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Zusammenfassung

Subgroup conjugacy separability ist eine Eigenschaft einer Gruppe, die

logische Fortsetzung der folgenden Reihe von gut bekannten Gruppen-

eigenschaften der Gruppen ist: residually finiteness (RF), conjugacy sep-

arability (CS), and subgroup separability (LERF).

Definition 1: Eine Gruppe G heißt subgroup conjugacy separable (SCS),

wenn es für je zwei nicht konjugierte endlich erzeugte Untergruppen H1

und H2 in G, einen Homomorphismus φ von G auf eine endliche Gruppe

G gibt, so dass φ(H1) nicht zu φ(H2) konjugiert ist.

Diese Eigenschaft wurde erst im preprint [6] von Bogopolski und Gru-

newald definiert. Es gibt viele Artikel über RF, CS und LERF Gruppen,

aber wir kennen nur zwei Artikel über SCS Gruppen. In [15] haben Grun-

ewald und Segal bewiesen, dass alle fast polyzyklische Gruppen SCS sind

(Siehe auch [34, Kapitel 4, Satz 7]). In [6] haben Bogopolski und Grun-

ewald bewiesen, dass freie Gruppen und einige fast freie Gruppen SCS

sind.

Eine Gruppe G heißt hereditary subgroup conjugacy separable (HSCS),

wenn jede endliche Index Untergruppe H in G SCS ist.

In Proposition 1.6.8 geben wir eine hinreichende Bedingung für eine

SCS Gruppe um HSCS zu sein.

Außerdem haben wir viele Ergebnisse über eine andere Eigenschaft,

die mit der SCS Eigenschaft verwandt ist, bekommen.

Definition 2: Eine Gruppe G heißt subgroup into-conjugacy separable

v



vi Zusammenfassung

(SICS), wenn für je zwei endlich erzeugte Untergruppen H1,H2 in G gilt:

wenn H2 nicht zu einer Untergruppe von H1 konjugiert ist, dann existiert

einen Homomorphismus φ von G auf eine endliche Gruppe G, so dass

φ(H2) nicht zu einer Untergruppe von φ(H1) konjugiert ist.

Das Studium der SICS Gruppen wurde durch Bogopolski und Grune-

wald in [6] angefangen. Insbesondere haben sie bewiesen, dass freie Grup-

pen SICS sind, und jede fast freie Gruppe, die SICS ist, auch SCS ist.

Die Hauptfrage, die wir in dieser Arbeit beantwortet haben, lautet:

Ist die Klasse der SICS Gruppen unter den verschiedenen Arten von

Produkten geschlossen?

Die Antwort der analogen Frage für die Klassen der RF, CS, und LERF

Gruppen kann in der folgenden Tabelle zusammengefaßt werden.

A and B RF CS LERF

A ∗ B ja ja ja

A × B ja ja nicht immer

A � B nicht immer nicht immer nicht immer

A � B nicht immer nicht immer nicht immer

Tab. 1. Die Klassen der RF, CS, und LERF Gruppen mit den

verschiedenen Arten von Produkten.

Um diese Frage für die Klasse der SICS Gruppen zu beantworten,

haben wir die folgenden Ergebnisse bewiesen.

Hauptsatz (O. Bogopolski, A. Elsawy). Das freie Produkt zweier Gruppen,

die SICS und LERF sind, ist wieder SICS (und LERF nach [7] und [32]).

Wir haben auch weitere Ergebnisse für verschiedene Arten von Pro-

dukten bewiesen. Wir haben bewiesen, dass das direkte Produkt Fm × Fn

für alle m, n ≥ 2 nicht SICS ist, wobei Fm die freie Gruppe vom Rang m ist.

Auf der anderen Seite haben wir ein Beispiel einer nicht SICS Gruppe

gefunden, die ein semidirektes Produkt zweier SICS Gruppen ist.



Zusammenfassung vii

In der Tat haben wir gezeigt, dass das semidirekt Produkt F2 � F1 nicht

SICS ist, wobei F2 = 〈x, y | 〉, F1 = 〈a | 〉, und die Operation von a auf F2

durch axa−1 = y−1x, aya−1 = y definiert ist.

Wir haben ebenfalls bewiesen, dass die Klasse der SICS Gruppen unter

dem Kranzprodukt nicht geschlossen ist.

Zudem haben wir ein Beispiel einer nicht SICS Gruppe gefunden, die

das amalgamierte Produkt einer SICS Gruppe mit einer SCS Gruppe über

einer zyklischen Untergruppe ist.

So können wir die Tabelle 1 erweitern.

A and B RF CS LERF SICS

A ∗ B ja ja ja ja mit Beding.

A × B ja ja nicht immer nicht immer

A � B nicht immer nicht immer nicht immer nicht immer

A � B nicht immer nicht immer nicht immer nicht immer

Tab. 2. Die Klassen der RF, CS, LERF und SICS Gruppen mit den

verschiedenen Arten von Produkten.
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Notation

We have tried to use only standard notation and list below only a few

usages that might cause difficulty.

∅ is the empty set.

Z denotes the set of all integers.

N is the set of positive integers.

Q denotes the set of all rational numbers.

|X| denotes the cardinal of the set X.

X \ Y is set difference.

X ⊆ Y denotes inclusion, proper or not; X � Y denotes strict inclusion.

G = 〈X |R〉 denote the presentation corresponding to a group G with

generators x ∈ X and relators r ∈ R.

G = 〈X | 〉 denotes the free group with basis X.

|w|, for w ∈ 〈X | 〉, is the length of w as a reduced word relative to the

basis X.

Fn is the free group of rank n ∈ N.

G = 〈X〉 denotes the group generated by the set X.

H � G means that H is a subgroup of G.

H < G means that H is a proper subgroup of G.

N �G means that N is a normal subgroup of G.

|G : H| is the index of H in G.

[a, b] = aba−1b−1, xg = gxg−1, and Hg = gHg−1.

CG(H) is the centralizer of the subgroup H in G.

NG(H) is the normalizer of the subgroup H in G.

xi



xii Notation

A × B is the direct product.

A � B is the semidirect product.

A ∗ B is the free product.

|w|, for w ∈ A∗B, is the length of w as an alternative product of elements

from A and B.

A∗X B denotes the free product of A and B with X = A∩B amalgamated.

A � B is the wreath product.



Introduction

The subgroup conjugacy separability property is a logical extension of

the following series of well-known residual properties of groups: resid-

ual finiteness (RF), conjugacy separability (CS), and subgroup separability

(LERF).

Definition 0.0.1. A group G is called subgroup conjugacy separable (abbrevi-

ated to SCS) if for every two finitely generated subgroups H1 and H2 in G

such that H2 is not conjugate to H1, there exists a homomorphism φ from

G onto a finite group G such that φ(H1) is not conjugate to φ(H2) in G.

This definition was first introduced by Bogopolski and Grunewald in

[6]. There are many papers on residually finite, conjugacy separable, and

LERF groups. However, to our knowledge there are ony two papers on

SCS groups. In [15] , Grunewald and Segal proved that all virtually poly-

cyclic groups are SCS (see also [34, Ch. 4, Thm. 7]). Bogopolski and Grun-

ewald [6] proved that free groups and some virtually free groups are SCS.

A group G is called hereditarily subgroup conjugacy separable if every fi-

nite index subgroup H � G is subgroup conjugacy separable.

In Proposition 1.6.8, we give a sufficient condition for a subgroup con-

jugacy separable group to be hereditarily subgroup conjugacy separable.

On the other hand, we have studied another property called SICS. The

definition of SICS groups can be obtained by replacement the words “con-

jugate to” in Definition 0.0.1 by the words “conjugate into”.

1



2 Introduction

Definition 0.0.2. A group G is called subgroup into conjugacy separable (or

simply SICS) if for every two finitely generated subgroups H1 and H2 in

G so that H2 is not conjugate into H1 in G, there exists a homomorphism φ

from G onto a finite group G such that φ(H2) is not conjugate into φ(H1) in

G; Bogopolski and Grunewald [6].

(Here we say that H2 is conjugate into H1 if there exists g ∈ G such that

Hg
2 � H1.)

The study of SICS groups was initiated by Bogopolski and Grunewald

in [6]. They have proved that free groups are SICS, and every SICS virtu-

ally free group is SCS.

The present thesis is primarily an attempt to extend our knowledge of

the SICS groups. Namely, the main question we have considered is the

following

Question: Is the class of SICS groups closed under different kinds of prod-

ucts?

In Chapters 2 and 3, we give an answer to this question with respect to

free, direct, semidirect, and wreath products.

The answer to the analogous question for the classes of RF, CS, and

LERF groups can be summarized in the following table:

A and B RF CS LERF

A ∗ B yes yes yes

A × B yes yes not nec.

A � B not nec. not nec. not nec.

A � B not nec. not nec. not nec.

Tab. 0.0.1. The classes RF, CS, and LERF with different kinds of products.

In order to answer this question for the class of SICS groups, we have

proved the following
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Main theorem (O. Bogopolski, A. Elsawy). The free product of two groups

which are simultaneously SICS and LERF is again SICS (and LERF by [7] and

[32]).

On the other hand, we proved that the direct product Fm × Fn of two

free groups is not SICS for all m, n ≥ 2. However, free groups are LERF [17]

and SICS [6]. We also observed that this example implies that the right-

angled Artin group G corresponding to the complete bipartite graph Kn,m

is not SICS for all n,m ≥ 2.

We also gave an example of a non-SICS group which is a semidirect

product of two SICS groups. Namely, we proved that the semidirect prod-

uct F2 � F1 is not SICS, where F2 = 〈x, y | 〉, F1 = 〈a | 〉, and the action of a on

F2 is given by axa−1 = y−1x, aya−1 = y.

Moreover, we have noticed that the class of SICS groups is not closed

under the wreath product as expected.

Finally, we gave an example of a non-SICS group which is the free

product of an SICS group and an SCS group with amalgamated cyclic sub-

group.

Therefore, in the following table we can see the comparison between

the classes RF, CS, LERF, and SICS with respect to the different kinds of

products mentioned above.

A and B RF CS LERF SICS

A ∗ B yes yes yes yes with conditions

A × B yes yes not nec. not nec.

A � B not nec. not nec. not nec. not nec.

A � B not nec. not nec. not nec. not nec.

Tab. 0.0.2. The classes RF, CS, LERF, and SICS with different kinds of products.
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Chapter 1

Preliminaries

Following P. Hall as outlined by Gruenberg [14], we say that a group G

is residually P where P is any group property if for every non-trivial

element g ∈ G there exists a quotient group G satisfying P so that the

corresponding element g of g in G is non-trivial.

As in [14], it is obvious to see that any group which satisfies P is resid-

ually P , and it follows further that residually “residually P” is always

the same property as residually P . We also can easily notice that if P

implies another property P ′, then also residually P implies residually

P ′.

This last fact shows, in particular, that a residually nilpotent group is

residually soluble. Furthermore, residual “of order pk”, where p is a prime

number and k is a positive integer, implies both residual nilpotency and

residual finiteness.

Residual properties attracted a lot of mathematicians. For example,

Magnus [23] proved that every free group is residually nilpotent. Mal’cev

[25], Marshall Hall [16], and Takahasi [38] proved that every free group is

residually “of order pk” for any given prime number p and some positive

integer k.

In this thesis we focus on the finiteness property. In particular, in this

chapter we give an overview of the class of residually finite groups, some

5



6 1.1. RESIDUALLY FINITE GROUPS

of its properties, and the relation between some of its interesting proper

classes (for more details see [24, Sec. 6.5]).

If we consider finiteness as the property P , then we get the follow-

ing definition: A group G is called residually finite if for every non-trivial

element g ∈ G, there exists a finite quotient group G such that g in G is

non-trivial. Equivalently, by setting g = xy−1, a group G is residually finite

if for every two different elements x, y ∈ G, there exists a homomorphism

φ from G onto a finite group G such that φ(x) � φ(y) in G.

In the following section many equivalent definitions and examples of

residually finite groups will be introduced.

1.1 Residually finite groups

Definition 1.1.1. A group G is called residually finite (abbreviated to RF) if

one of the following equivalent conditions holds:

(a) for every two elements x � y in G, there exists a homomorphism φ

from G onto a finite group G such that φ(x) � φ(y) in G;

(b) for every non-trivial element g ∈ G there is a finite index (normal)

subgroup D of G which does not contain g;

(c) the intersection of all finite index normal subgroups in G is the triv-

ial subgroup of G;

(d) the intersection of all finite index subgroups in G is the trivial sub-

group of G.

For completeness, we show that these conditions are indeed equiva-

lent.

(a)⇒(b): Let g be a non-trivial element in G, then there exists a homo-

morphism φ from G onto a finite group G such that φ(g) in G is non-trivial.

Denote ker(φ) by D, then D is a finite index (normal) subgroup of G such

that g � D.
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(b)⇒(c): Let H be the intersection of all finite index normal subgroups

of G, then H is the trivial subgroup of G.

Indeed, if g is a non-trivial element in H, then g belongs to every finite

index normal subgroup of G. On the other hand, according to (b), there

exists a finite index subgroup D of G such that g � D. Since N := ∩x∈GDx is

a normal subgroup in G and |G : N| ≤ (|G : D|)! < ∞ [5, p. 8, Poincaré The-

orem], the subgroup N is a finite index normal subgroup in G such that

g � N � D, which leads to a contradiction.

(c)⇒(d): The implication is obvious, since the intersection of all finite

index subgroups in G is a subgroup of the intersection of all finite index

normal subgroups in G.

(d)⇒(a): Let x, y ∈ G such that x � y, then g := xy−1 is a non-trivial

element in G. It follows from (d) that there exists a finite index subgroup

D such that g � D.

The subgroup N := ∩z∈GDz is a finite index normal subgroup in G such

that g � N � D, then xN � yN. Let G = G/N and φ be the natural epimor-

phism from G onto G, then φ(x) � φ(y) in G. �

The class of residually finite groups contains all finite groups, free gro-

ups [21], polycyclic groups, in particular, finitely generated nilpotent gro-

ups [19], and polycyclic-by-finite groups [26].

Moreover, by the work of Meskin [29], the Baumslag-Solitar group

BS (n,m) = 〈a, b | a−1bna = bm〉, where n,m ∈ Z,

is residually finite if and only if at least one of the following three cases

holds: |n| = 1, |m| = 1, or |n| = |m|.

For any finitely presented residually finite group G the following theo-

rems have been proven:

I. G has solvable word problem (see [22, p. 195, Thm. 4.6]).
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That is, there exists an algorithm that takes as input two words w1,w2

in the generators of G and decides after finitely many steps whether

w1 = w2 in G or not.

II. G is Hopfian, that is, every epimorphism from G onto itself is an

automorphism (see for example [5, p. 120, Thm. 29.9]).

However, Hopfian groups are not always residually finite. For ex-

ample, the Baumslag-Solitar group BS (2, 4) is Hopfian but not resid-

ually finite. According to Baumslag and Solitar [3], BS (n,m) is Hop-

fian if and only if at least one of the following three cases holds: n |m,

m | n, or n and m have precisely the same prime divisors.

III. The automorphism group of G is residually finite (see [24, p. 414]).

IV. Every subgroup of G is residually finite, and every group K which

contains G as a subgroup of finite index is residually finite, Scott [33].

However, this may not be true for all quotient groups of G. For in-

stance, the free group F2 with two free generators is residually finite

but its quotient group BS (2, 3) is not.

Another example of a non-residually finite group is given by G. Hig-

man in [18]. He proved that the group

G = 〈a1, a2, . . . , an | a−1
i ai+1ai = a2

i+1, a−1
n a1an = a2

1, i = 1, 2 . . . , n − 1, n ≥ 4〉

has no normal subgroup of finite index, and therefore, the only finite quo-

tient group of G is the trivial one.

In the rest of this chapter we will discuss in detail the class of residually

finite groups to investigate its subclasses.

In Sections 1.2 and 1.3 we consider important subclasses of the class of

residually finite groups. Definitions of these subclasses LERF, πC, and ERF

can be obtained by replacement the word “elements” in Definition 1.1.1 (a)

by “finitely generated subgroups”, “cyclic subgroups”, or “subgroups”,

respectively.
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1.2 LERF, πC, and ERF groups

Definition 1.2.1. I. A group G is called locally extended residually finite (ab-

breviated to LERF) if one of the following equivalent conditions is true:

(a) for every two finitely generated subgroups H1 � H2 in G, there exists

a homomorphism φ from G onto a finite group G such that φ(H1) � φ(H2);

(b) for every finitely generated subgroup H of G and every g ∈ G \ H,

there exists a homomorphism φ from G onto a finite group G such that

φ(g) � φ(H);

(c) for every finitely generated subgroup H of G and every g ∈ G \ H, a

finite index subgroup D of G exists and satisfies H � D and g � D.

II. A group G is called a πC group, if a similar condition to one of the

equivalent conditions (a), (b), or (c) holds whenever H1,H2, and H are

cyclic subgroups of G.

III. A group G is called extended residually finite (ERF) if a similar con-

dition to one of the equivalent conditions (a), (b), or (c) holds whenever

H1,H2, and H are subgroups of G.

For completeness, we give a proof that these conditions are indeed

equivalent. We consider only the case of LERF groups; the same argument

holds for πC and ERF groups.

(a)⇒(b): Let H be a finitely generated subgroup of G and let g ∈ G \ H.

Let H′ be the subgroup of G defined by H′ = 〈H, g〉, then H � H′.

Applying (a), we conclude that there exists a homomorphism φ from G

onto a finite group G such that φ(H) � φ(H′) in G.

Since φ(H′) = 〈φ(H), φ(g)〉 and φ(H) � φ(H′), we have φ(g) � φ(H).

(b)⇒(c): Let H be a finitely generated subgroup of G and let g ∈ G \ H.

According to (b), there exists a homomorphism φ from G onto a finite

group G such that φ(g) � φ(H) in G.

Therefore, the finite index normal subgroup N :=ker(φ) of G satisfies

gN � {hN : h ∈ H} = HN. Let D = HN, then D is a finite index subgroup of
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G such that H � D and g � D. Indeed, if g ∈ D, then gN ⊆ DN = D, which

is a contradiction.

(c)⇒(a): Let H1, H2 be two different finitely generated subgroups of G,

then, without loss of generality, there exists g ∈ H2 such that g � H1.

Using (c), we can find a finite index subgroup D of G such that H1 � D

and g � D. Since N := ∩x∈GDx is a finite index normal subgroup in G, the

group G := G/N is finite. Let φ be the natural epimorphism from G onto G.

We claim that φ(g) � φ(H1), which obviously implies φ(H1) � φ(H2) as

desired. Indeed, if φ(g) ∈ φ(H1), then gN ⊆ H1N, hence g ∈ H1N ⊆ D ·D = D,

a contradiction. �

Clearly, any ERF, LERF, or πC group is residually finite. It follows that

any finitely presented ERF, LERF, or πC group has solvable word problem.

In addition, one of the special properties of LERF groups is that they have

solvable generalized word problem.

Recall that a group G has solvable generalized word problem, if there

is an algorithm that takes as input a finite subset X of G and an element

g ∈ G and decides after finitely many steps whether g ∈ 〈X〉 or not.

There are many theorems about LERF groups. We cite here some of

them:

• Every subgroup of a LERF group is LERF and every finite extension

of a LERF group is LERF, Scott [33].

• Polycyclic groups are LERF, Mal’cev [26].

• Free groups are LERF, M. Hall [17].

• The free product of two LERF groups is LERF, Romanovskii [32] and

Burns [7].

• The free product of two LERF groups amalgamated along a finite

subgroup is LERF, Allenby and Gregorac [2].
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• The free product of two free groups amalgamated along a cyclic sub-

group is LERF, Brunner, Burns, and Solitar [4].

• The free product of two nilpotent groups amalgamated along a cyclic

subgroup is LERF, Tang [39].

• The free product of a LERF group and a free group F amalgamated

along a maximal cyclic subgroup in F is LERF, Gitik [11].

• The free product of two LERF groups amalgamated along a cyclic

subgroup need not be LERF, Gitik and Rips [12].

• The direct product of two LERF groups need not be LERF, Allenby

and Gregorac [2].

1.3 Relations between the classes ERF, LERF, πC,

and RF

Relations between the classes ERF, LERF, πC, and RF are described by Al-

lenby and Gregorac, in [2], as the following:

ERF � LERF � πC � RF.

It is clear that, the inclusions follow directly from the definitions, how-

ever, the definitions are not enough to show the non-equality.

Therefore, we consider the following examples to show that these in-

clusions are strict.

LERF but not ERF group: Consider the free group F2(a, b). M. Hall [17]

proved that free groups are LERF. We give a proof that F2 is not ERF.

