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Summary

Let (S,s) be a normal surface singularity over an algebraically closed field k. For a
desingularization of S the reduced exceptional locus E induces a dual graph. Now one
calls such a singularity (5, s) taut if all other singularities with isomorphic dual graph are
equivalent to (S, s). For k = C Henry Laufer gave a full classification of all taut surface
singularities using analytical methods. For Char(k) = p > 0 the general question is still
open.

Our main results are the following: If a singularity is taut over C, then the singularities
with isomorphic dual graph over k with Char(k) = p > 0 are taut for all but finitely
many p. Also we can reprove a result of Michael Artin on the tautness of rational double
points using our methods.

To get this results, we first reduce the question of equivalence for singularities to the
question whether direct systems {Z;} of infinitesimal neighbourhoods of E are isomor-
phic. Some parts of this reduction should be well known, but we found no references for
them.

After this reduction we go through Laufer’s work and try to carry as much of it as
possible to p > 0. Sometimes we just have to give adapted proofs, sometimes we have to
use new ways. N

Let {Z;} and {Z;} be two such direct systems with Z; and Z; combinatorially equiva-
lent. The first step is to find an obstruction when an Nisomorphism between Z; and Z; can
be extended to an isomorphism between Z;11 and Z;1,. For this we show first that we
can extent the isomorphism locally. This is much harder in our setting than in Laufer’s.
But after we have this, we get, as Laufer, that the local extensions give an element in the
H' of some non-abelian sheaf, and we can glue them to a global extension iff this element
is the distinguished point. Then we can adapt Laufer’s proof to get numerical conditions
for the triviality of the H'. From this we get that {Z;} and {Z;} are isomorphic if and
only if Z;, = Z;, for one ig > 0.

For the question whether Z;, and Z-O are isomorphic we need a different idea: There
is a special scheme P for Z;,, and if h'(P,©p) = 0 then we have h'(Z;,, ©z,) =0 and

Ziy, = P = ZO. Then we reduce the calculation of h'(P,©p) to the calculation of the
rank of a matrix M. For k = C this M has integer entries and if we look at the same
singularity over k with p > 0, then we have to calculate the rank of M reduced modulo p.
The last argument is the last step we need to prove the first result we mentioned above.
The basic idea of using P is again due to Laufer, but some of his proofs are incompatible
with our setting.

For rational double points, we reduce the question whether h'(P,©p) = 0 to coho-
mology with support of some other sheaf. Then we can use a result of Jonathan Wahl
to show the vanishing of this, depending only on the dual graph of Z;. With this we
get exactly Artin’s tautness result. Finally we calculate h'(P,©p) for all dual graphs of
the non-taut rational double points with the help of some computer algebra system, and
get that this dimension agrees with the number of non-equivalent rational double points
with this dual graph minus one.






Zusammenfassung

Ist (S, s) eine normale Flichensingularitdt iiber einem algebraisch abgeschlossenen Kor-
per k und wahlen wir eine Desingularisierung von S, dann induziert der reduzierte exzep-
tionelle Ort F einen dualen Graphen. Wir nennen eine solche Singularitét taut, falls alle
anderen Singularitdten mit isomorphen dualen Graphen schon dquivalent zu (.S, s) sind.
Fir k = C gibt es eine komplette Klassifizierung von tauten Singularititen, erstellt von
Henry Laufer mittels analytischer Methoden. Fiir Char(k) = p > 0 ist eine allgemeine
Klassifizierung nicht bekannt.

Die Hauptresultate dieser Arbeit sind: Falls eine Singularitdt taut iiber C ist, dann
sind die Singularitdten mit isomorphen dualen Graphen iiber k£ mit Char(k) = p > 0 taut
fiir alle bis auf endlich viele p. Ausserdem koénnen wir ein Resultat von Michael Artin
iiber die Tautheit von rationalen Doppelpunkten mit unseren Methoden neu beweisen.

Dafiir gehen wir wie folgt vor: Zuerst reduzieren wir die Frage nach der Aquivalenz von
Singularitdten auf die Frage ob direkte Systeme {Z;} von infinitesimalen Umgebungen
von F isomorph sind. Einige Teile dieser Reduktion sollten bekannt sein, aber wir fanden
keine Quellen dazu.

Nach dieser Reduktion gehen wir durch Laufers Arbeiten und iibertragen soviel wie
moglich davon nach p > 0. Manchmal reicht es dazu die Beweise anzupassen, manchmal
miissen wir neue Wege gehen. B

Seien {Z;} und {Z;} zwei solcher direkte Systeme mit Z; und Z; kombinatorisch
dquivalent. Der erste Schritt ist es, eine Obstruktion zu finden, wann man einen Isomor-
phismus zwischen Z; und Z; zu einem Isomorphismus zwischen Z;;; und Z;,; erweitern
kann. Dazu zeigen wir zuerst, dass dies lokal immer moglich ist. Dies ist in unserem
Setting deutlich schwieriger als in Laufers. Wenn wir dies haben, dann erhalten wir, wie
Laufer, dass die lokalen Erweiterungen ein Element in H' einer nicht abelschen Garbe
ergeben, und wir kénnen sie zu einer globalen Erweiterung genau dann verkleben, wenn
dieses Element der ausgezeichnete Punkt ist. Hiernach kénnen wir Laufers Beweise anpas-
sen, und erhalten numerische Bedingungen fiir das Verschwinden von H'. Daraus folgert
man, dass {Z;} und {Z;} genau dann isomorph sind, wenn Z;, = Z;, fiir ein ip > 0 gilt.

Um zu kléren, wann Z;, und Z;, isomorph sind, brauchen wir einen anderen Ansatz:
Es gibt ein spezielles Schema P fiir Z;, und h'(P,©p) = 0 impliziert h'(Z;,, @Zio) =0
sowie Z;, = P = Z-O. Dann reduzieren wir die Berechnung von h'(P,©p) auf die Be-
rechnung des Ranges einer Matrix M. Im Fall k¥ = C ist M ganzzahlig, und wenn wir
eine Singularitdt mit isomorphen dualen Graphen iiber £ mit p > 0, betrachten, dann
miissen wir nur die Eintridge von M modulo p reduzieren. Daraus folgern wir das oben
zuerst genannte Resultat. Die Grundidee, P zu nutzen, stammt wieder von Laufer, aber
einige seiner Beweise sind inkompatibel mit unserem Setting.

Fiir rationale Doppelpunkte reduzieren wir die Frage, ob h'(P,0p) = 0 gilt, auf
die Kohomologie mit Support einer anderen Garbe. Daraufhin kénnen wir ein Ergeb-
nis von Jonathan Wahl nutzen, um das Verschwinden, nur vom dualen Graphen von Z;
abhéingend, zu erhalten. Damit bekommen wir genau Artins Tautheits-Aussage. Abschlie-
fend berechnen wir h'(P,©p) fiir alle dualen Graphen von den nicht tauten rationale
Doppelpunkten mithilfe eines Computer-Algebra-Systems, und wir erhalten, dass diese
Dimensionen plus 1 mit der Anzahl der nicht dquivalenten rationalen Doppelpunkte mit
dem jeweiligen dualen Graphen {ibereinstimmen.
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2 1 INTRODUCTION

1 Introduction

Let k be an algebraically closed field and S a two-dimensional k-scheme such that S
is normal, then S has only isolated singularities. For such schemes one has always a
desingularization, that is a regular scheme X and a proper morphism f : X — S such
that f is an isomorphism over the non-singular part of S. If s € S is a singular point,
then the fibre f~!(s) is an one-dimensional subscheme of X. By further modifications
of X on f~!(s) we may achieve that the reduction of f~!(s) consists of n regular curves
E; which intersect transversally. From now on we assume that S has only one singular
point s.
n
Let now £ = > E;. We can assign some numerical and combinatorial data to E.

First for every Ej lwé have the data how it intersects with the other E;, if we just want
the number of intersections, then this is Ej - ;. Then by the theory of intersection
numbers on regular surfaces we also get the self-intersection number El2 We can encode
these values in a matrix (E; - £j). And indeed some properties of this matrix are very
useful later, but we have more numbers that we can assign to E. For every E; we have
also the arithmetic genus p,(E;). It turns out that the best way to present this data
is a decorated graph I'. For every F; we add a vertex to I', and we add E; - E; edges
between the vertex of E; and of E;. At each vertex we put E? and [p,(E;)] as decoration.
Also we decorate every vertex with (1), because later we also want to assign a graph to
n
Z = > mE; and then we simply take the graph of E, and add (n;) instead of (1) at

1=0
every vertex.

We call the T' of E the dual graph of (S,s). Also we can define morphism of graphs
and get a notion of isomorphism. Now if (5, ') is a second normal, two-dimensional
k-scheme with unique singular point s’, and if the singularities are equivalent, that is we
have open neighbourhoods U and Uy of s and s’ such that Uy is isomorphic to Uy, then
(S,s) and (S’ s") have isomorphic dual graphs. Because this definition of equivalence is
hard to test, we later say that two normal, two-dimensional singularities are equivalent,
if the completions of there local rings are isomorphic.

But what about the other direction? If (S, s) and (5’ s’) have isomorphic dual graphs,
can we find such neighbourhoods U and Ug? Suppose that one of the E; has p,(E;) = 1,
then by the theory of elliptic curves one knows that we have many other curves E] with
Pa(E]) = 1 but not isomorphic to E;. So after solving some problems one can replace
E;in E by Ej, embed this into a regular, two-dimensional scheme, contract £ and gets
a new singularity (5’,s’) with an isomorphic dual graph which cannot be equivalent to
(S,s).

On the other hand, we have the so-called ADE-singularities, or rational double points.
One possible definition of this class of singularities is that we have edim(Og ) = 3 and for
all [ we have p,(E;) = 0 and E? = —2. This singularities where first examined by Patrick
Du Val. Later many other mathematicians contributed many equivalent characterisations
of this singularities. The most important one for us is the following, which also explains
the name: A normal, two-dimensional singularity (.S, s) is a rational double point if and



only if the dual graph of (S,s) is one of the Dynkin diagrams A,, D,, Egs, E7 or Eg
known from the classification of semisimple Lie algebras, and if £k = C for each of this
diagrams there is exactly one singularity up to equivalence.

Now we call a normal, two-dimensional singularity (S, s) taut if all other singularities
with isomorphic dual graph are already equivalent to (S, s). The ADE-singularities over
C are the first examples of taut singularities, other examples where discovered by Hans
Grauert ([Gra62|), Galina Tjurina ([Tju68]) and Philip Wagreich ([Wag70]). Finally in
1973 Henry Laufer classified all taut normal, two-dimensional singularities over C. The
result of this classification is a description of the dual graphs of taut singularities which
needs several pages ([Lau73b]).

For algebraically closed fields & with Char(k) = p > 0 the general question of the
classification of all taut singularities is still open. For the ADE-singularities we have a
result of Michael Artin (JArt77], Page 16) using explicit calculations: The A,-singularities
are still taut, the D,, singularities are taut if p > 2 and for the E, -singularities we have
to exclude p = 2,3 for all and p = 5 for Eg to get tautness. But even in the non-taut
case, there are only finitely many equivalence classes. A recent result on tautness of a
special class of singularities for p > 0 is a paper of Yongnam Lee and Noboru Nakayama:
They show the tautness of Hirzebruch-Jung singularities (JLN12|, Theorem 2.6) for every
p.

We revise Laufer’s general proof over C to make a step towards a general classifi-
cation of taut normal, two-dimensional singularities for p > 0. We cannot give a full
classification, but at least we can prove that if a singularity (Sp, so) over C is taut, then
the singularity (Sp,sp) over k with Char(k) = p > 0 with isomorphic dual graph is taut
for all but finitely many p. This is Theorem Also we have a way of computing all
this p for a given Sy, but we cannot prove whether for the “bad” p the (S,,sp) are taut
or not.

For the ADE-singularities we can use some results of Daniel Bruns and Jonathan
Wabhl to reprove Artin’s tautness result with our methods without explicit calculations

(Corollary [5.7).

Content of this work At first we note that the terminology of equivalence of singu-
larities used above is very unhandy to verify, because one has to prove something on all
open neighbourhoods. So after recalling some definitions we start Section [2|by discussing
that two singularities are equivalent if and only if their completed local rings Og, are
isomorphic. So for the classification of singularities we can assume that those are spectra
of some complete local ring, and we build this into the definition. Now the question of
equivalence is just the question of isomorphism.

Now take a desingularization of f : X — S and look at the exceptional fibre f~!(s)
respectively at its reduction E. Then FE is an one-dimensional subscheme of X. We
want to look at chains of infinitesimal neighbourhoods of E in X, that is non-reduced
subschemes Z; C X with (Z;)eq = F and E C Zy C Z; C ---. One example of such a
chain is Z; = X X Spec(Og,s/mitl), there we have Zy = f~1(s). If Ej are the irreducible
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n . .

components of F, then Z; = ) njE; with nj non-decreasing and not bounded is another
I=1

system. We show that two singularities are isomorphic if and only if their chains of the

form Z; or Z; are isomorphic as direct systems. In particular it is enough to understand
systems of the form Z; which are effective divisors on a regular surface, whereas the
non-reduced structure of the Z; is unknown. This should be well known to the experts,
but we could find no reference for it.

If we now try to understand the Z; we hit a new problem: In general (/9\5,3 is not a
k-algebra of finite type, and with this also X is not of finite type over k. So we lose
the equivalence of regularity and smoothness for X, but for some arguments we need the
infinitesimal lifting property. But by a result of Artin every local, noetherian, normal,
complete ring of dimension two is the completion of a local ring of a point on a two
dimensional k-scheme of finite type. We call such a scheme A an algebraization of S.
And the nice point is: We have a mapping between desingularizations of S and A, and if
we build the Z; or Z; on a desingularization of S or on the corresponding desingularization
of A, then they are isomorphic as direct systems of schemes.

After this we can prove that a singularity is taut if and only if all Z; are defined
by their dual graph. The problem proving this Theorem is the “only if” part. For this
we need to contract a given negative definite divisor on a regular surface, and this is in
general only possible if we allow the contraction to be an algebraic space. But we can
show that maybe after changing the surface away from the divisor, we get a contraction
that is a scheme. Again we think this is known to the experts, but we could find no
references for it.

The last result from Section [2] we want to mention here is the following necessary
condition for a singularity to be taut: A singularity cannot be taut if one of the Ej is not
isomorphic to IP,Ic or if one Ej intersects with more than 3 others. In Laufer’s proof this
is the result of some non-vanishing of a cohomology group, but we need this result even
before we can show that this vanishing implies tautness.

In Section [3| we reprove some results of Laufer and Tjurina from [Lau71] and [Tju68].
The main result is that if we want to know whether all Z; are defined by their dual graph,
we only have to know this up to an ig, then for all i > ig this follows automatically. To
prove this result Laufer works mostly in local coordinates, and because he also works
in the analytical category, he can always choose these coordinates to be k[x,y]/(y™) or
klx,y]/(x™y™). But in the algebraic category we cannot do this, so we have to give
adapted proofs. Also with this choice of coordinates it is clear that an isomorphism
between Z; and some combinatorial equivalent scheme C always extends locally to iso-
morphisms of open subsets of Z;;1 and the respectively infinitesimal neighbourhood of
subsets of C. But in our setting we have to work to get this result.

In Section @] we take another result of Laufer, adapt it to our situation and push it a
little bit further: If the Z; fulfil the necessary conditions for tautness, we can construct a
combinatorially equivalent scheme P; and show that if H!(P;, Homop, (Q}% 1 Or)) =0,
then Z; is defined by its dual graph. Now Laufer gets even “if and only if” for this, but
this is in general false for Char(k) > 0. We discuss this at the end of Section |4} Also



Laufer defines the P; without the necessary conditions and then deduces these conditions
from the non-vanishing of H1(P;, Homo,, (Q}%/k’ Op,)).

To show that H'(P;, Homop, (Q}?i/k’ Op,)) = 0 implies that Z; is defined by its dual
graph, we cannot simply adapt Laufer’s proof. We can reprove the basic ideas of his proof,
namely that Hl(Pi,HomoPi (Q}Di/k, Op,)) = 0 implies Hl(Zi,%omoZi (lei/k7 Oz)) =0
and that for every Zi combinatorially equivalent to Z; we have a family over an affine
scheme with one closed fibre isomorphic to Z; and one isomorphic to P;. Then we use the
algebraic deformation theory (which differs much from the Kodaira-Spencer deformation
theory which Laufer uses) to get the result we wanted.

Now if the Z; fulfil the necessary conditions for (S, s) to be a taut singularity, Laufer
gives an “algorithm to calculate whether HI(B,HomoPi(Q}qi/k7 Op,)) = 0. This algo-
rithm is the reduction to the question whether a map between two huge, but finitely
dimensional k-vector spaces is surjective. Again we have to give adapted proofs, in par-
ticular we have to prove some kind of Mayer—Vietoris sequence for sheaf cohomology.
Also we go one step further: The question whether this map is surjective is really the
question whether the rank of some matrix over the integers is maximal. But if we con-
struct P; for C and for Char(k) = p > 0, the resulting matrix for p > 0 is just the one
for C reduced modulo p. From this we get that Hl(Pl-,’HomoPi (Q}Di/k’ Op,)) =0 for C
implies vanishing for all but finitely many p > 0.

In Section [o| we first use the results of Section 4| to show that tautness over C implies
tautness over all but finitely many p. Also we give the reprove of Artin’s tautness result
mentioned earlier, and we show that we have hl(Pi,Hom@Pi (Q}Di/k’OPz‘)) > 0 in the
non-taut cases. Furthermore we can show that this dimension plus one agrees with the
number of non isomorphic singularities calculated by Artin.

For some proofs we need some local calculations. For better readability we have
concentrated them in Section [6l
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2 From singularities to curves

2.1 Definitions and notations

First we want to set up some fixed notations for the rest of this work, and we want to
recall some definitions we need later in this section.

2.1.1 Notation

For this work, if we write k or p, it is always an arbitrary algebraically closed field, and
p its characteristic (so p = 0 or p > 0 prime).
All schemes are assumed to be noetherian and over Spec(k).

2.1.2 Regular and smooth points

Let X be a noetherian k-scheme, x € X a point and let m, be the maximal ideal of
the local ring Ox . We say that x is a regular point, if Ox , is a regular ring, that is
if dim(Ox ;) = dimg(m,/m?2). Else we call z a singular point or a singularity. We call
X regular if every point is a regular point. We say that a singular point x € X is an
1solated singularity if there is an open U C X such that z is the only singular point in
U.

This is a purely algebraic description of regularity, but if X is of finite type over
a field k, we have also a geometric description: First, with Corollary 4.2.17 of [Liu02]
we know that X is regular if and only if it is regular at all closed points. But for this
points, we can use the Jacobian criterion: Locally around every rational point x we find
a neighbourhood isomorphic to V() in A} = Spec(k[x1,...,xy]) with I = (f1,..., fr)-
After choosing this, we can look at the Jacobian matrix

1= ()
Ox; 1<i<r, 1<j<n

Now Theorem 4.2.19 of [Liu02| gives us that X is regular at z if and only if

rank(J;) =n —dim(Ox ).
We also need the notion of a smooth morphism.

Definition 2.1. Let X,Y be schemes and f : X — Y be a morphism of finite type. We
say that f is smooth if for all affine schemes Y’ and all closed subschemes Y| of Y’ with
nilpotent ideal Z C Oy and all morphism Y’ — Y the map

Homy(Y', X) — HOmy(Yb/, X)

induced by the injection Y — Y’ is surjective.
We call f étale if the map is bijective. We say that f is smooth or étale at x € X if
we have an open x € U C X such that f|y is smooth or étale.
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Now by Théoréme 17.5.1 of [Gro67] we get the following local characterizations of
smooth morphisms:

Lemma 2.2. Let f : X — Spec(k) be a morphism of finite type and k algebraically
closed, © € X a point. Then f is smooth at x of and only if X is reqular ot x.

2.1.3 Limits and completions

In this section we want to recall the definition and some facts about inverse and direct
limits we need later. All omitted proofs can be found in [Bou68].

Let I be an ordered set. An inverse system (Eq, fap) is a family (Eq)aer of sets
together with a set of morphisms

{fap 1 Eg — Eo|a, el a< B}
such that:
e For a < B <vyel wehave foy = fag o fay-
e For each a € I, f,, is the identity of E,.

For an inverse system we get a new set £/ = lim(F,, fos) with morphisms f, : £ — E,
H

I
for each a € I, which is defined by the following universal property: For each set F' with
morphism uy : F' — E, for each a € I such that for all a < g € I the other triangle of
the next diagram commutes, we have a unique morphism w : F' — FE such that the whole
diagram commutes:

F

I

K7

4
ug E U
U N

Ey— B,

We call E the inverse limit of (Eq, fag), or just the inverse limit of (E,)aer if there is

no risk of ambiguity. In the latter case we write also lim(Eq, fog) = lim E,.
— —
I
A morphism of inverse systems (ua) : (Ea, fap) = (Fa, gap) is a family of morphism
Uq : Eo — Fy, such that for all o < g € [ the following diagram commutes:

ug
Eg —— Fp

faﬁl J/g(’ﬁ

E, TFQ

A morphism of inverse systems is an isomorphism if all u, are isomorphism. Taking
inverse limit is functorial, that is a morphism of inverse systems induces a morphism of
the inverse limits, and this is compatible with composition.
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If the sets E, and F' in the universal property are rings, modules or algebras, and all
the morphisms are morphisms in the particular category, then so is the limit {iinEa and
the fa.

Later we need to know if two inverse systems have isomorphic limits. If J is a subset

of I, we get an induced inverse system, and by abuse of notation we write lim(Eq, fo3)
—
J
for its inverse limit.

A subset J of I is called cofinal if for each o € I there exists a § € J with g > a.
An ordered set J is call right directed if for all o, f € J exists a v € J with o, 5 < 7.
Then we have Proposition III 7.2.3 of [Bou68§]:

Lemma 2.3. Let I be an ordered set, let (Eq, fag) be an inverse system, and let J be a
cofinal subset of I such that J is right directed. Then the induced morphism

{gl(Ea, fap) — @(Ea, fas)

15 bijective.
Later, we need the following corollary:

Corollary 2.4. Let I be an ordered set and (Eq, fog), (Fa, gag) be two inverse systems.
Suppose that for every € I we have ag,vp € I with ag > v and for every § > ' € I
we have ag > ag and yg > vg. Suppose further that we have maps

Uag Uyg
Eaﬁ — Fg — Ew

such that for all 3 > ' the diagram

f”ﬂo‘ﬁ

/\\
Eaﬂ Uag Fﬁ E'YB

’U,—yﬁ

Jfaﬂ/aﬁ Jg/@/ﬁ J/fwﬁ/vg (21)
Uag Uvgr

Olﬂl

f’VB/O‘B/

commutes, and that {og}, {yg} are right directed and cofinal in I. Then the induced
morphism
ljin(Ea, faﬁ) ” @(Faagaﬁ)

I I
15 byective.
Proof. Taking limits we get

u

T

m(Eog, fogas) e {%n(Fﬁ,gﬁ,ﬁ) (B, fry)

I I
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but because {ag}, {73} are right directed and cofinal in I, u is a bijection and we have
a bijection
{iin(Ea[; ) focﬂ/oz[;) — {iﬂl(Eom faﬁ)
I I
by the previous Lemma. Now by the Corollary of Proposition III 7.2.2 of [Bou68| we
know that u, and u, are injective, and so they are already bijective. O

Analogous to the inverse system we define a direct system (Eq, fgq) as the dual con-
struction. That is, (Eq, fga) is a family (Eq)acr of sets together with a set of morphisms

{fsa : Ea — Eg|a,fela<p}
such that:
o For a < B <vyel wehave fio = fy50 f3a-
e For each a € I, f,, is the identity of E,.

Again we get a new set £ = lim(E,, fgq), now with morphism f, : £, — E for each
—
I

a € I, and the defining universal property is: For each set F' with morphism u, : E, — F

for each o € I such that for all @ < 8 € I the other triangle of the next diagram com-
mutes, we have a unique morphism u : £ — F' such that the whole diagram commutes:

E,— ! g

N

We call E the direct limit of (Eq, faa), or just the direct limit of (Eq)aer if there is no
risk of ambiguity. Again, in the latter case we write im(Eq, fgo) = lim Ej,.
— —
I
Now we can define the completion of a local ring: Let (R, m) be a local ring. If we

set R, = R/m", then the R,, together with the projections 7, : R, — R, for n’ > n
form an inverse system, and we define the completion of R as

R = lim R,
H

which is again a ring. We say that R is complete if the natural morphism R — Ris an
isomorphism.

If additionally R is noetherian, chapters 10 and 11 of [AM69] give us the following
properties:

Lemma 2.5. Let (R, m) be a noetherian local ring, then we have:
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1. R is a local ring with mazimal ideal m.

~

. R/@" = R/m".

. R is noetherian.

~

2
3
4. dim(R) = dim(R).
5. R is reqular if and only if}?i 18 reqular.

. R is complete.

D

Let X be a scheme, for € X we define k(z) as the residue field of Ox,. Then
with Proposition 17.6.3 of [Gro67] we get the following local characterizations of étale
morphisms:

Lemma 2.6. Let f: X —Y be a morphism of finite type, x € X a point and y = f(x).
If k(x) = k(y), then f is étale at x if and only if the induced morphism Oy, — Ox 5 is
bijective.

2.2 Isolated singularities

In this work, we want to study isolated singularities. So the first question we have to ask
is simply: When are two singularities equivalent? We cannot simply call two singularities
equivalent if they are isomorphic, because by passing to a smaller neighbourhood we get
a non-isomorphic singularity which is essential the same as before. So intuitively one
wants to call two singularities equivalent if and only if both have open neighbourhoods
which are isomorphic. But this definition is not very practical, because one has to find
these neighbourhoods or else has to prove that those do not exist. So we want an intrinsic
definition of equivalent singularities.

If we change the category for a moment, we have the following motivation: Let X
and Y be analytic spaces, x € X and y € Y points. Then by Corollary 1.6 of [Art68] the
points « and y have isomorphic analytical neighbourhoods if and only if O X = @yyy.

If we go back to our situation, then we have £ C R = Ox , and thus we get k£ C @XI
But then Corollary 28.2 of [Mat80] tells us that if C/’)\ny is regular then we have already

Ox.o = Kl[z1,...24]]

where K is the residue field @Xx/ﬁzx and d = dim(R). Or in other words: z is a

regular point if and only if @X’JE = K[[x1,...24]]. These two considerations motivate the
following definition:

Definition 2.7. Let X, Y be two noetherian k-schemes, r € X and y € Y the isolated
singularities. We say that (X, z) is equivalent to (Y,y) if Ox 5 = Oy,y,.

