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Im Einzelnen basieren die Kapitel in dieser Arbeit wie folgt auf bereits veröffentlichten
oder zur Veröffentlichung bestimmten Artikeln:

Kapitel 2:

• Raphael Wittkowski und Hartmut Löwen:
Dynamical density functional theory for colloidal particles with arbitrary shape.
Molecular Physics 109, 2935-2943 (2011)

Kapitel 3:

• Borge ten Hagen, Raphael Wittkowski und Hartmut Löwen:
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Kurzfassung

Die Beschreibung der statischen Eigenschaften und des dynamischen Verhaltens von
Vielteilchensystemen gehört zu den ältesten Problemen der theoretischen Physik. Die-
ses sehr allgemeine Problem tritt in unterschiedlicher Gestalt in fast allen Bereichen der
Physik auf. In der vorliegenden Arbeit werden einzelne Spezialfälle dieses Problems
aus dem Bereich der Physik der weichen kondensierten Materie untersucht. Diese
Spezialfälle betreffen die Brownsche Dynamik wechselwirkender anisotroper kolloidaler
Teilchen und schließen sowohl passive Teilchen (kolloidale Flüssigkristalle) als auch
aktive Teilchen (selbstangetriebene Mikroschwimmer) ein.
Der Hauptteil dieser Arbeit besteht aus drei Kapiteln. Im ersten Kapitel wird

die Brownsche Dynamik eines einzelnen aktiven kolloidalen Teilchens mit beliebiger
Form untersucht. Zunächst wird die dazugehörige Langevin-Gleichung aufgestellt.
Anschließend werden für einige interessante Spezialfälle dieser Gleichung analytische
Lösungen hergeleitet. Für allgemeinere und nicht analytisch lösbare Fälle werden nu-
merische Lösungen präsentiert. Der Einfluss einer Scherströmung auf die Bewegung
des aktiven Teilchens wird anhand des analytisch lösbaren Spezialfalls eines aktiven
kugelförmigen Teilchens in einer ebenen Couette-Strömung diskutiert.
Das zweite Kapitel geht auf die kollektive Dynamik eines Systems wechselwirken-

der kolloidaler Teilchen mit beliebiger Form ein. Ausgehend von der entsprechenden
Smoluchowski-Gleichung wird die klassische dynamische Dichtefunktionaltheorie auf
den Fall beliebig geformter aktiver oder passiver kolloidaler Teilchen verallgemeinert.
Es wird gezeigt, dass diese neue verallgemeinerte dynamische Dichtefunktionaltheo-
rie auch als Variationsproblem für ein Dissipationsfunktional formuliert werden kann.
Diese alternative Formulierung der dynamischen Dichtefunktionaltheorie ermöglicht
es, die dynamischen Gleichungen von Phasenfeldkristall-Modellen mit mehreren Ord-
nungsparameterfeldern einfacher und sehr viel schneller herzuleiten, als dies mit der
bisherigen Formulierung der dynamischen Dichtefunktionaltheorie möglich ist. Die
neue Darstellung mithilfe eines Dissipationsfunktionals schafft darüber hinaus eine
Grundlage für die Interpretation der dynamischen Dichtefunktionaltheorie im Rahmen
der linear irreversiblen Thermodynamik.
Im dritten Kapitel werden schließlich die Statik und die Dynamik kolloidaler Flüs-

sigkristalle mit Hilfe mikroskopischer, mesoskopischer und makroskopischer klassischer
Molekularfeldtheorien beschrieben. Aus der statischen und dynamischen Dichtefunk-
tionaltheorie (mikroskopisch) werden Phasenfeldkristall-Modelle (mesoskopisch) für a-
polare und polare kolloidale Flüssigkristalle im zwei- und dreidimensionalen Raum
hergeleitet. Diese werden anschließend mit statischen und dynamischen symmetrie-
basierten Modellen (makroskopisch) auf Grundlage der klassischen Ginzburg-Landau-
Theorie und der verallgemeinerten Hydrodynamik verglichen.
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x Kurzfassung

Die in dieser Arbeit erzielten Resultate können unter anderem auf kolloidale Flüs-
sigkristalle angewendet werden, um deren Gleichgewichtsphasendiagramm zu unter-
suchen. Sie können aber auch zur Beschreibung der dissipativen Dynamik von Flüs-
sigkristall-Phasenübergängen und topologischen Defekten in flüssigkristallinen Phasen
sowie zur Untersuchung des Schwarmverhaltens künstlicher Mikroschwimmer und le-
bender Mikroorganismen verwendet werden. Die Ergebnisse dieser Arbeit sind auch
von grundlegender Bedeutung und helfen zum Beispiel beim Verständnis der Zusam-
menhänge zwischen klassischer Dichtefunktionaltheorie, Phasenfeldkristall-Modellen
und symmetriebasierten makroskopischen Modellen.



Abstract

The proper description of the static equilibrium properties and the dynamic behavior
of many-particle systems is one of the oldest problems in theoretical physics. This
very general problem is highly relevant for most fields of physics. In the present work,
several aspects in the context of this problem are investigated. These aspects concern
the Brownian dynamics of interacting anisotropic colloidal particles that can be passive
(colloidal liquid crystals) or active (self-propelled microswimmers).
The main part of this work is subdivided into three chapters. In the first chapter,

the Brownian dynamics of an individual active colloidal particle with arbitrary shape
is investigated. After the formulation of the corresponding Langevin equation, ana-
lytical solutions for some special cases are derived and numerical solutions for more
general situations are presented. Taking the example of a spherical colloidal particle,
the effect of an imposed shear flow is discussed also. The second chapter considers the
collective dynamics of a large set of interacting active colloidal particles with arbitrary
shape. Starting from the appropriate many-particle Smoluchowski equation, classical
dynamical density functional theory is generalized to arbitrarily shaped active or pas-
sive colloidal particles. It is proved that this new and generalized dynamical density
functional theory can be reformulated in terms of the variational optimization of a
dissipation functional. This alternative representation of dynamical density functional
theory allows an easier and much faster derivation of the dynamic equations of phase
field crystal models with various order-parameter fields than the traditional formu-
lation of dynamical density functional theory. The reformulation with a dissipation
functional additionally establishes a basis for the interpretation of dynamical density
functional theory out of linear irreversible thermodynamics. The third chapter finally
treats the statics and dynamics of colloidal liquid crystals by means of microscopic,
mesoscopic, and macroscopic classical mean-field theories. Using static and dynami-
cal density functional theory (microscopic), phase field crystal models (mesoscopic) for
apolar and polar colloidal liquid crystals in two and three spatial dimensions are derived
and compared with static and dynamic symmetry-based approaches (macroscopic) on
the basis of classical Ginzburg-Landau theory and generalized hydrodynamics.
The results obtained in this work can, for example, be applied to colloidal liquid

crystals in order to explore their equilibrium phase diagram and phase transition dy-
namics as well as to the dissipative dynamics of topological defects in liquid crystalline
phases and to artificial microswimmers or living microorganisms in order to describe
their non-equilibrium swarming behavior. The results are also of more fundamental
interest, since they help to clarify the relationship between classical density functional
theory, phase field crystal models, and symmetry-based macroscopic approaches.
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1 Introduction

The precise and suitable description of interacting many-particle systems in their static
equilibrium state and with respect to their non-equilibrium dynamics belongs to the
oldest problems in theoretical physics and has not been entirely solved up to now.
In different manifestations, this very general problem arises in many fields of cur-
rent physics. Beyond classical physics, the problem appears, for example, as quantum
mechanical many-body problem in the theoretical description of Bose-Einstein con-
densates and superfluids [LL92, WF03]. Also in relativistic systems like hot cosmic
plasmas [Som00], a lot of interacting particles have to be described.

In this work, only classical many-particle systems are considered. For these systems
the various methods of classical statistical physics [LL08] are available. Furthermore,
the considerations in this work are restricted to non-deformable solid colloidal parti-
cles1, i. e., particles with a size between 1 nm and 1000 nm, that are suspended in a
viscous liquid2 and classified as soft condensed matter [CL95, BH03], so that molecular
fluids [Ach90, LL91b, Bat00] and granular materials [HW04] are excluded. Due to their
size, colloidal particles are classical Brownian particles that move under the influence of
thermal fluctuations. Their overdamped Brownian dynamics is purely dissipative (irre-
versible), while reversible3 dynamics is not considered throughout this work. Although
colloidal particles are clearly larger than atoms and – except for macromolecules – also
exceed the size of usual molecules, colloidal systems share many properties with atomic
and molecular materials. For example, colloidal particles can constitute colloidal liquid
crystals that are very similar to molecular liquid crystals [GP95]. Colloidal particles
are often used to study fundamental physical phenomena like self-organization, pattern
formation, phase transitions, and critical phenomena.

The traditional artificial colloidal particle that is considered in soft condensed mat-
ter physics is a spherical, i. e., isotropic, particle [HM06], but with the technological
advance in the processing of nanomaterials in the last few years, also anisotropic col-
loidal particles with diverse shapes became producible. Aside from difficulties in the
production of anisotropic colloidal particles, their theoretical description is also much
more complicated than is the case for isotropic particles, since their interaction depends
on their orientation. Depending on the symmetry properties of the colloidal particles

1The more general term colloid includes aside from solid particles also small liquid or gaseous systems,
but such colloids with a variable shape are neglected in this work.

2In general, colloidal particles could also be dispersed in a solid, in a gas, and even in a plasma. In
the case of a plasma, the colloidal dispersion would be called a complex or dusty plasma [Bou99].

3An irreversible process increases the entropy of a thermodynamic system, while the total entropy
remains constant for reversible processes.
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2 1 Introduction

considered, they have up to three non-trivial orientational degrees of freedom in addi-
tion to their three translational degrees of freedom4 (see figure 1.1). While isotropic

Figure 1.1: (a) Isotropic (spherical) particles are entirely described by their center-
of-mass positions �⃗�𝑖 with 𝑖 = 1, . . . , 𝑁 , while (b) for uniaxial (rod-like) particles like
spherocylinders the direction �̂� = (sin(𝜃) cos(𝜑), sin(𝜃) sin(𝜑), cos(𝜃)) of their axis of
symmetry, where 𝜃 and 𝜑 are the usual polar and azimuthal angles in spherical coor-
dinates, respectively, has to be considered also. (c) In the general case of biaxial or
arbitrarily shaped particles, Eulerian angles �⃗� = (𝜑, 𝜃, 𝜒) are used to describe their
orientations. The plot shows L-shaped particles as an example.

particles have only trivial orientational degrees of freedom5, uniaxial particles that
possess rotational symmetry about a certain axis have two non-trivial orientational
degrees of freedom. Colloidal particles without rotational symmetry are called biax-
ial and even have three non-trivial orientational degrees of freedom. To address this
problem, the colloidal particles that are considered throughout this work are assumed
to be anisotropic6, while isotropic particles are always included as a special case.
Colloidal particles appear in very different forms both in nature and in technological

processing. Even microorganisms like diatoms, whose silica frustules exhibit multifari-
ous shapes, can be considered as anisotropic colloidal particles. The colloidal particles
that are investigated in soft condensed matter physics are usually passive, i. e., they
move only under the influence of thermal fluctuations and external forces and torques.
In recent years, however, active colloidal particles that are self-propelled by an internal
drive also became the focus of attention in a relatively new subfield of soft condensed
matter physics that treats the so-called active soft matter. Swimming microorganisms

4The non-deformable rigid colloidal particles, that are considered in this work, have only translational
and orientational but no additional internal degrees of freedom in contrast to, for example, flexible
polymers [DE07].

5A sphere has three rotational degrees of freedom, but only trivial orientational degrees of freedom.
Such trivial orientational degrees of freedom are not counted here.

6In the context of anisotropy, it is necessary to distinguish between the shape and the interaction
of a particle. While, for example, a polarized sphere has an isotropic shape, its interaction with
other particles is anisotropic.



3

are probably the best example for active particles, since their diversity and prevalence
are tremendous. Against this, there are only a few technological concepts for artificial
microswimmers. Neither the motion of an individual active colloidal particle nor their
collective dynamics have been completely investigated up to now. Therefore, this work
deals with both active and passive anisotropic colloidal particles.
This work is structured into six chapters. After the general introduction on hand,

which constitutes chapter 1, an introduction to active and passive soft matter is given in
chapter 2. This chapter contains a classification of technologically producible colloidal
particles with respect to their shape and a section about active colloidal particles,
where examples for artificial microswimmers and swimming microorganisms are given
and their methods of propulsion are discussed.
Chapter 3 investigates the dynamics of an individual active colloidal particle with

arbitrary shape. The considerations also include particles with a hydrodynamic trans-
lational-rotational coupling [HB91]. For the mathematical description of the stochastic
motion of an active colloidal particle under the influence of thermal fluctuations and
internal and external forces and torques, a Langevin equation [CKW04] is constructed.
In principle, it is also possible to describe the stochastic dynamics equivalently by a Fok-
ker-Planck equation [Ris96] or by a path integral [Gra78, Kle09], but here the usage of
a Langevin equation is more convenient, since deterministic trajectories for a vanishing
absolute temperature 𝑇 = 0 and mean (fluctuation-averaged) trajectories for 𝑇 > 0 are
mainly discussed. The chapter starts with a short section about Langevin equations
for active colloidal particles and continues with the formulation of the general Langevin
equation for an active colloidal particle with arbitrary shape in a viscous liquid at rest
at infinity with a low Reynolds number. From this Langevin equation, some analytical
solutions for special cases are derived and discussed. For more general situations, where
analytical solutions are not available, numerical solutions are presented.
It turns out that even at 𝑇 = 0 the trajectories of the active colloidal particle in

three spatial dimensions are very complicated, thus inhibiting a simple classification.
When the motion of the particle is restricted to two spatial dimensions, however, a
classification of the noise-free trajectories becomes possible. This classification is dis-
cussed for arbitrarily shaped particles as well as for particles with inflection symmetry
or rotational symmetry. With respect to the trajectories in three spatial dimensions,
a few special cases are investigated. Orthotropic particles7 in the absence of thermal
fluctuations and external forces and torques are analytically found to move on a cir-
cular helix. The noise average of this circular helix is a generalized conchospiral for
𝑇 > 0. For colloidal particles with an arbitrary shape at 𝑇 = 0, superhelical trajec-
tories are observed when there is no external force. Furthermore, also the effect of an
imposed shear flow is discussed by the example of a spherical active colloidal particle
in two-dimensional Couette flow.
Chapter 4 considers the collective dynamics of a large set of interacting active col-

loidal particles with arbitrary shape using classical dynamical density functional theory
(DDFT), which provides a dynamic equation for the one-particle density field that is

7A body is called orthotropic, if it possesses three mutually perpendicular planes of symmetry.



4 1 Introduction

proportional to the probability to find a colloidal particle at a certain position with a
certain orientation. After a historic overview about the development of DDFT, a gener-
alization of current DDFT is derived from an appropriate many-particle Smoluchowski
equation. This generalized DDFT describes active and passive colloidal particles with
arbitrary shape. Before that, DDFT was only applicable to spherical and uniaxial par-
ticles with no hydrodynamic translational-rotational coupling. The previous versions
of DDFT appear as special cases of the new generalization. Furthermore, it is proved
that the new and generalized DDFT can be reformulated as a variational optimization
problem for a dissipation functional. This alternative representation of DDFT cor-
responds to the formalism of linear irreversible thermodynamics and allows an easier
and much faster derivation of the dynamic equations of phase field crystal models with
various order-parameter fields than the traditional formulation of DDFT. The refor-
mulation in terms of a dissipation functional additionally establishes a basis for the
interpretation of DDFT out of linear irreversible thermodynamics, where dissipation
functionals are used to derive the dynamic equations for irreversible processes.
Thereafter, chapter 5 deals with the statics and dynamics of colloidal liquid crys-

tals composed of uniaxial colloidal particles that are apolar or polar 8. When polar
particles arrange their orientations collectively, a liquid crystalline phase with a local
macroscopic polarization can arise. Such a spontaneous polarization has been observed
for banana-shaped bent-core molecules [BCP92] as well as for rod-like molecules in a
Langmuir monolayer [TYN+03]. To model the statics and dynamics of apolar and
polar colloidal liquid crystals in two and three spatial dimensions, microscopic, meso-
scopic, and macroscopic classical mean-field theories are used. These mean-field the-
ories are either derived from fundamental microscopic equations or with the help of
general symmetry considerations and basic laws of thermodynamics. The derivation of
a symmetry-based model is usually much faster and can be performed more generally
than the corresponding microscopic derivation, but symmetry-based macroscopic the-
ories have the disadvantage that they involve a number of unknown coefficients that
cannot be determined within the respective theory. In a microscopically derived model,
the same coefficients are by contrast given in terms of microscopic expressions as, for
example, generalized moments of a microscopic correlation function.
In the first section of the chapter, an overview on the four classical mean-field theories

used is given. The first of these mean-field theories is the microscopic classical density
functional theory (DFT). Static DFT yields an approximation for the free-energy func-
tional that corresponds to the considered system in terms of the one-particle density
field. This free-energy functional is strongly connected with the microscopic 𝑛-particle
direct correlation functions with 1 6 𝑛 6 𝑁 . DDFT, on the other hand, provides a
dynamic equation for the time-evolution of the one-particle density field. From DFT
it is possible to derive mesoscopic phase field crystal (PFC) models that are a further
development of the traditional phase field (PF) models. Different from PF models,
which have a spatially uniform ground state, the equilibrium state of PFC models can
be non-uniform and periodic so that these models are more appropriate for the mod-

8A colloidal particle is called polar, if it has no head-tail symmetry, and apolar otherwise.
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eling of crystallization processes. Both PF and PFC models consist of an expansion of
the free-energy density in terms of relevant order-parameter fields and their gradients.
In this gradient expansion, PF models take only second-order derivatives into account,
while PFC models achieve stable periodic states through the consideration of gradients
up to the fourth order. The dynamic equations for the order-parameter fields in a PFC
model can be derived from DDFT. However, it is also possible to derive PFC models
on the basis of general symmetry considerations.
Similar symmetry considerations are the basis for the remaining two macroscopic

mean-field theories. The first of them is classical Ginzburg-Landau theory , which de-
scribes the statics of a thermodynamic system in the vicinity of a phase transition
by a symmetry-based gradient expansion of a generalized energy density in terms of
the order-parameter fields that define the phase transition regarded. Corresponding
dynamic equations for the order-parameter fields can be derived from a dissipation
functional that is constructed on the basis of symmetry considerations as well. The
second macroscopic theory is generalized hydrodynamics, which is used to describe a
thermodynamic system in the bulk of a phase. Its static variant is termed general-
ized hydrostatics and leads to an expansion of a generalized energy density in terms
of hydrodynamic variables and their gradients. If it is necessary, additional slowly
relaxing non-hydrodynamic variables can also be taken into account. On the basis of
the gradient expansion of the generalized energy density, dynamic equations for the
hydrodynamic and slowly relaxing non-hydrodynamic variables can be derived within
the framework of generalized hydrodynamics.
In the remaining sections of the chapter, microscopic static DFT and DDFT are used

to derive mesoscopic static and dynamic PFC models for apolar and polar colloidal liq-
uid crystals in two and three spatial dimensions. In the context of the dynamics, the
corresponding dissipation functionals are also derived. Several special cases of the PFC
models known from the literature are identified. The PFC models are also compared
with static and dynamic symmetry-based approaches on the basis of Ginzburg-Landau
theory and of generalized hydrodynamics. Furthermore, some phase diagrams for apo-
lar colloidal liquid crystals in two spatial dimensions are calculated numerically and
the arising liquid crystalline phases are discussed. Among the stable liquid crystalline
phases are isotropic, nematic, columnar, smectic A, and plastic crystalline phases. The
plastic crystals can have triangular, honeycomb, and square lattices. They exhibit
orientational patterns with a complex topology involving a sublattice with topological
defects. Finally, in chapter 6, a summary and an outlook for this work are given.
In the appendix of this work, two additional sections address special mathematical

topics with relevance for the previous chapters in more detail. Appendix A treats
gradient expansions of multiple convolution integrals and can be used as formulary
for gradient expansions like those that go along with the derivation of PFC models
from DFT. This part of the appendix serves as a supplement for chapter 5. In ap-
pendix B, numerical methods for the solution of stochastic differential equations are
discussed. The necessary background information on stochastic calculus is summarized
and a stochastic Runge-Kutta scheme of weak order 2.0 is presented. This stochastic
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Runge-Kutta scheme is appropriate for the simultaneous numerical solution of coupled
stochastic differential equations and is applied to the nonlinear Langevin equations in
chapter 3 in order to solve them numerically.



2 Active and passive soft matter

Soft matter includes a huge set of different types of colloidal particles that can be
characterized by their shape, size, and mechanical and chemical properties. All these
colloidal particles can be distinguished into two basic classes. The first one contains
passive particles that move only as a consequence of external forces and torques. This
so-called passive soft matter includes particles made out of various materials and non-
motile living microorganisms. Suspensions of passive anisotropic colloidal particles
constitute colloidal liquid crystals and can exhibit various liquid crystalline phases1.
All particles that are self-propelled by an internal propulsion mechanism are called

active particles instead and constitute active soft matter, which is the complementary
class to passive soft matter. Active particles are wide-spread in nature, since all motile
microorganisms belong to this class, but there are also several realizations of artificial
active particles. In recent years, different strategies have been developed to produce
colloidal particles with a constant internal drive. Therefore, active particles can be
further distinguished with respect to the type of their self-propulsion mechanism.
The shape of both active and passive colloidal particles can be arbitrary. It is

already possible to produce colloidal particles with a very complicated shape. To give
an overview about the different shapes that can be realized, section 2.1 classifies these
shapes and presents examples. Of course, the shape of a colloidal particle can also be
variable. This is the case for particles that are made out of a deformable material.
Especially living microorganisms such as, for example, amoebae are able to change
their shape and for some of them modulations of their shape are the origin of their
drive. Such deformable colloidal particles, however, are not considered in this work.
After the geometric classification, section 2.2 treats active colloidal particles in more
detail.

2.1 Geometric classification of rigid colloidal particles

Induced by technological advance in the processing of nanomaterials, a large number
of differently shaped colloidal particles have become synthetizable during recent years.
The different shapes of these colloidal particles can be classified by means of their
geometric properties. Figure 2.1 on page 9 shows a detailed classification of colloidal
shapes with respect to symmetry and convexity. Such a classification is of big impor-
tance, since anisotropic colloidal particles may form a huge set of mesotropic phases

1For example, suspensions of the tobacco-mosaic virus have already been known since 1936 to exhibit
liquid crystalline order [BPBF36].

7



8 2 Active and passive soft matter

(mesophases) [Cha92, Boy08] that result from different states of translational and ori-
entational order. The possible states of translational and orientational order depend
strongly on the shapes of the particles. Therefore, a classification of their shapes is
also a classification of the possible phases that these particles may exhibit.
The most simple and at once completely symmetric, i. e., isotropic, shape is the

sphere. This is the traditional shape for colloidal particles in soft matter physics, be-
cause it is simple to produce and due to a lack of non-trivial orientational degrees
of freedom it is relatively simple to describe theoretically. Since spheres possess only
(non-trivial) translational degrees of freedom, they solely appear in the completely dis-
ordered isotropic phase and in the crystalline state [HM06]. The shape of a sphere
is globally convex and there is no non-convex analog with full symmetry. All other
colloidal particle shapes are anisotropic and either uniaxial or biaxial. The charac-
teristic property of uniaxial particles is an axis of symmetry, whose orientation is
denoted by the unit vector �̂� below. These particles have rotational symmetry and
possess one non-trivial orientational degree of freedom in two spatial dimensions and
two non-trivial orientational degrees of freedom in three spatial dimensions. Uniaxial
particles are further distinguished into apolar and polar particles. A uniaxial particle
is called apolar , if it has head-tail symmetry, and polar otherwise. Rod-like particles
[RDP+04, HAN+06] like spherocylinders and spheroids are uniaxial and the most sim-
ple anisotropic colloidal particles. They are convex and apolar and of big importance,
since they may evolve the industrially important nematic phase and serve as excellent
model systems for many liquid crystals [WDCK90, THT09, LLRC10].
A further member of convex and apolar particles are the platelets [WLP98, BHD05,

BRS+06, BDW+08, LHMS10]. Their phase diagram is similar to the one of rod-like
particles with a strong affinity to form columnar stacks [MPVL10]. Systems of such
disk-like particles are realized in nature, for example, by clay suspensions [DHM95,
MDL+95, DHM97]. Examples for non-convex apolar particles are dumbbells (dimers)
[JKB05, MD08, DJK+10], which are produced by mergence of two spheres of equal
size, and rings [YLW+06, Tha08], which can be made by etching from colloidal spheres
that are partially embedded in a metal layer. The complement of apolar particles is
built by the polar particles that have no head-tail symmetry. A famous member of this
particle class are the Janus particles [HCLG06, HCS+08, WM08]. They are spheres
with a different coating on one half of the surface. The original Janus particles had a
hydrophilic and a hydrophobic coating. Nowadays, one coating is often reactive like a
platinic coating that decomposes hydrogen peroxide catalytically. Such particles are
immersed into a hydrogen peroxide solution to realize active particles (microswimmers)
that are driven by an intrinsic drive [PCYB10]. Cones are a further member of uniaxial
polar particles. Carbon nanocones appear naturally in graphite [KDT+97, JRDG03,
NEHK09] and do not need to be produced by an elaborate method.
By the mergence of two spheres with different diameters, one obtains a pear-like

particle [KBEP06, HJL+09]. Pears and also bowls [JIC+07, MKD+10] are non-convex
particles that are uniaxial and polar. The latter particles often stack into each other
and form columnar structures [MD10].
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Figure 2.1: Classification of synthetizable colloidal particles with respect to their
shape. Geometric properties used to classify the different shapes are symmetry and
convexity.
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Particles with less symmetry are biaxial . They are the complement to the uniaxial
particles in the class of the anisotropic particles. Biaxial particles have either only
discrete symmetries, like discrete rotational symmetry and inflection symmetry, or are
completely asymmetric. In both cases, the biaxial particles have three orientational
degrees of freedom2 and a unit vector is no longer sufficient to describe their orientation.
Instead, two perpendicular unit vectors or Eulerian angles have to be used [DE07]. Due
to the additional orientational degree of freedom, the phase diagrams of biaxial colloidal
particles are much richer than those for uniaxial particles [SLW10]. Convex colloidal
particles with discrete rotational or inflection symmetry are, for example, polyhedra
like cubes [CM97, MC99, ZLX+06, SGM08] and tetrahedra [YW97, HEK+09], boards
[PPT+09], pyramids [GKC04, Hel05, FTO08], and regular patchy particles [ZG04,
BLT+06, CYK+07, Sci08]. The latter differ from Janus particles by a patchy coating
with a regular, for example, tetrahedral, arrangement.
Non-convex particles with discrete rotational symmetry or inflection symmetry in-

clude special colloidal molecules that are realized by more than two spheres merged in
a regular arrangement. Examples for such colloidal molecules include trimers [LS03]
consisting of three equal spheres and chiral particles [ZBP+08, WJ09] consisting of
many equal spheres in a helical arrangement. Further non-convex particles with dis-
crete rotational symmetry are multipod-shaped nanocrystals [NW07, DMD+10], stars
[ZLX+06, WCH09], and some lock-and-key particles [SICP10]. Patchy particles may
also belong to the class of colloidal particles without any kind of symmetry. This is
the case, if the patches are arranged or sized in an irregular way. Irregular patchy
particles made by coating of spherical particles are always convex. Colloidal molecules
with arbitrary shape and size belong on the other hand to the completely asymmetric
non-convex colloidal particles [MEP03, QZR+08, KVK+09, SZO+10].

2.2 Active colloidal particles in nature and science

Active colloidal particles are the constituents of active soft matter 3 and a rather new
field of interest in soft condensed matter physics. They are small self-propelled par-
ticles that move under the influence of internal, external, hydrodynamic, and random
forces and torques through a viscous liquid. External forces and torques can, for exam-
ple, result from external electromagnetic or gravitational fields, while hydrodynamic
forces and torques are caused by the liquid flow around the particle, and random forces
and torques are always present for 𝑇 > 0 due to thermal fluctuations, with the inter-
nal forces and torques as the special feature of active particles in contrast to passive
particles. These internal forces and torques are caused by internal self-propulsion mech-
anisms of the active colloidal particles. Due to their small size, active colloidal particles

2In two spatial dimensions, anisotropic particles have always only one orientational degree of freedom
and are uniaxial. Biaxial particles do no more exist in two spatial dimensions than triaxial particles
in three spatial dimensions.

3The more general term active matter includes also self-propelled macroscopic objects such as, for
example, shoals of fish.
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move at low Reynolds numbers, where inertia is unimportant and the dynamics is over-
damped and Brownian. At low Reynolds numbers, the liquid flow around the colloidal
particle is kinematically reversible and described by the quasistationary creeping-flow
equations [HB91], which are invariant against time reversal. This has an important
consequence for the kind, in which these particles propel themselves. To generate a
directed force or torque with a non-vanishing time-average, the propulsion mechanism
must break time reversal symmetry [Pur77, Sta07]. This is realized in a variety of ways
for natural and artificial active particles. In nature, active colloidal particles appear in
the form of swimming microorganisms, but they can also be produced artificially. Both
swimming microorganisms and artificial microswimmers use a couple of very different
techniques for propulsion [MK06, EZB+08, LP09]. Nevertheless, in theoretical descrip-
tions of the dynamics of an active particle, it is often possible to neglect the details
of the propulsion mechanism and to model it simply by a force and a torque that are
permanently connected with the particle4. Up to a certain extent, it is also possible
to model a deformable colloidal swimmer, which changes its shape for propulsion, as
rigid non-deformable particle with a particular internal force and torque.
Swimming microorganisms include various procaryotic and eucaryotic motile cells

such as protozoa and many bacteria and use different techniques for swimming. Their
mechanisms for locomotion contain protoplasmic flow, deformations of the shape in-
volving traveling waves, cilia, and flagella [JV72]. Protoplasmic flow is especially used
by amoebae for locomotion and goes along with strong shape deformations, but it does
not allow high velocities. An example for a microorganism that swims fast through
deformations of its shape in combination with a flagellum is the parasitic protozoum
Trypanosoma brucei, which causes the African sleeping sickness5 (African trypanoso-
miasis). Flagella are also used by the rod-shaped bacterium Bacillus subtilis, which is
heavily flagellated and can move fast in liquids, and by the green alga Chlamydomonas
reinhardtii, that has two flagella and is known for its ability to resist external torques.
In a shear flow, it retains its orientation [RJP10, Sta10] and swims constantly upward
in the gravitational field of the earth. This phenomenon is also called negative gravi-
taxis. Very different is the drive of the harmless protozoum Paramecium aurelia that
is studded by a large number of cilia. More details on swimming microorganisms and
their locomotion can be found in reference [LP09].
The variety of artificial microswimmers is much smaller, since there are not so many

different strategies for their realization. For the construction of an artificial microswim-
mer two problems have to be solved. At first, one needs a suitable self-propulsion
mechanism [EZB+08, EH10], and secondly, the microswimmer has to be supplied with
energy. Propulsion mechanisms for artificial microswimmers were at first discussed by
Purcell in 1977 [Pur77, Sta07]. Like the three-sphere swimmer in reference [DZ09],
such microswimmers change their shapes in a non-reciprocal way in order to generate

4Of course, a swimmer is in principle force-free and torque-free [Dho96], but the internal forces and
torques are meant to be effective quantities, which govern the propulsion mechanism of the particle.

5For a short review, see reference [KJM04]. A theoretical modeling of the dynamics of trypanosomes
and a comparison with experimental observations are presented in reference [ZUP+11].
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a net motion [Sta07]. Alternative concepts are the propulsion by electroosmotic flow
[LPB96], magnetically actuated cilia [DS09, GDS09], the magnetically driven artificial
flagellum [DBR+05], and flexible ferromagnetic swimmers that are exposed to an al-
ternating magnetic field [BC09]. For the latter microswimmers, the necessary breaking
of time reversal symmetry is achieved by the buckling instability.
A similar idea are colloidal rotors that are composed of paramagnetic colloidal par-

ticles in a suitable time-dependent magnetic field [TGPS08]. Simpler and for the
realization of a dense suspension of active particles more appropriate are catalytically
driven particles. Such particles are partly coated with a chemically reactive layer as,
for example, Janus particles and swim in a suitable chemical reactive medium. The
chemically reactive coating can be made out of platinum. When a particle like this is
immersed in a hydrogen peroxide solution, the platinum acts as catalyst and cleaves
the hydrogen peroxide into water and oxygen. The pressure of the released oxygen
drives the microswimmers [PKO+04, DFW+06]. Also nanorotors [QBX+07] can be
driven catalytically.
However, catalytically driven particles have the drawback that the hydrogen perox-

ide is gradually used up with time and has to be replaced. But for active suspensions
with a high concentration of active particles, it is not possible to exchange the hydro-
gen peroxide without disturbing the small microswimmers. In this respect, different
concepts for the energy supply based on microwave radiation or light are better. One
of these ideas is that of Volpe et al. [VBV+11], who use Janus particles with a half gold
covering. These Janus particles swim due to self-diffusiophoresis in a critical binary
liquid mixture when they are illuminated, since the incident light heats one of the two
caps of the Janus particles and this causes a local asymmetric demixing of the binary
mixture. Further examples for artificial microswimmers can be found in references
[LP09, EH10, Ram10].
While active particles move, they dissipate energy so that they are always out of ther-

modynamic equilibrium. This dissipative non-equilibrium dynamics of active particles
is very interesting and includes individual and collective motion. The collective dynam-
ics [KS11] of active particles is complex and the rheological behavior [HRRS04] of active
particle suspensions is different from passive suspensions both in bulk and in confine-
ment [PDO09]. Among the observable effects of collective motion are self-organization
with pattern formation [SS08], clustering [WL08], flocking [TTR05], swarming [WL08,
EG09], laning, turbulence, and jamming [PDB06, LGG+09]. Furthermore, some insta-
bilities can be investigated in active suspensions. Although active particles have been
studied in experiments [HJR+07], by simulation [GS06, CFM+08, OO09, KS11], and
theoretically [MRR07, TL08, HTL09, TZL09, ZUP+11], there are still many open ques-
tions. Furthermore, the dynamics of active particles is not only interesting with respect
to biology and for fundamental theoretical reasons. It is also relevant for medicine,
since parasitic motile protozoa and bacteria are the cause for many serious diseases
such as, for example, the African trypanosomiasis, leishmaniasis, and salmonellosis.
There are technological applications as well, like the enhancing of fluid mixing [KB04]
in industrial processes.



3 Individual dynamics of an active
colloidal particle

In this chapter, the dynamics of an individual active colloidal particle is considered.
After an introductory section about Langevin equations for active colloidal particles
in previous work, the Langevin equation for an active colloidal particle with arbitrary
shape is presented and analytical solutions for various special cases are discussed. The
very complicated trajectories of the general Langevin equation are investigated nume-
rically. In a further section of this chapter, the influence of shear flow on the motion of
an active colloidal particle is also addressed. Applications of the obtained results and
possible generalizations are discussed at the end of this chapter.

3.1 Langevin equations for active colloidal particles

Langevin equations [CKW04] are stochastic differential equations that describe the
time evolution of slowly changing variables in a thermodynamic system with a large
number of fast fluctuating microscopic variables that influence the time evolution of the
slow variables. Such slowly changing variables are, for example, position, orientation,
momentum, and angular momentum of a colloidal particle in a viscous liquid. In this
example, the quickly changing microscopic variables characterize the liquid molecules
and relax much faster to local thermodynamic equilibrium than the few slow variables of
the colloidal particle. If several colloidal particles have to be described simultaneously,
especially the densities of conserved quantities like momentum density and energy
density are variables that relax slowly to local thermodynamic equilibrium.
Such a separation of time scales between a few slow and many fast relaxing vari-

ables is an important and justified assumption in the statistical description of colloidal
particles and allows the consideration of the thermodynamic system on the large time
scale of the slow variables, where the many microscopic degrees of freedom do not have
to be described directly. For the overdamped Brownian motion of a colloidal particle
there is a further separation of times scales between the position and orientation of the
colloidal particle on the one hand and its momentum and angular momentum on the
other hand. The dynamics can therefore also be described on a still larger time scale,
where the inertia of the colloidal particle is unimportant and the Langevin equation1

does not depend on momentum and angular momentum, but only on position and
orientation of the colloidal particle.

1In the case of an overdamped Brownian particle, the corresponding Fokker-Planck equation is
independent of momentum variables and often called a Smoluchowski equation.
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Langevin equations consist of two contributions that describe the slow variables
directly and model the influence of the fast variables on the dynamics of the slow
variables, respectively. The first contribution is deterministic and describes the time
evolution of the undisturbed slow variables. With the second contribution, which is a
stochastic noise term, all microscopic variables are taken into account and their influ-
ence on the dynamic equations of the slow variables is modeled. The stochastic noise
can usually be assumed to be Gaussian and white, since the microscopic variables are
locally in thermodynamic equilibrium on the time scale of the slow variables. The
construction of a Langevin equation is one possibility of three equivalent ways to de-
scribe stochastic processes. In general, the stochastic dynamics can alternatively also
be described by a Fokker-Planck equation [Ris96] or by a path integral2 [Gra78, Kle09].
While a Langevin equation describes particular realizations of the stochastic time evo-
lution of the slow variables, the other methods involve deterministic equations for these
variables. A Fokker-Planck equation describes the probability for the variables to at-
tain certain values at a certain time and path integral methods assign a probability to
each possible realization for the time evolution of the slow variables. All these three
methods have different advantages and disadvantages, but for the description of the
trajectories of individual Brownian particles in this chapter, Langevin equations are
most convenient.

Historically, the first Langevin equation was proposed by Langevin in 1908 [Lan08]
and describes the Brownian motion of a passive spherical colloidal particle under the
influence of thermal fluctuations. In this chapter, a much more complicated Langevin
equation is presented. On the one hand, it takes not only spherical but generally arbi-
trarily shaped colloidal particles into account, and on the other hand, the colloidal par-
ticles are assumed to be active. While the theory of the Brownian dynamics of spherical
and uniaxial colloidal particles is quite advanced [Dho96], much less is known for biaxial
particles, since their additional non-trivial degrees of freedom complicate the descrip-
tion of Brownian motion considerably [CFW04]. Very general Langevin equations that
respect also biaxial particles have been studied in references [FT02, MD04], but these
references take only passive colloidal particles into account. For active particles, there
have been only a few studies yet and they prefer to describe colloidal particles with a
simple symmetric shape. A few years ago, it was shown by van Teeffelen and Löwen
that the simultaneous action of an internal force and an internal torque on a colloidal
particle in two spatial dimensions leads to circle-swimming [TL08]. The considerations
in this reference were carried out for rod-like particles and later supplemented with nu-
merical solutions3 in a confined system [TZL09]. About the same time, the Langevin
equations for a spherical active particle in a linear channel, that restricts the particle to
one spatial and one orientational degree of freedom, were discussed [HTL09]. Recently,
the Brownian motion of spherical and rod-like active particles in two and three spatial
dimensions was also addressed using Langevin equations [ES11, HTL11].

2To avoid mistaking the term path integral with the vector analytic path integrals, the alternative
name functional integral is often used.

3See appendix B for numerical methods for the solution of stochastic differential equations.
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In the following, the Langevin equation for the much more general case of an active
colloidal particle with arbitrary shape, that moves in three spatial dimensions under
the influence of internal, external, hydrodynamic, and random forces and torques, is
formulated and discussed. While the internal forces and torques control the transla-
tional and angular propulsion velocity of the particle and are constant in a body-fixed
frame, the external forces and torques are constant in a space-fixed laboratory frame.
The consideration of arbitrary shapes includes all biaxial particles and also particles
with a hydrodynamic translational-rotational coupling [Bre65, Bre67] as, for example,
screw-like particles. This is important for many applications, since real active particles
are in general biaxial. Furthermore, the effect of shear flow is discussed. While the
equations of motion for passive anisotropic particles in a flowing liquid have already
been known since the 1920s [Jef22], active Brownian particles were at this time not
considered at all. Nevertheless, the flow field of the liquid has a big influence on the
dynamics of an active colloidal particle and there are many situations in which it can-
not be neglected. Especially swimming microorganisms in natural systems frequently
live in flowing water.

3.2 Langevin equation for an active colloidal particle
with arbitrary shape

The Langevin equation for the Brownian motion of an active biaxial particle suspended
in an unbounded viscous liquid at rest at infinity can be derived using low Reynolds
number hydrodynamics [HB91]. It is assumed that the colloidal particle is rigid and
that it has a constant mass density. The motion of such a particle is characterized
by the translational center-of-mass velocity ˙⃗𝑟(𝑡) = d�⃗�/d𝑡 with the center-of-mass posi-
tion �⃗�(𝑡) and the time variable 𝑡 as well as by the instantaneous angular velocity �⃗�(𝑡).
The Brownian motion of colloidal particles with arbitrary shape involves a hydrody-
namic coupling between the translational and the rotational degrees of freedom, that
was described theoretically, for example, by Brenner [Bre65, Bre67] in the 1960s. In
2002, Fernandes and de la Torre [FT02] proposed a corresponding Brownian dynamics
simulation algorithm for the motion of a passive rigid particle with arbitrary shape.
The underlying equations of motion have been generalized toward an imposed exter-
nal flow field for the surrounding liquid by Makino and Doi [MD04] in 2004. Their
description is appropriately generalized here toward an active biaxial particle that ex-
periences an internal effective force 𝐹0 and torque 𝑇0 both of which are constant in a
body-fixed coordinate system. Using a compact notation that is explained below, the
basic completely overdamped Langevin equation for three spatial dimensions

v⃗ = ℬ⃗(⃗x) + 𝛽𝒟(⃗x)
(︀
ℛ−1(⃗x)�⃗�0 − ∇⃗x⃗𝑈 (⃗x) +ℛ−1(⃗x)�⃗�

)︀
(3.1)

for an active Brownian particle with arbitrary shape is given here in a rather short
form. The biaxial particle has the position �⃗�(𝑡) = (𝑥1, 𝑥2, 𝑥3) and the orientation
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�⃗�(𝑡) = (𝜑, 𝜃, 𝜒) given in Eulerian angles4. For abbreviation, the translational and
orientational degrees of freedom are summarized by a compact 6-dimensional vector
x⃗ = (�⃗�, �⃗�) that obviously involves a generalized velocity v⃗ = ( ˙⃗𝑟, �⃗�) and a generalized

gradient ∇⃗x⃗ = (∇⃗�⃗�, ∇⃗�⃗�). This gradient operator is composed of the usual translational

gradient operator ∇⃗�⃗� ≡ 𝜕�⃗� = (𝜕1, 𝜕2, 𝜕3) acting on the Cartesian coordinates of �⃗� and

of the rotational gradient operator ∇⃗�⃗� = iL̂ [GG84] that is given by the product of
the imaginary unit i and the angular momentum operator L̂ in Eulerian angles5. In a
space-fixed coordinate system, the rotational gradient operator ∇⃗�⃗� is given by [GG84]

∇⃗�⃗� = M−T(�⃗�)𝜕�⃗� with the matrix [Sch76]

M(�⃗�) =

⎛⎝0 − sin(𝜑) cos(𝜑) sin(𝜃)
0 cos(𝜑) sin(𝜑) sin(𝜃)
1 0 cos(𝜃)

⎞⎠ , (3.2)

M−1(�⃗�) =

⎛⎝− cos(𝜑) cot(𝜃) − sin(𝜑) cot(𝜃) 1
− sin(𝜑) cos(𝜑) 0

cos(𝜑) csc(𝜃) sin(𝜑) csc(𝜃) 0

⎞⎠ (3.3)

and the angular derivation operator 𝜕�⃗� = (𝜕𝜑, 𝜕𝜃, 𝜕𝜒) acting on the Eulerian angles

�⃗�. The angular velocity �⃗�(𝑡), on the other hand, can be expressed as �⃗� = M(�⃗�) ˙⃗𝜛
with the time derivative ˙⃗𝜛(𝑡) = d�⃗�/d𝑡 of the Eulerian angles �⃗�(𝑡). Furthermore, in

equation (3.1) the compact notation �⃗�0 = (𝐹0, 𝑇0) for the generalized propulsion force

�⃗�0 is used. It combines the effective propulsion force 𝐹0 and torque 𝑇0. In general, the
biaxial particle is exposed to an external potential 𝑈 (⃗x) giving rise to an external force

𝐹ext = −∇⃗�⃗�𝑈 and an external torque 𝑇ext = −∇⃗�⃗�𝑈 that are both considered to be
constant in the sequel in order to keep the model simple. The 6×6-dimensional rotation
matrix ℛ−1(⃗x) in equation (3.1) is associated with the geometric transformation from
the body-fixed frame to the space-fixed laboratory frame. Its inverse ℛ(⃗x) is the block
diagonal rotation matrix

ℛ(⃗x) = diag
(︀
R(�⃗�),R(�⃗�)

)︀
(3.4)

with the rotation submatrices

R(�⃗�) = R3(𝜒) R2(𝜃) R3(𝜑) ,

R−1(�⃗�) = RT(�⃗�) = R3(−𝜑) R2(−𝜃) R3(−𝜒) ,
(3.5)

4Alternatively, the orientation of the particle could also be described by means of two perpendicular
axes [CFW04], but here the use of Eulerian angles is more appropriate, since they do not involve
additional geometric constraints and lead to simpler equations with a more compact notation.

5As there is no uniqueness in the definitions of the Eulerian angles �⃗� = (𝜑, 𝜃, 𝜒), the popular
convention of Gray and Gubbins [GG84], which is equivalent to the second convention of Schutte
[Sch76], is used for convenience. This convention has the advantage that it is a direct generalization
of the spherical coordinates (𝜃, 𝜑) that are identical with the first two Eulerian angles 𝜑 and 𝜃,
while the third angle 𝜒 describes the rotation around the axis, which is defined by the polar angle
𝜃 and the azimuthal angle 𝜑 in the spherical coordinate system [GG84].
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where the elementary rotation matrices R𝑖(𝜙) describe a clockwise rotation (when
looking down the axes) around the 𝑖th Cartesian axis by the angle 𝜙 for 𝑖 ∈ {1, 2, 3}:

R1(𝜙) =

⎛⎝1 0 0
0 cos(𝜙) sin(𝜙)
0 − sin(𝜙) cos(𝜙)

⎞⎠ , (3.6)

R2(𝜙) =

⎛⎝cos(𝜙) 0 − sin(𝜙)
0 1 0

sin(𝜙) 0 cos(𝜙)

⎞⎠ , (3.7)

R3(𝜙) =

⎛⎝ cos(𝜙) sin(𝜙) 0
− sin(𝜙) cos(𝜙) 0

0 0 1

⎞⎠ . (3.8)

The particle shape and its hydrodynamic properties enter the Langevin equation in the
symmetric6 generalized short-time diffusion tensor7 𝒟(⃗x). This tensor can be expressed
by the 6×6-dimensional matrix

𝒟(⃗x) =
1

𝛽𝜂
ℛ−1(⃗x)ℋ−1ℛ(⃗x) =

(︂
DTT(�⃗�) DTR(�⃗�)
DRT(�⃗�) DRR(�⃗�)

)︂
, (3.9)

where DTT(�⃗�), DTR(�⃗�) = (DRT(�⃗�))T, and DRR(�⃗�) are 3×3-dimensional submatrices
that correspond to pure translation, translational-rotational coupling, and pure rota-
tion, respectively8. Here, 𝜂 is the dynamic (shear) viscosity of the embedding liquid
and 𝛽 = 1/(𝑘B𝑇 ) with the Boltzmann constant 𝑘B and the effective9 temperature 𝑇
denotes the inverse thermal energy. The hydrodynamic matrix ℋ is constant. It only
depends on the shape and the size of the Brownian particle and is independent of the
viscosity of the liquid. This matrix ℋ is composed of the symmetric translation tensor
K, the not necessarily symmetric coupling tensor CS with the reference point10 S, and
the symmetric rotation tensor ΩS [Bre67, HB91]:

ℋ =

(︂
K CT

S

CS ΩS

)︂
. (3.10)

The Langevin equation (3.1) thus involves altogether 21 shape-dependent parameters.

Finally, �⃗�(𝑡) = (𝑓0, �⃗�0) summarizes the stochastic force 𝑓0(𝑡) and torque �⃗�0(𝑡) due to

6The reciprocity relation 𝒟(⃗x) = (𝒟(⃗x))T is a consequence of Onsager’s principle [LL08].
7The tensor 𝒟(⃗x) could also be called a damping tensor or inverse friction tensor.
8For experimental investigations of the three-dimensional translational and rotational diffusion of bi-
axial colloidal particles, see, for example, references [HWHW09, HEEW11] and references therein.

9Since active particles are out of thermodynamic equilibrium, only an effective temperature can be
assigned to active systems [PCYB10].

