
Development of a Small D-Enantiomeric Alzheimer’s
Amyloid-b Binding Peptide Ligand for Future In Vivo
Imaging Applications
Susanne Aileen Funke1, Dirk Bartnik1, Julian Marius Glück1, Kasia Piorkowska2, Katja Wiesehan1,

Urs Weber2, Balazs Gulyas3, Christer Halldin3, Andrea Pfeifer2, Christian Spenger4,5, Andreas Muhs2,

Dieter Willbold1,6*
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Abstract

Alzheimer’s disease (AD) is a devastating disease affecting predominantly the aging population. One of the characteristic
pathological hallmarks of AD are neuritic plaques, consisting of amyloid-b peptide (Ab). While there has been some
advancement in diagnostic classification of AD patients according to their clinical severity, no fully reliable method for pre-
symptomatic diagnosis of AD is available. To enable such early diagnosis, which will allow the initiation of treatments early
in the disease progress, neuroimaging tools are under development, making use of Ab-binding ligands that can visualize
amyloid plaques in the living brain. Here we investigate the properties of a newly designed series of D-enantiomeric
peptides which are derivatives of ACI-80, formerly called D1, which was developed to specifically bind aggregated Ab1–42.
We describe ACI-80 derivatives with increased stability and Ab binding properties, which were characterized using surface
plasmon resonance and enzyme-linked immunosorbent assays. The specific interactions of the lead compounds with
amyloid plaques were validated by ex vivo immunochemistry in transgenic mouse models of AD. The novel compounds
showed increased binding affinity and are promising candidates for further development into in vivo imaging compounds.
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Introduction

Alzheimer’s disease (AD) is a devastating neurodegenerative

disorder and the most common cause of dementia. AD affects

27 million people world-wide with steadily increasing numbers,

thereby raising significant economic problems and tremendous

personal suffer [1]. The two pathological hallmarks that charac-

terize AD are the presence of intracellular neurofibrillary tangles

(NFTs) and extracellular neuritic plaques that can be found post

mortem in the brains of patients [2,3,4]. Neurofibrillary tangles

consist of twisted filaments of hyperphosphorylated tau protein [5],

whereas plaques are primarily composed of amyloid-b (Ab) [4,6], a

39–43 amino acid (aa) peptide derived from the amyloid precursor

protein (APP) by proteolytic processing [4,7]. According to the

amyloid cascade hypothesis (16), Ab peptides and, more specif-

ically, their aggregated forms initiate cellular events leading to the

pathologic effects of AD [8,9].

Pre mortem, AD is usually diagnosed after the appearance of

symptoms by application of tests for cognitive impairment like the

mini-mental status examination (MMSE) or the Alzheimer’s

disease assessment scale (ADAS) [10,11]. However, it is a great

challenge to correctly diagnose AD at early presymptomatic stages

[12,13,14]. Several publications support the finding that plaques

start to accumulate 10 to 20 years before clinical symptoms

appear, leading to substantial and progressive neuronal loss

[3,15,16]. Therefore, detection and quantitation of amyloid

species in the brains of patients during the course of the disease

for early diagnosis of AD and for monitoring AD-treatments is a

promising and emerging field in AD research. An efficient tool for

presymptomatic characterization of the brain may be imaging

approaches making use of amyloid specific ligands and positron

emission tomography (PET) [17] or single photon emission

computed tomography (SPECT). Currently, only a few amyloid

PET ligands have been applied in clinical studies (for review, see

ref. [18,19]). Numerous efforts are devoted to develop new, target-

specific imaging agents for the detection of amyloid plaques in vivo.

To be suitable, they should provide highly specific binding to Ab
aggregates, very selective labeling and efficient brain penetration.

Moreover, imaging probes are desired with specificity for Ab1–42

over other Ab isoforms.

The present study used a small, specific Ab1–42 binding peptide

comprising solely of D-enantiomeric amino acids, termed ‘‘D1’’
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[20,21,22], or alternatively, ACI-80 [23,24]. ACI-80 was identi-

fied employing a mirror image phage display selection using

aggregated Ab1–42 as a target. In vitro, ACI-80 binds preferen-

tially to aggregated Ab1–42 with a KD in the submicromolar

range, whereas monomers are bound to a much less extent. In

brain tissue sections derived from patients that suffered from AD,

amyloid plaques and leptomeningeal vessels containing Ab
aggregates were stained specifically with a fluorescence-labeled

derivative of ACI-80. Fibrillar deposits derived from other

amyloidosis were not labeled by ACI-80 [21,22,25]. We also

demonstrated in vivo and in vitro that ACI-80 binds specifically to

aggregated Ab1–42 in the brains of APP/PS1 transgenic mice,

where diffuse amyloid-b deposits, which do not contain Ab1–42,

were not stained [20].

Here, we investigate the properties of several derivatives of ACI-

80. The novel compounds showed increased binding affinity and

are promising candidates for further development into in vivo

imaging compounds.

Materials and Methods

Peptides
For the list of all investigated D-enantiomeric compounds see

Table 1. Ab1–42 peptide was purchased as reversed phase high

performance liquid chromatography purified product (JPT Bio-

tech, Berlin, Germany; or Bachem AG, Bubendorf, Switzerland).

Identity was confirmed by matrix assisted laser desorption

ionization time of flight mass spectrometry (MALDI-TOF-MS).

General Method for Synthesis of D-peptide Compounds
The non-fluorinated peptides shown in Table 1 were synthe-

sized by JPT Peptide Technologies GmbH, Berlin, Germany.

