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Summary

Within the scope of this thesis, possible pathways to the production of Ytterbium-

Rubidium (YbRb) molecules were examined by 1-Photon and 2-Photon-Photoassociation

spectroscopy in laser-cooled mixtures of Yb and Rb. With the help of 1-Photon-

Photoassociation experiments, detailed information about vibrational levels of different

isotopes of the excited 2Π1/2 state was gained. This information was needed for the 2-

Photon-Photoassociation spectroscopy which examined the 2Σ1/2 ground state of the YbRb

molecule. The experimentally related Autler-Townes spectroscopy provided first experi-

mental results on the transition strengths and therefore the overlap of the wavefunctions

of ground and excited state molecular levels.

The experiments were performed at an apparatus that is designed for the study of YbRb

mixtures and molecules and has been used in previous studies [1, 2, 3, 4]. The two atom

species are held in a combined magneto-optical trap (MOT) which is continuously loaded.

Approximately 4 ·108 Rubidium (Rb) atoms are held in this trap at a temperature of about

125 μK. The density is 6.8 · 1010 cm−3. The Ytterbium (Yb) trap holds much less atoms,

namely about 2.4 · 106 atoms when no Rb is present. The Yb atoms have a temperature

of about 400 μK at a density of 4.5 · 109 cm−3 without Rb. Due to light-assisted collisions,

we lose more than 95 % of the Yb atoms and end up with about 0.6 · 105 atoms when the

combined trap is used.

In a so-called 1-Photon-Photoassociation (PA) process, two colliding atoms form an

electronically excited molecule with the help of a photon. This was already perfomed

in previous experiments [5, 3], where we investigated the excited 2Π1/2 state of the iso-

topologue 176Yb87Rb and 174Yb87Rb near the Rb D1 line at 795 nm. With the methods

described by LeRoy and Bernstein [6], it was possible to describe a long-range potential

V (r) = C6/r
6 of this state with C6 = −(5684±98)Eha

6
0. In the present thesis, we expanded

our studies to two more isotopologues, namely 170Yb87Rb and 172Yb87Rb.

Precise knowledge of the energetic position of vibrational levels of the electronically

excited state of the YbRb molecule is a prerequisite for the investigation of the electronic

ground state by 2-Photon-PA spectroscopy which is the main part of this thesis. For

this, the photoassociation laser that creates excited molecules out of two atoms is fixed

on a resonance, so that a continuous molecular production is guaranteed. A probe laser is

superimposed to the PA laser that induces light shift effects whenever it is on resonance

with a molecular bound-bound transition. This leads to a lower molecular production rate

and the atom number in the double-species MOT is increased.

In the experiments described in this thesis, the probe laser is slightly red detuned to the

first one leading to a coupling between the fixed excited state and some vibrational levels

of the molecular ground state. By this, we were able to determine the energetic position
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of 6 vibrational levels1 of the ground state for the isotopologue 176Yb87Rb. For the other

isotopes, we investigated 2 resonances for each combination. This leads to altogether 18

molecular ground state levels for the YbRb molecule, for which 12 are in the F = 1 and 6

are in the F = 2 hyperfine ground state. The energetic positions of the vibrational levels

made it possible to determine a C6 value with the help of the LeRoy-Bernstein formula

and to model a Lennard-Jones potential V (r) = C12/r
12 + C6/r

6 that reproduces all of

these levels where a C12 value is numerically determined:

C6 = −(2563± 50) Eha
6
0,

C12 = 2.7412 · 108 Eha
12
0

This information about the ground state potential can be used to determine scattering

properties, especially the s-wave scattering length to

a87Rb,170Yb = −5a0

a87Rb,172Yb = −131a0

a87Rb,174Yb = 1398a0

a87Rb,176Yb = 225a0.

In [4], we already examined scattering properties in a mixture of 87Rb and different Yb

isotopes through thermalization experiments. We got very peculiar findings for the s-wave

scattering length in two isotopes. In a mixture of 170Yb and 87Rb, nearly no interaction

between the two species was measured. This means that the s-wave scattering length has

a value near zero. In 174Yb and 87Rb, the complete opposite happens [7]: The two atom

species showed a nearly immediate thermalization and separated spatially. This means,

that the s-wave scattering length is huge. These findings for the mixtures of 87Rb and
170Yb respective 87Rb and 174Yb are reproduced in the calculations as expected.

The long term goal of this experiment is the creation of YbRb molecules in the rovibra-

tional ground state. For this, a 2-step process is favorable: First, weakly bound ground

state molecules are produced. This can be done either with a 2-Photon process where the

positions of the resonances are needed which have been measured in this thesis. Another

possibility is to use magnetic Feshbach resonances. Until 2010, it was commonly believed

that there is a neglible coupling between different hyperfine ground state levels in mixtures

of alkali and earth-alkaline like metals which do not lead to usable magnetic Feshbach

resonances. But in [8, 9], it was theoretically shown, that a weak coupling exists and may

be used to form Feshbach molecules. In this thesis, this possibility for YbRb molecules

will be discussed and possible positions of the magnetic Feshbach resonances will be given.

This offers a second path for weakly bound ground state molecules.

In a next step, these weakly bound ground state molecules have to be transferred to

the absolute ground state. For this, a 2-Photon process seems to be favorable, as already

1Each vibrational state consists of two resonances, one for each hyperfine state of 87Rb.
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demonstrated for KRb [10]. A discussion of possible transitions in the molecule will round

up this thesis.

In addition to the work on YbRb, I have performed investigations on mixtures of Lithium

and Ytterbium (LiYb) in an exchange stay at the university of Washington in Seattle. In

this experiment, the two species were cooled and trapped in a combined magneto-optical

trap and then transferred into an optical dipole trap, created by a focussed laser beam.

During my stay, we examined the scattering properties of Li and Yb and determined the

s-wave scattering length of the mixture 6Li and 174Yb to [11]

∣∣a6Li,174Yb

∣∣ = (13± 3) a0.





Zusammenfassung

Im Rahmen dieser Arbeit wurden in einem lasergekühlten Gemisch aus Ytterbium und

Rubidium mit Hilfe der 1-Photon und 2-Photon-Photoassoziationsspektroskopie mögliche

Wege zur Erzeugung von Ytterbium-Rubidium (YbRb) Molekülen untersucht. Detaillierte

Informationen über den elektronisch angeregten 2Π1/2 Zustand wurde mit Hilfe der 1-

Photon-Photoassoziation gewonnen. Diese Information ist notwendig für die Untersuchung

des 2Σ1/2 Grundzustands des YbRb Moleküls mittels 2-Photonen-Photoassoziation. Das

experimentell ähnliche Verfahren der Autler-Townes Spektroskopie wurde angewandt, um

erste experimentelle Ergebnisse über die Übergangwahrscheinlichkeiten und damit dem

Überlapp der Wellenfunktionen der beteiligten molekularen Zustände zu erhalten.

Die beschriebenen Experimente wurden an einer Apparatur durchgeführt, an der

schon mehrere Forschungsprojekte an Ytterbium-Rubidium Mischungen und Molekülen

durchgeführt wurden [1, 2, 3, 4]. Die beiden Atomsorten werden in einer kombinierten

magneto-optischen Falle (MOT) gefangen, in der die Atome kontinuierlich geladen werden.

Hierin werden ca. 4 · 108 Rubidium (Rb) Atome mit einer Temperatur von etwa 125 μK

gefangen. Die Dichte beträgt 6, 8 · 1010 cm−3. In der Falle für Ytterbium (Yb) werden

etwa 2, 4 · 106 Atome gefangen, wenn kein Rubidium genutzt wird. Die Temperatur der

Yb-Atome beträgt hierbei etwa 400 μK bei einer Dichte von 4, 5 · 109 cm−3. Aufgrund von

Kollisionen von Rb mit angeregten Yb Atomen, verlieren wir mehr als 95 % der Yb Atome

und erhalten somit etwa 0, 6 · 105 Atome in der kombinierten Falle.

Bei der sogenannten 1-Photon-Photoassoziation bilden zwei kollidierende Atome mit

Hilfe eines Photons ein elektronisch angeregtes Molekül. Diese Technik wurde in einem

früheren Experiment [3, 5] schon durchgeführt, wobei dort der angeregte Zustand 2Π1/2

der Isotope 174Yb87Rb und 176Yb87Rb untersucht wurde in der Nähe der Rb D1-Linie bei

795 nm. Mit den Methoden von LeRoy und Bernstein [6] war es möglich, das langre-

ichweitige Potential V (R) = C6/r
6 von diesem Zustand mit C6 = −(5684 ± 98) Eha

6
0 zu

beschreiben . In dieser Arbeit wurde dieses Experiment erweitert um die zwei weiteren

Isotope 170Yb87Rb und 172Yb87Rb.

Die Position der angeregten molekularen Zustände ist eine notwendige Information für

den nächsten Schritt, bei dem der Grundzustand untersucht wird. Dafür wurde der Pho-

toassoziationslaser auf eine 1-Photon-Resonanz frequenzstabilisiert, so dass kontinuierlich

Moleküle erzeugt werden. Ein zweiter Laser wird mit dem ersten Laser überlagert. Dieser

induziert eine Verschiebung der molekularen Zustände, wenn er resonant mit einem gebun-

denen Molekülübergang ist. Dies führt zu einer niedrigeren Molekülrate und somit zu mehr

Atomen in der MOT.

In den Experimenten, die in dieser Arbeit beschrieben werden, ist der zweite Laser

rotverstimmt gegenüber dem ersten Laser und der molekulare Grundzustand wird unter-
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sucht. Auf diese Art haben wir 6 verschiedene Vibrationszustände2 des Grundzustands des
176Yb87Rb Moleküls gefunden. Für die anderen Isotope haben wir jeweils zwei Resonanzen

gefunden. Insgesamt wurden 18 Resonanzen gefunden, von denen wir 12 dem F = 1 und

6 dem F = 2 Hyperfeinzustand zuordnen konnten. Mit dieser Information war es möglich,

einen C6 Koeffizienten mit Hilfe der LeRoy-Bernstein Formel [6] zu bestimmen und ein

Lennard-Jones Potential V (r) = C12/r
12 + C6/r

6 zu modellieren, welches alle gefundenen

Zustände reproduziert. Dabei wurde der C12 Koeffizient numerisch bestimmt:

C6 = −(2563± 50) Eha
6
0,

C12 = 2.7412 · 108 Eha
12
0

Diese Information über den Grundzustand kann dazu genutzt werden, um das Streuver-

halten und insbesondere die s-Wellen Streulänge der verschiedenen Isotope zu bestimmen:

a87Rb,170Yb = −5a0

a87Rb,172Yb = −131a0

a87Rb,174Yb = 1398a0

a87Rb,176Yb = 225a0

In einem früheren Experiment [4] haben wir bereits das Streuverhalten in einem Gemisch

aus 87Rb und verschiedenen Yb Isotopen mittels Thermalisierung untersucht. Hierbei

bekamen wir erstaunliche Ergebnisse für zwei Isotope: In 170Yb und 87Rb wurde (fast) keine

Interaktion zwischen den Spezies festgestellt. Das bedeutet, dass die s-Wellen Streulänge

einen Wert nahe Null haben muss. In 174Yb und 87Rb passiert das genaue Gegenteil: Die

beiden Sorten thermalisieren nahezu instantan und es tritt eine örtliche Trennung auf.

Diese bedeutet, dass die s-Wellen Streulänge sehr groß sein muss. Diese Erkenntnisse für
87Rb und 170Yb beziehungsweise für 87Rb und 174Yb wurden in den berechneten Werten

für die s-Wellen Streulänge reproduziert.

Das langfristige Ziel dieses Experiments ist die Erzeugung von ultrakalten YbRb

Molekülen im absoluten Grundzustand. Dafür sind zwei Schritte notwendig: Im er-

sten Schritt werden schwach gebundene Grundzustandsmoleküle erzeugt. Das kann durch

einen 2-Photonen-Prozess geschehen. Hierzu sind die genauen Positionen der Resonanzen

notwendig, die in dieser Arbeit gemessen wurden. Eine andere Möglichkeit ist die Nutzung

sogenannter magnetischer Feshbach Resonanzen. Bis 2010 wurde allgemein angenommen,

dass in einem Gemisch aus einem Alkali und einem erdalkaliähnlichem Metall die Kop-

plung zwischen den Hyperfeinzuständen im Grundzustand zu schwach ist, so dass solche

Resonanzen nicht existieren. In [8, 9] wurde jedoch theoretisch gezeigt, dass eine schwache

Kopplung zwischen den Hyperfeinzuständen des Grundzustands existiert, die ausreichend

ist, um Feshbach Moleküle zu erzeugen. Innerhalb dieser Arbeit wird diese Möglichkeit für

2Zu jedem Vibrationszustand wurden zwei Resonanzen gefunden, gemäß dem Hyperfeinsplitting des 87Rb

Grundzustands.
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das YbRb Molekül diskutiert und mögliche Positionen dieser Resonanzen angegeben. Dies

ermöglicht einen weiteren Weg für die Erzeugung schwach gebundener Moleküle.

Im nächsten Schritt werden diese Moleküle in den absoluten Grundzustand transferiert.

Hierzu scheint ein 2-Photonen-Prozess die beste Möglichkeit zu sein, wie in Experimenten

mit KRb [10] schon erfolgreich gezeigt wurde. Eine Diskussion über mögliche Übergänge

runden diese Arbeit ab.

Zusätzlich zu meiner Arbeit an YbRb habe ich ein Gemisch aus Lithium und Ytterbium

während eines Austausches mit der University of Washington in Seattle untersucht. In

der Gruppe dort werden die beiden Sorten lasergekühlt und anschließend in eine durch

einen fokussierten Laserstrahl erzeugte optische Dipolfalle umgeladen. Während meines

Aufenthaltes haben wir das Streuverhalten der beiden Atomsorten untersucht und mittels

Thermalisierung die s-Wellen Streulänge für ein Gemisch aus 6Li und 174Yb bestimmt zu

[11]

∣∣a6Li,174Yb

∣∣ = (13± 3) a0.
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1.
Introduction

The long term goal of the research project in which the work for the present thesis was

performed is the creation of ultracold Ytterbium-Rubidium molecules in the rovibrational

ground state. For this, a 2-step process is favorable. In a first step, weakly bound ground

state molecules are produced which are transferred to the absolute ground state in a second

step. In this thesis, the first investigations of the ground state potential of the YbRb

molecule will be presented that are crucial for the creation of ground state molecules.

This introduction will give an overview of the field of ultracold atoms and molecules. In

alkali-alkali mixtures, ultracold molecules in the absolute ground state have already been

produced. Current research projects and their path to the absolute ground state will be

presented.

Ultracold atoms

The realization and development of slowing [12, 13] and cooling [14] atoms with lasers

opened the path for the field of ultracold atomic gases in the 1980s. These techniques

allowed the cooling and trapping of an atomic cloud at temperatures below 1 mK. With

evaporative cooling [15], it was possible to cool even further down to temperatures in the nK

regime. This led in 1995 to the first experimental realization of Bose-Einstein condensates

(BEC) in 87Rb [16], 23Na [17] and 7Li [18], a new state of matter predicted already in the

1920s by Einstein and Bose [19]. A lot of new fascinating experiments are now accessible

with this technique and consequently, these milestones of laser cooling and trapping and

the achievement of a BEC were rewarded with the Nobel prizes in 1997 [20] and 2001 [21].

The number of elements and isotopes that have been cooled to quantum degeneracy has

been expanding since then. In 2003 [22], a BEC of Ytterbium atoms was reported.

Ultracold molecules

Due to the complicated internal structure, the known laser cooling techniques can not be

used in molecules or only in very rare special cases as demonstrated recently in SrF [23].

Therefore, another path must be used. One possible way is to first cool the atoms species

with the known techniques and then convert these atoms to molecules. Here, two methods

are possible: the use of magnetic Feshbach resonances [24] or photoassociation [25].

Feshbach resonances make use of the effect that with the help of a homogeneous magnetic

field, the energy levels of an atom or molecule are shifted. When a bound molecular level
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and the open channel of two free atoms are at the same energy level, a resonance occurs

if a coupling between these states exist. This so-called magnetic Feshbach resonance can

be used to form molecules out of the two atoms by adiabatically varying the magnetic

field across the resonance. Feshbach resonances were first observed in 1998 at 85Rb [26]

and 23Na [27]. A lot of experiments nowadays use Feshbach resonances to create weakly

bound molecules [24]. In heteronuclear mixtures, magnetic Feshbach resonances were first

observed in 2004 in KRb [10] and LiNa [28]. Recently [8, 9], it was proposed, that magnetic

Feshbach resonances could also be accessible in mixtures of an alkali metal (like Rb) and

an earth-alkaline like metal (like Yb). This opens the path for systems such as RbYb to

create molecules in the rovibrational ground state also via Feshbach resonances.

A second way to create molecules is the use of photoassociation [29]. Here, two colliding

atoms can form an electronically excited molecule with the help of a photon. The difference

of the energy of the red-detuned photon to the atomic transition energy is the binding

energy of the molecule. This excited molecule will emit a photon after a short time and

decay into a ground state molecule or two free atoms [30]. The first observation of ground

state molecules (although in a high vibrational level) produced in this way was in 1998 in

Cs [31].

The creation of ground state molecules in a well-defined state is in principle possible with

2 photons. The frequency difference of these two photons is equivalent to the binding energy

of the molecule. With a so-called Stimulated Raman Adiabatic Passage (STIRAP) process,

atoms could thus be converted coherently into a defined molecular state [30] although it is

very challenging experimentally to convert two free atoms to molecules and is not shown

yet.

The next step is to transfer the weakly bound molecules to the rovibrational ground

state. The successful experiments in this direction use a STIRAP process to do this.

In an experiment in Innsbruck [32], Rb atoms are first associated via magnetic Feshbach

resonances to a weakly bound molecule and then transferred with a STIRAP process to the

absolute ground state. The same method was used in Cs2 [33]. In heteronuclear mixtures,

the absolute ground state was achieved in KRb [34]. The molecules are produced via

a Feshbach resonance to weakly bound molecules and then transferred with a STIRAP

process to the absolute ground state.

In an experiment with Rb and Cs [35, 36], a 1-Photon-photoassociation process was

performed to create excited RbCs∗ molecules. These molecules decay prominently in one

specific molecular ground state. These weakly bound molecules are then transferred to

an intermediate excited state and driven to the vibrational ground state by stimulated

emission, but not the rotational ground state.

A different approach is possible in experiments with LiCs [37], where the ground state

was achieved with only 1 photon: The overlap of the used vibrational level of the excited

state and the absolute ground state is high enough that the molecule will spontaneous emit

to the ground state.
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Polar molecules

Quantum degeneracy has been reached in dipolar atomic gases in chromium [38] and re-

cently in dysprosium [39]. The atoms offer a relatively weak magnetic dipolar interaction.

In contrast, polar molecules like YbRb have an internal electric dipole moment which leads

to a large dipole-dipole interaction between molecules. However, the degeneracy has not

been reached yet in the absolute ground state.

The long-range and anisotropic interactions add new aspects to the physics of ultracold

quantum matter [40, 41]. The electric dipole moments can be precisely controlled via the

strength and the orientation of an electric field. This offers the basis for a lot of theoretical

proposals e.g. in quantum information processing [42, 43], new quantum phases [44] or its

transitions [45, 46] and quantum control with external electric and/or magnetic fields [47].

Polar molecules are also a possible candidate for probing fundamental physical symmetries,

e.g. the search of a permanent electric dipole moment of the electron where the internal

electric field amplifies the effect. Ongoing measurements are performed in YbF molecules

[48, 49], but this was recently also discussed for the case of YbRb [50].

Additionally, the study of chemical reactions in the ultracold regime was investigated in

[51]. Here, quantum mechanics play an important role: The prepared ultracold fermionic

molecules 40K87Rb in different spin states will undergo the exothermic chemical reaction

KRb + KRb → K2 + Rb2 with an enhancement factor of up to 100 in comparison to

molecules in the same internal state due to its fermionic nature where only p-wave collisions

are possible when the molecules are identical. In many experiments, exothermic reactions

like this are not a desired effect. By placing the molecules in an optical lattice [52] or by

creating repulsive interaction between the molecules with electric fields [53], the exothermic

reaction can be prevented.

Paramagnetic heteronuclear molecules like YbRb, also allow the realization of lattice-

spin-models [54] where the polar molecules are stored in an optical lattice representing

a state of matter with topological order. The spin is represented by the single valence

electron. This model is proposed to be used e.g. as a quantum memory in quantum

computing.

This thesis

The experiments presented in this thesis are the first investigations of the ground state

potential in a molecule consisting of an alkali and a rare earth metal. This system has

in contrast to the mostly used alkali-alkali mixtures a paramagnetic ground state that

can be trapped magnetically and due to its unpaired electron, it can be used in many

investigations as discussed before.

In photoassociation experiments, we created molecules in the excited state. First inves-

tigations of this were already performed in [3, 5], but are expanded to two more bosonic

isotopes of Ytterbium within the present work. We also performed first RbYb photoasso-

ciation experiments near the D2 line of Rb at 780 nm. With the second photoassociation

laser, information about the ground state potential of YbRb was gained where only ab-

initio calculations [55] exist until now. In this thesis, the determination of 18 weakly bound
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vibrational levels of the ground state in different isotopologues will be described and a pos-

sible potential for the ground state is shown that reproduces all of the found vibrational

levels. With this information, it is possible to show a path on how to create rovibrational

ground state molecules.

This thesis begins with a short review of laser cooling and trapping and some basic con-

cepts of molecular physics (chapter 2). Chapter 3 explains the setup of our experiment and

the data acquisition methods. The 1-Photon-Photoassociation spectra and resonances are

presented in chapter 4 which gives information about the excited state 2Π1/2. The ground

state potential and the corresponding results from the 2-Photon-Photoassociation exper-

iments are described in chapter 5. Autler-Townes spectroscopy was performed on some

transitions giving information about the transition strength and is described in chapter

6. Future experiments involving the creation of Feshbach molecules with a calculation of

possible Feshbach resonances are presented in chapter 7 and an outlook for possible paths

to the rovibrational ground state will be given in chapter 8.

In appendix B, I will present the results that were performed during a half-year stay at

the Li-Yb experiment at the University of Washington in Seattle.



2.
Basic experimental and theoretical concepts

In this chapter, the basic concepts of cooling and trapping of atoms are briefly summarized.

In our experiment, we use Zeeman slowers for deceleration and trap the atoms in magneto-

optical traps which are based on the principle of laser cooling.

Additionally, a short introduction to molecular physics, especially the diatomic case,

will be given. This approach is only a short outline of the whole area. There are plenty of

textbooks that explain it in detail, e.g. [56, 57, 58].

2.1. Cooling and trapping of atoms

A photon scattering process transfers momentum to atoms. That is the basic principle

of laser cooling. The resulting force on the atom depends on the momentum ��k and the

scattering rate Γ [56]:

�F = ��kΓ (2.1)

Here, �k is the wavevector of the involved light field. The wavenumber
∣∣∣�k∣∣∣ = 2π/λ depends

on the wavelength λ of the scattered photon. The scattering rate Γ is defined as [56]

Γ =
γ

2

S0

1 + S0 + (2δ/γ)2
(2.2)

where γ is the linewidth of the atomic transition. The saturation parameter S0, defined as

S0 = I/Isat, includes the intensity of the light field I and the saturation intensity [56]

Isat =
πhc

3λ3τ
(2.3)

with λ being the wavelength of the atomic transition and τ being the lifetime of the excited

state. This is a value specific for a given atomic species and transition. Important values

for our setup are shown in tab. 2.1. For a maximized scattering rate, it is crucial that the

detuning δ from the light field to the atomic transition is small and ideally zero. Due to

the velocity of the atoms, they experience a Doppler shift which makes the light field red

detuned. This shift will vary during the deceleration and can be compensated e.g. by a

varying magnetic field.
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atomic transition wavelength λ linewidth γ Isat

Rb 2S1/2 →2 P1/2 795 nm 2π5.75 MHz [59] 1.49 mW/cm2

Rb 2S1/2 →2 P3/2 780 nm 2π6 MHz [59] 1.65 mW/cm2

Yb 1S0 →1 P1 399 nm 2π28 MHz [60] 57.61 mW/cm2

Yb 1S0 →3 P1 556 nm 2π181 kHz [60] 0.14 mW/cm2

Table 2.1.: Saturation intensities for important transitions that are used in our experi-

mental studies.