Now we want to rephrase the term “isolated singularity” in algebraic terms. For this
we need the following definition:
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Definition 2.8. Let X be an irreducible scheme. We say that X is normal if for every
point x € X the local ring Ox , is a normal, integral domain, that is it is integral and
integrally closed in its field of fractions.

Now by a criterion of Serre a normal scheme must be “regular in codimension 17
in particular, for a two-dimensional scheme, the singular points are a zero-dimensional
subscheme, and thus isolated.

Not all two-dimensional schemes with isolated singularities are normal, a simple coun-
terexample is the scheme we get if we glue two points of the affine plane. But suppose
dim(X) = d and that locally around every point € X we find an open z € U C X and
a regular affine scheme Y = Spec(A) of dimension d, and d, — d elements f; € A such
that the residue class fij;1 is not a zero-divisor in A/(f1,..., f;). That is, X is locally the
intersection of d; — d distinct hypersurfaces in a regular scheme. We call such a scheme a
locally complete intersection. But by the discussion in Section 8.2.2 of [Liu02|, we know
that a 2-dimensional scheme X which is a locally complete intersection with at most
isolated singularities must be normal. So even if we restrict ourself to such singularities,
we get a reasonably big class of isolated singularities, so we define:

Definition 2.9. We say (5, s) is a normal, two-dimensional singularity if S is the spec-
trum of a complete, normal, noetherian, local k-algebra Og ¢ with closed point s, residue
field k£ and dim(S) = 2.

Note that we also include the regular scheme Spec(k[[x1, z2]]) as a pathological case
of a singularity.

We restrict ourselves to complete local rings. This has many advantages, but one
disadvantage: Og , is not a k-algebra of finite type, so we do not have the description of
Lemma for smooth points on S or on desingularizations of S. That is, we may have
a regular scheme which is not smooth. But sometimes we need explicit the smoothness.
So sometimes we need to lose the completeness to gain a k-algebra of finite type:

Definition 2.10. Let (S, s) be a normal, two-dimensional singularity. Let A be a noethe-
rian, normal, local k-algebra. We say that Spec(A) is an algebraization of S if A is of
finite type and if Og, = A.

Now we have Theorem 4.7 of [Art69):

Theorem 2.11. Let (S, s) be a normal, two-dimensional singularity. Then there exists
an algebraization A of S.

As seen in the motivation for the use of the completion, there is no hope for getting
an unique/distinguished algebraization. Now we want to relate the desingularizations of
an algebraization with the desingularizations of a normal, two-dimensional singularity.
For this we need the following notation:

Notation. Let A be a k-algebra, B a A algebra and X a scheme over A. We define
X®@aB=X X Spec(A) Spec(B)

For reasons of readability we omit the A if there is no risk of ambiguity.
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Now Lemma 4.2 of [Bad01] gives us:

Lemma 2.12. Let (S,s) be a normal, two-dimensional singularity, Spec(A) an alge-
braization. Further let f : X — Spec(A) be a desingularization. Then X ® Og, is a
desingularization of S.

Now we need a few more definitions:

Definition 2.13. Let X be an integral scheme with generic point 7. We define the
function field of X as K(X) = Ox,,.

Let Y be a second integral scheme and f : X — Y a morphism. We say that f is a
birational morphism if fg : K(Y) — K(X) is an isomorphism.

Now we know that we have a desingularization of the singularity, that is a proper,
birational morphism f : X — S with X regular and f an isomorphism outside of f~!(s).
Or, to be precise, Lipman [Lip69|, §2 gives us:

Theorem 2.14. Let S be a normal, two-dimensional singularity or an algebraization of
one. Then S admits a desingularization by a finite sequence of blowups in closed points
and normalisations.

Note that the assumption “excellent” of Lipman is just a technical condition which
ensures that some properties of the local rings transfer to the completion. In particular
spectra of complete notherian rings are excellent. Also by Corollary 8.2.40 (a) of [Liu02]
any scheme of finite type over a field is excellent.

Now we want to transfer the question when two normal, two-dimensional singularities
are isomorphic to their desingularizations. As a tool we need the following lemma:

Lemma 2.15. Let Ry, Ry be two normal rings and let f; : X; — Spec(R;) be two proper
birational morphisms with X1 = Xo. Then we have

Ry =2 H°(X,,0x,) = H(X3,0x,) = R.

Proof. First we note that H°(X1,0yx,) = H%(X3,Ox,) follows directly because X
and X, are isomorphic. So by symmetry it suffices to show Ry = H(Xy,Ox,). For
every domain R let Frac(R) be its field of fractions, then by Proposition 2.4.18 of
[Liu02] we have K(X;) = Frac(Ox,(U)) for every affine open U C X, in particu-
lar we have H°(X;,0x,) C K(X1). But f is birational, so K(Xj) is isomorphic to
K (Spec(Ry)) = Frac(R1), so we get

H°(X1,0x,) C Frac(Ry).

Finally Proposition 3.3.18 of [Liu02] tells us that HY(X;,Oy,) over R; is an integral
ring-extension, but R; is normal, in particular integrally closed in Frac(R;), so we get
HO(Xl,Oxl)%Rl. [

Now we can transfer the question of isomorphism:
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Theorem 2.16. Let (S1,s1),(S2,52) be two mnormal, two-dimensional singularities.
(S1, 81) is isomorphic to (Sa, s2) if and only if there exist desingularizations f; : X; — S;
with X1 = Xs.

Proof. If we have X1 = X, then the previous Lemma gives us the isomorphism. If on
the other hand we have S; = S5, and we have a desingularization f; : X7 — 51, then we
simply compose f1 with the isomorphism between S and S5 to get a desingularization
of SQ. ]

In practise the previous theorem is not such a great help, because we have to check all
desingularizations of (S1,s1) and (S2.s2). But for normal, two-dimensional singularities
we have a distinguished desingularization, the so-called minimal desingularization. Before
we define this desingularization, we have to recall some facts about the exceptional set. If
we have a desingularization f : X — S of a normal, two-dimensional singularity or of an
algebraization of one, then by van der Waerden’s purity theorem (|Liu02|, Theorem 2.22
and Remark 2.24), the exceptional set has at least dimension 1. Now the desingularization
is integral and thus irreducible, but then by [Liu02], Proposition 2.5.5 (b) the dimension
of the exceptional set must be at most 1, because it is not everything. So the exceptional
set is a curve. Now S is affine and f is proper, in particular separated and quasi-compact,
so by [Liu02], Proposition 5.1.14 (c) f.(Ox) is quasi-coherent, and because S is normal
f«(Ox)(S) = Og(S), but S is affine, thus we have already f.«(Ox) = Og (Taking global
section is an equivalence of of categories, [Har77|, Corollary 5.5). Now we use Zariski’s
connectness theorem ([Gro61], Corollaire 4.3.2) and see that the exceptional set must be
connected.

Now f is proper, and thus also f|s-1(y) : f~Y(s) — Speck, and because by [Har77],
Proposition II 6.7 every proper scheme of dimension 1 over k is projective, it follows that
f71(s) is projective. Now we need some more notation:

Definition 2.17. Let X be a proper scheme of dimension r over k, and let F be a
coherent sheaf on X. We define the Euler characteristic of F by

X(F) = (1) dimy H (X, F),
i=0
We define the arithmetic genus of X by
pa(X) = (=1)"(x(Ox) — 1).

If additionally X is an integral scheme of dimension 1, we have H°(X,Ox) = k,
because k = k, and thus

pa(X) = (=1)(dimy, H°(X, Ox) — dimy, H' (X, Ox) — 1) = dim H'(X, Ox).

Also we need:
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Definition 2.18. Let C be a proper k-scheme of dimension 1, and £ € Pic(C), then we
define
deg(£) = x(£) = x(Oc) € Z

Let further (.5, s) be a normal, two-dimensional singularity, f : X — S a desingularization
and C an one-dimensional subscheme of X such that C is proper over k, then for any
L € Pic(X) we define

L-C = deg(Llc)

If C' is a closed subscheme of X such that its ideal sheaf Ox(—C") is invertible, then we
define
C'-C=0x(C) - C = deg(Ox(C)|c)

Now we have the following standard definition:

Definition 2.19. Let X be a regular, two-dimensional scheme, and let C' be a regular,
one-dimensional subscheme of X. We say that C is an exceptional curve of the first kind
if C is projective over k, p,(C) =0 and C? = —1.

In our case, k is algebraically closed, so by [Liu02] Proposition 7.4.1 (b) p,(C) = 0
is equivalent to C' = P}. Then Castelnuovo’s theorem ([Har77], Theorem 5.7) shows us
that every exceptional curve of the first kind can be contracted, and the resulting scheme
is still regular, which leads to:

Definition 2.20. Let (.5, s) be a normal, two-dimensional singularity or an algebraization
of one, f : X — S a desingularization of S. We say that f is a minimal desingularization
if none of the integral components of f~1(s) is an exceptional curve of the first kind.

Now by [Bad01] Proposition 4.5 we know that a minimal desingularization always
exists, and they have a nice universal property:

Theorem 2.21. Let (S, s) be a normal, two-dimensional singularity or an algebraization
of one, then there exists a minimal desingularization f : X — S. Furthermore, for any
other desingularization ' : X' — S there exists a unique morphism u : X' — X such that
fou= f'. In particular, any two minimal desingularizations are canonically isomorphic.

The universal property of the minimal desingularization is a great help, but in general,
the minimal desingularization is not the desingularization we want to work with. The
reason for this is that we have not enough control over the exceptional divisor. We know
that it is an one-dimensional connected scheme, but its integral components may be
rather singular. Also we may have points where more than two components meet. This
makes the combinatorics more difficult, so we want to avoid this. Now we first define
this combinatorially nicer desingularization, and then we give some examples.

Definition 2.22. Let (5, s) be a normal, two-dimensional singularity or an algebraization
of one, f: X — S a desingularization of S. We say that f is a good desingularization if

for f=1(s)rea = > E; the following three conditions hold:

=1
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e FEach E; is regular.

o If E,NE; # 0 (i # j), then E; and E; intersect transversely, that is for all a € E;NE;
we have Op, 1 ;o = k[[z,y]]/(zy).

e No three distinct E; meet.

A good desingularization f: X — S is called minimal if the number of integral compo-
nents of f~!(s) is minimal for all good desingularizations.

In this situation, we can say something more about E: Because X is regular and Ej
integral, we know by the identification of Cartier divisors, and Weil divisors that Ej is
defined by the invertible sheaf Ox(—FE;). So Ej is a local complete intersection, which
means locally we have E; & Spec(A/ f;) and with that E = Spec(A/[] fi) where A is a

l

regular ring and the f; € A are regular elements.

Examples Now we want to give a few examples of minimal and minimal good desingu-
larization. Or to be precise: Examples of the combinatorics of the exceptional divisors.
Writing down the full desingularization is of course possible, but one needs many charts
and gets no additional insight. All examples are taken from [Ném99|, 1.20 and 1.22.

1. Let S; = Spec(C|[z,y, 2]]/(x® + y? + 2z")), then the minimal desingularization is
already good. The exceptional set consists of n projective lines E; with EZ2 = -2
They intersect in the following way:

2. Let Sy = Spec(C|[z,y, 2]]/(x* +2y*+ 22)). Here also the minimal desingularization
is already good. The exceptional set consists of 5 projective lines E; with E? = —2
which intersect in the following way:

3. Let S3 = Spec(C[[z,y, z]]/(z® + y> + 2*)). Then the minimal desingularization
is not good, because the exceptional set consists of three projective lines F; with

E? = —3 which intersect in one point:
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We get the minimal good desingularization via blowup at the intersection point:

Because we have blown up in a smooth point of the ambient scheme, we have
E? = —1. So, for the proper transformed E; of the E; we have Ef = (E; + Ey)?
and thus EZ2 = —4.

4. Let Sy = Spec(C[[z,y,2]]/(x® + y> + 27)), then the reduction of the exceptional
locus of the minimal desingularization Fj is an one-dimensional scheme with a cusp

singularity and E? = —1:

So the minimal desingularization is not good. After embedded desingularization
by blowing up in closed points we get first a IP,{: touching a parabola at the vertex,
then a picture like the minimal desingularization of S3 and finally the exceptional
locus of the minimal good desingularization looks like:

Again we have E? = —1, but this time the three others have E? = -7, Ey=-3
and F3 = —2. The calculation for this is analogously to the one for Ss.

Like the minimal desingularization, the minimal good desingularization always exists,
and they have the same universal property:

Theorem 2.23. Let (S, s) be a normal, two-dimensional singularity or an algebraization
of one, then there exists a minimal good desingularization f : X — S. Furthermore,for
any other good desingularization ' : X' — S there exists a unique morphismu : X' — X
such that fouw= f'. In particular, any two minimal good desingularizations are canoni-
cally isomorphic.

Proof. We give a slightly modified and extended version of the proof of [Lau71], Theorem
5.2. The existence of a minimal good desingularization f : X — S follows simply by
taking the minimal desingularization and blow up finitely many times at all the finitely
many points, where the conditions (i), (ii) or (iii) are not fulfilled. Because every step is
an isomorphism away from the centre, every choice we make just changes of the order of
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the blowups, but not the of resulting good desingularization, so this is really a minimal
good desingularization.

It remains to show that every other good desingularization factorizes over this desin-
gularization. For this let f' : X’ — S be another good desingularization. Let X,,;, be
the minimal desingularization of S. Then we have morphisms g, ¢’ from X and X’ to
Xomin, and u = g~ o ¢’ is a birational map from X’ to X. We want to show that u is
actually a morphism, that is it is defined on all of X'.

By [Sha66], Page 45 we know that g and ¢’ are sequences of blowups in closed points.
Because the construction of X was unique up to order every component of the exceptional
divisor of ¢ in X must then already be contained in X', and w is just the blow down of
additional components, in particular a morphism. O

This leads to the following corollary:

Corollary 2.24. Let (S, 5s1), (S2, s2) be two normal, two-dimensional singularities and
fi + Xi — S; their minimal desingularization. Then (S1,s1) is isomorphic to (Sa, s2) if
and only if X1 =2 Xo.

The same s true for the minimal good desingularization.

Proof. If X; and X5 are isomorphic, then (51, s1) and (S, s2) are isomorphic by Theorem
Now assume (S, s1) isomorphic to (S2,s2), then the composition of fi with this
isomorphism makes X; a minimal desingularization of S5 and thus isomorphic to Xs. [

Now we want to reduce the question from the base change to the completion back
to finite thickenings of the exceptional locus: First we note that the X; ® 051,81/m§f1
together with the inclusions form a direct system. The conditions on the morphism are
fulfilled by the associativity of the fibre product. Now we have:

Theorem 2.25. Two normal, two-dimensional singularities (S;, s;) with minimal desin-
gularizations f; : X; — S; are isomorphic if and only if we have an isomorphism of direct
systems

X1 ® Og, 5, /Ml 2 X5 ® Og, 5, /mEt, n > 0.

S

The same is true for the minimal good desingularization.

Proof. First assume (S7, s1) isomorphic to (S2, s2), that is Og, 5, = Og, s,. Then we have
also Og, 5, /m2tt = Og, o, /mL for every n. Now by Corollary we know X7 & X,
and thus we get X1 ® Og, s, /m! = X5 @ Og, 5, /mEH for all n. The compatibility
needed for a direct system follows directly from the associativity of the fibre-product
(|Gro60], 3.3.9.1).

Now assume X ® Og, 5, /mi! = X5 ® Og, 5, /m for all n, and this is an isomor-

phism of direct systems. Then we have
0 +1 ~ 770 +1
H (X1 ® OSl,Sl/mgl ’OX1®Osl,sl/m?1+1) ~H (X1 &® 052732/7%?2 ’OX2®OS2752/m?2+1)’

and by the functoriality of taking global sections this is an isomorphism of inverse systems.
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Now be Lemma we have H°(X;, Ox,) = Og, s, and we use [Gro61], 4.1.7, the
theorem on formal functions, to get:

651731 = (HO(le OXI))/\

~J 3 0
> thH (X1 ® 051,81/m?1 OX1®(931 sl/mn+1)

(2.2)
~ 1 0
=] 1<£nH (Xo® (’)52,32/m?2 ’Ox2®052752/m?2“)
= (HO(X27 OXQ))/\ = 052782
But the Og, s, are complete, so we get Og, 5, = (551,81 = (552,52 = Og,.5,- ]

The limits in can also be calculated with other infinitesimal neighbourhoods of
the exceptional divisor. We want to formulate this as a corollary, but before that, we
need the following Theorem. Recall that for a scheme X and a quasi-coherent ideal sheaf
Z C Ox the scheme Spec(Ox/Z) has supp(Ox/Z) as underlying topological space, and
Ox /T as structure sheaf. Now we get:

Theorem 2.26. Let (S;,s;) be two normal, two-dimensional singularities with minimal
good desingularizations f; : X; — S; and E;; = Spec(Ox,/Z;;) the integral components
of the ea:ceptzonal divisor. Further assume that for some nq, ..., n, we have ideal sheaves

Ji with Z mE;; C Spec(Ox,/J;) and Z E;; = Spec(Ox, /v Ti) and that we have an
zsomorphzsm ¢ : Spec(Ox, /J1) — SpeC(OX2/\72) Then ¢ induces

n n
Z = anEu = ZmEz,z =7
=1 =1

Proof. Let (Uj)jew be a covering of Spec(Ox,/J1) with open affine subsets, then
Vj = ¢(Uj) is an open affine covering of Spec(Ox, /J1). We know that we may assume
ZiNU; = Spec(Aj/(f]l-g]T-”)) with f;, g; irreducible and Z, NV, = Spec(gj/(ﬁﬁm)).
Now by the functoriality of the reduction ([Gro60], 5.1.5) ¢req is an isomorphism
between Spec((’)Xl/\/jl) and Spec(Ox, /v/J1) so we may assume that we have units
A, Ag such that <p|U maps f; to )\ff] and g; to Agg;. But this is just another way to
say that ¢y, mduces a local isomorphism ¢|z,ny; : Z1 NU; — Z2 N'Vj. Now, because
the ¢[z,ny, are all just restrictions of ¢ they agree on UZ-J, and thus glue to a global
isomorphism ¢ : Z; — Zs. O

In the proof we never used that the Og, 5, are complete, so we immediately get the
following corollary:

Corollary 2.27. The previous theorem holds also if we replace one or both of the S; by
an algebraization.

Now we can formulate the corollary of the proof of Theorem [2.25}
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Corollary 2.28. Let (S;,s;) be two normal, two-dimensional singularities with mini-
mal good desingularizations f; : X; — S; and let E;; be the integral components of the
exceptional divisors. Further let (nyj,...,nnj)jen be a sequence with nyj1 > nyj and
li)m ny; = o0 for all I. Then (S1,s1) is isomorphic to (So, s2) if and only if we have an
J o

isomorphism of direct systems

n n
Zij = E RURTZNES E RURIZVENAY
=1 =1

of schemes.

Proof. First suppose we have an isomorphism of direct systems. Let Z; ; be the ideal sheaf
defining Z; ; in X;, then the isomorphism of direct systems induces an isomorphism of
inverse systems

Oz, =0x,/11; = 0x,/12 = Oz,

which gives us

{%IHO(Zl,j, OXl /Il,j) = {%HHO(ZQJ‘, OX2/I2J). (23)

Now by (2.2)) in the proof of Theorem it suffices to prove that we have

Si

lim H%(Z;j, Ox,/Ti;) = lim HY(X; ® Og, s, /m)
N N
and by symmetry, we may assume ¢ = 1. '

Now let J1,; be the ideal sheaf defining X; ®Osl781/mgfl, then we have \/Z; ; = /7. ;,
and because X; is noetherian we get «; and «; for each j such that we have
J1,a; CThj C Ji,;- But then the induced maps

HO(X1 © Og, 5, /mei ™) — HY(Z15,0x, /T1 ;) — H(X1 © Og, 5, /mU ")

satisfy the condition of Corollary , and the condition on the (ny j,...,ny ;) gives
us that the sets {a;} and {v;} are right directed and cofinal in IN. So we get the needed
isomorphism from Corollary 2.4

For the othjer direction, if (S1,s1) and (S2, s2) are isomorphic, than we know from
Theorem that we have an isomorphism of direct systems

(Xl ® 051751 /mn-i-l) = (X2 ® 032,82/mn+1)'

S1 52

Now because the X; are noetherian for all j we find an n such that we have
Zij CX;® Osijsi/mgfl. So by Theorem the isomorphism between the systems
(Xi ® Og,.s,/m21) induces an isomorphism between the (Z; ;). O

Now the previous theorem reduces the question whether two normal, two-dimensional
singularities are isomorphic to the question whether two inverse systems of divisors are
isomorphic. But the schemes involved in this systems can be calculated on an arbitrary
algebraization:
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Lemma 2.29. Let (S,s) be a normal, two-dimensional singularity, Spec(A) an alge-
braization of S and X a desingularization of Spec(A). Let mg be the maximal ideal of
Og.s and mq the one of A. If we set X' = X @ Og 5 we have

X' ®Oge/m =2 X @ A/mit
for allm > 0.

Proof. By Lemma (2) we have
Og.s/mitt = A/m!*!

so the claim follows directly from the associativity of the fibre product ([Gro60], 3.3.9.1).
O

Now the conditions for being a minimal (good) desingularization can already be
checked on this infinitesimal thickenings, and by the proof of Lemma 4.2 of [Bad0I1]
being regular is stable under the needed base change, so we get:

Lemma 2.30. Let (S,s) be a normal, two-dimensional singularity and Spec(A) be an
arbitrary algebraization of S. Let f : X — Spec(A) be a desingularization. Then X ®Og s
1s a minimal desingularization of S if and only if X 4s a minimal desingularization of

Spec(A).

The same 1is true for the minimal good desingularization.
In particular, if we set So = A in Theorem we get:

Corollary 2.31. Let (S, s) be a normal, two-dimensional singularity and Spec(A) be an
arbitrary algebraization of S. Let f : X — Spec(A) be the minimal desingularization of
Spec(A) and f': X' — S the one of S. Further let E; and E] be the integral components
of the exceptional divisors. Then for all (ny,--- ,ny,) we have isomorphisms of schemes

n n
E TLIE[ = E nlEl/-
=1 =1

The same 1is true for the minimal good desingularization.
If we combine Lemma with Theorem we get the following corollary:

Corollary 2.32. Let (S;,s;) be two normal, two-dimensional singularity and Spec(A;)
be an arbitrary algebraization of S; with minimal desingularization f : X; — Spec(A;),
then (S1, s1) is isomorphic to (Sa, s2) if and only if for all n > 0 we have

X1® Al/ijl 2Xo® Ag/mg;_l
and those isomorphisms are compatible with the natural morphisms

X; ® Al/mgj'l — X;® Al/mg;"Q

The same is true for the minimal good desingularization.
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Note that the last condition just says that we have an isomorphism of direct systems.
The nice consequence of this corollary is that if we work with the X ® Og¢/m?*1, we
may always assume them to be embedded into some regular, two-dimensional scheme of
finite type over k, which thus is smooth. Finally we get an analogue of Corollary

for an algebraization:

Corollary 2.33. Let (S;, s;) be two normal, two-dimensional singularities and Spec(A4;)
an arbitrary algebraization of S;. Further let f; : X; — Spec(A;) be minimal good desin-
gularizations and FE;; the integral components of the exceptional divisor. Further let
(N1, -y nj)jen be a sequence with nyj11 > ny; and jli)rgonlvj = o0 for all I. Then

(S1, s1) is isomorphic to (Sa, s2) if and only if we have an isomorphism of direct systems

n n
Zij=) mEv =y mEy =2y
=1 =1

of schemes.

2.3 Taut singularities

From the previous section we know that if we want to understand whether two normal,
two-dimensional singularities are isomorphic, we have to understand finite thickenings of
the exceptional divisor of their minimal good desingularization. Now we want to reduce
this question further. For this we look at the exceptional divisor E. This is a divisor
on X whose irreducible components have regular reduction and intersect transversally.
Using this, we can assign some combinatorial data to the exceptional divisor. We want
to ask the following question: Does this combinatorial data describe the singularity up
to equivalence?
As an addition to the well-known invariants like the genus we need:

n

Definition 2.34. Let E = ) nE; be a closed, one-dimensional subscheme of a regular,
=1

two-dimensional scheme, such that the E is projective over k. Let (E; - Ej) be the

symmetric matrix with E; - E as ij-th entry. We call (E; - E;) the intersection matriz
of E.

Suppose now E = f7!(s)eq where f is a desingularization of a normal, two-
dimensional singularity. We want to collect some facts on (E; - E;) we need later.
From [Mum61], Page 230 we get:

Lemma 2.35. (E; - Ej) is negative definite.

Now assume additionally that E; and FE; intersect transversally for i # j, so by
Lemma V 1.3 of [Har77| we have

Lemma 2.36. 0 < #(E; N Ej) =F;-E; fori#£j.

Then Lemma 4.10 of [Lau7I] gives us:
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Lemma 2.37. There exist positive integers ni,...,ny, such that for all i:

n
E; - anEl < 0.
=1

By the negative definiteness we also have:
Remark 2.38. We have E? < 0 for all i.

If we assume additionally that all E; are regular, we can encode all the combinatorial
data of E into one object:

Definition 2.39. Let F = Zn: niE; be a closed, one-dimensional subscheme of a regular,
two-dimensional scheme, sulc:h1 that E is projective over k and the Ej are regular. The
dual graph I'g of E is the following graph:

e For each E; we add a vertex v;.

e We add Ej - F; edges e{i between v; and v;.

e Each vertex v; is decorated by three weights: the arithmetic genus [ps(F;)], the
multiplicity (n;) and the self-intersection E?. If p,(E;) = 0 or n; = 1 we omit the
[0] or (1).

We say that two dual graphs are isomorphic if we have a bijection ¢, between the sets
of vertices respecting the decorations and a bijection ¢, between the sets of edges such
that e{’i is mapped to an edge between ¢, (v;) and ¢, (v;).

The exceptional divisor, or at least its reduction, fulfils the assumptions of the pre-
vious definition, so we define:

Definition 2.40. Let (S, s) be a normal, two-dimensional singularity and f : X — S its
minimal good desingularization, and T' the dual graph for f=!(s);eq. The we call T' also
the dual graph for (S, s), or we say (S, s) is a I'-singularity.

Examples Now we want to give the dual graphs for the examples above:

1. The dual graph of (S51,0) is:

-2 -2 =2 =2

where we have n vertices.

2. The dual graph of (S2,0) is:
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Now with Theorem [2.64) which will cite later, we can actually calculate Z = f~1(0)
for this singularity, and we get as dual graph for Z:

3. For the singularity (S3,0) the minimal and the minimal good desingularization
differ, and the dual graph is by definition the graph to the minimal good desingu-
larization, so we get:

4. For (S4,0) again we have to remember to take the dual graph to the minimal good

desingularization:
-2 -1 =7
-3

With this we have all combinatorial invariants we can assign to the exceptional divisor,
which leads to the following definition:

n n’

Definition 2.41. Let £ = > mE; on X and E' = > njE] on X' be two closed, one-
=1 I=1

dimensional subscheme of regular, two-dimensional schemes, such that E and E’ are

projective over k and the Ej, E] are regular. We say that F and E’ are combinatorially
equivalent if their dual graphs are isomorphic.

