
Attackers, Packets, and Puzzles
—

On Denial-of-Service Prevention
in Local Area Networks

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Yves Igor Jerschow

aus Riga

Mai 2012

Aus dem Institut für Informatik
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Martin Mauve
Heinrich-Heine-Universität Düsseldorf

Koreferent: Prof. Dr. Jörg Rothe
Heinrich-Heine-Universität Düsseldorf

Tag der mündlichen Prüfung: 19. Juni 2012

Abstract

In this thesis, we tackle the problem of securing communication in Local Area Networks

(LANs) and making it resistant against Denial-of-Service (DoS) attacks. The main vul-

nerability in wired and wireless LANs is the lack of initial address authenticity. It enables

an attacker to take on different identities and to inject faked packets bearing a foreign

or a bogus sender address. For this reason existing DoS countermeasures developed to

mitigate attacks in the Internet have drawbacks when being applied in LANs.

Our first contribution is the Cryptographic Link Layer (CLL)—a comprehensive secu-

rity protocol that provides authentication and confidentiality between neighboring hosts

from the link layer upwards. CLL employs public-key cryptography to identify all hosts

in the Ethernet LAN based on their IP/MAC address pairs. Unicast IP traffic is safe-

guarded by means of a block cipher and a message authentication code. CLL extends

ARP and DHCP handshakes with authentication to protect these protocols against vari-

ous kinds of attacks. Beginning with an ARP handshake, two hosts exchange certificates

and cryptographic parameters, authenticate each other, and negotiate symmetric keys

to establish a security association. CLL has been implemented on both Windows and

Linux and achieves a very competitive performance.

Verifying digital signatures in the handshake phase of CLL and of other security pro-

tocols that rely on public-key cryptography is a very expensive task compared to

symmetric-key operations. Thus, it may become a target for DoS attacks where the

adversary floods a victim host with faked signature packets trying to overload it. We

introduce a countermeasure against DoS flooding attacks on public-key handshakes in

LANs, called counter-flooding. A benign host trying to initiate an authentication hand-

shake to a victim system that suffers from a flooding attack reacts to this aggression by

flooding itself multiple copies of its signature packet for a short period. The key idea is

for the victim host to verify only a fixed number of signatures per time period without

becoming overloaded and to select those packets for verification that have the largest

number of duplicates. We provide bounds for counter-flooding to succeed and show

experimentally that in switched Ethernet a reasonable fair bandwidth division between

concurrent flows is usually ensured.

iii

Abstract

A well-known countermeasure against resource exhaustion attacks in the Internet are

client puzzles. However, existing client puzzle schemes are either parallelizable, coarse-

grained, or can be used only interactively. Interactive puzzles have the drawback that

the packet with the puzzle parameters sent from server to client lacks authentication.

Especially in LANs the attacker can mount a counterattack on the clients by injecting

packets with fake puzzle parameters that pretend to come from the defending server.

We propose a novel scheme for client puzzles based on the computation of square roots

modulo a prime. Modular square root puzzles are non-parallelizable, can be employed

both interactively and particularly non-interactively, and have polynomial granularity.

Benchmark results demonstrate the feasibility of our approach to mitigate DoS attacks

on hosts in 1 or even 10 Gbit networks. Furthermore, the efficiency of the scheme can

be raised by adding a small bandwidth-based cost factor for the client.

By introducing a secure client puzzle architecture we provide a solid basis to safely em-

ploy non-interactive client puzzles. It overcomes the authentication issue of interactive

puzzles and prevents precomputation attacks. In our architecture, client puzzles, e. g.,

modular square root or hash-reversal puzzles, are employed non-interactively and con-

structed by the client from a periodically changing, secure random beacon. The beacons

are generated in advance for a longer time span and regularly broadcasted in the LAN

by a special beacon server. All hosts obtain a signed fingerprint package consisting

of cryptographic digests of these beacons. Verifying a beacon is easy—it takes only a

single hash operation and can be performed at line speed by all hosts. To guarantee a ro-

bust beacon service, we develop sophisticated techniques which address synchronization

aspects and especially the secure deployment of beacon fingerprints.

In our final contribution, we pursue the idea of cryptographic puzzles beyond DoS pro-

tection and propose a novel application in the area of timed-release cryptography. We

introduce a non-interactive and non-parallelizable RSA time-lock puzzle scheme where

the time required to encrypt a message can be arbitrarily tuned by artificially enlarging

the public exponent. Based on RSA time-lock puzzles, we present an offline submis-

sion protocol. It enables an author currently being offline to commit to its document

before the deadline by continuously solving an RSA puzzle for that document and to

submit it past the deadline just upon regaining connectivity. The correct puzzle so-

lution serves as a proof to the accepting institution that the document in fact has

been completed in time. To demonstrate the applicability of our scheme, we provide a

platform-independent tool that performs all parts of our offline submission protocol.

iv

Zusammenfassung

Diese Arbeit widmet sich dem Problem, die Kommunikation in lokalen Netzwer-

ken (LANs) abzusichern und sie gegen Denial-of-Service (DoS) -Angriffe resistent

zu machen. Die Hauptschwachstelle in drahtgebunden und drahtlosen LANs ist die

initial fehlende Adressauthentizität. Sie ermöglicht es einem Angreifer, unterschied-

liche Identitäten anzunehmen und gefälschte Pakete mit einer fremden oder fikti-

ven Absenderadresse einzuschleusen. Aus diesem Grund stellen sich existierende DoS-

Gegenmaßnahmen, die zur Abwehr von Angriffen im Internet entwickelt worden sind,

für die Anwendung in lokalen Netzwerken nur als bedingt geeignet heraus.

Der erste Beitrag ist die kryptographische Sicherungsschicht (engl.: Cryptographic Link

Layer) CLL – ein umfassendes Sicherheitsprotokoll, welches Authentifizierung und

Vertraulichkeit zwischen benachbarten Rechnern ab der Sicherungsschicht aufwärts

gewährleistet. CLL setzt Public-Key-Kryptographie ein, um alle Rechner im Ethernet-

LAN basierend auf ihren IP/MAC-Adresspaaren zu identifizieren. Unicast-IP-Verkehr

wird mit Hilfe einer Blockchiffre und eines Nachrichtenauthentifizierungscodes abgesi-

chert. CLL erweitert die ARP- und DHCP-Handshakes um Authentifizierungsmechanis-

men, um diese Protokolle vor verschiedenen Arten von Angriffen zu schützen. Beginnend

mit einem ARP-Handshake tauschen zwei Rechner Zertifikate und kryptographische Pa-

rameter aus, authentifizieren sich gegenseitig und vereinbaren symmetrische Schlüssel

für den Aufbau einer Sicherheitsbeziehung. CLL wurde sowohl unter Windows als auch

Linux implementiert und erzielt eine sehr solide Performance.

Die Verifizierung digitaler Signaturen in der Handshake-Phase von CLL und von an-

deren Sicherheitsprotokollen, die Public-Key-Kryptographie einsetzen, stellt im Ver-

gleich zu symmetrischen Kryptoverfahren eine sehr rechenaufwendige Operation dar.

Daher kann sie zur Zielscheibe von DoS-Angriffen werden, in denen der Angreifer ein

Opfersystem mit gefälschten Signaturen flutet und es dadurch zu überlasten versucht.

Es wird eine Abwehrmaßnahme gegen DoS-Flutangriffe auf Public-Key-Handshakes in

LANs entwickelt, genannt Counter-Flooding. Ein gutwilliger Rechner, der ein Authenti-

fizierungshandshake zu einem System zu initiieren versucht, welches gerade Opfer eines

v

Zusammenfassung

Flutangriffs ist, reagiert auf diese Aggression, indem er selbst für eine kurze Zeit Ko-

pien seines Signaturpakets flutet. Die zentrale Idee ist, dass das Opfersystem nur eine

feste Anzahl an Signaturen pro Zeitabschnitt überprüft, ohne überlastet zu werden,

und dabei nur diejenigen Pakete berücksichtigt, welche die größte Anzahl an Duplika-

ten aufweisen. Es werden Schranken für den Erfolg der Counter-Flooding-Maßnahme

aufgestellt, und es wird experimentell gezeigt, dass in geswitchtem Ethernet eine hinrei-

chend faire Bandbreitenaufteilung zwischen konkurrierenden Paketflüssen in der Regel

gewährleistet ist.

Eine wohlbekannte Abwehrmaßnahme gegen Angriffe im Internet, die die Erschöpfung

von Ressourcen zum Ziel haben, sind Client Puzzles. Allerdings sind die bisher vor-

geschlagenen Client-Puzzle-Konstrukte entweder parallelisierbar, grobkörnig oder sie

lassen sich nur interaktiv einsetzen. Interaktive Puzzles haben den Nachteil, dass das

Paket mit den Puzzle-Parametern, welches vom Server zum Client geschickt wird, nicht

authentifiziert wird. Insbesondere in LANs kann der Angreifer einen Gegenangriff auf

die Clients starten, indem er Pakete mit falschen Puzzle-Parametern einschleust, die

den Anschein erwecken, vom sich verteidigenden Server zu stammen. Es wird ein neues

Konstrukt für Client Puzzles vorgeschlagen, das auf der Berechnung der Quadratwur-

zel modulo einer Primzahl beruht. Modulare Quadratwurzel-Puzzles sind nicht paral-

lelisierbar, können sowohl interaktiv als auch insbesondere nicht interaktiv eingesetzt

werden und weisen eine polynomielle Granularität auf. Benchmark-Ergebnisse unter-

mauern die Praxistauglichkeit dieses Ansatzes, DoS-Angriffen auf Rechner in 1 oder

sogar 10 Gbit Netzwerken entgegenzuwirken. Außerdem kann die Effizienz des Verfah-

rens durch Einführen eines kleinen bandbreitenbasierten Kostenfaktors für den Client

erhöht werden.

Mit der Einführung einer sicheren Client-Puzzle-Architektur wird eine solide Grundla-

ge für den zuverlässigen und wirksamen Einsatz von nicht interaktiven Client Puzzles

geschaffen. Sie beseitigt das Authentifizierungsproblem von interaktiven Puzzles und

beugt Vorausberechnungsangriffen vor. In der vorgeschlagenen Architektur werden Cli-

ent Puzzles, z. B. modulare Quadratwurzel-Puzzles oder auf der Umkehrung einer Hash-

funktion basierende Puzzles, nicht interaktiv eingesetzt und dabei vom Client aus einem

sich periodisch ändernden, sicheren zufälligen Beacon abgeleitet. Die Beacons werden

für eine längere Zeitspanne im Voraus erzeugt und im gesamten LAN von einem spe-

ziellen Beacon-Server regelmäßig per Broadcast verschickt. Alle Rechner beziehen eine

digital signierte Fingerabdruck-Datei, die aus den kryptographischen Prüfsummen die-

ser Beacons besteht. Die Überprüfung eines Beacons ist einfach – sie erfordert lediglich

eine einzige Hash-Operation und kann von allen Rechnern mit der vollen Datenrate

vi

Zusammenfassung

der Netzwerkschnittstelle durchgeführt werden. Um einen stabilen Beacon-Dienst zu

gewährleisten, werden ausgeklügelte Techniken entwickelt, die Synchronisierungsaspekte

berücksichtigen und insbesondere die zuverlässige Verteilung der Beacon-Fingerabdruck-

Datei sicherstellen.

Im letzten Beitrag wird die Idee der kryptographischen Puzzles über die DoS-

Abwehr hinaus verfolgt und eine neue Anwendung auf dem Gebiet der Timed-Release-

Kryptographie vorgeschlagen. Es wird ein nicht interaktives und nicht parallelisierbares

RSA-Time-Lock-Puzzle-Konstrukt eingeführt, wo die Zeit, die zum Verschlüsseln einer

Nachricht benötigt wird, durch künstliche Vergrößerung des öffentlichen Exponenten

beliebig lang gewählt werden kann. Basierend auf RSA-Time-Lock-Puzzles wird ein

Protokoll für Offline-Einreichung vorgestellt. Es ermöglicht es einem Autor, welcher

sich gegenwärtig offline befindet, sich an sein Dokument vor Ablauf der Abgabefrist zu

binden, indem er so lange ein RSA-Puzzle für dieses Dokument löst, bis die Internet-

konnektivität irgendwann nach Ablauf der Abgabefrist wiedererlangt wird. Dann wird

das Dokument zusammen mit der Lösung des Puzzles umgehend eingereicht. Die kor-

rekte Lösung des Rätsels dient der Annahmestelle dabei als Beweis, dass das Dokument

tatsächlich fristgerecht fertiggestellt worden ist. Zur Demonstration der praktischen An-

wendbarkeit dieses Ansatzes wird ein plattformunabhängiges Tool bereitgestellt, welches

alle Schritte des Offline-Einreichungsprotokolls ausführt.

vii

Zusammenfassung

viii

Acknowledgments

First of all, I want to express my gratitude to my doctoral advisor Martin Mauve. He

invited me to join the Computer Networks Research Group at the Heinrich Heine Uni-

versity Düsseldorf straight after finishing my master thesis and gave me the opportunity

to work on my PhD. I had the great chance to choose a challenging topic on my own

while Martin Mauve continuously supported my ideas and regularly encouraged me to

go into the right direction. During the last four years, he had always time to discuss the

progress of my work and gave me very valuable feedback, advice, and suggestions.

The second person who had a great influence especially on my first research contributions

is Björn Scheuermann. I am very grateful to him for being co-author of my first papers,

for teaching me how to take the first steps in the world of research and for giving

me critical but always very constructive feedback. Beginning from the time of being

supervisor of my bachelor and master thesis, Björn Scheuermann was an impressive

source of inspiration, insights and new ideas. It was an interesting experience to observe

him on his steep path from a young PhD student over a postdoc researcher and assistant

professor to a full professor.

Christian Lochert, who along with Björn Scheuermann supervised both my bachelor

and master thesis and also became co-author of my first papers, deserves my gratitude

as well.

My other colleagues at our chair provided me with a pleasant working atmosphere and I

enjoy looking back on many interesting discussions with Daniel Baselt, Markus Koegel,

Norbert Goebel, and Michael Stini. Sabine Freese, our group’s secretary, handled all the

necessary paperwork in the academic bureaucracy and was always very kind and helpful.

Our system administrator Thomas Spitzlei was responsible for the technical support.

He did his job quickly, unobtrusively, and was every time open to my questions.

ix

Acknowledgments

I would like to thank Jörg Rothe for agreeing to be referee for this thesis. His lectures

in theoretical computer science, especially in cryptography, that I attended during my

study period had a special charm and became the groundwork for my later research.

Moritz Gericke and Julius Römmler contributed to this work during their bachelor thesis

by extending my original implementations of CLL and OSRTLP. They performed their

task very well and also deserve many thanks.

This thesis is dedicated to my mother, Tamara Jerschow. Without her I would not have

achieved anything in this life and my education is her chief merit. She paved the way

for me to finish school, to go to university and, finally, to write this PhD thesis. I owe

my deepest gratitude to her for unconditionally supporting me with her love and advice

throughout all the years. Thank you, Mom!

x

Contents

List of Figures xv

List of Tables xvii

List of Abbreviations xix

1 Introduction 1

2 CLL: A Cryptographic Link Layer for LANs 7
2.1 Related Work . 9

2.2 Protocol Overview . 11

2.3 Cryptographic Design Decisions . 14

2.4 Operation of CLL in Detail . 15

2.4.1 Basic Packet Format . 15

2.4.2 ARP Handshake and SA Setup 16

2.4.3 Unicast IP Packets . 20

2.4.4 Periodical Key Rollover . 21

2.4.5 Broadcast Packets . 22

2.5 Integrating and Securing DHCP . 23

2.5.1 Basic Concept . 23

2.5.2 Authenticating the Packets . 24

2.5.3 Further Security Measures . 25

2.6 Implementation and Evaluation . 26

2.6.1 CLL as a Cross-Platform Service 26

2.6.2 Performance Evaluation . 27

2.6.3 Gigabit Ethernet and Parallelization 30

2.7 Chapter Summary . 31

3 Counter-Flooding: DoS Protection for Public-Key Handshakes in LANs 33
3.1 Related Work . 35

3.2 Design of Counter-Flooding . 37

3.2.1 Goal: Safeguarding the Public-Key Handshake 37

3.2.2 Basic Idea . 38

3.2.3 Bandwidth vs. Packet Count . 40

3.2.4 Determining the Flooding Duration 40

3.2.5 Choosing the Parameters . 42

3.3 More Details . 43

xi

Contents

3.3.1 Reducing the Queue Size . 43

3.3.2 Impact of Counter-Flooding on Network Performance 44

3.3.3 Comparison to a Probabilistic Arbitration Scheme 44

3.4 Flooding Experiments in Switched Ethernet 45

3.4.1 IEEE 802.3x Flow Control . 45

3.4.2 Bandwidth Division between Host A and Attacker 46

3.4.3 Preventing DoS Flooding Attacks on TCP 49

3.5 Chapter Summary . 50

4 Non-Parallelizable and Non-Interactive Client Puzzles 51
4.1 Related Work . 53

4.2 Modular Square Roots . 55

4.2.1 Extracting Square Roots Modulo a Prime 55

4.2.2 Modular Exponentiation . 58

4.2.3 Non-Parallelizability . 59

4.3 Client Puzzles from Modular Square Roots 60

4.3.1 Constructing and Solving a Non-Interactive Puzzle 60

4.3.2 Puzzle Verification . 62

4.3.3 Puzzle Granularity and Public Auditability 63

4.3.4 Interactive Client Puzzles . 63

4.3.5 Client Puzzles from Modular Cube Roots? 64

4.4 Evaluation and Protocol Enhancements 65

4.4.1 Puzzle Benchmark . 65

4.4.2 Increasing the Bandwidth-Based Payment 68

4.5 Chapter Summary . 69

5 Secure Client Puzzle Architecture based on Random Beacons 71
5.1 Related Work . 73

5.2 Secure Client Puzzle Architecture . 74

5.2.1 Non-Interactive Client Puzzles 74

5.2.2 Client Puzzles from a Random Beacon 75

5.2.3 Puzzle Construction . 76

5.2.4 Random Beacon Server . 77

5.2.5 Receiving and Verifying the Beacons 79

5.2.6 Puzzle Submission and Verification 81

5.3 Protocol Extensions . 81

5.3.1 Beacon Distribution across LAN Boundaries 81

5.3.2 Emergency Deployment of Beacon Fingerprints 83

5.4 Chapter Summary . 86

6 Offline Submission with RSA Time-Lock Puzzles 89
6.1 Related Work . 91

6.1.1 Time-Lock Puzzles . 91

6.1.2 More Timed-Release Cryptography 93

6.2 RSA Time-Lock Puzzle Scheme . 94

xii

Contents

6.2.1 Key Generation . 94
6.2.2 Public and Private Key Operation 95
6.2.3 Security Analysis . 96
6.2.4 Delayed Encryption and Signature Verification 97
6.2.5 Other Applications for RSA Time-Lock Puzzles 98
6.2.6 Small Private Exponent . 99

6.3 Offline Submission Protocol . 99
6.3.1 Basic Design . 99
6.3.2 Building a Puzzle Chain . 101
6.3.3 Alternative Approach . 102

6.4 Implementation and Evaluation . 102
6.4.1 The OSRTLP Tool . 102
6.4.2 Extensions: GUI and Online Submission System 104
6.4.3 Performance Evaluation . 106

6.5 Chapter Summary . 108

7 Conclusion 109

Bibliography 113

Index 123

xiii

Contents

xiv

List of Figures

2.1 CLL in the protocol stack. 12
2.2 An Ethernet frame in CLL. 16
2.3 ARP handshake: Diffie-Hellman key exchange in conjunction with RSA

signatures. 17
2.4 Transmission of unicast IP packets safeguarded with a block cipher and

a message authentication code. 21
2.5 Renegotiation—renewing an SA. 22

3.1 The counter-flooding approach. 40
3.2 Bandwidth division experiments: counter-flooding broadcast packets

with parallel TCP connection (CFB TCP). 46

6.1 Illustration of the offline submission protocol. 100
6.2 OSRTLP GUI with wizard-style interface: solving a puzzle chain. 105

xv

List of Figures

xvi

List of Tables

2.1 Algorithms and parameters in CLL. 15
2.2 Performance of the ARP handshake. 28
2.3 Performance of unicast transmissions in a 100 Mbit LAN. 29

3.1 Symmetric vs. asymmetric key cryptography. 37
3.2 Bandwidth division during counter-flooding under different conditions. . 48
3.3 Effect of Ethernet flow control on TCP throughput under a DoS flooding

attack. 49

4.1 Benchmark: verifying and solving modular square root puzzles on Intel
Core 2 Quad Q9400 2.66 GHz. 66

5.1 Benchmark: throughput of cryptographic hash functions on Intel Core 2
Quad Q9400 2.66 GHz (one core active). 80

6.1 Performance comparison of the modular squaring operation on different
platforms. 107

6.2 Computation time of r = 2t mod ϕ(n) on an Intel Core 2 Duo E6750 2.66
GHz for different puzzle difficulties t = T · S with an Intel Core 2 Duo
T9900 3.06 GHz as reference machine for S. 108

xvii

List of Tables

xviii

List of Abbreviations

ADSL Asymmetric Digital Subscriber Line

AES Advanced Encryption Standard

ARP Address Resolution Protocol

CBC Cipher Block Chaining

CLL Cryptographic Link Layer

DDoS Distributed Denial-of-Service

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DoS Denial-of-Service

DSA Digital Signature Algorithm

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

GUI Graphical User Interface

HMAC Hashed Message Authentication Code

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IP Internet Protocol

ISP Internet Service Provider

IV Initialization Vector

LAN Local Area Network

MAC Media Access Control

MiM Man in the Middle

MTU Maximum Transmission Unit

xix

List of Abbreviations

NIC Network Interface Controller

NTP Network Time Protocol

OSRTLP Offline Submission with RSA Time-Lock Puzzles

PKI Public Key Infrastructure

RSA Ron Rivest, Adi Shamir, and Leonard Adleman

RTT Round-Trip Time

SA Security Association

SSH Secure Shell

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

TTL Time To Live

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

WPA Wi-Fi Protected Access

xx

Chapter 1

Introduction

Denial-of-Service (DoS) attacks pose one of the major threats to Web services on the

Internet and have become a common means of cyber warfare. In the most common

scenario, an attacker, or in case of a distributed Denial-of-Service (DDoS) attack a

group of attacking systems, tries to exhaust the resources (CPU time, memory, or disk

space) of a server by overwhelming it with a flood of bogus requests. The aim is to

slow down and finally to overload the server so that it cannot respond to legitimate

clients anymore and the service provided becomes unavailable. But a network resource

can be also rendered unusable by exploiting vulnerabilities of the underlying protocol,

e. g., through disruption of configuration or state information. In this case the injection

of a few specially crafted packets may be sufficient for a DoS attack to succeed. DoS

attacks are mounted to pursue different goals—they may be politically or economically

motivated, some attackers just aim at demonstrating their power while others are driven

by revenge or try to extort their victim. A report on DDoS attacks in the second half

of 2011 [GN12] presents current numbers and gives a rough picture of their impact on

politics and business.

However, DoS attacks affect not only Internet services. They are also conducted in

corporate Intranets and Local Area Networks (LANs) to disrupt communication within

a single entity. Especially public LANs like Wi-Fi hotspots pose promising targets for

an effective DoS attack. In this thesis, we put our focus on how to secure a local area

network against DoS and how to prevent a number of other attacks that result from

missing authentication mechanisms between the link and the network layer. The main

vulnerability in wired and wireless LANs is the lack of initial address authenticity. An

1

Chapter 1 Introduction

attacker can easily take on different identities and emit packets bearing a foreign or

a fake sender address. In contrast, forging the sender address in the Internet without

the packet getting dropped by intermediate routers is far more complicated. Filtering

mechanisms that can recognize a flood of requests in the Internet based on their origin

do not work in LANs. DoS countermeasures developed to mitigate attacks carried out

over the Internet turn out to have drawbacks when being applied in LANs. Thus,

safeguarding LAN communication constitutes a challenging and relevant issue.

Our attack model assumes an adversary (or a group of them) that is powerful but

not omnipotent. Basically, we suppose that the attacker can eavesdrop on the traffic,

can inject packets with arbitrary contents and especially manipulate all protocol head-

ers including the sender address. But modifying foreign packets and destroying them

in switches or in the medium to a significant extent is beyond his capabilities. Be-

ing equipped with bandwidth, processors, and memory our adversary mainly performs

software-based attacks on the protocol level and this is the starting point for us to coun-

teract. Active hardware-based attacks utilizing special devices are beyond the scope of

this work.

The vision is to make communication in local area networks secure and DoS-resistant.

Our contribution to it consists of two main building blocks: First, provide a comprehen-

sive security protocol that ensures authentication and confidentiality between neighbor-

ing hosts from the link layer upwards. This involves the use of public-key cryptography

which is quite costly compared to symmetric-key algorithms. Second, develop new and

improve existing techniques to safeguard security protocols relying on public-key cryp-

tography (and in general protocols that involve processing of complex requests) against

DoS attacks. The two DoS countermeasures presented in this thesis—one deals with

sending packets, the other with solving puzzles—share a common principle of defense.

In case of a DoS attack the hosts requesting service from the victimized machine have

to pay for it using some currency, e. g., bandwidth or CPU cycles, and the more they

pay, the higher will be their chances to get service and the lower will be the impact of

the attack.

Using puzzles to mitigate DoS attacks is a known approach in the literature. We show

that existing puzzle schemes cannot be safely used in LANs since they are vulnerable

2

to counterattacks. Hence, we develop a new DoS protection scheme based on controlled

flooding of packets. Then we revisit the puzzle approach and introduce a novel puzzle

construction that offers some advantages over existing schemes. Our construction is

generic, i. e., its application is not limited to LANs. Next, we present an elaborate

puzzle architecture that is specifically tailored to the attack potential in LANs and can

benefit from the new puzzle construction. Finally, we pursue the idea of cryptographic

puzzles and propose a puzzle scheme derived from the RSA public-key cryptosystem

that can be used for a very different purpose than DoS protection, namely for offline

submission of documents.

The feasibility of the approaches introduced in this work is supported either by a fully

working implementation or at least by prototypes and real-world measurements. Our

protocols, algorithms, and schemes are naturally based on many previous works in

different areas of cryptography, DoS protection, and networking. We therefore discuss

related work in each chapter separately.

In Chapter 2, we introduce our first major contribution, the Cryptographic Link Layer

(CLL), which is a layer 2/3 security extension for LANs. Ethernet and IP form the basis

of the vast majority of LAN installations. But these protocols do not provide compre-

hensive security mechanisms, and thus give way for a plethora of attack scenarios. CLL

provides authentication and confidentiality to the hosts in the LAN by safeguarding all

layer 2 traffic including ARP and DHCP handshakes. It is transparent to existing pro-

tocol implementations, especially to the ARP module and to DHCP clients and servers.

Beyond fending off external attackers, CLL also protects from malicious behavior of

authenticated clients. We discuss the CLL protocol, motivate the underlying design

decisions, and finally present implementations of CLL for both Windows and Linux.

Their performance is demonstrated through real-world evaluation and benchmarking.

CLL, as well as the majority of security protocols, employs public-key cryptography for

authentication in the connection setup phase. However, verification of digital signatures

is an expensive task compared to symmetric-key operations and may become the target

for DoS attacks where the adversary floods the victim host with fake signature packets

trying to overload it. In Chapter 3, we present counter-flooding, a new defense mech-

anism against DoS attacks on public-key handshakes in LANs that exploit the lack of

3

Chapter 1 Introduction

initial address authenticity. A benign host having a signature packet addressed to a host

which is currently under attack ensures the processing of its packet by flooding copies of

this packet for a short period of time itself. The key idea is for the victim host to verify

only a fixed number of signatures per time period without becoming overloaded and to

select those packets for verification that have the largest number of duplicates. Under

weak assumptions we prove that the packet from the benign host will be among them.

We derive bounds for our counter-flooding mechanism to succeed and perform experi-

ments with Ethernet switches to study the bandwidth division between concurrent flows

under overload conditions.

A prominent countermeasure against DoS attacks which is known in the literature for

more than a decade now are client puzzles. The victimized server demands from the

clients to commit computing resources before it processes their requests. To get service,

a client must solve a cryptographic puzzle and submit the right solution. However,

existing client puzzle schemes have some drawbacks. They are either parallelizable,

coarse-grained or can be used only interactively. In Chapter 4, we thus introduce a

novel scheme for client puzzles which relies on the computation of square roots modulo

a prime. Modular square root puzzles are non-parallelizable, i. e., the solution cannot

be obtained faster than scheduled by distributing the puzzle to multiple machines or

CPU cores, and they can be employed both interactively and non-interactively. Our

puzzles provide polynomial granularity and compact solution and verification functions.

Benchmark results demonstrate the feasibility of our approach to mitigate DoS attacks

on hosts in 1 or even 10 Gbit networks. In addition, we show how to raise the efficiency

of our puzzle scheme by introducing a bandwidth-based cost factor for the client.

Most existing client puzzle schemes are interactive. Upon receiving a request the server

constructs a puzzle and asks the client to solve this challenge before processing its re-

quest. But the packet with the puzzle parameters sent from server to client lacks authen-

tication. Especially in LANs the attacker might mount a counterattack on the clients

by injecting faked packets with bogus puzzle parameters bearing the server’s sender

address. A client receiving a plethora of bogus challenges may become overloaded and

probably will not be able to solve the genuine challenge issued by the authentic server.

Thus, its request remains unanswered. Non-interactive client puzzles, on the other hand,

enable the attacker to gain more power by precomputing solutions. Chapter 5 presents

4

a secure client puzzle architecture which overcomes the described authentication issue

and prevents the precomputation of puzzle solutions. In our architecture client puzzles,

e. g., the modular square root puzzles introduced in the previous chapter, are employed

non-interactively and constructed by the client from a periodically changing, secure

random beacon. A special beacon server broadcasts beacon messages that can be easily

verified by matching their hash values against a list of beacon fingerprints which has

been obtained in advance. We develop sophisticated techniques to provide a robust bea-

con service. This involves synchronization aspects and especially the secure deployment

of beacon fingerprints.

In Chapter 6, we look at a very different application area for puzzles in the context of

timed-release cryptography. We propose a non-interactive RSA time-lock puzzle scheme

whose level of difficulty can be arbitrarily chosen by artificially enlarging the public

exponent. Solving a puzzle for a message m means for Bob to encrypt m with Alice’s

public puzzle key by repeated modular squaring. The number of squarings to perform

determines the puzzle complexity. This puzzle is non-parallelizable. Thus, the solution

time cannot be shortened significantly by employing many machines and it varies only

slightly across modern CPUs. Alice can quickly verify the puzzle solution by decrypting

the ciphertext with a regular private key operation. The main application is an offline

submission protocol which enables an author currently being offline to commit to his

document before the deadline by continuously solving an RSA puzzle based on that

document. After regaining Internet connectivity, he submits his document along with

the puzzle solution which is a proof for the timely completion of the document. We have

implemented a platform-independent tool performing all parts of our offline submission

protocol: puzzle benchmark, issuing a time-lock RSA certificate, solving a puzzle and

finally verifying the solution for a submitted document. Two other applications we

propose for RSA time-lock puzzles are trial certificates and a CEO disclosing the signing

private key to his deputy.

Finally, we conclude this thesis with a summary in Chapter 7 where we reflect the major

contributions.

