), and one hour before the light 

period (5:00). Error bars represent S.E. Asterisks indicate significance levels. n � 4. n (re-6, panel H) = 

2. AA: amino acid 

 

 

 Since ATase2 mutants had lowered purine contents (Hung et al., 2004; Van der 

Graaff et al., 2004), we checked if purine levels were changed in re-6, cue1, and wild-type 

plants (Figure 9, Supplemental Table 10). All determined purine levels and the total amount 

were indistinguishable between re-6 and wild-type, except for adenosine, which was 

increased in re-6 by 40.8% (p= 0.0289). Cue1, however, displayed significantly increased 

total purine contents by 74.0% (p= 0.0003) (Figure 9). In contrast to re-6, all purines except 

of inosine were increased in cue1 (Figure 9).  
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Figure 9. Steady state purine base and purine nucleoside levels of eight week old col-0, re-6 and 

cue1 rosettes before transition to budding and flowering. (A) Total purine concentrations. (B) Single 

Purine derivates. ade: adenine; ado: adenosine; gua: guanine; guo: guanosine; hyp: hypoxanthine; 

ino: inosine; xan: xanthine; xao: xanthosine. Error bars represent S.E. Asterisks indicate significance 

levels. n(col-0, re-6) � 4. 

 

 

Lysine and arginine reverted the re-6 phenotype  

 Lys was the only amino acid lowered under all conditions tested and RE was co-

regulated with a series of genes involved in amino acid metabolism, with a focus on lys 

metabolism. Both own co-expression analysis of publicly available data and data inferred 

from Atted-II provided this evidence (Supplemental Data 1 and 2). Thus, we investigated the 

behavior of re-6 and the wild-type when supplemented with lys. Lys application visually 

reverted the phenotype at 0.2 and 0.4 mM (Figure 10). While total chlorophyll content was 

lowered to 86.0 % in re-6 compared to wild-type, re-6 chlorophyll levels increased to 0 mM 

lys wild-type levels when fed with 0.2 mM lys. The re-6 mutant over-compensated the 

chlorophyll content at 0.2 mM lys feeding. At 0.4 mM lys, the chlorophyll levels were 

indistinguishable between wild-type and mutant. Leaf and plant size of supplemented re-6 

and col-0 plants, however, were smaller than the non-fed controls, likely due to toxic effects 

of amino acids (Voll et al., 2004). Similar results were observed when re-6 and col-0 were fed 

with the basic amino acid arg (Supplemental Figure 8).  
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Figure 10. Biochemical complementation of re-6 with lys. Plants were grown for seven days on MS-

medium without amino acids, then transferred on lys containing media and grown for further two 

weeks. Plants were grown under 12-h/12-h light/dark cycle at 100 μE/m
2
/s. (A) col-0 plants (B) re-6 

plants. (C) Total chlorophyll concentration of col-0 and re-6 without and with lys. Error bars represent 

S.E. Asterisks indicate significance levels. Scale bars on the left panels of (A) and (B) correspond to 1 

cm and on the right panels to 1 mm, respectively.  

 

 

 

 

Discussion 

 Despite it`s gene locus is known (González-Bayón et al., 2006), RE´s function has not 

been established. However, all molecularly identified reticulated mutants are defective either 

directly or indirectly in primary metabolism (Jing et al., 2009; Lepistö et al., 2009; Mollá-

Morales et al., 2011; Rosar et al., 2012). Cue1 was discussed in the context of the signaling 

and the supply hypothesis (Streatfield et al., 1999; Rosar et al., 2012). We compared cue1 

and re mutants to investigate whether their nature favors one or the other hypothesis. For 

this purpose, we carried out growth analyses, transcriptional profiling, phytohormone 

determination, in planta hormone activity assays, metabolite profiling, and feeding studies. 

 

 

RElong is the functional splice variant 

While the ectopic expression of RElong reverted the reticulated phenotype, REshort did 

not rescue the phenotype (Figure 1), indicating that only the long, and not the short splice 

isoform is functional. Either the resulting shortened mRNA stays stable or is subjected to 

degradation, which corresponds to lower transcript amounts of REshort (Supplemental Figure 

1). However, Barth and Conklin, 2003 found similar amounts of the truncated mRNA in col-0 

and lcd1, making them speculate that protein targeting or folding may be negatively affected 

in the mutant. The allele re-8 has a point mutation at the splice site of the fifth exon, resulting 
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in a predicted truncated protein (Overmyer et al., 2008). Alternative splicing is a mode of 

transcriptional regulation (Simpson et al., 2008; English et al., 2010; Syed et al., 2012). It 

mains to be elaborative if both splice variants exert different functions.  

 

 

Transcriptional and metabolic responses in cue1 and re 

While cue1 is deregulated in nine, re is deregulated in three categories on the 

transcriptional level (Figure 5). Cue1 is overrepresented in the categories RNA synthesis, 

nucleotide synthesis and cytosolic ribosomes (Figure 5). All theses groups converge in the 

process of protein biosynthesis. Cue1 “underexpresses light-regulated nuclear genes 

encoding chloroplast localized proteins” (Streatfield et al., 1999). Total leaf protein is 

massively reduced in cue1 (Voll et al., 2003). Cue1 senses that there is not enough protein 

and tries to adjust via increased transcript levels of cytosolic ribosomes, RNA and thus 

nucleotide synthesis genes. Trying to compensate for lower protein levels on the 

transcriptional level may in turn provoke the transcriptional up-regulation of processes 

involved in heat shock/protein folding. Heat shock proteins are involved in the correct folding 

of functional proteins (Boston et al., 1996; Al-Whaibi, 2011; Horváth et al., 2012). 

Transcriptional deregulation of protein degradation and ubiquitin genes may be associated 

with an altered homeostasis of protein levels. Ubiquitination is involved in protein degradation 

via the proteasome (Kurepa and Smalle, 2008; Vierstra, 2009; Santner and Estelle, 2010) 

and was linked to signaling in plants (Santner and Estelle, 2010) 

Four transcriptional categories are underrepresented in cue1 (Figure 5): (i) cell wall 

proteins, (ii) PSII, (iii) cyclic electron flow, and (iv) central carbon metabolism/Calvin Cycle. 

The transcriptional reduction in cell wall protein synthesis could be due to the decrease of 

phenylpropanoid metabolism in cue1 (Streatfield et al., 1999). Phenylpropanoids constitute to 

cell wall compounds like lignin or suberin (Holloway, 1983; Lewis and Yamamoto, 1990; 

Vogt, 2010). The down-regulation of PSII protein transcripts is in line with under-expressed 

nuclear encoded photosynthetic genes (Streatfield et al., 1999). Cue1 was discovered in a 

screen for chlorophyll a/b under-expressed genes (Li et al., 1995).  

 In contrast to cue1, lcd1 was overrepresented in two groups by up-regulated genes 

(Figure 5): (i) regulation/calcium and (iii) regulation kinase/phosphatase. These processes 

might be involved in signaling processes, such as calcium is involved in calmodulin signaling 

(Reddy, 2001; Kim et al., 2009). Phosphatases and kinases are associated with signaling 

processes, such as mitogen-activated kinases (Rodriguez et al., 2010). While cue1 was 

overrepresented in up-regulated RNA synthesis genes, lcd1 was underrepresented in this 

gene class (Figure 5A, 5C). A deregulated pattern of jasmonate responsive genes (Figure 5) 

was also observed and discussed in the context of re`s development (Overmyer et al., 2006). 
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 The transcriptional changes in cue1 are reflected on the physiological and metabolic 

level. Re, however, was changed in amino acid and carbohydrate homeostasis without 

observing altered patterns on the transcriptional level (Figure 8, Supplemental Figure 6, 

Supplemental Table 7). In cue1, the increased transcript levels of RNA and nucleotide 

synthesis genes (Figure 5) were reflected in a massively increased purine pool size (Figure 

9). Also auxin levels were increased (Figure 6), along with changed transcriptional patterns in 

its synthesis genes (Figure 5). Auxin and de novo purine biosynthesis is dependent upon 

amino acids (Zrenner et al., 2006; Tao et al., 2008). Amino acid levels, except for reduced 

phenylalanine concentrations, are generally increased in cue1, particularly glutamine and 

asparagine (Streatfield et al., 1999). Glutamine is a key metabolite in the synthesis of purines 

(Hung et al., 2004; Zrenner et al., 2006; Rosar et al., 2012). The cytokinin metabolism, 

however, was not changed on the transcriptional but on the metabolite level in cue1. Total 

cytokinin levels were increased, with the tZ being lowered and cZ being increased (Figure 6, 

Supplemental Table 5). tZ, cZ and iP are considered to be the physiologically active forms, 

with cZ having the weakest activity (Leonard et al., 1969; Schmitz et al., 1972; Matsubara, 

1980; Mok and Mok, 2001), and tZ and iP the major forms in Arabidopsis (Sakakibara, 2006). 

The conjugated forms are considered deactivated (Mok and Mok, 2001; Bajguz and 

Piotrowska, 2009). Furthermore, the changed transcriptional profile of PSII and Calvin Cycle 

genes parallels the massively decreased PSII-capacity, indicated by lowered Fv/Fm values 

(Figure 3C, Streatfield et al., 1999) and a limited Calvin Cycle activity (Streatfield et al., 

1999). The transcriptional down-regulation of cyclic electron flow, which serves the 

production of the purine derivate ATP (Bukhov and Carpentier, 2004; Johnson, 2005), could 

be caused by the sensing of a high purine and thus high ATP-levels in the cell. Due to a 

decreased PSII activity and thus a likely decreased production of reduced reduction 

equivalents, such as NADPH, the Calvin Cycle transcripts are down-regulated.  

 

 

Consequences of deregulated amino acid metabolism on leaf development 

 The reticulated mutants cue1, trp2, ven3 and ven6 and ntrc are disturbed in amino 

acid metabolism (Streatfield et al., 1999; Jing et al., 2009; Lepistö et al., 2009; Mollá-Morales 

et al., 2011). Amino acids are involved in leaf development (Jing et al., 2009).  

Re-6 plants were deregulated in amino acid and carbohydrate metabolism (Figure 8, 

Supplemental Figure 6, Supplemental Table 7). Under LD conditions the deregulation was 

more pronounced than under SD. This parallels the penetrance of the phenotype, which is 

stronger reticulated under LD than under SD conditions (González-Bayón et al., 2006; own 

observation). Along day/night cycles, re-6 behaved like wild-type with metabolite levels 

paralleling each other. The only decreased metabolite under all tested conditions was lys 



Manuscript 3 

�

106 

(Figure 8). Similar observations with slightly decreased lys levels were made if a rate-limiting 

enzyme in lys biosynthesis was knocked out (Craciun et al., 2000). The lowered lys content 

could thus evoke the deregulation of amino acids contents, since their metabolic pathways 

are co-regulated. If histidine synthesis is inhibited, multiple amino acid synthesis genes and 

other metabolic pathways are activated, leading to an increase in at least ten amino acids 

(Guyer et al., 1995; Stepansky and Leustek, 2006). Plants affected in threonine biosynthesis 

show an over-accumulation of methionine (Bartlem et al., 2000) and plants down-regulated in 

lys biosynthesis have increased threonine levels (Craciun et al., 2000). The threonine level 

was increased in re-6 under LD conditions (Supplemental Figure 6 and Supplemental Table 

7). Much like trp2, ven3 and 6, cue1 and ntrc were complemented by the appropriate amino 

acids (Streatfield et al., 1999; Jing et al., 2009; Lepistö et al., 2009; Mollá-Morales et al., 

2011) lys and arg restored the re-6 leaf phenotype (Figure 10, Supplemental Figure 8). 

Biochemical complementation with lys and arg made the involvement of basic amino acids in 

re likely. Amino acid supplementation led to shorter and highly branched roots, also observed 

when growing plants on glutamate containing medium (Walch-Liu et al., 2006). Increased 

root branching compensates for inhibition of primary root growth (Reed et al., 1998; Tsugeki 

and Fedoroff, 1999). There is evidence that auxins and/or cytokinins are involved in these 

processes (Casson and Lindsey, 2003). Plant hormones and amino acids share common 

pathways since the latter metabolites influence hormones by conjugation (Bajguz and 

Piotrowska, 2009; Westfall et al., 2010). 

But how does the amino acid metabolism link to establishment of the leaf phenotype? 

Leaves of reticulated mutants are smaller and the M is decreased in cell number and/or size 

compared to wild-type controls (Kinsman and Pyke, 1998; Streatfield et al., 1999; González-

Bayón et al., 2006; Jing et al., 2009). These characteristics are due to two successive 

processes: (i) cell proliferation and (ii) cell expansion, which are mainly controlled by 

cytokinins and auxins, respectively (Mizukami, 2001; Anastasiou and Lenhard, 2007; 

Tsukaya, 2008). Despite the epidermal dominance of leaf size control, M cells contribute to 

the final size of a leaf (Savaldi-Goldstein et al., 2007; Javelle et al., 2011; Pérez-Pérez et al., 

2011; Powell and Lenhard, 2012). (Jing et al., 2009) linked the M structure to the growth 

kinetics of trp2 mutants. Trp2 leaves are at wild-type size during early development and 

growth decelerates at later stages. The authors argued that this implies an alteration in cell 

expansion rather than in cell proliferation. Conclusively, the M cell number in trp2 was at 

wild-type level but the cell size was strongly reduced (Jing et al., 2009).  

To address growth, we measured rosette growth kinetics over ten days (Figure 3). At 

the first observation point (21 dpg) cue1 was smaller than wild-type. These results indicate 

that cell proliferation is slowed down in cue1, because growth by proliferation is predominant 

in younger plants. The growth of cue1 in the later observation phase is likely due to cell 
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expansion rather than proliferation. The decreased tZ concentrations support a diminished 

cell cycle activity, while the increased auxin levels in cue1 rosettes support the cell 

elongation process (Figure 6, Supplemental Tables 5 and 6). These results are in agreement 

with the observation that cue1 has less, but not smaller M cells (Streatfield et al., 1999).  

Total re-6 leaf area was at wild-type level in young plants (21 dpg) and increased 

strongly over the observation period but remained smaller than the wild-type (Figure 3). The 

stark increase in re-6 leaf size at the end of the observation period prompts at an occurring 

cell elongation. Indeed, re M cells are only slightly smaller but reduced in number compared 

to wild-type (González-Bayón et al., 2006). Re plants already contained less M cells in leaf 

primordia (González-Bayón et al., 2006). The almost wild-type cell size in re (González-

Bayón et al., 2006) is likely achieved by cell elongation, which is in line with elevated auxin 

levels in re (Figure 6). The cytokinin levels, however, were not decreased in re-6 (Figure 6). 

This might be due to the time point of phytohormone determination.  

Carbohydrate (C)- and nitrogen (N)-metabolism is compartmentalized between vein- 

associated tissues (xylem, phloem, and/or BS) and M in C3 plants (Leegood, 2008), similarly 

to C4 plants. Cells within and around the vein of C3 plants are important in the synthesis of 

metabolites associated with C-metabolism (Nolte and Koch, 1993; Schobert et al., 2004 

Janacek et al., 2009). Three decarboxylases, which are also found in the C4-BS, are highly 

active in vasculature-associated tissues (Hibberd and Quick, 2002). Pyruvate 

orthophosphate dikinase (PPDK) converts pyruvate into PEP (Hibberd and Quick, 2002), 

which is fed into the shikimate pathway for aromatic amino acid synthesis (Fischer et al., 

1997; Knappe et al., 2003; Schmid and Amrhein, 1995; Tzin and Galili, 2010). The shikimate 

pathway is concentrated around the veins (Janacek et al., 2009). Some genes encoding 

amino acid synthesis enzymes (Craciun et al., 2000; Joshi et al., 2006) and amino acid 

transporters are expressed along the veins (Kwart et al., 1993; Fischer et al., 1995; Rentsch 

et al., 1996; Hirner et al., 1998; Ladwig et al., 2012), the latter preferentially in the BS. 

Further studies in various plant species gathered strong evidence that amino acid 

metabolism is vastly focused on vein associated tissues and compartmentalized between 

these and the M (Mitchell et al., 1992; Brugière et al., 2000; Schobert et al., 2004; Kichey et 

al., 2005; Turgeon, 2010).  

 Taken together, cue1 is massively affected in auxin metabolism both on the 

transcriptional and metabolic level (Figure 5 and 6). Auxin, derived from tryptophan (Tao et 

al., 2008), was hypothesized to be involved in vascular differentiation (Kinsman and Pyke, 

1998) and thus might be involved in signaling events triggering M differentiation. Additionally, 

cytokinin levels were increased in cue1 but not re-6 (Figure 6). Since these phytohormones 

are known to be signaling molecules in plants, cue1 is at least likely defective in signaling 

events. However, a supply phenotype cannot be excluded for cue1. Metabolic changes on 
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the amino acid and purine levels in re were not observed on the transcriptional level. Thus, re 

keeps a stable homeostasis on the transcriptional level, but rather reacts to it`s impairment 

by posttranscriptional responses. This indicates, that re is likely not affected in a cytokinin or 

auxin derived signal that mediates M development. Since purine levels are unchanged, 

nucleotides less likely do not serve as signaling compounds (Thomas et al., 2000; Jeter et 

al., 2004; Chivasa and Slabas, 2012; Sun et al., 2012). However, signals, such as Ca2+ or 

kinase/phosphatase mediated signals, cannot be excluded. We suppose that a deregulated 

amino acid metabolism is associated with re`s phenotype. The localization of RE to the 

plastid, the photoperiod dependent metabolite levels, the fact that amino acid metabolism is 

linked to photosynthesis (Lam et al., 1995), and the comparison to other reticulated 

phenotypes provides strong support that RE is associated with amino acid metabolism. The 

molecular mechanism for lys deficiencies is currently under investigation.  

 

 

 

Material and Methods 

 

Chemicals 

Chemicals were purchased from Sigma-Aldrich if not mentioned elsewhere. 

Chemicals and enzymes for recombinant DNA-techniques were purchased from Invitrogen, 

New England Biolabs, Fermentas, and Promega. All primers used in this study are listed in 

Supplemental Table 12.  

 

Plant material, general growth conditions, and plant lines  

Arabidopsis thaliana plants were grown under controlled conditions in climate 

chambers. The day/night cycle was chosen as 12-h light/12-hour or 16-h light/8-h dark with a 

photosynthetically active radiation of 100 �E/m
2/s. The temperature was set to 22°C during 

the light, and 18°C during the dark period. Arabidopsis thaliana seeds were surface sterilized 

with chlorine gas in a desiccator as described (Desfeux et al., 2000), spotted on solid 1 

Murashige and Skoog (MS)-medium with vitamins containing 0.8% (w/w) plant agar 

(Murashige and Skoog, 1962), and stratified at 4°C for 4 days. All plant material was 

germinated and grown in 1X MS medium and transferred on soil at the first true leaf stadium.  

Re-6-seeds (N 584529, SALK_084529) were obtained at NASC, the European Arabidopsis 

stock centre. Cue1-6 (Streatfield et al., 1999) and lcd1-1 seeds (Barth and Conklin, 2003) 

were taken from our laboratory stock. Cue1-6 and lcd1-1 are referred to as cue1 and lcd1 in 

this study, respectively. DR5-GUS-, ARR5-GUS- and cycB1;1-GUS-seeds were provided by 

Rüdiger Simon and Nicole Stahl (Institute of Developmental Genetics, Heinrich-Heine-
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University, Düsseldorf). DR5 is an artificial promoter that reacts to changed auxin perception 

(Robles et al., 2010; Ulmasov et al., 1997). ARR5-GUS indicates changing cytokinin patterns 

(D'Agostino et al., 2000). The cycB1;1-GUS-reporter detects cell cycle activity (Colon-

Carmona et al., 1999; Sanchez-Calderon et al., 2005). DR5-GUS-, ARR-5-GUS- and 

cycB1;1-GUS-reporter lines were crossed into re-6. The F2-generation of the DR-5-GUS and 

ARR5-GUS-crosses with re-6 was visually selected for the re-6 and col-0 phenotype. Re-6 

and col-0 phenotypic plants of the F2 generation were screened by GUS-staining for 

changing GUS-patterns. Nicotiana benthamiana was grown in a greenhouse for four to six 

weeks (Breuers et al., 2012). 

 

Polymerase Chain Reaction and Agarose Gel Electrophoresis 

Standard Polymerase Chain Reaction (PCR) was performed as previously described 

(Sambrook et al., 2001). Agarose gel electrophoresis was carried out in 1% and 2% 

Agarose-Gels in 1xTAE buffer (Sambrook et al., 2001). Size markers were used from 

Fermentas (Fermentas Gene Ruler
TM 1kb DNA Ladder and Fermentas Gene RulerTM Ultra 

Low Range DNA ladder).  

 

Genomic DNA isolation and cDNA synthesis 

 For genomic DNA (gDNA) isolation a leaf was quick frozen in liquid nitrogen and 

ground to powder by adding 400 �l DNA extraction buffer (200 mM Tris/HCL pH 7.5, 200 mM 

NaCl, 25 mM EDTA, 0,5% (w/v) SDS). After homogenization, 150�l sodium-acetate was 

added and centrifuged for two minutes at full speed in a reaction vial. 450 �l isopropanol was 

added to 450 �l of the supernatant, incubated for two minutes at room temperature before 

centrifuging for five minutes at full speed. The pellet was washed with 700 �l 80% (m/m) 

ethanol, air dried and resuspended in 30 �l nuclease free water. All centrifugation steps were 

carried out at room temperature. For cDNA synthesis, RNA was extracted as described 

(Chomczynski and Sacchi, 1987; Chomczynski and Sacchi, 2006), DNase digested, and 

subjected to cDNA synthesis using either Superscript II or Superscript III (Invitrogen). 

 

Escherichia coli transformation 

The E.coli strain One Shot
® MACH1TM T1R (I������	
�) was heat-shock transformed 

with Gateway® destination vectors as described by the manufacturer (Invitrogen). Empty 

Gateway® destination vectors were propagated in One Shot® ccdb SurvivalTM 2T1R 

competent cells (Bernard and Couturier, 1992; Bahassi et al., 1995) as described by the 

manufacturer. Heat shock transformation was performed as described (Sambrook et al., 

2001). 
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Agrobacterium tumefaciens and stable plant transformation 

 The binary plant vectors were transformed into Agrobacterium tumefaciens GV3101 

strain (Koncz and Schell, 1986) as previously described (Breuers et al., 2012). Either an 

electro-competent GV3101 strain was used for electroporation (Shen and Forde, 1989; 

Mersereau et al., 1990) or a heat shock competent GV3101 strain for heat shock 

transformation (Höfgen and Willmitzer, 1988). Transformed Agrobacteria were selected on 

appropriate YEB-antibiotic-media, containing rifampicin (50–150 �g/mL), gentamycin (25–50 

�g/mL), and either kanamycin (25–50 �g/mL; pmDC32, pmDC83) or spectinomycin (100 �

g/mL, pUBC-GFP), depending on the plasmid resistance. Positively transformed 

Agrobacteria were then used for transfection of Arabidopsis thaliana. Genetically stable 

Arabidopsis transformants by the floral dip method (Clough and Bent, 1998; Zhang et al., 

2006) and for transient expression in tobacco. 

