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Abstract
Quantum key distribution (QKD) aims at the establishment of a shared secret key

between two parties Alice and Bob, who are connected via a quantum channel and

an authenticated classical channel. Traditionally, secure key rates were mainly cal-

culated in the non-realistic case of infinitely many signals. Recently, QKD scenarios

have been analyzed, where the number of signals sent through the channel is finite

and the eavesdropper is not restricted to a specific attack. The challenge of this

thesis is to develop strategies to optimize the secret key rate for finite quantum key

distribution scenarios. We present two types of optimization methods.

First we modify the protocol by adding a pre-processing step, which may have benefi-

cial effects on the secret key rate. More precisely, we investigate the effect of different

noise scenarios on the achievable rate of an ε-secure key for the BB84 and six-state

protocol under the assumption of collective attacks. We show that, on the one hand

adding quantum noise deliberately may increase the secret key rate, and that on the

other hand, under the realistic assumption that some noise is introduced by a real

channel and is not dedicated to the eavesdropper, the secret key rate will increase

significantly.

The second approach considers optimizations in the mathematical security analy-

sis. Different types of entropy measures play a role in the analysis of finite QKD

protocols. For example, the smooth min-entropy and Rényi entropies can be used

to calculate the secret key rate for a finite QKD scenario. Since these entropies

are very hard, or even impossible, to calculate for large dimensional systems, com-

putable bounds on these entropies become very important. Besides the von Neu-

mann entropy bound derived for tensor-product states, which leads for experimen-

tally accessible situations to pessimistic secret key rates, and besides a very specific

approach for the BB84 protocol, no further bounds are known. This thesis fills this

gap: We calculate an achievable secret key rate for quantum key distribution with a

finite number of signals, by bounding the smooth min-entropy by the min-entropy

of a single-copy state. By an explicit evaluation of the min-entropy using its con-

necting to the guessing probability, we find non-zero key rates for a smaller number

of signals in comparison to the von Neumann entropy approach. Another bound

on the secret key rate is derived, which is expressed as an optimization problem

over Rényi entropies. Under the assumption of collective attacks we develop a com-

putable bound for the six-state protocol, which leads to improved secret key rates in

comparison to previous results. Additionally, we develop a new method to quantify

the secret key rate for permutation-invariant protocols for coherent attacks for finite



resources. By comparing the results to the well-known post-selection technique for

the BB84 and six-state protocol, we show the high relevance of this method. Since

the restriction to the class of permutation-invariant protocols is fairly weak, this

underlines the wide importance of the results. In addition to the confirmation of

the known equivalence of coherent and collective attacks for permutation-invariant

protocols in the limit of infinitely many quantum signals, the results of this work

may also give a hint that this equivalence might not hold in the regime of finite

resources.



Zusammenfassung
Das Ziel der Quantenschlüsselverteilung ist die Erstellung eines sicheren Schlüssels,

verteilt zwischen zwei Parteien Alice und Bob, die durch einen Quantenkanal und

einen authentifizierten klassischen Kanal verbunden sind. Für gewöhnlich wur-

den sichere Schlüsselraten hauptsächlich in dem unrealistischen Fall von unendlich

vielen Signalen berechnet. Erst kürzlich wurden Szenarien der Quantenschlüssel-

verteilung analysiert, die eine finite Anzahl an durch den Kanal versendeten Signalen

betrachten und den Lauscher nicht auf eine spezifische Attacke einschränken. Die

Herausforderung dieser Doktorarbeit ist es, Strategien zur Optimierung geheimer

Schlüsselraten für die finite Quantenschlüsselverteilung zu entwickeln. Wir präsen-

tieren zwei Arten von Optimierungsmethoden.

Zunächst modifizieren wir das Protokoll, indem wir einen vorbehandelnden Schritt

hinzufügen, der nützliche Effekte auf die sichere Schlüsselrate haben kann. Genauer

gesagt untersuchen wir den Effekt unterschiedlicher Rauschszenarien auf die er-

reichbare Rate eines ε-sicheren Schlüssels für das BB84- und 6-Zustand-Protokoll

unter der Annahme von kollektiven Attacken. Wir zeigen, dass, auf der einen Seite

absichtliches Hinzufügen von Rauschen zu einer Erhöhung der sicheren Schlüssel-

rate führen kann, und auf der anderen Seite erhöht sich die geheime Schlüsselrate

deutlich unter der realistischen Annahme, dass ein realer Kanal Rauschen erzeugt,

das nicht einem Lauscher zugesprochen werden muss.

Die zweite Vorgehensweise beinhaltet die Optimierung der mathematischen Sicher-

heitsanalyse. Unterschiedliche Arten von Entropien spielen bei der Analyse von

finiter Quantenschlüsselverteilung eine Rolle. Zum Beispiel können die glatte Min-

Entropie und die Rényi-Entropien zur Berechnung sicherer Schlüsselraten für fi-

nite Quantenschlüsselverteilung verwendet werden. Da diese Entropien aber für

hochdimensionale Systeme sehr schwierig oder sogar unmöglich zu berechnen sind,

werden berechenbare Abschätzungen für diese Entropien sehr wichtig. Neben der

für Tensorproduktzustände hergeleiteten von-Neumann-Entropie-Abschätzung, die

für experimentell zugängliche Situationen pessimistische geheime Schlüsselraten

liefert, und neben einer sehr spezifischen Verfahrensweise für das BB84-Protokoll,

sind keine weiteren Abschätzungen bekannt. Diese Lücke wird durch diese Dok-

torarbeit geschlossen: Wir berechnen eine erreichbare geheime Schlüsselrate für

die Quantenschlüsselverteilung mit finiter Anzahl an Signalen, indem wir die glatte

Min-Entropie durch die Min-Entropie eines Einzelkopiezustands abschätzen. Durch

explizite Auswertung der Min-Entropie unter der Verwendung ihrer Verbindung zur

Ratewahrscheinlichkeit finden wir nichtverschwindende Schlüsselraten schon für



weniger Signale als im Vergleich zum von-Neumann-Entropie-Ansatz. Eine weit-

ere Abschätzung an die sichere Schlüsselrate wird hergeleitet, die sich als Opti-

mierungsproblem über Rényi-Entropien darstellt. Unter der Annahme von kollek-

tiven Attacken entwickeln wir eine berechenbare Abschätzung für das 6-Zustand-

Protokoll, die zu verbesserten geheimen Schlüsselraten im Vergleich zu vorherge-

henden Resultaten führt. Zusätzlich entwickeln wir eine neue Methode, geheime

Schlüsselraten für pemutationsinvariante Protokolle für kohärente Attacken und

finite Ressourcen zu quantifizieren. Durch einen Vergleich der Resultate mit der

bekannten Post-selection-Technik für das BB84- und 6-Zustand-Protokoll wird die

hohe Relevanz dieser Methode deutlich. Da die Einschränkung auf die Klasse der

permutationsinvarianten Protokolle recht schwach ist, hebt dies die breite Wichtigkeit

dieser Resultate hervor. Zusätzlich zu der Bestätigung der bekannten Äquivalenz

zwischen kohärenten und kollektiven Attacken für permutationsinvariante Protokolle

im Grenzfall unendlich vieler Quantensignale, geben die Resultate dieser Arbeit

möglicherweise Hinweise darauf, dass diese Äquivalenz für den Fall finiter Ressourcen

nicht mehr gewährleistet ist.
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Chapter 1.

Introduction

The need of private communication became very important in modern society. Cryp-

tography is the science of secret communication. Secret communication is the pri-

vate communication between a sender (usually called Alice) and a receiver (usually

called Bob), without revealing any information to a spy or an eavesdropper (mostly

called Eve).

A main criterion of cryptographic protocols is the security they can achieve. Here, se-

curity means the safeness of the communication between Alice and Bob with respect

to a spy-attack of a third party. We distinguish between two kinds of security. The

first one is called computational security. This relies on the computational power

and the time which is needed to break the encryption code. That means, if the

eavesdropper’s computational power is high enough, she/he will be able to break

the code after a certain time. The second type of security is called unconditional
or information-theoretic security. As the name already implies, in contrast to the

first type, this security is independent on computational power, times or memories.

Unconditional security is also not conditioned on any assumptions about the eaves-

dropper’s abilities.

A cryptographic protocol, which is unconditionally secure, has been found by Ver-

nam [1] which is called “one-time pad”. Alice transforms the original message, the

so-called plain text, into an encrypted message, the so-called cipher text, by adding

a key bitwise to the original message. After sending, Bob recovers the original mes-

sage by an analogous addition of the identical key to his received ciphertext (see

Figure 1.1 for an example). It has been shown by Shannon in [2] that this crypto-

graphic protocol is unconditionally secure under the following assumptions: First,

the key has to be completely random, second, the length of the key and the plaintext

have to be equal and last, the key can only be used once. That means, once there is

1
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BobEveAlice

message

key

ciphertext ciphertext

key

message

+

−

Figure 1.1.: Vernam’s one-time pad: Alice encrypts her message by addition modulo
two of the plaintext and the key. After sending to Bob, he decrypts the original
message by addition modulo two of the ciphertext and the key.

a completely random shared key with the right length available, an unconditionally

secure communication can be performed.

These important results of Vernam and Shannon shift the problem of classical cryp-

tography to the secret-key generation. This is where quantum cryptography or more

precisely quantum key distribution comes into play. Quantum key distribution is

part of quantum information theory and aims at the generation of a completely ran-

dom and shared secret key between two parties. In such a scenario (see Figure 1.2)

Alice and Bob use a quantum channel (e.g. optical fiber or free space) and an au-

thenticated classical channel. Authenticated means that Alice’s and Bob’s identity

is confirmed and an eavesdropper can only listen to the information sent through

the channel. The quantum channel is not restricted at all, i.e. in principle an eaves-

dropper can have full control of the channel. In a typical protocol Alice prepares a

quantum state (e.g. photons) according to a randomly chosen bit and sends it to

Bob, who measures the state and uses the outcome as a his bit. After many repeti-

tions of this procedure, Alice and Bob have a long correlated bit-string each. During

the transmission of the state, an eavesdropper can interfere to get information about

the quantum state and consequently of the possible key. The easiest and most in-

tuitive attack of an eavesdropper one might think of, is to intercept Alice’s state, to

copy the state and send the copy to Bob. In such a scenario, Eve would have the

same information as Bob in the end. As a consequence the key would be completely

insecure. This scheme is forbidden by the so-called no-cloning theorem [3], which

states that non-orthogonal quantum states (this is provided by the protocol) cannot

be copied or cloned perfectly. As a consequence, any interference of an eavesdropper

2
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Figure 1.2.: Typical QKD setup.

on the non-orthogonal quantum states sent through the channel causes a distur-

bance on the state. This disturbance can be estimated by the two parties, Alice and

Bob. If the disturbance is too high - which corresponds to a high gain of information

for Eve and a low correlation in Alice’s and Bob’s bit-string- they abort the protocol

and start a new trial. But if the amount of noise introduced by Eve is low, they

can generate the desired secret key by a classical post-processing , with the use of

classical communication.

In the year 1984 Bennett and Brassard invented the first protocol for QKD, the BB84
protocol [4]. The BB84 protocol is a prepare and measure protocol, as described

above.A public comparison of a random sample of the bit-string enables them to es-

timate the error, which corresponds to the eavesdropper’s gain of information. Nine

years later Ekert presents a protocol that is based on entanglement [5]. Here Al-

ice and Bob share an entangled state and they estimate the number of errors in

their bit-strings by the violation of a Bell-inequality [6]. Already one year later the

equivalence of these protocols has been proven in [7]. Up to now, the existing pro-

tocols used two bases for measurement. A generalization to a three-bases protocol

appeared in [8, 9] by the invention of the six-state protocol. Many other protocols fol-

lowed and many different security proofs came up in the literature [10, 11, 12, 13].

These works mostly consider the case of infinitely many signals, which are sent

through the quantum channel to generate the secret key. Since this assumption is

not realistic in experimental situations, security proofs for finite resources became

necessary. It took until the year 2005 until Renner developed a complete framework

for the security-analysis of QKD protocols for finite resources [14, 15]. Explicit cal-

culations of secret-key rates followed for specific protocols [16, 17, 18, 19]. As a

main result it turned out that the estimate of the secret key rate requires a minimal

3
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number of signals of around 106 [20]. Since the aim is to transfer QKD schemes

to real experimental setups, this number is rather high. The necessity to improve

the bound on the secret-key rate for small initial number of signals becomes very

important. Some recent works already treated this problem [21, 22] with significant

success.

The aim of this work is to find methods that improve bounds on the secret key

rate. More precisely, we want to decrease the minimal number of signals, which are

necessary to generate a non-zero secret-key rate. There are two different ways for

achieving it:

• Invent a new protocol that performs better than existing protocols or add new

steps to known protocols, which are beneficial for the key generation.

• Improve the mathematical tools used for the security proofs and calculation of

key rates. Since a main ingredient for security proofs is to find appropriate

bounds on the maximal achievable secret key rate, there is space for improving

secret key rates by finding better bounds or different proof strategies.

This thesis considers both methods. The first point is treated in Pub. A, where

we investigate the influence on the secret-key rate by introducing different kinds of

quantum noise to the quantum states. Pub. B, Pub. C and Pub. D are examples of

the second item, where we develop formulas for the secret-key rates, which perform

significantly better than previous bounds in specific scenarios.

The thesis is structured as follows: Chapter 2 introduces the mathematical frame-

work, which is crucial for the analysis of quantum key distribution. Chapter 3

provides an introduction in quantum key distribution and shows how the previously

presented mathematical tools apply to the analysis of secret key rates. A summary

of the results of the thesis is given in Chapter 4 followed by an outlook in Chap-

ter 5. After a list of main results in Chapter 6 and Appendix A the publications are

attached in Publication A-D.

4



Chapter 2.

Mathematical framework

This chapter provides an introduction into the main mathematical tools needed for

the analysis of the security of quantum key distribution presented in Chapter 3. It

is inspired by standard introductory textbooks like for example [23] and [24].

2.1. Quantum states

In this thesis, in order to describe physical systems we use the density-operator

formalism in finite Hilbert spaces. A density operator denoted by ρ is a positive

semi-definite operator, which is normalized, i.e. tr (ρ) = 1. We denote the set of

density operators, also called quantum states, living in a Hilbert space H by S(H).

This formalism can be seen as a generalization of discrete probability theory. The

correspondence of a discrete probability distribution in the density-operator formal-

ism is called classical state and can be defined in the following way:

Definition 1. Let PZ : Z �→ [0, 1] be a probability distribution on Z. Then we call the
density operator ρZ ∈ S(HZ) defined by

ρZ :=
∑
z∈Z

PZ(z) |z〉 〈z| (2.1)

with an orthonormal basis {|z〉} a classical state. Here a specific basis vector |z〉 in
the density-operator language corresponds to the random variable z in the probability
distribution.

Note that the fact that ρZ is a density operator directly follows from the normalization

and positivity of the probabilities PZ(z).

5
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Analogously we can define a classical quantum state, as a combination of classical

state and quantum state:

Definition 2. Let PX : X �→ [0, 1] be a probability distribution on X and the ρx
E ∈ S(HE)

be a quantum state, depending on the random variable x, ∀x ∈ X . Then we call the
density operator ρXE ∈ S(HX ⊗HE) defined by

ρXE :=
∑
x∈X

PX(x) |x〉 〈x| ⊗ ρx
E (2.2)

a classical-quantum (cq-) state.

A specific case of such a cq-state is of course a classical-classical state, e.g.

ρXY :=
∑
x,y

PXY (x, y) |x〉 〈x| ⊗ |y〉 〈y| , (2.3)

obtained for assuming a classical state on the second Hilbert space. These defi-

nitions are not restricted to the number of Hilbert spaces. One might think of an

analogous definition to get for example ccq - states.

Extensions of quantum states to quantum states of larger systems occur quite fre-

quently in quantum information theory. A specific extension is called purification.

2.2. Purification and partial trace

A possibility to categorize a density operator is given by its purity. We say a density

operator ρ ∈ H is pure if and only if tr
(
ρ2
)

= 1. For tr
(
ρ2
)
< 1 we call the quantum

state mixed. While an ideal quantum state, which describes an isolated and complete

system, can be seen as a pure quantum state, any interaction with another quantum

system leads to a mixed quantum state.

A very useful technique in quantum information theory is called purification and

describes the purely mathematical transformation of a given state to a pure state in

an extended Hilbert space:

Definition 3. Let ρA ∈ S(HA) be a quantum state. Then we can find a pure quantum
state ρAB on an extended Hilbert space HA ⊗HB, such that

trB (ρAB) = ρA. (2.4)

We call the quantum state ρAB then a purification of ρA.

6



2.3. Trace-preserving completely positive map (TP-CPM)

In other words, any mixed operator can be seen as a result from a partial-trace

operation on a pure quantum state on an extended Hilbert space.

The process of purification is an unphysical process, i.e. it has no correspondence

in reality. Any physical process can be described in quantum information theory by

a trace-preserving completely positive map (TP-CPM).

2.3. Trace-preserving completely positive map

(TP-CPM)

The evolution of quantum states in the quantum world can be described by chan-

nels, which map density operators from a Hilbert space HA to density operators on

a Hilbert space HB. As a consequence, these linear maps have to be restricted to

properties, that guarantee the occurrence of a density operator after the applica-

tion of the linear map, i.e. they have to be trace-preserving and preserve positivity.

Additionally, since a quantum system can be seen as part of a larger joint quan-

tum system, the map should, to be physical, also preserve positivity for any density

operator on an extended Hilbert space:

Definition 4. Let HA,HB be Hilbert spaces. A linear map M : S(HA) �→ S(HB) is
called trace-preserving completely positive (TP-CP) if for any auxiliary Hilbert space
HB the following properties are satisfied:

• tr (M(ρA)) = 1 with ρA ∈ S(HA) (Trace-preserving)

• M(ρAB) ≥ 0 with ρAB ∈ S(HA ⊗HB) (Complete positivity)

Note that the positivity of the map, i.e. M(ρA) ≥ 0 is a direct consequence of the

complete positivity.

A very useful and general way of representing any kind of TP-CP map has been

developed in [25, 26] and is known as the Kraus-operator representation.

Lemma 1. Let HA,HB be Hilbert spaces and let M : S(HA) �→ S(HB) be a linear trace-
preserving completely positive map. Then there exists a set of linear operators {Mk}
with Mk : S(HA) �→ S(HB) ∀k and

∑
k M

†
kMk = 11, such that

M(ρ) =
∑

k

MkρM
†
k (2.5)

∀ ρ ∈ S(HA).

7



Chapter 2. Mathematical framework

This kind of representation can give us a helpful intuition about the action of the

channel. A well known example of a specific Kraus-operator representation is the

so-called depolarizing channel, defined by:

Definition 5. The action of a depolarizing channel N p (ρ) is given by

N p (ρ) :=
4∑

i=1

AiρA
†
i (2.6)

with the Kraus operators A1 =
√

1 − 3
4p11, A2 =

√
p
4σx, A3 =

√
p
4σy, andA4 =

√
p
4σz. Here,

σi are the Pauli-operators for i ∈ {x, y, z}.

A very important subset of TP-CP maps are the maps which represent the impor-

tant measurement process, described by a positive operator-valued measurement

(POVM ).

2.4. Positive operator-valued measurement (POVM)

A measurement describes the interaction of an apparatus with the quantum system

under study. It builds a bridge from the quantum states on the one side to the

classical measurement outcomes observed by the apparatus on the other side. A

measurement process can be seen as a specific trace-preserving completely positive

map (see Definition 4). We denote this map as a positive operator-valued measure-

ment, which is defined by:

Definition 6. [27] A positive operator-valued measurement (POVM) on a Hilbert-space
HA is a set of positive measurement operators {Mx}, called POVM elements with∑

xMx = 11. The corresponding measurement TP-CPM M : HA �→ Hx is given by

M(ρ) :=
∑

x

tr (Mxρ) |x〉 〈x| . (2.7)

The probability of the outcome belonging to the POVM element Mx is given by tr (Mxρ).

Theoretically, we can easily reduce the POVM elements without changing the mea-

surement by “grouping” some POVM elements together and adjusting the probabil-

ities.

Another key element in quantum information theory is the estimation of the distance

between density operators. An appropriate distance is given by the trace distance.

8



2.5. Trace distance

2.5. Trace distance

In security proofs distance measures play a crucial role. In this thesis we use the

trace distance as measure for the distance between two quantum states:

Definition 7. Let ρ, σ be quantum states. Then we define the trace distance between
ρ and σ as

d(ρ, σ) :=
1
2
||ρ− σ||1 (2.8)

with ||A||1 := tr
(√

AA†
)
.

For classical states ρX :=
∑

x PX(x) |x〉 〈x| and σX :=
∑

xQX(x) |x〉 〈x| the distance is
defined by

d(ρX , σX) :=
1
2

∑
x

|PX(x) −QX(x)|. (2.9)

The exceptional position of the trace distance in comparison to other distance mea-

sures is due to a reasonable operational meaning: The trace distance between two

quantum states can be interpreted as the maximal probability to distinguish the two

quantum states by an arbitrary chosen measurement. More precisely:

Theorem 1. [23] Let ρ, σ be quantum states and let the set {Mx} be a POVM . Then

d(ρ, σ) = max
{Mx}

d (tr (Mxρ) , tr (Mxσ)) (2.10)

Another useful property is that the trace distance cannot increase under quantum

operations:

Lemma 2. [23] Let ρ, σ be quantum states and let M be a TP-CP map, then

d(ρ, σ) ≥ d(M(ρ),M(σ)). (2.11)

A main issue of the thesis is the optimization of quantities over quantum states

having a distance ε to a reference quantum state:

Definition 8. Let ε > 0 and ρ be a quantum state, then we define the ε-environment
(or sometimes called ε-ball) of ρ by

Bε (ρ) :=
{
σ ∈ S(H) :

1
2
||ρ− σ||1 ≤ ε

}
. (2.12)

9



Chapter 2. Mathematical framework

If a quantum state is in the interior of such an ε-ball, we say the quantum state is

ε-close to ρ.

In the following section we present the entropies, which are crucial for security anal-

ysis of quantum key distribution.

2.6. Entropies

A key quantity in quantum information theory and quantum key distribution is the

entropy. It is used as a measure of information. One of the simplest known entropies

for quantum states is the so called von Neumann entropy.

2.6.1. Von Neumann entropy

The von Neumann entropy is defined for quantum states in the following way:

Definition 9. Let ρA ∈ S(HA), then we define the von Neumann entropy of ρA by

S(A) ≡ S(ρA) := −tr (ρA log2 (ρA)) (2.13)

Since the entropy is zero for pure quantum states and maximal for fully mixed states,

it can be seen as a measure of distance between the considered quantum state and

a pure quantum state. Quantum information theory often treats problems where a

party has some prior knowledge about some quantum state and one is interested in

the remaining uncertainty about the system. This question can be answered by the

conditional von Neumann entropy:

Definition 10. Let ρAB ∈ S(HA ⊗ HB) and ρB ∈ S(HB) with ρB = trA (ρAB), then we
define the von Neumann entropy of ρAB conditioned on B by

S(A|B) := S(ρAB) − S(ρB) (2.14)

In the case of classical states the von Neumann entropy reduces to the purely clas-

sical Shannon entropy [2]:

Definition 11. Let ρXY :=
∑

x∈X ,y∈Y PXY (x, y) |x〉 〈x| ⊗ |y〉 〈y| ∈ S(HX ⊗ HY ) be a cc-
state and ρY =

∑
y∈Y PY (y) |y〉 〈y| ∈ S(Hy) with ρY = trX (ρXY ), then we define the

Shannon entropy of ρXY conditioned on Y by

H(X|Y ) := H(ρXY ) −H(ρY ) (2.15)

10



2.6. Entropies

with H(ρY ) := −∑
y∈Y PY (y) log2 PY (y).

The application of these entropies are mainly related to asymptotic scenarios, which

means that they are repeated infinitely many times. In real experiments this as-

sumption is not realizable. This fact demands so-called one-shot (or single-shot)

entropies, which quantify uncertainties in the case of finite runs of experiments.

Possible entropies of such a kind are the Rényi entropies.

2.6.2. Rényi entropies

A generalization of the von Neumann entropy is given by the Rényi entropies [28]:

Definition 12. Let α ∈ R
0
+

⋃ {∞} and let ρ ∈ S(H) be a quantum state. Then the
generalized Rényi entropy of order α is defined as

Sα (ρ) :=
1

1 − α
log2 (tr (ρα)). (2.16)

Note that for α = 1 we obtain the von Neumann entropy:

lim
α→1

Sα (ρ) = S(ρ). (2.17)

Other specific Rényi entropies suitable for quantum key distribution are:

S0 (ρ) = log2 (rank(ρ)), (2.18)

S2 (ρ) = log2

(
tr
(
ρ2
))

and (2.19)

S∞ (ρ) := lim
α→∞Sα (ρ) = − log2 (λmax(ρ)) (2.20)

where λmax(ρ) denotes the maximal eigenvalue of ρ.

Since conditional entropies for single-shot scenarios are needed we have to general-

ize the Rényi entropies again to a conditional one-shot entropy, called min-entropy.

2.6.3. Min-entropy

The min-entropy was introduced by Renner [14]:

11
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Definition 13. Let σAE ∈ S(HA ⊗ HE) and ρE ∈ S(HE) be quantum states. Then the
min-entropy of σAE conditioned on system E is defined by

Hmin (σAE |E) := sup
ρE∈S(HE)

Hmin (σAE |ρE) (2.21)

with
Hmin (σAE |ρE) := sup

{
λ ∈ R : 2−λ11A ⊗ ρE − σAE ≥ 0

}
. (2.22)

The rather complex definition of the min-entropy becomes more convenient when

considering a very intuitive operational meaning derived in [29] for classical-quantum

states.

Theorem 2. [29] Let σXE :=
∑

x∈X PX(x) |x〉 〈x| ⊗ σx
E ∈ S(HX ⊗ HE) be a classical-

quantum state and let
{
ME

x

}
be a POVM acting on HE. Then

Hmin (σXE |E) := − log2 (pguess) (2.23)

with
pguess := max

ME
x

∑
x∈X

PX(x)tr
(
ME

x σ
x
E

)
. (2.24)

The theorem states that the min-entropy of a cq-state corresponds to the maximal

probability of correctly guessing the classical bits on system X while knowing system

E.

In security proofs it turns out that the optimization of single-shot entropies in a

small environment of a reference quantum state can help a lot to increase the secret

key rate. Such optimizations of single-shot entropies are called smooth entropies.