5

Chapter 1 Introduction

6

Chapter 2

CLL: A Cryptographic Link Layer for LANs

Ethernet and the Internet Protocol (IP) are the main building blocks for the vast ma-

jority of modern Local Area Networks (LANs). However, these protocols, and thus vir-

tually all installed LANs, do not provide comprehensive security mechanisms. Hence,

malicious local users are potentially able to eavesdrop, to inject or modify information,

or to take on fake identities.

One especially critical component is the Address Resolution Protocol (ARP) [Plu82]. It

performs the task of coupling the network layer with the link layer by resolving IP ad-

dresses into the corresponding MAC addresses. However, ARP lacks an authentication

mechanism, making it vulnerable to different types of attacks. This constitutes a severe

threat in every LAN that is accessible to not fully trustworthy users. By emitting ARP

messages with wrong IP/MAC mappings—commonly referred to as ARP spoofing—a

malicious user can impersonate other hosts, intercept and modify foreign IP traffic by

becoming a Man in the Middle (MiM), or mount a Denial of Service (DoS) attack

against other hosts. Using freely available tools, e. g. [Mon, Ett], ARP spoofing can be

easily performed even by users without deeper knowledge of the underlying protocols.

Preventing ARP attacks in the case of dynamic IP addresses requires to take also the

Dynamic Host Configuration Protocol (DHCP) [Dro97] into account. It is employed in

almost every LAN to automatically assign IP addresses and configuration parameters.

It does not provide an authentication mechanism either and thus can also become the

target of various attacks. By setting up a rogue DHCP server and announcing forged IP

addresses for the default gateway or the DNS server, an adversary is able to run a MiM

7

Chapter 2 CLL: A Cryptographic Link Layer for LANs

or DoS attack against clients requesting an IP address via DHCP. Furthermore, the

legitimate DHCP server is also vulnerable. In a DHCP starvation attack the adversary

takes on many different client identities (usually MAC addresses) and requests each time

a new IP address, until the server’s address pool gets exhausted. Thereby the attacker

can prevent new clients from acquiring a valid IP configuration.

Since modern operating systems enable the injection of raw Ethernet packets containing

arbitrary MAC and IP addresses in their headers even in user mode, there exists no

external barrier which would impede address fraud. The outlined attack scenarios are

covered in more detail, e. g., in [AKO+04, BOR03, VP07].

In this chapter, we tackle the challenge of securing the communication in local area

networks, including ARP and DHCP. We introduce a comprehensive layer 2/3 security

protocol—the Cryptographic Link Layer (CLL). It provides authentication and confi-

dentiality between neighboring hosts in Ethernet LANs. Each machine gets identified

by its IP/MAC address pair. Beyond safeguarding ARP and DHCP, CLL protects ar-

bitrary layer 2 traffic, especially all encapsulated IP packets. A paper on CLL covering

the central results of this chapter has been published in [JLSM08]. We propose to em-

ploy CLL, e. g., in enterprise and campus networks being often accessed by frequently

changing, not fully trustworthy users as well as in all kinds of publicly accessible LANs

(like Internet cafés or Wi-Fi hotspots). Note that CLL does not affect the operation of

higher layer security protocols.

Beginning with an ARP request, CLL applies public-key cryptography to perform an

initial handshake between two hosts with the aim to establish a security association. The

two hosts prove their identity to each other and exchange keying material. Hereupon,

secured IP data packets may be sent.

We have implemented and evaluated CLL on both Windows and Linux. In LANs

running at 100 Mbit/s, our implementation operates at full wire-speed, thus securing

the network without compromising the throughput. To ease the migration procedure,

CLL-enabled machines can be configured to interoperate with ordinary, unsecured hosts.

We make our CLL implementation available for free download including the sources, and

complement it with a toolkit for key and certificate management [Jera].

8

2.1 Related Work

The remainder of this chapter is organized as follows. In the next section, we review

previous approaches to securing ARP, DHCP, and the link layer. Section 2.2 sketches

the architecture of CLL, before Section 2.3 justifies the underlying cryptographic design

decisions. In Sections 2.4 and 2.5, we detail the operation of CLL’s protocol components.

Section 2.6 describes the implementation of CLL and evaluates its performance. Finally,

we conclude the chapter with a summary in Section 2.7.

2.1 Related Work

Above the link layer, there already exist well-proven security protocols which pro-

vide authentication and confidentiality by means of cryptography. SSH [YL06] and

SSL / TLS [DR06] operate at the application level or directly below it. At the network

layer, IPsec [KS05] can protect IP datagrams being exchanged between two end-points.

However, IPsec does not authenticate the IP address of the communicating party. This

enables an authorized IPsec user to impersonate the IP address of another host that is

temporarily switched off or knocked out by a DoS attack. While SSH, SSL / TLS, and

IPsec cannot protect from attacks on ARP and DHCP, the encryption performed by

these protocols will still prevent the disclosure of sensitive data. An attacker would have

to content himself with the power of rendering his victims unable to communicate.

Reviewing the attempts to cope with the insecurity of ARP, there exist two main di-

rections. One is to detect the bulk of ARP attacks by means of a specialized Intrusion

Detection System (IDS) like Antidote [Ant] or ArpWatch [Arp] and to warn the user

or network administrator in time. Such tools monitor all incoming ARP messages and

trigger an alarm, e. g., on observing an abnormally high number of ARP replies or a

changed IP/MAC mapping. However, these ARP watchdogs cannot provide full pro-

tection against ARP attacks; in particular, they are not able to distinguish whether the

MAC address in the first ARP reply is genuine or not. The other approach is to se-

cure ARP by using cryptographic techniques. In the following, we discuss some current

research taking this direction.

Gouda and Huang [GH03] specified a theoretical architecture with an ARP server shar-

ing a symmetric key for message authentication with every host in the LAN. Each host

9

Chapter 2 CLL: A Cryptographic Link Layer for LANs

periodically notifies the server about its current IP/MAC mapping and resolves the

MAC addresses of its neighbors with the aid of the ARP server. However, this does

not prevent an authorized machine from purposely announcing a mapping of a neigh-

boring host’s IP address to its own MAC address. In contrast, CLL authenticates all

hosts based on their IP/MAC address pair. It thus also avoids ARP spoofing attempts

originating from malicious, but authorized users. Furthermore, CLL does not require a

central server.

In [BOR03], Bruschi et al. introduced Secure ARP (S-ARP) which uses public-key sig-

natures to authenticate the ARP replies. All hosts in the LAN hold a private/public key

pair and initially enroll at a central server, the Authoritative Key Distributor (AKD).

The AKD maintains a repository of public keys and the corresponding (static) IP ad-

dresses. Whenever a host requires a neighbor’s public key to verify the signature of

an ARP reply, it inquires about it from the AKD. The AKD’s reply packet is digi-

tally signed as well and the AKD’s public key is preinstalled on all machines. S-ARP

comes with an implementation for Linux 2.4, but it requires a kernel patch and does

not support dynamically assigned IP addresses.

On the basis of S-ARP, Lootah et al. proposed Ticket-based ARP (TARP) [LEM07].

It foregoes a central key server and instead employs digitally signed attestations of

IP/MAC mappings, so-called tickets. The tickets are issued by a trusted party, the

Local Ticket Agent (LTA). The host responding to an ARP request attaches its ticket to

the ARP reply and thereby proves the validity. Since the LTA’s public key is preinstalled

on each host, received tickets can be verified quickly. In comparison to S-ARP, TARP

requires at most one public-key operation per ARP exchange and no private key opera-

tions, and thus offers better performance. However, the authors state that an attacker is

able to impersonate a host that is currently offline, by replaying its previously captured

ticket. TARP has been implemented on Linux 2.6 with support for DHCP-assigned IP

addresses. Note, however, that both S-ARP and TARP aim to secure only ARP, while

CLL provides overall layer 2 security by safeguarding DHCP and data packets as well.

RFC 3118 [DA01] specifies how DHCP can be extended by an authentication mechanism.

In this scheme, the DHCP server shares with each client a symmetric key. It is used

to authenticate the DHCP messages. However, DHCPDISCOVER, the first message

10

2.2 Protocol Overview

sent by the client, remains unauthenticated. Consequently, users still might be able to

perform a DHCP starvation attack. This is not the case with CLL. Another drawback

is that currently no DHCP implementations with RFC 3118 support are available.

Applying cryptography at the link layer is common in Wi-Fi networks. Wi-Fi Protected

Access (WPA) and WPA2 (IEEE 802.11i) provide authentication and confidentiality be-

tween wireless nodes and the access point. The IEEE working group 802.1AE [IEE] spec-

ifies MACsec as the analog of WPA/WPA2 for LANs. In contrast to CLL, WPA/WPA2

and MACsec authenticate hosts based only on their MAC address. The content of ARP

and DHCP control packets encapsulated in layer 2 frames is not examined. Therefore

these protocols cannot protect from ARP and DHCP attacks originating from legitimate

users. Moreover, we are not aware of any MACsec implementation being available at

this time.

The main contribution of this chapter is a novel, comprehensive approach to layer 2

security, which provides a more complete protection of the LAN than even a combination

of three existing protocols (e. g., TARP, RFC 3118, and IPsec) could achieve. That is

because besides eliminating the discussed shortcomings of these protocols, CLL also

authenticates broadcast traffic. The tackled security problems are all related to each

other—they arise from the lack of authentication at layer 2 and the link to layer 3.

Thus, a comprehensive approach to solve them seems appropriate.

2.2 Protocol Overview

CLL is designed as a transparent filtering service between the network adapter and the

IP stack. It thus operates at the border between the link and the network layer, as

displayed in Figure 2.1. All outgoing packets including the Ethernet header are authen-

ticated and their payload is optionally encrypted before they are handed over to the

network card for transmission. Incoming packets are passed to the IP stack only after

they have been successfully authenticated and—if applicable—decrypted. CLL can be

enabled or disabled without modifying the other protocol stack components. For them,

CLL’s services are transparent. But in fact, CLL appends its cryptographic headers to

outgoing packets, and puts its own ID into the EtherType field of the Ethernet header.

11

Chapter 2 CLL: A Cryptographic Link Layer for LANs

transport layer

link and physical layer

TCP/UDP

IP

ARP DHCP

application layer

CLL

network layer

Figure 2.1: CLL in the protocol stack.

From successfully authenticated incoming packets CLL strips off its cryptographic head-

ers and restores the original EtherType value before passing them up. While the opera-

tion of CLL does not require any modifications to switches, routers must either support

CLL (and benefit from it) or exchange packets with the end systems in the standard,

insecure manner.

CLL identifies hosts by their IP/MAC address pair. Each machine on the LAN holds

a private/public key pair and a certificate issued by the local Certificate Authority

(CA)—usually the network administrator—which establishes the binding between its

public key, the MAC and the IP address. To verify certificates, each host requires the

CA’s public key. Typically it will be installed in the form of a self-signed certificate

along with the host’s own certificate, but a more complex Public Key Infrastructure

(PKI) to support multiple LANs is also conceivable.

Basically, CLL divides all network traffic into four packet types: ARP and DHCP1

control packets, unicast and broadcast IP data packets. Authentication is performed for

1Though being encapsulated in an UDP segment and an IP datagram, we handle DHCP messages as
a separate layer 3 packet type due to the functional position of DHCP below the network layer.

12

2.2 Protocol Overview

all packet types and, in addition, an optional payload encryption is provided for unicast

IP packets.

While ARP and broadcast IP packets are authenticated by means of public-key cryptog-

raphy (digital signatures in conjunction with certificates), unicast IP and DHCP packets

get secured using fast symmetric key algorithms. Safeguarding unicast IP packets with

a message authentication code and optionally a block cipher requires each pair of com-

municating hosts to share a secret key. For that purpose, CLL employs a key exchange

protocol to negotiate shared keys on-demand. Since the IP traffic flow between two hosts

always begins with an ARP exchange, CLL adopts it to establish a security association

(SA) between the two peers. The two machines authenticate each other, negotiate a

secret key and agree on the cryptographic algorithms to protect their IP packets. The

establishment of an SA is subsequently referred to as handshake.

To determine the sender’s (claimed) identity during the authentication of incoming

packets, CLL examines the Ethernet header and, depending on the protocol, also the

ARP, IP, or DHCP header. Where applicable, it performs a consistency check: the

sender’s MAC address can be also found in the ARP header or—in case of a DHCP

client—in the DHCP header, and it must match the address specified in the Ethernet

header. Such a cross-layer consistency check is not performed by other protocol layers.

It is, however, crucially important to ward off ARP spoofing and DHCP starvation

attacks. Layer 2 authentication alone would not suffice for this purpose.

The following listing summarizes the various LAN attacks fended off by CLL:

• ARP spoofing: impersonation, MiM and DoS attack

• DHCP spoofing: rogue DHCP server (MiM & DoS), DHCP starvation attack

(DoS)

• generic unicast attacks: injection of spoofed packets, eavesdropping

• generic broadcast attacks: injection of spoofed packets, special case: smurf attack2.

2Flooding the victim via spoofed broadcast ping messages being answered by all other hosts.

13

Chapter 2 CLL: A Cryptographic Link Layer for LANs

2.3 Cryptographic Design Decisions

The security philosophy of CLL is to provide the user with a suite of up-to-date cryp-

tographic algorithms and corresponding parameters, letting her choose between them

on her own responsibility. Such a design has the advantage of considering individual

security perceptions, allowing to trade off between highest-level security and best perfor-

mance, and supporting the prompt exchange of an algorithm being reported as broken.

With our implementation, we nevertheless provide a reasonable default configuration to

assist users without deeper understanding of cryptography. The general level of protec-

tion provided by CLL may be also selected. Either CLL just authenticates all types of

packets or it additionally also encrypts the payload of unicast IP packets (including the

IP header). Skipping the encryption step will result in a better performance and should

be done whenever a higher layer security protocol like IPsec already ensures confiden-

tiality. CLL allows to use different ciphers and hash functions in each direction of an

SA. With regard to system complexity, we however prescribe the algorithms used for

key exchange, key derivation, and DHCP packet authentication. Table 2.1 summarizes

the algorithms proposed for CLL and supported by our implementation.

During the handshake CLL applies the Diffie-Hellman [DH76] key agreement protocol

to exchange a symmetric master key with perfect forward secrecy between the two

peers. Since handshake packets are digitally signed, there exists no susceptibility to

man-in-the-middle attacks. To the negotiated master key we apply a deterministic key

derivation function to generate for each direction two properly sized keys—one for the

message authentication code and one for the optional cipher.

CLL guarantees the authenticity of unicast IP and DHCP packets by means of a Hashed

Message Authentication Code (HMAC) [BCK96] attached to the end of each packet. In

addition to authentication, CLL offers to protect unicast IP packets from eavesdropping

by optionally encrypting them with a block cipher in Cipher Block Chaining (CBC)

mode. When establishing an SA, we generate a random Initialization Vector (IV) and

use afterwards the last encrypted block of the preceding packet as the next packet’s IV.

Since transmissions on the link layer are unreliable, the sender also prepends the current

IV to each packet. If the payload size is not a multiple of the block size, random padding

bytes are appended. We first encrypt the plaintext and then compute the HMAC for

14

2.4 Operation of CLL in Detail

Table 2.1: Algorithms and parameters in CLL.

message auth. codes

• HMAC with MD5, SHA-160/256, RIPEMD-160 or

HAS-160

• 128 – 256 bit key length

encryption

• optionally with a block cipher in CBC mode, 128 – 256 bit

key length

• available ciphers: Twofish, AES, RC6, RC5, Blowfish,

MARS, Serpent, CAST-128/256, SEED, GOST

key exchange
Diffie-Hellman, 2048-bit group No. 14 from the IPsec

specification

key derivation
IEEE 1363a Key Derivation Function 2 (KDF2)

using RIPEMD-160

key rollover periodically on demand, e. g., every 30 min

digital signatures

• RSA with variable key length (typically 1024 – 2048 bits)

• RSASSA-PSS signature scheme with SHA-160/256

or RIPEMD-160

certificates X.509 v3 with RSA signature, ASN.1 BER/DER encoding

the ciphertext, since this is the only order that is generally considered secure [Kra01].

It also enables to detect a forged packet without the need to decrypt it.

To sign handshake and broadcast IP packets, CLL applies the well-known RSA algo-

rithm [RSA78] along with certificates. RSA offers the great advantage of supporting

public-key signatures and encryption with a single key pair. And though CLL’s security

architecture does not require any public-key encryption, in practice the local CA can

make use of RSA encryption to securely deploy the DHCP HMAC keys to the users.

2.4 Operation of CLL in Detail

2.4.1 Basic Packet Format

When securing Ethernet frames, CLL inserts its own headers and replaces the EtherType

value in the Ethernet header with its own identifier (0x07D0, otherwise unassigned by

IEEE). Figure 2.2 depicts the generic layout of an Ethernet frame safeguarded by CLL.

15

Chapter 2 CLL: A Cryptographic Link Layer for LANs

destination MAC address

source MAC address

EtherType: 0x07D0 (CLL)

6 bytes

6 bytes

2 bytes

CLL version (1)

packet type

compressed (yes / no)

3 bits

4 bits

1 bit

1 byte

HMAC / RSA signature

payload (IP* / ARP / DHCP)

* possibly encrypted

more CLL headers
(depending on packet type)

EthernetEthernet

headerheader

CLL CLL

headerheader 60 - 1514 bytes

Figure 2.2: An Ethernet frame in CLL.

The CLL header is placed behind the Ethernet header. It has been designed as a

compact bit field to save overhead. It consists of a version number (currently 1) like

in IP, a field specifying the encapsulated packet type (unicast or broadcast IP packet,

ARP handshake packet, DHCP client or server packet, internal certificate packet), and

a boolean flag stating whether the payload has been optionally compressed by CLL.

This main CLL header is followed by one or more inner headers depending on the

encapsulated packet’s type. Therein we store, among cryptographic parameters, the

original EtherType number. Behind the inner headers resides the payload, i. e., an

ARP, IP, or DHCP packet. Finally, each secured Ethernet frame terminates with an

authentication field containing either an HMAC (unicast IP and DHCP packets) or an

RSA signature (ARP handshake and broadcast IP packets) computed over the whole

frame.

2.4.2 ARP Handshake and SA Setup

Overview

To safeguard unicast IP packets, CLL needs to establish an SA between each pair of com-

municating hosts. For this, CLL takes advantage of the ARP mechanism and expands

16

2.4 Operation of CLL in Detail

it at the same time with authentication. Figure 2.3 illustrates this ARP handshake

between two hosts A and B.

ARP request Diffie-Hellman A
crypto algorithms A timestamp A

nonce certificate A (MAC + IP)

A B

RSA
siga-
ture

ARP reply Diffie-Hellman B
crypto algorithms B timestamp B

nonce certificate B (MAC + IP)

RSA
signa-
ture

RSA
signa-
ture

A B

Figure 2.3: ARP handshake: Diffie-Hellman key exchange in conjunction with RSA
signatures.

When started, a CLL implementation should first flush the ARP cache, thus ensuring

that all IP traffic to other hosts is preceded by an ARP request. Having intercepted

the ARP request, CLL wraps it up into a digitally signed handshake packet. It includes

the host certificate and cryptographic parameters to establish the SA. The handshake

packet is broadcasted like an ordinary ARP request and every station on the LAN

checks whether it holds the inquired IP address. At the destination host, CLL verifies the

certificate of the requesting host and validates the packet’s signature. Invalid packets are

dropped. Then it must be checked whether the sender’s IP/MAC address pair claimed

in the ARP request (and its MAC address stated in the Ethernet header) matches the

one specified in its certificate.

If the handshake packet turns out to be valid, CLL creates a new SA with the request-

ing host, based on the local and the received cryptographic parameters. Finally, CLL

strips off everything from the handshake packet except for the ARP header, restores

the ARP EtherType number in the Ethernet header and passes the resulting ordinary

ARP request up the protocol stack to the ARP module. The ARP module creates then

an ARP table entry for the requesting host, and responds with an ARP reply. This re-

ply gets intercepted again and is encapsulated into a digitally signed handshake packet

analogously to the ARP request, along with the local cryptographic parameters and the

17

Chapter 2 CLL: A Cryptographic Link Layer for LANs

host certificate. CLL then unicasts this second handshake packet to the requesting host

like a usual ARP reply. In the following, we refer to the first handshake packet as the

handshake request and to the second one as the handshake reply. On the requesting host

the handshake reply undergoes the same verification process before the SA is established

and the ARP reply is passed up to the ARP module.

Creating an SA implies the computation of a joint master key from the public and

private Diffie-Hellman values. From the master key, CLL then derives the four keys for

the HMAC and the optional block cipher. At any time, only one SA is permitted per

host pair.

Handshake Packet Details

We employ a UNIX timestamp and a nonce to protect against replay attacks. CLL

requires the clocks of all hosts on the LAN to be synchronized within reasonable limits

decided on by the network administrator, e. g., in the range of 2 – 5 minutes. This can

be easily achieved if the users manually adjust their computer’s clock occasionally. An

automatic clock synchronization, for instance by using NTP [Mil92], is also possible

after having established an SA to a trustworthy server.

The nonce is a random 64-bit number generated by the initiator of the handshake,

which expects to find it repeated in the handshake reply. It ensures that the peer

actually participates in the protocol, i. e., its handshake reply has not been replayed.

Due to the nonce, it is not necessary to verify the timestamp in the handshake reply. It

must, however, be stored for comparisons with timestamps of possibly future handshake

requests.

The other important handshake element are the cryptographic parameters. Each host

specifies the hash function configured for the HMAC and the block cipher potentially

chosen to protect the payload against eavesdropping, along with the key sizes. A com-

pression algorithm may be specified as well, if a host intends to compress its outgoing

unicast IP packets. Moreover, each party states how long the SA should be valid before

it is either extended or removed due to inactivity. The actual SA validity period is the

18

2.4 Operation of CLL in Detail

minimum of the two claims. However, it may not fall below a threshold currently set to

15 minutes to prevent permanent handshakes or renegotiations.

Retransmissions and Conflicts

CLL addresses the possibility of a handshake packet loss by means of retransmissions. In

case of a lost (or just unanswered) handshake request the standard ARP retransmission

mechanism will trigger a new ARP request. Having intercepted this ARP request,

CLL retransmits the respective cached handshake request after updating its timestamp

and signature. Through caching we avoid the computation-intensive generation of new

Diffie-Hellman values.

The loss of a handshake reply will also result in a retransmission of the corresponding

handshake request. The answering peer caches the received original handshake request

as well as its own handshake reply. It is therefore able to recognize the incoming dupli-

cate handshake request, and retransmits its handshake reply. Due to the receiver relying

on the nonce, we can even omit to update timestamp and signature in this case.

Theoretically, it is conceivable that two hosts without an SA concurrently send each

other a handshake request, when both of them have a pending IP datagram destined

for the other one. However, only the creation of a single SA is allowed between two

hosts. CLL resolves this issue by performing an integer comparison between the two

48-bit MAC addresses: the handshake request of the host with the higher MAC address

“wins”.

Complete and Incomplete SAs

From the point of view of a host, we refer to an SA as complete when it is known for sure

that the peer has also established the SA. Host A as the initiator of an ARP handshake

can set up the SA with its peer B only after having received the handshake reply. A’s

SA is therefore complete right from the start. Host A can immediately send secured

unicast IP packets to its peer B and be certain that B will be able to verify and decrypt

them.

19

Chapter 2 CLL: A Cryptographic Link Layer for LANs

In contrast, host B first has an incomplete SA, as long as it cannot be sure whether A

has received its handshake reply. Usually, the IP datagram of host A that triggered the

ARP request will quickly reach host B and thereby confirm the set up SA. However,

as long as this is not the case, host B may not transmit any IP packets to its peer—A

might not be able to authenticate them. Instead, in the unlikely case that B wants to

transmit to A before A has sent the first packet, B must queue its IP datagram and

send a new handshake request to A. This enforces the creation of a new SA, replacing

the existing incomplete one.

Safeguarding against Replay Attacks

While the initiator of the SA protects itself against a replayed handshake reply with the

aid of a nonce, its peer has to rely on the timestamp check when judging the freshness

of an incoming handshake request. However, a timestamp is considered valid within

a period of several minutes (smaller than the minimum SA duration) to tolerate time

deviations. It hence does not assure a complete protection by itself. An attacker may try

to replace an existing SA by replaying a captured outdated handshake request bearing a

timestamp which is still valid. CLL fends off such attacks by comparing the timestamp

of a new handshake request with the timestamp of the handshake request or reply which

led to the establishment of the currently existing SA. The use of timestamps avoids the

necessity of a third message for a second nonce in the other direction, which would

render the ARP handshake more complex.

2.4.3 Unicast IP Packets

Having created ARP table entries and established an SA, unicast IP packets can be

transmitted between the two peers. This is illustrated in Figure 2.4. While host A

encrypts its packets with the block cipher AES and authenticates them with an HMAC

using the hash function SHA-1, its peer B employs Twofish and MD5. Taking the

sender’s MAC address the receiver looks up the corresponding SA to verify the packet’s

HMAC, sequence number, source IP address, and to decrypt the IP datagram. Only if

the peer is a router, its IP address may differ from the source address stated in the IP

header.

20

2.4 Operation of CLL in Detail

Twofish

IP
datagram

HMAC
(SHA-1)

HMAC
(MD5)sequence

number B

AES

IP
datagram

sequence
number A

A B

A B

Figure 2.4: Transmission of unicast IP packets safeguarded with a block cipher and a
message authentication code.

Each unicast IP packet contains a sequence number to protect against replay attacks. It

is incremented by one with each packet sent to the respective destination. The receiver

tolerates packet losses and only checks whether a packet’s sequence number is larger

than that of its predecessor. The sequence numbers are transmitted as plaintext to

avoid an unnecessary decryption of replayed unicast IP packets. However, in order not

to reveal the number of packets exchanged between two hosts so far, we generate the

initial sequence numbers—one for each direction—at random.

Note that once having created an SA, CLL can also secure unicast packets carrying

some other layer 3 protocol, e. g., Novell’s IPX.

2.4.4 Periodical Key Rollover

By design, an SA has a short lifetime of typically 15 – 60 minutes like an ARP cache

entry. But if any IP packets are transmitted during this period, it is renewed by a new

Diffie-Hellman key exchange. New session keys for the HMAC and block cipher as well

as sequence numbers are derived from a new master key. We call the extension of an

SA renegotiation. Figure 2.5 illustrates the messages exchanged between two peers to

extend their SA.

21

Chapter 2 CLL: A Cryptographic Link Layer for LANs

renegotiation request

renegotiation ack

renegotiation reply

via new SA

via old SA

via old SA

A B

Figure 2.5: Renegotiation—renewing an SA.

The renegotiation request and reply are the counterparts of the handshake request and

reply. They are transferred through the existing SA like usual unicast packets. Each

peer establishes a new SA after receiving the corresponding renegotiation packet. Just

like when initially setting up an SA, host A’s SA is complete from the beginning on,

while host B first has an incomplete SA. But in case of a renegotiation, we cannot

expect that an IP packet will be transmitted from A to B shortly and render B’s SA

complete as well. Therefore, host A has to explicitly acknowledge the reception of the

renegotiation reply. It does so by means of a renegotiation ack sent through the new

SA.

The renegotiation is initiated by the peer that first determines the expiration of the SA

according to its clock. Concurrent renegotiation attempts are resolved in the same way

as in the ARP handshake by performing a MAC address comparison.

During the renegotiation the peers re-exchange and re-validate their current certificates

to address a possible expiration of the previous ones, especially in case of short-lived

certificates issued via DHCP. While a renegotiation is in progress, pending IP packets

destined for the peer can be still transferred through the old SA, i. e., there is no need

to delay and queue them. We address the possibility of renegotiation packet losses by

means of a retransmission mechanism.

2.4.5 Broadcast Packets

CLL authenticates broadcast IP packets like handshake packets by means of an RSA

signature. To verify the signature, the receivers require the sender’s host certificate.

However, the variable payload size of a broadcast packet may well be too large to pig-

gyback the certificate and still stay within the maximum segment size limit. Therefore,

22

2.5 Integrating and Securing DHCP

we broadcast the certificate in advance in a special certificate packet. CLL sends a cer-

tificate packet only when dispatching a broadcast packet and when more than a minute

has passed since the previous certificate transmission, i. e., periodically on demand. All

hosts on the LAN cache the received host certificates. Thus they need to validate each

certificate only once and henceforth have the correct public key readily available for

future signature verifications.

Like handshake packets, broadcast packets are protected against replay attacks by means

of a timestamp combined with an additional counter. If a host sends more than one

broadcast packet at the same UNIX time (i. e., within one second), it increments this

counter with each packet by one. All receivers store for each sender the timestamp and

counter from its last broadcast packet. Subsequent packets from the same sender must

bear a newer timestamp or the same timestamp with a higher counter value.

When dealing with high-rate broadcast traffic, the generation of RSA signatures on

a per-packet basis may become computationally infeasible in real-time. However, in

this case it is conceivable to queue outgoing broadcast packets for a short time and

sign the accumulated group of packets as a whole with a single private key operation

before dispatching them. The receivers would reassemble this group and verify the

overall signature attached to the last packet. A sophisticated but also more complex

approach tolerating packet losses might be the application of a specialized broadcast

authentication protocol like TESLA [PCTS02].

2.5 Integrating and Securing DHCP

2.5.1 Basic Concept

So far, we have described the case of a static IP configuration, where the local CA creates

for each machine a host certificate incorporating its MAC and IP address. However, CLL

also supports the automatic assignment of IP addresses by means of DHCP. The DHCP

message exchange is safeguarded and extended. CLL protects DHCP not only from

unauthorized attackers, but also from malicious behavior originating from authenticated

hosts.

23

Chapter 2 CLL: A Cryptographic Link Layer for LANs

In case DHCP is used, the local CA issues a base certificate for each host, bearing

only the machine’s MAC address and no IP address. The DHCP server uses the base

certificate as a template to generate a full-fledged host certificate, which contains the

assigned IP address. Thus, it acts as a second CA. The host certificate issued by the

DHCP server has the same validity period as the IP address lease. When extending the

DHCP lease, the host certificate is renewed accordingly.

Securing DHCP implies the authentication of all DHCP packets and a consistency check

of the DHCP header in client-originated messages. Since CLL supervises the complete

DHCP traffic in a transparent way, it also takes on the automatic application for a

host certificate and its issuing. Its operation does not require any modifications on the

employed DHCP client or server. On the client side, CLL attaches the base certificate to

the DHCPREQUEST message. On the server CLL verifies this request and strips off its

own headers, before passing it up to the DHCP module. It then waits for the outgoing

DHCPACK message. This message constitutes the confirmation that the DHCP server

has assigned the requested IP address. CLL extracts from it the allocated IP address

along with the lease time, and issues a corresponding host certificate. Piggybacked on

the DHCPACK message, the new host certificate finally reaches the client, which can

now finalize its IP configuration and is ready to establish SAs.

2.5.2 Authenticating the Packets

We have designed the authentication of DHCP packets in a way that allows to employ an

HMAC from the beginning, without requiring an initial public-key handshake. DHCP

traffic occurs only between the clients and typically one single trusted server controlled

by the local CA. Therefore, the number of communicating host pairs is limited and it

is feasible to statically configure pre-shared HMAC keys. This task may be performed

during the certificate enrollment without any additional effort. The local CA can gen-

erate a secret HMAC key for a host along with its base certificate. After encrypting the

HMAC key with the host’s public RSA key it can deliver these items to the user, e. g.,

via e-mail.

If the issued HMAC key were completely random, one would have to promptly configure

it on the DHCP server as well, which involves some effort. Instead, we use a single DHCP

24

2.5 Integrating and Securing DHCP

master key, a concept adopted from [DA01]. From this master key we derive for each

host the corresponding HMAC key by means of a key derivation function. The master

key is known only to the local CA and the DHCP server. The pair <MAC address,

expiration time of the base certificate>, in the following denoted as client ID, serves

as the derivation parameter. This scheme does not require to inform the DHCP server

about any newly certified hosts.