 

Genetic complementation of re-6 plants and overexpressor lines 

Re-6 plants were transformed with RElong and REshort on the cDNA level, and with the 

RE on the gDNA level. Col-0 pants were transformed with and RE. The inserts were PCR-

amplified either on cDNA or gDNA. The primers CR1/CR2 were used both for RE and RElong, 

giving rise to 35S::RE and 35S::RElong, respectively. REshort was amplified with the primers 

CR1/CR19 on cDNA. The appropriate PCR-products were recombined via pDONR207 

(Invitrogen) into the Gateway® destination vector pmDC32 (Curtis and Grossniklaus, 2003), 

driven by the ecoptically active 35S-overexpression promoter from the cauliflower mosaic 

virus. DNA sequences were verified by DNA-sequencing (GATC-biotech; www.gatc-

biotech.com). The destination vector was transformed via the Agrobacterium tumefaciens 

strain GV3101 into re-6, using the floral dip method (Clough and Bent, 1998). The insertion 

of the constructs into the plant genome was tested by PCR. DNA integrity was tested by 

PCR with primers CR39/CR40 against Actin7 (At5g09810), giving a signal of 918 bp on 

gDNA and 734 bp on cDNA. The signal of the PCR-product by CR43/CR47 at a size of 794 

bp indicated the presence of the hygromycin gene encoded by the vector pmDC32. The 

primer combination CR161/CR162 bound on RE, giving rise to PCR products of 1841 bp on 

gDNA-constructs and 1299 bp on cDNA-constructs. The combination CR48/CR49 gave a 

PCR-signal at 1060 bp in the presence of the fifth exon of the RE gene and the NOS-

terminator of pmDC32. The primer combinations CR53/CR52, CR51/52, and CR51/53 were 

used to detect the T-DNA insertion of the re-6 mutant (SALK_084529). The following PCR 

products were obtained: CR53/CR52 at ca. 700 bp a homozygous re-6 plant, CR51/52 at ca. 

900 bp indicated col-0 background and CR51/53 giving no signal due to the direction of the 

T-DNA insertion. 
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PCR based detection of splice forms 

PCR was performed on cDNA of col-0 leaves with the primer combinations F/R1 and 

F7R2. F binds on the fifth exon of RE, R1 on the fifth intron and R2 on the sixth exon. On 

cDNA, the long slice variant RElong gives rise to a fragment of 55bp and the short variant 

REshort to 67 bp. R1 specifically binds on the 3`-UTR of REshort.  

 

Plasmid construction for transient expression in tobacco and localization of RE 

For localization in a transient Nicotiana expression system, RE (CR1/CR4), RElong 

(CR1/CR4), and the RElong,�cTP (CR6/CR4) were cloned into the Gateway® compatible C-

terminal eGFP-tagged vector pUB-GFP driven by the ubiquitin10 promoter (Grefen et al., 

2010). The predicted cTP (CR1/CR116) was cloned in the plant expression pmDC83 vector 

for C-terminal protein expression (Curtis and Grossniklaus, 2003).  

 

Transient expression of protein in Nicotiana tabacum for in planta studies 

These studies were carried out as decribed (Breuers et al., 2012). 5mL liquid cultures 

of positively transformed Agrobacterium GV3101 (see above) were grown in LB medium with 

appropriate antibiotics (see above) at 30°C for 16 to 24 hours. Centrifugated cells were 

resuspended in infiltration buffer (IF, 2 mM Na3PO4, 50 mM MES/KOH (pH 7.6), 5 mg/mL 

glucose, 200 mM acetosyringone). A bacterial suspension (OD600 = 0.05) was used for 

infiltration of N. tabacum leaves as described elsewhere (Batoko et al., 2000). Infiltrated 

plants were grown under 16-h/8-h light/dark at 27°C/24°C, respectively, for ca. three to five 

days. Leaf discs were pressed between a microscope slide and a cover slip and observed 

under the Zeiss LSM 510 META microscope.  

 

Confocal microscopic analysis 

Whole leaf M cells of N. tabacum were analyzed with a Zeiss LSM 510 META 

confocal laser-scanning microscope as described by Breuers et al., 2012. GFP and 

chlorophyll were excited with an Argon-laser at 488 nm and emission was collected at 505-

550 nm and >650 nm, respectively. Pictures were processed and merged using the freeware 

GIMP (www.gimp.org).  

 

GROWSCREEN FLUORO analysis of growth, fluorescence and phenotypic properties 

Batches of plants grown on soil were analyzed for growth and phenotypic properties 

by using the GROWSCREEN FLUORO phenotyping platform as described (Jansen et al., 

2009). Fifteen or more biological replicates were used for each col-0, re-6 and cue1 mutants. 

The phenotyping setup uses a fluorescence-imaging camera together with an illumination 

head to automatically acquire images of every plant inside the batches placed in the setup 
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(Jansen et al., 2009). Plants were imaged non-invasively for a period of ten days at the same 

time every day. For calculation of Fv/Fm , plants were dark adapted for 30 minutes. Based on 

the acquired images, image analysis provided several datasets for each mutant and wild-

type plants, including the relative growth rate (RGR) and efficiency of photosystem II (Walter 

et al., 2007; Jansen et al., 2009). RGR was calculated using the equation RGR= (mean of 

ln(A2) - mean of ln(A1)/t2-t1) (Hoffmann and Poorter, 2002; Jansen et al., 2009).�

 

Co-regulation analysis 

Co-regulation analysis was performed using the Atted-II vers. 6.1 database 

(http://atted.jp/; Obayashi et al.; Obayashi et al., 2007). Co-regulated genes were searched 

by with the default settings, using At2g37860 as query.  

 

Transcriptional profiling and data analysis 

Plants were grown under 16-h light/8-h dark, RNA from leaves was isolated as 

described previously (Stähr, 2010). An Affimetrix GeneChip®-3`IVT-Express-Kit was used for 

expression profiling (Stähr, 2010). Two replicates of each cue1, lcd1-1 and col-0 plants were 

hybridized with Affimetrix Chips. The resulting .cel files were read into Robina and analyzed 

with modified standard parameters (rma normalization, limma, pairwise tests of significant 

change with p<0.01, Benjamini Hochberg corrected, no log-fold change limits). The resulting 

tables are available in the Excel sheet as DataTable (Supplemental Data 1). For analysis, all 

non-matching AGIs and controls were deleted and the table renamed to 

DataTable_AffysmatchingAGIs_only. For the hormone treatments available from the 

AtGenExpress project (seedlings treated with the appropriate hormone  or mock control for 

0.5h, 1h and 3h) were downloaded, decoded, analyzed with robina and standard parameters 

(rma normalization, limma, pairwise tests of significance with p<0.05, Benjamini Hochberg 

corrected, no log fold change limits) and the results were added to the data table. For the 

enrichment analysis, the percentage of genes in a category (over all genes on the Affymetrix-

chip) was calculated. The percentage of up-regulated genes in a category (over all up-

regulated genes) and the percentage of down-regulated genes in a category (over all down-

regulated genes) are also calculated. A Fishers Exact Test determines if the absolute 

numbers in the up- or down-regulated column, respectively, are different from the numbers in 

the category on the Affychip. For Fisher`s Exact Test, p<0.05 with Bonferroni correction for 

190 categories was used. 

 

Metabolite profiling of polar metabolites 

Re-6 and col-0 plants were grown under controlled conditions in a light chamber in a 

16-h/8-h (100 μE/m
2/s) and 12-h/12-h light/dark cycle (100 μE/m2/s), respectively, on 1 MS-

medium (Murashige and Skoog, 1962), and transferred on soil after two weeks. Whole 
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rosettes from seven-week-old re-6 and col-0 plants were harvested before flowering, and 

snap-frozen in liquid nitrogen. Polar metabolites from homogenized rosette material samples 

(ca. 50 mg) were extracted using a chloroform-methanol extraction protocol (Fiehn, 2006). 

The extraction mix was vortexed for 20 seconds, shaken in a rotating device for six minutes 

at 4°C, centrifuged for two minutes at 20.000g. 1mL of the supernatant was vortexed for ten 

seconds, shaken in a rotating device for 6 minutes at 4°C, centrifuged for two min at 

20.000g. 100μl of this extract was lyophilized, and derivatized using methoxyamine 

hydrochloride in pyridine followed by N-methyl-N-(trimethylsilyl-)fluoroacetamide (MSFTA) 

treatment (Fiehn, 2006). The relative amounts of seventeen amino acids, nine 

carbohydrates, ten carboxylic acids, and shikimate were determined as described previously 

(Gowik et al., 2011). For calculating the total amino acids levels, the following metabolites 

were taken: �-ala, leu, val, glu, Asp, ile, asn, met, cys, phe, tyr, gly, ser, and lys.  

 

GUS-staining 

 GUS-staining was performed as described (Mattsson et al., 2003). Whole rosettes of 

seven-week old plants were vacuum infiltrated with the GUS staining solution (0.1 M 

NaH2PO4, pH 7.0; 10 mM Na2EDTA; 0.5 M Sodium-Ferricyanide K3[Fe(CN)6]; 0.5 M Sodium-

Ferrocyanide K4[Fe(CN)6] x 3H2O, 0.1% Triton X-100, and 1 mM 5-bromo-4-chloro-3-indoyl-

beta-GlcUA (Inalco Spa)). The samples were incubated at 37°C for 24 hours. Hereafter, the 

staining solution was removed, and fixation solution was added (50% (w/w) ethanol, 5% 

(w/w) glacial acetic acid, and 3.7 % (w/w) formaldehyde). The samples stored in the staining 

solution were incubated for ten minutes at 65°C. The leaf tissue was destained three times 

after removal of the fixation solution with 80% (w/w) ethanol.  Pictures were taken with a 

digital camera (Canon D40). �

 

Chlorophyll determination�

Plants were grown in a 12-h/12-h light/dark cycle (100 μE/m
2/s) for four weeks under 

12-h light/12-h dark on 1 MS-plates. Plant material was harvested in the middle of the light 

period, snap-frozen in liquid nitrogen, and homogenized by grinding in a mortar. The fresh 

weight was measured and the chlorophyll concentration determined as described (Porra et 

al., 1989). 

 

Cytokinin and auxin quantitation 

 Plants were grown in a 12-h/12-h light/dark cycle (100 μE/m
2/s). Five rosettes of each 

col-0, re-6 and cue1 rosettes were pooled. Five replicates of each pooled sample were used 

for cytokinin and auxin quantitation. For endogenous cytokinins analysis, extraction and 

purification was performed according to the method previously described (Novák et al., 
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2003). Levels of cytokinins were quantified by ultra performance liquid chromatography-

electrospray tandem mass spectrometry (UPLC_MS/MS) (Novák et al., 2008). Endogenous 

auxin concentrations were determined as described previously (Ascough et al., 2009; Novák 

et al., 2012). 

 

Biochemical complementation with amino acids 

After seven days of growth on MS-plates (12-h light/12-h dark), seedlings were 

transferred onto MS-plates containing different concentrations of lys and arg. Plants were 

monitored for an additional two weeks. Pictures were taken with a digital camera (Canon 

D40). 

 

Statistical Analysis 

For metabolic determination, statistical significance was assessed by the Student`s t-

test. Probability values (p) <0.05 were considered being significant. One star indicates 

p<0.05, two stars indicate p<0.01, and three stars indicate p<0.0001. The standard error of 

the mean (S.E.) is indicated in all plots, if not indicated elsewise. Analysis was performed 

and graphs generated with Prism (GraphPad). Statistical analysis for microarray analysis 

was performed as described above.  

 

Phylogenetic analysis and tree construction 

Sequences were extracted from public databases using the Blast Explorer followed by 

manual curation to remove partial sequences. Blast Hits in Blast Explorer were only present 

in the green lineage. Sequences were aligned with MUSCLE and default settings and cured 

with Gblocks (smaller final blocks, allow gap positions within final blocks and allow less strict 

flanking positions enabled). The phylogeny was established using PhyML using 100 

bootstraps. The tree was rendered with TreeDyn. Branches with bootstraps support lower 

than 50% were collapsed.  
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Supplemental Figures 

 

 

Supplemental Figure 1. RE has two splice variants: RElong and REshort. (A) Screening strategy. Black 

bars indicate exons, thin bars introns. Forward primer F binds on fifth exon, reverse primer R1 on fifth 

intron, and reverse primer R2 on sixth exon. (B) Table shows expected band sizes of different primer 

combinations F/R1 and F/R2 when PCR is performed on gDNA and cDNA. nb: no band expected. (C) 

PCR performed with 28 cycles. The two bands of 67 bp and 55 bp indicate that two splice variants are 

existant: RElong and REshort. Two-week old col-0 plants were used. M: size marker.  

 

Supplemental Figure 2. Quantative PCR on cDNA of col-0, re-6-complementant and col-0-

overexpressor plants. 1: Actin control (CR39/CR40). 2: RE (start to stop, CR 161/CR162). 

Asterisks indicates band. (A) col-0. (B) re-6 with 35S::RElong. (C) col-0 with 35S::RElong (OX).  
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Supplemental Figure 3. Phylogenetic tree of plant specific proteins harboring DUF 3411.  

 

 

 

Supplemental Figure 4. Chlorophyll (chl) concentrations of col-0 and re-6. (A) chl a level. (B) chl b 

level. (C) Total chl, i.e. sum of chl a and chl b. (D) Chl a/ Chl b ratio.  

 

 

 

Supplemental Figure 5. Cell cycle (cycb1.1-GUS) reporter assays in col-0 (A) and re-6 (B) genetic 

background of eight week old plants. Pictures were taken immediately before and after GUS-staining. 

The magnification of the shoot meristemtic tissue is shown right to the whole rosettes. The scale bars 

belonging to the rosette pictures and magnifications correspond to 1 cm and 0.5 cm, respectively.  
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Supplemental Figure 6. Relative steady state polar metabolite contents of eight-week old col-0 and 

re-6 rosettes before transition to budding and flowering. Metabolite levels were determined in the 

middle of the light period. Figure 6.1: Metabolites determined on FW basis. Left graph: LD conditions, 

right graph SD conditions. Figure 6.2: Metabolites determined on leaf area basis. Left graph: LD 

conditions, right graph SD conditions. All plants were grown under 100 μE m
-2

-s
-1

 light intensity. Plants 

grown under 16-h/8-h light-dark cycle (LD). Plants grown under 12-h/12-h light-dark cycle (SD). Error 

bars represent S.E. Asterisks indicate significance levels. ns: not significant. n � 4. 

 

 



Manuscript 3 

�

118 

 

Supplemental Figure 7. Time course metabolite profiling during 16-h/8-h light/dark cycle with 

sampling in the middle of the light period (14:00), one hour before dark (21:00), middle of the dark 

period (2:00), and one hour before the light period (5:00). Error bars represent S.E. Asterisks indicate 

significance levels. ns: not significant. n � 4.  
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Supplemental Figure 8. Biochemical complementation of re-6 with arginine. Plants were grown for 

seven days on MS-medium without amino acids and then transferred on arginine (arg) containing 

media and grown for further two weeks. Plants were grown under 12-h/12-h light/dark cycle at 100 μE/ 

m
2
/s

-1
. (A) col-0 plants (B) re-6 plants. (C) Total chlorophyll concentrations of col-0 and re-6 fed with 

arginine and controls. Error bars represent S.E. Asterisks indicate significance levels. Scale bars on 

the left panels of (A) and (B) correspond to 1 cm and on the right panels to 1 mm, respectively.  
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Supplemental Tables 

 

Supplemental Table 1: Arabidopsis thaliana proteins with DUF3411 domain. Na: not assigned 
Arabidopsis genome 
identifier 

name 

At2g37860 RE, LCD 

At5g22790 RE-R1 

At3g08630 na 

At3g08640 na 

At5g12470 na 

At5g24690 na 

At2g40400 na 

At3g56140 na 

 

 

Supplemental Table 2: Total leaf area of col-0, re-6, and cue1 plants. Plants were monitored for ten 

days, beginning at 21 days post germination (21 dpg). Errors are indicated as S.E. n > 15. nd: data 

points were not determined.  
 Leaf area 

col-0 re-6 col-0/re-6 cue1 col-0/cue1 

dpg Average ± S.E. Average ± S.E. p-value Average ± S.E. p-value 

21 0.937 0.039 0.835 0.040 0.0752 0.093 0.006 <0.0001 
22 1.219 0.051 1.038 0.055 0.0225 0.102 0.008 <0.0001 
23 1.564 0.065 1.239 0.056 0.0005 0.106 0.008 <0.0001 
24 2.167 0.109 1.559 0.071 <0.0001 0.113 0.009 <0.0001 
25 3.001 0.125 2.047 0.096 <0.0001 0.130 0.010 <0.0001 
26 nd nd nd nd nd nd nd nd 
27 5.816 0.431 3.757 0.217 <0.0001 0.166 0.012 <0.0001 
28 7.758 0.528 5.299 0.393 0.0005 0.184 0.013 <0.0001 
29 9.595 0.665 6.893 0.571 0.0039 0.215 0.015 <0.0001 
30 12.247 0.659 9.924 0.854 0.0417 0.266 0.021 <0.0001 

 

 

Supplemental Table 3: Relative growth rate (RGR) of col-0, re-6, and cue1 plants. RGRs were 

calculated between subsequent observation points.  
 Relative Growth Rate (RGR) 

col-0 re-6 col-0/re-6 cue1 col-0/cue1 

d.p.g. Average ± S.E. Average ± S.E p-value Average ± S.E p-value 

21 to 22 31.74 5.57 30.55 5.28 0.8781 30.74 5.57 0.9265 
22 to 23 19.69 3.06 27.77 2.24 0.0413 16.69 3.06 0.7797 
23 to 24 31.54 4.99 34.63 4.93 0.6628 21.94 4.65 0.2104 
24 to 25 27.73 1.15 37.83 4.52 0.0257 47.37 10.63 0.0888 
25 to 27 29.85 3.13 31.38 3.75 0.6853 35.46 9.22 0.6282 
27 to 28 40.80 6.18 27.99 0.98 0.0496 29.98 7.46 0.3228 
28 to 29 29.22 4.36 21.08 1.60 0.1040 26.43 6.46 0.7492 
29 to 30 35.30 4.43 27.86 2.05 0.1716 33.61 7.09 0.8446 

 

 

Supplemental Table 4: Fv/Fm of col-0, re-6, and cue1 plants. Plants were monitored for 10 days, 

beginning at 21 days post germination (21 dpg). Errors are indicated as S.E. n > 15. nd: data points 

were not determined.  

 

 

   Fv/Fm 

 col-0 re-6  cue1 col-0/cue1 

dpg Average ± S.E. Average ± SE ± S.E. Average ± S.E. p-value 

21 0.76 0.00 0.77 0.00 <0.0001 0.64 0.00 <0.0001 
22 0.76 0.00 0.77 0.00 <0.0001 0.65 0.00 <0.0001 
23 0.77 0.00 0.77 0.00 <0.0001 0.65 0.00 <0.0001 
24 0.77 0.00 0.77 0.00 0.0034 0.66 0.00 <0.0001 
25 0.77 0.00 0.78 0.00 <0.0001 0.67 0.00 <0.0001 
26 nd nd nd nd nd nd 0.00 <0.0001 
27 0.77 0.00 0.77 0.00 0.5637 0.67 0.00 <0.0001 
28 0.77 0.00 0.77 0.00 0.5931 0.67 0.00 <0.0001 
29 0.77 0.00 0.77 0.00 0.3821 0.67 0.00 <0.0001 
30 0.77 0.00 0.76 0.00 0.0928 0.67 0.01 <0.0001 
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Supplemental Table 5: Steady state cytokinin contents of eight-week old rosettes of col-0, re-6, and 

cue1 before flowering. Plants were grown under 12-h/12-h light/dark cycle at 100 �E/m
2
/s. Samples 

were taken in the middle of the light period. S.E. is shown. Asterisks (*) indicate the significance level. 

n = 5. Abbreviations according to (Novák et al., 2008). tZ = trans-zeatin; cZ: cis-zeatin; iP: N6-(�
2
-

isopently)adenine; DHZ: dihydrozeatin; R: riboside; OG: O-glucoside; 7G: 7-glucoside; 9G: 9-

glucoside; 5`MP: 5`-monophosphate. 

Cytokinin 
col-0 [pmol/g] re-6 [pmol/g] 

p-value 
Sig. 
Lev. 

cue1 [pmol/g] p-value Sig. 
Lev. Average ± S.E. Average ± S.E. Average ± S.E. 

tZ 1.363 0.111 1.607 0.046 0.0782 ns 0.702 0.059 0.0008 *** 
tZOG 11.544 0.686 10.533 0.917 0.4030 ns 7.407 0.388 0.0008 *** 
tZR 0.371 0.032 0.950 0.095 0.0004 *** 0.216 0.014 0.0022 ** 
tZROG 1.783 0.117 2.283 0.125 0.0192 * 2.204 0.090 0.0212 * 
tZ7G 129.250 5.399 126.270 2.354 0.6266 ns 156.360 2.967 0.0023 ** 
tZ9G 22.987 1.474 20.841 0.877 0.2462 ns 22.466 0.880 0.7692 ns 
tZR5`MP 11.311 0.846 13.282 0.708 0.1118 ns 2.081 0.133 <0.0001 *** 

Total trans cytokinins 178.61 7.73 175.77 4.41 0.7575 ns 175.766 4.412 0.7575 ns 

cZ 0.036 0.004 0.037 0.003 0.8864 ns 0.124 0.016 0.0007 *** 
cZOG 0.636 0.062 0.547 0.038 0.2582 ns 1.014 0.124 0.0259 * 
cZR 0.154 0.017 0.193 0.016 0.1318 ns 0.610 0.053 <0.0001 *** 
cZROG 1.173 0.088 1.449 0.054 0.0284 * 2.822 0.079 <0.0001 *** 
cZ9G 0.110 0.009 0.133 0.005 0.0546 ns 0.774 0.037 <0.0001 *** 
cZR5`MP 1.828 0.089 1.880 0.094 0.6983 ns 1.437 0.093 <0.0162 * 

Total cis cytokinins 3.937 0.214 4.238 0.085 0.2259 ns 6.782 0.160 <0.0001 *** 

DHZ 0.013 0.002 0.015 0.002 0.4615 ns 0.008 0.001 0.0237 * 
DHZOG 0.159 0.012 0.173 0.024 0.6162 ns 0.103 0.011 0.0092 ** 
DHZR 0.040 0.003 0.112 0.011 0.0002 *** 0.072 0.006 0.0012 ** 
DHZROG 0.037 0.005 0.120 0.008 0.0000 *** 0.104 0.010 0.0003 *** 
DHZ7G 17.521 0.783 16.798 0.663 0.5008 ns 13.152 0.298 0.0008 *** 
DHZ9G 0.141 0.005 0.136 0.006 0.6124 ns 0.108 0.005 0.0026 ** 
DHZR5`MP 0.068 0.005 0.097 0.013 0.0755 ns 0.040 0.007 0.0132 * 

Total dehydro cytokinins 17.979 0.789 17.452 0.693 0.6292 ns 13.238 0.133 0.0040 ** 

iP 0.276 0.021 0.237 0.030 0.3156 ns 0.195 0.018 0.0179 * 
iPR 0.361 0.042 0.386 0.051 0.7140 ns 0.161 0.018 0.0023 ** 
iP7G 24.450 0.884 30.509 1.826 0.0174 * 64.734 1.478 <0.0001 *** 
iP9G 0.592 0.009 0.722 0.057 0.0548 ns 0.704 0.025 0.0032 ** 
iPR5`MP 3.470 0.238 4.992 0.175 0.0009 *** 1.165 0.120 <0.0001 *** 

Total isopentyl cytokinins 29.150 0.755 36.846 1.884 ** 0.053 66.958 1.461 <0.0001 *** 

Total cytokinins 229.674 8.214 234.301 5.000 0.6433 ns 267.856 6.141 0.0058 ** 

 

 

Supplemental Table 6: Steady state auxin contents of eight-week old rosettes of col-0, re-6, and 

cue1 before flowering. Plants were grown under 12-h/12-h light/dark cycle at 100 μE/m
2
/s. Samples 

were taken in the middle of the light period. S.E. is shown. Asterisks (*) indicate the significance level. 

n = 4. IAA: indole-3 acetic acid; IAAsp: indole-3-acetyl-aspartate; IAAGlu: indole-3-acetyl-glutamate. 