Consider the subgroup H = 〈biab−i | i ∈ Z \ {0}〉 of F2(a, b), then it is

obvious that a � H. We claim that a belongs to every finite index subgroup

D of F2 which contains H, therefore F2 is not ERF.

Since D has finite index in F2, there exists n ∈ Z \ {0} such that bn ∈ D.

Hence a = b−n(bnab−n)bn ∈ D (note that bnab−n ∈ H � D).
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πC but not LERF group: Consider the direct product F2 × F2. In [2],

Allenby and Gregorac proved that F2 × F2 is not LERF.

However, F2×F2 is πC, because free groups are πC, and the direct prod-

uct of two πC groups is πC, which is proved by Stebe [37, Thm. 1, 4].

RF but not πC group: Consider the Baumslag-Solitar group

BS (1,m) = 〈a, b | a−1ba = bm〉 for all m > 1.

Although this group is residually finite (see for example [29]), it is easy

to show that BS (1,m) is not πC.

Indeed, it is clear that b � 〈bm〉. Let φ be an epimorphism from BS (1,m)

onto a finite group of order s, then

φ(b) = φ(a)−sφ(b)φ(a)s = φ(a−sbas) = φ(bms
) ∈ φ(〈bm〉).

Since s is arbitrary, we claim that φ(b) ∈ φ(〈bm〉) for every epimorphism

φ from BS (1,m) onto a finite group. Thus BS (1,m) is not πC. �

Now, an interesting question arises naturally and need to be answered.

Question: Are the classes of ERF, LERF, πC, and RF groups closed under

different kinds of products?

In the following, we introduce the complete answer to this question

concerning the wreath product, the direct product, the semidirect product,

and the free product.

The wreath product: By wreath product we mean the restricted wreath

product in which the direct product is used.

The wreath product of two ERF, LERF, πc, or RF groups is not necessary

to be RF, and therefore need not be ERF, LERF, and πC.

For instance, consider the group W = S 3 � Z, where S 3 is the symmetric

group of degree 3. It is well-known that the groups S 3 and Z are ERF,

LERF, πC, and RF. Now we show that W is not RF.

Let P be any property such that whenever a group has P then all

its subgroups also have P . Gruenberg [14, Thm. 3.1] proved that if the

wreath product W = A�B is residually P , then either B is P or A is abelian.
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Obviously, S 3 is not abelian and Z is infinite. In addition, the subgroup

of any finite group is finite. It follows immediately that, the group W is not

RF, and therefore W is not ERF, LERF, or πC.

The direct product: According to Allenby and Gregorac [2], it has been

proven by Mal’cev [26], that the direct product of two ERF groups is ERF.

On the other hand, the direct product of two LERF groups may not be

LERF. For instance, the direct product F2 × F2 is not LERF, by the work of

Allenby and Gregorac [2], although F2 is LERF.

It follows that, Fn×Fm is not LERF for all n and m greater than 1, because

every subgroup of LERF group is LERF, Scott [33].

They also proved, in [2], that F1 × F2 is LERF.

Moreover, for the class of πC groups, it is proved by Stebe [37] that the

direct product of two πC groups is πC. For the class of RF groups, it is

obvious that the direct product of two RF groups is RF.

The semidirect product: In [2], Allenby and Gregorac proved that the

semidirect product G = A�B of two groups A and B satisfies the following

assertions:

• If A and B are ERF, then G is ERF.

• If A is ERF and B is LERF, then G is LERF.

• If A and B are πC, then G is πC.

If A and B are LERF groups, then the semidirect product A�B need not

be LERF. For instance, Burns, Karrass, and Solitar [8] proved that F2 � F1

is not LERF for some particular action of F1 on F2, although F2 and F1 are

LERF (note that F2 is not ERF).

Similarly, if A and B are RF groups, then the semidirect product A � B

may not be RF. For instance, consider the group W = S 3 �Z, where S 3 is the

symmetric group of degree 3.
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As we have seen in the discussion of the wreath product, W is not resid-

ually finite. However, W can be written as W = (
∏

i∈Z S 3) � Z, where Z and∏
i∈Z S 3 are residually finite. Note that Gruenberg [14] proved that the di-

rect product of RF groups is RF.

The free product: The free product of two ERF groups may not be ERF.

For instance, the infinite cyclic group Z is ERF, however the free product

Z ∗ Z = F2 is not ERF, as we have proved in the beginning of Section 1.3.

On the other hand, it is proved by Burns [7] and Romanovskii [32] that

the free product of two LERF groups is LERF, and also it is proved by Stebe

[37] that the free product of two πC groups is πC.

Finally, we can summarize almost all the results we have discussed in

the following table.

A and B ERF LERF πC RF

A � B not nec. not nec. not nec. not nec.

A × B yes not nec. yes yes

A � B yes not nec. yes not nec.

A ∗ B not nec. yes yes yes

Tab. 1.3.1. The classes ERF, LERF, πC, and RF with different kinds of products.

Another modification of the condition on the elements of a residually

finite group is to replace the equality between the elements in Definition

1.1.1 (a) by the conjugacy.

In this way, we obtain another proper class of the class of residually

finite groups, which we consider in the next section.

1.4 Conjugacy separable groups

Definition 1.4.1. A group G is called conjugacy separable (CS) if for every

two non-conjugate elements x, y ∈ G, there exists a homomorphism φ from

G onto a finite group G such that φ(x) is not conjugate to φ(y) in G.
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Clearly, every CS group is RF. Indeed, let G be a CS group with the

identity element e and let g be a non-trivial element in G. According to

Definition 1.1.1 (b), to show that G is RF, we need to find a finite index

subgroup D of G such that D does not contain g.

Since g is not conjugate to e and G is CS, there exists a homomorphism

φ from G onto a finite group G such that φ(g) is not conjugate to φ(e) in G.

So φ(g) is non-trivial in G. Thus D :=ker(φ) is a finite index subgroup of G

such that g � D.

On the other hand, every RF group is not necessary to be CS. For in-

stance, in [36], Stebe proved that the group SL(n,Z) of n×n integer matrices

with determinant 1 is not CS for all n ≥ 3, although SL(n,Z) is RF.

To show that SL(n,Z) is RF, let (ai j) = A � B = (bi j) ∈ SL(n,Z), then there

exist at least one i and one j such that ai j � bi j. Let m > max{|ai j|, |bi j|}, then

the map φ : SL(n,Z) → SL(n,Zm) is a homomorphism onto a finite group

such that φ(A) � φ(B).

Since CS groups are RF, all finitely presented CS groups have solvable

word problem. Moreover, in [28], McKinsey proved that if G is finitely

generated recursively presented group and G is conjugacy separable then

the conjugacy problem for G is solvable.

Recall that the conjugacy problem for a group G is solvable if there

exists an algorithm that takes as input two words w1,w2 in the generators

of G and decides after finitely many steps whether w1 is conjugate to w2 in

G or not.

According to Remeslennikov [31], the direct product of two CS groups

is CS. In the same paper he proved that free groups are CS, and the free

product of two CS groups is CS.

Furthermore, he gave a necessary and sufficient condition for the wre-

ath product of two CS groups to be CS. More precisely, he proved that if A

and B are two CS groups, then the wreath product W = A � B is CS if and

only if either B is finite or A is abelian and πC.
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According to his condition the wreath product of two CS groups may

not be CS. For instance, although S 3 and Z are CS, the group W = S 3 � Z
is not CS because S 3 is not abelian and Z is not finite. This was expected

because W is not RF and every CS group is RF.

The same example can be also used as a proof that the semidirect prod-

uct of two CS groups need not be CS. Indeed, it is proved by Remeslen-

nikov [31] that the direct product of CS groups is CS, in particular,
∏

i∈Z S 3

is CS, and we know that Z is CS. However, W = (
∏

i∈Z S 3) � Z is not CS.

So we can add the CS class to Table 1.3.1 to get the following table:

A and B ERF LERF πC CS RF

A � B not nec. not nec. not nec. not nec. not nec.

A × B yes not nec. yes yes yes

A � B yes not nec. yes not nec. not nec.

A ∗ B not nec. yes yes yes yes

Tab. 1.4.1. The classes ERF, LERF, πC, CS, and RF with different kinds of

products.

One of the properties which distinguish the class of CS groups from

the other classes EFR, LERF, πC, and RF is that a subgroup of a CS group

need not be CS.

In [27], Martino and Minasyan have produced an example of finitely

presented conjugacy separable groups that contain non-conjugacy separa-

ble subgroups of finite index.

In addition, Chagas and Zalesskii [10] have constructed another exam-

ple with the same property. Furthermore, they gave a sufficient condition

for a conjugacy separable group to preserve this property when passing to

subgroups of finite index (see Section 1.6).

On the other hand, some special subgroups of a CS group are CS. For

instance, it is proved by Minasyan [30] that every retract subgroup of a CS

group is CS.
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Another special property of CS groups is that the class of conjugacy

separable groups is not closed under finite extensions. In [13], Goryaga

gave an example of a non-CS group which is a finite extension of a CS

group.

The relation between CS and LERF groups is not completely known.

However, we can easily notice that every CS group is not necessary to be

LERF. For instance, the group F2 × F2 is CS [31] but not LERF [2].

In Section 1.5 we consider another subclasses, SCS and SICS, of the

class of residually finite groups. The definition of the subclass SCS can

be obtained by replacement the word “elements” in Definition 1.4.1 (a) by

“finitely generated subgroups”. The definition of the subclass SICS can be

obtained by replacement the words “conjugate to” in the definition of SCS

groups by the words “conjugate into”. The definition of the into-conjugacy

can be found in Definition 1.5.2.

1.5 SCS and SICS groups

The following definition was first introduced in [6] by Bogopolski and

Grunewald.

Definition 1.5.1. A group G is called subgroup conjugacy separable (SCS)

if for every two non-conjugate finitely generated subgroups H1,H2 � G,

there exists a homomorphism φ from G onto a finite group G such that

φ(H1) is not conjugate to φ(H2) in G.

The study of SCS groups was initiated by Grunewald and Segal in [15],

although the class of SCS groups were not defined yet. They have proved

that all virtually polycyclic groups are SCS (see also [34, Ch. 4, Thm. 7]).

In [6], Bogopolski and Grunewald proved that free groups and some

finite extensions of free groups are SCS.

Obviously, every SCS group is RF. Indeed, let G be an SCS group and g

be a non-trivial element in G, then 〈g〉 is not conjugate to the subgroup 〈e〉,
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where e is the identity element in G. Since G is SCS, there exists a homo-

morphism φ from G onto a finite group G such that φ(〈g〉) is not conjugate

to φ(〈e〉). Thus φ(g) is non-trivial in G, and therefore G is RF.

Since SCS groups are RF, finitely presented SCS groups have solvable

word problem. Moreover, as it was observed by Bogopolski and Grunew-

ald [6], finitely presented SCS groups have solvable generalized conjugacy

problem.

Recall that a group G has solvable generalized conjugacy problem, if

there is an algorithm that takes as input two finite subsets X and Y of G

and decides after finitely many steps whether the subgroups 〈X〉 and 〈Y〉
are conjugate in G or not.

Definition 1.5.2. Let A and B be two subgroups of a group G. We say that

A is conjugate into B, if there is an element g ∈ G such that Ag is a subgroup

of B.

Definition 1.5.3. (Bogopolski and Grunewald [6]) A group G is called sub-

group into-conjugacy separable (SICS) if for every two finitely generated sub-

groups H1,H2 � G such that H2 is not conjugate into H1, one of the follow-

ing equivalent conditions holds:

(a) there exists a homomorphism φ from G onto a finite group G such

that φ(H2) is not conjugate into φ(H1) in G.

(b) there exists a finite index subgroup D of G such that H1 is contained

in D and H2 is not conjugate into D.

For completeness, we show that these conditions are indeed equiva-

lent.

(a) ⇒ (b): Let N := ker(φ), where φ is the homomorphism defined in (a).

Since φ(H2) is not conjugate into φ(H1) in G, the subgroup H2N is not con-

jugate into H1N in G.

Set D := H1N, then clearly H1 � D, and H2 is not conjugate into D.

Indeed, if there exists g ∈ G such that Hg
2 � D, then

(H2N)g = Hg
2 N � DN = D = H1N,
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which contradicts that H2N is not conjugate into H1N in G.

(a) ⇐ (b): Let D be the finite index subgroup of G which is given by (b).

Since N := ∩g∈GDg is a finite index normal subgroup of G, consider the

natural homomorphism φ from G onto the finite group G/N.

To prove that φ satisfies (a), assume to the contrary that φ(H2) = H2N is

conjugate into φ(H1) = H1N. It follows directly that (H2N)g = Hg
2 N � H1N

for some g ∈ G. Then Hg
2 N � D, and therefore, Hg

2 � D, which contradicts

that H2 is not conjugate into D. Hence φ(H2) is not conjugate into φ(H1). �

Analogous to SCS groups, one can easily show that SICS groups are

RF. However, RF groups may not be SICS. For instance, in Chapter 3, we

will prove that the residually finite group F2 × F2 is not SICS.

If we denote the conjugacy by ∼ and the conjugacy into by �, all the

properties which we introduced can be summarized in the following table.

� � ��

elements RF CS —

subgroups ERF — —

cyclic subgroups πC — —

finitely generated subgroups LERF SCS SICS

Tab. 1.5.1. The classes ERF, LERF, πC,CS, SCS, SICS and RF.

The unique result we knew, before writing this thesis, about SICS gro-

ups is that free groups are SICS, and every SICS virtually free group is

SCS, Bogopolski and Grunewald [6]. This was one of the motivations for

the present thesis.

We know, by the examples in [27] and [10], that the subgroups of a

CS group need not be CS. However, we do not know whether the same

is true for SCS or SICS groups or not. On the other hand, following the

observation given by Minasyan [30] that every retract of a CS group is CS,

we claim that the same is true for SCS and SICS groups.
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Proposition 1.5.4. If H is a retract of an SICS (SCS) group G, then H is SICS

(SCS).

Proof. Let G be an SICS group, and φ be a retraction from G onto H, then

φ is an epimorphism and φ restricted to H � G is the identity map. Let

H1 and H2 be two finitely generated subgroups of H such that H2 is not

conjugate into H1 in H. We will show that H2 is not conjugate into H1 by

any element of G \ H.

Suppose the contrary, i.e. there exists g ∈ G \ H such that gH2g−1 � H1.

Then, we have

φ(g)H2φ(g)−1 = φ(g)φ(H2)φ(g−1) = φ(gH2g−1) � φ(H1) = H1.

Since φ(g) belongs to H, and H2 is not conjugate into H1 in H, we get a

contradiction. Hence H2 is not conjugate into H1 in G.

Since G is SICS, there exists a homomorphism φ1 from G onto a finite

group G such that φ1(H2) is not conjugate into φ1(H1) in G.

Let H := φ1(H) and φ2 from H onto H be the restriction of φ1 to H.

By construction, it follows that φ2(H2) is not conjugate into φ2(H1) in H.

Therefore H is SICS.

This proof can be easily adapted to obtain a proof for the case of SCS

groups: it suffices to replace the word ”into“ by ”to” and the symbol “�”

by ”=“. �

The relations between the classes of CS, SCS, and SICS groups are not

completely known. It is clear that they intersect, for instance, finite and

free groups are CS, SCS, and SICS. The complement of these classes also

intersect. For example, every non-residually finite group is not CS, SCS,

or SICS.

On the other hand, we have proved the following results:

• CS groups need not be SICS. Indeed, in Chapter 3 Section 3.2 we will

prove that F2×F2 is not an SICS group. However, free groups are CS

[37] and the direct product of two CS groups is CS [31]. Therefore,

the group F2 × F2 is CS but not SICS.
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• SCS groups need not be SICS. Indeed, it is proved by Grunewald and

Segal [15] that all virtually polycyclic groups are SCS (see also [34,

Ch. 4, Thm. 7]). However, in Chapter 3 Section 3.3 we will see that

polycyclic groups need not be SICS.

• An HNN extension of an SICS group may not be SICS. Indeed, in Chap-

ter 3 Section 3.3 we will show that G = 〈x, y, a | axa−1 = y−1x, aya−1 = y〉
is not SICS. Clearly, G is an HNN extension of F2 determined by the

automorphism φ : F2 → F2 given by φ(x) = y−1x and φ(y) = y.

Proposition 1.5.5. Let G be a torsion free SCS group, then G is CS if for every

g1 and g2 in G the following is valid:

g1 is not conjugate to g2 implies that g1 is not conjugate to g−1
2 .

Proof. Let g1, g2 be two elements in G such that g1 is not conjugate to g2. To

prove that G is CS, we will find a homomorphism φ from G onto a finite

group G such that φ(g1) is not conjugate to φ(g2).

First, we show that 〈g1〉 is not conjugate to 〈g2〉. Without loss of general-

ity, we may assume that g1 and g2 are non-trivial. Assume to the contrary

that 〈g1〉 is conjugate to 〈g2〉, then there exists an element x ∈ G such that

〈g1〉x = 〈g2〉 or equivalently 〈g1〉 = 〈g2〉x−1 . Therefore, there exist n � ±1 and

m � ±1 such that xgn
1x−1 = g2 and g1 = x−1gm

2 x. It follows that

g1 = x−1gm
2 x = (x−1g2x)m = (x−1xgn

1x−1x)m = gnm
1 .

Since G is torsion free and g1 � 1, we get a contradiction. Thus 〈g1〉 is

not conjugate to 〈g2〉.
Second, since G is SCS, there exists a homomorphism φ from G onto

a finite group G such that φ(〈g1〉) is not conjugate to φ(〈g2〉). Since φ is a

homomorphism, it follows that φ(g1) is not conjugate to φ(g2). �

Proposition 1.5.6. If G is an SICS group and for every finitely generated sub-

group H � G there is no non-trivial element g ∈ G such that Hg < H, then G is

SCS.
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Proof. Let H1 and H2 be two finitely generated subgroups of G such that

H1 is not conjugate to H2. Our aim is to find a homomorphism φ from G

onto a finite group G such that φ(H1) is not conjugate to φ(H2).

First, we claim that H2 is not conjugate into H1 or H1 is not conjugate

into H2. Indeed, assume to the contrary that there exist g1 and g2 in G such

that Hg1
2 < H1 and Hg2

1 < H2, then Hg1g2
2 = (Hg1

2 )g2 < Hg2
1 < H2 contradicts the

assumption.

Thus, without loss of generality, we may assume that H2 is not conju-

gate into H1. Since G is SICS, there exists a homomorphism φ from G onto a

finite group G such that φ(H2) is not conjugate into φ(H1). Therefore, φ(H2)

is not conjugate to φ(H1). �

The relations between the classes of LERF, SCS, and SICS goups also

are not completely known. However, for abelian groups we can easily

show that they are equivalent.

Let G be an abelian group.

SCS ⇔ LERF: Since two subgroups of G are conjugate if and only if

they are equal, G is LERF if and only if G is SCS.

SICS ⇒ LERF: Let H be a finitely generated subgroup of G, and let

g � H, then 〈g〉 � H. Since G is SICS, there exists an epimorphism φ from G

onto a finite group G such that φ(〈g〉) � φ(H), and then φ(g) � φ(H).

SICS⇐ LERF: Let H1,H2 be two finitely generated subgroups of G such

that H2 is not conjugate into H1, equivalently H2 � H1. Then there exists at

least one element h ∈ H2 such that h � H1. Since G is LERF, there exists an

epimorphism φ from G onto a finite group G such that φ(h) � φ(H1), and

therefore φ(H2) � φ(H1), equivalently φ(H2) is not conjugate into φ(H1). �

Corollary 1.5.7. Finitely generated abelian groups are SCS and SICS.

Proof. Any finitely generated abelian group is polycyclic, and therefore

it is LERF, by [26], so it is SCS and SICS. �
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Remark 1.5.8. There exist abelian groups which are neither SCS nor SICS.

For instance, the group Q is of this type.

To this moment we do not know whether the class of SCS groups is

closed under different kinds of products or not. For SICS groups we will

prove, in Chapters 2 and 3, the following statements:

• The free product of two simultaneously SICS and LERF groups is

SICS.

• The direct product of two SICS groups need not be SICS.

• The semidirect product of two SICS groups need not be SICS.

• The wreath product of two SICS (SCS) groups need not be SICS

(SCS).

• The free product of SICS (SCS) group with SCS group amalgamated

over a cyclic subgroup need not be SICS.

If we denote the word “yes” by “+”, “yes with conditions” by “⊕”, “not

necessary” by “–”, and “not known” by “?”, then we can extend Table 1.4.1

and obtain the following table:

A and B ERF LERF πC CS SCS SICS RF

A × B + – + + ? – +

A � B + – + – ? – –

A � B – – – – – – –

A ∗ B – + + + ? ⊕ +

Tab. 1.5.2. The classes ERF, LERF, πC,CS, SCS, SICS and RF with different

kinds of products.
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1.6 Topological interpretation

Definition 1.6.1. Let G be a group, the profinite topology PT (G) is the topol-

ogy whose basic open sets are all cosets to finite index normal subgroups

in G.

