

Expression of ROS-responsive genes and transcription factors after metabolic formation of H2O2 in chloroplasts

Salma Balazadeh, Nils Jaspert, Muhammad Arif, Bernd Mueller-Roeber and Veronica Graciela Maurino

Journal Name:	Frontiers in Plant Science
ISSN:	1664-462X
Article type:	Original Research Article
Received on:	17 Aug 2012
Accepted on:	01 Oct 2012
Provisional PDF published on:	01 Oct 2012
Frontiers website link:	www.frontiersin.org
Citation:	Balazadeh S, Jaspert N, Arif M, Mueller-roeber B and Maurino VG(2012) Expression of ROS-responsive genes and transcription factors after metabolic formation of H2O2 in chloroplasts. <i>Front.</i> <i>Physio.</i> 3:234. doi:10.3389/fpls.2012.00234
Article URL:	http://www.frontiersin.org/Journal/Abstract.aspx?s=907& name=plant%20physiology&ART_DOI=10.3389/fpls.2012.00234 (If clicking on the link doesn't work, try copying and pasting it into your browser.)
Copyright statement:	© 2012 Balazadeh, Jaspert, Arif, Mueller-roeber and Maurino. This is an open-access article distributed under the terms of the <u>Creative Commons Attribution License</u> , which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

This Provisional PDF corresponds to the article as it appeared upon acceptance, after rigorous peer-review. Fully formatted PDF and full text (HTML) versions will be made available soon.

1	Expression of ROS-responsive genes and transcription factors after
2	metabolic formation of H ₂ O ₂ in chloroplasts
3	
4	Salma Balazadeh ^{1§} , Nils Jaspert ^{2§} , Muhammad Arif ¹ , Bernd Mueller-Roeber ¹ and Veronica G.
5	Maurino ^{2*}
6	
7	¹ Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
8	² Plant Molecular Physiology and Biotechnology, Center of Excellence on Plant Sciences
9	(CEPLAS), Heinrich-Heine-University, Düsseldorf, Germany.
10	
11	[§] Both authors contributed equally to the work
12	
13	*Corresponding author
14	Dr. Veronica G Maurino
15	Entwicklungs- und Molekularbiologie der Pflanzen
16	Heinrich-Heine-Universität
17	Universitätsstraße 1
18	40225 Düsseldorf, Germany
19	E-mail: veronica.maurino@uni-duesseldorf.de
20	
21	
22	<i>Running title:</i> Transcriptional modulation by chloroplastically produced H ₂ O ₂
23	
24	Number of words: 5928
25	Number of figures: 2
26	

26 Abstract

Glycolate oxidase (GO) catalyses the oxidation of glycolate to glycoxylate, thereby consuming O_2 27 and producing H₂O₂. In this work, Arabidopsis thaliana plants expressing GO in the chloroplasts 28 (GO plants) were used to assess the expressional behaviour of reactive oxygen species (ROS)-29 responsive genes and transcription factors (TFs) after metabolic induction of H₂O₂ formation in 30 chloroplasts. In this organelle, GO uses the glycolate derived from the oxygenase activity of 31 RubisCO. Here, to identify genes responding to an abrupt production of H₂O₂ in chloroplasts we 32 used quantitative real-time PCR (qRT-PCR) to test the expression of 187 ROS-responsive genes 33 and 1,880 TFs after transferring GO and wild-type plants grown at high CO₂ levels to ambient 34 CO₂ concentration. Our data revealed coordinated expression changes of genes of specific 35 functional networks 0.5 h after metabolic induction of H₂O₂ production in GO plants, including 36 37 the induction of indole glucosinolate and camalexin biosynthesis genes. Comparative analysis using available microarray data suggests that signals for the induction of these genes through 38 H₂O₂ may originate in the chloroplast. The TF profiling indicated an upregulation in GO plants 39 of a group of genes involved in the regulation of proanthocyanidin and anthocyanin biosynthesis. 40 41 Moreover, the upregulation of expression of TF and TF-interacting proteins affecting development (e.g., cell division, stem branching, flowering time, flower development) would 42 43 impact growth and reproductive capacity, resulting in altered development under conditions that promote the formation of H_2O_2 . 44

45

46 Keywords

47 Glycolate oxidase, H₂O₂, ROS-responsive genes, transcription factors

48

49 i. Introduction

Photosynthetic organisms are confronted with reactive oxygen species (ROS), such as singlet oxygen ($^{1}O_{2}$), the superoxide anion radical (O_{2}^{-}), the hydroxyl radical (OH·), and hydrogen peroxide (H₂O₂), which may cause oxidative stress and damage to important biological molecules (Apel and Hirt, 2004; Møller et al., 2007). Plants in their natural environments are often exposed to sudden increases in light intensity, which results in the absorption of excitation energy in excess of that required for metabolism. In chloroplasts, when absorbed energy is in excess at photosystem II (PSII), O_{2}^{--} is produced during the Mehler reaction by Fd-NADPH 57 oxidase at PSI and is dismutated by superoxide dismutase (SOD) to H_2O_2 (Ort and Baker, 2002; 58 Asada, 2006). The photorespiratory pathway consumes photosynthetic reducing energy and 59 produces H_2O_2 in the peroxisomes through the action of catalase (Maurino and Peterhansel, 60 2010). H_2O_2 is also produced during a variety of different reactions under stress conditions, often 61 through the detoxification of 1O_2 and O_2^{-} . The generated H_2O_2 is scavenged by different 62 antioxidant/enzyme reactions: the ascorbate and glutathione cycles, ascorbate peroxidase (APX), 63 catalase, and peroxiredoxin (PRX) (Tripathi et al., 2009).

64

ROS generated in the chloroplast have been implicated as triggers of signaling pathways that 65 influence expression of nuclear-encoded genes, which may initiate responses such as cell death 66 or acclimation depending on the degree of the stress (Karpinski et al., 1999; Fryer et al., 2003; 67 Op den Camp et al., 2003; Danon et al., 2005). H₂O₂ can take part in signaling acting as 68 messenger either directly (e.g., by reversibly modifying critical thiol groups in target proteins; 69 Neill et al., 2002) or by using an oxidized product as a secondary messenger (Møller et al., 2007). 70 The H₂O₂-scavenging enzymes APX and dehydroascorbate reductase (DHAR) may act as highly 71 72 efficient initiators of oxidative signaling by generating transient bursts of reduced glutathione. This in consequence triggers glutaredoxin-mediated protein oxidation (Neill et al., 2002). Cross 73 74 talk between redox pools of different cellular compartments, possibly transmitted by a redox shift in cellular components, has also been suggested to be important for control of the expression of 75 76 nuclear genes (Baier and Dietz, 2005; Leister, 2005). A generalized model of H₂O₂ signal transduction pathways suggests that H_2O_2 may also directly oxidize transcription factors (TFs) in 77 78 either the cytosol or the nucleus. Alternatively, H₂O₂-mediated activation of a signaling protein such as a protein kinase may activate TFs (Mittler et al., 2004; Miao et al., 2007). TFs would 79 80 interact with cognate H₂O₂-response elements in target gene promoters thereby modulating gene expression (Foyer and Noctor, 2005). Recently, Møller and Sweetlove (2010) put forward the 81 hypothesis that H_2O_2 itself is unlikely to be the signaling molecule that selectively regulates 82 nuclear-encoded chloroplastic genes but rather that oxidized peptides deriving from proteolysis 83 of oxidized proteins would act as second messengers during retrograde ROS signaling. On the 84 other hand, using spin trapping EPR spectroscopy in addition to chemical assays (employing 85 Amplex Red reagent), Mubarakshina et al. (2010) showed that 5% of the H₂O₂ produced inside 86 chloroplasts at high light intensities can actually be detected outside the organelles. This process 87

may involve the pass of H_2O_2 through aquaporins (Bienert et al., 2007) and might be sufficient to trigger signaling processes outside the chloroplasts.

90

Desikan et al. (2001) showed that approximately 1% of the transcriptome was altered in H₂O₂-91 treated Arabidopsis thaliana (A. thaliana) cell cultures. Although H₂O₂-responsive promoters 92 have been identified (Desikan et al., 2001), specific H₂O₂-regulatory DNA sequences and their 93 cognate TFs have not been isolated and characterized. In more recent studies genes involved in 94 H₂O₂ signal transduction have been identified or proposed, including mitogen-activated protein 95 kinases (MAPKs), various TFs of e.g. the NAC, ZAT and WRKY families, miRNAs and others 96 (Van Breusegem et al., 2008; Li et al., 2011; Petrov and Van Breusegem, 2012). Moreover, using 97 genome-wide analysis of catalase deficient A. thaliana, H₂O₂ was inferred to regulate the 98 99 expression of genes encoding specific small heat shock proteins, several TFs and candidate regulatory proteins (Vandenabeele et al., 2004; Vanderauwera et al., 2005). 100 To date, it is not known to which extent the chemical specificity of the ROS species and the 101 cellular compartment of their release may contribute to the multiplicity of responses that occur in 102 103 plants. A major challenge is to dissect the genetic networks that control ROS signaling and to

assess specific and common responses towards different types of ROS signals. To this end, the 104 105 molecular, biochemical and physiological responses of A. thaliana to elevated in planta levels of H₂O₂ were and are being investigated in various types of model systems including mutants 106 107 altered in the ROS scavenging machinery (Maurino and Flügge, 2008). However, the analysis of dynamic physiological processes using (knock-out) mutants may not always be straightforward, 108 109 especially when compensatory cellular mechanisms are induced. With respect to ROS-related mutants, changing the balance of scavenging enzymes may induce compensatory mechanisms 110 111 such that signaling and oxidative damage effects may not be easily separated. Moreover, invasive experimental setups like the application of oxidative stress-causing agents may induce a non-112 specific oxidative stress that acts throughout the cell and triggers additional responses that may 113 complicate the analysis of ROS signal transduction pathways (Maurino and Flügge, 2008). We 114 have recently developed a tool to functionally dissect the action of plastid-generated H₂O₂, using 115 plants overexpressing glycolate oxidase (GO) in plastids (GO plants; Fahnenstich et al., 2008). 116 During photosynthesis, the of ribulose 1,5-bisphosphate 117 oxygenase activity carboxylase/oxygenase (RubisCO) produces glycolate 2-phosphate within the chloroplasts, 118

which is then dephosphorylated to glycolate by phosphoglycolate phosphatase (Maurino and 119 Peterhansel, 2010). In GO plants, glycolate is oxidized to glyoxylate by the plastidic GO, with 120 121 the parallel production of H_2O_2 . When growing under moderate photon fluxes and ambient CO_2 concentration (photorespiratory conditions) the GO plants remain smaller than the wild type, 122 presenting a reduced rosette diameter and yellowish leaves due to H₂O₂ accumulation 123 (Fahnenstich et al., 2008). In contrast, in non-photorespiratory conditions (e.g., at high CO₂ 124 concentration) the oxygenase activity of RubisCO is abolished and thus, the metabolic flux 125 through GO is suppressed, allowing GO plants to grow like wild type (Fahnenstich et al., 2008). 126 Transferring GO plants from high to ambient CO₂ concentration specifically induces H₂O₂ 127 formation in the chloroplasts (Fahnenstich et al., 2008). These properties permit the modulation 128 of plastidic produced H₂O₂ levels by changing light intensity and/or CO₂ levels (Maurino and 129 Flügge, 2008). Moreover, H₂O₂ is specifically generated without a concomitant accumulation of 130 superoxide or singlet oxygen, which are common precursors of H₂O₂ during ROS generation in 131 chloroplasts. A similar experimental set-up was employed in previous studies using catalase-132 deficient plants in which the production of peroxisomal H₂O₂ is induced by changing the 133 134 conditions of plant growth from non-photorespiratory to photorespiratory (e.g., high light intensity) (Dat et al., 2001; Vandenabeele et al., 2004; Vanderauwera et al., 2005). The metabolic 135 production of H₂O₂ may avoid the pleiotropic effects discussed above but it cannot be ruled out 136 that ROS-unrelated reactions may still occur in both approaches due to abrupt changes in CO₂ 137 138 level or light intensity.

139

140 In this work we attempted to identify genes strongly responding to an abrupt production of H_2O_2 in chloroplasts of A. thaliana. To this end we tested the expressional changes of 187 nuclear-141 142 encoded ROS-responsive genes and 1,880 TFs, using quantitative real-time (qRT)-PCR (Czechowski et al., 2004; Balazadeh et al., 2008; Wu et al., 2012) upon transfer of high CO₂-143 grown GO and wild-type plants to ambient CO_2 concentration. Our data revealed a rapid and 144 coordinated expression response of ROS-affected genes of specific functional networks in GO 145 including an early induction of indole glucosinolate and camalexin biosynthesis genes and an 146 upregulation of a group of genes involved in the regulation of proanthocyanidin and anthocyanin 147 biosynthesis. Moreover, the upregulation of expression of TF and TF-interacting proteins 148 affecting development (e.g., cell division, stem branching, flowering time, flower development) 149

would impact growth and reproductive capacity, resulting in altered development under conditions that promote the formation of H_2O_2 .