Auxin 
col-0 [pmol/g] re-6 [pmol/g] 

p-value 
Sig. 
Lev. 

cue1 [pmol/g] 
p-value 

Sig. 
Lev. Aver. ± S.E. Aver. ± S.E. Aver. ± S.E. 

IAA 63.541 5.173 82.115 4.919 0.0315 * 118.320 8.305 0.0005 *** 
IAAsp 3.499 0.325 4.814 0.338 0.0230 * 18.520 0.902 <0.0001 *** 
IAAGlu 1.436 0.095 2.580 0.306 0.0073 ** 12.010 0.953 <0.0001 *** 

Total auxins 68.477 5.326 89.509 5.364 0.0238 * 148.845 9.468 <0.0001 *** 
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Supplemental Table 7: Relative steady state metabolite levels of eight-week old rosettes of col-0, re-

6, and cue1 before budding and flowering. Plants were grown under 16-h/8-h and 12-h/12-h light/dark 

cycle at μE/m
2
/s. Samples were taken in the middle of the light period. Error bars represent S.E. 

Asterisks indicate significance levels. n � 4. Numbers in brackets indicate deviating replicate numbers. 

Values at each condition are not comparable among each other. 
16-h light/8-h dark FW basis 12-h light/12-h dark FW basis 

Metabolite 
col-0 re-6 

p-value 
sig. 
lev. 

col-0 re-6 
p-value 

sig. 
lev. Aver. ± S.E. Aver. ± S.E. Aver. ± S.E. Aver. ± S.E. 

�-alanine 91.96 5.46 167.44 4.48 <0.0001 *** 3.483 0.897 6.147 0.402 0.0266 * 

leucine 1.88 0.14 2.67 0.16 0.0054 ** 0.059 0.002 0.080 0.011 0.1100 ns 

valine 11.50 0.28 15.96 0.81 0.0008 *** 0.340 0.010 0.457 0.049 0.0467 * 

glutamate 134.26 9.67 179.61 12.19 0.0195 * 11.321 0.428 9.766 0.768 0.1147 ns 

aspartate 36.39 0.96 45.56 3.43 0.0212 * 8.408 0.369 7.109 1.214 0.3358 ns 

asparagine 11.03 1.00 16.99 1.57 0.0125 * 0.272 0.014 0.296 0.042 0.6010 ns 

isoleucine 2.66 0.14 4.00 0.21 0.00007 *** 0.092 0.003 0.112 0.013 0.1798 ns 

lysine 1.72 0.12 1.34 0.09 0.0364 * 0.066 0.003 0.039 0.005 0.0017 ** 

methionine 1.42 0.07 2.34 0.27 0.0106 * 0.096 0.003 0.092 0.004 0.4373 ns 

cysteine 0.19 0.02 0.15 0.04 0.3396 ns 0.007 0.0008 0.009 0.001 0.1958 ns 

phenylalanine 2.40 0.60 3.76 0.13 0.0585 ns 0.117 0.002 0.125 0.005 0.2537 ns 

threonine 33.38 1.24 42.47 2.41 0.0100 * nd nd nd nd nd nd 

tryptophan nd nd nd nd nd nd 0.071 0.010 0.059 0.004 0.2598 ns 

tyrosine 0.20 0.02 0.21 0.01 0.7143 ns 0.023 0.002 0.028 0.003 0.1315 ns 

glycine 22.46 0.07 41.28 4.91 0.0050 ** 2.658 0.279 2.242 0.392 0.4125 ns 

serine 135.23 5.41 156.74 4.96 0.0190 * 10.189 0.280 10.939 1.685 0.6723 ns 

�-alanine 0.31 0.03 0.32 0.02 0.8655 ns 0.038 0.003 0.039 0.005 0.8642 ns 

GABA 0.75 0.13 0.56 0.07 0.2383 ns 0.011 0.001 0.011 0.002 0.8920 ns 

shikimate 12.23 0.64 16.16 0.42 0.0009 *** 0.701 0.015 0.635 0.019 0.0230 * 

glucose 12.93 0.54 18.00 0.99 0.0020 ** 1.656 0.316 1.987 0.271 0.4506 ns 

fructose 5.99 0.72 9.13 0.91 0.0263 * 0.473 0.018 0.481 0.046 0.8748 ns 

xylose 1.06 0.05 1.27 0.08 0.0429 * 0.059 0.003 0.059 0.005 0.9369 ns 

myo-inositol 111.29 10.84 118.97 5.15 0.5398 ns 8.394 0.169 7.018 0.534 0.0394 * 

mannitol 4.87 0.25 5.53 0.61 0.3511 ns 0.216 0.011 0.251 0.026 0.2495 ns 

sorbitol 0.13 0.02 0.16 0.02 0.1304 ns 0.078 0.006 0.063 0.010 0.2411 ns 

glycerol 24.49 1.01 29.02 0.67 0.0058 ** 1.955 0.020 1.870 0.075 0.1440 ns 

sucrose 865.79 15.90 976.33 29.96 0.0115 * 44.051 1.514 46.373 1.371 0.2884 ns 

maltose 4.30 0.25 7.22 0.48 0.0007 *** 0.210 0.017 0.218 0.011 0.7196 ns 

lactose 0.13 0.02 0.16 0.02 0.1304 ns 0.005 0.001 0.006 0.001 0.4792 ns 

glycerate 10.70 1.01 10.74 2.62 0.9880 ns 0.535 0.031 0.399 0.021 0.0066 ** 

lactate 30.54 2.01 26.26 2.88 0.2583 ns 1.549 0.051 1.345 0.206 0.3692 ns 

�-ketoglutarate 0.33 0.02 0.50 0.07 0.0483 * 0.031 0.003 0.029 0.003 0.7267 ns 

fumarate 845.17 33.95 838.26 37.07 0.8942 ns 54.584 2.095 48.657 2.063 0.0786 ns 

succinate 8.42 0.51 8.81 0.52 0.6055 ns 0.407 0.008 0.365 0.008 0.0050 ** 

glycolic acid 8.03 0.45 9.74 0.98 0.1514 ns 0.344 0.037 0.406 0.057 0.3935 ns 

gluconic acid 0.79 0.03 1.03 0.08 0.0209 * 0.003 0.001 0.007 0.003 0.2719 ns 

maleic acid 4.48 0.53 5.25 0.32 0.2487 ns 0.218 0.016 0.215 0.024 0.9150 ns 

malic acid 225.32 6.79 226.01 17.16 0.9713 ns 9.509 0.559 8.007 0.816 0.1675 ns 

 

16-h light /8-h dark leaf area basis 12-h light/12-h dark leaf area basis 

Metabolite 
col-0 re-6 

p-value 
sig. 
lev. 

col-0 re-6 
p-value 

sig. 
lev. Aver. ± S.E. Aver. ± S.E. Aver. ± S.E. Aver. ± S.E. 

�-alanine 28948.38 1373.21 35714.47 1986.42 0.0251 * 92.50 19.41 115.81 14.47 0.3685 ns 

leucine 169.28 23.04 225.34 17.47 0.0797 ns 0.79 0.13 0.73 0.11 0.7390 ns 

valine 1318.77 133.53 1960.21 105.31 0.0040 ** 4.35 0.82 4.95 0.56 0.5576 ns 

glutamate 6876.68 555.13 12772.77 1382.09 0.0052 ** 75.98 20.76 103.93 13.07 0.2832 ns 

aspartate 3389.82 564.17 5050.00 485.46 0.0515 ns 99.29 27.80 135.90 21.68 0.3378 ns 

asparagine 448.46 37.15 826.13 66.20 0.0011 ** 1.14 0.36 1.88 0.30 0.1714 ns 

isoleucine 235.32 28.22 355.98 19.56 0.0056 ** 1.13 0.19 1.20 0.19 0.8151 ns 

lysine 252.72 18.10 175.50 15.88 0.0105 * 0.61 (2) 0.05 0.34 0.05 0.0279 * 

methionine 102.43 5.80 210.59 21.73 0.0017 ** 0.81 0.17 1.03 0.13 0.3605 ns 

cysteine 15.26 2.66 20.52 2.57 0.1914 ns 0.06 0.01 0.09 0.01 0.1149 ns 

phenylalanine 405.68 19.27 564.99 24.75 0.0008 *** 1.28 0.26 1.62 0.21 0.3416 ns 

threonine 4467.57 80.84 4777.71 605.93 0.6563 ns nd nd nd nd nd nd 

tryptophan nd nd nd nd nd nd 0.62 0.09 0.66 0.09 0.7547 ns 

tyrosine 30.89 6.71 26.79 2.71 0.5589 ns 0.10 0.05 0.20 0.03 0.1159 ns 

glycine 2605.91 97.67 7345.80 895.67 0.0010 ** 103.93 13.07 36.93 8.76 0.0051 ** 

serine 15016.28 684.81 17155.29 1376.33 0.2251 ns 99.49 29.24 124.08 10.94 0.4150 ns 

�-alanine 76.13 3.78 72.69 7.68 0.7155 ns 0.32 0.13 0.61 0.06 0.0763 ns 

GABA 181.61 18.30 134.29 24.11 0.1656 ns 0.04 0.02 0.07 0.03 0.4778 ns 

shikimate 1765.01 61.77 2423.76 165.33 0.0073 ** 5.75 1.13 7.87 1.02 0.2239 ns 

glucose 3329.98 258.26 5142.66 572.45 0.0249 * 13.38 4.57 10.71 2.57 0.6085 ns 

fructose 1329.92 99.61 1708.41 182.20 0.1203 ns 4.53 1.39 5.02 0.55 0.7312 ns 

xylose 167.50 15.68 175.30 8.77 0.6601 ns 0.48 0.13 0.61 0.02 0.2522 ns 

myo-inositol 16992.56 932.10 13083.37 1267.74 0.0405 * 80.08 19.93 91.61 9.03 0.5780 ns 

mannitol 1444.29 311.69 1326.95 144.98 0.7254 ns 1.92 0.45 3.83 0.67 0.0814 ns 

sorbitol 107.31 22.17 104.72 4.68 0.0903 ns 0.36 0.04 0.48 0.04 0.0874 ns 

glycerol 4386.22 270.51 4130.74 171.42 0.4299 ns 20.26 4.67 27.71 5.92 0.3955 ns 

sucrose 159309.7 9147.16 151523.0 8294.57 0.5437 ns 592.28 146.62 644.17 69.08 0.7392 ns 

maltose 920.56 171.92 1190.07 225.68 0.2629 ns 1.31 0.34 2.05 0.21 0.1070 ns 

lactose 18.90 5.49 24.93 2.47 0.3147 ns 0.06 0.03 0.06 0.01 0.9497 ns 

glycerate 2065.22 197.52 1985.05 114.87 0.7226 ns 4.58 1.24 5.93 0.46 0.2977 ns 

lactate 7044.67 699.58 5493.05 318.05 0.0604 ns 16.32 3.65 43.30 24.92 0.4045 ns 

�-ketoglutarate 38.85 2.84 53.29 2.41 0.0036 ** 0.31 0.05 0.41 0.01 0.0653 ns 

fumarate 110262.7 4564.4 113050.3 5585.62 0.7160 ns 655.94 134.57 711.12 74.73 0.7158 ns 

succinate 889.90 92.87 731.02 61.57 0.1753 ns 3.38 0.74 2.78 0.97 0.6627 ns 

glycolic acid 1332.50 119.91 1309.15 158.63 0.8862 ns 9.99 0.30 9.28 0.73 0.3133 ns 

gluconic acid 82.21 5.67 110.1 6.04 0.0091 ** 0.003 0.001 0.007 0.003 0.2719 ns 

maleic acid 746.66 119.57 746.87 46.76 0.9986 ns 3.13 0.54 3.05 0.18 0.8804 ns 

malic acid 27470.10 3079.74 23732.19 1237.55 0.2584 ns 107.18 23.60 123.57 14.18 0.5548 ns 

�



Manuscript 3 

�

123 

Supplemental Table 8: Total amino acid levels of eight-week old rosettes of col-0, re-6, and cue1 

before budding and flowering. Plants were grown under 16-h/8-h and 12-h/12-h light/dark cycle at 100 

�E/m
2
/s. Samples were taken in the middle of the light period.. Error bars represent S.E. Asterisks 

indicate significance levels. n � 4. Sample values at each condition are not comparable among each 

other. 
Total amino acids at Average (col-0) ± S.E. Average (re-6) ± S.E. p-value Sig. lev. 

16-h light/8-h dark FW 
basis 

453.30 16.77 639.01 20.85 0.0001 *** 

12-hlight/12-h dark FW 
basis 

36.03 1.90 37.17 3.87 0.9042 ns 

16-h light/8-h dark leaf 
area basis 

59815.89 2351.61 82404.39 5303.78 0.0056 ** 

12-h light/12-h dark leaf 
area basis 

396.50 103.29 527.81 67.70 0.3158 ns 
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Supplemental Table 9: Relative steady state metabolite levels of eight week old rosettes of col-0, re-

6, and cue1 before budding and flowering. Time course metabolite profiling during 16-h/8-h light/dark 

cycle with sampling in the middle of the light period (14:00), one hour before dark (21:00), middle of 

the dark period (2:00), and one hour before the light period (5:00). Error bars represent S.E. Asterisks 

indicate significance levels. n � 4. Numbers in brackets indicate deviating replicate numbers.Sample 

values at each condition are not comparable among each other.  
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Supplemental Table 10: Steady state purine contents of eight week old rosettes of col-0, re-6, and 

cue1 before flowering. Plants were grown under 12-h/12-h light/dark cycle at 100 �E/m
2
/s. Samples 

were taken in the middle of te light period. Error bars represent S.E. Asterisks (*) indicate the 

significance level. n(col) = 4, n (re-6) = 5. ade: adenine; ado: adenosine; gua: guanine; guo: 

guanosine; hyp: hypoxanthine; ino: inosine; xan: xanthine; xao: xanthosine. 
Purine/purine 

derivate 

col-0 [pmol/g] re-6 [pmol/g] 
p-value Sig. lev. 

cue1 [pmol/g] 
p-value Sig. lev. 

Aver. ± S.E. Aver. ± S.E. Aver. ± S.E. 

Ade 5031.707 445.948 6363.488 482.926 0.0884 ns 8345.488 545.817 0.0027 ** 
Ado 342.741 51.640 489.659 25.178 0.0289 * 553.061 31.391 0.0082 ** 
Gua 113.315 29.371 108.753 20.681 0.0074 ns 556.360 102.463 0.0074 ** 
Guo 3695.770 482.680 3628.998 634.730 0.9385 ns 5157.996 608.424 0.1139 ns 
Hyp 229.905 39.539 158.383 17.101 0.1152 ns 462.643 70.209 0.0316 * 
Ino 574.058 112.228 495.765 75.866 0.5684 ns 653.694 135.885 0.6764 ns 
Xan 1856.396 142.049 1831.015 65.033 0.8659 ns 2952.108 233.565 0.0072 ** 
Xao 1008.160 33.741 1315.304 148.814 0.1161 ns 3237.691 298.742 0.0003 *** 

Total auxins 12582.051 528.899 14391.365 697.687 0.1373 ns 21918.587 1120.578 0.0003 *** 

 

 

Supplemental Table 11: Chlorophyll (Chl) concentrations and Chl a/ Chl b ratio of col-0 and re-6.  
 

 Average (Col-0) ± S.E. Average (re-6) ± S.E. p-value Sig. level 

Chl a 0.246 0.009 0.212 0.007 0.0099 ** 

Chl b 0.080 0.003 0.069 0.002 0.0081 ** 

Total Chl 0.328 0.012 0.282 0.008 0.0093 ** 

Chl a/ Chl b 3.068 0.014 3.048 0.022 0.4315 ns 

 

 

Supplemental Table 12: Gene-specific primers used for cloning. Restriction sites (RS) are 

underlined, start-ATG and stop codons are in bold. Further properties are indicated in the column 

“comments”. FP = forward primer, RP = reverse primer. Lowercase letters indicate spacer sequence, 

which are necessary to be in frame with a tag in the final vector.  
Name Sequence in 5`- 3`- orientation Direction Comments 

CR1 GGGGACAAGTTTGTACAAAAAAGCAGGCTccaccATGGCAGGATGTGCAATG FP Italic: attR1 

CR2 GGGGACCACTTTGTACAAGAAAGCTGGGTTCACTGACAACCGCTCAATC RP Italic: attR2 

CR4 GGGGACCACTTTGTACAAGAAAGCTGGGTcCTGACAACCGCTCAATCTTG RP Italic: attR2 

CR6 GGGGACAAGTTTGTACAAAAAAGCAGGCTccaccATGGGTGGTTCAGGTAGGCAAAG FP Italic: attR1 

CR19 GGGGACCACTTTGTACAAGAAAGCTGGGTCTTACCGTTTGGCAGTCATGATAAGAT RP Italic: attR2 

CR39 TTCAATGTCCCTGCCATGTA FP - 

CR40 TGAACAATCGATGGACCTGA RP - 

CR43 GGATATGTCCTGCGGGTAAA FP - 

CR47 ATTTGTGTACGCCCGACAGT RP - 

CR48 AAAGATTTCTGGGCGGAGTT FP - 

CR49 ATTGCCAAATGTTTGAACGA RP - 

CR51 CTATGGAGGGAGTGCCTTACC FP - 

CR52 TACCACACGTGCAAGAGACTG RP - 

CR53 ATTTTGCCGATTTCGGAAC - LBb1.3 T-DNA primer  

CR116 GGGGACCACTTTGTACAAGAAAGCTGGGTcTCTAATCCGCAAAACAGGCA RP - 

CR161 ATGGCAGGATGTGCAATGAAT FP - 

CR162 TCACTGACAACCGCTCAATCTT RP - 

F ATCTTATCATGACTGCCAAACG  FP - 

R1 ACATGACCCTTTCGATTTTAGC RP - 

R2 ACCGGGATGTTCTCTTCTGA RP - 
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Supplemental Data 

These tables will be provided as EXCEL files in the publication.  

Supplemental Data1. Genes co-regulated with RE (At2g33786). 500 top hits inferred from the Atted-II 

database. n.a.: not assigned. Arabidopsis genome identifier. 
AGI Name Annotation 

At2g37860� LCD1� LCD1 (LOWER CELL DENSITY 1)�

At1g19920� APS2� APS2; sulfate adenylyltransferase (ATP)�

At1g33040� NACA5� NACA5 (NASCENT POLYPEPTIDE-ASSOCIATED COMPLEX SUBUNIT ALPHA-LIKE PROTEIN 5)�

At5g47630� mtACP3� mtACP3 (mitochondrial acyl carrier protein 3); acyl carrier/ cofactor binding�

At3g49680� BCAT3� BCAT3 (BRANCHED-CHAIN AMINOTRANSFERASE 3); branched-chain-amino-acid transaminase/ catalytic�

At5g17630� translocator� glucose-6-phosphate/phosphate translocator, putative�

At1g31230� AK-HSDH I� AK-HSDH I (ASPARTATE KINASE-HOMOSERINE DEHYDROGENASE I); aspartate kinase/ homoserine dehydrogenase�

258365_s_
at� n.a.� At5g11880;At3g14390�

At5g03300� ADK2� ADK2 (ADENOSINE KINASE 2); adenosine kinase/ copper ion binding / kinase�

259138_s_
at� n.a.� At5g04130;At3g10270�

At5g36950� DegP10� DegP10 (DegP protease 10); catalytic/ protein binding / serine-type endopeptidase/ serine-type peptidase�

At2g36230� APG10�
APG10 (ALBINO AND PALE GREEN 10); 1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino]imidazole-4-
carboxamide isomerase�

At4g30020� subtilase� subtilase family protein�

At1g79560� FTSH12� FTSH12 (FTSH PROTEASE 12); ATP-dependent peptidase/ ATPase/ metallopeptidase�

At3g52940� FK� FK (FACKEL); delta14-sterol reductase�

At3g20790� oxidoreductase� oxidoreductase family protein�

At2g22230� dehydratase� beta-hydroxyacyl-ACP dehydratase, putative�

At4g15820� n.a.� n.a.�

At1g20950� kinase�
pyrophosphate--fructose-6-phosphate 1-phosphotransferase-related / pyrophosphate-dependent 6-phosphofructose-1-kinase-
related�

260172_s_
at� n.a.� At5g10330;At1g71920�

At2g43360� BIO2� BIO2 (BIOTIN AUXOTROPH 2); biotin synthase�

At4g33680� AGD2� AGD2 (ABERRANT GROWTH AND DEATH 2); L,L-diaminopimelate aminotransferase/ transaminase�

At4g39120� IMPL2�
IMPL2 (MYO-INOSITOL MONOPHOSPHATASE LIKE 2); 3'(2'),5'-bisphosphate nucleotidase/ L-galactose-1-phosphate 
phosphatase/ inositol or phosphatidylinositol phosphatase/ inositol-1(or 4)-monophosphatase�

At4g22930� PYR4� PYR4 (PYRIMIDIN 4); dihydroorotase/ hydrolase/ hydrolase, acting on carbon-nitrogen (but not peptide) bonds, in cyclic amides�

At5g65010� ASN2� ASN2 (ASPARAGINE SYNTHETASE 2); asparagine synthase (glutamine-hydrolyzing)�

At5g09650� PPa6� AtPPa6 (Arabidopsis thaliana pyrophosphorylase 6); inorganic diphosphatase/ pyrophosphatase�

At3g25860� LTA2� LTA2; dihydrolipoyllysine-residue acetyltransferase�

At1g56050� GTP-binding� GTP-binding protein-related�

At3g13560� hydrolase� glycosyl hydrolase family 17 protein�

At2g37790� reductase� aldo/keto reductase family protein�

At3g53900� UPP� uracil phosphoribosyltransferase, putative / UMP pyrophosphorylase, putative / UPRTase, putative�

At4g26900� HF� AT-HF (HIS HF); imidazoleglycerol-phosphate synthase�

At1g54220� transferase� dihydrolipoamide S-acetyltransferase, putative�

At4g19710� AK-HSDH II� bifunctional aspartate kinase/homoserine dehydrogenase, putative / AK-HSDH, putative�

At5g58480� hydrolase� glycosyl hydrolase family 17 protein�

At3g46940� DUT1� deoxyuridine 5'-triphosphate nucleotidohydrolase family�

At4g24620� PGI1� PGI1 (PHOSPHOGLUCOSE ISOMERASE 1); glucose-6-phosphate isomerase�

At1g64880� ribosome� ribosomal protein S5 family protein�

At2g29690� ASA2� ASA2 (ANTHRANILATE SYNTHASE 2); anthranilate synthase�

At5g12150� PH� pleckstrin homology (PH) domain-containing protein / RhoGAP domain-containing protein�

At4g30330�
ribonucleoprotei
n� small nuclear ribonucleoprotein E, putative / snRNP-E, putative / Sm protein E, putative�

263706_s_
at� n.a.� At1g31180;At5g14200�

At4g23940� protease� FtsH protease, putative�

At5g55280� FTSZ1-1� FTSZ1-1; protein binding / structural molecule�

At3g49500� RDR6� RDR6 (RNA-DEPENDENT RNA POLYMERASE 6); RNA-directed RNA polymerase/ nucleic acid binding�

At1g63940� MDAR6� monodehydroascorbate reductase, putative�

At3g29375� XH� XH domain-containing protein�

At5g40830� transferase� methyltransferase�

At1g52670�
biotin/lipoyl 
attachment� biotin/lipoyl attachment domain-containing protein�

At5g23310� FSD3� FSD3 (FE SUPEROXIDE DISMUTASE 3); superoxide dismutase�

At1g13560� AAPT1�
AAPT1 (AMINOALCOHOLPHOSPHOTRANSFERASE 1); phosphatidyltransferase/ phosphotransferase, for other substituted 
phosphate groups�

At1g53240�

malate 
dehydrogenase 
(NAD)� malate dehydrogenase (NAD), mitochondrial�

At3g52170� DNA binding� DNA binding�

At5g49030� OVA2� OVA2 (ovule abortion 2); ATP binding / aminoacyl-tRNA ligase/ catalytic/ isoleucine-tRNA ligase/ nucleotide binding�

At2g37500� ArgJ� arginine biosynthesis protein ArgJ family�

At3g57220� transferase� UDP-GlcNAc:dolichol phosphate N-acetylglucosamine-1-phosphate transferase, putative�

At3g57610� ADSS� ADSS (ADENYLOSUCCINATE SYNTHASE); adenylosuccinate synthase�

At2g41950� n.a.� unknown protein�

At4g25870� n.a.� unknown protein�

At5g19750�

peroxisomal 
membrane 22 
kDa� peroxisomal membrane 22 kDa family protein�

At2g44640� n.a.� n.a.�

At1g16340� KDSA2� ATKDSA2; 3-deoxy-8-phosphooctulonate synthase�

At5g10920� arginosuccinase� argininosuccinate lyase, putative / arginosuccinase, putative�

At1g18090� nuclease� exonuclease, putative�

At2g34640� PTAC12� PTAC12 (PLASTID TRANSCRIPTIONALLY ACTIVE12)�

At1g55490� CPN60B� CPN60B (CHAPERONIN 60 BETA); ATP binding / protein binding�

At5g48830� n.a.� unknown protein�

At5g09240� PC4� transcriptional coactivator p15 (PC4) family protein�

At1g76405� n.a.� unknown protein�

At2g30200� transferase� [acyl-carrier-protein] S-malonyltransferase/ binding / catalytic/ transferase�

At3g25530� GLYR1�
GLYR1 (GLYOXYLATE REDUCTASE 1); 3-hydroxybutyrate dehydrogenase/ phosphogluconate dehydrogenase 
(decarboxylating)�

At5g61130� PDCB1� PDCB1 (PLASMODESMATA CALLOSE-BINDING PROTEIN 1); callose binding / polysaccharide binding�
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At5g20040� IPT9� ATIPT9; ATP binding / tRNA isopentenyltransferase�

At3g06930� PRMT4B� protein arginine N-methyltransferase family protein�

At3g18110� EMB1270� EMB1270 (embryo defective 1270)�

At1g50575� decarboxylase� lysine decarboxylase family protein�

At2g19940� oxidoreductase�
N-acetyl-gamma-glutamyl-phosphate reductase/ NAD or NADH binding / binding / catalytic/ oxidoreductase, acting on the 
aldehyde or oxo group of donors, NAD or NADP as acceptor / protein dimerization�

At5g63040� n.a.� unknown protein�

At4g30810� scpl29� scpl29 (serine carboxypeptidase-like 29); serine-type carboxypeptidase�

At3g16060� kinesin motor� kinesin motor family protein�

At5g09995� n.a.� unknown protein�

At2g14660� n.a.� unknown protein�

At5g67150� transferase� transferase family protein�

At5g44785� OSB3� OSB3 (ORGANELLAR SINGLE-STRANDED DNA BINDING PROTEIN 3); single-stranded DNA binding�

At3g19720� ARC5� ARC5 (ACCUMULATION AND REPLICATION OF CHLOROPLAST 5); GTP binding / GTPase�

At3g43610� tubulin binding� tubulin binding�

At1g78370� GSTU20� ATGSTU20 (GLUTATHIONE S-TRANSFERASE TAU 20); glutathione transferase�

At3g25470�
bacterial 
hemolysin� bacterial hemolysin-related�

At4g23740� kinase� leucine-rich repeat transmembrane protein kinase, putative�

At4g25890� RPP3A� 60S acidic ribosomal protein P3 (RPP3A)�

At5g22640� emb1211� emb1211 (embryo defective 1211)�

258977_s_
at� n.a.� At3g02020;At5g14060�

At5g66530� epimerase� aldose 1-epimerase family protein�

At3g09820� ADK1� ADK1 (adenosine kinase 1); adenosine kinase/ copper ion binding�

At2g18990� TXND9� TXND9 (THIOREDOXIN DOMAIN-CONTAINING PROTEIN 9 HOMOLOG)�

At5g62890� permease� permease, putative�

At3g24770� CLE41� CLE41 (CLAVATA3/ESR-RELATED 41); protein binding / receptor binding�

At3g02870� VTC4�
VTC4; 3'(2'),5'-bisphosphate nucleotidase/ L-galactose-1-phosphate phosphatase/ inositol or phosphatidylinositol phosphatase/ 
inositol-1(or 4)-monophosphatase�

At3g15680� Ran-binding� zinc finger (Ran-binding) family protein�

At3g58610� isomerase� ketol-acid reductoisomerase�

At1g59990� DEAD� DEAD/DEAH box helicase, putative (RH22)�

259842_at� n.a.� At1g73602;At1g73600�

At4g28706� kinase� pfkB-type carbohydrate kinase family protein�

At3g55010� PUR5� PUR5; ATP binding / phosphoribosylformylglycinamidine cyclo-ligase�

At5g23740� RPS11-BETA� RPS11-BETA (RIBOSOMAL PROTEIN S11-BETA); structural constituent of ribosome�

At4g17520� RNA-binding� nuclear RNA-binding protein, putative�

At5g20590� n.a.� unknown protein�

248633_at� n.a.� n.a.�

At2g31790� transferase� UDP-glucoronosyl/UDP-glucosyl transferase family protein�

249424_s_
at� n.a.� At5g40080;At5g39800�

At4g27080� PDI7� thioredoxin family protein�

At1g04520� PDLP2� PDLP2 (PLASMODESMATA-LOCATED PROTEIN 2)�

At4g16340� SPK1� SPK1 (SPIKE1); GTP binding / GTPase binding / guanyl-nucleotide exchange factor�

At2g46110� KPHMT1� KPHMT1 (KETOPANTOATE HYDROXYMETHYLTRANSFERASE 1); 3-methyl-2-oxobutanoate hydroxymethyltransferase�

At1g21880� LYM1� LYM1 (LYSM DOMAIN GPI-ANCHORED PROTEIN 1 PRECURSOR)�

At2g19720� rps15ab� rps15ab (ribosomal protein S15A B); structural constituent of ribosome�

At3g01120� MTO1� MTO1 (METHIONINE OVERACCUMULATION 1); cystathionine gamma-synthase�

At1g18340� transcription� basal transcription factor complex subunit-related�

At1g76400� ribophorin I� ribophorin I family protein�

At1g15000� scpl50� scpl50 (serine carboxypeptidase-like 50); serine-type carboxypeptidase�

At3g04340� emb2458� emb2458 (embryo defective 2458); ATP binding / ATPase/ metalloendopeptidase/ nucleoside-triphosphatase/ nucleotide binding�

At4g13430� IIL1� IIL1 (ISOPROPYL MALATE ISOMERASE LARGE SUBUNIT 1); 4 iron, 4 sulfur cluster binding / hydro-lyase/ lyase�

At4g36660�  � unknown protein�

At4g13720� HAM1� inosine triphosphate pyrophosphatase, putative / HAM1 family protein�

At5g10240� ASN3� ASN3 (ASPARAGINE SYNTHETASE 3); asparagine synthase (glutamine-hydrolyzing)�

At3g15380� transporter� choline transporter-related�

At5g40150� peroxidase� peroxidase, putative�

At4g13170� RPL13aC� 60S ribosomal protein L13A (RPL13aC)�

At3g16290� EMB2083�
EMB2083 (embryo defective 2083); ATP binding / ATP-dependent peptidase/ ATPase/ metalloendopeptidase/ metallopeptidase/ 
nucleoside-triphosphatase/ nucleotide binding / serine-type endopeptidase�

At3g07140�

GPI 
transamidase 
component 
Gpi16 subunit� GPI transamidase component Gpi16 subunit family protein�

At5g60940� transducin � transducin family protein / WD-40 repeat family protein�

At3g48610�
phosphoesteras
e� phosphoesterase family protein�

At1g28395� n.a.� unknown protein�

At4g15790� n.a.� unknown protein�

At1g31860� IE� AT-IE; phosphoribosyl-AMP cyclohydrolase/ phosphoribosyl-ATP diphosphatase�

At4g04750� transporter� carbohydrate transmembrane transporter/ sugar:hydrogen symporter�

At3g52960�
peroxiredoxin 
type 2� peroxiredoxin type 2, putative�

At5g16715� EMB2247� EMB2247 (embryo defective 2247); ATP binding / aminoacyl-tRNA ligase/ nucleotide binding / valine-tRNA ligase�

At3g53580� epimerase� diaminopimelate epimerase family protein�

At2g35040� AICARFT� AICARFT/IMPCHase bienzyme family protein�

At5g46290� KAS1�
KAS I (3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE I); catalytic/ fatty-acid synthase/ transferase, transferring acyl 
groups other than amino-acyl groups�

At3g62060�
pectinacetylester
ase� pectinacetylesterase family protein�

At4g12390� PME1� PME1 (PECTIN METHYLESTERASE INHIBITOR 1); enzyme inhibitor/ pectinesterase/ pectinesterase inhibitor�

At3g49470� NACA2� NACA2 (NASCENT POLYPEPTIDE-ASSOCIATED COMPLEX SUBUNIT ALPHA-LIKE PROTEIN 2)�

At2g04280� n.a.� unknown protein�

At3g18130� RACK1C_AT� RACK1C_AT (RECEPTOR FOR ACTIVATED C KINASE 1 C); nucleotide binding�

At2g24970� n.a.� unknown protein�

At1g60660� CB5LP� CB5LP (CYTOCHROME B5-LIKE PROTEIN); heme binding�

At1g16350� dehydrogenase� inosine-5'-monophosphate dehydrogenase, putative�

At1g80850� glycosylase� methyladenine glycosylase family protein�

At5g42480� ARC6� ARC6 (ACCUMULATION AND REPLICATION OF CHLOROPLASTS 6); protein binding�

At1g49630� PREP2�
ATPREP2 (ARABIDOPSIS THALIANA PRESEQUENCE PROTEASE 2); catalytic/ metal ion binding / metalloendopeptidase/ 
metallopeptidase/ zinc ion binding�

At1g66820� glycine-rich� glycine-rich protein�

At4g33760� tRNA syn� tRNA synthetase class II (D, K and N) family protein�
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At3g21300� transferase� RNA methyltransferase family protein�

253773_s_
at�

n.a.�
At4g28360;At1g52370�

267237_s_
at�

n.a.�
At2g44040;At3g59890�

At2g25830� YebC� YebC-related�

At1g64790� binding� binding�

At2g35155� catalytic� catalytic�

At1g55130�
endomembrane 
70� endomembrane protein 70, putative�

At1g09830� PUR2� phosphoribosylamine--glycine ligase (PUR2)�

At3g55400� OVA1� OVA1 (OVULE ABORTION 1); ATP binding / aminoacyl-tRNA ligase/ methionine-tRNA ligase/ nucleotide binding�

At3g23940� dehydratase� dehydratase family�

At4g18460� deacylase� D-Tyr-tRNA(Tyr) deacylase family protein�

At3g13180� NOL1� NOL1/NOP2/sun family protein / antitermination NusB domain-containing protein�

250282_at�  �  �

At3g16480� MPPalpha�
MPPalpha (mitochondrial processing peptidase alpha subunit); catalytic/ metal ion binding / metalloendopeptidase/ zinc ion 
binding�

At1g29880� ligase� glycyl-tRNA synthetase / glycine--tRNA ligase�

At4g24830� synthase� arginosuccinate synthase family�

At4g24780� lyase� pectate lyase family protein�

At3g60440� n.a.�  �

At4g32570� TIFY8� TIFY8 (TIFY DOMAIN PROTEIN 8)�

245810_at� n.a.� At1g38065;At1g38131�

At5g19670� exostosin� exostosin family protein�

At4g25740� RPS10A� 40S ribosomal protein S10 (RPS10A)�

At5g10560� hydrolase� glycosyl hydrolase family 3 protein�

At1g26100� B561� cytochrome B561 family protein�

At4g00810� RPP1B� 60S acidic ribosomal protein P1 (RPP1B)�

At1g07070� RPL35aA� 60S ribosomal protein L35a (RPL35aA)�

At3g17170� RFC3� RFC3 (REGULATOR OF FATTY-ACID COMPOSITION 3); structural constituent of ribosome�

At4g36470� transferase� S-adenosyl-L-methionine:carboxyl methyltransferase family protein�

At5g10910� methylase� mraW methylase family protein�

At4g26300� emb1027� emb1027 (embryo defective 1027); ATP binding / aminoacyl-tRNA ligase/ arginine-tRNA ligase/ nucleotide binding�

At5g26780� SHM2�
SHM2 (SERINE HYDROXYMETHYLTRANSFERASE 2); catalytic/ glycine hydroxymethyltransferase/ pyridoxal phosphate 
binding�

At3g27740� CARA�
CARA (CARBAMOYL PHOSPHATE SYNTHETASE A); carbamoyl-phosphate synthase (glutamine-hydrolyzing)/ carbamoyl-
phosphate synthase/ catalytic�

At1g78060� hydrolase� glycosyl hydrolase family 3 protein�

At1g67950� RRM� RNA recognition motif (RRM)-containing protein�

At5g40810� cytochrome c1� cytochrome c1, putative�

At5g27820� L18� ribosomal protein L18 family protein�

At3g52390� nuclease� tatD-related deoxyribonuclease family protein�

At5g01590� n.a.� unknown protein�

At1g21440� mutase� mutase family protein�

At1g14810� dehydrogenase� semialdehyde dehydrogenase family protein�

At5g41880� POLA3� POLA3; DNA primase�

At3g27230� n.a.� n.a.�

263601_s_
at�

n.a.�
At4g34570;At2g16370�

At5g08610� RH26� DEAD box RNA helicase (RH26)�

At2g02500� ISPD� ISPD; 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase�

At5g60670� RPL12C� 60S ribosomal protein L12 (RPL12C)�

At5g64580� ATPase� AAA-type ATPase family protein�

At2g39670� SAM� radical SAM domain-containing protein�

At2g31670� n.a.� n.a.�

At1g15710� dehydrogenase� prephenate dehydrogenase family protein�

At3g22780� TSO1� TSO1 (CHINESE FOR 'UGLY'); transcription factor�

At3g66658� ALDH22a1� ALDH22a1 (Aldehyde Dehydrogenase 22a1); 3-chloroallyl aldehyde dehydrogenase/ oxidoreductase�

At2g17630� transferase� phosphoserine aminotransferase, putative�

At3g04840� RPS3aA� 40S ribosomal protein S3A (RPS3aA)�

At4g39280� ligase� phenylalanyl-tRNA synthetase, putative / phenylalanine--tRNA ligase, putative�

At1g65900� n.a.� unknown protein�

At5g19620� OEP80� OEP80 (OUTER ENVELOPE PROTEIN OF 80 KDA)�

At1g62330� n.a.� unknown protein�

At1g75330� OTC�
OTC (ORNITHINE CARBAMOYLTRANSFERASE); amino acid binding / carboxyl- or carbamoyltransferase/ ornithine 
carbamoyltransferase�

At4g09550� GIP1� unknown protein�

At2g15290� TIC21�
TIC21 (TRANSLOCON AT INNER MEMBRANE OF CHLOROPLASTS 21); copper uptake transmembrane transporter/ iron ion 
transmembrane transporter/ protein homodimerization�

At5g16130� RPS7C� 40S ribosomal protein S7 (RPS7C)�

At2g18400� ribosome� ribosomal protein L6 family protein�

At5g17530� mutase� phosphoglucosamine mutase family protein�

At1g21650� binding� ATP binding / protein binding�

At5g27740� EMB2775� EMB2775 (EMBRYO DEFECTIVE 2775); DNA binding / nucleoside-triphosphatase/ nucleotide binding�

At1g34430� EMB3003� EMB3003 (embryo defective 3003); acyltransferase/ dihydrolipoyllysine-residue acetyltransferase/ protein binding�

At5g04510� PDK1�
PDK1 (3'-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE 1); 3-phosphoinositide-dependent protein kinase/ kinase/ 
phosphoinositide binding / protein binding / protein kinase�

At5g07320�
mitochondrial 
substrate carrier� mitochondrial substrate carrier family protein�

At2g01120� ORC4� ORC4 (ORIGIN RECOGNITION COMPLEX SUBUNIT 4); protein binding�

At4g17540� n.a.� unknown protein�

At1g14410� WHY1� WHY1 (WHIRLY 1); DNA binding / telomeric DNA binding�

At3g02660� emb2768�
emb2768 (EMBRYO DEFECTIVE 2768); ATP binding / RNA binding / aminoacyl-tRNA ligase/ nucleotide binding / tyrosine-tRNA 
ligase�

At1g74260� PUR4� PUR4 (purine biosynthesis 4); ATP binding / catalytic/ phosphoribosylformylglycinamidine synthase�

At2g47590� PHR2� PHR2 (photolyase/blue-light receptor 2); DNA photolyase�

At5g13120� CYP20-2� peptidyl-prolyl cis-trans isomerase cyclophilin-type family protein�

At2g01250� RPL7B� 60S ribosomal protein L7 (RPL7B)�

At2g48120� PAC� PAC (PALE CRESS)�

At4g13050� thioesterase�
acyl-(acyl carrier protein) thioesterase, putative / acyl-ACP thioesterase, putative / oleoyl-(acyl-carrier protein) hydrolase, putative 
/ S-acyl fatty acid synthase thioesterase, putative�

At1g70280� NHL repeat� NHL repeat-containing protein�

At5g53620� n.a.� unknown protein�

At5g14210� kinase� leucine-rich repeat transmembrane protein kinase, putative�

At2g39290� PGP1� PGP1 (PHOSPHATIDYLGLYCEROLPHOSPHATE SYNTHASE 1); CDP-alcohol phosphatidyltransferase/ CDP-diacylglycerol-
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At2g03350� n.a.� unknown protein�

At2g45470� FLA8� FLA8 (FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 8)�

At4g09730� DEAD� DEAD/DEAH box helicase, putative�

At1g13730� RRM� nuclear transport factor 2 (NTF2) family protein / RNA recognition motif (RRM)-containing protein�

At5g48580� FKBP15-2� FKBP15-2; FK506 binding / peptidyl-prolyl cis-trans isomerase�

At2g28310� n.a.� unknown protein�

At1g48630� RACK1B_AT� RACK1B_AT (RECEPTOR FOR ACTIVATED C KINASE 1 B); nucleotide binding�

At1g06950� TIC110� TIC110 (TRANSLOCON AT THE INNER ENVELOPE MEMBRANE OF CHLOROPLASTS 110)�

At1g80560� IMD2� 3-isopropylmalate dehydrogenase, chloroplast, putative�

At5g41760� transporter� nucleotide-sugar transporter family protein�

At1g09660� KH quaking� KH domain-containing quaking protein, putative�

At1g07370� PCNA1�
PCNA1 (PROLIFERATING CELLULAR NUCLEAR ANTIGEN); DNA binding / DNA polymerase processivity factor/ protein 
binding�

At3g12390� alpha-NAC� nascent polypeptide associated complex alpha chain protein, putative / alpha-NAC, putative�

At1g34010� n.a.� unknown protein�

At2g31170� SYCO ARATH� SYCO ARATH; ATP binding / aminoacyl-tRNA ligase/ cysteine-tRNA ligase/ nucleotide binding�

At4g28210� emb1923� emb1923 (embryo defective 1923)�

At1g67320� DNA primase� DNA primase, large subunit family�

At3g57050� CBL� CBL (cystathionine beta-lyase); cystathionine beta-lyase�

At5g61300� n.a.� unknown protein�

At4g39460� SAMC1� SAMC1 (S-ADENOSYLMETHIONINE CARRIER 1); S-adenosylmethionine transmembrane transporter/ binding�

At5g51560� kinase� leucine-rich repeat transmembrane protein kinase, putative�

At2g25840� OVA4� OVA4 (ovule abortion 4); ATP binding / aminoacyl-tRNA ligase/ nucleotide binding / tryptophan-tRNA ligase�

At5g04430� BTR1L� BTR1L (BINDING TO TOMV RNA 1L (LONG FORM)); nucleic acid binding / single-stranded RNA binding�

At2g05830� translation� eukaryotic translation initiation factor 2B family protein / eIF-2B family protein�

At1g16020� n.a.� unknown protein�

At5g37290�
armadillo/beta-
catenin repeat� armadillo/beta-catenin repeat family protein�

At3g23070� CFM3A� RNA binding�

At1g69700� HVA22C� ATHVA22C�

267553_s_
at� n.a.� At2g32180;At2g32650�

At2g18910� glycoprotein� hydroxyproline-rich glycoprotein family protein�

At5g13980� hydrolase� glycosyl hydrolase family 38 protein�

At5g49160� MET1� MET1 (METHYLTRANSFERASE 1); methyltransferase�

At3g62110� pectinase� glycoside hydrolase family 28 protein / polygalacturonase (pectinase) family protein�

At2g28000� CPN60A� CPN60A (CHAPERONIN-60ALPHA); ATP binding / protein binding�

At3g08030� n.a.� unknown protein�

At5g50420� n.a.� unknown protein�

At3g07430� emb1990� emb1990 (embryo defective 1990)�

At3g62390� n.a.� unknown protein�

At5g26790� n.a.� unknown protein�

At1g15080� LPP2� LPP2 (LIPID PHOSPHATE PHOSPHATASE 2); acid phosphatase/ phosphatidate phosphatase�

At3g52750� FTSZ2-2� FTSZ2-2; GTP binding / GTPase/ structural molecule�

At2g36620� RPL24A� RPL24A (ribosomal protein L24); structural constituent of ribosome�

At2g44050� COS1� COS1 (COI1 SUPPRESSOR1); 6,7-dimethyl-8-ribityllumazine synthase�

At3g56120� Met-10+ like� Met-10+ like family protein�

At3g46740� TOC75-III�
TOC75-III (TRANSLOCON AT THE OUTER ENVELOPE MEMBRANE OF CHLOROPLASTS 75-III); P-P-bond-hydrolysis-driven 
protein transmembrane transporter�

At4g34160� CYCD3;1� CYCD3;1 (CYCLIN D3;1); cyclin-dependent protein kinase regulator/ protein binding�

At4g17610� tRNA� tRNA/rRNA methyltransferase (SpoU) family protein�

At2g21790� RNR1� RNR1 (RIBONUCLEOTIDE REDUCTASE 1); ATP binding / protein binding / ribonucleoside-diphosphate reductase�

At1g80690� n.a.� unknown protein�

At4g10470� n.a.� unknown protein�

At3g56370� kinase� leucine-rich repeat transmembrane protein kinase, putative�

At5g35740� hydrolase� glycosyl hydrolase family protein 17�

At1g19710� transferase� glycosyl transferase family 1 protein�

At1g13380� n.a.� unknown protein�

At3g50240� KICP-02� KICP-02; ATP binding / microtubule motor�

At4g20270� BAM3� BAM3 (BARELY ANY MERISTEM 3); ATP binding / protein binding / protein kinase/ protein serine/threonine kinase�

At5g45590� n.a.� unknown protein�

At1g03687� n.a.� n.a.�

At1g19800� TGD1� TGD1 (TRIGALACTOSYLDIACYLGLYCEROL 1); lipid transporter�

At4g22756� SMO1-2�
SMO1-2 (STEROL C4-METHYL OXIDASE 1-2); 4,4-dimethyl-9beta,19-cyclopropylsterol-4alpha-methyl oxidase/ C-4 methylsterol 
oxidase/ catalytic�

At3g07190� n.a.� n.a.�

At1g64650� n.a.� n.a.�

At5g11690� TIM17-3� ATTIM17-3; P-P-bond-hydrolysis-driven protein transmembrane transporter/ protein transporter�

At5g57170� MIF� macrophage migration inhibitory factor family protein / MIF family protein�

At5g67070� RALFL34� RALFL34 (ralf-like 34); signal transducer�

At2g47940� DEGP2� DEGP2; serine-type endopeptidase/ serine-type peptidase�

At5g20980� ATMS3� ATMS3 (methionine synthase 3); 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase/ methionine synthase�

At5g05560� EMB2771� EMB2771 (EMBRYO DEFECTIVE 2771); ubiquitin-protein ligase�

At2g40480� n.a.� unknown protein�

At3g20390� L-PSP� endoribonuclease L-PSP family protein�

At2g29260� dehydrogenase� tropinone reductase, putative / tropine dehydrogenase, putative�

At1g48520� GATB�
GATB (GLU-ADT SUBUNIT B); carbon-nitrogen ligase, with glutamine as amido-N-donor / glutaminyl-tRNA synthase (glutamine-
hydrolyzing)/ ligase�

At5g17660� transferase� tRNA (guanine-N7-)-methyltransferase�

At2g19670� PRMT1A� PRMT1A (PROTEIN ARGININE METHYLTRANSFERASE 1A); protein-arginine N-methyltransferase�

At4g24175� n.a.� unknown protein�

At5g46280� MCM3� DNA replication licensing factor, putative�

At1g60070� transporter� binding / clathrin binding / protein binding / protein transporter�

At1g48230� translocator� phosphate translocator-related�

At3g21110� PUR7� PUR7 (PURIN 7); phosphoribosylaminoimidazolesuccinocarboxamide synthase�

At5g19370� PPIASE� rhodanese-like domain-containing protein / PPIC-type PPIASE domain-containing protein�

At1g21560� n.a.� unknown protein�

At1g78180� binding� binding�

At4g31210� isomerase� DNA topoisomerase family protein�

At3g06680� RPL29B� 60S ribosomal protein L29 (RPL29B)�

At4g10480� alpha-NAC� nascent polypeptide associated complex alpha chain protein, putative / alpha-NAC, putative�

At5g59870� HTA6� HTA6; DNA binding�

At3g53190� lyase� pectate lyase family protein�

At3g11250� RPP0C� 60S acidic ribosomal protein P0 (RPP0C)�

At1g67490� GCS1� GCS1 (GLUCOSIDASE 1); alpha-glucosidase�
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At5g57440� GS1� GS1; catalytic/ hydrolase�

At3g16100� RABG3C� ATRABG3C (ARABIDOPSIS RAB GTPASE HOMOLOG G3C); GTP binding�

At5g47210� RNA-binding� nuclear RNA-binding protein, putative�

At1g47290� 3BETAHSD�
AT3BETAHSD/D1 (3BETA-HYDROXYSTEROID-DEHYDROGENASE/DECARBOXYLASE ISOFORM 1); 3-beta-hydroxy-delta5-
steroid dehydrogenase/ sterol-4-alpha-carboxylate 3-dehydrogenase (decarboxylating)�

At1g66430� kinase� pfkB-type carbohydrate kinase family protein�

At5g22440� RPL10aC� 60S ribosomal protein L10A (RPL10aC)�

At1g29900� CARB� CARB (CARBAMOYL PHOSPHATE SYNTHETASE B); ATP binding / carbamoyl-phosphate synthase/ catalytic�

At2g29760� OTP81� pentatricopeptide (PPR) repeat-containing protein�

At2g20850� SRF1� SRF1 (strubbelig receptor family 1); kinase�

At1g67690�
metalloendopepti
dase� metalloendopeptidase�

At3g13030� hAT dimerisation� hAT dimerisation domain-containing protein�

At4g13650� PPR� pentatricopeptide (PPR) repeat-containing protein�

At5g51100� FSD2� FSD2 (FE SUPEROXIDE DISMUTASE 2); superoxide dismutase�

At2g39460� RPL23AA� RPL23AA (RIBOSOMAL PROTEIN L23AA); RNA binding / nucleotide binding / structural constituent of ribosome�

At3g06040� L12� ribosomal protein L12 family protein�

At2g35780� scpl26� scpl26 (serine carboxypeptidase-like 26); serine-type carboxypeptidase�

At2g27130� LTP� protease inhibitor/seed storage/lipid transfer protein (LTP) family protein�

At1g62640� KAS III�
KAS III (3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III); 3-oxoacyl-[acyl-carrier-protein] synthase/ catalytic/ 
transferase, transferring acyl groups other than amino-acyl groups�

At5g64816� n.a.� unknown protein�

At4g00370� ANTR2� ANTR2; inorganic phosphate transmembrane transporter/ organic anion transmembrane transporter�

At2g29570� PCNA2� PCNA2 (PROLIFERATING CELL NUCLEAR ANTIGEN 2); DNA binding / DNA polymerase processivity factor�

At4g26760� MAP65-2� MAP65-2�

251331_s_
at� n.a.� At3g61650;At5g05620�

At3g45850� kinesin motor� kinesin motor protein-related�

At2g04845� GNAT� GCN5-related N-acetyltransferase (GNAT) family protein�

At4g30000� DHPS� dihydropterin pyrophosphokinase, putative / dihydropteroate synthase, putative / DHPS, putative�

At3g49670� BAM2� BAM2 (BARELY ANY MERISTEM 2); ATP binding / protein binding / protein kinase/ protein serine/threonine kinase�

At4g05210� transferase� bacterial transferase hexapeptide repeat-containing protein�

At1g11130� SUB� SUB (STRUBBELIG); protein binding / receptor signaling protein serine/threonine kinase�

At1g44900� MCM2� ATP binding / DNA binding / DNA-dependent ATPase�

At2g05990� MOD1� MOD1 (MOSAIC DEATH 1); enoyl-[acyl-carrier-protein] reductase (NADH)/ enoyl-[acyl-carrier-protein] reductase/ oxidoreductase�

At5g46580� PPR� pentatricopeptide (PPR) repeat-containing protein�

At4g38660� thaumatin� thaumatin, putative�

At5g49555� oxidase� amine oxidase-related�

At3g59760� OASC� OASC (O-ACETYLSERINE (THIOL) LYASE ISOFORM C); ATP binding / cysteine synthase�

At5g06050�
dehydration-
responsive� dehydration-responsive protein-related�

258218_at� n.a.� At3g17998;At3g18000�

At1g70310� SPDS2� SPDS2 (spermidine synthase 2); spermidine synthase�

At1g10522� n.a.� unknown protein�

At1g20410� n.a.� unknown protein�

At5g07090� RPS4B� 40S ribosomal protein S4 (RPS4B)�

At5g02870� RPL4D� 60S ribosomal protein L4/L1 (RPL4D)�

At5g59500� n.a.� unknown protein�

At3g16260� TRZ4� TRZ4 (TRNASE Z 4); 3'-tRNA processing endoribonuclease/ catalytic�

At5g63310� NDPK2� NDPK2 (NUCLEOSIDE DIPHOSPHATE KINASE 2); ATP binding / nucleoside diphosphate kinase/ protein binding�

At5g50110� n.a.� n.a.�

At2g33430� DAL1� DAL1 (DIFFERENTIATION AND GREENING-LIKE 1)�

At5g19260� n.a.� unknown protein�

At4g12880� plastocyanin-like� plastocyanin-like domain-containing protein�

At4g30620� n.a.� unknown protein�

At3g48110� EDD1� EDD1 (EMBRYO-DEFECTIVE-DEVELOPMENT 1); glycine-tRNA ligase�

At2g47580� U1A� U1A (SPLICEOSOMAL PROTEIN U1A); RNA binding / nucleic acid binding / nucleotide binding�

At4g05450� MFDX1� adrenodoxin-like ferredoxin 2�

At2g25870� hydrolase� haloacid dehalogenase-like hydrolase family protein�

At3g62120� tRNA syn� tRNA synthetase class II (G, H, P and S) family protein�

At3g20320� TGD2� TGD2 (TRIGALACTOSYLDIACYLGLYCEROL2); lipid transporter/ phospholipid binding�

At5g08020� RPA70B� RPA70B (RPA70-KDA SUBUNIT B); DNA binding / nucleic acid binding�

At1g70370� PG2� BURP domain-containing protein / polygalacturonase, putative�

At5g63980� SAL1� SAL1; 3'(2'),5'-bisphosphate nucleotidase/ inositol or phosphatidylinositol phosphatase�

At1g79260� n.a.� unknown protein�

At2g26930� CDPMEK�
ATCDPMEK (4-(CYTIDINE 5'-PHOSPHO)-2-C-METHYL-D-ERITHRITOL KINASE); 4-(cytidine 5'-diphospho)-2-C-methyl-D-
erythritol kinase�

At5g52650� RPS10C� 40S ribosomal protein S10 (RPS10C)�

At5g50375� CPI1� CPI1 (CYCLOPROPYL ISOMERASE); cycloeucalenol cycloisomerase�

At2g42770�

peroxisomal 
membrane 22 
kDa� peroxisomal membrane 22 kDa family protein�

At4g32520� SHM3�
SHM3 (SERINE HYDROXYMETHYLTRANSFERASE 3); catalytic/ glycine hydroxymethyltransferase/ pyridoxal phosphate 
binding�

At5g59850� RPS15aF� 40S ribosomal protein S15A (RPS15aF)�

At4g39620� EMB2453� EMB2453 (embryo defective 2453)�

At1g04020� BARD1� BARD1 (BREAST CANCER ASSOCIATED RING 1); DNA binding / transcription coactivator�

At3g13070� transporter� CBS domain-containing protein / transporter associated domain-containing protein�

At5g42130�
mitochondrial 
substrate carrier� mitochondrial substrate carrier family protein�

At5g61000� RPA70D� replication protein, putative�

At1g79850� RPS17� RPS17 (RIBOSOMAL PROTEIN S17); structural constituent of ribosome�

At2g30695� n.a.� n.a.�

At5g10390� histone H3� histone H3�

At1g36390� chaperonin� co-chaperone grpE family protein�

At1g69200� kinase� kinase�

At5g40480� EMB3012� EMB3012 (embryo defective 3012)�

At3g25660� transferase� glutamyl-tRNA(Gln) amidotransferase, putative�

At5g14100� NAP14� ATNAP14; transporter�

At1g63130� PPR� pentatricopeptide (PPR) repeat-containing protein�

At2g28740� HIS4� HIS4; DNA binding�

At1g56670� hydrolase� GDSL-motif lipase/hydrolase family protein�

At4g38160� pde191� pde191 (pigment defective 191)�

At1g15690� AVP1� AVP1; ATPase/ hydrogen-translocating pyrophosphatase�

At4g16155� dehydrogenase� dihydrolipoyl dehydrogenase�

At2g27810� NAT12� xanthine/uracil permease family protein�
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At5g54880� DTW� DTW domain-containing protein�

At1g09200� histone H3� histone H3�

At1g01080�
ribonucleoprotei
n� 33 kDa ribonucleoprotein, chloroplast, putative / RNA-binding protein cp33, putative�

At1g18250� LP-1� ATLP-1�

At3g63170� isomerase� chalcone isomerase�

At1g69420� zinc finger� zinc finger (DHHC type) family protein�

At3g06730� TRX P� thioredoxin family protein�

At2g20450� RPL14A� 60S ribosomal protein L14 (RPL14A)�

At5g16870� hydrolase� aminoacyl-tRNA hydrolase�

At3g03710� RIF10�
RIF10 (resistant to inhibition with FSM 10); 3'-5'-exoribonuclease/ RNA binding / nucleic acid binding / polyribonucleotide 
nucleotidyltransferase�

At4g26230� RPL31B� 60S ribosomal protein L31 (RPL31B)�

At4g02060� PRL� PRL (PROLIFERA); ATP binding / DNA binding / DNA-dependent ATPase/ nucleoside-triphosphatase/ nucleotide binding�

At4g32915� n.a.� n.a.�

At1g20540� transducin � transducin family protein / WD-40 repeat family protein�

At3g61780� emb1703� emb1703 (embryo defective 1703)�

At4g16390� n.a.� n.a.�

At4g17390� RPL15B� 60S ribosomal protein L15 (RPL15B)�

At5g15770� GNA1�
AtGNA1 (Arabidopsis thaliana glucose-6-phosphate acetyltransferase 1); N-acetyltransferase/ glucosamine 6-phosphate N-
acetyltransferase�

At1g65010� n.a.� unknown protein�

At1g43190�
ribonucleoprotei
n� polypyrimidine tract-binding protein, putative / heterogeneous nuclear ribonucleoprotein, putative�

At1g77750� ribosome� 30S ribosomal protein S13, chloroplast, putative�

At5g10170� MIPS3� MIPS3 (MYO-INOSITOL-1-PHOSTPATE SYNTHASE 3); binding / catalytic/ inositol-3-phosphate synthase�

At1g06960�
ribonucleoprotei
n� small nuclear ribonucleoprotein U2B, putative / spliceosomal protein, putative�

At2g32170� n.a.� n.a.�

At5g64670� L15� ribosomal protein L15 family protein�

At2g32060� RPS12C� 40S ribosomal protein S12 (RPS12C)�

At4g28100� n.a.� unknown protein�

At2g25270� n.a.� unknown protein�

At1g10510� emb2004� emb2004 (embryo defective 2004)�

At5g13280� AK-LYS1� AK-LYS1 (ASPARTATE KINASE 1); aspartate kinase�

At5g67100� ICU2� ICU2 (INCURVATA2); DNA-directed DNA polymerase�

At3g06650� ACLB-1� ACLB-1; ATP citrate synthase�

At2g32400� GLR5� GLR5 (GLUTAMATE RECEPTOR 5); intracellular ligand-gated ion channel�

At2g31840� n.a.�  �

At1g44835� YbaK� YbaK/prolyl-tRNA synthetase family protein�

At2g40316� n.a.� unknown protein�

At3g54750� n.a.� unknown protein�

At5g05990� MAM33� mitochondrial glycoprotein family protein / MAM33 family protein�

At5g14460� transporter� pseudouridine synthase/ transporter�

At1g64580� PPR� pentatricopeptide (PPR) repeat-containing protein�

At2g27590� n.a.� unknown protein�

At1g16780�
pyrophosphatas
e� vacuolar-type H+-translocating inorganic pyrophosphatase, putative�

At4g34290� BAF60b� SWIB complex BAF60b domain-containing protein�

At1g08640� n.a.� unknown protein�

At2g22870� EMB2001� EMB2001 (embryo defective 2001); GTP binding�

At5g07590� WD-40 repeat� WD-40 repeat protein family�

At1g03560� PPR� pentatricopeptide (PPR) repeat-containing protein�

At2g44650� CHL-CPN10� CHL-CPN10 (CHLOROPLAST CHAPERONIN 10); chaperone binding�

At3g16080� RPL37C� 60S ribosomal protein L37 (RPL37C)�

At4g38220� hydrolase� aminoacylase, putative / N-acyl-L-amino-acid amidohydrolase, putative�

At3g55170� RPL35C� 60S ribosomal protein L35 (RPL35C)�

At5g20080� reductase� NADH-cytochrome b5 reductase, putative�

At1g65060� 4CL3� 4CL3; 4-coumarate-CoA ligase�

At3g12930� n.a.�  �

At3g55920� rotamase� peptidyl-prolyl cis-trans isomerase, putative / cyclophilin, putative / rotamase, putative�

At3g20050� TCP-1� ATTCP-1; ATP binding / protein binding / unfolded protein binding�

At2g23950� kinase� leucine-rich repeat family protein / protein kinase family protein�

At3g02060� DEAD� DEAD/DEAH box helicase, putative�

At4g16265� NRPB9B� NRPB9B; DNA binding / DNA-directed RNA polymerase/ nucleic acid binding / transcription regulator/ zinc ion binding�

At2g30460� n.a.�  �

At3g63410� APG1�
APG1 (ALBINO OR PALE GREEN MUTANT 1); 2-methyl-6-phytyl-1,4-benzoquinone methyltransferase/ S-adenosylmethionine-
dependent methyltransferase/ methyltransferase�

At2g05920� subtilase� subtilase family protein�

At5g55580� transcription� mitochondrial transcription termination factor family protein / mTERF family protein�

At1g74690� IQD31� IQD31 (IQ-domain 31); calmodulin binding�

At1g27400� RPL17A� 60S ribosomal protein L17 (RPL17A)�

At5g11480� GTP binding� GTP binding�

At2g19680� ATP synthase� mitochondrial ATP synthase g subunit family protein�

At2g40550� ETG1� ETG1 (E2F TARGET GENE 1)�

At4g18060� clathrin binding� clathrin binding�

260118_s_
at�

n.a.�
At1g33940;At5g18700�

At3g02900� n.a.� unknown protein�

At5g61170� RPS19C� 40S ribosomal protein S19 (RPS19C)�

At5g12860� DiT1� DiT1 (dicarboxylate transporter 1); oxoglutarate:malate antiporter�

At1g73230� NAC� nascent polypeptide-associated complex (NAC) domain-containing protein�

At4g02790� GTP-binding� GTP-binding family protein�

267187_s_
at� n.a.� At3g59970;At2g44160�

At1g71440� PFI� PFI (PFIFFERLING)�

At3g15390� SDE5� SDE5 (silencing defective 5)�

264419_s_
at� n.a.� At5g33320;At1g43310�

At5g58420� RPS4D� 40S ribosomal protein S4 (RPS4D)�

At3g10160� DFC� DFC (DHFS-FPGS HOMOLOG C); tetrahydrofolylpolyglutamate synthase�

At4g17770� TPS5� ATTPS5; protein binding / transferase, transferring glycosyl groups / trehalose-phosphatase�

At3g05560� RPL22B� 60S ribosomal protein L22-2 (RPL22B)�

At5g61420� MYB28� MYB28 (myb domain protein 28); DNA binding / transcription factor�

At2g26730� kinase� leucine-rich repeat transmembrane protein kinase, putative�

At5g65810� n.a.� unknown protein�
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At4g34980� SLP2� SLP2; serine-type peptidase�

At1g09750� DNA-binding� chloroplast nucleoid DNA-binding protein-related�

At3g10140� RECA3� RECA3 (recA homolog 3); ATP binding / DNA binding / DNA-dependent ATPase/ nucleoside-triphosphatase/ nucleotide binding�

 

Supplemental Data 2. Genes co-regulated with RE (At2g33786). Own co-regulational analysis. AGI: 

Arabidopsis genome identifier.  

 

AGI Annotation 

At5g57230 expressed protein| 

At5g56280 
COP9 signalosome subunit 6 / CSN subunit 6 (CSN6A)| identical to CSN complex subunit 6A (Arabidopsis thaliana) GI:18056665, COP9 complex subunit 6 
(Arabidopsis thaliana) GI:15809663; contains Pfam profile PF01398: Mov34/MPN/PAD-1 family; identical to cDNA 

At1g18070 EF-1-alpha-related GTP-binding protein, putative| similar to EF-1-alpha-related GTP-binding protein gi|1009232|gb|AAA79032 

At5g67220 
nitrogen regulation family protein| similar to unknown protein (gb|AAF51525.1) ; contains Pfam domain PF01207: Dihydrouridine synthase (Dus); similar to 
(SP:P45672) NIFR3-like protein (SP:P45672) (Azospirillum brasilense) 

At1g80410 
acetyltransferase-related| low similarity to acetyltransferase Tubedown-1 (Mus musculus) GI:8497318, N-TERMINAL ACETYLTRANSFERASE GB:P12945 
from (Saccharomyces cerevisiae); contains Pfam profile PF00515 TPR Domain 

At5g36950 DegP protease contains similarity to DegP2 protease GI:13172275 from [Arabidopsis thaliana] 

At1g32580 plastid developmental protein DAG, putative| similar to DAG protein, chloroplast precursor (Garden snapdragon) SWISS-PROT:Q38732 

At1g74260 purL-FGAM synthase 

At4g25550 expressed protein| 

At5g47320 40S ribosomal protein S19 ; supported by cDNA: gi_15028320_gb_AY045963.1_ 

At1g29880 glycyl tRNA synthetase, putative similar to glycyl tRNA synthetase GI:577711 from [Homo sapiens];supported by full-length cDNA: Ceres:29666. 