We say that F is defined by its dual graph if every E’' combinatorially equivalent to
E is already isomorphic to E.

Now for a given E as in the previous definition, we look at the set S(F) of all tuple
(E', X') where X’ is a regular, two-dimensional scheme and E’ C X' is combinatorially
equivalent to E. Note that we need the ambient scheme X’ only to define the self-
intersection numbers Ej. So for the question whether two combinatorially equivalent
schemes F and E’ are isomorphic the ambient scheme does not matter. So we say
that (E', X'),(E",X") € S(F) are equivalent if and only if E’ is isomorphic to E” as
k-schemes. This gives an equivalence relation on S(E).

Definition 2.42. We define CEQ(E) as S(E) divided by the equivalence relation defined
above.

Remark 2.43. E is defined by its dual graph if and only if CEQ(E) = {[E]}.
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Now the definition of tautness is:

Definition 2.44. Let (S, s) be a normal, two-dimensional singularity with minimal good
desingularization f : X — S, we say that (.5, s) is taut if (S, s) is isomorphic to any other
normal, two-dimensional singularity with isomorphic dual graph.

Our main tool to proof tautness of some normal, two-dimensional singularity is the
following Lemma, which is a direct consequence of the discussion before and Corollary
228

Lemma 2.45. Let (S,s) be a normal, two-dimensional singularity with minimal good

desingularization f : X — S and let E1, ..., E, be the integral components of f~1(s).

Let (n1,j,...,nnj)jen be a sequence with ny ;1 > ny; and lim n;; = oo for all l. We set
]—)OO

n
Zj =Y n;E;. Then (S,s) is taut if for every j the Z; is defined by its dual graph.
=1

The reverse of this lemma is more delicate. We have to deal with two questions:
Given E and jZ' combinatorial equivalent, but not isomorphic, then by Theorem
we have a whole system of schemes, combinatorial equivalent, but not isomorphic. We
know (by definition) that E is embedded in a regular, two-dimensional scheme X. The
first question is, can we contract EC X to get a normal singularity?

To answer this question we need the following definition:

Definition 2.46. Let X be a regular scheme and E C X a closed subset. A contraction
Y of F is a proper morphism f: X — Y with f(F) =y and f.(Ox) = Oy which is an
isomorphism away from FE.

Note the condition f,(Ox) = Oy which is equivalent to the normality of Y. This
condition is not important if we want to know whether a contraction exists, because if we
have a proper, birational morphism f : X — Y with f(E) = y which is an isomorphism
away from E, we may take Y as the normalization of Y and f as the induced morphism
f: X—>Y.

2.4 Algebraic spaces

Our goal is to find a reverse of Lemma [2.45} Suppose we have a normal, two-dimensional
singularity (.S, s) with minimal good desingularization X and exceptional divisor Z. Sup-
pose further we find a regular, two-dimensional scheme X’ with a divisor Z’ on it such
that jZ' is combinatorially equivalent to jZ for all j. Now suppose that at least for one j
the scheme 77’ is not isomorphic to jZ. Then we can not find an isomorphism of inverse
systems for Theorem So if we have a contraction of Z’ then the resulting normal,
two-dimensional singularity can not be isomorphic to (5, s).

Unfortunately for an arbitrary X’ this contraction may not exist as a scheme but
as an algebraic space. The goal of this section is to give the needed definitions and
statements for this, and finally prove that such a contraction exists as a scheme if we
change X' “away from Z".
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One motivation for the introduction of algebraic spaces is the existence of categorical
quotients: If we have a category C with fibre products, two objects U, R € Ob(C) and

a
two morphism a,b: R — U in C we get a diagram R = U. We write just R =3 U if a,b
b

are the composition of a map R — U x U with the canonical projections 7; : U x U — U.
A diagram R — U x U is called a categorical equivalence relation if

Homc(Z, R) C Homc(Z, U) X Homc(Z, U)

is an equivalence relation for every Z € Ob(C).

a
Let R = U be a diagram and f : U — X amap in C. We say that f is the coequalizer
b

a
of R= U if foa = fob and for every other f': U — X’ with f'oa = f’ ob there exists
b

an unique morphism g in C such that the following diagram commutes:

R%ULX

7 |
\f/l g
B

Xl

Now a map f : U — X in C is called the categorical quotient of the categorical
equivalence relation R = U, if U — X is the coequalizer of R = U.

Now let C be the category of schemes. Then one may ask: Does a coequalizer exist
for every categorical equivalence relation? The answer is “no” but it is not easy to give
a counterexample, because a posteriori one gets that for a huge classes of categorical
equivalence relations we have a coequalizer which is a scheme.

Now we “make the problem into a definition” by taking the following definition of
algebraic spaces from [Art71]:

Definition 2.47. An algebraic space X consists of an affine scheme U and a closed
subscheme R of U x U such that

1. R is a categorical equivalence relation.
2. The projection maps m; : R — U are étale.

The underlying set of points | X| of an algebraic space is the set |U|/|R].

To get a category we also need morphisms. But for this work we only need morphism
from affine schemes into algebraic spaces in detail, so we define only this and refer to
JArt71] for the general definition and for the definition of the fibre product of algebraic
spaces.
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Definition 2.48. Let X be an algebraic space as above and let V' be an affine scheme.
A map V — X is a closed subscheme W C U x V such that:

1. The projection W — V is étale and surjective,

2. The two closed subschemes R xy W and W xy W of U x U x V are equal.
Now by Corollary (6.12) of [Art70] we get:

Theorem 2.49. Let X be o reqular, two-dimensional scheme and EE C X a connected,
closed, one dimensional subset with (E; - E;) negative-definite, then there exists a con-
traction f : X =Y with Y an algebraic space.

Now we have the contraction as an algebraic space, and we want to show that we can
modify X such that the contraction is already a scheme.

n

Corollary 2.50. Let Z = > nE; be a closed, one-dimensional subscheme of a regular,
=1

two-dimensional scheme X, such that E is projective over k and the E; are integral.

Assume further that Z,eq satisfies the conditions of the exceptional divisor of a minimal
good desingularization. Then there exists a normal, two-dimensional singularity (S’,s")
with minimal good desingularization f' : X' — S' and an embedding v : Z — X' with

f'((2)) =+

Proof. Let f: X — S be the contraction of Z with S an algebraic space and s = f(Z).
Then by Theorem II 6.4 of [Knu71] we have an affine scheme U and an étale map U — S
such that the embedding s — S factors s - U — 5. We may assume U to be normal. We
take the fibre product of algebraic spaces X' = X xg Spec(@U’s). Now §' = Spec((’A)Uﬁ)
is a scheme, and by Proposition IT 1.7 of [Knu71] we know that the fibre product of two
schemes over an algebraic space is a scheme, so X’ is a scheme. Let s’ be the closed
point of S’. Then we know that (S’,s’) is a normal, two-dimensional singularity and X’
is regular. Because the reduction of the exceptional fibre of f/ : X' — S’ is Zeq, We
know that f’ is the minimal good desingularization of S’.

It remains to prove the existence of ¢. First we remark that by the same argumentation
as in the proof of Corollary weget ZC X® Spec(@yys/m”l) for an i large enough.
But by definition we have Oy s/m'™! = Og o /miT! and so the associativity of the fibre
product gives us

Z C X @ Spec(Ops/m™1) = X' @ Spec(Ogr o /mit1)
and this gives the wanted ¢ : Z — X', O

Now we get the reverse of Lemma [2.45}

Lemma 2.51. Let (S,s) be a normal, two-dimensional singularity with minimal good

desingularization f : X — S and let E; be the n integral components of f~1(s). Let

(P14, -y N j)jen be a sequence with nyj11 > nyj and lim ng; = oo for all I. We set
j—o0

Zj =Y ;B If (S,s) is taut, then for all j the Z; is defined by its dual graph.
=1
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Proof. Suppose that for one jo the Z;, is not defined by its dual graph, that is we have
a scheme ZJ/-0 such that Zj, is combinatorially equivalent to Z]’<0 but not isomorphic. By
the definition of combinatorial equivalent we know that Zj’-o is embedded in some regular,
two-dimensional scheme X’. But then by Corollary we can get a singularity (S’,s")

n
such that Z = l; nijE], where Ej are the integral components of the exceptional
divisor of the minimal good desingularization of (S’,s’). In particular the dual graphs of
(S,s) and (5',s’) are isomorphic.
n
If we now define 7} = lzl ny; By, then we have Z7 2 Z;,, and so the direct systems

(Z;) and (Z}) can not be isomorphic, and with Corollary this means that (.5, s) and
(87, §") are not isomorphic, and thus (S, s) is not taut. O

If we combine this Lemma with Lemma [2.45] and Corollary 2.31] we get the following
Theorem:

Theorem 2.52. Let (S,s) be a normal, two-dimensional singularity. Let f be the min-
imal good desingularization of S or of any algebraization of S and let E; be the n in-
tegral components of its exceptional divisor. Let (nlj,.. Nn,j)jeN be a sequence with

nij+1 > ng; and lim D ny; = 00 for all 1. We set Z; = Z nijE;. Then (S,s) is taut if,
and only if for all j the Zj 1is defined by its dual graph.

2.5 Cycles supported by the exceptional locus

Let X be a regular, two-dimensional scheme and B a closed, one dimensional subscheme

of X proper over k with integral components E;. Then we call z nyF; a cycle supported
=
by B. By the last theorem we know that the question of tautness 1educes to the question

whether cycles supported by the exceptional loci of the minimal good desingularizations
are isomorphic as schemes. Now we want to introduce two special types of such cycles.
First, we need the fundamental cycle of Artin ([Art66|, Page 131):

Lemma 2.53. Let (S,s) be a normal, two-dimensional singularity with desingulariza-
tion f : X — S, and E = f~1(s)eq. There exists a smallest divisor Z on X with
supp(Z) = supp(E) and Z - E; <0 for all i.

Now we want to give this cycle a name:
Definition 2.54. The cycle Z of Lemma is called the fundamental cycle of (S, s).

We can calculate Z with a quite simple algorithm from (E; - Ej): We define Zy = E
and construct Z,41 from Z, as follows: If Z, - E; < 0 for all ¢ we stop. Else we set
Zy+1 = Zy,E; for one ¢ with Z, - E; > 0

Now we need some facts to define the other cycle:
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Lemma 2.55. Let f : X — S be the minimal good desingularization of a normal,
two-dimensional singularity or its algebraization, and E; the integral components of the
~ n ~ ~
exceptional locus. If Z =Y rE; satisfies Z - E; < —1 for all i, then —Z, or to be precise
=1

Ox(—2), is ample.

Proof. We have (’)X(—Z) “E;=—Z-E; >0 for all i, so the lemma follows by the proof
of |[Lip69], Theorem 12.1 (iii) because ample holds without the additional hypothesis
HY(X,Ox)=0. O

To simplify the reference we give those divisors a name:

Definition 2.56. Let (S,s) be a normal, two-dimensional singularity. An anti-ample
n

cycle for (S, s) is a divisor Z = 3 r/E; on the minimal good desingularization of some
=1
algebraization of (5, s) satisfying the previous lemma.

Now Lemmashows that we always have an anti-ample cycle for (.9, s). But unlike
the fundamental cycle it is not unique. Actually there is also a smallest anti-ample cycle,
but later we need the freedom to choose specific anti-ample cycles. For example for
positive p, we often need an anti-ample cycle with all coefficients prim to p. For this we
need a function from Z to {0, 1} which maps n to 0 exactly if p # 0 and p|n. This is the
following “dual ged” or “binary ged”™

Definition 2.57. Let a, b be integers. We define

1 if ab=0;
dged(a,b) = ¢ 1 if ged(a,b) = 1;
0 else.

In all application later we have b = p.
We get the existence of such anti-ample cycles from the following Lemma:

Lemma 2.58. Let (S, s) be a normal, two-dimensional singularity, p > 0, then we always
. n
have an anti-ample cycle Z = 5 mE; for (S,s) such that ged(ng,p) =1 for all l.
I=1

Proof. Let Z' any anti-ample cycle for (S,s), that is 2’ - E; < —1 for all i. We de-
fine t = max{E; - Y E;}. Now (t + 1)Z" has (t+ 1)Z' - B; < —(t +1). We write
v =1

I#i

(t+1)7 =
=1
we have E; - By > 0 for i # [, and thus we get for all i with n; = n} + 1:

n

n;Ey, and define n; by n; = nj+1if p|n; and n; = n;] else. By Lemma [2.36

n n n n
Ei-Y mE <Ei-Y (nj+1)E =E-Y nE+E +E-» E<-t—1+E+t<-1

=1 =1 =1 =1
I#i
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Where the last inequality follows from EZ2 < 0, see Remark For the i with n; = n/
an analogue calculation shows

n
Ei-anElg—t—l—l—tg—l
=1

mn

So > nyFy is the desired cycle. O
=1

Now we want to address the following question: Suppose we have n smooth, one-
n

dimensional schemes, we glue them in such a way that £ = > n;Fj is connected and has
I=1

only transversal intersections. Also we choose E? such that (E; - E;) is negative definite.

Is there a normal, two-dimensional singularity (S,s) with desingularization f : X — §

such that E is a cycle on f~1(s)? The answer is “yes”, but before we can prove this, we

need some notation.

Definition 2.59. Let I' be a dual graph as in Definition such that I' is connected
and the associated intersection matrix (FE; - E;) is negative definite. A realisation of I’
is a smooth, two-dimensional scheme X with an closed, one-dimensional subscheme F,
such that I is the dual graph of E.

Now we get that such a realisation always exist, even if we additionally fix the FE;:

Theorem 2.60. For any connected dual graph T' with negative definite (E; - Ej), and
any n smooth, one-dimensional schemes E; with p,(E;) as in I, we have a realisation X

n
with B = Z mEl.
=1

Proof. First we note that it suffices to prove the theorem for one chosen n-tuple

(n1,...,my,) of natural numbers, which may differ from the n; of I'. Now we glue the
E; to a scheme E = ) Ej such that all intersections are transversal, and E; and Ej
=1

intersect exactly as often as the matrix (E; - E;) requires.

The main difficulty now is not to find a X into which E embeds, but to find a X
such that we have E? equal to the ii-th entry of (E; - E;) for all 4. To find this we use
the following fact: Suppose we have a closed, one-dimensional subscheme Z' = 3" njE]

=1

of a smooth, two-dimensional scheme X’ such that Z’ is the fibre of a map from X’ to a
smooth, one-dimensional scheme. Then by (4.1) of [Win74] we have for all 4

/n//

0=2"-E =nj(E)*+E|-) nE (2.4)
=1
1+£i

and thus the (E})? are controlled by the nj and the E] - E.
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Our strategy is now: First we choose (n1,...,n,) such that
n
0> —ri=ni(E;- Ej)u + Zﬁz(Ez -Ej)a (2.5)
=1
1£i

that is as in Lemma [2.58] respectively Lemma if p=0.

Now we construct a new E’ from FE as follows: At every E; we choose r; points
which are smooth in F and we glue additional smooth, one-dimensional schemes FEj ;
transversally to them such that F; ; only intersects with E;. If we now find an embedding
of E' as a fibre, then for each E; C F the equation gives:

n T n o
0=E B =nE +Y mEi-E+Y E-Ej;+» Y Ei-Ej.
=1 j=1 =1 j=1
But we have by construction: E; - E; = (E; - E;);, the last term vanishes, and the third
term is r;, so we get ﬁiEg = n;(E; - Ej);; as wanted, with .
So it remains only to prove that we can embed E’ as a fibre. But this is now just
Proposition 4.2 of [Win74| because all assumptions are fulfilled by construction. O

Together with Corollary we get:

Corollary 2.61. For any connected dual graph I', with negative definite (E; - E;) and

any n smooth, one-dimensional schemes E; with p,(E;) as in T', we have normal, two-

dimensional singularity (S, s) with desingularization f : X — S such that T' is the dual
n

graph of > nyE; on the exceptional locus.
=1

The theorem gives us also a necessary condition on F for (S,s) to be taut. By
n

Theorem [2.52 we know that the cycle ) Ej on the exceptional locus of the minimal

good desingularization must be defined %oyl its dual graph. But for example suppose we
have n = 1 and p,(E7) = 1, that is an elliptic curve. To such a scheme we have the
j-invariant. Then by [Sil92], Proposition III 1.4 we know that the j gives an one-to-one
mapping between isomorphism classes of elliptic curves over k and the k-rational points
of the scheme A}C. In particular, there are two non-isomorphic elliptic curves. But the
Jj-invariant is not encoded in the dual graph. So with Theorem we can embed both
curves with a given negative self-intersection into smooth surfaces. But then this curves
are combinatorially equivalent, but not isomorphic. This implies that if we contract these
curves, the resulting singularities are not isomorphic, and thus not taut.
This example generalises in the following way:

Lemma 2.62. Let (S,s) be a normal, two-dimensional singularity, f : X — S its
minimal good desingularization, and E; the integral components of the exceptional locus.
If S is taut, then we have necessary po(F;) = 0 and each E; intersects with at most 3
others.
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Proof. First suppose by contradiction that we have an i with p,(F;) > 0. The case
pa(Fi) = 1 is just a direct generalisation of the last paragraph: We choose an elliptic
n
curve E! non-isomorphic to E; and do the same argumentation with £ = ) E; and
. I=1
E' =E/+ Y E.
=

Also the general case for g = p,(E;) > 1 follows analogously: By [DM69] we have an
irreducible quasi-projective scheme 9, of dimension 3g — 3 whose k-rational points are
in one-to-one correspondence with the isomorphism classes of smooth, one-dimensional
schemes over k, so we can again find a non-isomorphic E! with p,(E!) = po(E;).

So we have necessarily p,(E;) = 0 for all i. Because k is algebraically closed, this is
equivalent to F; = IP}C.

Now assume we have an E; which intersects with 4 others. Now we use that Aut(P})
is isomorphic to PGL(1,%k). The idea behind this isomorphism is that we know an
automorphism of IP,1€ if we now the image of three distinct points. So we may assume
that 3 of the 4 other components intersecting F; intersect at 0, 1 and co. Now we take
E and E’, such that the 4-th component intersects F; at different points. Then we can
again embed E and FE’, and their dual graphs are isomorphic, but E is not isomorphic
to E’, and so S is not taut. O

2.6 Rational singularities

Finally we want to define the well known class of rational singularities. One reason for
this is that for some rational singularities the question of tautness is already known in
arbitrary characteristic we discuss that in Section [5} The definition is:

Definition 2.63. A two-dimensional singularity (.9, s) is called rational if there exists a
desingularization f: X — S, such that R'f,Ox = 0.

Rational singularities have many nice properties. We will recall those we need in the
following theorems. We have by [Art66], Theorem 3 and 4:

Theorem 2.64. Let (S, s) be a normal, two-dimensional singularity with desingulariza-
tion f: X — S and fundamental cycle Z, then:

1. We have po(Z) > 0, and (S, s) is rational if and only if p,(Z) = 0.
2. If (S, s) is rational, then for all 1 > 1 we have X ® (’)378/mls ~ |7,
Further we have by [Bad04], 3.32.3:

Theorem 2.65. Let (S, s) be a rational, normal, two-dimensional singularity. Then the
minimal desingularization is the minimal good desingularization.

Now let Z’ be a positive cycle supported by E. From the proof of [Art66], Theorem 3
we get

pa(Z/+Ei) :pa(Z/)+pa(Ei)+Zl'Ei_1- (2'6)
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Now take the construction of the fundamental cycle from above. By construction we
have Z, - E; > 1 and thus
pa(ZV—l—l) Z ZV

and equality if and only if Z, - E; = 1. So for (5, s) to be rational we have necessarily
pa(E) = 0 and using (2.6 again we get pq(E;) = 0 for all E;.
This leads to the following corollary:

Corollary 2.66. Let (S,s) be a normal, two-dimensional singularity. The question
whether (S, s) is rational can be decided using only the dual graph of (S, s).

Proof. As we discussed above, (S, s) is rational if and only if all p,(E;) = 0 and we can
find a sequence (Z,) constructing Z with Z, - E; = 1 for Z,41 = Z, + E; and every v.
But all this can be decided by just using data we find in the dual graph. O

Finally [Art62], Theorem 2.3 shows us that for rational singularities, we may prove
Lemma without using algebraic spaces:

Theorem 2.67. Let X be a smooth surface and E C X a connected, closed, one-
dimensional subset with (E;- E;) negative definite, Z the fundamental cycle. If po(Z) =0,
then the algebraic space Y of Theorem is a scheme, and (Y,y) is a rational singu-
larity.

If we combine this with (ii) of Theorem and use Theorem we get the following
corollary:

Corollary 2.68. Let (S,s) be a rational singularity with minimal desingularization
f: X — S and fundamental cycle Z. Then (S,s) is taut if, and only if, for every j
the cycle jZ is defined by its dual graph.
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3 Extending isomorphisms

Our aim is to classify taut singularities. That is, we want to give some criteria, such
that, given a normal, two-dimensional singularity (S, s) with some dual graph satisfying
this criteria, every other singularity with the same dual graph is isomorphic to S.

Lets suppose that (§ ,§) is a normal, two-dimensional singularities with isomorphic
dual graph. For (nyj,...,nnj)jen let Z; and Zj the cycles as in Theorem for (S, s)
respectively (S,3). From Theorem we know that (S, s) 2 (5, 3) if and only if all Z;
and Zj are isomorphic. The goal of this section is to show, that we have (S, s) 2 (5, 3)
if and only if Z;, = Z]-O for one sufficiently large jo.

The main tool for this is the following obstruction-theory: Suppose we know
Zjy = Zjo. What is the obstruction against extending this isomorphism to one between
Zj, + Ej; and Zjo + E;? To get the obstruction we first show that we can extend this
isomorphism locally. This is trivial in the analytic category because one may choose
every open set isomorphic to the zero-set of y™ or z™y™ there. But in the algebraic
world we have to work for this.

After we know that we can extend the isomorphism locally we can transfer results
of Grauert (|Gra62|), Laufer ([Lau71]) and Tjurina ([Tju6§]) into the algebraic category.
From this we get the obstruction-theory, which tells us when the local extensions of
isomorphism glue to a global one.

If we have now a (n1j,...,%n;) > (N1jos---,Nn,j,), then by adding one Ej, respec-
tively Eli at a time, we can get a new n-tuple (nyj,...,nyj) > (R1j,...,np;). We
show that one can choose the n; ;7 and [; in a way that the obstruction space is trivial in
every step. Thus Z;, = Zjo implies Z; = Zj/ which then implies Z; = Zj.

Setting for this section By Theorem we may replace S with an algebraization
of it. Then we know that the exceptional divisor is a local complete intersection in a
regular, two-dimensional k-scheme of finite type, or, because k is algebraically closed,
in a smooth, two-dimensional k-scheme. So we may reformulate the question above as
follows:

Given a smooth, two-dimensional k-scheme X and an effective divisor as one of a good

desingularization B = > n;B; with B; = Spec(Ox /Z;) regular, and B = Spec(Ox /Zp)

=1
n

with Zp = [] Z,". Suppose further we have a second smooth, two-dimensional k-scheme
=1

~ ~ n ~
X with an effective divisor B = ) n;B; and we know for a choice of 0 < nj < n; that
=1

n ~ ~ ~
C= IZ ny By is as scheme isomorphic to C' = ZZ n;By. Is then B isomorphic to B?

=1 =1

7
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3.1 Preliminaries

Before we can work on the answer to the previous question, we need to introduce Cech
H' for sheaves of non-abelian groups. Also to simplify the proofs we recall/discuss some
properties of the push-forward for sheaves along closed immersion. Finally for the local
question we have to cite some results of Illusie on extensions of algebras.

3.1.1 H' for sheaves of non-abelian groups

Let X be a topological space and F a sheaf of (not necessary abelian) groups on X. If F is
abelian, we have cohomology groups H'(X, F), which are defined as right-derived of the
global section functor. If F is non-abelian, we have no such description, but in the abelian
case under some additional conditions, we know that we have H'(X,F) = H'(X,F),
where the second term is the éech—cohomology. Now one can go through the construction
of H* and reformulate it for non-abelian sheaves. Then one gets H? = H? as usual as the
global sections, and a pointed set FII(X, F). For i > 1 one may construct some objects
H'(X,F), but this is complicated, and we do not need them, so we only tread the case
H' for non-abelian sheaves.

We want to recall the construction of H'(X,F) for F abelian. For this we follow
partly [Liu02], Section 5.2.1 respectively [Ser53], §3.

Let X be a topological space, Y = {(U;) }scr be an open covering of X with I a totally
ordered set. For ig, ...,1, € I we set

Uig.in = Uiy N...0U;,, .

Then we define for every n > 0 the n-cochains (of U in F) as

cru,F) = [ FU..in)

(i0,--yin) €I F1
ig<...<ip

Now we define a differential d,, from C™(U, F) to C" Y (U, F) as

n+1

l
(dnf)io..-in+1 = Z(_l) fio-..iAz..-inH |Ui0..4¢,,,+1
=0

where, as usual, ’z’Al " means that we remove the index 7;. Also we omit the restriction
to Uig...iny,- A direct calculation shows that we have d,,1d, = 0 so we get a complex
C*(U,F) and we define

H"(U,F) = H"(C*(U,F)).

Or in other words: If we define the n-cocycle as
Z"(U,F) = ker(dy)

and the n-coboundaries as

B"(U,F) =im(dp-1),
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then we have
H"(L{,}') =Z"(U,F)/B"(U,F).

Now we want to do the same for F non-abelian. To distinguish between the abelian
and the non-abelian case we now write the group-law multiplicative. The definition of
the C™(U, F) is independent of the commutativity of the F(Uj,. 4,), so we take the same
definition. We also may define the d,, but because taking the inverse is a morphism if
and only if the group is abelian, these will be just set-maps, not morphisms of groups.
But if we look at the “kernel” of dy and d; as set-maps, for dy, we have sisj_l = 1 which
is equivalent to the relation

S =S4

so we simply define Z°(U, F) as the subgroup if elements in CO(U,F) fulfilling this
relation, and because this is just the glueing condition, we get

HU,F)=2°U,F) = H' (X, F).

For Z'U,F) the condition coming from d; is fi1i2fi;i12fioi1 = 1 which via

-1 1 =1
fivia = Jivia Jigin 81VES
fi0i1fi1i2 = fi0i2' (3~1)

Now we define Z1(U,F) as the subset of elements in C'(U,F) fulfilling this relation.
Finally we have to translate the quotient by B(U, F). The relation in the abelian case
may be written as

fioil - fio + fi/oil - fil

which translates to the non-abelian cases as
-1
fioi1 = fiofz'loilfz‘l (32)

and we define H'(U, F) as Z' (U, F) divided by this equivalence relation. Then H'(U, F)
is not a group, but we have a distinguished element * given by 1 € Uy ;,, so H' (U, F) is
a pointed set.