2.1.1. Zeeman slower

In a trap for ultracold atoms, only slow atoms can be trapped. For that, we use a Zeeman

slower that slows down atoms with a velocity lower than a maximum velocity v0. During

that process, the atoms are also cooled. In a typical setup, the slowing laser beam is

directed in opposite direction as the atomic beam.

The detuning δ depends on the atomic transition δ0 and on additional effects like the

Doppler shift and magnetic fields1:

δ = δ0 − �k · �v − μ′B
�

(2.4)

Here, �k is again the wavevector of the light field, �v is the velocity of the atoms and B is

the magnetic field with μ′ = (geme − ggmg)μB being the effective magnetic moment with

the Landé g-factors gi and the magnetic quantum numbers mi of the ground and excited

state.

In the process of slowing, the velocity of the atoms changes significantly and thus, the

detuning δ is changing. This can be compensated by a spatially varying magnetic field

which is the basic idea of a Zeeman slower. For high intensities I � Isat and zero detuning,

the maximal deceleration is [56]

|amax| = Fmax

m
=

γ

2

�k

m
. (2.5)

The velocity during the slowing process is then v(z) =
√
v20 − 2 |amax| z. The maximal

force is reached with the condition δ = 0. The required magnetic field can be calculated

from (2.4) as:

B(z) =
�

μ′

(
δ0 + k

√
v20 − 2 |amax| z

)
(2.6)

This magnetic field describes an increasing field geometry Zeeman slower as it is used in

our experimental setup (see fig. 2.1). In this configuration, the slowing beam works at a

detuning δ = −kv0 to be resonant with the fast atoms at zero field. This has the advantage,

that the slowing beam is not resonant with slow and cold atoms that are held in the trap.

Details on the Zeeman slower in our experimental setup can be found in [1, 2, 61].

1There are additional effects on the detuning (e.g. electric fields) that should not be considered here.
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Figure 2.1.: Principle of Zeeman slowing. The slowing laser beam is directed in the

opposite direction of the atomic beam. In the region where the atoms are slowed, an

increasing magnetic field is compensating the Doppler shift. Adapted from [2].

2.1.2. Optical molasses

A set of six pairwise counterpropagating laser beams form an optical molasses [62]. The

atoms experience a force proportional to their velocity. In a one-dimensional picture, the

forces for the two counterpropagating beams are [56]

�F± = ±��k
γ

2

S0

1 + S0 +
(
2(δ∓kv)

γ

)2 . (2.7)

The total force is the sum of the two parts and acts as a damping force [56]:

�FOM = �F+ + �F− = −β�v (2.8)

For red detuned laser light (δ < 0), this force damps the atomic motion with

β =
8�k2δS0

γ

(
1 + S0 +

(
2δ
γ

)2)2 . (2.9)

This method slows down and cools the atom with the Doppler cooling limit

TD =
�γ

2kB
. (2.10)

This limit determines the lowest achievable temperature and is caused by the need of

emission and absorption of photons. This temperature is typically on the order of about

100 μK.

2.1.3. Magneto-optical trap

By adding a magnetic quadrupole field to the laser field, a spatial dependence of the force

can be reached and therefore the atoms can be trapped in the center of the magnetic field.

Fig. 2.2 shows the basic principle of an one dimensional MOT in the case of Yb. The

MOT uses the transition |1S0, J = 0〉 → |1P1, J = 1〉. Due to the increasing magnetic

field B(z) = B0z, the upper state splits up into the three Zeeman subcomponents with
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Figure 2.2.: Basic principle of a MOT in one-dimensional case. The counterpropagating

lasers with circular polarization are red detuned from the atomic transition and a spatial

varying magnetic field B(z) = B0z is applied leading to a splitting into three Zeeman

subcomponents of the upper state. Adapted from [2].

the quantum numbers mJ = −1, 0,+1. The MOT beams are circular polarized and red

detuned to the atomic transition without magnetic field (represented as the dashed line in

the figure). The Zeeman shift due to the magnetic field tunes the mJ = −1 component

closer to the laser detuning for z > 0. Thus, more of the laser light in σ− polarization is

scattered at z > 0 leading to a force in the direction of this beam which is the trapping

center. For z < 0, the same happens for the mJ = +1 component and the σ+ polarized

laser light, leading to a force in direction of the trapping center. The total force can be

calculated to [56]

�FMOT ≈ 8�kδS0�v

γ

(
1 + S0 +

(
2δ
γ

)2)2 +
μ′B0

�

8�kδS0�r

γ

(
1 + S0 +

(
2δ
γ

)2)2 = −β�v − κ�r. (2.11)

In this kind of trap called magneto-optical trap (MOT), all atoms with a maximum velocity

vc =
√

2rc�kγ/m can be captured in a trap of the radius rc. To increase the fraction of

atoms that will be trapped, many experiments including the one described here use a

Zeeman slower to slow down the atoms which then will be captured by the MOT. More on

optical molasses and magneto-optical traps (MOT) can be found in [63, 64, 65, 66, 67, 68].

With the help of different techniques e.g. the polarization gradient cooling [69], it is

possible to cool atoms below the Doppler limit.
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2.1.4. Conservative traps for atoms

The absorption and emission of (near resonant) photons limit the density and the temper-

ature in a MOT. To avoid these effects, different types of traps exist which do not depend

on light scattering. A purely magnetic trap [70, 71] uses magnetic fields and its interaction

with neutral atoms. This kind of trap only works with paramagnetic atoms like Rb. A

magnetic field �B shifts the energy of an atom with a magnetic moment �μ:

ΔE = −�μ · �B = gFmFμB

∣∣∣ �B∣∣∣ (2.12)

where gF is the Landé g-factor of a state in the hyperfine level F with the magnetic quantum

number mF. For atoms with gFmF > 0, an energy minimum exists at the position of the

magnetic minimum where atoms can be trapped. In an Ioffe-Pritchard-trap [72], a magnetic

trap is realized by a quadrupole field and an offset field. Further cooling is possible for

example through evaporative cooling: By lowering the potential, the hottest atoms are lost

from the trap. The rest of the atoms then thermalizes and get colder. By this technique,

temperatures below degeneracy can be reached [15].

Yb has a diamagnetic ground state and can therefore not be trapped in a magnetic trap2.

But atoms can also be trapped in an inhomogeneous electromagnetic field, e.g. a focused

laser beam [74]. An electric field �E with a frequency ω induces a rapidly oscillating atomic

dipole moment �p = α(ω) �E(�r) where α is the complex polarizability. This can be calculated

[75]:

α(ω) = 6πε0c
3 γ/ω2

0

ω2
0 − ω2 − i

(
ω3/ω2

0)γ
) (2.13)

Here, ω0 is the transition frequency and γ the linewidth of an ideal two-level atom. The

potential Udip is given by [75]

Udip = −1

2

〈
�p �E
〉
= −Re(α)

∣∣∣ �E(�r)
∣∣∣2 . (2.14)

The dipole force on an atom is then given by

�Fdip(�r) = −∇Udip(�r). (2.15)

Thus, a red-detuned laser field (ω < ω0) creates a potential minimum at a light field

maximum, which can be created by a focus in a laser beam. An optical trap is independent

of magnetic fields, therefore this is the preferable trap geometry for future experiments on

Feshbach resonances (see chap. 7).

By overlapping two laser beams with two different frequencies, it is possible to design

optical potentials for Rb and Yb almost independently: The main transitions of Rb are

at 780 nm and 795 nm. A laser beam with a wavelength of 1064 nm creates a potential

minimum at the position of the focus of a laser beam while the superimposed laser with a

wavelength of 532 nm creates a potential maximum. For Yb, both lasers create potential

2It is possible to use metastable excited states in Yb where magnetic trapping could be done, for example

in the |3P2〉 state [73].
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minima in the focus because the main transition of Yb is at 399nm. Thus, it is possible to

adjust the trap depth for the two species independently. More on this trapping geometry

can be found in [2, 4].

2.2. Molecules

In this section, I follow the treatment of [58, 76]. Two atoms start interacting when they

are brought close enough together. At large distances, the electronic structure of each

atom is not changed, but Van-der-Waals interactions and dipole-dipole forces are playing

a role. The general potential, where all possible interactions are taken into account is

approximately

V (r) ≈ ED +
∑
n

Cn

rn
(2.16)

where ED is the dissociation limit of the potential and Cn are the specific parameters for

the potential. In the homonuclear case, that means when both atoms are identical, the

long-range potential can be described with a C3 coefficient. For some specific electronic

states, e.g. both atom are in an electronic P state, the potential can be described by

a C5 coefficient [77]. In a (normal) heteronuclear potential, all Cn with n < 6 are zero

in the long-range regime. The potential is then described by C6/r
6 for large interatomic

distances.

Short-range interactions include change of the electronic wavefunction of an atom due to

the presence of the second nucleus and Van-der-Waals forces leading to a repulsive potential

which can be approximated at first order in the heteronuclear case to the Lennard-Jones

potential [78]

V (r) ≈ ED + C12/r
12 + C6/r

6. (2.17)

In this definition, C6 is negative and C12 has to be positive.

A second form which is often used to describe a molecular potential, was introduced by

Morse [79], which is giving good results in the short range:

V (r) ≈ ED ·
(
1− e

−
√

µ
2ED

ωe·(r−Re)
)2

(2.18)

where Re is the distance of the two atoms with the lowest potential energy and ωe is a

characteristic constant for the molecule.

Sørensen et al. performed high-level four-component coupled cluster calculations of the

RbYb potential in 2009 [55]. This made a first assumption of the RbYb potential possible.

They calculated a Morse potential (see tab. 2.2 for details) for 4 different electronic states

of the molecule. Fig. 2.3 shows the calculated potentials. The ab-initio calculations are

very time consuming and up to now they do not agree with the known limiting cases of

separated atoms. But the available potentials should represent the shape and the features

of the real potentials in a good approximation. More precise calculations are only possible



2.2. Molecules 11

state Λ− Σ Re ωe ED

(bohr) ( cm−1) ( cm−1)

1 0.5 (ground state) 2Σ+ 8.85 29.751 865

2 0.5 2Π 7.40 69.294 7735

1 1.5 2Π 7.43 69.322 7164

3 0.5 2Σ+ 8.43 52.789 4423

Table 2.2.: Calculated values for the Morse potential for the four lowest-lying electronic

states of the RbYb molecule. From [55]

Figure 2.3.: Ab initio calculations of the four lowest-lying electronic states of the RbYb

molecule. From [55]

with more experimental data, which will be provided in this thesis with the 2-Photon-

Photoassociation. A calculation of the long-range part of the potential will be given in this

context (see chapter 5.8).

2.2.1. Electronic states

A diatomic molecule consists of two atoms a and b. It has, similar to atoms, different

angular momenta. I will use the same notation as in [76]:

• L which is the electronic orbital angular momentum. It is the sum of the individual

electronic angular momenta from the two atoms: �L = �la +�lb,
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• S is the electronic spin angular momentum which is the sum of the two individual

electronic spins of the atoms: �S = �sa + �sb,

• F is the sum of the electronic orbital angular momentum and the spin: �F = �L+ �S,

• J is the sum of all angular momenta including the rotational angular momentum:
�J = �L+ �S + �R,

• N is the total angular momentum excluding the electronic spin, so that �N = �J − �S

and

• R is the rotational angular momentum of the nuclei, which is �R = �N − �L.

• I is the nuclear spin angular momenta.

Note that most of the angular momenta of the involved atoms are not conserved in the

molecule. Usually, only the projections of the momenta are good quantum numbers, see

the next section about the coupling cases.

The naming convention for molecular states is

2S+1Λ±
Ωg/u

.

Here, Λ is the projection of �L to the internuclear axis, Σ is the projection of �S to the inter-

nuclear axis and Ω is the sum of Λ and Σ. The parity g/u is only defined for homonuclear

diatomic molecules and shows the inversion symmetry of the wavefunction relative to the

center of charge. The symmetry of the wavefunction along the internuclear axis is given by

±. Whenever Λ is not defined (see below for the coupling cases), it is also possible to name

the states only with its Ω. The definition of Λ depends on the coupling of the different

angular momenta which were first classified by Hund [80].

2.2.2. Hund’s coupling cases

In contrast to atoms, diatomic molecules are not spherically symmetric, but they are

cylindrically symmetric along the internuclear axis of the two atoms. This leads to different

types of possible couplings, which were first described by Hund [80] in five3 idealized

different coupling cases. I follow the treatments in [76, chap. 6.7] here.

Hund’s coupling case (a)

In Hund’s case (a), the orbital angular momentum �L is strongly coupled to the internuclear

axis by electrostatic forces. The electron spin angular momentum �S is strongly coupled

to �L and therefore, to the internuclear axis. The projection of these two momenta to the

internuclear axis is well defined and are denoted Λ for the orbital angular momentum and

Σ for the spin. Their sum is denoted Ω = Λ + Σ. The rotational component �R is coupled

to Ω (pointing along the internuclear axis) and forms the total angular momentum �J . The

two projections of Λ and Σ have two possible magnitudes ±Σ and ±Λ which results in a

degeneracy which can be removed by molecular rotation. This is the so-called Λ-doubling

respective Ω-doubling. Good quantum numbers for this case are Λ, S,Σ, J,Ω.

3Hund identified only 4 different types, but a fifth case is possible.
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Hund’s coupling case (b)

When the coupling between �L and �S is weak (no spin-orbit coupling), the spin �S is not

coupled to the internuclear axis. In Hund’s case (b), the orbital angular momentum is

coupled to the internuclear axis (as it is in case (a)), but �S is not. Thus, Ω is not defined

anymore. The projection of �L is Λ which then couples to a rotational momentum �R. This

forms �N . The total angular momentum is then formed by coupling �N to �S. If �S �= 0, a

spin-rotation splitting is possible for states with N > 0. Good quantum numbers for this

case are Λ, N, S, J .

The two cases (a) and (b) are the most common for deeply-bound diatomic molecules.

Hund’s coupling case (c)

In Hund’s case (c), the coupling between �L and �S is stronger than the coupling to the

internuclear axis. In this situation, the projections Λ and Σ are not defined. The two

momenta couple to form a component �Ja which then is coupled to the internuclear axis.

The projection of this is then Ω which couples to the rotational momentum �R to form the

total momentum �J . The resulting states can be degenerate for Ω �= 0. This degeneracy is

removed by rotation and is called Ω-doubling. Good quantum numbers are Ja,Ω, J .

Hund’s coupling case (d)

If the coupling between �L and �R is much stronger than to the internuclear axis, it will be

identified as Hund’s case (d). The result of the coupling between �L and �R is �N which then

couples to the spin �S to form the total angular momentum �J . Because of the coupling,

each rotational state splits up into 2L+1 components except where R < L, where there are

2R+1 components. This case is a good description of many Rydberg molecules [81], where

the outer electron couples very weakly to the molecular core. Good quantum numbers are

L,R,N, S, J .

Hund’s coupling case (e)

Hund’s case (e) was not identified by Hund, but a fifth coupling case is possible: Here, �L

and �S are coupled strongly to each other. They form a resultant Ja. This vector couples

only very weakly to the internuclear axis and therefore it couples to the rotation �R and

form the total angular momentum �J . For the different rotational levels, a splitting is

possible giving 2Ja + 1 respective 2R+ 1 states. Good quantum numbers are Ja, R, J .

2.2.3. Vibrational states

In contrast to atoms, molecules have two more degrees of freedom. They can initiate

vibrations and rotations. The vibrational level of a molecule can in principle be calculated

by the potential form and the solution of the energy eigenvalues of the Schrödinger equation.

The potential is similar to an anharmonic oscillator and therefore, the solution is similar
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Figure 2.4.: Illustration of the 5 different Hund’s cases. Different types are possible de-

pending on the strength of the coupling of the different angular momenta. Adapted from

[82].

to it. A molecular potential curve can be approximated by the Morse potential [79].

Remember equation (2.18)

V (r) = ED

(
1− e−a(r−Re)

)2
where ED is the dissociation energy, Re is the equilibrium distance of the two atoms and

a =

√
μ

2ED
ωe (2.19)
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is a molecule specific constant with the reduced mass μ and the vibrational frequency ωe.

The solution for the energy eigenvalues for a vibrational level v can be analytically solved

to [79]

Ev = �ωe

(
v +

1

2

)
− �ωe

4ED
�ωe

(
v +

1

2

)2

. (2.20)

This potential gives a good approximation for deeply bound levels. For the long-range

states, which are investigated by photoassociation, this approximation is no longer the

best. It is more advantageous to use a potential like

V (r) = C6/r
6 (2.21)

with a negative value for the C6 coefficient to get an attractive potential. LeRoy and

Bernstein [6] presented a semi-analytical approximation for this potential. In the photoas-

sociation spectroscopy, this helped us to identify the different vibrational level we observed:

Ev = ED −
(
(vD − v) ·

√
π

2μ
· Γ(1 + 1/n)

Γ(1/2 + 1/n)
· �(n− 2)

(−Cn)1/n

) 2n
n−2

(2.22)

Here, Γ is the gamma function, μ is the reduced mass of the system and n denotes the

order of the leading long range coefficient (for a heteronuclear system, it is n = 6). The

non-integer dissociation quantum number vD gives as its integer the maximum vibrational

quantum number and the fractional part is an indication for the binding energy of the last

vibrational level. This equation works quite well in the long-range part of the molecular

level, but not near the dissociation limit where ED − Ev < 10 GHz. In this regime,

relativistic retardation effects appear and modify the potential [83]. But for the observed

resonances, this approach works well for identification purposes (see chapter 4 and 5).

2.2.4. Rotational states

The rotational structure of a diatomic molecule can be described by the rigid rotor ap-

proximation [76, chap. 6.8]. Here, the two nuclei are assumed to have a fixed distance R

and rotate around the center of mass. The relevant rotation axis is perpendicular to the

internuclear axis. In classical mechanics, this can be calculated as

Erot =
1

2
Θ ω2 (2.23)

with ω being the angular velocity and Θ is the moment of inertia which is defined as

Θ = m1r
2
1 +m2r

2
2 = μr2 (2.24)

with μ the reduced mass, r1 and r2 the distances of the two masses m1 and m2 from the

center of mass and r defined as r = r1 + r2. The angular momentum L is defined as

|L| = Θω. (2.25)
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Figure 2.5.: Change of the potential due to rotation of the molecule. Here, a potential for
176Yb87Rb was plotted with a C6 = −2563Eha

6
0, which was derived from our experimental

observations for the ground state potential.

Together with (2.23), this gives us

Erot =
L2

2Θ
. (2.26)

If we now quantize the angular momentum, we get for the rotational energy

Erot =
�
2

2Θ
R · (R+ 1) =

�
2

2μr2
R · (R+ 1) = Brot R · (R+ 1). (2.27)

Here, the rotational constant Brot was introduced:

Brot =
�
2

2μr2
(2.28)

In photoassociation spectroscopy, this rotational constant can be measured and therefore

an averaged size of the molecule can be determined.

2.2.5. Centrifugal barrier

The rotational energy is part of the effective potential of the molecule. Depending on the

rotation of the molecule, this potential becomes

Vges(r) = V (r) +
�
2 R · (R+ 1)

2μr2
. (2.29)

Fig. 2.5 shows this dependence. This additional repulsive potential is called the centrifugal

barrier. The height of this barrier can be calculated following the treatment in [25] to:

Ec(R) =
1

2

(
R · (R+ 1)

3

)3/2

EvdW (2.30)
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R Ec Tc[
10−3 cm−1

]
[ μK]

0 - -

1 0.0483 69.5

2 0.2511 361.3

3 0.7102 1021.8

Table 2.3.: Energy of the centrifugal barriers for collision of 176Yb and 87Rb with varying

angular momenta. The energies are calculated with a C6 = −2563 Eha
6
0 (see chapter 5).

The temperature is given by Te = Ee/kBT .

The specific energy for an atom pair is given by

EvdW =
�
2

2μ

1

R2
vdW

with

RvdW =
1

2

(−2μC6

�2

)1/4

.

(2.31)

For the isotopologue 176Yb87Rb the calculated values for different rotational states are

shown in tab. 2.3. For photoassociation experiments, this means that the atoms are

repelled from each other if they do not have enough energy to cross the barrier. This is

the reason why the rotational angular momentum in our experiment is limited to R = 2

since the temperature of the atoms is about 400 μK.

2.3. Wavenumbers

In the field of spectroscopy, the most common used unit is the wavenumber ν and normally

given in the unit cm−1. The definition of the wavenumber is ν = 1/λ with λ being the

wavelength of the photon in vacuum. Thus, the wavenumber is proportional to the energy

of a photon E = hcν and energy differences can be easily calculated. Some conversion

formulas are added for reference:

• The energy is E = hcν, where h is the Planck constant, c is the speed of light and ν

is the wavenumber. Thus:

1 cm−1 =̂ 1.986446 · 10−23 J,

1 J =̂ 5.034 · 1022 cm−1.

• The frequency, given in Hz, is ν̄ = ω
2π = cν. Thus:

1 GHz =̂ 0.033 cm−1,

1 cm−1 =̂ 29.98 GHz.

• The wavelength is the reciprocal of the wavenumber in vacuum: λ = 1/ν.





3.
Experimental apparatus

In this chapter, the experimental apparatus used in this work is described. This includes

the setup for preparing ultracold samples of Rubidium and Ytterbium and the setup for

the photoassociation. The two species will be continuously loaded in a combined magneto-

optical trap where they will be photoassociated to excited molecules. An additional laser

interacting with an excited molecular state and a molecular ground state is introduced

which interferes with the photoassociation transition and thus provides information about

the molecular ground state.

The setup for trapping the two species was used in previous experiments and is explained

in detail in [1, 2, 3]. The photoassociation laser setup was redesigned compared to [3] and

will be described in chapter 3.5.

slower
laser Yb

Rb
oven

slower
laser Rb

Yb
oven

MOT-Laser

Rb
YbYb Zeeman-

slower

imaging
light

MT coils

imaging 1

imaging 2

axial window:
,

,
Rb MOT Yb MOT
532nm ODT
1064nm ODT

imaging
light

(a) (b)

Figure 3.1.: (a)Sketch and (b)photograph of our main vacuum chamber. From [4]
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3.1. Overview

All experiments presented in this thesis are performed in an ultra high vacuum with a

pressure of ≈ 10−11 mbar to avoid collisions with hot background atoms. Fig. 3.1 shows

a picture of our chamber. It is a wheel-style steel vacuum chamber connected with two

Zeeman slowers, one for each atom species. In this chamber, rubidium and ytterbium

atoms are held in a combined magneto-optical trap. The needed magnetic field is created

by a single-side configuration of two coils. These coils are calculated to generate a magnetic

field gradient of (∂B/∂z)/I = 0.44G/cm in axial respective (∂B/∂r)/I = 0.22G/cm [2] in

radial direction. For the experiments described in this thesis, we are normally working with

a current of I = 40A providing an axial field gradient of 17 G/cm and a radial gradient of

9 G/cm. This gradient was found to be the best compromise for trapping the two species

simultaneously.

