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1 Abstract 18 
Transcriptomic sequence resources represent invaluable assets for research, in 19 

particular for non-model species without a sequenced genome. To date, the Next Generation 20 
Sequencing technologies 454/Roche and Illumina have been used to generate transcriptome 21 
sequence databases by mRNA-Seq for more than fifty different plant species. While some of 22 
the databases were successfully used for downstream applications, such as proteomics, the 23 
assembly parameters indicate that the assemblies do not yet accurately reflect the actual plant 24 
transcriptomes. Two different assembly strategies have been used, overlap consensus based 25 
assemblers for long reads and Eulerian path/de Bruijn graph assembler for short reads. In this 26 
review, we discuss the challenges and solutions to the transcriptome assembly problem. A list 27 
of quality control parameters and the necessary scripts to produce them are provided. 28 
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2 Introduction 30 
Access to a sequence database for a plant species of interest tremendously advances 31 

that plant species’ potential use in research, as is evidenced by the success story of the small 32 
weed Arabidopsis thaliana. However, the complexities of many plants’ genomes and 33 
prohibitive costs have precluded the sequencing of their genomes. Instead of the genome, the 34 
transcriptomes of tissues of interest for many important crop plants were sequenced 35 
(http://compbio.dfci.harvard.edu/tgi/plant.html). The majority of those sequencing efforts 36 
were carried out with substantial funding and frequently in consortia. The advent of next 37 
generation sequencing (NGS) technologies has however marked a new era of transcriptomics 38 
(Metzker, 2010). Single laboratories are now enabled to produce a sequence resource for their 39 
species of choice, be it for commercial, medicinal, ecological or any other reason.  Since the 40 
initial proof of concept through the sequencing of the transcriptome of Arabidopsis seedlings 41 
(Weber et al., 2007), at least 60 additional plant transcriptomes have been sequenced de novo. 42 
Currently, the 1KP project aims for transcriptomic sequencing of 1,000 plant species 43 
(http://www.onekp.com). 44 

The quest for a $1,000 human genome has driven the sequencing industries to 45 
formidable innovations. The gold rush started with the 454 platform (later acquired by Roche) 46 
and the 100 bases long reads that could be obtained on the initial GS20 instrument. 47 
Improvements to the platform lead to reads of 250 bases in length. The latest 454/Roche 48 
platform used for (plant) transcriptome sequencing is the GS FLX Titanium which allows 49 
read lengths of 400 bases (Glenn, 2011; http://www.molecularecologist.com/next-gen-50 
fieldguide/). While a typical 454/Roche sequencing run is finished within less than a day, it 51 
yields only 400 Mb per run. Illumina (formerly Solexa) employs a different technology 52 
platform. Initially reads were as short as 36 bases but improvements to the technology have 53 
led to increased read length of 100 bases (and if paired reads are used, 200 bases of the same 54 
transcript). In contrast to the 454/Roche platform, sequencing runs take from several days to 55 
more than one week but produce ~600 Gb per run (Glenn, 2011; 56 
http://www.molecularecologist.com/next-gen-fieldguide/). With respect to cost per base 57 
sequenced, Illumina will beat Roche/454 by a factor of more than 100. Both the 454/Roche 58 
and the Illumina platform have been used for transcriptome sequencing and assembly (Table 59 
1). To our knowledge, the two other established NGS technologies, SOLiD and Ion Torrent, 60 
have not been used for published plant transcriptome projects (using the search words of 61 
RNA-seq, plant AND transcriptome, plant AND next generation sequencing at ISI Web of 62 
Knowledge). 63 
 64 

Table 1: Plant transcriptome sequencing projects until today (complete table available 65 
as Supplemental Table 1) 66 

Reference Year of 
publication Plant Type of reads 

Weber et al.  2007 Arabidopsis thaliana 454 
Novaes et al 2008 Eucalyptus grandis 454 
Barakat et al. 2009 Castanea dentata, C. mollissima 454 
Alagna et al. 2009 Olea europaea 454 
Dassanayake 
et al. 2009 Heritiera littoralis, Rhizophora mangle 454 
Wang et al. 2009 Artemisia annua 454 
Swarbreck et 
al.  2010 Avena barbata 454 
Guo et al. 2010 Cucumis sativus 454 

http://compbio.dfci.harvard.edu/tgi/plant.html
http://www.molecularecologist.com/next-gen-fieldguide/
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Reference Year of 
publication Plant Type of reads 

Riggins et al. 2010 Amaranthus tuberculatus 454 
King et al,.  2011 Jatropha curcas 454 
Hiremath et al.  2011 Cicer arietinum 454 
Troncoso-
Ponce et al.  2011 

Ricinus communis, Brassica napus, 
Eunonymus alatus, Tropaeolum majus 454 

Bräutigam et 
al. 2011 Cleome gynandra, C. spinosa 454 
Cantu et al.  2011 Triticum aestivum 454 
Dai et al. 2011 Cucumis melo (sweet melon) 454 
Sun et al. 2011 Pinus sylvestris 454 
Der et al. 2011 Pteridium aquilinium 454 
Franssen et al. 2011 Pisum sativum 454 
Ibarra-Laclette 
et al.  2011 Utricularia gibba 454 
Su et al. 2011 Phalaenopsis aphrodite 454 
Pont et al.  2011 Triticum aestivum 454 
Bleeker et al.  2011 Solanum lycopersicum, S. habrochaites 454 
Blavet et al. 2011 eight Silene spec and Dianthus 454 
Villar et al.  2011 eucalyptus 454 
Kaur et al.  2011 Lens culinaris 454 
Kalavacharla 2011 Phaseolus vulgaris 454 
Lu et al. 2012 Capsicum annuum 454 
Meyer et al.  2012 Panicum hallii var. filipes 454 
Edwards et al. 2012 Ziziphus Celata 454 
Desgagne-
Penix et al. 2012 Papaver somniferum 454 
Angeloni et al. 2011 Scabiosa columbaria 454 and Illumina 
Garg et al.  2011 Cicer arietinum 454 and Illumina 
Krishnan et al. 2011 Azadirachta indica Illumina 
Mutasa-
Göttgens 2012 Beta vulgaris Illumina 
Gruenheit et 
al.  2012 Pachycladon fastigiatum, P. cheesemanii 