- 152
- 153

154 ii. Material and methods

155 **Plant material**

Arabidopsis thaliana (L.) Heynh. ecotype Columbia-0 (Col-0, wild-type) constitutively 156 expressing glycolate oxidase (GO, At3g14420) in the plastids (GO plants) under the control of 157 the Cauliflower Mosaic Virus 35S promoter were generated in our previous work (Fahnenstich et 158 al., 2008). In these plants, to direct GO protein to chloroplasts, the stromal targeting presequence 159 from A. thaliana phosphoglucomutase (At5g51820) was used (Fahnenstich et al., 2008). Wild-160 type and GO transgenic plants were grown in pots containing 3 parts of soil (Gebr. Patzer KG, 161 Sinntal-Jossa, Germany) and one part of vermiculite (Basalt Feuerfest, Linz, Austria) under a 162 163 16h-light/8h-dark regime at photosynthetically active photon flux densities (PPFD) of 75 µmol guanta m⁻² s⁻¹ at 22°C day/18°C night temperatures and a CO₂ concentration of 3,000 ppm. After 164 165 three weeks of growth plants were transferred to ambient CO₂ concentration (380 ppm) and the same PPFD. Whole rosettes were harvested at different time points after transfer, immediately 166 167 frozen in liquid nitrogen and stored at -80°C until use for RNA isolation and H₂O₂ measurements. 168

169

170 Isolation of RNA and real-time PCR analysis

For the large-scale qRT-PCR analysis, total RNA was extracted from 100 mg leaves (fresh 171 weight) using RNeasy Plant Mini kit (Qiagen, Valencia, USA) according to the manufacturer's 172 protocol. DNAse I digestion was performed on 40 to 60 µg of total RNA using TURBO DNase 173 Kit (Ambion, Cambridgeshire, UK) according to manufacturer's instructions. RNA integrity was 174 checked on 1% (w/v) agarose gels and concentration measured with a Nanodrop ND-1000 175 spectrophotometer before and after DNAse treatment. Absence of genomic DNA was confirmed 176 177 subsequently by quantitative PCR using primers that amplify an intron sequence of the gene 5'-TTTTTTGCCCCCTTCGAATC-3' At5g65080 and 5'-178 (forward reverse ATCTTCCGCCACCACATTGTAC-3'). First-strand cDNA was synthesized from 8 - 10 µg of 179 total RNA using RevertAid[™] First Strand cDNA Synthesis Kit (Fermentas, St. Leon-Rot, 180

Germany) following the manufacturer's protocol. The efficiency of cDNA synthesis was 181 estimated by qRT-PCR using two different primer sets annealing to the 5' and 3' ends, 182 183 respectively, of a control gene (At3g26650, GAPDH, glyceraldehyde-3-phosphate dehydrogenase). Primer sequences were as follows: for GAPDH3', forward 5'-184 TTGGTGACAACAGGTCAAGCA-3' and reverse 5'-AAACTTGTCGCTCAATGCAATC-3'; 185 forward 5'-TCTCGATCTCAATTTCGCAAAA-3' for GAPDH5'. and reverse 5'-186 CGAAACCGTTGATTCCGATTC-3'. Transcript levels of each gene were normalized to 187 ACTIN2 (At3g18780) transcript abundance (forward 5'-TCCCTCAGCACATTCCAGCAGAT-188 3' and reverse 5'-AACGATTCCTGGACCTGCCTCATC-3'). A total of 187 ROS-responsive 189 genes (Wu et al., 2012) and 1,880 TFs (Czechowski et al., 2004; Balazadeh et al., 2008) were 190 analysed by qRT-PCR as previously described (Caldana et al., 2007; Balazadeh et al., 2008). 191 PCR reactions were run on an ABI PRISM 7900HT sequence detection system (Applied 192 Biosystems, Darmstadt, Germany), and amplification products were visualized using SYBR 193 Green (Applied Biosystems). 194

195

196 H₂O₂ measurements

Levels of H₂O₂ were determined using the Amplex® Red Technology (Life Technologies, 197 198 Darmstadt, Germany) following the manufacturer's instructions. Amplex Red (N-acetyl-3,7dihydroxyphenoxazine) reacts with H_2O_2 in the presence of horseradish peroxidase and forms the 199 200 fluorescent product resorufin. For the determinations, 100 mg leaves (fresh weight) were ground in liquid nitrogen into a fine powder and resuspended with 0.15 mL extraction buffer prepared as 201 202 indicated by the manufacturer. This suspension was centrifuged at 4°C at 13,000 rpm for 15 min. Five µL of the supernatant, 45 µL distilled water and 50 µL of Amplex® Red solution were 203 204 added to a microtitre plate. After 30 min incubation in the dark fluorescence was measured by excitation at 560 nm and emission reads at 590 nm. A calibration curve was established with 205 known H₂O₂ concentrations. 206

207

208 Gene expression network analysis

209 The two genes that were most strongly induced under photorespiratory conditions in GO plants

at the 0.5 and 6 h time points (At3g02840 and At1g17180, respectively) were used as baits to

identify globally coexpressed genes using the ATTED-II database (http://atted.jp), which allows

- evaluating genes that are coexpressed under five experimental conditions (tissue, abiotic stress,
- biotic stress, hormones and light conditions) (Obayashi et al., 2009).
- 214

215 iii. Results and discussion

216 Induction of H₂O₂ formation in GO plants

- The production of H_2O_2 in leaves of plants overexpressing glycolate oxidase (GO) in the plastids 217 (Fahnenstich et al., 2008) was analysed after activation of photorespiration by transferring high 218 CO_2 -grown plants to ambient- CO_2 conditions. As shown in **Table 1**, higher levels of H_2O_2 were 219 determined in GO than in wild-type plants at 0.5 and 4 h after transfer while GO and wild-type 220 plants maintained under non-photorespiratory conditions (3,000 ppm CO₂) showed similar H₂O₂ 221 levels at both time points (Table 1). Note, that as the measurements were performed using 222 whole-leaf extracts the expected differences in chloroplastic H₂O₂ levels between GO and wild-223 type plants under photorespiratory condition may be actually higher than determined here. 224
- 225

Expression profiling of ROS marker genes in GO and wild-type plants after the induction of H₂O₂ formation in chloroplasts

To study the impact of an abrupt production of H_2O_2 in chloroplasts on nuclear gene expression, we analysed transcript level changes of 187 ROS-responsive genes using a previously established qRT-PCR platform (detailed in Wu et al., 2012). The genes included in the platform were chosen from published reports and our own experiments and represent four different groups that were already shown to be rapidly induced by (i) superoxide radical (O_2^- ; 18 genes), (ii) singlet oxygen (${}^{1}O_2$; 22 genes), (iii) H_2O_2 (53 genes), or (iv) different types of ROS (general ROS-responsive genes; 94 in total).

235

Gene expression was analysed in whole rosettes of three-week-old wild-type and GO plants at 0.5, 4, 6 and 12 h after shifting high-CO₂-grown plants (non-photorespiratory condition) to ambient CO_2 concentration (photorespiratory condition). Expression profiling was performed in two biological replicates and log-fold change (log2 FC) ratios of expression changes were calculated for GO and wild-type plants by comparing gene expression levels before and after the CO_2 concentration shift. A total of 131 genes were expressed in all examined samples (**Table A1** in Appendix). The remaining 56 genes did not yield detectable PCR amplicons, indicating no or
 marginal expression under our experimental conditions.

244

Considering a 3-fold expression difference cut-off, 120 genes displayed differential expression in 245 GO and/or wild-type plants upon transfer from high to ambient CO₂ concentration; the vast 246 majority of the affected genes (116 in total) were up-regulated, and only four genes were down-247 regulated (Figure 1, Table A1 in Appendix). Most noticeably, expression of 58 genes was 248 induced in GO plants already within 0.5 h after the transfer to ambient CO₂ condition, whilst 249 only a single gene was induced in the wild type at the same time point (Figure 1). Importantly, 250 however, many genes showed also high expression in the wild type at later time points after the 251 CO₂ concentration shift but the expressional changes were in most cases more pronounced in GO 252 than wild-type plants (Figure 1, and following chapter). Thus, our data indicate that similar sets 253 of ROS-responsive genes responded to the CO₂ shift in GO and wild-type plants; however, the 254 dynamics of the transcriptional responses were clearly different in the two types of plants, being 255 faster and more prominent in the GO plants. 256

257

258 Early induction of indole glucosinolate and camalexin biosynthesis genes in GO plants

To identify transcripts responsive to metabolically produced H_2O_2 we focused our analysis on the 0.5- and 6-h time points. Genes were considered differentially expressed when the fold change was more than 3-fold ($log_2 \ge 1.56$).

262

263 At 0.5 h after shifting plants to ambient CO₂ concentration, 58 of the 131 expressed genes were induced in GO plants by more than 3-fold, whilst in the wild type the expression change was less 264 265 than 3-fold, suggesting that these genes participate in early signaling steps triggered by the production of H₂O₂ under photorespiratory conditions (**Table 2**). After 6 h, seven of these genes 266 showed wild-type levels of expression (below 3-fold), while 29 were further overexpressed only 267 in GO (**Table 2**). Although at 6 h after transfer to ambient CO₂ the expression fold-change (FC) 268 of the remaining 22 genes was higher than 3 in both, GO and wild-type (WT) plants, the 269 expression change between GO and wild-type (FC_{GO}/FC_{WT}) was higher than 2 for 16 of these 270 genes (Table 2), indicating that their higher expression in GO plants was triggered by the 271 elevated levels of H₂O₂. 272

273

Later responding genes, which were affected only after 6 h under photorespiratory conditions, were also identified. From the 23 genes that showed an expression change of above 3-fold in GO, 13 were only induced in GO, while 10 genes were induced in both, GO and WT. The FC ratio in GO and WT (FC_{GO}/FC_{WT}) was above 2 for the 10 genes (**Table 3**), indicating that their expression in GO plants is controlled by the higher levels of H₂O₂, similar to the earlyresponsive genes.

280

The most highly up-regulated gene in GO plants at 0.5 h after induction of H₂O₂ production was 281 At3g02840 (encoding a putative U-box-type E3 ubiquitin ligase, known to respond immediately-282 early to fungal elicitation) (Table 2). We used the ATTED-II database (http://atted.jp; Obayashi 283 284 et al., 2009) to discover genes coexpressed with At3g02840 and observed that 45 of the 58 genes induced at 0.5 h after induction of H_2O_2 production cluster together (Table 2), indicating that 285 metabolically produced H_2O_2 in GO plants induces the coordinate expression of functionally 286 related genes. A similar analysis using the most highly expressed gene at 6 h after induction of 287 288 H₂O₂ production (At1g17180, encoding glutathione S-transferase Tau 25) indicated that another group of eight genes are coordinately expressed in GO plants at this later time point (Table 3). 289 290

Recently, Inzé et al. (2012) listed the 85 most strongly H₂O₂-responsive genes in catalase loss-of-291 292 function mutants shifted from low- to high-light conditions, where H₂O₂ is produced in peroxisomes by the action of photorespiratory GOs. Interestingly, 23 of the 81 genes, which 293 294 changed their expression in the GO plants were also differentially expressed in catalase loss-offunction mutants (Tables 2 and 3), indicating that they respond to enhanced levels of H_2O_2 295 296 independent of the site of its generation; the remaining genes may then represent candidates preferentially responsive to H₂O₂ produced in chloroplasts. Many of the genes upregulated in GO 297 plants encode proteins or TFs of currently unknown specific functions. Interestingly, however, 298 several of the early-responsive genes are involved in tryptophan-derived biosynthesis of the 299 300 phytoanticipins camalexin and indole glucosinolates, i.e., secondary metabolites that have antifungal and insect-deterring functions (Kliebenstein et al., 2001; Bednarek et al., 2009). These 301 genes encode (i) the transcription factor WRKY33 (At2g38470), which is involved in controlling 302 camalexin biosynthesis (Birkenbihl et al., 2012); (ii) the Myb-type transcription factor 303

HIG1/MYB51 (At1g18570) involved in the positive regulation of indole glucosinolate 304 biosynthesis by activating several target genes (Gigolashvili et al., 2007); (iii) the O-305 306 methyltransferases IGMT1 (At1g21100) and IGMT2 (At1g21120), which catalyze the transfer of a methyl group to the hydroxy indole glucosinolate hydroxyindol-3-ylmethylglucosinolate (4 and 307 10H-I3M, respectively) to form methoxyindol-3-ylmethylglucosinolate (4 and 1MO-I3M, 308 respectively) (Pfalz et al., 2011); and (iv) cytochrome P450 monooxygenase CYP81F2 309 (At5g57220), that is essential for the pathogen-induced accumulation of 4-methoxyindol-3-310 ylmethylglucosinolate (4MI3G) (Bednarek et al., 2009). Our data thus show the early induction 311 of indole glucosinolate and camalexin biosynthesis genes in GO plants after metabolic formation 312 of H₂O₂ through the activation of genes encoding enzymes involved in intermediate metabolite 313 conversions and of TFs that act on several target genes of these biosynthetic pathways. 314

315

316 Transcription factor profiling

To understand the potential effects of overexpression of GO in chloroplasts on the nuclear 317 transcriptional program, we next broadened our analysis by testing the expression of 1,880 TFs 318 319 using a highly sensitive quantitative real-time PCR (qRT-PCR) platform (Czechowski et al., 2004; Balazadeh et al., 2008). Considering the data obtained from the profiling of the ROS-320 responsive genes, we analysed the expression at 0.5 h after induction of H₂O₂ production to 321 capture the early-responsive TFs. Expression profiling was performed in two biological 322 323 replicates and log-fold change (log2 FC) ratios of expression changes were calculated for GO and wild-type plants by comparing gene expression levels before and after the transfer of plants 324 325 grown at high CO_2 to ambient CO_2 .