Synthesis of 19F-D-peptide Compounds
[19F]-D-peptide synthesis was performed as described earlier

[23]. Briefly, to an aqueous solution of peptide, borate buffer

(0.5 M, pH 8.61) was added and the color of the solution changed

from yellow to dark orange. Slightly excess amount of [19F]-N-

succinimidyl24-fluorobenzoate (SFB) in acetonitrile was added

into this above solution and the reaction mixture was kept at RT

for 10 min. The reaction was monitored by HPLC. The crude

product was purified by an analytical HPLC column (36300 mm,

10 mm, waters) using water with 0.1% (v/v) trifluoroacetic acid

(TFA) and an acetonitrile (MeCN) gradient (20% to 50%, v/v) as

eluent with a flow rate of 2 ml/min. Retention time of the three

reference peptides were from 9 to 12 min at a wavelength at

234 nm. Then the product fraction was collected into a pre-filled

slightly basic aqueous solution (40 ml, pH was adjusted by

NaOH). This diluted fraction was passed through a C18 Sep-

Pak plus cartridge (preconditioned with 10 ml ethanol +10 ml

water) and the desired product was eluted with 1 ml of ethanol.

The reference compounds were confirmed by LC-MS/MS. The

purity and the stability of the products were checked by HPLC.

Analysis of ACI-80 Stability
In solution, N-terminal glutamine peptides such as D1 are

prone to convert into N-terminal pyroglutamate species: Gln-

SHYRHISPAQV R Pyr-SHYRHISPAQV. Therefore, the stability of

solid ACI-80, solid ACI-80-KQ (Q: fluorescein isothiocyanate,

covalently linked to the peptide via a lysine (K)) and [127I]-ACI-80

in solution was investigated by JPT Peptide Technologies GmbH,

Berlin, Germany using HPLC/ESI-MS whereby the relative

content of N-terminal Gln peptide and N-terminal Pyr peptide was

assessed.

Surface Plasmon Resonance (SPR)
Ab1–42 was dissolved in hexafluoroisopropanol (HFIP). After

overnight incubation, HFIP was removed by evaporation. The

Ab1–42 film was dissolved in PBS buffer pH 7.4 to a

concentration of 1 mg/ml and incubated for 7 days at 37uC.

For the measurements, a Biacore 1000 (GE Healthcare)

instrument was used. Ab1–42 fibrils (6800 RU) were immobilized

Table 1. Pyroglutamate content of ACI-80, ACI-80-KQ and [127I]-ACI-80.

ACI-80solid ACI-80-KQsolid [127I]-ACI-80aqueous solution

Identified amino acid at the N-terminal position

glutamine .91.2% .94.4% 62.6%

pyroglutamate ,8.8% ,5.6% 37.4%

Molecular weight 1421 Da 1907 Da 1548 Da

KQ presents a lysine (K) linked to a fluorescein isothiocyanate (Q).
doi:10.1371/journal.pone.0041457.t001

Table 2. List of investigated D-enantiomeric peptide
compounds.

Name of
compound Amino acid sequence Modification

ACI-80 QSHYRHISPAQV D1

ACI-80-KQ QSHYRHISPAQVKQ D1-KQ

ACI-87-KQ QSHYRHISPAQKKQ D1-V12K-KQ

[19F]-ACI-87-KQ QSHYRHISPAQKK[19F]Q D1-V12K-K[19F]Q

ACI-83- KQ PSHYRHISPAQVKQ D1-Q1P-KQ

ACI-89-KQ PSHYRHISPAQK-KQ D1-Q1P-V12K-KQ

[19F]-ACI-89-KQ PSHYRHISPAQKK[19F]Q D1-Q1P-V12K-K[19F]Q

ACI-86- KQ PSFYRHISPAQVKQ D1-Q1P-H3F- KQ

ACI-82- KQ SHYRHISPAQVKQ D1-Q1X- KQ

ACI-88-KQ SHYRHISPAQKKQ D1-Q1X-V12K-KQ

[19F]-ACI-88-KQ SHYRHISPAQKK[19F]Q D1-Q1X-V12K-K[19F]Q

ACI-85- KQ SFYRHISPAQVKQ D1-Q1X-H3F-KQ

ACI-81 ZSHYRHISPAQV D1-Q1Z

ACI-81- KQ ZSHYRHISPAQVKQ D1-Q1Z-KQ

ACI-84- KQ ZSFYRHISPAQVKQ D1-Q1Z-H3F-KQ

Modifications in the original amino acid sequence of ACI-80 are printed in bold.
Amino acid residues are given in the one-letter-code. All amino-acids are D-
enantiomers. KQ presents a lysine (K) linked to a fluorescein isothiocyanate (Q).
doi:10.1371/journal.pone.0041457.t002
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on a CM5 sensorchip (GE Healthcare) via amine coupling. The

running and sample buffer was PBS, pH 7.4. To allow comparison

between the ACI-80 compounds, but to avoid potential over-

interpretation of the data by fitting multiple kon and koff values for a

yet undefined number of different binding sites, only two values

have been taken for further evaluation. Response units achieved

under identical injection conditions allow comparison of binding

strengths of the compounds. Dissociation rates among the

compounds have been compared by measuring the remaining

response units 60 s after end of injection as a measure for

dissociation (koff). All measurements have been carried out using

the same flow cells with identical concentrations and injection

conditions. ACI-80-KQ derivatives were injected as analytes in a

concentration of 50 mg/ml at a flow rate of 5 ml/min for 2 minutes

at ambient temperature. The data were evaluated using

BiaEvaluation 4.1. The interactions between Ab1–42 and ACI-

80-KQ derivatives are given in resonance units (RU) and in % of

ACI-80-KQ response units.