Figure 3.2.: Schematic of the setup of our magnetic coils. The arrows indicate the cur-

rent flow in MOT or magnetic trap operation. For Feshbach resonance experiments, a

homogeneous magnetic field is needed and thus, the current flow of the dipole coils is

switched. From [1].

For conservative trapping, additional coils in a clover-leaf geometry are attached to our

chamber (see fig. 3.2) leading to a magnetic trap geometry. Three pairs of compensation

coils provide (nearly) homogeneous magnetic fields in all three dimensions which are used

to compensate any unwanted stray fields and to shift the position of the magnetic zero in

the MOT respective the minimum for the magnetic trap.

By switching the polarization of the dipole coils, it is possible to produce a (nearly)

homogeneous magnetic field in the trapping region which will be used in Feshbach experi-

ments in the near future (see chapter 7 for details).

A detailed description of our vacuum chamber can be found in [1] and [2].

3.2. Atom detection and imaging system

The most important information in the experiments described here is the (relative) atom

number in Rb and Yb. For this, we are using a photodiode for the Rb system which
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Figure 3.3.: Imaging system in the current setup. Adapted from [4].

monitors continuously the fluorescence of the Rb MOT and a photomultiplying tube for

the Yb MOT because of the lower fluorescence of the atoms. A green filter blocks every

unwanted light to improve the signal to noise ratio.

The imaging system used in the current setup is shown in fig. 3.3. It includes 3 charge-

coupled-device (CCD) cameras providing density distributions of the MOTs. This infor-

mation is used for the determination of the absolute atom number, the size of the MOTs

and the temperature. It is also used in the alignment process. Camera 1 and camera 3 are

providing images in the yz plane of the MOT. Camera 1 (Finger Lakes Instrumentation

MaxCam 7-E) has a resolution of 764× 512 pixel and can image MOT clouds with a max-

imal size of 3.3 × 2.2 mm2. In the same direction, camera 3 (ABS Jena UK1117) can be

used instead of camera 1 when an additional mirror is placed in the imaging path. It has

a different imaging scale than camera 1 and is able to image large atom clouds with a size

of up to 15.6× 11.8 mm2 (768× 576 pixel). Camera 2 (ABS Jena UK1117) takes pictures

in the xz plane of MOTs with a size of up to 4.5× 3.4 mm2 (768× 576 pixel).

For measuring the density distribution, it is possible to use either fluorescence imaging or

absorption imaging. In fluorescence imaging, the atoms are illuminated by resonant light.

The fluorescence of the MOT is recorded with the cameras. In absorption imaging, an

additional resonant imaging beam is shining through the MOT on the camera recording the

shadow of the MOT. The imaging light is provided through single mode fibers. Depending

on which camera should be used for which atom species, the fibers are connected to the

experiment. In normal operation, we image Yb atoms in the xz plane while Rb is imaged

in the yz plane. This can be done simultaneous.

For alignment purposes, we installed two standard webcams at different directions to
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the atom clouds to monitor the position of the MOTs and for diagnostic purposes.

3.3. Rubidium MOT

Figure 3.4.: Relevant Rb levels (not to scale). The slower is working on the same transi-

tion as the MOT, but with a larger detuning. The photoassociation beam is working on

the red side of the D1 line.

In our current setup, we trap 87Rb in a MOT. For the Zeeman slower and the MOT we

use the D2 line at 780 nm. The main transition for cooling and trapping use the |2S1/2〉
ground state in the hyperfine level F = 2 and the excited |2P3/2〉 state in the hyperfine

level F ′ = 3. This is in principle a closed transition, because the selection rule ΔF = 0,±1

prevents atoms to enter the F = 1 ground state, but due to non-resonant excitations,

the atoms are sometimes excited to the F ′ = 2 state. From this state, a spontaneous

decay to the F = 1 ground state is possible where the atoms are lost from the cycling

transition. Thus, an additional laser is needed to pump these atoms back in the cooling

transition. This repumper excites the atoms from the |2S1/2, F = 1〉 ground state level

to the |2P3/2, F
′ = 2〉 state and returns them into the cycling transition. A sketch of the

relevant Rb levels is shown in fig. 3.4.

The light required for the MOT is created by 4 diode lasers (Sharp GH0781JA2C, rated

120 mW at 784 nm) from which two are stabilized using a Rb vapor cell. The first laser,

used as the repumping beam at the transition |F = 1〉 → |F ′ = 2〉, is designed with a

narrow bandwidth interference filter [84]. The second laser, stabilized to the transition

|F = 2〉 → |F ′ = 3〉, is designed as an external cavity diode laser (ECDL) in Littrow-
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Figure 3.5.: Doppler free lock signals for the Rb MOT master (left side) and the re-

pumping beam (right side). The MOT master is locked to the F ′ = 3 resonance while

the repumper is locked to the F ′ = 2 state. The lock signal is created by a frequency

modulation of the laser and the dispersive signal is created through demodulation with

lock-in techniques. Adapted from [4].

configuration [85]. This laser injects the two other laser diodes which then acts as slave

lasers providing enough power for slowing and trapping.

The frequency stabilization of the two master lasers is done via Doppler-free satura-

tion spectroscopy [86] in Rb vapor cells independently for each laser. The Doppler free

absorption signal is shown in fig. 3.5. The light for the spectroscopy is frequency mod-

ulated through an acousto-optical modulator (AOM) (in fig. 3.6 AOM4 and AOM5 for

the two master lasers) in double-pass configuration to avoid a spatial shift. A demodula-

tion through lock-in techniques creates the dispersive signal. Needed frequency shifting is

achieved with AOMs which also provide a fast switching, power adjustment and frequency

control of the light. Additionally, all beams can be switched on or off with mechanical

beam shutters. The current scheme of this laser system is shown in fig. 3.6.

In a MOT consisting of a large atom number, the interaction between the atoms plays a

role and the density is limited. The atoms experience a repulsive force because of reabsorp-

tion of scattered atoms (radiation trapping) [87]. To overcome this effect, it is essential to

lower the reabsorption processes. In a MOT working with a repumper this can be achieved

easily: If the repumping beam has a hole in the center of the beam then the atoms which

are in this region can fall into a dark state (in our case it is the F = 1 ground state) and

they do not scatter any photons anymore. This is reached by inserting an obstacle into

the repumping beam at the beam center. The atoms are not trapped anymore but since

they are in the center of their trap they return in the cooling (and trapping) process once

they fall out of the dark regime of the repumping beam. This type of trap is called Dark

Spot MOT [88, 89]. To enhance this effect, a third laser (“depumper”), resonant to the
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Figure 3.6.: Rb laser system. The MOT master laser is locked to the F = 2 → F ′ = 3

transition on the D2 line of Rb. The repumping laser is locked to the F = 1 → F ′ = 2

transition. Adapted from [4]
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Figure 3.7.: Time of flight measurement of the Rb MOT. The MOT was released from

the trap and after some time a picture of the MOT was taken (b). The 1/e2 radius of the

MOT at different flight times is shown in (a). A fit to this data yields a temperature of

TRb,y = 114± 4 μK.

transition |2S1/2, F = 2〉 → |2P3/2, F
′ = 2〉, is superimposed to the center of the MOT

which forces the atoms into the dark state.

To measure the temperature of the MOT, we apply a time-of-flight method in which

pictures of the MOT are taken. For this, a resonant imaging beam is needed and all atoms

have to be repumped into the cycling process, therefore a second repumping beam without

obstacle illuminating the whole MOT region is needed as well. Fig. 3.7 shows a typical

temperature measurement. The atoms in the MOT are released from the trap and after

a varying time of flight, a picture is taken. From the size of the cloud, the temperature,

atom number and atom distribution can be determined.

A harmonic trapping potential, as assumed here, has a Gaussian density distribution:

ñ(y, z) =

∫
n(x, y, z)dx = N

√
2πσx exp

(
− y2

2σ2
y

− z2

2σ2
z

)
(3.1)

The density ñ is the column density as imaged by our CCD camera for an atom cloud with

the density n. After released from the trap, the atoms expand ballistic as a function of the

time of flight (TOF) [90]:

σi (tTOF) =

√
σi (0)

2 +
kBT

m
t2TOF with i = [x, y, z] (3.2)

where σi is the size of the atom cloud, m is the mass of one atom and σi(0) is the initial

size of the cloud which depends on the trapping potential. The peak density ρmax in the

trapping center can be calculated from eqn. (3.1) to

ρmax =
N

σr(0)2σa(0)(2π)3/2
. (3.3)
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Here, the trapping geometry is already included, giving the radial component σr = σx = σy
and the axial component σa = σz.

We get about 4.2 ± 1.2 · 108 Rb atoms with a 1/e2 radius of σy = 740 μm respective

σz = 715 μm. This denotes a density of 6.8 · 1010 cm−3. The temperature of the MOT is

measured to be

TRb,y = 114± 4 μK,

TRb,z = 142± 8 μK.
(3.4)

The temperatures differ in each dimension, because the atoms are not in a true thermal

equilibrium since the interactions with the trap still play a role [3]. But this interaction

is assumed to have nearly no influence for the experiments performed during this thesis,

therefore an averaged temperature is used:

Tavg =
1

3
(Tx + Ty + Tz) (3.5)

where Tx = Ty = Tr is the radial temperature and Tz = Ta is the axial temperature due to

our trapping geometry. This gives a temperature of

TRb,avg = 123± 6 μK. (3.6)

All of these measurements were performed without Yb atoms present, but the presence

of Ytterbium atoms does not have any measurable effect on the Rb.

3.4. Ytterbium MOT

Ytterbium has 7 stable isotopes from which 5 are bosons and 2 are fermions. It is a rare

earth metal with an alkaline-earth like structure. The bosonic isotopes do not have a

hyperfine structure and therefore the relevant level structure is quite simple, see fig. 3.8.

Ytterbium has two cycling transitions that are used in our setup. The transition at

399 nm from |1S0〉 → |1P1〉 is used for the first cooling stage in the Zeeman slower. In fig.

3.9 (a), a fluorescence signal from an Yb atomic beam is shown. The laser is locked to the

desired Yb isotope. The transition exhibits a large linewidth which means that the cooling

and slowing process is fast because of the short lifetime, but it also means that the Doppler

temperature is comparatively high. The laser system for the blue transition consists of a

Master-Slave setup with laser diodes (master diode: Nichia NDHV310ACAEI, rated 30 mW

at 399 nm; slave diode: Nichia NDHV310APC, rated 60 mW at 401 nm). The master diode

is an ECDL with the same setup as the Rb MOT diode and is frequency stabilized to an

Yb spectroscopy signal with the same frequency modulated lock-in technique. This beam

is used for imaging purposes and for injecting the slave diode which provides an usable

output power of 20 mW for the slowing beam. Fig. 3.10 shows the setup for the blue

system.

For trapping, we use the intercombination transition |1S0〉 → |3P1〉 at 556 nm. This

transition has a linewidth of only 2π182 kHz leading to a Doppler temperature of only
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Figure 3.8.: Relevant Yb levels for cooling and trapping.

Figure 3.9.: Yb spectroscopy signal for (a) 399 nm and (b) 556 nm. From [4].

4.4μK. The green laser light is derived from a fiber laser at 1112 nm with an output power of

1 W (Koheras Boostik BoY10PztS). This laser is frequency-doubled in a periodically poled

lithium niobate (PPLN) crystal in single pass configuration. The crystal is temperature

stabilized to ≈ 180 ◦C and leads to a usable output power of 30 mW of green light. The

residual infrared light is separated from the green light at a dichroic mirror and sent to

a beam block. Fig. 3.11 shows the setup of our green laser system. A small part of the

frequency-double laser light is used to frequency stabilize the laser to an Yb spectroscopy

signal. Here, the same lock-in technique as for the other stabilizations is used. The typical

spectroscopy signal for green light is shown in fig. 3.9 (b).

All Yb isotopes are in principle visible in the spectrum for the blue and the green laser,

therefore it is in principle possible to lock our lasers to any of these isotopes and it is

possible to cool and trap all of the 7 stable isotopes of ytterbium. But 168Yb has a very

low natural abundance of only 0.13 % [60], therefore the signal is in normal operation of
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Figure 3.10.: Yb laser system for imaging and Zeeman cooling. The master diode creates

light at 399 nm for the transition |1S0〉 → |1P1〉. From [4].

Figure 3.11.: Yb laser system for the magneto-optical trap. The fiber laser is frequency

doubled to a wavelength of 556 nm at the transition |1S0〉 → |3P1〉. From [4].
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our spectroscopy cell not visible, but a higher flux of Yb atoms and more spectroscopy

light should make a locking possible.

We use the same time-of-flight method for determining temperature, atom number and

density as for Rb. Without Rb, we get about 2.4 · 106 atoms with a temperature of

TYb,x = 387± 107 μK,

TYb,z = 411± 115 μK
(3.7)

leading to an averaged temperature of TYb,avg = 395 ± 110 μK. The MOT has a 1/e2

radius of σx = 270 μm respective σz = 465 μm yielding a density of 4.5 · 109 cm−3. Note

that the magnetic field gradient is optimized for the combined trapping of Yb and Rb.

Therefore, the temperatures and densities are not the optimum that can be reached in

single species experiments. When rubidium is present, the ytterbium atom number drops

to about 0.6 · 105 atoms. This is mainly due to light-assisted collisions [82]. In Rb, there is

no effect detectable because of the much higher atom number in Rb in comparison to Yb,

so that the effect is negligibly small in Rb.

3.5. Photoassociation laser system

For the 2-Photon-Photoassociation, two lasers are needed from which one needs to be

locked to a fixed wavelength and (until now) the second one is scanned over a large range.

Laser 1, from now on called PA laser, used at a fixed wavelength near the Rb D1

transition at 795 nm, is derived from a diode laser (Sharp GH0781JA2C, rated 120 mW at

784 nm) heated to about 60 ◦C. Fig. 3.12 shows the actual setup for the photoassociation

laser system. The PA laser is divided into three parts, from which one is going to our

wavemeter, one to the locking system and the rest is injected into a tapered amplifier (m2k

TA-0800-0500, rated 500 mW at 790-810 nm). This laser gives a usable output power after

the optical isolator of about 200 mW which is sent to the experimental apparatus.

A locking system for this laser is needed since it is not stable enough in free-running

mode and the experiment requires that it is possible to lock the laser to any desired

frequency. It is therefore not possible to use a locking system similar to the MOT laser

system, where an atomic transition is used. Instead, we are transferring the stability of the

Rb MOT laser to this laser by using a resonator transfer lock [82]. This is implemented

through a scanning Fabry-Perot interferometer in which the PA laser and a frequency

stabilized laser with perpendicular polarization are injected. The transmitted light from

the interferometer is split up into the two polarizations and fed into photodiodes. Fig.

3.13 shows the typical signal of the two photodiodes. A piezo changes the length of the

Fabry-Perot interferometer and is controlled by a delta voltage with a frequency of 30 Hz

so that the distance between the (fixed) resonance of the stabilized Rb MOT laser and the

resonance of the PA laser is measured as a time difference which is repeated every cycle.

To avoid errors due the hysteresis of the piezo, only distances from one flank of the delta

voltage is used as an error signal for the locking control unit. With this error signal, it

is possible to keep the difference of the two lasers constant and therefore to transfer the
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Figure 3.12.: The laser system for the photoassociation. For 2-Photon-Photoassociation

experiments, the PA laser can be locked with a resonator transfer lock whose reference

laser is stabilized to a Rb reference. Adapted from [82]

stability of the stabilized Rb laser to the PA laser. The short time fluctuations of the laser

cannot be controlled with this locking scheme, because it is only providing error signals

with a rate of 30 Hz. But these fluctuations are less than 5 MHz, which is enough for

the measurements presented here. For long time stability, the resonator is temperature

stabilized and built into a pressure sealed box to minimize the influence of temperature

and pressure fluctuations. We measured a stability better then 5 MHz within an hour. A

detailed description of the locking system can be found in [91].

The second laser, from now on called probe laser, is derived from a laser diode (Toptica

DL pro) at 795 nm which can be scanned up to 20 GHz without a modehop. This laser is

split into two parts. One part is used for wavelength determination and the other one is

injected into a tapered amplifier (m2k TA-0800-0500, rated 500 mW at 790-810 nm) which

gives up to 330 mW after the optical isolator. Up to now, this laser cannot be locked, but

a similar resonator-transfer-locking scheme is planned for future experiments.

Fig. 3.12 shows the optical setup of our PA laser system. For our experiments, it

is required that the two lasers have the same (linear) polarization. This ensures the best

results in our experiments. Any effects caused by different polarizations were not examined.

A discussion of these effects can be found in [92]. The two lasers are overlapped at a

polarizing beamsplitter followed by a λ/2 waveplate and a second polarizing beamsplitter.
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Figure 3.13.: The principle of our locking system: Two lasers with different wavelengths

are coupled into a scanning Fabry-Perot interferometer and the distance between the two

peaks (shown as the black arrow in the picture) is kept constant leading to a transfer of

the stability of one laser to the other.

One output beam from this beamsplitter is used for the photoassociation process and the

other output is injected into another scanning Fabry Perot interferometer for diagnosing

purposes. This beam is also fed into a photodiode to measure the beat signal of the two

lasers. The signal output of this photodiode is connected to a spectrum analyzer giving

the beat frequency for frequency differences of the two lasers of up to 2 GHz.

The size of the two laser beams at the MOT position is chosen such that they have nearly

the same size as the Yb MOT. The Yb MOT has a 1/e2 radius of σx = 270 μm respective

σz = 460μm. The PA laser has a 1/e2 radius of rx = 425μm respective ry = 299μm while

the probe laser is more elliptic and has a 1/e2 radius of rx = 952μm respective ry = 245μm

(see fig. 3.14). This gives an intensity for the PA laser, used for the free-bound transition

of up to IPA = 50W/cm2 and for the probe laser of up to Iprobe = 45W/cm2. Note that

these values are maximum ratings that are only available when only one laser is shining

onto the atoms. If both lasers are used, the maximum intensity is decreased since the lasers

are superimposed on a polarizing beam splitter with the same polarization.

3.6. Alignment process

In principle, a MOT is centered around the zero of the magnetic field. Due to misalignment

or imbalance of the MOT beams, it can happen that the trap is pushed to another position.

Therefore, it is needed to take care of the position to ensure a good overlap of the MOTs.

For this, the CCD cameras are used to determine the positions of the MOTs and to adjust

the MOT beams. The Rb MOT in continuous loading setup has too many atoms for the



32 3 Experimental apparatus

Figure 3.14.: The size of the PA laser (red curve) used for the photoassociation of the

free-bound transition and the probe laser (black) at the position of the MOT. The 1/e2

radius of the two beams are: rx,PA = 425 μm, ry,PA = 299 μm and rx,probe = 952 μm,

ry,probe = 245 μm.

camera which leads to saturation in the trapping center. Thus, it can be useful to look at

the “background” Rb MOT by blocking the slowing beam.

When the two MOTs are overlapped, one must ensure that the photoassociation beam

is superimposed to the MOT. For that, the PA beam is locked to a known PA resonance

and adjusted carefully so that the Yb fluorescence is lowest. This is the best position of

the PA beam. For the 2-Photon PA experiments, an overlap of the two beams must be

ensured over a long range beginning at the position of the polarizing beam splitter. This

can be proofed when the PA laser is locked to an 1-Photon-PA resonance and the second

laser is located on a 2-Photon-PA resonance. This laser is staying stable on the desired

frequency for a few minutes without locking. This needs to be checked from time to time.

Then, the overlap of the two beams can be adjusted by monitoring the Yb fluorescence

which must reach a maximum for best performance of the probe laser.

3.7. Wavelength measurement and data acquisition

In a typical 2-Photon-Photoassociation experiment, the PA laser is fixed to a free-bound

photoassociation transition and the probe laser is scanned over the desired range. The

frequency of the PA laser is found by applying only this laser to the double species MOT.

It is then carefully adjusted in frequency until the Yb fluorescence signal is at its minimum

which means that it is on a 1-Photon-Photoassociation resonance. In a next step, the

probe laser is applied to the MOT and to the wavemeter. The self-built wavemeter is

based on a Michelson interferometer with one moving mirror. In standard operation, a

Helium-Neon-Laser is used as a reference providing an accuracy of about ±1 · 10−3 nm

for the measured absolute wavelength [3]. The accuracy can be improved by using a

frequency stabilized laser light, which is in our case one part of the light that is also used
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Figure 3.15.: Example scan from a typical experiment. (a) Scan control voltage, (b)

wavelength from the wavemeter, (c) Yb fluorescence signal and (d) Rb fluorescence signal.

The vertical black dotted lines denote the positions on which the data is split up into

individual blocks.

for the Rb MOT, providing an accuracy for the wavelength determination of ±0.5 ·10−3nm

(≈ 4 ·10−3 cm−1 near 795 nm). The wavelength determination is done by a microcontroller

which provides the wavelength in ASCII encoding over standard serial bus. This is besides

several displays around the lab connected to our datalogging system. The datalogger

records the wavelength and up to 5 more analog input channels with 16 bit precision. Fig.

3.15 (b) shows the wavelength during a typical scan.

If the two lasers are less than 2 GHz detuned from each other, it is possible to use

the beat frequency instead of the wavemeter. For that purpose, we use a LabView based

program to read out a spectrum analyzer and record the beat note and a timestamp. This

information is then inserted in the datasets at the place of the wavemeter data. Fig. 3.16

shows a typical scan with (a) the wavemeter and (b) with the beat frequency method which

is much more accurate, providing an accuracy of ±2 · 10−4 cm−1 ≈ 6 MHz.

In the current setup, we record, amongst the wavelength, the Rb MOT fluorescence which

is monitored by a photodiode, the Yb MOT fluorescence monitored by a photomultiplying

tube and the scan control voltage. Fig. 3.15 shows the data from a typical experimental

measurement: (a) shows the scan control voltage. It is clearly visible that a scan with a
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Figure 3.16.: A typical fit to determine the wavelength of the scan. In (a), the waveme-

ter is used. The cycling of the measured wavelength is clearly visible. The wavemeter

sometimes fails to compute the wavelength which results in a completely off-value which

is identified and deleted. This method gives the absolute value of the wavelength of the

laser and is already converted to wavenumbers here. In (b), the beat signal of the two

laser beams is recorded by a spectrum analyzer and is used as the basis for the fitting

routine. This method gives directly the difference of the two lasers. Note the different

scale of the two graphs. The estimated error of the wavemeter is about 4 · 10−3 cm−1 in

this wavelength regime, while the error of the second method is less than 2 · 10−4 cm−1.

frequency of 2 mHz was performed. In (b), the wavelength determined by the wavemeter

is shown. The accuracy of about ±0.5 · 10−3 nm is reflected by the noise on the signal.

The Yb fluorescence signal (c) shows a broad peak. The Rb fluorescence signal (d) is not

showing any effects of the two lasers.

At the beginning of a scan, the two lasers for photoassociation are blocked for a short

time. Thus, the two MOTs are not disturbed by these lasers anymore and the atom number

increases to the maximal loading number. This gives information about the signal when

100 % of the atoms are present. Afterwards, the slowing beam for Yb is blocked for a short

time. Thus, the atom number drops to zero in the combined MOT and the photomultiplier

only measures the background signal. This will be set equal to 0 % of atoms, see fig. 3.17

(a) for an example. These two information are needed to calculate relative atom numbers.

