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Zusammenfassung

In dieser Dissertation untersuche ich den elektronischen Transport mittels Dirac-Fermionen
an der Oberfläche von starken topologischen Isolatoren und in Graphen.

Zu Beginn gebe ich eine Übersicht über topologische Isolatoren und Graphen, gefolgt
von einer Einführung in die bei niedrigen Energien gültige effektive Theorie. Sie dient der
Beschreibung elektronischer Zustände an der Oberfläche von starken dreidimensionalen
topologischen Isolatoren und derer in Graphen. Unter Anwendung dieser Theorie gelange
ich dann im Speziellen zur Struktur der Oberflächenzustände topologischer Isolatoren
mit einem großen Oberflächen zu Volumen Verhältnis, wie es z.B. Nanodrähte oder
Dünnschichtsysteme aufweisen.

Anschließend wird das Energiespektrum und die Spinparität der Eigenzustände eines
aus einem topologischen Isolator konstruierten Quantenpunktes mit der Form einer
Nanoröhre betrachtet. Numerische Berechnungen zeigen nun, dass sogar bei niedrigsten
Energien eine Spin-Oberflächen-Fixierung aufgebrochen wird. Dies bedeutet, dass die
Spinausrichtung in einem topologisch geschützten Zustand nicht relativ zur Oberfläche
fixiert ist. Des Weiteren zeigt die Numerik die Existenz von impulslosen Moden und inter-
Bandlücken Zuständen, die nahe der Grundflächen des zylindrischen Quantenpunktes
lokalisiert sind. Die meisten Eigenschaften des Energiespektrums und die Spinstruktur
der Eigenzustände wurden außerdem analytisch aus der Beschreibung durch Oberflächen
Dirac-Fermionen reproduziert. Die Resultate wurden mit mikroskopischen Ansätzen,
die auf einer Tight-Binding-Rechnung für einen topologischen Isolator in Nanoröhren
Geometrie beruhen, verglichen und zeigen qualitative Ähnlichkeit.

Hierauf folgend werden durch Elektron-Phonon-Streuung hervorgerufene Effekte in
dünnschichtigen Systemen aus topologischen Isolatoren theoretisch untersucht. Die
Phononen werden hierbei durch eine isotropische elastische Kontinuumstheorie mit
spannungsfreien Randbedingungen modelliert. Die Wechselwirkung mit den helikalen
Oberflächen-Dirac-Fermionen wird hierbei durch ein Verformungspotenzial beschrieben.
Der temperaturabhängige spezifische Widerstand ρ(T ) und die Quasipartikel-Zerfallsrate
Γ(T ), beobachtbar durch Photoemission, werden numerisch berechnet. Für den Hoch-
und Tieftemperaturgrenzfall werden analytische Ausdrücke in Form von Potenzgesetzen
für diese beiden Größen berechnet. Detaillierte Vorhersagen über den gesamten Tempe-
raturbereich für die Materialparameter von Bi2Se3 sind angegeben und ermöglichen eine
experimentelle Bestätigung.



Anschließend wird eine für Dirac-Fermionen in topologischen Isolatoren und Graphen
einheitliche Theorie zur Beschreibung von Quantentransport und der Streuung an räumlich
lokalisierten statischen Magnetfeldern entwickelt. Das verwendete Modell beschreibt
vereinheitlichend die Effekte von orbitalen magnetischen Feldern, Zeemann- und Aus-
tauschfeldern in topologischen Isolatoren und von durch Zug oder Defekten in einlagigem
Graphen verursachten pseudomagnetischen Feldern. Die generelle Streutheorie hierzu
wird formuliert, und für radial symmetrische Felder werden die Streuamplitude, der
totale und der Transport-Streuquerschnitt in Abhängigkeit von Phasenverschiebungen
ausgedrückt. Als Anwendung hierzu untersuche ich ringförmige magnetische Felder. Die
Aharonov-Bohm Geometrie wird ebenfalls als Grenzfall der Ring-Geometrie untersucht.

Außerdem erörtere ich den supraleitenden Nahwirkungseffekt auf Graphen und unter-
suche resonantes Tunneln durch eine supraleitende Doppelbarrierenstruktur in Graphen
als Funktion der Systemparameter. In diesem System entstehen Transmissionsresonanzen
auf Grund von gebundenen Andreev Zuständen. Der Transport durch diese Geometrie,
als Funktion der Einfallsenergie für verschiedene Einfallswinkel, zeigt eine Dämpfung
der Resonanz, wenn die normale Reflektion zwischen den Barrieren sich erhöht. Des
Weiteren betrachte ich noch das Phänomen des Quanten-Ladungs-Pumpens. Dieses wird
erreicht durch eine periodische Modulation der Amplituden (∆1 und ∆2) der Bandlücken
der beiden zugehörigen supraleitenden Barrieren. Diese Modulation entspricht einer
Pump-Kontur in der ∆1 −∆2-Ebene des Parameterraums. Auf Grund von Resonanzen
in dieser Ebene, erhält man eine große Menge gepumpter Ladung, wenn diese Kontur die
Resonanzen umschließt. Dies steht in direktem Gegensatz zum Ladungspumpen in einer
normalen Doppelbarrierenstruktur in Graphen, wo die gepumpte Ladung sehr klein ist
auf Grund des Phänomens des Klein-Tunnelns. Das Verhalten der gepumpten Ladung als
Funktion der Pumpstärke und der Phasendifferenz der Pumpparameter für verschiedene
Einfallswinkel der Elektronen wird ebenfalls analysiert. Das Resonanzverhalten kann
eventuell experimentell beobachtet werden.



Abstract

In this dissertation I study electronic transport through Dirac Fermions on the surface of
strong topological insulator and graphene.

I start by reviewing the physics of topological insulator and graphene and the low
energy effective theory for the electronic states of the surface of a 3D strong topological
insulator and graphene. Using this theory the electronic structure of the surface states of
strong topological insulators of geometries with large surface to bulk ratio like nanowire
and thin film are obtained.

Then the energy spectrum and the spin-parity structure of the eigenstates for a
finite size topological insulator quantum dot of the shape of a nanotube are considered.
Numerical calculations show that even at the lowest energy scales, the “spin-surface
locking” is broken, that is, the spin direction in a topologically protected surface mode is
not locked to the surface. The calculations also show the existence of “zero-momentum”
modes, and sub-gap states localized near the “caps” of the dot. Both the energy spectrum
and the spin texture of the eigenstates are basically reproduced from an analytical surface
Dirac fermion description. The results are compared to microscopic calculations using a
tight-binding model for a strong topological insulator in a finite-length nanowire geometry,
which shows qualitative similarity.

Then, a theoretical study of electron-phonon scattering effects in thin films made
of a strong topological insulator is presented. Phonons are modeled by isotropic elastic
continuum theory with stress-free boundary conditions, and the interaction with the
helical surface Dirac fermions is mediated by the deformation potential. The temperature-
dependent electrical resistivity ρ(T ) and the quasi-particle decay rate Γ(T ) observable
in photo-emission are computed numerically. The low and high-temperature power
laws for both quantities are obtained analytically. Detailed estimates covering the full
temperature range are provided for the parameters of Bi2Se3 which possibly can be
verified by experiment.

Afterwards, a theory of quantum transport and scattering by spatially localized static
magnetic fields is developed in a unified way for the low energy Dirac Fermions on
topological insulator and graphene. The employed model describes in a unified manner
the effects of orbital magnetic fields, Zeeman and exchange fields in topological insulators,
and the pseudo-magnetic fields caused by strain or defects in monolayer graphene. The
general scattering theory is formulated, and for radially symmetric fields, the scattering



amplitude and the total and transport cross sections are expressed in terms of phase shifts.
As applications, I study ring-shaped magnetic fields. The Aharonov-Bohm geometry is
also studied as a limit to the ring geometry.

I also review the superconducting proximity effect on graphene and study resonant
tunneling through a superconducting double barrier structure in graphene as a function
of the system parameters. In this geometry, transmission resonances occur because of the
formation of Andreev bound states. The evolution of the transport through this geometry
as a function of the incident energy for various angles of incidence shows the damping
of the resonance as normal reflection between the barriers increases. I also consider the
phenomenon of quantum charge pumping of electrons in this geometry in the adiabatic
limit. Quantum charge pumping can be achieved by modulating the amplitudes (∆1 and
∆2) of the gaps associated with the two superconducting strips. Because of transmission
resonances in the ∆1 −∆2 plane of parameter space, a large value of pumped charge is
obtained when the pumping contour encloses the resonances. This is in sharp contrast to
the case of charge pumping in a normal double barrier structure in graphene, where the
pumped charge is very small, due to the phenomenon of Klein tunneling. The behavior
of the pumped charge as a function of the pumping strength and the phase difference
between the two pumping parameters, for various angles of the incident electron is also
analyzed. The resonance behavior can possibly be observed by experiment.
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Introduction

Graphene was studied theoretically over few decades. But is was generally believed
that a monolayer graphene will be almost impossible to separate out for studying their
properties, and even if they could be separated, they will not be stable against thermal
fluctuation. In 2004, an experimental discovery by André Geim et al. proved both of
the believes to be not true. As a result of this discovery, the decade old system has
become an extremely rapidly growing field of research. Topological Insulator is rather a
new field of research, which is the generalization of the celebrated quantum-Hall systems
(described by Klitzing in 1980). Historically predicted topologically protected states in a
quantum well were first experimentally observed by Konig et al. only in 2007. The first
3D topological insulator was predicted to be bismuth antimony by Hsieh et al. in 2008.
Since then, exciting physics like the non-trivial surface state of a topological insulator, the
possibility of appearance of Majorana Fermions at the interface with superconductor have
made it one of the most active field of research in theoretical as well as in experimental
condensed matter physics.

Although physically different, the electronic transport by the surface state of a
“Topological Insulator” and in “graphene” are both remarkably described by relativistic
Dirac Fermions, with light velocity replaced by the Fermi velocity. This opens up an
opportunity to study then simultaneously, often in an unified way. In experiments with
this systems, the usual length scale are in the order of nano-meters. That lies in the
regime of mesoscopic physics. In this thesis, I will describe the theoretical studies and
research I performed in my doctoral program concerning many phenomena associated
with mesoscopic electronic transport in topological insulator and in graphene.

Organisation:

In the first chapter I shortly review the physics of topological insulator and graphene. I
describe the topological insulating phase as a topologically nontrivial phase generalizing
from quantum Hall phase. In a 3D strong topological insulator, the surface state is best
described by massless Dirac Fermions system. This “massless-ness” is protected by the
topology of the bulk system. In the Sec. 3 of the chapter I review the band structure of
a monolayer graphene along with its symmetries and the emergence of Dirac Fermions as
low energy excitations around certain points in the Brillouin zone.

In the next two chapters (2nd and 3rd) I discuss the effective Hamiltonian, energy
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spectrum and important spin texture for different 3D topological insulator geometries
starting from a low energy Hamiltonian introduced by Zhang et al in 2009. We specially
focus on the case of a nanotube geometry. I also introduce a Dirac surface Fermion
theory for describing the system.

In the next two chapters (4th and 5th) I discuss interaction effect on topological
insulator surface state and graphene. Thin film geometry is one of the most favorable
geometry for transport measurement experiments because of its better surface to bulk
ratio. The temperature dependent resistivity and lifetime broadening of a topological
insulator is discussed in Chapter 4. In Chapter 5, I describe the magnetic scattering of
the Dirac Fermions on the topological insulator surface and graphene in a unified manner.

Chapter 6 is dedicated to study an interesting mesoscopic geometry with graphene
and proximity induced superconductivity. An incident electron from graphene on such
an interface can reflect back as hole, which is called the Andreve refletion. Due to
this process, one expects boundstates within the quantum well formed by a double
superconductor barrier structure in graphene, which gives rise to tunneling resonances. I
discuss such resonating transport along with the large pumped charge in this system.

Most of the results of Chapter 2-6 are obtained while working with Prof. Dr. Reinhold
Egger, Dr. Alex Zazunov, Prof. Dr. Sumathi Rao, Dr. Arijit Saha, Prof. Dr. Alfredo
Levy Yeyati, Prof. Dr. Thierry Martin, Dr. Sébastien Giraud and are published in
scientific journals, which I list in the chapter ‘List of Publications’.

Finally, I discuss the conclusions of my study and research described in the thesis.

List of abbreviations

Following is the list of abbreviations I used througout the text of the thesis:
ARPES Angle-resolved photo-emission spectroscopy
BZ and FBZ both denotes the first Brilloiun zone
QHE Quantum Hall effect
QSHE Quantum spin-Hall effect
TR Time-reversal
TI Topological insulator
AR Andreev reflection
SAR Specular Andreev reflection
CAR Crossed Andreev reflection
SCAR Crossed specular Andreev reflection
CT Co-tunneling
SDB Superconducting double barrier
SB Superconducting barrier
NS Metal - superconductor junction
NSN Metal - superconductor - metal junction



Chapter 1

Dirac Fermions in Topological
Insulator and Graphene

1.1 Introduction

In this chapter we review the electronic structure and the emergence of Dirac Fermions
on topological insulator surface and in grapehene. We start with distinguishing a trivial
insulator with a nontrivial insulator through the topological aspect of band theory. We
then follow the advancement from quantum Hall state to quantum spin-Hall state to 3D
topological insulating state. This review is followed from several other reviews noted
in Ref. 1–3. Then in Sec. 1.3 we discuss the band structure and emergence of Dirac
Fermions as low energy excitations in graphene close to the special Dirac points K,K ′.
Although the low-energy excitations in a strong topological insulator and graphene are
Dirac Fermions, there are several fundamental differences between these two systems,
which we discuss at the end of the chapter Sec. 1.4.

1.2 Topological Insulators

1.2.1 Band theory of solids

One of the most celebrated theoretical discovery in condensed matter physics in the
last century was the development of band theory of solids and to explain insulating and
metallic states of matter. Electrons carry the charge in a metal, and if in a material it
becomes energetically costly to excite a bound electron to become a conducting electron,
the material becomes an insulator. The simplest example is a atom, where the electron
is bound to the nuclei in closed shell.

In a crystal, band theory exploits the the symmetries because of the periodicity of
the structure to classify the electronic states in terms of their crystal momenta k, which
we explain below:
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Bloch Hamiltonian

In a crystal, the electrons are subjected to periodic potential V (r), and the simplest
single electron Hamiltonian has the form:

H =
p̂2

2m
+ V (r), (1.1)

where V (r+a) = V (r) is periodic with the Bravias lattice vector a and the Hamiltonian
commutes with the discrete translation operator [H, T̂a] = 0 where

T̂aψ(r) = ψ(r+ a) , (1.2)

and it can be described by the operator T̂a = exp (iq · a). Here ~q is called the crystal
momenta (or Bloch momenta4) and is defined based on the lattice symmetry. For a
Bravias lattice, the primitive cell in the momentum space is called the first Brillouin zone
(FBZ or BZ), and q is single valued only in the FBZ.

Now, as T̂a commutes with the Hamiltonian, the eigenstates of the Hamiltonian
can be expressed as eigenstate of the translation operator, and it satisfies the following
boundary condition:

ψnq(r+ a) = eiq·aψnq(r) , (1.3)

where n is called the band index. q is a good quantum number, and so, we can
go to a shorter Hilbert space, which is characterized by parameter q, by the unitary
transformation:

H(q) = e−iq·rHeiq·r =
(p̂+ ~q)2

2m
+ V (r) . (1.4)

The transformed eigenfunctions unq(r) = e−iq·rψnq(r) is periodic with the lattice vector:

unq(r + a) = unq(r) . (1.5)

The mapping from a Bloch momenta q to the eigenvalues Em(q) is called the dispersion
relation, and Em(k) defines the energy bands of the material. Energy of the last occupied
band is called the Fermi energy.

In an insulator there is a gap between the Fermi energy and the next energy band
(conduction band). For the insulating phase of a matter, the most important bands are
just above and below the Fermi energy. Although different insulators have different band
structure, but one can interpolate between them adiabatically without closing the energy
gap. In that sense all conventional insulators are equivalent, and which is also equivalent
to the vacuum. Because, according to Dirac’s theory in vacuum, all positron levels are
filled and it also has a energy gap, called the pair production energy.

1.2.2 Quantum Hall effect (QHE)

The integer quantum Hall state5,6 is a situation where a insulator state becomes not-
equivalent to vacuum. In a strong magnetic field the electrons in a 2D electron gas
moves in cyclotron motion with frequency ωc and forms landau levels with energy
εm = ~ωc(m+ 1/2). If N Landau levels are filled and the rest are empty, then there is an
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Figure 1.1: The energy bands in (a) a trivial insulator inside the BZ, (b) quantum Hall
state (the Landau levels). The dotted lines denote the empty bands and the solid lines
denote the filled band. The energy difference between the highest filled band (valence
band) and the first empty band is the energy gap Eg.

energy gap separates the occupied and empty states just as in an insulator (see Fig. 1.1).
And one can recognise the system as like a lattice with unit cell area enclosing a unit
flux quantum.3,7

But, unlike an insulator, in this case an electric field causes the cyclotron orbits to
drift, leading to a Hall current characterized by the quantized Hall conductivity.i The
quantisation of Hall conductivity is a topological property and can be seen from the
formulation of Berry phase. We have discussed the Berry phase and quantum Hall effect
in Appendix A.

The quantum Hall conductivity of a system is determined by the TKNN invariant8

(or the first Chern number9) of a system (which is either zero or an integer)

nC =
1

2π

∫
BZ

d2k

(2π)2

∑
Filled band n

Ωn
kxky , (1.6)

where Ωn
kxky

is the Berry curvature10 of nth band defined in Appendix A. The Hall

conductivity is quantised in the unit of (e2/h) as

σxy = nC
e2

h
. (1.7)

The TKNN invariance is a topological property of the ground state. Two ground states
of two Hamiltonians cannot be continuously deformed into one another if they carry
different Chern numbers. In this case, the two insulators are topologically distinct.9 The
only way to deform two systems of different topological signature into one another is by
closing the band gap, i.e. via an intermediate metallic configuration. For a conventional

iHall conductivity is defined as the electrical conductivity in a perpendicular direction to the applied
electric field.
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Figure 1.2: Explanation of quantum Hall effect because of the conduction by the edge.

insulator the Chern number is zero. Insulators of non-vanishing Chern numbers are called
topological insulators or Chern insulators.

1.2.3 Edge state and bulk-boundary correspondence

Propagation by edge state

The integer quantum Hall effect can also be visualised from an intuitive physical picture.11

In presence of a magnetic field, the electrons move in circular orbit with energy equal to
the cyclotron frequency. Now, if we have a 2D surface with finite width, the electrons at
the boundaries can not complete their orbits. They perform a skipping motion as shown
in Fig. 1.2, and that is the reason for conductivity by the edge. This picture shows that,
although in the bulk the quantum Hall system is an insulator, it can be metallic at the
interface with a trivial insulator (here vacuum). Also, as the conduction in chiral, as
there is no way to rotate oppositely, hence no possibility for back scattering. This can
not be modified by small perturbation, like disorders. And hence, the quantisation of
Hall conductivity is robust (topologically protected).

This above picture gives a hint to the non-trivial nature of the edge states at the
boundary of a trivial and a topological insulator. As we discussed in the previous section
that, one can not smoothly deformed (i.e. without closing any gap) into one another
between two topologically non-equivalent band structure. The only way to do this is to
close the gap. So, we expect at the boundary of two such materials some gap-less edge
state. We will explain it below by an example.

Hall conductivity of Dirac Fermions in continuum

The 2D Dirac equation has the following form

HD = kxσx + kyσy +mσz , (1.8)
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where mσz is the mass term which opens up a gap in the spectrum. This has two bands,
and the lower band is occupied in the case of vacuum. The Hall conductivity can be
computed by calculating the Berry curvature over the occupied state (with e2/h = 1)

σxy =
sgn(m)

2
. (1.9)

This half integer Hall conductivity is puzzling, but it appears because as it is not in a
lattice, the Dirac fermions are not regularised properly. But, if the sign of m changes,
the total change of Hall conductivity is 1.

Edge mode

Let us choose a boundary between a Dirac Hamiltonian (Eq (1.8)) with positive mass
and one with negative mass:

HD(y) = −i∂xσx − i∂yσy +m(y)σz , (1.10)

where m(y) > 0 for y > 0 and m(y) < 0 for y < 0. Remarkable, one can verify that this
system has a solution

ψ(x, y) = eikxx exp

(
−
∫ y

0
m(y′)dy′

)(
1
−1

)
, (1.11)

with energy E = kx. This mode obviously is confined only close to the boundary y = 0
and decays exponentially on either side and is chiral because of a positive group velocity
dE/dkx = 1. This model was studied first by Jackiw and Rebbi.12

Bulk-boundary correspondence

The above example shows that we have edge modes at the interface between two insulators
(as they both have non zero mass on either side) with different Hall conductivity. One
of them has 1/2 Hall conductance and the other has -1/2 Hall conductance. Once we
properly regularise the system (by putting on a lattice), one of them will have Hall
conductance 0 and other one will have Hall conductance 1. This edge mode argument
can be generalised. Edge mode exists at the interface of two topologically non-equivalent
system. This edge modes are not independent of the bulk, and a signature of the
bulk-topology. This is called the bulk-boundary correspondence.

1.2.4 Time reversal symmetry and Hall conductivity

Non-zero Quantum Hall conductivity depends on time reversal (TR) symmetry breaking.
Let us shortly review the properties of TR symmetry:

TR symmetry

TR transformation is defined as a mapping

T : t→ −t . (1.12)

Under time reversal we have the follwoing properties:

T x̂T−1 = x̂ , T k̂T−1 = −k̂ . (1.13)
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Using them, from [x̂, k̂] = i, we have TiT−1 = −i, and so, for a spinless particle, T = K,
where K is the complex conjugation operator. In general T = UK where U is an unitary
matrix. For a spinfull particle TR flips the spin TST−1 = −S, which is equivalent to
rotate the spin (in spin space) and a representation for TR operator is T = −e−iπSyK,
where the (-1) sign is for convenience. For a spin 1/2 particle, σ/2 denote the spin, and
we have

T = −e−iπσy/2K = iσyK . (1.14)

This also gives rise to the relation

T 2 = −1 . (1.15)

The main consequence of this is called the Kramer’s theorem, which states that for a
single particle state |ψ〉 with energy E, if the system is TR symmetric (i.e. [H,T ] = 0),
then T |ψ〉 is also an eigenstate with the same energy and |ψ〉, T |ψ〉 are orthogonal. That
is, every single particle energy states are at least doubly degenerate.

Now, for QHE, we so far formulated the system as with spinless particle and the
magnetic field acts on the system by Lorentz force. For a spinless system, the above
formulation of TR operator gives, for a time reversal symmetric band, the wave-function
must follow:

Tu(k)T−1 = u(−k)∗ = u(k) . (1.16)

Now, the Berry curvature is defined as (Eq. (A.11)), for a single band,

Ωij(k) = i

[〈
∂u(k)

∂ki

∣∣∣∣∂u(k)

∂kj

〉
− 〈i↔ j〉

]
= i

(
∂u(k)∗

∂ki

∂u(k)

∂kj
− 〈i↔ j〉

)
= i

(
∂u(−k)

∂ki

∂u(−k)∗

∂kj
− 〈i↔ j〉

)
= i

(
∂u(−k)

∂(−ki)
∂u(−k)∗

∂(−kj)
− 〈i↔ j〉

)
= −Ωij(−k) , (1.17)

which gives zero while integrating over the full BZ. This shows that the TKNN invariant
is zero for a system with time reversal symmetry. So, a time reversal breaking term (like
magnetic field) is necessary for having non-zero Hall current.

1.2.5 Quantum spin-Hall effect (QSHE)

The qualitative picture for quantum spin-Hall effect13–15 (QSHE) is explained in Fig. 1.3.
In a quantum Hall effect the 1D channel is broken in a fashion shown in Fig. 1.3(a), which
of course breaks the TR symmetry. But the channel can also be broken in a TR symmetric
fashion as shown in Fig. 1.3(b). This system has non-zero Hall conductivity separately
for spin up and spin down electrons, but the total Hall conductivity zero. These systems
are called quantum spin-Hall state, first proposed by Bernevig and Zhang.15
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Figure 1.3: Breaking of 1D particle channel in quantum Hall effect (a) and TR symmetric
quantum spin-Hall effect (b). The red line shows the right moving channel and the blue
line shows left moving channel. Such breakup giving rise to chiralities are only possible if
the bulk has non-trivial topology.

HgTe/CdTe quantum well

The theoretical prediaction of QSHE was followed by experimental observation first in
HgCdTe quantum well.16,17 In CdTe, the conduction band is formed by electrons in s
orbitals and the valence band is formed by p orbitals. Whereas, in HgTe, because of
strong spin-orbit coupling,18 the p orbital-band is pushed above to become conduction
band and the s-orbital band becomes the valence band. In the experiments, a system
was formed by sandwiching HgTe inside two CdTe blocks (shown in Fig. 1.4). This gives
a 2D quantum well potential. Now, if the width of the HgTe block is very small (< 6.3
nm), the electronic structure is dominated by the influence of CdTe inside HgTe, and the
conduction and valence bands (E1 and H1 in the figure) remain the same as HgTe. But,
if the width becomes > 6.3 nm, because of the strong spin-orbit coupling, the bands get
inverted. In this situation, 1D edge states at the interface of HgTe and CdTe exist.

Now, as the system is time reversal symmetric (intrinsic spin-Hall effect does not
break TR), the TKNN invariant vanishes. But there exist non-trivial edge states at the
boundary. From the bulk-boundary correspondence, there must be some topological
property of the bulk responsible this. This topological property is characterised by the
Z2 invariant, which we will describe shortly.

The appearance of QSHE can be explained in a similar manner as the integer QHE by
a formulation of non-abelian Berry phase theory.7,19–21 Where the Berry connection (for
abelian case Eq. (A.8)) is replaced by a matrix because of the spin degree. The Berry
curvature in many systems (for eg. in Dirac model) becomes proportional to spin S.19

A generalised version of the anomalous velocity Eq. (A.14) is obtained for non-abelian
case, which becomes proportional to E × S.7 That is, the trajectories of spin up and
spin down electrons are parted towards opposite direction perpendicular to the electric
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Figure 1.4: Quantum spin-Hall effect in CdHgTe quantum well. Because of strong
spin-orbit coupling in HgTe, the conduction and valence band of them are opposite in
HgTe and CdTe. (a) If HgTe is sandwiched between blocks of CdTe, up to a critical
length the influence of CdTe dominates in the band structure of the HgTe. (b) After
the critical width a band inversion occurs in HgTe and the system acquires a non-trivial
topology giving rise to a spin-Hall state.

field. If population of different spins are equal, then this gives the spin-Hall effect.ii

1.2.6 Z2 invariant

Most of the usual TR invariant insulators does not show non-trivial edge states at the
boundary. The topological property of the bulk responsible for the QSHE edge states
is the Z2 invariant, which can have only two possible values (in 2D) ν = 0, 1.13,22 This
can be understood from bulk boundary correspondence. In Fig. 1.5, we have plotted the
band structure associated with the edge of two 2D TR invariant insulator with respect
to the crystal momentum along the edge. Due to the TR symmetry, the band structure
is symmetric around the mid of the Brillouin zone k = π/a. So, it is sufficient to show
only one half of the Brillouin zone. The special points k = 0 and k = π/a are (only)
TR symmetric points in 2D. So, the bands must be degenerate at this points, because of
the Kramer’s theorem.

Depending on the bulk structure, there might be edge modes present. If they are
present, they also must be degenerate at these two TR invariant points and away from
these points the degeneracy can be lifted (by spin orbit coupling, for eg). But, there
are only two ways the bands of surface states can connect between k = 0 and k = π/a.
Either they can connect like in Fig. 1.5(a), where they intersect the Fermi energy at
an odd number of points, or they can connect like in Fig. 1.5(b) intersecting the Fermi
energy an even number of times. But for the second case , without closing any gap all

iiIn case of ferromagnet, the population of spin up and spin down are different and the resulting state
is called anomalous quantum-Hall state.
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Figure 1.5: Band structure at the edge of TR invariant insulator between the two TR
symmetric points Γa = 0 and Γb = π/a. In case of (a), the surface state crosses the Fermi
energy odd number of times and in the case (b), it crosses an even number of time. Z2

invariant ν = 1 for the first case, whereas it is zero for the second case.

the edge states can be moved away from the gap (by disorder). But for the first case
it is not possible. So, the two systems are topologically different. The invariant which
determines the topological class in the Z2 invariant. For the first case, its value is ν = 1,
whereas for the second case its value is ν = 0.

In general, if the band of the edge modes of a TR invariant insulator and a trivial
insulator intersect the Fermi energy Nf number of times, the Z2 invariant is defined
as ν = Nf mod 2. There are several ways to calculate the invariant.22–29 For system
with extra symmetry it can be calculated exploiting the symmetries. We show the case
of inversion symmetry for 3D TI Bi2Se3 in Sec. 2.2. If the system has conservation of
spin (Sz), then the up and down spin has independent Chern number n↑, n↓. Because of
TR symmetry, n↑ + n↓ = 0, but the difference n− = (n↑ − n↓)/2 defines the quantised
spin Hall conductance, and the Z2 invariance is then given by ν = n− mod 2.30

1.2.7 3D topological insulator

The 2D spin-Hall states can be generalised to 3D which are usually called 3D topological
insulator (TI ). It was predicted in many materials including 3D HgTe quantum well.
But first good material (because of large bulk gap) for TI was predicted by Zhang
et al in Bi2Se3 and Bi2Te3 like materials. There have been sucessfull experiments with
Bi2Se3 confirming the predictions. We discuss the surface state of Bi2Se3 in the next
chapter.

To specify a 3D TI one needs four Z2 invariants (ν0; ν1, ν2, ν3), which also can be
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Figure 1.6: Band structure of the surface state of TR invariant topological insulator. The
four TR invariant points are shown with circular dots. The Fermi arc (the boundary of
the shaded area) can enclose an even number of TR invariant points in (a) or an odd
number of TR invariant points in (b) depending on the bulk topology. The enclosed
points are plotted with filled dots.

understood from the bulk-boundary correspondence.7 The surface of a 3D TI can be
labeled by 2D crystal momenta. In three dimensions there are 8 TR invariant pointsiii in
the bulk which project into 4 TR invariant points on the surface. So, the surface bands,
if they exit, must be degenerate at these points. Away from this TR points spin-orbit
coupling lifts the degeneracy. Similar to the 2D case, there are different ways the bands
may connect between the TR invariant points in two different ways, shown in Fig. 1.6.
The ring bounding the surface band is the Fermi ring (a 1D surface for 2D band). The
ring can surround an even number of TR points, or it can cover an odd number of
TR points. Which of these two occurs is determined by the four Z2 invariants of the bulk.