Before we start with the usual stuff of passing to a refinement and to the inductive
limit we want to discuss our definition of n-cochains. One alternate definition of n-
cochains is

cru,F) = [ FWia),

(7;()7---7in)eln+1

and every following definition as above, just with C™(U, F) replaced by C'™(U, F).

For F abelian it is well known that starting with this definition leads to canonical
isomorphic H*(U, F), see for example [Liu02], Corollary 5.2.4. But for F non-abelian, we
have not found any reference for this. Now suppose that F is non-abelian, then clearly
HO(U, F) = H°(X, F) with both definitions. For Z'(U, F) we have a look at the relation
: If take ig = i1 = i2 we get fi,i, = 1 and from this with i = i2 we get fi i, = —1

11107
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so ZYU,F) and Z''(U,F) are isomorphic sets. This isomorphism can be chosen such
that it is compatible with the relation (3.2)), so the resulting quotients are isomorphic.
So H'(U, F) does not depend on the choice between this two definitions of a n-cochain.

The next steps are standard again and we need only the results, so we just quote them:
Let U = {V;}jes a refinement of U, that is we have a map o : J — J and V; C Uy, for
all j. Then by |[Gro55], (5.1.6) in the non-abelian and |[Liu02], Lemma 5.2.8 in the abelian
case, we have a map H'(U,F) — H'(U,F). This maps make the set {H' (U, F)}y a
direct system, and we define

agh 1 rr1l
H' (X, F) = lim H' (U, F).

u

Note that H' depends on the chosen topology on X.

Now we need two more facts. First we want to state that, under some conditions, the
éech—cohomology groups are the same as the cohomology groups if we define H"(X, F)
as the right-derived functor of I*:

Theorem 3.1. Let X be a noetherian, separated scheme and F be a quasi-coherent sheaf
on X, then for all n, we have

HY(X,F) = HY(X,F).
where H' was calculated using the Zariski topology.

Proof. Let U be an open affine covering of X. By [Liu02], Theorem 5.2.19 we have
HY(X,F)= H'U,F) and by [Har77], Theorem III 4.5 we have H (U, F) = H (X, F).
O
Remark 3.2. This holds even more general for abelian sheaves on topological spaces.
Finally we need the long exact sequence in cohomology sets. For this we first need
two definitions:
Definition 3.3. A map A : A — B of pointed sets is a map of sets which maps the
distinguished point of A to the distinguished point of B. A sequence A ABLCof
pointed sets is exact if 771(x) = A\(A), where * is the distinguished point of C.

Now we get the long sequence from [Lau71], Theorem 6.5:

Theorem 3.4. Let X be a paracompact Hausdor[f space, and 1 — F’ AFLF
be an exact sequence of sheaves of groups over X, then

1 — HX,F)— HYX,F) — H°(X,F")
2 AVX, F) — HY(X, F) — H'(X, F")

is an exact sequence of pointed sets. For t € HO(X,F") the image §(t) is defined
as follows: t = 7(s;,) with (siy) € C°(U,F) for some open cover U of X. Then
(0(t))igi, = 7*1(3;0132-1) determines the equivalence class 6(t) € HY(X, F").
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Torsors There is also a more geometric interpretation of H'(X, F) which is sometimes
helpful. We want to give a short view on this interpretation, citing [GW10], Section
(11.5).

Let X be a topological space, and let G be a sheaf of groups on X. If 7 is a sheaf on
X, then T is a G-sheaf if we have morphism of sheaves G x 7 — 7, which is on every
open U C X a left action of G(U) on 7 (U). A morphism between two G-sheaves T and
T’ is a morphism of sheaves such that on every open U C X the map T(U) — T'(U) is
G(U)-equivariant.

We say that G(U) acts simply transitively on T (U) if for all t1,to € T(U) there exists
a unique f € G(U) with ft; = to.

Now we get the notion of a G-torsor:

Definition 3.5. A G-sheaf 7 is a G-torsor if it satisfies:
1. The group G(U) acts simply transitively on 7 (U) for every open U C X.
2. There exists an open covering U of X such that T(U) # () for all U € U.

For every G we have always at least one G-torsor because G acts on itself by left
multiplication. We call this torsor the trivial torsor.

Definition 3.6. Let T be a G-torsor and U an open covering of X. We say that U
trivializes T if for every U € U the restricted torsor 7|y is isomorphic to the trivial
Gly-torsor. Or equivalent, if every I'(U,T) # 0.

Now from [GWT0], Proposition 11.12 we get the following description of H'(X,G)
and HY(U,G):

Theorem 3.7. Let X be a topological space, G a sheaf of groups on X and U an open
covering of X. Then H'(X,G) is isomorphic to the set of G-torsors, and H'(U,G) is
isomorphic to the set of G-torsors which are trivialized by U.

From this we get the Leray acyclicity theorem for non-abelian sheaves:

Theorem 3.8. Let X be a topological space, and let G be a sheaf of groups on X. If I is a
totally ordered set and U = {(U;) }ie1 is an open covering of X such that H (U, G|y,) =0
for all i € I, then we have

HY(X,G) =2 H'(U,G).

Proof. First we note that by Proposition 5.1.1 of [Gro55] the natural map from H(U,G)
to H'(X,G) is injective. So the theorem follows if we can show that it is also surjective,
that is by the previous theorem, that every G-torsor T is trivialized by . For this let
T be any G-torsor. Then Ty, is a G|y,-torsor, and thus the trivial G|y,-torsor by the
assumption H'(U;,G|y,) = 0 and again the previous theorem. O
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3.1.2 Closed immersions

In the next section, we often need the push-forward of a quasi-coherent sheaf on a closed
subscheme along the inclusion. So we want to collect some facts for this now. Let
X be a scheme and Y a closed subscheme, we denote by ¢ the inclusion. Let F be a
quasi-coherent sheaf on X and G one on Y.

Then by Proposition 3.2.4 and 3.3.9 of [Liu02| ¢ is separated and quasi-compact, so
by Proposition 5.1.14 (Ibid.) t4(G) is quasi-coherent. Now assume that F, = 0 for all
xz € X\Y. Then by Corollaire 9.3.5 of [Gro60] we have F = 1,(¢*(F)). Also by looking
at the stalks we get that the canonical map ¢*(tx(G)) — G (Ibid. 0 (4.4.3.3)) is an
isomorphism. So ¢, gives us a bijection between the quasi-coherent sheaves on X with
support contained in Y and the quasi-coherent sheaves on Y.

Furthermore, for a second quasi-coherent sheaf G’ on Y we have

t.(Homo, (G,G")) =2 Homo, (14(G), t(G"))

by 0 4.2.5 of [Gro60].

Also, ¢ is an affine morphism, that is we can find an affine covering {U;} of X such
that «~1(U;) is affine. By Corollaire 1.3.3 of [Gro61] this means that H'(X,1.(G)) is
isomorphic to H*(Y,G) for all i > 0.

These facts justify the standard convention that one writes G for 1.(G). We follow
this convention. Only if we think it helps the understanding we write explicitly ¢.(G).

If we only assume G to be a sheaf of (not necessarily abelian) groups, then for i = 0, 1
we have still

H'(X,1.(G)) = H'(Y,G). (3:3)

This follows for ¢ = 0 directly from the definition. For ¢ = 1 one uses that every open
covering of Y comes from an open covering of X, and by the definition of +,(G) the
calculation of the left side only depends on the opens in X with non-empty intersection
with Y.

3.1.3 Extensions of algebras

Let j : Y — S be a morphism of schemes and £ an Oy-module. We want to classify the
schemes Y /S so that Y is a closed sub-scheme of Y with ideal sheaf £ such that we have
£2=0in Oy To do this, we first want to construct a group

Exalpg (Oy, L)
classifying sequences
0—L-—0y — 0Oy —0 (3.4)

of j~1(Og)-algebras. For this we recall the construction in [II71], III 1.1: First we
consider the category
EX&IOS (OY, £)
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with objects sequences of the form (3.4) and j~1(Og)-algebra-morphism of this sequences
of the form

L Oy Oy
Jid l Jid ) (3.5)
L Oy, Oy

We denote by Exalp, (Oy, £) the set of objects of Exaln,(Oy, £) modulo isomorphism.
Then by [II71], I1I 1.1.5 this set carries a group structure and this is the group we want.
Now we need the derived category of Oy-modules D(Y) as a tool. All we need to
know about this category is that it arises from C'h(Y"), the category of chain complexes of
Oy-modules, in the following way: First one goes to the quotient category K (Y'), where
the morphisms are equivalence-classes of morphisms between chain complexes modulo
chain homotopy. Then one gets D(Y') from K(Y') by inverting quasi-isomorphisms.
The main tool to understand the group Exaly (Oy, £) is [llusies “Théoréeme Fonda-
mental” ([III71], IIT 1.2.3). For this theorem we need the cotangent-complex of Y over
S, which we call L;,/S. The cotangent-complex is an object in D(Y). We do not need

the formal definition, for which we refer to [III71], IT 1.2.3. We only need L;,/S in the

following two special cases, which are Proposition III 3.1.2 (ii) and Corollaire III 3.2.7 of
[III71]:

Lemma 3.9. 1. IfY is a smooth S-scheme, then we have
R q. b 1
LY/S = QY/s
with Q%//S in degree 0.

2. If we have a smooth S-scheme X and a regular embedding ¢ : Y — X with kernel
I. Then we have .
. a F d®1 %
Vs = (1)1 = (Q/s))
with L*(Q}){/S) in degree 0.

To understand L3, /s further, we need the Hyperest functor I xt’ ,» Which is the right
derived functor of Hompyy( , ). By (2.2) on Page 50 of [Huy06] we have

]Extégy(}”,g') = Homp(y)(F*, G°[i]).
Then the Théoréme Fondamental gives us an isomorphism

Exalog(Oy, £) = Extpyy (LY /g, £).
Using the quasi-isomorphisms above we get

Exalpg(Oy, L) = EXG)(Y)(Q%//& £)
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if Y is smooth, respectively
d *
Exalog (Oy, £) 2 Exthy (I/12 5 (2 /), £)
if Y is regularly embedded. Now we get:

Lemma 3.10. IfY is smooth, then we have Exalpg(Oy, L) = 0.
Proof. We have Exalpy(Oy,L) = Extb(y)(ﬂ%//s,ﬁ) = Hom})(y)(ﬂ;/s,ﬁ[l]) where

Q%,/S and L are complexes concentrated in degree 0, so L[1] is concentrated in degree
—1. So by the definition of morphism in Ch(Y) we have Homc(y)(Q%,/S,ﬁ[l}) = 0 and
both complexes are not quasi-isomorphic, so we have also Hom D(y)(Q%/ /5 L[1])=0. O

If Y is regularly embedded into some smooth scheme, we can use the spectral-sequence
for Hyperext. By Example 2.70 of [Huy06] we have a spectral-sequence

EXt%(Y)(H_q(f.), g.) = EtiDTg/)(‘F., g.)

from the construction of Exte, as right derived functor. In our situation F* = L3, /s is
concentrated in degree -1 and 0, so we are in the well known “two rows” case of a spectral
sequence. This gives us a long exact sequence

0 — Extp, (Qy/g, £) — Extpyy(Ly,s, £) — Homo, (ker(d © 1), £)
(3.6)
— Extd,, (s, L) — ...

where the outer terms are just ordinary Ext-groups.

3.2 Local extensions of isomorphism

Now we want to show, that we can always extend an isomorphism locally. Remember,
this is trivial in the analytic category.

Theorem 3.11. Let B, E, C and C be as described in the setting for this section.
Suppose that ¢ : C — C' is the 1somorphism. Then for every x € B there exists an open
x € Uy C B and an isomorphism ¢ : Uy — ¢(Uy) such that ¥|cnu, = ¢|u, -

We split the proof of this theorem into two cases. The setting is always the following;:
Suppose that we have z € By, then we can suppose that U, = Spec(A)N B where Spec(A)
is an affine subset of X, so A is a regular k-algebra of finite type, B N U = Spec(A/f)
and if we have an other component B; with « € Bj, then B N U = Spec(4/g). So
we get U, = Spec(A/(f™g")) where we set ¢ = 1 if we did not have a Bj. On
©(Uz) we may suppose the same with f,ﬁ € A. Then we have, by abuse of notation,
@ : A/(f"ég”;') — g/(f"@ﬂ;) Further, if nj > 1 or g # 1, then we may choose fand g
in such a way that the ¢ maps the residue class of f to the residue class of f, and the
one of g to the one of g.

Now it suffices to show the theorem for the case n; =n; + 1 and n; = n;

First we do the cases that Spec(A/(fg)) is not smooth:
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Lemma 3.12. Theorem 1s true for g # 1.

Proof. We look at the following commutative diagram of A-modules:

0
(frigna)/(fritign)
) j?g/(fnﬁlgnj) (3.7)
\Ii - ://: i T
///,,/:*/’,///w' R
A==3 AJ(fritlgn) —— AJ(frighi) — 2 A)(frign)
[
0

Since A is regular and of finite type, and k = k, Spec(A4) is smooth, we get W
from ® by Definition 2.I] First we want to show that we can choose ¥ such that
it maps f and g to the residue class of f and g. The ideal (f”@”j)/(f”f*lg”j) is
an g/ (fngﬁnj)—module, and so using ® also an A-module. Let now 0 be any k-
derivation from A to (fg")/(f"1g"), that is a k-linear map fulfilling the Leibniz
rule d(ab) = ®(a)d(b) + ®(b)d(a) for all a,b € A. Then for ¥ = ¥ + 9 we have
U'(ab) = U'(a)¥'(b) by a straight-forward calculation using the Leibniz rule and
V-9 =>&-0in (frigh)/(fritgn). N

So W' is also a lifting of ®. Now ¥(f)—f and ¥(g)—g in are in the kernel of 7 and thus
in (f”@”j) / (f”Hl@'”f), so we can choose W in the described way if we find a derivation
0 such that d(f) = —(V(f) — f) and 9(g9) = —(¥(g) — g). Now we use the standard
identification between derivations and elements of Hom A(Qi1 Ik (fnfﬁnﬂ') / (f”;“'gv”j)). If
y is is the singular point of Spec(A/(fg)), then by [Liu02|, Proposition 9.1.8 th/k is
generated by d,f and d g, but 9}4 Ik is finitely generated and quasi-coherent, so maybe
after shrinking U, we may assume that df and dg generate Qi} Ik This shows the existence
of a derivation d with 8(f) = —(¥(f) — f) and (g) = —(¥(g) — §) and thus we can
assume U(f) = f and U(g) = g in A/(frit1gm).

Now we have ¥( frutl g") = 0 and we get ¢’ by the universal property of the kernel.
If we do the same for ¢! and A we get o : A/(friT1gn) — A/(fritign).

From the commutativity of Diagram we get for all a € A/(f"tg") and all
be Aj(fritign).

You'(a) =a+ flig"d(a) and ¢/ 0 4h(b) = b+ frig"O(b)
Additionally we have

D(b) + frig" A (b)) = o o h(b) = (b + frgnIO(b)) = (b) + V(F1G" )ib(I(b))



42 3 EXTENDING ISOMORPHISMS

that is f™ g™ d(Y(b)) = (fg" ) (d(b)), and by the choice of :

P (frig)) = frig" and ¢ (O(f1g)) = frigh
Now we set for a € A/(fMt1g"):
£(a) = a— fig"d(a) and ¢ =y’ o
then we get:
Y(¥(a) = P (a — Mg d(a)))
= a+ frig"d(a) — P (f"g"))(@(a) + [Mig"0(0(a)))
= at g™ (9l - 0a) - g 0(0))
=a
and using f"g"i9(4h(b)) = P(F1G" )P (A(b)) we get
P((b) = ' (P(b) — frigh (b)) = ¥ (b)) — ¢/ (f g™ D((b)))
= b g (80) - 30) - g aee) )
=0
So 1 is the isomorphism we need. O
If Spec(A/(fg)) is smooth we have:

Lemma 3.13. Theorem 1s true if g = 1.

Proof. The argumentation of the previous proof holds also for g = 1 if nj > 2, we only
have to replace dg with some dg’ such that QY /), are generated by df and dg’ at one
place. So we have only to do the case n; = 1. In this case we have

0— f/f* — A/(f*) — A/(f) — 0 € Exaly(A/(f). [/ f?)

Now f/f? respectixelny/fQ are free A/f (A/(f)) module of rank one. So the isomor-
phism ¢ : A/f — A/(f) gives us

0— f/f*— A/(f?) — A/(f) — 0 € Exali(A/(f), f/f?)

but Spec(A/(f)) is smooth, so by Lemma we have Exaly(A/(f), f/f?) = 0 and thus
we have an isomorphism v : A/(f?) — A/(f?), and Vlspec A/(f)) = P- O
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This shows that in our situation local thickening of isomorphism is always possible.
We want to emphasize that the extendibility of isomorphisms really depends on the fact
that we only look at such extensions of algebras which embed into a smooth scheme. If
we take for example Y = Spec(k[z,y]/(y?)) embedded into X = Spec(k[x,%]), and cal-
culate Exal,(Oy, (y*)/(y®)) using the sequence (3.6), then we have the following result:
If Char(k) # 2 then Ext,lc(Q%//k, (v2)/(y?))) = klz], and also d® 1 : (2)/y*) — Q_lX/k|Y
has a non-trivial kernel (generated by %2) so the third term in is also non-zero. For
Char(k) = 2 the sequence is quite different: In this situation we have Q%,/k = Q}qk\y
and d ® 1 is the zero-mapping, so the first and fourth term of vanish, and
Exaly(Oy, (4%)/(y*)) = Homo, ((v*)/(y*), (v*)/(y°)) # 0.

So we see that Exal,(Oy, (y?)/(y?)) is not trivial, but all extensions which can be
embedded into a smooth, two-dimensional scheme are isomorphic as schemes.

3.3 Reducing the obstruction to cohomology

As discussed in the beginning of this section, we are in the following situation: B and C'

are closed subschemes of a regular, two-dimensional scheme X, given by the ideal sheaves
n

n /
Ip = [1Z" and Ze = [] Iln’ with 0 < nj < ny. That is, we have an exact sequence
=1 =1

0 —>Ic/IB — Ox/IB — Ox/IC —0

We denote the inclusion C < B by ¢, p and the projection Op — O¢ by 7¢ B.

Now we want to construct a sheaf classifying automorphism « of B which are the
identity on C, that is the sections of this sheaf are not automorphisms of B, but of
the Ox-algebra Ox/Zp. So by the well known contravariant correspondence between
automorphisms of B and automorphisms of Ox/Zp, the sections of this sheaf are the
opposite group to the group of automorphisms of B. The identity condition restricted
to C' then translates to the commutativity of the following diagram:

04)1@/_’[3 4)0)(/1'3 4)0){/104)0

Jazc/zB Ja Jid (3.9)

04).’[@/.’[3 %OX/IB 4>Ox/1'04>0

From this commutativity we get, that o maps Z¢/Zp necessarily to Z¢/Zp and using
the snake-lemma we get that the restriction a|z,, /7, must be already surjective.

Now we define the pre-sheaf Autc(B) whose sections for an open U C B are defined
as the set of all isomorphisms o« : I'(U, Op|y) — I'(U, Op|y) such that a is the identity
on the set U and for all x € U we have a,((Zc/ZB)z) = (Zo/IB). and « induces the
identity on Oc¢ .. Then I'(U, Autc(B)) together with the composition is a group. By the
discussion above the automorphism making the diagram above commutative are exactly
the global sections of Autc(B). Also the pre-sheaf Autc(B) is a sheaf.

Now the proof of Theorem 6.6. of [Lau71| applies without change in our situation, so
we get:
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Theorem 3.14. Let C C B and C' C B be two schemes with Y C — C an 1somorphism
and assume that we can extend ¥ locally. Then the local extensions determine a class
o € HY(B, Autc(B)), and o = * if and only if we can glue the local extensions to a global
isomorphism ¥ : B — B.

The other direction is also true: If two schemes become isomorphic after thickening,
the are isomorphic. This is just a special case of Theorem

Now, under some additional conditions, the pointed set H'(B, Autc(B)) is actually
computable, and is in most cases even a group.

The sheaf Autc(B) has a subsheaf Autc 7, /7, (B) of normal subgroups given by

LU, Aute 7, /7,) = {a € D(U, Aute) | ¢z is the identity on (Z¢/Zp).Vz € U}
and if we denote by @) the quotient sheaf we get an exact sequence of sheaves of groups:
1 — Autcz,/1,(B) — Autc(B) — Q — 1 (3.9)

Now as first condition, we assume I(Qj C Ip, that is for every open U € X we have
(Zc(U))? € Ip(U) in Ox(U). Then like [Lau7l], Proposition 6.4, we can construct a
morphism A from the sheaf of groups Autc 7., /7,(B) to a coherent Op-module, which
turns out to be an isomorphism.

Lemma 3.15. If I% C Ip, then we have a morphism
A HomoB(Qlc/k,IC/IB) — AutaIC/IB(B).

Proof. We define X for every open U C B. For every £ € Homo, (Qlc/k,Ic/IB)(U) we
define
Au(§) : Op(U) — Op(U)
fr— [+ E&d(f))

where d is the composition of the projection 7¢ g : Op — O¢ with the differential d¢
on C. For reasons of readability we write m¢ p also for m¢ gl if U C C'is open. Now we
show that Ay maps to Autc 7., /7, (B)(U). Then, because this construction commutes
with restrictions, the Ay glue to a morphism A of sheaves.

First we have to show that for every & € HomoB(Qlc/k,IC/IB)(U), we have

)\U(é) S ’HomoB(OB, OB)(U).

For this take f,g € Op(U), we have clearly Ay (&)(f + g) = Av(§)(f) + Av(§)(g), so it

remains to show that Ay (§)(f - g9) = Av(§)(f) - Av(§)(9)-
We calculate both sides:

Ao(€)(f-9) = fg+E&(mes(f)-dlg) +men(g)-d(f))
= fg+mcB(f)E(d(g) +mcB(9)E(d(f))
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and

Au(§)(f) - v (€)(g) = (f +&(d(f))) - (9 +£(d(g)))
= fg+ 1E(d(9)) + g&(d(f)) + £(d(9))€(d(f))

But the last summand is zero in Op(U) = Ox /Zp(U), because

£(d(9))€(d(f)) € Z&(U) € Zp(U)

and for the same reason we have ¢ g(f) - &(d(g)) = f-£&(d(g)), and we have, as wanted,
Au(§) € Homo, (O, OB)(U).

Now we want to prove that Ay is a morphism of monoids from the additive group
Homo, (Qlc/k,Ic/IB)(U) to the monoid Homo,(Op,Op)(U) with the composition.
For this take &1, & € Homo, (Qé/k,IC/IB)(U), then we have:

Av(€)(Au(€2)(f) = Ao (&) (f + &(d(f))) = f + &(d(f)) + La(d(f + &1(d())))
= [+ &(d(f)) + &d(f)) + &d(&(d(f)))
f

(
= f+&(d(f)) + &(d(f) = (& + &)(f)

The last term of the second row is zero because for every & € Hom@B(Qlc/k,Ic/IB)(U)

we have do{ =dcomgpof =0.
It remains to show that for all £ € HomoB(Qlc/k,Zc/ZB)(U) we have

v (€) € Autez, /7, (B)(U).

But the calculation above shows: Ay(€) is an isomorphism with inverse Ay (—¢§), so we
have Ay (§) € Aut(B)(U).

Now we have to show that A\y(§) is the identity on the set U and on O¢, for all
x € U. This is true because Ay (§) is the identity on C'N U, which follows from

mo.8(Av(€)(f) = me.B(f) + me,5(E(d(f))) = mo.B(f)-

Finally we have to prove that A\y (&) induces the identity on (Zo/Zp),. For this take
h € (Zc/Ig)y C Opg, then we have:

(AU(§)>$(h) =h+ gz(dl’(h)) =h+ g(dI(WC,B,w(h)» =h

because 7c (k) = 0. This finishes the proof. ]

Now we have the claimed isomorphism:

Theorem 3.16. If I% C Ip, then X\ is an isomorphism.
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Proof. We show this by showing it for an arbitrary open U C B. We use the same
notations as in the previous proof. We have to show that Ay is injective and surjective.
We start with the first one: Take £ € Homo, (Qé/k,IC/IB)(U) with Ay (§) = idy, then
we have for all f € Op(U):

f=idu(f) = A (§)(f) = f +&d(f)),

which means £(d(f)) = 0. But because m¢ p is surjective and d = d¢ o ¢ p we know
that

{d(f) | f € Op(U)} = {dc(g) | g € Oc(U)}

and this is a set of generators for Qlc/k(U), so we have £ = 0.
For surjectivity: For a given a € Autc z,,/7,(B)(U) define

£: 0p(U) — T /Ip(U)
fr—alf)-f

Then & maps really to Z¢/Zp(U) = ker(mc g) because from the commutativity of
(3-8) we get mc,p o @ = mc,p and with that:

me,B(E(f)) = meplalf) — f) = nepla(f)) —meps(f) =0

If we show that E is a derivation, that is it satisfies the Leibniz rule it induces a
¢ € Homo, (Q i Ze/Ip)(U) with € = ¢ odp. For this, let f,g € Op(U) arbitrary,
then we have:

E(f-9) = alfg) — fg=a(f)alg) — falg) + falg) — fg
= a(g)(a(f) = f) + f(alg) — )
= a(g)s(f) + fE€(g)
= g&(f) + f&(g)

The last equality follows because we have £(g) = a(g)—g € Zc/Zp(U), and with I2, C g
we get:

0=alg)s(f) —g&(f) € Zo/I(U)

Now we look at the map
U - Homoy, (U, Lo/ Ip)(U) — Homo, (R 4, Lo /Ts)(U)

which is given in the following way: For every ¢ € Homo, (¢ i Lo /Zp)(U) we compose
the derivation 1 o d¢ with m¢ p. This gives a derivation on Og(U), and thus by the
universal property of Qé/k(U) an element in HomoB(Q}g/k,Ic/IB)(U). In particular
all elements in the image of ¥ are zero on Z¢/Zg(U). If on the other hand, we have a
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Y e Hom@B(Qg/k,Ic/IB)(U) such that ¢’ is zero on Z¢/Zp(U), then composing v’
with (the set map) ”E,IB gives an element of Hom@B(Qlc/k,ZC/ZB)(U). So the image of
U are exactly the elements which are zero on Z¢/Zg(U).