At3g20330 pyrB-ATCase 

At5g58370 expressed protein| 

At4g16700 Phosphatidylserine Decarboxylase 

At1g69210 expressed protein| 

At5g54580 RNA recognition motif (RRM)-containing protein 

At4g32520 
glycine hydroxymethyltransferase, putative / serine hydroxymethyltransferase, putative / serine/threonine aldolase, putative| similar to serine 
hydroxymethyltransferase (Chlamydomonas reinhardtii) GI:17066746; contains Pfam profile PF00464: serine hydroxy 

At3g10050 
threonine ammonia-lyase / threonine dehydratase / threonine deaminase (OMR1)| identical to SP|Q9ZSS6 Threonine dehydratase biosynthetic, chloroplast 
precursor (EC 4.3.1.19, formerly EC 4.2.1.16) (Threonine deaminase) (TD) {Arabidopsis thaliana} 

At5g08420 expressed protein| 

At4g18590 expressed protein| 

At4g16265 
DNA-directed RNA polymerase II, putative| similar to SP|P36958 DNA-directed RNA polymerase II 15.1 kDa polypeptide (EC 2.7.7.6) {Drosophila 
melanogaster}; contains Pfam profile PF02150: RNA polymerases M/15 Kd subunit 

At5g54970 expressed protein| 

At5g52220 expressed protein| ; expression supported by MPSS 

At3g46940 deoxyuridine 5'-triphosphate nucleotidohydrolase family| contains Pfam profile: PF00692 deoxyuridine 5'-triphosphate nucleotidohydrolase 

At3g14740 PHD finger family protein| similar to zinc-finger protein BR140 (PIR|JC2069)(Homo sapiens); contains PHD-finger domain PF00628 

At4g34265 expressed protein| 

At5g16870 expressed protein| 

At4g37660 ribosomal - like protein ribosomal protein L12, Liberobacter africanum, U09675;supported by full-length cDNA: Ceres:41011. 

At3g58470 expressed protein| several hypothetical proteins - Saccharomyces cerevisiae 

At3g57220 UDP-GlcNAc:dolichol phosphate N-acetylglucosamine-1-phosphate transferase, putative 

At1g59600 expressed protein 

At4g39120 
inositol monophosphatase family protein| low similarity to Mono-phosphatase (Streptomyces anulatus) GI:1045231; contains Pfam profile PF00459: Inositol 
monophosphatase family 

At1g47210 cyclin family protein| similar to A-type cyclin (Catharanthus roseus) GI:2190259; contains Pfam profile PF00134: Cyclin, N-terminal domain 

At2g42710 hypothetical protein predicted by genefinder 

At1g64580 
pentatricopeptide (PPR) repeat-containing protein| low similarity to fertility restorer (Petunia x hybrida) GI:22128587; contains Pfam profile PF01535: PPR 
repeat 

At1g65470 chromatin assembly factor-1 (FASCIATA1) (FAS1)| identical to FAS1 (Arabidopsis thaliana) GI:4887626 

At3g56810 expressed protein| 

At2g37790 
aldo/keto reductase family protein| similar to chalcone reductase (Sesbania rostrata)(GI:2792155), and aldose reductase ALDRXV4 (Xerophyta 
viscosa)(GI:4539944), (Hordeum vulgare)(GI:728592) 

At1g15000 serine carboxypeptidase precursor, putative similar to GB:AAD42963 from [Matricaria chamomilla] 

At5g17630 AtXPT 

At2g23350 polyadenylate-binding protein, putative / PABP, putative| 

At3g23940 dehydratase family 

At1g31860 PRS-hisIE 

At5g10920 
argininosuccinate lyase, putative / arginosuccinase, putative| similar to argininosuccinate lyase (Nostoc punctiforme) GI:7672743; contains Pfam profile 
PF00206: Lyase 

At3g14390 
diaminopimelate decarboxylase, putative / DAP carboxylase, putative| similar to diaminopimelate decarboxylase (Arabidopsis thaliana) GI:6562332; 
contains Pfam profiles PF02784: Pyridoxal-dependent decarboxylase pyridoxal binding domain, PF00278: Pyridoxal 

At3g58610 
ketol-acid reductoisomerase| identical to ketol-acid reductoisomerase, chloroplast precursor (EC 1.1.1.86) (Acetohydroxy-acid reductoisomerase) (Alpha-
keto-beta-hydroxylacil reductoisomerase) (Swiss-Prot:Q05758) (Arabidopsis thaliana) 

At1g80560 
3-isopropylmalate dehydrogenase, chloroplast, putative| strong similarity to 3-ISOPROPYLMALATE DEHYDROGENASE PRECURSOR GB:P29102 
SP|P29102 from (Brassica napus) 

At3g53580 diaminopimelate epimerase family protein| contains Pfam profile PF01678: Diaminopimelate epimerase 

At3g05130 expressed protein| ; expression supported by MPSS 

At1g03687 DTW domain-containing protein 

At4g13720 inosine triphosphate pyrophosphatase, putative / HAM1 family protein 

At3g60210 chloroplast chaperonin 10, putative| similar to chloroplast chaperonin 10 GI:14041813 from (Arabidopsis thaliana) 

At2g44040 
dihydrodipicolinate reductase family protein| weak similarity to SP|Q52419 Dihydrodipicolinate reductase (EC 1.3.1.26) (DHPR) {Pseudomonas syringae} ; 
contains Pfam profiles PF01113: Dihydrodipicolinate reductase N-terminus, PF05173: Dihydrodipicolinate r 

At2g33330 33 kDa secretory protein-related| contains Pfam PF01657: Domain of unknown function, duplicated in 33 KDa secretory proteins 

At4g26900 imidazole glycerol phosphate synthase hisHF, chloroplast / IGP synthase / ImGPP synthase / IGPS 

At3g57610 purA-adenyosuccinate synthase 

At2g35040 purH-AICAR transformylase+IMPcyclohydrolase 

At1g75330 
ornithine carbamoyltransferase, chloroplast / ornithine transcarbamylase / OTCase (OTC)| identical to SP|O50039 Ornithine carbamoyltransferase, 
chloroplast precursor (EC 2.1.3.3) (OTCase) (Ornithine transcarbamylase) {Arabidopsis thaliana} 

At2g37500 arginine biosynthesis protein ArgJ family| contains Pfam profile: PF01960 ArgJ family 

At2g43090 aconitase C-terminal domain-containing protein| contains Pfam profile PF00694: Aconitase C-terminal domain 

At4g38100 hypothetical protein ;supported by full-length cDNA: Ceres:21. 

At2g37860 expressed protein|reticulata 

At5g13280 aspartate kinase| identical to aspartate kinase (Arabidopsis thaliana) GI:4376158 

At3g26420 
glycine-rich RNA-binding protein| similar to RNA-binding protein (RZ-1) GB:BAA12064 (Nicotiana sylvestris); contains Pfam profile: PF00076 RNA 
recognition motif. (a.k.a. RRM, RBD, or RNP domain) 

At1g45170 expressed protein 

At1g76405 expressed protein| 

At1g55805 BolA-like family protein 

At2g11890 expressed protein| 
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VII. Addendum 

Experiments and data that were neither published nor included in the Manuscripts are 

presented in this section. These data and tools will be useful for future studies. The 

Addendum is subdivided into two parts: (i) the characterization of reticulata and (ii) the 

transcriptional profiling of mesophyll (M) and bundle sheath (BS) cells. The latter project 

intended to use laser microdissection (LMD) coupled to deep-sequencing to establish a 

transcriptional profile of the Arabidopsis M and BS. The Addendum starts with the hypothesis 

of RE being a novel amino acid transporter. The chapters are streamlined to this hypothesis 

and deal with the aim of the experiment, the results and include a short discussion. Future 

experiments with the appropriate tools are shortly discussed.  

 

 

1. Results of the RETICULATA project 

 

1.1 RE - a potential novel amino acid transporter 

There is strong evidence that re is involved in amino acid metabolism (Manuscripts 1 

and 3). Briefly, this is: all evenly reticulated plants are deregulated in amino acid metabolism; 

CUE1, affected in aromatic amino acid synthesis, is epistatic to RE and thus RE is likely 

involved in the same pathway; RE is co-regulated with amino acid metabolism genes; re 

shows altered amino acid patterns; re has lowered lysine levels; and the basic amino acids 

lysine and arginine revert the re phenotype. Consistent with the plastidic synthesis of most 

amino acids and the plastid envelope localized RE protein, which contains transmembrane 

regions, it is tempting to hypothesize that RE is an amino acid transporter for basic amino 

acids.  

Only little is known about amino acid transporters in plants (Tegeder, 2012). The 

majority of identified transporters is localized to the plasma membrane of the root 

epidermis/cortex, and the phloem of siliques and seeds (Tegeder, 2012) for uptake from the 

soil (Lee et al., 2007; Lehmann et al., 2011; Svennerstam et al., 2011; Tegeder, 2012) and 

import into the developing seed/embryo (Sanders et al., 2009; Tegeder, 2012), respectively. 

Since amino acids are largely synthesized in shoot and root plastids (Mills et al., 1980; Galili, 

1995; Slocum, 2005; Tegeder and Weber, 2006; Rentsch et al., 2007), they need to be 

exported to reach their destinations, such as being loaded into the phloem to be delivered 

from source to sink tissues. Much like transporters in phloem loading have not been 

identified (Rennie and Turgeon, 2009; Tegeder, 2012) and little is known about exporters 

(Chen et al., 2001; Dundar and Bush, 2009; Tegeder, 2012), the knowledge about plastidic 

amino acid transporters is very scarce (Pohlmeyer et al., 1997; Pohlmeyer et al., 1998; 

Kleffmann et al., 2004; Tegeder, 2012). A need for plastid amino acid transporters is crucial 
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for plant life, because amino acids are building blocks of proteins, nucleotides, hormones, 

primary/secondary metabolites, and are centrally involved in complex metabolic networks 

integrating nitrogen-, carbon-, sulfur-, and phosphorus metabolism (Scheible et al., 2004; 

Nikiforova et al., 2005; Nikiforova et al., 2006; Tegeder and Weber, 2006; Gutiérrez et al., 

2007; Vidal and Gutiérrez, 2008).  

Our group hypothesizes that amino acid metabolism is compartmentalized between M 

and vein associated tissues, largely occurring in the latter tissue, particularly in the BS 

(Manuscripts 1 and 3), corroborated by RE`s vein-associated expression (González-Bayón et 

al., 2006; Figure 7). The BS is a perfectly located unit combining morphology with 

physiology, because this metabolic active cell layer is physically connected to the pipeline 

system of the plant and thereby at the nexus of metabolic processes. Here, I speculate about 

the physiological role of RE. Assuming amino acid synthesis is prominent in the BS 

chloroplast, RE might export amino acids for phloem loading. The lowered lysine contents in 

re leaves (Manuscript 3: Figure 8) might be due to a decreased export of lysine causing its 

accumulation in the plastid stroma. This, in turn, provokes a feedback inhibition of lysine 

biosynthesis as previously described (Galili, 1995).  

RE is highly expressed in the meristematic tissues of the shoot and root (González-

Bayón et al., 2006), where it might be central in amino acid metabolism. Most amino acids for 

protein synthesis are not provided via the phloem to the sink tissues in Arabidopsis thaliana, 

and thus need to be synthesized in meristematic tissues (Weibull and Melin, 1990; Zhu et al., 

2005; Bräutigam and Weber, 2009). Shoot meristems mainly contain photosynthetically non-

active proplastids. However, proplastids are biochemical factories providing the dividing and 

growing meristem with nucleotides, fatty acids, lipids, and branched chain and aromatic 

amino acids (Bräutigam and Weber, 2009). Proplastids are well equipped with enzymes of 

amino acid biosynthesis (Baginsky et al., 2004) and transporters associated with amino acid 

metabolism (Bräutigam and Weber, 2009). Amino acid synthesis is increased in proplastids, 

as indicated by transcriptional analysis (Bräutigam and Weber, 2009). The organelle is 

provided with carbon skeletons for amino acid biosynthesis via carbon transporters of the 

envelope (Bräutigam and Weber, 2009), namely the triosephosphate/phosphate translocator 

(TPT) (Loddenkötter et al., 1993), the glucose-6-phosphate/ phosphate translocator (GPT) 

(Kammerer et al., 1998), and the phosphoenolpyruvate/phosphate translocator (PPT) 

(Fischer et al., 1997). The pentose-phosphate translocator (XPT) (Eicks et al., 2002) was not 

detected in the proplastid envelope (Bräutigam and Weber, 2009). The defect in the vein 

associated isoform PPT1 leads to the reticulated cue1 phenotype (Streatfield et al., 1999; 

Knappe et al., 2003). N for stromal amino acid biosynthesis is likely donated from glutamate, 

which is provided by the two-translocator system DiT1/DiT2 (Weber and Flügge, 2002; 

Renné et al., 2003; Bräutigam and Weber, 2009). Amino acids are exported via transporters 
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of the outer envelope (OE): OEP16 (Pohlmeyer et al., 1997) and OEP24 (Pohlmeyer et al., 

1998), and a putative basic amino acid transporter (Bräutigam and Weber, 2009). However, 

transporters of the inner envelope (IE) are unknown to date. A homologue of RE was found 

in the IE and OE of proplastids in the meristem (Bräutigam and Weber, 2009), suggesting RE 

might export amino acids over the envelope. A dual localization to both IE and OE is likely, 

because the transiently expressed protein formed rings with half-moon shape around the 

plastids and builts up stromules (Manuscript 3: Figure 2), characteristic for IE and OE 

proteins, respectively (Breuers et al., 2012). OEP16, detected in the IE and OE, has an 

intriguingly similar structural similarity to RE (Pohlmeyer et al., 1997; Pudelski et al., 2012) 

and oep16 Arabidopsis mutants are debalanced in amino acid contents (Pudelski et al., 

2012). The proposed function of RE as an exporter is applicable to proplastids and 

chloroplasts, because both plastid types synthesize amino acids and RE homologues were 

found in proplastid and chloroplast envelope proteomes (Bräutigam et al., 2008; Bräutigam 

and Weber, 2009). 

An alternative function of RE might be that of a plastidic amino acid importer, 

providing bulk amino acids to the meristem for growth and development. The basic amino 

acid transporter CAT8, expressed at the root meristem and in young leaves, is supposed to 

be involved in the allocation of the highly abundant amino acids glutamine and glutamate to 

developing tissues (Su et al., 2004).  

RE has two splice forms: RElong and REshort (Manuscript 3: Supplemental Figure 1). 

(Genotyping of positively transformed re-6 with REshort has to be performed (Manuscript1: 

Figure 1).) The splice variants could have regulatory functions with REshort either being non-

functional or taking over other functions. An Arabidopsis ureide permease has two splice 

forms with the shorter not mediating transport (Schmidt et al., 2006). Transporters regulated 

by splicing are known (Kumar et al., 2011; Cotsaftis et al., 2012). The organ and tissue 

specific occurrence of RElong and REshort will be assessed by quantitative real-time PCR (qRT-

PCR) (Udvardi et al., 2008; Rieu and Powers, 2009).  

 

 

1.2 Protein structure, localization and conclusions 

RE, specific to the green lineage of plants (González-Bayón et al., 2006), belongs to 

a family in Arabidopsis with seven additional members and has orthologs in dicots, 

monocots, moss, fern, and green alga (Manuscript 3: Supplemental Figure 3). These 

proteins contain the domain of unknown function (DUF) 3411, which is characterized by two 

to four hydrophobic TM-domains dependent on the prediction program (Figure 1; Schwacke 

et al., 2003). Both RElong and REshort contain the DUF3411, which is truncated at the C-

terminus of REshort (Figure 1). All eight DUF3411 Arabidopsis proteins are predicted by 
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proteomics to be plastid localized. Six proteins were found in mature chloroplasts (Bräutigam 

et al., 2007; Bräutigam et al., 2008) and two in meristematic proplastids (Bräutigam and 

Weber, 2009) (Table 1). The function of the DUF3411 proteins is not understood. 

 

 

 

Figure 1. Predicted protein structures of RElong, REshort, and RER-1. Predicted transmembrane �-helix 

spans of RElong (A), REshort (B), and RER-1 (C), each with predicted N-terminal cTP (left panel). The 

cTPs are underlined. Dotted lines show the DUF3411. Red, double lines indicate REAB epitope. 

Protein structures of RElong (A), REshort (B), and RER-1 (C) each lacking the predicted cTP (right 

panel).  

 

 

Gene expression data from the public Arabidopsis eFP Browser (Winter et al., 2007) indicate 

that five proteins are expressed in young meristematic tissues, while the two thylakoid 

localized proteins and the gene product of At2g40400 are expressed in mature tissues 

(Supplemental Figure 1, Table 1). All eight proteins share high similarity (Figure 3). The 

protein with the highest similarity of RE in Arabidopsis is RE-related1 (RER1) (At5g22790) 

with 61.3% identity, not including the predicted cTPs. A tissue specific expression profile is 

not available for RER1 on the efp translatome browser (Mustroph et al., 2009; Supplemental 

Figure 1). 
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Figure 2. Alignment of the eight DUF3411 proteins from Arabidopsis thaliana. 

 

 

Table 1. Arabidopsis thaliana proteins with DUF3411. IE: Inner Envelope, OE: Outer Envelope; na: 

not assigned; puf: protein of unknown function. 

Arabidopsis 

genome 
identifier 

name annotation localization by 
proteomics 

localization by 
fluoreszent 
protein-fusions 

highest expression 

At2g37860 RE, LCD reticulata Chloroplast; IE/OE IE/OE shoot apex 

At5g22790 RE-R reticulata-
related 

Chloroplast; IE na Shoot apex, young 
seeds 

At3g08630 na puf proplastid na young seeds, roots 

At3g08640 na puf na na late seeds, dry seeds 

At5g12470 na puf chloroplast na Imbibed seeds 

At5g24690 na puf Chloroplast; IE na leaves 

At2g40400 na puf Chloroplast, thylakoid na cotyledons 

At3g56140 na puf Chloroplast; thylakoid na overall 

 

 

1.3 The chloroplast ultrastructure is unaltered in re-6 mesophyll cells 

 While M chloroplasts of ATase2 mutants lack their thylakoid structure (Kinsman and 

Pyke, 1998; Hung et al., 2004), chloroplasts of the evenly reticulated mutant trp2 are not 

affected in their ultrastructure (Jing et al., 2009). Like these mutants, re is disturbed in M 

development and deficient in a plastid envelope protein (González-Bayón et al., 2006; 

Manuscript 3: Figure 2). Thus, we investigated the ultrastructure of M chloroplasts by 

electron microscopy (EM). Chloroplasts of col-0 and re-6 did not differ on the ultrastructural 

level (Figure 3C-F). Grana and stroma thylakoids were fully developed in re-6, indicating that 

the mutation of RE does influence the construction and assembly of grana. This observation 

is in good agreement with previous findings that the re phenotype does not result from 

perturbed plastid development but from alteration in internal leaf structure (González-Bayón 

et al., 2006). M cells of re appeared normal and contained chloroplasts similar in quantity and 

morphology compared to those of wild type (González-Bayón et al., 2006; Figure 3). An 

aberrant M structure in re-6 was confirmed (Figure 3B). EM microscopy will be used to 

investigate morphological differences between BS and M chloroplasts in re-6. Dov1 has wild-

type like M chloroplasts but vesicular, thylakoid less BS chloroplasts (Kinsman and Pyke, 

1998). 
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Figure 3. Cross sections (A, B) and M chloroplast ultrastructure (C-F) of the sixth rosette leaf of col-0 

and re-6. (A) col-0 leaf. (B) re-6 leaf. Ultrastructure of M chloroplast of col-0 (C, E) and re-6 (D, F). 

Boxes in (B) and (D) are magnified in (E) and (F), respectively. Asterisks indicate airspaces. Scale 

bars correspond to 50 μm (A, B) and to 100 nm (C-F).  

 

 

1.4 Yeast complementation studies 

To test whether RE is an amino acid transporter, yeast strains defective in multiple 

amino acid transporters were transformed with RE and LHT1 (Lysine Histidine Transporter1) 

in various expression domains, with translational stop and C-terminal eYFp for localization 

studies. LHT1 was used as a positive control (Hirner et al., 2006), namely PMA1pro::LHT1 

and PMA1pro::LHT1::eYFP. All constructs were driven by the constitutive promoter PMA1pro 

(Rentsch et al., 1995). Despite yeast has been used as a heterologous expression system 

for many metabolite transporters (Su et al., 2004), expressing plastid targeted proteins in 

yeast is challenging, because the cTP negatively affects protein expression and may 

interfere with the delivery and integration into the yeast cell membrane (Bouvier et al., 2006). 

Thus, the cTP of RE was omitted, giving rise to PMA1pro::RElong,�TP and 

PMA1pro::RElong,�TP::eYFP. To facilitate delivery of RE to the plasma membrane, RE was N-

terminally tagged in additional constructs with the positively charged 6xHis-tag, giving rise to 

PMA1pro::6*His::RElong,�TP, and PMA1pro::6*His::RElong,�TP::eYFP. The positive charge might 

foster the incorporation into the negatively charged cell membrane. 

 The yeast strain JT16 was used to demonstrate that an Arabidopsis integral 

membrane protein transports histidine (Tanaka and Fink, 1985; Hsu et al., 1993) and LHT1 

transports lysine and histidine (Chen and Bush, 1997). In 22�6AAL, defective in lysine 

uptake and synthesis, lysine transport by LHT1 was demonstrated (Tegeder et al., 2000). 

22�8AA, defective in eight amino acid transport systems, is deficient in the uptake of proline, 
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glutamate, citrulline and GABA (Tegeder et al., 2000), and arginine and aspartate (Su et al., 

2004). This strain was used to demonstrate that LHT1 transports other amino acids such as 

aspartate, proline, glutamate, citrulline, and GABA (Hirner et al., 2006) next to lysine and 

histidine. Amino acid transport is not specific, particularly for the broad specificity AAP 

transporters in Arabidopsis and pea, which transport basic, neutral, acidic amino acids and 

citrulline (Urquhart and Joy, 1981; Fischer et al., 1995; Tegeder et al., 2000).  

 Since 22�8AA lacks most amino acids transporters, it was chosen for 

complementation approaches. 22�8AA was transformed with LHT and RE constructs, which 

were located to the plasma membrane and found in the yeast membrane fraction (Figure 4 

C, D). PMA1pro::LHT1 restored the growth of 22�8AA on sole proline, ornithine, citrulline and 

GABA media (Figure 4A and 4B). The same results were found by (Hirner et al., 2006). 

However, we could not confirm that LHT1 rescued 22�8AA growth on sole aspartate and 

glutamate as published by Hirner et al., 2006. 22�8AA transformed with an empty vector 

control and all other vector constructs grew on aspartate, glutamate, and arginine (Figure 4A, 

4B). Growth of an empty vector control on 3mM asparate was observed (Fischer et al., 

2002). LHT1 was assessed as a positive control in our hands. RE, in either expression 

domain used, was not able to revert the phenotype (Figure 4A and 4B). LHT1 expressed in 

22�8AA did not grow on histidine and lysine media (Figure 4B). Taken together, there is no 

evidence that RE transports proline, ornithine, citrulline or GABA. The inability of RE rescuing 

the growth of 22�8AA on various amino acids might also be due to inactivity of the 

transporter under the tested conditions, e.g. the protein lacking the cTP might not correspond 

to the native conformation.  

