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Abstract

In der Einzelpartikel-Cryo-Elektronenmikroskopie (Cryo-EM) enthalten die Auf-
nahmen zweidimensionale Projektionsbilder einer Vielzahl von Kopien des gleichen
Proteins. Diese Proteine befinden sich in leicht unterschiedlichen Konformationen,
wodurch die Varianz der Daten erhöht wird. In der Regel wird aus den Projek-
tionsbildern eine einzelne dreidimensionale atomare Dichte rekonstruiert, wobei
allerdings die konformationelle Heterogenität der Probe vernachlässigt wird. In
dieser Arbeit liegt der Schwerpunkt auf der Entwicklung einer Methode mit der
die Varianz der Projektionsbilder als dreidimensionale Konformationsbewegungen
des Proteins interpretiert werden kann.

Da die Varianz der Probe die Auflösung der 3D-Rekonstruktion beschränkt und
bisher nicht genutzt wurde, um atomistische Informationen erhalten, wurde die
Bootstrapping-Technik verwendet, um mehrere dreidimensionale Dichten aus einem
Experiment zu rekonstruieren, die gemeinsam die Varianz der Probe enthalten. Die
Principal Component Analysis (PCA)(dt. Hautptkomponentenanalyse) auf diesen
3D-Dichten, die korrelierte Konformationsänderungen der Volumen erkennt, wird
hier durch die neu entwickelte Principal Motion Analysis (PMA) ergänzt, die ato-
mistische globale Bewegungen des Proteins detektieren kann.

Die PMA ist empfindlicher gegenüber Konformationsänderungen als die Volumen
PCA. Dieses neue Verfahren besteht aus drei wichtigen Schritten: Bootstrapping
der Bilder, um ein Volumen Ensemble zu erhalten, atomistisches Refinement, um
das Volumen-Ensemble auf ein atomistisches Ensemble abzubilden und schließlich
eine PCA-Transformation auf dem atomistischen Ensemble.

Die PMA wurde auf zwei Chaperone (GroEL/ES und Mm-CPN) angewendet,
welche als Teil ihrer Funktion großen Konformationsänderungen durchführen. In
beiden Fällen kann die Varianz der experimentellen Daten in großen Teilen als
Schwankungen interpretiert werden, die den bekannten Konformationsänderungen
entsprechen. Um sicherzustellen, dass diese Ergebnisse zuverlässig sind, wurden
verschiedene Validierungsverfahren entwickelt.

Um die Eigenvektorberechnungen auf Volumina und atomistischen Daten dieser
Größe ausführen zu können, wurde darüber hinaus ein schneller inverser Eigenwert-
Solver entwickelt.

Weiterhin wurde ein Kreuz-Validierungsverfahren für das Refinement von atomis-
tischen Strukturen gegen niedrigaufgelöste Dichten entwickelt. Dieses Verfahren
verwendet eine unabhängige Schale von Raumfrequenzen als freien Datensatz.
Durch Berechnung der Kreuzkorrelation der sich ergebenden Struktur mit den
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freien Daten wird ein Qualitätsfaktor gewonnen. Dieser kann weiter zur Opti-
mierung von Parametern genutzt werden.
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Abstract

In single particle cryo-electron microscopy (cryo-EM) the micrographs contain 2D
projection images of a large number of copies of the same protein. These proteins
are typically in slightly different conformations, which increases the variance of the
data. In general a single 3D reconstruction is calculated from the projection images
ignoring the heterogeneity of the specimen. In this work a method is developed,
which interprets the variance of the projection images as conformational motions
of the protein.

While the variance of the specimen is limiting the resolution of the 3D recon-
struction and is not used to obtain atomistic information, the bootstrapping tech-
nique was applied to generate multiple 3D volumes which represent the variance of
the specimen. The Principal Component analysis (PCA) on these volumes, which
detects correlated conformational volumetric changes, is extended by the newly
developed Principal Motion Analysis (PMA), which determines global atomistic
motions of the protein. The PMA is more sensitive to conformational changes
than a volume PCA. This new method consists of three important steps: 1) boot-
strapping of the images to obtain a volume ensemble, 2) atomistic refinement to
translate the volume ensemble into an atomistic ensemble and 3) a PCA on the
atomistic ensemble.

The PMA was applied to two chaperonins (GroEL/ES and Mm-CPN), that are
known for high flexibility and which undergo large conformational changes upon
executing their function. In both cases the variance of the projection images can
be interpreted as conformational changes, that are to a large extent in agreement
with known or suggested motions of these proteins.

To ensure that the results are reliable several validation approaches have been
developed.

To perform these eigenvector calculations on these very large volumes and atomic
models a fast inverse Eigenvalue solver was developed for this special kind of
problems.

Further a cross-validation method for the refinement of atomistic structures against
low resolution densities was developed. This method uses an independent shell of
spatial frequencies as free data that are not used in the refinement. By calculation
the cross-correlation of the resulting structure with the free data an independent
quality measure is obtained. This allows to further optimize the parameters in the
refinement.
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Vorwort

Diese Thesis fasst einen Großteil meiner Arbeit aus den letzten drei Jahren zusam-
men und dient der Erlangung des Doktorgrades Dr. rer. nat. an der Heinrich-
Heine-Universität Düsseldorf. Sie ist ein Résumé meiner Forschung und deren
Grundlangen im Bereich der Analyse von Cryo-EM (Elektronenmikroskopie) Bil-
dern. Die Grundlangen sind die Funktionsweisen der EM, die Rekonstruktion der
Bilder zu 3D Volumen und das Refinement von atomaren Strukturen an diese Vol-
umen. Diese werden in dem ersten Teil beschrieben, im zweiten Teil folgen di von
mir entwickelten Methoden und die Ergebnisse der Analyse von den Chaperone
GroEL/ES und Mm-CPN.
Die ersten Kapitel sind sehr mathematisch gehalten und präsentieren die Grund-
lagen stark kondensiert. Dies ist nicht immer leicht zu verstehen, deshalb habe
ich versucht möglichst häufig Abbildungen hinzuzufügen. Dennoch ist es kein
Lehrbuch geworden sondern eine kurze Beschreibung der gängigen Methoden und
Approximationen in diesem Feld. Im ersten Teil ist auch die Sparse PCA enthal-
ten, eine von mir getroffene Umformulierung der Hauptkomponentenanalyse (PCA
- Principal Component Analysis), welche eine deutlich schnellere Berechnung der
PCA in bestimmten Fällen ermöglich und mir die Arbeit sehr erleichtert hat.
Der zweite Teil ist deutlich ausführlicher geschrieben und beginnt mit einem Kapi-
tel zur Validierung des atomaren Refinements. Nach diesem Kapitel beginnt der
Hauptteil der Arbeit die Principal Motion Analysis (PMA). In diesem Teil sehe
ich den Schwerpunkt der Arbeit und glaube eine Technik entwickelt zu haben,
welche Potential für die Zukunft bietet. Ich habe versucht diesen Teil möglichst
verständlich zu schreiben und die grundlegenden Ideen Schritt für Schritt zu erklä-
ren. Hier gilt mein besondere Dank meinem Betreuer Gunnar Schröder, der sich
die Zeit genommen hat meine wirren Gedanken zu ordnen und in verständliche
Sätze zu betten.
In den letzten drei Jahren habe ich viel über die Biophysik, Proteine, Statistik und
deren interdiziplinäre Verknüpfung gelernt. Es war eine sehr spannende Zeit und
eine gute heterogene Gruppe im FZ-Jülich. Die Unterstützung aus der Gruppe war
immer hervorragend. Somit möchte ich allen danken, Kumaran Baskaran, André
Wildberg, Wang Zhe und Gunnar Schröder, da sie alle Anteil an dieser Arbeit
haben.
Die Cryo-EM Experimente wurden von Junjie Zhang and Chen Donghua am Bay-
lor College of Medicine in Houston im Labor von Wah Chiu durchgeführt. Sie
waren bei Nachfragen zu dem Experiment immer hilfreich und bereit umfassend
über die Methoden zu informieren.
Zum Schluss möchte ich mich noch bei meiner Frau und Tochter bedanken, da sie
meine unendlichen Geschichten über Physik und Mathematik ohne Widerworte
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ertragen haben, obwohl sie sie niemals hören wollten. Ebenso haben sie sich nie
beschwert, wenn sie wegen meiner Arbeit zurückstecken mussten.
Ich bin sehr glücklich, dass ich die Chance zu dieser Arbeit hatte und hoffe, dass
sie einige Leser interessieren wird.

Benjamin Falkner
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1Chapter

Introduction

1.1 Cryo Electron Microscopy

Cryo-electron microscopy (Cryo-EM) is an emerging technique to determine the
structure of large macromolecular complexes. The resolution limit has been con-
stantly pushed to higher resolutions, where in some cases resolutions below 4 Å
were achieved in recent years. Cryo-EM shows great promise to be able to routinely
determine atomic structures of macromolecules, and it can be expected that its
importance as a structure determination technique will continuously grow.
In the cryo-EM experiment micrographs are recorded which contain projection
images of single particles typically in different orientations. From the projection
images a three-dimensional density distribution can be reconstructed, which neces-
sarily averages over these individual particles[53]. In cryo-EM a large number (typ-
ically 104 to 106) of individual protein projections are imaged in different random
orientations (while the orientations are not necessarily equally distributed). From
these different views of the protein a 3D density distribution is back-projected.
Today it is typically to reach resolutions in the range from about 6 to 20 Å. At
such resolutions it is typically not possible to directly build atomic structures.
This is a limiting factor for cryo-EM compared to X-ray crystallography or NMR
spectroscopy, where atomic structures can be determined directly from the data.
In most cases, cryo-EM experiments are interpreted by placing high resolution
structures determined by either X-ray crystallography or NMR into the cryo-EM
density map. At low resolution of less than 15 Å the density map defines only the
overall shape but no internal details. In such a situation the proteins are placed only
as rigid bodies into the density. Therefore several methods have been developed
that perform a rigid body refinement of structural elements into a predefined shape
[68, 97].
At higher resolutions, conformational differences to the high-resolution structures
could become apparent. In that case flexible fitting methods can be used, that are
able to deform the atomic structures by shifting atoms individually to optimize
a measure of fit to the reconstructed volume. For this purpose several methods
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have been developed that are able to refine atomic structures into density maps
[96, 90, 86, 59, 19].
To ensure a chemically reasonable structure it is necessary to introduce either a
forcefield or some kind of restraints. In addition, since the molecules that are stud-
ied with cryo-EM are usually very large, a large number of parameters have to be
fitted, which is always accompanied by a danger of overfitting. Forcefields and/or
restraints are typically used to reduce the amount of over-fitting. Approaches are
either partially [90], or completely based on restraints, like the Deformable Elastic
Network (DEN) method[78, 80]. In all methods the number and strength of the
restraints has to estimated to yield a good fit to the data but at the same time to
avoid overfitting.
In a regular 3D reconstruction it is usually assumed that all proteins are in the
same conformation. This is, however, in general not the case: large macromolecules
have an inherent flexibility and even if the particle images are sorted into classes
based on their mutual similarity, there will always be some residual variance among
the particles. The power of cryo-EM lies in the fact that in contrast to other tech-
niques the observables are actually single particles and not ensemble averages.
That means we have at least in principle access to the full distribution of confor-
mational states present in the sample. Therefore there is more information in the
cryo-EM data than just a static average structure: the individual particle images
show the molecules in slightly different conformations according to their equilib-
rium distribution in the sample as defined by the experimental conditions. While
this structural heterogeneity is often considered a nuisance as it fundamentally
limits the achievable resolution, appropriate analysis of this heterogeneity could
potentially reveal functionally highly relevant motions[64, 63, 82]. Extracting these
functional motions is however a significant computational challenge since the in-
formation content of a single particle image is low due to a low signal to noise
ratio. Standard 3D reconstruction procedures typically average over all particles
by which all information about the conformational flexibility is lost.
The amount of data that needs to be analyzed in cryo-EM experiments is very
large. The development of efficient algorithms is therefore key to an exhaustive
analysis and to maximize the information that can be extracted from the data.

1.2 Cross-Validation of the Refinement

At low resolution the parameter to observable ration is large, in particular for large
macromolecules, which commonly causes overfitting and, thus, results in wrong or
flawed models. To be able to detect overfitting in cryo-EM based refinement is an
important prerequisite for the optimal interpretation of cryo-EM density maps.
It is usually necessary to use restraints during the structure refinement to avoid
overfitting. The question is however how to optimally choose the restraints and
their relative strengths? On the one hand, too few or weak restraints result in
overfitting, and on the other hand side too many or strong restraint would yield
an insufficient fit to the data.
A solution to this question is given by the concept of cross-validation, which has
been introduced to the closely related problem of X-ray crystallographic refinement
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almost 20 years ago [24] and has in the following drastically increased the reliability
of refined crystal structures. The idea is to leave out part of the data (the ’test
set’) that is not used for the refinement but only for assessing the refined model.
In crystallography typically 10% of the structure factors are randomly chosen as
the test set, while the remaining 90% of the structure factors (the ’work set’) are
used for refining the structure.
A crucial prerequisite for the cross-validation is that the information in the test
set is independent from the information in the work set. For diffraction data this
assumption is usually justified. However, due to the very different nature of the
experiment, for cryo-EM density maps this assumption does not generally hold.
In this work the crystallographic cross-validation approach is adapted to structure
refinement against cryo-EM data. The method is tested on three proteins with
simulated data, where the target structure is known and furthermore, we apply the
method to the refinement of a GroEL crystal structure against a 5.4 Å experimental
cryo-EM density map.

1.3 Principal Motion Analysis

The heterogeneous ensemble of single particles in the specimen offers more infor-
mation than the averaged density. Due to the fact that the observables are single
particles the conformational space of the ensemble can be explored by statistical
methods. This space is only a small part of the full conformational space of the
protein. To reveal at least part of the sample heterogeneity, several approaches
have been described, for example to sort particle images into classes that belong
to distinct protein conformational states [25, 104, 28, 91]. A 3D density can then
be reconstructed for each of these classes separately and the ensemble will rep-
resent the individual conformational states. These approaches can be successful
if the conformations are clearly separable and enough data is available, but usu-
ally fail for relatively small continuous conformational fluctuations. For the case of
continuous conformational variations a bootstrapping method has been proposed
to calculate an ensemble of different density maps from which the density variance
can be obtained[64]. Further this was used to rebuild conformationally different
volumes by using the principal components of the bootstrapped ensemble called
eigenvolumes [63, 82]. This will provide additional information about the confor-
mational space but can only be referred to atomistic changes if the volumes are
distinct. This approach can be easily be applied to all typical cryo-EM datasets.
In this work a method is presented which is able to determine large-scale correlated
motions of a protein in near atomic detail in an atomistic representation from such
a bootstrapped ensemble. The method is applied here to determine large-scale
correlated motions (principal motions) of two large proteins. Both proteins are
chaperonins which are well known for undergoing large conformational changes
between an open and a closed state and are therefore a appropriate system for
motion analysis. Chaperonins are multimeric barrel-like protein complexes. They
consist of two rings that are stacked back-to-back forming two large cavities. They
play an essential role in mediating protein folding, which is assumed to take place
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inside these cavities. Furthermore chaperonins are also assumed to be involved in
multiple diseases like cancer and neurodegeneration.
In general two groups of chaperonins are distinguished: group I chaperonins (e.g.
GroEL) use a co-factor (e.g. GroES) as a lid to close the cavity during substrate
folding, whereas group II chaperonins (e.g. Methanococcus maripaludis chaperonin
or Mm-CPN) can close the cavity without an additional co-factor by undergoing
a large conformational rearrangement of the ring structure.
Group I chaperonins are found in bacteria as well as organelles of endosymbiotic
origin, while group II chaperonins are the chaperonins of the eukaryotic cytosol
and the archaea.
We present a study of the motions of the group I chaperonin structure of GroEL
which was in the so called bullet-shaped state, where one side was closed by the
co-factor GroES. The structure of GroEL alone and in complex with GroES have
been determined by X-ray crystallography [9, 98]. GroEL/ES is responsible for
folding about one third of all proteins in bacteria.
As second molecule the group II chaperonin Mm-CPN (from Methanococcus mari-
paludis) was investigated. Mm-CPN is analyzed in a state where both cavities are
open. In this open state the subunits make only few contacts with neighboring
subunits and, thus, and can be expected to be very flexible. This large scale flex-
ibility will be a challenge for the principal motion analysis. Mm-CPN is a close
homologue of the thermosome whose crystal structure has been determined by
Ditzel et al. [20].

14
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2Chapter

Recording and Reconstruction of Cryo-EM data

2.1 Experiment

2.1.1 Electron Microscope

The Electron Microscope is a type of microscope that can be used to image the
surface of a specimen, using backscattered electrons and photon emissions, or the
inner of a specimen by measuring the transmission of electrons. In cryo-EM only
transmission microscopes are used to record the data, because the inner part of the
specimen becomes visible and in general the resolution is higher than in reflection
based microscopes.
The transmission electron microscope was invented in the early 1930 by Knoll and
Ruska and had a resolution that was not better than light microscopes[46]. But
already in this time there have been speculations about atomic resolutions. The
basic setup of an electron microscope is almost always the same and starts with an
electron source, that can be a thermionic tube or a field emission source. The next
elements are a coherence filter based on B-field separation of electrons by their
velocities and an E-Field based accelerator[26].
The simple magnetic electron lens consists of a coil of wire surrounded by a mag-
netic material, which is shaped to modify the magnetic field and will effect the
focusing of the beam. In the middle of the lens is a gap for the electron beam to
pass through the magnetic field. In general these lenses can be compared to optical
lenses an are used in the same fashion[44].
The next element in the electron microscope is the specimen holder followed by
objective lenses and a recording device.
The electrons in the beam have a small mass so even electrons with a small energy
travel with roughly half the speed of light and have to be treated in a relativistic
way. The de-Broglie wavelength λ of the electron is:

λ =
h

p
(2.1)
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where h is the Planck’s constant and p is the impulse. The energy E can be
calculated as:

E2 =
�

m0c2 + eV
�2

= p2c2 + m2
0c4 (2.2)

where c is the speed of light in vacuum, V is the acceleration potential, e the
charge, m the mass of the electron, m0 the rest mass of the electron, p = mv the
momentum and v the velocity. Substituting the energy function yields:

�

m0c2 + eV
�2

=

�

hc

λ

�2

+ m2
0c4

⇒ λ =
hc

�

eV (2m0c2 + eV )

=
12.3[keV Å]

�

eV (1022[keV ] + eV )

(2.3)

The frequency can be used to estimate the maximal resolution R of the electron
microscope using the Abbe’s Equation:

R =
1.22λ

2n sin θ
(2.4)

where n = 1 is the refraction index and θ is the half-angle of maximum cone of light,
which is very small on electron microscopes and its sinus can be approximated as
10−2 or smaller. All together the resolution can be approximated by:

R = 61λ (2.5)

The theoretical resolution1 is much lower than the resolution obtained in the exper-
iments because of the aberration and the magnetic lenses will lower the resolutions
dramatically and are one big problem in electron microscopy. This aberrations have
to be corrected in the experiment by focusing the beam and tilting the specimen
layer or later by filtering the micro graphs. Today the best resolutions in cryo-
EM after reconstruction are up to 6 − 3 Å while the theoretical resolution is a
hundredth part of todays best resolutions.
In structure biology the electron microscope is an alternative to the crystallog-
raphy to obtain images and structural informations of particles in a more native
state. The biological material is introduced to the electron microscope as a thin
film of amorphous ice . By this it is possible to obtain images of fully hydrated
macromolecules. Usually liquid ethane is used for rapid freezing an aqueous so-
lution dispersed by the specimen. Rapid freezing is necessary to avoid the water
from forming several crystals instead of a more homogeneous ice layer. In general
the ice layer has to be less than 500 nm to avoid multiple scattering events, for
thicker specimen more complicated techniques have to be use, like special freez-
ing methods and cutting those blocks into thin sections. This is no problem for
proteins because their size is smaller than the scattering limitation, which is more
important for bacteriophages or even larger biological structures. But even for thin
ice there will be an effect on the noise of the images[26].

1For 300 keV electrons is the theoretical Wavelength about 0.038 Å.

16



Cryo-EM - Principal Motions j 2 Recording and Reconstruction

In the electron microscope an image is taken from frozen specimen containing sev-
eral particles and each single particle is recognized as a part of the information. In
fact this induces one of the issues for the work with the images and the prepara-
tion of the experiment, because several conformations of the object will be in the
dataset, which can have different effects:

• conformations are distinct: the specimen can be spilt into multiple confor-
mations, which will reduce the amount of information per conformations;

• conformations are not distinct: slightly different conformations will be mixed
up and an additional noise introduced to the dataset.