So it remains to prove that £ is zero on Z¢o/Zp(U), but this follows directly

from the definition, because « induces the identity on Zo/Zp(U). So we have a
€ e HomoB(Q}J/k,IC/IB)(U) with & odp = £ ode o e g, and we have for f € Op(U):

Au(€)(f) = f+E&de(mes(f)) = f+&(dp(f) = f+E(f) = f+alf) = f=alf)

and this finishes the proof. d

Now Homo, (Qlc /k,l'c /Zp) is a quasi-coherent sheaf on B, so for cohomology Theo-
rem [3.1] gives us:

Corollary 3.17. If I% C Ip, then for i = 0,1 the isomorphism X\ induces
f{i(Ba AUtC’,Zc/IB (B)) = Hi<B7H0moB(Qlc’/ksz/IB))-

Now we want to restrict C' even more, and with this restriction we have are able
to calculate the obstruction space. This is the step-by-step way we mentioned at the
beginning of this section.

So from now on, we always assume the following condition:

Definition 3.18. If we say that we assume (S), then we assume that we have exactly
one ly with ny, = ngo + 1 and for all other [ we have n; = nj.

First we note, that (S) implies Z2 C Zp, so Theorem and Corollary hold.
Moreover we have Ip = Ip, Zc so because of OBlo = OX/IBzO the ideal sheaf Z¢/Zp of
C'in B is a quasi-coherent sheaf on By, and we have Z¢/Tp = vp, B (Zc/Ip) Now we
get a sequence of theorems leading to a way to calculate the obstruction space:

Lemma 3.19. If we assume (S), then the sheaves Autc(B), Autc 1, /1, (B) and Q have
trivial stalks outside from By, .

Proof. This follows because the condition defining Autc(B) and Autc ., /7, (B) are on
the stalks, and because (Z¢/Zp), is trivial outside By, we have Op , = O¢, there. [

Lemma 3.20. If we assume (S) and additionally n;, > 2, then we have Q = 1.

Proof. A sheaf is trivial if all stalks are trivial, so we take a x € B, and look at Q.

By Lemma, Q. is trivial outside B, so we may assume x € Bj,. By the discus-
sion after Definition [2.22| we get, that at every point we have Op , = Ox,x/(flzlo 7,

with fj, € Z), and f; € Z; if x € Ejy N E; and f; = 1 else. It follows, that we have

nlo—l

(IC/IB)J: = ( lo lm)/(f;;l()flm)
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Take now ¢ € Autc(B):. Because ¢¥|o., = ido., we have for ¢ € Opgy:
P(g) = g + ¢(g) with some morphism ¢ : Op, — (Zc/Ip).. In particular we
get

TLZO—I

¢(fl0 ) = (flo + ‘P(flo))mo_l
ny,—2

-1 ny, — 1\ ., 1 _
=f' 2 ( K )ffosa(fzo)”lo T p(fig)™
=1

ng,—1
= floo

The summands in the middle vanish because they are in (Z;,Z¢ ), = (Zp), and the last
one because ny, — 1 > 2 and so ¢(fi,)™0 ! € (Z2)s C (ZB)a-

Take now gflzlo_lffl € (Zo/Ig)s, we have:
W) = lafio ™ 1) = (g)(fio) o B ()
= (g + @)U M+ e(fM))
— (g+ (@) (o i 4 fio T (1)
= gf 0T T fog) = gfpo T

Here the last summands in the last two rows vanish again because they are in
So every ¥ € Autc(B), is the identity on (Z¢/Zp), and we have Q, = 1. O

Again this has an impact on the cohomology:
Corollary 3.21. If we assume (S) and additionally ny, > 2, then we have for i =0,1:
H'(B, Auto(B)) = H'(B, Homo, (1, Ic/Ip))

Proof. From the sequence (3.9) and Lemma we get Autc(B) = Autc 1, /1,(B), 50
we get

H'(B, Auto(B)) = H'(B, Autc 1., /1, (B)) = H' (B, Homo, (264 Lo/ Tr))

from Corollary O

The key tool for the calculation of HI(B,’HomOC(Qé/k,IC/IB)) is the following
reduction to B:

Lemma 3.22. If we assume (S), then

Homoy (Qlc/k7IC/IB) = /HOTTLOBZO (Q%}/k’BlO’IC/IB)'
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Proof. By Section we have vp, o (vp, C(Qé/k)) = Q}J/k, so we have
* 0’

we,5, Q) = e, (upy (o (Qep)) = a5, (L, o(Q6r)
by the functoriality of push forward. But then we get
Homoy, (1o, Q) i85, (Zo/Is)) = s, (Homoy, (s, Tc/Is))
again from Section O

For the cohomology this implies together with Section

Corollary 3.23. If we assume (S), then we have for i > 0:
Hi(Bv,HomOB (Qlc‘/k’ZC/IB)) = Hi(BloaIHomoBlo (Qlc’/k|Blo’IC/IB))'

From now on, we have to differ between n;, = 2 and n;, > 2. We do the first case
first:

Lemma 3.24. If we assume (S) and additionally ny, = 2, then:
Homoy, (s, Tc/Is) = Homoy, (U, jx-Tc/Ts)

Proof. Let I = (I, /ZIc)/(ZIp, /Zc)?. Then we have the canonical exact sequence

dp,
I =390 lp, — Q}Blo/k —0
Now we apply Homo, ( ,Zc/Ip) and get:
0

OdBl
0 — Homoy, (Q}Blo s Lo/I) = Homoy, (%4l Te/TB) —F Homo, (I,7c/Tp)

So all we have to show is odBl0 = 0, which we prove on the level of stalks.
For this take a x € By, f € I, and ¢ € HomoBl (Qlo/k|Bl0,IC/IB)x arbitrary. We
0

want to show ¢(dp, (f)) = 0.
Now take g € []'i=; (Zi) such that g is no zero-divisor in ((’)Blo)z. Because f is the
i

lo
residue class of some element of (IBzO )z and nfo =1, we have fg € (Z¢)., so fg =0 1in

1., which means:
0 - dBlO,$(fg) = delO7x(g) + gdBlO,$(f)
This implies for ¢:

9¢(dz(f)) = (9dp,, «(f)) = —o(fds(9)) = —feldB, 2(9)) =0

because the last term is in (Zp, Zc)s = (ZB)s. This shows ¢(df) = 0, because by choice
g is no zero-divisor. O
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If we denote by v the dual sheaf Homoy ( ,0p,), then we get the following
0
corollary for the cohomology:

Corollary 3.25. If we assume (S) and additionally n;, = 2, then we have a long exact
sequence:

0 — H(By,, (U, )" @ Ic/Ip) — H°(B, Autc(B)) — H(B,Q)
— HY(By,, (Q}Blo/k)v ® Ic/Ig) — HY(B, Autc(B)) — H'(B,Q)
Proof. By Corollary and and the previous Lemma we have
H'(B, Autc1,.1,(B)) = H'(B, Homo, (25 Ic/I))
= H'(Biy, Homoy, (Qcyils,Zo/Is))
= Hi(BIO,Hom@BlO (Q}Blo i Io/IB))

= Hi(BlovHomoBlo (QlBlO/k7 OBIO) ®ZIc/Ip)

Where the last equality follows because [Gro60]|, 0 5.4.2 allows us to put the tensor
product with Z¢/Zp in the second argument. So the claimed sequence is just the long

exact sequence of (3.9)) using Theorem O

Now we do the second case, nj, > 2:
Lemma 3.26. If we assume (S) and additionally ny, > 2, then we have
1 ~ Ol
QC/k‘Bzo = QX/I<:|Bzo'
Proof. Again we look at the canonical exact sequence
dc®1
Io/TE = Qxpple — Qpy — 0
Now the pullback-functor L*BzO,C is right-exact, so we get a sequence:

2 dc®1®1 1 1
Io/ZélB, — Qxule, — Qoplp, — 0

It remains to show do ® 1® 1 = 0. This can again be done by passing to the stalks, and
again, the only interesting points are the z € By, .

As above, if f € (Z¢/Z2)s, then f = gfnlo_1

. fi now with g € Oc .. We get

—1 .. -2 -2 n
do(f) = dew(gfy®  fi") = fudew(afy®  f7) + 95,0 fidew(fio) € (T2 ple)e
but this implies dc ® 1 ® 1 = 0. ]

If we combine the previous Lemma with Corollary and we get immediately:
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Corollary 3.27. If we assume (S) and additionally ny, > 2, then

fvfl(B, Autco(B)) = H! (Biy, HomoBzo (Q}(/k‘Bl(,?IC/IB))‘

As next step, we want to show that Homo,, (Qﬁ(/k]BIO,IC/IB) is the extension of
0

two invertible sheaves on Bj,. For this we need the normal bundle of Bj, in X: Because
By, and X are regular and of finite type over the algebraically closed field k, they are
smooth, and so by [Har77|, Theorem II 8.17 the canonical sequence is exact on the left:

0— Ip, /IjzglO — Q}){/k‘BlO — Qﬁlo/k —0

also by Theorem II 8.15 from there we know that Q}Bl Ik is locally free of rank 1, and so
0

the sequence above stays exact if we apply ’HomoBlO( ,O Blo):

0 — %Omoslo (Q}BZO Jk OBZD) — Homox (Qﬁ(/k|310’ OBZO) ( )
3.10
— Homo,, (Is,,/Th, . Os,,) — 0

and we define
HomoBlo (Zs,, /112310 ,0p,,) = NBzO/X

So we get:

Corollary 3.28. If we assume (S) and additionally ny, > 2, we have a long ezact
sequence

\Y
0 — H(Biy, Qp, . ®Zc/Ip) — HO(By, Homoy, (Ul Ic/Is))
— H°(Byy, N, ;x ®Ic/Ip) — H'(By, leBlo/kv ®Ic/Ip)
— H'(B, Autc(B)) — H'(Bi,,Np, /x ©®ZIc/Ip) — 0

Proof. All sheaves in (3.10]) are locally free over B, and so is Z¢/Zp, so tensoring gives
us an exact sequence

\Y
0 — Qp, " ®op, Ic/Ip — Homop, (Ul On,) ®op Tc/Is

— NBlO/X ®OBZO IC/IB — 0

Again [Gro60], 0 5.4.2 allows us to put the tensor product with Zo/Zp in the second
argument, and the theorem follows with Corollary because dim(Bj,) = 1 implies
HQ(BIO,’HomOBlO (Q}% i Ze/Ip)) =0 O

Summarising this section we see that the result of [Lau71], Page 110 stays valid in
our setting:
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Corollary 3.29. If we assume (S), then H'(B, Autc(B)) vanishes, if the following
cohomology vanishes:

o Ifny, =2: H'(By, (Q}Bl Y ©op,, To/Ip) and HY(B,Q)

o if Ny, > 2: H! (Bloa (QB /k) ®03l0 IC/IB) and Hl(BlovNBlO/X ®OBZO IC/IB)

3.4 Reducing the obstruction to combinatorial data

Now, (Q}Bl /k)v,

0
their degrees. As we will see, this helps us to control the vanishing of some of the
cohomology groups in Corollary

By [Liu02], 7.3.31 we have

degp, (U, 4)") = —degg, (U, 1) =2~ 2pa(By) (3.11)

N By, /X and Z¢/Zp are invertible sheaves on By, so we can calculate

Now we want to calculate deg(Z¢/Zpg) and degp, (NBzO /x)- For this we tensor the short
exact sequence
0— OX(_BZO> — OX — OX/IBZO — 0

n
with Ox(— > njB;). Together with
=1

IC = OX anBl and IB = OX Blo anBl
=1

and the three short exact sequences
0—Zc — Ox — Ox/Zc — 0,
0—>Zp — Oy — Oy/Ip —0
0—Zc/Ip — Ox/Ip — Ox/Zc — 0

we get:
0 0 Zc/In

J

n
OHOX(—BlO — Z n;Bl) 4)0){ %OX/IB —0
=1

0—)0)((—271;Bl) OX Ox/Ic*)()
=1

OX/IBZO<_ Z nEBl) 0 0
=1
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n

Now the snake lemma gives us Zc/Zp = Ox /Zp, (— »_ n;Bi). Thus we get:
I=1

n n
degBl (Ic/IB) = degBl OBZ anBl Blo : (— Zn;Bl) = _Blo : ZTL;BZ,

As a special case we get
Np,,/x = (T1y/T7)" = O, (—=Bi,)" = O, (Bi,)
and with that we have by definition
degp, (Mg, /x) = Bl - Biy-

Adding all results together, we get:

degBlo((QElo )" ®0p,, Lo/Ip) = 2 = 2pa(By) — By, - Z”sz
. (3.12)
degBlo (NBIO/X ®(93l0 IC/IB) = Blo . Blo - BZO . ZnEBl

Now we want to relate the degree of an invertible sheaf with the vanishing of global
sections:

Lemma 3.30. Let Y be an integral, one-dimensional, proper k-scheme and L € Pic(Y')
with deg(L) < 0. Then we have h°(Y, L) = 0.

Proof. Suppose, by contradiction, that we have a non-zero o € H(Y, £). From this we
get a short exact sequence
00y 3LF—0

The exactness is nearly clear, only the injectivity of -0 needs an argument: Let
oly

y € U C Y, such that L|y = Ox|y, we look at Ox(U) — Ox(U). By [Liu02],
Proposition 2.4.18 ¢ non-zero implies o|y € Op non-zero. But by Proposition 2.4.17
from there we know that Ox (U) is integral, so the multiplication with oy is injective.

Now F is a skyscraper-sheaf, which implies 2'(Y, F) = 0. Then by additivity of x
we get:

0> deg(£) = x(£) = x(Oy) = x(F) = (Y, F) > 0
a contradiction. O
Now, for a locally free sheaf £ on a smooth, one-dimensional scheme Y over k we get

from Serre-duality:
HY(Y,L) = H(Y, LY @ Qy )"

If we combine this with Section [3.2] Theorem [3.14] Lemma and (3.12) plus (3.11))

and also use deg(L") = —deg(L), we get:
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Corollary 3.31. If we assume (S), then:
n
HY(By,, (%lo/k)v ®0p, Zc/Zp) = 0 if 2(2pa(By,) —2) + By, - Z n;B; <0
=1
and if we additionally have ngo > 2, then
n
H'(Byy, N, /v ®0p, Lc/Ip) = 0 if 2pa(Biy) =2 = By - Biy + By, - > B <0
I=1
If By, is isomorphic to P} we get a better result:

Corollary 3.32. If we assume (S), and if B, = P}, then:
n
Hl(BlO, (QIBlo/k)v ®OBZO Ic/IB) =04 —2+ Blo . ZnEBl <1
=1
and if we additionally have nEO > 2, then
n
Hl(BloaNBlO/Y ®0p, Zc/Ip) =0 if — By, - By, + By, - ZHEBZ <1
=1

Proof. For L € Pic(P}) & Z we have £ & Op1 (deg(L)), and thus Lemma 5.3.1 of [Liu02]
and an explicit calculation based on Section 5.1 from there gives us:

0 deg(L) >0

(3.13)
—deg(L) —1 deg(L£) <0

W' (P}, £) = {
So h'(P}, £) = 0 if deg(£) > —1, and the corollary is a direct consequence of (3.12)). [

Now Corollary gives us a new proof of Theorem 6.8 of [Lau7l]:

Theorem 3.33. If we assume (S), ngo > 2 and if the conditions of Corollary[3.81] or
Corollary are fulfilled, then the map CEQ(C) — CEQ(B) mapping [C'] to the
equivalence class of any extension of C' is a bijection.

Proof. From the conditions of Corollary or Corollary we know that the coho-
mology groups in Corollary vanish. This implies H'(B, Autc(B)) = 0 which then
with Theorems and implies that the map is well defined and surjective. But by
Theorem the map is also injective. O
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3.5 Applications for singularities
Now we want to come back to the situation where B is supported by the exceptional
divisor of the minimal good desingularization of an algebraization of a normal, two-

~ n
dimensional singularity. For this fix one anti-ample cycle Z = > r Ej for (S, s) (Defini-

=1
tion [2.56f).
n

Now we construct Z stepwise, for this let » = Y r;, we choose jo, ..., jr—1 € {1,...,n}
=1

as follows:
[ ] Zl = Ej
« 7, =7

e Forallie{l,..,r— 1} we have Z+1 = Z + E;

By construction, if we set B = ZH and C' = Z; condition (S) is true, and we can use
our calculations above.
We define

_ .z
’ ie{1,.i§-1}( )
and
A= m 0,2(2pa(E;) — 2),2pa(E;) — 2 — E?
je{l,z.l.).{,n}{ (2pa(Ej) — 2),2pa(E;) 5}

and as a consequence we get the result we wanted. This means, we have proven Theorem
6.9 of [Lau7l]:

Theorem 3.34. Let Z, 7 and X as above. If we have v > max{\ + 7+ 1,1} and if at
least one ny is equal to 1 additionally v > 2, than Theorem [3.35 gives us a bijection

CEQ(vZ) — CEQ((v +1)2)

n

Proof. Let the Z be as chosen above. We define Z; = 1/24—2 = > s1:F, then Zy = vZ
=1

and Z, = (v+1)Z, so all we have to show is that the natural map CEQ(Z;) — CEQ(Zi41)
is bijective for all i € {0,--- ,7 — 1}. But by the second condition on v we have ngo >2
in Theorem [3.33] so the map is bijective using this theorem if we have:

n
0> 2(2pa<Eji) - 2) + Eﬁ : Z Sl,iEl
= 3.14
. (3.14)
0> 2pa(Ej,) —2— Ej, - Ej; + Ej - > siiF)
=1
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But by construction, we have (using Ej, - Z<—land -A—7—1> —v):

n
Ej,-> siiE = Ej,-(vZ+ Z;) =vEj,- Z + Ej, - Z;
=1

(3.15)
<—v+7< - A—7—-1+7

< =-A-1

So because of A > 2(2p,(E;,) —2) and A > 2p,(Ej,) —2 — Ej, - Ej,, also by construction,

(3.14) is true. O

As a corollary we get the same result for an arbitrary B > vZ:
Corollary 3.35. If B > VZ, then Theorem gives us a bijeclion
CEQ(vZ) —s CEQ(B)
Proof. There exist a | € N with B < (v+1)Z. Now Theorem tells us that the maps
CEQ(vZ) — CEQ(B) — CEQ((v + 1)Z),

are injective, but by the previous theorem the composition is also bijective, so the first
map is already bijective. O

Now our v still depends on the choice of the j;, but there are only finitely many
choices, so we have a minimal 7, which we call 7,,;,. Then we define:

Definition 3.36. Let (S5, s) be a normal, two-dimensional singularity and Z an anti-

ample cycle for (S, s). The significant multiplicity of Z is the smallest integer v such that
. n

V> A+ Tmin + 1, 0ged (v, p) = 1 and if at least one ny in Z = ) n Ej is equal to 1, then

=1
also v > 2.

Note that the condition dg.q (v, p) = 1 is not necessary for the theorems of this section,
but later it simplifies the formulations.
Remark 3.37. By definition the v only depends on the dual graph of Z.

Now we can simply take one order jg,...,jr-—1 such that 7 is minimal, and immedi-
ately get the following corollary of Theorem respectively Corollary

Corollary 3.38. If v is the significant multiplicity of Z and CEQ(VZ) = {[VZ]}, then

for all B = zl: n E; we have CEQ(B) = {[B]}
=1

The translation back to singularities is:
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Corollary 3.39. Let (S,s) be a normal, two-dimensional singularity, Z an anti-ample
cycle for (S,s) and v its significant multiplicity. Then S is taut if and only if

CEQ(iZ) = {liZ]}
for one j > .

Proof. Let v be as in Theorem By Corollary we have CEQ(jZ) = {[jZ]} for
one j > v > v if and ounly if CEQ(vZ) = {[vZ]}. So the Corollary is an immediate

consequence of Theorem and Corollary O
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4 The plumbing scheme and its applications

The last corollary of the previous section reduces the question whether a singularity (S, )
is taut to the question whether CEQ(vZ) is trivial. For n = 1 and n = 2 this question
can also easily be answered with the techniques of the previous section. But already
for n = 3 some of the obstruction groups given in Corollary are not trivial. Also
we have neglected the role of H'(B, Q) and we have no satisfactory answer to this in
arbitrary characteristics, so we bypass this question.

The idea behind this section is the following: Let f : X — S the minimal good
desingularization and £ = f~!(s);eq. Then by Lemma for S to be taut, we have
necessarily that all integral components E; of E are isomorphic to IP,lC and every Fj

n
intersects with at most three others. Let I' be the dual graph for some cycle Z = Y n E;
=1

on E. Now we want to construct a special realisation of I', that is another scheme P,
combinatorially equivalent to Z. This P is the plumbing scheme for Z or, because it only
depends on I, for the dual graph.

For p = 0 and in the complex-analytic category Laufer has shown that CEQ(Z) is
trivial if and only if H*(P, Homo, (leP/w Op)) = 0 for this special P. (Theorem 3.9 of
[Lau73al). This criterion cannot be transferred to p > 0 without changes, because we
have an easy example of a taut singularity having H'(P, Hom@P(Q}D/k, Op)) # 0 for
some extension of f~1(s). We give this example in Section But at least we can prove
that Hl(P,HomoP(Q}D/k, Op)) = 0 implies CEQ(Z) = {[Z]}. We use this in the next
section to show that Laufer’s tautness criterion implies that tautness for p = 0 implies
tautness for almost all p > 0.

Now we first give an example of P, then the general construction of the plumbing,
and finally we discuss Laufer’s criterion in the algebraic setting and for p > 0.

4.1 Example and notations
4.1.1 Example

As an example, we want to construct P for the following dual graph T

—uy
(ng) ™Y1 —F2 13
& () (n2) (n3)

(ns5)

That is, we have by = IP,{: which intersects with three others. We put this intersection
at 0, oo and 1. For Ey = IP}C we put the two intersections at 0 and oo, the three other E;
have the intersection always at 0. Now we give five open (but not affine) pieces W; of P
and then we specify how we glue them. The piece W; always consists of one E; and we
have affine parts of E; in W; if and only if F; intersects Ej.
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The first piece covers W; and consists of the two affine charts Spec(Rip) and
Spec(Ry,1) glued along Spec(R 01):

Rio = klz1,0,y10]/ (2710 — 1) yTh)
Riq = klri, yal/ (@0 (g — 1)™yrh) (4.1)
Ri01 = klz1,0,y1,0, 21,1, y11]/(T1,07110 — 1,910 — 27911, (21,0 — 1)™47h)

This piece is a IP}C with three A,lﬁ attached at 0, oo and 1. Later we glue W; along this

three affine arms to the Ej. If we draw the IP,% as a circle, and the A}C as straight lines,
we get the following picture:

Es

E4 E2

For W5 we glue the following affine charts:

Roo = k220,520, 550/ (s3,0(y2.0 — 1) — 1, 25 y53)
Ry = klr21,y21]/ (253 y53) (4.2)

Roo1 = klx2,0,Y2,0, 2,1, 92,1, 52,00/ (550 (y2,0 — 1) — 1, m20221 — 1,420 — 253921, 45%)
That is, Wy is a IP,IC with two affine arms, where the arm in the Ry i-chart will later be
glued with E3 in W3 and the one in the Ry g-chart will later be glued with Ey in Wj.

We have to remove the point 1 in the Ry o-chart because later we glue E5 to Fy at this
point. In this case the picture is

E3 El

Es
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Now W3 is given by the following charts:
R30 = klx3,0,930]/(25393%)
R31 = klz31,v31]/(y37) (4.3)
Rs01 = klx30,93,0,73,1,Y31]/ (30731 — 1, Y30 — 25°1¥3,1, Y30

This is a ]P/,lc one Ak attached at 0.

Ey

Es

Finally the last two pieces, Wy and Wi, are given by gluing the following affine schemes:
Rio = kl210, 910,501/ (10 (w0 — 1) — 1, 25y,')
Ry = klzn,uial/(yh) (4.4)
Rior = klz1.0, 1.0, 21,1, y11) /(59 (o — 1) = Laorin — 1yio — @y, u'h)

Again we have to remove the point 1 in the affine arm corresponding to Ej.

Eq

E;

We specify the gluing of this five pieces by giving the affine schemes W1 NW;, [ = 2,4,5
and Wo N W3 as Spec(R;;) with the following Ry:

Ry = k[x1,0,51,0: 72,0, 42,0, 52,0}/ (550 (42,0 — 1) — 1, 21,0 — y2,0, 1.0 — 2,0, 21 3y1'h)
Ros = k[x2,1, 92,1, 23,0, Y3,0]/(T2,1 — ¥3,0, Y21 — 96'3,0,363,31313,21)
Rig = klz11, 91,1240, 94,0, 530/ (s70(ya0 = 1) = Lz1,1 = a0, 91,1 — 24,0, 274 97))

Ris = k[£1,0,91,0, 75,0, Y50, 55.0)/ (s5.0(y5.0 = 1) = 1, (1,0 — 1) — 45,0, 1,0 — 5.0, Yo oV} b)
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The resulting scheme is the plumbing scheme for I'. The scheme P is embedded into
a smooth, two-dimensional scheme, because if we omit the last equation in every affine
chart, we get regular, two-dimensional, affine schemes.

4.1.2 Notations

Before we start with the general construction of the plumbing, we have to fix some
notations for the rest of this section. For this section, by Z we always denote a divisor
on a smooth, two-dimensional scheme X which satisfies the properties of an exceptional
divisor of a good desingularization of an algebraization of a normal, two-dimensional
singularity. We denote by Ej the n integral components of Z. By 1; we denote the
negative of the self-intersection-number of Fj, that is vy = —F; - E;. Then we necessarily
have v; > 1. Finally by ¢; we denote the number of Ej, j # | with E; N E; # (.

n

We also make some assumptions on Z, first we assume that Z = ) n;E; with n; > 0.
1=0

Also we assume that p,(E;) = 0 and t; < 4 for all [. This is no important restriction,

because if the last two conditions are not fulfilled, then we know already from Lemma
that the corresponding singularity can not be taut.

4.2 The plumbing scheme

Now we want to give the general construction for the plumbing scheme for some Z.
The example in Section already contains all the ideas we need. First we want to
prove that, for any Z, we can decompose Z into open but not affine pieces isomorphic to
schemes given by gluing affine charts like to . To give the general form of this
pieces we need some more notation. For Ej; and 1 <14 <t; let Ej, be the ¢; components
with E; N Ej, # (0. As we have seen in the example, for ¢;, = 3 we need to invert some
elements of the form s;9 = 1,0 — 1 or 531 = y;,1 — 1. These s are more or less a technical
problem. We need to invert these elements so that every Wj only contains points of Z
which lie on E; or on one Ej,. For all practical calculations we need later, the s can
be ignored, because inverting this elements is just a localization, and those commute for
example with taking Ké&hler differentials.