The simple generalisation from 2D to 3D spin-Hall state can be achieved by simply
stacking layers of 2D spin-Hall surfaces.31 Fig. 1.6(a) shows the Fermi surface of the
surface of such a 3D spin-Hall system, where the layers are stacked on the y axis. But,
in this case the Fermi arc of the surface state encloses an even number of TR invariant
point, and unlike 2D case, surface states in this case are not protected from disorder.
Such topological insulators are called weak topological insulators and they have the index
ν0 = 0.

Z2 invariant ν0 = 1 is a distinct phase, called strong topological insulator. This
ensures that the Fermi arc of the surface state encloses an odd number of TR invariant
point. These surface states are protected against disorder. This state is not a direct
generalization of the 2D spin-Hall state. In the rest of the report, we will mean to strong
topological insulator whenever we mention topological insulator (TI ) in 3D.

iiiWe denote them as Γi, i=1,8 and Γ denotes the k = 0 point in BZ .
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Figure 1.7: Helical Dirac Fermion in QSHE and on the surface of 3D TI . (a) Shows that
the two opposite spin states have opposite velocity in a QSHE surface. (b) Shows in a
3D TI , the spin is always perpendicular to the momentum, but also lies on the surface.

1.2.8 Dirac Fermions

The Fermi arc of the surface of a strong topological insulator encloses an odd number
of TR invariant points. This nature is protected by topology. For the simplest case,
when it encloses one TR invariant point, the surface band can be described by the Dirac
Hamiltonianiv

Hsurface = −i~vFσ ·∇ , (1.18)

where σ is spin, and for a surface with a mirror plane (inversion symmetry), symmetry
requires the spin density3

S ∝ êz × σ , (1.19)

where êz is the direction perpendicular to the surface. This property is called spin-
surface locking. Here we wish to mention that, in a system there must be in total an even
number of Dirac points on the surface, otherwise the Hall conductivity of the system will
be an half integer. This is called the Fermion doubling theorem. For graphene, we see in
the next section, that, existence of K,K ′ satisfies the Fermion doubling theorem. For
a 3D strong topological insulator there exists an odd number of points in one surface.
But, the other Dirac point resides on the opposite surface and as a whole the Fermion
doubling is satisfied.

Helicity

For both QSHE and 3D topological insulator, the Dirac Fermionic states at the surface
have spin filtering property. Fig. 1.7 (a) shows the helical property of the Dirac mode
of a QSHE state.32 On the surface spin up and spin down moves in opposite direction.

ivThe simplest dispersion relation at the Fermi surface with non-zero velocity is always linear.
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This makes the backscattering process impossible if it does not flip the spin, and thus
the surface modes are not affected my Anderson localization.

The spins of the Dirac Fermion in a 3D (strong) topological insulator surface rather
moves circularly such that at any point on the fermi circle, the velocity is perpendicular
to the spin direction. This property is called the spin-momentum locking.

1.3 Graphene

1.3.1 Crystal structure of graphene

Graphene is a 2D allotrope of carbon, which is the 6th element of periodic table. The
mostly available form of carbon is 12C6. The 6 electrons in a single carbon atom are
in the quantum state 1s22s22p2. The 1s orbital to closely bound to the nucleus and
irrelevant for chemical bonding. In presence of other atoms, the electrons in |2s〉 and
|2p〉 hybridize. A hybridization between a |2s〉 orbital and n |2p〉 orbitals is called a spn

hybridization.

In the case of graphene, the electron-bonds are sp2 hybridized. The participating
electrons are one |2s〉 electron, and two |2p〉 electrons, lets say from |2px〉 and |2py〉
orbitals. For each carbon atom they connect to three carbon atoms by σ bonding. This
forms a planar structure, where the angle between the bonds are 120o. This gives rise
to a hexagonal structure, which is similar to a benzine ring. The remaining electrons
inside the structure also forms week π bonds, but the average distance between two
neighbouring C atoms is 1.42 Å, which lies in between the bond length of σ bond and π
bond.

The 3D structure of graphene, commonly known as graphite is formed by several
graphene layers on top of each other. They are attached by week van der Waals force
which is a much weaker force compared to the σ bonds. Two consecutive graphene layer
has a distance of 2.4 times the σ bond length. The first successful extraction of single
layered graphene by Novoselov and Geim et al.33,34 and Zhang et al.35 in 2005 opened
up the opportunity for many interesting physics.

As shown in Fig. 1.8(a), there are two non-equivalent carbon atoms (marked by A
and B) in a hexagonal structure. They combine to form a unit cell. We can chose the
primitive lattice vector as

a1 =
a

2

(
3,
√

3
)
, a2 =

a

2

(
3,−
√

3
)
, (1.20)

where a is the bond length. The reciprocal lattice vectors a∗1,a
∗
2, defined by (ai · a∗j ) =

2πδij are

a∗1 =
2π

3a

(
1,
√

3
)
, a∗2 =

2π

3a

(
1,−
√

3
)
. (1.21)

The first Brillouin zone of graphene is also a hexagon in momentum space.

1.3.2 Electronic structure of graphene

In graphene, at low energy, the relevant atomic orbitals are the π bonds formed by |pz〉
orbitals, because the bonding energy is close to the Fermi energy. Each of this orbital
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Figure 1.8: Crystal structure of graphene. (a) is the hexagonal structure on grapehen
plane. The two non-equivalent atoms are marked by A and B, they combine to form a
unit cell. a1,a2 are the primitive lattice vectors. (b) shows the first Brillouin zone with
the two non-equivalent momenta K,K ′ and the effective origin in momentum space M .
See Sec. 1.3.2

can be occupied by two electrons with opposite spins. Here we will discuss the energy
bands of π electrons within a tight-binding approach, which was originally calculated for
the honeycomb lattice by P. R. Wallace36 in 1947 The tight-binding approach includes
the nearest-neighbour hopping (which, in case of graphene relates one A atom to three
B atoms), and correction due to next-nearest-neighbour hopping (relates nearest AA or
BB).

Denoting the orbital of ith atom with spin σ as (iσ), the tight-binding Hamiltonian
can be written as:

ĤTB = −t
∑

<i,j>,σ

(a†iσbiσ +H.C.) − t′
∑

<<i,j>>,σ

(a†iσaiσ + b†iσbiσ +H.C.) , (1.22)

where t ∼ 2.8 eV is the nearest neighbour hopping energy and 0.02t ≤ t′ ≤ 0.2t,37 so
the next-nearest-neighbour hopping is ∼ 0.1 eV. a†iσ and b†iσ are the electron creation
operator on sub-lattice A and B of the ith lattice site.

Let us first consider the case with t′ = 0. We will add this later as correction. The
Hamiltonian is block-diagonal in spin space, so for obtaining the band energy, we’ll
consider only one spin for simplicity. Also it is convenient to write the tight-binding wave
function as a spinor with components as amplitude on A and B sub-lattice site within
the unit cell labelled by the reference point Ri. Without loss of generality, we can chose
Ri to be the coordinate of a A site. Then the tight-binding wave-function has the form
(without spin index) (

ΨA

ΨB

)
=
∑
i

eik·Ri

(
a†ie
−ik·δ1/2

b†ie
ik·δ1/2

)
, (1.23)
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Figure 1.9: Schematic of Band dispersion in graphene. Here t′ = 0.2t. For the case of
t′ = 0, the two upper and lower band touches at the two pints K and K ′

where δ1 is the vector from A to B sublattice (Fig. 1.8) and k is the Bloch momenta.
The resulting Hamiltonian has the off-diagonal form (t′ = 0):

ĤTB =

(
0 ∆k

∆∗k 0

)
, ∆k = −t(eik·δ1 + eik·δ2 + eik·δ3) , (1.24)

where δi s are shown in Fig. 1.8, and they cen be expressed as:

δ1 =
a

2
(1,
√

3) , δ2 =
a

2
(1,−

√
3) , δ3 = −a(1, 0) . (1.25)

The resulting band dispersion has the form:

εk = ±|∆k| = ±
√

3 + f(k) , (1.26)

with

f(k) = 2 cos
(√

3kya
)

cos

(
3kxa

2

)
cos

(√
3kya

2

)
. (1.27)

Dirac points

From the dispersion relation, we can find the points in the BZ, for which εk = 0. This
points are called the Dirac points because the physics close to this points are governed
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by Dirac equations. We find the two corresponding points

K,K ′ =

(
2π

3a
,± 2π

3
√

3a

)
. (1.28)

It can also be noted that

K ′ = −K − a∗1 − a∗2 ≡ −K . (1.29)

Next-nearest-neighbour correction

For a non-zero t′, the full Hamiltonian has dispersion relation

ε̃k = ±|∆k| = ±
√

3 + f(k)− t′f(k) . (1.30)

but, as ∂kf(k) = 0, near the Dirac points the physics is dominated by the nearest-
neighbour term. The presence of non-zero t′ brakes the electron-hole symmetry close
to the Dirac point, because f(K,K ′) = −3 and it shifts the zero of the energy. The
band-dispersion is shown in Fig. 1.9.

1.3.3 Dirac Fermions

To understand the physics close to the Dirac points K, we can expand the Hamiltonian
(1.24) and its band dispersion (1.26) around that point. If we set q = k −K, then upto
the first order in q = |q| we get (apart from a phase factor):

∆K(q) ' 3ta

2
(qx − iqy)

= ~vF (qx − iqy) , (1.31)

where vF ≈ 106 m/sec is the Fermi velocity. If we expand around K ′, we obtain

∆K′(q) = ~vF (qx + iqy) = ∆∗K(q) . (1.32)

Actually this means that K and K ′ are connected by time-reversal, as we discuss below.
Combining both, in the basis of (ΨA+,ΨB+,ΨA−,ΨB−), where ± stand for the two Dirac
points K and K ′, we have the mesoscopic Hamiltonian from (1.24):38,39

H =

(
H+ 0
0 H−

)
, (1.33)

H± = −i~vF (σx∂x ± σy∂y) . (1.34)

We note that each of this Hamiltonian H± presents 2D Dirac Fermions with linear
dispersion relation

E±(q) = ±~|q| . (1.35)

Here ± refers to electron/hole dispersion. If we include the correction due to the
next-nearest-neighbour interaction, the dispersion relation becomes:

Ẽ±(q) = 3t′ +±~|q| , (1.36)
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Figure 1.10: The schematic for studying a potential barrier of width W and height V0 on
a x axis of a 2D dirac system. The incident Dirac particle has a energy E < V0.

and hence, the electron-hole symmetry is broken.

The eigenfunction close to K is

ψ±K(q) =
1√
2

(
e−iφq/2

±eiφq/2

)
, ψ±K′(q) =

1√
2

(
eiφq/2

±e−iφq/2

)
, (1.37)

where φq = tan−1(qx/qy). This wave-function, although we neglected real spin so far,
contains hint about the spin-1/2 nature of the excitation. That can be seen from the fact
that, if q rotates once around the Dirac point, the wave-function gets a overall negative
sign, as a characteristics of a spin-1/2 particle.

We notice that the wave-functions in Eq. (1.37) are related by time-reversal symmetry.
If we set the origin of coordinates in momentum space at the M point of the BZ (see
Fig. 1.8), time reversal becomes a reflection with respect to the kx axis, ie, (kx, ky)→
(kx,−ky). Graphene also has inversion symmetry.

Chirality

Helicity (which is the same as chirality for mass-less particles) operator is the projection
of momentum along the spin direction:

ĥ =
1

2
σ
p

|p|
. (1.38)

In case of graphene, we can define helicity as projection to the pseudo spin (AB sublattice
space) direction. Then it can be shown that

ĥψ±K = ±1

2
ψ±K . (1.39)

and the sign is opposite for K ′. That means that electron and hole has well defined
chirality. If we include the correction due to non-zero t′, helicity remains no longer a
good quantum number.
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1.3.4 Klein tunneling and confinement

Klein paradox40–44 is a phenomena which prevents confinement of Dirac fermions by
potential barrier. If we have a potential barrier of width W and height V0, as shown
in Fig. 1.10, we can compute the total transmission coefficient. For simplicity, we are
restricting ourselves to only K point. In this geometry also the momentum along y
direction qy can be taken constant. We can write the wave-function in region I as
incoming wave + reflected wave for incident energy E:

ψI =
1√
2

(
1
seiφ

)
ei(qxx+qyy) +

r√
2

(
1

sei(π−φ)

)
ei(−qxx+qyy) , (1.40)

where r is the reflection amplitude and φ = tan−1(qx/qy). In the region II, it can be
written as

ψII =
a√
2

(
1

s′eiφ
′

)
ei(q

′
xx+qyy) +

r√
2

(
1

s′ei(π−φ
′)

)
ei(−q

′
xx+qyy) , (1.41)

where q′x =
√

(V0 − E)2/v2
F − q2

y and φ = tan−1(qx/qy). And finally in region III

ψIII =
t√
2

(
1
seiφ

)
ei(qxx+qyy) , (1.42)

where s = sgn(E) and s′ = sgn(E − V0) denotes whether it is an electron or hole. One
can compute the total transmission coefficient by matching the wave-functions at the
boundaries. As Dirac equation is first order, there is no need to match derivatives like
the schrödinger equation.

In the limit of V0 � E, the transmission coefficient has the following form:45

T (φ) ' cos2 φ

1− sin2 φ cos2(Wqx)
. (1.43)

From this equation, it is evident that the transmission is exact at normal incident. This
phenomena is called the Klein tunneling. But, for non-zero angle, it is possible to slow
down the electron.46 We also discuss the effect of non-zero incident angle in case of a
super-conducting barrier in Chapter 6.

Because of Klein tunneling it is not possible to confine Dirac Fermion by potential
barrier. This is because of the fact that, Dirac fermions can tunnel as a hole. As we have
seen in Eq. (1.40) - Eq. (1.42), an incident electron tunnels through a hole in region II,
where s′ = −1 for V0 > E. Also, it is related to the fact that, in graphene helicity is a
good quantum number. But, to reflect back, helicity must be reversed. So, as long as
there is no term breaking the symmetry, back-scattering is forbidden.

Also, because of the possibility of tunneling through a hole channel, the Andreve
reflection process in graphene differs from a usual metal case. We discuss this in Chapter
6.
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One of the way for confinement in grapehene is to apply magnetic field. It turns out
that within a magnetized region the wave-function of the Dirac particles in graphene
decays exponentially. We consider in Chapter 5 a finite magnetic ring. Because of the
back-scattering from the ring, there are formation of quasi bound state. In the limit
of infinitely thick ring, one can achieve confinement of Dirac particles. This has been
discussed in details in Ref 47 and 48.

1.4 Discussion

In this chapter we reviewed the physics of topological insulator and graphene. We started
from band structure and arrived at an effective Dirac Hamiltonian describing the systems.
Although the electronic transport of both the surface of a 3D TI and un-doped graphene
are described in a similar manner by a Dirac equation, there are fundamental physical
differences in these two systems. TI is rather a phase of matter which has the signature
of gap-less Dirac modes at the surface. These modes are protected by the bulk topology,
that means a small (time-reversal invariant) impurity can not destroy these gap-less
modes. Although different available TI materials have completely different band-structure
in the bulk, the surface modes are very similar and can be described by 2D Dirac surface
theory. Graphene, on the contrary, has bulk band structure resembling Dirac dispersion
at special points of its BZ. These modes are not protected by any topological invariant
and can easily be gapped by on-site potential.

Also, the graphene Hamiltonian (1.33) close to the Dirac points have Dirac like form
in a pseudo-spin space, which is defined by the A and B sub-lattices. Because of the valley
(K,K ′) and sub-lattice degeneracy, graphene is like 1/4th of a 2D Dirac system. Actually
it is possible to have a 2D topological phase in graphene by the action of spin-orbit
interaction.

But, while considering transport and interactions, the two system can often be
described similarly. For eg, in the case of an applied magnetic field or with magnetisation,
both systems can be described by a unified Hamiltonian, which we discuss in Chapter 5.
Also, proximity effects in both systems can be modelled similarly, and the result of one
system can often be applied to the other system.



Chapter 2

Surface States of 3D Topological
Insulator

2.1 Introduction

For a 3D TI with topologically nontrivial surface states, the first predicted material group
was BixSb1−x.49 These surface states were observed50 in Angle-Resolved Photo-Emission
Spectroscopy (ARPES).i But these materials are not very good insulator in the bulk (has
a small energy gap), so the transport through the gapless surface modes can easily be
overtaken by the residual conductivity of the bulk. Also they have rather complicated
surface states. More recently Zhang et al.51 theoeretically predicted Bi2Te3, Bi2Se3 and
Sb2Te3 as 3D TI with large bulk energy gap (∼0.3 eV) and topologically non-trivial
surface state with single Dirac cone. These has been confirmed ARPES experiments as
well.52,53 We will discuss the surface state of these materials in the next chapter.

In this chapter, in Section 2.1 we discuss the topological insulator property for
Bi2Se3 like material and introduce a low energy model Hamiltonian (around thr TR in-
variant Γ point) for the topologically nontrivial surface states in these materials. But,
for transport experiment, to reduce the contribution of the bulk, it is useful to consider
mesoscopic samples, where the surface-to-volume ratio is more advantageous. In particu-
lar, thin-film geometries54,55 and quasi-1D nanowires (“ribbons”)56–59 have been studied
experimentally. So, we describe surface states of these geometries in the rest of the
chapter.

iAngle-resolved photo-emission spectroscopy (ARPES) is a direct experimental technique to observe
the the density of single-particle electronic excitations in the reciprocal space of solids. ARPES is one
of the most direct methods of studying the electronic structure of the surface of solids. ARPES gives
information on the direction, speed and scattering process of valence electrons in the sample being studied
(usually a solid). This means that information can be gained on both the energy and momentum of an
electron, resulting in detailed information on band dispersion and Fermi surface. This technique is a
refinement of ordinary photo-emission spectroscopy.
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Figure 2.1: (a) Brillouin zone of Bi2Se3 and its projection to 2D surface momenta.
Different TR inequivalent points are shown. (b) Projection of the crystal structure of
Bi2Se3 on x− y plane. The red, blue and black corners are projections of the positions
of different atoms that define the lattice structure.

2.2 Band Inversion and TI State in Bi2Se3

like Materials

The non-trivial topological properties of Bi2Se3 , Bi2Te3 and Sb2Te3 were first investigated
by Zhang et al (Ref. 51) and later confirmed by ARPES experiments.52,53 The guiding
principle to find such materials was “band inversion”, as we discussed in the last chapter,
if the valence and conduction band has opposite parities and a band inversion takes place
while tuning a physical parameter (like spin-orbit coupling), then there is a possibility
that the material is a TI .

All the three materials Bi2Se3 , Bi2Te3 and Sb2Te3 have rhombohedral crystal
structure with D5

3d as the crystal symmetry group. A projection of the crystal structure
of Bi2Se3 is shown in Fig 2.1(b), which has following symmetries:

1. A threefold rotation R3 along z direction.

2. A twofold rotation R2 along x axis.

3. Inversion symmetry P for x→ −x, y → −y and z → −z, and

4. Time reversal symmetry T = iσ2K, where σ2 is the second Pauli matrix acting in
spin space and K is the complex conjugation operator.

Ab initio calculations for different crystal parameters are obtained in Ref. 60. The
band structure of Bi2Se3 has been obtained in Ref. 51 and shown in Fig 2.2. for the case
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Figure 2.2: Band structure for Bi2Se3 without (a) and with (b) spin orbit coupling. The
dashed line indicates the Fermi level. With spin orbit coupling it shows a anti-crossing
feature. Figure from Ref. 51

without and with spin orbit coupling. Also a bulk energy gap of magnitude 0.3 eV is
obtained which matched experimental results.61,62 By comparing the two figures 2.2(a)
and 2.2(b), one can see that there is a anti-crossing feature induced around the Γ (k = 0)
point by the spin orbit coupling. Which indicates a possible band inversion and suggests
that Bi2Se3 is a non-trivial insulator.

To verify the possibility one can follow the prescription given by Fu and Kane for
calculating Z2 invariant.49 In the presence of inversion symmetry parity is a good quantum
number and the Z2 invariants can be determined from the knowledge of the parity of
the occupied band eigenstates at the time-reversal invariant momenta points (Γi) in the
Brillouin zone. Specifically, the Z2 invariants determined by the quantities:

δi =
N∏
m=1

ξ2m(Γi) . (2.1)

Here, ξ2m(Γi) = ±1 is the parity eigenvalue of the 2mth occupied energy band at Γi.
Because of inversion symmetry, bands can be indexed by parity eigenvalues. Also,
ξ2m = ξ2m−1 between Kramer’s degenerate partners. The product involves the 2N
occupied bands. The Z2 invariant ν0 = 0, 1 for a strong TI is determined from the
following identity:

(−1)ν0 =
∏
i

δi . (2.2)

For Bi2Se3 , explicit calculation shows that51 at one of the time reversal invariant point,
the Γ (k = 0) point, the parity of the highest valence bond changes in the presence
of spin orbit coupling. Without spin-orbit coupling Bi2Se3 is a trivial insulator (with
ν0 = 0), and so the Z2 invariant becomes ν0 = 1 in presence of spin-orbit coupling. So,
Bi2Se3 is a strong TI with spin-orbit coupling.
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Figure 2.3: Electron dispersion data for High-resolution ARPES measurements of surface
electronic band dispersion on Bi2Se3 (111) around the Γ̄ point along (a)Γ̄− M̄ , (b)Γ̄− K̄
momentum space cuts. The momentum distribution curves corresponding to (a) suggest
that two surface bands converge into a single Dirac point at Γ̄. (Figure from Ref. 52)

Topological surface state

Experimentally Xia et al. (Ref. 52) confirmed the existence of gap-less surface states. Fig
2.3 shows the High-resolution ARPES measurements of surface electronic band dispersion
on Bi2Se3(111). Electron dispersion data measured with an incident photon energy of 22
eV near the Γ̄ii along two different momentum cross section aroung the Γ̄ point.

2.2.1 Model Hamiltonian for TI

For better understanding and quantitative predictions for the properties and phenomenon
of TI , it is extremely useful to construct a model Hamiltonian for such system describing
its essential properties. The model Hamiltonian for the 2D TI HgTe was developed by
Bernevig, Hughes and Zhang14 and was successfully applied for the helical edge sates
and the properties under applied magnetic field.

From microscopic consideration it can be realised that51 the band inversion in
Bi2Se3 occurs between two hybridized pz orbitals of opposite parities, of which one
belongs to the Se (|P2−z ↑ (↓)〉) atom and one to the Bi atom (|P1+

z ↑ (↓)〉). Where
± denotes the parity of this bands. In the absence of spin orbit coupling, due to the
effet of chemical bonding in this molecule and crystal field splitting, |P2−z ↑ (↓)〉 is the
higest valence band and |P1+

z ↑ (↓)〉 is the lowest conduction band. If the spin orbit
coupling strength exceeds certain threshold, these two bands invert at the Γ point and
|P2−z ↑ (↓)〉 becomes the lowest conduction band and |P1+

z ↑ (↓)〉 becomes the highest

iiΓ̄ is the projection of the time reversal invariant Γ point on a 2D Brillouin zone, shown in Fig 2.1 (b)
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M0 (eV) A1 (eVÅ) A2 (eVÅ) B1 (eVÅ2)

3.33 2.26 -0.0083 5.74

B2 (eVÅ2) C (eV) D1 (eVÅ2) D2 (eVÅ2)

30.4 -0.28 6.86 44.5

Table 2.1: Parameter values in Eq. (2.4) appropriate for Bi2Se3 (taken from Ref. 63).

valence band. Because of the inversion of two bands of opposite parity, a trivial insulator
Bi2Se3 becomes a non-trivial insulator.

Based on this 4 band structure (including spins), a low energy Hamiltonian can be
contructed around Γ point by considering all the symmetries of the system.51,63 The
different parameters of the Hamiltonian can then be obtained by fitting with the band
structure obtained by ab initio calculaion. In the basis of (|P1+

z ↑〉, |P2−z ↑〉, |P1+
z ↓〉,

|P2−z ↓〉), denoting Pauli matrices σ in spin space and τ in parity / orbital space,
and keeping terms only up to order k2, the Hamiltonian has the form of a 3D Dirac
Hamiltonian with a kinetic identity term ε0(k) and k dependent mass term:

H
′
b(k) = ε0(k)I4×4 +


M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0

0 A2k+ M(k) −A1kz
A2k+ 0 −A1kz −M(k)

 , (2.3)

= ε0(k)σ0τ0 +M(k)σ0τz +A1kzσzτx +A2τx(kxσx + kyσy) ,

with ε0 = C +D1k
2
z +D2(k2

x + k2
y), M = M0 −B1k

2
z −B2(k2

x + k2
y), k± = kx ± iky and

σ± = (σx ± σy)/2. The model parameters for Bi2Se3 have been determined from first
principles,51,63 and the latest date from Ref. 63 are shown in Table 2.1. From this model
one obtains the surface modes which are massless Dirac modes. We have derived this in
the context of taking infinite thickness limit of TI film geometry in following section.

This Hamiltonian is equivalent to the following with an unitary transformation U
(keeping up to order k2 ),

Hb = U †H
′
bU = ε0(k)I4×4 +


M(k) −iA1kz 0 A2k−
iA1kz −M(k) A2k− 0

0 A2k+ M(k) −iA1kz
A2k+ 0 iA1kz −M(k)

 ,

= ε0(k)σ0τ0 +M(k)σ0τz +A1kzσ0τy +A2τx(kxσx + kyσy) , (2.4)

with U = Diag(1,−i,−i, 1). This Hamiltonian, introduced by Liu et al.63 is used
frequently in the literature. We will also use this Hamiltonian, although physically the
two Hamiltonians (2.3) and (2.4) are the same.

This effective Hamiltonian is very useful while considering low-energy physics in TI .
In the rest of the chapter we will consider dispersion and spin texture of TI in different
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geometries from this low-energy Hamiltonian.

2.3 Surface States of TI Thin Film

As discussed in the introduction, for transport experiments thin film geometry is more
convenient for higher surface to bulk ratio.54,55 In this section we discuss the surface
state of a thin film TI . Later in Chapter 4 we discuss the effect of electron-phonon
coupling in this geometry for obtaining the resistivity.

In order to find the surface states in the film geometry, we follow the usual strat-
egy.51,63,64 For a surface perpendicular to z direction, kx, ky are still good quantum
numbers, but not kz. By substituting kz by −i∂z in Eq. (2.4), one gets an one dimentional
Schrödinger like equation with kx, ky appearing as parameters.

Hb = H0(k⊥ = 0) +H ′ , (2.5)

where,

H0 =

(
h(kz) 0

0 h(kz)

)
, (2.6)

is the part of Eq. (2.4) with kx, ky = 0. We have

h0(kz) =

(
ε0(kz) +M0 −B1k

2
z −iA1kz

iA1kz ε0(kz)−M0 +B1k
2
z

)
, (2.7)

and,
H ′ = D2k

2
⊥ −B2k

2
⊥τzσ0 +A2τx(kxσx + kyσy) . (2.8)

We note that h(kz) is diagonal in spin space, thus its eigenstates conserve spin. We write
the general eigenstates of h(kz) in spin state σ and with energy E0 as:

h(−i∂z)Ψσ = E0Ψσ . (2.9)

We make a trial solution,
Ψ ∝ Ψηe

−ηz , (2.10)

to get, (
C − E0 +M0 −D−η2 A1η

−A1η C − E0 −M0 −D+η
2

)
Ψη = 0 , (2.11)

where D± = D1 ±B1. And, we get 4 solutions in η, from

det(h(iη)− E0) = 0

or, Ãη4 + B̃η2 + C̃ = 0 , (2.12)

which gives η(E0) = ±η1,±η2 where

η1 =

√
−B̃ +

√
B̃2 − 4ÃC̃

2Ã
and η2 =

√
−B̃ −

√
B̃2 − 4ÃC̃

2Ã
, (2.13)
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with

Ã = D2
1 −B2

1 = D+D−

B̃ = A2
1 − 2(M0B1 +D1(C − E0))

C̃ = (E0 − C)2 −M2
0 . (2.14)

So, a general solution can be written as

Ψ =
∑
α=1,2

∑
β=±

cαβψαβe
−βηαz , (2.15)

where the ψαβ are given by,

ψαβ =

(
E0 − C +M0 +D+η

2
α

−A1βηα

)
. (2.16)

Now, if the thin film has a width of L and two surfaces at z = ±L/2, then applying the
boundary condition

Ψ = 0 at z = ±L/2 . (2.17)

we get two transcendental equations:

(E0 − C +M0 +D+η
2
1)η2

(E0 − C +M0 +D+η2
2)η1

=
tanh(η2L/2)

tanh(η1L/2)

or
(E0 − C +M0 +D+η

2
1)η2

(E0 − C +M0 +D+η2
2)η1

=
tanh(η1L/2)

tanh(η2L/2)
, (2.18)

from which we get the Γ point energies E
(+)
0 , E

(−)
0 and the corresponding eigenstates Ψ+

and Ψ−:

Ψ+ = N+

(
D+η

+f+
−

A1f
+
+

)
Ψ− = N−

(
D+η

−f−+
A1f

−
−

)
, (2.19)

where N± are the normalization constants,

f±+ (z) =
cosh(η1z)

cosh(η1L/2)
− cosh(η2z)

cosh(η2L/2)

∣∣∣∣
E=E±0

f±− (z) =
sinh(η1z)

sinh(η1L/2)
− sinh(η2z)

sinh(η2L/2)

∣∣∣∣
E=E±0

, (2.20)

and

η+ =
η2

1 − η2
2

η1 coth(η1L/2)− η2 coth(η2L/2)

∣∣∣∣
E=E+

0

η− =
η2

1 − η2
2

η1 tanh(η1L/2)− η2 tanh(η2L/2)

∣∣∣∣
E=E−0

. (2.21)
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Figure 2.4: E+
0 , E−0 and ∆ as a function of L in units of quantum layers (1 QL = 9.5 Å).

We write the eigenstates of H0 as (the notation is explained below):

Φ+
↑ =

(
Ψ+

0

)
,Φ−↑ =

(
Ψ−
0

)
,Φ+
↓ =

(
0

Ψ+

)
,Φ−↓ =

(
0

Ψ−

)
, (2.22)

whose energies are respectively E+
0 , E

−
0 , E

−
0 , E

+
0 .