Every finite index subgroup D � G contains the finite index normal

subgroup N := ∩g∈GDg. Since D = ∪g∈D gN and G \ D = ∪g∈G\D gN, it follows

that every finite index subgroup D � G is both closed and open in PT (G).

Moreover, since hD = ∪g∈D hgN and G \ hD = h(G \ D) = ∪g∈G\D hgN for

every h in G, it follows that every left coset of finite index subgroup D � G

is both closed and open in PT (G). The same holds for write cosets of finite

index subgroups in G.

Proposition 1.6.2. The profinite topology PT (G) of a group G is Hausdorff if

and only if the intersection of all finite index normal subgroups in G is trivial.

Proof. Suppose that PT (G) is Hausdorff. Let g be a non-trivial element in

G such that g belongs to all finite index normal subgroups in G, then g and

the identity element e in G belong to the same open sets in PT (G), which

contradicts the assumption.

Now, assume that the intersection of all finite index normal subgroups

in G is trivial. To prove that PT (G) is Hausdorff, we take two different

elements x, y ∈ G and show that there exist two open sets A and B in

PT (G) such that x ∈ A, y ∈ B, and A∩B = ∅.

Since the intersection of all finite index normal subgroups in G is trivial,

there exists a finite index normal subgroup N in G such that xy−1 � N. Then

we take A = xN and B = yN. �

Below we give other definitions of RF, LERF, CS, and SCS groups using

profinite topology on groups, and we will show that these definitions are

equivalent to those which are given in Sections 1.1–1.5.



CHAPTER 1. PRELIMINARIES 25

Definition 1.6.3. The group G is called residually finite (or RF), if the profi-

nite topology PT (G) is Hausdorff.

This definition is equivalent to Definition 1.4.1 by Proposition 1.6.2.

Definition 1.6.4. A subset H of a group G is called separable if H is closed

in the profinite topology PT (G).

Definition 1.6.5. The group G is called subgroup separable (or LERF), if ev-

ery finitely generated subgroup in G is separable.

Note that if we replace the words “finitely generated subgroup” by

“cyclic groups” (or “groups”), we obtain another definition of the πC gro-

ups (or ERF groups).

Now we prove that Definition 1.6.5 and Definition 1.2.1 are indeed

equivalent.

Definition 1.2.1⇒Definition 1.6.5: Let H be a finitely generated subgroup

in G, we will prove that H is closed, or equivalently, G\H is open inPT (G).

Let g ∈ G\H. By Definition 1.2.1 (c), there exists a finite index subgroup

D in G such that H � D and g � D. Since N := ∩x∈GDx is a finite index

normal subgroup in G, the coset gN is an open neighbourhood of g in G.

Since g � D, the coset gN is contained in G \ D ⊆ G \ H, which implies

that G \ H is open.

Definition 1.6.5⇒Definition 1.2.1: Let H be a finitely generated subgroup

in G and g � H. Since H is separable or equivalently G \ H is open, there

exists a finite index normal subgroup N in G such that gN ⊆ G \ H.

Let φ be the natural homomorphism from G onto G/N, then φ(g) � φ(H).

Otherwise gN would equal to hN for some h ∈ H, then h ∈ gN ∩ H, which

is a contradiction. �

Definition 1.6.6. The group G is called conjugacy separable (or CS), if for ev-

ery element g ∈ G, its conjugacy class gG := {xgx−1 | x ∈ G} ⊆ G is separable.
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In the following we show that Definition 1.6.6 is equivalent to Defini-

tion 1.4.1.

Definition 1.6.6 ⇒ Definition 1.4.1: Let g1, g2 be two non-conjugate ele-

ments in G, then g2 � gG
1 . Since gG

1 is closed in PT (G), the complement of

gG
1 in G is open. Then there exists a finite index normal subgroup N in G

such that g2N is contained in (G \ gG
1 ).

An equivalent assertion is that g2N � gN for all g ∈ gG
1 . Therefore, the

natural homomorphism φ from G onto the finite group G/N is the required

homomorphism. That is, φ(g1) is not conjugate to φ(g2).

Definition 1.4.1 ⇒ Definition 1.6.6: We want to prove that gG is closed for

every element g ∈ G. Let g′ ∈ G \ gG, then g′ is not conjugate to g in G.

According to Definition 1.4.1, there exists a homomorphism φ from G

onto a finite quotient G/N such that g′N is not conjugate to gN in G/N, and

therefore g′N � xN for all x ∈ gG. Thus g′ has an open neighbourhood

g′N ⊆ G \ gG, which implies that G \ gG is open. �

The completion Ĝ of G with respect to the profinite topology PT (G) is

called the profinite completion of G. It can be expressed as an inverse limit

of all finite quotients of G, we write Ĝ = lim←−
N

G/N.

Moreover, there exists a natural homomorphism i from G to Ĝ that

sends g to (gN). We can easily see that i is a monomorphism when G is

residually finite, since the kernel of i is the intersection of all finite index

normal subgroups in G.

We also can look at the CS groups from another topological point of

view. The group G is CS, if G is residually finite and for every two elements

x, y ∈ G such that y = xγ for some γ ∈ Ĝ, there exists g ∈ G such that y = xg.

If S is a subset of G, we denote, in this section, by S its closure in

PT (G). In [10], Chagas and Zalesskii gave a sufficient condition for a con-

jugacy separable group to be hereditarily conjugacy separable. A group

G is called hereditarily conjugacy separable if every finite index subgroup

H � G is conjugacy separable.
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Namely, they have proved that if G is a conjugacy separable group and

CG(g) = C
̂G(g) for every element g ∈ G,

then G is hereditarily conjugacy separable.

In the same sense, we can topologically consider the SCS groups as

follows.

Definition 1.6.7. The group G is called subgroup conjugacy separable (or

SCS), if G is residually finite and for every two finitely generated sub-

groups H1,H2 � G such that H2 = Hγ
1 for some γ ∈ Ĝ, there exists g ∈ G

such that H2 = Hg
1 .

Following Chagas and Zalesskii, we give a sufficient condition for a

subgroup conjugacy separable group to be hereditarily subgroup conju-

gacy separable.

Analogous to CS groups, a group G is hereditarily subgroup conjugacy

separable if every finite index subgroup H � G is subgroup conjugacy sep-

arable.

Proposition 1.6.8. Let G be a subgroup conjugacy separable group and for every

finitely generated subgroup H � G,

NG(H) = N
̂G(H).

Then G is hereditarily subgroup conjugacy separable.

Proof. Let H be a finite index subgroup of G. Let H1,H2 be two finitely

generated subgroups of H such that H2 = Hγ
1 for some γ ∈ Ĥ. Since G is

subgroup conjugacy separable, there exists g ∈ G such that H2 = Hg
1 .

Then δ := γg−1 ∈ N
̂G(H1). It follows that g = δ−1γ ∈ N

̂G(H1)Ĥ ∩G. Since

H is of finite index in G, the set NG(H1)H is closed in the profinite topology,

that is NG(H1)H = NG(H1)H.

By hypothesis N
̂G(H1) = NG(H1) ⊆ G, so

N
̂G(H1)Ĥ ∩G = NG(H1)(Ĥ ∩G) = NG(H1)H = NG(H1)H = NG(H1)H.
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Note that NG(H1)H = NG(H1)H, since H has finite index in G and so H is

closed. Therefore, g = ch for some c ∈ NG(H1), h ∈ H.

Hence H2 = Hg
1 = Hh

1 , that is H2 is conjugate to H1 in H. �

It would be useful to reformulate the SICS property in terms of profi-

nite topology on groups. However, we do not expect that this is possible.

In the following proposition we show that the subgroup into conjugacy

separability for a group G implies the closeness, in the profinite topology,

of the union of all subgroups conjugated to H, where H is a finitely gener-

ated subgroup of G.

Proposition 1.6.9. If G is an SICS group and H is a finitely generated subgroup

of G, then the set GH := {g−1hg | g ∈ G, h ∈ H} is separable.

Proof. We will prove that GH is closed for every finitely generated sub-

group H � G. Let g ∈ (G \GH), then the cyclic subgroup 〈g〉 is not conjugate

into H.

Since G is SICS, there exists a homomorphism φ from G onto a finite

quotient G/N such that 〈g〉N is not conjugate into HN in G/N. It follows

that gN is not conjugate to hN for all h ∈ H, or equivalently gN � xN for all

x ∈ GH.

So gN is an open neighbourhood of g such that gN ⊆ (G \GH), and this

implies that (G \GH) is open. �

The following basic topological definitions and theorems will be used

in Chapter 2 in order to prove that the free product of two simultaneously

LERF and SICS groups is SICS.

Theorem 1.6.10. ([35] page 147) For any group G there is a topological space X
with π1(X, x0) � G, where π1(X, x0) is the fundamental group of X based at x0.

Definition 1.6.11. Let X̃,X be topological spaces. A continuous map p

from X̃ onto X is called a covering map if p is surjective and every point

x ∈ X has an open neighbourhood U such that p−1(U) is a disjoint union
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of open subsets of X̃ each of which is mapped homeomorphically onto U
by p.

The space X̃ is called the covering space and X is called the base space of

the covering map p.

A topological space X is called locally path connected if every point has

a local base consisting of path connected neighbourhoods. A topological

space X is called semilocally simply connected if every point x ∈ X has a

neighbourhood U such that every closed path at x in U is homotopic in X
to the constant path at x.

Theorem 1.6.12. ([20] page 174) Suppose that X is a connected, locally path

connected, and semilocally simply connected topological space. If H is a sub-

group of π1(X, x0), then there exists a covering φ : (XH, xH) → (X, x0) such that

H = φ∗(π1(XH, xH)), where φ∗ is the induced monomorphism from π1(XH, xH) to

π1(X, x0).

Definition 1.6.13. Let X̃,X and Y be topological spaces. If p : X̃ → X is a

covering and f : Y → X is a continuous map then a lift of f is a continuous

map f̃ : Y → X̃ such that p ◦ f̃ = f .

Theorem 1.6.14. ([20] page 147) Let p : X̃ → X be a covering. Given a path

f : I → X and x̃0 ∈ X̃ with p(x̃0) = f (0) there exists a unique lift f̃ : I → X̃ such

that f̃ (0) = x̃0.
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Chapter 2

SICS for Free Product of Groups

2.1 Introduction

In order to deepen our knowledge of the class of SICS groups we need to

discover its properties. Since the class of SICS groups shines recently (2010

[6]), many problems still open (for example see Appendix A).

In this thesis we are interested to know whether this class is closed

under different kinds of products or not. In particular, in this Chapter

we prove that the free product of two finitely generated groups which are

simultaneously LERF and SICS is SICS, Theorem 2.2.1.

Many problems in group theory are difficult to solve by using only

algebraic methods. Presentations of groups in terms of generators and

relations give the possibility to identify these groups with fundamental

groups of some path connected topological spaces.

Applying some geometrical and topological theorems on these topo-

logical spaces we can prove some algebraic properties of the original gro-

ups. And this is exactly what we will do in this chapter to prove Theo-

rem 2.2.1.

Before we formulate and prove Theorem 2.2.1, we introduce a prepara-

tory, in which we explain the idea of the proof and prove the needed re-

31
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sults which we use in the proof.

Let A and B be two simultaneously LERF and SICS groups. To prove

that the free product G = A ∗ B is SICS, all what we need to do is to verify

Definition 1.5.3.

In other words, we want to prove that for every two finitely generated

subgroups H1,H2 in G such that H2 is not conjugate into H1, the following

holds:

there exists a homomorphism φ from G onto a finite group G such that

φ(H2) is not conjugate into φ(H1) in G.

Or equivalently, according to Definition 1.5.3 (b), there exists a finite

index subgroup D of G such that H1 � D and H2 is not conjugate into D.

Starting from this point, using Theorems 1.6.10 and 1.6.12, we will

translate our problem from the algebraic language to the topological lan-

guage.

It follows from Theorem 1.6.10 that there exists a topological space,

which will be denoted by e
ΓA ΓB , such that G is isomorphic to the funda-

mental group of it.

Since H1,H2, and D are subgroups of G, it follows from Theorem 1.6.12

that there exist covering spaces of e
ΓA ΓB corresponding to H1,H2, and D.

Since we want to prove that D exists, we will prove that it could be

created for every finitely generated subgroups H1 and H2 in G such that H2

is not conjugated into H1.

Using a special geometrical and topological algorithm, we will con-

struct a covering space (Z̃, z̃) and a covering map φ : (Z̃, z̃) → ( e
ΓA ΓB , v)

such that the subgroup φ∗(π1(Z̃, z̃)) of G plays the role of D, where φ∗ is

the induced monomorphism from π1(Z̃, z̃) to π1( e
ΓA ΓB , v), z̃ ∈ Z̃, and

v ∈ e
ΓA ΓB .

In other words, φ∗(π1(Z̃, z̃)) would be a finite index subgroup of G such

that H1 is contained in φ∗(π1(Z̃, z̃)), and H2 is not conjugate into φ∗(π1(Z̃, z̃)).



CHAPTER 2. SICS FOR FREE PRODUCT OF GROUPS 33

Now we explain how we represent G = A ∗ B and its subgroups geo-

metrically as fundamental groups of topological spaces.

Let Γ be a directed graph, the set of its vertices will be denoted by V(Γ)

and the set of its edges will be denoted by E(Γ). The initial and the terminal

vertices of an edge e ∈ E(Γ) will be denoted by ι(e) and τ(e) respectively.

By e we denote the inverse of an edge e ∈ E(Γ).

A path of length n ≥ 0 in a graph Γ is the sequence p = v0e1v1 · · · envn such

that vi ∈ V(Γ), e j ∈ E(Γ), ι(e j) = v j−1, and τ(e j) = v j for all i ∈ {0, 1, . . . , n} and

j ∈ {1, 2, . . . , n}. For simplicity we write p = e1e2 · · · en. A reduced path is a

path p = e1e2 · · · en such that ei+1 � ei for all i ∈ {1, 2, . . . , n − 1}.

A reduced path p = e1e2 · · · en such that τ(en) = ι(e1), e1 � en, n ≥ 1, will

be called a cycle of length n. The cycle of length 1 is called a loop. The girth

of a graph is the minimum length of the cycles contained in the graph, and

if the graph does not contain any cycles, its girth is defined to be infinity.

Let G = 〈X |R〉 be a group, let X± = {x, x−1 : x ∈ X}. A labeling of a graph

Γ by the set X is a function Lab : E(Γ) → X± such that

(1) Lab(e) = (Lab(e))−1 for every e ∈ E(Γ),

(2) if Lab(e1) = Lab(e2) and ι(e1) = ι(e2), then e1 = e2.

A graph with a labeling function is called a labeled graph. Denote the

set of all words in X± by W(X). The label of a path p = e1e2 · · · en is

Lab(p) := Lab(e1)Lab(e2) · · · Lab(en) ∈ W(X).

Let G = 〈X |R〉 be a group. To represent G geometrically, let ΓG be the

two dimensional CW-complex consisting of the following cells:

(1) One vertex v.

(2) |X| oriented labeled loops ex based at v such that for every x ∈ X there

is a unique loop labeled by x.
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(3) |R| two-dimensional cells (discs) such that for every r ∈ R there is a

unique disc whose boundary represents the word r and is identified

with the path in ΓG labeled by r (see Figure 2.1.1).

We identify G with π1(ΓG, v) as follows.

(1) Identify 1G with the homotopy class of the path of length 0 at v.

(2) For every x ∈ X, identify x with the homotopy class of the loop ex.

(3) For every path p in ΓG, identify the word Lab(p) in W(X) with the

corresponding element in G.

G = 〈X | R〉 = π1

(
x1

x2

x3

x4
x5

x6

x7
v

�

x1

x3

x2 x1

x4

rj
: xi ∈ X, r j ∈ R

)

Fig. 2.1.1. An Example of the geometrical representation of G.

Let A, B be two groups, we denote by e
ΓA ΓB the CW-complex con-

sisting of ΓA,ΓB, and an edge e with ι(e) = vA, τ(e) = vB (see Figure 2.1.2).

Here ΓA and ΓB are the corresponding CW-complexes to A and B respec-

tively which are constructed exactly as in the previous paragraph, vA is the

vertex in ΓA, and vB is the vertex in ΓB.

A ∗ B = π1

(
a6

a7

a1
a2

a3

a4

a5

b6
b5

b3
b2

b1

b4

b7

ΓA ΓB

e
)
= π1

(
e

ΓA ΓB

)

Fig. 2.1.2. The geometrical representation of A ∗ B.
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Note that e
ΓA ΓB is homotopy equivalent to ΓA∗B.

By Theorem 1.6.12, to every subgroup H � G corresponds a covering

map ϕ : (CH, vH) → (ΓG, v), where CH is a covering space of ΓG such that

im(ϕ∗)= H, where ϕ∗ is the induced map ϕ∗ : π1(CH, vH) → π1(ΓG, v). We lift

the labeling of ΓG to CH. So an edge e of CH is labeled by x if its image ϕ(e)

is labeled by x.

Let ϕ : (CH, vH) → ( e
ΓA ΓB , v) be a covering map corresponding to a

subgroup H of A ∗ B. We can assume that CH consists of coverings of ΓA

and ΓB joined by copies of the edge e (see Figure 2.2.1). The coverings of

ΓA and ΓB will be called A− and B−components of CH respectively.

The following lemma will be used in the construction of the covering

space Z̃ of the space e
ΓA ΓB .

Lemma 2.1.1. Let Γ be a finite connected graph different from a vertex and let m

be a natural number. Then there exists a finite connected graph Γ̃ that covers Γ

and its girth is larger than m.

Proof. If the girth of Γ is greater than m, then we take Γ̃ = Γ. Assume

that the girth of Γ is less than or equal to m and let F be the fundamental

group of Γwith respect to some point v, then F is free with some basis set.

In order to choose a basis set of F, we choose a maximal tree T in Γ,

then the set of edges of Γ which are outside T corresponds to a basis set X

of F. The length function on F with respect to X will be called X-length.

Since F is residually finite, F has a finite index normal subgroup N such

that N has no elements of X-length up to m.

Then N does not contain conjugates to non-trivial elements of X-length

up to m, because N is normal. Let (Γ̃, ṽ) be the based covering space of (Γ, v)

corresponding to N. We claim that (Γ̃, ṽ) has girth larger than m.

Assume to the contrary that there exists a cycle c̃ in (Γ̃, ṽ) of length

smaller than or equal to m. Choose a path l̃ from ṽ to the cycle c̃. Then the

homotopy class [l̃c̃l̃] belongs to π1(Γ̃, ṽ).
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Now we consider the projection lcl of the path l̃c̃l̃ in Γ. Let l1 be a path

in the tree T connecting the initial and terminal points of l, then [lcl] ∈ N

and because of normality of N we have [l1cl1] = [l1l][lcl][l1l] ∈ N.

Since l1 is a path in T and the number of edges in c is smaller then

or equal to m, the X−length of [l1cl1] is smaller than or equal to m. Thus

we have found an element in N with length smaller than or equal to m, a

contradiction. �

Now we are ready to formulate and prove the main theorem.

2.2 The main theorem

Theorem 2.2.1. (O. Bogopolski and A. N. Elsawy) Let A, B be finitely generated

groups which are simultaneously LERF and SICS groups, then the free product

A ∗ B is LERF and SICS.

Proof. Burns [7] and Romanovskii [32] proved that A ∗ B is LERF. It

remains to prove that A ∗ B is SICS. Let H1,H2 be two finitely generated

subgroups of A ∗ B such that H2 is not conjugate into H1.

According to Definition 1.5.3 (b), it suffices to construct a finite index

subgroup D of A ∗ B such that D contains H1 and does not contain a conju-

gate of H2.

If H1 has finite index in A ∗ B, then we take D = H1. Assume that H1

has infinite index and let (CH1 , z) be a covering space of the base space

( e
ΓA ΓB , v) corresponding to the subgroup H1 of the group A∗B, for some

z ∈ CH1 and v ∈ e
ΓA ΓB .

We may assume that CH1 consists of coverings of ΓA and coverings of ΓB

joined by copies of the edge e. Let Ai be the finitely generated subgroups

of A corresponding to the coverings ΓAi of ΓA in CH1 . That is, Ai � π1(ΓAi , zi)

for some zi in ΓAi . Similarly, let Bj be the finitely generated subgroups of B

corresponding to the coverings ΓBj of ΓB in CH1 .
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The coverings ΓAi and ΓBj will be called A− and B−components of CH1

respectively and the copies of e will be called e−edges.