2.6.4. Smooth entropies

Smooth entropies are defined as an optimization of one-shot entropies over an ε-

environment to a reference quantum state. This generalization can be applied to the

unconditional Rényi entropies as well as to the conditional min-entropy:

Definition 14. [30] Let α ∈ R
0
+

⋃ {∞} and let ρ ∈ S(H) be a quantum state. Then the
smooth Rényi entropy of order α is defined as

Sε
α (ρ) :=

1
1 − α

log

(
inf

σ∈B ε
2 (ρ)

[tr (σα)]

)
. (2.25)
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Definition 15. [14] Let σAE ∈ S(HA ⊗HE) and ρE ∈ S(HE) be quantum states. Then
the smooth min-entropy of σAE conditioned on system E is defined by

Hε
min (ρAE |E) := sup

σAE∈B ε
2 (ρAE)

sup
ρE

Hmin (σAE |ρE) . (2.26)

The cost of the advantage of these smooth entropies on secret key rates are diffi-

culties in computation for large Hilbert spaces. More precisely, for quantum states

of large Hilbert spaces it becomes computationally hard, or even impossible to cal-

culate in particular the smooth min-entropy for arbitrary states. But in the case

of tensor-product states, it is possible to circumvent this problem by bounding the

smooth min-entropy by the conditional von Neumann entropy of a single quantum

state. This property is called asymptotic equipartition property (AEP) and has been

proven in [14]:

Theorem 3. [14] Let ε > 0 and let ρXE ∈ S(HX ⊗ HE) be a classical-quantum state.
Then

Hε
min

(
ρ⊗n

XE |ρ⊗n
E

) ≥ n

(
S(X|E) − (2 log2 (rank(ρX)) + 3)

√
log2 (2/ε)

n

)
. (2.27)

In the following chapter we apply the presented mathematical framework to quan-

tum key distribution and show how the secret key rate can be analyzed for finite

resources.
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Chapter 3.

Quantum key distribution

The aim of quantum key distribution is to generate a secret key between two par-

ties. In this chapter we introduce two quantum cryptography protocols, the BB84 [4]

and the six-state protocol [8, 9]. Then we present a general generic setup for quan-

tum key distribution and show how the mathematical tools defined in the previous

chapter can be used in the security analysis.

3.1. BB84 and six-state protocol

In the BB84 protocol two parties, Alice and Bob, are connected via a quantum chan-

nel and an authenticated classical channel. Each party has an identical set of two

conjugated bases {x,+}, where |0+〉, |1+〉 denote the orthogonal states in the +-basis,

and |0x〉 := 1√
2

(|0+〉 + |1+〉), |1x〉 := 1√
2

(|0+〉 − |1+〉) denote the orthogonal states in the

conjugated x-basis.

Alice creates a random bit (0 or 1) and encodes it in a quantum state according

to a randomly chosen measurement basis (+ or x) (e.q. polarization of a photon)

and sends the state via the quantum channel to Bob. Bob measures the state in

a randomly chosen measurement basis and keeps the outcome. This process is

repeated many times until Alice and Bob have a bit-string of a preferred length.

Since quantum signals measured in different bases do not have correlations, they

announce their choice of basis for each measurement publicly and discard the bits,

which have been measured in different bases to get the “sifted” key. A possible

scenario is shown in Table 3.1.

To check for an eavesdropper Alice and Bob calculate (by addition modulo 2) the

QBER :=
∑m

i=1
ai⊕bi

m (ai ∈ {0, 1} and bi ∈ {0, 1} denotes Alice’s and Bob’s bit-value at

position i, respectively) of a random subset of the sifted key of size m to estimate
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Alice’s random bit 0 0 1 0 1 1 1 0
Alice’s random basis + x x + + + x x
Bob’s random basis + + x x x + x +
Bob’s random bit 0 1 0 0 1 1 0 1

Basis comparison
Sifted key Alice 0 1 1 1
Sifted key Bob 0 0 1 0

Table 3.1.: BB84 protocol.

the QBER on their remaining bit-strings. If this estimate is too large, Alice and

Bob abort the protocol. If not, they create a secret key via classical error correction

[31, 32] and privacy amplification [33].

The six-state protocol can be seen as a generalization of the BB84 protocol to three

bases. That means, Alice and Bob can choose randomly a measurement-basis from

the extended set {+, x, y}, where the additional y-basis is defined via the orthogonal

states |0y〉 := 1√
2

(|0+〉 + i |1+〉) and |1y〉 := 1√
2

(|0+〉 − i |1+〉). In comparison to the BB84
protocol, where Bob uses on average in only half of the cases a different basis than

Alice, the sifting procedure reduces for the six-state protocol the initial number of

bits on average to a fraction of 1
3 . But the addition of a third basis can have a

beneficial impact on the achievable secret key rate.

To analyse the security of the BB84 and the six-state protocol it is useful to treat the

protocols in a more general framework. This general framework leads to a typical

generic QKD protocol, which is presented in the following section.

3.2. Generic quantum key distribution protocol

A quantum key distribution protocol consists of two parts: a quantum part, which

describes the quantum state distribution between the two parties Alice and Bob and

a classical part, which contains processes acting on the classical bit string resulting

from measurements on the quantum state. The following description of a generic

quantum key distribution protocol is inspired by [34].
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3.2.1. State distribution

A quantum key distribution protocol starts with the distribution of quantum signals.

We consider an entanglement-based view, where Alice and Bob share N (entangled)

particle pairs, whose joint state we denote by ρN
AB. We allow the most powerful

interaction an eavesdropper can perform by considering the quantum state after the

distribution and interaction ρN
ABE to be pure. For clearness, we focus on protocols

that use two-dimensional quantum systems (qubits).

The transition from quantum states to classical data is then done by measure-

ments.

3.2.2. Measurement

Alice and Bob perform measurements on their parts of the shared quantum state by

choosing randomly a basis out of a set, which they fixed in advance. The results are

correlated classical strings of N bits. We denote the resulting ccq-state by ρN
XY E.

3.2.3. Sifting

Alice and Bob announce via public communication their choice of bases in each

measurement and discard the bits of their string, which have been measured in

different bases. This procedure reduces the number of bits to N − ns, where ns

denotes the number of discarded bits.

Due to the interaction of an eavesdropper on the quantum state, the correlation in

Alice’s and Bob’s bits needs to be high enough to generate a secret key. This can be

verified by a procedure called parameter estimation.

3.2.4. Parameter estimation

Alice and Bob determine the statistics, e.g. the quantum bit error rate (QBER) of

m < N − ns randomly chosen bits, denoted by Qm and compare it to a previously

fixed, maximally tolerated QBER Qtol. If Qm > Qtol, the protocol will be aborted,

since a high error causes insufficient correlations in Alice’s and Bob’s bit strings. In

the other case of Qm ≤ Qtol we can estimate the QBER Q∞, i.e. the parameter we

would get in case of an ∞-fold measurement, i.e. [34, 18]

Q∞ ≤ Qm + ζ(εPE, |χ|,m) (3.1)
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with ζ(εPE, |χ|,m) :=

√
ln

“
1

εPE

”
+|χ| ln (m+1)

2m . Here εPE denotes the probability that pa-

rameter estimation fails and |χ| denotes the number of POVM elements needed to

measure the QBER.

The more appropriate approach is to estimate the QBER Qn of the remaining n

signals. This can be done by the following estimation [21]:

Qn ≤ Qm + ξ(εPE, n,m) (3.2)

with ξ(εPE, n,m) :=
√

(n+m)(m+1) ln (1/εPE)
2m2n and the probability of failure εPE.

Parameter estimation restricts the remaining state ρn
XE to QBERs, which are bounded

by Eq. (3.1) or Eq. (3.2).

The errors in the remaining N − ns −m signals, estimated by Q∞ or Qn, have to be

removed. This can be done by classical error correction.

3.2.5. Error correction

In order to correct the errors in Alice’s and Bob’s classical bit-string, they have to

apply an error correction procedure that forces them to communicate publicly. The

information, which is leaked during the public communication is given by [17]

leakEC := nfECH(X|Y ) + log2

(
2
εEC

)
(3.3)

where fEC > 1 denotes the efficiency of the error correction protocol and εEC its

probability of failure.

After correction of errors it is necessary to reduce the knowledge of a possible eaves-

dropper about the classical bit-string. This procedure is called privacy amplifica-

tion.

3.2.6. Privacy amplification

Privacy amplification aims at the establishment of a secret key from a partially secure

bit-string, i.e. a bit-string where an eavesdropper might have some information

about. The number of secret bits l is then bounded by the uncertainty the adversary

Eve has about the classical bit string X [14]:

l ≤ H ε̄
min (ρn

XE |En) + 2 log2 (2εPA) (3.4)
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where ρn
XE denotes the classical quantum state consisting of the classical bit-string

X and the eavesdropper’s quantum ancilla. The failure probability of privacy ampli-

fication is determined by ε̄+ εPA.

Another approach to bound the number of secret bits l is given by a combination of

Rényi entropies [15]:

l ≤ sup
σn

XE∈Bε̄(ρn
XE)

[S2 (σn
XE) − S0 (σn

E)] . (3.5)

The global optimization of both Rényi entropies can be circumvented by using the

following bound [15, 35]:

l ≤ S
ε′

2 (ρn
XE) − S

ε′

0 (ρn
E) . (3.6)

This is an immediate consequence of the following theorem [35]:

Theorem 4. Let ε̄ > 0 and ε′ such that

ε̄

2
=

√
ε′

2
− 3

16
ε′2 +

ε′

2
. (3.7)

Then there exists a cq state ρ̄n
XE ∈ B ε̄

2 (ρn
XE) such that

S2 (ρ̄n
XE) − S0 (ρ̄n

E) ≥ S
ε′

2 (ρn
XE) − S

ε′

0 (ρn
E) . (3.8)

Remark. The proof of Theorem 4 is inspired by [15] and modified in [35]. A funda-
mental ingredient of the proof is the following Lemma 3, whose detailed proof was not
shown in [35]. The extended proof can be found in Appendix A.

Lemma 3. Let ρAB ∈ S(HA ⊗HB) be a quantum state and PB a general projector, i.e.
P 2

B = PB acting on HB with the constraint tr (ρBPB) = 1 − ε
2 = tr ((11A ⊗ PB) ρAB), then

max
PB

1
2
||ρAB − (11A ⊗ PB) ρAB (11A ⊗ PB)||1 =

√
ε

2
− 3

16
ε2 (3.9)

The run of such a typical quantum key distribution protocol in the regime of fi-

nite resources has always a non-zero probability of failure.A definition of security is

provided in the following section.

3.3. Security

The definition of security for a quantum key distribution protocol has two properties

[14]:
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• Correctness: The generated key for Alice and Bob is the same.

• Secrecy: The generated key is uniformly distributed and independent on the

knowledge of an eavesdropper.

In the regime of finite resources this perfect security cannot be maintained in gen-

eral. The protocols can then only be called almost secure, which means that with a

small probability it can be insecure. More precisely, we define the contributions to

security for finite resources in the following way:

Definition 16. Let ε > 0, let X and Y denote the keys generated for Alice and Bob,
respectively with length l. Let ρl

XE =
∑

x PX(x) |x〉 〈x| ⊗ ρx
E be the real cq-output state

of the protocol and let ρperfect
XE :=

∑
x

1
2l |x〉 〈x| ⊗ ρE be the output state that represents a

perfectly secret key. Then the protocol is called [14]

• ε-correct, if
Pr[X �= Y ] ≤ ε. (3.10)

• ε-secret, if
1
2

∣∣∣∣∣∣ρl
XE − ρperfect

XE

∣∣∣∣∣∣
1
≤ ε. (3.11)

It is an immediate consequence that in the limit of ε → 0, we achieve perfect secu-

rity.

The definition of security can be used to value the quality of a generated key rate.

3.4. Secret key rate

The secret key rate of a generic quantum key distribution protocol described in

Sec. 3.2 is defined as the number l of secret bits divided by the initial number of

signals N , i.e. r := l
N . The secrecy of such a protocol is bounded by the sum of

the probabilities of failure of each subprotocol. By using the smooth min-entropy

to quantify privacy amplification (see Eq. (3.4)), we get the following bound on the

secret key rate:

Theorem 5. [14, 34] Let ε̄, εPE, εEC, εPA > 0 as defined in the previous sections. Then
the rate r = l

N of an
ε := ε̄+ εPE + εEC + εPA (3.12)

- secure key is given by

r =
1
N

inf
PE

(
H ε̄

min (ρn
XE |En) − leakEC

n

)
+

2
N

log2 (2εPA), (3.13)
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where infPE means a restriction on theQBER due to parameter estimation (see Sec. 3.2.4).

Analogously, we can bound the secret key rate using the smooth Rényi entropy

approach for privacy amplification (see Eq. (3.6))

Theorem 6. [15] Let ε̄, εPE, εEC, εPA > 0 as defined in the previous sections and let ε′

such that
ε̄

2
=

√
ε′

2
− 3

16
ε′2 +

ε′

2
. (3.14)

Then the rate r = l
N of an

ε := ε̄+ εPE + εEC + εPA (3.15)

- secure key is given by

r =
1
N

inf
PE

(
S

ε′

2 (ρn
XE) − S

ε′

0 (ρn
E) − leakEC

n

)
+

2
N

log2 (2εPA), (3.16)

where infPE means a restriction on theQBER due to parameter estimation (see Sec. 3.2.4).

In practice, the secret key is generated by applying a two-universal hash-function

to the raw key, such that the length of the output key is l and given by one of the

previous formulas.

The computability of this formula strongly depends on the shape of the cq-state, for

which the smooth entropies have to be evaluated. The main challenge is the opti-

mization of quantum states in a high-dimensional Hilbert space. The optimization

becomes much easier by a restriction to states, which provide a certain symmetry.

This can be reached by restricting the eavesdropper to reasonable attacks.

3.4.1. Eavesdropping strategies

The interaction of an eavesdropper takes place in the quantum part of a quantum

key distribution protocol, i.e. during the distribution of the N quantum signals.

Due to quantum mechanics any interaction an eavesdropper can perform, can be

mathematically formulated as a unitary operation. We consider two main types of

unitary interactions: The collective attack and the coherent attack.

Collective attack

The restriction to collective attacks forces the eavesdropper to interact identically

with each of the N distributed signals. Since no dependencies among the signals
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can appear, the distributed quantum state can be written as a tensor-product state

[36, 37]:

ρN
AB = ρ⊗N

AB . (3.17)

This tensor-product structure enables us to apply the asymptotic equipartition prop-

erty of the smooth min-entropy (Eq. (2.27)) to Eq. (3.13) to end up in a calculable

formula:

Theorem 7. [14, 34] Let ε̄, εPE, εEC, εPA > 0. Then the rate r = l
N of an

ε := ε̄+ εPE + εEC + εPA (3.18)

- secure key is given by

r =
n

N
inf
PE

(
S(X|E) − 5

√
log2 (2/ε̄)

n
− leakEC

n

)
+

2
N

log2 (2εPA). (3.19)

Coherent attack

Coherent attacks do not provide any restrictions on the eavesdropper’s interaction.

But the consideration of permutation-invariant protocols (permutational invariance

means invariant under permutation of N qubit pairs) causes a helpful symmetry in

the distributed quantum state. A The assumption of a protocol to be permutation-

invariant is not a strong restriction, since many experimentally used protocols, like

e.g. the BB84 protocol, can be made permutation-invariant by the addition of a

step, which randomly permutes the classical bit-strings, to the initial protocol. The

quantum state can be written as a convex combination of Bell-diagonal quantum

states [36, 37]:

ρN
AB =

∑
n∈ΓN

μnPN

(
σ⊗n1

1 ⊗ σ⊗n2
2 ⊗ σ⊗n3

3 ⊗ σ⊗n4
4

)
(3.20)

with probabilities μn and

ΓN :=

{
n = (n1, n2, n3, n4) :

4∑
i=1

ni = N

}
. (3.21)
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The σi for i = 1, .., 4 correspond to the projector onto the 4 Bell-states in HA ⊗ HB,

i.e.

σ1 =
∣∣φ+

〉 〈
φ+

∣∣
σ2 =

∣∣φ−〉 〈φ−∣∣
σ3 =

∣∣ψ+
〉 〈
ψ+

∣∣
σ4 =

∣∣ψ−〉 〈ψ−∣∣ , (3.22)

with

∣∣φ±〉 :=
1√
2

(|0, 0〉 ± |1, 1〉) and (3.23)

∣∣ψ±〉 :=
1√
2

(|0, 1〉 ± |1, 0〉) . (3.24)

PN denotes the completely positive map (CPM) which symmetries the state with

respect to all possible distinguishable permutations of N qubit pairs.

This symmetry permits to find strategies which analyze secret key rates for coherent

attacks.

In the next chapter we summarize the results of the publications A-D. There we

make statements about collective as well as coherent attacks.

23



Chapter 3. Quantum key distribution

24



Chapter 4.

Summary of results

In this chapter we summarize the results of the thesis and point out their individual

connection to the global aim of improving secret key rates for finite resources in

quantum key distribution. The results can be categorized in two different strategies:

In Sections 4.3-4.4 and 4.2 improvements in the mathematical analysis of secret key

rates are presented, while Section 4.1 considers a modification of known protocols

to improve the secret key rate.

4.1. The influence of quantum noise on the secret key

rate for finite resources

In Pub. A the effect of different noise scenarios on the secret key rate is compared

for the BB84 and six-state protocol for finite resources under the assumption of

collective attacks. The noise is simulated by a depolarizing channel (see Eq. (2.6)).

The noise scenarios differ in the position where the noise is added to the initial

entangled state shared by Alice and Bob:

• Noise scenario 1: Alice adds depolarizing quantum noise to her part of the initial

state.

• Noise scenario 2: Alice adds depolarizing quantum noise to Bob’s part of the

initial state.

• Noise scenario 3: Bob adds depolarizing quantum noise to his part of the state

after receiving it.

• Noise scenario 4: Alice does probabilistic bit-flips on her classical bit string.
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Figure 4.1.: Comparison of the finite-key rate versus signals N for a fixed QBER D
introduced by Eve for the BB84 protocol (D = 0.1) (circles (black)) and the six-state
protocol (D = 0.12) (squares (red)); straight line: noise scenario 1 for optimal noise
parameter, dashed line: no noise. Lines are drawn to guide the eye.

The equivalence of noise scenario 1, 2 and 4 is shown analytically. It turns out that,

while noise scenario 3 has no benefit on the secret key rate, the other scenarios can

in principle improve the key rate. More precisely, if we add noise deliberately, the

secret key rate increases in comparison to the noiseless case (see Figure 4.1). The

equivalence of noise scenario 1 and 2 allows us to interpret these results in another

way: The noise can be seen as introduced by a given channel and not necessarily

dedicated to an eavesdropper, which would be here an over-pessimistic assumption.

The beneficial effect of dropping this assumption is shown in Figure 4.2. A detailed

discussion of the results is provided in Pub. A.

26



4.1. Quantum noise on the secret key rate for finite resources

10000 1e+06 1e+08 1e+10 1e+12 1e+14
N

0

0.1

0.2

0.3

0.4

0.5

0.6

r

Figure 4.2.: Comparison of the finite-key rates (ε = 10−9) versus number of signals N
for various noise parameters pb with QBER = 5% for the BB84 (circles (black)) and
the six-state protocol (squares (red)); dashed lines: pb = 0, straight lines: pb = 5%.
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4.2. Secret key rates for coherent attacks

The main result of Pub. B is the derivation of a bound on the secret key rate for quan-

tum key distribution with finite resources for coherent attacks. The bound considers

the general class of permutation-invariant protocols and allows for coherent attacks.

The new approach traces the calculation of the secret key rate for coherent attacks

back to the evaluation for collective attacks, by bounding the smooth min-entropy

of a permutation-invariant state (Eq. (3.20)) by the smooth min-entropy of a corre-

sponding tensor-product state at the cost of some corrections, i.e.

H ε̄
min (ρn

XE |E) � H
ε̄/n2

min

(
σ⊗n

XE |E
)− 1. (4.1)

These corrections confirm on the one hand the equivalence of collective and coherent

attacks in the limit of infinitely many distributed quantum signals, but on the other

hand may also give hints for their disparity in the finite case. A comparison to

the post-selection technique [38], which is up to now the best known approach for

treating coherent attacks for permutation-invariant protocols, shows the quality of

the new bound. Figure 4.3 shows this comparison with respect to secret key rates

for the BB84 protocol in reference to collective attacks. An analogous result has also

been obtained in Pub. B for the six-state protocol.

A detailed derivation of the new bound and a further discussion of the results is

done in Pub. B.
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Figure 4.3.: Comparison of the secret key rates r for collective attack (black circles),
the post-selection technique (green squares) and the new bound (red triangles)
versus the number N of initial signals for different QBERs with security parameter
ε = 10−9 for the BB84 protocol in logarithmic scale; QBER = 0.01 (straight lines),
QBER = 0.1 (dotted lines).
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4.3. Non-zero key rates for “small” numbers of signals

As reviewed in Sec. 3.2.4, in the case of finite quantum key distribution, we have

to estimate the quantum bit error rate due to the limited number of quantum sig-

nals. This estimation causes statistical fluctuations, which depend on the number

of POVM elements |χ| needed to measure the quantum bit error rate Qm:

Q∞ ≤ Qm + ζ(εPE, |χ|,m) (4.2)

with ζ(εPE, |χ|,m) :=

√
ln

“
1

εPE

”
+|χ| ln (m+1)

2m .

An established way of applying the parameter estimation procedure is to consider

the QBER in each measurement basis. In this case we can apply a POVM with

only |χ| = 2 elements, which correspond to “Alice and Bob do have the same out-

put” and “Alice and Bob do not have the same output”. Let nPE be the number of

measurement bases, then the fluctuations of the QBER for each basis can be esti-

mated by ζ( εPE
nPE

, 2, m
nPE

). This demands that m
nPE

signals are used for the estimation

of each QBER. The total probability of failure is given by nPE
εPE
nPE

= εPE. We call this

approach of individual POVMs in the following IPOVM .

In Pub. C we consider one global POVM , which consists of |χ| = nPE + 1 elements,

where each of the nPE elements corresponds to “Alice and Bob do not have the same

output” for each basis and one corresponds to the completeness of the POVM . Using

this common POVM , in the following denoted by CPOVM , the statistical fluctua-

tions become ζ(εPE, nPE,m).

A beneficial effect on the secret key rate r (see Eq. (3.19)) appears by considering the

BB84 (nPE = 2) (see Figure 4.4). An analogous effect for the six-state protocol and a

detailed discussion of the results can be found in Pub. C.

The main result of Pub. C is the derivation of a new bound on the secret key rate in

Eq. (3.13) under the assumption of collective attacks. We bound the smooth min-

entropy of a tensor-product state by the min-entropy of a single-signal state

H ε̄
min

(
ρ⊗n

XE |En
) ≥ nHmin (ρXE |E) (4.3)

and use its relation to the guessing probability (Eq. (2.23)) to evaluate the secret key

rate for the BB84 and six-state protocol. The outstanding result of this bound, in

the following called min-entropy approach, leads to significantly higher secret key

rates for a small number of signals in comparison to the von Neumann approach

in Eq. (3.19) (the AEP-bound). In other words, by using the min-entropy approach,
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4.3. Non-zero key rates for “small” numbers of signals

Figure 4.4.: Comparison of the key rates using different parameter estimations for
BB84-protocol; ε = 10−9, Q := Qm = 5%; squares (red): CPOVM, triangles (black):
IPOVM.

you need to distribute less quantum signals N0 to reach a non-zero key rate than

with the von Neumann approach. This result is illustrated in Figure 4.5 for the BB84
and the six-state protocol. These results and a generalization to higher dimensional

systems are discussed in detail in Pub. C.

An additional result concerning the minimum-error discrimination problem follows

from the additivity of the min-entropy for tensor-product states [14], i.e.

Hmin

(
ρ⊗n

XE |En
)

= nHmin (ρXE |E) (4.4)

and the connection to the guessing probability (see Eq. (2.23)). It states that for a

set of symmetric tensor-product states the optimal minimum-error discrimination

(MED) measurement is the optimal MED measurement on each subsystem.
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Chapter 4. Summary of results

Figure 4.5.: Threshold value N0 (number of signals, where the key rate becomes
non-zero) vs QBER Q := Qm with ε = 10−9; triangles (red): BB84-protocol, squares
(black): six-state protocol; filled: min-entropy approach, open: von Neumann en-
tropy approach with CPOVM, dashed line: von Neumann entropy approach with
IPOVM.
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Figure 4.6.: Minimal number N0 of signals versus QBER Q permitting to extract a
non-zero key rate. Comparison between the new bound (black line), the smooth
Rényi entropy approach (red line) and the von Neumann entropy approach (green
line).

4.4. Improved secret key rates via Rényi entropies

As presented in Eq. (3.5) we can express the rate of a secret key by a dependent

optimization of Rényi entropies. The main result of Pub. D is the derivation of a new

bound for the six-state protocol under the assumption of collective attacks, which

only consists of independent optimizations on each of the smooth Rényi entropies.

A comparison to the existing approaches, namely to the von Neumann entropy ap-

proach (see Eq. (3.5)) and to the smooth Rényi entropy approach (see Eq. (3.16))

shows a significant improvement with respect to secret key rates (see Figure 4.6 and

Figure 4.7).

The main advantage of the new bound in comparison to the smooth Rényi entropy

approach (see Eq. (3.16)) is that the environment for the optimization is bigger. The

lack of additional correction terms as present in the von Neumann entropy approach

(see Eq. (3.5)) causes the better results of the new bound in comparison to the AEP-

bound.

A detailed description of the new bound and a further discussion about the results

are provided in Pub. D.
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Figure 4.7.: Key rate r versus the initial number N of quantum signals in logarith-
mic scale. Comparison between the new bound (black lines), the smooth Rényi
entropy approach (red lines) and the von Neumann entropy approach (green lines)
for different QBERs Q: Q = 0.01 (straight lines), Q = 0.05 (dashed lines), Q = 0.09
(dotted lines).
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Chapter 5.

Outlook

In the field of quantum key distribution there are still many open questions. In this

thesis we only consider perfect protocols, i.e. experimental errors in the measure-

ment devices are ignored. A necessary and important task is the incorporation of

experimental imperfections (see e.g. [19]) in the security analysis. In practice, losses

during the distribution of the quantum signals have a large influence on the distance

at which quantum key distribution can be performed. The exponential decrease

of entanglement with respect to the distance of distribution restricts the distance,

which is suitable for QKD, to only several hundred kilometers [39]. A promising so-

lution for establishing long-distance QKD is the concept of quantum repeaters [40].

Here, repeater stations between the parties Alice and Bob compensate the losses

during the distribution by refreshing the entanglement constantly. The application

of quantum repeaters to the secret key rate for finite resources may give an excellent

solution to the problem of long distance [41].

Another open problem is the equivalence between coherent and collective attacks

for permutation-invariant protocols in the case of finite resources. Although Pub. B

gives hints for the disparity of these attacks, no proof for their disparity or for their

equivalence is known. A definite statement about this problem would achieve a lot

of recognition in the quantum information community.