Since all hosts include their client ID into every sent DHCP packet, the DHCP server can

deduce the corresponding HMAC key in an ad-hoc fashion and authenticate the packet.

Conversely, when the DHCP server responds to the client, it has the right HMAC key

already available. By incorporating the expiration time of the base certificate into the

client ID we restrict the lifetime of the HMAC key. DHCP packets with expired client

IDs are thus easily dropped without further verification. This allows, for instance, to

immediately ignore DHCPDISCOVER messages sent by no longer authorized hosts.

To protect against replay attacks, we employ the same technique already introduced with

broadcast packets, i. e., a UNIX timestamp in conjunction with a counter for packets

bearing the same timestamp. A consistency check of the MAC and IP addresses stated

in the DHCP header renders the authentication complete.

2.5.3 Further Security Measures

We consider the two DHCP messages DHCPDECLINE and DHCPRELEASE as a se-

curity risk. The first one allows a malicious client to spuriously tell the DHCP server

that the IP address assigned to it is already in use by some other machine, thus making

a DHCP starvation attack possible. The second one is utilized to release an assigned IP

address to the DHCP server’s address pool before the corresponding lease has expired.

However, we cannot force a host to give up its certificate, and a malicious user might

continue to use its certificate and with it the released IP address, while the address has

also been assigned to some other machine. Therefore, we decided to simply drop these

messages. Note that this does not violate the DHCP specification: these messages are

transmitted in an unreliable manner without any retransmissions, i. e., they may get

lost en route anyway. Moreover, no host is obliged to release its IP address ahead of

time.

25

Chapter 2 CLL: A Cryptographic Link Layer for LANs

CLL allows to restrict the number of authenticated DHCP packets originated by the

same host that the DHCP server will process during a specified time interval. Thereby

the server can be secured against overload caused by malicious or misconfigured clients,

attempting to renew their IP address lease extremely often. This would force the server

to continuously issue new host certificates, which includes an expensive private key

operation.

These security measures prevent malicious behavior originating from authenticated

hosts. Without them attacks on DHCP would be still feasible and one would have

to extensively analyze the server’s DHCP logfiles to backtrack the identity of the at-

tacker.

2.6 Implementation and Evaluation

2.6.1 CLL as a Cross-Platform Service

We have implemented CLL in C++ as a user-mode service on both Windows (XP, 2003

Server, Vista, 7) and Linux (kernel 2.6) using Visual C++ 2008 and GNU GCC 4.x

respectively. Our CLL implementation consists of a platform independent core, which

interoperates with a tailored portability layer providing a consistent interface for OS

specific functionality. The responsibilities of the portability layer include crafting and

filtering raw Ethernet frames, configuring the network interface (ARP, IP, MTU), and

the interfaces for threads and timers.

To set up a filter handler for Ethernet frames in user-mode, we employ the packet fil-

tering framework WinpkFilter [Res] on Windows. On Linux, we have implemented a

link layer filtering solution on our own. We unbind the real network adapter from the

IP stack, transparently replace it with a virtual one (a tap device), and set up a raw

PF PACKET socket to send and receive Ethernet frames through the unbound real net-

work adapter. A maybe somewhat more efficient kernel-level implementation of CLL’s

packet processing engine would constitute a complex and error-prone task, especially

when targeting multiple platforms. We therefore leave it for future work. But despite

26

2.6 Implementation and Evaluation

the overhead of additional context switches, our user-mode approach achieves good per-

formance, and is able to operate at wire-speed in 100 Mbit LANs. To support the large

number of cryptographic algorithms proposed for CLL, we employ the comprehensive

open source crypto library Botan [Llo].

Aiming to provide a real-world solution, we address in our implementation such issues

like persistent storage of SA configurations (to tolerate an OS reboot) and backward

compatibility. To support non-CLL capable devices like network printers or NAS and

to enable a step-by-step migration, CLL can be configured to communicate with legacy

hosts in the standard, insecure fashion. This is accomplished by providing the CLL-

enabled hosts with a list of the legacy IP/MAC address pairs. CLL then sets up static

ARP entries and thereby provides at least an unidirectional protection against ARP

spoofing.

A toolkit assists users and network administrators in creating, signing, and managing

certificates, generating keys, or benchmarking the available cryptographic algorithms.

Since the drivers of common Wi-Fi adapters exhibit an Ethernet-compatible interface

to the network stack, Wi-Fi networks can be secured by CLL as well. To demonstrate

the general applicability of our protocol, we have even managed to port CLL to the

Linksys WRT54G Wi-Fi router, which is equipped with a 200 MHz RISC processor,

16 MB RAM and 4 MB flash memory running on Linux 2.4.

2.6.2 Performance Evaluation

We have conducted a performance evaluation in a switched 100 Mbit LAN with two

hosts A and B, where A is a laptop equipped with an AMD64 Turion 1.8 GHz CPU

running Linux 2.6.20 (32-bit) and B is a PC with an Intel Core 2 Duo E6400 2.13 GHz

processor running Windows XP SP-2. The presented results are averaged over multiple

runs.

The first series of measurements, shown in Table 2.2, is devoted to the overhead of

the ARP handshake. For digital signatures both hosts use an RSA-1024 module. By

pinging the neighboring host with no previously established SA we measure the time

to perform the ARP handshake and the subsequent ICMP echo exchange. We compare

27

Chapter 2 CLL: A Cryptographic Link Layer for LANs

Table 2.2: Performance of the ARP handshake.

action duration in ms

1st ping A → B using CLL: ARP handshake 27.4

1st ping A → B without CLL: usual ARP exchange 0.92

generating the private & public DH value (2048 bits) host A: 26.3 host B: 44.1

deriving the master key with DH host A: 7.2 host B: 15.7

computing an RSA-1024 signature host A: 3.1 host B: 5.7

it to the delay of the first ping in an ordinary unsecured setup, including a plain ARP

message exchange.

Though it takes 30 times longer than a usual ARP exchange, the one-time delay of

27.4 ms induced by the ARP handshake with CLL is negligibly short for practical

purposes. This low value is achieved due to an optimization in our implementation:

we precompute the Diffie-Hellman values in a background thread, and thus have them

readily available at the beginning of an ARP handshake. Otherwise the handshake

would last 26.3 + 44.1 = 70.4 ms longer. The delay of 27.4 ms can be broken down by

measuring the computation time of the two dominating operations—the derivation of

the master key with Diffie-Hellman and the creation of an RSA signature3. Deriving

the master key is performed in parallel, thus taking max{7.2, 15.7} = 15.7 ms, while

signing is carried out sequentially and requires 3.1 + 5.7 = 8.8 ms. Summing this up

yields 24.5 ms. The remaining 2.9 ms are used for verification of the host certificates

and handshake signatures, and also include the network round-trip time (RTT).

In the second series of measurements, we analyze the TCP throughput (using the tool

ttcp [TTC]), the CPU load incurred at the sender and receiver, and the RTT between

two hosts already sharing an SA. The results are shown in Table 2.3. When comparing

the TCP throughput achievable with CLL to the result using a conventional, unsecured

protocol stack, we observe only a very small decrease in speed of approximately 2 %

without encryption and 3 % with encryption. It can be attributed quite exactly to the

overhead induced by the additional CLL headers and fields. Encryption and authen-

3Though host B’s CPU is faster than host A’s CPU, the public-key operations are slowed down by
missing big integer assembler optimizations in Botan on Windows platforms.

28

2.6 Implementation and Evaluation

T
ab

le
2.

3:
P

er
fo

rm
an

ce
of

u
n

ic
as

t
tr

an
sm

is
si

on
s

in
a

1
0
0

M
b

it
L

A
N

.

ac
ti

on
m

ea
su

re
d

v a
lu

es

T
C

P
th

ro
u

gh
p

u
t

u
si

n
g

C
L

L
:

•
H

M
A

C
(M

D
5)

A
→

B
:

11
26

3
K

B
/s

5
5

/
2
6

%
C

P
U

(t
x

/
rx

)

B
→

A
:

11
31

2
K

B
/s

2
2

/
6
0

%
C

P
U

(t
x

/
rx

)

•
T

w
ofi

sh
/

H
M

A
C

(M
D

5)
A
→

B
:

11
11

3
K

B
/s

7
5

/
3
8

%
C

P
U

(t
x

/
rx

)

B
→

A
:

11
16

0
K

B
/s

3
1

/
7
6

%
C

P
U

(t
x

/
rx

)

T
C

P
th

ro
u

gh
p

u
t

w
it

h
ou

t
C

L
L

A
→

B
:

11
52

2
K

B
/s

4
5

/
1
7

%
C

P
U

(t
x

/
rx

)

B
→

A
:

11
51

9
K

B
/s

1
0

/
4
4

%
C

P
U

(t
x

/
rx

)

R
T

T
:

10
0

p
in

gs
A
→

B
u

si
n

g
C

L
L

m
in

:
0.

28
7

m
s

∅
:

0.
37

7
m

s
m

a
x
:

0
.5

0
1

m
s
σ

:
0
.0

4
6

m
s

R
T

T
:

10
0

p
in

gs
A
→

B
w

it
h

ou
t

C
L

L
m

in
:

0.
17

8
m

s
∅

:
0.

19
8

m
s

m
a
x
:

0
.2

3
1

m
s
σ

:
0
.0

1
2

m
s

29

Chapter 2 CLL: A Cryptographic Link Layer for LANs

tication of packets with CLL apparently has virtually no effect on the achievable data

rate in 100 Mbit LANs, which proves the feasibility of our approach.

By comparing the CPU utilization with and without CLL being used, we assess the

induced additional CPU load. The overhead of piping the packets through the user-

mode and computing the HMAC turns out to be entirely admissible. Even when enabling

the block cipher, host A still has a quarter of its CPU time left for other tasks when

processing packets at full wire-speed. The faster host B (one CPU core active) runs with

a CPU utilization of only one third in the same situation. Just like the TCP throughput,

the RTT measured when running CLL in the Twofish / HMAC(MD5) configuration is

very satisfactory. On average it is 0.38 ms, i. e., only twice the ordinary RTT without

CLL. It should thus not represent a drawback for any typical application scenario.

2.6.3 Gigabit Ethernet and Parallelization

During the last few years we see the trend towards Gigabit Ethernet since almost all off-

the-shelf computers are already equipped with Gigabit NICs. From the results above,

it is evident that with only a single CPU core CLL cannot achieve wire-speed through-

put in a Gigabit LAN providing both authentication and encryption. In a bachelor

thesis [Ger12], we have thus investigated how the cryptographic processing of unicast

transmissions can be parallelized in CLL on modern multi-core processors. Following

the boss / worker model [NBF96], we have extended the original implementation by a

thread pool. Using a packet queue, the boss thread delegates all incoming and outgoing

unicast IP packets to multiple worker threads that perform the actual cryptographic

processing of the packet, i. e., encryption / decryption and HMAC computation. Usu-

ally, there should be at least as many worker threads as there are CPU cores available.

The packet queue ensures that all packets belonging to the same SA are delivered in

the correct order. Due to a number of inherent dependencies, special attention had to

be paid to synchronization issues.

With the original CLL implementation we measured in the RC6 / HMAC(MD5) configu-

ration in a Gigabit LAN a throughput of 278 Mbit/s on an Intel Xeon X3360 2.83 GHz

quad-core CPU running Windows 7 64-bit, while the parallelized version achieved a

throughput of 557 Mbit/s using 4 and 580 Mbit/s using 8 worker threads respectively.

30

2.7 Chapter Summary

We observed that the additional synchronization overhead induced by parallelization

has a great impact on performance since by far not all CPU time was consumed by

the cryptographic and packet handling routines. We thus believe that a more elaborate

implementation of the underlying thread pool can achieve even a higher throughput and

will draw much closer to the (theoretical) 1000 Mbit/s mark.

2.7 Chapter Summary

In this chapter, we have introduced the Cryptographic Link Layer (CLL). CLL em-

ploys public-key cryptography to identify all hosts in the Ethernet LAN based on their

IP/MAC address pairs. It safeguards the packets transmitted between them against dif-

ferent spoofing attacks and eavesdropping. Pairs of hosts willing to communicate first

establish security associations by an extension of the ARP handshake. In the course of

this, the hosts authenticate each other, exchange cryptographic parameters, and nego-

tiate symmetric session keys to protect their following unicast packets with a message

authentication code and an optional block cipher. Broadcast packets are also secured

by CLL using digital signatures. When IP addresses are to be configured dynamically,

CLL extends DHCP to automatically issue host certificates with the leased IP address.

At the same time, CLL also adds authentication to DHCP and safeguards it against

various attacks.

We have implemented CLL on both Windows and Linux without modifying the existing

protocol stack. Backward compatibility to ordinary, unsecured hosts can be enabled

to support a step-by-step migration and retain legacy devices. The evaluation of CLL

demonstrated the excellent performance of our protocol in a 100 Mbit Ethernet LAN,

where it achieved wire-speed throughput and short round-trip times. Moreover, we

have recently extended our CLL implementation by a thread pool to parallelize the

cryptographic processing of unicast packets on modern multi-core processors. This

extension enables CLL to keep up with the achievable throughput rate even in Gigabit

Ethernet.

31

Chapter 2 CLL: A Cryptographic Link Layer for LANs

32

Chapter 3

Counter-Flooding: DoS Protection for

Public-Key Handshakes in LANs

In the previous chapter, we have introduced a comprehensive security protocol for LANs

that protects against eavesdropping, spoofing, and DoS attacks on ARP and DHCP. CLL

employs public-key cryptography during the setup phase—in particular digital signa-

tures along with certificates—to perform authentication and exchange keying material.

Examples of other LAN security protocols that also rely on public-key cryptography

are IEEE 802.1X (EAPOL) [IEE04b] for port-based network access control being used

especially in wireless networks by IEEE 802.11i (WPA2) [IEE04a] and SEcure Neigh-

bor Discovery (SEND) [AKZN05] for IPv6. However, since public-key operations are

very expensive in comparison to symmetric-key primitives like block ciphers and hash

functions, they may constitute a new target for DoS attacks. Especially on the link

layer an attacker can freely take on different identities (i. e., sender addresses) and send

the victim host a flood of bogus connection requests, each one requiring to perform an

expensive public-key operation. He may also impersonate another machine that answers

a request and flood thousands of fake replies containing wrong signatures or certificates.

The victim host would then become overloaded and very likely could not process the

requests originating from benign hosts any more. Existing DoS protection schemes turn

out to have drawbacks in environments with an eavesdropping attacker where initially

no address authenticity exists. Is vulnerability to DoS attacks really the price to pay

for employing public-key cryptography in LANs?

33

Chapter 3 Counter-Flooding: DoS Protection for Public-Key Handshakes in LANs

In this chapter, we propose a countermeasure against DoS flooding attacks on public-

key handshakes in wired and wireless LANs. The idea is to configure on each host a

reasonable threshold of signatures (or certificates) to be checked per second without

overloading its CPU. A benign host trying to initiate an authentication handshake to

a victim system being currently under a flooding attack reacts to this aggression by

flooding itself multiple copies of its request packet for a short period. We call this

approach counter-flooding. The attacked host collects all incoming request packets for

a certain time interval and afterwards processes only those packets having the largest

number of duplicates.

Usually the benign host has to flood its request packet only for some tens of milliseconds

to ensure that it will be definitely processed by the victim. The key point is that the ad-

versary cannot deliver many duplicates without, at the same time, reducing the victim’s

workload, i. e., the number of distinct signatures to verify. Interestingly, the bandwidth

of the underlying link, i. e., the maximum rate at which the victim may receive re-

quest packets, does not influence the parameters of our counter-flooding approach. We

take advantage of broadcast transmissions to detect DoS flooding attacks and run our

counter-flooding defense only when necessary. We show that our duplicate-based se-

lection policy for incoming requests outperforms a probabilistic arbitration mechanism.

The practical applicability of our approach is underlined through flooding experiments

with different Ethernet switches. In addition we demonstrate how IEEE 802.3x flow

control can protect from DoS flooding attacks attempting to significantly degrade TCP

throughput due to excessive packet loss. The main results of this chapter have been

published in [JSM09].

The rest of the chapter is structured as follows. In the next section, we discuss existing

approaches to protecting hosts against resource depletion through a flood of bogus

request packets. Section 3.2 presents the design of the counter-flooding mechanism.

In Section 3.3, we describe a queuing extension for our scheme and assess impact and

quality of counter-flooding. Section 3.4 provides experimental results for bandwidth

division during a flooding attack in switched Ethernet. In Section 3.5, we finally conclude

this chapter with a short summary.

34

3.1 Related Work

3.1 Related Work

Comprehensive surveys on DoS / DDoS attacks and proposed defense mechanisms can

be found in [PLR07, DM04, MR04]. The authors of [PLR07] classify four categories

of defense: (1) attack prevention, (2) attack detection, (3) attack source identification,

and (4) attack reaction. Our counter-flooding mechanism falls into the last category. It

is a currency-based approach. The host under attack demands from its clients to pay in

some currency—in our case bandwidth—before spending itself resources to process their

incoming requests. In the following we take a closer look on existing currency-based DoS

defense mechanisms and point out their shortcomings if applied in LAN environments.

In [JB99], Juels and Brainard introduced client puzzles to protect servers from TCP

SYN flooding attacks. Being under attack, a server distributes to its clients crypto-

graphic puzzles in a stateless manner asking them to reverse a one-way hash function

by brute force. The difficulty of the puzzle is chosen depending on the attack strength.

Only after receiving a correct solution from the client the server allocates resources for

the dangling TCP connection. The idea of CPU-bound client puzzles has been applied

to authentication protocols in general by Aura et al. in [ANL01]. An implementation of

client puzzles to protect the TLS handshake against DoS is described in [DS01]. How-

ever, the application of client puzzles itself may become the new target for an attacker if

no address authenticity is provided by the underlying layers. The adversary can mount

a second flooding attack against the clients of the defending host by overwhelming them

with bogus puzzles pretending to come from the defending host. Depending on the

chosen puzzle difficulty, even a modest puzzle packet rate may be sufficient to prevent

the clients from solving the authentic puzzle set by the defending host. The ability to

eavesdrop on the LAN traffic alleviates the puzzle attack since the attacker gets to know

the clients performing currently an authentication handshake.

A systematic survey on DoS attacks in wireless IEEE 802.11 networks exploiting MAC

and physical layer vulnerabilities is provided in [BT09]. The authors also discuss and

compare available countermeasures. Martinovic et al. [MZS06, MZW+08] addressed

DoS attacks aiming to exhaust the access point’s (AP) resources by flooding it with fake

authentication requests. In [MZS06] they proposed a scheme called Early MAC Address

Binding to protect the IEEE 802.11i / 802.1X handshakes. It involves a Diffie-Hellman

35

Chapter 3 Counter-Flooding: DoS Protection for Public-Key Handshakes in LANs

key exchange yielding a temporary message authentication code for the otherwise un-

secured handshake frames and a cookie mechanism to bind the authentication requests

to MAC addresses. However, this countermeasure only raises the bar for a successful

DoS attack, but does not provide a complete protection. In [MZW+08] the authors

suggested wireless client puzzles to be distributed by a defending AP to joining sta-

tions. To support highly heterogeneous stations these puzzles are not CPU-bound like

in Juels’ scheme. Instead of inverting a one-way function, a station has to measure the

signal strength of the links to its neighbors and to find out those neighbors, whose link

reaches a certain Neighborhood Signal Threshold (NST). The NST is randomly chosen

and frequently changed by the AP. A station replying with a wrong solution is detected

by its neighbors, which thereupon issue a warning to the AP. However, similarly to

the client puzzle attack described above, an adversary may impersonate the AP and

announce many different NST values thus sabotaging the verification. The assump-

tion that already authenticated stations are always benign and do not purposely issue

false warnings may also not hold for some scenarios. In contrast, our counter-flooding

mechanism does not require any trust. It would provide a viable protection for IEEE

802.11i / 802.1X handshakes.

Using bandwidth as a currency to defend against application-level distributed DoS at-

tacks was proposed by Walfish et al. in [WVB+06]. The idea of their defense mechanism

called speak-up is the following: a victimized server asks its clients to open a separate

payment channel and to send through it some dummy bytes to the server. Each time the

server is ready to process a new client request, it holds a virtual auction and selects the

client that has sent the most bytes so far. At the same time the corresponding payment

channel is terminated. While speak-up operates at the application layer and requires the

establishment of TCP connections, our counter-flooding approach is more low level and

deals with single packets. Speak-up implicitly relies on address authenticity to assign

the payment, i. e., the received dummy bytes, to the corresponding client request. In

the considered LAN scenario an (eavesdropping) attacker can break the speak-up mech-

anism by impersonating the benign clients and sending fake requests to the defending

server which will likely spend the clients’ payment to process the fake request instead

of the genuine one. Unlike speak-up, our counter-flooding approach is resistant against

this impersonation attack since a client pays by sending multiple copies of its request.

36

3.2 Design of Counter-Flooding

Here the payment cannot be spent without processing the genuine request itself.

In [GKTV04], Gunter et al. introduced a broadcast authentication protocol with DoS

protection and packet loss tolerance based on digital signatures. To defend against a

flood of fake signature packets the receiver checks each incoming signature only with a

certain probability while the benign host sends multiple copies of his signature packet

to raise its chances on verification. However, the authors calculate the required number

of duplicate packets for a benign sender to succeed with high probability by making the

unrealistic assumption that all copies will arrive at the receiver contiguously in a single

pile without being intermixed with the attacker’s signature packets. In contrast, we

do not assume any special packet order in our counter-flooding approach and provide

bounds on the number of duplicates to deterministically guarantee the processing of the

good packet at the receiver. Our duplicate-based arbitration scheme turns out to be

more efficient than random checking.

3.2 Design of Counter-Flooding

3.2.1 Goal: Safeguarding the Public-Key Handshake

Table 3.1: Symmetric vs. asymmetric key cryptography.

operation speed

HMAC (MD5) 362.4 MB/s [371 100 pkt/s]

HMAC (SHA-1) 290.2 MB/s [297 170 pkt/s]

AES 135.8 MB/s [139 060 pkt/s]

RSA-1024 verify 10 676 pkt/s

RSA-2048 verify 3663 pkt/s

RSA-3072 verify 1972 pkt/s

RSA-4096 verify 1135 pkt/s

DSA-1024 verify 946 pkt/s

DSA-2048 verify 312 pkt/s

Table 3.1 compares the speed of symmetric versus asymmetric cryptography to authen-

ticate 1 KB packets at the receiver. For the benchmark we used the popular crypto

37

Chapter 3 Counter-Flooding: DoS Protection for Public-Key Handshakes in LANs

library OpenSSL [Ope] on an Intel Core 2 Duo 2.66 GHz machine running 32-bit Linux

(one CPU core active). The public exponent employed for RSA signatures was 65 537.

Using an HMAC, current computers can easily authenticate incoming packets at full

link-speed in IEEE 802.11g wireless networks, in 100 Mbit and even in 1 Gbit Ethernet

LANs. Symmetric encryption/decryption using a block cipher like AES is also quite fast.

In contrast, depending on the chosen modulus size, the verification of RSA signatures

may already become a bottleneck at link speeds far below the 100 Mbit mark. Checking

DSA signatures is even slower. Note that in public-key cryptography, the workload is

primary determined by the number of packets and not by their size.

The benchmark results indicate that network communication protected by symmet-

ric key cryptography (like message authentication code and block cipher) is in general

not vulnerable to DoS flooding attacks, since the employed algorithms are usually fast

enough to process packets at full link-speed. On the other hand the verification of

digital signatures (or certificates) is quite slow. Thus we suppose that public-key au-

thentication handshakes, which are often performed in the setup phase before switching

to symmetric key cryptography, may be sabotaged by flooding the victim host with con-

nection request packets containing bogus signatures. Our goal is therefore to protect the

computationally expensive public-key handshake against DoS. In more general terms,

we want to ensure the successful processing of important, infrequently sent genuine sig-

nature packets (be it handshake or status messages) despite of attackers flooding fake

packets.

3.2.2 Basic Idea

We define for all hosts in the LAN a common threshold f for the maximum number

of signature packets received per second during normal operation. f usually depends

on the employed security protocol and the network size. If this threshold is exceeded,

the receiver is considered to be under a DoS flooding attack and the counter-flooding

protection mechanism gets invoked. Conversely, when the rate of incoming signature

packets falls below the threshold f again, we return back to normal mode. In broadcast

networks the benign sender A of a signature packet addressed to an attacked host B

can overhear all the packets delivered to B and detect whether the threshold has been

38

3.2 Design of Counter-Flooding

exceeded. In other networks, e. g., in switched Ethernet, one can instead prescribe that

valid signature packets must always be sent to the broadcast MAC address to achieve

the same effect. In this case A’s MAC address must be stated in the packet’s payload

and A will drop any signature packet addressed directly to its own MAC address. A

different approach for A would be to consider B as being attacked, if B does not reply

to or acknowledge A’s signature packet even after several retransmissions. However,

in that case host A cannot exclude that there is no attack and B is simply currently

offline.

When being under attack, host B divides the time into periods of length t (in the order

of milliseconds) and collects all incoming signature packets in each period. Duplicate

packets are stored only once. The queue maintains a duplicate counter for each packet

stating how many times it has been received during the current period. Depending on

B’s CPU power (and its average load) the user configures a verification threshold of v

signature checks per period t. This determines the maximum amount of CPU power B is

willing to spend on the verification of signature packets. At the end of the current period

all queued packets except for the v packets with the highest duplicate counter value are

dropped. The remaining v packets have “won” the selection and their signatures will

be verified during the next period. This verification can either be performed quickly at

high CPU load straight at the beginning of the next period or it can be spread over the

whole period length t.

We use bandwidth as a currency and request host A to flood its genuine signature packet

addressed to victim B for a short time p ≤ t to ensure that it will definitely be processed.

Figure 3.1 illustrates this approach. The intuition behind counter-flooding is to combat

the attacker using his own weapons by verifying only those packets, that have a large

number of duplicates. In LANs we can usually assume that host A and the attacker

have equal or at least similar bandwidth capabilities. Therefore, the saboteur cannot

afford to deliver a large number of different fake signature packets while simultaneously

maintaining for all these packets a duplicate counter value as high as the value of A’s

packet in victim B’s queue. The higher the bandwidth of host A’s counter-flooding mea-

sure, the shorter we can choose the period length t and the required flooding duration p,

i. e., the faster A’s signature packet will be processed. Like the attacker, host A will

usually flood at full link speed.

39

Chapter 3 Counter-Flooding: DoS Protection for Public-Key Handshakes in LANs

B

A

signature packetsfake

overhears the
attack, since
broadcast

queue
with

duplicate
counter

Figure 3.1: The counter-flooding approach.

3.2.3 Bandwidth vs. Packet Count

Host B’s verification threshold v is expressed in the number of signature packets, while

bandwidth is a measure for the number of bytes transferred per time unit. The attacker

may try to gain an advantage over host A by flooding small signature packets without

payload and—having the same link speed as A—hereby deliver more signature packets

to victim B. For example, the length of an RSA-1024 signature is 128 bytes while

the Maximum Transmission Unit (MTU) in Ethernet LANs usually is 1500 bytes (in

Gigabit Ethernet even up to 9000 bytes). We address this issue by prescribing that

valid signature packets must be padded with zeros to have full MTU size. This way

all signature packets have equal size and we reduce the rate at which the attacker can

deliver fake packets right from the start.

3.2.4 Determining the Flooding Duration

Now we determine the required flooding duration p for host A to guarantee that victim B

will process its signature packet. Let b be the bandwidth of the links in the given network

40

3.2 Design of Counter-Flooding

expressed in the number of full MTU packets that can be transmitted per second. In

case of a switched Ethernet both A and the attacker can send packets addressed to

B at full rate b simultaneously, but the switch will deliver only half of the packets.

The rest will be dropped due to queue overflow. A fair arbitration mechanism which

serves all input ports in equal shares in case of an overload condition at an output

port is the design goal of every good switch [Sei00]. Under ideal conditions victim B

should therefore receive approximately the same number of packets from A and the

attacker. We experimentally examine this aspect in Section 3.4. When operating in a

wireless environment all senders have to share the available bandwidth b. Assuming a

(somewhat) fair medium access control [BWK00] both A and the attacker should achieve

approximately the same throughput and packet delivery rate with b
2 as the optimum if

no other senders are active. However, our counter-flooding mechanism does not require

a fair bandwidth division between host A and the attacker. Host A may send and

deliver its signature packets at a lower rate than the attacker because of other packet

flows dispatched by A or because of an unfair switch or medium access control. The

only assumption we make is that host A can always achieve a packet delivery rate of

at least k · b where 0 < k < 1. That is, factor k denotes A’s minimum link share with

respect to signature packets addressed to B during the counter-flooding action.

Having the downlink bandwidth b victim B may receive up to b · t signature packets

during a period of length t where at least k ·b ·p duplicate packets originate from host A.

From all received signature packets only v packets having the highest duplicate counters

will be selected for verification. In total there can be no more than b t
k b p packets having

a duplicate counter equal or greater to the number of duplicates of A’s packet. Thus if

the inequality
b t

k b p
≤ v (3.1)

holds, host A’s signature packet will be definitely among the v packets selected for

verification during the next period. For the flooding duration p ≤ t we now get

p ≥ t

k v
⇔ p

t
≥ 1

k v
(3.2)

where the condition k v ≥ 1 must be fulfilled.

So far we have implicitly assumed that the hosts A and B are time synchronized and

41

Chapter 3 Counter-Flooding: DoS Protection for Public-Key Handshakes in LANs

A exactly knows when for B a new period begins. But a time synchronization between

the hosts in the range of milliseconds is usually unrealistic. We address this issue by

extending the flooding duration p to p′ = 2p and eliminate the dependency on time

synchronization. This way host A definitely hits the beginning of a new period t and

contributes to it with its duplicates for a time span of at least p.

3.2.5 Choosing the Parameters

The first step is to estimate the factor k. In case of a single attacker, one host performing

counter-flooding, and a fair bandwidth division between the two k is 0.5. However, there

can be multiple attackers (say, up to g) and/or several hosts (say, up to h) performing

counter-flooding simultaneously for the same victim host. In this general case, assuming

a fair bandwidth division, k can be set to 1
g+h . To address possible unfairness in the

bandwidth division we now introduce an unbalance factor u, 0 < u ≤ 1, and propose for

k the expression u
g+h . The unbalance can be attributed to a suboptimal switch behavior

or medium access control but also to the uplink of host A being concurrently used by

some other packet flows. A reasonable value for u may be, for example, 0.5 or 0.3. The

value for g depends on the network size and the (empiric) threat level, while h is primary

determined by the number of hosts sending a signature packet to the same destination

and the frequency of these packets.

So far we have not considered the impact of other packet flows occupying bandwidth on

the victim’s downlink. In a switched Ethernet these are all the other packets addressed

to victim B, while in a wireless environment the remaining packet transmissions of the

whole network altogether reduce the victim’s downlink bandwidth available for signature

packets. However, since the flooding duration p does not depend on the link bandwidth b,

we can still use our model if we assume that b is not the physical bandwidth of the

network links, but the bandwidth of the victim’s downlink currently occupied by the

flooded signature packets.

Now that we know k, we select a global value for v such that the inequality k v ≥ 1

is fulfilled. We propose to set vglob = 4
k yielding p

t ≥
1
4 to have some latitude when

choosing p. The last step is to select t large enough so that the majority of hosts in the

network can verify vglob signature packets in t without getting overloaded. Each user

42

3.3 More Details

can now configure on its machine a local value for v, which may be of course larger (fast

CPU) but also smaller (slow CPU) than the global value. In the first case the victim

host will be robust against an overestimate of k, i. e., against a more powerful attack.