326

TFs most strongly responding to H_2O_2 were identified by comparing their expression foldchange in GO and wild-type plants. A TF was considered differentially expressed when the FC in GO was more than 3-fold ($log_2 \ge 1.56$) and less than 2-fold in the wild type ($log_2 \ge 1.0$) (**Table** 4). Analysis of transcript profiles revealed that the expression of 1,449 genes, representing 77% of all TF genes tested, could be detected (**Table A2** in Appendix). The remaining 23% (431 of the 1,880 TFs) did not yield detectable PCR amplicons, indicating no or very weak expression in the tested material.

At 0.5 h after shifting plants to ambient CO_2 concentration, 78 of the 1,449 genes were induced 335 by more than 3-fold in GO plants, whereas in wild-type plants the expression changes of the 336 337 same genes were less than 2-fold (Table 4). Using published data, the involvement/participation of the TFs in specific biological processes (Table 4) could be assessed, which allowed the 338 classification of the TFs into 5 functional groups (FG) enriched with specific gene ontology 339 categories (Figure 2). FG1 contains TFs involved in the regulation of proanthocyanidin and 340 anthocyanin biosynthesis (Table 4 and Figure 2). The TFs TT8 and MYB75 affecting the gene 341 expression of dihydroflavonol 4-reductase (Debeaujon et al., 2003) are included in this FG. FG2 342 contains TFs affecting developmental processes like lateral root formation (GATA23), flowering 343 (FD1, ANAC089, TEM2 and SNZ), shoot branching (MYB2 and BRC2), senescence 344 (ANAC092/ORE1) and cell division (ANAC068 and HAT4) (Table 4 and Figure 2). The 345 346 activation of these TFs in GO plants would result in altered growth and flowering (see below and Fahnenstich et al., 2008). FG3 includes TFs and TF-interacting proteins negatively regulating 347 jasmonate (JA) signalling (JAZ7, JAZ8, JAZ9, JAZ10, WRKY50 and WRKY51; Staswick, 2009; 348 Chico et al., 2008; Gao et al., 2011) (Table 4 and Figure 2). JAZ proteins bind directly to the 349 350 key transcription factor MYC2 and thereby prevent JA-dependent gene transcription (Chini et al., 2007; Pauwels et al., 2010). At the same time JAZ genes are rapidly induced by JA and some 351 352 are MYC2-regulated. This feedback loop regulation would provide a rapid on and off switch of the pathway involving JA. Transcriptional activation of JAZ genes was found to occur in 353 354 response to several biotic and abiotic challenges (Yan et al., 2007). JAZ proteins would also exert their effects on post-wound inhibition of vegetative growth in A. thaliana (Yan et al., 2007) 355 356 and as repressors of necrosis and/or programmed cell death during development in tobacco (Oh et al., 2012). In GO plants, the action of JAZ genes together with those of FG2 would impact 357 358 growth and reproductive capacity, resulting in altered development under conditions that promote the formation of H₂O₂. FG4 includes TFs with diverse functions in plant defense and 359 signaling, e.g., activators of tryptophan-derived biosynthesis of camalexin (JUB1/ANAC042) 360 and indole glucosinolates (MYB122), as well as regulators of photomorphogenesis (STH2) 361 (Table 4 and Figure 2). The early activation of camalexin and indole glucosinolate biosynthesis 362 was also observed in the analysis performed with the ROS-responsive gene platform (Table 1). 363 Finally, FG5 includes TFs with currently unknown functions (Table 4 and Figure 2). 364

The analysis of the transcript profiles at 0.5 h after induction of H_2O_2 production in GO plants 366 (Table A2 in Appendix) also revealed a group of 13 genes that are downregulated in GO relative 367 368 to wild-type plants (Table 5). The function of five of these genes is currently unknown, but interestingly, the remaining eight genes positively control developmental processes. The down-369 regulation of expression of these TFs in GO plants together with the upregulation of expression 370 of TFs negatively affecting development (see FG2, Table 3) would act in concert to arrest 371 growth and especially to delay the transition from the vegetative to the reproductive phase. 372 Consistently, our previous results showed that GO plants growing under photorespiratory 373 conditions are smaller than wild-type plants, presenting a reduced rosette diameter and a delay in 374 flowering time (Fahnenstich et al., 2008). 375

376

377 iv. Concluding remarks

The metabolic induction of H₂O₂ formation in chloroplasts of GO plants under photorespiratory 378 conditions triggered a faster and more prominent transcriptional response of ROS-responsive 379 genes in these plants than in wild type. The changes of the transcriptional activities observed in 380 381 GO plants early after induction of H₂O₂ production in chloroplasts suggest the establishment of responses that resemble those occurring at early times after wounding or herbivore attack, where 382 H₂O₂ is also produced (Orozco-Cárdenas and Ryan, 1999). These responses include (i) the 383 retardation of development, which in part would be linked to JA signaling, and (ii) the 384 385 production of the phytoanticipins indole glucosinolates and camalexin. As in the case of herbivore attack, the retardation of development such as reductions in growth and reproduction 386 observed in GO plants could be regarded as a strategy to allow more resource allocation to 387 support defense and tolerance responses (Zavala and Baldwin, 2006). The data also suggest that 388 389 signals for the early induction of indole glucosinolate and camalexin biosynthesis genes in GO 390 plants through H₂O₂ may originate in chloroplasts as these genes showed no modified expression in catalase loss-of-function mutants (Inzé et al., 2012). 391

392

393 Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

397 Acknowledgements

Financial support was provided by the Deutsche Forschungsgemeinschaft (DFG) through grant
MA2379/11-1 to VGM, and through grant MU 1199/14-1 (FOR 948) to BMR.

400

401 **References**

- Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal
 transduction. *Annu. Rev. Plant Biol.* 55, 373-399.
- Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their
 fuction. *Plant Physiol.* 141, 391-396.
- Baier, M., and Dietz, K-J. (2005). Chloroplasts as source and target of cellular redox regulation. a
 discussion on chloroplast redox signals in context of plant physiology. *J. Exp. Bot.* 56, 14491462.
- Balazadeh, S., Riaño-Pachón, D. M., and Mueller-Roeber, B. (2008). Transcription factors
 regulating leaf senescence in *Arabidopsis thaliana*. *Plant Biol.* 1, 63-75.
- Bechtold, U., Richard, O., Zamboni, A., Gapper, C., Geisler, M., Pogson, B., Karpinski, S., and
 Mullineaux, P.M. (2008). Impact of chloroplastic- and extracellular-sourced ROS on high
 light-responsive gene expression in Arabidopsis. *J. Exp. Bot.* 59,121-133.
- 414 Bednarek, P., Pislewska-Bednarek, M., Svatos, A., Schneider, B., Doubsky, J., Mansurova, M.,

415 Humphry, M., Consonni, C., Panstruga, R., Sanchez-Vallet, A., Molina, A., and Schulze-

- Lefert, P. (2009). A glucosinolate metabolism pathway in living plant cells mediates broadspectrum antifungal defense. *Science* 323, 101-106.
- 418 Bienert, G.P., Møller, A.L., Kristiansen, K.A., Schulz, A., Møller, I.M., Schjoerring, J.K., Jahn,
- T.P. (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across
 membranes. J. Biol. Chem. 282, 1183-1192.
- 421 Birkenbihl, R.P., Diezel, C., and Somssich, I.E. (2012). Arabidopsis WRKY33 is a key
- 422 transcriptional regulator of hormonal and metabolic responses toward *Botrytis cinerea*423 infection. *Plant Physiol.* 159, 266-85.
- Caldana, C., Scheible, W. R., Mueller-Roeber, B., and Ruzicic, S. (2007). A quantitative RTPCR platform for high-throughput expression profiling of 2500 rice transcription factors. *Plant Meth.* 3, 7.
- 427 Czechowski, T., Bari, R.P., Stitt, M., Scheible, W.R., and Udvardi, M.K. (2004) Real-time RT-

- 428 PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity
 429 reveals novel root- and shoot-specific genes. *Plant J.* 38, 366-79.
- Chico J. M., Chini A., Fonseca S., and Solano R. (2008). JAZ repressors set the rhythm in
 jasmonate signaling. *Curr. Opin. Plant Biol.* 11, 486-494.
- Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J.M., Lorenzo, O., Garcia-Casado, G.,
 Lopez-Vidriero, I., Lozano, F.M., Ponce, M.R., Micol, J.L., and Solano, R. (2007). The JAZ
 family of repressors is the missing link in jasmonate signalling. *Nature* 448, 666-671.
- Czechowsky, T., Bari, R.P., Stitt, M., Scheibe, W.R., and Udvardi, M.K. (2004). Real-time RTPCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity
 reveals novel root- and shoot-specific genes. *Plant J.* 3, 366-379.
- Danon, A., Miersch, O., Felix, G., op den Camp, R.G.L., and Apel, K. (2005). Concurrent
 activation of cell death-regulating signalling pathways by singlet oxygen in *Arabidopsis thaliana. Plant J.* 41, 68-80.
- Debeaujon, I., Nesi, N., Perez, P., Devic, M., Grandjean, O., Caboche, M., and Lepiniec, L.
 (2003). Proanthocyanidin-accumulating cells in Arabidopsis testa: Regulation of
 differentiation and role in seed development. *Plant Cell* 15, 2514-2531.
- 444 Desikan, R., Mackerness, S., Hancock, and J.T., and Neill, S.J. (2001). Regulation of the
 445 Arabidopsis transcriptome by oxidative stress. *Plant Physiol.* 127, 159-172.
- Fahnenstich, H., Scarpeci, T. E., Valle, E. M., Flügge. U. I., and Maurino, V.G. (2008).
 Generation of H₂O₂ in chloroplasts of *Arabidopsis thaliana* overexpressing glycolate
 oxidase as an inducible system to study oxidative stress. *Plant Physiol.* 148, 719-729.
- Foyer, C. H., and Noctor, G. (2005). Redox homeostasis and antioxidant signaling: a metabolic
 interface between stress perception and physiological responses. *Plant Cell* 17, 1866-1875.
- 451 Fryer, M.J., Ball, L., Oxborough, K., Karpinski, S., Mullineaux, P.M., and Baker, N.R. (2003).
- 452 Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status
 453 during excess light stress reveals a functional organisation of Arabidopsis leaves. *Plant J.*454 33, 691-705.
- Gao, Z., Chung, E. H., Eitas, T. K., and Dangl, J. L. (2011). Plant intracellular innate immune
 receptor Resistance to *Pseudomonas syringae pv. maculicola* 1 (RPM1) is activated at, and
 functions on, the plasma membrane. *Proc. Natl. Acad. Sci.* USA 108, 8915.
- 458 Gigolashvili, T., Yatusevich, R., Berger, B., Müller, C., and Flügge, U.I. (2007). The R2R3-

- MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate
 biosynthesis in *Arabidopsis thaliana*. *Plant J.* 51, 247-261.
- Inzé, A., Vanderauwera, S., Hoeberichts, F.A., Vandorpe, M., Van Gaever, T., and Van
 Breusegem, F. (2012). A subcellular localization compendium of hydrogen
 peroxide-induced proteins. *Plant Cell Environ*. 35, 308-320.
- Karpinski, S., Reynoldsm H., Karpinska, B., Wingsle, G., Creissen, G., Mullineaux, P. (1999)
 Systemic signalling and acclimation in response to excess excitation energy in Arabidopsis. *Science* 23, 654-657.
- Kliebenstein, D.J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenzon, J., and
 Mitchell-Olds, T. (2001). Genetic control of natural variation in Arabidopsis glucosinolate
 accumulation. *Plant Physiol.* 126, 811-825.
- 470 Leister, D. (2005). Genomics-based dissection of the cross-talk of chloropalsts with the nucleus
 471 and mitochondria in Arabidopsis. *Gene* 354, 110-116.
- Maurino, V.G., and Flügge, U.I. (2008). Experimental systems to assess the effects of reactive
 oxygen species in plant tissues. *Plant Signal. Behav.* 3, 919-924.
- Maurino, V.G., and Peterhansel, C. (2010). Photorespiration: current status and approaches for
 metabolic engineering. *Curr. Op. Plant Biol.* 13, 248-255.
- Miao, Y., Laun, T.M., Smykowski, A., and Zentgraf, U. (2007). Arabidopsis MEKK1 can take a
 short cut: it can directly interact with senescence-related WRKY53 transcription factor on
 the protein level and can bind to its promoter. *Plant Mol. Biol.* 65, 63-76.
- Mittler, R., Vandeerauwera, S., Gollery, M., and Van Breusegem, F. (2004). Reactive oxygen
 gene network of plants. *Trends Plant Sci.* 9, 490-498.
- 481 Møller, I.M., Jensen, P.E., and Hansson, A. (2007). Oxidative modifications to cellular
 482 components in plants. *Ann. Rev. Plant Biol.* 58, 459-481.
- Møller, I.M., and Sweetlove, L.J. (2010) ROS signalling-specificity is required. *Trends Plant Sci.* 15, 370-374.
- Mubarakshina, M.M., Ivanov, B.N., Naydov, I.A., Hillier, W., Badger, M.R., Krieger-Liszkay,
 A. (2010) Production and diffusion of chloroplastic H2O2 and its implication to signalling. *J. Exp. Bot.* 61, 3577-87.
- Neill, S., Desikan, R., and Hancock, J. (2002). Hydrogen peroxide signaling. *Curr. Opin. Plant Biol.* 5, 388-395.