CH1

z
ΓA1

ΓB1

ΓAi
ΓBj

Fig. 2.2.1. The covering CH1 corresponding to the subgroup H1

Denote by px1 , px2 , . . . , pxm the cycles in CH1 based at z which correspond

to some generating set {x1, x2, . . . , xm} of H1. That is, first we fix a set of

generators of A, a set of generators of B, and a set {x1, x2, . . . , xm} of gen-

erators of H1. Then, we choose some reduced words Wx1 ,Wx2 , . . . ,Wxm in

the generators of A and B such that Wxi = xi in A ∗ B for all i ∈ {1, . . . ,m}.
Finally, we denote by pxi the cycles in CH1 such that pxi are based at z and

Lab(pxi) = Wxi for all i ∈ {1, . . . ,m}.

Now we start a sequence of steps to obtain a covering space (Z̃, z̃) of the

base space ( e
ΓA ΓB , v) through a covering map φ such that the subgroup

φ∗(π1(Z̃, z̃)) of A ∗ B plays the role of D.

Before we start our procedure we will eliminate the useless compo-

nents of CH1 and leave only the components which are important for H1.

Let Core(CH1) be a subcomplex of CH1 such that:

(1) An A−component or B−component belongs to Core(CH1) if at least

one of the cycles px1 , px2 , . . . , pxm passes through it.

(2) An e−edge e′ belongs to Core(CH1) if e′ belongs to at least one of the

cycles px1 , px2 , . . . , pxm .
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z

Core(CH1)

ΓA1ΓB1

ΓAi

ΓB j

∞

Fig. 2.2.2. The subcomplex (Core(CH1), z). An A− or B−components in

Core(CH1) can have infinitely many outer vertices.

A vertex v in Core(CH1) will be called inner vertex if v = ι(e′) or v = τ(e′)

for some e−edge e′ in Core(CH1), and called outer vertex if it is not inner.

Obviously, the subcomplex Core(CH1) satisfies π1(Core(CH1), z) = H1.

Moreover, it contains finitely many A− and B−components and finitely

many inner vertices (but it may have infinitely many outer vertices).

Now, using the complex (Core(CH1), z), we will construct a new finite

complex (Z̃, z̃) in two main steps.

Since the covering space (Z̃, z̃) should be finite, the A− and B−compone-

nts in (Core(CH1), z) which have infinitely many outer vertices represent an

obstacle to construct (Z̃, z̃).

So in the first step, using a special algorithm, we replace all the A− and

B−components which have infinitely many outer vertices by some finite

coverings of ΓA and ΓB, and get a finite complex denoted by (Z, z). We

also will show that the properties LERF and SICS of A and B ensure the

existence of such finite coverings.



CHAPTER 2. SICS FOR FREE PRODUCT OF GROUPS 39

The complex (Z, z) is finite, however it not necessarily covers the space

( e
ΓA ΓB , v). In the second step, using a geometrical algorithm, we glue

some special finite coverings of ΓA and ΓB to the complex (Z, z) and use

Lemma 2.1.1 to obtain a finite covering (Z̃, z̃) of ( e
ΓA ΓB , v).

Now, we explain in detail the construction process of (Z̃, z̃).

The construction of (Z̃, z̃).

Step 1. The construction of the finite complex (Z, z).

We will construct the complex (Z, z) by using the global structure of

(Core(CH1), z). Locally we will replace all the A− and B−components which

have infinitely many outer vertices by some finite coverings of ΓA and ΓB.

For that we will use Constructions 1-6 (see below).

If ΓAi or ΓBj in (Core(CH1), z) has finitely many outer vertices, then we

will not make any replacement.

In the following constructions we consider only ΓAi ; the constructions

for ΓBj are similar. Without loss of generality, let z belong to ΓA0 , where z is

the global basepoint of Core(CH1).

Construction 1. Suppose that ΓAi has at least two inner vertices. Then

for every two inner vertices u, v in ΓAi choose two paths pu, pv in ΓAi such

that pu, pv begin at zi and end at u, v respectively (see Figure 2.2.3).

ΓAi

zi

u

v

pu

pv

Fig. 2.2.3. The paths pu, pv in ΓAi .

Denote Lab(pu) by au and Lab(pv) by av. Then aua−1
v � Ai � A whenever

u � v. As Ai is finitely generated and A is LERF, there exists a finite index

subgroup Ai,u,v � A such that Ai � Ai,u,v and aua−1
v � Ai,u,v.
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Let ΓAi

ψi,u,v−−−→ ΓAi,u,v → ΓA be covering maps which correspond to the

chains Ai � Ai,u,v � A. Clearly, ΓAi,u,v is finite.

Then π1(ΓAi,u,v , ψi,u,v(zi)) � Ai,u,v and ψi,u,v(u) � ψi,u,v(v) because aua−1
v does

not belong to Ai,u,v.

So, we can conclude that for every two inner vertices u, v in ΓAi , we

can find a finite covering space ΓAi,u,v of ΓAi in which the images of u and

v are different.

Now, let H2 = 〈y1, y2, . . . , yn〉 and ys = as1bs1 . . . astbst, where t ∈ N, asi ∈ A,

and bsi ∈ B for all s = 1, . . . , n and i = 1, . . . , t (note that t depends on ys).

Let AH2 =
⋃n

s=1{as1, . . . , ast} \ {1A}, A∗
H2
= {a±1, (aa′)±1 : a, a′ ∈ AH2},

BH2 =
⋃n

s=1{bs1, . . . , bst} \ {1B}, B∗
H2
= {b±1, (bb′)±1 : b, b′ ∈ BH2}.

Observe that these four sets are finite.

Construction 2. Suppose that ΓAi has a path puw which begins at an

inner vertex u and ends at an outer vertex w and satisfies Lab(puw) ∈ A∗
H2

.

Then we choose a path pw in ΓAi which begins at the basepoint zi of ΓAi and

ends at w. Also, for every inner vertex v in ΓAi we choose a path pv in ΓAi

which begins at zi and ends at v (see Figure 2.2.4).

ΓAi

zi
u

v

w

puw

pw

pv

Fig. 2.2.4. The paths pw, pv, and puw in ΓAi .

Note that in ΓAi there are finitely many outer vertices like w, because ΓAi

has finitely many inner vertices and the set A∗
H2

is finite, and also note that

v can be equal to u.
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Denote Lab(pv) by av and Lab(pw) by aw. It follows that ava−1
w � Ai � A,

since v � w. As Ai is finitely generated and A is LERF, there exists a finite

index subgroup Ai,u,v,w � A such that Ai � Ai,u,v,w and ava−1
w � Ai,u,v,w.

Let ΓAi

ψi,u,v,w−−−−→ ΓAi,u,v,w → ΓA be covering maps corresponding to the chains

Ai � Ai,u,v,w � A. Then ΓAi,u,v,w is finite and π1(ΓAi,u,v,w , ψi,u,v,w(zi)) � Ai,u,v,w. More-

over, ψi,u,v,w(v) � ψi,u,v,w(w) because ava−1
w � Ai,u,v,w.

Therefore, we can conclude that, if in ΓAi there is a path puw which

begins at an inner vertex u and ends at an outer vertex w and satisfies

Lab(puw) ∈ A∗
H2

, then for every inner vertex v ∈ ΓAi we can find a finite

covering space ΓAi,u,v,w of ΓAi in which the images of v and w are different.

Construction 3. Suppose that ΓAi has two paths pu1w1 , pw2u2 such that

pu1w1 begins at an inner vertex u1 and ends at an outer vertex w1, pw2u2 be-

gins at a different outer vertex w2, i.e., w1 � w2 and ends at an inner vertex

u2, and Lab(pu1w1), Lab(pw2u2) ∈ A∗
H2

. Then for every two such vertices w1

and w2 we choose two paths pw1 , pw2 in ΓAi which begin at zi and end at

w1,w2 respectively (see Figure 2.2.5).

pw1

zi u1

u2

w1

w2

pu1w1

ΓAi

pw2

pw2u2

Fig. 2.2.5. The paths pw1 , pw2 , pu1w1 and pu2w2 in ΓAi .

Note that in ΓAi there are finitely many outer vertices like w1,w2. Also

note that u1 and u2 could be equal but w1 and w2 are different.

Denote Lab(pw1) by aw1 and Lab(pw2) by aw2 . Then aw1a
−1
w2
� Ai � A,

because w1 � w2. As Ai is finitely generated and A is LERF, there exists
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a subgroup Ai,u1,u2,w1,w2 � A of finite index such that Ai � Ai,u1,u2,w1,w2 and

aw1a
−1
w2
� Ai,u1,u2,w1,w2 .

Let ΓAi

ψi,u1 ,u2 ,w1 ,w2−−−−−−−−→ ΓAi,u1 ,u2 ,w1 ,w2
→ ΓA be covering maps corresponding to

the chains Ai � Ai,u1,u2,w1,w2 � A.

Then ΓAi,u1 ,u2 ,w1 ,w2
is finite and π1(ΓAi,u1 ,u2 ,w1 ,w2

, ψi,u1,u2,w1,w2(zi)) � Ai,u1,u2,w1,w2 .

Moreover, ψi,u1,u2,w1,w2(w1) � ψi,u1,u2,w1,w2(w2) because aw1a
−1
w2
� Ai,u1,u2,w1,w2 .

So we can conclude that, if u1, u2 are inner vertices, w1,w2 are two outer

vertices in ΓAi , and there exist two paths pu1w1 , pw2u2 such that Lab(pu1w1),

Lab(pw2u2) ∈ A∗
H2

, then we can find a finite covering space ΓAi,u1 ,u2 ,w1 ,w2
of ΓAi

in which the images of w1 and w2 are different.

Construction 4. Suppose that H2 = 〈y1, . . . , yn〉 is conjugate into A in

A ∗ B. Then Hg
2 � A for some g in A ∗ B. Let ks := gysg−1 for all s = 1, 2, . . . , n,

then K := 〈k1, . . . , kn〉 = Hg
2 � A.

We claim that K is not conjugate into Ai in A for all Ai, that is Ka � Ai

for all a ∈ A and all Ai.

Assume to the contrary that Ka � Ai for some a ∈ A. In ΓAi there exists a

path which begins at zi and has lable a. Let u be the terminal vertex of the

path p such that ι(p) = zi and Lab(p) = a, then K � π1(ΓAi , u).

ΓAi

ΓA1

ΓB j

zi

u

z1

z

p

ps

q

Fig. 2.2.6. The paths p, ps, and q in (Core(CH1), z).



CHAPTER 2. SICS FOR FREE PRODUCT OF GROUPS 43

Let ps be the cycles in ΓAi based at u which correspond to ks, for all

s ∈ {1, . . . , n} (see Figure 2.2.6).

Let q be a path in Core(CH1) from the global basepoint z to u, and let g′

be the label of q.

The path qpsq is closed in (Core(CH1), z) for all s = 1, 2, . . . , n. Then

g′ksg′−1 ∈ π1(Core(CH1), z) for all s = 1, 2, . . . , n.

In other words g′gysg−1g′−1 ∈ H1 for all s = 1, 2, . . . , n, and therefore

Hg′g
2 � H1 leads to a contradiction, and the claim is proved.

Since Ai is finitely generated and A is SICS, there exists a finite index

subgroup A′
i � A such that Ai � A′

i and Ka � A′
i for all a ∈ A.

Let ΓAi

ψ′i−→ ΓA′i → ΓA be covering maps which are corresponding to the

chains Ai � A′
i � A. Then π1(ΓA′i , ψ

′
i(zi)) � A′

i and Ka � A′
i for all a ∈ A.

So we conclude that, if K := Hg
2 � A for some g ∈ A ∗ B, then, for every

Ai, there exists a finite index subgroup A′
i � A such that Ai � A′

i Ka � A′
i

for all a ∈ A. In particular, if H2 � A, then there exists a finite index

subgroup A′
i � A such that Ha

2 � A′
i for all a ∈ A.

Construction 5. Suppose that ΓAi has exactly one inner vertex, say u,

and for every outer vertex w in ΓAi there is no paths puw in ΓAi which begin

at u, end at w, and satisfy Lab(puw) ∈ A∗
H2

. Let A′′
i := A and ΓA′′i := ΓA.

Construction 6. Let A∗
i be the finite index subgroup of A obtained by

intersection of all the subgroups Ai,u,v, Ai,u,v,w, Ai,u1,u2,w1,w2 , A
′
i and A′′

i , which

we obtained in Constructions 1-6, respectively.

Note that A∗
i is an intersection of finitely many finite index subgroups,

and using the fact that |G : H∩K| � |G : H||G : K|, where H,K are subgroups

in a group G, we deduce that A∗
i is a finite index subgroup in A.

Let ΓAi

ψi−→ ΓA∗i → ΓA be the covering maps which correspond to the

chains Ai � A∗
i � A.

Analogously, we define finite index subgroups B∗
j of B and covering

maps ΓBj

φ j
−→ ΓB∗j → ΓB which correspond to the chains Bj � B∗

j � B.
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Let (Z, z) be the complex which is obtained by replacing each ΓAi and

ΓBj in Core(CH1) with infinitely many vertices by the new complexes ΓA∗i

and ΓB∗j respectively. This gives a natural map Φ : (Core(CH1), z) → (Z, z)

(see Figure 2.2.7).

z

Core(CH1)

ΓA1ΓB1

ΓAi

ΓB j

∞

Φ−−→

z

Z

ΓA∗1
ΓB∗1

ΓA∗i

ΓB∗j

finite

Fig. 2.2.7. From the infinite complex (Core(CH1), z) to the finite complex (Z, z).

A vertex u ∈ Z will be called an inner vertex in Z if u is the image of

an inner vertex in (Core(CH1), z). If u ∈ Z is not an inner vertex, then u

will be called an outer vertex in Z. It follows from the definition that a

preimage of an outer vertex in Z is an outer vertex in (Core(CH1), z).

Remark 2.2.2. It follows from the conclusion in Construction 1 that for

any inner vertex v in Z the set Φ−1(v) contains exactly one inner vertex and

possibly several outer vertices in Core(CH1).

Remark 2.2.3. It follows from the conclusion in Construction 2 that the im-

age of an outer vertex w ∈ Core(CH1) is an outer vertex in Z, if the following

holds: There is a path p in the A− or B−component of Core(CH1), say ΓAi ,

such that w ∈ ΓAi , ι(p) is an inner vertex, τ(p) = w, and Lab(p) ∈ A∗
H2

.

Remark 2.2.4. It follows from the conclusions in Construction 2 and 3 that

the images of two different outer vertices w1,w2 ∈ Core(CH1) are two differ-

ent outer vertices in Z, if the following holds:
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There are two paths p1, p2 in the A− or B−component of Core(CH1), say

ΓAi , such that w1,w2 ∈ ΓAi , the vertices ι(p1), τ(p2) are inner vertices, τ(p1) =

w1, ι(p2) = w2, and Lab(p1), Lab(p2) ∈ A∗
H2

.

Although the complex (Z, z) is finite, it is possibly not a covering of the

complex ( e
ΓA ΓB , v). In order to get a finite covering of ( e

ΓA ΓB , v), we

glue some special components to (Z, z) and use Lemma 2.1.1, as we will

explain in the second step, to obtain a finite covering (Z̃, z̃) of ( e
ΓA ΓB , v).

Step 2. The construction of the finite covering (Z̃, z̃).

To construct the finite complex (Z̃, z̃), we apply the following proce-

dure:

Step 2.1. If (Z, z) has no outer vertices, then (Z, z) covers ( e
ΓA ΓB , v).

Take (Z̃, z̃) = (Z, z).

Step 2.2. If (Z, z) has at least one outer vertex, then (Z, z) does not cover

( e
ΓA ΓB , v). Therefore, to construct the finite complex (Z̃, z̃), we apply the

following three steps:

Step 2.2.1. In the present step, we construct two special finite covering

spaces U and V of ΓA and ΓB respectively.

Since A and B are RF (which follows from either LERF or SICS for A

and B), there exist two finite index normal subgroups K1 � A,K2 � B such

that a � K1 for all a ∈ A∗
H2

and b � K2 for all b ∈ B∗
H2

.

Indeed, for every a ∈ A∗
H2

there exists a finite index normal subgroup

Na � A such that a � Na, since A is RF. Since A∗
H2

is finite, K1 := ∩a∈A∗H2
Na

is a finite index normal subgroup in A such that a � K1 for all a ∈ A∗
H2

.

Similarly, K2 := ∩b∈B∗H2
Nb is a finite index normal subgroup in B such that

b � K2 for all b ∈ B∗
H2

.

Let U and V be covering spaces of ΓA and ΓB corresponding to K1 and

K2 respectively. To every vertex in U we glue an outgoing e−edge, and

denote the resulting complex by Ext(U). Similarly, to every vertex in V
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we glue an incoming e−edge, and denote the resulting complex by Ext(V).

The idea behind this is that the e−edge in ( e
ΓA ΓB , v) goes from ΓA to ΓB.

Z U
V

Fig. 2.2.8. U, V, and Z as vertices.

Moreover, we glue to every outer vertex in every A−component in Z an

outgoing e−edge, and to every outer vertex in every B−component in Z an

incoming e−edge. Denote the resulting complex by Ext(Z).

Step 2.2.2. Consider U, V , and Z as vertices and construct a tree T with

root Z inductively as follows.

Let M = max {|y1|, |y2|, . . . , |yn|}. We will construct a chain of trees T0 ⊆
T1 ⊆ · · · ⊆ TM+1 = T . Let T0 = Ext(Z).

Z
Z

U

U

U

U

UU

U

U

U

V

V

V

V

T

Fig. 2.2.9. The tree T .

Suppose that we have constructed Ti for some i less than M. To con-

struct Ti+1, we glue to each outgoing e−edge of Ti a copy of Ext(V) through
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an incoming e−edge of Ext(V). Similarly, we glue to each incoming e−edge

of Ti a copy of Ext(U) through an outgoing e−edge of Ext(U). The glued

two e−edges will be considered as one e−edge.

Inductively, we construct TM. Let TM+1 be the result of gluing to each

incoming e−edge of TM a copy of Ext(U) through an outgoing e−edge of

U. On the other hand, we leave the outgoing e−edges of TM as they are. So

we obtain a tree T = TM+1 which has only outgoing free edges (see Figure

2.2.9).

Step 2.2.3. Now we consider the tree T itself as a vertex with m ≥ 0

outgoing e−edges. If m = 0, we set Z̃ := T .

Now we consider the case m > 0. Suppose that Ext(V) has n incoming

e−edges (clearly n > 0), then m copies of Ext(V) have nm incoming edges

and n copies of T have nm outgoing edges.

We glue m copies of Ext(V) to n copies of T as follows

(1) every copy of Ext(V) is connected with all the copies of T by exactly

one edge;

(2) different copies of Ext(V) are not connected directly by an edge;

(3) different copies of T are not connected directly by an edge.

So we obtain a graph Γwith girth equals 4 (see Figure 2.2.10).

V

V

V

V

V

V

V

V

V

T

T

T

T

T

T

Γ

Γ̃

Fig. 2.2.10. A finite connected graph Γ̃ which covers Γ and has girth > M.
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By Lemma 2.1.1, there exists a finite connected graph Γ̃ such that Γ̃

covers Γ and the girth of Γ̃ exceeds M = max {|y1|, |y2|, . . . , |yn|}. Set Z̃ := Γ̃.

Finally consider the graph Z̃ as a based CW-complex (Z̃, z̃), where z̃ is

the image of the basepoint z of Core(CH1) in Z̃ (see Figure 2.2.11). Therefore,

(Z̃, z̃) is a finite CW-complex which covers ( e
ΓA ΓB , v).

V V V

V

V

V

V

U
U

U

U
U

U

Z ZT T

Z̃

z̃ ΓA∗
i

ΓB∗
j

Fig. 2.2.11. The finite complex (Z̃, z̃) corresponding to the subgroup D.

By construction, Z̃ contains several disjoint copies of Core(CH1). There-

fore all the generators x1, . . . , xm of H1 are represented by cycles based at z̃

in (Z̃, z̃). This implies the following claim:

Claim. Let φ : (Z̃, z̃) → ( e
ΓA ΓB , v) be a covering map, and D =

φ∗(π1(Z̃, z̃)) � A ∗ B. Then D is a finite index subgroup in A ∗ B and con-

tains H1.

The proof that H2 is not conjugate into D.

To gain a complete proof of the theorem, it remains to prove that H2 is

not conjugate into D. So the rest of the proof will be devoted to show that

all the subgroups in D are not conjugate to H2.