In the second case it may fail to process host A’s signature packet. But we can deal

with hosts having a low vloc value by increasing the flooding duration p up to the period

length t. If victim B does not reply to or acknowledge A’s signature packet, host A can

perform counter-flooding repeatedly doubling each time the value for p in case of failure.

Having vglob = 4
k and vloc ≥ 1

4 vglob host A needs to double p at most twice (yielding

p = t) to guarantee that victim B will definitely process its signature packet. Without

time synchronization the real flooding duration remains, of course, p′ = 2p.

To give an impression for the practical feasibility of the counter-flooding mechanism in

an office LAN consisting of, e. g., 100 off-the-shelf computers we now calculate the real

flooding duration p′ using the following values: up to g = 3 attackers, up to h = 2

hosts performing counter-flooding simultaneously for the same victim, unbalance factor

u = 0.4, k = u
g+h = 0.08, v = 4

k = 50, verifying RSA-2048 signatures on a 2.66 GHz

CPU (see Table 3.1) with an average CPU load of 25% ⇒ t = 50
0.25 · 3663 = 54.6 ms. This

yields p ≥ t
k v = 13.7 ms and p′ = 2p ≥ 27.4 ms. Counter-flooding ensures that in case

of a DoS attack victim B will process host A’s signature packet with a delay of less

than p+ 2t = 122.9 ms (hitting the beginning of a new time period t, collecting packets

during a full period, and verifying v signatures during the next period).

3.3 More Details

3.3.1 Reducing the Queue Size

During the period t the victim host needs to queue all incoming different signature

packets. Depending on the link bandwidth b the memory requirement might be an

issue for low-end and embedded systems. However, since all valid signature packets are

padded to have maximum MTU size, only the meaningful part of the packet has to be

stored. Furthermore we propose to significantly reduce the required memory footprint by

employing a cryptographic hash function. The idea is to keep only v full packets—those

having currently the largest duplicate counter—in the queue, while all other packets are

43

Chapter 3 Counter-Flooding: DoS Protection for Public-Key Handshakes in LANs

represented by their hash value. A digest size of 64 or 80 bits should be large enough to

avoid collisions. Then only 8 or 10 bytes (instead of, e. g., 1000 bytes) are required per

packet. When more duplicates of a packet, which is right now represented in the queue

only by its digest, arrive, it gets enqueued as a full packet and takes up the place of one

of the v packets having a lower duplicate counter. The ousted packet is replaced by its

digest. The described algorithm ensures that the v packets with the largest duplicate

counters are definitely available for verification at the end of period t.

3.3.2 Impact of Counter-Flooding on Network Performance

We believe that the impact of counter-flooding on the overall network performance is

negligible. Our DoS countermeasure is very goal-oriented. It comes into action only in

case of a real flooding attack, only when performing an authentication handshake, and

only for a very short period of time in the order of 20 – 60 ms. Ordinary file transfer

usually occupies a large portion of bandwidth for much longer periods. Another point

is that by flooding broadcast packets at full speed (or generally in wireless networks) a

single attacker can already induce an overload situation for the whole network. In this

case counter-flooding cannot increase the network load any more since it has already

reached the maximum. Here the bandwidth occupied by counter-flooding comes at the

cost of the attacker’s bandwidth.

3.3.3 Comparison to a Probabilistic Arbitration Scheme

Counter-flooding employs a deterministic arbitration scheme at victim B, which se-

lects the signature packets with the highest number of duplicates for verification. We

now compare this scheme to a probabilistic one inspired by [GKTV04], in which from

the n packets (including duplicates) received during period t the victim host randomly

chooses v packets for verification. Let in this case m be the number of packets originat-

ing from host A. Then, using simple combinatorics, the probability that at least one of

44

3.4 Flooding Experiments in Switched Ethernet

A’s packets will be among the v selected ones can be expressed by

β =

v−1∑
i=0

(
m

v − i

)(
n−m
i

)
(
n

v

) . (3.3)

Taking the parameters k = 0.08, v = 50, t = 54.6 ms and p = 13.7 ms from the example

in Section 3.2.5, we compute now the probability β in a 100 Mbit and 1 Gbit Ethernet

LAN. Assuming a frame size of 1518 bytes at the link layer, we get n = 450, m = 9 for

b = 100 Mbit/s and use n = 4500, m = 90 for b = 1 Gbit/s. This yields a probability

β of only 65.7% (100 Mbit) and 63.8% (1 Gbit) respectively. When maximizing m by

setting p = t (i. e., quadrupling the flooding duration) the verification probability β

reaches a value of 98.8% and 98.5% respectively.

This comparison demonstrates that our deterministic duplicate-counter-based selection

policy clearly outperforms the probabilistic one which does not distinguish between dif-

ferent and duplicate packets. In the probabilistic approach the chances for verification

decrease when the bandwidth increases, while the deterministic strategy does not de-

pend on the link speed. The advantage of the duplicate-counter-based strategy can

be explained as follows: the verification of one forged signature packet eliminates the

need to check a multiplicity of other forged packets, namely all its duplicates, while

each verification of a randomly selected packet excludes only this single packet from the

candidate queue.

3.4 Flooding Experiments in Switched Ethernet

In this section we present the results from flooding experiments with Ethernet switches

to examine the bandwidth division between concurrent packet flows.

3.4.1 IEEE 802.3x Flow Control

To address the problem of switch congestion resulting in packet loss, the IEEE 802.3x

Task Force specified for full duplex Ethernet a hop-by-hop flow control scheme—the

45

Chapter 3 Counter-Flooding: DoS Protection for Public-Key Handshakes in LANs

PAUSE function [IEE05, Sei00]. Whenever the switch receives packets faster than they

can be forwarded to the output port(s), it emits a special PAUSE frame at the corre-

sponding input port(s). The PAUSE frame asks the station at the other end of the link

to stop transmitting further packets for a specified amount of time. This enables the

switch to empty its input buffer without discarding packets. Both the switch and the

station’s NIC must support flow control to take advantage of it. This is the case for

the majority of today’s hardware. However, flow control often needs to be activated

manually in the NIC driver configuration.

Dealing with flooding attacks which usually provoke an overload condition at the switch,

it seems important to take flow control into account for our experiments.

3.4.2 Bandwidth Division between Host A and Attacker

B

A C t1 = 50 ms
t2 = 80 ms

Figure 3.2: Bandwidth division experiments: counter-flooding broadcast packets with
parallel TCP connection (CFB TCP).

We examine the fairness of bandwidth division between the benign host A and the

attacker when performing counter-flooding. This helps to properly choose the factor k.

Using in turn three different switches we set up a LAN consisting of four hosts: the

attacker, victim B, host A and another host C as shown in Figure 3.2. The hosts

A, B, and C are notebooks equipped with an Intel Core 2 Duo 1.60 GHz CPU and

an Intel 8256MM Gigabit NIC, while the attacker’s machine has an Intel Core 2 Duo

2.66 GHz CPU with a Realtek 8111B Gigabit NIC. The first two switches, a LevelOne

FSW-2205TX and a 3com OfficeConnect 8 Plus, operate at 100 Mbit. The third one, a

46

3.4 Flooding Experiments in Switched Ethernet

3Com OfficeConnect 5, provides Gigabit speed. Injecting and capturing raw Ethernet

frames is performed by means of the pcap library [pca]. The attacker continuously

floods maximum MTU packets at full link-speed addressed to victim B, which registers

all packets received during time periods of length t = 50 ms in the first and t = 80 ms in

the second measurement. Host A reacts to this aggression by counter-flooding maximum

MTU packets for p′ = 2 t to definitely hit a full period t at B. We record the number

of packets received from A and the attacker during the second period of length t with

packet contribution from both hosts. This is the desired full period with A’s packets.

The number of A’s packets divided by the total number of packets yields its bandwidth

share k′. We measure k′ under various conditions: counter-flooding unicast (CFU)

or broadcast (CFB) packets, with flow control disabled (noFC) or enabled (FC), and

having the entire uplink bandwidth available or running in parallel to a TCP connection

which tries to send data to host C at maximum speed. The attacker always operates

with flow control disabled. However, he adheres to the policy whether valid signature

packets are broadcasted or unicasted. Otherwise his fake packets can be detected based

on the destination MAC address. For each configuration we perform 15 runs and state

the ranges of the measured values for k′ in Table 3.2. In Gigabit Ethernet switching

off flow control has no effect in case of the two employed NIC chipsets—in remains in

fact enabled. Therefore there are no test results without flow control for the Gigabit

switch.

Evaluating the results, the general observation to be made is that host A’s bandwidth

share did never drop below 33% (entire uplink channel available) and 19% (concurrent

TCP flow) respectively. Hence, the bandwidth division can be assessed as reasonably

fair and, more important, an acceptably large lower bound for factor k exists. Using

the expression k = u
g+h proposed in Section 3.2.5 with g = 1 and h = 1, the unbalance

factor u yielding k = 0.19 would amount to 0.38.

Without a concurrent TCP flow, when using the first or the third switch, the bandwidth

division between host A and the attacker is almost optimal, that is k′ ≈ 50%, in all runs.

Flow control has no significant effect on fairness in case of the first switch. However, the

second switch shows striking fluctuations in bandwidth division when flooding unicast

packets without flow control and it drops almost all attacker’s unicast packets when A

has flow control enabled. That is, this switch favors stations which perform flow control.

47

Chapter 3 Counter-Flooding: DoS Protection for Public-Key Handshakes in LANs

T
a
b

le
3
.2

:
B

a
n

d
w

id
th

d
iv

ision
d

u
rin

g
cou

n
ter-fl

o
o
d

in
g

u
n

d
er

d
iff

eren
t

con
d
ition

s.

c
o
n

d
itio

n
s

h
o
st

A
’s

b
a
n

d
w

id
th

sh
a
re

k
´

L
evelO

n
e

F
S

W
-2

2
0
5
T

X
100

M
b

it
3com

O
ffi

ceC
on

n
ect

8
P

lu
s

100
M

b
it

3C
om

O
ffi

ceC
on

n
ect

5
1

G
b

it

t
=

5
0
m
s

t
=

80
m
s

t
=

50
m
s

t
=

80
m
s

t
=

50
m
s

t
=

80
m
s

C
F
U

n
o
F

C
4
7
.8

%
–

5
1
.3

%
4
9
.1

%
–

51.4%
33.5%

–
60.7%

33.4%
–

66.9%
—

—

C
F
U

F
C

5
2
.5

%
–

5
4
.9

%
5
2
.4

%
–

52.5%
95.8%

–
99.7%

97.5%
–

100%
49.7%

–
49.9%

49.6%
–

49.7%

C
F
B

n
o
F

C
4
7
.5

%
–

5
2
.5

%
4
7
.7

%
–

52.5%
49.9%

–
50.0%

50.0%
–

50.1%
—

—

C
F
B

F
C

5
5
.0

%
–

5
5
.2

%
5
4
.1

%
–

55.0%
46.7%

–
50.1%

50.0%
–

50.1%
49.9%

–
50.1%

50.1%
–

50.6%

C
F
U

T
C

P
n

o
F

C
1
9
.1

%
–

2
3
.6

%
1
9
.2

%
–

24.3%
20.9%

–
37.1%

27.7%
–

37.2%
—

—

C
F
U

T
C

P
F

C
2
3
.2

%
–

2
7
.8

%
2
1
.9

%
–

27.9%
28.5%

–
36.6%

27.8%
–

36.9%
27.1%

–
33.9%

26.3%
–

33.4%

C
F
B

T
C

P
n

o
F

C
3
8
.6

%
–

5
0
.1

%
4
0
.0

%
–

52.1%
49.6%

–
50.3%

49.8%
–

53.6%
—

—

C
F
B

T
C

P
F

C
2
6
.1

%
–

3
1
.5

%
2
5
.3

%
–

29.4%
28.3%

–
40.2%

29.4%
–

38.7%
28.4%

–
38.5%

28.6%
–

37.6%

48

3.4 Flooding Experiments in Switched Ethernet

All test series with a concurrent TCP flow exhibit medium-strength fluctuations of A’s

bandwidth share. This is probably due to varying TCP throughput occupying more or

less uplink bandwidth and maybe also due to short-time monopolization of A’s uplink

either by the TCP or the counter-flooding flow. If TCP congestion control does not

throttle the sending rate, a fair use of A’s uplink by TCP and counter-flooding as well

as a fair arbitration mechanism in the switch would result in k′ to amount to 25%. It

is noticeable that in the broadcast test series without flow control k′ is between 40%

and 50%. We explain this by the fact that persistent packet loss in the overloaded

switch forces TCP’s congestion control to dramatically cut down its throughput, so

that counter-flooding can occupy nearly the whole uplink. The fatal effect of flooding

attacks on TCP throughput is subject of the next subsection.

3.4.3 Preventing DoS Flooding Attacks on TCP

Using the existing setup, we let the attacker flood at full speed unicast or broadcast

packets of maximum size to victim B thereby completely occupying its downlink. While

the attack is in progress, host A runs the TCP benchmark tool ttcp [TTC] sending data

to victim B as fast as possible (40 KB buffer, 500 send() calls). We examine the impact of

Ethernet flow control on the achievable TCP throughput by making measurements with

and without flow control enabled at the hosts A and B. The attacker has flow control

always switched off. Another test series is performed under normal conditions without

a flooding attack to determine the baseline TCP throughput. For each configuration we

perform 15 runs and present the ranges of the measured speeds in Table 3.3.

Table 3.3: Effect of Ethernet flow control on TCP throughput under a DoS flooding
attack.

conditions TCP throughput in MB/s

switch 1 switch 2 switch 3

noFC noDoS 11.32 – 11.33 11.32 – 11.33 —

FC noDoS 11.32 – 11.33 11.32 – 11.33 102.7 – 110.1

noFC DoSU 0.294 – 0.607 0.117 – 0.138 —

FC DoSU 5.91 – 5.94 10.47 – 10.63 52.94 – 53.16

FC DoSB 5.93 – 5.96 10.54 – 10.56 44.29 – 44.62

49

Chapter 3 Counter-Flooding: DoS Protection for Public-Key Handshakes in LANs

Under normal conditions the TCP throughput achieves (almost) link-speed irrespective

of whether IEEE 802.3x flow control is enabled or not. Without flow control the flooding

attack succeeds in degrading TCP throughput by 95 – 99% due to packet loss which

continuously triggers TCP’s slow start mode. This constitutes a very severe DoS attack

since the majority of applications employ TCP. However, Ethernet flow control is capable

to maintain a TCP throughput of more than 50% of the regular speed, as it avoids packet

loss.

3.5 Chapter Summary

In this chapter, we have proposed a countermeasure against DoS flooding attacks on

public-key handshakes in LANs. If an adversary tries to overwhelm a victim host by

a flood of invalid signature packets requiring expensive verification, a benign host en-

sures the processing of its genuine signature packet by flooding itself copies of this

packet for a short period. We have provided bounds for counter-flooding to succeed and

shown experimentally that in switched Ethernet a reasonable fair bandwidth division

between concurrent flows is usually ensured. Moreover, we have shown how IEEE 802.3x

flow control can protect from flooding attacks attempting to significantly degrade TCP

throughput. We believe that this finding and especially our link layer security protocol

CLL extended by the counter-flooding protection for its public-key handshake will pave

the way for secure and DoS-resistant communication in LANs.

50

Chapter 4

Non-Parallelizable and Non-Interactive

Client Puzzles

Protocols and services that perform authentication and key exchange relying on expen-

sive public-key cryptography or involve complex database queries are likely vulnerable to

DoS attacks. By flooding valid-looking requests, for example SSL / TLS, IPsec, or CLL

authentication handshakes, an attacker seeks to overload his victim. But even services

that do not involve expensive operations may be susceptible to DoS attacks that exploit

worst-case behavior of classical data structures like hash tables [CW03]. In the previ-

ous chapter, we have introduced counter-flooding to protect public-key handshakes in

LANs against DoS. We have pointed out that client puzzles [JB99, Bac02, ANL01]—the

well-known countermeasure against resource exhaustion attacks in the Internet—have

drawbacks if being applied in LANs where initially no address authenticity exists. In

this chapter, we revisit the client puzzle approach and propose a novel puzzle construc-

tion that offers some advantages over existing schemes. Its application is not limited

to LANs. The content of this chapter has been published in [JM11] and an extended

version of that paper is currently under review [JM12a].

We briefly recall the concept of client puzzles: A server being under attack processes

requests only from those clients that themselves spend resources in solving a crypto-

graphic puzzle and submit the right solution. Puzzle verification must be cheap, while

the puzzle difficulty can be tuned from easy to hard. By imposing a computational

task on the client the victimized server dramatically cuts down the number of valid

requests that the attacker can emit. However, benign hosts having only a single request

51

Chapter 4 Non-Parallelizable and Non-Interactive Client Puzzles

are hardly penalized. A widely-used cost function for client puzzles is the reversal of

a one-way hash function by brute force. Verifying such a puzzle involves only a single

hash operation.

Client puzzles can be interactive or non-interactive. In the first case the server constructs

the puzzle upon receiving a request and demands from the client to solve it before

continuing with the protocol. In the latter case the client constructs the puzzle by itself,

solves it and attaches the solution to its request. An important characteristic of client

puzzles is granularity, i. e., the ability to finely adjust the puzzle difficulty to different

levels. Another desirable property is non-parallelizability, which prevents an attacker

from obtaining the solution faster than scheduled by distributing the puzzle to multiple

CPU cores or to other compromised machines [TBFN07, SvB07, Kv10]. Existing client

puzzle schemes are either parallelizable, coarse-grained, or can be used only interactively.

Interactive puzzles have the drawback that the packet with the puzzle parameters sent

from server to client lacks authentication. A second DoS attack against the clients

with faked packets pretending to come from the defending server and containing bogus

puzzle parameters may thwart the clients’ connection attempts. Such a counterattack

becomes feasible if no address authenticity is provided by the underlying layers, e. g., if

operating at the link layer. To the best of our knowledge, no puzzle scheme proposed

in the literature provides all the desired properties.

We introduce a novel scheme for client puzzles based on the computation of square roots

modulo a prime. Modular square root puzzles are non-parallelizable, can be employed

both interactively and non-interactively, and provide polynomial granularity. We con-

struct the puzzle for a particular request by assigning to it a unique quadratic residue a

modulo a prime. Then the client solves the puzzle by extracting the modular square

root of a and sends it to the server as proof of work. Computation is performed by

repeated squaring, which is assumed to be an intrinsically sequential process. Verifying

the puzzle on the server side is easy—it requires a single modular squaring operation

and a few hash operations. Puzzle difficulty can be tuned by selecting a larger or

smaller prime modulus. We evaluate the performance of modular square root puzzles

by benchmarking the verification throughput and the solution time for different levels

of difficulty. The results demonstrate the feasibility of our approach to mitigate DoS

attacks on hosts having a 1 or even 10 Gbit link. To compensate for raising verifica-

52

4.1 Related Work

tion costs in high-speed networks we strengthen our puzzle scheme by introducing a

small bandwidth-based cost factor for the client. Furthermore, we also investigate the

construction of client puzzles from modular cube roots.

The rest of this chapter is organized as follows. In the next section, we discuss existing

approaches for DoS protection with the aid of puzzles. Section 4.2 introduces algorithms

for computing modular square roots, investigates parallelization aspects, and forms the

mathematical basis for our client puzzles. In Section 4.3, we then describe how to

construct, solve and verify a modular square root puzzle, which can be employed in

a non-interactive or interactive manner. Section 4.4 evaluates the performance of our

puzzle scheme and extends it by a bandwidth-based cost factor. Finally, we conclude

the chapter with a summary in Section 4.5.

4.1 Related Work

Hash-reversal puzzles [JB99, Bac02, ANL01] can be used both interactively and non-

interactively. They are simple to construct and verify but have the disadvantage of being

highly parallelizable and provide only exponential granularity. The task of reversing a

one-way hash function by brute force can be easily distributed across many machines. To

make them fine-grained Feng et al. propose hint-based hash reversal puzzles [FKFL05]

where the server gives the client a hint about the range within which the solution lies.

Thus, the granularity becomes linear. The drawback is that hint-based puzzles can be

employed only interactively.

Waters et al. introduced a client puzzle scheme based on the Diffie-Hellman key exchange

where puzzle construction and distribution are outsourced to a secure entity called

bastion [WJHF04]. The bastion periodically issues puzzles for a specific number of

virtual channels that are valid during the next time slot. Puzzle construction is quite

expensive since it requires a modular exponentiation, but many servers can rely on

puzzles distributed by the same bastion. A client solves a puzzle by computing the

discrete logarithm through brute force testing—a task that is highly parallelizable. The

granularity of the puzzle is linear. On the server side, verifying a puzzle involves a

53

Chapter 4 Non-Parallelizable and Non-Interactive Client Puzzles

table lookup and another costly modular exponentiation, which, however, is performed

in advance during the previous time slot.

In [TBFN07], Tritilanunt et al. first reviewed existing client puzzle approaches and

compared their properties. The authors then suggested a non-parallelizable client puzzle

scheme based on the subset sum problem. The client solves the puzzle by applying

Lenstra’s lattice reduction algorithm LLL. However, the authors point out that the

memory requirements for LLL are quite high, which results in some implementation

issues. Puzzle verification is quite cheap. It takes one hash operation and about 25 – 100

additions. Subset sum puzzles are interactive and provide polynomial granularity. In

contrast, our puzzle scheme can be also employed non-interactively, has a small memory

footprint, and is easy to implement.

Non-parallelizable puzzles based on repeated squaring are well-known in timed-release

cryptography. In [RSW96], Rivest et al. introduced interactive time-lock puzzles to

encrypt messages that can be decrypted by others only after a pre-determined amount of

time has passed. Like the RSA cryptosystem time-lock puzzles rely on the intractability

of factoring large integers. Constructing a time-lock puzzle requires the server to perform

an expensive modular exponentiation. Later in this thesis, in Chapter 6 in the context

of our offline submission protocol, we will discuss Rivest’s time-lock puzzles in more

detail.

Seeking for a non-parallelizable (but still interactive) client puzzle scheme Karame and

Čapkun adapted Rivest’s puzzle scheme by employing an RSA key pair with small pri-

vate exponent to reduce the costs for puzzle verification [Kv10]. The server must still

perform a modular exponentiation but the number of multiplications is decreased by

some factor, e. g., factor 12.8 for a 1024-bit modulus resulting in 120 modular multipli-

cations instead of 1536. We find that these verification costs are nevertheless too high to

provide a viable DoS protection for high-speed links. In contrast, verifying our modular

square root puzzle takes only a single modular squaring operation.

With the discussed RSA based puzzle schemes we share the idea of a non-parallelizable

solution function that relies on modular exponentiation. Apart from that, our approach

is different and does not use any trapdoor information. In [DN92], Dwork and Naor

mentioned the extraction of modular square roots as one of three candidate families of

54

4.2 Modular Square Roots

pricing functions to combat spam. Our main contribution here to counteract DoS attacks

is the computation of modular square roots from so-called “hard” primes resulting in a

novel scheme for non-parallelizable client puzzles.

In [CMSW09], Chen et al. gave a formal model for the security of client puzzles. Further

client puzzle architectures are, e. g., [WR03, WR04, HGS+08, SvB07, TJ10]. Puzzle-

based DoS defense mechanisms can also rely on other payment schemes than CPU cycles,

for example on memory [ABMW05, DGN03, DMR06], bandwidth [WVB+06] (see Sec-

tion 3.1), or human interaction where so-called CAPTCHAs [vABHL03] have become

the most common technique. Besides DoS protection various other applications for com-

putational puzzles have been proposed, e. g., mitigating spam [DN92, Bac02], uncheat-

able benchmarks [CLSY93], a zero-knowledge protocol for timed-release encryption and

signatures [Mao01], or a timed commitment scheme for contract signing [BN00].

4.2 Modular Square Roots

4.2.1 Extracting Square Roots Modulo a Prime

Let p be an odd prime and a ∈ Z∗p an integer, i. e., 1 ≤ a ≤ p − 1. The solution of

the congruence x2 ≡ a (mod p) is called a square root modulo p. There exist either two

solutions x and −x or no solution. In the first case, a is named a quadratic residue,

and in the latter case a quadratic non-residue modulo p. Half of the elements in Z∗p are

quadratic residues and the other half are quadratic non-residues. To express whether

a is a quadratic residue or not the Legendre symbol
(
a
p

)
is used. It is defined as being

1 if a is quadratic residue, -1 if a is a quadratic non-residue and 0 if operating in

Zp and a = 0. The Legendre symbol can be efficiently computed in O((log p)2) bit

operations [Coh96, MvOV96].

Finding a square root modulo p is quite easy for half of the primes p, namely if

p ≡ 3 (mod 4). In this case the solution is given by

x = a(p+1)/4 mod p. (4.1)

55

Chapter 4 Non-Parallelizable and Non-Interactive Client Puzzles

For half of the remaining primes where p ≡ 5 (mod 8) a less trivial, but also straight-

forward solution exists:

x =

 a(p+3)/8 mod p if a(p−1)/4 mod p = 1

2a(4a)(p−5)/8 mod p otherwise.
(4.2)

The remaining case p ≡ 1 (mod 8) is the most difficult one. However, there exist two well-

known algorithms [BS96, NHSK09] to compute square roots modulo p for all primes p,

namely the Tonelli-Shanks method [Ton91, Sha72] (see Algorithm 1 [MvOV96]) and

the Cipolla-Lehmer method [Cip03, Leh69] (see Algorithm 2 [MvOV96]). The group-

theoretic Tonelli-Shanks method has a running time of O((log p)4) bit operations if p−1

contains a large power of two in its prime factorization. But for small s (see line 3) it

runs in O((log p)3) since in this case the for loop is executed only a small number of

times. The Cipolla-Lehmer method is based on the theory of finite fields and works with

polynomials over the field Zp. In contrast to the algorithm of Tonelli-Shanks its running

time does not depend on the decomposition of p− 1 and is always in O((log p)3). Note

that for primes p where s is very small the Tonelli-Shanks algorithm will outperform the

Cipolla-Lehmer method, because an exponentiation in the polynomial ring Zp[x] is more

expensive than in Zp. Both algorithms have a probabilistic component, namely finding

a quadratic non-residue modulo p. For the Tonelli-Shanks method this quadratic non-

residue does not depend on a and can be precomputed if p is fixed. A random integer

b ∈ Zp is a quadratic non-residue with probability 0.5. In case of the Cipolla-Lehmer

method we need to know a to find a suitable quadratic non-residue and the probability

for succeeding with a random integer b is 0.5− 1
2p [BS96], which converges to 0.5 for large

primes p. On average, two trials should suffice for both methods to find a quadratic non-

residue. The time required for this test is negligible compared to the total computation

of the square root. It is an open question whether randomization can be eliminated,

although this will be possible if the extended Riemann hypothesis turns out to be true.

So far modular square roots can be computed only in random polynomial time by a Las

Vegas algorithm [BS96].

56

4.2 Modular Square Roots

Algorithm 1 Tonelli-Shanks: square roots modulo a prime p

Input: an odd prime p and an integer a, 1 ≤ a ≤ p− 1.
Output: the two square roots of amodulo p, provided a is a quadratic residue modulo p.

1: Compute the Legendre symbol
(
a
p

)
. if

(
a
p

)
= −1 then print “a has no square roots

modulo p” and terminate.

2: Find a quadratic non-residue b modulo p at random, i. e., an integer b, 1 ≤ b ≤ p−1,
with

(
b
p

)
= −1.

3: Write p− 1 = 2st, where t is odd.
4: Compute a−1 mod p by the extended Euclidean algorithm.
5: Set c← bt mod p and r ← a(t+1)/2 mod p.

6: for i = 1 to s− 1 do
7: Compute d = (r2 · a−1)2s−i−1

mod p.
8: if d ≡ −1 (mod p) then set r ← r · c mod p.
9: Set c← c2 mod p.

10: end for

11: return (r,−r)

Algorithm 2 Cipolla-Lehmer: square roots modulo a prime p

Input: an odd prime p and an integer a, 1 ≤ a ≤ p− 1.
Output: the two square roots of amodulo p, provided a is a quadratic residue modulo p.

1: Compute the Legendre symbol
(
a
p

)
. if

(
a
p

)
= −1 then print “a has no square roots

modulo p” and terminate.

2: Choose an integer b ∈ Zp at random until b2−4a is a quadratic non-residue modulo p,

i. e.,
(
b2−4a
p

)
= −1.

3: Let f be the polynomial x2 − bx+ a in Zp[x].
Compute r = x(p+1)/2 mod f . (Note: r will be an integer.)

4: return (r,−r)

57

Chapter 4 Non-Parallelizable and Non-Interactive Client Puzzles

4.2.2 Modular Exponentiation

Extracting a modular square root requires to perform modular exponentiations. This

task can be accomplished by the basic binary exponentiation method (commonly referred

to as square-and-multiply) or a more sophisticated algorithm like the k-ary method

or the sliding-window method [MvOV96]. In case p ≡ 3 (mod 4) only one modular

exponentiation is needed. If p ≡ 5 (mod 8) then two modular exponentiations have to

be performed. Finally, if p ≡ 1 (mod 8) the Tonelli-Shanks or Cipolla-Lehmer algorithm

has to be applied. In the worst case, namely if s is large, the Tonelli-Shanks method

carries out up to O(log p) modular exponentiations in the for loop and becomes quite

inefficient. Primes p ≡ 1 (mod 8) of appropriate size where the prime factorization of

p−1 contains a large power of two can be easily found. We suggest Algorithm 3 for this

purpose. In line 5 the function IsProbablePrime() repeatedly performs a randomized

primality test, e. g., the Miller-Rabin test [Mil76, Rab80], to achieve a given error bound

(which is less than 4−k after k rounds in case of the Miller-Rabin test). Finding such

a “hard” prime p with an error probability below 10−15 takes less than 50 msec for

a 1031-bit prime (input: l = 1024) and less than 1 sec for a 2058-bit prime (input:

l = 2048) on a modern 64-bit CPU.

Algorithm 3 Finding a “hard” prime for modular square roots

Input: minimal bit length l.
Output: the smallest prime p having at least l bits with p − 1 = 2st where t is odd

and s in O(log p).

1: set i← 1

2: repeat
3: p = (2l−1 · i) + 1
4: set i← i+ 2
5: while not IsProbablePrime(p)

6: return p

In the following, we thus concentrate on such “hard” primes and the Cipolla-Lehmer

method, which ignores the structure of p− 1. Here the computation consists of a single

modular exponentiation x(p+1)/2 mod f , but with polynomials instead of integers. The

modulus f is a polynomial of degree 2 with leading coefficient 1. How many modu-

lar multiplication / squaring operations on integers are involved in this exponentiation?

58

4.2 Modular Square Roots

First, we observe that if p is a “hard” prime the exponent (p + 1)/2 has the form

2s−1 · i + 1 where i is a small integer. Only some of the most significant bits and the

least significant bit are set. Hence, the computation actually reduces to an exponen-

tiation with a power-of-two exponent, where repeated squaring—a special case of the

binary exponentiation—constitutes the most efficient technique. To compute gy mod n

with y = 2k it takes k modular squarings and no additional multiplications while blog yc
is the lower bound for the number of multiplications to carry out a single exponenti-

ation in a general group. Squaring a polynomial ax + b of degree 1 over the field Zp
requires 3 modular integer multiplications / squarings. Reducing the resulting polyno-

mial of degree 2 modulo f , i. e., performing a polynomial division, involves 2 modular

multiplications and 2 modular subtractions on integers. While modular multiplica-

tion / squaring of N -bit numbers runs in O(N2) (or in O(N1.585) with a sophisticated

technique like Karatsuba’s algorithm [KO62]), modular subtraction takes linear time,

and thus is negligible. Altogether, the modular exponentiation in Zp[x] takes about

5 · log p modular multiplication / squaring operations on integers.