 JT16 was transformed with the same constructs. Neither of the transformed yeasts 

grew on lysine and histidine media (data not shown). 22�6AAL caused problems when 

transformed cells were selected on the appropriate selection media (data not shown). Thus 

far, I did not demonstrate that RE is an active transporter. Further studies, using these 

mutant strains will be performed (see Outline).  
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Figure 4. 22�8AAL transfomed with RE and LHT1, grown on medium containing single amino acids, 

cellular localization of LHT and RE, and cofirmation of protein expression. (A) 22�8AA transformed 

with appropriate vectors and grown for five days on YNB medium with single amino acids. Yeast was 

dropped on the plates in a dilution series from right to left. (B) 22�8AA transformed with appropriate 

vectors, grown for five days on YNB medium with single amino acids. (1): non-transformed 22�8AA, 

(2): pNL8_GW (empty vector control), (3) LHT1, (4) LHT1::eYFP, (5) RElong,�TP, (6) 6*His::RElong,�TP, 

(7) 6*His:: RElong,�TP::eYFP. All constructs are driven by the constitutive PMA1pro. (C) Cellular 

localization in 22�8AA yeast cells to the plasma membrane. The upper row shows the localization of  

LHT1::eYFP, the lower row that of 6*His::RElong,�TP . Scale bar corresponds to 5μm. BF: bright field. 

(C) Western Blot of RElong,�TP, 6*His::RElong,�TP, LHT1, and empty vector control. 1(st) antibody: ABRE, 

2(nd) antibody: donkey-anti-rabbit-AP-conjugated. M: size marker. *: expected size: 41.3 kDa. **: 

expected size: 42.5 kDa. 

 

 

1.5 RE was overexpressed in yeast and a cell-free system 

RElong and REshort, both lacking the predicted cTP, were heterologously expressed in 

the bakers yeast (Saccharomyces cerevisiae) strain InvSC (InvitrogenTM) using the pDEST 

galactose inducible GATEWAY® vector system (InvitrogenTM). Additionally, expression was 

performed in cell-free wheat germ extract (Nozawa et al., 2007). The cTP was omitted as it is 

known to cause reduced expression in yeast (Bouvier et al., 2006) and is not functional in 

RE, because the cTP is cleaved off in the plastid (Keegstra and Cline, 1999).  

RElong and REshort were each expressed taglessly and with C-Terminal-His-tags. In a 

Western Blot, the proteins were detected with an antibody against RE (ABRE; see next 

paragraph) and a second goat-anti-rabbit AP-conjugated antibody (AB). All lanes were 



Addendum 

�

148 

loaded with equal protein amounts. The expected band sizes were detected (Figure 5). 

RElong,�cTP::6xHis has a calculated mass of 45.8 kDa and 43.3 kDa for the yeast and WGE 

expressed protein, respectively. REshort,�cTP::6xHis is predicted to be 36.5 kDa and 34.0 kDa if 

expressed in yeast and WGE, respectively.  

 

Figure 5. Western Blot of heterologously expressed RElong and REshort. (A) Heterologous expression in 

yeast. 1. RElong,�cTP::6xHis. 2. REshort�cTP::6xHis. 3. Empty vector control. (B) Heterologous expression 

in wheat germ extract. 4. REshort�cTP::6xHis. 5. RElong,�cTP::6xHis. 1(st) AB: ABRE, 2(nd) AB: AP-

conjugated anti-rabbit AB. M: size marker. 

 

 

1.6 Raising an antibody against RE 

A polypeptide anti-RE antibody (ABRE) was raised against the amino acids 73 to 86 

(including the cTP) at the N-terminal part of RE (Figure 1) by Agrisera, Sweden (Campbell et 

al., 2003). These amino acids were predicted not to span the plastid envelope (Schwacke et 

al., 2003). ABRE binding was tested by Western blotting of RElong,�cTP::6xHis, expressed in 

yeast (see above, Figure 6). An anti-His antibody (Figure 6A) and ABRE (Figure 6B) were 

used as first antibodies, and an Alkaline Phosphatase (AP)-conjugated anti-mouse antibody 

(Figure 6A) and an AP-conjugated anti-rabbit antibody (Figure 6B) as secondary antibodies, 

respectively. The second combination was also applied on the pre-serum (Figure 6C). 

Signals at 46 kDa were detected for both the anti-His antibody and ABRE, no band was 

detected on the pre-serum. The detected sizes corresponded to the calculated size of 45.8 

kDa (http://web.expasy.org/compute_pi).  

 

Figure 6. Testing ABRE on heterologously yeast expressed RElong::6x-His (A, B) and on pre-serum (C). 

(A) 1(st) AB: mouse anti-His-AB, 2(nd) AB: AP-conjugated anti-mouse AB. (B) 1(st) AB: ABRE, 2(nd) 

AB: AP-conjugated anti-rabbit AB. (C) 1(st) AB: ABRE, 2(nd) AB: AP-conjugated anti-rabbit AB. Signals 

in (A) and (B) show band at ca. 46 kDa.  
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1.7 Inducible re-6 complementation and overexpressor lines 

Re`s phenotype is restricted to smaller and reticulated leaves (González-Bayón et al., 

2006; Mansuscript 3: Figure 3). The reticulation is detectable in leaf primordia, in cotyledons 

and in early development of the first true leaves (González-Bayón et al., 2006). To 

investigate at which developmental stage RE exerts its function, RE driven by inducible 

promoters was introduced into the re-6 genetic background. Two inducible promoters were 

used: the XVE estradiol inducible promoter in the pAB117 vector, which bases on pmDC7 

(Curtis and Grossniklaus, 2003), and the heat shock promoter (hsp) of the pmDC30 vector 

(Curtis and Grossniklaus, 2003). pAB117, was provided by Dr. Andrea Bleckmann and Prof. 

Dr. Rüdiger Simon, HHU Düsseldorf. Non-tagged RE was cloned into pAB117, giving rise to 

XVE::RE, was transformed into re-6, delivering nine lines. Non-tagged RE, RElong, and REshort 

was cloned into pmDC30, yielding hsp::RE, hsp::RElong, and hsp::REshort, respectively. 

hsp::RElong, and hsp::REshort were transformed into re-6 plants. The heat shock inducible lines 

can be used for laser guided promoter induction in distinct tissues (Halfon et al., 1997). In the 

context of a signaling phenotype of re, an induction in a tissue natively not expressing RE, 

might rescue the phenotype. This would appoint to a signaling role of RE. 

 

 

1.8 RE is expressed around the veins 

RE is expressed around the veins (González-Bayón et al., 2006). The exact tissue 

specific expression under the used promoter construct remains elusive. However, the exact 

expression is crucial in the context of the BS generating a metabolic signal (Manuscript1: 

signaling hypothesis). Thus, we amplified three promoter sequences: Pshort,re, Pintermediate,re, 

Plong,re, with Pshort,re corresponding to the sequence chosen by (González-Bayón et al., 2006). 

Longer sequences were used since they might contain additional regulatory elements that 

better reflect native expression. All three promoter constructs showed similar GUS-staining 

patterns in the pmDC163 vector: a high level of GUS-expression was observed along the 

veins and at the hydathodes of ca. seven week-old col-0 plants (Figure 7), confirming 

previous results (Gonzales-Bayon et al., 2006). To pinpoint RE`s exact tissue specific 

expression by circumventing GUS-bleeding, GFP and nucleus-targeted GFP-constructs were 

cloned. Promoter-GFP constructs in the pmDC107 vector (Curtis and Grossniklaus, 2003) 

were transformed into the col-0 background, but the plants did not show GFP signals. Three 

nucleus targeted promoter-GFP constructs were cloned, two in the pGREEN-II-H4-GFP 

(Pshort,re,::H4-GFP; Pintermediate,re::H4-GFP) and one in the pAB146 vector background 

(Plong,re,::VENUS-H2-GFP). Transformed col-0 plants did not survive selection. The 

promoter::GUS lines could be used for tissue specific expression profiling as described by 

(Sessions et al., 1999; Engelmann et al., 2008; Wiludda et al., 2012). The same start as 
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chosen for Pextralong,re until RE´S stop codon was used to create native promoter 

complementation constructs in the pmDC99 background (Curtis and Grossniklaus, 2003). 

 

 

Figure 7. Histochemical GUS-assay of col-0 plants harboring three different promoter constructs. Leaf 

magnifications of the 4(th) rosette leaves of six week old plants are shown. (A) Pshort,re. (B) Pintermediate,re. 

(C) Plong,re. The scale bars correspond to 1 mm.  

 

 

1.9 Generation of stable GFP lines 

 RE, RElong, and REshort were C-terminally fused to GFP to investigate both intracellular 

localization and potential genetic complementation in stably transformed re-6 plants. The 

same vector constructs in pmDC83 (Curtis and Grossniklaus, 2003) were used for transient 

expression and protein localization in tobacco (Manuscript 3: Figure 2). Stable Arabidopsis 

thaliana re-6 lines harboring 35S::RE::GFP, 35S::RElong::GFP, 35S::REshort::GFP, 

35S::RE�cTP::GFP, and 35S::RElong,�cTP::GFP were generated. More than five independent 

lines each were generated. Re-6 transformed with 35S::RE and 35S::RElong showed wild-

type like fully green leaves (Manuscript 3: Figure 1). However, stably transformed re-6 with 

35S::RE::GFP and 35S:: RElong::GFP remained reticulated and no GFP signals were 

detected (data not shown). Thus, the 35S promoter could have been silenced as previously 

observed (Elmayan and Vaucheret, 1996; Elmayan et al., 1998; Ho et al., 1999; Hull et al., 

2000; Mishiba et al., 2005) and/or the GFP tag interfered with RE´s function. 

 

 

1.10 Fatty acid composition of re-6  

FAs are synthesized as palmatic acid (C16:0) or oleic acid (C18:1) within the plastid, 

exported, and activated to acyl-CoAs at the ER, converted to phosphatidic acids and 

desaturated to �3-trans hexadeconoic acid (C16:1), hexadecatrienoic acid (C16:3), linoleic 

acid (C18:2), and �-linoleneic acid (C18:3) (Browse and Sommerville, 1991; Ohlrogge and 

Browse, 1995; Benning, 2009; Li-Beisson et al., 2010). To asses if these plastidic metabolic 

pathways are affected, re-6 was profiled for changed fatty acids (FAs) profiles. While 16C 

FAs were at the wild-type level in re-6, 18:0, 18:1, 18:2, but not 18:3-FAs, were significantly 
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increased in re-6 (Figure 3) by 39.1% (p=0.0333), 49.6% (0.0108), and 56.0 % (p= 0.0214), 

respectively. The level of glycerol, the carbohydrate backbone of FAs (Browse and 

Sommerville, 1991; Li-Beisson et al., 2010), was not changed in re-6 (Manuscript 3: 

Supplemental Figures 6 and 7). The increased levels of free FAs in the mutant could be 

caused by either (i) a direct or indirect influence of RE on the plastid localized FA 

biosynthesis or on (ii) a secondary change of the lipid acid composition.  

 

 

Figure 13. Free fatty acid levels of eight-week old vegetative col-0 and re-6 rosettes. Plants were 

grown under 16-h/8-h light/dark cycle at 100μE/m
2
/s

1
. Samples were taken in middle of light period. 

Arbitrary units (arb. unit) are shown. (A) Total free C16 and C18 fatty acids (16C FAs and 18 C FAs, 

respectively). (B) Unsaturated (18:0) and saturated (18:1, 18:2, 18:3) FAs. The inlay shows 18:1 FAs. 

Error bars represent S.E. Asterisks indicate significance levels. n(col-0) = 5 , n(re-6) = 4. 

 

 

1.11 Re-6 is a null mutant 

 The most experiments performed in this project were carried out with the T-DNA 

insertion line re-6, because it allows easy genotyping, is in the common genetic background 

col-0, and can be cultivated on MS plates without germinating deficiencies as compared to 

re-2. Re-2, initially used as a second line, showed growth deficiencies on MS plates if not 

supplemented with sucrose. Crosses of re-6 into re-2 were reticulated in the F1 generation, 

i.e. they are allelic (Figure 9 A). As assumed by (González-Bayón et al., 2006), re-6 is a null 

mutant (Figure 9 B). PCR on re-6 cDNA did not show signals if amplification was performed 

with the primers for RElong (CR161/CR162) and REshort (CR161/CR173), but signals were 

detected on col-0 cDNA (Figure 9 B).  
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Figure 9. Reticulated leaf phenotype of re-2 X re-6 F1 plants and RT-PCR showing re-6 is a null 

mutant. (A) Plant rosette of three week old plant. Error bar represents 2mm. (B) PCR on cDNA 

showing that re-6 is a null mutant. re-6 neither contains RElong nor REshort-transcripts. 

 

 

 

1.12 Outline for experiments to decipher the role of re 

 

 

1.12.1 Testing whether RE transports amino acids 

 Yeast complementation will be continued with a focus on 22�6LL. Additionally, 

heterologously expressed RE will be reconstituted into proteoliposomes for uptake 

experiments (Hoyos et al., 2003; Linka et al., 2008). Alternatively, Xenopus oocytes (Lee et 

al., 2007; Svennerstam et al., 2008; Haferkamp and Linka, 2012) or the bilayer method 

(Harsman et al., 2011; Haferkamp and Linka, 2012) could be used for transport studies. 

LHT1 will be fused to a cTP, and will be transiently expressed in re-6. Despite potential 

different transport mechanisms between LHT1 (proton coupled) and RE, re-6 might be 

complemented. Previous experiments indicated that RE forms dimers (data not shown). For 

confirmation, heterologously expressed protein will be investigated by native gels and 

Western Blots. The formation of homo-, di- or oligomers will back the hypothesis that RE is a 

transporter. 

 

�

1.12.2 RE generates a metabolic signal  

 If RE generates a mobile signal, such as a metabolite, the tissue specific expression 

of RE should be replaceable. Cell-autonomy will be tested by expressing RElong under the 

control of epidermal-, xylem, phloem- or BS-specific promoters. The plants will be tested for 

complementing the phenotype. Appropriate promoters are discussed in Chapter 2. To further 

asses potential metabolites that are changed in re, an unbiased metabolic profiling approach 

will be applied (Fiehn et al., 2000; Krueger et al., 2011; Svatos, 2011), including genetically 

complemented re-6 lines and overexpressor plants.  
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 If RE is exerts other functions than transporting, further approaches will be used. Due 

to it`s plastid localization, RE might interact with proteins. A global approach to identify 

potential interaction partner is the split-ubiquitin (Pasch et al., 2005) or pulldown approaches 

(Smith et al., 2004; Chou et al., 2006).  
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2. Tissue specific transcriptional profiling of the Arabidopsis bundle sheath and 

mesophyll 

Almost all processes studied by biologists are tissue and cell specific. However, most 

experimental methods do not discriminate between tissue and cell types. Thus, the 

conclusions are “tampered” by the mixture of cell types. This is particularly valid for the 

unbiased methods of omics-techniques, such as transcriptomis, proteomics and 

metabolomics. In the age of systems biology, capturing data at cellular resolution is of utmost 

importance. Within the last decade, laser microdissection (LMD) has been established as a 

powerful tool to isolate pure cell populations from heterogenous tissues. LMD is visually 

guided by a microscope, which is coupled to a laser that cuts and harvests the tissue/cells of 

interest. The tissues can either be identified by histochemical staining or cell location of 

histological appearance (Nelson et al., 2006). First successfully applied to human and animal 

tissues (Emmert-Buck et al., 1996; Inada and Wildermuth, 2005; Esposito, 2007), this 

technique is also adaptable to plants. However, only few studies were presented by plant 

biologists during the last decade (Asano et al., 2002; Kerk et al., 2003; Nakazono et al., 

2003; Inada and Wildermuth, 2005; Jiao et al., 2009; Wuest et al., 2010; Schmid et al., 

2012). LMD is the method of choice over other cell-isolation systems, such as cell sorting by 

flow cytometry. LMD allows rapid cell/tissue isolation, fixatives “freeze” the tissue at it`s 

steady-state not inducing stress responses, and no molecular marker is needed to identify 

the appropriate tissue (Kehr, 2003; Day et al., 2005; Inada and Wildermuth, 2005; Lee et al., 

2005; Nelson et al., 2006).  

 For our purpose we intended to couple LMD to a downstream processes of RNA 

isolation, cDNA-synthesis, and deep sequencing. This procedure essentially has to fulfill two 

requirements: (i) high quality tissue integrity and (ii) fixation of RNA that allows isolation of 

sufficient RNA amounts for subsequent deep sequencing. These two constraints are hardly 

to equilibrate due to very delicate structural integrity of the Arabidopsis leaf tissue (Inada and 

Wildermuth, 2005). Cryosectioning, widely used for animal tissues, is not applicable to plant 

tissues due to high vacuolization (Inada and Wildermuth, 2005), but was used in a modified 

manner (Asano et al., 2002; Nakazono et al., 2003). Paraffin tissue preparation with prior 

RNA-fixation provides a high histological integrity and high-quality RNA (Schmid et al., 2012). 

Thus, we chose the following principal steps for fixation and LMD, which were modified and 

changed during establishing the method for our laboratory: harvesting leaf tissue by cutting it 

into small peaces (ca. 0.4 x 0.4 cm
2), preferentially including parts of the midrib, that gives 

stability. The leaf samples were fixed in 4:1 ethanol-acetic acid at 4°C over night and 

dehydrated by an ethanolic dilution series. The ethanol was replaced by xylole before 

paraffin fixation. The paraffin embedded leaf tissue was cross sectioned and transferred onto 

special PEN (poly ethylene naphthalate) coated glass slides to perform LMD. To shorten the 
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time of manually performed paraffin tissue preparation, which takes about five to eight days, 

we used an automated vacuum tissue processor (Leica ASP300S). This circumvents 

degradation of nucleic acids as observed in the conventional paraffin method (Jackson, 

1991; Inada and Wildermuth, 2005). However, paraffin preparation methods fail to provide 

the structural integrity of plant cross sections. Thus, Inada and Wildermuth, 2005 adapted a 

rapid microwave paraffin preparation method (Schichnes et al., 1998) to LMD, resulting in 

well-defined internal leaf structure. Contact to Prof. Ritter (Organic Chemistry, HHU 

Düsseldorf) revealed that his group possesses the technical equipment, such as special 

microwaves, to apply this method. However, this method was not applied, because (i) RNA 

amount and integrity achieved with the normal paraffin method was high enough, at least 

when cross-sections were scraped of the slide for RNA isolation, and (ii) focus of the 

research shifted to other projects.  

 The preparation method that we used (Material and Methods) delivered leaf cross 

sections of high integrity (Figure 10A, 10B), comparable to the quality published by (Inada 

and Wildermuth, 2005). Although the paraffinized tissue integrity was well, RNA isolation 

firstly gave no RNA when the method as presented by (Wuest et al., 2010) was used. If the 

paraffin-cross-section-ribbons, however, were stretched out on the glass slides using 

methanol (Schmid et al., 2012) instead of water, RNA yield increased. However, it is 

noteworthy that RNA was isolated from cross-sections and not from tissue cut by the laser. 

RNA quality was tested with an Agilent 2100 Bioanalyzer (Agilent) (Masotti and Precke, 

2006; Buhtz et al., 2008) at the Biologisch-Medizinische Forschungszentrum (BMFZ), HHU 

Düsseldorf. RNA quality met a standard sufficient for qRT-PCR and sequencing (Figure 

10C). 

 If RNA was isolated from BS and M tissues, purity and contamination should be 

assessed by PCR markers. The following markers could be used for qRT-PCR: chloroplastic 

carbonic anhydrase (Jacobson et al., 1975; Brandt et al., 2002; Kerk et al., 2003; Inada and 

Wildermuth, 2005) and/or the promoter of the rubisco small subunit (pRBCS1A) (Mustroph et 

al., 2009) for M cells; the very-long-chain fatty acid-condensating enzyme CUT1 (Inada and 

Wildermuth, 2005) and/or the promoter of the cuticular wax gene (pCER5) for epidermal 

cells; the promoter of the sulfate transporter (pSULTR2;2) for BS cells (Mustroph et al., 

2009); the promoter of the sucrose transporter2 (pSUC2) for phloem companion cells 

(Mustroph et al., 2009), and the promoter of the K
+-channel (pKAT1) for leaf guard cells 

(Mustroph et al., 2009). Actin2 or ubiquitin5 (Czechowski et al., 2004; Inada and Wildermuth, 

2005) are adequate for assessing cDNA quality in each tissue. Before cuttings, it would be 

helpful to identify the tissues, such as xylem and phloem by safranin and astrablue staining 

(Braune et al., 2007). The BS could be identified by visual comparison to stained GLDPA-

driven GUS constructs (Wiludda et al., 2012). 
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Laser microdissection was done with the Zeiss Microdissection system (Zeiss Palm 

Microbeam, Palm RoboSoftware 4.3 SP1) as described in Material and Methods.  

 

 

Figure 10. Cross-sections of col-0 leaves and RNA-quality control. (A) Cross-section (14 �m) of a four 

week old 4(th) rosette leaf. Tissue structures are preserved. Scale bar: 100 �m. (B) Magnification of 

(A). Scale bar 50 �m. (C) RNA-quality control on an Agilent Bioanalyzer 2100 Picochip. 28S and 18S 

peaks are prominent, as also seen on the gel pictogramm on the right hand site. RIN (RNA inegrity 

number) of 7.3 states a good quality RNA. M: mesophyll; V: vasculature; BS: bundle sheath. 

 

 

  



Addendum 

�

157 

3. Material and Methods 

 

Cloning Procedures and DNA sequencing 

For general cloning, DNA sequences were amplified from cDNA and gDNA using a 

proofreading polymerase (Phusion Polymerase, New England Biolabs). PCR procucts were 

purified from Agarose gels using the QIAquick Gel Extraction Kit (Qiagen). For cDNA 

synthesis, RNA was extracted as described (Chomczynski and Sacchi, 1987; Chomczynski 

and Sacchi, 2006), DNase digested, and subjected to cDNA synthesis using either 

Superscript II or Superscript III (Invitrogen).The PCR primers used are listed in Supplemental 

Table 2. Depending on the cloning strategy, the PCR products were subcloned in pJET 1.2 

(Fermentas) or recombined into pDONR207 (Invitrogen). Classical cloning steps were 

performed by standard molecular techniques (Sambrook et al., 2001). Subsequent 

Gateway
TM recombination steps were performed by LR reactions as described by the 

manufacturer (Invitrogen). The explicit steps are described in the corresponding section. All 

vectors were controlled by restriction digest and sequencing (GATC Biotech).  

 

SDS-Gelelectrophoresis and Western Blotting 

10% SDS-PAGEs and immunoblot analyses were performed as described (Sambrook 

et al., 2001). The following antibody combinations were used for immunodetection on 

Western Blots: (i) mouse penta-His antibody (Quiagen) (1:2500 dilution) / alkaline 

phosphatase (AP)-conjugated anti-mouse IgG (1:2500 dilution)(Promega); (ii) serum rabbit 

anti RE antibody (ABRE) (1:2500 dilution) / AP-conjugated donkey anti rabbit antibody 

(Promega) (1:2500 dilution). To estimate molecular protein masses, the PageRulerTM 

Prestained Protein Ladder (Fermentas) was used.  