On the other hand the single particles vary in their orientations and show different
views of akin particles. This can be used to regain the three dimensional shape of
the specimen.
Another problem in the experiment is that biological macromolecules are extremely
sensitive to radiation, which will haven an effect on the time duration of the elec-
tron beam and the energy of the beam. This limits the experiment and will in-
crease the noise of the images and finally reduce the resolution. At this point the
low temperature will save the biological specimen from the radiation and will help
to increase the dose and the energy of the electrons[26].
All this together is mostly a reason for a low signal-to-noise ratio (SNR) in the
micro graphs and will effect the resolution of the conformational information of
the specimen.
Today the focus is on bright field electron microscopy because of its high contrast
at lower doses, It allows a very easy way to calculate the effects in the electron
microscope. In this context there is no difference between a bright field conven-
tional transmission electron microscope (BF-CTEM) and a bright field scanning
transmission electron microscope (BF-STEM). A very important feature is that
the image model can be assumed to be linear[26, 32].
The process of the electron scattering in the specimen is an elastic scattering or
Rutherford scattering on the Coulomb potential f(x, y, z) = f(x) of the specimen.
A positive potential will accelerate the electrons and the wavelength will decease
which is a reason for a phase shift. The beam is parallel to the z-axis with wave
function exp(2πiz/λ). When the specimen is also weak, so that the phase shift ϕ
will be proportional to the Coulomb potential :

ϕ(x) = σf(x) (2.6)

where σ is a scaling factor and the resulting wave function is approximated by:

ψ(x) ∼ exp

�

2πi
z

λ

�

exp (iσf(x)) . (2.7)

The high energy electrons (100keV-300keV)2 will path through the thin sample
with only small deviations, so that the potential can be flattened first to an 2D
projection p(x, y) = p(x) along the optical axis z[32]:

p(x, y) =

�

f(x, y, z)dz (2.8)

2in general the energy is approximately 100 keV to 1000 keV, but too high energies will destroy
the biological specimen.[44]
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On the other hand it can be computed by solving the system with Bloch waves
which goes beyond the scope of this work [44].
Due to the linear image model the transmission function φ = exp (iϕ(x)) ∼
exp (iσp) can be described as an occlusion or absorption process and the incoming
electron wave function ψinc will be modified:

ψspec(x) = φ(x)ψinc(x) (2.9)

where x = (x, y)T is a two dimensional vector in the projection plane of the
beam. The incoming wave function in a CTEM can be assumed to be a plan
wave with constant intensity propagating in z direction. Further the wave function
is monochromatic, so that the amplitudes can be estimated as 1 without loss of
generality. In weak phase object (WPO) approximation the sample has to be very
thin, that is the case for the biological material in cryo-EM, and so the the specimen
will create a only a small phase shifts in the wave functions of the electrons[58].
So the wave functions yields:

ψspec(x) = φ(x)ψinc(x) ∼ φ(x) ∼ exp (iσp(x)) (2.10)

Using a power series approximation will be helpful for further simplifications:

exp (iσp(x)) ∼ 1 + iσp(x) + · · · (2.11)

The effect of the magnetic lenses is a phase shift χ(k)3 where k is the spatial
frequency vector. This aberration is a convolution (◦) in real space by the point
spread function(PSF) H and can be easily expressed as the product in Fourier
space by:

Ψi(k) = Ψspec(k) · exp(−iχ(k)) (2.12)

where Ψspec(k) = F(Ψspec)(x) and F is the Fourier transform. The recorded images
are the intensities I(x) of the wave functions behind the objective lens ψi(x) =
F−1(Ψi)(k):

I(x) = |ψi(k)|2 (2.13)

Using all approximations for the intensity function, the new term adds up to:

I(x) = |exp(iσp(x)) ◦ H(x)|2

= |(1 + iσp(x)) ◦ H(x)|2

= |1 ◦ H(x) + iσp(x) ◦ H(x)|2
(2.14)

The First convolution can be easily solved using Fourier convolution theorem:

F(1 ◦ H(x)) = δ(k) exp(−iχ(k) ⇒ exp(−iχ(0) = 1 (2.15)

so that the back transform is 1 because the values for all frequencies except 0 are
0.

I(x) = |1 + iσp(x) ◦ H(x)|2

=1 + σp(x) ◦ (iH(x) − iH∗(x))
(2.16)

3See section 2.1.2 on page 19.
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where ∗ denotes complex conjugation. If the Fourier transform of H is known the
difference can be evaluated in phase space:

F(iH(x) − iH∗(x)) =i exp(−iχ(k) − i exp(iχ(k))

=2 sin(χ(x))
(2.17)

Finally the image function is defined as:

I(x) ≈ 1 + 2σp(x) ◦ F−1(sin(χ(x))) (2.18)

The Image in the cryo-EM is more and more recoded by using CCD4 cameras
instead of photographic film. The advantage is the direct output of pixel images
that can be processed by computers.
In a first step all segments of the micro graphs are selected where particles are
expected. This is a semi-automated process by preselecting the interesting positions
by a computer program and than checking those data by a human. Depending on
the signal-to-noise ratio in further steps of the data analysis images can be removed
from the stack, because of the noise one could not identify if an image contains
information or just noise [106][87].

2.1.2 Contrast Transfer Function

The magnetic fields of a magnetic lens is determined from Maxwell’s equations,
which prevent those from acting like an ideal lens known in optical microscopy. It
is a sophisticated field by itself to optimize magnetic lenses by modifying the shape
or increasing the amount of poles in the magnetic field. This will introduce the
aberrations in the electron microscope, already mentioned by Scherzer in 1949[77].
Aberrations can be modeled in a variety of basis functions, Zernike polynomials,
which are based on radial polynomials on the radial deviations and the azimuth
are used in adaptive optics, when the more obvious and bottom to the line power
series of positional and angular deviations are used in electron microscopy. As
the wavelength of the electrons is much smaller than the dimension of the lenses
and the specimen the system can be described like optical systems by refraction
indices[44].
To reduce the complexity of the system the beam will be assumed to be parallel to
the optical axis and all off axis aberrations can be neglected, further all positional
deviations can be ignored. A perfectly symmetric lens will ignore the directions
of the angular deviations and will simplify the rotational symmetric description
of the aberration, where the angular deviations (αx, αy) can be described by the

radius α =
�

α2
x + α2

y. This reduces the series to the even powers and the phase
shift χ described by:

χ =
2π

λ

�

1

2
C1α2 +

1

4
C3α4 +

1

6
C5α6 + · · ·

�

(2.19)

where the coefficients Ci have units length. Analogous to Zernike polynomials for
radial symmetric aberrations the power series implies −C1 = ∆f as the defocus

4charge-coupled device
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and C3 = Cs as the spherical aberration. Higher order terms will be ignored
because their entry is too small on the assumed beam configuration.
Scherzer figured out that a static, rotationally symmetric magnetic field like mag-
netic lenses will always induce a spherical aberration greater than zero, so the
second order term will be important and has to be corrected to increase the con-
trast of the micro graphs[77]. The defocus term can be used to offset the effect
of spherical aberration to increase the the bandwidth were low spatial frequencies
are transferred with a similar phase.

∆f = −1.2
�

Csλ (2.20)

Another important factor is that the defocus can be used to shift the sections with
no phase informations and as a result a signal for all spatial frequencies will be
received. So all images have an error in the first two terms of the aberration and
have to be corrected subsequently by the inversion of the phase shift:

χ =
2π

λ

�

1

4
Csα4 − 1

2
∆fα2

�

(2.21)

The angle α, the angle between the incident ray and its scattered direction, is
related to k = 1/d the spatial frequency in the image plane by the wavelength:

α = λk (2.22)

and the phase shift can be written in terms of k:

χ(k) = πλk2(0.5Csλ2k2 − ∆f) (2.23)

In general an envelope function E has to be applied to the CTF to adjust to
finite source size, energy spread, drift effects and other effects etc. so that the final
function is:

H(k) = E(k) exp(iχ(k)) (2.24)

According to the image function (Eq. 2.18) the dominant part is the phase modu-
lation by the sinus and the approximated image function is:

I(x) ≈ 1 + 2σp(x) ◦ F−1(E(k) sin(πλk2(0.5Csλ2k2 − ∆f))) (2.25)

Further a chromatic aberrations has to be taken into account, which is described
in the temporal coherence envelope function Ec:

Et = exp

�

−1

2
(
π

λ
δk2)2

�

,

δ = Cc

�

4

�

∆I

I

�2

+

�

∆E

E

�2

+

�

∆V

V

�2
(2.26)

where Cc is the chromatic aberration coefficient and ∆I/I fluctuations in the lens
current, ∆V/V fluctuations in the accelerator voltage and ∆E/E the energy spread
of emitted electrons[36][44].
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Figure 2.1: Two overlaid CTF functions with different defocus. The electron frequency
is assumed to be unit sized λ = 1, the spherical aberration Cs = 2.5 and the defocus
∆f1 = −1.8(blue) and ∆f2 = −0.8(orange). The values have been chosen to illustrate the
effect of changing the defocus and shifting the zeros. This is used to get information in
areas of annihilation. If an entire defocus series is taken zero section will not appear in an
averaged image [67].
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Figure 2.2: The CTF with envelope functions applied to has a large low frequency band,
where a signal can be recorded at several defocus series. The effect of the envelope func-
tions is suppression of high frequencies, while low frequencies can pass. This is the major
resolution limiting effect in EM which is responsible for thousands times less resolution
than expected from calculations (2.5). The function parameter are chosen corresponding
to Figure (2.1).
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On the other hand there will be spatial coherence based on the defocus which is
described in the spatial envelope function Es:

Es = exp
�

−(πθs)2(Csλ2k3 + ∆fk)2
�

(2.27)

where θs is the beam divergence angle.[26]
To remove the CTF from the images the Wiener filter, a least square error filter,
is used:

W (k) =
H∗(k)

|H(k)|2 + 1/SNR
(2.28)

where H is the contrast transfer function in Fourier space and SNR is an approxi-
mated signal to noise function rotationally symmetric and will be multiplied with
the Fourier transformed signal. If there are image stacks with different defocus,
the final resolution can further be improved and the zeros of the oscillating CTF
will be filled with additional informations[95][67].
The importance of this CTF filtering in cryo-EM was shown by Penczek et al. 1997.
Later more and more methods have been published applying the CTF correction
on the 3D volumes reconstructed from the same defocus to reduce computation
time and to get better approximations for the SNR [67].
Today the CTF is used in a less approximated form:

CTF(λ, k, ∆f, Cs) = −w1 sin(χ(λ, k, ∆f, Cs)) − w2 cos(χ(λ, k, ∆f, Cs)) (2.29)

with w1 =
√

1 − A2 and w2 = A and A ranges from 0.07 [89] to 0.14 [81]. To sim-
plify the refinement of the CTF Mindell suggests to use corrected power spectrum
Pc by a smoothed power spectrum and then maximizing the correlation between
Pc and the CTF [57].

(2.30)

2.2 Reconstruction of 3D Volumes

2.2.1 Alignment of Images in 2 Dimensions

First of all the images selected from the micro graphs have to be aligned, which
depends on the used methods can be very complicated and it seams to be useful
to first understand the alignment in 2 dimensions, this means that all copies of
the molecule are in the same view. In cryo-EM the images can be shifted, rotated
and isotropically scaled, if they have been taken from different micro graphs. The
most important function to compare two images of same size is the correlation
function, which will be maximal if two images are the same and zero if there is no
shared information. So in general the correlation function will be maximized by
an algorithm according to an operation like translation. For the translation τ the
correlation integral R of the images p1 and p2 is:

Rp1,p2
(τ) = C

�

I
p1(t) · p2(t − τ)dt (2.31)

where I is the space of the image plane, C is the inverse of the area of an image and
t ∈ I a pixel position. This Function is called cross-correlation in signal processing
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and corresponds to the convolution of the images at τ , which has to be maximized.
This gives a very simple form for the optimization of Equation 2.31:

max
τ∈I

Rp1,p2
(τ) = max

τ∈I
(p1 ◦ p2)(τ) (2.32)

Computing the convolution can be accelerated by using Fast Fourier transforms
and the circular convolution theorem, which says for two continuous and integrable
functions x and their Fourier transforms X, Y :

F−1(X · Y )(τ) = (x ◦ y)(τ) (2.33)

With this transform the convolution can be calculated easily and the maximum
can be searched in the convolution function.
Almost the same method can be used to do a rotational alignment. In that case
the images are mapped to polar coordinates. Now the image is described buy a
vector (r, φ), where r is the radius and φ is the rotational angle. A rotation around
the center with an angle of θ is (r, φ+θ) and a scaling of a factor of s is (s ·r, φ), so
a trick is needed to get an addition, which can later be solved by the convolution:

s · r = exp(ln(s) + ln(r))

φ + θ = φ + θ
(2.34)

Using this trick the mapping of an image vector (x, y) will be:

r =
1

2
ln(x2 + y2)

φ = atan2(y, x)
(2.35)

The translation vector is τ = (ln(s), θ) and it will give the same optimization
problem as Equation 2.31. This roughly described concept for image registration
can be used to align images in the same view but can also further used to cluster
images in which are not in the same view. Of course the problem is a little bit more
complex and it is difficult to find the maxima so multiple maxima are recorded
and the ratio is used to get the right on, because the signal ratio of the significant
peak should be above the other ratios which are due to noise[26].

2.2.2 Radon Transform

The basis for all reconstructions is the radon transform and its inversion, which
was introduced by Radon 1917[70]. The Radon transform can be defined in two
or three dimensions, to simplify matters it will be discussed in two dimensions, so
let f(x) = f(x, y) be a continuous function on a disc D ⊂ R

2 and vanishing at
the border ∂D. The Radon transform Rf is the function of line integrals though
a centered plane:

x(r)α = r cos(α),

y(r)α = r sin(α)
(2.36)
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Image 1 Image 2 Cross-Correlation

A

B

C

D

E

Figure 2.3: The columns show the sketch of a Rubber Duck in image 1. In image 2 a copy
of image 1 shifted by a vector. In the last column the cross-correlation of both images is
printed, the maximum is shifted from the center of the image by the same vector as image1
has to be shifted to become image 2. A special attribute of Fourier transforms and the
cross-correlation are the periodic boundary conditions, that can be seen in the correlation
that is reentering at the top and on the left side. Each pixel in the cross-correlation image
corresponds to the correlation of image 2 and image 1 shifted by the vector equal to the
pixel coordinates. In the first row (A) this is presented for the original image and the
cross-correlation looks like a Gaussian, because the correlation for not perfect overlaps
is not zero in this simple example with large unicolored areas. In the second row (B) a
Gaussian pixel noise of σ = 0.8, 80% of the maximal density value, is added, which is a
fine noise. In the correlation the low correlation values now point out some correlation
but the shifting vector or maximum position is as good visible as in case A. In the third
row (C) a Gaussian low pass filter is applied to B with a width of σ = 10 pixel, forming
this coarse grained noise. Another effect is that the contours of the duck are smoothed.
The cross-correlation looks like the correlation of A. At this Point it is obvious that the
correlation is very powerful to compare images independent of noise. In the last two rows
effects of filter are shown used for reconstruction form C. In row D a simple deconvolution
is show by an inverse gauss filter. This is a very rough approximation of a wiener filter
ignoring SNR. A lot of the information lost from B to C has returned in the images, The
noise in D is not as fine as in B, because information was lost in the Gaussian filter by a
multiplication with zero and those operations can not be inverted. The cross-correlation
is not affected by this operation. In row E a Laplacian Filter is applied to C and now the
edges of the duck become visible while the unicolored areas are still noisy. This transform
has a large impact on the correlation, the maximum area is much better defined, due to
image scalings the peak ares seems to be broaden but the maximum is still well defined.
This technique is important for low resolution data with high SNR, because the peaks
become more dominant.
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Figure 2.4: On the left side of the Figure is the Radon transform of a projection angle
α. The line integrals through the density (grey) f(x) in the object space. The resulting
projection Rf(r, α) is in the projection space consisting of planes, which will be oriented
by the angle α. On the right side is a diagram of the Fourier slice reconstruction. In the
first step the images are Fourier transformed to get the frequency domain representation.
In the second step the slices are oriented by α and combined in radial space. From radial
space the volume is interpolated onto a grid to apply in the last step the inverse Fourier
transform. This graph is a simplified model of the reconstruction and several enhancements
have to be added to the process.

with its normals (− sin(α), cos(α)). The used path function for the integral will be
γr,α(t) = (r cos(α) − t sin(α), r sin(α) + t cos(α)), so that the Radon transform
equates:

Rf(r, α) =

�

γr,α

fds =

� ∞

−∞
f(γr,α(t)) �γ̇r,α(t)�2 dt

=

� ∞

−∞
f

��

cos(α) − sin(α)
sin(α) cos(α)

� �

r
t

��

dt

(2.37)

Hence the Radon transform equates to an orthogonal projection on the t-axis, it
describes what happens in the transmission electron microscope (Eq. 2.8). The
projection of the volume is determined by a rotation matrix Aα.
For a reconstruction the inverse Radon transform Rf−1 is needed, which can be
constructed as the dual transform:

R∗g(x) =
1

2π

� 2π

0
g(α, nα · x)dα (2.38)
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where nα is the normal vector of the plane with angle α [37].
Solving the inverse transform is not easy but it will help to take a look at the
Fourier transform of the volume function, that should be reconstructed (Eq. 2.8)
in two dimensions f(x, y) = f(x):

F(f)(k) =

� ∞

−∞

� ∞

−∞
f(x) exp (−2πi(x · k)) dxdy (2.39)

where k = (kx, ky)T is the reciprocal vector. If a slice through zero is selected from
the Fourier transform F(f)(kx, 0) for a slice orthogonal to the ky-Axis or in a more
general way F(f)(kα):

kα =

�

kx

ky

�

α

=

�

cos(α) − sin(α)
sin(α) cos(α)

� �

kr

0

�

= Aαkr (2.40)

The slice is then:

F(f)(kα) =

� ∞

−∞

� ∞

−∞
f(x) exp (−2πi x · (Aαkr)) dxdy (2.41)

If the same rotation is applied to the volume function Aα : r → x and r = (r, t)T ,
the function will be:

F(P )(kα) =

� ∞

−∞

� ∞

−∞
f(Aαr) exp

�

−2πi rT AT
αAαkr

�

drdt (2.42)

Solving this Equation and using Equation 2.37 will give the projection slice theo-
rem:

F(f)(kα) =

� ∞

−∞

�� ∞

−∞
f(Aαr)dt

�

exp (−2πi (r · kr)) dr

= F (Rf) (kr, α)

(2.43)

Due to invariance of the integral to rotations of the coordinate system or in a
mathematical way, because the Jacobian determinant of rotations is 1, the same
proof will work for higher dimensions than two.

2.2.3 Back-Projection and Fourier Reconstruction

The easiest way to reconstruct 3D volumes from 2D images is to use the filtered
back-projection, which tries to overlap the 2D informations in space and interpo-
lates a volume[29][55][87]. This can be very complicated if it is done in real space;
so often it is done in Fourier space by taking advantage of the projection slice
theorem. This method has not less problems in the reconstruction, but most of
them can be handled more easily.
Fourier space methods are inverting the projection slice theorem (Eq. 2.43) in a
way that if one slice of the spatial frequency domain is a projection of the volume
in reciprocal space, multiple slices can be added to invert the projection. The
amount of information on inner shells around the center is larger than outer shells,
it is obvious that the distance of points carrying information on different radii
from the center is proportional to the radius. This means that the information
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decreases by 1/k = 1/|k| and the weighting has to be the inverse. This is an
informal derivation of the contrast transfer function (CTF) of the back-projection.
For real space methods this CTF has to be applied to the data at one point in the
algorithm[42].
Mathematically this process can be described by a simple formula:

F(V ) = k ·
�

I
F(p) (2.44)

where V is the Volume, p ∈ I is an image and I is the space of images. Until this
point everything seams to be easy in Fourier space but there are disadvantages
to Fourier space reconstruction especially because the data sets are discrete and
finite in space.
So called Phantoms appear after reconstructions at the borders of a volume box
because discrete Fourier transforms assume a periodic signal outside the defined
space. If there are undefined frequencies or especially if frequencies are cutoff, these
phantoms will appear. To avoid these effects widow-functions are applied to the
transform which try to fill missing frequencies[35]. On the other hand it is common
to zero pad the images, this means adding areas with zero values on all sides which
will be cutoff after back transform and phantoms will mostly appear in these areas
and will have no effect on the volume [15].
Most of these algorithms are iterative today and using weighting techniques, which
weight the amount of information in an image with its fit to the already recon-
structed volume [87] [29] [38].
Real space reconstruction become today more and more important because of
general-purpose computing on graphics processing units (GPGPU) which is aided
by NVIDIA in science in the last six years. Nowadays a lot of groups started
developing for these platforms. The problem of Fourier transforms is that they are
not well scalable on massive parallel machines.