Illumina and 
Illumina paired end 

Mizrachi et al. 2010 Eucalyptus grandis x E. urophylla Illumina paired 
Barrero et al. 2011 Euphorbia fischeriana Illumina paired 
Xia et al. 2011 Hevea brasiliensis Illumina paired 
Chibalina and 
Filatov 2011 Silene latifolia Illumina paired 
Hao et al. 2011 Taxus marei Illumina paired 
Tang et al.  2011 Siraitia grosvenorii Illumina paired 
Wong 2011 Acacia auriculiformis, A. mangium Illumina paired 
Shi et al.  2011 Camellia sinensis Illumina paired 
Hyun et al.  2012 Momordica cochinchensis Illumina paired 
Hao et al. 2012 Polygonum cuspidatum Illumina paired 



Reference Year of 
publication Plant Type of reads 

Huang et al.  2012 Millettia pinnata, Illumina paired 
Gahlan et al.  2012 Picrorhiza kurrooa Illumina paired 
Zhang et al.  2012 Arachis hypogaea Illumina paired 
McKain et al. 2012 different Agavoideae Illumina paired 

 67 

3 Transcriptome sequencing and its applications 68 
The initial de novo plant transcriptome sequencing by mRNA-Seq was conducted on 69 

Arabidopsis thaliana (Weber et al., 2007). Only half a million reads of close to 100 bases in 70 
length were sequenced in this proof of concept approach. It was recognized already at this 71 
early stage that remapping the reads to the Arabidopsis genome tagged many more transcripts 72 
than could be assembled with Newbler, Phrap or CAP3 (Emrich et al., 2007;Weber et al., 73 
2007). Indeed, assembly was recognized as a future challenge. 74 

Virtually all of the 454/Roche transcriptome sequencing projects following this initial 75 
work did have the generation of a transcriptome resource as one of their major objectives 76 
(Table 1). Many NGS experiments provide a resource of markers for molecular breeding, for 77 
example for eucalyptus, melon and different legumes (Novaes et al., 2008;Guo et al., 78 
2010;Blavet et al., 2011;Hiremath et al., 2011;Kaur et al., 2011). Other major targets are 79 
primary (Dai et al., 2011;Franssen et al., 2011;King et al., 2011;Troncoso-Ponce et al., 2011) 80 
and secondary (Alagna et al., 2009;Wang et al., 2009;Bleeker et al., 2011;Desgagne-Penix et 81 
al., 2012) metabolism. Plants such as poppy for opium and other alkaloids, tomato for 82 
beneficial terpenoids and Artemisia for artemisinin have been targeted by transcriptome 83 
sequencing (Table 1). Adaptations to biotic (Barakat et al., 2009;Sun et al., 2011) and abiotic 84 
stress (Dassanayake et al., 2009;Villar et al., 2011) were studied in plants. Finally, 85 
transcriptomes of plants carrying a trait of interest such as C4 photosynthesis (Bräutigam et 86 
al., 2011a;Gowik et al., 2011), weedy habitus (Riggins et al., 2010), being an orchid (Su et al., 87 
2011), a carnivorous plant (Ibarra-Laclette et al., 2011), an ecological model (Blavet et al., 88 
2011), a traditional biochemical model (Franssen et al., 2011) or an endangered species 89 
(Edwards et al., 2012), were analyzed. Since 454/Roche pyrosequencing was used, the 90 
number of sequenced reads is comparatively low, between 0.08 and 3.3 million reads (Table 91 
1). The majority of the assemblies were realized with overlap consensus based assemblers 92 
such as CAP3 (Huang and Madan, 1999) (four instances) or its implementation in the 93 
clustering pipeline TGICL (Pertea et al., 2003) (five instances), which prefaces CAP3 with a 94 
megablast to reduce the number of sequences fed to CAP3 and hence RAM requirement. 95 
MIRA (Chevreux et al., 2004) (one instance) and one of the multiple Newbler versions 96 
(http://454.com/products/analysis-software/index.asp) (seven instances) were also frequently 97 
used. In four projects a combination of two assemblers was used. CLC 98 
(http://www.clcbio.com/), LEADS (Dai et al., 2011), Paracelcus Transcript Assembler 99 
(Novaes et al., 2008) and Seqman Ngen (Edwards et al., 2012) were each used in a single 100 
published assembly (Table 1). The different assemblies were quality controlled – if they were 101 
controlled at all – by different parameters. Hence it is difficult to compare the different 102 
assembly methods. All assemblies report the number of unigenes (the sum of assembled 103 
contigs and unassembled singletons) and either the N50 or the average length of the contigs. 104 
These two parameters can be compared with reference sequence numbers, average sizes and 105 
N50 from predicted transcriptomes of species with sequenced genomes. The parameters show 106 
that the assemblies are far from perfect and that none of the assemblers achieves a satisfactory 107 
reconstruction of an actual transcriptome. While the representation of the transcriptome was 108 
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the expressed goal of these studies, none of them fully succeeded. Most of the assemblies 109 
were carried out either with Roche’s Newbler or with a decades-old tool, CAP3. No marked 110 
improvements could be detected in the assembly parameters unigene number and average 111 
length over time (Supplemental Table 1). 112 

Although one may be tempted to dismiss such error prone, incomplete assemblies, the 113 
majority of them have already proven themselves useful for downstream applications such as 114 
proteomics (Bräutigam et al., 2008;Franssen et al., 2011) or pathway reconstruction (Wang et 115 
al., 2009;Bräutigam et al., 2011a;Dai et al., 2011;Troncoso-Ponce et al., 2011;Desgagne-116 
Penix et al., 2012). The databases were developed to provide a sequence resource for future 117 
experiments. The analysis of single genes involved in the C4 photosynthetic pathway based on 118 
hypotheses derived from RNA-seq experiments has already been successful (Furumoto et al., 119 
2011;Sommer et al., 2012). Hence even imperfect assemblies succeed in enabling future 120 
research. Downstream approaches that require perfect or near perfect unigenes such as the 121 
evolutionary analysis of gene family expansions will likely suffer more from the current 122 
shortcomings of these assemblies. 123 