10The coupling tensor CS becomes symmetric, if one chooses the center of hydrodynamic reaction as
reference point S [HB91]. In general, the center-of-mass position of the particle should be chosen
as reference point.
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thermal fluctuations, that act on the Brownian particle, in body-fixed coordinates for
𝑇 > 0. This thermal noise �⃗�(𝑡) is assumed to be Gaussian white noise with mean

⟨�⃗�(𝑡)⟩ = 0⃗ (3.11)

and correlation

⟨�⃗�(𝑡1)⊗ �⃗�(𝑡2)⟩ = ℋ2𝜂

𝛽
𝛿(𝑡1 − 𝑡2) , (3.12)

where ⟨ · ⟩ denotes the noise average and ⊗ is the dyadic product. Notice that the
dynamics that is described by the Langevin equation (3.1) depends on the definition

of the stochastic contribution ∝ �⃗�(𝑡). Depending on the particular type of stochastic
calculus, that is chosen to handle the multiplicative noise in the Langevin equation,
different expressions for the drift term ℬ⃗(⃗x) in equation (3.1) are appropriate (see
appendix B or reference [Ris96] for details). In general, the drift term can be written
as [Ris96, CKW04, LL07]

ℬ𝑖 =
1

2
ℳ𝑖𝑗𝜕x𝑘(𝑏𝑘𝑙𝑏𝑗𝑙)− 𝛼ℳ𝑖𝑗 𝑏𝑘𝑙(𝜕x𝑘𝑏𝑗𝑙) (3.13)

with the matrix ℳ = diag(1,M), the derivation operator 𝜕x = (𝜕�⃗�, 𝜕�⃗�), the expression

𝑏𝑖𝑘𝑏𝑗𝑘 = 2ℳ−1
𝑖𝑙 𝒟𝑙𝑚ℳ−T

𝑚𝑗 , (3.14)

and the parameter 𝛼. Only if this parameter is chosen properly, the additive drift term
ℬ⃗(⃗x) in the Langevin equation guarantees that the solutions of the Langevin equation
respect the Boltzmann distribution, when the internal force and torque vanish and the
system is in thermodynamic equilibrium at temperature 𝑇 . In particular, one has to
choose 𝛼 = 0 for the Itō stochastic calculus11, 𝛼 = 1/2 for the Stratonovich stochastic
calculus , and 𝛼 = 1 for the Klimontovich stochastic calculus . This circumstance is
always relevant in the case of multiplicative noise, but the necessity of the adaptation
of the Langevin equation to the type of stochastic calculus has been missed in previous
work [FT02, MD04].

3.2.1 Special analytical solutions of the Langevin equation

The Langevin equation (3.1) represents a system of six coupled nonlinear stochastic
differential equations [Has07] that cannot be solved analytically in general. There exist
only a few analytical solutions for rather special situations. Several simple Langevin
equations for active spherical or uniaxial particles in two or three spatial dimensions are
known from the literature [TL08, HTL09, HTL11] and are special cases of the general
Langevin equation (3.1). They are not as general and complicated as equation (3.1)
and can be solved analytically. Other analytically solvable special cases of equation
(3.1) are obtained for orthotropic particles in the absence of thermal fluctuations.

11In the following, the Itō stochastic calculus is chosen for convenience.
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3.2.1.1 Three spatial dimensions

In the general three-dimensional case, it is not even possible to solve the Langevin
equation (3.1) analytically, if the stochastic noise is neglected. Further simplifications
that reduce the number of the degrees of freedom or diagonalize the matrix ℋ are
necessary in order to obtain soluble cases.

3.2.1.2 Two spatial dimensions

An obvious simplification of the general Langevin equation (3.1) is the restriction to
two spatial dimensions. A two-dimensional analog of the general Langevin equation
can be obtained by choosing the values 𝑥3 = 0, 𝜃 = 𝜋/2, and 𝜒 = 0, leaving only a
single azimuthal angle 𝜑. In analogy to the notation in reference [TL08], the vectors

ℛ−1(⃗x)�⃗�0 = (𝐹A, 0, 0, 0,𝑀), �⃗�(𝑡) = (0, 𝑓⊥, 𝑓‖,−𝜏, 0, 0), and ℛ−1(⃗x)�⃗� = (𝑓, 0, 0, 0, 𝜏)

with the internal driving force 𝐹A = 𝐹‖�̂�‖ + 𝐹⊥�̂�⊥ and the internal driving torque 𝑀
are defined. The orientation vector �̂�‖ = (cos(𝜑), sin(𝜑)) denotes the figure axis of
the particle and �̂�⊥ = (− sin(𝜑), cos(𝜑)) is its orthogonal complement. Similarly, the

vector 𝑓(𝑡) denotes the stochastic force and 𝜏(𝑡) is the stochastic torque acting on the

particle. The stochastic force vector 𝑓(𝑡) is decomposed like the internal driving force:

𝑓(𝑡) = 𝑓‖�̂�‖+𝑓⊥�̂�⊥. Moreover, the new two-dimensional position vector is �⃗� = (𝑥1, 𝑥2),

the corresponding gradient is ∇⃗�⃗� = (𝜕1, 𝜕2), and the stochastic noise is characterized

by the vector
˜⃗
𝜉(𝑡) = (𝑓⊥, 𝑓‖,−𝜏) with mean

⟨ ˜⃗𝜉(𝑡)⟩ = 0⃗ (3.15)

and correlation

⟨ ˜⃗𝜉(𝑡1)⊗
˜⃗
𝜉(𝑡2)⟩ = ̃︀ℋ 2𝜂

𝛽
𝛿(𝑡1 − 𝑡2) , (3.16)

where ̃︀ℋ = (ℋ𝑖𝑗)𝑖,𝑗=2,3,4 is a 3×3-dimensional submatrix of ℋ. The Langevin equations
for two spatial dimensions are then given by

˙⃗𝑟 = �⃗�T + 𝛽
(︀
DT(𝐹A − ∇⃗�⃗�𝑈 + 𝑓)− �⃗�C(𝑀 − 𝜕𝜑𝑈 + 𝜏)

)︀
,

�̇� = 𝐵R + 𝛽
(︀
𝐷R(𝑀 − 𝜕𝜑𝑈 + 𝜏)− �⃗�C ·(𝐹A − ∇⃗�⃗�𝑈 + 𝑓)

)︀ (3.17)

with the translational drift vector

�⃗�T(𝜑) = 𝐵
‖
T�̂�‖ +𝐵⊥

T �̂�⊥ , (3.18)

which is in accordance with the interpretation of the solution of the Langevin equations
as an Itō process [KP06], the translational short-time diffusion tensor

DT(𝜑) = 𝐷1�̂�‖ ⊗ �̂�‖ +𝐷2(�̂�‖ ⊗ �̂�⊥ + �̂�⊥⊗ �̂�‖) +𝐷3�̂�⊥⊗ �̂�⊥ , (3.19)
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and the coupling vector
�⃗�C(𝜑) = 𝐷

‖
C�̂�‖ +𝐷⊥

C �̂�⊥ . (3.20)

They involve only 9 instead of 21 shape-dependent parameters. These are the transla-
tional drift coefficients

𝐵
‖
T =

1

𝛽𝜂

(︁(︀
ℋ−1

)︀
24
−
(︀
ℋ−1

)︀
15

)︁
, (3.21)

𝐵⊥
T =

1

𝛽𝜂

(︁(︀
ℋ−1

)︀
16
−
(︀
ℋ−1

)︀
34

)︁
, (3.22)

the rotational drift coefficient

𝐵R =
1

𝛽𝜂

(︀
ℋ−1

)︀
56
, (3.23)

the translational diffusion coefficients

𝐷1 =
1

𝛽𝜂

(︀
ℋ−1

)︀
33

=
1

𝛽𝜂

(︀ ̃︀ℋ−1
)︀
22
, (3.24)

𝐷2 =
1

𝛽𝜂

(︀
ℋ−1

)︀
23

=
1

𝛽𝜂

(︀ ̃︀ℋ−1
)︀
12
, (3.25)

𝐷3 =
1

𝛽𝜂

(︀
ℋ−1

)︀
22

=
1

𝛽𝜂

(︀ ̃︀ℋ−1
)︀
11
, (3.26)

the coupling coefficients

𝐷
‖
C =

1

𝛽𝜂

(︀
ℋ−1

)︀
34

=
1

𝛽𝜂

(︀ ̃︀ℋ−1
)︀
23
, (3.27)

𝐷⊥
C =

1

𝛽𝜂

(︀
ℋ−1

)︀
24

=
1

𝛽𝜂

(︀ ̃︀ℋ−1
)︀
13
, (3.28)

and the rotational diffusion coefficient

𝐷R =
1

𝛽𝜂

(︀
ℋ−1

)︀
44

=
1

𝛽𝜂

(︀ ̃︀ℋ−1
)︀
33
. (3.29)

Some of these nine coefficients are zero or equal, respectively, if the described Brownian
particle is symmetric. Table 3.1 on the facing page gives an overview over possible
symmetries of the shape of a particle and the corresponding properties of the shape-
dependent coefficients (3.21)-(3.29).
Although the Langevin equations (3.17) for two spatial dimensions are much simpler

than equation (3.1), they are still coupled nonlinear stochastic differential equations and
thus not analytically solvable. However, if the external potential 𝑈(�⃗�, 𝜑) is set to zero,
the Langevin equations can be solved analytically and depending on the temperature
the center-of-mass trajectory becomes either a circle (𝑇 = 0) or a logarithmic spiral
(𝑇 > 0) like in reference [TL08].
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Table 3.1: Connection between the symmetry of the particle shape and the parameters
(3.21)-(3.29) in the Langevin equations (3.17) for two spatial dimensions.

The analytical solution for 𝑈(�⃗�, 𝜑) = 𝑓‖ = 𝑓⊥ = 𝜏 = 0 is given by

�⃗�(𝑡) = �⃗�0 +
𝛽

𝜔
(𝐹‖𝐷2 + 𝐹⊥𝐷3 −𝑀𝐷⊥

C)
(︀
�̂�‖(𝜑0 + 𝜔𝑡)− �̂�‖(𝜑0)

)︀
− 𝛽

𝜔
(𝐹‖𝐷1 + 𝐹⊥𝐷2 −𝑀𝐷

‖
C)
(︀
�̂�⊥(𝜑0 + 𝜔𝑡)− �̂�⊥(𝜑0)

)︀
,

(3.30)

𝜑(𝑡) = 𝜑0 + 𝜔𝑡 (3.31)

with the scalar angular velocity

𝜔 = 𝛽(𝑀𝐷R −𝐷
‖
C𝐹‖ −𝐷⊥

C𝐹⊥) , (3.32)

the initial position �⃗�0 = �⃗�(0), and the initial orientation 𝜑0 = 𝜑(0). If instead of

𝑈(�⃗�, 𝜑) the translational diffusion coefficient 𝐷2 and the coupling coefficients 𝐷
‖
C and

𝐷⊥
C vanish, as it is the case for a particle with double inflection symmetry, the Langevin

equations (3.17) become similar to the Langevin equations for the Brownian circle

swimmer in reference [TL08], but with a more general driving force 𝐹A that is not

necessarily parallel to the figure axis. For 𝐷2 = 𝐷
‖
C = 𝐷⊥

C = 𝐹⊥ = 0, the Langevin
equations (3.17) are equivalent to the Langevin equation in reference [TL08]. An
additional constraint on spherical particles that are only able to move along the 𝑥1-axis
leads to the Langevin equations for an active spherical particle on a substrate [HTL09].
With similar simplifications it is also possible to obtain the Langevin equations for
spherical or uniaxial active particles in two spatial dimensions that are discussed in
reference [HTL11] from equations (3.17).
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3.2.1.3 Orthotropic particles

Another possibility to simplify the Langevin equation (3.1) considerably is the exclu-
sive consideration of orthotropic particles. All geometric bodies with three pairwise
orthogonal planes of symmetry such as spheres, spheroids (ellipsoids of revolution),
biaxial ellipsoids, cylinders, cuboids, and some prisms belong to this important class.
Orthotropic particles have no translational-rotational coupling so that the coupling
tensor CS vanishes. Furthermore, the translation tensor K and the rotation tensor
ΩS are diagonal for orthotropic particles. These properties of K, CS, and ΩS can be
derived from the circumstance that the center of mass, which is chosen as reference
point S, and the mutual point of intersection of the three planes of symmetry of an
orthotropic particle coincide [HB91]. The vanishing of the coupling tensor CS results
from the fact that the point of intersection of the three pairwise perpendicular planes
of symmetry of the particle is identical with the center of hydrodynamic reaction for
orthotropic bodies. With these considerations, the Langevin equation (3.1) simplifies
to the Langevin equations for orthotropic particles :

˙⃗𝑟 = 𝛽DTT
(︀
R−1𝐹0 − ∇⃗�⃗�𝑈 +R−1�⃗�T

)︀
,

�⃗� = �⃗�R + 𝛽DRR
(︀
R−1𝑇0 − ∇⃗�⃗�𝑈 +R−1�⃗�R

)︀
.

(3.33)

Here, the rotational drift vector �⃗�R is defined as the second part of the 6-dimensional
drift vector ℬ⃗(⃗x): �⃗�R = (ℬ⃗(⃗x))𝑖=4,5,6. Similarly, the Gaussian white noises �⃗�T(𝑡) and

�⃗�R(𝑡) are independent and defined as the first and second part of �⃗�(𝑡) = (�⃗�T, �⃗�R),
respectively. The Langevin equations for spherical or uniaxial particles, that are con-
sidered in reference [HTL11], are special cases of the more general Langevin equations
(3.33) for biaxial orthotropic particles. To be able to solve these stochastic differential

equations analytically, it is at first necessary to neglect �⃗�T and �⃗�R, i. e., to consider the
case 𝑇 = 0. A further negligence of the drive or the external potential leads to two
special cases, which are analytically solvable.

a) Settling orthotropic passive particle

A particle without drive, i. e., with 𝐹0 = 𝑇0 = 0⃗, at 𝑇 = 0 moves only under the
influence of the external potential 𝑈(�⃗�, �⃗�). In the case of a constant gravitational field,

only the constant external force 𝐹ext = −∇⃗�⃗�𝑈 acts on the particle and the external
torque 𝑇ext = −∇⃗�⃗�𝑈 vanishes. The motion of such a settling particle is well known
from the literature [HB91]. It is characterized by a constant velocity ˙⃗𝑟 and a constant
orientation �⃗� = �⃗�0 = �⃗�(0):

˙⃗𝑟 = 𝛽DTT(�⃗�0)𝐹ext = 𝑐𝑜𝑛𝑠𝑡. , �⃗� = �⃗�0 = 𝑐𝑜𝑛𝑠𝑡. (3.34)

b) Orthotropic active particle
If the external potential 𝑈(�⃗�, �⃗�) is neglected instead of the drive in equations (3.33)
for 𝑇 = 0, they describe the helical motion of an arbitrary orthotropic active particle
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in the absence of external and random forces and torques:

˙⃗𝑟 = R−1(�⃗�)K−1 1

𝜂
𝐹0 , �⃗� = R−1(�⃗�) Ω−1

S

1

𝜂
𝑇0 . (3.35)

These equations of motion are trivial in the body-fixed coordinate system, where the
velocities ˙⃗𝑟 and �⃗� are constant. Since the angular velocity �⃗� is constant in body-fixed
coordinates, it is also constant in the space-fixed system. This means that one expects
a helix for the center-of-mass trajectory as it is known from the motion of protozoa
like Euglena gracilis [JV72] and bacteria like Thiovulum majus [SJ01]. The analytical
solution of equations (3.35) is in fact the circular helix

�⃗�(𝑡) = �⃗�0 +
(�⃗� × �⃗�0)× �⃗�

‖�⃗�‖3
sin(‖�⃗�‖𝑡) + �⃗� × �⃗�0

‖�⃗�‖2
(︀
1− cos(‖�⃗�‖𝑡)

)︀
+
�⃗� · �⃗�0
‖�⃗�‖2

�⃗�𝑡 (3.36)

with axis

A = �⃗�0 +
�⃗� × �⃗�0
‖�⃗�‖2

+ �⃗�R , (3.37)

radius

𝑟 =

⃦⃦
(K−1𝐹0)× (Ω−1

S 𝑇0)
⃦⃦

𝜂2‖�⃗�‖2
, (3.38)

and pitch

ℎ = 2𝜋

⃒⃒
(K−1𝐹0) · (Ω−1

S 𝑇0)
⃒⃒

𝜂2‖�⃗�‖2
, (3.39)

where �⃗�0 = �⃗�(0) is the initial position, �⃗�0 = ˙⃗𝑟(0) = R−1(�⃗�0)K
−1𝐹0/𝜂 is the initial

velocity, and ‖�⃗�‖ = ‖Ω−1
S 𝑇0/𝜂‖ is the modulus of the angular velocity. This helical

trajectory is shown schematically in figure 3.1. When a constant gravitational field

Figure 3.1: The center-of-mass trajectory of an orthotropic particle for a constant
external potential and 𝑇 = 0 is a circular helix with radius 𝑟 and pitch ℎ that evolves
from the rotation of the orthotropic particle with the constant angular velocity �⃗�.
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is also taken into account, the helix becomes deformed and, for example, its cross
section might become elliptic, but the axis of the helix remains a straight line. In the
case 𝑇 > 0, where the stochastic contributions in the Langevin equations (3.33) have
to be considered, it is, however, no longer possible to find analytical solutions. This
case requires the usage of appropriate numerical integrators for stochastic differential
equations and is studied in the next section.

3.2.2 Numerical solutions of the Langevin equation

In general situations, where analytical solutions do not exist, the Langevin equation
(3.1) can only be investigated with the help of numerical methods. Appropriate nu-
merical methods in increasing order of the truncation error are the Euler-Maruyama
method, the Milstein method, and stochastic Runge-Kutta methods [KP06], which
have to be derived in the Itō sense in order to be compatible with the Itō stochastic
calculus that has been chosen for the Langevin equations in this chapter (see appendix
B for further information). If there are no thermal fluctuations (𝑇 = 0), the stochastic
Langevin equation (3.1) becomes deterministic and a standard Runge-Kutta scheme
of high order can be applied. The numerical results for 𝑇 = 0 and 𝑇 > 0 that are
presented in what follows have been obtained by an explicit fourth-order deterministic
Runge-Kutta scheme [AS72, PTVF92, AW05, But08] and by a multi-dimensional ex-
plicit stochastic Runge-Kutta scheme of weak order 2.0 for Itō stochastic differential
equations [KP06], respectively. During the whole section, 𝐹0, 𝑇0, 𝐹ext = −∇⃗�⃗�𝑈 , and

𝑇ext = −∇⃗�⃗�𝑈 are assumed to be constant vectors that do not depend on �⃗� or �⃗�. Fur-
thermore, arbitrary Brownian particles with a hydrodynamic translational-rotational
coupling and orthotropic particles without a translational-rotational coupling in two
and three spatial dimensions are considered for 𝑇 = 0 and 𝑇 > 0. Parallel to the pre-
vious section, this section is divided into a first subsection about the general Langevin
equation for three spatial dimensions, a second subsection about two spatial dimen-
sions, and a third subsection about orthotropic particles.

3.2.2.1 Three spatial dimensions

For arbitrarily shaped particles in three spatial dimensions, various differently shaped
trajectories are found as solutions of the Langevin equation (3.1). Figure 3.2 on the
facing page gives a selection of typical trajectories that can be observed for arbitrarily
shaped particles with an arbitrary drive at 𝑇 = 0. In order to sample some typical
solutions, random values have been chosen for the 21 shape-dependent parameters in
the matrixℋ, for the elements of the internal force 𝐹0 and torque 𝑇0, for the elements of
the external force 𝐹ext and torque 𝑇ext, and for the initial conditions. Altogether more
than 100 random parameter combinations were considered. In doing so, four different
cases with vanishing and non-vanishing vectors for 𝐹ext and 𝑇ext were distinguished (see

figure 3.2 on the next page). Depending on the choice of 𝐹ext and 𝑇ext, the observed
trajectories appeared to share common features and to be distinguishable into four
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Figure 3.2: Typical trajectories of arbitrarily shaped active particles in three spatial
dimensions for constant vectors 𝐹0 /= 0⃗, 𝑇0 /= 0⃗ and temperature 𝑇 = 0 (schematic).

The external force 𝐹ext = −∇⃗�⃗�𝑈 and torque 𝑇ext = −∇⃗�⃗�𝑈 are constant, too. For
a non-vanishing external force, the particle’s center-of-mass trajectory starts with an
irregular transient regime and changes into a periodic motion, as it is shown in plots
(a) and (b). The general periodic motion (a) that is observed, if there is also a non-
vanishing external torque, reduces to a circular helix (b) parallel to the external force,
if there is no external torque. The other two plots (c) and (d) show the situation
for a vanishing external force, where a transient regime is not observed. There, the
trajectory is either a superhelix -like curve (c) parallel to a non-vanishing external torque
or a circular helix (d), if there is no external torque. However, the trajectories (a)-(c)
can also be irregular. Straight trajectories, that are preceded by a transient regime for
𝐹ext /= 0⃗, can be observed, too.
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different classes. The four trajectories, that are shown in figure 3.2 on the preceding
page, are representatives of these classes. They can be characterized as follows: if there
are both an external force and an external torque, active particles that start with an
irregular transient regime and end up in a simple periodic center-of-mass trajectory are
usually observed [see figure 3.2(a)]. Notice that the length of the initial transient regime
as well as the periodicity length of the final periodic motion depend on the particular
parameters and can become rather big. In the case of no external torque, the periodic
motion after the transient regime is a circular helix with its axis being parallel to the
direction of the external force vector. This situation is illustrated in figure 3.2(b).
The analogous case of an external torque but no external force is schematically shown
in figure 3.2(c). There, a superhelix -like curve with the orientation parallel to the
direction of the external torque vector and without a preceding transient regime is
observed. In contrast to the trajectory in figure 3.2(a), the complicated superhelix-like
curve does not turn into a simpler periodic curve after some time, since there is no
transient regime for 𝐹ext = 0⃗. As the fourth case, the motion in the absence of both
external forces and torques is shown in figure 3.2(d). It appears to be a circular helix.
Also in this case, a transient regime is not observed. In the situation of plots 3.2(a)
and 3.2(b), completely irregular trajectories can appear, when the transient regime is
very long. Even in the transient-free situation of figure 3.2(c), irregular trajectories are
observed, when the rotational frequency ratio between the immanent rotation of the
active particle and the rotation due to the external torque is irrational. Furthermore,
straight trajectories appear as a special case. They are preceded by a transient regime,
if 𝐹ext /= 0⃗. A complete and detailed classification of all trajectories that can be
observed in three spatial dimensions is, however, not possible, since the number of the
parameters defining the shape of the particle and all further relevant quantities like
internal and external forces and torques is quite big. This number is much smaller,
however, in two spatial dimensions, where a more detailed classification is possible.

3.2.2.2 Two spatial dimensions

The Langevin equations (3.17) for two spatial dimensions were solved analytically in
section 3.2.1.2 for 𝑈(�⃗�, 𝜑) = 0 and 𝑇 = 0. Here, the case 𝑇 = 0 is considered, too, but

now for a constant non-vanishing external force 𝐹ext = −∇⃗�⃗�𝑈 , since this external force
leads to various different non-trivial trajectories. The observed trajectories are classi-
fied with respect to the shape and the kind of self-propulsion of the particle in table 3.2
on page 28. Since the drift coefficients 𝐵

‖
T, 𝐵

⊥
T , and 𝐵R can be neglected for 𝑇 = 0, the

shape of the particle is only described with the six parameters𝐷1, 𝐷2, 𝐷3, 𝐷
‖
C, 𝐷

⊥
C , and

𝐷R, where 𝐷1 and 𝐷R can be set to one by a suitable rescaling of the length and time
scales. For the remaining parameters, particles with a translational-rotational coupling
and particles without a translational-rotational coupling as well as asymmetric parti-
cles, particles with one axis of symmetry, particles with two mutually perpendicular
axes of symmetry, and isotropic particles with rotational symmetry are distinguished.
Moreover, the constant parameters 𝐹‖, 𝐹⊥, and 𝑀eff = 𝑀 − 𝜕𝜑𝑈 are used to describe
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the self-propulsion of the particle. Four situations of a non-vanishing internal force 𝐹A

and torque𝑀 , a drive only by either an internal force or an internal torque, and a pas-
sive particle with a vanishing drive are considered. A further distinction with respect
to the external force and torque is not necessary, because the external force can always
be chosen to be bigger than zero, since the case of a vanishing external force has been
proved to lead to a trivial circular trajectory in section 3.2.1.2, and the external torque
−𝜕𝜑𝑈 is already included in the effective torque 𝑀eff and can be neglected. In general,
straight lines with an aperiodic transient regime, arbitrary periodic curves, cycloids,
and simple straight lines were found as trajectories in two spatial dimensions by ran-
dom choices of the parameters. These trajectories still have the basic features of their
three-dimensional analogs, but are much simpler to describe. It is only for particles
with translational-rotational coupling, i. e., particles where at least one of the coeffi-
cients 𝐷

‖
C and 𝐷⊥

C does not vanish, that the straight trajectories are preceded by an
initial transient regime. These trajectories are characterized by a monotonous rotation
of the particle when it starts moving and an ensuing rotation-free straight motion. In
the transient regime, the particle rotates until the internal torque, the external torque,
and the additional torque due to the translational-rotational coupling compensate each
other. For active particles with translational-rotational coupling, periodic trajectories
are observed also, where a canceling of the total torque does not happen during the
initial rotation. This is not the case for symmetric particles with a vanishing effective
torque 𝑀eff and for passive particles, for which a periodic trajectory is not observed.
The motion of symmetric particles without translational-rotational coupling is always
periodic or constant. In both cases the trajectory is parallel to the direction of the
external force, if the effective torque 𝑀eff is not zero. Without the effective torque,
only straight trajectories are observed for these particles. Solely in the case of passive
rotationally symmetric particles, the orientation of these straight trajectories is parallel
to the external force.
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Table 3.2: Detailed classification of the trajectories of arbitrarily shaped particles in
two spatial dimensions for 𝑇 = 0 with respect to the symmetries that are summarized
in table 3.1 on page 21. An external force 𝐹ext /= 0⃗ is chosen, since all trajectories

become circles otherwise. In the plots below, 𝐹ext is always oriented downwards in
the negative 𝑥2-direction. Internal and external torques are combined to the effective
torque 𝑀eff =𝑀 − 𝜕𝜑𝑈 .

𝑎 The particle rotates monotonously until it reaches its final orientation. Then the angle 𝜑(𝑡) remains constant.
𝑏 The angle 𝜑(𝑡) and the center of mass of the particle describe periodic curves with the same periodicity.
𝑐 The particle rotates with a constant angular velocity, i. e., 𝜑(𝑡) ∝ 𝑡.
𝑑 The orientation of the particle is constant: 𝜑(𝑡) = 𝑐𝑜𝑛𝑠𝑡.
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3.2.2.3 Orthotropic particles

To regard the influence of thermal fluctuations on the motion of an active biaxial
Brownian particle, numerical solutions of the Langevin equations (3.33) for orthotropic
particles are considered in this section for 𝑇 > 0. For this purpose, first of all, charac-
teristic quantities for the length scale, time scale, and force scale are chosen and the
Langevin equations (3.33) are rescaled to dimensionless units. A suitable choice for
the characteristic length 𝑙c, the characteristic time 𝑡c, and the characteristic force 𝐹c is

𝑙c =

√︃
𝜆max(DTT)

𝜆max(DRR)
, 𝑡c =

1

𝜆max(DRR)
, 𝐹c =

𝜂𝑙2c
𝑡c

= 𝜂 𝜆max(D
TT) , (3.40)

where 𝜆max( · ) denotes the biggest eigenvalue of the respective matrix. These char-
acteristic quantities are used to express the position �⃗� = �⃗�′𝑙c, time 𝑡 = 𝑡′𝑡c, forces
𝐹0 = 𝐹 ′

0𝐹c, 𝐹ext = 𝐹 ′
ext𝐹c, torques 𝑇0 = 𝑇 ′

0𝐹c𝑙c, 𝑇ext = 𝑇 ′
ext𝐹c𝑙c, translation tensor

K = K′𝑙c, and rotation tensor ΩS = Ω′
S𝑙

3
c by the dimensionless position �⃗�′ = (𝑥′1, 𝑥

′
2, 𝑥

′
3),

time 𝑡′, forces 𝐹 ′
0, 𝐹

′
ext, torques 𝑇

′
0, 𝑇

′
ext, translation tensor K′, and rotation tensor Ω′

S,
respectively. In the rescaled Langevin equations, the parameter

𝑇 ′ =
2𝑡c
𝜂𝛽𝑙3c

=
2

𝜂𝛽

√︃
𝜆max(DRR)

𝜆3max(D
TT)

∝ 𝑇 (3.41)

appears as a dimensionless temperature. This parameter has been varied and fluctu-
ation-averaged trajectories have been calculated for different temperatures with fixed
initial conditions �⃗�′0 = (𝑥′1,0, 𝑥

′
2,0, 𝑥

′
3,0) and �⃗�

′
0 ≡ �⃗�0. The results for the case of vanish-

ing external forces and torques, where the trajectory for 𝑇 ′ = 𝑇 = 0 is known from the
analytical solution in section 3.2.1.3 to be a circular helix, are shown in figure 3.3 on
the following page. For this figure, the dimensionless forces 𝐹 ′

0 = (−0.5, 0, 3), 𝐹 ′
ext = 0⃗,

torques 𝑇 ′
0 = (−1, 0, 0), 𝑇 ′

ext = 0⃗, translation tensor K′ = diag(1, 2, 3), rotation ten-
sor Ω′

S = diag(1, 3, 4), initial conditions �⃗�′0 = 0⃗, �⃗�′
0 = (0, 𝜋/2, 0), and temperatures

𝑇 ′ ∈ {0, 0.05, 0.1, 0.3} have been chosen. It is apparent that the center-of-mass trajec-
tory for 𝑇 ′ = 0 and the fluctuation-averaged center-of-mass trajectories for 𝑇 ′ > 0 have
no transient regime in figure 3.3 on the next page. This is also the case for non-vanishing
constant external forces and torques and a general feature of orthotropic particles in
contrast to less symmetric particles with a translational-rotational coupling. In the
presence of thermal fluctuations, the helical motion of the active orthotropic particle
is damped exponentially with time and the fluctuation-averaged center-of-mass tra-
jectory becomes a conchospiral [Boy99], whose radius and pitch decay exponentially
with time [see plots 3.4(a) and 3.4(b)]. This result was confirmed by a fit of the nu-
merical solutions with the general parametrization of a conchospiral and agrees with
the observation of a logarithmic spiral, also named spira mirabilis by Jacob Bernoulli,
in the special case of two spatial dimensions of the Langevin equations (3.33) that is
investigated in reference [TL08]. In the situation of figure 3.3 on the following page,
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Figure 3.3: Mean trajectories of an active orthotropic particle in the absence of exter-
nal forces and torques for the dimensionless temperatures 𝑇 ′ = 0, 𝑇 ′ = 0.05, 𝑇 ′ = 0.1,
and 𝑇 ′ = 0.3. In the left two plots, the trajectories are shown for the time interval
0 6 𝑡′ 6 40, while the right two plots show mean trajectories with 0 6 𝑡′ 6 80.

the axes of the conchospirals are parallel to the 𝑥′3-axis and can be parametrized by
[Boy99, TL08]

𝑥′1(𝑡
′) = 𝑥′1,0 + 𝛼′

1

(︀
cos(𝜑0)− cos(𝜑(𝑡′))𝑒−𝛾

′
1𝑡

′)︀
− 𝛼′

2

(︀
sin(𝜑0)− sin(𝜑(𝑡′))𝑒−𝛾

′
1𝑡

′)︀
,

(3.42)

𝑥′2(𝑡
′) = 𝑥′2,0 + 𝛼′

1

(︀
sin(𝜑0)− sin(𝜑(𝑡′))𝑒−𝛾

′
1𝑡

′)︀
+ 𝛼′

2

(︀
cos(𝜑0)− cos(𝜑(𝑡′))𝑒−𝛾

′
1𝑡

′)︀
,

(3.43)

𝑥′3(𝑡
′) = 𝑥′3,0 +𝐻 ′

max

(︀
1− (1− 𝜀′𝑡′)𝑒−𝛾

′
2𝑡

′)︀
, (3.44)

𝜑(𝑡′) = 𝜑0 + 𝜔′𝑡′ (3.45)

with the angular frequency 𝜔′ = ‖�⃗�′‖ = ‖Ω′−1
S 𝑇 ′

0‖ [see equations (3.35)] and the di-
mensionless fit parameters 𝛼′

1, 𝛼
′
2, 𝛾

′
1, 𝛾

′
2, 𝐻

′
max, and 𝜀

′. Equations (3.42), (3.43), and
(3.45) describe a logarithmic spiral, which is the trajectory of the two-dimensional cir-
cle swimmer in reference [TL08], while the parametrization (3.44) of the third spatial
variable 𝑥′3(𝑡

′) is here more general than in reference [Boy99]. In equation (3.44), there
is an additional term ∝ 𝜀′, which makes sure that a helix is obtained as special case of
the conchospiral for 𝑇 ′ = 0, i. e., for 𝛾′1 = 𝛾′2 = 0. This is, however, not the case for
the parametrization in reference [Boy99]. Based on the parametrization (3.42)-(3.45),
radius and pitch of the conchospirals can be derived. The fit parameters 𝛼′

1, 𝛼
′
2, and

𝛾′1 determine the dimensionless radius 𝑟′(𝑡′) = 𝑟(𝑡)/𝑙c of the conchospirals:

𝑟′(𝑡′) = 𝑟′0𝑒
−𝛾′1𝑡′ , (3.46)

𝑟′(0) = 𝑟′0 =
√︁
𝛼′2
1 + 𝛼′2

2 . (3.47)
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(a) radius 𝑟′(𝑡′) (b) pitch ℎ′(𝑡′) (c) height 𝐻 ′
max(𝑇

′)

Figure 3.4: (a) Radius 𝑟′(𝑡′) and (b) pitch ℎ′(𝑡′) of a trajectory that is shaped as a
conchospiral decay exponentially with time 𝑡′. In the linear-logarithmic plots (a) and
(b), the exponential decay is obvious for the radius, but not for the pitch, where the
exponential function has a linear time-dependent prefactor [see equation (3.48)]. The
numerical data (red dots following a curved line) for these plots were taken from the
conchospiral in figure 3.3(b). (c) The height 𝐻 ′

max(𝑇
′) of the conchospirals is inversely

proportional to the temperature 𝑇 ′. The parameters for plot (c) are the same as for
figure 3.3 on the preceding page, but with more and different values for 𝑇 ′. In each
plot, a straight blue line corresponding to equations (3.46)-(3.49) was fitted to the
numerical data.

Their dimensionless pitch ℎ′(𝑡′) = ℎ(𝑡)/𝑙c depends on the remaining fit parameters 𝛾′2,
𝐻 ′

max, and 𝜀
′:

ℎ′(𝑡′) = 𝐻 ′
max𝑒

−𝛾′2𝑡′
(︁
(1− 𝜀′𝑡′)

(︀
1− 𝑒−

2𝜋
𝜔′ 𝛾

′
2
)︀
+ 𝜀′

2𝜋

𝜔′ 𝑒
− 2𝜋

𝜔′ 𝛾
′
2

)︁
. (3.48)

Some representative numerical values for radius and pitch are shown in plots 3.4(a)
and 3.4(b). Furthermore, the height 𝐻max(𝑇 ) of the conchospiral and its dimensionless
analog 𝐻 ′

max(𝑇
′) = 𝐻max(𝑇 )/𝑙c, defined as the distance from the initial position of the

particle to its final position for 𝑡′ → ∞ measured along the axis of the conchospiral, are
finite and decrease monotonously when the temperature is increased. For the numerical
calculations that correspond to the results shown in figure 3.3 on the preceding page
the inverse power law

𝐻 ′
max(𝑇

′) ≈ 0.82𝑇 ′−1 (3.49)

was determined [see figure 3.4(c)]. When there is additionally a constant external force,
the helix for 𝑇 ′ = 0 as well as the conchospirals for 𝑇 ′ > 0 are deformed and their
cross-sections can become elliptic.
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3.3 Motion of an active colloidal particle in shear flow

Following reference [MD04], the Langevin equation (3.1) can be easily generalized to
also take a prescribed flow field of the liquid into account. The resulting Langevin
equation is, however, not analytically solvable and its numerical solutions can be ex-
pected to be even more complicated than those for the flow-free case of a quiescent
liquid that was described in the previous section. Therefore, only a special case of this
generalized Langevin equation for a streaming liquid is discussed here. This special
case treats a spherical active particle with radius 𝑅s in two spatial dimensions. The
active particle moves in the absence of any external potential in Couette shear flow
with shear rate �̇� (see figure 3.5). Its drive is modeled by the internal force 𝐹A = 𝐹�̂�

Figure 3.5: A spherical active colloidal particle with orientation �̂� moves in linear
shear flow with shear rate �̇�.

that is always parallel to the orientation �̂� = (cos(𝜑), sin(𝜑)) of the particle and by
the constant internal or external torque 𝑀 . The shear flow leads to the additional
translational velocity (�̇�𝑥2, 0) and to the additional angular velocity −�̇�/2. Moreover,

thermal fluctuations cause a Gaussian white noise random force 𝑓(𝑡) = (𝑓1, 𝑓2) and
a Gaussian white noise random torque 𝜏(𝑡) that act on the particle. The stochastic
motion of the active particle is described by the Langevin equations

˙⃗𝑟 = Γs�⃗� + 𝛽𝐷T(𝐹A + 𝑓) ,

�̇� = − �̇�
2
+ 𝛽𝐷R(𝑀 + 𝜏)

(3.50)

with the simple shear matrix [Dho96]

Γs =

(︂
0 �̇�
0 0

)︂
, (3.51)

the translational short-time diffusion coefficient 𝐷T ≡ 𝐷1, that is identical with the
diffusion coefficient 𝐷1 in section 3.2.1.2, and the rotational short-time diffusion coef-
ficient 𝐷R. For spherical particles, the relation 𝐷T/𝐷R = 4𝑅2

s/3 holds between these
two diffusion coefficients. The Gaussian white noise is characterized by the stochastic
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vector
˜⃗
𝜁(𝑡) = (𝑓1, 𝑓2, 𝜏) with mean

⟨ ˜⃗𝜁(𝑡)⟩ = 0⃗ (3.52)

and correlation

⟨ ˜⃗𝜁(𝑡1)⊗
˜⃗
𝜁(𝑡2)⟩ =

2

𝛽2
diag

(︀
𝐷−1

T , 𝐷−1
T , 𝐷−1

R

)︀
𝛿(𝑡1 − 𝑡2) . (3.53)

The Langevin equations (3.50) contain two well-known special cases: when the shear
rate �̇� is zero, the Langevin equation in reference [TL08] is obtained; if instead of the
shear rate the self-propulsion vanishes, the traditional Brownian motion of a passive
spherical particle in shear flow is described by the resulting Langevin equation [CV83,
HBRZ10].

3.3.1 Fluctuation-averaged trajectories

The Langevin equations (3.50) are simple enough to be solved analytically. Some
analytical results for the trajectories in the case of vanishing thermal fluctuations and
equations for the mean trajectories in the case of non-vanishing thermal fluctuations
are given in reference [HWL11], where the dimensionless variables �⃗�′ = (𝑥′1, 𝑥

′
2) = �⃗�/𝑅s,

𝑡′ = 𝐷R𝑡 and the dimensionless quantities 𝐹 ′ = 4𝛽𝑅s𝐹/3, 𝑀
′ = 𝛽𝑀 , �̇�′ = �̇�/(2𝐷R) =

Per/2 with the rotational Péclet number Per = �̇�/𝐷R are used to simplify the equations.

3.3.1.1 Analytical results for zero temperature

For 𝑇 = 0, there are no thermal fluctuations and the Langevin equations (3.50) become
deterministic and can be integrated easily. Depending on the value of the effective
dimensionless torque 𝜔′ =𝑀 ′− �̇�′, the cases 𝜔′ = 0 and 𝜔′ /= 0 should be distinguished.
The corresponding analytical solutions of the Langevin equations are given in the two
following paragraphs.

a) Absence of an effective torque
If the torque 𝑀 ′, that results from the drive of the particle, and the additional dimen-
sionless torque �̇�′ due to the shear flow cancel each other, the effective torque 𝜔′ = 0
is zero and the particle moves with constant orientation. The corresponding solution
of the Langevin equations is given in dimensionless form by [HWL11]

𝑥′1(𝑡
′) = 𝑥′1,0 + �̇�′𝐹 ′sin(𝜑0)𝑡

′2 +
(︀
2�̇�′𝑥′2,0 + 𝐹 ′cos(𝜑0)

)︀
𝑡′ ,

𝑥′2(𝑡
′) = 𝑥′2,0 + 𝐹 ′sin(𝜑0)𝑡

′ ,

𝜑(𝑡′) = 𝜑0

(3.54)

with the initial conditions 𝑥′1,0 = 𝑥′1(0), 𝑥
′
2,0 = 𝑥′2(0), and 𝜑0 = 𝜑(0). Notice the

quadratic time-dependence of the term �̇�′𝐹 ′sin(𝜑0)𝑡
′2 in the equation for 𝑥′1(𝑡

′). This
term results from the shear flow and is absent, if the liquid is quiescent.
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b) Presence of an effective torque
In the complementary situation 𝜔′ /= 0, where𝑀 ′ and �̇�′ do not compensate each other,
the particle rotates with the constant angular velocity 𝜔′. The analytical solution of
the Langevin equations is for this case given by [HWL11]

𝑥′1(𝑡
′) = 𝑥′1,0 + 2�̇�′

(︂
𝑥′2,0 +

𝐹 ′

𝜔′ cos(𝜑0)

)︂
𝑡′ +

𝐹 ′

𝜔′2

(︀
2�̇�′ − 𝜔′)︀(︀ sin(𝜑0)− sin(𝜑0 + 𝜔′𝑡′)

)︀
,

𝑥′2(𝑡
′) = 𝑥′2,0 +

𝐹 ′

𝜔′

(︀
cos(𝜑0)− cos(𝜑0 + 𝜔′𝑡′)

)︀
,

𝜑(𝑡′) = 𝜑0 + 𝜔′𝑡′

(3.55)

and describes cycloids in the (𝑥1, 𝑥2)-plane. A cycloid for the initial conditions 𝑥′1,0 =
𝑥′2,0 = 𝜑0 = 0 and parameters 𝐹 ′ = 10, �̇�′ = 5, and 𝑀 ′ = 0 is plotted as red dashed
curve in figure 3.6 on the next page.

3.3.1.2 Analytical results for positive temperature

In the case of a non-vanishing temperature 𝑇 > 0, thermal fluctuations lead to a
damped motion of the active particle. The damping effect is obvious in the analytical
solution [HWL11]

⟨𝑥′1(𝑡′)⟩ = 𝑥′1,0 + 2�̇�′
(︀
𝑥′2,0 + 𝛼1

)︀
𝑡′ + 𝛼3 − 𝛼4(𝑡

′)𝑒−𝑡
′
,

⟨𝑥′2(𝑡′)⟩ = 𝑥′2,0 + 𝛼1 − 𝛼2(𝑡
′)𝑒−𝑡

′
,

⟨𝜑(𝑡′)⟩ = 𝜑0 + 𝜔′𝑡′

(3.56)

for the fluctuation-averaged mean trajectories that are described by the Langevin equa-
tions (3.50) for positive temperature. In this result, the abbreviations

𝛼1 = 𝑎1 ,

𝛼2(𝑡
′) = 𝑏1(𝑡

′) ,

𝛼3 = 𝑎2 −
2�̇�′

1 + 𝜔′2

(︀
𝑎1 + 𝑎2𝜔

′)︀ ,
𝛼4(𝑡

′) = 𝑏2(𝑡
′)− 2�̇�′

1 + 𝜔′2

(︀
𝑏1(𝑡

′) + 𝑏2(𝑡
′)𝜔′)︀ ,

(3.57)

that in turn depend on the constants

𝑎1 =
𝐹 ′

1 + 𝜔′2

(︀
sin(𝜑0) + 𝜔′ cos(𝜑0)

)︀
, (3.58)

𝑎2 =
𝐹 ′

1 + 𝜔′2

(︀
cos(𝜑0)− 𝜔′ sin(𝜑0)

)︀
(3.59)
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and on the functions

𝑏1(𝑡
′) =

𝐹 ′

1 + 𝜔′2

(︀
sin(𝜑0 + 𝜔′𝑡′) + 𝜔′ cos(𝜑0 + 𝜔′𝑡′)

)︀
,

𝑏2(𝑡
′) =

𝐹 ′

1 + 𝜔′2

(︀
cos(𝜑0 + 𝜔′𝑡′)− 𝜔′ sin(𝜑0 + 𝜔′𝑡′)

)︀
,

(3.60)

are used to keep the presentation of the analytical solution clear. A representative
example for these damped trajectories is shown as solid blue line in the main part of
figure 3.6. The parameters are the same as for the red dashed cycloid. By comparison

Figure 3.6: Cycloidal trajectory for 𝑇 = 0 (red dashed line) and the corresponding
damped mean trajectory for 𝑇 > 0 (blue solid line). The insets show more complicated
mean trajectories for 𝑇 > 0. For all trajectories in this figure, the dimensionless force
is 𝐹 ′ = 10 and the initial conditions are 𝑥′1,0 = 𝑥′2,0 = 0.

of the two corresponding trajectories for 𝑇 = 0 and for 𝑇 > 0 in this figure, the
effect of dissipative damping through thermal fluctuations is obvious. Although only a
spherical active particle is considered in this section and the Langevin equations (3.50)
that describe its stochastic motion are simple, rather complicated and very different
trajectories can be observed due to the shear flow. The insets in figure 3.6 show two
of these complicated trajectories. Further qualitatively different trajectories can be
obtained for other parameter combinations.
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3.3.2 Mean square displacement

The shear flow has considerable influence on the mean square displacement. This can
also be derived analytically from the Langevin equations (3.50). However, the full
analytical result is too complicated to be presented here (see reference [HWL11] for
details). It turns out that five different dynamic regimes can be identified, where the
mean square displacement scales with 𝑡′𝜈 and the exponent is 𝜈 ∈ {0, 1, 2, 3, 4}. The
exponent 𝜈 = 0 is observed for an active particle with non-vanishing effective torque
𝜔′ in the absence of shear flow at 𝑇 = 0. This particle moves on a circular trajectory.
The value 𝜈 = 1 is the usual exponent for simple diffusion. This exponent appears
in the diffusive motion of active and passive particles in a quiescent liquid for 𝑇 > 0.
Without shear flow, the exponent 𝜈 = 2 can be established as well. This is the case,
when the effective torque 𝜔′ and the temperature 𝑇 vanish so that the particle moves
ballistically. The exponent 𝜈 = 3 can be observed in the absence of shear flow only
for a short time in a transient regime [HTL11]. This exponent is not observed in the
long-time limit, if the liquid is quiescent. In the presence of shear flow, the 𝑡′3 scaling
is in contrast the most general situation for long times and can also be observed in the
Taylor diffusion of passive particles [CV83]. Finally, the exponent 𝜈 = 4 is realized
for an active particle with 𝜔′ = 𝑇 = 0. If the colloidal particle starts with an initial
orientation 𝜑0 /= 0, that is not perpendicular to the gradient direction of the shear
flow, a term that is quadratic in 𝑡′ is included in equations (3.54) and the mean square
displacement has therefore a contribution proportional to 𝑡′4. For 𝜑0 = 0 and 𝜑0 = 𝜋,
the mean square displacement is instead only a quadratic function in 𝑡′.
In sum, the mobility of the particle is hugely enhanced by shear flow. The increased

mobility also becomes apparent in a faster broadening of the spatial probability dis-
tribution of the particle. Aside from the accelerated broadening, a further effect of
the shear flow can be observed at the spatial probability distribution. In figure 3.7
on the facing page, the spatial probability distribution for an active particle with a
vanishing effective torque 𝜔′ and an initial orientation in the positive 𝑥′1-direction is
shown. The distributions presented are obtained from a Brownian dynamics simula-
tion on the basis of the Langevin equations (3.50). As a result of rotational Brownian
motion, the active particle can move in any direction although it starts parallel to
the 𝑥′1-axis. In the 𝑥′2-direction, which is not influenced by the shear flow, the spatial
probability distribution is symmetric and exhibits a transient double-peak structure
[see figure 3.7(a)]. This double-peak structure is a result of the non-rotational active
motion of the particle and vanishes with time, since thermal fluctuations decorrelate
the orientation of the particle for larger times. With time, the spatial probability dis-
tribution broadens more and more and the double-peak structure finally disappears. In
the long-time limit, the motion becomes diffusive and a Gaussian distribution emerges.
The double-peak structure is also observed in the 𝑥′1-direction, but under the influence
of shear flow the particle behaves differently in this direction. This situation is shown
in figure 3.7(b). The spatial probability distribution is not symmetric anymore and the
transient double-peak structure has two maxima of different height.
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Figure 3.7: Time evolution of the spatial probability distribution of an active spherical
particle at 𝑇 > 0. While (a) in the 𝑥′2-direction a symmetric transient double-peak
structure is observed, there is (b) an asymmetric transient double-peak structure due
to the shear flow in the 𝑥′1-direction. The two plots correspond to the parameters
𝐹 ′ = 10, 𝑀 ′ = 5, and �̇�′ = 5 and to the initial conditions 𝑥′1,0 = 𝑥′2,0 = 𝜑0 = 0.

