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Summary

Influenza is a contagious respiratory viral infection that has been endemic in humans for

centuries causing substantial morbidity and mortality. Despite of comprehensive vacci-

nation campaigns influenza is annually responsible for approximately 41,000 deaths in

the USA alone and, thus, results in an enormous health and economy burden. Three

distinct types are endemic in humans with type A viruses evolving most rapidly and

being commonly associated with the most influenza infections. In a process known

as antigenic drift, the virus continuously alters the sequence composition of the two

surface antigens, hemagglutinin and neuraminidase, to evade recognition by the host

immune system. Therefore, the composition of the influenza vaccine has to be updated

on a regular basis. Based on this, the correct and accurately timed identification of

strains that are on the rise to predominance is of utmost importance to ensure sufficient

vaccine efficiency.

The aim of this work was to develop computational methods for the analysis of the

phylodynamics of seasonal influenza A viruses. This means that the developed meth-

ods should allow the analysis of the genetic, antigenic and epidemiological dynamics of

influenza and give insights into how their interplay shapes the evolution of the virus.

Two different strategies were developed to tackle the problem from (i) a population

genetics point and (ii) a molecular genetics point.

The rapid evolution of influenza A viruses results in the evolutionary processes to pro-

ceed on a similar scale to the epidemiological processes. This allows for a joint analysis

of the genetic and spatiotemporal dynamics of the virus. In this context, we developed

allele dynamics plots (AD plots), for the visualization of the evolutionary dynamics of a

gene in a population. Based on a sample of dated genetic sequences AD plots visualize

gene alleles, i.e. non-empty sets of amino acid changes mapped to individual branches

of a phylogeny, and their frequency over time. The method’s merits are demonstrated

with a study of the evolutionary dynamics of seasonal influenza A viruses. AD plots

for the major surface protein of seasonal influenza A (H3N2) and the 2009 swine-origin

influenza A (H1N1) viruses show the succession of substitutions that became fixed in

the evolution of the two viral populations. Furthermore, AD plots enable the identifica-

tion of those alleles that are likely to be subject to directional selection. Identification

of alleles with the largest frequency increase between consecutive influenza seasons re-

sulted in the early detection of those influenza A (H3N2) virus strains that later rise

to predominance.



A selective advantage of individual alleles implies their novelty in the antigenic phe-

notype with respect to alleles already circulating at high frequency. However, not all

substitutions associated with an allele contribute equally to the change in antigenicity.

In this sense, distinguishing substitutions in the hemagglutinin of human influenza A

viruses that have a significant impact on the antigenic phenotype from (near-) neu-

tral ‘hitchhikers’ is of high relevance. We therefore developed a method that allows

for the inference of antigenic trees for the major viral surface protein hemagglutinin.

Antigenic trees enable the determination of antigenic branch lengths for a given tree

topology using least-squares optimization. Thus, it allows to resolve the antigenic im-

pact of branch-associated amino acid changes. The accuracy of our technique to predict

antigenic distances is comparable to antigenic cartography. However, the inference of

antigenic trees allows for a more detailed study of the antigenic evolution of influenza

A (H3N2) viruses. Besides the identification of antigenic types, i.e. groups of viruses

with similar genetic and antigenic properties, we identified seven sites and five amino

acid changes with high antigenic impact in the evolution of influenza A (H3N2) viruses

from 1968 to 2003.

In summary, the developed methods are useful tools for the analysis of the phylodynam-

ics of influenza A viruses with a potential application for the biannual vaccine strain

selection process. However, application is not limited to this pathogen. With AD plots

any organism/pathogen where homologous genetic sequence data and associated sam-

pling times are available can be analyzed. For phenotype trees, application is possible

if pair-wise phenotype distances and according homologous genetic sequence data are

available. Thus, the developed methods have value for a broad scientific community.



Zusammenfassung

Influenza ist eine ansteckende virale Erkrankung der Atemwege, die seit Jahrhunderten

für beträchtliche Morbidität und Mortaliät in der menschlichen Bevölkerung verant-

wortlich ist. Allein in den USA verursacht das Influenzavirus jährlich trotz weitrei-

chender Impfstrategien etwa 41.000 Todesfälle. Damit stellt Influenza eine erhebliche

Belastung für das Gesundheitswesen und die Wirtschaft dar. Es zirkulieren drei ver-

schiedene Typen in der menschlichen Bevölkerung, wobei sich Viren vom Typ A am

schnellsten weiterentwickeln und gewöhnlich für die meisten Infektionen verantwortlich

sind. Durch einen Prozess, der als “antigenic drift” bezeichnet wird, verändert das

Virus fortlaufend die genetische Zusammensetzung seiner zwei Oberflächenproteine

Hämagglutinin und Neuraminidase, um einer Erkennung und Neutralisierung durch das

menschliche Immunsystem zu entkommen. Dementsprechend muss die Zusammenset-

zung des Influenzaimpfstoffes regelmäßig erneuert werden. In diesem Zusammenhang

ist eine genaue und rechtzeitige Erkennung von viralen Stämmen, welche das Potential

zur Dominanz in der viralen Population besitzen, von größter Bedeutung, um eine hin-

reichende Wirksamkeit des Impfstoffes zu gewährleisten.

Ziel dieser Arbeit war die Entwicklung von Methoden für die Analyse der “Phylody-

namiken” von Influenza-A-Viren. Die Hauptaufgabe bestand somit darin, die evolu-

tionären und epidemiologischen Vorgänge von Influenza zu untersuchen und darzustel-

len, wie deren Zusammenspiel die Evolution des Virus beeinflusst. Zwei verschiedene

Strategien wurden entwickelt, welche diese Fragestellung von (i) einem populations-

genetischen Punkt und von (ii) einem molekulargenetischen Blickwinkel aus betrachten.

Influenza-A-Viren zeichnen sich durch eine hohe Mutationsrate und Populationsgröße

aus. Dadurch laufen die zugehörigen evolutionären Prozesse zeitlich auf einer ähnlichen

Skala ab wie epidemiologische Prozesse. Diese Gegebenheit ermöglicht eine gemeinsame

Analyse der genetischen und räumlich-zeitlichen Dynamik des Virus. Wir haben “allele

dynamics plots” (AD-plots) entwickelt, welche die evolutionären Veränderungen eines

Genes in einer Population grafisch darstellen. AD-plots visualisieren Gen-Allele und

deren Häufigkeiten über die Zeit unter Verwendung von datierten genetischen Sequen-

zen. Allele sind in diesem Zusammenhang als nicht-leere Mengen von Aminosäureaus-

tauschen definiert, die für einzelne Äste eines phylogenetischen Baumes inferiert wur-

den. Die Vorzüge dieser Methode wurden anhand einer Untersuchung der evolutionären

Dynamiken saisonaler Influenza-A-Viren demonstriert. AD-plots des Hämagglutinin

von saisonalen Influenza-A-Viren (Subtyp H3N2) und 2009 pandemischen Influenza-

A-Viren (Subtyp H1N1) zeigen die Abfolge von Substitutionen, die in der Evolution



der zwei viralen Populationen fixiert wurden. Des Weiteren erlauben AD-plots die

Identifizierung von Allelen, die wahrscheinlich einer gerichteten Selektion unterliegen.

Die Identifizierung der Allele mit dem größten Häufigkeitanstieg zwischen aufeinan-

derfolgenden Saisons erlaubte die zeitige Erkennung solcher Influenza-A-Viren (Subtyp

H3N2), die zu einem späteren Zeitpunkt dominant in der viralen Population wurden.

Der selektive Vorteil individueller Allele impliziert eine signifikante Veränderung des

antigenischen Phänotyps bezüglich anderer Allele, die bereits mit einer hohen Häufigkeit

in der viralen Population zirkulieren. Allerdings tragen nicht alle Substitutionen, die

mit einem Allel assoziiert sind, gleichermaßen zu der veränderten Antigenizität bei.

Daher ist die Unterscheidung von Substitutionen, die einen signifikanten Einfluss auf

den antigenischen Phänotyp haben, von (fast) neutralen “hitchhicker -Mutationen” von

entscheidender Bedeutung. Wir haben eine Methode für die Inferenz von antigenischen

Bäumen für Influenza-A-Viren (Subtyp H3N2) entwickelt. In antigenischen Bäumen

werden paarweise antigenische Distanzen auf eine gegebene Baumtopologie mittels Op-

timierung der kleinsten Quadrate abgebildet. Dies ermöglicht die Inferenz von anti-

genischen Astlängen und somit die Aufdeckung des antigenischen Einflusses der Ast-

assoziierten Aminosäureaustausche. Die Genauigkeit dieser Methode mit Bezug auf

die Vorhersage antigenischer Distanzen ist vergleichbar mit derer von “antigenic car-

tography”. Neben der Identifizierung antigenischer Typen, d.h. Gruppen von Viren mit

ähnlichen genetischen und antigenischen Charakteristika, konnten wir sieben Positionen

und fünf Aminosäureaustausche bestimmen, die einen großen antigenischen Einfluss in

der Evolution von Influenza-A-Viren (Subtyp H3N2) zwischen 1968 und 2003 hatten.

Zusammenfassend stellen die entwickelten Methoden nützliche Werkzeuge in der Ana-

lyse der “Phylodynamik” und der antigenischen Evolution von Influenza-A-Viren mit

einer potentiellen Anwendungmöglichkeit für die halbjährlich stattfindende Auswahl

geeigneter Impfstämme dar. Die Anwendung dieser Verfahren ist allerdings nicht auf

diesen Erreger beschränkt. Im Prinzip kann jeder Organismus oder Erreger mittels

AD-plots analysiert werden, für den homologe genetische Sequenzen und entsprechende

Datierungsinformationen vorhanden sind. Phänotyp-Bäume können inferiert werden,

wenn homologe genetische Sequenzen und paarweise phänotypische Distanzen vorhan-

den sind. Daher sind die entwickelten Methoden auf viele wissenschaftliche Fragestel-

lungen übertragbar.
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CHAPTER 1

Introduction

Influenza is a contagious respiratory viral infection causing substantial morbidity and

mortality in annual epidemics around the globe. Being responsible for up to 500,000

deaths and up to five million infections annually (WHO, 2009a), influenza results in an

enormous health and economic burden (Molinari et al., 2007). Therefore, unraveling the

different evolutionary as well as epidemiological aspects of influenza remains a crucial

task for science.

1.1 Motivation and research aim

Influenza is the topic of many research projects and is studied by a large scientific

community (> 6000 articles in the PubMed database1 published in 2011). These pub-

lications focus on different aspects of influenza pathology and biology, ranging from

medical questions on the symptoms of an infection and underlying physical causes (Ec-

cles, 2005; Roxas and Jurenka, 2007) to abstract theoretical modeling of the course of

an epidemic (Adams and McHardy, 2011). With the recent advent of new sequencing

technologies massive amounts of sequential information became available advancing re-

1PubMed [Internet]. Bethesda (MD): National Library of Medicine (US). [1946]. Available from:
http://pubmed.gov/.
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search on the genetic and phenotypic evolution of influenza viruses (Bao et al., 2008).

Numerous studies used these novel data sets and increased the general understanding of

how genetic and phenotypic variations in combination with epidemiological processes

shape the evolution of the influenza virus. For instance, Smith et al. showed that

the antigenic evolution of influenza A (H3N2) viruses is clustered by multi-dimensional

scaling of antigenic distances, calculated from hemagglutinition inhibition titers, be-

tween isolates sampled over a 35 year period (Smith et al., 2004). Furthermore, Russell

et al. identified East-Southeast Asia as potential reservoir from which annual epidemics

of the influenza A (H3N2) virus are seeded based on phylogenetic inference in combi-

nation with the analysis of antigenic information and sampling times (Russell et al.,

2008b). These two studies are exemplary for the improvement of knowledge gained in

recent years. However, we are far away from having answered all questions regarding

influenza A evolution. For instance, global dynamics of influenza A (H3N2) viruses are

much more complex with other geographical regions playing important roles in seeding

and migration events, too (Bedford et al., 2010; Bahl et al., 2011).

The central aim of this work was to develop computational methods for the analysis of

the phylodynamics of seasonal influenza A viruses, i.e. to analyze how genetic and con-

sequently phenotypic variation is modulated by epidemiological processes and immune

pressure (Grenfell et al., 2004). In more detail, the developed methods should aid in re-

solving questions such as which mutations shape the evolutionary population structure

of the virus and which mutations have a phenotypic impact in terms of antigenicity.

This is important for the identification of novel viral strains that are on the rise to

predominance. To warrant sufficient vaccine efficacy, the identification of mutations

resulting in antigenically distinct viral strains with epidemic potential is, therefore, of

utmost importance.

1.2 Outline

The present work is a cumulative dissertation based on peer-reviewed articles published

in different international journals in the field of natural science. It is composed of five

chapters that place the articles into a larger scientific context (chapter 1), present the

main articles of the author (chapters 2 to 4) as well as a synopsis on the presented

publications (chapter 5). For each article the author’s contribution as well as the state

of publication is addressed.

The articles are presented in chronological order in the author’s manuscript version

as accepted by the respective journal allowing for a uniform appearance. However,
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the content (text, figures and tables) of each article is identical to the edited journal

version. The published articles are additionally provided in the appendix.

1.3 Influenza viruses

The scope of application of the developed methods in this thesis is on the influenza

virus, in particular genera A subtype H3N2, as this rapidly evolving pathogen poses a

substantial threat to public health and economy (Dushoff et al., 2006; Molinari et al.,

2007; WHO, 2009a). Furthermore, influenza A (H3N2) viruses are well studied and a

large amount of publicly available data records (genome sequences) exists (Bao et al.,

2008). In the following section the epidemiological and molecular dynamics of influenza

viruses with a focus on influenza A viruses will be explained.

1.3.1 Disease patterns and global activity

Influenza viruses cause mild to severe illness that has a sudden onset and is naturally

overcome within one week without requiring any medical treatment (WHO, 2009a).

Exceptions are risk groups like the very young, the elderly, pregnant women and people

suffering from medical conditions, for which an infection may lead to life-threatening

complications. Viral transmission from person to person is carried out through air or

via direct skin-to-skin contact (WHO, 2009a) and local epidemics easily spread within

the population via crowded places, such as schools or work places (Viboud et al., 2006;

Cauchemez et al., 2008).

Global influenza activity is characterized by seasonal epidemics occurring annually

during winter seasons in temperate regions, whereas in tropical regions influenza is

prevalent year-round (Figure 1.1). Reasons for the pattern of seasonality in temperate

regions are still unclear and various theories exist (Lipsitch and Viboud, 2009). One

possible explanation was given by Shaman and Kohn who showed based on experiments

with guinea pigs that virus transmission is most efficient at low vapor pressure (Shaman

and Kohn, 2009).

1.3.2 Influenza A virus - genomic structure

The influenza virus is a single-stranded, segmented, negative-sense RNA virus of the

family Orthomyxoviridae. Three distinct genera or types (A, B and C), typed on the

basis of the nucleoprotein and matrix protein antigens (see below), circulate in nature

and highly differ in host range and pathogenicity (Webster et al., 1982; Taubenberger
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41S New Zealand
35S Argentina
33S Uruguay
30S Chile
29S South Africa
27S Australia
21S New Caledonia
20S Madagascar
10S Peru
10S Brazil
  4N Malaysia
  7N Sri Lanka
13N Philippines
14N Senegal
15N Thailand
22N Hong Kong
23N Taiwan
23N Mexico
27N Egypt
31N Israel
34N Tunisia
39N Greece
40N Spain
45N Croatia
47N Switzerland
47N Austria
49N Luxembourg
51N Germany
53N Belarus
57N Latvia
62N Sweden
65N Iceland

Figure 1.1: Overall influenza (subtypes A (H3N2), A (H1N1) and B) activity for selected
countries between autumn 2005 and summer 2008 sorted by latitude (WHO, 2006a,b,
2007a,b, 2008a,b). The World Health Organization classifies influenza activity into five dis-
tinct categories: No activity (gray), sporadic activity (green), local activity (yellow),
regional outbreaks (orange) and widespread outbreaks (red). In temperate regions of
the northern and southern hemisphere (separated by dashed lines) influenza causes annual
epidemics in winter seasons, whereas in tropical regions influenza is prevalent year-round.
Motivated by Nelson and Holmes (2007).

and Kash, 2010). Of these, influenza A viruses evolve most rapidly and are commonly

associated with most influenza infections in humans (Lin et al., 2004). Furthermore,

type A viruses can cause zoonotic infections, host switch events and create pandemic

viruses (Webster et al., 1992; Steinhauer and Skehel, 2002).

The influenza A virus genome is composed of eight distinct segments encoding eleven

or twelve proteins (Medina and Garćıa-Sastre, 2011, Figure 1.2): The viral RNA

polymerase complex is formed by a heterotrimer consisting of polymerase basic pro-

tein 2 (PB2), polymerase basic protein 1 (PB1) and polymerase acidic protein (PA),

each encoded by a different genome segment. The PB1 segment further encodes the

pro-apoptotic protein PB1-F2, which is expressed only by some viruses, and the newly
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Figure 1.2: Schematic representation of the influenza A virion. Adapted from Medina
and Garćıa-Sastre (2011) with permission from nature publishing group.

identified protein N40 of unknown function (Wise et al., 2009). The receptor-binding

and fusion protein hemagglutinin (H or HA), neuraminidase (N or NA), which is in-

volved in the release of new virions from infected cells, and nucleoprotein (NP) are all

encoded by individual genome segments. HA and NA serve as viral antigens. The M

segment encodes the matrix protein 1 (M1), which is located below the lipid membrane,

and the trans-membrane matrix protein 2 (M2) that acts as an ion channel. Finally, the

NS segment encodes the nuclear export protein (NEP or NS2) and the nonstructural

protein 1 (NS1). NS1 is involved in cellular RNA transport, splicing, translation, as

well as host mediated antiviral response.

The genome segments exist in the form of viral ribonucleoproteins (vRNP), with the

viral RNA wrapped around NP monomers. The polymerase complex is bound to a

short hairpin structure formed by the partially complementary 5’ and 3’ untranslated

regions of each RNA segment. In total, the influenza A virus genome is of 13.5 kb in

length with genomic segments ranging from 2.3 kb to 0.9 kb (Ghedin et al., 2005). The

virion itself is composed of a lipid bilayer derived from a host cell and a layer of M1,

which interacts with the vRNPs, as well as with the cytoplasmic part of the surface

proteins. The viral surface is covered with the two integral membrane proteins HA

(homotrimeric) and NA (homotetrameric) and is penetrated by M2 ion channels. Be-

sides the vRNPs, NEP is also present in the virion, whereas NS1, PB1-F2 and N40 are

only expressed in the host cell. For a more detailed overview on the genomic structure

of influenza A viruses and the role of each encoded protein in the viral life cycle, see

Lamb and Krug (2001) or Medina and Garćıa-Sastre (2011).
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Influenza A viruses are further divided into different serotypes based on genetic and

antigenic properties of the surface proteins HA and NA (Webster et al., 1982). In

nature, 17 distinct HA subtypes (H1-H17) and nine distinct NA subtypes (N1-N9)

exist and circulate in various combinations in wild aquatic birds (Fouchier et al., 2005;

Liu et al., 2009; Tong et al., 2012). In the human population, currently the subtypes

H1N1 and H3N2 are endemic (WHO, 2012). However, sporadic cases of infections with

influenza A viruses of subtypes H5N1, H1N2 and H9N2 are observed from time to time

(WHO, 2011b,a, 2012).

1.3.3 Evolutionary mechanisms - antigenic drift and shift

Human influenza viruses are in a constant race with the host immune system to cir-

cumvent host immunity. Immunity is achieved by protective antibodies against the

viral antigens HA and NA and is elicited by previous infections or vaccination. The

virus has to constantly alter the sequence composition of the two surface glycoproteins

and, thus, their physico-chemical properties, to evade recognition by the host immune

system (Webster et al., 1982). This process is known as antigenic drift and results in

the accumulation of advantageous mutations mainly in the antibody-binding (epitope)

sites of HA, which increase viral fitness by changing its antigenic properties (Bush et al.,

1999b; Smith et al., 2004). However, not all changes in the HA are advantageous, such

that the according viral isolates fail to survive in the viral population. For subtype

H3N2, this dynamic results in a “cactus-like” (also known as “ladder-shaped”) phylo-

genetic tree of the HA segment: the trunk represents the surviving viral lineage over

time and short side branches that stem from the trunk represent extinct lineages (Bush

et al., 1999b; Ferguson et al., 2003; Nelson and Holmes, 2007; Holmes, 2010, Figure

1.3). However, other studies have shown that this behavior is unique to HA (Holmes

et al., 2005). Genetic diversity in the viral population is much higher if all genomic

segments are included in the analysis.

The segmented nature of the influenza A virus genome furthermore allows for genome

reassortment events. Reassortment events denote the interchange of genomic segments

between different viral isolates that co-infect a host cell (Nelson and Holmes, 2007). The

resulting viral isolates have an altered genome composition, where different segments

are inherited from the co-infecting viral isolates. Consequentially, the viral phenotype

may be altered with respect to, for instance, replicability, pathogenicity and transmis-

sibility. Reassortment events play a crucial role in influenza A virus evolution, as single

proteins with advantageous properties but detained by the remaining genome composi-
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Figure 1.3: Maximum parsimony phylogeny of HA sequences of seasonal influenza A
(H3N2) viruses isolated between 1983 and 1996. The thick line drawn from the root
(asterisk) to the evolutionary most distant viral isolate (square) indicates the trunk of
the tree, representing the surviving lineage over time. Years of isolation are indicated
by vertical lines. Adapted from Fitch et al. (1997) with permission from the National
Academy of Sciences of the United States of America.

tion can be put into a more favorable genetic context laying the path to predominance.

If the major viral antigen HA is involved in such a reassortment event, novel serotypes

may arise against which the human population is immunologically naive (Webster et al.,

1982; Cox and Subbarao, 2000). These antigenic shifts are the major cause of severe

pandemics and happened four times in the last 100 years, accounting for millions of

deaths worldwide (Tognotti, 2009; WHO, 2010a). Besides reassortment events, the

introduction of an animal influenza A virus into the human population can cause anti-

genic shifts, too (Cox and Subbarao, 2000). However, the mechanisms of how a viral

strain becomes a pandemic strain and the determinants of pathogenicity are still un-

clear and are the subject of ongoing research. Besides antigenic shifts, reassortment

events are common in the evolution of endemic influenza, too (Barr et al., 2005; Holmes

et al., 2005), although the extent is still unclear.
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1.3.4 Preventing infections - influenza vaccination

Due to antigenic drift, antigenically novel strains of influenza A virus appear on a

regular basis and rise to predominance in world-wide epidemics. Therefore, the compo-

sition of the influenza vaccine, consisting of one viral strain of each influenza A (H1N1),

A (H3N2) and B virus, has to be adapted regularly to match the currently predominant

viral strains (Russell et al., 2008a). The World Health Organization (WHO) maintains

a global influenza surveillance network (GISN), consisting of 4 WHO collaborating cen-

ters and >120 national centers, to monitor the genetic and antigenic properties of the

circulating influenza virus population (Cox et al., 1994; Russell et al., 2008a). The

gathered information is evaluated twice a year to assess whether an vaccine update is

necessary or not. This evaluation is made in January or February for the Northern

hemisphere winter season and in September for the Southern hemisphere winter sea-

son. Various serological tests and computational methods guide the analysis. If a viral

strain is detected that is antigenically distinct enough to the current vaccine strain,

i.e. antibodies induced against the vaccine strain do not suppress the binding of the

novel strain, an update of the vaccine composition is recommended. In most cases

this strategy results in a well-matched vaccine significantly decreasing morbidity and

mortality in the human population (Karlsson Hedestam et al., 2008). The downside of

this “predict and produce” approach is that the decision has to be made almost one

year in advance of the actual usage, to assure sufficient time for the vaccine manufac-

tures. Thus, if a novel antigenic variant is identified too late to be included into the

influenza vaccine, vaccine efficiency will be decreased due to an insufficient match to

the predominant viral strain (de Jong et al., 2000; Gupta et al., 2006).

Besides the seasonal influenza vaccine, ongoing research is focusing on universal vac-

cines (Du et al., 2010). The aim is to circumvent frequent reformulations and to enable

cross-protection across different serotypes. The cross-protection also bears the possi-

bility of an universal vaccine to be applicable to pandemic viral strains. Given the

ongoing threat of the highly pathogenic influenza A (H5N1) virus suddenly gaining the

characteristics necessary for sustained human-to-human transmission, the importance

of universal vaccines becomes clear (Abdel-Ghafar et al., 2008; Sui et al., 2009). Pop-

ular approaches for the development of an universal influenza vaccine target conserved

regions of the less variable stem of the HA (Sui et al., 2009), the ectodomain of the

matrix protein 2 (Huleatt et al., 2008) or the internal proteins of influenza A viruses

(Berthoud et al., 2011).
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1.4 Studying the antigenic evolution of influenza A viruses

The molecular genetic evolution of the influenza A virus is shaped by both mutations

and reassortment events. But even though reassortment events are frequent in the evo-

lution of seasonal influenza A viruses (Barr et al., 2005; Holmes et al., 2005), antigenic

drift is the evolutionary mechanism that has the highest impact. Evaluation of sampled

viral isolates with phylogenetic analysis and serological tests is the standard approach

to assess the antigenic evolution of the virus (WHO, 2012). However, understanding

the course of antigenic drift and the underlying mechanisms that drive single antigenic

variants to predominance is the key to ensure high vaccine efficacy (Carrat and Fla-

hault, 2007). In the following section, we will cover computational methods that aid in

the understanding of the antigenic evolution of influenza A viruses.

1.4.1 Phylogenetic inference

A common way to analyze and visualize the genetic structure of and evolutionary rela-

tionships within viral populations is the use of phylogenetic inference methods (Felsen-

stein, 2004; Grenfell et al., 2004; Yang and Rannala, 2012). These methods infer a

phylogenetic tree or phylogeny, “the evolutionary history of an organism or group of

related organisms” (Cammack et al., 2006). More precisely, phylogenetic trees illus-

trate the ancestral relationships between single genes or sets of species, represented by

molecular sequences (Felsenstein, 2004). In a phylogenetic tree, the input sequences

are called operational taxonomic units or taxa and are mapped to the terminal nodes

of a connected acyclic graph (Figure 1.3). This allows for an easy visualization and

interpretation of the evolutionary relationships.

Several different methods exist to infer a phylogenetic tree based on different optimal-

ity criteria. One distinguishes maximum parsimony, maximum likelihood and Bayesian

methods. Each has advantages and disadvantages with respect to runtime/complexity,

accuracy and interpretability (Yang and Rannala, 2012). However, all have in common

that the underlying search space increases super exponentially with increasing number

of taxa (Harding, 1971) and, thus, heuristic search techniques are usually implemented

for which there is no guarantee that the optimal solution can be found. An alternative

approach are distance-based methods, such as neighbor joining (Saitou and Nei, 1987),

that apply clustering techniques to infer a phylogenetic tree from pair-wise evolutionary

distances. Application of ancestral character state reconstruction techniques on phylo-

genetic trees furthermore allows the reconstruction of mutational paths in the evolution-

ary history of the underlying data (Fitch, 1971; Yang et al., 1995; Pagel et al., 2004).
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In influenza A virus research phylogenetic inference of single or concatenated genomic

segments is a common technique to study the evolutionary history of the viral popu-

lation. Basically, all inference techniques are applied and there is no clear preference

of one technique over the others, although maximum likelihood and Bayesian inference

gained more popularity due to increased computing power in recent years. Phylogenetic

inference can be used to study different questions regarding influenza A evolution. For

example, Holmes et al. constructed phylogenies of all genomic segments of influenza A

(H3N2) virus isolates to detect multiple reassortment events among viruses circulating

in New York State, USA, between 1999 and 2004 (Holmes et al., 2005). Another study

used phylogenies of the HA and NA segments of influenza A viruses (subtypes H1N1

and H3N2) to detect pairs of sites with putative epistatic interactions (Kryazhimskiy

et al., 2011). These examples highlight the easy applicability and the value of phylo-

genetic inference in the research of influenza virus evolution.

1.4.2 Detection of natural selection

Natural selection as introduced by Darwin (1859) is one of the basic concepts in molec-

ular biology and describes the survivability among phenotypes in a certain environment

(Clifford, 1976; Hurst, 2009). In more detail, natural selection acts in populations with

multiple forms of a phenotypical trait (discrete or continuous), where individuals of a

specific trait tend to survive and reproduce more successfully due to better adjustment

to the given environment and, thus, ensure the perpetuation of the phenotypical char-

acteristics in succeeding generations2. This varying reproductive success is measured

in terms of fitness that is dependent on the given environmental conditions (Clifford,

1976; Orr, 2009). In order of natural selection to act, a selective pressure is needed,

i.e. a specific environmental constraint that results in differential fitness evaluation of

given phenotypic traits.

Three modes of natural selection exist (Brodie et al., 1995; Hurst, 2009; Oleksyk et al.,

2010, Figure 1.4): (i) positive selection, (ii) purifying selection and (iii) balancing

selection. Positive selection favors advantageous alleles, i.e. alleles with increased fit-

ness, that results in their fixation in the population. This mode also represents the

form of natural selection originally introduced by Darwin (1859). Positive selection

is also known as Darwinian or directional selection (if associated with a quantitative

trait). Purifying selection eliminates deleterious mutations. This results in favoring

alleles that are already present at high frequencies in the population by reducing the

2“Natural selection” [Internet]. Merriam-Webster.com. [2011]. Available from:
http://www.merriam-webster.com (8 June 2012).



1.4 Studying the antigenic evolution of influenza A viruses 11

Figure 1.4: Modes of natural selection. Illustrations show the expected relative fitness
(ω̂) as a function of a phenotypic trait and phenotypic distributions before (solid curves)
and after selection (dashed curves). Adapted from Brodie et al. (1995) with permission
from Elsevier.

spectrum of the phenotypic trait. In other words, purifying selection increases the fre-

quency of already well-adapted alleles in the population and, thus, is expected to be

the common mode of selection in nature. Purifying selection is also known as negative

or stabilizing selection. The third mode of natural selection, balancing selection, main-

tains multiple distinct phenotypes at high frequencies favoring diversity. This mode

of selection acts when an organism is present in multiple environments with different

environmental conditions, such that single alleles are advantageous in the different en-

vironments. Therefore, an allele can never become fixed in the population. Balancing

selection is also known as disruptive selection.

In seasonal influenza A virus evolution natural selection is a key source of molecu-

lar variation. The virus is subject to directional selection, i.e. it has to continuously

alter the composition of its surface antigens to evade host recognition and immunity

gained by previous infections or vaccination. Thus, viral isolates expressing surface

antigens with unknown sequence compositions to the human immune system have a

higher fitness in comparison to viral isolates whose surface antigens are identical to

those included in the seasonal influenza vaccine. Therefore, frequent updates of the

influenza vaccine composition are inevitable (Hay et al., 2001).

On the molecular level, different studies have focused on the major surface antigen

hemagglutinin to search for evidence of positive selection. A main method to detect pos-

itive selection acting on specific protein sites is the use of the ratio of non-synonymous

(dN) to synonymous (dS) mutations observed in a phylogenetic tree. Depending on
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this ratio (dN/dS) either positive selection (> 1), negative selection (< 1) or no se-

lection (= 1) is assumed to act on the given protein site. However, interpretation of

this test should be done carefully if applied to samples drawn from a single population,

as statistical power may be reduced in this setup (Kryazhimskiy and Plotkin, 2008).

Application to HA sequences from influenza A (H3N2) viruses isolated between 1983

and 1997 detected 18 protein sites to be under positive selection (Bush et al., 1999b).

These codons were subsequently used to identify viral strains that are most likely to

rise to predominance (Bush et al., 1999a). However, results are biased as retrospective

tests were made on the data set that was used to detect the codons under positive

selection. An alternative approach to detect directional evolution at individual sites of

an protein alignment (DEPS) was given by Pond et al.. Based on a specific protein

evolution model they performed a phylogenetic maximum likelihood test and identified

20 sites subject to directional evolution in the complete genome of influenza A (H3N2)

virus (Pond et al., 2005, 2008). However, a disadvantage of this approach is that it

relies on the baseline evolutionary model and application to dim-light and color vision

genes in vertebrates did not result in the correct identification of adaptive sites (Nozawa

et al., 2009).

1.4.3 Advanced approaches

Many studies analyze the genetic evolution and possible means towards the antigenic

evolution of influenza A (H3N2) viruses. For instance, Plotkin et al. (2002) used ag-

glomerative single-linkage clustering to group hemagglutinin HA1 sequences into dis-

joint clusters that were successively predominant, and Xia et al. (2009) proposed a

“site transition network” to visualize co-occurring amino acid changes in the HA on

the basis of a mutual information approach. Other studies that include phylogenetic

inference in their analysis take advantage of the nature of the underlying data and are

categorized as phylodynamic techniques.

Phylodynamic techniques

The term “phylodynamics” was coined by Grenfell et al. (2004) and applies to the

analysis of the evolutionary and epidemiological patterns of rapidly evolving pathogens

such as RNA viruses (Grenfell et al., 2004). RNA viruses are characterized by large

population sizes, short generation times and a high mutation rate that allows them to

efficiently react to the strong selective pressure imposed by the host immune system

(Duffy et al., 2008). For influenza A viruses, this is approximately 7.6×10−5 mutations
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per site per genome replication (Drake, 1993), which is several magnitudes higher than

for double-stranded DNA viruses, such as the herpes simplex virus type 1 (7.7× 10−8

mutations per site per genome replication, Drake and Hwang, 2005). These dynam-

ics of rapidly evolving pathogens allow the evolutionary processes to occur on a time

scale similar to the epidemiological processes. If homologous sequences and appropriate

epidemiological data are available, so called phylodynamic techniques allow for a joint

analysis (Grenfell et al., 2004; Pybus and Rambaut, 2009). In more detail, these meth-

ods try to unify the interacting epidemiological and genomic dynamics on the basis of

phylogenetic inference. Using epidemiological information such as sampling locations

or sampling times, phylodynamic techniques facilitate, for instance, the inference of ge-

ographic migration patterns or to date past evolutionary events. For instance, Wallace

et al. used a “phylogeographic” approach to infer migration paths of highly pathogenic

avian influenza A (H5N1) viruses across Asia (Wallace et al., 2007) and Smith et al.

dated the genomic most recent common ancestor of the 2009 pandemic influenza A

(H1N1) virus (Smith et al., 2009).

In the present work we analyzed the impact of amino acid changes on the evolution of

influenza A viruses over time. Different approaches exist that, for instance, use amino

acid frequency diagrams (Shih et al., 2007) or analyze patterns of co-occurrence either

within or between genomic segments (Du et al., 2008; Xia et al., 2009). In contrast,

our method to infer allele dynamics plots (AD plots) takes advantage of the evolution-

ary structure of the data inferred by phylogenetic inference (Steinbrück and McHardy,

2011). AD plots visualize the frequency of different gene alleles over time. Gene alleles

are defined as non-empty sets of amino acid changes mapped to individual branches of

a phylogeny and their frequencies are calculated based on the number of viral isolates

in a subtree. This allows for an accurate representation of the underlying popula-

tion structure and, furthermore, enables the study of the according phylodynamics of

the analyzed gene. Application to approximately 5,000 influenza A (H3N2) virus HA

sequences visualizes the evolutionary dynamics between 1998 and 2009 with several

alleles being present at low frequencies for short time periods and multiple alleles ris-

ing to fixation. Additionally, the AD plot shows several alleles that are present for

a short time, only, and temporarily rise to high frequency. These alleles are mainly

observed during times when an antigenic variant has been predominant in worldwide

epidemics over several years. Overall, this picture reflects the “cactus-like” structure of

the phylogeny, i.e. one surviving lineage over time and short side branches accounting

for extinct lineages, at a higher degree of detail. For instance, one can easily determine

the order in which the substitutions of the surviving lineage became fixed. Further ap-
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plication to HA sequences of early 2009 pandemic influenza A (H1N1) viruses showed

that many different alleles co-circulated at low levels but only one allele became fixed.