RNA-seq by Illumina sequencing was initially used for transcriptome sequencing in 124 
species with sequenced genomes (e.g. Vega-Arreguin et al., 2009;Li et al., 2011). It has been 125 
successfully applied to produce transcriptomes de novo (Supplemental Table 1). The 126 
technology appeals to researchers despite its comparatively short reads because it produces 127 
much larger coverage at the same or a lower price. However, it presents a new set of 128 
challenges for the assembly. 129 

Similar to 454/Roche based sequencing projects, virtually all Illumina based RNA-seq 130 
experiments on non-model species have been conducted to produce a transcriptome database. 131 
RNA-seq using the Illumina technology was undertaken to analyze transcriptomes for plants 132 
of nutritional or medical value (Barrero et al., 2011;Hao et al., 2011;Krishnan et al., 133 
2011;Tang et al., 2011;Gahlan et al., 2012;Hao et al., 2012;Hyun et al., 2012) or of 134 
commercial value (Mizrachi et al., 2010;Shi et al., 2011;Xia et al., 2011;Mutasa-Gottgens et 135 
al., 2012;Zhang et al., 2012). Two experiments addressed ecological and evolutionary 136 
questions, the evolution of sex chromosomes (Bergero and Charlesworth, 2011) and the 137 
phylogenetic positioning of species (McKain et al., 2012). The majority of sequences were 138 
produced with paired end technology. In this case, sequences from both ends of fragments of 139 
defined size are sequenced. The use of paired ends allows scaffolding: Sequence reads are 140 
used to produce contigs. The information which reads belong together and their specific 141 
distance orders disconnected contigs on scaffolds.  The unknown nucleotides in the gaps of 142 
scaffolds are caused by knowing the size of the gap but not the identity of the nucleotides and 143 
hence the nucleotides in the gap are denoted as Ns. One assembler that was originally 144 
developed for genome assemblies, SOAPdevono 145 
(http://soap.genomics.org.cn/soapdenovo.html), has been used to assemble the majority of 146 
plant transcriptomes. Additional assemblers used include CLC, velvet (Zerbino and Birney, 147 
2008; http://www.ebi.ac.uk/~zerbino/oases/), AbySS (Simpson et al., 2009) and Trinity 148 
(Grabherr et al., 2011). In one of the projects a custom resolution algorithm for velvet was 149 
developed and used (Mizrachi et al., 2010) (Table 1). This customized velvet version has 150 
produced the best assembly in terms of contig number and average contig length. Despite its 151 
success, the method has not been used for any of the other projects. 152 

Finally, RNA-seq experiments have combined both 454/Roche and Illumina 153 
sequencing. Transcriptomes of chickpea and pincushion flower were produced using both 154 
technologies and hybrid assemblies (Angeloni et al., 2011;Garg et al., 2011). Although 155 
promising in prospect of complementary error correction, to date, true hybrid assembly 156 
approaches are limited to an assembly of one library (often 454) as a base transcriptome and 157 
subsequent correction of the consensus sequence by mapping the other read library (Illumina 158 
or SOLiD). Quality improvements of transcriptome hybrid assemblies have not yet been 159 

http://soap.genomics.org.cn/soapdenovo.html
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assessed in a comparative study. However, in the context of genome assembly it was shown 160 
that a stepwise (as explained above) hybrid assembly had a higher quality (according to the 161 
authors: comparable to Sanger-sequencing) than single library approaches (Aury et al., 2008). 162 
The use as well as the strategy of hybrid assemblies is currently vigorously discussed in the 163 
online community (i.e. www.seqanswers.com, www.biostars.org).  164 

Overall, similar to the assemblies from 454/Roche RNA-seq experiments, those from 165 
Illumina technology suffer from limitations. It will be crucial to continue developing 166 
assemblers with enhanced capability while establishing standard quality controls to make 167 
assemblies from different species, technologies, and assembly strategies comparable. 168 

4 Assemblers 169 
Two principally different types of assemblers are available for RNA-seq data: overlap-170 

layout-consensus (OLC) assemblers and Eulerian path assemblers which are based on de 171 
Bruijn graphs (summarized in (Flicek and Birney, 2009).  172 

OLC assemblers were developed for Sanger sequences. In principle, the assembler 173 
starts with a sequence read, looks at its sequence and searches the read space for another read 174 
that contains an overlapping sequence. The overlap is specified by its length and the number 175 
or percentage of matching bases. The memory requirement for this operation depends on the 176 
number of reads to be searched. Thus, more reads require more computer power. Already 177 
during times of Sanger sequencing, this method became inefficient with the available 178 
computers and a prefacing clustering step 179 
was added. This clustering step groups 180 
sequences deemed similar, for example by 181 
a megablast search (Pertea et al., 2003). 182 
The assembler then only searches the 183 
sequences in each cluster. The three most 184 
prominent examples for these OLC based 185 
assemblers are Newbler (Roche/454 Life 186 
Sciences, Branford, Connecticut, USA), 187 
MIRA (Chevreux et al., 2004) and CAP3 188 
(Huang and Madan, 1999) (or TGICL 189 
which uses megablast and CAP3). While 190 
these assemblers are suitable for 191 
454/Roche sequences, the number of reads 192 
generated with Illumina are simply too 193 
large to be processed. In an assessment of 194 
different assemblers with both simulated 195 
and real data, TGICL was superior to 196 
MIRA and CAP3 in its results (Bräutigam 197 
et al., 2011b). No new assemblers have 198 
been developed and used except for 199 
Newbler developed by the company 200 
454/Roche itself. 201 

