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Abstract

The helical symmetry of DNA plays the key role in many cell processes.
This symmetry is also of the paramount importance for description of many
DNA properties observed in vitro. In the first part we give an explanation of
one such phenomenon: temperature-induced DNA condensation in the pres-
ence of Mn?*, detected by osmotic stress measurements in dense columnar
hexagonal DNA assembly. Our analysis is based on the theory of electro-
static interaction of ideal DNA duplexes developed by A.A.Kornyshev and
S.Leikin several years ago. We have modified this theory to take into account
the non-fixed, self-consistently determined, distribution of adsorbed cations
on DNA surfaces. DNAs thus adopt the patterns of adsorbed cations to min-
imize the total free energy. With temperature increase and with compression
of the aggregate cations occupy the major DNA groove that stimulates at-
traction between DNAs due to better charge separation along the helices.
When DNAs are pushed together, the entropy of the aggregate increases due
to higher binding entropy of cations in the major groove. For plausible model
parameters both the calculated force curve and entropy change agree quan-
titatively with experimental data. It confirms the hypothesis that in dense
assemblies DNAs interact predominantly electrostatically.

In the second part we explore the basic consequences of electrostatic inter-
action of non-ideally helical DNA duplexes of a finite torsional rigidity. We
generalize the theory of interaction of ideal duplexes for the case of non-rigid
DNA molecules with sequence-dependent twist patterns. It is shown that
the interaction energies of rigid homologous and non-homologous DNA se-
quences differ dramatically: the latter cannot attract. Non-rigid DNAs with
random base-pair sequences adjust their incommensurate twist patterns, soft
enough sequences can profit from restored strand-groove alignment and at-
tract each other. The recognition energy of homologous sequences increases
linearly with their length, similarly to the frequency of recombination be-
tween homologous DNA fragments in many organisms. It suggests that direct
electrostatic interaction of juxtaposed intact duplezes of 100-200bp-long can
be responsible for their recognition from a distance. We have determined
the set of parameters which can affect the recognition energy. It gives a hint
to control homologous recombination. Experimental verification of the pre-
dicted tendencies could help understanding how homologous DNA sequences
recognize each other in gene shuffling reaction and DNA repair, the (most)
important phenomena for existence and evolution of life.
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Introduction

This work is devoted to understanding of how DNA helices interact and recognize each other,
how and under which conditions it can lead to their self-assembly. In general, assemblies of
long helical macromolecules are common building blocks of living organisms. Bundles of a-
helices form domains in many proteins. Bundles of collagen triple helices form tendons, cornea,
matrix of skin and bone, and other connective tissues. DNA duplexes are tightly assembled in
viral capsids and wrapped around histones to form the nucleosome infrastructure of eukaryotic
chromatin. Some biopolymers adopt even a multimolecular structure, like tobacco mosaic
virus. In other words, many biological interactions involve helices, and many complex biological
structures consist of helices. In in wvitro experiments spontaneous and induced assembly of
many biohelices has also been observed (DNA, collagen, hydroxypropylcellulose, guanosine
four-stranded helices, myosin, etc.).

DNA is one of the most important biohelices present in nature. It plays the paramount role
for functioning of all living organisms. After its structure became known, DNA attracted the
attention of many scientists, but still a lot of puzzles related to the interaction of DNA helices
remain unsolved.

One of them is DNA condensation in the presence of specific agents into bundles with 6-10A
of water between the DNA surfaces. Why do many biologically important 3* and 4" cations
in (multi)milli-molar concentrations condense double-stranded DNA(s)? Why do only two
divalent cations (Mn®* and Cd?*) and none of monovalent cations condense DNA in aqueous
solutions? Why does attraction occur between like-charged objects, such as DNAs? The second
puzzle is the transition of DNA from B to A form in dense assemblies with decrease of humidity
or in the presence of special cations. Why does DNA move its phosphates closer and how does
it depend on the type of cation? The third puzzle is the variety of DNA lattice structures in
dense assemblies (hexagonal, orthorhombic, etc.), detected by X-ray diffraction, with different
axial shifts between the nearest DNAs. The appearance of cholesteric DNA liquid-crystal
phase at 15A separation between the surfaces of 150-base-pairs-long DNA fragments is also
not completely understood. The fourth puzzle is why do B-DNAs have the integer number of
base pair per helical turn in fibers and in crystals, as measured by X-ray crystallography, and
non-integer number in solutions? Fifth is the short decay length of the force between many
biohelices in the last 10A between their surfaces. This is a far from complete list.