After the measurement, the resulting data file is analyzed in an OriginPro script. In

the first step, the wavemeter data is analyzed. The evaluation of the interferometer data

of the wavemeter and the transport via the serial bus delays the information by nearly a

second which is corrected by the analysis script. In the next step, outliers of the wavelength

caused by a miscount of the electronics are removed. The scan control voltage (see fig. 3.15

a) is analyzed and the positions of the maxima and minima is determined. The data for

the atom numbers in Rb and Yb and the wavemeter data is then split up into individual
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Figure 3.17.: A typical photoassociation Yb signal, already cut at the turning points of

our scan. The x-axis is already converted to the relative wavenumber determined by the

wavemeter. (a) The individual scans. In the first scan (the black curve) the two lasers

got blocked for a short time, indicated by the rectangular C. This results in a higher

atom number in the Yb MOT since there are no losses from photoassociation processes.

Afterwards, the slowing beam got blocked for a short time giving us the background signal

of the photodiode, indicated in the rectangular D. This method is used to get the relative

atom numbers. For the smoothing routine, this data will be deleted. (b) the averaged

data of the single scans.

blocks. A linear fit is performed to the wavemeter data of each individual block. The

fitting parameters are then used to convert the timestamps of the Yb and Rb signal to

wavelengths giving an accuracy of about 4 · 10−3 cm−1 ≈ 120 MHz when the wavemeter

is used respective an accuracy of ±6 MHz ≈ ±2 · 10−4 cm−1, as shown in fig. 3.16. This

accuracy is most likely the laser stability, as our locking system does provide a stability of

5 MHz.

After this, each single sweep is available in the worksheet of an Origin project. It is

therefore easy to delete data that has obvious errors in it (e.g. one laser is not resonant

anymore) or the data that is due to the measurement of the relative atom numbers in Yb

as explained before. In fig. 3.17 (a), all available sweeps of one dataset are shown. In the

black curve, the measurements for the relative atom numbers were performed. This data

is deleted before the sweeps get combined. Sometimes it is necessary to shift the sweeps

to each other since the accuracy of the wavelength determination is about 4 · 10−3 cm−1.

This can be done manually by overlapping the sweeps. In most of the cases, this is not

needed or only much less than the accuracy of the wavelength determination. After that

procedure, the data gets combined and averaged which minimizes the signal noise. Fig.

3.17 (b) shows an example of the finally used signal of an Yb peak.





4.
1-Photon-Photoassociation

In this chapter, the previously published results of the 1-Photon-Photoassociation [93]

of 174Yb and 176Yb with 87Rb will be reviewed. The Photoassociation was performed

near the Rb |2S1/2〉 → |2P1/2〉 transition at 795 nm. In addition to the previous results,

we performed 1-Photon-Photoassociation spectroscopy for two more bosonic Ytterbium

isotopes. These results give more information about the potential of the excited state of

the isotopologue xYb87Rb which is a needed information for the 2-Photon-Photoassociation

that is the main part of this thesis and will be discussed in the next chapter.

Furthermore, photoassociation of 176Yb and 87Rb near the D2-transition at 780 nm was

performed and the results will be presented.

4.1. Introduction

In the process called photoassociation, two colliding atoms A and B form an excited

molecule with the help of a photon [25]:

A+B + �ωL → AB∗ (4.1)

With this technique, it is possible to excite two atoms to a specific vibrational and ro-

tational molecular level. This process is schematically shown in fig. 4.1. The frequency

difference of the photoassociation (PA) laser to the dissociation limit of the atomic transi-

tion corresponds to the binding energy of the molecular state.

The two atoms that form the molecule do not change their distance to each other during

the photoassociation process. Therefore, the internuclear distance required for the process

is determined by the vibrational level of the molecule. That is the reason that the photoas-

sociation process is more probable for a high-lying molecular vibrational level that has a

large average internuclear distance. This also means that it is (nearly) impossible to create

deeply bound molecules with a 1-Photon-Photoassociation process.

In the current experimental setup, the two MOTs are continuously loaded by a Zeeman

slower (see chapter 2 for details). A photodiode monitors the fluorescence of the Rb MOT

which is directly connected to the atom number. A photomultiplying tube is monitoring

the Yb fluorescence which determines the atom number. The PA laser is superimposed on

the two MOTs and creates excited molecules if it is on a molecular resonance. An excited

photoassociated molecule decays after a short time either into a ground state molecule
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Figure 4.1.: Illustration of 1-Photon-Photoassociation. The PA laser is red detuned to

the Rb D1 transition at about 795 nm. The frequency difference between the transition

from F = 1 to F ′ = 2 and the PA laser is called ΔPA. The excited bound state can decay

by spontaneous emission with the rate γp. Δ1 is the detuning of the photoassociation

laser to the bound state.

which then leaves the cycling cooling transition and is not trapped anymore in the MOT

or into two atoms with kinetic energies high enough to leave the MOT. In both cases,

the two atoms are lost from the MOT. Thus, the PA laser induces an additional loss

channel to the MOT leading to a steady state with a lower atom number. This can be

monitored by the fluorescence signal. Due to the large imbalance in atom number in the

two species (108 Rb atoms, but only 105 Yb atoms), the losses in the Rb signal are small

and it is not possible to see a YbRb photoassociation resonance on the Rb fluorescence

signal, but we see it in the Yb signal. Since we are working near a Rb transition, it can

be spaced out that the resonances we found belong to Yb2 photoassociation. A typical

spectrum is shown in fig. 4.2. The upper graph shows a scan over a lot of vibrational

levels. The lower graphs zoom in on two specific vibrational levels that are used in the 2-

Photon-Photoassociation experiments (see chapter 5). It is clearly visible that the hyperfine

structure of the excited atomic Rb state is conserved (although it starts getting narrower

[3]). A rotational structure with levels of up to R′ = 1 is visible as well as a splitting of

the rotational levels.
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Figure 4.2.: Upper graph: Spectrum of the 1-Photon-Photoassociation of 176Yb87Rb

(from [3]). Lower graphs: two vibrational level. The hyperfine structure from the Rb

atom and the rotational structure with levels up to R′ = 1 is clearly visible. Additionally,

the rotational levels are splitting up into subcomponents.

4.2. Line Shape

A full quantum close coupling calculation [94] yields the following equation for the scat-

tering probability of one PA resonance:

|Sp (ε, l,Δ1, I1)|2 = γpγs (ε, l, I1) /(2π)
2

(ε/�−Δ1)
2 + (γ/4π)2

(4.2)

Here, Δ1 is the relative detuning of the PA laser from the position Eb of the bound state,

Δ1 is positive for a red detuned PA laser (�ω < Eb), see fig. 4.1. For low intensities,

Fermi’s golden rule gives

γs (ε, l, I1) =
2πV 2

1 |〈ε, l|b〉|2
�

. (4.3)

The kinetic energy of the colliding atoms is ε = �
2k2/2μ and γ = γs(ε, l, I1)+γp+γ0 is the

total width of the excited state. γp is the natural linewidth of the transition and γs(ε, l, I1)

is the stimulated emission induced by the PA laser back to the ground state. γ0 is due to
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Figure 4.3.: Temperature dependence of the line shape of a Photoassociation resonance

according to eqn. (4.4). The temperature has a clear effect on the red side of the line and

on the position of the maximum. The difference between the (black) zero temperature

curve and the (blue) curve at the temperature of 250 μK is only 3.9 MHz which is much

less than the resolution of our wavemeter and therefore can be neglected.

all other possible processes e.g. molecular predissociation. This is typically a small value

and will be neglected in this work. V1(R) = ( I1
2ε0c

)1/2d1(R) is the radiative coupling matrix

element, depending on the laser intensity I1 and the molecular transition dipole d1(R).

|〈ε.l|b〉|2 is the Franck-Condon factor for the free-bound transition.

Thermal averaging of the ensemble leads to the following term giving the molecular

production rate [94]:

K = h

∫
|Sp (ε, l,Δ1, I1)|2 e−ε/kBT

dε

kBT
(4.4)

The solution of this numerically solved integral is shown in fig. 4.3. The temperature

has a clear effect on the lineshape and also on the position of the resonance. The resonance

is shifted by 3.9MHz for a temperature of 250 μK, 6.3MHz for 500 μK, 9.5MHz for 1 mK

and 13.6 MHz for 2 mK. The shift of resonance is small compared to the accuracy of our

wavemeter and can therefore be neglected.

4.3. Line Assignment

The lower graphs of fig. 4.2 show typical resonances found in 1-Photon-PA experiments.

All found resonances for all examined Yb isotopes have a similar structure for 1-Photon-PA
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experiments at the D1 line of Rb near 795 nm. Experiments done at the D2 line show a

different behavior and will be discussed later.

4.3.1. Hyperfine Structure

The 1-Photon-PA resonances always appear in pairs that are split by approximately

0.027 cm−1. This value is close to the hyperfine splitting of the atomic Rb, where the

literature value is 2.717 ± 0.015 · 10−2 cm−1 [59]. The atomic properties are often still

visible in weakly bound molecules, since the long-range character of the molecule changes

atomic properties only slightly. This coupling, where the atomic angular momenta do

not couple to the internuclear axis, is best described by Hund’s case (e). Deeper bound

molecules will show a different coupling, mostly Hund’s case (a) or (b), but we were not

able to explore these deeply bound levels. A hint for the changing of coupling can be seen

by the more bound vibrational level: The hyperfine splitting slightly decreases to about

0.023 cm−1 [3].

4.3.2. Rotational Structure

The rotational energy of a molecule is defined as

Erot = Brot R · (R+ 1) (4.5)

where R is the rotational quantum number of the nuclear motion and Brot is the rotational

constant, as defined in equation (2.28):

Brot =
�
2

2μr2

The rotational structure is clearly visible for the components R = 0 and R = 1. The R = 2

component is nearly not visible in the spectrum, higher rotational levels do not appear.

This is due to the temperature of our atom clouds with TRb ≈ 120 μK and TYb ≈ 400 μK

(see chap. 3). The relevant effective temperature is then [2]

T̄ =
mRbTYb +mYbTRb

mYb +mRb
≈ 210 μK (4.6)

which is the well below the centrifugal barrier of 360 μK for the R′ = 2 component (see

chap. 2.2.5). In previous experiments [3], we worked at higher temperatures of the atom

clouds which made the R′ = 2 component more pronounced, see the comparison of different

temperatures for the photoassociation in fig. 4.4.

4.3.3. Splitting of the rotational components

Our data shows a splitting of rotational components into subcomponents. A detailed view

shows that for each rotational component we get for the F ′ = 1 state 1, 3, 3 substates while

for the F ′ = 2 state, there are 1, 3, 5 substates. This let us come to the assumption, that

a coupling between F ′ and R′ causes this splitting. This confirms the Hund’s case (e)

coupling, where at first all atomic angular momenta couple to F ′ and then this couples to

R′. A detailed discussion of this splitting can be found in [3].
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Figure 4.4.: 1-Photon-Photoassociation resonance in 176Yb87Rb at ΔPA = −2.72 cm−1.

(a) Previous data from [3] with an effectivetemperature of T̄ ≈ 400 μK [3] and (b) data

with T̄ ≈ 210 μK from this work. The rotational structure shows only components up to

R′ = 1 due to the centrifugal barrier of 361 μK.

4.3.4. Vibrational Structure

The positions of the vibrational levels can be computed by an approximation introduced

by LeRoy and Bernstein [6]. As already described in chapter 2.2.3, a C6 value describes

the potential in the long-range regime and defines the vibrational level by the following

equation:

E(V ) ≈ ED −
(
(vD − v) ·

√
π

2μ
· Γ(1 + 1/n)

Γ(1/2 + 1/n)
· �(n− 2)

(−Cn)1/n

) 2n
n−2

(4.7)

A fit to our data gives a value of [3]

C6 = −(5684± 98) Eha
6
0

vD = 0.278± 0.031.
(4.8)

The plot of the function is shown in fig. 4.5.

4.4. Isotopic effects on Photoassociation

In [3], we performed the 1-Photon-PA experiments in YbRb with the two isotopes 176Yb

and 174Yb. In preparation for the 2-Photon-PA experiments, we performed 1-Photon-

PA spectroscopy for 170Yb and 172Yb as well. In general, the structure of the found

resonances is the same as for 176Yb for all examined isotopes. We performed the 1-Photon-

PA experiments on the same vibrational state for each isotope1.

1Due to the mass of 176Yb87Rb, it is Δv′ = −7 for this isotopologue while it is Δv′ = −6 for the other

combinations, because it exhibits one more vibrational state.



4.4. Isotopic effects on Photoassociation 43

Figure 4.5.: Vibrational level of the excited 176Yb87Rb molecule. Adapted from [3, 93].

In experiments with 174Yb and 87Rb, the found resonances appear to be smaller com-

pared to 176Yb. A sample resonance scan is shown in fig. 4.7. This resonance was used for

the 2-Photon-PA spectroscopy.

In 172Yb, a deep, very loosely bound resonance was found. Fig. 4.6 (b) shows this

resonance. The hyperfine structure of Rb is clearly visible as well as a rotational structure

up to R′ = 3, which is more than expected. One reason could be, that the strength of

this free-bound transition is very high and therefore the tunneling process through the

centrifugal barrier is sufficient to create molecules with larger angular momentum.

Since the natural abundance of 170Yb is only 3 %, the signal is lower but still sufficient

for this kind of experiments. A typical 1-Photon-PA scan is shown in fig. 4.6 (a).

The depicted resonances are exhibiting well the expected mass dependence of a vibra-

tional state. Fig. 4.8 shows the potential of xYb87Rb with the additional states belonging

to the different isotopes included. The potential of the molecular state which is determined

by electronic interactions does not change with the isotopes, therefore the C6 coefficient

calculated for 176Yb is still valid for the other isotopes. In the LeRoy-Bernstein formula,

the only two things that change are the fractional part vD of the vibrational state and the

reduced mass. Tab. 4.1 lists this number for all examined Yb isotopes.
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Figure 4.6.: 1-Photon resonance for (a) 170Yb87Rb with a rotational structure up to

R′ = 2 and (b)172Yb87Rb. The hyperfine structure of the excited Rb state is clearly

visible as well as the rotational levels, in blue: F ′ = 1, in black: F ′ = 2.

Figure 4.7.: 1-Photon Resonance for 174Yb and87Rb. A rotational structure until R′ = 2

is visible.

Yb isotope vD
170 0.13

172 0.58

174 0.928

176 0.274

Table 4.1.: The fractional part vD of the LeRoy-Bernstein formular for different Yb

isotopes.
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Yb isotope vibrational state Δv′ ΔPA Brot

in cm−1 in 10−3 cm−1

170 -6 -0.783 1.25

172 -6 -0.974 1.34

174 -4 -0.42490 1.02

-5 -0.72800 1.09

-6 -1.1486 1.40

-7 -1.70310 1.47

-8 -2.43700 1.67

-10 -4.45900 1.95

-12 -7.38365 2.33

176 -5 -0.49440 0.85

-6 -0.88090 1.45

-7 -1.32980 1.34

-8 -1.93810 1.48

-9 -2.72330 1.65

-10 -3.70710 1.66

-11 -4.89710 2.00

-12 -6.33330 2.00

-13 -8.00080 2.45

-14 -9.94940 2.47

-15 -12.19230 2.90

-16 -14.80770 2.98

-17 -17.68660 3.14

-18 -20.92110 3.30

-19 -24.5534 3.35

-21 -33.0554 3.60

Table 4.2.: Properties of all excited states found in xYb87Rb. The position is given for

the F ′ = 2, R′ = 0 state with an accuracy of ±5 · 10−3 cm−1. The values for 174Yb and
176Yb are taken from [3].
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Figure 4.8.: Positions of vibrational levels of different Yb isotopes. The potential does

not change with different isotopes except for the vD constant and the reduced mass. The

fit is the potential for 176Yb as described before. The resonances of the different Yb

isotopes belonging to the same vibrational level are emphasized.
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Figure 4.9.: Photoassociation experiments at the D2 transition of Rb. Δ∗
PA = 0 is defined

as the transition from F = 1 to F ′ = 0.

4.5. 1-Photon-Photoassociation at the D2-transition

In principle, photoassociation experiments could be done close to any atomic transition of

the involved atoms. Besides experiments at 795 nm at the D1 transition of Rb, we also

investigated the possibility for photoassociation close to the D2 transition near 780 nm.

The excited state of this transition exhibits four hyperfine levels of Rb, with distances in

the range of the rotational spacing, see fig. 4.9. From now on, Δ∗
PA = 0 is defined as

the transition from |S1/2, F = 1〉 → |P3/2, F
′ = 0〉 at 12816.6818 cm−1. We found three

resonances with a completely different structure than the ones at the D1 transition. Fig.

4.10 shows these resonances.

Exact and trusted properties of the potential can not be made with these three reso-

nances. But ab-initio calculations (see fig. 2.3) show that the potential of this state is

similar to the 2Π1/2 state we examined at the D1 transition. We can give an estimation of

the C∗
6 coefficient with the LeRoy Bernstein formalism, which also gives information about

Δv′∗ Δ∗
PA

-5 -0.4297

-8 -1.742

-9 -2.496

Table 4.3.: Properties of the found resonances at the D2 transition. The accuracy of the

given resonances is ±5 · 10−3 cm−1.
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Figure 4.10.: (a) - (c): All found photoassociation resonances in the regime up to ΔPA =

−3 cm−1. In (b), the possible “echoes” are shown. (d): Fit to the LeRoy-Bernstein

equation using the most deeply bound peak from each resonance. This leads to C6 =

−(5610± 250) Eha
6
0 and vD = 0.02.

the relative vibrational level Δv′∗ by using the three resonances we found. We got

C∗
6 = −(5610± 250) Eha

6
0,

v∗D = 0.02± 0.07.
(4.9)

This was fitted using the most deeply bound peak in each resonance which is probably the

R′∗ = 0 component. The positions and the belonging vibrational levels are given in tab.

4.3.

The structure of the resonances is not fully understood yet. It is remarkable that the

first three peaks seem to have each an “echo”, that are the last three peaks. This is shown

in fig. 4.10 (b) as an example.

Since the structure of these resonances is much more complicated in comparison to the

D1 transition, we did not see any advantages to use this transition. Therefore, we did

not pursue this possibility anymore and did not try to use this transition in 2-Photon-

Photoassociation experiments.
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2-Photon-Photoassociation

In this chapter, the experimental results of our 2-Photon-Photoassociation studies are pre-

sented. The 2-Photon-Photoassociation studies were performed in a double species MOT

using a trap-loss technique which is based on the one used for 1-Photon-Photoassociation.

From the 2-Photon-Photoassociation spectra information about the potential of the ground

state molecule YbRb is obtained.

5.1. Principle of 2-Photon-PA spectroscopy

2-Photon-Photoassociation spectroscopy probes a state in an atom or molecule through

an auxiliary state. In the heteronuclear case, the simplest way is to prepare two atomic

species in a continuously loaded two-species MOT. After a loading time of a few seconds,

the two clouds reach their steady state values in temperature and atom number. The atom

number can be monitored easily by the fluorescence of the MOT.

The first step to observe 2-Photon-Photoassociation is to apply the PA laser to the

double-species MOT on resonance with a specific free-bound transition which causes a

permanent creation of electronically excited molecules (see chapter 4). This leads to a

steady state of the MOT with a lower atom number as a permanent additional loss is

introduced. In the next step, a probe laser is superimposed with a lower wavelength

than the PA laser. This laser couples the excited bound state to a vibrational level of

the molecular ground state. Whenever the laser is resonant with such a bound-bound

transition, the excited level is perturbed by lightshift effects. A shift of the resonance

occurs and thus, the PA laser which is fixed to the unperturbed system is not resonant

anymore. This causes a lower production rate for the molecules in the excited state and

therefore, the atom number in the MOT increases. The energy difference of the PA and the

probe laser gives the binding energy of the vibrational level of the electronic ground state.

Fig. 5.1 shows this technique. The PA laser is fixed slightly below the D1 transition of

Rb near 795 nm to a transition from free atoms to a vibrational level of the electronically

excited molecular state 2Π1/2. The probe laser is scanned and whenever it is on resonance,

it shifts the molecular level and therefore shifts the PA laser out of resonance which will

be noticed as an increase of atom numbers. The 2-Photon-Photoassociation spectroscopy

was first demonstrated in 1995 [95] in a mixture of homonuclear 7Li.



50 5 2-Photon-Photoassociation

Figure 5.1.: Principle of 2-Photon-Photoassociation spectroscopy: The PA laser (1) is

fixed to a 1-Photon-PA resonance producing molecules in the electronically excited state

and the probe laser (2) couples this bound state to a bound state in the electronic ground

state. When on resonance, this laser shifts the energy levels of the molecule and the PA

laser (1) is out of resonance causing less molecule production. Adapted from [3].

5.2. Strong light field interaction with a molecular transition

Autler and Townes [96] showed that a transition can split up into two components when

one of the used levels is coupled to a third one by a light field1. This splitting leads to

a shift of the resonance. This effect is utilized in 2-Photon-Photoassociation experiments.

This so called Autler-Townes splitting is explained in many textbooks, such as [56, 97]

and is subject of many lectures to quantum optics. I will follow these lectures [98, 99] to

explain this effect. We start with a system that is reduced to an atom with three levels |a〉,
|b〉, |c〉 with the energies �ωa, �ωb and �ωc and no spontaneous emission. This system has

two allowed transitions (see fig. 5.2). The transition |b〉 ↔ |c〉 with transition frequency

ωcb is probed by a weak laser field ωL,cb. The transition |a〉 ↔ |b〉 has the frequency ωab

and is driven by a strong laser field with frequency ωL with a relative detuning

2πδ = ωL − ωab (5.1)

which is small compared to ωab, ωcb and the difference ωab − ωcb to ensure that this laser

field is nonresonant with the transition |c〉 ↔ |b〉. Due to the interaction between the

states |a〉 and |b〉, the transition |c〉 ↔ |b〉 is also modified. To quantify this modification,

we neglect for now the probe transition (and level |c〉) and only consider a two-level atom

with the wavefunction:

Ψ (�r, t) = ca(t)e
−iωatua (�r) + cb(t)e

−iωbtub (�r) (5.2)

1Autler and Townes described a microwave transition, but the effect is the same for a light field which is

used in this experiment.
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Figure 5.2.: Three level atom. The transition |a〉 ↔ |b〉 is driven by strong laser field ωL

and the transition |c〉 ↔ |b〉 is probed by a weak laser field ωL,cb.

ua(�r) and ub(�r) are the two eigenfunctions of the two states with the energy Ea and Eb with

Eb > Ea. The time-dependent wave equation can then be calculated by the Schrödinger

equation

i�Ψ̇ = ĤΨ =
(
Ĥat + Ĥint

)
Ψ (5.3)

where Ĥat is the atomic Hamiltonian containing all internal interactions and Ĥint is the

interaction Hamiltonian. We neglect all kinetic terms of the atomic Hamiltonian:

Ĥatui(�r) = �ωiui(�r) (5.4)

The light field

�EL = �εE0 cos
(
ωLt− �kL · �r

)
(5.5)

which is driving the transition |a〉 ↔ |b〉 with the amplitude E0, the polarization vector �ε

and the laser frequency ωL interacts with the wavefunction through the dipole interaction.

The light field changes only slightly over the range of the atom, so that we can use the

dipole approximation where �EL is taken as constant in space and depends only on time:

Ĥint = −�d · �E(t) (5.6)

Here, we introduced the dipole operator �d = −e�r. If we now substitute eqn. (5.2) into

(5.3), we get

ċa(t) = iΩ∗
0e

−iωabt cos (ωLt) cb(t)

ċb(t) = iΩ0e
iωabt cos (ωLt) ca(t)

(5.7)

where

Ω0 =
�εE0

�
· 〈a|�d|b〉 = �εE0

�
· dab (5.8)

is the resonant Rabi frequency of the system and ωab is the transition frequency between

|a〉 and |b〉. The Rabi frequency can be assumed to be real, that means Ω∗
0 = Ω0. If we
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apply the rotating-wave-approximation which is valid if ωL ≈ ωab, we can neglect terms

with the frequency ωL + ωab and only keep the terms with the detuning 2πδ = ωL − ωab

which then gives us:

c̈a(t) = i
Ω0

2
ei2πδtca(t)

c̈b(t) = i
Ω0

2
ei2πδtcb(t)

(5.9)

If at t = 0 all the population is in state |a〉, one gets for the population of state |b〉:

|cb(t)|2 = Ω2
0

Ω2
sin2(Ωt/2) =

Ω2
0

2Ω2
(1− cos(Ωt)) (5.10)

Here, the generalized Rabi frequency Ω was introduced:

Ω =

√
(2πδ)2 +Ω2

0 (5.11)

We see, that a laser field in a two-level system induces oscillations with a frequency Ω.