2.2.4 Detecting Projection Angles

The missing part is the angle refinement because the reconstruction can only be
done if the orientation is known, on the other hand the angles can only be estimated
if there is an idea of the three dimensional shape. For this reason the orientations
are optimized during the reconstruction of the 3D density [29][87]. But the question
is - what to start with? There are different answers some would say any starting
model is acceptable others would say we can try to get a prototype by using pre-
clustered images, only a subset of images or other fancy tricks.
The basic idea in the alignment process is to realign the images to the volume
by generating a template volume and than realigning the images against the pro-
jections of this volume. This is connected to back propagation algorithms, which
describe a learning model to optimize an error term. Many alignment procedures
use angle classes in the alignment, starting with a small number of classes and
increasing the number during the alignment. The advantage is that projections of
the 3D volume have to be calculated for each class and not individually for each
image. In this procedures it is helpful to have the images clustered by correlation,
to have a better initial situation [87][2].
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To create an initial volume several techniques are used, the most simple one is
starting from a random volume. Any random asymmetric (or with the same sym-
metry as the specimen) model can be used to start with.
Another way is to use the common lines of the Fourier transformed images and
optimize their fit. The idea is that Euclidean planes with at least on common point
share at least one line or the entire area. This is the case for the centered slices
described in the projection slice theorem. If the orientation of the planes vary, the
angles can be estimated [65]. For small numbers of images this algorithm can be
very fast and will give an initial model, that can be used for the angle alignment.
Previously averaged image classes can be used as well as random chosen images
from the entire set [29][53].
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3Chapter

Estimating the Conformational Variance of the

Specimen

3.1 Estimating Errors of the Reconstruction

3.1.1 Statistical Values

The problem of estimating the variances in the reconstruction starting at the
moment of freezing the specimen, the imaging in the electron microscope, till the
density volume will be reconstructed, is not trivial. If all steps can be modeled by
linear functions. Methods for calculating the variances has been presented by Liu
and Frank [51][50] and Haley [31], which basically describe the same technique.
The idea is to use the difference between the reconstructed model and the 2D
projections. This was done by calculating the projections of the reconstruction
and using the absolute value of the differences for reconstructing a variance map.
In 2006 Penczek has shown a real space method for calculating the variance using
bootstrapping (see 3.2.2)[64].
Starting from weak-phase approximation (Eq. 2.8) a discrete model can be assumed
like:

p = Pf (3.1)

where f is a vector containing a density grid of n voxels1, p the m pixel image and
P the m × n projection matrix. If we further assume, that the inverse transform
P† exists with a smoothing function S, the back transform can be written:

f̂ = SP†p. (3.2)

In this case f̂ is the estimator for the reconstruction that will converge to the
density f . The variance of the volume is defined by

σ2
f = �f2� − �f�2. (3.3)

The analog definition of the covariance can be simplified:

Cf = �(f − �f�) (f − �f�)T � = �ffT � − �f��f�T . (3.4)

1voxel are volumetric pixels
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Due to the fact, that the expected value is defined as a Lebesgue integral hence
linear, it is invariant of the back projection matrix P† and the covariance matrix
Cf can be written as a function of the covariance of the images p:

Cf = (SP†)Cp(SP†)T . (3.5)

The estimator for f̂ of f can be calculated by solving the least square problem:

f̂ = S
�

(P†)T (P†)
�−1

(P†)T p = Rp (3.6)

where the pseudo-inverse of the reconstruction matrix is used. Now the covariance
of the estimator f̂ is:

C
f̂

= RCpRT . (3.7)

Starting from this stochastic model it is possible to estimate further statistical
values and to investigate the reconstruction process.

3.1.2 Sources of Variance

In the entire process (cf. Chapter 2) six major sources of variance can be constituted[64]:

1. specimen can be described by three different reasons for noise, (a) pre-
experimental, for example impurities in the sample, and (b) during the ex-
periment, damage by radiation and in particular conformational changes;

2. medium surrounding the proteins can cause irregularities in the amorphous
ice and impurities can occur;

3. specimen support film used to stabilize the protein and can effect orientations,
i.g. carbon;

4. microscope can induce a thermal drift, variances in the electron beam, elec-
trostatic charges and scattering events of other particles can appear.

5. data collection will impact the image’s graininess on the film and during
digitalization or on CCD cameras, that is the reason additional noise, that
depends on the dynamics of the image.

6. image processing can be split into three segments, (a) misalignment dur-
ing the process of shifting and scaling the images, (b) reconstruction errors
because of a non continuous space or rather missing information and (c)
interpolation errors because of changing the grids.

At this point it seems to be important to discuss some aspects of the noise in
detail. The noise of the particles itself is a reason for variance in the dataset, but
on the other hand it is an additional information about the protein, that can be
interpreted in terms of vibration or "harmonic" oscillations. This splits the noise
into a background noise and a protein intrinsic component [60].
Another point seams to be important to be mentioned here (mathematical) con-
volutions introduce correlations, this has an effect on noise, that is affected by the
CTF, which corresponds to a convolution of the images and on any interpolation,
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which can be described as an convolution too. Further the pixel correlation will
increase during the reconstruction, because the correlation is maximized to align
the images.
It seams to be useful to describe the noise in three components [64]:

1. Solvent variance σ2
solv can be easily estimated by just selecting a non protein

area from the micrograph and calculating its variance. The variance contains
irregularities and impureness of the ice. Both are effected by the CTF so
the first estimation is not perfectly correct. Further the influence of a thin
support film can be estimated by this variance. All together this can be used
to estimate the noise uniformity, and the noise not affected by the specimen.

2. Variance of volume σ2
vol is the variance of the reconstructed electron den-

sity, which will be affected by the image processing algorithms, nonuniform
distributions of projections, conformational variance and a background noise.

3. Variance of structures σ2
struct describes the small conformational changes of

each particle in the specimen.

The first time Liu and Frank[51] mentioned two different types of noise based on
intrinsics of the protein the variance of structures σ2

struct and the solvent variance
σ2

solv.

3.2 Estimating the Conformational Variance

3.2.1 A stochastic model

Now we can set up a model to describe the noise of a reconstruction σ2
vol. As

described in the last Chapter the variance can be described in several ways and
all should fit together to estimate the final variance:

σ2
vol = σ2

Conf + σ2
Ali + σ2

Rec + σ2
Back (3.8)

where σ2
Conf is the conformational variance in the reconstruction, σ2

Ali the error of
the alignment and the variance of the projection distribution, σ2

Rec the error of the
reconstruction and σ2

Back estimating the background noise. This Equation ignores
correlation and especially the CTF, to keep this model simple.
Because of the reconstruction process and its averaging character it is easy to see
that the conformational variance in the specimen has to be larger than the variance
of the σ2

struct ≥ σ2
vol - equality is only possible if all molecules are equal [64].

In this case we will ignore the estimation of the variances except the conformational
variance σ2

struct.

3.2.2 Bootstrapping

The Method is used to identify variations within cryo-EM samples of 2D image
data. The basic problem in single-Particle cryo-EM is that all images used for
reconstruction of 3D volumes are taken from different particles and are assumed
to be in almost the same conformation. If just a single reconstruction is done all
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this slightly different information is condensed in one data set and the additional
information is lost. To overcome this problem several resampling techniques have
been developed i.e. Bootstrapping[22], which is a general purpose computer-based
method for assigning measures of accuracy to sample estimates. The Particles of
cryo-EM experiments can be assumed to be from an independent and identically
distributed population and the entire set estimates the distribution. Random sam-
pling with replacement can be used to obtain new set of equal size of the observed
data set and be used for further reconstructions [64]. In a first step a variance map
can be calculated from the 3D reconstruction of those bootstrapped data sets (Fig.
1). The Bootstrapping technique is already implemented in EMAN2 [87] and can
be directly used in the reconstruction process of cryo-EM data.
It is important to note, that the ensemble of density maps does not represent single
conformations of the protein but instead just represent the distribution of density
values. Each of these maps is still an average of different conformations of the
protein, but the distribution of conformations is conserved in the newly generated
ensemble. The conformational variance is conserved in those bootstrapped maps
and overlaid by several other sources for noise, like impurities, amorphous ice,
microscope, data collection, image processing etc.
Penczek presents methods to calculate the structural variances from these volumes
and shows how to eliminate the noise of the reconstruction and the background
- containing all sources of noise in the micrograph - in one step by applying the
bootstrapping technique to sections of empty space within the micrograph and
estimating the noise distribution from averaging those noise bootstrapped maps
[64]. In another step the variance of the alignment process can be estimated and
separated from the conformational variance, which is not very stable [3].
The entire bootstrapping process will result in densities, describing only the struc-
tural variances of the specimen in a particle mesh representation.
The bootstrapped reconstruction is closely connected to the normal reconstruction:

1. do zero padding to avoid phantoms;

2. apply FFT;

3. loop over n volumes:

• select with replacement m images from the set of all images;

• use projection slice theorem to insert the image to the volume fi;

• do filtering and inverse FFT of the volume.

From the bootstrapping it is possible to write the estimator for the electron density
as:

f̂ = f̄ =
1

n

n
�

i=0

fi =
1

n

n
�

i=0

Rgi, (3.9)

where gi is the image set corresponding to the i-th volume.
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3.2.3 Calculating the Conformational Variance

According to Equation 3.9 a variance can be calculated from the bootstrapping
data:

σ2
f̂

=
1

n − 1

n
�

i=0

(fi − f̄)2, (3.10)

It is obvious that the variance of the bootstrapped map σ2
f̂

is equal to the variance
of the volume σ2

vol (cf. 3.8). Further Hansen et al.[33] has shown that for large
numbers of projections the variance of the bootstrapping is linearly connected to
the structural variance σ2

vol by a linear factor of n:

σ2
f̂

= σ2
vol = mσ2

struct (3.11)

Based on Equation 3.11 and 3.8 the conformational variance can be estimated as:

σ2
struct = m(σ2

f̂
− σ2

Ali − σ2
Rec − σ2

Back) (3.12)

If we neglect the alignment error σ2
Ali, the reconstruction error σ2

Rec and the back-
ground noise σ2

Back the conformational variance is very simple to resolve, but we
have to assume that it is still overlaid by this noise.

3.2.4 Principal Component Analysis

To characterize the variance of multivariate ensembles a common mathematical
procedure is the principal component analysis (PCA). The PCA transforms a set
of possibly correlated observations into a set of linearly independent variables.
Each of this new variables is called principal component. The basic idea is the
algebraic concept of eigenvalues and eigenvectors applied on a covariance matrix
(cf. 4.1).
By the PCA we can obtain vectors of density which can be used as an approx-
imative basis for the phase space of the specimen. Large distinct conformational
changes can be encoded in these eigenvectors. Due to this fact a PCA is often used
to get a basis for clustering the dataset. In cryo-EM the problem is, that the data
set is not part of the same space as the PCA, so it is used as a so called ’Codi-
mensional PCA’ by Penzcek and Spahn [82, 63]. They use the reconstructions to
cluster the images by correlation into new groups describing well defined different
conformations of the protein. Another effect is the reduction of noise because on
the one hand the variety of distinct overlapping conformations in the images can
be reduced, on the other hand it will help to avoid mixing up the different confor-
mations into one unnatural mixed state. In this context it seems to be helpful to
call the eigenvectors eigenvolumes.
The Process consists of 7 steps:

1. image alignment and reconstruction of a single density;

2. bootstrapping reconstruction to create an ensemble;

3. PCA to yield eigenvolumes as an basis for the volumes;

4. 2D projection of the eigenvolume basis to receive a basis in the image space;
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5. determination of the factorial coordinates of the images on this basis;

6. clustering images by their factorial coordinates;

7. reconstruction of each cluster as a single volume.

This process will recover several details of the conformational space and can be
improved by a modified sampling technique called hyper-geometric stratified re-
sampling (HGSR)[63].
In this case the effect off non conformational noise in the bootstrapping variance
can be neglected, because the correlation will help to limit the effect, but will not
avoid over-fitting by to many iterations
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4Chapter

Implementation of an accurate Sparse PCA

4.1 Principal Component Analysis

The principal component analysis (PCA) is a singular value decomposition. The
PCA is a multivariate statistical method, used to analyze large sets of data and to
simplify it by a minor variety of statistical variables. The amount of parameters is
reduced to linear uncorrelated "principal components". Even when the PCA was
published by Karl Pearson in 1901 it gained importance with the availability of
computer because of its algebraic complexity.
The underlying multivariate observed set is typically written as random vector
X ∈ R

n, where n is the dimensionality of the observations. Mathematically the
PCA is an eigenvalue problem, to find an orthogonal basis of the space or subspace
of the data set. The resolution is a simple algebraic problem, that can be solved
by several decompositions. The more interesting part of the PCA is the statistical
interpretation:

1. the input matrix for the PCA is the covariance matrix,

2. the resulting eigenvectors form an orthogonal basis and

3. eigenvalues are the variance of uncorrelated components.

Of course the first interpretation is easy to understand, if a uncorrelated basis is
needed, this means that all covariances are zero - not the variances on the diagonal
of the covariance matrix, which is the intention of the eigenvalue problem. So in
the first step the covariance matrix has to be computed:

Cov(X) = Σ =







Cov(X1, X1) · · · Cov(X1, Xn)
...

. . .
...

Cov(Xn, X1) · · · Cov(Xn, Xn)






(4.1)

It is important to keep in mind that the covariance of the same random vector is
the variance Cov(Xi, Xi) = Var(Xi). If the data set is uncorrelated, the covariance
matrix would only have values on the diagonal:

Cov(X) = diag(Var(X1), . . . , Var(Xn)). (4.2)
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If the covariance matrix is not diagonal it is at least a symmetrical matrix and
positive semidefinite, because of the variances on the diagonal and the matrix is
diagonalizable. In the second step the diagonalizing of the matrix gives a new
orthogonal basis with no covariances and only variances. So finally the eigenvalues
correspond to the variances on the corresponding eigenvectors. This is what the
Karhunen-Loève theorem states for the PCA or more general for Fredholm integral
Equation of the second kind [43, 52].

4.1.1 Degrees of Freedom

A very interesting point about covariance matrices is what happens if the matrix is
rank deficient. We can think of basically two different cases the covariance matrix
is rank deficient:

1. the data set is correlated in one or more dimensions;

2. the data set is not describing the entire phase space.

The first option can generally not be predicted at all and is in fact what the PCA
is used for. In physics this would be the question, if a particle could move freely
in space is limited to a (hyper) plane, which would eliminate at least one degree
of freedom. This is similar to the definition in statistics; basically it is the number
of dimension of the domain of a random vector or in simple words the number of
elements till the vector is determinate.
The second problem is more interesting, because in this case only a subspace is
described by the observation and the rank of the covariance matrix is only less
or equal to the number of observations. So if the matrix of observables X =
(X0 − X̄, . . . , Xm − X̄, ) ∈ R

n×m, where Xi ∈ R
n is the i-th observation vector, is

used to build the covariance matrix by:

Cov(X) = XXT (4.3)

its rank is described by a fundamental formula of linear algebra:

rank(AB) ≤ min(rank(A), rank(B)). (4.4)

So if m � n the rank of the covariance matrix is rank deficient with rank less
equal the number of observations, so that only a subspace will be described by
the covariance and several eigenvalues will be zero. In this case the amount of
observation limits drastically the dimensionality of the problem.
This is typically the case for bootstrapping in cryo-EM, where the size of a map is
always larger than 50×50×50 = 125000 but only about 100 volumes generated. In
this case a lot of dimensions of the phase space are not determinated, on the other
hand we can assume that no reconstruction is in a plane of two other volumes,
due to the noise in the entire system. All in all the dimension of the matrix is
determined by the number of observations m.
Here the reduced degree of freedom by estimating the mean value will be ignored.
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4.2 The Accurate Sparse PCA

4.2.1 Motivation

As described in the last Section the covariance matrix is of deficient rank, which
will result in mostly zero eigenvalues. To diagonalize such a matrix in general
more basic matrix operations have to be used for the diagonalization in the QR
algorithm or any other algorithm and a lot more single calculation have to be done,
which will affect the computational time. Another even bigger problem can be the
size of the covariance matrix, which exponentially increases.
This technique can be applied to molecular dynamics simulations (MD) too, if
one is interested in vibrations or a linear decomposition. So it seems to be useful
to implement the algorithm for atomistic structures too. Later we will use this
algorithm to analyze atomistic ensembles obtained from cryo-EM data.
If so much information of the covariance matrix is not well defined, there has to
by a subspace in which the problem could be solved by less dimensions. Inspired
by the concepts of the quasi inverse and the Gramian matrix there should be
a way to calculate the eigenvectors by using the Cov(XT ). This concept is easy
to understand using the spectral theorem or with the following proof, which is
focusing on the way the algorithm can be implemented.

4.2.2 Proof

Consider a stochastic process, that generates m points Xi in an Euclidean n-
dimensional space, then the PCA is defined as a orthogonal linear decomposition
of such a space, which tries to maximize the variance along its basis vectors. The
dimension of this Euclidean subspace is (m − 1), if m ≤ n, otherwise n, where m
is the number of generated points. The average X̄ is the translation of the center
which gives the new vectors X�

i = Xi − X̄.
Only if m � n, the covariance matrix will be rang deficient. So we will focus on
that case. In general the next step is extending the subspace to a orthonormal
basis and to transform the vectors, but due to the fact that the transform is linear
invariant and not scaling invariant, the distances will be the same as in original
space, so that the covariance matrix can be computed directly as a matrix product
of:

X� = (X�
1, . . . , X�

m) ∈ R
n×m (4.5)

And the covariance matrix is as follows:

Cov(X�) = Σ = X�T X� ∈ R
m×m (4.6)

To solve the eigenvector problem now a matrix of size m × m has to be stored and
diagonalized instead of a matrix of size n × n. The eigenvector problem can be
written as a linear Equation:

Σ · V = λ · V (4.7)

where V = (v1, . . . , vm) ∈ R
m×m is the matrix of eigenvectors and λ =

(λ1, . . . , λm)T ∈ R
m is the vector of corresponding eigenvalues. For the back-
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transform to the phase space the calculation of a basis can be omitted by using
the input data set as follows:

Σ · vi = λi · vi

X� · Σ · vi = λiX
�vi

(4.8)

with expansion of Σ = X�T X�:

X�X�T X�vi = λi · X�vi

Cov(X) · (X� · vi) = λi(X
� · vi)

(4.9)

Now X�vi solves the eigenvector Equation for the covariance matrix in the phase
space. In general it is necessary to normalize these eigenvectors to get a orthonor-
mal basis for the PCA. Of course is the number of non zero eigenvectors less than
m, because the number of varying values is less equal (m − 1), due to the fact that
the mean is a varying value consuming an additional degree of freedom. To use this
to minimize the size of the covariance matrix it would be necessary to compute the
new basis and the transformation, which would increase the computation time to
a greater extent than reasonable. This way of solving the PCA already needs more
computation time for full rank matrices but with increasing nullity this effect will
invert. The advantage of this calculation is, that it can decrease the size of the
covariance matrix to be diagonalized from n2 to m2. We will discuss later, what
this implies for the data size on some examples.

4.3 Comparison

The traditional and the new algorithm have been implemented using the LAPACK
routine ’?SYEV’ for eigenvalue calculations via QR-decomposition, all other cal-
culations are implemented in C. The entire program runs serial and no threading
or other parallel techniques are used, even though the code can be executed in
parallel too, which could improve the performance further.
All Tests have been executed on a desktop PC with Intel Core2Quad 2.66GHz
CPU and 4 GB of memory and a Linux1 system.
Several tests have been setup with random data to calculate average running times
to examine the runtime behavior of both algorithms. Therefor a memory block
was filled with random data and duplicated for each of the algorithms to take
running times. This was done one hundred times to get a reasonable average for
the computing times. In Figure (4.1) the execution time of both methods are
plotted; in the first Graph (upper left) you can see that the traditional algorithm
is more or less independent of the ensemble size especially for small system sizes.
On the other hand the new method is independent of the system size and the
running time is almost proportional to the ensemble size (Fig. 4.1,upper right).
The speed up is not that big (Fig. 4.1,bottom left) and only for systems with an
ensemble size to system size ratio of less than 0.1 significant, what can be very
well estimated (Fig. 4.1,bottom right) with the previous runtime function. The
function is very rigorous an will in many cases select the normal PCA routine. If

1Debian Linux amd64
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Figure 4.3: In the top row of the Figure is the structure of the ribosome drawn with
proteins in orange color and nucleic acid in blue on the left side is a side domain zoomed
in. The entire complex consists of 150341 atoms, which where used in the PCA. In the
lower row the volume of the Ribosome is shown on a 348×348×348 grid with a resolution
of 1.3Å/pixel. The gray average map is overlayed with the largest eigenvector in orange,
in the zoom on the left side the amount of information is presented, when comparing the
detailed information of the density with the structure, more details than just secondary
structure is presented.