In the analysis of pre-processing methods, like the deliberate addition of quantum

noise in Pub. A, one could ask the question, whether an asymmetric version could

have a bigger advantage with respect to secret key rates. For example, instead of

considering the symmetric depolarizing channel, one could think of applying a more

general, asymmetric Pauli-channel. The only disadvantage here could be the in-

creasing number of parameters, which lead to a more involved optimization proce-

dure.
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Chapter 6.

List of main results

• The deliberate addition of quantum noise can be advantageous with respect to

secret key rates for finite settings.

• By considering the noise introduced by the channel as not dedicated to the

eavesdropper, the secret key rate can be improved significantly.

• Hints for the difference of collective and coherent attacks for finite settings are

pointed out.

• A new bound on the secret key rate for permutation-invariant states for coher-

ent attacks is derived. This bound leads to improved key rates in comparison

to previous results considering the BB84 and six-state protocol.

• A common POVM with nPE + 1 elements can increase the secret key rate in

comparison to nPE individual POVMs, each with 2 elements. This approach

has a beneficial effect for the BB84 and six-state protocol.

• Bounding the smooth min-entropy of a tensor-product state by the min-entropy

of a single-signal state and calculating it exactly leads to a significant higher se-

cret key rate for a “small” number of signals for the BB84 and six-state protocol

in comparison to the von Neumann entropy approach. This result is generaliz-

able to higher dimensional systems.

• For a set of symmetric tensor-product states the optimal minimum-error dis-

crimination (MED) measurement is the optimal MED measurement on each

subsystem.

• A new bound on the secret key rate, which is expressed as an optimization

problem over Rényi entropies, is derived. This bound leads to improved key

rates in comparison to previous results considering the six-state protocol for

collective attacks.
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Appendix A.

Proof of Lemma 3

Let ρAB ∈ S(HA ⊗ HB) be a quantum state and PB a general projector, i.e. P 2
B = PB

acting on HB with the constraint tr (ρBPB) = 1 − ε
2 = tr ((11A ⊗ PB) ρAB), then

max
PB

1
2
||ρAB − (11A ⊗ PB) ρAB (11A ⊗ PB)||1 =

√
ε

2
− 3

16
ε2 (A.1)

Proof: This proof is split into three parts: Part (i) gives a quite general statement

known from minimal-error discrimination (MED) [42]. Part (ii) and (iii) calculate a

lower and upper bound on the quantity of interest, respectively. Because the lower

and upper bound are identical, the assertion follows.

(i) Consider the problem of minimal-error discrimination (MED) [42]: Let γ1 (γ2) be

a not necessarily normalized quantum state weighted with probability p1 (p2)
with p1 + p2 = 1 and the constraint tr (γ1) = tr (γ2). The minimum error failure

probability defined by [42]

pfail =
1
2
||γ1 + γ2||1 −

1
2
||γ1 − γ2||1 (A.2)

can only increase under a TP-CP map. Because the partial trace operation is

such a TP-CP map, it follows that a purification leads to a higher minimum-

error failure probability

pfail

:=
1
2
||traux (|γ1〉〈γ1| + |γ2〉〈γ2|)||1 −

1
2
||traux (|γ1〉〈γ1| − |γ2〉〈γ2|)||1

≥ 1
2
|||γ1〉〈γ1| + |γ2〉〈γ2|||1 −

1
2
|||γ1〉〈γ1| − |γ2〉〈γ2|||1 (A.3)
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Because of the fact that γ1 + γ2 is a positive operator it follows that

1
2
|||γ1〉〈γ1| + |γ2〉〈γ2|||1

=
1
2
tr (|γ1〉〈γ1| + |γ2〉〈γ2|) (A.4)

=
1
2
tr12 (traux (|γ1〉〈γ1| + |γ2〉〈γ2|)) (A.5)

=
1
2
||traux (|γ1〉〈γ1| + |γ2〉〈γ2|)||1 (A.6)

The result
1
2
|||γ1〉〈γ1| − |γ2〉〈γ2|||1 ≥ 1

2
||γ1 − γ2||1 (A.7)

shows that the trace distance of the purifications of two quantum states which

have the same norm, but are not necessarily normalized, is larger than the

trace distance of the two quantum states.

(ii) Proof of the lower bound, i.e.,

max
PB

1
2
||ρAB − (11A ⊗ PB) ρAB (11A ⊗ PB)||1 ≥

√
ε

2
− 3

16
ε2 : (A.8)

maxPB

1
2
||ρAB − (11A ⊗ PB) ρAB (11A ⊗ PB)||1

(A.7)

≥ max
PB

1
2
||ρB − PBρBPB ||1 (A.9)

and for a specific projection PBD that fulfills the constraint tr (PBρB) = tr (PBDρB) =
1 − ε

2 we get:

max
PB

1
2
||ρB − PBρBPB ||1 ≥ 1

2
||ρB − PBDρBPBD||1 (A.10)

For rank(ρB) =: r we can consider a 2r-dimensional Hilbert space in a 2 × 2
block-diagonal basis, i.e.

ρB = ⊕r
i=1ρi (A.11)

with ρi = λi|i〉〈i| and a block-diagonal projection

PBD = ⊕r
i=1Pi (A.12)
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for Pi = |i′〉〈i′| with 〈i′|j〉 = δij
√

1 − ε
2 . For ρi := |ψ〉〈ψ| and Pi := |φ〉〈φ| it follows

1
2
||ρB − PBDρBPBD||1

=
1
2
||⊕r

i=1 (ρi − PiρiPi)||1 (A.13)

=
r∑

i=1

1
2
||ρi − PiρiPi||1 (A.14)

=
r∑

i=1

1
2
tr
(√

ρ2
i − ρiPiρiPi − PiρiPiρi + PiρiPiPiρiPi

)
(A.15)

=
1
2
tr

(√(
|ψ〉〈ψ| −

(
1 − ε

2

)
|φ〉〈φ|

)2
)

(A.16)

where we used PiρiPi = λi|φ〉〈φ| |〈φ|ψ〉|2 = λi

(
1 − ε

2

) |φ〉〈φ| and
∑r

i=1 λi = 1. More-

over with |〈φ|ψ〉|2 = 1 − ε
2 and 11 = |ψc〉〈ψc| + |ψ〉〈ψ| it follows that

|〈φ|ψc〉|2 = 〈φ|ψc〉〈φ|ψc〉 (A.17)

= 〈φ|11 − |ψ〉〈ψ||φ〉 (A.18)

= 〈φ|φ〉 − 〈φ|ψ〉〈ψ|φ〉 (A.19)

= 1 − |〈φ|ψ〉|2 (A.20)

= 1 −
(
1 − ε

2

)
(A.21)

=
ε

2
(A.22)
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With this we obtain

|φ〉〈φ|

= 11|φ〉〈φ|11 (A.23)

= (|ψc〉〈ψc| + |ψ〉〈ψ|) |φ〉〈φ| (|ψc〉〈ψc| + |ψ〉〈ψ|) (A.24)

= |〈φ|ψ〉|2 |ψ〉〈ψ| + 〈ψ|φ〉〈φ|ψc〉|ψ〉〈ψc| + 〈φ|ψ〉〈ψc|φ〉|ψc〉〈ψ|

+ |〈φ|ψc〉|2 |ψc〉〈ψc| (A.25)

=
(
1 − ε

2

)
|ψ〉〈ψ| +

√(
1 − ε

2

) ε
2
|ψ〉〈ψc| +

√(
1 − ε

2

) ε
2
|ψc〉〈ψ|

+
ε

2
|ψc〉〈ψc| (A.26)

Putting Eq. (A.26) into Eq. (A.16) the absolute values of the eigenvalues of the

square-root can be determined for an orthogonal basis {|ψ〉 , |ψc〉} to

{
− 1

4

(
ε −√

8ε − 3ε2
)
, 1

4

(
ε +

√
8ε − 3ε2

)}
.

Finally, this leads to

max
PB

1
2
||ρAB − (11A ⊗ PB) ρAB (11A ⊗ PB)||1 ≥

√
ε

2
− 3

16
ε2. (A.27)

(iii) Proof of the upper bound, i.e.,

max
PB

1
2
||ρAB − (11A ⊗ PB) ρAB (11A ⊗ PB)||1 ≤

√
ε

2
− 3

16
ε2. (A.28)

Let HC be an ancilla system and PABC a general, not necessarily separable

projector which acts on the joint system HA ⊗ HB ⊗ HC with the constraint
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tr (PABC |ρAB〉〈ρAB |) = tr (PBρB) = 1 − ε
2 , then it follows that

max
PB

1
2
||ρAB − (11A ⊗ PB) ρAB (11A ⊗ PB)||1

(A.7)

≤ max
PB

1
2
|||ρAB〉〈ρAB | − (11A ⊗ PB ⊗ 11C) |ρAB〉〈ρAB | (11A ⊗ PB ⊗ 11C)||1

= max
PABC

1
2
|||ρAB〉〈ρAB | − (11A ⊗ PB ⊗ 11C) |ρAB〉〈ρAB | (11A ⊗ PB ⊗ 11C)||1

=

√
ε

2
− 3

16
ε2 (A.29)

with PABC = 11A ⊗ PB ⊗ 11C . The last equality follows from the exact calculation

of the trace distance for pure states, which we already used in the computation

of the lower bound.
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We compare the effect of different noise scenarios on the achievable rate of an ε-secure key for the
BB84 and the six-state protocol. We study the situation where quantum noise is added deliberately,
and investigate the remarkable benefit for the finite key rate. We compare our results to the known
case of added classical noise and the asymptotic key rate, i.e. in the limit of infinitely many signals.
As a complementary interpretation we show that under the realistic assumption that the noise which
is unavoidably introduced by a real channel is not fully dedicated to the eavesdropper, the secret
key rate increases significantly.

I. INTRODUCTION

Quantum key distribution (QKD) aims at establishing
a secret key between two parties Alice and Bob, who are
connected via a quantum channel and an authenticated
classical channel. In the last few years, in addition to the
studies of asymptotic QKD (i.e. the unrealistic case of
infinitely many signals, which is more accessible theoreti-
cally), more realistic QKD scenarios have been analyzed,
where the number of signals sent through the channel is
finite [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

A general aim in studies of security in QKD is to deter-
mine a scenario in which the secure key rate is as high as
possible. It has been shown that pre-processing methods
[1, 14, 15, 16, 17, 18, 19], like for example adding clas-
sical noise [1] or advantage distillation [1] can increase
the secure key rate significantly. Note that those investi-
gations have focused on pre-processing operating on the
classical level. By the addition of quantum noise a ben-
eficial effect in asymptotic QKD (on the level of mutual
information) has been shown in [20] for the six-state pro-
tocol [21, 22]. However, for a finite number of signals
the mutual information of Alice and Bob versus the one
of the eavesdropper Eve is not a direct indicator for the
secret key rate.

The purpose of this article is to investigate the effect
of quantum noise on secret key rates with finite resources
for the BB84 [23] and six-state protocol [21, 22]. We
will analyse our results for two complementary interpre-
tations: First, we present different quantum noise sce-
narios, where the noise is added on purpose, and investi-
gate its benefit for the secret key rate. Second, we inter-
pret the added noise as the unavoidable noise introduced
by a real channel. We then show how the secret key
rate can be improved if we consider the noise introduced
by the channel as not fully due to the interaction of an
eavesdropper. We compare the results to the known ef-
fect of classical noise and the case of infinitely many sig-
nals. For the investigation we consider the BB84 and six-
state protocol in the entanglement-based scheme under

∗Electronic address: mertz@thphy.uni-duesseldorf.de

the assumption of collective attacks. We use the asymp-
totic equipartition property (AEP) [1, 24] to bound the
smooth min-entropy [1] in the high-dimensional Hilbert
space, such that the ε-secure key rate can be mainly de-
termined by the conditional von Neumann entropy of a
single-signal-state. Note that here, for key rates in the
finite regime, the assumption of collective attacks is nec-
essary, since the equivalence of collective and coherent
attacks for the BB84 and the six-state protocol has so
far been proven only in the limit of infinitely many sig-
nals [25, 26].

The paper is structured as follows: In Section II we
introduce the general framework and fix the notation.
The different noise scenarios are presented and discussed
in Section III. Section IV deals with the calculation and
optimization of ε-secure key rates for these different noise
scenarios. The results are given in Section V, followed by
a conclusion in Section VI.

II. PRELIMINARIES

In the following we consider the BB84 and six-state
protocol in the entanglement-based scheme, where the
eavesdropper Eve can only interact with the signals (la-
beled by B) which are sent through the quantum channel.
The most general unitary interaction UBE that Eve can
perform is given by [27]

UBE |0〉B |X〉E =
√

1 −D |0〉B |A〉E +
√
D |1〉B |B〉E(1)

UBE |1〉B |X〉E =
√

1 −D |1〉B |C〉E +
√
D |0〉B |D〉E ,(2)

where |X〉E is Eve’s initial state and |A〉E , |B〉E , |C〉E ,
|D〉E refer to her 4-dimensional states after the transfor-
mation. The parameter D ∈ [

0, 1
2

]
corresponds to the

disturbance, i.e. the quantum bit error rate (QBER)
introduced by Eve if the quantum channel is otherwise
noiseless.

Throughout our paper we will study quantum noise
which is given by a depolarizing channel. (Note that
our calculations could in principle be generalized to other
models for quantum noise, but the lower the symmetry
of the channel, the more involved the calculations will
be.) The action of the depolarizing channel is described
by the map N p (ρ), where p is the noise parameter.
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Definition 1. The action of a depolarizing channel
N p (ρ) is given by

N p (ρ) :=
4∑

i=1

AiρA
†
i (3)

with the Kraus operators A1 =
√

1 − 3
4p11, A2 =√

p
4σx, A3 =

√
p
4σy, andA4 =

√
p
4σz. Here, σi are the

Pauli-operators for i ∈ {x, y, z}.
Analogously, we define classical noise [1] via the map

N cl,p (ρ).

Definition 2. The action of a classical noisy channel is
given by

N cl,p (ρ) :=
2∑

i=1

BiρB
†
i (4)

with B1 =
√

1 − p
211 and B2 =

√
p
2σx.

Note that this definition is different from the usual
definition of classical noise in the literature: throughout
our paper the probability to flip a bit is called p

2 instead
of p. This choice of p allows a fair comparison of the two
different noise models (quantum versus classical) for the
same parameter p, ranging from 0 to 1.

Our central figure of merit is the ε-secure key rate for
a finite number of signals. We will use this quantity in
the following to compare different noise scenarios. The
ε-secure key rate is calculated for a typical protocol that
consists of the procedures state distribution, measure-
ment, sifting, parameter estimation (PE), one-way er-
ror correction (EC) and privacy amplification (PA). Let
εPE, εEC and εPA be the probability of failure for the pro-
tocol steps parameter estimation, error correction and
privacy amplification, respectively. Then with a smooth-
ing parameter ε̄ we can bound the total security of the
protocol by

ε := ε̄+ εPE + εEC + εPA. (5)

For such a protocol it has been shown in [1, 6] that the
rate of an ε-secure key is given by

r =
1
N

min
ρAB∈Γζ

(
H ε̄

min (ρn
XE |E) − nfECH(X|Y )

)
+

2
N

log (2εPA) , (6)

where the smooth min-entropy [1]

Hε
min (ρAE |E) := sup

σAE∈B
ε
2 (ρAE)

sup
ρE∈S(H)

Hmin (σAE |ρE)

(7)
is defined as an optimization of the min-entropy

Hmin (σAE |ρE) := sup
{
λ ∈ � : 2−λ11A ⊗ ρE − σAE ≥ 0

}
(8)

over an ε-environment given by

Bε (ρ) :=
{
σ :

1
2
||σ − ρ||1 ≤ ε

}
, (9)

with the 1-norm ||A||1 = tr
(√

AA†
)
. Here, S(H) de-

notes the set of density operators on the Hilbert space
H. The smooth min-entropy of the classical-quantum
state ρn

XE shared by Alice and Eve and the correction
2 log2 (2εPA) are due to privacy amplification. It quan-
tifies Eve’s uncertainty of Alice’s and Bob’s perfectly
correlated bitstring. The term fECH(X|Y ) stands for
the number of bits which Alice and Bob leak to the
eavesdropper due to public communication during the
error correction procedure. H(X|Y ) denotes the con-
ditional Shannon entropy H(X|Y ) = H(ρXY ) − H(ρY )
with H(X) = −∑

x p(x) log (p(x)). For simplicity we
consider an ideal error correction protocol, i.e. fEC = 1.
The minimization of the smooth min-entropy is due to
parameter estimation, where we only except qubit-states
ρAB which are contained in the set [5, 10]

Γζ :=
{
ρ :

1
2
||λm(ρ) − λ∞(ρ)||1 ≤ ζ(εPE, 2,m)

}
(10)

with

ζ(εPE, np,m) :=

√√√√ ln
(

1
εPE

)
+ np ln (m+ 1)

8m
, (11)

where λm(ρ) (λ∞(ρ)) denotes the measurement statistics
due to an m (m→ ∞)-fold independent application of a
measurement.

Under the assumption of collective attacks, i.e. ρn
XE =

ρ⊗n
XE we can use the AEP [1, 24]

Hε
min

(
ρ⊗n

XE |E
) ≥ n

(
S(X|E) − 5

√
log (2/ε)

n

)
(12)

to bound the smooth min-entropy for product states ρ⊗n
XE

by the conditional von Neumann entropy of a single copy
ρXE which is defined as S(X|E) = S(ρXE)−S(ρE) with
S(ρ) = − tr (ρ log ρ). Finally, this leads to

r :=
n

N
min

ρAB∈Γζ

(
S(X|E) − 5

√
log(2/ε̄)

n
−H(X|Y )

)

+
2
N

log (2εPA) . (13)

III. NOISE SCENARIOS

In this section we present four different noise scenarios
which we will investigate in the following. Initially, if no
noise is present, Alice holds one part of the Bell-state
|Ψ+〉 〈Ψ+|, with

∣∣Ψ+
〉

=
1√
2

(|01〉 + |10〉) , (14)
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B
pa D

E

A

FIG. 1: (Color online) Noise scenario 1; Alice adds depolar-
izing quantum noise to her part of the initial state.

and sends the second part to Bob, while the eavesdropper
can perform a unitary interaction UBE characterized by
a disturbance D (see Eq. (1)) on it. Let us denote the
map that corresponds to the unitary interaction UBE as
EBE . The total state after the action of EBE is then given
by

ρ
(0)
ABE = (11A ⊗ EBE)

(∣∣Ψ+
〉 〈

Ψ+
∣∣
AB

⊗ |X〉 〈X|E
)
, (15)

where |X〉 〈X|E denotes Eve’s initial state.
Now, four different noise scenarios are considered:

(1) Alice adds depolarizing quantum noise with noise
parameter pa to her part of the Bell-state and sends
the other part to Bob (see FIG. 1). This leads to
the state

ρ
(1)
ABE = (11A ⊗ EBE)(N pa

A ⊗ 11BE)(∣∣Ψ+
〉 〈

Ψ+
∣∣
AB

⊗ |X〉 〈X|E
)
. (16)

Note that there is obviously no difference between
adding Alice’s noise before or after Eve’s interac-
tion, since they act on different Hilbert spaces.

(2) Alice adds depolarizing noise with noise parameter
pb to Bob’s part of the Bell-state and sends it to
Bob (see FIG. 2). This leads to the state

ρ
(2)
ABE = (11A ⊗ EBE)(11A ⊗N pb

B ⊗ 11E)(∣∣Ψ+
〉 〈

Ψ+
∣∣
AB

⊗ |X〉 〈X|E
)
. (17)

(3) Bob adds depolarizing noise with noise parameter
pnb to his part of the Bell-state after Eve’s interac-
tion (see FIG. 3). This leads to the state

ρ
(3)
ABE = (11A ⊗N pnb

B ⊗ 11E)(11A ⊗ EBE)(∣∣Ψ+
〉 〈

Ψ+
∣∣
AB

⊗ |X〉 〈X|E
)
. (18)

(4) Alice introduces classical noise with noise parame-
ter pcl to her classical bit string after her measure-
ment (see FIG. 4).

How do these four scenarios compare, when evaluating
the ε-secure key rate?

B
pb

D

E

A

FIG. 2: (Color online) Noise scenario 2; Alice adds depolar-
izing quantum noise to Bob’s part of the initial state.

B
pnb

D

E

A

FIG. 3: (Color online) Noise scenario 3; Bob adds depolarizing
quantum noise to his part of the state after receiving it.

IV. SECRET KEY RATE

The aim of this section is to investigate the effect of the
various noise scenarios explained in the previous section
on the finite ε-secure key rate r in Eq. (13).

From the fact that Alice and Bob share in the begin-
ning a maximally entangled state (see Eq. (14)) we know
that the action of a depolarizing channel on Alice’s part
or on Bob’s part results in the same total state. This
implies that the states ρ(1)

ABE and ρ
(2)
ABE are identical for

pa = pb and the noise scenarios 1 and 2 are equivalent.
Additionally, we now show the equivalence of noise sce-

nario 1 and 4, i.e. adding rotationally invariant quantum
noise is equivalent to adding classical noise. Let us as-
sume for noise scenario 4 that we add classical noise with
probability pcl

2 to flip a bit (see Definition 2) to a bit-
string resulting from measurements in the z-basis. In
noise scenario 1 only the Pauli-operators σx and σy from
the depolarizing channel (see Definition 1) lead to a bit-
flip, such that the total probability to flip a bit is given
by pa

4 + pa

4 = pa

2 . Note that for the cases in scenario 4
that the bit-strings were obtained by measurements in x
(y)-basis the same argument holds. Then only σy and σz

(σx and σz) lead to bit-flips in scenario 1, and due to the

0

0

1
1

1

A pcl B

FIG. 4: (Color online) Noise scenario 4; Alice adds classical
noise to her classical bit string.
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symmetry of the depolarizing channel the probability to
flip is also pa

2 in both cases. This implies the equivalence
of scenario 1 and scenario 4 for pa = pcl.

Noise scenario 3 will not lead to any benefit for the
key rate as it only increases the quantum bit error rate
(QBER). This asymmetry between noise scenario 2 and
3 is due to the underlying one-way error-correction proto-
col, such that adding Bob’s noise after Eve’s interaction
only influences the key rate r by increasing H(X|Y ).

The equivalence of the noise scenarios 1, 2 and 4, to-
gether with the fact that scenario 3 can only be detri-
mental for the secret key rate, enable us to focus for the
rest of this paper on a specific noise scenario, namely
noise scenario 1. We start for simplicity with the in-
vestigation of the asymptotic key rate (i.e. Eq. (13) for
N → ∞, ε → 0) given by [28]

rasym = S(X|E) −H(X|Y ). (19)

Later, the effect of noise on the finite key rate (see
Eq. (13)) follows by including the finite-size effects.

In order to determine Eve’s unknown probes in
the state ρ

(1)
ABE , given in Eq. (16), namely

|A〉E , |B〉E , |C〉E , |D〉E , we expand each probe in basis
vectors

|A〉E = αa |00〉 + βa |01〉 + γa |10〉 + δa |11〉 (20)

with the normalization condition

|αa|2 + |βa|2 + |γa|2 + |δa|2 = 1 (21)

and a similar parametrization for |B〉E , |C〉E , |D〉E , with
indices b, c, d, respectively. A partial-trace operation on
ρ
(1)
ABE over Eve’s part leads to the state ρ(1)

AB , which cor-
responds to the state shared by Alice and Bob after Eve’s
unitary interaction. It has been shown in [25, 26] that
the BB84 and the six-state protocol permit to character-
ize the state ρ(1)

AB as Bell-diagonal, parametrized by the
quantum bit error rate Q.

ρ
(1)
AB = λ1

∣∣Ψ+
〉 〈

Ψ+
∣∣+ λ2

∣∣Ψ−〉 〈Ψ−∣∣
+λ3

∣∣Φ+
〉 〈

Φ+
∣∣+ λ4

∣∣Φ−〉 〈Φ−∣∣ , (22)

with the Bell-states

∣∣Ψ±〉 =
1√
2

(|01〉 ± |10〉) (23)

∣∣Φ±〉 =
1√
2

(|00〉 ± |11〉) , (24)

and the parameters

λ1 = 1 − 3
2
Q,λ2 = λ3 = λ4 =

Q

2
(25)

for the six-state protocol, while

λ1 = 1 − 2Q+ λ4, λ2 = λ3 = Q− λ4, λ4 ∈ [0, Q] (26)

for the BB84 protocol. Note that the symmetry proper-
ties of ρ(1)

AB are preserved by adding symmetric depolar-
izing noise (see Definition 1).

We can express the QBER Q as a function of the noise
parameter pa, which is introduced by the depolarizing
channel, and Eve’s disturbance D:

Q = (1 − pa)D +
pa

2
. (27)

For the six-state protocol we obtain the following addi-
tional conditions on Eve’s probes:

〈A|B〉E = 〈A|D〉E = 〈B|C〉E = 〈D|C〉E = 〈B|D〉E = 0
(28)

and

〈A|C〉E =
1 − 2Q

(1 − pa)(1 −D)
. (29)

W.l.o.g. we can choose |D〉E = |00〉 and |B〉E = |11〉. It
follows that

|A〉E = βa |01〉 +
√

1 − |βa|2 |10〉 , (30)

|C〉E = βc |01〉 +
√

1 − |βc|2 |10〉 . (31)

By using Eq. (29) we eliminate βa, such that with the
constraints in Eq. (28) the state ρ(1)

ABE contains only one
unknown parameter, namely βc.

Analogously, we get for the BB84 protocol the follow-
ing constraints:

〈A|B〉E = 〈A|D〉E = 〈B|C〉E = 〈D|C〉E = 0 (32)

and

〈B|D〉E =
Q− 2λ4

(1 − pa)D
, (33)

〈A|C〉E =
1 − 3Q+ 2λ4

(1 − pa)(1 −D)
. (34)

W.l.o.g. we can choose |A〉E = |11〉 and |B〉E = |00〉. It
follows that

|C〉E =
√

1 − |δc|2 |10〉 + δc |11〉 , (35)

|D〉E = αd |01〉 +
√

1 − |αd|2 |10〉 . (36)

By using Eq. (33) and Eq. (34) we can reduce the un-
known parameters of the state ρ(1)

ABE to the single pa-
rameter λ4.

Remember that ρ
(1)
ABE describes the quantum state

shared by Alice, Bob and Eve after the state distribution
step for noise scenario 1. Let us denote the classical-
classical-quantum state that results from local von Neu-
mann measurements performed by Alice and Bob by
ρXY E . The states ρXE and ρXY , which are needed for
the calculation of the asymptotic key rate in Eq. (19),
follow directly by a partial-trace operation on Bob’s part
and Eve’s part, respectively.
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The unknown parameter βc (λ4) for the six-state pro-
tocol (BB84 protocol) has to be chosen in such a way
that it minimizes the asymptotic key rate in Eq. (19),
such that these states realize Eve’s best strategy. After
including the finite-key corrections (Eq. (13)) into the
optimization, the key rate is now fully determined by the
noise parameter pa and the disturbance D, such that the
effects of noise can be calculated, also in the regime of a
finite number of signals.