First case: If ¢t; = 1, then W; has the following affine charts:

Rip = k[xl70>yl70>51_701}/(51_,015170 - 1,33%1 yﬁ(l))

Ry = klzn,uial/(yh) (4.5)

_ -1 v ny
Rior = k[0, y1.0, 2,1 yial/ (19800 — L, w0z — 1, y0 — 27491, Yyp)
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Second case: If {; = 2, then with W, has the following affine charts:

Rio = klz10, 410, S[&]/(SZ&SI,O - 1,33%1 Y'o)

R = k[wz,hyl,l,31_,11]/(51_,1131,1 - szjfyfll)

(4.6)
Rio1r = k[21,0, 91,0, 21,1, Y115 S/ (S Stm — 1L w101 — Lyno — 24 yi1, ')
m=0,1
Third case: If t; = 3, W, has the following affine charts:
Rio = K[210, 41,0, 51,01/ (810 510 — 1733%1 (21,0 = 1)"3y,'5)
Riy = Kl v, 50401/ (511 811 — 1v$Z]iQ (z1 = 1)"sy;7) (4.7)

-1 -1 v N, M
Rior = k[0, y1,0, 00,15 Y15 Sy )/ (S stm — L zozin — Loyio — 2y, (2o — 1)™3 )
m=0,1

Now let V; be an open neighbourhood of Ej in Z. We want to show that we can choose
V; isomorphic to one W:

Lemma 4.1. For every E; we have an open Vi C Z isomorphic to W, given by the

appropriate one of the affine charts (4.5), (4.7) or (4.7).

Proof. We have F; = IP,1€ and we know that, for every 3 points on IP,{:, we can map these
three points on 0, oo and 1. So we can choose V} in such a way that (V]),eq is “a IP}C with
t; affine arms”, or to be precise, (V})yeq is isomorphic to (W))yed,

Now we want to extend the isomorphism between (W)eq and (V})eq to one between
W; and V;. We do this as in Section That is, we thicken either the IP,i—part or one
of the affine arms from the n-th to the (n + 1)-th infinitesimal neighbourhood and show
that we can extend the isomorphism.

First we observe that extending at the affine parts is always possible because we can
always extend locally on each affine arm via Theorem and this glues because the
extensions are trivial on the ]P,lg—part because there is simply nothing to extend. So we
first extend at the IP,lf—part as much as needed, and then simply extend at the affine
parts. The only difficult step for the IP,i—part is the first one. For this we calculate
the Hl(I/Vl,Aut(Wl)red(Wl)) by hand. We do this in Section and get that two such
schemes must be isomorphic if and only if the v, are equal.

Now we want to use Corollary to show that all cohomology groups in Corollary
vanish. For this we use the degrees calculated in and like in we get the
vanishing using v; > 1 and #; < 3. This shows that we can indeed choose W; and V;
isomorphic. O

Now we can construct the special scheme P.

Definition 4.2. Take an open covering W; of Z as in Lemma [£.1] The Plumbing scheme
for this Z is the scheme that we get if we glue the W; in the following way: For all
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Ey N Ej = {x;} let 4; and i; be such that V; N'V; = Spec(Ry;,) N Spec(R;;;). Then we
glue W; and W; along Spec(élj) where

o S W et L N It -1, -1,
Ry = k[ml,il’ylﬂ'l’x]ﬂj’yjalﬁ S1p Sj,ij]/( Sy, Slip — L, 85,8045 — 1,

T U UYis — Ty Y ")
Gy — Yl Y Lis T 5,914,

with Zp;, = @ — 1if j4 = j in Wy and Z;;, = 21 else, and analogously for z;;;
depending on j, = [ in W;.

P only depends on the dual graph of Z, so we also say that P is the plumbing scheme
for this dual graph.

Remark 4.3. P is by construction embedded into a regular, two-dimensional scheme, so
P is combinatorially equivalent to Z.

From this we can get the following global description of Z:

Lemma 4.4. Let V; = W, be open neighbourhoods of E; in Z as in Lemma[4.1. For
Ey N Ej = {xy;} let iy, ij, T15, and Tj;; as in Definition , Then we can find relations

Tji; = Yui(Qy g + TuiYiPyg) and Yji; = T (azj + i Y Palj)

with
X e -1 -1
aSC,l,j? ayvlvj S k and px7l7j’pyvl7j S k[xlvll ) yl?’Ll ) sl,’il’ Sj,lj]7

such that V; N'V; = Spec(Ry;,) N Spec(R;;,) = Spec(Ry;) with

i s s b s D I
le - k[‘rl,il ’ ylvil ’ x]vzj ’ ijzj ) Sl,il ) Sj,ij]/( Sl,il Sl’ll 1’ Sj,ij 8-777’j 17
Tji; — Uiy (Qylg + T YiPy,lj)s

Yii; — Ty (@l + i YiiPa,l,j)

~7’Lj ny
10, Yi)

and Z is isomorphic to the glueing of the W) along the Spec(Ry;)

Proof. The idea behind this is that if two schemes are built of isomorphic open charts,
then both of them can be obtained by glueing via an automorphism of the double inter-
sections U, of the open charts. Now P and Z have a common set of open charts, the
w.

For all [, j with E; N E; # () we do the following: Let ¢;: W; — V; and ¢ : W; =V}
be the isomorphisms, then 4,0;1 o ¢y induces an automorphism ¢; ; of W; N W;. Now let
g1,; be composition of the canonical map W; N W; — W, with ¢;;. If we do this for all [,
J, then by [Liu02], Lemma 2.3.33 the scheme Z is isomorphic to the scheme that we get
if we glue the W, via the g; ;.



64 4 THE PLUMBING SCHEME AND ITS APPLICATIONS

By Definition 4.2| we know that W; N W; = Spec(élj) and we have
B ~ 1 1701 -1 ~n;
le = k[xl,ilayl,ila sl,il’ Sj,ij]/(sl7il Sl — 1, 5]‘71‘_7.33',1']' - 17171,;.%72[)-

So it remains to prove that ¢;; maps y; to 2y (az1; + %14,Y1,,P2,;) and y; to
Y, (Qy.15 + T, Y1, Py,5)- We show this without loss of generality for Z;,.
By construction ¢ ; is the identity on the underling topological space, so the only
possibility is that z;; is multiplied by some unit in R;;. But the units in R;; are of the
~ . ~ -1 _—1 -1 —1
form ag1; + Z1i Y Pt With azu; € E[Tra, yua, sp5, 551/ (815,500 — 1,855 854, — 1)
~ -1 -1
and valxj € k[xl7ll ’ ylvil7 Sl,il’ S],ZJ]
First suppose that a,;; = s?fil for m > 0, then, because of s;;, = y1;, — 1, we get
that z;;, maps to 55171-15}”1-[ = (=1)"Zy 4, + T14,y1,:,ps for some polynomial ps. But then we

can simply add ps to p,; ;. Now suppose az;; = Sl_z:n for m > 0, then we have
o~y .~ -m_m __ = —m m
Llip = Liy S5, St — ThiS ((=1) +yl,ilp8)
or
~ -m m (s ~ -m
xl,ilsl7il = (_]‘) (xlvil - xlailyl1ilsl,il ps)

and again we can add slji’zﬁ‘ps t0 Dy 1. 5-

Suppose finally that a,;; = 3;’:‘1-], = (7145, — 1)™, with m # 0. Then the unit
Sji; = Ty — 1 maps to EEMS%J_ — 1 which is no unit, a contradiction. Because the
multiplicative group in which a, ; lies is generated by £*, s;; and s;ilj this shows that
we indeed have a,;; € k*. O

4.3 Calculating H'(P,0p)
4.3.1 The Mayer—Vietoris sequence

In the next section, we need the following variant of the well-known Mayer—Vietoris
sequence. All notations are defined in Section

Theorem 4.5. Let X be a separated scheme, and F a sheaf on X and I o totally ordered
set. Further let U = {(U;) }ier be an open covering of X. There is an exact sequence

0— HYX,F) — @ H U, Flv,) — 2' U, F) » H'(X,F) — P H (Us, Flu,)
il el
Proof. From the definition of Cech cohomology, we get an exact sequence
0 — HY(X,F) — @ H(U:, Flu,) — Z'U,F) 2 H'UF) — 0 (4.8)
icl

This sequence gives us the first three terms of our sequence. Then, again by Proposition
5.1.1 of [Gro55], we know that the natural map 7 : H'(U,F) — H' (X, F) is injective.
Now we interpret H'(X,F) = H'(X,F) as the group of F-torsors as in Theorem
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If we have a F-torsor, then by restricting to U; we get a F|y,-torsor. If we take the
direct sum over all these restrictions, we get a map HY(X,F) — @ HY(U;, Fly,), and

i€l
the kernel of this map are exactly the torsors trivialized by U. But by Theorem [3.7] again,
those are given by H(U, F). Summarizing we get that

0— H'U,F) = H'(X,F) — @ =H'(U;, Flu,) (4.9)
jeln,

is exact and thus also the concatenation of (4.8) and (4.9) via 7o A, which is the Mayer—
Vietoris sequence we wanted. ]

4.3.2 Reduction to the rank of a matrix

Now we want to calculate H'(P, Homo, (Q}D/k7 Op)). In this section we show that, at
least if all n; are prime to p, we may calculate H'(P, Hom@P(Q}D/k, Op)) by calculating

the rank of a matrix Mp over k. For this we first show that H(P,Homo, (Q}D/k, Op))
is isomorphic to the quotient of two — a priori infinite dimensional — k-vector spaces.
Then we reduce this quotient to the quotient of two finite dimensional k-vector spaces,
and finally we construct the matrix Mp.

To simplify the notation we use the following standard definition:

Definition 4.6. For a k-scheme X we set Ox = Homo, (Qﬁf/k’ Ox).

Reduction to a quotient We want to use the Mayer—Vietoris sequence to reduce the
calculation of H(P,©p) to a quotient. For this we set I = {1,....,n} and U = {W}e;.
Then Theorem .5 provides us with an exact sequence

0 — HP,0p) — P H(W,,0p|w,) — Z'U,Op)
- (4.10)
— H'(P,0p) — P H' (W1, 0p|w)
=1

This sequence is in this form still not much help, but under some conditions on the
n; and p we can show that the last term vanishes, and taking direct limit makes the third
term nicer. Using [Liu02], Proposition 6.1.24 (c) we observe:

Oplw, = Homo,|y, (Xpilwi, Oplw,) = Homoy, (y, 11 Ow,) = Ow,

and use the explicit calculations done in Section to see that H' (W}, ©p|w,) = 0 if and
only if dgeq(n, p) = 1. So the last term of vanishes if and only if all dgeq(ni, p) = 1.

Now we want to make the third term of nicer. Let P, be the image of Ej
under the isomorphism from V; to W;. We take a decreasing system of open coverings

Ui = {U}}, j € N such that for every [ we have P, C U ¢ W and P, = () Uj (as
jeN
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topological spaces). Now, as discussed in Section ZY(U,0p) is defined via the
exact sequence
0— Z'U,0p) — P H'U], .0p)— P HU,, Or).

(lo,l]_)GIz (lo,ll,lz)EIS
lo<ly lo<li<ly

Because of P, N P, N P, = () we have
: 0(r7J J J -
h_r)nH (U, N0}, nU;j,,0p) =0
JjeEN
and in the case P, N P, = () we have also
‘ 0/0n ,
h_r)nH (Ulj0 N Ui,@p) =0.
jeN
In the remaining case x;,;, € P, N P, we have
. 00 ,
h_I)nH (Uljo N Uljl,@p) = ®P7m10711'
jeN

Now taking direct limits preserves exactness, so we get

11_1'I>1Z1(Z/{J, @P) = @ @P@lo,ll (4:].].)
JjEN (lo,l1)€12
zl()vllepl()mpll
Finally we define
Opp, = @HO(Ug,@p). (4.12)
jEN

and use the Mayer—Vietoris argument (4.10) for every U’ and take the direct limit, so
we get an exact sequence

0— HO(P, @P) — @GP:PL ﬂ) @ @P’xloyll — Hl(P, @p)

=1 (lo,ll)GIQ
Il()vlleplompll (413)
: (777 .
— @ hi?H (Ulv@P‘UlJ)
lel JEN
5gcd(”l’p):0
in particular, we get the reduction we wanted:
Lemma 4.7. If 0gcq(ny,p) = 1 for all I, then
n
HPOn = @ Oy, [or@6nn) (1.14)
(lo,ll)GIQ =1

Ty EPloﬁPll
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Remark 4.8. If we do this also for H'(Z,0) the terms we get in and are
isomorphic to those of P. So the only term in (4.13)) which differs is the map pp which
is replaced by a map pz and the difference depends on the differences in the glueing of
Z and P.

In particular one might reformulate Lemma [£.7] for Z.

Reduction to finite dimensional vector spaces Now we want to reduce the calcu-
lation of the quotient in to a quotient of finite dimensional vector spaces. For this
we look at the elements of ©py, ; for PN P # () and show that all but finitely many of
them are always in the image of pp.

For PN Pyj # () every element of ©p, . is of the form

Z Za“l‘lzylza + Z Z Buvxl Zy“a (4:15)

§= 5gcd(nJ7p)t =0 u=0v= 6gcd(nlap)

with agt, Buy € k and ¢ equals 0 or 1, depending on the chart of W; in which we find
x;;. To simplify the notation, for the next two paragraphs we assume without any loss
of generality ¢ = 0 and j = j;.

The following two lemmata reduce the elements of which are relevant for the
calculation of H'(P,©p) to only finitely many:

Lemma 4.9. For all a > ny, b > 0 there are elements f,g € Op p, with

a gcd (njl 7p)+b a
pr(f) = Yiow, D

and

0
b

pr(9) = YloTlom—
( ) 1,0 l,anl’O

in Opg,; and pp(f) = pp(g) =0 at every other Opy, , .

Proof. For t; < 2 this follows easily from the local calculations in Section because
for example yl‘loa:lboﬁ is in OR, 0 and trivial in ©Og, 01 (¥ = 0 there) so it glues to an
element of ©p p,. For t; = 3 we need an extra argument. Formally on Opg, . we have

(w10 — 1)71 = - Z xl()? and so we get
=0
[o@) njl
(l‘l,o -1)" njsynz = —y%(z $Zo)nj3 = _y%(z x}fo)mg
n=0 n=0
there. So with
lel a
f —ZLo\T1,0 — 1 33 x n]3y
ol Qo g

we get pp(f) = 95?,09303%,0- Finally we get g with pp(g) = x;’pyl‘f{]#m simply by
replacing ﬁio with #3[70 in f. O
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Lemma 4.10. For all a > 0, b > n; there are elements f,g € Op p;, with

0
_,a b
pp(f) = yl’oxl’oiaxw

and 5
dgcd(ny,p)+a _p
pP(9) =y Tom —
( 1,0 1,0 3yl,0

in Opg, ; and pp(f) = pp(g) = 0 at every other Opru;, i,-

Proof. The argument is the same as before, but here we additionally use the gluing for
the plumbing from Section [6.3.1] O

This shows: For the calculation of H'(P,©p), we only have to know whether for all
[ the following finitely many elements of ©py, ; are in the image of pp:

nj_l n;—1 n;—1

i—1
o 3 9
Z Z Oéstxioyltyoﬁlo + Z Z ﬁuruxzoy;}’o% (416)

SZ(Sng(anJ) t=0 u=0 U:‘Sgcd(nlap)

The matrix Mp Now we have a closer look at the remaining elements of ©p p,. These
are only finitely many, but depending on the value of ¢; we get different lists. For better
readability we assume dgeq(ng,p) = 1 for all . If 6gca(n,p) = 0 for some [, then the
lists remain finite, but we get some extra terms. For the calculations we use the given
covering for the W;. So the elements of ©p p, are just the global sections coming from
the calculations in Section

Depending on ¢; the elements of © p p, are contained in the following lists: In all three
cases the %l,o are with 0 < a < (b —1) and 0 < b given by:

0 nb-1)—a p O

— ==z — 4.17
Y10 bl U1 oY1 (4.17)

a ,b
L1,0Y1,0

For 8%0 we have look at t;. For t; = 1,2 we have with 0 < a < (y;b+ 1) and 0 < b:

9 d
b b—a+2 b b—a+1 b+1
T} 0Y10 D210 = —g:le Tyl 0114 + szZzI a i o (4.18)
For t; = 1 we have additionally for 0 < b:
9 0
b vb+2. b yb+1 bl
Y =—x +yx Yo (4.19)
l,1 0351,1 1,0 1,0 aiﬁl,o 1,0 1,0 33/1,0

Finally, for £, = 3 we have for 0 <a <yband 0 < b :

0 b 0 b 0
wfoyto(wio — )a— = 2l Tyl (g — 1) g— — wa) )y (g — 1)54.20)
0z Oy oyi.1

From this and Lemma [.7] we immediately get the following Theorem:
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Theorem 4.11. If §gea(ny, p) = 1 for all 1, then H'(P,©p) = 0 if and only if the image
of A.17), (4.19), M.18) or (4.20) under pp generates all elements of the form (4.16)).

A nice consequence of this theorem is that it provides a way to actually calculate
dimy(H'(P,0p)). For this we construct a rp x cp matrix Mp over k in the following
way: For every point x;; and every element of we add one row to Mp. Then for
every P, and every Element of (4.17)), (4.19)), (4.18) or (4.20) we add a column to Mp.
The entries in Mp are simply the coefficients of the element associated to the column as
an expansion in the element associated to the row. We give an explicit example of Mp
in Section [5.2.2] Note that, by construction, the entries of Mp are integers. Also by the
construction of Mp we get the following corollary of Theorem [.11}

Corollary 4.12. If 64cqa(ny,p) = 1 for all I, then dim(H*(P,©p)) = rp — rank(Mp)

Remark 4.13. Theorem and Corollary work analogously for H(Z,0z), but
My is in practice much harder to write down explicitly than Mp.

As a consequence of the corollary we get the following comparison theorem between
p=0and p>0:

Theorem 4.14. Let Py be o plumbing scheme over C, and for oll p > 0 with
dged(ni,p) = 1 for all | let P, be the plumbing scheme for the same dual graph over
an olgebraically closed field of characteristic p. Then we have

dim(H1<P07 ®Po)) < dim(Hl (va G)Pp))
and equality for all but finitely many p.

Proof. By Corollary we have dim(H'(P,,Op,)) = rp, — rank(Mp,) for p = 0 and
p > 0. By construction rp, only depends on the dual graph, so it does not change for
different p. Also we get Mp, if we take all entries of Mp, modulo p. Now rank(Mp,) = m
is equivalent to the existence of one non-vanishing m x m minor, and all (m+1) x (m+1)
minors vanish. But the minors of Mp, are just the minors of Mp, modulo p, so the rank
can only decrease, thus the dim(H'(P,, ©p,)) can only increase.

Finally the rank decreases if and only if p > 0 divides all m x m minors of Mp,, so
it decreases for exactly the prime factors of the ged of all non vanishing m X m minors
of M, Py- ]

Consequences for H'(Z,07) Our goal is to show, that H'(P,0p) = 0 implies that
every Z combinatorially equivalent to P is already isomorphic to P. We prove this later,
but now we are able to prove that H*(P,©p) = 0 already implies H!(Z,0z) = 0 for all
Z combinatorial equivalent to P, which of course is a necessary condition for Z to be
isomorphic to P:

Theorem 4.15. If dgea(ny, p) = 1 for all l, and we have H (P,0p) = 0, then we have
HY(Z,0z) =0 for all Z combinatorial equivalent to P.
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Proof. By Lemmawe have to prove that the surjectivity of pp on every ©py, ; implies
the surjectivity of pz on every Oz, .. By Remark we know that the only difference
between pp and pz is the gluing. To make this precise: By the calculations of Section
|6 3. 1| and |6 3. 2| we know that Opa,, = @lej, and they are as k[xl ”,yl al/ (T, ;lyl 1)

module generated by z;, 3xz,il and 4, 3yz,z‘,' Now, for all f = af zlyl i azl € Opp, we

have pp(f) = pz(f) = Eﬁ”yl[’,ilﬁjil, and the same with - yz,il‘ In partlcular, Lemma

stays true with pz instead of pp.
Next we want to look at the image of Opp, in Opy, ;. Suppose we have a f € Opy,

with pp(f) = yﬁiﬁ?,nﬁ?,, which we also may write as 7 i y] i dy . But then by (6.5)
and the charts of Lemma we get:

0 0
e~ b _ ,a+1 ab . 3P +1
pZ(f) - x?,ljyjﬂj ay]l ZJJyl 1] x,l,j l,i; q~ a~ . + ylazl IX) Rf (42]‘)

with some Ry. Analogously, if we have some g € ©p,, ; with

0 0
_ ~b
pP(g) - yla,il'rl,il ayl’ j ij y] ij a

] 7/]
then we have

0
_ ~a b
4.22

a+1~b

a a b b 2 2 0
1Y, B 1 800 (O T Py i ae— F Oylim—) T Y5 T Ry
Y,t,J 1 J l J l 8xl,il 83%1,1‘, K7 1

Now we want to prove that we have Lemma for Z. For this, let b > n;. Because

we have Lemma [£.9| for Z, we only have to care for a < n;. For a = n; — 1 the terms
yla:lx%’“Rf and y‘”l:c?Z R, vanish. But a,;; and ag j are units in &, so (4.21)) shows us

1,7;
that y;' ”xl N 9 isin the i image of pz, and with this shows that also yﬁilizil%”l
is in the i 1mage of pz. So by doing inverse induction on a we see that we have Lemma
410 for Z.
It remains to show that the surjectivity of pp implies, that for a < n; and b < ng

also y ”x?” ax‘? and yj ”:r:? 0 8ya are in the image of pz. But with (4.21)) and (4.22)) this

follows analogously to the argumentatlon before. We only have to to a double inverse
induction on a + b: We start with a = n; — 1 and b = n; — 1. In each step we reduce a
until @ = 0 and then we reduce b by one and start again with a = n; — 1. O

Remark 4.16. The inverse of this theorem does not hold. There is a counterexample with
HY(P,0p) = C but HY(Z,0z) = 0 of Laufer in [Lau73a], §4 (end of page 93).
4.4 Deformations of curves

To prove that H'(P,0p) = 0 implies that every Z combinatorially equivalent to P is
already isomorphic to P, we need one more technique. Laufer’s analytic proof of this fact
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uses the deformation theory of Kodaira—Spencer, and as described in [Ser(6] on page 79f,
this cannot be directly translated in the language of the modern deformation theory. For
example, Laufer needs a versal family not only in the formal setting, but as an “honest”
deformation over a manifold. But some observations can be transferred to the algebraic
world and turn out to be rather useful.

So in this section, we want to translate as much of Laufer’s results on deformations
of (exceptional) curves to the algebraic world as possible and needed.

First we have to cite some definitions, which we take mainly from [Ser06], Sections
1.2.1 and 2.4.1.

Let X be a k-scheme. A deformation n of X over (S, s) is a cartesian diagram

X——X
- 171
Spec(k) >— S
where 7 is flat and surjective, .S is connected and s is a k-rational point of S. If
X—)
- 1T
Spec(k) —— S

is another deformation of X, then an isomorphism of n with £ is a S-isomorphism
® : X — ) inducing the identity on X. Let S,S" be two connected k-scheme S and
let s and s’ be k-rational points of S and S/, and ¢ : S’ — S be a morphism mapping s’
to s. Then for every deformation n of X over (S, s), we get a deformation

X— X xg8
Ngtt l lﬂ
Spec(k) LSRN

over (S’,s"). This is a deformation because flatness and surjectivity are stable under base
change. Also for (9, s) as above we have the {rivial deformation

X—X xS
Spec(k) ———— S

of X. Finally we say that a deformation n of X is locally trivial if for every point z € X
we find an open neighbourhood U, C X such that the induced deformation of U,

U, — X|u,

Nlug: J lw

Spec(k) —— S
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is isomorphic to the trivial deformation of U,.
For a k-scheme X we define the following functor from the category of connected
schemes together with a k-rational point to sets:

Def’y (S, s) = {locally trivial deformations of X over (.9,s)}/isomorphism

Note that being locally trivial is a rather big restriction. For example, if X is a smooth,
proper, one-dimensional scheme over k, then we know that another smooth, proper, one-
dimensional scheme X’ over k is isomorphic to X if and only if we have open U C X
and V C X' such that U and V are isomorphic. In particular, if n € Def’y(S,s),
then for every s’ € S with smooth fibre 7~!(s’), this fibre is isomorphic to X. On the
other hand, this restriction makes the functor better understandable, in particular if we
assume the schemes S to be spectra of artinian rings. Also this restriction is no problem
for us, because Lemma [.1] shows that if we have a deformation of Z, and if all fibres are
combinatorially equivalent to Z, then they are locally isomorphic.
The following theorem is the main help in the next section:

Theorem 4.17. Let [P] € CEQ(Z) be the plumbing scheme for Z. Then there ex-
ists an integral affine scheme Y, a k-rational point y' € Y and n € Def’,(Y,y) with
[~ ()] = [P] € CEQ(Z).

Proof. The existence of such a deformation is a consequence of Lemma [£.4] From
this lemma we know that for Z the glueing along every Wi;; # 0 is done via
Tji; = Y (QyLj + i YiPy;) and Y, = T, (aalj + 16Y0iPa ;)

Let A = k:[ux,l,j,uym,u;ij,u;’ll,j,tz,ty] (with [j running over all Ij such that
Wi # 0), and Y = Spec(A). We detine X as follows: We glue the W; x Y along the
Wi XY via @i, = yi,(Uys + Ti Ui Pygty) and yii, = @6 (ey + T Da jta)
which defines an automorphism, because the right factors are of the form “invertible +
nilpotent”.

Let now 7 be the projection. By construction of X we have P = 7=1(1,1,...,1,1,0,0)

and Z 2 7 Yay12,0212,- - Gz in, ayin,1,1).
Now 7 is locally trivial by construction, and thus also flat, because flatness is a local
condition, and the trivial deformation is flat. O

4.5 H!'(P,©p) =0 implies P isomorphic to Z
Now we are able to prove that H'(P,©p) = {0} implies CEQ(Z) = {[Z]}.

Theorem 4.18. Let Z as described in Section with dgea(ni,p) = 1 for all I, and
let P be the plumbing scheme for Z. If H*(P,©p) = 0, then Z is isomorphic to P.

Proof. From Theorem we get a locally trivial deformation

X— X

Spec(k) —Y
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of Z into P. Now the base of this deformation is an integral affine scheme, so, via
localisation, we may assume that we have Y = Spec(R), where R is an integral semi-
local ring with exactly two maximal ideals my and mg. Let y; be the point given by m,
and let X; = 7= 1(y;). Suppose that we have X1 & Z and X, = P.