As an example for a PCA on volumetric data the Ribosome data set is used again.
The structures have been converted into 100 density maps with a symmetric box
size of 348 voxel and a grid spacing of 1.3 A with a size of 160MB and more than
15 GB in total. This should not be calculated on a desktop PC anymore but can
be computed on a recent server with 16GB free memory. The size of the work
memory can be neglected, because it needs less than 1 MB. Again only our new
algorithm is used to calculate the eigenvolumes of the Ribosome in 40 minutes.
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5Chapter

Atomistic Refinement

5.1 Basic Idea

Experiments on biomolecules often only yield low- resolution or sparse structural
data for example cryo-EM. Because in contrast to many X-ray scattering exper-
iments it is not possible to directly reconstruct the atomic structure from the
densities reconstructed from an EM experiment. In a lot of cases this "missing"
data can be provided by prior knowledge; in a further step this information has to
be combined with the experimental information to achieve an atomistic structure.
Today two different approaches are used to do the refinement of cryo-EM densities:

• force field driven refinements using the experimental information as an ad-
ditional term;

• rigid body refinement estimating best placement of non-flexible domains.

On the other hand force field driven methods do not need a good high resolution
model and can be used in example with homology models. The force field is used
to restrain the bonds, bond angles and other elements of the local geometry. This
approach needs a lot of computational power to refine a structure towards the
experimental data. The differences in the conformations of the starting structure
and the target have a big impact on the computation, because only small steps
can be done by those MD simulations [41].
The rigid body fitting uses an existing structure, that is decomposed into its do-
mains. The domains will be fitted into the density to get an estimation for the
new structure. A positive effect of this techniques is that the secondary structure
of protein is conserved and can be taken from high resolution data. A drawback is
the missing of inner domain changes and the often unnatural bonds in the splitting
zones of the decomposition [96].
Both methods have their pros and cons but can also be combined in a flexible
refinement method, which is implemented i.g. in DireX.

43



Cryo-EM - Principal Motions j 5 Atomistic Refinement

5.1.1 MD Simulation

In MD simulations the phase space of a protein can be explored, based on an
energy function, which grants a particular realistic environment. By the creation
of a conformational space corresponding to a protein, the special conformation is
search describing the density measured in the experiment better than any other.
The MD simulations used in such a refinement are usually based on a hybrid
energy function combining traditional MD force fields with and additional force
on the target. The traditional force field is defined as a functions of all atoms
X = (X0, . . . , XN ) with N the number of atoms:

VMD(X) =
�

bonds

1

2
cb(d − d0)2

+
�

angles

1

2
ca(θ − θ0)2

+
�

torsions

1

2
Vn[1 + cos(nω − γ)]

+
N−1
�

j=1

N
�

i=j+1

�i,j





�

d0ij

dij

�12

− 2

�

d0ij

dij

�6




+
N−1
�

j=1

N
�

i=j+1

qiqj

4π�0dij
,

(5.1)

where d is the distance of two atoms, θ the angle of the bindings regarding to
the orbitals and ω the twisting angle of a bond due to other bonds. A lower 0 is
indicating the reference value for that component[14]. The sums are representing:

1. the potential of the bonds modeled as a spring;

2. the orbital model of an atom with the deviation affecting a harmonic poten-
tial on the angle;

3. torsions of the bond model, which will be be expressed in a Fourier series;

4. the van der Waals forces approximated by Lennard-Jones potential;

5. the electro static potential.

This Potential will be modified by an extra term for the difference to the target T
of the refinement, so that the potential becomes:

Vrefine(X) = VMD(X) + Vdiff (X, T) (5.2)

In cryo-EM the target is the electron density (cf. 2.1.1) so that the difference
potential can be approximated by a harmonic potential:

Vdiff (X, T) = c(fX − T)2 (5.3)

where fX is the coulomb potential off the structure X. This is just to get an idea
of this kind of MD simulations and not very accurate, therefore you will have to
expect several problems using this potential.
With such a modified force field it would be possible to do a refinement by MD.
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5.1.2 Rigid Body Fitting

This is another completely different approach using an initial high resolution struc-
ture. The Idea is quite simple, just try to place the structure in the density in the
way it fits best. The advantage is that over-fitting is no big problem because you
will not change the structure itself. To get more precise descriptions the structure
is often decomposed into domains which will be fitted. This domains are mostly
larger than the resolution so the impact of over-fitting can still be neglected. A
problem can arise with the decomposition of the molecule, because if it is split in
the wrong position it is not flexible enough or the segments do not fit correctly to
the density.
The method is always an optimization of a dimension describing the similarity of
two densities, the target T and the structure X. Due to the fact that the structure
has a perfect resolution, its resolution is lowered by the convolution with a Gaussian
G and the rasterizing to a grid. In most cases the correlation is used to compare
the densities of the target an the structure:

max
�

i

Ti · (G ◦ X)i (5.4)

an alternative method was presented by W. Wriggers, that uses the Lapalcian
correlation and can be described as an contour fitting, which has a higher contrast
[11]:

max
�

i

∇2Ti · ∇2(G ◦ X)i (5.5)

This method is very successful at resolution above 10 Å but lack on precision at
higher resolutions. Depending on the domain size the data has a finer definition of
the structure.

5.2 Approximation of a Forcefield

5.2.1 Forces of the Density Map

Both approaches are unsatisfying, one could be very accurate but slower than the
other does not create reasonable structures and is not very accessible for small
changes but fast. This brings in a third approach, which is inspired by elements
of both methods and uses a simulation strategy. To use this approach, forces has
to be derived from the two volumes, therefor the notion for the MD simulation
refinement (cf. 5.3) is used, where a force can be calculated from the difference of
those maps.
The forces introduced by the target depend on the correlation of the two densi-
ties; this forces are updated after each structure update. Due to the normalized
character of the correlation function a pseudo energy could be defined as:

Ecorr = Corr(T, (G ◦ X) =

�

i (Ti · (G ◦ X)i)
�

(
�

i Ti · Ti)
2 · (

�

i(G ◦ X)i · (G ◦ X)i)
2

(5.6)

This energy should be minimized by the simulation, which is not very efficient and
a stochastic approach is chosen to optimize the fit. Therefor random positions ri
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are taken around the atom position x from a radial Gaussian distribution and the
directional vectors are summed and weighted by the density difference. This is a
stochastic differential operator, that should be more robust to noise than a same
sized partial derivative operator:

∇f(x) ∼ 1

n

n
�

i=1

�

(f(x) − λf(ri))
(ri − x)

|ri − x|

�

(5.7)

where λ is a scaling factor and should be chosen as 0.6. For this gradient the densi-
ties should be scaled to reasonable values or normalized to the normal distribution.
This method gives a robust force towards the target map and is more efficient than
solving the full partial derivative [78].

5.2.2 Sampling the Phase Space

The other component of a simulation based approach is the MD-forcefield, which is
overloaded for the refinement of cryo-EM data. 1997 de Groot presented a method
to predict conformational freedom from distance constraints [16]. This method uses
an initial structure to generate a network of distance restrains as a constraint for
probable conformations. These restraints include topological restrains to keep the
correct stereo-chemistry and restraints to avoid overlapping of atoms [78].
In contrast to an MD simulation this algorithm perturbs the atom positions by a
Gaussian. Then the atom positions are randomly changed, till all bond conditions
are preserved. This is done iteratively by a random traversal through the list
of restrains and moving those pairs along their common axis a bit towards its
restrained distance.
By this it is possible to explore the allowed phase space very quickly and to obtain
realistic structures. Using this sampling based method instead of a real potential
for the refinement improves the speed of generating new structures.
Replacing the dynamics based exploration of the phase space by this sampling
based method speeds up the entire process and can be used together with other
forces. For example the force derived from the volumes can be applied to the atoms
at any iteration to converge the sampling.

5.2.3 Deformable Elastic Network

At this point the refinement can be done very quickly, the problem is that during
the refinement the simulation will not converge. This is caused by the low infor-
mation of local structure features in the cryo-EM data and is still visible at 3Å
densities. Another problem is over-fitting, because the structure is still to flexible
on local areas can be refined to noise in the density and the structure will be dis-
torted, this could even happen to secondary structure elements before a good fit
is reached [78].
Due to the Problems in the refinement an additional deformable elastic network(DEN)
is used to stabilize local structure elements and to reduce over-fitting and to im-
prove the rate of convergence. The DEN potential is designed to stabilize the local
structure but not to avid flexibility, so it is implemented to be time dependent.
This dependency on time dependency is modeled into the concept of a harmonic
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restraint. Due to the fact that no realistic forces are computed the time step is a
virtual time step and can be better described as a refinement iteration step. The
resulting energy term for the network at a recent iteration step n can be written
as:

EDEN (n) = k
�

pairs i,j

�

dij(n) − d
(0)
ij (n)

�2
, (5.8)

where dij(n) is the distance of the restraint pair i and j and d
(0)
ij (n) is the corre-

sponding equilibrium distance. The force constant k is used as a constant scaling
factor while the equilibrium distance depends on the step number. The interesting
part of the network is the deformation which allows the network to follow slowly
the structure and still resists random fast vibrations. The update of the network
is done after each refinement step and defined by recursion:

d
(0)
ij (n + 1) = d

(0)
ij (n)

+ κ · γ
�

dij(n) − d
(0)
ij (n)

�

+ κ · (1 − γ)
�

d
(0)
ij (n) − d

(0)
ij (0)

�

,

(5.9)

where κ determines the speed of adapting the new position and γ is the balance
between the adaptation of the new state and preserving of the initial state. This
model can be enhanced by using another reference than the initial structure and
written in a simpler way:

d
(0)
ij (n + 1) = (1 − κ)d

(0)
ij (n)

+ κ
�

γdij(n) + (1 − γ)dref
ij

�

,
(5.10)

where d
ref
ij can be any reference; for d

ref
ij = d0

ij(0) this Equation is equivalent to
(5.9) [80].
With this additional network it is possible to refine structures, the process con-
verges against an optimal value for the correlation, which corresponds in general
to a good RMSD. A deeper view on the refinement and its parameters will be done
in the next Chapter.
All together the DEN can be described as a harmonic elastic network with the
equilibrium state coupled to another weighted harmonic potential which enables
the deformability of the DEN. Putting this together with the conformational sam-
pling and the stochastic gradient calculation, it is possible to set up a fast and
robust refinement system for resolutions from 16Å down to 3Å, which includes the
typically obtained resolutions in cryo-EM.
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6Chapter

Validation of the Refinement Process

6.1 Cross-validation

6.1.1 Choice of the Test set for Cyro-EM Data

For cross-validation the data set needs to be splited into two independent parts.
For this it is convenient to represent the data set by structure factors, which are
the Fourier components of the density map, since each of these components contain
global information on the entire system. However, several factors lead to correla-
tions between these structure factors in cryo-EM derived density maps: cryo-EM
images are usually taken at defocus to improve the image contrast. The correspond-
ing contrast transfer function, which describes the spatial frequency dependency
of the transmitted signal, depends on this defocus and is an oscillating function
that contains multiple zero crossings. In Fourier space the CTF, thus, imposes cor-
relations on structure factors between neighboring Fourier shells. In addition, the
alignment of the images during the density reconstruction procedure introduces
further correlations of the noise in these images [84]. In cryo-EM the structure
factors are therefore too strongly correlated such that a random choice of the
structure factors for the test set, as is done in crystallography, is not optimal. Fur-
thermore, the signal-to-noise ratio (SNR) for cryo-EM density maps decreases for
higher spatial frequencies. To visualize this, the Fourier shell correlation (FSC) [34]
can be computed which is a measure of the signal-to-noise ratio in the individual
Fourier shells and is shown in Fig. (6.1) for three model systems described below
at two different resolutions of 5 Å and 10 Å. The reconstructed density maps are
usually filtered to remove the noise originating from the higher spatial frequency
range, i.e., information from this range is often neglected in the interpretation of
the density. However, the signal in this high-frequency band might still be strong
enough to be useful for validation, as is shown below.
We therefore propose to define as test set for the cross-validation a continuous
band (the ’free band’) from this high-frequency region. The wider this band, the
less crosstalk occurs between structure factors within and outside the band and the
less correlated is the free band with the work band. More specifically we choose the

48



Cryo-EM - Principal Motions j 6 Validation of the Refinement Process

free band in the range where the FSC is between 0.2 and 0.6, which includes the
point where FSC = 0.5, which is a common definition for the resolution of a density
map (FSC0.5 criterion). The red bars at the top of Fig.1 indicate the regions that
are used here for the free set: for the 10 Å data we use the range 7−11 Å and for the
5 Å data, we use the range 4−6 Å. The choice of resolution shells for the selection of
the test set has been described before for X-ray crystallography [24][45][1] to reduce
correlations between the test and work set in the case of high non-crystallographic
symmetry. It should be noted that the common application of additional filters,
such as Gaussian low-pass filters, introduces additional correlations and should
therefore not be used when preparing a density map for the refinement of atomic
models.

6.1.2 Implementation

The approach has been implemented into the program DireX. DireX performs
real-space refinement of atomic models against density maps using an efficient
geometry-based conformational sampling algorithm [17][79]. It optimizes the over-
lap of a density map computed from the model with the target (experimental)
density map. For the cross-validated refinement, we compute the model density
map using only Fourier components from the work band and also filter the target
density map with a rectangular filter as defined by the work band.
During the refinement of the atomic coordinates, restraints are applied to main-
tain local stereo-chemistry and prevent atom overlaps. In addition, DireX uses de-
formable elastic network (DEN) restraints [80][79] to account for the low observation-
to-parameter ratio at low resolution. These harmonic restraints are defined between
randomly chosen atom pairs that are within a distance range of typically 3 to 15
Å. The deformability is achieved by allowing the equilibrium distances to change,
which effectively moves the minimum of the network potential. This minimum
adapts itself to balance the influence of the density map and a set of reference
coordinates, which in the cases presented here are equal to the coordinates of the
starting models. The strength of these restraints relative to other forces is deter-
mined by the weight factor wDEN and the deformability of the network is controlled
by the parameter γ, where γ = 0 means no deformability and γ = 1 means max-
imum deformability, i.e. no information about the reference model is used. These
two parameters, γ and wDEN , need to be optimized and it is demonstrated here
how this can be done using cross-validation. Other refinement programs that use
different types of restraints will need to optimize different parameters, which we
expect to be possible analogously with the cross-validation approach presented
here.

6.1.3 Measure of Fit

The traditional measure of the fit of a model to diffraction data is the R-value:

R =

�

h,k,l ||Fobs(h, k, l)| − |Fcalc(h, k, l)||
�

h,k,l |Fobs(h, k, l)| (6.1)

which compares the amplitudes of the structure factors as this is the most accu-
rate information obtained by crystallography while the phase information is either
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missing or usually more inaccurate. The free R-value is then defined by summing
over structure factors from the test set T :

Rfree =

�

h,k,l∈T ||Fobs(h, k, l)| − |Fcalc(h, k, l)||
�

h,k,l |Fobs(h, k, l)| (6.2)

We denote the free R-value as Rrnd
free when the structure factors from the test set

T are selected randomly, and Rint
free when they are selected from an interval.

Electron microscopy measures both amplitudes and phases, with usually even
higher phase than amplitude accuracy. In this case, a more natural choice for
the measure of fit is the correlation of the density map computed from the model,
ρcalc, with the experimental density map, ρobs. The map correlation includes the
phases and amplitudes and is scale independent. Here we consider two different
correlations: 1) the free map correlation, Cfree, where only structure factors from
the free band were used to compute both density maps:

Cfree =

�

i,j,k

��

ρfree
calc (i, j, k) − ρ̄free

calc

� �

ρfree
obs (i, j, k) − ρ̄free

obs

��

�

�

i,j,k

�

ρfree
calc (i, j, k) − ρ̄free

calc

�2
�

�

i,j,k

�

ρfree
obs (i, j, k) − ρ̄free

obs

�2
(6.3)

and 2) the work map correlation, Cwork, which is analogously defined for ρwork

for which only structure factors from the work band were used. It should be
noted that the absolute values of Cfree and Cwork cannot be compared directly
as they are computed on different frequency ranges, unlike Rrnd

free and Rrnd
work, which

are drawn from the same distribution of R-values. For higher spatial frequencies
smaller changes in the atomic coordinates lead to larger changes of the correla-
tion; map correlations computed from maps with higher frequency components are
therefore more sensitive to structural differences.

6.2 Testing the Method

6.2.1 Tests with simulated data

We tested the approach on three different proteins with simulated cryo-EM density
maps at 5 and 10 Å resolution. The starting models are homology models taken
from the benchmark set of Topf et al. [88], where we chose an easy (1ake, single-
domain), an intermediate (1ikn, two-domain), and a hard case (1hrd, two-domain).
The sequence identity of 1ake, 1ikn, and 1hrd is 46%, 46%, and 28%, respectively,
and the corresponding initial root-mean square deviation (RMSD) of the starting
from the target structure is 3.6 Å, 7.7 Å, and 6.0 Å, respectively. An overview of
all cases is given in Table (6.2.1).
To receive realistic cryo-EM density maps we first generated 1 Å density maps
from the atomic target structures. These high-resolution maps were then used to
compute 900 projection images with the project3d command of EMAN [54]. Gaus-
sian noise was added to these images where the standard deviation was chosen
such as to yield a resolution of the final reconstruction of 5 and 10 Å, respec-
tively. The images were split into three equally sized groups. A contrast transfer
function (CTF) and an envelope function were applied to the images in each of
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opt. restraints no restraints

PDB Initial RMSD CW ork CF ree RMSD CW ork CF ree

ID RMSD Å Å
5 Å

1ake 3.60 1.40 87.4 21.1 1.86 88.0 18.9
1ikn 7.73 1.80 82.2 35.5 7.94 85.3 17.5
1hrd 5.96 3.88 83.2 23.5 3.99 85.0 16.7

10 Å

1ake 3.60 1.47 90.7 52.4 2.67 91.1 42.5
1ikn 7.73 2.14 85.9 44.1 8.30 87.1 35.4
1hrd 5.96 4.30 85.4 36.5 4.95 87.4 31.6

Table 6.1: Summary of refinement results for three models with synthetic density maps.
The three models were taken from the homology model benchmark set of Topf et al. [88]
and represent an easy (1ake), an intermediate (1ikn), and a hard case (1hrd), in terms of
structural similarity between starting and target model. Refinements were done with and
without DEN restraints for two resolutions, 5 and 10 Å. Results for the optimum restraints
correspond to the DEN parameters that lead to the highest free density map correlation,
Cfree. The root mean square deviation (RMSD) of the refined to the target structure is
always lower when using optimal restraints. The work map correlation, Cwork, is always
higher without restraints, compared to using optimum restraints, since the density map is
closer fitted by the model. However, without restraints, the RMSD of the refined to the
target structure is always higher, indicating that the density is over-fitted. Cfree is always
higher when refining with optimum restraints compared to refinements without restraints
and higher Cfree values always correspond to better structures with lower RMSD.
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chosen atoms that are within a distance range of 3 to 10 Å in the starting model.
The refinement was done in 200 steps for 1ake and in 400 steps for 1hrd and 1ikn.
The computer runtime needed was relatively short with, e.g., 6 min for 200 steps
of 1ake at 10 Å, and 17 min for 400 steps of 1hrd at 5 Å.
Map correlations, Cfree and Cwork, were calculated for each DEN parameter com-
bination and averaged over the last 5 structures from the refinement trajectories
for ten independent refinement runs started with different random number seeds.
Figure (6.2) shows two of these three cases, 1ake (Fig. 6.2, A-C) and 1hrd (Fig.
6.2, D-F). The starting homology model (yellow), the target structure (green), and
the refined model (blue) are superimposed on the work density map, ρwork

obs , (gray)
corresponding to the 10 Å data sets. Figures (6.2) C and F show in addition the
free density map,ρfree

obs (orange), computed with the spatial frequency components
in the range of 7 − 11 Å. The free maps show little resemblance with the pro-
tein structures, as they are composed of only a narrow band of high frequency
components and, in addition, these components contain a significant level of noise
(cf. Fig. 6.1). However, the signal in this free map is sufficient to be useful for
validation as is shown below.
For each case we performed 300 refinements in total with 5 different wDEN - and 6
different γ-parameters in the ranges 0.0 − 0.4 and 0.0 − 1.0, respectively. For each
of these 30 DEN parameters combination 10 independent refinement runs were
performed with different random number seeds. For the first case (1ake) at 10 Å,
contour plots (see Fig. 6.3) show the dependency of the root-mean square deviation
(RMSD) of the refined structure to the target structure, Cfree, Rint