- Obayashi, T., Hayashi, S., Saeki, M., Ohta, H., and Kinoshita, K. (2009). ATTED-II provides
 coexpressed gene networks for Arabidopsis. *Nucl. Acids Res.* 37, 987-991.
- 492 Oh, Y., Baldwin, I. T., and Gális, I. (2012). NaJAZh regulates a subset of defense responses
 493 against herbivores and spontaneous leaf necrosis in Nicotiana attenuata plants. *Plant Physiol.*494 159, 769-788.
- Op den Camp, R.G.L., Przybyla, D., Ochsenbein, C., Laloi, C., Kim, C., Danon, A., Wagner, D.,
 Hideg, E., Göbel, C., Feussner, I., Nater, M., and Apel K. (2003). Rapid induction of distinct
 stress responses after the release of singlet oxygen in Arabidopsis. *Plant Cell* 15, 2320-2332.
- 498 Orozco-Cardenas, M., and C.A. Ryan, 1999. Hydrogen peroxide is generated systemically in
 499 plant leaves by wounding and systemin via the octadecanoid pathway. *Proc. Natl. Acad. Sci.*500 USA 96, 6553-6557.
- Ort, D.R., and Baker, N.R. (2002). A photoprotective role for O₂ as an alternative electron sink in
 photosynthesis? *Curr. Opin. Plant Biol.* 5, 193-198.
- Pauwels, L., Barbero, G.F., Geerinck, J., Tilleman, S., Grunewald, W., Perez, A.C., Chico, J.M.,
 Bossche, R.V., Sewell, J., and Gil, E. (2010) NINJA connects the co-repressor TOPLESS to
 jasmonate signalling. *Nature* 464, 788-791.
- Petrov, V.D., and Van Breusegem, F. (2012). Hydrogen peroxide-a central hub for information
 flow in plant cells. *AoB Plants* pls014; doi:10.1093/aobpla/pls014.
- Pfalz, M., Mikkelsen, M.D., Bednarek, P., Olsen, C.E., Halkier, B.A., and Kroymann, J. (2011)
 Metabolic engineering in *Nicotiana benthamiana* reveals key enzyme functions in
- 510 Arabidopsis indole glucosinolate modification. Plant Cell 23, 716-29.
- 511 Staswick, P.E. (2009) The tryptophan conjugates of jasmonic and indole-3-acetic acids are
 512 endogenous auxin inhibitors. *Plant Physiol.* 150, 1310-1321.
- Tripathi, B.N., Bhatt, I., and Dietz, K.J. (2009). Peroxiredoxins: a less studied component of
 hydrogen peroxide detoxification in photosynthetic organisms. *Protoplasma* 235, 3-15
- Van Breusegem, F., Bailey-Serres, J., and Mittler, R. (2008). Unraveling the tapestry of networks
 involving reactive oxygen species in plants. *Plant Physiol.* 147, 978-984.
- 517 Vandenabeele, S., Vanderauwera, S., Vuylsteke, M., Rombauts, S., Langebartels, C., Seidlitz, H.
- 518 K., Zabeau, M., Van Montagu, M., Inzé, D., and Van Breusegem, F. (2004). Catalase
- 519 deficiency drastically affects gene expression induced by high light in *Arabidopsis thaliana*.
- 520 *Plant J.* 39, 45-58.

521	Vanderauwera, S., Zimmermann, P., Rombauts, S., Vandenabeele, S., Langebartels, C.,
522	Gruissem, W., Inze, D., and Van Breusegem, F. (2005). Genome-wide analysis of hydrogen
523	peroxide-regulated gene expression in Arabidopsis reveals a high light-induced
524	transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol. 139, 806-821.
525	Wu, A., Allu, A. D., Garapati, P., Siddiqui, H., Dortay, H., Zanor, M-I., Asensi-Fabado, M. A.,
526	Munné-Bosch, S., Antonio, C., Tohge, T., Fernie, A. R., Kaufmann, K., Xue, G-P., Mueller-
527	Roeber, B., and Balazadeh, S. (2012). JUNGBRUNNEN1, a reactive oxygen species-
528	responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell. 24, 482-
529	506.
530	Yan, Y., Stolz, S., Chetelat, A., Reymond, P., Pagni, M., Dubugnon, L., and Farmer, E.E. (2007).
531	A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell
532	19, 2470-2483.
533	Zavala, J.A., and Baldwin, I.T. (2006). Jasmonic acid signalling and herbivore resistance traits
534	constrain regrowth after herbivore attack in Nicotiana attenuata. Plant Cell Environ. 29,
535	1751-1760.
536	
536 537	
	Figures
537	Figures
537 538	Figures Figure 1. Venn diagram of the number of ROS-responsive genes differentially expressed in
537 538 539	
537 538 539 540	Figure 1. Venn diagram of the number of ROS-responsive genes differentially expressed in
537 538 539 540 541	Figure 1. Venn diagram of the number of ROS-responsive genes differentially expressed in wild-type and GO plants at different time points (0.5, 4, 6 and 12 h) after the transfer of plants
537 538 539 540 541 542	Figure 1. Venn diagram of the number of ROS-responsive genes differentially expressed in wild-type and GO plants at different time points (0.5, 4, 6 and 12 h) after the transfer of plants
537 538 539 540 541 542 543	Figure 1. Venn diagram of the number of ROS-responsive genes differentially expressed in wild-type and GO plants at different time points (0.5, 4, 6 and 12 h) after the transfer of plants grown at high CO ₂ concentration (3,000 ppm) to ambient CO ₂ concentration (380 ppm).
537 538 539 540 541 542 543 544	 Figure 1. Venn diagram of the number of ROS-responsive genes differentially expressed in wild-type and GO plants at different time points (0.5, 4, 6 and 12 h) after the transfer of plants grown at high CO₂ concentration (3,000 ppm) to ambient CO₂ concentration (380 ppm). Figure 2. Pie chart representation of the five functional groups (FG) of early H₂O₂-responsive
537 538 539 540 541 542 543 544 545	 Figure 1. Venn diagram of the number of ROS-responsive genes differentially expressed in wild-type and GO plants at different time points (0.5, 4, 6 and 12 h) after the transfer of plants grown at high CO₂ concentration (3,000 ppm) to ambient CO₂ concentration (380 ppm). Figure 2. Pie chart representation of the five functional groups (FG) of early H₂O₂-responsive TFs in GO plants. FG5 includes genes for which a distinct biological function has not been

Table 1. Levels of H_2O_2 measured in whole rosettes (μ mol /g FW) after shifting high CO₂-grown wild-type and GO plants to ambient CO₂ concentration for 0.5 and 4 h. Samples from control plants maintained in high CO₂ were processed in parallel. Values indicate the mean ± SE of three independent samples and those set in bold face indicate significant differences to the corresponding wild-type value calculated by Student's *t* test (P<0.05). WT: wild type.

55	2
----	---

	0.	5 h	2	4 h
	high CO ₂	ambient CO ₂	high CO ₂	ambient CO ₂
WT	2.4 ± 0.2	2.3 ± 0.2	2.5 ± 0.4	2.7 ± 0.1
GO	2.5 ± 0.3	3.0 ± 0.3	2.6 ± 0.2	$\textbf{3.4} \pm \textbf{0.0}$

554 **Table 2.** ROS-responsive genes (58 in total) the expression of which was enhanced by more than 3-fold in GO plants 0.5 h after shifting plants grown at high CO₂ concentration (3,000 ppm) to 555 ambient CO₂ concentration (380 ppm). Genes are listed according to the difference of the 556 expression change between GO and wild-type (WT) plants (FC_{GO}/FC_{WT}) at 0.5 h. FC_{GO}/FC_{WT} 557 values higher than 2 are shown in bold face. AGI: gene identification number given by the 558 Arabidopsis Genome Initiative. Genes also induced in catalase loss-of function mutants are 559 560 highlighted with an asterisk (*) (Inzé et al., 2012). Genes included in the same gene coexpression network of At3g02840 (putative U-box-type E3 ubiquitin ligase) are highlighted in bold face 561 (http://atted.jp; Obayashi et al., 2009). The gene annotation was retrieved from TAIR 562 (http://arabidopsis.org/index.jsp). 563

		0.5 h			6 h		
			FC _{GO} /			FC _{GO} /	
AGI	FC _{wt}	FC_{GO}	FC _{wt}	FC _{wT}	FC _{GO}	FC _{WT}	Annotation
Upregulated	in GO at ().5 h					
At1g69890	1.3	15.9	12.0	1.2	2.2	1.8	Protein of unknown function
At2g40000*	0.9	10.2	11.2	1.6	2.1	1.3	Ortholog of sugar beet HS1 PRO-1 2 (HSPRO2)
At2g18210	1.0	8.4	8.2	1.1	2.9	2.6	Protein of unknown function
At1g18570	1.2	6.8	5.7	0.7	2.5	3.6	Myb-type transcription factor (HIG1/MYB51)
At1g21100	1.6	6.9	4.2	0.7	1.5	2.2	Indole glucosinolate O-methyltransferase (IGMT1)
At5g64310	1.2	3.8	3.1	3.1	1.1	0.4	Arabinogalactan protein (AGP1C) of unknown function
At5g28630	1.4	4.0	2.9	0.3	0.4	1.5	Protein of unknown function
Upregulated	in GO at ().5 h and 6	h				
Change in ge	ene expre	ssion in W	/T at 6 h < 3	3			
At3g02840*	1.1	79.3	71.2	2.9	65.4	22.8	Putative U-box-type E3 ubiquitin ligase
At2g37430*	0.9	53.3	62.7	1.9	190.8	100.9	C2H2 and C2HC zinc finger superfamily protein (ZAT11
At1g05575*	1.5	45.6	29.9	0.6	4.3	6.8	Protein of unknown function
At2g38470	1.4	31.5	22.3	1.8	7.5	4.3	WRKY-type transcription factor (WRKY33)
At4g17490	1.5	21.5	14.7	1.3	6.9	5.2	Ethylene-responsive element binding factor (ERF6)
At5g47230	1.3	17.4	13.8	1.5	4.4	3.0	Ethylene-responsive element binding factor (ERF5)
At1g66060	1.3	17.5	13.2	2.7	5.1	1.9	Protein of unknown function
At2g32030	1.3	16.4	12.2	1.9	24.5	12.9	Putative GNAT-type N-acetyltransferase
At2g26530*	1.2	13.3	10.7	2.1	5.4	2.5	Protein of unknown function; AR781
At1g21120	1.0	9.9	10.3	0.7	15.9	22.1	Indole glucosinolate O-methyltransferase (IGMT2)
At1g35210	1.1	11.2	10.2	2.9	14.4	4.9	Protein of unknown function
At3g55980*	1.4	14.3	10.1	1.2	4.0	3.3	Salt-inducible zinc finger 1, SZF1 (C3H47)
At2g33710	1.0	7.5	7.7	0.8	12.6	15.0	Putative ERF-type transcription factor