This indicates that the virus was rather stable in terms of antigenicity during that time.

On the other hand, caution is warranted as only a short time period is covered, with

unbalanced sampling of viral isolates in different months.

A key benefit of AD plots is the early identification of antigenic variants that became

predominant in the analyzed time period based on a novel measure for directional se-

lection. If we assume that selection acts on individual alleles, those alleles with a fitness

advantage will rise in frequency faster than those alleles without a selective advantage.

Hence, gene alleles with the largest frequency increase between two time intervals are

more likely to be subject to directional selection than others. Application to the afore

mentioned AD plot of HA sequences of seasonal influenza A (H3N2) viruses resulted in

the detection of those changes with a beneficial impact on the viral population. In four

out of five cases the AD plot identified the sets of amino acid changes that were asso-

ciated with the viral lineage that later became predominant in the viral population. A

comparison to DEPS and dN/dS ratio tests, which identify sites under directional selec-

tion, revealed that the classic tests cannot detect all rapidly fixed amino acid changes.

In this sense our method complements the classical tests for directional selection.

Detecting positive selection - from sites to patches

The classical dN/dS ratio test to detect positive selection treats single protein sites

independently. Due to structural constraints within the protein, large-scale protein-

protein interactions and protein interactions with other macro-molecules this indepen-

dence usually doesn’t hold in nature. In a different study with minor contribution of

the author of this thesis we extended the basic method of dN/dS ratio tests for the

detection of positive selection to identify groups of protein sites under positive selec-

tion on the surface of a protein (Tusche et al., 2012). We use a graph-cut algorithm

to cluster sites, located in spatial proximity on a protein surface, that are assumed

to be under positive selection. Positive selection is measured based on a significant

deviation of dN/dS ratios from the protein-wide average. Application to HA of sea-

sonal influenza A viruses of subtypes H3N2 and H1N1 identified several patches on the

protein surface that are mainly composed of known antibody-binding sites. Compari-

son to the standard dN/dS ratio test revealed that our method had a higher accuracy

in detection of known antibody-binding sites. Further application to the PB2 protein

of the 2009 pandemic influenza A (H1N1) virus identified patches that included sites
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known to be relevant for successful replication in mammalian hosts. For the HA of the

2009 pandemic influenza A (H1N1) virus several patches were identified. Due to the

rather young evolutionary history of the virus, the evolutionary importance of these

patches needs further experimental validation. In summary, joint identification of sites

in spatial proximity under positive selection is more informative than the identification

of single sites alone.

From genotype to phenotype

AD plots and the way how they detect alleles under directional selection identify the

top-ranking alleles in every season. This is a limitation, as novel antigenic clusters

only become predominant in global epidemics every three to four years (Smith et al.,

2004). Additional antigenic information is necessary to evaluate the potential influence

of the identified alleles on the antigenic evolution of the virus, which was not avail-

able for the used data set. All methods that use genetic data only to make statements

about antigenic properties of influenza A viruses, rely on single reference strains, whose

antigenic characteristics in comparison to other viral strains are known (for instance

Plotkin et al., 2002). These reference strains, usually identified by the WHO, are used

to represent groups of viruses with similar antigenic characteristics that were predomi-

nant at a given point in time (for instance WHO, 2007a). Therefore, conclusions about

the identified properties of the antigenic evolution of influenza A viruses can only be

made at a discrete or clustered level with such methods.

In general, the antigenic characteristics of specific viral strains are measured with means

of hemagglutinition inhibition (HI) assays (Hirst, 1943). This is a binding assay that

quantifies the ability of an antiserum to inhibit the natural ability of HA to agglutinate

red blood cells. The HI titer represents the degree of dilution of an antiserum needed,

such that this inhibition is no longer possible. This makes it possible to compare sam-

pled viral isolates with respect to prepared antisera. Additionally, this test is also one

of the standard tests to evaluate the antigenic characteristics of currently circulating

viral strains done by the WHO and, thus, is important in the vaccine strain selection

process (Russell et al., 2008a).

In 2004, Smith et al. introduced antigenic cartography to study the antigenic evolu-

tion of influenza A (H3N2) viruses (Smith et al., 2004). They used log-transformed HI

distances in a multi-dimensional scaling approach to visualize the antigenic evolution

of the virus in a two-dimensional map. Based on data sampled over a 35 year time

period they showed that although the genetic evolution of the virus is continuous, the
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antigenic evolution is clustered, with single antigenic clusters being predominant in

world-wide epidemics for ∼ 3.5 years. However, the downside of this approach is that

the antigenic and the genetic evolution are only linked by means of prototype viruses of

the individual antigenic clusters. Other methods use both genetic and antigenic data

in a classification task to predict antigenically novel variants (Lee et al., 2007; Liao

et al., 2008; Huang et al., 2009). Antigenic information is used to decide whether two

viral isolates are antigenically distinct or not. Hence, a qualitative evaluation of the

degree of antigenic impact of genetic variations is not performed with such methods.

Currently, such information is gained by time- and cost-expensive experimental charac-

terization of mutant viruses only (Smith et al., 2004). We introduced a method to infer

genotype-phenotype relationships for the influenza A virus by means of antigenic trees

(Steinbrück and McHardy, 2012). In antigenic trees pair-wise log-transformed anti-

genic distances are fitted to single branches of a phylogeny inferred from associated HA

sequences using least-squares optimization. This allows for the inference of antigenic

weights for individual branches and, thus, for the mapped genetic changes, which were

reconstructed using ancestral character state reconstruction. For sufficiently resolved

data the inference of antigenic weights could be tracked down to individual changes.

Evaluation of the accuracy of predicting unseen antigenic distances for an antigenic tree

of HA sequences of 258 influenza A (H3N2) viruses showed a good performance similar

to antigenic cartography (0.86, 0.72 and 0.86 versus 0.83, 0.67 and 0.8; absolute pre-

diction error, standard deviation and Pearson’s correlation coefficient). This showed

that the antigenic evolution can be accurately correlated to the genetic evolution of

the influenza A (H3N2) virus. Identification of branches with high antigenic weights

allowed to define antigenic types and associated amino acid changes. Although anti-

genic types and the antigenic clusters found by antigenic cartography largely overlap

in terms of assigned viral isolates, both concepts differ. Antigenic clusters are charac-

terized by similar antigenic properties only, whereas antigenic types are characterized

by similar antigenic characteristics and evolutionary history. Additionally, the k-means

approach used in antigenic cartography relies on a well-defined cluster structure of

the data. In other scenarios, where clusters are less distinctive, robust cluster assign-

ments and the identification of phenotype-associated amino acid changes are hard to

achieve by the k-means approach. In contrast, our method would likely be able to

resolve genotype-phenotype relationships that are supported by the data. We further-

more identified protein sites and individual amino acid changes of high relevance in the

antigenic evolution of influenza A (H3N2) viruses. Comparison with experimentally

validated positions from an unpublished study of Koel et al. showed large overlap with
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the identified positions and amino acid changes further highlighting their antigenic im-

portance (Koel et al.; Antigenic evolution of influenza A (H3N2) virus is dictated by 7

residues in the hemagglutinin protein; 2nd International Influenza Meeting, Münster;

2011 ).

1.5 Outlook

In this thesis new methods for analyzing the phylodynamics of influenza A viruses were

developed and evaluated. Both methods, AD plots and antigenic trees, provide further

insights into the antigenic evolution of influenza A viruses and, thus, may assist in the

biannual vaccine strain selection process. Evaluation of the performance of the vaccine

strain selection process was demonstrated by a comparison of the recommendations

made by the WHO and the actually predominant antigenic variants. Correct identi-

fication of novel antigenic variants by the WHO was delayed by at least one season

resulting in a mismatch of the vaccine strain and the circulating viral strain in the

selected seasons. Both methods can aid in the evaluation of the genetic and antigenic

composition of the currently circulating viral population. For AD plots we showed their

potential to predict future predominant lineages.

A possible continuation of the two projects is their combination, i.e. the antigenic

evaluation of the top ranking alleles. Russell et al. provide a valuable data set for this

purpose that comprises a huge set of HI titers and sequenced HA data for viral isolates

sampled worldwide between 2002 and 2007 (Russell et al., 2008b). They used these data

to identify East-Southeast Asia as potential reservoir from which seasonal epidemics

of influenza A (H3N2) viruses are seeded. These data are particularly suited for our

analysis as they are a representative sample of the globally circulating viral population

over the analyzed years. Our initial results are promising and further evaluation may

lead to a valuable tool.

Another future research direction is the extension of the antigenic tree concept to fur-

ther resolve the antigenic impact of individual changes. A possible approach is to

impose weights on individual changes that map to single branches in the phylogeny

rather than on single branches alone. In this setup, branch weights would result from

a combination of weights inferred for the different changes that map to the according

branches. However, this requires a high resolution of the data to guarantee confident

estimates for the single weights.

Note that although the application focus of both methods was on the analysis of in-

fluenza A viruses, their application is not limited to this pathogen. For AD plots, any
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organism/pathogen where homologous sequence data and associated sampling times

are available can serve as input. It could, for instance, be used to study the intra-host

evolution of HIV infections. For antigenic trees, application is possible to research ques-

tions where pair-wise phenotype distances and homologous sequence data are available.
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3.1 Abstract

Phylodynamic techniques combine epidemiological and genetic information to analyze

the evolutionary and spatiotemporal dynamics of rapidly evolving pathogens, such as

influenza A or human immunodeficiency viruses. We introduce allele dynamics plots

(AD plots) as a method for visualizing the evolutionary dynamics of a gene in a popu-

lation. Using AD plots, we propose to identify the alleles that are likely to be subject

to directional selection. We analyze the method’s merits with a detailed study of the

evolutionary dynamics of seasonal influenza A viruses. AD plots for the major surface

protein of seasonal influenza A (H3N2) and the 2009 swine-origin influenza A (H1N1)

viruses show the succession of substitutions that became fixed in the evolution of the

two viral populations. They also allow the early identification of those viral strains

that later rise to predominance, which is important for the problem of vaccine strain

selection. In summary, we describe a technique that reveals the evolutionary dynamics

of a rapidly evolving population and allows us to identify alleles and associated genetic

changes that might be under directional selection. The method can be applied for the

study of influenza A viruses and other rapidly evolving species or viruses.

3.2 Introduction

Phylogenetic analysis allows the inference of evolutionary relationships from a set of

genetic sequences, which may represent a distinct species or a genetic region of individ-

uals of a population. For populations of rapidly evolving organisms, the evolutionary

and epidemiological processes may occur on similar timescales. Newly developed an-

alytical methods, known as phylodynamic techniques, allow the joint analysis of the

genetic and epidemiological relationships of the underlying data (Grenfell et al., 2004;

Pybus and Rambaut, 2009). Based on epidemiological information, such as sampling

locations or sampling times, phylodynamic methods enable the geographic migration

patterns of individuals of a population to be studied, tracking viral spread across host

tissues, searching for genetic sites subject to purifying or positive selection associated

with adaptation, dating past evolutionary events and gaining insights into population-

level processes using coalescence analysis. In (Wallace et al., 2007), for example, the

migration paths of the highly pathogenic avian influenza A (H5N1) virus across Asia

are inferred with a ‘phylogeographic’ approach from genetic sequences and geographic

sampling locations. Other studies revealed that chimpanzees serve as a natural reservoir

for pandemic and nonpandemic HIV type 1 (Keele et al., 2006) based on ‘phylogeo-
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graphic’ clustering, and identified the epidemic history and geographic source of HIV

type 2 based on a molecular clock analysis of dated genetic sequences (Lemey et al.,

2003).

We describe a method for analyzing the population-level phylodynamics of a gene,

which we call allele dynamics plots (AD plots). AD plots combine information from

phylogenetic inference and ancestral character state reconstruction with isolate sam-

pling times for the analysis of population-level evolutionary dynamics. Furthermore,

we use the AD plot of a population-level sequence sample to identify the alleles that

might be associated with a selective advantage. Based on this, we demonstrate how

AD plots can be used to study evolutionary dynamics and to identify emerging viral

strains with the example of two influenza A viruses: the human influenza A (H3N2)

and the 2009 swine-origin influenza A (H1N1) viruses.

In research into the evolution of the influenza virus, a method that enables the identi-

fication of alleles under selection is to count the number of amino acid changes within

a protein at sites under selection, which, in turn, can be identified based on the ratio

of non-synonymous to synonymous mutations (dN/dS) (Bush et al., 1999b). A recent

study suggests, however, that dN/dS ratios may not always be informative with regards

to detecting selection within a population. Moreover, the method is lacking in sensi-

tivity when applied to individual sequence sites (Kryazhimskiy and Plotkin, 2008). A

different approach was proposed by Pond et al., who introduced a phylogenetic maxi-

mum likelihood test based on a protein evolution model to test for directional evolution

at individual sites of an alignment (Pond et al., 2005, 2008). Further related methods

quantify the impact of ‘key innovations’ in species trees, e.g. what would happen if

lineages that have acquired a beneficial feature were able to spread faster than others.

These methods incorporate clade sizes and shifts in diversification rates identified from

the phylogenetic tree based on likelihood estimators in the analysis. For an overview,

see (Ricklefs, 2007). However, these methods were conceived for species-level and not

population-level analysis, and to evaluate macro-evolution. The method we describe

here does not use dN/dS information and is designed for the analysis of longitudinally

sampled population-level sequence data. In this sense, it complements the existing

approaches.

3.2.1 Background on influenza A viruses

The influenza virus is a rapidly evolving pathogen that is suited for the application

of phylodynamic techniques. The single-stranded negative-sense RNA viruses of the
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family Orthomyxoviridae are a major health risk in modern life, responsible for up to

500,000 deaths annually (Koelle et al., 2006). Three distinct genera (types A, B and

C) are endemic in the human population. Types B and C evolve slowly and circulate

at low levels. However, through rapid evolution of the antibody-binding (epitope) sites

of the surface proteins, influenza A continuously evades host immunity from previous

infection or vaccination, and regularly causes large epidemics. Influenza A viruses can

furthermore be distinguished based on the surface proteins hemagglutinin (HA) and

neuraminidase (NA). For type A viruses, 16 known subtypes of HA and 9 of NA occur

in various combinations in aquatic birds (Fouchier et al., 2005). In the human popula-

tion, influenza A viruses of the subtypes H3N2 and H1N1 currently circulate. Of these,

the swine-origin influenza A (H1N1) virus (‘swine flu’), which entered the human pop-

ulation in 2009, is currently responsible for the majority of infections (WHO, 2009b,

2010b).

Human influenza A viruses continuously change antigenically in a process known as

antigenic drift. This refers to the successive fixation of mutations that affect viral

fitness by increasing a virus’ ability to circumvent host immunity and protective anti-

bodies elicited by previously circulating viral variants (Bush et al., 1999b; Smith et al.,

2004). Antigenically relevant changes are located mainly in the epitope sites of the

viral HA (Wiley et al., 1981; Wiley and Skehel, 1987; Wilson and Cox, 1990; Skehel

and Wiley, 2000). Influenza viruses also have a segmented genome composed of eight

distinct segments and can evolve by means of reassortment. In segment reassortment,

new viral strains are generated, which can inherit genomic segments from two distinct

viruses simultaneously infecting the same host cell. This mechanism can affect anti-

genic evolution, as segments encoding antigenically novel surface proteins, but which

are harbored by viruses with low overall fitness due to other reasons, can thus be trans-

ferred into a more favorable genetic context and subsequently rise to predominance

(Webster et al., 1992; Kuiken et al., 2006; Lowen and Palese, 2007; Morens et al., 2009;

Neumann et al., 2009; Zimmer and Burke, 2009).

Antigenically novel strains of influenza A appear and become predominant in world-

wide epidemics on a regular basis, which requires frequent adaptation of the influenza

vaccine composition. The World Health Organization (WHO) monitors the genetic and

antigenic characteristics of the circulating influenza A virus population and searches

for antigenically novel emerging strains in a global surveillance program (Cox et al.,

1994; Russell et al., 2008a). The gathered surveillance information, combined with

human serological data, is evaluated by a panel of experts. The panel meets twice

a year to decide if an update of the vaccine composition for the next winter season
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for both the Northern and Southern hemispheres is necessary. This approach results

in a well-matched vaccine in most years, and significantly reduces the morbidity and

mortality of seasonal influenza epidemics. However, a decreased vaccine efficacy can be

caused by a new antigenic variant if it is identified too late to reformulate the vaccine

composition.

A large body of work exists on computational studies of influenza A virus evolution.

Phylogenetic reconstruction plays a key role here, since it was successfully used to un-

ravel the global migration of human influenza A (H3N2) viruses (Nelson et al., 2007)

and to identify East and Southeast Asia as a global evolutionary reservoir of seasonal

influenza A (H3N2) viruses (Russell et al., 2008c). Furthermore, genome-wide phylo-

genetic analysis of all eight viral segments determined that the evolutionary dynamics

of influenza A (H3N2) virus are shaped by a complex interplay between genetic and

epidemiological factors, such as mutation, reassortment, natural selection and gene flow

(Rambaut et al., 2008).

Besides these analytical studies, further computational methods have been applied

to study and predict the evolution of human influenza A (H3N2) viruses. Changes

within the hemagglutinin HA1 subunit sequence composition over time were visual-

ized and analyzed by Shih et al. using amino acid frequency diagrams (Shih et al.,

2007). However, this procedure does not take the underlying evolutionary relationships

and structure of the data into account, as isolate sequences and individual sites are

treated independently. Plotkin et al. used agglomerative single-linkage clustering on

hemagglutinin HA1 genetic sequences for decomposing the data into disjoint clusters,

finding that influenza evolution is characterized by a succession of predominant clusters

or ‘swarms’ of similar strains (Plotkin et al., 2002). This pattern is also reflected by

a narrow phylogenetic tree topology with one surviving viral lineage over time and a

viral diversity that is periodically diminished by selective sweeps of a novel viral strain

throughout the population (Koelle et al., 2006; Rambaut et al., 2008). Analyzing the

cluster size-time relation, Plotkin et al. suggested using a representative of the largest

cluster as the vaccine strain for the following winter season (Plotkin et al., 2002). Du

et al. constructed a co-occurrence network from co-occurring nucleotides across the

whole genome (Du et al., 2008). They identified co-occurring inter- and intra-segment

changes, and used these co-occurrence modules for sequence clustering. This results

in a grouping similar to the structure inferred by phylogenetic reconstruction. Xia et

al. used mutual information to identify and visualize co-occurring mutations in a ‘site

transition network’ (Xia et al., 2009). They also used this network to predict future

mutations, resulting in 70% sensitivity but also in a rather high false positive rate.
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However, it should be noted that although the term ‘predicting mutations’ may convey

that mutations are introduced independently in viral isolates in the following season,

the effect that a particular genetic change increases in frequency over two consecutive

seasons is often due to a previously low-abundance mutant circulating at higher preva-

lence.

Most of the abovementioned studies assess the underlying evolutionary relationships

and structure for the population-level sequence sample in some way. However, the

standard way to estimate evolutionary relationships is by phylogenetic inference. As

described above, Bush et al. identified 18 sites under positive selection by analyzing

the ratio of non-synonymous to synonymous nucleotide substitutions (dN/dS) on the

trunk of a phylogenetic tree of hemagglutinin HA1 subunit sequences (Bush et al.,

1999b). They subsequently used these sites to predict the direction of evolution for a

phylogenetic tree of influenza A (H3N2) virus HA by identifying the strains within the

phylogenetic tree that had the most pronounced evidence for positive selection (Bush

et al., 1999a). However, the dN/dS ratio lacks sensitivity if applied to individual sites,

as substantial evidence is required for a site to be considered informative. Not all rele-

vant sites may thus be detectable and, furthermore, the most relevant sites may change

over time (Smith et al., 2004). In a more recent study, Pond et al. identified nine sites

as being under directional selection in the HA segment of the influenza A (H3N2) virus,

using a model-based phylogenetic maximum likelihood test. Seven of these sites are not

detected with the traditional dN/dS ratio test (Pond et al., 2008). Nevertheless, this

method depends on the baseline amino acid substitution matrix and failed to identify

adaptive sites when applied to dim-light and color vision genes in vertebrates (Nozawa

et al., 2009).

To analyze the antigenic evolution of influenza A viruses, Smith et al. introduced a novel

method known as antigenic cartography, which is based on multidimensional scaling

of assay data on hemagglutination inhibition (Smith et al., 2004; Fouchier and Smith,

2010). This technique revealed that antigenic evolution is more clustered than genetic

evolution, depending on the antigenic impact of individual amino acid exchanges, and

that major changes (cluster jumps) occur every three to four years on average (Smith

et al., 2004). Accordingly, including both antigenic and genetic data within evolution-

ary models enables the most accurate analysis of influenza A virus evolution. Some

studies try to incorporate antigenic data (Lee et al., 2007; Liao et al., 2008; Huang

et al., 2009); however, because of limited publicly available data, the results have to

be approached with caution. To account for this lack of antigenic information for the

respective isolate sequences in our evaluation, we identified all predominant antigenic
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variants over the analyzed time period based on the genetic changes reported in the

literature.

3.3 Methods

3.3.1 Phylogenetic inference

HA sequences from 4,913 seasonal human influenza A (H3N2) virus isolates sampled

from 1988 to 2008, and from 1,516 swine-origin influenza A (H1N1) virus isolates with

exact sampling times (year and month) were downloaded from the influenza virus re-

source (Bao et al., 2008). Alignments of DNA and protein sequences were created with

Muscle (Edgar, 2004a) and manually curated. Phylogenetic trees were inferred with

PhyML v3.0 (Guindon and Gascuel, 2003) under the general time reversal GTR+I+Γ4

model, with the frequency of each substitution type, the proportion of invariant sites (I)

and the gamma distribution of among-site rate variation, with four rate categories (Γ4),

estimated from the data. Subsequently, the tree topology and branch lengths of the

maximum likelihood tree inferred with PhyML were optimized for 200,000 generations

with Garli v0.96b8 (Zwickl, 2006).

3.3.2 Allele dynamics plots

We describe AD plots for visualizing the evolutionary dynamics of a gene in a popula-

tion and for identifying the alleles that are potentially under directional selection. In a

nutshell, AD plots visualize gene alleles and their frequencies over time and thus enable

a detailed analysis of a gene in a population. The basic idea involves the following

four steps: (i) Inference of the evolutionary relationships for a sequence sample of a

population. (ii) Ancestral character state reconstruction and inference of evolutionary

intermediates based on the reconstructed evolutionary relationships. (iii) Mapping ge-

netic changes to branches of the tree topology and defining the prevalence of distinct

alleles of a gene at different points in time. (iv) Finally, evaluating how fast new alleles

or genetic variants propagate throughout the population.

Population genetics theory posits that in a population of constant size, genetic drift will

result in variation in allele frequencies and the continuous fixation of variants even in

the absence of selection (Futuyma, 1997; Hein et al., 2005; Templeton, 2006). However,

given that selection acts on an allele and confers a fitness advantage to the individual

organism, this will allow such alleles to rise faster in frequency than alleles without a

selective advantage. Hence, alleles that increase in frequency most rapidly over time are
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more likely to be subject to directional selection than other alleles. This criterion can

be applied to identify those alleles that might be associated with a selective advantage

from AD plots.

Following the phylogenetic inference of a tree topology using any standard method

(maximum likelihood, Neighbor-Joining or a consensus tree constructed from a poste-

rior sample of trees inferred with a Bayesian method (Huelsenbeck and Ronquist, 2001;

Drummond and Rambaut, 2007)), substitution events in the evolutionary history are

reconstructed using ancestral character state reconstruction and assigned to individual

tree branches. In detail, substitution events are assigned to the tree branches based

on the evolutionary intermediates reconstructed as ancestral characters. We use the

parsimony method of Fitch (Fitch, 1971) for ancestral character state reconstruction;

however, in principle, any available method can be applied (Felsenstein, 2004; Pagel

et al., 2004). In our analysis, we chose the isolate with the earliest sampling date as an

outgroup and used accelerated transformation (AccTran) (Felsenstein, 2004) to resolve

ambiguities in character state reconstruction. This procedure results in changes being

mapped preferentially closer to the root of the phylogenetic tree.

We define each branch that is associated with a non-empty set of substitutions to repre-

sent an individual allele. The number of alleles thus equals the number of branches with

non-empty sets of substitutions in the phylogenetic tree. We define the frequency of an

allele within a specific period as the ratio of the number of isolates in the subtree of the

allele relative to the number of all isolates within the designated period. An allele that

occurs later on the path from the root to the most recent isolates includes the substi-

tutions of the alleles that occurred earlier on this path and thus is more specific. Allele

frequencies are subsequently adjusted in case multiple related alleles emerge within the

same period. Isolates located in the subtrees of a newly defined allele within a period

are counted only once for the most closely placed parental allele in the phylogenetic

tree. This means that for calculating the allele frequency of all less specific alleles, iso-

lates that occur in the subtree below the more specific allele are not considered. Alleles

and the relevant substitutions are discussed using the following nomenclature: allele

substitutions *substitutions of parental alleles from the same period* (Figure 3.1).

3.3.3 Construction of AD plots for human influenza A viruses

In analyzing the evolution of human influenza A viruses, we are particularly interested

in those changes that affect the antigenic properties of a virus. To identify viral variants

with increased fitness for propagation through the host population, non-synonymous
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Figure 3.1: A tree demonstrating the concepts of alleles and allele frequency correction.
For allele 100A, only the isolates of subtree x are counted, whereas for allele 200B *100A*,
the isolates in subtree y are considered.

genetic changes of hemagglutinin are of particular interest. To this end, we constructed

AD plots from the substitutions for the complete viral HA of the influenza A (H1N1)

virus. Secondly, we constructed AD plots for the seasonal influenza A (H3N2) virus

based on the changes in the five epitope regions of HA (Wiley et al., 1981; Wiley and

Skehel, 1987).

Influenza infections in the human population show a pattern of seasonality. Peaks of

activity occur mainly in the winter months in temperate regions of each hemisphere

(Nelson and Holmes, 2007). We use the standard definitions for the influenza season for

the Northern and Southern hemispheres in our analysis. For the Northern hemisphere,

the influenza season begins on October 1st and ends on the 31st of March in the following

year. For the Southern hemisphere, the influenza season begins on the 1st of April and

ends on the 30th of September in the same year. For a comparison with the WHO

vaccine strain recommendation, we restricted our analysis to sequences sampled up

to the end of January for the Northern hemisphere season and to the end of August

for the Southern hemisphere season, which is when the WHO decides on the vaccine

composition.

To identify the alleles corresponding to the viral strains with antigenically novel HA

variants, we used the literature to determine the genetic changes reported for every

predominant antigenic variant over the analysis period. These appear, on average,

every 3.3 years and then predominate worldwide in seasonal epidemics (Smith et al.,

2004). The changes in these strains for the five HA epitopes are given in Table 3.1.
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Table 3.1: Antigenically novel viral variants of influenza A (H3N2) that emerged and rose
to predominance in worldwide epidemics between 1998 and 2008, and the corresponding
substitutions reported in the literature in the five epitope sites of hemagglutinin. Note
that PA99 is antigenically similar to MO99 and was used as the vaccine candidate strain
for MO99 (WHO, 2002a).

Antigenic cluster Substitutions Reference

A/Sydney/5/1997 (SY95) 62E, 156Q, 158K, 196A, 276K (Lin et al., 2004)
A/Moscow/10/1999 (MO99) 57Q, 137S (Lin et al., 2004)
A/Panama/2007/1999 (PA99) 144N, 172E, 192I (Lin et al., 2004)
A/Fujian/411/2002 (FU02) 50G, 75Q, 83K, 131T, 155T, 156H, 186G (Hay et al., 2003)
A/California/07/2004 (CA04) 145N, 159F, 189N, 226I, 227P (Hay et al., 2005)
A/Wisconsin/67/2005 (WI05) 193F (Hay et al., 2006)
A/Brisbane/10/2007 (BR07) 50E, 140I (Hay et al., 2007)

3.4 Results

3.4.1 Evolutionary dynamics of influenza A (H3N2)

We analyze the evolutionary dynamics of the seasonal influenza A (H3N2) virus with

AD plots generated using a maximum likelihood tree (Figure 3.2) from available HA

sequences. The H3N2 subtype has been circulating since 1968, but here we focus on the

time from 1998 until the end of 2008. For this more recent period, there is considerably

more sequence data available and the bias of sequences towards isolates with unusual

virulence or other atypical properties is reduced (Ghedin et al., 2005) (Supplementary

Figure 3.9).

The AD plot for HA of the human H3N2 virus (Figure 3.3, Supplementary Figure

3.7) shows several alleles that rise to predominance and reach fixation (their frequency

in subsequent periods equals one) between 1998 and 2008, such as 57Q *137S*, 156H

*75Q, 155T* and 193F. Other alleles reach high frequencies and subsequently vanish,

such as 160R in the 1999 Southern season, 273S in the 2000/01 Northern season or 126D

in the 2003 Southern season. Furthermore, a lot of minor frequency allele variation is

evident within each period.

Alleles becoming predominant and rising to fixation in the surviving lineage correspond

to substitutions that map to the trunk of the phylogenetic tree of hemagglutinin from

the human influenza A (H3N2) virus. Besides such changes, the observable variation of

alleles that do not become fixed (gray-colored alleles) is rather high within each time

interval in the analyzed sample. Although some alleles transiently reach high frequen-

cies, they are only present over a short period. Notably, many of these alleles appear

during times when an antigenic variant has been predominant for several years, such

as the time from 2000 to 2003, when the A/Panama/2007/1999 (PA99) variant was
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Figure 3.2: Maximum likelihood tree topology inferred for 4,913 hemagglutinin sequences
of seasonal human influenza A (H3N2). Leaf nodes are color-coded according to the sam-
pling dates of the viral isolates. The first sampled isolate, A/Siena/3/1988, is indicated
with an arrow. The trunk of the tree (i.e. the path from the root to the most recent clade)
is colored in red.

predominant. In these years, several new alleles with similar antigenic properties, such

as 160R in the 1999 Southern season, 92T in the 1999/2000 Northern season, 273S

and 50G, 247C in the 2000/01 Northern season, and 144D *186G* in the 2001/02

Northern season, (WHO, 1999b, 2000a, 2001a, 2002a) appeared successively and rose

to high frequencies without reaching fixation.

Most of the alleles rising to fixation (colored in Figure 3.3) are associated with substi-

tutions reported in the literature (Lin et al., 2004; Hay et al., 2003, 2005, 2006, 2007)

for the five distinct strains that represent predominant antigenic variants in the analysis

period (Table 3.1). Note that the substitutions of a particular antigenic variant are

not necessarily all part of the same allele (i.e. they do not map to the same branch

on the trunk of the phylogenetic tree). Instead, they often follow each other in im-

mediate succession in the AD plot and are located on consecutive trunk branches of

the phylogenetic tree. The earliest antigenic variant of the analysis period (PA99) is

an exception, in this sense, as a single allele represents multiple substitutions. This

reveals the limitations of the dataset for the earlier years (Supplementary Figure

3.9), which does not allow the order in which the PA99 substitutions were acquired by
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Figure 3.3: Allele dynamics plot for the major surface protein and antigenic determinant
of the seasonal influenza A (H3N2) virus. The Northern and Southern influenza seasons
from 1998 to 2008 are shown. Alleles that reach a prevalence of more than 95% and are
subsequently fixed are shown in color; all other alleles are shown in gray. Substitutions are
restricted to those that occur in the five epitope regions and are enumerated according to
HA1 numbering (Nobusawa et al., 1991). Alleles that rise most quickly in frequency and
are of interest with respect to vaccine strain selection are indicated by arrows.

H3N2 to be resolved. For all subsequent antigenic variants, the order of the acquired

substitutions is resolved and a set of multiple alleles becoming fixed within an interval

are evident from the AD plot. Thus, the evolutionary path and the order in which

these changes were acquired in the evolution of antigenically new strains of H3N2 are

revealed in the AD plot. For instance, for the antigenic variant BR07, which was pre-

dominant from 2006 to 2009, the hemagglutinin plot shows that of the two relevant

substitutions, 140I was acquired first, followed by 50E.
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Table 3.2: Alleles and their associated antigenic phenotypes with the steepest slopes
in the seasons when they are predicted to become predominant. Alleles in one season
are ordered by decreasing slope. Further comparisons show the recommended reference
strain for the use in the next year’s vaccine by the WHO and the predominant antigenic
variant in the next year’s influenza season for the same hemisphere. Note that A/Hong
Kong/1143/2002 (HK02, [50G, 83K, 186G]) is a PA99-like sublineage present before FU02
and A/Wellington/1/2004 (WE04, [159F, 189N, 227P]) was directly replaced by CA04 in
2004/05 Northern season before becoming predominant.

Season Alleles Slope Antigenic variant WHO Predominant

1998/99 North 57Q *137S* 0.5027 MO99 SY97 (WHO, 1999a) MO99/PA99 (WHO, 2000a)
144N *172E, 192I* 0.3704 PA99

2002 South 155T *75Q* 0.0833 FU02 MO99 (WHO, 2002a) FU02 (WHO, 2003b)
131T *186G* 0.0797 FU02
83K 0.0594 HK02/FU02
50G 0.0485 HK02/FU02

2002/03 North 131T *186G* 0.6616 FU02 FU02 (WHO, 2003a) FU02 (WHO, 2004a)
156H *75Q, 155T* 0.6546 FU02
83K 0.5950 HK02/FU02
50G 0.5950 HK02/FU02

2004 South 145N *159F, 226I* 0.3828 WE04/CA04 WE04 (WHO, 2004a) CA04 (WHO, 2005b)
227P *189N* 0.3331 WE04/CA04

2005 South 193F 0.5350 WI05 CA04 (WHO, 2005b) WI05 (WHO, 2006b)

2006/07 North 50E *140I* 0.1389 BR07 WI05 (WHO, 2007a) BR07 (WHO, 2008a)

3.4.2 Identification of alleles under directional selection in influenza

A (H3N2)

The AD plot, which visualizes the changes in frequencies of individual alleles in a se-

quence sample, enables us to easily identify those alleles that increase in prevalence

most rapidly over two consecutive influenza seasons. The corresponding viral strains

are likely candidates to be under the influence of directional selection and to have an

advantage relative to other alleles. We identified the alleles with the largest increase in

frequency between consecutive seasons that do not represent > 50% of the sequences

in the first season (otherwise they would already be predominant; Table 3.1). Of

the strains of the five antigenically distinct predominant variants (MO99/PA99, FU02,

CA04, WI05 and BR07), four can be correctly identified by this criterion (Table 3.2).

Thus, this measure allows us to use the AD plots to easily identify the strains that are

most relevant when deciding the composition of the influenza A (H3N2) vaccine.

In the 1998/99 Northern season, the allele that scores best is 57Q *137S*, which rep-

resents the MO99 variant that was predominant from the 1999 Southern season to

the 2002/03 Northern season (WHO, 1999b, 2000a,b, 2001a,b, 2002a,b, 2003a). The

allele 144N *172E, 192I*, which represents the antigenically very similar strain PA99,
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ranks second best. In agreement with the AD plot observations, the WHO also recom-

mended MO99 as the vaccine strain for the 2000 Southern season (WHO, 1999b). As no

suitable well-growing candidate strain could be produced, the previously predominant

SY97 strain was used in this season for the vaccine. PA99 was subsequently included as

a vaccine component starting from 1999/2000 Northern season (WHO, 2000a). Thus,

for the SY97-PA99 antigenic cluster transition, the AD plot allows the timely identi-

fication of a suitable strain that is in agreement with the original recommendation of

the WHO.