3.4 Applications and generalized Langevin equations

The results of this chapter have various applications in the context of swimming mi-
croorganisms and artificial microswimmers. For example, the Langevin equation (3.1)
for an active colloidal particle with arbitrary shape could be used to describe the mo-
tion of swimming microorganisms theoretically. The helical trajectory (3.36), that was
derived from the Langevin equation, is indeed typical for swimming microorganisms
[JV72, SJ01]. Also the solutions of the Langevin equations (3.50) for an active par-
ticle in shear flow should be similar to real trajectories of swimming microorganisms
in shear flow [EZB+08, LGG+09]. With suitable microorganisms, it would also be
possible to observe the accelerated regime in experiments, where the mean square dis-
placement scales with 𝑡4. This regime was predicted for active particles with a certain
internal torque that compensates the additional torque due to the shear flow so that
the colloidal particles do not rotate. Although this behavior is very special, it can in
fact be realized with the gravitactic green alga Chlamydomonas reinhardtii that swims
upward in a gravitational field and retains its orientation unaffected by the flow of the
surrounding liquid [RJP10, Sta10]. For the future, a comparison of the results in this
chapter with experiments and with computer simulations [Sat10] would be desirable.
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Additionally, some of the basic results could be further generalized to more compli-
cated situations. With the help of references [Dho96, MD04] it is, for example, easy to
add a term to the Langevin equation (3.1) that regards the influence of an arbitrary
prescribed constant or time-dependent flow field of the liquid. It is further possible to
generalize this Langevin equation by the consideration of system boundaries that con-
fine the stochastic motion of the arbitrarily shaped active colloidal particle. Possible
geometries for the confinement of the motion are channels between parallel walls [WL08]
and cylindrical tubes [CWG10]. When there are geometric restrictions for the motion
of the colloidal particle, the hydrodynamic interaction of the colloidal particle with
the system boundaries has to be taken into account as well [LS05, Sta09, DPZY10].
Instead of an individual active particle, also a large ensemble of interacting active
particles could be considered. These particles would interact with each other both
directly by excluded volume interactions and indirectly through hydrodynamic inter-
actions [Sta09]. Such an active suspension has interesting properties like an anomalous
effective viscosity [Sta10] that deviate significantly from the properties of passive sus-
pensions. Furthermore, this ensemble of interacting active particles could be described
both in an unbounded domain and in confinement. The consideration of such an active
ensemble is obviously very important, since especially swimming microorganisms often
occur in swarms. Therefore, this topic is addressed in the following chapter.



4 Collective dynamics of interacting
colloidal particles

After the description of the motion of individual active colloidal particles in the previous
chapter, this chapter considers the collective dynamics of an ensemble of interacting
colloidal particles that may be passive or active. The description of their collective
Brownian dynamics is based on classical dynamical density functional theory (DDFT)
that proved to be a very useful tool for the description of the collective Brownian
motion of passive soft matter. The first section of this chapter gives an overview
about the history of DDFT and further developments in recent years. After that,
a generalized DDFT, that holds even for active and passive colloidal particles with
arbitrary shape, is derived. This enhanced DDFT includes previous versions of DDFT
as special cases and is, for example, highly relevant for the investigation of the dynamics
of colloidal liquid crystals, which consist of arbitrarily shaped colloidal particles. In
comparison with older versions of DDFT, the new generalization allows for the first
time that biaxial particles are considered also, whose shapes may even give rise to a
hydrodynamic translational-rotational coupling. The obtained generalization of DDFT
is afterwards reformulated using a dissipation functional. This alternative formulation
of DDFT leads to a better understanding of DDFT in the context of linear irreversible
thermodynamics and provides a method to derive the dynamic equations for phase
field crystal models with many order-parameter fields – like those derived in chapter 5
– much faster and much more easily than it would be possible otherwise. This chapter
ends with a discussion of possible applications and further developments of the new
and generalized DDFT.

4.1 Dynamical density functional theory for colloidal
particles

DDFT is the time-dependent analog of static DFT1. While static DFT can be used
to construct a static Helmholtz free-energy functional ℱ [𝜌(⃗x)] of a colloidal system
in terms of the equilibrium one-particle density field 𝜌(⃗x) ≡ 𝜌(�⃗�, �⃗�), that is propor-
tional to the probability density to find a colloidal particle at a certain position �⃗�
with a certain orientation �⃗�, in order to describe the equilibrium state of this sys-
tem, DDFT provides a dynamic equation, the so-called DDFT equation, for the time-

1Necessary details about static DFT and DDFT are described in section 5.1.1.

39



40 4 Collective dynamics of interacting colloidal particles

dependent non-equilibrium one-particle density field 𝜌(⃗x, 𝑡). This dynamic equation
describes the dissipative non-equilibrium relaxation dynamics of the colloidal system.
The dynamics described by the DDFT equation is driven by the functional derivative
of the time-dependent Helmholtz free-energy functional ℱ [𝜌(⃗x, 𝑡)] with respect to the
time-dependent one-particle density field 𝜌(⃗x, 𝑡).
After early suggestions of symmetry-based DDFT equations by Evans [Eva79] and

Dieterich et al. [DFM90], DDFT was at first derived systematically by Marconi and
Tarazona [MT99, MT00] in 1999 for spherical colloidal particles. Their derivation
started from the Langevin equation for spherical particles [Dea96] that interact via a
pair-interaction potential. Later, in 2004, DDFT was rederived by Archer and Evans
[AE04] from the Smoluchowski equation that corresponds to the Langevin equation for
interacting spherical particles. As a further alternative to the previous derivations of
DDFT, Español and Löwen used a projection operator technique in 2009 in order to
rederive DDFT in a more general context [EL09]. Up to now, several generalizations
of this traditional DDFT have been proposed. In 2007, it was generalized by Rex,
Wensink, and Löwen [RWL07] toward systems of colloidal particles with non-trivial
orientational degrees of freedom. This generalization is based on the Smoluchowski
equation for rigid rods [Dho96] and describes systems of anisotropic uniaxial particles
without a hydrodynamic translational-rotational coupling in three spatial dimensions.
It made DDFT applicable to the important class of uniaxial colloidal liquid crystals,
but fails for colloidal particles with a more complicated shape. A special variant of
this DDFT for uniaxial particles was later derived for colloidal systems with only two
spatial dimensions and is given in reference [WL08]. In this reference, a possible self-
propulsion of the colloidal particles was taken into account, too. Recently, rod-like
active particles in a gravitational field were addressed by Enculescu and Stark in three
spatial dimensions [ES11]. Situations with more complicated particle shapes have so
far not been considered in the context of DDFT.
There are further attempts for other important generalizations of DDFT, but they

are only valid for spherical particles and many of them are beyond that not satisfying.
Among them are various attempts like those in references [Arc06, MTCM08, Arc09,
MM09, MM10] for a generalization of DDFT toward molecular dynamics, where iner-
tia is important and the dynamics is not overdamped, but up to now, none of these
approaches is consistent with experimental observations. Such derivations usually fail,
since a suitable closure relation cannot be found (see section 5.1.1.2 for details). The
adiabatic approximation, that is used as closure relation in the derivation of the tra-
ditional DDFT for overdamped Brownian particles, is not appropriate for molecular
dynamics. Further extensions of DDFT were proposed for mixtures of different species
of colloidal particles. A first success in this regard was achieved by Archer [Arc05]
through the consideration of a free-energy functional, that depends on the one-particle
densities for the different kinds of colloidal particles, and a set of DDFT equations
for the time-evolution of these one-particle densities. However, his approximation for
the free-energy functional and his DDFT equations have to be improved. His dynamic
equations contain only diagonal dissipative terms and should also contain non-diagonal
dissipative coupling terms. The consideration of hydrodynamic interactions between
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the colloidal particles is another important possibility to enhance current DDFT. At
least for spherical particles, a DDFT equation with hydrodynamic interactions was
derived by Rex and Löwen [RL08, RL09]. Only valid for spherical particles is also
the DDFT equation of Rauscher and co-workers [RDKP07] for colloidal particles in a
flowing liquid. Their DDFT equation was later applied to spherical particles in shear
flow by Brader and Krüger [BK11], but it does not yet regard the influence of the
colloidal particles back on the liquid. In a different effort, DDFT was generalized by
Rauscher toward confinement and hydrodynamic interactions with system boundaries
[Rau10]. Nevertheless, this reference, too, confines itself to spherical particles, although
anisotropic particles prevail.

Nowadays, it is already possible to produce colloidal particles with rather compli-
cated shapes including biaxial particles with or without a hydrodynamic translational-
rotational coupling [HB91] (see section 2.1 for examples). Although static DFT has
very powerful tools presently available such as fundamental measure theory [HM09]
that allow to consider also such complicated colloidal particles in the context of static
DFT, the dynamics of these biaxial particles could up to now not be investigated on the
basis of DDFT. For these reasons, the development of DDFT is pushed forward with
this chapter through a further generalization of DDFT, which is now also applicable
to active and passive biaxial particles with an arbitrary shape.

4.2 Dynamical density functional theory for active
colloidal particles with arbitrary shape

The new DDFT is designated to describe the collective Brownian motion of 𝑁 in-
teracting biaxial active colloidal particles that are suspended in a viscous liquid. As
in the previous chapter, the particles are again assumed to be rigid and to have an
arbitrary shape. The positions and orientations of the particles are described by the
center-of-mass positions �⃗�𝑖 = (𝑥1,𝑖, 𝑥2,𝑖, 𝑥3,𝑖) and the Eulerian angles �⃗�𝑖 = (𝜑𝑖, 𝜃𝑖, 𝜒𝑖) or
equivalently by the position-orientation vectors x⃗𝑖 = (�⃗�𝑖, �⃗�𝑖) with 𝑖 = 1, . . . , 𝑁 . Their
instantaneous velocities are given by the translational velocities ˙⃗𝑟𝑖 = d�⃗�𝑖/d𝑡 and angu-
lar velocities �⃗�𝑖. To simplify the notation, they are collected in the generalized velocity
vectors v⃗𝑖 = ( ˙⃗𝑟𝑖, �⃗�𝑖). The whole set of particles is then characterized by the “multivec-
tors” �⃗�𝑁 = (�⃗�1, . . . , �⃗�𝑁), �⃗�

𝑁 = (�⃗�1, . . . , �⃗�𝑁), and �⃗�𝑁 = (�⃗�1, . . . , �⃗�𝑁) or equivalently
by x⃗𝑁 = (�⃗�𝑁, �⃗�𝑁) and v⃗𝑁 = ( ˙⃗𝑟𝑁, �⃗�𝑁) with ˙⃗𝑟𝑁 = d�⃗�𝑁/d𝑡. The particles are exposed to
the (time-dependent) total potential

𝑈 (⃗x𝑁, 𝑡) = 𝑈ext(⃗x
𝑁, 𝑡) + 𝑈int(⃗x

𝑁) , (4.1)

which consists of the total external potential

𝑈ext(⃗x
𝑁, 𝑡) =

𝑁∑︁
𝑖=1

𝑈1(⃗x𝑖, 𝑡) (4.2)
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and the total particle interaction potential

𝑈int(⃗x
𝑁) =

𝑁∑︁
𝑖,𝑗=1
𝑖<𝑗

𝑈2(⃗x𝑖, x⃗𝑗) . (4.3)

For both the one-particle potentials 𝑈1(⃗x𝑖, 𝑡) and the two-particle interaction poten-
tials 𝑈2(⃗x𝑖, x⃗𝑗), pairwise additivity is assumed2. Moreover, many-particle interaction
potentials of higher order than pair-interaction potentials are neglected. Furthermore,
the 𝑁 -particle probability distribution function 𝑃 (⃗x𝑁, 𝑡) for the probability density to
find the 𝑁 particles at time 𝑡 at x⃗𝑁 is introduced. Successive integration of this func-
tion with respect to its positional and orientational degrees of freedom leads to the
𝑛-particle density [AE04]

𝜌(𝑛)(⃗x𝑛, 𝑡) =
𝑁 !

(𝑁 − 𝑛)!

∫︁
G

dV𝑛+1· · ·
∫︁
G

dV𝑁 𝑃 (⃗x
𝑁, 𝑡) , (4.4)

where the integration operator ∫︁
G

dV =

∫︁
𝒱
d𝑉

∫︁
𝒮
dΩ (4.5)

with the total integration domain G = 𝒱 × 𝒮 and with the corresponding differential
dV = d𝑉 dΩ is introduced in order to combine spatial and orientational integration.
The integration operators for spatial and orientational integration are in turn given by∫︁

𝒱
d𝑉 =

∫︁ ∞

0

d𝑥1

∫︁ ∞

0

d𝑥2

∫︁ ∞

0

d𝑥3 ,∫︁
𝒮
dΩ =

∫︁ 2𝜋

0

d𝜑

∫︁ 𝜋

0

d𝜃 sin(𝜃)

∫︁ 2𝜋

0

d𝜒

(4.6)

with the domains 𝒱 = R3 and 𝒮 = [0, 2𝜋) × [0, 𝜋] × [0, 2𝜋) and with the differentials
d𝑉 = d𝑥1d𝑥2d𝑥3 and dΩ = d𝜑d𝜃 sin(𝜃)d𝜒.

4.2.1 Smoluchowski equation

To proceed, the Smoluchowski equation for the overdamped Brownian dynamics of the
𝑁 active biaxial particles has to be derived. In this context, it is useful to define the
operators ∇⃗�⃗�𝑁 = (∇⃗�⃗�1 , . . . , ∇⃗�⃗�𝑁 ), ∇⃗�⃗�𝑁 = (∇⃗�⃗�1 , . . . , ∇⃗�⃗�𝑁

), and ∇⃗x⃗𝑁 = (∇⃗�⃗�𝑁 , ∇⃗�⃗�𝑁 ).
With these operators, the continuity equation for the probability distribution can be
written as

�̇� (⃗x𝑁, 𝑡) = −∇⃗x⃗𝑁·
(︀
v⃗𝑁𝑃 (⃗x𝑁, 𝑡)

)︀
. (4.7)

2A statement on pairwise additivity of potentials is given by Gray and Gubbins [GG84].
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This is a trivial generalization of the continuity equation for passive rods that is de-
scribed by Dhont in reference [Dho96]. On the Brownian time scale, the total force
and torque acting on an arbitrary particle 𝑖 ∈ {1, . . . , 𝑁} are zero. The total force and

torque on particle 𝑖 consist of the force 𝐹
(A)
𝑖 (⃗x𝑁, 𝑡) and torque 𝑇

(A)
𝑖 (⃗x𝑁, 𝑡) due to the

activity of the self-propelled particle 𝑖, the hydrodynamic force 𝐹
(H)
𝑖 (⃗x𝑁) and torque

𝑇
(H)
𝑖 (⃗x𝑁), the interaction force 𝐹

(I)
𝑖 (⃗x𝑁, 𝑡) and torque 𝑇

(I)
𝑖 (⃗x𝑁, 𝑡) due to the potential

𝑈 (⃗x𝑁, 𝑡), and the Brownian force 𝐹
(Br)
𝑖 (⃗x𝑁, 𝑡) and torque 𝑇

(Br)
𝑖 (⃗x𝑁, 𝑡). With the abbre-

viating notation �⃗� = (�⃗�1, . . . , �⃗�𝑁) for �⃗� ∈ {𝐹 ( · ), 𝑇 ( · ), �⃗�( · )} and the definitions

�⃗�(A)(⃗x𝑁, 𝑡) =
(︀
𝐹 (A)(⃗x𝑁, 𝑡), 𝑇 (A)(⃗x𝑁, 𝑡)

)︀
,

�⃗�(H)(⃗x𝑁) =
(︀
𝐹 (H)(⃗x𝑁), 𝑇 (H)(⃗x𝑁)

)︀
,

�⃗�(I)(⃗x𝑁, 𝑡) =
(︀
𝐹 (I)(⃗x𝑁, 𝑡), 𝑇 (I)(⃗x𝑁, 𝑡)

)︀
,

�⃗�(Br)(⃗x𝑁, 𝑡) =
(︀
𝐹 (Br)(⃗x𝑁, 𝑡), 𝑇 (Br)(⃗x𝑁, 𝑡)

)︀
,

(4.8)

the force and torque balance for the 𝑁 colloidal particles can be expressed by

0⃗ = �⃗�(A)(⃗x𝑁, 𝑡) + �⃗�(H)(⃗x𝑁) + �⃗�(I)(⃗x𝑁, 𝑡) + �⃗�(Br)(⃗x𝑁, 𝑡) . (4.9)

The forces and torques resulting from the self-propulsion mechanism of the particles are
supposed to be constant with respect to their orientations in the respective body-fixed
coordinate systems, but their strengths may vary slowly with time. These forces and
torques for a certain particle 𝑖 ∈ {1, . . . , 𝑁} in body-fixed Cartesian coordinates are de-

noted by the vector �⃗�
(A)
0,𝑖 (�⃗�𝑖, 𝑡) and the corresponding vector in space-fixed coordinates

is denoted by
�⃗�

(A)
𝑖 (⃗x𝑖, 𝑡) = ℛ−1(�⃗�𝑖)�⃗�

(A)
0,𝑖 (�⃗�𝑖, 𝑡) (4.10)

with the block diagonal rotation matrix (3.4). The vector �⃗�
(A)
0,𝑖 depends most often

only on time 𝑡, but one could also think of swimming microorganisms in a poisoned
environment, where �⃗�

(A)
0,𝑖 also depends on �⃗�𝑖. To simplify the notation in the following,

all the 𝑁 vectors �⃗�
(A)
𝑖 (⃗x𝑖, 𝑡) are collected in the vector

�⃗�(A)(⃗x𝑁, 𝑡) = ℛ−1
𝑁 (�⃗�𝑁)�⃗�

(A)
0 (�⃗�𝑁, 𝑡) (4.11)

with the 6𝑁×6𝑁 -dimensional block diagonal rotation matrix

ℛ𝑁(�⃗�
𝑁) = diag

(︀
ℛ(�⃗�1), . . . ,ℛ(�⃗�𝑁)

)︀
(4.12)

and the 6𝑁 -dimensional vector

�⃗�
(A)
0 (�⃗�𝑁, 𝑡) =

(︀
�⃗�

(A)
0,1 (�⃗�1, 𝑡), . . . , �⃗�

(A)
0,𝑁(�⃗�𝑁 , 𝑡)

)︀
. (4.13)
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Next, the hydrodynamic force and torque are considered. They are given by

�⃗�(H)(⃗x𝑁) = −ϒ𝑁 (⃗x
𝑁)v⃗𝑁 (4.14)

with the microscopic friction tensor [Dho96]

ϒ𝑁 (⃗x
𝑁) =

(︂
ϒTT
𝑁 (⃗x𝑁) ϒTR

𝑁 (⃗x𝑁)
ϒRT
𝑁 (⃗x𝑁) ϒRR

𝑁 (⃗x𝑁)

)︂
, (4.15)

where ϒTT
𝑁 (⃗x𝑁), ϒTR

𝑁 (⃗x𝑁) = (ϒRT
𝑁 (⃗x𝑁))T, and ϒRR

𝑁 (⃗x𝑁) are 3𝑁×3𝑁 -dimensional sub-
matrices. The submatrices ϒTT

𝑁 (⃗x𝑁) and ϒRR
𝑁 (⃗x𝑁) correspond to pure translational and

rotational motion, respectively, while ϒTR
𝑁 (⃗x𝑁) and ϒRT

𝑁 (⃗x𝑁) have to be taken into ac-
count for particles with a translational-rotational coupling as, for example, screw-like
particles. For many symmetric (e. g., orthotropic) particles, however, ϒTR

𝑁 (⃗x𝑁) and
ϒRT
𝑁 (⃗x𝑁) vanish.
In the following, hydrodynamic interactions between different colloidal particles are

neglected.3 With this assumption, the microscopic friction submatrices simplify to the
block diagonal matrices

ϒTT
𝑁 (�⃗�𝑁) = diag

(︀
ϒTT

11 (�⃗�1), . . . ,ϒ
TT
𝑁𝑁(�⃗�𝑁)

)︀
, (4.16)

ϒTR
𝑁 (�⃗�𝑁) = diag

(︀
ϒTR

11 (�⃗�1), . . . ,ϒ
TR
𝑁𝑁(�⃗�𝑁)

)︀
, (4.17)

ϒRT
𝑁 (�⃗�𝑁) = diag

(︀
ϒRT

11 (�⃗�1), . . . ,ϒ
RT
𝑁𝑁(�⃗�𝑁)

)︀
, (4.18)

ϒRR
𝑁 (�⃗�𝑁) = diag

(︀
ϒRR

11 (�⃗�1), . . . ,ϒ
RR
𝑁𝑁(�⃗�𝑁)

)︀
(4.19)

with the 3×3-dimensional submatrices

ϒTT
𝑖𝑖 (�⃗�𝑖) = 𝜂R−1(�⃗�𝑖)KR(�⃗�𝑖) , (4.20)

ϒTR
𝑖𝑖 (�⃗�𝑖) = 𝜂R−1(�⃗�𝑖) C

T
S R(�⃗�𝑖) , (4.21)

ϒRT
𝑖𝑖 (�⃗�𝑖) = 𝜂R−1(�⃗�𝑖) CSR(�⃗�𝑖) , (4.22)

ϒRR
𝑖𝑖 (�⃗�𝑖) = 𝜂R−1(�⃗�𝑖) ΩSR(�⃗�𝑖) (4.23)

for 𝑖 = 1, . . . , 𝑁 that are related to the translation tensor K, the coupling tensor CS,
its transpose CT

S , and the rotation tensor ΩS [HB91] by similarity transformations with
the rotation matrix R(�⃗�). In the special case of no hydrodynamic interactions, the
inverse of the microscopic friction tensor

ϒ−1
𝑁 (⃗x𝑁) = 𝛽𝒟𝑁 (⃗x

𝑁) (4.24)

with the microscopic short-time diffusion tensor

𝒟𝑁 (⃗x
𝑁) =

(︂
𝒟TT
𝑁 (⃗x𝑁) 𝒟TR

𝑁 (⃗x𝑁)
𝒟RT
𝑁 (⃗x𝑁) 𝒟RR

𝑁 (⃗x𝑁)

)︂
, (4.25)

3Hydrodynamic interactions between the colloidal particles are not regarded directly. They are as
usual taken into account by means of an effective shape and size of the colloidal particles.



4.2 DDFT for active colloidal particles with arbitrary shape 45

which is needed in the following, has the same band structure as the microscopic friction
tensor ϒ𝑁 (⃗x

𝑁). This can be proved with the help of the block matrix inverse(︂
A B
C D

)︂−1

=

(︂
S−1
D −A−1 BS−1

A

−D−1 CS−1
D S−1

A

)︂
(4.26)

with matrices A, B, C, and D and with the Schur complements

SA = D− CA−1 B , SD = A− BD−1C . (4.27)

One further has the equation

�⃗�(I)(⃗x𝑁, 𝑡) = −∇⃗x⃗𝑁𝑈 (⃗x
𝑁, 𝑡) (4.28)

for the interaction force and torque. Moreover, the Brownian force 𝐹 (Br)(⃗x𝑁, 𝑡) and

torque 𝑇 (Br)(⃗x𝑁, 𝑡) can be derived from the equilibrium condition

lim
𝑡→∞

𝑃 (⃗x𝑁, 𝑡) ∝ 𝑒−𝛽𝑈 (⃗x𝑁,𝑡) , (4.29)

when �⃗�(A)(⃗x𝑁, 𝑡) is neglected and the vector v⃗𝑁 in equation (4.7) is expressed in terms

of the vectors x⃗𝑁 , �⃗�(I)(⃗x𝑁, 𝑡), �⃗�(Br)(⃗x𝑁, 𝑡) using equations (4.9) and (4.14). This yields

�⃗�(Br)(⃗x𝑁, 𝑡) = − 1

𝛽
∇⃗x⃗𝑁 ln

(︀
𝑃 (⃗x𝑁, 𝑡)

)︀
. (4.30)

With the help of equations (4.9), (4.14), (4.28), and (4.30), the Smoluchowski equation

�̇� (⃗x𝑁, 𝑡) = ℒ̂𝑃 (⃗x𝑁, 𝑡) (4.31)

with the Smoluchowski operator

ℒ̂ = ∇⃗x⃗𝑁·
(︁
𝒟𝑁 (⃗x

𝑁)
(︀
𝛽∇⃗x⃗𝑁𝑈 (⃗x

𝑁, 𝑡)− 𝛽�⃗�(A)(⃗x𝑁, 𝑡) + ∇⃗x⃗𝑁
)︀)︁

(4.32)

follows now directly from the continuity equation (4.7).

4.2.2 DDFT equation

The derivation is continued by applying the integration operator

𝑁

∫︁
G

dV2 · · ·
∫︁
G

dV𝑁 (4.33)

from the left on the Smoluchowski equation (4.31). This results in the expression

�̇�(⃗x, 𝑡) = ∇⃗x⃗ ·
(︁
𝒟(⃗x)

(︀
∇⃗x⃗𝜌(⃗x, 𝑡)− 𝛽�̄� (⃗x, 𝑡) + 𝛽𝜌(⃗x, 𝑡)∇⃗x⃗𝑈1(⃗x, 𝑡)− 𝛽�⃗�A(⃗x, 𝑡)𝜌(⃗x, 𝑡)

)︀)︁
(4.34)
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with the symmetric short-time diffusion tensor4

𝒟(�⃗�) =

(︂(︀
𝒟TT
𝑁 (�⃗�)

)︀
11

(︀
𝒟TR
𝑁 (�⃗�)

)︀
11(︀

𝒟RT
𝑁 (�⃗�)

)︀
11

(︀
𝒟RR
𝑁 (�⃗�)

)︀
11

)︂
(4.35)

for the one-particle density 𝜌(⃗x, 𝑡) ≡ 𝜌(1)(⃗x, 𝑡), where the index 1 is omitted in �⃗�1 and

�⃗�1 and the abbreviations �⃗�A(⃗x, 𝑡) ≡ �⃗�
(A)
1 (⃗x, 𝑡) and �̄� (⃗x, 𝑡) = (𝐹 (⃗x, 𝑡), 𝑇 (⃗x, 𝑡)) are used.

With equation (4.26) it can be shown that the diffusion tensor (4.35) is in fact identical
with the diffusion tensor (3.9) in the Langevin equation (3.1) in the previous chapter.
The average force 𝐹 (⃗x, 𝑡) and torque 𝑇 (⃗x, 𝑡) due to the interactions with other particles
in equation (4.34) are given by

�̄� (⃗x, 𝑡) = −
∫︁
G

dV′ 𝜌(2)(⃗x, x⃗′, 𝑡)∇⃗x⃗𝑈2(⃗x, x⃗
′) . (4.36)

In thermodynamic equilibrium with �⃗�A(⃗x, 𝑡) = 0⃗ and 𝑈1 → 𝑈1(⃗x), the dynamic equa-
tion (4.34) reduces to the first equation of the Yvon-Born-Green (YBG) hierarchy5 for
molecular fluids [GG84]:

𝛽�̄� (⃗x) = ∇⃗x⃗𝜌(⃗x) + 𝛽𝜌(⃗x)∇⃗x⃗𝑈1(⃗x) . (4.37)

Here, the function 𝜌(⃗x) denotes the equilibrium one-particle density field that corres-
ponds to the time-independent “substitute” external potential 𝑈1(⃗x). On the other
hand, in thermodynamic equilibrium, the relation

∇⃗x⃗𝜌(⃗x) + 𝛽𝜌(⃗x)∇⃗x⃗𝑈1(⃗x) = −𝛽𝜌(⃗x)∇⃗x⃗

𝛿ℱexc[𝜌(⃗x)]

𝛿𝜌(⃗x)
(4.38)

with the equilibrium Helmholtz excess free-energy functional ℱexc[𝜌(⃗x)] holds (compare
section 5.1.1.1). This relation follows with

∇⃗x⃗𝑐
(1)(⃗x) =

∫︁
G

dV′ 𝑐(2)(⃗x, x⃗′)∇⃗x⃗′𝜌(⃗x
′) , (4.39)

where 𝑐(𝑛)(⃗x1, . . . , x⃗𝑛) is the 𝑛-particle direct correlation function in equilibrium (see
section 5.1.1.1 or reference [HM06]), and

𝑐(1)(⃗x) = −𝛽 𝛿ℱexc[𝜌(⃗x)]

𝛿𝜌(⃗x)
(4.40)

4The reason to write 𝒟(⃗x) instead of 𝒟(�⃗�) in equation (4.34) is that one could in principle also
describe systems with a space-dependent short-time diffusion tensor. This is especially relevant
for liquids with a space-dependent viscosity.

5The Yvon-Born-Green hierarchy is the equilibrium form of the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy [HM06].
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from the more general form

∇⃗x⃗𝜌(⃗x) + 𝛽𝜌(⃗x)∇⃗x⃗𝑈1(⃗x) = 𝜌(⃗x)

∫︁
G

dV′ 𝑐(2)(⃗x, x⃗′)∇⃗x⃗′𝜌(⃗x
′) (4.41)

of equations (14) and (16) in reference [Gub80]. Equations (4.37) and (4.38) lead to
the equilibrium relation

�̄� (⃗x) = −𝜌(⃗x)∇⃗x⃗

𝛿ℱexc[𝜌(⃗x)]

𝛿𝜌(⃗x)
(4.42)

that is used instead of equation (4.36) as closure relation for equation (4.34) in the
time-dependent non-equilibrium situation. A similar adiabatic approximation was used
in the derivations of the DDFT equations for isotropic [MT99, AE04] and uniaxial
[RWL07] colloidal particles (see section 5.1.1.2). The approximation results in the
generalized DDFT equation for three spatial dimensions

𝜕𝜌(⃗x, 𝑡)

𝜕𝑡
= 𝛽∇⃗x⃗ ·

(︂
𝒟(⃗x)𝜌(⃗x, 𝑡)

(︂
∇⃗x⃗

𝛿ℱ [𝜌(⃗x, 𝑡)]

𝛿𝜌(⃗x, 𝑡)
− �⃗�A(⃗x, 𝑡)

)︂)︂
(4.43)

with the total equilibrium Helmholtz free-energy functional ℱ [𝜌(⃗x, 𝑡)]. For possible
approximations of this functional, see section 5.1.1.1.

4.2.3 Special cases

In analogy to the procedure in the previous chapter, where the Langevin equation (3.1)
was reduced to two spatial dimensions, also the DDFT equation (4.43) can be reduced
to the case of two spatial dimensions. For this purpose, the values 𝑥3 = 0, 𝜃 = 𝜋/2,
and 𝜒 = 0 are chosen. The generalized DDFT equation for two spatial dimensions is
then given by

𝜕𝜌(�⃗�, 𝜑, 𝑡)

𝜕𝑡
= 𝛽∇⃗�⃗� ·

(︂
DT(𝜑)𝜌(�⃗�, 𝜑, 𝑡)

(︂
∇⃗�⃗�

𝛿ℱ [𝜌(�⃗�, 𝜑, 𝑡)]

𝛿𝜌(�⃗�, 𝜑, 𝑡)
− 𝐹A(𝜑, 𝑡)

)︂)︂
− 𝛽∇⃗�⃗� ·

(︂
�⃗�C(𝜑)𝜌(�⃗�, 𝜑, 𝑡)

(︂
𝜕𝜑
𝛿ℱ [𝜌(�⃗�, 𝜑, 𝑡)]

𝛿𝜌(�⃗�, 𝜑, 𝑡)
−𝑀(𝑡)

)︂)︂
− 𝛽𝜕𝜑

(︂
�⃗�C(𝜑)·𝜌(�⃗�, 𝜑, 𝑡)

(︂
∇⃗�⃗�

𝛿ℱ [𝜌(�⃗�, 𝜑, 𝑡)]

𝛿𝜌(�⃗�, 𝜑, 𝑡)
− 𝐹A(𝜑, 𝑡)

)︂)︂
+ 𝛽𝜕𝜑

(︂
𝐷R𝜌(�⃗�, 𝜑, 𝑡)

(︂
𝜕𝜑
𝛿ℱ [𝜌(�⃗�, 𝜑, 𝑡)]

𝛿𝜌(�⃗�, 𝜑, 𝑡)
−𝑀(𝑡)

)︂)︂
(4.44)

with the same notation as in the Langevin equations (3.17) in section 3.2.1.2. This
DDFT equation describes the motion of arbitrarily shaped active colloidal particles
in two spatial dimensions. When the translational-rotational coupling coefficients,
i. e., the elements of the coupling tensor CS, are set to zero, one obtains a DDFT
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equation that describes only rod-like active particles in two spatial dimensions. Such
a DDFT equation was published by Wensink and Löwen in 2008 [WL08]. Also the
general DDFT equation (4.43) for three spatial dimensions can be simplified by the
omission of the elements of the coupling tensor so that 𝒟TR

𝑁 (⃗x𝑁) and 𝒟RT
𝑁 (⃗x𝑁) and

therefore also (𝒟TR
𝑁 (�⃗�))11 and (𝒟RT

𝑁 (�⃗�))11 vanish. The resulting DDFT equation is
only applicable to orthotropic particles that have no translational-rotational coupling.
This DDFT equation can further be simplified to uniaxial rod-like particles with one
axis of symmetry. Due to the rotational symmetry, the one-particle density and the
free-energy functional for uniaxial particles do not depend on the angle 𝜒 and the
translational diffusion tensor can then be written as the matrix

DTT(�̂�) = 𝐷‖�̂�⊗ �̂�+𝐷⊥(1− �̂�⊗ �̂�) , (4.45)

which obviously only depends on the two independent short-time diffusion coefficients
𝐷‖ and 𝐷⊥ for diffusion parallel and perpendicular to the orientation of the axis of
symmetry

�̂� =
(︀
sin(𝜃) cos(𝜑), sin(𝜃) sin(𝜑), cos(𝜃)

)︀
(4.46)

of the uniaxial particle, respectively, where 1 denotes the 3×3-dimensional unit ma-
trix. The rotational diffusion tensor, too, becomes quite simple for uniaxial particles.
When one defines DRR = 𝐷R1 with the rotational short-time diffusion coefficient 𝐷R

and neglects the self-propulsion, the DDFT equation of Rex, Wensink, and Löwen
[RWL07] for uniaxial particles is obtained. From the uniaxial DDFT equation, one
can in turn derive the DDFT equation for colloidal particles with spherical symmetry
[MT99, AE04] as a special case.

4.3 Reformulation of DDFT using a dissipation
functional

In linear irreversible thermodynamics [MPP72, GM84, Rei98], dissipation functionals
R are used to derive the dissipative dynamics of thermodynamic variables.6 Such a
dissipation functional

R =

∫︁
𝒱
d𝑉 r(�⃗�, 𝑡) (4.47)

with the integrand r(�⃗�, 𝑡) that is often called a dissipation function and that is quadratic
in the thermodynamic forces7 corresponding to the thermodynamic variables, is closely
related to the entropy production r(�⃗�, 𝑡)/𝑇 of the thermodynamic system [MPP72,

6For an introduction to symmetry-based theories of linear irreversible thermodynamics that use
dissipation functionals, see section 5.1.

7The term thermodynamic force is defined by equation (5.69) in section 5.1.4.2.
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PB96]. This entropy production appears naturally in the balance equation

�̇� + 𝜕𝑖𝐽
𝜎
𝑖 =

r

𝑇
(4.48)

for the entropy density 𝜎(�⃗�, 𝑡), where 𝐽𝜎𝑖 (�⃗�, 𝑡) are the elements of the entropy current

𝐽𝜎(�⃗�, 𝑡). The most important feature of a dissipation functional and the basis for the
derivation of the dissipative dynamics of thermodynamic variables from this dissipation
functional is its optimization at local thermodynamic equilibrium.

A dissipation functional can be constructed for thermodynamic systems close to ther-
modynamic equilibrium and the dissipative dynamics of the thermodynamic variables
of such systems follows then from the functional derivatives of the dissipation functional
with respect to the thermodynamic forces [MPP72, GM84, For89, PB96, Rei98]. If a
thermodynamic system is not close to thermodynamic equilibrium, as it is the case for
strongly driven systems, a dissipation functional cannot be derived [For89, Rei98], but
for special situations, where certain potential conditions are satisfied [GH71a, GH71b,
Ris72, Gra74, Ris96], it is at least possible to construct a Ljapunov functional , which
is a generalized dissipation functional for systems that can also be far from thermo-
dynamic equilibrium and that are therefore not any more subject to linear irreversible
thermodynamics. In the context of path integral methods in thermodynamics, dissi-
pation functionals are closely related to the generalized Onsager-Machlup function of
Graham [Gra77b, Gra78].

The DDFT equation (4.43) for active and passive colloidal particles with arbitrary
shape, whose dynamics is solely dissipative, can be derived from a dissipation func-
tional, too. For this purpose, the DDFT equation is written here as the conservation
equation8

�̇�+ d𝑖𝐽
𝜌
𝑖 = 0 (4.49)

for the one-particle density field 𝜌(⃗x, 𝑡) with the elements d𝑖 of the generalized gradient

operator ∇⃗x⃗ = (d1, . . . , d6) and with the dissipative one-particle density current

𝐽𝜌𝑖 = −𝛽𝒟𝑖𝑗𝜌(d𝑗𝜌
♮ −𝐾A,𝑗) . (4.50)

Here, the components of the diffusion tensor 𝒟(⃗x) are denoted as 𝒟𝑖𝑗 (⃗x), the thermody-
namic conjugate 𝜌♮(⃗x, 𝑡) (compare equation 5.64 in section 5.1.4.2) of the one-particle
density 𝜌(⃗x, 𝑡) is given by

𝜌♮(⃗x, 𝑡) =
𝛿ℱ [𝜌(⃗x, 𝑡)]

𝛿𝜌(⃗x, 𝑡)
, (4.51)

and 𝐾A,𝑖 are the components of the vector �⃗�A. The consideration of possible internal

forces and torques through the vector �⃗�A is, however, only reasonable in the limit of
a sufficiently small internal drive so that the system is not driven too far from local
thermodynamic equilibrium. Since the one-particle density field 𝜌(⃗x, 𝑡) is conserved, the

8Einstein’s sum convention is used throughout this work.
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thermodynamic force 𝜌♯𝑖 (⃗x, 𝑡), that corresponds to the conjugated one-particle density
field 𝜌♮(⃗x, 𝑡), is defined as 𝜌♯𝑖 (⃗x, 𝑡) = −d𝑖𝜌

♮(⃗x, 𝑡) (see section 5.1.4.2). The dissipative
current 𝐽𝜌𝑖 (⃗x, 𝑡) can therefore be derived from an appropriate dissipation functional R
by the functional derivative

𝐽𝜌𝑖 = − 𝛿R

𝛿(d𝑖𝜌♮)
. (4.52)

This dissipation functional for the dissipative dynamics of the one-particle density field
𝜌(⃗x, 𝑡), that is described by the DDFT equation (4.43), is given by the expression

R =
𝛽

2

∫︁
G

dV𝒟𝑖𝑗𝜌(d𝑖𝜌
♮ −𝐾A,𝑖)(d𝑗𝜌

♮ −𝐾A,𝑗) . (4.53)

Also this expression can be reduced to the case of only two spatial dimensions by
choosing 𝑥3 = 0, 𝜃 = 𝜋/2, and 𝜒 = 0.

4.4 Applications and further development of DDFT

The generalized DDFT equation (4.43) for active and passive colloidal particles with
arbitrary shape has many applications. While with previous versions of DDFT, biaxial
colloidal particles could not be treated, the new version makes an investigation of the
dynamics of arbitrary colloidal liquid crystals possible. In experiments, biaxial particles
exhibit a great number of interesting additional liquid crystalline phases that cannot
be observed with uniaxial particles. By numerical explorations, one could investigate,
for example, the relaxation dynamics of colloidal systems toward equilibrium [RWL07],
the response of these systems to time-dependent external potentials [HBL10], the nu-
cleation kinetics of liquid crystalline phases [SF04, ZD06, MC09], and the growth of a
thermodynamically stable phase into a metastable phase [TBVL09].

The generalized DDFT equation could further be used to model the collective Brow-
nian motion of active particles like swarms of swimming microorganisms (see figure 4.1
on the next page). Interesting observable effects in the non-equilibrium dynamics of
interacting active colloidal particles include self-organization, clustering [WL08], flock-
ing, swarming [WL08, EG09], laning, turbulence, and jamming [PDB06, LGG+09].
In such numerical investigations, the external potential can also be time-dependent.
Furthermore, the dissipation functional (4.53) that constitutes an alternative repre-
sentation for the DDFT equation (4.43) can be used to derive the dynamics of PFC
models (see next chapter). Especially for PFC models with various order-parameter
fields, the corresponding dynamic equations can be derived much faster and much more
easily with this dissipation functional than with the DDFT equation itself.

The results of numerical evaluations of the DDFT equation (4.43) should be com-
pared with experiments and computer simulations [Sat10] like molecular dynamics sim-
ulations [Löw94a, WCH01]. Additionally, the new DDFT equation could be further
generalized. A very important success would be the generalization of DDFT toward
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Figure 4.1: A swarm of swimming microorganisms, that are subjected to gravity and
interact with each other, are a possible application of the DDFT equation for active
colloidal particles [ES11].

the not overdamped molecular dynamics, where the inertia of the colloidal particles has
to be taken into account in terms of a momentum density field. Such a generalization
would be applicable to molecular liquid crystals and the dynamics would no longer
be exclusively dissipative so that reversible currents [BCP09] could arise. Up to now,
there are only several unsatisfying attempts by Marconi, Melchionna, Tarazona, and
Cecconi [MTCM08, MM09, MM10] and by Archer [Arc06, Arc09] in this respect. Also
a generalization of DDFT for mixtures of different species of colloidal particles would
allow many new applications. The attempt of Archer in reference [Arc05] is a first step
in this direction, but it has to be improved.
One of the most important possible generalizations of DDFT would be the incorpo-

ration of hydrodynamic interactions between the colloidal particles. This was indeed
already done for spherical particles by Rex and Löwen [RL08, RL09] a few years ago,
but remains to be done for anisotropic colloidal particles. Further goals for the future
are the consideration of a flowing liquid, as it was regarded for spherical particles by
Rauscher et al. [RDKP07], the back-reaction of the colloidal suspension on the flow
field of the liquid, and colloidal suspensions in confinement. For confined colloidal
systems, as they often appear in nanofluidics, the hydrodynamic interactions of the
colloidal particles with the system boundaries have to be taken into account, too. This
was recently done for spherical particles by Almenar and Rauscher [AR11], but is still
an unsolved problem for anisotropic particles.
More special possible generalizations of DDFT could describe interacting colloidal

particles in curved geometry as well as relativistic systems [Gra77a]. Finally, a sys-
tematic microscopic derivation of the dissipation functional (4.53) would be desirable
as well. Such a derivation could provide a starting point for further generalizations of
DDFT.





5 Statics and dynamics of colloidal
liquid crystals

This chapter deals with the statics and dynamics of interacting colloidal particles in
the form of apolar and polar colloidal liquid crystals. At the beginning, microscopic,
mesoscopic, and macroscopic classical mean-field theories that can be used to derive
models for colloidal liquid crystals are introduced. These mean-field theories are in
particular DFT, PFC models, Ginzburg-Landau theory, and generalized hydrodynam-
ics both in their static and dynamic versions. Afterwards, microscopic static DFT
and DDFT are used to derive mesoscopic static and dynamic PFC models for apolar
and polar colloidal liquid crystals in two and three spatial dimensions. Together with
the dynamic equations, as well the corresponding dissipation functionals are given.
Special cases of the derived PFC models, that are already known from the literature,
are identified and the PFC model for apolar liquid crystals in two spatial dimensions
is evaluated numerically. In doing so, phase diagrams are calculated and the arising
liquid crystalline phases are discussed. Furthermore, all PFC models are compared
with static and dynamic symmetry-based approaches on the basis of Ginzburg-Landau
theory and generalized hydrodynamics. Finally, applications and possible extensions
of the derived PFC models are addressed.

5.1 Classical mean-field theories for the modeling of
liquid crystals

To describe the static and dynamic properties of colloidal liquid crystals, a great num-
ber of models and theories is available. Most of them are rather special and only
applicable to very particular systems. Among them are Onsager’s hard-rod model
[Ons49, VL92] for the isotropic-nematic phase transition of lyotropic1 liquid crystals,
theMaier-Saupe mean-field theory [MS58, MS59, MS60] for the isotropic-nematic phase
transition of thermotropic liquid crystals, the related McMillan model [McM71] for the
nematic-smectic A phase transition, the Ericksen-Leslie theory [Eri59, Eri61, Les66] for
the hydrodynamics of liquid crystals, and the Landau-de Gennes theory [Gen71, GP95]
for liquid crystalline phase transitions. Because of their limited applicability, such spe-
cial models and theories are not considered here. This section presents instead four

1A liquid crystalline system is called lyotropic, if phase transitions are induced by a change of the
concentration, and thermotropic, if a variation of the temperature leads to a phase transition.
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very general theories that can be used to derive special models for arbitrary liquid
crystalline systems and other complex fluids. These fundamental theories are classical
mean-field theories, which implies that they describe a system using space- and time-
dependent continuous density fields and that fluctuations are neglected. Table 5.1 gives
an overview about these mean-field theories, their nomenclature, and their classifica-
tion. Two of these theories, namely density functional theory and Ginzburg-Landau

Table 5.1: Classical mean-field theories for the modeling of complex fluids.

Type of the theory: microscopic mesoscopic macroscopic macroscopic

Type of the derivation: microscopic
microscopic or

symmetry-based
symmetry-based symmetry-based

Name of the theory:
density functional

theory (DFT)
phase field crystal

(PFC) models
Ginzburg-Landau

(GL) theory
generalized

hydrodynamics

þ static version: static DFT static PFC models static GL theory
generalized
hydrostatics

þ dynamic version:
dynamical DFT

(DDFT)
dynamic PFC

models
dynamic GL theory

generalized
hydrodynamics

theory, have well-known quantum mechanical complements, but these quantum me-
chanical theories are only relevant for problems of solid state physics and not consid-
ered in this work, which deals with the classical physics of colloidal dispersions. Except
for dynamical density functional theory, the theories in table 5.1 are furthermore not
only applicable to colloidal systems, but also to molecular and atomic fluids.