To tackle Illumina-generated 202 
sequence reads, a new type of assembler 203 
was created. It is based on finding the 204 
Eulerian path through a de Bruijn graph 205 
(Pevzner et al., 2001). Essentially, this 206 
type of assembler breaks the whole 207 
sequence space in pieces of defined length, 208 
which are called k-mers. It then moves 209 
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along the k-mers and creates a graph in the process. Identical overlaps of k-mers are merged 210 
and counted. If the assembler encounters differences, the graph will branch, if it subsequently 211 
encounters identity again, the graph will join the ends. That means that single nucleotide 212 
differences (SNDs) will produce bubbles (Figure 1; 2). Such SNDs can either represent a 213 
sequencing error or genetic variation in form of a single nucleotide polymorphism (SNP). 214 
Large bubbles and open ended branches can be caused by alternative splicing and alternative 215 
transcriptional starts and stops (Figure 1; 1). The presence of genomic DNA in the sample, 216 
improperly trimmed and filtered reads, sequencing errors, alternative splicing and background 217 
transcription will lead to many more deviations from the one transcript, which ideally should 218 
look like a straight line. In reality the graph has no straight lines but is full of bubbles and 219 
frayed ends (Figure 1). When such a graph is resolved, the researcher wants all “real 220 
differences” such as alternative splicing events, transcripts resulting from recently duplicated 221 
but still very similar genes, and genetic variation, for example from different alleles of a 222 
particular genetic locus, represented. However, all differences caused by technical errors 223 
should be removed. The only information available for the algorithm to resolve the graph is 224 
the number of instances observed for each k-mer. If such a graph is used for genome 225 
sequencing of organisms without complex genomes (i.e., not plants), the application for 226 
which it was developed, the graph can be resolved using the degree of coverage for each k-227 
mer. In theory, the number of reads that cover each base in the graph should be equal for the 228 
whole graph. While this does not hold true for repetitive sequence elements, it can be used to 229 
resolve the remainder. Given 100-fold coverage in a genome homozygous at all loci, you 230 
would require that each k-mer is covered at least, say, 80 times to be called real. If the 231 
coverage is lower, it is likely a sequencing error.  232 

The resolution of transcriptome graphs is very different from the resolution of genome 233 
graphs. The dynamic range of a leaf transcriptome spans at least five orders of magnitude 234 
(Bräutigam et al., 2011a;Gowik et al., 2011). Hence the coverage of a transcriptome is the 235 
polar opposite of even. SNPs and InDels present in natural populations cause uneven 236 
coverage. Transcripts with higher diversity in the population exhibit more changes (as 237 
represented by bubbles in Figure 1) than transcripts with lower diversity in the population. 238 
Alternative splicing and start and stop sites will cause differential coverage. If an exon is only 239 
used 10% of the time, it may not make it past the resolution cut-off. 240 

 To solve the problem of uneven coverage, the assemblers that were originally 241 
designed to produce genomic assemblies, such as ABySS, SOAPdenovo or velvet, have been 242 
extended with add-ons for the assembly of transcriptomes, such as Trans-ABySS, 243 
SOAPdenovo-Trans, or velvet/Oases. Even given this amendment, assemblers do not succeed 244 
in assembly as evidenced by contig numbers that are much higher than the expected transcript 245 
number and average contig sizes much lower than that of an average transcriptome 246 
(Supplemental Table 1). Assemblers for short reads remain limited and both the development 247 
of new assemblers as well as post-assembly processing and parameter optimization is 248 
ongoing. The detection of genetic variation and transcript variants will likely require post-249 
assembly read mapping and evaluation through the researcher. 250 

 251 

5 Considerations for NGS transcriptome assembly 252 
The key differences between NGS and Sanger sequence reads are the number of reads 253 

and the length of the reads. Even using the long-read technology 454/Roche, the reads are 254 
only half to a third as long as compared to Sanger sequences. With a single NGS run, half a 255 
Gigabase to several Gigabases of sequence data is generated. In consequence, the challenge 256 
has shifted from efficiently generating sequence reads to efficiently assembling them. Given 257 
an error rate of ~1% and 40,000 reads of 400 bases length for a gene of 1kb, 160,000 incorrect 258 
base calls are expected. If these are randomly distributed, on average, each single base will be 259 



called incorrectly about 160 times. Even assuming error rates of only 0.1%, each base will 260 
still be called incorrectly 16 times. For this reason, there is a correlation between the number 261 
of contigs resulting from a transcript and the expression strength of the corresponding gene 262 
(Franssen et al., 2011). The large number of sequencing reads calls for intense sequence 263 
pruning. There are several software packages that include pruning pipelines, such as the fastx-264 
toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html), the fastQC software 265 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and the RobiNA package (Lohse 266 
et al., 2012). Those are used to determine average quality per base in addition to other quality 267 
control parameters. Reads can be trimmed (pruned at the ends if bases are below a quality 268 
threshold), filtered (if internal bases are below a threshold) and purged from duplicates 269 
(merging multiple, identical reads into a single sequence). Unfortunately, the majority of 270 
assembly publications do not report their pruning pipeline and threshold values; they restrict 271 
themselves to stating the number of high quality bases that were fed into the assembly 272 
pipeline. 273 

In theory, the error problem was solved if one were to assemble only reads with a high 274 
coverage cut-off during the graph resolution. In that case, sequencing errors were ignored 275 
because their k-mer numbers are too low. However, due to the large dynamic range of the 276 
transcriptome, low abundance genes, such as transcription factors and regulatory kinases, are 277 
underrepresented (Czechowski et al., 2004). These genes are discriminated against if the 278 
assembly is processed with high coverage cut-offs during resolution (Schliesky and 279 
Bräutigam, unpublished observations). They simply disappear. Similarly, rare transcript 280 
isoforms will also be discarded during the resolution step if high coverage is required. 281 

Library normalization at least partially addresses the challenge of a high dynamic 282 
range. Normalization by digestion reduces the dynamic range by one order of magnitude 283 
(Christodoulou et al., 2001) but normalized libraries clearly retain some dynamic range 284 
(Franssen et al., 2011). While normalization likely improves the assembly, it comes at a cost: 285 
sequence information and quantitative information are no longer collected at the same time. If 286 
quantitative information is not required, normalization is highly recommended. 287 

