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unerlaubte Hilfe angefertigt und diese in der vorliegenden oder in ähnlicher Form
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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Berechnungskomplexität von verschiedenen Proble-
men aus drei Bereichen der Computational Social Choice. Der erste Bereich beschäftigt
sich mit Wahlen und speziell dem Problem, zu bestimmen, ob ein ausgewählter Kandi-
dat in einer Wahl mit unvollständiger Information ein Gewinner sein kann. Im zweiten
Bereich, der im weiteren Sinne mit dem Problem der Gewinnerbestimmung verwandt ist,
wird die Berechnungskomplexität von Problemen bezüglich minimal upward und min-
imal downward covering sets untersucht. Das letzte Gebiet ist Judgment Aggregation.
Hier wird nicht die Komplexität einer Art von „Gewinnerproblem“ untersucht, sondern
die dreier Formen von Beeinflussung, nämlich Manipulation, Bestechung und Kontrolle.

Alle untersuchten Probleme kommen aus der Computational Social Choice, einem
Bereich an der Schnittstelle zwischen Social-Choice-Theorie und Informatik, mit einem
bidirektionalen Transfer zwischen beiden Disziplinen. Hier liegt der Schwerpunkt auf der
Untersuchung der Berechnungskomplexität von Problemen, die aus der Social-Choice-
Theorie kommen. Das zentrale Problem der Gewinnerbestimmung in Wahlen ist in
der Praxis wünschenswerterweise in Polynomialzeit zu lösen. Bei dem damit in engem
Zusammenhang stehenden Possible Winner-Problem stellt sich die Frage, ob eine Wahl,
die in einer bestimmten Weise unvollständig angegeben ist, so vervollständigt werden
kann, dass ein gewünschter Kandidat gewinnt. Im Gegensatz zur Gewinnerbestimmung
ist es meist jedoch nicht erwünscht, dass mögliche Gewinner in Polynomialzeit berechnet
werden können, da dies einen Anreiz zur Manipulation des Wahlprozesses geben würde.
Der erste Teil dieser Arbeit beschäftigt sich mit der Komplexität von verschiedenen
Possible Winner-Problemen und liefert Resultate für die Klassen P und NP.

Ebenso verwandt mit dem Gewinnerproblem sind Lösungskonzepte für Dominanz-
graphen, wie sie aus einer paarweisen Mehrheitsrelation resultieren können. Ein
Lösungskonzept ist eine Möglichkeit, die „beliebtesten“ Elemente eines solchen Domi-
nanzgraphen zu bestimmen. Im zweiten Teil dieser Arbeit wird die Komplexität von
verschiedenen Problemen bezüglich sogenannter upward und downward covering sets un-
tersucht. Hierbei wird Härte und Vollständigkeit nicht nur für NP, sondern auch für die
Komplexitätsklassen coNP und Θp

2, und Zugehörigkeit zu Σp
2 gezeigt.

Der letzte Teil dieser Arbeit beschäftigt sich mit Judgment Aggregation. Hier werden
individuelle Urteile über möglicherweise miteinander verbundene logische Propositionen
aggregiert. In dieser Arbeit werden Manipulation, Bestechung und Kontrolle in solchen
Prozessen untersucht. Das Manipulationsproblem fragt, ob ein Richter einen Anreiz hat,
ein unaufrichtiges Urteil abzugeben; im Bestechungsproblem versucht eine externe Person
das Ergebnis durch Bestechung der Richter abzuändern, und in den Kontrollproblemen
wird die Menge der teilnehmenden Richter verändert. Hier kann NP-Härte eine Art
Schutz gegen diese unerwünschten Arten von Einflussnahme bieten. Zusätzlich zur klas-
sischen Komplexitätstheorie untersuchen wir hier auch die parametrisierte Komplexität
und zeigen W[2]-Härte für verschiedene Probleme.
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Abstract

This thesis studies the computational complexity of different problems from three areas
of computational social choice. The first one is voting, and especially the problem of
determining whether a distinguished candidate can be a winner in an election with some
kind of incomplete information. The second setting is in the broader sense related to
the problem of determining winners. Here the computational complexity of problems
related to minimal upward and downward covering sets is investigated. The last area is
judgment aggregation. In contrast to the problems mentioned above we do not study
the complexity of some kind of “winner” problem, but the complexity of three forms of
influencing the outcome, namely manipulation, bribery, and control.

All studied problems come from computational social choice, which is a field at the
interface between social choice theory and computer science, with a bidirectional transfer
between these two disciplines. We focus on the study of the computational complexity of
problems coming from social choice theory. One central problem in social choice is that
of winner determination in elections. From a computational point of view it is desirable
that the winner can be determined in polynomial time. Associated with this problem is
the possible winner problem. Here, the question is whether an election, which is in some
sense incompletely specified, can be completed such that a distinguished candidate wins
the election. In contrast to the winner problem, it is not always desirable that possible
winners can be computed in polynomial time, since this may give incentive to some
kind of manipulation in the voting process. The first part of the thesis deals with the
complexity of different possible winner problems, and establishes results for the classes
P and NP.

Also related to the winner problem in voting are solution concepts for dominance
graphs as they may result from a pairwise majority relation. A solution concept is a way
of identifying the “most desirable” elements of such dominance graphs. In the second
part of this thesis, we study the complexity of various problems related to so-called
upward and downward covering sets. We show hardness and completeness not only for
NP, but also for the complexity classes coNP and Θp

2, and we show membership in Σp
2.

The last part of this thesis is concerned with judgment aggregation. Here the task is
not to determine a winner, but to aggregate the individual judgment sets over possibly
interconnected logical propositions. We study manipulation, bribery, and control in
such processes. The manipulation problem asks whether a judge has an incentive to
report an untruthful judgment set, in the bribery problem an external actor seeks to
change the outcome by bribing some of the judges, and in the control problems the set of
participating judges may be changed. Again, this may be undesirable, hence showing NP-
hardness can be seen as providing some kind of protection against manipulation, bribery,
and control. In addition to classical complexity results, we also study the parameterized
complexity and establish W[2]-hardness for various problems.
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1 Introduction
“If we exclude the possibility of interpersonal comparisons of utility,
then the only methods of passing from individual tastes to social pref-
erences which will be satisfactory and which will be defined for a wide
range of sets of individual orderings are either imposed or dictatorial.”

Nobel prize winner Kenneth J. Arrow [Arr63]

1.1 Overview of Computational Social Choice
The field Computational Social Choice, COMSOC for short, is emanating from the
combination of social choice theory and computer science.

Social choice theory provides a theoretical framework for collective decision mak-
ing, such as the aggregation of individual preferences in voting. Computational
social choice on the one hand applies techniques from computer science to analyze
social choice mechanisms, and on the other hand concepts from social choice are
employed in computer science technologies.

The methods studied in social choice originate mostly from political elections,
but nowadays elections or, more general, decision making processes are employed
in more diverse manners, for example in the aggregation of results from multiple
search engines, in the interaction between autonomous software agents or in the
allocation of internet bandwidth. To realize such tasks mechanisms originally de-
veloped in social choice theory are employed. In such large scale environments a
formal mathematical specification and analysis is particularly important and faces
us with various problems. To name just a few, for example cheating gets a new di-
mension, and computational complexity might be a way to protect decision making
processes from undesirable interference. Furthermore a huge number of alterna-
tives requires a compact representation of the preferences to reduce communication
complexity.

Besides various problems associated with elections computational social choice
also studies problems from fair division, judgment aggregation, multiagent resource
allocation, auctions, game theory, and many more. The main focus of this thesis
is the analysis of the computational complexity of problems from voting, solution
concepts, and judgment aggregation.
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1 Introduction

More information about the evolving field of computational social choice can be
found for example in the German book from Rothe et al. [RBLR11], the book chap-
ter from Brandt et al. [BCE12], or the surveys from Chevaleyre et al. [CELM07]
and Endriss [End11].

1.2 Outline of the Thesis
This thesis studies the computational complexity of problems from three different
areas of computational social choice. Chapter 2 provides the basics of all three
fields and briefly introduces to complexity theory. More precisely, Section 2.1
deals with the fundamentals of voting theory needed in Chapter 3, which concerns
possible winner problems, including the description of some common voting rules.
Solution concepts are introduced in Section 2.2, as a basis for the study of uni-
directional covering sets in Chapter 4. Section 2.3 provides some insights in the
theory of judgment aggregation, which is studied from a computational point of
view in Chapter 5. To conclude Chapter 2, Section 2.4 gives a brief overview of
computational complexity.

The first main part of this thesis is Chapter 3, which deals with several possible
winner problems. After an introduction the original Possible Winner problem
(see [KL05]) is defined in Section 3.1 along with basic definitions needed for the
study of various possible winner problems. The original possible winner problem
for pure scoring rules is then studied in Section 3.2, followed by the study of
the possible winner problem with respect to the addition of new alternatives in
Section 3.3. Section 3.4 deals with the possible winner problem with truncated
ballots. The possible winner problem with uncertain weights is investigated in
Section 3.5. Finally, Section 3.6 deals with the possible winner problem under
uncertain voting system. The relation of the different possible winner problems to
other types of influence on elections, such as bribery and control, is discussed in
Section 3.7. This chapter concludes with a short summary of the obtained results
and future research directions in Section 3.8.

The second part of this thesis is presented in Chapter 4 and deals with the
computational complexity of various upward and downward covering set problems
(see [BF08]). In Section 4.1, definitions and notation for unidirectional covering
sets are provided. The results are presented in Section 4.2 along with a discussion.
The constructions and the proofs used to obtain the results are given in Section 4.3
for minimal and minimum-size upward covering sets and in Section 4.4 for min-
imal and minimum-size downward covering sets. All results are summarized in
Section 4.5.

Chapter 5 forms the third part of this thesis and studies the computational
complexity of problems related to judgment aggregation (see [LP09]). After a
short introduction to the theoretical framework in Section 5.1, the formal problem

2



1.2 Outline of the Thesis

definitions are given in Section 5.2. The obtained results for manipulation, bribery,
and control problems in judgment aggregation are presented in Section 5.3. This
chapter concludes with a summary and a prospective for future work in Section 5.4.
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2 Basics
In this chapter we will provide the basics in the three different fields considered in
this thesis: elections, solution concepts, and judgment aggregation. Furthermore
a short overview of computational complexity is given. Throughout this thesis, Z
will denote the set of integers, N the set of positive integers, N0 the set of non
negative integers, and Q the set of rationals.

2.1 Elections
We are faced with elections in our everyday life in a variety of ways. Nowadays
elections are not only used in the classical sense, like political elections, but also in
computational settings, for example in the aggregation of web page rankings and
to avoid spam results from web searches [DKNS01, FKS03], or to solve planning
problems in multiagent systems [ER93, ER91]. Thus a central topic in social
choice are elections, where the task is to aggregate individual preferences in order
to obtain a collective outcome.

Formally, an election is a pair (C, V ), where C represents a set of candidates or
alternatives and V is a list of voters, represented by their votes. Note that the votes
are stored as a list, since different voters may have the same vote. Occasionally, we
will denote the votes by v1, . . . , v|V |. To facilitate readability, we will always refer to
candidates and voters in the masculine form. Such a pair (C, V ) will be referred to
as a preference profile. The winners of an election are determined by voting rules,
which can formally be represented by so-called social-choice correspondences. This
is a function that assigns an element of the power set of all candidates to every
preference profile. For a social-choice correspondence f and a preference profile
P = (C, V ), f(P ) ⊆ C denotes the set of winners. Note that it is also possible
that there may be no winner at all. This may be the case in Condorcet elections,
see [BTT92] for a definition, for example. Hemaspaandra et al. [HHM12] also
give an example from the Baseball hall of fame elections for an election with an
empty set of winners. Furthermore it is not requested that there is a single winner.
The case where only a single candidate can win the election is modeled by so-
called social-choice functions, where the domain of the function is the set of all
candidates.

The representation of the votes depends on the voting system at hand. In the
most common model the voters report their votes as (strict) linear orders over
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2 Basics

the set of candidates, where the most liked candidate is on the first position and
the most despised candidate on the last position. For example, the preference
a > b > c means that the voter strictly prefers a to b, and b to c. The underlying
preference relation will be denoted by >, and is

• total (i.e., ∀a, b ∈ C it holds that either a > b or b > a),

• transitive (i.e., ∀a, b, c ∈ C it follows from a > b and b > c that a > c), and

• asymmetric (i.e., ∀a, b ∈ C if a > b it does not hold that b > a).

As the voters are represented via their respective vote, we will use the terms vote,
voter, and ballot synonymously.

When studying the possible winner problems in Chapter 3, we will mainly focus
on elections held under scoring rules and especially k-approval, Copeland, and
preference-based approval voting, which will be defined in the following.

The important class of (positional) scoring rules is for an m-candidate election
defined by a scoring vector �α = (α1, α2, . . . , αm), where α1 ≥ α2 ≥ · · · ≥ αm and
αi ∈ N0, 1 ≤ i ≤ m. In an election (C, V ) held under the scoring vector �α, a
candidate c ∈ C gets αi points from a voter v ∈ V if he is placed at position
i in his vote. The overall score of c is the sum of all of his points and will be
denoted by score(C,V )(c). The winners of the election are those candidates having
the highest score. The scoring rule with vector �α = (m − 1, m − 2, . . . , 1, 0) for an
election with m candidates is known as Borda count or Borda rule, since it goes
back to Borda [Bor81]. Another well-known scoring rule often used in political
elections is plurality, where only the first candidate of each vote gets one point.
The scoring vector for plurality is then �α = (1, 0, . . . , 0). In a veto election, which
has the scoring vector �α = (1, . . . , 1, 0), in each vote all candidates except the last
one get one point. In Section 3.2, we will also focus on the specific scoring rule
with vector �α = (2, 1, . . . , 1, 0), where the first candidate gets two points, the last
candidate gets zero points, and all remaining candidates get one point. It can be
assumed without loss of generality that the last entry of a scoring vector is always
zero, since if this is not the case for a scoring vector, one can easily transform
it into a different one that satisfies it and preserves the result, see [HH07]. We
will follow the approach of Betzler and Dorn [BD10] and focus on so-called pure
scoring rules. A scoring rule is called pure if the scoring vector for an m-candidate
election, m ≥ 2, can be obtained from the scoring vector for an (m − 1)-candidate
election by inserting one additional value satisfying that α1 ≥ α2 ≥ · · · ≥ αm. The
following example illustrates different scoring rules.

Example 2.1. As an example for an election held under scoring rules, assume
that the set of candidates is {a, b, c, d} and that there are four voters v1, v2, v3, and
v4. The preferences and the evaluation for the four above-mentioned scoring rules
are shown in Table 2.1. If the election is held under Borda, candidates a, b, and d

6



2.1 Elections

tie for winning. In the case of a plurality election candidate a is the unique winner
and if the veto system is used candidates b and d are both winners. Under the
specific scoring rule (2, 1, 1, 0) candidates a and b win the election in conjunction.

Table 2.1: Example for the evaluation according to four different scoring rules
Points

Borda Plurality Veto (2, 1, 1, 0)
Preferences a b c d a b c d a b c d a b c d

v1: a > d > b > c 3 1 0 2 1 0 0 0 1 1 0 1 2 1 0 1
v2: b > d > a > c 1 3 0 2 0 1 0 0 1 1 0 1 1 2 0 1
v3: a > d > b > c 3 1 0 2 1 0 0 0 1 1 0 1 2 1 0 1
v4: c > b > d > a 0 2 3 1 0 0 1 0 0 1 1 1 0 1 2 1

Total points: 7 7 3 7 2 1 1 0 3 4 1 4 5 5 2 4

Another class of voting rules is the family of Copelandα elections. In the sys-
tem proposed by Copeland [Cop51], the voters report again linear preferences over
the set of candidates, but in contrast to the above defined scoring rules the can-
didates do not receive points independently from each voter but by the result of
pairwise comparisons. All candidates are compared pairwise with each other and
if a majority of voters prefers one candidate this candidate gets one point. In the
case of a tie both voters get half a point. The candidates with the highest overall
score are the winners of the election. A slightly different system goes back to Llull
(see [HP01]) who proposed a system where the candidates also get one point for a
win in such a head-to-head contest, and in case of a tie both candidates get also
one point, instead of half a point. This approach was generalized by Faliszewski
et al. [FHHR09a] as family of Copelandα elections, where α is a rational number
between zero and one, indicating the number of points both candidates get in case
of a tie. Hence, Copeland1/2 denotes the original Copeland system and Copeland1

denotes the system proposed by Llull. For each candidate c ∈ C we denote by
win(c) the number of candidates c beats in a pairwise comparison and by tie(c)
the number of candidates c ties with in a pairwise comparison. Then the Copelandα

score of a candidate c equals win(c) + α · tie(c). The winners are again those can-
didates having the highest score. One important property of Copelandα elections
is that they respect Condorcet winners. A candidate is called Condorcet winner
if he defeats all candidates in a pairwise comparison. Obviously such a candidate
does not always exist but is unique if he exists. It is very natural to require that
such a candidate is always a winner, but for example the Borda rule fails to satisfy

7



2 Basics

this criterion, since even if there is a Condorcet winner another candidate may be
chosen as winner by this rule.

Example 2.2. In Table 2.2 we consider the same example as in Table 2.1 with the
additional voter v5 and evaluate the pairwise comparisons between the candidates.
The column identifier a?b stands for the head-to-head contest between candidates a
and b. Since the number of candidates is odd there are no ties and the winners in
all Copelandα elections coincide. Obviously, candidate d is the winner in all these
elections since he wins all pairwise comparisons and hence is even a Condorcet
winner.

Table 2.2: Example for pairwise comparisons
Pairwise comparisons

Preferences a?b a?c a?d b?c b?d c?d

v1: a > d > b > c a a a b d d
v2: b > d > a > c b a d b b d
v3: a > d > b > c a a a b d d
v4: c > b > d > a b c d c b c
v5: d > c > a > b a c d c d d

Winner: a a d b d d

Even though the concept of evaluating elections through majority in pairwise
comparisons is very natural, the famous Condorcet paradox [Con85] shows that this
may lead to cyclic common preferences even if the underlying individual preferences
are all linear. Consider for example a situation with three candidates a, b, and c,
and three voters with preferences a > b > c, b > c > a, and c > a > b. Then a
majority of voters prefers a to b and b to c but also c to a.

A voting system where the voters do not report linear preferences is approval
voting, which was studied by Brams and Fishburn [BF78]. Here the votes are
so-called approval vectors. In an m-candidate election, the candidates have a
fixed ordering and the voters report a vector from {0, 1}m. A one at position i
indicates that this voter approves of candidate i, and a zero indicates that this
voter disapproves of candidate i. The candidates get one point for each approval
and the winners are again all candidates having the maximum score. One variant
of approval voting is k-approval, where each voter approves of exactly k candidates.
This system can again be modeled as a scoring rule. The voters have to report
linear preferences, the first k entries of the scoring vector are one and the remaining
entries are zero.

8



2.1 Elections

Furthermore, we will consider a voting system that combines preference-based
voting and approval voting. Various such systems were proposed by Brams and
Sanver [BS06, BS09]. Here the voters do not only report a linear preference, but
also an approval line. This line indicates that the voter approves of all candidates
to the left of this line and disapproves of all candidates to the right of this line. An
additional criterion is that votes must be admissible (see [BS06]), that means that
each voter must approve of his first ranked candidate and disapprove of his last
ranked candidates. The candidates again receive one point for each approval and
the candidates with the highest score are the winners. But in contrast to approval
vectors here the votes provide more information.

Example 2.3. An example for an approval and a preference-based approval election
is given in Table 2.3. Here the same votes are given in two forms, first as approval
vectors for the fixed order (a, b, c, d) of candidates and then for the preference-based
approval election as linear orders along with the approval line. The winner of this
election is candidate b with 4 points.

Table 2.3: Example for an approval and a preference-based approval election
Approval Preference-based Points

votes approval votes a b c d

v1: (1, 1, 0, 1) a > d > b | c 1 1 0 1
v2: (0, 1, 0, 0) b | d > a > c 0 1 0 0
v3: (1, 1, 0, 1) a > d > b | c 1 1 0 1
v4: (0, 1, 1, 0) c > b | d > a 0 1 1 0
v5: (1, 0, 1, 1) d > c > a | b 1 0 1 1

Total points: 3 4 2 3

All voting systems that we consider allow for more than one winner. A unique
winner can always be obtained by applying a tie-breaking rule. If not stated
otherwise we will always assume that no tie-breaking rule is used and hence there
may be more than one winner of the election. In contrast to the unique-winner
case this setting will be referred to as the co-winner or the nonunique-winner case.
For further information on various voting procedures we refer to the book chapter
by Brams and Fishburn [BF02].

A good voting system should determine the winners by reasonable criteria.
Therefore, a voting rule that always declares the most liked candidate of one spe-
cific voter to be the winner, hence a dictatorship, will not be considered as a good
voting rule. Social choice theoretic properties like monotonicity, admissibility, una-
nimity, Pareto efficiency, or independence of irrelevant alternatives try to capture
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the intuitive quality of voting rules. An important result in this field is Arrows
Impossibility Theorem [Arr63], which says that every preference-based voting rule
that satisfies some basic rational criteria must be a dictatorship1 (see also the quote
at the beginning of Chapter 1). Tideman [Tid06] provides an overview of several
such social choice theoretic properties and shows which of them are fulfilled by
some common voting rules.

It is commonly assumed to be undesirable that a voter reports an insincere
preference, but there are cases in which a voter can benefit from strategic voting.
Consider for example a Borda election with three candidates a, b, and c, and two
voters of the form a > b > c and one voter of the form c > b > a. Obviously
candidate a wins with four points followed by candidate b who has only three
points. The voter with preference c > b > a is totally dissatisfied with this outcome
since his most despised candidate is the winner. If he reports the insincere vote
b > c > a instead, he will be more satisfied with the outcome since then candidates
a and b both have four points and win the election. An election system in which
a voter cannot benefit from reporting an insincere preference is called strategy-
proof. As shown here the Borda rule is not strategy-proof. A famous result shown
independently by Gibbard [Gib73] and Satterthwaite [Sat75] shows that this is by
no means only the case for Borda.

Theorem 2.1 (Gibbard [Gib73]; Satterthwaite [Sat75]). If there are at least three
candidates there is no preference-based voting system that fulfills the following prop-
erties at the same time:

• the voting system returns a unique winner,

• for every candidate there is a set of votes that makes him win,

• the voting system is strategy-proof, and

• the voting system is not a dictatorship.

Since no candidate should be excluded from the set of winners a priori, all voting
systems for at least three candidates that return a unique winner are not strategy-
proof, and hence in principle manipulable, or the voting system is a dictatorship.
This is rather unsatisfactory since both a dictatorship and manipulable voting rules
are undesirable. Bartholdi et al. [BTT89] were the first to show that computational
complexity can be used as a barrier against such undesired behavior. The idea is
that, though an election is manipulable in principle, computational hardness of
the problem determining whether there is a successful manipulative preference can
be seen as a resistance against manipulation. More details on the manipulation

1Arrow originally formulated this theorem in a slightly different formal context, this formulation
goes back to Taylor [Tay05, Tay95].
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problem are given in Chapter 3.1 and the background from complexity theory in
Section 2.4.

The seminal papers by Bartholdi et al. [BTT89, BO91, BTT92] initiated the
study of the computational complexity of problems related to elections. Besides the
manipulation problem, also the complexity of the problem of determining whether
a given candidate is the winner of the election is studied. Obviously it is important
for a voting system that the winner can be found in a reasonable amount of time.
The third type of problems introduced by Bartholdi et al. [BTT92] is control in
elections. They defined different forms of (constructive) control where the chair
of the election tries to make some distinguished candidate win by changing the
structure of the election. Later the corresponding destructive control problems,
where some candidate should be prevented from being a winner, were introduced
by Hemaspaandra et al. [HHR07]. Faliszewski et al. [FHH09] initiated the study
of bribery in elections.

In Chapter 3 we will focus on the computational complexity of different possible
winner problems for elections. In the initial possible winner problem, which was
introduced by Konczak and Lang [KL05], the voters report incomplete preferences
and the question is whether these can be completed in a way that a desired candi-
date wins the election. The relationship between the possible winner problems at
hand and bribery and control in elections is elaborated in Section 3.7.

More details on algorithmic and computational properties of voting systems can
be found for example in the survey from Faliszewski et al. [FHHR09b], in the book
chapter from Baumeister et al. [BEH+10], and in the German book from Rothe et
al. [RBLR11]. The survey from Faliszewski et al. [FHH10] provides more details
about how complexity can be employed to protect elections.

2.2 Solution Concepts
A common task in diverse areas of social sciences is to identify the “most de-
sirable” elements of a given set of alternatives based on some binary dominance
relation. Examples for applications are the selection of socially desired candidates
in social choice (e.g., [Fis77]), the determination of winners in sports tournaments
(e.g., [DL99]), and the search for valid arguments in argumentation theory (e.g.,
[Dun95]). A common dominance relation in social choice is the pairwise majority
relation. An alternative x is said to dominate another alternative y if the number
of individuals preferring x to y is greater than the number of individuals preferring
y to x. Such a pairwise majority relation can be represented as a graph, where the
vertices correspond to the alternatives, and there is a directed edge from alternative
x to z if x dominates z.

McGarvey [McG53] proved that every asymmetric dominance relation can be
realized via a particular profile of linear individual preferences. Consider for ex-
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ample the dominance graph (A, �) shown in Figure 2.1. The set A consists of the
four alternatives a, b, c, and d, and the dominance relation � is defined by the
following dominances: a dominates c and is dominated by b and d; additionally, d
dominates b and is dominated by c.

a b

c d

Figure 2.1: Dominance graph (A, �)

The profile of eight individual linear preferences shown in Table 2.4 yields exactly
the described majority relation. Here, the first line indicates that there are two
individuals preferring a to c, c to d, and d to b, which is denoted by the preference
a � c � d � b. In addition there is one voter with the preference b � c � a � d,
three voters with the preference d � b � a � c, and two voters with the preference
c � d � b � a.

Table 2.4: Profile of eight individual preferences
#

2 a � c � d � b
1 b � c � a � d
3 d � b � a � c
2 c � d � b � a

This example also illustrates the famous Condorcet paradox [Con85]. Even if
the underlying individual preferences are linear, the majority relation may contain
cycles. Here a is preferred to c, c is preferred to d but d is preferred to a in the
majority relation. Hence, the natural concept of choosing a maximum element is
often not applicable. For the case of nontransitive relations, various alternative
solution concepts have been proposed (e.g., [Las97]). Covering relations are tran-
sitive subrelations of the dominance relation, and solution concepts based on such
covering relations have some desirable properties [Fis77, Mil80, Dut88]. The two
covering relations studied here are upward and downward covering relations.

• An alternative a upward covers another alternative b if a dominates b and
all alternatives that dominate a also dominate b. Intuitively, a “strongly”
dominates b, since there can be no alternative that dominates a but not b.

• An alternative a downward covers another alternative b if a dominates b and
all alternatives that are dominated by b are also dominated by a. Here a

12
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“strongly” dominates b, since there can be no alternative that is dominated
by b but not by a.

A third natural covering relation, which will not be considered further, is the
bidirectional covering, where an alternative a is said to cover b bidirectionally if
a covers b upward and downward. In the case of complete dominance relations
(which are also called tournaments), all three covering relations coincide.

The solution concepts based on the upward and downward covering relation
(see [BF08, Dut88]) are an inclusion-minimal subset of the alternatives that sat-
isfies certain notions of internal and external stability with respect to the upward
or downward covering relation, and will be defined formally in Chapter 4. Fur-
thermore the computational complexity of various problems regarding these two
solution concepts will be investigated.

2.3 Judgment Aggregation
As the name suggests, judgment aggregation models the situation in trials where
judges have to make a common decision on the guiltiness of a defendant. Such
decisions do not only occur in trials, but also in other cases where a group has to
make a common decision over some possibly interconnected propositions. Consider
for example a controversial penalty situation in a soccer match with three referees
having different views of the situation. According to the rules one gets a penalty
if a player has been fouled in the penalty area. The first referee states that there
has been a foul in the penalty area, and hence the team should get a penalty, but
the other two referees decide that there is no penalty. The second referee says that
what he observed in the penalty area in fact was a dive and the third one claims
that there was a foul outside the penalty area. These three individual judgment
sets and the evaluation according to the majority rule are shown in Table 2.5. The
common decision is that there was a foul in the penalty area, but the penalty will
be denied, which is an inconsistent outcome according to the rules.

Table 2.5: Example illustrating the doctrinal paradox
penalty area foul penalty

Referee 1 yes yes yes
Referee 2 yes no no
Referee 3 no yes no
majority yes yes no
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The fact that the outcome of a judgment aggregation scenario can be inconsis-
tent even if the underlying individual judgments are all consistent is called doctrinal
paradox or discursive dilemma (see Kornhauser and Sager [KS86] for the original
formulation and Pettit [Pet01] for a generalization). The situation that the col-
lective outcome may be inconsistent is by no means special to the majority rule.
Indeed List and Pettit [LP02] provide an impossibility result in judgment aggrega-
tion showing that there is no judgment aggregation procedure that satisfies some
basic natural criteria that always returns complete and consistent outcomes. List
and Pettit [LP04] state that the discursive dilemma can be seen as a generaliza-
tion for the Condorcet paradox (see Section 2.1), since preferences can be seen
as a kind of propositions. One way of circumventing the doctrinal paradox is
the premise-based approach. Considering again the penalty example above, in the
premise-based procedure for the majority rule, we will apply the majority rule only
to the premises “foul” and “penalty area”, which results in a “yes” in both cases,
and the outcome for the conclusion “penalty” is derived from the outcome of the
premises, and hence the penalty will be given.

At first sight the aggregation of judgments and the aggregation of individual
preferences seem to be very similar, but there is, however, one major difference.
Although both fields are closely related, they consider different settings (for further
details, see [LP04, DL07a]). In elections, the individuals report their personal
preference over some given alternatives. If two voters have the preferences a > b
and b > a, this does not contradict, and even if both voters do not comprehend
the others voter’s preferences on a and b, they should accept them. In the case
of judgment aggregation the situation is different; here the judges report their
individual judgment set over some given proposition. Considering again the penalty
example, the first and the second referee have different opinions of whether it was
a foul or not. Hence both individual judgment sets contradict, and the referees
will simply believe that the other one is wrong. There are cases were it might even
be possible to objectively determine the truth value of the proposition and decide
who is right and who is wrong. In contrast, this would be impossible to say for
an individual preference. However, a different line of research tries to implement
voting as a truth-tracking mechanism, see for example [CS05].

Strategic behavior as described for voting can also be observed in judgment ag-
gregation. An analogue of the Gibbard-Satterthwaite theorem for judgment aggre-
gation is given by Dietrich and List [DL07c]. As described in Section 2.1 a common
approach in computational social choice is to apply methods from theoretical com-
puter science to avoid such undesired strategic behavior, by the corresponding task
being a computationally intractable problem. In the case of judgment aggregation
this approach was initiated by Endriss et al. [EGP10b], and in Chapter 5 we extend
their results on the manipulation problem and additionally initiate the study of
bribery and control in judgment aggregation.

For further information on judgment aggregation see for example the surveys
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from List and Puppe [LP09] and List [Lis].

2.4 Computational Complexity
After the introduction into three fields of social choice we will now turn to the com-
puter science part of computational social choice and introduce some basic concepts
from computational complexity. Computational complexity classifies problems ac-
cording to resources, e.g., time and space, that are needed to solve them. The
computational models that will be used throughout this thesis are deterministic
and nondeterministic Turing machines (see [Rot05, Pap95] for a formal definition).
One common concept used in the analysis of algorithms is the O notation.

Definition 2.1. For two functions f : N → N and g : N → N, it holds that

f ∈ O(g) ⇔ ∃c, n0 ∈ N such that ∀n ≥ n0 : f(n) ≤ c · g(n).

Informally stated f ∈ O(g) means that f does not grow faster than g. Instead
of computing exact running times of algorithms the running time can be estimated
by the O notation.

In what follows we will focus on decision problems that will be encoded as a
language L ⊆ Σ∗ over an alphabet Σ. Two main complexity classes of decision
problems are P and NP, where the class P contains all decision problems that
can be decided by a deterministic Turing machine in polynomial time, whereas
NP is the class of all decision problems that can be decided by a nondeterministic
Turing machine in polynomial time. Intuitively P captures the tractable problems,
whereas problems that can not be shown to be in P are seen as intractable. It
is an open question whether P = NP, but it is widely believed that there are
problems from NP that are not contained in P. The class coP (coNP, respectively)
contains all problems whose complements are contained in P (NP, respectively).
The notion of many-one reduction shows that one problem is as least as hard
as another problem. Here we will mainly focus on polynomial-time many-one
reductions that are defined as follows.

Definition 2.2. A is polynomial-time many-one reducible to B (denoted by
A ≤p

m B) if and only if there is a polynomial-time computable function f : Σ∗ → Σ∗

such that for each x ∈ Σ∗ it holds that

x ∈ A ⇔ f(x) ∈ B.

A polynomial-time many-one reduction from A to B implies that B is at least
as hard as A. A problem A is called hard for a complexity class C if all problems
contained in C can be reduced to A. If a problem is hard for C and contained in
C it is called complete for C. Hence the NP-complete problems are the “hardest”
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problems from NP, for which it is very unlikely that a polynomial-time algorithm
exists.

The first problem that was shown to be NP-complete is the boolean satisfiability
problem, that is defined as follows.

Satisfiability (SAT)

Given: A boolean formula ϕ in conjunctive normal form.
Question: Is there a satisfying truth assignment for ϕ?