Classical density functional theory (DFT) can be used to describe a colloidal system
on microscopic length and time scales. Such a microscopic description regards the
microscopic correlations between the particles and the underlying thermodynamic con-
ditions like temperature and chemical potential. Due to the involvement of microscopic
correlation functions, the application of DFT is often very difficult and tedious. A sim-
pler and more coarse-grained description is possible with phase field crystal (PFC)
models. They describe a system on microscopic length and diffusive time scales and
involve microscopic correlations at most through parameters that are generalized mo-
ments of microscopic correlation functions. These parameters do not necessarily need
to be calculated from the microscopic correlation functions, but can also be used as fit
parameters that may be determined by a comparison with experimental results or mi-
croscopic simulations. Although PFC models have already been applied successfully to
various problems of hard and soft condensed matter physics, there are also systems like
colloidal dispersions in a flowing liquid, where PFC models cannot be derived or where
their derivation would be too complicated. In such situations, macroscopic theories,
that describe the system on macroscopic length and time scales and do not consider
microscopic correlations explicitly, can be applied. Two macroscopic mean-field the-
ories are included in table 5.1. The first of them is classical Ginzburg-Landau theory
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that can be used to describe thermodynamic systems in the vicinity of a phase tran-
sition. Systems in the bulk of a phase far away from phase transitions are in contrast
described by the second theory, which is called generalized hydrodynamics.
All these theories include a static and a dynamic version. Static systems are ad-

dressed within each of these theories by the construction of a thermodynamic functional
that corresponds to a suitable thermodynamic potential and that is approximatively
expressed in terms of the thermodynamic variables of the system under consideration.
This functional can be written as a spatial integral over a generalized energy density
and in the context of DFT it can also be nonlocal. For the remaining theories, this
functional is always local. A further difference between static DFT and the three other
static mean-field theories is the fact that in the context of DFT also non-perturbative
approximations for the thermodynamic functional exist, while PFC models, Ginzburg-
Landau theory, and generalized hydrodynamics are perturbative. The thermodynamic
variables that are used to parametrize the thermodynamic functional are assumed to
be space- and time-dependent density fields. This is in contrast to the spatially homo-
geneous scalar variables like magnetization in the Landau theory of phase transitions
of second order [CL95, LL08]. Aside from the space-dependent density fields, their
gradients and higher-order derivatives also contribute to the generalized energy den-
sity. The local energy densities of PFC models and of the macroscopic theories are
thus approximated by a gradient expansion in the thermodynamic variables. By par-
tial integration in the thermodynamic functional, it is always possible to rearrange the
terms of the gradient expansion. When unbounded systems are considered, as it is the
case throughout this work, partial integration can especially be used in order to remove
surface terms in the gradient expansion.
On the basis of a static model, the corresponding dynamics for the particular sys-

tem can be derived also, if the system is close to thermodynamic equilibrium, where
linear irreversible thermodynamics applies and Onsager’s principle [LL08] holds. For
each of the four fundamental mean-field theories, the dynamics is given by dynamic
equations for the thermodynamic variables. The restriction on systems, that are close
to thermodynamic equilibrium, is necessary, since the dynamic versions of the mean-
field theories are also perturbative. They involve dynamic equations that are linear
perturbative expansions about the equilibrium state of the thermodynamic system.
The fundamental mean-field theories mentioned use different types of thermody-

namic potentials and thermodynamic variables. Static DFT is based on the grand
canonical free-energy functional, while dynamical DFT is grounded on the Helmholtz
free-energy functional. In the context of DFT, the functionals depend only on the
one-particle density field. When mixtures of different species of colloidal particles are
considered, the one-particle densities of all these types of colloidal particles contribute
to the functional, but additional fields like an entropy density or equivalently a temper-
ature density are not taken into account. Contrarily, static and dynamic PFC models
use the Helmholtz free-energy functional and express the corresponding energy den-
sity by a gradient expansion in terms of one or several order-parameter fields. Simple
PFC models deal usually only with the particle number density as order-parameter
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field, but for the description of mixtures or systems with orientational degrees of free-
dom, further order-parameter fields have to be taken into account. However, it is not
possible to consider arbitrary order-parameter fields in the context of DFT and PFC
models. Velocity and momentum fields, for example, have up to now not been suc-
cessfully incorporated in these theories. The situation is completely different for the
macroscopic theories. Both Ginzburg-Landau theory and generalized hydrodynamics
use an arbitrary thermodynamic functional, that is most appropriate for the consid-
ered system, and various thermodynamic variables. Regarding these theories, the most
common choice for the functional is the internal energy functional, but equivalently
other functionals like the Helmholtz free-energy functional can be used. A main differ-
ence between Ginzburg-Landau theory and generalized hydrodynamics consists in the
choice of the thermodynamic variables. In the context of Ginzburg-Landau theory, the
order-parameter fields, that define the considered phase transition, are chosen, while
for the application of generalized hydrodynamics the hydrodynamic variables of the
system must be determined. In addition to the hydrodynamic variables, it is some-
times necessary to include additional non-hydrodynamic macroscopic variables leading
to a generalized macroscopic model .
On a very general level, the mean-field theories can be distinguished with respect

to their type. The only truly microscopic theory among them is DFT. Against this,
the more coarse-grained description by means of a PFC model is called mesoscopic.
Ginzburg-Landau theory and generalized hydrodynamics are even more coarse-grained
and therefore termed macroscopic theories. While all theories can be used to de-
rive special models for particular thermodynamic systems on certain length and time
scales, macroscopic models can be derived both from macroscopic and microscopic the-
ories. The mesoscopic PFC models can be derived from microscopic DFT and further
compared with macroscopic models on the basis of Ginzburg-Landau theory or gener-
alized hydrodynamics. Such a derivation of mesoscopic and macroscopic models from
microscopic theories helps to clarify the relations between the different theories and
constitutes a bridge from microscopic to macroscopic modeling (see the next sections
of this chapter). Although there are always microscopic theories, where a certain model
can be derived from, one should not make it a rule, since macroscopic derivations are
usually much simpler and can be performed faster. The derivation of a particular PFC
model from DFT is, for example, very complicated and time consuming. Sometimes it
is not possible at all within an acceptable effort.
Macroscopic theories use general conservation laws, symmetry considerations, and

basic thermodynamic principles instead of microscopic calculations involving various
correlation functions in order to derive a macroscopic model. PFC models can also
be derived with the help of such general considerations. Symmetry-based macroscopic
theories are in general very powerful and elegant, since they allow faster and more
general derivations than microscopic theories. The symmetries that are considered in
a symmetry-based macroscopic derivation are the basic symmetries of the system that
has to be described. In the case of Ginzburg-Landau theory, one considers the joint
symmetries of the adjacent phases at the phase transition regarded, and for deriva-



5.1 Classical mean-field theories for the modeling of liquid crystals 57

tions by means of generalized hydrodynamics, one chooses the symmetry properties of
the described bulk phase. Symmetries that have to be considered regularly are, for
example, time reversal symmetry, parity inversion symmetry, invariance against global
translations and rotations, and behavior under Galilean transformations.
Symmetry-based macroscopic derivations unfortunately have two big disadvantages.

The first of them is the obvious inability to describe systems on a microscopic length
and time scale and the second drawback is the appearance of a number of unknown pa-
rameters that cannot be determined within the macroscopic theories2, in the symmetry-
based models. The same parameters also appear in microscopically derived models,
but there, they are given explicitly in the form of analytic expressions that involve mi-
croscopic correlation functions and the underlying thermodynamic conditions like tem-
perature and mean particle density. Unknown parameters do not exist in microscopic
derivations and are a special feature of symmetry-based macroscopic models. The un-
known parameters of macroscopic theories can always depend on all scalar quantities
of the described system like temperature, mean particle number density, and modulus
of polarization. When certain values have to be assigned to these parameters and they
shall not be derived from microscopic theories, the parameters can be fitted to results
from experiments and microscopic simulations. A famous example in this context is the
macroscopic quantum mechanical Ginzburg-Landau theory [GL50] that was proposed in
1950 by Ginzburg and Landau in order to model superconductivity. This theory con-
tains an unknown charge parameter 𝑞 that was determined not until the derivation of
the microscopic Bardeen-Cooper-Schrieffer (BCS) theory [BCS57a, BCS57b] in 1957.
By comparison with the BCS theory, the identification 𝑞 = −2𝑒 with the elementary
charge 𝑒 was concluded and could be related to the charge of a Cooper pair.
In the following paragraphs of this section, the fundamental mean-field theories, that

are summarized in table 5.1 on page 54, are described in detail. To simplify the pre-
sentation, many exemplary expressions given are rather special and only formulated
for systems with three spatial dimensions in the domain 𝒱 = R3. Nevertheless, anal-
ogous expressions can be formulated for two spatial dimensions as well as for more
complicated situations.

5.1.1 Density functional theory

Originally, classical DFT comprised only a static theory for equilibrium systems. This
static classical DFT is a microscopic theory for inhomogeneous complex fluids [Eva79,
Sin91, Löw94d, Rot10] that needs only the particle interactions and the underlying
thermodynamic conditions as input. It is an adaptation of the quantum mechanical
DFT of Kohn, Hohenberg, and Sham [HK64, KS65] that was first proposed in the
1960s. The classical adaptation goes back to the work of Ebner, Saam, Yang, et al.
[ESS76, YFG76, SE77] in the 1970s and in the meantime proved to be a very useful

2Unknown parameters of macroscopic theories can only be determined in combination with an ap-
propriate microscopic model. With such a model, it is, for example, possible to relate transport
coefficients of generalized hydrodynamics to correlation functions [For89].
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tool in soft condensed matter physics. Static DFT describes inhomogeneous fluids
and crystallization of an ensemble of colloidal particles in an external potential on
microscopic length and time scales. It is typically used for isotropic particles [Eva79,
Sin91, RELK02], but it can also be applied to anisotropic particles [PH88, GL99,
HM09, Löw10b]. The applications of static DFT include crystallization and melting
in equilibrium [RY79, Sin91, Löw94d, RSLT97], anisotropic liquids in confinement and
in external potentials [Eva79, GL99], as well as fluid-fluid interfaces [Eva79]. Further
information about this theory and a detailed historic overview can be found in several
articles and books like [CA86, Eva92, Löw02, HM06, Kal10].
In contrast to static DFT, its dynamic extension for non-equilibrium problems, dy-

namical DFT (DDFT), is a rather new theory. It was first derived for isotropic particles
by Marconi and Tarazona [MT99, MT00] from a Langevin equation in 1999. Then the
same DDFT was rederived by Archer and Evans [AE04] from a Smoluchowski equa-
tion in 2004 and finally Español and Löwen [EL09] rederived it again now using a
projection operator technique in 2009. The first generalization of DDFT to special
non-spherical particles was achieved by Rex, Wensink, and Löwen [RWL07] in 2007.
In the meantime, DDFT has been generalized for many particular applications. The
most important generalizations and especially the derivation of a generalized DDFT
for arbitrarily shaped particles are described in chapter 4.

5.1.1.1 Static density functional theory

Static DFT describes a system of 𝑁 colloidal particles, whose center-of-mass posi-
tions and orientations are defined through the vectors x⃗𝑖 with 𝑖 ∈ {1, . . . , 𝑁}, by a
one-particle density field 𝜌(⃗x). This one-particle density field is proportional to the
probability density to find a colloidal particle at a certain position with a certain ori-
entation. Due to its dependence on the Eulerian angles that are incorporated by the
vector x⃗, the one-particle density field 𝜌(⃗x) characterizes an ensemble of colloidal parti-
cles with arbitrary shape. When only uniaxial particles are considered, it is sufficient to
denote the orientation of a colloidal particle by a unit vector �̂� instead of the Eulerian
angles �⃗�, where the orientational unit vector �̂� should be chosen parallel to the axis of
symmetry of the respective uniaxial colloidal particle. For spherical particles it is not
necessary to denote their orientation at all. In this case, the equilibrium one-particle
density field depends only on the position �⃗�. Nevertheless, the most general notation
is used in the following to take arbitrarily shaped particles into account as well. The
field 𝜌(⃗x) that is used in the general case for static DFT is the ensemble-averaged
one-particle density

𝜌(⃗x) =

⟨ 𝑁∑︁
𝑖=1

𝛿(⃗x− x⃗𝑖)

⟩
(5.1)

with the normalized classical canonical ensemble-average ⟨ · ⟩. Static DFT is based on
a theorem and on a variational principle.
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The basic theorem of static DFT can be formulated as follows:

The grand canonical functional3 Ω(𝑇, 𝜇, [𝜌(⃗x)]) exists and is a unique func-
tional of the one-particle density 𝜌(⃗x) for a given temperature 𝑇 and chem-
ical potential 𝜇.

This theorem is complemented by the variational principle of static DFT:

At fixed temperature 𝑇 and chemical potential 𝜇, the equilibrium one-particle
density 𝜌(⃗x) minimizes the grand canonical functional:

𝛿Ω(𝑇, 𝜇, [𝜌(⃗x)])

𝛿𝜌(⃗x)
= 0 . (5.2)

The value of the grand canonical functional Ω(𝑇, 𝜇, [𝜌(⃗x)]) at the equilibrium
one-particle density 𝜌(⃗x) is the equilibrium grand canonical free energy of
the system.

Static DFT thus establishes a basis for the determination of the equilibrium one-particle
density field 𝜌(⃗x) of an arbitrary colloidal system. The difficulty in the application of
static DFT consists in the necessity of a good approximation for the grand canonical
functional Ω(𝑇, 𝜇, [𝜌(⃗x)]). In general, the grand canonical functional can be related
to the equivalent Helmholtz free-energy functional ℱ(𝑇, [𝜌(⃗x)]) with the help of the
Legendre transformation4

Ω(𝑇, 𝜇, [𝜌(⃗x)]) = ℱ(𝑇, [𝜌(⃗x)])− 𝜇

∫︁
G

dV 𝜌(⃗x) . (5.3)

The Helmholtz free-energy functional ℱ(𝑇, [𝜌(⃗x)]) in turn can be decomposed into three
separate contributions:

ℱ(𝑇, [𝜌(⃗x)]) = ℱid(𝑇, [𝜌(⃗x)]) + ℱexc(𝑇, [𝜌(⃗x)]) + ℱext(𝑇, [𝜌(⃗x)]) . (5.4)

Its first contribution is the ideal rotator-gas free-energy functional5 [Eva79]

𝛽ℱid(𝑇, [𝜌(⃗x)]) =

∫︁
G

dV 𝜌(⃗x)
(︀
ln
(︀
Λ3𝜌(⃗x)

)︀
− 1
)︀

(5.5)

with the thermal de Broglie wavelength Λ. It describes the free energy of an ideal
rotator gas, i. e., of non-interacting anisotropic particles in the absence of external forces
and torques. The second term on the right-hand-side of equation (5.4) is the excess
free-energy functional ℱexc(𝑇, [𝜌(⃗x)]). For this term, a general analytic expression is not

3The grand canonical functional Ω(𝑇, 𝜇, [𝜌(⃗x)]) is also called density functional in the context of DFT.
4The spatially homogeneous parameters 𝑇 and 𝜇 are often omitted in the arguments of the functionals
Ω(𝑇, 𝜇, [𝜌(⃗x)]) and ℱ(𝑇, [𝜌(⃗x)]).

5This is different from the quantum mechanical DFT, where it is much more difficult to represent
the kinetic energy as a functional of the electron density.
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available. This contribution incorporates all correlations due to interactions between
the particles and needs to be approximated appropriately [Eva79, Sin91]. The last
contribution is the external free-energy functional [Eva79]

ℱext(𝑇, [𝜌(⃗x)]) =

∫︁
G

dV 𝜌(⃗x)𝑈1(⃗x) , (5.6)

which regards the influence of an external potential 𝑈1(⃗x) on the free energy of the
system. Such a potential includes the effects of system boundaries, gravitational fields,
and laser fields on the considered colloidal dispersion. Since analytic expressions are
available for the ideal rotator-gas free-energy functional ℱid(𝑇, [𝜌(⃗x)]) and for the exter-
nal free-energy functional ℱext(𝑇, [𝜌(⃗x)]), the main problem in the context of DFT is the
approximation of the excess free-energy functional ℱexc(𝑇, [𝜌(⃗x)]). An exact analytic
expression for this functional exists only for an ideal gas, where this contribution to the
total free-energy functional vanishes, and for hard rods in one spatial dimension, but
several possible approximations with different advantages and disadvantages including
perturbative as well as non-perturbative approximations are currently available. A nat-
ural perturbative approximation for the excess free-energy functional is a functional
Taylor expansion in the density variation Δ𝜌(⃗x) = 𝜌(⃗x) − 𝜌 around a homogeneous
reference density 𝜌 [Eva79, RY79]:

𝛽ℱexc(𝑇, [𝜌(⃗x)]) = 𝛽ℱ (0)
exc(𝜌)−

∞∑︁
𝑛=1

1

𝑛!
ℱ (𝑛)

exc (𝑇, [𝜌(⃗x)]) . (5.7)

The 𝑛th-order contribution ℱ (𝑛)
exc (𝑇, [𝜌(⃗x)]) in this functional Taylor expansion considers

the 𝑛-particle correlations of the colloidal particles. Its explicit dependence on the 𝑛th-
order direct correlation function 𝑐(𝑛)(⃗x1, . . . , x⃗𝑛) of the homogeneous bulk reference fluid
follows directly from the elementary relation [HM06]

𝑐(𝑛)(⃗x1, . . . , x⃗𝑛) = −𝛽 𝛿
𝑛ℱexc(𝑇, [𝜌(⃗x)])

𝛿𝜌(⃗x1) · · · 𝛿𝜌(⃗x𝑛)
. (5.8)

With this relation, the 𝑛th-order contribution of the functional Taylor expansion ob-
tains the form

ℱ (𝑛)
exc (𝑇, [𝜌(⃗x)]) =

∫︁
G

dV1 · · ·
∫︁
G

dV𝑛 𝑐
(𝑛)(⃗x1, . . . , x⃗𝑛)

𝑛∏︁
𝑖=1

Δ𝜌(⃗x𝑖) (5.9)

with the differentials dV𝑖 = d6x𝑖. In the functional Taylor expansion (5.7), the zeroth-

order contribution ℱ (0)
exc(𝜌) is constant and can therefore be neglected. The first-order

contribution corresponding to 𝑛 = 1 can be neglected, too, since it is zero. This follows
from the representation (5.9) under consideration of the translational and rotational
symmetries of the isotropic bulk fluid that also apply to the direct correlation function
𝑐(1)(⃗x1) = 𝑐𝑜𝑛𝑠𝑡. The other terms in the functional Taylor expansion with 𝑛 > 1 are
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due to the translational and rotational symmetries of the direct correlation functions6

nonlocal and in general not zero. For many situations it is sufficient to take pair-
correlations between the particles into account and to truncate the functional Taylor
expansion at second order. The resulting approximation is known as the Ramakrishnan-
Yussouff approximation [RY79]

𝛽ℱexc(𝑇, [𝜌(⃗x)]) = −1

2

∫︁
G

dV1

∫︁
G

dV2 𝑐
(2)(⃗x1, x⃗2)Δ𝜌(⃗x1)Δ𝜌(⃗x2) (5.10)

and has been proved to predict the freezing transition of hard spheres both in three
[RY79] and two spatial dimensions [TLHL06] accurately. More refined approaches in-
clude also the third-order term [Bar87] with an approximate triplet direct correlation
function [BHP87, BHP88] or even the fourth-order term [WLB11b]. The main prob-
lem of the Ramakrishnan-Yussouff approximation is its dependence on the in general
unknown direct pair-correlation function 𝑐(2)(⃗x1, x⃗2). Approximations for this direct
pair-correlation function can, for example, be obtained from microscopic simulations.
There are also some more or less appropriate analytic approximations for the direct
pair-correlation function in terms of the pair-interaction potential 𝑈2(⃗x1, x⃗2) that defines
the interactions between two particles, whose positions and orientations are given by the
vectors x⃗1 and x⃗2. Well-known analytic approximations for the direct pair-correlation
function include the second-order virial expression [RBMF95]

𝑐(2)(⃗x1, x⃗2) = 𝑒−𝛽𝑈2 (⃗x1 ,⃗x2) − 1 , (5.11)

which leads in combination with the Ramakrishnan-Yussouff approximation (5.10) to
the Onsager functional for the excess free energy that becomes asymptotically exact
in the low density limit [Fre91]. An alternative is the random-phase approximation7

[RWL07]
𝑐(2)(⃗x1, x⃗2) = −𝛽𝑈2(⃗x1, x⃗2) . (5.12)

For bounded potentials, this mean-field approximation becomes asymptotically exact
at high densities [RWL07]. A further possibility to construct an excess free-energy
functional for colloidal particles is a mean-field approximation for repulsive segment
potentials [RWL07]. More accurate expressions for the excess free-energy functional
for colloidal particles are given by weighted-density approximations [PH88, GL99] or
follow from fundamental measure theory [HM09, HM10]. In contrast to the functional
Taylor expansion (5.7), fundamental measure theory is a non-perturbative theory that
includes correlation functions of arbitrarily high order. It was originally introduced in
1989 by Rosenfeld for isotropic particles [Ros89, Eva92], later improved by Rosenfeld

6Since the functional Taylor expansion (5.7) was performed about the isotropic phase of a homoge-
neous reference fluid with short-range order, also the direct correlation functions (5.8) are isotropic
and short-ranged [PE10].

7This expression makes obvious that the symmetries of the pair-interaction potential 𝑈2(⃗x1, x⃗2) apply
also to the direct pair-correlation function 𝑐(2)(⃗x1, x⃗2), if no additional symmetry-breaking objects
are present.
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et al. [RSLT96, RSLT97, RELK02], then generalized to arbitrarily shaped particles by
Rosenfeld [Ros94], and finally optimized by Hansen-Goos and Mecke [HM09, HM10].
Especially for convex particles, fundamental measure theory provides in general very
good approximations for the excess free-energy functional.

5.1.1.2 Dynamical density functional theory

The nomenclature of dynamical DFT (DDFT) is not yet unified. DDFT was originally
called “dynamic density functional theory” by Marconi and Tarazona [MT99]. Later,
the term “dynamical density functional theory”, that is used throughout this work, was
introduced by Archer and Evans [AE04]. Their naming is presently widely used, but
sometimes DDFT is also called “time-dependent density functional theory”. DDFT is
the time-dependent analog of static DFT and can be classified as linear-response theory .
It describes the slow dissipative non-equilibrium relaxation dynamics of a system of 𝑁
colloidal particles near thermodynamic equilibrium. The basis of DDFT consists in a
deterministic dynamic equation, the DDFT equation, that describes the time-evolution
of the time-dependent noise-averaged non-equilibrium one-particle density field

𝜌(⃗x, 𝑡) =

⟨ 𝑁∑︁
𝑖=1

𝛿
(︀
x− x⃗𝑖(𝑡)

)︀⟩
, (5.13)

where ⟨ · ⟩ denotes the normalized classical canonical noise-average. This one-particle
density is conserved and its dynamics is assumed to be dissipative. The simplest
reasonable DDFT equation describes 𝑁 equal spherical colloidal particles that are
immersed in a quiescent and homogeneous viscous liquid with constant temperature 𝑇 .
When the colloidal dispersion is sufficiently dilute so that hydrodynamic interactions
between the colloidal particles can be neglected, the overdamped Brownian motion
[Dho96] of these colloidal particles can be described by the simple DDFT equation

𝜕𝜌(�⃗�, 𝑡)

𝜕𝑡
= 𝛽𝐷T∇⃗�⃗� ·

(︂
𝜌(�⃗�, 𝑡)∇⃗�⃗�

𝛿ℱ(𝑇, [𝜌(�⃗�, 𝑡)])

𝛿𝜌(�⃗�, 𝑡)

)︂
(5.14)

with the translational diffusion coefficient 𝐷T. The structure of this DDFT equation
reveals directly the linear-response character of DDFT. Referring to equations (5.2)
and (5.3), the functional derivative in the DDFT equation can be interpreted as the
chemical potential

𝜇(�⃗�, 𝑡) =
𝛿ℱ(𝑇, [𝜌(�⃗�, 𝑡)])

𝛿𝜌(�⃗�, 𝑡)
, (5.15)

which is – in contrast to static DFT – now space- and time-dependent and drives
the dynamics toward thermodynamic equilibrium. In practice, the time-dependent
free-energy functional ℱ(𝑇, [𝜌(�⃗�, 𝑡)]) is not known and approximated by the equilib-
rium free-energy functional of static DFT. The instantaneous dynamic correlations
of the colloidal particles are thus replaced by the equilibrium correlations of a sim-
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ilar colloidal system with a modified external potential 𝑈1(�⃗�) that is in thermody-
namic equilibrium and has the same spatial one-particle density distribution. It can
be shown generally that such a modified external potential exists for any physical in-
stantaneous one-particle density distribution and that it is a unique functional of the
equilibrium one-particle density field [Eva79]. This approximation of the instanta-
neous time-dependent correlation functions of a non-equilibrium system by the static
correlations of a comparable equilibrium system is called adiabatic approximation8 and
constitutes the main approximation in the derivation of current DDFT. It implies that
all other fields besides the one-particle density field like, for example, all many-particle
density fields and the momentum density field of the colloidal dispersion relax much
faster than the one-particle density field itself [EL09]. The adiabatic approximation
is the reason, why DDFT applies only for dissipative systems close to thermodynamic
equilibrium and fails for systems that are driven far out of thermodynamic equilibrium.
Actually, DDFT can be interpreted as a linear time-dependent perturbation of static
DFT about the equilibrium state. This illustrates its linear-response character and its
affiliation to the theories of linear irreversible thermodynamics.
The simple DDFT equation (5.14) can be derived9 from the Langevin equations that

describe the stochastic motion of the 𝑁 isotropic colloidal particles in a liquid with
dynamic viscosity 𝜂 (compare chapter 3). These coupled Langevin equations for the
positions �⃗�𝑖(𝑡) of the colloidal spheres with radius 𝑅s are given by [Dho96, Ris96]

˙⃗𝑟𝑖 = 𝜉−1
(︀
𝐹𝑖 + 𝑓𝑖

)︀
, 𝑖 = 1, . . . , 𝑁 (5.16)

with the Stokesian friction coefficient 𝜉 = 6𝜋𝜂𝑅s and with the forces

𝐹𝑖(𝑡) = −∇⃗�⃗�𝑖𝑈(�⃗�1, . . . , �⃗�𝑁 , 𝑡) , (5.17)

that are caused by the total potential

𝑈(�⃗�1, . . . , �⃗�𝑁 , 𝑡) = 𝑈ext(�⃗�1, . . . , �⃗�𝑁 , 𝑡) + 𝑈int(�⃗�1, . . . , �⃗�𝑁) . (5.18)

This potential has two different contributions. The first one is the total external
potential

𝑈ext(�⃗�1, . . . , �⃗�𝑁 , 𝑡) =
𝑁∑︁
𝑖=1

𝑈1(�⃗�𝑖, 𝑡) , (5.19)

that describes the influence of an external potential 𝑈1(�⃗�, 𝑡) on the colloidal particles,
and the second contribution is the total particle interaction potential

𝑈int(�⃗�1, . . . , �⃗�𝑁) =
𝑁∑︁

𝑖,𝑗=1
𝑖<𝑗

𝑈2(�⃗�𝑖, �⃗�𝑗) . (5.20)

8The term adiabatic approximation refers to the adiabatic theorem of quantum mechanics and has
nothing to do with adiabatic processes in thermodynamics.

9The following derivation can be found in several references like [TBVL09, Löw10b].
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It incorporates the pair-interaction potentials 𝑈2(�⃗�𝑖, �⃗�𝑗) for the interactions between
the particles 𝑖 and 𝑗. In general, also three-body and higher-order interaction poten-
tials could be taken into account, but they are irrelevant for colloidal systems and
therefore neglected here. Furthermore, both the one-particle potentials 𝑈1(�⃗�𝑖, 𝑡) and
the two-particle interaction potentials 𝑈2(�⃗�𝑖, �⃗�𝑗) are assumed to be pairwise additive

[GG84]. Aside from the deterministic forces 𝐹𝑖(𝑡), also stochastic forces 𝑓𝑖(𝑡) due to
thermal fluctuations act on the Brownian particles. These random forces are modeled
by Gaussian white noises with vanishing mean values

⟨𝑓𝑖(𝑡)⟩ = 0⃗ (5.21)

and with the singular correlations

⟨𝑓𝑖(𝑡1)⊗ 𝑓𝑗(𝑡2)⟩ = 1
2𝜉

𝛽
𝛿𝑖𝑗𝛿(𝑡1 − 𝑡2) , (5.22)

where ⟨ · ⟩ is a normalized noise average and 1 denotes the 3×3-dimensional unit matrix.
This modeling of the stochastic forces is in accordance with the fluctuation-dissipation
theorem. In the special case of spherical particles, the fluctuation-dissipation theorem
involves Einstein’s fluctuation-dissipation relation 𝐷T = 1/(𝛽𝜉) [Ein05] that relates
the translational short-time diffusion coefficient 𝐷T of the colloidal particles to the
friction coefficient 𝜉. This route with a set of coupled Langevin equations was chosen
by Marconi and Tarazona [MT99, MT00] for their derivation of the DDFT equation.
For the further derivation, it is, however, more convenient to replace the Langevin
equations (5.16) by an equivalent Smoluchowski equation (compare chapter 4), as it
was done by Archer and Evans [AE04] in their alternative derivation of the DDFT
equation. In contrast to Langevin equations, a Smoluchowski equation describes not
the particular stochastic trajectories of the colloidal particles, but the time-evolution
of the 𝑁 -particle probability density 𝑃 (�⃗�1, . . . , �⃗�𝑁 , 𝑡). The particular Smoluchowski
equation, that corresponds to the Langevin equations (5.16), is given by [Smo16, Ris96]

�̇� (�⃗�1, . . . , �⃗�𝑁 , 𝑡) = ℒ̂𝑃 (�⃗�1, . . . , �⃗�𝑁 , 𝑡) (5.23)

with the Smoluchowski operator

ℒ̂ = 𝐷T

𝑁∑︁
𝑖=1

∇⃗�⃗�𝑖·
(︀
𝛽∇⃗�⃗�𝑖𝑈(�⃗�1, . . . , �⃗�𝑁 , 𝑡) + ∇⃗�⃗�𝑖

)︀
. (5.24)

The 𝑁 -particle probability density 𝑃 (�⃗�1, . . . , �⃗�𝑁 , 𝑡) in this Smoluchowski equation is a
very complicated function and for usual purposes not required. It is often sufficient
to consider the one-particle probability density 𝑃 (�⃗�, 𝑡) that is proportional to the one-
particle number density 𝜌(�⃗�, 𝑡). In general, all 𝑛-particle densities with 1 6 𝑛 6 𝑁
can be obtained from the 𝑁 -particle probability density 𝑃 (�⃗�1, . . . , �⃗�𝑁 , 𝑡) by integration



5.1 Classical mean-field theories for the modeling of liquid crystals 65

over the negligible degrees of freedom:

𝜌(𝑛)(�⃗�1, . . . , �⃗�𝑛, 𝑡) =
𝑁 !

(𝑁 − 𝑛)!

∫︁
𝒱
d𝑉𝑛+1 · · ·

∫︁
𝒱
d𝑉𝑁𝑃 (�⃗�1, . . . , �⃗�𝑁 , 𝑡) . (5.25)

It is thus possible to derive a dynamic equation for the one-particle density field
𝜌(�⃗�, 𝑡) ≡ 𝜌(1)(�⃗�1, 𝑡) from the Smoluchowski equation (5.23) by integration over the
positions of 𝑁 − 1 particles. This integration results in the equation

�̇�(�⃗�, 𝑡) = 𝐷T∇⃗�⃗� ·
(︀
∇⃗�⃗�𝜌(�⃗�, 𝑡)− 𝛽𝐹 (�⃗�, 𝑡) + 𝛽𝜌(�⃗�, 𝑡)∇⃗�⃗�𝑈1(�⃗�, 𝑡)

)︀
(5.26)

for the one-particle density 𝜌(�⃗�, 𝑡) with the average force density

𝐹 (�⃗�, 𝑡) = −
∫︁
𝒱
d𝑉 ′𝜌(2)(�⃗�, �⃗�′, 𝑡)∇⃗�⃗�𝑈2(�⃗�, �⃗�

′) , (5.27)

that in turn depends on the two-particle density 𝜌(2)(�⃗�1, �⃗�2, 𝑡). By integration over
𝑁 − 2 position variables, also a dynamic equation for the two-particle density could be
derived from the Smoluchowski equation, but this equation would again depend on the
three-particle density and so on resulting in a BBGKY hierarchy of dependent dynamic
equations for many-particle densities of increasing order. This hierarchy of equations
must be truncated at a certain order. In the context of DDFT, it is directly truncated
after the first order so that a suitable approximation for the average force 𝐹 (�⃗�, 𝑡), that
depends on the unknown two-particle density, is required. The average force 𝐹 (�⃗�, 𝑡) and
the other terms in the outer round brackets on the right-hand-side of equation (5.26)
can be expressed by the functional derivative of the equilibrium10 Helmholtz free-energy
functional ℱ(𝑇, [𝜌(�⃗�, 𝑡)]) with respect to the one-particle density 𝜌(�⃗�, 𝑡). The first term
in the round brackets on the right-hand-side of equation (5.26) can be related to the
ideal gas free-energy functional, which is the special case of the ideal rotator-gas free-
energy functional (5.5) for spherical particles without orientational degrees of freedom.
A functional derivation of equation (5.5) with respect to the one-particle density and
the successive application of a spatial gradient leads to the relation

∇⃗�⃗�𝜌(�⃗�, 𝑡) = 𝛽𝜌(�⃗�, 𝑡)∇⃗�⃗�
𝛿ℱid(𝑇, [𝜌(�⃗�, 𝑡)])

𝛿𝜌(�⃗�, 𝑡)
. (5.28)

The second term in the round brackets of equation (5.26) is the problematic term and
has to be approximated appropriately. For this purpose, the variational principle (5.2)
is applied to the equilibrium grand canonical functional (5.3) under consideration of
the decomposition (5.4). With equations (5.5), (5.6), and (5.8), this results in the

10The equilibrium Helmholtz free-energy functional ℱ(𝑇, [𝜌(�⃗�)]) becomes time-dependent, when the
equilibrium one-particle density 𝜌(�⃗�) is replaced by the time-dependent one-particle density 𝜌(�⃗�, 𝑡),
but the resulting functional is not the non-equilibrium Helmholtz free-energy functional, but only
an approximation for it.
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expression
𝑐(1)(�⃗�) = ln(Λ3𝜌(�⃗�)) + 𝛽(𝑈1(�⃗�)− 𝜇) (5.29)

for the equilibrium direct correlation function 𝑐(1)(�⃗�), where the “substitute” external
potential 𝑈1(�⃗�) is assumed to be time-independent. From this equation, the equilibrium
expression [LMB76]

𝜌(�⃗�)∇⃗�⃗�𝑐
(1)(�⃗�) = ∇⃗�⃗�𝜌(�⃗�) + 𝛽𝜌(�⃗�)∇⃗�⃗�𝑈1(�⃗�) (5.30)

follows directly. This expression can be compared with another equilibrium relation
that follows from equation (5.26) in the equilibrium limit and is known as the first
equation of the YBG hierarchy [HM06]:

∇⃗�⃗�𝜌(�⃗�) + 𝛽𝜌(�⃗�)∇⃗�⃗�𝑈1(�⃗�) = 𝛽𝐹 (�⃗�) . (5.31)

Under consideration of equation (5.8) for 𝑛 = 1, a comparison of equations (5.30) and
(5.31) leads to the equilibrium relation

𝐹 (�⃗�) = −𝜌(�⃗�)∇⃗�⃗�
𝛿ℱexc(𝑇, [𝜌(�⃗�)])

𝛿𝜌(�⃗�)
(5.32)

for the average force density 𝐹 (�⃗�) in thermodynamic equilibrium. The adiabatic ap-
proximation consists now in the application of this relation to non-equilibrium situa-
tions:

− 𝛽𝐹 (�⃗�, 𝑡) ≈ 𝛽𝜌(�⃗�, 𝑡)∇⃗�⃗�
𝛿ℱexc(𝑇, [𝜌(�⃗�, 𝑡)])

𝛿𝜌(�⃗�, 𝑡)
. (5.33)

It still remains to relate the last term in the round brackets on the right-hand-side of
equation (5.26) to the Helmholtz free-energy functional. This can easily be done by a
functional and spatial derivation of equation (5.6) yielding to the expression

𝛽𝜌(�⃗�, 𝑡)∇⃗�⃗�𝑈1(�⃗�, 𝑡) = 𝛽𝜌(�⃗�, 𝑡)∇⃗�⃗�
𝛿ℱext(𝑇, [𝜌(�⃗�, 𝑡)])

𝛿𝜌(�⃗�, 𝑡)
. (5.34)

The relations (5.28), (5.33), and (5.34) can now be inserted into equation (5.26). When
finally the decomposition (5.4) is reversed in the resulting expression, the simple DDFT
equation (5.14) for isotropic particles is obtained.
As a further equivalent alternative to the usage of Langevin equations, one can also

utilize a projection operator technique in order to derive the DDFT equation. This
possibility was pursued by Español and Löwen [EL09] in their derivation of the DDFT
equation, but it is more complicated and less intuitive than the derivation that is
presented in this section. Aside from the three alternative derivations for the simple
DDFT equation (5.14), a few further extensions of DDFT have been proposed in recent
years. For a short historic overview over the establishment and further development of
DDFT including the newest generalizations, see chapter 4.
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5.1.2 Phase field crystal models

The first phase field crystal (PFC) model has been developed by Elder et al. [EKHG02]
in 2002 as an improvement of the older phase field (PF) models . Static PFC models
are useful for the description of colloidal systems in thermodynamic equilibrium, while
dynamic PFC models provide the corresponding non-equilibrium dynamics. Similar
to static DFT, static PFC models are based on an equilibrium Helmholtz free-energy
functional in terms of an order-parameter field that describes the thermodynamic state
of the regarded system and can often be interpreted as the particle number density.
Dynamic PFC models, on the other hand, consist in a dynamic equation for the time-
evolution of the order-parameter field and need the static free-energy functional as
input. The derivation of static and dynamic PFC models is in principle possible in
two different ways. As a first possibility, general symmetry considerations can be used
in order to derive a PFC model. This was done by Elder et al. in connection with the
derivation of the first PFC model [EKHG02]. Alternatively, it is also possible to derive
PFC models directly from microscopic DFT.
PFC models themselves are mesoscopic and describe inhomogeneous fluids and crys-

tals on microscopic length and diffusive time scales. Their spatial resolution is therefore
comparable with the spatial resolution of molecular dynamics (MD) simulations and
sufficient to resolve a crystal lattice. To the contrary, the diffusive time scale of PFC
models is much larger than the characteristic time scale for MD simulations. This
facilitates fast numerical simulations on the basis of dynamic PFC models with much
larger time steps than they are possible for MD simulations and makes dynamic PFC
models to an important tool for the investigation of dynamic processes that are asso-
ciated with a microscopic spatial resolution and that take place on diffusive or larger
time scales. A further interesting feature of PFC models is that their equilibrium
free-energy functional is minimized by periodic equilibrium order-parameter fields for
suitable parameter combinations. These periodic patterns are usually interpreted as
crystalline density fields and do not arise in PF models. PFC models thus incorpo-
rate effects like elastic deformations, that are associated with the periodic pattern of
a crystalline phase and that are therefore not properly described by PF models, in a
natural manner.
Although PFC models are a relatively new tool of soft condensed matter physics,

they have already been used successfully for the modeling and investigation of various
non-trivial materials phenomena. Important applications include the consideration
of elastic and plastic deformations [EG04, SHP06, SHP09], the modeling of crystal
growth [EKHG02, TBVL09, TGT+09] and melting [MKP08], the description of fluid-
crystal interfaces [JAEAN09, YLV09], the structure [EG04, MKP08] and dynamics
[MGV09, TGT+09] of grain boundaries, and the dynamics of crack propagation [EG04]
in solid materials. Further special applications concern the Asaro-Tiller-Grinfeld insta-
bility [AT72, Gri86, HE08, WV09] and the description of glass formation over multiple
time scales [BG11]. However, due to some strong approximations in the derivation
of PFC models, there are also limitations for their applicability. Especially when the
parameters of PFC models are chosen arbitrarily and not fitted to experimental data,
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the PFC models are usually not appropriate for the calculation of precise numerical
values that are related to certain materials properties. Instead, PFC models are rather
appropriate for the investigation of qualitative relations and scaling laws. PFC mod-
els can, for example, be used to investigate the structure of crystalline phases and
phase diagrams, while the predictions for actual values of elastic constants or for the
amplitude of density variations in crystalline phases are often rather imprecise, but
this disadvantage of PFC models is not characteristic for them and shared by other
approximate theories.
In the following paragraphs, static and dynamic PFC models are addressed in detail

and by basic examples. For clarity, the examples and derivations shown are kept inten-
tionally simple and always involve only a single order-parameter field and a system of
spherical particles [EPB+07, JA10]. Nevertheless, also much more complicated PF and
PFC models involving multiple phase fields [EPB+07] as well as orientational degrees
of freedom [Löw10a], as they become important for systems consisting of anisotropic
particles, exist. For further details on PF and PFC models, the new book [PE10] of
Provatas and Elder is recommended for reading.

5.1.2.1 Static phase field crystal models

The introduction of PF models is usually ascribed to the work of Fix and Langer
[Fix83, Lan86] in the 1980s. Static PF models describe the equilibrium state of a
physically relevant or auxiliary scalar phase field 𝜓(�⃗�) that is spatially averaged and
has the role of an order parameter. The local value of the phase field defines the
present phase of the described thermodynamic system. Since each of the possible
phases is associated with a certain value of the phase field, the value of the phase
field changes rapidly between two different phases, while the phase field is spatially
uniform in the bulk equilibrium phases. A static PF model usually consists in a free-
energy functional ℱ [𝜓(�⃗�)] that is minimized by the equilibrium phase field, but there
are also non-variational formulations. The integrand of the free-energy functional is
a Ginzburg-Landau-type gradient expansion in the phase field that is assumed to be
sufficiently small and smooth. PF models are therefore perturbative. A simple example
for a free-energy functional of a PF model is given by [EG04]

ℱPF[𝜓(�⃗�)] =

∫︁
𝒱
d𝑉
(︀
𝑓0(𝜓) +𝐾0(∇⃗�⃗�𝜓)

2
)︀

(5.35)

with the polynomial 𝑓0(𝑥), that is supposed to possess two wells, and the parameter𝐾0.
To possess two wells, the polynomial 𝑓0(𝑥) must have an even order that is at least four.
Since the minimizing phase field of a free-energy functional, that corresponds to a PF
model, is spatially uniform in the bulk phases, such a model is especially appropriate
for the description of gas-liquid phase transitions. For crystalline phases, a spatially
uniform phase field is not a good representation instead and properties like elastic and
plastic deformability that are associated with the symmetries of a crystal lattice are
neglected by PF models.
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To solve this problem, PFC models have been developed by Elder et al. in 2002
[EKHG02]. They constitute an improvement of PF models and retain most of their
features. As static PF models, static PFC models are also based on a free-energy
functional that is minimized by an equilibrium phase field. This phase field is usually
interpreted as the particle density field of the described system, but it can also be, for
example, a local concentration or magnetization. The derivation of a PFC model can
happen on the basis of symmetry considerations [EKHG02, PE10] or with the help of
DFT. After the first PFC model had been proposed as a result of symmetry considera-
tions in 2002, the same model was rederived from static DFT in 2007 [EPB+07]. This
was the first derivation of a PFC model from DFT at all. PFC models are different
from PF models for two main reasons. Firstly, the phase field 𝜓(�⃗�) of a PFC model
is not averaged locally in space [EG04] and changes on molecular length scales. It
can therefore also represent a crystalline lattice. Secondly, the equilibrium phase field,
that minimizes the free-energy functional of a PFC model, has a periodic pattern, if
the parameters of the PFC model are chosen accordingly. The periodic phases of a
PFC model are usually interpreted as the particle density field of a crystal. Thus,
physical properties, that result from the periodicity of the density field, are naturally
included in PFC models [EPB+07]. This is in contrast not the case for PF models.
Such symmetry-related properties include especially the behavior of a certain material
under elastic and plastic deformations and make PFC models applicable to situations,
where PF models can hardly be used.

The main problem in the context of PFC models is the construction of a free-energy
functional that is minimized by a periodic phase field. Similar to PF models, the free-
energy density of a PFC model is also given by a gradient expansion of the phase field.
This gradient expansion is truncated at a certain order in the phase field and at a certain
order in the gradient operators. To give rise to periodic equilibrium structures of the
phase field, it is necessary to include fourth-order derivatives [PE10]. A positive term
proportional to (△�⃗�𝜓(�⃗�))

2 in the gradient expansion disadvantages phase fields with a
big curvature like phase fields that are highly oscillatory and that have a large amplitude
through an increase of the free energy. Furthermore, a negative term proportional to
(∇⃗�⃗�𝜓(�⃗�))

2 is needed in order to favor non-uniform phase fields. For the terms that
include no derivatives, i. e., for terms of the form 𝜓𝑛(�⃗�) with 𝑛 ∈ N, it is required that
the highest-order contribution is of even order and that it has a positive coefficient.
This term guarantees that the values of the phase field do not become too big and that
the free-energy functional is bounded below. Finally, the free-energy functional must
also be convex about the equilibrium state in the gradient expansion. The simplest
and most prevalent possibility for the highest-order monomial term is the fourth-order
term 𝜓4(�⃗�). This term is also present in the Swift-Hohenberg (SH) model for Rayleigh-
Bénard convection [SH77]

ℱSH[𝜓(�⃗�)] =

∫︁
𝒱
d𝑉

(︂
𝜓

2

(︀
(𝑞20 +△�⃗�)

2 − 𝜀0
)︀
𝜓 +

𝜓4

4

)︂
(5.36)

with the control parameters 𝑞0 and 𝜀0, which is the simplest model that provides
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periodic phases. The SH model describes periodic stripe patterns, but no crystalline
phases with, for example, a triangular (hexagonal) pattern. To include such phases,
Elder et al. modified the SH model leading to their first PFC model, which is also
called the traditional PFC model [EKHG02]. This model contains a cubic term in
addition to the SH terms and provides also triangular patterns that can be interpreted
as triangular crystal lattices. It is given by

ℱEM[𝜓(�⃗�)] =

∫︁
𝒱
d𝑉

(︂
𝜓

2

(︀
(𝑞20 +△�⃗�)

2 − 𝜀0
)︀
𝜓 + 𝛼0

𝜓3

3
+
𝜓4

4

)︂
(5.37)

with the additional parameter 𝛼0. Due to the symmetry-based derivation of the tradi-
tional PFC model, the values of its three parameters 𝑞0, 𝜀0, and 𝛼0 are not known and
can be used as fit parameters. Alternatively, they can be derived from a microscopic
theory. This derivation, that follows mainly the procedure in reference [EKHG02], is
presented in the following.
As for the derivation of the simple DDFT equation (5.14) in section 5.1.1.2, again a

colloidal dispersion of 𝑁 isotropic particles at the center-of-mass positions �⃗�𝑖 ∈ 𝒱 with
𝑖 ∈ {1, . . . , 𝑁} in the domain 𝒱 ⊆ R3 are considered. This domain has the measure

𝑉 =

∫︁
𝒱
d𝑉 (5.38)

and the particles, that are located in this domain, are exposed to the external potential
𝑈1(�⃗�). Their spatial distribution is described by the one-particle density 𝜌(�⃗�), as it is
usual in the context of DFT. Reminiscent of Ginzburg-Landau theory (see section
5.1.3), a small order-parameter field is introduced by the parametrization

𝜌(�⃗�) = 𝜌
(︀
1 + 𝜓(�⃗�)

)︀
(5.39)

of the one-particle density 𝜌(�⃗�) with the fluid reference density 𝜌. This small order-
parameter field 𝜓(�⃗�) = (𝜌(�⃗�)− 𝜌)/𝜌 is the dimensionless reduced translational density
variation. In terms of the order-parameter field 𝜓(�⃗�), the Helmholtz free-energy func-
tional (5.4) has to be approximated, where the orientational dependence in equation
(5.4) and in its components has to be neglected. At first, the ideal gas free-energy
functional (5.5) is approximated. Insertion of the parametrization (5.39) for the one-
particle density into equation (5.5) and a Taylor expansion of the logarithm11 in the
integrand of the ideal gas free-energy functional result in the approximation12

𝛽

𝜌
ℱid[𝜓(�⃗�)] = 𝐹id +

∫︁
𝒱
d𝑉

(︂
𝜓 +

𝜓2

2
− 𝜓3

6
+
𝜓4

12

)︂
(5.40)

11This Taylor approximation of the logarithm has the serious consequence that the non-negative-den-
sity constraint 𝜌(�⃗�) > 0 gets lost in the PFC model.