Localizing further we get two local rings (Ry,m1) and (Rg,ma) both with residue
field k£ and a common quotient field K. Then we have X; = X' Xgpec(r) Spec(f;/m;). Let
R be the completion of R;, and K; the quotient field of R By the universal property
of the quotient field we get maps K — K, and there exists a field K containing K7 and
Ky. In other words, we get a commutative diagram:

R14>K K(*RQ
§14>K1 K2<7§2
K

From this we get the dual diagram for the spectra, and using this and standard properties
of the fibre-product from [Gro60], §3.3, we get:

X X Spec(Ry) Spec(él) Spec(R1) Spec( )

=X XSpec(R1) K X Spec(K) SpeC(Kl) X Spec(K1) Spec(f{—) (4 23)

2 X Xgpec(Ra) K Xspec(ic) SPeC(K1) Xspec(iy) Spec(K)
2 X Xgpee(rs) SPeC(R2) X Spec(Ra) Spec(K)
Our next goal is to show that we have
X Xspec(ry) SPec(Ri) = X; Xgpec(r) Spec(Ry),
because using this gives us

zZ X Spec(k) Spec(k) =P X Spec(k) Spec(k)'

For this we look at the functors Def, and Def’, and restrict them to spectra of local
artinian k-algebras. By Theorem 2.4.1 of [Ser(6| the tangent-space of this functors are
HY(P,0p) and H'(Z,©z) respectively and thus trivial; the first one by the assumption,
the second one by Theorem So by the same Theorem of [Ser06], they have a semi-
universal element. Now Proposition 2.2.8 of [Ser(6] tells us Def’> = Hom(k, )= Def’,.
From this we get Defl,(R;) = Hom(k, R1) and Def’»(Ry) = Hom(k, Ry), or in other
words, for every n we have:

X X Spec(R;) Spec( Z/mn+1) Xi X Spec(k) Spec( 1/mn+1)
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That is, if we use the theory of formal schemes as a black box we have an isomorphism

o~

X@|X77

I

‘)?|X1:
which by [Gro61], 5.4.1 gives us
X XSpec(R;) Spec(l/%i) = Xi XSpec(k) Spec(ﬁi),

as wanted.

So we have not yet that P and Z are isomorphic, but we know that they are isomorphic
after base change to some field extension of k. Now we want to get the isomorphism
between P and Z from this isomorphism. For this we take a look at the isomorphism
functor

Zsomy(Z, P) : {Schemes/k} — {groups}
S ISOk(Z Xk S,P Xk S)

We have shown N
Zsomy(Z, P)(Spec(K)) # 0,

and the theorem follows if we can show
Zsomy(Z, P)(Spec(k)) # 0.

Fortunately, because Z and P are proper, one-dimengional schemes over a field and
thus projective, by [Gro95|, Section 4c¢ together with Théoréme 3.1 and Page 265 the
functor Zsomy(Z, P) is represented by a scheme I locally of finite type over k. That is, we
have a natural isomorphism between the functor Zsomy(Z, P) and the functor Hom( , I).
In particular, we have bijections from Zsomy,(Z, P)(Spec(K)) and Zsomy,(Z, P)(Spec(k))
to the K-rational respectively k-rational points of I.

So we know I(K) # (), thus I is not the empty scheme. But I is locally of finite
type over k, so by Hilbert’s Nullstellensatz I has a k-rational point, but k is algebraically

closed, so we have a k-rational point. O

Because the plumbing P only depends on the dual graph of Z we immediately get
the following corollary:

Corollary 4.19. Let Z and P be as in the theorem. If H'(P,0p) = 0, then every B’
combinatorially equivalent to Z 1is already isomorphic to Z. That is, Z is defined by its
dual graph.

For singularities this has the following consequence:

- n

Theorem 4.20. Let (S,s) be a normal, two-dimensional singularity, Z = > nE; an
=1

anti-ample divisor for (S,s) with all dgeq(ny,p) = 1 for all I. Further let v be the sig-

nificant multiplicity for Z. If P is the plumbing scheme for 1/2, then (S, s) is taut if
HY(P,0p) =0.
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Proof. By Corollary we have CEQ(P) = CEQ(vZ) = {[vZ]}, so (S,s) is taut by
Corollary [3.39] O

Finally we are able to prove the next comparison theorem between p = 0 and p > 0:

Theorem 4.21. Let I" be the dual graph of some plumbing scheme Py over C, and for all
p > 0 with dgca(ny, p) = 1 for alll let P, be the plumbing scheme for T' over an algebraically
closed field of characteristic p. Then CEQ(Fy) = {[P]} implies CEQ(P,) = {[P,]} for
all but finitely many p.

Proof. By [Lau73al, Theorem 3.9 from CEQ(Py) = {[Py]} we get H'(Py, ©p,) = 0, which
by Theorem (4.14 implies H'(P,,©p,) = 0 for all but finitely many p > 0. So we get
CEQ(P,) = {[Pp]} for the good p with Corollary {4.19] O

4.6 Open questions I

Before we come to the application of these theorems to the question of tautness, which
we will do in the next section, we want to discuss the first step in the last proof. This is
actually the only place in this work where we need to use a Theorem of Laufer, which we
are not able to modify and reprove for arbitrary characteristics. Theorem 3.9 of [Lau73al
is a stronger version of our Corollary which also has the inverse implication. That
is, it says CEQ(Z) = {[Z]} if and only if H'(P,©p) = 0.

Now we want to look at the following example for p > 0: We take £ = F; = IE’,Ig
and Z = pE; and vy > 1. With an explicit calculation, done in Section we get
CEQ(2E1) = {[2E1]}, and in Corollary @I we have Z = F and v = 2, so this implies
CEQ(jE1) = {[jE1]} for all j. In particular, we have P = Z.

But again a calculation in local coordinates, done in Section shows that we
have h'(Z,07) = h'(P,0p) = 11 — 1 for pli.

So Theorem 3.9 of [Lau73a] cannot be true for p > 0 without modifications. But if we
demand the n; to be prime to p > 0, then with Corollary we have the “if” statement
of Laufer’s Theorem 3.9, and we think that this is also the modification needed for the
“only if” direction, but we are not able to prove this.

In our very simple example “n; prime to p” is a working modification. Later in Section
we get additional evidence for this, because we can show that a rational double point
is taut if and only if H'(P,©p) = 0 for all Z with all dgeq(n;,p) = 1: We have the
explicit list of all taut and non-taut rational double points of Artin ([Art66]) and for
all taut rational double points Section shows H'(P,0p) = 0 for any large enough
anti-ample cycle Z supported by the exceptional locus with all dgcq(ny,p) = 1. On the
other hand, for all non-taut rational double points Section shows H!(P,0p) > 0
for all cycle Z supported by the exceptional locus with all dgeq(ny, p) = 1. This leads to
the following conjecture:

Conjecture 4.22. Let Z be as described in Section with dged(ny,p) = 1 for all [,
and let P be the plumbing scheme for Z. Then we have CEQ(Z) = {[Z]} if and only if
H'(P,0p) = 0.
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5 Taut and non taut singularities

5.1 Taut over C implies taut for nearly all p

Now we want to transfer the last theorem of the previous section to the question of
tautness of normal, two-dimensional singularities. We get the following theorem:

Theorem 5.1. Let (Sp, so) be a normal, two-dimensional singularity over C with dual
graph I'. For all primes p let (Sp, sp) be a I'-singularity over an algebraically closed field
of characteristic p with dual graph T'. If (So, so) is taut, then (Sp,sp) is taut for all but
finitely many p.

Proof. First by Lemma we know that (S, sp) for p =0 and p > 0 is not taut if I' is
not of the form which we assume for the plumbing. So from now on, we may assume that
we have a plumbing scheme for I'. Let P, for p = 0 and p > 0 this plumbing scheme.
Then, by construction, P, is embedded into a regular, two-dimensional scheme, and by
Corollary we get a I'-singularity (Sp, s,) for every p > 0.

Now let Zo be an anti-ample divisor for (Sp, sg) and Zp one for (Sp, s,). Denote by
vo and v their significant multiplicity. By Corollary the tautness of (Sp, sp) implies
CEQ(VQZO) = {[I/()ZQ]}

Z() and Z are defined by combinatorial data, so we can assume that all coefficients
of Zy and Z are equal. By the construction of v we have v, = vy and dgcq(ny,p) = 1 for
all [ for all but finitely many p.

Let Py be the plumbing scheme for 1/020 and P, the ones for I/pr. We have
CEQ(nZo) = {[vZo]} = CEQ(F), so we are in the situation of Theorem . that
is we have CEQ(F,) = {[P]} for all but finitely many p. So for all good p we have
CEQ(Py) = CEQ(vpZp), s0 (Sp, sp) is taut by Corollary O

Note that for a given I' we can compute the good and the bad p for this I'. With
“good” we mean that for this p the tautness of (Sp, sg) implies the tautness of (Sp, sp).
The two places in the proof where we had to exclude some primes can be healed. The
first place is very simple: For all p with v, = 19 + 1 we simply do the proof again,
with v replaced by vy + 1. The second place needs a little more thinking, but with
Lemma we see that we can always choose the coefficients of Z prim to every fixed
p. So going through the proof finitely many times shows that a p is good if it is not one
of the finitely many primes excluded by Theorem That is p is good if and only if
we have equality in Theorem So theoretically we are able to calculate all good p
for a given singularity, but in practice the matrix Mp, is huge.

If we can calculate all good p, we also get all bad p. As discussed after Theorem [4.21]
if we had an inverse of Corollary we could also show that the bad p have (S, s;)
not taut. With this we would get “Then (Sp, s9) is taut if and only if (S,, sp) is taut for
all but finitely many p”. But we cannot prove this, so all we can prove is that for the
bad p, we have H!(P,, ©p,) > 0. This is Theorem
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For a special class of normal, two-dimensional singularities, the rational double points,
one knows exactly which are taut for which p, and we can show that they are taut exactly
for the good p. We will do this in the next section.

5.2 Rational double points

Now we want to discuss the question of tautness for a special class of singularities. We
say that a normal, two-dimensional singularity (S,s) is a rational double point if it is
rational and we have have Z2 = —2, where Z is the fundamental cycle of (S, s). The last
condition is by [Art66], Corollary 6 equivalent to the fact that Og s has multiplicity 2,
which explains the name.

Now being a rational double point gives rather strong restrictions on the combina-
torics of Z, and it is a result of Artin in [Art66] that the rational double points are
exactly the normal, two-dimensional singularities with dual graph isomorphic to one of
the Dynkin-diagrams A,, D,, Es, E7 or Eg (See [Bad0l] Theorem 3.32 for a detailed
proof).

In [Art77] Artin calculated a complete list of all equations of rational double points
in every characteristic. This list shows that all rational double points are taut, except
D,, for p =2, Eg and E7 for p = 2,3 and Fg for p = 2,3,5. We can reprove the tautness
results of Artin with our methods, and we also can show certain non-vanishing results
for the non-taut cases.

5.2.1 Taut rational double points

For this section (S, s) is always a normal, two-dimensional singularity, Z = > mE; an

=1
anti-ample cycle for (S, s) with all dgeq(ny, p) = 1, as in Lemma [2.58] and v its significant
multiplicity. Further let X be the smooth, two-dimensional scheme with Z C X from
the definition of Z. That is, f : X — Spec(A) is a minimal good desingularization of an
algebraization of (S, s) with Z supported on the exceptional fibre of f.

Let E = ) E;. We define the sheaf © x(—log(E)) on X via
=1

0—>®X(_10g(E))—>®X—>@NEl/X—>0 (5.1)
=1

By [WahT76|, Proposition 2.2 this is a locally free Ox-module of rank 2. Now we need
the notion of cohomology with supports: Let Y be a scheme and C' a closed subscheme,
and F a sheaf on X, then we define

HE(F) = {s € HY(F) | 5p = 0 Ypey 0}

This defines a left exact functor form the category of abelian sheaves on Y to the category
of groups, and we denote with Hé(]—" ) the left derived functor.
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By Theorem 5.19 of [Wah75] we have HL(Ox(—log(E))(E)) = 0 for the taut ra-
tional double points. Our goal is to show that HL(Ox(—log(E))(E)) = 0 implies
H(Z, @jZ) = 0 for some j, and that we get the tautness from this.

First we want to show that the usual cohomology of both sheaves agrees:

Lemma 5.2. For j sufficiently large with 0gcq(j,p) = 1 we have
H'(jZ,0,7) = H'(X,0x(~log(E))).

Proof. For p =0 we get from (1.6) of [BWT74] the sequence

0—>@j2—>@x®oj2—>®NEl/X—>0 (5.2)
=1

The formal calculations proving the exactness of this sequence do not change for p > 0
if all coeflicients of jZ are prime to p. So because we have chosen all coefficients of Z
with dged(ny, p) = 1 we have the sequence for dgca(j,p) = 1.

If we look at the constructions of (|[Waht6], Page 333) and (|IBWT74], Page
71) we get map Ox(—log(E)) — ©,7 such that the following diagram commutes:

@X@OX(—jZ) E
O%@X(—log(E)) Ox @NEZ/XHO
=1
lid
0 @jg ex®0j§4>691NEl/X4>O
]:
0

The column in the middle arises from the standard sequence
0— (’)X(—ji) — O0x — OjZ —0

after tensoring with © x which is locally free, because X is smooth. Now the snake lemma
gives us an exact sequence

0 — Ox ® Ox(—jZ) — Ox(—log(E)) = ©.5 =0
Taking cohomology, we get using Section for the third term:
Hl(Xa G)X ® OX(_]Z)) - Hl(X> GX(_ log(E))) — Hl(sz 632)

— H*(X,0x ® Ox(—jZ))
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Now (’)X(—Z) is ample by Lemma , 80 the first and the last term vanish for j
sufficiently large by [Liu02|, Proposition 5.3.6. And thus we have

H'(jZ,0,7) = H'(X,0x(~ log(E)))
for all j sufficiently large with dgcq(j,p) = 1. O

Let wx be the dualizing sheaf of X, that is, because X is smooth of dimension 2, we

have
2

1
Then we get the following isomorphism of k-vector spaces:

Lemma 5.3. We have
Hp(0x(~log(E))(E) ® wi?) = H' (X, 0x(~log(E)))".

Proof. From Theorem 4.9 of [Bad01] we get

H}y(Ox(~log(B))(B) ® w§?) = H' (X, (Ox(~log(B))(E) ® wF*) ' ® wy)
and because taking the dual commutes with tensor products the last term is just

H' (X, 0x(~log(E))(E))' @ wx),
and the lemma follows if we show
(Ox(—1log(E))(E))" = Ox(—log(E)) ® wx.

Now, for a locally free sheaf F of rank 2 by [Wah85|, Page 276 we have

2
F\/ — (F\/)V ®/\f\/
So we get with (3.5) and (1.2) of [Wah85:

2
Ox(—log(E))Y = Ox(—log(E)) ® /\Qﬁqkaog(E)) = Ox(—log(F)) ®wx ® Ox(E)

and thus:
(Ox(—log(E))(E))" = ©x(—1log(E))" ® Ox(~E) = Ox(—log(E)) ®wx
which is the isomorphism we need. O

Summarizing the previous lemmata we get:
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Theorem 5.4. Let (S, s) be a normal, two-dimensional singularity such that for one anti-
ample cycle Z with significant multiple v, the multiple vZ is isomorphic to its plumbing
scheme. Then (S, s) is taut if

Hpy(Ox(~log(E))(E) ® wg?) =0
Proof. With Lemma [5.3] and [5.2] we get
0= Hg(Ox(—1log(E))(E) ® w§*) = H'(jZ,0,3)

and the last term is by assumption isomorphic to H'(P,©p), so the tautness follows
with Theorem E.20 O

For rational double points the situation becomes more simple, because we may assume
wx = Ox. To show this we need some more definitions: Let S be the algebraization of
(S, s) such that f : X — S is the minimal good resolution of S. By Theorem 4 of [Art66]
we may choose S such that it embeds into A7 with m > 2. Then we define

ws = 5“2&52(0@ /\ Q}w/k)

We say that S is Gorenstein if wg is invertible. We note that our definition is just a
special case of a more general definition. In particular by Theorem 18.3 of [Mat89| the
question whether S is Gorenstein only depends on S, so we may also say that (5, s) is a
Gorenstein singularity.

Now for a Gorenstein singularity we can say something more on wx:

Lemma 5.5. If the normal, two-dimensional singularity (S, s) is Gorenstein, then maybe
after shrinking of S we have

Ox if (S,s) is rational;
w =
* Ox(—=D) : D>0, Supp(D)=FE else.

Proof. Because (S, s) is Gorenstein we have wz|U = Oy for some open s € U C S. So

maybe after shrinking we may assume U = S and thus wg = Og. But then we get
[*(wg) = Ox, and the lemma is just a reformulation of Theorem 4.17 of [Bad01]. O

Now by a result of Artin we know that a normal, two-dimensional singularity is
rational and Gorenstein if and only if it is a rational double point, so Lemma [5.5 and
Theorem [5.4] give the following corollary:

Corollary 5.6. Let (S, s) be a rational double point such that for one anti-ample cycle Z
with significant multiple v, the multiple vZ is isomorphic to its plumbing scheme. Then
(S, s) is taut if

Hy(©x(~log(E))(E)) =0
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Now the sheaf © x (—log(E))(F) is the sheaf S(E) of [WahT75|, so we get the tautness
part of Artin’s classification:

Corollary 5.7. A rational double point is taut if its dual graph is isomorphic to one of
the following Dynkin-diagrams:

Ap p=2;
A, Dy, p=3;
A, D,, Eg, E7 p=>5;
An, Dy, Fg,E7,Es p=0orp>T.

(5.3)

Proof. From all rational double points with dual graph isomorphic to one of the Dynkin-
diagrams in the corollary let (S, s) be the one with vZ isomorphic to its plumbing scheme.
Then by Theorem D (for p = 0) and Theorem 5.19 (for p > 0 and the Dynkin-diagrams
as in (5.3))) of [Wah75] we have H,(©x(—log(E))(E)) = 0. Then the tautness follows
with Corollary O

The main point of this proof is hidden in Theorem D and 5.19 of [Wah75|. This
theorems calculate H (O x(—log(E))(E) = 0 only using the combinatorial data of vZ,
so for a given dual graph, we know the vanishing actually for all singularities with this
dual graph, in particular also for the one whose anti-ample cycle is isomorphic to its
plumbing scheme.

Finally for Gorenstein but not rational singularities we get the following corollary of
Lemma [B.5] and Theorem B.4

Corollary 5.8. Let (S,s) be a Gorenstein but not rational normal, two-dimensional
singularity, such that for one anti-ample cycle Z with significant multiple v, the multiple
vZ is isomorphic to its plumbing scheme. Then (S, s) is taut if

HY (0 (~ log(E))(E — 2D)) = 0.

5.2.2 Non taut rational double points

Now we want to look at the rational double points which are not taut. As first example
we want to look at Dy for p = 2. For 2FE we present the matrix Mp,, at the following

page. To fit this matrix on the page, we had to write a% as & at the labels and replace
ob

(1,0 — 1) by ya.0 for the last three columns.
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Now we clearly see that the first 12 x 12 minor is 8, and so the rank(Mp,,) = 12 for
p # 2 and if we omit the three columns with 2 in it, we get another 12 x 12 minor, but
this is 0 for every p. So we get rank(Mp,,) = 11 < 12 for p = 2. Now 2 divides 2, so we
cannot calculate H'(©p,,) this way, but if we take any positive divisor Z supported on
FE with Z > 2F and all coefficients odd, then maybe after a reordering we have

M, = (Mie 3) (5.4

with matrices A, B, and thus rank(Mp,) < rp, which now implies H!(©p,) # 0.

Furthermore the same is true for D,,, n > 4: If we construct Mp, with an appropriate
ordering for the rows/columns, we find Mp,, from D4 (minus one “2 column”) at the
upper left corner, and again we get H(©p,) # 0. More general this is true whenever the
dual graph of E has a star, that is F has one component which intersects with 3 others.

The next question now is: What is H!(©p,) for Eg and p = 3? The rank of Mp,,
does not differ between p = 3 and p = 0, and the next choice, Mp,,, is already a 60 x 69
matrix. So we cannot calculate this by hand. Now the construction of the matrix Mp is
very explicit, and can easy be done using a computer. The only problem is the needed
memory to store Mp. So we construct Mp for some cycle supported by E and compute
rank(Mp,) for this cycle with some computer algebra system.

The natural candidate for this calculation would be vZ for a chosen anti-ample cy-

~ n

cle Z = > mE; with significant multiplicity v. But to simplify the construction of
I=1

Mp we want to stick to some cycle of the form jE. This is no problem because if

we choose j bigger then v - max{n;}, then with Corollary we know that we have
CEQ(jE) = CEQ(rZ). To make sure that p does not divide j, we take the next prime
bigger than v - max{n;} as j (and j > 7, the biggest p we are interested in).

We want to discuss the significant multiplicity v first. By definition v depends on A
and Ty, defined previous to Theorem The calculation of A\ depending on the T is
easy, in particular we have A = 0 for all rational double points, because p,(E;) = 0 and
E12 = —2 for all [.

The calculation of 7, is not so easy. Of course with the help of a computer we might

~ n
just try every possibility for the j;. But if Z = > niEj, then the number of possible

=1
combinations is the faculty of the sum of the n; divided by the product of the faculties
of the n;. For Dy this is not such a big number, but already for Dy this number is so
huge that the program did not terminate after a reasonable time.

But at least for the rational double points we found a nice way to compute a good
upper bound for 7,,;,. We take j; = 1 and then we construct j; inductively as follows: Let
~ n ~
Zi 1= l; s1i—1E;. Let j be the smallest integer between 1 and n such that 55,1 <15
and E;- (Z-,l + E;) is maximal among these 4. Then we set j; = j. If we now calculate

7 for this j; and our Z chosen (see below) with the help of a computer, we get always
7 = 1. So because all n; are greater then 1, we simply take v = 2.
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Now the anti-ample cycles we used are (for reasons of readability we omit the —2 in
the dual graphs):
3 e ) ©) )
5) (3)

9) (1) (4) (15) (13) (10) (6) (21) (19) (16) (12) (7)
(3) (5) (8) (11)

Z for D, Z for Dj Z for D Z for Dy
(8) (15) (21) (15) (8) (18) (35) (51) (40) (28) (15) (46) (91)(135)110)(84) (57) (29)

(11) (26) (68)

7 for Es 7 for Er 7 for Er

Now we generated text files containing the entries of Mp processable by various
computer algebra systems. Because the size of Mp grows relatively fast, we hat do
experiment with different ways of generating this files and also with different computer
algebra systems. We mainly tested Maple(|rrap]) and Sage([sag]), and hat to write the
generator in Perl and C++.

The main problem is the growth of the matrix. If pt is the number of intersection
points z;; then we have rp = 2 - pt - (42 — j), and even if this just grows quadratically,
for Fg and j = 203 we have already rp = 1024380. On the other hand, the matrix Mp
is a sparse matrix with only less then ﬁ of its entries non-zero. It is crucial to use
this fact. For example for Fy and Eg and j = 53 the resulting input file for maple is
2.2 GB respectively 3.1 GB large, and it takes nearly a day to generate them with perl.
We tried to run Maple with this files, but, even with sufficiently large memory, after one
week Maple was still “reading” the matrix.

The calculation in the table then where done using Sage, because Sage implements
an algorithm for exactly our problem ([DV02]). If we additionally pass the matrix the
right way to Sage, the file size reduces drastically (48MB for E7 and j = 103). Also the
calculations need much less memory and can therefore be done with 16 GB of ram. The
only exception is Eg and j = 203. Here perl was simple to slow to generate the text files
in reasonable time, so we hat to switch to C++. Also we hat to reduce mod p already
during the generation to get files of a few hundred MB.

Finally, after solving all the technical difficulties we get the following table:

I' | max J rp X cp rank Mp

{n} p=2 3 5 7
Dy 51 11 660 x 735 659 660 660 660
Ds 91 19 2736 x 2944 2735 2736 2736 2736
Dg 15 | 31 9300 x 9827 9298 9300 9300 9300
Dy 21 | 43 21672 x 22662 21670 21672 21672 21672
Eg 21 | 43 18060 x 19049 18059 18059 18060 18060
Er 51 | 103 | 126072 x 131532 126069 | 126071 126072 | 126072
Eg | 135 | 271 | 1024380 x 1116997 | 1024376 | 1024378 | 1024379 | 1024380
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5.3 Open questions II
If we take the last table and calculate from it the dimension of h'(P,©p) we get:

r ht(P,©p)
p=23]5]

7
0
0
0
0
0
0
0

>
BN DN =] =
IR ) Nesl Nen) Neoll Nan)
I k=l k=] i =] Ne] Nen] Nan)

If one compares this table with Artin’s list one notices: For all non-taut rational double
points h'(P,0p) + 1 is exactly the number of isomorphism classes of singularities. This
suggests that Theorem 3.1 of [Lau73b] may be still true for p > 0 if we restrict the n;
as before. So we can continue the discussion from the end of Section and propose a
stronger version of Conjecture 4.22}

Conjecture 5.9. Let (Sp, sg) be a taut, normal, two-dimensional singularity over C
with dual graph I'. For a prime p let (Sp,sp) be a I'-singularity over an algebraically
closed field k of characteristic p with dual graph I'. Let va be an anti-ample divisor for
Sp with dgea(ng, p) = 1 for all I. Further let v be its significant multiplicity and P, the
plumbing scheme for Z. Then we have exactly 1 +dim(H'(P,, ©p,)) isomorphism classes
of I'-singularities over k.

In particular we could reformulate Theorem as “(Sp, so) is taut if and only if
(Sp, sp) is taut for all but finitely many p”.

Additionally it would be interesting to know whether Corollary can be used to
show tautness of non-rational Gorenstein, normal, two-dimensional singularities. If one
knows a way to calculate D, then there should be a way to use [Wah75] again.

For normal, two-dimensional singularities which are rational but not Gorenstein, all
we know is the following recent result of Lee and Nakayama: In [LNI12| they show
HY(O©x(—log(E))) = 0 all Hirzebruch-Jung singularities and for every p, which with
Lemma and Theorem would imply the tautness, but Lee and Nakayama prove
the tautness using other methods and they deduce the vanishing using the tautness.

The last interesting observation for which we have no explanation is that a rational
double point is taut for p > 0 if and only if its fundamental cycle has all multiplicities
prime to p. In our calculations we never need this fact, but maybe this can be explained
with the calculations for Theorem 5.19 of [WahT75].
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6 Local calculations

In this section we do all the local calculations needed in the previous ones. For reasons
of readability we skip the elements s 211 This is no real restriction, because for each of

them we would get an additional generator ds;ili of Q}%i e and an additional relation

—1 -1 ...
si,iidsm + smidsm and ds;;, = dy;;;. Also for @Ri,ii we get an additional generator

%, but using the new relation in QlRi,ii/k’ we get % = (55%)265”.
6.1 Opp
First we want to calculate ©p p, = lim HO(Ulj7 Op).
H
JEN
For the calculations we use the fact that for R = k[x1, -+ ,x,]/(f1,-.., fi) we can

calculate
Oy, = (der,-- - dwn)r/(d(f1), - d(fi))R
and then for O we use the exact sequence

0—Or— HomR(Qi[x1,~~-,xn]/k ® R, R) — Homp((f1, -, f1)/(f1,-+, ), R)

coming from the standard exact sequence

(Frovees S/ (frae e )P = Qb gy @ R — Qe = 0

Because every step behaves nicely under direct limits, we can omit the limit.