4.2.3 Non-Parallelizability

In all exponentiation algorithms the main workload accounts to repeatedly perform-

ing modular squarings. This is assumed to be an intrinsically sequential, i. e., non-

parallelizable process since each next step requires the intermediate result from the

previous one [RSW96]. Parallelization of the squaring operation itself cannot achieve a

significant speedup either. Each squaring requires only trivial computational resources

and any non-trivial scale of parallelization inside the squaring operation would be likely

penalized by communication overhead among the processors [Mao01]. In complexity

theory, the class P contains all decision problems that can be solved by a deterministic

Turing machine in polynomial time. NC ⊆ P represents the class of problems that can

be efficiently solved by a parallel computer. However, it is still an open question whether

modular exponentiation is P-complete, i. e., not in NC [AK88, Sor99]. Likewise, it is

unknown if factoring is really not in P.

We now want to point out those parts of modular square root computation that are

parallelizable. If applying the basic binary exponentiation method the 1
2 · log p multiply

59

Chapter 4 Non-Parallelizable and Non-Interactive Client Puzzles

steps can be performed in parallel to the log p squaring steps. Thus, only log p sequential

modular squaring operations can be accounted for when extracting a square root modulo

p ≡ 3 (mod 4). The same applies to the case p ≡ 5 (mod 8) where two modular

exponentiations are performed (see Equation 4.2). Instead of evaluating a(p−1)/4 mod p

first and then deciding on which will be the second exponentiation, one could carry out

all three modular exponentiations in parallel and then determine the correct square root

instantly by checking the result of a(p−1)/4 mod p. When dealing with “hard” primes

p ≡ 1 (mod 8) parallelization is also possible to some degree. We can do the 3 modular

multiplications / squarings to square the polynomial simultaneously. Afterwards the

2 modular multiplications for polynomial division can be also performed in parallel.

This results in about 2 · log p sequential modular multiplications to compute a square

root modulo a “hard” prime p ≡ 1 (mod 8) and takes more than twice as long as for

other primes, since multiplying is somewhat slower than squaring [GMP]. Thus we have

found a way to increase the time for square root extraction by more than factor 2, which

cannot be diminished by raising the number of available processors.

4.3 Client Puzzles from Modular Square Roots

4.3.1 Constructing and Solving a Non-Interactive Puzzle

The benign host A having a request (e. g., an authentication handshake) to host B that

is under a DoS attack constructs for its request a unique puzzle. We suppose that both

parties share a list L = {p1, ..., pj} of “hard” primes p ≡ 1 (mod 8) with different

bit lengths which have been generated once and henceforth can be used by all hosts

an unlimited number of times. The puzzle must be bound to A’s request message m.

Depending on the layer the protocol is operating at m may be an Ethernet frame, an

IP datagram or a TCP/UDP segment. First, host A selects from the list L a prime p

of appropriate bit length n and applies a cryptographic hash function H with digest

length k on m recursively c = dnk e times to produce the (n− 1)-bit digest

d = Firstn−1(H(m) || H(H(m)) || ... || Hc(m)). (4.3)

60

4.3 Client Puzzles from Modular Square Roots

Here || denotes the concatenation of two bit strings and Firsti extracts the first i bits

from a bit string. Next host A considers d as a (n − 1)-bit number and computes the

Legendre symbol
(
d
p

)
to check whether d is a quadratic residue modulo p. If it turns out

to be a quadratic non-residue, d is decremented by one until the quadratic residue a is

found:

Algorithm 4 Assigning a unique quadratic residue to the digest d, method 1

set a← d

while
(
a
p

)
= −1 do

set a← a− 1
end while

return a

Since half of the elements in Z∗p are quadratic residues, a few trials will usually suffice. A

more efficient and deterministic approach for the puzzle solver A to generate a quadratic

residue from the digest d is the following method:

Algorithm 5 Assigning a unique quadratic residue to the digest d, method 2

Precondition: A (small) quadratic non-residue b modulo p has been found.

if
(
d
p

)
= 1 then set a← d

else set a← b · d mod p

return a

According to the properties of the Legendre symbol, the product of two quadratic non-

residues is a quadratic residue. Unfortunately,
(

1
p

)
= 1 for all p and two other simple

candidates for b, namely -1 and 2, also are quadratic residues if p ≡ 1 (mod 8). Thus,

some other (small) number has to be found for b. This can be done in advance for each

prime from the list L. Method 2 requires one evaluation of the Legendre symbol and

at most one modular multiplication. However, as we will point out in the next subsec-

tion, applying the second method makes the verification of the puzzle more expensive

compared to the first method.

Now, a unique quadratic residue a has been assigned to A’s request. The puzzle to

solve is the computation of the square root of a modulo p by applying the Cipolla-

Lehmer method, which takes about 2·log p sequential modular multiplications. Without

parallelization, about 5 · log p modular multiplications / squarings have to be performed.

61

Chapter 4 Non-Parallelizable and Non-Interactive Client Puzzles

Having extracted the square root x, host A attaches this n-bit number to its request

and sends it to host B. The other square root −x is of no importance for the protocol.

There is no need to transmit the prime p. Host A can simply indicate the modulus by

stating its position in the list L. Usually, all primes in the list will differ in size so that

the corresponding prime may even be deduced from the size of x.

Due to the non-interactive puzzle construction an attacker might compute puzzle solu-

tions in advance. If precomputation is an issue, it can be mitigated by concatenating the

message m with an unpredictable, periodically changing number pior to producing the

digest d. Lottery results [Bac02] or stock market prices are possible sources of random-

ness which are easily accessible to both parties A and B. In this case host B will accept

only requests bearing an up-to-date random number. In Chapter 5, we will fundamen-

tally solve the precomputation issue of non-interactive client puzzles by deriving the

puzzle from a periodically changing random beacon that is broadcasted in the LAN.

4.3.2 Puzzle Verification

The victimized host B verifies the puzzle solution x prior to allocating resources and

processing host A’s request, which may require to perform a public or even private key

operation or an expensive database lookup. Puzzle verification is quite cheap—besides

a few hash operations (c times, depends on the hash size and the length of the prime)

to compute the digest d from the request only a single modular squaring operation

x2 mod p has to be carried out.

If the first method (Algorithm 4) has been applied for assigning a quadratic residue to

the digest d, then host B does not need to rerun the algorithm to verify the quadratic

residue a = x2 mod p presented by the puzzle solver A. With probability 0.5 we have

a = d, with probability 0.25 we have a = d− 1 and so on. Thus, if d− (x2 mod p) < δ

where δ is a small constant, e. g., δ = 20, the verification can be considered as successful,

otherwise A’s request is dropped. This check requires only a single modular subtraction

and a comparison. Host A cannot take any advantage of extracting the modular square

root from a′ = a− β instead of from a if β is bounded by the small constant δ. Even if

host A cheats in this manner for some reason, host B can be certain that A has indeed

computed a modular square root specially for its request m. A drawback of the second

62

4.3 Client Puzzles from Modular Square Roots

method (Algorithm 5) is that the verifier B has to rerun it to ensure that the puzzle

solver A has actually extracted the modular square root from the quadratic residue that

belongs to the digest d.

Host B’s decision whether to allocate resources for processing A’s request or not can, of

course, also depend on the puzzle difficulty (that is, on the size of the chosen prime) and

on the strength of the ongoing DoS attack. The rate of accepted requests with correct

puzzle solutions shall not exceed host B’s processing capacity, i. e., the rate at which B

can actually complete these requests. Being rejected, host A may then retry by taking

a larger prime from the list L and solving a more difficult puzzle.

4.3.3 Puzzle Granularity and Public Auditability

The ability to finely adjust the puzzle difficulty to different levels represents an important

criterion for the practical applicability of a puzzle. Solving a modular square root

puzzle with an N -bit prime takes O(N3) time while the verification runs in O(N2).

Thus, having polynomial granularity, our puzzle is quite fine-grained. In contrast, a

non-interactive puzzle scheme based on hash-reversal has exponential granularity and

is highly parallelizable. Since a third party can efficiently verify the solution of the

square root puzzle without access to any trapdoor information, its cost-function is called

publicly auditable [Bac02]. Time-lock [RSW96] and Diffie-Hellman based [WJHF04]

puzzles are, by contrast, not publicly auditable.

4.3.4 Interactive Client Puzzles

Our modular square root puzzles can be also employed in an interactive way, where

the victimized server (host B) issues a challenge to the client (host A), as is the case

with client puzzles proposed by Juels and Brainard [JB99] and reworked by Aura et

al. [ANL01]. In the interactive setting the prime modulus p and the quadratic residue a

are dictated by the server. This can be done in a stateless manner by hashing the client’s

request along with a secret number to produce the digest d and sending d back to the

client, which derives from it the quadratic residue a for the puzzle. Thus, the server needs

to store only the secret number and the prime which are reused across all clients. The

63

Chapter 4 Non-Parallelizable and Non-Interactive Client Puzzles

advantages of interactive client puzzles are the prevention of precomputation attacks and

the precise choice of the puzzle’s level of difficulty since it is prescribed by the defending

server. However, a major drawback of interactive client puzzles that we have already

indicated in Section 3.1 and in the beginning of this chapter is the lack of authentication

for the packet containing the puzzle parameters, which the server sends to the client.

A second DoS attack against the clients with faked packets bearing the server’s sender

address and containing bogus puzzle parameters may thwart the clients’ connection

attempts. Forging the sender address and eavesdropping on the traffic is an easy matter

in wired and especially wireless LANs while it is more difficult in the Internet. Hence,

only in environments where counterattacks on the clients are very unlikely, our square

root puzzles should be used in the interactive manner.

4.3.5 Client Puzzles from Modular Cube Roots?

We have investigated whether our non-parallelizable and non-interactive client puzzles

can be improved by resorting to modular cube roots instead of modular square roots.

Obviously, verifying a modular cube root is about twice as expensive since in x3 mod p

a modular squaring and a modular multiplication have to be carried out. What about

the computation of modular cube roots? Like with modular square roots, the difficulty

of solving the congruence x3 ≡ a (mod p) depends on the prime p. If p ≡ 2 (mod 3)

extracting the cube root modulo p is very easy—it requires a single modular inver-

sion and exponentiation [BS96]. The remaining case p ≡ 1 (mod 3), and especially

if p ≡ 1 (mod 9), is the difficult one [NHSK09]. For p ≡ 1 (mod 3) one third of the

elements in Zp are cubic residues. Adleman, Manders, and Miller [AMM77] generalized

the Tonelli-Shanks method to compute n-th roots in Zp. Its running time again depends

on the decomposition of p− 1, in case of cube roots on p− 1 = 3st where 3 6 | t, and is in

O((log p)4) in the worst case. In [NHSK09], Nishihara et al. proposed two algorithms

to extend the Cipolla-Lehmer method for cube root computation. Its running time is

always in O((log p)3) since it ignores the structure of p− 1. To extract a modular cube

root an irreducible monic polynomial f in Zp[x] of degree 3 has to be constructed first.

This step requires randomization and in case of the more efficient algorithm it takes

one modular exponentiation per trial to verify f . The success probability is approx-

imately 2
3 . The actual cube root computation is very similar to the Cipolla-Lehmer

64

4.4 Evaluation and Protocol Enhancements

method and consists of a single exponentiation in the polynomial ring Zp[x]:

r = x(p2+p+1)/3 mod f. (Note: r will be an integer.) (4.4)

To perform this exponentiation, at least 2 · log p squarings in Zp[x] have to be carried

out. Squaring a polynomial of degree 2 over the field Zp requires 6 modular integer

multiplications / squarings. Note that they can be performed in parallel. Reducing the

resulting polynomial of degree 4 modulo f by means of a polynomial division takes two

sequential steps each one involving 4 modular integer multiplications, which are also par-

allelizable. Assuming maximal parallelization, this results in at least 6 · log p sequential

modular multiplications / squarings on integers to carry out the exponentiation. Taking

also the construction of f into account, it requires at least 7 · log p sequential modular

multiplications / squarings to solve a modular cube root puzzle versus 2 · log p sequen-

tial operations in case of modular square roots. Since the verification of modular cube

roots is twice as expensive, the complexity gain with respect to non-parallelizability is

about 1.75. We observe that constructing client puzzles from modular cube roots is an

interesting option, but it also disproportionately increases the workload for benign hosts

which probably solve the puzzle without parallelization.

4.4 Evaluation and Protocol Enhancements

In this section we evaluate the performance of our puzzle scheme and enhance it by

introducing a bandwidth-based cost factor for the client.

4.4.1 Puzzle Benchmark

For “hard” primes of different size ranging from 264 to 8206 bits we measure the number

of modular square root puzzles that an off-the-shelf Intel Core 2 Quad Q9400 2.66 GHz

CPU can verify per second and the time it takes to solve a puzzle. Table 4.1 presents our

benchmark results averaged over 10 runs. In all test series the coefficient of variation was

below 1.5%. For the large-integer arithmetic we employ the well-known open source li-

brary GMP from GNU [GMP], which claims to be faster than any other bignum library

65

Chapter 4 Non-Parallelizable and Non-Interactive Client Puzzles

by using state-of-the-art algorithms with highly optimized assembly code. Modular

square root extraction is done using the Cipolla-Lehmer method, where the exponen-

tiation in Zp[x] constitutes the main workload. In our measurements we take only the

time to perform the 2 · log p sequential modular multiplications into account, since the

remaining 3 · log p modular multiplications / squarings can be computed in parallel by a

well-versed attacker (see Section 4.2.3). All computations are performed using a single

CPU core. For full parallelization of a puzzle an attacker would employ three CPU

cores while the defending host can verify as many puzzles in parallel as CPU cores are

available. Solving a puzzle on a benign host that uses only a single CPU core actually

takes about two and a half times longer than stated in Table 4.1. To accelerate the re-

peated modular multiplications we make use of Montgomery reduction [Mon85] instead

of performing the classical reduction by dividing. This results in a speed-up by a factor

of 1.2 – 2.0, especially for small moduli in the order of 264 – 2058 bits.

Table 4.1: Benchmark: verifying and solving modular square root puzzles on Intel Core 2
Quad Q9400 2.66 GHz.

bit length

modular squarings / sec modular square root: time in msec

(one CPU core) (assuming full parallelization)

32-bit 64-bit 32-bit 64-bit

264 1 377 000 2 597 000 0.238 0.091

520 593500 1354000 1.35 0.411

776 329 400 698 300 4.15 1.10

1031 201 300 549 400 9.01 2.42

1547 102 500 337 400 27.7 7.09

2058 62 810 199 100 62.9 15.7

3084 33 030 117 100 196 48.1

4106 20 530 71 630 429 109

6155 10 620 39 250 1350 340

8206 6810 24 430 3020 763

Evaluating the benchmark results, we first observe that a 64-bit implementation out-

performs its 32-bit counterpart by a factor of up to 3.7 in verifying and up to 4.0 in

solving a puzzle. Since almost all desktop CPUs manufactured during the last five years

are 64-bit capable and 64-bit operating systems are widely available, we consider the

66

4.4 Evaluation and Protocol Enhancements

64-bit results as reference values. Secondly, the speed gap between the verifier and the

solver constitutes factor 236 for a 264-bit puzzle and increases up to factor 18 640 for a

8206-bit puzzle. Now the main question to pose is whether the verification throughput

of modular square root puzzles is high enough to cope with a DoS flooding attack of

bogus puzzle solutions mounted at full link speed. Of course, the size of a valid-looking

request containing a puzzle solution plays a role. Before we can definitely answer this

question with “yes” for networks with 100 Mbit, 1 Gbit, and even 10 Gbit links, we get

back to the central idea of our counter-flooding approach from the previous chapter and

extend the puzzle protocol by a small bandwidth-based cost factor for the client.

The victimized host demands that valid puzzle solution packets must be padded with

zeros to have full MTU size. In the Internet, the MTU usually is 1500 bytes (in Gigabit

Ethernet even up to 9000 bytes). Hence, besides solving a puzzle, the client must addi-

tionally pay with bytes, i. e., bandwidth becomes a supplementary currency in addition

to CPU time. Now, dealing with 1500 byte packets, the victimized host will receive

up to 8300 (100 Mbit link), 83 000 (1 Gbit link) or 830 000 (10 Gbit link) valid-looking

puzzle solutions per second. We note that it will perfectly cope with 8206-bit puzzles

on a 100 Mbit link, with 3084-bit puzzles on a 1 Gbit link and with 520-bit puzzles on

a 10 Gbit link assuming a single CPU core engaged in puzzle verification. The time to

compute the digest d must also be taken into account. But only the meaningful part

of the request and not the whole packet needs to be hashed, while cryptographic hash

functions like MD5 or SHA-1 process about 2.8 – 3.6 Gbit of data per second on our test

machine. Furthermore it is conceivable to produce the (n− 1)-bit digest d by applying

a very fast pseudorandom number generator to H(m) instead of executing the hash

function c times. On the opposite side it takes an attacker 763 msec to solve a 8206-bit

puzzle, 48.1 msec to solve a 3084-bit puzzle, and 0.411 msec to solve a 520-bit puzzle,

respectively, assuming full parallelization. Though for modular square root puzzles the

level of difficulty cannot be chosen arbitrarily high without rendering the verification

too expensive, we are convinced that the presented solution times in the order of 0.1 to

1000 msec are fully viable for DoS prevention in practice. Solution times much greater

than 1 second are possible with hash-reversal puzzles, but for benign clients such long

delays seem to be hardly reasonable.

Fast modular exponentiation has been also successfully implemented in hardware, es-

67

Chapter 4 Non-Parallelizable and Non-Interactive Client Puzzles

pecially on Field-Programmable Gate Arrays (FPGAs) [CMMDM03, Suz07], and for

modern GPUs [Fle07, SG08, HW09], which are very competitive. A few years ago FP-

GAs outperformed ordinary software implementations, but a current comparison [SG08]

shows that nowadays FPGAs are about as fast as software implementations on up-to-

date CPUs. A GPU implementation pays off when performing a large number of modu-

lar exponentiations simultaneously. However, this comes at the expense of high latency.

A speed-up of up to 4 times compared to a modern CPU has been reported in [HW09].

Though an experienced attacker can benefit from such hardware acceleration, his ad-

vantage over a regular solver running a software implementation is bounded by a small

factor. In general, this is not an issue for the client puzzle protocol.

4.4.2 Increasing the Bandwidth-Based Payment

Besides prescribing that puzzle solution packets must be padded to have full MTU

size we may go a step further and increase the bandwidth-based payment requested

from the client. The victimized host can demand multiple copies of the puzzle solution

packet prior to processing the associated request. This enables us to employ more

complex puzzles in high-speed networks and thus to strengthen the DoS protection. For

example, by prescribing that clients must send four copies of their puzzle solution packet

we can cut down on the number of valid-looking puzzle solutions received per second by

factor four and verify even 8206-bit puzzles on a 1 Gbit link. Sending multiple copies of

the puzzle solution packet is feasible for all clients regardless of their link speed, while

DoS protection schemes based solely on bandwidth payment penalize clients behind

slow links. To implement this protocol extension, the victimized host must maintain a

packet counter for each client. An appropriate data structure for this purpose is a hash

map with the client’s address as the key and the pair <packet counter, timestamp> as

the value. Elements with old timestamps must be purged periodically from the hash

map. Storage overhead for maintaining the counters is fairly low: Assuming 10 bytes

per client, a 1 Gbit link with 83 000 packets / sec, and a maximum lifetime of 5 sec for

each entry, the size of the hash map will be about 10 MB (depending on implementation

and pointer size).

68

4.5 Chapter Summary

4.5 Chapter Summary

In this chapter, we have introduced a novel client puzzle scheme based on modular

square roots as a countermeasure against DoS attacks. A modular square root puz-

zle is non-parallelizable, i. e., the solution cannot be obtained faster than scheduled

by distributing the puzzle to multiple machines or CPU cores. Our puzzles can be

employed non-interactively, which prevents counterattacks on the client mounted by

injecting packets with fake puzzle parameters. Providing polynomial granularity and

compact solution and verification functions, modular square root puzzles can be eas-

ily implemented to safeguard network protocols, especially those performing expensive

public-key authentication, against DoS. We have shown how to raise the efficiency of our

puzzle scheme by introducing a bandwidth-based cost factor for the client and demon-

strated its feasibility in 1 and 10 Gigabit networks through benchmarking.

In homogeneous LANs, where the link speed of all hosts is equal, counter-flooding from

Chapter 3 is without doubt a viable approach to mitigate DoS attacks on public-key

handshakes which are performed relatively infrequently. Under weak assumptions it

provides bounds to ensure that a benign host will get served. On the other hand our

modular square root puzzles seem to be more appropriate when operating in heteroge-

neous environments with different link speeds. They can be equally applied in LANs,

Intranets, and in the Internet to protect various network services.

69

Chapter 4 Non-Parallelizable and Non-Interactive Client Puzzles

70

Chapter 5

Secure Client Puzzle Architecture based on

Random Beacons

The non-parallelizable and non-interactive client puzzle scheme from the previous chap-

ter was the first step towards a thorough DoS protection in LANs by means of client

puzzles. In this chapter, we take the next step. After recapitulating the authentication

issue of interactive client puzzles and taking a closer look at it, we introduce a secure

architecture that overcomes a considerable drawback of non-interactive puzzles, namely

the possibility of precomputing puzzle solutions.

In a counterattack on interactive client puzzles an attacker targets at prospective clients

by flooding faked packets that pretend to come from the defending server and contain

bogus puzzle parameters. The feasibility of such a counterattack depends on the network

environment and the attacker’s location. Forging the sender address is especially easy

in wired and wireless LANs while it is more difficult in the Internet. The capability

to eavesdrop on the traffic, which is a simple matter in WiFi networks, facilitates the

attack but is not a necessary condition. An attacker who cannot overhear the client’s

request may continuously inject faked puzzle challenges. This proactive counterattack

would take effect when the client actually issues a request. A client receiving a plethora

of bogus challenges that were possibly chosen to be even more difficult than the puzzle

of the genuine server may easily become overwhelmed. Most likely, it would not be

able to solve the authentic challenge and thus its request would not be processed by the

server. Depending on the chosen puzzle strength, even a modest puzzle packet rate may

be sufficient for the attacker to succeed. Authenticating the challenge packet by means

71

Chapter 5 Secure Client Puzzle Architecture based on Random Beacons

of a digital signature is not an option, since its generation and even verification are too

expensive to be performed for all incoming requests1. For that very reason network

protocols that employ public-key cryptography may be vulnerable to DoS and should

be protected by means of client puzzles.

We tackle the problem of authentication for client puzzles by introducing a secure archi-

tecture where clients construct and solve non-interactive puzzles from a random beacon.

The main idea is to employ client puzzles non-interactively, which eliminates authen-

tication issues with the server’s challenge message, and to prevent precomputation of

puzzle solutions by deriving puzzles from a periodically changing, secure random bea-

con. The beacons are generated in advance for a longer time span and are broadcasted

in the LAN by a special beacon server. All hosts obtain a signed fingerprint package

consisting of cryptographic digests of these beacons. Verifying a beacon is very easy—it

takes only a single hash operation, which can be performed at line speed by all hosts.

Thus, DoS attacks on the beacon service are virtually impossible. If a server becomes

overloaded due to a DoS attack, it asks all clients to solve and submit a puzzle prior

to processing their requests. A client constructs a non-interactive puzzle by taking its

request and the current beacon as input for a cost function. This can be, e. g., the

reversal of a one-way hash function by brute force or the computation of a modular

square root. Having solved the puzzle, the client attaches the puzzle parameters and

the solution to the pending request and retransmits it.

Our major contribution in this chapter lies in the development of sophisticated tech-

niques to provide a robust and secure beacon service. We address synchronization

aspects and especially elaborate the deployment of beacon fingerprints. Even if hosts

were not able to obtain the signed fingerprint package using one of the regular distri-

bution channels, they can acquire it on the fly from the beacon server and verify its

signature despite of possible DoS flooding attacks. Our client puzzle architecture is

primarily designed for LANs. But we show how to adopt the beacon service to operate

with a single beacon server in Intranets or even in the Internet. This chapter is based

on a paper that has been accepted for publication [JM12b].

1Example calculation: A current desktop machine can verify roughly 1000 – 3000 DSA-1024 signatures
or 10 000 – 35 000 RSA-1024 signatures per second while on a 1 Gbit link an attacker can flood up
to 83 333 full MTU (1500 bytes) packets containing bogus signatures. If we assume smaller packet
sizes the load induced by the attacker would be even higher.

72

5.1 Related Work

The remainder of the chapter is structured as follows. In the next section, we briefly

look at some existing client puzzle architectures. Section 5.2 presents our secure client

puzzle architecture, describes the construction of puzzles from a periodically changing

random beacon and details how to deploy and verify these beacons. In Section 5.3, we

extend our scheme by providing techniques to deliver beacons across LAN boundaries

and by introducing a service which enables emergency deployment of signed beacon

fingerprints. Finally, in Section 5.4, we conclude this chapter by summarizing the main

results.

5.1 Related Work

In Section 4.1, we have already discussed various client puzzle schemes proposed in the

literature. In this section, we highlight the architectural aspects of three previous works

on client puzzles.

Wang and Reiter [WR08] proposed a multi-layer framework for puzzle-based DoS de-

fense, which embeds puzzle techniques into both IP-layer and end-to-end services.

The authors have presented two mechanisms: Congestion puzzles address bandwidth-

exhaustion attacks in routers by cooperatively imposing puzzles to clients whose traffic

is traversing a congested link. A traffic flow must be accompanied by a corresponding

computation flow of puzzle solutions. The second mechanism called puzzle auctions

protects an end-to-end service like TCP against protocol-specific DoS attacks. Clients

bid for server resources by tuning the difficulty of the hash-reversal puzzle that they

solve and the server allocates its limited resources to the highest bidder first.

In the client puzzle architecture suggested by Waters et al. [WJHF04] puzzle construc-

tion and distribution are outsourced to a secure entity called bastion (see Section 4.1).

But as with Juels’ client puzzles, the secure distribution of puzzle challenges to the

clients remains an open issue also in Waters’ scheme. The authors touch on the pos-

sibility of deriving puzzles from the emissions of a random beacon and state hashes of

financial-market data or Internet news as candidates for a mutual source of random-

ness. But authentication of the input data is again an unsolved problem, especially in

environments that do not enforce address authenticity. By injecting packets with faked

73

Chapter 5 Secure Client Puzzle Architecture based on Random Beacons

data or beacons an attacker might render the DoS protection useless. With Waters we

share the general idea of constructing puzzles from a random beacon and develop an

architecture for a secure, real-world random beacon service. Our main contribution is a

solid solution to the authentication problem that we tackle from scratch and thus rule

out counterattacks on the puzzle distribution.

Feng et al. implemented network puzzles at the “weakest link”—the IP layer—to make

them universally usable [FKFL05]. Network puzzles can be selectively applied to dif-

ferent communication channels established by a client. By introducing hint-based hash-

reversal puzzles the authors achieved linear granularity for interactive hash-reversal

puzzles (see Section 4.1). The feasibility of the puzzle protocol has been demonstrated

through an implementation on Linux with iptables. The authors use ICMP source

quench messages to deliver puzzles and IP options to transmit client cookies and puzzle

answers. However, their protocol is based on the assumption that the attacker cannot

read or modify any packets sent between the client and the server. In contrast, we

assume that the attacker is able to eavesdrop on the traffic.

5.2 Secure Client Puzzle Architecture

Our attack model assumes an adversary (or a group of adversaries) that can inject

arbitrary packets and, in particular, spoof the sender’s IP and MAC address. The

attacker may also be capable to eavesdrop on some or even all packets sent by the

legitimate hosts. However, he has only a very limited capability to modify packets or

to destroy them by causing packet losses in switches or in the medium. Otherwise

the attacker could render communication impossible simply by corrupting the data or

through destruction of whole packets. Against such a threat puzzles would be of no

avail.

5.2.1 Non-Interactive Client Puzzles

We suggest employing client puzzles in a non-interactive way where the client constructs

the puzzle, solves it and attaches the solution to its request. To avoid the waste of time

and CPU resources during normal operation when the server is not suffering from a DoS

74

5.2 Secure Client Puzzle Architecture

attack the client first sends its request without a puzzle solution. If the server replies in

the regular manner everything is fine. In case of a DoS attack the server responds with

a DoS alert message and drops the client’s request without processing it further. The

DoS alert message is an indication to the client that it must solve a puzzle prior to being

served. Of course this message might be also a fake and currently there is no overload

condition at the server. However, an unnecessarily solved puzzle is harmless and the

client can cope with wrong alerts by introducing a timeout. A DoS alert message is

considered authentic if no regular response has been received from the server during

a certain time period. Now the client constructs a puzzle, solves it and retransmits

its request along with the puzzle parameters and solution in a single message. The

first time the client chooses for its puzzle the default level of difficulty, which has to

be specified for the protocol or service that is safeguarded from DoS by client puzzles.

A required solution time of 50 – 200 milliseconds on a single CPU core of an off-the-

shelf desktop machine may be a reasonable value. If the server does not respond the

DoS attack may be stronger than expected. The client should retry after a timeout by

doubling the initial puzzle difficulty, solving a more complex puzzle and retransmitting

its request in combination with the new proof of work. Several connection attempts with

an exponentially growing puzzle difficulty should be carried out prior to giving up.

During an overload condition the server must parse all incoming requests, answer with

a DoS alert message and verify all submitted puzzle solutions. Its computing power

must be chosen high enough to perform this puzzle preprocessing at full bandwidth and

to serve requests at an ordinary rate without becoming overburdened. Only requests

from clients that have solved a puzzle and submitted a correct solution have a chance

of being processed. A priority queue can be used to manage requests carrying puzzles

with different levels of difficulty. The request from the client that has solved the most

difficult puzzle is served fist. To limit the queue size a periodic cleanup should purge

requests that have stayed in the queue longer than a predefined time interval.

5.2.2 Client Puzzles from a Random Beacon

We should prevent the reuse of a single puzzle solution by multiple different requests

without demanding from the server to log spent puzzles solutions. This can be achieved

75

Chapter 5 Secure Client Puzzle Architecture based on Random Beacons

by binding the puzzle to the request so that a different request requires solving a com-

pletely new puzzle. In our client puzzle architecture a cryptographic digest of the request

must flow into the puzzle construction. Nevertheless the protocol or service running on

the server must provide some mechanism to recognize identical requests originating

from the same client so that resources (e. g., database lookup or signature verifica-

tion / computation) required to complete such requests are committed only once.

A serious issue with non-interactive client puzzles may pose precomputation attacks

where the attacker prepares a huge pile of requests and corresponding puzzle solutions

in advance. He might engage dozens of machines, e. g., from a botnet, to solve thousands

of puzzles which enables him to overwhelm a server by flooding his prepared requests at

some point in the future. We address this threat by constructing client puzzles from a

periodically changing random beacon. The beacon is broadcasted in the whole network

at regular intervals so that both client and server have access to a mutual source of

randomness. This renders precomputation attacks virtually impossible since the beacon

is unpredictable and puzzles derived from it are valid only for a short period of time.

Combining these two ideas we create our client puzzles from the cryptographic digest of

the request r and the current random beacon b. Let H be a cryptographic hash function

(e. g., SHA-1 or RIPEMD-160), then the input for the puzzle construction is the d-bit

digest

s = H(r || b) (5.1)

where || denotes the concatenation of two bit strings.