12Symbols like ℱid and 𝐹id are also used in the derivation of other PFC models in subsequent sections
and not distinguished by additional subscripts. The particular expression, that is associated with
these symbols, depends on the currently considered model.
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with the irrelevant constant

𝐹id = 𝑉
(︀
ln(Λ3𝜌)− 1

)︀
. (5.41)

The polynomial in the integrand of equation (5.40) was truncated at fourth order,
since this is the lowest order in 𝜓(�⃗�) that enables the formation of stable crystalline
phases. The approximation of the excess free-energy functional ℱexc[𝜓(�⃗�)] is less simple.
For this purpose, the Ramakrishnan-Yussouff approximation (5.10) is used. In the
homogeneous bulk phase, to which the direct pair-correlation function 𝑐(2)(�⃗�1, �⃗�2) in
the Ramakrishnan-Yussouff approximation corresponds, two symmetries are present.
These are the translational invariance and the rotational invariance of the system. The
same symmetries also apply to the direct pair-correlation function. This means13

𝑐(2)(�⃗�1, �⃗�2) ≡ 𝑐(2)(�⃗�1 − �⃗�2) ≡ 𝑐(2)(𝑅) (5.42)

with the relative distance 𝑅 = ‖�⃗�1 − �⃗�2‖. As a consequence of equation (5.42), the
Ramakrishnan-Yussouff approximation can be written as the integral of a convolution
integral. A local approximation of this convolution integral can then be obtained
from a gradient expansion (see appendix A) of the direct pair-correlation function.
The gradient expansion of the translationally invariant direct pair-correlation function
𝑐(2)(�⃗�) with �⃗� = �⃗�1− �⃗�2 is based on a Taylor expansion of the Fourier transformed direct

pair-correlation function 𝑐(2)(�⃗�) around the wave vector �⃗� = 0⃗. In Fourier space, this
Taylor expansion can be written as

𝑐(2)(�⃗�) = 𝑐
(2)
0 + 𝑐

(2)
2 �⃗�2 + 𝑐

(2)
4 �⃗�4 + · · · (5.43)

with the Fourier expansion coefficients 𝑐
(2)
𝑖 . From this Taylor expansion, the desired

gradient expansion of 𝑐(2)(�⃗�) follows by an inverse Fourier transformation. Back in
position space, the Taylor expansion (5.43) becomes the gradient expansion

𝑐(2)(�⃗�) = 𝑐
(2)
0 − 𝑐

(2)
2 △�⃗� + 𝑐

(2)
4 △2

�⃗� ∓ · · · (5.44)

with the gradient expansion coefficients 𝑐
(2)
𝑖 . In equations (5.43) and (5.44), gradients of

odd order have been neglected, since they would violate the parity inversion symmetry
of the direct pair-correlation function. For the derivation of the traditional PFC model
(5.37), it is sufficient to perform the gradient expansion up to fourth order, since this

order in the gradient ∇⃗�⃗� is the lowest one that makes stable periodic crystalline phases
possible. It constitutes furthermore an important difference between the PFC model of
Elder et al. and the older PF models that do not include fourth-order derivatives of the

13In the case of anisotropic particles with orientational degrees of freedom and especially for higher-
order direct correlation functions, it is much more difficult to identify the existing symmetries of
the direct correlation functions and to take advantage of them (compare section 5.3).
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phase field. The gradient expansion up to fourth order results in the approximation

𝛽

𝜌
ℱexc[𝜓(�⃗�)] = 𝐹exc −

1

2

∫︁
𝒱
d𝑉
(︁
𝐴1𝜓

2 + 𝐴2𝜓△�⃗�𝜓 + 𝐴3𝜓△2
�⃗�𝜓
)︁

(5.45)

with the irrelevant constant

𝐹exc =
𝛽

𝜌
ℱ (0)

exc(𝜌) (5.46)

and the coefficients

𝐴1 = 4M(0) , 𝐴2 =
2

3
M(2) , 𝐴3 =

1

30
M(4) . (5.47)

These coefficients depend on the moments

M(𝑛) = 𝜋𝜌

∫︁ ∞

0

d𝑅𝑅𝑛+2𝑐(2)(𝑅) (5.48)

of the direct pair-correlation function 𝑐(2)(𝑅). The last contribution to the total
Helmholtz free-energy functional (5.4) is the external free-energy functional (5.6) that
can be written as

𝛽

𝜌
ℱext[𝜓(�⃗�)] = 𝐹ext +

∫︁
𝒱
d𝑉 𝜓(�⃗�)𝛽𝑈1(�⃗�) (5.49)

with the constant

𝐹ext =

∫︁
𝒱
d𝑉 𝛽𝑈1(�⃗�) , (5.50)

which is not a functional of 𝜓(�⃗�) and can therefore be neglected like 𝐹id and 𝐹exc before.
Altogether, the expressions (5.40), (5.45), and (5.49) lead to the approximation

𝛽

𝜌
ℱ [𝜓(�⃗�)] =

∫︁
𝒱
d𝑉

(︂
𝜓𝑈 ′ + 𝐴′

1𝜓
2 + 𝐴′

2𝜓△�⃗�𝜓 + 𝐴′
3𝜓△2

�⃗�𝜓 − 𝜓3

6
+
𝜓4

12

)︂
(5.51)

for the total Helmholtz free-energy functional. Here, the dimensionless potential

𝑈 ′(�⃗�) = 1 + 𝛽𝑈1(�⃗�) (5.52)

and the scaled coefficients

𝐴′
1 =

1

2

(︀
1− 𝐴1

)︀
, 𝐴′

2 = −1

2
𝐴2 , 𝐴′

3 = −1

2
𝐴3 (5.53)

are used for abbreviation, where the coefficient 𝐴′
2 should be positive in order to favor

non-uniform phases and the last coefficient 𝐴′
3 is assumed to be positive for stability

reasons. Through the moments (5.48), the three coefficients (5.53) in the microscopi-
cally derived PFC model (5.51) are related to the microscopic direct pair-correlation
function. By comparison of equations (5.37) and (5.51), that are equivalent except for
the external potential and the scaling, analytic expressions can be assigned to the three
initially unknown coefficients 𝜀0, 𝑞0, and 𝛼0 in the traditional PFC model (5.37).
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The free-energy functional (5.51) constitutes a simple local approximation for the
actual Helmholtz free-energy functional of static DFT. Due to the truncation of the
gradient expansion in the derivation of the approximation (5.51), the spatial patterns
of the equilibrium order-parameter field, that minimizes this functional, can usually be
described by first-order Fourier modes. This observation suggests simple analytic ap-
proaches like the one-mode approximation [JA10] and the amplitude expansion [PE10]
for the order-parameter field. With such approaches, the free-energy functionals of
simple PFC models can be minimized analytically, but usually, the PFC models are
more complicated and the functionals have to be minimized numerically.

5.1.2.2 Dynamic phase field crystal models

Dynamic PFC models are based on the equilibrium Helmholtz free-energy functional of
static PFC models and provide them with a dynamic equation for the time-evolution
of the non-equilibrium order-parameter field 𝜓(�⃗�, 𝑡). Both in dynamic PF models and
dynamic PFC models, the time-dependent order-parameter field 𝜓(�⃗�, 𝑡) is averaged
locally in time, but only for PF models, the order-parameter field is in addition averaged
locally in space. In accordance with DDFT, the dynamics of the order-parameter
field is assumed to be dissipative and it is driven by the functional derivative of the
equilibrium Helmholtz free-energy functional with respect to the order-parameter field
so that it intends to minimize the free-energy functional. In the traditional PFC model
of Elder et al. [EKHG02] and in most other PFC models, the order-parameter field
is conserved [EG04], but it can in principle also be non-conserved. Depending on the
conservation-type of the order-parameter field 𝜓(�⃗�, 𝑡), an appropriate dynamic equation
is needed. For PFC models with only one order-parameter field, this appropriate
dynamic equation can be obtained by a simple ansatz. When a dynamic equation for a
conserved order-parameter field 𝜓c(�⃗�, 𝑡) has to be written down, the most simple choice
is the conservation equation

𝜕𝜓c(�⃗�, 𝑡)

𝜕𝑡
= Γc△�⃗�

𝛿ℱ [𝜓c(�⃗�, 𝑡)]

𝛿𝜓c(�⃗�, 𝑡)
(5.54)

with the positive mobility parameter Γc. If in contrast the order-parameter field 𝜓n(�⃗�, 𝑡)
is non-conserved, the balance equation

𝜕𝜓n(�⃗�, 𝑡)

𝜕𝑡
= −Γn

𝛿ℱ [𝜓n(�⃗�, 𝑡)]

𝛿𝜓n(�⃗�, 𝑡)
(5.55)

with the positive constant Γn should be used. For a conserved order-parameter field,
that is related to the one-particle density field 𝜌(�⃗�, 𝑡), also a DDFT equation can be used
to describe its time-evolution. The application of a DDFT equation has the advantage
that it describes the dynamics of the order-parameter field usually more accurate than
the simple conservation law (5.54) and that DDFT equations are also available for
more complicated situations including suspensions of anisotropic colloidal particles. In
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the case of spherical particles, the simple DDFT equation (5.14) is appropriate and
can be used as an alternative to equation (5.54). To obtain a dynamic PFC model, it
is sufficient to insert the representation (5.39) for the one-particle density field and the
approximation (5.51) for the free-energy functional into equation (5.14). The resulting
dynamic equation for the order-parameter field 𝜓(�⃗�, 𝑡) is given by

𝜕𝜓(�⃗�, 𝑡)

𝜕𝑡
= 𝐷T∇⃗�⃗�·

(︂(︀
1+𝜓

)︀
∇⃗�⃗�

(︂
𝑈 ′ +2𝐴′

1𝜓+2𝐴′
2△�⃗�𝜓+2𝐴′

3△2
�⃗�𝜓− 𝜓2

2
+
𝜓3

3

)︂)︂
(5.56)

and constitutes a simple local approximation for the DDFT equation (5.14) with its
general free-energy functional. The DDFT equation can also be simplified before it
is applied. A common simplification is the constant-mobility approximation (CMA),
where the space- and time-dependent mobility 𝐷T𝜌(�⃗�, 𝑡) between the two gradients in
the DDFT equation is replaced by the constant mobility 𝐷T𝜌. An analogous approxi-
mation is possible for more complicated versions of the DDFT equation involving, for
example, also an orientational dependence of the mobility. In the above example for
the traditional PFC model, the CMA reduces the simple DDFT equation (5.14) to the
trivial diffusion equation (5.54) and leads to the dynamic equation

𝜕𝜓(�⃗�, 𝑡)

𝜕𝑡
= 𝐷T△�⃗�

(︂
𝑈 ′ + 2𝐴′

1𝜓 + 2𝐴′
2△�⃗�𝜓 + 2𝐴′

3△2
�⃗�𝜓 − 𝜓2

2
+
𝜓3

3

)︂
(5.57)

for the translational density 𝜓(�⃗�, 𝑡). The dynamics of equations like (5.56) and (5.57)
have usually to be investigated numerically. Since PFC models are associated with
molecular length and diffusive time scales, the time step size of numerical methods
for the solution of dynamic PFC equations can be chosen relatively large. This is in
contrast to MD simulations that can also be used to simulate colloidal systems on
microscopic length scales, but require much smaller time steps. The reason for the
difference in the size of the time steps consists in the fact that MD simulations have to
resolve the lattice vibrations of crystalline phases that takes place on the phonon time
scale, while computer simulations on the basis of PFC models are only limited by the
characteristic diffusion time that can be 106-108 times larger than the characteristic
phonon time [PE10]. Therefore, a PFC-based simulation can be much faster than a
corresponding MD simulation. However, a MD simulation can provide better results,
since the derivation of PFC models involves a few serious approximations.
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5.1.3 Ginzburg-Landau theory

Similar to classical DFT, also classical Ginzburg-Landau theory is an adaptation of a
quantum mechanical theory. The quantum mechanical Ginzburg-Landau theory was
originally proposed by Ginzburg and Landau in 1950 in order to describe superconduc-
tivity [GL50]. Its classical adaptation is a macroscopic theory for the description of
thermodynamic systems in the vicinity of a certain phase transition. To describe this
phase transition, Ginzburg-Landau theory relies on the order-parameter fields that de-
fine the phase transition considered. These order-parameter fields must be sufficiently
small and smooth close to the phase transition described and can be scalars, vectors,
and tensors of higher order. They are the same for static and dynamic Ginzburg-Lan-
dau theory and regarded as time-dependent in the dynamic case.
Static Ginzburg-Landau theory consists of a symmetry-based gradient expansion of

the density of a generalized thermodynamic functional in terms of the space-dependent
order-parameter fields. In particular, one starts with the lowest-order structure of
the adjacent phases of the phase transition under consideration and makes a gradient
expansion ansatz, that must respect the basic common symmetries of the adjacent
phases, in the order-parameter fields that characterize the structure of the phase with
higher order. Static Ginzburg-Landau theory is thus an extension of the Landau theory
of phase transitions of second order [CL95, LL08], which predicts the order and the
scaling behavior of phase transitions [LL08] in mean-field approximation and consists
in a Taylor expansion of a thermodynamic potential in convenient order parameters
instead of a more general gradient expansion of the density of a generalized thermo-
dynamic functional in space-dependent order-parameter fields. Dynamic Ginzburg-
Landau theory, on the other hand, is based on linear irreversible thermodynamics
[MPP72, GM84, Rei98] and provides dynamic equations for the time-evolution of the
order-parameter fields. The Ginzburg-Landau dynamics is usually dissipative and can
then be derived from a dissipation functional. In several aspects, Ginzburg-Landau
theory is similar to PFC models that are derived from DFT. Their common features
include the perturbative expansion of a thermodynamic functional in terms of order-
parameter fields and their gradients as well as the existence of a dissipation functional,
where the dissipative dynamics can be derived from (see below).
Ginzburg-Landau theory can be applied to various thermodynamic problems inclu-

ding the liquid-gas phase transition [Eva79], the paraelectric-ferroelectric phase transi-
tion [AL78, FMH86, Kit95], and equilibrium interfaces between two coexisting phases
[Eva79]. It was also applied to freezing and melting [LBW90, Lut06] and to liquid
crystals. The application to phase transitions in liquid crystals is due to de Gennes
[Gen71, Gen73, GP95] and proved to be very successful. Examples for liquid crystalline
phase transitions, that have been described in the framework of Ginzburg-Landau the-
ory, are the isotropic-nematic phase transition [Gen71, PB89], the isotropic-smectic
A phase transition [MPB01], the isotropic-smectic C phase transition [MPB02], the
isotropic-smectic C* phase transition [MPB05], as well as the nematic-smectic A and
the nematic-smectic C phase transitions [Gen73, GP95]. However, Ginzburg-Landau
theory has also some disadvantages. It is, for example, not valid in bulk phases far
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from phase transitions and not applicable to critical regimes, since it is a mean-field
theory and therefore neglects fluctuations, although fluctuations are very important in
the context of critical systems.

Further information about Landau theory and Ginzburg-Landau theory can be found
in the literature. A detailed explanation of the Landau theory of phase transitions is
given in the book [TT87] by Toledano and Toledano. The classical textbook [LL08] by
Landau and Lifschitz contains the basic ideas of the Landau theory and of the more
general static Ginzburg-Landau theory, although the term Ginzburg-Landau theory is
not used there explicitly. Especially with regard to the application of static Ginzburg-
Landau theory on liquid crystals, the books [CL95, GP95] are readable.

About dynamic Ginzburg-Landau theory, there is less literature. A special reference,
that addresses the dynamics of phase transitions and uses dynamic Ginzburg-Landau
theory, is the book [Onu02] by Onuki, but there is not yet a recommendable standard
reference on this topic.

5.1.3.1 Static Ginzburg-Landau theory

The traditional Landau theory was originally introduced by Landau as a general theory
for second-order phase transitions [TT87, LL08] like the paramagnetic-ferromagnetic
phase transition in magnetic materials. This phase transition takes place at a critical
temperature 𝑇c and the deviation of the absolute temperature 𝑇 from the critical tem-
perature 𝑇c decides over the modulus of magnetization in the considered material. In a
magnetic material, the magnetization is related to the amount of collective alignment of
magnetic dipole moments. The magnetization is therefore used as an order parameter
𝜓 to describe the ordering state of the magnetic material. Below the critical tempera-
ture 𝑇c, the magnetization is non-zero, but it approaches zero, when the temperature 𝑇
tends to 𝑇c, and above the critical temperature, the magnetization vanishes completely.
The change of the order parameter 𝜓 from zero to non-zero thus defines the parama-
gnetic-ferromagnetic phase transition. Together with the magnetization, also the total
free energy of the magnetic material varies. The free energy or an equivalent thermo-
dynamic potential of the system can therefore be written as a function 𝐸(𝑇, 𝜓) that
depends on the order parameter 𝜓 and on the underlying thermodynamic conditions,
which are here given in form of the temperature 𝑇 . Furthermore, the function 𝐸(𝑇, 𝜓)
is assumed to be analytic in the order parameter 𝜓. Since this order parameter is small
in the vicinity of the phase transition, the extensive thermodynamic potential 𝐸(𝑇, 𝜓)
can be expanded into a Taylor series with respect to 𝜓 around the phase transition at
𝜓 = 0. The Landau theory consists in fact in this Taylor expansion

𝐸 = 𝐸0 +
𝑁∑︁
𝑛=1

𝛼𝑛𝜓
𝑛 , (5.58)

which is truncated at a certain order 𝑁 , and is thus only valid in the vicinity of the
phase transition. In this Taylor expansion, the unimportant offset term 𝐸0 and the
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expansion coefficients 𝛼𝑛 with 𝑛 ∈ {1, . . . , 𝑁} are unknown functions of the scalar
quantities like the temperature 𝑇 of the system, but they are independent of the or-
der parameter 𝜓. Their values cannot be determined within the Landau theory, but
thermodynamic arguments and symmetry considerations can be used to clarify the
dependence of the expansion coefficients on the scalar thermodynamic quantities of
the system. The thermodynamic potential is assumed to possess the same symmetries
as the Hamiltonian of the described system and these symmetries lead to information
about the coefficients 𝐸0 and 𝛼𝑛. For example, a 𝜓 → −𝜓 symmetry of the thermo-
dynamic potential leads to the vanishing of all coefficients 𝛼𝑛 with an odd index 𝑛.
Furthermore, the coefficients 𝛼𝑛 and the maximal exponent 𝑁 in the Taylor expansion
have to ensure that the thermodynamic potential is bounded below so that it provides a
stable equilibrium state. The Taylor expansion is therefore usually truncated at fourth
order. In the example of a magnetic material, the equilibrium magnetization follows
by minimization of the thermodynamic potential 𝐸(𝑇, 𝜓) with respect to the order
parameter 𝜓. For the equilibrium order parameter, the scaling

𝜓 ∝ |𝑇 − 𝑇c|−𝛼c (5.59)

with the critical exponent 𝛼c is found. The calculation of critical exponents is there-
fore an important application of the Landau theory. In principle, also multiple order
parameters 𝜓𝜈 with 𝜈 = 1, . . . , 𝜈max can be introduced in the Landau theory.
Ginzburg-Landau theory is in contrast a generalization of the Landau theory for

spatially inhomogeneous systems. This generalization is due to Ginzburg and uses an
analytic space-dependent order-parameter field14 𝜓(�⃗�) for the definition of the consid-
ered phase transition instead of a convenient spatially homogeneous order parameter
𝜓. The thermodynamic potential 𝐸(𝑇, 𝜓) being a function of the order parameter 𝜓
is further extended to a generalized thermodynamic functional

ℰ =

∫︁
𝒱
d𝑉 𝜀(�⃗�) (5.60)

of the space-dependent order-parameter field 𝜓(�⃗�). Often, this functional corresponds
to the internal energy of the described thermodynamic system, but it can also be
the Helmholtz free-energy functional or another equivalent thermodynamic functional,
where the underlying thermodynamic potential should always be chosen as most appro-
priate for the described thermodynamic system. The generalized energy density 𝜀(�⃗�)
in the generalized thermodynamic functional (5.60) depends on the order-parameter
field 𝜓(�⃗�). It is not expanded into a Taylor series, but more generally into a gradient
expansion in the order-parameter field 𝜓(�⃗�). This gradient expansion of the generalized
energy density 𝜀(�⃗�) is the basis of static Ginzburg-Landau theory. It must be intensive,

14Examples for order-parameter fields in Ginzburg-Landau theory are given in section 5.5.
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since the generalized energy density 𝜀(�⃗�) is intensive, and has the general form

𝜀(�⃗�) = 𝜀0 +
𝑁∑︁
𝑛=1

𝛼𝑛
(︀
𝑖
(𝑛)
1 , . . . , 𝑖

(𝑛)
𝑛 , 𝑗

(𝑛)
1 , . . . , 𝑗

(𝑛)
𝑛

)︀ 𝑛∏︁
𝜈=1

(︁
𝜕𝑗

(𝑛)
𝜈

𝑖
(𝑛)
𝜈

𝜓
)︁

(5.61)

with the irrelevant offset term 𝜀0 and the unknown expansion coefficients 𝛼𝑛(· · ·), where
Einstein’s sum convention is used for the indices 𝑖

(𝑛)
𝜈 and 𝑗

(𝑛)
𝜈 . The expansion (5.61)

contains not only the order-parameter field 𝜓(�⃗�) but also its gradients. This gradient
expansion is truncated at certain orders in 𝜓(�⃗�) and in the derivatives providing a
non-trivial and stable functional. Therefore, most gradient expansions are truncated
at second or fourth order. Higher-order contributions can often be neglected, since
they are usually not physically meaningful. This argument is especially relevant for the
maximal order of derivatives. While a gradient considers an inhomogeneity of the order-
parameter field and the Laplace operator regards the curvature of this field, higher-
order derivatives can usually not be related to an obvious physical meaning. Static
Ginzburg-Landau theory is thus very similar to PFC models, where the functional
ℰ [𝜓(�⃗�)] is the free-energy functional ℱ [𝜓(�⃗�)]. The coefficients 𝜀0 and 𝛼𝑛( · · ·) can in
general depend on all scalar quantities of the system such as, for example, temperature
and pressure. Since the gradient expansion must not be an arbitrary sum of products of
any derivatives of the order-parameter field without physical relevance, the expansion
coefficients cannot be independent. There are in fact certain relations between the
expansion coefficients. These relations ensure that the gradient expansion is a sum of
products of the order-parameter field and the gradient operator.

Between the order-parameter fields, which are scalars, vectors, or tensors of higher
order, and the gradient operator, which can be represented by a vector, there are only
two independent types of multiplications possible in three spatial dimensions. These
are the matrix multiplication that includes the scalar product as a special case and
the cross product. In a gradient expansion of a scalar function like the generalized
energy density 𝜀(�⃗�), these two products have to be combined in an appropriate way to
guarantee that all terms in the gradient expansion are scalars. For phase transitions
from or to the isotropic phase, the various expansion coefficients 𝛼𝑛(· · ·) can therefore
be represented by a polynomial in Kronecker delta symbols 𝛿𝑖𝑗 and Levy-Civita symbols
𝜖𝑖𝑗𝑘 with the indices of the expansion coefficients. In two spatial dimensions, the cross
product does not exist and the expansion coefficients can entirely be represented by
Kronecker delta symbols. The situation is different for other phase transitions without
the involvement of the isotropic phase. For such phase transitions, preferred directions
like the nematic director in the case of the nematic-smectic A phase transition have
to be taken into account as well. These preferred directions can appear in addition
to the Kronecker delta symbols and Levy-Civita symbols in the representation of the
expansion coefficients 𝛼𝑛(· · ·). With the reduction of the various expansion coefficients
to a much smaller number of independent parameters, the set of possible terms in the
general gradient expansion is usually manageable, if the previously chosen truncation
orders for the order-parameter field and for the gradient are not too high.
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The still rather general form of the gradient expansion must further be simplified
by the application of additional relations between the coefficients. These relations
follow from basic symmetry and stability considerations and help to avoid unphysical
additional degrees of freedom in the gradient expansion. The basic symmetries, which
the generalized thermodynamic functional (5.60) has to incorporate, are those of the
phase transition considered. Usually, the adjacent phases of the phase transition have
certain symmetry-properties and the joint symmetries of both phases must therefore
also apply to the generalized thermodynamic functional. Common symmetries are time
reversal symmetry, parity inversion symmetry, invariance against global translations
and rotations, and the behavior under Galilean transformations. These symmetry
requirements restrict the set of possible terms in the gradient expansion considerably.

A further simplification can be obtained by partial integration of the terms in the
gradient expansion. Partial integration is necessary in order to provide only those
terms that are really independent with independent prefactors. When the described
system is unbounded, it is possible to neglect surface terms that arise by partial inte-
gration. Such unbounded systems are often considered and true divergence terms in
their gradient expansions can always be removed. To ensure stability, the generalized
thermodynamic functional (5.60) must be positive semidefinite or convex about the
equilibrium state in the order-parameter field. Since the equilibrium order-parameter
field 𝜓(�⃗�) is determined by functional minimization of the generalized thermodynamic
functional, it must be bounded below so that the equilibrium generalized energy is
finite. This is the reason, why the gradient expansion (5.61) is usually truncated at
second or fourth order in the order-parameter field. Furthermore, such stability con-
siderations lead to requirements for the signs of the unknown expansion coefficients in
the gradient expansion.

As in the other theories, it is also possible and in fact usual in Ginzburg-Landau
theory to introduce several different order-parameter fields 𝜓𝜈(�⃗�). The generalized
energy density 𝜀(�⃗�) must then be expanded in all these order-parameter fields and the
corresponding gradients [GP95].

5.1.3.2 Dynamic Ginzburg-Landau theory

On the basis of the generalized energy functional of static Ginzburg-Landau theory and
its symmetries, dynamic equations for the time-evolution of the time-dependent order-
parameter fields 𝜓𝜈(�⃗�, 𝑡) can be derived using dynamic Ginzburg-Landau theory. The
dynamics of these order-parameter fields near a phase transition is usually relaxational
and purely dissipative so that reversible currents do not arise. Often, the dynamics
of the order-parameter fields that correspond to a static Ginzburg-Landau model is
not considered at all. For the case that the dynamics of such a Ginzburg-Landau
model has in fact to be derived, it can be done in direct analogy to the procedure of
generalized hydrodynamics that is described further below in section 5.1.4.2. Except
for the different variables, which are order-parameter fields in the context of dynamic
Ginzburg-Landau theory and hydrodynamic variables in the context of generalized hy-
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drodynamics, and the considered symmetries that are related to a phase transition in
dynamic Ginzburg-Landau theory and to a bulk phase in generalized hydrodynamics,
there are no appreciable differences between both theories. Since the basic procedure is
exactly the same for dynamic Ginzburg-Landau theory and generalized hydrodynam-
ics, it is described in detail only for generalized hydrodynamics in section 5.1.4.2 and
omitted here.

5.1.4 Generalized hydrodynamics

As a generalization of the traditional hydrodynamics for simple liquids [For74, Ach90,
HB91, LL91b, Lam93, Bat00], generalized hydrodynamics has been developed to also
describe the statics and dynamics of complex liquids like liquid crystals and polymer
melts in bulk phases. The hypernym “generalized hydrodynamics” comprises general-
ized hydrostatics and generalized hydrodynamics for the description of the statics and
of the dynamics, respectively. This naming is not consistent, since the hypernym and
the dynamic version are named identically, but the alternative term “generalized hy-
dromechanics”, that would be in direct analogy to the term “hydromechanics”, which
is sometimes used in the context of simple liquids as a hypernym for traditional hy-
drostatics and traditional hydrodynamics, is unusual. In contrast to Ginzburg-Landau
theory, generalized hydrodynamics requires that the described liquid is sufficiently far
away from phase transitions. It is further assumed that the considered system is in or
at least close to thermodynamic equilibrium.

The description of a thermodynamic system in the framework of generalized hydro-
dynamics is macroscopic and mainly based on a separation of length and time scales.
While in a microscopic view, a liquid consists of a huge number of small interacting
particles with fast relaxing microscopic degrees of freedom, the same liquid appears as
a continuum and can entirely be characterized by only a few slow relaxing macroscopic
variables, when it is described on sufficiently large length and time scales. A hydro-
dynamic description takes place on these large length and time scales, on which the
microscopic degrees of freedom are relaxed to local thermodynamic equilibrium (this is
the local equilibrium approximation) and only a few macroscopic variables have to be
taken into account in order to describe the system completely. The macroscopic frame
for the hydrodynamic description is referred to as the hydrodynamic range, which is
characterized by small wave numbers 𝑘 and small frequencies 𝜔. It goes along with the
continuum hypothesis

𝑘𝜆c ≪ 1 , 𝜔𝜏c ≪ 1 (5.62)

with the characteristic mean free path length 𝜆c and the characteristic collision time 𝜏c.
These two inequalities state that the microscopic particles collide very often and move
only over small distances between two collisions compared to the macroscopic length
and time scales that are defined by 𝑘 and 𝜔, respectively. Within a hydrodynamic
description therefore, only hydrodynamic modes that are slow and widely extended
in space are considered. A mode or variable is in general called hydrodynamic, if its
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relaxation becomes infinitely slow in the limit of an infinitely large wavelength:

lim
𝑘→0

𝜔(𝑘) = 0 . (5.63)

This condition is necessary in order to assure that generalized hydrodynamics becomes
exact in the hydrodynamic limit 𝑘 → 0, 𝜔 → 0. It also helps to identify the hydrody-
namic variables of a particular system that are needed to describe this system.
In general, there are two different types of hydrodynamic variables. The first one

contains the densities of conserved quantities [Bal97] like the energy density, the trans-
lational momentum density15, and a local concentration. These conserved quantities
are associated with global continuous symmetries of the system described. Since con-
served quantities can only be transported and not created or destroyed, their dynamics
is slower than the relaxation of the microscopic degrees of freedom. The currents of
conserved quantities are driven by gradients of the densities of the conserved quantities
and become zero for spatially uniform distributions so that the relaxation times for the
densities of conserved quantities diverge, when the characteristic lengths for spatial
inhomogeneities of the densities of the conserved quantities tend to infinity. Densities
of conserved quantities are therefore hydrodynamic variables.
The second type of hydrodynamic variables contains non-conserved symmetry vari-

ables that are associated with spontaneously broken continuous symmetries of the re-
garded system [PB96]. “Spontaneously broken” means here that these symmetries are
broken although they are present in the Hamiltonian of the considered system. An
example for a symmetry-breaking quantity is the nematic director �̂� in liquid crystals.
This unit vector defines the mean local orientation of the liquid crystalline particles in a
nematic phase and breaks the global rotational symmetry of the isotropic phase. When
there are no boundary conditions or external fields that could give rise to a preferred
direction in the nematic phase, the rotational symmetry is broken spontaneously. The
whole nematic phase is thus oriented according to the nematic director �̂�, although
there is no energetic reason for its particular direction. Its direction can therefore be
changed globally16 without energy loss. Since such a global rotation is not accompanied
by a restoring force, its relaxation time is infinite. The variation 𝛿�̂� with 𝛿�̂� · �̂� = 0
and �̂� · �̂� = 1 of the nematic director �̂� is therefore a hydrodynamic variable and
called a symmetry variable. In general, there is a symmetry variable that describes the
indifferent variation of a symmetry-breaking quantity for each spontaneously broken
continuous symmetry, if long-range interactions are not present [For89, PB96]. Further
examples for spontaneously broken symmetries are the broken translational symmetry
in smectic phases and the broken translational and rotational symmetries in crystal
lattices. The symmetry-breaking quantities in these examples are the smectic layer
normal and the crystal lattice vectors, respectively, and the corresponding symmetry
variables are the variations of the smectic layer normal and of the crystal lattice vectors.

15The conservation of the total angular momentum is not associated with a conserved density. It is
instead respected by the symmetry of the hydrodynamic stress tensor [Ple94].

16Local distortions of the director field instead cost energy and cause an elastic restoring force.
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Aside from the hydrodynamic variables, it can be necessary to also consider a few
slowly relaxing non-hydrodynamic macroscopic variables like order-parameter fields
that arise close to a phase transition [PB96]. These macroscopic variables relax for
any reasons so slowly that they cannot be neglected on the hydrodynamic time scale
and have to be taken into account – although they are not hydrodynamic – in order
to describe the system completely. Otherwise, one would have to switch to an even
larger time scale for the description, where all non-hydrodynamic variables are also
relaxed to local thermodynamic equilibrium. In the above example, the relaxation
time of an order-parameter field becomes too large in the vicinity of a phase transition
so that this non-hydrodynamic macroscopic variable has to be taken into account, if
the macroscopic description shall also be applicable close to a phase transition. An
example for such an order-parameter field is the amount of local nematic order in liquid
crystals that is defined below in this chapter. Also, the elastic strain in polymers is a
slowly relaxing non-hydrodynamic macroscopic variable. Whenever non-hydrodynamic
variables are considered, the resulting description is not any longer hydrodynamic and
is therefore called a non-hydrodynamic generalized macroscopic description.

The formalism of generalized hydrodynamics has a few similarities with Ginzburg-
Landau theory and PFC models, but it is much more general and can beyond the
description of a bulk phase be also extended toward phase transitions and fluctuations
[PB96]. Generalized hydrostatics describes only the equilibrium properties of a sim-
ple or complex liquid and consists basically in the construction of a symmetry-based
gradient expansion of a generalized energy density. In this respect, it is analogous to
Ginzburg-Landau theory, but the chosen variables are different from Ginzburg-Landau
theory. In both theories, the gradient expansion is required to respect the basic sym-
metries of the system, which are the symmetries of the phase transition considered in
static Ginzburg-Landau theory and the symmetries of the bulk phase described in gen-
eralized hydrostatics. A further similarity between generalized hydrostatics and static
Ginzburg-Landau theory is the fact that both theories are perturbative, but they are
perturbative with respect to different expansion parameters. While in static Ginzburg-
Landau theory the generalized energy density is expanded in the order-parameter fields
and their gradients that are assumed to be small in the vicinity of the phase transi-
tion the generalized energy density of generalized hydrostatics is gradient-expanded
in the hydrodynamic and macroscopic variables, where the variables can be big and
the wave vector �⃗� related to a gradient by Fourier transformation is the small expan-
sion parameter. Generalized hydrodynamics, on the other hand, can be used to derive
the dynamics of the hydrodynamic and macroscopic variables. The derivation of their
dynamic equations is based on the same symmetry considerations as the statics.

Generalized hydrostatics and generalized hydrodynamics have been applied to vari-
ous thermodynamic systems including liquid crystalline phases like the nematic phase
[BP87, BPZ06, BCP09] and the smectic phases [BP80, BP87, CL95, BCP98]. It is
also applicable to solids and contains elasticity theory [LL91a] as a special case. Due
to the local equilibrium approximation it is, however, not applicable to steady states
and glasses. An overview about generalized hydrodynamics itself and about impor-
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tant applications of this theory is given in references [Ple94, PB96, Ple97]. These
book chapters by Pleiner and Brand were the basis for this section. They also contain
detailed instructions for the utilization of generalized hydrodynamics and are highly
recommendable as supplementary literature.

5.1.4.1 Generalized hydrostatics

Generalized hydrostatics is very similar to static Ginzburg-Landau theory. Both the-
ories consist in the construction of a symmetry-based gradient expansion for a gen-
eralized thermodynamic functional ℰ that has to respect the basic symmetries of
the system. In particular, the symmetries of the Hamiltonian of the system that
lead to conserved quantities or symmetry variables in the hydrodynamic description
are shared by the generalized thermodynamic functional ℰ . Generalized hydrostat-
ics and static Ginzburg-Landau theory are only different with respect to the chosen
variables and the considered symmetries. While in static Ginzburg-Landau theory
order-parameter fields are used to expand the generalized energy density 𝜀(�⃗�), the de-
viations 𝛿𝑋(�⃗�) = 𝑋(�⃗�) − 𝑋0 of hydrodynamic and macroscopic variables from their
equilibrium values 𝑋0 are used for the gradient expansion in the context of generalized
hydrostatics. The symmetries, that the gradient expansion in generalized hydrostatics
has to respect, are identical with the symmetries of the considered bulk phase and
not with symmetries that are related to a certain phase transition as it is the case for
Ginzburg-Landau theory. Nevertheless, the symmetries are of the same type in both
theories, i. e., one considers time reversal symmetries, parity inversion symmetries, in-
variances against global translations and rotations, and behavior under Galilean trans-
formations. Due to this analogy, the procedure for the derivation of a macroscopic
model from generalized hydrostatics is basically the same as for the derivation of a
static Ginzburg-Landau model that has been described in detail in section 5.1.3.1 and
does not have to be explained here again.

5.1.4.2 Generalized hydrodynamics

On the basis of a model from generalized hydrostatics comprising a gradient-expanded
generalized energy density and a set of hydrodynamic and macroscopic variables dy-
namic equations for the time evolution of these hydrodynamic and macroscopic vari-
ables can be derived within the framework of generalized hydrodynamics. To dis-
tinguish hydrodynamic and macroscopic variables from the order-parameter fields of
Ginzburg-Landau theory, the symbol 𝑋(�⃗�, 𝑡) is used here for a general time-dependent
hydrodynamic or macroscopic variable. Examples for 𝑋(�⃗�, 𝑡) are the entropy density
𝜎(�⃗�), particle number density 𝜌(�⃗�), local concentration 𝑐(�⃗�), and momentum density
𝑔𝑖(�⃗�). On this occasion, also the thermodynamic conjugate [LL08]

𝑋♮ =
𝛿ℰ
𝛿𝑋

(5.64)
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of the variable 𝑋(�⃗�, 𝑡) is defined. Corresponding examples for the thermodynamic
conjugate𝑋♮(�⃗�, 𝑡) of the hydrodynamic or macroscopic variable𝑋(�⃗�, 𝑡) are the absolute
temperature field 𝑇 (�⃗�, 𝑡), the local chemical potential 𝜇(�⃗�, 𝑡), the local relative chemical
potential 𝜇c(�⃗�, 𝑡), and the velocity field 𝑣𝑖(�⃗�, 𝑡), respectively. In general, there is always
a unique thermodynamic conjugate for each hydrodynamic or macroscopic variable.
They appear in pairs in the total differential of the generalized energy density [GM84,
PB96, Rei98]

d𝜀 = 𝑇d𝜎 + 𝜇d𝜌+ 𝜇cd𝑐+ 𝑣𝑖d𝑔𝑖 + · · · , (5.65)

that is equivalent to the local form of the first law of thermodynamics and sometimes
also called Gibbs relation [BPZ06]. In this fundamental thermodynamic relation, each
term combines a thermodynamic conjugate variable 𝑋♮(�⃗�, 𝑡) with the total differential
d𝑋(�⃗�, 𝑡) of the corresponding variable 𝑋(�⃗�, 𝑡). Which of both is the variable and which
is the thermodynamic conjugate variable depends on the choice of the underlying ther-
modynamic potential due to the definition (5.64). Through a Legendre transformation,
the thermodynamic potential can always be transformed into an equivalent thermody-
namic potential, where a certain variable and its thermodynamic conjugate are inter-
changed. It is thus possible to adapt the generalized thermodynamic functional ℰ in
order to obtain a different combination of the hydrodynamic or macroscopic variables
and their thermodynamic conjugates. This is important, since the dynamic equations
are only formulated for the hydrodynamic and macroscopic variables and not for their
equivalent thermodynamic conjugates. In the formulation of the dynamic equations,
one has at first to distinguish the conserved variables 𝑋c(�⃗�, 𝑡) from the non-conserved
variables 𝑋n(�⃗�, 𝑡), since both types of variables exhibit a fundamentally different dy-
namics [Gen71, MPP72, For89, Kha89, PB96, PLB02]. While conserved variables obey
a local conservation equation

�̇�c + 𝜕𝑖𝐽
𝑋c
𝑖 = 0 (5.66)

with the current 𝐽𝑋c
𝑖 (�⃗�, 𝑡), the dynamics of non-conserved variables is described by a

balance equation
�̇�n + Φ𝑋n = 0 (5.67)

with the quasi-current Φ𝑋n(�⃗�, 𝑡). These dynamic equations relate the symmetry prop-
erties of the hydrodynamic and macroscopic variables to the symmetry properties of
the corresponding and yet unknown currents and quasi-currents. In order to define
the dynamics of the hydrodynamic and macroscopic variables, it is necessary to de-
termine their currents and quasi-currents. To begin with, these currents 𝐽𝑋c

𝑖 (�⃗�, 𝑡)
and quasi-currents Φ𝑋n(�⃗�, 𝑡) are decomposed into reversible (non-dissipative) contribu-
tions 𝐽𝑋c

R,𝑖(�⃗�, 𝑡) and Φ𝑋n
R (�⃗�, 𝑡) and irreversible (dissipative) contributions 𝐽𝑋c

D,𝑖(�⃗�, 𝑡) and

Φ𝑋n
D (�⃗�, 𝑡), respectively:

𝐽𝑋c
𝑖 = 𝐽𝑋c

R,𝑖 + 𝐽𝑋c
D,𝑖 ,

Φ𝑋n = Φ𝑋n
R + Φ𝑋n

D .
(5.68)
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While reversible currents and quasi-currents do not change the total entropy of the
described thermodynamic system, the dissipative currents and quasi-currents are asso-
ciated with entropy production. Reversible currents are invariant against time reversal
and can only arise, when quantities are present that are odd under time reversal like,
for example, a velocity field or equivalently a density of translational momentum. Also
a symmetry-breaking preferred direction in the considered system can make reversible
currents possible. In contrast, dissipative currents are not invariant against time re-
versal and are nearly always present.
The currents and quasi-currents (5.68) including their reversible and irreversible

contributions are driven by the thermodynamic forces of the system. Such a ther-
modynamic force 𝑋♯(�⃗�, 𝑡) exists for each thermodynamic conjugate variable 𝑋♮(�⃗�, 𝑡),
but there are different definitions for thermodynamic forces in the literature. While
they are sometimes regarded as identical with the thermodynamic conjugate variables,
other authors define them as the gradients of the thermodynamic conjugates. Here,
the thermodynamic forces

𝑋♯
c,𝑖 = −𝜕𝑖𝑋♮

c , 𝑋♯
n = 𝑋♮

n (5.69)

are defined differently for conserved and for non-conserved variables. This definition
is chosen for convenience, since it simplifies the notation in some of the following
expressions considerably.
The reversible and irreversible contributions of the currents and quasi-currents (5.68)

are determined in rather different ways. For the reversible contributions, linear expan-
sions in terms of the thermodynamic forces are performed. These expansions usually
contain only a few terms consisting of a thermodynamic force and unknown expansion
coefficients, since only thermodynamic forces with appropriate dimensions can appear
in the expansion of a certain reversible current or quasi-current. Moreover, terms with
other symmetry properties than the respective reversible current or quasi-current have
to be omitted also. The linear expansion in terms of thermodynamic forces is in ac-
cordance with linear thermodynamics that states the validity of Onsager’s principle.
This principle reveals general Onsager reciprocity relations between the expansion co-
efficients. With these relations, the number of independent expansion coefficients is
reduced considerably. Although the reversible currents and quasi-currents are only
expanded linearly in the thermodynamic forces, the currents and quasi-currents are in
fact not linear and the described dynamics is not trivial, since the expansion coeffi-
cients can as always depend on all scalar quantities of the considered thermodynamic
system. To ensure that the constructed reversible currents and quasi-currents do not
change the entropy of the system, they are inserted into the dynamic equations (5.66)
and (5.67) under negligence of the dissipative currents and quasi-currents and these
dynamic equations are in turn inserted into the time-derivative

d𝜀

d𝑡
= 𝑇

𝜕𝜎

𝜕𝑡
+ 𝜇

𝜕𝜌

𝜕𝑡
+ 𝜇c

𝜕𝑐

𝜕𝑡
+ 𝑣𝑖

𝜕𝑔𝑖
𝜕𝑡

+ · · · = −𝜕𝑖𝐽𝜀𝑖 (5.70)

of the generalized energy density 𝜀(�⃗�, 𝑡) in equation (5.65). This time derivative relates
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the time derivative of the energy density to the time derivatives of the hydrodynamic
and macroscopic variables including the entropy density. It can also be used to deter-
mine the reversible current 𝐽𝜀R,𝑖(�⃗�, 𝑡) of the conserved generalized energy density.
The dissipative contributions of the currents and quasi-currents (5.68) are derived

very differently. Within linear irreversible thermodynamics, dissipative currents and
quasi-currents can be derived from a dissipation functional R (see equation (4.47)
in section 4.3). Due to the second law of thermodynamics and the connection of
dissipation functionals with entropy production [compare equation (4.48)], a dissipation
functional is in general positive semi-definite: R > 0. In the special case of a purely
reversible process, the dissipation functional vanishes, R = 0, and for purely dissipative
processes, it is positive: R > 0. When the dissipation functional R is known, the
dissipative contributions of the currents and quasi-currents follow directly by functional
differentiation of R with respect to the thermodynamic forces 𝑋♯(�⃗�, 𝑡):

𝐽𝑋c
D,𝑖 =

𝛿R

𝛿𝑋♯
c,𝑖

,

Φ𝑋n
D =

𝛿R

𝛿𝑋♯
n

.

(5.71)

Since the dissipative currents and quasi-currents shall also be linear in the thermody-
namic forces within the context of linear irreversible thermodynamics, the dissipation
functional must be expanded quadratically in the thermodynamic forces with expan-
sion coefficients that can again depend on all scalar quantities of the described ther-
modynamic system [MPP72, GM84, PB96, Rei98]. The construction of the dissipation
function r(�⃗�, 𝑡), which is the density corresponding to the dissipation functional R, in
terms of the thermodynamic forces 𝑋♯(�⃗�, 𝑡) proceeds similarly to the construction of
the generalized energy density 𝜀(�⃗�, 𝑡) in terms of the hydrodynamic and macroscopic
variables 𝑋(�⃗�, 𝑡) and their gradients. All terms that are quadratic in the thermody-
namic forces (5.69) and that are scalar are initially taken into account. Then, all terms
that do not have the same symmetry-properties as the considered phase are discarded,
i. e., the same symmetry considerations are applied to the dissipation function as to the
generalized energy density in generalized hydrostatics. It is further possible to simplify
the dissipation functional by partial integration. When the dissipation functional is
formulated in its most simple form, which is the physically consistent form without
unjustified additional terms or coefficients, the dissipative currents and quasi-currents
follow by simple functional differentiation according to equations (5.71). With the de-
termination of the dissipative contributions of the currents and quasi-currents (5.68),
the derivation of the dynamics of the considered simple or complex liquid is finished.
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5.2 Derivation of phase field crystal models from DFT

In recent years, several static and dynamic PFC models have been derived from static
and dynamical DFT, respectively. After the traditional PFC model for isotropic parti-
cles had been derived from DFT by Elder et al. in 2007 (see section 5.1.2.1), there were
some efforts to generalize this PFC model toward systems consisting of anisotropic
particles. An attempt to generalize the traditional PFC model toward anisotropic sys-
tems with oriented particles was recently undertaken by Choudhary et al. [CLEL11],
whereas the first PFC model for freely orientable anisotropic particles was derived from
DFT by Löwen [Löw10a] in 2010. This model describes apolar particles with an ori-
entational degree of freedom in two spatial dimensions. It also includes the dynamics
of the anisotropic particles obtained from DDFT and is of special interest, since it
describes various liquid crystalline phases.

In the following, this PFC model is generalized in basically two respects using a
compact and consistent notation. At first, a PFC model for polar anisotropic particles
in two spatial dimensions is derived. This model contains the previous PFC model for
apolar particles as special case with vanishing polarization. Afterwards, the derivation
of a PFC model for apolar anisotropic particles in three spatial dimensions is presented.
Both PFC models consider uniaxial particles without a hydrodynamic translational-
rotational coupling. The 𝑁 uniaxial particles are described by their center-of-mass
positions �⃗�𝑖 and orientations �̂�𝑖 for 𝑖 ∈ {1, . . . , 𝑁}, where �⃗�𝑖 is given in Cartesian
coordinates and �̂�𝑖 is an orientational unit vector parallel to the axis of symmetry of
the 𝑖th particle. They are assumed to occupy the 𝑑-dimensional domain 𝒢 ∈ {𝒜,𝒱}
with measure 𝐺 ∈ {𝐴, 𝑉 } at the constant absolute temperature 𝑇 . Here, the domain
𝒢 ∈ R𝑑 is denoted as 𝒜 for 𝑑 = 2 and as 𝒱 for 𝑑 = 3. Analogously, the measure 𝐺 is
the total area 𝐴 for 𝑑 = 2 and the total volume 𝑉 for 𝑑 = 3. Since the basic procedures
in the derivation of static PFC models on the one hand and dynamic PFC models on
the other hand are very different, they are explained separately in the two following
sections.