Now, the effective surface Hamiltonian with finite kx, ky is obtained by projecting
the Hamiltonian (2.4) in this basis:51,63,64

Heff ≡
∫ L/2

−L/2
dz (Φ+

↑ ,Φ
−
↑ ,Φ

+
↓ ,Φ

−
↓ )†(H0 +H ′)(Φ+

↑ ,Φ
−
↑ ,Φ

+
↓ ,Φ

−
↓ ) , (2.23)

explicitly it is given by a 2× 2 block diagonal matrix:

Heff = E0I4×4 +D2k
2I4×4 +

1
2∆−B2azk

2 −A2Wk− 0 0
−A2W

∗k+ −1
2∆−B2bzk

2 0 0
0 0 −1

2∆−B2bzk
2 −A2W

∗k−
0 0 −A2Wk+

1
2∆−B2azk

2

 ,

with E0 = (E+
0 + E−0 )/2, ∆ = (E+

0 − E
−
0 ), k =

√
k2
x + k2

y, W = 〈Ψ+|τx|Ψ−〉. The

width dependence of ∆ is shwon in Fig. 2.4, which goes to zero exponentially as the
width increases. Neglecting k2 terms, we have,

Heff = E0I4×4 +


1
2∆ 0 0 −A2Wk−
0 −1

2∆ −A2W
∗k− 0

0 −A2Wk+
1
2∆ 0

−A2W
∗k+ 0 0 −1

2∆

 . (2.24)
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Now, we can redefine parity Pauli matrices that exchanges in space of (Ψ+,Ψ−) as τ .
Combining with the spin Pauli matrices σ, we can write the effective Hamiltonian as:

Heff = E0 I4×4 +
∆

2
τzσ0 −A2W τx(kxσx + kyσy) , (2.25)

where we have used the fact that with parameters from Ref. 63, W is always real. This
has a dispersion relation of massive Dirac Fermions:

E(k) = E0 ±
√

(A2Wk)2 + (∆/2)2 . (2.26)

2.3.1 Semi-infinite Geometry

We can make the width of the film very large and consider only one surface to obtain
an semi-infinite geometry. When L→∞, assuming both ηi have positive real parts,iii

tanh(Lηi/2) = 1 and both the conditions (2.18) becomes:

E0 − C +M0 −D+η1η2 = 0 . (2.27)

Considering (2.12), one can solve for energy, E0 = C +D1M0/B1 and

η1,2 =

√
A2

1 + 2M0D+D−/B1 ∓A1

√
A2

1 + 4M0D+D−/B1

−2D+D−
. (2.28)

Imposing the boundary condition Ψ(z = 0) = 0 and Ψ(z → +∞) = 0, the corresponding
wave-functions are given in spin space by:

Φ↑ =

(
Ψ+

0

)
, Φ↓ =

(
0

Ψ+

)
, (2.29)

with (in parity space)

Ψ+ =N0

(√
−D+/D−
−1

)
(e−η1z − e−η2z)

→N0

(
1
−1

)
(e−η1z − e−η2z) ifB1 � D1,

(2.30)

where, in the limit B1 � D1 considered in Ref. 63, it becomes an eigenstate of τx.

With vF = A2

√
1− (D1/B1)2, the effective surface Hamiltonian, in the basis {Φ↑,Φ↓}

becomes, up to first order in k,

Hsurf = C +
D1M0

B1
− vF (σxkx + σyky) . (2.31)

As expected, for L→∞, we find Φ+
↑ → Φ↑, Φ+

↓ → Φ↓, ∆→ 0, E±0 → E∞0 , A2W → vF .
Apart from the identity term, this is the Dirac equation in 2D, with the linear

dispersion relation

E(k) = C +
D1M0

B1
± vFk . (2.32)

iiiwhich is true for large L, with the parameters from Table 2.1.
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2.4 Surface State of TI Nanowire

Nanowire geometry is another case which has larger surface to bulk ratio and can be
useful for surface transport experiments. Quasi-1D nanowires (“ribbons”)56–59 have been
studied experimentally. Signatures for Aharonov-Bohm interference effects associated
with the topological surface state in Bi2Se3 nanowires were reported, 56 cf. also related
experiments for Sb2Te3 nanowires.58 In this section we discuss the energy spectrum a
TI nanowire by diagonalising the low energy Hamiltonian (2.4) we introduced in the last
section.

Although in an infinite sample of TI , gap-less surface mode is guaranteed to exist,
the energy spectrum of the surface states of a infinitely long nanowire TI is no longer
gap-less. Band structure calculations predict a multi-channel wave-guide where all surface
modes are gapped.65–68 Also, the spin is locked with the surface (spin-surface locking,
also discussed in Sec. 1.2.8).

To describe the band structure of a finite-length cylindrical nanowire of radius R and
with axis along the z direction, due to rotational symmetry in the xy plane, it is useful
to switch to cylindrical coordinates (r, φ, z). We write

k2
x + k2

y = −(∂2
x + ∂2

y) = −1

r
∂r(r∂r)−

1

r2
∂2
φ. (2.33)

We also note that,

kxσx + kyσy =

(
0 k−
k+ 0

)
, (2.34)

and rewrite

k± −→ −ie±iφ(∂r ±
i

r
∂φ). (2.35)

The “cylindrical” Pauli matrices (σr, σφ, σz) then represent the physical spin operator,51,63

σr = êr · σ = e−iσzφ/2σxe
iσzφ/2

σφ = êφ · σ = e−iσzφ/2σye
iσzφ/2 , (2.36)

and we refer to their local expectation values as “spin densities” below. The conserved
total angular momentum operator is

Ĵ = e−iσzφ/2 (−i∂φ) eiσzφ/2 = −i∂φ + σz/2, (2.37)

which is conserved because of the cylindrical geometry [Hb, Ĵ ] = 0. We can then construct
eigenstates of the Hamiltonian which are eigenstates of the angular momentum operator
Ĵ with half-integer eigenvalues j = m+ 1/2:

Ψ(r, φ) =
∑
m

ψm(r, φ) =
∑
m

1√
2π
Um(r)eimφ, (2.38)

where Um(r) is the radial function. Here, as k is a good quantum number because of
the translation symmetry in z direction, and appears as a parameter in the Hamiltonian
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and ins eigenstates. We can diagonalise the Hamiltonian and obtain the eigenstates and
eigen-energies for a given k and j.

For the nanowire we then construct the eigenfunctions to the Hamiltonian (2.4) with
Dirichlet boundary conditions on the surface, i.e., Ψ(|r| = R) = 0. This can be achived
by expanding the radial function in the basis:

Um(r) =
∑
ν

umν(r) =
∑
ν

√
2Jm(γmνr/R)

RJm+1(γmν)
Θ(R− r), (2.39)

which vanishes at r = R and are normalised to:∫ R

0
rdr umν(r)um′ν′(r) = δmm′δνν′ . (2.40)

The quantity γmν is the νth zeroes of the Bessel function Jm.

We can now expand the Hamiltonian (2.4) in the orthonormal basis {%m,ν(r, φ)}, that
satisfies the proper bounadary condition:

%στm,ν(r, φ) =
eimφJm(γmνr/R)√
πRJm+1(γmν)

Θ(R− r)ξσητ , (2.41)

where m ≡ j − σ/2 as before and ξσ, ητ are basis states respectively in spin and parity
space with σ = ± and τ = ± are eigenvalues of σz and τz respectively. The resulting
band structure by numerical diagonalisation is shown in Fig. 2.5, which shows a minimal
gap ∆s and because of spin-surface locking we get 〈σr〉 = 0.

With k denoting the conserved momentum along the wire axis (taken along the z
direction), and j the half-integer total angular momentum, the dispersion relation of
these modes in a nanowire of radius R (Sec. 3) can be shown to be:65,66

Ej,±(k) = ±
√

(v1k)2 + (jv2/R)2, (2.42)

where ~ = 1 throughout and ± for conduction and valence band, respectively. v1, v2

are two Fermi velocities in the z and its perpendicular direction. Note that there is a
minimal gap ∆s = v2/R for the surface modes since j is half-integer.

For reasonable values of R, we have ∆s � ∆b. These surface states are well reproduced
by a model of 2D massless Dirac fermions wrapped onto the cylinder surface under the
condition that the spin is tangential to the surface and perpendicular to the momentum
(spin-surface locking), following Ref. 65,

h(j) =

(
−iv1σy∂z −

jv2

R
σz

)
, (2.43)

where as extension is important for dealing with boundaries, as we will discuss in the
next section.



30 Chapter 2. Surface States of 3D Topological Insulator

Figure 2.5: Band structure of a TI nanowire with R = 15 nm obtained by numerical
diagonalization of Eq. (2.4). Points refer to bulk states, lines to surface states. Inset:
Density ρ (dashed red) and spin density vs radial coordinate (r/R) for the right-moving
state (k, j) = (0.02 Å−1, 1/2).

2.5 TI Quantum Dot: Surface states of
Finite Nanowire

Experiments probing quantum dot physics in finite-length TI nanowires are expected
to yield new insights into the exciting physics of TIs, in close analogy to semiconductor
nanowires and carbon nanotubes where such experiments have been highly successful.69,70

This geometry is different from the infinite nanowire because of the presence of the edges
of the nanowire. In this section we discuss the band structure of a finite-length nanowire
geometry, which forms a TI quantum dot.

We employ three different and independent approaches to understand the system
of the cylindrical nanowire of length L and radius R. In this section, starting from the
effective low-energy theory of Zhang et al. for Bi2Se3 (2.4), we have performed detailed
numerical calculations for the energy spectrum and the spin texture of the eigenstates.
Material parameters were chosen for Bi2Se3 as quoted in Ref. 63.

In the next chapter we develop an analytical approach starting from a surface Dirac
fermion description has been developed for the same geometry. Most of our numerical
results can thereby be quantitatively reproduced within an analytical theory. We have
also studied a microscopic tight-binding model (which was first proposed by Fu, Kane,
and Mele71) for a strong TI in the finite-size nanowire geometry and find qualitatively
similar results, which we discuss in Appendix B.
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Figure 2.6: Energy spectrum Ej,s,± from numerical diagonalization of Eq. (2.4) for a
cylindrical TI quantum dot with R = 20 nm and L = 44 nm. Open blue triangles
correspond to the numerical results, while filled red circles show the analytical prediction
in Eq. (3.26) (in the next chapter). Dashed lines indicate the surface gap for the respective
angular momentum (j) mode in an infinitely long nanowire. The spin texture for the
zero-momentum state with j = 1/2 indicated by the lower left arrow is shown in Fig. 2.7.
The spin texture for the next higher state (higher left arrow) is shown in Fig. 2.8. The
example of a subgap state (for j = 3/2, right arrow) is addressed in Fig. 2.8.

Diagonalisation of Low energy Hamiltonian

For the cylindrical nanowire geometry of length L we construct the eigenfunctions to the
Hamiltonian (2.4) with Dirichlet boundary conditions, Ψ(r) = 0, on the surface, i.e., for
|z| < L/2 with r = R (cylinder trunk) and for |z| = L/2 with r < R (caps).

This can be achieved by expanding states in a complete orthonormal basis {ψa(r, φ, z)},
that satisfies these boundary conditions. The quantum numbers a = (j, ν, n, σ) include
the half-integer angular momentum j, a radial index ν ∈ N, the longitudinal quantum
number n ∈ N, and the spin index σ = ±. For r ≤ R and |z| ≤ L/2, the basis is chosen
in the form

ψa(r, φ, z) = ξa(r, φ, z)χσητ , (2.44)

where ξa(r, φ, z) is the real space orthonormal set that satiesfies the Dirichlet boundary
condition (ξa(R,φ,±L/2) = 0) and has the form:

ξa(r, φ, z) =

√
2

V
sin[πn(z/L− 1/2)]eimφ

Jm(γmνr/R)

Jm+1(γmν)
, (2.45)

where, as in the case of infinite nanowire (Sec. 2.4) m ≡ j − σ/2, V = πR2L is the
cylinder volume, and γmν denotes the νth zero of the Bessel function Jm

iv. The χσ and

ivJm(γmνr/R) = 0 at r = R and sin[πn(z/L− 1/2)] = 0 at z = ±L/2, thus the function vanishes at
the boundary of the cylinder
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ητ are basis states respectively in spin and parity space, where σ = ± and τ = ± are
eigenvalues of σz and τz respectively. The basis set (2.45) satisfies the orthonormality
relation ∫

V
d3r ξ∗a(r)ξa′(r) = δaa′ . (2.46)

Expanding the Hamiltonian Hb [Eq. (2.4)] in this basis, we obtain a matrix represen-
tation that allows for numerical calculations in a truncated basis set. Upon increasing
the basis set, numerical results for the spectrum turn out to converge rather slowly. We
have performed a lattice regularization as in Ref. 1 in order to obtain manageable matrix
dimensions. Typically, we achieve convergence with ≈ 8000 basis states for given j.

The solution of the eigenvalue problem then yields the discrete energy spectrum of
such a quantum dot, E = Ej,s,±, where s ∈ N labels the different states for the conduction
or valence (±) band with given angular momentum j. Taking averages with respect to
the corresponding eigenvector |Ψj,s,±〉 then yields the spatially dependent charge density
profile for this state, 〈ρ〉(r, z). In addition, one obtains the local spin densities, 〈σα〉(r, z)
with α = r, φ, z, and the local parity densities, 〈τβ〉(r, z) with β = x, y, z. Rotational
symmetry implies that all these averages are independent of the angular variable φ.

2.5.1 Energy Spectrum and Spin Density

The numerical result for discrete energy spectrum for a TI nanowire dot with R = 20 nm
and L = 44 nm is shown in Fig. 2.6. The Kramer’s degeneracy results in an identical
spectrum for j → −j but with reversed spin and parity (τy) directions. We therefore show
only the j > 0 solutions in Fig. 2.6. Moreover, we focus on the topologically protected
surface fermion modes inside the bulk gap ∆b.

Figure 2.7: (a) and (b) Shows the spin density components 〈σz〉 and 〈σr〉 respectively
in the rz plane, for the zero-momentum state with j = 1/2 indicated by the lower left
arrow in Fig. 2.6.

There are several noteworthy points about Fig. 2.6. First, it shows that most levels
are approximately recovered from the bulk dispersion relation [Eq. (2.42)] by simply
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imposing the standard quantization condition

kn = nπ/L with n ∈ N (2.47)

on the longitudinal momentum k. However, here additional states corresponding to
n = 0 emerge. These zero-momentum states are absent for Schrödinger fermions in a box.
Note that for each j, there is precisely one n = 0 state for the conduction band and one
for the valence band. Inspection of the density profiles for these states reveals almost
homogeneous charge, spin, and parity densities as a function of the z coordinate. Second,
for j > 1/2, we find a pair of nearly degenerate subgap states inside the surface gap ∆s.
(The near-degeneracy is not visible in Fig. 2.6.) Such a subgap state is localized with
equal occupation probability at both caps.

Furthermore, electron-hole symmetry is broken under the Zhang model Hb, in contrast
to the analytical model we discuss in Chapter. 3, where we found that the energy levels of
the finite nanowire are quantised by the condition Eq. (2.47). The electron-hole symmetry
breaking is the main reason for the existing discrepancies between Eq. (3.26) and the
numerical results, see Fig. 2.6. In fact, we have also carried out additional numerical
calculations for an electron-hole symmetric version of Eq. (2.4), where the corresponding
results fit almost perfectly to the analytical results of the next chapter. In particular, all
subgap states then disappear.

Figure 2.8: (a) and (b) Shows the spin density components 〈σz〉 and 〈σr〉 respectively
in the rz plane, for the next higher level state with j = 1/2 indicated by the upper left
arrow in Fig. 2.6.

Inspection of the spin densities, 〈σα〉(r, z), and parity densities, 〈τβ〉(r, z), for a given
eigenstate (j, s,±) yields

〈σφ〉(r, z) = 〈τx〉(r, z) = 0, (2.48)

i.e., spin is never oriented in the circumferential direction. In addition, there is now a
finite radial spin component within the trunk region (|z| < L/2) and a finite z-component
within the caps (|z| = L/2). Hence, in general, the spin direction for a surface state
points out of the surface: spin-surface locking is broken in this geometry. This finding
is in striking contrast to what happens in an infinite nanowire66 and for a sphere.72
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Figure 2.9: Same as Fig. 2.7 but for the “subgap” state with j = 3/2 indicated by the
right arrow in Fig. 2.6.

Specifically, in the infinite cylinder case, the results corresponding to Fig. 2.7(b) shows
〈σr〉 = 0 reflecting spin-surface locking.

Figure 2.7 shows the spin density profile for the lowest-lying (“zero-momentum”)
conduction band state with j = 1/2, indicated by the lower left arrow in Fig. 2.6. We
indeed find an almost homogeneous spin density profile along the trunk, where spin is
mostly aligned along the (negative) z-direction, see Fig. 2.7(a). Also the charge density
is practically homogeneous along the z-direction (data not shown). However, there is
also a finite radial spin component breaking spin-surface locking, see Fig. 2.7(b). For the
cap region, spin is mostly aligned along the radial direction, but again an out-of-plane
component, now oriented along the z-axis, is clearly visible. For comparison, Fig. 2.8
shows the respective results for the next higher energy level (upper left arrow in Fig. 2.6).
Again we observe that spin-surface locking is violated, while in the infinite cylinder case
one finds 〈σr = 0〉 (spin-surface locking).

For j > 1/2, our numerical results include an almost degenerate pair of subgap states,
where the degeneracy is on top of the Kramer’s degeneracy. The charge density is then
localized with equal probability near each of the two cylinder caps. A typical example
for the spin texture of such a subgap state is shown (for j = 3/2) in Fig. 2.9. The
out-of-plane spin part is identical on both caps, see Fig. 2.9(a), but the in-plane (radial)
component shown in Fig. 2.9(b) has opposite direction.

Comparing our numerical results for parity, charge and spin densities, we find that
for each eigenstate, they are linked by a set of general relations. In particular, for the
(radially integrated) densities in the trunk region, we find

〈τy〉(z) ∝ −〈σr〉(z), 〈τz〉(z) ∝ 〈ρ〉(z). (2.49)

Note that in the infinite wire case,66,73 the parity structure is trivial in the sense that
(for large R) the only non-zero component is 〈τz〉, cf. Sec. 3.2.

In the next chapter we will explain many of the results we obtain for finite nanowire
by a surface Dirac fermion theory which is described over the whole cylinder.
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2.6 Summary & Discussion

To summarise, in this chapter we have discussed the low energy theory of TI for different
experimentally interesting geometries. We started by introducing the general model low
energy Hamiltonian for TI close to the Γ point (Eq. 2.3 or Eq. 2.4) based on Bi2Se3 type
of materials.

We carried out the analytic expression for an effective low energy Hamiltonian
(Sec. 2.3) for describing a thin film TI geometry. The resulting dispersion relation is that
of massive Dirac Fermions. We later in Chapter 4 study the effect of electron phonon
coupling based on this effective Hamiltonian. From this, taking the infinite thickness
limit we obtain an effective 2D Dirac Hamiltonian for the flat surface of a 3D TI . The
Hamiltonian (spanned in one of the eigenstates of τx) has the form of massless Dirac
Fermions (apart from the identity term , from Eq. (2.31) ):

H
′
surf = vF (σxkx + σyky). (2.50)

This massless Dirac mode, which lies on the surface, is the signature of a TI , where this
mode is protected from any time reversal symmetric small perturbation.

Then we discussed the band structure of cylindrical geometry based on the bulk
Hamiltonian (2.4). For a nanowire, the dispersion relation (which defines the bands) has
the form (2.42):

Ej,±(k) = ±
√

(v1k)2 + (jv2/R)2, (2.51)

for the band with angular momentum j.
Then, in Sec. 2.5 we have studied the band structure of a quantum dot made of a

strong topological insulator from the low-energy theory of Zhang et al.51,63 The main
conclusions reached are as follows: First, longitudinal momentum quantization implies
a discrete sequence of energy levels which can (roughly) be approximated by letting
k → kn = nπ/L (n ∈ N) in Eq. (2.42). Remarkably, in addition we find unconventional
“zero-momentum” states (where, formally, kn = 0). In such a state, the charge and spin
densities are almost homogeneous along the z-direction. Furthermore, there are subgap
states energetically located within the surface mode gap (∆s). These states are localized
near both caps and show interesting spin texture.

Second, we observe significant out-of-surface components for the spin density associ-
ated with all energy eigenstates. Note that an out-of-plane spin texture is only expected
when trigonal warping effects are important,74,75 see also very recent experimental results
reporting such features.76,77 However, to lowest order in momentum (around the Γ point),
trigonal warping can be neglected, while we persistently find broken spin-surface locking
also at the lowest energy scales.

We compare the results of this finite nanotube geometry with that obtained from the
framework of a surface Dirac Fermion theory in the next chapter and discuss possible
experimental setups that can verify the exotic features.
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Chapter 3

Surface Dirac Fermion Theory for
TI Nanotube

3.1 Introduction

Excitations on the 2D surface of a 3D TI around the time-reversal symmetric Dirac point
are best described by Dirac Fermion theory as we have discussed in the first chapter
(Sec. 1.2.8) as well as for the case of Bi2Se3, in the last chapter (Sec. 2.3). In this chapter,
we introduce the surface Dirac Fermion theory for the curved surface of a cylindrical
TI starting from the low energy Hamiltonian (2.4) for materials like Bi2Se3. Along with
the Dirac Fermion theory for a flat surface we discussed in the last chapter (Sec. 2.3.1),
we then recalculate various properties of a TI quantum dot of the shape of a cylindrical
nanotube and compare them with the numerical results we obtained in Sec. 2.5.1.

3.2 Surface Hamiltonian for TI Nanowire

We start with the parity-extended surface Dirac fermion Hamiltonian for an infinitely
long nanowire65,66 (Eq. (2.43))

HD =
[
v1σφ(−i∂z)−

v2

R
σzĴ

]
T , (3.1)

where the total angular momentum operator Ĵ has been defined as before as the total
angular momentum operator (Eq. (2.37)):

Ĵ = e−iσzφ/2 (−i∂φ) eiσzφ/2 = −i∂φ + σz/2, (3.2)

which commutes with the Hamiltonian. T = T † acts in parity space and is determined
below. This extension to the parity space is necessary for dealing with boundary, as we
will see later. We note that HD respects all symmetries present in the bulk-Hamiltonian
H ′b (Eq. (2.3)). Specifically,

1. azimuthal symmetry, [HD, Ĵ ] = 0 and states are classified by half-integer j (eigen-
values of Ĵ),

ψ(φ, z) = e−iσzφ/2
∑

j∈Z+1/2

eijφ ψj(z), (3.3)
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with the 1D spinor ψj(z).

2. Time-reversal symmetry (when Φ = 0), with the symmetry operator Θ = iσyτ0K,
where K is the complex conjugation; and

3. finally, Eq. (3.1) exhibits inversion symmetry, [HD, I] = 0, with the inversion
operator

I = RzRφσ0τz. (3.4)

Here, Rz inverts the z coordinate, z → −z, and Rφ shifts φ→ φ+ π. The parity
structure in Eq. (3.4) follows from the results of Ref. 51 for a bulk TI . Note that
under inversion: Iσφ,rI−1 = −σφ,r, while [σz, I] = 0.

Evidently, both time-reversal and inversion symmetry are only kept intact when
choosing T ∈ {τ0, τz} in Eq. (3.1)i. We here set T = τz, as follows from the analytical
derivation of Eq. (3.1) in the section 3.2 as well as from numerical calculations based on
the Zhang model for the infinite nanowire case.66

Using Eq. (3.3), we can now switch to a 1D representation for a given angular
momentum (j) channel. For given energy E, the 1D spinor ψj obeys the 1D Dirac
equation H(j)ψj = Eψj withii

H(j) =

(
−iv1σy∂z −

jv2

R
σz

)
τz, (3.5)

As expected this Hamiltonian gives rise to the dispersion relation as we discussed earlier
(Sec. 2.42):

Ej,±(k) = ±
√

(v1k)2 + (jv2/R)2,

We also derive the similar Hamiltonian next from a band-inversion model. Where
we will note that the representation of the Dirac matrices γ̂k in Eq. (3.10) in terms of
products of spin and parity matrices, (in this case in Eq. (3.5)), is multi-valued and
leads to a double counting of all surface states derived from Eq. (3.5). Nevertheless, it is
technically convenient to proceed in this representation, since the double counting can
be easily circumvented, as we show later in Sec. 3.3.1

TI Nanowire surface from band-inversion:

As we discussed in the first chapter, for a Dirac like system, if the mass term changes sign
(band-inversion) between two insulators, then the two insulators are not topologically
equivalent, and we expect gapless Dirac mode at the edge. If one of the material has
Z2 invariant ν0 = 1, then the insulator is a strong TI and there exists an odd number of
Dirac modes at the edge. We can employ the principle of band-inversion for obtain the
surface mode for the Hamiltonian we introduced in last chapter (Eq. (2.3)). Following the

ibecause time reversal contains τ0 and inversion contains τz operatiors in parity space, so the parity
operator T in the Hamiltonian should commute both with τ0 and τz

iiIn the 1D representation (3.3), the cylindrical Pauli matrices σr,φ in eq (2.4) are replaced by σx,y



3.2. Surface Hamiltonian for TI Nanowire 39

gap-inversion model73 we start from Zhang’s bulk Hamiltonian (2.3) within a linear-in-k
approximation:

H ′b = Mσ0τz + [v1kzσz + v2 (kxσx + kyσy)] τx + o(k2) , (3.6)

where v1 = A1, v2 = A2.

For a cylindrical nanowire (of radius R) along the ẑ direction, we use cylindrical
coordinates and assume that, following Ref. 73, the gap parameter changes sign at r = R,
i.e., M(r) = M0 sgn(R − r) with M0 > 0. For r < R (r > R), the material is then in
the topologically nontrivial (trivial) phase. For simplicity, we choose a symmetric in
amplitude jump: M(r) =M sign(R− r), with M > 0. In the cylindrical geometry the
total angular momentum operator Ĵ (3.2) commutes with the Hamiltonian, and also,
for infinite nanowire, the momentum along the axis kz is conserved and appears as a
parameter. In the Ĵ-representation, for given kz = k:

ψ(r, φ, z) = eikz e−iσzφ/2
∑
j

eijφ ψj(r) , (3.7)

where ψj(r) obeys a 1D Dirac equation in radial direction for given energy ε (writing
(3.6) in cylindrical coordinates):(

h
(0)
j + v1kσzτx

)
ψj = εψj , (3.8)

with

h
(0)
j = Mσ0τz + v2

[
−i
(
∂r +

1

2r

)
σx +

j

r
σy

]
τx . (3.9)

For considering the surface states (as discussed in Sec. 2.3), first we consider the

surface states of the Hamiltonian (3.8) with k = 0, viz, h
(0)
j . Then we project the whole

Hamiltonian on the subspace spanned by these eigenstates, to obtain an effective surface
Hamiltonian for finite k. The details of this calculation is shown in Appendix C.

As a result, one finds for the truncated Hamiltonian:

hj =
jv2

R
ρz + v1k ρy , (3.10)

where ρi are the Pauli matrices in the zero-momentum subspace, which are not single
valued, and one can calculate all spin-parity matrices, which results in a representation
of the Dirac matrices γ̂ = σµτν in the truncated basis. In the limit R →∞, one finds:
Taking ρy = σyτz and ρz = −σzτz (see the last column of the above Table), one gets an
effective surface Hamiltonian with the same spin structure as obtained in Eq. (3.5):66

H(j) =

(
−jv2

R
σz + v1k σy

)
τz . (3.11)
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τ0 τx τy τz

σ0 γ̂0 0 γ̂x 0

σx −γ̂x 0 −γ̂0 0

σy 0 γ̂z 0 γ̂y
σz 0 γ̂y 0 −γ̂z

Table 3.1: Representation of spin-parity matrices in terms of Pauli matrices γ̂i acting in
surface-state subspace.

3.2.1 Spin and parity densities

The plane wave solution to the 1D Dirac equation with Hamiltonian H(j) in Eq. (3.5)
reads

ψj(z) =

(
A1χj

−iA2σxχj

)
eikz +

(
B1χ

∗
j

iB2σxχ
∗
j

)
e−ikz, (3.12)

with arbitrary complex coefficients (A1, A2, B1, B2). The spinors above are in parity
space while χj acts in spin space,

χj =

(
cos γj
i sin γj

)
≡

 √
1
2 −

jv2

2RE

i sgn(E)
√

1
2 + jv2

2RE

 . (3.13)

and the longitudinal momentum k = k(E) follows from the energy

E2 = (v1k)2 + (jv2/R)2. (3.14)

Below we consider energies where k is real and positive. For a description of the subgap
states, in case discussed in Sec. 3.3, evanescent modes need to be studied instead.

In the 1D representation, the inversion operator [Eq. (3.4)] becomes I → Ĩ with

Ĩ = Rzσzτz. (3.15)

Since Eq. (3.5) stays invariant under inversion, [H(j), Ĩ] = 0, the eigenfunctions (3.12)
can be classified as inversion symmetric or antisymmetric (σ = ±),

Ĩψ(σ)
j (z) = σψ

(σ)
j (z). (3.16)

From Eqs. (3.12) and (3.16), after a short calculation, we can therefore infer relations
between the coefficients for given inversion symmetry (σ):

A1 = σB1, A2 = −σB2.

A general inversion-symmetric (antisymmetric) state thus takes the form

ψ
(+)
j =

(
A1

−iA2σx

)
⊗
(

cos γj cos(kz)
− sin γj sin(kz)

)
, (3.17)

ψ
(−)
j =

(
iA1

A2σx

)
⊗
(

cos γj sin(kz)
sin γj cos(kz)

)
.
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Both are parametrized by two complex numbers (A1 and A2), where the first (second)
spinor refers to parity (spin) space.

We can take local expectation value for the charge, spin, and parity operators in a

given general eigenstate ψ
(σ)
j . With sin2(γ−j) = cos2(γj), the charge density is

〈ρ〉(z) =
(
|A1|2 + |A2|2

) [
cos2(γσj) cos2(kz) + sin2(γσj) sin2(kz)

]
. (3.18)

For the spin density, we obtain

〈σr〉 = −σ
2

(
|A1|2 + |A2|2

)
sin(2γj) sin(2kz)

〈σφ〉 = 0

〈σz〉 = σ
(
|A1|2 − |A2|2

) [
cos2(γσj) cos2(kz)− sin2(γσj) sin2(kz)

]
.

Similarly, the parity density is obtained in the form

〈τx〉 = σ Im(A1A
∗
2) sin(2γj) sin(2kz)

〈τy〉 = σRe(A1A
∗
2) sin(2γj) sin(2kz)

〈τz〉 =
(
|A1|2 − |A2|2

) [
cos2(γσj) cos2(kz) + sin2(γσj) sin2(kz)

]
.

At this stage, the above results hold for an arbitrary inversion-symmetric (σ = +) or
antisymmetric (σ = −) state.

Remarkably, for this parity extended Hamiltonian Eq. (3.5), the circumferentially
oriented spin density 〈σφ〉 always vanishes. This is in accordance with our numerical
observations (Eq. (2.48)). The current density along the z direction can be obtained
from the local operator66

jz = v1σφτz, (3.19)

and therefore vanishes identically for these states as welliii. This result stays valid for

arbitrary inversion-symmetric boundary conditions (which do not mix ψ
(±)
j states).

In order to reach agreement with the numerical results in Sec. 2.5.1, the coefficients
A1,2 should obey the three relations

Im(A1A
∗
2) = 0, Re(A1A

∗
2) > 0, |A1| 6= |A2|. (3.20)

Indeed, the first relation implies consistency with Eq. (2.48). The second relation
ensures that 〈τy〉(z) ∝ −〈σr〉(z), see Eq. (2.49). The third relation is required to
have non-vanishing spin-parity densities 〈σz〉 and 〈τz〉(z). Moreover, notice that then
〈τz〉(z) ∝ 〈ρ〉(z), in accordance with Eq. (2.49).