free, and Cwork

values on the wDEN and γ parameters. The best structure, which corresponds to
the lowest RMSD value of 1.45 Å, is obtained for wDEN = 0.1 and γ = 0.2 (cf. Fig.
6.3, A). This parameter combination yields the third highest Cfree value. Whereas,
the highest Cfree is obtained for wDEN = 0.2 and γ = 0.6, which in turn yields
a structure that has an RMSD of 1.46 Å to the correct structure which is very
similar to the RMSD of the best structure (1.45 Å). This means picking the best
Cfree yields a model that is very close to the best solution.
High γ-values and low wDEN values correspond to weak restraints and lead to over-
fitted structures and hence to a large RMSD. The work map correlation (Cwork) is
highest for these over-fitted high RMSD structures, indicating that Cwork is not a
good measure of the quality of the structure. In contrast, the contour plots of the
RMSD- and Cfree-values have a very similar shape, in particular the largest free
correlation is found in the same region where the RMSD is lowest. The correspond-
ing contour plots for the third case (1hrd) at 10 Å resolution are shown in Figure
( 6.4) . While for the easy case (1ake) many different choices of DEN parameters
yield low RMSD values, for this difficult case the optimal DEN parameters are
confined to a small region. This region of low RMSD values clearly overlaps with
high Cfree values. The corresponding contour plots for all other cases are shown
in Figure (6.6, 1-4).
The correlation between Cfree and RMSD is very strong for all systems we studied
with −0.90 averaged over all six cases, suggesting that Cfree is in fact a good
measure to detect the optimum structure. The Rint

free-value shows a good agreement
with the RMSD as well; the correlation between Rint

free and RMSD averaged over
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Figure 6.3: Refinement results for the easiest case 1ake at 10 Å. Contour plots showing
(A) the root-mean square deviation (RMSD) between refined model and correct crystal
structure, (B) the free correlation, Cfree, the free R-value, Rint

free, and the correlation of the
work maps, Cwork, as a function of the strength, wDEN , and the deformability, γ, of the
elastic network restraints. The highest Cfree values fall into the same region of parameters
wDEN and γ, for which the RMSD is lowest. The Cwork value instead increases constantly
for weaker restraints (smaller wDEN values) and higher deformability (larger γ-values).
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Figure 6.4: Refinement results for the most difficult case 1hrd at 10Å. The contour plots
show the same quantities as in Figure (6.3). The optimal region is significantly smaller
than for the easy case 1ake. However, high Cfree-values correlate well with low RMSD
values, even though the refined structure is still far away from the correct solution; the
best RMSD value is 4.3 Å.
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all six cases is 0.84. However, Rrnd
free is not correlated with the RMSD, with an

average correlation of −0.18.
It should be noted that the R-values are here typically significantly larger than
what is observed for diffraction data. The typically upper limit for the R-value
of 59% as obtained for random atom positions [93] does not hold here, since the
power spectrum of the target density map is significantly different from the power
spectrum of the model density map. The reason for this is that a CTF function
has been applied to the images but not to the model density map that is computed
by DireX during the refinement. We plan to correct the model density calculation
for this effect in a future version of DireX.
An overview of the results of all refinements is shown in Table 1, where refine-
ments using optimum DEN restraints are compared to refinements without DEN
restraints. For all cases the optimum DEN parameters are determined by the max-
imum Cfree value. Without DEN restraints most models are strongly over-fit,
leading to a lower RMSD as compared to when using optimal restraints. As ex-
pected, Cwork is higher for these models, since without restraints the model can be
refined further to fit the density better. The Cfree value is instead always higher
for the optimally restrained model and is therefore in all cases able to detect the
better model. Cfree can detect the better model even when the model is far from
the correct structure as is demonstrated by the 1hrd case. The template used for
building the model for 1hrd has a relatively low sequence identity (28%), the ini-
tial homology model has therefore several regions with wrong secondary structure,
loops, etc., which cannot be corrected by refinement alone but instead would need
extensive remodeling. However, even though the RMSD values of the refined struc-
tures lie in the range of 4.3−5.0 Å, the low-RMSD structures still yield the higher
Cfree values (cf. Fig. 6.4 and Fig. 6.6, 4A-B).

6.2.2 Model Quality versus Spatial Frequency Cutoff

For cross-validation data need to be left out which necessarily impacts the quality
of the refined structure. The information content of cryo-EM density maps varies
for different Fourier shells. The lower frequency shells obviously contain little in-
formation on high-resolution details, but for increasing spatial frequency the shells
also contain increasing amounts of noise. One can therefore expect that there is an
optimum choice of the cutoff of the spatial frequency, νmax, which best trades off
resolution and noise. Choosing a low value for νmax ignores high-resolution signal
in the data and prevents the refinement to improve structural details in the model.
On the other hand, including high frequency components can be expected to be
detrimental in the refinement, as these high frequency components will contribute
excessive noise to the density map.
To test how the result depends on this cutoff value, νmax, we performed refinements
for all three synthetic cases with different cutoff values. As a quality indicator for
the refined structure we computed the RMSD to the correct structure. Figure 6.5
shows these RMSD values for different cutoff values, νmax, and for the 5 Å (solid
line) and 10 Å (dashed line) data sets of all three starting models. It should be
noted that νmax does not correspond to the resolution but just determines which
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Figure 6.5: Model quality versus spatial frequency cutoff. The root-mean square deviation
(RMSD) is shown for all three cases (1ake, 1ikn, and 1hrd) at both resolutions, 5 Å (solid)
and 10 Å (dashed) as a function of the higher frequency limit of the work band, which is
identical to the the lower limit of the free band. Only the work density map, composed of
Fourier components from the work band, is used for the refinement. Overall the RMSD does
not depend strongly on this frequency cutoff. The RMSD noticeable tends to increase for
higher frequency cutoffs because of the lower signal-to-noise ratio in this frequency range.
Note that the data have a resolution of 5 or 10 Å (FSC0.5 criterion), which means that
with a cutoff at, e.g., 3 Å, the density maps contains large amounts of noise. However,
DireX is not very sensitive to this noise since it uses a robust method to compute forces
on the atoms.

Fourier components were used to compute the density maps from the 5 Å and 10
Å data sets.
Overall the quality of the models does not depend strongly on the frequency cutoff.
One reason for this is that the main conformational change between the homology
model and the correct structure is captured well already by the lower frequency
components. More serious errors such as register shifts or regions with wrong
secondary structure cannot be corrected by refinement alone but instead would
need extensive remodeling. Some of the gross errors in the 1hrd model might for
example be correctable with the 5 Å data set and a large frequency cutoff. Such
automatic or manual model rebuilding is, however, beyond the scope of this work
The detrimental effects of the noise at higher frequency cutoff are reduced by the
particular algorithm, which DireX employs to refine atomic models. Rather than
computing an analytical gradient to optimize the atomic coordinates, a stochastic
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Figure 6.6: Refinement results for 1ake at 5 Å(1), 1ikn at 5 Å(2), 1ikn at 10 Å(3) and 1hrd
at 5 Å(4). Contour plots showing (A) the root-mean square deviation (RMSD) between
refined model and correct crystal structure and (B) the free correlation, Cfree, the free
R-value, as a function of wDEN , and the deformability, γ, of the elastic network restraints.
While in (2) and (4) the dependency is obvious, there is no fit of both functions in (1) and
(3). In both cases the Cfree value does not match the best RMSD but is still describing
areas with smaller RMSD values. This can be due to the small overall RMSD values (< 3Å)
compared to the refinements of (2) and (4).

gradient is computed by scanning the local environment of each atom, which makes
it relatively robust against even very noisy density maps [78].

6.2.3 Application to Real Data of GroEL

One complication with testing a new method on real data is that the correct struc-
ture is not precisely known. We chose GroEL as a test case, since it has been studied
extensively by both X-ray crystallography and cryo-EM. The crystal structure by
Braig et al. [8] (PDB ID 1OEL) fits relatively well to the cryo-EM density map
described by Stagg et al [83] (EMD-1457). The cryo-EM has a resolution of 5.4 Å
measured by the FSC0.5 criterion.
Since the exact high-resolution structure corresponding to the cryo-EM density
map is not known, we chose to compare our refinement to a conservative rigid-
body fit instead. The generation of this conservative model is motivated by the
observation that, when comparing the conformations of individual subunits in
different GroEL crystal structures, the conformational differences can be captured
to a large extent by breaking each GroEL subunit into three rigid domains: an
equatorial domain, an intermediate domain, and an apical domain. These three
domains taken from the crystal structure (1OEL) were docked individually as
rigid bodies into the density map using the program Chimera [68]. The obtained
atomic model fits the density very well and can be assumed to not to be overfitted
to the density as only 18 degrees of freedom (three domains with translational
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and rotational freedom) were used per subunit. This model serves as our target
structure for comparison with the cross-validated DEN refinement with DireX.
The structure refinements were started from the complete crystal structure includ-
ing all 14 subunits. Figure (6.7, A) shows a superposition of the starting model
(yellow), the refined structure with optimum DEN restraints (blue), the conser-
vative three-domain rigid-body fit (green) for one subunit, and the density map
(gray).
The density map of GroEL was obtained from the EMDatabank
(http://www.emdatabank.org, EMDB ID 1457). The map was not filtered [83].
As a starting model we chose the crystal structure (PDB ID: 1OEL). As a con-
servative rigid-body fit, we split the subunit of the crystal structure into three
domains: the equatorial domain (residue ranges 2 - 136 and 410 - 525), the inter-
mediate domain (residue ranges 137 - 191 and 374 - 409), and the apical domain
(residue range 192 - 373), and fitted each domain as a rigid body into the density
map using the program Chimera. This models serves as the target for comparison
with the DEN refined structure.
The contour plots (Fig. 6.7, B-F) show the results of the DEN parameter grid
searches, which were done similar to the three synthetic cases described above.
The only difference is here that the weight wDEN of the DEN restraints is kept
constant, instead only those DEN restraints that involve loop regions are weighted
with the factor wLoop−DEN (see Methods), which accounts for the fact that α-
helices or β-sheets are usually structurally more conserved than loop elements.
For comparison we performed two complete sets of DEN parameter optimizations
with two different choices of the free band: a narrow band of 5 − 6 Å and wider
band of 5 − 9 Å extending to lower frequencies. The wider band results in a lower
resolution of the work density map used for the actual refinement. For both choices
a grid search for optimal DEN parameters was performed. All 14 subunits (53858
atoms in total) were refined simultaneously into the entire density map in each
DireX run, which consisted of 200 steps. The runtime of each run was about 90
min. The number of DEN restraints was chosen as three times the number of
atoms. The strength of the DEN restraints (DireX parameter den_strength) was
kept constant at the value of 0.5. Those DEN restraints that involved loop residues
were scaled by a factor wLoop-DEN (corresponds to DireX parameter den_secstr_

loop) which was changed in steps of 0.2 between 0.0 and 1.0.
For the narrow free band, the best RMSD to the rigid-body fit is 1.13 Å (red
circle in Fig. 6.7, B). The highest Cfree value yields a RMSD value of 1.17 Å ,
which is very close to that of the optimal structure. The highest Cfree values are
obtained for larger γ-values than the lowest RMSD values. This means that the
cross-validation suggests that the structure is allowed to be deformed more than the
three-domain rigid-body fit without being overfitted, which seems reasonable given
the relatively high resolution of the work density map (high-frequency cutoff 6 Å).
The Cwork-contour plot (Fig. 6.7, D) shows the highest values for large γ-values
corresponding to easily deformable structures, which are significantly over-fitted.
The largest Cwork yields a structure with an RMSD of 1.48 Å to the rigid-body
fitted structure.
The wide free band results in a lower resolution of the work density map (high-
frequency cutoff at 9 Å) than the narrow band. For the wide free band the best
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Figure 6.7: Refinement of a GroEL crystal structure (PDB ID 1OEL) against an exper-
imental cryo-EM density map (EMD-1457) at a resolution of 5.4 Å (FSC0.5 criterion).
The structure refined with optimum DEN parameters is compared to a model that was
obtained by docking the equatorial, intermediate, and apical domain of one GroEL sub-
unit individually as rigid-bodies into the density map. (A) Shown is a superposition of
the starting model (yellow), the DireX/DEN refined structure (blue), the three-domain
rigid-body fit (green), and the density map (gray). Results of the refinements with differ-
ent choices for the DEN parameters γ and wLoop−DEN are shown as contour plots for two
different choices of the free band 5-6 Å (’narrow band’, B,D,E) and 5-9 Å (’wide band’,
C,F). (B) Shows the RMSD of the DEN refined model to the three-domain rigid-body
fit for the narrow band. (D) Cwork is largest for the highest deformability of the elastic
restraints, which corresponds to high RMSD values. (E) The optimal Cfree value yields
a relatively low RMSD value but corresponds to a larger deformability of the elastic re-
straints than the lowest RMSD values, indicating that with a work map resolution of 6 Å
(the upper limit of the free band), it is justified to allow flexibility during the refinement
instead of fitting the individual domains as rigid-bodies. However, for the wide band with
a lower resolution cutoff of the work map (9 Å), the lowest RMSD (C) is obtained exactly
for those DEN parameters for which Cfree (F) is highest, which means that the optimal
solution determined by cross-validation is most similar to the rigid-body fit.
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RMSD to the rigid-body fit is 1.10 Å (red circle in Fig. 6.7, C) and the highest
Cfree values now coincide exactly with the lowest RMSD regions. That means, at
this lower resolution, the cross-validation identifies as optimum the solution that
is most similar to the rigid-domain fit with the advantage that there is no need
to know in advance where to break the protein into rigid domains. This example
demonstrates that the cross-validation approach is able to determine depending on
the resolution how strongly the structure needs to be restrained to prevent over-
fitting. At lower resolution the optimum structure convergences to the structure
obtained by rigid-body fitting.
The focus in this example is on the rather small structural differences to demon-
strate the sensitivity of this cross-validation approach. Larger deviations from the
optimal structure, due to either under- or over-fitting, are usually even easier to
identify.

6.3 Results

The refinement of large biomolecular structures against low-resolution density
maps obtained from single-particle cryo-EM is highly susceptible to over fitting,
as the number of parameters, i.e. the atomic coordinates, is typically much larger
than the number of experimental observables. We present an approach for the
cross-validation of structure refinement against such cryo-EM density maps that
is able to detect over fitting. The structure factors that are omitted from the work
set and used for validation are taken from a spatial frequency range with a rela-
tively low signal-to-noise ratio. These structure factors are typically not reliable
for direct interpretation and are usually ignored. Their inclusion in the density
map calculation would lead to an increased level of noise in the density. However,
the signal in this frequency range is still strong enough for validation: a significant
increase in the free map correlation, even if the absolute value of the correlation is
low, can be assumed to be most likely due to an improvement of the model, since
information from this free frequency range has not been used for the refinement.
The broader this test frequency range is and the more it extends towards low fre-
quencies with larger signal-to-noise ratio, the more robust is the validation mea-
sure. However, the more signal is omitted and not used for the refinement, the
lower is the quality of the refined structure. We think the frequency ranges pro-
posed here provide a good trade-off for most cases, but it is possible that in other
situations a larger range could be necessary or a smaller range might be sufficient.
We proposed a measure, the free map correlation Cfree, for which we have shown
that it correlates well with the overall correctness of the model. Refined structures
with a large Cfree value also have a low RMSD to the correct structure for three
test proteins with simulated data. This means that Cfree can be used to optimize
the choice of restraints and their strengths used during the refinement. Depending
on which optimum parameters are chosen by Cfree, DEN refinement can cover
the entire range from completely unrestrained positional refinement to (almost)
rigid-body fitting.
In X-ray crystallographic refinement with high non-crystallographic symmetry
(NCS), which is for example the case for icosahedral viruses, cross-validation with
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a random choice of test set reflections cannot be used due to strong correlations be-
tween structure factors imposed by the high symmetry. In analogy to the approach
proposed here, it is conceivable that reflections in the non-complete high-resolution
Fourier shells, which are usually neglected, could be used as test set reflections.
The cross-validation approach itself is independent of the particular choice of re-
straints, so we expect that our approach is of general applicability and can be used
to optimize very different types of restraints as used by all other flexible fitting or
refinement tools. For example, Cfree could be used in elastic normal mode based
fitting to determine the optimum number of eigenmodes to be included in the fit-
ting. It should also help to decide whether, in the case of very low-resolution data
(> 10 Å), flexible refinement can be justified at all, or whether rigid-body fitting
should instead be pursued. Finally, we expect that this cross-validation approach
increases the reliability of refined structures and reduces mis- or over-interpretation
of noisy and low-resolution density maps obtained from cryo-EM experiments.
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7Chapter

Determination the Principal Motions of the Cryo-

EM Data

7.1 Bootstrapping the Density Reconstruction

A single 3D reconstruction can be determined from a stack of single-particle images
obtained from cryo-EM micrographs. In addition, as described in Section 3.2.3, the
variance of a dataset can be explored via bootstrapping by generating an ensemble
of density maps. This ensemble is typically used to calculate a variance map,
which describes the density fluctuations at each individual grid point. However,
this density ensemble further includes the dependencies of density fluctuations
between different grid points. We here develop an approach to determine correlated
fluctuations in the density. This approach is applied to two data sets of chaperonin
molecules, for which large scale conformational motions have been suggested.

7.2 Chaperonins as Test Systems

Chaperonins are protein complexes involved in assisting the folding of newly syn-
thesized proteins. The typical architecture of chaperonins involve a barrel-like
structure with a central folding chamber. The unfolded substrate enters the cham-
ber, which closes upon ATP hydrolysis to initiate folding of the substrate. Finally
the folded substrate is released.
Two classes of chaperonins are distinguished, group I chaperonins like GroEL are
found in prokaryotes, have a cofactor GroES to close the folding chamber, while
group II chaperonins close the chamber with a built-in lid, requiring a large con-
formational rearrangement. Group II chaperonins are found in eukaryotes (TRiC)
and archaea. We studied in detail the chaperonins Mm-CPN from the archaea
Methanococcus maripaludis and GroEL/ES from the bacterium E.coli (Fig. 7.1).
GroEL consists of two homo-heptameric rings stacked together back-to-back, where
each ring forms a reaction chamber. The cofactor GroES is a homo-heptamer,
which binds to one side of GroEL thereby closing one reaction chamber. The ring
to which GroES binds is referred to as the cis-ring, while the opposite ring is called
the trans-ring.
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The Mm-CPN is a homo-hexadecamer consisting of two rings with eight subunits
each. Both rings form a reaction chamber, which is closed by an iris-like motion of
the helical protrusions of the apical domains. Both GroEL and Mm-CPN monomers
are typically segmented into three rather rigid domains, the apical, intermediate,
and equatorial domain (cf. Fig. 7.1).
Both data sets for Mm-CPN and GroEL/ES have been published as single recon-
structions by Zhang et al. [102] and Chen et al. [12], respectively. Bootstrapped
density maps were computed for both data sets using the the calculateMapVari-

ance.py program of the EMAN toolkit with the same set of parameters as were
used for the originally published reconstructions. The resolution of the obtained
densities is about 8Å. For GroEL/ES and Mm-CPN, 100 and 99 densities were
generated, respectively.
The Mm-CPN wild-type showed a strong orientational preference in the exper-
iment, which limited the resolution of the reconstruction. Therefore the helical
protrusion in the apical domain was truncated by 22 residues, which resulted in
an increased number of side-views and a consequently increased resolution.

7.3 Analysis of Eigenvolumes

Recently it has been suggested [82, 63] to calculate eigenvolumes from boot-
strapped density maps and to interpret them in terms of the underlying con-
formational changes of the protein. These eigenvolumes are calculated by applying
a PCA to an ensemble of bootstrapped densities.
The PCA on the densities maximizes the density fluctuations which means that
the largest eigenvalues correspond to the largest correlated volumetric changes.
We are ultimately interested in the motions of the protein structure itself, and,
thus, need to translate the density fluctuations into atomistic fluctuations. It is
however important to realize that the largest volumetric change is not necessarily
caused by the largest atomistic motion. Vice versa, large protein motions do not
necessarily cause large density changes.
To examine this effect, we consider the density map of a helix at a resolution of 8
Å (see Fig. 7.2). The axis of the helix is aligned along the y-axis. We will discuss
the effects of translations of the density, exemplified by 4 Å shifts along the three
coordinate axes. The corresponding RMSD values between the initial and shifted
helix positions is therefore 4 Å. These simple translations will always lower the
cross-correlation between the initial and the translated density map.
The cross-correlation for the maps translated along the x-, y-, and z-axis is .87, .93,
and .69, respectively (Table. 7.3). The smallest change of the cross-correlation com-
pared to the perfect overlap is obtained for a shift along the helical axis (y-axis).
The same 4 Å shift along the perpendicular x-, and z-axis leads to a larger decrease.
Obviously, the change in correlation depends on the shape of the molecule.
In the same way, a rotation of 180 degree around the helical axis yields a high
cross-correlation of .91. So, even dramatic conformational changes might yield
very small correlation differences. It is therefore not possible to deduce the extent
of the atomic motion from the change of the cross-correlation.
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Deckel

cis-Ring

trans-Ring

Figure 7.1: Shown at the top is the GroEL/GroES complex (PDB ID: 1AON) superim-
posed to the average density of the bootstrapped ensemble. The front half of the density
map was removed for clarity. The GroES heptamer (orange) closes the cis-ring (upper
reaction chamber) of GroEL (blue). The lower trans-ring is in a more compact confor-
mation. At the bottom the Mm-CPN (PDB ID: 3IYF) is shown with its average density
superimposed. Again, the front half of the density was removed for clarity. The density
is weaker in the apical regions and the secondary structure is entirely outside the density
surface. We studied a genetically engineered version of Mm-CPN where the helical pro-
trusion was truncated by 22 residues. On the right side a single subunit of the truncated
Mm-CPN is overlaid with the wild-type (transparent) subunit in the apical domain. The
individual subunits of both Mm-CPN and GroEL are usually segmented into three rather
rigid regions: apical, intermediate, and equatorial domain.
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Figure 7.2: On top the helix is shown forming the lid in the native Mm-CPN structure
(3LOS). In grey the initial structure is drawn, which was used as the reference for cal-
culating the RMSD in Table 7.3. In blue the helix is shifted by 4 Å to the right, which
corresponds to the y-axis. In orange the helix is translated in the perpendicular plane
along the z-axis. The RMSD of both translated helices is 4Å calculated with the initial
grey structure as reference. Just by the structures the correlation in the densities can be
estimated to be very different. At the bottom the reference density is shown in grey. In
blue areas are marked, which are occupied only by the helix shifted to the right, in orange
the areas for the helix shifted orthogonal to the helix axis are marked. It is easy to see
that both in RMSD identical shifts have a different overlap with the initial structure, that
will imply large effects on the covariances.