Al222735* 1.8 10.8 5.9 0.6 3.2 6.7 Protein of unknown function At5g54400 1.5 7.8 6.3 1.5 4.1 2.8 PBP1, Pinold Binding Protein 1 At1919020* 1.4 6.8 4.9 1.8 5.0 2.7 Putative ERF-type transcription factor At3g6800* 1.4 6.0 4.4 2.1 3.0 16.0 Putative peptide elicitor Pep 3 precursor protein (ProPep3) At1g6800* 1.4 6.0 4.4 2.1 3.0 16.0 Putative peptide elicitor Pep 3 precursor protein (ProPep3) At1g6800* 1.3 5.2 4.1 1.4 5.2 3.8 Zinc finger protein (ZCF37) of unknown function At4g1880* 1.3 5.2 4.1 1.4 5.2 Zinc finger protein (ZCF37) of unknown function At4g1880* 1.3 5.2 4.1 1.4 5.2 Zinc finger protein (ZCF37) of unknown function At4g1888* 1.1 3.4 5.7 2.3 Zinc Protein of unknown function								
Attg9020* 1.8 9.3 5.1 1.9 2.7.7 14.5 Protein of unknown function Atsg61190 1.4 6.8 4.9 1.8 5.0 2.7 Putative ERF-type transcription factor Atsg64005 1.1 5.0 4.4 2.1 3.0 16.0 Putative ERF-type transcription factor (ERF-09) Attg6600 1.4 5.8 4.3 1.7 11.0 6.3 Protein of unknown function Attg6600 1.3 5.2 4.4 1.4 5.2 3.8 Zre finger protein (2CF37) of unknown function Attg6800 1.3 6.5 4.0 1.9 4.6 2.4 Heat stress-type transcription factor (ERF-09) Attg6800 1.1 3.9 3.5 2.4 5.6 2.3 Protein of unknown function Attg6800 1.2 3.4 3.0 2.1 2.8 Protein of unknown function Attg68030 1.2 3.4 5.0 2.3 5.11 2.2 Protein of unknown function Attg68040	-							
Atsgirt190 1.4 6.8 4.9 1.8 5.0 2.7 Putative ERF-type transcription factor Atsgirt200* 1.1 5.0 4.5 1.2 4.1 3.4 Tyrosine phosphatase (ATFFA-DSP3) Atsgirt200* 1.4 6.0 4.4 2.1 3.00 16.0 Putative petide elicitor Pep3 precursor protein (ProPep3) Attgr6800* 1.3 5.2 4.1 1.4 5.2 3.8 Protein of unknown function Attgr6800* 1.6 6.5 4.0 1.9 4.6 2.4 Heat stress-type transcription factor (HsfAa4HSF21) Attgr6800* 1.6 6.5 4.0 1.9 4.6 2.4 Heat stress-type transcription factor (HsfAa4HSF21) Attgr6800* 1.3 3.0 2.7 Protein of unknown function Attgr6800* 1.3 3.0 2.1 3.0 1.8 UDP-N-acotymeraneta dehydrogenaes of unknown function Attgr6804 1.3 3.0 2.7 2.3 5.1 2.2 Protein of unknown function Attgr6804	•							
At3g0280* 1.1 5.0 4.5 1.2 4.1 3.4 Tyrosine phosphatase (ATPFA-DSP3) At5g64905 1.4 6.0 4.4 2.1 33.0 16.0 Putative peptide elicitor Pep3 precursor protein (ProPep3) At1376800* 1.4 6.8 4.3 1.7 11.0 6.3 Protein of unknown function At1365805 1.6 6.5 4.0 1.9 4.6 2.4 Heat stress-type transcription factor (HSfA4aHSF21) At1329180* 1.1 4.0 3.7 2.2 6.0 2.7 Protein of unknown function At1329180* 1.1 3.9 3.5 2.4 5.6 2.3 Protein of unknown function At1329309* 1.3 3.5 2.7 2.3 5.1 2.2 Protein of unknown function At1328309* 1.5 3.0 2.0 1.4 5.9 4.3 1.Aminocyclopropane-1-carboxylate synthase (ACS6) Change in gem-extressert VT # 5 * 3 3.6 5.5 5.6 1.4 1.4 1.4	-							
Atsg4995 1.4 6.0 4.4 2.1 33.0 16.0 Putative peptide elicitor Pep3 precursor protein (ProPep3) Attg76600* 1.4 5.8 4.3 1.7 11.0 6.3 Protein of unknown function Attg23230 2.2 9.4 4.2 2.3 17.1 7.5 Putative ERF-type transcription factor (ERF96) Attg3880* 1.6 6.5 4.0 1.9 4.6 2.4 Heat stress-type transcription factor (Hsf/Ada/HS21) At4g18880* 1.6 6.5 4.0 3.7 2.2 6.0 2.7 Protein of unknown function At4g16880 1.1 3.9 3.5 2.4 5.6 2.3 Protein of unknown function At4g16804 1.1 3.9 3.5 2.4 5.6 2.3 Protein of unknown function At4g123194* 3.3 3.5 2.4 5.6 2.3 Protein of unknown function At4g1230 1.5 3.0 2.0 1.4 5.9 4.3 1.4minocydopropane-1-carboxy4te synthase (ACS6)	-							
Atigr6600 1.4 5.8 4.3 1.7 11.0 6.3 Protein of unknown function Atigr6600 1.3 5.2 4.1 1.4 5.2 3.8 Zinc finger protein (2CF37) of unknown function Atigr6600 1.3 5.2 4.1 1.4 5.2 3.8 Zinc finger protein (2CF37) of unknown function Atigr6800 1.1 4.0 3.7 2.2 6.0 2.7 Protein of unknown function Atigr8701 1.1 4.0 3.7 2.2 6.0 2.7 Protein of unknown function Atigr8640 1.1 3.9 5.5 2.4 5.6 2.3 Protein of unknown function Atigr231945 1.3 3.5 2.7 2.3 5.1 2.2 Protein of unknown function Atigr231945 1.3 3.5 2.7 2.3 5.1 2.2 Protein of unknown function Atigr2320 1.2 3.4 5.5 56.4 10.3 WRKY-kype transcription factor (WRKY40) Atigr8640 1.1 </td <td>At3g02800*</td> <td>1.1</td> <td></td> <td>4.5</td> <td></td> <td></td> <td>3.4</td> <td>Tyrosine phosphatase (ATPFA-DSP3)</td>	At3g02800*	1.1		4.5			3.4	Tyrosine phosphatase (ATPFA-DSP3)
Atg2230 2.2 9.4 4.2 2.3 17.1 7.5 Putative ERF-type transcription factor (ERF98) Attg59590 1.3 5.2 4.1 1.4 5.2 3.8 Zinc finger protein (ZCF37) of unknown function Attg18880* 1.6 6.5 4.0 1.9 4.6 2.4 Heat stress-type transcription factor (HsfA4a/HSF21) Attg41880* 1.1 3.0 3.5 2.4 5.6 2.7 Protein of unknown function Attg26190* 1.1 3.9 3.5 2.4 5.6 2.7 Cychotrome P450 monoxygenase (CYP81F2) Attg26380* 1.2 3.4 3.0 2.1 39.0 18.9 UDP-N-acetylinuramate dahydrogenase of unknown function Attg1280 1.5 3.0 2.0 1.4 5.9 4.3 1-Aminocyclopropane-1-carboxylate synthase (ACS6) Change in gene expression WWT+16 b > 3 4.3 1-Aminocyclopropane-1-carboxylate synthase (ACS6) Change in gene expression WT +16 b > 3 4.5 Protein of unknown function Attg412808 1.1	At5g64905	1.4		4.4				Putative peptide elicitor Pep3 precursor protein (ProPep3)
At1959590 1.3 5.2 4.1 1.4 5.2 3.8 Zinc finger protein (2CF37) of unknown function At4918880* 1.6 6.5 4.0 1.9 4.6 2.4 Heat stress-type transcription factor (Hsf/Ata/HSF21) At2941640 1.1 4.0 3.7 2.2 6.0 2.7 Protein of unknown function At1928190* 1.1 3.9 3.5 2.4 6.6 2.3 Protein of unknown function At1928380* 1.2 3.4 3.0 2.1 39.0 18.9 UDP-N-acetylmuramate dehydrogenase (CYP81F2) At1928380* 1.3 3.5 2.7 2.3 1.4 5.9 4.3 1-Aminocyclopropane-1-carboxylate synthase (ACS6) Change in gene expression in WT at 6 h > 3 At14980840 1.1 38.0 35.4 5.5 56.4 10.3 WRKY-type transcription factor (WRKY40) At1980840 1.1 38.0 35.4 5.5 56.4 10.3 WRKY-type transcription factor (WRKY40) At1980840 1.1 38.0 35.4 5.5 56.4 10.3 WRKY-type transcription factor (WRKY40)	At1g76600*	1.4	5.8	4.3	1.7	11.0	6.3	Protein of unknown function
At4g18880* 1.6 6.5 4.0 1.9 4.6 2.4 Heat stress-type transcription factor (HsfA4a/HSF21) At2g41640 1.1 4.0 3.7 2.2 6.0 2.7 Protein of unknown function At1g28190* 1.1 3.9 3.5 2.4 5.6 2.3 Protein of unknown function At1g2830* 1.2 3.4 3.0 2.1 39.0 18.9 UDP-N-acetylmuramate dehydrogenase of unknown function At4g1828 1.3 3.5 2.7 2.3 5.1 2.2 Protein of unknown function At4g1828 1.5 3.0 2.0 1.4 5.9 2.4 Animocyclopropane-1-carboxylate synthase (ACS6) Change in gene expression WT at 6 h > 3 1.4 5.5 56.4 10.3 WRKY-type transcription factor (WRKY40) At1g80840 1.1 38.0 35.4 5.5 56.4 10.3 WRKY-type transcription factor (WRKY40) At1g80840 1.1 30.1 26.6 7.3 8.6 1.2 C2H2-zinc-finger-TF (C3	At3g23230	2.2	9.4	4.2	2.3	17.1	7.5	Putative ERF-type transcription factor (ERF98)
At2g41640 1.1 4.0 3.7 2.2 6.0 2.7 Protein of unknown function At1g28190* 1.1 3.9 3.5 2.4 5.6 2.3 Protein of unknown function At1g2830* 1.2 3.4 3.0 2.1 3.90 15.9 UDP-M-acetylmuramate dehydrogenase of unknown function At1g2830* 1.2 3.4 3.0 2.1 3.90 15.9 UDP-M-acetylmuramate dehydrogenase of unknown function At2g31945 1.3 3.5 2.7 2.3 5.1 2.2 Protein of unknown function At1928300 1.7 3.0 2.0 1.4 5.9 4.0 1.4 1.4 At1928240 1.1 38.0 2.5 5.6 1.0.3 WRY-type transcription factor (WRY40) At1928280 1.7 5.0.8 2.4 1.5 Protein of unknown function At1927270 1.1 3.0.1 2.6.8 1.5 Protein of unknown function At1928240 1.2 3.2.7 2.6.3 3.0 <td>At1g59590</td> <td>1.3</td> <td>5.2</td> <td>4.1</td> <td>1.4</td> <td>5.2</td> <td>3.8</td> <td>Zinc finger protein (ZCF37) of unknown function</td>	At1g59590	1.3	5.2	4.1	1.4	5.2	3.8	Zinc finger protein (ZCF37) of unknown function
Atg28190* 1.1 3.9 3.5 2.4 5.6 2.3 Protein of unknown function Atsg57220 2.8 9.1 3.3 1.3 6.9 5.2 Cytochrome P450 monooxygenase (CYP81F2) Atlg28380* 1.2 3.4 3.0 2.1 39.0 16.3 UDP-N-acetylmuramate dehydrogenase of unknown function Atdg11280 1.3 3.5 2.7 2.3 5.1 2.2 Protein of unknown function Atdg11280 1.3 3.5 2.7 2.3 5.1 2.2 Protein of unknown function Atdg11280 1.3 3.5 2.7 2.3 5.1 2.2 Protein of unknown function Atg60430* 0.8 2.0 1.4 5.9 4.3 1-Aminocyclopropane-1-carboxylate synthase (ACS6) Chargebad 1.1 3.0 3.5.4 5.5 5.6.4 10.3 WKY-type transcription factor (WRKY40) Atsg6430* 1.8 2.3.6 7.3 8.6 1.2 C2H2-zinc-finger-TF (C1-2ID-04) of unknown function Atsg62	At4g18880*	1.6	6.5	4.0	1.9	4.6	2.4	Heat stress-type transcription factor (HsfA4a/HSF21)
Atg 9.1 3.3 1.3 6.9 5.2 Cytochrome P450 monooxygenase (CYP81F2) Atlg26380° 1.2 3.4 3.0 2.1 39.0 18.9 UDP-N-acetyImuramate dehydrogenase of unknown function Atlg231945 1.3 3.5 2.7 2.3 5.1 2.2 Protein of unknown function Atlg201945 1.5 3.0 2.0 1.4 5.9 4.3 1-Aminocyclopropane 1-carboxylate synthase (ACS6) Change in gene expression INUT at 6 h > 3 4.4 5.5 5.6.4 10.3 WRKY-type transcription factor (WRKY40) At5g04340° 0.8 2.7.5 32.6 7.3 8.6 1.2 C2H2-zinc-finger-TF (C1-2iD-04) of unknown function At1g22880 1.7 50.8 29.4 6.2 28.1 4.5 Protein of unknown function At1g2770 1.1 30.1 26.8 6.0 5.0 Putative ubiquitin ligase, ATL subfamily (ATL31) At1g3720 1.2 32.7 26.3 3.0 1.5 CH2-zinc-finger-TF (ZAT10'STZ) At1g61340 </td <td>At2g41640</td> <td>1.1</td> <td>4.0</td> <td>3.7</td> <td>2.2</td> <td>6.0</td> <td>2.7</td> <td>Protein of unknown function</td>	At2g41640	1.1	4.0	3.7	2.2	6.0	2.7	Protein of unknown function
Atig26380* 1.2 3.4 3.0 2.1 39.0 18.9 UDP-N-acetyImuramate dehydrogenase of unknown function Atig231945 1.3 3.5 2.7 2.3 5.1 2.2 Protein of unknown function Atig1280 1.5 3.0 2.0 1.4 5.9 4.3 1-Aminocyclopropane-1-carboxylate synthase (ACS6) Change in gene expression In WT at 6 h > 3 35.4 5.5 5.6.4 10.3 WRKY-type transcription factor (WRKY40) At1980840 1.1 38.0 35.4 5.5 5.6.4 10.3 WRKY-type transcription factor (WRKY40) At2922880 1.7 50.8 29.4 6.2 28.1 4.5 Protein of unknown function At1927730 1.1 30.1 26.8 6.0 28.0 4.7 C2H2-zinc-finger-TF (ZAT10/STZ) At5897420 1.2 32.7 26.3 3.0 15.0 5.0 Putative ubiquitin ligase, ATL subfamily (ATL31) At5959820 1.0 14.3 14.1 4.6 61.7 13.5 C2H2-zinc-finger-TF	At1g28190*	1.1	3.9	3.5	2.4	5.6	2.3	Protein of unknown function
Ał2g31945 1.3 3.5 2.7 2.3 5.1 2.2 Protein of unknown function Ał4g11280 1.5 3.0 2.0 1.4 5.9 4.3 1-Aminocyclopropane-1-carboxylate synthase (ACS6) Change in gene expression IN WT # 5 h > 3 5.5 56.4 10.3 WRKY-type transcription factor (WRKY40) Altg80840 1.1 38.0 35.4 5.5 56.4 10.3 WRKY-type transcription factor (WRKY40) Altg22880 1.7 50.8 29.4 6.2 28.1 4.5 Protein of unknown function At1g27730 1.1 30.1 26.8 6.0 28.0 4.7 C2H2-zinc-finger-TF (ZAT10/STZ) At5g97420 1.2 32.7 26.3 3.0 15.0 5.0 Putative ubiquitin ligase, ATL subfamily (ATL31) At1g85820 1.0 14.3 14.1 4.6 61.7 13.5 C2H2-zinc-finger-TF (ZAT12) At3g24570 1.4 18.8 3.6 3.3 0.9 Dicarboxylate carrier (DIC2) At3g9670* <td>At5g57220</td> <td>2.8</td> <td>9.1</td> <td>3.3</td> <td>1.3</td> <td>6.9</td> <td>5.2</td> <td>Cytochrome P450 monooxygenase (CYP81F2)</td>	At5g57220	2.8	9.1	3.3	1.3	6.9	5.2	Cytochrome P450 monooxygenase (CYP81F2)
Aug1.53.02.01.45.94.31-Aminocyclopropane-1-carboxylate synthase (ACS6)Change in gene expressionINT I ten > 3At19808401.138.035.45.556.410.3WKKY-type transcription factor (WRKY40)At29228801.750.827.532.67.38.61.2C2H2-zinc-finger-TF (C1-2iD-04) of unknown functionAt19277301.130.126.86.028.04.7C2H2-zinc-finger-TF (ZAT10/STZ)At59274201.232.726.33.015.05.0Putative ubiquitin ligase, ATL subfamily (ATL31)At19613401.524.316.36.610.51.6ATFBS1. F-Box stress induced 1 of unknown functionAt59598201.014.314.14.661.713.5C2H2-zinc-finger-TF (ZAT12)At5924110*1.013.313.83.391.228.0WKKY-type transcription factor (WRKY30)At49245701.418.813.63.63.30.9Dicarboxylate carrier (DIC2)At3910301.719.011.58.538.84.6Protein of unknown functionAt439670*1.314.310.731.7184.95.8Sphingosine transfer protein; accelerated death 11 (ACD11)At4396501.914.87.66.27.41.214a-related protein of unknown functionAt439486501.914.87.66.27.41.214a-related protein of unknown function <t< td=""><td>At1g26380*</td><td>1.2</td><td>3.4</td><td>3.0</td><td>2.1</td><td>39.0</td><td>18.9</td><td>UDP-N-acetylmuramate dehydrogenase of unknown function</td></t<>	At1g26380*	1.2	3.4	3.0	2.1	39.0	18.9	UDP-N-acetylmuramate dehydrogenase of unknown function
Change in gene expression in WT at 6 h > 3 At1g80840 1.1 38.0 35.4 5.5 56.4 10.3 WRKY-type transcription factor (WRKY40) At2g04340* 0.8 27.5 32.6 7.3 8.6 1.2 C2H2-zinc-finger-TF (C1-2iD-04) of unknown function At3g22880 1.7 50.8 29.4 6.2 28.1 4.5 Protein of unknown function At1g27730 1.1 30.1 26.8 6.0 28.0 4.7 C2H2-zinc-finger-TF (ZAT10/STZ) At5g97420 1.2 32.7 26.3 3.0 15.0 5.0 Putative ubiquitin ligase, ATL subfamily (ATL31) At1g61340 1.5 24.3 16.3 6.6 10.5 1.6 ATEBS1. F-Box stress induced 1 of unknown function At5g95820 1.0 14.3 14.1 4.6 61.7 13.5 C2H2-zinc-finger-TF (ZAT12) At5g92110* 1.0 13.3 13.8 3.3 91.2 28.0 WRKY-type transcription factor (WRKY30) At4g924570 1.4 18.8 1	At2g31945	1.3	3.5	2.7	2.3	5.1	2.2	Protein of unknown function
Atig808401.138.035.45.556.410.3WRKY-type transcription factor (WRKY40)Atig804340*0.827.532.67.38.61.2C2H2-zinc-finger-TF (C1-2iD-04) of unknown functionAtig228801.750.829.46.228.14.5Protein of unknown functionAtig27301.130.126.86.028.04.7C2H2-zinc-finger-TF (ZAT10/STZ)Atig274201.232.726.33.015.05.0Putative ubiquitin ligase, ATL subfamily (ATL31)Atig693401.524.316.36.610.51.6ATFBS1. F-Box stress induced 1 of unknown functionAtig938201.014.314.14.661.713.5C2H2-zinc-finger-TF (ZAT12)Atig938201.014.314.14.661.713.5C2H2-zinc-finger-TF (ZAT12)Atig945701.418.813.63.63.30.9Dicarboxylate carrier (DIC2)Atig919301.719.011.58.538.84.6Protein of unknown functionAtig92520*1.517.311.411.1153.613.8Putative protein kinase (AGC2/OXI1)Atig93670*1.314.310.731.7184.95.8Sphingosine transfer protein; accelerated death 11 (ACD11)Atig974500.87.39.55.66.91.2Ipoxygenase (LOX4)Atig973701.813.07.06.528.94.4Putative S-domain-type	At4g11280	1.5	3.0	2.0	1.4	5.9	4.3	1-Aminocyclopropane-1-carboxylate synthase (ACS6)