V. RESULTS

In this section we present our results on the secret key
rate in the noisy scenario described above. We will dis-
cuss two possible interpretations of our results: In sub-
section VA we consider the case that the noise is intro-
duced deliberately by Alice. In subsection VB we anal-
yse the case where the noise is given by the channel and
did not originate from the eavesdropper. The finite-key
rate r (Eq. (13)) will be calculated in both cases for a
total security parameter of ε = 10−9. The results are ob-
tained from a numerical optimization procedure, which
maximizes the key rate with respect to the parameters
m, ε̄, εPE, εEC, εPA, while minimizing with respect to the
parameters βc (λ4), for the six-state (BB84) protocol.

A. Introducing noise deliberately

In the following we illustrate the effect of deliberately
added noise (see Section III) on the finite key rate r (see
Eq. (13)).

In FIG. 5 the behaviour of N0, the minimal number
of signals that is needed to extract a non-zero key, with
respect to the disturbance D is shown for an optimal
noise parameter pa (see FIG. 6) for the BB84 and the
six-state protocol. In comparison to the noiseless case
we obtain a beneficial effect on the finite key rate by
introducing quantum noise pa: In the six-state (BB84)
protocol with D = 0.12 (D = 0.1) the improvement in
the minimal number of signals N0 is of the order of a
million signals. Additionally, we find that noise enables
us to extract a non-zero key for higher disturbances than
in the noiseless case: We recover for our case of a finite
number of signals the result of [25], which states that
the maximum tolerated error rate introduced by Eve to
extract a non-zero key is shifted from 12.6% to 14.1%
(11.0% to 12.4%) for the six-state (BB84) protocol, in
the asymptotic limit N0 → ∞.

In FIG. 6 we show the optimal noise parameter pa

that minimizes N0 and compare it to the optimal noise
parameter pa that maximizes the asymptotic key rate
(Eq. (19)) for various disturbances D for the BB84 and
the six-state protocol. It turns out that the optimal noise
parameter pa for the finite case is always higher than
the one for the asymptotic case. In particular, for the
asymptotic key rate the optimal pa becomes non-zero for

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
D
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FIG. 5: (Color online) Comparison of the optimal minimal
number N0 to extract a non-zero key (ε = 10−9) versus the
QBER D introduced by Eve for the BB84 (circles (black))
and the six-state protocol (squares (red)); straight line: noise
scenario 1 (see Section III), dashed line: no noise.
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FIG. 6: (Color online) Comparison of the optimal noise pa-
rameter that minimizes N0 (straight lines) for the finite-key
rate (Eq. (13)) and the one that maximizes the asymptotic
key rate (Eq. (19)) (dashed lines) versus the QBER D intro-
duced by Eve for noise scenario 1 (see Section III); circles
(black): BB84, squares (red): six-state.

around D = 0.096 (D = 0.083) for the six-state (BB84)
protocol, while the benefit for the threshold N0 in the
finite scenario appears already for disturbances around
0.08 (0.06) for the six-state (BB84) protocol.

In FIG. 7 we show the optimal secret key rate r as a
function of the number of signals N for a fixed distur-
bance D = 0.1 for the BB84 protocol and D = 0.12 for
the six-state protocol, and compare it to the case without
added noise. We obtain that the effect of noise on the
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FIG. 7: (Color online) Comparison of the finite-key rate
(Eq. (13)) versus signals N for a fixed disturbance D for the
BB84 protocol (D = 0.1) (circles (black)) and the six-state
protocol (D = 0.12) (squares (red)); straight line: noise sce-
nario 1 (see Section III) for optimal noise parameter, dashed
line: no noise. Lines are drawn to guide the eye.

finite-key rate is more beneficial than the effect on the
asymptotic key rate, when taking the relative increase of
the key rate as figure of merit. For example, for N = 108

signals we have an increase of 39% (153%) in the key
rate, whereas the benefit for N = 1016 is only about 20%
(50%) for the BB84 (six-state) protocol.

B. Noise given by the channel

The equivalence of noise scenario 1 and 2 for pa = pb

allows us to interpret the results obtained in Section IV in
another way. In contrast to adding noise deliberately the
number pb can be interpreted as the amount of noise that
is introduced by the used quantum channel, which is un-
avoidable in real QKD settings, and not necessarily ded-
icated to the eavesdropper. This interpretation describes
the situation in real experiments, where the assumption
of unconditional security, i.e. all errors introduced by
the channel have to be attributed to the eavesdropper,
is over-pessimistic [7, 29]. If one makes the realistic as-
sumption that Eve cannot replace the noisy channel by a
noisefree one, the channel noise does not lead to knowl-
edge of Eve about the key, and the key rate will thus in-
crease. In FIG. 8 the finite-key rate (Eq. (13)) is shown
as a function of the number of signals N sent through the
channel for a fixed QBER (Q = 5%) for different values
of the noise parameter pb for the six-state and BB84 pro-
tocol. The measured QBER contains both the noise pb

that we attribute to the channel and the noise D that
is related to Eve’s unitary interaction. For the explicit
connection between these different types of noise see Eq.

(27). Taking this fact into account leads to remarkably
higher key rates, as shown in FIG. 8. For example, for
N = 108 signals, without added noise the key rate in the
six-state (BB84) protocol is 0.37 (0.34), while for chan-
nel noise of pb = 0.05 it is 0.47 (0.46) for the six-state
(BB84) protocol.
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FIG. 8: (Color online) Comparison of the finite-key rates
(Eq. (13)) (ε = 10−9) versus number of signals N for var-
ious noise parameters pb with QBER = 5% for the BB84
(circles (black)) and the six-state protocol (squares (red));
dashed lines: pb = 0, straight lines: pb = 5%.

VI. CONCLUSIONS

In this article we have shown that the presence of quan-
tum noise can improve secret key rates, in particular in
the realistic scenario of a finite number of resources. We
have investigated the effect of different noise scenarios on
an ε-secure key rate for the BB84 and the six-state proto-
col in the entanglement-based scheme, for a finite number
of signals. Our results can be interpreted in two ways:
First, when taking the view that noise is added deliber-
ately, it turns out that the effect of adding depolarizing
noise to the state (before the state transmisson) is equal
to the benefit gained by adding classical noise, i.e. when
Alice performs probabilistic bit-flips on her measured bit
string. We obtain that for both the BB84 and the six-
state protocol the benefit (concerning the key rate) of
adding noise is higher in the regime of a finite number of
signals than for the asymptotic key rate. Second, under
the realistic assumption that a channel itself introduces
noise unavoidably, i.e. the noise is not necessarily created
by the eavesdropper, the secret key rate increases signif-
icantly with respect to the ”worst case”, where all noise
is attributed to Eve’s intervention. This improvement
comes from the fact that the errors from the quantum
channel do not give Eve information about the key. This
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approach avoids the over-pessimistic assumption of un-
conditional security, and is thus meaningful for realistic
experiments.
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We develop a new method to quantify the secret key rate for permutation-invariant protocols for
coherent attacks and finite resources. The method reduces the calculation of secret key rates for
coherent attacks to the calculation for collective attacks by bounding the smooth min-entropy of
permutation-invariant states via the smooth min-entropy of corresponding tensor-product states.
The comparison of the results to the well-known post-selection technique for the BB84 and six-state
protocol shows the high relevance of this method. Since our calculation of secret key rates for
coherent attacks strongly depends on the way of treating collective attacks, a prospective progress
in the analysis of collective attacks will immediately cause progress in our strategy.

I. INTRODUCTION

The aim of quantum key distribution (QKD) is the
generation of a secret key between two authorized par-
ties Alice and Bob in the presence of an eavesdropper
Eve. In practical implementations the number of signals
used to establish a secure key is finite. An essential ele-
ment of the calculation of key rates for a finite number
of signals is the evaluation of the smooth min-entropy
[1] for high-dimensional states, which is in general hard
or even impossible to compute. In the last years many
results have appeared [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
considering the calculation of secret key rates for finite
resources under the restriction of the eavesdropper’s at-
tack to a collective attack [12, 13], where Eve interacts
with each signal independently and identically. This re-
striction leads to a state, which has tensor-product form
and allows to bound the smooth min-entropy by the con-
ditional von Neumann entropy of a single-signal state
by using the asymptotic equipartition property (AEP)
[1, 14].

In studies of coherent attacks [15, 16] the eavesdropper
is not restricted at all, i.e. she may interact with all
signals simultaneously. Already in the year 2005 it was
shown in [17, 18] that for protocols, which are invariant
under permutations of single-signal states, collective and
coherent attacks are equivalent in the case of infinitely
many signals. But for a finite number of signals this
equivalence has not been proven yet. As a consequence
the development of tools to compute a secret key for finite
resources in the presence of coherent attacks is necessary.

Up to now direct strategies that treat coherent attacks
only exist for the BB84 [19] protocol (see [10],[11]). In
[10] Tomamichel et al used an uncertainty relation for
smooth entropies [20] to circumvent the evaluation of the
smooth min-entropy by the computation of the smooth
max-entropy [1]. Since the resulting max-entropy has to
be evaluated for a classical state, the calculation becomes
analytically solvable.

In comparison to these direct strategies, many studies

∗Electronic address: mertz@thphy.uni-duesseldorf.de

have focused on indirect approaches like post-selection
[21] or the de Finetti approach [1, 22] to quantify se-
cret key rates, where the analysis for coherent attacks
is traced back to the investigation of collective attacks.
In [7], these indirect approaches have been compared to
each other for the BB84 protocol with the result, that the
post-selection technique exceeds the de Finetti approach
in terms of secure key rates.

In this paper we present a new strategy to calculate
secret key rates for general permutation-invariant (i.e.
the output of the protocol remains the same under per-
mutations of the input pairs) protocols for coherent at-
tacks. In particular, we relate the secret key rate for
coherent attacks to the calculation of secret key rates for
collective attacks by bounding the smooth min-entropy
of a permutation-invariant state via the min-entropy of
a corresponding tensor-product state “smoothed” over
a reduced environment. We compare the results to the
post-selection technique by applying the AEP-bound for
the treatment of collective attacks. Note that most of
the protocols studied in the literature already fulfill the
condition of permutation-invariance or can made to be
permutation-invariant, like e.g the BB84 and six-state
[23, 24] protocol.

The paper is organized as follows. In Section II we
explain the protocol and fix the notation. We clarify the
formalism used to calculate secret key rates under the
assumption of collective attacks in Section III. The for-
malism to analyze coherent attacks, the main result of
this paper, is presented in Section IV. Section V shortly
reviews the post-selection technique, which is then com-
pared to the new strategy with respect to secret key rates
for the BB84 and six-state protocol in Section VI. Fi-
nally, Section VII concludes the paper.

II. PRELIMINARIES

In this paper we consider permutation-invariant
entanglement-based QKD protocols, which consist of the
steps: state distribution, sifting, parameter estimation
(PE), error correction (EC), error verification and pri-
vacy amplification (PA) (for a detailed description see
[17, 18]). Here, permutational invariance means that for
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any permutation of the input pairs the output of the pro-
tocol remains unchanged. In the following we denote by
ρN

AB the initial state of N signals shared by Alice and
Bob, and by ρN

ABE a purification of ρN
AB , which describes

the state shared by Alice, Bob and Eve after the state
distribution. Now, let NAB be the operation, that rep-
resents the procedures, which Alice and Bob perform on
their states, i.e. measurement, sifting, parameter estima-
tion, error correction and error verification. (Note that
privacy amplification is not included here, since the out-
put of this procedure is the final bit-string used as key.)
Then we define the resulting classical-quantum state con-
taining Alice’s bit string and Eve’s quantum state as
ρn

XE := (NAB ⊗ 11E) ρN
ABE . As the main quantity for

the calculation of secret key rates we use the smooth
min-entropy [1]

Hε
min (ρAE |E) := sup

σAE∈B
ε
2 (ρAE)

sup
ρE∈S(HE)

Hmin (σAE |ρE) ,

(1)
defined as an optimization of the min-entropy

Hmin (σAE |ρE) := sup
{
λ ∈ R : 2−λ11A ⊗ ρE − σAE ≥ 0

}
(2)

over an ε
2 -environment given by

B ε
2 (ρ) :=

{
σ :

1
2
||σ − ρ||1 ≤ ε

2

}
, (3)

with the 1-norm ||A||1 = tr
(√

AA†
)
. S(HE) denotes the

set of density operators on the Hilbert space HE .

III. COLLECTIVE ATTACK

In contrast to coherent attacks, the assumption of col-
lective attacks forces the eavesdropper Eve to interact
with each of the signals separately. Under this restric-
tion the distributed state can for permutation-invariant
protocols be regarded as a product state ρ⊗N

AB , which is
diagonal in the Bell-basis [17, 18]. We denote by m the
number of randomly chosen signals used for parameter
estimation and by n the remaining number of signals for
privacy amplification. Then, the rate of an ε-secure key
can be quantified in the following way.

Theorem 1. [3] Let εPE, εEC, εPA, ε̄ > 0 and let ρ⊗n
XE =

(NAB ⊗ 11E) ρ⊗N
ABE be a tensor-product state for a purifi-

cation ρABE in HABE of the state ρAB ∈ S(HAB). Then
the rate of an εcoll := (εPE + εEC + εPA + ε̄)-secure key
is given by

r :=
1
N

inf
ρAB∈Γcoll

(
H ε̄

min

(
ρ⊗n

XE |E
)− leakEC

)
+

2
N

log2 (2εPA) .

(4)

The smooth min-entropy of the classical-quantum
state ρ⊗n

XE shared by Alice and Eve and the correction

2 log2 (2εPA) arise from the analysis of privacy amplifica-
tion. The entropy quantifies Eve’s uncertainty of Alice’s
bit-string.

The term leakEC stands for the number of bits which
Alice and Bob leak to the eavesdropper due to public
communication during the error correction procedure and
cost for the error verification. In total, the leakage can
be estimated by [3, 10]

leakEC := n1.1H(X|Y ) + log2

(
2
εEC

)
. (5)

Here, the factor 1.1 denotes the efficiency of a specific
error-correction protocol used during the key-generation.
The minimization of the smooth min-entropy is due to
parameter estimation, where we only except qubit-states
ρAB which are contained in the set [10]

Γcoll :=
{
σAB :

1
2
||Pm − Pn||1 ≤ ξ (εPE, n,m)

}
(6)

with

ξ (εPE, n,m) :=

√
(n+m)(m+ 1) ln (1/εPE)

8m2n
. (7)

This means, that the tolerated quantum bit error rate
(QBER) Pm due to anm-fold independent application of
a POVM E on a tensor-product state is ξ-close to the pa-
rameter Pn, which corresponds to a virtual measurement
on the remaining n signals, which are used for the key
generation, except with probability εPE (see Lemma 6 in
the Appendix). Note that this estimate has been devel-
oped in [10] for coherent attacks, i.e. Lemma 6 holds for
permutation-invariant states. As tensor-product states
in collective attacks are permutation-invariant, Lemma 6
can be applied.

For product states ρ⊗n
XE we can use the asymptotic

equipartition property (see Eq. (B7)) to bound the
smooth min-entropy by the conditional von Neumann en-
tropy of a single copy ρXE . Finally, we get for the rate
of an εcoll := (εPE + εEC + εPA + ε̄)-secure key:

rcoll :=
n

N

[
inf

ρAB∈Γcoll

(
S(X|E) − leakEC

n

)

− 5

√
log2(2/ε̄)

n

]
+

2
N

log2 (2εPA) (8)

where

S(X|E) = S(ρXE) − S(ρE) (9)

with S(ρ) := − tr (ρ log2 ρ).
In the next section we present a formalism to treat

coherent attacks. We will see that the analysis of secret
key rates for coherent attacks can be traced back to the
calculation of secret key rates under the assumption of
collective attacks (see Eq. (8)).
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IV. COHERENT ATTACK

A coherent attack is the most general attack an eaves-
dropper can perform, i.e. Eve is not restricted at all. For
the investigation of secret key rates for coherent attacks,
we have to consider non-product states for the evalua-
tion of the smooth-min entropy. No changes are needed
in the analysis of parameter estimation for collective at-
tacks (see Eq. (6)), because it also holds for coherent
attacks (i.e. non-product states (see Lemma 6 in the
Appendix)). Since error correction and error verifica-
tion are also independent of the underlying attack of the
eavesdropper (they are purely classical procedures), the
protocol analysis for these steps can be adopted from the
one for collective attacks.

For permutation-invariant protocols it has been shown
in [17] and [18] that we can assume w.l.o.g. that, after
the distribution of N qubit pairs, Alice and Bob share a
permutation-invariant quantum state, which is a convex
combination of tensor-products of Bell-states:

ρN
AB = PN

( ∑
n∈ΛN

μnσ
⊗n1
1 ⊗ σ⊗n2

2 ⊗ σ⊗n3
3 ⊗ σ⊗n4

4

)

(10)
with probabilities μn for the “realization” n and the set
of realizations

ΛN :=

{
n = (n1, n2, n3, n4) :

4∑
i=1

ni = N

}
. (11)

The σi for i = 1, .., 4 correspond to the projector onto
the 4 Bell-states in HA ⊗HB , i.e.

σ1 =
∣∣φ+

〉 〈
φ+

∣∣ ,
σ2 =

∣∣φ−〉 〈φ−∣∣ ,
σ3 =

∣∣ψ+
〉 〈
ψ+

∣∣ ,
σ4 =

∣∣ψ−〉 〈ψ−∣∣ , (12)

with
∣∣φ±〉 :=

1√
2

(|00〉 ± |11〉) and (13)

∣∣ψ±〉 :=
1√
2

(|01〉 ± |10〉) . (14)

PN denotes the completely positive map (CPM) which
symmetrizes the state with respect to all possible distin-
guishable permutations of the N qubit pairs.

The following section explains the analysis of pa-
rameter estimation for permutation-invariant states (see
Eq. (10)).

A. Parameter estimation

Let the sifting procedure now be such that Ns = n+m
signals remain, where m denotes the number of randomly

chosen signals used for parameter estimation and n de-
notes the remaining number of signals for privacy am-
plification. Then we can adopt Lemma 6 to estimate
the QBER Qn by the tolerated QBER Qm coming from
a measurement on general permutation-invariant states
(see also the arguments below Eq. (7)).

Theorem 2. Let εPE > 0 and m + n = Ns. Let
ρNs

AB ∈ S
(
H⊗Ns

AB

)
be a permutation-invariant quantum

state, and let E be a POVM on HAB which measures
the QBER. Let Qm and Qn be the frequency distri-
butions when applying the measurement E⊗m and E⊗n,
respectively, to different subsystems of ρNs

AB. Then for
any element Qm and Qn from Qm and Qn except with
probability εPE

1
2
||Qm −Qn||1 ≤ ξ (εPE, n,m) (15)

with ξ(εPE, n,m) :=
√

(m+n)(m+1) ln (1/εPE)
8m2n .

Proof: This follows directly from Lemma 6 in the Ap-
pendix, which is a consequence of [10].

Now with the definition of the set of states, which pass
the parameter estimation procedure

Γn
εPE

:=
{
σn

AB :
1
2
||Qm −Qn||1 ≤ ξ (εPE, n,m)

}
, (16)

we are able to give an analytic expression for the rate of
an ε-secure key for coherent attacks.

Corollary 1. Let εPE, εEC, εPA, ε̄ > 0 and let ρn
XE =

(NAB ⊗ 11E) ρN
ABE be a permutation-invariant state for

a purification ρN
ABE in H⊗N

ABE of ρN
AB ∈ S (H⊗N

AB

)
. Then

the rate of an εcoh := (εPE + εEC + εPA + ε̄)-secure key is
given by

r :=
1
N

inf
ρn

AB∈Γn
εPE

(
H ε̄

min (ρn
XE |E) − leakEC

)
+

2
N

log2 (2εPA) .

(17)

In the following section we show that the smooth min-
entropy for permutation-invariant states can be mainly
bounded by the min-entropy for corresponding product-
states “smoothed” over a reduced ε-environment.

B. Privacy amplification

In order to get a calculable formula for the key
rate (Eq. (17)) we bound the smooth min-entropy for
permutation-invariant states by the smooth min-entropy
for tensor-product states, which then can be easily evalu-
ated by the asymptotic equipartition property (Eq. (B7))
as explained in Section III.

We now define analogously to Eq. (10) the
permutation-invariant state with n signals, which Alice
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and Bob share after the parameter estimation procedure.

ρn
AB := Pn

( ∑
n∈Λn

μnσ
⊗n1
1 ⊗ σ⊗n2

2 ⊗ σ⊗n3
3 ⊗ σ⊗n4

4

)
,

(18)
where σi with i = 1, .., 4 correspond to the projec-
tors onto the 4 Bell-states in HA ⊗ HB and Λn :={
n = (n1, n2, n3, n4) :

∑4
i=1 ni = n

}
(see Eq. (10)). Ad-

ditionally, we denote the single-copy state shared by Alice
and Bob in the following as

σAB [λ] :=
4∑

i=1

λiσi (19)

with λ := (λ1, λ2, λ3, λ4) =
(

n1
n ,

n2
n ,

n3
n ,

n4
n

)
.

The next theorem is one of our central results.
It gives a relation between the smooth min-entropy
for permutation-invariant states and the smooth min-
entropy for tensor-product states. The proof is inspired
by [18] and uses the fact, that there exists a certain mea-
surement on σAB [λ]⊗n, such that the resulting state is
equal to the state ρn

AB for a specific realization n. Then,
the application of some fundamental properties of the
smooth min-entropy leads to the result.

Theorem 3. Let ε̄ > 0, λ =
(

n1
n ,

n2
n ,

n3
n ,

n4
n

)
and

MAB be the quantum operation which describes the lo-
cal measurements Alice and Bob perform followed by
a partial-trace operation on Bob’s part (HB). Let
ρn

XE = (MAB ⊗ 11E)⊗n
ρn

ABE be the classical quan-
tum state obtained after applying the quantum opera-
tion (MAB ⊗ 11E)⊗n on a purification ρn

ABE in H⊗n
ABE

of a permutation-invariant state ρn
AB ∈ S (H⊗n

AB

)
. Anal-

ogously let σXE [λ]⊗n = (MAB ⊗ 11E)⊗n
σABE [λ]⊗n

be the classical quantum state obtained after applying
the quantum operation (MAB ⊗ 11E)⊗n on a purifica-
tion σABE [λ]⊗n of a tensor-product state σAB [λ]⊗n ∈
S (H⊗n

AB

)
. Let E be a POVM on HA ⊗ HB which mea-

sures the QBER. Let Qn, Pn be an element of the fre-
quency distribution Qn, Pn of the outcomes when apply-
ing the measurement E⊗n to ρn

AB and σ⊗n
AB, respectively.

Then except with probability ε̄

H ε̄
min (ρn

XE |E) ≥ H
ε̄/(2n2)
min

(
σ⊗n

XE

[
λ =

n
n

]
|E
)
− 1, (20)

where

Γcoh :=
{
τAB :

1
2
||Qm − Pn||1 ≤ ξcoh (ε̄, n,m)

}
(21)

with

ξcoh (ε̄, n,m) :=
1
2
ξatt (ε̄, 2, n) + ξ

( ε̄
2
, n,m

)
(22)

where

ξatt(ε̄, 2, n) :=

√
16 ln (2) + 8 ln (1/ε̄)

n
(23)

and

ξ
( ε̄

2
, n,m

)
:=

√
(m+ n)(m+ 1) ln (2/ε̄)

8m2n
(24)

defines the set of tensor-product states τ⊗n which pass
the parameter estimation procedure.

Proof: The state to be considered is given by ρn
XE and

can be expressed as a convex combination of states for
all possible realizations n with probability μn, i.e.

ρn
XE =

∑
n∈Λn

μnρ
n
XE [n]. (25)

Note that this structure is provided in Eq. (18) and is
conserved due to the linearity of MAB and a purification
of ρn

AB , which is optimal for Eve.
The first part proves the theorem for the special case,

that only one μn in Eq. (25) is non-zero, i.e. we consider
a single realization n. Then, part 2 extends part 1 to the
general case.

Part 1:
Let |φi〉 be an extension to HA ⊗HB ⊗HE of σi (see

Eq. (18)) with the condition, that the remaining states
trAB

(
P|φi〉

)
are mutually orthogonal for i ∈ {1, .., 4}.

Note that this choice of orthogonal ancillas is optimal,
since it enables the eavesdropper to distinguish perfectly
the reduced states shared by Alice and Bob. Let Sn be
the set of distinguishable permutations π on n qubits for
a fixed realization n. Then, with

|ψ〉nABE :=
1√|Sn|

∑
π∈Sn

π

(
4⊗

i=1

|φi〉⊗ni

)
(26)

and

|φ〉λABE :=
4∑

i=1

√
λi |φi〉 (27)

we define

ρn
XE [n] := (MAB ⊗ 11E)⊗n

P|ψ〉nABE
(28)

σXE [λ] := (MAB ⊗ 11E)P|φ〉λ
ABE

(29)

for an arbitrary, but fixed realization n. For any i ∈
{1, .., 4} let Pi be the projector onto the support of
(M⊗ 11E)P|φi〉 which by definition are orthogonal for
distinct i. Let F be a measurement defined by

F : ρ→
1∑

z=0

FzρF
†
z ⊗ |z〉 〈z| , (30)

where

F0 :=
∑

π∈Sn

π
(
P⊗n1

1 ⊗ P⊗n2
2 ⊗ P⊗n3

3 ⊗ P⊗n4
4

)
(31)
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and F1 := 11−F0. Then F0 picks out a specific realization
n from the tensor-product state σXE [λ]⊗n, i.e.

ρn
XE [n] =

1
PZ(Z = 0)

F0

(
σXE [λ]⊗n

)
F †

0 (32)

with PZ(Z = 0) = tr
(
F0

(
σ⊗n

XE [λ]
)
F †

0

)
= |Sn|

∏4
i=1 λ

ni
i

(For a detailed proof see [18], Lemma A.4).
Now let ρ̄n

XEZ [n] be the resulting state after applying
F on σ⊗n

XE [λ] and let Z be the classical measurement
outcome, i.e.