5.3 Static phase field crystal models for liquid crystals

The basic procedure in the derivation of static PFC models makes use of static DFT to
find an approximating expression for the equilibrium Helmholtz free-energy functional
ℱ [𝜌(�⃗�, �̂�)] of the considered system in terms of suitable order-parameter fields that
parametrize the static ensemble-averaged one-particle number density

𝜌(�⃗�, �̂�) =

⟨ 𝑁∑︁
𝑖=1

𝛿(�⃗� − �⃗�𝑖)𝛿(�̂�− �̂�𝑖)

⟩
. (5.72)

This one-particle density is proportional to the probability to find a particle with
center-of-mass position �⃗� = (𝑥1, . . . , 𝑥𝑑) and orientation �̂� = (𝑢1, . . . , 𝑢𝑑). Its mean is
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given by the mean particle number density

1

𝐺

1

2𝑑−1𝜋

∫︁
𝒢
d𝐺

∫︁
𝒮𝑑−1

dΩ 𝜌(�⃗�, �̂�) =
𝑁

𝐺
(5.73)

with the differential d𝐺 = d𝑑𝑟 with d𝐴 = d2𝑟 and d𝑉 = d3𝑟 for spatial integration,
the differential dΩ = d𝑑−1𝑢 for angular integration, and the 𝑑-dimensional unit sphere
𝒮𝑑−1 ∈ {𝒮1,𝒮2}. The derivation of a static PFC model always begins with the choice of
suitable order-parameter fields and with the parametrization of the one-particle density
in terms of these order-parameter fields. In the next step, the free-energy functional

ℱ [𝜌(�⃗�, �̂�)] = ℱid[𝜌(�⃗�, �̂�)] + ℱexc[𝜌(�⃗�, �̂�)] + ℱext[𝜌(�⃗�, �̂�)] (5.74)

is decomposed into the ideal rotator-gas free-energy contribution ℱid[𝜌(�⃗�, �̂�)], the cor-
relational excess free-energy contribution ℱexc[𝜌(�⃗�, �̂�)], and the external free-energy
contribution ℱext[𝜌(�⃗�, �̂�)] (see section 5.1.1.1).
For the ideal rotator-gas free-energy contribution, it is obvious to start with the

general expression [Eva79]

𝛽ℱid[𝜌(�⃗�, �̂�)] =

∫︁
𝒢
d𝐺

∫︁
𝒮𝑑−1

dΩ 𝜌(�⃗�, �̂�)
(︀
ln(Λ𝑑𝜌(�⃗�, �̂�))− 1

)︀
. (5.75)

To approximate this expression, it is sufficient to insert the parametrization for 𝜌(�⃗�, �̂�),
to perform a Taylor expansion of the logarithm, and to carry out the angular integra-
tion. The Taylor expansion is usually truncated at fourth order, since this is the first
nontrivial and stabilizing order (see section 5.1.2.1).
The approximation of the excess free-energy contribution is much more complicated,

since it regards all correlations between the particles. To separate the correlations with
respect to their order, it is appropriate to perform a functional Taylor expansion of the
excess free-energy contribution in the density variation Δ𝜌(�⃗�, �̂�) = 𝜌(�⃗�, �̂�) − 𝜌 around
a homogeneous reference density 𝜌 [see equation (5.7)]:

𝛽ℱexc[𝜌(�⃗�, �̂�)] = 𝛽ℱ (0)
exc(𝜌)−

∞∑︁
𝑛=1

1

𝑛!
ℱ (𝑛)

exc [𝜌(�⃗�, �̂�)] . (5.76)

Here, the 𝑛th-order contributions are given by

ℱ (𝑛)
exc [𝜌(�⃗�, �̂�)] =

∫︁
𝒢𝑛

d𝑛𝐺

∫︁
𝒮𝑛
𝑑−1

d𝑛Ω 𝑐(𝑛)(�⃗�𝑛, �̂�𝑛)
𝑛∏︁
𝑖=1

Δ𝜌(�⃗�𝑖, �̂�𝑖) (5.77)

and 𝑐(𝑛)(�⃗�𝑛, �̂�𝑛) denotes the 𝑛-particle direct correlation function17. To keep the repre-

17An expression for the 𝑛th-order direct correlation function of the isotropic phase can, for example,
be obtained from the superposition of the 𝑛th functional derivative of a hard-core fundamental
measure functional for anisotropic hard particles [HM09] and – in the case of a polar model – a
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sentation of equation (5.77) compact, the notation

𝒢𝑛 =
𝑛⨂︁
𝑖=1

𝒢 , 𝒮𝑛𝑑−1 =
𝑛⨂︁
𝑖=1

𝒮𝑑−1 , d𝑛𝐺 =
𝑛∏︁
𝑖=1

d𝑑𝑟𝑖 , d𝑛Ω =
𝑛∏︁
𝑖=1

d𝑑−1𝑢𝑖 (5.78)

and the abbreviations

�⃗�𝑛 = (�⃗�1, . . . , �⃗�𝑛) , �̂�𝑛 = (�̂�1, . . . , �̂�𝑛) (5.79)

are used. The constant zeroth-order contribution of the functional Taylor expansion
(5.76) and the vanishing first-order contribution can be neglected. For many situa-
tions, it is sufficient to take pair-correlations between the particles into account and
to truncate the functional Taylor expansion at second order (Ramakrishnan-Yussouff
approximation). However, it is sometimes necessary to take also correlations of higher
order into account. All the correlation functions in the functional Taylor expansion
(5.76) are not known explicitly and are approximated by the bulk correlation functions
of the isotropic reference state18. This approximation involves several symmetries of the
direct correlation functions. For a general polar system, three symmetries are present:
translational invariance, rotational invariance, and the invariance against renumbering
of particles. When the system is apolar, also the head-tail symmetry of the particles
leading to an �̂�𝑖 → −�̂�𝑖 invariance of the direct correlation functions has to be consid-
ered. All these symmetries of the direct correlation functions 𝑐(𝑛)(�⃗�𝑛, �̂�𝑛) hold equally
for the 𝑛th-order interaction potentials 𝑈𝑛(�⃗�

𝑛, �̂�𝑛) of the particles. In order to obtain a
PFC model that is as simple as possible, all symmetries have to be considered during
the following steps of the derivation. For example, the first-order direct correlation
function 𝑐(1)(�⃗�1, �̂�1) is constant and the first-order contribution of the functional Taylor
expansion (5.76) vanishes therefore as a consequence of translational and rotational
invariance. The next step in the derivation is the expansion of the direct correlation
functions with respect to their orientational degrees of freedom. This can be achieved
by an expansion into a Fourier series in the case of two spatial dimensions and by an
expansion into a series of spherical harmonics in the case of three spatial dimensions.
After this expansion, the angular integration can be carried out. The result is still
nonlocal and a gradient expansion [Eva79, LBW89, LBW90, OLW91, Lut06, EPB+07]
(see appendix A) up to a nontrivial and stable order in the order-parameter fields,
that are assumed to be sufficiently smooth, is performed to obtain a local functional.
To ensure that surface terms can always be removed from the gradient expansion by
partial integration, the domain 𝒢 is assumed to be unconstrained: 𝒢 = R𝑑.

mean-field-type expression for the polar pair interaction. A related calculation for Stockmayer
fluids is presented in references [GD94, GD96]. Another possibility is a simulation in combination
with liquid-integral equations for anisotropic systems [WDCK90].

18This leads to a fluid perturbation theory of the free-energy functional. Alternatively, one could also
expand around a different phase with less symmetries than the isotropic phase, but the resulting
model would be much more complicated.
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Finally, it is necessary to also express the external free-energy contribution in terms
of the chosen order-parameter fields. This can be achieved by inserting the parametriza-
tion of the one-particle density into the exact expression [Eva79, EPB+07]

ℱext[𝜌(�⃗�, �̂�)] =

∫︁
𝒢
d𝐺

∫︁
𝒮𝑑−1

dΩ 𝜌(�⃗�, �̂�)𝑈1(�⃗�, �̂�) (5.80)

for the external free-energy contribution, where the external potential 𝑈1(�⃗�, �̂�) is usually
independent of the orientation �̂�, and by performing the angular integration.
All these approximations lead to a stable and local functional for the Helmholtz

free energy in terms of the order-parameter fields and their spatial derivatives with
prefactors that are given as generalized moments of the direct correlation functions.
This functional constitutes a PFC model. Its parameters, the generalized moments, are
moments of the expansion coefficients of the direct correlation functions in the isotropic
state and depend on the particular thermodynamic conditions and therefore on mean
particle number density and temperature. For stability reasons, one has to assume
that the coefficients of the highest-order terms in the gradients and order-parameter
fields in the PFC model are positive in the full free-energy functional. If this is not
the case for a certain system, it is necessary to take into account further terms of the
respective order-parameter field up to the first stabilizing order.
Although the given instructions for the derivation of a PFC model are the same for

every particular PFC model that was derived from DFT up to now, it is necessary to
describe the particular derivations in more detail (see below), since some of the main
steps in the derivations are rather different and involve special difficulties. For example,
the symmetry considerations, that are related to the direct correlation functions, are
nontrivial and very different for two and three spatial dimensions as well as for apolar
and polar particles and are especially complicated for correlation functions of higher
order. Therefore, the rest of this section describes the different derivations in detail.

5.3.1 Two spatial dimensions

In two spatial dimensions, one has to choose 𝑑 = 2, 𝒢 = 𝒜, and 𝐺 = 𝐴 in the general
expressions of sections 5.2 and 5.3. The orientational unit vector is entirely defined as
�̂�(𝜙) = (cos(𝜙), sin(𝜙)) and can be parametrized by a polar angle 𝜙 ∈ [0, 2𝜋). More-
over, a possible external potential and therefore the whole external contribution (5.80)
to the free-energy functional are neglected in the following, since the additional con-
sideration of an external potential is trivial and since the special form of the potential
depends on the particular system that has to be described. The PFC model for liquid
crystalline particles in two spatial dimensions, that is derived in the following, con-
siders polar particles and contains the apolar model of Löwen [Löw10a] as a special
case with vanishing polarization. Typical examples for polar particles include particles
with an embedded dipole moment [LLW00, FBLL03, AMW08], colloidal pear-like par-
ticles [KBEP06, HJL+09], Janus particles [HCLG06, HCS+08], and asymmetric brush
polymers modeled by Gaussian segment potentials [RWL07].
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5.3.1.1 Static free-energy functional

To start with the derivation, the reduced translational density

𝜓(�⃗�) =
1

2𝜋𝜌

∫︁
𝒮1

dΩ
(︀
𝜌(�⃗�, �̂�)− 𝜌

)︀
, (5.81)

which measures deviations of the one-particle density 𝜌(�⃗�, �̂�) from the reference density

𝜌, the polarization 𝑃 (�⃗�) with the components

𝑃𝑖(�⃗�) =
1

𝜋𝜌

∫︁
𝒮1

dΩ 𝜌(�⃗�, �̂�)𝑢𝑖 , (5.82)

which describes the local averaged dipolar orientation of the particles, and the sym-
metric and traceless nematic tensor with the components

𝑄𝑖𝑗(�⃗�) =
2

𝜋𝜌

∫︁
𝒮1

dΩ 𝜌(�⃗�, �̂�)
(︁
𝑢𝑖𝑢𝑗 −

1

2
𝛿𝑖𝑗

)︁
, (5.83)

which describes quadrupolar ordering of the particles, are chosen as order-parameter
fields. Equivalently, one could decompose the polarization 𝑃 (�⃗�) = 𝑃 (�⃗�)𝑝(�⃗�) into its
modulus 𝑃 (�⃗�) and the local normalized dipolar orientation 𝑝(�⃗�) and use the two order

parameters 𝑃 (�⃗�) and 𝑝(�⃗�) instead of 𝑃 (�⃗�), but this would lead to more complicated ex-
pressions for the free-energy functional. Similarly, the nematic tensor can be expressed
by [Gen71, GP95]

𝑄𝑖𝑗(�⃗�) = 𝑆(�⃗�)
(︁
𝑛𝑖(�⃗�)𝑛𝑗(�⃗�)−

1

2
𝛿𝑖𝑗

)︁
(5.84)

through the nematic order parameter 𝑆(�⃗�), which measures the local degree of qua-
drupolar orientational order and is important near topological defects [BK86], and the
nematic director �̂�(�⃗�) = (𝑛1(�⃗�), 𝑛2(�⃗�)), which is normalized and denotes the local di-
rection of nematic order. While the vector 𝑝(�⃗�) describes the local direction of dipolar
order, which results from a collective orientational ordering of a set of particles leading
to a macroscopic polarization, the vector �̂�(�⃗�) describes the local direction of quadru-
polar order. In general, these two types of order may have two different preferred
directions [BCP00]. Under the assumption of small anisotropies in the orientation, the
chosen dimensionless and real-valued order-parameter fields 𝜓(�⃗�), 𝑃𝑖(�⃗�), and 𝑄𝑖𝑗(�⃗�) are
now used to approximate the one-particle density as follows:

𝜌(�⃗�, �̂�) = 𝜌
(︀
1 + 𝜓(�⃗�) + 𝑃𝑖(�⃗�)𝑢𝑖 + 𝑢𝑖𝑄𝑖𝑗(�⃗�)𝑢𝑗

)︀
. (5.85)

This parametrization is equivalent to an expansion of the one-particle density 𝜌(�⃗�, �̂�)
into a Fourier series up to second order with respect to the angle between the vectors
�̂� and 𝑝(�⃗�), on the one hand, and the angle between the vectors �̂� and �̂�(�⃗�), on the
other hand. Inserting the parametrization (5.85) into equation (5.75), performing a
Taylor expansion of the integrand up to fourth order in the order-parameter fields,
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which guarantees stability of the solutions, and carrying out the angular integration
yields to the approximation

𝛽ℱid[𝜓, 𝑃𝑖, 𝑄𝑖𝑗] = 𝐹id + 𝜋𝜌

∫︁
𝒜
d𝐴𝑓id(�⃗�) (5.86)

with the local scaled ideal rotator-gas free-energy density

𝑓id =
𝜓

4

(︀
8− 2𝑃 2

𝑖 + 2𝑃𝑖𝑄𝑖𝑗𝑃𝑗 −𝑄2
𝑖𝑗

)︀
+
𝜓2

4

(︀
4 + 2𝑃 2

𝑖 +𝑄2
𝑖𝑗

)︀
− 𝜓3

3
+
𝜓4

6

+
𝑃 2
𝑖

8

(︀
4 +𝑄2

𝑘𝑙

)︀
− 𝑃𝑖𝑄𝑖𝑗𝑃𝑗

4
+
𝑃 2
𝑖 𝑃

2
𝑗

16
+
𝑄2
𝑖𝑗

4
+
𝑄2
𝑖𝑗𝑄

2
𝑘𝑙

64
,

(5.87)

where
𝐹id = 2𝜋𝜌𝐴

(︀
ln(Λ2𝜌)− 1

)︀
(5.88)

is an irrelevant constant. For the excess free-energy functional, the functional Tay-
lor expansion (5.76) is truncated at fourth order and the approximation (5.85) for
the one-particle density is inserted. The direct correlation functions 𝑐(𝑛)(�⃗�𝑛, �̂�𝑛) for
𝑛 ∈ {2, 3, 4} have now to be expanded with respect to their orientational degrees
of freedom. By considering the global translational and rotational invariance of the
direct correlation functions, one can use the parametrization 𝑐(𝑛+1)(𝑅𝑛, 𝜑𝑛R, 𝜑

𝑛) with
𝑅𝑛 = (𝑅1, . . . , 𝑅𝑛), 𝜑

𝑛
R = (𝜑R1 , . . . , 𝜑R𝑛), and 𝜑𝑛 = (𝜑1, . . . , 𝜑𝑛) for the direct cor-

relation function 𝑐(𝑛+1)(�⃗�𝑛+1, �̂�𝑛+1) to reduce its orientational degrees of freedom19

from 2𝑛 + 2 to 2𝑛. Here, the new variables are related to the previous ones by
�⃗�1 − �⃗�𝑖+1 = 𝑅𝑖�̂�(𝜙R𝑖

), �̂�𝑖 = �̂�(𝜙𝑖), 𝜑R𝑖
= 𝜙1 − 𝜙R𝑖

, and 𝜑𝑖 = 𝜙1 − 𝜙𝑖+1. With this
parametrization and the multi-index notation 𝑋𝑛 = (𝑋1, . . . , 𝑋𝑛) for 𝑋 ∈ {𝑙,𝑚, 1, 𝛼},
the Fourier expansion of the direct correlation function reads

𝑐(𝑛+1)(𝑅𝑛, 𝜑𝑛R, 𝜑
𝑛) =

∞∑︁
𝑙𝑗 ,𝑚𝑗=−∞

16𝑗6𝑛

𝑐
(𝑛+1)
𝑙𝑛,𝑚𝑛(𝑅

𝑛)𝑒i(𝑙
𝑛·𝜑𝑛R+𝑚𝑛·𝜑𝑛) (5.89)

with the expansion coefficients

𝑐
(𝑛+1)
𝑙𝑛,𝑚𝑛(𝑅

𝑛) =
1

(2𝜋)2𝑛

∫︁ 2𝜋

0

d𝜑𝑛R

∫︁ 2𝜋

0

d𝜑𝑛 𝑐(𝑛+1)(𝑅𝑛, 𝜑𝑛R, 𝜑
𝑛)𝑒−i(𝑙𝑛·𝜑𝑛R+𝑚𝑛·𝜑𝑛) . (5.90)

Next, a gradient expansion in the order-parameter fields is performed for 𝒜 = R2. For
the term (5.77) corresponding to 𝑛 = 2, this gradient expansion is performed up to
fourth-order gradients in 𝜓2(�⃗�) to allow stable crystalline phases and up to second-
order gradients in all other order-parameter products, where always is assumed that
the highest-order gradient terms ensure stability. However, for 𝑛 = 3 and 𝑛 = 4 the

19Aside from the orientation �̂�, also the position vector �⃗� is associated with an orientational degree
of freedom.
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gradient expansion is truncated at first and zeroth order, respectively. This results in
the contributions

ℱ (𝑛)
exc [𝜓, 𝑃𝑖, 𝑄𝑖𝑗] =

∫︁
R2

d𝐴𝑓 (𝑛)
exc (�⃗�) (5.91)

of the static excess free-energy functional. In this equation, the scaled excess free-en-
ergy densities 𝑓

(𝑛)
exc (�⃗�) are local and approximatively given by

𝑓 (2)
exc = 𝐴1𝜓

2 + 𝐴2(𝜕𝑖𝜓)
2 + 𝐴3(𝜕

2
𝑘𝜓)

2 +𝐵1(𝜕𝑖𝜓)𝑃𝑖 +𝐵2𝑃𝑖(𝜕𝑗𝑄𝑖𝑗) +𝐵3(𝜕𝑖𝜓)(𝜕𝑗𝑄𝑖𝑗)

+ 𝐶1𝑃
2
𝑖 + 𝐶2𝑃𝑖(𝜕

2
𝑘𝑃𝑖) + 𝐶3(𝜕𝑖𝑃𝑖)

2 +𝐷1𝑄
2
𝑖𝑗 +𝐷2(𝜕𝑗𝑄𝑖𝑗)

2 , (5.92)

𝑓 (3)
exc = 𝐸1𝜓

3 + 𝐸2𝜓𝑃
2
𝑖 + 𝐸3𝜓𝑄

2
𝑖𝑗 + 𝐸4𝑃𝑖𝑄𝑖𝑗𝑃𝑗 + 𝐹1𝜓

2(𝜕𝑖𝑃𝑖) + 𝐹2𝜓𝑃𝑖(𝜕𝑗𝑄𝑖𝑗)

+ 𝐹3(𝜕𝑖𝜓)𝑄𝑖𝑗𝑃𝑗 + 𝐹4𝑃
2
𝑖 (𝜕𝑗𝑃𝑗) + 𝐹5(𝜕𝑖𝑃𝑖)𝑄

2
𝑘𝑙 + 𝐹6𝑃𝑖𝑄𝑘𝑖(𝜕𝑗𝑄𝑘𝑗) ,

(5.93)

𝑓 (4)
exc = 𝐺1𝜓

4 +𝐺2𝜓
2𝑃 2

𝑖 +𝐺3𝜓
2𝑄2

𝑖𝑗 +𝐺4𝜓𝑃𝑖𝑄𝑖𝑗𝑃𝑗 +𝐺5𝑃
2
𝑖 𝑄

2
𝑘𝑙 +𝐺6𝑃

2
𝑖 𝑃

2
𝑗

+𝐺7𝑄
2
𝑖𝑗𝑄

2
𝑘𝑙

(5.94)

with the coefficients

𝐴1 = 8M0
0(1) , 𝐴2 = −2M0

0(3) , 𝐴3 =
1

8
M0

0(5) (5.95)

in the gradient expansion of 𝜓2(�⃗�). These coefficients also appear – in a different form
– in the traditional PFC model of Elder and co-workers [EPB+07]. The coefficients

𝐵1 = 4
(︁
M1

−1(2)−M0
1(2)

)︁
, (5.96)

𝐵2 = 2
(︁
M1

1(2)−M2
−1(2)

)︁
, (5.97)

𝐵3 = −M2
−2(3)−M0

2(3) (5.98)

in contrast belong to the terms that describe the coupling of the polarization 𝑃 (�⃗�) with
the gradient of the translational density 𝜓(�⃗�) and with the gradient of the nematic
tensor 𝑄𝑖𝑗(�⃗�) as well as the coupling of the gradient of the translational density with
the gradient of the nematic tensor. The three coefficients

𝐶1 = 4M1
0(1) , 𝐶2 = M1

0(3)−
1

2
M1

−2(3) , 𝐶3 = −M1
−2(3) (5.99)

appear in the gradient expansion regarding the polarization 𝑃 (�⃗�) and

𝐷1 = 2M2
0(1) , 𝐷2 = −M2

0(3) (5.100)

are the coefficients of the gradient expansion in the nematic tensor 𝑄𝑖𝑗(�⃗�). So far, all
these coefficients can also be obtained by using the second-order Ramakrishnan-Yus-
souff functional for the excess free energy. The remaining coefficients, however, result
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from higher-order contributions in the functional Taylor expansion. In third order, one
obtains for the homogeneous terms the coefficients

𝐸1 = 32 ̂︀M00
00 , (5.101)

𝐸2 = 16
(︁̂︀M−11

00 + 2 ̂︀M01
00

)︁
, (5.102)

𝐸3 = 8
(︁̂︀M−22

00 + 2 ̂︀M02
00

)︁
, (5.103)

𝐸4 = 8
(︁
2 ̂︀M−21

00 + ̂︀M11
00

)︁
(5.104)

and for the terms containing a gradient the coefficients

𝐹1 = 16
(︁̃︀M−10

01 − 2 ̃︀M0−1
01 + ̃︀M00

01

)︁
, (5.105)

𝐹2 = 16
(︁̃︀M−21

01 − ̃︀M0−2
01 + ̃︀M01

01 − ̃︀M1−2
01

)︁
, (5.106)

𝐹3 = −16
(︁̃︀M−20

01 − ̃︀M−21
01 − ̃︀M01

01 + ̃︀M10
01

)︁
, (5.107)

𝐹4 = −8
(︁̃︀M−1−1

01 − 2 ̃︀M−11
01 + ̃︀M1−1

01

)︁
, (5.108)

𝐹5 = −4
(︁̃︀M−2−1

01 − ̃︀M−22
01 − ̃︀M−12

01 + ̃︀M2−1
01

)︁
, (5.109)

𝐹6 = 8
(︁̃︀M−22

01 − ̃︀M−1−2
01 + ̃︀M−12

01 − ̃︀M2−2
01

)︁
. (5.110)

In fourth order, only homogeneous terms are kept. The corresponding coefficients are

𝐺1 = 128 ̂︀M000
000 , (5.111)

𝐺2 = 192
(︁̂︀M−101

000 + ̂︀M001
000

)︁
, (5.112)

𝐺3 = 96
(︁̂︀M−202

000 + ̂︀M002
000

)︁
, (5.113)

𝐺4 = 96
(︁
2 ̂︀M−201

000 + ̂︀M−211
000 + ̂︀M011

000

)︁
, (5.114)

𝐺5 = 48
(︁̂︀M−212

000 + ̂︀M−112
000

)︁
, (5.115)

𝐺6 = 48 ̂︀M−111
000 , (5.116)

𝐺7 = 12 ̂︀M−222
000 . (5.117)

All the coefficients from above are linear combinations of moments of the Fourier
expansion coefficients of the direct correlation functions. These moments are defined
through

M𝑚𝑛

𝑙𝑛 (𝛼𝑛) = 𝜋2𝑛+1𝜌𝑛+1

(︃
𝑛∏︁
𝑖=1

∫︁ ∞

0

d𝑅𝑖𝑅
𝛼𝑖
𝑖

)︃
𝑐
(𝑛+1)
𝑙𝑛,𝑚𝑛 (𝑅

𝑛) (5.118)
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with the abbreviations ̂︀M𝑚𝑛

𝑙𝑛 = M𝑚𝑛

𝑙𝑛 (1𝑛) and ̃︀M𝑚1𝑚2
𝑙1𝑙2

= M𝑚1𝑚2
𝑙1𝑙2

(1, 2). To reduce the
total number of coefficients in the PFC model, the symmetry properties of the direct
correlation functions and of their expansion coefficients (5.90) have been used. The
translational and rotational invariance of the direct correlation functions were already
considered in the context of the expansion with respect to the orientational degrees of
freedom. The invariance against renumbering of particles,

𝑐(𝑛)(. . . , �⃗�𝑖, . . . , �⃗�𝑗, . . . , . . . , �̂�𝑖, . . . , �̂�𝑗, . . .)

= 𝑐(𝑛)(. . . , �⃗�𝑗, . . . , �⃗�𝑖, . . . , . . . , �̂�𝑗, . . . , �̂�𝑖, . . .) ,
(5.119)

on the other hand implies that generalized moments, arising from each other by simul-
taneous permutations of the elements of the multi-indices 𝑙𝑛, 𝑚𝑛, and 𝛼𝑛, are equal:

M
...,𝑚𝑖,...,𝑚𝑗 ,...
...,𝑙𝑖,...,𝑙𝑗 ,...

(. . . , 𝛼𝑖, . . . , 𝛼𝑗, . . .) = M
...,𝑚𝑗 ,...,𝑚𝑖,...
...,𝑙𝑗 ,...,𝑙𝑖,...

(. . . , 𝛼𝑗, . . . , 𝛼𝑖, . . .) . (5.120)

Furthermore, there is the invariance of the expansion coefficients (5.90) against complex
conjugation:

𝑐
(𝑛)
𝑙𝑛,𝑚𝑛(𝑅𝑛) = 𝑐

(𝑛)
𝑙𝑛,𝑚𝑛(𝑅

𝑛) . (5.121)

This symmetry involves the invariance of the expansion coefficients 𝑐
(𝑛)
𝑙𝑛,𝑚𝑛(𝑅𝑛) against

simultaneous reversal of the signs of the elements in 𝑙𝑛 and 𝑚𝑛:

𝑐
(𝑛)
−𝑙1,...,−𝑙𝑛,−𝑚1,...,−𝑚𝑛

(𝑅1, . . . , 𝑅𝑛) = 𝑐
(𝑛)
𝑙1,...,𝑙𝑛,𝑚1,...,𝑚𝑛

(𝑅1, . . . , 𝑅𝑛) . (5.122)

It is equivalent to the invariance of the direct correlation functions against reflection
of the system at the first axis of coordinates. For the generalized moments this means:

M−𝑚1,...,−𝑚𝑛

−𝑙1,...,−𝑙𝑛 (𝛼1, . . . , 𝛼𝑛) = M𝑚1,...,𝑚𝑛

𝑙1,...,𝑙𝑛
(𝛼1, . . . , 𝛼𝑛) . (5.123)

When the system is apolar, the modulus 𝑃 (�⃗�) of the polarization 𝑃 (�⃗�) is zero and its
orientation 𝑝(�⃗�) is not defined, while the direction �̂�(�⃗�) associated with quadrupolar
order still exists. Then, further symmetry considerations lead to the equalities

𝑐
(2)
−1,1(𝑅) = 𝑐

(2)
1,0(𝑅) , 𝑐

(2)
−1,2(𝑅) = 𝑐

(2)
1,1(𝑅) , 𝑐

(2)
−2,2(𝑅) = 𝑐

(2)
2,0(𝑅) (5.124)

between expansion coefficients of the direct pair-correlation function and to the equa-
tions

M1
−1(2) = M0

1(2) , M2
−1(2) = M1

1(2) , M2
−2(2) = M0

2(2) (5.125)

for the generalized moments. A consequence of these equations is that the coefficients
𝐵1 and 𝐵2 vanish and 𝐵3 becomes more simple.



96 5 Statics and dynamics of colloidal liquid crystals

5.3.1.2 Special cases of the PFC model

The polar PFC model for two spatial dimensions contains several special cases known
from the literature. These special cases follow from the full free-energy functional by
choosing some of the order-parameter fields as zero or as a constant different from zero
and by taking into account the contributions of the functional Taylor expansion (5.76)
only up to a certain order 𝑛max ∈ {2, 3, 4}. Table 5.2 gives an overview about the most
relevant special cases. For an arbitrary 𝑛max, the three most simple special cases are

Table 5.2: Relevant special cases that are contained in the polar PFC model for two
spatial dimensions. If 𝑛max is not specified, it can be arbitrary (arb.).

𝜓 𝑃𝑖 𝑄𝑖𝑗 𝑛max Associated model

0 0 𝑐𝑜𝑛𝑠𝑡. 𝑎𝑟𝑏. Landau expansion in 𝑄𝑖𝑗

0 0 𝑄𝑖𝑗(�⃗�) 2
Landau-de Gennes free energy for

uniaxial nematics [GP95]

0 0 𝑄𝑖𝑗(�⃗�) 𝑎𝑟𝑏. Gradient expansion in 𝑄𝑖𝑗(�⃗�)

0 𝑐𝑜𝑛𝑠𝑡. 0 𝑎𝑟𝑏. Landau expansion in 𝑃𝑖

0 𝑃𝑖(�⃗�) 0 𝑎𝑟𝑏. Gradient expansion in 𝑃𝑖(�⃗�)

𝑐𝑜𝑛𝑠𝑡. 0 0 𝑎𝑟𝑏. Landau expansion in 𝜓

𝜓(�⃗�) 0 0 2 PFC model of Elder et al. [EPB+07]

𝜓(�⃗�) 0 0 𝑎𝑟𝑏. Gradient expansion in 𝜓(�⃗�)

𝑐𝑜𝑛𝑠𝑡. 𝑃𝑖(�⃗�) 𝑄𝑖𝑗(�⃗�) 4 Constant-density approximation

𝜓(�⃗�) 0 𝑄𝑖𝑗(�⃗�) 2 PFC model of Löwen [Löw10a]

𝜓(�⃗�) 𝑃𝑖(�⃗�) 𝑄𝑖𝑗(�⃗�) 4 Full free-energy functional

obtained for either a constant translational density 𝜓, a constant polarization 𝑃𝑖, or a
constant nematic tensor 𝑄𝑖𝑗, when all remaining order-parameter fields are assumed to
be zero. These special cases are Landau expansions in 𝜓, 𝑃𝑖, and 𝑄𝑖𝑗, respectively. If
𝜓(�⃗�), 𝑃𝑖(�⃗�), or 𝑄𝑖𝑗(�⃗�) are space-dependent and the other order-parameter fields vanish,
the free-energy functional contains also gradients of the respective space-dependent
order-parameter field and can be called a gradient expansion in 𝜓(�⃗�), 𝑃𝑖(�⃗�), or 𝑄𝑖𝑗(�⃗�),
respectively. When additionally 𝑛max = 2 is chosen, the gradient expansion in 𝜓(�⃗�)
becomes the traditional PFC model of Elder et al. [EPB+07] and from the gradient
expansion in 𝑄𝑖𝑗(�⃗�) the Landau-de Gennes free energy for inhomogeneous uniaxial
nematics [GP95] is recovered. In the case that only 𝜓(�⃗�) is constant and the other order-
parameter fields are space-dependent, a constant-density approximation of the full free-
energy functional ℱ [𝜓, 𝑃𝑖, 𝑄𝑖𝑗] is established. The PFC model of Löwen [Löw10a] is
obtained for 𝑛max = 2, if the translational density is space-dependent, the polarization
in zero, and the nematic tensor is space-dependent and parametrized according to
equation (5.84). In the polar PFC model for two spatial dimensions, one can also
consider the case of a space-dependent translational density 𝜓(�⃗�), a space-dependent
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polarization 𝑃𝑖(�⃗�), and a vanishing nematic tensor, which corresponds to a ferroelectric
phase without orientational order, but such a phase was never observed in experiments.
Therefore, this case is not included in table 5.2 on the preceding page.

5.3.1.3 Equilibrium bulk phase diagram

The PFC model for two spatial dimensions can be solved numerically in order to
determine the stable liquid crystalline phases. In the following paragraphs, this PFC
model is at first reduced to an apolar PFC model by choosing 𝑃 (�⃗�) = 0⃗ and then
rescaled by a suitable choice of the length and energy scales to reduce its complexity.
The resulting model is investigated using semi-analytical and completely numerical
methods and the predictions of these rather different methods are afterwards compared
and discussed.

a) Rescaled dimensionless free-energy functional
The PFC model for two spatial dimensions has originally six remaining parameters
for 𝑃 (�⃗�) = 0⃗ of which one can be scaled out by introducing the dimensionless area
𝐴′, the dimensionless free energy ℱ ′, the dimensionless position �⃗�′ = (𝑥′1, 𝑥

′
2), and the

dimensionless operator 𝜕′𝑖 for the quantities 𝐴 = 𝑙2c𝐴
′, ℱ = 𝐸cℱ ′, the position �⃗� = 𝑙c�⃗�

′,
and the operator 𝜕𝑖 = 𝜕′𝑖/𝑙c with the characteristic length 𝑙c and the characteristic
energy 𝐸c. When these characteristic quantities are chosen as 𝑙c =

√︀
−𝐴3/𝐴2 and

𝐸c = −𝜋𝜌𝐴3/(𝛽𝐴2), the apolar PFC model obtains the dimensionless form

ℱ ′[𝜓′, 𝑄′
𝑖𝑗] =

∫︁
R2

d𝐴′
(︁
− 𝜓′3

3
+
𝜓′4

6
+ (𝜓′ − 1)

𝜓′𝑄′2
𝑖𝑗

4
+
𝑄′2
𝑖𝑗𝑄

′2
𝑘𝑙

64

+ 𝐴′
1𝜓

′2 + 𝐴′
2𝜓

′(𝜕′2𝑘 + 𝜕′2𝑘 𝜕
′2
𝑙 )𝜓

′

+𝐵′
3(𝜕

′
𝑖𝜓

′)(𝜕′𝑗𝑄
′
𝑖𝑗) +𝐷′

1𝑄
′2
𝑖𝑗 +𝐷′

2(𝜕
′
𝑗𝑄

′
𝑖𝑗)

2
)︁ (5.126)

with the new order-parameter fields 𝜓′(�⃗�′) ≡ 𝜓(�⃗�) and 𝑄′
𝑖𝑗(�⃗�

′) ≡ 𝑄𝑖𝑗(�⃗�). The new
dimensionless parameters can be expressed by the original parameters through

𝐴′
1 = 1− 𝐴1

2𝜋𝜌
, 𝐴′

2 = − 𝐴2
2

2𝜋𝜌𝐴3

, 𝐵′
3 =

𝐴2𝐵3

2𝜋𝜌𝐴3

, (5.127)

and

𝐷′
1 =

1

4
− 𝐷1

2𝜋𝜌
, 𝐷′

2 =
𝐴2𝐷2

2𝜋𝜌𝐴3

. (5.128)

With the parametrization (5.84), the rescaled PFC model (5.126) is equivalent to the
model of Löwen in reference [Löw10a] and to its dimensionless version in reference
[AWL11]. By comparison of equation (5.126) with the latter dimensionless model, one
obtains the relations

𝐴′
1 = 𝐵𝑙 , 𝐴′

2 = 4𝐵𝑥 , 𝐵′
3 = −4𝐹 , 𝐷′

1 = 2𝐷 , 𝐷′
2 = 8𝐸 (5.129)
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between the dimensionless parameters and the two further relations

𝑙c =
1√
2
�̃�c , 𝐸c =

1

2
�̃�c (5.130)

between the characteristic quantities of these two dimensionless models, where �̃�c and �̃�c

denote the characteristic length and the characteristic energy in the model of reference
[AWL11], respectively. The relation between the characteristic lengths in equation
(5.130) is necessary, especially when the length scales of these two models have to be
converted into each other.

In the integrand of functional (5.126), the first four terms approximate the free-
energy density of an ideal rotator gas. Also the terms 𝜓′2(�⃗�′) and 𝑄′2

𝑖𝑗(�⃗�
′) appear in the

ideal rotator entropy, but since there are corresponding terms in the excess free energy
for anisotropic particles, the different contributions to these terms were combined to
𝐴′

1𝜓
′2(�⃗�′) and 𝐷′

1𝑄
′2
𝑖𝑗(�⃗�

′) in equation (5.126). Aside from the already mentioned poly-
nomial terms in the order-parameter fields, their gradients also contribute to the free
energy. The amount of their contribution is controlled by the parameters 𝐴′

2, 𝐵
′
3, and

𝐷′
2 in the free-energy functional. Contributions of the gradient and curvature of the

translational density field 𝜓′(�⃗�′) appear in the term proportional to 𝐴′
2. The couplings

between the gradients of 𝜓′(�⃗�′) and 𝑄′
𝑖𝑗(�⃗�

′) are taken into account in the term propor-
tional to the parameter 𝐵′

3 and the last term in the free-energy functional is scaled by
the parameter 𝐷′

2. It contains the divergence of the nematic tensor quadratically.

b) Minimization of the free-energy functional
The equilibrium phases corresponding to the free-energy functional (5.126) can be
determined by minimization of this functional. Basic properties of the phase dia-
gram can directly be read off equation (5.126). Since the parameter 𝐷′

1 controls the
contribution of the nematic tensor 𝑄′

𝑖𝑗(�⃗�
′) and therefore also of the nematic order

parameter 𝑆 ′(�⃗�′) ≡ 𝑆(�⃗�), the nematic phase can be expected to be stable for large
negative values of 𝐷′

1. In the opposite case, if 𝐷′
1 is large enough and positive, the

term 𝐷′
1𝑄

′2
𝑖𝑗(�⃗�

′) + 𝑄′2
𝑖𝑗(�⃗�

′)𝑄′2
𝑘𝑙(�⃗�

′)/64 dominates the free energy and only phases with
𝑄′
𝑖𝑗(�⃗�

′) ∝ 𝑆 ′(�⃗�′) = 0 can be stable. Crystalline phases with a non-vanishing nematic
order can therefore only appear in a region around 𝐷′

1 = 0. From previous work, it is
known that the difference 𝐴′

1−𝐴′
2/4 has a big influence on the translational density field

[EPB+07, AWL11]. If the parameter 𝐴′
1 is large and positive, variations of the trans-

lational density field enlarge the free energy. Similarly, gradients of the translational
density field enlarge the free energy for large and negative values of 𝐴′

2. Therefore,
it is obvious that phases without any density modulations, i. e., the isotropic and the
nematic phase, are preferred for positive values of the difference 𝐴′

1 − 𝐴′
2/4, while all

other phases with a periodic translational density field are preferred for negative val-
ues of this difference. Furthermore, there is a symmetry concerning the reversal of the
sign of the parameter 𝐵′

3 in the free-energy functional. From equation (5.126) follows
directly that the free-energy functional is invariant under a simultaneous change of the
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signs of the parameter 𝐵′
3 and the nematic order-parameter field 𝑆 ′(�⃗�′). Due to this

symmetry, 𝐵′
3 > 0 is assumed in the phase diagrams that are presented further below.

In order to find the stable phases in the PFC model, the free-energy functional
(5.126) can be minimized numerically using the steepest descent method for fixed pa-
rameters 𝐴′

1, 𝐴
′
2, 𝐵

′
3, 𝐷

′
1, and 𝐷

′
2. This method is based on pseudo-dynamic equations

that become stationary for the equilibrium phase that minimizes the functional. The
pseudo-dynamic equations were discretized using a finite-difference scheme and solved
on a grid with 32 × 32 grid points per unit cell. In order to find the global minimum
of the functional, a set of different phases was used as initial conditions and the func-
tional was also minimized with respect to the lattice constant of the periodic phases
by a variation of the length of the grid cells.
In addition, the one-mode approximation [PE10] was used to determine the phase

diagram of the PFC model. The one-mode approximation is a semi-analytical approach
consisting of periodic approximations for the order-parameter fields 𝜓′(�⃗�′), 𝑆 ′(�⃗�′), and
�̂�′(�⃗�′) ≡ �̂�(�⃗�). It reduces the PFC model to the lowest Fourier modes and is much
faster than the free numerical minimization with the steepest descent method, since the
minimization of the functional is reduced to the much easier minimization of a nonlinear
equation with respect to a few parameters. However, the one-mode approximation can
only be used to calculate the phase diagram for phases whose order-parameter fields
can be well approximated by simple analytic expressions. For the liquid crystalline
phases that appear as equilibrium solutions of the functional (5.126), the following
parametrizations with the minimization parameters 𝑎1, 𝑏0, 𝑏1, and 𝑘 were used:

• isotropic phase:

𝜓′(�⃗�′) = 0 ,

𝑆 ′(�⃗�′) = 0 ,
(5.131)

• nematic phase:

𝜓′(�⃗�′) = 0 ,

𝑆 ′(�⃗�′) = 𝑏0 ,
(5.132)

• stripe phase:

𝜓′(�⃗�′) = 𝑎1 cos(𝑘𝑥
′
2) ,

𝑆 ′(�⃗�′) = 0 ,
(5.133)

• columnar phase:

𝜓′(�⃗�′) = 𝑎1 cos(𝑘𝑥
′
2) ,

𝑆 ′(�⃗�′) = 𝑏0 + 𝑏1 cos(𝑘𝑥
′
2) ,

�̂�′(�⃗�′) = (1, 0) ,

(5.134)
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• smectic A phase:

𝜓′(�⃗�′) = 𝑎1 cos(𝑘𝑥
′
2) ,

𝑆 ′(�⃗�′) = 𝑏0 + 𝑏1 cos(𝑘𝑥
′
2) ,

�̂�′(�⃗�′) = (0, 1) ,

(5.135)

• triangular crystalline phase:

𝜓′(�⃗�′) = 𝑎1

(︂
cos
(︁√3

2
𝑘𝑥′1

)︁
cos
(︁𝑘
2
𝑥′2

)︁
− cos(𝑘𝑥′2)

2

)︂
,

𝑆 ′(�⃗�′) = 𝑏0 + 𝑏1

(︂
cos
(︁√3

2
𝑘𝑥′1

)︁
cos
(︁𝑘
2
𝑥′2

)︁
− cos(𝑘𝑥′2)

2

)︂
,

�̂�′(�⃗�′) =
(︀
cos(𝜑0), sin(𝜑0)

)︀
,

(5.136)

• square crystalline phase:

𝜓′(�⃗�′) = 𝑎1
(︀
cos(𝑘𝑥′1) + cos(𝑘𝑥′2)

)︀
,

𝑆 ′(�⃗�′) = 𝑏0 + 𝑏1 cos(𝑘𝑥
′
1) cos(𝑘𝑥

′
2) ,

�̂�′(�⃗�′) =
(︀
cos(𝜑0), sin(𝜑0)

)︀
.

(5.137)

The constant angle 𝜑0 can be set to zero, because the free energy does not depend on
it. Furthermore, due to equivalent free energies it is not necessary to distinguish be-
tween the columnar phase and the smectic A phase. They are therefore called “colum-
nar/smectic A phase” in the following. Notice that there is no additive offset term 𝑎0
for the density variation 𝜓′(�⃗�′), since its spatial average is assumed to be zero, i. e., the
considered phase transitions are assumed to be isochoric in this section. The minimiza-
tion of the free energy in the context of the one-mode approximation was performed for
fixed parameters 𝐴′

1, 𝐴
′
2, 𝐵

′
3, 𝐷

′
1, and 𝐷

′
2. It is possible to minimize the free energy for

the nematic phase and for all phases with a vanishing nematic order 𝑆 ′(�⃗�′) analytically.
The more complicated free energies of the remaining phases were minimized numeri-
cally with respect to the parameters 𝑎1, 𝑏0, 𝑏1, and 𝑘. For the global minimization of
the free energy, a random search routine in the four-dimensional parameter space in
combination with a local minimization by the Newton method was used.



5.3 Static phase field crystal models for liquid crystals 101

Figure 5.1: Stable liquid crystalline phases. The density plots show the order-
parameter fields 𝜓′(�⃗�′) and 𝑆 ′(�⃗�′) in the (𝑥′1, 𝑥

′
2)-plane for the isotropic and nematic

phases, the stripe phase and columnar/smectic A phase, two plastic triangular crys-
tals with different orientational ordering, and a plastic honeycomb crystal as well as
a plastic square crystal. The black lines in the plots of the second and fourth column
represent the director field �̂�′(�⃗�′). In the plots with 𝑆 ′(�⃗�′) = 0, the director field is not
shown because it is not defined. The parameters are 𝐴′

2 = 14, 𝐷′
2 = 8, and 𝐵′

3 = 0
for the stripe phase and the plastic triangular crystal 1 and 𝐴′

2 = 14, 𝐷′
2 = 0.8, and

𝐵′
3 = −4 for all other phases. Appropriate values for 𝐴′

1 and 𝐷
′
1 follow from the phase

diagrams in figure 5.3 on page 104. In the one-mode approximation, only the first five
of these phases with a constant director field for the columnar/smectic A phase can be
observed.
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c) Numerical results
Apart from the fully isotropic phase with 𝜓′(�⃗�′) = 0 and 𝑆 ′(�⃗�′) = 0, which appears for
𝐴′

1 > 𝐴′
2/4 and 𝐷′

1 > 0, several other phases were found to minimize the free energy
(see figure 5.1 on the preceding page). As expected, for negative and large𝐷′

1 a nematic
phase was found. In the columnar/smectic A phase, the system has positional ordering
in one direction, while it is isotropic perpendicular to this direction. The nematic order-
parameter field 𝑆 ′(�⃗�′) for this phase has a similar profile to the reduced translational
density field 𝜓′(�⃗�′) with maxima of these two fields at the same positions. Near the
maxima of the translational density 𝜓′(�⃗�′), the director field �̂�′(�⃗�′) is preferentially
parallel to the gradient 𝜕′𝑖𝜓

′(�⃗�′), while it is perpendicular to 𝜕′𝑖𝜓
′(�⃗�′) around the minima

of 𝜓′(�⃗�′). This behavior of the director field follows from the term proportional to 𝐵′
3

in the free-energy functional (5.126). This term is proportional to

(𝜕′𝑖𝜓
′)(𝜕′𝑖𝑆

′) + 2𝑆 ′𝑛′
𝑖𝑛

′
𝑗(𝜕

′
𝑖𝜕

′
𝑗𝜓

′) . (5.138)

Its second contribution describes the coupling between the curvature 𝜕′𝑖𝜕
′
𝑗𝜓

′(�⃗�′) of the
translational density and the orientation field �̂�′(�⃗�′). For the columnar/smectic A
phase, the term 𝑆 ′𝑛′

𝑖𝑛
′
𝑗(𝜕

′
𝑖𝜕

′
𝑗𝜓

′) simplifies to

𝑆 ′𝑛′2
2 (𝜕

′2
2 𝜓

′) . (5.139)

Since the nematic order parameter 𝑆 ′(�⃗�′) is positive in the columnar/smectic A phase,
the curvature 𝜕′22 𝜓

′(�⃗�′) decides over the sign of this term. Two cases can be distin-
guished: in the first case, the curvature 𝜕′22 𝜓

′(�⃗�′) is negative, which is true close to the
maxima of 𝜓′(�⃗�′). In the other case, 𝜕′22 𝜓

′(�⃗�′) is positive. This happens near the minima
of 𝜓′(�⃗�′). The director field behaves differently in these two cases. When the free-energy
functional in minimized, the term (5.139), too, tends to become minimal. Therefore,
one observes �̂�′(�⃗�′) = (0, 1) ‖ 𝜕′𝑖𝜓

′(�⃗�′) in the case where 𝜕′22 𝜓
′(�⃗�′) is negative, while

�̂�′(�⃗�′) = (1, 0) ⊥ 𝜕′𝑖𝜓
′(�⃗�′) holds in the second case. This explains the observed behavior

of the director field (see figure 5.1 on the previous page for the columnar/smectic A
phase). A similar flipping of the orientational field from perpendicular to parallel to the
stripe direction was identified as transverse intralayer order in the three-dimensional
smectic A phase of hard spherocylinders [RBMF95]. For a plastic crystal, everything
is more complicated, since there are two spatial coordinates that are coupled. The
resulting structure of the orientation field is a result of these different couplings.