The FU02 variant, which predominated from 2003 to 2004/05 (WHO, 2003b, 2004a,b,

2005a), is associated with seven distinct substitutions: 50G, 75Q, 83K, 131T, 155T,

156H and 186G. 155T and 156H define the FU02 antigenic phenotype (Jin et al., 2005).

In the AD plot, the seven FU02 substitutions are associated with seven distinct alleles,

each with a single substitution. In the 2002/03 Northern season, alleles with the substi-

tutions 131T *186G* and 156H *75Q, 155T* score first and second best, respectively.

The best scoring allele for the 2002/03 Northern season lacks the relevant substitutions

155T and 156H described for FU02. Here, the frequency indicator does not directly

reveal the best candidate strain based on the available data. Antigenic information

would probably allow a more detailed analysis. The second high scoring allele would

presumably be a good choice as a vaccine strain, as it has other antigenically relevant

changes and shows a rapid increase in prevalence during the season. In agreement with

this conjecture, the corresponding strain (A/Fujian/411/2002) was recommended by

the WHO as the vaccine strain for the 2003/04 Northern season (WHO, 2003a). How-

ever, as no suitable well-growing candidate strain could be produced, the MO99/PA99

strain was used for the vaccine. In the 2002 Southern season, the 155T *75Q* allele

ranks first, but the correct allele (156H *75Q, 155T* ), which features all necessary

substitutions, increases only little in frequency and is thus not selected.

Interestingly, an additional substitution (186G) found in the highest scoring allele for

the 2002/03 Northern season appears independently in another frequent allele in the

preceding season. This seems a general aspect of H3N2 evolution - the repeated ap-

pearance of the same substitution in multiple different alleles. Often, the respective

alleles have different phylogenetic histories, in that they occur in different parts of the

tree, and the substitutions are occasionally encoded by different codons. Such repeated

changes can either reflect neutral changes at highly variable sequence positions or they

can be the result of directional selection against a certain residue at a given position at

this time. The AD plot allows us to identify such changes easily for further analysis.

The CA04 variant was predominant from 2004/05 to 2005/06 (WHO, 2005b, 2006a)
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and was recommended as vaccine strain for the 2005/06 Northern season in the spring

of 2005 (WHO, 2005a). The HA allele of this strain scores highest in the 2004 Southern

season. Here, the two alleles featuring the substitutions 145N *159F, 226I* and 227P

*189N*, respectively, rank first and second. Both of these alleles contain substitutions

of the CA04 variant, but only the top ranking one possesses all relevant substitutions

and thus is the correct choice.

The WI05 variant predominated from 2006 to 2006/07 (WHO, 2006b, 2007a) and was

recommended one season too late as the vaccine strain for the 2006/07 Northern sea-

son (WHO, 2006a). In the 2005 Southern season, the 193F allele associated with the

WI05 variant scores highest. The second substitution associated with WI05, 225N, is

not evident from this plot, as it is not part of the epitope regions. If non-epitope sites

are included in the analysis, both substitutions appear on subsequent branches, corre-

sponding to two consecutive emerging alleles in the plot (data not shown). In this plot,

the allele 225N *193F* scores highest. The AD plot thus allows us to identify the WI05

variant from the available data one season before the WHO’s official recommendation.

Finally, the antigenic variant BR07, which predominated from 2007 onwards (WHO,

2009b, 2007b, 2008a,b), scores highest in the 2006/07 Northern season and is repre-

sented by an allele with the substitutions 50E *140I*. A matching strain was rec-

ommended for the vaccine of the 2008 Southern season (WHO, 2007b). The AD plot

allows us to identify this emerging variant for the 2007/08 Northern season.

Applying a maximum likelihood test for directional evolution of protein sequences

(DEPS) (Pond et al., 2008) to the HA data of H3N2 from 1988 to 2008 revealed 42

sites in the HA epitopes. Nine of these sites are also under positive selection according

to a dN/dS ratio test (Pond et al., 2005) (data not shown). However, of the 20 epitope

sites where changes rise to fixation over the analysis period (Figure 3.2), only 12 are

detected by the DEPS method (Supplementary Table 3.3). This highlights that

such rapidly fixed changes cannot all be identified by common selection tests.

Retrospectively, our approach allows the identification of the CA04/WI05 antigenic

cluster transition in the 2005 Southern season, one year before it rises to predominance

in the 2006 season (Figure 3.4). In all other cases, our method allows us to identify the

correct strain one season before the respective antigenic variant becomes predominant:

The SY97/MO99 transition is detected in the 1998/99 Northern hemisphere season,

while the MO99 variant became predominant in the 1999 Southern hemisphere season.

The FU02/CA04 transition is predicted in the 2004 Southern hemisphere season, while

CA04 became predominant in the 2004/05 Northern season. Finally, the WI05/BR07

transition is identified in the 2006/07 Northern season, while the BR07 antigenic vari-
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Figure 3.4: Comparison of predominant influenza A (H3N2) strains, WHO vaccine strain
recommendations and strains identified by AD plot analysis. For the AD plot analysis,
seasons with antigenic cluster transitions are shown in color. The information shown for
the AD plot and the WHO recommendation represents the selection made one year earlier.

ant became predominant in the 2007 Southern season. In comparison to the WHO rec-

ommendations (WHO, 1999a,b, 2000a,b, 2001a,b, 2002a,b, 2003a,b, 2004a,b, 2005a,b,

2006a,b, 2007a,b, 2008a,b, 2009b, 2010b), this approach identifies the newly emerging

variants one season earlier. This may be because the WHO tends to be conservative in

recommendations, to avoid suggesting an antigenic variant that may never actually rise

to predominance in the future. However, in general, new variants reach predominance

very rapidly, if the time from the first appearance in the available genetic sequences is

measured. In all three cases above, the new variant rose to predominance after its first

appearance within a single year. Thus, given the available data, predicting this event

one year ahead of time would be impossible. Fortunately, in some cases the antigenic

changes between successive variants are not that large (Smith et al., 2004; Fouchier

and Smith, 2010). For instance, MO99 was antigenically similar to SY97. Thus, even

though most isolates sampled in the 1999 Southern season reacted to a higher titer

with the ferret antisera raised against MO99 (WHO, 1999b), recommending SY97 for

the vaccine composition thus did not result in a dramatically lower vaccine efficacy.

3.4.3 Influence of timing on antigenic variant identification

Twice a year, in February and September, vaccine strains are recommended for influenza

B, influenza A (H3N2) and influenza A (H1N1) to the manufacturers of the seasonal

influenza vaccine. This recommendation is made approximately one year before the

vaccine will be used in the Northern or Southern seasons, respectively (Russell et al.,

2008a). Above, we analyzed the data available only up to that point. If using all
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available data until the end of the influenza seasons, emerging alleles appear at high

frequencies in the respective AD plot. For example, this happened for the BR07 allele

in the 2006/07 Northern hemisphere season (Figure 3.3, Supplementary Figure

3.8). Previously circulating strains, on the other hand, occur at lower frequencies

in comparison, as newly emerging antigenic variants increase in prevalence typically

towards the end of a season. This effect is more pronounced for the Northern hemisphere

than for the Southern hemisphere, possibly because after the vaccine meeting in the

Northern hemisphere, two months of the winter season are still to follow, whereas only

one month of winter still remains in the Southern hemisphere. However, overall the

picture remains very similar. Based on all available data, all five antigenic variants can

be identified based on their rapid increase in prevalence. A noteworthy difference is

evident only for the 2002/03 Northern season, where the 156H *75Q, 155T* allele of

the emerging FU02 antigenic variant now ranks first. In summary, limiting the data

to what is available by the time of the WHO vaccine meetings, reduces the frequency

of alleles associated with newly emerging variants in the AD plot, but the ability to

identify viral strains that subsequently rise to predominance is preserved in four out of

five cases.

3.4.4 Evolutionary dynamics of the influenza A (H1N1) virus

We next studied the evolutionary dynamics of the 2009 influenza A (H1N1) virus,

using 1,516 available exactly dated HA sequences (Figure 3.5). The virus has cir-

culated in the human population only since April 2009 Garten et al. (2009); Smith

et al. (2009); Dawood et al. (2009). Therefore, we have studied the evolutionary dy-

namics in monthly intervals (Figure 3.6, Supplementary Figure 3.11). As isolate

A/California/05/2009 was the only one sampled in March, it was assigned to April 1st

to avoid errors introduced through the small sample size for March 2009. The AD plots

show that one non-synonymous and another synonymous change become fixed over the

analysis period. The corresponding substitutions, T658A (encoding the S206T change

(H3 HA1 numbering)) and C1408T (encoding a synonymous substitution for leucine),

have already been reported to divide the sequenced isolates into two distinct clusters

(Fereidouni et al., 2009), but have no known antigenic impact (Garten et al., 2009).

Furthermore, Pan et al. has already reported an increase in allele frequency for the

S206T substitution among new H1N1 sequence isolates (Pan et al., 2010).

Besides these changes, the plot also reveals the existence of several other alleles, which,

so far, appear only at low frequencies and did not become fixed until December of
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Figure 3.5: Maximum likelihood tree topology inferred from 1,516 2009 swine-origin
influenza A (H1N1) hemagglutinin sequences. Leaf nodes are color-coded according to the
sampling dates of the viral isolates. The first sampled isolate, A/California/05/2009, is
indicated with an arrow.

2009. Despite the fact that the data currently is very limited, at this point, the plots

do not reveal any alleles or associated substitutions that seem to be on the rise. Thus,

based on the available data, the virus currently seems stable in terms of antigenicity,

indicating that no update of the vaccine strain for this virus will be required for the

2010/11 season [also reported by the WHO (WHO, 2010b)]. However, some caution

is warranted in this interpretation, as different months are represented very unevenly,

with lots of data from April and May of 2009 and much less from the following months

(Supplementary Figure 3.10).

DEPS analysis of the H1N1 data identifies five sites in HA with evidence for directional

evolution. Three of these sites are also predicted to be under positive selection based

on a dN/dS ratio test (Supplementary Table 3.4). This includes position 206,

where a non-synonymous change has become fixed within the analysis period (220 in
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Figure 3.6: Allele dynamics plot for the major surface protein and antigenic determinant
of the new influenza A (H1N1) based on sequences sampled between April and December
of 2009 without allele frequency correction. Alleles that reach a prevalence of more than
95% and are subsequently fixed are shown in color; all other alleles are shown in gray.
Substitutions are enumerated according to H3 HA1 numbering (Nobusawa et al., 1991).

H1 sequence numbering). This indicates that this site might have been under positive

selection and that several further sites could be of relevance for the future evolution of

H1N1. However, overall, these results should be taken with care, as the analysis period

of one year, during which extensive sampling has taken place, is rather short, and the

data might be more enriched than samples obtained over longer periods, with many

neutral or slightly deleterious mutations.

3.5 Conclusion

AD plots provide a simple and easy to interpret visualization of the evolutionary dy-

namics of a gene within a population from a sample of dated genetic sequences. This is

particularly helpful for the analysis of large-scale sequence datasets, where a standard

visualization such as a phylogenetic tree topology is difficult to interpret manually and
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does not directly display sampling times. Here, we have applied our method to inves-

tigate the evolutionary dynamics of seasonal influenza A H3N2 and H1N1 viruses, for

which available sequence data is abundant.

From the AD plot for influenza A (H3N2), one can easily determine the order in which

substitutions of the surviving lineage became fixed over the analysis period, and one

can identify the predominant antigenic variants between 1998 and 2008. Furthermore,

we propose a novel indicator for directional selection, which allows us to identify the

alleles and corresponding substitutions that might have a selective advantage. We

demonstrate this approach for identifying future predominant and novel viral strains.

With this method, strains for four out of five antigenic phenotype transitions in in-

fluenza A (H3N2) evolution can be identified, based on the data available up to the

time of the WHO vaccine strain meeting. One limitation for this application is the

fact that a particular allele may score best for every time period, with no informa-

tion on whether it is antigenically similar or different from the current vaccine strain.

Hence, antigenic information also has to be considered to decide whether a vaccine

update is warranted. In summary, AD plots enable a sensitive and timely method for

detecting emerging viral strains that rise to high frequencies in subsequent seasons. In

our analysis, we find that AD plots permit us to accurately identify those alleles that

subsequently rise to predominance and become fixed in the course of viral evolution.

In combination with antigenic information on the individual strains, AD plots thus

present a new tool for the detailed analysis of influenza surveillance data that could be

used in the selection of strains for the seasonal influenza A virus vaccine.

Secondly, we used AD plots to analyze the evolutionary dynamics of the 2009 influenza

A (H1N1) virus. The AD plot for this virus reveals several new variants with unique ge-

netic composition that circulate at low levels in the human population and two genetic

changes that became fixed in the period from April to December 2009. At this point,

the plot does not allow identification of any further genetic changes that may become

fixed in the near future, indicating that the virus currently is evolutionary stable, even

though data is limited.

In summary, we present a novel visualization technique for the study of longitudinal

population-level sequence samples and for the identification of alleles that are on the

rise to predominance. The method allows us to investigate the evolutionary dynamics

of rapidly evolving populations, under consideration of the inherent evolutionary rela-

tionships and structure of the data. It complements existing methods for detecting sites

under directional and positive selection, such as dN/dS ratio tests or DEPS. Note that

AD plots are not limited to the study of influenza A viruses, but can also be applied
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for the analysis of other fast-evolving populations, such as the intra-host evolution of

human immunodeficiency viruses or hepatitis C viruses. Generally, the best results are

likely to be obtained if the analyzed sequence sample is representative for a constant-

sized population without too much structure (e.g. geographic subdivisions). In this

case, variations in frequencies can be taken as estimates for the evolutionary dynam-

ics of the respective population. Finally, while many computational techniques have

been applied to predict the evolutionary dynamics of influenza A viruses, our method

integrates state-of-the-art phylogenetic inference, ancestral state reconstruction and a

novel indicator of directional selection into the analysis, and thus provides a solution

with extensive theoretical support.

3.6 Supporting material

The supporting material comprises tables 3.3 and 3.4 and figures 3.7 to 3.11. For the

sake of limited space and dimensionality the supporting tables S1 and S2 from the pub-

lished article are not included in this thesis and can be accessed via the online version

of the article (http://nar.oxfordjournals.org/content/early/2010/10/18/nar.gkq909).
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Table 3.3: Test for directional evolution of protein sequences (DEPS) and traditional
dN/dS test (FEL) on the influenza A (H3N2) hemagglutinin sequences and according
phylogenetic tree under the influenza A substitution model. Only positions associated
with substitutions that rise to predominance in Figure 2 are shown (HA1 numbering). If
the empirical Bayes factor (DEPS EBF) is high enough (> 20) the position shows evidence
for directional selection. Positions also detected to be under positive selection are shown
in bold.

Site Associated DEPS EBF FEL dN/dS FEL p-value
antigenic cluster

50 FU02, BR07 9.3 e+17 3.8346 0.0006
57 MO99 3.8 e+02 0.5690 0.1609
75 FU02 - 0.2954 0.0134
83 FU02 1.6 e+03 0.8736 0.8157

131 FU02 2.5 e+02 0.4001 0.0262
137 MO99 - 2.3345 0.2390
140 BR07 3.6 e+03 1.9657 0.3263
144 PA99 1.9 e+04 1.2223 0.5560
145 CA04 1.8 e+02 3.1626 0.0276
155 FU02 1.3 e+02 0.4341 0.0882
156 FU02 - 0.4491 0.0152
159 CA04 - 0.9656 0.9484
172 PA99 - 0.4315 0.1588
173 - 1.0 e+08 0.9277 0.8290
186 FU02 1.0 e+26 1.2644 0.4093
189 CA04 - 1.7099 0.3031
192 PA99 - 3.8748 0.0096
193 WI05 1.5 e+04 1.6220 0.2277
226 CA04 9.4 e+14 1.5711 0.0801
227 CA04 - 0.4398 0.0832

Table 3.4: Test for directional evolution of protein sequences (DEPS) and traditional
dN/dS test (FEL) on the 2009 swine-origin influenza A (H1N1) hemagglutinin sequences
and according phylogenetic tree under the influenza A substitution model. If the empirical
Bayes factor (DEPS EBF) is high enough (> 20) the position shows evidence for directional
selection. Positions also detected to be under positive selection are shown in bold. Positions
2, 8, 559, 561, 562 and 565 that were also detected by DEPS are neglected due to low
sequence coverage. Positions are enumerated in H1 sequence numbering.

Site DEPS EBF FEL dN/dS FEL p-value

106 3.5 e+02 1.1680 0.8983
220 3.5 e+04 inf 0.0028
239 2.4 e+06 1.2567 0.7142
240 1.0 e+09 inf 0.0231
278 2.2 e+07 inf 0.0159
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Figure 3.7: AD plot for major surface protein and antigenic determinant of seasonal
influenza A (H3N2) virus in the Northern and Southern hemisphere influenza seasons from
1998 to 2008 without allele frequency correction. Alleles that reach a prevalence of more
than 95% and are subsequently fixed are shown in color; all other alleles are shown in gray.
Substitutions are restricted to occur in the five epitope sites and are enumerated according
to HA1 numbering.
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Figure 3.8: AD plot for major surface protein and antigenic determinant of seasonal
influenza A (H3N2) virus in the Northern and Southern hemisphere influenza seasons from
1998 to 2008 with relaxed seasonal cutoff. Alleles that reach a prevalence of more than
95% and are subsequently fixed are shown in color; all other alleles are shown in gray.
Substitutions are restricted to occur in the five epitope sites and are enumerated according
to HA1 numbering. Alleles that rise most quickly in frequency and are of interest at a
certain point of time are indicated by arrows.
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Figure 3.9: Sampling bias of the influenza A (H3N2) hemagglutinin sequences. Numbers
of available isolate sequences by season from 1988 to 2008.
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Figure 3.10: Sampling bias of the swine-origin influenza A (H1N1) hemagglutinin se-
quences. Numbers of available isolate sequences between April 2009 and December 2009.
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Figure 3.11: AD plot for the genomic segment of the major surface protein and antigenic
determinant of the new influenza A (H1N1) based on genomic sequences sampled between
April and December of 2009 without allele frequency correction. Alleles that reach a
prevalence of more than 95% and are subsequently fixed are shown in color; all other
alleles are shown in gray.
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4.1 Abstract

Distinguishing mutations that determine an organism’s phenotype from (near-) neutral

‘hitchhikers’ is a fundamental challenge in genome research, and is relevant for numer-

ous medical and biotechnological applications. For human influenza viruses, recognizing

changes in the antigenic phenotype and a strains’ capability to evade pre-existing host

immunity is important for the production of efficient vaccines. We have developed a

method for inferring ‘antigenic trees’ for the major viral surface protein hemagglutinin.

In the antigenic tree, antigenic weights are assigned to all tree branches, which allows

us to resolve the antigenic impact of the associated amino acid changes. Our technique

predicted antigenic distances with comparable accuracy to antigenic cartography. Addi-

tionally, it identified both known and novel sites, and amino acid changes with antigenic

impact in the evolution of influenza A (H3N2) viruses from 1968 to 2003. The tech-

nique can also be applied for inference of ‘phenotype trees’ and genotype-phenotype

relationships from other types of pairwise phenotype distances.

4.2 Author summary

The molecular evolution of any organism is described by changes in the genotype re-

sulting from genetic drift or selection to maintain or establish fitness under the given

environmental conditions. Identification of phenotype-defining changes and their dis-

tinction from (near-) neutral (‘hitchhikers’) ones is a fundamental challenge in genome

research. The standard approach involves time- and cost-intensive mutation exper-

iments, which are typically low throughput, due to their experimental nature. We

have developed a computational method for the inference of phenotypic impact of

genotypic changes that is applicable to any system, within or across species, where ho-

mologous genetic sequences and associated pairwise phenotype distances are available.

We demonstrate the accuracy of our method by application to the human influenza A

(H3N2) virus. This exemplary system is of particular interest, as recognizing changes

in the antigenic phenotype and a viral strains’ capability to evade pre-existing host

immunity is important for the production of efficient vaccines. We accurately identified

known sites and amino acid changes with antigenic impact over 35 years of evolution,

and provide further details on individual antigenically relevant changes in the evolution

of influenza A (H3N2) viruses.
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4.3 Introduction

Influenza viruses are responsible for ∼500,000 deaths annually and are a substantial

threat to human health (WHO, 2009a). Besides seasonal infections caused by human

viruses, four major pandemics over the last 100 years have resulted in ∼50 million

deaths worldwide (Tognotti, 2009; Taubenberger and Morens, 2006; WHO, 2010a).

The viruses are classified into three genera (A, B, C), all from the Orthomyxoviri-

dae family, which comprises single-stranded, negative sense RNA viruses. Influenza

A and B viruses evolve rapidly and continuously accumulate amino acid changes in

the antibody-binding (epitope) sites of the surface proteins, resulting in changes in

antigenicity. Thus, novel ‘antigenic types’ regularly appear and rise to predominance,

causing worldwide epidemics despite existing vaccination programs (Smith et al., 2004;

Nelson et al., 2007). Influenza A viruses are further categorized into subtypes based on

the composition of their surface proteins, hemagglutinin (H or HA) and neuraminidase

(N or NA). In the human population, the subtypes H1N1 and H3N2 are currently

circulating (WHO, 2011c). Both global population structure and geographic migra-

tion patterns are known to influence the evolution of H3N2. Russell et al. suggested

East-Southeast Asia to serve as a global reservoir, from which seasonal epidemics in

temperate zones are seeded (Russell et al., 2008c). Other regions, such as China or

USA, might serve as seeding regions, too, and migration from and to other tropical re-

gions than East-Southeast Asia is thought to have a significant influence on the global

dynamics (Bedford et al., 2010; Bahl et al., 2011).

To monitor genetic and antigenic changes, the World Health Organization (WHO) runs

a global surveillance program (Russell et al., 2008a). Quantification of viral antigenic

phenotypes is done with the hemagglutination inhibition (HI) assay, which measures

the ability of an antiserum to inhibit the agglutination of red blood cells by a vi-

ral antigen (Hirst, 1943). Antigenic cartography, involving multidimensional scaling

of log-normalized HI titers, subsequently generates an accurate low-dimensional rep-

resentation of the antigenic distances between antigen-antiserum pairs (Lapedes and

Farber, 2001; Smith et al., 2004). If a novel antigenic type with increasing prevalence

is detected, the vaccine composition, consisting of two strains of influenza A (H3N2

and H1N1) and one strain of influenza B, is updated to include an antigenically closer

match.

Antigenic cartography of influenza A (H3N2) isolates from 1968 to 2003 revealed that

antigenic types circulate for 3.3 years, on average, in worldwide epidemics before being

replaced by a successor (Smith et al., 2004). A comparison of antigenic and genetic
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maps showed that, the antigenic impact of genetic changes varies, depending on the

nature of the amino acids exchanged, their structural positioning and epistatic interac-

tions with other sites. Subsequent studies have incorporated both antigenic and genetic

data for predicting antigenically novel strains (Lee et al., 2007; Liao et al., 2008; Huang

et al., 2009). Additionally, many groups have investigated the influence of sequence

positions and sequence variation on viral evolution, based on different computational

criteria (Bush et al., 1999b,a; Plotkin et al., 2002; Shih et al., 2007; Du et al., 2008;

Pond et al., 2008; Xia et al., 2009; Steinbrück and McHardy, 2011).

Even though the general principles governing the antigenic evolution of influenza A

viruses are well studied, computational methods for directly determining the antigenic

impact of individual amino acid exchanges do not yet exist. Such analyses currently

require time- and cost-intensive experimental characterization of mutant viruses (Smith

et al., 2004). On the other end of the spectrum, antigenic cartography allows identifi-

cation of ‘cluster difference substitutions’, comprising all near-conserved changes that

distinguish consecutive antigenic clusters.

We describe a method for the inference of ‘antigenic trees’, which is based on a least-

squares optimization (LSO) procedure of fitting pairwise antigenic distances onto an

evolutionary tree for the major antigenic determinant of influenza A. It is a compu-

tational method allowing for a more fine-grained resolution of the antigenic impact of

individual changes than antigenic cartography without time- and cost-intensive exper-

iments. Application to HA sequences and serological data from human influenza A

(H3N2) viral isolates from 1968 to 2003 determined the antigenic impact of all branch-

associated amino acid changes for this time period. Our technique identified known

antigenic types and the amino acid changes associated with the type transitions. For

sufficiently resolved branches, the antigenic impact of individual exchanges could be

quantified. The method furthermore found known and novel key HA sites and changes

in antigenic evolution.

4.4 Results

We applied our method to infer an antigenic tree from genetic sequences of the hemag-

glutinin segment and serological data (HI titers of antigen-antiserum pairs) for 258

influenza A (H3N2) isolates sampled between 1968 and 2003 (Smith et al., 2004). Anti-

genic branch lengths were determined by fitting the antigenic distances between viral

isolates (the antigens) and antisera raised against reference strains to the branches of

a maximum likelihood tree (see Materials and Methods). Antigenic branch lengths
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Figure 4.1: Antigenic tree for influenza A (H3N2) viruses. Branch lengths represent
antigenic distances (maximum of up- and down-weights for each branch) inferred from a
maximum likelihood tree of 258 hemagglutinin sequences of seasonal influenza A (H3N2)
virus isolates and serological data. (A) Colored edges show antigenic type transitions, with
internal branches with high average antigenic weights (≥ 1.0 antigenic units). Gray-blue
edges represent high weight branches leading to a subtree with three isolates or less, repre-
senting low abundance types. (B) Isolates are color-coded by antigenic clusters according
to Smith et al. (2004). Three isolates (A/Christchurch/4/85, A/Hong Kong/34/90 and
A/Netherlands/172/96) are only present as antisera and were not assigned a cluster label.

were realized as two independent weights (up and down) and represented the antigenic

properties of antigens and antisera in the tree. The antigenic path length between two

isolates, corresponding to the sum of the branch weights (either up- or down-weight,

depending on the direction in the tree) for all connecting branches on the path between

them in the tree, reflected their overall antigenic distance (Figure 4.1).

To investigate how accurately antigenic distances were fitted onto the tree, we evaluated

its ability to predict unseen antigenic distances by leave-one-out cross validation (Hastie

et al., 2004). In this experiment, an antigenic tree is inferred from all but one antigenic

distance and then is applied to predict the left out distance. A predicted distance

corresponds to the antigenic path length between the two respective isolates in the

tree (see Materials and Methods). This was repeated for every antigenic distance

and the overall accuracy of predicting antigenic distances estimated by the absolute



52 CHAPTER 4. SECOND PUBLICATION - ANTIGENIC TREES

prediction error and the root mean squared error (RSME) averaged over all leave-one-

out experiments (see Materials and Methods). The leave-one-out absolute prediction

error was 0.86 antigenic units ( a two-fold dilution, SD 0.72) and the correlation

measured by Pearson’s correlation coefficient between predicted and measured values

was 0.86. Using placement on an antigenic map estimated from the same data, Smith

et al. report antigenic an average absolute prediction error of 0.83 antigenic units (SD

0.67) and a Pearson’s correlation coefficient of 0.80 for 481 measurements of antigenic

distances (Smith et al., 2004). The root mean squared error (RMSE) penalizes large

prediction errors more than small prediction errors, and is a well suited measure of

predictive accuracy. For our method, the leave-one-out RMSE is 1.12 antigenic units,

corresponding to approximately a two-fold dilution. This is comparable to the ten-fold

cross validation RMSE of Cai et al. on this data set (1.05 antigenic units) (Cai et al.,

2010), who used a matrix completion algorithm prior to multi dimensional scaling. Our

method therefore performs similarly to antigenic cartography in predicting antigenic

distances, with a slightly larger error but also a slightly higher correlation between

predicted and measured values. This is despite the fact that inferring antigenic branch

lengths for an antigenic tree allows far fewer degrees of freedom than an antigenic

map, where the data is not forced on a fixed structure. Note that for the prediction

of antigenic distances, other well-suited methods also exist (Cai et al., 2010; Ndifon,

2011).

As we infer a tree topology from nucleotide sequences, branches might be without

any amino acid changes and thus lack explanatory power if they are assigned anti-

genic weights. This allows accommodating measurement errors in HI titers in antigenic

branch weights or variation caused by changes in other viral antigens, such as the

surface glycoprotein neuraminidase. HI titers are imprecise, as they reflect two-fold

dilutions instead of quantitative estimates, and are often highly variable, with mea-

surements varying between experiments and laboratories. For instance, the two iso-

lates A/Finland/220/92 and A/Stockholm/20/91 have the same nucleotide sequence,

and hence no changes on their respective tip branches (tips), but differ strongly in

their HI values, where A/Finland/220/92 shows an antigenic distance from the same

antisera that is, on average, 1.0 antigenic units (a two-fold dilution) larger than that

of A/Stockholm/20/91. Note that, in general, even though neuraminidase may influ-

ence the HI titers, the WHO recommends application of the HI assay under conditions

where its influence is negligible (Network, 2011). To incorporate a possible influence of

neuraminidase activity one may use concatenated viral sequences (hemagglutinin and

neuraminidase) and fit antigenic distances on a tree topology inferred from these se-
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quences. If doing so, one should first ensure that reassortment events have not resulted

in larger topological changes between the HA and NA genealogies during the analyzed

time period (Nelson et al., 2006, 2007). In case of larger topopological changes due to

segment reassortment, a joint tree is inferred for data which cannot be described by

a tree-like evolutionary history, overall, and the results are likely to be only partially

informative.

On average, internal branches without amino acid changes have weights of 0.30 (up)

and 0.21 (down), respectively. Less noise occurs on the tree trunk, which represents

the viral lineage surviving over time, with 0.19 (up-weight) and 0.19 (down-weight) as-

signed, on average. Interestingly, the average antigenic weight of branches with amino

acid changes is higher on the tree trunk than for all internal branches (up = 0.52, down

= 0.61 vs. up = 0.44, down = 0.46). This is in agreement with an expected fitness

advantage for viral isolates with larger antigenic changes, and therefore preferential

fixation and establishment appear as changes on the tree trunk.

4.4.1 Antigenic types resolved in the tree

Antigenic types are clearly distinguished by high average weights (≥ 1.0 antigenic units)

in the antigenic tree (see Materials and Methods). Exclusion of branches leading to

subtrees with three or less isolates, representing undersampled groups, identified nine

branches defining type transitions (Table 4.1) and ten antigenic types. Abbreviations

for these (HK68, EN72, VI75, TX77, SI87, BE89, BE92, WU95, SY97 and FU02) are

used as in Smith et al. (Smith et al., 2004). SY97, for instance, denotes antigeni-

cally similar A/Sydney/5/1997-like strains. The average antigenic distances of these

branches range from 1.0 (SI87-BE89) to 2.6 antigenic units (WU95-SY97; Table 4.1,

Figure 4.1A). Eight of the nine type transition branches are on the trunk of the tree,

which represents the influenza A (H3N2) lineage surviving over time. An exception is

BE89, which is located in a subtree that has become extinct.
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The setting of the threshold parameter for identification of antigenic types in the tree

influences the performance of our method (Supplementary Table 4.4). The selected

threshold of 1.0 antigenic unit identified nine of ten antigenic type transitions found

by antigenic cartography (Smith et al., 2004). The TX77-BA79 transition was not

predicted with our method in this setting, as the weights of the corresponding branch

were slightly below the threshold (up-weight 1.4, down-weight 0.0). Our method re-

solves antigenically relevant changes between successive antigenic types in several cases

to several successive branches. Therefore, a higher threshold of 2.0 antigenic units for

individual branches (a four-fold dilution), as suggested to distinguish antigenically di-

verse viral strains (Russell et al., 2008a), does not allow distinction between different

antigenic groups (only if the transition is not well resolved in the data and the anti-

genic impact of multiple changes is summarized on a single branch). On the other hand,

choosing a lower threshold of 0.5 antigenic units selects twelve additional type-defining

branches (Supplementary Table 4.4, Supplementary Figure 4.3). Among these

is the TX77-BA79 type-defining branch that corresponds to an antigenic cluster transi-

tion according to antigenic cartography (Smith et al., 2004). Furthermore, four of these

additional branches define antigenic subtypes that were distinct enough to warrant a

vaccine update. A more detailed discussion of type-defining branches at the threshold

of 0.5 antigenic units can be found in the supporting material (Section 4.7.1). Note,

that the choice of the threshold distance is equivalent to find a minimal antigenic dis-

tance to distinguish groups of antigenically and genetically similar viral isolates. This

is different from the question whether two specific viral isolates are antigenically similar

or not, although both tasks are related to each other.

For the nine jointly identified type transitions, seven agree 100% in terms of the assigned

viral isolates. For the BE89-BE92 transition, the isolate A/Netherlands/938/1992 is

placed within BE92 using antigenic cartography and as preceding BE92 by our tech-

nique. Isolate assignment differs the most for the BE92-WU95 transition. This is likely

to be caused by multiple occurrences of N145K, which is, according to Smith et al.

(Smith et al., 2004), the change that defines the BE92-WU95 transition and has a ma-

jor antigenic impact in that context (2.6 antigenic units). It was already noted by Smith

et al. that isolates classified by antigenic cartography within WU95 are placed in the

vicinity of BE92 in a tree. Our analysis agrees with these findings (Figure 4.1B). We

found that for each branch adjacent to these disagreeing placements, N145K is present

(isolates of the antigenic type WU95 located in the area of BE92), with large branch-

associated antigenic weights (an average up-weight of 1.3), similar to the type-defining

branch of WU95 (up-weight 1.5). This indicates that N145K has a large antigenic
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impact for all these isolates and, interestingly, was evolutionary volatile during that

period.

Analysis of up- and down-weights for type-defining branches allows us to determine a

direction for antigenic impact. For example, the branch separating HK68 and EN72 has

a weight of 2.6 (up)/0.4 (down), which means that isolates of HK68 are antigenically

more similar to sera raised against EN72 than vice versa. The opposite example repre-

sents the SY97-FU02 transition, where the corresponding branch weight is 1.8 (up)/3.2

(down), which means that SY97 isolates are more distant from antisera raised against

FU02 than vice versa. Both examples are in agreement with results published by the

WHO (WHO, 1972, 2003a).

As influenza A evolution in the analyzed data set is characterized by an underlying

cluster structure, both antigenic types and antigenic clusters allow determination of

cluster-difference or antigenic type associated substitutions. However, antigenic types

(inferred by our method) and antigenic clusters (inferred by antigenic cartography)

have different interpretations. Antigenic types represent sets of viral isolates showing

similar evolutionary (defined by the phylogenetic tree) and antigenic (defined by the

antigenic branch lengths) patterns. Antigenic cluster are solely defined by antigenic

patterns and are determined by a k-means clustering approach. In datasets with less

well-defined cluster structure, the k-means approach would hardly result in robust clus-

ters and identification of phenotype-associated changes would be more difficult, whereas

our method would likely be able to resolve phenotype-genotype relationships up to the

level of resolution supported by the data.

4.4.2 Substitutions in antigenic type transitions

Amino acid changes from eight of nine type transitions identified by both antigenic car-

tography and the antigenic tree include the cluster difference substitutions described

in Smith et al. (Smith et al., 2004) (Table 4.1). Smith et al. define ‘cluster differ-

ence substitutions’ as changes in conserved residues between two consecutive antigenic

clusters (conserved meaning present in at least n - 1 isolates within a cluster of size n).