5.2.3 Puzzle Construction

Our client puzzle architecture does not depend on a specific cost function. The only

requirement is that the puzzle can be derived by the client from an arbitrary number,

which is the digest s in our scenario. In case of the well-known hash-reversal cost

function [JB99, Bac02, ANL01] the puzzle is to find by brute force a bit string x so

that

H(s || x) = 0 0 0 ... 0 0 0︸ ︷︷ ︸
first q bits
are zero

Z.︸︷︷︸
remaining
d−q bits

(5.2)

76

5.2 Secure Client Puzzle Architecture

To simplify the implementation x should be a fixed-length integer (e. g., 64 bits), which

is initialized with zero and incremented by one for each new try. The number of leading

zero bits q in the output of H determines the puzzle difficulty. Increasing q by one

doubles each time the expected number of tries to find a suitable x. Thus, the granularity

of the hash-reversal puzzle is exponential.

In the previous chapter, we have designed a novel non-interactive client puzzle scheme

that is based on the computation of square roots modulo a prime. Solving a modular

square root puzzle involves several modular exponentiations whereas verification requires

performing only a single modular squaring operation. While a hash-reversal puzzle can

be solved in parallel by multiple machines or CPU cores and has only exponential

granularity, a modular square root puzzle is non-parallelizable to a high degree and

provides polynomial granularity. Moreover, the solution time of a hash-reversal puzzle

is highly nondeterministic, while a modular square root puzzle has only a negligible

probabilistic component2. A minor drawback of modular square root puzzles is that the

level of difficulty cannot be chosen arbitrarily high without rendering verification too

expensive. The size of the solution also grows with increasing puzzle difficulty. But for

solution times which are usually chosen in the order of milliseconds modular square root

puzzles are acceptably small, can be verified at line speed, and hence are fully viable for

DoS prevention in practice. For our secure client puzzle architecture they might thus

be even better candidates than hash-reversal puzzles.

5.2.4 Random Beacon Server

The random beacon server B is ideally a dedicated machine in the LAN that periodi-

cally broadcasts a beacon packet containing a n-bit random number b. Depending on the

layer at which client puzzles are employed, the beacon message is encapsulated in a raw

Ethernet frame, an IP datagram or in a UDP segment. To render any network-based

attacks on the beacon server impossible, we suggest to disable the receiver unit of B’s

network interface or simply to drop all incoming packets without inspecting them. Only

outgoing packets to provide the beacon service should be permitted. An isolated beacon

2This is the search for a quadratic non-residue modulo p in the Cipolla-Lehmer method. By taking
primes p ≡ 3 (mod 4) and relaxing the puzzle complexity to a single modular exponentiation (see
Equation 4.1 on page 55) the puzzle could be made completely deterministic.

77

Chapter 5 Secure Client Puzzle Architecture based on Random Beacons

server that does not receive any input is DoS-resistant by design. The requirement of

setting up a dedicated machine may be of course relaxed at the expense of security.

Basically, any existing server in the LAN can run the beacon service. Since the compu-

tational burden is minimal, even an off-the-shelf desktop machine would suffice for this

task. Thus, setting up a beacon server does not constitute a demanding infrastructure

requirement.

The random numbers to be included in the beacons are generated in advance for a time

span of several days, weeks, or even months. In practice, this task can be accomplished

by a cryptographically secure pseudorandom number generator that runs on the beacon

server. For the generation of a set of random numbers three parameters have to be

provided: the bit length n of each number, the time span t covered by the set, and the

beacon period p, i. e., the time between the emission of the current and the next random

number. In practice, t and p will be measured in seconds. The set consists of k = t
p

random numbers requiring k · n bits of output from the random number generator.

Next, for each random number bi, 1 ≤ i ≤ k, we compute a d-bit digest H(bi) by

applying the cryptographic hash function H. These are the fingerprints of the random

beacons. Now a fingerprint package <TStart, t, p, H(b1), ..., H(bk)> is created and

digitally signed using the private key of the beacon server B. TStart is a timestamp that

denotes the time when the emission of the associated beacons starts. We expect that

the beacon server has obtained a public-key certificate from a well-known certificate

authority and that everyone can verify its signature on the fingerprint package if B’s

certificate is attached. The final step is the deployment of the signed fingerprint package

to all hosts in the network that will either solve or verify client puzzles in case of a DoS

attack. The preferable method is to publish the signed fingerprint package along with

B’s certificate on the institution’s website, where it can be downloaded and verified

by all users or hosts. A manual deployment by sending the fingerprints via e-mail

or obtaining them on a USB flash drive from the network administrator may be also

conceivable in some scenarios. Instead of contacting the network administrator one

could also imagine to install a physically secured terminal somewhere in the building

where users can store the fingerprint package on their USB flash drive by themselves.

The size of the fingerprint package depends on the covered time span t and the beacon

period p, but is reasonably small even for long time spans and short intervals. For

78

5.2 Secure Client Puzzle Architecture

example, for t = 30 days and p = 60 sec we need k = 43 200 fingerprints, which occupy

about 844 KB if using SHA-1 with a digest length d of 160 bits.

At time TStart the beacon server switches to the new beacon set by emitting the random

number b1 which is valid until TStart + p. Every p seconds the current number bi is

replaced by releasing its successor bi+1. Since broadcast transmissions are not reliable,

a beacon packet may get lost. Therefore we propose to periodically retransmit the

current beacon during its lifetime, e. g., to broadcast it once a second. This ensures that

all hosts in the network, even those that have joined recently, will receive the current

beacon without noticeable delay. An appropriate bit length n for random numbers to

generate client puzzles that are unpredictable is in the order of a cryptographic hash,

e. g., 160 – 256 bits. Hence, beacon packets are very small, no more than 60 – 70 bytes

including all protocol headers (e. g., UDP, IP, and Ethernet).

5.2.5 Receiving and Verifying the Beacons

All clients and servers (in the following just called hosts) in the network obtain the

fingerprint package in advance using one of the deployment techniques described in the

previous subsection. We assume that the clocks of all hosts and the beacon server are

loosely synchronized. The allowable time skew δ may be in order of minutes. This

requirement can be easily achieved even without a time synchronization protocol like

NTP [Mil92], just by letting the users manually adjust their computer’s clock occasion-

ally. To synchronize with the beacon server a host begins at time TStart − δ to verify

all incoming beacon packets by computing the beacon’s digest and matching it against

H(b1) from the fingerprint package. Having received a beacon b with H(b) = H(b1) the

host records the beginning of the new beacon period and sets b1 a the current beacon.

This synchronization will succeed at the latest at time TStart + δ. Subsequent beacons

that the host receives are matched against H(b2), or to generalize, after having verified

and set bi the host matches new beacons against H(bi+1) and switches to bi+1 if the

comparison succeeds.

Hosts that join the network during a beacon period can also synchronize with the bea-

con server in a straightforward manner. A host joining at time TStart + h (accord-

ing to its clock) matches incoming beacons against a list L of fingerprints, namely

79

Chapter 5 Secure Client Puzzle Architecture based on Random Beacons

L = 〈H(bv−r), ..., H(bv+r+2)〉 with v = dhp e and r = d δpe. In case of a match with one

of the fingerprints from the list the beacon b is set as the tentative beacon and all fin-

gerprints preceding it in the list are removed. The host continues to verify subsequent

beacons for 2p seconds. This ensures that it definitely hits and observes a complete

beacon period. If a subsequent beacon corresponds to a newer fingerprint from the list,

then it becomes the tentative beacon and old fingerprints are once again purged from L.

This is done to prevent replay attacks with outdated beacons. After 2p seconds the

synchronization is completed. The tentative beacon becomes the current beacon—now

it has definitely been identified.

An attacker may try to interfere with the beacon service by flooding thousands of faked

beacon packets bearing the beacon server’s sender address. However, computing the

cryptographic hash of a packet and matching this digest against a stored value or a

small set of values is a cheap task that in general can be performed at full link speed

in Gigabit networks. Table 5.1 shows benchmark results of four cryptographic hash

functions that we have measured on an Intel Core 2 Quad Q9400 2.66 GHz CPU using

a 64-bit Linux distribution, GCC 4.4 and the cryptographic library Botan [Llo]. A

single CPU core achieves a throughput of 227 – 426 MB/sec while a Gigabit link has

a transfer rate of 119 MB/sec. Thus, by flooding bogus beacons the attacker is only

able to raise the CPU load on the hosts, but cannot prevent the identification of the

authentic beacon.

Table 5.1: Benchmark: throughput of cryptographic hash functions on Intel Core 2
Quad Q9400 2.66 GHz (one core active).

hash function block size digest length speed

MD5 512 bits 128 bits 426.4 MB/s

RIPEMD-160 512 bits 160 bits 260.5 MB/s

SHA-1 512 bits 512 bits 327.0 MB/s

SHA-384 1024 bits 384 bits 227.4 MB/s

Though beacon packets are periodically retransmitted during a beacon period, a host

should not except that it will receive all consecutive beacons. Due to abnormal operation

it might sometimes miss some beacons. To recover from this condition we introduce a

lookahead of a few fingerprints. Having failed to replace the current beacon bi by its

successor for more than p seconds, the host matches incoming beacons against the next l

80

5.3 Protocol Extensions

fingerprints H(bi+1), ..., H(bi+l). If the verification still fails for several beacon periods,

the host should increase l and, even if this is of no avail, it should adjust i according to

the time that has passed since the last beacon update.

5.2.6 Puzzle Submission and Verification

In case of a DoS attack on the server the client submits along with its request r the

puzzle solution and the beacon b from which the puzzle has been derived. Instead of

transmitting the beacon it can also indicate its index in the fingerprint package. While

the client was solving the puzzle or while it stayed in the server’s input queue the

current beacon may already have changed. Therefore the server must accept also puzzle

solutions that were derived from older beacons within reasonable bounds. Considering

the proposed puzzle solution time of about 50 – 200 milliseconds and a beacon period

in the order of some seconds we recommend to tolerate only puzzles constructed from

the current or the previous beacon. This keeps the protocol simple and effectively

prevents precomputation attacks. Requests bearing a puzzle from an outdated beacon

are dropped without verification. In networks encountering large delays the beacon

period should be chosen accordingly. In case of a valid beacon the server first computes

the digest s = H(r || b) and then verifies the solution of the puzzle constructed from s.

5.3 Protocol Extensions

5.3.1 Beacon Distribution across LAN Boundaries

Our secure client puzzle architecture primarily focuses on LANs where counterattacks on

interactive client puzzle protocols through injection of bogus challenges are especially

easy and thus very promising. But depending on the attacker’s power and resources

a counterattack with faked puzzle challenges may succeed also in large-scale networks

like corporate Intranets or even in the Internet. Especially hosts in the edge network

might be vulnerable to puzzle counterattacks. Thus, it can make sense to employ non-

interactive client puzzles that are derived from a random beacon also in these settings.

However, broadcasting beacons works only within a LAN. A beacon server that shall

81

Chapter 5 Secure Client Puzzle Architecture based on Random Beacons

supply hosts spread across LAN boundaries with beacons must resort to a different dis-

tribution technique. A well-known solution for this task is multicast. Hosts employing

the secure client puzzle architecture could subscribe to the multicast group to which the

beacon server addresses its periodic beacons. But a major issue with beacon dissemi-

nation through multicast is that many ISPs do not route multicast traffic which breaks

traditional input-rate-based billing models. Thus, while multicast may be an option

for corporate networks administered by a single entity, we must resort to a different

approach to provide the beacon service over the Internet.

We propose to deploy beacons across LAN boundaries via unicast and pay particular

attention to DoS resilience of the beacon server. Hosts receive the current beacon from

the beacon server on demand after having issued a corresponding request. Unicast de-

ployment of beacons on a subscription basis where a host issues a single request and

hereon periodically receives beacons from the server until it cancels this subscription

would be prone to a DoS attack. The attacker could take on many different identities

and spawn a multitude of faked subscriptions that might quickly exhaust the band-

width of the beacon server. Therefore each new beacon that a host receives must be

triggered by a separate request. This is a kind of tit-for-tat strategy. The server sup-

plies only those hosts with beacons that themselves spend bandwidth and continuously

send corresponding requests. The size of the request packet (usually, a UDP datagram

encapsulated in IP) must be at least as large as the beacon packet. To enforce its re-

sistance to DoS the beacon server may even demand that valid beacon requests have

to be padded with zeros to have full MTU size, which usually is 1500 bytes (20 – 25

times larger than the beacon packet). This will raise the costs on the attacker’s side and

make his attempts to exhaust the server’s resources quite useless. On the other side,

legitimate hosts requesting every few seconds a new beacon will perfectly cope with

this small bandwidth-based payment for the beacon service. In Section 4.4.1, we have

already applied this strategy to strengthen our client puzzle scheme based on modular

square roots. The processing time for a beacon request is minimal. The server performs

virtually no computation—it only crafts and sends a reply packet containing the current

beacon. Nevertheless, the server capacity, especially its processor and network link, has

to be carefully chosen to withstand a fluctuating number of requests including potential

attackers. In contrast to the Internet scenario, the broadcast service in a LAN can be

82

5.3 Protocol Extensions

provided by any off-the-shelf desktop machine.

Requesting a beacon from a beacon server in the Internet is in some respects comparable

to a DNS lookup. Indeed, another approach to deploy beacons is to rely on DNS. The

beacon server becomes the authoritative name server for a particular domain. Hosts

receive the current beacon by requesting a TXT resource record. In its reply the beacon

server must set the TTL to a value smaller than the beacon period p. Choosing p
2

for the TTL seems to be appropriate to guarantee freshness and at the same time to

distribute load. Owing to DNS caching the number of requests going end-to-end from

host to beacon server will be significantly cut down which results in a smaller traffic

footprint.

5.3.2 Emergency Deployment of Beacon Fingerprints

Obtaining the signed fingerprint package is a crucial step in the setup of our secure

client puzzle architecture. In the previous section we have proposed several deployment

techniques (download from a website, manual distribution via e-mail or USB flash drive,

secure terminal) to achieve this goal. However, an attacker may try to sabotage the

download of the fingerprints by mounting a DoS attack against the web server or through

injection of spoofed packets, e. g, TCP resets, aiming to impede the connection. Secure

transmission via SSL or IPSec does not protect from DoS attacks, since these protocols

rely on expensive public-key cryptography and themselves may require protection from

DoS by means of client puzzles. Manual distribution of the fingerprint package can

be too expensive in large networks while some institutions might not be able to afford

the installation of a secure terminal. Therefore we introduce a further deployment

method for the fingerprints as a fallback option for emergency situations, where the

other distribution channels fail. It is designed to work within a LAN.

Resorting to the Beacon Server

The beacon server can periodically broadcast the current fingerprint package by dividing

it into several packets. If the current fingerprint package covers a very long time span

resulting in a large number of packets, the beacon server builds a smaller one which

83

Chapter 5 Secure Client Puzzle Architecture based on Random Beacons

contains only the beacons for the next few hours or days. Assume that it takes g packets

to deliver the fingerprint package which must be also digitally signed. To enable an

efficient verification of each of the g packets for the receiver the beacon server computes

the cryptographic hash of each packet and signs a list consisting of these g digests plus

the timestamp TStart. The digest list along with the timestamp and the signature must

fit into a single packet—the header of the fingerprint package. Thus, g is bounded by

the MTU, the signature size and the digest length d. Assuming 1500 bytes for the first,

1024 bits for the second and 160 bits for the third factor we obtain g ≤ 68. The beacon

server periodically broadcasts the header packet followed by the g numbered fingerprint

packets. A host requiring the fingerprint package first waits for the header packet,

verifies its signature and timestamp and stores the g digests of the fingerprint packets.

Now it is ready to receive and quickly validate the fingerprint packets by computing their

digest and matching this digest against the list. The order of the received fingerprint

packets is irrelevant since each packet has a sequence number and can be independently

verified and stored. Having collected all g parts of the fingerprint package the host

finally needs to synchronize with the beacon server to identify the current beacon.

Fending off Flooding Attacks with Faked Signatures

The deployment of beacon fingerprints by the beacon server is very robust to DoS attacks

since the beacon server does not receive any requests and thus cannot be compromised

or even influenced from outside. Spoofed fingerprint packets are also harmless—they

can be easily detected by checking their digest. The only sticking point is the expensive

verification of the signature in the header packet. But we introduce two measures to

cope with a potential flooding attack of faked header packets.

The first measure is an observe-then-verify strategy. The genuine header packet is pe-

riodically retransmitted by the beacon server. Hence only those header packets that a

host receives over and over again are potentially authentic and need to be taken into ac-

count for verification. Instead of trying to verify all incoming header packets a host first

observes the header packets that it receives for some consecutive periods and records

them (or their hash values to save memory). After this observation phase only those

header packets are selected for verification that have been received repeatedly during

84

5.3 Protocol Extensions

multiple periods. Now this pile of header packets gets verified until the genuine sig-

nature is found. Checking the included timestamp safeguards against replay attacks.

New header packets arriving during this phase are ignored. If all packets from the pile

turn out to be faked, a host retries by initiating a new observation phase. The shorter

we choose the retransmission period for the header packet, the smaller will be the pile

of collected packets that need to be validated and the faster a host will identify the

genuine header packet. A retransmission period of 50 msec may be reasonable for the

header packet while fingerprint packets are retransmitted, e. g., only every 5 seconds.

Assuming a 1 Gbit link, full MTU packets (1500 bytes, this can be enforced by pol-

icy), an observation phase taking 1 second (20 periods) and a quota of 0.5 packets per

period on average (i. e., at least 10 copies), there will be at most 8333 candidates that

must be verified. In case of an RSA-1024 signature having a verification throughput

of 10 000 – 35 000 operations per second on current desktop machines it will take less

than a second to validate the whole pile of header packets. This sample calculation

confirms that the observe-then-verify strategy provides a viable way to quickly filter out

the genuine header packet and to obtain the fingerprint package. An alternative, more

basic approach which does not require to count duplicates is to collect all header packets

arriving during 2 – 4 periods (at most 8333 – 16 666 packets in our example) and then to

verify all them. If not too many bursty packet losses occur, at least one genuine header

packet will be among this capture with very high probability.

The second measure is optional and aims to significantly cut down the number of valid-

looking header packets that the attacker can emit by including a hash-reversal puzzle.

Since the beacon server is ideally a dedicated machine which fulfills no other tasks besides

broadcasting beacons and fingerprint packages, it has plenty of idle CPU time. This

time can be used to solve a hash-reversal puzzle (see Section 5.2.3) for the header packet

that will be broadcasted when the next fingerprint package takes effect. The puzzle is

derived from the digest of the header packet. The beacon server continues to solve the

puzzle by finding new solutions x that yield a larger number q of leading zero bits in

the output of H than the previous solution until it is time to deploy the corresponding

fingerprint package. For example, if fingerprint packages are issued for 24 hours, the

beacon server has 24 hours to solve the puzzle for the corresponding header packet.

Due to the nondeterministic nature of the hash-reversal puzzle the puzzle difficulty

85

Chapter 5 Secure Client Puzzle Architecture based on Random Beacons

determined by q will slightly vary from run to run. Hosts waiting for the header packet

can drop all packets that have no puzzle attached, carry a wrong solution, or whose

puzzle difficulty falls below a predefined threshold. Header packets that have passed

this filter are inserted into a priority queue. The packet with the puzzle that has the

highest level of difficulty is verified first.

To verify a signature issued by the beacon server B a host requires B’s certificate. If it

has not cached this certificate in the past when obtaining the fingerprint package along

with B’s certificate through regular distribution channels, we must provide a way to

acquire it on the fly. This can be accomplished in the same manner as the deployment

of the signed header packet. The beacon server periodically broadcasts its certificate in

a special certificate packet. To withstand a DoS flooding attack with forged certificate

packets a host applies the observe-then-verify strategy, which enables to quickly identify

and verify the genuine certificate. In addition, the authentic certificate packet may also

be protected by a hash-reversal puzzle.

5.4 Chapter Summary

In this chapter, we have presented a secure client puzzle architecture for DoS prevention

where puzzles are constructed by the client from a periodic random beacon. By employ-

ing client puzzles non-interactively we bypass authentication issues with the challenge

message sent from server to client in interactive client puzzle schemes. To rule out pre-

computation attacks, valid puzzles must be derived from the current beacon which is

broadcasted by the beacon server. Hosts obtain in advance a signed fingerprint package

with cryptographic digests of the beacons which enables them to instantly authenticate

all incoming beacon packets. We have proposed several regular distribution channels for

the fingerprint package and introduced an emergency deployment technique to acquire

the beacon fingerprints on the fly from the beacon server. Our beacon service is by de-

sign robust against DoS counterattacks. It can operate not only in LANs but also across

LAN boundaries by distributing beacons via multicast, unicast, or through DNS.

The secure client puzzle architecture fundamentally solves the precomputation issue

of non-interactive client puzzles and can be perfectly coupled with and benefit from

86

5.4 Chapter Summary

our non-parallelizable modular square root puzzles introduced in the previous chapter.

With regard to our cryptographic link layer from Chapter 2, we are convinced that both

counter-flooding and the secure client puzzle architecture constitute viable approaches

to protect the public-key handshake of CLL against DoS.

87

Chapter 5 Secure Client Puzzle Architecture based on Random Beacons

88

Chapter 6

Offline Submission with RSA Time-Lock

Puzzles

The application of computational puzzles is not limited to mitigation of DoS attacks.

In Section 4.1, we have touched on some other domains that benefit from puzzles and

timed-release cryptography is likely the most prominent one. Having developed several

protocols and techniques to secure local area networks and to protect them against DoS

in the previous four chapters of this thesis, we now present our final contribution, which

is in the area of timed-release cryptography. This chapter introduces a novel application

for cryptographic puzzles. It deals with offline submission. Not surprisingly, a successful

DoS attack may be one of the reasons for disconnectivity and resorting to our offline

submission protocol is a potential solution for this emergency scenario.

Online submission of documents like conference papers, homework assignments, appli-

cations or claims has become very popular recently. Many institutions even establish

paperless electronic submissions as the only submission mode, since it significantly re-

duces their processing costs. Each call for submission has, of course, its deadline and

each document received past the time limit has to be rejected by the institution for

fairness reasons. However, there may be situations where the document is completed

in time, but cannot be submitted by the author before the expiration of the deadline

because of technical issues. One possible reason may be a broken network connection in

all its flavors, e. g., the access network—be it ADSL, UMTS, WiFi or dialup—becoming

temporarily unavailable, an ISP failure or a DNS resolution problem. The submission

89

Chapter 6 Offline Submission with RSA Time-Lock Puzzles

server itself may also become temporarily unreachable due to a crash or, as already indi-

cated, due to a DoS attack. Finally, it is also conceivable that by the time of the deadline

the author stays in a remote region without Internet access and therefore cannot submit

the document in time. Today, in all these scenarios the author just has bad luck and

there is nothing he can do about it, since the institution accepting the document is

usually not able to verify and thus to consider any mitigating circumstances.

In this chapter, we propose a new cryptographic protocol inspired by Rivest’s time-

lock puzzles [RSW96]. It enables an author to commit to a document in an offline

manner before the deadline and to submit it at some time past the deadline when being

online again. The main idea is to let the author solve a modular exponentiation puzzle

involving an arbitrary large number of non-parallelizable modular squaring operations.

In Chapter 4, our modular square root puzzles designed for DoS prevention also relied

on the non-parallelizability of repeated squaring. We construct the puzzle from the

document’s cryptographic hash value. The number of puzzle operations is determined

by the time period between the deadline and the point in time where the author regains

connectivity to the submission server. Each puzzle operation has a time value of some

nanoseconds assigned by the institution managing the submission process and is dictated

by current CPU speeds. By submitting his document along with the appropriate puzzle

solution the author can prove to the institution that the document has actually been

completed at some time in the past before the deadline.

We introduce a time-lock RSA puzzle scheme for delayed encryption and signature

verification. The basis of our offline submission protocol is a delayed RSA encryption

of the document to be submitted using the institution’s public key. Having received

the delayed submission, the institution verifies the puzzle solution and the assigned

level of difficulty by performing an RSA decryption with its private key. Running the

offline submission protocol requires the author to hold a computer with a reasonably

up-to-date processor and to continuously solve the puzzle from the expiration of the

deadline until the actual online submission. Owners of older hardware can compensate

by completing the document and beginning to solve the puzzle at some point before

the actual deadline—the earlier the better. We show that in combination with the

non-parallelizability feature the difference in puzzle processing speed between recent

off-the-shelf computers usually does not exceed factor 1.5.

90

6.1 Related Work

We have implemented a platform-independent tool which performs all parts of our offline

submission protocol: puzzle benchmark, issuing a time-lock RSA certificate, solving a

puzzle and finally verifying the solution for a submitted document. The tool is available

for free download including the sources and can be instantly used by the two parties—

institution and author—to enable a delayed submission for an online submission system.

To demonstrate the usability of our scheme, we have also set up a Web submission system

for homework assignments, which employs our offline submission protocol and makes

delayed submission possible. A paper covering the central results of this chapter has

been published in [JM10].

The rest of the chapter is organized as follows. In the next section, we review existing

approaches to time-lock cryptography. Section 6.2 introduces our RSA time-lock puzzle

scheme. In Section 6.3 we describe how to construct an offline submission protocol

on that basis. Section 6.4 presents the implementation of our offline submission tool

and evaluates its performance. Finally, we conclude this chapter with a summary in

Section 6.5.

6.1 Related Work

6.1.1 Time-Lock Puzzles

Time-lock puzzles have been introduced by Rivest et al. [RSW96] to encrypt messages

which can be decrypted by others only after a pre-determined amount of time has

passed. Possible applications proposed for timed-release cryptography are: sealing bids

in an auction which cannot be opened prior the end of the bidding period, releasing

documents like diaries in the future, scheduling electronic payments, or implementing

a key-escrow scheme where the government can get a secret key after a fixed period.

Non-parallelizability of the underlying repeated squaring operation makes up the key

feature of time-lock puzzles—the solver cannot speed-up the computation by engaging

multiple CPU cores or machines. Rivest’s time-lock puzzle is in a way related to his RSA

cryptosystem and works as follows: To encrypt a message m for a period of T seconds

Alice

91

Chapter 6 Offline Submission with RSA Time-Lock Puzzles

• generates at random two large primes p and q.

• computes the modulus n = p q and Euler’s totient function ϕ(n) = (p− 1) (q− 1).

• determines the number of squaring operations modulo n per second, denoted by S,

that can be performed by the solver Bob, and computes t = T · S.

• encrypts m with a symmetric cipher using the key K.

• picks a random a, 1 < a < n, and encrypts K as

CK = K + a2tmod n. (6.1)

To make the exponentiation efficient, Alice reduces the exponent modulo ϕ(n) by

computing

r = 2t mod ϕ(n) (6.2)

and obtains a2tmod n from ar mod n.

• outputs the time-lock puzzle (n, a, t, CK).

To reveal K from CK , Bob needs to compute a2tmod n and in contrast to Alice cannot

take the shortcut via ϕ(n), since determining ϕ(n) is provably as hard as factoring n.

Instead, Bob must do the computation step by step by repeatedly performing modular

squarings—altogether t times which takes T seconds. As we have pointed out in Sec-

tion 4.2.3, this is assumed to be an intrinsically sequential process, but it is still an open

question whether modular exponentiation is P-complete, i. e., not in NC. Likewise, it is

unknown if factoring is really not in P. Hence, the security of time-lock puzzles is based

on these two unproven assumptions. They are considered to be hard and important

problems for many years.

A comprehensive survey on efficient algorithms for modular exponentiation can be found

in [MvOV96] and [Gor98]. The most important algorithms beside the basic binary

exponentiation are the k-ary method, the sliding-window method, and addition chains.

However, when dealing with a power-of-two exponent as is the case with time-lock

puzzles, repeated squaring—a special case of the binary exponentiation—constitutes the

most efficient technique. To compute ax mod n with x = 2t it takes t modular squarings

and no additional multiplications while blog xc is the lower bound for the number of

92

6.1 Related Work

multiplications to perform a single exponentiation in a general group. To accelerate the

modular multiplication, especially when being performed repeatedly during modular

exponentiation, Montgomery proposed to use an alternative representation of integers

modulo n, called Montgomery reduction [Mon85]. It allows to carry out the modular

multiplication without performing the classical modular reduction step. Instead, the

more efficient Montgomery reduction is applied.

While the costs of solving the time-lock puzzle in an optimal way are well known,

the release time will vary depending on the speed of the recipient’s processor and is

somewhat coarse-grained. However, Rivest argues that the speeds of hardware available

to consumers differ only by a small constant factor and even the power of high-end

hardware available to companies is usually within the same order of magnitude due to

non-parallelizability of the problem. We agree on this rationale and further investigate

it by comparing the puzzle solution times on different off-the-shelf machines. Our offline

submission protocol tolerates authors with slower machines if they start to solve their

puzzle at some time before the deadline.

6.1.2 More Timed-Release Cryptography

In [Mao01], Mao developed a zero-knowledge protocol which enables Alice to prove to

Bob that a timed encryption or a timed signature based on time-lock puzzles can be ac-

tually unlocked by performing t modular squarings. Boneh and Naor [BN00] introduced

a verifiable timed commitment scheme extending the standard notion of commitments.

It adds a potential forced opening phase which permits the receiver to recover with

some effort the committed value without the help of the committer. Like in time-lock

puzzles, the recovery rests upon repeated squaring. Possible applications for timed

commitments are contract signing, honesty-preserving auctions, and concurrent zero-

knowledge. Building on the work of Boneh and Naor, Garay and Jakobsson proposed a

timed release scheme for standard digital signatures—RSA, Schnorr, and DSA [GJ03].

A different approach to timed-release cryptography that does not require the receiver to

solve a puzzle and provides fine-grained timing is presented by Blake and Chan [BC05].

They assume a trusted time server which periodically broadcasts signed time-bound

key updates It to the users. The time server does not need to interact with either the

93

Chapter 6 Offline Submission with RSA Time-Lock Puzzles

sender or the receiver and is therefore passive. At release time t the receiver can decrypt

his message by means of It. This scheme is based upon a bilinear pairing. Cathalo et

al. [CLQ05] improved it by introducing a new stringent security model and strengthening

the anonymity of receivers. Other contributions to timed-release cryptography using

trusted time servers are, e. g., [COR99, DY05, CHVSn07]. In contrast, we pursue an

offline approach and cannot rely on or even assume the presence of a trusted time

server.

6.2 RSA Time-Lock Puzzle Scheme

6.2.1 Key Generation

We incorporate the time-lock puzzle mechanism into the default RSA public-key cryp-

tosystem and make the puzzle non-interactive. The resulting scheme is called RSA

time-lock puzzle. Everyone who knows Alice’s public puzzle key can solve a puzzle by

encrypting an arbitrarily chosen message m. The puzzle complexity is determined by the

size of Alice’s public key. Alice constructs her RSA puzzle key pair with the artificially

enlarged public key by performing the following steps:

1. Generate at random two large primes p and q of equal bit-length (e. g., 1024 bits).

2. Compute the modulus n = p q and Euler’s totient function ϕ(n) = (p− 1) (q− 1).

3. Randomly choose a private exponent d, 1 < d < ϕ(n), such that gcd(d, ϕ(n)) = 1

and determine its multiplicative inverse modulo ϕ(n): e = d−1 mod ϕ(n).

4. Choose the puzzle difficulty t which is the number of modular squarings Bob

has to perform to solve the puzzle, i. e., to carry out the public-key operation.

Suppose that a high-performance reference machine can do S squarings modulo n

per second and a public-key operation shall take T seconds, then t = T · S.