At least low coverage transcripts could be recovered if one knew before assembling 288 
how many reads are produced from each transcript and adjust the resolution algorithm 289 
accordingly for each piece of the graph. Possibly, a dynamic approach – assembly, read 290 
mapping on the preliminary assembly, re-assembly with sliding scale of resolution coverage 291 
cut-off – might be able to solve the problem. While none of the current transcriptome 292 
assemblers has implemented this strategy, its application for one Illumina plant transcriptome 293 
assembly may serve as the proof of concept for the approach (Mizrachi et al., 2010). 294 

The key challenge in assembly is weeding out all variation caused by sequencing 295 
errors, library preparation and other technical artifacts while keeping all variation caused by 296 
biological phenomena such as genetic variation, alternative splicing and others.  297 

6 Assessing the assembly 298 
In principle, assessing an assembly is easy – it should accurately reflect the 299 

transcriptome of the sequenced tissue and species. In practice, the accurate transcriptome is 300 
unknown and not available for comparison. Two different approaches to overcome this 301 
problem can be envisioned. (i) Establishing assembly parameters with simulated reads from a 302 
reference species and transferring those to de novo sequencing and (ii) assembling de novo 303 
transcriptome and estimating reference parameters. While the first possibility has immediate 304 
appeal, there are a number of obstacles. The dynamic range of transcriptomes is different in 305 
different tissues and between species (Fluhr et al., 1986). A method optimized for a root 306 
transcriptome might not necessarily work well with a leaf transcriptome and vice versa. 307 
Different read length, paired end or single end sequencing or different sequencing depth 308 
dictated by the available instrumentation and funding will likely change the parameters for the 309 
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best possible assembly. Carrying out the optimization with a non-target dataset will also cause 310 
substantial time investment with little return in the beginning since not even a working 311 
assembly of the target transcriptome is created. For all these and possibly additional reasons, 312 
many researches will immediately start to work on the target transcriptome. If a common set 313 
of assessment parameters were developed, all possible transcriptomes could be measured 314 
against these parameters and thus compared with each other. 315 

6.1 Number of unigenes 316 
The number of unigenes expected from an assembly can be calculated with a Fermi 317 

estimate. The gene number for the majority of sequenced plant genomes is between 20,000 318 
and 40,000. Using microarray data from Arabidopsis, one can estimate that about one half of 319 
the genes are expressed in leaves. Using these two numbers as approximations, the Fermi 320 
estimate for loci expected from a leaf transcriptome is about 15,000. While species with a 321 
very recently duplicated genome may have close to twice as many, none will have an order of 322 
magnitude more transcripts (compare to Supplemental Table 1). However, the number of 323 
unigenes can be easily manipulated while not gaining a better assembly. One strategy crops 324 
the unigenes by a minimal-length cut-off. While it facilitates subsequent read mappings it 325 
severely discriminates against “real”, short transcripts. Another example, raising the coverage 326 
cut-off during graph resolution will reduce the number of unigenes. This strategy indeed 327 
removes unigenes constructed because of sequencing errors but it will also discriminate 328 
against low abundance transcripts as discussed above. It is thus important to combine these 329 
measures with the number of reference transcripts matching the unigenes. 330 

6.2 Number of reference transcripts matching the unigenes 331 
Once the assembly is complete, it needs to be compared to the most closely related 332 

reference species. The unigenes are matched to the reference sequence by Blast or Blat (Kent, 333 
2002). While it is unknown how many reference transcripts should be tagged by the 334 
assembled unigenes, a higher number of tagged references indicate a more inclusive and thus 335 
better assembly. Genes that are not expressed will never be tagged but as long as the number 336 
of tagged genes increases during assembly optimization, the assembly is getting better in 337 
terms of inclusiveness. 338 

6.3 Number of reference transcripts hit by reads compared to number of reference 339 
transcripts hit by unigenes 340 

It is possible to estimate the number of unigenes produced by the assembly. If the 341 
reads are at least 75 bases long after trimming and filtering, they can be mapped to a reference 342 
transcriptome provided that the reference species is reasonably closely related. However, in 343 
reality “reasonably close” will not be sufficient to produce a perfect mapping. Therefore (i) a 344 
traditional mapping program that allows for multiple mismatches (i.e. BLAST or BLAT) and 345 
(ii) mapping in protein-space (i.e. translated query against translated database; blatx or 346 
tblastx) improves the mapping success with respect to evolutionary distance. In theory, 347 
reference transcripts tagged by reads are expected to be tagged by unigenes. This assumption 348 
is only true if a loss-less assembler such as OLC assemblers are used. Reads that do not 349 
overlap with other reads are reported as singlets or singletons when using these assemblers. 350 
The resolution cut-off applied in graph-based assemblies will overlook unigenes if they are 351 
not covered by at least the coverage cut-off. Mapping reads to a reference results in estimated 352 
read numbers per locus. With these read numbers one can check how many reads are actually 353 
needed to produce a contig or a full length contig based on different assembly parameters 354 
such as k-mer size and coverage cut-off. Surprisingly, the assembly will also produce 355 
unigenes for which no read tagging was recorded. In that case, the setting of either Blat or 356 
Blast was too stringent too match the reads but the longer unigene produces a match. This 357 
quality control measure will overlook lineage specific transcripts that have no match in the 358 



reference transcriptome. While every genome sequencing approach does reveal lineage 359 
specific genes, the number of genes present in multiple plant lineages is vastly higher.  360 

The ratio between reference sequences tagged by reads and those tagged by unigenes 361 
should ideally approach 1:1. 362 

6.4 N50, average length, median length 363 
These three parameters are always reported with genome assemblies. The N50 can be 364 

envisioned as follows: If you order the unigenes by their length and then start counting 365 
nucleotides at the largest unigene, the N50 will report the unigene length at which you have 366 
counted through half of the bases. While this is a sensible measure for genomes, it makes less 367 
sense for transcriptomes. After all, with genomes you expect as many contigs as you have 368 
chromosomes. In transcriptomes, you may have different N50s for different tissues of the 369 
same plant since different groups of genes are expressed. The same caveat is true for the 370 
average length and the median length. 371 