As a result, the PCA of a given density ensemble will yield eigenvolumes that
describe the uncorrelated fluctuations with the largest variance, which not neces-
sarily correspond to the largest atomic fluctuations. In the synthetic test case of
the helix any 4 Å translation along the coordinate axes had the same impact on
the structural variance, while the shift along the z-axis will dominate the variance
of the densities and would yield the largest eigenvalue.
Finally, the extent of conformational changes obtained from the density PCA is
different from the actual atomistic conformational changes. The shape determines
which components of the atomistic fluctuations cause the largest change in density.
The components of the fluctuations are therefore weighted differently in the density
PCA, due to their impact on the density variation.
It is of course still interesting to perform a density PCA to analyze bootstrapped
density ensemble, as it helps to reveal dominant conformational fluctuations.
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Translation RMSD (Å) Correlation
x-axis 4.0 .87
y-axis 4.0 .93
z-axis 4.0 .69

Table 7.1: A α-helix aligned on the y-axis is translated by 4 Å along the axes of the
coordinate system (Fig. 7.2). The RMSD of each shift is 4 Å but the correlations of the
densities with the initial state varies depending on the direction. The shift along the axis
of the helix (y-axis) causes very small loss of correlation, while a shift perpendicular to the
helix axis can cause large changes in the correlation. While the translation along the x-axis
induces just a little bit smaller correlation a shift along the z-axis reduces the correlation
by 0.31.

However, our goal is to interpret the bootstrapped density ensemble in terms of
atomistic motions. Because of the described effects, a density PCA is not optimal
for this interpretation and it becomes evident that an ensemble of atomistic models
is needed that represents the information from the density ensemble. For this, we
refined atomistic protein structures against each of the density maps to obtain an
ensemble of protein structures.

7.4 Refinement of Atomic Models against Bootstrapped
Densities

Due to the fact that in cryo-EM multiple proteins of same type are on the mi-
crograph, there is at least a small conformational variance and this will be part
of the reconstruction. The previous explained technique of bootstrapping can be
used to get volumetric representations of the conformational space. As shown pre-
viously, it is inadequate to perform a PCA on the densities to obtain dominant
atomic fluctuations of a system, in contrast the bootstrapped densities have to
be translated into an atomistic representation of the data. The variance of the
bootstrapped densities can then be expected to be represented to a large extent
by this atomistic ensemble.
The atomistic ensemble is obtained by refining a starting model against each of
the bootstrapped densities individually. For GroEL/ES the refinement was started
from a crystal structure (PDB ID: 1AON) and for Mm-CPN the refinement was
started from a previously determined model for the open state that was based on
a homology model built from the crystal structure of the thermosome [102, 20].As
the fitted models should capture fluctuations around the average conformation it
is in general advisable to start the refinements from a model that either has been
fitted to, or, as in our cases, is close to the average density.
For the refinement the flexible fitting program DireX was used. DireX allows to
use only a small parameter set to control the refinement as described in Section 5.
A density map is computed from each fitted model that is compared to the target
density. This comparison was then used to find the optimal parameters in DireX,
as described in the next Section below.
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The resolution cutoff (rectangular low-pass filter) was chosen according to the
Fourier Shell Correlation (FSC) [72] of the original reconstructions. For GroEL/ES
the cutoff was set to 7 Å and to 8 Å for Mm-CPN. This implies that higher
frequencies have not been used at all in the refinements and the model densities
have been calculated with the same cutoff.

7.4.1 Choice of the Resolution Cutoff

The first important parameter is the resolution cutoff, which is necessary to avoid
over-fitting and interpreting noise as fluctuations of the structure. The basic method
to calculate the resolution is to use the Fourier Shell Correlation (FSC) [72]. This
methods assume that the FSC will converge to 0.0 for high frequencies and there
will be only uncorrelated noise that spectra.
This results can not be used for bootstrapped density ensemble, probably the
resolution of each density is still in that area, the focus is on the differences between
multiple densities. According to the bootstrapping method, the density ensemble
has some unique characteristics. The FSC of two bootstrapped densities converges
to all value of about 0.45 for Mm-CPN and for GroEL/ES it is about 0.2 (c.f. Fig.
7.3).
The reason for this is that the dataset used in the reconstruction is not independent
from the others anymore, because each density shares a certain amount of images
as basis for the reconstruction. The Result is correlated noise. In principal this
should not be a problem, but in each of the reconstruction of the bootstrapped
densities single images have been used multiple times. So at the same resolution
the FSC has converged, the information in one of the bootstrapped maps can not
be separated from those artifacts.
To avoid any influence of those effects a resolution cutoff was chosen according to
the FSC of bootstrapped maps. For GroEL/ES the resolution was set to 7 Å in the
refinement and to 8 Å for Mm-CPN. This implies that higher frequencies have not
been used at all in the Refinement and the model densities have been calculated
with the same cutoff.
After the refinement a ramp filter was used on the bootstrapped ensembles to
reduce the remaining noise and to allow an optical comparison of the noisy boot-
strapped maps and the smooth model maps.

7.4.2 Optimization of the Refinement

The challenge is to find parameters for which the fitted models describe the differ-
ences between the densities in a significant way. It is essential that enough of the
characteristics of each bootstrapped density is transferred to the atomistic model.
Otherwise, the information on the conformational variance would not be encoded
in the ensemble of atomistic models.
The optimal parameters that control the restraints in DireX were determined in
an iterative way: starting with very strong restraints, which makes the structure
very stable and rigid, the stiffness was incrementally decreased. At each iteration
the fit of the model was analyzed by calculating the cross-correlation between the
model densities and each target density (Fig. 7.4). As the criterion for the best
parameters we required that the cross-correlation between the model densities and
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Figure 7.3: The FSC of two bootstrapped maps plotted for GroEL/ES (blue) and MM-
CPN (orange) are plotted. For Mm-CPN the FSC drops till 0.45 and for GroEL/EL the
FSC converges to 0.2. The resolution choose in the refinement are marked by horizontal
lines. The Resolution is always chosen at a position the FSC has not reached the conver-
gence level. The vertical lines mark the used resolutions in the refinement procedure. For
Mm-CPN 8 Å were chosen and for the GROEL/ES complex a little bit higher resolution
of 7 Å .
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their corresponding target densities was higher than the correlation between the
model densities and all other bootstrapped densities. That means each model was
required to yield the highest correlation to the density it has been fitted to (Fig.
7.4). The iteration was stopped when this criterion was reached. In other words,
those restraints were chosen that were as strong as possible, but still allowed to fit
the models such that they are closer to their respective target maps than to any
other bootstrapped map.
In Figure 7.4 the cross-correlation values are plotted as projections onto the target
and model ensemble of density maps for GroEL/ES and Mm-CPN. The target
density maps are numbered from 1 to 100 and model i denotes the model that
was refined against target density i. Figures 7.4 A and B show the correlations
of the refined model densities plotted versus their target densities, which are the
bootstrapped densities calculated from the experimental data set. Each value on
the x-axis represents one of the target maps and each dot is the correlation of one of
the 100 model maps with this target map. The correlation between model density
i and target density i is shown in blue. Obviously, the blue dots are either the
best or at least among the best correlation values. This means that the restraints
fulfill the criterion for the best parameters and that the ensemble of fitted models
captures most of the conformational variance.
Comparing one target density to all model densities yields a small range of correla-
tion values (Fig. 7.4 A and B). However, comparing one model density to all target
densities yields a large range of correlation values (Fig. 7.4 C and D). Surprisingly,
while the blue dots in Fig. 7.4 A and B almost always yield the highest correlation,
this is not the case in Figure 7.4 C and D. That means if a model fits better to
its target density than any other model, there could be another density that fits
even better to this particular model than the density the model has been refined
to. Some densities therefore appear to be more difficult to fit with a single model
than others.
These observations can be understood by considering that the model fitting em-
ploys restraints to maintain a reasonable atomic structure (stereochemistry, sec-
ondary structure, side-chain packing, etc.). Clearly, a density that is unphysical
cannot be fitted without violating at least some of those restraints. Two effects
influence the physicality of a bootstrapped density map: 1) noise and 2) the par-
ticular mixture of conformations that was used to generate the density map. Noise
obviously has a random effect of how close a density is to the true structure and
always makes the density maps more unphysical. Furthermore, each reconstructed
density map is composed of a mixture of different conformations. These confor-
mations are weighted differently in the bootstrapping. The different weighting can
lead to combinations of conformations that are more unphysical than others, which
means some densities can be fitted better with a single model than others.
This problem is not that significant if the overall conformational variance is small,
the average over similar conformations can still be represented well by a single
model. However, if the conformational variance is large, the average over these very
different conformations can in fact be far from a reasonable single conformation.
In the ideal case where each target map of the ensemble represents a perfectly rea-
sonable protein conformation, the each fitted model fits best to its corresponding
target density map, and vice versa, each target map fits best to the model that
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was used to fit this target map, which means the blue dots in Figure 7.4 A - D
should always be on top.
The results for GroEL/ES (Fig. 7.4 A and C) and Mm-CPN (Fig. 7.4 B and D)
show a significant difference. The fitted model fits always best to its corresponding
target density (blue dots) and worse to all other density maps. Vice versa, the tar-
get density map fits better to the corresponding model than to most other models.
The picture is much less clear for Mm-CPN. The reason for this is that the open
conformation of Mm-CPN has a larger flexibility such that the reconstructed den-
sity is averaged over more dissimilar conformational states than in the GroEL/ES
case. As a result the density of the apical domains is quite unphysical and cannot
be interpreted well by a single model (see Fig. 7.4).
The optimal parameter set for the refinement with DireX have been chosen accord-
ing to the correlations of the target densities and the calculated model densities
of the resulting structures. The goal was that every model density fits its target
density as one of the best of all model densities. The main problem is that there
is a danger of over-fitting. So it is necessary to restrain the models as much as
possible while still permitting the models to fit best to their targets. This is not
always possible as seen in the Mm-CPN ensemble, when it becomes important to
balance between fitting real information of the density and maintaining the qual-
ity of the model to avoid fitting to noise. The quality of the model was monitored
by the secondary structure content of the models using the program Molprobity.
The percent residues within the allowed region of the Ramachandran plot was as
average 60.1% for GroEL/ES and 61.4% for Mm-CPN.
The parameters that have been chosen by this iterative approach are listed in Table
7.4.2 In particular, the γ-parameter was set to zero, i.e. the harmonic distance
restraints were not deformable to fix the center of the DEN ensemble onto the
input structure and to allow only small fluctuations around the equilibrium state
between the density and the initial structure. The number of DEN restraints was
set to three times the number of atoms, such that the entire structure was well
restrained.
Optimizing the parameters to obtain significant fits on the one hand, and to avoid
over-fitting on the other hand, is always a problem for refinement. Since the noise
is isotropic and normally distributed, the effect of over-fitting can be assumed to
be isotropic and normally distributed as well (Eq. 3.12)[64]. Over-fitting there-
fore biases the models and perturbs the models in an isotropic way which con-
tributes only little to the largest components of the molecular dynamics. As we
are interested mostly in those principal motions of the molecules, the model en-
sembles are analyzed by a principal component analysis, as discussed below. This
statistical analysis helps to filter out the isotropic noise by averaging and linear
decomposition[78].

7.5 Calculation of Positional Variance and B-factors

Before the biological implications of the protein dynamics can be discussed, the
variance of the fitted model ensemble is quantified and analyzed by statistical
methods.
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Figure 7.4: The cross-correlation matrices between model and target density maps of
GroEL/ES (left side) and Mm-CPN (right side) are shown. A and B show the correlations
of each of the 100 model densities (computed from the fitted models) to each of the 100
bootstrapped target densities plotted versus the target density number. The correlation
values for which the model number is identical to the target density number is shown by
blue triangles, which corresponds to the correlation of the model density with the target
density to which the model was fitted to. For GroEL/ES these blue triangles have always
the highest correlation compared to all other models (red dots). This is less pronounced
for Mm-CPN where the blue triangles are not always on top, but are, however, among the
top values. C and D show the same correlation values as in A and B, instead plotted versus
the model number. It is obvious that the spread of correlation values is much larger for a
given model (A and B) than for a given target density (C and D). In addition, the blue
triangles which means that for a given model density there could be target densities that
yield a higher correlation than the target that was used to fit this particular model. The
reason lies in the fact that the bootstrapped densities are averages over many differently
weighted conformations, which determines how well they can be represented by a single
model (see text for details).
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Parameter GroEL/ES Mm-CPN
nsteps 200 200
sampling concoord concoord
perturbation 0.0 0.0
DENratio 3.0 3.0
DENstrength 3.0 3.0

DENlower 3.0 Å 3.0 Å
DENupper 15.0 Å 15.0 Å
DENγ 0.0 0.0
DENκ 0.2 0.2
MAPstrength 0.04 0.04
MAPdamping 30 30
map kernel gaussian gaussian
map resolution 7.0 Å 8.0 Å

Table 7.2: List of all parameters that have been modified from the default settings in
DireX.

As for the 2D projections of the particles in the experiment, we can assume the
particles to be independent and identically distributed. Further it is obvious that
the expectation value and variance are well defined and we can use the Lindeberg-
Lévy central limit theorem, which states that such a distributed set will converge
to a normal distribution, by which we can assume the underlying distribution to
be normal if we have used enough samples n:

√
n

��

1

n

n
�

i=1

Xi

�

− µ

�

→ N(0, Σ) (7.1)

where µ is the expectation value, Σ the covariance matrix and Xi the i-th observed
structure. Here we approximate the distribution by a Gaussian distribution, which
is one of the most basic assumptions in statistics. If the motions are uncorrelated
the covariance matrix is a diagonal matrix with the variances on its diagonal.
Further the variance can be considered as an isotropic attribute of each atom
yielding a measure of the positional precision, which is directly related to the
B-factor in crystallography. The variance can be expressed as a crystallographic
B-factor by

Bi = 8π2σ2
i . (7.2)

The B-factor from the bootstrapped refined ensemble Bboot
i is typically smaller than

the real B-factor of the structures, which is explained by Bienaymè’s formula:

Var
�

X
�

= Var

�

1

n

n
�

i=1

Xi

�

=
1

n2

n
�

i=1

Var (Xi) =
σ2

n
(7.3)

with Var
�

�n
i=1 Xi

�

=
�n

i=1 Var(Xi). This formula requires the variables to be

uncorrelated, which is fulfilled in a cryo-EM experiment as the single particle
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images are even independent. We can therefore assume that the real B-factor can
be estimated by:

Bstruct
i = n · Bboot

i . (7.4)

where n is the number of experimental observations that were used in the aver-
aging. We use a simple approximation to estimate the factor n. As the atomic
variance is determined by the density variance we assume that this factor n is
identical to the factor by which the density variance is reduced upon averaging.
Each 2D particle image contributes N2 data points, a slice of the volume with N3

data points (voxels). If there are k particle images then each voxel is averaged over
k/N data points. With these assumptions B-factors can be estimated for atomic
models refined to cryo-EM derived density maps.
As a first step to analyze the conformational variance of GroEL/ES and Mm-CPN
we calculated the B-factors for each atom using Eq. 7.3. The atomic variances were
calculated from the atomic positions in the model ensemble. Figure 7.5 shows one
GroES subunit and two subunits of GroEL from the cis- and trans-ring (Fig. 7.5 A)
as well as one subunit of Mm-CPN (Fig. 7.5 B). The left half of each panel shows
the atomic model color-coded by the B-factor from white (low) to red (high); for
both structures the B-factor values were capped at 10.0Å

2
to get a useful scaling

for most of the atoms, since some atoms seem to be too weakly restrained and
are fluctuating in the input ensemble. This problem is eliminated by this choice of
threshold for the color-coding.
Figure 7.5 shows the B-factors of the refined and RMSD-aligned structures and
the coefficients of variations of the densities (CV-map) (Eq. 7.5).
The coefficient of variation cv is defined as the ratio of the standard deviation σ
to the mean µ :

cv =
σ

µ
. (7.5)

The positional atomic variances observed in the fitted ensemble for GroEL/ES and
Mm-CPN are 0.17 Ą and 0.08 Ą, respectively,

Bstruct
i =

k nsym

N
· Bboot

i . (7.6)

where k is the number of total images used for the reconstruction, nsym is the
symmetry factor (7 for GroEL/ES and 16 for Mm-CPN), N is the number of grid
points along one axis of the density map. The corrected average B-factors are then
600 Å

2
for GroEL/ES and about 900 Å

2
for Mm-CPN, which yields an estimate

for the true positional variance for GroEL/ES and Mm-CPN of 3.4 Å and 2.8 Å,
respectively.
It should be noted that the absolute values of the positional variances and therefore
the B-factors might be underestimated, since the models were strongly restrained
during the refinement to not over-interpret the density ensemble.
The largest B-factors of GroEL/ES (Fig. 7.5 A) are located at the bottom, the
apical region of the seven chains forming the trans-ring. This fits to the expectation
that the open arms in the trans-ring are more flexible until being fixed upon binding
GroES. This region can also be identified in the CV-map as the area with the
largest deviation on the right side of the Figure. Furthermore, the GroES region
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shows large fluctuations, which results in high B-factors for GroES. Clearly, the
high B-factor regions strongly overlap with high CV-map values.
Figure 7.5 B shows that Mm-CPN has high B-factors in the apical domains and in
between the intermediate and equatorial domains, which corresponds to the region
of the nucleotide binding pocket (see. Fig. 7.5). These regions are interesting in
the context of the function of Mm-CPN. The apical domains need to undergo
large motions during the closing of the entire complex and the observed large
fluctuations in the apical domains could be connected to this closing motion. The
nucleotide binding pocket shows strong density variation as indicated by large
CV-map values, however the average B-factors in this region are not as high. It
seems the atoms involved in this motion are rather on the outside of the subunit
as indicated by slightly higher B-factors, which is typical for a rotation or shearing
motion. A further interesting area seems to be the beta-hairpin which forms an
extended beta-sheet with the neighboring subunit and which also have high B-
factors.

7.6 Disentangling Significant Motions from Noise

In cryo-EM the data are affected by conformational variance and this variance
has a big impact on the resolution of the 3D reconstructions. The conformational
variance is dominated by large scale collective motions of the protein which are
typically tightly connected to its function. The more local conformational motions
are often smaller in size and do not contribute as much to the variance observed
in cryo-EM images. If overall the motions are rather small they can be assumed
to be linear. The approximate model for an observation Xi would be:

Xi = µ + sD + ε (7.7)

where s is a scaling value, D a displacement vector and ε the error term. If we
assume Gaussian distributions along all these components, the fluctuations can
be expressed by a covariance matrix, so that the created ensemble is normal dis-
tributed like:

Φ(x; µ, Σ)n =
1

�

(2π)n|Σ|
· exp

�

−1

2
(x − µ)T Σ−1(x − µ)

�

. (7.8)

Also, the covariance matrix can be estimated from the bootstrapped ensemble and
the components of the conformational changes can be estimated by the eigenvectors
of the covariance matrix. This is the well known technique of Principal Component
Analysis (PCA), which is based on diagonalizing the covariance matrix to solve
the eigenvalue problem. As long as the number of observables is smaller than the
dimensionality the covariance has to be assumed being underestimated. So the
resulting distribution is a weak estimator for the conformational local phase space
of the specimen (cf. Chapter 4).
But if we take into account, what was mentioned above about the collective motions
and its linear expression (Eq. 7.7), it is obvious that the covariance matrix encodes
linear components and isotropic vibrations. If the terms of l linear components are
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A

B

Figure 7.5: On the left side of (A) the averaged B-factors per residue are shown for
GroEL/ES for a subunit from the open trans-ring, another from the closed cis-ring and a
subunit of the lid, GroES. The right side shows the cross section of the CV-map from the
other side of the GroEL rings. The largest B-factors are located in the GroES and at the
apical domains of the trans-ring. In between there are only a few spots with high variance.
Based on this image large motions can be expected in the trans-ring and at the lid. The
same regions shows significant density variance as illustrated by the corresponding CV-map
on the right side. (B) shows the same plot as in (A) for a single subunit of Mm-CPN. This
corresponds to the asymmetric unit because of the D8 symmetry. Mm-CPN has dominant
B-factors in the apical domain and in between the intermediate and equatorial domain.
Furthermore the hairpin loops show high B-factors. This is similar to the CV-map where
the main variance is located in the apical domain and at the lower end of the intermediate
domain. Briefly, in both cases the regions of large B-factors overlap well with regions of
major relative fluctuations of the densities.
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larger than the vibrations, they will dominate the covariances and the matrix can
be split into its components:

Σ =

�

l
�

i=1

s2
i Ai

�

+ Σε, (7.9)

where s2
i is the variance along the linear component i, Ai its direction ai written

as a matrix and Σε the remaining covariance matrix. At this point a corrected B-
Factor Bcorr

i can be defined from the underestimated covariance matrix Σε. By this
the variance can be split into a linear and an isotropic component with variance
σ2

iso which are independently distributed. If the fluctuations are dominated by
inherent conformational motions, the isotropic term is negligible in such a direction
(s2

i + σ2
iso ≈ s2

i ). The distribution function for the j-th single atom can then be
written simply as:

Φ(xj ; µj , σj) =
1

�

(2π)3σ2
j

· exp

�

−1

2

l
�

i=1

aij(xj − µj)

s2
i

�

· exp

�

−(xj − µ)2

2σ2
iso

�

.