Four plastic crystals with different symmetries were found by free numerical mini-
mization of the functional (5.126). The first two phases are plastic triangular crystals
with a vanishing and a non-vanishing nematic order parameter, respectively, where
the first crystal with 𝑆 ′(�⃗�′) = 0 is a special degenerate case of the second one. The
third plastic crystalline structure involves instead a honeycomb lattice. As a fourth
case, there is also a plastic crystal with square symmetry. Such a plastic crystal with
square symmetry does not appear in the traditional PFC model, but is known from
other free-energy functionals [SB97]. For all plastic crystals, 𝑆 ′(�⃗�′) vanishes both at
the maxima and minima of 𝜓′(�⃗�′). The director fields �̂�′(�⃗�′) of the different plastic
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crystalline phases exhibit quite different topologies. While the director field is not
defined for the plastic triangular crystal 1 with a vanishing field 𝑆 ′(�⃗�′), it possesses in
general topological defects at positions, where the field 𝑆 ′(�⃗�′) vanishes. This guarantees
that there is a finite core energy of the topological defects [TSPT02]. The topological
defects form another lattice with more lattice points than given by the maxima of the
field 𝜓′(�⃗�′), since there are additional interstitial topological defects at the minima of
𝜓′(�⃗�′). The lattices of topological defects are schematically shown in figure 5.2. For the

Figure 5.2: Topological defects in three different plastic liquid crystals in the (𝑥′1, 𝑥
′
2)-

plane (schematic). The defects coincide with the maxima (red disks) and minima (cyan
disks) of the translational density field 𝜓′(�⃗�′). The symbols in the plots represent
the following defects: (a) vortices with the topological winding number 𝑚 = 1, (b)
disclinations with 𝑚 = −1/2, (c) sources/sinks with 𝑚 = 1, and (d) hyperbolic points
with 𝑚 = −1.

plastic triangular crystal 2 and for the plastic honeycomb crystal, the associated defect
crystal is triangular albeit with a lattice constant that is the factor 1/

√
3 smaller than

the original one. Likewise, for the plastic square crystal, the defect lattice is a square
lattice with a lattice constant reduced by the factor 1/

√
2. The topological defects in

the liquid crystalline phases can be classified according to the winding number of their
director field [Mer79, GP95]. In the investigated PFC model (5.126), three types of
point defects occur. These are vortices with the topological winding number 𝑚 = 1,
sources/sinks with 𝑚 = 1, and hyperbolic points with 𝑚 = −1. Furthermore, disclina-
tion line defects with 𝑚 = −1/2 are found. Vortices and disclination lines occur in the
plastic triangular crystal 2, which is schematically drawn in the first plot in figure 5.2.
In the plastic honeycomb crystal, disclination lines arise together with sources/sinks
(see second plot in figure 5.2), while vortices and hyperbolic points are found in the
plastic square crystal (see last plot in figure 5.2). The sum of the topological winding
numbers of all topological defects in a unit cell vanishes for all plastic crystals.
The director fields of all observed crystalline phases are periodic and vanish, when

they are averaged in space. Therefore, these crystals are identified as being plastic.
Plastic crystals appear both in special molecular [SIGK99, TP10] and colloidal [MD08,
DJK+10, GAO+10] systems. While the lattice constant for molecular plastic crystals is
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about a few nanometers, it is between 10 nm and 1000 nm for colloidal plastic crystals.
Orientationally ordered crystalline phases were instead not found in the PFC model in
the explored parameter range. Parameters for which the mentioned phases are stable
follow from the phase diagrams in figure 5.3. For these phase diagrams, the parameters

Figure 5.3: Phase diagrams calculated by free numerical minimization and with the
one-mode approximation for the parameters 𝐴′

2 = 14 and 𝐷′
2 = 0.8. The relevant

liquid crystalline phases are isotropic (blue), nematic (green), stripes (yellow), colum-
nar/smectic A (C/SA, light orange), plastic triangular crystals (magenta), plastic hon-
eycomb crystal (PHC, dark purple), and plastic square crystal (PSC, red). Due to the
finite numerical resolution of the parameter space that is especially low for the free
numerical minimization the separation lines between different phases are cornered.

1.5 6 𝐴′
1 6 4.5, 𝐴′

2 = 14, 𝐵′
3 ∈ {0, 0.04, 0.4, 4}, −2 6 𝐷′

1 6 2, and 𝐷′
2 = 0.8 were

chosen. The parameter 𝐴′
2 was kept constant and the parameter 𝐴′

1 was varied in
order to obtain all the phases of the traditional PFC model, when the orientational
degrees of freedom are neglected. Moreover, the parameters 𝐵′

3 and 𝐷′
2 were selected

from the regions, where the richest phase diagrams were found, and the parameter 𝐷′
1

was varied from −2 to higher values, because the free energy of the nematic phase is
significantly smaller than the free energy of any other phase of the traditional PFC
model at the value 𝐷′

1 = −2. For 𝐵′
3 = 0, there is a degenerate case with 𝑆 ′(�⃗�′) = 0

for 𝐷′
1 > 0 and 𝐷′

2 > 0. In this case, a stripe phase and the plastic triangular crystal
1 were observed. These phases are replaced by the columnar/smectic A phase and by
the plastic triangular crystal 2, respectively, when 𝐵′

3 becomes positive. The richest
phase diagram with six different phases was obtained for 𝐵′

3 = 4. Independent of the
particular value of the parameter 𝐵′

3, the phase transition between the isotropic and
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the nematic phase turned out to be continuous, while all other phase transitions are
discontinuous. This result agrees with the fact that the PFC model reduces to the
Landau-de Gennes model for the isotropic-nematic phase transition, which describes
this phase transition as continuous. On the other hand, symmetries are broken for the
remaining phase transitions so that they must be discontinuous.
In comparison with the free numerical minimization of the free-energy functional,

the one-mode approximation appears to provide an approximative but much faster
alternative to determine the phase diagram of the PFC model (see figure 5.3 on the
preceding page). A speed-up factor of 100 can easily be achieved. This allows the
fast calculation of phase diagrams for various parameter combinations as well as single
phase diagrams with a rather high resolution (compare the left and the right column in
figure 5.3 on the facing page). The one-mode approximation leads to the same phase
diagram as the free numerical minimization for 𝐵′

3 = 0 (see figure 5.3 on the preceding
page), but for higher values of 𝐵′

3, the phase diagrams deviate increasingly from the
actual phase diagrams that were obtained by free numerical minimization. This is due
to the complicated director field of some crystalline phases that is not represented in
the one-mode approximation. While the isotropic phase, the nematic phase, the stripe
phase, and the plastic triangular crystal 1 are described precisely by the one-mode
approximation, there are small deviations for the columnar/smectic A phase and a
complete negligence of the topology of the director field for the plastic triangular crystal
2, for the plastic honeycomb crystal, and for the plastic square crystal. The latter three
phases do not appear in the phase diagrams for the one-mode approximation, since
their director fields are approximated by director fields with a constant orientation in
the one-mode approximation, but the actual plastic crystals have a vanishing global
orientation. When the free-energy functional is minimized for the plastic triangular
crystal 2 using the one-mode approximation, the improper ansatz for the director field
makes that the minimum of the free energy is always found for a vanishing nematic
order parameter 𝑆 ′(�⃗�′). This is the reason for the appearance of the plastic triangular
crystal 1 instead of the plastic triangular crystals 2 in the phase diagrams of the one-
mode approximation for 𝐵′

3 /= 0. A further difference between the phase diagrams
of the one-mode approximation and those for the free numerical minimization is an
island of the columnar/smectic A phase near the lower end of the phase transition line
between the isotropic and the nematic phase for 𝐵′

3 = 0.4. Also this island results from
an inaccurate consideration of the director field for some liquid crystalline phases and
is not physically justified.
To check that the above mentioned disadvantages of the phase diagrams for the

one-mode approximation really arise from the improper approximation of the director
field �̂�′(�⃗�′), a Fourier analysis of the numerical results, that are shown in figure 5.1 on
page 101, was performed. This Fourier analysis exhibited that the first Fourier mode
is always dominant. Only for the plastic honeycomb crystal and for the plastic square
crystal there appears a small contribution of the second mode that might be relevant.
A look at the behavior of the order parameters near phase transitions confirmed the
results of the free numerical minimization regarding the order of the phase transitions.
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Despite the already discussed disadvantages of the one-mode approximation, it proved
to be a useful method to calculate phase diagrams for a given PFC model with low
computational effort. The one-mode approximation is also useful for exploring the
phase diagram for suitable parameters or for a large number of different parameter
combinations and for finding interesting regions in a high-dimensional parameter space
that are worth to be investigated more precisely by a much more expensive direct
minimization of the free-energy functional.

5.3.2 Three spatial dimensions

In the case of three spatial dimensions, one has to choose 𝑑 = 3, 𝒢 = 𝒱 , and 𝐺 = 𝑉
in the general equations of sections 5.2 and 5.3. Since only uniaxial particles with an
axis of symmetry are considered in this chapter, the orientational unit vector �̂�, that
is parallel to this axis of symmetry, is entirely defined using spherical coordinates by

�̂�(𝜃, 𝜑) =
(︀
sin(𝜃) cos(𝜑), sin(𝜃) sin(𝜑), cos(𝜃)

)︀
(5.140)

with the polar angle 𝜃 ∈ [0, 𝜋] and the azimuthal angle 𝜑 ∈ [0, 2𝜋). In addition to their
rotational symmetry, the particles are assumed to have head-tail symmetry so that
a macroscopic polarization through collective self-organization of the particles cannot
arise. As in the previously derived PFC model for two spatial dimensions, a possible
external potential is again neglected. Relevant uniaxial particles are, for example,
hard spherocylinders [Löw94a, BF97] and hard ellipsoids [FMM84], whose interactions
can be modeled by Yukawa-segment models [Löw94b, Löw94c, KLK96] and Gay-Berne
potentials [CCAN96, FTD04, MZ06].

5.3.2.1 Static free-energy functional

The derivation of a static PFC model for three spatial dimensions as presented in this
section proceeds analogously to the previously shown derivation for two spatial dimen-
sions. For the dimensionless and real-valued order-parameter fields 𝜓(�⃗�) and 𝑄𝑖𝑗(�⃗�)
that were chosen in section 5.3.1 for the polar PFC model for two spatial dimensions,
also three-dimensional analogs exist. These are used for the derivation in the present
section. The reduced translational density for three spatial dimensions is given by

𝜓(�⃗�) =
1

4𝜋𝜌

∫︁
𝒮2

dΩ
(︀
𝜌(�⃗�, �̂�)− 𝜌

)︀
(5.141)

and the 3×3-dimensional symmetric and traceless nematic tensor is defined through

𝑄𝑖𝑗(�⃗�) =
15

8𝜋𝜌

∫︁
𝒮2

dΩ 𝜌(�⃗�, �̂�)
(︁
𝑢𝑖𝑢𝑗 −

1

3
𝛿𝑖𝑗

)︁
. (5.142)

Again, the nematic tensor can be expressed by the nematic order-parameter field 𝑆(�⃗�)
and the nematic director �̂�(�⃗�) = (𝑛1(�⃗�), 𝑛2(�⃗�), 𝑛3(�⃗�)) that is here the only unit vec-
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tor that denotes a preferred direction in the liquid crystalline system. In the three-
dimensional case, the decomposition of the nematic tensor is given by [Gen71, GP95]

𝑄𝑖𝑗(�⃗�) = 𝑆(�⃗�)

(︂
3

2
𝑛𝑖(�⃗�)𝑛𝑗(�⃗�)−

1

2
𝛿𝑖𝑗

)︂
. (5.143)

Notice that the nematic order-parameter field 𝑆(�⃗�) is the biggest eigenvalue of the
nematic tensor 𝑄𝑖𝑗(�⃗�) and the nematic director �̂�(�⃗�) is the corresponding eigenvector.
With the order-parameter fields 𝜓(�⃗�) and 𝑄𝑖𝑗(�⃗�), the one-particle density is approxi-
mated by

𝜌(�⃗�, �̂�) = 𝜌
(︀
1 + 𝜓(�⃗�) + 𝑢𝑖𝑄𝑖𝑗(�⃗�)𝑢𝑗

)︀
. (5.144)

As before, the Helmholtz free-energy functional has to be approximated in the next
step. An approximative equation for the ideal rotator-gas free-energy functional is
again obtained from equation (5.75), when the approximation (5.144) is used and the
integrand is expanded up to fourth order in the order-parameter fields. This results in

𝛽ℱid[𝜓,𝑄𝑖𝑗] = 𝐹id + 𝜋𝜌

∫︁
𝒱
d𝑉 𝑓id(�⃗�) (5.145)

with the local scaled ideal rotator-gas free-energy density

𝑓id = 4𝜓
(︁
1− tr(𝑄2)

15
+

8 tr(𝑄3)

315

)︁
+ 2𝜓2

(︁
1 +

2 tr(𝑄2)

15

)︁
− 2𝜓3

3
+
𝜓4

3

+
4 tr(𝑄2)

15
− 16 tr(𝑄3)

315
+

8 tr(𝑄4)

315
,

(5.146)

where tr( · ) denotes the trace operator, and the irrelevant constant

𝐹id = 4𝜋𝜌 𝑉
(︀
ln(Λ3𝜌)− 1

)︀
. (5.147)

For the excess free-energy functional, the Ramakrishnan-Yussouff approximation (5.10)
is used together with equation (5.144) involving the direct pair-correlation function
𝑐(2)(�⃗�1, �⃗�2, �̂�1, �̂�2). Respecting translational symmetry and decomposing the difference
vector �⃗�1 − �⃗�2 = 𝑅�̂�R into its modulus 𝑅 and orientational unit vector �̂�R, the direct
pair-correlation function can also be written as 𝑐(2)(𝑅�̂�R, �̂�1, �̂�2). It can therefore be
expanded with respect to the three orientations �̂�R, �̂�1, and �̂�2 into rotational invariants
[GG84, GL98]. This expansion is by construction invariant against global rotations and
defined by

𝑐(2)(𝑅�̂�R, �̂�1, �̂�2) =
∞∑︁

𝑙1, 𝑙2, 𝑙=0

𝜔𝑙1𝑙2𝑙(𝑅)

𝑙𝑗∑︁
𝑚𝑗=−𝑙𝑗
16𝑗62

𝑙∑︁
𝑚=−𝑙

𝐶(𝑙1, 𝑙2, 𝑙,𝑚1,𝑚2,𝑚)

× Y𝑙1𝑚1(�̂�1)Y𝑙2𝑚2(�̂�2)Y𝑙𝑚(�̂�R)

(5.148)
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with the expansion coefficients

𝜔𝑙1𝑙2𝑙(𝑅) =

√︂
4𝜋

2𝑙 + 1

min{𝑙1,𝑙2}∑︁
𝑚=−min{𝑙1,𝑙2}

𝐶(𝑙1, 𝑙2, 𝑙,𝑚,−𝑚, 0)

×
∫︁
𝒮2
2

d2Ω 𝑐(2)(𝑅𝑒3, �̂�1, �̂�2)Y𝑙1𝑚(�̂�1)Y𝑙2−𝑚(�̂�2) .

(5.149)

Here, the symbol 𝐶(𝑙1, 𝑙2, 𝑙,𝑚1,𝑚2,𝑚) denotes a Clebsch-Gordan coefficient, Y𝑙𝑚(�̂�) is
a spherical harmonic, 𝑒3 stands for the Cartesian unit vector co-directional with the
𝑥3-axis, and · denotes complex conjugation. Contributions with an odd index 𝑙1, 𝑙2,
or 𝑙 vanish as a consequence of apolarity. A gradient expansion with 𝒱 = R3 leads now
to the final result. This gradient expansion is performed up to fourth-order gradients
in terms that are quadratic in the translational density 𝜓(�⃗�) and up to second-order
derivatives in all other order-parameter products. The result is given by

ℱ (2)
exc[𝜓,𝑄𝑖𝑗] =

∫︁
R3

d𝑉 𝑓 (2)
exc(�⃗�) (5.150)

with the local scaled excess free-energy density

𝑓 (2)
exc = 𝐴1𝜓

2 + 𝐴2(𝜕𝑖𝜓)
2 + 𝐴3(𝜕

2
𝑘𝜓)

2 +𝐵1𝑄
2
𝑖𝑗 +𝐵2(𝜕𝑖𝜓)(𝜕𝑗𝑄𝑖𝑗)

+ ̃︀𝐾1(𝜕𝑗𝑄𝑖𝑗)
2 + ̃︀𝐾2𝑄𝑖𝑗(𝜕

2
𝑘𝑄𝑖𝑗) .

(5.151)

The coefficients in 𝑓
(2)
exc(�⃗�) appear in three different groups. The first group consists of

the three coefficients

𝐴1 = 8Ω000(0) , 𝐴2 = −4

3
Ω000(2) , 𝐴3 =

1

15
Ω000(4) , (5.152)

that are already known from the traditional PFC model [EPB+07] and belong to the
gradient expansion of the translational density. In the next group, the two coefficients

𝐵1 =
16

15
√
5
Ω220(0) , 𝐵2 = −16

15
Ω022(2) , (5.153)

that go along with the nematic tensor and the coupling of its gradient with the gradient
of the translational density, are collected. The last group contains the Frank constants

̃︀𝐾1 =
16

15

√︂
2

35
Ω222(2) , ̃︀𝐾2 =

8

45
√
5
Ω220(2) +

1

3
̃︀𝐾1 , (5.154)

which appear in the Frank free-energy density [Cha92, GP95]. All these coefficients
are expressed in terms of the generalized moments

Ω𝑙1𝑙2𝑙(𝑛) = 𝜋3/2 𝜌2
∫︁ ∞

0

d𝑅𝑅𝑛+2𝜔𝑙1𝑙2𝑙(𝑅) . (5.155)
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As before, equalities between generalized moments with different index-combinations,
which can be derived using symmetry considerations, have been taken into account
in order to reduce the set of generalized moments in equation (5.151) to its seven
independent members.

5.3.2.2 Special cases of the PFC model

For the apolar PFC model for three spatial dimensions, some relevant special cases
are summarized in table 5.3. As for the PFC model for two spatial dimensions, one

Table 5.3: Relevant special cases that are contained in the apolar PFC model for
three spatial dimensions.

𝜓 𝑄𝑖𝑗 Associated model

0 𝑐𝑜𝑛𝑠𝑡. Landau expansion in 𝑄𝑖𝑗

0 𝑄𝑖𝑗(�⃗�) Landau-de Gennes free energy for uniaxial nematics [GP95]

𝑐𝑜𝑛𝑠𝑡. 0 Landau expansion in 𝜓

𝜓(�⃗�) 0 PFC model of Elder et al. [EPB+07]

𝑐𝑜𝑛𝑠𝑡. 𝑄𝑖𝑗(�⃗�) Constant-density approximation

𝜓(�⃗�) 𝑄𝑖𝑗(�⃗�) Full free-energy functional

obtains a Landau expansion in the translational density 𝜓 or in the nematic tensor 𝑄𝑖𝑗,
if this order-parameter field is constant and the respective other order-parameter field is
zero. When 𝜓(�⃗�) is space-dependent and 𝑄𝑖𝑗(�⃗�) vanishes, the traditional PFC model of
Elder et al. [EPB+07] for isotropic particles in three spatial dimensions is obtained from
the full free-energy functional. In the opposite case, where 𝜓(�⃗�) vanishes and 𝑄𝑖𝑗(�⃗�)
is space-dependent, the Landau-de Gennes free energy for inhomogeneous uniaxial
nematics [GP95] is recovered. Also the constant-density approximation can again be
established. This is the case, if 𝜓 is constant and 𝑄𝑖𝑗(�⃗�) is space-dependent. In the full
free-energy functional ℱ [𝜓,𝑄𝑖𝑗], all these special cases are properly comprised. This
functional clarifies the relations between already existing simpler PFC models, contains
the appropriate couplings of the order-parameter fields 𝜓(�⃗�) and 𝑄𝑖𝑗(�⃗�), and relates
the constant prefactors of the terms in the functional to the direct pair-correlation
function. After the publication of this functional in reference [WLB10], where the
parametrization (5.143) was used for the nematic tensor, it was rederived by Yabunaka
and Araki in reference [YA11] using the random-phase approximation (5.12) for the
direct pair-correlation function. Their model is thus included in the PFC model for
three spatial dimensions that is derived in this work. Nevertheless, reference [YA11]
also contains some numerical evaluations of the PFC model that are new.
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5.4 Dynamic phase field crystal models for liquid
crystals

The dynamic equations corresponding to the static PFC models can be derived from
DDFT. Boundary effects are thereby neglected through the consideration of an infinite
domain 𝒢 = R𝑑. Depending on the particular situation, one can choose the most
appropriate special version of the DDFT equation, whose most general form for biaxial
particles was derived in chapter 4. If, for example, only uniaxial particles or particles
in two spatial dimensions are considered, one should use a more special and at once
simpler form of the DDFT equation. The basic derivation is then performed in three
steps. At first, the order-parameter fields, that have been chosen for the statics, are
assumed to be time-dependent and the time-dependent one-particle density 𝜌(�⃗�, �̂�, 𝑡) is
approximated in terms of these time-dependent order-parameter fields in analogy to the
static parametrization. Secondly, the chain rule for functional differentiation is used
to express the functional derivative 𝛿ℱ/𝛿𝜌 of the Helmholtz free-energy functional ℱ ,
that is also assumed to be time-dependent, in terms of the functional derivatives of the
free-energy functional with respect to the chosen order-parameter fields. Finally, the
time-dependent parametrization for the one-particle density and the time-dependent
expression for the functional derivative 𝛿ℱ/𝛿𝜌 are inserted into the DDFT equation
and a set of in general coupled dynamic equations for the single order-parameter fields
is obtained by an orthogonal projection of the DDFT equation with respect to the
orientation �̂�.

5.4.1 Two spatial dimensions

On the basis of the static PFC model, that is described in section 5.3.1, and a suitable
DDFT equation, the dynamic equations for the time-dependent order-parameter fields
𝜓(�⃗�, 𝑡), 𝑃𝑖(�⃗�, 𝑡), and 𝑄𝑖𝑗(�⃗�, 𝑡), that parametrize the time-dependent noise-averaged one-
particle number density

𝜌(�⃗�, �̂�, 𝑡) =

⟨ 𝑁∑︁
𝑖=1

𝛿
(︀
�⃗� − �⃗�𝑖(𝑡)

)︀
𝛿
(︀
�̂�− �̂�𝑖(𝑡)

)︀⟩
, (5.156)

are derived in this section. The parametrization of the time-dependent one-particle
density is analogous to the parametrization (5.85) in the static case:

𝜌(�⃗�, �̂�, 𝑡) = 𝜌
(︀
1 + 𝜓(�⃗�, 𝑡) + 𝑃𝑖(�⃗�, 𝑡)𝑢𝑖 + 𝑢𝑖𝑄𝑖𝑗(�⃗�, 𝑡)𝑢𝑗

)︀
. (5.157)

For the derivation of the dynamic equations, the DDFT equation (4.44) for two spatial
dimensions is used. In the case of passive symmetric particles without a translational-
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rotational coupling, this DDFT equation simplifies to

�̇�(�⃗�, �̂�, 𝑡) = 𝛽∇⃗�⃗� ·
(︀
DT(�̂�)𝜌(�⃗�, �̂�, 𝑡)∇⃗�⃗�𝜌

♮(�⃗�, �̂�, 𝑡)
)︀

+𝛽𝐷R 𝜕𝜙
(︀
𝜌(�⃗�, �̂�, 𝑡) 𝜕𝜙𝜌

♮(�⃗�, �̂�, 𝑡)
)︀ (5.158)

with the translational short-time diffusion tensor

DT(�̂�) = 𝐷‖�̂�⊗ �̂�+𝐷⊥(1− �̂�⊗ �̂�) . (5.159)

Here, 𝐷‖ ≡ 𝐷1 and 𝐷⊥ ≡ 𝐷2 (see equations (3.24) and (3.25) in section 3.2.1.2)
are the translational diffusion coefficients for translation parallel and perpendicular to
the orientation �̂�, respectively, and the symbol 1 denotes the 2×2-dimensional unit
matrix. The two terms on the right-hand-side of this DDFT equation for uniaxial
particles correspond to pure translation and pure rotation, respectively. Translational-
rotational coupling terms, which are present in the general DDFT equation (4.44), are
neglected in this section. Since the DDFT equation (5.158) is still rather complicated,
the CMA

�̇�(�⃗�, �̂�, 𝑡) = 𝛽𝜌 ∇⃗�⃗� ·
(︀
DT(�̂�)∇⃗�⃗�𝜌

♮(�⃗�, �̂�, 𝑡)
)︀
+ 𝛽𝜌𝐷R 𝜕

2
𝜙𝜌

♮(�⃗�, �̂�, 𝑡) (5.160)

might be desirable for numerical calculations (see section 5.1.2.2). Using the short
notation for thermodynamic conjugates introduced by equation (5.64) in section 5.1.4.2,
the expression

𝜌♮ =
1

2𝜋𝜌
𝜓♮ +

𝑢𝑖
𝜋𝜌
𝑃 ♮
𝑖 +

𝑢𝑖𝑢𝑗
𝜋𝜌

𝑄♮
𝑖𝑗 (5.161)

follows from the chain rule of functional differentiation [Gro88]. When performing
functional derivatives with respect to 𝑄𝑖𝑗 or 𝑄

♮
𝑖𝑗, one has to notice that 𝑄𝑖𝑗 as well as

𝑄♮
𝑖𝑗 are symmetric and traceless. The interdependence of the elements of these tensors

leads to more complicated derivatives that respect the symmetry properties of these
tensors. A very useful equation in this context is

𝛿𝑄𝑘𝑙

𝛿𝑄𝑖𝑗

=
𝛿𝑄♮

𝑘𝑙

𝛿𝑄♮
𝑖𝑗

= 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑗𝑘𝛿𝑖𝑙 − 𝛿𝑖𝑗𝛿𝑘𝑙 . (5.162)

For the time-dependent Helmholtz free-energy functional in the DDFT equation, the
equilibrium Helmholtz free-energy functional (5.74) with 𝜌(�⃗�, �̂�, 𝑡) instead of 𝜌(�⃗�, �̂�) is
used. The explicit forms of the conjugated order-parameter fields 𝜓♮(�⃗�, 𝑡), 𝑃 ♮

𝑖 (�⃗�, 𝑡), and
𝑄♮
𝑖𝑗(�⃗�, 𝑡) result therefore directly from the functional derivatives of equations (5.76),

(5.80), and (5.86) with respect to the order-parameter fields:

Ξ♮ =
𝛿ℱ
𝛿Ξ

=
𝛿ℱid

𝛿Ξ
+
𝛿ℱexc

𝛿Ξ
+
𝛿ℱext

𝛿Ξ
with Ξ ∈ {𝜌, 𝜓, 𝑃𝑖, 𝑄𝑖𝑗} . (5.163)
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With the abbreviation 𝜆 = 𝜋𝜌/𝛽, these functional derivatives are given for 𝑛 6 2 by

1

𝜆

𝛿ℱid

𝛿𝜓
= 2− 𝑃 2

𝑖

2
+
𝑃𝑖𝑄𝑖𝑗𝑃𝑗

2
−
𝑄2
𝑖𝑗

4
+
𝜓

2

(︀
4 + 2𝑃 2

𝑖 +𝑄2
𝑖𝑗

)︀
− 𝜓2 +

2

3
𝜓3 , (5.164)

1

𝜆

𝛿ℱid

𝛿𝑃𝑖
= −𝜓

(︀
𝑃𝑖 −𝑄𝑖𝑗𝑃𝑗

)︀
+ 𝜓2𝑃𝑖 +

𝑃𝑖
4

(︀
4 +𝑄2

𝑘𝑙

)︀
− 𝑄𝑖𝑗𝑃𝑗

2
+
𝑃𝑖𝑃

2
𝑗

4
, (5.165)

1

𝜆

𝛿ℱid

𝛿𝑄𝑖𝑗

=
𝜓

2

(︀
2𝑃𝑖𝑃𝑗 − 𝛿𝑖𝑗𝑃

2
𝑙 − 2𝑄𝑖𝑗

)︀
+ 𝜓2𝑄𝑖𝑗 +

𝑃 2
𝑘

2
𝑄𝑖𝑗 −

1

4

(︀
2𝑃𝑖𝑃𝑗 − 𝛿𝑖𝑗𝑃

2
𝑙

)︀
+𝑄𝑖𝑗 +

𝑄𝑖𝑗𝑄
2
𝑘𝑙

8

(5.166)

and

−2𝛽
𝛿ℱexc

𝛿𝜓
= 2𝐴1𝜓 − 2𝐴2(𝜕

2
𝑘𝜓) + 2𝐴3(𝜕

2
𝑘𝜕

2
𝑙 𝜓)−𝐵1(𝜕𝑖𝑃𝑖)−𝐵3(𝜕𝑖𝜕𝑗𝑄𝑖𝑗) , (5.167)

−2𝛽
𝛿ℱexc

𝛿𝑃𝑖
= 𝐵1(𝜕𝑖𝜓) +𝐵2(𝜕𝑗𝑄𝑖𝑗) + 2𝐶1𝑃𝑖 + 2𝐶2(𝜕

2
𝑘𝑃𝑖)− 2𝐶3(𝜕𝑖𝜕𝑗𝑃𝑗) , (5.168)

−2𝛽
𝛿ℱexc

𝛿𝑄𝑖𝑗

= −𝐵2

(︀
𝜕𝑖𝑃𝑗 + 𝜕𝑗𝑃𝑖 − 𝛿𝑖𝑗(𝜕𝑙𝑃𝑙)

)︀
−𝐵3

(︀
2(𝜕𝑖𝜕𝑗𝜓)− 𝛿𝑖𝑗(𝜕

2
𝑙 𝜓)
)︀

+ 4𝐷1𝑄𝑖𝑗 − 2𝐷2𝜕𝑘
(︀
𝜕𝑖𝑄𝑘𝑗 + 𝜕𝑗𝑄𝑘𝑖 − 𝛿𝑖𝑗(𝜕𝑙𝑄𝑘𝑙)

)︀
,

(5.169)

where the functional derivatives of ℱext[𝜓, 𝑃𝑖, 𝑄𝑖𝑗] vanish, since 𝑈1(�⃗�, �̂�, 𝑡) = 0 is as-
sumed here.

5.4.1.1 Dynamic equations

The parametrization (5.157) and the relation (5.161) can now be inserted into the
DDFT equation (5.158). The dynamic equations for the order-parameter fields are
then obtained by an orthogonal projection that separates the evolution equations for
the particular order-parameter fields from each other. This projection is achieved by
a multiplication of equation (5.158) with 1, 𝑢𝑖, and 𝑢𝑖𝑢𝑗 − 𝛿𝑖𝑗/2, respectively, with a
subsequent integration over the orientation �̂�. In doing so, the translational density
𝜓(�⃗�, 𝑡) turns out to be conserved, while 𝑃𝑖(�⃗�, 𝑡) and 𝑄𝑖𝑗(�⃗�, 𝑡) are not conserved due to
their association with orientational degrees of freedom. The dynamic equations can
thus be written in the form

�̇� + 𝜕𝑖𝐽
𝜓
𝑖 = 0 , (5.170)

�̇�𝑖 + Φ𝑃
𝑖 = 0 , (5.171)

�̇�𝑖𝑗 + Φ𝑄
𝑖𝑗 = 0 (5.172)



5.4 Dynamic phase field crystal models for liquid crystals 113

with the current 𝐽𝜓𝑖 and the quasi-currents Φ𝑃
𝑖 and Φ𝑄

𝑖𝑗. These dissipative currents and
quasi-currents are given by the expressions

𝐽𝜓𝑖 =− 𝛼1

(︀
2(1 + 𝜓)(𝜕𝑖𝜓

♮) +𝑄𝑘𝑙(𝜕𝑖𝑄
♮
𝑘𝑙)
)︀
− 𝛼2𝑃𝑗(𝜕𝑖𝑃

♮
𝑗 )

− 𝛼3

(︀
2(1 + 𝜓)(𝜕𝑗𝑄

♮
𝑖𝑗) + 𝑃𝑖(𝜕𝑗𝑃

♮
𝑗 ) + 𝑃𝑗(𝜕𝑗𝑃

♮
𝑖 ) +𝑄𝑖𝑗(𝜕𝑗𝜓

♮)
)︀
,

(5.173)

Φ𝑃𝑖 =− 2𝛼1𝜕𝑘
(︀
𝑄𝑖𝑗(𝜕𝑘𝑃

♮
𝑗 ) + 𝑃𝑗(𝜕𝑘𝑄

♮
𝑖𝑗)
)︀
− 𝛼2𝜕𝑘

(︀
2(1 + 𝜓)(𝜕𝑘𝑃

♮
𝑖 ) + 𝑃𝑖(𝜕𝑘𝜓

♮)
)︀

− 𝛼3

(︁
2𝜕𝑖
(︀
(1 + 𝜓)(𝜕𝑗𝑃

♮
𝑗 )
)︀
+ 2𝜕𝑗

(︀
(1 + 𝜓)(𝜕𝑖𝑃

♮
𝑗 )
)︀
+ 𝜕𝑖

(︀
𝑃𝑗(𝜕𝑗𝜓

♮)
)︀
+ 𝜕𝑗

(︀
𝑃𝑗(𝜕𝑖𝜓

♮)
)︀

+ 2𝜕𝑗
(︀
𝑃𝑖(𝜕𝑘𝑄

♮
𝑗𝑘) +𝑄𝑗𝑘(𝜕𝑘𝑃

♮
𝑖 )
)︀)︁

+ 𝛼4

(︀
2(1 + 𝜓)𝑃 ♮𝑖 + 2𝑃𝑗𝑄

♮
𝑖𝑗 −𝑄𝑖𝑗𝑃

♮
𝑗

)︀
,

(5.174)

Φ𝑄𝑖𝑗 =− 2𝛼1𝜕𝑘
(︀
2(1 + 𝜓)(𝜕𝑘𝑄

♮
𝑖𝑗) + 𝑃𝑖(𝜕𝑘𝑃

♮
𝑗 ) + 𝑃𝑗(𝜕𝑘𝑃

♮
𝑖 )− 𝛿𝑖𝑗𝑃𝑙(𝜕𝑘𝑃

♮
𝑙 ) +𝑄𝑖𝑗(𝜕𝑘𝜓

♮)
)︀

− 𝛼3

2

(︁
4𝜕𝑖
(︀
(1 + 𝜓)(𝜕𝑗𝜓

♮)
)︀
+ 4𝜕𝑗

(︀
(1 + 𝜓)(𝜕𝑖𝜓

♮)
)︀
− 4𝛿𝑖𝑗𝜕𝑙

(︀
(1 + 𝜓)(𝜕𝑙𝜓

♮)
)︀

+ 4𝜕𝑖
(︀
𝑃𝑘(𝜕𝑗𝑃

♮
𝑘)
)︀
+ 4𝜕𝑗

(︀
𝑃𝑘(𝜕𝑖𝑃

♮
𝑘)
)︀
− 4𝛿𝑖𝑗𝜕𝑙

(︀
𝑃𝑘(𝜕𝑙𝑃

♮
𝑘)
)︀

+ 𝜕𝑖
(︀
𝑄𝑘𝑙(𝜕𝑗𝑄

♮
𝑘𝑙)
)︀
+ 𝜕𝑗

(︀
𝑄𝑘𝑙(𝜕𝑖𝑄

♮
𝑘𝑙)
)︀
− 𝛿𝑖𝑗𝜕𝑙

(︀
𝑄𝑘𝑚(𝜕𝑙𝑄

♮
𝑘𝑚)
)︀

+ 2𝜕𝑘
(︀
𝑄𝑖𝑗(𝜕𝑙𝑄

♮
𝑘𝑙)
)︀
+ 2𝜕𝑘

(︀
𝑄𝑘𝑙(𝜕𝑙𝑄

♮
𝑖𝑗)
)︀)︁

+ 2𝛼4

(︀
4(1 + 𝜓)𝑄♮𝑖𝑗 + 𝑃𝑖𝑃

♮
𝑗 + 𝑃𝑗𝑃

♮
𝑖 − 𝛿𝑖𝑗𝑃𝑙𝑃

♮
𝑙

)︀
.

(5.175)

Four positive coefficients of which three are independent appear in these equations.
They are defined as

𝛼1 =
𝐷‖ +𝐷⊥

8𝜆
, 𝛼2 =

𝐷‖ + 3𝐷⊥

8𝜆
, 𝛼3 =

𝐷‖ −𝐷⊥

8𝜆
, 𝛼4 =

𝐷R

2𝜆
. (5.176)

Notice that 𝐷‖ > 𝐷⊥ holds for all types of uniaxial particles as long as the vector
�̂� for the orientation of the axis of symmetry is chosen properly.20 With the CMA
(5.160) instead of the DDFT equation (5.158), the following dissipative currents and
quasi-currents are obtained:

𝐽𝜓𝑖 =− 2𝛼1(𝜕𝑖𝜓
♮)− 2𝛼3(𝜕𝑗𝑄

♮
𝑖𝑗) , (5.177)

Φ𝑃
𝑖 =− 2𝛼2(𝜕

2
𝑘𝑃

♮
𝑖 )− 4𝛼3(𝜕𝑖𝜕𝑗𝑃

♮
𝑗 ) + 2𝛼4𝑃

♮
𝑖 , (5.178)

Φ𝑄
𝑖𝑗 =− 4𝛼1(𝜕

2
𝑘𝑄

♮
𝑖𝑗)− 2𝛼3

(︀
2(𝜕𝑖𝜕𝑗𝜓

♮)− 𝛿𝑖𝑗(𝜕
2
𝑘𝜓

♮)
)︀
+ 8𝛼4𝑄

♮
𝑖𝑗 . (5.179)

It has to be emphasized that the DDFT approach (5.158) a priori contains only three
independent mobility coefficients, namely the two translational diffusion coefficients
𝐷‖ and 𝐷⊥ and the rotational diffusion coefficient 𝐷R. Therefore, all other mobility
coefficients for the order-parameter fields can be expressed in terms of these three ba-
sic coefficients. In general, the diffusion coefficients in DDFT are always related to
translational or orientational degrees of freedom and not to certain order-parameter

20The situation described and analyzed here for two spatial dimensions has to be contrasted to the
case of three spatial dimensions, where one has for all rod-like particles, flexible as well as rigid
ones, the inequality 𝐷‖ > 𝐷⊥, while for disk-like particles typically 𝐷‖ 6 𝐷⊥ applies.
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fields, since order-parameter fields enter DDFT only with the parametrization of the
one-particle density. The parametrization of the one-particle density (5.85), however,
does not involve further dissipation coefficients. This is in sharp contrast to Ginzburg-
Landau theory, where every additional order parameter involves at least one new dis-
sipative coefficient, as is discussed in section 5.5 in more detail.

5.4.1.2 Dissipation functional

The currents and quasi-currents 𝐽𝜓𝑖 , Φ
𝑃
𝑖 , and Φ𝑄

𝑖𝑗 are merely dissipative and can there-
fore be derived from a dissipation functional R. According to equation (5.71), the
dissipative currents and quasi-currents 𝐽𝜓𝑖 , Φ

𝑃
𝑖 , and Φ𝑄

𝑖𝑗 can be expressed by the func-
tional derivatives

𝐽𝜓𝑖 = − 𝛿R

𝛿(𝜕𝑖𝜓♮)
, (5.180)

Φ𝑃
𝑖 =

𝛿R

𝛿𝑃 ♮
𝑖

, (5.181)

Φ𝑄
𝑖𝑗 =

𝛿R

𝛿𝑄♮
𝑖𝑗

(5.182)

of this dissipation functional R. Moreover, the dissipation functional, that corresponds
to the dissipative currents and quasi-currents (5.173)-(5.175) of the general PFC model,
is given by

R(PFC) =

∫︁
R2

d𝐴 r(PFC)(�⃗�) (5.183)

with the local dissipation function
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The dissipation functional, that corresponds to the currents and quasi-currents (5.177)-
(5.179) of the CMA, is on the other hand much simpler and given by

R(CMA) =

∫︁
R2

d𝐴 r(CMA)(�⃗�) (5.185)
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with the local dissipation function

r(CMA) = 𝛼1
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By construction, both dissipation functions (5.184) and (5.186) are positive. This is
obvious for equation (5.186), but not manifest for equation (5.184).

5.4.2 Three spatial dimensions

The dynamic equations corresponding to the PFC model for three spatial dimensions,
which is discussed in section 5.3.2, can be derived in direct analogy to the dynamics
for two spatial dimensions in the previous section. Since the dynamics is much more
complicated in three spatial dimensions than only in two spatial dimensions, it would be
interesting to also consider the general dynamic equations for three spatial dimensions,
but their derivation requires a huge analytic effort and has not been carried out up to
now. However, a special case of the dynamic PFC model in three spatial dimensions
that follows from the DDFT equation in reference [RWL07] together with the CMA
has recently been considered in reference [YA11] and evaluated numerically.

5.5 Comparison with macroscopic models

The static and dynamic PFC models for colloidal liquid crystals, that have been derived
in the previous sections from static DFT and DDFT, are compared in this section with
symmetry-based macroscopic approaches that can be derived from Ginzburg-Landau
theory and generalized hydrodynamics following the procedure described in sections
5.1.3 and 5.1.4. For a comparison with the static and dynamic PFC models, expressions
for the free-energy density and dynamic equations for the order-parameter fields are
derived from the macroscopic theories. Contributions to the statics and dynamics are
thereby only taken into account up to the same order in the order-parameter fields and
gradients as for the PFC models.
It turns out that every PFC model is included as a special case in the corresponding

symmetry-based macroscopic models and therefore in accordance with basic symmetry
considerations and thermodynamic laws [BP87, PB96]. To the contrary, the macro-
scopic approaches are more general and usually involve more terms and more indepen-
dent coefficients than the microscopically derived PFC models, since the macroscopic
theories lead to the most general models that are just allowed by general symmetry
considerations and thermodynamic laws. Microscopic derivations instead lead to ana-
lytic expressions for the coefficients in the models and these expressions can depend on
each other leading to relations between the coefficients and a reduction of the actual
number of independent coefficients. It is even possible that approximative derivations
from microscopic theories reveal that certain coefficients of the macroscopic models are
zero.
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In the case of PFC models derived from static DFT or DDFT, the coefficients are
given explicitly as microscopic expressions and provide therefore a bridge between
microscopic and macroscopic approaches. By comparison, a strong analogy between
PFC models derived from static DFT or DDFT and macroscopic models on the basis of
Ginzburg-Landau theory becomes apparent. Under the same conditions, they contain
the same terms and the same number of independent coefficients. This is very different
for macroscopic models on the basis of generalized hydrodynamics. Such models are
commonly much more general and include more terms and also more independent
coefficients than the corresponding PFC models. The following paragraphs summarize
the comparison of the previously derived PFC models for colloidal liquid crystals with
macroscopic models. For a more detailed comparison, see references [WLB10, WLB11a,
WLB11b].

5.5.1 Static macroscopic models

At first, the polar PFC model for two spatial dimensions consisting of equations (5.87)
and (5.92)-(5.94) and the apolar PFC model for three spatial dimensions with the scaled
free-energy densities (5.146) and (5.151) are compared with static Ginzburg-Landau
theory and generalized hydrostatics. As a general feature, the Ginzburg-Landau models
turn out to be equivalent to the PFC models, while generalized hydrostatics leads to
models with considerably more terms and a larger number of independent coefficients.
Further details are described below and in references [WLB10, WLB11b].

5.5.1.1 Static Ginzburg-Landau theory

For the comparison with the PFC models that are available, static Ginzburg-Landau
theory can be applied to the isotropic-uniaxial nematic phase transition [Gen71], the
isotropic-polar nematic phase transition [PB89], and a number of further phase transi-
tions with the involvement of several apolar or polar smectic phases. The latter phase
transitions are the isotropic-smectic A phase transition [MPB01], the isotropic-smectic
C phase transition [MPB02], the isotropic-smectic C* phase transition [MPB05], as well
as the nematic-smectic A and the nematic-smectic C phase transitions [Gen73, GP95].
Furthermore, the paraelectric-ferroelectric phase transition [AL78, FMH86, Kit95] can
be also considered.
In order to describe these phase transitions within the framework of static Ginzburg-

Landau theory, a few order-parameter fields have to be chosen. The first of them is
the complex smectic order-parameter field [Gen73, CL95, GP95]

𝜓(�⃗�) = 𝜓0𝑒
−i𝜑(�⃗�) (5.187)

with magnitude 𝜓0 and phase 𝜑(�⃗�). It is scalar and related to variations of the particle
number density [CL95]. One can also choose the real number density [CL95]

𝜌𝜓(�⃗�) = 𝜌+ 𝜓0

(︀
𝑒i𝜑(�⃗�) + 𝑒−i𝜑(�⃗�)

)︀
(5.188)
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as an order-parameter field. In addition, the macroscopic polarization 𝑃 (�⃗�) = 𝑃 (�⃗�)𝑝(�⃗�)
with modulus 𝑃 (�⃗�) and direction 𝑝(�⃗�), which is odd under parity inversion, has to be
taken into account in order to regard polar phases appropriately. Nematic phases, on
the other hand, require the traceless and symmetric nematic tensor with the elements
𝑄𝑖𝑗(�⃗�) [Gen71] as tensorial order-parameter field. It vanishes in the isotropic phase
and has the form21 [GP95]

𝑄𝑖𝑗(�⃗�) = 𝑆(�⃗�)
(︀
𝑛𝑖(�⃗�)𝑛𝑗(�⃗�)− 𝑑−1𝛿𝑖𝑗

)︀
(5.189)

in a 𝑑-dimensional uniaxial nematic phase. The usage of only the nematic tensor 𝑄𝑖𝑗(�⃗�)
instead of the nematic order parameter 𝑆(�⃗�) and the nematic director �̂�(�⃗�) separately
has the advantage that 𝑄𝑖𝑗(�⃗�) already incorporates the appropriate properties like the
�̂�(�⃗�) → −�̂�(�⃗�) invariance.
Using these order-parameter fields, a free-energy density for colloidal liquid crystals

can be constructed from static Ginzburg-Landau theory and compared with the derived
PFC models. As a special contribution, this free-energy density contains the Frank free-
energy density 𝑓F(�⃗�), which describes the energy associated with elastic deformations
of the director field �̂�(�⃗�). In three spatial dimensions, three different types of elastic
deformations of a nematic phase are possible. These elementary deformations are splay,
twist, and bend [GP95]. Splay and bend also exist in two spatial dimensions, but twist
appears only in three spatial dimensions. Each type of deformation goes along with a
certain term in the Frank free-energy density. The prefactors of these terms are called
Frank constants . In the isotropic phase22, gradients of the nematic tensor in second
order lead to the contribution [Gen71]

𝑓F(�⃗�) = 𝐿1(𝜕𝑖𝑄𝑗𝑘)
2 + 𝐿2(𝜕𝑖𝑄𝑖𝑗)

2 (5.190)

with the two independent coefficients 𝐿1 and 𝐿2. The two terms in this free-energy den-
sity become proportional in two spatial dimensions so that only one coefficient remains.
This is in accordance with the PFC models for two and three spatial dimensions. Also
all other terms that can be constructed from the chosen order-parameter fields and
their gradients for the isotropic phase and the accompanying independent coefficients
have distinct equivalents in the PFC models.

5.5.1.2 Generalized hydrostatics

Macroscopic models for liquid crystalline bulk phases can be derived with the help
of generalized hydrostatics. For a comparison with the PFC models, especially the
isotropic phase, the uniaxial nematic phase [BP87], the polar nematic phase [BPZ06,
BCP09], smectic phases [BP80, CL95], and polar smectic phases [BP87, BCP98] are

21In three spatial dimensions, the alternative representation (5.143) that deviates from the form
(5.189) by the factor 3/2 is often used as well.

22In the uniaxial nematic phase, six independent terms including three independent Frank constants
can be constructed from two gradients and two nematic tensors.
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relevant. To describe these phases, a few appropriate hydrodynamic and macroscopic
variables have to be chosen. The most obvious hydrodynamic variable is the conserved
particle number density 𝜌(�⃗�). For polar phases, also the local polarization of the
liquid crystalline system has to be taken into account, but unlike in the preceding
derivation of macroscopic models using Ginzburg-Landau theory, it is normal to choose
the modulus 𝑃 (�⃗�) of the local polarization, which is a slowly relaxing non-hydrodynamic
and non-conserved macroscopic variable, and the variation 𝛿𝑝(�⃗�) of the direction 𝑝(�⃗�)

of the local polarization instead of the whole polarization vector 𝑃 (�⃗�) = 𝑃 (�⃗�)𝑝(�⃗�) as
separate variables. The variation 𝛿𝑝(�⃗�) of the polar direction 𝑝(�⃗�) is a non-conserved
hydrodynamic variable with the property 𝑝(�⃗�) · 𝛿𝑝(�⃗�) = 0. It is further odd under
parity inversion and under time reversal. For the uniaxial nematic phase23, the nematic
order parameter 𝑆(�⃗�) and the variation 𝛿�̂�(�⃗�) of the nematic director �̂�(�⃗�) are taken
into account. Similar to the modulus and direction of the polarization, the nematic
order parameter 𝑆(�⃗�) is also a slowly relaxing non-hydrodynamic and non-conserved
macroscopic variable, while the variation 𝛿�̂�(�⃗�) of the nematic director constitutes a
non-conserved hydrodynamic variable with the property �̂�(�⃗�) ·𝛿�̂�(�⃗�) = 0. In connection
with smectic phases, the scalar layer displacement 𝑢(�⃗�) in the direction of the layer
normal is an additional hydrodynamic variable [Gen69, GP95].
The actual macroscopic modeling consists in the construction of a free-energy density

for colloidal liquid crystals in terms of the deviations 𝛿𝜌(�⃗�) = 𝜌(�⃗�)−𝜌0, 𝛿𝑃 (�⃗�) = 𝑃 (�⃗�)−
𝑃0, 𝛿𝑝(�⃗�), 𝛿𝑆(�⃗�) = 𝑆(�⃗�) − 𝑆0, 𝛿�̂�(�⃗�), and 𝛿𝑢(�⃗�) = 𝑢(�⃗�) − 𝑢0 of the hydrodynamic and
macroscopic variables from their equilibrium values24 𝜌0, 𝑃0, 𝑆0, and 𝑢0, respectively,
and in terms of gradients of these deviations. In doing so, it is necessary to respect that
the free-energy density must be invariant against inversion �̂�(�⃗�) → −�̂�(�⃗�) of the nematic
director. An important contribution to the free-energy density, that also appeared in
the Ginzburg-Landau model in the previous paragraph, is the Frank free-energy density
for elastic deformations of the director field �̂�(�⃗�) of uniaxial nematics. In the generalized
hydrostatic model, it appears in its traditional formulation [Fra58, GP95]

𝑓F(�⃗�) = 𝐾1

(︀
∇⃗�⃗� · �̂�

)︀2
+𝐾2

(︀
�̂� · (∇⃗�⃗� × �̂�)

)︀2
+𝐾3

(︀
�̂�× (∇⃗�⃗� × �̂�)

)︀2
(5.191)

with the Frank constants 𝐾1, 𝐾2, and 𝐾3 that are associated with splay, twist, and
bend, respectively. As all coefficients in macroscopic models, the Frank constants can
also depend on all scalar quantities of the system. This includes especially the nematic
order parameter 𝑆(�⃗�). There are therefore two independent Frank constants in two
spatial dimensions and three different Frank constants in three spatial dimensions,
while in the PFC models and the Ginzburg-Landau models in the isotropic phase one
has only one Frank constant in two spatial dimensions and two Frank constants in
three spatial dimensions, since the Frank constants for splay and bend are equal in

23Biaxial nematic phases in three spatial dimensions require a second director �̂�(�⃗�) in addition to the
convenient nematic director �̂�(�⃗�) [GP95].