While different (whole) transcriptomes indeed have slightly different parameters with 372 
regard to N50, average length and median length, the values are similar enough to yield an 373 
estimate for the expected values for an unknown transcriptome (compare to Table 1 and Table 374 
2). 375 

 376 
Table 2: Quality assessment parameters drawn from transcripts of publicly available 377 

genome databases  378 

Species 
genome size 

[Mbases] 

Number of 
transcripts including 

isoforms N50 GC % 
Arabidopsis thaliana 120 41671 1912 42.27% 
Brassica rapa 485 41019 1482 46.28% 
Populus trichocarpa 481 45033 1845 42.29% 
Solanum 
lycopersicum 950 35802 1461 41.61% 
Oryza sativa 420 66338 2295 51.30% 
Setaria italica 515 40599 1811 52.75% 
Zea mays 2066 136770 1612 51.14% 

 379 

6.5 Length of the longest unigene 380 
The length of the longest unigene might not represent a sensible measure. If the 381 

sequencing library was contaminated by genomic DNA, a large fraction of this DNA will 382 
come from the plastid genome. The plastome DNA is known to be AT-rich and thus survives 383 
the poly-A enrichment step during the Illumina mRNA enrichment protocol well (Schliesky, 384 
Mullick and Bräutigam, unpublished observations). Its presence leads to remarkably long 385 
contigs in the assembly albeit not quite to an assembly accurately representing the 386 
transcriptome. A second consequence of DNA contamination is the presence of many contigs 387 
matching transposon-like sequences which are also AT-rich. The complete or near complete 388 
presence of a unigene matching the longest nuclear transcript of a reference also only shows 389 
that the assembly parameters were ideal for that transcript but not for all transcripts in the 390 
sequenced library. 391 

6.6 Number of estimated full length unigenes  392 
While the length of the longest unigene may not be an ideal measure, the estimated 393 

number of full length unigenes reflects on the success of the assembly. The unigenes are 394 
matched to a transcriptome reference from a closely related species. While during evolution, 395 



genes will have extended or contracted, on average, their length will remain comparable. 396 
More unigenes that reach the length of the reference transcripts indicate a better assembly. 397 

If no reference seems suitably close enough, it is still possible to compare the length 398 
distributions qualitatively. Comparing multiple publicly available plant transcriptome 399 
databases with respect to their length distributions demonstrates an overall pattern on what a 400 
transcriptome should possibly look like (e.g. ~90% of the sequences between 200 nt and 3500 401 
nt length). In practice that is not achieved because assembly software often produces a huge 402 
fraction of truncated transcripts between 0 nt and 200 nt length. 403 

6.7 Number of hybrid/read_through unigenes 404 
While full length unigenes are the goal of an assembly, no hybrid unigenes should be 405 

produced. These result from the joining of two target transcripts matching two different 406 
reference transcripts into one unigene. Two different kinds of hybrid unigenes can be 407 
produced. Illumina resequencing of Arabidopsis leaf transcriptomes identified unigenes that 408 
were assembled from adjacent transcripts (Schliesky, unpublished). Read mapping to the 409 

genome revealed that these hybrid unigenes resulted from read through transcription. They 410 
thus likely reflect the true transcriptome. The second class of hybrid unigenes is undesirable. 411 
In this case, the similarity of sequences, sequencing errors or incomplete read trimming and 412 
filtering cause the merging of two target transcripts into one reference unigene. A read 413 
mapping in this case identifies no evidence for this feature. Different assembly parameters 414 
favor or do not favor the creation of this second class of hybrids (Schliesky, unpublished) and 415 
thus hybrid detection should be included in the quality control. One strategy for hybrid 416 
detection by alignment to Arabidopsis could be designed as follows. Based on the outcome of 417 
an alignment, all unigenes that map to multiple genes get tagged as hybrid (also known as 418 
chimera or fusion genes), if the match takes place in distinct, i.e. non-repetitive, sections of 419 
the unigene sequence. Subsequently the chromosomal position is used to classify the type of 420 
hybrid to either read-through (matching neighbouring genes) or second class hybrids 421 
(matching non-neighbouring genes). A high proportion of second class hybrids points to a bad 422 
assembly algorithm, to bad assembly parameters (e.g. k-mer too large) or to a contamination 423 
of some sort (e.g. genomic DNA or low quality reads) 424 



If no closely related reference is available, the hybrid detection strategy probably 425 
needs to be amended. With increasing evolutionary diversity mapping accuracy will decrease. 426 
Therefore mapping errors may lead to incorrectly detected hybrids. That may be solved by 427 
increasing the required matching length during mapping (increasing accuracy) at the cost of 428 
not mapping some unigenes at all (decreasing sensitivity). Alternatively, hybrid unigenes may 429 
be detected by mapping the reads back to the unigenes. At the position of error, read coverage 430 
is likely lower than in the adjacent regions. Detecting and cropping those bridging regions 431 
reliably will reduce the number of hybrid transcripts. This approach is based on same idea as 432 
an assembly algorithm with a sliding resolution window for per base coverage. If the quality 433 
assessment was completely independent of a reference sequence, lineage specific genes which 434 
have no match in reference database would also be included in the quality assessment. 435 

7 Example workflow 436 
As a step towards comparable transcriptome assessments a collection of Perl and Unix 437 

scripts, which are automating parts of the assessment, is provided in this review. It resembles 438 
an example workflow (Figure 2, Supplemental Presentation 1) for assembling and assessing 439 
reads of Arabidopsis mRNA. This out-of-the-box pipeline consists of five blocks; (i) vigorous 440 
read pruning, (ii) assembling, (iii) mapping to a reference, (iv) collecting quality parameters 441 
and (v) polishing the assembly for publication. 442 