ρ̄n
XEZ [n] =

1∑
z=0

Fzσ
⊗n
XE [λ]F †

z ⊗ |z〉 〈z| (33)

=:
1∑

z=0

PZ(Z = z)ρ̄nZ=z
XE [n] ⊗ |z〉 〈z| . (34)

Then it follows directly from Eq. (32) that

ρn
XE [n] = ρ̄nZ=0

XE [n] (35)

and therefore

H ε̄
min (ρn

XE [n]|E) = H ε̄
min

(
ρ̄nZ=0

XE [n]|E) . (36)

With some fundamental properties of the smooth min-
entropy we get

H ε̄
min

(
ρ̄nZ=0

XE [n]|E)
Eq. (A7)

≥ H
pZ(Z=0)ε̄
min (ρ̄n

XEZ [n]|EZ)
Eq. (B1)

≥ H
pZ(Z=0)ε̄
min (ρ̄n

XEZ [n]|E) − log2 (rank(ρZ)).
(37)

By definition, the orthogonality and completeness of the
set {Fz} ensures that trZ (ρ̄n

XEZ [n]) = σ⊗n
XE [λ], such that

we can apply Eq. (A2) in the Appendix. This leads to

H
pZ(Z=0)ε̄
min (ρ̄n

XEZ [n]|E) − log2 (rank(ρZ))
Eq. (A2)

≥ H
pZ(Z=0)ε̄
min

(
σ⊗n

XE [λ]|E)− log2 (rank(ρZ))

≥ H
ε̄/n2

min

(
σ⊗n

XE [λ]|E)− 1, (38)

where we used in the last step that rank(ρZ) ≤ 2 and
from Lemma 7 in the Appendix that

pZ(Z = 0) = |Sn|
4∏

i=1

λni
i > 1/n2. (39)

The following part generalizes the proof to the unre-
stricted case.

Part 2:
Now let ρn

ABE := P|ψ〉 with

|ψ〉 :=
∑

n∈Λn

√
μn |ψ〉nABE (40)

be a purification of ρn
AB . For any n ∈ Λn let Hn

E be
the smallest subspace of H⊗n

E containing the support of
the traces ρn

E [n] = trH⊗n
AB

(ρn
ABE [n]). By the definition

of the vectors |φi〉 as in part 1, the subspaces Hn
E are

orthogonal for distinct n ∈ Λn. There exists a projective
measurement F ′ onto the subspaces H⊗n

AB ⊗Hn
E . Now let

the state ρ̃n
XEZ′ be the resulting state from the measure-

ment F ′ of the state ρn
XE and let Z ′ ∈ Λn be the classical

outcome, i.e.

ρ̃n
XEZ′ =

∑
n∈Λn

F ′
nρ

n
XEF

′†
n ⊗ |n〉 〈n| (41)

=:
∑

n∈Λn

μnρ
n
XE [n] ⊗ |n〉 〈n| . (42)

By the definition of the state ρn
XE we know that for a tol-

erated QBER Qm the parameter Qn for a virtual mea-
surement on n signals has to fulfil except with probability
ε̄
2 that

1
2
||Qm −Qn||1 ≤ ξ

( ε̄
2
, n,m

)
. (43)

Note that the choice of ε̄
2 is arbitrary. In princi-

ple, the introduction of a new parameter could lead
to better results. Now, this condition implies that re-
alizations n in the permutation-invariant state ρn

AB =∑
n∈Λn μnρ

n
AB [n], whose corresponding parameter Qn

does not fulfill the condition in Eq. (43), only appear
with small probability, i.e. more precisely∑

n: 12 ||Qm−Qn||1>ξ( ε̄
2 ,n,m)

μn ≤ ε̄

2
. (44)

This behaviour of the probabilities enables us to apply
Eq. (A6) in the Appendix for probability ε′ = ε̄

2 to re-
strict the states ρn

AB [n] (or equivalently their correspond-
ing realizations n) to the set

Γ̃n
ε̄/2 :=

{
σn

AB [n] :
1
2
||Qm −Qn||1 ≤ ξ

( ε̄
2
, n,m

)}
.

(45)
Namely, we have

H ε̄
min (ρn

XE |E)
Eq. (A4)

≥ H ε̄
min (ρ̃n

XEZ′ |EZ ′)
Eq. (A6)

≥ inf
ρn

AB [n]∈Γ̃n
ε̄/2

H
ε̄/2
min (ρn

XE [n]|E) . (46)

Then Eq. (46) becomes, together with Eq. (36), Eq. (37)
and Eq. (38),

inf
ρn

AB [n]∈Γ̃n
ε̄/2

H
ε̄/2
min (ρn

XE [n]|E)

≥ inf
ρn

AB [n]∈Γ̃n
ε̄/2

H
ε̄/(2n2)
min

(
σ⊗n

XE [λ =
n
n

]|E
)
− 1

(47)
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Since the min-entropy is now a function of a tensor-
product state, we would like to express the restricting in-
fimum in terms of the statistics Pn of this tensor-product.
By definition, we have ρ1

XE [n] = σXE [λ = n
n ], such that

we can apply Lemma 8 in the Appendix (for k = N = n),
which states that, except with probability ε̄, the statistics
Pn of the tensor-product state σ⊗n

XE [λ = n
n ] is ξatt-close

to Qn, i.e.

1
2
||Qn − Pn||1 ≤ ξatt (ε̄, |E|, n) . (48)

(Here the choice of ε̄ is arbitrary. The consideration of
a new parameter could in general lead to better results.)
Now, we are able to bound the distance between Pn and
the tolerated QBER Qm measured during parameter es-
timation by using the triangular inequality.

1
2
||Qm − Pn||1 ≤ 1

2
||Qm −Qn||1 +

1
2
||Qn − Pn||1

≤ ξ
( ε̄

2
, n,m

)
+
ξatt (ε̄, 2, n)

2
=: ξcoh (ε̄, n,m) , (49)

where we used that for the POVM applied for parameter
estimation (see Eq. (6) and Section IV A) the number of
POVM elements becomes 2 (see [8]) and that [8]

1
2
||Qn − Pn||1 ≤ 1

2
1
2
||Qn − Pn||1 . (50)

Consequently we end up in

inf
ρn

AB [n]∈Γ̃n
ε̄/2

H
ε̄/(2n2)
min

(
σ⊗n

XE [λ =
n
n

]|E
)
− 1

≥ inf
σAB∈Γξcoh

H
ε̄/(2n2)
min

(
σ⊗n

XE

[
λ =

n
n

]
|E
)
− 1.

(51)

The assertion then follows by putting Eq. (51) and
Eq. (47) into Eq. (46).

Finally, we are able to formulate a calculable rate of
an εcoh-secure key for coherent attacks.

Theorem 4. Let εPE, εEC, εPA, ε̄ > 0 and let ρn
XE =

(NAB ⊗ 11E) ρN
ABE be a permutation-invariant state for

a purification ρN
ABE in H⊗N

ABE of ρN
AB ∈ S (H⊗N

AB

)
. Then

the rate of an εcoh := (εPE + εEC + εPA + 2ε̄)-secure key
is given by

rcoh :=
n

N

[
inf

ρAB∈Γcoh

(
S(X|E) − leakEC

n

)

− 5

√
log2(4n2/ε̄)

n

]

− 1
N

+
2
N

log2 (2εPA), (52)

where

Γcoh =
{
σAB :

1
2
||Qm − Pn||1 ≤ ξcoh (ε̄, n,m)

}
(53)

with

ξcoh (ε̄, n,m) :=
ξatt (ε̄, 2, n)

2
+ ξ

( ε̄
2
, n,m

)
(54)

for

ξ
( ε̄

2
, n,m

)
:=

√
(m+ n)(m+ 1) ln (2/ε̄)

8m2n
, (55)

ξatt(ε̄, 2, n) :=

√
16 ln (2) + 8 ln (1/ε̄)

n
(56)

and

S(X|E) = S(ρXE) − S(ρE) (57)

with S(ρ) := − tr (ρ log2 ρ).

Proof: The proof follows by inserting the result from
Eq. (20) into Eq. (17) and using Eq. (B7) to express the
smooth min-entropy of product states by the conditional
von Neumann entropy of a single-copy state.

A careful analysis of the proof of Eq. (20) enables us
to obtain the main corrections for the secret key rate
for coherent attacks (Eq. (52)) in comparison to collec-
tive attacks (Eq. (8)): First, for coherent attacks the
probability to measure a single realization n for a given
tensor-product state is rather small, which makes the ε-
environment, e.g. in Eq. (51) small. Second, the statis-
tics for the different attacks are not identical in general.
Additional fluctuations have to be taken into account
as done by considering ξatt (see Eqs. (54) and (56)).
These corrections loose their corrupting influence on the
secret key rate, when considering the asymptotic limit
(N → ∞, ε → 0). In this case ξatt becomes zero and no
additional fluctuations have to be added to the QBER,
thus the corrections vanish. This confirms the equiva-
lence of collective and coherent attacks for permutation-
invariant protocols stated in [17, 18] in the asymptotic
limit. But for a finite number of signals these corrections
have a dramatic impact on the secret key rate. And, since
these additional terms seem unavoidable, this might be a
hint, that the equivalence of collective and coherent at-
tacks might not hold for permutation-invariant states in
the regime of finite resources.

The following section shortly reviews the known post-
selection technique [21], which we then will compare to
Eq. (52).

V. POST-SELECTION - A SHORT REVIEW

In order to determine the quality of rcoh (Eq. (52))
from the previous section, we have to compare it to key
rates obtained by strategies existing in the literature. Up
to now, there exist two main techniques to quantify secret
key rates for finite resources for coherent attacks for the
whole class of permutation-invariant protocols, namely
the de Finetti approach [1, 22] and the post-selection
technique [21]. Since Sheridan et al showed in [7] that
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the latter technique leads to higher secret key rates, we
only take the post-selection technique for comparison.

The post-selection technique applied to QKD estimates
the deviation of the finite key rate rpost obtained from a
permutation-invariant protocol against coherent attacks
from the corresponding rate rcoll against collective at-
tacks. The rate of an εpost-secure key is given by [21]

rpost = rcoll − 30 log2 (N + 1)/N (58)

where rcoll is given by Eq. (8) evaluated for the security
parameter εcoll = εpost(N + 1)−15.

VI. COMPARISON

In this section we compare our newly developed se-
cret key rate rcoh (Eq. (52)) and the known rate rpost

(Eq. (58)) for coherent attacks to the secret key rate
evaluated under the assumption of collective attacks rcoll
(Eq. (8)) for the BB84 protocol and the six-state proto-
col.

The finite-key rates are calculated for a total secu-
rity parameter of ε := εcoll = εpost = εcoh = 10−9.
In the following let QBER := Qm denote the tolerated
QBER from the POVM used for parameter estimation
(see Eq. (6) and Section IV A).

The results are obtained from a numerical optimization
procedure, which maximizes the key rate with respect to
the parameters m, ε̄, εPE, εEC, εPA.

In FIG. 1 the secret key rates are shown as a function
of the initial number of signalsN for differentQBERs for
the BB84 protocol. FIG. 2 presents an analogous calcu-

10000 1e+06 1e+08 1e+10 1e+12 1e+14 1e+16

N
0.0001

0.001

0.01

0.1

1

r

FIG. 1: (Color online) Comparison of the secret key rates rcoll

(Eq. (8)) (black circles), rpost (Eq. (58)) (green squares) and
rcoh (Eq. (52)) (red triangles) versus the number N of initial
signals for different QBERs with security parameter ε = 10−9

for the BB84 protocol in logarithmic scale; QBER = 0.01
(straight lines), QBER = 0.1 (dotted lines).

lation for the six-state protocol. Note that, as mentioned
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FIG. 2: (Color online) Comparison of the secret key rates rcoll

(Eq. (8)) (black circles), rpost (Eq. (58)) (green squares) and
rcoh (Eq. (52)) (red triangles) versus the number N of initial
signals for different QBERs with security parameter ε = 10−9

for the six-state protocol in logarithmic scale; QBER = 0.01
(straight lines), QBER = 0.1 (dotted lines).

in Section IV B, in both cases we recover the known re-
sult that coherent attacks become collective attacks in
the limit of infinitely many signals N . For finite N the
figures show that the new rate rcoh is always significantly
higher in comparison to the rate rpost obtained from the
post-selection technique. This advantage of rcoh can be
seen for a rather small QBER = 0.01 as well as for a
high value QBER = 0.1. For example we obtain that
the increase of rcoh in comparison to rpost is around 43%
for a QBER of 0.01 (N = 106) and 33% for a QBER
of 0.1 (N = 1010) for the BB84 protocol. In case of the
six-state protocol rcoh exceeds rpost by around 51% for a
QBER of 0.01 (N = 106) and 45% for a QBER of 0.1
(N = 108).

VII. CONCLUSION

In this paper we presented a new method to quantify
the rate of a secret key for general permutation-invariant
protocols for coherent attacks. We show a technique to
trace the calculation of secret key rates for coherent at-
tacks back to the analysis of collective attacks. The high
quality of this method manifests itself by a comparison
to the up to now best-known strategy, the post-selection
technique. For the treatment of collective attacks we ap-
plied the von Neumann entropy bound. We showed that
for a finite number of initial signals the secret key rates
for the BB84 and the six-state protocol obtained by our
method exceed the rates coming from the post-selection
technique significantly. In case of the BB84 protocol,
higher secret key rates have been obtained in [10] and
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[11] by a specialized method, which can, however, not be
applied to the six-state protocol. Our method, in con-
trast, can be applied to all permutation-invariant quan-
tum key distribution protocols for which an analysis of
collective attacks is available. Since our results strongly
depend on the underlying analysis of collective attacks, a
prospective progress in the analysis of collective attacks
will automatically cause a progress in our strategy with
respect to secret key rates.

Additionally the results of our derivation confirm the
known result that, in the limit of infinitely many initial
signals, coherent attacks are as powerful as collective at-
tacks. Furthermore, we point out the main impact on
the corrections for the key rate against coherent attacks
in comparison to collective attacks. Since this extensive
impact seems unavoidable, this might give some evidence
for the inequivalence of the two types of attacks for finite
resources.

Since the assumption of permutation-invariance is
fairly weak (most protocols used in the literature are
permutation-invariant or can be made to), the results
of this paper can be widely applied.
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APPENDIX A

1. Properties of the (smooth) min-entropy

Lemma 1. Let ρABZ :=
∑

z∈Z PZ(z)ρz
AB ⊗ |z〉 〈z| ∈

S (HA ⊗HB ⊗HZ) be a classical-quantum state with
ρAB = trZ (ρABZ) and σB ∈ S (HB), then

Hε
min (ρABZ |B) ≥ Hε

min (ρAB |B) . (A1)

Proof: For any ν > 0 there exists ρ̄AB ∈ B ε
2 (ρAB)

such that for any σB

Hmin (ρ̄AB |σB) ≥ Hε
min (ρAB |σB) − ν.

Then it follows with Eq. (B4) that

Hmin (ρ̄ABZ |σB) ≥ Hmin (ρ̄AB |σB) .

To conclude the proof it suffices to verify that ρ̄ABZ ∈
B ε

2 (ρABZ).

1
2
||ρ̄ABZ − ρABZ ||1 ≤ 1

2
||ρ̄AB − ρAB ||1 ≤ ε

2
,

where we used the fact that the trace-distance cannot
increase when applying a quantum operation (see [1],

Lemma A.2.1). The assertion then follows by choosing
σB such that

Hε
min (ρAB |σB) = Hε

min (ρAB |B)

and the fact that

Hmin (ρ̄ABZ |B) ≥ Hmin (ρ̄ABZ |σB) .

Lemma 2. Let ρAB ∈ S (HA ⊗HB), {|z〉}z a family of
orthogonal vectors in HZ and ε > 0. Then for a state
ρ̄ABZ :=

∑
z∈Z FzρABF

†
z ⊗ |z〉 〈z| with

∑
z∈Z F

†
zFz = 11

and trZ (ρ̄ABZ) = ρAB

Hε
min (ρAB |B) ≤ Hε

min (ρ̄ABZ |B) . (A2)

Proof: From the definition of ρ̄ABZ it follows immedi-
ately that

Hε
min (trZ (ρ̄ABZ) |B) = Hε

min (ρAB |B) .

Then the assertion follows with Lemma 1

Hε
min (trZ (ρ̄ABZ) |B) ≤ Hε

min (ρ̄ABZ |B) . (A3)

Lemma 3. Let ρAB ∈ S (HA ⊗HB), {|z〉}z a family
of orthogonal vectors in HZ and ε > 0. Then for a
state ρ̄ABZ :=

∑
z∈Z PZ(Z = z)F ′

zρABF
′†
z ⊗ |z〉 〈z| with∑

z∈Z F
′†
z F

′
z = 11 and trZ (ρ̄ABZ) = ρAB

Hε
min (ρAB |B) ≥ Hε

min (ρ̄ABZ |BZ) . (A4)

Proof: From the definition of ρ̄ABZ it follows immedi-
ately that

Hε
min (trZ (ρ̄ABZ) |B) = Hε

min (ρAB |B) .

Then the assertion follows from the strong subadditivity
of the smooth min-entropy (see Eq. (B3)), i.e.

Hε
min (trZ (ρ̄ABZ) |B) ≥ Hε

min (ρ̄ABZ |BZ) . (A5)

Lemma 4. Let ρABZ =
∑

z∈Z PZ(z)ρz
AB ⊗ |z〉〈z| be a

classical quantum state and ε, ε′ > 0, then for any subset
Z ′ ⊆ Z such that Prob[z ∈ Z ′] > 1 − ε′,

H
ε+ε′

min (ρABZ |BZ) ≥ inf
z∈Z′

Hε
min (ρz

AB |B) . (A6)

Proof: For any ν > 0 and z ∈ Z ′ there exists ρ̄z
AB ∈

B ε
2 (ρz

AB) such that for any σz
B

Hmin (ρ̄z
AB |σz

B) ≥ Hε
min (ρz

AB |σz
B) − ν.

Let

ρ̄ABZ :=
∑
z∈Z′

PZ′(z)ρ̄z
AB ⊗ |z〉〈z|.
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Then it follows with Eq. (B2) that

Hmin (ρ̄ABZ |σBZ) = inf
z∈Z′

Hmin (ρ̄z
AB |σz

B)

≥ inf
z∈Z′

Hε
min (ρz

AB |σz
B) − ν.

To conclude the proof it suffices to verify that ρ̄ABZ ∈
B ε+ε′

2 (ρABZ).

1
2
||ρ̄ABZ − ρABZ ||1

Eq. (B6)
=

∑
z∈Z′

PZ′(z)
1
2
||ρ̄z

AB − ρz
AB ||1

+
∑

z∈Z\Z′
PZ\Z′(z)

1
2
||ρz

AB ||1

≤ ε

2

∑
z∈Z′

PZ′(z) +
1
2

∑
z∈Z\Z′

PZ\Z′(z)

≤ ε + ε′

2
.

The assertion then follows by choosing σz
B such that

Hε
min (ρz

AB |σz
B) = Hε

min (ρz
AB |B)

and the fact that

Hmin (ρ̄ABZ |BZ) ≥ Hmin (ρ̄ABZ |σBZ) .

Lemma 5. Let ρABZ =
∑

z∈Z PZ(z)ρz
AB ⊗ |z〉〈z| be a

classical quantum state and εz := PZ(z)ε, then

Hεz
min (ρABZ |BZ) ≤ Hε

min (ρz
AB |B) . (A7)

Proof: For any ν > 0 and z ∈ Z there exists ρ′ABZ ∈
B εz

2 (ρABZ) such that for any σBZ

Hmin (ρ′ABZ |σBZ) ≥ Hεz
min (ρABZ |σBZ) − ν.

Then it follows with Eq. (B5) that

Hmin (ρ′zAB |σz
B) ≥ Hεz

min (ρABZ |σBZ) − ν.

To conclude the proof it suffices to verify that ρ′zAB ∈
B ε

2 (ρz
AB).

εz
2

≥ 1
2
||ρ′ABZ − ρABZ ||1

Eq. (B6)
=

∑
z∈Z

PZ(z)
1
2
||ρ′zAB − ρz

AB ||1

≥ PZ(z)
1
2
||ρ′zAB − ρz

AB ||1 .

The assertion then follows by choosing σBZ such that

Hεz
min (ρABZ |σBZ) = Hεz

min (ρABZ |BZ)

and the fact that

Hmin (ρ′zAB |B) ≥ Hmin (ρ′zAB |σz
B) .

2. Estimation of frequency distributions

Lemma 6. Let εPE > 0 and 0 ≤ k ≤ N . Let ρN ∈
S (H⊗N

)
be a permutation-invariant quantum state, and

let E be a POVM on H which measures the quantum bit
error rate (QBER). Let Qk and QN−k be the QBERs
when applying the measurement E⊗k and E⊗N−k, respec-
tively, to different subsystems of ρN . Then except with
probability εPE it holds that

1
2
||QN−k −Qk||1 ≤ ξ(εPE, N − k, k) (A8)

with ξ(εPE, N − k, k) :=
√

N(k+1) ln (1/εPE)
8k2(N−k) .

Proof: It follows from the supplementary in-
formation (Note 2) of [10] that with εPE :=
e−

2k(N−k)
N

k
k+1 (2ξ(εPE,N−k,k))2

Prob[Qn ≥ Qk + 2ξ(εPE, N − k, k)] ≤ εPE. (A9)

The assertion then follows by negation of the statement.

3. Multinomial distribution

Lemma 7. Let n ∈ N and λi = ni

n for i = 1, .., 4 with∑4
i=1 ni = n. Then

n!
n1!n2!n3!n4!

4∏
i=1

λni
i >

1
n2

(A10)

for n > 500.

Proof: After applying the logarithm we get

ln

(
n!

n1!n2!n3!n4!

4∏
i=1

λni
i

)
= ln (n!)−

4∑
i=1

ln (ni!)+ni ln
(ni

n

)
.

(A11)
By using the Stirling-formula

√
2πn

(n
e

)n

< n! <
(

1 +
1

11n

)√
2πn

(n
e

)n

(A12)

we get for n > 0

ln (n!) −
4∑

i=1

ln (ni!) + ni ln
(ni

n

)

>
1
2

ln (2πn) −
(

4∑
i=1

1
2

ln (2πni) + ln
(

1 +
1

11ni

))

= −3
2

ln (2πn) −
(

4∑
i=1

1
2

ln
(ni

n

)
+ ln

(
1 +

1
11ni

))

> −3
2

ln (2πn) − 4 ln
(

12
11

)
, (A13)
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where we used in the last line that 1
2 ln

(
ni

n

)
< 0 and

ln
(
1 + 1

11ni

)
< ln

(
1 + 1

11

)
for ni > 0 ∀i = 1, .., 4. After

exponentiation we end up in

n!
n1!n2!n3!n4!

4∏
i=1

λni
i >

1
(2πn)3/2

(
11
12

)4

>
1
n2
, (A14)

which holds for n > 500.

APPENDIX B: KNOWN RESULTS

Here, we review known results, which are crucial for
derivations in the paper.

1. Properties of the (smooth) min-entropy

� Chain rule (see [1], Theorem 3.2.12): Let ρABC ∈
S (HA ⊗HB ⊗HC) and ε ≥ 0. Then for ρC =
trAB (ρABC)

Hε
min (ρABC |B) ≤ Hε

min (ρABC |BC) + log2 (rank (ρC)).
(B1)

� Conditioning on classical information (see [1], The-
orem 3.2.12): Let ρABZ :=

∑
z∈Z PZ(z)ρz

AB ⊗
|z〉 〈z| ∈ S (HA ⊗HB ⊗HZ) a classical-quantum
state, then

Hmin (ρABZ |BZ) = inf
z∈Z

Hmin (ρz
AB |B) . (B2)

� Strong subadditivity (see [1]. Theorem 3.2.12): Let
ρABC ∈ S (HA ⊗HB ⊗HC) and ε ≥ 0, then

Hε
min (ρABC |BC) ≤ Hε

min (ρAB |B) . (B3)

� Partial-trace operation on classical subsystem can
only decrease min-entropy (see [1], Lemma 3.1.9):
Let ρABZ :=

∑
z∈Z PZ(z)ρz

AB ⊗ |z〉 〈z| ∈
S (HA ⊗HB ⊗HZ) be a classical-quantum state
with ρAB = trZ (ρABZ) and σB ∈ S (HB), then

Hmin (ρABZ |σB) ≥ Hmin (ρAB |σB) . (B4)

� Quantum operations can only increase min-entropy
(see [25], Theorem 18): Let ρAB ∈ S (HA ⊗HB)

and let E be a quantum operation such that ρ̄AC =
(11A ⊗ E) ρAB , then

Hε
min (ρ̄AC |C) ≥ Hε

min (ρAB |B) . (B5)

� Trace-distance of mixtures (see [1], Lemma A.2.2):
Let ρAZ :=

∑
z∈Z PZ(z)ρz

A⊗|z〉 〈z| ∈ S (HA ⊗HZ)
be a classical-quantum state and an analogous def-
inition for ρ′AZ , then

1
2
||ρAZ − ρ′AZ ||1 =

∑
z∈Z

PZ(z)
1
2
||ρz

A − ρ′zA ||1 . (B6)

� Smooth min-entropy of quantum tensor-product
states (see [1], Corollary 3.3.7): Let ρ⊗n

XE ∈
S
(
(HX ⊗HE)⊗n

)
a classical-quantum tensor-

product state and ε ≥ 0, then

Hε
min

(
ρ⊗n

XE |E
) ≥ n

(
S(X|E) − 5

√
log2 (2/ε)

n

)
, (B7)

where S(X|E) = S(ρXE) − S(ρE) with S(ρ) :=
− tr (ρ log2 ρ).

2. Estimation of frequency distributions

Lemma 8. [18, 26] Let εatt > 0 and 0 ≤ k ≤ N .
Let ρN ∈ S (H⊗N

)
be a permutation-invariant quantum

state, and let E and F be POVMs on H with |E| and
|F| outcomes, respectively. Let QE

k and QF
N−k be the fre-

quency distribution of the outcomes when applying the
measurement E⊗k and F⊗N−k, respectively, to different
subsystems of ρN . Finally, let Ω be any convex set of
density operators such that, for any operator A on n− 1
subsystems, the normalization of trn−1

(
11 ⊗Aρn11 ⊗A†)

is contained in Ω. Then except with probability εatt, there
exists a state σ ∈ Ω such that

k

N

1
2

∣∣∣∣QE
k − PE

k

∣∣∣∣
1

+
N − k

N

1
2

∣∣∣∣QF
N−k − PF

N−k

∣∣∣∣
1

≤ ξatt(εatt, |E| + |F|, N) (B8)

where PE
k , PF

N−k denote the probability distributions
of the outcomes when measuring σ with respect to
E and F , respectively and ξatt(εatt, |E| + |F|, N) :=√

8 ln (2)(|E|+|F|)+8 ln (1/εatt)
N .
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Min-entropy and quantum key distribution: Nonzero key rates for “small” numbers of signals
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We calculate an achievable secret key rate for quantum key distribution with a finite number of signals by
evaluating the quantum conditional min-entropy explicitly. The min-entropy for a classical random variable is the
negative logarithm of the maximal value in its probability distribution. The quantum conditional min-entropy can
be expressed in terms of the guessing probability, which we calculate for d-dimensional systems. We compare
these key rates to previous approaches using the von Neumann entropy and find nonzero key rates for a smaller
number of signals. Furthermore, we improve the secret key rates by modifying the parameter estimation step.
Both improvements taken together lead to nonzero key rates for only 104–105 signals. An interesting conclusion
can also be drawn from the additivity of the min-entropy and its relation to the guessing probability: for a set of
symmetric tensor product states, the optimal minimum-error discrimination (MED) measurement is the optimal
MED measurement on each subsystem.