6.1.1 t; =1
From the charts (4.5)) we get for QII/V[ x

1 _ njy =1 Ty, ni—1

QRl,o/k = <d$l,07dyl,0>Rz,o/<nj1xl,0 Yr.odrio + T 6 Y g dYi.0) Ry g
1 _ nl,l

Qp ke = (dz1, dyii)ry, /(g dyia) R,

g, o1/ = (dxro, dyro, dziy, dyia) vy, /Rl

Ry 01/k
with
v —1 v, n;—1
Rlg P (r10dry 1 + 210dT0, dyro — vz yiadry — Ay, g dYio) Ryo
1,01 ? ? ’ ’

Thus we get for Oyy;:

5gcd (njl 7p) a 5gcd (nl :p) 6

Or,, = <LICZ,O Oz’ 710 Y10 >Rl’°
J, Cd(nlvp) a
© ={(——.,1y," —
R <3$171 Y1 Ao >Rl 1
Seca(nip) O 0 Seca(nip) O
) =5 i a. v 9. 3 a Rl
Ry 01 <8$l’0 Y10 Ay’ Oy Y11 Oy >Rz,o1/ OR,; o1

)
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)

with
0 0 0
RI =( ——— F 2y — —
OR, o ( 9711 L0 D o 1L1,091,0 o’
6gcd(nl7p) 8 o 5gcd(nl7p)x(1_5gcd(nhp))l’l a >R
1,1 ayu 1,0 1 ay170 1,01
The calculations for Rl@Rl oy AT
0
dryg) = —=—— (a7 gdx 1) = —27
8.’13[,1 ( lvo) a-rl,l ( 1,0 l,l) 1,0
6 I/l—l 14 I/l—l
(dyl,o) = 7(’4901 1 yl,1d90l,1 + 1dyl,1) =Vx; 1 Y1 = Vix0Yi0
0x;1 o0x1 J ' '
6gcd (nl 7p) 8 d 5gcd (nl 7p) a 2
—(dz = — —(z7odx;1) =0
Y1 8@/1,1( 10) 11 3yz,1( i0dzy,1)
Sgea(mip) O Sgca(mip) O -1 Sgea(n,p)
yit I (dyro) =y " o (v yiadary + 2 dya) =y 50 e

_Oged(ni,p) (1=6gca(ni;p))v
= Y0 L1

Now we want to calculate H'! (Wi, ©w,): Because we have covert W with two affine charts,
this is very simple with éech—cohomology: We only have to calculate which elements of
H°(©g,,,) are restrictions of elements of H(O,,) and H°(Op, ,).

For &gca(ni,p) = 1, we want to show that we have H'(W,, Oy,) = 0, that is that
every element in H%(Og, ) is a restriction. Lets look at x?,oyﬁoﬁ first. Because of
dged(n1,p) = 1 we have a > 0. For b > 0 it is the restriction of the same element of
H°(OR,,). For b < 0 we have

—b,a —b+(a—1)v;_aq 9
1Y =z y (6.1)
LLP0 Gy g b1 Loy
so these are restrictions of elements of H%(Og, ,). Now look at :):ZOyl‘fo —82 = Here we have

a > 0. For b > 0 this is again the restriction of the same element of H(Og, ). For b <0
we have

—b,a 0 —b+via+2, a 2 0 —b+via, a 0 0
T — =z Tiom—— =< - T VX005 —
z,1yz,08x170 11 Y11 1708@,0 1,1 9171( D11 ,0Y1, oy, )
7b+ula+1 a a a
=x —T1 +uyi—
1 yl,l( s 33?1,1 Y, 32/1 1)

)

S0 these are restrictions of elements of HO(@RM), and thus we have H'(W,, Oy,) = 0.
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Now we do the case dgcq(n7, p) = 0: For % nothing changes. For % we have (6.1))

again, and we immediately see that xﬁ(]%m (a=0and 0 < —b < 1) is not a restriction,

and thus we have h'(W;,OW)) = v — 1.

6.1.2 =0

This is a special calculation we only need for the counterexample at the end of Section 4.5
Our charts for W; = Ej are simply:

—1

g, ok = (10, dyro) Ry / (] dYro) Ry
1

Qg e = (dar, dyia) ry, /(™ dyia)my

Q}{l,m/k = (dx10, dyr0,dz1,1, dY11) Ry o, / Rl

Ry o01/k
with

_ v —1 Y n;—1
Rlﬂ}%l W (mrodziy + zadze, dyo — vy yadey — 2y dyi, mayy o dYLo) Ry o,

Thus we get for Oy;:

0 dged (n1,p) 0

OR,, = (mayz,o %mw
On,, = <az,1’yig1cd(nlvp)ayal’0>ml
On. = ( 85’“) yatn) 85170 ’ aju yeate) ay@M )R/ Rlog, ,
with
Rleg, , = ( 35171 +xl2’0&fzo - lel,Oyl,Oa;a
igfd(nhp)ayal’l_yig(;](:d(nl’p)xl(}l_&g(:d(nl’p))ylag?lp>Rl,01

The calculations for Rlg Ry AT€ exactly as in the case t; = 1. Also the calculations

for HY(W;,©Ow,) are exactly the same. In particular, we get H'(W;,Ow,) = 0 for
dged(ny,p) = 1 and (W, 0W)) = v — 1 for dged(n1,p) = 0.



6.1 Opp 89
6.1.3 =2
From the charts (4.6)) we get for Q‘I,Vl/k:

.
Doy = (d10, dyro) Ryo/ (1210 Yy rhdao + iy gyt dyo) Ry,

1
QJI‘ZZ Jk <d$l 15 dyl 1>Rz 1/<nlyl ]1 Ty 12dyl 1+ njle 1 y;flldxl,ﬁRu

Qle/k (dx10, dyio, dr1, dyi1) R, o, / Rl

Ry o01/k
with

_ v—1 1z n;—1
Rl Uy o (mrodziy + zidre, dyo — viayy  yiadeey — o)y, myyo  dYLo) By o,

Thus we get for Oy,

5gcd (njl 7p) 8 6gcd(nlvp) a

Or,, = (x —
Ry < 1,0 5-%[70 Y10 ay >Rl ,0
Sgea(njgp) O spea(mp) O
Op . = (z g 72 , 3 R
1,1 < l,1 &Ul,l i1 3y 0> 1,1
0 bgealrip) O 0 calnp) O
@ — , ged \M,P , , 1,P
Ry 01 <8xl70 Y10 Ao’ Oxps y 1,1 Ay >Rl 01/ OR,; o
with
0 0 0
RI =( =+ alg— —uax _—
@Rz,m < 030171 z,oaa%0 171,0Y1,0 8yl,o
5gcd(nlup) a _ agcd(nl 7p)x(1_5gcd(nl 7p)) 8 >R
1,1 3yz,1 1,0 1 8yz 1,01

The calculations for Rlg Ry AT€ exactly as in the case t; = 1. Also the calculations for

H (W, Oy,) are exactly the same.
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6.1.4 ¢, =3
From the charts (4.7) we get for Q%/Vl E

Q}%l,o/k = <dxl,07 dyl,0>Rl’O/RlQ}2

1,0/k

Q}%l,l/k - <dxl717 dyl,1>Rl’1 /}%ZQ}2

1,1/k

Q}glm/k = (dx10,dyr0,dz1 1, dY1) Ry oy /Rl

Ry o01/k
with

1 o _1
Rlgy = 2o (o — 1)~y (ngy + )20 — ngyodao

+nwy (20 — 1)dyio) R,

io—1 B _
Rigr . = (= 1)y (g, gy )ae — ngy)yoda

+mxro(zi0 — 1)dyio) Ry,

v —1 v,
Rlg = ( xodwyy + 2 1do, dyo — vizyy yiadey — ) dya,
1,01 ’ 3

nj,—1, n Tz, ny—1
Ny (21,0 — 1)"73 yl,é)dx170 + nl$l,03 yl,(l) dyl,0>Rz,01

Thus we get for Oyy;:

Pgea (s ) Sgealnsgm) O Suealmp) O
@Rl70:<xgd 71 ($l70—1)gd( 3310)87 gcd lpayho

1,0 » 91,0 >Rz,0
Z1,0

Oy, = (a7 (= 1yfeatrign) O om0y

o /R
L1 oz’ Y1 90
and
0 Syealmp) O
Oy = ( (g - 1)fecatsn) O yfecatns) O (| gyicatrsg)
s ’ l, ) ,1 )
Lot Oz’ 710 Y10 Oy
5gcd("j17p) a
R0/ Rle
Y1 ay171> 1,01/ Ry 01
with
Rl@ —_ < (wll o 1)5gcd(nj3,p) o (ﬂfl 0— 1)5gcd(nj3,p)x276gcd(nj3’p)7
Ry 01 ’ 8-%[71 ) 1,0 axl,{]
) 1—0gcqa(njq,0 0
+u (0 — 1)t s P O s Y0
’ Yo
dged (n1,p) 0 . Ogea(nu,p)  (1—=bgca(ne,p))u 0 )
11 By, 1,0 N Rio1

1 Oyi0
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The calculations for Rl@Rl oy AT

(w1 — 1)%ed(5:0) (dayo) = — (a1 — 1)%ca(mar) (27 oday )
L1 1

_ _(xl,l . 1>6gcd(nj3,P)IzO
)9ca(njs ) xlzg‘sgcd (nj5.p)

)

= (56[70 -1

(w11 — 1)°eed(M5.0) (dyro) = (wy1 — 1)%sea (i)
’ T ’

) )

v —1 V|
(@) yade + 2y dyin)

é i v —1
= (w1 — 1)°ecds Py y

S (M
= (211 — 1))y 041

)

) 1—-0gca(njq,
= —yy(x0 — 1)5gcd(n337p)xl 0 F a(nss p)yl 0

)

. S, C: P
The calculations for ylgld(m P) 832 -

Calculating H* (W}, Ow,):
For dgca(ny, p) = 1, we want to show again that every element in Ho(ele) is a restriction

are again exactly as in the case t; = 1.

of elements of HY(©p, ) and H°(Op, ,). For a? ,y® —9_ this is again as in the case t; = 1.
1,0 1,1 Z,O l,o aym g

Also x?}oyl‘fo(:vl,o — 1)51%001(”7'3’1’)6a is for b > 1 and a > 0 again a restriction. For b < 0

1,0
we have:

—b, a Oged(Mjq,p
L1 Yio(rro —1)% s )351310

—b+via+2—085cd(njq,p) Soc ) 2—0gcd (Mja,p) 0
=T T | (@0 — 1) gd(n"“”p)xl,o o dx1 0

*b+Vla+275gcd(nj37p) a (SC Mg, a
=7, yity | —(arp — 1)%eed s p)%

Ogcd(Mja,
+u(wr, — 1)°sedMas P

176gcd(n]’3 ’p)yl70 8 )
’ 10

7b+l/la a _1‘2_6g6d(nj3 )p) (w _ 1)(5ng (’I’L]3 7p)
5 ) l,l l71 a
T

. 0
_Vl(xl,l _ 1)6g0d(nj3’p)yl71>
Oyia
So this is also a restriction and we get H*(W}, Ow,) = 0 again.
With the same arguments as in the previous cases we get h'(W}, Ow,) =y — 1 for

5gcd(nlv p) =0.
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6'2 H]-(M/l’AUt(Wl)red(VI/Z))

In this section we calculate the first cohomology of the (non-abelian) sheaf Aut .., (W1),
showing that we always can lift the isomorphism between the reductions of W; and W}
to the scheme with the IP%; in W, not reduced. Again for U cousisting of two affine
charts the calculation of H' (U, Aut(w,),..(W1)) is not very complicated, because we only
have to calculate which elements of Autg, , /n, ., (f,01) are restrictions of elements of
AutRz,o/Nz,o(Rl,O) and AUtRl,l/Nl,l(Rl71)7 where IV;; is the nilradical.

Now Auty,), (W) is not quasi-coherent, so we do not have Serre vanishing, so
we cannot use Theorem here. But in the calculation of H'(U Aty (W) we
see that in this special case the sequence splits, and we can use this to calculate
HY (W, Auty,., (W)

How do we calculate the elements 1 of Aut (.., (W;)(U)? Suppose R = k[z,y, s 1]/1
with T = (y?), (zy?), (z(z — 1)y?). Because ¢ must be the identity on the reduction,
Y(x) = z+a-py, where a is a generator of nilradical, that is a = y, xy, xy(z —1). Because
each of these three terms vanishes in R if we multiply it with y, we have a - s = —a and
so we have p, € k[z]. By explicit calculation one sees that the inverse map is given by
T T — apg.

For the y a priori we may multiply y simply by any b € R*. But calculating when
this morphism has an inverse shows that we have b = \x/ with A € k* for a« = y in R,
and b = X else. For a = zy,zy(x — 1) we have b = 1 already because the morphism is

the identity on the reduction. This implies b = 1 4 ap, but ya = 0.

6.2.1 # =0

This is a calculation we need for the counterexample at the end of Section Here we
did not need the s;;,, so U = {Spec(R; ), Spec(R;,1)} with:

Rio = klx, yl,O]/(ylz,O)
Rior = klai0, 9.0, 211, y1)/ (@0 — 1yio — 27491, Yio)

Ry = k[xl,byl,l]/(ylz,l)

Then by the discussion above, the elements of Autg,y(R) are given by:

Yro(z1,0) = 1,0 + Y1,002,0(21,0) ©r0(x10) € klz10]
Y1.0(¥,0) = Aoyio Ao € kX

Pra(zn) = 20 + Y11 (en) Vea(211) € klz1]
Ya(y1) = Y A\ € kX
Y10(210) = 21,0 + Y1,002,01(T1,0,211)  Pz01(T10,211) € K210, 21,1]
Yr10(yi0) = yz,0>\o1iﬁ{,0 X1 €KX, jEZ
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red

For the restriction to R; o1 we calculate
Yrol1,01(Y1,0) = YoM | Yrolio1(710) = 21,0 + Yi,002,0(T10)
Yl (Wi0) = Yo | Yialion(zio) = Wil (z1)) ™! =
With this and Y0 - (¢l,1|l,01)71 =Y,0" id we get:

v +2
T10 = Yi,0%y o Pa,1(T11)

(Viale01) " @rolior(z10)) = @ralior) (2o + Yi0@zo(Ti0))
= 1,0 + vo7)y 20w (x11) + A w0 (Wilion) T (@w0(i0))

= 210 + o)y 2r1 (@1) + A w0 (@10)

(Wr10001) ™ (Wroli01 (W0)) = Wialion) ™ (w,000) = oAy ' yio
So we see that H'(U, Aut(w,),..(W1)) is generated by the automorphism of R;o; which

maps x70 to z;0 and ;0 to Y0210, SO H'(U, Aut(y,),..(Wi)) = Z, and for any extension
of E; the image in Z is simply the self-intersection number —uv;.

6.2.2 ¢ =1

Here we need only s; 4, so in this case our covering is U = {Spec(Ry ), Spec(R; 1)} with:

Rio = kl1,0, 910,501/ (519 510 — 1, 21,0070)
Rio1 = k[z1.0, 910, w11, yi1) /(s 500 — L oz — Lyno — 2491, 7o)

Ri1 = k[$l,1,yl,1]/(yz2,1)

Again by the discussion above, the elements of Autg/y(R)) are given by:

Yro(z10) = 710 + 21,091,002,0(T1,0) ¢z,0(z10) € k[z10]
Yro(y1,0) = Y10

Yra(en) =z + Y101 () Ve (1) € klz1]
Yra(yn) = yian A\ € kX
Yro(r1,0) = 21,0 + Y,002,01 (21,0, T1,1)  Pr01(T10, 711) € k21,0, 71,1]
Yro(yio) = Z/l,o/\leio Aor €KX, jEZ

For the restriction to R; o1 we calculate
Y1.0l1,01(1,0) = V1,0 Y10l101(210) = 210 + 21,0Y1,092,0(21,0) )
Yralon(Weo) = oA | Yualion (o) = (ialion(210)) ™ = 210 — oz e (211)
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With this and Y10 - (¢l,1|l,01)_1 =Y0- id we get:

(1li01)

(Yr,1l1,01)

(Vrolio1(z10)) = (Wralio1) (10 + 2i0vi0wz.0(i0))

=0+ yl,Ole()+290x,l(-Tl,l) + A wo(Wialion) " (@109s0(Ti0))

= 210 + w0y 2r1 (1) + A 200a0(210))

“olior(wio)) = Wialion) ™ (wio) = A v

So we see that H' (U, Aut(y,),.,(Wi)) is generated by the automorphism of R 1 which

maps Z;0 to 270 and 0 to y1,0%7,0, SO Hl(U,Aut(Wl)md(VVl)) = 7, and for any scheme
the image in Z is simply the difference of the self-intersection number —uv;.

6.2.3 ;=2

In this case our covering is U = {Spec(R; ), Spec(Ry,1)} with:

Rio = kla10, 910, 5101/ (310510 — 1, 21.070)

—~1 12 2
Ryor = k21,0, 9,0 2,1 w1/ (819510 — Loz — Liyeo — 27491, Yio)

Riy = ko, v s/ (siso — Lzt

Again by the discussion above, the elements of Autg/y(R)) are given by:

) = @10 + T1,0Y1,09P2,0(T1,0) ©z,0(21,0) € E[21,0]
Yi0) =
T11) = 21+ Y1Pe (T1) Vea(211) € klz1]
yl,l) =
) = 210 + Y0020 (10, T11)  Px01(T10,211) € kX0, T1,1]
Yi0) = 0)\0196,0 X1 €KX, j€Z

For the restriction to R; 1 we calculate:
Yrol1,01(1,0) = Y10 | Yiolio1(®0) = 10 + wz,oyz,otplz,o(%z,o)
Yralior(Weo) = vo | Yialior(@io) = 10 — yio)y  pan (211)
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red

With this and Y0 - (I/Jl’1|l’01)_1 =Y0- id we get:

(Vial01) " @rolior(10)) = @ralior) H(zio + zroyopeo(i0))

= x50+ yl,OJUZl()+190x,1(xl,l) + g0 o) (@L0@s0(20))

= @10+ yr0(@)5 P (@) + 2 0¢r0(210)

(Wrali01) ™ (Wrolior (o)) = @Wralion) ™ (o) = wo

So we see that Hl(U,Aut(Wl)red(VVl)) is generated by the automorphism of R
which maps ;09 to x;0 and y;0 to y0710, and the ones mapping y0 to y0A. So
Hl(U,Aut(Wl)red(VVl)) > 7Z x k*, and again for any scheme the image in Z is the
difference of the self-intersection number —uvj.

Also we see that if v and ;1 came from a lifting of an isomorphism, then we
have necessarily 1;(y1,0) = 0, so the k> part of H'(U, Aut(w,),..(W1)) is never hit as an
obstruction on the global lifting.

6.2.4 =3

In this case our covering is U = {Spec(R; ), Spec(Ry1)} with:

Ry = k[z10, 1,0 8[&]/(82(}81,0 — 1, 20(z10 — 1)1/12,0)
Rio1 = k[z10, 910, w11, y11) /(s 500 — Loz — Lo — 2y, (20 — Dyio)

Riy = Kl v spp )/ (o (s s — Lo — 1Dyiy)

Again by the discussion above, the elements of Autg/y(R)) are given by:

Yro(zo) = 210 + z10(z10 — 1)Y00,0(z10) ©0z,0(21,0) € klz1,0]
Yro(yi0) =

Yra(xin) =z + (@ — 1)@z (z1) Ve (z11) € k1]
Yri(y1) =

Yio(z0) = 10 + y0(z0 — Dezo1 (@0, 211)  ©e01(X10,211) € klz10, 271]
Yio(Yr0) = 09610 JEZ

Now we could calculate HI(U,Aut(WZ)red(VVl)) but later on we see that this is not iso-
morphic to H(W;, Aut(w,),..(W1)) so we skip this. We only need the local description

for the results of the next section. Also, as in the previous cases these charts help us to
interpret H'(Wy, Autw,,., (W1))-

red (
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6.2.5 The final calculation

From the local charts in the previous sections we see that the Sequence (3.9) splits, that
is we have

Aut(Wl)red(VVl> = Aut(Wl)redaN<Wl) & Q
and by Corollary [B:25| we have H'(Wi, Autyy,, v (Wi) = H'(Biy, (2, )" ©Tc/Tp),
0

where By, is the image of the inclusion ¢ : IE’/,l€ — W;. Now we have v; > 0 and ¢; < 3 so
we get

degBlo((QlBlo/k)v ®OBZO Ic/Ip) =2—2q, — By, - lz:n;Bl =24u —>0 (6.2)
=1
and thus H!(B,,, (Qlel /k)v ® Zc/Ig) = 0 by (3.13).
~ 0 ~
So we have H' (W, Aut(y,, ,(W1)) = H'(W;,Q). From the local charts we see that
we have an exact sequence

1—Q— t(Op) — F —1
k

where F is a skyscraper sheaf concentrated on the singular points of (W));eq and the
stalks there are £*. So in cohomology, we get the long exact sequence

L — HY(W,Q) — H(Wi,0.(05,)) — HO(Wi, F)

— B (W1,Q) — H (Wi,1.(0F,)) — 1

and with (3.3) we get

HU(Wl,L*(O&)) = HO(]P}C,O];%) = k¥

and
(Wi, 1 (0Fy)) = 1 (P}, 0) = Pic(P}) = Z.
Now we get: For t; = 0 the sheaf F is trivial, so we have

HY (W, Autgyy, (W) = H (W, Q) = H' (W, L*(o];k)) ~7

here. For t; > 0 we see in the local charts that H°(W;,@Q) = 1, so the map
HO (Wi, 1.(Op,)) — H(Wy, F) is injective. Also we have HO(W;, F) = (k*)". Thus we
get *

HY (W, Auty,(W0) = H' (W, Q) = Z x (k)"

and as discussed after the calculation of H (U, Auty,,., (W) for t; = 2, the (K*)1~1
part is never hit by an obstruction. Also, if we have V; and W, such that there reductions
are isomorphic, and we lift this isomorphism locally with Theorem then the element
generated by this local lifts in H'(W, Auty,),..(Wi)) maps to the difference of the self-
intersection number of the IP}C in W; and V;. In particular V; and W, are isomorphic if
these numbers are equal.



6.3 Oww,

6.3 Ow,nw,
6.3.1 Plumbing
For the plumbing W; N W; = Spec(R;;) with
K1 Y Ty Ui )/ (Fgiis — Y Ui — Tuins Ty b 01s)-
From this we get
Q;lglj/k = (dZ1q,, Ay iy, dTj 055 Aygi; ) Ry, [ AT1s, — dyjag, dyrs, — AT,

i—1 ny g~ . ~nj n;—1 )
N5, yz,ildxl,zz+”lﬂfl,¢l?/l,il dyl,u>sz

and
O, = ( Gl O dgealtup) 0 bgeatup) 0 Sgeatnyp) O Vi
g Ly 0Ty, Ly Oypq, &Cj,ij’ Jiij 0Yji, j
/<§j’5gcd (nj 7p) 8 . (?glcd (nj 7p) 8
b 0Ly M Oyja;
Ogcd (n1,p) 0 _gégcd(nl:p) 0 VR
, g — Ry
b gy 77 OTja Y

The calculations are:

~6gcd (nl 7p) 6 ~ ~6gcd (NZ,I)) a
P Oagy Y D T
~bged(n1,p) 0 ~dgcd(n1,p) 0 ~
T ——(dy1;,) = 75 ——(dz;j;)
P Oz, R 7 P
_ ~5gcd (nl 7p) _ 6gcd (nl :p)
= Tji; =Y

5gcd(nj 1p) a (d%l . ) _ (Sgcd(nj 7p) 8 ( y] X ) _ 6gcd(nj 7p) _ E5gcd(n]' 1p)
U %

Jiij 8yj,ij I ayj,ij I i
5gcd (nj :p) 6 d _ 5gcd (nj 7p) 6 d"'

& — ) = g0 T 0

3t 3yji, (dyi,) Yijij i, (dz;)

97
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6.3.2 B
In this case we know from Lemma H.4}
Rij = k[T1s, Yii, T i) /(T — Yi (g + Tua Wi Py.dj)s
Yii; — T (et + T Vi Pa,lj) s E?jlyl";l)

But on the other hand, we know that ay; ; + T14,Y1,4,Py.1,> Qe,l,j + T15,Y16,Pe,l,j € RZ., and

if ay i1+ T3, Y1,0,Dy.5.0> Oa,j0 + T1i, Y10, Do, 5,1 are there inverse, then Rj = R; can be written
as

Rji = K[Z14,, Yuis Tjoigr Y5 )/ CTrgy — Yia; @y gt + Tji; Y5, Py.gl) s
Uiy — T (i + Tii Y5, Pe i) To Ype)-
For our calculations before, the latter form is more handy, so we use it to get:
g e = (dT0iy i dT 55, dyji, ) i,
S Ay, — ay jidyja; = Y3, Py a5 — 28 0,0y.5.197. Y5, — T, y?,ijd(py7€é)zl)
dyti, — Qg 1755 — 254D j Y5, AT 54, — pm,j,lx;?ij dyji; — T3 Yji, d(pac,j,l)v.
nﬁszlyfél T, + m)), yfélfldyu,)}zlj

Which leads to:

bgeatnjp) O Sgealmp) O byalmp) O Syea(ngp) O
Op = (Foecd™P)_Z__ 0 LT — e — R, /(6.5
Ry; < 1,3 axml?yl,zl ayl,iz Jri; amj,ij’y]’zj ayj,ij >R1J/

Where (6.5)) are the following relations, which we get by using the relations of (6.4)).

~Sgea(mp) O ~ _ ~Ogea(n,p) . 2 ) ~ .2 9 )
xji‘j 8.%3' A (dxl,z’l) = xji'j (yj,ijpy,],l + Lji; Y5, agj,ij (d(pyd,l)))

2]

~Sgea(nip) O _ ~0gcd(n,p) ~ ~2 0
i 05 (dyri,) = ;% (g, + 2T 50, Y5, D, + T56, Y55 T, (d(pz,j1))
(6.5)

O (dpy0)))

5gcd(nj7p) 8 ~ . _ 6gcd(nj»p) . ~ .. - . =2
i Dy, (dz1s) = Yji; (ayj1 + 225,950, Py.50 + i Y545 0y,

§gcd (n] ap) _

. ‘;gcd(nj»p) ~2
J5t5 ay]ﬂ/ﬂ (dylﬂl) - yj,ij (

~ 0
xjvijpx’j’l + x?vlj yj’ij .. (d(pit,j,l))
8y],zj'
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