For five transitions, all cluster difference substitutions are on the type-defining branch

(BA79-SI87, SI87-BE89, BE92-WU95, WU95-SY97 and SY97-FU02). For three tran-

sitions (EN72-VI75, VI75-TX77 and HK68-EN72), the substitutions were resolved to

several branches with different antigenic branch weights, which allows a more fine-

grained distinction. The 12 substitutions of the EN72-VI75 transition were assigned to

two consecutive branches, one with high and one with moderate antigenic weights. The
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branch with S145N, Q189K, I217V and I278S has a high antigenic weight, indicating

that one or several of these have a very large antigenic impact. For the HK68-EN72 and

the VI75-TX77 transitions, the substitutions were resolved to two consecutive branches

with high and moderate antigenic weights, too.

For BE89-BE92, the amino acid changes differ from cluster difference substitutions.

Here, the cluster difference substitutions are found on branches that precede the type-

defining branch. The type-defining branch carries the change I214T, while the cluster

difference substitutions map to two preceding branches with lower antigenic weights.

I214T has not been mentioned in the literature before and is reversed downwards in the

tree on a branch without any assigned antigenic weight. Thus, either the measurements

here were too noisy to resolve the correct branch, or this position has an antigenic im-

pact as an epistatic effect, allowing for the preceding changes to become antigenically

effective. Support for a potential epistatic effect of this change can be found by de-

tailed analysis of individual HI measurements for two isolates (A/Hong Kong/34/1990

and A/Netherlands/938/1992), which already have the preceding branch changes for

BE92 but not the I214T change. On average, all antigens labeled BE92 by Smith et al.

have a large antigenic distance (greater 4.7 antigenic units) from the antiserum A/Hong

Kong/34/1990. A/Netherlands/938/1992 is similar to A/Hong Kong/34/1990, with an

antigenic distance of 0.7 to this antiserum.

Four branches with type transitions (SI87-BE89, BE92-WU95, WU95-SY97 and SY97-

FU02) include additional changes besides the cluster difference substitutions. For SI87-

BE89, the change G135E is present, in addition to N145K. G135E appears twice more

in the tree, with an average up-weight of 0.64. This indicates that it may also have

an antigenic effect in SI87-BE89. For BE92-WU95, the changes K135T and N262S

are present on the type-defining branch, in addition to N145K. Both are located in the

antibody binding sites (Wiley et al., 1981) and became fixed following their appearance

on this trunk branch.

In a recent (unpublished) study, Koel et al. (Koel et al.; Antigenic evolution of in-

fluenza A (H3N2) virus is dictated by 7 residues in the hemagglutinin protein; 2nd

International Influenza Meeting, Münster; 2011 ) determined by site-directed mutage-

nesis changes at seven positions in the HA protein (145, 155, 156, 158, 159, 189 and 193)

responsible for significant phenotypic diversity in the evolution of influenza A (H3N2).

We also find that for eight of the nine identified type-defining branches changes occur

at five of these positions (no changes at positions 159 and 193 are involved in antigenic

type transitions), which further confirm the relevance of these sites for antigenic evolu-

tion (Table 4.1). Note that, besides these five residues changes at 23 other positions
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map to the type-defining branches which not all have to contribute to the antigenic

weight, though their individual impacts could not be further resolved with the dataset

(unsampled viral isolates).

4.4.3 Antigenic impact of individual amino acid changes and sites

We examined amino acid changes with strong antigenic relevance according to (i) the

impact of all changes at a specific site and (ii) the impact of a specific change. In the first

case, we determined all positions where at least three changes occurred, and the mean

and median of the branch weights (up- or down-weight) were not less than one antigenic

unit. Missing weights, e.g. where down-weights were not defined because no antiserum

was raised for the corresponding subtree, were excluded from the calculations. Seven

positions, 112, 137, 144, 155, 156, 189 and 208, satisfy these criteria (Supplementary

Table 4.2). All except position 112 are part of the antibody binding sites of HA1

(Wiley et al., 1981). Positions 137, 155 and 156 are also part of the receptor binding

site (Wilson et al., 1981). Positions 155 and 189 may be particularly important, as

all changes occur on the tree trunk and are part of type transitions. The importance

of H155T and Q156H was also verified for the FU02 transition (Jin et al., 2005). For

positions 137, 144, and 156, several changes map to the tree trunk (three of six, four of

nine, and one of three, respectively), indicating their antigenic relevance. Changes at

position 112 explain single isolate variations, as all occur on tips. The antigenic impact

of these changes may be due to hitchhiking effects, as they occur only in combination

with other changes.

Next, we identified changes occurring at least three times in the tree with a mean and

median antigenic weight (up- or down-weight) of more than one unit (Supplementary

Table 4.3). Again, missing weights were excluded from the calculations. Five changes

satisfy these conditions. Four of these (K62E, N145K, L226Q and T248I) occur at

positions in antibody binding sites (Wiley et al., 1981). N145K was experimentally

verified to have a large antigenic impact (Smith et al., 2004). K62E is part of the

WU95-SY97 transition and has a high weight assigned on two further tips. Finally,

of the eight occurrences of L226Q, seven appear between 1990 and 1996 for isolates

of the BE92 type, indicative of a fitness effect for this antigenic type in particular.

Interestingly, the reverse change, Q226L, is known to play a role in receptor binding

specificity for the adaptation of bird viruses to the human host (Matrosovich et al.,

2000; Kawaoka, 2006; Bateman et al., 2008; Wan et al., 2008). T248I had a high weight

only in combination with other changes, indicating a potential epistatic effect. Besides
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these four changes, we identified V112I, which only appeared on tips and explains single

isolate variations.

We searched for changes with moderate antigenic impact (more than 0.5 antigenic

units) which identified seven further changes.G135E is part of the SI87-BE89 transition

(see above) and E156K was shown to impact immune escape in mice (Hensley et al.,

2009). Both are located in the antibody binding sites (Wiley et al., 1981). For several

additional changes, the importance was not immediately obvious, as they (i) occurred

only in combination with other changes, (ii) exhibited a high weight only in combination

with other changes (Q80K), (iii) only appeared on tips (S186I, S199P and V226I) or (iv)

had high weights assigned only on tips and low weights on internal branches (A138T).

In cases (i) and (ii), this may be the result of epistatic or hitchhiking effects, where

epistasis may be more likely for (ii). Case (iii) changes are rare and explain single

isolate sequence variations. This also seems to be likely in case (iv), where the effect on

the tips is amplified due to other effects or amino acid changes. Notably, all case (iii)

changes are also categorized as case (i) changes. Of all changes, E156K occurs once

on the tree trunk. All changes appear at several points in time for different antigenic

types, which indicates a potential antigenic influence. Furthermore, for five changes

(G135E, A138T, E156K, S186I and V226I), the respective site was identified as being

under positive selection (Bush et al., 1999b).

In a recent (unpublished) study, Koel et al. (Koel et al.; Antigenic evolution of influenza

A (H3N2) virus is dictated by 7 residues in the hemagglutinin protein; 2nd International

Influenza Meeting, Münster; 2011 ) showed by site-directed mutagenesis that changes at

seven positions in the HA protein (145, 155, 156, 158, 159, 189 and 193) are responsible

for large antigenic changes, all except two are part of antigenic cluster transitions, over

the 35 year time period. Of these, 155, 156 and 189 are also identified as generally

important by our default method. If single isolate variations are excluded from the

analysis, position 158 is also identified. For the other two positions (145 and 159) we

identified changes with high antigenic weights (e.g. N145K and S159Y). For position

193, evidence of antigenic importance could be found in our analysis if using ancestral

character state reconstruction with maximum parsimony (see Supplement). Thus, our

results also support the relevance of the sites proposed by Koel et al. (2011), even

though they are not entirely comparable due to differences in experimental set up.

Koel et al. analyzed prototype viruses with the amino acid consensus sequences of

antigenic clusters and introduced only the specific changes between these prototype

viruses, while our method also considers genetic and antigenic variations between other

viral strains of the dataset.
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4.5 Discussion

The antigenic impact of amino acid substitutions in the antigenic evolution of influenza

A viruses can reliably be determined by time- and cost-intensive experimental analysis.

As an alternative, we present a computational technique for inferring the antigenic im-

pact of amino acid changes. Our method determines antigenic branch lengths for a given

tree topology by fitting pairwise antigenic distances between isolates onto the tree with

LSO. For inference of the tree, any state-of-the-art method can be used. A comparison

between maximum likelihood, maximum parsimony and neighbor-joining trees showed

that all resulted in similar prediction errors (leave-one-out absolute prediction error:

0.86, 0.87 and 0.87 antigenic units, respectively; correlation between predicted and mea-

sured by Pearson’s correlation coefficient was 0.86 for all three methods). The antigenic

impact of the branch-associated amino acid changes is determined by reconstructing

the branch-associated amino acid changes with maximum likelihood (Yang et al., 1995);

other techniques, such as maximum parsimony or Bayesian reconstruction, could also

be used (Fitch, 1971; Pagel et al., 2004). A comparison between maximum likelihood

and maximum parsimony ancestral character state reconstruction showed that these

differed only in minor aspects, with the maximum likelihood reconstruction being an

intermediate between accelerated and delayed transition in case of ties with maximum

parsimony reconstruction. However, we did observe that more trunk branches were not

assigned changes based on maximum likelihood reconstruction, which decreased the

interpretability of antigenic weights in some cases.

We studied the antigenic evolution of the influenza A (H3N2) virus from 1968 to 2003

with antigenic trees inferred from data described in Smith et al. (Smith et al., 2004).

This allowed us to identify areas and branches in the tree corresponding to known anti-

genic types and transitions between these types. Analysis of antigenic weights identified

seven sites in the HA1 domain of HA that were repeatedly associated with high anti-

genic impact. Additionally, our method identified five amino acid changes with high

antigenic weights at several places in the antigenic tree. The sites and substitutions

identified by our method may be of particular relevance for influenza A (H3N2) virus

antigenic evolution, which has not been described before. For six of the seven positions

found by site-directed mutagenesis to defining antigenic clusters for the 35 year time

period (Koel et al.; Antigenic evolution of influenza A (H3N2) virus is dictated by 7

residues in the hemagglutinin protein; 2nd International Influenza Meeting, Münster;

2011 ), changes with high antigenic weights were identified with our technique, thus

further supporting their relevance for influenza A (H3N2) revolution. The additional
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sites detected by our method could be more relevant for genetic and antigenic variations

between viral strains in our data set not resulting in antigenic cluster transitions. These

were not analyzed by Koel et al., who characterized antigenic differences of prototype

viruses with the amino acid consensus sequences of the antigenic clusters.

As the dataset covers 35 years of viral evolution with a relatively small number of

isolates, not all substitutions could be resolved to individual branches and their in-

dividual antigenic impacts inferred. A denser sampling of data points would allow a

more precise decoding of the genotype-antigenicity relationships, as viral isolates were

unevenly sampled across the 35 years. The median number of viral isolates available

from between 1989 and 1997 was 15, whereas for the remaining years only three iso-

lates per year were sampled (median). This unequal sampling is reflected in resolution

of mutations to specific branches. Between 1989 and 1997, 19% of the branches with

assigned changes carry three or more changes, whereas for the other years this is the

case for 37% of the branches.

Our method allows inference of genotype to phenotype relationships from genetic se-

quences and associated pairwise phenotypic distances between individuals of a popula-

tion or different taxa. We demonstrated the usefulness of this technique for analyzing

the antigenic impact of amino acid changes in the evolution of human influenza A. An

application of our method could be in influenza A virus surveillance. Here, it could

be used to identify isolates and associated changes with large antigenic impact, which

need to be identified for vaccine strain updates prior to an antigenic type transitions

(McHardy and Adams, 2009). However, our method is not restricted to the analysis

of influenza viruses or antigenic distance information but can be applied to the study

of any system, be it within or across species, where homologous genetic sequences and

associated pairwise phenotype distances are available. The software is available upon

request from the authors.

4.6 Materials and Methods

4.6.1 Inferring the phenotypic impact of amino acid changes in pro-

tein evolution

Our idea is to adapt the least-squares optimization (LSO) technique of Cavalli-Sforza

and Edwards (Cavalli-Sforza and Edwards, 1967) for phylogenetic inference to the prob-

lem of identifying the phenotypic impact of amino acid changes in protein evolution.

The original method of Cavalli-Sforza and Edwards (Cavalli-Sforza and Edwards, 1967)
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identifies branch weights representing genetic distances according to the least-squares

criterion for a tree topology. We applied this technique to infer ‘antigenic trees’, repre-

senting the antigenic evolution of the major surface protein of human influenza A virus

(H3N2) over a 35-year period. In our adaptation, branch lengths represent antigenic

distances inferred from HI assay data for human influenza A viruses and a maximum

likelihood tree of the HA1 domain of hemagglutinin. Reconstruction of the amino acid

changes associated with the branches of the tree allows us to infer the antigenic impact

of the branch-associated amino acid changes. If sufficient data is available to resolve

individual changes to individual branches, our method returns an estimate of the anti-

genic impact of the individual exchanges. In LSO, one minimizes the sum of squares

between the given distances D and predicted distances d:

Q =
n∑

i=1

∑
j �=i

wi,j(Di,j − di,j)
2,

where W is the weight matrix for the different error terms, which were set to one here.

The predicted distances di,j are the sum of the branch weights on the path between leaf

i and leaf j. Here, di,j =
∑
k

xi,j,kvk , where xi,j,k equals one if branch k is on the path

between leaves i and j in the phylogenetic tree and zero otherwise. Thus, we search

for the best setting for the branch weights vk. While evolutionary distances are usually

used in this approach, here, we map antigenic distances to represent branch-specific

weights. To restrict the branch weights to positive values, we used the Lawson-Hanson

algorithm for non-negative LSO (Lawson and Hanson, 1995). Because the antigenic

distances here are asymmetric (i.e. di,j �= dj,i) and because the antigen and antiserum

raised against the same viral strain do not necessarily have the same position in the

antigenic space (Lapedes and Farber, 2001), we introduce the concept of up-down trees.

In up-down trees, viral strains are mapped to the leaves representing the corresponding

antigen as well as the antiserum, and every branch is assigned two independent weights,

the up- and the down-weight. Every path between two taxa i and j in the tree can be

separated into the set of branches from taxon i to the least common ancestor (LCA)

of i and j, and the branches from taxon j to the LCA. Now, the path between antigen

i and antiserum j involves only the up-weights on branches from taxon i to the LCA

and only the down-weights on branches from taxon j to the LCA (Figure 4.2).
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Figure 4.2: Schematic drawing demonstrating the up/down tree concept. For the two
taxa t2 and t4, no antiserum is present, and thus, b3 and b6 only have up-weights. A path
from t1 to t3 would use the up-weights of branch b1 and b2, and the down-weights of branch
b4 and b5. Similarly, the path from t2 to t1 would use the up-weight of branch b3 and the
down-weight of branch b2. Notably, the path from t1 to t1, namely the antigenic distance
from antigen t1 to the antiserum raised against strain t1, would use the up-weight and the
down-weight of branch b1.

4.6.2 Performance measures

To evaluate how accurately antigenic distances were fitted onto the tree, we used four

performance measures in leave-one-out cross validation experiments: mean absolute

error (MAE), root mean squared error (RMSE), standard deviation (SD) and Pear-

son’s correlation coefficient (CC). In leave-one-out cross validation, an antigenic tree is

inferred from all but one antigenic distances and then is applied to predict the left out

distance. A predicted distance corresponds to the antigenic path length between the

two respective isolates in the tree (see above). This was repeated for every antigenic

distance. Given n observed distances Di,j and predicted distances di,j the performance

measures are defined as follows:

MAE =
1

n

∑
i,j

|Di,j − di,j |,

RMSE =

√
1

n

∑
i,j

(Di,j − di,j)
2,
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SD =

√
1

n

∑
i

(xi − μ)2 with μ =
1

n

∑
i

xi and xi = |Di,j − di,j |,

CC =

∑
i,j

(Di,j − μD)(di,j − μd)

√∑
i,j

(Di,j − μD)
2
√∑

i,j

(di,j − μd)
2

with μD =
1

n

∑
i,j

Di,j and μd =
1

n

∑
i,j

di,j .

4.6.3 Up-weights and down-weights in the tree

Antigenic branch lengths are realized as two independent weights, allowing for a detailed

analysis of the underlying structure of the antigenic data. Up-weights represent the

antigenic distance from isolates below this branch to every other isolate outside of

this subtree, whereas down-weights represent distances from isolates outside of the

subtree to the isolates below this branch. Thus, the branch weight types reveal different

properties of the subtree. Let e be the branch going upwards from the least common

ancestor of an antigenically homogenous group of viruses (a type) in the tree. The

up-weight of e defines the degree to which the antigenic type is separated from other

antigenic types according to antisera in other parts of the tree, i.e. how well antigens

of this type are neutralized by antisera raised against other types. The down-weight of

e defines the degree to which the antigenic type is separated from other types based on

antisera within this part of the tree, i.e. how well other antigenic types are neutralized

by antisera of this type. The antigenic weights of two types often differ, which is

not surprising, as antigenic distances are not symmetric. For tip branches, the two

weights define the different behavior of the antiserum and antigen of a viral strain.

The up-weight reflects the antigenic properties of the isolate, whereas the down-weight

reflects the antigenic weight of the antiserum raised against the viral isolate. In case

no antiserum is present in a subtree, down-weights are undefined and assignment of

up-weights becomes ambiguous as they form linear combinations. To resolve this,

optimization is done only on the up-weights leading to leaves in the according subtree.

Afterwards, up-weights of the internal branches are set to the minimum of the up-

weights on the branches leading to the respective child nodes (these up-weights are

accordingly reduced by the minimum) in a bottom-up traversal. The rationale behind
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this is that if no additional information is present antigenic weights should rather be a

common feature of a subgroup of taxa than single isolate variation for every taxon in

the subgroup.

4.6.4 Phylogenetic inference

Hemagglutinin (HA) sequences from 258 seasonal human influenza A (H3N2) virus iso-

lates from 1968 to 2003 and that were used by Smith et al. (Smith et al., 2004) were

downloaded from the Influenza Virus Resource (IVR) (Bao et al., 2008). Alignments

of DNA and protein sequences, restricted to positions 1 to 363 (sites without missing

data appeared in more than 80% of the sequences), were created with Muscle (Edgar,

2004b) and manually curated. Trees were inferred with PhyML v3.0 (Guindon and

Gascuel, 2003) under the general time reversal GTR+I+Γ4 model, with the frequency

of each substitution type, the proportion of invariant sites (I) and the Gamma distri-

bution of among-site rate variation, with four rate categories (Γ4), estimated from the

data. Subsequently, the tree topology and branch lengths of the maximum likelihood

tree inferred with PhyML were optimized for 200,000 generations with Garli v0.96b8

(Zwickl, 2006). Isolate A/duck/33/1980 was used as outgroup to root the tree and

subsequently removed from the further analysis.

For placement of amino acid changes on the tree branches, protein sequences for the

HA1 domain of HA (excluding the additional sites used for a higher resolution of the

tree during the tree inference step) were assigned to the leaves of the tree inferred from

nucleotide sequences. Ancestral character states were reconstructed under the maxi-

mum likelihood criterion using PAML v4.5 (Yang, 2007) under the JTT+Γ4+F model

(Jones et al., 1992), with the frequency of each amino acid and the Gamma distribution

of among-site rate variation, with four rate categories (Γ4), estimated from the data.

Based on the reconstructed ancestral sequences for the internal nodes and leaf node

sequences, amino acid changes were assigned to the individual tree branches.

4.6.5 Antigenic data

HI assay data from Smith et al. was used and normalized according to these researchers’

methods (Smith et al., 2004). For each antigen i, antiserum j and the corresponding

HI titer hi,j , the distance was set as di,j = log2(max(
hj

hi,j
)), where max(hj) is the

maximum entry for antiserum j. The dataset comprises 4,215 measured values between

273 antigens and 79 reference sera. As not all strains were available in the IVR, 18

antigens and 9 reference sera could not be mapped to a genetic sequence and were
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excluded from the analysis. Additionally, threshold values (e.g. < 10, indicating the

lower bound in the HI assay below which dilutions are not measured) were excluded

from the analysis, as these values define only long-distance relationships and we did

not want to introduce a potential bias by setting these entries to fixed values. In case

of multiple antisera raised to the same viral strain, median values of the distances were

used.

4.6.6 Definition of antigenic types

Antigenic types in the antigenic tree can be distinguished by selecting type-defining

branches according to a threshold distance. The threshold was set to 1.0 antigenic

units for average weights (average of up- and down-weights), such that all branches are

selected whose average weights are at least twice as high as the average weights of all

internal branches. To exclude undersampled groups, all branches leading to subtrees

with three or less isolates were excluded.

4.7 Supporting material

The supporting material comprises tables 4.2 to 4.4 and figure 4.3. For the sake of

limited space and dimensionality the supporting tables S1 and S2 as well as supporting

figures S1 and S2 from the published article are not included in this thesis and can be ac-

cessed via the online version of the article (http://www.ploscompbiol.org/article/info%

3Adoi%2F10.1371%2Fjournal.pcbi.1002492).
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Table 4.2: Positions with multiple changes in the phylogenetic tree and high antigenic
weights (mean and median geq1 antigenic unit, highlighted in bold). ‘Tip’ indicates leaf
branches.

Position Up-weights Down-weights Trunk Tip
(mean/median) (mean/median)

112 1.14/1.13 0.30/0.18 0/4 4/4
137 0.21/0.15 1.27/1.05 3/6 3/6
144 1.21/1.39 0.95/0.41 4/9 4/9
155 1.52/1.77 2.29/3.16 3/3 0/3
156 1.28/1.44 0.79/0.00 1/3 2/3
189 0.45/0.57 1.95/2.42 3/3 0/3
208 1.24/1.73 0.59/0.59 0/3 2/3

Table 4.3: Changes with multiple occurrences in the phylogenetic tree and high antigenic
weights (mean and median ≥ 1 antigenic unit). ‘Tip’ indicates leaf branches. Down-weights
are omitted, as all changes were identified using up-weights.

Change Up-weights Trunk Tip
(mean/median)

K62E 1.52/1.42 1/3 2/3
V112I 1.14/1.13 0/4 4/4
N145K 1.36/1.52 1/9 5/9
L226Q 1.16/1.07 1/8 6/8
T248I 1.01/1.48 0/3 3/3



68 CHAPTER 4. SECOND PUBLICATION - ANTIGENIC TREES

T
a
b
le

4
.4
:
T
y
p
e-
d
efi

n
in
g
b
ra
n
ch
es

se
le
ct
ed

b
y
d
iff
er
en
t
th
re
sh
o
ld
s
fo
r
av
er
a
g
e
b
ra
n
ch

w
ei
g
h
ts
.
B
ra
n
ch
es

(1
)-
(9
)
w
er
e
se
le
ct
ed

a
s

ty
p
e-
d
efi

n
in
g
b
ra
n
ch
es

a
t
a
th
re
sh
o
ld

d
is
ta
n
ce

o
f
1.
0
a
n
ti
g
en

ic
u
n
it
s.

B
ra
n
ch
es

(i
)-
(x
ii
)
re
ve
a
l
fu
rt
h
er

su
b
d
iv
is
io
n
of

an
ti
g
en

ic
ty
p
es

a
t
a
th
re
sh
o
ld

d
is
ta
n
ce

o
f
0
.5

a
n
ti
g
en

ic
u
n
it
s.

A
st
er
is
k
s
m
a
rk

b
ra
n
ch
es

w
h
o
se

si
b
li
n
g
b
ra
n
ch

le
a
d
s
to

a
si
n
g
le

is
o
la
te
.
S
u
b
sc
ri
p
t

2

in
d
ic
a
te
s
th
a
t
a
b
ra
n
ch

is
a
d
ir
ec
t
su
cc
es
so
r
of

a
ty
p
e-
d
efi

n
in
g
b
ra
n
ch

(e
x
ce
p
t
fo
r
b
ra
n
ch

(i
),
w
h
ic
h
is
a
p
re
d
ec
es
so
r
of

th
e
ty
p
e-
d
efi

n
in
g

b
ra
n
ch
).

S
u
b
sc
ri
p
t

su
b
in
d
ic
a
te
s
a
su
b
d
iv
is
io
n
o
f
an

an
ti
g
en

ic
ty
p
e
w
it
h
o
u
t
a
d
ir
ec
tl
y
k
n
ow

n
re
fe
re
n
ce

st
ra
in
.

T
h
re

sh
o
ld

N
o
.

T
y
p
e

B
ra

n
c
h

a
m

in
o

a
c
id

c
h
a
n
g
e
s

W
e
ig
h
ts

T
ru

n
k

tr
a
n
si
ti
o
n

(u
p
/
d
o
w
n
/
a
v
g
)

(1
)

W
U
9
5
-S

Y
9
7

K
6
2
E
,
V
1
4
4
I,

K
1
5
6
Q
,
E
1
5
8
K
,
V
1
9
6
A
,
N
2
7
6
K

2
.5
/
2
.6
/
2
.6

x
2
.0

(2
)

S
Y
9
7
-F

U
0
2

L
2
5
I,

R
5
0
G
,
H
7
5
Q
,
E
8
3
K
,
A
1
3
1
T
,
H
1
5
5
T
,
Q
1
5
6
H
,
S
1
8
6
G
,
V
2
0
2
I,

W
2
2
2
R
,
G
2
2
5
D

1
.8
/
3
.2
/
2
.5

x

(3
)

B
A
7
9
-S

I8
7

G
1
2
4
D
,
Y
1
5
5
H
,
K
1
8
9
R

0
.2
/
3
.3
/
1
.7

x
(4

)
V
I7

5
-T

X
7
7

K
5
0
R
,
N
1
3
7
Y
,
G
1
5
8
E
,
M

2
6
0
I

0
.6
/
2
.8
/
1
.7

x
(5

)
H
K
6
8
-E

N
7
2

T
1
2
2
N
,
G
1
4
4
D
,
T
1
5
5
Y
,
R
2
0
7
K

2
.6
/
0
.4
/
1
.5

x
1
.5

(6
)

E
N
7
2
-V

I7
5

S
1
4
5
N
,
Q
1
8
9
K
,
I2

1
7
V
,
I2

7
8
S

0
.6
/
2
.4
/
1
.5

x

(7
)

B
E
9
2
-W

U
9
5

K
1
3
5
T
,
N
1
4
5
K
,
N
2
6
2
S

1
.5
/
1
.1
/
1
.3

x
(8

)
B
E
8
9
-B

E
9
2

I2
1
4
T

1
.4
/
1
.1
/
1
.3

x
1
.0

(9
)

S
I8

7
-B

E
8
9

G
1
3
5
E
,
N
1
4
5
K

2
.0
/
0
.0
/
1
.0

(i
)

S
I8

7
-B

E
8
9
2

1
.0
/
0
.9
/
0
.9

x
(i
i)

B
A
7
9
-C

C
8
5
/
L
E
8
6

S
1
5
9
Y

1
.1
/
0
.7
/
0
.9

x
(i
ii
)

B
E
9
2
s
u
b

N
1
4
5
K

1
.2
/
0
.3
/
0
.8

(i
v
)

B
E
9
2
-S

H
9
3

0
.4
/
1
.2
/
0
.8

(v
)

B
E
9
2
-J

O
9
4

S
4
7
P
,
D
1
2
4
N
,
N
2
1
6
D
,
S
2
1
9
Y

0
.6
/
0
.9
/
0
.8

(v
i)

T
X
7
7
-B

A
7
9

N
1
3
3
S
,
P
1
4
3
S
,
G
1
4
6
S
,
K
1
5
6
E
,
T
1
6
0
K
,
Q
1
9
7
R
,
V
2
1
7
I

1
.4
/
0
.0
/
0
.7

x
(v

ii
)

B
A
7
9
s
u
b

N
2
K
,
D
1
4
4
V

1
.4
/
0
.0
/
0
.7

x
(v

ii
i)

B
E
9
2
s
u
b

G
1
3
5
K

0
.2
/
1
.1
/
0
.7

x
(i
x
)

F
U
0
2
2
*

0
.0
/
1
.3
/
0
.7

(x
)

S
I8

7
-G

U
8
9

E
8
2
K
,
K
8
3
E
,
T
1
3
1
A
,
K
2
9
9
R

0
.8
/
0
.3
/
0
.6

x
(x

i)
E
N
7
2
2
*

L
3
F
,
N
1
8
8
D

0
.9
/
0
.2
/
0
.5

x
0
.5

(x
ii
)

E
N
7
2
-V

I7
5
2

N
5
3
D
,
N
1
3
7
S
,
L
1
6
4
Q
,
F
1
7
4
S
,
N
1
9
3
D
,
R
2
0
1
K
,
I2

1
3
V
,
I2

3
0
V

0
.0
/
1
.0
/
0
.5



4.7 Supporting material 69

4.7.1 Influence of threshold distance on type-defining branches

The definition of antigenic types depends on the choice of the threshold distance. An

average weight of 1.0 antigenic units as threshold distance resulted in robust antigenic

types, differing at least by a two-fold dilution from the preceding antigenic type. Our

method resolves antigenically relevant changes between successive antigenic types in

several cases to several successive branches. Therefore, a higher threshold of 2.0 anti-

genic units for individual branches (a four-fold dilution), as suggested to distinguish

antigenically diverse viral strains (Russell et al., 2008b), does not allow distinction be-

tween different antigenic groups (only if the transition is not well resolved in the data

and the antigenic impact of multiple changes is summarized on a single branch). Choos-

ing a lower threshold distance of 0.5 antigenic units selected twelve further type-defining

branches (Supplementary Table 4.4, Supplementary Figure 4.3). Although a

direct interpretation of the threshold distance of 0.5 antigenic units is difficult, as it

is not directly representative of dilution steps, five of these branches represent further

subdivisions of antigenic types described before in literature. Among these branches is

the branch leading to the TX77-BA79 transition that was also identified by antigenic

cartography as a cluster transition (Smith et al., 2004). Different from antigenic car-

tography, only a subset of the cluster-difference substitutions is assigned to this branch.

The remaining changes account for intra TX77 changes and are assigned to the preced-

ing branch.

Branch (i) is a predecessor of the SI87-BE89 type-defining branch. Although no change

was assigned to this branch with a maximum likelihood character state reconstruction,

with maximum parsimony ancestral character state reconstruction the change N193S

was assigned to it. This branch also precedes the following BE92 type on the trunk,

indicating that this precursor circulated undetected in the evolutionary reservoir dur-

ing this time period and that N193S conferred a significant fitness effect. N193S is

located in the receptor binding site (Wilson et al., 1981) and, thus, probably repre-

sents an antigenically important substitution for SI87-BE89, which was not revealed

by antigenic cartography. Similarly, branches (vii) and (viii) account for antigenic type

differentiations and define unsampled antigenically distinct intermediates between two

antigenic types. For both branches, several of the identified changes (G135K, D144V)

occur at positions under positive selection (Bush et al., 1999b), which further supports

their antigenic relevance.

Other branches, such as (ii), define antigenic types that include viral isolates with suf-

ficient antigenic dissimilarities to preceding viral strains to warrant vaccine updates.
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Here, branch (ii) refers to the antigenic type CC85/LE86, corresponding to two viral

strains predominant from 1985 to 1987 (WHO, 1986, 1987b,a). With antigenic cartog-

raphy, this type was placed within the BA79 cluster. Similarly, branch (iv) corresponds

to the antigenic type SH93, branch (v) refers to the antigenic type JO94 and branch (x)

refers to the antigenic type GU89. SH93 corresponds a viral strain predominant from

1993 to 1994 (WHO, 1994b,a) and was placed within the BE92 cluster with antigenic

cartography. JO94 corresponds to a viral strain predominant from 1994 to 1996 (WHO,

1995b,a, 1996b,a) and was placed within the BE92 cluster with antigenic cartography.

Finally, GU89 corresponds to a viral strain recommended for use in the influenza virus

vaccine in the 1990/91 northern hemisphere season (WHO, 1990) and was placed within

the SI87 cluster with antigenic cartography.

The remaining branches account for intra-type antigenic differentiations with different

interpretations. Branch (iii) indicates either an evolutionary volatile change with high

antigenic impact or discrepancies between phylogenetic inference and antigenic phe-

notype (see discussion on isolates of the WU95 antigenic cluster placed in the BE92

cluster in the phylogenetic tree and on N145K in the main article). Branch (xii) is

a successor of the VI75 type-defining branch and further distinguishes the VI75 anti-

genic type. The assigned changes are of antigenic relevance for distinguishing VI75

from previous and successive antigenic types but were assigned less antigenic impact

than the changes assigned to the type-defining branch. Finally, branches (ix) and (xi)

directly follow two type-defining branches and therefore further resolve these antigenic

type transitions. Single isolates are separated by these branches from the remaining

isolates of an antigenic type, indicating the presence of precursors with high antigenic

distance to previous antigenic types. However, these branches show that further anti-

genic change resulted in the antigenic types that rose to predominance.

Although, some branches have no changes assigned to them, possible changes at the

HA2 domain of the hemagglutinin or in the according neuraminidase may account for

these antigenic variations. Furthermore, using a fixed tree topology that might be

wrong, introduces further bias for fitting antigenic distances resulting in false assign-

ments on branches without changes.
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Figure 4.3: Branch lengths represent antigenic distances (maximum of up- and down-
weights for each branch) inferred from a maximum likelihood tree of 258 hemagglutinin
sequences of seasonal influenza A (H3N2) virus isolates and serological data. Colored
edges show antigenic type transitions, with internal branches with high average antigenic
weights (≥ 1.0 antigenic units, coloring according to Figure 4.1A) or moderate antigenic
weights ≥ 0.5 antigenic units (coloring as gradient from the higher order antigenic type).
Subscript 2 indicates that a branch was a direct successor of the according type-defining
branch (except of branch (i), who is a predecessor of the according type-defining branch).
Subscript sub indicates a subdivision of an antigenic type without a direct matching of a
reference strain.
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CHAPTER 5

Synopsis

The objective of this thesis was to develop computational methods for the analysis of

the phylodynamics of rapidly evolving pathogens. We demonstrated the application of

the developed methods with the influenza A virus, which has a large impact on public

health. To study the virus on a population-genetics level we developed allele dynamics

plots (AD plots) that allow to visualize the population-level dynamics of a gene over

time (Steinbrück and McHardy, 2011). AD plots for the hemagglutinin gene of seasonal

influenza A (H3N2) viruses showed the molecular dynamics of the gene over an eleven

year period. Furthermore, we found that alleles with the highest frequency increase

between two consecutive seasons show evidence for directional selection.

To study the antigenic evolution of seasonal influenza A (H3N2) viruses we developed

antigenic trees, which allow to resolve genotpye-phenotype relationships with respect to

the antigenic phenotype (Steinbrück and McHardy, 2012). Inference of antigenic branch

weights on a phylogenetic tree of viral isolates sampled over 35 years allowed to resolve

genotype-phenotype relationships with high accuracy. Furthermore, we identified both

known and novel amino acid changes and protein sites that are of antigenic relevance

for the influenza A (H3N2) virus.