5. Compute the remainder

r = 2t mod ϕ(n) (6.3)

and the public exponent

ẽ = 2t + ϕ(n)− r + e. (6.4)

94

6.2 RSA Time-Lock Puzzle Scheme

z = ϕ(n)− r+ e denotes the lower bits of ẽ which are preceded by a long sequence

of 0-bits and finally the leading 1-bit at position t.

6. (n, ẽ) is the public and (n, d) the private key. Since ẽ is an extremely large num-

ber with lots of 0-bits after the leading 1-bit, the public key can be efficiently

represented by storing the triple (n, t, z). In binary, z is at most twice as long

as n.

The inflated public exponent ẽ is constructed by adding a large multiple of ϕ(n) to

the regular exponent e. It holds that me ≡ mẽ (mod n) for all m ∈ Zn, since

e ≡ ẽ (mod ϕ(n)) and n is a product of distinct primes. ẽ has been chosen to be the

smallest appropriate exponent which is larger than 2t. The time to perform the modular

reduction of 2t in step 5 depends, of course, on the puzzle difficulty t. However, even

when creating a puzzle with a solution time in the order of several days, step 5 will take

only a few minutes.

6.2.2 Public and Private Key Operation

Solving a puzzle for a context m, 0 < m < n, chosen by the solver Bob means to carry

out the public-key operation by encrypting m with Alice’s public key (n, ẽ) in the usual

manner, i. e., to compute the ciphertext

c = mẽ mod n. (6.5)

Due to the special structure of ẽ, the fastest way to perform this giant modular expo-

nentiation is to solve the actual puzzle

α = m2t mod n (6.6)

in T seconds by repeated squaring and to quickly do the regular-sized modular expo-

nentiation

β = mz mod n (6.7)

which yields

c = α · β mod n. (6.8)

95

Chapter 6 Offline Submission with RSA Time-Lock Puzzles

Bob submits the pair (m, c), i. e., the context and the corresponding puzzle solution, to

Alice. She verifies the solution by applying her private key (n, d) in the usual manner

to decrypt the ciphertext and to compare the result with m:

cd mod n
?
= m. (6.9)

Since d is of regular size, this operation takes just a few milliseconds. If the verification

succeeds, Alice is convinced that Bob has spent about T seconds to solve the puzzle (or

even longer, if his computer ist not as fast as Alice’s high-end reference machine).

6.2.3 Security Analysis

The security of our RSA puzzle scheme can be reduced to the security of Rivest’s puzzle

construction. It must be impossible for Bob to compute c without performing the

t modular squarings in Equation 6.6. Determining ϕ(n) in order to reduce ẽ to e is

provably as hard as factoring n and therefore is not an option. Bob knows 2t, ẽ = 2t+z

and z = ϕ(n)−r+e respectively, but has no information about the individual summands

ϕ(n), −r, and e. With regard to ϕ(n) and r = 2t mod ϕ(n), the case is the same as in

Rivest’s scheme. Being the modular inverse of the randomly generated number d, e is

completely random as well and therefore is not correlated with either ϕ(n) or r. Thus,

we cannot identify ϕ(n) or r from z. The only possibility remaining is to determine e

from z if some information on the relationship between ϕ(n) and r is known. Suppose

Bob can easily find the difference ϕ(n) − r, then Rivest’s scheme would be broken as

well. In this case Bob would be able to compute

y = aϕ(n)−r mod n = a−r mod n = (ar)−1 mod n (6.10)

and to determine the puzzle solution a2tmod n by inverting y modulo n. For the very

unlikely case that y is not invertible, i. e., y /∈ Z∗n, gcd(y, n) = p or gcd(y, n) = q and we

have factored n.

It is crucially important that after publishing ẽ Alice never reveals for the same key

pair another exponent ê, e. g., a smaller one to make the puzzle easier. Otherwise

the modulus n could be factored quite quickly. δ = ẽ − ê is a multiple of ϕ(n) and

96

6.2 RSA Time-Lock Puzzle Scheme

there exists an efficient randomized algorithm which allows to factor n if a multiple

of ϕ(n) is given [Kra86]. Though the algorithm requires to perform at least one modular

exponentiation with an exponent in the order of δ, i. e., takes about as long as solving

one instance of the puzzle, knowing the factorization of n enables to solve all future

puzzles instantly.

6.2.4 Delayed Encryption and Signature Verification

Our RSA time-lock scheme can be used not only to solve puzzles, but also to delay the

regular RSA encryption and signature verification process. Using the public exponent ẽ

instead of e the public-key operation will take about T seconds where T can be chosen

arbitrarily. What is this good for? We propose two possible applications.

The first one is a well-known certificate authority which decides to provide its services

for advertising purposes free of charge or a for very low fee, if the certificate holders

accept a restriction on the computational speed of their public key. Companies and large

organizations usually do not bother about the certification fee and buy a full-fledged

certificate. Thus, the primary target group would be individuals and small societies

who often cannot afford to pay the regular fee. Instead of limiting the validity of a

trial certificate to some days which makes it actually useless, the CA would accept only

artificially enlarged public exponents for long-term certification within the promotion.

It could prescribe to provide a public exponent of the form 2t + z where t is chosen as

large as to perform the public-key operation in not less than T seconds. Reasonable

values for T may be, e. g., 60 seconds for a free and 10 seconds for a low-fee certificate.

Such an overhead when encrypting a message for the certificate holder or verifying his

signature would not constitute a serious limitation for parties with whom individuals or

small societies usually communicate. The proposed marketing strategy would make the

CA even more popular and leverage the deployment of public-key cryptography.

The second application focuses on delayed signature verification in the context of con-

tract signing. In a company only very few persons should be authorized signatories, i. e.,

possess the company’s private key enabling them to sign arbitrary contracts on behalf

of the company. Besides the CEO, there may be only one deputy who has access to

the private key and even he may not enjoy the CEO’s full confidence. The CEO will

97

Chapter 6 Offline Submission with RSA Time-Lock Puzzles

be keen on to restrict the deputy’s signing capability but must pay attention not to

compromise the company’s capacity to act in case of his sudden absence or illness. Our

approach to this dilemma is for the CEO to generate two key pairs and to certify for

his company two public keys. The first and regular public key is of normal size while

the second one is an artificially enlarged puzzle key (n, t, z) and takes, e. g., T = 48 h

per operation. The private key corresponding to the regular public key would be known

solely to the CEO, while the second private key is disclosed to the deputy. Computing

a signature is an easy task with both private keys. However, only a signature created

with the CEO’s private key can be efficiently verified. Under normal circumstances all

current contracts are signed by the CEO and the other party can immediately check the

signature. Concluding an agreement with the deputy is not attractive due to the ex-

tremely time-consuming signature verification. But in case that the CEO is temporarily

not available, the only way to stay in business is for the deputy to sign the pending

contract and for the other party to be patient while validating the signature. Except

for this inconvenience, the other party receives a full-fledged signature which, if neces-

sary, can be presented in court. It will take the court once again time T to check the

signature, but this is not an issue. As soon as the CEO is available, he may resign the

contract with his private key yielding a quickly verifiable signature. Holding a private

key whose genuineness cannot be easily validated, the deputy is much less vulnerable

to attempts to rapidly extort the key under threat of violence than the CEO. Under

the condition that the deputy does not know ϕ(n), which he does not need to know

to generate signatures, the hijackers would have to wait for time T to test whether the

revealed private key is actually genuine. Instead, in case of sharing the regular private

key, both the CEO and his deputy would be worthwile targets.

6.2.5 Other Applications for RSA Time-Lock Puzzles

Generally speaking, the solution of an RSA time-lock puzzle constitutes a non-interactive

and non-parallelizable proof of work for an arbitrarily chosen context m that took (at

least) time T . Beyond the offline submission that we present in the next section, one

could make use of RSA puzzles to enable an ordinary citizen to get an appointment

with a high-ranking politician, e. g., a mayor or a minister, and to discuss a crucial

concern m. By solving a long-term puzzle for m the citizen demonstrates that he really

98

6.3 Offline Submission Protocol

has a strong intention and deserves to be listened to. This increases his chances for

getting a time-slot for the concern m—and only for it.

6.2.6 Small Private Exponent

To speed up the private key operation, the private exponent d can be chosen considerably

smaller than the modulus n. Boneh and Durfeecite [BD00] showed that as long as

d < n0.292, one can break RSA by recovering the private exponent from the public

key. However, this attack on small private exponents is only feasible if the public

exponent e < n1.875. Hence, since our RSA puzzle scheme relies on an extremely large

public exponent, Boneh’s attack does not apply here. Of course, d must be chosen large

enough that it cannot be guessed by brute force. A minimal size in the same order of

magnitude as symmetric keys seems to be appropriate, e. g., 128 – 192 bits.

6.3 Offline Submission Protocol

Based on the RSA time-lock puzzle scheme, we propose now an offline submission pro-

tocol which enables an author currently being offline to commit to its ready-made docu-

ment before the deadline and to submit it at some time past the deadline upon regaining

connectivity. The goal is to convince the accepting institution of the timely completion

of the document by means of a successfully solved RSA puzzle.

6.3.1 Basic Design

The institution generates an RSA puzzle key pair where the public-key operation takes

time T on a reference machine being equipped with a state-of-the-art high-end proces-

sor. It can perform S modular squarings per second and should be one of the fastest

systems available on the market to end users. Setting the bar high is important to

ensure that nobody can gain a time advantage over other authors who submit in time.

The institution publishes the public puzzle key (n, t, z) in the usual fashion, e. g., by

requesting a certificate from a trusted CA and making it available on its website and in

public-key directories. An author intending to submit a document obtains the puzzle

99

Chapter 6 Offline Submission with RSA Time-Lock Puzzles

certificate in advance—just in case he has no Internet connection to the submission

server when the deadline approaches. Many different scenarios are conceivable, ranging

from hardware or ISP failure, a cable break, a DoS attack on the submission server to

a location-dependent unavailability of Internet access in a remote region.

deadline

institution

author author

time

puzzle solving period: t modular squarings

T

c

hash m

Figure 6.1: Illustration of the offline submission protocol.

Should this be the case, the author begins to solve an RSA puzzle for his document.

Note that electricity to run the computer is usually available even in an adverse envi-

ronment. He applies a cryptographic hash function (e. g., SHA-1 or RIPEMD-160) to

his document producing a digest which serves as input m for the puzzle. Figure 6.1

illustrates the offline submission scenario. If his computer is as fast as the reference

machine, he computes the solution c = mẽ mod n in time T . Assuming that at that

time the Internet connection to the server is available again, the author finally submits

its document along with the puzzle solution c. Now the institution verifies the solution

by decrypting c with its private key and matching the result against the document’s

hash value: cd mod n
?
= m. If the validation succeeds, the institution is convinced that

100

6.3 Offline Submission Protocol

the author has finalized his document at least T seconds ago. Is this point in time before

the deadline, the submission can be predated and accepted. It is up to the institution

to specify a maximum submission delay beyond which no documents can be considered

any more due to the closure of the review process.

In case that the author holds a slower processor than the reference machine, he can

compensate for this handicap by beginning to solve the puzzle at some point before

the deadline—ideally, just after the finalization of the document. Let S′ denote the

number of modular squarings that the author’s machine can perform per second, then

he must start solving a puzzle designed for T seconds at least (SS′ − 1)T seconds before

the deadline to succeed.

6.3.2 Building a Puzzle Chain

In practice, the author cannot predict exactly when he regains connectivity to the

submission server. Solving a single but very complex puzzle which probably takes more

time than the period without Internet access lasts would be suboptimal, especially for

owners of older hardware. Therefore we propose for the institution to issue several

public puzzle keys with different levels of difficulty, e. g., one for 12 hours, for 4 hours,

for 1 hour, and one for 10 minutes. The author can estimate the anticipated offline time

and begins to solve the most suitable puzzle. If he is still offline after having solved the

first puzzle, he continues to solve puzzles by building up a puzzle chain: The solution c1

of the first puzzle becomes the input m2 of the second, usually shorter lasting puzzle.

The author continues to chain up his puzzle solutions according to this scheme until

he finally regains connectivity to the server after k puzzle steps. Then he can submit

his document along with the k chain links c1, ..., ck. Each solution should bear a label

stating the public key used. The institution now validates the chain by verifying each

puzzle solution: cdii mod ni
?
= mi for 1 ≤ i ≤ k where m1 = m and mi = ci−1 for i > 1.

Note that this task can be performed in parallel. Summing up the times Ti assigned to

the utilized public keys yields the total time by which the submission is predated.

101

Chapter 6 Offline Submission with RSA Time-Lock Puzzles

6.3.3 Alternative Approach

Another approach for solving the puzzle only as long as necessary is for the author to

choose the large exponent for the computation by himself. He could simply compute

c = m2t mod n by repeated squaring for a t which is as large as he actually needs,

i. e., the final t would be the number of modular squarings performed until the Internet

connection becomes available again. This approach would ignore the RSA property of

the original puzzle construction and require only the modulus n along with the speed

indication S from the reference machine. The institution would need to compute r =

2t mod ϕ(n) first prior to verifying mr mod n
?
= c. A drawback of this scheme is the

relatively expensive modular reduction of 2t which must be rerun for each submitted

puzzle instead of performing it only once during the key generation. Moreover, in the

modular exponentiation mr mod n the exponent r is roughly the same size as n, while

in the RSA puzzle scheme a smaller private exponent d can be chosen, see Section 6.2.6.

Verifying a short chain of RSA puzzles is therefore several orders of magnitudes faster.

6.4 Implementation and Evaluation

6.4.1 The OSRTLP Tool

We have implemented a platform-independent tool in C++, called OSRTLP1, which

performs all parts of our offline submission protocol. It is available for free download in-

cluding the sources (with Visual C++ project, GNU Makefile, and precompiled binaries

for Windows) [Jerb]. At the beginning, the institution can use OSRTLP for running a

puzzle benchmark on a high-end reference machine to determine the number of modular

squaring operations S executed per second. Next, it creates an RSA key pair with a

public puzzle key taking T seconds per operation. Both the modulus size n and puzzle

time T can be chosen arbitrarily. OSRTLP outputs the puzzle’s private key and a puzzle

certificate in X.509 v3 format containing, besides subject information and public puzzle

key, the puzzle time T . It is signed by the institution’s CA private key. If necessary,

the institution may ask a well-known CA to cross-certify its CA public key. The author

1This is the acronym for Offline Submission with RSA Time-Lock Puzzles.

102

6.4 Implementation and Evaluation

utilizes OSRTLP to solve a puzzle for his document by supplying the institution’s puzzle

certificate. It can be verified by OSRTLP against a trusted CA certificate (or even a

chain). At first, OSRTLP performs a short benchmark to inform the user about the

time expected to finish the puzzle and indicates the current progress in percent. One

can choose between the hash functions SHA-1, SHA-256 and RIPEMD-160. While solv-

ing the puzzle, OSRTLP periodically backups the intermediate result to a file and can

simply resume the computation in case of a crash. Finally, the institution runs OSRTLP

to quickly verify the solution for a submitted document by applying the puzzle’s private

key.

For the large-integer arithmetic we employ the open source library MPIR [MPI] which is

a fork of the well-known GMP library from GNU [GMP]. GMP claims to be faster than

any other bignum library by using fast algorithms with highly optimized assembly code.

This serves our needs very well since we aim to provide a puzzle solver which cannot be

easily outperformed. The institution must have confidence that the author is not able to

solve the puzzle quicker than supposed, at least not at an acceptable price. MPIR / GMP

implements several state-of-the-art multiplication algorithms, ranging from the base-

case schoolbook method to the Karatsuba, Toom-Cook, and FFT algorithms. The choice

depends on the bit length. For squaring integers which have the size of a typical RSA

modulus, i. e., 1024 – 4096 bits, MPIR / GMP resorts to the schoolbook and Karatsuba

method. The thresholds are platform-dependent. On current CPUs, for integers larger

than 1536 – 1920 bits Karatsuba’a algorithm, running in O(N1.585), outperforms the

basecase O(N2) method. N denotes the number of machine words (in practice, 32 or

64 bits long) required to represent the integer. For repeated modular squaring we make

use of Montgomery reduction instead of performing the classical reduction by dividing.

This speeds-up the puzzle solution by a factor of 1.3 – 2.0, especially for small moduli

in the order 1024 – 2048 bits. The private key operation for puzzle verification is also

optimized by performing two exponentiations modulo p and q and afterwards applying

the Chinese Remainder Theorem which yields the solution modulo n.

All MPIR / GMP functions operate on integers which are completely stored in memory.

However, 2t is far too large to be held in memory and consists almost only of zeros. To

perform the modular reduction r = 2t mod ϕ(n) we have therefore modified the library’s

division routine to efficiently represent the dividend by occupying storage space only in

103

Chapter 6 Offline Submission with RSA Time-Lock Puzzles

the order of the modulus (i. e., the divisor). The same issue arises when storing the

public exponent ẽ = 2t + z in an X.509 certificate. We address it by encoding ẽ as the

odd integer E = z ·265 +t ·21 +1 where t is represented as a 64-bit integer. Such a puzzle

time-lock certificate can be distinguished from a regular one by a time-lock indication

in the subject alternative name extension.

In Section 4.4.1, we have brought up the implementation of fast modular exponentiation

on FPGAs and modern GPUs. They do not significantly surpass modern CPUs. While a

GPU implementation of the puzzle solver may be a reasonable extension of our OSRTLP

tool, we believe that the great majority of authors would not buy expensive special

purpose hardware like FPGAs for offline submission.

6.4.2 Extensions: GUI and Online Submission System

In a bachelor thesis [Röm11], we have extended OSRTLP by a user-friendly GUI with

wizard-style interface to support authors in solving puzzles. The GUI has been imple-

mented using the open-source cross-platform Qt framework [Qt] for C++ and thus is

available for all current platforms ranging from Windows to Linux and Mac OS. By re-

sorting to a list of puzzle certificates with public keys having different levels of difficulty

the new application automatically builds a puzzle chain to bridge an arbitrary long time

gap. The author may specify a lower threshold for the anticipated offline period and

update it at runtime to keep the length of the puzzle chain short. Figure 6.2 shows the

new OSRTLP application running in GUI mode. It creates a puzzle chain and currently

solves a puzzle with T = 3 min. Moreover, the application can automatically check

whether Internet connectivity has become available again and upload the document to

the submission server through a HTTP (or HTTPS) POST request. To emphasize the

practical feasibility of our scheme, we have also incorporated the offline submission pro-

tocol into a PHP-based Web submission system for homework assignments [Röm11].

It enables students to submit their homework even after the deadline if they attach a

puzzle chain that proves the timely completion of their work. The submission server

runs OSRTLP to verify the puzzles and calculate the time credit. If the validation suc-

ceeds, the submitted homework assignment gets accepted, is stored in the database and

forwarded to a tutor.

104

6.4 Implementation and Evaluation

Figure 6.2: OSRTLP GUI with wizard-style interface: solving a puzzle chain [Röm11].

105

Chapter 6 Offline Submission with RSA Time-Lock Puzzles

6.4.3 Performance Evaluation

We run OSRTLP in benchmark mode on different platforms to measure the number

of modular squaring operations S that each machine can perform per second. Our

goal is to compare to what extent the puzzle solution time differs between an up-to-

date high-end CPU being a candidate for the reference machine and a processor that

was purchased some years ago. We also investigate the difference between 32-bit and

64-bit architectures and the impact of the operating system. We compiled OSRTLP and

MPIR 1.3.1 with GCC 4.4.1 on Linux and Visual C++ 2008 SP-1 on Windows. The

results for 1024, 2048, and 4096 bit moduli, all averaged over multiple runs, are shown

in Table 6.1. To make it easier putting in relation the different CPUs, we state their

release date as well as the manufacturer’s release price (in 1000-unit quantities).

Evaluating the results, two main observations can be made: First, a 64-bit implemen-

tation of OSRTLP outperforms its 32-bit counterpart by a factor of 3.4 – 4.0. Conse-

quently, in the face of the performance achievable on a 64-bit platform, running a 32-bit

version of OSRTLP is not an option. Since all desktop CPUs manufactured during the

last six years are 64-bit capable and 64-bit operating systems are widely available, this

is in fact not an issue. Second, the difference in speed between 64-bit platforms, ranging

from a 5.5 years old Core 2 Duo E6400 2.13 GHz, a 4 years old high-performance Xeon

X3360 2.83 GHz to a 3 years old Core 2 Duo T9900 3.06 GHz costing 530 $ at release

time, amounts to no more than factor 1.5. For the majority of users holding an up-to-

date computer the gap between the reference CPU and their own CPU will be actually

smaller. This result strongly supports our assumption that non-parallelizable puzzles

constitute a feasible approach to measure how much time must have elapsed since the

beginning of the computation. Another observation is that the choice of the operating

system hardly influences the runtime of the puzzle.

The time required for the institution to perform the modular reduction r = 2t mod ϕ(n)

when creating the public puzzle key is indicated in Table 6.2. It is proportional to the

desired puzzle solution time T . For a long-term puzzle of several days’ duration it takes

only a few minutes. The larger the modulus n, the faster the computation of r takes

since S decreases for increasing n more quickly than the division speed.

106

6.4 Implementation and Evaluation

T
ab

le
6.

1:
P

er
fo

rm
an

ce
co

m
p

ar
is

on
of

th
e

m
o
d

u
la

r
sq

u
ar

in
g

op
er

at
io

n
o
n

d
iff

er
en

t
p

la
tf

o
rm

s.

p
la

tf
o
rm

C
P

U
re

le
a
se

S
:

m
o
d

u
la

r
sq

u
a
ri

n
g
s

/
se

c

d
a
te

&
p

ri
c
e

1
0
2
4

b
it

s
2
0
4
8

b
it

s
4
0
9
6

b
it

s

In
te

l
C

or
e

2
D

u
o

E
64

00
2.

13
G

H
z

L
in

u
x

2.
6.

31
64

-b
it

07
/

20
06

18
3

$
9
4
1

3
2
0

2
6
1

7
5
0

7
1

3
4
0

In
te

l
C

or
e

2
D

u
o

E
67

50
2.

66
G

H
z

W
in

d
ow

s
7

32
-b

it

07
/

20
07

18
3

$

2
9
0

4
2
0

8
0

7
9
0

2
1

5
2
0

W
in

d
ow

s
7

64
-b

it
1

1
6
1

8
6
0

3
2
3

4
1
0

8
7

8
8
0

L
in

u
x

2.
6.

31
32

-b
it

3
2
8

6
7
0

9
4

3
4
0

2
6

3
6
0

L
in

u
x

2.
6.

31
64

-b
it

1
1
7
4

1
6
0

3
2
4

6
7
0

8
8

5
9
0

In
te

l
C

or
e

2
Q

u
ad

Q
94

00
2.

66
G

H
z

L
in

u
x

2.
6.

31
64

-b
it

08
/

20
08

18
3

$
1

1
8
0

9
7
0

3
2
6

2
5
0

8
8

8
1
0

In
te

l
C

or
e

2
D

u
o

T
99

00
3.

06
G

H
z

L
in

u
x

2.
6.

31
64

-b
it

04
/

20
09

53
0

$
1

3
9
6

2
9
0

3
8
6

3
3
0

1
0
4

7
8
0

In
te

l
X

eo
n

X
33

60
2.

83
G

H
z

L
in

u
x

2.
6.

31
64

-b
it

03
/

20
08

26
6

$
1

2
3
7

1
6
0

3
4
6

7
3
0

9
3

9
4
0

A
M

D
A

th
lo

n
II

X
2

24
0e

2.
80

G
H

z
L

in
u

x
2.

6.
31

64
-b

it
10

/
20

09
77

$
1

0
9
2

2
7
0

3
4
5

0
8
0

9
9

6
0
0

107

Chapter 6 Offline Submission with RSA Time-Lock Puzzles

Table 6.2: Computation time of r = 2t mod ϕ(n) on an Intel Core 2 Duo E6750 2.66
GHz for different puzzle difficulties t = T ·S with an Intel Core 2 Duo T9900
3.06 GHz as reference machine for S.

puzzle time T
modulus size n

1024 bits 2048 bits 4096 bits

10 min 0.754 sec 0.292 sec 0.132 sec

1 h 4.512 sec 1.738 sec 0.791 sec

12 h 53, 98 sec 20, 91 sec 9.50 sec

24 h 108.0 sec 41, 84 sec 18.98 sec

72 h 324.2 sec 125.7 sec 56.93 sec

6.5 Chapter Summary

In this chapter, we have introduced a non-interactive and non-parallelizable RSA time-

lock puzzle scheme. By artificially enlarging the public exponent the time required to

encrypt a message can be arbitrarily tuned. Based on RSA time-lock puzzles, we have

proposed an offline submission protocol. It enables an author currently being offline

to commit to its document before the deadline and to submit it at some time past the

deadline upon regaining connectivity. Presenting the correct solution of a puzzle with

assigned solution time T proves to the institution that the submitted document has been

finalized at least time T ago. In practice, several puzzles with different solution times

are chained up to bridge an arbitrary long time gap while the author is offline. We have

implemented a platform-independent tool performing all parts of our offline submission

protocol and evaluated the variance of the solution time between different platforms.

It turned out to be fairly low. Furthermore, we have set up a Web submission system

for homework assignments which incorporates our offline submission protocol and thus

demonstrates the practical feasibility of our approach.

108

Chapter 7

Conclusion

In this thesis, we have devised techniques and protocols to mitigate and ideally to prevent

denial-of-service attacks in local area networks. The goal was to make communication in

LANs secure and DoS-resistant. Our contribution began with a comprehensive link layer

security protocol that employs public-key cryptography. However, public-key operations

are relatively expensive compared to symmetric-key primitives and protocols relying on

them may be vulnerable to DoS attacks. It is known that performance is the price to

pay for security and usability. But we were convinced that it must be possible to provide

DoS resistance and stability without compromising security or cutting back usability.

The Cryptographic Link Layer (CLL) introduced in Chapter 2 was the starting point on

the way to safe communication in LANs. It provides authentication and confidentiality

to neighboring hosts from layer 2 upwards. Each machine holds a certificate and is

identified by its IP/MAC address pair. CLL safeguards all unicast IP traffic by means of

a block cipher and a message authentication code. Furthermore, CLL extends ARP and

DHCP handshakes with authentication and thus protects these protocols against various

kinds of attacks. Beginning with an ARP handshake, two hosts exchange certificates

and cryptographic parameters, authenticate each other using public-key cryptography,

and negotiate symmetric keys to establish a security association. CLL is transparent to

existing protocols and has been implemented for both Windows and Linux. It achieves

wire-speed throughput in 100 Mbit Ethernet and provides a competitive throughput

rate even in Gigabit Ethernet.

In Chapter 3, we have presented counter-flooding—a countermeasure against DoS flood-

ing attacks to protect public-key handshakes in LANs and, in particular, CLL’s ARP

109

Chapter 7 Conclusion

handshake. Exploiting the lack of initial address authenticity, the attacker tries to sabo-

tage the public-key handshake between two hosts A and B by overwhelming B with fake

signature packets. In the counter-flooding approach, the benign host A reacts to this

aggression by flooding itself multiple copies of its signature packet for a short period

while the victim host B first collects all incoming signature packets during a given time

period. It then verifies only a fixed number of signatures per period without becoming

overloaded and selects those packets for verification that have the largest number of

duplicates. Under weak assumptions we have shown how host A can ensure that its

signature packet will be among the packets selected for verification. The applicability of

our defense scheme has been supported by flooding experiments where we studied the

bandwidth division between concurrent flows under overload conditions. Thus, some-

what surprisingly, we can successfully combat the attacker using his own weapons.

A different DoS countermeasure that has been widely discussed in the literature are

client puzzles. In Chapter 4, we have first highlighted the drawbacks of existing client

puzzle schemes, especially if being applied in LANs. The main issue of interactive client

puzzles is their vulnerability to DoS counterattacks on the clients, which results from

missing authentication of the puzzle parameters. Then we have introduced a novel client

puzzle scheme that is based on the computation of square roots modulo a prime and

offers some advantages over existing approaches. Modular square root puzzles are non-

parallelizable, provide polynomial granularity, have compact solution and verification

functions, and can be employed both interactively and non-interactively. In LANs, we

argued for constructing non-interactive client puzzles in order to render counterattacks

impossible. Resorting to the counter-flooding idea, we have also incorporated a small

bandwidth-based cost factor for the client into our scheme to raise its efficiency. Bench-

mark results demonstrated the feasibility of our approach to mitigate DoS attacks on

hosts in 1 or even 10 Gbit networks.

In the secure client puzzle architecture in Chapter 5, we have provided a solid basis to

safely employ non-interactive client puzzles. It overcomes the authentication issue of

interactive puzzles without tolerating precomputation attacks. The key idea is to derive

puzzles from a periodically changing, secure random beacon. The beacons are generated

in advance for a longer time span and broadcasted in the LAN by a special beacon server.

To authenticate the beacon packets, the hosts obtain a signed fingerprint package which

110

contains the cryptographic digests of the beacons. Beacon verification is cheap and can

be performed at line speed, since it requires only a single hash operation. A server

suffering from DoS accepts requests only from those clients that have constructed and

solved a fresh puzzle of sufficient difficulty from the current beacon. To provide a robust

and secure beacon service, we have developed sophisticated techniques which address

synchronization aspects and facilitate the deployment of beacon fingerprints. Even if

hosts fail to obtain the signed fingerprint package using one of the regular distribution

channels, they can acquire it on the fly from the beacon server and verify its signature

despite of possible DoS flooding attacks.

Chapter 6, the final contribution of this thesis, pursued the idea of cryptographic puzzles

beyond DoS protection and introduced a novel application in the area of timed-release

cryptography. We have developed a non-interactive and non-parallelizable RSA time-

lock puzzle scheme where the time required to encrypt a message can be arbitrarily tuned

by artificially enlarging the public exponent. As with modular square root puzzles,

this scheme also relies on the non-parallelizability of repeated squaring. The solution

time cannot be shortened significantly by employing many machines and it varies only

slightly across modern CPUs. Based on RSA time-lock puzzles, we have proposed a

protocol for offline submission. It enables an author currently being offline to commit

to its document before the deadline and to submit it past the deadline upon regaining

connectivity. Having continuously solved an RSA puzzle (or a chain of puzzles) for his

document during the offline period, the author finally presents the puzzle solution to

the institution as a proof for the timely completion of his work. We have implemented

a platform-independent tool that performs all parts of our offline submission protocol

and set up a Web submission system for homework assignments which incorporates our

protocol.

In summary, we have provided a comprehensive security protocol for LANs and devel-

oped multiple schemes to protect it as well as other protocols and services, especially

those also relying on public-key cryptography, against DoS attacks. We have looked at

the attacker’s abilities and counteracted with the controlled emission of packets and the

solution of puzzles. Secure and DoS-resistant LAN communication is possible. We are

convinced that some of the techniques proposed in this thesis can be also applied in the

Internet and future protocol designs will benefit from them.

111

Bibliography

Own Publications

[JLSM08] Yves Igor Jerschow, Christian Lochert, Björn Scheuermann, and Martin
Mauve. CLL: A Cryptographic Link Layer for Local Area Networks. In
SCN 2008: Proceedings of the 6th Conference on Security and Cryptog-
raphy for Networks, pages 21–38, September 2008.

[JM10] Yves Igor Jerschow and Martin Mauve. Offline Submission with RSA
Time-Lock Puzzles. In CIT 2010: Proceedings of the 10th IEEE In-
ternational Conference on Computer and Information Technology, pages
1058–1064, June 2010.