DOI: 10.1103/PhysRevA.83.022330 PACS number(s): 03.67.Dd

I. INTRODUCTION

Quantum key distribution (QKD) is the establishment of a
random secure key between two authorized parties, Alice and
Bob, which are connected with each other via a quantum and
a classical channel [1]. Qubits (e.g., photons) are distributed
over this quantum channel, and in practical implementations,
the number of these particles is finite. Dealing with these
finite resources, a new branch in QKD emerged: the finite-key
analysis. It investigates secure key rates, that is, the ratio of
a secure key length to the number of signals sent through the
channel, in the nonasymptotic situation. The security of a finite
key for a composable security definition [2–4] was proven
in [5–10]. It is important to notice that composability means
that the key established by QKD can be used safely in any
application such as one-time-pad encryption. For a review on
practical QKD and its security, see, for example, Refs. [11,12].
Calculations of finite-key rates were done in [9,13,14] and
in [15] for d dimensions. The relevance of finite QKD was
shown in [16]: Practical implementations of QKD lead to a
dramatically lower secure key rate in comparison to asymptotic
theoretical predictions.
The article is organized as follows: In Sec. II, we describe a

general QKD protocol; in Sec. III, we review a bound for
the statistical error in parameter estimation and show that
former results on the secret key rate [9] can be improved
by considering a positive operator valued measure (POVM)
with two outcomes. In Sec. IV, we concentrate on quantifying
the secret key length after privacy amplification. It was found
in [9,10] that the conditional min-entropy [see Eq. (8)] gives
an achievable upper bound on the secret key length. The calcu-
lation of the conditional min-entropy involves an optimization
over a set of quantum states. A lower bound on the min-
entropy by using the conditional von Neumann entropy was
established in [9,10]. This bound holds under the assumption
of collective attacks, that is, the state shared between Alice
and Bob after Eve’s interaction has tensor product structure.
In Sec. V, we calculate the min-entropy explicitly by applying
recent results on its operational meaning [17]. For the qubit

*bratzik@thphy.uni-duesseldorf.de

case, we evaluate the min-entropy for the Bennett-Brassard
1984 (BB84) protocol [1] via minimum-error discrimination
(MED). For d-dimensional quantum systems, we calculate it
for the generalized six-state protocol [18,19] via the square-
root measurement. In Sec. VI, we compare the key rates via
calculation of the min-entropy to the bound with the von
Neumann entropy. We show that our approach gives positive
key rates for a smaller number of signals compared to the von
Neumann approach. Furthermore, we compare our results in
the d-dimensional case to the recent results in [15] for the
mentioned bound. We conclude in Sec. VII.

II. QUANTUM KEY DISTRIBUTION PROTOCOL

We consider an entanglement-based QKD scheme. In the
following, a description of the protocol will be provided.
(1) Distribution. Alice prepares N maximally entangled

states in dimension d × d, where d is the dimension of the
Hilbert space of a subsystem,

|�00〉 := 1√
d

d−1∑
x=0

|xx〉 , (1)

and sends the second particle to Bob. In the case of qubits,
that is, d = 2, the state is one of the four Bell states |�+〉.
After the distribution, they share N entangled pairs, which
we will denote by the state ρ̃ANBN . Under the assumption of
collective attacks, the state ρ̃ANBN is a tensor product state,
that is, ρ̃ANBN = (ρAB)⊗N [9]. Alice and Bob can symmetrize
the state ρAB by applying a depolarizing map, leading to a
d2-dimensional Bell-diagonal state [6,7,15]:

ρAB =
d−1∑

j,k=0
λjk|�jk〉〈�jk|, (2)

where |�jk〉 = (1/
√

d)
∑d−1

s=0 (e
2πi
d )sk|s〉|(s + j ) mod d〉 are

the generalized Bell states [20]. For d = 2, the state ρAB has
the following form:

ρAB = λ00P|�+〉 + λ01P|�−〉 + λ10P|�+〉 + λ11P|�−〉, (3)

where P|ψ〉 = |ψ〉〈ψ |, ∑i,j λij = 1, and {|�+〉, |�−〉,
|�+〉, |�−〉} is the Bell basis. For a specific depolarizing map,
one can parametrize the state ρAB by one parameterQ, which,

022330-11050-2947/2011/83(2)/022330(9) ©2011 American Physical Society
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in the two-dimensional case, is the quantum bit error rate
(QBER). The relation betweenQ and λjk will be explained in
Sec. V.
(2) Encoding and measurement. Both parties agree on an

encoding, that is, each quantum state is associated with
a symbol from an alphabet. They perform a projection
measurement in certain bases. After this step, Alice and Bob
will share N correlated pairs of dits (d-letter systems).
(3) Sifting. In this step, both parties announce for each qudit

pair the encoding they have chosen.Depending on the protocol,
either they discard the data when they differ, or they use them
for parameter estimation. The bit string after this process has
length N − n′, when n′ bits were discarded.
(4) Parameter estimation. Parameter estimation serves for

estimating the error in the quantum channel by using mea-
surements, in general a POVM. The considered state is
parametrized by the QBER Q for d = 2. To measure the
QBER, a chosen POVM is used. Owing to the finite number
of signals (m randomly chosen signals are used), the QBER
cannot be detected perfectly. Therefore a quantification of
the statistical error is needed. After parameter estimation, the
number of signal states is n = N − n′ − m.
(5) Error correction. In this step, Alice and Bob want to

eliminate the error in their classical data, which might be there
because of eavesdropping. In order to reconcile their data,
they have to communicate publicly. In this article, we will use
known results [9] to account for the effect of error correction
on the key.
(6) Privacy amplification. During the key generation,

information about the key might have been revealed to the
eavesdropper. To reduce this information, Alice and Bob
apply a randomly chosen hash function from a family of hash
functions to their identical keys.

III. IMPROVED PARAMETER ESTIMATION

Parameter estimation plays an important role in finite QKD
protocols. Since one has a finite number of measurement out-
comes, one needs an appropriate estimate for each parameter.
In this section we first remind the reader of a method for
parameter estimation used in [9,14,21]. There the parameters
were estimated by different two-dimensional POVMs for
different bases. We will then show that we can reach a better
approximation if we consider one specific POVM for the
estimation of all parameters. The following theorem quantifies
the unavoidable statistical errors in the estimated parameters.

Theorem 1 [9, 14, 21]. Let {Bi}|χ |
i=1 be a |χ |-

dimensional POVM, �λm = (λm(1),λm(2), . . . ,λm(|χ |)) and
�λ∞ = (λ∞(1),λ∞(2), . . . ,λ∞(|χ |)) the probability distribu-
tions, with λ(i) being the probability of outcome Bi . Here
the index m stands for the m-fold independent application
of the POVM on identical states ρ. Let now λm := λm(k),
λ∞ := λ∞(k) denote any kth parameter. Then, except with
probability εPE,

1

2
||λm − λ∞||1 � ξ (εPE,|χ |,m), (4)

ξ (εPE,|χ |,m) :=
√
ln
(
1

εPE

)+ |χ | ln (m + 1)
8m

, (5)

where ||A||1 = tr
√

A†A and ln denotes the natural logarithm.1
Proof. See the appendix.
To clarify the influence of different choices of POVMs

on secure key rates, we consider a protocol where Alice
and Bob share a state, which can be parametrized by nPE
parameters. We choose the variables of the estimation of
each parameter in a symmetric way. That means εPEi

=
εPE/nPE,|χ |i = |χ |, mi = m/nPE for all i ∈ {1, . . . ,nPE} such
that the constraints

∑nPE
i=1 εPEi

= εPE and
∑nPE

i=1 mi = m are
fulfilled.
In previous works [9,14], each parameter is estimated by

an individual two-dimensional POVM (in the following, we
will use IPOVM as an abbreviation for this approach), for
example, for the BB84 protocol, we have two parameters (error
rates in two bases) to estimate. Then we need two POVMs,
where each of them has two outcomes which correspond to
“Alice and Bob do have the same measurement outcome”
and “Alice and Bob do not have the same measurement
outcome” in their respective measurement basis. This leads
to ξ (εPE/2,2,m/2). Generally for states determined by nPE,
we get ξ (εPE/nPE,2,m/nPE) for each parameter.
Concerning secure key rates, we can improve this method

by considering a common POVM with nPE + 1 measurement
outcomes (CPOVM approach). This means, for example, for
the BB84 protocol that we use a POVM with three outcomes,
where two of them correspond to “Alice and Bob do not
have the same measurement outcome” in each of the two
bases and one corresponds to the completeness of the POVM.
Then, the estimation of each parameter will be represented by
ξ (εPE,3,m). In general, for (nPE + 1)-dimensional systems, the
deviation from the perfect parameter [see Eq. (4)] is given by
ξ (εPE,nPE + 1,m). The improvement is because of the fact that
in Eq. (4), the trace distance is only bounded by ξ (εPE,|χ |,m)
and the parameters according to the CPOVM approach lead to
a smaller bound than the IPOVM approach. The results of an
explicit calculation of the key rates will be provided in the last
section.

IV. PRIVACY AMPLIFICATION AND THE ε̄-SMOOTH
MIN-ENTROPY

In this section, we will present some results about the
min-entropy. Starting from the connection of the min-entropy
to the secure key length after the privacy amplification step,
we review the relation of the min-entropy to the guessing
probability given in [17].

A. The ε̄-smooth min-entropy and the secure key length �

The ε̄-smooth conditional min-entropy provides an upper
bound for the secure key length � after the privacy amplification
step [10]:

� <∼ Hε̄
min

(
ρ⊗n

XE |En
)
, (6)

1The formula in [9,14,21] was corrected in an erratum [22]. The
formula in Eq. (5) can be obtained by multiplying the corresponding
formula in [22] by 1/2.
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where ρXE =∑d−1
x=0 px |x〉 〈x| ⊗ ρx

E is a classical-quantum
state, which Alice and the eavesdropper Eve share after error
correction. Here X is Alice’s random variable with values
x ∈ {0, . . . ,d − 1}, where d is the dimension of the quantum
system. The eavesdropper holds a quantum state ρx

E , which
is correlated with the random variable X. The symbol En

denotes the eavesdropper’s system. The parameter n is the
number of signals after sifting and parameter estimation, that
is, n = N − n′ − m.
In the following, we will denote the state ρXE as a

single-signal state; that is, following the preceding description,
both parties share one single state (n = 1). Otherwise, the
state will be denoted by ρ⊗n

XE if it has tensor product structure.
We consider collective attacks, as the state shared between
Alice and Eve has in this case tensor product structure. Col-
lective attacks [23] are those attacks where the eavesdropper
is restricted to interact with each of the signals separately,
that is, by attaching an auxiliary system and performing
unitary transformations. In [6,7], it was shown that it suffices
to consider a convex combination of product states when
analyzing the full security of QKD protocols. However, it does
not follow that we can consider w.l.o.g. a product state.
We recall the definition of the ε̄-smooth min-entropy.
Definition 1 (ε̄-smooth min-entropy [10]). Let ρ̄XE ∈

Bε̄/2(ρXE) := {ρ̄XE � 0 : ‖ρ̄XE − ρXE‖1 � ε̄}. The ε̄-smooth
min-entropy is defined as

Hε̄
min(ρXE|E) := sup

ρ̄XE

Hmin(ρ̄XE|E), (7)

with

Hmin(ρ̄XE|E) := sup
σE

[− log2 (min λ : λ · 1X ⊗ σE � ρ̄XE)].

(8)

The optimization in Eq. (7) is done over the states ρ̄XE in
the ε̄-environment of ρXE , whereas the optimization in Eq. (8)
is over all states σE .

B. The min-entropy and the guessing probability

The evaluation in Eq. (7) is a convex optimization problem.
It was shown in [17] that the min-entropy can be rewritten
as the negative logarithm of the optimal guessing probability
pguess:

Hmin(ρXE|E) = − log2 pguess, (9)

where

pguess ≡ pguess(X|E) := max
{Ex

E}

d−1∑
x=0

px tr
(
Ex

Eρx
E

)
. (10)

Here it was used that the initial state ρXE is a classical-quantum
state (see earlier) which is shared between Alice and Eve, the
eavesdropper. The set {Ex

E} denotes the POVM elements of
Eve, which she uses in order to distinguish her nonorthogonal
ancilla states ρx

E . If she could perfectly discriminate them,
she would know the value of Alice’s random variable X and
therefore the content of the secret key.

V. EVALUATION OF THE GUESSING PROBABILITY

In this section, we will present an explicit calculation of the
guessing probability in Eq. (10) for d-dimensional quantum
systems for the generalized six-state protocol via square-root
measurement (see, e.g., [24–29]) and for qubit systems (d = 2)
for the BB84 protocol via MED [26,30–33]. The problem of
distinguishing two mixed quantum states with minimum error
was solved by Helstrøm [32], but for more states, it becomes
more involved. For quantum states with a certain symmetry,
optimal measurements were found (see, e.g., [29]), whereas
for arbitrary states, only bounds exist [34]. Finally, we draw
a conclusion from the additivity of the min-entropy for tensor
product states: For a set of symmetric tensor product states, the
optimal MEDmeasurement is the optimal MEDmeasurement
on the subsystems.

A. Generalized six-state protocol for d-dimensional
quantum systems

In this part, we consider a (d + 1)-basis protocol, which
was introduced in [35–37]. It is a generalization of the
six-state protocol [18,19]. We further assume a collective
eavesdropping attack. Owing to symmetrizations [6], the
eavesdropper is forced to introduce the same error in each
measurement basis. This symmetrization leads to the following
Bell-diagonal state shared between Alice and Bob (see
Sec. II):

ρAB = (β0 − β1) |�00〉 〈�00| + β1

d
1d2 , (11)

with β0 + (d − 1)β1 = 1, 0 � β1 < 1
d

< β0 � 1, and 1d2 be-
ing the identity matrix of size d2. Note that this form is equal
to the one considered in [38,39]. The parameter β0 can be seen
as the probability that both get the same output, whereas β1
denotes the probability that they get a particular other one. The
error rateQ is given byQ := 1− β0 = (d − 1)β1; for d = 2,
Q is the quantum bit error rate β1. The state in Eq. (11) can
be recovered from Eq. (2) by setting λ00 = 1− (d + 1)/d(1−
β0) and all other λjk = (1− β0)/[d(d − 1)] = β1/d.
We assume that Eve holds a purification |ψABE〉. Eve’s

reduced state is [38]

ρE = 1

d

⎛
⎝β0

d−1∑
x=0

|Exx〉 〈Exx | + β1
∑

x,y

y =x

|Exy〉〈Exy |
⎞
⎠ , (12)

and we define the normalized states ρx
E as

ρx
E := β0 |Exx〉 〈Exx | + β1

∑
y =x

|Exy〉〈Exy | (13)

such that Eve’s state is given by ρE = (1/d)
∑

x ρx
E . Eve’s

ancilla states |Exy〉 have a specific form in order to fulfill the
requirement in Eq. (11). They can be written in terms of an
orthonormal basis of Eve |fi,j 〉E}:

|Exy〉 =
⎧⎨
⎩

1√
β0

∑d−1
k=0
√

λ0,kω
xk|f0,k〉E for x = y,

1√
d

∑d−1
k=0 ωxk|fy−x,k〉E for x = y,

(14)
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with ω := e2πi/d and λj,k given earlier. The ancilla states with
x = y have a fixed angle between each other; they are called
pyramid states [39]. They fulfill

〈Exy |Ex ′y ′ 〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 if x = x ′ and y = y ′,

1− β1
β0

if x = y = x ′ = y ′,

0 otherwise.

The eavesdropper would like to know Alice’s and Bob’s
classical value x and y, respectively. For the case x = y,

she knows both values with certainty, as those ancilla states
are orthogonal and she can perfectly discriminate them. For
the case x = y, Eve has to discriminate d pyramid states.
Measurements for such symmetrical states exist, and it is
known that the error-minimizing measurement for such states
is the square-root measurement [24–29]. The following results
for the tomographic protocol were derived in [39,40].
The state in Eq. (12) can be rewritten as

ρE = β0ρ
(=) + (1− β0)ρ

(=), (15)

where the density operator ρ(=) = (1/d)
∑d−1

x=0 |Exx〉〈Exx |
denotes the cases when Alice and Bob have the same values,
whereas in the case of ρ( =) = 1/[d(d − 1)]∑y =x |Exy〉〈Exy |,
their values are different. The eavesdropper wants to find
their common values, so she wants to discriminate those
ancilla states for x = y. The POVM elements |exx〉〈exx | that
discriminate the pyramid states with minimum error are given
via

|exx〉 = 1√
dρ(=)

|Exx〉 ;

that is, the name square-root measurement is related to the
construction of the elements. An explicit calculation for the
operator 1/

√
dρ(=) results in [39]

1√
dρ(=)

= (r0 + √
r0r1 + r1)1 − ρ(=)√

r0r1(
√

r0 + √
r1)

,

where r0 = 1− (d − 1)/d(β1/β0) is the eigenvalue corre-
sponding to the eigenvector

∑
x |Exx〉 and r1 = β1/(dβ0)

is the (d − 1)-fold eigenvalue for the eigenvector (|Exx〉 −
(1/d)

∑
y |Eyy〉). From this, the overlap 〈exx |Eyy〉 can be

calculated as

〈exx |Eyy〉 = √
η0δxy + √

η1(1− δxy),

with
√

η0 = [
√

r0 + (d − 1)√r1]/
√

d ,
√

η1 = [
√

r0 + √
r1]

/
√

d , and δxy the Kronecker delta. The probability η0 denotes
the probability that Eve, when finding |exx〉, knows that Alice
and Bob share the value x, and η1 denotes the probability that
they hold one of the other d − 1 values.
The eavesdropper’s probability to guess the right value of

Alice consists of the following parts: the probability (1− β0)
that the density operator ρ(=) appears [see Eq. (15)] and the
probability β0 that ρ(=) appears multiplied with the probability
that she guesses the right value in this case, which was η0 (see
earlier). Inserting r0 and r1 into η0, we get an expression for
the guessing probability depending on d and the error rate

Q = 1− β0:

psix stateguess (d,Q)

= 1− β0 + β0η0 = Q + (1− Q)

d

[
1− (d − 2)Q

d(Q − 1)

+ 2(d − 1)
√

dQ − (d + 1)Q2

(d − 1)d2(1− Q)2

]
. (16)

B. BB84 protocol for qubit systems

A strategy to distinguish two nonorthogonal quantum
states is called MED (see [26,30–33]). In MED, for each
measurement, one has a conclusive result, but with probability
perr, the result is erroneous. It was shown by Helstrøm [32]
that the maximal probability to make a correct guess when
distinguishing two quantum states ρ0E and ρ1E that appear with
the same probability p0 = p1 = 1/2 is given by

pguess(2,Q) = 1− pminerr = 1
2

(
1+ 1

2

∥∥ρ0E − ρ1E

∥∥
1

)
. (17)

In order to calculate ‖ρ0E − ρ1E‖1, we express the states ρ0E and
ρ1E [see Eq. (13)] in terms of the computational basis of Eve.
Assuming that Eve has a purifying system of the state in

Eq. (3), and that Alice and Bob perform a von Neumann
measurement, one can derive an expression for ‖ρ0E − ρ1E‖1
for the BB84 protocol. The operator ρ0E − ρ1E can be
written as

ρ0E − ρ1E = 2
√

λ00λ01 (|00〉〈01| + |01〉〈00|)
+ 2
√

λ10λ11 (|10〉〈11| + |11〉〈01|) , (18)

so ∣∣ρ0E − ρ1E

∣∣ = 2
√

λ00λ01(P|00〉 + P|01〉)

+2
√

λ10λ11(P|10〉 + P|11〉), (19)

with |A| =
√

A†A. The eigenvalues 2
√

λ00λ01 and 2
√

λ10λ11
occur with multiplicity 2. Thus the 1-norm is

1
2

∥∥ρ0E − ρ1E

∥∥
1 = 2

√
λ00λ01 + 2√λ10λ11. (20)

The error rates in the z and x directions are ez = λ10 + λ11
and ex = λ01 + λ11 (see [10,12]). There remains one free
parameter that we have to optimize to obtain the best case for
Eve. We adopt the method in Appendix A of [12] to maximize
the probability of correct guess in Eq. (17): According
to [12], we choose λ00 = (1− Q)(1− u), λ01 = (1− Q)u,
λ10 = Q(1− v), and λ11 = Qv, with u,v ∈ [0,1], and the
additional constraint (from λ01 + λ11 = Q)

(1− Q)u + Qv = Q. (21)

Defining |�ij 〉 as the corresponding Bell states to the value λij ,
the purification of the state ρAB can be written as |ψABE〉 =∑

ij

√
λij |�ij 〉AB ⊗ |eij 〉E , where {|eij 〉} is a four-dimensional

orthonormal basis. Using Eq. (20) and the constraint given in
Eq. (21), we find a function that depends on the parameter v:

1
2

∥∥ρ0E − ρ1E

∥∥
1 = f (v) := 2

√
(1− v) Q [1+ (v − 2)Q]

+ 2
√
(1− v) v Q2. (22)
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Finding the maximum of the expression leads to the result
u = v = Q and finally to the expressions of λij : λ00 = (1−
Q)2, λ01 = λ10 = (1− Q)Q, and λ11 = Q2. This gives the
guessing probability

pBB84guess (2,Q) = 1
2 [1+ 2√(1− Q)Q]. (23)

By using the same methods, we can derive the guessing
probability for the six-state protocol, which leads to the same
result as derived in Eq. (16):

psix stateguess (2,Q) = 1
2 [1+ √

Q(2− 3Q)+ Q]. (24)

C. Optimal multistate MED measurement from additivity
of min-entropy

We know from [10] that the min-entropy is additive; that is,
for tensor product states ρ⊗n

XE , it holds that Hmin(ρ
⊗n
XE|En) =

nHmin(ρXE|E). The min-entropy is a function of the probabil-
ity of a correct guess of Eve’s states. The state ρ⊗n

XE is of the
form

ρ⊗n
XE =

(
1

d

d−1∑
x=0

|x〉 〈x| ⊗ ρx
E

)⊗n

(25)

= 1

dn

∑
x∈{0,...,d−1}n

|x〉 〈x| ⊗ ρx
En, (26)

where

ρx
En =

n−1⊗
i=0

ρ
xi

E (27)

and x = (x0, . . . ,xn−1) is a vector of length n with xi ∈
{0, . . . ,d − 1}. Thus Eve’s state is given by

ρ⊗n
E = 1

dn

∑
x

ρx
En (28)

and is a sum of tensor product states [see Eq. (27)]. The explicit
MED problem is to distinguish the set of states {ρx

En} for
different xs. We can conclude from the additivity of the min-
entropy that for the set of states given in Eq. (27), the optimal
MED measurement consists of optimal MED measurements
on the single-signal states ρ

xi

E . This result is interesting as, in
general, measurements in the total Hilbert space may lead to
higher guessing probabilities than measurements in individual
subspaces. To the best of our knowledge, this result is not
known in the context of state discrimination.

VI. COMPARISON OF KEY RATES

In this section, we provide the results of parameter estima-
tion with CPOVM (see Sec. III) and those of the calculation
of the min-entropy (see Sec. V). We first review some results
about finite-key distribution.
For a finite number of signals, the achievable secure key

rate is found to be [9,14]

�1/N = n

N
[Sξ (ρXE|E)+ � − leakEC]+ 2

N
log2 (2εPA) ,

(29)

with � := −7√[log2 (2/ε̄)]/n; the total security parameter ε

(see, e.g., [14,21]),

ε = εPA + εEC + εPE + ε̄; (30)

and Sξ (ρXE|E) := minρ̄XE∈�ξ
S(ρXE |E). The set �ξ = {σ :

1
2 |λm − λ∞(σ )| � ξ} contains all states compatible with the
statistics in parameter estimation. The conditional von Neu-
mann entropy with the correction term � is a lower bound on
the ε̄-smooth min-entropy. The leakage term leakEC is taken
from [12] to be leakEC = 1.2h(Q) for εEC = 10−10, whereh(x)
is the binary entropy. Throughout all calculations, we assume
asymmetric protocols with a symmetric attack. An asymmetric
protocol means that one only keeps the measurement results
of one particular basis for the key; the other results are
used for parameter estimation. In the case of protocols with
(d + 1) bases (e.g., the six-state protocol with d = 2), this
basis is chosen with probability q = (1− dp) and the other
d bases with probability p. For protocols with two bases
(e.g., the BB84 protocol with d = 2), q = 1− p. Taking
the largest deviation ξi from the perfect parameter in one
measurement basis and equating it with the other deviations
leads to a symmetric choice of parameters mi and εPEi

,
that is, mi = m/(d + 1) (mi = m/2 for two-basis protocols)
and εPEi

= εPE/(d + 1) (εPEi
= εPE/2) (see Sec. III). This

assumption gives a lower bound on the secret key rate. The
number of signals used for parameter estimation is given by
m = Np2.
In order to calculate the key rate, we fix ε and εEC and

maximize �1/N in Eq. (29) for the parameters εPE,εPA,ε̄, and q

with a computational software program (MATHEMATICA) under
the constraint given in Eq. (30).

A. Key rates via von Neumann entropy for different approaches
of parameter estimation

For a comparison of the approaches (IPOVM, CPOVM)
explained in Sec. III, we consider the asymmetric BB84 and
six-state protocols for a symmetric attack for dimension d = 2,
as discussed in [9]. In the calculation of the key rates via the von
Neumann entropy [see Eq. (29)], we use a QBER ofQ = 0.05
and a total security parameter of ε = 10−9 [see Eq. (30)]. The
conditional von Neumann entropy for the six-state protocol is
given by [9,12]

Ssix state(ρXE|E) = (1− Q)

[
1− h

(
1− 3

2Q

1− Q

)]
(31)

and for the BB84 protocol by

SBB84(ρXE|E) = 1− h(Q). (32)

The variables ξ for parameter estimation used in this com-
parison are summarized in Table I. Note that the symmetrized
state is parametrized by only one parameter. This has no
influence on the IPOVM approach, in contrast to CPOVM,
where the number of POVM outcomes can be reduced from
three for the BB84 protocol (four for the six-state protocol) to
2 (2).
The results are shown in Figs. 1 and 2. We point out that

our CPOVM approach leads to higher key rates for the BB84
and six-state protocols. In particular, for signals N � 1011,
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TABLE I. Deviations ξ from perfect parameter [see Eq. (4) in
Sec. III] for different parameter estimation approaches (IPOVM and
CPOVM): BB84 and six-state protocols.

BB84 protocol Six-state protocol

IPOVM ξ ( εPE2 ,2, m

2 ) ξ ( εPE3 ,2, m

3 )
CPOVM ξ (εPE,2,m) ξ (εPE,2,m)

the numerical analysis reveals the importance of parameter
estimation. While the CPOVM approach leads for N = 106

signals to a 80% (37%) higher key rate than the IPOVM
approach for the six-state (BB84) protocol, the improvement
for N = 1010 is still 4% (2%).