At5g04340*0.827.532.67.38.61.2C2H2-zinc-finger-TF (C1-2iD-04) of unknown functionAt2g228801.750.829.46.228.14.5Protein of unknown functionAt1g27301.130.126.86.028.04.7C2H2-zinc-finger-TF (ZAT10/STZ)At5g274201.232.726.33.015.05.0Putative ubiquitin ligase, ATL subfamily (ATL31)At1g613401.524.316.36.610.51.6ATFBS1. F-Box stress induced 1 of unknown functionAt5g298201.014.314.14.661.713.5C2H2-zinc-finger-TF (ZAT12)At5g24110*1.013.313.83.391.228.0WRKY-type transcription factor (WRKY30)At4g245701.418.813.63.63.30.9Dicatoxylate carrier (DIC2)At3g2525*1.517.311.411.1153.613.8Putative protein kinase (AGC2/OXI1)At4g39670*1.314.310.731.7184.95.8Splingosine transfer protein; accelerated death 11 (ACD11)At1g725201.715.79.34.89.72.0Lipoxygenase (LOX4)At3g466501.914.87.66.27.41.214a-related protein of unknown functionAt4g13301.813.07.06.528.94.4Putative S-domain-type receptor protein kinaseAt5g6379*0.85.47.03.111.13.6 <t< td=""><td>Change in gei</td><td>ne expre</td><td>ssion in W</td><td>/T at 6 h > 3</td><td>3</td><td></td><td></td><td></td></t<>	Change in gei	ne expre	ssion in W	/T at 6 h > 3	3			
At2g228801.750.829.46.228.14.5Protein of unknown functionAt1g277301.130.126.86.028.04.7C2H2-zinc-finger-TF (ZAT10/STZ)At5g274201.232.726.33.015.05.0Putative ubiquitin ligase, ATL subfamily (ATL31)At1g613401.524.316.36.610.51.6ATFBS1. F-Box stress induced 1 of unknown functionAt5g598201.014.314.14.661.713.5C2H2-zinc-finger-TF (ZAT12)At5g24110*1.013.313.83.391.228.0WRKY-type transcription factor (WRKY30)At4g245701.418.813.63.63.30.9Dicarboxylate carrier (DIC2)At3g109301.719.011.58.538.84.6Protein of unknown functionAt3g25250*1.517.311.411.1153.613.8Putative protein kinase (AGC2/OXI1)At4g39670*1.314.310.731.7184.95.8Sphingosine transfer protein; accelerated death 11 (ACD11)At1g7750*0.87.39.55.66.91.2NAC-type transcription factor (ANAC032)At1g7750*0.87.06.528.94.4Putative S-domain-type receptor protein kinaseAt2g13901.813.07.06.528.94.4Putative S-domain-type receptor (ANAC102)At4g373701.47.05.02.867.524.1Cytochrom	At1g80840	1.1	38.0	35.4	5.5	56.4	10.3	WRKY-type transcription factor (WRKY40)
Artg277301.130.126.86.028.04.7C2H2-zinc-finger-TF (ZAT10/STZ)At5g274201.232.726.33.015.05.0Putative ubiquitin ligase, ATL subfamily (ATL31)At1g613401.524.316.36.610.51.6ATFBS1. F-Box stress induced 1 of unknown functionAt5g258201.014.314.14.661.713.5C2H2-zinc-finger-TF (ZAT12)At5g24110*1.013.313.83.391.228.0WRKY-type transcription factor (WRKY30)At4g245701.418.813.63.63.30.9Dicarboxylate carrier (DIC2)At3g109301.719.011.58.538.84.6Protein of unknown functionAt4g32520*1.517.311.411.1153.613.8Putative protein kinase (AGC2/OXI1)At4g39670*1.314.310.731.7184.95.8Sphingosine transfer protein; accelerated death 11 (ACD11)At1977450*0.87.39.55.66.91.2NAC-type transcription factor (ANAC032)At19725201.715.79.34.89.72.0Lipoxygenase (LOX4)At3g486501.914.87.66.27.41.214a-related protein of unknown functionAt4g213901.813.07.06.528.94.4Putative S-domain-type receptor protein kinaseAt19637001.813.07.06.528.94.4Putativ	At5g04340*	0.8	27.5	32.6	7.3	8.6	1.2	C2H2-zinc-finger-TF (C1-2iD-04) of unknown function
At5g27420 1.2 32.7 26.3 3.0 15.0 5.0 Putative ubiquitin ligase, ATL subfamily (ATL31) At1g61340 1.5 24.3 16.3 6.6 10.5 1.6 ATFBS1. F-Box stress induced 1 of unknown function At5g59820 1.0 14.3 14.1 4.6 61.7 13.5 C2H2-zinc-finger-TF (ZAT12) At5g24110* 1.0 13.3 13.8 3.3 91.2 28.0 WRKY-type transcription factor (WRKY30) At4g24570 1.4 18.8 13.6 3.6 3.3 0.9 Dicarboxylate carrier (DIC2) At3g10930 1.7 19.0 11.5 8.5 38.8 4.6 Protein of unknown function At3g25250* 1.5 17.3 11.4 11.1 153.6 13.8 Putative protein kinase (AGC2/OXI1) At1g77450* 0.8 7.3 9.5 5.6 6.9 1.2 NAC-type transcription factor (ANAC032) At1g77450* 0.8 7.3 9.5 5.6 6.9 1.2 NAC-type transcription factor (ANAC032) At1g67370 1.7 15.7 9.3 4.8 </td <td>At2g22880</td> <td>1.7</td> <td>50.8</td> <td>29.4</td> <td>6.2</td> <td>28.1</td> <td>4.5</td> <td>Protein of unknown function</td>	At2g22880	1.7	50.8	29.4	6.2	28.1	4.5	Protein of unknown function
At1g61340 1.5 24.3 16.3 6.6 10.5 1.6 ATFBS1. F-Box stress induced 1 of unknown function At5g59820 1.0 14.3 14.1 4.6 61.7 13.5 C2H2-zinc-finger-TF (ZAT12) At5g24110* 1.0 13.3 13.8 3.3 91.2 28.0 WRKY-type transcription factor (WRKY30) At4g24570 1.4 18.8 13.6 3.6 3.3 0.9 Dicarboxylate carrier (DIC2) At3g10930 1.7 19.0 11.5 8.5 38.8 4.6 Protein of unknown function At4g25250* 1.5 17.3 11.4 11.1 153.6 13.8 Putative protein kinase (AGC2/OXI1) At4g39670* 1.3 14.3 10.7 31.7 184.9 5.8 Sphingosine transfer protein; accelerated death 11 (ACD11) At1g77450* 0.8 7.3 9.5 5.6 6.9 1.2 NAC-type transcription factor (ANAC032) At1g77250 1.7 15.7 9.3 4.8 9.7 2.0 Lipoxygenase (LOX4) At3g48650 1.9 14.8 7.6 6.2	At1g27730	1.1	30.1	26.8	6.0	28.0	4.7	C2H2-zinc-finger-TF (ZAT10/STZ)
Atsg598201.014.314.14.661.713.5C2H2-zinc-finger-TF (ZAT12)Atsg24110*1.013.313.83.391.228.0WRKY-type transcription factor (WRKY30)At4g245701.418.813.63.63.30.9Dicarboxylate carrier (DIC2)At3g109301.719.011.58.538.84.6Protein of unknown functionAt3g25250*1.517.311.411.1153.613.8Putative protein kinase (AGC2/OX11)At4g39670*1.314.310.731.7184.95.8Sphingosine transfer protein; accelerated death 11 (ACD11)At1g77450*0.87.39.55.66.91.2NAC-type transcription factor (ANAC032)At1g725201.715.79.34.89.72.0Lipoxygenase (LOX4)At3g486501.914.87.66.27.41.214a-related protein of unknown functionAt4g213901.813.07.06.528.94.4Putative S-domain-type receptor protein kinaseAt5g63790*0.85.47.03.111.13.6NAC-type transcription factor (ANAC102)At4g373701.47.05.02.867.524.1Cytochrome P450 monooxygenase (CYP81D8)At1g637201.55.03.23.16.11.9Hydroxyproline-rich glycoprotein family proteinAt2g186901.54.43.06.624.73.7Protein of unknow	At5g27420	1.2	32.7	26.3	3.0	15.0	5.0	Putative ubiquitin ligase, ATL subfamily (ATL31)
At5g24110* 1.0 13.3 13.8 3.3 91.2 28.0 WRKY-type transcription factor (WRKY30) At4g24570 1.4 18.8 13.6 3.6 3.3 0.9 Dicarboxylate carrier (DIC2) At3g10930 1.7 19.0 11.5 8.5 38.8 4.6 Protein of unknown function At3g25250* 1.5 17.3 11.4 11.1 153.6 13.8 Putative protein kinase (AGC2/OXI1) At4g39670* 1.3 14.3 10.7 31.7 184.9 5.8 Sphingosine transfer protein; accelerated death 11 (ACD11) At1g77450* 0.8 7.3 9.5 5.6 6.9 1.2 NAC-type transcription factor (ANAC032) At1g72520 1.7 15.7 9.3 4.8 9.7 2.0 Lipoxygenase (LOX4) At3g48650 1.9 14.8 7.6 6.2 7.4 1.2 14a-related protein of unknown function At4g21390 1.8 13.0 7.0 6.5 28.9 4.4 Putative S-domain-type receptor protein kinase At5g63790* 0.8 5.4 7.0 3.1	At1g61340	1.5	24.3	16.3	6.6	10.5	1.6	ATFBS1. F-Box stress induced 1 of unknown function
At4g245701.418.813.63.63.30.9Dicarboxylate carrier (DIC2)At3g109301.719.011.58.538.84.6Protein of unknown functionAt3g25250*1.517.311.411.1153.613.8Putative protein kinase (AGC2/OXI1)At4g39670*1.314.310.731.7184.95.8Sphingosine transfer protein; accelerated death 11 (ACD11)At1g77450*0.87.39.55.66.91.2NAC-type transcription factor (ANAC032)At1g77450*0.87.39.55.66.91.2Ipoxygenase (LOX4)At3g486501.914.87.66.27.41.214a-related protein of unknown functionAt4g213901.813.07.06.528.94.4Putative S-domain-type receptor protein kinaseAt5g63790*0.85.47.03.111.13.6NAC-type transcription factor (ANAC102)At4g373701.47.05.02.867.524.1Cytochrome P450 monooxygenase (CYP81D8)At1g637201.55.03.23.16.11.9Hydroxyproline-rich glycoprotein family proteinAt2g186901.54.43.06.624.73.7Protein of unknown functionAt1g05340*1.23.42.74.37.91.8Protein of unknown function	At5g59820	1.0	14.3	14.1	4.6	61.7	13.5	C2H2-zinc-finger-TF (ZAT12)
At3g109301.719.011.58.538.84.6Protein of unknown functionAt3g25250*1.517.311.411.1153.613.8Putative protein kinase (AGC2/OXI1)At4g39670*1.314.310.731.7184.95.8Sphingosine transfer protein; accelerated death 11 (ACD11)At1g77450*0.87.39.55.66.91.2NAC-type transcription factor (ANAC032)At1g725201.715.79.34.89.72.0Lipoxygenase (LOX4)At3g486501.914.87.66.27.41.214a-related protein of unknown functionAt4g213901.813.07.06.528.94.4Putative S-domain-type receptor protein kinaseAt5g63790*0.85.47.03.111.13.6NAC-type transcription factor (ANAC102)At4g373701.47.05.02.867.524.1Cytochrome P450 monooxygenase (CYP81D8)At1g637201.55.03.23.16.11.9Hydroxyproline-rich glycoprotein family proteinAt1g05340*1.23.42.74.37.91.8Protein of unknown function	At5g24110*	1.0	13.3	13.8	3.3	91.2	28.0	WRKY-type transcription factor (WRKY30)
At3g25250*1.517.311.411.1153.613.8Putative protein kinase (AGC2/OXI1)At4g39670*1.314.310.731.7184.95.8Sphingosine transfer protein; accelerated death 11 (ACD11)At1g77450*0.87.39.55.66.91.2NAC-type transcription factor (ANAC032)At1g725201.715.79.34.89.72.0Lipoxygenase (LOX4)At3g486501.914.87.66.27.41.214a-related protein of unknown functionAt4g213901.813.07.06.528.94.4Putative S-domain-type receptor protein kinaseAt5g63790*0.85.47.03.111.13.6NAC-type transcription factor (ANAC102)At4g373701.47.05.02.867.524.1Cytochrome P450 monooxygenase (CYP81D8)At1g637201.55.03.23.16.11.9Hydroxyproline-rich glycoprotein family proteinAt1g05340*1.23.42.74.37.91.8Protein of unknown function	At4g24570	1.4	18.8	13.6	3.6	3.3	0.9	Dicarboxylate carrier (DIC2)
At4g39670*1.314.310.731.7184.95.8Sphingosine transfer protein; accelerated death 11 (ACD11)At1g77450*0.87.39.55.66.91.2NAC-type transcription factor (ANAC032)At1g725201.715.79.34.89.72.0Lipoxygenase (LOX4)At3g486501.914.87.66.27.41.214a-related protein of unknown functionAt4g213901.813.07.06.528.94.4Putative S-domain-type receptor protein kinaseAt5g63790*0.85.47.03.111.13.6NAC-type transcription factor (ANAC102)At4g373701.47.05.02.867.524.1Cytochrome P450 monooxygenase (CYP81D8)At1g637201.55.03.23.16.11.9Hydroxyproline-rich glycoprotein family proteinAt2g186901.54.43.06.624.73.7Protein of unknown functionAt1g05340*1.23.42.74.37.91.8Protein of unknown function	At3g10930	1.7	19.0	11.5	8.5	38.8	4.6	Protein of unknown function
At1g77450*0.87.39.55.66.91.2NAC-type transcription factor (ANAC032)At1g725201.715.79.34.89.72.0Lipoxygenase (LOX4)At3g486501.914.87.66.27.41.214a-related protein of unknown functionAt4g213901.813.07.06.528.94.4Putative S-domain-type receptor protein kinaseAt5g63790*0.85.47.03.111.13.6NAC-type transcription factor (ANAC102)At4g373701.47.05.02.867.524.1Cytochrome P450 monooxygenase (CYP81D8)At1g637201.55.03.23.16.11.9Hydroxyproline-rich glycoprotein family proteinAt2g186901.54.43.06.624.73.7Protein of unknown functionAt1g05340*1.23.42.74.37.91.8Protein of unknown function	At3g25250*	1.5	17.3	11.4	11.1	153.6	13.8	Putative protein kinase (AGC2/OXI1)
At1g725201.715.79.34.89.72.0Lipoxygenase (LOX4)At3g486501.914.87.66.27.41.214a-related protein of unknown functionAt4g213901.813.07.06.528.94.4Putative S-domain-type receptor protein kinaseAt5g63790*0.85.47.03.111.13.6NAC-type transcription factor (ANAC102)At4g373701.47.05.02.867.524.1Cytochrome P450 monooxygenase (CYP81D8)At1g637201.55.03.23.16.11.9Hydroxyproline-rich glycoprotein family proteinAt2g186901.54.43.06.624.73.7Protein of unknown functionAt1g05340*1.23.42.74.37.91.8Protein of unknown function	At4g39670*	1.3	14.3	10.7	31.7	184.9	5.8	Sphingosine transfer protein; accelerated death 11 (ACD11)
At3g48650 1.9 14.8 7.6 6.2 7.4 1.2 14a-related protein of unknown function At4g21390 1.8 13.0 7.0 6.5 28.9 4.4 Putative S-domain-type receptor protein kinase At5g63790* 0.8 5.4 7.0 3.1 11.1 3.6 NAC-type transcription factor (ANAC102) At4g37370 1.4 7.0 5.0 2.8 67.5 24.1 Cytochrome P450 monooxygenase (CYP81D8) At1g63720 1.5 5.0 3.2 3.1 6.1 1.9 Hydroxyproline-rich glycoprotein family protein At2g18690 1.5 4.4 3.0 6.6 24.7 3.7 Protein of unknown function At1g05340* 1.2 3.4 2.7 4.3 7.9 1.8 Protein of unknown function	At1g77450*	0.8	7.3	9.5	5.6	6.9	1.2	NAC-type transcription factor (ANAC032)
At4g21390 1.8 13.0 7.0 6.5 28.9 4.4 Putative S-domain-type receptor protein kinase At5g63790* 0.8 5.4 7.0 3.1 11.1 3.6 NAC-type transcription factor (ANAC102) At4g37370 1.4 7.0 5.0 2.8 67.5 24.1 Cytochrome P450 monooxygenase (CYP81D8) At1g63720 1.5 5.0 3.2 3.1 6.1 1.9 Hydroxyproline-rich glycoprotein family protein At2g18690 1.5 4.4 3.0 6.6 24.7 3.7 Protein of unknown function At1g05340* 1.2 3.4 2.7 4.3 7.9 1.8 Protein of unknown function	At1g72520	1.7	15.7	9.3	4.8	9.7	2.0	Lipoxygenase (LOX4)
At5g63790* 0.8 5.4 7.0 3.1 11.1 3.6 NAC-type transcription factor (ANAC102) At4g37370 1.4 7.0 5.0 2.8 67.5 24.1 Cytochrome P450 monooxygenase (CYP81D8) At1g63720 1.5 5.0 3.2 3.1 6.1 1.9 Hydroxyproline-rich glycoprotein family protein At2g18690 1.5 4.4 3.0 6.6 24.7 3.7 Protein of unknown function At1g05340* 1.2 3.4 2.7 4.3 7.9 1.8 Protein of unknown function	At3g48650	1.9	14.8	7.6	6.2	7.4	1.2	14a-related protein of unknown function
At4g37370 1.4 7.0 5.0 2.8 67.5 24.1 Cytochrome P450 monooxygenase (CYP81D8) At1g63720 1.5 5.0 3.2 3.1 6.1 1.9 Hydroxyproline-rich glycoprotein family protein At2g18690 1.5 4.4 3.0 6.6 24.7 3.7 Protein of unknown function At1g05340* 1.2 3.4 2.7 4.3 7.9 1.8 Protein of unknown function	At4g21390	1.8	13.0	7.0	6.5	28.9	4.4	Putative S-domain-type receptor protein kinase
At1g63720 1.5 5.0 3.2 3.1 6.1 1.9 Hydroxyproline-rich glycoprotein family protein At2g18690 1.5 4.4 3.0 6.6 24.7 3.7 Protein of unknown function At1g05340* 1.2 3.4 2.7 4.3 7.9 1.8 Protein of unknown function	At5g63790*	0.8	5.4	7.0	3.1	11.1	3.6	NAC-type transcription factor (ANAC102)
At2g18690 1.5 4.4 3.0 6.6 24.7 3.7 Protein of unknown function At1g05340* 1.2 3.4 2.7 4.3 7.9 1.8 Protein of unknown function	At4g37370	1.4	7.0	5.0	2.8	67.5	24.1	Cytochrome P450 monooxygenase (CYP81D8)
At2g18690 1.5 4.4 3.0 6.6 24.7 3.7 Protein of unknown function At1g05340* 1.2 3.4 2.7 4.3 7.9 1.8 Protein of unknown function	At1g63720	1.5	5.0	3.2	3.1	6.1	1.9	Hydroxyproline-rich glycoprotein family protein
At1g05340* 1.2 3.4 2.7 4.3 7.9 1.8 Protein of unknown function	-			3.0	6.6		3.7	
At1a57630 1.4 3.4 2.4 20.2 36.0 1.8 Protein of unknown function	At1g05340*	1.2	3.4	2.7	4.3	7.9	1.8	Protein of unknown function
	At1g57630	1.4	3.4	2.4	20.2	36.0	1.8	Protein of unknown function