A boolean formula in ϕ(v1, v2, . . . , vn) = c1 ∩c2 ∩· · ·∩cr, over the set of variables
V = {v1, v2, . . . , vn} is in conjunctive normal form if every clause ci, 1 ≤ i ≤ r, is a
disjunction of variables from V . An assignment to the variables in V is satisfying
if it evaluates the formula to true.

To show that a problem A is NP-hard, it suffices to show that a known NP-hard
problem reduces to A, due to the transitivity of the many-one reduction. To show
NP-hardness in the following chapters we will use some set and partition problems
as well as some common problems from graph theory. Formally an undirected
graph G = (V, E) consists of a finite set of vertices V and a finite set of edges E
that are unordered pairs of vertices. Further information on NP-completeness and
a compendium of NP-complete problems can be found in [GJ79].

In most cases NP-hardness is bad news due to the practical intractability. For
example consider the “winner” problem for elections, where it is asked whether a
given candidate is a winner of a given election. Obviously it is desired that this
problem is polynomial-time computable. For the voting rules presented in Sec-
tion 2.1, this is always the case. But we also study problems where NP-hardness is
good news. In Section 2.1 the undesirable effect of manipulation in voting is men-
tioned. A good property of a voting system is if it is NP-hard to determine whether
a successful manipulation is possible. When faced with the problem to decide which
voting rule, solution concept, or judgment aggregation procedure should be used
in a specific situation, the computational complexity of these problems should be
taken into account, for example, to prevent strategic behavior. Hence, the study of
the computational complexity of various problems associated with voting, solution
concepts, and judgment aggregation are important tasks. But it should always
be considered that NP-hardness is only the worst-case complexity, and that there
may be easy instances though the problem is NP-hard in general.

P and NP are perhaps the most important complexity classes, but there are
classes beyond NP. We will concern two specific classes of the polynomial hierarchy
over NP (see [MS72]). The first one is Σp

2 = NPNP; this class contains all problems
that are solvable by a nondeterministic Turing machine that has access to an NP
oracle. The NP oracle can be seen as a black box that, given an instance for a
problem from NP, returns the answer in a single step. The second class we consider
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is PNP
‖ and is equally defined through a Turing machine that has access to an NP

oracle. All problems contained in this class can be solved by a deterministic Turing
machine that may ask O(log n) sequential queries to an NP oracle (see [PZ83]).
This class is also known as Θp

2 (see [KSW87]) that is the closure of NP under
polynomial-time truth-table reductions. And it has been shown that this definition
coincides with the class of problems that are solvable by a deterministic Turing
machine that accesses its NP oracle in a parallel manner (see [Hem87, KSW87]).
From the definitions it follows immediately that

P ⊆ NP ∩ coNP ⊆ NP ∪ coNP ⊆ Θp
2 ⊆ Σp

2

For further information on computational complexity see for example the text-
books [Pap95, Rot05].

In addition to classical complexity we will also investigate the parameterized
complexity of problems related to judgment aggregation in Chapter 5. As men-
tioned before there may be instances for NP-hard problems that are nevertheless
easy to solve. Parameterized complexity theory offers a more fine-grained multi-
dimensional complexity analysis. If a certain parameter is fixed, an NP-complete
problem may be easy (i.e., fixed-parameter tractable) with respect to this param-
eter. Then, in practice those fixed-parameter tractable problem can be solved
efficiently when this parameter is reasonably small, despite its NP-hardness. A
parameterized decision problem is formally a set L ⊆ Σ∗ × N, and we say that it
is fixed-parameter tractable (FPT) if there is a constant c such that for each input
(x, k) of size n = |(x, k)| we can determine in time O(f(k) · nc) whether (x, k) is in
L, where f is a function depending only on the parameter k. The main hierarchy
of parameterized complexity classes is:

FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[�] ⊆ XP.

Here we only focus on the class W[2], which refers to problems that are considered
to be fixed-parameter intractable. To show hardness for parameterized problems
the following parameterized reduction will be used.

Definition 2.3. A parameterized reduces to B if each instance (x, k) of A can be
transformed in time O(g(k) · |x|c) (for some function g and some constant c) into
an instance (x′, k′) of B such that

(x, k) ∈ A ⇔ (x′, k′) ∈ B,

where k′ = g(k).

For further details on parameterized complexity theory see the textbooks [DF99,
FG06]. Betzler et al. [BBCN12] provide a review of parameterized complexity
results in voting theory.
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In general, a possible winner of an election is a candidate that has, in some kind
of incomplete-information election, the possibility to win in a complete extension
of the election. In this chapter we will study the computational complexity of
several different possible winner problems, where the uncertainty lies in the votes,
in the set of participating candidates, in the weights of the votes or in the election
system itself. In the case where voters report partial instead of linear preferences,
the question whether a distinguished candidate can win in a complete extension is
captured by the Possible Winner problem, which was first defined by Konczak
and Lang [KL05]. For the class of pure scoring rules this problem was studied by
Betzler and Dorn [BD10]. Their result was one step away from a full dichotomy
since the complexity for one specific scoring rule was left open. In Section 3.2
we prove that the missing case is also NP-complete and so complete a dichotomy
result for the important class of pure scoring rules. These results have already
been published in [BR10, BR12].

In the original Possible Winner problem there is no restriction on the struc-
ture of the ballots. One variant of this problem is Possible Winner with

Respect to the Addition of New Alternatives, here the votes are par-
tial in the sense that the same set of candidates does not occur in all the votes.
Obviously this problem is a special case of Possible Winner, hence polynomial
time algorithms carry over. In Section 3.3 we show that Possible Winner with

Respect to the Addition of New Alternatives is NP-complete for a whole
class of pure scoring rules if one new candidate is added. Furthermore we initiate
the study of the weighted version of this problem. These results have already been
published in [BRR11].

One further restriction on the form of the ballots are top and/or bottom trun-
cated ballots. If the set of alternatives is too large one might ask the voters to
specify only a ranking of their top and/or bottom candidates. Possible Win-

ner with Doubly/Top/Bottom-Truncated Ballots asks if there is an
extension of those ballots into complete ones such that the distinguished candi-
date wins. We study the computational complexity of these problems in Sec-
tion 3.4. Since these problems are closely related to the Manipulation and
the original Possible Winner problem, results for Possible Winner with

Doubly/Top/Bottom-Truncated Ballots can be obtained from known re-
sults for the just mentioned problems. In addition we prove that Possible Win-

ner with Doubly/Top/Bottom-Truncated Ballots can be solved in poly-
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nomial time for k-approval. The results presented in Section 3.4 have already been
published in [BFLR12].

So far we always assumed that the voters who take part in the election are
unweighted. However there are situations in which voters do have weights. In Sec-
tion 3.5 we study the Possible Winner with Uncertain Weights problem,
where the question is whether the weights of the voters can be set such that a dis-
tinguished candidate wins. We study this problem for k-approval and Copelandα

elections and show polynomial-time solvability as well as NP-hardness. These re-
sults will appear in [BRR+12].

In contrast to the above problems where uncertainty is always associated with
the votes, we also study the Possible Winner under Uncertain Voting

System problem, where the source of uncertainty lies in the voting rule used to
aggregate the ballots. In Section 3.6 we show that this problem is NP-complete
if the voting rule is chosen from a subclass of the scoring rules. Furthermore
we show that it is polynomial-time solvable for preference-based approval voting
and the family of Copelandα elections. These results have already been published
in [BRR11].

3.1 Framework and Basic Definitions
As described in Chapter 2.1, in voting theory it is commonly assumed that we have
full information about the election and especially that the voters report linear pref-
erences over the set of candidates. But there are situations in which it is reasonable
to assume that the voters report only partial preferences. In elections with a high
number of candidates it may be too demanding to expect linear preferences from
the voters or the voters are unwilling to reveal their whole preference. Consider,
for example, the situation in which a committee has to make a joint decision to
fill a vacancy. Assume that after some committee members have reported their
preferences (and then have gone on vacation), some new candidates apply for the
job. In this situation it is very natural to ask whether a distinguished candidate
from the initial applicants can get the job if the additional applicants are inserted
into the partial votes. Partial preferences also occur in multi-agent systems where
there are, for example, too many allocation of resources as if every agent could
have a linear order over all of them. And especially for such large-scale elections
the computational aspects of the related problems are important. Another reason
for assuming partial preferences is that two alternatives may be incomparable for
a voter. Given these examples it is natural to assume only partial preferences from
the voters when defining computational problems related to voting.

Formally, a partial vote is a (strict) partial order (i.e., a transitive and asym-
metric though not necessarily total binary relation) on the set of candidates. In
contrast to the preference relation > used for linear votes, we will denote the un-
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derlying preference relation for partial votes by �. For the candidate set {a, b, c}
the partial vote a � b indicates that a is preferred to b but the relation of a to c
and of b to c is unknown. The aim of the original Possible Winner problem de-
fined by Konczak and Lang [KL05] is to determine whether the given partial votes
can be extended to linear ones such that a desired candidate wins the election. A
linear vote v′ over a set of candidates C is an extension of a partial vote v over C
if v ⊆ v′, i.e., for all a, b ∈ C, if a � b in v then a > b in v′. For the candidate
set {a, b, c}, the partial vote a � b may thus be extended to a > b > c, a > c > b,
or c > a > b. A list V ′ = (v′

1, v′
2, . . . , v′

n) of linear votes is an extension of a list
V = (v1, v2, . . . , vn) of partial votes if for every i, 1 ≤ i ≤ n, v′

i ∈ V ′ is an extension
of vi ∈ V .

As a notational convenience we write for two sets A, B ⊆ C of candidates A � B
if every candidate in a is preferred to every candidate in B, i.e. a � b for all a ∈ A
and b ∈ B, and as a shorthand we write a � B for {a} � B and we write A � b
for A � {b}. For linear votes we also write a > · · · > b if for all c ∈ C \ {a, b} it
holds that a > c and c > b. For a set C = D ∪ {c} of candidates the linear vote
c > �D means that c is preferred to all candidates in D, and the candidates in D
have a fixed order.

Now we are ready to give the formal definition of the Possible Winner problem
(see [KL05]) for a given voting system E .

E-Possible Winner

Given: A set C of candidates, a list of votes V that are partial orders over
C, and a designated candidate c ∈ C.

Question: Is there an extension V ′ of the votes in V to linear orders over C
such that c is a winner of election (C, V ′) under voting system E?

Observe that this problem is stated in the co-winner case, since we only ask
whether c is a winner of the election. For the unique-winner case, the question
is whether there is an extension of the votes such that c is the unique winner of
the election. We will use the term E-Possible Winner as generic term for both
problems, and denote the explicit variant for the unique-winner case by E-PW, and
for the co-winner case by E-PcW. If the voting system is clear from the context
or not relevant in the corresponding context, we will drop the prefix “E-”, and just
write Possible Winner, PcW, and PW. If it is not explicitly mentioned that
we assume unique winners, we always consider the co-winner case.

Unless stated otherwise we will always assume that the number of both candi-
dates and voters is unbounded and that voters are unweighted. For some proofs we
will assume succinct representation of the list of votes. That means that there is
not one ballot stored for each voter, but a list of ballots with binary integers giving
their corresponding multiplicity. For more information on succinct representation
for voting systems, see [FHH09].
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As mentioned in Chapter 2.1, the famous Gibbard-Satterthwaite Theorem
states that in principle every voting system is manipulable, and Bartholdi et
al. [BTT89, BO91] proposed to study the computational complexity of the Ma-

nipulation problem since computational hardness of this problem is a kind of
protection against manipulation. Here the question is, if a manipulator can en-
sure by strategic voting that his favorite candidate wins the election. NP-hardness
of this problem implies that no successful manipulation can be found in polyno-
mial time, though the election system is manipulable in principle. Conitzer et
al. [CSL07, CS02] generalized this problem by introducing weights to the voters
and by allowing a coalition of manipulative voters instead of a single manipulator.
The formal definition of the manipulation problem in the unweighted coalitional
form for a given voting system E is as follows.

E-Manipulation

Given: A set of candidates C, a list of nonmanipulative votes V that are
linear orders over C, a list of manipulative votes W that are not
specified yet, and a designated candidate c ∈ C.

Question: Is there a way to set the votes in W such that c is a winner of
election (C, V ∪ W ) under voting system E?

This unweighted coalitional version of the manipulation problem will be denoted
by UCM and the version where the weights of all manipulators are known initially
in addition to the weights and preferences of the nonmanipulators will be denoted
by WCM. A destructive variant of this problem was also introduced by Conitzer
et al. [CSL07]. In contrast to the constructive variant, that is stated here, the
question is whether the votes in W can be set such that c is not a winner of the
election.

The reason for mentioning the Manipulation problem is that the Possible

Winner problem generalizes UCM, as an instance of UCM can be seen as a
Possible Winner instance in which all nonmanipulative votes are linear orders
whereas the manipulative votes are empty, the question is again whether these
empty votes can be extended to linear ones such that the designated candidate
wins the election. Hence the reduction UCM ≤p

m PcW implies that on one hand
hardness results for UCM carry over to PcW and on the other hand easiness
results for PcW carry over to UCM.

Complexity results for UCM for various voting systems are due to Faliszewski
et al. [FHS08, FHS10], Narodytska et al. [NWX11], Xia et al. [XCP10, XZP+09],
and Zuckerman et al. [ZPR09, ZLR11]. The results for scoring rules are very
sparse and only recently the long standing open problem of the complexity of
UCM for Borda elections was solved independently by Betzler et al. [BNW11] and
Davies et al. [DKNW11]. They showed NP-completeness even if there are only
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3.2 The Possible Winner Problem for Scoring Rules

two manipulators. For more details on UCM, see the surveys of Faliszewski et
al. [FHH10, FP10].

In contrast, the complexity of WCM, the weighted version of the manipulation
problem, is well studied (see [CSL07]). In the case of scoring rules even a dichotomy
theorem by Hemaspaandra and Hemaspaandra [HH07] is known.

When studying the Possible Winner problem it is natural to also ask whether
some distinguished candidate is a winner in every extension of the partial votes
to linear ones. This problem is called Necessary Winner, and Xia and
Conitzer [XC11] showed that it is solvable in polynomial time for all pure scoring
rules. In this chapter we will focus only on the Possible Winner problem and
variants of it.

3.2 The Possible Winner Problem for Scoring Rules
After its introduction by Konczak and Lang [KL05] the Possible Winner prob-
lem for pure scoring rules was first studied by Xia and Conitzer [XC11] and then by
Betzler and Dorn [BD10]. The latter showed that Possible Winner is solvable in
polynomial time for plurality and veto, and NP-complete for all other pure scoring
rules, except the one with the scoring vector (2, 1, . . . , 1, 0), for which the complex-
ity was left open. We will show that Possible Winner is NP-complete for the
pure scoring rule with the vector (2, 1, . . . , 1, 0), and hence obtain a full dichotomy
result for the class of pure scoring rules. Such dichotomy results are particularly
important, since they completely characterize the complexity of a whole class of
related problems with an easy-to-check condition that distinguishes the easy prob-
lems from the hard ones. Schaefer [Sch78] provided the first dichotomy result in
computer science by giving a simple criterion to distinguish the easy instances of
the satisfiability problem from the hard ones. Hemaspaandra and Hemaspaan-
dra [HH07] established with the “diversity of dislike” criterion the first dichotomy
theorem for voting systems. In the following section we will complete the dichotomy
result for the Possible Winner problem for pure scoring rules.

3.2.1 Final Step to a Full Dichotomy
In this section we will show that Possible Winner is NP-complete for the pure
scoring rule with the vector (2, 1, . . . , 1, 0). In our proof we will adopt the notion
of maximum partial score defined by Betzler and Dorn [BD10]. Fix any scoring
rule, and let C be a set of candidates, with a distinguished candidate c ∈ C which
we want to make win the election. The list of votes over C is V = V l ∪ V p, where
V l contains only linear votes and V p contains partial (i.e., incomplete) votes, such
that the score of c is fixed, i.e., for each vote v ∈ V p, no matter to which linear
vote v is extended, the exact number of points c receives from this vote remains
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3 Possible Winner

the same. For each candidate d ∈ C \ {c}, define the maximum partial score of d
with respect to c (denoted by smax

p (d, c)) to be the maximum number of points that
d may get, if the partial votes in V p are extended to linear ones, without defeating
c in (C, V ′) for any extension V ′ of V to linear votes. Since the score of c is the
same in any extension V ′ of V to linear votes, it holds that

smax
p (d, c) = score(C,V ′)(c) − score(C,V l)(d).

For the unique winner case each candidate d ∈ C \{c} must have strictly less points
than c, hence in this case smax

p (d, c) = score(C,V ′)(c) − score(C,V l)(d) − 1 holds.
The notion of maximum partial scores is useful for the following lemma which

shows that it is possible to construct a list of linear votes having some desired
properties.

Lemma 3.1 (Betzler and Dorn [BD10]). Let �α = (α1, α2, . . . , αm) be any scoring
rule, let C be a set of m ≥ 2 candidates with designated candidate c ∈ C, let V p

be a list of partial votes in which the score of c is fixed, and let smax
p (c′, c) be the

maximum partial score with respect to c for all c′ ∈ C \ {c}. Suppose that the
following two properties hold:

1. There is a candidate d ∈ C \ {c} such that smax
p (d, c) ≥ α1|V p|.

2. For each c′ ∈ C \{c}, the maximum partial score of c′ with respect to c can be
written as a linear combination of the score values, smax

p (c′, c) = ∑m
j=1 njαj,

with m = |C|, nj ∈ N, and ∑m
j=1 nj ≤ |V p|.

Then a list V l of linear votes can be constructed in polynomial time such that for all
c′ ∈ C \ {c}, score(C,V l)(c′) = score(C,V ′)(c) − smax

p (c′, c), where V ′ is an arbitrary
extension of V p to linear votes.

In the following theorem we take the final step to a full dichotomy result using a
reduction from the NP-complete problem Hitting Set (see, e.g., [GJ79]), which
is defined as follows.

Hitting Set

Given: A finite set X, a collection S = {S1, . . . , Sn} of nonempty subsets
of X (i.e., ∅ �= Si ⊆ X for each i, 1 ≤ i ≤ n), and a positive integer
k.

Question: Is there a subset X ′ ⊆ X with |X ′| ≤ k such that X ′ contains at
least one element from each subset in S?

Theorem 3.1. PcW and PW are NP-complete for the pure scoring rule with the
vector (2, 1, . . . , 1, 0).
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3.2 The Possible Winner Problem for Scoring Rules

Proof. Membership in NP is obvious. Our NP-hardness proof uses a reduction
from the NP-complete Hitting Set problem. Let (X, S, k) be a given Hitting

Set instance with X = {e1, e2, . . . , em} and S = {S1, S2, . . . , Sn}. From (X, S, k)
we construct a Possible Winner instance with candidate set

C = {c, h} ∪ {xi, x1
i , x2

i , . . . , xn
i , y1

i , y2
i , . . . , yn

i , z1
i , z2

i , . . . , zn
i | 1 ≤ i ≤ m}

and designated candidate c. The list of votes V = V l ∪ V p consists of a list V l of
linear votes and a list V p of partial votes. V p = V p

1 ∪ V p
2 ∪ V p

3 consists of three
sublists:

1. V p
1 contains k votes of the form h � C\{h, x1, x2, . . . , xm} � {x1, x2, . . . , xm}.

2. V p
2 contains the following 2n + 1 votes for each i, 1 ≤ i ≤ m:

vi : h � C \ {h, xi, y1
i } � {xi, y1

i },

vj
i : yj

i � C \ {yj
i , zj

i , h} � h for 1 ≤ j ≤ n,

wj
i : xj

i � C \ {xj
i , yj+1

i , zj
i } � yj+1

i for 1 ≤ j ≤ n − 1
wn

i : xn
i � C \ {xn

i , zn
i , h} � h.

3. V p
3 contains the vote Tj � C \ {Tj , h} � h for each j, 1 ≤ j ≤ n, where

Tj = {xj
i | ei ∈ Sj}.

For each i, 1 ≤ i ≤ m, and j, 1 ≤ j ≤ n, the maximum partial scores with respect
to c are set as follows:

smax
p (xi, c) = |V p| − 1

smax
p (xj

i , c) = |V p| + 1
smax

p (yj
i , c) = smax

p (zj
i ) = |V p|

smax
p (h, c) ≥ 2|V p|.

This means that each xi must take at least one last position, which is possible
in the votes from V p

1 and the votes vi, 1 ≤ i ≤ m, from V p
2 . Since the candidates

xj
i can never take a last position, they may take at most one first position. For yj

i

and zj
i , the maximum partial scores with respect to c are set such that for each

first position they take, they must also take at least one last position. Finally, h
can never beat c. By Lemma 3.1, we can construct a list of votes V l such that all
candidates other than c can get only their maximum partial scores with respect to
c in the partial votes.

We claim that (X, S, k) is a yes-instance of Hitting Set if and only if c is a
possible winner in (C, V ), using the scoring rule with vector (2, 1, . . . , 1, 0).

From left to right, suppose there exists a hitting set X ′ ⊆ X with |X ′| ≤ k for
S. The partial votes in V p can then be extended to linear votes such that c wins
the election as follows:
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ei ∈ X ′ ei �∈ X ′

V p
1 : h > · · · > xi

V p
2 : vi: h > · · · > xi > y1

i h > · · · > y1
i > xi

vj
i , 1 ≤ j ≤ n: yj

i > · · · > zj
i zj

i > yj
i > · · · > h

wj
i , 1 ≤ j ≤ n: zj

i > xj
i > · · · > yj+1

i xj
i > · · · > yj+1

i > zj
i

wn
i : zn

i > xn
i > · · · > h xn

i > · · · > h > zn
i

V p
3 : xj

i > · · · > h for some j ∈ {� | ei ∈ S�}.

Every xi takes one last position and get his maximum partial score with respect to
c. For ei ∈ X ′, all yj

i take exactly one first, one last, and a middle position in all
remaining votes. For ei �∈ X ′, all yj

i take middle positions only. So they always get
their maximum partial scores with respect to c. The candidates zj

i also get their
maximum partial scores with respect to c, since they always get one first position,
one last position, and a middle position in all remaining votes. Every candidate xj

i

gets at most one first position and therefore does not exceed his maximum partial
score with respect to c. Since no candidate exceeds his maximum partial score
with respect to c, candidate c is a winner in this extension of the list V p of partial
votes.

Conversely, assume that c is a possible winner for (C, V ). Then no candidate
may get more points in V p than his maximum partial score with respect to c. Since
at most k different xi may take a last position in V p

1 , at least n − k different xi

must take a last position in vi. Fix any i such that xi is ranked last in vi. We
now show that it is not possible that a candidate xj

i then takes a first position in
any vote of V p

3 . Since xi takes the last position in vi, candidate y1
i takes a middle

position in this vote and gets one point. The only vote in which the score of y1
i is

not fixed is v1
i . Without the points from this vote, y1

i already gets |V p| − 1 points,
so y1

i cannot get two points in v1
i , and z1

i takes the first position in v1
i . Without

the points from w1
i , z1

i gets |V p| points and must take the last position in w1
i . The

first position in w1
i is then taken by x1

i , so x1
i cannot take a first position in any

vote from V p
3 . Candidate y2

i gets one point in w1
i , and by a similar argument as

above, x2
i is placed at the first position in w2

i . Repeating this argument, we have
that for each j, 1 ≤ j ≤ n, xj

i is placed at the first position in wj
i and thus cannot

take a first position in a vote from V p
3 . This means that all first positions in the

votes of V p
3 must be taken by those xj

i for which xi takes the last position in a vote
from V p

1 . This is possible only if the xj
i are not at the first position in wj

i . Thus zj
i

must take this position. Due to zj
i ’s maximum partial score with respect to c, this

is possible only if zj
i takes the last position in vj

i . Then yj
i takes the first position

in this vote. This is possible, since yj
i can take a middle position in vi for j = 1,

and in vj
i for 2 ≤ j ≤ n. Hence all xj

i , where xi takes the last position in the votes
of V p

1 , may take the first position in the votes of V p
3 . Thus, by the definition of V p

3
(which, recall, contains the vote Tj � C \ {Tj , h} � h for each j, 1 ≤ j ≤ n, where
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3.3 The Possible Winner Problem with respect to the Addition of New Alternatives

Tj = {xj
i | ei ∈ Sj}), the elements ei corresponding to those xi must form a hitting

set of size at most k for S.
Note that this proof holds for the co-winner case and the unique-winner case at

the same time due to the definition of the maximum partial scores as argued by
Betzler and Dorn [BD10]. 

This completes the dichotomy for the Possible Winner problem in pure scor-
ing rules with the result that it is NP-complete for all pure scoring rules except
plurality and veto.

3.3 The Possible Winner Problem with Respect to
the Addition of New Alternatives for Scoring
Rules

This section deals with a variant of the Possible Winner problem, called Pos-

sible Winner with respect to the Addition of New Alternatives,
that was introduced by Chevaleyre et al. [CLMM10]. As the name suggests, this
problem captures the situation where some additional candidates enter the election
after the votes have already been cast. Chevaleyre et al. [CLMM10] and Xia et
al. [XLM11] argue that such situations often occur in real-life, for example if a
meeting has to be scheduled, and after the participants reported their preferences
over the given dates a new time-slot becomes available. The Possible Winner

with respect to the Addition of New Alternatives problem asks if the
given linear preferences over a set of initial candidates can be extended to linear
preferences over the initial and the new candidates such that a distinguished can-
didate from the set of initial candidates wins the election. Here we will use the
terms alternatives and candidates interchangeably. The formal definition of this
problem for a given voting system E is as follows.

E-Possible Winner w.r.t. the Addition of New Alternatives

Given: A set C of candidates, a list of votes V that are linear orders over C,
a set C ′ with |C ′| = k, k ∈ N, of new candidates, and a designated
candidate c ∈ C.

Question: Is there an extension V ′ of the votes in V to linear orders over C ′∪C
such that c is a winner of election (C ∪ C ′, V ′) under voting system
E?

As for the Possible Winner problem we will drop the prefix “E-” if appropriate
and we denote the explicit co-winner variant by PcWNA and the unique-winner
variant by PWNA. In contrast to the Possible Winner problem we will also
study PcWNA for weighted elections. Here every voter vi ∈ V has a predefined
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3 Possible Winner

weight wi ∈ N and for the evaluation of the election this is counted as if there were
wi unweighted votes of type vi.

3.3.1 State of the Art

The complexity of PcWNA has been studied for different voting rules by Cheva-
leyre et al. [CLMM10, CLM+12] and Xia et al. [XLM11]. Since we focus on pure
scoring rules, Table 3.1 summarizes the known results for pure scoring rules from
earlier work [CLMM10, CLM+12, XLM11]. It is again always assumed that the
voters are unweighted and that the number of initial candidates is unbounded,
unless stated otherwise.

Table 3.1: Previous results on the complexity of PcWNA for pure scoring rules
Scoring rule PcWNA

Plurality in P (see [CLMM10])
Veto in P (see [CLMM10])
Borda in P (see [CLMM10])
2-Approval in P (see [CLM+12])
k-Approval, |C ′| ≤ 2 in P (see [CLMM10, CLM+12])
k-Approval, k ≥ 3, |C ′| ≥ 3 NP-complete (see [CLMM10, CLM+12])
(αi − αi+1) ≤ (αi+1 − αi+2), in P (see [CLMM10])1 ≤ i ≤ m − 2
(3, 2, 1, 0, . . . , 0), |C ′| = 1 NP-complete (see [CLMM10])

In particular, PcWNA is in P for the Borda rule for any fixed number of can-
didates, yet it is NP-complete for the scoring vector (3, 2, 1, 0, . . . , 0) when the
number of candidates is unbounded. Thus, this NP-completeness result is about a
more general problem and does not contradict the polynomial-time solvability of
Borda in the restricted case of four candidates. Chevaleyre et al. [CLMM10] raised
the question whether there are more general results for the class of pure scoring
rules for PcWNA as it is the case for PcW (see the dichotomy result by Betzler
and Dorn [BD10] and Baumeister and Rothe [BR12] which is partly presented in
Section 3.2). In the next section we will make one step further in this direction
by showing NP-completeness for a whole class of pure scoring rules if one new
candidate is added. Additionally, we initiate the study of the weighted PcWNA

problem. Note that since PcWNA is a special case of PcW, no hardness results
carry over, but the membership in P for PcWNA under plurality and veto directly
follows from the corresponding PcW problems.
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3.3.2 New Results for Scoring Rules
Unweighted Voters We will extend the result of Chevaleyre et al. [CLMM10]
that PcWNA is NP-complete for pure scoring rules with vector (3, 2, 1, 0, . . . , 0)
when one new candidate is added by showing that NP-completeness of PcWNA

holds even for the class of pure scoring rules of the form (α1, α2, 1, 0, . . . , 0) with
α1 > α2 > 1, if one new candidate is added. The reduction will be from the NP-
complete problem Three-Dimensional Matching (see, e.g., [GJ79]) which is
defined as follows.

Three-Dimensional Matching (3-DM)

Given: A set M ⊆ W × X × Y , with W = {w1, . . . , wq}, X = {x1, . . . , xq},
and Y = {y1, . . . , yq}.

Question: Is there a subset M ′ ⊆ M with |M ′| = q, such that no two elements
of M ′ agree in any coordinate?

Theorem 3.2. PcWNA is NP-complete for pure scoring rules of the form
(α1, α2, 1, 0, . . . , 0) with α1 > α2 > 1, if one new candidate is added.

Proof. Membership in NP is obvious and the proof of NP-hardness is by a
reduction from the NP-complete 3-DM problem. Let M ⊆ W ′ × X ′ × Y ′ be
an instance of 3-DM with W ′ = {w′

1, . . . , w′
q}, X ′ = {x′

1, . . . , x′
q}, and Y ′ =

{y′
1, . . . , y′

q}, where m = |M |. Let p(s) be the number of elements in M in which
s ∈ W ′ × X ′ × Y ′ occurs.

Construct an instance of the PcWNA problem with the election (C, V ) having
the set C = W ∪ X ∪ Y ∪ {b, c} ∪ D of candidates with W = {w1, . . . , wq},
X = {x1, . . . , xq}, and Y = {y1, . . . , yq}. The new candidate to be added is a, so
C ′ = {a}. D contains only dummy candidates needed to pad the votes so as to
make the reduction work. Table 3.2 shows the list V = V1 ∪ V2 ∪ V3 ∪ V4 of votes.
Note that only the first three candidates of each vote will be specified, since all
other candidates do not receive any points. The numbers behind each vote denote
their multiplicity. All places that need to be filled by a dummy candidate will
be indicated by d (with no explicit subscript defined). Note that it is possible to
substitute the d’s by a polynomial number of dummy candidates such that none
of them receives more then q · α1 points.

The scores of the single candidates in the election (C, V ) are:

score(C,V )(c) = (q + m)α1 + α2
score(C,V )(wi) = (q + m + 1)α1, 1 ≤ i ≤ q
score(C,V )(xi) = (q + m)α1 + 2α2 − 1, 1 ≤ i ≤ q
score(C,V )(yi) = (q + m)α1 + α2 + 1, 1 ≤ i ≤ q
score(C,V )(b) = (q + 2m)α1 + 2α2
score(C,V )(d) < (q + m)α1 + α2, ∀d ∈ D
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Table 3.2: Construction for the proof of Theorem 3.2
V1 wi > xj > yk > · · · 1, ∀(w′

i, x′
j , y′

k) ∈ M

V2 wi > d > d > · · · q + m + 1 − p(w′
i), ∀wi ∈ W

d > d > xi > · · · (q + m)α1 + (2 − p(x′
i))α2 − 1, ∀xi ∈ X

d > d > yi > · · · (q + m)α1 + α2 + 1 − p(y′
i), ∀yi ∈ Y

V3 c > d > d > · · · q + m
d > c > d > · · · 1

V4 d > d > b > · · · (q + 2m)α1 + 2α2

Note that score(C,V )(d) < score(C,V )(c) for all dummy candidates d ∈ D.
We claim that c is a possible winner (i.e., a can be inserted such that c wins in

the election held over the candidates C ∪ C ′) if and only if there is a matching M ′

for the 3-DM instance M .
For the direction from right to left assume that there exists a matching M ′ for

M . Extend the votes in V to V ′, where a is inserted at a position with zero points
in all votes of V2 and V3, and the votes in V1 and V4 are extended as follows:

V1: a > wi > xj > yk 1, ∀(w′
i, x′

j , y′
k) ∈ M ′

wi > xj > yk > a 1, ∀(w′
i, x′

j , y′
k) ∈ M \ M ′

V4: d > d > a > b mα1 + α2
d > d > b > a (q + m)α1 + α2

Then all candidates except the dummy candidates have exactly (q + m)α1 + α2
points. Hence c has the highest score and is a winner of the election.

Conversely assume that c is a winner of the election (C ∪ C ′, V ′), where V ′ is
an extension of the linear votes in V . This implies that the scores of all other
candidates in this election are less than or equal to the score of c. The score of c
will always be (q + m)α1 + α2, since c gets all of his points from the voters in V3,
where he is placed at the top position in m + q votes and at a second position in
one vote.

Since score(C,V )(wi) = (q + m + 1)α1, each of the candidates wi, 1 ≤ i ≤ q,
must lose at least α1 − α2 points when inserting a. Due to the requirement that
α1 > α2, each wi has to take at least one second position in a vote where he was
ranked first originally. For the candidates xi, 1 ≤ i ≤ q, we have score(C,V )(xi) =
(q + m)α1 + 2α2 − 1. Again, since α2 > 1, each xi must lose at least α2 − 1 points,
and since score(C,V )(yi) = (q + m)α1 + α2, each yi must lose at least one point so
as to not beat c.
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The new candidate a can get at most (q + m)α1 + α2 points, since otherwise a
would beat c.