B. Key rates via the min-entropy for two-dimensional
quantum systems

In this section, we exploit the preceding results from Sec. V
regarding the min-entropy in order to compute the secret key
rate and compare it to the key rate calculated with Eq. (29). We
explained in Sec. IV that the achievable upper bound on the
secure key length � after the privacy amplification step is given
by Eq. (6). We can derive a key rate by using the following
bounds [10], Lemma 3.2.6]:

Hε̄
min

(
ρ⊗n

XE|En
)

� nH ε̄/n
min (ρXE|E) � nHmin(ρXE|E); (33)

the last inequality is a very good approximation as ε̄ is in the
order of 10−10. Thus we arrive at the following key rate:

�2/N = n

N
[Hmin ,ξ (ρXE|E)− leakEC]+ 2

N
log2 (2εPA) ,

(34)

where the leakage term leakEC and εPA are the same as
in Eq. (29), and Hmin ,ξ (ρXE|E) := minρ̄XE∈�ξ

Hmin(ρXE|E)
[see Eq. (29)]. We calculate this key rate using the connec-
tion to the guessing probability, that is, H

protocol
min (ρXE|E) =

− log2 p
protocol
guess [see Eq. (9)], and compare it to the key rate

FIG. 1. (Color online) Comparison of the key rates [calculated
via the von Neumann entropy; see Eqs. (29) and (32)] using different
parameter estimations for asymmetricBB84 protocol; ε = 10−9,Q =
5%; squares (red), CPOVM; triangles (black), IPOVM (see Sec. III
for explanations).

FIG. 2. (Color online) Comparison of the key rates [calculated via
the von Neumann entropy; see Eqs. (29) and (31)] using different pa-
rameter estimations for asymmetric six-state protocol; ε = 10−9,Q =
5%; squares (red), CPOVM; triangles (black), IPOVM (see Sec. III
for explanations).

given in Eq. (29). The guessing probability for the specific
protocol is given by Eqs. (23) and (24).
In Fig. 3, the threshold number of signals N0, where

the key rate becomes nonzero is plotted as a function of
the QBER Q. For parameter estimation, we have considered
the CPOVM approach (see Sec. III) with the variables given
in Table I. Additionally, we have plotted the key rate via the
von Neumann entropy [Eq. (29)] for the IPOVM approach.
In comparison to the von Neumann approximation [Eq. (29)],
only 1/3 (1/2) of the number of signals is needed for nonzero
key rates in the six-state protocol for Q = 0.2% (Q = 4%),
when using the min-entropy. For the BB84 protocol, only
1/3 (2/3) of the number of signals is needed for Q = 0.2%
(Q = 4%).

FIG. 3. (Color online) Threshold value N0 (number of signals,
where the key rate becomes nonzero) vs QBERQwith ε = 10−9 and
εEC = 10−10; triangles (red), BB84 protocol; squares (black), six-state
protocol; filled, min-entropy [Eq. (34)]; open, von Neumann entropy
withCPOVMapproach [Eq. (29)]; dashed line, vonNeumann entropy
[Eq. (29)] with IPOVM approach (see Sec. III for explanations).
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Thus, by calculating a key rate explicitly with the min-
entropy, we get positive key rates for a smaller number of
signals than via the von Neumann entropy approach. This
behavior can be explained by the correction term� in the key
rate in Eq. (29). For a small number of total signals N , this
correction term is not a good approximation and has a big
impact on the key rate.
We point out that for low Q, we can achieve nonzero key

rates with only O(104)–O(105) signals. Note that in [41], it
was considered a “milestone” to reach nonzero key rates for
significantly less than 105–106 signals.

C. Key rates via the min-entropy for d-dimensional
quantum systems

In [15], the influence of the dimension on the key rate
was discussed. Exploiting the results from this article, we
discuss the improvement for higher dimensional quantum
systems. Throughout this section, we only consider the (d +
1)-basis protocols such as the six-state protocol for d = 2.
Furthermore, we adapt our CPOVM approach, and by using
Eq. (4) from Sec. III, we get ξ (εPE,2,m). The correction
term to the d-dimensional von Neumann entropy is given
in [15] as � = −(2d + 3)√[log2(2/ε̄)]/n, and the leakage
term is characterized by leakEC = 1.2hd (Q) with hd (p) :=
−p log2 [p/(d − 1)]− (1− p) log2(1− p). The conditional
von Neumann entropy was calculated in [15] as

Sd (ρXE|E) = (1− Q)

[
log2 d − hd

(
1− d+1

d
Q

1− Q

)]
, (35)

whereQ = 1− β0 denotes the error rate in the sifted key. We
will compare the key rate calculated via the d-dimensional
conditional von Neumann entropy with the one calculated via
the d-dimensional min-entropy. The latter can be obtained by
using

Hd
min(ρXE|E) = − log2 pguess(d,Q), (36)

where pguess(d,Q) was given in Eq. (16).
In order to quantify the number of signals, we have scaled

N0 with log2 d, as, for example, sending one state in the
dimension d = 4 corresponds to sending two states in the
dimension d = 2. For making the key rate comparable to
the two-dimensional case, it has to be divided by log2 d.
The dimensions are prime numbers as complete mutually
unbiased bases can be formed for primes and prime powers
(see, e.g., [42]).
Figure 4 shows the behavior of the key rate calculated with

Eq. (35) for different dimensions. In contrast to [15], we scaled
the key ratewith the dimension. It can be seen from the plot that
higher dimensions are advantageous as the key rate increases.
In order to obtain the behavior for a small number of signals,
Fig. 5 provides a magnification of this area. The higher the
dimension, the more the point where the key rate becomes
nonzero is shifted to the right (apart from the case d = 2).
This might be because of the correction term, as it scales
linearly with the dimension, so for higher dimension, more

FIG. 4. (Color online) Key rates with d-dimensional conditional
von Neumann entropy [Eq. (35)] plotted vs scaled total number of
signals for a fixed error rateQ = 5%. This is analogous to [15], where
a different scale was used for the axes.

is subtracted from the conditional von Neumann entropy. We
will see in the next paragraph that the min-entropy approach
has an advantage over the von Neumann entropy approach for
a small number of signals.
In Fig. 6, we compare the number N0, where the key rate

becomes nonzero, for key rates using the quantities given in
Eqs. (35) and (36) for different dimensions. It can be seen that
the min-entropy approach is better throughout the presented
error rates. The advantage of the min-entropy approach
[Eq. (36)] over the vonNeumann approach [Eq. (35)] augments
with increasing dimensions. This can be explained again with
the correction term that scales linearly with the dimension.
When comparing higher dimensions to the qubit case, one can
see that for certain error rates, the dimensions bigger than two
are advantegous. The dimension d = 3, for example, gives a
lower threshold value N0 for nonzero key rates than the qubit
case throughout all the presented error rates.

FIG. 5. (Color online) Key rates with d-dimensional conditional
von Neumann entropy [Eq. (35)] plotted vs scaled total number of
signals for a fixed error rateQ = 5% (magnification of Fig. 4).
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FIG. 6. (Color online) Threshold value N0 (number of signals,
where the key rate is positive) vs QBER with ε = 10−9 and εEC =
10−10 for different dimensions d ∈ {2,3,7,17}. Dashed line, min-
entropy [Eq. (36)]; straight line, von Neumann entropy [Eq. (35)].

VII. CONCLUSION

We have improved the secret key rates in QKD with a
finite number of signals by considering parameter estimation
to be implemented by a single POVM for all parameters.
Additionally, we have calculated the min-entropy for a single-
signal state in d dimensions explicitly by using its operational
meaning via the guessing probability. We showed that using
this ansatz for a small number of signals leads to computable
nonzero key rates. This advantage of the min-entropy might
be because of the correction term � in key rate calculations
using the conditional von Neumann entropy [9,14,15] as this
correction is big for a small number of signals. This correction
term scales linearly with the dimension, so an improvement
for high dimensions (up to d = 17) is found by calculating
the min-entropy. Thus higher dimensional systems might be
advantageous when resources are limited. As a spin-off, we
have deduced from the additivity property of the min-entropy
and its relation to the guessing probability that the optimal
MED measurement for a set of tensor product states with a
certain symmetry is the optimal MED measurement on each
subsystem.
Considering the importance of finite-key analysis for

practical implementations, we have shown that nonzero secure
key rates can be achieved already with 104–105 signals
per run.
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APPENDIX: PROOF OF THEOREM 1

Proof. We first show that Prob[ 12 ||�λm − �λ∞||1 > 2ξ ] �
εPE. Starting from the law of large numbers [43],

Prob[D(�λm||�λ∞) > 2ξ ′] � 2−m(2ξ ′−|χ | log2 (m+1)
m

), (A1)

with D(�λm||�λ∞) :=
∑|χ |

i=1 λm(i) log2(
λm(i)
λ∞(i)

) and using [43],

1

2
||�λm − �λ∞||1 �

√
D(�λm||�λ∞) ln 2

2
, (A2)

we result in

Prob

[
1

2
||�λm − �λ∞||1 >

√
2ξ ′ ln 2
2

]

(A2)
� Prob

⎡
⎣
√

D(�λm||�λ∞) ln 2
2

>

√
2ξ ′ ln 2
2

⎤
⎦

(A1)
� 2−m(2ξ ′−|χ | log (m+1)

m
). (A3)

For ξ :=
√
2ξ ′ ln 2
2 it follows that

Prob

[
1

2
||�λm − �λ∞||1 > 2ξ

]

= Prob

[
1

2
||�λm − �λ∞||1 >

√
2(4ξ ′) ln 2

2

]

(A3)
� 2−m(2(4ξ ′)−|χ | log (m+1)

m
)

= 2−m(8 ξ2

ln 2−|χ | log (m+1)
m

) =: εPE.
Then except with probability εPE, the following holds:

1
2 ||�λm − �λ∞||1 � 2ξ,

with ξ =
√
ln ( 1

εPE
)+|χ | ln (m+1)
8m . It remains to show that

1
2 ||λm − λ∞||1 ≡ 1

2 |λm − λ∞| � 1
2
1
2 ||�λm − �λ∞||1.

Remember that we denote by λm := λm(k) and λ∞ := λ∞(k)
any kth parameter. The normalization conditions of the POVM∑|χ |

i=1 λ∞(i) = 1 =∑|χ |
i=1 λm(i) lead to

|λm − λ∞| =
∣∣∣∣∣∣

|χ |∑
i=1,i =k

λm(i)− λ∞(i)

∣∣∣∣∣∣
�

�
|χ |∑

i=1,i =k

|λm(i)− λ∞(i)| (A4)

|χ |∑
i=1

|λm(i)− λ∞(i)|
(A4)
� 2|λm − λ∞|.

The assertion follows by multiplication with factor 14 .
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arXiv:1004.3348 [quant-ph].

[43] T. Cover and J. Thomas,Elements of Information Theory (Wiley,
New York, 1991).

022330-9



Publication C

88



Min-entropy and quantum key distribution: Nonzero key rates for “small” numbers

of signals

Physical Review A, Vol. 83, p. 022330 (2011) [9 pages]

S. Bratzik, M. Mertz, H. Kampermann, and D. Bruß

Impact factor: 2.861

Second author

Contribution to work by scientific work and preparation of Section III of the manuscript

(35%)

89



Publication C

90



Publication D

91



Publication D

92



PHYSICAL REVIEW A 84, 032321 (2011)

Quantum key distribution with finite resources: Secret key rates via Rényi entropies
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A realistic quantum key distribution (QKD) protocol necessarily deals with finite resources, such as the
number of signals exchanged by the two parties. We derive a bound on the secret key rate which is expressed as
an optimization problem over Rényi entropies. Under the assumption of collective attacks by an eavesdropper, a
computable estimate of our bound for the six-state protocol is provided. This bound leads to improved key rates
in comparison to previous results.

DOI: 10.1103/PhysRevA.84.032321 PACS number(s): 03.67.Dd

I. INTRODUCTION

Quantum key distribution (QKD) is a method for transmit-
ting a secret key between two partners. Since its initial proposal
[1] QKD has reached maturity through many theoretical
developments and experimental realizations. Moreover, in the
last few years QKD has entered the commercial market [2]
and small QKD networks were realized [3,4].
A significant figure of merit in QKD is the secret key rate

(i.e., the ratio between the length of the secret key and the
initial number of signals). There is a big difference between
the key rate calculated under the assumption that the key is
composed of an infinite number of bits, and a key in real
applications, where the number of bits is finite. In recent
years a new paradigm for security in the finite-key setting was
developed [5–10]. However, the complexity of the entropic
quantities involved in the formalism only permits to find
bounds on the optimal quantities, which leads to much lower
key rates for a small number of signals with respect to the
asymptotic ones.
To our knowledge the first work dealing with finite key

corrections is [11]. The currently used framework for finite-key
analysis was developed in [6,7,9,10]. The bound proved in [7]
was used by Meyer et al. [12] to calculate the key rate in the
finite-key scenario. In [9,10] security bounds for the BB84 and
the six-state protocol were provided using an easily calculable
bound for the smooth min-entropy. Recently, many efforts
were done for improving the bounds on the secret key rates for
a finite amount of resources (e.g., using the connection between
the min-entropy and the guessing probability [13,14]). So far
the secret key rates provided are only proven to be secure for
collective attacks. A possible approach for providing security
against coherent attacks using the results against collective
attacks can be obtained by postselections techniques [15–17]
or the exponential de Finetti theorem [6]. A recent technique
is given by uncertainty relations for the smooth min-entropy
[18,19]. This last approach is very promising because it
provides an easily calculable tight bound on the key rate even
for coherent attacks, however, it is not easily applicable to
the six-state protocol. A step in the direction of considering
more practical issues in addition to finite-key corrections
(BB84 with and without decoy states and entanglement-based
implementations) was provided in [20,21].

*abruzzo@thphy.uni-duesseldorf.de

In this paper, we present a bound on the achievable key
length for the six-state protocol. The presented bound is
resorted from [7], Lemma 9, where it is used for bounding the
key length in terms of smooth Rényi entropies. We calculate
explicitly the presented bound under the assumptions of
collective attacks and the depolarizing channel. The calculated
secret key rates for a small number of signals lead to an
improvement over the bounds derived in [10–12].
The paper is organized as follows. In Sec. II we present

the protocol we are going to study. In Sec. III we introduce
definitions and our notation. In Sec. IVwe explain the approach
developed in this paper and we show how to estimate the
proposed bound for the achievable key rate. In Sec. V we
compare the proposed bound with other relevant bounds
present in the literature. SectionVI contains the conclusions. In
the Appendices we prove additional results used in the paper.

II. DESCRIPTION OF THE PROTOCOL

In this paper we consider the entanglement-based version
of the six-state protocol [22,23]. The protocol consists of the
following steps.

State preparation and distribution. Alice prepares N

entangled Bell states and distributes one part of each pair to
Bob. We assume that Eve performs at most a collective attack
(i.e., the adversary acts on each of the signals independently
and identically).

Reduction to Bell-diagonal form. Alice and Bob apply ran-
domly and simultaneously one of the operators {1l,σX,σY ,σZ}
and as a result they obtain a Bell-diagonal state the entries of
which are directly connected with the quantum bit error rates
(QBER), [24] and Appendix. C.

Sifting and Measurement.Alice andBobmeasure at random
one of the three Pauli operators. The Pauli operators are
chosen with different probabilities. We consider that σX and
σY are chosen with the same probability and that σZ is
chosen such that Prob(σZ) � Prob(σX). This biased setting
[25] is advantageous in terms of sifting. At the end of the
measurement process, Alice and Bob broadcast the choice
of the bases through the classical channel and discard the
results coming from a different choice of the measurement
basis. We call n′ = n′

X + n′
Y + n′

Z the length of the sifted
key shared by Alice and Bob, where n′

i with i = X,Y,Z are
the remaining number of signals when both Alice and Bob
measure σX,σY ,σZ .

032321-11050-2947/2011/84(3)/032321(10) ©2011 American Physical Society
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Parameter estimation. Parameter estimation (PE) permits
to measure the amount of errors on the key, which in the
security analysis are assumed to be introduced via Eve’s
eavesdropping. In the six-state protocol three bases are used
for the measurement and therefore a QBER in each direction
is calculated by Alice and Bob. Practically speaking, Alice
broadcasts for each basis mi < n′

i bits of the sifted key on
the classical channel. Bob compares these outcomes with
his corresponding outcomes and calculates the QBERs ei

m as
the ratio between the number of discordant positions and the
length of the transmitted strings. In general eX

m = eY
m = eX

m . For
calculating explicitly the bound that we are going to propose
we use the biggest QBER as measured QBER, denoted as em.
Note that it is possible to introduce additional symmetrizations
[26,27] that reduce the initial state to a state described by only
one parameter: the QBER. However those symmetrizations
require additional experimental means that can be difficult to
implement.
The remaining n := n′ − mX − mY − mZ bits will be used

for the extraction of the key. The QBER e is bounded by the
PE developed in [11,12,14,20]. The parameter εPE represents
the probability that we underestimated the real QBER.
The QBER of the key e with probability 1− εPE is such

that [11,12,14,20]

e � em + 2ζ (εPE,m), (1)

with

ζ (εPE,m) :=

√√√√ ln ( 1
εPE

)
+ 2 ln (m + 1)
8m

. (2)

Error correction. Alice and Bob hold correlated classical
bit strings Xn and Yn. The purpose of an error correction
(EC) protocol is to create a fully correlated string, while
leaking only a small amount of information to an adversary.
In the following, we will consider realistic EC protocols. The
number of bits leaked during the classical communication to
an eavesdropper is given by [11,20]

leakEC = fECnh(e)+ log2
(
2

εEC

)
, (3)

where fEC � 1 depends on the used EC protocol, h(e) is
the binary Shannon entropy [i.e., h(e) = −e log2(e)− (1−
e) log2(1− e)], and e is the QBER. Here, εEC is the probability
that Alice’s and Bob’s strings differ after the EC step.

Privacy amplification. Let Alice and Bob hold a perfectly
correlated bit string Xn, on which Eve might have some
information. The purpose of privacy amplification is to shrink
the length of Xn to reduce Eve’s information on the resulting
string.
Practically, Alice chooses at random a two-universal hash

function (Definition B.1 in Appendix B) and communicates it
to Bob.

III. DEFINITIONS AND NOTATION

The set of quantum states, which are normalized positive-
semidefinite bounded operators, will be represented by S(H),
where H stands for a finite-dimensional Hilbert space. In the
following ρA(ρB) belongs to the set of bounded operators

which act on the Hilbert space HA(HB). For a given state
ρAB , the states ρA, ρB are defined via the partial trace (i.e.,
ρA := trB ρAB and ρB := trA ρAB).
In this paper, we will consider Rényi entropies, which are

a generalization of the Von Neumann entropy.
Definition III.1. (Rényi entropies [7,28]) Let α ∈ R ∪ {∞}

and ρ,σ ∈ S(H). The Rényi entropy of order α is defined as

Sα(ρ) :=
1

1− α
log2 [tr (ρ

α)]. (4)

In particular, we get

S0(ρ) = log2 [rank(ρ)], (5)

S2(ρ) = − log2 [tr(ρ2)], (6)

S∞(ρ) = − log2 [λmax(ρ)], (7)

where λmax(ρ) is the maximal eigenvalue of ρ.
Another useful quantity is the smooth Rényi entropy, which

is the Rényi entropy optimized on a set of operators which are
ε-close to the operator involved in the actual computation. We
define an ε-environment via the trace distance in the following
way [7].

Definition III.2. (ε-environment) Let ε � 0 and ρ ∈ S(H),
then

Bε(ρ) := {σ ∈ S(H) : 12 ||σ − ρ||1 � ε}, (8)

where ||A||1 = tr
√

AA†.
Definition III.3. The smooth Rényi entropy of order α is

defined (following [7]) as

Sε
α(ρ) :=

1

1− α
inf

σ∈B ε
2 (ρ)
log2 [tr (σ

α)]. (9)

The main result presented in this paper will be ex-
pressed as an optimization problem on a classical-quantum
ε-environment of a certain operator.

Definition III.4. [Classical-quantum (cq)-state] Let {|x〉} be
an orthonormal basis ofHX and moreover letHA be a generic
Hilbert space. We define the state ρXA which is classical on
HX and quantum onHA as the state

ρXA =
∑

x

PX(x)|x〉〈x| ⊗ ρx
A,

where ρx
A ∈ S(HA) and PX(x) is a classical probability

distribution.
Finally, we define the classical-quantum ε-environment as

the space

Bε
cq(ρXA) : =

{
σXA ∈ Bε(ρXA) :

σXA =
∑

x

PX(x)|x〉〈x| ⊗ σx
A

}
,

where σx
A ∈ S(HA) and PX(x) is a classical probability

distribution. Finally, we recall the composable definition of
security introduced by Renner in [7]. For additional details
see [29].

Definition III.5. Let ρKE be the cq-state describing the
classical key K of length �, distilled at the end of a
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QKD protocol, correlated with the quantum states of the
eavesdropper ρE . The state ρKE is said to be ε-secure if

1
2

∥∥ρKE − 1
2� 1l ⊗ ρE′

∥∥
1 � ε, (10)

where ρE′ is the quantum state of an eavesdropper not
correlated with the key.
In the literature several bounds on an ε-secure key length

[6,7,30] were presented.

IV. BOUND ON THE ACHIEVABLE KEY LENGTH

The following bound was inspired by [7], Theorem 4 where
it was used as a bridge for providing an analogous bound in
terms of smooth Rényi entropies.

Theorem IV.1. Let ρXnEn be the cq state describing Alice’s
bitstringXn as well as Eve’s quantum information represented
by ρEn . Let ε,εPA � 0. If the length � of the key is such that

� � sup

σXnEn∈B
ε
2
cq (ρXnEn )

[S2(σXnEn)− S0(σEn)]

− leakEC + 2 log2(2εPA), (11)

then the key is ε + εPA-secure.
Sketch of Proof. In the followingwe give an idea of the proof

which follows the lines of [6,7]. For all details see Appendix B.
We first prove that � can be chosen such that

� � sup
σXnEnC∈B ε

2 (ρXnEnC )

[S2(σXnEnC)− S0(σEnC)]

+ 2 log2(2εPA), (12)

where the additional random variable C is associated with the
probability distribution of transcripts of the EC protocol. Then
we will “extract” the leakage term using the data processing
inequality and the subadditivity of the Rényi entropies. �
The bound in Eq. (11) is related to the bound calculated

in [10] because it involves optimizations on Rényi entropies.
However, in [10] the two Rényi entropies were optimized
independently and here we have a combined optimization
problem. This additional constraint is mitigated by the fact
that in our bound we optimize over a bigger environment than
the one used in [10], more precisely ε′ = ε2

2 where ε′ is the
environment used for the smooth Rényi entropies in [10].

A. Lower bound of Theorem IV.1 using smooth Rényi entropies

In this section, we present a lower bound for the key length
presented inTheorem IV.1. The optimization problem involved
in Eq. (11) is exponentially complex because the dimension
of the involved operators scales with n, that is, the length
of the string used for extracting the key. For reducing the
complexity of the problemwe consider the symmetric six-state
protocol. For this protocol the number of different eigenvalues
in ρ⊗n

XE scales polynomially with n [10], therefore as done in
[10], it is possible to concentrate on optimizing the eigenvalue
distribution of σXnEn . However, it is not clear how to find the
eigenvalue distribution of σEn from the one of σXnEn in such
a way that it is possible to perform computations for big n.
In the following we present a lower bound on Theorem IV.1
expressed in terms of the smooth Rényi entropy of order zero
and a modified smooth Rényi entropy of order two that we

will denote as S
ε

2(ρ
⊗n
XE). This last entropy permits to bound the

eigenvalues of σEn for a given σXnEn . From the numerical point
of view the deviation from Sε

2(ρ
⊗n
XE) is negligible.

1. Modified Smooth Rényi entropy of order two

Let ρ⊗n
XE be the operator describing Alice’s classical string

of n bits correlated with the operator ρ⊗n
E held by Eve. The

operator ρ⊗n
XE is constructed by a direct sum of 2

n blocks which
have the same eigenvalues (see Appendix C for additional
details).

Definition IV.2. The modified smooth Rényi entropy of
order two of the operator ρ⊗n

XE is defined by

S
ε

2

(
ρ⊗n

XE

)
:= S2(τXnEn), (13)

where the operator τXnEn has the following properties.
(1) τXnEn has the following form

τXnEn := 1

2n

2n−1∑
x=0

|x〉〈x| ⊗ τ x
En, (14)

where {|x〉} is the basis in which ρ⊗n
XE is a cq-state

(Definition III.4). Moreover each of the {τ x
En} has the same

eigenvalues and the dependence on x is manifested only in the
eigenvectors (see Eq. (D4) for a more formal statement).
(2) Let {�i}i=0,...,n+1 be the set of differing eigenvalues of

one block of the operator ρ⊗n
XE in increasing order; that is,

�i < �i+1 and let {mi}i=0,...,n+1 be the set of multiplicities
such that mi is the multiplicity of �i . Let {μi}i=0,...,n+1 be
the eigenvalues of one block of τXnEn in increasing order with
respective multiplicity {ni}i=0,...,n+1. Let

s+
r :=

r∑
i=1

mn−i+2(�n−i+2 − �n−r+1), (15)

(16)

for 1 � r � n + 1. The eigenvalues of τXnEn are defined by
the following relations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
μi :=

⎧⎪⎨
⎪⎩

�+ n + 1− b+ � i � n + 1,
�i 1 � i � n − b+,

ε
2m0

i = 0,
ni = mi 1 � i � n + 1,

(17)

where

b+ := max

{
r : s+

r � ε

2

}
, (18)

and

�+ := �n−b++1 −
ε
2 − s+

b+∑b+
i=0mn−i+1

. (19)

Since the smoothing in the smooth Rényi entropy of order
two is realized by taking the maximum in the environment, it
follows for any operator σXnEn ∈ B ε

2 (ρ⊗n
XE)

Sε
2

(
ρ⊗n

XE

)
� S2(σXnEn).

Therefore, if we can prove that the operator τXnEn introduced
before is such that τXnEn ∈ B ε

2 (ρ⊗n
XE), then we have proven that
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the modified smooth Rényi entropy is a lower bound for the
smooth Rényi entropy.

Proposition IV.3. The operator τXnEn defined by its eigen-
values in Eq. (17) is such that 1

2‖τXnEn − ρ⊗n
XE‖ = ε

2 [i.e.,
τXnEn ∈ B ε

2 (ρ⊗n
XE)].