Surface Plasmon Resonance: Single Cycle Experiments
Ab1–42 fibrils were prepared as described above. Thereafter,

the sample was centrifuged for 10 min at 160006g, the

supernatant discarded and this procedure repeated for 3 times.

Formation of fibrils was confirmed by a standard Thioflavin-T

fluorescence assay [26]. Ab1–42 fibrils were covalently immobi-

lized on a CM5 sensor chip via amine coupling. Prior to

immobilization of Ab1–42 fibrils the sample was centrifuged and

fibrils resuspended in 10 mM sodium acetate buffer pH 4.0. Flow

cell sensor surfaces were activated with a freshly prepared solution

of 0.2 M 1-ethyl–3-(3-dimethylaminopropyl)-carbodiimide (EDC)

Table 3. Results of the binding assays for ACI-80-KQ
derivatives to Ab1–42 fibrils using surface plasmon resonance.

Derivative/
Modification Name

Interaction
[%]

Dissociation
[%]

D1-KQ ACI-80-KQ used as standard and set to 100%

D1-V12K-KQ ACI-87-KQ 324 443

D1-V12K-K[19F]Q [19F]-ACI-87-KQ 153 67

D1-Q1P ACI-83

D1-Q1P-KQ ACI-83-KQ 600 200

D1-Q1P-V12K-KQ ACI-89-KQ 518 533

D1-Q1P-V12K-K[19F]Q [19F]-ACI-89-KQ 476 0

D1-Q1P-H3F-KQ ACI-86-KQ 21 40

D1-Q1X ACI-82

D1-Q1X-KQ ACI-82-KQ 393 300

D1-Q1X-V12K-KQ ACI-88-KQ 365 667

D1-Q1X-V12K-K[19F]Q [19F]-ACI-88-KQ 294 1233

D1-Q1X-H3F-KQ ACI-85-KQ 229 40

D1-Q1Z ACI-81

D1-Q1Z-KQ ACI-81-KQ 129 40

D1-Q1Z-H3F-KQ ACI-84-KQ 93 40

Interaction and dissociation was measured with respect to the maximal
interaction signal during injection and the response 60 s after the end of
injection, respectively. ACI-80-KQ binding was defined as 100%. KQ presents a
lysine (K) linked to a fluorescein isothiocyanate (Q).
doi:10.1371/journal.pone.0041457.t003

Figure 1. Surface plasmon resonance analysis of the interaction between immobilized Ab1–42 fibrils and ACI-80-KQ and various
derivatives (KQ presents a lysine (K) covalently linked to a fluorescein isothiocyanate (Q). ACI-80 derivatives were solved in running buffer
(PBS, pH 7.4). The injected volume of ACI-80 derivatives was 10 ml of a 50 mg/ml concentration using a flow rate of 5 ml/min. The response of ACI-80-
KQ in resonance units [RU] was defined as 100%. Values .100% denote increased Ab interaction of the ACI-80 derivative in comparison to ACI-80-KQ.
All derivatives were Q-labeled. Only the variations in comparison to ACI-80-KQ are indicated in the figure.
doi:10.1371/journal.pone.0041457.g001
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and 0.05 M N-hydroxysuccinimide (NHS) at a constant flow rate

of 10 ml/min for 420 s. Ab1–42 fibrils (, 110 mM monomeric

Ab1–42) were injected for 600 s with a flow rate of 10 ml/min.

Deactivation of the surface was performed by injection of 1 M

ethanolamine-HCl pH 8.5 at the same flow rate and duration as in

the activation step. In the reference cells the deactivation step was

performed directly after the activation step.

All SPR experiments were performed on a Biacore T100 system

with series S CM5 sensor chips at 25uC. The system was run with

the Biacore T100 Control Software Version 1.1.1. PBS (10 mM

sodium phosphate buffer pH 7.4, 137 mM NaCl, 2.7 mM KCl)

was chosen as running buffer (as previously during fibril formation)

in order to minimize alterations of fibril organization. All buffers

were sterile filtered (0.22 mm). After each docking of a sensor chip

the detector was normalized with BIAnormalizing solution (70%

glycerol, GE Healthcare) to compensate for slight differences in

detector responses of individual sensor chips. For all interaction

analyses the Type 1 reagent rack was used. Siliconized sample vials

were used with their corresponding rubber caps (Type 2, GE

Healthcare) to minimize evaporation effects. Throughout all runs

the flow rate was set to 30 ml/min.

All interaction studies were performed in single-cycle mode

[27]. Here, five different concentrations of analyte were passed

through a reference cell and subsequently through flow cells with

immobilized ligand within the same binding cycle for 60 seconds,

starting with the lowest concentration. Successive injections were

performed in the order of increasing concentrations. Each

following concentration was a fivefold increase of the previous.

The lowest analyte concentration was chosen to be 100 nM and

therefore the following were 500, 2500, 12500 and 62500 nM.

Biacore data were evaluated using BiaEvaluation 4.1.1 (GE

Healthcare) and Biacore T100 Evaluation Software (GE Health-

care). Obtained binding data with compounds were double

referenced. This was achieved by collecting the data in dual-

channel mode with a reference flow cell connected upstream of the

flow cell with immobilized Ab1–42 fibrils and the subtraction of

the obtained binding responses with a blank buffer injection (PBS).