 

Heterologous protein expression in yeast and crude membrane extraction 

 Arabidopsis col-0 cDNA was PCR amplified using a proofreading polymerase (Phusion, 

New England Biolabs) with the primer combinations CR6/CR4 and CR6/CR5 to receive 

RElong,�cTP and REshort�cTP, respectively. The PCR products were recombined into pDONR207 

with BP-clonase (Invitrogen). Each insert in the pDONR207 entry vector was recombined 

with LR-clonase into the yeast expression vector pYES-DEST52 (Invitrogen) to be in frame 

with the C-terminal 6xHis-tag. pYES-DEST52 is under the control of the galactose-inducible 

GAL4 promoter. The resulting contructs, RElong,�cTP::6xHis and REshort�cTP::6xHis, were 

transformed into the Saccharomyces cerevisiae strain INVSc1 (Invitrogen) by the lithium 

chloride method (Schiestl and Gietz, 1989). Transformants were selected on synthetic 

complete minimal agar plates lacking uracil (SC-U). Heterologous expression and 

subsequent crude membrane extraction was performed as described (Bouvier et al., 2006).  
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Cell-free heterologous protein expression in wheat germ extract 

RE in different expression domains was expressed in a cell-free wheat germ extract 

(WGE) system as (Bernhardt et al., 2012). The Gateway compatible expression vector 

pDEST-LL5 was generated by introducing attR1 and attR2 sites into a pEU3a-C-His vector 

(CellFree Sciences; http://cfsciences.com). pDEST-LL5 was generated by Dr. Andrea 

Bräutigam und Lisa Leson. RElong,�cTP and REshort,�cTP were amplified on cDNA with the primer 

combination CR6/4 and CR6/CR5, respectively, and recombined into pDEST-LL5 via 

pDONR207 (Invitrogen). Templates for in vitro transcription were PCR-amplified from both 

pDEST-LL5 constructs with primers P73/P74. The PCR products were purified with QIAquick 

Gel Extraction Kit (Quiagen). In vitro translation was performed as described (Nozawa et al., 

2007).  

 

Gateway vector creation for yeast complementation studies and complementation 

studies 

The vector pNL8GW was derived from pNL8 (Linka, 2001), which itself bases on 

pDR195 (Rentsch et al., 1995). pNL8GW contains the Gateway LR cassette upstream of a 

constitutive promoter of the plasma membrane H
+-ATPase (PMA1pro) from Saccharomyces 

cerevisiae (Rentsch et al., 1995), and a C-terminal YFP. pNL8 was opened with XhoI. A PCR 

was performed on pmDC32 (Curtis and Grossniklaus, 2003) using the primers 

CR145/CR146, each primer containing a XhoI restriction site as underlined in the sequences 

(Supplemental Table 2). The PCR amplificate was ligated into the XhoI-opened pNL8 to gain 

pNL8GW. Three yeast strains were used to test for potential amino acid transport activity of 

RElong: JT16 (Hsu et al., 1993; Chen and Bush, 1997), 22�6LL (Fischer et al., 2002), and 

22�8AA (Fischer et al., 2002; Hirner et al., 2006). All mutants strains are multiple knock outs 

for amino transporters with the following phenotypes: JT16: MAT�, hip1-614, his 4-401, ura3-

52, ino1, and can1 (Tanaka and Fink, 1985; Chen and Bush, 1997); 22�6LL: MAT�, gap1, 

put4, uga4, ura3, can1, lyp1, and alp1 (Tegeder et al., 2000); and 22�8AA: MAT�, gap1, 

put4, uga4, ura3, can1, lyp1, and alp1, hip1, and dip5 (Tegeder et al., 2000). JT 16 was 

maintained on YPD medium + 3mM histidine or S1 medium + 0.2% uracil without sorbitol 

(Tanaka and Fink, 1985; Hsu et al., 1993; Chen and Bush, 1997), 22�6LL on SCcomplete + 

100mg/L Lys-Val (adapted to (Fischer et al., 2002)), and 22�8AA on YPD (Mechthild 

Tegeder, personal communication). For yeast complementation studies, the ORFs of 

At2g37860 (RE) and At5g40780 (LHT1) were amplified from col-0 cDNA by PCR. LHT was 

used as a positive control with the same coding sequence as described (Hirner et al., 2006). 

The following constructs were achieved via recombination in pDONR207 subseqzent and 

recombination in the final vector pNL8GW, each driven by the constitutive promoter PMA1pro 

(Rentsch et al., 1995): PMA1pro::LHT1 (CR147/CR148), PMA1pro::LHT1::eYFP 
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(CR147/CR149), PMA1pro::RElong,�TP (CR6/CR2), PMA1pro::RElong,�TP::eYFP (CR6/CR4), 

PMA1pro::6*His::RElong,�TP (CR150/CR2), and PMA1pro::6*His::RElong,�TP::eYFP (CR150/CR4). 

All three yeast strains were transformed with these constructs and pNL8GW as a negative 

control using the lithium chloride method (Schiestl and Gietz, 1989). Positive JT16 

transformants were selected on SC medium without uracil (SC-U) + 20 mM His + 0.002% 

Inosine (Hsu et al., 1993) Mechthild Tegeder, personal communication). Positively 

transformed 22�6LL were selected on SC medium without uracil + 100 mg/L Lys-Val 

(adapted from (Fischer et al., 2002), and 22�8AA were selected on SC without uracil (Hirner 

et al., 2006). SC medium contains 0.17% (w/w) yeast nitrogen base (YNB without amino 

acids and without (NH4)2SO4, 0.5% (w/w) (NH4)2SO4 ,2% (w/w) glucose and 2g/L dropout 

mix. Transformed colonies were tested by yeast colony PCR following zymolase digestion 

(Amberg et al., 2006) and by Western-Bloting. To test for complementation, single 

transformed 22�8AA colonies were individualized on SC-U without (NH4)2SO4, containing 

one amino acid as sole nitrogen source (Hirner et al., 2006). Transformed 22�8AA yeast 

cells used for the droptest were washed twice in 1xTE (10 mM Tris-HCl/ 1mM EDTA/ pH 7.5)  

before applying on the plates. For the first spot, 5μl of a yeast suspension of OD600= 1 was 

applied. The subsequent spots were diluted by 1:10 for each further spot. The yeast was 

grown at 30°C for five days. All experiments were repeated with independent colonies of 

independent transformation batches. Transformed JT16 cells were tested for 

complementation on S1 media (0.17% (w/w) YNB with 0.5% (w/w) (NH4)2SO4, 2% (w/w) 

glucose, 0.0002% (w/w) inosine) (Chen and Bush, 1997) with additional histidine and lysine 

concentrations. Transformed 22�6LL were tested for complementation on 0.17% (w/w) YNB 

without amino acids + 0.5% (w/w) (NH4)2SO4, 2% (w/w) glucose and appropriate lysine 

concentrations (adapted to (Fischer et al., 2002)).  

 

 

Confocal microscopic analysis 

 22�8AA yeast cells transformed with PMA1pro::LHT1::eYFP and 

PMA1pro::6*His::RElong,�TP::eYFP were fixed in 3% agarose on a glass slide. The agarose 

yeast mix was tightly covered with a cover glass. Yeast cells were analyzed with a Zeiss 

LSM 510 META confocal laser-scanning microscope as described by (Breuers et al., 2012). 

YFP was excited with an Argon-laser at 500nm and emission was collected at 542 nm. 

Pictures were processed and merged using the freeware GIMP 2.8. (http://www.gimp.org).  

 

Transmission electron microscopy 

 The forth leaves of four week old col-0 and re-6 plants were used for transmission 

electron microscopy. Plants were grown at 16-h light/ 8-h dark with a photosynthetically 



Addendum 

�

160 

active radiation of 100 μE/m2/s. Leaf material was fixed in 0.1 M phosphate buffer (pH 7.4) 

and 2.5% glutaraldehyde for 3 h. The samples were incubated in 2% osmiumtetroxide for 2 h 

and in 2% uranylacetate for 30 min. Subsequent treatment was performed as described in 

(Richard et al., 2009). 

 

Promoter constructs in col-0 

 The promoter sequences were amplified on col-0 gDNA by CR8/CR9, CR8/CR10, 

and CR 151/CR138 to give rise to Pshort,re, Pintermediate,re, and Plong,re, respectively. The 

sequences were recombined into pmDC163 (Curtis and Grossniklaus, 2003) via pDONR207, 

to create translational C-terminal GUS fusions. Pshort,re includes 966 bp of the intergenic 

region of the upstream gene and 156 bp of the first exon (-966/156nt), Pintermediate,re the same 

intergenic region plus 735 bp into the second exon (-966/735nt), and Plong,re spans the 

sequence from -2986 until + 156 of the first exon (-2986/156nt). Pshort,re corresponds to the 

promoter sequence used by (González-Bayón et al., 2006). The promoter constructs were 

stably transformed in col-0 and selected on Hygromycin containing (30 μg/mL) 1 MS medium 

(Murashige and Skoog, 1962). 19 independent plant lines were generated for Pshort,re, eight 

for Pintermediate,re and five for Plong,re. Pshort,re and Pintermediate,re were cloned into pGREEN-H4-GFP 

((Hellens et al., 2000), Marcel Lafos, personal communication) and Plong,re into pAB146 

(Andrea Bleckmann, personal communication). Both vectors are Gateway compatible.  

 

Generating heat shock and estradiol inducible re-6 complementation and 

overexpressor lines 

Gene products were PCR amplified from col-0 gDNA and cDNA with the primers 

CR1/CR2. The short splice variant of re, REshort, was amplified with the primers CR1/CR19 

on cDNA. The PCR-products were recombined into pDONR207, and then into the 

destination vector pmDC30 (Curtis and Grossniklaus, 2003) for heat shock induction and into 

pAB117 (pABindGFP) for estradiol induction (Bleckmann et al., 2010; Breuers et al., 2012). 

pAB117 (pABindGFP) was derived from pmDC7 (Curtis and Grossniklaus, 2003) by Andrea 

Bleckmann (Bleckmann et al., 2010). Propagation in E.coli, transformation into 

Agrobacterium tumefaciens, and transfection of Arabidopsis thaliana was done as described 

in Manuscript 3.  

 

Fatty acid analysis 

Aerial tissue of seven week-old re-6 and col-0 rosettes before budding and induction 

of flowering was used. Plant rosettes were harvested in the middle of the light period of 16-h 

light/8-h dark light cycle and quick frozen in liquid nitrogen. Ground leaf material was used for 

lipid extraction. Lipids were isolated and fatty acids were converted to methyl esters (Browse 
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et al., 1986). The subsequent detection was performed by gas chromatography – electron 

impact – time of flight – mass spectrometry (GC-EI-TOF-MS) with the fatty acid 17:0 as an 

internal standard (Bernhardt et al., 2012).  

 

Alignment of protein sequences 

Homologous protein sequences of different organisms were inferred from publicly 

available databases. Alignment of the sequences was performed with CLC Genomic 

Workbench (www.clcbio.com). The settings were chosen as follows: default alignment, gap 

open cost 10, gap extension 1, and end gap cost as any other.  

 

Prediction of protein structures 

 Protein structures were predicted by using the consensus sequence provided on 

http://aramemnon.uni-koeln.de/ (Schwacke et al., 2003). Proteins were graphically presented 

using TMRPres2D (http://bioinformatics.biol.uoa.gr/TMRPres2D/; (Spyropoulos et al., 2004). 

 

Plant growth conditions/ Confirmation of T-DNA insertion in re-6/ Statistical Analysis/ 

GUS-staining / gDNA isolation / Polymerase Chain Reaction / Agarose Gel 

Electrophoresis 

Done as described in Manuscript 3 

 

 

Plant material for LMD 

Arabidopsis thaliana col-0 plants were grown under controlled conditions in climate 

chambers. The day/night cycle was chosen as 12-h light/ 12-h dark with a photosynthetically 

active radiation of 100 μE/m
2/s. Arabidopsis thaliana seeds were surface sterilized with 

chlorine gas in a desiccator as described (Desfeux et al., 2000), spotted on solid 1 

Murashige and Skoog (MS)-medium with vitamins containing 0.8% (w/w) plant agar 

(Murashige and Skoog, 1962), and stratified at 4°C for four days. All plant material was 

germinated and grown in 1 MS medium and transferred on soil at the first true leaf stadium. 

Plants were further grown for three weeks under the same conditions. Mature leaves were 

cut into small squares of about 0.4 cm x 0.4 cm with a sharp new razor blade and directly 

transferred into tissue fixation solution. 

 

Tissue preparation for LMD 

 Principally, the methods were performed as described by (Kleber and Kehr, 2006). 

However, modifications were necessary for our conditions, particularly due to the fragile 

Arabidopsis thaliana leaves. A helpful and detailed description of parts of this section is 
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presented by (Inada and Wildermuth, 2005). All material used had to be RNAase free and if 

not acquired as such was treated with RNAse inhibitor (RNase-ExitusPlusTM, AppliChem) 

and carefully cleaned with ethanol and/or chloroform. For fixation of leaf pieces, freshly 

prepared Farmer`s fixative, i.e. 4:1 ethanol:acetic acid, was used as described (Kerk et al., 

2003; Inada and Wildermuth, 2005; Yu et al., 2007). 4:1 ethanol: acetic acid worked the best 

for Arabidopsis leaf tissue. The fixative was cooled to 4°C on ice. The leaf pieces were 

carefully transferred into the fixative, and incubated for ten to twelve hours. The tissue was 

transferred from 1.5 mL reaction vials to tissue cassettes for dehydration in a graded ethanol 

series. The ethanol was replaced by the clearing agent xylene (xylene isomers, Carl Roth). 

Xylene removes ethanol and is miscible with paraffin (Para Plast Plus, Sigma-Aldrich and 

Carl Roth). These steps were performed in the following order in an automated vacuum 

tissue processor (Leica ASP300S): 4:1 ethanol:acetic acid (4h, RT); 50% ethanol (1h, RT); 

70% ethanol (1h, RT); 95% ethanol, 0.1% eosin Y (1h, RT); 100% ethanol, 0.1% eosin Y (1h, 

RT); 100% ethanol, 0.1% eosin Y (1h, RT); 100% ethanol (1h, RT); 100% xylene (1h, RT); 

100% xylene (1h, RT); 100% xylene (1h, 37°C); paraffin (10min, 62°C); paraffin (10min, 

62°C); paraffin (10h, 62°C). The last step was set to a long period in order to avoid that the 

Leica ASP300S pumps out the paraffin and the sample gets destroyed. The sample was 

transferred to a paraffin bath at 62°C, solidified paraffin was remolten, and the tissue fixed in 

paraffin in plastic weigh boats in a water bath at room temperature (RT). Almost all steps 

were performed at RT because the Leica ASP300S is unable to cool down. Eosin Y (Sigma-

Aldrich) stained the tissue so that is was visible in the paraffin blocks. Leaf sections in 

paraffin blocks were prepared in order to cross-section the tissue with a rotary microtome (12 

to 14 μm). To get intact sections, new microtome blades were used. The paraffin ribbons, 

including the leaf sample, were floated on ca. 80 μL methanol (Schmid et al., 2012). The 

ribbon was stretched with a soft paintbrush on DNase/RNase free PEN (poly ethylene 

naphthalate) coated microscope slides (Carl Zeiss MicroImaging) following activation with 

UV-light as described by the manufacturer. Slides were dried on a 42°C warm plate to 

ensure evaporation of methanol and adhesion to the microscope slide. Dried paraffin was 

removed by carefully dumping the slide in fresh xylene for some minutes (ca. 10 min) and air 

dried. It was important to minimize xylene incubation time because longer treatment changed 

the “structure” of the PEN coat on the class slides, leading to dissociation of the PEN-foil 

from the slide when performing laser cutting. Similar observations were made by (Inada and 

Wildermuth, 2005). Deparaffinization was performed immediately before microdissection. 
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Laser microdissection  

 The Zeiss Microdissection system (Zeiss Palm Microbeam, Palm RoboSoftware 4.3 

SP1) was used for isolation of tissues from prepared tissue cross sections. Deparaffinized 

slides with tissue were placed on the stage and visualized by a digital camera on a computer 

screen using the software provided by the manufacturer. Cells to cut out were encircled with 

an electronic pen on a touch pad and cut with a laser beam. Settings were chosen for 14 μm 

thick cross sections as follows: energy = 50, focus between 50 and 60, Delta (catapulting) = 

10. Tissue fractions were sampled in a DNase/RNAase free 0.2 mL LMD cap. Tubes of the 

same size were also used by pipetting 80 μL of RLT buffer (Quiagen) into the lid. Cutting was 

performed for maximum 1 hour per sampling. The samples in the tubes were directly 

transferred on ice and stored at -80°C. 

 

RNA preparation, quality control and cDNA synthesis 

 Before starting with RNA isolation, tissue samples were homogenized by 

QIashredder columns as described by the manufacturer (Quiagen). RNA was isolated using 

the RNeasy Plant Mini Kit (Quiagen), following the manufacturer´s instructions. Optional on-

column-DNAse treatment was performed as described by the manufacturer (Quiagen). 

RNase was eluted with 16 μL RLT-buffer, immediately placed on ice and stored at -80°C till 

further use. Quality control was assessed by RNA microchips (Agilent 2100 Bioanalyzer 

Agilent; (Masotti and Precke, 2006) at the Biologisch-Medizinische Forschungszentrum 

(BMFZ), HHU Düsseldorf. cDNA was not synthesized. Appriate kits for high quality cDNA 

synthesis for subsequent deep-sequencing might be: Ovation
® RNA-Seq System (Nugen®).  
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Supplemental Figures 

 

Supplemental Figure 1. Tissue and cell specific expression profiles of Arabidopsis genes encoding 

proteins with DUF3411, inferred from the efp- and efp translatome browser, respectively. (A) 

At2g37860 (RE). (B) At5g22790 (RER-1). (C) At3g08630. (D) At3g08640. (E) At5g12470. (F) 

At5g24690. (G) At2g40400. (H) At3g56140.  

 

 

Supplemental Tables 

 

Supplemental Table 1. Relative fatty acid levels of col-0 and re-6 plant rosettes.  

Fatty Acid 
col-0 re-6 

p-value Sig. Lev. 
Average ± S.E. Average ± S.E. 

C16:0 10579.20 1810.40 13814.28 443.35 0.1655 ns 
C16:1 276.00 55.62 373.74 27.77 0.1916 ns 

C16: 3 3931.54 861.47 4922.78 149.22 0.3480 ns 

Total C16 14786.74 2725.52 19110.8 600.66 0.2103 ns 

C18:0 2030.32 150.37 2824.42 281.80 0.0333 * 

C18:1 72.26 6.96 108.10 7.70 0.0108 * 
C18:2 3788.61 616.52 5910.63 191.95 0.0214 * 
C18:3 21174.28 3692.33 26401.90 847.56 0.2587 ns 

Total C18 27065.48 4454.94 35245.02 1154.81 0.1564 ns 

Total Fatty acids 41852.22 7178.05 54355.82 1744.60 0.1749 ns 
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Supplemental Table 2. Gene-specific primers used for cloning. Restriction sites (RS) are underlined. 

start-ATG and stop codons are in bold. Further properties are indicated in the column “comments”. FP: 

forward primer; RP: reverse primer. Lowercase letters indicate spacer sequences, which are 

necessary to be in frame with a tag in the final vector.  

Name Sequence in 5`- 3`- orientation Direction RS Comments 

CR1 GGGGACAAGTTTGTACAAAAAAGCAGGCTccaccAT

GGCAGGATGTGCAATG 

FP - Italic: attR1 

ccacc: Kozac-seq. 

CR2 GGGGACCACTTTGTACAAGAAAGCTGGGTTCACT
GACAACCGCTCAATC 

RP - Italic: attR2 

CR4 GGGGACCACTTTGTACAAGAAAGCTGGGTcCTGA
CAACCGCTCAATCTTG 

RP - Italic: attR2 

CR5  GGGGACCACTTTGTACAAGAAAGCTGGGTccCGTT
TGGCAGTCATGATAA 

RP - Italic: attR2 

CR6 GGGGACAAGTTTGTACAAAAAAGCAGGCTccaccAT

GGGTGGTTCAGGTAGGCAAAG 

FP - Italic: attR1 

ccacc: Kozac-seq. 

CR8 GGGGACAAGTTTGTACAAAAAAGCAGGCTccaccAG
CTGGTCAGATGCAAGGAT 

FP - Italic: attR1 
ccacc: Kozac-seq. 

CR9 GGGGACCACTTTGTACAAGAAAGCTGGGTcCCTAC
CTGAACCACCTCTAATCC 

RP - Italic: attR2 

CR10 GGGGACCACTTTGTACAAGAAAGCTGGGTcGAAA
GATGGATCAGCCAACATT 

RP - Italic: attR2 

CR19 GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAC

CGTTTGGCAGTCATGATAAGAT 

RP - Italic: attR2 

CR39 TTCAATGTCCCTGCCATGTA FP - Actin2 primer 

CR40 TGAACAATCGATGGACCTGA RP - Actin2 primer 

CR53 ATTTTGCCGATTTCGGAAC - - LBb1.3 T-DNS primer  

CR94 AAACCTGTTGATGCCACAGAC FP - Screening primer for 

SALK_073985(RER1) 

CR95 TAAACCCAACTGATCAAACGC RP - Screening primer for 
SALK_073985(RER1) 

CR138 GGGGACCACTTTGTACAAGAAAGCTGGGTggCCTA
CCTGAACCACCTCTAATCC 

RP - Italic: attR2 

CR139 GGGGACCACTTTGTACAAGAAAGCTGGGTggGAAA

GATGGATCAGCCAACATT 

RP - italic: attR2 

CR145 AGAGACTCGAGAAACAAGTTTGTACAAAAAAGCTG FP XhoI AGAGA: digest 

protection caps 

CR146 AGAGACTCGAGccCCACTTTGTACAAGAAAGCTGA
AC 

RP XhoI AGAGA: digest 
protection caps 

CR147 GGGGACAAGTTTGTACAAAAAAGCAGGCTccaccAT
GGTAGCTCAAGCTCCTCATG 

FP - ccacc: Kozac-seq. 

CR148 GGGGACCACTTTGTACAAGAAAGCTGGGTcTTATG

AGTAAAACTTGTATCCTTTTGCTT 

FP - - 

CR149 GGGGACCACTTTGTACAAGAAAGCTGGGTcTGAGT

AAAACTTGTATCCTTTTGCTT 

   

CR150 GGGGACAAGTTTGTACAAAAAAGCAGGCTccaccAT
GgggCATCATCACCATCACCATggtgctGGTGGTTCA

GGTAGGCAAAG 

- - 6*HIS-tag 
ggg: Gylcin-spacer 

ggtgct: Gly-Ala-spacer 
ccacc: Kozac-seq. 

CR151 GGGGACAAGTTTGTACAAAAAAGCAGGCTccGAGT

TGCGGAGTTTTCCAGA 

FP -  

P74 CACATACGATTTAGGTGACACTATAGAA FP - - 

P75 GATAATCTCATGACCAAAATCCCTTA RP - - 
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