Assume to the contrary that there exists g ∈ A ∗ B such that H2
g is a

subgroup of D � π1(Z̃, z̃). Let d̃ be the terminal vertex of the path in Z̃

which starts at z̃ and has label g. Then every element y in the generator
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set {y1, y2, . . . , yn} of H2 can be represented by a closed path based on d̃ in

(Z̃, d̃). In the following, we show that all possible positions of d̃ in Z̃ lead

to contradictions.

All the possible positions of d̃ can be summarized in two cases.

Case 1. d̃ belongs to one of the A− or B−components in a copy of Z.

Case 2. d̃ belongs to one of the copies of U or V .

Now we discuss these two cases in detail.

Consider Case 1. Suppose that d̃ belongs to one of the A− or B−comp-

onents in a copy of Z; we denote this copy by Z , and by T the copy of

T which contains Z . Let py1 , py2 , . . . , pyn be the cycles in (Z̃, d̃) correspond-

ing to the basis y1, y2, . . . , yn of H2. Then either at least one of the cycles

py1 , py2 , . . . , pyn passes through a vertex outside Z or all of them are com-

pletely inside Z .

Case 1.1. Suppose that at least one of the paths py1 , py2 , . . . , pyn , say pys ,

passes through a vertex outside Z . Since the normal subgroups π1(U) � A

and π1(V) � B do not contain any element from A∗
H2

and B∗
H2

respectively,

the path pys has no closed subpaths in any copy of U or V . In addition, T

(considered as a graph) does not contain any cycle, since T is a tree.

V V V

V

V

V

V

U
U

U

U
U

U

Z ZT T

Z̃

z̃

d̃

ΓA∗
i

ΓB∗
j

Fig. 2.2.12. The path pys has a subpath p such that p has length > M.
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Then the case Z̃ = T is impossible. Now we consider the case in which

Z̃ is larger than T . In this case the path pys has a subpath p which starts

at d̃ and ends at a leaf of T (see Figure 2.2.12). Then the length of p is

greater than M. However, by the definition of the constant M, the path

pys ∈ {py1 , py2 , . . . , pyn} has length at most M, which is a contradiction.

Case 1.2. Suppose that all the paths py1 , py2 , . . . , pyn are completely in-

side Z , then we claim that one of the following holds:

(1) H2 is conjugate into H1 in A ∗ B, i.e., Hg
2 � H1 for some g ∈ A ∗ B.

(2) H2 � A and H2 is conjugate into A∗
i in A, i.e., Ha

2 � A∗
i for some a ∈ A.

(3) H2 � B and H2 is conjugate into B∗
j in B, i.e., Hb

2 � B∗
j for some b ∈ B.

Recall that definitions of A∗
i and B∗

j can be found in Construction 6. Each

one of these statements leads to a contradiction. Indeed, (1) contradicts the

assumption. In addition, according to Construction 4, H2 is not conjugate

into A′
i in A, and H2 is not conjugate into B′

j in B. Consequently, H2 is not

conjugate into A∗
i in A, and H2 is not conjugate into B∗

j in B, since A∗
i � A′

i

and B∗
j � B′

j, according to Construction 6.

In order to prove our claim, it suffices to show that one of the following

is true:

(1) There exist closed lifts of py1 , . . . , pyn in Core(CH1) with labels y1, . . . , yn

such that all these lifts are based at the same vertex. (Here we consider lifts

with respect to the natural map Φ : Core(CH1) → Z .

(2) The cycles py1 , py2 , . . . , pyn are completely inside ΓA∗i for some i, which

contains d̃ and all of them are based at the same vertex.

(3) The cycles py1 , py2 , . . . , pyn are completely inside ΓB∗j for some j, which

contains d̃ and all of them are based at the same vertex.

Without loss of generality we may assume that d̃ belongs to an A−com-

ponent of Z , say ΓA∗1 . Therefore, d̃ can be either an inner or an outer vertex

in ΓA∗1 .
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Case 1.2.1. Suppose that d̃ is an inner vertex in ΓA∗1 .

Then, by Remark 2.2.2, the set ψ−1
1 (d̃) has exactly one inner vertex in

ΓA1 of Core(CH1), denote it by d. Note that ψ−1
1 (d̃) possibly contains several

outer vertices.

Let y be an arbitrary element of the set {y1, y2, . . . , yn}, then y satisfies one

of the following three cases: y belongs to A, y belongs to B, or y does not

belong to A and does not belong to B.

Case 1.2.1.1. Suppose that y ∈ A, then py is a closed path in ΓA∗1 (see

Figure 2.2.13).

Let p′y be the unique lift of py in ΓA1 such that ι(p′y) = d and Lab(p′y) = y.

Denote τ(p′y) by w. Since w ∈ ψ−1
1 (d̃), it follows that w = d or w is an outer

vertex in ΓA1 .

ΓA1

dw p′y

ΓA∗1

d̃
py

Fig. 2.2.13. y ∈ A, where y ∈ {y1, y2, . . . , yn}.

Suppose that w is an outer vertex (see Figure 2.2.13). Since ι(p′y) is an

inner vertex and Lab(p′y) ∈ A∗
H2

, it follows from Remark 2.2.3 that ψ1(w) is

an outer vertex in ΓA1 . Which contradicts the fact that w ∈ ψ−1
1 (d̃).

Hence w = d, and p′y is a closed lift of py in Core(CH1) based at d.

Case 1.2.1.2. Suppose that y ∈ B, then py passes only through d̃ in ΓA∗1

and some vertices in ΓB∗j for some j, say ΓB∗1 (see Figure 2.2.14).

Let ũ be a vertex in ΓB∗1 such that ũ = τ(ẽ), where ẽ is the e−edge which

begins at d̃. Then py = ẽ p̃yẽ, for some closed path p̃y in ΓB∗1 based at ũ.

Let u be the unique inner vertex in the set φ−1
1 (ũ), and p′y be the unique

lift of p̃y in ΓB1 such that ι(p′y) = u and Lab(p′y) = y. As in Case 1.2.1, the

path p′y is a closed path in ΓB1 based at u.
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Since u is the unique inner vertex in φ−1
1 (ũ), and the same for d ∈ ψ−1

1 (d̃),

there is exactly one e−edge e′ from d to u. Then the path e′p′ye′ is a closed

lift of py in Core(CH1) based at d.

ΓB1

uw

ΓA1

d

p′y

ΓB∗1

ũ

ΓA∗1

d̃

p̃y

Fig. 2.2.14. y ∈ B, where y ∈ {y1, y2, . . . , yn}.

Case 1.2.1.3. Suppose that y � A and y � B. Then y can be written as

y = a1b1a2b2 · · · atbtat+1, such that t ∈ N, ai ∈ A for all i ∈ {1, . . . , t + 1}, bj ∈ B

for all j ∈ {1, . . . , t}, a1 � 1 or at+1 � 1 for t = 1, ai � 1 for all i ∈ {2, . . . , t} and

t ≥ 2, and bj � 1 for all j ∈ {1, . . . , t} and t ≥ 1 (see Figure 2.2.15).

d

Core(CH1)

ΓA1ΓB1

ΓAi ΓB j

u1u2

u3

u4

u5 u6

u7

u8

˜d

Z

ΓA∗1
ΓB∗1

ΓA∗i
ΓB∗j

v1v2

v3

v4

v5 v6

v7

v8

Fig. 2.2.15. y � A and y � B, where y ∈ {y1, y2, . . . , yn}.

Let py = pa1e1 pb1e2 · · · pate2t−1 pbte2t pat+1 be the cycle in (Z , d̃) correspond-

ing to y, where pai and pb j are the paths in ΓA∗i and ΓB∗j corresponding to ai

and bj respectively, and ek are e−edges.

Obviously A∗
1 = A∗

t+1 and d̃ = ι(pa1) = τ(pat+1). Also it is clear that, the

vertices ι(pai), τ(pai), ι(pb j), and τ(pbi) are inner vertices for all i ∈ {1, . . . , t+1}
and j ∈ {1, . . . , t}.
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Let p′a1
be the unique lift of pa1 in ΓA1 such that ι(p′a1

) = d and Lab(p′a1
) =

a1. Denote τ(p′a1
) by u1 and τ(pa1) by v1. Note that v1 and u1 can be equal to

d̃ and d, respectively. First we show that u is an inner vertex in ΓA1 .

If a1 = 1, then pa1 is the path of length 0 at d̃ and p′a1
is the path of length

0 at d. So in this case v1 = d̃ and u1 = d, and therefore u1 is an inner vertex

in ΓA1 .

Now suppose that a1 � 1. Since u1 ∈ ψ−1
1 (v1) is the terminal vertex of the

path p′a1
, where ι(p′a1

) = d is an inner vertex and Lab(p′a1
) ∈ A∗

H2
, the vertex

u1 can not be outer by Remark 2.2.3.

Thus, the vertex u1 = τ(p′a1
) is an inner vertex in ΓA1 in all the cases of

a1. Let e′1 be the unique lift of the edge e1 in Core(CH1) such that ι(e′1) = u1.

Let u2 = τ(e′1). Clearly, u2 is an inner vertex in ΓB1 .

Let p′b1
be the unique lift of pb1 in ΓB1 such that ι(p′b1

) = u2 and Lab(p′b1
) =

b1. Denote τ(p′b1
) by u3 and τ(pb1) by v3.

As above we can show that u3 is an inner vertex in ΓB1 .

We lift consecutively e2, pa2 , e3, pb2 , . . . , e2t, pat+1 and get the path p′y =

p′a1
e′1 p′b1

e′2 · · · p′at
e′2t−1 p′bt

e′2t p
′
at+1

in Core(CH1) with Lab(p′y) = y. We show that

p′y is closed. Indeed, the inner vertices ι(p′a1
), τ(p′at+1

) belong to ψ−1
1 (d̃), so

they must coincide by Remark 2.2.2.

Therefore, from Case 1.2.1 we can conclude that, if d̃ is an inner ver-

tex in ΓA∗1 and all the paths py1 , . . . , pyn are completely inside Z, then for

every y in {y1, . . . , yn} there exists a closed path p′y in Core(CH1) based at

d such that Lab(p′y) = y. Which implies that H2 is conjugate into H1.

Case 1.2.2. Suppose that d̃ is an outer vertex in ΓA∗1 . Then, by the def-

inition of the outer vertices in Z, the set ψ−1
1 (d̃) has no inner vertices. The

generators y1, y2, . . . , yn of H2 satisfy one of the following cases:

(1) y ∈ A for all y ∈ {y1, y2, . . . , yn}.

(2) y � A for all y ∈ {y1, y2, . . . , yn}
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(3) y ∈ A for some y ∈ {y1, y2, . . . , yn}, and at least one y′ ∈ {y1, y2, . . . , yn}
does not belong to A.

Case 1.2.2.1. Suppose that y ∈ A for all y ∈ {y1, . . . , yn}, equivalently

H2 � A. Then py1 , . . . , pyn lie completely in ΓA∗1 (see Figure 2.2.16).

Choose a path pa in ΓA∗1 such that τ(pa) = d̃ and ι(pa) = z1, where z1 is

the basepoint of ΓA∗1 . Denote Lab(pa) by a ∈ A.

Then, for every y ∈ {y1, y2, . . . , yn}, the path pa py pa is closed at z1. So,

ya ∈ π1(ΓA∗1 , z1) � A∗
1, which implies that Ha

2 � A∗
1. However, according to

the conclusion in Construction 4, H2 is not conjugate into A′
i in A. Con-

sequently, H2 is not conjugate into A∗
i in A, since A∗

i � A′
i , according to

Construction 6.

ΓA∗1

d̃
z1

py

pa

Fig. 2.2.16. y ∈ A, for all y ∈ {y1, y2, . . . , yn}.

Case 1.2.2.2. Suppose that y � A for all y ∈ {y1, y2, . . . , yn}. Then y can be

written as y = a1b1a2b2 · · · atbtat+1, such that t ∈ N, ai ∈ A, ai � 1, bj ∈ B, and

bj � 1 for all i ∈ {1, 2, . . . , t + 1} and j ∈ {1, 2, . . . , t} (see Figure 2.2.17).

Let py = pa1e1 pb1e2 · · · pate2t−1 pbte2t pat+1 be the cycle based at d̃ in (Z̃, d̃)

corresponding to y, where pai and pb j are the paths in ΓA∗i and ΓB∗j corre-

sponding to ai and bj respectively, and ek are e−edges. Obviously A∗
1 = A∗

t+1

and d̃ = ι(pa1) = τ(pat+1). Furthermore, the vertices τ(pa1), ι(pat+1), ι(pai),

τ(pai), ι(pb j), and τ(pbi) are inner for all i ∈ {2, . . . , t} and j ∈ {1, 2, . . . , t}.

Denote τ(pa1) by v1. Since v1 is an inner vertex in ΓA∗1 , the set ψ−1
1 (v1)

contains exactly one inner vertex, by Remark 2.2.2. Denote the unique

inner vertex in the set ψ−1
1 (v1) by u1. Let e′1 be the unique lift of the edge e1

in Core(CH1) such that ι(e′1) = u1. Let u2 = τ(e′1) and v2 = τ(e1). Clearly, u2 is
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an inner vertex in ΓB1 .

Core(CH1)

ΓA1

ΓB1

ΓAi ΓB j

u1u2

u3

u4

u5 u6

u7

u8

˜d

Z

ΓA∗1

ΓB∗1

ΓA∗i
ΓB∗j

v1v2

v3

v4

v5 v6

v7

v8

Fig. 2.2.17. The path p′ = p′b1
e′2 · · · p′at

e′2t−1 p′bt
in Core(CH1).

Let p′b1
be the unique lift of pb1 in ΓB1 such that ι(p′b1

) = u2 and Lab(p′b1
) =

b1. Denote τ(p′b1
) by u3 and τ(pb1) by v3.

Since u3 ∈ ψ−1
1 (v3) is the terminal vertex of the path p′b1

, where ι(p′b1
) = u2

is an inner vertex and Lab(p′b1
) ∈ B∗

H2
, the vertex u3 can not be outer by

Remark 2.2.3. Thus u3 is an inner vertex in ΓB1 .

We lift consecutively the paths e2, pa2 , e3, pb2 , . . . , e2t and get the path

p′ = e′1 p′b1
e′2 · · · p′at

e′2t−1 p′bt
e′2t in Core(CH1) with Lab(p′) = b1a2b2 · · · atbt, ι(p′) =

u2, and τ(p′) = u4t−1.

Let p′a1
be the unique lift of pa1 in ΓA1 such that τ(p′a1

) = u1, Lab(p′a1
) = a1.

Denote ι(p′a1
) by d1. Similarly, let p′at+1

be the unique lift of pat+1 in ΓAt+1 = ΓA1

such that ι(p′at+1
) = u4t−1, Lab(p′at+1

) = at+1. Denote τ(p′at+1
) by d2 (see Figure

2.2.18).
d1

d2
ΓA1

u1

u8

˜d

ΓA∗1

v1

v8

Fig. 2.2.18. The outer vertices d1, d2 ∈ ψ−1
1 (d̃).
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Since d1, d2 ∈ ψ−1
1 (d̃), it follows from the definition of outer vertices in

Z that d1 and d2 are outer vertices in ΓA1 . Since ι(p′at+1
) and τ(p′a1

) are inner

vertices, ι(p′a1
) = d1, τ(p′at+1

) = d2, and Lab(p′a1
), Lab(p′at+1

) ∈ A∗
H2

, the outer

vertices d1, d2 must coincide by Remark 2.2.4.

Denote d1 = d2 by d. Then the path p′y = p′a1
p′p′at+1

in Core(CH1) is a

closed lift of py based at d with Lab(p′y) = y.

Now we show that all the paths p′y are based at the same outer vertex

d for all y ∈ {y1, y2, . . . , yn}. Assume to the contrary that p′y1
is based at

d1 ∈ ψ−1
1 (d̃) and p′y2

is based at d2 ∈ ψ−1
1 (d̃) such that d1 � d2.

As in the previous paragraph, we can write p′y1
and p′y2

as p′a1
p′1 p′at+1

and

p′a′1 p′2 p′a′t′+1
respectively, where ι(p′a1

) = τ(p′at+1
) = d1 and ι(p′a′1) = τ(p′a′t′+1

) = d2.

d

Core(CH1)

ΓA1

ΓB1

ΓAi ΓB j

u1u2

u3

u4

u5 u6

u7

u8

˜d

Z

ΓA∗1

ΓB∗1

ΓA∗i
ΓB∗j

v1v2

v3

v4

v5 v6

v7

v8

Fig. 2.2.19. y � A for all y ∈ {y1, y2, . . . , yn}.

Since ι(p′a′t′+1
) and τ(p′a1

) are inner vertices, ι(p′a1
) = d1, τ(p′a′t′+1

) = d2, and

Lab(p′a1
), Lab(p′a′t′+1

) ∈ A∗
H2

, the outer vertices d1, d2 must coincide by Re-

mark 2.2.4.

Therefore, for every y ∈ {y1, . . . , yn} there exists a closed path p′y in

Core(CH1) based at d with Lab(p′y) = y. It follows that H2 is conjugate into

H1, which is a contradiction (see Figure 2.2.19).

Case 1.2.2.3. Suppose that y ∈ A for some y ∈ {y1, . . . , yn}, and y′ � A for

at least one y′ ∈ {y1, . . . , yn}. Then for every element y ∈ {y1, . . . , yn} we can
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finde a closed path p′y in Core(CH1) such that Lab(p′y) = y and all of these

paths are based at the same vertex.

As in Case 1.2.2.2, if y′ � A for some y′ ∈ {y1, . . . , yn}, then there exists

a closed path p′y′ = p′a1
p′p′at+1

in Core(CH1) such that Lab(p′y′) = y′. Further-

more, all such paths are based at the same outer vertex, say d ∈ ψ−1
1 (d̃) (see

Figure 2.2.20).

d

Core(CH1)

ΓA1

ΓB1

ΓAi ΓB j

u1u2

u3

u4

u5 u6

u7

u8

˜d

Z

ΓA∗1

ΓB∗1

ΓA∗i
ΓB∗j

v1v2

v3

v4

v5 v6

v7

v8

py

Fig. 2.2.20. The path p′y′ = p′a1
p′p′at+1

in Core(CH1).

Now we prove that, if y ∈ A for some y ∈ {y1, y2, . . . , yn}, then there exists

a closed path p′y in Core(CH1) based at d with Lab(p′y) = y.

Since y ∈ A, the cycle py in (Z̃, d̃) with Lab(py) = y lies completely inside

ΓA∗1 . Let p′y be the the unique lift of py in ΓA1 such that ι(p′y) = d and Lab(p′y) =

y. Denote τ(p′y) by w. Since w ∈ ψ−1
1 (d̃), it follows from the definition of

outer vertices in Z that w is an outer vertex in ΓA1 (see Figure 2.2.21).

w

d

ΓA1

u1

u8

p′y

˜d

ΓA∗1

v1

v8

py

Fig. 2.2.21. The outer vertices d,w ∈ ψ−1
1 (d̃).
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Since τ(p′a1
) and ι(p′at+1

p′y) are inner vertices, ι(p′a1
) = d, τ(p′at+1

p′y) = w,

and Lab(p′a1
), Lab(p′at+1

p′y) ∈ A∗
H2

, the outer vertices w and d must coincide

by Remark 2.2.4.

d

Core(CH1)

ΓA1

ΓB1

ΓAi ΓB j

u1u2

u3

u4

u5 u6

u7

u8

p′y

˜d

Z

ΓA∗1

ΓB∗1

ΓA∗i
ΓB∗j

v1v2

v3

v4

v5 v6

v7

v8

py

Fig. 2.2.22. H2 is conjugate into H1.

Therefore, for every y ∈ {y1, . . . , yn} there exists a closed path p′y in

Core(CH1) based at d with Lab(p′y) = y. It follows that H2 is conjugate into

H1, which is a contradiction (see Figure 2.2.22).

So we can conclude that Case 1, in which d̃ belongs to one of the A−
or B−components in a copy of Z in Z̃, leads to a contradiction.

Consider Case 2. Suppose that d̃ belongs to one of the copies of U or

V in (Z̃, d̃). Let py1 , py2 , . . . , pyn be the cycles in (Z̃, d̃) based at d̃ such that

Lab(py) = y for all y ∈ {y1, y2, . . . , yn}.

Since π1(U) and π1(V) does not contain any element from A∗
H2

and B∗
H2

respectively, all the cycles py1 , py2 , . . . , pyn have no closed subpaths in any

copy of U or V in Z̃. Then the cycles py1 , py2 , . . . , pyn satisfy one of the fol-

lowing two cases: At least one of them passes through several copies of T ,

or every one of them passes through only one of the copies of T .