The structure determines the interactions of biohelices, the interactions in turn determine
the functionality of the helices. Electrostatics is a major contribution to the interaction between
many biohelices, since virtually many of them have high density of surface charges. For instance,
B-DNA has one elementary charge per each 1.7A axial separation. It is evident that the
distribution of phosphates and associated cations on DNA molecule is extremely important for
electrostatic DNA-DNA interaction. The standard DNA polyelectrolyte "rod-model" does not
account, for this specificity and thus is not able to describe many effects, especially at short
DNA surface-to-surface separations.
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The first theory that takes into account the helical symmetry of DNA and discreteness
of its charges has been developed several years ago (Section 1.4). On the basis of the exact
Hamiltonian and the linear Poisson-Boltzmann equation A.A.Kornyshev and S.Leikin have
calculated the electrostatic interaction energy of two long ideal DNA duplexes, when phosphates
and adsorbed cations are treated explicitly.

This theory predicts the driving forces for all above-described puzzles, and also gives a hint
for the solution of many others. First, DNA condensation occurs due to predominant adsorption
of (multivalent) cations in major DNA groove. It produces a sharp charge separation along
the helices and consequent zipper-like attraction. Second, B-to-A transition occurs due to
lower electrostatic interaction energy of A-DNAs, since their charges are better separated. The
preferential binding of cations in the minor groove thus stabilizes the B-form of DNA. Third,
at close separations the optimal axial shift between two DNAs is nonzero. This gives a hint
for the description of variety of observed frustrated DNA lattices. The calculated interaction
energy of skewed helices gives a close estimate for the cholesteric pitch of DNA liquid-crystal
phases. Fourth, it was shown that the gain in electrostatic interaction energy of B-DNAs in
dense aggregates due to the integer number of base pairs per turn is larger than the torsional
energy DNA overwinding from 10.5 to 10.0 base pairs per helical turn. Fifth, the theoretically
predicted decay length depends on Debye screening length and the number and positioning of
helical strands. For the interaction of DNA, collagen, and guanosine four-stranded helices the
predicted values are in excellent agreement with experimentally measured.

The Kornyshev-Leikin theory of DNA-DNA electrostatic interaction may, however, need
modification to elucidate other DNA puzzles. Two such modifications are made in the present
thesis.

The first assumption of the theory was that the pattern of adsorbed cations is fixed and
does not change either with temperature or with DNA-DNA separation. But it is plausible
that with increasing temperature two DNAs can adjust the distributions of adsorbed cations
between the grooves to make the interaction more profitable.

Phenomenon: The measurements of forces columnar hexagonal assemblies (osmotic stress
technique coupled with X-ray diffraction) show that DNA molecules condense spontaneously
upon heating only in the presence of Mn?* and Cd?*. It was suggested that the temperature-
induced DNA condensation is entropy-driven, and that the redistribution of adsorbed cations
between different DNA adsorption sites can contribute to that.

In Chapter 1 we construct a model for distribution of cations on the DNA surface on the
basis of a two-state adsorption model. It allows to change the partitioning of cations between the
grooves with temperature and upon DNA-DNA interaction. The portions of adsorbed cations
in the grooves are determined self-consistently by free energy minimization. As a result, the
observed temperature dependence of the DNA-force-curve is reproduced, and a new source of
entropy increase — the entropy of adsorbed cations — is suggested.