To prevent wi, 1 ≤ i ≤ q, from beating c, a must be placed in a first position in
q votes from V1 or V2. Then a can get at most mα1 +α2 points from the remaining
votes without beating c. In the current situation b would beat c by mα1 + α2
points. So a must take mα1 + α2 third positions in these votes such that b has a
score of (q + m)α1 + α2. Then the score of a is (q + m)α1 + α2. Since we assumed
that c is a winner of the election, every xi, 1 ≤ i ≤ q, must end up having α2 − 1
points less, and every yi, 1 ≤ i ≤ q, must end up having one point less. This is
possible only if a is at the first position in some vote from V1. Hence the q first
positions of a must shift every candidate xi and yi by one position to the right.
Then the triples corresponding to the three elements wi, xj , and yk corresponding
to these q votes must form a matching for the 3-DM instance M . 

Weighted Voters Now we will study the PcWNA problem in the case of
weighted voters. Obviously all NP-hardness results from the unweighted case carry
over to the weighted case. But there is no direct transfer from the polynomial-time
algorithms from the unweighted case to the weighted case. In particular we will
show that for some voting rules where the problem is in P for unweighted voters,
it is NP-complete for weighted voters. Specifically, we will consider the plurality
rule for weighted voters in this section. For this rule, polynomial-time algorithms
are known for the original Possible Winner problem in the case of unweighted
voters (see [BD10]), and for Manipulation both in the unweighted-voters and
in the weighted-voters case (see [CSL07, CS02]). In contrast, we now show that
PcWNA is NP-complete for plurality in the case of weighted voters, even if there
are only two initial candidates and one new candidate to be added. The proof will
be by a reduction from the NP-complete Partition problem (see, e.g., [GJ79]).

Partition

Given: A nonempty, finite sequence (s1, s2, . . . , sn) of positive integers.
Question: Is there a subset A′ ⊂ A = {1, 2, . . . , n} such that∑

i∈A′
si =

∑
i∈A\A′

si?

Theorem 3.3. PcWNA is NP-complete for plurality in the case of weighted vot-
ers, even if there are only two initial candidates and one new candidate to be added.

Proof. Membership in NP is obvious. To show NP-hardness of PcWNA for
plurality in the case of weighted voters, we now give a reduction from the NP-
complete Partition problem. For a given Partition instance (s1, s2, . . . , sn), let
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∑
i∈A

si = 2K, where A = {1, 2, . . . , n}. We construct an election (C, V ) with the

set of candidates C = {c, d}, where c is the distinguished candidate and the list of
votes V = V1 ∪ V2 with the corresponding weights as follows:

V1: c > d one vote of weight K

V2: d > c one vote of weight si for each i ∈ A

The new candidate to be added is a, so C ′ = {a}. In the initial situation, the
score of candidate c is K, and candidate d receives 2K points and hence wins the
election. We now show that c can be made a winner by introducing candidate a
into the election if and only if there is a valid partition for the given Partition

instance.
For the direction from right to left assume that there is a subset A′ ⊂ A such

that ∑
i∈A′

si = ∑
i∈A\A′

si. If the new candidate a is placed at the first position in

each of those votes from V2 that correspond to the i ∈ A′, and at the last position
in all remaining votes, then the score of all three candidates is exactly K, and c is
a co-winner of the election.

Conversely assume that c is a winner of the election, after candidate a has been
introduced. It must hold that candidates a and d receive at most K points, since
c gets K points from the vote in V1. Hence candidate d must lose K points due
to inserting candidate a. This is possible only if a is placed at the first position
in some votes from V2 with a total weight of K. These votes now correspond to a
valid partition. 

Next, we study 2-approval and in Theorem 3.4 we give a result for the case of
weighted voters and an unbounded number of candidates.

Theorem 3.4. PcWNA is NP-complete for 2-approval in the case of weighted
voters, where the number of candidates is unbounded and one new candidate is to
be added.

Proof. To prove NP-hardness of the problem, we again give a reduction from
Partition. Let (s1, . . . , sn) be an instance of Partition with ∑

i∈A
si = 2K, where

A = {1, 2, . . . , n}.
We introduce a set C of n + 3 candidates:

• c (the candidate we want to win the election),

• b (the candidate who wins the original election), and

• a set {d0, d1, . . . , dn} of dummy candidates.

32
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The votes are as follows. Note that we specify only the first two candidates,
since in 2-approval the ranking of the remaining candidates cannot influence the
outcome of the election.

• For each sj , we define a vote dj > b > · · · with weight sj .

• There is one vote c > d0 > · · · with weight K.

Since ∑
j∈A

sj = 2K, candidate b has a score of 2K and wins the election. We

now prove that c can be made a winner by adding one new candidate, namely a,
if and only if there is a subset A′ ⊂ A that induces a valid partition for the given
instance.

For the direction from right to left assume that we have a partition A′ ⊂ A.
By putting a at the first position of each vote having a weight of si and for which
i ∈ A′, a will get exactly K points. Furthermore, b loses these K points, since he
moves to the third position in these votes. Now, there is a tie between a, b, c, and
d0, each having K points. Since sj ≤ K, 1 ≤ j ≤ n, no candidate dj, 1 ≤ j ≤ n,
has a higher score. Thus, c is a co-winner of the election.

For the direction from left to right assume that c can be made a winner by
adding candidate a. It follows that b has to lose at least K points. Hence a has to
be added in the votes of the from dj > b > · · · at first or second position. Thus,
a gets each point that b loses. But since c is made a winner by inserting a, the
new candidate a can get no more than K points. Therefore, we have to insert a
in a subset of votes such that the weights of these votes sum up to exactly K.
Consequently there exists a partition.

Since Partition is NP-complete, this proves NP-hardness. Membership in NP
is straightforward. Thus PcWNA is NP-complete for 2-approval. 

It is easy to see hat the proof of Theorem 3.4 can be transferred to k-approval:
In each vote k − 2 dummy candidates are added at the first k − 2 positions, which
gives a total number of (k −1)(n+1)+2 initial candidates and one new candidate.
Thus we can state the following corollary.

Corollary 3.1. PcWNA is NP-complete for k-approval in the case of weighted
voters where the number of candidates is unbounded and one new candidate is to
be added.

Note that, in Corollary 3.1, the k in k-approval cannot depend on the number
of candidates, since the proof is for an unbounded number of candidates. The
results of this section for PcWNA in the case of weighted voters are summarized
in Table 3.3.
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Table 3.3: New results on the complexity of PcWNA in the case of weighted voters

Scoring rule PcWNA

Plurality, |C| = 2, |C ′| = 1 NP-complete (see Theorem 3.3)
k-Approval, |C ′| = 1 NP-complete (see Corollary 3.1)

3.4 The Possible Winner Problem with Truncated
Ballots

In this section we consider a possible winner problem where the voters again report
partial instead of linear votes but the partial votes all have a common structure,
they are either doubly, top, or bottom truncated. For two nonnegative integers t and
b we say that a partial preference order � on a set of candidates C is a (t, b)-doubly-
truncated vote, if there is a permutation π over {1, . . . , |C|} such that � is of the
form cπ(1) � · · · � cπ(t) � {cπ(t+1), . . . , cπ(m−b)} � cπ(m−b+1) � · · · � cπ(m). Hence it
holds that each candidate in the set {cπ(t+1), . . . , cπ(m−b)} is ranked strictly below
candidate cπ(t), and strictly above cπ(m−b+1), but the voter is indifferent among the
members of the set. We refer to the candidates cπ(1), . . . , cπ(t), cπ(m−b+1) . . . cπ(m) as
ranked candidates and to the remaining ones as unranked candidates. Furthermore,
we define top(�) = t to be the number of candidates ranked at the top of a
vote, and bottom(�) = b to be the number of candidates ranked at the bottom
of a vote. A top-truncated vote is a preference order that has only top-ranked
candidates but no bottom ranked candidates, hence it is a (t, 0)-doubly-truncated
vote. And accordingly a bottom-truncated vote is (0, b)-doubly-truncated and
has only bottom-ranked candidates. We call a preference order doubly-truncated
(top-truncated, bottom-truncated) if there are values t and b for which it is (t, b)-
doubly-truncated (t-top-truncated, b-bottom-truncated). Accordingly an election
(C, V ) is doubly-truncated (top-truncated, bottom-truncated) if each vote v ∈ V
is doubly-truncated (top-truncated, bottom-truncated). Furthermore, we consider
a variant where there is either an upper or a lower bound on the number of ranked
candidates.

The motivation to consider these special forms of ballots is that it is a reasonable
assumption that voters are able to rank some of their top candidates and/or some
of their bottom candidates, as these are the most liked and disliked candidates,
but the voters are indifferent among the unranked candidates. Top-truncated bal-
lots may be demanded, for example, if the number of candidates is large and the
voters should only declare some of their most liked candidates. Indeed, there are
adaptions of the Borda rule to top-truncated ballots that are actually used for
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3.4 The Possible Winner Problem with Truncated Ballots

political elections, for example the Irish green party uses the modified Borda count
to choose its leader, see [Eme]. In an m-candidate modified Borda count election
the points for a t-top-truncated vote cπ(1) � · · · � cπ(t) � {cπ(t+1) . . . cπ(m)}, are
m − i points for the ranked candidates cπ(i), 1 ≤ i ≤ t, and the remaining un-
ranked candidates cπ(j), t + 1 ≤ j ≤ m, all get m − t − 1 points. In the Possible

Winner with Doubly/Top/Bottom-Truncated Ballots problem, how-
ever, the question is whether the given doubly/top/bottom-truncated ballots may
be extended to linear ones such that a distinguished candidate wins the election.
Hence, there is no need to adapt the voting rules to the special forms of truncated
ballots here. Baumeister et al. [BFLR12] additionally study campaigning problems
for truncated ballots, where an adaption of existing voting rules is needed. The
formal definition of Possible Winner with Doubly-Truncated Ballots

for a given voting system E is as follows.

E-Possible Winner with Doubly-Truncated Ballots

Given: A set C of candidates, a list of votes V that are possibly doubly-
truncated partial orders over C, and a designated candidate c ∈ C.

Question: Is there an extension V ′ of the votes in V to linear orders over C
such that c is a winner of election (C, V ′) under voting system E?

We will again drop the prefix “E-” if the voting system is clear from the context
or not relevant in the corresponding context. The unique-winner variant will be
referred to by PWDTB and the co-winner variant by PcWDTB. The problem
definitions for top-truncated ballots and bottom-truncated ballots are analogously,
and we will refer to these problems by PWTTB and PcWTTB in the case of
top-truncated ballots, and by PWBTB and PcWBTB in the case of bottom-
truncated ballots. In addition to these problems we will also consider a restricted
variant where the number of ranked candidates is bounded. There is either an
upper bound that indicates the maximal number of candidates to be ranked or a
lower bound that indicates the least number of candidates to be ranked. For a
fixed positive constant k, PcWDTBU(k), PcWTTBU(k), and PcWBTBU(k)
denote the versions with an upper bound and PcWDTBL(k), PcWTTBL(k),
and PcWBTBL(k) denote the version with a lower bound. Truncated ballots
with an upper bound on the number of ranked candidates can be seen as heavily
truncated, while those with a lower bound can be seen as being only moderately
truncated.

In this section we will focus on the co-winner case, but the following obviously
also holds for the corresponding unique-winner problems. Since the definitions of all
described variants of the possible winner problem with truncated ballots are new to
this section, these problems have not been studied before. However, these problems
are related to the unweighted coalitional version of the Manipulation problem
(UCM) and to the original Possible Winner problem. Specifically, UCM is
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PcW

PcWDTB

PcWTTB PcWDTBU(k) PcWDTBL(k) PcWBTB

PcWTTBU(k) PcWTTBL(k) UCM PcWBTBU(k) PcWBTBL(k)

Figure 3.1: A hierarchy of possible winner problems

a special case of PcWTTB and PcWBTB. Since top- and bottom-truncated
ballots are special forms of doubly-truncated ballots, PcWTTB and PcWBTB

are a special case of PcWDTB, which in turn is a special case of PcW. However
since in UCM the ballots are either full or empty, none of the problems with an
upper or lower bound on the ranked candidates is a more general problem than
UCM. All these relations are stated in Proposition 3.1 and shown in Figure 3.1,
where A → B means that A (polynomial-time many-one) reduces to B.

Proposition 3.1. Among the possible winner problems with and without truncated
ballots defined above and the unweighted coalitional manipulation problem, we have
the reductions shown in Figure 3.1.

The reductions stated above immediately imply that PcWDTB, PcWTTB,
and PcWBTB inherit any membership in P result from PcW and any NP-
hardness result from UCM. Summarizing the results for common voting rules
from [CSL07, KL05, BD10, XC11], they can be classified into three groups:

1. Possible Winner is in P for e.g., plurality, veto, Condorcet, and plurality
with runoff (in the co-winner case);

2. UCM is NP-hard for, e.g., Copeland, STV, maximum, ranked pairs, most
scoring rules, and all rules for which winner determination is NP-hard;

3. Possible Winner is NP-hard and UCM is in P for, e.g., Bucklin, voting
trees, plurality with runoff (in the unique-winner case), and k-approval.

Accordingly, the complexity for Possible Winner with

Doubly/Top/Bottom-Truncated Ballots is open only for those vot-
ing rules from the third group, e.g., Bucklin, voting trees, plurality with runoff
(in the unique-winner case), and k-approval. In the following section we will show
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3.4 The Possible Winner Problem with Truncated Ballots

that all three problems are in P for k-approval elections, whereas Betzler and
Dorn [BD10] showed that Possible Winner for k-approval is NP-complete for
all values except 1 and m − 1 if there are m candidates.

3.4.1 Results for k-approval
In this section we will show that for k-approval the possible winner problem with
truncated ballots is solvable in polynomial time for all three kinds of truncated
ballots without an upper or lower bound on the number of ranked candidates. A
useful technique to design polynomial time algorithms are flow networks. In the
context of voting this was first applied by Faliszewski [Fal08], see also [FHHR09a,
BHN09, BD10]. Formally, a flow network is a directed graph G = (V, E), where
the set of vertices V contains a source s and a sink t. Furthermore, every edge
(u, v) ∈ E has a capacity c(u, v) ∈ N0 indicating the maximum amount of flow that
can pass through this edge. A flow in such a network is a function f : V × V → Z

that satisfies the following criteria:

• capacity constraint: f(u, v) ≤ c(u, v) for all u, v ∈ V (i.e., the flow may not
exceed the capacity),

• flow conservation: ∑
v∈V \{u} f(u, v) = ∑

v∈V \{u} f(v, u) for all u ∈ V \ {s, t}
(i.e. for each node (except source and sink) the flow entering a node must
equal the flow exiting a node).

The value of a flow f is defined as ∑
u∈V \{s} f(s, u). The maximum flow problem

seeks to find a maximum flow from the source to the sink. It is well known that
this problem is solvable in polynomial time, for example by linear programming.
For further details on flow networks, see the textbook [AMO93].

Theorem 3.5. For k-approval, the problems PcWDTB and, a fortiori,
PcWTTB and PcWBTB are in P.

Proof. Let V = (v1, . . . , vn) be a given list of doubly-truncated ballots over a
set C of m candidates, with the given values top(vi) and bottom(vi) for each voter
vi ∈ V . Let c ∈ C be the designated candidate. To decide whether c is a possible
winner, we transform the given instance into the following network flow problem:

1. For each i, 1 ≤ i ≤ n, if top(vi) < k, and the position of c is not revealed
in vi (i.e., c is among the unranked candidates in vi), then add c at position
top(vi) + 1 in vi. Let V ′ = (v′

1, . . . , v′
n) be the corresponding modified profile

with adjusted values top(v′
i), 1 ≤ i ≤ n.

2. For each i, 1 ≤ i ≤ n:
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• if top(v′
i) ≥ k, then let Zi be the set containing the first k candidates of

v′
i;

• if top(v′
i) < k and bottom(v′

i) ≤ m−k, then let Zi be the set containing
the first top(v′

i) candidates of v′
i;

• if top(v′
i) < k and bottom(v′

i) > m−k, then let Zi be the set containing
the first top(v′

i) candidates plus the first bottom(v′
i) − m + k candidates

which are ranked at the bottom of v′
i.

3. For each d ∈ C, let S(d) = |{i | d ∈ Zi}|.
4. The flow network contains n + m + 1 nodes:

• one node d for each candidate d ∈ C \ {c},
• one node v′

i for each voter v′
i ∈ V ′,

• a source s, and
• a sink t.

5. The flow network contains the following edges:
• there is an edge from s to every d ∈ C \ {c} with capacity S(c) − S(d);
• there is an edge from d ∈ C \ {c} to v′

i ∈ V ′ with capacity 1 if and only
if the position of d is not revealed in v′

i;
• there is an edge from every v′

i ∈ V ′ to t with capacity⎧⎪⎪⎨⎪⎪⎩
0 if top(v′

i) ≥ k;
k − top(v′

i) if top(v′
i) < k and bottom(v′

i) ≤ m − k;
m − top(v′

i) − bottom(v′
i) if top(v′

i) < k and bottom(v′
i) > m − k;

We claim that c is a possible winner in the k-approval election (C, V ) if and only
if there is a flow of value ∑n

i=1 ai in the network constructed above, where

• ai = 0 if top(v′
i) ≥ k,

• ai = k − top(v′
i) if top(v′

i) < k and bottom(v′
i) ≤ m − k, and

• ai = m − top(v′
i) − bottom(v′

i) if top(v′
i) < k and bottom(v′

i) > m − k.

Assume that c is a possible k-approval winner for (C, V ). That means that there
is an extension of the list of truncated ballots V into a list W of complete ones such
that c is a k-approval winner of election (C, W ). Without loss of generality, we
can assume that c is placed at the first possible position in each vote vi where its
position is unrevealed. Let (C, V ′) be the profile thus modified. The points every
candidate gets in the profile (C, V ′) correspond to the values S(d) of the above
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3.4 The Possible Winner Problem with Truncated Ballots

construction. We now show that there is a flow of value ∑n
i=1 ai in the network.

First note that ∑n
i=1 ai is the sum of the unranked candidates among the first k

positions in all votes. Since no candidate gets more points than c in (C, W ), there
is a flow of value at most S(c) − S(d) from s to every node d for each candidate
d ∈ C \ {c}. If in the list of complete ballots candidate d takes a position in a vote
v′

i that was unrevealed in V ′, there is a flow of value one from d to v′
i. Further,

from each node v′
i, 1 ≤ i ≤ n, there is a flow to the sink t whose value corresponds

to the number of unrevealed candidates among the first k positions. Hence there
is a flow of the desired value in this network.

Now assume that there is a flow of value ∑n
i=1 ai in the network. For the given

election (C, V ), we again first place candidate c at the first possible position in the
votes where its position was unrevealed before, and we refer to the modified profile
by V ′. If there is a flow of value one from node d to v′

i, candidate d is placed among
the first k positions in vote v′

i. The sum of all ai ensures that all first k positions
are taken in all votes, and the capacity of S(c) − S(d) from the source s to the
nodes corresponding to the candidates d ∈ C \ {p} ensures that no candidate can
get more points than c. Hence, completing the profile V ′ as described results in a
k-approval election in which c is a winner. 

The proof will be illustrated by the following example.

Example 3.1. We consider an election with the set C = {a, b, c, d, e} of five can-
didates and the following four doubly-truncated ballots:

v1 : {a, b, c} > d > e
v2 : d > {a, b, e} > c
v3 : c > a > {b, e} > d
v4 : a > b > {c, d} > e

The election system is 3-approval and the candidate we want to make win the
election is c. In Step 1 we consider all votes where the first three positions are not
yet filled and the position of candidate c is unrevealed. In these votes c is placed
at the first possible position. This results in the following list of votes:

v′
1 : c > {a, b} > d > e

v′
2 : d > {a, b, e} > c

v′
3 : c > a > {b, e} > d

v′
4 : a > b > c > d > e

In the next step we compute Z1 = {c}, Z2 = {d}, Z3 = {a, c}, and Z4 = {a, b, c},
and obtain S(a) = 2, S(b) = 1, S(c) = 3, S(d) = 1, and S(e) = 0. This leads
to the following capacities of the arcs of the flow network: (s, a) �→ 1, (s, b) �→ 2,
(s, d) �→ 2, (s, e) �→ 3, (v′

1, t) �→ 2, (v′
2, t) �→ 2, (v′

3, t) �→ 1, (v′
4, t) �→ 0, and the
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Figure 3.2: Flow network for Example 3.1

capacities of the arcs from d ∈ C \ {c} to v′
i ∈ V ′ where the position of d is not

revealed in v′
i is 1. The resulting flow network is presented in Figure 3.2. The

maximal flow of 5 is obtained for example by assigning the following values to the
edges: (s, a) : 1, (s, b) : 2, (s, e) : 2, (a, v′

1 : 1), (b, v′
1) : 1, (b, v′

2) : 1, (e, v′
2) : 1,

(e, v′
3) : 1, (v′

1, t) : 2, (v′
2, t) : 2, (v′

3, t) : 1, and the value for the remaining edges is
always zero. This corresponds for example to the following extension of the votes
v′′

1 : c > a > b > d > e, v′′
2 : d > b > e > a > c, v′′

3 : c > a > e > b > d, and
v′′

4 : a > b > c > d > e, where a, b, and c tie for winning with 3 points. Therefore
c is a possible co-winner.

3.5 The Possible Winner Problem with Uncertain
Weights

So far the possible winner problem has mostly been studied for unweighted elec-
tions. Lang et al. [LPR+12] studied the possible winner problem for weighted pro-
files for Schwartz winners and balanced trees and Baumeister et al. [BRR11] (see
also Section 3.3 of this thesis) obtained some NP-hardness results for the weighted
version of the Possible Winner with respect to the Addition of New

Alternatives problem. Obviously all NP-hardness results from the original Pos-

sible Winner problem carry over to a weighted version of this problem. But here
we investigate another Possible Winner variant where the uncertainty lies in
the voters’ weights.

Consider for example a university ranking based on different criteria (e.g., equip-
ment, third-party funds, graduation rates, etc.). This can be seen as an election
where the universities are the candidates and the linear order of the universities for
each criteria are the votes. Assume that the voting rule is fixed, but is it possible
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3.5 The Possible Winner Problem with Uncertain Weights

to make a distinguished university be on top of the ranking by carefully choosing
the weights for the single criteria?

Formally, this problem can be stated as follows for a given voting system E .

E-Possible Winner with Uncertain Weights

Given: A set C of candidates, two lists V0 and V1 of votes that are linear
orders over C, where the weights of the voters in V0 are not specified
yet and weight zero is allowed for them, yet all voters in V1 have
weight one, and a designated candidate c ∈ C.

Question: Is there an assignment of weights wi ∈ N0 to the votes vi ∈ V0 such
that c is a winner of election (C, V0 ∪ V1) under voting system E
when vi’s weight is wi for 1 ≤ i ≤ |V0|?

We again stated the problem in the co-winner case, use E-Possible Winner

with Uncertain Weights as a generic term, refer to the explicit unique-winner
variant by E-PWUW, and to the explicit co-winner variant by E-PcWUW. The
prefix “E-” will as well be dropped if the voting system used is clear from the
context. Note that for inputs where V0 is empty we obtain the ordinary unweighted
winner problem for E , where we simply ask whether a distinguished candidate is
a winner for a given election. Hence PcWUW is a generalization of the winner
problem, but since the winner problem is in P for all voting systems considered in
this section, no results carry over. That we allow weight zero for the voters in V0
corresponds in some sense to control by deleting candidates (see [BTT92, HHR07]).
The relationship to control by adding candidates will be discussed in more detail
later in this section. Distinguishing between votes with unit-weight in V1 and
with uncertain weight in V0 in our problem instances captures these problems in
their full generality; just as the original possible winner problem allows for linear
votes. And the restriction that the weights of the votes in V1 are normalized to
unit-weight is a restriction (that doesn’t hurt) and is chosen at will. This will
somewhat simplify our proofs.

Although most proofs can be easily adapted for the unique-winner case, we
focus on the co-winner case and in addition to PcWUW we will study several
restrictions of this problem.

• We add regions (i.e., intervals) Ri ⊆ N0, 1 ≤ i ≤ |V0|, to the problem instance
and require that in addition each weight wi must be chosen from Ri. This
variant will be denoted by PcWUW-rw.

• We add a positive bound B ∈ N0 to the problem instance and require that
the sum of the weights does not exceed B, i.e., ∑|V0|

i=1 wi ≤ B. This variant
will be denoted by PcWUW-bw.
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• We combine both variants by adding regions (i.e., intervals) Ri ⊆ N0, 1 ≤
i ≤ |V0|, and a positive bound B ∈ N0 to the problem instance and require
that each weight wi must be chosen from Ri and that ∑|V0|

i=1 wi ≤ B. This
variant will be denoted by PcWUW-bw-rw.

Baumeister et al. [BRR+12] also define a variant of the Possible Winner with

Uncertain Weights problem where the weights are not integers, as assumed
here, but positive rationals. Furthermore one could allow sets of intervals for each
weight or define a destructive variant of all these problems, but we focus on the four
problems defined above. Among these problems the following reductions trivially
hold:

PcWUW-rw ≤p
m PcWUW-bw-rw (3.1)

PcWUW-bw ≤p
m PcWUW-bw-rw (3.2)

The first one holds by setting the bound on the total weight to the sum of the
highest possible weights, and the second one by setting the intervals to [0, B], where
B is the bound on the total weight.

As mentioned above, this problem is closely related to constructive control by
deleting voters, since weight zero is allowed for voters from V0. Furthermore
PcWUW is related to constructive control by adding voters (see [BTT92]), CCAV

for short, since raising the weight for a voter from V0 corresponds to adding such
a vote to the election. An instance of CCAV consists of a set of candidates C
with a distinguished candidate c ∈ C, a list V of registered voters, a list V ′ of yet
unregistered voters, and a positive integer k. The control action is successful if
c can be made win the election by adding at most k voters from V ′ to the elec-
tion. Obviously, there is a polynomial-time many-one reduction from CCAV to
PcWUW-bw-rw. Here, the voters from V1 are the registered voters from V , and
the unregistered voters V ′ are those from V0. The regions to choose the weights
from is [0, 1] for all votes in V0, and the bound on the total weight B is set to k, the
maximum number of voters that can be added. Assuming succinct representation
also leads to a polynomial-time many-one reduction from PcWUW-bw-rw to
CCAV. The registered voters are those from V1 and the list of unregistered voters
contains the voters from V0, where each vote is added according to its maximal
weight in the PcWUW instance. The maximum number k of voters that can be
added equals the bound B on the total weight. Having reductions in both direc-
tions, all known results for CCAV directly carry over to PcWUW-bw-rw. For
the voting systems k-approval and Copelandα that we consider here, this implies
that PcWUW-bw-rw is NP-complete for Copeland0 and Copeland1, and in P for
plurality (see [FHHR09a, BTT92]). We nevertheless prove these existing results,
since our proofs always cover other variants of our problem at the same time. Con-
versely the reductions imply that all results for PcWUW-bw-rw obtained here
directly hold for CCAV if we assume succinct representation.
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3.5.1 Results
In this section we study the complexity of PcWUW and its variants for k-approval
and Copelandα elections. The first theorem shows polynomial time solvability
under plurality, veto, and 2-approval for all variants, and for two variants under
k-approval, k ≥ 1.

Proposition 3.2. 1. Each of the four variants of plurality-PcWUW, veto-

PcWUW and 2-approval-PcWUW studied in this section is in P.

2. For each k ≥ 1, k-approval-PcWUW and k-approval-PcWUW-rw are in
P.

Proof. For plurality-PcWUW the optimal strategy is to set the weights of
the voters having the distinguished candidate c not on the top position to the
minimum possible value, and the weight for those having c on the first position
to the maximum value needed without exceeding the total bound on the weights.
Similar arguments show that veto-PcWUW is solvable in polynomial time.

To see that all variants of 2-approval-PcWUW are also in P, we will give a
max-flow instance that solves the problem 2-approval-PcWUW-bw-rw where
the ranges of the weights for the single votes are {0, 1} and the bound on the total
weight is B. This proof can easily be adapted for other ranges. Given a 2-approval-
PcWUW-bw-rw instance as defined above, first note that the only votes from V0
that have to be considered are those having c among the top two positions. This
set will be denoted by V ′

0 . And without loss of generality we may assume that the
bound on the total weight satisfies B ≤ |V ′

0 |, since otherwise, the optimal strategy
is to let the weights of the votes in V ′

0 be 1 and to let the weights of all other votes
be 0. Now construct a network with the set {s, s′, t} ∪ V ′

0 ∪ (C \ {c}) of vertices,
and the following edges and capacities:

1. There is an edge s → s′ with capacity B,

2. there is an edge from s to each node in V ′
0 with capacity 1,

3. there is an edge from a node L in V ′
0 to a node d in C \ {c} with capacity 1 if

and only if d is ranked among the top two positions in L (note that for each
vote in V ′

0 there is only one such candidate, since c is also ranked among the
top two positions),

4. there is an edge from each node d ∈ C \ {c} to t with capacity B +
score(C,V1)(c) − score(C,V1)(d), where score(C,V1)(e) is the 2-approval score of
any e ∈ C in vote list V1.

Now we ask if there is a maximum flow whose value is B. We note that in the
PcWUW instance, it is always optimal to choose B votes in V ′

0 and to let their
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weights be 1. The claim for 2-approval-PcWUW-rw and 2-approval-PcWUW-

bw then follows from the reductions (3.1) and (3.2) stated above. The results for
the corresponding problems without ranges for the weights and a bound on the
total weight follow from the second statement.

For the problems k-approval-PcWUW and k-approval-PcWUW-rw for k ≥ 1,
it suffices to maximize the weights of the votes in V0 that rank c among their top
k positions, and to minimize the weights of the other votes. 

In particular, it is open whether 3-approval-PcWUW-bw-rw and 3-approval-
PcWUW-bw are also in P. For k ≥ 4 however, we can show that these problems
are NP-complete. The proof is by a reduction from the NP-complete problem
Exact-Cover by 3-Sets (see, e.g., [GJ79]) which is defined as follows.

Exact Cover by 3-Sets (X3C)

Given: A set B = {b1, . . . , b3q} and a collection S = {S1, . . . , Sn} with
|Si| = 3 and Si ⊆ B, 1 ≤ i ≤ n.

Question: Does S contain an exact cover for B, i.e. a subcollection S ′ ⊆ S
such that every element of B occurs in exactly one member of S ′?

Theorem 3.6. For each k ≥ 4, k-approval-PcWUW-bw-rw and k-approval-
PcWUW-bw are NP-complete.

Proof. It is easy to see that both problems belong to NP. For proving NP-
hardness, we give a proof for k-approval-PcWUW-bw by a reduction from the
NP-complete problem X3C. Given an X3C instance (B, S) with B = {b1, . . . , b3q}
and S = {S1, . . . , Sn}, we construct an instance of k-approval-PcWUW-bw as fol-
lows. The set of candidates is C = {c, b1, . . . , b3q, b1

1, . . . , b1
3q, b2

1, . . . , b2
3q, b3

1, . . . , b3
3q},

where c is the distinguished candidate. The set V0 contains n votes of the form
c > �Si > · · · , and V1 contains q − 1 votes of the form bj > b1

j > b2
j > b3

j > · · · for
each j, 1 ≤ j ≤ 3q. The bound on the total weight of the votes in V0 is B = q.
Recall that the votes in V1 all have fixed weight one, and those of the votes in V0
are from N0. We show that S has an exact cover for B if and only if we can set
the weights of the voters in this election such that c is a winner.

Assume that there is an exact cover S ′ ⊆ S for B. By setting the weights of the
votes c > �Si > · · · to one for those q subsets Si contained in S ′, and to zero for all
other votes in V0, c is a winner of the election, as c and all bj , 1 ≤ j ≤ 3q, receive
exactly q points, whereas b1

j , b2
j , and b3

j , 1 ≤ j ≤ 3q, receive q − 1 points each.
Conversely, assume that c can be made a winner of the election by choosing the

weights of the votes in V0 appropriately. Note that the bound on the total weight
for the votes in V0 is B = q. Every bj gets q − 1 points from the votes in V1, and
c gets points only from the votes in V0. Since there are always some bj getting
points if a vote from V0 has weight one, there are at least three bj having q points
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3.5 The Possible Winner Problem with Uncertain Weights

if a vote from V0 has weight one. Hence c must get q points from the votes in V0
by setting the weight of q votes to one. Furthermore, every bj can occur only once
in the votes having weight one in V0, as otherwise c would not win. Thus, the Si

corresponding to the votes of weight one in V0 must form an exact cover for B.
By adding dummy candidates to fill the positions receiving points, this proof

can be adapted for k-approval for any fixed k > 4. NP-hardness for k-approval-
PcWUW-bw-rw, k ≥ 4, then follows from the trivial reduction (3.2) stated
above. 