Case 2.1. Suppose that py lies in several copies of T for some y in

{y1, y2, . . . , yn}. Then py is a cycle of length at most M in the graph Γ̃ which

has girth greater than M, a contradiction.
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Case 2.2. Suppose that every cycle in {py1 , py2 , . . . , pyn} passes through

only one of the copies of T . Then the cycles py1 , py2 , . . . , pyn satisfy one of

two cases: There exist at least two cycles py and py′ such that py passes

through a copy of T and py′ passes through another copy of T or all the

cycles py1 , py2 , . . . , pyn pass through the same copy of T .

Note that all the cycles py1 , py2 , . . . , pyn based at the same vertex d̃.

Case 2.2.1. Suppose that py′ , py′′ ∈ {py1 , py2 , . . . , pyn} pass through differ-

ent copies of T , denote these copies by T ′ and T ′′ respectively. Then the

vertex d̃ belongs to T ′, T ′′ or to a copy of V outside T ′ and T ′′.

If d̃ belongs to T ′, then py′′ passes through T ′ and T ′′. Similarly, if d̃

belongs to T ′′, then py′ passes through T ′ and T ′′. Which contradicts the

assumption in Case 2.2.

Now suppose that d̃ belongs to a copy of V , denote it by V0, outside T ′

and T ′′. Then each of py and py′ has a subpath p such that p starts at V0

and ends at a copy of Z. Otherwise, py′ and py′′ pass through more than

one copy of T , since T has no cycles.

Therefore, according to the construction of T the length of p is greater

than M, which contradicts the definition of M.

Case 2.2.2. Suppose that all the cycles py1 , py2 , . . . , pyn pass through the

same copy of T , denote it by T0. Then d̃ belongs to a copy of V outside T0

or to a copy of U or V in T0.

Case 2.2.2.1. Suppose that d̃ belongs to a copy of V , denote it by V1,

outside T0. Denote the copy of Z in T0 by Z 0 Then every cycle py in

{py1 , py2 , . . . , pyn} has a subpath p such that p starts at V1 and ends at Z 0

in T0, because T0 has no cycles and T0 is joined with V1 by only one edge.

The length of p is greater than M, which contradicts the definition of M.

Case 2.2.2.2. Suppose that d̃ belongs to a copy of U or V in T0 such that

the length of the path which starts at this copy of U or V and ends at Z 0 is

greater than M
2 . Then we get a contradiction with the definition of M.
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Suppose that d̃ belongs to one of the copies of U or V in T0 such that

the length of the path which starts at this copy of U or V and ends at

Z 0 is less than or equal M
2 . We show that this assumption also leads to a

contradiction.

Without loss of generality, we may assume that d̃ belongs to one of the

copies of U, denote it by U0. Obviously, T0 has no cycles and also recall

that all the cycles py ∈ {py1 , . . . , pyn} pass only through T0. Therefore, every

py ∈ {py1 , . . . , pyn} has a closed subpath in Z 0.

Since U0 and Z 0 are joind by exactly one path, all the cycles py in

{py1 , . . . , pyn} have the form p1 p∗y p1, where p∗y are cycles in Z 0 based at the

same outer vertex, say d̃0, and p1 is the path which begins at d̃ in U0 and

ends at d̃0 in Z 0 (see Figure 2.2.23).

˜d

˜d0

Z 0

ΓA∗1

ΓB∗1

ΓA∗i
ΓB∗j

v1v2

v3

v4

v5 v6

v7

v8

U0

V ′

pb1

pb2

Fig. 2.2.23. The paths p1 and p2.

We show that, the path p1 is a common subpath of all the paths py.

Indeed, assume to the contrary that py = p1 p∗y p1 and py′ = p2 p∗y′ p2 such that

p1 � p2, ι(p1) = ι(p2) = d̃, and τ(p1) = τ(p2) = d̃0. Since T0 is a tree, the paths

p1 and p2 pass through the same copies of U and V .

Since p1 � p2, there exists at least one copy of U or V such that the

subpaths of p1 and p2 in this copy are different, denote this copy by V ′. Let
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pb1 be the subpath of p1 in V ′ and pb2 be the subpath of p2 in V ′ such that

ι(pb1) = ι(pb2), τ(pb1) = τ(pb2), and pb1 � pb2 . Therefore, the path pb1 pb2 is a

closed path in V ′ with Lab(pb1 pb2) ∈ B∗
H2

, which contradicts the structure of

V ′ (see Figure 2.2.23).

Denote Lab(p1) by g1, then every y ∈ {y1, y2, . . . , yn} is equal to g1y∗g−1
1 ,

where y∗ is the label of a cycle based at d̃0 in (Z 0, d̃0).

Let K = Hg−1
1

2 = 〈y∗1, y∗2, . . . , y∗n〉, then K � π1(Z 0, d̃0) which is the same as

Case 1.2.2, where d̃0 in Z 0 plays the role of the outer vertex d̃ in Z and

{y∗1, y∗2, . . . , y∗n} play the role of {y1, y2, . . . , yn}.

Therefore, the generators y∗1, y
∗
2, . . . , y

∗
n satisfy one of three cases:

(1) y ∈ A for all y ∈ {y∗1, y∗2, . . . , y∗n}.

(2) y � A for all y ∈ {y∗1, y∗2, . . . , y∗n}.

(3) y ∈ A for some y ∈ {y∗1, y∗2, . . . , y∗n}, and at least one y′ ∈ {y∗1, y∗2, . . . , y∗n}
does not belong to A.

Denote by py∗1 , . . . , py∗n the cycles in (Z 0, d̃0) corresponding to y∗1, . . . , y
∗
n

respectively. Note that all of them are based at the same vertex d̃0.

Case 2.2.2.2.1. Suppose that y ∈ A for all y ∈ {y∗1, y∗2, . . . , y∗n}, equivalently

Hg−1
1

2 � A. Then the cycles py lie completely in ΓA∗1 . Choose a path pa in ΓA∗1

such that τ(pa) = d̃0 and ι(pa) = z1, where z1 is the basepoint of ΓA∗1 . Denote

Lab(pa) by a ∈ A.

Therefore, the paths pa py pa are closed in (ΓA∗1 , z1) for all y ∈ {y∗1, y∗2, . . . , y∗n}.
It follows further that ya ∈ π1(ΓA∗1 , z1) � A∗

1 for all y ∈ {y∗1, y∗2, . . . , y∗n}. Hence

Ka � A∗
1, which contradicts the construction of Z 0, according to the con-

clusion in Construction 4.

Case 2.2.2.2.2. and Case 2.2.2.2.3. Consider the following two cases:

y � A for all y in {y∗1, y∗2, . . . , y∗n}, or y ∈ A for some y ∈ {y∗1, y∗2, . . . , y∗n} and y′ � A

for at least one y′ ∈ {y∗1, y∗2, . . . , y∗n}.
Following exactly the same procedure in Case 1.2.2.2 and Case 1.2.2.3,

we can find a closed path py in Core(CH1) with Lab(py) = y for all y in
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{y∗1, y∗2, . . . , y∗n}. Furthermore, all the paths py∗1 , py∗2 , . . . , py∗n are based at the

same outer vertex, say d0, such that d0 ∈ ψ−1
1 (d̃0).

Choose a path pg in Core(CH1) such that τ(pg) = d0 and ι(pg) = z, where z

is the basepoint of Core(CH1). Denote Lab(pg) by g, where g ∈ A ∗ B. There-

fore, the paths pg py pg are closed in (Core(CH1), z) for all y ∈ {y∗1, y∗2, . . . , y∗n}. It

follows further that, yg ∈ π1(Core(CH1), z) � H1.

Hence Kg = (Hg−1
1

2 )g = Hg−1
1 g

2 � H1, which implies that H2 is conjugate

into H1.

Finally we conclude that D � π1(Z̃, z̃) is a finite index subgroup of A ∗ B,

which contains H1 and does not contain any conjugate of H2, and therefore

A ∗ B is SICS. �

Note that, by induction we obtain the following corollary:

Corollary 2.2.5. Let Ai be a LERF and SICS group for all i = 1, 2 . . . , n, then the

group A1 ∗ A2 ∗ · · · ∗ An is SICS.



Chapter 3

SICS for Direct, Semidirect,

Wreath, and Amalgamated

Product of Groups

3.1 Introduction

In this chapter we will not use any geometrical arguments. We will use

only group theory to answer the question: Is the class of SICS groups

closed under the direct, semidirect, or wreath product or not?

The answer to this question is “no“. We give examples of groups each

one of them is a product of two simultaneously LERF and SICS groups

and we prove that the product groups are not SICS.

In addition, we give an example of a non-SICS group which is a free

product of an SICS group and an SCS group with an amalgamated cyclic

subgroup.

Direct product: Allenby and Gregorac [2] gave an example of a non-

LERF group which is a direct product of two LERF groups.

Namely, they have proved that F2 × F2 is not LERF, though F2 is LERF.

It follows further that Fm × Fn is not LERF for all n,m ≥ 2, since every

subgroup of a LERF group is LERF (Scott [33]).

63
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In Section 3.2, we prove that the group Fm×Fn is not SICS for all n,m ≥ 2,

though free groups are SICS (Bogopolski and Grunewald [6]).

Semidirect product: Burns, Karrass, and Solitar [8] gave an example

of a non-LERF group which is a semidirect product of two LERF groups.

Namely, they have proved that F2 �φ F1, for some action φ, is not LERF.

In Section 3.3, we prove that the same group is not SICS.

Amalgemated product: Gitik and Rips [12] gave an example of a non-

LERF group which is a free product of two LERF groups with an amalga-

mated cyclic subgroup.

Allenby and Doniz [1] have modified their example to get a simpler

example of a non-LERF group which is a free product of two LERF groups

with an amalgamated cyclic subgroup.

In Section 3.4, we prove that the group given in [12] is not SICS, how-

ever it is a free product of an SICS group and an SCS group with an amal-

gamated cyclic subgroup.

Wreath product: The wreath product of two SCS or SICS groups is not

necessary to be SCS or SICS.

In [9], Campbell proved that W = A5 �Z is not residually finite, where A5

is the alternating group of degree 5. Clearly, A5 and Z are simultaneously

SCS and SICS, because finite groups and free groups are SCS and SICS [6].

However, W is neither SCS nor SICS because it is not residually finite.

3.2 A direct product of SICS groups which is not

SICS

In the following theorem we prove that Fm ×Fn is not SICS, for all m, n ≥ 2.

We will adapt the proof which is given by Allenby and Gregorac [2], to

obtain a proof of our result.

Theorem 3.2.1. Let F = 〈x1, x2, . . . , xn+k | 〉 and G = 〈a1, a2, . . . , an | 〉, then F×G

is not SICS, for all k ≥ 0, n ≥ 2.
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Proof. Suppose that H = 〈(x1, a1), (x2, a2), . . . , (xn, an), (1, c)〉 � F × G,

where c = a−1
2 a2

1a2a−3
1 .

Let G′ = {1F} ×G, F′ = F × {1G}, and K = 〈(1, c)〉 � F ×G, then we claim

that KG′
= H ∩G′, where KG′ is the normal closure of K in G′.

Clearly, KG′
� G′. To prove that KG′

� H, let g ∈ G and f ∈ F such that f

is obtained from g by replacing every ai in g by xi (for example, if g = a2
1a−1

3 ,

then f = x2
1x−1

3 ).

So (1, g)(1, c)(1, g)−1 = (1, gcg−1) = ( f , g)(1, c)( f , g)−1 which is an element

in H. Therefore, KG′
� H ∩G′.

Conversely, if (1, d) ∈ H ∩G′, then (1, d) ∈ KG′ . Indeed, since (1, d) ∈ H,

we can write

(1, d) =
∏r

i=1(x1, a1)li · · · (xn, an)mi(1, c)ni for some li,mi, ni ∈ Z, and r ∈ N.

So

(1, d) = (
r∏

i=1

xli
1 · · · xmi

n ,

r∏
i=1

ali
1 · · · ami

n cni).

Set gi = ali
1 · · · ami

n ∈ G. Then (1, d) = (1,
∏r

i=1 gicni) =

(1, g1cn1g−1
1 (g1g2)cn2(g1g2)−1(g1g2g3)cn3 · · · (

r−1∏
i=1

gi)cnr−1(
r−1∏
i=1

gi)−1(
r∏

i=1

gi)cnr ).

Since
∏r

i=1 xli
1 · · · xmi

n = 1, we have (
∏r

i=1 gi) = 1. Thus KG′
= H ∩G′.

Now we have G̃ := G′/(H ∩G′) � 〈a1, a2 | a−1
2 a2

1a2 = a3
1〉 ∗ 〈a3, a4, . . . , an | 〉

is a non-residually finite group. Indeed, if G̃ is residually finite, then all

its subgroups are residually finite. However, according to [3], the group

〈a1, a2 | a−1
2 a2

1a2 = a3
1〉 is not Hopfian, and therefore it is not residually finite.

Therefore, there exists a non-trivial element t̃ ∈ G̃ such that t̃ belongs to

every finite index normal subgroup Ñ of G̃ = G′/(H ∩G′). Let t̃ = t(H ∩G′)

for some t ∈ G′, then

t belongs to every finite index normal subgroup

N �G′ which contains H ∩G′. (∗)



66 3.2. A DIRECT PRODUCT OF SICS GROUPS WHICH IS NOT SICS

To show that F ×G is not an SICS group, we will prove that 〈t〉 is not con-

jugate into H, although φ(〈t〉) is contained in φ(H) for every epimorphism

φ from F ×G onto a finite group.

Since t̃ is a non-trivial element in G̃ = G′/(H∩G′), it follows immediately

that t � H. We claim that gtg−1 � H for all g ∈ F ×G, and therefore, 〈t〉 is not

conjugate into H.

To prove our claim, assume to the contrary that gtg−1 ∈ H. Since t ∈ G′

and G′ is a normal subgroup in F ×G, we have gtg−1 ∈ G′ for all g ∈ F ×G.

Therefore, gtg−1 ∈ H ∩G′ = KG′ , which implies that

gtg−1 = (1,
∏r

i=1 gicnig−1
i ) for some gi ∈ G and r ∈ N.

Let g = (W ′(x1, . . . , xn+k),W(a1, . . . , an)), then

t = (1, (W(a1, . . . , an))−1 ∏r
i=1 gicnig−1

i (W(a1, . . . , an)))

= (1,
∏r

i=1((W(a1, . . . , an))−1gi)cni((W(a1, . . . , an))−1gi)−1) ∈ KG′
= H ∩G′.

In particular, t belongs to H, which is a contradiction. So we have

proved that 〈t〉 is not conjugate into H.

Finally, let M be a finite index normal subgroup in F × G, then M ∩ G′

is a finite index normal subgroup in G′.

Let N := (H ∩G′)(M ∩G′) = KG′
(M ∩G′), then N is a finite index normal

subgroup in G′ and contains H ∩G′. Thus t ∈ N � HM, by (∗). Let φ be an

epimorphism from F ×G onto (F ×G)/M, then φ(t) = tM ⊆ HM = φ(H).

So 〈t〉 is not conjugate into H, but φ(〈t〉) is contained in φ(H) for every

homomorphism φ from F ×G onto a finite group. �

Remark 3.2.2. Clearly, F1 × F1 is SCS and SICS. However, we do not know

whether F1 × Fm is SCS and/or SICS or not, for all m ≥ 2.

Definition 3.2.3. Let Γ be a finite graph. The graph group or the right-angled

Artin group G(Γ) (or G for simplicity) is given by the presentation with a

generator ai for every vertex vi of Γ and a defining relation [ai, aj] = 1 for

each edge between vertices vi and v j in Γ.
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Remark 3.2.4. The right-angled Artin group G corresponding to the com-

plete graph Kn on n vertices is the free abelian group of rank n, so it is SCS

and SICS for all n ≥ 1.

Example: The right-angled Artin group G corresponding to a square

is not SICS. Indeed, let S be a square with vertices va, vb, vc, and vd, then

the right-angled Artin group G corresponding to S can be represented as

follows.

G = 〈a, b, c, d | [a, b] = [b, c] = [c, d] = [d, a] = 1〉 = 〈a, c〉 × 〈b, d〉, which is

isomorphic to F2 × F2. Hence, by Theorem 3.2.1, G is not SICS.

va vb

vcvd

Fig. 3.2.1. S = (V = {va, vb, vc, vd}, E = {(va, vb), (vb, vc), (vc, vd), (vd, va)})

Definition 3.2.5. A bipartite graph Γ = (U,V, E) is a graph whose vertices

can be divided into two disjoint sets U and V such that every vertex in U

is connected by an edge to one in V , every vertex in V is connected by an

edge to one in U, and no vertices in the same set are adjacent.

Definition 3.2.6. The complete bipartite graph on n and m vertices, denoted

by Kn,m, is the bipartite graph Γ = (V,U, E), where |V | = n, |U | = m, and E

connects every vertex in V with all vertices in U.

Let V = {va1 , va2 , . . . , van} and U = {vb1 , vb2 , . . . , vbm}. The the right-angled

Artin group G corresponding to Kn,m can be represented as follows.

G = 〈a1, . . . , an, b1, . . . , bm | [ai, bj] = 1, i = 1, . . . , n, j = 1, . . . ,m〉

= 〈a1, . . . , an〉 × 〈b1, . . . , bm〉,

which is isomorphic to Fn × Fm.

Therefore, using Theorem 3.2.1, we obtain the following remark:
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Remark 3.2.7. The right-angled Artin group G corresponding to the com-

plete bipartite graph Kn,m is not SICS for all n,m ≥ 2.

3.3 A semidirect product of SICS groups which

is not SICS

It is well known that, the direct product A× B of two groups A and B is the

semidirect product A � B with the trivial action of B on A.

Therefore, by Theorem 3.2.1, we conclude that the class of SICS groups

is not closed under the semidirect product. In this section we consider a

semidirect product with a nontrivial action, and we prove that it is not

SICS.

In the following theorem we prove that F2 � F1 is not SICS. Assume

that F1 = 〈a | 〉 and F2 = 〈x, y | 〉. If we consider the action of a on F2 as

axa−1 = y−1x, aya−1 = y,

then we can write F2 � F1 as follows.

F2 � F1 = 〈x, y, a | axa−1 = y−1x, aya−1 = y〉. Since y = xax−1a−1, it follows

F2 � F1 = 〈x, a | axax−1a−1a−1 = xax−1a−1〉
= 〈x, a | axax−1a−1 = xax−1〉 = 〈x, a | [a, xax−1] = 1〉.

Theorem 3.3.1. Let G = 〈x, a | [a, xax−1] = 1 〉, then G is not SICS.

Proof. Let A = 〈ai | ai = xiax−i, [ai, ai+1] = 1, i ∈ Z 〉, then G = A � 〈x〉,
where the action of x on A is given by xaix−1 = ai+1.

Let H = 〈x, a0a−2
1 〉, H1 = H ∩ A, and H2 = 〈[a0, a2]〉.

To prove that G is not SICS, we prove the following:

(1) H2 is not conjugate into H.

(2) H2 is conjugate into every finite index subgroup L in G, which con-

tains H.
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The proof of (1) follows from (i), (ii) and (iii)

(i) H1 = 〈aia−2
i+1 : i ∈ Z〉.

It is clear that 〈aia−2
i+1 : i ∈ Z〉 � H1, since

aia−2
i+1 = (xia0x−i)(xia1x−i)−2 = xia0x−ixia−2

1 x−i = xia0a−2
1 x−i.

Conversely, let h ∈ H ∩ A. Since h ∈ H, there exist r ∈ N and i1, . . . , ir,

n1, . . . , nr ∈ Z, such that

h = xi1(a0a−2
1 )n1 xi2(a0a−2

1 )n2 xi3 · · · xir (a0a−2
1 )nr

= xi1an1
0 x−i1 xi1a−2n1

1 x−i1 xi1+i2 · · · xi1+···+ir anr
0 x−i1−···−ir xi1+···+ir a−2nr

1 x−i1−···−ir xi1+···+ir

= an1
i1 a−2n1

i1+1 · · · a
nr
i1+···+ir a

−2nr
i1+···+ir+1xi1+···+ir = (ai1a

−2
i1+1)n1 · · · (ai1+···+ir a

−2
i1+···+ir+1)nr xi1+···+ir .

Since h ∈ A, we get xi1+···+ir = 1. So h ∈ 〈aia−2
i+1 : i ∈ Z〉.

(ii) [a0, a2]g � H1 for all g ∈ G.

Assume the contrary, that there exists g = a′xl ∈ G for some l ∈ Z and

a′ ∈ A such that [a0, a2]g ∈ H1. Thus [al, al+2]a′ ∈ H1, indeed

[al, al+2]a′ = a′xla0x−lxla2x−lxla−1
0 x−lxla−1

2 x−la′−1 = a′xla0a2a−1
0 a−1

2 x−la′−1

= [a0, a2]g ∈ H1.

Therefore, there exists h ∈ H1 such that [al, al+2]a′ = h.