3.3 Finite Nanowire: Matching Trunk and Cap States

For a finite nanowire, the coefficients A1,2 in Eq. (3.17) as well as the energy spectrum
and the corresponding eigenstates can now be obtained analytically by matching the
trunk states, see Eq. (3.17) for |z| < L/2, with cap states at z = ±L/2.

iiiFor current-carrying states, one has to impose boundary conditions breaking the inversion symmetry.
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Each cap (plane surface of a 3D TI) is described by a surface Dirac Hamiltonian of
the form

Hcap = v2

[
−i
(
∂r +

1

2r

)
σr +

Ĵ

r
σφ

]
τx. (3.21)

The parity matrix τx is uniquely determined by imposing time-reversal and inversion sym-
metry, and also appears in Eq. (2.3) [in cartesian coordinates, Hcap = v2 (kxσx + kyσy) τx].

In the angular momentum (1D) representation, for given j and energy E, the cap

states Ψ
(σ)
j,ε (r, z = ±L/2) with parity σ = ±, that is, obeying ĨΨ

(σ)
j,ε = σΨ

(σ)
j,ε , are given

by (r < R):

Ψ
(σ)
j,ε (r, z) =


C ξj(r)⊗

(
1
1

)
+D ξ∗j (r)⊗

(
1
−1

)
, z = L/2

σ

[
D ξj(r)⊗

(
1
1

)
+ C ξ∗j (r)⊗

(
1
−1

)]
, z = −L/2

, (3.22)

with complex coefficients C,D and the spinor (in spin space) ξj(r) is a solution of the
Dirac equation in radial direction:

ξj(r) =

 Jj−1/2(ωr)

i sign(ε)Jj+1/2(ωr)

 , ω = |E|/v2 , (3.23)

with Jν the Bessel function. The other spinors in (3.22) are in parity space.

Matching the trunk states [Eq. (3.17)] and the cap states [Eq. (3.22)] for given j by
continuity at (z, r) = (±L/2, R), we obtain:

1

2


A1

[
χje

ikL/2 + σχ∗je
−ikL/2

]
A2

[
χ̃je

ikL/2 − σχ̃∗je−ikL/2
]
 =

 C ξj(R) +D ξ∗j (R)

C ξj(R)−D ξ∗j (R)

 , (3.24)

which are four linear equations for the four coefficients (A1, A2, C,D). A nontrivial
solution follows when the corresponding determinant vanishes, yielding the condition
results in the following dispersion equation (for σ = ±):[

J2
j−1/2(ωR) + J2

j+1/2(ωR)
]

sin (2γj) sin(kL) = 0 . (3.25)

For real-valued k ≥ 0, this equation can only be satisfied when sin(kL) = 0. This
implies the standard longitudinal momentum quantization condition kn(E) = nπ/L with
n ∈ N0. The corresponding eigenenergies then follow from the bulk dispersion relation in
Eq. (2.42),

Ej,n,± = ±
√

(πnv1/L)2 + (jv2/R)2. (3.26)
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For a given level, the wave function amplitudes A1,2 and C,D then satisfy three
conditions plus the overall normalization constraint. With p = σ(−)n = ± and the above
definition of ω, we have C = pD and the relation

Jj+p/2(ωR)A1 + p sgn(E) Jj−p/2(ωR)A2 = 0. (3.27)

Moreover, for p = + the third condition reads

cos(γj)A1 − 2(−i)nJj−1/2(u)C = 0, (3.28)

while for p = − this instead becomes

sin(γj)A1 − 2(−i)n sgn(E) Jj+1/2(u)C = 0.

These relations determine all possible wavefunctions for the closed cylinder surface.
Of course, since we considered only solutions of Eq. (3.25) with real k, subgap

states were not captured. However, within the linear-in-k approximation underlying the
approach here, we find that there are no subgap states at all, i.e., the corresponding
matching problem with evanescent trunk modes does not permit a nontrivial solution.
The numerical approach of Sec. 2.5.1 also indicates that in order to obtain subgap states,
it is necessary to include higher-order terms (in k) breaking electron-hole symmetry in
the Hamiltonian.

3.3.1 Spectrum & eigenstates of the dot

Using the above explicit solution for the wavefunction of the complete cylinder, we obtain
the coordinate dependence of all densities of interest. We here describe the results for
the trunk region (the curved surface of the cylinder) only. First of all, we recover from
Eq. (3.19) and (3.19),

〈σφ〉 = 〈τx〉 = 0,

which is the same as we obtained numerically (Eq. (2.48)). Moreover, the relations

〈τy〉 ∝ −〈σr〉, 〈τz〉 ∝ 〈ρ〉

are also reproduced, see Eq. (2.49). Specifically, the dot eigenstates have the energy
E ≡ Ej,n,± specified in Eq. (3.26). We show below that these energies are not degenerate,
i.e., only one specific inversion parity σ given by

σ ≡ σj,n,± = ∓(−1)nsgn(j) (3.29)

will be physically realized. With k ≡ πn/L ≥ 0, we find for the charge and spin densities
(u = |E|R/v2)

〈ρ〉(z) ∝ 1− sgn(E)
jσ

u
cos(2kz),

〈σr〉(z) ∝
√

1− j2/u2 sin(2kz), (3.30)

〈σz〉(z) ∝ cos(2kz)− jσ

u
sgn(E).
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These results are in good agreement with the numerical results for the spin texture
obtained for the Zhang model in Sec. 2.5.1. In particular, they show explicitly that
spin-surface locking is broken.

Interestingly, for each total angular momentum j, there are two zero-momentum states
corresponding to conduction and valence band, respectively. Their inversion symmetry
properties are determined by

σ = −sgn(jEj,n=0,±), (3.31)

since for states with the opposite value of σ, all densities in Eq. (3.30) vanish. For the
physically allowed k = 0 state with σ in Eq. (3.31), from Eq. (3.30) we instead find
spatially uniform densities 〈ρ〉(z), 〈τz〉(z), and 〈σz〉(z), while all remaining spin or parity
density components vanish.

We now compare the densities in Eq. (3.30) to the numerical results in Sec. 2.5.1,
and also address the double counting problem mentioned in Sec. 3.2. Eq. (3.27) shows
that indeed Im(A1A

∗
2) = 0, in accordance with our numerical results in Sec. 2.5.1, see

Eq. (3.20). Also the relation |A1| 6= |A2| in Eq. (3.20) is evidently satisfied. However,
not all the states can be realized physically, as is clear by comparing to the condition
Re(A1A

∗
2) > 0 in Eq. (3.20) found numerically in Sec. 2.5.1. In order to understand this

restriction, we note that the operator Ξ = σzτz commutes both with the cap Hamiltonian
[Eq. (3.21)] and with the inversion operator Ĩ [Eq. (3.15)]. This implies by continuity
that trunk states [Eq. (3.17)] at the end points (z = ζL/2 with ζ = ±) are eigenstates of
Ξ as well,

Ξψ
(σ)
j,n (ζL/2) = pψ

(σ)
j,n (ζL/2),

where the eigenvalues p = σ(−1)n follow from Eq. (3.17) and the definition of Ξ. For
n = 0, however, Eq. (3.31) implies that only the eigenvalue p = −sgn(jEj,0,±) is physically
realized. By continuity, this value must also apply for the full Hilbert space of conduction
or valence surface bands. We therefore obtain the “selection rule” in Eq. (3.29) restricting
the Hilbert space of allowed states. This explains the condition Re(A1A

∗
2) > 0 and

resolves the double-counting problem. We mention in passing that the latter problem is
automatically avoided when retaining terms of order k2 in the Hamiltonian, where the
spin-parity eigenstates with p = ± have different energy. In the Dirac theory, this implies
a “spontaneously broken symmetry” encoded by Eq. (3.29).

3.3.2 Effective boundary condition

It is also possible to derive the results in Sec. 3.3.1 without explicit construction of the
cap states. To that end, let us briefly consider a class of general boundary conditions at
the cylinder ends, z = ζL/2 with ζ = ±, by imposing the local gauge constraints

ψ(φ, ζL/2) = Λζ ψ(φ, ζL/2), (3.32)

where Λζ = Λ−1
ζ = Λ†ζ . The spin-parity structure of Λζ can be determined by requiring

time-reversal invariance, [Λζ ,Θ] = 0, and invariance under inversion, [Λζ , I] = 0. In
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addition, we require the boundary operator to commute with HD, which is a natural
assumption for closed surfaces. As a result, with arbitrary angles η±, we find

Λζ = sin(ηζ)σ0τz + cos(ηζ)σrτy.

Passing to the 1D representation, i.e., for given half-integer j, these constraints read

ψj(ζL/2) = Λ̃ζψj(ζL/2), (3.33)

Λ̃ζ = sin(ηζ)σ0τz + cos(ηζ)σxτy.

Applying the inversion operator Ĩ, see Eq. (3.15), to the boundary condition (3.33), we
find Λ̃+ = Λ̃− and hence η± ≡ η. Only then will inversion symmetry be preserved for
the confined states. The parameter η (with 0 ≤ η < π) cannot be fixed by symmetry
considerations alone but depends on the physical boundary condition imposed at the
ends, i.e., the boundary matrix Λ̃ effectively encodes the matching of trunk states with
cap states. Contrary to the commonly employed boundary conditions,78,79 the operator
Λ̃ commutes with the current operator jz, see Eq. (3.19), while the anticommutator is
always nonzero. Since the boundary conditions are invariant with respect to inversion,
they do not mix the states (3.17) with opposite inversion parity σ. Using the boundary
condition (3.33), some algebra yields for both solutions and for arbitrary energy E the
condition

A1 +
cos η

1− sin η
A2 = 0. (3.34)

Comparing this to Eq. (3.27), the energy-dependent angle η can be explicitly related to
the above wavefunction matching procedure, and the subsequent results in Sec. 3.3.1 can
be obtained under a purely 1D description of the trunk states alone.

3.4 Summary & Discussion

We have studied the band structure of a quantum dot made of a strong topological
insulator using three different approaches, namely the low-energy theory of Zhang et
al. in the last chapter (Sec. 2.5), numerical calculations for a tight-binding model on
a diamond lattice with strong spin-orbit couplings (Appendix B) and finally we have
developed an effective surface Dirac fermion theory in this chapter. The considered
geometry, with flat caps terminating a finite-length cylindrical nanowire, is characterized
by sharp edges where the cylinder trunk and caps meet. Such edges are also present
in typical “mesoscopic” TI devices studied experimentally.56–59 All three approaches
show that spin-surface locking is generally violated due to presence of these edges. As
also found in a recent ab initio study,80 a finite reflection probability for Dirac fermions
in each part results when two surfaces are patched together. In our case, we have a
Fabry-Perot-like setup where standing waves can build up. The resulting spin density
then exhibits spatial oscillations reminiscent of a spin density wave state. The spin
direction of the oscillatory parts points out of the surface while non-oscillatory spin
density contributions stay locked to the surface.

The spectrum of such a quantum dot shows several surprising features including
emergence of sub-gap states and broken spin-surface locking. The obtained spectrum
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and corresponding spin textures are important ingredients for a theory of mesoscopic
transport through TI dots. In general, we also expect Coulomb interactions to be relevant,
in particular charging effects should be visible. We plan to address these questions in the
future. Moreover, extensions of the theory to include an applied magnetic field, where
the typically large and anisotropic Landé factor63 implies that the Zeeman field is crucial,
are also left for future work.



Chapter 4

Electron-phonon Scattering in
TI Thin Films

4.1 Introduction

Although an insulator in bulk, the surface modes of a 3D Toplogical Insulator (TI) are
conducting because of the presence of gapless Dirac like spectrum as discussed in Chapter
1. But, as mentioned in the Chapter 2, transport experiments for the surface modes are
difficult since the surface contribution is often masked by the residual conductivity due to
impurities or defects in the bulk. So, it is useful to study a sample of TI where the surface
to bulk ratio is advantageous. We discussed also the electronic surface states in two such
possible geometries, viz, cylindrical geometries and thin film geometry. In this chapter
we study the resistivity in a thin film TI . Such geometries are studied theoretically81,82

and experimentally83 in graphene before.

The two main sources of resistivity in an electronic system are due to the effect
of backscattering by disorders and because of electron-phonon coupling. Our working
assumption below is that electron-phonon scattering is the dominant source of quasi-
particle decay and backscattering. Electron-electron interactions are indeed expected
to give only sub-leading corrections to the resistivity as long as T & 1 mK.84 Disorder
effects are more likely to compete with phonon-induced backscattering effects. However,
for elevated temperatures, T & 100 K, phonon effects dominate even for present-day
samples, and anticipating higher purity films in the future, this crossover temperature
may be lowered significantly.

In this chapter, we provide a detailed theoretical analysis of both the temperature-
dependent resistivity ρ(T ) and the quasi-particle lifetime Γ(T ) (observable in ARPES85,86)
for a thin TI film. The case of electron-phonon coupling in TI in a semi-infinite geometry
is carried out in Ref. 87. We, in this chapter often compare the results between the two
geometry. We also discuss below that there are substantial difference in behaviors and
the limit from thin film to a semi-infinite case is singular.
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4.2 Electronic Surface States of TI Film

We have already addressed the electronic structure and an effective Hamiltonian describing
the surface modes of a TI thin film in Sec. 2.3. Starting from the bulk Hamiltonian (2.4)

Hb = ε0(k)I4×4 +


M(k) −iA1kz 0 A2k−
iA1kz −M(k) A2k− 0

0 A2k+ M(k) −iA1kz
A2k+ 0 iA1kz −M(k)


= ε0(k)σ0τ0 +M(k)σ0τz +A1σ0τy +A2τx(kxσx + kyσy), (4.1)

the effective surface Hamiltonian (for the film surface as the xy plane and a width L) is
found to be:

Heff = E0 I4×4 +
∆

2
τzσ0 −A2W τx(kxσx + kyσy). (4.2)

where, Pauli matrices σ act in the spin space and τ switches between the two zero
momentum solutions Ψτ=±(z) (Eq. (2.19)) which defines the parity basis. Also the

parameters are discussed before and is given in Table 2.1. With E
(±)
0 as the two Γ point

(zero momentum) energies, E0 and ∆ are given by:

E0 =
E

(+)
0 + E

(−)
0

2
, ∆ = E

(+)
0 − E(−)

0 . (4.3)

∆ depends on the width L and goes to zero exponentially with the width for the parameters
we use (shown in Fig. 2.4 and in inset of Fig. 4.1). The parameter W is discussed in
Sec. 2.3 and is always real.

Noting that Heff commutes with τzσz, it can readily be diagonalized by the unitary
transformation U(k) = diag(U+, U−), where k = (kx, ky) and the Uυ=±(k) are 2 × 2
matrices in spin space, with υ denoting the eigenvalue of τzσz. With tanα = 2A2W |k|/∆
and tan θ = ky/kx, we find

Uυ=+ =

(
e−iθ/2 cos(α/2) e−iθ/2 sin(α/2)

−eiθ/2 sin(α/2) eiθ/2 cos(α/2)

)
, (4.4)

Uυ=− =

(
−e−iθ/2 sin(α/2) e−iθ/2 cos(α/2)

eiθ/2 cos(α/2) eiθ/2 sin(α/2)

)
.

Switching to second-quantized notation, the eigenstates of Heff correspond to helical
fermions with annihilation operator

ck,υs =
∑
σ

[Uυ(k)]∗σs dk,τ=υσ,σ, (4.5)

where dk,τσ annihilates a spin-σ electron with in-plane momentum k in the transversal
state Ψτ (z). The low-energy electronic Hamiltonian (including the chemical potential µ)
then takes the final form

Hel =
∑

k;υ,s=±
εk,sc

†
k,υsck,υs, (4.6)



4.2. Electronic Surface States of TI Film 49

Figure 4.1: Electronic eigenstates for Bi2Se3 from Eqs. (4.1) and Table 2.1. Main panel:
Densities ρτ (z) in Eq. (4.9) for L = 4 QL. Inset: Gap ∆ vs thickness L. Note the
semi-logarithmic scale.

where the dispersion relation is

εk,± = E0 − E∞0 − µ±
∆

2

√
1 + (2A2W/∆)2k2. (4.7)

We here choose the zero of energy by setting E∞0 = C +D1M0/B1 = limL→∞E
(±)
0 . For

the parameters of Ref. 63 (noted in Table 2.1), we find E∞0 ' 0.22 eV. Moreover, for
L→∞, the length scales η−1

± are given by η−1
+ ' 12.3 Å and η−1

− ' 1.9 Å. For kL� 1,
the dispersion relation (4.7) is linear, with Fermi velocity vF ' 2.77 × 105 m/s. Note
that the index s = ± in Eq. (4.6) does not correspond to spin anymore.

Similarly, the particle density operator n̂(r, z) with r = (x, y) is written in terms of
the dk,τσ operators,

n̂(r, z) =
∑

k,q,τ,σ

e−iq·rρτ (z)d†k+q,τσdk,τσ. (4.8)

Using Eq. (4.5), the density operator (4.8) can be transformed to the helical basis. We
show the single-particle densities for the surface states [Eq. (2.19)],

ρτ (z) =
[
Ψ†τ ·Ψτ

]
(z), (4.9)

in Fig. 4.1 for a film thickness of L = 4 QL, where 1 QL ' 9.5Å for Bi2Se3.88 This
demonstrates that already for quite thin films, Eq. (2.19) describes surface states. Note
that ρτ (z) is an even function of z. The inset of Fig. 4.1 shows the numerically obtained
gap ∆(L), demonstrating the absence of oscillatory behavior for the parameters in Table
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2.1 as well as the exponential decay of ∆(L) due to the exponentially vanishing overlap
of both surface states. We note in passing that the parameters in Ref. 51 instead predicts
from (4.3) an oscillatory decay of ∆(L).

4.3 Acoustic Phonons in Film Geometry

Since even at room temperature, one effectively probes low energy scales, we keep
only long-wavelength acoustic phonon modes. For these, previous work on related
materials has shown89,90 that isotropic elastic continuum theory provides a reasonable
approximation. The phonon eigenmodes in the thin film geometry and their coupling
to electronic modes have previously been determined in the context of semiconductor
quantum well structures91 (Note that the semi-infinite case has been treated in Ref. 92).
But the coupling to the helical electronic eigenstates in a TI film is different from the
semiconductor case. Note that piezoelectric couplings are suppressed by symmetry
here,90 and spin-phonon type couplings93 are also expected to be sub-dominant to the
deformation potential we have taken into account.

Small elastic vibrations in the elastic continuum theory are described by the displace-
ment vector u(r, t). The Lagrangian of the vibrations in an isotropic system can be
expressed as (ρM is the mass density):

L =
1

2

∫ ρM (∂tu)2 −
∑
i

λu2
ij −

∑
i,k

2µu2
ik

 dr, (4.10)

where, uij is the linearized strain tensor

uij =
1

2

(
∂ui
∂rj

+
∂uj
∂ri

)
. (4.11)

The phonon modes are found from the solution of the elastic wave equation (from the
above Lagrangian)

∂2u

∂t2
= c2

t∇2u +
(
c2
l − c2

t

)
grad div u , (4.12)

with the stress-free boundary condition imposed on the stress tensor (σij = λ div u δij +
2µuij) at z = ±L/2:

σxz = σyz = σzz = 0. (4.13)

Here ct = µ/ρM and cl = (λ+ 2µ)/ρM are velocities transverse and longitudinal acoustic
waves. The Lame parameters λ and µ are related to the Young modulus (Y ) and the
bulk modulus (K), and for Bi2Se3 are found to be in GPa:94,95

K = λ+
2

3
µ ≈ 38± 3, Y =

9Kµ

3K + µ
≈ 57± 2. (4.14)

Then the two velocities are found to be ct ≈ 1700 m/s, cl ≈ 2900 m/s. Also, the density
of Bi2Se3 is ρM = 7680 kg/m3.96
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In a confined film type geometry, the resulting solutions of the wave equation can be
categorized into different modes. Following the notation in Ref.,91 we label the modes by
the quantum numbers Λ = (q, n, λ), with surface momentum q = (qx, qy), branch index
n, and mode type λ ∈ (H,S,A) explained below. With r = (x, y) and surface area A,
the displacement field operator takes the form

U(r, z, t) =
∑

Λ

1√
2ρMAΩΛ

uΛ(z)ei(q·r−ΩΛt)bΛ + h.c., (4.15)

where bΛ is a bosonic annihilation operator. The noninteracting phonon Hamiltonian is

Hp =
∑

Λ

ΩΛ(b†ΛbΛ + 1/2). (4.16)

The orthonormal eigenmodes uΛ(z) describe linear combinations of e±ikl,tz waves, where
ΩΛ is the dispersion relation of a given phonon mode Λ (discussed later), and

kl,t =
√

(ΩΛ/cl,t)2 − q2, (4.17)

with kl,t = iκl,t ≡ i
√
q2 − (ΩΛ/cl,t)2 when ΩΛ < cl,tq. First, the horizontal shear mode,

λ = H, with uH ‖ êz × êq (where êq = q/q) decouples from all other modes and does not
generate a deformation potential; hence it is not discussed further. The remaining modes
are given by

u(z) =

(
iqφl −

dφt
dz

)
êq +

(
dφl
dz

+ iqφt

)
êz (4.18)

where, eq = q/q and
φl,t = al,t cos(kl,tz) + bl,t sin(kl,tz) (4.19)

and the stress-free boundary conditions at z = ±L/2 yield

2iq
dφl
dz
− (q2 − k2

t )φt = 0, (4.20)

2iq
dφt
dz

+ (q2 − k2
t )φl = 0.

Since both equations have to be fulfilled at z = ±L/2, we have four linear equations for
the four unknown parameters (al,t, bl,t). Setting the corresponding determinant to zero,
we obtain the following two possibilities. First, for symmetric modes (λ = S), we have
the condition

(q2 − k2
t )

2 cos(klL/2) sin(ktL/2) + 4q2klkt sin(klL/2) cos(ktL/2) = 0. (4.21)

Numerical solution of this transcendental equation obtains the quantized set of dilatational
phonon frequencies ΩΛ=(q,S,n). The corresponding eigenvector, uΛ(z), follows from
Eqs. (4.18) and (4.19) with at = bl = 0 and

al =
2NSq

cos(klL/2)
, bt =

iNS(q2 − k2
t )

kt cos(ktL/2)
. (4.22)
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Figure 4.2: Phonon dispersion relation, ΩΛ vs q, for the symmetric (λ = S) mode (red
solid curves). Shown are the ten lowest branches corresponding to the index n. Dashed
lines separate regions I, II, and III (see main text). The dash-dotted line gives the
dispersion relation in Eq. (4.24); note that the n = 1 mode coincides with the Rayleigh
mode for qL� 1.

Second, for antisymmetric modes (λ = A), we arrive again at the condition in Eq. (4.21)
but with the exchange cos ↔ sin. Solving that equation yields the set ΩΛ=(q,A,n) of
quantized flexural phonon modes. The eigenvector uΛ(z) follows again from Eqs. (4.18)
and (4.19), where now al = bt = 0 and

bl =
2NAq

sin(klL/2)
, at =

−iNA(q2 − k2
t )

kt sin(ktL/2)
. (4.23)

The normalization factors Nλ=S,A appearing in Eqs. (4.22) and (4.23) are given by:

N−2
S =

Ω2
Λ

2c2
t

[
c2
t

c2
l

4q2L

cos2(klL/2)

(
1 +

sin(klL)

klL

)

+
(q2 − k2

t )
2L

k2
t cos2(ktL/2)

(
1− sin(ktL)

ktL

)
− 8(q2 − k2

t )
tan(ktL/2)

kt

]
,

and

N−2
A =

Ω2
Λ

2c2
t

[
c2
t

c2
l

4q2L

sin2(klL/2)

(
1− sin(klL)

klL

)

+
(q2 − k2

t )
2L

k2
t sin2(ktL/2)

(
1 +

sin(ktL)

ktL

)
+ 8(q2 − k2

t )
cot(ktL/2)

kt

]
.
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Numerical solution of Eq. (4.21) yields the spectrum, ΩΛ, for the symmetric mode
(λ = S). The result is shown in Fig. 4.2. We distinguish three different regions, namely
a case where both kl and kt are purely imaginary (region I), when only kl is purely
imaginary but kt is real (region II), and finally a case where both kl and kt are real
(region III). We observe from Fig. 4.2 that the n = 1 mode is the finite-width analogue
of the well-known Rayleigh surface mode.92,97 It has the dispersion relation

Ω = cRq, cR ' 0.92ct. (4.24)

In fact, for qL� 1, both Eq. (4.21) and the corresponding equation for λ = A reduce to

(q2 + κ2
t )

2 = 4q2κtκl.

As discussed in Ref. 97, this equation readily yields the sound velocity cR of the Rayleigh
mode.

4.3.1 Electron-phonon coupling

The dominant coupling of the above phonon modes to the electronic surface states
comes from the deformation potential,87 which couples the local electronic density n̂(r, z)
[Eq. (4.8)] to the divergence of the displacement vector, ∇ ·U(r, z), see Eq. (4.15). Since
the surface state density ρτ (z) in Eq. (4.9) is even in z, the antisymmetric phonon mode
(λ = A) does not couple to the surface states. We therefore keep only the symmetric
phonon mode from now on (and omit the index λ = S). Transforming Eq. (4.8) to the
helical basis, see Eq. (4.5), the second-quantized electron-phonon coupling Hamiltonian
reads

He−ph =
α√
A

∑
q,k,n;υ,s,s′

M
(υ,s,s′)
k,q,n bq,nc

†
k+q,υsck,υs′ + H.c., (4.25)

where the M matrix elements involve the unitary matrices [Uυ(k)]sσ in Eq. (4.4),

M
(υ,s,s′)
k,q,n = − 1√

2ρMΩq,n

(
Ωq,n

cl

)2∑
σ

[Uυ(k + q)]∗sσ[Uυ(k)]σs′

×
∫ L/2

−L/2
dz ρτ=υσ(z)φl(z), (4.26)

with the phonon dispersion Ωq,n in Fig. 4.2; φl is given by Eqs. (4.19) and (4.22). The
deformation potential strength α in Eq. (4.25) can be estimated as follows. The high-
temperature behavior of the on-shell imaginary part of the electronic self-energy is (see
Sec. 4.5)

ImΣ(k, T ) = −πλkkBT, (4.27)

which allows to experimentally extract the dimensionless effective electron-phonon cou-
pling constant λk. The relation (4.27) has been observed for Bi2Se3 in ARPES exper-
iments,98 and λ = 0.25 ± 0.05 has been measured. In these experiments, the Fermi
level was near the bottom of the conduction band, µ ' 0.28 eV, and k in Eq. (4.27)
corresponds to energies ≈ 50 to 100 meV above the Dirac point. Computing λk within
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our model, see Sec. 4.5, the observed value for λ corresponds to α = (30 ± 8) eV. We
employ the value α = 30 eV below.

The total Hamiltonian employed in the following sections is then given by

H = Hel +Hph +He−ph,

which are mentioned in Eqs. (4.6), (4.16) and (4.25). We first address the phonon-induced
resistivity ρ in Sec. 4.4 and then turn to the quasi-particle lifetime in Sec. 4.5.

4.4 Resistivity

Here we discuss the T -dependent phonon contribution to the electrical resistivity, ρ, in
the TI film, using the Hamiltonian described in Sec. 4.2. As explained in Sec. 4.3.1, only
symmetric (dilatational) phonon modes can cause a finite resistivity for the low-energy
surface states within the bulk gap. We compute ρ within the framework of the linearized
Boltzmann equation,99 which has also been employed previously for the related graphene
case.81,82 The resulting quasi-classical estimate for ρ is valid81 as long as ρ is small
compared to the resistance quantum, ρ � h/e2 ' 25.8 kΩ. We sketch the standard
derivation81,82,91,100 for ρ in Appendix D. The result takes the form

1

ρ
=
e2

2

∑
υ,s=±

∫
dk

(2π)2
v2
k,sτυ(εk,s) [−∂εnF (εk,s)] , (4.28)

where the dispersion relation for helical fermions [Eq. (4.7)] defines the group velocity,
vk,s = êk · ∇kεk,s. Moreover, nF (ε) is the Fermi function, and the energy-dependent
electron-phonon transport scattering rate (inverse time) is

1

τυ(εk,s)
=
∑
q,s′

(
1−

vk+q,s′

vk,s
cos θk,q

)
1− nF (εk+q,s′)

1− nF (εk,s)
W(k,υs)→(k+q,υs′), (4.29)

where θk,q is the angle between k and k + q, and the transition probabilities are obtained
from Fermi’s golden rule. Using Eq. (4.25), we find

W(k,υs)→(k+q,υs′) =
2πα2

A
∑
n;ν=±

νnB (νΩq,n)
∣∣∣M (s′,s)

k,q,n

∣∣∣2
×δ
(
εk,s + νΩq,n − εk+q,s′

)
, (4.30)

where nB(ε) is the Bose function. While the M matrix elements (4.26) depend on
the index υ = ±, we note that |M |2 and therefore the transition probabilities W are
υ-independent. This also implies that τυ does actually not depend on υ.

With the polar angle θ between k and q, such that

cos θk,q =
k + q cos θ√

k2 + q2 + 2kq cos θ
, (4.31)
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and taking into account the angular integration, the momentum relaxation rate can be
written as:

1

τ(εk,s)
= α2

∑
n,ν

∫ ∞
0

qdqF (ν)
k,n,s(q) νnB(νΩq,n)

1− nF (εks + νΩq,n)

1− nF (εks)
, (4.32)

where F (ν)
k,n,s(q) is the “transport Eliashberg function87”

F (ν)
k,n,s(q) =

∑
s′

∫ π

−π

dθ

2π

[
1−

vk+q,s′

vk,s
cos θk,q

] ∣∣∣M (s′,s)
k,q,n

∣∣∣2
×δ
(
εk,s + νΩq,n − εk+q,s′

)
. (4.33)

The θ-integration in Eq. (4.33) can then be carried out analytically, which is useful when
computing F numerically, and the final expression is mentioned in Appendix E.

For low temperatures, the quasi-elastic approximation,

Ωq,n �
√

(∆/2)2 + (A2Wk)2,

is applicable and allows to simplify the full result for F to the ν-independent form

Fk,n,s(q) = Θ (2k − q) 1

π
√

(2k/q)2 − 1

√
(∆/2)2 + (A2Wk)2

(A2Wk)2

∣∣∣M (s,s)
k,q,n

∣∣∣2∣∣∣∣
θ0

, (4.34)

where Θ(y) is the Heaviside function and θ = θ0 determines the polar angle between k
and q appearing in the matrix element M , and is defined in the Appendix E. Note that
there is no contribution from inter-band transitions at low temperatures.

4.4.1 Asymptotic behavior with temperature

The low and the high-temperature behavior in this system is measured with respect to
the Bloch-Grüneisen temperature,81,87

TBG = 2kF cR/kB, (4.35)

with the Rayleigh velocity cR in Eq. (4.24). kF (L) is defined by εkF ,s=+ = 0 with the
dispersion relation (4.7).