Now we consider Copelandα elections and show that all PcWUW variants stud-
ied in this section are NP-complete, for each rational value of α, 0 ≤ α ≤ 1. To
do so we will use the representation of weighted majority graphs for our election.
A weighted majority graph for an election E = (C, V ) contains one node for each
candidate and there is a directed edge from candidate c to d, with weight N(c, d),
where N(c, d) is the number of voters who prefer c to d minus the number of voters
who prefer d to c. Since N(c, d) = −N(d, c) it is enough to give only one of these
two edges explicitly. Note that the parity is the same for all weights, and whether
it is odd er even depends on the parity of the number of votes. In the next proof we
apply McGarvey’s trick [McG53] to weighted majority graphs to construct a profile
corresponding to a given weighted majority graph, see [Deb87, MPS08]. Similar
as we used Lemma 3.1 in Section 3.2 to construct a profile with some given prop-
erties, we will use this trick to just specify the weighted majority graph instead of
the whole list of votes. Originally, McGarvey showed that for every unweighted
majority graph there is a particular list of preferences that results in this graph.
This trick can be extended to weighted majority graphs since adding the two votes
c > d > c3 > · · · > cm and cm > cm−1 > · · · > c3 > c > d to a list of votes
increases the weight on the edge c → d by 2 and hence decreases the weight on the
edge d → c by 2, while the weights on all other edges remain unchanged. Now we
will make use of this trick to show NP-hardness for Copelandα

-PcWUW in the
following theorem.

Theorem 3.7. For each rational α, 0 ≤ α ≤ 1, every variant of Copelandα
-

PcWUW studied in this section is NP-complete.

Proof. NP-membership is easy to see for all problem variants. We first prove
NP-hardness for Copelandα

-PcWUW, and then show how to modify the proof for
the variants of the problem. Given an X3C instance (B, S) with B = {b1, . . . , b3q}
and S = {S1, . . . , Sn}. Without loss of generality we assume that q ≥ 4. Now
we construct the following PcWUW instance for Copelandα, where the set of
candidates is B ∪ {c, d, e}. We are asked whether c can be made a winner.

The votes on C are defined as follows. V0 will encode the X3C instance and V1
will be used to implement McGarvey’s trick. V0 consists of the following n votes:
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For each j, 1 ≤ j ≤ n, there is a vote d > e > �Sj > c > · · · . V1 is the list of votes
whose weighted majority graph has the following edges:

• c → d with weight q + 1, d → e with weight q + 1, and e → c with weight
q + 1.

• For every i, 1 ≤ i ≤ 3q, d → bi and e → bi each with weight q +1, and bi → c
with weight q − 3.

• The weight on any other edge not defined above is no more than 1.

It follows that no matter what the weights of the votes in V0 are, d beats e and e
beats c in pairwise elections, and both d and e beat all candidates in B in pairwise
elections. For c to be a winner, c must beat d in the pairwise election, which means
that the total weight of the votes in V0 is no more than q. On the other hand, c
must beat all candidates in B. This happens if and only if the votes in V0 that
have positive weights correspond to an exact cover of B, and all of these votes must
have weight one. This means that Copelandα

-PcWUW is NP-hard.
For the bw and bw-rw variants, we let B = q; for the rw and bw-rw variants,

we let the range of each vote in V0 be {0, 1}. 

Furthermore Baumeister et al. [BRR+12] studied PcWUW for the voting sys-
tems ranked pairs, Bucklin, and fallback voting that are not considered here, and
obtained NP-completeness for all variants. In addition they studied the PcWUW

in the case where the weights are positive rationals instead of integers as defined
here and they obtained polynomial time algorithms for voting systems that can
be represented by linear inequalities (for example scoring rules, Bucklin, fallback
voting, and plurality with runoff).

3.6 The Possible Winner Problem under Uncertain
Voting System

In all of the above-defined problems the uncertainty is in the preferences. In this
section we study a possible winner problem where uncertainty is in the voting
system itself, Possible Winner under Uncertain Voting System. The
motivation to study this problem is that uncertainty about the voting system may
give an incentive to vote truthfully for the voters, since reporting an insincere
preference may result in a worse outcome. Consider for example the following
situation. There are three candidates a, b, and c, three sincere votes c > a > b,
two sincere votes b > a > c, and two strategic voters with the true preference
a > b > c. If the strategic voters know for sure that the election is held under
plurality, their favorite candidate a cannot win and instead of wasting their votes
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3.6 The Possible Winner Problem under Uncertain Voting System

by voting sincerely and letting c win the election the may benefit from reporting
the insincere preference b > a > c as then candidate b, who is preferred to c by
the strategic voters, wins the election. However if the election was held under
the Borda rule, candidate a wins the election with 9 points if the strategic voters
report their sincere preference, as candidate b and c have only 6 points. But if
the strategic voters report the insincere preference b > a > c candidate b wins
with 8 points in front of candidate a with 7 and candidate c with 6 points. Hence
uncertainty about the voting systems may give a strong incentive to reveal the true
preference. For a given class V of voting systems, this problem is formally defined
as follows.

V-Possible Winner under Uncertain Voting System

Given: A set of candidates C, a list of voters V consisting of linear orders
over C, and a designated candidate c ∈ C.

Question: Is there a voting system E in V such that c is a winner of the election
held under E?

As for the other possible winner problems we will use Possible Winner un-

der Uncertain Voting System as a generic term and drop the prefix V- if
appropriate. The explicit co-winner variant will be denoted by PcWUVS and the
explicit unique-winner variant by PWUVS.

Uncertainty about the voting rule that will be used to determine the winners
of an election was also studied by Elkind and Erdélyi [EE12] yet not with respect
to winner determination but with respect to manipulation. They investigate the
problem whether a successful manipulation for a single manipulator or a group of
manipulators is possible if the voting rule that will be used is not fixed in advance
but will be chosen from a given list of voting rules. They obtained NP-hardness
results as well as polynomial-time solvability.

3.6.1 Results
This section studies PWUVS and PcWUVS with respect to the family of scoring
rules, Copelandα elections, and preference-based approval voting.

Scoring Rules The first family of voting rules we consider is the family of scoring
rules. Recall that c is the designated candidate we want to make a winner in
the given m-candidate election, by specifying the values αi of the scoring vector
(α1, . . . , αm) appropriately. In the proof of Theorem 3.8 we will need the following
notions.

Definition 3.1. For an election E = (C, V ), let posi(x) denote the total number
of times candidate x ∈ C is at position i, 1 ≤ i ≤ |C|, in the list V of votes, and
for all a ∈ C \ {c}, let plus(c,i)(a) = posi(a) − posi(c).
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If the election is held under scoring vector (α1, . . . , αm), candidate c wins if and
only if for each a ∈ C \ {c}, we have ∑|C|

i=1 plus(c,i)(a) · αi ≤ 0 in the co-winner
case. For the unique-winner case, replace the zero on the right-hand side of the
inequality by one.

To prove our result for the Possible Winner problem in Section 3.2, we used
a lemma by Betzler and Dorn [BD10] (stated here as Lemma 3.1) to construct a
list of linear votes with specific properties and in Section 3.5 we used McGarvey’s
trick to construct a list of votes from a given majority graph. Similar to this, we
will now give another lemma to construct a list of votes needed in the proof of
Theorem 3.8. Specifically, in the following lemma we will show how to construct a
list of votes for given values plus(c,i)(a) under some conditions. Let M(d,i) denote
a circular block of |C| − 1 votes, where candidate d is always at position i and all
other candidates take all the remaining positions exactly once, by shifting them
in a circular way. For example, for the set C = {d, c1, . . . , cm} of candidates the
circular block M(d,m+1) looks as follows:

c1 > c2 > . . . > cm−1 > cm > d
c2 > c3 > . . . > cm > c1 > d
... ... ... ... ... ...

cm > c1 > . . . > cm−2 > cm−1 > d

Lemma 3.2. Let C be a set of m candidates, c ∈ C be a distinguished candidate,
d ∈ C be a dummy candidate, and let the values plus(c,i)(a) ∈ Z, 1 ≤ i ≤ m − 1,
for all candidates a in C \ {c, d} be given. Let �α = (α1, α2, . . . , αm) be an arbitrary
scoring vector with αm = 0. One can construct in time polynomial in m a list V
of votes satisfying that

1. every candidate a ∈ C \{c, d} has the given values plus(c,i)(a), 1 ≤ i ≤ m−1,
in election (C, V ) and

2. candidate d cannot beat c in election (C, V ).

Proof. Let m = |C| be the number of candidates. For each positive value
plus(c,i)(a), 1 ≤ i ≤ m − 1, a ∈ C \ {c, d}, we construct two types of circular blocks
of votes. The first block is of type M(d,i), except that in the vote in which candidate
a is at position m, the positions of a and d are swapped. For this block it holds that
plus(c,i)(a) = 1, and all other values plus(c,j)(b), b ∈ C \ {c, d, a}, and plus(c,j)(a),
1 ≤ j ≤ m − 1, remain unchanged. These blocks will be added with multiplicity
plus(c,i)(a). To ensure that candidate d has no chance to beat candidate c, we add
the votes of the circular block M(d,m) with multiplicity m ·plus(c,j)(a). Clearly, this
block does not affect the values plus(c,j)(b), 1 ≤ j ≤ m − 1, b ∈ C \ {c, d}.

If plus(c,i)(a) is negative, we add the block of type M(d,m), where the places of
a and d are swapped in the vote in which a is at position i, with multiplicity
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−plus(c,i)(a). The effect is that plus(c,i)(a) is decreased by 1 for each of these
blocks. Again, to ensure that candidate d will not be able to beat candidate c, we
add the circular block M(d,m) with multiplicity −plus(c,i)(a) + 1.

By construction, the values plus(c,i)(d), 1 ≤ i ≤ m − 1, are never positive, so
obviously d has no chance to beat or tie with c in the election whatever scoring
rule will be used. Since the votes can be stored as a list of binary integers repre-
senting their corresponding multiplicities, these votes can be constructed in time
polynomial in m. 

To make use of Lemma 3.2, we assume succinct representation of the election,
see the comments made in Section 3.1 for more details on succinct representation.
The following NP-hardness proof is by reduction from the NP-complete problem
Integer Knapsack (see, e.g., [GJ79]) which is defined as follows.

Integer Knapsack

Given: A finite set of elements U = {u1, . . . , un}, two mappings s, v : U →
N, and two positive integers, b and k.

Question: Is there a mapping c : U → N such that

n∑
i=1

c(ui) · s(ui) ≤ b and
n∑

i=1
c(ui) · v(ui) ≥ k?

Theorem 3.8. Let S be the class of scoring rules with m ≥ 4 candidates that are
defined by a scoring vector of the form �α = (α1, . . . , αm−4, x1, x2, x3, 0), with xi = 1
for at least one i ∈ {1, 2, 3}. S-PcWUVS and S-PWUVS are NP-complete
(assuming succinct representation).

Proof. Membership in NP is obvious, and the proof of NP-hardness will be by
a reduction from the NP-complete problem Integer Knapsack.

We first focus on the co-winner case and then show how to transfer the proof to
the unique-winner case. Let (U, s, v, b, k) be an instance of Integer Knapsack

with U = {u1, . . . , un} and let c : U → N be a mapping. Then it holds that

n∑
i=1

c(ui) · s(ui) ≤ b
n∑

i=1
c(ui) · v(ui) ≥ k

(3.3)
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⇔
(

s(u1) s(u2) · · · s(un)
−v(u1) −v(u2) · · · −v(un)

) ⎛⎜⎜⎜⎜⎝
c(u1)
c(u2)

...
c(un)

⎞⎟⎟⎟⎟⎠ ≤
(

b
−k

)

⇔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−b′

k′

nb
A (n − 1)b

...
b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c′(u1)
c′(u2)

...
c′(un)

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ≤

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.4)

with

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s(u1) s(u2) · · · s(un)
−v(u1) −v(u2) · · · −v(un)

−1 0 · · · 0
0 −1 · · · 0
...
0 · · · 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Z(n+2)×n,

c′(ui) = c(ui) + (n − i + 1)b, 1 ≤ i ≤ n,

b′ = b +
n∑

i=1
b · s(ui) · (n − i + 1), and

k′ = k +
n∑

i=1
k · v(ui) · (n − i + 1).

The last n rows of the matrix ensure that c′(ui) ≥ (n − i + 1)b, 1 ≤ i ≤ n, and
so there are no new solutions added for which the values c(ui) may be negative.
Furthermore, since c(ui) ≤ b, it is now ensured that c′(u1) ≥ c′(u2) ≥ · · · ≥ c(un) ≥
b. Hence it still holds that c is a solution for the given Integer Knapsack

instance if and only if c′ is a solution for (3.4).
We will now build an election E = (C, V ) with candidate set C =

{c, d, e, f, g1, . . . , gn}, where c is the distinguished candidate and d is a dummy
candidate who cannot beat c in the election whatever scoring rule will be used.
The list of voters will be built using Lemma 3.2 according to the matrix in (3.4).
The n + 2 rows in the matrix correspond to the candidates e, f , and g1, . . . , gn.
Since the matrix has only n + 1 columns, the positions n + 2 and n + 3 in the
votes will have no effect on the outcome of the election, and thus the correspond-
ing plus(c,i)(a) values, n + 2 ≤ i ≤ n + 3, can be set to zero for all candidates
a ∈ {e, f, g1, . . . , gn}. The corresponding values in the scoring vector can be set to
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either zero or one, respecting the conditions for a valid scoring vector. Hence, the
votes in V have to fulfill the following properties:

plus(c,i)(e) =

⎧⎪⎪⎨⎪⎪⎩
s(ui) for 1 ≤ i ≤ n

−b′ for i = n + 1
0 for n + 2 ≤ i ≤ n + 3,

plus(c,i)(f) =

⎧⎪⎪⎨⎪⎪⎩
−v(ui) for 1 ≤ i ≤ n

k′ for i = n + 1
0 for n + 2 ≤ i ≤ n + 3,

plus(c,i)(gj) =

⎧⎪⎪⎨⎪⎪⎩
−1 for 1 ≤ i ≤ n, i = j

(n − i + 1)b for i = n + 1, 1 ≤ j ≤ n

0 for 1 ≤ i ≤ n + 3, 1 ≤ j ≤ n, i �= j.

According to Lemma 3.2, these votes can be constructed in polynomial time such
that the dummy candidate d has no influence on c being a winner of the election or
not, whatever scoring rule of type �α = {α1, . . . , αn, 1, αn+2, αn+3, 0) will be used.

Since the plus(c,i)(a) values assigned to the candidates a ∈ C \ {c, d} are set
according to the matrix in (3.4), it holds that c can be a winner in election E =
(C, V ) by choosing a scoring rule of the form �α = {α1, . . . , αn, 1, αn+2, αn+3, 0) if
and only if for each a ∈ C \ {c}, we have

n∑
i=1

plus(c,i)(a) · c(ui) + plus(c,n+1)(a) ≤ 0.

As described above, the values in the scoring vector for positions n + 2 and n + 3,
have no effect on the outcome of the election, hence by switching rows in the
matrix we can extend the set of possible scoring rules to scoring rules of the form
�α = (c(u1), . . . , c(un), x1, x2, x3, 0) with xi = 1 for at least one i ∈ {1, 2, 3}. Hence
c can be made a winner of the election E = (C, V ) if and only if there is a solution
to (3.4). Since we have shown above that there is a solution to (3.3) if and only
if there is a solution to (3.4), it holds that there is a solution c to our Integer

Knapsack instance if and only if there is a scoring rule �α, of the form described
above, under which c wins the election E = (C, V ).

To see that this reduction also settles the unique-winner case, note that (3.4) is
equivalent to the following inequality:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−b′ + 1
k′ + 1
nb + 1

A (n − 1)b + 1
...

b + 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c′(u1)
c′(u2)

...
c′(un)

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ≤

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
...
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.5)

51



3 Possible Winner

The election we need to construct has the same candidate set as above and the
voters are constructed according to the values plus(c,n+1)(a) for a ∈ C \ {c, d} in
the matrix of (3.5). Thus, c is the unique winner of the modified election if and
only if for each a ∈ C \ {c}, we have

n∑
i=1

plus(c,i)(a) · c(ui) + plus(c,n+1)(a) ≤ 1.

By a similar argument as above, there is a scoring rule of the form �α =
(α1, . . . , αn, x1, x2, x3, 0) with xi = 1 for at least one i ∈ {1, 2, 3} in which c wins
the election if and only if there is a solution c for the given Integer Knapsack

instance. 

Copelandα Elections In this paragraph we consider the Possible Winner

under Uncertain Voting System problem with respect to the family of
Copelandα elections. Recall that the parameter α is a rational number from the
interval [0, 1] that specifies how ties are rewarded in the pairwise comparisons be-
tween candidates. In contrast to the considered subclass of scoring rules, where it
is NP-hard to determine whether there exists a scoring rule from the given class
that makes a distinguished candidate win, we show that the problem is solvable
in polynomial time when the voting rule is chosen from the family of Copelandα

elections.

Theorem 3.9. C-PcWUVS and C-PWUVS are polynomial-time solvable for the
family of Copelandα elections:

C = {Copelandα | α is a rational number in [0, 1]}.

Proof. To decide whether a distinguished candidate c can be made a winner of
the election by choosing the parameter α after all votes have been cast, we do the
following. In the co-winner case, for each d ∈ C \ {c}, compute

f(d) =

⎧⎨⎩
win(c)−win(d)
tie(c)−tie(d) if tie(c) �= tie(d)

win(c) − win(d) otherwise.

If f(d) ≥ 0 for all d ∈ C, c can be made a winner of the election by setting
α = min

d∈C
{f(d), 1}, and otherwise c cannot be made a winner. So C-PcWUVS is

in P.
In the unique-winner case, for c to be the unique winner of the election, it must

hold that f(d) > 0, for all d ∈ C \ {c}, and α is set to a value greater than
min
d∈C

{f(d)} if this value is less than one, or else to one. Otherwise c cannot be
made the unique winner of the election. So C-PWUVS is in P. 
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Preference-Based Approval Voting In approval voting the situation is a bit
different, since approval voting is not a class of voting systems, and the voters
usually do not report linear preferences but approval vectors. But in preference-
based approval voting, the voters report a strict preference order along with an
approval line. If we assume that the approval lines are not set by the voters (who
thus only report their linear orders) but are set by the voting system itself (after
all votes have been cast), we obtain (for m candidates and n voters) a class Am,n

of (m − 1)n voting systems. The winners in each such system are the candidates
with the highest number of approvals. Note that these voting systems are not very
natural (as they do not let the voters themselves choose their approval strategies)
and do not possess generally desirable social-choice properties (e.g., the systems
in Am,n are not even anonymous, as changing the order of votes may result in a
different outcome).

In this setting, given an election where voters report their preference orders,
setting the approval lines afterwards corresponds to choosing a system from Am,n.
It is easy to see that PcWUVS and PWUVS are polynomial-time solvable for this
class. To make the distinguished candidate c win the election, choose the system
that sets the approval line in each vote that does not rank c at the last position right
behind c, and in the votes that do rank c last right behind the top candidate. If c
is not a winner (unique winner) of this election, c cannot win (be a unique winner
of) the election whatever system from the class is chosen. Thus PcWUVS and
PWUVS are polynomial-time solvable for this class of preference-based approval
voting systems.

Elkind et al. [EFS09] study the related problem of “mixed bribery”, which is a
variant of Swap Bribery defined for SP-AV, which is also a voting system that
combines preference based voting and approval voting. Here the briber may ask the
voters to swap adjacent candidates and/or to move the approval line. In contrast
to our result, they showed NP-hardness even if the bribery is only allowed to move
the approval line.

3.7 Related Problems

The relation of Possible Winner and Manipulation has already been elab-
orated in Section 3.1, by showing that UCM is a special case of PW and
in Section 3.4 the connections to various Possible Winner with Dou-

bly/Top/Bottom Truncated Ballots problems have been studied. The
Possible Winner with respect to the Addition of New Alternatives

problem studied in Section 3.3 problem in turn is a special case of the original
Possible Winner problem. Another problem related to Possible Winner is
the Swap Bribery problem defined by Elkind et al. [EFS09].
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3 Possible Winner

E-Swap Bribery

Given: A set of candidates C, a list of votes V that are linear orders over
C, a list of swap-bribery price functions π, a budget B ∈ N, and a
designated candidate c ∈ C

Question: Is there a sequence of admissible swaps such that the sum of the
prices is lower than B such that c is a winner of the election under
voting system E?

A swap-bribery price function πi for voter vi ∈ V indicates for each pair (ci, cj),
ci, cj ∈ C, the price the briber has to pay for a swap of the given candidates in
his vote. A swap is called admissible, if the considered candidates are adjacent in
the vote. To swap candidates that are further away the briber has to execute a
sequence of admissible swaps.

Elkind et al. [EFS09] show that Possible Winner is a special case of Swap

Bribery. Summing up, this leads to the following hierarchy of problems shown
in Figure 3.3, where an arrow from A to B means that there is a polynomial-time
many-one reduction from A to B.

Swap Bribery

PW

PWDTB

PWTTB PWBTB

UCM

PWNA

Figure 3.3: A hierarchy of possible winner and related problems

Having these reductions at hand, it immediately follows that all NP-hardness
results are inherited upwards, and all polynomial-time algorithms are inherited
downwards. For example the NP-hardness for Swap Bribery for the pure scoring
rule with the vector (2, 1, . . . , 1, 0) follows immediately from the NP-hardness of
PW for this scoring rule, showed in Section 3.2.

Another problem that is related to Possible Winner with respect to the

Addition of new Alternatives is the problem of Constructive Control

by Adding Candidates, (CCAC for short), see Bartholdi et al. [BTT92] and
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Hemaspaandra et al. [HHR07]. Here a set C of candidates and a set D of spoiler
candidates are given, along with a list of votes V that are linear orders over C ∪ D
and a designated candidate c ∈ C. The question is whether there is a subset D′ of
the spoiler candidates that can be added into the election such that c is a winner
of the election (C ∪D′, V ). In contrast to the PcWNA problem not all of the new
candidates must be added to the votes, and the positions of the new candidates
are fixed in advance due to the given linear orders over C ∪ D.

Also related to PcWNA but yet different is cloning in elections, see Elkind et
al. [EFS10]. In cloning problems the question is whether the victory of a distin-
guished candidate can be achieved by cloning candidates, where all clones of one
existing candidate will have subsequent positions in the votes. Hence the new
candidates cannot be inserted at any position in the votes as it is the case for
PcWNA.

The possible winner variants where the voters’ weights are unknown are not
directly related to the above mentioned problems. However, in Section 3.5 we
showed that one variant of Possible Winner with Uncertain Weights is
related to Constructive Control by Adding Voters.

In the last possible winner problem, considered in Section 3.6, the voting sys-
tem used to determine the winner is initially unknown, and there is no obvious
connection to the other possible winner problems studied in this chapter. But as
mentioned earlier a specific variant of the Swap Bribery problem is related to our
study of PWUVS with respect to preference-based approval elections. Further-
more, Elkind and Erdélyi [EE12] study manipulation problems where the voting
rule is unknown.

3.8 Summary
This chapter concludes with a short summary of the obtained results. Table 3.4
provides an overview of all results that are new to this chapter.

In Section 3.2 we completed the dichotomy result from Betzler and Dorn [BD10]
by showing that Possible Winner is NP-hard for the pure scoring rule with
the vector (2, 1, . . . , 1, 0). The Possible Winner problem is NP-hard for all
pure scoring rules except plurality and veto. Chevaleyre et al. [CLMM10] raised
the question if such a dichotomy result could also be obtained for the related
PcWNA problem. Until now the complexity is not yet completely settled and the
question remains open. In Section 3.3 we made one step further by showing NP-
completeness for PcWNA for the class of pure scoring rules defined by the vector
(α1, α2, 1, 0, . . . , 0) if one new candidate is added. Furthermore, we started to study
the weighted version of PcWNA, and obtained NP-completeness for k-approval
elections for each k ≥ 1, if one new candidate is added. In the case of plurality,
NP-completeness still holds if there are only two initial and one new candidate.
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3 Possible Winner

Section 3.4 introduces the Possible Winner with Doubly/Top/Bottom

Truncated Ballots problems and provides a polynomial time algorithm for
k-approval elections, for each k ≥ 1.

The Possible Winner with Uncertain Weights problem is investigated
in several variants in Section 3.5. It was shown that for plurality, veto, and 2-
approval elections all studied variants are solvable in polynomial time. The variants
PcWUW and PcWUW-rw are polynomial-time solvable even for k-approval for
each k ≥ 1, whereas PcWUW-bw-rw and PcWUW-bw are NP-complete for
k-approval for each k ≥ 4. However, the complexity of PcWUW-bw-rw and
PcWUW-bw for 3-approval remains open. For Copelandα elections all variants
of PcWUW are shown to be NP-complete for each rational value of α, 0 ≤ α ≤ 1.

Finally, Section 3.6 deals with the Possible Winner under Uncertain

Voting System problem. This problem is NP-complete for the subclass of
scoring rules for an m-candidate election defined through vectors of the form
(α1, . . . , αm−4, x1, x2, x3, 0), where xi = 1 for at least one i ∈ {1, 2, 3}, and m ≥ 4,
if succinct representation is assumed. For the class of Copelandα, 0 ≤ α ≤ 1, and
preference-based approval voting polynomial time algorithms are provided.

As a future research direction we propose to tackle the problem of finding a
dichotomy theorem for the class of pure scoring rules for the unweighted version
of the Coalitional Manipulation problem and the PcWNA problem. The
study of the weighted version of the PcWNA problem has been initiated, but there
are many voting rules for which the complexity is still unknown. Furthermore for
most problems we only studied the co-winner case. Do the results carry over to
the unique-winner variants or are they different? For PcWNA we only showed
NP-hardness in the case where one new candidate is to be added. Chevaleyre et
al. [CLMM10] remarked that the problem becomes easy if an unbounded number of
candidates is to be added. But what about adding more than one new candidate?

We introduced PcWUVS and PWUVS, where the uncertainty does not lie in
the candidates and/or preferences but in the voting system itself. We obtained
results for a subclass of scoring rules, Copelandα elections, and preference-based
approval voting. Studying this problem for other natural classes of pure scoring
rules would be very interesting. For example, for all voting systems sharing some
important social choice theoretic property, e.g., the class of all systems that respect
Condorcet winners.
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Table 3.4: Overview of results for various possible winner problems

Problem Type Voting System Result
PW, PcW (2, 1, . . . , 1, 0) NP-comp., Thm. 3.1

PcWNA (α1, α2, 1, 0, . . . , 0), NP-comp., Thm. 3.2
α1 > α2 > 1, |C ′| = 1

plurality, |C| = 2, |C ′| = 1, NP-comp., Thm. 3.3
weighted voters

2-approval, |C ′| = 1, NP-comp., Thm. 3.4
weighted voters

k-approval, k ≥ 3, |C ′| = 1, NP-comp., Cor. 3.1
weighted voters

PcWDTB k-approval, k ≥ 1 in P, Thm. 3.5
PcWTTB k-approval, k ≥ 1 in P, Thm. 3.5
PcWBTB k-approval, k ≥ 1 in P, Thm. 3.5

PcWUW plurality, veto, k-approval, k ≥ 1 in P, Prop. 3.2
Copelandα NP-comp., Thm. 3.7

PcWUW-bw plurality, veto, 2-approval in P, Prop. 3.2
k-approval, k ≥ 4 NP-comp., Thm. 3.6
Copelandα NP-comp., Thm. 3.7

PcWUW-rw plurality, veto, k-approval, k ≥ 1 in P, Prop. 3.2
Copelandα NP-comp., Thm. 3.7

PcWUW-bw-rw plurality, veto, 2-approval in P, Prop. 3.2
k-approval, k ≥ 4 NP-comp., Thm. 3.6
Copelandα NP-comp., Thm. 3.7

PcWUVS, (α1, . . . , αm−4, x1, x2, x3, 0), NP-comp., Thm. 3.8
PWUVS ∃ i ∈ {1, 2, 3} such that xi = 1

Copelandα in P, Thm. 3.9
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4 Upward and Downward Covering
In this chapter we will introduce the solution concepts based on the upward and
downward covering relations and study the computational complexity of several
problems related to these solution concepts. The results have been published
in [BBF+10] and are accepted for publication in [BBF+12].

The computational complexity of problems related to solution concepts has been
addressed recently [Woe03, Alo06, Con06, BFH09, BFHM10, BF08]. Considering
upward and downward covering Brandt and Fischer [BF08] showed that it is NP-
hard to decide whether a given alternative is contained in some minimal upward
covering set and whether a given alternative is contained in some minimal down-
ward covering set. The upper bound was left open in both cases. We improve
the lower bound to the θp

2 level of the polynomial hierarchy, and provide an upper
bound of Σp

2. In addition to these two problems we will also introduce and study
other problems related to minimal and minimum-size upward and downward cov-
ering sets. Brandt and Fischer [BF08] also studied bidirectional covering sets and
have shown that they are computable in polynomial time, whereas our results im-
ply that neither minimal upward covering sets nor minimal downward covering sets
(even when guaranteed to exist) can be found in polynomial time, unless P = NP.
Even though the corresponding decision problem for minimal upward covering sets
is trivially in P, since minimal upward covering sets are guaranteed to exist.

Parts of our results are obtained by applying Wagner’s method [Wag87], which
has also been applied in various other contexts (see, e.g., [Wag87, HHR97a, HR98,
HW02, HRS06]). But to the best of our knowledge we apply this method for the
first time to problems defined in terms of minimality rather than minimum-size.

4.1 Definitions and Notation
We will study the computational complexity of several problems related to the
minimal upward covering set and to the minimal downward covering set. Before the
solution concepts of minimal upward and downward covering sets can be introduced
some further definitions are required.

For a finite set A of alternatives, we denote by the asymmetric and irreflexive
relation � ⊆ A × A the dominance relation on A. Transitivity or completeness of
the relation is not needed in general. We say that an alternative x dominates an
alternative y if (x, y) ∈ � (or equivalently x � y), which means that alternative
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x is strictly preferred to alternative y. In the case of the majority relation, x
dominates y if a strict majority prefers x to y. As mentioned in Chapter 2.2 a
common representation of a dominance relation � on a set A of alternatives is the
dominance graph denoted by (A, �), where the edges are the alternatives of A, and
for each x, y ∈ A with x � y there is a directed edge from x to y. The definition of
minimal upward and downward covering sets relies on the upward and downward
covering relation and on the uncovered set.

Definition 4.1 (Upward and Downward Covering Relation). Let A be a finite set
of alternatives, let B ⊆ A, and let � ⊆ A × A be a dominance relation on A. For
any two alternatives x and y in B, define the following covering relations (see,
e.g., [Fis77, Mil80, Bor83]):

• x upward covers y in B, denoted by x CB
u y, if x � y and for all z ∈ B, z � x

implies z � y, and

• x downward covers y in B, denoted by x CB
d y, if x � y and for all z ∈ B,

y � z implies x � z.

When the subset B is clear from the context, we simply write x Cu y and x Cd y
rather then x CB

u y and x CB
d y and omit mentioning “in B” explicitly.

Definition 4.2 (Uncovered Set). Let A be a set of alternatives, let B ⊆ A be any
subset, let � be a dominance relation on A, and let C be a covering relation on A
based on �. The uncovered set of B with respect to C is defined as

UCC(B) = {x ∈ B | y C x for no y ∈ B}.

For the sake of readability we will denote the upward uncovered set of B by
UCu(B), and the downward uncovered set of B by UCd(B).

Figure 4.1 shows the same graph as Figure 2.1 in Chapter 2.2. In this example b
upward covers a since the only alternative which dominates b is d, and d also domi-
nates a. Furthermore d downward covers b since a is the only alternative dominated
by b and is also dominated by d. The upward, respectively downward, uncovered
set contains all alternatives which are not upward, respectively downward covered
by another alternatives. This implies that in our example, the upward uncovered
set is UCu(A) = {b, c, d} and the downward uncovered set is UCd(A) = {a, c, d}.

Since the upward and the downward covering relation are transitive, the corre-
sponding uncovered sets are nonempty for every nonempty set of alternatives.

The solution concepts we are interested in are minimal covering sets based on
the upward and downward covering relation. Such minimal covering sets have two
stability properties, external and internal stability. Internal stability means that
there is no reason against any alternative in the minimal covering set to exclude
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a b

c d

Figure 4.1: Dominance graph (A, �)

it, and external stability means that there is no reason to include any alternative
outside the set. The stability criteria for the minimal upward and downward
covering sets are defined through the corresponding uncovered sets.

Definition 4.3 (Minimal Covering Set). Let A be a set of alternatives, let � be a
dominance relation on A, and let C be a covering relation based on �. A subset
B ⊆ A is a covering set for A under C if the following two properties hold:

• Internal stability: UCC(B) = B.

• External stability: For all x ∈ A \ B, x �∈ UCC(B ∪ {x}).

A covering set M for A under C is said to be (inclusion-)minimal if no M ′ ⊂ M
is a covering set for A under C.

Minimal upward covering sets are guaranteed to exist, and every upward uncov-
ered set contains one or more minimal upward covering sets. In contrast, minimal
downward covering sets may not always exist [BF08]. In tournaments (i.e., com-
plete dominance graphs) the set of alternatives dominating a given alternative x
are exactly those alternatives that are not dominated by x, hence both notions
of covering coincide in this case. For the graph shown in Figure 4.1 the unique
minimal upward covering set is {b, c}, and the unique minimal downward covering
set is {a, c, d}.

Brandt and Fischer [BF08] considered the inclusion-minimal upward and down-
ward covering sets, we also consider minimum-size upward and downward cover-
ing sets. Obviously every minimum-size upward, respectively downward, cover-
ing set is also an inclusion-minimal upward, respectively downward, covering set.
Many classical problems in complexity theory are also defined through cardinality,
like maximum-size independent set, or minimum-size dominating set for example.
Some standard techniques used to study the complexity of problems where min-
imality is defined through cardinality are not directly applicable to set-inclusion
minimal problems. To the best of our knowledge we are the first to apply Wagner’s
technique (see [Wag87]) to set-inclusion minimal problems. Regarding the results,
for some of our problems we obtain different complexities for the minimum-size
and inclusion-minimal variants of the problem.