24Notice that 𝛿𝑝(�⃗�) and 𝛿�̂�(�⃗�) are associated with spontaneously broken continuous symmetries and
have therefore no certain equilibrium state.
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these models. Also in other respects, the hydrostatic models are more general than
the Ginzburg-Landau models and the PFC models. They comprise more independent
coefficients and additional terms that do not exist in the PFC models.

5.5.2 Dynamic macroscopic models

After the static PFC models, now the dynamic equations (5.170)-(5.172) are com-
pared with macroscopic approaches on the basis of symmetry considerations. These
macroscopic approaches are based on dynamic Ginzburg-Landau theory and general-
ized hydrodynamics. Since the dynamics of the DDFT equation (5.158), that was used
for the derivation of the dynamic equations (5.170)-(5.172), is purely dissipative, there
are no reversible currents or quasi-currents in these dynamic equations. The dynamics
can therefore be completely derived from a dissipation functional so that the compari-
son of the dynamic PFC model with dynamic Ginzburg-Landau theory and generalized
hydrodynamics is more convenient, when it is based on the dissipation function (5.184)
instead of the dynamic equations (5.170)-(5.172) that involve the complicated currents
and quasi-currents (5.173)-(5.175).

As the static PFC models, also the dynamic PFC model is in accordance with
symmetry-based macroscopic approaches and thus also with basic symmetry consi-
derations and thermodynamic laws. These symmetry-based approaches are as usual
more general than the dynamic PFC model and involve more independent coefficients
and also a few additional terms. The reasons for missing these terms in the dynamic
PFC equations are identified and explained below. A further similarity to the com-
parison of the static PFC models with macroscopic approaches consists in a strong
analogy of the dynamic PFC model and the corresponding dynamic Ginzburg-Landau
approach, while the application of generalized hydrodynamics leads here also to much
more general equations. Details beyond the presented comparison can be found in
reference [WLB11a].

5.5.2.1 Dynamic Ginzburg-Landau theory

The dynamic PFC model in section 5.4.1.1 has to be compared with the Ginzburg-
Landau dynamics in the vicinity of the isotropic-polar nematic phase transition and
of the isotropic-polar smectic phase transition. This description involves a few order-
parameter fields. These are the particle number density 𝜌(�⃗�, 𝑡), the smectic density
𝜌𝜓(�⃗�, 𝑡) [Gen73, CL95], the macroscopic polarization 𝑃𝑖(�⃗�, 𝑡) [PB89, BPZ06, BCP09],
and the nematic tensor 𝑄𝑖𝑗(�⃗�, 𝑡) [Gen71, GP95]. The order-parameter fields are accom-
panied by their thermodynamic conjugates, namely by the chemical potential 𝜇(�⃗�, 𝑡),
the chemical potential 𝜇𝜓(�⃗�, 𝑡) associated with the smectic layering, the thermody-
namic force ℎ𝑃𝑖 (�⃗�, 𝑡) associated with the macroscopic polarization, and the thermody-
namic conjugate 𝑆𝑖𝑗(�⃗�, 𝑡) of the nematic tensor. In terms of these order-parameter
fields and thermodynamic conjugates, the total differential of the generalized energy
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density 𝜀(�⃗�, 𝑡) can be written in the form [WLB11a]

d𝜀 = 𝑇d𝜎 + 𝜇d𝜌+ 𝜇𝜓d𝜌𝜓 + ℎ𝑃𝑖 d𝑃𝑖 + 𝑆𝑖𝑗d𝑄𝑖𝑗 (5.192)

with the absolute temperature field 𝑇 (�⃗�, 𝑡) and the entropy density 𝜎(�⃗�, 𝑡). Based on
this expression and following the procedure, that has been described in section 5.1.3.2, a
dissipation function for the Ginzburg-Landau dynamics in terms of the thermodynamic
forces associated with the chosen order-parameter fields can be derived [WLB11a].
It turns out that all terms in the PFC dissipation function (5.184) are also included

in the Ginzburg-Landau dissipation function, but there are in addition three cross-
coupling terms that do not exist in the dynamic PFC model. The reason for the
absence of these terms lies in the fact that all missing terms contain only one gradient,
while in the DDFT equation (5.158), from which the dynamic PFC model is derived,
the gradients appear quadratically. To also derive the terms with only one gradient
from DFT, one would have to use the more general DDFT equation (4.44) for colloidal
particles with a translational-rotational coupling instead of equation (5.158).
Moreover, the PFC dissipation function (5.184) contains much less independent co-

efficients than the corresponding Ginzburg-Landau dissipation function, since in a dy-
namic Ginzburg-Landau approach, there is at least one independent dissipative co-
efficient for every order-parameter field. Dissipative cross-coupling terms can bring
along further independent coefficients. This is widely different in the dynamic PFC
models, where all dissipative coefficients result from the elements of the diffusion ten-
sor in the DDFT equation. To generalize the dynamic PFC models in this respect,
one would have to use a more complicated expression for the mobility in the DDFT
equation [EL09]. Such a generalized mobility depends on the order-parameter fields
and includes a number of additional dissipative constants. It is a necessary generaliza-
tion, if the hydrodynamic interactions between the colloidal particles that are entirely
neglected by the DDFT equation (5.158) shall be taken into account.

5.5.2.2 Generalized hydrodynamics

A further comparison of the PFC dissipation function (5.184) with a dissipation func-
tion on the basis of generalized hydrodynamics would be possible as well, but it is not
reasonable, since the generalized hydrodynamics approach would be even more gen-
eral than the dynamic Ginzburg-Landau approach as addressed in the previous section
and all the additional terms would not have a corresponding term in the PFC dissipa-
tion function. Furthermore, the typical hydrodynamic variable �⃗�(�⃗�, 𝑡) for the velocity
field of the colloidal particles or equivalently the momentum density �⃗�(�⃗�, 𝑡) cannot
be considered in this context, since they are neglected in the completely overdamped
Brownian dynamics described by the DDFT equation (5.158). Reversible currents and
quasi-currents [BCP09] can therefore not arise in such a model.
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5.6 Applications and enhanced models

The apolar and polar PFC models for two and three spatial dimensions, respectively,
as derived in this chapter can be applied to colloidal liquid crystals in order to explore
their equilibrium phase diagrams containing many different stable liquid crystalline
phases. When these stable phases are known, the structure of interfaces between two
coexisting phases [BHD05] can be addressed. While the isotropic-nematic interface has
already been studied by theory, computer simulation, and experiment, it would be in-
teresting to get structural information about interfaces between other liquid crystalline
phases. In this context, one could also calculate interfacial tensions [MAS01]. Besides
that, the polar PFC model is in particular useful for the modeling of certain biolog-
ical systems that exhibit polar order [VSB99, CDGK06]. The dynamic PFC models
can furthermore be used to describe various dynamic processes including the phase
transition dynamics of colloidal liquid crystals. Special possible applications affect the
relaxation dynamics of an orientational glass [RLB95] and the formation of metastable
phases at a growing interface [BLT91]. As became apparent in the determination of
the director field of plastic crystalline phases in section 5.3.1.3, several types of topo-
logical defects appear naturally in certain liquid crystalline phases. The investigation
of the structure [TDY02] and dissipative dynamics [LM97, TDY02] of topological de-
fects in liquid crystalline phases [Ru09] is another possibility to use the PFC models
that were derived. In the context of topological defects in liquid crystals, fundamental
phenomena can be investigated also [CYDT91]. An impressive example for that is the
cosmological Kibble mechanism that can also be observed in liquid crystals [BCSS94].
Moreover, the comparison of the PFC models with macroscopic approaches gives im-
portant insights into the relationship between DFT, PFC models, and symmetry-based
macroscopic approaches.

For the future, a further numerical evaluation of the PFC models and a comparison
of the results with experiments and computer simulations would be desirable. These
comparable results include phase diagrams and especially the defect lattice of the ori-
entation field in plastic crystals (see section 5.3.1.3) [MD08, DJK+10, GAO+10] as well
as dynamic processes of polar liquid crystals [TYN+03, FST+09, FS10]. Experiments
could be performed with concentrated suspensions of anisotropic colloidal particles in
a liquid [VL92, BDW+08] or with anisotropic mesoscopic dust particles in a plasma
[AKI+01, IKK+03]. For such colloidal systems, the phase diagrams could be deter-
mined and compared with the phase diagrams of the PFC models for a given particle
interaction potential.25 Some phase diagrams, which are appropriate for a comparison
with the PFC models, have already been calculated by computer simulations [Sat10]
for different colloidal systems. Among these systems are hard spherocylinders [BF97],
hard ellipsoids [FM85], the Gay-Berne model [MRBA96, KBH10], and Yukawa-segment
models [GL99]. Especially simulations of liquid crystalline phases of rod-like particles

25In order to do this, the phase diagrams of the PFC models that depend initially on generalized
expansion coefficients of the direct correlation functions must be written as a function of the
thermodynamic variables particle number density and temperature.
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in two spatial dimensions [Vin07, WT07, THT09, LLRC10] could be used to verify spe-
cial liquid crystalline phases like plastic honeycomb crystals and plastic square crystals
that are predicted by the PFC models presented.
Nevertheless, there are also some possibilities for further generalizations of the work

presented here. At first, the derived PFC models could be improved by taking higher-
order contributions in the order-parameter fields and gradients into account. Secondly,
an extension of the PFC models to static and dynamic polar systems in three spatial
dimensions would also be possible following the procedure that is described in this
chapter. However, these kinds of generalizations involve expressions that are even
larger than those for the PFC models above. Since the PFC models in this chapter
were derived for uniaxial colloidal particles, one could further derive the statics and
dynamics of PFC models for biaxial particles in three spatial dimensions. With the help
of the new DDFT equation in chapter 4, which is applicable to biaxial particles, the
derivation of dynamic biaxial PFC models has now become possible for the first time.
Such biaxial PFC models would involve considerably more terms than the presented
PFC models for particles with an axis of symmetry. The new DDFT equation (4.44)
could additionally be used instead of equation (5.158) in order to derive dynamic PFC
models for active colloidal particles on the basis of the static polar26 PFC model. A
dynamic PFC model for active particles could, for example, be used to investigate the
dynamic properties of bacterial growth patterns of Proteus mirabilis [WWI+02]. Both
for active and passive colloidal particles, external forces, that drive the system like a
periodic driving field [HBL10], can always be regarded in addition. Colloidal systems
can further be considered in confinement, where PFC models could be used in order to
calculate wall tensions, or on an arbitrary Riemannian manifold. Even a generalization
to relativistic systems with cosmological applications is possible [Gra77a].

26Active particles are polar by definition.
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In the previous chapters, the Brownian dynamics of interacting active and passive col-
loidal particles with an anisotropic shape was investigated. The colloidal particles under
consideration were assumed to be solid and non-deformable. At first, the dynamics of
an individual active colloidal particle with arbitrary shape in a viscous liquid at rest at
infinity with a low Reynolds number was considered. Its stochastic motion under the
influence of thermal fluctuations as well as internal, external, and hydrodynamic forces
and torques was described by a Langevin equation, that is also valid for particles with
a hydrodynamic translational-rotational coupling. This Langevin equation is too com-
plicated to be solved analytically. Therefore, special Langevin equations for particles
that move only in two spatial dimensions and for orthotropic particles were derived
from it. These special Langevin equations were solved analytically for certain situa-
tions. For more general situations like the motion of an arbitrarily shaped particle in
three spatial dimensions, analytical solutions were not available and numerical results
have been presented. It turned out that the three-dimensional trajectories of an active
colloidal particle with arbitrary shape involve transient regimes and are very compli-
cated. They are so diverse that a complete classification appeared to be not possible
even for vanishing temperature. Among these trajectories are superhelical trajectories
that were observed for a vanishing external force and no thermal fluctuations. Or-
thotropic particles in contrast do not possess a hydrodynamic translational-rotational
coupling and their trajectories have no transient regimes. In the absence of thermal
fluctuations and external forces and torques, an analytical solution for the trajectory
of an orthotropic particle was found. This trajectory is a circular helix. When thermal
fluctuations are taken into account, the noise average of this circular helix becomes a
generalized conchospiral. This was shown by computer simulation.
Also the restricted motion of an arbitrarily shaped colloidal particle in two spatial

dimensions is much simpler than the general three-dimensional trajectories. For zero
temperature, a vanishing external torque, and a non-vanishing constant external force,
these trajectories were classified with respect to the properties of the drive and the
symmetry of the shape of the colloidal particle. Thereby, a vanishing drive, a drive
that generates only either a force or a torque, and a drive that generates both an
internal force and an internal torque were distinguished. The shape of the particle
was distinguished between being asymmetric, having inflection symmetry with respect
to one axis of symmetry, having two perpendicular axes of symmetry, and having
rotational symmetry. The observed trajectories for asymmetric particles in two spatial
dimensions were always straight lines after a transient regime or periodic curves. These
trajectories were also observed for particles with inflection symmetry, but those ran
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parallel to an external force, if the drive had certain properties. Similar to orthotropic
particles in three spatial dimensions, a transient regime was not observed for particles
with two perpendicular axes of symmetry that move in two spatial dimensions. Such
particles move either along a straight line with a certain orientation or along a periodic
curve that is oriented parallel to the external force. The trajectory of a particle with
rotational symmetry is a cycloid parallel to the external force or a straight line. In this
classification, the external torque was assumed to be zero without loss of generality,
since the internal and the external torque can be combined to an effective torque in
two spatial dimensions. The external force was assumed to be non-vanishing in the
classification, since all trajectories are a circle or there is no motion at all, if the external
force is zero. For these circular trajectories, an analytic expression was given.
Furthermore, the effect of an imposed shear flow on the motion of an active particle

was discussed for the example of a spherical active colloidal particle in two-dimensional
Couette flow. The corresponding Langevin equations for this example were formulated
and analytical solutions for the deterministic trajectories in the absence of thermal
fluctuations as well as for the mean trajectories in the case of a positive temperature
were given. Additionally, the scaling of the mean square displacement with time was
considered. For its time-dependence ∝ 𝑡𝜈 , the five exponents 𝜈 ∈ {0, 1, 2, 3, 4} were
identified and the associated regimes were discussed. The dynamics of the colloidal
particle turned out to be in general greatly amplified by shear flow and the fast 𝑡4-
regime emerged to arise from a combination of self-propulsion and shear flow, when the
external torque due to the shear flow is exactly compensated by the internal torque that
results from the drive of the particle. By computer simulation, the spatial probability
distribution of the active Brownian particle in shear flow was also determined. This
probability distribution has a transient double-peak structure due to the self-propulsion
and becomes asymmetric under the influence of shear flow.
Secondly, the collective dynamics of a large set of interacting active colloidal par-

ticles with arbitrary shape was addressed by DDFT. Since previous formulations of
DDFT were only applicable to spherical and uniaxial particles with no hydrodynamic
translational-rotational coupling, a generalized DDFT, that describes active and pas-
sive colloidal particles with arbitrary shape, was derived from a many-body Smolu-
chowski equation. This generalization of DDFT also describes particles with a hydro-
dynamic translational-rotational coupling as screw-like particles and includes previous
versions of DDFT as special cases. It was proved that the new and generalized DDFT
can be reformulated as a variational optimization problem for a certain dissipation
functional. This alternative representation of DDFT in terms of a dissipation func-
tional establishes a basis for the interpretation of DDFT out of linear irreversible ther-
modynamics. The reformulated DDFT furthermore allows an easier and much faster
derivation of the dynamic equations of complicated PFC models that involve various
order-parameter fields, than the traditional formulation of DDFT.
At last, the statics and dynamics of colloidal liquid crystals composed of uniaxial

colloidal particles that are apolar or polar were examined in two and three spatial di-
mensions. For this purpose, microscopic, mesoscopic, and macroscopic classical mean-
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field theories were used. Starting from microscopic static DFT and DDFT, the statics
and dynamics of mesoscopic PFC models were derived. The dynamic equations of the
PFC models were supplemented by the corresponding dissipation functionals. Some
special cases of these PFC models were already known from the literature. One of them
is the PFC model for apolar colloidal liquid crystals in two spatial dimensions. Since
this PFC model had never been evaluated numerically before, its stable liquid crys-
talline phases were determined by numerical minimization of the associated free-energy
functional. Moreover, a few phase diagrams for different choices of the parameters of
the PFC model have been calculated for this work. Among the stable liquid crys-
talline phases in the phase diagrams are isotropic, nematic, columnar, smectic A, and
plastic crystalline phases. The observed plastic crystals had triangular, honeycomb,
and square lattices, respectively, and involved orientational patterns with a complex
topology. An interesting feature of these orientational patterns was a sublattice with
topological defects that could be classified as vortices, disclinations, sources, sinks, and
hyperbolic points. In all plastic crystals, the topological defects were arranged in such
a way that the total topological winding number vanished.
Besides this numerical evaluation, all PFC models were compared with static and

dynamic symmetry-based approaches on the basis of classical Ginzburg-Landau theory
and generalized hydrodynamics. The comparison confirmed that all terms in the PFC
models also appear in the macroscopic models and that they therefore are in accordance
with basic symmetry considerations and thermodynamic laws. On the contrary, there
are additional terms in the macroscopic models that are not present in the PFC models,
but the reasons for missing these terms were identified and explained. It became
apparent that there is a strong analogy between PFC models derived from DFT and
Ginzburg-Landau models, while models on the basis of generalized hydrodynamics
contain usually much more terms than the corresponding PFC models. Furthermore,
the terms of the macroscopic models go along with a large number of independent
unknown coefficients, while the analogous coefficients in the PFC models are known
explicitly and often depend on each other. But this is a general feature of macroscopic
models in contrast to models derived from microscopic theories.
The results of this work are relevant for soft condensed matter physics and biophysics

and have various applications. For example, the Langevin equation for an active col-
loidal particle with arbitrary shape could be used to describe the Brownian motion of
artificial microswimmers and swimming microorganisms theoretically. It should also be
possible to describe the motion of microorganisms in flowing water, when the Langevin
equation is modified properly. The generalized DDFT for active colloidal particles
with arbitrary shape makes an investigation of the dynamics of colloidal liquid crystals
possible. In contrast to the previous versions of DDFT, the new generalization allows
for the first time to also treat biaxial particles. From experiments, biaxial particles
are known to evolve a great number of interesting additional liquid crystalline phases,
which cannot be observed for uniaxial particles. Since active particles can also be con-
sidered within the generalized DDFT, it could be used further to model the collective
Brownian motion of active particles. In the non-equilibrium dynamics of self-propelled
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microswimmers and swimming microorganisms, collective effects like flocking, swarm-
ing, laning, turbulence, and jamming could be addressed. The dissipation functional
that was shown to be equivalent to the new DDFT is of great value for the derivation
of the dynamics of PFC models. Especially if a PFC model involves various order-
parameter fields, its dynamics can be derived much faster and much more easily with
the help of the dissipation functional than with the differential DDFT equation. The
PFC models as derived in this work can be applied to apolar and polar colloidal liquid
crystals in order to explore their equilibrium phase diagram and their phase transition
dynamics. Also the structure of interfaces between two coexisting phases and dynamic
processes of two-dimensional polar liquid crystals can be investigated with these PFC
models. With respect to microorganisms, the PFC models could be used to model
biological systems that exhibit polar order or to reproduce the dynamics of bacterial
growth patterns. The investigation of the dissipative dynamics of topological defects
in liquid crystalline phases should be very interesting as well. Finally, the results of
this work give insights into the relationship between classical density functional theory,
phase field crystal models, and symmetry-based macroscopic approaches.

For the future, a comparison of the results in this work with experiments and com-
puter simulations would be desirable. Additionally, the further generalization of some
basic results should be intended. The Langevin equation for active colloidal parti-
cles with arbitrary shape could, for example, be extended to incorporate an arbitrary
prescribed flow field of the surrounding liquid. This flow field could also depend on
time. Another possible generalization would be the consideration of system bound-
aries, which allows to address the stochastic motion of an arbitrarily shaped colloidal
particle in confinement. In this case, the hydrodynamic interaction of the particle with
the system boundaries would have to be taken into account. The derived DDFT for
active colloidal particles with arbitrary shape can be improved, too. With a gener-
alization toward confinement, it would have multifarious applications in nanofluidics.
Even more important would be the appropriate incorporation of hydrodynamic inter-
actions between the colloidal particles. This is one of the most important goals for the
future. Of similar importance are efforts to generalize DDFT toward molecular dynam-
ics, where the dynamics of the particles is not overdamped anymore and the inertia of
the particles has to be taken into account in terms of a momentum density field. Such
a generalization would be applicable to molecular liquid crystals and thanks to the
presence of a non-vanishing momentum density field, the dynamics would no longer be
solely dissipative and reversible currents could also arise. Further tasks for the future
concerning DDFT are a generalization toward mixtures and a microscopic derivation
of the dissipation functional that was shown to be equivalent to DDFT. Furthermore,
there are many possibilities for improvement for the PFC models presented here. In
principle, the statics and dynamics of a polar PFC model in three spatial dimensions
could be derived following the procedure that is described in this work. However, this
model was not derived here deliberately, since it involves expressions that are even
larger than those for the PFC models derived. With the help of static DFT and the
new DDFT, it is now also possible to derive the statics and dynamics of a PFC model
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for biaxial particles in three spatial dimensions. The new DDFT could additionally be
used to derive a dynamic PFC model for active particles. In any case, one could regard
external forces that drive the system. Finally, it should also be possible to construct
PFC models for colloidal systems under confinement and for liquid crystalline systems
on a Riemannian manifold.





Appendix

This appendix is intended to provide further information about two special topics that
are not sufficiently discussed in the standard textbooks about physics. The first of these
topics is considered in part A of the appendix. There, instructions for the gradient
expansion of a multiple convolution integral are given. Gradient expansions have to
be carried out, whenever a phase field crystal model is derived from density functional
theory. For the phase field crystal models that are presented in this work, such gradient
expansions had to be performed a couple of times. Therefore, this appendix might be
useful for everyone who wants to derive a new phase field crystal model from density
functional theory. For this purpose, part A of the appendix can serve as formulary.
The second topic treats numerical methods for the solution of stochastic differential

equations. It is discussed in part B of this appendix. This part is based on the book
[KP06], which gives a very detailed and entire overview about appropriate numerical
methods, and summarizes the most important background information. The discussion
of the various numerical methods is reduced to the advantages and disadvantages of
the different types of numerical methods and includes the presentation of a stochastic
Runge-Kutta scheme of weak order 2.0 that appears to be most appropriate for the
problems in the context of this work and that was used for the numerical solution of
Langevin equations in chapter 3.
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A Gradient expansion of a multiple convolution integral

Nonlocal functionals of multi-convolution type appear, for example, in the functional
Taylor expansion of the Helmholtz free-energy functional. In a 𝑑-dimensional space
with 𝑑 ∈ {2, 3}, these functionals have the general form

I[𝑐(𝑛), 𝑓1, . . . , 𝑓𝑛] =

∫︁
R𝑑

d𝑑𝑟1· · ·
∫︁
R𝑑

d𝑑𝑟𝑛 𝑐
(𝑛)(�⃗�1 − �⃗�2, . . . , �⃗�1 − �⃗�𝑛)𝑓1(�⃗�1) · · · 𝑓𝑛(�⃗�𝑛)

=

∫︁
R𝑑

d𝑑𝑟1 𝑓1(�⃗�1)

∫︁
R𝑑

d𝑑𝑟2 𝑓2(�⃗�1 − �⃗�2)· · ·
∫︁
R𝑑

d𝑑𝑟𝑛 𝑓𝑛(�⃗�1 − �⃗�𝑛) 𝑐
(𝑛)(�⃗�2, . . . , �⃗�𝑛)

=

∫︁
R𝑑

d𝑑𝑟1 𝑓1(�⃗�1)
(︀
𝑐(𝑛)(�⃗�2, . . . , �⃗�𝑛) * 𝑓2(�⃗�2) * · · · * 𝑓𝑛(�⃗�𝑛)

)︀
(�⃗�1, . . . , �⃗�1)

=

∫︁
R𝑑

d𝑑𝑟1 𝑓1(�⃗�1)F
−1[𝑐(𝑛)(�⃗�2, . . . , �⃗�𝑛)𝑓2(�⃗�2) · · · 𝑓𝑛(�⃗�𝑛)](�⃗�1, . . . , �⃗�1)

(A.1)

with the 𝑛th-order correlation function 𝑐(𝑛)(�⃗�2, . . . , �⃗�𝑛), the densities 𝑓𝑖(�⃗�𝑖) with 𝑖 =

1, . . . , 𝑛, and their Fourier transforms 𝑐(𝑛)(�⃗�2, . . . , �⃗�𝑛) = F[𝑐(𝑛)(�⃗�2, . . . , �⃗�𝑛)](�⃗�2, . . . , �⃗�𝑛)

and 𝑓𝑖(�⃗�𝑖) = F[𝑓𝑖(�⃗�𝑖)](�⃗�𝑖), respectively. Functionals of this type can be approximated by
a gradient expansion [Eva79] in the densities 𝑓𝑖(�⃗�𝑖), which leads to a local functional,
if the densities vary sufficiently slow in space. The basic idea behind the gradient
expansion is to take advantage of the convolution theorem [We03] and to expand the
correlation function in the functional (A.1) in Fourier space by a Taylor expansion.
This Taylor expansion of 𝑐(𝑛)(𝑘) is performed here around 𝑘 = 0,

𝑐(𝑛)(𝑘) =
∞∑︁
𝑙=0

1

𝑙!

𝑁∑︁
𝛼𝑗=1
16𝑗6𝑙

[︂
𝜕𝑙𝑐(𝑛)(𝑘)

𝜕𝑘𝛼1· · · 𝜕𝑘𝛼𝑙

]︂
𝑘=0

𝑙∏︁
𝑗=1

𝑘𝛼𝑗
=

∞∑︁
𝑙=0

i
𝑙

𝑙!

𝑁∑︁
𝛼𝑗=1
16𝑗6𝑙

Γ𝛼1,...,𝛼𝑙

𝑙∏︁
𝑗=1

𝑘𝛼𝑗
, (A.2)

where the abbreviation 𝑋 = (𝑋2,1, . . . , 𝑋2,𝑑, . . . , 𝑋𝑛,1, . . . , 𝑋𝑛,𝑑) for 𝑋 ∈ {𝑘, 𝑥, 0} and
the length 𝑁 = 𝑑(𝑛−1) of 𝑋 are introduced, but can in principle be performed around
another value for 𝑘 as well. The coefficients in this Taylor expansion are defined as

Γ𝛼1,...,𝛼𝑙
=

∫︁
R𝑁

d𝑁𝑥 𝑐(𝑛)(𝑥)
𝑙∏︁

𝑗=1

𝑥𝛼𝑗
. (A.3)

Since the prefactor of these coefficients depends on the particular definition of the
Fourier transformation, it is remarked that for the Fourier transformation [Wei02] the
convention

𝑓(�⃗�) = F[𝑓(�⃗�)](�⃗�) =

∫︁
R𝑑

d𝑑𝑥 𝑓(�⃗�)𝑒i�⃗�·�⃗� , (A.4)

𝑓(�⃗�) = F−1[𝑓(�⃗�)](�⃗�) =
1

(2𝜋)𝑑

∫︁
R𝑑

d𝑑𝑘 𝑓(�⃗�)𝑒−i�⃗�·�⃗� (A.5)
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is used in this work. Inserting the expanded and Fourier transformed direct correlation
function (A.2) into the functional in the last line of equation (A.1) leads to the gradient
expansion

I[𝑐(𝑛), 𝑓1, . . . , 𝑓𝑛] =
∞∑︁
𝑙=0

(−1)𝑙

𝑙!

𝑁∑︁
𝛼𝑗=1
16𝑗6𝑙

Γ𝛼1,...,𝛼𝑙

∫︁
R𝑑

d𝑑𝑥 𝑓1(�⃗�)

[︃
𝜕𝑙
∏︀𝑛

𝑗=2 𝑓𝑗(�⃗�𝑗)

𝜕𝑥𝛼1 · · · 𝜕𝑥𝛼𝑙

]︃
�⃗�𝑗=�⃗�
26𝑗6𝑛

(A.6)

in its most general form.
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B Numerical solution of stochastic differential
equations

Although the first application of stochastic differential equations (SDEs) goes back to
the theoretical description of Brownian motion by Einstein [Ein05, Ein06a, Ein06b],
Langevin [Lan08], and Smoluchowski [Smo06, Smo16] at the beginning of the 20th
century, it took up to the 1940s until a rigorous mathematical theory of SDEs was
formulated by Itō and Stratonovich [Has07, Pro10]. Since stochastic calculus is much
more complicated and less far developed than the mathematical theory of deterministic
differential equations (DDEs), analytical solutions are very few [Ado01, Øks03, Has07,
Gar09, HØUZ09] and the need of numerical schemes for the solution of SDEs is very
high. Unfortunately, it is not possible to rely on the enormous variety of numerical
schemes that have been developed for DDEs [PTVF92, GDN95, Krö97, HLW06], since
these methods converge very poorly for SDEs and cannot be improved by simple mod-
ifications. Instead, numerical schemes for SDEs had to be developed independently
from already existing methods for DDEs. The first numerical scheme for simple SDEs
was developed in 1955 by Maruyama [Mar55]. This first and not very efficient scheme
is a generalization of the simple Euler method for DDEs and is therefore called the
Euler-Maruyama method . Later, the more efficient Milstein method [Mil75] was devel-
oped by Milstein. Today, there is a large number of numerical schemes for different
types of SDEs including the rather efficient stochastic Runge-Kutta methods [KP06].

Further numerical schemes with better convergence properties are still being derived
for SDEs these days. The derivation always uses stochastic calculus, but in this context
different versions of stochastic calculus have to be distinguished. These are especially
the formulations of Itō and Stratonovich [Ris96, LL07] leading to different classes of
numerical schemes for the solution of SDEs. The different versions of stochastic calcu-
lus1 are equivalent, but have different advantages and disadvantages so that one always
has to choose the most appropriate version for a certain application [Øks03]. In the
most general case, the non-autonomous Itō SDE is given in differential form by

d𝑋𝑡 = 𝑎(𝑡,𝑋𝑡)d𝑡+ 𝑏(𝑡,𝑋𝑡)d𝑊𝑡 (A.7)

or equivalently as an integral equation by

𝑋𝑡 = 𝑋𝑡0 +

∫︁ 𝑡

𝑡0

𝑎(𝑠,𝑋𝑠)d𝑠+

∫︁ 𝑡

𝑡0

𝑏(𝑠,𝑋𝑠)d𝑊𝑠 (A.8)

with the time variable 𝑡 > 𝑡0, the Itō process 𝑋 = {𝑋𝑡 | 𝑡 ∈ R, 𝑡 > 𝑡0}, the (random)
initial value 𝑋𝑡0 , the drift coefficient 𝑎(𝑡,𝑋𝑡), the diffusion coefficient 𝑏(𝑡,𝑋𝑡), and the

1Besides the formulations of Itō and Stratonovich, there are also further conventions like the Klimon-
tovich stochastic calculus or isothermal convention of Lancon et al. [LBLO01, LBLO02]. A general
treatment of the different conventions including the correct adaptation of Langevin equations with
multiplicative noise is described in reference [LL07].
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Wiener process {𝑊𝑡 | 𝑡 ∈ R, 𝑡 > 𝑡0}. Notice that equations (A.7) and (A.8) may also be
𝑑-dimensional vector SDEs with 𝑋𝑡 ∈ R𝑑, 𝑎 ∈ R𝑑, 𝑏 ∈ R𝑑×𝑚, and 𝑊𝑡 ∈ R𝑚, where the
elements of 𝑊𝑡 are scalar and independent Wiener processes [KP06]. The first term on
the right-hand-side of equation (A.7) is a deterministic contribution, while the second
term is a stochastic noise term. This noise is called additive, if 𝑏(𝑡,𝑋𝑡) does not depend
on 𝑋𝑡, and multiplicative otherwise. Additive noise is usually predominant in simple
physical systems. Multiplicative noise can in contrast be observed in more complicated
systems like electric circuits [FFFG85]. In the integral equation (A.8), the first inte-
gral is a usual deterministic Lebesgue integral, but the second integral is a stochastic
integral. The latter is defined as an Itō integral in the case of an Itō SDE. However,
stochastic integrals can also be defined as Stratonovich integrals and in the case of
multiplicative noise one has to distinguish strictly between the definitions of Itō and
Stratonovich. Therefore, it is convenient to denote Stratonovich integrals in a different
way. Here, the symbol ∘ is used in the context of the Stratonovich stochastic calculus.
In contrast to equations (A.7) and (A.8), the general non-autonomous Stratonovich
SDE is denoted by

d𝑋𝑡 = �̃�(𝑡,𝑋𝑡)d𝑡+ 𝑏(𝑡,𝑋𝑡) ∘ d𝑊𝑡 (A.9)

respectively

𝑋𝑡 = 𝑋𝑡0 +

∫︁ 𝑡

𝑡0

�̃�(𝑠,𝑋𝑠)d𝑠+

∫︁ 𝑡

𝑡0

𝑏(𝑠,𝑋𝑠) ∘ d𝑊𝑠 (A.10)

with the drift coefficient �̃�(𝑡,𝑋𝑡) in this work. The equivalence of the Itō stochastic
calculus and the Stratonovich stochastic calculus implies that there is a bijective trans-
formation between equations (A.7) and (A.9) respectively (A.8) and (A.10) and that
every solution, which satisfies the Itō SDE, is also a solution of the Stratonovich SDE
with a modified drift coefficient �̃�(𝑡,𝑋𝑡) [KP06]. Between the drift coefficients 𝑎(𝑡,𝑋𝑡)
and �̃�(𝑡,𝑋𝑡), the simple relation [KP06, LL07]

𝑎(𝑡,𝑋𝑡) = �̃�(𝑡,𝑋𝑡) +
1

2
𝑏(𝑡,𝑋𝑡)

𝜕𝑏

𝜕𝑋𝑡

(𝑡,𝑋𝑡) (A.11)

holds. Besides numerical schemes for Itō and Stratonovich SDEs, one has to distinguish
further numerical schemes that approximate weak or strong solutions of the particular
SDE. A strong solution of an SDE corresponds to a prescribed Wiener process and
strong numerical schemes provide good pathwise approximations of a stochastic pro-
cess. They are especially appropriate to approximate individual sample trajectories.
In contrast, a weak solution is obtained from an SDE for a general Wiener process.
Weak numerical schemes are usually computationally faster than their strong con-
verging analogs, but they reproduce only the statistics of the solution well and not
particular trajectories. Such weak schemes are therefore appropriate, if one is only in-
terested in functionals of the probability distribution of the random variable 𝑋𝑡. This
is usually the case in statistical physics, where moments like mean value and mean
square displacement of the probability density are often the only quantities that need
to be determined. Corresponding to the two classes of strong and weak solutions of
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SDEs, there are also two different convergence terms that can be used to characterize
the order of convergence of a stochastic numerical scheme. When 𝑌 𝛿(𝑡𝑛) denotes the
Markov chain of time discrete approximations at times 𝑡𝑛 for a given numerical scheme
with an arbitrary time discretization 𝑡0 < · · · < 𝑡𝑛 < · · · < 𝑡𝑁 with maximum time step
size 𝛿 > 0, 𝑋𝑡𝑛 is the exact solution of a given SDE at time 𝑡𝑛, and 𝐸(·) denotes the
expectation value, then this scheme is strongly convergent with order 𝛾s > 0, if there
exist a constant 0 < 𝐶 <∞, that is independent of 𝛿, and an upper limit 𝛿max > 0 for
the step size so that the condition [KP06]

𝐸
(︀⃦⃦
𝑋𝑡𝑛 − 𝑌 𝛿(𝑡𝑛)

⃦⃦)︀
6 𝐶𝛿𝛾s ∀ 𝛿 ∈ (0, 𝛿max) (A.12)

holds. On the other hand, a numerical scheme is weakly convergent with order 𝛾w > 0,
if there exist two constants 0 < 𝐶 <∞ and 𝛿max > 0 so that [KP06]⃦⃦

𝐸
(︀
𝑔(𝑋𝑡𝑛)

)︀
− 𝐸

(︀
𝑔(𝑌 𝛿(𝑡𝑛))

)︀⃦⃦
6 𝐶𝛿𝛾w ∀ 𝛿 ∈ (0, 𝛿max) (A.13)

holds for any polynomial 𝑔(𝑥). On a third stage, the numerical schemes are distin-
guished with respect to their type of discretization. As for DDEs, also for SDEs exist
explicit and implicit discretizations. An explicit scheme is usually fast, but it be-
comes instable for stiff SDEs and for step sizes that are too large. This does not
happen with implicit schemes, but they involve the iterative solution of nonlinear si-
multaneous equations for each time step and are therefore computationally much more
expensive. With these distinctions of Itō or Stratonovich, strong or weak, and explicit
or implicit schemes, there are already eight different classes of numerical schemes for
the approximate solution of SDEs.
As numerical schemes for the approximate solution of DDEs are usually constructed

and analyzed on the basis of the deterministic Taylor expansion2, its stochastic gener-
alization for smooth functions of stochastic processes – the stochastic Taylor expansion
[KP06] – is usually used as a starting point to derive new numerical schemes for SDEs.
The application of either the Itō-Taylor expansion, that is a generalization of the fa-
mous Itō formula, or the Stratonovich-Taylor expansion, that is similar to the Itō-Taylor
expansion but has a simpler structure, decides whether the derivation results in an Itō
scheme or in a Stratonovich scheme. Under all numerical schemes for SDEs that have
been developed up to now and of whom a large number is discussed in the book [KP06],
are Taylor approximations like the Euler-Maruyama scheme and the Milstein scheme,
multistep schemes, and predictor-corrector methods. It is in principle possible to ex-
tend these schemes to new methods with an arbitrary high order of convergence, but
with increasing order of convergence these schemes become increasingly complicated
and computationally expensive.
Nevertheless, numerical mathematics of SDEs is a currently very active field and

the publication of further schemes with higher efficiency can be expected in the near
future. Most of the available schemes have the big disadvantage that they involve

2Exponential integrators for the solution of highly oscillatory differential equations, for example,
constitute an exception and cannot be analyzed using a Taylor expansion [HLW06].
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derivatives of the diffusion coefficient that have to be approximated in turn. Stochastic
Runge-Kutta schemes avoid these derivatives and are therefore preferable, if SDEs with
multiplicative noise have to be solved numerically.
In chapter 3 of this work, numerical solutions of 𝑑-dimensional systems of coupled

nonlinear SDEs with multiplicative noise are presented. These systems of SDEs are
autonomous and defined in the Itō sense. They can be written in the form

�̇�𝑡 = 𝑎(𝑋𝑡) + 𝑏(𝑋𝑡)𝜉𝑡 (A.14)

with the vector 𝑎 ∈ R𝑑, the matrix 𝑏 ∈ R𝑑×𝑑, and the stochastic noise 𝜉𝑡 ∈ R𝑑.
This noise can be formally interpreted as the time derivative 𝜉𝑡 = d𝑊𝑡/d𝑡 of the 𝑑-
dimensional Wiener process𝑊𝑡, but this derivative is mathematically not defined, since
a Wiener process is nowhere differentiable. Pathwise numerical solutions of the vector
SDE (A.14) were not needed for this work. Therefore, the following multi-dimensional
explicit stochastic Runge-Kutta scheme of weak order 2.0 for Itō SDEs to be found on
page 486 of reference [KP06] appeared to be most appropriate and was used:

𝑌 𝑛+1
𝑖 = 𝑌 𝑛

𝑖 +
Δ𝑡

2

(︀
𝑎𝑖(𝑌

𝑛) + 𝑎𝑖(𝑌
𝑛)
)︀

+

√
Δ𝑡

4

𝑚∑︁
𝑗,𝑘=1

(︁
𝑏𝑖𝑗(

¯̄𝑌 𝑛+
𝑗𝑘 )

(︀
Δ𝑍𝑛

𝑗 (1 + Δ𝑍𝑛
𝑘 )− 𝑍𝑛

𝑗𝑘

)︀
+ 𝑏𝑖𝑗(

¯̄𝑌 𝑛−
𝑗𝑘 )

(︀
Δ𝑍𝑛

𝑗 (1−Δ𝑍𝑛
𝑘 ) + 𝑍𝑛

𝑗𝑘

)︀
+ 2(2𝛿𝑗𝑘 − 1)𝑏𝑖𝑗(𝑌

𝑛)Δ𝑍𝑛
𝑗

)︁
.

(A.15)

Here, the symbol 𝑌 𝑛
𝑖 denotes the 𝑖th element of the 𝑑-dimensional numerical solution

𝑌 𝑛 ≡ 𝑌 𝛿(𝑡𝑛) at time 𝑡𝑛 = 𝑛Δ𝑡, Δ𝑡 is the step size of the equidistant time discretization
𝑡0 < · · · < 𝑡𝑛 < · · · < 𝑡𝑁 , 𝑎𝑖 is the 𝑖th element of the 𝑑-dimensional vector 𝑎, 𝑏𝑖𝑗 is the
(𝑖, 𝑗)th element of the 𝑑×𝑚-dimensional matrix 𝑏, and 𝑌 𝑛 = (𝑌 𝑛

𝑖 )𝑖=1,...,𝑑 is the vector
with the elements

𝑌 𝑛
𝑖 = 𝑌 𝑛

𝑖 + 𝑎𝑖(𝑌
𝑛)Δ𝑡+

√
Δ𝑡

𝑚∑︁
𝑗=1

𝑏𝑖𝑗(𝑌
𝑛)Δ𝑍𝑛

𝑗 (A.16)

and with the standard normal distributed Gaussian random numbers3

Δ𝑍𝑛
𝑗 ∼𝒩 (0, 1) . (A.17)

The vectors ¯̄𝑌 𝑛+
𝑗𝑘 = ( ¯̄𝑌 𝑛+

𝑖𝑗𝑘 )𝑖=1,...,𝑑 and
¯̄𝑌 𝑛−
𝑗𝑘 = ( ¯̄𝑌 𝑛−

𝑖𝑗𝑘 )𝑖=1,...,𝑑 are further defined by

¯̄𝑌 𝑛±
𝑖𝑗𝑘 = 𝑌 𝑛

𝑖 + 𝑎𝑖(𝑌
𝑛)Δ𝑡 𝛿𝑗𝑘 ± 𝑏𝑖𝑗(𝑌

𝑛)
√
Δ𝑡 (A.18)

3The notation 𝑋∼𝒩 (𝜇, 𝜎2) means that the random variable 𝑋 is Gaussian distributed with mean 𝜇
and variance 𝜎2. Such a random variable can always be replaced by a standard normal distributed
random variable 𝑋 ′ = (𝑋 − 𝜇)/𝜎∼𝒩 (0, 1).
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and 𝑍𝑛
𝑗𝑘 are two-point distributed random numbers with the probability distribution

𝑃 (𝑍𝑛
𝑗𝑘 = ±1) =

1

2
for 𝑘 = 1, . . . , 𝑗 − 1 , 𝑍𝑛

𝑗𝑗 = 1 , and 𝑍𝑛
𝑗𝑘 = −𝑍𝑛

𝑘𝑗 . (A.19)

Two-point distributed random numbers can easily be calculated from ∼𝒰(0, 1) random
numbers that are uniformly distributed on the interval (0, 1). Notice that the random
numbers4 Δ𝑍𝑛

𝑗 and 𝑍𝑛
𝑗𝑘 are uncorrelated with respect to time, i. e., with respect to

the index 𝑛. For stochastic integrations in the context of this work, the stochastic
Runge-Kutta scheme (A.15) is sufficient. In other situations, one might have to solve
stiff vector SDEs, for which the scheme (A.15) is not applicable. In this case, the
corresponding multi-dimensional implicit stochastic Runge-Kutta scheme of weak order
2.0 can be found on page 501 of reference [KP06].
If weak convergence of order 2.0 appears to be not sufficient for a certain application,

an extrapolation method can be used to enlarge the order of a numerical approximation
from 2.0 to 4.0. In general, extrapolation methods can be used to construct a weak
approximation of order 2𝛾w from weak approximations of order 𝛾w that are obtained by
a numerical scheme for equidistant time discretizations with different step sizes 𝛿. For
example, if one wants to calculate numerical approximations 𝐸(𝑔(𝑌 𝛿(𝑡))) for the func-
tional 𝐸(𝑔(𝑋𝑡)) with the second-order scheme (A.15), then an improved approximation
of order 4.0 is given by [KP06]

𝑉 𝛿
𝑔,4(𝑡) =

1

21

(︁
32𝐸

(︀
𝑔(𝑌 𝛿(𝑡))

)︀
− 12𝐸

(︀
𝑔(𝑌 2𝛿(𝑡))

)︀
+ 𝐸

(︀
𝑔(𝑌 4𝛿(𝑡))

)︀)︁
. (A.20)

Similar extrapolation methods exist for different orders 𝛾w of the scheme that is used
initially. Often it is easier to use an extrapolation method than an improved scheme of
the double order, because the numerical schemes usually become very complicated for
higher orders of convergence and for many numerical schemes higher-order versions do
not yet exist.

4A good pseudo-random number generator is the Mersenne Twister MT 19937 of Matsumoto and
Nishimura [MN98], which is fast and has the extremely large period 219937 − 1. It can be used for
the simulation of Δ𝑍𝑛

𝑗 and 𝑍𝑛
𝑗𝑘.
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haviour of a self-propelled particle on a substrate. In: Condensed Matter
Physics 12 (2009), June, No. 4, p. 725–738

[HTL11] Hagen, B. ten; Teeffelen, S. van; Löwen, H.: Brownian motion of
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[KLK96] Kirchhoff, Th..; Löwen, H.; Klein, R.: Dynamical correlations in
suspensions of charged rodlike macromolecules. In: Physical Review E 53
(1996), May, No. 5, p. 5011–5022

[KP06] Kloeden, P. E.; Platen, E.: Applications of Mathematics: Stochastic
Modelling and Applied Probability. Vol. 23: Numerical Solution of Stochas-
tic Differential Equations . 1. Ed. Berlin: Springer, 2006. – 636 p. – ISBN
3–540–54062–8
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[LBLO02] Lançon, P.; Batrouni, G.; Lobry, L.; Ostrowsky, N.: Brownian
walker in a confined geometry leading to a space-dependent diffusion co-
efficient. In: Physica A: Statistical Mechanics and its Applications 304
(2002), February, No. 1-2, p. 65–76
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Spring School Lecture Notes. Vol. 28: Dynamik und Strukturbildung in
kondensierter Materie: Vorlesungsmanuskripte des 28. IFF-Ferienkurses
vom 3. März 1997 bis 14. März 1997 im Forschungszentrum Jülich. 1.
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[RJP10] Rafäı, S.; Jibuti, L.; Peyla, P.: Effective viscosity of microswimmer
suspensions. In: Physical Review Letters 104 (2010), March, No. 9, p.
098102
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M. M.: Colloidal interactions in two-dimensional nematics. In: European
Physical Journal E 9 (2002), November, No. 4, p. 341–347

[TT87] Toledano, J.-C.; Toledano, P.: World Scientific Lecture Notes in
Physics. Vol. 3: The Landau Theory of Phase Transitions: Application
to Structural, Incommensurate, Magnetic, and Liquid Crystal Systems .
1. Ed. Singapore: World Scientific Publishing, 1987. – 451 p. – ISBN
9–971–50025–6

[TTR05] Toner, J.; Tu, Y.; Ramaswamy, S.: Hydrodynamics and phases of
flocks. In: Annals of Physics 318 (2005), July, No. 1, p. 170–244

[TYN+03] Tabe, Y.; Yamamoto, T.; Nishiyama, I.; Yoneya, M.; Yokoyama,
H.: Ferroelectric nematic monolayer. In: Japanese Journal of Applied
Physics 42 (2003), April, No. 4B, p. L406–L409

[TZL09] Teeffelen, S. van; Zimmermann, U.; Löwen, H.: Clockwise-
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