Now we prove that, [al, al+2]a′ = h leads to a contradiction. To clearify

this contradiction we use the following notation:

For every b ∈ A, a representation Wb of b is the sequence (c1, c2, . . . , ck)

such that b = c1c2 . . . ck in A, and c1, c2, . . . , ck ∈ {a±1
i : i ∈ Z}. The length of

Wb is k.

A representation Wb of an element b ∈ A will be called reduced if it has

minimum length. Note that an element b ∈ A may have many reduced

representations.

We claim that the sequence (al, al+2, a−1
l , a

−1
l+2), or one of its other three

cyclic permutations (al+2, a−1
l , a

−1
l+2, al), (a−1

l , a
−1
l+2, al, al+2), (a−1

l+2, al, al+2, a−1
l ), is a



70 3.3. A SEMIDIRECT PRODUCT OF SICS GROUPS WHICH IS NOT SICS

partial sequence of a reduced representation W of the element [al, al+2]a′ in

A.

On the other hand, we will prove that the sequence (al, al+2, a−1
l , a

−1
l+2),

and all its other three cyclic permutations, are not partial sequence of every

reduced representation of any element h ∈ H1 = H ∩ A, which contradicts

that [al, al+2]a′ = h.

First we prove our claim. Let Wa′ = (c1, c2, . . . , ck) be a reduced rep-

resentation of a′, it follows that W = (c1, . . . , ck, al, al+2, a−1
l , a

−1
l+2, c

−1
k , . . . , c

−1
1 )

is a representation of [al, al+2]a′ in A. Using the relations of A we want to

reduce W and see how it could be. So we consider the following cases of

W:

Case 1. Let a±1
l+1, a

±1
l , a

±1
l+2 � {c1, c2, . . . , ck}, then W is a reduced represen-

tation of [al, al+2]a′ in A with partial sequence (al, al+2, a−1
l , a

−1
l+2).

Case 2. Let a±1
l+1, a

±1
l , or a±1

l+2 ∈ {c1, c2, . . . , ck}, and no one of them, un-

der all possible permutations using the relations of A, is equal to ck, then

(al, al+2, a−1
l , a

−1
l+2) is a partial sequence of the reduced representation W of

[al, al+2]a′ in A.

Case 3. Let a±1
l+1, a

±1
l , or a±1

l+2 ∈ {c1, c2, . . . , ck}, and consider the following

cases:

Case 3.1. If a±1
l+1, after some permutations using the relations of A, is

equal to ck, then the reduction of W will reduce the length of W without

any change of the sequence (al, al+2, a−1
l , a

−1
l+2). Note that a±1

l+1 commutes with

a±1
l and a±1

l+2.

Case 3.2. If a±1
l or a±1

l+2, after some permutations using the relations of

A, is equal to ck, then for every step of reduction, the length of W will be

reduced and an element of the sequence (al, al+2, a−1
l , a

−1
l+2) will be canceled

from one side and its inverse will appear in the other side.

So we conclude that, for every a′ ∈ A there exists a reduced representa-

tion W ′ of [al, al+2]a′ in A such that the sequence (al, al+2, a−1
l , a

−1
l+2), or one of

its other three cyclic permutations, is a partial sequence of W ′.
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Conversely, we prove that the sequence (al, al+2, a−1
l , a

−1
l+2), and all its

other three cyclic permutations, are not partial sequences of every reduced

representation of any element h ∈ H1.

First, we consider the sequences (al, al+2, a−1
l , a

−1
l+2) and (a−1

l , a
−1
l+2, al, al+2).

Let h ∈ H1, and assume to the contrary that one of the sequences

(al, al+2, a−1
l , a

−1
l+2) and (a−1

l , a
−1
l+2, al, al+2) is a partial sequence of a reduced rep-

resentation Wh of h.

Since h ∈ H1 = 〈aia−2
i+1 : i ∈ Z〉, we have h =

∏k
j=1(

∏r j
i=t j

(aia−2
i+1)ni, j), for some

r j, t j, ni, j ∈ Z, t j ≤ r j, and k ∈ N.

Let s1 = al−1a−2
l , s2 = ala−2

l+1, s3 = al+1a−2
l+2, and s4 = al+2a−2

l+3, then the

element a±1
l can appear in the reduced representation Wh of h if and only

if the product sn1
1 sn2

2 or sn2
2 sn1

1 , where n1, n2 ∈ Z, is a partial product of the

product
∏k

j=1(
∏r j

i=t j
(aia−2

i+1)ni, j).

Similarly, the element a±1
l+2 can appear in the reduced representation Wh

of h if and only if the product sn3
3 sn4

4 or sn4
4 sn3

3 , where n3, n4 ∈ Z, is a partial

product of the product
∏k

j=1(
∏r j

i=t j
(aia−2

i+1)ni, j).

Therefore, the sequence (al, al+2, a−1
l , a

−1
l+2) or (a−1

l , a
−1
l+2, al, al+2) is a partial

sequence of Wh if and only if there exist h1, h2, u ∈ H1 such that h = h1uh2,

where u is one of the following 16 types:

u1 = (sn1
1 sn2

2 )(sn3
3 sn4

4 )(sn5
1 sn6

2 )(sn7
3 sn8

4 ), u2 = (sn1
1 sn2

2 )(sn3
3 sn4

4 )(sn5
1 sn6

2 )(sn7
4 sn8

3 ),

u3 = (sn1
1 sn2

2 )(sn3
3 sn4

4 )(sn5
2 sn6

1 )(sn7
3 sn8

4 ), u4 = (sn1
1 sn2

2 )(sn3
3 sn4

4 )(sn5
2 sn6

1 )(sn7
4 sn8

3 ),

u5 = (sn1
1 sn2

2 )(sn3
4 sn4

3 )(sn5
1 sn6

2 )(sn7
3 sn8

4 ), u6 = (sn1
1 sn2

2 )(sn3
4 sn4

3 )(sn5
1 sn6

2 )(sn7
4 sn8

3 ),

u7 = (sn1
1 sn2

2 )(sn3
4 sn4

3 )(sn5
2 sn6

1 )(sn7
3 sn8

4 ), u8 = (sn1
1 sn2

2 )(sn3
4 sn4

3 )(sn5
2 sn6

1 )(sn7
4 sn8

3 ),

u9 = (sn1
2 sn2

1 )(sn3
3 sn4

4 )(sn5
1 sn6

2 )(sn7
3 sn8

4 ), u10 = (sn1
2 sn2

1 )(sn3
3 sn4

4 )(sn5
1 sn6

2 )(sn7
4 sn8

3 ),

u11 = (sn1
2 sn2

1 )(sn3
3 sn4

4 )(sn5
2 sn6

1 )(sn7
3 sn8

4 ), u12 = (sn1
2 sn2

1 )(sn3
3 sn4

4 )(sn5
2 sn6

1 )(sn7
4 sn8

3 ),

u13 = (sn1
2 sn2

1 )(sn3
4 sn4

3 )(sn5
1 sn6

2 )(sn7
3 sn8

4 ), u14 = (sn1
2 sn2

1 )(sn3
4 sn4

3 )(sn5
1 sn6

2 )(sn7
4 sn8

3 ),

u15 = (sn1
2 sn2

1 )(sn3
4 sn4

3 )(sn5
2 sn6

1 )(sn7
3 sn8

4 ), u16 = (sn1
2 sn2

1 )(sn3
4 sn4

3 )(sn5
2 sn6

1 )(sn7
4 sn8

3 ),

for some ni ∈ Z, i ∈ {1, . . . , 8}.

Now we prove that all these 16 types lead to contradictions.
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u1 = an1
l−1an2−2n1

l an3−2n2
l+1 an4−2n3

l+2 a−2n4
l+3 an5

l−1an6−2n5
l an7−2n6

l+1 an8−2n7
l+2 a−2n8

l+3

= an1
l−1an3−2n2

l+1 an2−2n1
l an4−2n3

l+2 a−2n4
l+3 an5

l−1an6−2n5
l an8−2n7

l+2 an7−2n6
l+1 a−2n8

l+3

Since al+3 and al−1 do not commute with al and al+2 respectively, the

sequence (al, al+2, a−1
l , a

−1
l+2) or (a−1

l , a
−1
l+2, al, al+2) appears in u1 if and only if

n4 = n5 = 0.

It follows that

u1 = an1
l−1an3−2n2

l+1 (an2−2n1
l a−2n3

l+2 an6
l an8−2n7

l+2 )an7−2n6
l+1 a−2n8

l+3 .

Hence −2n3 = ±1 which contradicts that n3 ∈ Z.

Similarly for all other 15 types as follows.

u2 = an1
l−1an2−2n1

l an3−2n2
l+1 an4−2n3

l+2 a−2n4
l+3 an5

l−1an6−2n5
l a−2n6

l+1 an7
l+2a−2n7

l+3 an8
l+1a−2n8

l+2

= an1
l−1an3−2n2

l+1 an2−2n1
l an4−2n3

l+2 a−2n4
l+3 an5

l−1an6−2n5
l an7−2n8

l+2 a−2n6
l+1 a−2n7

l+3 an8
l+1.

Then n4 = n5 = 0 and u2 = an1
l−1an3−2n2

l+1 (an2−2n1
l a−2n3

l+2 an6
l an7−2n8

l+2 )a−2n6
l+1 a−2n7

l+3 an8
l+1.

Hence −2n3 = ±1, which contradicts that n3 ∈ Z.

u3 = an1
l−1an2−2n1

l an3−2n2
l+1 an4−2n3

l+2 a−2n4
l+3 an5

l a−2n5
l+1 an6

l−1a−2n6
l an7

l+1an8−2n7
l+2 a−2n8

l+3

= an1
l−1an3−2n2

l+1 an2−2n1
l an4−2n3

l+2 a−2n4
l+3 a−2n5

l+1 an6
l−1an7

l+1an5−2n6
l an8−2n7

l+2 a−2n8
l+3 .

Then n4 = n6 = 0 and u3 = an1
l−1an3−2n2

l+1 (an2−2n1
l a−2n3

l+2 an5
l an8−2n7

l+2 )an7−2n5
l+1 a−2n8

l+3 .

Hence −2n3 = ±1, which contradicts that n3 ∈ Z.

u4 = an1
l−1an2−2n1

l an3−2n2
l+1 an4−2n3

l+2 a−2n4
l+3 an5

l a−2n5
l+1 an6

l−1a−2n6
l an7

l+2a−2n7
l+3 an8

l+1a−2n8
l+2

= an1
l−1an3−2n2

l+1 an2−2n1
l an4−2n3

l+2 a−2n4
l+3 a−2n5

l+1 an6
l−1an5−2n6

l an7−2n8
l+2 a−2n7

l+3 an8
l+1.

Then n4 = n6 = 0 and u4 = an1
l−1an3−2n2

l+1 (an2−2n1
l a−2n3

l+2 an5
l an7−2n8

l+2 )a−2n5
l+1 a−2n7

l+3 an8
l+1.

Hence −2n3 = ±1, which contradicts that n3 ∈ Z.

u5 = an1
l−1an2−2n1

l a−2n2
l+1 an3

l+2a−2n3
l+3 an4

l+1a−2n4
l+2 an5

l−1an6−2n5
l an7−2n6

l+1 an8−2n7
l+2 a−2n8

l+3

= an1
l−1a−2n2

l+1 an2−2n1
l an3−2n4

l+2 a−2n3
l+3 an4

l+1an5
l−1an6−2n5

l an8−2n7
l+2 an7−2n6

l+1 a−2n8
l+3 .

Then n3 = n5 = 0 and u5 = an1
l−1an4−2n2

l+1 (an2−2n1
l a−2n4

l+2 an6
l an8−2n7

l+2 )an7−2n6
l+1 a−2n8

l+3 .

Hence −2n4 = ±1, which contradicts that n4 ∈ Z.

u6 = an1
l−1an2−2n1

l a−2n2
l+1 an3

l+2a−2n3
l+3 an4

l+1a−2n4
l+2 an5

l−1an6−2n5
l a−2n6

l+1 an7
l+2a−2n7

l+3 an8
l+1a−2n8

l+2
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= an1
l−1a−2n2

l+1 an2−2n1
l an3−2n4

l+2 a−2n3
l+3 an4

l+1an5
l−1an6−2n5

l an7−2n8
l+2 a−2n6

l+1 a−2n7
l+3 an8

l+1.

Then n3 = n5 = 0 and u6 = an1
l−1an4−2n2

l+1 (an2−2n1
l a−2n4

l+2 an6
l an7−2n8

l+2 )a−2n6
l+1 a−2n7

l+3 an8
l+1.

Hence −2n4 = ±1, which contradicts that n4 ∈ Z.

u7 = an1
l−1an2−2n1

l a−2n2
l+1 an3

l+2a−2n3
l+3 an4

l+1a−2n4
l+2 an5

l a−2n5
l+1 an6

l−1a−2n6
l an7

l+1an8−2n7
l+2 a−2n8

l+3

= an1
l−1a−2n2

l+1 an2−2n1
l an3−2n4

l+2 a−2n3
l+3 an4−2n5

l+1 an6
l−1an5−2n6

l an8−2n7
l+2 an7

l+1a−2n8
l+3 .

Then n3 = n6 = 0 and u7 = an1
l−1an4−2n2

l+1 (an2−2n1
l a−2n4

l+2 an5
l an8−2n7

l+2 )an7−2n5
l+1 a−2n8

l+3 .

Hence −2n4 = ±1, which contradicts that n4 ∈ Z.

u8 = an1
l−1an2−2n1

l a−2n2
l+1 an3

l+2a−2n3
l+3 an4

l+1a−2n4
l+2 an5

l a−2n5
l+1 an6

l−1a−2n6
l an7

l+2a−2n7
l+3 an8

l+1a−2n8
l+2

= an1
l−1a−2n2

l+1 an2−2n1
l an3−2n4

l+2 a−2n3
l+3 an4−2n5

l+1 an6
l−1an5−2n6

l an7−2n8
l+2 a−2n7

l+3 an8
l+1.

Then n3 = n6 = 0 and u8 = an1
l−1an4−2n2

l+1 (an2−2n1
l a−2n4

l+2 an5
l an7−2n8

l+2 )a−2n5
l+1 a−2n7

l+3 an8
l+1.

Hence −2n4 = ±1, which contradicts that n4 ∈ Z.

u9 = an1
l a−2n1

l+1 an2
l−1a−2n2

l an3
l+1an4−2n3

l+2 a−2n4
l+3 an5

l−1an6−2n5
l an7−2n6

l+1 an8−2n7
l+2 a−2n8

l+3

= a−2n1
l+1 an2

l−1an3
l+1an1−2n2

l an4−2n3
l+2 a−2n4

l+3 an5
l−1an6−2n5

l an8−2n7
l+2 an7−2n6

l+1 a−2n8
l+3 .

Then n4 = n5 = 0 and u9 = a−2n1
l+1 an2

l−1an3
l+1(an1−2n2

l a−2n3
l+2 an6

l an8−2n7
l+2 )an7−2n6

l+1 a−2n8
l+3 .

Hence −2n3 = ±1, which contradicts that n3 ∈ Z.

u10 = an1
l a−2n1

l+1 an2
l−1a−2n2

l an3
l+1an4−2n3

l+2 a−2n4
l+3 an5

l−1an6−2n5
l a−2n6

l+1 an7
l+2a−2n7

l+3 an8
l+1a−2n8

l+2

= a−2n1
l+1 an2

l−1an3
l+1an1−2n2

l an4−2n3
l+2 a−2n4

l+3 an5
l−1an6−2n5

l an7−2n8
l+2 a−2n6

l+1 a−2n7
l+3 an8

l+1.

Then n4 = n5 = 0 and u10 = a−2n1
l+1 an2

l−1an3
l+1(an1−2n2

l a−2n3
l+2 an6

l an7−2n8
l+2 )a−2n6

l+1 a−2n7
l+3 an8

l+1.

Therefore, −2n3 = ±1, which contradicts that n3 ∈ Z.

u11 = an1
l a−2n1

l+1 an2
l−1a−2n2

l an3
l+1an4−2n3

l+2 a−2n4
l+3 an5

l a−2n5
l+1 an6

l−1a−2n6
l an7

l+1an8−2n7
l+2 a−2n8

l+3

= a−2n1
l+1 an2

l−1an3
l+1an1−2n2

l an4−2n3
l+2 a−2n4

l+3 a−2n5
l+1 an6

l−1an7
l+1an5−2n6

l an8−2n7
l+2 a−2n8

l+3 .

Then n4 = n6 = 0 and u11 = a−2n1
l+1 an2

l−1an3
l+1(an1−2n2

l a−2n3
l+2 an5

l an8−2n7
l+2 )an7−2n5

l+1 a−2n8
l+3 .

Therefore, −2n3 = ±1, which contradicts that n3 ∈ Z.

u12 = an1
l a−2n1

l+1 an2
l−1a−2n2

l an3
l+1an4−2n3

l+2 a−2n4
l+3 an5

l a−2n5
l+1 an6

l−1a−2n6
l an7

l+2a−2n7
l+3 an8

l+1a−2n8
l+2

= a−2n1
l+1 an2

l−1an3
l+1an1−2n2

l an4−2n3
l+2 a−2n4

l+3 a−2n5
l+1 an6

l−1an5−2n6
l an7−2n8

l+2 a−2n7
l+3 an8

l+1.
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Then n4 = n6 = 0 and u12 = a−2n1
l+1 an2

l−1an3
l+1(an1−2n2

l a−2n3
l+2 an5

l an7−2n8
l+2 )a−2n5

l+1 a−2n7
l+3 an8

l+1.

Therefore, −2n3 = ±1, which contradicts that n3 ∈ Z.

u13 = an1
l a−2n1

l+1 an2
l−1a−2n2

l an3
l+2a−2n3

l+3 an4
l+1a−2n4

l+2 an5
l−1an6−2n5

l an7−2n6
l+1 an8−2n7

l+2 a−2n8
l+3

= a−2n1
l+1 an2

l−1an1−2n2
l an3−2n4

l+2 a−2n3
l+3 an4

l+1an5
l−1an6−2n5

l an8−2n7
l+2 an7−2n6

l+1 a−2n8
l+3 .

Then n3 = n5 = 0 and u13 = a−2n1
l+1 an2

l−1an4
l+1(an1−2n2

l a−2n4
l+2 an6

l an8−2n7
l+2 )an7−2n6

l+1 a−2n8
l+3 .

Therefore, −2n4 = ±1, which contradicts that n4 ∈ Z.

u14 = an1
l a−2n1

l+1 an2
l−1a−2n2

l an3
l+2a−2n3

l+3 an4
l+1a−2n4

l+2 an5
l−1an6−2n5

l a−2n6
l+1 an7

l+2a−2n7
l+3 an8

l+1a−2n8
l+2

= a−2n1
l+1 an2

l−1an1−2n2
l an3−2n4

l+2 a−2n3
l+3 an4

l+1an5
l−1an6−2n5

l an7−2n8
l+2 a−2n6

l+1 a−2n7
l+3 an8

l+1.

Then n3 = n5 = 0 and u14 = a−2n1
l+1 an2

l−1an4
l+1(an1−2n2

l a−2n4
l+2 an6

l an7−2n8
l+2 )a−2n6

l+1 a−2n7
l+3 an8

l+1.

Therefore, −2n4 = ±1, which contradicts that n4 ∈ Z.

u15 = an1
l a−2n1

l+1 an2
l−1a−2n2

l an3
l+2a−2n3

l+3 an4
l+1a−2n4

l+2 an5
l a−2n5

l+1 an6
l−1a−2n6

l an7
l+1an8−2n7

l+2 a−2n8
l+3

= a−2n1
l+1 an2

l−1an1−2n2
l an3−2n4

l+2 a−2n3
l+3 an4−2n5

l+1 an6
l−1an5−2n6

l an8−2n7
l+2 an7

l+1a−2n8
l+3 .

Then n3 = n6 = 0 and u15 = a−2n1
l+1 an2

l−1an4
l+1(an1−2n2

l a−2n4
l+2 an5

l an8−2n7
l+2 )an7−2n5

l+1 a−2n8
l+3 .

Therefore, −2n4 = ±1, which contradicts that n4 ∈ Z.

Finally, u16 = an1
l a−2n1

l+1 an2
l−1a−2n2

l an3
l+2a−2n3

l+3 an4
l+1a−2n4

l+2 an5
l a−2n5

l+1 an6
l−1a−2n6

l an7
l+2a−2n7

l+3 an8
l+1a−2n8

l+2

= a−2n1
l+1 an2

l−1an1−2n2
l an3−2n4

l+2 a−2n3
l+3 an4−2n5

l+1 an6
l−1an5−2n6

l an7−2n8
l+2 a−2n7

l+3 an8
l+1.