(7.10)

This leads to a linear approximation of the system around a center µ for which
the best estimator of the bootstrapped set is the mean value: µ̂ = X̄. To calculate
linear fluctuations for such a system the PCA is a good choice as it describes the
ensemble by uncorrelated components.
Finally this can be used to interpret the PCA of the bootstrapped refined ensemble,
because dominant linear changes can be estimated independently from the isotropic
components and the amount of input data is large enough for valid and robust
results. Especially the direction of the eigenvectors can be assumed to be well
determined. Briefly, the eigenvectors corresponding to the largest eigenvalues are
in general good estimators for the global conformational changes.

7.6.1 Symmetry

A special problem is the symmetry of the specimen or more precisely the symmetry
used in the density reconstruction. Both density ensembles have been created using
symmetry constraints C7 for GroEL/ES and D8 for Mm-CPN. In DireX it is not
possible to use symmetry constraints during the refinement. DireX can only use
similarity restraints between the subunits, which keeps the subunits similar to
each other but does not restrain or constrain the relative position of the subunits
according to the corresponding symmetry.
As a solution to this problem we tried to symmetrize the slightly asymmetric
ensemble after the fitting the models to the individual densities. The symmetry
operation is a rotation around the center of geometry for already aligned entire
structures. In general, the symmetric ensemble X has m symmetric subunits with
n atoms. The ensemble matrix X consists of n column vectors Xi, which can be
split into its subunits Xi,j . Let R�

j be the corresponding rotation matrix for a single
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subunit j depending on the angles φj , ψj and θj to rotate onto the first subunit
that is used as reference:

R�
j =







cos θj cos ψj − cos φj sin ψj + sin φj sin θj cos ψj sin φj sin ψj + cos φj sin θj cos ψj

cos θj sin ψj cos φj cos ψj + sin φj sin θj sin ψj − sin φj cos ψj + cos φj sin θj sin ψj

− sin θj sin φj cos θj cos φj cos θj






(7.11)

This can be used for the multi-diagonal matrix of the rotation of a subunit Rj =
diag(R�

j , . . . , R�
j) ∈ R

3n×3n. The symmetric ensemble will be X∗
i+m·j = RjXi,j

and the PCA can be calculated for this set. Without loss of generality we assume
that vk is the k-th eigenvector of the entire system and it can be split into its
components of a subunit vk,j and rotated by the symmetry operator, that for all
j ∈ 1, . . . , m vk,1 = Rjvk,j . It is obvious that vk,1 is an eigenvector of the ensemble
with applied symmetry. The proof is very similar to the one presented for the sparse
PCA (cf. Chapter 4) and will not be reiterated here.
This works well for symmetric structures, but the results from DireX are not
perfectly symmetric and this asymmetry will affect the results for the symmetrized
structures. The applied symmetry will decrease the number of degrees of freedom
of the system and slightly different motions on different symmetric subunits will
have to be composed into new or split into new eigenvectors. The problem is
that the statistical number of degrees of freedom is still lower than the physical
number of degree of freedom of the system, for which reason the system will be
still underestimated in phase space. As the space is not well defined by the data,
the synergetic effect related to the central limit theorem, does not apply for the
eigenvectors. So diagonalizing the covariance matrix will in general gather almost
parallel motions in different eigenvectors. This is a well known problem for high
dimensional vectors. The increased statistical number of degrees of freedom by
applying the symmetry will favor such a splitting. As a result less eigenvalues
stand out as significantly larger than others and the eigenvectors describe motions
that are less global and clear.
Since this effect makes the interpretation of the resulting eigenvectors vague and
less clear no symmetry was used in or after the refinement.

7.7 PCA and the Significance of Eigenvalues

Because of the relatively large conformational fluctuations it is not appropriate to
assume isotropic variances. The variance therefore needs to be computed in three
dimensions for each atom to obtain useful results. This variance can be separated
by a PCA into uncorrelated components and variances that could be correlated.
By taking advantage of the sparse PCA algorithm(Section 4.2) it is possible to
compute the PCA not only for the Cα trace but also for all atoms.
It is however not clear how to decide which eigenvalues are significant. A first
idea was to compute confidence intervals for a normal distribution using the χ2-
distribution. This yields an estimate which eigenvalues and corresponding eigen-
vectors describe directed motions that are significantly different from just noise.
Figure 7.6 shows the 99% confidence interval in addition to the eigenvalues for
GroEL/ES and Mm-CPN.
The confidence intervals are relatively low declaring the largest 30% of the eigen-
values as significant, which seems unrealistic. The reason for this is that the den-
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Figure 7.6: The eigenvalues of the protein structure ensembles sorted by amplitude (solid
lines) and the 99% confidence interval (dashed lines) are shown in blue for Mm-CPN and
orange for GroEL/ES. For GroEL/ES the two largest eigenvalues are significantly larger
than the others with a large gap to the next lower eigenvalues. For Mm-CPN only the one
largest eigenvalue stands out although not as significant as in the GroEL case.

sity ensemble contains information mostly for global conformational changes, but
not for smaller fluctuations. Strong restraints were therefore used in the structure
refinement to avoid fitting noise. These strong restraints used in the refinement
make the structural ensemble narrow and allow only global collective conforma-
tional changes. The result is a small average atomistic variance. In particular most
of the smaller eigenvalues will be strongly underestimated. The confidence inter-
vals computed for these distributions are therefore too low and cannot be reliably
used to define which eigenvectors describe significant motions beyond isotropic
fluctuations.
Figure 7.6 shows the eigenvalues of the protein structural ensemble sorted by
amplitude . The eigenvalues for GroEL/ES are much larger than the values for
Mm-CPN. We calculated the 99% confidence interval for both χ2-distributions as
a guideline for significant eigenvalues, which is 55.7 Å

2
for GroEL/ES and 12.6 Å

2

for Mm-CPN. In both cases there would be more than 20 significant eigenvectors,
which seems to be a lot for global principal motions.
Computing the variance using only the Cα atoms instead of all atoms yields smaller
values for both the eigenvalues and the confidence interval, however the number of
eigenvalues above the confidence interval is very similar to the full atom case. The
reason is that the side chains were strongly restrained during the fitting and so the
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sidechain and Cα motions are highly correlated. The average RMSD of the Cα was
0.15Å for Mm-CPN and 0.37Å for the complex of GroEL/ES, as also illustrated
by the larger eigenvalues of GroEL/ES.
As we do not have a strict criterion for the significance of the eigenvectors we
decided for conservative choice and analyzed only the eigenvectors that correspond
to the two largest eigenvalues.
The eigenvectors corresponding to the largest eigenvalues are used to create tra-
jectories to visualize the motions of the proteins and to study conformational
fluctuations. The largest eigenvectors typically contain mostly collective global
motions, such that the motions of entire protein domains can be analyzed. Due
to the limitations of the correlation coefficient and therefore the PCA, only linear
correlations can be analyzed; higher order correlations could still be in the data but
are not revealed by a PCA. However, more complex correlations between of any
two structural quantities such as distances, orientations, positions, etc. calculated
from the ensemble can be obtained by analyzing the structural ensemble directly
instead of using the PCA.

7.8 Principal Motions of GroEL/ES and Mm-CPN

GroEL/ES

The eigenvalue spectrum of GroEL/ES (Fig. 7.6, blue line) shows that the last
two values are much larger than all others. We therefore chose the corresponding
two eigenvectors for further analysis. In Figures 7.7 and 7.9 the eigenvectors are
represented by arrows pointing from the Cα positions of the average structure into
the direction of the eigenvectors.
The motion described by the first eigenvector (Fig. 7.7 D) predominantly involves
the trans-ring. The apical domains of the trans-ring subunits undergo large ro-
tational motions with the rotation axis parallel to the long axis of GroEL. In-
terestingly, the trans-ring apical domains also need to rotate (and finally to lift
up) to bind GroES and eventually become a cis-ring in the following cycle of the
chaperonin machinery. An onset of this motion seems to be already encoded in
the equilibrium fluctuations observed here. Furthermore, the increased flexibility
could facilitate binding of the unfolded substrate to the trans-ring. The differently
rotated subunit conformations expose different epitopes which might contribute
to a ’conformational selection’ type of binding mode. It should be noted that the
subunits show nearly identical motions as a result of the C7 symmetry that has
been applied to the density map and that potential deviations of the actual protein
motion from this symmetry cannot be studied here.
Another interesting part is GroES which shows a rotational motion (see Fig. 7.7
B) that is coupled to an upward shift. This motion seems to fluctuate between
a tighter and weaker binding of GroES to GroEL, resembling a screw cap on a
bottle.
To get more information on the principal motions it is helpful to take a look at
a single chain of the subunits of GroEL. We expect to observe internal subunit
motions which are not that clearly visible in the analysis of the entire complex.
In Figure 7.8 (A) the first eigenvector of the cis-ring of GroEL contains a drifting
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A

B

C.1

D

C.2 C.3

Figure 7.7: The largest eigenvector of GroEL/ES is shown as vectors superimposed on the
average density of the bootstrapped ensemble (A,B,D) as well as on the atomic structure
(C.1, C.2, C.3). (D) The first eigenvector shows large rotations of the individual trans-
ring subunits, which dominate the entire eigenvector. This rotation is dominantly on the
apical domains of the trans-ring of GroEL. Another area of interest is the GroES which
performs a rotation inverse to the rotation in the trans-ring. In (C.1) (C.2) and (C.3)
one asymmetric unit with a trans-ring subunit (blue), a cis-ring subunit (orange), and a
GroES subunit (green) is presented in different orientations. Again, the main motion is a
rotation of the apical domain of the trans-ring subunits.
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Figure 7.8: (A) presents the 1st eigenvector of a single subunit of the cis-ring of GroEL,
where the major motion is a lowering of the apical domain and a small shift of the two
helices from ALA 341 to ALA 373 toward the outside of the reaction chamber. (B) shows
the subunit of the trans-ring. The dominant motion is in the apical domain (here at the
lower end). The middle part of the apical domain flips into an more open state, while the
two helices from ALA 341 to ALA 373 are rotating inward. The rotation discussed in the
text is not visible in this perspective.

of the apical domain to the inside of the reaction chamber, while the GroES is
performing a motion in the opposite direction (Fig. 7.7). They seem to slide along
each other without losing contact.
Furthermore, the two helices from ALA 341 to ALA 373 have to undergo a large
conformational change from the closed (trans) to the open (cis) state. Here these
two helices flip outward, away from the reaction chamber. Together with the motion
of the apical domain this fluctuation could facilitate the conformational change
from the open to the closed state.
In the trans-ring the already discussed rotation of the apical domains can be am-
plified by the global opening of the reaction chamber. Because this motion can also
be associated with the conformational change between the open and closed state,
we will have to investigate further if there is a correlation between the motion of
the two different rings of GroEL.
The second eigenvector shows again dominant motions in the trans-ring apical
domains as well as in GroES (Fig. 7.9), as in the first eigenvector. However, in
contrast to the first eigenvector the relative amplitude of the GroES rotation is
much stronger than the trans-ring motion. In addition the sense of the trans-ring
apical rotation is reversed with respect to the rotation of GroES. These observa-
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Figure 7.9: The second eigenvector shows the rotation of GroES as the dominant mo-
tion, with a smaller contribution of the trans-ring apical domain rotations (D). This is
in agreement with a potential correlation of the motion of GroES with the motion of the
trans-ring. In the trans-ring structure are motions on the inner side of the apical domain,
which can clearly be seen in the atomistic structures of a subunit (C). These motions are
directed to the center of geometry of GroEL

84



Cryo-EM - Principal Motions j 7 Principal Motions

tions suggest that both motions are slightly correlated which hints at a potential
coupling of GroES binding to a motion in the trans-ring. Such allosteric coupling
has been suggested previously for GroEL/ES. However, as is discussed below, the
correlation determined from the model ensemble is not significant and any poten-
tial coupling is hidden behind noise.
To further investigate potential couplings especially between the cis- and trans-
ring, the correlation of specific structural quantities was calculated directly from
the structural ensemble. To detect a correlation between the motions of the inter-
mediate domain orientations between the trans- and cis-ring the orientation of the
helix from GLY 344 to ILE 353 in the trans- and cis-ring was tested for correlation
without any significant result. Furthermore the centers of geometry of the apical
domains from GLY 192 to VAL 336 and the β-sheet of GroES from ARG 9 to
ILE 11 and from LEU 84 to SER 87 were tested for correlations. In the results
the correlation to any motion of the GroEL was below f = 0.12 and only the
correlation of the comparison of the apical domains of the cis- and trans-ring gave
a correlation of r = 0.34 that the apical domain of the trans-ring moves towards
the central z-axis and the apical domain of the cis-ring moves along the z-axis.
Another approach to quantify the correlation between the different segments of
GroEL/ES For this a PCA is computed separately for GroES, one of the cis-ring
subunits, and one of the trans-ring subunits. The model ensemble is then projected
onto the first eigenvector from each of the three PCAs. The correlation between
any pair of projections was always smaller than 0.1, which means there is no
detectable correlation between either ES and the cis-ring, ES and the trans-ring,
or the cis-ring and the trans-ring. Comparing the correlation coefficients with the
eigenvectors suggests that the motion of GroES is not strongly coupled to the
motion of GroEL in the bound state.
The internal motions of a single subunit are presented in detail in Figure 7.10 for
the second eigenvector. For the cis-ring subunits this second eigenvector is most
dominantly a collective rotation of the apical and intermediate domains. For the
trans-ring subunits the second eigenvector describes an inward tilting of the apical
domain toward the reaction chamber. This trans-ring tilts seems to be a response
to the stretching of the cis-ring. This is another hint for a connection between
motion on the cis- and trans-ring, which cannot be detected by just using the
PCA.
The next smaller eigenvectors do not seem to contain any global information and
the motions are widely randomly spread over the structure.

Mm-CPN

The first eigenvector of Mm-CPN (see Fig. 7.11) is mainly one large motion in the
apical domain (orange), where those domains fluctuate toward (and away from) the
reaction chamber. This motion seems to be the beginning of the conformational
changes that Mm-CPN needs to undergo to close the reaction chamber during
uptake of the substrate and before the substrate is folded. Interestingly, an onset
of this closing motion seems to be encoded already in the equilibrium fluctuations
that we observe here. The full closing motion will lead to an almost spherical shape
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Figure 7.10: In (A) the cis-ring subunit is shown from inside the reaction chamber to
more clearly demonstrate the motion corresponding to the second eigenvector. The apical
domain is shifting to the right and stretches out to the neighboring subunit. The two
helices from ALA 341 to ALA 373 are pivoting closer to the backside of the subunit to fill
the hole opened by the rotation of the neighboring apical domain. (B) In the trans-ring
the apical domain tilts into the direction of the reaction chamber.

of the entire protein, if both sides are closed. This is the only large global motion
in the first eigenvector, all other motions are rather small.
Some individual residues in the stem-loop and the N- and C-termini which form a
β-sheet show relatively large components in the first eigenvector. However, those
motions most likely arise from the fact that the density in those regions is poorly
defined which leads to larger fluctuations. These motions are not discussed here in
more detail to avoid over-interpretation of these mostly random effects.
In the second eigenvector several different components can be seen in Figure 7.12:
first of all there is again a dominant motion in the apical domain, it is almost the
same motion as in the first eigenvector. From this observation it can be concluded
that this wiggling motion of the apical domain is independent of all other motions
in this eigenvector. One potential interpretation for this could be that this is a
safety mechanism to make it more difficult to close the chamber only by ATP
hydrolysis without a bound substrate. Closing the chamber without a substrate
would unnecessarily waste ATP. Furthermore, binding of the substrate would then
facilitate to close the lid.
This second eigenvector also contains a motion toward the equatorial plane, which
could be part of the closing process, if the arms twist around each other to form a
sphere (see Figure 7.12 A). This rotation of the outer residues of the intermediate
and equatorial domain includes the stem-loop (D). From this finding we assume
that the stem-loop, which is tightly connected to the neighboring subunit through
an extended beta-sheet, transmits this motion to the entire ring.
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Figure 7.11: The first eigenvector on a single subunit of Mm-CPN contains mostly a
motion of the apical domain toward inside of the reaction chamber, this is part of the
closing of a reaction chamber of Mm-CPN. This is very clear in the projection of the
vectors onto the densities of Mm-CPN in (A) side view and (B) top view. In (C) and
(D) the apical domain is colored in green and the entire closing motion is performed by
domain. All other motions are less dominant and seem to be randomly directed. Especially
the stem-loop interaction should not be considered, because the corresponding section in
the beginning and at the end of the next chain are fluctuating randomly in this eigenvector
(C). There is even a large motion on the LEU52 at the middle of the loop section.
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In the side view (C) an interesting area is the nucleotide binding pocket (blue) in
the middle of the chain located between ASP 368 and ASP 60. The large upper
helix containing ASP 368 is rotating and shifting inward in the horizontal plane,
while the ASP 60 is shifting upwards. This closes the binding pocket. Because
the stem-loop interaction with the neighboring subunit, the closing of the bind-
ing pocket, and the motion of the apical domain are happening within the same
eigenvector one might assume that they are correlated; all these motions would be
all necessary to get into the closed state. To get further information about cor-
related motions of separated domains on Mm-CPN the position of ALA525 (see
Fig. 7.14) projected on its eigenvector in every bootstrapped density was tested
for correlation with the distance between ASP 368 and ASP 60 in the ensemble.
The resulting correlation is about r = .11 which means that a coupling between
the opening or closing of the reaction chamber with the closing of the nucleotide
binding pocket cannot be observed. Furthermore the motion of the apical domain
is in the wrong direction: in this eigenvector the apical domains are opening while
the nucleotide binding pocket is closing.
In summary the interpretation of the second eigenvector is difficult without prior
knowledge about the detailed mechanism of Mm-CPN and is further complicated
by the fact that many motions are already rather local conformational changes. The
next smaller eigenvectors contain further information about the conformational
changes of the protein but are not as dominant compared to other random changes.
Exactly how many eigenvectors are significant and should analyzed in detail is still
an open question that needs to be address in more detail in future studies.

7.9 Validation

In this paragraph different approaches are presented and discussed to validate the
model ensemble that was obtained by fitting a crystal structure against a series of
bootstrapped density maps. We discuss whether the model ensemble is in fact a
valid interpretation of the variance in the experimental data set.