If we introduce spontaneous emission with the rate γ and the saturation intensity

Isat =
�ω3

abγ

12πc2
(5.12)

to the model system, it can be shown that the Rabi frequency can be written as

Ω0 = γ

√
I

4Isat
(5.13)

with the intensity I = 1
2cε0E

2
0 of the laser field.

Now, we introduce the third level and the probe laser field. The atom are now viewed

in the “dressed atom” [97] picture: The atom is described by two quantum numbers: one

for the eigenstates a, b or c and one for the photon number N with the energy of �ωL.

For example, the state |a,N + 1〉 is an atom in the eigenstate a in the presence of N + 1

photons. This state is separated from a state |b,N〉 by an energy difference

Ea + (N + 1)�ωL − Eb −N�ωL = �(ωL − ωab) = �2πδ. (5.14)

At resonance and vanishing laser intensity, these two states are degenerate. The inter-

action Hamiltonian Ĥint couples these two states. An atom in the state |a〉 can make a

transition to the state |b〉 by absorbing one photon:

〈b,N |Ĥint|a,N + 1〉 = �Ω0 (5.15)

with the Rabi frequency Ω0 as before, see equation (5.8). This frequency is proportional

to the laser intensity and the transition dipole moment between the states |a〉 and |b〉. The
coupling due to the laser field is the reason for a splitting of the two states and leads to

an avoided crossing mixing these states. Thus, the new eigenstates in the presence of the

light field are the perturbed states |1(N)〉 and |2(N)〉. The energies of these two states
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Figure 5.3.: Dressed state picture of the system.

are separated by the generalized Rabi frequency Ω (see eqn. (5.11)). The laser light field

ωL is nonresonant for the transition |c〉 ↔ |b〉 and therefore, any effects of the interaction

Hamiltonian on |c,N〉 can be neglected.

The weak laser field with the frequency ωL,cb probes the transition |c,N〉 ↔ |b,N〉.
Because the perturbed states |1(N)〉 and |2(N)〉 are given by linear combinations of |a,N+

1〉 and |b,N〉, two transitions are possible. These two transitions are separated by

Δ =
Ω

2π
=

√(
Ω0

2π

)2

+ δ2. (5.16)

This is the so-called Autler-Townes-Splitting, which will be investigated in detail in chapter

6. For the present chapter, it is sufficient to know, that the state |b〉 is shifted due to the

laser field ωL when on resonance with |a〉 ↔ |b〉.

5.3. 2-Photon Photoassociation spectroscopy in YbRb

The model presented above can now be applied to the YbRb system:

• |a〉 is a vibrational level of the molecular ground state,

• |b〉 is the electronically excited molecular state addressed by the PA laser,

• |c〉 is the state of two free atoms,

• |c〉 ↔ |b〉 is the 1-Photon-Photoassociation transition used by the PA laser and

• |a〉 ↔ |b〉 is the 2-Photon-Photoassociation transition used by the probe laser.

A scheme of the experiment is shown in fig. 5.4. The PA laser is fixed on a 1-Photon-

PA resonance with the energy Eb = Eres + ΔPA, where Eres is the energy of the atomic

resonance corresponding to the excited state hyperfine level F ′ = 2, as defined in the

previous chapter. The PA laser is detuned from this resonance by Δ1. This excited state

can decay by spontaneous emission with a rate of γp. The probe laser is resonant with the

transition of the excited state |b〉 to a ground state |a〉 with the energy Ea = E0 + Δbind
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Figure 5.4.: Schematic potential curve for the RbYb molecule (not to scale). The bound

vibrational state |b〉 of the electronically excited molecule has the energy Eb and the

vibrational number Δv′ which is shifted by ΔPA from the Rb atomic |2P1/2, F
′ = 2〉

excited state. The PA laser is detuned by Δ1 from this state. The probe laser is detuned

by Δ2 from Ea . Ea is the energy of the vibrational level with the vibrational number

Δv of the electronically ground state of the molecule. The probed vibrational level of

the ground state is detuned by Δ2photon from the F = 1 ground state of Rb, which is

the binding energy Δbind of the 2-Photon resonance plus the hyperfine splitting, which is

dependent on the state. Adapted from [3]

with E0 being the energy of the atomic ground state with the hyperfine level F = 1. From

this definition, ΔPA and Δbind are negative if the state is bound. The probe laser is detuned

by Δ2 from the bound state.

For a 2-Photon-Photoassociation scan, the PA laser is fixed to a specific 1-PA resonance.

This leads to molecule production in the excited state and the atom number in the MOT

drops. The probe laser is then superimposed to the PA laser, causing a disturbance of

the excited state |b〉 as discussed above. The wavelength of the probe laser is measured

with a wavemeter, giving the wavelength in absolute wavenumbers. For simplicity, the

wavenumber of this laser will from now on be given as the difference of the wavenumbers
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Figure 5.5.: Used 1-Photon-Photoassociation resonances in 176Yb87Rb, (a) Δv′ = −9,

(b) Δv′ = −11. The used transitions for the rotational level R′ = 0 (black) and R′ = 1

(blue) are marked with the dotted lines.

of the two lasers:

Δ2photon = ν1 − ν2 (5.17)

with ν1 and ν2 are the absolute wavenumbers of the two lasers. With this definition,

Δ2photon corresponds to the binding energy of the vibrational states, if they belong to the

F = 1 hyperfine ground state.

If Δ2photon is smaller than 0.07 cm−1(= 2 GHz), we are able to use the beatnote of the

two lasers to determine the difference of the two frequencies, recorded with a photodiode

connected to a spectrum analyzer which gives us directly the frequency difference of the

two lasers equivalent to Δ2photon.

For the 2-Photon-PA spectroscopy in 176Yb, we focus on two resonances, namely the

Δv′ = −9 at ΔPA = −2.723 cm−1 and the Δv′ = −11 at ΔPA = −4.897 cm−1, each with

the two rotational states R′ = 0 and R′ = 1 and a subrotational splitting ΔR′ of the R′ = 1

state. The corresponding 1-Photon-PA resonances are shown in fig. 5.5. From now on, the

used excited states will be named as follows:

• The |Δv′ = −9, F ′ = 2〉 state will be named as |I0〉 for the R′ = 0 component and

|I1〉 for the R′ = 1,ΔR = +1 component.

• The |Δv′ = −11, F ′ = 2〉 state will be named as |II0〉 respective |II1〉.

A typical scan is shown in fig. 5.6. This spectrum was recorded with the first laser fixed

to the |I1〉 resonance of the excited molecule.

For the determination of the ground state potential, we performed 2-Photon-PA mea-

surements with the excited states |I0〉 and |II0〉. All resonances found are shown in fig.

5.7 for |I0〉 (black curve) and |II0〉 (red curve). For the identified ground state vibrational

levels, the value for Δ2photon is the same within the accuracy of our wavelength deter-

mination. Thus, the states can be considered to belong to the ground state. It should
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Figure 5.6.: Spectra of 2-Photon-Photoassociation with the PA laser fixed to the |I1〉 1-
Photon-PA resonance (see fig. 5.5 and chap. 4). The identified resonances are labeled

by their relative quantum number Δv of the molecular ground state with F = 1 (black)

or F = 2 (red) hyperfine ground state. The lines labeled with blue letters correspond to

an 1-Photon-Photoassocation resonance in Rb (A), leading to less loss in Yb and to an

artifact due to four-wave mixing of the tapered amplifier (B). For a determination of the

vibrational quantum numbers see chapter 5.5. From [100]

be emphasized, that resonances exist on the red side of the F = 1 hyperfine state with

Δ2photon > 0. These states clearly belong to the F = 2 hyperfine level of the electronic

ground state. The intensity of the peaks differs between the two excited states, but since

this depends on the overlap of the ground and excited state wavefunction, this is expected.

5.4. Line Shapes

The model for the 1-Photon-Photoassociation, as described in chapter 4.2, was expanded to

2-Photon-Photoassociation in [101]. As explained in eqn. (4.2), the scattering probability

for 1-Photon-PA is

|Sp (ε, l,Δ1, I1)|2 = γpγs (ε, l, I1) /(2π)
2

(ε/�−Δ1)
2 + (γ/4π)2

with γ = γs + γp. The stimulated width γs depends on the laser intensity I1 and the

Franck-Condon factor for the free-bound transition (see chapter 4.2). In the following, this

is considered independent of the intensity I2 of the second laser. It is also assumed that γs
is constant for a given excited vibrational level and thus independent of the probed ground

state. The natural linewidth γp of the excited state is independent of any laser intensities.

The values for γs and γp are determined from 1-Photon-Photoassociation spectra. For

consistent results, these values were calibrated once a day.

The single photon molecular production rate |S1g|2 in the 2-Photon case depends on the

PA laser as the laser who creates the molecules and on the probe laser which disturbs this
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Figure 5.7.: All observed resonances of the 2-Photon-PA spectroscopy using the two 1-

Photon-PA resonances |I0〉 (black) and |II0〉 (red). Differences of the resonance positions

can be attributed to the uncertainty of about ±5 · 103 cm−1 of the wavelength determina-

tion. Notes: (h) A “dip” can be seen in the resonance that only occurs at high intensities

of the probe laser, it is also visible in (g) and the red curve in (k), we did not examine

this effect in detail. In (i), the difference of the position of the two peaks is most likely

due to the inaccuracy of the wavemeter.

production and is calculated to be [101]

|S1g|2 = (ε/�−Δ2)
2 γpγs/(2π)

2

((ε/�−Δ+) (ε/�−Δ−))2 + (γ/4π)2 (ε/�−Δ2)
2 . (5.18)

Here, γ, γs and γp are defined the same way as for the 1-Photon-PA. Δ2 is the detuning of

the second laser from the bound state (see fig. 5.4). This laser splits a single vibrational
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Figure 5.8.: Examples of observed lineshapes for the 2-Photon Photoassociation reso-

nance. Left: Δ1 > 0 MHz, middle: Δ1 ≈ 0 MHz, right: Δ1 < 0 MHz.

level of the excited state into a pair with the energies of

Δ± =
1

2
(Δ1 +Δ2)± 1

2

√
(Δ1 −Δ2)

2 +

(
Ω

2π

)2

. (5.19)

The splitting of the two resonances is then:

Δ = Δ+ −Δ− =

√
(Δ1 −Δ2)2 +

(
Ω

2π

)2

(5.20)

This definition corresponds to eqn. (5.16), if a detuning from the resonance is defined as

δ = Δ1−Δ2. Note that in this definition, Ω is the splitting of the pair and therefore differs

from the definition of Bohn and Julienne [101]. This splitting is called Autler-Townes-

Splitting [96] and the Rabi frequency Ω is defined as

Ω = |〈a|b〉| γp
√

I2
4Isat

(5.21)

where Isat is the saturation intensity and γp is the atomic linewidth as before. The overlap

integral is related to the Franck-Condon factor fFC through fFC = |〈a|b〉|2. The Autler-

Townes splitting will be discussed in detail in the next chapter.

Fig. 5.8 is showing some examples with different values for Δ1, showing that the model

is well reproducing our data.
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Figure 5.9.: Temperature dependence of 2-Photon-PA. (a) Resonance at different tem-

peratures with Δ1 = 0. (b) Resonance at different temperatures with Δ1 equals the

maximal depth of the 1-Photon-PA (see chapter 4.2). Down: Relative position of the

peak position (compared to the case at T = 0 K) with (c) Δ1 = 0 respective (d) Δ1

equals the maximal depth of the 1-Photon-PA resonance.

The atoms are trapped in a MOT at a temperature of about 250μK. Thermal averaging

over the collision energy ε is necessary for this temperature. This is given by [102]

K =
1

hQT

∫
|S1g|2 e−ε/kBTdε (5.22)

where QT = (2πkBTμ
h2 )3/2 is the partition function with μ being the reduced mass. Some

examples for different temperatures are shown in fig. 5.9 (a) with Δ1 set to zero detuning

and (b) with Δ1 set to the maximal depth of the 1-Photon-PA resonance at a given temper-

ature (see chapter 4.2). In (c) and (d), the shift of the resonance against the temperature

is shown. For a temperature of 250 μK, the thermal shift is about 4 MHz and is thus

small compared to the uncertainty of the wavemeter, which is about 120 MHz and can be

neglected. For the resonances found in the region below 2 GHz, we used the beat-signal of

the two lasers and the accuracy of this method is about ±6MHz, therefore the temperature

shift should be considered.

Since the shift of the temperature is small, the simpler equation (5.18) without consid-

ering the temperature is used as a fitting function for the resonances. This function has

the detuning Δ1 and Δ2 of the two lasers from the transition and the Rabi frequency Ω as

fitting parameters, some examples are shown in fig. 5.8.
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5.5. Line assignment

Let us first concentrate on the resonances found with the PA laser being on the R′ = 0

component in the excited state. Each resonance we found can be assigned to one vibrational

state in the ground state. No substructure was found. Hence, there must be a selection

rule giving only one possible transition to the ground state. Since both states are following

Hund’s case (e) coupling, both vibrational states are loosely bound and therefore the

coupling between the nuclear motion and the electronic momentum of the electron is weak.

Therefore, the nuclear motion cannot be changed by the absorption of a photon. The

comparison between the structure of the resonances found when the PA laser is on a

R′ = 0 component and resonances found when the PA laser is on a R′ = 1 component

confirm this assumption (see next section).

It is also interesting to notice, that the hyperfine splitting of the Rb ground state is

also seen in the resonances found in the 2-Photon-PA. To most of the vibrational levels,

there is a corresponding resonance about 0.227 cm−1 apart. This is exactly the hyperfine

splitting of the ground state of the 87Rb atom. These states will be labeled with F = 1

and F = 2 from now on. There were also resonances found on the red side (Δ2photon > 0)

of the F ′ = 2 → F = 1 transition, which clearly indicates, that these bound molecular

levels must correspond to the F = 2 hyperfine ground state of Rb. A typical spectrum is

shown in fig. 5.6. We performed a whole scan with the PA laser fixed to the |I1〉 excited
level from +0.3 cm−1 to −1.1 cm−1 and found 10 resonances, from which we assigned 5 to

the upper hyperfine state of Rb (F = 2) and 5 to the lower F = 1 state2. All observed

resonances that are used for the determination of the ground state potential in 176Yb87Rb

are shown in fig. 5.7 with the intermediate excited states |I0〉 and |II0〉.

5.5.1. Vibrational levels

To assign a vibrational quantum number to a series, we used the same method as for

the 1-Photon-PA: LeRoy and Bernstein found in 1970 [6] an equation for calculating the

position of the vibrational states of one series (see chapter 2.2.3, especially eqn. (2.22)):

Δbind = − 1

hc

(
�

(
2π

μ

) 1
2 Γ

(
1 + 1

n

)
Γ
(
1
2 + 1

n

) n

C
1/n
n

(vD −Δv)
n− 2

n

) 2n
n−2

Here, μ is the reduced mass, Γ the Gamma function, vD is the non-integer value of the

vibrational quantum number at the dissociation limit und Cn is the long-range coefficient

of the potential and n = 6 for a heteronuclear diatomic molecule. This equation can also

be used to assign vibrational quantum numbers to the observed ground state levels. The

position of the vibrational series Δbind is corrected by the hyperfine splitting of the Rb

atom for each resonance by

Δbind(Δv, F ) = Δ2photon +ΔHFS(F ). (5.23)

2With the help of the assumed hyperfine splitting of the ground state, we were able to find another

resonance at Δ2photon = −1.24 cm−1 which is not shown on the spectrum
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Figure 5.10.: Fit to the vibrational level of the ground state molecule. In the upper

graph, the broken red line indicates the dissociation energy. A fit to the data yields a

value for C6 = −(2563± 50) Eha
6
0.

Here, Δ2photon is the difference of the two lasers, giving the difference of the probed state

to the F = 1 hyperfine ground state of Rb. ΔHFS(F = 1) = 0 cm−1 and ΔHFS(F = 2) =

−0.227 cm−1 respects the hyperfine structure of Rb. A change of this value is not found

in our data.

In a next step, we repeated the same measurements on the excited vibrational level |II0〉
1-Photon-resonance. Since the second laser still couples to the same ground state as before,

this should give the same binding energies for the probed vibrational levels of the ground

state. So, this state can also be used as a test for the assignment. In fig. 5.7, the resonances

found in this scan are shown in the red curves. We confirmed most of the known resonances

within the uncertainty in wavelength measurement except for two which we did not find

in this level, but still fit into the potential. The magnitude of the resonances differs for the

two excited states (see chapter 5.6 for details), but that is expected due to the different

vibrational level with a different wavefunction leading to a different overlap integral. That

is also the reason that we did not find two of the levels, it seems to be a very low overlap
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R=0

Δv F rel. position (Δv′ = −9) / cm−1 rel. position (Δv′ = −11) / cm−1

-1 2 -b -b

-1 1 -0.0098c -0.0099c

-2 2 -b -b

-2 1 -0.0588c -0.0586c

-3 2 -a -0.1751c

-3 1 -a -0.172

-4 2 -0.396 -0.395

-4 1 -a -0.390

-5 2 -0.751 -a

-5 1 -0.752 -a

-6 2 -1.263 -1.248

-6 1 -1.260 -1.244

-7 2 -a -1.952

-7 1 -a -1.954

R=1

Δv F rel. position (Δv′ = −9) / cm−1 rel. position (Δv′ = −11) / cm−1

-1 2 -0.012 -a

-1 1 -0.0094c -0.0096c

-2 2 -0.057 -0.057

-2 1 -0.0565c -0.0572c

-3 2 -0.172 -0.175

-3 1 -0.174 -0.177

-4 2 -0.399 -0.393

-4 1 -0.390 -0.393

-5 2 -0.736 -a

-5 1 -0.744 -a

-6 2 -1.249 -1.253

-6 1 -1.245 -1.255

-7 2 -a -1.952

-7 1 -a -1.957
a not observed b not measured

Table 5.1.: Resonances found in 2-Photon-PA spectroscopy in 176Yb87Rb. The measure-

ment accuracy is 4 · 10−3 cm−1 if not labeled with c where the accuracy is 2 · 10−4 cm−1

(direct measurement using the beat frequency). Due to the lower 1-Photon-PA signal in

the R′ = 0 component, it is possible, that the resonances that we did not observe in this

component are too small to distinguish them from the background signal.



5.5. Line assignment 63

of the two wavefunctions.

To get more information about the rotational structure of the ground state, we repeated

the measurement with the PA Laser fixed to the R′ = 1 component where also one res-

onance per vibrational level was found, but slightly shifted with respect to the R′ = 0

resonances. A discussion of the rotational splitting will follow in the next section.

Table 5.1 shows the found values for the two vibrational levels Δv′ = −9 and Δv′ = −11.

They differ only within error bars so that it can be concluded that these resonances all

connect to vibrational levels of the 2Σ1/2 ground state of the 176Yb87Rb molecule.

With the help of the LeRoy-Bernstein formula (2.22), it is possible to determine a C6

value for this potential. A fit to our data with the PA laser fixed to the R′ = 0 component

is shown in fig. 5.10 and gives us the following values:

C6 = −(2563± 50) Eha
6
0

vD = 0.26± 0.02
(5.24)

With the help of these values, it would be theoretically possible to calculate the last

bound state of the potential which determines the s-wave scattering length. But it has

been shown [103] that the approximations that have been made for the derivation of the

LeRoy-Bernstein equation (2.22) should be modified near the dissociation limit. This is

important for states which are less bound than 0.33 cm−1(=10 GHz) [83]. In other words,

vD should be regarded as a fit parameter with limited physical significance rather than a

real non-integer value of the vibrational quantum number. Therefore, this equation fails for

determining the last bound state and thus, for determining the s-wave scattering length.

A fully numerical solution is favorable (see chapter 5.8).

5.5.2. Rotational levels

The rotational energy of a state is defined as (see also chapter 4.3.2)

Erot = BrotR · (R+ 1) (5.25)

with the rotational constant Brot = �
2/(2μr2). Therefore, the difference of the R = 0

and the R = 1 component is giving us twice the rotational constant. An estimated size of

the ground state molecules of about r ≈ 25a0 implies rotational constants in the region of

Brot ≈ 1.6 · 10−3 cm−1.

We already discussed that the 2-Photon-Photoassociation process does only couple to

states with the same rotational quantum number:

ΔR = R′ −R = 0 (5.26)

Here, R′ belongs to the excited state and R to the ground state. To get information about

the rotational structure of the ground state, it is essential to repeat the measurements

with the PA Laser locked to different components of an excited vibrational level. The

experimental data lead to the following findings: The three substates of the excited R′ = 1

component couple to the same level in the ground state. The R′ = 0 component couples to
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Figure 5.11.: The position of the resonance is dependent of the rotation of the first tran-

sition. Upper Graph: the used 1-Photon-PA resonance for the 2-Photon resonances. The

arrows indicate which resonance belongs to which excited state. It shows that the R′ = 0

component is shifted against the components that come from one of the subrotational

states of the R′ = 1 component. Lower Graphs: The black curve shows the PA laser

fixed to the |I0〉 1-Photon-PA resonance. Red: The PA Laser fixed to one of the R′ = 1

components of the |I〉 1-Photon-PA resonance. All three substates lead to the same 2-

Photon-PA resonance. The difference between these two resonances is 2 · Brot, since the

rotational energy is defined es Erot = Brot ·R · (R+ 1). The data is vertically shifted.

a different state that is more bound. This shows, that states coupled to the R′ = 0 have less

rotational energy than the states coupled to R′ = 1 states. This confirms the assumption

we made in eqn. (5.26). In addition, there is no splitting into subrotational levels in the

R = 1 component of the ground state. In fig. 5.11, this is shown. We locked the PA laser

to different components of one vibrational level in the excited state and scanned the probe

laser over the resonances Δv = −1 and Δv = −2 where the beat frequency of the two

lasers can be used to determine Δ2photon. The accuracy of ±2 · 10−4 cm−1 of this method

makes it possible to determine the rotational constant. The black arrows indicate which

resonance in the ground state was found.

We compared the measurements of the R′ = 0 and the R′ = 1 rotational component of
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Figure 5.12.: The rotational constant Brot for the Δv = −1 and Δv = −2 vibrational

levels of the ground state in 176Yb87Rb. The theoretical value is given by equation (5.27)

with the values from (5.24).

the excited state for the two vibrational levels Δv′ = −9 and Δv′ = −11. In fig. 5.12,

these resonances were shown together with a theoretical value obtained from the equation

by LeRoy [104] for the rotational constant:

Brot =
�

4πcμ
· Γ(1 + 1/n)Γ(1/2− 1/n)

Γ(1/2 + 1/n)Γ(1− 1/n)
·
(
ED − E(v)

Cn

)2/n

(5.27)

This method has the same limitations than the LeRoy-Bernstein formula for calculating

the vibrational levels, but is still well within the error bars of our experimental data.

For more bound vibrational levels the beat signal cannot be used anymore and we had to

use our wavemeter for wavelength measurement. Since the accuracy of this method is only

±5 · 10−3 cm−1, it was not possible to determine the rotational constant as it is expected

to be smaller than our accuracy.