[JM11] Yves Igor Jerschow and Martin Mauve. Non-Parallelizable and Non-
Interactive Client Puzzles from Modular Square Roots. In ARES 2011:
Proceedings of the 6th International Conference on Availability, Reliability
and Security, pages 135–142, August 2011.

[JM12a] Yves Igor Jerschow and Martin Mauve. Modular Square Root Puzzles:
Design of Non-Parallelizable and Non-Interactive Client Puzzles. Elsevier
Computers & Security, 2012. Submitted for publication.

[JM12b] Yves Igor Jerschow and Martin Mauve. Secure Client Puzzles based on
Random Beacons. In IFIP Networking 2012: Proceedings of the 11th
International Conference on Networking, pages 184–197, May 2012.

[JSLM06a] Yves Igor Jerschow, Björn Scheuermann, Christian Lochert, and Martin
Mauve. A Cross-Layer Protocol Evaluation Framework on ESB Nodes
(Demo). In REALMAN ’06: Proceedings of the 2nd International Work-
shop on Multi-hop Ad Hoc Networks: from Theory to Reality, pages 104–
106, May 2006.

[JSLM06b] Yves Igor Jerschow, Björn Scheuermann, Christian Lochert, and Martin
Mauve. A Real-World Framework to Evaluate Cross-Layer Protocols for
Wireless Multihop Networks. In REALMAN ’06: Proceedings of the 2nd
International Workshop on Multi-hop Ad Hoc Networks: from Theory to
Reality, pages 1–6, May 2006.

113

Bibliography

[JSM09] Yves Igor Jerschow, Björn Scheuermann, and Martin Mauve. Counter-
Flooding: DoS Protection for Public Key Handshakes in LANs. In ICNS
2009: Proceedings of the 5th International Conference on Networking and
Services, pages 376–382, April 2009.

Other References

[ABMW05] Martin Abadi, Mike Burrows, Mark Manasse, and Ted Wobber. Mod-
erately Hard, Memory-bound Functions. ACM Transactions on Internet
Technology, 5:299–327, May 2005.

[AK88] Leonard Adleman and Kireeti Kompella. Using Smoothness to Achieve
Parallelism. In STOC ’88: Proceedings of the 20th Annual ACM Sympo-
sium on Theory of Computing, pages 528–538, 1988.

[AKO+04] Hayriye Altunbasak, Sven Krasser, Henry Owen, Joachim Sokol, Jochen
Grimminger, and Hans-Peter Huth. Addressing the Weak Link Between
Layer 2 and Layer 3 in the Internet Architecture. In LCN ’04: Proceedings
of the 29th Annual IEEE International Conference on Local Computer
Networks, pages 417–418, November 2004.

[AKZN05] J. Arkko, J. Kempf, B. Zill, and P. Nikander. SEcure Neighbor Discovery
(SEND). RFC 3971, March 2005.

[AMM77] Leonard Adleman, Kenneth Manders, and Gary Miller. On taking roots
in finite fields. In SFCS ’77: Proceedings of the 18th Annual Symposium
on Foundations of Computer Science, pages 175–178, September 1977.

[ANL01] Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo. DOS-Resistant
Authentication with Client Puzzles. In Revised Papers from the 8th
International Workshop on Security Protocols, pages 170–177, April 2001.

[Ant] Antidote. http://antidote.sourceforge.net.

[Arp] ArpWatch. http://ee.lbl.gov and http://freequaos.host.sk/

arpwatch.

[Bac02] Adam Back. Hashcash - A Denial of Service Counter-Measure, August
2002. http://www.hashcash.org/papers/hashcash.pdf.

[BC05] Ian F. Blake and Aldar C-F. Chan. Scalable, Server-Passive, User-
Anonymous Timed Release Public Key Encryption from Bilinear Pair-
ing. In ICDS 2005: Proceedings of the 25th International Conference on
Distributed Computing Systems, pages 504–513, June 2005.

114

http://antidote.sourceforge.net
http://ee.lbl.gov
http://freequaos.host.sk/arpwatch
http://freequaos.host.sk/arpwatch
http://www.hashcash.org/papers/hashcash.pdf

Bibliography

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Message Authentica-
tion Using Hash Functions: the HMAC Construction. RSA CryptoBytes,
2(1), 1996.

[BD00] Dan Boneh and Glenn Durfee. Cryptanalysis of RSA with Private

Key d Less than N0.292. IEEE Transactions on Information Theory,
46(4):1339–1349, 2000.

[BN00] Dan Boneh and Moni Naor. Timed Commitments. In CRYPTO ’00:
Proceedings of the 20th Annual International Cryptology Conference on
Advances in Cryptology, pages 236–254, August 2000.

[BOR03] D. Bruschi, A. Ornaghi, and E. Rosti. S-ARP: a Secure Address Resolu-
tion Protocol. In ACSAC ’03: Proceedings of the 19th Annual Computer
Security Applications Conference, pages 66–74, December 2003.

[BS96] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory, Volume I:
Efficient Algorithms. MIT Press, 1996.

[BT09] Kemal Bicakci and Bulent Tavli. Denial-of-Service attacks and coun-
termeasures in IEEE 802.11 wireless networks. Computer Standards &
Interfaces, 31(5):931–941, September 2009.

[BWK00] Brahim Bensaou, Yu Wang, and Chi Chung Ko. Fair medium access in
802.11 based wireless ad-hoc networks. In MobiHoc ’00: Proceedings of
the 1st ACM Interational Symposium on Mobile Ad Hoc Networking and
Computing, pages 99–106, August 2000.

[CHVSn07] Konstantinos Chalkias, Dimitrios Hristu-Varsakelis, and George Stepha-
nides. Improved Anonymous Timed-Release Encryption. In ESORICS
2007: Proceedings of the 12th European Symposium On Research In Com-
puter Security, pages 311–326, September 2007.

[Cip03] M. Cipolla. Un metodo per la risolutione della congruenza di sec-
ondo grado. Rendiconto dell’Accademia Scienze Fisiche e Matematiche,
9(3):154–163, 1903.

[CLQ05] Julien Cathalo, Benôıt Libert, and Jean-Jacques Quisquater. Efficient
and Non-interactive Timed-Release Encryption. In ICICS 2005: Pro-
ceedings of the 7th International Conference on Information and Com-
munications Security, pages 291–303, December 2005.

[CLSY93] Jin-Yi Cai, Richard J. Lipton, Robert Sedgewickand, and Andrew Chi-
Chih Yao. Towards uncheatable benchmarks. In Proceedings of the
8th Annual Structure in Complexity Theory Conference, pages 2–11, May
1993.

115

Bibliography

[CMMDM03] Máire McLoone Ciaran McIvor, John McCanny, Alan Daly, and William
Marnane. Fast Montgomery Modular Multiplication and RSA Crypto-
graphic Processor Architectures. In Proceedings of the 37th Asilomar
Conference on Signals, Systems, and Computers, pages 379–384, Novem-
ber 2003.

[CMSW09] Liqun Chen, Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi.
Security Notions and Generic Constructions for Client Puzzles. In ASI-
ACRYPT ’09: Proceedings of the 15th International Conference on the
Theory and Application of Cryptology and Information Security, pages
505–523, December 2009.

[Coh96] Henri Cohen. A Course in Computational Algebraic Number Theory.
Springer, 1996.

[COR99] Giovanni Di Crescenzo, Rafail Ostrovsky, and Sivaramakrishnan Ra-
jagopalan. Conditional Oblivious Transfer and Timed-Release Encryp-
tion. In EUROCRYPT ’99: Proceedings of the International Conference
on the Theory and Application of Cryptographic Techniques, pages 74–89,
May 1999.

[CW03] Scott A. Crosby and Dan S. Wallach. Denial of Service via Algorithmic
Complexity Attacks. In SSYM’03: Proceedings of the 12th Conference
on USENIX Security Symposium, August 2003.

[DA01] R. Droms and W. Arbaugh. Authentication for DHCP Messages. RFC
3118, June 2001.

[DGN03] Cynthia Dwork, Andrew Goldberg, and Moni Naor. On Memory-Bound
Functions for Fighting Spam. In CRYPTO ’03: Proceedings of the 23th
Annual International Cryptology Conference on Advances in Cryptology,
pages 426–444, August 2003.

[DH76] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography.
IEEE Transactions on Information Theory, IT-22(6):644–654, November
1976.

[DM04] Christos Douligeris and Aikaterini Mitrokotsa. DDoS attacks and defense
mechanisms: classification and state-of-the-art. Computer Networks,
44(5):643–666, 2004.

[DMR06] Sujata Doshi, Fabian Monrose, and Aviel D. Rubin. Efficient Memory
Bound Puzzles Using Pattern Databases. In ACNS 2006: Proceedings of
the 4th International Conference on Applied Cryptography and Network
Security, pages 98–113, June 2006.

[DN92] Cynthia Dwork and Moni Naor. Pricing via Processing or Combatting
Junk Mail. In CRYPTO ’92: Proceedings of the 12th Annual Interna-
tional Cryptology Conference on Advances in Cryptology, pages 139–147,
August 1992.

116

Bibliography

[DR06] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.1. RFC 4346, April 2006.

[Dro97] R. Droms. Dynamic Host Configuration Protocol. RFC 2131, March
1997.

[DS01] Drew Dean and Adam Stubblefield. Using Client Puzzles to Protect TLS.
In SSYM’01: Proceedings of the 10th Conference on USENIX Security
Symposium, August 2001.

[DY05] Yevgeniy Dodis and Dae Hyun Yum. Time Capsule Signature. In
FC ’05: Proceedings of the 9th International Conference on Financial
Cryptography and Data Security, pages 57–71, March 2005.

[Ett] Ettercap. http://ettercap.sourceforge.net.

[FKFL05] Wu-chang Feng, Ed Kaiser, Wu-chi Feng, and Antoine Luu. The Design
and Implementation of Network Puzzles. In INFOCOM 2005: Proceed-
ings of the 24th IEEE Conference on Computer Communications, pages
2372–2382, March 2005.

[Fle07] Sebastian Fleissner. GPU-Accelerated Montgomery Exponentiation. In
ICCS ’07: Proceedings of the 7th International Conference on Computa-
tional Science, pages 213–220, May 2007.

[Ger12] Moritz Gericke. Parallelisierungsmechanismen für eine kryptographis-
che Sicherungsschicht. Institute of Computer Science, Heinrich Heine
University, Düsseldorf, January 2012. bachelor thesis. http://www.cn.

uni-duesseldorf.de/publications/library/Gericke2012a.pdf.

[GH03] Mohamed G. Gouda and Chin-Tser Huang. A secure address resolution
protocol. Computer Networks, 41(1):57–71, 2003.

[GJ03] Juan A. Garay and Markus Jakobsson. Timed Release of Standard Dig-
ital Signatures. In FC 2002: Proceedings of the 6th International Con-
ference on Financial Cryptography, pages 168–182, March 2003.

[GKTV04] Carl A. Gunter, Sanjeev Khanna, Kaijun Tan, and Santosh S. Venkatesh.
DoS Protection for Reliably Authenticated Broadcast. In NDSS ’04:
Proceedings of the Network and Distributed System Security Symposium,
February 2004.

[GMP] GMP: GNU Multiple Precision Arithmetic Library. http://gmplib.org.

[GN12] Maria Garnaeva and Yury Namestnikov. DDoS attacks in H2
2011, February 2012. http://www.securelist.com/en/analysis/

204792221/DDoS_attacks_in_H2_2011.

[Gor98] Daniel M. Gordon. A Survey of Fast Exponentiation Methods. Journal
of Algorithms, 27(1):129–146, 1998.

117

http://ettercap.sourceforge.net
http://www.cn.uni-duesseldorf.de/publications/library/Gericke2012a.pdf
http://www.cn.uni-duesseldorf.de/publications/library/Gericke2012a.pdf
http://gmplib.org
http://www.securelist.com/en/analysis/204792221/DDoS_attacks_in_H2_2011
http://www.securelist.com/en/analysis/204792221/DDoS_attacks_in_H2_2011

Bibliography

[HGS+08] Helmut Hlavacs, Wilfried N. Gansterer, Hannes Schabauer, Joachim
Zottl, Martin Petraschek, Thomas Hoeher, and Oliver Jung. Enhancing
ZRTP by using Computational Puzzles. Journal of Universal Computer
Science, 14(5):693–716, 2008.

[HW09] Owen Harrison and John Waldron. Efficient Acceleration of Asymmetric
Cryptography on Graphics Hardware. In AFRICACRYPT ’09: Proceed-
ings of the 2nd International Conference on Cryptology in Africa, pages
350–367, June 2009.

[IEE] IEEE 802.1AE. Media Access Control (MAC) Security. http://www.

ieee802.org/1/pages/802.1ae.html.

[IEE04a] IEEE 802.11i-2004. Amendment 6: Medium Access Control (MAC)
Security Enhancements. IEEE Standard, July 2004.

[IEE04b] IEEE 802.1X-2004. Port Based Network Access Control. IEEE Standard,
December 2004.

[IEE05] IEEE 802.3-2005. Part 3: Carrier Sense Multiple Access with Collision
Detection (CSMA/CD) access method and physical layer specifications,
Annex 31B. IEEE Standard, December 2005.

[JB99] Ari Juels and John G. Brainard. Client Puzzles: A Cryptographic
Countermeasure Against Connection Depletion Attacks. In NDSS ’99:
Proceedings of the Network and Distributed System Security Symposium,
pages 151–165, February 1999.

[Jera] Yves Igor Jerschow. The CLL service & toolkit for Windows and Linux.
http://www.cn.uni-duesseldorf.de/projects/CLL.

[Jerb] Yves Igor Jerschow. The OSRTLP Tool: Offline Submission with RSA
Time-Lock Puzzles. http://www.cn.uni-duesseldorf.de/projects/

OSRTLP.

[KO62] A. Karatsuba and Y. Ofman. Multiplication of Many-Digital Numbers
by Automatic Computers. Doklady Akademii Nauk SSSR, 145:293–294,
1962. (Translation in Physics-Doklady, 7:595-596, 1963).

[Kra86] Evangelos Kranakis. Primality and Cryptography. John Wiley & Sons,
Inc., 1986.

[Kra01] Hugo Krawczyk. The Order of Encryption and Authentication for
Protecting Communications (or: How Secure Is SSL?). In CRYPTO
2001: Proceedings of the 21st Annual International Cryptology Confer-
ence, pages 310–331, August 2001.

[KS05] S. Kent and K. Seo. Security Architecture for the Internet Protocol.
RFC 4301, December 2005.

118

http://www.ieee802.org/1/pages/802.1ae.html
http://www.ieee802.org/1/pages/802.1ae.html
http://www.cn.uni-duesseldorf.de/projects/CLL
http://www.cn.uni-duesseldorf.de/projects/OSRTLP
http://www.cn.uni-duesseldorf.de/projects/OSRTLP

Bibliography

[Kv10] Ghassan O. Karame and Srdjan Čapkun. Low-Cost Client Puzzles based
on Modular Exponentiation. In ESORICS 2010: Proceedings of the 15th
European Symposium on Research in Computer Security, pages 679–697,
September 2010.

[Leh69] D. H. Lehmer. Computer technology applied to the theory of numbers.
Studies in Number Theory, Prentice Hall, Englewood Cliffs, NJ, pages
117–151, 1969.

[LEM07] Wesam Lootah, William Enck, and Patrick McDaniel. TARP: Ticket-
based Address Resolution Protocol. Computer Networks, 51(15):4322–
4337, 2007.

[Llo] Jack Lloyd. Botan Cryptographic Library. http://botan.randombit.

net.

[Mao01] Wenbo Mao. Timed-Release Cryptography. In SAC 2001: Proceedings
of the 8th Annual International Workshop on Selected Areas in Cryptog-
raphy, pages 342–357, August 2001.

[Mil76] Gary L. Miller. Riemann’s hypothesis and tests for primality. Journal
of Computer and System Sciences, 13(3):300–317, 1976.

[Mil92] David L. Mills. Network Time Protocol (Version 3) Specification, Imple-
mentation and Analysis. RFC 1305, March 1992.

[Mon] Massimiliano Montoro. Cain & Abel. http://www.oxid.it/cain.html.

[Mon85] Peter L. Montgomery. Modular Multiplication without Trial Division.
Mathematics of Computation, 44:519–521, 1985.

[MPI] MPIR: Multiple Precision Integers and Rationals. http://www.mpir.

org.

[MR04] Jelena Mirkovic and Peter Reiher. A Taxonomy of DDoS Attack and
DDoS Defense Mechanisms. ACM SIGCOMM Computer Communication
Review, 34(2):39–53, 2004.

[MvOV96] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-
book of Applied Cryptography. CRC Press, 1996.

[MZS06] Ivan Martinovic, Frank A. Zdarsky, and Jens B. Schmitt. On the Way
to IEEE 802.11 DoS Resilience. In Proceedings of IFIP NETWORK-
ING 2006, Workshop on Security and Privacy in Mobile and Wireless
Networking, May 2006.

[MZW+08] Ivan Martinovic, Frank A. Zdarsky, Matthias Wilhelm, Christian Weg-
mann, and Jens B. Schmitt. Wireless Client Puzzles in IEEE 802.11
Networks: Security by Wireless. In WiSec ’08: Proceedings of the ACM
Conference on Wireless Network Security, pages 36–45, March 2008.

119

http://botan.randombit.net
http://botan.randombit.net
http://www.oxid.it/cain.html
http://www.mpir.org
http://www.mpir.org

Bibliography

[NBF96] Bradford Nichols, Dick Buttlar, and Jacqueline Farrell. PThreads Pro-
gramming: A POSIX Standard for Better Multiprocessing. O’Reilly Me-
dia, 1996.

[NHSK09] Nozomu Nishihara, Ryuichi Harasawa, Yutaka Sueyoshi, and Aichi Kudo.
A remark on the computation of cube roots in finite fields. Cryptol-
ogy ePrint Archive, Report 2009/457, 2009. http://eprint.iacr.org/

2009/457.

[Ope] OpenSSL: The Open Source toolkit for SSL/TLS. http://www.openssl.
org.

[pca] pcap (packet capture): libpcap / WinPcap. http://www.tcpdump.org

and http://www.winpcap.org.

[PCTS02] Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Song. The TESLA
Broadcast Authentication Protocol. RSA CryptoBytes, 5(2):2–13, 2002.

[PLR07] Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. Survey of
network-based defense mechanisms countering the DoS and DDoS prob-
lems. ACM Computing Surveys, 39(1):3, 2007.

[Plu82] David C. Plummer. Ethernet Address Resolution Protocol: Or convert-
ing network protocol addresses to 48.bit Ethernet address for transmission
on Ethernet hardware. RFC 826, November 1982.

[Qt] Qt: cross-platform application and UI framework. http://qt-project.

org.

[Rab80] Michael O. Rabin. Probabilistic algorithm for testing primality. Journal
of Number Theory, 12(1):128–138, 1980.

[Res] NT Kernel Resources. WinpkFilter. http://www.ntkernel.com.

[Röm11] Julius Römmler. Offline-Einreichung von Übungsaufgaben mittels RSA
Time-Lock Puzzles. Institute of Computer Science, Heinrich Heine Uni-
versity, Düsseldorf, January 2011. bachelor thesis. http://www.cn.

uni-duesseldorf.de/publications/library/Roemmler2011a.pdf.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Communications of
the ACM, 21(2):120–126, 1978.

[RSW96] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles
and timed-release Crypto. Technical report, Massachusetts Institute of
Technology, Cambridge, MA, USA, 1996.

[Sei00] Rich Seifert. The Switch book. Wiley, 2000.

120

http://eprint.iacr.org/2009/457
http://eprint.iacr.org/2009/457
http://www.openssl.org
http://www.openssl.org
http://www.tcpdump.org
http://www.winpcap.org
http://qt-project.org
http://qt-project.org
http://www.ntkernel.com
http://www.cn.uni-duesseldorf.de/publications/library/Roemmler2011a.pdf
http://www.cn.uni-duesseldorf.de/publications/library/Roemmler2011a.pdf

Bibliography

[SG08] Robert Szerwinski and Tim Güneysu. Exploiting the Power of GPUs for
Asymmetric Cryptography. In CHES ’08: Proceedings of the 10th Inter-
national Workshop on Cryptographic Hardware and Embedded Systems,
pages 79–99, August 2008.

[Sha72] D. Shanks. Five number-theoretic algorithms. In Proceedings of the 2nd
Manitoba Conference on Numerical Mathematics, pages 51–70, 1972.

[Sor99] Jonathan P. Sorenson. A Sublinear-Time Parallel Algorithm for Inte-
ger Modular Exponentiation. In Proceedings of the Conference on the
Mathematics of Public-Key Cryptography, pages 528–538, June 1999.

[Suz07] Daisuke Suzuki. How to Maximize the Potential of FPGA Resources for
Modular Exponentiation. In CHES ’07: Proceedings of the 9th Inter-
national Workshop on Cryptographic Hardware and Embedded Systems,
pages 272–288, September 2007.

[SvB07] Patrick Schaller, Srdjan Čapkun, and David Basin. BAP: Broadcast
Authentication Using Cryptographic Puzzles. In ACNS ’07: Proceedings
of the 5th International Conference on Applied Cryptography and Network
Security, pages 401–419, June 2007.

[TBFN07] Suratose Tritilanunt, Colin Boyd, Ernest Foo, and Juan Manuel González
Nieto. Toward Non-parallelizable Client Puzzles. In CANS 2007: Pro-
ceedings of the 6th International Conference on Cryptology & Network
Security, pages 247–264, December 2007.

[TJ10] Qiang Tang and Arjan Jeckmans. On Non-Parallelizable Deterministic
Client Puzzle Scheme with Batch Verification Modes. Centre for Telem-
atics and Information Technology, University of Twente, January 2010.
http://doc.utwente.nl/69557/.

[Ton91] A. Tonelli. Bemerkung über die Auflösung quadratischer Congruenzen.
Göttinger Nachrichten, pages 344–346, 1891.

[TTC] Test TCP (TTCP) - Benchmarking Tool for Measuring TCP and UDP
Performance. http://www.pcausa.com/Utilities/pcattcp.htm.

[vABHL03] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford.
CAPTCHA: Using Hard AI Problems For Security. In EUROCRYPT
’03: Proceedings of the 22nd International Conference on Theory and
Applications of Cryptographic Techniques, pages 294–311, May 2003.

[VP07] Eric Vyncke and Christopher Paggen. LAN Switch Security. Cisco Press,
2007.

[WJHF04] Brent Waters, Ari Juels, J. Alex Halderman, and Edward W. Felten. New
Client Puzzle Outsourcing Techniques for DoS Resistance. In CCS ’04:
Proceedings of the 11th ACM Conference on Computer and Communica-
tions Security, pages 246–256, October 2004.

121

http://doc.utwente.nl/69557/
http://www.pcausa.com/Utilities/pcattcp.htm

Bibliography

[WR03] XiaoFeng Wang and Michael K. Reiter. Defending Against Denial-of-
Service Attacks with Puzzle Auctions. In SP ’03: Proceedings of the
2003 IEEE Symposium on Security and Privacy, pages 78–92, May 2003.

[WR04] XiaoFeng Wang and Michael K. Reiter. Mitigating Bandwidth-
Exhaustion Attacks using Congestion Puzzles. In CCS ’04: Proceedings
of the 11th ACM Conference on Computer and Communications Security,
pages 257–267, October 2004.

[WR08] XiaoFeng Wang and Michael K. Reiter. A multi-layer framework for
puzzle-based denial-of-service defense. International Journal of Informa-
tion Security, 7:243–263, July 2008.

[WVB+06] Michael Walfish, Mythili Vutukuru, Hari Balakrishnan, David Karger,
and Scott Shenker. DDoS defense by offense. In SIGCOMM ’06: Proceed-
ings of the 2006 conference on Applications, technologies, architectures,
and protocols for computer communications, pages 303–314, September
2006.

[YL06] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture.
RFC 4251, January 2006.

122

Index

Symbols

NC . 59, 92
P . 59, 92
P-complete . 59, 92

A

address authenticity . . . 1, 33, 35, 52, 73
ARP 3, 7, 9, 13, 15 f, 19, 27
ARP spoofing 7, 9, 13
attack model . 2, 74
authentication2 f, 7 – 12, 14, 16, 20, 22,

24, 35, 37, 52, 63, 72 f

B

bastion. .53
beacon 4, 72, 75, 77 – 83
binary exponentiation 58 f, 92
block cipher 14, 18, 20, 30, 33, 37
boss / worker model 30
broadcast . . 12 f, 15, 17, 22, 34, 37 f, 44,

46, 49, 72, 77, 79, 82 f, 85

C

CAPTCHA . 55
CBC . 14
CEO . 97
Cipolla-Lehmer 56, 58, 61
client puzzles . . 4, 35, 51 – 55, 60 – 64,

72, 74 ff
CLL. .3, 7, 50, 86
confidentiality.2, 8 f, 14
contract signing 93, 97
counter-flooding 3, 33, 69
cube root modulo a prime 64
currency 2, 35 f, 39, 67

D

DDoS attack . 1, 35
DHCP 3, 7, 10, 13, 23 ff
DHCP starvation attack 7, 13, 25
Diffie-Hellman.14, 16, 21, 28, 35, 53, 63
DNS . 7, 83, 89
DoS attack.1, 7, 13, 33, 35 f, 49, 51, 60,

63, 74, 81 ff, 86, 89
DSA . 37, 71

E

Ethernet . . 7, 11, 13, 15, 26 f, 30, 38, 40,
45 f, 49, 60, 67, 77

extended Riemann hypothesis 56

F

fairness 40, 42, 46 f, 89
flow control 34, 45 ff, 49
FPGA . 67, 104

G

GPU . 67, 104

H

handshake 13 – 16, 18 – 21, 27 f, 33, 35,
37, 51, 60

hash function14, 18, 20, 33, 35, 43,
51, 60, 67, 72, 76, 78, 80, 83, 91,
100, 102

hash-reversal puzzles . 51, 53, 76, 85, 91
HMAC 14 f, 18, 20, 24, 30, 37

I

ICMP . 27, 74

123

Index

IEEE 802.11 . 35
IEEE 802.11i 11, 33, 35
IEEE 802.1AE . 11
IEEE 802.1X . 33, 35
IEEE 802.3x. .34, 45
intrusion detection system. 9
IP. .7, 60, 74, 77
IP address . 7, 12, 74
IPsec .9, 14, 51, 83
IV . 14

K

Karatsuba’s algorithm. 58, 103

L

Las Vegas algorithm.56
Legendre symbol . 55
link layer. .1, 9, 11
Linux.8, 10, 26 f, 80, 104, 106

M

MAC address . . .7, 11 f, 17, 19, 23 f, 27,
35, 38, 46, 74

MACsec see IEEE 802.1AE
master key 14, 18, 24, 28
Miller-Rabin test . 58
MiM attack. .7, 14
Montgomery reduction.65, 92, 103
MTU 26, 40, 43, 46, 67, 71, 82 f
multicast .81

N

network layer 1, 9, 11
non-parallelizable 4 f, 52, 54, 59, 90 f
nonce . 18, 20

O

offline submission 2, 5, 89
OSRTLP 102, 104, 106

P

parallelization 30, 53, 59

precomputation.4, 62 f, 72, 76, 81
public-key cryptography . . .2, 8, 13, 33,

37, 51, 71, 83, 97

Q

quadratic non-residue 55 f, 60
quadratic residue 55 f, 60

R

renegotiation . 21
repeated squaring 52, 54, 58 f, 91 ff, 95,

102
replay attack . . 10, 18, 20, 22, 25, 79, 84
router . 1, 11, 20, 73
RSA time-lock puzzles 5, 90, 94
RSA 15 f, 22, 27, 37, 40, 54, 71, 84, 91,

94
RTT . 28 ff

S

S-ARP . 10
SA . 13, 16, 18 f, 21
security association see SA
SEND. .33
signature13, 15 f, 22, 27, 33,

37 f, 40, 42, 55, 71, 78, 83 f, 86,
90, 93, 97

smurf attack . 13
spam. .55
speak-up . 36
square root modulo a prime.4, 52, 54 ff,

58, 61, 66, 77
square-and-multiply see binary

exponentiation
SSH. 9
SSL / TLS 9, 35, 51, 83
subset sum problem 54
switch 11, 34, 40, 42, 45 f

T

TARP . 10
TCP.28, 33, 46 f, 49, 60, 83
time synchronization 18, 41, 79

124

Index

time-lock puzzles 54, 90 ff
timed-release cryptography . . 5, 54, 91 ff
Tonelli-Shanks.56, 58

U

UDP . 12, 60, 77, 82
unicast . . . 12 – 15, 17, 20, 28, 46, 49, 82

W

Wi-Fi . 1, 8, 11, 27
Windows 8, 26 f, 102, 104, 106
WPA . 11
WPA2.see IEEE 802.11i

125

	Title page
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	CLL: A Cryptographic Link Layer for LANs
	Related Work
	Protocol Overview
	Cryptographic Design Decisions
	Operation of CLL in Detail
	Basic Packet Format
	ARP Handshake and SA Setup
	Unicast IP Packets
	Periodical Key Rollover
	Broadcast Packets

	Integrating and Securing DHCP
	Basic Concept
	Authenticating the Packets
	Further Security Measures

	Implementation and Evaluation
	CLL as a Cross-Platform Service
	Performance Evaluation
	Gigabit Ethernet and Parallelization

	Chapter Summary

	Counter-Flooding: DoS Protection for Public-Key Handshakes in LANs
	Related Work
	Design of Counter-Flooding
	Goal: Safeguarding the Public-Key Handshake
	Basic Idea
	Bandwidth vs. Packet Count
	Determining the Flooding Duration
	Choosing the Parameters

	More Details
	Reducing the Queue Size
	Impact of Counter-Flooding on Network Performance
	Comparison to a Probabilistic Arbitration Scheme

	Flooding Experiments in Switched Ethernet
	IEEE 802.3x Flow Control
	Bandwidth Division between Host A and Attacker
	Preventing DoS Flooding Attacks on TCP

	Chapter Summary

	Non-Parallelizable and Non-Interactive Client Puzzles
	Related Work
	Modular Square Roots
	Extracting Square Roots Modulo a Prime
	Modular Exponentiation
	Non-Parallelizability

	Client Puzzles from Modular Square Roots
	Constructing and Solving a Non-Interactive Puzzle
	Puzzle Verification
	Puzzle Granularity and Public Auditability
	Interactive Client Puzzles
	Client Puzzles from Modular Cube Roots?

	Evaluation and Protocol Enhancements
	Puzzle Benchmark
	Increasing the Bandwidth-Based Payment

	Chapter Summary

	Secure Client Puzzle Architecture based on Random Beacons
	Related Work
	Secure Client Puzzle Architecture
	Non-Interactive Client Puzzles
	Client Puzzles from a Random Beacon
	Puzzle Construction
	Random Beacon Server
	Receiving and Verifying the Beacons
	Puzzle Submission and Verification

	Protocol Extensions
	Beacon Distribution across LAN Boundaries
	Emergency Deployment of Beacon Fingerprints

	Chapter Summary

	Offline Submission with RSA Time-Lock Puzzles
	Related Work
	Time-Lock Puzzles
	More Timed-Release Cryptography

	RSA Time-Lock Puzzle Scheme
	Key Generation
	Public and Private Key Operation
	Security Analysis
	Delayed Encryption and Signature Verification
	Other Applications for RSA Time-Lock Puzzles
	Small Private Exponent

	Offline Submission Protocol
	Basic Design
	Building a Puzzle Chain
	Alternative Approach

	Implementation and Evaluation
	The OSRTLP Tool
	Extensions: GUI and Online Submission System
	Performance Evaluation

	Chapter Summary

	Conclusion
	Bibliography
	Index