For T � TBG, the F function can be approximated by the quasi-elastic expression
[Eq. (4.34)]. It receives the dominant contribution from the n = 1 branch corresponding
to the Rayleigh surface phonon. For small q, we find Ωq,n=1 = csq with cs = 2754 m/s
(which is slightly below cl), see also Fig. 4.2. In addition, we have, phonon wave-function

φl(z) = 2(ct/cs)
2/(q
√
L)

and considering cs � min(|vkF |, A2W ), we have

FkF ,1,±(q) =
(ct/cl)

4

πρM |vkF |csk2
F

q2

L
.



56 Chapter 4. Electron-phonon Scattering in TI Thin Films

Figure 4.3: Phonon contribution to the resistivity ρ vs temperature T for a TI film of
width L = 4 QL and several values of the chemical potential µ. Dashed lines indicate
the analytical results for low [Eq. (4.36)] and high [Eq. (4.38)] temperatures. Note the
double-logarithmic scale.

This allows us to perform all remaining integrations and yields a T 4 law for the resistivity
at low temperatures,

ρ(T � TBG) =
h

e2
A

(
T

TBG

)4

, (4.36)

where the dimensionless prefactor A is

A =
8γkFα

2

πρMv2
kF
cs

(
ctcR
clcs

)4 1

L
, (4.37)

γ =

[∫ ∞
−∞

dx
2ex

[(π2 + x2)(ex + 1)]2

]−1

' 68.4295.

In the opposite high-temperature limit, essentially all phonon branches indexed by
n contribute to the transport Eliashberg function (4.33), see Appendix E. Then the
relaxation rate τ−1(εk,s) in Eq. (4.32) is basically a linear function of the energy. Since
the linear term does not contribute to ρ after integration in Eq. (4.28), we obtain the
approximation 1/ρ ' (e2/h)vkF kF τ(ε = 0), where Eq. (4.32) yields the linear high-
temperature law

ρ(T � TBG) =
h

e2
C

T

TBG
(4.38)
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Figure 4.4: Width (L) dependence of the phonon contribution to the resistivity ρ for
µ = 0.2 eV and several temperatures. The dashed horizontal line indicates one-quarter
of the resistivity ρ∞(T ) in the semi-infinite geometry of Ref. 87 with otherwise identical
parameters.

with the dimensionless prefactor

C =
2α2cR
vkF

∑
n,ν=±

∫ ∞
0

qdq
F (ν)
kF ,n,+

(q)

Ωq,n
. (4.39)

In Fig. 4.3 we show the full temperature dependence of ρ obtained numerically for a
fixed width L = 4 QL and several values of the chemical potential µ. In that case, when
measured relative to E∞0 , we have E+

0 ' 16 meV and ∆/2 ' 13 meV. For the lowest
µ in Fig. 4.3, the Fermi level is thus located inside the surface gap and one has a very
large resistivity, where the quasi-classical approach is not reliable in any case. For low
temperatures, T < TBG, the analytical result (4.36) with ρ ∝ T 4 is nicely reproduced by
numerics. In this temperature regime, only the Rayleigh mode (n = 1) is relevant. In
the high-temperature limit, both the ρ ∝ T scaling and the prefactor C in Eq. (4.39) are
also consistent with our numerical findings.

L→∞ limit

In the low temperature limit, for L → ∞, A given in (4.37) obviously vanishes. This
suggests that for elevated temperatures (but still T < TBG) and finite L, the T 4 law is
no more the case. Actually, as shown in reference 87, for the semi-infinite geometry, the
low-temperature behavior is ρ ∝ T 5. We can estimate the crossover temperature Tc as
follows. For T < TBG, we expect an expansion of the form

(e2/h)ρ = A(T/TBG)4 +
B

4
(T/TBG)5,
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Figure 4.5: Main panel: T -dependence of the decay rate Γ of a TI film of width L = 4 QL
for k = kF and k = 0.5kF . For k = 0.5kF , only the µ = 0.2 eV result is displayed.
Dashed lines indicate the low- and high-temperature laws (Γ ∝ T 2 and ∝ T ), respectively.
Inset: k-dependence of Γ for µ = 0.2 eV and two different temperatures: T = 3 K (solid
line) and T = 300 K (dashed line; the shown result has to be multiplied by 10).

with A ∝ 1/L in Eq. (4.36) and the L-independent constant B given in Ref. 87:

B =
1488ζ(5)CB

π

α2c3
Rk

2
F

ρMv2
F c

4
l

, (4.40)

where ζ(5) ≈ 1.037 and CB ≈ 1.20. The crossover from the T 4 law (for T . Tc) to the
T 5 law (for Tc . T < TBG) thus happens around the temperature Tc = (4A/B)TBG.
This gives Tc ' 0.14TBG/(kFL), which is independent of the chemical potential since
TBG ∝ kF . For L = 4 QL, we obtain Tc ≈ 0.9 K. The T 4 law can thus only be observed
for very thin and clean TI films.

Finally, Fig. 4.4 shows the width (L) dependence of ρ at fixed chemical potential and
for several T . Two noteworthy observations can be drawn from Fig. 4.4: First, for low
temperatures we observe a “dip” in Fig. 4.4, where ρ(L) < ρ(L→∞) for intermediate
values of L.

We also note that, for L→∞, ρ(L) approaches 1/4 of the single-surface value ρ∞(T )
obtained for the semi-infinite geometry.87 Naively, we would expect ρ(L→∞) = ρ∞/2
because of the presence of two surfaces in the film geometry. This discrepancy indicates
that the L→∞ limit is singular, and it is not possible to really decouple both surfaces
in such an interacting system; see also Ref. 101 and 102 for a related discussion.
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Figure 4.6: Width (L) dependence of the effective electron-phonon coupling constant
at the Fermi level λkF for µ = 0.2 eV. The dashed horizontal line indicates one-half of
the effective coupling constant in the semi-infinite geometry with otherwise identical
parameters.

4.5 Lifetime Broadening

Next we discuss the quasi-particle lifetime (inverse decay rate) for the surface fermions
in the TI film due to their coupling to phonons, see He−ph in Eq. (4.25), which implies a
finite linewidth of ARPES spectral features. The decay rate, Γk(T ) = −2ImΣ, follows
from the imaginary part of the on-shell self-energy Σs=+(k, ω = εk,s=+).

Expanding up to second order in He−ph, the “rainbow” diagram yields the self-energy

Σs(k, ω) = α2
∑
n,s′

∫
dq

(2π)2

∣∣∣M (s′,s)
k,q,n

∣∣∣2 (4.41)

×
∑
ν=±

ν
nB(νΩq,n) + nF (εk+q,s′)

ω + i0+ + νΩq,n − εk+q,s′
.

Introducing the Eliashberg function F
(ν)
k,n,s(q) exactly as the transport Eliashberg function

F in Eq. (4.33) but without the factor [1−(vk+q,s′/vk,s) cos θk,q], the quasi-particle decay
rate follows as

Γk(T ) = α2
∑
n,ν

∫ ∞
0

qdq F
(ν)
k,n,+(q) (4.42)

× [nB(Ωq,n) + nF (Ωq,n + νεk,+)] .

Expanding this result for high temperatures, T � TBG, as in Sec. 4.4.1 yields, see also
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Eq. (4.27), a linear T -dependence,

Γk(T � TBG) = 2πλkkBT, (4.43)

λk =
α2

2π

∑
n,ν

∫ ∞
0

qdq
F

(ν)
k,n,+(q)

Ωq,n
.

The L-dependence of λk is shown for k = kF in Fig. 4.6. We observe an oscillatory
dependence, with a saturation at one-half of the corresponding semi-infinite result.

For low temperatures and k = kF , the decay rate is dominated by the n = 1 phonon
mode with q → 0. After some algebra, we find that this implies a T 2 law,

ΓkF (T � TBG) =
4π(ct/cl)

4(kF cRα)2

ρM |vkF |c3
s

1

L

(
T

TBG

)2

. (4.44)

Again, when T & Tc, the T 2 law (which scales ∝ 1/L) competes with the L-independent
T 3 law found in Ref. 87, see Sec. 4.4. Finally, when k 6= kF and T � TBG, the
quasi-particle decay rate saturates at the finite value

Γk 6=kF = α2
∑
n

∫ ∞
0

qdqΘ(|εk+| − Ωq,n) F
(ν)
k,n,+(q). (4.45)

with ν = sgn(kF − k).
Figure 4.6 shows that the L→∞ limit of the decay rate always tends to Γ∞(T )/2,

where Γ∞ is the corresponding decay rate for the semi-infinite geometry.87 This discrep-
ancy with the naive expectation Γ(L→∞) = Γ∞ has the same origin as the anomalous
factor 1/2 appearing in the large-L behavior of the resistivity discussed in Sec. 4.4.

4.6 Summary & Discussion

Here we have studied the effects of long-wavelength acoustic phonons on the topologically
protected surface fermions in topological insulator films. Our model employs the estab-
lished low-energy electronic Hamiltonian and an isotropic elastic continuum approach for
the phonons, with the deformation coupling providing the dominant interaction mecha-
nism. The electron-phonon coupling turns out to be surprisingly strong, in accordance
with recent ARPES results.98

Using a quasi-classical approach, we have computed the temperature-dependent
resistivity of the film due to phonon backscattering, and found a linear T dependence
above the Bloch-Grüneisen temperature. In this temperature regime, the phonon-induced
resistivity can overcome the disorder-induced (T -independent) contribution and should be
observable with present samples. Similarly, the linear T dependence of the quasi-particle
decay rate found here is observable98 in ARPES experiments. The low-temperature
behaviors of the resistivity and of the quasi-particle decay rate are probably more difficult
to observe.

Here, we note that, in an usual metal also the resistivity becomes proportional to
temperature at large temperature. This reflects the bosonic nature of the phonons that
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scatter the electrons: at temperatures greater than the Debye temperature, the phonon
population in any given mode is proportional to T , hence the number of scatterers and
the resistivity are proportional to T . At low temperature, resistivity in Graphene also
varies as ∝ T 4.

Possible experiment

To the best of our knowledge, no detailed measurements for the temperature dependence
of the TI film resistivity have been reported so far. In the related case of a 2D graphene
monolayer, a similar comparison of theory81,82 to experiment83 has turned out to be suc-
cessful. Remarkably, the electron-phonon coupling observed in Ref. 98 and independently
estimated by Ref. 87 turns out to be quite large. Under room temperature conditions,
the resulting lifetime of helical quasi-particles is therefore short, and the resistivity is
rather large. This behavior is substantially different from what is found in graphene. We
suspect that this is (partially) due to the different Debye temperatures in both materials.

Possible future extension

An interesting extension of our work would be to include the effects of a magnetic field.
Magneto-transport measurements in thin films were recently performed103 and found
clear evidence for Landau level formation associated with the massless Dirac fermions
forming on both surfaces. The observed broadening of the Landau levels was assigned to
disorder and/or interaction effects, but at elevated temperatures, our analysis indicates
that electron-phonon interactions may be relevant as well.
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Chapter 5

Magnetic Scattering

5.1 Introduction

In the first chapter we discussed that, despite being structurally completely different,
the low energy properties of un-doped graphene and 2D surface of a 3D TI corresponds
to massless 2D Dirac Fermions. This calls for a unified description of their transport
properties.

There already are many theoretical efforts to advancing the scattering theory of
Dirac fermions on graphene in electrostatic potentials,39,104 in particular for the Coulomb
impurity.105 In this chapter, we instead study the scattering of massless Dirac fermions by
a local magneto static perturbation. The model we used describes in a unified manner, the
effects of spatially inhomogeneous orbital magnetic fields, exchange-mediated fields due to
adjacent ferromagnetic (FM) layers and Zeeman fields in topological insulators, as well as
strain- or defect-induced pseudo-magnetic fields in graphene. For the Schrödinger fermions
realized in 2D semiconductor electron gases, such perturbations, e.g., magnetically defined
barriers, steps, and quantum wells, have been investigated both theoretically106–109 and
experimentally.110,111

Previously the theoretical works on TIs in inhomogeneous magnetic fields has ad-
dressed only a few setups. For the transmission of an electron through a magnetic barrier
(assumed homogeneous in the transverse direction), as a function of either exchange field
or applied bias voltage, Mondal et al.112,113 predict an oscillatory behavior or even a
complete suppression of the transmission probability, and hence of the conductance. A
spin valve geometry with two adjacent magnetic barriers, characterized by non-collinear
exchange fields, has also been studied.114 As a model for a classical magnetic impu-
rity, the spin-resolved density of states was calculated for a disc-shaped magnetic field
profile.115,116

For graphene, a vector potential perturbation can again be due to external orbital
fields, but may also describe the effects of strain39,117–121 and dislocations or other
topological defects.122 Several theoretical works have addressed aspects of the electronic
structure and the transmission properties for Dirac fermions in graphene in the presence
of inhomogeneous magnetic fields. The simplest case is encountered for effectively 1D
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problems with translational invariance in the (say) y-direction, e.g., for a magnetic step
or a magnetic barrier.47,48,123 For suitable 1D magnetic field profiles, it is possible to have
magnetic waveguides (along the y-direction),124,125 where electron-electron interaction
effects play an important role.126 Periodic magnetic fields, i.e., 1D magnetic superlattices,
have also been addressed.127–130

For a radially symmetric fields, total angular momentum conservation again simplifies
the problem and gives an effective 1D theory. This has allowed for studies of quantum
dot or antidot geometries,47,48,131,132 where true bound states, not affected by Klein
tunneling, may exist. In quantum dot setups, interaction effects become important
for strong confinement.133 When the vector potential corresponds to an infinitely thin
solenoid, we encounter an ultra-relativistic Dirac fermion generalization of the celebrated
Aharonov-Bohm (AB) calculation.134,135 This generalization was discussed before,136–141

and exact results for the transmission amplitude can be deduced. Recent studies have
also addressed the current induced by an AB flux142 and the behavior of the conductance
when the chemical potential is precisely at the Dirac neutrality point.143 Such an AB
conductance can be probed experimentally in ring-shaped graphene devices.144,145

In this chapter, we formulate a general scattering theory approach for massless 2D
Dirac fermions in the presence of such magnetic perturbations. In Sec. 5.2, we introduce
the model and outline its application to graphene and topological insulators. In Sec. 5.3,
we formulate the general scattering theory, previously given for electrostatic potentials,104

for the magnetic case. The scattering amplitude and cross section are specified, and
we discuss the Born approximation in Sec. 5.3.2. For the radially symmetric case, total
angular momentum conservation allows to express the scattering amplitude in terms
of phase shifts for given total angular momentum, which we discuss in Sec. 5.3.3. In
sections 5.4, we present a applications of this formalism, where we consider ring-shaped
field profiles. This case also contains the AB solenoid in a certain limit and we discuss
how our phase-shift analysis recovers known results for the AB effect.

5.2 Model Hamiltonian

Our starting point is the generalized Hamiltonian including the possible magnetic effects.
With the Pauli matrices σ = (σx, σy, σz) and the momentum operator p = −i~(∂x, ∂y, 0),
the single-particle model reads (e > 0)

H = vFσ ·
(
p+

e

c
A(r)

)
+ σ ·M(r)− eV (r), (5.1)

where the external static vector potential, A(r) = (Ax, Ay, Az) with r = (x, y), included
by minimal coupling, describes orbital magnetic fields and (for graphene) strain-induced
pseudo-magnetic fields. In addition, for the TI case, we allow for a Zeeman field or for
exchange fields caused by nearby ferromagnets, whose components are contained in the
field M(r) = (Mx,My,Mz), where prefactors such as the Bohr magneton or the Landé
factor are included.

The non-magnetic model (A = 0, M = 0) for graphene and TI are already discussed
in Sec. 1.3.3 and Sec. 2.3.1 respectively. The Fermi velocity in graphene is vF ' 106 m/s,
while for a TI surface state, a typical value for Bi2Se3 is vF ≈ 5× 105 m/s.
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Both the vector potential A and the field M can now be combined to a vector field

Λ(r) ≡ A+
c

evF
M , (5.2)

which contains all considered “magnetic” perturbations. Interesting physics also follows
in the presence of both Λ(r) and a scalar potential V (r), but we put V (r) = 0 below.

For the formulation of the scattering theory, it is convenient to employ cylindrical
coordinates, x = r cosφ and y = r sinφ, with unit vectors êr = (cosφ, sinφ, 0), êφ =
(− sinφ, cosφ, 0), and êz. With Λ = Λrêr + Λφêφ + Λz êz, Eq. (5.1) takes the compact
form

H = vF e
−iφσz/2H̃eiφσz/2, (5.3)

H̃ =
(
−i~∂r +

e

c
Λr

)
σx +

(
1

r
Jz +

e

c
Λφ

)
σy,

where the total angular momentum operator is

Jz = −i~∂φ + ~σz/2. (5.4)

For the case of azimuthal symmetry, ∂φΛφ,r = 0, this is a conserved quantity, [Jz, H] = 0,
with eigenvalues ~j for half-integer j. In Eq. (5.3) we have put Λz = 0, which is the case
for all fields studied below.

For the Hamiltonian (5.3), one writes the Schrödinger equation i~∂tψ = Hψ, and
obtains the corresponding continuity equation

∂t(ψ
†ψ) + ∇ · (ψ†σψ) = 0 . (5.5)

From this one can identify the current operator j = ψ†σψ. Also, as we discuss in
Sec. 1.2.8, in a TI surface the spin and surface are locked and the spin density (s) is
perpendicular to momentum, that is

s · j = 0 .

So, we write the spin density operator

s =
~
2

(êz × σ) . (5.6)

Under stationary conditions, the continuity equation (5.5) implies the relation∑
i=x,y

∂i

(
ψ†σiψ

)
= 0 , (5.7)

which is linked to the unitarity property of the scattering matrix. Equation (5.3) then
allows to describe the following setups for the TI surface state. First, an orbital magnetic
field has only effects when it is oriented perpendicular to the surface, Borb = Bz(r, φ)êz.
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In cylindrical coordinates, we can then choose some gauge for the vector potential A
such that

Bz(r, φ) =
1

r
(∂r(rAφ)− ∂φAr) , (5.8)

while Az drops out and is put to zero.

Secondly, to describe the coupling of surface Dirac fermions to an in-plane exchange
field H(r) = (Hx, Hy, 0), e.g., due to the magnetization of a nearby FM layer, we write

Λ = (c/evF )M ,

with M = (−Hy, Hx, 0), where we used the spin Pauli matrices in Eq. (5.6). For a
Zeeman field, we can proceed in complete analogy where H now denotes the Zeeman
field. A Zeeman or exchange field oriented along the êz direction can open a gap in the
spectrum, and here we assume that such fields are not present. While the orbital field
breaks time reversal invariance, the Zeeman or exchange fields represent a time-reversal
invariant perturbation. Then Λ is determined by the magnetic field itself, and hence is
not a gauge field anymore.

In the case of graphene the Pauli matrices σ are related to the two triangular
sublattices constituting graphene’s honeycomb lattice. We assume that no spin-flip
mechanisms are relevant, i.e., physical spin is conserved. We can then focus on one
specific Dirac fermion flavor with fixed valley index and spin direction. This excludes
exchange or Zeeman fields, i.e., we put M = 0 and hence Λ = A for graphene. Note that
Zeeman fields in graphene are generally small compared to orbital fields.126 Moreover, we
consider only smoothly varying vector potentials such that it is indeed sufficient to retain
only one K point.47 Equation (5.3) can then describe the following cases. First, we may
have an orbital magnetic field, precisely as for the TI case. Second, pseudo-magnetic
fields generated by strain-induced forces,39,116,118–121 or by various types of defects, e.g.,
dislocations,122 also correspond to a vector potential, where time reversal invariance
implies that A has opposite sign at the two K points. A(r) can then be expressed
explicitly in terms of the strain tensor,122 where the resulting pseudo-magnetic field is
also oriented along the êz axis and Az = 0. In addition, strain causes a scalar potential
V (r), which is, however, strongly reduced by screening effects. The combination of
orbital and pseudo-magnetic fields may allow to design a valley filter, since the total
(orbital plus pseudo-magnetic) fields can differ significantly at both K points.146

5.3 Scattering Theory

In the quantum theory of time-independent elastic scattering, we search for the solution
|ψ〉 of the total Hamiltonian

H = H0 + V,

where H0 is the free particle Hamiltonian with eigenstate |φ〉

H0|φ〉 = E|φ〉,
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V represents the potential due to scatterer, such that |ψ〉 → |φ〉 in the limit of V → 0,
and also they require to have the same eigenvalue E, as the process is elastic:

(H0 + V )|ψ〉 = E|ψ〉. (5.9)

The scattering theory argues that the solution is:

|ψ〉 =
1

E −H0
|ψ〉+ |φ〉. (5.10)

If |φ〉 = |ψin〉 represents the incoming wave, then the scattering theory is better
formulated by defining the solution |ψ〉 = |ψin〉 + |ψout〉, where |ψout〉 is the out-going
wave scattered from the potential, and represented by spherical wave. Then the equation
(5.10) looks like:

|ψin〉+ |ψout〉 =
1

E −H0
(|ψin〉+ |ψout〉) + |ψin〉. (5.11)

This integral equation can be solved iteratively. In the first Born approximation (ref.
landau), we approximate (|ψin〉+ |ψout〉) ≈ |ψin〉 on the right side of the equation.

Following Landau-Lifshitz,97 if, in 2D, the incoming wave is of the form

ψin(r, φ) ∝ eikx, (5.12)

then the scattered wave can be written as

ψout = F (φ)
eikr√
−2ir

, (5.13)

where F (φ) is called the scattering amplitude. We have chosen the normalisation similar
as Ref. 104 and 97. The physical quantities of interest are differential (dσ/dφ), total
(σtot) and transport (σr) cross sections:

dσ

dφ
= |F (φ)|2, (5.14)

σtot =

∫ 2π

0
dφ |F (φ)|2 =

√
8π

k
ImF (0),

σtr =

∫ 2π

0
dφ (1− cosφ) |F (φ)|2 ,

where the second equation represents optical theorem.
For given energy E = ~vFk, where k > 0 throughout, the Dirac equation, Hψ = Eψ

with Eq. (5.3), has scattering solutions that we wish to obtain in the presence of
magnetic perturbations of the type in Eq. (5.16). i We are then looking for a solution
ψ(r, φ) = ψin +ψout consisting, in the asymptotic regime r →∞, of a plane wave (∝ eikx)
propagating along the positive x-direction,

ψin(r, φ) =
1√
2
eikr cosφ

(
1
1

)
, (5.15)

iThe solution for E = −~vF k follows simply by reversing the sign of the lower spinor component.147
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5.3.1 Multipole expansion

Our scattering theory approach considers magnetic fields [described by Λ(r) in Eq. (5.3)]
that smoothly vary on the scale of a lattice spacing and constitute a local perturbation,
i.e., a well-defined cylindrical multipole expansion exists. Λz = 0 is assumed throughout,
as it opens up a gap. Furthermore, we assume that Λr = 0.

As we show below, for orbital fields we can always choose a gauge where Ar = 0. For
strain-induced fields, strictly speaking, the problem is not gauge invariant, and we cannot
impose gauge conditions. However, in a more narrow sense, a gauge degree of freedom
still exists.122

For r →∞, with complex-valued coefficients α
(φ)
l,m =

(
α

(φ)
l,−m

)∗
, we have the multipole

expansion

Λφ(r, φ) =
αΦ0

2πr
+

∞∑
l=2

∞∑
m=−∞

eimφ

rl
α

(φ)
l,m, (5.16)

where α denotes the total flux in units of the flux quantum Φ0 = 2π~c/e.
In the case of orbital magnetic field, Λ = A, where we can exploit gauge invariance.

We start from a more general situation with Ar 6= 0, expressed as in Eq. (5.16) with

coefficients α
(r)
l,m, and also allow for nonzero coefficients α

(φ)
l=1,m6=0. We now show that one

can choose a gauge where Ar = 0 and α
(φ)
1,m6=0 = 0. Indeed, gauge invariance implies that

for arbitrary functions g(x, y), we are free to replace Ai → Ai + ∂ig. Using a multipole
expansion for rg(r, φ) with coefficients gl,m, an equivalent gauge choice thus follows by
the replacement

α
(φ)
l,m → α

(φ)
l,m + imgl,m,

α
(r)
l,m → α

(r)
l,m − (l − 1)gl,m.

We then choose the gauge function

gl>1,m =
α

(r)
l,m

l − 1
, gl=1,m6=0 =

iα
(φ)
1,m

m
.

In the new gauge, we arrive at Eq. (5.16) plus the radial component

Ar =
∑
m

eimφ

r
α

(r)
1,m.

Using Eq. (5.8), the orbital field expansion (with r > 0) reads

Bz(r, φ) = −
∞∑
l=1

∞∑
m=−∞

eimφ

rl+1

[
(l − 1)α

(φ)
l,m + imδl,1α

(r)
1,m

]
.

The m = 0 term in Ar neither generates flux nor magnetic fields and can be omitted.

Magnetic field profiles with α
(r)
1,m 6= 0 arise only in time-dependent settings and will not

be studied here. As a consequence, the radial component vanishes, Ar = 0, and we arrive
at Eq. (5.16).
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5.3.2 Born approximation

For small perturbation Λφ(r, φ), one can evaluate the scattering amplitude within the first
Born approximation.148 Strictly speaking, the long-ranged part Λφ ∝ α/r in Eq. (5.16)
can not be treated perturbatively, and in this section we assume α = 0.

The unperturbed state is the incoming plane wave ψin, Eq. (5.15). Within lowest-order
perturbation theory, the scattered wave obeys

[H0 − E]ψout = −evF
c

Λφ êφ · σ ψin, (5.17)

where H0 is the unperturbed Dirac Hamiltonian. Multiplying both sides of Eq. (5.17)
by H0 +E and noting that in real-space representation, the retarded Green’s function

(H2
0 − E2)−1 is given by the Hankel function H

(1)
0 ,104,149

ψout(r) =
−iπ

2
√

2~Φ0

∫
d2r′ H

(1)
0 (k|r − r′|)(σ · p′ + ~k)

× Λφ(r′, φ′) [êφ′ · σ] eikr
′ cosφ′

(
1
1

)
.

The asymptotic large-ρ behavior of the Hankel function (where η = 1, 2 = ±) is149

H(η)
ν (ρ) '

√
2

πρ
e±i(ρ−(2ν+1)π/4), (5.18)

which implies that ψout for r →∞ has the form

ψout(r, φ) = F (φ)
eikr√
−2ir

(
1
eiφ

)
. (5.19)

After some algebra, we obtain the scattering amplitude in Born approximation,

F (φ) =

√
2πk

Φ0
e−iφ/2

∫ ∞
0

rdr

∫ 2π

0
dφ′ sinφ′

× e−2ikr| sin(φ/2)| sinφ′ Λφ(r, φ′ + φ/2). (5.20)

For radially symmetric perturbations, ∂φΛφ = 0, the φ′-integration can be done, and we
obtain

F (φ) = −2πi

√
2πk

Φ0
e−iφ/2 (5.21)

×
∫ ∞

0
rdr J1 (2kr| sin(φ/2)|) Λφ(r),

with the J1 Bessel function.
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5.3.3 Radially symmetric case

Here we address the full (beyond Born approximation) scattering solution for radially
symmetric perturbations, Λ = Λφ(r)êφ. In that case, the total angular momentum
operator Jz in Eq. (5.4) is conserved and has eigenvalues ~j with j ≡ m+ 1/2 (m is an
integer). We thus expand the spinor wavefunction in terms of angular momentum partial
waves ψm(r) ≡ (fm, igm)T ,

ψ(r, φ) = e−iφσz/2
∞∑

m=−∞
ei(m+1/2)φ ψm(r), (5.22)

where the Dirac equation yields[
−i
(
∂r +

1

2r

)
σx +

m+ 1/2 + ϕ(r)

r
σy

]
ψm = kψm. (5.23)

The magnetic flux (in units of the flux quantum Φ0) enclosed by a circle of radius r
around the origin is

ϕ(r) ≡ 2πr

Φ0
Λφ(r), (5.24)

where α = ϕ(∞) in Eq. (5.16). The continuity relation (5.7) must hold for each partial
wave ψm separately, and implies in the cylindrical coordinates

∂r

(
rψ†mσxψm

)
= 0. (5.25)

Introducing dimensionless radial coordinates, ρ ≡ kr, a closed equation for the upper
component, fm(ρ), follows,[

1

ρ
∂ρ(ρ∂ρ) + 1−

(
1

4ρ2
+W 2

m +W ′m

)]
fm = 0,

Wm(ρ) ≡ m+ 1/2 + ϕ(ρ/k)

ρ
, (5.26)

where W ′m ≡ ∂ρWm. The lower component is obtained from

gm(ρ) = −
(
∂ρ +

1

2ρ
−Wm

)
fm. (5.27)

These relations imply a general expression for the scattering amplitude F (φ) under
radially symmetric magnetic perturbations, and thus for the various cross sections in
Eq. (5.14). For ρ→∞, the term ∝ α/r in Eq. (5.16) dominates and the general solution
to Eq. (5.26) is given in terms of Hankel functions,

fm(ρ) = amH
(1)
m+α(ρ) + bmH

(2)
m+α(ρ), (5.28)

with complex coefficients am and bm. The lower spinor component then follows from
Eq. (5.27),

gm(ρ) = amH
(1)
m+α+1(ρ) + bmH

(2)
m+α+1(ρ). (5.29)
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Using the asymptotic forms of the Hankel function (5.18) the continuity relation (5.25)

implies am = bme
2iδ̃m , i.e., the outgoing wave can differ from a free spherical wave only

by a phase shift δ̃m, which depends on the magnetic perturbation and is determined in
the next section. Using the Bessel function expansion formula

eiρ cosφ =
∑
m

imeimφJm(ρ)

and the asymptotic behavior of H
(1,2)
ν , Eq. (5.18), we find

bm =
im

2
e−iπα/2. (5.30)

We then obtain the scattering amplitude in terms of phase shifts as for the electrostatic
case,104

F (φ) =
−i√
2πk

∑
m

(
e2iδm − 1

)
eimφ, (5.31)

but δm includes the total flux α,

δm ≡ δ̃m − πα/2. (5.32)

As a consequence, qualitatively different effects beyond the electrostatic case arise, such
as the AB effect. The cross sections in Eq. (5.14) are then given by

σtot =
4

k

∑
m

sin2 (δm) , (5.33)

σtr =
2

k

∑
m

sin2 (δm+1 − δm) .

Scattering theory has thus been reduced to the determination of the phase shifts δm. In the
electrostatic case,104 the phase shifts obey the symmetry relation δm = δ−m−1, implying
the absence of backscattering, F (π) = 0. In the magnetic case under consideration
here, in general this symmetry relation breaks down, and hence backscattering is not
suppressed anymore, F (π) 6= 0. This is closely related to the fact that magnetic fields
can confine massless Dirac particles.47

5.4 Ring-Shaped Magnetic Fields

In this section we consider the scattering states for a radially symmetric ring-shaped
magnetic field. The scattering setup is schematically sketched in the inset of Fig. 5.1.