5.6. Linewidth

5.6.1. Intensity dependence

In the 2-Photon-PA spectroscopy, the width of a resonance gives information about the

strength of the transition. The key factor is the Rabi frequency

Ω0 =
〈a|�d · �εE0|b〉

�
= |〈a|b〉| γ1

√
I

4Isat
(5.28)

which shows the squareroot-dependence on the intensity of the laser field driving the transi-

tion. In order to determine the intensity dependence experimentally, we fixed the PA laser

to the resonance at the excited vibrational level |I0〉 and varied the intensity of the probe
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Figure 5.13.: The 2-Photon-PA resonance |I0〉 ↔ |Δv = −5, F = 1〉 observed with dif-

ferent power levels in the probe laser. It is clearly visible that the resonance gets broader

with higher intensities. Eventual shifts of the peak positions are corrected to be at the

same position.

laser which couples the ground state level Δv = −5, F = 1 to this excited state. We chose

this level because it is the broadest resonance found. Fig. 5.13 shows this resonance with

different intensities. It is obvious that this transition gets broader with higher intensities.

The 2-Photon-PA line shape equation is given by eqn. (5.18). If we now fit our data

to this equation, we get the Rabi frequency Ω directly as a parameter. The values for

γs and γp are determined by the data taken in 1-Photon-PA experiments. It is essential

for the fitting routine, that these values are kept constant, otherwise the determination of

Ω fails. For very little intensities of the laser, this method gives too big values since the

temperature of the atom cloud is not included which broadens the resonance. But still,

the dependence of the intensity can be reproduced. Fig. 5.14 plots the squareroot of the

laser power against the Rabi frequency, giving a linear dependence of these two.

With a fit to this data, it is possible to calculate the overlap integral of the ground and

excited state:

|〈a|b〉| = Ω

γ1

√
4Isat
I

(5.29)

With the saturation intensity Isat = 1.496 mW/cm2 and the atomic linewidth γ1 =

2π5.75 MHz, one gets for the Franck-Condon factor:

fFC = |〈a|b〉|2 = 0.25± 0.04 (5.30)

The given error bars are resulting from the statistical error from the fitting function.

The real error is higher because the determination of the beam size and the overlap of

the PA and probe beam is not perfect and thus, the determined intensity has an error,

too. Furthermore, the determination of the Rabi frequency depends on the width of the
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Figure 5.14.: Intensity dependence of the Rabi frequency at the transition |I0〉 to |Δv =

−5, F = 1〉. The Rabi frequency should be proportional to the squareroot of the intensity.

The red line is a fit.

measured resonance which is also temperature dependent and may be broadened by the

PA and probe laser linewidth. This is not included in this calculation. On the plus side,

it should be noted that the determination of transition strengths is independent of the

atomic density.

5.6.2. Transition strengths

This method is transferrable to all other found resonances as well. In principle, only one

intensity is needed to get all Rabi frequencies of the transitions and get all the transition

strengths. The above section showed that this method actually is working and giving

reasonable results. Fig. 5.15 shows the calculated Franck-Condon factors for each found

resonance. The above described method can in principle be used for any resonance, but

the width of a resonance is not only dependent on the Rabi frequency but also on the

temperature and the stimulated width. This leads to more inaccuracies. In the Autler-

Townes spectroscopy, the Rabi frequency can be measured directly, therefore this method

is the better choice. This will be discussed in chap. 6.

5.7. Binding energies of RbYb isotopologues

The binding energy of the least bound states can be used to determine the s-wave scattering

length and thus intercollisional properties. For a precise determination of these energies, we

performed 2-Photon-PA spectroscopy measurements on 4 different isotope combinations.

The PA laser was fixed to a known 1-Photon-PA resonance (see chapter 4.4) and the

probe laser was scanned in the range up to 2 GHz. In this way, it was possible to use

the beat frequency of the two lasers to determine binding energies in a more accurate
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Figure 5.15.: Calculated Franck-Condon factors from experimentally determined Rabi

frequencies for the different resonances. Note that no resonances for (b) Δv = −5 were

found indicating a very low Franck-Condon overlap. The line is a guideline for the eyes,

containing the average of all 4 possibilities for each resonance. (a) Δv′ = −9, (b) Δv′ =
−11.

Δv Yb isotope Δbind (R = 0) Δbind (R = 1)

0 170Yb -115 MHz -98 MHz
172Yb -164 MHz -144 MHz

-1 170Yb -1030 MHz -982 MHz
172Yb -1240 MHz -1213 MHz
174Yb -231 MHz -204 MHz
176Yb -294 MHz -282 MHz

-2 174Yb -1479 MHz -1438 MHz
176Yb -1763 MHz -1694 MHz

Table 5.2.: Binding energies for the different Yb isotopes for the vibrational level Δv =

−1 and Δv = −2. The accuracy of the energies is ±10 MHz. The shift due to the

temperature of the MOTs of 250 μK is not included (see chapter 5.4 for details).

way as with the wavemeter. This is the same approach as we used for 176Yb87Rb. The

observed resonances for the 4 different Yb isotopes are shown in fig. 5.16. The left graph

shows the used 1-Photon-PA resonance while the other two graphs show the position of

the R = 0 (green) respectively R = 1 (red) resonance of all levels found in the range up

to 2 GHz. Table 5.2 lists all observed resonances together with the relative vibrational

level, determined by numerical calculations. The LeRoy-Bernstein formula (2.22) is used

to determine vD for each isotopologue. The parameter vD is listed in tab. 5.3, although

it is only used as a fitting parameter because of the limitations of this formula. The two

resonances of each combination are used which fit well in a potential with the C6 value

determined for 176Yb87Rb. This was done for all three isotopologues individually leading
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Figure 5.16.: Left: 1-Photon-PA resonances in the different Yb isotopes used for the 2-

Photon-PA. 176Yb was added for completeness. Middle and Right: Measured vibrational

levels in different Yb isotopes. The green curves represent R = 0 resonances, red curves

represent R = 1 resonances.

to the potential shown in fig. 5.17. Numerical calculations (see chap. 5.8) show that for

the isotopes 174Yb and 176Yb, one more vibrational level near the dissociation limit exist.

Unfortunately, we are not able to measure these resonances directly because they are too

close to the 1-Photon-PA resonances causing additional losses in the signal.
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Yb isotope vD
170Yb 0.88
172Yb 0.00
174Yb 0.13
176Yb 0.26

Table 5.3.: The fitting parameter vD for the LeRoy-Bernstein formula. This value does

not offer any physical meaning because of the limitations of this formula. A numerical

solution is favorable (see chap. 5.8).

Figure 5.17.: Fit to the binding energies of the different isotopes with R = 0. The binding

energies were corrected by the atomic mass. The only fitting parameter is vD.

5.8. s-wave scattering length

The properties of a collision of particles with low energies are determined by the s-wave

scattering and can be expressed by the scattering length a. For distinguishable particles a

is related to the scattering cross section by

σ = 4πa2. (5.31)
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This equation is valid for temperatures below the centrifugal barrier for the R = 1 com-

ponent (see chapter 2.2.5) which is about 70 μK for RbYb. The value of the scattering

length is determined by the potential energy V (r) of the interatomic interaction. For large

distances, this potential has been measured for the combination Rb and Yb:

V (r) =
C6

r6
(5.32)

with a value of C6 = −2563± 50 Eha
6
0. It defines a characteristic length

ac =

(−2μC6

�2

)1/4

(5.33)

which is about 153a0 for the combination 176Yb87Rb. At this point, the kinetic energy of

the relative motion equals their interaction energy [103].

Gribakin and Flambaum [103] described a semiclassical approximation for computing

the s-wave scattering length a from a potential V (r) where the scattering length is given

by

a = ā (1− tan (φ− π/8)) (5.34)

with the mean scattering length

ā = 2−3/2Γ
(
3
4

)
Γ
(
5
4

)ac = 0.478ac (5.35)

and the phase

φ =

√
2μ

�

∫ ∞

R0

√
|V (r)|dr. (5.36)

The number of bound states can then be calculated by

N = [φ/π + 3/8] (5.37)

where the squared brackets mean taking the integer part. The scattering length can be

calculated by using the quantum-defect formulation of Gao [105, 106]. A Lennard-Jones

potential

V (r) = C12/r
12 + C6/r

6 (5.38)

is used with C12 serving as a ”quantum defect” parameter. With this type of potential,

the phase is determined as

φ =

√
π

12

Γ(1/3)

Γ(11/6)

√
2μ

�2

(
(−C6)

5

C2
12

)1/6

. (5.39)

In the next step, the Schrödinger equation(
− �

2

2m
Δ+ V (r)

)
Ψ = EΨ (5.40)
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Figure 5.18.: Determination of the C12 value. Shown is the sum of the absolute differences

to the experimental determined states for the Δv = −1 state of 170Yb, 174Yb and 176Yb.

The C12 value determines the number of vibrational states in the ground state, left: 66

vibrational states, middle: 65 vibrational states, right: 64 vibrational states, in each

case for 176Yb87Rb. The best result for the potential is yielding 66 vibrational states for
176Yb87Rb (see text).

is numerically solved with the potential (5.38). The solution of the Schrödinger equation

was introduced by Liu [107]. A Mathematica-Script written by D. Farkas [108] was used

here to solve the equation.

To simplify the numeric calculations, we have used the C6 coefficient as determined by

the LeRoy Bernstein method to C6 = −2563 Eha
6
0. The C12 coefficient was varied and

the three eigenstates Δv = −1 for the isotopologues with 170Yb, 174Yb and 176Yb were

calculated. The absolute difference of these three calculated states to the experimentally

determined values is shown in fig. 5.18. With the best value for the C12 coefficient obtained

using this method, all known states of the isotopologue 176Yb87Rb have been calculated

and the difference has been compared. For

C12 = 2.7412 · 108 Eha
12
0 (5.41)

all known resonances are calculated within the experimental error bars. A comparison

between the experimental values and the theoretical calculations is shown in tab. 5.4.

With this value, the ground state has 66 vibrational levels for 174Yb87Rb and 176Yb87Rb.

The other, lighter isotopes have 65 vibrational levels. The s-wave scattering lengths for

the different Yb isotopes can be determined to according to eqn. (5.34) to:

a87Rb,170Yb = −5a0

a87Rb,172Yb = −131a0

a87Rb,174Yb = 1398a0

a87Rb,176Yb = 225a0

(5.42)

These results approve our previous studies [4, 7], where we performed thermalization

measurements in a thermal mixture of 87Rb and various Yb isotopes in the temperature

regime of about 10 μK, well below the centrifugal barrier for p-wave collisions.
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C6 = −2563 Eha
6
0, C12 = 2.7412 · 108 Eha

12
0

Yb isotope Δv exp. value theor. value difference

176 -1 -298 MHz -305 MHz 7 MHz

176 -2 -1767 MHz -1770 MHz 3 MHz

174 -1 -235 MHz -223 MHz -12 MHz

174 -2 -1483 MHz -1501 MHz 18 MHz

172 0 -168 MHz -157 MHz -11 MHz

172 -1 -1244 MHz -1255 MHz 11 MHz

170 0 -119 MHz -104 MHz -15 MHz

170 -1 -1034 MHz -1034 MHz 0 MHz

176 -3 −0.1735 cm−1 −0.17714 cm−1 109 MHz

176 -4 −0.3937 cm−1 −0.3949 cm−1 36 MHz

176 -5 −0.7515 cm−1 −0.74267 cm−1 -265 MHz

176 -6 −1.25375 cm−1 −1.25072 cm−1 -91 MHz

176 -7 −1.953 cm−1 −1.94919 cm−1 -114 MHz

C6 = −2740 Eha
6
0, C12 = 3.23615 · 108 Eha

12
0

Yb isotope Δv exp. value theor. value difference

176 -1 -298 MHz -310 MHz 12 MHz

176 -2 -1767 MHz -1760 MHz -7 MHz

174 -1 -235 MHz -228 MHz -7 MHz

174 -2 -1483 MHz -1495 MHz 12 MHz

172 0 -168 MHz -161 MHz -7 MHz

172 -1 -1244 MHz -1253 MHz 9 MHz

170 0 -119 MHz -108 MHz -11 MHz

170 -1 -1034 MHz -1034 MHz 0 MHz

176 -3 −0.1735 cm−1 −0.1746 cm−1 33 MHz

176 -4 −0.3937 cm−1 −0.3876 cm−1 -183 MHz

176 -5 −0.7515 cm−1 −0.7269 cm−1 -737 MHz

176 -6 −1.25375 cm−1 −1.2218 cm−1 -958 MHz

176 -7 −1.953 cm−1 −1.9015 cm−1 -1544 MHz

Table 5.4.: Experimental vs. theoretical values for the different Yb isotopes. All theo-

retical values for this potential can be found in appendix A. The experimental accuracy

is ±10 MHz for Δv > −3, otherwise ±150 MHz.

In these studies, we trapped 87Rb in a magnetic trap at temperatures of ≈ 1 μK and

Yb in a bichromatic optical trap, displaced from the magnetic trap at a temperature of
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Figure 5.19.: Intra-trap images of 87Rb and 174Yb after brought in contact. The 87Rb

atom number increases from (a) to (c) leading to a separation from the Yb cloud. (c)

displays the radially integrated density of the two cluds in the relevant regions. From [4].

≈ 10 μK. The two traps are (nearly) independent for the other species. Details of this

setup can be found in [4]. By moving the magnetic trap to the position of the optical

trap, the two atomic clouds are brought in contact and thermalization measurements were

performed.

We observed peculiar behavior for 170Yb and 174Yb in mixtures with 87Rb. In the

measurements with 170Yb, the two atom clouds did not thermalize when the two traps are

independent. By changing the power ratio of the two beams of the optical trap, it was

possible to enhance the Rb density at the position of the Yb cloud. By this, we were able

to measure a thermalization and extract a s-wave scattering length to [4]

∣∣a170Yb,87Rb

∣∣ = 6.6+3.5
−2.9a0. (5.43)

In a mixture of 174Yb and 87Rb, the two species thermalized instantaneously. At higher

Rb densities, we observed a separation of the two clouds, see fig. 5.19. This denotes either

a very big positive s-wave scattering length where the interactions pushes the Yb cloud

out of the trapping center or a very big negative scattering length with a huge 3-body

loss rate. The huge uncertainty of the overlap of the two atom clouds due to the trapping

geometry did not allow us to determine s-wave scattering lengths. But a determination

of the scattering cross section σ (see eqn. (5.31)) is possible and can be compared to

the calculated s-wave scattering lengths. Fig. 5.20 show this comparison. The previously

determined cross sections include a constant scaling factor due to the unknown overlap of

the two atom clouds.

The other examined Yb isotopes show a thermalization rate without any remarkable

findings.

The thermalization data was used by Maxwell and Tiesinga [105] to calculate a Lennard-
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Figure 5.20.: Black: Calculated scattering cross sections by the determined values for C6

and C12 of the Lennard-Jones potential for the ground state(see text). Red: Measured

scattering cross sections in thermalization measurements (data taken from [4]). A constant

scaling factor is included due to the unknown overlap of the two atom clouds.

Jones potential for the YbRb molecule. They determined a C6 value of C6 = −(2740 ±
140) Eha

6
0 and estimated the number of bound states in the potential to 65 ± 6 for the

two heaviest isotopologues. For the calculation of the vibrational states and the s-wave

scattering lengths, a C12 value of C12 = 3.48 · 108 Eha
12
0 was used. With the methods

described above, it is possible to determine a C12 value that is more consistent with the

now available binding energies for the vibrational levels. We did this and came to a value

of

C12 = 3.23615 · 108 Eha
12
0 (5.44)

This potential gives 66 bound states for the two heaviest isotopologues. The s-wave scat-

tering lengths for the different Yb isotopes can now be calculated to:

a0,170 = −17a0

a0,172 = −185a0

a0,174 = 684a0

a0,176 = 206a0

(5.45)

A comparison to the experimental determined values is shown in tab. 5.4, showing that the

difference in some states is much higher than the precision of the experimental data. For

that reason, the experimental determined C6 and the calculated C12 seem to be the better

values for the potential and will be used for calculations for magnetic Feshbach resonances

(chapter 7) and possible routes to rovibrational ground state molecules (chapter 8).





6.
Autler-Townes spectroscopy

A laser which is resonant with a bound-bound transition induces Rabi oscillations which

lead to a splitting of the involved states. This splitting can be measured with a second

laser probing a transition involving one of these levels and an auxiliary level. This so called

Autler-Townes splitting can then be used to determine the strength of the transition. In

this chapter, our results of the Autler-Townes spectroscopy in the YbRb molecule will be

presented.

6.1. Principle

The experimental setup for Autler-Townes spectroscopy is the same as for 2-Photon-

Photoassociation experiments. In fig. 6.1, the principle is shown. The probe laser (2)

is fixed to bound-bound transition. This induces a Rabi splitting on the two involved

states. The PA laser (1) is scanned and probes the splitting of the excited state.

Figure 6.1.: Principle of Autler-Townes spectroscopy. The probe laser (2) is fixed to a

bound-bound transition which induces a splitting of these states. The PA laser (1) is

scanned and probes the splitting of the excited state. Adapted from [3].
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Figure 6.2.: Principle of Autler-Townes spectroscopy. The black curve shows a typical 1-

Photon-Photoassociation resonance without any disturbance. The red and the blue graph

show the influence of the probe laser which is resonant to a bound-bound transition and

therefore, the resonance splits up into two components according to eqn. (6.1). Note

that, in this type of experiment, the PA laser is scanned and therefore, Δ1 is varied.

The line shape equation (5.18) was already introduced in chapter 5.4:

|S1g|2 = (ε/�−Δ2)
2 γpγs/(2π)

2

((ε/�−Δ+) (ε/�−Δ−))2 + (γ/4π)2 (ε/�−Δ2)
2

with Δ± =
1

2
(Δ1 +Δ2)± 1

2

√
(Δ1 −Δ2)

2 +

(
Ω

2π

)2

.

(6.1)

The splitting of the two resonances is then defined as

Δ = Δ+ −Δ− =

√
δ2 +

(
Ω

2π

)2

(6.2)

with δ being the detuning of the probe laser from the resonance of the bound-bound

transition. The Rabi frequency Ω depends on the intensity of the probe laser and the

transition strength:

Ω = |〈a|b〉| γ1
√

I

4Isat
(6.3)

Here, I is the intensity of the probe laser and Isat is the saturation intensity of the atomic

transition with Isat = πhcγ1/(3λ
3). The overlap integral of the two levels a and b are

connected through the Franck-Condon factor

fFC = |〈a|b〉|2 (6.4)
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Figure 6.3.: Temperature dependence of Autler-Townes spectroscopy. (a) Ω = 20 MHz,

(b) Ω = 50 MHz. The splitting differs less than 2 MHz.

giving the transition probability. Fig. 6.2 shows how a transition splits up in principle.

In black, the undisturbed resonance of the 1-Photon-Photoassociation is shown. The red

and the blue curve differ only by the intensity of the probe laser showing an increase of

the splitting of the transition with increasing intensity. The intensity of the laser in the

blue curve is 4 times the intensity in the red curve giving twice the splitting according to

a squareroot correlation.

Eqn. (6.1) is only valid for zero temperature. Under typical experimental conditions,

thermal averaging has to be taken into account according to [102]

K =
1

hQT

∫
|S1g|2 e−ε/kBTdε (6.5)

where QT = (2πkBTμ
h2 )3/2 is the partition function with μ being the reduced mass. Calcu-

lations with different temperatures show that the splitting differs less than 2 MHz in the

regime up to 2 mK and can therefore be neglected. Fig. 6.3 shows typical Autler-Townes

doublets at different temperatures. Only the shape of the two peaks is changed, but not

the splitting if the temperature is increased.

The splitting of the two peaks is not only dependent on the intensity of the probe laser,

but also on the detuning of this laser to the resonance. The splitting gets broader according

to eqn. (6.2) and the height of each peak is changed1 if the detuning is increased. In fig. 6.4

some examples with different detunings are shown. The more the probe laser is detuned

from the resonance, the lower is the second peak. The deeper peak is approaching the

non-disturbed resonance with larger detuning of the probe laser.

6.2. Autler-Townes spectroscopy in 176Yb87Rb

The experimental setup for the Autler-Townes spectroscopy is exactly the same as for the 2-

Photon-Photoassociation experiments. The two atom clouds are trapped in a continuously

1At zero temperature, this is not true. Only the width of the peaks changes.
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Figure 6.4.: Principle of Autler-Townes spectroscopy. Shown is the splitting of one reso-

nance at a temperature of 250μK at different detunings δ of Laser 2. (a) δ < 0, (b) δ = 0,

(c) δ > 0.

loaded MOT. The PA laser is scanned and the fluorescence of the two clouds is recorded.

Whenever the PA laser hits a resonance, two atoms can associate to a molecule and are lost

from the trap. Therefore, at resonance less atoms are in the MOT and less fluorescence

is measured. The probe laser is locked to a known bound-bound transition as determined

with the 2-Photon-PA measurements. For this, the PA laser is brought onto the desired

1-Photon-PA resonance by observing the Yb fluorescence which is lowest on resonance.

Then, the probe is brought onto the 2-Photon-PA resonance. At the resonance, the Yb

fluorescence rises to a maximum. The probe laser is then locked and the PA laser will be

scanned. The disturbance of the probe laser leads to the described splitting of the state

which is probed by the PA laser.

A typical 1-Photon-PA resonance is shown in fig. 6.5 (a). The probe laser will inter-

act with all rotational components and subcomponents of the resonance with a different

detuning with respect every component. We already learned (see chapter 5.5.2) that the

three subcomponents of the R′ = 1 component couple to the same ground state level R = 1

and that the R′ = 0 component couples to the different rotational ground state R = 0.

An example scan is given in fig. 6.5 (b). Here, the probe laser is fixed to the resonance

of R′ = 1,ΔR = +1 ↔ R = 1. This is the only state which splits up visibly. The other

components do not split up because of the relatively large detuning of the probe laser:

For the other two subcomponents of the R′ = 1 component, this laser is detuned by the

splitting. For the R′ = 0 component, the detuning is further modified by the rotation

since it couples to the R = 0 ground state. The same argument holds for the ΔR = −1

component where only this state splits up (see fig. 6.5 (c)).

In measurements with the probe laser locked to the ΔR = 0 component, something

unexpected happens: In fig. 6.5 (d), it is visible, that not only the desired resonance
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Figure 6.5.: (a) undisturbed 1-Photon-PA signal. (b), (c) The probe laser fixed to the

resonance at the rotational subcomponent (b)ΔR = +1, (c)ΔR = −1 leading to a splitting

of this state. In (d), the probe laser is locked to the rotational subcomponent ΔR = 0

leading to a splitting in this state and also the R = 0 component splits up. The red curve

is a simple fit function with Lorentz shaped resonances.

splits up, but also the R′ = 0 component. The splittings of the two components have the

same magnitude. An explanation of this behavior is that we used the broadest 2-Photon-

Photoassociation resonance we found in this experiment, which is the F = 1,Δv = −6

vibrational level (when we use level |II〉 for probing). Since the resonance is such big, the

overlap of the wavefunctions of this vibrational level and the excited state must be very

high. This means, that the outer turning points must be near to each other and denotes,

that the size of the molecule is nearly the same and therefore, the rotational constant

has the same magnitude. Thus, the distance between the rotational levels of the ground

and excited state must be the same and the probe laser is not only resonant with the

R′ = 1,ΔR = 0 ↔ R = 1 transition, but also with the R′ = 0 ↔ R = 0 transition.

This is the reason why the two resonances split up. This also confirms the proposal, that

the rotational quantum number is not changed in 2-Photon-PA experiments in YbRb (see

chapter 5.5.2).