Carrying out transcriptome assembly in a standardized way has not been publicly 443 
pursued prior to this review. In order to keep the workflow repeatable and comparable we 444 
provide a step by step instruction set on how to use the supplemental scripts to assemble a 445 
sequencing run and conduct quality assessment on the assembly. Please be aware that the 446 
workflow including all scripts was designed with Arabidopsis as the target reference. Scripts 447 
might or might not be adaptable to other species. The workflow was established and tested on 448 
a Linux machine running 64 Bit Ubuntu 10.04 and having installed BioPerl, BioPython, the 449 
FASTX-toolkit, BLAT and BLAST.  450 

First, all scripts need to be extracted and copied into a folder (Supplemental Scripts 451 
02-12), together with the raw reads (fastq.gz files) and the reference. Start a terminal and 452 
change to the directory containing the scripts. All commands needed are in Supplemental 453 
Script 1. Lines preceded by a #-symbol present comment lines and are used for explanation. 454 
Illumina reads obtained from a sequencing facility are supplied as *.fastq.gz files. To unzip 455 
and concatenate them, the zcat command is used (Supplemental Script 1 Line 4). 456 

7.1 Read cleaning (Supplemental Script 1 lines 6 - 11) 457 
While reads coming off the sequencer are not dirty in the traditional sense, they may 458 

contain low quality reads, adaptor sequences and low quality bases. Reads are cleaned to 459 
remove as much non-biological variation as possible. As discussed previously read cleaning is 460 
crucial for a good assembly. The workflow starts by removing reads flagged as inappropriate 461 
by the sequencer (Line 7). For quality trimming knowledge of the average overall base quality 462 
is needed. This is evaluated using the FASTX-Toolkit (line 8). Visual aids (e.g. 463 
fastq_quality_boxplot_graph.sh) may ease interpretation of the results. The stats file provides 464 
one line per base (i.e. in Illumina 101bp reads 101 lines) and for each base a median quality 465 
score is calculated. Frequently, read quality will be low towards the end of the read. If at any 466 
point, say from base 86 to base 87, the median quality drops dramatically, the ideal quality 467 
cut-off will be in between this range. For sequencing runs with good library preparation and 468 
no problems during the sequencing we recommend a cut-off of 30. 469 

The actual cleaning is conducted in three steps; (i) trimming (line 9), which prunes the 470 
ends off of the reads if they are below the defined quality cut-off and subsequently discards 471 
all reads that are shorter than a defined length cut-off (we suggest half the read-length, i.e. 50) 472 
after trimming. (ii) filtering (line 10), which discards all reads that do not meet the required 473 



quality cut-off with at least a defined length (in percent of the total read). For the majority of 474 
sequencing runs, the values suggested above are a good starting point. Trimming and filtering 475 
does not discard more than 15% of the reads if library preparation and sequencing went well. 476 
In other cases, values might have to be adjusted and trimming and filtering values might have 477 
to be relaxed. (iii) collapsing (line 11), since memory requirements are lower if fewer reads 478 
are assembled.  479 

7.2 Assembly (Supplemental Script 1 lines 13 - 27) 480 
Lines 13 to 27 contain an out-of-the-box pipeline from cleaned reads to assembled 481 

best transcript isoforms using Velvet/Oases. The pipeline can be adapted for other assemblers. 482 
Velvet/Oases is called in three steps. In the first one, output directory, k-mer size and input 483 
files are declared (line 15). In the subsequent steps a de Bruijn Graph is built (line 16) and 484 
resolved with an algorithm optimized for transcriptomes, i.e. Oases (line 17). Oases outputs a 485 
huge amount of transcripts, which is due to the fact that Oases resolves bubbles and branches 486 
in the Graph into all possible transcript isoforms of a locus. The number of transcripts is, 487 
compared to the number of unique loci detected by Oases, frequently two (or more) times 488 
higher. Picking the best transcript for each locus is a challenge as there is no standard to what 489 
“best” means. The longest transcript is often the least supported (i.e. covered by k-mers), 490 
whereas the most supported often is the shortest one. To solve this problem a script (line 22, 491 
Supplemental Script 02) has recently been published on Google Code 492 
(http://code.google.com/p/oases-to-csv/ by Adrian Reich 2012) that essentially chooses the 493 
most supported transcript (i.e. highest k-mer coverage) that has at least XX% length of the 494 
longest transcript in this locus. In our hands a length cut-off of 20% showed the best results in 495 
subsequent quality assessment. 496 

Many assembly papers include a length cut-off to reduce the number of transcripts. 497 
Although this curation is, in essence, cheating with the number of unigenes, the pipeline 498 
includes a Perl script for cropping the database (line 27, Supplemental Script 03). 499 

7.3 Mapping (Supplemental Script 1 lines 29 – 46) 500 
A major bottleneck - conceptually as well as computationally - if working with non-501 

model species is the read mapping. When working on non-model species there is no 502 
sequenced genome available to use as a reference. Mapping to a close relative works if 503 
precautions are taken to account for the evolutionary distance. Modern mapping algorithms 504 
are designed for speed and allow only one mismatch. These algorithms will fail to map to a 505 
related reference. Therefore in cross-species mapping the use of traditional mapping 506 
algorithms like BLAST and BLAT in protein-space is recommended. While mapping 507 
unigenes to the reference (line 31) finishes in the order of minutes, mapping reads to the 508 
reference will take much longer (depending on the library size in the order of weeks). This 509 
limitation can be bypassed by parallelizing BLAT with a script (line 34 - 36, Supplemental 510 
Script 04) on the number of CPUs available. The script splits the read file, starts parallel 511 
single BLAT runs and merges the results. The number of CPUs can be changed within 512 
Supplemental Script 04 in line 3 (default is 2). Alternatively BLAST, which natively supports 513 
multiple CPUs, can be used for the mapping (line 39, 40). 514 

Multiple mappings can be resolved to only one single best hit per query (i.e. per read) 515 
by using the best hit scripts for either BLAST (line 42, Supplemental Script 05) or BLAT 516 
(line 46, Supplemental Script 06).  517 

7.4 Quality assessment (Supplemental Script 1 lines 48 - 87) 518 
As discussed above the most frequently used measures to evaluate the quality of an 519 

assembly are number of unigenes and N50. A Perl script to calculate the read-length 520 
histogram of a fasta file (line 50, Supplemental Script 07) was developed by Joseph Fass 521 

http://code.google.com/p/oases-to-csv/


(modified from a script by Brad Sickler). The script produces a histogram that can be easily 522 
visualized, and calculates the number of unigenes, N25, N50 and N75. 523 