Now we are ready to formally define the different problems we will study for
upward and downward covering sets. The problem of deciding whether a given
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alternative is contained in some minimal upward or some minimal downward cov-
ering set was considered in [BF08]. For minimal upward covering sets, the problem
is formally defined as follows.

MCu-Member

Given: A set A of alternatives, a dominance relation � on A, and a distin-
guished element d ∈ A.

Question: Is d contained in some minimal upward covering set for A?

The corresponding problem MCd-Member is defined analogously for minimal
downward covering sets. In addition to this problem we will also study the com-
plexity of five further problems, which we will now define for minimal upward
covering sets. The first one is MCu-Member-All and asks if a given alternative
is contained in all minimal upward covering sets.

MCu-Member-All

Given: A set A of alternatives, a dominance relation � on A, and a distin-
guished element d ∈ A.

Question: Is d contained in all minimal upward covering set for A?

MCu-Size asks if there is a minimal upward covering set of at most a given size.

MCu-Size

Given: A set A of alternatives, a dominance relation � on A, and a positive
integer k.

Question: Does there exist some minimal upward covering set for A containing
at most k alternatives?

The problem of deciding whether there is a unique minimal upward covering set
is called MCu-Unique.

MCu-Unique

Given: A set A of alternatives and a dominance relation � on A.
Question: Does there exist a unique minimal upward covering set for A?

The last decision problem we consider is MCu-Test, the problem of deciding
whether a given subset of the alternatives is a minimal upward covering set.

MCu-Test

Given: A set A of alternatives, a dominance relation � on A, and a subset
M ⊆ A.

Question: Is M a minimal upward covering set for A?
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In addition to the above defined decision problems we will also consider the
search problem MCu-Find.

MCu-Find

Given: A set A of alternatives and a dominance relation � on A.
Find: A minimal upward covering set for A.

The corresponding problems for downward covering sets are defined analo-
gously and will be denoted by MCd-Member-All, MCd-Size, MCd-Unique,
MCd-Test, and MCd-Find. In addition to the problems defined for inclusion-
minimal upward and downward covering sets we will also study these problems
for minimum-size upward and downward covering sets. The minimum-size upward
covering set problems will be denoted by MSCu-Member, MSCu-Member-All,
MSCu-Size, MSCu-Unique, MSCu-Test, and MSCu-Find, and the minimum-
size downward covering set problems by MSCd-Member, MSCd-Member-All,
MSCd-Size, MSCd-Unique, MSCd-Test, and MSCd-Find. Thus we study 24
different problems in total. We will not only show hardness and completeness for
NP and coNP, but also for the class Θp

2. To obtain the Θp
2-hardness results we will

apply Wagner’s Lemma, which is stated here as Lemma 4.1.

Lemma 4.1. Let S be some NP-complete problem and let T be any set. If there
exists a polynomial-time computable function f such that, for all m ≥ 1 and all
strings x1, x2, . . . , x2m satisfying that if xj ∈ S then xj−1 ∈ S, 1 < j ≤ 2m, we
have

|{i | xi ∈ S}| is odd ⇔ f(x1, x2, . . . , xm) ∈ T, (4.1)

then T is Θp
2-hard.

In addition Wagner [Wag87] proved appropriate analogs of Lemma 4.1 for each
level of the boolean hierarchy. In particular, the analogous criterion for DP-
hardness is obtained by using the wording of Lemma 4.1 except with the value
of m = 1 being fixed. Note that DP is the second level of the boolean hierarchy
over NP (see Cai et al. [CGH+88, CGH+89]).

The sufficient condition provided by Wagner for proving Θp
2-hardness was use-

ful in various other contexts. For example, the problem of testing whether
the size of a maximum clique in a given graph is an odd number, the prob-
lem of deciding whether two given graphs have minimum vertex covers of the
same size, and the problem of recognizing those graphs for which certain heuris-
tics yield good approximations for the size of a maximum independent set or
for the size of a minimum vertex cover each are known to be complete for Θp

2
(see [Wag87, HR98, HRS06]). Hemaspaandra and Wechsung [HW02] proved that
the minimization problem for boolean formulas is Θp

2-hard. In the field of compu-
tational social choice, the winner problems for Dodgson [Dod76], Young [You77],
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and Kemeny [Kem59] elections have been shown to be Θp
2-complete in the

nonunique-winner model [HHR97a, RSV03, HSV05], and also in the unique-winner
model [HHR08].

In contrast with those previous results, however, one subtlety in our con-
struction is due to the fact that we consider not only minimum-size but also
(inclusion-)minimal covering sets. To the best of our knowledge, our Construc-
tion 4.2 and Construction 4.4, which will be presented in Chapter 4.3 and Chap-
ter 4.4, for the first time apply Wagner’s technique [Wag87] to problems defined
in terms of minimality/maximality rather than minimum/maximum size of a solu-
tion. For example, recall Wagner’s Θp

2-completeness result for testing whether the
size of a maximum clique in a given graph is an odd number [Wag87]. One key
ingredient in his proof is to define an associative operation on graphs, �	, such that
for any two graphs G and H , the size of a maximum clique in G �	 H equals the
sum of the sizes of a maximum clique in G and one in H . This operation is quite
simple: Just connect every vertex of G with every vertex of H . In contrast, since
minimality for minimal upward covering sets is defined in terms of set inclusion,
it is not at all obvious how to define a similarly simple operation on dominance
graphs such that the minimal upward covering sets in the given graphs are related
to the minimal upward covering sets in the connected graph in a similarly useful
way.

4.2 Results and Discussion
Results: Brandt and Fischer [BF08] proved that it is NP-hard to decide whether
a given alternative is contained in some minimal unidirectional covering set. Using
the notation of this chapter, their results state that the problems MCu-Member

and MCd-Member are NP-hard. The question of whether these two problems are
NP-complete or of higher complexity was left open in [BF08]. Our contribution is

1. to raise Brandt and Fischer’s NP-hardness lower bounds for MCu-Member

and MCd-Member to Θp
2-hardness and to provide (simple) Σp

2 upper bounds
for these problems, and

2. to extend the techniques we developed to apply also to the 22 other covering
set problems defined in Section 4.1, in particular to the search problems.

Our results are stated in the following theorem.

Theorem 4.1. The complexity of the covering set problems defined in Section 4.1
is as shown in Table 4.1 for the upward covering set problems and as shown in
Table 4.2 for the downward covering set problems.
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Problem Type MCu MSCu

Size NP-complete NP-complete
Member Θp

2-hard and in Σp
2 Θp

2-complete
Member-All coNP-complete [BF08] Θp

2-complete
Unique coNP-hard and in Σp

2 coNP-hard and in Θp
2

Test coNP-complete coNP-complete
Find not in polynomial time not in polynomial time

unless P = NP unless P = NP

Table 4.1: Results for minimal and minimum-size upward covering set problems.
As indicated, one result is due to Brandt and Fischer [BF08]; all other
results will be proven in this thesis.

Problem Type MCd MSCd

Size NP-complete NP-complete
Member Θp

2-hard and in Σp
2 coNP-hard and in Θp

2

Member-All coNP-complete [BF08] coNP-hard and in Θp
2

Unique coNP-hard and in Σp
2 coNP-hard and in Θp

2

Test coNP-complete coNP-complete
Find not in polynomial time not in polynomial time

unless P = NP unless P = NP
(follows from [BF08])

Table 4.2: Results for minimal and minimum-size downward covering set problems.
As indicated, two results are due to Brandt and Fischer [BF08]; all other
results will be proven in this thesis.
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The detailed proofs of the single results collected in Theorem 4.1 will be pre-
sented in Section 4.3.2 for the upward covering set problems and in Section 4.4.2
for the downward covering set problems.

Discussion: We consider the problems of finding minimal and minimum-size up-
ward and downward covering sets (MCu-Find, MCd-Find, MSCu-Find, and
MSCd-Find) to be particularly important and natural.

Regarding upward covering sets, we stress that our results (see Theorem 4.1)
that, assuming P �= NP, MCu-Find and MSCu-Find are hard to compute does
not seem to follow directly from the NP-hardness of MCu-Member in any obvi-
ous way. The decision version of MCu-Find is: Given a dominance graph, does
it contain a minimal upward covering set? However, this question has always an
affirmative answer, so the decision version of MCu-Find is trivially in P. Note
also that MCu-Find can be reduced in a “disjunctive truth-table” fashion to the
search version of MCu-Member (“Given a dominance graph (A, �) and an alter-
native d ∈ A, find some minimal upward covering set for A that contains d”) by
asking this oracle set about all alternatives in parallel.1 So MCu-Find is no harder
(with respect to disjunctive truth-table reductions) than that problem. The con-
verse, however, is not at all obvious. Brandt and Fischer’s result only implies the
hardness of finding an alternative that is contained in all minimal upward cover-
ing sets [BF08]. Our reduction that raises the lower bound of MCu-Member from
NP-hardness to Θp

2-hardness, however, also allows us to prove that MCu-Find and
MSCu-Find cannot be solved in polynomial time unless P = NP.

Regarding downward covering sets, the result that MCd-Find cannot be com-
puted in polynomial time unless P = NP is an immediate consequence of Brandt
and Fischer’s result that it is NP-complete to decide whether there exists a min-
imal downward covering set [BF08, Thm. 9]. We provide an alternative proof
based on our reduction showing that MCd-Member is Θp

2-hard (see the proof
of Theorem 4.16). In contrast to Brandt and Fischer’s proof, our proof shows
that MCd-Find is hard to compute even when the existence of a (minimal)
downward covering set is guaranteed. As indicated in Table 4.2, coNP-hardness
of MCu-Member-All and MCd-Member-All was also shown previously by
Brandt and Fischer [BF08].

As mentioned above, the two problems MCu-Member and MCd-Member were
already known to be NP-hard [BF08] and are here shown to be even Θp

2-hard. One
1This type of reduction was introduced by Ladner et al. [LLS75]. Informally stated, a disjunctive

truth-table reduction between two decision problems X and Y computes, given an instance x,
in polynomial time k queries y1, y2, . . . , yk such that x ∈ X if and only if yi ∈ Y for at least
one i, 1 ≤ i ≤ k. This reduction can be adapted straightforwardly to function problems F
and G: F disjunctively truth-table reduces to G if, given an instance x, in polynomial time we
can compute k queries y1, y2, . . . , yk such that F (x) can be computed from G(yi) for at least
one i, 1 ≤ i ≤ k.
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4.3 Minimal and Minimum-Size Upward Covering Sets

may naturally wonder whether raising their (or any problem’s) lower bound from
NP-hardness to Θp

2-hardness gives us any more insight into the problem’s inherent
computational complexity. After all, P = NP if and only if P = Θp

2. However, this
question is a bit more subtle than that and has been discussed carefully by Hema-
spaandra et al. [HHR97b]. They make the case that the answer to this question cru-
cially depends on what one considers to be the most natural computational model.
In particular, they argue that raising NP-hardness to Θp

2-hardness potentially (i.e.,
unless longstanding open problems regarding the separation of the corresponding
complexity classes could be solved) is an improvement in terms of randomized
polynomial time and in terms of unambiguous polynomial time [HHR97b].

4.3 Minimal and Minimum-Size Upward Covering
Sets

We will first focus on problems related to minimal and minimum-size upward
covering sets. In Section 4.3.1 we provide the constructions that will be used in
Section 4.3.2 to proof our results for minimal and minimum-size upward covering
set problems.

4.3.1 Constructions for Minimal and Minimum-Size Upward
Covering Sets

The results for the different problems are all obtained by the constructions pre-
sented in this chapter. Since the new constructions relies on the proof of the
following theorem by Brandt and Fischer [BF08], we first give a proof sketch of
their theorem.

Theorem 4.2 (Brandt and Fischer [BF08]). Deciding whether a designated alter-
native is contained in some minimal upward covering set for a given dominance
graph is NP-hard. That is, MCu-Member is NP-hard.

Proof Sketch. To show NP-hardness, a reduction from the NP-complete
boolean satisfiability problem, SAT, is given (for a formal definition of this prob-
lem, see Chapter 2.4). Based on a boolean formula in conjunctive normal form,
ϕ(v1, v2, . . . , vn) = c1 ∧c2 ∧· · ·∧cr, over the set V = {v1, v2, . . . , vn} of variables, we
construct an instance of MCu-Member with the dominance graph (A, �) and the
distinguished alternative d, whose membership in some minimal upward covering
set for A is to be decided. The set of alternatives is

A = {xi, xi, x′
i, x′

i | vi ∈ V } ∪ {yj | cj is a clause in ϕ} ∪ {d},

and the dominance relation is defined by:
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4 Upward and Downward Covering

• For each i, 1 ≤ i ≤ n there is a cycle xi � xi � x′
i � x′

i � xi;

• if variable vi occurs in clause cj as a positive literal, then xi � yj;

• if variable vi occurs in clause cj as a negative literal, then xi � yj ; and

• for each j, 1 ≤ j ≤ r, we have yj � d.

Then it holds that there is a satisfying assignment for the boolean formula ϕ
if and only if there is a minimal upward covering set for (A, �) which contains
alternative d.

We will not give a formal proof, but rather give an example for the reduction.
Consider the boolean formula (v1∨¬v2)∧(v1 ∨¬v2 ∨¬v3). The resulting dominance
graph with the set of alternatives A = {xi, xi, x′

i, x′
i |1 ≤ i ≤ 3}∪{y1, y2}∪{d} and

the dominance relation � is shown in Figure 4.2. A satisfying truth assignment
for ϕ is obtained for example by setting v1, v2, and v3 to false. The corresponding
minimal upward covering set for A contains the alternatives {x1, x′

1, x2, x′
2, x3, x′

3}∪
{d}, and as desired, the alternative d is contained in this minimal upward covering
set. 

x1 x1

x′
1 x′

1

x2 x2

x′
2 x′

2

x3 x3

x′
3 x′

3

y1 y2

d

Figure 4.2: Dominance graph (A, �) for Theorem 4.2 resulting from the boolean
formula (v1 ∨ ¬v2) ∧ (v1 ∨ ¬v2 ∨ ¬v3)

Our construction used to show coNP- and Θp
2-hardness for upward covering set

problems relies on the construction used by Brandt and Fischer [BF08] in the proof
of Theorem 4.2, therefore we will first analyze the minimal upward covering sets
of the resulting dominance graph. Independent of the underlying boolean formula,
Brandt and Fischer [BF08] showed, that each minimal covering set for A contains
exactly two of the four alternatives corresponding to any of the variables. More
precisely, it holds that either xi and x′

i, or xi and x′
i, 1 ≤ i ≤ n, are contained

in each minimal upward covering set for A. Since we will also analyze minimum-
size upward covering sets we will have a closer look at the number of alternatives
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4.3 Minimal and Minimum-Size Upward Covering Sets

contained in each minimal upward covering set for A. We now assume that if ϕ
is not satisfiable then for each truth assignment to the variables of ϕ, at least two
clauses are unsatisfied (which can be ensured, if needed, by adding two dummy
variables). Due to the property described above, each minimal upward covering
set contains 2n alternatives from the cycles corresponding to the variables. If ϕ
is not satisfiable, at least 2 more alternatives from the unsatisfied clauses are also
contained in each minimal upward covering set. Whereas each minimal upward
covering set that contains the alternative d consists of exactly 2n + 1 alternatives.
Thus ϕ is satisfiable if and only if every minimum-size upward covering set consists
of 2n + 1 alternatives. Additionally, these minimum-size upward covering sets
always include alternative d.

Now we will present a construction that can be used to show coNP-hardness for
MCu-Member and other upward covering problems. By merging this construction
with the one by Brandt and Fischer [BF08] presented above, we can apply Wagner’s
Lemma to show Θp

2 hardness for upward covering set problems.

Construction 4.1 (for coNP-hardness of upward covering set problems).
We again build a dominance graph (A, �) based on a boolean formula
ϕ(w1, w2, . . . , wk) = f1∧f2∧· · ·∧f�, over the set W = {w1, w2, . . . , wk} of variables,
in conjunctive normal form. Without loss of generality, we may assume that if ϕ
is satisfiable then it has at least two satisfying assignments. This can be ensured, if
needed, by adding two dummy variables. For the constructed dominance graph, the
set of alternatives is A = {ui, ui, u′

i, u′
i | wi ∈ W} ∪ {ej , e′

j | fj is a clause in ϕ} ∪
{a1, a2, a3}, and the dominance relation � is defined by:

• For each i, 1 ≤ i ≤ k, there is a cycle ui � ui � u′
i � u′

i � ui;

• if variable wi occurs in clause fj as a positive literal, then ui � ej, ui � e′
j,

ej � ui, and e′
j � ui;

• if variable wi occurs in clause fj as a negative literal, then ui � ej, ui � e′
j,

ej � ui, and e′
j � ui;

• if variable wi does not occur in clause fj, then ej � u′
i and e′

j � u′
i;

• for each j, 1 ≤ j ≤ �, we have a1 � ej and a1 � e′
j; and

• there is a cycle a1 � a2 � a3 � a1.

To analyze the minimal and minimum-size upward covering sets, Figure 4.3
shows some parts of the resulting dominance graph. In particular, Figure 4.3(a)
shows that part of the graph that corresponds to some variable wi occurring in
clause fj as a positive literal; Figure 4.3(b) shows that part of the graph that
corresponds to some variable wi occurring in clause fj as a negative literal; and
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ui ui

u′
i u′

i

ej e′
j

(a) wi occurs in fj as
a positive literal

ui ui

u′
i u′

i

ej e′
j

(b) wi occurs in fj

as a negative lit-
eral

ui ui

u′
i u′

i

ej e′
j

(c) wi does not oc-
cur in fj

Figure 4.3: Parts of the dominance graph (A, �) defined in Construction 4.1

Figure 4.3(c) shows that part of the graph that corresponds to some variable wi

not occurring in clause fj .
Figure 4.4 shows the complete resulting dominance graph (A, �) for the boolean

formula (w1 ∧ ¬w2) ∨ (¬w2 ∧ ¬w3). This boolean formula can be satisfied for
example by setting each of w1, w2, and w3 to false. The corresponding minimal
upward covering set for A is M = {u1, u′

1, u2, u′
2, u3, u′

3, a1, a2, a3}. Note that in M
neither e1 nor e2 occurs, and none of them occurs in any other minimal upward
covering set for A either. For alternative e1 in the example shown in Figure 4.4,
this can be seen as follows. First observe that the alternatives a1, a2, and a3 are
contained in every minimal upward covering set for A. If there were a minimal
upward covering set M ′ for A containing e1 (and thus also e′

1, since they both are
dominated by the same alternatives), then neither u1 nor u2 (which dominate e1)
must upward cover e1 in M ′, so all alternatives corresponding to the variables w1
and w2 (i.e., {ui, u′

i, ui, u′
i | 1 ≤ i ≤ 2}) would also have to be contained in M ′. Due

to e1 � u′
3 and e′

1 � u′
3, all alternatives corresponding to w3 (i.e., {u3, u′

3, u3, u′
3})

are in M ′ as well. Note that e2 and e′
2 are no longer upward covered and must also

be in M ′. But then M ′ is not minimal because the upward covering set M , which
corresponds to the satisfying assignment of the boolean formula stated above, is
a strict subset of M ′. Hence there can be no minimal upward covering set for A
which contains alternative e1.

In the following we establish several properties of Construction 4.1, which will
be used in the proofs of Section 4.3.2. In the example above we have already seen
that if e1 is contained in some minimal upward covering set, all other alternatives
are in this minimal upward covering set es well. In its general version this property
is stated in Claim 4.1.

Claim 4.1. Consider the dominance graph (A, �) created by Construction 4.1,
and fix any j, 1 ≤ j ≤ �. For each minimal upward covering set M for A, if M
contains the alternative ej, then all other alternatives are contained in M as well
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u1 u1

u′
1 u′

1

u2 u2

u′
2 u′

2

u3 u3

u′
3 u′

3

e1 e′
1

e2 e′
2

a1

a2 a3

Figure 4.4: Dominance graph (A, �) from Construction 4.1 for the boolean formula
(w1 ∧ ¬w2) ∨ (¬w2 ∧ ¬w3)

(i.e., A = M).

Proof. To simplify notation we prove the claim only for the case of j = 1.
However, since there is nothing special about e1 in our argument, the same property
can be shown by an analogous argument for each j, 1 ≤ j ≤ �.

The three alternatives a1, a2, and a3 form an undominated three-cycle and thus
are contained in every minimal upward covering set M for A.

Let M be any minimal upward covering set for A, and suppose that e1 ∈ M .
First note that the dominators of e1 and e′

1 are always the same (albeit e1 and e′
1

may dominate different alternatives). This implies that for each minimal upward
covering set for A, either both e1 and e′

1 are in it, or they both are not. Thus, since
e1 ∈ M , we have e′

1 ∈ M as well. As noted above, {a1, a2, a3} ⊆ M , and since a1 is
a dominator of ej and e′

j , 1 ≤ j ≤ �, but none of the alternatives dominated by ej

or e′
j is dominated by a1, no other alternative in M can be upward covered by ej or

e′
j . In particular, no alternative in any of the k four-cycles ui � ui � u′

i � u′
i � ui

can be upward covered by an alternative ej or e′
j , and so they must be upward

covered within their cycle. In the construction by Brandt and Fischer [BF08] in
their proof of Theorem 4.2 they showed that for each four-cycle it holds that either
{xi, xi} or {x′

i, x′
i}, 1 ≤ i ≤ n, are contained in each minimal upward covering set,

but not both. Analogously, in our construction every minimal upward covering set
for A must contain at least one of the sets {ui, ui} and {u′

i, u′
i}, since at least one is
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4 Upward and Downward Covering

needed to upward cover the other one. In contrast to the construction in the proof
of Theorem 4.2, our construction also allows for both {ui, ui} and {u′

i, u′
i} being

contained in some minimal upward covering set for A. Informally stated, the reason
is that, unlike the four cycles in Figure 4.2, our four-cycles ui � ui � u′

i � u′
i � ui

also have incoming edges.
Since e1 ∈ M and by internal stability, we have that no alternative from M

upward covers e1. In addition to a1, the alternatives dominating e1 are ui (for each
i such that wi occurs as a positive literal in f1) and ui (for each i such that wi

occurs as a negative literal in f1).
First assume that, for some i, wi occurs as a positive literal in f1. Suppose

that {ui, u′
i} ⊆ M . If u′

i �∈ M , then e1 would be upward covered by ui, which is
impossible. Thus u′

i ∈ M . But then ui ∈ M as well, since ui, the only alternative
that could upward cover ui, is itself dominated by u′

i. For the latter argument,
recall that ui cannot be upward covered by any ej or e′

j . Thus, we have shown
that {ui, u′

i} ⊆ M implies {ui, u′
i} ⊆ M . Conversely, suppose that {ui, u′

i} ⊆ M .
Then u′

i is no longer upward covered by ui and hence must be in M as well. The
same holds for the alternative ui, so {ui, u′

i} ⊆ M implies {ui, u′
i} ⊆ M . Summing

up, if e1 ∈ M then {ui, u′
i, ui, u′

i} ⊆ M for each i such that wi occurs as a positive
literal in f1.

By symmetry of the construction, an analogous argument shows that if e1 ∈ M
then {ui, u′

i, ui, u′
i} ⊆ M for each i such that wi occurs as a negative literal in f1.

Now, consider any i such that wi does not occur in f1. We have e1 � u′
i and

e′
1 � u′

i. Again, none of the sets {ui, u′
i} and {ui, u′

i} alone can be contained in
M , since otherwise either ui or u′

i would remain upward uncovered. Thus, e1 ∈ M
again implies that {ui, u′

i, ui, u′
i} ⊆ M .

Now it is easy to see that, since ⋃
1≤i≤k{ui, u′

i, ui, u′
i} ⊆ M and since a1 cannot

upward cover any of the ej and e′
j , 1 ≤ j ≤ �, external stability of M enforces that⋃

1≤j≤�{ej, e′
j} ⊆ M . Summing up, we have shown that if e1 is contained in any

minimal upward covering set M for A, then M = A. 

The next claim shows a central property for establishing coNP-hardness for
upward covering set problems.

Claim 4.2. Consider Construction 4.1. The boolean formula ϕ is satisfiable if and
only if there is no minimal upward covering set for A that contains any of the ej,
1 ≤ j ≤ �.

Proof. It is enough to prove the claim for the case j = 1, since the other
cases can be proven analogously. From left to right, suppose there is a satisfying
assignment α : W → {0, 1} for ϕ. Define the set

Bα = {a1, a2, a3} ∪ {ui, u′
i | α(wi) = 0}.
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4.3 Minimal and Minimum-Size Upward Covering Sets

Since every upward covering set for A must contain {a1, a2, a3} and at least one
of the sets {ui, u′

i} and {ui, u′
i} for each i, 1 ≤ i ≤ k, Bα is a (minimal) upward

covering set for A. Let M be an arbitrary minimal upward covering set for A.
By Claim 4.1, if e1 were contained in M , we would have M = A. But since
Bα ⊂ A = M , this contradicts the minimality of M . Thus e1 �∈ M .

From right to left, let M be an arbitrary minimal upward covering set for A and
suppose e1 �∈ M . By Claim 4.1, if any of the ej , 2 ≤ j ≤ �, were contained in M ,
it would follow that e1 ∈ M , a contradiction. Thus, {ej | 1 ≤ j ≤ �} ∩ M = ∅. It
follows that each ej must be upward covered by some alternative in M . It is easy
to see that for each j, 1 ≤ j ≤ �, and for each i, 1 ≤ i ≤ k, ej is upward covered
in M ∪ {ej} ⊇ {ui, u′

i} if wi occurs in fj as a positive literal, and ej is upward
covered in M ∪ {ej} ⊇ {ui, u′

i} if wi occurs in fj as a negative literal. It can never
be the case that all four alternatives, {ui, u′

i, ui, u′
i}, are contained in M , because

then either ej would no longer be upward covered in M or the resulting set M was
not minimal. Now, M induces a satisfying assignment for ϕ by setting, for each i,
1 ≤ i ≤ k, α(wi) = 1 if ui ∈ M , and α(wi) = 0 if ui ∈ M . 

Note that in Construction 4.1 every minimal upward covering set for A obtained
from any satisfying assignment for ϕ contains exactly 2k+3 alternatives, and there
is no minimal upward covering set of smaller size for A when ϕ is satisfiable.

Now we turn to the case when the underlying boolean formula is not satisfiable,
and show that in this case there is a unique minimal upward covering set for the
resulting dominance graph.
Claim 4.3. Consider Construction 4.1. The boolean formula ϕ is not satisfiable
if and only if there is a unique minimal upward covering set for A.
Proof. Recall that we assumed in Construction 4.1 that if ϕ is satisfiable then
it has at least two satisfying assignments. From left to right, suppose there is
no satisfying assignment for ϕ. By Claim 4.2, there must be a minimal upward
covering set for A containing one of the ej , 1 ≤ j ≤ �, and by Claim 4.1 this
minimal upward covering set for A must contain all alternatives. By reasons of
minimality, there cannot be another minimal upward covering set for A. From
right to left, suppose there is a unique minimal upward covering set for A. Due
to our assumption that if ϕ is satisfiable then there are at least two satisfying
assignments, ϕ cannot be satisfiable, since if it were, there would be two distinct
minimal upward covering sets corresponding to these assignments (as argued in
the proof of Claim 4.2). 

Now we are ready to present the construction which will be used to apply Wag-
ner’s Lemma to upward covering set problems. In this construction, we define a
dominance graph based on Construction 4.1 and the construction presented in the
proof sketch of Theorem 4.2 such that Lemma 4.1 can be applied, making use of
the properties established in Claims 4.1, 4.2, and 4.3.
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Construction 4.2 (for applying Lemma 4.1 to upward covering set problems).
We apply Wagner’s Lemma with the NP-complete problem S = SAT and construct
a dominance graph. Fix an arbitrary m ≥ 1 and let ϕ1, ϕ2, . . . , ϕ2m be 2m boolean
formulas in conjunctive normal form such that if ϕj is satisfiable then so is ϕj−1,
for each j, 1 < j ≤ 2m. Without loss of generality, we assume that for each j, 1 ≤
j ≤ 2m, the first variable of ϕj does not occur in all clauses of ϕj. Furthermore,
we require ϕj to have at least two unsatisfied clauses if ϕj is not satisfiable, and to
have at least two satisfying assignments if ϕj is satisfiable. It is easy to see that if
ϕj does not have these properties, it can be transformed into a formula that does
have them in polynomial time, without affecting the satisfiability of the formula.

We now define a polynomial-time computable function f , which maps the given
2m boolean formulas to a dominance graph (A, �) with useful properties for upward
covering sets. Define A = ⋃2m

j=1 Aj and the dominance relation � on A by⎛⎝ 2m⋃
j=1

�j

⎞⎠ ∪
(

m⋃
i=1

{(u′
1,2i, d2i−1), (u′

1,2i, d2i−1)}
)

∪
(

m⋃
i=2

{(d2i−1, z) | z ∈ A2i−2}
)

where we use the following notation:

1. For each i, 1 ≤ i ≤ m, let (A2i−1, �2i−1) be the dominance graph that results
from the formula ϕ2i−1 according to Brandt and Fischer’s construction [BF08]
given in the proof sketch of Theorem 4.2. We use the same names for the al-
ternatives in A2i−1 as in that proof sketch, except that we attach the subscript
2i − 1. For example, alternative d from the proof sketch of Theorem 4.2 now
becomes d2i−1, x1 becomes x1,2i−1, y1 becomes y1,2i−1, and so on.

2. For each i, 1 ≤ i ≤ m, let (A2i, �2i) be the dominance graph that results
from the formula ϕ2i according to Construction 4.1. We use the same names
for the alternatives in A2i as in that construction, except that we attach the
subscript 2i. For example, alternative a1 from Construction 4.1 now becomes
a1,2i, e1 becomes e1,2i, u1 becomes u1,2i, and so on.

3. For each i, 1 ≤ i ≤ m, connect the dominance graphs (A2i−1, �2i−1) and
(A2i, �2i) as follows. Let u1,2i, u1,2i, u′

1,2i, u′
1,2i ∈ A2i be the four alternatives

in the cycle corresponding to the first variable of ϕ2i. Then both u′
1,2i and

u′
1,2i dominate d2i−1. The resulting dominance graph is denoted by (Bi, �B

i ).

4. Connect the m dominance graphs (Bi, �B
i ), 1 ≤ i ≤ m, as follows: For each

i, 2 ≤ i ≤ m, d2i−1 dominates all alternatives in A2i−2.

The dominance graph (A, �) is sketched in Figure 4.5. Clearly (A, �) is com-
putable in polynomial time.

Before turning to the results for upward covering set problems, we will again show
some useful properties of the constructed dominance graph. We first consider the
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A1

d1

A2

u′
1,2

u′
1,2

B1

A3

d3

A4

u′
1,4

u′
1,4

B2

A2m−1

d2m−1

A2m

u′
1,2m

u′
1,2m

Bm

. . .

Figure 4.5: Dominance graph (A, �) from Construction 4.2. Most alternatives, and
all edges between pairs of alternatives in Aj, 1 ≤ j ≤ 2m, have been
omitted. All edges between alternatives in Ai and alternatives in Aj

for i �= j are shown. An edge incident to a set of alternatives represents
an edge incident to each alternative in the set.

dominance graph (Bi, �B
i ) (see Step 3 in Construction 4.2) separately, for any fixed

i with 1 ≤ i ≤ m. Doing so will simplify our argument for the whole dominance
graph (A, �). In addition our argument about (Bi, �B

i ) can be used to show, in
effect, DP-hardness of upward covering set problems (see the comments made after
Wagner’s Lemma, which is stated here as Lemma 4.1).

Claim 4.4. Consider Construction 4.2. Alternative d2i−1 is contained in some
minimal upward covering set for (Bi, �B

i ) if and only if ϕ2i−1 is satisfiable and ϕ2i

is not satisfiable.

Proof. Distinguish the following three cases.

Case 1: ϕ2i−1 ∈ SAT and ϕ2i ∈ SAT. Since ϕ2i is satisfiable, it follows from the
proof of Claim 4.2 that for each minimal upward covering set M for (Bi, �B

i ),
either {u1,2i, u′

1,2i} ⊆ M or {u1,2i, u′
1,2i} ⊆ M , but not both, and that none of

the ej,2i and e′
j,2i is in M . If u′

1,2i ∈ M but u′
1,2i �∈ M , then d2i−1 �∈ UCu(M),

since u′
1,2i upward covers d2i−1 within M . Hence, by internal stability, d2i−1

is not contained in M .

Case 2: ϕ2i−1 �∈ SAT and ϕ2i �∈ SAT. Since ϕ2i−1 �∈ SAT, it follows from the
proof of Theorem 4.2 that each minimal upward covering set M for (Bi, �B

i

) contains at least one alternative yj,2i−1 (corresponding to some clause of
ϕ2i−1) that upward covers d2i−1. Thus d2i−1 cannot be in M , again by internal
stability.
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Case 3: ϕ2i−1 ∈ SAT and ϕ2i �∈ SAT. Since ϕ2i−1 ∈ SAT, it follows from the
proof of Theorem 4.2 that there exists a minimal upward covering set M ′ for
(A2i−1, �2i−1) that corresponds to a satisfying truth assignment for ϕ2i−1. In
particular, none of the yj,2i−1 is in M ′. On the other hand, since ϕ2i �∈ SAT,
it follows from Claim 4.3 that A2i is the only minimal upward covering set
for (A2i, �2i). Define M = M ′ ∪ A2i. It is easy to see that M is a minimal
upward covering set for (Bi, �B

i ), since the only edges between A2i−1 and A2i

are those from u′
1,2i and u′

1,2i to d2i−1, and both u′
1,2i and u′

1,2i are dominated
by elements in M not dominating d2i−1.