Using the line shape equation (6.1), we can construct the full spectrum with the probe

laser present. In fig. 6.6 (a), the equation was used to calculate each resonance for itself.
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Figure 6.6.: Theoretical curve of the Autler-Townes spectroscopy with laser 2 locked to

the R′ = 1,ΔR = +1 component. In (a), the theoretical curve for each resonance is shown

including the detuning. In (b), the measured values are shown in black together with the

sum of the 4 curves from (a).

In (b), the sum of these four curves is shown. This fairly reconstructs the measured data,

as shown in the figure. This confirms our theoretical model and explains that the splitting

of the other components is not visible. Nevertheless, the more simple function using 5

Lorentz shaped equations gives the same results for the splitting of the states, which is the

important information.

In a next step, we varied the intensity of the probe laser to reconstruct the dependence

of the splitting to the intensity. The splitting is defined as (see eqn. (6.2))

Δ =

√
δ2 +

(
Ω

2π

)2

=

√
δ2 + |〈a|b〉|2

( γ1
2π

)2 1

4Isat
I (6.6)

with δ being the detuning from the resonance and I being the intensity of the probe laser.

The Rabi frequency Ω/2π is defined through the Franck-Condon factor fFC = |〈a|b〉|2
of the two states a and b. In fig. 6.7 (a), we locked the probe laser to the transition

|I1〉 ↔ |F = 1,Δv = −5, R = 1〉 and varied the intensity of this laser. The black curve

represents the experiment with no detuning of this laser while in the red curve we applied

a detuning to the resonance of δ = 78 MHz. The lines are fits according to eqn. (6.6).

Thus, we find good agreement between the theoretical model and our experimental results.

In a second experiment, we kept the intensity of the probe laser constant and changed

the detuning of this laser. The change of detuning was measured with a scanning Fabry-

Perot interferometer, where a frequency stabilized laser and the probe laser were injected.

The difference between the peaks of the two lasers then gives the relative detuning. This

is the same principle that is used to lock the laser. Fig. 6.7 (b) shows the results of this

measurement. The line is a fit according to eqn. (6.6).

With the help of the Autler-Townes spectroscopy, it is possible to determine the overlap

of the two wavefunctions of the involved levels. The splitting Δ is directly dependent on
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Figure 6.7.: (a) Autler Townes splitting with different intensities of the probe laser. The

probe laser is resonant (black) respectively detuned from resonance (red). (b) Autler

Townes splitting with different detunings of the probe laser.

Figure 6.8.: Example scans with different intensities of laser 2: (a) 1.4 mW, (b) 4 mW,

(c) 9.3 mW. Laser 2 is locked to the R′ = 1,ΔR = +1 resonance, the splitting is marked

with the dotted lines.

this factor, see eqn. (6.6). The Franck-Condon factor fFC, only dependent of the overlap

of the wavefunctions, gives the transition probability. For the creation of molecules, a large

Franck-Condon factor is desirable.

For determination of the Franck-Condon factor, we repeated the measurement with the

probe laser resonant to different 2-Photon-PA resonances. The Franck-Condon factor can

be calculated from eqn (6.6) as

fFC = |〈a|b〉|2 = Ω2

γ21

4Isat
I

(6.7)

with the saturation intensity Isat = 1.496 mW/cm2 for the Rb D1 transition and γ1/2π =

5.75 MHz being the linewidth of this transition. Example scans with different intensities

of the probe laser are shown in fig. 6.8. The squareroot-dependence of the intensity of the

probe laser against the splitting of the resonance is shown in fig. 6.9. In this example, the

used transition |II1〉 ↔ |F = 1,Δv = −6〉 leads to a Franck-Condon factor of

fFC = 0.20± 0.02. (6.8)
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Figure 6.9.: Splitting vs. squareroot of the intensity

excited level Δv′ ground state level Δv fFC,AT fFC,2PA

-11 -4 (F=1) 0.034 0.03

-6 (F=1) 0.29± 0.08 0.13

-6 (F=2) 0.032 0.07

-7 (F=1) 0.031 0.05

-7 (F=2) 0.010 0.05

-9 -5 (F=1) 0.37 0.20

Table 6.1.: Measured Franck-Condon factors for different transitions in 176Yb87Rb. The

last column is giving the Franck-Condon factors as determined in 2-Photon-PA experi-

ments, see chapter 5.6.2 for details.

The given error bar is the statistical error from the fit function. More measurements

on this transition show that the real uncertainties are much higher. They are attributed

to the overlap of the two lasers and the intensity distribution of the laser beams over the

atomic cloud. In tab. 6.1, the determined Franck-Condon factors for different states are

given. Note that the transition probability of the F ′ = 2,Δv′ = −11 ↔ F = 1,Δv = −6

is different than given in (6.8) because of more measurements for this transition.



7.
Prediction of the positions of Feshbach

resonances in YbRb

In samples of ultracold atoms, molecules can be formed with the help of magnetic fields by

making use of so-called Feshbach resonances. For this, the atoms need two ground states

with a coupling between them. Magnetic Feshbach resonances were reported up to now

only in samples of alkali metals and were first reported in homonuclear mixtures with 85Rb

[26] and 23Na [27], the first heteronuclear magnetic Feshbach resonances were reported in

KRb [10].

It was commonly believed that for a combination of alkali atoms and alkaline earth like

atoms, no coupling exists. But, Zuchowski et al.[8] and Brue et al. [9] showed theoretically

that a small coupling exists in these mixtures which may be sufficient to form molecules by

magnetic fields. In this chapter, calculations for the mixture of Rb and Yb based on the

experimental results of the 2-Photon-PA experiments (see chapter 5) will be shown and

predictions for Feshbach resonances will be given.

7.1. Introduction

Feshbach resonances can be explained in a simple picture: Consider two molecular po-

tentials, as shown in fig. 7.1 (a). The energetically lower potential will connect for large

distances to the case of two free atoms (open channel). This is the entrance channel for

the resonance. The second potential (closed channel) must have a bound state near the

threshold of the entrance channel. When the magnetic moments of the two states are

different, the relative energies can be tuned by magnetic fields. Whenever the energy of a

bound state is equal to the energy of the two free atoms, a Feshbach resonance can occur.

A coupling between the two states can lead to a strong mixing [109].

Such a magnetically tuned Feshbach resonance also changes the s-wave scattering length

according to [110]

a(B) = abg

(
1− Δ

B −B0

)
. (7.1)

Here, abg is the background scattering length which is the scattering length for off-resonant

values of the magnetic field B. The parameter B0 is the resonance position in which the

scattering length diverges and Δ is the width of the resonance. This was introduced in
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Figure 7.1.: Scheme for a Feshbach resonance. (a) The two atoms can collide in the

entrance channel which is coupled to a molecular bound state Ec (that belongs to the

closed channel). Resonant coupling occurs when the energy difference between the en-

trance channel and the molecular level is zero. This can be achieved by magnetically

tuning the two states. Note that the energy difference between the entrance and the

closed channel is enhanced here. (b) The scattering length is changing dramatically near

a Feshbach resonance. On resonance, it has a pole and changes its sign. The width Δ of

a Feshbach resonance is defined as the distance between the pole and the zero crossing.

[110]. Note that the width Δ can be positive or negative. The width corresponds to the

distance between the resonances and the zero crossing of the scattering length which occurs

at the magnetic field B = B0+Δ. In fig. 7.1 (b), the change of the scattering length around

a Feshbach resonance is shown (in this case with a positive width).

In experiments, a Feshbach resonance can be observed by an increased loss of atoms

because the scattering length is changing dramatically near the resonance and therefore

three-body-recombinations and formation of molecules are enhanced. An observation of a

Feshbach resonance was first reported in [26, 27].

A Feshbach resonance can also be used to associate atoms to molecules [24]. By ramping

the magnetic field across a Feshbach resonance, it is possible to form so called Feshbach

molecules which are molecules in a high vibrational level in the electronic ground state.

More on the creation of such molecules will be given in section 8.1.

7.2. Magnetic Feshbach resonances in YbRb

In [8] and [9], it was shown, that there is a coupling between the two ground states in a

mixture of an alkali and an alkaline earth metal (respective alkaline earth-like metal like

Yb). The possible Feshbach resonances and the widths of these resonances were calculated

for the mixture Rb and Sr respective Li and Yb. Since there is only very little knowledge of

the ground state potentials of these mixtures, the given positions of the Feshbach resonances

are only estimates with huge error bars. In contrast to this, in the mixture of Rb and Yb

(which has the same electronic structure as the examined mixtures), we measured the
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binding energies of the ground state levels and can give more precise predictions of the

positions of Feshbach resonances.

Feshbach resonances that might be used to associate free atoms to molecules occur at

magnetic fields where the molecular levels cross the atomic levels. Because Yb has no

magnetic moment, the molecular Hamiltonian is nearly diagonal in a basis set of atomic

functions, so that the molecular levels lie parallel to the atomic thresholds [9]. Thus, for

a calculation of the resonances, we only need to know the atomic thresholds, which can

be calculated with the help of the Breit-Rabi formula [111] and the positions of the last

vibrational states in the ground state potential of the molecule, which we determined with

the 2-Photon-Photoassociation measurements and modeling of the ground state potential

(see chapter 5 for details).

7.2.1. Breit-Rabi formula

For weak magnetic fields, the atomic levels split up linear as a function of the magnetic

field. This effect is called the anomalous Zeeman effect. For strong fields, the levels split

up in the strong-field eigenstates |J,mJ , I,mI〉. This is the Paschen-Back effect. For

intermediate fields, that we can control here, the energy shift in atoms with a J = 1/2

state (e.g. a 2S1/2 state) can be calculated with the Breit-Rabi formula [111]:

E|J=1/2,mJ ,I,mI〉 = − ΔEhfs

2 (2I + 1)
+ gI μB mB± ΔEhfs

2

(
1 +

4mx

2I + 1
+ x2

)1/2

(7.2)

with ΔEhfs = Ahfs(I + 1/2) being the hyperfine splitting, m = mI ±mJ is the magnetic

quantum number (in this case: m = mI ± 1/2) and

x =
(gJ − gI)μBB

ΔEhfs
. (7.3)

Here, gJ and gI are the Landé factors specific for the atom. The atomic constants for 85Rb

and 87Rb are listed in tab. 7.1. Fig. 7.2 shows the behaviour of the energy levels of the

Rb ground state in an external magnetic field.

85Rb 87Rb

Nuclear Spin I 5/2 3/2

Nuclear g-factor gI -0.000294 -0.000995

Fine Structure Landé g-factor gJ 2.002331 2.002331

Magnetic Dipole Constant Ahfs h · 1.011911 GHz h · 3.417341 GHZ

Table 7.1.: Properties of the Rb ground state 2S1/2. Here, h is Planck’s constant. From

[59].
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Figure 7.2.: Energy levels of the (a)87Rb and (b)85Rb ground state in a magnetic field.

7.2.2. Vibrational levels of the ground state of the YbRb molecule

For the determination of magnetic Feshbach resonances that are experimentally accessible,

only molecular vibrational levels that have a binding energy in the range of the hyperfine

splitting of Rb have to be considered. The energetic positions of the relevant vibrational

levels for all possible isotopic combinations can be calculated solving the Schrödinger equa-

tion for the Lennard-Jones potential that was calculated in chapter 5.8

V (r) = C12/r
12 + C6/r

6 (7.4)

with the coefficients

C6 = −2563 Eha
6
0,

C12 = 2.7412 · 108 Eha
12
0 .

(7.5)

The relevant levels are listed in tab. 7.2.

7.3. Positions of Feshbach resonances in YbRb

For mixtures of Rb and Yb containing bosonic Yb with zero spin, the conservation of an-

gular momenta requires that the mF projection is conserved for a coupling between atomic

and molecular potentials to occur [8]. Therefore, possible magnetic Feshbach resonances

can only occur at crossings with ΔmF = 0. In fig. 7.3, the change of the molecular and

atomic levels with mixtures of the bosonic isotopes of Yb and 87Rb in an external magnetic

field is shown. Additionally, the open circles denote crossings with the same mF . These

are the positions of potential Feshbach resonances. In mixtures with 87Rb, there are only

three resonances for all bosonic Yb isotopes combined within a magnetic field of up to

1500 G that can be reached easily in experiments. Additionally, one of these resonances

is in the mixture with 168Yb which has natural abundance of only 0.13 % [60]. The most

promising resonance is found in a mixture of 170Yb and 87Rb at 1246 G.
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Δv 168Yb87Rb 170Yb87Rb 171Yb87Rb 172Yb87Rb 173Yb87Rb

0 -63 -104 -128 -157 -188

-1 -836 -1034 -1141 -1255 -1375

-2 -3255 -3723 -3968 -4221 -4482

-3 -8255 -9098 -9533 -9977 -10430

-4 -16767 -18086 -18761 -19444 -20136

Δv 174Yb87Rb 176Yb87Rb

0 — -1.6

-1 -223 -305

-2 -1501 -1770

-3 -4751 -5310

-4 -10891 -11839

-5 -20837 -22265

Δv 168Yb85Rb 170Yb85Rb 171Yb85Rb 172Yb85Rb 173Yb85Rb

0 -1.4 -7.0 -12 -18 -26

-1 -310 -414 -473 -536 -605

-2 -1823 -2141 -2311 -2487 -2670

-3 -5500 -6141 -6474 -6815 -7165

-4 -12294 -13361 -13909 -14465 -15030

Δv 174Yb85Rb 176Yb85Rb

0 -37 -63

-1 -678 -838

-2 -2859 -3258

-3 -7521 -8259

-4 -15603 -16774

Table 7.2.: Calculated binding energies in MHz of the different vibrational states Δv in

the ground state for different isotopes. The accuracy is estimated to ±10 MHz.

The situation is different for mixtures with 85Rb. In fig. 7.4, the possible Feshbach

resonances are shown. In the range up to 1500 G, many resonances are available making
85Rb the better choice for the investigation of magnetic Feshbach resonances.

The width of possible Feshbach resonances are not known yet and up to now, calculations

for Rb and Yb mixtures are not available. But calculations exist for the case of LiYb

[9] and RbSr [8], which have the same structure as YbRb. The calculations for Li and

Yb [9] show, that these resonances will be extremely narrow. The calculated widths are

typically less than 50 μG which will be very hard to explore in experiments. In [8], the

width of such resonances in RbSr has been determined to be much broader for states

with mF < 0 that cross the atomic level twice with the higher-field resonance being the
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broader one. In mixtures with 87Rb, such a case does not occur, but it does occur in
172Yb85Rb and 174Yb85Rb making the two resonances at 1091 G (172Yb85Rb) respective

1346 G (174Yb85Rb) the best choice to search for Feshbach resonances. Additionally for
174Yb85Rb, the mF = −1 state nearly crosses the atomic state with a distance of only

about 3 MHz that is below the accuracy of our calculations. So, this state at B = 361 G

could possibly also provide a resonance with a large width.

An additional mechanism occurs for Yb isotopes with nonzero nuclear spin (171Yb, I =

1/2 and 173Yb, I = 5/2). Due to hyperfine coupling, a coupling can occur for transitions

with ΔmF = ±1 and it has been calculated for LiYb [9], that these resonances are much

broader in the range of up to 2.8 mG. In fig. 7.5, the combinations of fermionic Yb and
87Rb are shown. The open circles denote possible Feshbach resonances with ΔmF = 0

and filled circles denote resonances with ΔmF = ±1 which are predicted to be broader.

In fig. 7.6, the same is shown for combinations of various Yb isotopes with 85Rb. Here,

in 173Yb85Rb, the mF = −1 (mF = −2) atomic state crosses the mF = −2 (mF = −1)

molecular state twice at the filled red (violet) circles, which makes this a very interesting

candidate for the investigation of Feshbach resonances in YbRb since two meachnisms for

broadening are combined here. The resonances both occur near 762 G and therefore are

well below 1000 G and are thus relatively easy to reach in experiments.
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Figure 7.3.: Plot of the energy levels shifted by the binding energy of the molecular

states for 87Rb. The atomic states of 87Rb are shown in solid lines, while molecular

levels are shown in broken lines. Depicted are molecular levels for mixtures of 87Rb and

the bosonic isotopes (a)168Yb,(b)170Yb,(c)172Yb,(d)174Yb and (e)176Yb with spin zero.

Possible Feshbach resonances are marked with open circles (ΔmF = 0).
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Figure 7.4.: Possible magnetic Feshbach resonances in mixtures of 85Rb and (a)168Yb,

(b)170Yb, (c)172Yb, (d)174Yb and (e)176Yb. The solid lines show the atomic Rb positions,

the broken lines denote molecular states. A magnetic Feshbach resonance is possible when

ΔmF = 0.
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Figure 7.5.: Plot of the energy levels shifted by the binding energy of the molecular

states for 87Rb. The atomic states of 87Rb are shown in solid lines, while molecular

levels are shown in broken lines. Depicted are molecular levels for mixtures of 87Rb and

the fermionic isotopes (a)171Yb,(b)173Yb. Possible Feshbach resonances are marked with

open circles (ΔmF = 0) respectively full circle (ΔmF = ±1).

Figure 7.6.: Possible magnetic Feshbach resonances in mixtures of 85Rb and (a)171Yb,

(b)173Yb. The solid lines show the atomic Rb positions, the broken lines denote molecular

states. A magnetic Feshbach resonance is possible when ΔmF = 0 (denoted by open

circles) and when ΔmF = ±1 (filled circles).
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system Δv mF magnetic field system Δv mF magnetic field
168Yb85Rb -3 +2 1067 168Yb87Rb -4 +1 834

1 1315 0 1652

0 1637 -1 3272

-1 2038

-2 2512
170Yb85Rb -3 +2 1315 170Yb87Rb -4 +1 1246

1 1578 0 2143

0 1905 -1 3685

-1 2300

-2 2760
172Yb85Rb -2 -2 354 172Yb87Rb -4 +1 1646

-2 1091 0 2593

-3 +2 1572 -1 4085

+1 1846

0 2178

-1 2569

-2 3017
174Yb85Rb -2 -2 99 174Yb87Rb -4 +1 2043

-2 1346 0 3026

-3 +2 1838 -1 4481

+1 2121

0 2456

-1 2844

-2 3282
176Yb85Rb -2 +2 114 176Yb87Rb -4 +1 2439

+1 194 0 3449

0 422 -1 4878

-1 917

-2 1559

Table 7.3.: Positions of possible magnetic Feshbach resonances in mixtures of Rb and the

bosonic isotopes of Yb. Given is the vibrational level Δv, as defined in chap. 5 of the

molecular ground state of YbRb and the quantum number mF of Rb. The positions are

given in Gauss, the accuracy is ±5 Gauss.
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system Δv mF magnetic field system Δv mF magnetic field
171Yb85Rb -2 -2 555 171Yb87Rb -4 +1 1447

-2 890 0 2371

−2 → −3 331 -1 3886

-3 +2 1443 1 → 2 1174

+1 1712 0 → 1 1863

0 2041 −1 → 0 3123

-1 2434 1 → 0 1860

-2 2887 0 → −1 3119

+2 → +1 1573

+1 → 0 1873

0 → −1 2237

−1 → −2 2663

+2 → +3 1331

+1 → +2 1574

0 → +1 1874

−1 → 0 2237

−2 → −1 2664
173Yb85Rb -2 -2 216 173Yb87Rb -4 +1 1845

-2 1228 0 2811

−2 → −3 161 -1 4283

−1 → −2 362 1 → 2 1535

−1 → −2 762 0 → 1 2293

−2 → −1 362 −1 → 0 3546

−2 → −1 763 1 → 0 2290

0 → −1 3542

Table 7.4.: Positions of possible magnetic Feshbach resonances in mixtures of Rb and the

fermionic isotopes of Yb. Given is the vibrational level Δv, as defined in chap. 5 of

the molecular ground state of YbRb and the quantum number mF of Rb. If the quantum

number is changed, the first number is the atomic state and the second one of the molecular

state. The positions are given in Gauss, the accuracy is ±5 Gauss.
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7.4. Experimental setup

This section will give an overview how to detect Feshbach resonances. This is currently

being prepared in our experimental setup.

The easiest way to detect magnetic Feshbach resonances is to take advantage of their

feature of the pole in the scattering length. A very large scattering length is typically

accompanied by a large three-body loss coefficient leading to an increased atom loss in the

trap. Therefore, whenever the magnetic field is close to the Feshbach resonance, the atoms

will be lost much faster from the trap [109].

7.4.1. Magnetic field

For the use of Feshbach resonance, it is required to have a homogeneous magnetic field in

the region of the trap. In the current setup of our experiment, a (nearly) homogeneous

magnetic field required for Feshbach resonance experiments can be applied using the coils

for the magnetic trap and the magneto-optical trap. For trapping purposes, these coils are

producing a quadrupole field, but by switching the polarity of two of the coils, a (nearly)

homogeneous field can be achieved (see chap. 3.1). The magnetic field at the trap position

needs to be calibrated. The easiest way to do this, is to use known magnetic Feshbach

resonances in Rb.

7.4.2. Magnetic Feshbach resonances in Rb

Magnetic Feshbach resonances in 87Rb were measured precisely in 2002 by Marte et al.[112].

The experiment was performed in an optical dipole trap with about 4 · 106 atoms prepared

in the |F = 1,mF = 1〉 state. Note, that this state is not trappable in a magnetic trap. The

atom cloud had a temperature of 2 μK, corresponding to a peak density of 2 · 1014 cm−3.

The magnetic field was turned on at a fixed value for typically 50 ms. The broadest found

resonances are listed in tab. 7.5.

Bexp(G) depth (%) Δ (mG)

391.49 63 0.3

406.23 57 0.4

551.47 66 0.2

632.45 77 1.5

685.43 78 17

719.48 77 0.5

831.29 67 0.2

911.74 72 1.3

1007.34 64 170

Table 7.5.: The broadest Feshbach resonances found in 87Rb in state |1, 1〉. From [112]
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In 85Rb, Feshbach resonances were also measured, e.g. in [113]. Three Feshbach reso-

nances in the substate |F = 2,mF = −2〉 were found:

• B = 155.041 G with a width of Δ = 10.709 G [113]

• B = 220 G [114]

• B = 850 G [115]

7.4.3. Experimental Detection of Feshbach resonances in 87Rb

In ongoing experiments, we observed Feshbach resonances in homonuclear 87Rb by using

trap-loss techniques as discussed above. This information is used to calibrate the magnetic

field. To investigate the Feshbach resonances, we need to have the atoms in a pure optical

trap. After applying the magnetic Feshbach field, the atom number is reduced at te

Feshbach resonance.

In order to achieve this, the Rb atoms were transferred from the MOT into a magnetic

trap, where 2 · 108 atoms at a temperature of about 150μK are trapped. With evaporative

cooling, the temperature is decreased to about 10μK. The atom number drops at the same

time to about 2·106 atoms. Subsequently, an infrared laser at 1064 nm with its focus at the

center of the magnetic trap is turned on. The atoms are then transferred into the optical

trap and the magnetic trap can be switched off. The Feshbach fields are turned on for 1

second. After that, the magnetic fields and the trapping light are turned off and a picture

of the atoms after a short time of flight is taken and the atom number is determined.

Due to the dramatically change of the s-wave scattering length, the three-body-losses are

enhanced near the Feshbach resonance and the atoms are lost from the trap.

Fig. 7.7 shows the first observation of two Feshbach resonances in our experiment. The

atom number drops significantly at the resonances at 685 Gauss and 632 Gauss.