The double-referenced binding curves of the three lowest

concentrations of each single cycle kinetics injection that showed

a significant binding response were fit to a heterogeneous ligand

binding model [28] including a factor correcting for different

refractive indices (RI).

Enzyme-linked Immunosorbent Assays (ELISA)
Preparation of Ab1–42 species. Ab1–42 peptide film was

prepared from lyophilized powder (Bachem). The powder was

reconstituted in HFIP to a final concentration of 1 mM, sonicated

for 15 min at room temperature (RT), agitated overnight (ON),

and aliquoted into non-siliconized microcentrifuge tubes (12 ml

corresponding to 55 mg). The HFIP was evaporated under a

stream of argon. The resulting peptide film was vacuum dried for

10 min and stored at -80uC. For direct use as peptide film, an

aliquot of Ab1–42 peptide film was reconstituted with 0.54%

dimethylsulphoxide (DMSO) in phosphate buffered saline (PBS) to

obtain a final concentration of 10 mg/ml and then used for the

ELISA as described below. To prepare fibrils, 55 mg aliquot of

peptide film was dissolved in 55 ml of 50 mM Tris-HCl, pH 7.4

and incubated at 37uC for five days. Next, the sample was

centrifuged (10’000 rpm for 5 min) and the pellet was diluted in

50 mM Tris-HCl, pH 7.4.

D-peptide Compound Binding to Immobilized Ab1–42
Ab1–42 peptide preparations were diluted in 0.05 M bicarbon-

ate-carbonate buffer pH 9.6, to the final concentration of 10 mg/

ml and coated onto ELISA plates (MaxiSorp, Nunc). After

blocking (PBS; 0.05% Tween; 1% BSA), plates were incubated

with 2- or 3-fold dilutions of D-compounds (starting concentration:

10 mg/ml) and incubated for 2 h at 37uC. Plates were then washed

and incubated for 2 h at 37uC with the detection antibody Rabbit-

a-fluorescein isothiocyanate-AP (Sigma; 1:10’000 dilution) fol-

lowed by the incubation for 2.5 h at room temperature (RT) with

1 mg/ml of phosphatase substrate (pNPP, Sigma). The absor-

Table 4. ELISA: Mean binding values for compounds with concentration of 10 mg/ml.

Modification Nomenclature

Binding values and % binding relative to ACI-80-KQ for 10 ug/mL compound
concentration

binding Ab1–42 monomers binding Ab1–42 fibrils

% %

D1-KQ ACI-80-KQ 0.49 100 0.90 100

D1-V12K-KQ ACI-87-KQ *0.79 122 *0.93 103

D1-V12K-K[19F]Q [19F]-ACI-87-KQ *0.86 176 *1.26 140

D1-Q1Z-KQ ACI-81-KQ 0.13 27 0.20 22

D1-Q1Z-H3F-KQ ACI-84-KQ 0.31 63 0.58 64

D1-Q1X-KQ ACI-82-KQ 0.82 167 1.28 142

D1-Q1X-H3F-KQ ACI-85-KQ 0.63 129 1.00 111

D1-Q1X-V12K-KQ ACI-88-KQ *1.29 263 *1.78 198

D1-Q1X-V12K-K[19F]Q [19F]-ACI-88-KQ *1.05 214 *1.76 196

D1-Q1P-KQ ACI-83-KQ 1.05 214 1.50 167

D1-Q1P-H3F-KQ ACI-86-KQ 0.80 163 1.24 138

D1-Q1P-V12K-KQ ACI-89-KQ *1.06 216 *1.49 165

D1-Q1P-V12K-K[19F]Q [19F]-ACI-89-KQ *1.19 243 *1.86 207

All values were compared to that of ACI-80-KQ. Compound binding to compound film, containing predominantly monomers and to fibrils was measured. Average
values of two or three experiments unless marked otherwise. *value of one single experiment only. KQ presents a lysine (K) linked to a fluorescein isothiocyanate (Q).
doi:10.1371/journal.pone.0041457.t004
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bance signal was read at 405 nm wavelength using a Tecan plate

reader (Tecan Group Lt, Männedorf, Switzerland).

D-peptide Compound Binding to Ab1–42 in Solution
ELISA plates (MaxiSorp, Nunc) were coated with anti-Ab

antibody 6E10 (Covance) at a concentration of 5 mg/ml. Either

monomeric Ab1–42 peptide film (mainly monomeric) or Ab1–

42 fibrils, which were prepared as described above, were diluted

in PBS to the final concentration 10 mg/ml and mixed with 10-

fold dilutions of D-peptide compounds in Eppendorf tubes

(starting concentration of D-peptide compounds: 10 mg/ml).

The tubes were incubated for 2 h at 37uC. Next, samples were

distributed onto the ELISA plate and kept for 2 h at 37uC.

Plates were washed and incubated for 2 h at 37uC with the

detection antibody Rabbit-a-fluorescein isothiocyanate-AP (Sig-

ma; 1:109000 dilution) following the incubation overnight (ON)

at RT with 1 mg/ml of phosphatase substrate (pNPP, Sigma).

The absorbance signal was read at 405 nm wavelength using

the Tecan plate reader (Tecan Group Ltd, Männedorf,

Switzerland).

Ex vivo Staining of Mouse Brain Slices by FITC Labeled
Compounds

In vitro tissue section staining was performed according to

previously described protocols [20] with slight modifications.

Mouse brains were obtained from male transgenic (tg) APP

(London mutation V717l) x PS1 (A246E) mice aged 13–

21 months and from female wild type (wt) mice aged 9–

10 months [29]. The mice were anesthetized and transcardially

perfused with saline. The brains were removed and snap frozen.