565 Table 3. ROS-responsive genes (23 in total) the expression of which was enhanced more than 3fold in GO plants 6 h after shifting plants grown at high CO₂ concentration to ambient CO₂ 566 567 concentration. Genes are listed according to the difference of the expression change between GO and wild-type (WT) plants (FC_{GO}/FC_{WT}) at 6 h. FC_{GO}/FC_{WT} values higher than 2 are shown in 568 bold face. AGI: gene identification number given by the Arabidopsis Genome Initiative. Genes 569 also induced in catalase loss-of function mutants are highlighted with an asterisk (*) (Inzé et al., 570 2012). Genes included in the same gene coexpression network of At1g17180 (GSTU25) are 571 highlighted in bold face (http://atted.jp; Obayashi et al., 2009). The gene annotation was 572 retrieved from TAIR (http://arabidopsis.org/index.jsp). 573

		0.5 h			6 h		
			FC _{GO} /			FC _{GO} /	_
AGI	FC _{wt}	FC_{GO}	FC _{WT}	FC _{WT}	FC_{GO}	$\textbf{FC}_{\textbf{WT}}$	Annotation
Upregulated	in GO at	6 h					
Change in ge	ene expre	ssion in W	/T<3				
At1g26420	1.5	1.6	1.1	2.4	17.6	7.3	Putative reticuline dehydrogenase
At2g15480	1.0	2.8	2.8	1.2	7.2	6.0	UDP-dependent glycosyl transferase (UGT73B5)
At1g10040	1.2	1.8	1.5	2.1	10.4	5.0	Putative hydrolase
At2g29490	0.7	1.9	2.8	2.3	10.4	4.5	Tau glutathione S-transferase (GSTU1)
At5g46080	1.1	1.9	1.8	1.2	3.7	3.1	Putative protein kinase
At1g80820	1.2	1.5	1.3	2.5	7.8	3.1	Cinnamoyl CoA-reductase, involved in lignin biosynthesi
At3g09410	1.2	0.8	0.7	1.2	3.2	2.7	Putative pectin acetylesterase
At2g29500*	1.0	1.1	1.2	1.5	3.8	2.5	HSP20-type protein (HSP17.6B-CI); unknown function
At4g22530*	1.3	0.8	0.7	2.4	5.9	2.4	Putative methyltransferase
At4g15975	1.7	1.3	0.7	1.6	3.7	2.4	Putative ubiquitin ligase (RRE4/ATL17)
At2g38340	1.0	0.7	0.7	2.7	6.1	2.2	Putative AP2-type transcription factor (DREB2E)
At3g13790	1.3	1.3	1.1	2.5	5.0	2.0	Putative cell wall invertase (CwINV1)
At1g76070	1.2	2.6	2.2	1.6	3.3	2.0	Protein of unknown function
Change in ge	ene expre	ssion in V	/T>3				
At1g17180	0.6	0.9	1.4	7.5	104.0	13.8	Tau glutathione S-transferase (GSTU25)
At1g15520	1.2	0.8	0.7	12.4	111.9	9.0	ABC transporter (ABCG40/PDR12)
At1g17170	1.0	1.3	1.4	5.7	40.4	7.0	Tau glutathione S-transferase (GSTU24)
At1g74360	1.0	2.2	2.2	4.2	14.2	3.4	Putative LRR-type receptor protein kinase
At2g38250*	1.2	1.7	1.4	4.4	13.7	3.1	Putative trihelix-type transcription factor
At5g51060	1.3	1.0	0.7	14.4	44.0	3.1	Respiratory burst oxidase homolog (AtRBOHC/RHD2)
At5g20230	1.5	2.8	1.8	9.9	28.3	2.9	Senescence associated gene (BCB/SAG14)
At2g41380	1.1	1.2	1.1	9.6	21.2	2.2	Putative S-adenosyl-L-methionine-dependent methyltransferase