In summary, both developed methods allow for a detailed analysis of the phylodynamics

of influenza viruses and, thus, might aid in the biannual vaccine strain selection process.
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ABSTRACT

Phylodynamic techniques combine epidemiological
and genetic information to analyze the evolutionary
and spatiotemporal dynamics of rapidly evolving
pathogens, such as influenza A or human immuno-
deficiency viruses. We introduce ‘allele dynamics
plots’ (AD plots) as a method for visualizing the evo-
lutionary dynamics of a gene in a population. Using
AD plots, we propose how to identify the alleles that
are likely to be subject to directional selection. We
analyze the method’s merits with a detailed study of
the evolutionary dynamics of seasonal influenza A
viruses. AD plots for the major surface protein
of seasonal influenza A (H3N2) and the 2009
swine-origin influenza A (H1N1) viruses show the
succession of substitutions that became fixed in
the evolution of the two viral populations. They
also allow the early identification of those viral
strains that later rise to predominance, which is im-
portant for the problem of vaccine strain selection.
In summary, we describe a technique that reveals
the evolutionary dynamics of a rapidly evolving
population and allows us to identify alleles and
associated genetic changes that might be under dir-
ectional selection. The method can be applied for
the study of influenza A viruses and other rapidly
evolving species or viruses.

INTRODUCTION

Phylogenetic analysis allows the inference of evolutionary
relationships from a set of genetic sequences, which may
represent a distinct species or a genetic region of individ-
uals of a population. For populations of rapidly evolving
organisms, the evolutionary and epidemiological processes
may occur on similar timescales. Newly developed analyt-

ical methods, known as phylodynamic techniques, allow
the joint analysis of the genetic and epidemiological rela-
tionships of the underlying data (1,2). Based on epidemio-
logical information, such as sampling locations or
sampling times, phylodynamic methods enable the geo-
graphic migration patterns of individuals of a population
to be studied, tracking viral spread across host tissues,
searching for genetic sites subject to purifying or positive
selection associated with adaptation, dating past evolu-
tionary events and gaining insights into population-level
processes using coalescence analysis. In (3), for example,
the migration paths of the highly pathogenic avian
influenza A (H5N1) virus across Asia are inferred with a
‘phylogeographic’ approach from genetic sequences and
geographic sampling locations. Other studies revealed
that chimpanzees serve as a natural reservoir for
pandemic and nonpandemic HIV type 1 (4), based
on ‘phylogeographic’ clustering, and identified the
epidemic history and geographic source of HIV type 2
based on a molecular clock analysis of dated genetic
sequences (5).
We describe a method for analyzing the population-

level phylodynamics of a gene, which we call allele
dynamics plots (AD plots). AD plots combine informa-
tion from phylogenetic inference and ancestral character
state reconstruction with isolate sampling times for the
analysis of population-level evolutionary dynamics.
Furthermore, we use the AD plot of a population-level
sequence sample to identify the alleles that might be
associated with a selective advantage. Based on this, we
demonstrate how AD plots can be used to study evolu-
tionary dynamics and to identify emerging viral strains
with the example of two influenza A viruses: the human
influenza A (H3N2) and the 2009 swine-origin influenza A
(H1N1) viruses.
In research into the evolution of the influenza virus, a

method that enables the identification of alleles under se-
lection is to count the number of amino acid changes
within a protein at sites under selection, which, in turn,
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can be identified based on the ratio of non-synonymous-
to-synonymous mutations (dN/dS) (6). A recent study
suggests, however, that dN/dS ratios may not always be
informative with regards to detecting selection within a
population. Moreover, the method is lacking in sensitivity
when applied to individual sequence sites (7). A different
approach was proposed by Pond et al. who introduced a
phylogenetic maximum likelihood test based on a protein
evolution model to test for directional evolution at indi-
vidual sites of an alignment (8,9). Further related methods
quantify the impact of ‘key innovations’ in species trees,
e.g. what would happen if lineages that have acquired a
beneficial feature were able to spread faster than others.
These methods incorporate clade sizes and shifts in diver-
sification rates identified from the phylogenetic tree based
on likelihood estimators in the analysis. For an overview,
see (10). However, these methods were conceived for
species-level and not population-level analysis, and
to evaluate macro-evolution. The method we describe
here does not use dN/dS information and is designed for
the analysis of longitudinally sampled population-level
sequence data. In this sense, it complements the existing
approaches.

Background on influenza A viruses

The influenza virus is a rapidly evolving pathogen that is
suited for the application of phylodynamic techniques.
The single-stranded negative-sense RNA viruses of the
family Orthomyxoviridae are a major health risk in
modern life, responsible for up to 500 000 deaths
annually (11). Three distinct genera (types A, B and C)
are endemic in the human population. Types B and C
evolve slowly and circulate at low levels. However,
through rapid evolution of the antibody-binding
(epitope) sites of the surface proteins, influenza A continu-
ously evades host immunity from previous infection or
vaccination, and regularly causes large epidemics.
Influenza A viruses can furthermore be distinguished
based on the surface proteins hemagglutinin (HA) and
neuraminidase (NA). For type A viruses, 16 known
subtypes of HA and nine of NA occur in various combin-
ations in aquatic birds (12). In the human population,
influenza A viruses of the subtypes H3N2 and H1N1 cur-
rently circulate. Of these, the swine-origin influenza A
(H1N1) virus (‘swine flu’), which entered the human popu-
lation in 2009, is currently responsible for the majority of
infections (13,14).
Human influenza A viruses continuously change

antigenically in a process known as antigenic drift. This
refers to the successive fixation of mutations that affect
viral fitness by increasing a virus’ ability to circumvent
host immunity and protective antibodies elicited by previ-
ously circulating viral variants (6,15). Antigenically
relevant changes are located mainly in the epitope sites
of the viral HA (16–19). Influenza viruses also have a seg-
mented genome composed of eight distinct segments and
can evolve by means of reassortment. In segment
reassortment, new viral strains are generated, which can
inherit genomic segments from two distinct viruses simul-
taneously infecting the same host cell. This mechanism can

affect antigenic evolution, as segments encoding
antigenically novel surface proteins, but which are
harbored by viruses with low overall fitness due to other
reasons, and can thus be transferred into a more favorable
genetic context and subsequently rise to predominance
(20–25).

Antigenically novel strains of influenza A appear and
become predominant in worldwide epidemics on a regular
basis, which requires frequent adaptation of the influenza
vaccine composition. The World Health Organization
(WHO) monitors the genetic and antigenic characteristics
of the circulating influenza A virus population and
searches for antigenically novel emerging strains in a
global surveillance program (26,27). The gathered
surveillance information, combined with human serologic-
al data, is evaluated by a panel of experts. The panel
meets twice a year to decide if an update of the vaccine
composition for the next winter season for both the
Northern and Southern hemispheres is necessary. This
approach results in a well-matched vaccine in most
years, and significantly reduces the morbidity and mortal-
ity of seasonal influenza epidemics. However, a decreased
vaccine efficacy can be caused by a new antigenic variant
if it is identified too late to reformulate the vaccine
composition.

A large body of work exists on computational studies of
influenza A virus evolution. Phylogenetic reconstruction
plays a key role here, since it was successfully used to
unravel the global migration of human influenza A
(H3N2) viruses (28) and to identify East and Southeast
Asia as a global evolutionary reservoir of seasonal influ-
enza A (H3N2) viruses (29). Furthermore, genome-wide
phylogenetic analysis of all eight viral segments
determined that the evolutionary dynamics of influenza
A (H3N2) virus are shaped by a complex interplay
between genetic and epidemiological factors, such as
mutation, reassortment, natural selection and gene
flow (30).

Besides these analytical studies, further computational
methods have been applied to study and predict the evo-
lution of human influenza A (H3N2) viruses. Changes
within the hemagglutinin HA1 subunit sequence compos-
ition over time were visualized and analyzed by Shih et al.
using amino acid frequency diagrams (31). However, this
procedure does not take the underlying evolutionary rela-
tionships and structure of the data into account, as isolate
sequences and individual sites are treated independently.
Plotkin et al. used agglomerative single-linkage clustering
on hemagglutinin HA1 genetic sequences for decomposing
the data into disjoint clusters, finding that influenza evo-
lution is characterized by a succession of predominant
clusters or ‘swarms’ of similar strains (32). This pattern
is also reflected by a narrow phylogenetic tree topology
with one surviving viral lineage over time and a viral di-
versity that is periodically diminished by selective sweeps
of a novel viral strain throughout the population (11,30).
Analyzing the cluster size–time relation, Plotkin et al. sug-
gested using a representative of the largest cluster as the
vaccine strain for the following winter season (32).
Du et al. constructed a co-occurrence network from
co-occurring nucleotides across the whole genome (33).
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They identified co-occurring inter- and intra-segment
changes, and used these co-occurrence modules for
sequence clustering. This results in a grouping similar to
the structure inferred by phylogenetic reconstruction. Xia
et al. used mutual information to identify and visualize
co-occurring mutations in a ‘site transition network’
(34). They also used this network to predict future muta-
tions, resulting in 70% sensitivity but also in a rather high
false positive rate. However, it should be noted that,
although the term ‘predicting mutations’ may convey
that mutations are introduced independently in viral
isolates in the following season, the effect that a particular
genetic change increases in frequency over two consecutive
seasons is often due to a previously low-abundance
mutant circulating at higher prevalence.

Most of the abovementioned studies assess the
underlying evolutionary relationships and structure for
the population-level sequence sample in some way.
However, the standard way to estimate evolutionary rela-
tionships is by phylogenetic inference. As described above,
Bush et al. identified 18 sites under positive selection by
analyzing the ratio of dN/dS on the trunk of a phylogen-
etic tree of hemagglutinin HA1 subunit sequences (6).
They subsequently used these sites to predict the direction
of evolution for a phylogenetic tree of influenza A (H3N2)
virus HA by identifying the strains within the phylogenetic
tree that had the most pronounced evidence for positive
selection (35). However, the dN/dS ratio lacks sensitivity if
applied to individual sites, as substantial evidence is
required for a site to be considered informative. Not all
relevant sites may thus be detectable and, furthermore, the
most relevant sites may change over time (15). In a more
recent study, Pond et al. identified nine sites as being
under directional selection in the HA segment of the in-
fluenza A (H3N2) virus, using a model-based phylogenetic
maximum likelihood test. Seven of these sites are not
detected with the traditional dN/dS ratio test (9).
Nevertheless, this method depends on the baseline
amino-acid-substitution matrix and failed to identify
adaptive sites when applied to dim-light and color-vision
genes in vertebrates (36).

To analyze the antigenic evolution of influenza A
viruses, Smith et al. introduced a novel method known
as antigenic cartography, which is based on multidimen-
sional scaling of assay data on hemagglutination inhib-
ition (15,37). This technique revealed that antigenic
evolution is more clustered than genetic evolution, de-
pending on the antigenic impact of individual amino
acid exchanges, and that major changes (cluster jumps)
occur every 3–4 years on average (15). Accordingly,
including both antigenic and genetic data within evolu-
tionary models enables the most accurate analysis of in-
fluenza A virus evolution. Some studies try to incorporate
antigenic data (38–40); however, because of limited
publicly available data, the results have to be approached
with caution. To account for this lack of antigenic infor-
mation for the respective isolate sequences in our evalu-
ation, we identified all predominant antigenic variants
over the analyzed time period based on the genetic
changes reported in the literature.

MATERIALS AND METHODS

Phylogenetic inference

HA sequences from 4913 seasonal human influenza A
(H3N2) virus isolates sampled from 1988 to 2008, and
from 1516 swine-origin influenza A (H1N1) virus
isolates with exact sampling times (year and month)
were downloaded from the influenza virus resource (41)
(Supplementary Tables S1 and S2). Alignments of DNA
and protein sequences were created with Muscle (42) and
manually curated. Phylogenetic trees were inferred with
PhyML v3.0 (43) under the general time reversal
GTR+I+�4 model, with the frequency of each substitu-
tion type, the proportion of invariant sites (I) and the
gamma distribution of among-site rate variation, with
four rate categories (�4), estimated from the data.
Subsequently, the tree topology and branch lengths of
the maximum likelihood tree inferred with PhyML were
optimized for 200 000 generations with Garli v0.96b8 (44).

Allele dynamics plots

We describe AD plots for visualizing the evolutionary
dynamics of a gene in a population and for identifying
the alleles that are potentially under directional selection.
In a nutshell, AD plots visualize gene alleles and their
frequencies over time and thus enable a detailed analysis
of a gene in a population. The basic idea involves the
following four steps: (i) Inference of the evolutionary re-
lationships for a sequence sample of a population. (ii)
Ancestral character state reconstruction and inference of
evolutionary intermediates based on the reconstructed
evolutionary relationships. (iii) Mapping genetic changes
to branches of the tree topology and defining the preva-
lence of distinct alleles of a gene at different points in time.
(iv) Finally, evaluating how fast new alleles or genetic
variants propagate throughout the population.
Population genetics theory posits that, in a population

of constant size, genetic drift will result in variation in
allele frequencies and the continuous fixation of variants
even in the absence of selection (45–47). However, given
that selection acts on an allele and confers a fitness advan-
tage to the individual organism, this will allow such alleles
to rise faster in frequency than alleles without a selective
advantage. Hence, alleles that increase in frequency most
rapidly over time are more likely to be subject to direc-
tional selection than other alleles. This criterion can be
applied to identify those alleles that might be associated
with a selective advantage from AD plots.
Following the phylogenetic inference of a tree topology

using any standard method [maximum likelihood,
Neighbor-Joining or a consensus tree constructed from a
posterior sample of trees inferred with a Bayesian method
(48,49)], substitution events in the evolutionary history are
reconstructed using ancestral character state reconstruc-
tion and assigned to individual tree branches. In detail,
substitution events are assigned to the tree branches
based on the evolutionary intermediates reconstructed as
ancestral characters. We use the parsimony method of
Fitch et al. (50) for ancestral character state reconstruc-
tion; however, in principle, any available method can be
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applied (51,52). In our analysis, we chose the isolate with
the earliest sampling date as an outgroup and used
accelerated transformation (AccTran) (51) to resolve
ambiguities in character state reconstruction. This proced-
ure results in changes being mapped preferentially closer
to the root of the phylogenetic tree.
We define each branch that is associated with a

non-empty set of substitutions to represent an individual
allele. The number of alleles thus equals the number of
branches with non-empty sets of substitutions in the
phylogenetic tree. We define the frequency of an allele
within a specific period as the ratio of the number of
isolates in the subtree of the allele relative to the number
of all isolates within the designated period. An allele that
occurs later on the path from the root to the most recent
isolates includes the substitutions of the alleles that
occurred earlier on this path and thus is more specific.
Allelic frequencies are subsequently adjusted in case
multiple related alleles emerge within the same period.
Isolates located in the subtrees of a newly defined allele
within a period are counted only once for the most closely
placed parental allele in the phylogenetic tree. This means
that, for calculating the allele frequency of all less specific
alleles, isolates that occur in the subtree below the more
specific allele are not considered. Alleles and the relevant
substitutions are discussed using the following nomencla-
ture: allele substitutions *substitutions of parental alleles
from the same period* (Figure 1).

Construction of AD plots for human influenza A viruses

In analyzing the evolution of human influenza A viruses,
we are particularly interested in those changes that affect
the antigenic properties of a virus. To identify viral
variants with increased fitness for propagation through
the host population, non-synonymous genetic changes of
HA are of particular interest. To this end, we constructed
AD plots from the substitutions for the complete viral HA
of the influenza A (H1N1) virus. Secondly, we constructed
AD plots for the seasonal influenza A (H3N2) virus based
on the changes in the five epitope regions of HA (16,17).

Influenza infections in the human population show a
pattern of seasonality. Peaks of activity occur mainly in
the winter months in temperate regions of each hemi-
sphere (53). We use the standard definitions for the influ-
enza season for the Northern and Southern hemispheres in
our analysis. For the Northern hemisphere, the influenza
season begins on 1 October and ends on 31 March in the
following year. For the Southern hemisphere, the influ-
enza season begins on 1 April and ends on 30 September
in the same year. For a comparison with the WHO vaccine
strain recommendation, we restricted our analysis to
sequences sampled up to the end of January for the
Northern hemisphere season and to the end of August
for the Southern hemisphere season, which is when the
WHO decides on the vaccine composition.

To identify the alleles corresponding to the viral strains
with antigenically novel HA variants, we used the litera-
ture to determine the genetic changes reported for every
predominant antigenic variant over the analysis period.
These appear, on average, every 3.3 years and then pre-
dominate worldwide in seasonal epidemics (15). The
changes in these strains for the five HA epitopes are
given in Table 1.

RESULTS

Evolutionary dynamics of influenza A (H3N2)

We analyze the evolutionary dynamics of the seasonal in-
fluenza A (H3N2) virus with AD plots generated using a
maximum likelihood tree (Figure 2) from available HA
sequences. The H3N2 subtype has been circulating since
1968, but here we focus on the time from 1998 until the
end of 2008. For this more recent period, there is consid-
erably more sequence data available and the bias of se-
quences toward isolates with unusual virulence or other
atypical properties is reduced (54) (Supplementary
Figure S3).

The AD plot for HA of the human H3N2 virus
(Figure 3, Supplementary Figure S1) shows several
alleles that rise to predominance and reach fixation
(their frequency in subsequent periods equals one)
between 1998 and 2008, such as 57Q *137S*, 156H
*75Q, 155T* and 193F. Other alleles reach high
frequencies and subsequently vanish, such as 160R in the
1999 Southern season, 273S in the 2000/01 Northern
season or 126D in the 2003 Southern season.
Furthermore, a lot of minor-frequency allelic variation is
evident within each period.

Alleles becoming predominant and rising to fixation in
the surviving lineage correspond to substitutions that map
to the trunk of the phylogenetic tree of HA from the
human influenza A (H3N2) virus. Besides such changes,
the observable variation of alleles that do not become
fixed (gray-colored alleles) is rather high within each
time interval in the analyzed sample. Although some
alleles transiently reach high frequencies, they are only
present over a short period. Notably, many of these
alleles appear during times when an antigenic variant
has been predominant for several years, such as the time
from 2000 to 2003, when the A/Panama/2007/1999 (PA99)

100A

200B

x y
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Figure 1. A tree demonstrating the concepts of alleles and allele fre-
quency correction. For allele 100A, only the isolates of subtree x are
counted, whereas for allele 200B *100A*, the isolates in subtree y are
considered.
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variant was predominant. In these years, several new
alleles with similar antigenic properties, such as 160R in
the 1999 Southern season, 92T in the 1999/2000 Northern
season, 273S and 50G, 247C in the 2000/01
Northern season, and 144D *186G* in the 2001/02
Northern season, (55–58) appeared successively and rose
to high frequencies without reaching fixation.

Most of the alleles rising to fixation (colored in
Figure 3) are associated with substitutions reported in
the literature (59–63) for the five distinct strains that rep-
resent predominant antigenic variants in the analysis
period (Table 1). Note that the substitutions of a particu-
lar antigenic variant are not necessarily all part of the
same allele (i.e. they do not map to the same branch on
the trunk of the phylogenetic tree). Instead, they often
follow each other in immediate succession in the AD
plot and are located on consecutive trunk branches of

the phylogenetic tree. The earliest antigenic variant of
the analysis period (PA99) is an exception, in this sense,
as a single allele represents multiple substitutions. This
reveals the limitations of the dataset for the earlier years
(Supplementary Figure S3), which does not allow the
order in which the PA99 substitutions were acquired by
H3N2 to be resolved. For all subsequent antigenic
variants, the order of the acquired substitutions is
resolved and a set of multiple alleles becoming fixed
within an interval are evident from the AD plot. Thus,
the evolutionary path and the order in which these
changes were acquired in the evolution of antigenically
new strains of H3N2 are revealed in the AD plot. For
instance, for the antigenic variant BR07, which was pre-
dominant from 2006 to 2009, the HA plot shows that, of
the two relevant substitutions, 140I was acquired first,
followed by 50E.

Figure 2. Maximum likelihood tree topology inferred for 4913 hemagglutinin sequences of seasonal human influenza A (H3N2). Leaf nodes are
color-coded according to the sampling dates of the viral isolates. The first sampled isolate, A/Siena/3/1988, is indicated with an arrow. The trunk of
the tree (i.e. the path from the root to the most recent clade) is colored in red.

Table 1. Antigenically novel viral variants of influenza A (H3N2) that emerged and rose to predominance in worldwide epidemics between 1998

and 2008, and the corresponding substitutions reported in the literature in the five epitope sites of HA

Antigenic cluster Substitutions Reference

A/Sydney/5/1997 (SY95) 62E, 156Q, 158K, 196A, 276K (59)
A/Moscow/10/1999 (MO99) 57Q, 137S (59)
A/Panama/2007/1999 (PA99) 144N, 172E, 192I (59)
A/Fujian/411/2002 (FU02) 50G, 75Q, 83K, 131T, 155T, 156H, 186G (60)
A/California/07/2004 (CA04) 145N, 159F, 189N, 226I, 227P (61)
A/Wisconsin/67/2005 (WI05) 193F (62)
A/Brisbane/10/2007 (BR07) 50E, 140I (63)

Note that PA99 is antigenically similar to MO99 and was used as the vaccine candidate strain for MO99 (56).
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Identification of alleles under directional selection in
influenza A (H3N2)

The AD plot, which visualizes the changes in frequencies
of individual alleles in a sequence sample, enables us to
easily identify those alleles that increase in prevalence
most rapidly over two consecutive influenza seasons.
The corresponding viral strains are likely candidates to
be under the influence of directional selection and to
have an advantage relative to other alleles. We identified
the alleles with the largest increase in frequency between
consecutive seasons that do not represent >50% of the
sequences in the first season (otherwise they would
already be predominant; Table 1). Of the strains of the
five antigenically distinct predominant variants
(MO99/PA99, FU02, CA04, WI05 and BR07), four can
be correctly identified by this criterion (Table 2). Thus,
this measure allows us to use the AD plots to easily
identify the strains that are most relevant when deciding
the composition of the influenza A (H3N2) vaccine.
In the 1998/99 Northern season, the allele that scores

best is 57Q *137S*, which represents the MO99 variant
that was predominant from the 1999 Southern season to
the 2002–03 Northern season (55–58,64–67). The allele
144N *172E, 192I*, which represents the antigenically
very similar strain PA99, ranks second best. In agreement
with the AD plot observations, the WHO also

recommended MO99 as the vaccine strain for the 2000
Southern season (55). As no suitable well-growing candi-
date strain could be produced, the previously predominant
SY97 strain was used in this season for the vaccine. PA99
was subsequently included as a vaccine component
starting from the 1999–2000 Northern season (56). Thus,
for the SY97-PA99 antigenic cluster transition, the AD
plot allows the timely identification of a suitable strain
that is in agreement with the original recommendation
of the WHO.

The FU02 variant, which predominated from 2003 to
2004/05 (68–71), is associated with seven distinct substitu-
tions: 50G, 75Q, 83K, 131T, 155T, 156H and 186G. The
155T and 156H define the FU02 antigenic phenotype (72).
In the AD plot, the seven FU02 substitutions are
associated with seven distinct alleles, each with a single
substitution. In the 2002–03 Northern season, alleles
with the substitutions 131T *186G* and 156H *75Q,
155T* score first and second best, respectively. The best
scoring allele for the 2002/03 Northern season lacks the
relevant substitutions 155T and 156H described for FU02.
Here, the frequency indicator does not directly reveal the
best candidate strain based on the available data.
Antigenic information would probably allow a more
detailed analysis. The second high-scoring allele would
presumably be a good choice as a vaccine strain, as it

Figure 3. Allele dynamics plot for the major surface protein and antigenic determinant of the seasonal influenza A (H3N2) virus. The Northern and
Southern influenza seasons from 1998 to 2008 are shown. Alleles that reach a prevalence of more than 95% and are subsequently fixed are shown in
color; all other alleles are shown in gray. Substitutions are restricted to those that occur in the five epitope regions and are enumerated according to
HA1 numbering (86). Alleles that rise most quickly in frequency and are of interest with respect to vaccine strain selection are indicated by arrows.
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has other antigenically relevant changes and shows a rapid
increase in prevalence during the season. In agreement
with this conjecture, the corresponding strain (A/Fujian/
411/2002) was recommended by the WHO as the vaccine
strain for the 2003–04 Northern season (67). However, as
no suitable well-growing candidate strain could be
produced, the MO99/PA99 strain was used for the
vaccine. In the 2002 Southern season, the 155T *75Q*
allele ranks first, but the correct allele (156H *75Q,
155T*), which features all necessary substitutions, in-
creases only a little in frequency and is thus not selected.

Interestingly, an additional substitution (186G) found
in the highest scoring allele for the 2002–03 Northern
season appears independently in another frequent allele
in the preceding season. This seems a general aspect of
H3N2 evolution—the repeated appearance of the same
substitution in multiple different alleles. Often, the re-
spective alleles have different phylogenetic histories, in
that they occur in different parts of the tree, and the sub-
stitutions are occasionally encoded by different codons.
Such repeated changes can either reflect neutral changes
at highly variable sequence positions or they can be the
result of directional selection against a certain residue at a
given position at this time. The AD plot allows us to
identify such changes easily for further analysis.

The CA04 variant was predominant from 2004–05 to
2005–06 (73,74) and was recommended as vaccine strain
for the 2005–06 Northern season in the spring of 2005
(71). The HA allele of this strain scores highest in the
2004 Southern season. Here, the two alleles featuring the
substitutions 145N *159F, 226I* and 227P *189N*, re-
spectively, rank first and second. Both of these alleles
contain substitutions of the CA04 variant, but only the
top-ranking one possesses all relevant substitutions and
thus is the correct choice.

The WI05 variant predominated from 2006 to 2006–07
(74,75) and was recommended one season too late as the
vaccine strain for the 2006–07 Northern season (76). In the

2005 Southern season, the 193F allele associated with the
WI05 variant scores highest. The second substitution
associated with WI05, 225N, is not evident from this
plot, as it is not part of the epitope regions. If non-epitope
sites are included in the analysis, both substitutions appear
on subsequent branches, corresponding to two consecu-
tive emerging alleles in the plot (data not shown). In this
plot, the allele 225N *193F* scores highest. The AD plot
thus allows us to identify the WI05 variant from the avail-
able data one season before the WHO’s official
recommendation.
Finally, the antigenic variant BR07, which pre-

dominated from 2007 onwards (13,77–79), scores highest
in the 2006–07 Northern season and is represented by an
allele with the substitutions 50E *140I*. A matching strain
was recommended for the vaccine of the 2008 Southern
season (77). The AD plot allows us to identify this
emerging variant for the 2007–08 Northern season.
Applying a maximum likelihood test for directional

evolution of protein sequences (DEPS) (9) to the HA
data of H3N2 from 1988 to 2008 revealed 42 sites in the
HA epitopes. Nine of these sites are also under positive
selection according to a dN/dS ratio test (8) (data not
shown). However, of the 20 epitope sites where changes
rise to fixation over the analysis period (Figure 2), only 12
are detected by the DEPS method (Supplementary Table
S3). This highlights that such rapidly fixed changes cannot
all be identified by common selection tests.
Retrospectively, our approach allows the identification

of the CA04/WI05 antigenic cluster transition in the 2005
Southern season, one year before it rises to predominance
in the 2006 season (Figure 6). In all other cases, our
method allows us to identify the correct strain one
season before the respective antigenic variant becomes
predominant: The SY97/MO99 transition is detected in
the 1998–99 Northern hemisphere season, while the
MO99 variant became predominant in the 1999
Southern hemisphere season. The FU02/CA04 transition

Table 2. Alleles and their associated antigenic phenotypes with the steepest slopes in the seasons when they are predicted to become

predominant

Season Alleles Slope Antigenic variant WHO Predominant

1998/99 North 57Q *137S* 0.5027 MO99 SY97 (80) MO99/PA99 (56)
144N *172E, 192I* 0.3704 PA99

2002 South 155T *75Q* 0.0833 FU02 MO99 (58) FU02 (68)
131T *186G* 0.0797 FU02
83K 0.0594 HK02/FU02
50G 0.0485 HK02/FU02

2002/03 North 131T *186G* 0.6616 FU02 FU02 (67) FU02 (69)
156H *75Q, 155T* 0.6546 FU02
83K 0.5950 HK02/FU02
50G 0.5950 HK02/FU02

2004 South 145N *159F, 226I* 0.3828 WE04/CA04 WE04 (69) CA04 (73)
227P *189N* 0.3331 WE04/CA04

2005 South 193F 0.5350 WI05 CA04 (73) WI05 (74)
2006/07 North 50E *140I* 0.1389 BR07 WI05 (75) BR07 (78)

Alleles in one season are ordered by decreasing slope. Further comparisons show the recommended reference strain for the use in the next year’s
vaccine by the WHO and the predominant antigenic variant in the next year’s influenza season for the same hemisphere. Note that A/Hong Kong/
1143/2002 (HK02, [50G, 83K, 186G]) is a PA99-like sublineage present before FU02 and A/Wellington/1/2004 (WE04, [159F, 189N, 227P]) was
directly replaced by CA04 in 2004/05 Northern season before becoming predominant.
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is predicted in the 2004 Southern hemisphere season, while
CA04 became predominant in the 2004–05 Northern
season. Finally, the WI05/BR07 transition is identified in
the 2006–07 Northern season, while the BR07 antigenic
variant became predominant in the 2007 Southern season.
In comparison to the WHO recommendations
(13,14,55–58,64–71,73–80), this approach identifies the
newly emerging variants one season earlier. This may be
because the WHO tends to be conservative in recommen-
dations, to avoid suggesting an antigenic variant that may
never actually rise to predominance in the future.
However, in general, new variants reach predominance
very rapidly, if the time from the first appearance in the
available genetic sequences is measured. In all three cases
mentioned above, the new variant rose to predominance
after its first appearance within a single year. Thus, given
the available data, predicting this event one year ahead of
time would be impossible. Fortunately, in some cases the
antigenic changes between successive variants are not that
large (15,37). For instance, MO99 was antigenically
similar to SY97. Thus, even though most isolates
sampled in the 1999 Southern season reacted to a higher
titer with the ferret antisera raised against MO99 (55),
recommending SY97 for the vaccine composition thus
did not result in a dramatically lower vaccine efficacy.

Influence of timing on antigenic variant identification

Twice a year, in February and September, vaccine strains
are recommended for influenza B, influenza A (H3N2) and
influenza A (H1N1) to the manufacturers of the seasonal
influenza vaccine. This recommendation is made approxi-
mately one year before the vaccine will be used in the
Northern or Southern seasons, respectively (27). Above,
we analyzed the data available only up to that point. If we
use all available data until the end of the influenza
seasons, emerging alleles appear at high frequencies in
the respective AD plot. For example, this happened for
the BR07 allele in the 2006–07 Northern hemisphere
season (Figure 3, Supplementary Figure S2). Previously
circulating strains, on the other hand, occur at lower
frequencies in comparison, as newly emerging antigenic
variants increase in prevalence typically toward the end
of a season. This effect is more pronounced for the
Northern hemisphere than for the Southern hemisphere,
possibly because after the vaccine meeting in the Northern
hemisphere, two months of the winter season are still to
follow, whereas only one month of winter still remains in
the Southern hemisphere. However, overall the picture
remains very similar. Based on all available data, all five
antigenic variants can be identified based on their rapid
increase in prevalence. A noteworthy difference is evident
only for the 2002–03 Northern season, where the 156H
*75Q, 155T* allele of the emerging FU02 antigenic
variant now ranks first. In summary, limiting the data to
what is available by the time of the WHO vaccine
meetings, reduces the frequency of alleles associated with
newly emerging variants in the AD plot, but the ability to
identify viral strains that subsequently rise to predomin-
ance is preserved in four out of five cases.

Evolutionary dynamics of the influenza A (H1N1) virus

We next studied the evolutionary dynamics of the 2009
influenza A (H1N1) virus, using 1516 available, exactly
dated HA sequences (Figure 4). The virus has circulated
in the human population only since April 2009 (81–83).
Therefore, we have studied the evolutionary dynamics in
monthly intervals (Figure 5, Supplementary Figure S4).
As isolate A/California/05/2009 was the only one
sampled in March, it was assigned to 1 April to avoid
errors introduced through the small sample size for
March 2009. The AD plots show that one
non-synonymous and another synonymous change
become fixed over the analysis period. The corresponding
substitutions, T658A [encoding the S206T change (H3
HA1 numbering)] and C1408T (encoding a synonymous
substitution for leucine), have already been reported to
divide the sequenced isolates into two distinct clusters
(84), but have no known antigenic impact (81).
Furthermore, Pan et al. have already reported an
increase in allele frequency for the S206T substitution
among new H1N1 sequence isolates (85).

Besides these changes, the plot also reveals the existence
of several other alleles, which, so far, appear only at low
frequencies and did not become fixed until December of
2009. Despite the fact that the data currently is very
limited, at this point, the plots do not reveal any alleles
or associated substitutions that seem to be on the rise.
Thus, based on the available data, the virus currently
seems stable in terms of antigenicity, indicating that no
update of the vaccine strain for this virus will be
required for the 2010–11 season [also reported by the
WHO (14)]. However, some caution is warranted in this
interpretation, as different months are represented very
unevenly, with lots of data from April and May of 2009
and much less from the following months (Supplementary
Figure S5).

DEPS analysis of the H1N1 data identifies five sites in
HA with evidence for directional evolution. Three of these
sites are also predicted to be under positive selection based
on a dN/dS ratio test (Supplementary Table S4). This
includes position 206, where a non-synonymous change
has become fixed within the analysis period (220 in H1
sequence numbering). This indicates that this site might
have been under positive selection and that several further
sites could be of relevance for the future evolution of
H1N1. However, overall, these results should be taken
with care, as the analysis period of 1 year, during which
extensive sampling has taken place, is rather short, and the
data might be more enriched than samples obtained over
longer periods, with many neutral or slightly deleterious
mutations.

CONCLUSIONS

AD plots provide a simple and easy to interpret visualiza-
tion of the evolutionary dynamics of a gene within a popu-
lation from a sample of dated genetic sequences. This
is particularly helpful for the analysis of large-scale
sequence datasets, where a standard visualization such
as a phylogenetic tree topology is difficult to interpret
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manually and does not directly display sampling times.
Here, we have applied our method to investigate the evo-
lutionary dynamics of seasonal influenza A H3N2 and
H1N1 viruses, for which available sequence data is
abundant.

From the AD plot for influenza A (H3N2), one can
easily determine the order in which substitutions of the
surviving lineage became fixed over the analysis period,
and one can identify the predominant antigenic variants
between 1998 and 2008. Furthermore, we propose a novel
indicator for directional selection, which allows us to
identify the alleles and corresponding substitutions that
might have a selective advantage. We demonstrate this
approach for identifying future predominant and novel
viral strains. With this method, strains for four out of
five antigenic phenotype transitions in influenza A
(H3N2) evolution can be identified, based on the data
available up to the time of the WHO vaccine strain
meeting. One limitation for this application is the fact
that a particular allele may score best for every time
period, with no information on whether it is antigenically
similar or different from the current vaccine strain.

Hence, antigenic information also has to be considered to
decide whether a vaccine update is warranted. In summary,
AD plots enable a sensitive and timely method for detecting
emerging viral strains that rise to high frequencies in sub-
sequent seasons. In our analysis, we find that AD plots
permit us to accurately identify those alleles that subse-
quently rise to predominance and become fixed in the
course of viral evolution. In combination with antigenic
information on the individual strains, AD plots thus
present a new tool for the detailed analysis of influenza
surveillance data that could be used in the selection of
strains for the seasonal influenza A virus vaccine.
Secondly, we used AD plots to analyze the evolutionary

dynamics of the 2009 influenza A (H1N1) virus. The AD
plot for this virus reveals several new variants with unique
genetic composition that circulate at low levels in the
human population and two genetic changes that became
fixed in the period from April to December 2009. At this
point, the plot does not allow identification of any further
genetic changes that may become fixed in the near future,
indicating that the virus currently is evolutionarily stable,
even though data is limited.