10 mm thick sagittal cryostat sections through the whole mouse

brain were produced and mounted onto glass slides. Q-labeled

compounds were applied to investigate binding. Thus, the slides

were thawed, washed in PBS and fixed in 4% paraformalde-

hyde (20 min at RT) just before incubation with Q-labeled

compounds. One series of sections was treated only with

fluorescent compounds (0.01 mg/ml, incubation time 2 h) while

another series of sections were incubated with anti-Ab antibody

6E10 at 1:500 dilution (SIG-39320, Covance; final antibody

concentration was 2 mg/ml) in addition to Q-labeled compounds

(0.01 mg/ml). The slices were washed in PBS. The sections

incubated with Q-labeled compound and 6E10 antibody were

further incubated for 2 h at RT with Goat-anti-Mouse IgG1–

Figure 2. ELISA. Optical density (OD) at 450 nm measured at 2.5 h of pNPP incubation. OD for the different compounds at different concentrations
is given. A and B illustrate the ability of the compounds to recognize Ab fibrils. They indicate two series of experiments performed with following
compounds A: ACI-80-KQ to ACI-86-KQ. ACI-80 without Q-label was run as a control. B: ACI-87-KQ to ACI-89-KQ, as well as fluorinated derivatives. ACI-
80-KQ, ACI-82-KQ and ACI-83-KQ were included as controls. C and D illustrate the ability of the compounds to recognize peptide film which largely
consists of Ab monomers.
doi:10.1371/journal.pone.0041457.g002
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AlexaFluor 555 (A21127, Invitrogen, 1:1000 dilution) and

washed with PBS. Finally, all sections were counterstained with

4’–6-Diamidino-2-phenylindole (DAPI, 32670, Sigma, incuba-

tion 5 min at RT) for the visualization of cell nuclei. The slides

were mounted using Prolong Gold Antifade mounting medium

(P36930, Invitrogen) and coverslipped.

The tissues were analyzed using a fluorescent Zeiss Axioscope 2

Plus microscope using the AxioVision 4 image analysis software.

A further series of slices was stained using a primary anti-

fluorescein isothiocyanate antibody combined with alkaline

phosphatase reaction for visualization of Q-labeled peptides.

Briefly, the sections were treated with blocking solution (10%

normal goat serum (NGS), 0.25% Triton X-100 in PBS for 1 h at

RT) and incubated with primary antibody (rabbit-anti-FITC;

Invitrogen) at a dilution of 1:500. The sections were then washed

and incubated for 2 h at RT with the secondary antibody goat-

anti-rabbit-alkaline phosphatase (Sigma) at a dilution of 1:100.

After washing, the slides were incubated with BCIP/NBT

substrate (Sigma) for 3 min, washed, dehydrated and mounted

using Eukitt mounting medium.

Results

Analysis of ACI-80 Amino-terminal Residue Identity
An important observation during initial compound stability

characterization experiments was the partial conversion of the N-

terminal glutamine of [127I]-ACI-80 into pyro-glutamate. It is

known that peptides with an N-terminal glutamine are prone to

conversion of this residue into a pyroglutamate [30]. Therefore,

the composition of freshly synthesized and untreated ACI-80 and

ACI-80-KQ as well as [127I]-ACI-80 after iodination were

investigated. The results are displayed in Table 1. It was observed

that freshly synthesized ACI-80 and ACI-80-KQ contained only

minor fractions of pyroglutamic acid while about one third of

[127I]-ACI-80 in solution already converted into N-terminal

pyroglutamate species.

Figure 3. D-enantiomeric peptide variants binding to fibrillar Aß1–42, covalently immobilized on a CM5 sensor chip via amine
coupling. For each peptide variant experimental sensorgrams (black traces) obtained with injections at 2500 nM, 12500 nM and 62500 nM (ACI-80-
KQ, ACI-87-KQ) or 500 nM, 2500 nM and 12500 nM (ACI-88-KQ, ACI-89-KQ) are shown. Injections were performed for 60 seconds each and
dissociation phases were recorded for at least 30 seconds. The sensorgrams were globally fit (red curves) to a heterogeneous ligand model
accounting for different refractive indices.
doi:10.1371/journal.pone.0041457.g003

Table 5. Results for compound – Ab fibril interactions obtained with the heterogeneous ligand model.

Analyte Rmax1 Rmax2 kon1 koff1 kon2 koff2 KD1 KD2

ACI-80-KQ 12.2 43.7 469 0.0252 1.37e4 1.58 5.38e-05 1.15e-04

ACI-87-KQ 43.3 36.2 206 1.84e-3 1.57e3 0.0407 8.93e-06 2.59e-05

ACI-88-KQ 9.96 63.3 1.71e4 7.22e-3 930 0.0553 4.22e-07 5.95e-05

ACI-89-KQ 21.8 19.4 2.03e4 0.162 3.34e3 0.0118 8.00e-06 3.53e-06

doi:10.1371/journal.pone.0041457.t005
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Thus, a number of novel ACI-80-derivatives were designed and

synthesized with one or several amino acid deletions and/or

substitutions with the aim to increase compound stability, but also

Ab binding capability. Specifically, the N-terminal glutamine was

either substituted by pyroglutamate (Q1Z) or proline (Q1P) or

deleted (Q1X). Furthermore, a replacement of His-3 by phenyl-

alanine (H3F) was investigated. The Q1X deletion as well as Q1P

and H3F substitutions have been proposed based on semiquan-

titative saturation mutagenesis peptide spot data, which predicted

that the mutations would enhance Ab binding. In the peptide spot

approach, all amino-acids of ACI-80 were substituted against all

other natural amino acids and the variants were tested for their

ability to bind Ab fibrils (data not shown). In addition valine was

replaced by lysine at position 12 (V12K) to enable fluorination of

the compound for imaging purposes. Finally, the compound was

also fluorescein isothiocyanate (Q)-labeled via an additional C-

terminal lysine residue to enable detection through fluorescence or

via anti-fluorescein isothiocyanate antibodies. For a summary of all

ACI-80 derivatives see Table 2.