5.4.1 Infinitesimally thin ring

We first study the exactly solvable model of an infinitesimally thin ring of radius R
around the origin, where Λφ(r) follows from Eq. (5.24) with

ϕ(r) = αΘ(r −R), (5.34)
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Figure 5.1: Transport cross section σtr (in units of 2/k) vs dimensionless flux α for a
finite-width magnetic ring, see Sec. 5.4.3, with kR1 = 0.01 and R2 = 2R1. (We here
also allow for α < 0.) The numerical results are close to the ideal AB prediction for
the infinitely thin solenoid, σtr = (2/k) sin2(πα). Inset: Schematic scattering geometry.
The plane wave (blue solid arrows) coming in along the êx direction is scattered by
a ring-shaped magnetic field present for R1 < r < R2 (shaded region). The outgoing
spherical wave is indicated by red dashed arrows.

where Θ is the Heaviside step function and, as before, α is the dimensionless total
flux through the ring surface area. For the orbital field case, this implies Bz(r) =
(αΦ0/2πR)δ(r −R). With ρ = kr and R ≡ kR, the solution to Eq. (5.26) is

fm(ρ) =

{
amJm(ρ), ρ < R,

bm

(
e2iδ̃mH

(1)
m+α(ρ) +H

(2)
m+α(ρ)

)
, ρ > R, (5.35)

with bm in Eq. (5.30). The requirement of continuity of ψm(r) at r = R, together with
Eq. (5.27), leads to two boundary conditions for fm. With R± ≡ R± 0+, they read

fm
(
R+
)

= fm
(
R−
)
, f ′m

(
R+
)
− f ′m

(
R−
)

=
α

R
fm(R), (5.36)

where again f ′ = ∂ρf . The coefficient am and the phase shift δ̃m appearing in Eq. (5.35)
then follow from the boundary conditions (5.36).

• When Jm(R) 6= 0, the phase shift δ̃m can be determined by evaluation of the
logarithmic derivative

Lm ≡ d ln fm(ρ = R+)

dρ
=
α

R
+
J ′m(R)

Jm(R)
(5.37)

=
m+ α

R
− Jm+1(R)

Jm(R)
,
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where we used the second boundary condition in Eq. (5.36). As a result, with the
Neumann function Yν , we find

tan δ̃m =
J ′m+α(R)− LmJm+α(R)

Y ′m+α(R)− LmYm+α(R)
, (5.38)

while am is given by

am = bm
e2iδ̃mH

(1)
m+α(R) +H

(2)
m+α(R)

Jm(R)
. (5.39)

Equation (5.38) stays valid beyond the thin-ring limit when a more general form
for Lm is used, see Sec. 5.4.3.

• For the special case Jm(R) = 0, Eq. (5.35) implies e2iδ̃m = −H(2)
m+α(R)/H

(1)
m+α(R)

and, using f ′m(R+) = f ′m(R−),

am = bm
e2iδ̃m∂RH

(1)
m+α(R) + ∂RH

(2)
m+α(R)

J ′m(R)
.

Equations (5.38) and (5.39) include these relations when taking the limit Jm(R)→ 0
and Lm →∞.

5.4.2 Aharonov-Bohm scattering amplitude

In 1959 it was demonstrated by Aharonov and Bohm (AB)134 that particles whose
classical trajectories are confined to regions of space where no forces can act may still
experience deflections because of quantum mechanical effects. The simplest example of
this effect is the case of scattering of charged particles by a solenoid of infinitesimally
small radius.

We can consider the R → 0 limit of the above setting, which corresponds to the
pure solenoid case. This allows us to study the Aharonov-Bohm (AB) effect for ultra-
relativistic Dirac fermions. In order to extract the singular part, we first rewrite fm(r)
in Eq. (5.28) as

fm(r) = 2bm
eiδ̃m

sin(πα)

[
sin(πα− δ̃m) Jm+α(kr) + (−)m sin(δ̃m) J−(m+α)(kr)

]
. (5.40)

Imposing regularity for fm(r) as r → 0 requires the phase shift (5.32) to be δm =
−(πα/2)sgn(m + α).ii Correspondingly, for R → 0, the scattering amplitude (5.31) is
given by

F (φ) =
−i√
2πk

[(
e−iπα − 1

) ∞∑
m=−[α]

eimφ +
(
eiπα − 1

) −[α]−1∑
m=−∞

eimφ

]
, (5.41)

iiAs J−ν(r) with ν > 0 is not well behaved at r = 0
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where α = [α] + {α}, with integer part [α] and non-integer part 0 ≤ {α} < 1. Summation
of the series in Eq. (5.41) yields136

F (φ) =
−i√
2πk

(
2πδ(φ)[cos(πα)− 1] + e−i([α]+1/2)φ sin(πα)

sin(φ/2)

)
. (5.42)

Up to the forward scattering (φ = 0) amplitude, Eq. (5.42) reproduces the AB re-
sult,134,135,137 here obtained in terms of scattering phase shifts. Note that the forward
scattering δ-term, missing in the AB calculation,134 naturally appears in our phase shift
analysis and is essential for establishing unitarity of the scattering matrix.136,141

In alternative approaches to obtain F (φ) for the ideal solenoid, following the original
AB method,134 the asymptotics of the exact wavefunction is computed from its integral
representation. As a result, the incident wave corresponding to Eq. (5.15) has an additional
phase factor e−iπα sgn(sinφ)e−iαφ, i.e., one has a multi-valued incoming plane wave. The
precise relation between these two approaches has been discussed in several works and
is still under debate,136–141 albeit the difference is of little relevance to experimentally
observable quantities. In particular, the transport cross section σtr in Eq. (5.14) does
not depend on the forward scattering amplitude at all. We conclude that our approach is
able to reproduce the AB effect, σtr = (2/k) sin2(πα), with oscillations as function of the
dimensionless flux parameter α. In particular, σtr = 0 for integer α.

5.4.3 Magnetic ring of finite width

We now generalize the setup to a finite width, with R1 < R2 denoting the inner and
outer radii of the ring, cf. the inset of Fig. 5.1. Again, Λφ(r) in Eq. (5.24) is expressed in
terms of a dimensionless flux function ϕ(r). When Λφ is a vector potential, the associated
magnetic field Bz(r) = B is taken uniform within the ring region and zero outside;
for concreteness, we take B ≥ 0. This profile allows for an exact solution, while more
general smooth field profiles can be treated within the Wentzel-Kramers-Brillouin (WKB)
approximation, see Sec. 5.4.4.

We use dimensionless coordinates (ρ = kr and R1,2 = kR1,2) and flux parameters,

ν1,2 =
πBR2

1,2

Φ0
, ν ≡ ν1

R2
1

=
ν2

R2
2

, α = ν2 − ν1. (5.43)

The function ϕ then reads with r = ρ/k:

ϕ(r) =


0, ρ < R1,

νρ2 − ν1, R1 < ρ < R2,
α, ρ > R2.

(5.44)

For R1 → R2, this reduces to Eq. (5.34). In particular, α in Eq. (5.44) again denotes the
total dimensionless flux.

For given j = m+ 1/2, the components of the Dirac spinor ψm obey Eqs. (5.26) and
(5.27), with Eq. (5.44) now determining Wm(ρ). The solutions for r < R1 and r > R2
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are as in Eq. (5.35),

fm(ρ) =

{
amJm(ρ), ρ < R1,

bm

(
e2iδ̃mH

(1)
m+α(ρ) +H

(2)
m+α(ρ)

)
, ρ > R2,

(5.45)

where am and δ̃m are to be determined, and bm is given in Eq. (5.30). For R1 < r < R2,
Eq. (5.26) can be solved in terms of the confluent hypergeometric functions Φ and Ψ,149

fm(ρ) = ρ|m̃|e−νρ
2/2
[
cmΦ(ξm, 1 + |m̃|; νρ2)

+ dmΨ(ξm, 1 + |m̃|; νρ2)
]
, (5.46)

ξm ≡ 1 + m̃Θ(m̃)− 1/4ν, m̃ ≡ m− ν1.

The coefficients cm and dm, together with am and the phase shift δ̃m in Eq. (5.45), follow
by matching ψm at r = Ri=1,2. Taking into account that Wm is a continuous function of
ρ, we have

fm
(
R+
i

)
= fm

(
R−i
)
, f ′m

(
R+
i

)
= f ′m

(
R−i
)
, (5.47)

where the second condition follows by continuity of the lower spinor component gm.

It is convenient to introduce the transfer matrix T̂m connecting the solutions at
ρ = R+

1 and R−2 ,(
fm(R−2 )
f ′m(R−2 )

)
= T̂m

(
fm(R+

1 )
f ′m(R+

1 )

)
= amT̂m

(
Jm(R1)
J ′m(R1)

)
. (5.48)

Explicitly, the transfer matrix for the magnetic ring of finite width is

T̂m =

(
Φ2 Ψ2

Φ′2 Ψ′2

)(
Φ1 Ψ1

Φ′1 Ψ′1

)−1

, (5.49)

where we use the abbreviation

Φi=1,2 ≡ R|m̃|i e−νi/2Φ(ξm, 1 + |m̃|; νi),

and similarly for Ψi. We mention in passing that for the infinitesimally thin magnetic

ring in Sec. 5.4.1 (where R1 = R2 = R), the transfer matrix is T̂m =

(
1 0

α/R 1

)
.

For the finite-width ring, using Eq. (5.45) the phase shift δ̃m is then again given by
Eq. (5.38), with R → R2 and the logarithmic derivative Lm replaced by

Lm =
um,2
um,1

,

(
um,1
um,2

)
= T̂m

(
Jm(R1)
J ′m(R1)

)
. (5.50)
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Figure 5.2: The main panel is as in Fig. 5.1 but for kR1 = 1.32 and R2 = 5R1. Inset:
Current density jφ(ρ) = êφ · j vs radial coordinate ρ for the quasi-bound state with
j = 3/2 present at α ' 6.

With the above expressions, it is straightforward to compute the scattering phases
δm = δ̃m − πα/2 numerically for the finite-width ring geometry. Thereby we obtainiii

the scattering amplitude F (φ) from Eq. (5.31) and the transport cross section σtr from
Eq. (5.33).

Numerical results obtained under this approach are shown in Figs. 5.1 and 5.2. First,
in the main panel of Fig. 5.1, we show the transport cross section σtr as a function of the
total flux α. In this example, both radii R1 and R2 were chosen very small, such that
scattering by the ring is close to the one by an ideal AB solenoid. As a consequence, we
observe the AB oscillations with unit flux period. In contrast to the ideal AB result,
a complete suppression of scattering for α ∈ Z is observed in the finite-width ring
only for α = 0, while the maximum value σtr = 2/k for half-integer α is still perfectly
realized. In fact, the phase shift analysis in Sec. 5.4.2 shows that a given oscillation
period is determined by one specific m value in the ideal AB case. For the non-ideal
finite-width ring, other total angular momenta also start to contribute, and this mixing
effect destroy the perfect constructive interference needed for σtr = 0. On the other hand,
the destructive interference responsible for the maxima of σtr at half-integer α is more
robust since it is dominated by a single m value.

In Fig. 5.2, we study scattering by a much larger ring. In this case, the AB effect
is absent, which can be understood by noting that the Fermi wavelength (2π/k) of
the particle is now smaller than the outer circumference 2πR2 of the ring. Quantum
interference of waves surrounding the obstacle in opposite directions is then largely
averaged out, and, moreover, the wavefunction can partially penetrate into the ring area.

iiiIn the numerical evaluation, we sum over all angular momentum states |j| < 40 (with j = m+ 1/2).
Scattering phases with very large |j| are difficult to compute reliably yet average out in practice.
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Figure 5.3: Partial cross section sin2 δm vs energy E for a ring-shaped confinement as in
Sec. 5.4.3. The numerical results are for total angular momentum states with m = 1 (solid
black) and m = −1 (dashed blue curve). The radii are R2 = 7R1 and R1 = 0.5`B with
`B =

√
2c/eB, and energies are in units of ~vF /`B. Inset: WKB results for quasi-bound

state energies Er vs R2 (lengths in units of `B), for m = 1 (black circles) and m = −1
(blue diamonds) with fixed R1 = 0.5`B. For comparison, the exact levels for infinite R2

from Ref. 48 are shown for m = 1 (dotted black) and m = −1 (dashed blue curve).

However, a remarkable peak feature at α ≈ 6 appears now in the transport cross section,
see Fig. 5.2. This feature can be traced to the appearance of a quasi-bound state with
j = 3/2 at this flux value (for the considered energy), which then causes a scattering
resonance, cf. our discussion in Sec. 5.4.4. The inset of Fig. 5.2 shows the current density
profile for precisely this quasi-bound state. While the radial component vanishes, jr = 0,
we find a circularly oriented current, jφ 6= 0, which is mainly localized inside the ring
(r < R1) and represents a current-carrying bound state. We note that more quasi-bound
states appear for larger α, causing additional peak features in σtr(α) beyond those shown
in Fig. 5.2.

5.4.4 Quasi bound state and scattering resonances

The magnetic confinement built up by the ring-shaped field can generate quasi-bound
states, which for R2 →∞ become true bound states.47,48 The quasi-bound state spectrum
then causes resonances in the scattering amplitude when the energy E = ~vFk is varied.
For given total angular momentum j = m+1/2, the corresponding phase shift δm(E) goes
through the value π/2 as E crosses a resonance level Er. The corresponding resonance
width Γr can be estimated from148

(d/dE) cot [δm(E = Er)] = −2/Γr.
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To access these resonances, we first put Eq. (5.26) into a canonical form with separated
kinetic and potential energy terms. The substitution fm(ρ) = ρ−1/2f̃m(ρ) yields[

−∂2
ρ + Vm(ρ)

]
f̃m = f̃m, Vm ≡W 2

m +W ′m, (5.51)

where Vm(ρ) is an effective potential energy for the radial motion and the lower spinor
component is gm = ρ−1/2(−∂ρ +Wm)f̃m.

In this form, Eq. (5.51) can be treated within the standard WKB approach, which
represents an attractive alternative to semiclassical approaches to the Dirac equation
as it avoids the appearance of non-Abelian Berry phases.131,150,151 For a magnetic ring
as in Sec. 5.4.3, the effective potential Vm has a hard repulsive core for r → 0 plus a
barrier at larger distances, i.e., a quantum well is formed with classically allowed motion
for r0 < r < r1. The “turning points” r0,1 here depend on the energy E = ~vFk under
consideration. For finite R2, this barrier is of finite width and quasi-bound states within
the well region may exist. The classically forbidden region r1 < r < r2 (where r2 is
another turning point) then corresponds to tunneling trajectories where the “particle”
escapes from the well region. For R2 →∞, the barrier becomes infinitely wide and this
escape probability vanishes, i.e., we obtain true bound states in the well region. Using
the radial variable r = ρ/k, Eq. (5.51) reads[

−∂2
r + Um(r)

]
f̃m(r) = εf̃m(r), (5.52)

Um(r) = w2
m + ∂rwm, wm(r) = kWm(kr),

where the modified Bohr-Sommerfeld quantization condition for the complex-valued
“energy” ε ≡ k2 is152 ∫ r1

r0

dr
√
ε− Um(r) = π

(
n+

1

2
− χ(a)

2π

)
, (5.53)

χ(a) =
1

2i
ln

(
Γ(ia+ 1/2)

Γ(−ia+ 1/2) [1 + e−2πa]

)
+ a(1− ln a),

a =
1

π

∫ r2

r1

dr
√
Um(r)− ε,

with n = 0, 1, 2, . . . and the Gamma function Γ(z). The complex resonance values for ε
solving Eq. (5.53) can be found numerically. Equation (5.53) is formally exact for the
case of a parabolic barrier, but also applies for an arbitrary smooth potential and is
expected to remain accurate152 even for small n. We now write

ε = (k − iγ/2)2 ≈ k2 − ikγ.

For a quasi-bound level with energy Er = ~vFk, the resonance width is then Γr = ~vFγ.
Using Imχ(a) ≈ e−2πa/2 for a & 1, we obtain

Γr/~ = T−1
k e−2πa, (5.54)
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where the period of radial motion is

Tk =
2k

vF

∫ r1

r0

dr√
k2 − Um(r)

.

Our numerical results for the partial cross section, sin2 δm, as a function of energy, and
the WKB results for the corresponding quasi-bound state energies Er are shown in
Fig. 5.3. Here we take the field profile as in Sec. 5.4.3.iv With increasing R2 (keeping
R1 fixed), new quasi-bound energy levels localized in the well region appear, see inset of
Fig. 5.3. Very good agreement with exact quantum calculations48 for the infinite barrier
case (R2 → ∞) is observed, i.e., these energy levels remain basically unchanged when
increasing R2. The only noticeable deviation from the exact spectrum of Ref. 47 is seen
for m = 0, where the potential Um=0(r) creates an infinitely attractive well for r → 0. In
that case, the WKB approximation becomes questionable in that “steep” region. The
main panel in Fig. 5.3 illustrates the sequence of quasi-bound states present because of
the magnetic confinement. The corresponding scattering resonances appear as peaks in
the transport cross section σtr when varying energy or the effective flux parameter α.

5.5 Summary & Discussion

In this chapter we have studied scattering of massless two-dimensional Dirac fermions by
magnetic perturbations of various types. The model is applicable to quantum transport
in monolayer graphene and for the surface state of strong topological insulators. The
magnetic fields can correspond to orbital or Zeeman fields, strain-induced fields in
graphene, or exchange fields generated by ferromagnets.

The full scattering solution was discussed in detail for radially symmetric perturbations,
where the scattering amplitude can be expressed in terms of phase shifts in a given total
angular momentum channel, and within the Born approximation for the general case.
Our approach now allows for a systematic study of the scattering of Dirac fermions on
magnetostatic perturbations.

As applications, we have studied scattering by magnetic impurities within the Born
approximation, and fully nonperturbative scattering for the case of ring-shaped magnetic
fields. The Born approximation is only valid when the perturbation has zero total flux
(α = 0). For the ring-shaped field case, as one increases the lateral size (R2) of the
magnetic perturbation, we have a crossover from the Aharonov-Bohm case to a regime
dominated by scattering resonances. In the first case, R2 → 0, particle trajectories
surround the flux region but essentially do not penetrate it, leading to the oscillatory
transport cross section σtr ∝ sin2(πα). In the second case, where the particle wavelength
is small against the size of the perturbation, kR2 > 1, the AB oscillations in σtr(α) are
absent. However, now quasi-bound states arise due to the magnetic confinement, causing
scattering resonances which show up as peaks in σtr(α).

ivIn order to avoid artefacts caused by treating sharp boundaries within the WKB approach, we have
used a smoothening of the field steps.
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Chapter 6

Electronic Transport Through
Hybrid Structures in Graphene

6.1 Introduction

The existence of Dirac-like quasi-particles in graphene (discussed in Sec. 1.3.2) has
motivated a lot of research work in exploring also the effects due to the proximity
of a superconductor. Graphene is not a natural superconductor by itself. However
superconductivity in a graphene layer can be induced in the presence of a superconducting
electrode near it via the proximity effect. Then one can form various hybrid structures
with normal graphene and superconductor junctions. If graphene is confined between
two superconducting barrier, due to the formation of bound states, various resonance
effects are observed in transport.

In this chapter, in the first section we discuss some phenomenon associated with
proximity effects. Then in section 2 and 3 we discuss the resonant tunneling in a
superconducting double barrier (SDB) structure in graphene and its consequences in
quantum charge pumping.

6.2 Superconducting Proximity and Andreev Reflection

The proximity effect153 is the occurrence of superconducting-like properties in non-
superconducting materials placed in electrical contact with a superconductor (S). It has
been understood that superconducting correlation could extend over a large length scale in
a normal metal (N), even in the absence of attractive electron-electron interactions.154–156

The actual energy gap in the metal is determined not by a pairing interaction as in a
BCS superconductor but by the diffusion of single quasi-particles in the normal metal,
which is a result of the remote interaction felt by the electronic state when entering the
metal. The role of the Andreev reflection (described below) is central to the proximity
effect since it provides the elementary mechanism for converting single electron states
from a normal metal to Cooper pairs in the superconducting condensate. The actual
proximity effect is the result of an interplay between Andreev reflection at the normal
metal - superconductor (NS) interface and long-range coherence in the normal metal.
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Figure 6.1: (a) Specular Andree reflection, (b) retro Andreev reflection, (c) normal
reflection. Specular AR appears in the case of graphene and is discussed in Sec. 6.2.3.

At the interface of a normal metal and superconductor , because of the existence of
an energy gap at the Fermi energy in the density of states of the superconductor, the
transfer of single electron from the normal metal with an energy ε below the gap ∆ is
forbiddeni. However, an incoming electron can be transferred into the superconductor if
a second electron is also transferred through the interface thus forming a Cooper pair
into the superconductor. In terms of single excitations, this process is equivalent to the
reflection of a hole. This process conserves energy but a net 2e charge is transfered to
the superconductor and is called the “Andreev reflection” (AR) process.157

As the low energy electron transport in graphene is governed by Dirac equation,
the Andreev reflection in graphene is fundamentally different from normal metals.158,159

While in case of metal, the hole is reflected back along the path of the incident electron
(retro-reflection), the Andreev reflection can be both retro and specular in case of graphene.
Fig. 6.1(a) and (b) shows the two type of AR. Here we give a brief description of Andreev
reflection process in both cases:

6.2.1 Andreev reflection process

Andreev reflection process can be understood from the interaction term (or, pairing term)
of the mean-field BCS Hamiltonian, which is known as Bogoliubov – de Gennes (BdG )

idiscussed in Appendix F, Eq. (F.6)
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Hamiltonian (Appendix F). The pairing term has the following form:

Hp(k) =
(

∆̄c−k↓ck↑ + ∆c†k↑c
†
−k↓

)
. (6.1)

The interaction can be interpreted in two ways: we can regard ∆̄c−k↓ as a term that
converts two particles into a condensed pair (cooper pair);

e− + e− 
 Cooper Pair−2 . (6.2)

Alternatively, by writing c−k↓ = h†k↑ as a hole creation operator, Hp(k) = ∆̄h†k↑ck↑+ H.C.

describes the scattering of an electron into a condensed pair (represented by ∆̄) and a
hole, which is an “Andreev reflection” process:

e− 
 Cooper Pair−2 + h+ . (6.3)

Andreev reflection “reflects” electrons into holes, reversing their charge and velocity, yet
it conserves spin and momentum. Because, for a hole in the state (−k ↓) has spin up,
momentum +k. So, this process for normal metal is a retro reflection process.

Amplitude of Andreev reflection:

In the presence of superconductivity, an excitation in a metal is conveniently represented
by a two-component wave function, the components describing electrons (ψe(~r)) and
holes (ψh(~r)). The wave function obeys the Bogoliubov – de Gennes (BdG) equation,
which is the equivalent of schrödinger equation for BCS superconductor:(

Ĥ eiφ∆

e−iφ∆∗ −Ĥ∗

)(
ψe(~r)
ψh(~r)

)
= ε

(
ψe(~r)
ψh(~r)

)
, (6.4)

where the energy is counted from the Fermi level, so that Ĥ = H−EF , H = −(~2/2m)(∇+
ieA(r)/~c)2 + U(r) being the Hamiltonian for electrons in the absence of any supercon-
ductors. The superconducting gap ∆ and phase φ are position-dependent and vanish in
the normal part of the nanostructure. It is enough for our purposes to assume that ∆
and φ are constant in the superconducting region.

For a plane wave solution ∝ exp(ikr) for the BdG equation (6.4), we have

~k =

√
2m(EF ±

√
(ε2 −∆2)). (6.5)

In the normal metal (∆ = 0), for ε � EF , we have from Eq. (6.5), k = kF ± ε/~vF .
where the ± stands for electron and hole propagation. For the case of superconducting
region, the corresponding condition is k = kF ±

√
ε2 −∆2.

Let us consider an ideal (no scattering) contact between a normal metal (region
N) (x < 0) and a superconductor (region S) (x > 0). For solving this 1D problem, we
consider the soution in the normal metal of the form:

ψN (x < 0) =

(
1
0

)
eixε/~vF + rA

(
0
1

)
e−ixε/~vF . (6.6)
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Figure 6.2: Formation of Andreev bound state by multiple Andreev reflection and resonant
tunneling

In the superconducting region, in case of ε < ∆ , the convergent wavefunction is taken as:

ψS(x > 0) =

(
u
v

)
e−x
√

∆2−ε2/~vF . (6.7)

Matching them at the interface (x = 0), we get the amplitude of Andreev reflection

rA = e−i cos−1( ε∆)−iφ . (6.8)

So, as expected, in this case, with ε < ∆, the electron is totally Andreev reflected
(|rA|2 = 1).

For the case of ε > ∆, the amplitude of Andreev reflection is:

rA = e−iφ

(
ε

∆
−
√
ε2 −∆2

∆

)
, (6.9)

so, |rA|2 < 1 and it decreases with increasing incident energy.

6.2.2 Resonant tunneling and Andreev bound state

Lets consider an one dimensional system consisting of a normal metal (N) separating two
superconducting barrier (S) of finite width, as depicted in Fig. 6.2. Let us now consider
an electron in N region at sufficiently low energy. It will experience Andreev reflections
trying to get to either superconductor. The resulting hole experiences the same problem:
it cannot escape the nanostructure and is converted back to an electron in the course
of the escape attempt. This bound motion will give rise to bound states with discrete
energy levels.
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This bound states can affect the Andreev reflection amplitude of the whole system
and gives rise to tunneling resonances. For an incident electron from the left side to the
first barrier with an energy ε, the total tunneling amplitude is calculated by summing up
all possible paths (because of multiple reflection) as:160

T = t(1)
ee Pe

(
1 + r

(2)
he Phr

(1)
eh Pe + · · ·

)
t(2)
ee

= t(1)
ee Pe

(
1

1− r(2)
he Phr

(1)
eh Pe

)
t(2)
ee , (6.10)

where t(i) is the tunneling amplitudes of electron through barrier i = 1, 2, r
(i)
eh (r

(i)
eh ) is

the Andreev reflection amplitude at barrier i for hole (electron) to reflect as electron
(hole). Pe and Ph are respectively the phase acquired by the right moving electron and
left moving hole while traveling by a path L in the N region: (from Eq. (6.5))

Pe/h = e±i
√

2m(EF±ε). (6.11)

The transmission resonance occurs when the denominator of T in Eq. (6.10) vanishes.
This will give the equation for determining energies the quasi bound-state in the system.

6.2.3 BDG equation & Andreev reflection in graphene:

Let us consider a graphene sheet in the xy plane. A superconducting electrode covers the
region x > 0, while the region x < 0 is in the normal graphene (non-superconducting)
state. The excitations (electron, hole) are described by the generalized Bogoliubov-De
Gennes equation:158(

(H − EF ) eiφ∆
e−iφ∆∗ −(THT−1 − EF )

)(
ψe(~r)
ψh(~r)

)
= ε

(
ψe(~r)
ψh(~r)

)
, (6.12)

where H the single-particle Hamiltonian in graphene, and T the time-reversal operator.
The single-particle Hamiltonian we discussed in Sec. 1.3.3 (Eq. (1.33)),

H =

(
H+ 0
0 H−

)
, (6.13)

H± = −i~vF (σx∂x ± σy∂y) + U, (6.14)

which acts on a four-dimensional spinor (ΨA+,ΨB+,ΨA−,ΨB−). The indices A, B label
the two sublattices of the honeycomb lattice of carbon atoms, while the indices ± label
the two valleys of the band structure. The Pauli matrices σi act on the sublattice index.
The time-reversal operator interchanges the valleys and in the absence of a magnetic field,
the Hamiltonian is time-reversal invariant, THT−1 = H. Substituting this in Eq. (6.12)
we obtain two decoupled sets of four equations each, of the form(

(H± − EF ) eiφ∆
e−iφ∆∗ −(H± − EF )

)(
ψe(~r)
ψh(~r)

)
= ε

(
ψe(~r)
ψh(~r)

)
, (6.15)
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Because of the valley degeneracy it suffices to consider one of these two sets. For simplicity
we can take H+, the Eq. (6.15) leads to a four-dimensional Dirac-Bogoliubov-De Gennes
(DBDG) equation. The solution of this equation is discussed in Appendix G, where we see
that for an incident electron of energy ε with an y momentum (parallel to the interface)
ky and an angle of incidence α, the reflected hole has an angle of reflection α′, where

α = sin−1[~vFky/(ε+ EF )] , α′ = sin−1[~vFky/(ε− EF )] , (6.16)

EF is the Fermi energy. Now, if ε < EF , the reflected hole is an empty state in the
conduction band and if ε > EF , hole is an empty state in the valence band. A conduction-
band hole moves opposite to its wave vector, so we see that α and α′ are of opposite sign
(retro-reflection). A valence-band hole, in contrast, moves in the same direction as its
wave vector, so α and α′ are of same sign (specular reflection). The physical reason of
the specular AR is the same as Klein tunneling (Sec. 1.3.4), that because of the Dirac
spectrum, an electron can Andreev reflected both as a conduction band hole or a valence
band hole.

The presence of the SAR process in graphene may lead to qualitatively different
behavior in many transport phenomena. But, in our considered geometry, as we will
concentrate on resonant tunneling, we will mostly stay in the retro-reflection regime (we
discuss the effect of SAR in Sec. 6.3.3 ). Also, experimentally it is difficult to reach the
specular reflection regime.158

6.2.4 Crossed Andreev reflection (CAR)

An even more intriguing example where the proximity effect manifests itself is the
phenomenon of crossed Andreev reflection (CAR) which can take place in a normal metal-
superconductor-normal metal (NSN) junction, provided the distance between the two
normal metals is less than or equal to the phase coherence length of the superconductor.
This is a nonlocal process where an incident electron from one of the normal leads
pairs up with an electron from the other lead to form a Cooper pair and jumps into
the superconductor. CAR occurs in competition with elastic co-tunneling or EC, the
quantum mechanical tunneling of electrons between the normal leads via an intermediate
state in the superconductor.

Due to the presence of the Dirac-like energy spectrum, like specular Andreev Reflection
(SAR), graphene can also exhibit specular crossed Andreev reflection (SCAR) in a proximity
induced graphene NSN junction. The effect of CAR in graphene has been studied earlier
in161,162 in the context of detecting entangled states in graphene. However, transport
properties of a superconducting double barrier (SDB) geometry in graphene, i.e. graphene
NSNSN junctions, was not studied so far, where resonance effects can be more important.

6.3 Resonant Tunneling through Superconducting Double
Barrier in Graphene

In general, electronic confinement in graphene is experimentally challenging due to
the effect of Klein tunneling (Sec. 1.3.4). In the recent past, resonant tunneling has
been considered in doped graphene (single barrier) n− p− n junctions46 and in normal
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Figure 6.3: Cartoon of the SDB structure in a graphene sheet. Two patches at the two
places on the graphene sheet depict superconducting material deposited on top of it. The
schematic of the potential profile seen by an incident electron is shown below.

double barrier structures163,164 where resonance effects on the transmission have been
investigated. But here again, the problem of resonant transmission through doped double
barriers in graphene has not been investigated. Motivated by this, we studied resonant
tunneling through a superconducting double barrier (SDB) structure in graphene, which,
because of the correspondence between AR and Klein tunneling165 would also be valid
for a doped graphene n− p− n− p− n junction.