The percentage of unigenes that match a reference are calculated using the total 524 
number of references and the number of matching unigenes. The total number of references is 525 
counted (line 54). The number of unigenes which map to a reference is produced by 526 
extracting the query identifiers from the mapping table and by counting unique occurrence 527 
(line 56). The mapping efficiency (ratio of mappable unigenes by total references) can be 528 
interpreted as a measure of completeness with the caveat that single tissue transcriptomes are 529 
not expected to represent a complete transcriptome. 530 

Hybrid unigenes can be detected with the help of mapping. In hybrid unigenes, 531 
different sections of the unigene map to different loci in Arabidopsis. These hybrid unigenes 532 
can either be read-throughs of two adjacent genes or misassemblies. While it is desirable to 533 
have no hybrid unigenes that represent transcripts fused by the assembler, it might add to the 534 
understanding of cellular mechanisms to identify read-throughs. Therefore we provide two 535 
Perl scripts, which (i) detect any hybrid unigenes (line 60, Supplemental Script 08) and (ii) 536 
subsequently classify those as read-throughs or not (lines 63 - 67, Supplemental Script 09). 537 
While hybrid unigenes are undesirable in an assembly, they can be tolerated for single gene 538 
analysis. A read mapping provides visible cues whether coverage is even or whether parts of 539 
the unigene are only supported by few reads. Only with more and more transcriptomes being 540 
assembled and large scale comparisons enabled, hybrid unigenes will become an issue in 541 
comparison.  542 

The quality of an assembly can also be measured by comparing the number of 543 
reference genes hit by unigenes with the number of reference genes hit by reads. This is based 544 
on the assumption that genes, which are expressed (i.e. hit by a read) will generate a transcript 545 
(i.e. unigene) during the assembly which maps to the same reference. Comparing the numbers 546 
of genes hit by reads (lines 70, 71) and by unigenes (lines74, 75) provides a quick assessment 547 
whether those values are in the same range. Subsequently, it is assessed whether the reference 548 
genes hit by reads are also hit by unigenes. This question is answered using standard Unix 549 
commands and set theory. Given two files “genes hit by unigenes” and “genes hit by reads” 550 
with a unique set of identifiers in each, adding (i.e. concatenating) one file and twice the other 551 
file yields a new set which has each identifier either occurring once, twice or three times. 552 
Extracting lines by count yields three groups, (i) genes only present in the file used once (line 553 
84), (ii) genes only present in the file used twice (line 85) and (iii) genes that are present in 554 
both files and therefore commonly hit by unigenes and reads (line 86). A large percentage of 555 
the latter group indicates that the assembled transcripts reflect the expressed genes. An 556 
alternative way to determine the intersect between two files is based on the Unix ‘join’ 557 
command (lines 90 - 92). 558 

7.5 Final polish of the assembly (Supplemental Scripts 1 lines 89 - 99) 559 
Prior to publication, an annotated fasta database of the assembly needs to be 560 

generated. The scripts provided incorporate an annotation to the sequence headers, e.g. best 561 
hit in Arabidopsis (lines 96, 97, Supplemental Script 10) and number the identifiers of 562 
unigenes sequentially to get rid of awkward assembler headers (line 100, Supplemental Script 563 
11). If only a subset of sequences are needed a Perl script (line 104, Supplemental Scrip 12) 564 
can extract it if given a one-per-line list of identifiers. 565 

7.6 Applying the workflow (quick and dirty) 566 
The complete workflow discussed in this review is attached as a script (Supplemental 567 

Presentation 1) and could be run unsupervised. This requires the fastq.gz files to be in the 568 
same folder as all the Supplemental Scripts along with an Arabidopsis reference that is named 569 
“TAIR10_cdna.fasta”. Additionally Perl, Python, BioPerl, BioPython, BLAST, BLAT, 570 
Velvet, Oases and the FASTX-Toolkit have to be installed on the system. The hardware 571 



requirements of the assembly in terms of memory are rather high. Assembly was limited to 572 
50M reads with 96GB RAM available. 573 

Due to these strict requirements, we strongly recommend reading and adjusting the 574 
workflow to your specific needs. All scripts have either a help output (if ran with --help or -? 575 
as parameter) or a Perldoc documentation (opened by running “perldoc script_name”) or both. 576 

8 Conclusion 577 
NGS and transcriptome assembly have already proven beneficial for research. 578 

However, current assemblies are still far away from an accurate representation of a 579 
transcriptome. Detailed description of the assembly method including read treatment prior to 580 
assembly, assembly parameters and stringent quality control will make different assemblies 581 
more comparable and will make it easier to reproduce successful assemblies. This first 582 
attempt to bring the quality assessment in line helps to make transcriptomic resources much 583 
more comparable and reusable for the community. At the very least, each assembly 584 
publication should include a fasta file with all unigenes. Until full length single molecule 585 
sequencing for transcriptome sequences becomes technically feasible, transcriptome assembly 586 
will remain the major bottle neck during transcriptome sequencing. We are not there yet! 587 
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10 Figure Legends 806 
Figure 1: Schematic de Bruijn graph of a single transcript; 1 alternative transcription start site 807 
or hybrid joining or DNA contamination; 2 SND caused by a sequencing error or a SNP or 808 
mutation after gene duplication; 3 alternative transcription start site or DNA contamination; 4 809 
alternative exon use; 5 alternative exon use or mutations after recent gene duplication 810 
 811 
Figure 2: Workflow scheme for a transcriptome assembly and quality assessment: (I) 812 
Preprocessing of the raw reads, (II) Assembly of processed reads, (III) Mappings for 813 
annotation and for subsequent quality assessment, (IV) Collecting quality information from 814 
assembly and mappings, (V) Final polishing to create an easy to use, thus easy to share file 815 
from the assembly. 816 
 817 
 818 
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