The second assumption of the Kornyshev-Leikin theory was the ideality of the DNA helix
and its infinite torsional rigidity. The modified theory shows that DNA non-ideality reduces
the DNA-DNA attraction, or can even turn it into repulsion (the strand-groove register along
the helices is disrupted by sequence-dependent twist variation). The theory also predicts the
dramatic difference in interaction of homologous and non-homologous DNA sequences which
suggests the electrostatic mechanism of DNA-DNA recognition. However, the role of torsional
flexibility has not been explored.

Phenomenon: (i) Recognition of homologous DNA sequences is a precursor stage of homol-
ogous recombination. It was measured that for bacteriophages, bacteria, and mammalian cells
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a 50-200bp-long DNA homology is the minimal length for efficient homologous recombination.
For longer sequences the dependence of recombination frequency on the length of homology
is linear. (ii) Spontaneous precipitation of DNA sequences with unrelated texts was detected,
that confirms that real non-rigid DNA can attract.

In Chapter 2 we generalize the Kornyshev-Leikin theory of electrostatic interaction of im-
perfect duplexes to account for finite DNA torsional rigidity. We find that real DNA sequences
may adjust their twist patterns and attract each other. The calculated recognition energy in-
creases linearly with the length of homology, both for rigid and soft sequences. For 200bp-long
DNA fragments the predicted recognition energy is several kgT. We discuss also the possibility
of torsional static kinks induced by DNA-DNA interaction and their effect on the interaction
energy.



Chapter 1

Temperature-induced aggregation of
Mn—DNA

The mechanisms of temperature-induced entropy-driven aggregation of many biopolymers are
not completely understood. It is commonly believed that hydration forces and water release
govern the spontaneous precipitation of DNA at ambient temperature. However, no direct
experimental evidences have been found, and the specificity of cations which cause aggregation
is still puzzling. In this chapter this specificity and the helicity of DNA charge distribution are
first considered together. We explore the role of DNA-DNA electrostatic interaction and com-
plementarity of the patterns of adsorbed cations for temperature-induced DNA condensation
and entropy change upon it.

1.1 DNA properties in solutions

1.1.1 DNA as a polyelectrolyte molecule: counterion condensation

Nucleic acids, and DNA in particular, play a crucial role for functioning of all living organisms.
DNA is the key molecule responsible for storage, duplication, and realization of genetic material.
In cells DNAs prefer to adopt a double-helical right-spiral B-form discovered by Watson and
Crick [1] in conjunction with X-ray fibre diffraction data of Wilkins and Franklin '. Many other
DNA forms have also been observed (A, C, D, Z, Psi, etc.). The transitions between them can
be triggered by humidity, salt concentration, special agents, DNA base-pair (bp) sequence,
etc. [2].

B-DNA is a highly negatively charged polyelectrolyte molecule. It bears ionizable groups,
which in polar solvent can dissociate into charged macroion and small counterions. "Bare"
B-DNA has one elementary charge per 1.7A [2] and thus attracts positive charges from salt
solution. The competition between energy minimization and entropy maximization results in
a particular equilibrium of the chains with cations around them.

Manning-Qosawa counterion condensation: Simplest version. The behavior of counterions
around a cylindrical linear homogeneously-charged macromolecule have been investigated first
by Manning [3,4] and Oosawa [5] in the framework of Counterion Condensation theory. Manning
was interesting to derive the limiting law for polyelectrolyte like Debye-Hiickel law for simple
electrolytes. As was noted by Onsager, the energy of counterions in electrostatic potential of

In 1962 Crick, Watson, and Wilkins have been awarded by Nobel Price for Physiology or Medicine for
discovery of DNA.
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the cylinder and the entropy of counterions in solution, have the logarithmic dependence on the
volume. It can lead to the association of a part of cations with cylindrical polyelectrolyte. The
same energy-entropy arguments result in no counterion condensation around a charged sphere,
and accumulation of all cations near a highly charged plane.