Note that by our assumption on how the formulas are ordered, the fourth case
(i.e., ϕ2i−1 �∈ SAT and ϕ2i ∈ SAT) cannot occur, thus the proof is complete. 

Now we show that the minimal upward covering sets for (Bi, �B
i ) are contained

in the minimal upward covering sets for the whole dominance graph (A, �).

Claim 4.5. Consider Construction 4.2. For each i, 1 ≤ i ≤ m, let Mi be a
minimal upward covering set for (Bi, �B

i ) according to the cases in the proof of
Claim 4.4. Then each of the sets Mi must be contained in every minimal upward
covering set for (A, �).

Proof. The minimal upward covering set Mm for (Bm, �B
m) must be contained

in every minimal upward covering set for (A, �), since no alternative in A \ Bm

dominates any alternative in Bm. On the other hand, for each i, 1 ≤ i < m, no
alternative in Bi can be upward covered by d2i+1 (which is the only element in A\Bi

that dominates any of the elements of Bi), since d2i+1 is dominated within every
minimal upward covering set for Bi+1 (and, in particular, within Mi+1). Thus, each
of the sets Mi, 1 ≤ i ≤ m, must be contained in every minimal upward covering
set for (A, �). 

Finally, we show the key property of our construction needed to apply Wagner’s
Lemma.

Claim 4.6. Consider Construction 4.2. It holds that

|{i | ϕi ∈ SAT}| is odd
⇐⇒ d1 is contained in some minimal upward covering set M for A. (4.2)

Proof. To show (4.2) from left to right, suppose |{i | ϕi ∈ SAT}| is odd. Recall
that for each j, 1 < j ≤ 2m, if ϕj is satisfiable then so is ϕj−1. Thus, there exists
some i, 1 ≤ i ≤ m, such that ϕ1, . . . , ϕ2i−1 ∈ SAT and ϕ2i, . . . , ϕ2m �∈ SAT. In
Case 3 in the proof of Claim 4.4 we have seen that there is some minimal upward
covering set for (Bi, �B

i )—call it Mi—that corresponds to a satisfying assignment
of ϕ2i−1 and that contains all alternatives of A2i. Note that Mi contains d2i−1. For

76



4.3 Minimal and Minimum-Size Upward Covering Sets

each j �= i, 1 ≤ j ≤ m, let Mj be some minimal upward covering set for (Bj , �B
j )

according to Case 1 (if j < i) and Case 2 (if j > i) in the proof of Claim 4.4.
In Case 1 in the proof of Claim 4.4 we have seen that d2i−3 is upward covered

either by u′
1,2i−3 or by u′

1,2i−3. This is no longer the case, since d2i−1 is in Mi

and it dominates all alternatives in A2i−2 but not d2i−3. By assumption, ϕ2i−3 is
satisfiable, so there exists a minimal upward covering set, which contains d2i−3 as
well. Thus, setting

M = {d1, d3, . . . , d2i−1} ∪ ⋃
1≤j≤m

Mj ,

it follows that M is a minimal upward covering set for (A, �) containing d1.
To show (4.2) from right to left, suppose that |{i | ϕi ∈ SAT}| is even. For a

contradiction, suppose that there exists some minimal upward covering set M for
(A, �) that contains d1. If ϕ1 �∈ SAT then we immediately obtain a contradiction
by the argument in the proof of Theorem 4.2. On the other hand, if ϕ1 ∈ SAT then
our assumption that |{i | ϕi ∈ SAT}| is even implies that ϕ2 ∈ SAT. It follows
from the proof of Claim 4.1 that every minimal upward covering set for (A, �)
(thus, in particular, M) contains either {u1,2i, u′

1,2i} or {u1,2i, u′
1,2i}, but not both,

and that none of the ej,2i and e′
j,2i is in M . By the argument presented in Case 3

in the proof of Claim 4.4, the only way to prevent d1 from being upward covered
by an element of M , either u′

1,2 or u′
1,2, is to include d3 in M as well.2 By applying

the same argument m − 1 times, we will eventually reach a contradiction, since
d2m−1 ∈ M can no longer be prevented from being upward covered by an element
of M , either u′

1,2m or u′
1,2m. Thus, no minimal upward covering set M for (A, �)

contains d1, which completes the proof of (4.2). 

Furthermore, it holds that |{i | ϕi ∈ SAT}| is odd if and only if d1 is contained
in all minimum-size upward covering sets for A. This is true since the minimal
upward covering sets for A that contain d1 are those that correspond to some
satisfying assignment for all satisfiable formulas ϕi, and as we have seen in the
analysis of Construction 4.1 and the proof sketch of Theorem 4.2, these are the
minimum-size upward covering sets for A.

4.3.2 Proofs for Minimal and Minimum-Size Upward Covering
Sets

The results for problems related to minimal and minimum-size upward covering
sets stated in Theorem 4.1 and Table 4.1 will be proven in this section by making
use of the constructions presented in Section 4.3.1.

2This implies that d1 is not upward covered by either u′
1,2 or u′

1,2, since d3 dominates them both
but not d1.
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Theorem 4.3. It is NP-complete to decide, given a dominance graph (A, �) and a
positive integer k, whether there exists a minimal/minimum-size upward covering
set for A of size at most k. That is, both MCu-Size and MSCu-Size are NP-
complete.

Proof. This result can be proven by using the construction of Theorem 4.2. Let
ϕ be a given boolean formula in conjunctive normal form, and let n be the number
of variables occurring in ϕ. Setting the bound k for the size of a minimal/minimum-
size upward covering set to 2n + 1 proves that both problems are hard for NP.
Indeed, as we have seen in the paragraph after the proof sketch of Theorem 4.2,
there is a size 2n + 1 minimal upward covering set (and hence a minimum-size
upward covering set) for A if and only if ϕ is satisfiable. Both problems are
NP-complete, since they can obviously be decided in nondeterministic polynomial
time. 

Theorem 4.4. Deciding whether a designated alternative is contained in some
minimal upward covering set for a given dominance graph is hard for Θp

2 and in
Σp

2. That is, MCu-Member is hard for Θp
2 and in Σp

2.

Proof. Θp
2-hardness follows directly from Claim 4.6, which applies Wagner’s

Lemma to upward covering set problems. Specifically, this claim shows that in
Construction 4.2 the alternative d1 is contained in some minimal upward cover-
ing set for A if and only if the number of underlying boolean formulas that are
satisfiable is odd. For the upper bound, let (A, �) be a dominance graph and
d a designated alternative in A. First, observe that we can verify in polynomial
time whether a subset of A is an upward covering set for A, simply by checking
whether it satisfies internal and external stability. Now, we can guess an upward
covering set B ⊆ A with d ∈ B in nondeterministic polynomial time and verify its
minimality by checking that none of its subsets is an upward covering set for A.
This places the problem in NPcoNP and consequently in Σp

2. 

Theorem 4.5. 1. It is Θp
2-complete to decide whether a designated alternative

is contained in some minimum-size upward covering set for a given domi-
nance graph. That is MSCu-Member is Θp

2-complete.

2. It is Θp
2-complete to decide whether a designated alternative is contained in

all minimum-size upward covering sets for a given dominance graph. That
is MSCu-Member-All is Θp

2-complete.

Proof. Wagner’s Lemma can be used to show Θp
2-hardness for both problems.

Claim 4.6 shows that in Construction 4.2 the alternative d1 is contained in some
minimal upward covering sets for A if and only if the number of underlying boolean
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formulas that are satisfiable is odd. Hence d1 is also contained in some minimum-
size upward covering set if and only if the number of satisfiable boolean formulas
is odd. And by the remark made after this claim it even holds that then the
alternative d1 is contained in all minimum-size upward covering sets for A. Hence
MSCu-Member and MSCu-Member-All are both Θp

2-hard.
To see that MSCu-Member is contained in Θp

2, let (A, �) be a dominance graph
and d a designated alternative in A. Obviously, in nondeterministic polynomial
time we can decide, given (A, �), x ∈ A, and some positive integer � ≤ |A|,
whether there exists some upward covering set B for A such that |B| ≤ � and
x ∈ B. Using this problem as an NP oracle, in Θp

2 we can decide, given (A, �) and
d ∈ A, whether there exists a minimum-size upward covering set for A containing
d as follows. The oracle is asked whether for each pair (x, �), where x ∈ A and
1 ≤ � ≤ |A|, there exists an upward covering set for A of size bounded by � that
contains the alternative x. The number of queries is polynomial (more specifically
in O(|A|2)), and all queries can be asked in parallel. Having all the answers,
determine the size k of a minimum-size upward covering set for A, and accept if
the oracle answer to (d, k) was yes, otherwise reject.

To show that MSCu-Member-All is in Θp
2 let (A, �) be a dominance graph

and d a designated alternative in A. We now use as our oracle the set of all (x, �),
where x ∈ A is an alternative, and � ≤ |A| a positive integer, such that there exists
some upward covering set B for A with |B| ≤ � and x �∈ B. Clearly, this problem is
also in NP, and the size k of a minimum-size upward covering set for A can again
be determined by asking O(|A|2) queries in parallel (if all oracle answers are no,
it holds that k = |A|). Now, the Θp

2 machine accepts its input ((A, �), d) if the
oracle answer for the pair (d, k) is no, otherwise it rejects. 

Theorem 4.6. 1. (Brandt and Fischer [BF08]) It is coNP-complete to decide
whether a designated alternative is contained in all minimal upward covering
sets for a given dominance graph. That is, MCu-Member-All is coNP-
complete.

2. It is coNP-complete to decide whether a given subset of the alternatives
is a minimal upward covering set for a given dominance graph. That is,
MCu-Test is coNP-complete.

3. It is coNP-hard and in Σp
2 to decide whether there is a unique minimal upward

covering set for a given dominance graph. That is, MCu-Unique is coNP-
hard and in Σp

2.

Proof. It follows from Claim 4.3 that in Construction 4.1 the boolean formula
ϕ is not satisfiable if and only if the entire set of alternatives is a (unique) minimal
upward covering set for A. Furthermore, if ϕ is satisfiable, there exists more than
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one minimal upward covering set for A and none of them contains e1 (provided
that ϕ has more than one satisfying assignment, which can be ensured, if needed,
by adding a dummy variable such that the satisfiability of the formula is not af-
fected). This proves coNP-hardness for all three problems. MCu-Member-All

and MCu-Test are also contained in coNP, as they can be decided in the pos-
itive by checking whether there exists an upward covering set that satisfies cer-
tain properties related to the problem at hand, so they both are coNP-complete.
MCu-Unique can be decided in the positive by checking whether there exists an
upward covering set M such that all sets that are not strict supersets of M are
not upward covering sets for the set of all alternatives. Thus, MCu-Unique is in
Σp

2. 

The first statement of Theorem 4.6 was already shown by Brandt and Fis-
cher [BF08]. However, their proof—which uses essentially the reduction from the
proof of Theorem 4.2, except that they start from the coNP-complete problem
Validity (which asks whether a given formula is valid, i.e., true under every as-
signment [Pap95])—does not yield any of the other coNP-hardness results in The-
orem 4.6.

Theorem 4.7. It is coNP-complete to decide whether a given subset of the alter-
natives is a minimum-size upward covering set for a given dominance graph. That
is, MSCu-Test is coNP-complete.

Proof. This problem is in coNP, since it can be decided in the positive by
checking whether the given subset M of alternatives is an upward covering set for
the set A of all alternatives (which is easy) and all sets of smaller size than M are
not upward covering sets for A (which is a coNP predicate). Now, coNP-hardness
follows directly from Claim 4.3, which shows that in Construction 4.1 the boolean
formula ϕ is not satisfiable if and only if there is a unique minimal upward covering
set for A and hence also a unique minimum-size upward covering set for A. 

Theorem 4.8. Deciding whether there exists a unique minimum-size upward cov-
ering set for a given dominance graph is hard for coNP and in Θp

2. That is,
MSCu-Unique is coNP-hard and in Θp

2.

Proof. It is easy to see that coNP-hardness follows directly from the coNP-
hardness of MCu-Unique (see Theorem 4.6). Membership in Θp

2 can be proven by
using the same oracle as in the proof of the first part of Theorem 4.5. We ask for
all pairs (x, �), where x ∈ A and 1 ≤ � ≤ |A|, whether there is an upward covering
set B for A such that |B| ≤ � and x ∈ B. Having all the answers, determine the
minimum-size k of a minimum-size upward covering set for A. Accept if there are
exactly k distinct alternatives x1, . . . , xk for which the answer for (xi, k), 1 ≤ i ≤ k,
was yes, otherwise reject. 
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An important consequence of the proofs of Theorem 4.6 and 4.8 (and of Construc-
tion 4.1 that underpins these proofs) regards the hardness of the search problems
MCu-Find and MSCu-Find.

Theorem 4.9. Assuming P �= NP, neither minimal upward covering sets nor
minimum-size upward covering sets can be found in polynomial time. That is,
neither MCu-Find nor MSCu-Find are polynomial-time computable unless P =
NP.

Proof. Consider the problem of deciding whether there exists a nontrivial
minimal/minimum-size upward covering set, i.e., one that does not contain all
alternatives. By Construction 4.1 that is applied in proving Theorems 4.6 and 4.8,
there exists a trivial minimal/minimum-size upward covering set for A (i.e., one
containing all alternatives in A) if and only if this set is the only minimal/minimum-
size upward covering set for A. Thus, the coNP-hardness proof for the problem of
deciding whether there is a unique minimal/minimum-size upward covering set for
A (see the proofs of Theorems 4.6 and 4.8) immediately implies that the problem of
deciding whether there is a nontrivial minimal/minimum-size upward covering set
for A is NP-hard. However, since the latter problem can easily be reduced to the
search problem (because the search problem, when used as a function oracle, yields
the set of all alternatives if and only if this set is the only minimal/minimum-size
upward covering set for A), it follows that the search problem cannot be solved in
polynomial time unless P = NP. 

4.4 Minimal and Minimum-Size Downward Covering
Sets

4.4.1 Constructions for Minimal and Minimum-Size Downward
Covering Sets

Turning now to the constructions used to show complexity results about minimal
and minimum-size downward covering sets, we again start by giving a proof sketch
of a result due to Brandt and Fischer [BF08], since the following constructions are
based on their construction and proof.

Theorem 4.10. Deciding whether a designated alternative is contained in some
minimal downward covering set for a given dominance graph is NP-hard (i.e.,
MCd-Member is NP-hard), even if a downward covering set is guaranteed to
exist.

Proof Sketch. NP-hardness of MCd-Member is again shown by a reduction
from SAT. Given a boolean formula in conjunctive normal form, ϕ(v1, v2, . . . , vn) =
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Figure 4.6: Dominance graph (A, �) for Theorem 4.10 resulting from the boolean
formula (v1 ∨ ¬v2) ∧ (v1 ∨ ¬v2 ∨ ¬v3).

c1 ∧ c2 ∧ · · · ∧ cr, over the set V = {v1, v2, . . . , vn} of variables, we construct an
instance of MCd-Member with the dominance graph (A, �) and the distinguished
alternative d whose membership in some minimal downward covering set for A is
to be decided. The set of alternatives is

A = {xi, xi, x′
i, x′

i, x′′
i , x′′

i | vi ∈ V } ∪ {yj, zj | cj is a clause in ϕ} ∪ {d}

and the dominance relation � is defined by:

• For each i, 1 ≤ i ≤ n, there is a cycle xi � xi � x′
i � x′

i � x′′
i � x′′

i � xi with
two nested three-cycles, xi � x′

i � x′′
i � xi and xi � x′

i � x′′
i � xi;

• if variable vi occurs in clause cj as a positive literal, then yj � xi;

• if variable vi occurs in clause cj as a negative literal, then yj � xi;

• for each j, 1 ≤ j ≤ r, we have d � yj and zj � d; and

• for each i and j with 1 ≤ i, j ≤ r and i �= j, we have zi � yj.

Brandt and Fischer [BF08] showed that there is a minimal downward covering
set containing d if and only if ϕ is satisfiable. An example of this reduction is
shown in Figure 4.6 for the boolean formula (v1 ∨ ¬v2) ∧ (v1 ∨ ¬v2 ∨ ¬v3). This
formula can be satisfied by setting v1, v2, and v3 to false, the corresponding minimal
downward covering set is {x1, x′

1, x′′
1, x2, x′

2, x′′
2, x3, x′

3, x′′
3, y1, y2, z1, z2, d}. As desired

this minimal downward covering set contains alternative d. 
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Regarding their construction sketched above, Brandt and Fischer [BF08] showed
that every minimal downward covering set for A must contain exactly three alter-
natives for every variable vi (either xi, x′

i, and x′′
i , or xi, x′

i, and x′′
i ), and the

undominated alternatives z1, . . . , zr. Thus each minimal downward covering set
for A consists of at least 3n + r alternatives and induces a truth assignment α for
ϕ. The number of alternatives contained in any minimal downward covering set
for A corresponding to an assignment α is 3n + r + k, where k is the number of
clauses that are satisfied if α is an assignment not satisfying ϕ, and where k = r+1
if α is a satisfying assignment for ϕ. As a consequence, minimum-size downward
covering sets for A correspond to those assignments for ϕ that satisfy the least pos-
sible number of clauses of ϕ. Note that this differs from the case of minimum-size
upward covering sets for the dominance graph constructed in the proof sketch of
Theorem 4.2. Hence the construction in the proof sketch of Theorem 4.10 cannot
be used to obtain complexity results for minimum-size downward covering sets in
the same way as the construction in the proof sketch of Theorem 4.2 was used to
obtain complexity results for minimum-size upward covering sets.

As for upward covering set problems we will now provide a construction that can
be used to show coNP-hardness for downward covering set problems, in addition
this construction will also be used to show NP-hardness for downward covering
set problems. Again a given boolean formula is transformed into a dominance
graph and this construction will later be merged with the construction from the
proof sketch of Theorem 4.10 so as to apply Lemma 4.1 to downward covering set
problems.

Construction 4.3 (for NP- and coNP-hardness of downward covering set prob-
lems). Given a boolean formula in conjunctive normal form, ϕ(w1, w2, . . . , wk) =
f1 ∧ f2 ∧ · · · ∧ f�, over the set W = {w1, w2, . . . , wk} of variables, we construct a
dominance graph (A, �). The set of alternatives is

A = A1 ∪ A2 ∪ {â | a ∈ A1 ∪ A2} ∪ {b, c, d}

with A1 = {xi, x′
i, x′′

i , xi, x′
i, x′′

i , zi, z′
i, z′′

i | wi ∈ W} and A2 =
{yj | fj is a clause in ϕ}, and the dominance relation � is defined by:

• For each i, 1 ≤ i ≤ k, there is, similarly to the construction in the proof of
Theorem 4.10, a cycle xi � xi � x′

i � x′
i � x′′

i � x′′
i � xi with two nested

three-cycles, xi � x′
i � x′′

i � xi and xi � x′
i � x′′

i � xi, and additionally we
have z′

i � zi � xi, z′′
i � zi � xi, z′

i � xi, z′′
i � xi, and d � zi;

• if variable wi occurs in clause fj as a positive literal, then xi � yj;

• if variable wi occurs in clause fj as a negative literal, then xi � yj;

• for each a ∈ A1 ∪ A2, we have b � â, a � â, and â � d;
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• for each j, 1 ≤ j ≤ �, we have d � yj; and

• c � d.

Figure 4.7 shows the resulting dominance graph (A, �) from the boolean formula
(w1 ∨ w2 ∨ w3) ∧ (¬w2 ∨ w3), which can be satisfied by setting for example each
of w1, w2, and w3 to true. A minimal downward covering set for A corresponding
to this assignment is M = {b, c, } ∪ {xi, x′

i, x′′
i , z′

i, z′′
i | 1 ≤ i ≤ 3}. Obviously, the

undominated alternatives b, c, z′
i, and z′′

i , 1 ≤ i ≤ 3, are contained in every minimal
downward covering set for the dominance graph constructed. The alternative d,
however, is not contained in any minimal downward covering set for A. This can
be seen as follows. If d were contained in some minimal downward covering set
M ′ for A then none of the alternatives â with a ∈ A1 ∪ A2 would be downward
covered. Hence, all alternatives in A1 ∪ A2 would necessarily be in M ′, since they
all dominate a different alternative in M ′. But then M ′ is no minimal downward
covering set for A, since the minimal downward covering set M for A is a strict
subset of M ′.

Since we will use this construction to show NP- and coNP-hardness results for
minimal and minimum-size downward covering sets we will now show some prop-
erties of Construction 4.3 in general. First we show that there always exists a
minimal downward covering set for the constructed dominance graph.

Claim 4.7. Minimal downward covering sets are guaranteed to exist for the dom-
inance graph defined in Construction 4.3.

Proof. The set A of all alternatives is a downward covering set for itself. Hence,
there always exists a minimal downward covering set for the dominance graph
defined in Construction 4.3. 

Now we show some key property concerning the alternative d in the constructed
dominance graph.

Claim 4.8. Consider the dominance graph (A, �) created by Construction 4.3.
For each minimal downward covering set M for A, if M contains the alternative
d then all other alternatives are contained in M as well (i.e., A = M).

Proof. If d is contained in some minimal downward covering set M for A, then
{a, â} ⊆ M for every a ∈ A1 ∪ A2. To see this, observe that for an arbitrary
a ∈ A1 ∪ A2 there is no a′ ∈ A with a′ � â and a′ � d or with a′ � a and
a′ � â. Since the alternatives c and b are undominated, they are also in M , so
M = A. 

The next two claims consider the minimal downward covering sets subject to the
satisfiability of the underlying boolean formula.
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Figure 4.7: Dominance graph (A, �) resulting from the formula
(w1 ∨ w2 ∨ w3) ∧ (¬w2 ∨ w3) according to Construction 4.3. An
edge incident to a set of alternatives represents an edge incident to
each alternative in the set. The dashed edge indicates that a � â for
each a ∈ A1 � A2.
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Claim 4.9. Consider Construction 4.3. The boolean formula ϕ is satisfiable if and
only if there is no minimal downward covering set for A that contains d.

Proof. For the direction from left to right consider a satisfying assignment α :
W → {0, 1} for ϕ, and define the set

Bα = {b, c} ∪ {xi, x′
i, x′′

i | α(wi) = 1} ∪ {xi, x′
i, x′′

i | α(wi) = 0} ∪ {z′
i, z′′

i | 1 ≤ i ≤ k}.

It is not hard to verify that Bα is a minimal downward covering set for A. Thus,
there exists a minimal downward covering set for A that does not contain d. If there
were a minimal downward covering set M for A that contains d, Claim 4.8 would
imply that M = A. However, since Bα ⊂ A = M , this contradicts minimality, so
no minimal downward covering set for A can contain d.

For the direction from right to left, assume that no minimal downward covering
set for A contains d. Since by Claim 4.7 minimal downward covering sets are
guaranteed to exist for the dominance graph defined in Construction 4.3, there
exists a minimal downward covering set B for A that does not contain d, so B �= A.
It holds that {zi |wi is a variable in ϕ}∩B = ∅ and {yj |fj is a clause in ϕ}∩B = ∅,
for otherwise a contradiction would follow by observing that there is no a ∈ A with
a � d and a � zi, 1 ≤ i ≤ k, or with a � d and a � yj, 1 ≤ j ≤ �. Furthermore,
we have xi �∈ B or xi �∈ B, for each variable wi ∈ W . By external stability, for
each clause fj there must exist an alternative a ∈ B with a � yj. By construction
and since d �∈ B, we must have either a = xi for some variable wi that occurs in fj

as a positive literal, or a = xi for some variable wi that occurs in fj as a negative
literal. Now, define α : W → {0, 1} such that α(wi) = 1 if xi ∈ B, and α(wi) = 0
otherwise. It is readily appreciated that α is a satisfying assignment for ϕ. 

Claim 4.10. Consider Construction 4.3. The boolean formula ϕ is not satisfiable
if and only if there is a unique minimal downward covering set for A.

Proof. We again assume that if ϕ is satisfiable, it has at least two satisfying
assignments. If ϕ is not satisfiable, there must be a minimal downward covering
set for A that contains d by Claim 4.9, and by Claim 4.8 there must be a minimal
downward covering set for A containing all alternatives. Hence, there is a unique
minimal downward covering set for A. Conversely, if there is a unique minimal
downward covering set for A, ϕ cannot be satisfiable, since otherwise there would
be at least two distinct minimal downward covering sets for A, corresponding to
the distinct truth assignments for ϕ, which would yield a contradiction. 

In the dominance graph created by Construction 4.3, the minimal downward
covering sets for A coincide with the minimum-size downward coverings sets for
A. If ϕ is not satisfiable, there is only one minimal downward covering set for
A, so this is also the only minimum-size downward covering set for A, and if ϕ is
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satisfiable, the minimal downward covering sets for A correspond to the satisfying
assignments of ϕ. As we have seen in the proof of Claim 4.9, these minimal
downward covering sets for A always consist of 5k + 2 alternatives. Thus, they
each are also minimum-size downward covering sets for A.

Merging the construction from the proof sketch of Theorem 4.10 with Con-
struction 4.3, we again provide a construction applying Lemma 4.1, this time to
downward covering set problems.

Construction 4.4 (for applying Lemma 4.1 to downward covering set problems).
We again apply Wagner’s Lemma with the NP-complete problem S = SAT and
construct a dominance graph. Fix an arbitrary m ≥ 1 and let ϕ1, ϕ2, . . . , ϕ2m

be 2m boolean formulas in conjunctive normal form such that the satisfiability of
ϕj implies the satisfiability of ϕj−1, for each j ∈ {2, . . . , 2m}. Without loss of
generality, we assume that for each j, 1 ≤ j ≤ 2m, ϕj has at least two satisfying
assignments, if ϕj is satisfiable.

We now define a polynomial-time computable function f , which maps the given
2m boolean formulas to a dominance graph (A, �) that has useful properties for
our downward covering set problems. The set of alternatives is

A =
(2m⋃

i=1
Ai

)
∪

(
m⋃

i=1
{ri, si, ti}

)
∪ {c∗, d∗},

and the dominance relation � on A is defined by
(2m⋃

i=1
�i

)
∪

(
m⋃

i=1
{(ri, d2i−1), (ri, d2i), (si, ri), (si, d2i−1), (ti, ri), (ti, d2i)}

)
∪

(
k⋃

i=1
{(d∗, ri)}

)
∪ {(c∗, d∗)},

where we use the following notation:

• For each i, 1 ≤ i ≤ m, let (A2i−1, �2i−1) be the dominance graph that results
from the formula ϕ2i−1 according to Brandt and Fischer’s construction given
in the proof sketch of Theorem 4.10. We again use the same names for
the alternatives in A2i−1 as in that proof sketch, except that we attach the
subscript 2i − 1.

• For each i, 1 ≤ i ≤ m, let (A2i, �2i) be the dominance graph that results from
the formula ϕ2i according to Construction 4.3. We again use the same names
for the alternatives in A2i as in that construction, except that we attach the
subscript 2i.
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Figure 4.8: Dominance graph (A, �) from Construction 4.4

• For each i, 1 ≤ i ≤ m, the dominance graphs (A2i−1, �2i−1) and (A2i, �2i)
are connected by the alternatives si, ti, and ri (which play a similar role as
the alternatives zi, z′

i, and z′′
i for each variable in Construction 4.3). The

resulting dominance graph is denoted by (Bi, �B
i ).

• Connect the m dominance graphs (Bi, �B
i ), 1 ≤ i ≤ m (again similarly as in

Construction 4.3). The alternative c∗ dominates d∗, and d∗ dominates the m
alternatives ri, 1 ≤ i ≤ m.

This construction is illustrated in Figure 4.8. Clearly (A, �) is computable in
polynomial time.

Claim 4.11. Consider Construction 4.4. For each i, 1 ≤ i ≤ 2m, let Mi be a
minimal downward covering set for (Ai, �i). Then each of the sets Mi must be
contained in every minimal downward covering set for (A, �).

Proof. For each i, 1 ≤ i ≤ 2m, the only alternative in Ai dominated from outside
Ai is di. Since di is also dominated by the undominated alternative z1,i ∈ Ai for odd
i, and by the undominated alternative ci ∈ Ai for even i, it is readily appreciated
that internal and external stability with respect to the elements of Ai only depend
on the restriction of the dominance graph to Ai. 

Claim 4.12. Consider Construction 4.4. It holds that

|{i | ϕi ∈ SAT}| is odd
⇐⇒ d∗ is contained in some minimal downward covering set M for A. (4.3)
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Proof. For the direction from left to right in (4.3), assume that |{i | ϕi ∈ SAT}|
is odd. Thus, there is some j ∈ {1, . . . , m} such that ϕ1, ϕ2, . . . , ϕ2j−1 are each
satisfiable and ϕ2j, ϕ2j+1, . . . , ϕ2m are each not. Define

M =
(2m⋃

i=1
Mi

)
∪

(
m⋃

i=1
{si, ti}

)
∪ {rj, c∗, d∗},

where for each i, 1 ≤ i ≤ 2m, Mi is some minimal downward covering set of the
restriction of the dominance graph to Ai, satisfying that di ∈ Mi if and only if

1. i is odd and ϕi is satisfiable, or

2. i is even and ϕi is not satisfiable.

Such sets Mi exist by the proof sketch of Theorem 4.10 and by Claim 4.9. In
particular, ϕ2j−1 is satisfiable and ϕ2j is not, so {d2j−1, d2j} ⊆ M . There is no
alternative that dominates d2j−1, d2j, and rj . Thus, rj must be in M . The other
alternatives ri, 1 ≤ i ≤ m and i �= j, are downward covered by either si if
d2i−1 �∈ M , or ti if d2i �∈ M . Finally, d∗ cannot be downward covered, because
d∗ � rj and no alternative dominates both d∗ and rj. Internal and external stability
with respect to the elements of Mi, as well as minimality of ⋃2k

i=1 Mi, follow from the
proofs of Theorem 4.10 and Claim 4.9. All other elements of M are undominated
and thus contained in every downward covering set. We conclude that M is a
minimal downward covering set for A that contains d∗.

For the direction from right to left in (4.3), assume that there exists a minimal
downward covering set M for A with d∗ ∈ M . By internal stability, there must
exist some j, 1 ≤ j ≤ k, such that rj ∈ M . Thus, d2j−1 and d2j must be in M , too.
It then follows from the proof sketch of Theorem 4.10 and Claim 4.9 that ϕ2j−1 is
satisfiable and ϕ2j is not. Hence |{i | ϕi ∈ SAT}| is odd. 

By the remark made after Theorem 4.10, Construction 4.4 cannot be used
straightforwardly to obtain complexity results for minimum-size downward cov-
ering sets.

4.4.2 Proofs for Minimal and Minimum-Size Downward
Covering Sets

The results for problems related to minimal and minimum-size downward covering
sets presented in Theorem 4.1 and Table 4.2 will be proved in this section by
making use of the constructions presented in Section 4.4.1.

Theorem 4.11. It is NP-complete to decide, given a dominance graph (A, �)
and a positive integer k, whether there exists a minimal/minimum-size downward
covering set for A of size at most k. That is, MCd-Size and MSCd-Size are both
NP-complete.
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Proof. Membership in NP is obvious, since we can nondeterministically guess a
subset M ⊆ A of the alternatives with |M | ≤ k and can then check in polynomial
time whether M is a downward covering set for A. NP-hardness of MCd-Size

and MSCd-Size follows from Construction 4.3, the proof of Claim 4.9, and the
comments made after Claim 4.10: If ϕ is a given formula with n variables, then
there exists a minimal/minimum-size downward covering set of size 5n + 2 if and
only if ϕ is satisfiable. 

Theorem 4.12. MSCd-Member, MSCd-Member-All, and MSCd-Unique

are coNP-hard and in Θp
2.

Proof. It follows from Claim 4.10 that in Construction 4.3 the boolean for-
mula ϕ is not satisfiable if and only if the entire set A of alternatives is the
unique minimum-size downward covering set for itself. Moreover, assuming that
ϕ has at least two satisfying assignments, if ϕ is satisfiable, there are at least two
distinct minimum-size downward covering sets for A. This shows that each of
MSCd-Member, MSCd-Member-All, and MSCd-Unique is coNP-hard. For
all three problems, membership in Θp

2 is shown similarly to the proofs of the cor-
responding minimum-size upward covering set problems. However, since down-
ward covering sets may fail to exist, the proofs must be slightly adapted. For
MSCd-Member and MSCd-Unique, the machine rejects the input if the size k
of a minimum-size downward covering set cannot be computed (simply because
there doesn’t exist any such set). For MSCd-Member-All, if all oracle answers
are no, it must be checked whether the set of all alternatives is a downward covering
set for itself. If so, the machine accepts the input, otherwise it rejects. 

Theorem 4.13. It is coNP-complete to decide whether a given subset is a
minimum-size downward covering set for a given dominance graph. That is,
MSCd-Test is coNP-complete.

Proof. This problem is in coNP, since its complement (i.e., the problem of
deciding whether a given subset of the set A of alternatives is not a minimum-
size downward covering set for A) can be decided in nondeterministic polynomial
time. Hardness for coNP follows directly from Claim 4.10, which shows that in
Construction 4.3 the boolean formula ϕ is not satisfiable if and only if there is a
unique minimal downward covering set for A and hence also a unique minimum-size
downward covering set for A. 