At1g1334) 1.0	2.1	2.0	3.4	6.8	2.0	Protein of unknown function	
At5g4885) 1.1	0.8	0.7	3.3	7.4	2.2	Protein of unknown function (ATSDI1)	

575 Table 4. Transcription factors the expression of which was enhanced by more than 3-fold in GO plants, but less than 2-fold in wild-type plants 0.5 h after shifting plants grown at high CO₂ 576 concentration to ambient CO₂ concentration. Genes are listed according to the difference of the 577 expression change between GO and wild-type (WT) plants (FC_{GO}/FC_{WT}). AGI: gene 578 579 identification number given by the Arabidopsis Genome Initiative. A function was described for a gene when its involvement in a biological process/function was experimentally backed up as 580 581 described in PubMed (www.ncbi.nlm.nih.gov/pubmed) TAIR or (http://arabidopsis.org/index.jsp). FG: functional group. 582

- 583
- 584

	0.5 h after transfer to ambient CO ₂						
AGI	FC _{wt}	FC _{GO}	FC _{GO} / FC _{WT}	Gene family	Annotation	Function	FG
At5g19790	0.2	26.9	176.5	AP2/EREBP	RAP2.11	Modulates response to low potassium	4
At5g56200	0.1	14.5	169.0	C2H2	C1-4iB-01	Unknown function	5
At5g32460	1.3	123.7	92.9	В3	В3	Unknown function	5
At4g09820	0.8	34.4	45.5	bHLH	TT8	Regulation of proanthocyanidin and anthocyanin biosynthesis; affects dihydroflavonol 4-reductase gene expression.	1
At2g37430	1.9	80.4	43.3	C2H2	ZAT11	Unknown function	5
At1g48150	0.1	3.6	38.9	MADS	AGL74	Unknown function	5
At2g34600	0.4	8.4	24.1	ZIM	JAZ7	Jasmonate signaling; cambium regulator	3
At3g07260	0.8	19.0	22.7	FHA		Unknown function	5
At1g66380	1.9	40.0	21.6	MYB	MYB114	Regulates later steps of anthocyanin biosynthesis	1
At1g27730	1.8	36.3	20.5	C2H2	ZAT10/STZ	Involved in plant defense responses	4
At1g56650	0.6	12.1	20.1	МҮВ	MYB75	Involved in anthocyanin metabolism; regulates dihydroflavonol reductase expression	1
At5g37415	0.5	8.8	17.6	MADS	AGL105	Unknown function	5
At3g53340	0.4	6.5	17.5	CCAAT-HAP3	NF-YB10	Unknown function	5
At4g00250	0.4	6.3	16.8	GeBP	-	Indirect regulation of cytokinin response genes	2
At5g26930	0.7	9.6	13.5	C2C2(Zn)GATA	GATA-23	Controls lateral root founder cell specification	2
At4g26930	0.4	4.6	13.0	MYB	MYB97	Unknown function	5
At1g48000	1.3	13.8	11.1	MYB	MYB112	Unknown function	5
At5g51190	1.9	18.5	9.9	AP2/EREBP	-	Unknown function	5
At5g43540	0.4	3.2	8.8	C2H2	C1-1iAf-03	Unknown function	5
At3g55980	1.9	15.7	8.4	СЗН	SZF1	Regulates salt stress responses	4
At1g74080	0.5	4.0	8.3	MYB	MYB122	Activator of the indole glucosinolate biosynthesis	4
At1g68880	0.6	5.1	8.1	bZIP	bZIP8	Unknown function	5
At4g35900	1.0	7.5	8.0	bZIP	bZIP14/FD-1	Required for regulation of flowering	2
At1g30135	0.8	5.9	7.6	ZIM	JAZ8	Represses jasmonate-regulated growth and defense	3

At4g01350	0.6	4.6	7.5	CHP-rich	_	Intracellular signal transduction, oxidation-reduction process, response to chitin	4
At1g43160	1.2	8.8	7.5	AP2/EREBP	RAP2.6	Regulation of development	2
At5g26170	0.8	6.3	7.5	WRKY	WRKY50	Repression of jasmonate-mediated signaling	3
At1g29280	0.8	5.5	7.2	WRKY	WRKY65	Unknown function	5
At1g75540	0.8	5.2	6.8	C2C2(Zn)CO	STH2	Positive regulation of photomorphogenesis	4
At2g33710	1.9	11.4	5.9	AP2/EREBP	ERF112	Unknown function	5
At3g01600	0.6	3.6	5.8	NAC	ANAC044	Unknown function	5
At5g27050	1.4	8.2	5.7	MADS	AGL101	Unknown function	5
At5g01380	0.9	5.3	5.7	Trihelix	-	Unknown function	5
At1g65130	1.2	6.4	5.5	C2H2	C2-1iB-03	Unknown function	5
At5g23260	1.0	5.4	5.4	MADS	AGL32/TT16	Regulates proanthocyanidin biosynthesis	1
At3g11580	0.9	4.6	5.4	ABI3/VP1	AP2/B3-like	Seed development	2
At3g56770	0.8	4.5	5.3	bHLH	-	Unknown function	5
At1g65110	0.6	3.2	5.1	C2H2	C2-1iB-01	Unknown function	5
At2g47190	1.2	6.0	4.9	МҮВ	MYB2	Inhibits cytokinin-mediated branching at late stages of development	2
At5g52260	1.0	4.7	4.8	МҮВ	MYB19	Unknown function	5
At5g39610	1.1	5.5	4.8	NAC	ANAC092/ORE1	Regulator of leaf senescence	2
At4g18880	1.6	7.4	4.6	HSF	HsfA4a/HSF21	Unknown function	5
At4g37610	1.1	4.8	4.3	TAZ	BTB5	Unknown function	5
At1g18960	1.3	5.4	4.3	МҮВ	-	Unknown function	5
At5g02470	0.8	3.2	4.0	E2F/DP	DPA	Endoreduplication control	2
At5g26880	1.0	3.8	3.9	MADS	AGL26	Unknown function	5
At1g68800	0.9	3.5	3.8	ТСР	TCP12/BRC2	Prevents axillary bud development and outgrowth	2
At5g07500	1.9	7.0	3.7	C3H	C3H54	Required for heart-stage embryo formation	2
At4g01540	1.3	4.2	3.4	NAC	ANAC068	Mediates cytokinin signaling during cell division	2
At5g51780	1.6	5.4	3.3	bHLH	-	Unknown function	5
At2g42150	1.1	3.5	3.2	BD	-	Unknown function	5
At5g13220	1.1	3.4	3.2	ZIM	JAZ10/TIFY9	Jasmonate signaling repressor	3
At5g22290	1.2	3.8	3.1	NAC	ANAC089	Negative regulator of floral initiation	2
At2g13150	1.0	3.1	3.1	bZIP	bZIP31	Unknown function	5
At1g70700	1.1	3.3	3.0	ZIM	JAZ9	Jasmonate signaling repressor	3
At5g62320	1.2	3.5	3.0	МҮВ	MYB99	Unknown function	5
At4g39070	1.2	3.5	2.9	C2C2(Zn)CO	DBB2	Unknown function	5
At2g30250	1.6	4.4	2.8	WRKY	WRKY25	Involved in response to various abiotic stresses	4
At5g64810	1.7	4.8	2.8	WRKY	WRKY51	Repression of jasmonate-mediated signaling	3
At3g05800	1.9	5.3	2.7	bHLH	AIF1	Involved in brassinosteroid signaling	4
At3g01970	1.4	3.8	2.6	WRKY	WRKY45	Unknown function	5
At1g75490	1.7	4.4	2.7	AP2/EREBP	DREB2D	Unknown function	5
At1g68840	1.2	3.1	2.5	AP2/EREBP	RAV2/TEM2	Repressor of flowering	2
At1g79180	1.4	3.3	2.5	МҮВ	MYB63	Activates secondary wall biosynthesis	2

At4g09460	1.7	3.6	2.2	MYB	MYB8	Unknown function	5
At1g66600	1.4	3.0	2.1	WRKY	WRKY63	Involved in the regulation of responses to ABA and drought stress	4
At2g43500	1.5	3.1	2.1	NIN-like	-	Unknown function	5
At4g01520	1.8	3.7	2.0	NAC	ANAC067	Unknown function	5
At1g21000	1.6	3.2	2.0	PLATZ	-	Unknown function	5
At3g27810	1.7	3.4	2.0	MYB	MYB21	Petal and stamen development	2
At5g67300	1.6	3.1	1.9	MYB	MYB44	Regulates ethylene signaling	4
At2g39250	1.7	3.1	1.8	AP2/EREBP	SNZ	Represses flowering	2
At4g16780	1.7	3.1	1.8	НВ	HB2/HAT4	Involved in cell expansion and cell proliferation	2
At4g24240	1.8	3.2	1.8	WRKY	WRKY7	Involved in plant defense responses	4
At4g01930	1.8	3.1	1.7	BPC/BRR	-	Unknown function	5
At5g62020	1.8	3.1	1.7	HSF	HsfB2a/HSF6	Unknown function	5
At2g43000	1.9	3.2	1.7	NAC	JUB1/ANAC042	Regulates camalexin biosynthesis and longevity	4
At4g17785	1.9	3.2	1.6	MYB	MYB39	Unknown function	5

Table 5. Transcription factors the expression of which was reduced by more than 3-fold in GO plants 0.5 h after shifting plants grown at high CO_2 concentration to ambient CO_2 concentration. Genes are listed according to the difference of the expression change between wild-type (WT) and GO plants (FC_{WT}/FC_{GO}). A function was described for a gene when its involvement in a biological process/function was experimentally backed up as described in PubMed (www.ncbi.nlm.nih.gov/pubmed) or TAIR (http://arabidopsis.org/index.jsp).

AGI	0.5 h after transfer to ambient CO ₂					
	FC _{wT}	FC _{GO}	FC _{WT} / FC _{GO}	Gene family	Annotation	Function
At3g02310	47.1	0.12	380.8	MADS	SEP2/AGL4	Flower and ovule development
At3g13850	2.0	0.02	129.5	AS2 (LOB) I	ASL30/LBD22	Unknown function
At4g00260	21.6	0.23	92.1	В3	MEE45	MATERNAL EFFECT EMBRYO ARREST 45
At4g27330	2.4	0.03	78.6	NZZ	NZZ/SPL	Controls stamen identity
At1g54760	11.6	0.31	37.6	MADS	AGL85	Unknown function
At3g60460	4.6	0.26	17.9	MYB	DUO1	Plays essential role in sperm cell specification
At2g45650	3.4	0.20	17.3	MADS	AGL6/RSB1	Involved in axillary bud formation; control of flowering time and lateral organ development
At5g26950	2.0	0.17	12.2	MADS	AGL93	Unknown function
At3g15170	1.9	0.16	11.9	NAC	ANAC054/CUC1	Shoot apical meristem formation and auxin-mediated latera root formation; formation of organ boundary
At5g58280	0.8	0.15	5.3	B3	-	Unknown function
At5g15800	1.0	0.21	5.0	MADS	SEP1/AGL2	Involved in flower and ovule development
At3g56660	1.3	0.26	5.0	bZIP	bZIP49	Unknown function
At5g23000	0.6	0.18	3.3	MYB	MYB37/RAX1	Regulates axillary meristem formation; earliest spatial marker for future axillary meristems