Surface Plasmon Resonance and ELISA
To characterize the ACI-80 derivatives in respect to their Ab

binding capabilities in comparison to ACI-80-KQ, a number of

in vitro assays were performed.

Surface plasmon resonance (SPR) assays were performed to

analyze their interaction with immobilized Ab1–42 fibrils

(Table 3). Ab1–42 fibrils were immobilized on a Biacore sensor-

chip as described in the methods section, and the interactions of

the Q-labeled ACI-80 derivatives were measured and compared

with original ACI-80-KQ. Due to the fact that Ab1–42 fibrils

represent an inhomogeneous mixture of different fibril aggregates,

it is hardly possible to form a homogenous Ab1–42 loaded SPR

chip surface. Therefore we decided for semi-quantitative compar-

ison between all compounds only. The maximal responses in

resonance units (RU) of the Q-labeled ACI-80 derivatives during

the analyte injection and the remaining response 60 s after

injection end (as a semi-quantitative measure for the dissociation

rate), have been related to the respective values obtained from

identical concentrations of ACI-80-KQ in percent. The results are

summarized in Table 3 and Figure 1.

ACI-80-KQ derivatives ACI-82-KQ and ACI 83-KQ (aa

modifications Q1X and Q1P) yielded an increased response of

up to 600% as compared to ACI-80-KQ (Table 3). The

response for ACI-81-KQ (aa substitution Q1Z) was not

significantly increased. The substitution at the third amino acid

position (H3F) did not lead to improved binding to Ab. While

ACI-84-KQ behaved slightly worse than ACI-81-KQ, the

binding efficiencies of ACI-85-KQ and ACI-86-KQ were

drastically reduced as compared with those of ACI-82-KQ and

ACI-83-KQ, respectively. The single substitution at aa position

12, valine to lysine (ACI-87-KQ), resulted in a response increase

to more than 300%. Compounds ACI-88-KQ and ACI-89-KQ
with two substitutions, the first one at amino acid position 1

(Q1X, Q1P) and the second one at amino acid position 12

(V12K), yielded a response increase to 350% (Q1X-V12K) and

Figure 4. Ex vivo staining of brain tissue sections from 13 months old male double transgenic AD mice APP (V717I) x PS1 (A246E)
using different Q-labeled ACI-80 derivatives, 6E10-Ab-antibody and DAPI. Left column: triple image overlay of respective stains reveal that
the Q-compounds identify plaques. White scale bars 20 mm. Results of non-transgenic litter mate controls are not shown as no staining of Q-labeled
ACI-80 derivatives and 6E10-Ab-antibody could be detected.
doi:10.1371/journal.pone.0041457.g004
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more than 500% (Q1P-V12K). The substitution V12K had an

important impact with respect to dissociation. All three

compounds with a V12K substitution showed decreased

dissociation rates (increased remaining response 60 s after

injection end) as compared to the compounds without the

V12K substitution. Therefore, ACI-87-KQ, ACI-88-KQ, and

ACI-89-KQ were the most promising compounds for further

studies. In order to investigate, whether [18F]-labeling will

change their binding affinities, the respective [19F]-labeled

compounds have been investigated as well. Except for [19F]-

ACI-87-KQ (Q1X-V12K), which showed a decreased response

in comparison to the compound without label, the [19F]-labeled

compounds showed virtually the same behavior with respect to

maximum binding. The remaining response 60 s after injection

end, however, was significantly changed in all three cases. Based

on the remaining response 60 s after injection end, [19F]-ACI-

88-KQ exerted the slowest off-rate of all tested compounds

indicating the most suitable binding behavior for being used as

a molecular probe.

To verify the SPR results, ELISA was employed to assay the

interaction of the ACI-80 derivatives ACI-80-KQ, ACI-81-KQ,

ACI-82-KQ, ACI-83-KQ, ACI-84-KQ, ACI-85-KQ, ACI-86-KQ,

ACI-87-KQ, [19F]-ACI-87-KQ, ACI-88-KQ, [19F]-ACI-88-KQ,

ACI-89-KQ, [19F]-ACI-89-KQ) with Ab1–42 fibrils and Ab
peptide film in solution containing mostly monomers and smaller

oligomers (Table 4). To avoid any bias by possible conformational

influences the ELISA has been carried out in two versions, once

with immobilized antibody and once with immobilized Ab1–42 as

described in the methods section. Both assays yielded similar

results and confirmed each other. All experiments were performed

twice and showed reproducible results. Panels A and B in Figure 2

show the results for binding to Ab1–42 fibrils and panels C and D

in Figure 2 show the results for binding to freshly prepared Ab1–

42 peptide film, which contains mostly monomeric Ab. In Table 4,

the performance of the peptides is expressed relative to that of

ACI-80-KQ.