Figure 7.7.: Our first experimental measured Feshbach resonances in 87Rb at 632 G and

685 G. These two resonances were used to calibrate the magnetic field.

The position of the resonance helped us to calibrate the magnetic field of the trap with
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respect to the current in the coils to

B(I) [Gauss] = 2.735 · I [Ampere]. (7.6)

The observed loss features which are related to the Feshbach resonances appear much

broader than the theoretical elastic width of 17 mG respective 1.5 mG [112]. From the

theoretical predictions for LiYb [9] and RbSr [8], we expect elastic widths for the YbRb

Feshbach resonances of the same magnitude. Therefore we are confident that our current

experimental setup is capable of observing heteronuclear Feshbach resonances.
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Future experiments and outlook

This chapter describes the next steps that are required for the creation of ground state

YbRb molecules. A two-step procedure appears to be the most promising route: In the first

step, ground state molecules in a high vibrational level will be created. This can be done

either by a 2-Photon step similar to the 2-Photon-Photoassociation experiments or with

the help of magnetic Feshbach resonances as discussed in the previous chapter. The next

step will be the transfer from the highly vibrating ground state to the rovibrational ground

state. Another 2-Photon process will be the obvious choice. Techniques and possible

transitions will be provided.

8.1. Vibrationally excited ground state molecules

To create YbRb molecules in the absolute ground state, two steps will be needed: In a

first step, two free atoms have to be associated to molecules in a highlying vibrational level

of the ground state. For this step, two possibilities exist: It is possible to use magnetic

Feshbach resonances or to use a 2-Photon transition with an auxiliary electronically excited

molecular level.

8.1.1. Feshbach molecules

Most common is the use of magnetic field ramps or the application of oscillatory fields

[109] to associate two free atoms to a molecule in a highly excited vibrational state. Other

possibilities for magnetic association will most likely not be used in our experiment and will

not be discussed here. A magnetic ramp for creating Feshbach molecules was proposed in

[116, 117, 118]. In a simple picture, the coupling between the open channel and the closed

channel leads to a mixing of these states. This can be used to adiabatically convert the

free atoms to molecules. At the beginning of the ramp, a magnetic field B is applied with

B > B0 where B0 denotes the Feshbach resonance. This field is then ramped to a value

below the Feshbach resonance to associate Feshbach molecules. This is shown in fig. 8.1.

In [119], the first reported creation of Feshbach molecules by a magnetic ramp was

reported. The group at JILA created molecules with fermionic 40K at a temperature of

150 nK by using the resonance at 224.2 Gauss with a width of 0.21 G. The magnetic field

was ramped from 227.8 G at a rate of 40 μsG−1 across the resonance to 216.2 G. After

this ramp, the (remaining) atom number was measured and was found to be smaller than
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Figure 8.1.: Simplified picture of creating molecules by a magnetic ramp: A magnetic

field higher than the Feshbach resonance is applied to two free atoms (right side of the

picture) and slowly ramped over the resonance. The red dotted line shows the energy level

of free atoms without disturbance and the black dotted curve of a molecular level without

disturbance. The solid black and red curve show the real potential curves with coupling

of the two states leading to a mixing where the atoms can be converted adiabatically to

molecules (left side).

explainable by inelastic collisions. When the process of creating molecules was reversed by

applying the magnetic ramp in reverse direction, the atoms returned. This could only be

explained by a back conversion of the molecules to atoms. With this method, about 50 %

of the atoms were converted to molecules. In more recent experiments, e.g. in [120], higher

conversion efficiencies of up to 80 % were reported.

Some possibilities to create YbRb molecules with the help of Feshbach resonances were

described in chapter 7. The most promising resonances produce molecules in the vibrational

level Δv = −2 or Δv = −3 in 85Rb or Δv = −4 in 87Rb mixtures.

The use of an oscillatory field is another method of producing Feshbach molecules, first

reported in [121, 122]. In [121], a BEC of 85Rb atoms at a magnetic field of 162 G is

created. Then, the magnetic field is ramped in 5 ms to values between 156 and 157 G near

the Feshbach resonance at 155.0 G (width 11 G). A sinusoidally oscillating magnetic field

with peak-to-peak amplitudes of 130-280 mG was added for up to 50 ms with a frequency

close to the molecular binding energy. After that, the magnetic field is ramped back to

162 G and after some decay time in which the molecules decay and leave the trap, the

atom number is measured. With this method, efficiencies of 55 % have been reported. A

radio-frequency transition in the range of tens of MHz can also be applied instead of an

oscillating magnetic field, reported e.g. in [123].

In the mixture of 174Yb and 85Rb, this method could be used to associate molecules in

the mF = −1 substate at 361 G: At this magnetic field, the energy of the atomic level
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is near the molecular level with an energy difference of about 3 MHz where a transition

could be induced by a radio frequency. This would produce Feshbach molecules in the

vibrational level Δv = −2.

8.1.2. Molecule creation by photoassociation

The other possibility to create molecules is to use electronic transitions. The most straight-

forward way is to associate two free atoms to molecules via 1-Photon-Photoassociation.

This excited molecule then decays to either two free atoms or to a ground state molecule.

The problem is, that with this method, the molecules will be distributed over many vi-

brational states and not, as desired, in a specific one. However, from the determined

Franck-Condon factors (see chapter 5.6.2 and 6.2) we may deduce that for carefully chosen

excited states the transfer into a specific vibrational level can exceed 25 %.

Stimulated Raman Adiabatic Passage (STIRAP) [124] is the most efficient way to trans-

fer atoms or molecules in a state |1〉 to another state |3〉. This process uses an auxiliary

state |2〉 and two lasers. The “Pump laser” is resonant with the transition |1〉 → |2〉 and
the “Stokes laser” is resonant with |3〉 → |2〉. A sketch of this situation is shown on the

left side of fig. 8.2.

If we now consider the interaction of a light field to these three states, in analogy to the

case of two states as discussed in chap. 5.2, we get [30]:

ċ1(t) = i
Ωp

2
c2(t)

ċ2(t) = i
Ωp

2
c1(t) + i

Ωs

2
c3(t)

ċ3(t) = i
Ωs

2
c2(t)

(8.1)

with Ωp is the Rabi frequency of the Pump laser and Ωs is the Rabi frequency of the Stokes

laser. The two lasers are considered here to be on resonance. Since in our discussion,

the state |2〉 is the only state that allows spontaneous emission, it is desirable to avoid

population of this state. This can be reached by the control of the Rabi frequencies Ωp

and Ωs, if we assume

Ωp = Ω0(t)c3(t)

Ωs = −Ω0(t)c1(t).
(8.2)

This leads to ċ2(t) = 0. This means that this state will never be populated. A sketch of the

needed Rabi frequencies is shown on the right side of fig. 8.2 together with the populations

of the 3 states.

For a good transfer efficiency, it is essential, that the two Rabi frequencies Ωp and Ωs

have approximately the same value at their maximum. This can be reached by adjusting

the power ratios of the two laser beams since the Rabi frequency depends on the squareroot

of the intensity. For transitions from unbound atoms to bound molecules, this will be very
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Figure 8.2.: STIRAP principle. At the beginning, all atoms are in state |1〉. During the

transfer to state |3〉, the state |2〉 will not be populated.

challenging experimentally: In mixtures of Yb and Rb, the Rabi frequency for the pump

laser is reported to be in the regime of a few Hz [3]. If the density of the atom cloud can

be increased, it may be possible to reach Rabi frequencies in the range of a few kHz. On

the other side, the Rabi frequency for the Stokes laser reaches up to 100 MHz (see chapter

6) which may be lowered to 1 MHz with low intensity. But nevertheless, the pump laser

needs to be 106 times more intense than the Stokes laser to reach similar Rabi frequencies.

This is the reason, why the STIRAP process from unbound atoms to bound molecules has

not been reported yet.

For a mixture of 176Yb87Rb, there are two possibilities for a STIRAP process which are

considerable: The first laser excites the Δv′ = −9 level and the second laser is resonant to

the level with the highest overlap, namely the Δv = −5 level. The other path is the first

laser excites to the Δv′ = −11 level and the second laser decays to the Δv = −6 level.

If this is possible, we would end up with 176Yb87Rb molecules in the Δv = −4 ground

state via Feshbach resonances or in the Δv = −5 or Δv = −6 vibrational state via a

STIRAP process. For the other isotopes, the result is similar.

8.2. Molecules in rovibrational ground state

The next step is to transfer weakly bound molecules to the rovibrational ground state. Here,

a STIRAP process is needed. This technique is used in many experiments successfully, e.g.

in 40K87Rb [34] where Feshbach molecules are converted to the absolute ground state with

a STIRAP process with an efficiency of more than 50 %. In [33], an efficiency of more than

80 % was reported in conversion of Cs2 Feshbach molecules to a deeply bound vibrational
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Figure 8.3.: Calculated Franck-Condon factors of the rovibrational ground state v = 0

(black) and the highly vibrational state Δv = −6 (red) to vibrational level of the excited

state 2Π1/2. The inset shows the Franck-Condon factors of the highly vibrational state

in the region near v = 21. Here, the Franck-Condon factors are multiplied with a factor

of 103. The line is only a guideline for the eye.

level.

For YbRb molecules, no experimental data for deeply bound vibrational level is available.

Therefore, we can only use the ab-initio calculations [55] and the calculations performed in

chapter 5.8, where the ground state potential was calculated. For the excited state 2Π1/2,

we know the C6 value from the 1-Photon-PA experiments and a C12 value can in principle

be calculated with the same methods as was done for the ground state. This was done

leading to values of

C6 = −5684 Eha
6
0,

C12 = 2.28105 · 108 Eha
12
0 .

(8.3)

This potential has a potential depth of V ′
min ≈ −7700 cm−1 similar to the depth calculated

in [55]. The known highlying vibrational levels are reproduced approximately. This needs

more verification. Therefore, the following calculations will only give a hint where to

search for deeply bound vibrational levels. With the help of a Mathematica script [108],

the overlap of the wavefunctions from the vibrational levels of the ground state and the

excited state was calculated.

In fig. 8.3, the calculated Franck-Condon factors for transitions from the rovibrational

ground state (black) and the Δv = −6 ground state (red) to a vibrational level of the

excited 2Π1/2 state. It is clearly visible, that the ground state has a good overlap with

vibrational levels near v′ = 21 of the excited state while the highly vibrational level has a

good overlap with states near v′ = 130. For the STIRAP process, a good overlap with one
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Figure 8.4.: The Franck-Condon overlap between the rovibrational ground state v = 0

and a highly vibrational state Δv. Given is the product of the Franck-Condon factors

against the vibrational state v′ of the excited state 2Π1/2. It is interesting to note, that

indepedent from the highly vibrating state, the v′ = 21 state is always favorable.

excited state with both ground states is needed. Fig. 8.4 shows the product of the two

Franck-Condon factors |〈v = 0|v′〉|2 · |〈Δv|v′〉|2.
It is interesting to note, that for each of the three possible vibrational levels to start

with, it is always the v′ = 21 excited level that has the best overlap to both states. For the

given potentials, this means, that the following wavelengths are needed for the STIRAP

process:

λ1 = 1275 nm

λ2 = 1525 nm
(8.4)

The wavelength λ1 depends on the highly vibrating molecule that needs to be created

in the first step. It has to be noted that these calculations rely on the shape and the

depth of the involved potentials. The calculated ground state potential reproduces the

measured vibrational levels well, but it is not known if this is still true for the deeply

bound vibrational levels. The same argument holds for the excited state potential which

even does not reproduce the already known vibrational levels within the accuracy. For

more exact calculations, more experimental data is needed. This has to be seen as a hint

where to search for resonances.

Ab-initio calculations[55] discussed the possibility to use a two-step STIRAP with the

second step starting from a highly vibrating ground state and using the excited state 2Π1/2
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with wavelengths of

λ1 = 1345 nm,

λ2 = 1514 nm.
(8.5)

Here, the intermediate vibrational level v = 24 is used with a Franck-Condon overlap of

3.1 · 10−6.

For more exact values for the Franck-Condon overlap and for the positions of the vibra-

tional levels, more experimental input is needed. First experiments in this direction may

be done in molecular spectroscopy [125], which will hopefully give more information about

the structure of the YbRb molecule and will help to reach the absolute ground state in

this molecule.





A.
Potentials of the YbRb molecule

In this chapter, an overview over calculated potentials of the YbRb molecule will be given.

Ab-initio calculations were performed in [55]. With the 1-Photon-Photoassociation, ad-

ditional information about the excited state 2Π1/2 state are available. We performed 2-

Photon-Photoassociation spectroscopy on the ground state 1Σ1/2.

A.1. Ground state 2Σ1/2

With the help of the experimentally determined vibrational states of the YbRb ground

state, it was possible to calculate the potential and with this, all vibrational levels of the

ground state.

In the approximation of a Lennard-Jones potential, the potential is given by

V (r) = C12/r
12 + C6/r

6 (A.1)

with the coefficients

C6 = −(2563± 50) Eha
6
0,

C12 = 2.7412 · 108 Eha
12
0

(A.2)

This potential holds 66 vibrational levels for 174Yb87Rb and 176Yb87Rb and 65 levels for

the other combinations. The binding energies for the vibrational levels for 176Yb87Rb are

listed in tab. A.1.

The s-wave scattering lengths for all isotopic combinations of Rb and Yb as derived from

this potential are listed in tab. A.2
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vib. state Δbind vib. state Δbind vib. state Δbind

in cm−1 in cm−1 in cm−1

1 -1286.4 23 -391.68 45 -48.212

2 -1230.8 24 -365.83 46 -41.779

3 -1176.7 25 -341.10 47 -35.939

4 -1124.0 26 -317.49 48 -30.665

5 -1073.0 27 -294.95 49 -25.929

6 -1023.4 28 -273.48 50 -21.703

7 -975.29 29 -253.05 51 -17.961

8 -928.65 30 -233.63 52 -14.672

9 -883.45 31 -215.20 53 -11.809

10 -839.68 32 -197.75 54 -9.3432

11 -797.32 33 -181.25 55 -7.2454

12 -756.35 34 -165.66 56 -5.4866

13 -716.74 35 -150.98 57 -4.0373

14 -678.48 36 -137.17 58 -2.8681

15 -641.56 37 -124.22 59 -1.9492

16 -605.94 38 -112.09 60 -1.2508

17 -571.62 39 -100.76 61 -0.7427

18 -538.57 40 -90.212 62 -0.3949

19 -506.77 41 -80.413 63 -0.1771

20 -476.20 42 -71.340 64 -0.0590

21 -446.84 43 -62.966 65 -0.0102

22 -418.67 44 -55.266 66 -1.6 MHz

Table A.1.: Vibrational levels for 176Yb87Rb calculated with a C6 = −2563 Eha
6
0 and

C12 = 2.7412 · 108 Eha
12
0 (see chapter 5.8)

168Yb 170Yb 171Yb 172Yb 173Yb 174Yb 176Yb
85Rb 240 141 118 100 85 71 41
87Rb 41 -5 -47 -131 -431 1398 225

Table A.2.: S-wave scattering lengths for all isotopic combinations of Yb and Rb. The

lengths are given in bohr radii.
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A.2. The excited state 2Π1/2

In the limiting case of separated atoms, this state will asymptotically connect to the excited
2P1/2 state of Rb and the ground state 1S0 of Ytterbium. This state was first photoas-

sociated in our experiment in 2009 [3]. This data was used to determine a C6 value of

C6 = −(5684± 98) Eha
6
0 (A.3)

In ab-initio calculations [55], a Morse potential

V (r) = ED ·
(
1− e−ωr(r−Re)

)2
(A.4)

was calculated with

ED = 7735 cm−1

Re = 7.40a0

ωr = 69.294 cm−1

(A.5)

for this state. In the calculations performed in chapter 8, a Lennard-Jones potential with

approximately the same potential depth was introduced which reproduces the known vi-

brational states approximately. More input is needed here. The C12 value was calculated

to

C12 = 2.28105 · 108 Eha
12
0 . (A.6)

This has to be seen as a toy potential for calculating Frank-Condon factors (see chap. A.4)

to try to get a hint for finding the deeply bound vibrational levels.

A.3. The excited states 2Π3/2 and 2Σ1/2

The asymptotic case of these two potentials is the 2P3/2 state of Rb and the 1S0 ground

state of Yb. We tried some photoassociation experiments on this transition, but there is

not sufficient data to calculate a potential for that. But, ab-initio calculations were done

by Sørensen [55]. They approximated the potential by a Morse potential with

ED = 7164 cm−1

Re = 7.43a0

ωr = 69.322 cm−1

(A.7)

for the 2Π3/2 state and

ED = 4423 cm−1

Re = 8.43a0

ωr = 52.789 cm−1

(A.8)

for the 2Σ1/2 state.
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A.4. Franck-Condon factors

The Franck-Condon factors have been calculated for the ground state 2Σ1/2 and the vibra-

tional levels calculated by the toy potential for the excited state 2Π1/2. The Franck-Condon

matrix is shown in fig. A.1.

Figure A.1.: Franck-Condon matrix of the ground state 2Σ1/2 (Y axis) and the excited

state 2Π1/2 (X axis).



B.
The Li-Yb experiment in Seattle

In 2010, I visited the group of Prof. Gupta in Seattle, Washington, USA for 5 months.

The experiment there deals with a mixture of Lithium and Ytterbium and is thus closely

related to the work performed at the university in Düsseldorf. The two species are cooled

to ultracold temperatures by laser cooling. During my time there, we prepared the atoms

in a optical dipole trap and examined the scattering properties to each other. With these

experiments, it was possible to determine the interspecies s-wave scattering length to

|a6Li−174Yb| = (13± 3) a0. In the next step, the mixture of Li and Yb will be used to

create LiYb molecule in a similar way as discussed in this thesis with YbRb.

In this chapter, I explain the main features of the experiment and the results we got

during my time there.

B.1. The experiment

In the experiment in Seattle, Lithium and Ytterbium are cooled each with its own Zeeman

slower. Fig. B.1 shows a sketch of the chamber. All cooling and imaging of Li is performed

on the |2S1/2〉 → |2P3/2〉 transition at 671 nm. A tapered amplifier is used to providing

the light for trapping and imaging Li atoms. For slowing, an injection-seeded diode laser,

similar to our setup for Rb, is used.

For slowing and imaging of Yb, a frequency-doubled Titan:Sapphire laser1 with an output

wavelength of 399 nm (transition |1S0〉 → |1P1〉) is used. For trapping, a frequency-doubled

fiber laser is used wich produces light at the intercombination line |1S0〉 → |3P1〉 at 556 nm.

This scheme is nearly the same as our scheme for trapping Yb. All lasers are locked using

saturated absorption spectroscopy schemes.

A typical experimental scheme is working as follows: At first, Yb is laser cooled and

trapped in a MOT. After some time of loading, the Li is cooled and loaded into the same

MOT. During a varying (short) loading time, an optical dipole trap (ODT) consisting of

one (or two overlapping) laser beams from a linearly polarized fiber laser at 1064 nm is

switched on and the atoms are transferred to this trap. During the loading time of Li, the

Yb MOT is compressed due to the different magnetic field gradients which are required

for the operation of Yb and Li MOTs respectively. In this time, the MOT loses Yb atoms,

1In 2011, this laser is replaced by a frequency-doubled tapered amplifier setup.



112 B The Li-Yb experiment in Seattle

Figure B.1.: Sketch of the vacuum chamber of the Li-Yb experiment. From [126].

but gain Li atoms. This is shown in fig. B.2. By this, it is possible to adjust the atom

number ratio of the two species.

B.2. Sympathetic cooling

For the thermalization measurements, a single beam ODT with a 1/e2 radius of 30 μm is

used. 174Yb is transferred with a temperature of about 30 μK to the ODT at a calculated

trap depth of UYb = 220 μK. The depth is increased during the loading time of 6Li to a

depth of UYb = 500 μK. Due to the wavelength of 1064 nm of the dipole trap laser, the

trap is deeper for Li (ULi = 1.1 mK). This leads to a trap geometry which is perfectly

suited for thermalization measurements where the cold Yb atoms cool down Li atoms. The

measurements were performed with a near-zero magnetic field.

The atom numbers are observed via absorption imaging on different parts of the same

CCD camera. After a varying waiting time in the ODT, we measured the atom number

and the temperature of the two species, either in separate single-species experiments or
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Figure B.2.: Atom number during loading of Li. Due to the compression of the MOT,

Yb atoms are lost from the MOT while Li loads. This can be used to tune the ratio of

the two atom species. From [11]

when they are brought in thermal contact. The initial temperatures are

TYb = 35 μK,

TLi = 110 μK.
(B.1)

The atom numbers are NYb = 1.1 · 106 and NLi = 1.4 · 105 at the beginning of the

measurements in the ODT. For each species for itself, the temperature in the ODT is not

changing within the lifetime of about 30 s. When both species are loaded, the Li atoms

are getting colder without losing atoms and reach the temperature of the Yb cloud in

about 5 s. The Yb temperature does not significantly change due to the much higher atom

number, see fig. B.3.

In the analysis of the data, we assumed pure s-wave scattering which is justified in this

temperature regime since the calculated p-wave threshold is 2.5 mK [11]. The thermaliza-

tion rate γth can be calculated as

γth = − 1

ΔT

d(ΔT )

dt
=

ξ

α
n̄σLiYbv̄. (B.2)

Here, α = 2.7 is the average number of collisions needed for thermalization for equal masses

and ξ = 4mLimYb
(mLi+mYb)2

= 0.13 is the mass correction factor [127], ΔT is the temperature

difference between Li and Yb,

v̄ =

√
8kB
π

(
TLi

mLi
+

TYb

mYb

)
(B.3)

is the mean relative velocity and n̄ =
(

1
NLi

+ 1
NYb

) ∫
nLinYbd

3r is the overlap density. The

s-wave cross section can be calculated as

σLiYb =
2πa2(

1− 1
2k

2rea
)2

+ k2 + a2
(B.4)
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Figure B.3.: Thermalization measurements of a mixture of 174Yb (blue) and 6Li (red).

The red solid line is the result of the thermalization model with a scattering length of

|a6Li−174Yb| = (13± 3) a0. The inset shows the atom number of the two species. From

[11].

including an energy dependence [128] where �k is the relative momentum and re is the

effective range. The numbers for n̄ and v̄ change with the temperature of Li, therefore a

numerical procedure was used for modeling the thermalization process. In fig. B.3, the

result of this numerical calculation is shown in the red solid line.

From the numerical simulation, a s-wave scattering length of

|a6Li174Yb| = (13± 3) a0 (B.5)

is obtained with a0 being the Bohr radius. Recent measurements by another group [129]

give similar results for this value of |a| = 18.9± 3.8a0.

B.3. Outlook

This technique was expanded to forced evaporative sympathetic cooling [130]. The ODT

beam was expanded to a crossed dipole trap by adding a second beam that intersects

the first beam at an angle of 10◦. By lowering the trap depth, the Yb atoms get cooled

evaporatively. Since the trap depth for Li atoms is much higher, this species is not cooled

evaporatively but sympathetically by collisions with the Yb atoms.

In the experiment, bosonic 174Yb atoms and fermionic 6Li atoms were both loaded as

described before from the MOT phase into the optical trap and after an evaporation time

of about 12 s, an Yb Bose-Einstein condensate was created and the Li atoms were below

the Fermi temperature. By this, simultaneous quantum degeneracy was achieved.

In the next steps, this mixture will be used to search for magnetic Feshbach resonances

as proposed in [9] and photoassociation experiments as described in this work will be
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performed to learn more about the potential of the LiYb molecule.
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• Axel Görlitz, in dessen Arbeitsgruppe meine Arbeit entstanden ist. Seine offene

und fachlich kompetente Art hat dieses Experiment immer weiter vorangebracht,

so dass diese Arbeit überhaupt entstehen konnte. Ich bedanke mich auch für das

Korrekturlesen vor der Abgabe und der Übernahme des Hauptberichts.
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