7.9.1 Comparison of Volumetric Variances

Due to the fact the refinement is based on the optimization of differences between
the reconstructed densities and densities calculated based on atomic models, the
density ensembles can be compared by calculating the correlation coefficient of
corresponding density maps. At first the correlation coefficient of the average den-
sity map of the ensemble for GroEL/EL the mean map The correlation between
the average density of the bootstrapped ensemble an the calculated model density
ensemble after the refinement was r = .847 using the same spatial frequency cutoff
of 9.0 Å that was to filter the density maps used during refinement process. For
the ensembles of Mm-CPN a correlation of r = .855 was obtained with the same
spatial frequency cutoff. In both cases the correlation coefficient of the average
maps is markedly larger than all individual correlation coefficients reached in the
refinement, which is an indicator for the statistical stability of the ensembles and
justifies the assumption of a Gaussian distribution for the underlying distribution.
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Figure 7.12: The second eigenvector of Mm-CPN shows an opening motion of the apical
domain (green) and a rotation of the intermediate (blue) and equatorial (yellow) domains
as dominant components. The motion on the apical domain with respect to the interme-
diate and equatorial domains seems to be reversed compared to the closing motion in the
first eigenvector. This suggests that the motion of the apical domain is rather independent
of all other motions in those eigenvectors. In the top the atomic eigenvector is superim-
posed onto the density of Mm-CPN. In (A) and (B) is an opening motion of the apical
domains visible and dominant, in (C) and (D) it can be observed that this opening is
again only on the apical domain. (A) shows the rotating motion in the outer intermediate
and equatorial domains. This can be also observed in the atomic plots of a subunit (C,D).
Especially in (D) this motion is visible and extends to the stem-loop as indicated by the
dashed arrow. The third interesting part in (C) is the ATP binding pocket in the middle
part, between the intermediate (blue) and equatorial domain (yellow), which performs a
breathing motion, when the upper helix containing ASP 368 moves forward and the lower
part lifts up the ASP 60 amino acid.
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Measure GroEL/ES Mm-CPN
Mean-Map Correlation .847 .855
CV-Map Correlation .752 .816
Best-Fit Correlation .835 .804
Worst-Fit Correlation .830 .801

Table 7.3: Correlation coefficients calculated from the density maps. The average maps
yield larger correlations than the best correlations from the individual refinement, which
indicates that the ensemble is distributed around one conformation. The CV-map cor-
relations are lower but still significant and it can be assumed that a large part of the
conformational variance is represented by the ensemble of atomic models, while ideally
random noise and other sources of variance are missing.

In the next step it is investigated how the variance of the model density ensemble
compares with the bootstrapped density ensemble. Ideally, if the model ensemble
is a perfect description both variance values should be very similar. In practice, a
number of effects make this comparison difficult: the densities were reconstructed
with symmetry which results in a radial variance map around the center of mass
and large variances along the rotation axis. Furthermore, the large fluctuations of
the apical domains (in particular in the Mm-CPN case) reduce the density in these
regions which is not accurately accounted for in the model density maps.
To get a better feeling for the variances and to compare the results of the re-
finements process with the bootstrapped ensemble, we calculated the coefficient
of variation (CV) maps to handle low densities in the apical domains and sym-
metry based artifacts which will show high variances in absence of any protein
structure[12]. The CV-map is calculated from the normalized standard deviation
per average density, to obtain an equal weighting of the standard deviation. This
basic statistical measure of dispersion of a probability distribution handles the
problem of varying contribution of atoms to the density, which can not be esti-
mated accurately for the refinement and the resulting bias will be removed in the
obtained relative standard deviation.
The CV-maps appear to be a good measure to compare the conformational vari-
ances of the ensembles. The CV maps are again filtered with a spatial frequency
cutoff of 9.0Å and the correlation of both maps has been calculated. For GroEL/ES
the correlation is r = .75, which is 0.1 lower than the correlation of the average
maps but still significant, and we would expect a lower correlation because we
cannot project any arbitrary conformational information on the structures. The
correlation is limited by noise, resolution and the fact, that we try to avoid over-
fitting of the density, all this reduces the ability to fully capture the conformational
variance. For the CV-densities of Mm-CPN we reached a correlation coefficient of
r = .82, which is much closer to the correlation between the average maps. We
assume that we can describe the ensembles by Gaussian distributions and esti-
mate how well the structural ensembles correspond to the experimental sets. For
both proteins the distributions are well refined and a large part of the variance is
projected onto the structures.
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Figure 7.13: On the left side (A) a slice through GroEL average density (blue) and a shift
along the first eigenvector (red). No trend can be directly extracted from this eigenvolume.
Knowing the principal motions of the atomistic structures of GroEL/ES, a lifting of the
GroES can be guessed, where the top region is moved upwards and the density decreases
at the interface between GroES and GroEL. On the right (B) is a similar plot for the
second eigenvector, where a similar motion can be seen. Here the separation of GroES and
GroEL is more dominant, on the right side the volumes are separated and on the left side
is still a small connection.

7.9.2 Comparison to Eigenvolumes

Analogous to the variance map it seems to be helpful to calculate the CV-eigen-
volumes from the eigenvectors, by taking the square root of each eigenvector and
dividing it component-wise by the average map. This helps to remove noise remain-
ing from the reconstruction of the densities and help to reweight the variance.
Figure 7.13 A and B show slices through two states of the first and second eigen-
vector of GroEL/ES, respectively. The volumes (red) are calculated by adding
the scaled eigenvector to the mean map. To be able to compare the data more
easily the average density (blue) is superimposed. The changes in the density are
rather small and not easy to be interpret as atomistic motions. Another problem
is the fact that most atomistic motions are dominated by rotations, which are less
dominant in the eigenvolumes. For the both ring structures of GroEL no density
difference can be connected to the difference in the fitted models. Especially in the
trans-ring no change comparable to the first atomistic eigenvector could be seen.
The only motion in GroEL/ES that is observable is the lifting on GroES in Figure
7.13. At the top the red slice is slightly bit higher than the average structure and
in the areas of contact with GroEL the density is reduced. This can be seen in both
eigenvolume shifts from the average structure similar to the atomistic structure.
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Figure 7.14: (A) shows a single assigns significant sections of the density volumes to
the atomistic structure of a subunit of Mm-CPN. The orientation apical domain can be
characterized by THR242, ALA252, ALA256 and LYS338. The stem-loop is represented
by LEU52 and the upper section of the nucleotide binding pocket by ALA359. (B) shows
slices of two volumes of the 1st eigenvector plotted. The most dominant conformational
change is the bending of the apical domain toward the inner cavity of the Mm-CPN ring.
Further a lift of the stem-loop can be identified at LEU52. The last interesting change
is connected to a breathing of the nucleotide binding pocket below ALA359. In (C) is
the similar plot of the second CV-eigenvolume, where especially the opening of the apical
domain can be observed.

The atomistic and volumetric eigenvectors represent different kinds of informa-
tion, which mostly depend on the type of motion. The volumetric variance is not
very sensitive to rotations or translations along long extended structural elements,
which in contrast contribute strongly to atomistic eigenvectors as is explained in
Section 7.3. Here, the motion of GroES is large enough to be visible also in the
eigenvolumes. The fact that a large component of the first CV-eigenvolume scales
the density in the outer regions where no protein is present further complicates its
interpretation.
For Mm-CPN it is much easier to compare the eigenvectors because the atomistic
eigenvectors have the closing motion in the apical domain which also has a signif-
icant impact on the volumes. For Mm-CPN it is possible to see a very significant
similarity in a slice through the subunit in the plane of the closing motion. The
position of significant residues, THR242 and ALA252, are marked in the volume
slice, to illustrate the eigenvector trajectories. The position of residues ALA256
and LYS338 on the outside of each subunit are also shown in this slice.
The first CV-eigenvolume is visualized by adding (blue) and subtracting (red) the
scaled CV-eigenvolume to/from the average volume. Figure 7.14 B shows a slice
through these two density maps representing the first eigenvolume. In this first
eigenvolume the closing of the apical domain is very well defined. For the areas of
all indicator residues the closing can be seen in the volumes. This is in the same
direction in the volumetric and atomistic eigenvector.
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Next we focus on the LEU52 at the stem-loop and ALA359 in the helix on top of the
nucleotide binding pocket (Fig. 7.14 A). The stem-loop at LEU52 shows an upward
motion which has been suggested to trigger the closing motion in neighboring
subunits. Another conformational transition is the closing of the nucleotide binding
pocket. At the position of ALA359 a conformational change is seen in the first
eigenvector, where the densities move to a lower position closer to the inside. In
conclusion, several motions of the atomistic ensemble can be are in agreement with
the density changes along the first CV-eigenvolume.
The second CV-eigenvolume (cf. Fig. 7.14 C) also contains a motion in the apical
domain. This opening motion can also be found in the second eigenvector of the
atomistic second eigenvector. This can identified by using the significant positions
of THR242 and ALA252. In this case the correspondence is not as clear as for the
first CV-eigenvolume and all other possible motions can not assigned of motions
of the atomistic eigenvectors.
In summary, the information in the CV-eigenvolumes is similar to the eigenvectors
on the atomic structures but can not be interpreted as easily. The direct comparison
of atomic eigenvectors and eigenvolumes is difficult as the individual motional
components are mixed differently in the CV-eigenvolumes.

7.9.3 Random Ensembles

As an alternative approach to estimate the significance of the eigenvalues we gen-
erated an ensemble of models fitted against an ensemble of random density maps
that were created to have the same average values and point variances as the orig-
inal bootstrapped density ensemble. The ensemble of these random density maps
is therefore very similar to the original bootstrapped density ensemble except for
missing correlations between the density values at different grid points. The idea
was that if the density variations actually report on true conformational fluctua-
tions, these fluctuations should be encoded in the correlations. By comparing the
ensembles with and without these correlations we expected the eigenvalues of the
model ensemble fitted to the randomized density maps to be smaller than those
of the original bootstrapped maps. The goal was to determine to what extent the
eigenvectors are determined by the correlations.
To calculate the random ensembles we used the average map as the initial position
and added point wise scaled normal distributed random values. This random values
have been scaled by the variance map at the position to achieve the same variance
map. In a next step the symmetry was applied again onto the density maps to
get a similar situation compared to the original bootstrapped maps. This changes
the variance of the entire ensemble and we applied a point wise correction factor
based on the ratio of variances on the grid positions. Now we got correlations of
more than r = .99 .for the mean and variance maps with identical minimum and
maximum values, which proofs we generated the same mean and variance density.
The intention is that global, collective and thus correlated, motions are more dom-
inant and so all eigenvalues should be much smaller for such an ensemble, which
was in fact the case for GroEL/ES. Figure 7.15 shows the eigenvalues of the ran-
dom atomistic GroEL/ES structures (orange) and the eigenvalues from the re-
finement of the bootstrapped maps (dashed line). The largest eigenvalues of the
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GroEL/ES Mm-CPN

Measure bootstrapped random bootstrapped random
RMSD Å 0.44 0.31 0.21 0.34

total variance Å
2

5927 2786 1294 3191

largest eigenvalue Å
2

424 138 58 271

Table 7.4: The RMSD, the total variance and the largest eigenvalue are are shown in
this Table. For all of them we can see a similar trend for the ensembles. The variation of
the bootstrapped GroEL/ES is larger than the variations of the random ensemble. This
is different for Mm-CPN where the fluctuations in the random ensemble are much larger
than motions in the bootstrapped ensemble.

bootstrapped data are far above the larger eigenvalues of the random example. So
the eigenvectors calculated from the bootstrapped ensemble vary more than the
random ones.
The eigenvectors of the random GroEL/ES ensemble (see Fig. 7.16) are similar to
ones obtained from the bootstrapped ensemble. The only significant difference is
that the motions of the individual subunits are less symmetric . This can be ex-
plained by the way the random maps are generated: the variance map itself (with-
out the correlation between the density grid points) encodes already a large portion
of the conformational variance. Furthermore, the models were refined using strong
restraints, which means only the subspace of global and collective conformational
motions is accessible which leads to a significant overlap with the eigenvectors
obtained from the bootstrapped data.
For Mm-CPN it is necessary to understand why the eigenvalues of the random
ensemble are larger than the eigenvalues of the bootstrapped ensemble and why
the eigenvectors represent a rather unlikely motion. The second question is in this
case very simple to answer with the help of Fig. 7.14. The volumetric eigenvectors
are in good agreement with the eigenvectors of the bootstrapped ensemble and at
the same time are very different from those in the random ensemble. Since the
only difference between the bootstrapped and random density maps are the cor-
relations between density grid points, those correlations give rise to the difference
between the bootstrapped and random eigenvectors. This is a good indicator that
the motions determined from the bootstrapping are in fact reasonable.
To explain the large eigenvalues it is helpful to understand that the random ensem-
ble basically consists of smeared average densities. Since there are no correlations
present in the random density maps each of the random density maps is just a
randomly perturbed average density. In these weakly defined tubes the rotation is
always one of the most probable motions (see Section 7.3 on page 65).
The random ensemble based atomistic eigenvectors are in fact mostly rotations
of each subunit as shown in Fig. 7.17. The first eigenvector (Fig. 7.17 A and B)
describes a small rotation out of the reaction chamber which decreases through
the outer side of the entire subsection toward the ring-ring interface. The axis for
this rotation is far outside of the density. An unusual motion with a focus on the
opening and closing motion of the reaction chamber.
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Figure 7.15: Showing the eigenvalues of structural ensembles obtained from random
density ensembles (solid lines) and from the bootstrapped density ensemble (dashed lines).
For GroEL/ES (red) the eigenvalues for the bootstrapped ensemble are much larger than
the eigenvalues of the random ensemble. In such a case it is obvious that the largest
eigenvectors of GroEL are dominant. Mm-CPN (blue) shows an opposite behavior, the
random ensemble has much larger eigenvalues than the bootstrapped ensemble.
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Figure 7.16: In the first row (A-C) the first eigenvector of a random GroEL/ES ensemble
is superimposed on the average density map. (D-F) show the second eigenvector. The first
eigenvector consists of an opening of the trans-ring A, which is not symmetric on all
apical domains of the lower trans ring (C). A rotation of GroES with a downward shift is
also included in this eigenvector. The second eigenvector encodes a rotation of the apical
domains of the trans-ring (F) and a small rotation of GroES (D,E).
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The second eigenvector (Fig. 7.17 C and D) is a rotation of only the apical do-
mains around an axis that lies inside the apical domains. These rotational motions
generate the large variance on the outside of the subunits.
To ensure the results of the refinement to be a valid and reliable set, we used
the idea of the correlation matrix again. In Figure 7.18 the correlation matrix of
the random ensembles is plotted as the projection on one of these ensembles. For
GroEL/ES the matrix is not as ideal as in the refinement of the bootstrapped
maps (cf. Fig. 7.4), in the projection of the model maps onto the target densities
the refined is not always the best fitting density of the model maps, but at least
among the best, which is acceptable due to the limitation of the random mixture
of slightly different conformations.
Altogether this approach of a random ensemble of eigenvectors is consistent with
the results of the PCA on the atomistic bootstrapped ensemble, but is not useful
as a method to validate the results of a principal motion analysis.

7.10 Conclusion

We showed that the analysis of principal motions from cryo-EM data based on
bootstrapping is a powerful method to determine collective conformational fluctu-
ations of large protein complexes and to investigate their conformational changes.
The approach gives valid results which has been tested by the comparison of
the variance maps and the correlation matrices. In the two examples we stud-
ied, GroEL/ES and Mm-CPN, we could not determine any strong coupling be-
tween components on principal motions. Further work might be necessary to find
out whether a coupling of conformational motions can be found that was hidden
behind statistical noise in our analysis.
The results for Mm-CPN do not seem to be as consistent as those for GroEL/ES.
The problems with Mm-CPN are already seen in the correlation matrix where
GroEL shows exactly the expected behavior. We therefore think the GroEL anal-
ysis is more reliable than the results for Mm-CPN. One of the main reasons is
likely that the apical domains of Mm-CPN are very flexible and the density in
those regions is a mixture of very dissimilar conformations, which cannot at all be
described by just a single model. In the future it might be necessary to drastically
increase the number of bootstrapped maps to obtain statistically more reliable
results. In addition, it might be useful to to reduce the number of particles per
bootstrapped reconstruction to increase the variance in the bootstrapped density
ensemble, which could help to capture the variance by the model fitting with higher
significance.
The calculation of the variance of the atomic position and from this the B-factors
similar to the crystallographic data yields a measure for the uncertainty of atomic
positions and is an important step to validate model accuracy in cryo-EM based
flexible fitting. As in crystallography the atomic variance is not necessarily isotropic,
so the isotropic B-factor yields only an approximation to the actual uncertainty.
The big difference between the analysis of crystallographic and cryo-EM data is
that for cryo-EM data we can directly access the correlations between atomic fluc-
tuations, which is not possible in crystallography.
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Figure 7.17: (A,B) show the first eigenvector which is a rotation of the entire subunits
slightly dominated by a rotation in the apical domains. The amplitude of the rotation gets
smaller from the apical through the intermediate to the equatorial domain and is only
visible on the outside (A) close to the interface between the two rings. (C,D) shows the
second eigenvector which is a rotation of only the apical domains.
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Figure 7.18: The correlation matrices of the refinement against the random maps are
projected onto each ensemble. (A) and (C) shows the correlations for GroEL/ES and (B)
and (D) for Mm-CPN. (A) and (B) show the correlations of each model map plotted versus
each bootstrapped target. (C) and (D) show the correlations of the target density maps
per model map. The identity correlations (correlation of the model map of the atomic
structure refined against its target density) are marked in blue. Here the results are very
clear for Mm-CPN, while the results for GroEL/ES are less perfect, but still good enough.
For (C) and (D) the results are not as clear either, but this is expected for an isotropic
Gaussian ensemble.
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Altogether the presented technique can be an easy way to analyze conformational
variances in cryo-EM data and can be easily implemented into the workflow as
reconstructing the bootstrapping is relatively fast compared to the refinement of
the density and the optimization of the particle orientation in the initial density
reconstruction step. The fast PCA algorithm we developed allows to analyze very
large data sets like ensembles of density maps or ensembles large macromolecular
models.
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8Chapter

Conclusion

Single-particle is a cryo-EM is powerful method to study the structure of large
biomolecules. In contrast to NMR or X-ray crystallography where ensemble av-
erages are observed, cryo-EM collects information on single particles and at least
in principle provides access to the full distribution of conformational states. This
work investigated how the variance in the data set of single particle images can
be interpreted in terms of macromolecular dynamics. This knowledge is impor-
tant for understanding functionally relevant protein motions and for revealing the
molecular mechanisms.
We investigated two protein complexes, the chaperonins GroEL/ES and Mm-CPN
in collaboration with the lab of Wah Chiu (Baylor College of Medicine, TX, USA).
The data were recorded by Junjie Zhang and Donghua Chen.
By using a bootstrapping approach an ensemble of density maps was generated
from which the variance in the density was studied. A variance map was computed,
which has been described in the literature before, and which simply visualizes the
regions in the protein that are most flexible. Here we were interested in learning
about correlated fluctuations. For this purpose a PCA was performed on the en-
semble of volumes yielding eigenvolumes which describe the principal components
of the density fluctuations. However, we faced a big challenge as standard imple-
mentations to solve the eigenvalue problem in the PCA failed here simply because
of the enormous size of the data set. For the density maps studied in this work
the dimensionality (the number of grid points) is in the order of 107, which would
mean that the eigenvalue of a 107 × 107 needs to be computed; this is due to both
CPU and memory requirements not tractable. Fortunately, the number of samples
(bootstrapped density maps) is not large (order of 102). To solve this problem a
fast sparse approach has been developed whose speed and memory requirements
depend mostly on the number of samples and not on the dimensionality. This
approach can be expected to be useful in a large variety of applications.
The ultimate goal of this work was to determine the dynamics of the protein
machinery As was discussed, the density fluctuations do not directly translate into
atomic fluctuations since amount of density changes heavily depends on the type
of motion and the shape of the molecule; small motion could lead to large changes
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in density, whereas large motions could lead to only small density changes. It
was therefore necessary to build an ensemble of atomic models that fully captures
the variance of the density ensemble. For this purpose atomic models were fitted
against the bootstrapped density maps, yielding an ensemble of atomic structures.
Since the chaperonin structures we studied are large (∼ 60.000 atoms) and the
resolution of the density maps were low (∼ 10 Å) overfitting is a big problem at
such low resolution. While for X-ray crystallographic refinement a cross-validation
approach has been introduced more than 20 years ago, no such approach has so
far been described to cross-validate refinement against cryo-EM density maps. In
this work a cross-validation approach has been developed and thoroughly tested,
which defines a Fourier shell as a free data set that is not used for the actual
refinement but only for validating the fitted model. Future research will focus on
improving the selection of this Fourier shell to optimally trade off between using
as much information as possible for the refinement while still ensuring robustness
of the validation measure.
For the first time large scale conformational motions of protein complexes could be
determined from cryo-EM data. This opens completely new possibilities to study
the conformational dynamics of very large macromolecular complexes. While we
presented a variety of approaches to validate the observed principal motions, there
are still open questions about the validation. A more rigorous approach to decide
whether the identified principal motions are indeed significant would be desirable.
A possible approach would be to assess the principal motions by comparing their
projections directly to the single particle images.
Sample heterogeneity remains one of the main challenges in the analysis of cryo-
EM data. Solving this problem is mostly a computational challenge and has the
potential to not only improve the resolution but at the same time to also yield a
picture of the conformational dynamics. While the bootstrapping is a straightfor-
ward and elegant approach its limitation is that each bootstrapped density map
is still an average over a large number of particles. Future work will focus on in-
tegrating the bootstrapping with the reconstruction process and on analyzing the
variance directly in terms of the single-particle images.
The Cryo-EM technique has seen tremendous improvements in resolution in the
past years. Together with the analysis of dynamics this technique contributes fun-
damentally to understanding the mechanisms of complex macromolecular machines
and will even more do so in the future.
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