Theorem 4.14. Deciding whether a designated alternative is contained in some
minimal downward covering set for a given dominance graph is hard for Θp

2 and in
Σp

2. That is, MCd-Member is hard for Θp
2 and in Σp

2.
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Proof. Membership in Σp
2 can be shown analogously to the proof of Theorem 4.4,

and Θp
2-hardness follows directly from Claim 4.12, which applies Wagner’s Lemma

to downward covering sets. Specifically, this claim shows that in Construction 4.4
the alternative d∗ is contained in some minimal downward covering set for A if and
only if the number of underlying boolean formulas is odd. 

Theorem 4.15. 1. (Brandt and Fischer [BF08]) It is coNP-complete to de-
cide whether a designated alternative is contained in all minimal downward
covering sets for a given dominance graph. That is, MCd-Member-All is
coNP-complete.

2. It is coNP-complete to decide whether a given subset of the alternatives is
a minimal downward covering set for a given dominance graph. That is,
MCd-Test is coNP-complete.

3. It is coNP-hard and in Σp
2 to decide whether there is a unique minimal down-

ward covering set for a given dominance graph. That is, MCd-Unique is
coNP-hard and in Σp

2.

Proof. It follows from Claim 4.10 that ϕ is not satisfiable if and only if the
entire set of alternatives A is a unique minimal downward covering set for A.
Furthermore, if ϕ is satisfiable, there exists more than one minimal downward
covering set for A and none of them contains d (provided that ϕ has more than one
satisfying assignment, which can be ensured, if needed, by adding a dummy variable
such that the satisfiability of the formula is not affected). This proves coNP-
hardness for all three problems. MCd-Member-All and MCd-Test are also
contained in coNP, because they can be decided in the positive by checking whether
there does not exist a downward covering set that satisfies certain properties related
to the problem at hand. Thus, they are both coNP-complete. MCd-Unique can
be decided in the positive by checking whether there exists a downward covering set
M such that all sets that are not strict supersets of M are not downward covering
sets for the set of all alternatives. This shows that MCd-Unique is in Σp

2. 

The first statement of Theorem 4.15 was already shown by Brandt and Fis-
cher [BF08]. However their proof—which uses essentially the reduction from the
proof of Theorem 4.10, except that they start from the coNP-complete problem
Validity—does not yield any of the other coNP-hardness results in Theorem 4.15.

An important consequence of the proofs of Theorem 4.12 and 4.15 regards the
hardness of the search problems MCd-Find and MSCd-Find. (Note that the
hardness of MCd-Find also follows from a result by Brandt and Fischer [BF08,
Thm. 9], see the discussion in Section 4.2).
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4 Upward and Downward Covering

Theorem 4.16. Assuming P �= NP, neither minimal downward covering sets,
nor minimum-size downward covering sets can be found in polynomial time (i.e.,
neither MCd-Find nor MSCd-Find are polynomial time computable unless P =
NP), even when the existence of a downward covering set is guaranteed.

Proof. Consider the problem of deciding whether there exists a nontrivial
minimal/minimum-size downward covering set, i.e., one that does not contain all al-
ternatives. By Construction 4.3 that is applied in proving Theorems 4.12 and 4.15,
there exists a trivial minimal/minimum-size downward covering set for A (i.e., one
containing all alternatives in A) if and only if this set is the only minimal/minimum-
size downward covering set for A. Thus, the coNP-hardness proof for the problem
of deciding whether there is a unique minimal/minimum-size downward covering
set for A (see the proofs of Theorems 4.12 and 4.15) immediately implies that the
problem of deciding whether there is a nontrivial minimal/minimum-size down-
ward covering set for A is NP-hard. However, since the latter problem can easily
be reduced to the search problem (because the search problem, when used as a
function oracle, yields the set of all alternatives if and only if this set is the only
minimal/minimum-size downward covering set for A), it follows that the search
problem cannot be solved in polynomial time unless P = NP. 

4.5 Summary
We raised the existing NP-lower bounds for the problems MCu-Member and
MCd-Member to Θp

2, and provided a Σp
2 upper bound. We defined and studied the

complexity of various problems related to minimal upward and downward covering
sets. In addition we studied all these problems also in their minimum-size vari-
ants. We presented one construction for upward covering set problems and one for
downward covering set problems, and then showed how to merge them with the con-
structions given by Brandt and Fischer [BF08] to apply Wagner’s Lemma [Wag87].
By using these constructions we showed hardness for NP, coNP, and Θp

2. An im-
portant consequence of our results is that neither minimal/minimum-size upward
nor minimal/minimum-size downward covering sets can be found in polynomial
time unless P = NP.
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5 Interference in Judgment
Aggregation

The aim of a judgment aggregation process is to aggregate individual judgment sets
of judges over possibly interconnected propositions to reach a collective outcome.
The complexity-theoretic study of problems associated to judgment aggregation
was initiated by Endriss et al. [EGP10a, EGP10b], by the analysis of the winner
determination and manipulation problem in judgment aggregation. In this chapter
we pursue their direction and study the complexity of manipulation for premise-
based quota rules, a whole class of judgment aggregation procedures. A judgment
aggregation scenario is said to be manipulable if one judge has an incentive to
report an untruthful judgment set as this yields a more favorable outcome for
him, where the distance between the preferences of the manipulator can be mea-
sured by the Hamming distance. We show not only NP-hardness but also study
the parameterized complexity (W[2]-hardness) of this problem. Furthermore we
show strategyproofness for certain restrictions on the agenda. Besides the manip-
ulation problem, we also investigate bribery in judgment aggregation. This work
is inspired by different bribery problems in voting theory. In addition to clas-
sical complexity (NP-hardness) results we also obtain W[2]-hardness for bribery
with respect to natural parameters, and membership in P for restricted problem
instances for bribery problems. Furthermore, we introduce three different types
of control specific to judgment aggregation, again inspired by the corresponding
problems from voting theory. NP-hardness is shown for all three types of control
considered here. The results presented in this chapter have already been published
in [BER11, BEER12b, BEER12a].

5.1 Preliminaries
Different ways of influencing the outcome of elections have been studied in social
choice. The complexity of problems related to manipulation, bribery, and con-
trol has also been studied intensely in computational social choice, see, e.g., the
early work of Bartholdi et al. [BTT89, BO91, BTT92] and the recent surveys and
book chapters by Faliszewski et al. [FP10, FHH10], Brandt et al. [BCE12], and
Baumeister et al. [BEH+10]. These problems are not only relevant to voting, but to
decision-making processes in general. Studying the susceptibility to different ways
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of influencing the outcome is particularly important for judgment aggregation,
since the aggregation of different yes/no opinions about possibly interconnected
propositions is often applied in practice. To avoid these forms of interference, a
common approach in computational social choice is to apply methods from theo-
retical computer science to show that undesirable strategic behavior is blocked, or
at least hindered, by the corresponding task being a computationally intractable
problem. In this chapter we will introduce various manipulation, bribery, and con-
trol problems for judgment aggregation and study their computational complexity.

We adopt the formal definition of the judgment aggregation framework from
Endriss et al. [EGP10b]. Let P S be the set of all propositional variables and
LP S the set of propositional formulas built from P S. As connectives we allow
disjunction (∨), conjunction (∧), and equivalence (↔) in their usual meaning, as
shown in Table 5.1, where the boolean constants 1 and 0 represent “true” and
“false”, respectively.

Table 5.1: Overview of connectives in propositional formulas
a b a ∨ b a ∧ b a ↔ b

0 0 0 0 1
0 1 1 0 0
1 0 1 0 0
1 1 1 1 1

For notational convenience, we want to avoid double negations and let ∼α de-
note the complement of α. This means that ∼α = ¬α if α is not negated, and
∼α = β if α = ¬β. The set of formulas to be judged by the judges is called the
agenda and will be denoted by Φ. Formally, the agenda is a nonempty subset of
LP S, does not contain doubly negated formulas, and is closed under complemen-
tation. Hence it holds that ∼α ∈ Φ for all α ∈ Φ. The judgment provided by
a single judge is called his or her individual judgment set and corresponds to the
propositions in the agenda accepted by this judge. The collective judgment set is
the set of propositions obtained by aggregating the individual judgment sets with
some judgment aggregation rule. Formally, an individual or collective judgment set
J on an agenda Φ is a subset J ⊆ Φ. For both, individual and collective judgment
sets we consider the three basic properties: completeness, complement-freeness,
and consistency; that are defined as follows.

• A judgment set J is complete if it contains α or ∼α for each α ∈ Φ.

• A judgment set J is complement-free if there is no α ∈ J with ∼α ∈ J .

• A judgment set J is consistent if there is an assignment that satisfies all
formulas in J .
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Note that the consistency of a judgment set directly implies its complement-
freeness.

The set of judges that take part in a judgment aggregation scenario will be
denoted by N = {1, . . . , n}, and we will also assume that n ≥ 2, hence there are
at least 2 judges. By Ji, i ∈ N , we denote the individual judgment set of judge i,
and the profile of all n individual judgment sets is denoted be J = (J1, . . . , Jn).

A judgment aggregation procedure F is needed to obtain a collective judgment
set from a given profile J ∈ J (Φ)n. Formally, this is a function F : J (Φ)n → 2Φ,
mapping a profile of n complete and consistent judgment sets to a subset of the
agenda Φ, the collective judgment set. We consider the same three basic proper-
ties for judgment aggregation procedures as for judgment sets. A judgment ag-
gregation procedure F is said to be complete/complement-free/consistent if F (J)
is complete/complement-free/consistent for all profiles J ∈ J (Φ)n. A very nat-
ural judgment aggregation procedure is the majority rule, where a proposition is
contained in the collective outcome, if it is contained in a majority of the individ-
ual outcomes. A common approach to avoid an inconsistent collective outcome is
to apply the judgment aggregation rule only to the premises of the agenda, see
also the illustration of the doctrinal paradox in Section 2.3. Such a procedure is
formalized by the premise-based procedure, see Endriss et al. [EGP10b].

Definition 5.1 (Premise-based Procedure [EGP10b]). Let the agenda Φ be divided
into two disjoint sets, Φ = Φp � Φc, where Φp is the set of premises and Φc is the
set of conclusions, and both Φp and Φc are closed under complementation. The
premise-based procedure is a function PBP : J (Φ)n → 2Φ mapping, for Φ =
Φp � Φc, each profile J = (J1, . . . , Jn) to the following judgment set:

PBP(J) = � ∪ {ϕ ∈ Φc | � |= ϕ}

with � = {ϕ ∈ Φp | |{i | ϕ ∈ Ji}| > n/2}, where |S| denotes the cardinality of set S
and |= denotes the satisfaction relation.

This definition applies the majority procedure only to the premises of the agenda,
and the collective outcome for the conclusions is derived from the collective out-
come of the premises. However, this is not sufficient to always obtain a complete
and consistent procedure. Assume that the agenda contains the variable α and
∼α, the propositional formula α ∨ β and its negation. Applying the premise-based
procedure to this agenda, identifying the set of literals as the premises, results in
an incomplete outcome if the collective judgment set contains ¬α, since the col-
lective outcome for the formula α ∨ β cannot be derived. To obtain a complete
and consistent procedure it is furthermore required that the agenda is closed under
propositional variables (i.e., every variable that occurs in a formula of Φ is con-
tained in Φ), that the set of premises is the set of all literals in the agenda, and that
the number of judges is odd. Endriss et al. [EGP10b] argue that this definition
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is appropriate, since the problem of determining whether an agenda guarantees
a complete and consistent outcome for the majority procedure is an intractable
problem.

We extend this approach to the class of uniform quota rules as defined by Dietrich
and List [DL07b]. In contrast to the definition of the premise-based procedure we
allow an arbitrary quota and do not restrict our scenarios to an odd number of
judges.

Definition 5.2 (Premise-based Quota Rule). Let the agenda Φ be divided into two
disjoint sets, Φ = Φp � Φc, where Φp is the set of premises and Φc is the set of
conclusions, and both Φp and Φc are closed under complementation. Divide the set
of premises Φp into two disjoint subsets, Φ1 and Φ2, such that for each ϕ ∈ Φp,
either ϕ ∈ Φ1 and ∼ϕ ∈ Φ2 or ϕ ∈ Φ2 and ∼ϕ ∈ Φ1. Define a quota qϕ ∈ Q

with 0 ≤ qϕ < 1 for every ϕ ∈ Φ1. The quota for every ϕ ∈ Φ2 is then defined
as q′

ϕ = 1 − qϕ. The premise-based quota rule is a function PQR : J (Φ)n → 2Φ

mapping for Φ = Φp � Φc, each profile J = (J1, . . . , Jn) to the following judgment
set:

PQR(J) = �q ∪ {ϕ ∈ Φc | �q |= ϕ},

where

�q = {ϕ ∈ Φ1 | |{i | ϕ ∈ Ji}| > n · qϕ} ∪ {ϕ ∈ Φ2 | |{i | ϕ ∈ Ji}| > �n · q′
ϕ − 1�}.

We again require that the agenda Φ is closed under propositional variables and
that Φp consists of all literals, to obtain complete and consistent collective judgment
sets. Note that in the case of qϕ = q′

ϕ = 1/2 and an even number of judges the
number of affirmations needed to be in the collective judgment set differs for the
variables in Φ1 and Φ2. For ϕ ∈ Φ1, at least �n · qϕ + 1� affirmations from the
judges are needed, and for ϕ ∈ Φ2, �n · q′

ϕ� affirmations are needed. Clearly,
since �n · qϕ + 1� + �n · q′

ϕ� = n + 1, it is ensured that for every ϕ ∈ Φ, either
ϕ ∈ PQR(J) or ∼ϕ ∈ PQR(J). Observe that the quota qϕ = 1 for a literal ϕ ∈ Φ1
is not considered here, since then n + 1 affirmations were needed for ϕ ∈ Φ1 to
be in the collective judgment set, which is not possible. Hence, the outcome does
not depend on the individual judgment sets. By contrast, considering qϕ = 0 leads
to the case that ϕ ∈ Φ1 needs at least one affirmation, and ∼ϕ ∈ Φ2 needs n
affirmations, which may be a reasonable choice.

A special case of the premise-based quota rules are uniform premise-based quota
rules. Here the quota qϕ is identical for all literals in Φ1 and hence also the quota
q′

ϕ for all literals in Φ2. We denote the quotas by q for all ϕ ∈ Φ1 and q′ for all
ϕ ∈ Φ2. In this chapter we will focus on these uniform premise-based quota rules
and denote it by UPQRq. For the case of q = 1/2 and an odd number of judges,
we obtain exactly the premise-based procedure defined by Endriss et al. [EGP10b]
(see Definition 5.1).
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Furthermore, we will consider yet another variant of premise-based procedure,
which was introduced by Dietrich and List [DL07b] and is called constant premise-
based quota rule. Formally, it is defined by

CPQR(J) = �′
q ∪ {ϕ ∈ Φc | �′

q |= ϕ}.

In contrast to the premise-based quota rule, here the number of affirmations needed
to be in the set �′

q does not depend on the number of judges, but is a fixed
constant. Thus qϕ ∈ N, 0 ≤ qϕ < n, and �′

q = {ϕ ∈ Φ1 | |{i | ϕ ∈ Ji}| > qϕ} ∪ {ϕ ∈
Φ2 | |{i | ϕ ∈ Ji}| > q′

ϕ}. To ensure that for every ϕ ∈ Φ, either ϕ ∈ CPQR(J)
or ∼ ϕ ∈ CPQR(J), we again require that qϕ + q′

ϕ = n − 1 for all ϕ ∈ Φ1. The
uniform variant, UCPQRq is defined analogously.

Obviously both classes represent the same judgment aggregation procedures if
the number of judges taking part in the process is fixed. However, we will study
control problems where the number of judges can vary. In this case, the quota n in
the constant premise-based quota rule can be seen as an upper bound on the highest
number of judges possibly participating in the process. This definition is closely
related to (a simplified version of) a referendum. Suppose that there is a fixed
number of possible participants who are allowed to go to the polls (e.g., all citizens
of a town), and there is a fixed number of affirmations needed for a certain decision,
independent of the number of people who are actually participating. Of course,
this number may depend on the number of possible participants, for example 20%
of them.

The problems of manipulation, bribery, and control were first defined and studied
for preference aggregation, especially for voting scenarios. Now we argue, that it
makes sense to investigate these problems also in the context of judgment aggrega-
tion. Recall the example from Section 2.3, where the premise-based procedure for
the majority rule is applied to aggregate the individual judgments from three ref-
erees for a penalty decision. Bovens and Rabinowicz [BR06] (see also List [Lis06])
provide a similar example where a committee has to decide whether a candidate
deserves tenure on the basis of his teaching and research capabilities. To get tenure,
the candidate has to be good enough in research and he has to be good enough
in teaching. Table 5.2 illustrates the individual judgments of three judges and the
collective judgment set obtained by applying the premise-based procedure for the
majority rule.

On the basis of such examples, List [Lis06] concludes that in a premise-based
procedure the judges might have an incentive to report insincere judgments. In the
above example the tenure decision derived by the majority rule used as a premise-
based procedure is “yes”. Suppose that the judges are absolutely sure about their
decision and hence want the aggregated outcome of the conclusion to be identical
to their own conclusions. In this case, judge 2 has an incentive to insincerely change
his judgment for teaching from “yes” to “no”. Then the collective outcome is “no”
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Table 5.2: Example illustrating the premise-based procedure for the majority
rule [BR06, Lis06]

Teaching Research Tenure
Judge 1 yes yes yes
Judge 2 yes no no
Judge 3 no yes no
Majority yes yes ⇒ yes

for teaching and hence tenure is denied for the candidate, as desired by judge
2. For the same reason judge 3 has an incentive to report “no” instead of “yes”
when judging the candidates research capabilities. This is a classical manipulation
scenario which we have already described for voting in Chapter 3.1. In the context
of voting manipulation has been studied in depth, see, e.g., [Con10, FHH10, FP10]
and the references cited therein. In the field of judgment aggregation, strategic
judging (i.e., changing one’s individual judgments for the purpose of manipulating
the collective outcome) was previously considered by List [Lis06] and by Dietrich
and List [DL07c]. Recently the computational aspect of strategic judging has been
studied by Endriss et al. [EGP10b] for the first time.

In addition to the above described strategic judging we will also study bribery in
judgment aggregation. Along with the possible winner problems in Chapter 3 we
already introduced some variants of bribery in the context of voting, see Faliszewski
et al. [FHH09, FHHR09a] and Elkind et al. [EFS09]. For bribery in judgment
aggregation return to the above example. Suppose that the judgments of judge 2
and judge 3 were “no” for both premises. The candidate wants to get tenure by any
means necessary and might try to make some deals with some of the judges in order
to reach a positive evaluation. For example he might offer to take off some of the
teaching load of judge 2’s shoulder, or offer to apply for a joint research grant with
judge 3, or simply bribe the judges with money not exceeding his budget. Beside
the context of voting, bribery has also been studied in the context of optimal
lobbying (first by Christian et al. [CFRS07], see also [EFG+09] and Chapter 5.2
for more details).

The last type of interference we consider is control for judgment aggregation.
For voting systems control by adding, deleting, or partitioning candidates or vot-
ers has been studied extensively (see, e.g., [BTT92, HHR07, BEH+10, BEH+10]).
We will study three different types of control for judgment aggregation, namely
adding, deleting, and replacing judges. The problems where judges are added or
deleted correspond to the problems of adding and deleting voters in voting, but
control by replacing judges is newly introduced here. This is especially important
in the context of judgment aggregation, since in the case of prejudice it is usual
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to replace a judge. Detailed motivation for all three types of control by examples
from the American jury trial system and international arbitration can be found
in [BEER12b].

5.2 Problem Definitions
In voting theory bribery problems were introduced by Faliszewski et al. [FHH09]
(see also, e.g., [EFS09, FHHR09a]). Here an external actor tries to bribe the voters,
without exceeding his budget, such that a desired candidate becomes a winner of
the election. In judgment aggregation it is not the case that there is a single
winner, so the briber may bribe the judges to obtain a specific collective outcome,
or he might be interested in only some formulas of the collective outcome. Hence
the briber has a, maybe incomplete, judgment set as desired outcome. This exact
bribery problem is then defined as follows for a given aggregation procedure F .

F -Exact Bribery

Given: An agenda Φ, a profile T ∈ J (Φ)n, a consistent judgment set J (not
necessarily complete) desired by the briber, and a positive integer
k.

Question: Is it possible to change up to k individual judgment sets in T such
that for the resulting new profile T′ it holds that J ⊆ F (T′)?

Note that in the case of a complete desired judgment set J the question is
whether J = F (T′).

The manipulation problem in voting asks, if a voter can make his desired candi-
date win the election by reporting an untruthful preference (see [BTT89, BO91]).
Since in the case of judgment aggregation there is no winner, Endriss et
al. [EGP10b] used the Hamming distance to measure the distance between two
judgments sets in the definition of the manipulation problem in judgment aggre-
gation. In their definition, an outcome (i.e., a collective judgment set) is more
desirable for the manipulator if its Hamming distance to the manipulator’s desired
judgment is smaller, where for an agenda Φ the Hamming distance H(J, J ′) be-
tween two complete and consistent judgment sets J, J ′ ∈ J (Φ) is defined as the
number of positive formulas in Φ on which J and J ′ differ. The manipulation
problem in judgment aggregation is then defined as follows for a given aggregation
procedure F .

F -Manipulation

Given: An agenda Φ, a profile T ∈ J (Φ)n−1, and a consistent and complete
judgment set J desired by the manipulator.

Question: Does there exist a judgment set J ′ ∈ J (Φ) such that
H(J, F (T, J ′)) < H(J, F (T, J))?
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If for a given judgment aggregation procedure a judge can never benefit from re-
porting an insincere individual judgment set, the procedure will be called strategy-
proof.

We will adopt the Hamming distance approach, and also define bribery problems
where not an exact outcome is seeked, but an outcome with a small Hamming
distance to the desired judgment set. However we extend the approach also to
incomplete (albeit consistent) desired judgment sets. This reflects the scenario
where the briber may be interested only in some part of the agenda. The definition
of the Hamming distance is extended accordingly as follows. Let Φ be an agenda,
J ∈ J (Φ) be a complete and consistent judgment set, and J ′ ⊆ Φ be a consistent
judgment set. The Hamming distance H(J, J ′) between J and J ′ is defined as the
number of formulas from J ′ on which J does not agree:

H(J, J ′) = |{ϕ | ϕ ∈ J ′ ∧ ϕ �∈ J}|.

Note that if J ′ is also complete, this extended notion of Hamming distance coincides
with the notion Endriss et al [EGP10b] use.

Now we can give the formal definition of bribery in judgment aggregation, where
the briber seeks to obtain a collective judgment set having a smaller Hamming
distance to the desired judgment set, then the original outcome has.

F -Bribery

Given: An agenda Φ, a profile T ∈ J (Φ)n, a consistent judgment set J (not
necessarily complete) desired by the briber, and a positive integer
k.

Question: Is it possible to change up to k individual judgment sets in T such
that for the resulting new profile T′ it holds that H(F (T′), J) <
H(F (T), J)?

The notion of microbribery for irrational voters was introduced by Faliszewski
et al. [FHHR09a]. Instead of paying to change a whole vote, here the briber has
to pay separately for each change in a preference table. We transfer the notion
of microbribery to judgment aggregation, by allowing a briber with budget k to
change up to k premise entries in the given profile instead of k entire judgment
sets. Note that since we focus on premise-based procedures, the entries for the
conclusions in the individual judgment sets are changed automatically according
to the premises if necessary. The formal definition of microbribery for a premise-
based judgment aggregation procedure F is as follows.
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F -Microbribery

Given: An agenda Φ, a profile T ∈ J (Φ)n, a consistent judgment set J (not
necessarily complete) desired by the briber, and a positive integer
k.

Question: Is it possible to change up to k entries among the premises in the
individual judgment sets in T such that for the resulting new profile
T′ it holds that H(F (T′), J) < H(F (T), J)?

We also consider the problem F -Exact Microbribery which is defined anal-
ogously to the corresponding bribery problem with the difference that the briber
is allowed to change only up to k premise-entries in T rather than to change k
complete individual judgment sets.

Now we turn to the formal definitions of the control problems. For a given
judgment aggregation procedure F , the problem of control by adding judges is
defined as follows.

F -Control by Adding Judges

Given: An agenda Φ, profiles T ∈ J (Φ)n and S ∈ J (Φ)|S|, a positive inte-
ger k, and a consistent judgment set J (not necessarily complete).

Question: Is there a subset S′ ⊂ S, |S′| ≤ k, such that H(J, F (T ∪ S′)) <
H(J, F (T))?

If we consider the variant F -Exact Control by Adding Judges, we ask if
there is a subset S′ ⊂ S, |S′| ≤ k, such that J ⊆ F (T ∪ S′).

Control by deleting judges is defined as follows for a given judgment aggregation
procedure F .

F -Control by Deleting Judges

Given: An agenda Φ, a profile T ∈ J (Φ)n, a positive integer k, and a
consistent judgment set J (not necessarily complete).

Question: Is there a subset T′ ⊂ T with |T′| ≤ k such that H(J, F (T \ T′)) <
H(J, F (T))?

The exact variant F -Exact Control by Deleting Judges is defined anal-
ogously to the case of adding judges.

Control by replacing judges is the new control problem we introduce here and
it considers the case where some judges may be replaced. For a specific judgment
aggregation procedure F it is defined as follows.

F -Control by Replacing Judges

Given: An agenda Φ, profiles T ∈ J (Φ)n and S ∈ J (Φ)|S|, a positive inte-
ger k, and a consistent judgment set J (not necessarily complete).

Question: Are there subsets T′ ⊂ T and S′ ⊂ S, with |T′| = |S′| ≤ k, such
that H(J, F ((T \ T′) ∪ S′)) < H(J, F (T))?

101



5 Interference in Judgment Aggregation

Define F -Exact Control by Replacing Judges analogously to the exact
variants of the adding and deleting judges problems.

To study the complexity of adding, deleting, and replacing judges, we adopt the
terminology introduced in [BTT92] for control problems in voting and adapt it to
judgment aggregation.

Let F be an aggregation procedure and let C be a given control type.

1. F is said to be immune to control by C if it is never possible for an external
person to successfully control the judgment aggregation procedure via C-
control.

2. F is said to be susceptible to control by C if it is not immune.

3. F is said to be resistant to control by C if it is susceptible and the corre-
sponding decision problem is NP-hard.

4. F is said to be vulnerable to control by C if it is susceptible and the corre-
sponding decision problem is in P.

In one of our proofs we will use a reduction from the Optimal Lobbying

problem which is closely related to judgment aggregation:

Optimal Lobbying

Given: An m×n matrix L (whose rows represent the voters, whose columns
represent the referenda, and whose 0-1 entries represent No/Yes
votes), a positive integer k ≤ m, and a target vector x ∈ {0, 1}n.

Question: Is there a choice of k rows in L such that by changing the entries
of these rows the resulting matrix has the property that, for each j,
1 ≤ j ≤ n, the jth column has a strict majority of ones (respectively,
zeros) if and only if the jth entry of the target vector x of The Lobby
is one (respectively, zero)?

This problem has been introduced by Christian et al. [CFRS07]. They showed
W[2]-completeness when parameterized by the number k of rows The Lobby can
change. A more general framework of the lobbying problem and more W[2]-
hardness results can be found in [EFG+09].

The multiple referenda as in Optimal Lobbying can be seen as a special case
of judgment aggregation, where the agenda is closed under complementation and
propositional variables and contains only premises and where the majority rule is
used for aggregation. The potential of The Lobby corresponds to our exact bribery
problem. More precisely, a PBP-Exact Bribery instance with only premises in
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the agenda and with a complete desired judgment set J is nothing other than an
Optimal Lobbying instance, where J corresponds to The Lobby’s target vector.1

Such multiple referenda are another example why it is worth studying bribery
and manipulation in judgment aggregation. Suppose the citizens of a town have
to decide by a referendum whether two projects, A and B (e.g., a new street and
a new gymnasium), are to be realized. The citizens are asked to give their opinion
only for the premises A and B and not for the conclusion (whether both projects
are to be realized), hence the doctrinal paradox is avoided. Now consider the
building contractor who, of course, is interested in being awarded a contract for
both projects. He might try to bribe some of the citizens to influence the outcome
of the referenda. And again the citizens might also vote strategically in these
referenda, since both projects will cost money, and it is clear that if both projects
are realized, the amount available for each must be reduced. So some citizens
may wish to support A, but they are not satisfied if the amount for A would be
reduced when both projects are realized. Thus it is natural that they consider the
possibility of reporting insincere votes (provided they know how the others will
vote); this may turn out to be more advantageous for them, as then they possibly
can prevent that both projects are realized.

5.3 Results

5.3.1 Manipulation in Judgment Aggregation
Endriss et al. [EGP10b] showed that PBP-Manipulation is NP-complete, we will
extend the study of the manipulation problem to uniform premise-based quota
rules and establish W[2]-hardness results with respect to a natural parameter.
The proof will be by a reduction from a classical problem in graph theory called
Dominating Set. In a given graph G = (V, E), with the set of vertices V and
the set of edges E, a dominating set is a subset V ′ ⊆ V of the vertices such that
for each v ∈ V \ V ′ there is an edge {v, v′} in E with v′ ∈ V ′. The size of a
dominating set V ′ is the number |V ′| of its vertices. The formal definition of the
unparameterized NP-complete (see [GJ79]) version is as follows.

Dominating Set

Given: A graph G = (V, E), with the set V of vertices and the set E of
edges, and a positive integer k ≤ |V |.

Question: Does G have a dominating set of size at most k?

1Although exact bribery in judgment aggregation thus generalizes lobbying in the sense of
Christian et al. [CFRS07] (which is different from bribery in voting, as defined by Faliszewski
et al. [FHH09]), we will us the term “bribery” rather than “lobbying” in the context of
judgment aggregation.
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This problem is W[2]-complete when parameterized by the upper bound k on the
size of the dominating set (see [DF99]). To be explicit we denote this parameterized
version by k-Dominating Set.

Theorem 5.1. For each rational quota q, 0 ≤ q < 1 and for any fixed number
n ≥ 3 of judges, UPQRq-Manipulation is W[2]-hard when parameterized by the
maximum number of changes in the premises needed in the manipulator’s judgment
set.

Proof. We start by giving the details for q = 1/2 and three judges, and later
explain how this proof can be extended to capture any other rational quota values
q, 0 ≤ q < 1, and any fixed number of judges greater than three.

The proof will be by a reduction from the W[2]-complete problem k-

Dominating Set. Given a graph G = (V, E) with the set of vertices V =
{v1, . . . , vn}, define N(vi) as the closed neighborhood of vertex vi, i.e., the union
of the set of vertices adjacent to vi and the vertex vi itself. Then, V ′ is a dom-
inating set for G if and only if N(vi) ∩ V ′ �= ∅ for each i, 1 ≤ i ≤ n. We will
now describe how to construct a manipulation instance for judgment aggregation.
Let the agenda Φ contain the variables2 v1, . . . , vn, y and their negations, the for-
mula ϕi = v1

i ∨ · · · ∨ vj
i ∨ y and its negation, where {v1

i , . . . , vj
i } = N(vi) for each i,

1 ≤ i ≤ n, and n−1 syntactic variations of each of these formulas and its negation.
This can be seen as giving each formula ϕi a weight of n. A syntactic variation
of a formula can, for example, be obtained by an additional conjunction with the
constant 1. Furthermore, Φ contains the formula v1 ∨ · · · ∨ vn, its negation, and
n2 − k − 2 syntactic variations of this formula and its negation; this can be seen as
giving this formula a weight of n2 − k − 1. The set of judges is N = {1, 2, 3}, with
the individual judgment sets J1, J2, and J3 (where J3 is the judgment set of the
manipulative judge), and the collective judgment set as shown in Table 5.3. Note
that the Hamming distance between J3 and the collective judgment set is 1 + n2.

Table 5.3: Construction for the proof of Theorem 5.1
Judgment Set v1 · · · vn y ϕ1 · · · ϕn v1 ∨ · · · ∨ vn

J1 1 · · · 1 0 1 · · · 1 1
J2 0 · · · 0 0 0 · · · 0 0
J3 0 · · · 0 1 1 · · · 1 0

UPQR1/2 0 · · · 0 0 ⇒ 0 · · · 0 0

We claim that there is an alternative judgment set for J3 that yields a smaller
Hamming distance to the collective outcome if and only if there is a dominating

2We use the same identifiers v1, . . . , vn for the vertices of G and the variables in Φ, specifying
the intended meaning only if it is not clear from the context.
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set of size at most k for G.
(⇐) Assume that there is a dominating set V ′ of G with |V ′| = k. (If |V ′| < k,

we simply add any k − |V ′| vertices to obtain a dominating set of size exactly
k.) Regarding the premises, the judgment set of the manipulator contains the
variables vi ∈ V ′ and also the literal y. Then the collective outcome also contains
the variables vi ∈ V ′, and since V ′ is a dominating set, each ϕi, 1 ≤ i ≤ n, evaluates
to true and the formula v1∨· · ·∨vn is also evaluated to true. The Hamming distance
to the original judgment set of the manipulator is then k + 1 + (n2 − k − 1) = n2.
Hence the manipulation was successful, and the number of entries changed in the
judgment set of the manipulator is exactly k.