Figure 4. Maximum likelihood tree topology inferred from 1516 2009 swine-origin influenza A (H1N1) hemagglutinin sequences. Leaf nodes are
color-coded according to the sampling dates of the viral isolates. The first sampled isolate, A/California/05/2009, is indicated with an arrow.
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In summary, we present a novel visualization technique
for the study of longitudinal population-level sequence
samples and for the identification of alleles that are on
the rise to predominance. The method allows us to inves-
tigate the evolutionary dynamics of rapidly evolving
populations, under consideration of the inherent evolu-
tionary relationships and structure of the data. It comple-
ments existing methods for detecting sites under
directional and positive selection, such as dN/dS ratio
tests or DEPS. Note that AD plots are not limited to
the study of influenza A viruses, but can also be applied

for the analysis of other fast-evolving populations, such as
the intra-host evolution of human immunodeficiency or
hepatitis C viruses. Generally, the best results are likely
to be obtained if the analyzed sequence sample is repre-
sentative for a constant-sized population without too
much structure (e.g. geographic subdivisions). In this
case, variations in frequencies can be taken as estimates
for the evolutionary dynamics of the respective popula-
tion. Finally, while many computational techniques have
been applied to predict the evolutionary dynamics of in-
fluenza A viruses, our method integrates state-of-the-art

Figure 5. Allele dynamics plot for the major surface protein and antigenic determinant of the new influenza A (H1N1) based on sequences sampled
between April and December of 2009 without allele frequency correction. Alleles that reach a prevalence of more than 95% and are subsequently
fixed are shown in color; all other alleles are shown in gray. Substitutions are enumerated according to H3 HA1 numbering (86).
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phylogenetic inference, ancestral state reconstruction and
a novel indicator of directional selection into the analysis,
and thus provides a solution with extensive theoretical
support.
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Abstract

Distinguishing mutations that determine an organism’s phenotype from (near-) neutral ‘hitchhikers’ is a fundamental
challenge in genome research, and is relevant for numerous medical and biotechnological applications. For human
influenza viruses, recognizing changes in the antigenic phenotype and a strains’ capability to evade pre-existing host
immunity is important for the production of efficient vaccines. We have developed a method for inferring ‘antigenic trees’
for the major viral surface protein hemagglutinin. In the antigenic tree, antigenic weights are assigned to all tree branches,
which allows us to resolve the antigenic impact of the associated amino acid changes. Our technique predicted antigenic
distances with comparable accuracy to antigenic cartography. Additionally, it identified both known and novel sites, and
amino acid changes with antigenic impact in the evolution of influenza A (H3N2) viruses from 1968 to 2003. The technique
can also be applied for inference of ‘phenotype trees’ and genotype–phenotype relationships from other types of pairwise
phenotype distances.
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Introduction

Influenza viruses are responsible for ,500,000 deaths annually

and are a substantial threat to human health [1]. Besides seasonal

infections caused by human viruses, four major pandemics over the

last 100 years have resulted in,50 million deaths worldwide [2–4].

The viruses are classified into three genera (A, B, C), all from the

Orthomyxoviridae family, which comprises single-stranded, negative

sense RNA viruses. Influenza A and B viruses evolve rapidly and

continuously accumulate amino acid changes in the antibody-

binding (epitope) sites of the surface proteins, resulting in changes in

antigenicity. Thus, novel ‘antigenic types’ regularly appear and rise

to predominance, causing worldwide epidemics despite existing

vaccination programs [5,6]. Influenza A viruses are further

categorized into subtypes based on the composition of their surface

proteins, hemagglutinin (H or HA) and neuraminidase (N or NA).

In the human population, the subtypes H1N1 and H3N2 are

currently circulating [7]. Both global population structure and

geographic migration patterns are known to influence the evolution

of H3N2. Russell et al. suggested East–Southeast Asia to serve as a

global reservoir, from which seasonal epidemics in temperate zones

are seeded [8]. Other regions, such as China or USA, might serve as

seeding regions, too, and migration from and to other tropical

regions than East-Southeast Asia is thought to have a significant

influence on the global dynamics [9,10].

To monitor genetic and antigenic changes, the World Health

Organization (WHO) runs a global surveillance program [11].

Quantification of viral antigenic phenotypes is done with the

hemagglutination inhibition (HI) assay, which measures the ability

of an antiserum to inhibit the agglutination of red blood cells by a

viral antigen [12]. Antigenic cartography, involving multidimen-

sional scaling of log-normalized HI titers, subsequently generates

an accurate low-dimensional representation of the antigenic

distances between antigen–antiserum pairs [5,13]. If a novel

antigenic type with increasing prevalence is detected, the vaccine

composition, consisting of two strains of influenza A (H3N2 and

H1N1) and one strain of influenza B, is updated to include an

antigenically closer match.

Antigenic cartography of influenza A (H3N2) isolates from 1968

to 2003 revealed that antigenic types circulate for 3.3 years, on

average, in worldwide epidemics before being replaced by a

successor [5]. A comparison of antigenic and genetic maps showed

that, the antigenic impact of genetic changes varies, depending on

the nature of the amino acids exchanged, their structural

positioning and epistatic interactions with other sites. Subsequent

studies have incorporated both antigenic and genetic data for

predicting antigenically novel strains [14–16]. Additionally, many

groups have investigated the influence of sequence positions and

sequence variation on viral evolution, based on different

computational criteria [17–24].

Even though the general principles governing the antigenic

evolution of influenza A viruses are well studied, computational

methods for directly determining the antigenic impact of

individual amino acid exchanges do not yet exist. Such analyses
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currently require time- and cost-intensive experimental character-

ization of mutant viruses [5]. On the other end of the spectrum,

antigenic cartography allows identification of ‘cluster difference

substitutions’, comprising all near-conserved changes that distin-

guish consecutive antigenic clusters.

We describe a method for the inference of ‘antigenic trees’, which

is based on a least-squares optimization (LSO) procedure of fitting

pairwise antigenic distances onto an evolutionary tree for the major

antigenic determinant of influenza A. It is a computational method

allowing for a more fine-grained resolution of the antigenic impact

of individual changes than antigenic cartography without time- and

cost-intensive experiments. Application to HA sequences and

serological data from human influenza A (H3N2) viral isolates

from 1968 to 2003 determined the antigenic impact of all branch-

associated amino acid changes for this time period. Our technique

identified known antigenic types and the amino acid changes

associated with the type transitions. For sufficiently resolved

branches, the antigenic impact of individual exchanges could be

quantified. The method furthermore found known and novel key

HA sites and changes in antigenic evolution.

Results

We applied our method to infer an antigenic tree from genetic

sequences of the hemagglutinin segment and serological data (HI

titers of antigen-antiserum pairs) for 258 influenza A (H3N2)

isolates sampled between 1968 and 2003 [5]. Antigenic branch

lengths were determined by fitting the antigenic distances between

viral isolates (the antigens) and antisera raised against reference

strains to the branches of a maximum likelihood tree (see Materials

& Methods). Antigenic branch lengths were realized as two

independent weights (up and down) and represented the antigenic

properties of antigens and antisera in the tree. The antigenic path

length between two isolates, corresponding to the sum of the

branch weights (either up- or down-weight, depending on the

direction in the tree) for all connecting branches on the path

between them in the tree, reflected their overall antigenic distance

(Figure 1, high resolution Figures S1 and S2).

To investigate how accurately antigenic distances were fitted

onto the tree, we evaluated its ability to predict unseen antigenic

distances by leave-one-out cross validation [25]. In this experi-

ment, an antigenic tree is inferred from all but one antigenic

distance and then is applied to predict the left out distance. A

predicted distance corresponds to the antigenic path length

between the two respective isolates in the tree (see Materials &

Methods). This was repeated for every antigenic distance and the

overall accuracy of predicting antigenic distances estimated by the

absolute prediction error and the root mean squared error

(RSME) averaged over all leave-one-out experiments (see

Materials & Methods). The leave-one-out absolute prediction

error was 0.86 antigenic units (, a two-fold dilution, SD 0.72) and

the correlation measured by Pearson’s correlation coefficient

between predicted and measured values was 0.86. Using

placement on an antigenic map estimated from the same data,

Smith et al. report an average absolute prediction error of 0.83

antigenic units (SD 0.67) and a Pearson’s correlation coefficient of

0.80 for 481 measurements of antigenic distances [5]. The RMSE

penalizes large prediction errors more than small prediction errors,

and is a well suited measure of predictive accuracy. For our

method, the leave-one-out RMSE is 1.12 antigenic units,

corresponding to approximately a two-fold dilution. This is

comparable to the ten-fold cross validation RMSE of Cai et al.

on this data set (1.05 antigenic units) [26], who used a matrix

completion algorithm prior to multi dimensional scaling. Our

method therefore performs similarly to antigenic cartography in

predicting antigenic distances, with a slightly larger error but also a

slightly higher correlation between predicted and measured values.

This is despite the fact that inferring antigenic branch lengths for

an antigenic tree allows far fewer degrees of freedom than an

antigenic map, where the data is not forced on a fixed structure.

Note that for the prediction of antigenic distances, other well-

suited methods also exist [26,27].

As we infer a tree topology from nucleotide sequences, branches

might be without any amino acid changes and thus lack

explanatory power if they are assigned antigenic weights. This

allows accommodating measurement errors in HI titers in

antigenic branch weights or variation caused by changes in other

viral antigens, such as the surface glycoprotein neuraminidase. HI

titers are imprecise, as they reflect two-fold dilutions instead of

quantitative estimates, and are often highly variable, with

measurements varying between experiments and laboratories.

For instance, the two isolates A/Finland/220/92 and A/Stock-

holm/20/91 have the same nucleotide sequence, and hence no

changes on their respective tip branches (tips), but differ strongly in

their HI values, where A/Finland/220/92 shows an antigenic

distance from the same antisera that is, on average, ,1.0 antigenic

units (a two-fold dilution) larger than that of A/Stockholm/20/91.

Note that, in general, even though neuraminidase may influence

the HI titers, the WHO recommends application of the HI assay

under conditions where its influence is negligible [28]. To

incorporate a possible influence of neuraminidase activity one

may use concatenated viral sequences (hemagglutinin and

neuraminidase) and fit antigenic distances on a tree topology

inferred from these sequences. If doing so, one should first ensure

that reassortment events have not resulted in larger topological

changes between the HA and NA genealogies during the analyzed

time period [6,29]. In case of larger topopological changes due to

segment reassortment, a joint tree is inferred for data which

cannot be described by a tree-like evolutionary history, overall,

and the results are likely to be only partially informative.

On average, internal branches without amino acid changes have

weights of 0.30 (up) and 0.21 (down), respectively. Less noise

Author Summary

The molecular evolution of any organism is described by
changes in the genotype resulting from genetic drift or
selection to maintain or establish fitness under the given
environmental conditions. Identification of phenotype-
defining changes and their distinction from (near-) neutral
(‘hitchhikers’) ones is a fundamental challenge in genome
research. The standard approach involves time- and cost-
intensive mutation experiments, which are typically low
throughput, due to their experimental nature. We have
developed a computational method for the inference of
phenotypic impact of genotypic changes that is applicable
to any system, within or across species, where homolo-
gous genetic sequences and associated pairwise pheno-
type distances are available. We demonstrate the accuracy
of our method by application to the human influenza A
(H3N2) virus. This exemplary system is of particular
interest, as recognizing changes in the antigenic pheno-
type and a viral strains’ capability to evade pre-existing
host immunity is important for the production of efficient
vaccines. We accurately identified known sites and amino
acid changes with antigenic impact over 35 years of
evolution, and provide further details on individual
antigenically relevant changes in the evolution of influenza
A (H3N2) viruses.

Genotype-Phenotype Relationships of Influenza A
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occurs on the tree trunk, which represents the viral lineage

surviving over time, with 0.19 (up-weight) and 0.19 (down-weight)

assigned, on average. Interestingly, the average antigenic weight of

branches with amino acid changes is higher on the tree trunk than

for all internal branches (up= 0.52, down=0.61 vs. up= 0.44,

down= 0.46). This is in agreement with an expected fitness

advantage for viral isolates with larger antigenic changes, and

therefore preferential fixation and establishment appear as

changes on the tree trunk.

Antigenic types resolved in the tree
Antigenic types are clearly distinguished by high average

weights ($1.0 antigenic units) in the antigenic tree (see Materials

& Methods). Exclusion of branches leading to subtrees with three

or less isolates, representing undersampled groups, identified nine

branches defining type transitions (Table 1) and ten antigenic

types. Abbreviations for these (HK68, EN72, VI75, TX77, SI87,

BE89, BE92, WU95, SY97 and FU02) are used as in Smith et al.
(2004) [5]. SY97, for instance, denotes antigenically similar A/

Sydney/5/1997-like strains. The average antigenic distances of

these branches range from 1.0 (SI87–BE89) to 2.6 antigenic units

(WU95–SY97; Table 1, Figure 1A). Eight of the nine type

transition branches are on the trunk of the tree, which represents

the influenza A (H3N2) lineage surviving over time. An exception

is BE89, which is located in a subtree that has become extinct.

The setting of the threshold parameter for identification of

antigenic types in the tree influences the performance of our

method (Table S5). The selected threshold of 1.0 antigenic unit

identified nine of ten antigenic type transitions found by antigenic

cartography [5]. The TX77–BA79 transition was not predicted

with our method in this setting, as the weights of the corresponding

branch were slightly below the threshold (up-weight 1.4, down-

weight 0.0). Our method resolves antigenically relevant changes

between successive antigenic types in several cases to several

successive branches. Therefore, a higher threshold of 2.0 antigenic

units for individual branches (a four-fold dilution), as suggested to

distinguish antigenically diverse viral strains [11], does not allow

distinction between different antigenic groups (only if the

transition is not well resolved in the data and the antigenic impact

of multiple changes is summarized on a single branch). On the

other hand, choosing a lower threshold of 0.5 antigenic units

selects twelve additional type-defining branches (Table S5,
Figure S3). Among these is the TX77-BA79 type-defining branch

that corresponds to an antigenic cluster transition according to

antigenic cartography [5]. Furthermore, four of these additional

branches define antigenic subtypes that were distinct enough to

warrant a vaccine update. A more detailed discussion of type-

defining branches at the threshold of 0.5 antigenic units can be

found in the supporting material (Text S1). Note, that the choice
of the threshold distance is equivalent to find a minimal antigenic

distance to distinguish groups of antigenically and genetically

similar viral isolates. This is different from the question whether

two specific viral isolates are antigenically similar or not, although

both tasks are related to each other.

For the nine jointly identified type transitions, seven agree 100%

in terms of the assigned viral isolates. For the BE89–BE92

transition, the isolate A/Netherlands/938/1992 is placed within

BE92 using antigenic cartography and as preceding BE92 by our

technique. Isolate assignment differs the most for the BE92–WU95

transition. This is likely to be caused by multiple occurrences of

Figure 1. Antigenic tree for influenza A (H3N2) viruses. Branch lengths represent antigenic distances (maximum of up- and down-weights for
each branch) inferred from a maximum likelihood tree of 258 hemagglutinin sequences of seasonal influenza A (H3N2) virus isolates and serological
data. (A) Colored edges show antigenic type transitions, with internal branches with high average antigenic weights ($1.0 antigenic units). Gray-blue
edges represent high weight branches leading to a subtree with three isolates or less, representing low abundance types. (B) Isolates are color-coded
by antigenic clusters according to Smith et al. (2004). Three isolates (A/Christchurch/4/85, A/Hong Kong/34/90 and A/Netherlands/172/96) are only
present as antisera and were not assigned a cluster label.
doi:10.1371/journal.pcbi.1002492.g001
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N145K, which is, according to Smith et al. (2004) [5], the change

that defines the BE92–WU95 transition and has a major antigenic

impact in that context (2.6 antigenic units). It was already noted by

Smith et al. that isolates classified by antigenic cartography within

WU95 are placed in the vicinity of BE92 in a tree. Our analysis

agrees with these findings (Figure 1B). We found that for each

branch adjacent to these disagreeing placements, N145K is

present (isolates of the antigenic type WU95 located in the area

of BE92), with large branch-associated antigenic weights (an

average up-weight of 1.3), similar to the type-defining branch of

WU95 (up-weight 1.5). This indicates that N145K has a large

antigenic impact for all these isolates and, interestingly, was

evolutionary volatile during that period.

Analysis of up- and down-weights for type-defining branches

allows us to determine a direction for antigenic impact. For

example, the branch separating HK68 and EN72 has a weight of

2.6 (up)/0.4 (down), which means that isolates of HK68 are

antigenically more similar to sera raised against EN72 than vice

versa. The opposite example represents the SY97–FU02 transi-

tion, where the corresponding branch weight is 1.8 (up)/3.2

(down), which means that SY97 isolates are more distant from

antisera raised against FU02 than vice versa. Both examples are in

agreement with results published by the WHO [30,31].

As influenza A evolution in the analyzed data set is characterized

by an underlying cluster structure, both antigenic types and antigenic

clusters allow determination of cluster-difference or antigenic type

associated substitutions. However, antigenic types (inferred by our

method) and antigenic clusters (inferred by antigenic cartography)

have different interpretations. Antigenic types represent sets of viral

isolates showing similar evolutionary (defined by the phylogenetic

tree) and antigenic (defined by the antigenic branch lengths) patterns.

Antigenic cluster are solely defined by antigenic patterns and are

determined by a k-means clustering approach. In datasets with less

well-defined cluster structure, the k-means approach would hardly

result in robust clusters and identification of phenotype-associated

changes would bemore difficult, whereas our method would likely be

able to resolve phenotype-genotype relationships up to the level of

resolution supported by the data.

Substitutions in antigenic type transitions
Amino acid changes from eight of nine type transitions

identified by both antigenic cartography and the antigenic tree

include the cluster difference substitutions described in Smith et al.
(2004) [5] (Table 1). Smith et al. define ‘cluster difference

substitutions’ as changes in conserved residues between two

consecutive antigenic clusters (conserved meaning present in at

least n21 isolates within a cluster of size n). For five transitions, all
cluster difference substitutions are on the type-defining branch

(BA79–SI87, SI87–BE89, BE92–WU95, WU95–SY97 and SY97–

FU02). For three transitions (EN72–VI75, VI75–TX77 and

HK68–EN72), the substitutions were resolved to several branches

with different antigenic branch weights, which allows a more fine-

grained distinction. The 12 substitutions of the EN72–VI75

transition were assigned to two consecutive branches, one with

high and one with moderate antigenic weights. The branch with

S145N, Q189K, I217V and I278S has a high antigenic weight,

indicating that one or several of these have a very large antigenic

impact. For the HK68–EN72 and the VI75–TX77 transitions, the

substitutions were resolved to two consecutive branches with high

and moderate antigenic weights, too.

For BE89–BE92, the amino acid changes differ from cluster

difference substitutions. Here, the cluster difference substitutions

Table 1. Internal branches with high average antigenic weights ($1.0 antigenic units) and according antigenic types in
comparison to antigenic clusters identified by antigenic cartography (branches leading to three or less isolates are excluded).

Type
transition

Branch amino
acid changes

Weights
(up/down/avg) Trunk

Additional amino
acid changes

Weights
(up/down/avg) Trunk

Smith
et al.

HK68–EN72 T122N, G144D, T155Y, R207K 2.6/0.4/1.5 x L3F, N188D 0.9/0.2/0.5 x 3.4

EN72–VI75 S145N, Q189K, I217V, I278S 0.6/2.4/1.5 x N53D, N137S, L164Q, F174S,
N193D, R201K, I213V, I230V

0.0/1.0/0.5 4.4

VI75–TX77 K50R, N137Y, G158E, M260I 0.6/2.8/1.7 x E82K 1.0/-/0.5 3.4

TX77–BA79 N133S, P143S, G146S, K156E,
T160K, Q197R, V217I

1.4/0.0/0.7 x 3.3

D2N, N53D, N54S, I62K, D172G, V244L 0.0/0.3/0.2 x

BA79–SI87 G124D, Y155H, K189R 0.2/3.3/1.7 x 4.9

SI87–BE89 G135E, N145K 2.0/0.0/1.0 4.6

BE89–BE92 I214T 1.4/1.1/1.3 x E156K, E190D, N193S, L226Q, T262N 1.0/0.0/0.5 x 7.8

S133D 0.0/0.4/0.2 x

BE92–WU95 K135T, N145K, N262S 1.5/1.1/1.3 x 4.6

WU95–SY97 K62E, V144I, K156Q, E158K,
V196A, N276K

2.5/2.6/2.6 x 4.7

SY97–FU02 L25I, R50G, H75Q, E83K, A131T,
H155T, Q156H, S186G, V202I,
W222R, G225D

1.8/3.2/2.5 x 3.5

Branch amino acid changes indicate the corresponding branches, where changes in bold were also found by Smith et al. (2004), and weights give the respective up,
down and average branch weights. Multiple branches that can be mapped to a single antigenic type are separated by dashed lines. Additional amino acid changes
indicate branches that carry further mutations found to be cluster transition substitutions by Smith et al. (2004). For some branches, the down-weight was not defined,
as no antiserum was in the respective subtree. Branches that can be mapped to multiple type transitions are shown at the first mapping only. Smith et al. (2004) present
average distances between consecutive antigenic clusters, whereas average antigenic branch weights give a minimum distance between consecutive antigenic types.
Note that on branches with multiple changes not all changes have to contribute to the antigenic weight, though their individual impacts could not be resolved with the
dataset (unsampled viral isolates).
doi:10.1371/journal.pcbi.1002492.t001
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are found on branches that precede the type-defining branch. The

type-defining branch carries the change I214T, while the cluster

difference substitutions map to two preceding branches with lower

antigenic weights. I214T has not been mentioned in the literature

before and is reversed downwards in the tree on a branch without

any assigned antigenic weight. Thus, either the measurements here

were too noisy to resolve the correct branch, or this position has an

antigenic impact as an epistatic effect, allowing for the preceding

changes to become antigenically effective. Support for a potential

epistatic effect of this change can be found by detailed analysis of

individual HI measurements for two isolates (A/Hong Kong/34/

1990 and A/Netherlands/938/1992), which already have the

preceding branch changes for BE92 but not the I214T change. On

average, all antigens labeled BE92 by Smith et al. have a large

antigenic distance (greater 4.7 antigenic units) from the antiserum

A/Hong Kong/34/1990. A/Netherlands/938/1992 is similar to

A/Hong Kong/34/1990, with an antigenic distance of 0.7 to this

antiserum.

Four branches with type transitions (SI87–BE89, BE92–WU95,

WU95–SY97 and SY97–FU02) include additional changes besides

the cluster difference substitutions. For SI87–BE89, the change

G135E is present, in addition to N145K. G135E appears twice

more in the tree, with an average up-weight of 0.64. This indicates

that it may also have an antigenic effect in SI87–BE89. For BE92–

WU95, the changes K135T and N262S are present on the type-

defining branch, in addition to N145K. Both are located in the

antibody binding sites [32] and became fixed following their

appearance on this trunk branch.

In a recent (unpublished) study, Koel et al. (Koel et al.; Antigenic
evolution of influenza A (H3N2) virus is dictated by 7 residues in the
hemagglutinin protein; 2nd International Influenza Meeting, Münster; 2011)
determined by site-directed mutagenesis changes at seven positions

in the HA protein (145, 155, 156, 158, 159, 189 and 193)

responsible for significant phenotypic diversity in the evolution of

influenza A (H3N2). We also find that for eight of the nine

identified type-defining branches changes occur at five of these

positions (no changes at positions 159 and 193 are involved in

antigenic type transitions), which further confirm the relevance of

these sites for antigenic evolution (Table 1). Note that, besides

these five residues changes at 23 other positions map to the type-

defining branches which not all have to contribute to the antigenic

weight, though their individual impacts could not be further

resolved with the dataset (unsampled viral isolates).

Antigenic impact of individual amino acid changes and
sites
We examined amino acid changes with strong antigenic

relevance according to (i) the impact of all changes at a specific

site and (ii) the impact of a specific change. In the first case, we

determined all positions where at least three changes occurred,

and the mean and median of the branch weights (up- or down-

weight) were not less than one antigenic unit. Missing weights, e.g.

where down-weights were not defined because no antiserum was

raised for the corresponding subtree, were excluded from the

calculations. Seven positions, 112, 137, 144, 155, 156, 189 and

208, satisfy these criteria (Table S2 and S3). All except position
112 are part of the antibody binding sites of HA1 [32]. Positions

137, 155 and 156 are also part of the receptor binding site [33].

Positions 155 and 189 may be particularly important, as all

changes occur on the tree trunk and are part of type transitions.

The importance of H155T and Q156H was also verified for the

FU02 transition [34]. For positions 137, 144, and 156, several

changes map to the tree trunk (three of six, four of nine, and one of

three, respectively), indicating their antigenic relevance. Changes

at position 112 explain single isolate variations, as all occur on tips.

The antigenic impact of these changes may be due to hitchhiking

effects, as they occur only in combination with other changes.

Next, we identified changes occurring at least three times in the

tree with a mean and median antigenic weight (up- or down-

weight) of more than one unit (Table S4). Again, missing weights

were excluded from the calculations. Five changes satisfy these

conditions. Four of these (K62E, N145K, L226Q and T248I)

occur at positions in antibody binding sites [32]. N145K was

experimentally verified to have a large antigenic impact [5]. K62E

is part of the WU95–SY97 transition and has a high weight

assigned on two further tips. Finally, of the eight occurrences of

L226Q, seven appear between 1990 and 1996 for isolates of the

BE92 type, indicative of a fitness effect for this antigenic type in

particular. Interestingly, the reverse change, Q226L, is known to

play a role in receptor binding specificity for the adaptation of bird

viruses to the human host [35–38]. T248I had a high weight only

in combination with other changes, indicating a potential epistatic

effect. Besides these four changes, we identified V112I, which only

appeared on tips and explains single isolate variations.

We searched for changes with moderate antigenic impact (more

than 0.5 antigenic units) which identified seven further changes

(Table S2). G135E is part of the SI87–BE89 transition (see above)

and E156K was shown to impact immune escape in mice [39].

Both are located in the antibody binding sites [32]. For several

additional changes, the importance was not immediately obvious,

as they (i) occurred only in combination with other changes, (ii)

exhibited a high weight only in combination with other changes

(Q80K), (iii) only appeared on tips (S186I, S199P and V226I) or

(iv) had high weights assigned only on tips and low weights on

internal branches (A138T). In cases (i) and (ii), this may be the

result of epistatic or hitchhiking effects, where epistasis may be

more likely for (ii). Case (iii) changes are rare and explain single

isolate sequence variations. This also seems to be likely in case (iv),

where the effect on the tips is amplified due to other effects or

amino acid changes. Notably, all case (iii) changes are also

categorized as case (i) changes. Of all changes, E156K occurs once

on the tree trunk. All changes appear at several points in time for

different antigenic types, which indicates a potential antigenic

influence. Furthermore, for five changes (G135E, A138T, E156K,

S186I and V226I), the respective site was identified as being under

positive selection [17].

In a recent (unpublished) study, Koel et al. (Koel et al.; Antigenic
evolution of influenza A (H3N2) virus is dictated by 7 residues in the

hemagglutinin protein; 2nd International Influenza Meeting, Münster; 2011)
showed by site-directed mutagenesis that changes at seven

positions in the HA protein (145, 155, 156, 158, 159, 189 and

193) are responsible for large antigenic changes, all except two are

part of antigenic cluster transitions, over the 35 year time period.

Of these, 155, 156 and 189 are also identified as generally

important by our default method. If single isolate variations are

excluded from the analysis, position 158 is also identified. For the

other two positions (145 and 159) we identified changes with high

antigenic weights (e.g. N145K and S159Y; Table S2). For

position 193, evidence of antigenic importance could be found in

our analysis if using ancestral character state reconstruction with

maximum parsimony (see Supplement). Thus, our results also

support the relevance of the sites proposed by Koel et al. (2011),

even though they are not entirely comparable due to differences in

experimental set up. Koel et al. analyzed prototype viruses with the

amino acid consensus sequences of antigenic clusters and

introduced only the specific changes between these prototype

viruses, while our method also considers genetic and antigenic

variations between other viral strains of the dataset.
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Discussion

The antigenic impact of amino acid substitutions in the

antigenic evolution of influenza A viruses can reliably be

determined by time- and cost-intensive experimental analysis. As

an alternative, we present a computational technique for inferring

the antigenic impact of amino acid changes. Our method

determines antigenic branch lengths for a given tree topology by

fitting pairwise antigenic distances between isolates onto the tree

with LSO. For inference of the tree, any state-of-the-art method

can be used. A comparison between maximum likelihood,

maximum parsimony and neighbor-joining trees showed that all

resulted in similar prediction errors (leave-one-out absolute

prediction error: 0.86, 0.87 and 0.87 antigenic units, respectively;

correlation between predicted and measured by Pearson’s

correlation coefficient was 0.86 for all three methods). The

antigenic impact of the branch-associated amino acid changes is

determined by reconstructing the branch-associated amino acid

changes with maximum likelihood [40]; other techniques, such as

maximum parsimony or Bayesian reconstruction, could also be

used [41,42]. A comparison between maximum likelihood and

maximum parsimony ancestral character state reconstruction

showed that these differed only in minor aspects, with the

maximum likelihood reconstruction being an intermediate be-

tween accelerated and delayed transition in case of ties with

maximum parsimony reconstruction. However, we did observe

that more trunk branches were not assigned changes based on

maximum likelihood reconstruction, which decreased the inter-

pretability of antigenic weights in some cases.

We studied the antigenic evolution of the influenza A (H3N2)

virus from 1968 to 2003 with antigenic trees inferred from data

described in Smith et al. (2004) [5]. This allowed us to identify

areas and branches in the tree corresponding to known antigenic

types and transitions between these types. Analysis of antigenic

weights identified seven sites in the HA1 domain of HA that were

repeatedly associated with high antigenic impact. Additionally, our

method identified five amino acid changes with high antigenic

weights at several places in the antigenic tree. The sites and

substitutions identified by our method may be of particular

relevance for influenza A (H3N2) virus antigenic evolution, which

has not been described before. For six of the seven positions found

by site-directed mutagenesis to defining antigenic clusters for the

35 year time period (Koel et al.; Antigenic evolution of influenza A

(H3N2) virus is dictated by 7 residues in the hemagglutinin protein; 2nd

International Influenza Meeting, Münster; 2011), changes with high

antigenic weights were identified with our technique, thus further

supporting their relevance for influenza A (H3N2) evolution. The

additional sites detected by our method could be more relevant for

genetic and antigenic variations between viral strains in our data

set not resulting in antigenic cluster transitions. These were not

analyzed by Koel et al., who characterized antigenic differences of

prototype viruses with the amino acid consensus sequences of the

antigenic clusters.

As the dataset covers 35 years of viral evolution with a relatively

small number of isolates, not all substitutions could be resolved to

individual branches and their individual antigenic impacts

inferred. A denser sampling of data points would allow a more

precise decoding of the genotype–antigenicity relationships, as

viral isolates were unevenly sampled across the 35 years. The

median number of viral isolates available per year between 1989

and 1997 was 15, whereas for the remaining years only three

isolates per year were sampled (median). This unequal sampling is

reflected in resolution of mutations to specific branches. Between

1989 and 1997, 19% of the branches with assigned changes carry

three or more changes, whereas for the other years this is the case

for 37% of the branches.

Our method allows inference of genotype to phenotype

relationships from genetic sequences and associated pairwise

phenotypic distances between individuals of a population or

different taxa. We demonstrated the usefulness of this technique

for analyzing the antigenic impact of amino acid changes in the

evolution of human influenza A. An application of our method

could be in influenza A virus surveillance. Here, it could be used to

identify isolates and associated changes with large antigenic

impact, which need to be identified for vaccine strain updates

prior to an antigenic type transitions [43]. However, our method is

not restricted to the analysis of influenza viruses or antigenic

distance information but can be applied to the study of any system,

be it within or across species, where homologous genetic sequences

and associated pairwise phenotype distances are available. The

software is available upon request from the authors.

Materials and Methods

Inferring the phenotypic impact of amino acid changes
in protein evolution
Our idea is to adapt the least-squares optimization (LSO)

technique of Cavalli-Sforza and Edwards [44] for phylogenetic

inference to the problem of identifying the phenotypic impact of

amino acid changes in protein evolution. The original method of

Cavalli-Sforza and Edwards [44] identifies branch weights

representing genetic distances according to the least-squares

criterion for a tree topology. We applied this technique to infer

‘antigenic trees’, representing the antigenic evolution of the major

surface protein of human influenza A virus (H3N2) over a 35-year

period. In our adaptation, branch lengths represent antigenic

distances inferred from HI assay data for human influenza A

viruses and a maximum likelihood tree of the HA1 domain of

hemagglutinin. Reconstruction of the amino acid changes

associated with the branches of the tree allows us to infer the

antigenic impact of the branch-associated amino acid changes. If

sufficient data is available to resolve individual changes to

individual branches, our method returns an estimate of the

antigenic impact of the individual exchanges.

In LSO, one minimizes the sum of squares between the given

distances D and predicted distances d:

Q~
Xn
i~1

X
j:j=i

wi,j Di,j{di,j
� �2

,

where W is the weight matrix for the different error terms, which

were set to one here. The predicted distances di,j are the sum of the

branch weights on the path between leaf i and leaf j. Here,

di,j~
P
k

xi,j,kvk, where xi,j,k equals one if branch k is on the path

between leaves i and j in the phylogenetic tree and zero otherwise.

Thus, we search for the best setting for the branch weights vk.
While evolutionary distances are usually used in this approach,

here, we map antigenic distances to represent branch-specific

weights. To restrict the branch weights to positive values, we used

the Lawson–Hanson algorithm for non-negative LSO [45].

Because the antigenic distances here are asymmetric (i.e. di,j=dj,i)
and because the antigen and antiserum raised against the same

viral strain do not necessarily have the same position in the

antigenic space [13], we introduce the concept of up–down trees.

In up–down trees, viral strains are mapped to the leaves

representing the corresponding antigen as well as the antiserum,

and every branch is assigned two independent weights, the up- and
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the down-weight. Every path between two taxa i and j in the tree

can be separated into the set of branches from taxon i to the least

common ancestor (LCA) of i and j, and the branches from taxon j

to the LCA. Now, the path between antigen i and antiserum j

involves only the up-weights on branches from taxon i to the LCA

and only the down-weights on branches from taxon j to the LCA

(Figure 2).

Performance measures
To evaluate how accurately antigenic distances were fitted onto

the tree, we used four performance measures in leave-one-out

cross validation experiments: mean absolute error (MAE), root

mean squared error (RMSE), standard deviation (SD) and

Pearson’s correlation coefficient (CC). In leave-one-out cross

validation, an antigenic tree is inferred from all but one antigenic

distances and then is applied to predict the left out distance. A

predicted distance corresponds to the antigenic path length

between the two respective isolates in the tree (see above). This

was repeated for every antigenic distance. Given n observed

distances Di,j and predicted distances di,j the performance measures

are defined as follows:

MAE~
1

n

X
i,j

Di,j{di,j
�� ��,

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
i,j

(Di,j{di,j)
2

s
,

SD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
i

(xi{m)2
s

with m~
1

n

X
i

xi and xi~ Di,j{di,j
�� ��,

CC~

P
i,j

Di,j{mD
� �

di,j{md
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i,j

Di,j{mD
� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i,j

di,j{md
� �2r

with mD~
1

n

X
i,j

Di,j and md~
1

n

X
i,j

di,j :

Up-weights and down-weights in the tree
Antigenic branch lengths are realized as two independent

weights, allowing for a detailed analysis of the underlying structure

of the antigenic data. Up-weights represent the antigenic distance

from isolates below this branch to every other isolate outside of this

subtree, whereas down-weights represent distances from isolates

outside of the subtree to the isolates below this branch. Thus, the

branch weight types reveal different properties of the subtree. Let e
be the branch going upwards from the least common ancestor of

an antigenically homogenous group of viruses (a type) in the tree.