Briefly summarized, the binding of the ACI-80 derivatives to

Ab1–42 fibrils was generally stronger than that to monomer-

enriched freshly prepared Ab1–42. In addition, for both Ab
species a similar order of binding strengths could be established.

All variants, except ACI-81-KQ and ACI-84-KQ, showed stronger

Ab binding than ACI-80-KQ. Substitution of glutamine to proline

at position 1 or glutamine deletion had a positive effect on binding

to Ab1–42. Inversely, binding to Ab1–42 was reduced for ACI-84-

KQ as compared to ACI-80-KQ. ACI-81-KQ and ACI-84-KQ are

peptides with glutamine to pyroglutamate substitution. Thus, the

substitution of glutamine to pyroglutamate decreased binding to

Ab1–42. An order of binding comparing fluorinated with respect

to non-fluorinated D-peptides versions was difficult to establish.

The results clearly show that the fluorinated Q-labeled peptides

[19F]-ACI-87-KQ, [19F]-ACI-88-KQ, [19F]-ACI-89-KQ bound

well to Ab1–42 fibrils, [19F]-ACI-88-KQ, [19F]-ACI-89-KQ being

even among the very best of all variants. The order of binding

strengths for the fluorinated peptides was [19F]-ACI-89-KQ binds

stronger than [19F]-ACI-88-KQ much stronger than [19F]-ACI-87-

KQ. These peptides with [19F] replaced by [18F] were used in

autoradiography assays for testing the binding to human

Alzheimer’s brain tissue sections [24]. Briefly, the experiments,

using post mortem human brain autoradiography in whole

hemisphere human brains obtained from deceased AD patients

and age matched control subjects, support the visualization

capacity of the radiolabeled ACI-80 analogues of amyloid deposits

in the human brain [24].

In general, the ELISA results corresponded well with the SPR

results identifying the substitution of glutamine to proline or

glutamine deletion at the N-terminus as useful mutation with

strong benefits for the binding to Ab fibrils and monomers.

As the compounds ACI-87-KQ, ACI-88-KQ, ACI-89-KQ were

the most promising candidates for further development, we tried

to obtain more quantitative binding data and compared them to

ACI-80-KQ. Different concentrations of the analytes were applied

to an SPR chip loaded with Ab fibrils (Fig. 3). A brief look at the

data already revealed that about a five-fold concentrations of ACI-

87-KQ and ACI-80-KQ were necessary to obtain comparable RU

responses as compared to ACI-88-KQ and ACI-89-KQ. All three

ACI-80 derivatives showed tighter binding to fibrils as compared

to ACI-80-KQ. As already mentioned above, any effort to obtain

an exact quantitative analysis of experimental data from SPR

experiments with Ab fibrils is prone to mis- and over-interpreta-

tion. We found, however, that the heterogeneous ligand binding

model (see methods section for details) was able to yield potentially

meaningful results for all four compounds without introducing too

many fit parameters. With all necessary caution and taking into

account only the lowest KD value of the two obtained from the

heterogeneous binding model, the fitted KD values given in Table 5

confirm the order of binding: with an obtained dissociation

Figure 5. Photomicroscope images of mouse brain sections
(female APP (V717I) 6 PS1 (A246E), age 24.3 months) in light
microscope. Overview (left panel) and higher magnification (right
panel). The brain slices were incubated with ACI-89-KQ-peptide binding
to plaques was visualized using an anti-fluorecein isothiocyanate 1
antibody and alkaline phosphatase as chromogenic detection. This
revealed the high sensitivity of this method and the presence of
abundant plaques in the tg mouse brain.
doi:10.1371/journal.pone.0041457.g005
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constant in the submicromolar range ACI-88-KQ binds stronger

than ACI-89-KQ and ACI-87-KQ, and all three of them bind

stronger than ACI-80-KQ.

Ex vivo Staining of Mouse Brain Slices by FITC Labeled
Compounds

Brain sections from transgenic (tg) APP (London mutation

V717l) x PS1 (A246E) mice were stained using ACI-80-KQ, ACI-

87-KQ, ACI-88-KQ, ACI-89-KQ. Also, anti-Ab plaque staining

(using the 6E10 antibody) and DAPI nuclei counterstaining was

performed on the same slides. Photomicrographs of the stained

slices and triple overlay images are shown in Figure 4.

Ab plaques were identified in all tg animals using 6E10 anti-

Ab antibody. Moreover, plaques were stained by all tested

compounds, although to different extent and with different

intensity and background. Specifically, ACI-89-KQ and ACI-88-

KQ stained plaques most intensively, whereas ACI-88-KQ
additionally yielded the lowest background signal of all peptides.

As shown in Figure 4, ACI-89-KQ and ACI-88-KQ match 6E10

anti-Ab staining quite well giving rise to a large extent of overlay

in the triple exposure.

For the peptide ACI-87-KQ, nearly no overlay with 6E10 anti-

Ab was detected by means that only a very small fraction of the

plaques identified with anti-Ab antibody 6E10 have been stained

with the D-peptide. The detection of overlay by the eye is

additionally hindered by high background fluorescence. More-

over, ACI-89-KQ and ACI-88-KQ showed a slightly different

staining pattern by means that ACI-88-KQ stained the core of

plaques while ACI-89-KQ has a staining pattern which is more

similar to the one of 6E10 which also stains diffuse Ab plaques.

Therefore, the qualitative assessment demonstrates that the

peptides are able to recognize plaques in tg mouse brains with

different intensities and background signals. Overall, [19F]-ACI-

89-KQ and ACI-88-KQ showed a good overlap with 6E10 Ab
staining and have thus confirmed their leading roles as candidates

for further evaluation.