(⇒) Now assume that there is a successful manipulation with judgment set J ′.
The manipulator can change only the premises in the agenda to achieve a better
outcome for him or her. A change for the literal y changes nothing in the collective
outcome, hence the changes must be within the set {v1, . . . , vn}. Including j of
the vi into J ′ has the effect that these vi are included in the collective judgment
set, and that all variations of the formula v1 ∨ · · · ∨ vn and of those ϕi that are
evaluated to true are also included in the collective judgment set. If � formulas
ϕi are evaluated to true in the collective judgment set, the Hamming distance to
J3 is j + 1 + (n2 − n�) + (n2 − k − 1). Since the manipulation was successful, the
Hamming distance can be at most n2. If � < n, it must hold that j ≤ k − n, which
is not possible given that k ≤ n and j > 0. Hence, � = n and j = k. Then exactly
k literals vi are set to true, and since this satisfies all ϕi, they must correspond to
a dominating set of size k, concluding the proof for the quota q = 1/2 and three
judges.

This proof can be adapted to work for any fixed number m ≥ 3 of judgment
sets S1, . . . , Sm and for any rational value of q, with 1 ≤ mq < m. The agenda
remains the same, but S1, . . . , S�mq� are each equal to the judgment set J1 and
S�mq�+1, . . . Sm−1 are each equal to the judgment set J2. The judgment set Sm of
the manipulative judge equals the judgment set J3, and the quota is q for every
positive variable and 1 − q for every negative variable. The number of affirmations
every positive formula needs to be in the collective judgment set is then �mq� + 1.
Then the same argumentation as above holds.

For the remaining case, where 0 ≤ mq < 1, the construction must be slightly
modified. The formulas ϕ1, . . . , ϕn are replaced by ϕ′

i = (v1
i ∧ · · · ∧ vj

i ) ∨ ¬y,
where {v1

i , . . . , vj
i } = N(vi) for each i, 1 ≤ i ≤ n, and the individual judgment

sets J1, . . . , Jm are shown as in Table 5.4, where Jm is the judgment set of the
manipulative judge. Then by similar arguments as above there is a successful
manipulation if and only if the given graph has a dominating set of size at most k.

Since the number of premises changed by the manipulator depends only on the
size k of the dominating set, W[2]-hardness for UPQRq-Manipulation holds for
this parameter. 
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Table 5.4: Construction for the second part of the proof of Theorem 5.1
Judgment Set v1 · · · vn y ϕ′

1 · · · ϕ′
n v1 ∨ · · · ∨ vn

J1, . . . , Jm−1 0 · · · 0 1 0 · · · 0 0
Jm 0 · · · 0 0 1 · · · 1 0

UPQR1/2 0 · · · 0 1 ⇒ 0 · · · 0 0

Since the unparameterized problem Dominating Set is NP-complete, the proof
of Theorem 5.1 implies NP-hardness of UPQRq-Manipulation for any fixed
number n ≥ 3 of judges. Note that a generalization of the proof of Theorem
2 in [EGP10b], which shows NP-hardness for UPQR1/2-Manipulation by a re-
duction from the boolean satisfiability problem, also shows the NP-hardness of
UPQRq-Manipulation, but this reduction would not be appropriate to estab-
lish W[2]-hardness, since the corresponding parameterized version of SAT is not
known to be W[2]-hard.

Studying a fixed number of judges and the parameter maximum number of
changes in the premises needed in the manipulator’s judgment set, is very natural.
We already argued that a fixed total number of judges is important to study since
the number of participating judges may be small in many situations. Considering
the parameter maximum number of changes in the premises needed in the manipu-
lator’s judgment set is also very natural, since the manipulator may wish to report
a judgment set as close as possible to his or her sincere judgment set in order to
remain undiscovered.

In contrast to the hardness results established in Theorem 5.1, the following
proposition shows that under certain assumptions UPQRq, 0 ≤ q < 1, is strategy-
proof.

Proposition 5.1. If the agenda contains only premises then UPQRq, 0 ≤ q < 1,
is strategy-proof.

Proof. Assume that the agenda Φ contains only premises. Then every variable
is considered independently. Let n be the number of judges. If ϕ is contained in
the judgment set J of the manipulator, and ϕ does not have �n·q+1� (respectively,
�n(1−q)�) affirmations without considering J , it cannot reach the required number
of affirmations if the manipulator switches from ϕ to ¬ϕ in his judgment set. 

Dietrich and List [DL07c] showed the far more general result, that any inde-
pendent and monotonic Judgment aggregation procedures is strategy-proof. But
since we use a slightly different formal framework, we gave the short proof for
Proposition 5.1 instead of translating their result into our framework.

Since UPQRq-Manipulation is NP-complete with a fixed number of judges,
there is little hope to find a polynomial-time algorithm for the general problem,
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even when the number of judges participating is fixed. However, if the agenda is
simple and contains no conclusions, by Proposition 5.1, UPQRq is strategy-proof.

5.3.2 Bribery in Judgment Aggregation
After studying the complexity of manipulation in judgment aggregation for the
class of uniform premise-based quota rules, we now turn to bribery in judgment
aggregation. In this section we will study the complexity of different bribery prob-
lems in judgment aggregation for the premise-based procedure PBP, which is equal
to UPQR1/2 for an odd number of judges. We will again establish NP-completeness,
W[2]-hardness for a natural parameter, and show polynomial-time solvability under
certain assumptions. The first problem we consider is PBP-Bribery

Theorem 5.2. PBP-Bribery is NP-complete, even when the total number of
judges (n ≥ 3 odd) or the number of judges that can be bribed is a fixed constant.

Proof. We will show NP-hardness by a slightly modified construction from the
proof of Theorem 5.1 (see Table 5.3). Membership in NP is obvious. We start by
considering the case, where the briber is allowed to bribe exactly one judge. The
notation and the agenda from that proof remain unchanged, but the individual
judgment sets are slightly different. The first two judges remain unchanged, but
the third judge has the same judgment set as the second one, and the desired
judgment set J is equal to J3 from the proof of Theorem 5.1. Table 5.5 summarizes
these individual judgment sets and the evaluation according to PBP.

Table 5.5: Construction for the proof of Theorem 5.2
Judgment Set v1 · · · vn y ϕ1 · · · ϕn v1 ∨ · · · ∨ vn

J1 1 · · · 1 0 1 · · · 1 1
J2, J3 0 · · · 0 0 0 · · · 0 0
PBP 0 · · · 0 0 ⇒ 0 · · · 0 0

J 0 · · · 0 1 1 · · · 1 0

Since the quota is 1/2, two affirmations are needed to be in the collective judgment
set. Again the briber cannot benefit from bribing one judge to switch from ¬y to
y in his or her individual judgment set. Hence the change must be in the set of
variables {v1, . . . , vn} from the second or the third judge. By a similar argument
as in the proof of Theorem 5.1, there is a successful bribery action if and only if
there is a dominating set of size at most k for the given graph.

Now we consider the case that the briber is allowed to bribe more than one judge.
If the briber is allowed to bribe c judges, we construct an instance with 2c+1 judges,
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where one judgment set is equal to J1 and the remaining 2c individual judgment
sets are equal to J2 from the proof of Theorem 5.1. It is again not possible for the
briber to change the entry for y, and the briber must change the entry for any vi

in the judgment sets from c judges to obtain a different collective outcome. This
construction works by similar arguments as above. 

Now we turn to the case where the bribery can change up to a fixed number of
entries in the premises of the individual judgment sets, instead of completely chang-
ing a fixed number of individual judgment sets. We consider the cases where the
number of judges or the number of microbribes allowed is a fixed constant, where
a microbribe denotes the change of one premise entry in an individual judgment
set.

Theorem 5.3. PBP-Microbribery is NP-complete, even when the total number
of judges (n ≥ 3) or the number of microbribes allowed is a fixed constant.

Proof. The proof that PBP-Microbribery is NP-hard is similar to the proof
of Theorem 5.2. The agenda Φ is defined as in the proof of Theorem 5.1. Let c ∈ N

be a fixed constant. The number of judges is 2c+1, where the individual judgment
sets of c judges are of type J1 and the remaining c + 1 individual judgment sets
are of type J2. The desired outcome of the briber is the judgment set J3 from the
proof of Theorem 5.1. The number of affirmations needed to be in the collective
judgment set is at least c + 1, and the number of entries the briber is allowed to
change is at most k. Since none of the judges have y in their individual judgment
sets, the briber cannot change the collective outcome for y to 1. Hence all entries
that can be changed are for the variables v1, . . . , vn. Obviously, setting the value for
one vi in one of the judges of type J2 to 1 causes vi to be in the collective judgment
set and all other changes have no effect on the collective judgment set. By similar
arguments as in the proof of Theorem 5.1, there is a successful microbribery action
if and only if the given graph has a dominating set of size at most k. Since
membership in NP is obvious this completes the proof. 

In the case of PBP-Exact Bribery we now show W[2]-hardness with respect
to the number of judges that can be bribed by making use of the W[2]-hardness of
an Optimal Lobbying problem.

Theorem 5.4. PBP-Exact Bribery is W[2]-hard when parameterized by the
number of judges that can be bribed.

Proof. Observe that an exact bribery instance with only premises in the agenda
and with a complete desired judgment set J is exactly the Optimal Lobbying

problem. Since this is W[2]-complete for the parameter number of rows that can be
changed, PBP-Exact Bribery inherits the W[2]-hardness lower bound, where
the parameter is the number of judges that can be bribed. 
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Note that W[2]-hardness with respect to any parameter directly implies
NP-hardness for the corresponding unparameterized problem, so PBP-Exact

Bribery is also NP-complete (all unparameterized problems considered here are
easily seen to be in NP).

For PBP-Exact Microbribery we again show NP-completeness.

Theorem 5.5. PBP-Exact Microbribery is NP-complete, even when the total
number of judges (n ≥ 3 odd) or the number of microbribes allowed is a fixed
constant.

Proof. Consider the construction in the proof of Theorem 5.3, and change the
agenda such that there are only n2 − 2 (instead of n2 − k − 2) syntactic variations
of the formula v1 ∨ · · · ∨ vn (i.e., this can be seen as giving a weight of n2 − 1
to this formula), and the desired judgment set J is incomplete and contains all
conclusions. Note that this is possible due to the additional variable y. By similar
arguments as above, a successful microbribery of k entries is possible if and only
if there is a dominating set for G of size at most k. 

In Theorems 5.2, 5.3, and 5.5 we studied different bribery problems with a fixed
number of judges, as for the manipulation problem in Theorem 5.1. It turned out
that even in this case Bribery, Microbribery, and Exact-Microbribery,
are all NP-complete for the premise-based procedure for the majority rule. Fur-
thermore we considered the case of a fixed number of judges allowed to bribe for
PBP-Bribery, the corresponding parameter for its exact variant, and the case
of a fixed number of microbribes allowed for PBP-Microbribery and its exact
variant. Both parameters concern the budget of the briber. Since the briber aims
at spending as little money as possible, it is also natural to consider this parameter.
But again, NP-completeness was shown even when the budget is a fixed constant
and in one case W[2]-hardness for this parameter, so bounding the budget does
not help to solve the problem easily.

Although the exact microbribery problem is computationally hard in general
for the aggregation procedure PBP, there are some interesting naturally restricted
instances where it is computationally easy.

Theorem 5.6. If the desired judgment set is complete or if the desired judgment set
is incomplete but contains all of the premises or only premises, then PBP-Exact

Microbribery is in P.

Proof. We give only an informal description of the algorithm that computes a
successful microbribery

Input: Our algorithm takes as input a complete profile T, a consistent judgment
set J , and a positive integer k.
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Step 1: For each premise present in J , compute the minimum number of entries
that have to be flipped in order to make the collective judgment on that
premise equal to the desired judgment set’s entry on that premise. Note that
this can be done in linear time, since it is a simple counting. Let di denote
the number of entries needed to flip for premise i.

Step 2: Check if ∑
i di ≤ k.

Output: If ∑
i di ≤ k, output the entries which have to be flipped and halt.

Otherwise, output “bribery impossible” and halt.

Clearly this algorithm works in polynomial time. The output is correct since if
we need no more than k flips in the premises, the premises are evaluated exactly
as they are in J , and the conclusions follow automatically, since we are using a
premise-based procedure. 

5.3.3 Control in Judgment Aggregation
For the above studied manipulation and bribery problems the number of judges
participating is constant and hence uniform premise-based quota rules and uniform
constant premise-based quota rules describe the same judgment aggregation proce-
dures. However, in control by adding or deleting judges the number of participating
judges is not fixed. The number of affirmations varies with the number of partic-
ipating judges for the uniform premise-based quota rule, whereas the number of
affirmations needed in the uniform constant premise-based quota rule remains the
same regardless of the number of judges participating. Since in control by adding or
deleting judges the number of judges participating varies, we study these problems
with respect to both judgment aggregation procedures. In contrast, the number
of judges participating is constant in control by replacing judges. We will first
consider the uniform premise-based quota rule and show hardness for UCPQRq for
control by adding judges in the Hamming distance based and in the exact variant.
The following proofs will again be by a reduction from the NP-complete problem
Dominating Set.

Theorem 5.7. For each admissible value of q, UCPQRq is resistant to Control

by Adding Judges and to Exact Control by Adding Judges.

Proof. Membership in NP is obvious for both problems. We prove resistance to
Exact Control by Adding Judges and to Control by Adding Judges

at the same time by indicating the slight differences required in the construction.
The reduction is similar to that in the proof of Theorem 5.1. Let (G, k) be a

given Dominating Set instance and let N(vi) denote the closed neighborhood of
vertex vi ∈ V . For the judgment aggregation instance, let the agenda Φ contain
the variables v1, . . . , vn, y and their negations, for each i, 1 ≤ i ≤ n, the formula
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ϕi = v1
i ∨ · · · ∨ vm

i ∨ y, where {v1
i , . . . , vm

i } = N(vi), and its negation, the formula
ψ = v1 ∨ · · · ∨ vn, its negation, and n − 2 syntactic variations of this formula and
its negation. This can be seen as giving the weight n − 1 to the formula ψ. The
quota for every positive literal is q, hence q + 1 affirmations are needed to be in
the collective judgment set. The set T of judges who initially take part contains
q judgment sets that contain the literals v1, . . . , vn, and hence all formulas ϕi,
1 ≤ 1 ≤ n, and the formula ψ and its syntactic variations, and the negation of all
formulas in Φ not mentioned here. Furthermore, there is one judgment set T that
contains all negated formulas from Φ.

In the case of Exact Control by Adding Judges the desired judgment
set J is incomplete and contains the formulas ϕi, 1 ≤ i ≤ n. And in the case of
Control by Adding Judges the desired judgment set J additionally contains
the negation of the formula ψ (and its syntactic variations). Observe that in both
cases J is consistent, since setting y to true and all vi, 1 ≤ i ≤ n, to false results
in the desired evaluation. The profile S of judges who may be added contains n
judges, with the individual judgment sets Ji, 1 ≤ i ≤ n, where Ji contains the
variable vi, the negation of all vj , 1 ≤ j ≤ n, j �= i, the negation of y, and the
corresponding conclusions.

For the case of Exact Control by Adding Judges we claim that there is
a dominating set of size at most k for G if and only if we can ensure that the
outcome contains all formulas from J by adding at most k judges from S. From
left to right, if there is a dominating set V ′, we can ensure that the formulas from
J are part of the collective judgment set by adding those judges Ji with vi ∈ V ′.
Thus, all formulas ϕi, 1 ≤ i ≤ n, evaluate to true.

Conversely, assume that all formulas ϕi, 1 ≤ i ≤ n, evaluate to true. It is
not possible to achieve this by having y in the collective outcome, since there are
no individual judgment sets containing y. Hence, the collective outcome for vi,
1 ≤ i ≤ n, makes all ϕi true. The maximum number of judges that can be added
is k, and exactly one literal vi is contained in the collective judgment set for each
judge from S that is added. Hence, the vertices vi corresponding to the judges Ji

from S that have been added must form a dominating set for the graph G.
Now we consider the case of Control by Adding Judges. Note that the

Hamming distance between the collective outcome from the judges in T and J is
n. Assume that there is a dominating set V ′, as in the previous case add those
judges Ji with vi ∈ V ′. Then, the Hamming distance of the collective outcome to
J is n − 1, since the formula ψ (and its n − 2 syntactic variations) are evaluated
to true, and J contains the negations of these n − 1 formulas.

If there are at least k judges from S that are added such that the Hamming
distance of the collective outcome to J is smaller than n, all formulas ϕi, 1 ≤
i ≤ n must be evaluated to true, since adding judges from S always causes that
the formula ψ (and its n − 2 syntactic variations) are contained in the collective
outcome. Hence, it must again be the case that those vertices vi where the judge
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Ji from S was added must form a dominating set for the graph G. 

Now we show NP-hardness for control by deleting judges in the Hamming dis-
tance and in the exact variant.

Theorem 5.8. For each admissible value of q, UCPQRq is resistant to Control

by Deleting Judges and to Exact Control by Deleting Judges.

Proof. Both problems are easily seen to be in NP, and we will show NP-hardness
by a similar construction as in the proof of Theorem 5.7. Again, we show hardness
in both cases with the same construction. We first consider the case of Exact

Control by Deleting Judges. For a given Dominating Set instance (G, k),
we construct the following judgment aggregation scenario. Let the agenda Φ be
the same as in the proof of Theorem 5.7 plus an additional variable z, its negation,
and n − 1 syntactic variations of this variable and its negation. This can again
be seen as if z has a weight of n. The quota is q for ¬vi, 1 ≤ i ≤ n, and all
remaining positive literals. The profile T contains q individual judgment sets that
each contain z and the negation of all remaining formulas in Φ, one judgment set
containing v1, . . . , vn, z and the negation of all remaining formulas, and for each i
one judgment set Ji that contains all vi, i �= j, and the negation of all remaining
formulas. The judgment set desired by the chair is incomplete and contains z (and
its syntactic variations) and the formulas ϕi, 1 ≤ i ≤ n.

We claim that there is a dominating set of size at most k for G if and only if
there is a successful control action. If there is a dominating set V ′ for G, then the
desired judgment set J is obtained by deleting those Ji with vi ∈ V ′. Conversely,
assume that it is possible that the desired formulas are in the collective judgment
set by deleting at most k judges. Since z is in the collective outcome, only judges
of the form Ji, 1 ≤ i ≤ n, may be deleted. The deletion of a judge Ji has the effect
that vi is in the collective outcome, hence at most k different vi are contained in
the collective outcome, and since they evaluate all formulas ϕi, 1 ≤ i ≤ n, to true,
those vi must form a dominating set of size at most k for G.

For the problem Control by Deleting Judges the desired outcome J also
contains the formula ψ. To see that the reduction holds, observe that the Hamming
distance from J to the collective judgment set of the initial instance is n. If there
is a dominating set V ′ for G, deleting those judges Ji with vi ∈ V ′, results in an
outcome with Hamming distance n − 1 to J , since ψ is contained in the collective
outcome.

Now, assume that by deleting k judges an outcome with a smaller Hamming
distance to J than between the original outcome and J is obtained. Removing z
from the collective judgment set always results in a Hamming distance to J that
is at least n, hence z is still in the collective judgment set. This implies that only
judges of the form Ji have been deleted. Deleting one judge Ji in turn causes ψ to
be in the collective judgment set. Hence the Hamming distance to J is n − 1, and
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all formulas ϕi, 1 ≤ i ≤ n, must also be contained in the collective outcome. Thus
those vi where the judge Ji has been deleted form a dominating set of size at most
k for G. 

In the following we consider the uniform premise-based quota rule in the case of
adding and deleting judges. Here we focus on UPQR1/2, which equals the premise-
based procedure PBP in the case of an odd number of judges. We start by showing
NP-hardness for control by adding judges in both problem variants. We will show
NP-hardness by a reduction from the NP-complete problem Exact Cover by

3-Sets (X3C for short), which is formally defined in Section 3.5. Recall that
this problem asks, if for a given set X = {x1, . . . , x3m} and a collection C =
{C1, . . . , Cn} with |Ci| = 3 and Ci ⊆ X, 1 ≤ i ≤ n, there is a subcollection C ′ ⊆ C
that is an exact cover for X.

Theorem 5.9. UPQR1/2 is resistant to Exact Control by Adding Judges

and to Control by Adding Judges.

Proof. Membership in NP is obvious for both problems. Again, we show
NP-hardness for UPQR1/2-Exact Control by Adding Judges and UPQR1/2-

Control by Adding Judges at the same time, by a reduction from the NP-
complete problem X3C. Given an X3C instance (X, C) with X = {x1, . . . , x3m}
and C = {C1, . . . , Cn}, define the following judgment aggregation scenario. The
agenda Φ contains {α0, α1, . . . , α3m} and their negations. The quota q = 1/2 holds
for every positive literal. The profile of the individual judgment sets initially
taking part in the process is T = (T1, . . . , Tm+1) with T1 = {α0, α1, . . . , α3m},
Ti = {¬α0, α1, . . . , α3m}, 2 ≤ i ≤ m, and Tm+1 = {¬α0, ¬α1, . . . , ¬α3m}.
The profile of the judges who can be added is S = (S1, . . . , Sn) with Si =
{α0, αj , ¬α� | xj ∈ Ci, x� �∈ Ci, 1 ≤ j, � ≤ 3m}. The maximum number of judges
from S who can be added is m. The desired outcome of the external person is
J = {α0, α1, . . . , α3m}. Then it holds, that there is a profile S′ ⊆ S, |S′| ≤ m, such
that H(J, F (T∪S′)) < H(J, F (T)) if and only if there is an exact cover for the given
X3C instance. The collective judgment set for UPQR1/2(T) is {¬α0, α1, . . . , α3m}.
Observe that H(J, F (T)) = 1, since the only difference lies in α0. Hence, F (T∪S′))
must be exactly J , and the reduction will hold for both problems at hand.

(⇐) Assume that there is an exact cover C ′ ⊆ C for the given X3C instance
(X, C). Then the profile S′ contains those judges Si with Ci ∈ C ′. The total
number of judges is then 2m + 1. The number of affirmations needed to be in the
collective judgment set is strictly greater than m + (1/2), so m + 1 affirmations are
needed. Note that α0 gets one affirmation from the judges in T and m affirmations
from the judges in S′. Every αi, 1 ≤ i ≤ 3m, gets m affirmations from the judges
in T and one affirmation from a judge in S′. Hence, the collective judgment set
is J , as desired.
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(⇒) Assume that there is a profile S′ with |S′| ≤ m such that UPQR1/2(T∪S′) =
J . Since α0 is contained in the collective judgment set it must receive enough
affirmations of the judges in S′. Adding less than m new affirmations for α0 is
not enough, since m − 1 ≤ (2m)(1/2), but since (2m + 1)(1/2) < m + 1, m new
affirmations are enough. As above, if there is a total number of 2m+1 judges then
the number of affirmations needed for a positive formula to be in the collective
judgment set is m + 1. Since the αi, 1 ≤ i ≤ 3m, receive only m affirmations from
T, they must all get one additional affirmation from S′. Since |S′| ≤ m and every
judge affirms of exactly four formulas, including α0, the sets Ci corresponding to
the judges in S′ must form an exact cover for the given X3C instance. 

One important point regarding the proof of Theorem 5.9 is that the agenda
contains only premises. In contrast to the NP-hardness result obtained here, we
showed in Proposition 5.1 that UPQRq is strategy-proof for each rational quota q,
0 ≤ q < 1, if the agenda contains only premises. Similarly Theorem 5.6 shows that
PBP-Exact Microbribery is also in P if the desired judgment set contains only
premises. We now show that this is not the case for UPQR1/2-Exact Control

by Deleting Judges.

Theorem 5.10. UPQR1/2 is resistant to Exact Control by Deleting

Judges and to Control by Deleting Judges.

Proof. Membership in NP is obvious for both problems. We first prove NP-
hardness for UPQR1/2-Exact Control by Deleting Judges and show af-
terwards how the construction must be modified to also hold for the case of
UPQR1/2-Control by Deleting Judges. The proof of NP-hardness for the
exact problem is by a reduction from the NP-complete X3C problem. Given
an X3C instance (X, C) with X = {x1, . . . , x3m} and C = {C1, . . . , Cn}, we as-
sume that every element from X occurs in at least one set from C. If this is
not the case, it is a no-instance for X3C (and we then map to an easily con-
structed no-instance of our exact control problem in judgment aggregation). Now
we construct the following judgment aggregation scenario. The agenda Φ con-
tains β, α0, . . . , α3m and their negations, and the quota is 1/2 for every positive
literal. The complete profile is T = T1 ∪ T2, where T1 = {J1, . . . , Jn+m} and
T2 = {L1, . . . , Ln}, so |T| = 2n + m. The individual judgment sets Ji from
T1 consist of the set {αj , ¬α� | m + dj ≥ i, m + d� < i, 1 ≤ j, � ≤ 3m}, for
1 ≤ i ≤ n + m, where di is the number of sets Cj in which xi occurs. Note that
α0 is contained in Ji if i ≤ n + 1, and ¬α0 otherwise; and that β is contained
in Ji if i ≤ m, and ¬β otherwise. The individual judgment sets from T2 are
Li = {β, ¬α0, αj, ¬α� | xj �∈ Ci, x� ∈ Ci, 1 ≤ j, � ≤ 3m}, 1 ≤ i ≤ n. The desired
outcome is J = {¬β, α0, . . . , α3m}, and at most m judges can be deleted. The out-
come of UPQR1/2(T) is {β, ¬α0, α1, . . . , α3m}, since α0 receives n + 1 affirmations,
and β and all αi, 1 ≤ i ≤ 3m, receive n + m affirmations each. The only difference
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between the actual outcome and the desired judgment set is that α0 and ¬β are
not contained in the collective judgment set.

Assume that there is an exact cover C ′ ⊆ C with |C ′| = m. By deleting the
judges Li corresponding to this exact cover, we have that α0 still receives n + 1
affirmations, and each αi, 1 ≤ i ≤ 3m, loses exactly m − 1 affirmations and
has n + 1 affirmations. Also, β loses m affirmations and has only n affirmations
left. The number of participating judges is now 2n, so n + 1 affirmations are
needed to be in the collective judgment set. As desired, the collective outcome is
{¬β, α0, α1, . . . , αm}.

Conversely, assume that by deleting at most m judges, the collective outcome
is {¬β, α0, α1, . . . , αm}. Observe that exactly m judges must be deleted, since α0
has only n + 1 affirmations and hence can be in the collective judgment set only
if at least m voters that do not affirm α0 are deleted. Furthermore, β should not
be contained in the collective outcome. The number of initial affirmations for β is
n + m. If the number of judges participating is reduced by m, n + 1 affirmations
suffice to be in the collective judgment set. This implies that only judges having
β in their individual judgment sets can be deleted. In total, this means that all m
judges must be deleted from the set T2. If there is one xi which is not contained
in any of sets Cj corresponding to the deleted judges, αi loses m affirmations, and
would no longer be contained in the collective judgment set. But if every αi is
deleted exactly m − 1 times, they all have n + 1 affirmations and are all contained
in the collective judgment set. Hence the sets Ci corresponding to the deleted
judges must form an exact cover for the given X3C instance.

With a slight adaption of the above proof we can also show that PBP-Control

by Deleting Judges is NP-hard. The agenda is extended by the formula α0∧¬β
and its negation, and the desired judgment set J is incomplete and contains αi,
1 ≤ i ≤ 3m, and the formula α0 ∧ ¬β. The Hamming distance from J to the
original outcome is 1, since α0 ∧¬β is evaluated to false for the collective judgment
set. By the same reasoning as above, there is an exact cover for the given X3C

instance if and only if it is possible to control the judgment aggregation scenario
successfully by deleting at most m judges. 

In the proof of NP-hardness for PBP-Exact Control by Deleting Judges

it again is the case that the agenda contains only premises, but for PBP-Control

by Deleting Judges it remains open whether the problem is still NP-complete
if the agenda contains only premises.

Furthermore, there are no natural restrictions that turn one of our control prob-
lems to be solvable in polynomial time, as was the case for manipulation and
bribery.

Finally, we consider the newly introduced control type Control by Replac-

ing Judges specific to judgment aggregation. In contrast to the problems of
control by adding and deleting judges, here the number of judges participating is
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constant, as it was the case for the manipulation and bribery problems. Thus,
there is again no difference between the uniform premise-based quota rule and
the uniform constant premise-based quota rule. In the following theorem we show
NP-completeness for both classes of rules in the Hamming distance based and the
exact variant of control by replacing judges.

Theorem 5.11. For each rational quota q, 0 ≤ q < 1, UPQRq is resistant to Ex-

act Control by Replacing Judges and Control by Replacing Judges.

Proof. It can easily be seen that both problems belong to NP. Hardness for
NP will be shown by a slight modification of the construction from the proof of
Theorem 5.7. To make the reduction from this proof work for the case of replacing
judges, we add k judges to the profile T that potentially will be replaced by those
in S. These k new judgment sets from T contain all negated formulas from the
agenda. To ensure that only those judges can be replaced, we introduce one new
formula, z, its negation, and n syntactic variations of it into the agenda. This
formula is contained in all q + 1 individual judgment sets from the initial set
T. The judges from S all contain ¬z. Furthermore, the desired judgment set
J also contains z. For the exact variant, the same arguments as in the proof of
Theorem 5.7 hold. For Control by Replacing Judges, note that the Hamming
distance of the original outcome to J is still n, and that replacing a judge that
has z in its individual judgment set always results in a Hamming distance that
is greater than n + 1. Again, only those judges that contain all negated formulas
from Φ can be replaced, and the same arguments as in the proof of Theorem 5.7
apply. 

5.4 Conclusions and Future Work
Following up a line of research initiated by Endriss et al. [EGP10a, EGP10b], we
have studied the computational complexity of problems related to manipulation,
bribery, and control in judgment aggregation. Our results for manipulation and
bribery are summarized in Table 5.6, where the results for UPQRq-Manipulation

hold for every rational q, 0 ≤ q < 1. “# of judges” stands for a fixed number
of judges, “max # of changes” stands for the parameter “maximum number of
changes in the premises needed in the manipulators judgment set”, in case of
NP-completeness “# of bribes” means that only a fixed number of judges can be
bribed and denotes the corresponding parameter in case of W[2]-hardness, and “#
of microbribes” indicates that the number of microbribes is a fixed constant. The
entry  implies that the combination of parameter and problem is not applicable.

The unparameterized results for control by adding, deleting, and replacing judges
are summarized in Table 5.7. Resistance for UCPQRq holds for all admissible values
for q, and in the case of UPQRq resistance holds for all values of q, 0 ≤ q < 1.
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Table 5.6: Overview of results for manipulation and bribery problems
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# of judges NP-comp. NP-comp. NP-comp. NP-comp.
max # of changes W[2]-hard    

# of bribes  NP-comp. W[2]-hard  

# of microbribes    NP-comp. NP-comp.
general problem NP-comp. NP-comp. NP-comp. NP-comp. NP-comp.

In particular, the complexity of bribery and control—though deeply investigated
in the context of voting [FHH09, EFS09, FHHR09a, BTT92, HHR07, BEH+10,
BEH+10]—has not been studied before in the context of judgment aggregation.
For the four natural scenarios modeling different ways of bribery, we have shown
that the corresponding decision problems are NP-complete even when some nat-
ural parameters are a fixed constant and one problem is shown to be W[2]-hard
for a natural parametrization. In addition, extending the results of Endriss et
al. [EGP10b] on the (classical) complexity of manipulation in judgment aggrega-
tion, we have obtained W[2]-hardness for the class of uniform premise-based quota
rules, for each reasonable quota. It remains open, however, whether one can also
obtain matching upper bounds in terms of parameterized complexity. We suspect
that all W[2]-hardness results from this chapter in fact can be strengthened to
W[2]-completeness results. For the three very natural types of control introduced
for judgment aggregation, we obtained NP-hardness for all studied variants. But
the complexity for control and exact control by adding or deleting candidates re-
mains open for the uniform premise based quota rules for all values of q except
1/2.

Faliszewski et al. [FHH09] introduced and studied also the “priced” and
“weighted” versions of bribery in voting. These notions can be reasonably ap-
plied to bribery in judgment aggregation: The “priced” variant means that judges
may request different amounts of money to be willing to change their judgments ac-
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Table 5.7: Overview of results for control problems
Problem Type UCPQRq UPQR1/2 UPQRq

Control by Adding Judges resistant resistant
Exact Control by Adding Judges resistant resistant
Control by Deleting Judges resistant resistant
Exact Control by Deleting Judges resistant resistant
Control by Replacing Judges resistant resistant resistant
Exact Control by Replacing Judges resistant resistant resistant

cording to the briber’s will, and the “weighted” variant means that the judgments
of some judges may be heavier than those of others. For example it is reasonable
that the judgments of some experts are heavier than those of the remaining judges.
Although we have not defined this in a formal setting here, note that our hardness
results carry over to more general problem variants as well.

We have introduced three types of control for judgment aggregation. Two were
derived from voting and one especially introduced for the context of judgment ag-
gregation. Here, the question arises if there are any other control problems that can
be defined in the context of judgment aggregation. In contrast to the manipulation
and bribery problems, the parameterized complexity of the control problems has
not been studied yet. Furthermore, there are other natural parameters or other
natural judgment aggregation procedures that are are worth investigating. Until
now we only investigated the exact variant and the Hamming-distance based ap-
proached. One could also define manipulation, bribery, and control problems with
respect to other natural distance functions between judgment sets.

A more interesting task for future research would be to try to complement our pa-
rameterized worst-case hardness results by studying typical-case behavior for these
problems, as is currently done intensely in the context of voting (see, e.g., [RS12]).

In summary, the computational analysis of problems related to judgment ag-
gregation is an interesting field of research and still leaves possibilities for further
investigations.
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