The up-weight of e defines the degree to which the antigenic type

is separated from other antigenic types according to antisera in

other parts of the tree, i.e. how well antigens of this type are

neutralized by antisera raised against other types. The down-

weight of e defines the degree to which the antigenic type is

separated from other types based on antisera within this part of the
tree, i.e. how well other antigenic types are neutralized by antisera

of this type. The antigenic weights of two types often differ, which

is not surprising, as antigenic distances are not symmetric. For tip

branches, the two weights define the different behavior of the

antiserum and antigen of a viral strain. The up-weight reflects the

antigenic properties of the isolate, whereas the down-weight

reflects the antigenic weight of the antiserum raised against the

viral isolate.

In case no antiserum is present in a subtree, down-weights are

undefined and assignment of up-weights becomes ambiguous as

they form linear combinations. To resolve this, optimization is

done only on the up-weights leading to leaves in the according

subtree. Afterwards, up-weights of the internal branches are set to

the minimum of the up-weights on the branches leading to the

respective child nodes (these up-weights are accordingly reduced

by the minimum) in a bottom-up traversal. The rationale behind

this is that if no additional information is present antigenic weights

should rather be a common feature of a subgroup of taxa rather

than single isolate variation for every taxon in the subgroup.

Phylogenetic inference
Hemagglutinin (HA) sequences from 258 seasonal human

influenza A (H3N2) virus isolates from 1968 to 2003 and that

were used by Smith et al. (2004) [5] were downloaded from the

Influenza Virus Resource (IVR) [46] (Table S1). Alignments of

DNA and protein sequences, restricted to positions 1 to 363 (sites

without missing data that appeared in more than 80% of the

sequences), were created with Muscle [47] and manually curated.

Trees were inferred with PhyML v3.0 [48] under the general time

reversal GTR+I+C4 model, with the frequency of each substitution

type, the proportion of invariant sites (I) and the Gamma

distribution of among-site rate variation, with four rate categories

Figure 2. Schematic drawing demonstrating the up/down tree
concept. For the two taxa t2 and t4, no antiserum is present, and thus,
b3 and b6 only have up-weights. A path from t1 to t3 would use the up-
weights of branch b1 and b2, and the down-weights of branch b4 and
b5. Similarly, the path from t2 to t1 would use the up-weight of branch
b3 and the down-weight of branch b2. Notably, the path from t1 to t1,
namely the antigenic distance from antigen t1 to the antiserum raised
against strain t1, would use the up-weight and the down-weight of
branch b1.
doi:10.1371/journal.pcbi.1002492.g002
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(C4), estimated from the data. Subsequently, the tree topology and

branch lengths of the maximum likelihood tree inferred with

PhyML were optimized for 200,000 generations with Garli

v0.96b8 [49]. Isolate A/duck/33/1980 was used as outgroup to

root the tree and subsequently removed from the further analysis.

For placement of amino acid changes on the tree branches,

protein sequences for the HA1 domain of HA (excluding the

additional sites used for a higher resolution of the tree during the

tree inference step) were assigned to the leaves of the tree inferred

from nucleotide sequences. Ancestral character states were

reconstructed under the maximum likelihood criterion using

PAML v4.5 [50] under the JTT+C4+F model [51], with the

frequency of each amino acid and the Gamma distribution of

among-site rate variation, with four rate categories (C4), estimated

from the data. Based on the reconstructed ancestral sequences for

the internal nodes and leaf node sequences, amino acid changes

were assigned to the individual tree branches.

Antigenic data
HI assay data from Smith et al. (2004) was used and normalized

according to these researchers’ methods [5]. For each antigen i,
antiserum j and the corresponding HI titer hi,j, the distance was set
as di,j = log2(max(hj)/hi,j), where max(hj) is the maximum entry for

antiserum j. The dataset comprises 4,215 measured values

between 273 antigens and 79 reference sera. As not all strains

were available in the IVR, 18 antigens and 9 reference sera could

not be mapped to a genetic sequence and were excluded from the

analysis. Additionally, threshold values (e.g. ,10, indicating the

lower bound in the HI assay below which dilutions are not

measured) were excluded from the analysis, as these values define

only long-distance relationships and we did not want to introduce

a potential bias by setting these entries to fixed values. In case of

multiple antisera raised to the same viral strain, median values of

the distances were used.

Definition of antigenic types
Antigenic types in the antigenic tree can be distinguished by

selecting type-defining branches according to a threshold distance.

The threshold was set to 1.0 antigenic units for average weights

(average of up- and down-weights), such that all branches are

selected whose average weights are at least twice as high as the

average weights of all internal branches. To exclude undersampled

groups, all branches leading to subtrees with three or less isolates

were excluded.

Supporting Information

Figure S1 Antigenic tree with branch lengths representing

antigenic distances (maximum of up- and down weights for each

branch) inferred from a maximum likelihood tree of 258

hemagglutinin sequences of seasonal influenza A (H3N2) virus

isolates and serological data. Isolates are color-coded by antigenic

clusters according to Smith et al. (2004). Three isolates (A/

Christchurch/4/85, A/Hong Kong/34/90 and A/Netherlands/

172/96) are only present as antiserum and were not assigned a

cluster label. Changes on terminal branches are colored in black,

whereas changes on internal branches are colored in blue.

(PDF)

Figure S2 Antigenic tree with branch lengths representing

antigenic distances (maximum of up- and down weights for each

branch) inferred from a maximum likelihood tree of 258

hemagglutinin sequences of seasonal influenza A (H3N2) virus

isolates and serological data. Isolates are color-coded by antigenic

clusters according to Smith et al. (2004). Three isolates (A/

Christchurch/4/85, A/Hong Kong/34/90 and A/Netherlands/

172/96) are only present as antiserum and were not assigned a

cluster label. Branch labels depict assigned weights (up/down).

(PDF)

Figure S3 Antigenic tree for influenza A (H3N2) viruses. Branch

lengths represent antigenic distances (maximum of up- and down-

weights for each branch) inferred from a maximum likelihood tree

of 258 hemagglutinin sequences of seasonal influenza A (H3N2)

virus isolates and serological data. Colored edges show antigenic

type transitions, with internal branches with high average

antigenic weights ($1.0 antigenic units, coloring according to

Figure 1A) or moderate antigenic weights $0.5 antigenic units

(coloring as gradient from the higher order antigenic type).

Subscript 2 indicates that a branch was a direct successor of the

according type-defining branch (except of branch (i), who is a

predecessor of the according type-defining branch). Subscript sub

indicates a subdivision of an antigenic type without a direct

matching of a reference strain.

(TIF)

Table S1 GenBank accession numbers of the used hemagglu-

tinin sequences.

(DOC)

Table S2 Summary of changes in the phylogenetic tree. Branch

amino acid changes refer to the set of changes mapped to a specific

branch. For some branches, the down-weight was not defined, as

no antiserum was in the respective subtree.

(DOC)

Table S3 Positions with multiple changes in the phylogenetic

tree and high antigenic weights (mean and median $1 antigenic

unit, highlighted in bold). ‘Tip’ indicates leaf branches.

(DOC)

Table S4 Changes with multiple occurrences in the phylogenetic

tree and high antigenic weights (mean and median $1 antigenic

unit). ‘Tip’ indicates leaf branches. Down-weights are omitted, as

all changes were identified using up-weights.

(DOC)

Table S5 Type-defining branches selected by different thresh-

olds for average branch weights. Branches (1)–(9) were selected as

type-defining branches at a threshold distance of 1.0 antigenic

units. Branches (i)–(xii) reveal further subdivision of antigenic types

at a threshold distance of 0.5 antigenic units. Asterisks mark

branches whose sibling branch leads to a single isolate. Subscript 2
indicates that a branch is a direct successor of a type-defining

branch (except for branch (i), which is a predecessor of the type-

defining branch). Subscript sub indicates a subdivision of an

antigenic type without a directly known reference strain.

(DOC)

Text S1 Influence of threshold distance on type-defining

branches.

(DOC)
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Defining seasonal marine microbial community
dynamics

Jack A Gilbert1,2,3, Joshua A Steele4, J Gregory Caporaso5, Lars Steinbrück6, Jens Reeder5,
Ben Temperton1, Susan Huse7, Alice C McHardy6,8, Rob Knight5,9, Ian Joint1,
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Here we describe, the longest microbial time-series analyzed to date using high-resolution 16S rRNA
tag pyrosequencing of samples taken monthly over 6 years at a temperate marine coastal site off
Plymouth, UK. Data treatment effected the estimation of community richness over a 6-year period,
whereby 8794 operational taxonomic units (OTUs) were identified using single-linkage preclustering
and 21130 OTUs were identified by denoising the data. The Alphaproteobacteria were the most
abundant Class, and the most frequently recorded OTUs were members of the Rickettsiales (SAR 11)
and Rhodobacteriales. This near-surface ocean bacterial community showed strong repeatable
seasonal patterns, which were defined by winter peaks in diversity across all years. Environmental
variables explained far more variation in seasonally predictable bacteria than did data on protists
or metazoan biomass. Change in day length alone explains 465% of the variance in community
diversity. The results suggested that seasonal changes in environmental variables are more
important than trophic interactions. Interestingly, microbial association network analysis showed
that correlations in abundance were stronger within bacterial taxa rather than between bacteria and
eukaryotes, or between bacteria and environmental variables.
The ISME Journal advance online publication, 18 August 2011; doi:10.1038/ismej.2011.107
Subject Category: microbial population and community ecology
Keywords: 16S rRNA; microbial; bacteria; community; diversity; model

Introduction

Only recently with the introduction of molecular
techniques satisfactory descriptions of natural
microbial assemblages have been generated (Fierer
and Jackson, 2006; Rusch et al., 2007; Costello et al.,
2009; Caporaso et al., 2011). In this paper, we
summarize a 6-year time series of 16S rRNA tag
pyrosequencing of samples taken from a long-time
series station in the English Channel. The aim was
to understand seasonal variability and to try to
determine which environmental factors might have
the greatest influence on the varying diversity.

In contrast to terrestrial environments that are
essentially static, the marine environment has the
added complication that the dispersion and move-
ment of populations will be driven by hydrography.
This adds to difficulties of interpretation of results,
particularly if the sampling design is Eulurian
(a fixed site) rather than Lagrangian (moving with
the water flow). The Western English Channel has
been studied intensively for more than 100 years
(Southward et al., 2005), and this wealth of data
provide a robust context with which to explore
temporal microbiological complexity. Inferences can
be drawn regarding how bacterioplankton assem-
blages may potentially interact with the environ-
ment as well as with specific groups of organisms.

Previous efforts to determine which factors might
affect microbial communities have largely focused
on the relative importance of temperature and
nutrient concentrations (Cullen, 1991; Kirchman
et al., 1995; Morris et al., 2005; Fuhrman et al.,
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2006; Fuhrman, 2009; Gilbert et al., 2009). These are
obvious candidates because of the strong effect of
temperature on biological processes (Nedwell and
Rutter, 1994) and the fact that nutrient availability
can drive niche structure through resource parti-
tioning (Church, 2009). Of greatest relevance to the
present study is the recent demonstration that
bacterioplankton diversity followed a latitudinal
gradient, with maximum potential richness being
primarily driven by temperature, with many other
factors modulating an intricate network of richness
at any particular temperature (Fuhrman et al., 2008).

The aim of the current study was to further
characterize seasonal patterns of bacterioplankton
diversity in the Western English Channel, beyond an
initial 1-year study by Gilbert et al. (2009). Using
these data, we tested three competing alternative
hypotheses about potential drivers of diversity
patterns, namely whether the observed seasonal
patterns correlate with (1) varying concentrations
of inorganic nutrients, (2) annual water–temperature
cycle or (3) the population structure of the eukar-
yotic phytoplankton and zooplankton. The null
hypothesis was that the seasonal patterns in micro-
bial community composition in the Western English
Channel showed no relationship with any of the
physical or biological factors measured in this study.

Materials and methods

Sampling, DNA extraction, 16S rDNA V6
amplification and pyrosequencing
Seawater samples were collected on 72 instances
from January 2003 to December 2008, from the L4
sampling site (501 15.000 N, 41 13.020) of the Western
Channel Observatory (http://www.westernchanne
lobservatory.org.uk). Sampling, extraction, amplifi-
cation, and sequencing protocols and environmental
parameter analysis were performed simultaneously
on the same samples as described previously by
Gilbert et al. (2009); extensive information can be
found in Supplementary Information (Supplemen-
tary Tables S1–S3). Bacterial diversity was exam-
ined in the context of the broad range of biotic
and abiotic variables that are routinely measured at
the Observatory. These included phytoplankton
and zooplankton species abundance, the concentra-
tions of ammonia, nitrateþnitrite, phosphate,
silicate, total organic carbon and nitrogen, salinity,
chlorophyll, photosynthetically active radiation,
North Atlantic Oscillation data, day length, primary
productivity and temperature. Statistical analyses
used the routines of PRIMER (Clarke and Warwick,
2001; Clarke and Gorley, 2006).

Sequence data analysis
All sequence data were treated as reported pre-
viously (Gilbert et al., 2010), using the same quality
control that included random resampling to stan-
dardize the sequencing effort as described below,

Sequence data noise reduction using Single-Linkage
Preclustering (SLP; Huse et al., 2010) and analysis
(sample similarity derived from Bray–Curtis indices
weighted on taxon abundance matrices) also fol-
lowed previous protocols. In addition, several noise
reduction strategies such as SLP (Huse et al., 2010)
and denoiser (Reeder and Knight, 2010) were
compared to examine the impact of pyrosequencing
errors on community diversity patterns observed
in the data (see Supplementary Figure S1a). It is
important to stress that both known and unknown
biases associated with these techniques meant that
these data could not be seen as quantitative, and
hence all analyses are based on relative changes
derived through comparison. As the same sequen-
cing and sampling effort was applied to each
sample, the operational taxonomic unit (OTU)
richness (S) was used as a diversity metric, which
showed a 97% correlation to two extrapolative
estimators of diversity (Chao1 and Ace) over the 72
samples (Supplementary Figure S1b). Changes in
community diversity and relationship to environ-
mental parameters were examined using various
nonparametric multivariate methods, discriminant
function analysis (DFA), and association networks
(see Supplementary Information).

To determine whether microbial communities in
the Western English Channel demonstrated seasonal
patterns over many years, 747 496 16S rDNA V6
sequences were analyzed, including those pre-
viously published for the year 2007 (Gilbert et al.,
2009). To compensate for potential overestimation
in diversity resulting from pyrosequencing and
amplification errors, a clustering technique was
used. SLP grouped OTUs at 2% sequence identity
and an average-linkage clustering followed, based
on pair-wise alignments (Huse et al., 2010), which
resulted in 8794 OTUs. To remove sequencing effort
bias, each sample was randomly resampled to the
smallest individual sample sequencing effort (4505)
as described before (Gilbert et al., 2009). This
resulted in a total of 4204 OTUs (for all 72 samples
combined). Approximately, 53% of the OTUs were
represented by only a single sequence (singletons).
These results, in terms of relative abundance, were
confirmed using a second denoising technique,
Denoiser (Reeder and Knight, 2010), which generated
greater total richness (21130 OTUs). However, com-
parison between Denoiser, SLP and no-denoising/
filtering indicated that overall, the same patterns of
community diversity were evident with each techni-
que (Supplementary Figure S1). SLP constituted by
far the most conservative OTU predictions, and was
therefore used for subsequent analysis.

Results

Seasonal variations in diversity and persistence
Bacterioplankton were very diverse at this station
and a total of 8794 different OTUs (defined using
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SLP) over a 6-year period were identified. Figure 1
summarizes the taxonomic identify of all the OTUs
sequenced and also gives an indication of the
persistence of OTUs in microbial communities at
L4 over a 6-year time period. Although this study
has shown high diversity of bacterioplankton in the
English Channel, as with other studies of natural
assemblages, the majority of sequences could not be
identified to species. Indeed, only 6 of the 10 most
abundant OTUs could be annotated below the level
of Class and, of the top 100 most abundant OTUs,
only 2% could be identified to the species level.
The taxonomic level to which the OTUs could be
identified was—Phylum (9%), Class (32%), Order
(10%), Family (26%), Genus (21%). This was true
using a number of different annotation strategies
(that is, GAST (Sogin et al., 2006); BLAST against
Greengenes (DeSantis et al., 2006), SILVA (Pruesse
et al., 2007) and RDP (Maidak et al., 2001); RDP
classifier (Maidak et al., 2001); data not shown,

references in Supplementary Information). These
results suggest that a large fraction of as-of-yet
uncharacterized lineages were present, even among
the most abundant taxa, and highlights the difficul-
ties associated with accurate annotation of short
read-length tag sequences from hypervariable 16S
rRNA regions (Wang et al., 2007; Liu et al., 2008).

Although there are significant seasonal variations
in OTU frequency throughout a 6-year period
(Figure 2), there are also strong repeating patterns.
As other studies of marine microbial diversity have
demonstrated, the Alphaproteobacteria were the
most abundant Class. The OTUs most frequently
recorded were members of the Rickettsiales and
Rhodobacteriales. Other OTUs with high frequency
were the Flavobacteriales (Class: Bacteroidetes) and
there were also peaks in the Gammaproteobacteria
(Vibrionales and Pseudomonadales).

Alpha diversity of the observed OTUs (S) was
relatively constant across the time series, but

Figure 1 Persistence of OTUs in microbial communities at L4 over a 6-year time period. Median OTU abundance, calculated for all time
points, over a 6-year period is set proportional to node size on a logarithmic scale. Only OTUs found in at least 5% of the time-series
samples (X4) are shown. This includes 22.53% of the OTUs, representing 97.48% of the sampled organisms. Node coloring shows the
differences in persistence over time, with the color scale from orange (5%), yellow (16%), green (35%), blue (66%), red (100%) reflecting
increasing persistence.
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showed distinct cyclical patterns with maxima in
winter and minima in summer (Figure 3). The mean
S per time point was 286, with an average minimum
of 179 in summer and maximum of 437 in winter.
This pattern was further confirmed by permutation-
based analysis of variance (of S) for all taxa, and for a
range of phyla (Supplementary Table S4). S was
most similar when comparing the same time of year,
and differences between seasons and among years
were both highly significant. Seasonal differences
tended to be greater than inter-annual (greater
pseudo-F values although there were fewer d.f.).
This lack of significant interaction terms suggested
that the seasonal cycle was consistent across years.
Overall persistence (Figure 1) was linked to abun-
dance; OTUs that were present at more than three
time points accounted for 97.48% of the sequences.
In total, only 12 OTUs were found at every 1 of the
72 time-points, yet these were exceptionally abun-
dant, comprising B35% of all the sequence reads.

Seasonal trends in most abundant bacteria
The two most abundant Orders were Rickettsiales
and Rhodobacterales, and they had different seaso-
nal abundances. The Rickettsiales sequences were
dominated by the SAR11 clade and tended to peak
in winter (Figure 4). At this time, light and primary
production were low, and inorganic nutrient con-
centrations were at their maximum. In contrast, the
Rhodobacterales, which were dominated by the
Roseobacter clade, tended to peak in Spring and
Autumn, when nutrient concentrations were lower
yet primary productivity was higher. This is con-
sistent with what is known from single-strain-level
studies; SAR11 are considered to be obligate
oligotrophs, while the Roseobacter clade contains
many genera whose cultured representatives tend to
grow in organic nutrient-rich media, and may be
likely to respond at times when rates of primary
production are higher.

Rare taxa may dominate the assemblage
The largest bacterial ‘bloom’ occurred during
August 2003, and this constituted a single Vibrio sp.,

Figure 2 Plot representing the seasonal dynamics (grouped as an
average of seasons; Winter: January–March; Spring: April–June;
Summer: July–September; Fall: October–December) of taxa
grouped at the taxonomic level of Order in the L4 6-year time
series. Frequency is recorded based on abundances within a
resampled abundance of 4101 sequences per sample. Only Orders
whose average frequency peaked above 10% of the resampled
community abundance were included.

Figure 3 Alpha diversity (observed OTUs) plotted as the log of
species richness (S) by month spanning 6 years of marine water
sampling at the L4 site in the Western English Channel. A cyclic
pattern is observed in alpha-diversity, with species richness
peaking in the winter months.

Figure 4 Plot representing the seasonal dynamics of the bacterial Orders, Rickettsiales and Rhodobacterales, and environmental
parameters, chlorophyll a and soluble reactive phosphorus (SRP) in the L4 6-year time series. Frequency is recorded based on
abundances (abundance of sequences per taxa) within a resampled abundance of 4505 sequences per sample.
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which represented 54% of the sequences.
Yet, for the rest of the time series, this taxon was
relatively rare, having an abundance of 0–2%.
Interestingly, this peak was correlated with an
increase in the relative abundance of the diatom,
Chaetoceros compressus. This diatom was also
typically present at low abundance, between
0.002–0.2% of total phytoplankton biomass
(Supplementary Table S2). However, in August
2003, C. compressus accounted for 1.2% of total
eukaryotic phytoplankton. Our data do not distin-
guish between a causal relationship—a specific
dependence of a bacterial species on a specific
phytoplankton species—and simple co-occurrence,
which might be a response to unusual environmen-
tal conditions. Certainly at this time point, the
highest total organic nitrogen and carbon concentra-
tions, and second highest chlorophyll a concentra-
tion were measured in the whole time series
between 2003 and 2008 (Supplementary Table S1).

Seasonal succession in the community composition
is robust
The dataset of environmental and biological
variables was examined to investigate potential
relationships between bacterioplankton and the
environmental and eukaryotic abundance data.
The community composition (rather than richness)
was used, after determining whether seasonal
patterns in community composition were as robust
as those for species richness. Three different subsets
of the bacterial OTUs, that is, the most abundant,
most common and most variable (see Supplemen-
tary Materials) were defined. These definitions were
robust across the different denoising strategies (that
is, the same OTUs (based on sequence identity, with
the same taxonomic inference defined). Using DFA,
an eigenvector technique that, in this case, searches

out the taxa which are best able to predict the month
(Fuhrman et al., 2006), we found that for each
subset, the bacterial community could correctly
predict the month with 100% accuracy, showed a
clear repeating pattern (Figure 5), and was able to
explain 460% of the variance in the community
structure (Supplementary Table S5).

These patterns for most abundant, common and
variable subsets are similar to those reported for
similar subsets in a Californian near-surface bacter-
ioplankton time series (Fuhrman et al., 2006),
suggesting that seasonal succession patterns of
marine surface water bacterial communities in
temperate regions may be conserved across different
biomes. The Californian study was based on auto-
mated ribosomal RNA intergenic spacer analysis
fingerprint technology, but the sequence-based
annotation provided by this study allowed consid-
erably better predictions for the bacterial taxa
contributing most strongly to these signals. In
this instance, these were members of the Alphapro-
teobacteria (for example, SAR11 and Rhodobacter-
iaciae groups), the Gammaproteobacteria (for
example, Pseudomonas, Pseudoalteromonas, and
Vibrio groups), the Cyanobacteria, and the Bacter-
oidetes (for example, Flavobacteriaceae group;
Supplementary Table S6).

Seasonal variance in community composition
The relative significance of environmental versus
biological factors in describing the seasonal varia-
tion in bacterioplankton assemblages was investi-
gated using DFA. DFA, via multiple regression using
environmental factors and eukaryotic counts, was
used to predict the first discriminant function (DF1)
from each subset of the community (that is,
most abundant, most common and most variable).
Environmental parameters explained 49–91% of the

Figure 5 Annual repeating patterns from the bacterioplankton community sampled monthly from 2003–2008 in the English Channel
determined by DFAwhere the model used the bacterioplankton community to predict the month. Upper row of graphs shows the time-
series analysis of the first discriminant function (DFA1) over 72 months. The lower row shows the autocorrelation of the discriminant
function with up to a 50-month lag. The lines in the lower row represent correlations with Po0.05.
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variance in DF1, while eukaryotic variables
explained 18–51% of the variance (Supplementary
Table S6). This suggests that that the seasonally
responsive members of the microbial community
were responding to changing environmental factors,
while interactions between the bacteria and the
eukaryotes may have had a less comprehensive
influence. Obviously, as shown for the Vibrio bloom
in 2003, this trend is not absolutely uniform,
and blooms of rare taxa can be influenced by the
presence of eukaryotes. However, as defined by the
robust annual cyclicity, the community recovers
from these ‘rare-bloom’ events, suggesting an overall
bottom-up influence on the community composition
and structure. Essentially this suggests that nutrient
concentrations, physical parameters and biology all
demonstrate significant influence in an extraordina-
rily complex matrix.

Annual day length cycle explains most of the
variability in the seasonal pattern of species diversity
To test whether changes in nutrients or temperature
provided the best correlation with changes in
community diversity, distance-based linear model-
ling was used (described in detail in Supplementary
Material). This showed that, although a significant
fit could be ascribed to a combination of tempera-
ture and photosynthetically active radiation and the
richness of all OTUs, the most significant fit
was always to the annual change in day length
(Supplementary Table S7). This was best modelled
by a cosine term (DX1) with the peak centered on
December 22. When day length (DX1) was combined
with serial day (D), it described 66.3% of the
variance in OTU richness. However, when examin-
ing the phototrophic Cyanobacteria (Supplementary
Table S7), the relationship of richness to day
length was not always evident, for example, diver-
sity peaked in spring but not in winter, and hence
coincided with the lowest annual temperatures at
L4. To account for the Cyanobacteria and to signi-
ficantly improve the fit of our model (dAIC4 �2),
a second seasonal artificial term centered on
March 22 (a sine-derived term—DX2) was added
that closely tracked temperature. Also, because most
of the taxa show subtle changes in their seasonal
cyclicity over these years, it was possible to
significantly improve the model further by adding
a linear time trend term (D). However, this did not
improve the fit for the cyanobacterial community
diversity, which was remarkably stable over the 6
years. Strikingly, the Cyanobacteria were unique in
that a combination of photosynthetically active
radiation, temperature and nitrate/nitrite concentra-
tion provided as good a fit as the artificial descrip-
tors (DX1, DX2 and D; Supplementary Table S7).
Not unexpectedly, this suggests that, unlike other
groups, the species diversity of these primary
producers can be well defined by a combination
of light availability, nitrogen availability and

temperature, reflecting a different set of niches
compared with the other potentially heterotrophic
bacterioplankton.

Discussion

The repeating cycles in bacterioplankton diversity
in this Eulerian study raise the question of whether
unique water masses pass through the English
Channel, and whether those water masses contain
characteristic bacterioplankton assemblages. This is
almost certainly not the case as the hydrography of
the Western English Channel has been studied
extensively (Southward et al., 2005). From the
earliest studies in the 1930s using drift-bottles, it
was known that there was a strong flow through the
English Channel from west to east. Later modelling
and observational studies showed the importance of
wind over a very wide shelf region (including the
North Sea) in determining flow through the Western
English Channel (Pingree and Griffiths, 1980).
Southerly winds resulted in the greatest net trans-
port of water along the English Channel through the
Straits of Dover and into the southern North Sea;
westerly winds were less effective.

It has recently been calculated that average
residence time at the sampling site is on the order
of 2 weeks (Lewis and Allen, 2009), although
dispersion occurs continuously. The repeating an-
nual patterns of bacterioplankton demonstrated in
this study cannot be due to the repeated intrusion
of water mass with an annual periodicity. We do not
know how representative these robust annual
patterns are of the entire English Channel. It may
be that the observed patterns represent seasonal
changes in bacterioplankton on the Celtic Sea Shelf,
which is advected into the Western English Chan-
nel. Given that this advection will largely depend on
wind conditions, it seems unlikely that such similar
patterns would occur over a 6-year period. Clearly,
further sampling on the European Shelf will be
required to answer the question of the representa-
tiveness of this station.

The relationship between OTU richness and day
length is interesting. To the best of our knowledge,
this is the only example from a marine dataset where
a single variable has such explanatory capacity
(66.3% of the variance in OTU richness). There are
examples from terrestrial systems; for example,
tRFLP analysis identified an r2 value of 0.7 between
bacterial community richness and pH (Fierer and
Jackson, 2006). Temperature would imply a clear
mechanism; we can see no such direct mechanism
that result in day length directly controlling bacter-
ioplankton assemblages.

Other environmental factors that could suggest
direct mechanisms did have significant relation-
ships. They did not, however, apply to the most
common and abundant taxa, but the composition
of the most variable taxa could be significantly
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predicted by nutrient concentrations (NH4
þ , total

organic nitrogen (TON), soluble reactive phosphate,
primary production and broad shifts in ocean
currents indicated by the North Atlantic Oscillation
(Supplementary Table S6). Overall, we conclude
that the monthly pattern and response to broad
seasonal changes indicate that the most common
and most abundant bacterial OTUs have temporally
defined niches. In contrast, the most variable OTUs
have niches that can be defined temporally as well
as by nutrient pulses and changes in currents.
Temporal niche structure suggests taxa with a
resilient seasonal pattern, for example, SAR11 and
Rhodobacteriaciae, although tracking nutrient
pulses and currents, are potentially less resilient to
changing environmental conditions. However, the
relationship is complex, and potentially a function
of abundance, commonality and variability, as both
SAR11 and Rhodobacteriaciae are in the most
abundant, most common and most variable subset.

Interestingly, interactions were strongest within
the bacterial and eukaryotic domains rather than
between them, and relationships were stronger
between bacterial taxa than with environmental
variables. Association network analysis was em-
ployed in an attempt to deconvolute the complex
network of relationships that were driving the
observed DFA results. However, this revealed that
the strongest correlations exist between bacterial
OTUs (whether abundant, common or variable) and,
to a slightly lesser extent among eukaryotes, com-
pared with correlations between these two domains
or between either bacteria or eukaryotes and
environmental factors (Figure 6). Also, the integrity
of these relationships was maintained across the
three chosen subsets of OTUs (Figure 6). Even
among the highly variable OTUs, which might
be expected to respond to changing conditions

enabling growth from rare to abundant, most
significant correlations were still between bacteria
(Supplementary Figure S2). Also, at a highly
correlated (r40.7, Po0.001, qo0.0012) level, there
were many eukaryotic taxa in a loosely intercorre-
lated group (Supplementary Figure S2a), but there
are still very few specific connections between the
eukaryotes and the bacteria. Mostly the bacteria
were correlated to one another and to the environ-
mental factors, and the eukaryotes were also
connected to one another and the environmental
factors. The highly intercorrelated group (Supple-
mentary Figure S2b) was almost completely devoid
of eukaryotes, but was connected to an herbivorous,
parasitic copepod (Poescilostomatoida), and to the
seasonal factor DX1, NO2þNO3, and an intercon-
nected cluster of Gammaproteobacteria, Bacillus
and Actinobacteria OTUs.

Interactions between eukaryotes and bacteria
became more apparent when moderate correlations
were examined between different subsets of the
eukaryotic community and the 300 most abundant
bacterial OTUs. Mixotrophic eukaryotes (potential
grazers on bacteria) and autotrophic eukaryotes both
showed complex interactions with the prokaryotic
community (Supplementary Figure S3). Although
flagellates (when grouped by size) were correlated
to each other (r¼ 0.59, Po0.001, qo0.0012) and,
naturally, to the total number of flagellates, only two
bacterial OTUs (a single Rhodobactereaceae OTU
and a single Cyanobacteria OTU) are correlated to
all three groups (Supplementary Figure S3a). There
were many bacterial and eukaryotic OTUs, which
correlate to two of the flagellate subgroups, and a
smaller number, which correlate to only one of the
flagellate subgroups. The 5 mm flagellates were
negatively correlated to a Betaproteobacterial and a
Gammaproteobacterial OTU, and the diatom Paralia

Figure 6 Broad view of correlation network for the microbial community and the environment at station L4. The network shows strong
correlations (r40.8, Po0.001, qo0.002) between microbial and environmental parameters for the 300 most abundant bacterial taxa (a),
the 300 most common bacterial taxa (b), and the 300 most variable bacterial taxa (c). Bacteria are shown in blue, eukaryotes are shown in
red and environmental variables are shown in yellow.
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sulcata in samples with a 1-month lag, which
reflects an increase in those abundant members of
the community following a decrease in 5 mm-sized
flagellates (Supplementary Figure S3a).

A similar situation was applied to correlations
between autotrophic eukaryotes and abundant bac-
terial OTUs. The diatom, P. sulcata, correlated
negatively to the total diatom counts with a 1-month
time lag (Supplementary Figure S3b). This may
indicate a situation where P. sulcata dominated
the diatom community, while the total number of
diatoms decreased. These two eukaryotic nodes
shared 26 bacterial OTUs that correlated positively
to P. sulcata and negatively with a 1-month time lag
to the total diatom count (Supplementary Figure
S3b). These bacterial OTUs may reflect a community
shift indicated by the increase of P. sulcata and the
26 Proteobacteria, Bacteroidetes and Verrucomicrobia
when the total number of diatoms decreased.
The winter peak seasonal cycle, DX1, also positively
correlated to P. sulcata and negatively correlated,
with a 1-month lag, to total diatoms in the same way,
possibly implying seasonal community succession.
There were positive contemporaneous correlations
between P. sulcata and NO3þNO2, between silicate
and mixed layer depth, and a negative 1-month
lagged correlation between the North Atlantic Oscil-
lation and total diatom counts; these results indicate
that nutrient concentrations may be drivers of this
succession (Supplementary Figure S3b). Interestingly,
there were only positive correlations between bacter-
ial OTUs and 2mm flagellates (Supplementary
Figure S3a), even though 2mm flagellates might be
expected to be the major grazers of bacterioplankton.
Bacterial OTUs were also positively correlated to total
flagellates, total phytoplankton, coccolithophores
and Emiliania huxleyi (Supplementary Figure S3b).

Many environmental factors were highly corre-
lated (r40.7, Po0.001, qo0.0012) with both eukar-
yotic OTUs and bacterial OTUs, when both the 300
most variable bacteria (Supplementary Figure S4a)
and the 300 most common bacteria (Supplementary
Figure S4b) were considered. Strikingly, the seaso-
nal index peaking in winter (DX1) was correlated
almost exclusively to bacterial OTUs, including
Proteobacteria (for example, Alphaproteobacteria,
Gammaproteobacteria, Nitrospira), unidentified
bacteria, Deferribacteres and Owenweeksia in both
the common and variable sub-networks (Supple-
mentary Figure S4). Cladocera and Echinodermata
were the only eukaryotes that connected to DX1 and
they were negatively correlated with no lag and a
1-month lag, respectively. This suggests that seaso-
nal factors (for example, day length, which is a
proxy for DX1) may be more important for the
bacterioplankton than for the eukaryotic commu-
nity. The spring seasonal factor, DX2 was correlated
with a 3-month lag to Cladocera (indicating a
summer increase in abundance), and was negatively
correlated to a Bacteroidetes OTU in the most
variable subset (Supplementary Figure S4a).

Positive correlations were widespread in the
microbe–environment network. Primary production
(monthly average) was correlated to total diatoms,
total ciliates, total microzooplankton and a Rhodo-
bacteriaceae OTU (which also correlated to daily
primary production and temperature). Daily primary
production (ML primary production, calculated
from observed chlorophyll values and integrated
over the observed mixed layer depth) was also
positively correlated to total diatoms, total
phytoplankton, total ciliates and echinodermata
(Supplementary Figure S4). This suggests that, as
productivity and nutrients increased, these bacteria
and eukaryotes also increased in abundance, that is,
these taxa appear to perform best in a productive
system. There was little correlation-based evidence
for top-down effects in this system, although
this may be a function of a lack of resolution of
bacterivores among the eukaryotes or perhaps a
limitation of this kind of analysis.