In our analysis, we consider a clean graphene sheet in the x-y plane. The SDB structure
is formed by depositing thin strips of superconducting material on top of the graphene
sheet at two places. This induces a finite superconducting gap (∆ie

iφi) in the barrier
regions as a result of the proximity effect of the superconducting patches. Here ∆i and
φi are the pair potentials and order parameter phases on the two patches respectively
(i refers to the index of the strips). The geometry is shown in Fig. 6.3. The space
dependence of the order parameter can be expressed as

V (x) = ∆eiφΘ(x)Θ(−x+ a) + ∆eiφΘ(x− a− L)Θ(2a+ L− x) , (6.17)

where a is the width of the superconducting barrier in graphene and L is the distance
between the two barriers. Here we assume that the spatial variation of potential steps is
slow on the scale of the lattice spacing so that inter-valley scattering is suppressed. Also
here Θ is the Heaviside Θ-function, and we have taken φ1 = φ2 = φ, since we will not be
looking at supercurrents (Josephson effect).

Processes

As discussed before in section 6.2, if the width a of the superconducting strips is of the
order of the phase coherence length of the superconductors, the normally incident electron
can be transmitted across the barriers both as an electron (electron co-tunneling (CT))



88 Chapter 6. Hybrid Structure in Graphene

and as a hole, via the retro crossed Andreev reflection (CAR) process and specular crossed
Andreev reflection (SCAR). And the electron can be reflected back by retro Andreev
reflection (AR) and specular Andreev reflection (SAR). Here, we restrict ourselves to
spin singlet (s-wave) superconductors so that the electron and the hole are taken from
opposite spin bands in order to allow the Cooper pair to jump into the superconductor
with net spin zero.

Our aim now is to obtain the net quantum mechanical amplitudes for reflection, trans-
mission, AR (and SAR) and CAR (and SCAR) of an electron incident on the SDB structure,
after it has traversed both the barriers. A double barrier structure can always lead to
resonances and this can affect the transmissions and the reflections through the system.
For non-relativistic electrons, this scenario has been studied before.160,166 For relativistic
electrons, the standard paradigm is that one cannot obtain confined carrier states for
normal incidence40,158 due to Klein tunneling. However, discrete energy levels can be
found for carriers in graphene based quantum wires, as long as they have a non-zero
component parallel to the barrier.163 Moreover, for normal incidence, discrete Andreev
bound levels are also found between two superconductors in graphene.167,168These levels
can clearly lead to resonant transmissions in a SDB structure in graphene.

6.3.1 Scattering matrix for single barrier:

For an initial state Ψin of incident particle on a superconducting barrier, as discussed in
Sec. 6.3, combining all four processes reflection, Andreev reflection (AR), crossed Andreev
reflection (CAR) and co-tunneling (CT), the final state of the wavefunction Ψout is related
to the initial state by the S-matrix of the single barrier system as:

Ψout = S Ψin. (6.18)

Here the S-matrix is the combination of all the four processes and can be written as:

S = R + RA + T + TA, (6.19)

where R, RA, T, TA are respectively reflection, AR, CT and CAR matrix, which are
each 4 × 4, as the wavefunction has four components. The numerical values for these
amplitudes can be obtained by matching the electron and hole wave-functions between
the normal and proximity induced superconducting graphene at each of the four interfaces
and the numerical results for the resonances are discussed in Sec. 6.3.4. It is possible
to construct the net amplitudes for different processes for a double barrier system form
these matrices by summing up all possible paths as discussed below in Sec. 6.3.2.

Let us first consider the AR matrices which converts electrons (holes) to holes
(electrons) at each interface. The elements of the AR matrix can be derived using

RAψe+ = rA,heψ
h−

RAψe− = rA,heψ
h+

RAψh+ = rA,ehψ
e−

RAψh− = rA,ehψ
e+ , (6.20)
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where tA,eh and tA,he are AR coefficients for holes and electrons for the NS interface.
Each of this conditions gives two equations, and we have only 8 non zero elements in the
matrix RA if there is no reflection. More explicitly, the matrix elements (RA)i,j areii:

(RA)3,1 = rA,he
eiα
′/2 + e−iα

′/2eiα

e−iα/2 + eiα/2eiα

√
cosα

cosα′

(RA)3,2 = rA,he
eiα
′/2eiα − e−iα′/2

eiα/2eiα + e−iα/2

√
cosα

cosα′

(RA)4,1 = rA,he
e−iα

′/2 − eiα′/2eiα

e−iα/2 + eiα/2eiα

√
cosα

cosα′

(RA)4,2 = rA,he
e−iα

′/2eiα + eiα
′/2

eiα/2eiα + e−iα/2

√
cosα

cosα′
, (6.21)

In particular, for α = 0, the matrix is much more simple and can be written as:

RA =


0 0 rA,eh 0
0 0 0 rA,eh

rA,he 0 0 0
0 rA,he 0 0

 . (6.22)

We can also write down the 4× 4 transmission matrix TC = T + TA which allows for
both normal transmission and CAR through a single barrier. This matrix is defined by

TCψe± = teψ
he± + tA,eψ

h±

TCψh± = thψ
eh± + tA,hψ

e±, (6.23)

where tA,eh and tA,he are CAR coefficients for holes and electrons through the barrier; th
and te are the CT coefficients for holes and electrons for the barrier. We find that the
matrix elements are given by

TC =
1

V


te 0 tA,eh cosα+ itA,eh sinα−
0 te itA,eh sinα− −tA,eh cosα+

tA,he cosα+ itA,he sinα− th 0
itA,he sinα− −tA,he cosα+ 0 th

 ,

where V =
√

cosα cosα′, α± = (α±α′)/2. Clearly TB includes both normal transmission
and CAR. It is also clear that TB can be written as TB = T+TA where T is a 4×4 matrix
with two non-zero 2× 2 diagonal blocks and TA is a 4× 4 matrix with two non-zero 2× 2
non-diagonal blocks.

iiThe other elements of the matrix RA are found by interchanging α↔ −α′, rA,he → rA,eh and also
changing their positions to the other off-diagonal block.
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6.3.2 Andreev bound levels

Andreev bound states are formed due to multiple Andreev reflections (for non zero
incidence angle, by multiple retro Andreev reflections only). To sum up all possible paths,
we need to take into account the phase a particle acquires while traveling in between the
superconductors. The phase matrix relating the electron and hole wave-function when it
traverses the normal graphene region through a distance L (the distance between the
two superconductors) is given by

M = λ−1Dλ , (6.24)

where

λ =

(
Λ 0
0 Λ′

)
, (6.25)

and D is a diagonal matrix with the entries (eikL, e−ikL, eik
′L, e−ik

′L) denoting the phases
picked up by the left and right moving electrons and holes respectively. The Λ and Λ′

matrices which rotate the momentum operator to an arbitrary basis are given by

Λ = Λ−1 =
1√

2 cosα

(
e−iα/2 eiα/2

eiα/2 −e−iα/2

)
(6.26)

with

Λ′ =
1√

2 cosα′

(
e−iα

′/2 −eiα′/2
eiα
′/2 e−iα

′/2

)
. (6.27)

The condition for resonance or for a bound state in the normal graphene region
between the two superconductors is now just the condition that the total transmission
computed as

ψT = TC [M + MRAMRAM + . . . ]TCψe+

= TCM [I− RAMRAM]−1 TCψe+ (6.28)

has a vanishing denominator. This is precisely the condition for the Andreev bound
states formed by retro ARs without the presence of reflection. From this condition, one
can find the corresponding Andreev bound state energy levels. Note that if we want
the total transmission of electrons, we just need to replace TC by T and if we want the
total CAR of holes, we need to replace TC by TA. Both of them show the effect of the
resonancesiii. We will discuss the effect of specular reflection (along with SAR) in the
Sec. 6.3.3. In our analysis we have used left-right symmetry, but we have been careful to
maintain the distinction between electron and hole parameters, since exact electron-hole
symmetry only exists at ε = 0. At any finite energy, the symmetry is broken.
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Figure 6.4: The electron and hole paths contributing to the formation of Andreev bound
levels between the two superconductors. The electrons have been shown as red lines, the
retro AR, CAR holes as blue lines and the SAR, SCAR holes as green lines. The bound
levels formed by multiple retro AR have been shown as thick red and blue lines. However,
not all possible paths have been shown in the figure.

6.3.3 Effect of reflection and SAR

For normal incidence in graphene, due to chirality (Sec. 1.3.3), normal reflection is
prohibited and we have pure Andreev bound states between the two superconductors.
Normal bound states (formed by multiple ordinary reflections) are, in any case, not
possible in graphene even at any other incident angle, when ordinary reflection is allowed.
This is because multiple ordinary reflections are specular in nature and lead to a mode
running along the y-axis, rather than a bound state. This is also true even if we have
SAR, which leads to a specular Andreev mode running along the y-axis .159

However, at a non-zero angle of incidence, if we have specular reflection present
(Andreev as well as normal) at each graphene NS interface, we can still have Andreev
bound states formed by multiple retro AR in between the two superconducting barriers.
However, due to the specular nature of the reflection and the SAR, they are no longer
localized. This is shown in Fig. 6.4. The incident electron can transmit through the
first superconducting barrier as an electron and then have multiple retro AR. It can also
have either ordinary reflection or SAR from the interface. The transmitted electron once
again (in fact, for several times, depending on the length of the graphene sheet in the
y-direction) can have multiple retro AR before it is finally transmitted (or reflected) as

iiiAlso, note that α needs to be small in order to ensure that the reflection is mainly retro-reflection.
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Figure 6.5: The bottom graph shows the behavior of angle resolved conductance, obtained
numerically, in units of 4e2/h as a function of energy in the subgapped regime (ε� ∆)
for ky = 0.75. Here, ∆/EF = 0.05 and U0/EF = 10.0. The top graph depicts the
denominator of Eq. 6.28 for the same parameter values.

an electron or a hole through the graphene SDB structure. The electron can also cross
the first superconductor as a hole by retro CAR and then have multiple retro-reflections
from the two interfaces and then this process can continue as well.

The number of reflections (or SAR ’s) that can occur in a given sample is controlled
by the length of the graphene sheet in the y-direction and the angle of incidence of the
electron. Naively, the number should go as Ly/L sinα, where Ly is the length of the
sheet in the y-direction and L and α have already been defined earlier. In Fig. 6.4, we
have only shown some of the possible quantum mechanical paths to emphasize how the
Andreev bound states can form between the two barriers. We have also shown only a
single incident electron, but the incident electron can also be at any point along the
y-axis. Hence, if we measure the total output current collected throughout the y-length
of the graphene sample, we should to able to get the signature of the many Andreev
bound states present between the two superconducting barriers.

In fact, the signatures of the Andreev bound states should be present in all the
four amplitudes rc, rAc, tc and tAc, where these four amplitudes denote the quantum
mechanical amplitudes for reflection, AR (SAR), transmission and CAR (SCAR) across
the SDB structure for an incident electron. They should show either a maximum or a
minimum precisely at the Andreev levels obtained in Eq. 6.28. The Andreev levels can be
obtained by measuring the transmissions and reflections through a SDB system even for
large enough Ly; it does not require an effective ‘one-dimensional’ system. Furthermore,
the signature of the resonances occurs in all the four amplitudes.

To illustrate the above argument, in Fig.6.5, we compare the positions of the resonances
as a function of ε/∆ obtained by the vanishing of the denominator of Eq. 6.28, the
analytically obtained Andreev levels, (which do not include the effects of reflection) with
the numerically obtained values of the conductance (by solving the scattering problem
in the next section) for the same parameter values. Note that the numerical results do
include reflection since we have chosen ky = 0.75. Moreover, the numerical results include
transmission throughout all points along the y-axis (width of the graphene sheet). But
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as can be seen from the figure, the resonances still fall on top of each other. This clearly
shows that the presence of specular reflection (and SAR) has no effect on the position of
the resonances which simply occur due to the formation of the Andreev bound states
discussed in the earlier section.

6.3.4 Numerical results

In this section we describe the consequences of all the allowed quantum mechanical
processes across the SDB geometry in graphene. To the left of the SDB structure, with
an incident electron from the left, the wave-function can be written as

ψe+ + rcψ
e− + rAcψ

h− (6.29)

and to the right of the SDB structure, the wave-function can be written as

tcψ
e+ + tAcψ

h+ . (6.30)

The scattering problem can be solved numerically by matching the wavefunctions for
the normal and proximity induced superconducting regions (Eq. (G.3)-Eq. (G.6)) at
the four NS interfaces in graphene (x = 0, a, a+ L, 2a+ L) forming the SDB structure
to obtain the four amplitudes rc, rAc, tc and tAc for an incident electron with energy
ε below the gap ∆. Note that we distinguish between electron and hole parameters,
and hence the four amplitudes will be different for incident electrons and holes. In
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Figure 6.6: The behavior of all possible quantum mechanical scattering probabilities
(|rc|2, |tc|2, |rAc|2, |tAc|2) through the graphene SDB structure are plotted as a function of
energy in the subgapped regime (ε� ∆) for three different values of ky. In (a), (b) and
(c) solid red, green, blue and dashed black lines correspond to the |rAc|2, |rc|2, |tAc|2 and
|tc|2 respectively. Here, ∆/EF = 0.05 and U0/EF = 10.0.

the numerical analysis we do not distinguish between the specular and retro Andreev
reflections and also the normal reflection at each NS interface is allowed, besides normal
transmission and CAR (specular and retro). The numerical results clearly show that
for normal incidence of electron (α = 0), the net normal transmission (CT) tc and the
net AR rAc show resonant behavior in the subgapped (ε� ∆) regime. This is shown in
the first panel in Fig. (6.6). For normally incident electrons, due to the chirality (which
prohibits reflection) and formation of Andreev bound state, we see a tunneling resonance,
which is completely forbidden in a normal double barrier (DB) structure in graphene due
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Figure 6.7: (a) The behavior of the transmission resonances (T = |tc|2) is plotted as a
function of energy in the subgapped regime (ε � ∆) for three different values of a/L
ratio. The red, blue and green lines correspond to the three different values of a/L which
are 0.012, 0.017 and 0.022 respectively. (b) The distance between consecutive resonances
for the same three different values of a/L. For both the figures ky = 0.125.

to the Klein tunneling. This is the striking difference between a normal DB and a SDB in
graphene.

We also vary the momentum ky or equivalently the angle of incidence, and study the
resonances in Fig. 6.5. As we have already mentioned, at ky = 0 or normal incidence, we
have non-zero values only for rAc and tc, and strong resonant behavior for the transmission
tc. As soon as the angle of incidence changes, we see the evolution of the tc, rc, tAc and
rAc in the panels in Fig. 6.6. As we increase the angle of incidence, due to finite ky,
normal reflection rc between the barriers increases, and due to the presence of both rc
and rAc between the barriers the amplitude of the transmission resonances decreases.
However, at very large ky, the roles of reflection and Andreev reflection switch.158 Hence,
for large ky, we find large values of rc, but very small values of rAc and once again, strong
transmission resonances emerge.

These resonances can also be tuned by varying parameters such as the ratio of the
width of the superconductor a to the length between the two superconducting barriers L.
As a/L increases, we find that the resonances become sharper, and the distance between
consecutive resonances increases. The behavior of the resonances as a function of a/L is
shown in Figs. 6.7(a) and 6.7(b).

Angle-resolved differential conductance:

The net angle-resolved differential conductance through the SDB system is now given by

G = N ∗G0

[
|tA|2 cos(α′)− |t|2 cos(α)

]
, (6.31)

where N is the number of input channels or transverse modes in a graphene sheet of width
Ly, G0 = 4e2/h is the unit of conductance and the factor of 4 comes from the pseudo-spin
and valley degeneracies present in graphene. In our numerical analysis we have considered
the temperature to be zero and also assumed linear bias. We again wish to emphasize the
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fact that since multiple Andreev reflections between the two superconducting barriers not
only include both specular and retro AR, but also normal reflections, the exit point from
the second superconductor can be anywhere along the width (y-axis) of the graphene
sheet. Therefore, both normal reflection as well as SAR can change the position of the
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Figure 6.8: The behaviour of the angle-resolved differential conductance in units of 4e2/h
as a function of energy in the subgapped regime (ε� ∆) for three different values of ky.
Here, ∆/EF = 0.05 and U0/EF = 10.0.

transmitted beam along the y-axis at each reflection. Hence, the total transmission
here includes transmission at all points along Ly. In other words, the output lead has
also to be as wide as the graphene sheet. In Fig. 6.8, we show the net angle resolved
Landauer-Buttiker conductance, given in Eq. 6.31, (for N = 1) as a function of the
energy of the incident electron ε� ∆, where again, the resonant behavior can be seen
for different values of ky or the incident angle. The behavior of the conductance, also
shows how the Andreev levels evolve as a function of the incident angle, showing that
the height of the resonances is large when the multiple reflection between the barriers is
either dominated by retro AR (small angles) or normal reflection (large angles).

6.4 Quantum Charge Pumping

Figure 6.9: A pumping
contour in X1−X2 param-
eter space.

The phenomenon of quantum charge pumping corresponds
to a net flow of DC current between different electron reser-
voirs (at zero bias) connected via a quantum system whose
parameters are periodically modulated in time.169–171 The
zero-bias current is obtained in response to the time variation
of the parameters of the quantum system, which explicitly
break time-reversal symmetry. It is necessary to break time-
reversal symmetry in order to get net pumped charge, but
it is not a sufficient condition. For obtaining a net pumped
charge, parity or spatial symmetry must also be broken.
Within a scattering approach, if the time period of modu-
lation of the scattering system parameters is much larger
than the time the particle spends inside the scattering region
(dwell time), the adiabatic limit is reached. In this limit, the
pumped charge in a unit cycle becomes independent of the
pumping frequency. This is referred to as “adiabatic charge
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Figure 6.10: Contours of the transmission probability |tc|2 in the ∆1 − ∆2 plane for
three different values of ky. The steps between the maxima and minima of |tc|2 range
approximately 1.0 to 0.1, 0.6 to 0.05 and 0.3 to 0.01 for the three cases ky = 0.0, 0.3 and
0.75 respectively. In (a), (b) and (c) a/L = 0.017,∆0 = 40.0, U0 = 10.0, φ1 = φ2 = 0.0
and ε = 0.00142, 0.00121, 0.00082 for the three contour plots respectively. The black
circle represents the pumping contour for the parameter values ω = 1.0, P = 30.0 and
η = 4π/9.

pumping”.171 In recent years, quantum charge and spin pumping through various meso-
scopic samples, involving quantum dots and quantum wires, have attracted increasing
interest both theoretically172–184 and experimentally,185–189 both in the adiabatic regime
and otherwise.

For a scattering matrix formulation of the quantum pumping, let us consider the
scattering matrix S(X1, X2) describes an open system, where X1 and X2 are two param-
eters of the system, which can be potential well, for example. A closed contour in this
parameter space can be obtain by varying them with time periodically (Fig. 6.9). Then
the net pumped charge in one cycle is given by the Brouwer’s formula171 (for a channel
m)

Q =
e

π

∮

C
dX1dX2

∑
α

∑
β∈m

∂S∗
αβ

∂X1

∂Sαβ

∂X2
. (6.32)

In the recent past, a graphene-based quantum pump has been considered in litera-
ture190,191 where pumped charge is obtained in an adiabatic quantum pump device based
on a graphene monolayer modulated by two oscillating gate potentials. However, the
pumped charge obtained in these kind of devices is quite small.

6.4.1 Quantum charge pumping in SDB structure

Quantum charge pumps, using a variety of setups involving superconductors, have
also been of major interest in recent years.192–202 Also, very recently, adiabatic charge
pumping in graphene with superconductors has also been considered.203 In this section we
consider quantum pumping of electrons (in the adiabatic limit) across an SDB structure
in graphene, as depicted in Fig. 6.3.
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Figure 6.11: The value of the pumped charge Q in units of electron charge e, for pumping
in ∆1 −∆2 plane, is shown as a function of the pumping strength P for three different
values of ky. Here a/L = 0.017, ω = 1.0, η = 4π/9,∆0 = 40.0, U0 = 10.0, φ1 = φ2 = 0.0
and ε = 0.00142, 0.00121, 0.00082 for the three plots respectively.

In principle, one can explore two scenarios to achieve significant amount of pumped
charge

1. by periodic modulation of amplitudes ∆1 and ∆2 of the gaps at the two supercon-
ducting barriers (SB) or alternatively,

2. by periodic modulation of the order parameter phases φ1 and φ2 associated with
the two barriers.

Since it has been seen202 that the second alternative leads to less pumped charge, we
consider the first alternative here. In the SDB geometry, when we consider ∆1 and ∆2

as the pumping parameters, we can always choose a pumping contour which completely
encloses the transmission resonance discussed in Sec. 6.3.4. If the resonance is sharp
enough it is possible for the pumped charge to be large.

So, for a numerical analysis for calculating the pumped charge through the SDB struc-
ture, we choose ∆1, ∆2 to oscillate with the frequency ω, with a modulation parameter
P , and a phase difference 2η between them:

∆1 = [∆0 + P cos(ωt+ η)]ε

∆2 = [∆0 + P cos(ωt− η)]ε . (6.33)

∆0ε is the mean value of the amplitude around which the two pumping parameters are
modulated with time and P is the pumping strength. Here ε is the energy of the incident
electron. It is adjusted to be close to an Andreev bound level, so that the SDB is close
to a resonance. Hence, effectively by varying P , for fixed ε we vary the ratio ε/∆. By
fixing ε to be close to the resonance, we maximise the pumped charge. The presence
of two time-varying potentials with a phase difference between them explicitly violates
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Figure 6.12: The value of the pumped charge Q in units of electron charge e, for pumping
in ∆1−∆2 plane, is shown as a function of the phase difference between the two pumping
parameters η for three different values of ky. Here a/L = 0.017, ω = 1.0, P = 30.0,∆0 =
40.0, U0 = 10.0, φ1 = φ2 = 0.0 and ε = 0.00142, 0.00121, 0.00082 for the three plots
respectively.

parity, which is a necessary condition for obtaining pumped charge. The frequency of the
potential modulation is kept small in comparison to the characteristic times for traversal
and reflection, so that the pump is in the adiabatic limit.

The transmission probability (|tc|2) in the ∆1−∆2 plane for three different transverse
electron momentum ky is shown in Fig. 6.10. Fig. 6.10 (a) shows the |tc|2 = 1 resonance
for normal incidence of electrons, which gets damped for nonzero values of ky as normal
reflection and CAR (and SCAR) also take part in transport (Fig. 6.10(b) and (c)).

Using the modified version of the Brouwer’s formula Eq. (6.32), the pumped charge
in one cycle through the graphene SDB structure can written as171,201,202

Q =
e

2π

∫ τ

0
dt

[(
|rc|2θ̇ + |tc|2χ̇

)
cosα −

(
|rAc|2β̇ + |tAc|2γ̇

)
cosα′

]
, (6.34)

where θ, χ, β and γ correspond to the phases of the reflection, transmission, AR (and
SAR) and CAR (and SCAR) amplitudes respectively. Note the negative sign in Eq. (6.34),
which results from the fact that rAc and tAc correspond to the conversion of an electron
into a hole. Thus, the pumped charge through the SDB structure in graphene is directly
related to the amplitudes and phases that appear in the S-matrix. Inserting the unitarity
relation |rc|2 + |tc|2 + |rAc|2 + |tAc|2 = 1 in Eq. (6.34), we obtain

Q =
e

2π

∫ τ

0
dt

[
|rc|2

(
θ̇ cosα+ β̇ cosα′

)
+ |tc|2

(
χ̇ cosα+ β̇ cosα′

)
+ |tAc|2

(
β̇ − γ̇

)
cosα′ − β̇ cosα′

]
. (6.35)
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Figure 6.13: The maximum value of the pumped charge Qmax in units of electron charge
e through the SDB structure, for pumping in ∆1 −∆2 plane, is shown as a function of
the incident angle α.

Also, note that if we substitute ky = 0, (i.e. α = α′ = 0) in Eq. (6.35), then the formula
reduces to

Q =
e

2π

∫ τ

0
dt

[
|tc|2

(
χ̇+ β̇

)
− β̇

]
. (6.36)

which is precisely the modified Brouwer’s formula used in Ref. 202 for a quantum wire.
In Eq. (6.36), the first term is called the “dissipative part” and the second term is known
as the “topological part” and depends entirely on the time derivative of the AR phase.

The pumped charge is obtained by using Eq. (6.35) with ∆1 and ∆2 as the two
pumping parameters. These two parameters are varied by periodically varying the top
gate voltage which controls the Fermi energy of the electrons in the superconducting region.
Thus essentially, as mentioned earlier, ε/∆ is varied for the two barriers periodically.
Using Eq. (6.35), we obtain the pumped charge for various parameters of the system. In
Fig. 6.11 and Fig. 6.12, we show the behavior of the pumped charge as a function of the
pumping strength P and the phase difference between the two pumping parameters η
respectively, for three values of ky. Note that in Fig. 6.11(a), the pumped charge increases
with the increase in the pumping strength P as a larger value of P corresponds to a
larger pumping contour which encloses more and more of the resonance. Note also that
the |tc|2 = 1 resonance at ky = 0 is not a sharp resonance; it has a finite width because it
also has contribution from the ”dissipative part” as shown in Eq. (6.36). and is not purely
topological. The ”dissipative part” effectively reduces the pumped charge from integer
values but we still obtain a fairly large value of pumped charge - where by large we mean
that the pumped charge is a sufficiently large fraction of unity (roughly between 0.1 and
0.35). This is in sharp contrast to normal DB in graphene where the pumped charge190

is very small (in the range of 10−4, because there is no resonance due to Klein tunneling.
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However for oblique incidence i.e. ky 6= 0 (see Figs. 6.11(b) and (c)), we obtain relatively
smaller values of pumped charge as in this case normal reflection, CT, AR (and SAR) and
CAR (SCAR) also contribute to Eq. (6.35) and the interplay between all the quantum
mechanical amplitudes and their phases result in smaller value of pumped charge.

In Fig. 6.12, we show the oscillatory behavior of pumped charge as a function of the
phase difference η between the two time varying parameters. Here also we note that we
obtain smaller values of pumped charge through the SDB geometry as we vary ky from
normal incidence to oblique incidence. Note also that in Fig. 6.12, for all three values of
ky, the pumped charge becomes maximum around η ∼ ±π/2.171

Finally, we also show the systematic behavior of the maximum value of pumped
charge through the SDB geometry as a function of the incident angle α of the incident
electron in Fig. 6.13. This behaviour clearly shows that the maximum value of the
pumped charge becomes smaller as we vary α from normal incidence (α = 0) to oblique
incidence (α 6= 0).

6.5 Summary & Discussion

To summarize, firstly, we have computed the transmission of an electron through a
SDB structure in graphene and shown the resonant suppression of Andreev reflection
at certain energies below the superconducting gap ∆ where normal transmission |tc|2
becomes unity. This resonant behaviour is absent in a normal double barrier in graphene
due to Klein tunneling. We also show that the resonant suppression is due to the
formation of Andreev bound states between the two superconducting barriers. Even at
finite incident angles, the position of these Andreev bound levels remains unchanged in
presence of reflection and SAR, although the transmission resonances get damped as the
incident angle increases due to reflection and SAR. However, at large angles, the roles
of AR and ordinary reflection get reversed, and once again, we see strong transmission
resonances.

Secondly, we have studied adiabatic quantum pumping through an SDB structure
in graphene and have shown that in the ∆1 −∆2 plane, pumped charge can be large
(around 0.2- 0.3) in magnitude for normal incidence. This is in contrast to normal double
barriers190 in graphene, where the pumped charge is small (around 10−4) due to the
phenomenon of Klein tunneling. The evolution of the maximum value of pumped charge
as a function of the angle of incidence of the incoming electron shows monotonic decrease
of pumped charge as we increase the angle of incidence of the incoming electron.

Similar behavior has also been predicted for many other systems where one studies
quantum pumping through nanostructures. Integer pumped charge has been shown for
pumping through quantum dots176–178 as well as through Luttinger liquids.179,182,183,202

In more recent times, similar behaviour of pumped charge has been predicted in graphene
NIS junctions203 and in an InAs Josephson pump.204

Possible experimental setups

As far as the practical realization of such a SDB structure in graphene is concerned,
it should be possible to fabricate such a geometry by depositing thin strips of a spin
singlet superconductor (like Al or Nb) on top of a graphene sheet153 at two places. The
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width of the strips should be of the order of the superconducting phase coherence length
(10− 15nm in case of Nb) for CT and CAR (and SCAR) to take place. For a given a/L
ratio, the |tc|2 = 1 resonance in this SDB geometry can be tuned by varying the energy of
the incident electron. In Fig. 6.6(a) and 6.8(a), the equivalent temperature at which the
first resonance occurs is approximately 10 mK (critical temperature Tc ≈ 9.2K in case of
Nb) for a ∼ 10− 15 nm and L ∼ 2 µm. Also different experiments need to be performed
with ballistic graphene samples to obtain results at different angles of incidence.

We also expect the features of the resonances to be qualitatively unaffected by long-
ranged impurities (slow on the scale of the lattice spacing i.e. kF lm � 1 where kF ∼ 1/d,
d is the lattice spacing and lm is the mean-free path of electron in graphene), because
such impurities in graphene can only cause intra-valley scattering. On the other hand,
short range impurities (kF lm � 1) can cause inter-valley scattering which can destroy
the resonance. Also, strong disorder can localize electron/hole states between the two
barriers which always can destroy the resonance. Another experimental variable which is
expected to destroy the resonance is the presence of a magnetic field which bends the
electron paths between the two barriers. Hence, it prevents the multiple retracing of
the path, which is needed for resonance. Therefore, we do not expect resonances in the
presence of strong disorder or even weak magnetic fields.

In the SDB geometry, pumped charge can be obtained by periodically varying the
top gate voltage which controls the Fermi energy of the electrons in the superconducting
region which amounts to varying ε/∆ for the two barriers periodically. The pumped
current is expected to be in the range of pico-amperes when the pumping frequency is
the order of a few MHz, and should be experimentally measurable.
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Conclusion

To conclude, in this dissertation I studied certain transport set-ups of Dirac Fermions on
the surface of strong topological insulator and graphene. Spin-surface locking, which is an
usual feature of Dirac Fermions on TI seems to be broken in a finite geometry, which we
found by numerical calculation based on the low energy effective theory for materials like
Bi2Se3. We also obtain sub-gap states for such geometry, which are located at the two
caps of the cylinder. Some of these results are reproducible analytically with a surface
Dirac Fermion theory. We perform a numerical calculation based on the tight-binding
model for TI , which also confirms these features qualitatively. Some of these features
may appear important for transport experiments, although the results are limited for a
clean sample and also within the range of validity for the low-energy effective theory.