Proof. The proof follows by the direct calculation of the
distance using the spectral decomposition of ρ⊗n

XE . �
For the six-state protocol for n = 104, it turns out that1

|Sε

2(ρ
⊗n
XE)− Sε

2(ρ
⊗n
XE)|/Sε

2(ρ
⊗n
XE) ∝ 10−5390 for a QBER = 5%

and ε = 10−16. Moreover, for increasing n the difference
becomes smaller. The reason of this similarity is that the
dimension of the kernel of ρ⊗n

XE is much bigger than the
degeneracy of the support, namely m0 = 22n − 2n versus∑

i =0 mi = 2n, therefore there is, practically, no difference
between the eigenvalue distribution in Eq. (17) and the optimal
eigenvalue distribution for Sε

2(ρ
⊗n
XE) presented in [10].

2. Computable lower bound for the achievable key length

The following theoremprovides the bound thatwe are going
to exploit in this paper.

Theorem IV.4. Let ρ⊗n
XE be the cq state describing the

classical string shared by Alice and Bob and the correlated
quantum state of the eavesdropper. Then

sup
σXnEn∈B

ε̄
2
cq

(
ρ⊗n

XE

)[S2(σXnEn)− S0(σEn)]

� S
ε−ε̂

2

(
ρ⊗n

XE

)− Sε̂
0

(
ρ⊗n

E + δ̄En

)− ε̂,

with δ̄En = ε̂
22n+1 1lEn and 0 � ε̂ � ε.

Proof. To provide a lower bound, it is enough to choose an

operator in B
ε̄
2
cq(ρ

⊗n
XE) and to calculate the difference between

the Rényi entropies of the chosen operator. In Appendix D

we construct an operator ηXnEn ∈ B
ε̄
2
cq(ρ

⊗n
XE) such that the

following two inequalities hold:

S2(ηXnEn) � S
ε−ε̂

2

(
ρ⊗n

XE

)− ε̂, (20)

and

S0(ηEn) � Sε̂
0

(
ρ⊗n

E + δ̄En

)
, (21)

where δ̄En = ε̂
22n+1 1lEn .

Using these two inequalities, we have

sup
σXnEn∈B

ε̄
2
cq (ρ

⊗n
XE )

[S2(σXnEn)− S0(σEn)] (22)

� S2(ηXnEn)− S0(ηEn) (23)

� S
ε−ε̂

2

(
ρ⊗n

XE

)− Sε̂
0

(
ρ⊗n

E + δ̄En

)− ε̂. (24)

�
Remark IV.5. Numerical calculations indicate that the

choice ε̂ = ε
2 is optimal for a wide range of used parameters.

Remark IV.6. The bound provided in Theorem IV.4 may
not be asymptotically optimal. However, the emphasis is for
finite-key analysis and the bound permits to improve the key

1The high precision used in this calculation is obtained using an
arbitrary precision computer program (see Sec. V).

rate for experimentally relevant number of signals. Note that,
although we can have small differences in the asymptotic case,
the bound is, from the numerical point of view, pretty tight. In
fact, note that (see Definition III.3)

sup

σXnEn∈B
ε̄
2
cq (ρ

⊗n
XE )

[S2(σXnEn)− S0(σEn)]

� Sε
2

(
ρ⊗n

XE

)− Sε
0

(
ρ⊗n

E

)
.

Calculating the difference between the upper bound and the
lower bound, it is for small n (n ≈ 104) of the order of 0.1%
and it decreases for larger n.

V. RESULTS

The security is characterized by the parameter ε, represent-
ing the acceptable probability of failure of the execution of the
protocol. In the following we consider a standard setting with
ε = 10−9. For the simulations we assume that n′

X = n′
Y and

we take for PEmX = mY = mZ = n′
X. The length of the string

used for the extraction of the key is n = n′
Z − mZ which has, at

most, QBER e = em + 2ζ (εPE,mZ) with probability 1− εPE
(see Eq. (1)). The EC protocol performs such that in Eq. (3) we
have fEC = 1.2 and εEC = 10−10 ( [12] and Eq. (3)). Finally,
we optimize the free parameters [εPE,ε,εPA,Prob(σX),n] to
maximize the secret key rate.
The algorithms for the calculationswere implemented using

C++. The library CNL (Class Library for Numbers) [31] was
used to perform calculations with arbitrary precision. Due to
the nonsmoothness of the involved functions, we used the
Hybrid Optimization Parallel Search PACKage (HOPSPACK)
[32], which permits to deal with all involved optimizations in
an efficient way and permits to perform the calculations on a
cluster.
In the following we summarize the three bounds for the

achievable secret key rate that we are going to compare.

3. Bound proposed in this paper

The following proposition summarizes our results of
Sec. IV.

Proposition V.1. Let ρ⊗n
XE be the cq-state describing the

classical string shared by Alice and Bob which is correlated
with the quantum state of the eavesdropper. LetN be the initial
number of quantum states shared by Alice and Bob, n be the
length of the string used for extracting the key which has
QBER e = em + 2ζ (εPE,mZ) with probability 1− εPE. Then
Alice and Bob can achieve the secret key rate

r : = 1

N

[
S

ε̄
2
2

(
ρ⊗n

XE

)− S
ε̄
2
0

(
ρ⊗n

E + δ̄En

)− ε − leakEC
]

e=em+2ζ
+ 2 log2(2εPA), (25)

where ε = εPE + εPA + ε + εEC.
Proof. Using Theorems IV.1 and IV.4 and Remark IV.5 the

result follows. �

4. Asymptotic Equipartition Property bound

The conditional smooth min-entropy [6] characterizes the
optimal secret key rate [6,18]. The asymptotic equipartition
property AEP bound used in [12,14] comes from the AEP
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FIG. 1. (Color online) Minimal number of signals versus QBER
permitting to extract a nonzero secret key rate. Comparison between
the bound presented in this article r (black solid line), see Eq. (25),
the smooth Rényi entropy bound rSRE (blue dashed line), see Eq. (27)
and the AEP bound rAEP (red dot-dashed line), see Eq. (26).

approximation [6,33] of the conditional smooth min-entropy.
Collective attacks allow us to bound the smooth min-entropy
of a product state by the conditional von Neumann entropy of
a single state [11,14]. The secret key rate is

rAEP : = n

N

[
H (X|E)ρ − 5

√
log2(2/ε)

n
− leakEC

]
e=em+2ζ

+ 2 log2(2εPA), (26)

with H (X|E)ρ = (1− e)[1− h(
1− 3

2 e

1−e
)].

5. Smooth Rényi entropy bound

This bound was derived in [7] and calculated in [10] and is
given by

rSRE : = 1

N

[
Sε′
2

(
ρ⊗n

XE

)− Sε′
0

(
ρ⊗n

E

)− leakEC]e=em+2ζ
+ 2 log2(2εPA), (27)

where ε′ = ε2

2 .

A. Robustness of the protocol

An important figure of merit is the threshold QBER which
characterizes the minimal N for a fixed QBER permitting to
extract a positive secret key rate. As shown in Fig. 1, with the
bound presented in this paper it is possible to have a positive
secret key rate with 23% signals less than the smooth Rényi
entropy bound and 50% signals less than the AEP approach,
for a QBER of 1%.

B. Secret key rates

In Fig. 2, we compare the secret key rates calculated by the
three approaches for various QBERs. The bound developed in
this paper leads to significantly higher secret key rates when
limited resources are used. In particular when QBER = 1%
with the bound presented in this paper with N ≈ 5× 104, it
is possible to have nonzero secret key rates. Instead with the
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FIG. 2. (Color online) Secret key rate versus log10(N ) where N
is the initial number of quantum systems shared by Alice and Bob.
Comparison between the bound presented in this article r (black solid
line), see Eq. (25), the smooth Rényi entropy bound rSRE (blue dashed
line), see Eq. (27) and the AEP bound rAEP (red dot-dashed line), see
Eq. (26).

other approaches it is necessary to use N ≈ 6.5× 104 for the
smooth Rényi entropy bound andN ≈ 105 for the AEP bound.

VI. CONCLUSION

Although optimal bounds for the finite-key scenario are
provided in the literature they are not calculable and were,
so far, only estimated by bounds coming from the asymptotic
equipartition theorem (see [14,19] for two exceptions). In this
paper we resumed the smooth Rényi entropy bound [10] and
we proved that this bound is tighter than the AEP bound. Our
main contribution is a bound on the maximal achievable secret
key length which involves optimizations on Rényi entropies.
With respect to [10] the main advantage is that we use a
bigger environment for the optimizations and with respect
to [11,12] we do not use bounds coming from corrections
to the asymptotic case. As a result we were able to obtain
higher secret key rates with respect to [10–12]. For calculating
the quantities involved in our analysis we need the quantum
channel to be symmetric. Although we do not have any
guarantee that Alice and Bob share such a channel, it is
possible for them to reduce to this case employing additional
symmetries2 or taking as QBER of a symmetric channel the
worst one of a nonsymmetric channel.
Finally, regarding future work, note that here we considered

an ideal protocol where the signals entering in Alice and Bob’s
laboratory are qubits and where the measurement devices are
perfect. All these assumptions could be relaxed following the
analysis done in [20,24].

2Actually, in this case it also possible to redefine the protocol
removing the sifting following the construction presented in [27].
The key rate will be higher, but the relative differences between the
three approaches remain the same.
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APPENDIX A: PROPERTIES OF RÉNYI ENTROPIES

The following properties and their proofs can be found
in [5] and [34].

Lemma A.1. (Data processing) Let ε,ε′ � 0 and
ρXBC ∈ S(HX ⊗ HB ⊗ HC) be a cq state (i.e., ρXBC =∑

x∈X PX(x)|x〉〈x| ⊗ ρx
B ⊗ ρx

C). Then with S2(ρXC |X) :=
infx∈X S2(ρXC |x), the following inequality holds

Sε+ε′
2 (ρXBC) � Sε′

2 (ρXC)+ Sε
2(ρXB |X). (A1)

Lemma A.2. (Subadditivity) Let ε � 0,ε′ � 0 and ρAB ∈
S(HA ⊗ HB), then

Sε+ε′
0 (ρAB) � Sε

0(ρA)+ Sε′
0 (ρB). (A2)

APPENDIX B: PROOF OF THEOREM IV.1

Before we start with the proof, we define some quantities
used in the following.

Definition B.1. (Two-universal hash functions [35]) Let F
be a family of functions fromX toZ and letPF be a probability
distribution on F. The pair (F ,PF) is called two-universal
if Pf [f (x) = f (x ′)] � 1

|Z| for any distinct x,x ′ ∈ X and f

chosen at random from F according to the distribution PF.
The following definition involves the leakage of informa-

tion during the EC protocol.
Definition B.2. The number of bits leaked to an eavesdrop-

per during the EC protocol is [6]

leakEC := log2 |C| − inf
xn∈X

S∞(PC|Xn=xn ), (B1)

where |C| is the cardinality of the set C containing all possible
communication transcripts and PC|Xn=xn is the probability that
there is a specific communication transcript when Alice has a
specific xn.
Note that in the definition Bob is missing because we

consider a one-way EC protocol.
Moreover, let us recall a result proven in [7] and used in the

following proof.
Theorem B.3 [7]. LetρXnEnC be a cq-state describingAlice’s

bitstringXn, Eve’s quantum system, and the distribution of EC
transcriptsC. LetF be a two-universal family of hash function
from X n → {0,1}�. Then

1
2‖ρF (Xn)�ElCF − ρU ⊗ ρE�CF ‖1

� 1
22

− 1
2 [S2(ρXnEnC )−S0(ρEnC )−�], (B2)

where ρF (Xn)�E�CF :=
∑

f ∈F PF(f )ρf (Xn)�E�C ⊗ |f 〉〈f | and
ρU = 1

2� 1l.
Now we are ready to prove Theorem IV.1.

Proof. (Theorem IV.1) At the end of the QKD protocol, the
classical string obtained from privacy amplification correlated
with Eve’s information is

ρF (Xn)�E�CF :=
∑
f ∈F

PF(f )ρf (Xn)�E�C ⊗ |f 〉〈f |.

Let ρ ′
F (Xn)�E�CF

∈ B ε
2 (ρF (Xn)�E�CF ) be the operator that max-

imizes the right-hand side of Eq. (B2). Because the trace
distance does not increase applying the partial trace, it follows
that ρ ′

E�CF
∈ B ε

2 (ρE�CF ). Let us define ρU = 1
2� 1l. Then,

1

2
||ρF (Xn)�E�CF − ρU ⊗ ρE�CF ||1

= 1

2
‖ρF (Xn)�E�CF − ρ ′

F (Xn)�E�CF

+ ρ ′
F (Xn)�E�CF − ρU ⊗ ρ ′

E�CF

− ρU ⊗ ρE�CF + ρU ⊗ ρ ′
E�CF ‖1 (B3)

� 2
ε

2
+ 1

2
||ρ ′

F (Xn)�E�CF − ρU ⊗ ρ ′
E�CF ||1

� ε + 1

2
2

− 1
2 (sup

σXnEnC∈B
ε
2 (ρXnEnC )

[S2(σXnEnC )−S0(σEnC )]−�)
.

(B4)

In the step from Eq. (B3) to Eq. (B4) we used the triangle
inequality and the fact that the maximal possible distance is
ε
2 . The last inequality follows from Eq. (B2) and the definition
of ρ ′

F (Xn)�E�CF
. Requiring that the distilled key is (ε + εPA)-

secure, that is,

ε + 1

2
2

− 1
2 (sup

σXnEnC∈B
ε
2 (ρXnEnC )

[S2(σXnEnC )−S0(σEnC )]−�) !
� ε + εPA,

the proof of Eq. (12) is completed.
Regarding the leakage term, note that to apply Lemma

A.1 of Appendix A for bounding S2(σXnEnC) we restrict the

optimization space to B
ε
2
cq(ρXnEnC). Therefore,

sup
σXnEnC∈B ε

2 (ρXnEnC )

[S2(σXnEnC)− S0(σEnC)]

� sup

σXnEnC∈B
ε
2
cq (ρXnEnC )

[S2(σXnEnC)− S0(σEnC)].

Using Lemma A.1 of Appendix A with ε = ε′ = 0, it follows
that

S2(σXnEnC) � S2(σXnEn)+ S2(σXnC |Xn). (B5)

By definition

S2(σXnC |Xn) := inf
xn∈X

S2(PC|Xn=xn ) (B6)

� inf
xn∈X

S∞(PC|Xn=xn ). (B7)

Moreover, using Lemma A.2 with ε = ε′ = 0 we obtain

S0(σEnC) � S0(σEn)+ S0(σC). (B8)

Putting together the last four equations and Definition B.2 the
proof is concluded.
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APPENDIX C: THE OPERATOR ρX E

The Bell-diagonal state shared by Alice and Bob after the
use of the depolarizing map is

ρAB = λ1|ψ+〉〈ψ+| + λ2|ψ−〉〈ψ−|
+ λ3|φ+〉〈φ+| + λ4|φ−〉〈φ−|,

where the states {|ψ±〉,|φ±〉} are the Bell states and∑
i λi = 1.
For the symmetric six-state protocol

λ0 = 1

2
(2− 3e), λ1 = λ2 = λ3 = e

2
, (C1)

where e is the QBER.
The operator ρABE is defined as the purification of ρAB .

Tracing out Bob and measuring Alice’s system, we get the
operator ρ⊗n

XE describing the classical string Xn held by Alice
and Bob and Eve’s quantum systems ρ⊗n

E . In general

ρ⊗n
XE :=

(
ρ0E ⊕ ρ1E

)⊗n
, (C2)

with

ρ0E :=

⎛
⎜⎜⎜⎝

λ0
√

λ0λ1 0 0√
λ0λ1 λ1 0 0

0 0 λ2
√

λ2λ3

0 0
√

λ2λ3 λ3

⎞
⎟⎟⎟⎠ , (C3)

ρ1E :=

⎛
⎜⎜⎜⎝

λ0 −√
λ0λ1 0 0

−√
λ0λ1 λ1 0 0

0 0 λ2 −√
λ2λ3

0 0 −√
λ2λ3 λ3

⎞
⎟⎟⎟⎠ .

(C4)

Diagonalizing the operators above, we find that they have
the same eigenvalues but different eigenvectors, that is,

ρx
E :=

3∑
i=0

�
(1)
i P x

i , (C5)

where the eigenvalues {�(1)i } are
�
(1)
0 = �

(1)
2 = 0, (C6a)

�
(1)
1 = λ0 + λ1, (C6b)

�
(1)
3 = λ2 + λ3, (C6c)

and the operators {P x
i } are projectors on the eigenspace of

the eigenvalues {�(1)i } obtained by diagonalizing ρx
E . From

the diagonalization it is possible to derive explicitly the
projectors3

P 0
0 =
(

λ1
λ0+λ1

−
√

λ0λ1
λ0+λ1

−
√

λ0λ1
λ0+λ1

λ0
λ0+λ1

)
⊕ O2,

P 0
1 =
(

λ0
λ0+λ1

√
λ0λ1

λ0+λ1√
λ0λ1

λ0+λ1

λ1
λ0+λ1

)
⊕ O2,

3Let us defineO2 as the 2× 2 matrix with zero entries.

P 0
2 = O2 ⊕

(
λ3

λ2+λ3
−

√
λ2λ3

λ2+λ3

−
√

λ2λ3
λ2+λ3

λ2
λ2+λ3

)
,

P 0
3 = O2 ⊕

(
λ2

λ2+λ3

√
λ2λ3

λ2+λ3√
λ2λ3

λ2+λ3

λ3
λ2+λ3

)
,

P 1
0 =
(

λ1
λ0+λ1

√
λ0λ1

λ0+λ1√
λ0λ1

λ0+λ1

λ0
λ0+λ1

)
⊕ O2,

P 1
1 =
(

λ0
λ0+λ1

−
√

λ0λ1
λ0+λ1

−
√

λ0λ1
λ0+λ1

λ1
λ0+λ1

)
⊕ O2,

P 1
2 = O2 ⊕

(
λ3

λ2+λ3

√
λ2λ3

λ2+λ3√
λ2λ3

λ2+λ3

λ2
λ2+λ3

)
,

P 1
3 = O2 ⊕

(
λ2

λ2+λ3
−

√
λ2λ3

λ2+λ3

−
√

λ2λ3
λ2+λ3

λ3
λ2+λ3

)
. (C7)

For the following, it is convenient to define

Pi := 1

2

1∑
x=0

P x
i , (C8)

with i = 0,1,2,3. As can be easily verified the operators {Pi}
are diagonal in the basis where the operators {P x

i } assume the
form given above.

APPENDIX D: ADDITIONAL DETAILS OF THE PROOF OF
THEOREM IV.4

Before starting, it is necessary to fix the notation for the
involved operators. The operator ρ⊗n

XE can be written as

ρ⊗n
XE = 1

2n

2n−1∑
x=0

|x〉 〈x| ⊗
22n−1∑
i=0

�
(n)
i P

(n)x
i , (D1)

where

P
(n)x
i :=

n−1⊗
p=0

P
xp

ip
, (D2)

�
(n)
i :=

n−1∏
p=0

�
(1)
ip

, (D3)

and i :=∑n−1
p=0 4

pip with ip = 0, . . . ,3, x :=∑n−1
p=0 2

pxp

where xp is a binary digit.
The operator ρ⊗n

XE is constituted of 2n diagonal blocks
labeled by the index x. Each of the blocks has 22n eigenvalues
�
(n)
i and each eigenvalue is associated to a projector P (n)x

i that
depends on the eigenvalue (index “i”) and on the block (index
“x”).

1. Construction of the operator ηXn En

The operator ηXnEn is constructed in such a way that the
inequalities in Eqs. (20) and (21) are satisfied. For constructing
ηXnEn we construct first ηEn using the following two steps:

(1) Find τXnEn such that S2(τXnEn) = S
ε−ε̂

2 (ρ⊗n
XE);
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(2) Find ηXnEn such that S0(ηEn) = Sε̂
0(τEn).

By definition of smooth Rényi entropy of order two τXnEn ∈
B

ε−ε̂
2
cq (ρ

⊗n
XE) and it can be written as

τXnEn := 1

2n

2n−1∑
x=0

|x〉 〈x| ⊗
22n−1∑
i=0

τ
(n)
i P

(n)x
i . (D4)

Regarding the operator ηEn , the constraint on its Rényi
entropy of order zero is only a constraint on its eigenvalues.
For assigning a well-defined structure of operator to ηXnEn we
use τXnEn . Let� be the projector that cuts out the eigenvalues
of τEn such that their sum is ε̂/2.
The operator ηXnEn , is defined by

ηXnEn := 1

1− ε̂
2

(1lXn ⊗ �)τXnEn(1lXn ⊗ �). (D5)

This definition is such that ηEn = 1
1− ε̂

2
�τEn� has the

eigenvalues for respecting S0(ηEn) = Sε̂
0(τEn).

Finally, note, that the construction above, although arbi-
trary, is legitimate because, as it is easy to verify, ηXnEn ∈
B

ε
2
cq(ρ

⊗n
XE) as required by the statement of Theorem IV.4.

2. Proof of S0(ηEn ) � Sε̂
0 (ρ⊗n

E + δ̄En )

To find the claimed bound, we need to find a bound on
the eigenvalues of the operator τEn . To do that, we exploit the
definition of τXnEn , ρ⊗n

XE and ofmodified smooth Rényi entropy
of order two (Defintion IV.2).
We introduce the operator δXnEn defined by

δXnEn := τXnEn − ρ⊗n
XE. (D6)

Let δEn := trEn(δXnEn), τEn := trEn(τXnEn) and let {|l〉} be a
basis of eigenvectors of the operator τEn . The eigenvalues of
τEn are

〈l| τEn |l〉 := 〈l| ρ⊗n
E |l〉 + 〈l| δEn |l〉 . (D7)

The operator ρ⊗n
E is fully characterized by the protocol [10].

To complete the proof, it remains to bound 〈l| δEn |l〉.
The following lemma permits to reduce the analysis to the

eigenvalues of δEn .
Lemma D.1. Let ρ⊗n

XE,τXnEn be the operators described by
Eqs. (D1) and (D4). Then

[
τEn,ρ⊗n

E

] = 0.

Proof. By definition

τEn = 1

2n

2n−1∑
x=0

22n−1∑
i=0

τ
(n)
i P

(n)x
i

=
22n−1∑
i=0

τ
(n)
i

(
1

2n

2n−1∑
x=0

P
(n)x
i

)
.

Observe that the operator in the brackets is diagonal, in fact

1

2n

2n−1∑
x=0

P
(n)x
i = 1

2n

2n−1∑
x=0

n−1⊗
p=0

P
xp

ip

= 1

2n

1∑
x0=0

1∑
x1=0

. . .

1∑
xn−1=0

n−1⊗
p=0

P
xp

ip

=
n−1⊗
p=0

(
1

2

1∑
x=0

P x
ip

)

=
n−1⊗
p=0

Pip .

Due to the diagonality of the operators {Pip }ip=0,...,3 and the
fact that the tensor product of diagonal operators lead to a
diagonal operator, the assertion is proved.
The next lemma, permits to relate the operator δE to the

operators Pi defined in Eq. (C8).
Lemma D.2. It holds

δEn = ε − ε̂

2m0
[1l − (P1 + P3)

⊗n]+
∑
i∈V

δiP
(n)
i ,

where the operators Pi are defined in Eq. (C8), P
(n)
i =⊗n−1

p=0 Pip and V := {i : �(n)i = 0}.
Proof.Using the eigenvalues in Eqs. (17) and (D6), Eq. (D4)

δEn := trXn(δXnEn)

= ε − ε̂

2m0

1

2n

2n−1∑
x=0

∑
i∈V⊥

P
(n)x
i + 1

2n

2n−1∑
x=0

∑
i∈V

δiP
(n)x
i .

The quantity
∑

i∈V⊥ P
(n)x
i is such that∑

i∈V⊥
P
(n)x
i = 1l −

∑
i∈V

P
(n)x
i .

From Eqs. (D3) and (C6), we see that the nonzero eigenvalues
of ρ⊗n

XE are characterized by the absence of the index ip = 0,2.
Therefore, it follows that

∑
i∈V

P
(n)x
i

(D2)=
∑
i∈V

n−1⊗
p=0

P
xp

ip

=
n−1⊗
p=0

(
P

xp

1 + P
xp

3

)
.

By taking the sum over all blocks and using the operator
defined in Eq. (C8) the statement of the lemma follows.
Using the previous lemma we can prove the most important

result of this section.
Proposition. For λ0 > 1

2 and λ1 = λ2 = λ3 the following
inequality holds:

〈l| δEn |l〉 � ε − ε̂

2m0

[
1−
(

λ1

λ1 + λ0

)n]
, (D8)

where {|l〉} is a basis of eigenvectors for the operator ρ⊗n
E .
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Proof.

〈l| δEn |l〉 � ε − ε̂

2m0
max
{|l〉}

〈l| [1l − (P1 + P3)
⊗n
] |l〉

+
∑
i∈V

δi 〈l| P (n)
i |l〉

= ε − ε̂

2m0

[
1−
(

λ1

λ1 + λ0

)n]
+
∑
i∈V

δi 〈l| P (n)
i |l〉 ,

(D9)

where V := {i : �(n)i = 0}. Since the δi are negative or zero
and the operators P

(n)
i are such that P (n)

i � 0, the last term in
Eq. (D9) is negative and then the proposition follows.
Concluding, using Proposition D.3, it is possible to give an

upper bound for Sε
0(τEn), in fact

〈l| τEn |l〉 = 〈l| ρ⊗n
E |l〉 + 〈l| δEn |l〉

� 〈l| ρ⊗n
E |l〉 + ε − ε̂

2m0

[
1−
(

λ1

λ1 + λ0

)n]
. (D10)

Substituting in the formula above the actual values for the
symmetric six-state protocol provided in Eq. (C1) the proof is
concluded.

3. Proof of S2(ηXn En ) � S
ε−ε̂

2 (ρ⊗n
X E) − ε̂

Using Eq. (D5), it follows that

S2(ηXnEn) = − log2{trXnEn [(1l ⊗ �)τXnEn(1l ⊗ �)]2}
+ 2 log2

(
1− ε̂

2

)
.

Using the first requirement in Definition IV.2, the operator
τXnEn is of the form

τXnEn = 1

2n

2n−1⊕
x=0

τ x
En .

We concentrate on the argument of the logarithm in the first
term on the right-hand side of S2(τXnEn)

trXnEn{[(1l ⊗ �)τXnEn(1l ⊗ �)]2}

= trXnEn

[
2n−1⊕
x=0

(
1

2n
�τx

En�

)2]

= trEn

[
2n−1∑
x=0

(
1

2n
�τx

En�

)2]

=
2n−1∑
x=0

trEn

[(
1

2n
�τx

En�

)2]

�
2n−1∑
x=0

trEn

[(
1

2n
τ x
En

)2]

= trXnEn

[
(τXnEn)2

]
.

Taking the first term of the Maclaurin expansion of
log2(1− ε̂

2 ) for ε̂ small, we conclude that

S2(ηXnEn) � S2(τXnEn)− ε̂.

Using Eq. (13) the proof is concluded.
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