Local similarity analysis, with its ability to see
time-lagged correlations, also provided insight into
the relationships between environmental factors
themselves. Although day length was not correlated
to temperature at the 0.7 level, the Winter seasonal
cycle (DX1) was negatively correlated to day length
with no time delay, and to temperature and primary
production with a 1-month time delay (Supplemen-
tary Figure S4); that is, day length changed season-
ally, followed by a change in temperature. DX1 and
day length (which was positively correlated to
photosynthetically active radiation and primary
production) may be serving as combinatory signals
of seasonal environmental change, involving factors
such as changes in input of energy into the system.
These combinatory variables may more closely map
the changes in the whole community of bacterio-
plankton as well as the individual bacterial OTUs
connected to them. NO2þNO3 were highly corre-
lated with soluble reactive phosphate and silicate
(Supplementary Figure S4). However, soluble reac-
tive phosphate was correlated only to a Gammapro-
teobacteria OTU and a Rhodobacteriaciae OTU,
while silicate was not highly correlated to any
bacteria or eukaryotes. NO2þNO3 was positively
correlated to 12 bacterial OTUs, which were
also positively correlated to DX1, and there were
10 bacterial taxa that were positively correlated
solely to NO2þNO3. The close coupling between
these taxa and NO2þNO3 (that is, these taxa were
only abundant when there was an increased avail-
ability of nitrogen) suggests that these taxa may be
seasonally nitrogen limited in this ecosystem.

Regardless of the subset of OTUs (for example,
abundant, variable, or common) analysed, each
subset was able to predict the month. In addition,
each of the networks appeared to identify many of
the same connections when we examined 300 taxa
from any of the subsets (Figure 6, Supplementary
Figures S2–S4). OTUs were ranked differently with-
in each subset, but they produced similar patterns,
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which were nearly identical at the r40.8 correlation
level (Figure 6). This was partly due to the stability
of the bacterioplankton community at L4 and the
depth of sampling into this community. It was also
an effect of using statistical analyses that require a
certain number of occurrences in order to detect a
pattern; by design, these analyses would ignore the
once-a-decade occurrence, for example, the spike
in Vibrio spp. abundance in the summer of 2003.
However, comparing these subsets allowed for a
better sense of the ecology behind these bacterial
OTUs. This is demonstrated most clearly when
restricting the correlations to the 50 most common
and most variable bacterial taxa, and their

relationship to environmental factors (Figure 7).
For instance, a SAR11 (Alphaproteobacteria_03_2),
although common, changed abundance seasonally
(it was the 6th most variable bacterial OTU) and
increased in abundance when inorganic nutrient
concentrations increased. A Rhizobiales member
(Alphaproteobacteria_03_121) that correlated
with NO2þNO3 (Figure 7a) was not as variable
(Figure 7b), whereas the Deferribacteres member
(Deferribacteres_03_12) that correlated with NO2þ
NO3 (Figure 7b) was not common (Figure 7a), but
increased in abundance along with increased
NO2þNO3 concentration. Among these observa-
tions of common influence, there were also hints

Figure 7 Sub-networks of highly correlated (r40.7, Po0.001) variables built around environmental factors from the 50 most common
(a) and 50 most variable (b) bacterial OTUs. Interactions between environmental variables and eukaryotic interactions with
environmental variables have been removed for clarity. OTU identifications are from http://vampsarchive.mbl.edu/diversity/
diversity_old.php. Identifications more specific than the taxonomic order are shown in parentheses. Solid lines represent positive
correlations, dashed lines represent negative correlations. Black lines show no time delay while red arrows are delayed by 1 month.
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at ecological differences between these OTUs.
Although some taxa seemed to follow inorganic
nutrient concentrations (for example, SAR11 and
Deferribacteres), others followed system producti-
vity (for example, Rhodobacteriales) or temperature
(Gammaproteobacteria OTUs; Figure 7). These
observations, made possible by extended studies
of microbial assemblages, will lead to deeper
understanding of microbial niches in the ocean
and elsewhere.

This study has confirmed that strong seasonal
patterns occur in this surface water microbial com-
munity and that potential drivers of this structure
could be identified from the observatory data. Strik-
ingly, the variable with most explanatory power for
overall bacterial richness was day length, which
appears to be as important for describing temporal
community structure in coastal temperate seas as pH
is for describing spatial microbial structure in
terrestrial ecosystems. This study has highlighted
the added value of much longer temporal observa-
tions of natural communities. Although the overall
community succession was robust, subtle changes in
the patterns of individual taxa were observed and
were only detectable because of the long (6 years)
time series. Examples of different taxa showing
different seasonal cycles were SAR11 and Roseo-
bacter, which had nearly exactly opposite peaks in
richness. Additionally, blooms of rare OTUs may
be linked to changes in eukaryotic species and
environmental variables. Seasonal succession in the
community composition was robust and the most
variable OTUs were best at predicting the time of year.
Environmental factors, rather than interactions with
eukaryotes, were better at explaining seasonal
variance in bacterial community composition.
Meanwhile, interactions were strongest within do-
mains rather than between them, and correlative
relationships were stronger between taxa than with
environmental variables. This may indicate that
biological rather than physical factors can be more
important in defining the fine-grain community
structure. Finally, in making comparisons of the
bacterial OTU subsets, a fundamental stability in
the community has been shown, which suggests that
the robust seasonal cyclicity noted for the alpha- and
beta-diversity is also self-evident in the interactions
between members of the community.
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Abstract

Influenza A viruses are single-stranded RNA viruses capable of evolving rapidly to adapt to environmental conditions.
Examples include the establishment of a virus in a novel host or an adaptation to increasing immunity within the host
population due to prior infection or vaccination against a circulating strain. Knowledge of the viral protein regions under
positive selection is therefore crucial for surveillance. We have developed a method for detecting positively selected
patches of sites on the surface of viral proteins, which we assume to be relevant for adaptive evolution. We measure
positive selection based on dN/dS ratios of genetic changes inferred by considering the phylogenetic structure of the data
and suggest a graph-cut algorithm to identify such regions. Our algorithm searches for dense and spatially distinct clusters
of sites under positive selection on the protein surface. For the hemagglutinin protein of human influenza A viruses of the
subtypes H3N2 and H1N1, our predicted sites significantly overlap with known antigenic and receptor-binding sites. From
the structure and sequence data of the 2009 swine-origin influenza A/H1N1 hemagglutinin and PB2 protein, we identified
regions that provide evidence of evolution under positive selection since introduction of the virus into the human
population. The changes in PB2 overlap with sites reported to be associated with mammalian adaptation of the influenza
A virus. Application of our technique to the protein structures of viruses of yet unknown adaptive behavior could identify
further candidate regions that are important for host–virus interaction.

Key words: influenza, evolution, selection, adaptation, protein structure, pandemic.

Introduction
Influenza A viruses are single-stranded negative-sense RNA
viruses typically causing short-term respiratory infections
with considerable morbidity and mortality (WHO 2009).
High mutation rates, swift spreading among individuals,
and short replication times allow influenza A viruses to
evolve and adapt rapidly to environmental conditions (Pybus
and Rambaut 2009). Examples include the establishment of
a virus in a novel host or an adaptation to escape increasing
immunity of the host population to a circulating or a vaccine
influenza strain (Dormitzer et al. 2011).

Past influenza pandemics resulted from the introduction
into the human population of a transmissible virus with
significantly different antigenicity from recent and cur-
rently circulating influenza strains. In all four pandemics
that occurred within the last century, the respective influ-
enza viruses carried hemagglutinin (HA) and several other
genome segments of influenza A viruses from other host
species, such as birds or swine (Webster et al. 1992;
McHardy and Adams 2009). Configurational changes of
multiple proteins of animal influenza A viruses are thought
to be necessary to enable efficient replication and transmis-
sion in human hosts (Kuiken et al. 2006; Neumann and
Kawaoka 2006). A region of particular importance for this

process is the receptor-binding site of the viral hemaggluti-
nin. It enables attachment to different types of host-specific
glycosydic bonds on surface epithelial cells in the host respi-
ratory and gastrointestinal tracts (Glaser et al. 2005;
Neumann and Kawaoka 2006). Furthermore, certain areas
of the viral polymerase complex determine host range
(Neumann and Kawaoka 2006; Yamada et al. 2010). Follow-
ing establishment of a virus within a novel host, additional
adaptive changes are thought to optimize replication and
dispersal rapidly within the population (Deem and Pan
2009; Hensley et al. 2009; Neumann et al. 2009; Smith
et al. 2009).

Human influenza A viruses continuously change anti-
genically by accumulating changes in the antibody-binding
sites of the viral surface proteins HA and neuraminidase
(NA), (Bush et al. 1999; Smith et al. 2004; McHardy and
Adams 2009; Weinstock and Zuccotti 2009). These changes
allow reinfection of previously infected or vaccinated indi-
viduals. This requires the composition of the seasonal
influenza A virus vaccine to be updated almost annually
to ensure its continued effectiveness (Russell et al. 2008).
Knowledge of the viral protein regions that are relevant
for adaptation to a novel host or an increasingly immune
population is therefore a crucial factor for the surveillance
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and prevention of seasonal and pandemic influenza A virus
infections.

Multiple methods allow identification of functional
regions of proteins, for example, on the basis of evolution-
ary conservation ratios (Pupko et al. 2002; Glaser et al. 2003;
Nimrod et al. 2005, 2008; Shazman et al. 2007; Ashkenazy
et al. 2010). Regions under positive selection do not follow
the assumption of strong conservation and can therefore
not be detected by these methods. Other techniques
predict the location of antibody-binding (epitope) sites
based on structural and sequence information (Blythe
and Flower 2005; El-Manzalawy et al. 2008; Rubinstein
et al. 2008, 2009; Lacerda et al. 2010). However, besides
epitope regions, receptor avidity–changing sites or host-
specificity determinants can be subject to positive selection
and might play a similarly important role for the adaptive
evolution of influenza A viruses (Hensley et al. 2009).
Furthermore, a part of the epitope regions is invariable
due to functional and structural constraints.

Sites under positive selection indicate the relevance of a
region within a protein for adaptation. Such sites can be
identified based on the ratio of nonsynonymous to synon-
ymous mutations (dN/dS ratio) (Bush et al. 1999). This has,
for instance, identified regions of B- and T-cell epitopes
which are under positive selection (Suzuki 2006). However,
this measure is difficult to interpret directly when studying
evolution within a population and lacks sensitivity when ap-
plied to individual sequence sites (Kryazhimskiy and Plotkin
2008). Other methods compare within-species with be-
tween-species substitution statistics or substitution rates
at specific branches (Nei 2005; Nozawa et al. 2009). We have
recently proposed how to identify individual alleles, or sets of
mutations, instead of sites or genes, that might be under se-
lection using a time series of sequence samples from human
influenza A (H3N2) viruses (Steinbrück and McHardy 2011).
Furthermore, maximum likelihood estimates of codon-based
Markov models are used to detect sites under positive or
directional selection (Yang 2000; Kosakovsky Pond et al.
2005, 2008) and can also consider the physiochemical prop-
erties of residues (Sainudiin et al. 2005). All these methods
return statistics of positive selection for independent codons
but do not consider protein structure and spatial informa-
tion for sites. Other methods take the effects of solvent
accessibility and pairwise interactions between amino acids
into account in their evolutionary models (Robinson et al.
2003). In the method we describe here, we follow a similar
approach but use a less complex evolutionary model and
consider the spatial distribution of residues in a consecutive
phase of our algorithm.

In contrast to this type of methods, we assume that not
only mutations at individual sites but also of multiple sites
within a certain region of a gene can cause adaptive protein
conformation changes. Shape and charge modifications
within larger patches of residues on the protein surface
are important for viral adaptation to structural changes
in the interacting proteins of the host (see e.g., Yamada
et al. 2010). We therefore devised a method to detect dense
patches showing a high average positive selection, using

dN/dS estimates of positive selection for individual sites
and information on the spatial distances between them.
With this approach, we also included sites with a large,
but not exceptionally large, dN/dS ratio. Such residues
would be discarded by methods that rank sites based on
a measure of selection and then cut the list below a certain
threshold. With our method, such residues were included if
their spatial position supported the continuity of a patch.
By searching for clusters of sites that are close to each other
in the protein structure and consistently exhibit elevated
dN/dS values, one might have greater statistical power to
detect adaptive evolution in genes compared to methods
that test for elevated dN/dS ratios at individual sites.

As mentioned above, more advanced techniques can be
used for estimating positive selection. We here rely on the
dN/dS statistic to allow an easy understanding of the
principles of our method. The dN/dS statistic used for clus-
tering can easily be exchanged with other measures.

There are similar methods that search for clusters of pos-
itively selected sites (Suzuki 2004; Berglund et al. 2005;
Zhou et al. 2008). These differ from ours in that they
use a sliding window–based search for sphere-shaped clus-
ters on the surface of the tertiary structure. Our approach
does not require specification of a cluster radius nor does it
restrict the geometrical form of the inferred clusters. We
evaluated our method by applying it to HA data for human
influenza A viruses of the subtypes H3N2 and H1N1. These
are particularly suited for evaluation as large numbers of
sequences are available and their interaction with the hu-
man host is very well studied. Additionally, we applied the
method to HA and polymerase basic protein 2 (PB2) of
swine-origin influenza virus (S-OIV) A/H1N1 to study
the more recent development of the virus.

Materials and Methods
We implemented a graph-cut algorithm to cluster protein
residues based on structural and evolutionary protein
information. Our goal was to identify dense patches of
spatially close residues on the protein surface that show
significant signs of positive selection. Generally speaking,
our algorithm includes residues in a patch if they show
evidence for positive selection and are close to other patch
residues. A patch is rated both by its average P value and
the density of sites under selection. Individual sites can
compensate for a weaker signal of positive selection by
being close to neighbors with a strong signal. Structural
protein models were used to identify the spatial coordi-
nates of individual residues. To measure positive selection
for individual sites, ancestral character states were inferred
from phylogenetic trees constructed from available genetic
sequences for a particular protein. Subsequently, dN/dS
statistics for each site were calculated, according to the ra-
tio of the number of synonymous and nonsynonymous
changes mapping to the tree edges (Bush et al. 1999; Suzuki
2006). After clustering, the identified patches were visual-
ized on the protein structure. The complete process is
shown in figure 1.
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Structural Models
HA structures of the human influenza A/H3N2 virus, the
human influenza A/H1N1, and S-OIV A/H1N1 were down-
loaded from the RSCB Protein Data Bank (PDB) (http://
www.rcsb.org/) (for identifier codes of structures, sequen-
ces, and templates, see table 1). The analysis process was
restricted to residues annotated in the PDB structure file
and to sites found to be on the protein surface using the
NetSurf software (Petersen et al. 2009). Structural models
were generated for PB2 of the S-OIV isolate A/California/
14/2009 (H1N1) based on the PB2 structures of PDB. To
this end, the S-OIV PB2 sequence was compared with se-
quences of PB2 proteins with experimentally determined
structure using Blast (Altschul et al. 1990). For PB2, there
was no single structural template that covered all protein
domains. Therefore, two models were generated from two
templates, one for the PB2cap and one for the PB2c do-
main. The highest sequence identity, the largest coverage
of the S-OIV protein, and the quality according to resolu-
tion and free R-factor values were used as criteria to select
the best matching structural templates for the PB2cap and
PB2c domains. The S-OIV sequences were aligned to the
templates with MODELLER (version 9v6) (Sali and Blundell
1993). The alignments are expected to be reliable, given
a sequence identity of 94% and a lack of insertions and de-

letions. Subsequently, the structural models were gener-
ated with MODELLER.

Sequence Data, Alignments, and Phylogenetic
Tree Construction
Available HA sequences of the seasonal influenza A virus,
subtypes H1N1 and H3N2, were downloaded from the
GISAID EpiFlu database (http://platform.gisaid.org). Only
sequences longer than 1,500 bp were selected, resulting
in 1,734 and 3,221 sequences for H1 and H3, respectively
(supplementary table S2, Supplementary Material online).
Alignments of DNA and protein sequences were computed
with MUSCLE (Edgar 2004), and manually curated. Phylo-
genetic trees were inferred with PhyML v3.0 (Guindon and
Gascuel 2003) under the general time reversible (GTR) þ
IþC4 model, with the frequency of each substitution type,
the proportion of invariant sites (I), and the gamma distri-
bution of among-site rate variation with four rate catego-
ries (C4) estimated from the data. Subsequently, the tree
topology and branch lengths of the maximum likelihood
tree inferred with PhyML were optimized for 200,000 gen-
erations with Garli v0.96b8 (Zwickl 2006). Substitution
events were inferred for the genome segment tree topol-
ogies from intermediates reconstructed with accelerated
transformation (AccTran; Felsenstein 2004). The total
number of substitutions occurring on all reconstructed in-
ternal branches was then calculated for each site indepen-
dently. These numbers were used to compute the dN/dS
ratio for each codon site (Bush et al. 1999; Suzuki 2006). The
ratios were transformed to P values by a one-sided Fisher
test for independence of the dN and dS values at an
individual site and the mean values of the protein. P values
were corrected for the ranking comparison with the false
discovery rate (Benjamini and Yekutieli 2001) and used as
a measure of selection for individual sites. Furthermore,
3,419 sequences of the PB2 protein and 7,373 sequences
of the HA protein of the 2009 S-OIV A/H1N1 strains were
downloaded from the GISAID EpiFlu database (supplemen-
tary table S2, Supplementary Material online). Phylogenetic
trees were inferred using neighbor joining with PAUP
(Swofford 2003) under the GTR model. Sequence
alignment and residue statistics were inferred as described
above.

Structural Clustering
Before clustering, all spatial coordinates were normalized to
fit the protein structure into a hypercube of size 1. For

FIG. 1. Workflow for predicting patches under positive selection.

Table 1. Sequence Codes and PDB Codes of Selected Templates.

Protein Query S-OIV Sequence
Template PDB
Code and Chain

Template
PDB Sequence

Query/Template
Sequence Identity (%)

H1 (seas) — 2wrgH,I A/Brevig Mission/1/19181 —
H3 (seas) — 3hmgA,B A/Aichi/2/19682 —
H1 (swl) — 3al4A,B A/California/04/20093 —
PB2cap A/California/14/20093 2vqzA A/Victoria/3/19752 94.00
PB2c A/California/14/20093 2vy6A A/Victoria/3/19752 94.00

NOTE.—Strains are of the subtypes 1H1N1, 2H3N2, and 3H1N1swl.
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clustering with a graph-cut algorithm (Boykov et al. 2002),
we constructed a graph in which each node represents
a residue in the protein. Edges were added between all pairs
of residues m and n for which the Euclidean distance
dist(m, n) was below a threshold d, and these edges were
weighted according to their spatial distance (fig. 2).
Weights were set to be in inverse exponential proportion
to the Euclidean distance dist(m, n), that is, the closer the
residues were located relative to each other on the protein
structure, the larger the weight of the corresponding edge.
Therefore, nodes that are close to each other have a strong
connection to each other. We then augmented the graph
with two additional nodes, which we call the ‘‘positive
selection node’’ and the ‘‘negative selection node,’’
corresponding to ‘‘source’’ and ‘‘sink’’ nodes in a standard
graph-cut formulation. These two special nodes are
connected to each residue node, with the weights equal
to the P value P(n) of the residue n in the case of the negative
selection node or 1 � P(n) in the case of the positive
selection node. Thus, residues that have high dN/dS ratios
(large 1 � P(n)) have a strong connection with the positive
selection node, whereas nodes with low dN/dS values (large
P(n)) have a strong connection with the negative selection
node. The two types of edges and edge weights were added
to the graph to represent the spatial information for each
residue (by adding distances to close neighbors) and the
evolutionary evidence for selection (by encoding the P value
of the dN/dS ratios).

A ‘‘graph cut’’ will divide this graph in two halves, one
containing the positive selection node and the other con-
taining the negative one (fig. 2). A ‘‘minimum graph cut’’ is
a graph cut that minimizes the sum E of the weights of the
edges connecting these two halves:

E5
X
n2Pos

PðnÞ þ a
X
n2Neg

�PðnÞ þ b
X
n2Pos

X
m2Neg;
m2NdðnÞ

e� distðm;nÞ;

where �PðnÞ51� PðnÞ, pos represents all nodes assigned to
the positive selection half, Neg represents all nodes

assigned to the negative one, and Nd(n) represents all
neighbors of residue n within a distance less than d. This
means that the minimum cut will select residues to be in
Pos if they show strong signs of positive selection (i.e., a low
P value) and if they separate well spatially from the residues
in Neg. The distance d defines how many sites of a single
residue are considered to be neighbors. We set d such that
a residue has, on average, ten close neighbors. The factor
b weighs this distance statistic. The smaller the b, the more
likely the method is to balance the residue evenly between
the positive and the negative selection set halves according
to the ratio 1:a (we set a 5 1). The larger the b, the more
expensive an even distribution becomes, and the more
stringently the method searches for a small exclusive set
of residues that spatially separate well from the rest. Since
the total distance statistic is dependent on the number of
residues in the protein, b has to be set manually (see sup-
plemental text S1, Supplementary Material online). Finally,
the selected residues were grouped into patches by merg-
ing all residues within a spatial distance d of each other into
a set. The parameter dwas set to represent the first quartile
of all pairwise distances in the protein. Finally, we excluded
outliers by filtering out all patches that contained two or
less residues. Patches were identified for the H1 and H3 pro-
teins of human influenza A viruses of the subtypes H1N1
and H3N2, respectively, and for the HA and PB2 proteins
of the 2009 S-OIV of subtype H1N1. Subsequently, we
analyzed their enrichment with known epitope sites
(Caton et al. 1982; Wiley and Skehel 1987) and receptor
avidity–changing sites (Hensley et al. 2009).

Evaluation and Visualization
For evaluation, we calculated the precision (ratio of
selected epitope sites to all selected residues) and recall
(ratio of selected epitope sites to all epitope sites) of
the inferred patches based on the epitope regions defined
for subtypes H1 (Caton et al. 1982) and H3 (Wiley et al.
1981; Wiley and Skehel 1987; Suzuki 2006). For a list of
epitope sites used as a reference for evaluation, see supple-
mentary table S1 (Supplementary Material online). The
identified patches of all proteins were visualized with
PyMOL software (Schrödinger 2012).

Results
We analyzed the merits of a clustering technique based on
a graph-cut formalization for identification of patches of
sites under selection on the surface of the HA and PB2
proteins of several influenza A viruses. Our goal was to
rediscover regions known to play an important role in
the interaction of the virus with the host’s immune system
and that comprise many important sites for adaptation.
We therefore first considered known antigenic site regions
on the HA of the human influenza A virus (Caton et al.
1982; Wiley and Skehel 1987) as our approximate reference
for evaluation. The clustering algorithm identified dense
patches of residues, which mostly consisted of sites with
substantial deviation from the expected value of the
protein-wide dN/dS. In comparison, a site ranking based

FIG. 2. Schematic drawing of the graph-cut approach. The minimum
cut minimizes the sum of weights of all edges cut by the line
separating the positive and negative selection nodes. For a single
node n, these are the lines shown in blue: the scaled distances to the
nonselected neighbors in Nd(n) and the connection to the other
side (i.e., the negative) selection node with the weight P(n).
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on P value alone resulted only in a low sensitivity for
discovering relevant sites, with only 6 of 32 (H1) or 19
of 131 (H3) known antigenic or receptor avidity–changing
sites exhibiting a significant (P , 0.05) signal. To compare
this approach with our method, we calculated the precision
and recall for sites selected by setting a P value ranking at
h5 0.05 (PV 0.05) or h5 0.1 (PV 0.1) as a threshold as well
as calculating these characteristics for the sites in patches
identified with our graph-cut approach. Our evaluation
(table 2) showed that including information on the spatial
proximity of residues under selection and applying our
clustering algorithm resulted in a significant improvement
in recall (i.e., a larger number of epitope sites being
identified) while maintaining similar or better precision
(meaning that a similar or lower number of nonepitope
sites were inferred). In the light of a recently proposed
hypothesis on the relevance of receptor avidity–changing
sites (Hensley et al. 2009), as opposed to the epitope sites of
hemagglutinin in subtype H1 antigenic evolution, we also
tested the value of these sites as a reference and compared
these with the inferred patches of sites. The currently avail-
able data do not allow discrimination between these two
hypotheses, as the reference sites of known receptor
avidity–changing sites and antigenic sites overlap greatly
(fig. 3). Still, residues 156 and 158, found to play the most
significant role in receptor avidity, are included in the
second patch identified for subtype H1.

Of the detected patches on the HA protein surface (fig. 4
and tables 3 and 4), several include known epitope or
receptor avidity–changing sites up to a fraction of 100%.
The patches contain many sites that are relevant for anti-
genic evolution (Matrosovich et al. 1997; Hay et al. 2003; Lin
et al. 2004; Yamada et al. 2010), including position 145,
which has been shown experimentally to have a high an-
tigenic impact (Smith et al. 2004).

We also compared our results with similar techniques
for predicting the properties of sites under positive selec-
tion or relevant for adaptive evolution. Our predictions
match 7 of 13 sites inferred to be under positive selection
by a maximum likelihood approach (Yang 2000). However,
10 of these 13 sites are at least direct neighbors of those
listed by our method, confirming its ability to find
positively selected regions on the tertiary structure. Similar
observations can be made for sites identified in Fitch et al.
(1997), where five of six are matches or direct neighbors
and the sites discussed in Bush et al. (1999) and Yang
(2000) (10 of 13). Furthermore, several techniques combine
biochemical and phylogenetic information to gain insights
into the adaptive evolution of influenza A. It has recently
been suggested that HA evolves by increasing the number
of charged amino acids in regions recognized by the
immune system, particularly in the dominant epitope
(i.e., the one with the highest proportion of amino acid
mutations, see Pan et al. 2011). We therefore compared
the number of charged and uncharged amino acids in

Table 2. Precision and Recall of Different Settings and Approaches
When Put to the Task of Detecting Influenza Epitope Sites.

Setting Recall (H1) Precision (H1) Recall (H3) Precision (H3)

Graph cut 0.53 0.49 0.25 0.94
PV 0.05 0.19 0.4 0.15 0.86
PV 0.1 0.19 0.4 0.17 0.81

FIG. 3. Overlap between selected epitope and avidity-changing sites.
Venn diagram showing the overlap between subtype H1 residues in
patches selected by the dN/dS graph-cut approach (red), the
influenza A H1 epitope sites according to Caton et al. (1982) (blue),
and avidity-changing sites according to Hensley et al. (2009) (green).

FIG. 4. Patches under positive selection on HA. Patches on the HA
protein structure of subtype H1 and H3 selected by the graph-cut
algorithm. Patches are numbered according to tables 3 and 4.

Table 3. Patches and Residues Selected for the Influenza A
Hemagglutinin Protein, Subtype H1.

Patch Residues

1 187, 188, 189, 190, 192, 193, 196, 197, 198
2 131, 132, 133, 158, 156, 129
3 163, 165, 166, 244, 248
4 274, 275, 276
5 227, 225, 219
6 82, 81, 56
7 240, 169, 173
8 142, 144, 145

NOTE.—Underlined numbers refer to known epitope sites according to Caton
et al. (1982) and supplementary table S1 (Supplementary Material online). All
positions are given in H3 numbering (Aoyama et al. 1991).
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the H1 and H3 consensus sequences for selected sites in the
patches and sites lying outside the patches. Indeed, we
found that the percentage of charged amino acids is much
higher within patches (H1: 67%, H3: 67%) than outside
patches (H1: 27%, H3: 28%). Finally, other authors suggest
statistics based on rates of substitutions toward specific
residues (Kosakovsky Pond et al. 2008; Kryazhimskiy and
Plotkin 2008) or based on epistatic effects between pairs
of sites (Kryazhimskiy et al. 2011). The overlap between
the predictions by both methods and ours is not large, pos-
sibly due to the different nature of the measured quantities
and statistics, and because, as Kryazhimskiy et al. 2011 dis-
cuss, hitchhiking changes without selective impact might
comprise a fraction of identified epistatic pairs, particularly
among the trailing change of a pair. However, our simple
criterion for positive selection can easily be exchanged for
more advanced estimates for adaptive evolution, allowing
a search for clusters of residues that show significantly
elevated statistics of such properties.

Additionally, we identified one patch in H1 without
known epitope sites, but with similar evidence for positive
selection as the other patches, which indicates its potential
importance for antigenic evolution (table 3 and fig. 4,
patch 4). For both subtypes, one patch in HA overlaps with
the receptor-binding site of the protein. This could be due
to the overlap of the antigenic and receptor-binding re-
gions. However, the receptor-binding site, particularly po-
sition 189, is also known to be relevant for adaptation to
avian and human hosts (Matrosovich et al. 1997; Sorrell
et al. 2009). Both the H1 and H3 of human influenza A vi-
ruses show evidence of selection acting upon the receptor-
binding region when grown in eggs, due to the effects of egg
adaptation (Robertson et al. 1987; Gambaryan et al. 1999).
Therefore, part of the signal in the receptor-binding sites
could also be due to the effects of egg cultivation.

As a second application, we analyzed data of 2009 S-OIV
A/H1N1. The molecular basis of the successful establish-
ment of the triple reassortant swine virus, which contains
several recently acquired avian segments (Smith et al.
2009), in the human host is not fully understood. It has,
in particular, been argued that lysine at position 627 of
the PB2 protein of the viral polymerase complex, instead
of the avian-like glutamic acid, is required for successful
transmission and replication within mammals (Gabriel
et al. 2005). However, the 2009 H1N1 virus still has lysine
at position 627 in PB2, which it has maintained since its
descent from an originally avian lineage. A change at res-
idue 591 has been proposed to compensate for the lack of
lysine in 627, allowing its efficient replication in mammals
(Yamada et al. 2010). We searched for regions with
evidence for positive selection and relevance for adaptation
of PB2 since the introduction of the 2009 S-OIV into the
human population. The virus might have acquired changes
in PB2 to further optimize replication and transmission in
the novel host. We identified five patches. The first (fig. 5
and table 5) is localized in a region around residue 591,
which lends support to its relevance for mammalian
and, in particular, human adaptation. To gain more insight,
we allowed the method to also report patches containing
only two residues. The resulting second patch surrounds
residue 714, which is known to increase polymerase activity
in mammals (Gabriel et al. 2005).

We furthermore analyzed the genetic sequences and
protein structure of the HA protein of 2009 S-OIV
A/H1N1. We identified five patches of sites under positive

Table 4. Patches and Residues Selected for the Influenza A
Hemagglutinin Protein, Subtype H3.

Patch Residues

1 156, 157, 158, 159
2 188, 189, 192, 193
3 171, 172, 173, 174, 175
4 186, 220, 229
5 137, 140, 142, 144, 145
6 62, 91, 92, 94
7 53, 275, 276
8 196, 197, 198, 199
9 47, 48, 50

NOTE.—Underlined numbers refer to known epitope sites (Wiley et al. 1981; Wiley
and Skehel 1987; Suzuki 2006; see supplementary table S1, Supplementary
Material online). All positions are given in H3 numbering.

FIG. 5. Patches under positive selection on the HA and PB2 proteins of
2009 S-OIV. Patches on the 2009 swine-origin influenza A protein
structures of HA and the c-terminal region of PB2, selected by the
graph-cut algorithm. Patches are numbered according to tables 5 and 6.

Table 5. Patches and Residues Selected for the PB2 Protein of the
2009 Swine-Origin Influenza A/H1N1 Virus.

Patch Residues

1 586, 588, 590
2 714, 715
3 660, 661
4 709, 711
5 575, 578

Table 6. Patches and Residues Selected for the HA Protein of the
2009 Swine-Origin Influenza A/H1N1 Virus.

Patch Residues

1 135, 137, 140, 141, 142, 144, 145
2 53, 54, 56, 57, 276
3 63, 91, 92, 93, 94
4 186, 188, 189, 218
5 197, 198, 199, 200
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selection. The first one (fig. 5 and table 6) overlaps with the
Ca2 epitope site of seasonal H1 (Caton et al. 1982). The
remaining ones cluster densely at the head of the protein,
indicating emerging areas of relevance for adaptation and
antigenic evolution of the 2009 H1N1 virus.

Our software, AdaPatch, is available online (http://
www.cs.uni-duesseldorf.de/AG/AlgBio) and can also be
applied to analyze other viral proteins.

Discussion
We have developed a technique for identification of
candidate regions under positive selection in viral proteins.
Our method utilizes a common measure of selection, and
state-of-the-art techniques for phylogenetic tree inference,
ancestral state reconstruction, and clustering or separation
techniques. It requires only sequence information and
a PDB structure file as input. We identified clusters of sites
under positive selection based on information on the
spatial proximity of sites. Although other methods search
for functional importance, that is, conserved regions, or
focus specifically on the detection of epitope sites, we
aim to provide a fast and easy solution for identification
of patches of arbitrary shape and size whose combined

evolutionary signature indicates their importance for viral
adaptive evolution. In addition to dN/dS statistics, other
methods for evaluating positive selective pressure (e.g.,
Kosakovsky Pond et al. 2005) can easily be included.

Focusing on the HA of two subtypes of the seasonal
influenza A virus and the HA and PB2 proteins of 2009
S-OIV A/H1N1, we searched for patches of sites under pos-
itive selection on their protein structures. The patches we
identified for the HA of the seasonal influenza A viruses
largely map to known epitope sites and sites associated with
receptor binding. Among the patch sites, we identified for the
PB2 protein of the 2009 S-OIV are sites with known relevance
for successful replication in mammalian hosts. Our analysis
showed that our approach increases the predictive accuracy
relative to the commonly used approach of searching for in-
dividual sites with significantly deviating dN/dS statistics. This
indicates that focusing on evolutionary change in larger
regions, instead of individual sites, is helpful for revealing
patches of residues that are important for adaptation, which
together show a stronger signal of positive selection.

The precision and recall values for detecting known epi-
tope sites based on patches under positive selection are
rather low overall, mostly at or below 50%, indicating that
not all sites in the epitope regions are under positive

FIG. 6. Epitope sites not under positive selection. The histogram displays the ratio of residues within the corresponding P value intervals and
demonstrates that many epitope sites feature insignificant P values resulting from an average dN/dS ratio. Epitopic sites are marked in red. The
lower plot shows the distribution of the P values versus the dN/dS ratios for all residues of the H1 subtype.
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selection and contributing to adaptation of the viral HA.
Influenza A epitopes seem to be variable only in part
(fig. 6) and probably change over time, thus diluting the
overall signal of positive selection. Furthermore, receptor
avidity–changing sites or host-specificity determinants
may play a similarly important role in adaptive evolution,
which lowers precision if one considers only the epitope sites
that are predicted to be evolving under positive selection.

We evaluated our method using the influenza A viruses as
they are very well studied and much is already known about
the relevant sites for adaptive evolution. Still, our inferred
patches might be more informative than individual sites
for monitoring circulating viral strains for adaptive changes
with relevance for transmission and spread in the human
population. Our analyses of HA and PB2 identified many
sites known to be relevant for antigenic drift or for the ad-
aptation of influenza A to its host, improving its ability for
infection, replication, and immune evasion. We therefore
suggest analysis of the new patches identified in this study
to determine the underlying causes of their consistent
variability. We also suggest applying the method to other
protein structures of rapidly evolving viruses with as yet
unknown adaptive behavior in order to identify candidate
regions that are important for virus–host interaction.

Supplementary Material
Supplementary text S1 and tables S1 and S2 are available
at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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