Thin-film geometries are often used in mesoscopic surface transport because of their
large surface to bulk ratio. We computed the electron-phonon coupling induced resistivity
of a TI thin-film based on the low energy effective Hamiltonian. The asymptotic behavior
of the resistivity (ρ) with temperature (T ) is obtained analytically and shows that ρ ∝ T 4

for low-temperature and it goes linear with temperature for high temperature. The high
temperature behavior can be explained physically from the Bosonic nature of the phonons
and the low temperature behavior can be experimentally verified for a clean sample. But,
my results are also limited to ideal cases, as we do not take into account the real-life
effects of defects or disorders. For resistivity of thin-film, it may have considerable effect,
specially at low temperature.

The magnetic interaction for TI and graphene has been formulated in a unified way,
and we introduced a theory for scattering by static magnetic field. For a magnetic ring,
we compute the resulting quasi-bound states and recover the Aharonov-Bohm results in
a solenoid limit. The electron phonon coupling and magnetic field together can give rise
to interesting physics, which we hope to consider in the future.

I also discussed a particular hybrid structure formed by graphene proximity induced
superconductivity. In between two such barriers Andreev levels form which result in
transmission resonances, which can be observed by possible experiment. We also obtain
significantly large pumped charge in this geometry, although the variation of the pumping
parameters we used can be difficult to implement in an experiment.

Both topological insulator and graphene are very active field of research of condensed
matter physics. I hope my research contributed positively in the understanding of certain
behaviors of electronic transport in these materials.
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Appendix A

Berry Phase and TKNN invariant

Berry Phase and Curvature

Let us consider a system described by the Hamiltonian

H = H(R) ; R = R(t) , (A.1)

and lets consider an ‘adiabatic evolution’ of the system through a path ’C’ in the
parameter space (R1(t), R2(t), . . . ) (for eg. as shown one in fig A.1), while going from
t = 0 to t = t. We can diagonalise the Hamiltonian at any point R of the parameter
space, giving instanteneous eigenstates

H(R)|n(R(t))〉 = En(R(t))|n(R(t))〉 , (A.2)

|n(R)〉 are instantaneous eigenstates determined up to an arbitrary phase. Now, adiabatic
theorem ensures that (as long as there is no level crossing) these states remain eigenstates
of the system with the same instantaneous energy En(R(t)). But the phase can be chosen
arbitrarily at each point.

One way to fix this arbitraryness is to choose a smooth and single valued phase along
the path C. If, at t = 0, we have the eigenstate |n(R(0))〉, then, we can say that the
eigenstate at t = t is:

|ψ(t)〉 = e−iθ(t)|n(R(t))〉 . (A.3)

Here θ(t) is the smooth phase evolving through tha path C. Plugging in the Schrödinger
equation, we have

H(R(t))|ψ(t)〉 = i~
d

dt
|ψ(t)〉 , (A.4)

and using eq (A.2), we can obtain

θ(t) =
1

~

∫ t

0
En(R(t′)) dt′ − i

∫ t

0
〈n(R(t′))| d

dt′
|n(R(t′))〉 dt′ . (A.5)

The first part is the dynamical phase, second part is called the Berry phase.10 We can
write,

|ψ(t)〉 = e−i
1
~
∫ t
0 En(R(t′)) dt′eiγn |n(R(t))〉 , (A.6)
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where γn is the Berry phase

γn = i

∫ t

0
〈n(R(t′))| d

dt′
|n(R(t′))〉

=

∫
C
dR ·An(R) , (A.7)

where
An(R) = i〈n(R)|∇R|n(R)〉 (A.8)

is called the Berry connection. This is like a vector potential and is guage dependent.

Figure A.1: A closed path in the 2D param-
eter space

If we introduce a gauge:

|n(R)〉 → eiλ(R)|n(R)〉 ,

the Berry connection and Berry phase
changes as:

An(R) → An(R)−∇Rλ(R) ,

γn → γn −
∫
C
∇Rλ(R) · dR .

But, of course, for a closed orbit (as shown
in fig A.1), the last integral vanishes. Also,
for garateeing the eigenstates of the Hamil-
tonian to be singlevalued in the parameter
space, we must require that, for a closed
path

γn → i

∮
C
〈n(R)| ∂

∂R
|n(R)〉 = 2mπ ,

(A.9)
where m = 0 or any integer.

Berry curvature

For a closed path, the Berry phase can be written as:

γn = i

∮
C

An(R) · dR ,

= i

∫∫
dS · (∇×An(R)) ,

=

∫∫
dS ·Ωn(R) , (A.10)

where Ωn(R) = i(∇×An(R)) is called the Berry curvature. It is gauge invariant, and
in tensorial notation it’s components are written as:

Ωn
µν = i

[〈
∂n(R)

∂Rµ

∣∣∣∣∂n(R)

∂Rν

〉
− 〈ν ↔ µ〉

]
. (A.11)
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Chern number

It can be proved in differential geometry, that in general, Berry curvature integrated over
a closed manifold is quantised in the unit of 2π. This number is called the Chern number.
One example of this comes in the case of Quantum Hall effect, which is discussed below.

Quantum Hall effect

The dynamics of Bloch electrons under the effect of an electric field is one of the oldest
problems in solid-state physics. The velocity operator is:

v = ṙ = (i/~)[H, r] . (A.12)

In the Bloch representationn (see ref. chap 1), it becomes

v(q) = e−iq·r(i/~)[H, r]eiq·r ,

= (i/~)
(
e−iq·rrHeiq·r − e−iq·rHreiq·r

)
,

=
∂

∂(~q)

(
e−iq·rHeiq·r

)
,

=
∂H(q)

~∂q
. (A.13)

Now, lets consider a 1D system described by a Bloch Hamiltonian with a time
dependent perturbation H(q, t). It can be shown by perturbative analysys (ref), that the
average velocity of electron in the nth band has the form:

〈vn(q)〉 =
∂εn(q)

∂q
− i
[〈

∂un
∂q

∣∣∣∣∂un∂t
〉
−
〈
∂un
∂q

∣∣∣∣∂un∂t
〉]

,

=
∂εn(q)

∂q
− Ωn

qt , (A.14)

where εn is the nth band, and un is the wavefunction of nth band electron. The second
term of the last equation is called the ‘Anomalous velocity’ and it plays a crucial role in
many topological features of a system, for example in the quantum Hall effect,5 which is
discussed in chapter 1.

The quantisation of Hall conductivity was explained by Laughlin205 based on gauge
invariance. But, this can be explained by Berry phase formulation and can be related
to a topological invariance of the energy bands. Let us consider a uniform electric field
E on a lattice. If we express it in terms of a time varying vector potential A(t), which
is uniform in space, then the Bloch description (see sec 1.2.1) is still valid, and we can
switch to the Bloch-momenta representation

H(q, t) = H
(
q +

e

~
A(t)

)
, (A.15)

and we can rewrite the crystal momenta

k = q +
e

~
A(t) . (A.16)
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Also, as A(t) does not break lattice symmetry, q is still a constant of motion q̇ = 0. Then

k̇ = − e
h
E.

After some algebra, from Eq (A.14) (for arbitray dimension), we obtain

vn(k) =
∂εn(k)

∂k
− e

~
E ×Ωn(k) , (A.17)

where Ωn is the Berry curvature for nth band. Hall conductivity is the conductivity in
the direction perpendicular to the electric field E. From the above equation, we obtain
the hall conductivity for a 2D system

σxy =
e2

~

∫
BZ

d2k

(2π)2

∑
Filled n

Ωn
kxky , (A.18)

where the sum is over the entire Brillouin zone. Here again, we integrate the Berry
curvature over a closed manifold, which is the BZ in 2D (a torus). For each band it gives
the corresponding Chern number

ni =
1

2π

∫
BZ

d2k

(2π)2
Ωn
kxky , (A.19)

where summing up all the occupied band contributions defines the TKNN invariant8 (by
the name of Thouless, Kohmoto, Nightingale and den Nijs) nC =

∑
Filled i ni

nC =
1

2π

∫
BZ

d2k

(2π)2

∑
Filled n

Ωn
kxky , (A.20)

and consequently the Hall conductivity is quantised in the unit of (e2/h)

σxy = nC
e2

h
. (A.21)



Appendix B

Microscopic Tight-Binding
Approach for TI nanotube

A simple microscopic model for a strong TI was previously proposed by Fu, Kane, and
Mele.71 The model consists of a single-band tight-binding model on a diamond lattice and
includes spin-orbit couplings. With lattice fermion operators ci (spin is kept implicit),
this Hamiltonian has the form

Htb =
∑
〈i,j〉

tijc
†
icj +

4iλso

a2

∑
〈〈i,j〉〉

c†i
(
σ ·
[
d1
ij × d2

ij

])
cj , (B.1)

where a is the cubic lattice constant, tij are hopping parameters connecting nearest
neighbors, and the last term describes spin-orbit coupling of strength λso through a
second-neighbor hopping between sites i, j, which depends on the two nearest-neighbour
vectors d1,2 connecting those two sites. In order to generate a full gap in the bulk
spectrum, a distortion tij → t+ δt is introduced for dij along the (111) direction.71 We
use this model to construct the surface states of an infinite nanowire and nanotube TI and
compare the results we obtained in Chapter 2 and 3.

TI nanowire:

To define the nanowire, we proceed by selecting the growth direction êz along the (111)
axis and keeping all sites within a given radius R. The unit cell of the infinite nanowire
thus defined contains six planes of sites corresponding to the three stacking of the two fcc
sublattices of the diamond lattice, and has the period dcell =

√
3a. It is worth mentioning

that even though a k · p expansion of Htb around the π
a (1, 1, 1) point does not match

completely with Eq. (2.4), the main features of the surface states are equivalent in both
descriptions and quantitatively similar behavior of the surface gap ∆s as a function of R
has been obtained66 by setting a = 2.8 nm and −2t+ δt = M0. The band structure of
the infinite nanowire is shown in Fig. B.1 (red lines). Note that in the infinite wire case,
one obtains 〈σr〉 = 0 consistent with spin-surface locking.66
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Figure B.1: Band structure of the infinite TI nanowire (red solid curves) and energy
levels (denoted by open black triangles) of a finite dot. These results follow from the
tight-binding model [Eq. (B.1)] with wire axis along the (111) direction. The dot length
is set to L = 4

√
3a, and the radius is R = 3a. The arrows indicate the two levels whose

spin texture is analyzed in Figs. B.2.

Finite dot

The finite dot geometry is then defined by setting the length of the nanowire along the
(111) direction to a given value L. To maintain the aspect ratio of the cylindrical dot
studied numerically in Sec. 2.5.1, we set R = 3a and L = 4

√
3a. This corresponds to a

cluster of 1592 sites, which is a small enough size to keep a reasonable computational cost
of the calculations while still allowing for a meaningful comparison of the spin texture
with the results of Sec. 2.5.1 and Sec. 3.

The energy levels in the finite dot geometry are shown in Fig. B.1 (triangles) along
with the infinitely long nanowire band-structure for better comparison, where we again
focus on states energetically inside the bulk gap. As expected, both the bands of the
infinite wire and all dot levels are twofold Kramer’s degenerate. For the chosen parameter
set, we find two subgap states appearing inside the surface gap ∆s. (Since there is no
full rotational symmetry any more, we cannot classify states by j here.)

To get an idea of the spin texture of the dot states, we now focus on the two states
indicated by arrows in Fig. B.1. The lower arrow corresponds to a subgap state, and the
second one refers to the lowest-lying state within the conduction band of the infinite wire.
The corresponding spin densities are shown in Fig. B.2. As in the effective low-energy
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Figure B.2: Spin texture in the rz plane obtained from the tight-binding model Eq. (B.1).
(a) and (b) shows the spin densities 〈σz〉 and 〈σr〉 [(b)] are shown for the subgap state
indicated by the lower arrow in Fig. B.1. (c) and (d) shows the same for the state
indicated by upper arrow in Fig. B.1.

theory and the surface Dirac fermion description, we again observe 〈σφ〉 = 0, and therefore
only 〈σz〉 and 〈σr〉 are shown.

The subgap states have a charge density mostly localized near the caps of the
cylindrical dot, again with out-of-plane (in-plane) spin components that are identical
(oppositely directed) on both sides, reproducing the results of Secs. 2.5.1 and 3. However,
unlike the continuous model, the tight-binding model predicts a spin texture with a
superimposed atomic-scale oscillation. This oscillation stems from the finite k = π/dcell

value at the Dirac point in this model.

On the other hand, for the lowest-lying state within the conduction band, correspond-
ing to the “zero-momentum” state in Secs. 2.5.1 and 3, Figure B shows that the density
is largest along the cylinder trunk. The spin is predominantly oriented along the negative
z-direction, but with a finite oscillatory component in the radial direction that breaks
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spin-surface locking.
To conclude, even though the results of the tight-binding model are not fully equivalent

to the ones in Secs. 2.5.1 and 3, we find that the main properties of the subgap and
lowest conduction band states are reproduced.
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Surface Hamiltonian for infinite
nanowire

Here we analytically derive Eq. (3.10) for an infinite nanowire using the gap-inversion
model of Ref. 73 and discussed in Sec 3.2.

First we consider the case k = 0. Eq. (3.8) has two solutions (s = ±):

ψ
(s)
j (r) = χ

(s)
j (r)⊗

(
is cos γ

−sign(M) sin γ

)
, (C.1)

where

sin γ =

√
1

2
− ε

2M
, cos γ =

√
1

2
+

ε

2M
, (C.2)

and spinor (in spin space) χ
(s)
j (r) obeys:[

−i
(
∂r +

1

2r

)
σx +

j

r
σy

]
χ

(s)
j = isκχ

(s)
j , κ =

√
M2 − ε2/v2 . (C.3)

Explicitly:

χ
(s)
j (r < R) =

(
Ij−1/2(κr)

−sIj+1/2(κr)

)
, χ

(s)
j (r > R) =

(
Kj−1/2(κr)

sKj+1/2(κr)

)
, (C.4)

where Iν and Kν are the modified Bessel functions with integer ν = j ± 1/2. i The full
solution to Eq. (3.8) for k = 0 is given by

ψj(r) = Θ(R− r)
[
α1ψ

(+)
j (r) + β1ψ

(−)
j (r)

]
+Θ(r −R)

[
α2ψ

(+)
j (r) + β2ψ

(−)
j (r)

]
, (C.5)

iFor large x, Iν(x) and Kν(x) are exponentially growing and decaying functions, respectively. For
x→ 0, Iν(x) remains finite, while Kν(x) is divergent.
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where coefficients α1,2 and β1,2 are obtained by requiring continuity of the wave function
at r = R. This results in a linear system of equations for the coefficients:

α1

(
Ij−1/2

−Ij+1/2

)
⊗
(

i cos γ
− sin γ

)
+ β1

(
Ij−1/2

Ij+1/2

)
⊗
(
−i cos γ
− sin γ

)
= α2

(
Kj−1/2

Kj+1/2

)
⊗
(
i sin γ
cos γ

)
+ β2

(
Kj−1/2

−Kj+1/2

)
⊗
(
−i sin γ

cos γ

)
, (C.6)

where (from now on) γ is determined through Eq. (C.2) with M →M > 0, Iν ≡ Iν(κR),
and similarly for Kν . Equating to zero the determinant of the system (C.6) leads to a
dispersion equation:(

cos2 γ Ij−1/2Kj+1/2 − sin2 γ Ij+1/2Kj−1/2

)
×
(

sin2 γ Ij−1/2Kj+1/2 − cos2 γ Ij+1/2Kj−1/2

)
= 0 , (C.7)

or equivalently [cf. Ref. 73]:(
Ij−1/2Kj+1/2 + Ij+1/2Kj−1/2

)2
− 4M2

v2
2κ

2
Ij−1/2Ij+1/2Kj−1/2Kj+1/2 = 0 . (C.8)

Assuming κR� 1 and using the asymptotic forms for the Bessel functions,

Iν(x) ≈ ex√
2πx

[
1− 4ν2 − 1

8x
+ ...

]
,

Kν(x) ≈
√

π

2x
e−x

[
1 +

4ν2 − 1

8x
+ ...

]
, (C.9)

in particular (for s = ±),

Ij−s/2(x)Kj+s/2(x) ≈ 1

2x

(
1 + s

j

x

)
, (C.10)

one finds from the dispersion equation (C.7):

cos(2γ) ≈ ± j

κR
⇒ ε ≈ ±jv2/R , κ ≈M/v2 . (C.11)

Thus, for given j and k = 0, there are two energy levels: εs=± = sjv2/R. The correspond-
ing wave functions ψj,s(r), with the coefficients α1,2, β1,2 determined from Eq. (C.6), are
given by:

ψj,s(r < R) = α1

[(
Ij−1/2(κr)

−Ij+1/2(κr)

)
⊗
(

i cos γ
− sin γ

)

+s

(
Ij−1/2(κr)

Ij+1/2(κr)

)
⊗
(
−i cos γ
− sin γ

)]
, (C.12)
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τ0 τx τy τz

σ0 γ̂0 0 γ̂x 0

σx −γ̂x 0 −γ̂0 0

σy 0 γ̂z 0 γ̂y
σz 0 γ̂y 0 −γ̂z

Table C.1: Representation of spin-parity matrices in terms of Pauli matrices γ̂i acting in
surface-state subspace.

ψj,s(r > R) = α2

[(
Kj−1/2(κr)

Kj+1/2(κr)

)
⊗
(
i sin γ
cos γ

)

+s

(
Kj−1/2(κr)

−Kj+1/2(κr)

)
⊗
(
−i sin γ

cos γ

)]
, (C.13)

where α1 and α2 are related by α1/α2 ≈ −sπe−2κR. For ψj,s(r) normalized in radial
direction, ∫ +∞

0
dr r |ψj,s(r)|2 = 1 , (C.14)

using the asymptotic forms (C.9) in the leading order,∫ R

0
dr rIν(κr)Iµ(κr) ≈ e2κR

4πκ2
,

∫ +∞

R
dr rKν(κr)Kµ(κr) ≈ π

4κ2
e−2κR , (C.15)

one obtains (s = ±):

α1 =

√
π

2
κ e−κR , α2 = −s κ√

2π
eκR . (C.16)

For small k 6= 0, a surface Hamiltonian is obtained by projecting the bulk Hamiltonian
(3.6) onto the subspace of the zero-momentum states (C.12)-(C.13). As a result, one
finds for the truncated Hamiltonian:

hj =
jv2

R
ρz + v1k ρy , (C.17)

where ρi are the Pauli matrices in the zero-momentum subspace. Similarly, in the leading
asymptotic approximation (C.15), one can easily calculate all spin-parity matrices, which
results in a representation of the Dirac matrices σµ ⊗ τν in the truncated basis. In the
limit R→∞, these combinations and are shown in the above table.
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Appendix D

Linearised Boltzmann equation

The linearized Boltzmann equation has been derived for closely related problems be-
fore,81,82,91,100 and we here follow those works and briefly sketch the derivation of
Eq. (4.28).

Let f(r,k, t) denote the distribution function which gives the occupation probability
of the state |k〉 by an electron in a volume dr at position r and time t. The quasiclassical
Boltzmann theory gives:

∂f

∂t
+ vk ·

∂f

∂r
+ F · ∂f

∂k
= Ic[f ], (D.1)

where vk = ∇kεk is the electron velocity and F = −eE the force due to the externally
applied electric field. We omit in this subsection the τ and s indexes. The collision
integral Ic[f ] is given by:

Ic[f ] =
∑
k′

[
Wk′→kf(r,k′, t)(1− f(r,k, t))−Wk→k′f(r,k, t)(1− f(r,k′, t))

]
(D.2)

where Wk→k′ is the transition probability density. For a uniform electric field in a
homogeneous system, the Boltzmann equation in the steady state becomes:

F · ∂f
∂k

= Ic[f ] (D.3)

In the absence of perturbing field, the distribution function must be the Fermi-Dirac
function f0 = nF . In this case the collision term must vanish and the principle of detailed
balance gives for all k and k′:

Wk′→knF (εk′)(1− nF (εk)) = Wk→k′nF (εk)(1− nF (εk′)) (D.4)

In the presence of an electric field, the distribution function f experiences an axially
symmetric perturbation which is biased towards the field direction and f may be expanded
in terms of Legendre polynomials. For low electric fields we need only keep the first two
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terms of the series so that fk = nF (εk) + cosαf1(εk), where α is the angle between k and
F. Keeping only the terms linear in F and using the principle of detailed balance, we get:

F · vk
∂nF
∂ε

=
∑
k′

Wk→k′

[
nF (εk)

nF (εk′)
cosα′f1(ε′k)− 1− nF (εk′)

1− nF (εk)
cosαf1(εk)

]
(D.5)

Looking for the solution in the following form:

f1(εk) = −τ(εk)Fvk
∂nF
∂ε

= τ(εk)βFvknF (εk)(1− nF (εk)), (D.6)

with vk = vk · k/k, we arrive at the linearized Boltzmann equation:

1

τ(εk)
=
∑
k′

Wk→k′

[
1− vk′

vk

τ(εk′)

τ(εk)

cosα′

cosα

]
1− nF (εk′)

1− nF (εk)
(D.7)

Considering the coordinate system where k = (0, 0, k), F = (0, F sinα, F cosα) and
denoting by (θ, ϕ) the spherical angles of k′, we find that cosα′/ cosα = tanα sin θ sinϕ+
cos θ. Integration over ϕ makes the first term to vanish and we finally get:

1

τ(εk)
=
∑
k′

Wk→k′

[
1− vk′

vk

τ(εk′)

τ(εk)
cos θ

]
1− nF (εk′)

1− nF (εk)
(D.8)

where θ is the angle between k and k′. This equation is a linear integral equation for τ(εk)
which must be solved numerically in the general case. The solution may be interpreted
as the electron momentum relaxation time since from Eqs. (D.5) and (D.6), the collision
integral can be written in the form:

Ic[f ] = −f − nF
τ(εk)

(D.9)

and τ(εk) is the characteristic time in which the distribution f returns to its equilibrium
form nF in the absence of the external field F.

In the case of elastic scattering process εk = εk′ , we get the simple closed-form
expression for τ(εk):

1

τ(εk)
=
∑
k′

Wk→k′(1− cos θ) (D.10)

Since the scattering of electrons from acoustic phonons may be considered quasielastic

Ω
(λ)
q,n � µ, the usual approximation leading to a closed-form expression for the momentum

relaxation time and which have been used for instance in graphene,81 consists in setting
τ(εk′) = τ(εk) on the right-hand side of the integral equation, so that:

1

τ(εk)
=
∑
k′

Wk→k′

[
1− vk′

vk
cos θ

]
1− nF (εk′)

1− nF (εk)
. (D.11)

Note that this approximation is equivalent to the test particle approximation used in
91. Notice that in graphene the modulus of the velocity is independent of wave vector
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and only intraband transitions have been considered81 so that the bracket reduces to
[1− cos θ]. It is also the case for TI in the semi-infinite geometry.87

The curent density is then given by:

j = − e
A
∑
k

vkf(k) (D.12)

Using Eq. (D.6), if the electric field is along the z-axis, we find:

jz =
e2Ezβ

A
∑
k

v2
k cos2 α τ(εk)nF (εk)(1− nF (εk)) (D.13)

where α is again the angle between k and E. Using the fact that vk depends only on the
modulus of k and performing the angular integration, we get the final expression (4.28)
for the phonon contribution to the resistivity:

1

ρ
=
e2β

2

∫
dk

(2π)2
v2
kτ(εk)[−∂εnF (εk)], (D.14)

where we have used the relation nF (εk)(1− nF (εk)) = −∂εnF (εk).
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Appendix E

Eliashberg Function of TI Film

We here mention the analytical result for the full transport Eliashberg function F
defined in Eq. (4.33). Some straightforward yet tedious algebra allows to perform the
θ-integration. We find the (lengthy) result

F (ν)
k,n,s(q) =

2
∣∣∣A(ν)

k,q,n,s

∣∣∣
π(A2W )2

Θ
(
Q

(ν)
k,q,n,s + k − q

)
Θ
(
q −

∣∣∣Q(ν)
k,q,n,s − k

∣∣∣)[(
q2 − (Q

(ν)
k,q,n,s − k)2

)(
(Q

(ν)
k,q,n,s + k)2 − q2

)]1/2

× Θ
(∣∣∣A(ν)

k,q,n,s

∣∣∣−∆/2
)∑

s′

Θ
(
s′A

(ν)
k,q,n,s

) ∣∣∣M s′,s
k,q,n

∣∣∣2∣∣∣∣
θ0

×

1−

1− νΩq,n

A
(ν)
k,q,n,s


(
Q

(ν)
k,q,n,s

)2
+ k2 − q2

2k2

 ,
where we use the notations

A
(ν)
k,q,n,s = s

√
(∆/2)2 + (A2Wk)2 + νΩq,n,

Q
(ν)
k,q,n,s =

√(
A

(ν)
k,q,n,s

)2
− (∆/2)2

A2W
,

and the polar angle θ = θ0 ∈ [0, π] follows from√
k2 + q2 + 2kq cos θ0 = Q

(ν)
k,q,n,s,

fixing the polar angle between k and q in the matrix element M .
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Appendix F

Bogoliubov - de Gennes (BdG)
Hamiltonian:

The BCS (named after John Bardeen, Leon N. Cooper, John R. Schrieffer) hamiltonian
decribing attractively interacting elctron system is

H =
∑
k

εkn̂kσ −
g

Ld

∑
k,k′,q

c†k+q↑c
†
−k↓c−k′+q↓ck′↑, (F.1)

where g is a positive constant. Here k,k′ lives very close to the Fermi surfae and q should
be such that, when added to a momentum k, the final state k′ should also live close to
the Fermi surface as shown in the figure below. The phenomenon of superconductivity

Figure F.1: scattering by q near the
Fermi surface of superconductor

is explained by development of an instability to-
wards pair binding (between electron with oppo-
site spin and opposite momentum, or ’Cooper
pair’), or “condensation” in these systems be-
low a critical temperature. Let us assume that
the ground state of the system is characterised
by the presence of a macroscopic number of
Cooper pairs. More specifically, let us assume
that the operator

∑
k c−k↓ck↑ acquires a non-

vanishing ground state expectation value,

∆ =
g

Ld
〈GS|c−k↓ck↑|GS〉. (F.2)

Now, we can substite

∑
k

c−k+q↓ck↑ =
g∆

Ld
+

(∑
k

c−k+q↓ck↑ −
g∆

Ld

)

in the BCS Hamiltonian and retain only bilinear electron operator terms considering the
term inside the braket in the above equation is very small in the ground state. Adding
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the chemical potential we get the “mean-field” Hamiltonian:

H − µN '
∑
k

[
εkn̂kσ −

(
∆̄c−k↓ck↑ + ∆c†k↑c

†
−k↓

)]
+
g|∆|2

Ld
, (F.3)

known as the Bogoliubov - de Gennes (BdG ) Hamiltonian, (or Bogoliubov - Gor’kov

Hamiltonian). In the Nambu Spinor representation, with Ψk = (ck↑, c
†
−k↓), BdG Hamil-

tonian looks like:

H − µN =
∑
k

Ψ†k

(
εk −∆
∆ εk

)
Ψk +

∑
k

εk +
g|∆|2

Ld
. (F.4)

This bilinear Hamiltonian can be diagonalised with the unitary transformation(
αk↑
α†−k↓

)
=

(
cos(θk) sin(θk)
sin(θk) − cos(θk)

)(
ck↑
c†−k↓

)
, (F.5)

and with the excitation energy

ξk = (∆2 + ε2k)1/2 (F.6)

to have the diagonalised Hamiltonian:

H − µN =
∑
kσ

ξkα
†
kσαkσ +

∑
k

(εk − ξk) +
g|∆|2

Ld
. (F.7)

Equation F.6 shows that tha elementary excitation in a BCS superconductor (known
as the Bogoloubov quasi-particles) have a minimum energy ∆, known as the energy
gap.



Appendix G

Solution for BdG equation in
Graphene:

As discussed in Sec. 6.2, because of the pseudo spin and valley degeneracies present in
graphene, it suffices to use a four dimensional version of the Dirac-Boguliobov-de Gennes
equation (Eq. (6.15)) for electrons and holes which is given by(

~k.~σ − U eiφ∆

e−iφ∆∗ −(~k.~σ − U)

)(
u
v

)
= ε

(
u
v

)
(G.1)

where, U = U(r) + EF , and the energy ε is measured from the Fermi level of the
superconductor. We assume that U(r) = 0 in the normal graphene region and U(r) = U0,
a constant, independent of r in the proximity induced superconducting region. Note that
we have defined dimensionless variables

x⇒ xEF
~vF

, y ⇒ yEF
~vF

, ky ⇒
~vFky
EF

,

∆⇒ ∆

EF
, ε⇒ ε

EF
and U ⇒ U

EF
(G.2)

to replace the original ones. The solution of the DBDG equations,158 describing electrons
and holes with incident energy ε inside the normal graphene regions (∆ = 0), can be
written as

Ψe± =
eikyy±ikx√

cosα


e∓iα/2

±e±iα/2
0
0

 (G.3)

Ψh± =
eikyy±ik

′x

√
cosα′


0
0

e∓iα
′/2

∓e±iα′/2

 (G.4)
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where α = sin−1[ky/(ε+ 1)], α′ = sin−1[ky/(ε− 1)], k =
√

(ε+ 1)2 − k2
y and k′ =√

(ε− 1)2 − k2
y. α is the angle of incidence of the incoming electron (with wave-vector

(k, ky)) and α′ is the angle of reflection of the Andreev reflected hole (with wave-vector
(−k′, ky)). For retro AR, α′ have opposite sign from α whereas for SAR, they have the
same signs. The change from retro (ε < 1) to SAR (ε > 1) occurs at ε = 1 (in our
dimensionless units).

Similarly for the superconducting barrier regions, the four component spinor solutions
(u, v) contain electron wave-functions u of one valley and hole wave-functions v of the
other valley. The DBDG equation can now be solved for any arbitrary energy ε and the
four solutions inside the superconducting barriers are given in the preprint version of
Ref. 158,

ψ1/2 = eikyy±x
√
k2
y−(U+

√
(ε2−∆2))2


eiβ

±eiβ±iγ1

e−iφ

±e−iφ±iγ1

 (G.5)

ψ3/4 = eikyy±x
√
k2
y−(U−

√
(ε2−∆2))2


e−iβ

±e−iβ±iγ2

e−iφ

±e−iφ±iγ2

 (G.6)

where the subscripts 1/2 refers to the upper and lower signs on the RHS respectively,
and similarly for 3/4 and

γ1 = sin−1

(
ky

U +
√

(ε2 −∆2)

)

γ2 = sin−1

(
ky

U −
√

(ε2 −∆2)

)
(G.7)

and

β = cos−1 ε

∆
if ε < ∆

= −i cosh−1 ε

∆
if ε > ∆ . (G.8)

Here, we have not taken the limit U � ∆, ε. We have also obtained the solution for both
right-moving and left-moving electrons and holes.
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