Then n3 = n6 = 0 and u16 = a−2n1
l+1 an2

l−1an4
l+1(an1−2n2

l a−2n4
l+2 an5

l an7−2n8
l+2 )a−2n5

l+1 a−2n7
l+3 an8

l+1.

Therefore, −2n4 = ±1, which contradicts that n4 ∈ Z.

So we conclude that, no one of (ai, ai+2, a−1
i , a

−1
i+2) and (a−1

i , a
−1
i+2, ai, ai+2) is

a partial sequence of a reduced representation Wh of h.

Equivalently, we consider the other two sequences (ai+2, a−1
i , a

−1
i+2, ai) and

(a−1
i+2, ai, ai+2, a−1

i ). Similarly, either (ai+2, a−1
i , a

−1
i+2, ai) or (a−1

i+2, ai, ai+2, a−1
i ) is a

partial sequence of Wh if and only if there exist h1, h2, u ∈ H1 such that

h = h1uh2, where u is one of 16 possibility. Each one of them leads to a

contradiction.

For example, if u = sn1
3 sn2

4 sn3
1 sn4

2 sn5
3 sn6

4 sn7
1 sn8

2 , for some ni ∈ Z, i ∈ {1, . . . , 8},
then u = an1

l+1an2−2n1
l+2 a−2n2

l+3 an3
l−1an4−2n3

l an5−2n4
l+1 an6−2n5

l+2 a−2n6
l+3 an7

l−1an8−2n7
l a−2n8

l+1



CHAPTER 3. SICS FOR DIRECT, SEMIDIRECT, WREATH, AND AMALGAMATED
PRODUCT OF GROUPS 75

= an1
l+1a−2n2

l+3 an2−2n1
l+2 an4−2n3

l an3
l−1an5−2n4

l+1 a−2n6
l+3 an6−2n5

l+2 an8−2n7
l an7

l−1a−2n8
l+1 .

Then n3 = n6 = 0 and u = an1
l+1a−2n2

l+3 an5−2n4
l+1 (an2−2n1

l+2 an4
l a−2n5

l+2 an8−2n7
l )an7

l−1a−2n8
l+1 .

Therefore, −2n5 = ±1, which contradicts that n5 ∈ Z.

It follows that, no one of (al+2, a−1
l , a

−1
l+2, al) and (a−1

l+2, al, al+2, a−1
l ) is a par-

tial sequence of a reduced representation Wh of h.

Thus, [al, al+2]a′ does not belong to H1 for all a′ ∈ A, which implies that

[a0, a2]g does not belong to H1 for all g ∈ G. So that the proof of (ii) is

complete.

(iii) [a0, a2]g � H for all g ∈ G.

Assume to the contrary that there exists an element h ∈ H such that

h = [a0, a2]g for some g ∈ G. Since H = H1 � 〈x〉, there exist h1 ∈ H1 and n ∈ Z
such that h = xnh1. Therefore, h = xnh1 = [a0, a2]g, which implies that n = 0

because the sum of the powers of x in [a0, a2]g is zero. So [a0, a2]g ∈ H1,

which contradicts (ii).

Thus, the proof of (1) is complete.

Now we prove that [a0, a2] belongs to every finite index subgroup L in

G which contains H, and therefore (2) is proved.

Let C = ∩g∈GLg, then C is a finite index normal subgroup in G. Clearly,

C is normal in G.

In addition, C has finite index in G because |G : C| � (|G : L|)! < ∞ [5,

p. 8, Poincaré Theorem]. It follows further that C∩A is normal in G and has

finite index in A, because C and A are normal in G, and AC/C � A/(C ∩ A).

Let N = (C ∩ A)H1. Since C,H1 � L, it follows that N � L. Moreover,

N � A, since H1 = H ∩ A. We prove further that N � A.

Since C ∩ A� A and H1 = 〈aia−2
i+1〉, it remains to prove that aεjaia−2

i+1a−εj ∈ N

for all i, j ∈ Z and ε = ±1.

Consider the following two cases of i and j:

Case 1. Let j � i. Since ai commutes with ai+1 for all i, we get
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ajaia−2
i+1a−1

j =

(aja−2
j+1)(aj+1a−2

j+2)2 · · · (aia−2
i+1)2n

aia−2
i+1(aia−2

i+1)−2n · · · (aj+1a−2
j+2)−2(aja−2

j+1)−1,

where n = i − j. Then ajaia−2
i+1a−1

j ∈ H1 � N.

Similarly a−1
j aia−2

i+1aj ∈ N, since a−1
j aia−2

i+1aj =

(aja−2
j+1)−1(aj+1a−2

j+2)−2 · · · (aia−2
i+1)−2n

aia−2
i+1(aia−2

i+1)2n · · · (aj+1a−2
j+2)2(aja−2

j+1).

Case 2. Let j > i. Consider the set {ai | i ∈ Z}. Since C∩A has finite index

in A, there exist two integers n,m ∈ Z such that n � m and ama−1
n ∈ C ∩ A.

Without loss of generality we can assume that n − m < 0, then

a0a−1
n−m = x−m(xma0x−m)(xna−1

0 x−n)xm = x−mama−1
n xm ∈ C ∩ A,

because C ∩ A is normal in G.

Let n−m = t, then xta0a−1
t x−t = ata−1

2t ∈ C∩A, and therefore a0a−1
2t ∈ C∩A.

So inductively a0a−1
dt ∈ C ∩ A for all d > 0. Choose d such that dt � i − j and

set k = dt + j, then k � i such that aja−1
k = x ja0a−1

dt x− j ∈ C ∩ A.

Therefore, ajaia−2
i+1a−1

j = (aja−1
k )(akaia−2

i+1a−1
k )(aka−1

j ) ∈ N. Indeed, since

k � i, similar to Case 1, it follows that (akaia−2
i+1a−1

k ) ∈ H1.

Similarly, to prove that a−1
j aia−2

i+1aj ∈ N, we take a−1
m an ∈ C ∩ A, which

implies that

a−1
0 at = a−1

0 an−m = x−m(xma−1
0 x−m)(xna0x−n)xm = x−ma−1

m anxm ∈ C ∩ A.

Since xta−1
0 atx−t = a−1

t a2t ∈ C ∩ A, we have a−1
0 a2t ∈ C ∩ A, and it follows

inductively that a−1
0 adt ∈ C ∩ A for all d > 0.

So we can find k′ � i such that a−1
j ak′ ∈ C ∩ A.

Thus a−1
j aia−2

i+1aj = (a−1
j ak′)(a−1

k′ aia−2
i+1ak′)(a−1

k′ aj) ∈ N. So the proof that N�A

is complete.

Since aia−2
i+1 ∈ H1 � N for all i ∈ Z, it follows that aiN = a2

i+1N for all i ∈ Z.

Using that N � A, it follows that a0N = a2
1N = a4

2N.

Therefore, a0a2N = a4
2a2N = a2a4

2N = a2a0N. Thus [a0, a2] ∈ N � L. �
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Remark 3.3.2. Let D = 〈x, y〉 be the free abelian group of rank 2, and 〈a〉 be

the infinite cyclic group, then the group D� 〈a〉, where the action of a on D

is given by axa−1 = y−1x, aya−1 = y, is polycyclic.

Since polycyclic groups are SCS, by [15], therefore, D� 〈a〉 is SCS. How-

ever, similar to Theorem 3.3.1, it is not an SICS group. Therefore, an SCS

group need not be SICS.

Remark 3.3.3. According to D. Segal, oral communication, there exists a

nilpotent group G which is SCS, but not SICS (his example is very com-

plicated and based on a solution by Matyasevich of the 10th Hilbert prob-

lem).

Remark 3.3.4. The group G = 〈x, y, a | axa−1 = y−1x, aya−1 = y〉 can be con-

sidered as an HNN extension of F2 with the automorphism φ : F2 → F2

which is given by φ(x) = y−1x and φ(y) = y.

Therefore, by Theorem 3.3.1, the class of SICS groups is not closed un-

der the HNN extension.

3.4 An amalgamated product of groups which is

not SICS

We do not know an example of an amalgamated product of two SICS

groups which is not SICS. It is still an open question whethere the class

of SICS groups is closed under the amalgamated product or not.

In the following theorem we adapt the proof given by Gitik and Rips

[12] to give an example of a non-SICS group which is the free product of

an SICS group and an SCS group with amalgamated cyclic subgroup.

Theorem 3.4.1. Let D be a free abelian group with the basis d1, d2, . . . , d8. Let

A = D � 〈a〉, where a−1d1a = d1d2, a−1d2a = d2, a−1d3a = d4, a−1d4a = d3,

a−1d5a = d6, a−1d6a = d5, a−1d7a = d7, a−1d8a = d8.
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Let B be any group containing an element b of infinite order. If B contains an

element c such that cb = bc and c � 〈b〉, then G = A ∗a=b B is not SICS, though A

is SCS.

Remark: We do not know whether G is SCS, or not.

Proof. Since A is a polycyclic group, by [15], it follows that A is SCS.

Let c1 = cd1, c2 = d3d7cd3, c3 = d4cd4, c4 = d5d8cd5, and c5 = d6cd6. Let

H1 = 〈c1, c2, . . . , c5, a3d2, ad7d8〉 and H2 = 〈a〉 � G. To prove that G is not

SICS, we prove that:

(1) H2 is not conjugate into H1.

(2) For every subgroup H � G with H1 � H, either H2 � H or H ∩ H2 =

{1}.

Since H ∩ H2 = {1} does not occur for finite index subgroups H in G,

the proof of (2) implies that H2 � H for every finite index subgroup H in G

with H1 � H.

The proof of (1) follows from (i), (ii), (iii).

(i) H2 � H1, that is, a � H1.

Every element x ∈ H1 can be written as

x =
t∏

i=1

cl1i
1 cl2i

2 · · · c
l5i
5 (a3d2)l6i(ad7d8)l7i

where l1i, l2i, . . . , l7i ∈ Z, t ∈ N.

If l6i = l7i = 0 for all i = 1, . . . , t, then x � a. If l1i = l2i = · · · = l5i = 0 for all

i = 1, . . . , t, then x = (a3d2)k(ad7d8)l = a3k+ldk
2dl

7dl
8 for some k, l ∈ Z and thus

x � a for all k, l ∈ Z.

So it is enough to prove that

y = u(a3d2)k(ad7d8)lv = ua3k+ldk
2dl

7dl
8v ∈ 〈a〉 if and only if y = 1, where

k, l ∈ Z, u ∈ L = {1, d1, d3, d−1
3 d−1

7 , d4, d−1
4 , d5, d−1

5 d−1
8 , d6, d−1

6 }, and

v ∈ R = {1, d−1
1 , d−1

3 , d3d7, d4, d−1
4 , d−1

5 , d5d8, d6, d−1
6 }.
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Note that a, d2, d7, d8 commute and d1ad−1
1 = ad2.

It is easy to check that all these cases lead to y ∈ 〈a〉 ⇔ y = 1.

For instance, let u = d1 and v = 1, then

y = d1a3k+ldk
2dl

7dl
8 = a3k+ld1d4k+l

2 dl
7dl

8 � 〈a〉

for all k, l ∈ Z.
Let u = d1 and v = d−1

1 , then

y = d1a3k+ld−1
1 dk

2dl
7dl

8 = a3k+ld4k+l
2 dl

7dl
8 ∈ 〈a〉 ⇔ y = 1.

The complete list of a similar y could be found in [12].

(ii) Hg
2 � 〈c1, c2, . . . , c5〉 for all g ∈ G. Indeed, every element x ∈ Hg

2 can

be written as x = gatg−1 for some t ∈ Z. The cyclic length of x is 1, although

the cyclic length of every non-trivial element y ∈ 〈c1, c2, . . . , c5〉 is greater

than 1.

(iii) gag−1 � (a3d2)k(ad7d8)l for all g ∈ G and l, k ∈ Z.

Case 1: Let g ∈ B. If gag−1 ∈ B \ 〈b〉, then gag−1 � A, and therefore

gag−1 � (a3d2)k(ad7d8)l. If gag−1 ∈ 〈b〉, then gag−1 = aj for some j ∈ Z \ {0}.
Since (a3d2)k(ad7d8)l ∈ 〈a〉 ⇔ (a3d2)k(ad7d8)l = 1, and gag−1 � 1, it follows

that gag−1 � (a3d2)k(ad7d8)l.

Case 2: Let g ∈ A. If gag−1 ∈ 〈a〉, then gag−1 � (a3d2)k(ad7d8)l, because

(a3d2)k(ad7d8)l ∈ 〈a〉 ⇔ (a3d2)k(ad7d8)l = 1.

If gag−1 ∈ A \ 〈a〉, then g = das for some s ∈ Z and d � 1 in D, and so that

gag−1 = dad−1 = aa−1dad−1.

If aa−1dad−1 = gag−1 = (a3d2)k(ad7d8)l = a3k+ldk
2dl

7dl
8 for some l, k ∈ Z, then

3k + l = 1 and a−1dad−1 = dk
2dl

7dl
8.

Let d = dt1
1 dt2

2 · · · d
t8
8 then a−1dad−1 = dt1

2 dt4−t3
3 dt3−t4

4 dt6−t5
5 dt5−t6

6 for some ti in

Z, i ∈ {1, . . . , 8}. Therefore a−1dad−1 = dk
2dl

7dl
8 implies that l = 0, 3k = 1, a

contradiction.

Thus gag−1 � (a3d2)k(ad7d8)l for all g ∈ G and l, k ∈ Z.
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Case 3: Let g � A and g � B such that gag−1 = (a3d2)k(ad7d8)l for some

l, k ∈ Z. Choose a representation Wg =
∏t

i=1 gi of g ∈ A ∗a=b B with minimal

length satisfies that gag−1 = (a3d2)k(ad7d8)l, where gi ∈ A ∪ B \ 〈a〉 for all

i = 1, . . . , t, t ≥ 2 and Wg is an alternative product of elements from A and

B.

Without loss of generality we can assume that gt ∈ B. If gtag−1
t ∈ B \ 〈b〉

then the length of gag−1 is greater than 1 and thus gag−1 � (a3d2)k(ad7d8)l

for all l, k ∈ Z.

Let gtag−1
t ∈ 〈b〉, then gtag−1

t = aj for some j ∈ Z \ {0}, and therefore

gt−1ajg−1
t−1 ∈ A. Then gt−1ajg−1

t−1 ∈ 〈a〉 or ∈ A \ 〈a〉. If gt−1ajg−1
t−1 ∈ 〈a〉, we claim

that gt−1ajg−1
t−1 = aj and then gtag−1

t = gt−1gtag−1
t g−1

t−1, which contradicts the

minimality of the length of Wg.

Now we prove our claim. Since gt−1 ∈ A \ 〈a〉, we assume that gt−1 = das

for some s ∈ Z and d � 1 in D, then gt−1ajg−1
t−1 = dajd−1 = aja− jda jd−1. Since

a− jda jd−1 ∈ D and aja− jda jd−1 ∈ 〈a〉, we get a− jda jd−1 = 1, and therefore

gt−1ajg−1
t−1 = aj.

If gt−1ajg−1
t−1 ∈ A \ 〈a〉 and t > 2, then the length of gag−1 is greater than 1

and thus gag−1 � (a3d2)k(ad7d8)l for all l, k ∈ Z.

If gt−1ajg−1
t−1 ∈ A\〈a〉 and t = 2, then gag−1 = gt−1ajg−1

t−1, where gt−1 ∈ A\〈a〉.
Let gt−1 = das for some s ∈ Z and d � 1 in D, then gag−1 = dajd−1 =

aja− jda jd−1.

If gag−1 = (a3d2)k(ad7d8)l, then aja− jda jd−1 = a3k+ldk
2dl

7dl
8 for some l, k ∈ Z,

and therefore 3k + l = j and a− jda jd−1 = dk
2dl

7dl
8. Let d = dt1

1 dt2
2 · · · d

t8
8 for some

ti ∈ Z, i ∈ {1, . . . , 8}, then a− jda jd−1 = d jt1
2 dt4−t3

3 dt3−t4
4 dt6−t5

5 dt5−t6
6 , where j is odd,

or a− jda jd−1 = d jt1
2 , where j is even.

Therefore a− jda jd−1 = dk
2dl

7dl
8 implies that l = 0, k = jt1, and then 3t1 = 1,

a contradiction. Thus gag−1 � (a3d2)k(ad7d8)l for all g ∈ G and l, k ∈ Z.

gag−1 = (
∏t−2

i=1 aibi)(at−1ataa−1
t a−1

t−1)(
∏t−2

i=1 aibi)−1.

Now we prove (2), let H � G such that H1 � H, and H ∩ H2 � {1}, we

want to prove that H2 � H. Since H∩H2 � {1}, assume that an ∈ H for some
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0 � n ∈ N.

If n = 2m, then

(cd1)a2n(a3d2)−m(cd1)−1 = c(d1amd−m
2 d−1

1 )c−1 = c(d1amd−1
1 )d−m

2 c−1 = camc−1 = am.

If n is odd then a−n(d7d3cd3)an(d4cd4)−1 = d7(d4cd4)(d4cd4)−1 = d7 ∈ H, and

a−n(d8d5cd5)an(d6cd6)−1 = d8(d6cd6)(d6cd6)−1 = d8 ∈ H.

Thus a ∈ H, and therefore H2 � H. �

Remark 3.4.2. If B contains an element c0 such that bc0 = c0b−1, take

c1 = c0d1, c2 = d3d7c0d3c−1
0 d3, c3 = d4c0d4c−1

0 d4,

c4 = d5d8c0d5c−1
0 d5, c5 = d6c0d6c−1

0 d6.

Let H1 = 〈c1, c2, . . . , c5, a3d2, ad7d8〉,H2 = 〈a〉 � G. We similarly show that

G = A ∗a=b B is not SICS.

Corollary 3.4.3. Let B be an SICS group and b ∈ B be of infinite order.

If for any SCS group A and a ∈ A of infinite order A ∗a=b B is SICS then

NB(〈b〉) = 〈b〉.
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Appendix A

In this appendix we introduce some open problems which we want to

solve in the next night.

1. For each pair (A, B) of classes from the set (CS, LERF, SCS, and SICS)

decide whether A lies in B or not.

2. Is the direct, semidirect, or free product of two SCS groups again

SCS?

3. We know that for n ≥ 2 the group BS (1, n) is RF but not LERF (πC).

Is BS (n, n) LERF (πC)?

4. Are BS (1, n) and BS (n, n) SCS and/or SICS?

5. We know that limit groups are LERF. Are they SCS and/or SICS?

6. Is F1 × Fm SICS?

7. Is Fn × Fm SCS?

8. Is Fn ∗Z Fm SCS and/or SICS?

9. If A and B are two nilpotent groups, is A ∗Z B SCS and/or SICS?

10. If A and B are two SCS and/or SICS groups, and X is a finite sub-

group of A and B, is A ∗X B SCS and/or SICS?

11. If A and B are two SCS and/or SICS groups, and X is a malnormal

subgroup of A and B, is A ∗X B SCS and/or SICS?

83



84 APPENDIX A

12. If G is a finite extension of a group H, and H is SCS and/or SICS, is

G SCS and/or SICS?

13. Is every subgroup of an SCS and/or SICS group again SCS and/or

SICS?

14. If A is an Artin group, is A LERF, SCS and/or SICS?

15. What are the necessary and sufficient conditions for the right-angled

Artin group to be SCS and/or SICS?

16. Let A be an SCS and/or SICS group. What are the necessary and

sufficient conditions for an HNN extension of A to be SCS and/or

SICS?

17. Let A and B be two LERF, SCS, and/or SICS, under which conditions

A � B is LERF, SCS, and/or SICS? In particular, we know that Lamp-

lighter group Z2 � Z is RF and CS, is it LERF, SCS, and/or SICS?

18. Definition: (a) A group G is called subgroup free separable (SFS) if

for every two finitely generated subgroups H1 � H2, there exists a

homomorphism φ from G to a free group F such that φ(H1) � φ(H2).

(b) A group G is called subgroup conjugacy free separable (SCFS) if for

every two finitely generated subgroups H1 and H2 such that H2 is not

conjugate to H1 in G , there exists a homomorphism φ from G to a free

group F such that φ(H1) is not conjugate to φ(H2) in F.

(c) A group G is called subgroup into-conjugacy free separable (SICFS) if

for every two finitely generated subgroups H1 and H2 such that H2 is

not conjugate into H1 in G , there exists a homomorphism φ from G

to a free group F such that φ(H1) is not conjugate into φ(H2) in F.

It is easy to see that every SFS is LERF, every SCFS is SCS, and every

SICFS is SICS, since every free group is LERF, SCS, and SICS. Which

interesting classes of groups are SFS, SCFS, and/or SICFS?
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