To further proof with a fluorescent independent read-out that

ACI-89-KQ binds to plaques after peripheral injection, an

antibody recognizing the FITC group in ACI-89-KQ was used

(Figure 5). This antibody binds to Q-labeled peptides that are

bound to Ab plaques in Q-peptide immersed tg mouse brain slices.

The alkaline phosphatase reaction showed abundant chromogenic

deposits resembling the expected distribution and number of Ab
plaques in these brains identified by ACI-89-KQ. Thus confidence

was provided that ACI-89-KQ binds to brain Ab plaques following

peripheral application.

Discussion

One of the hallmarks of AD is Ab accumulation in plaques,

probably long time before manifestation of clinical symptoms.

Here, we have characterized novel ligands that we believe can

have the potential to be used for diagnostic imaging in patients

with AD and also in individuals that score as MCI. There is strong

demand for imaging probes that allow early diagnosis of the

disease, thus enabling novel therapies that allow early intervention.

Also such probes will be important to monitor disease progression

and therapy success in longitudinal studies. The ligands also have

the potential to be used for PET imaging, for example in

transgenic mouse models, that overexpress the amyloid precursor

proteins and develop amyloid plaques, or in aged monkeys.

Imaging of parenchymal Ab plaques, which mainly consist of the

isoform Ab1–42 in both, transgenic animals and humans, heavily

relies on molecular probes that are specifically binding to Ab1–42

fibrils. In order to discriminate between the two most relevant Ab
depositions in AD, namely vascular Ab, which mainly consists of

Ab1–40, and parenchymal Ab, which mainly contains Ab1–42,

there is an urgent need for such a specific PET ligand, as it is not

clear if the currently most advanced [11C]-PIB-PET compound

discriminates between Ab1–40 and 1–42 in vivo [31].

The lead compounds ACI-87-KQ, ACI-88-KQ and ACI-89-KQ
of this program were derived from ACI-80, which is a D-

enantiomeric, 12 amino acid peptide that originally was selected

by mirror-image phage display (24). D-peptides have several

advantages over L-enantiomeric peptides. Most importantly, they

are resistant to most proteases [32], which can dramatically

increase serum [33] and saliva [34] half-life.

The need for exploring derivatives of ACI-80 was dictated by

the observation that the N-terminal amino acid residue of ACI-80

converted from glutamine to pyroglutamate in aqueous solution.

In addition, ACI-80 derivatives with increased binding affinity to

aggregated Ab species were desirable. The lead compounds ACI-

87-KQ, ACI-88-KQ and ACI-89-KQ were stable in aqueous

solution and showed even superior Ab binding characteristics as

compared to ACI-80-KQ. This was confirmed by ELISA and SPR

in vitro binding assays. The ELISA results were fully compatible

with the results from SPR. In general, a stronger binding of ACI-

80-KQ and its derivatives to aggregated Ab forms, in comparison

to monomeric forms, could be verified by ELISA. This is in

accordance to the observation previously reported for ACI-80

[25]. Whether the ACI-80 derivatives also inherited the ACI-80

property to preferentially bind Ab1–42 over Ab1–40, was not

investigated in the present study.

All in vitro binding data agree that Q1X and Q1P mutations

lead to an increase of binding and a decrease of dissociation rate,

whereas the H3F mutation led to a decrease in binding. In line

with the SPR results, the ELISA data confirmed that the

substitution of glutamine to proline and the glutamine deletion

increased binding to Ab1–42 whereas the substitution of glutamine

to pyroglutamate decreased binding to Ab. Also, fluorinated, Q-

labeled D-compounds bound well to Ab fibrils.

The SPR measurements that were carried out to compare the

binding capabilities of ACI-80-KQ, ACI-87-KQ, ACI-88-KQ and

ACI-89-KQ to Ab-fibrils once more confirmed the binding order:

ACI-88-KQ binds stronger than ACI-89-KQ stronger than ACI-

87-KQ much stronger than ACI-80-KQ. Although not all of the

fitted binding curves do perfectly fit to the experimental data, the

applied evaluation procedure yielded some values for binding

affinities that allowed comparison between the four compounds.

Ex vivo staining of transgenic mouse brains showed that the

FITC labeled compounds ACI-87-KQ, ACI-88-KQ and ACI-89-

KQ and their fluorinated derivatives [19F]-ACI-87-KQ, [19F]-ACI-

88-KQ, and [19F]-ACI-89-KQ readily recognized amyloid plaques

in the mouse brain sections. This is important evidence that these

compounds can be used to monitor therapy progress in AD mouse

models. Interestingly, [19F]-ACI-89-KQ showed a different stain-

ing pattern in comparison to the other compounds, being more

diffuse and comparable to the staining of 6E10 Ab antibody.

As already described in two other reports [23,24] positive

autoradiography (ARG) signals, compatible with Ab staining, have

been found in cortical gray matter using [18F]-ACI-87-KQ, [18F]-

ACI-88-KQ, [18F]-ACI-89-KQ, [125I]-ACI-80 and [125I]-ACI-80-

KQ ARG on human whole hemisphere brain sections of patients

with AD. Brain sections from non-Alzheimer’s control subjects

were significantly less stained in the cortical gray matter,

underpinning the specificity of the ARG signal.

In conclusion, especially the ACI-80 derivatives ACI-87-KQ,

ACI-88-KQ and ACI-89-KQ show superior binding affinities and
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specificities suggesting them as potential probes for specific Ab
aggregate and plaque detection in the living brain.
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