The Manning theory describes the condensation of counterions as a transition between two
states, the bound ("condensed") state and a free state. In bound state the cations are however
free to move along the surface of polyelectrolyte. The cloud of condensed counterions interact
with the molecule electrostatically with the energies higher than kg7, screens the electric field
of the cylinder and allows the rest counterions to leave the molecule. The thickness of the
cloud is of the order of several A for uniformly charged cylinder with B-DNA parameters. This
theory predicts that the linear charge density of macroions cannot thus exceed some critical
value.

According to the Manning theory [6], in salt-free solution the fraction @ of polyelectrolyte
charge, compensated by condensed counterions, is determined only by charge density of poly-
electrolyte and ions’ valence, z,

1.

and 0 = 0 otherwise (no counterion condensation exists for ¢ < 1). Here & = I5/b is the
dimensionless charge parameter, which is the ratio of the Bjerrum length,

_ %
N EkBT

(1.2)

ls

(= 7.1A for water at room temperature) to the average distance between the nearest unit
charges along the axis of polyelectrolyte molecule, b. Here ¢, is the charge of the proton, kg,
the Boltzmann constant, 7', the absolute temperature, ¢, the solvent dielectric constant. If
¢ > 1 the polyelectrolyte is considered to be highly-charged and its charge density is reduced
by condensed cations down to &,;, = 1. Such charge reduction eliminates the divergency of
polyion-counterion partition function that was used by Manning as the main argument for
existence of counterion condensation. The modified version of the theory shows that in a salt
solution fraction 6 increases with salt concentration [6]. The modifications of the theory for
simultaneous association of mono- and multi-valent cations have been developed [4].

Many small monovalent (and divalent) cations indeed have nearly identical binding constants
to native DNA, that confirms the validity of Eq. (1.1) for them (see description in Ref. [6]).
The binding of other cations, which may interact strongly with DNA (like Ag*™ and Cu™), does
not obey Eq. (1.1) [6]. However, due to its essential simplicity and the ability to describe
DNA colligative, transport and osmotic properties [6], as well as binding equilibria of DNA in
solutions [3,4,6-8|, the Manning-Oosawa theory became a point of reference in the theory of
highly-charged polyelectrolyte solutions.

Binding of cations: Since DNA can forms bonds with many cations, the latter are not dis-
tributed randomly in a close-shell around DNA. Some cations may interact with special sites in
the grooves, another — with sites on the phosphates. Cations form hydrogen bonds or/and tak-
ing part in other specific interactions. Cation-DNA interaction can be strong enough to initiate
changes in the DNA conformational structure [9]. Such interactions and their consequences
became recently a subject of intensive experimental investigations. Indeed, high-resolution X-
ray-diffraction experiments have shown that many mono- [10-12], some di- [13,14] and almost
all tri- [15,16] valent biologically important cations reside preferentially in DNA grooves. Some
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divalent cations bind on the phosphate strands (Ca*", Mg?"). Molecular dynamics simulations
have also shown that distribution of cations around DNA is not uniform, but follow the DNA
helical symmetry [17,18].

It means that the Manning’s assumption of mobile cloud of condensed counterions is ques-
tionable for these cations, and counterion condensation theory needs modification to take into
account the adsorption (or even chemisorption) of cations on DNA. Such effects was suggested
for example for site-specific binding of divalent cations [19]. Indeed, many biological DNA-
condensing cations usually have three or more amine groups that form site-specific hydrogen
bonds with DNA, their estimated binding energy is ~10 kg7 /bp. The adsorption isotherms
of binding of many cations to DNA have been measured and many model adsorption isotherm
have been suggested [14]. In Section 1.3.2, as a possible modification of Manning counterion
condensation theory, we explore plausible adsorption isotherm of cations into two DNA grooves.

Poisson-Boltzmann equation: The more straightforward tool for investigation of cations dis-
tribution around homogeneously-charged rods is the Poisson-Boltzmann (PB) equation. Usu-
ally the problem of potential distribution is formulated for hexagonal array of charged cylinders
2. Then the potential distribution in the lattice is approzimated by potential distribution around
a single cylinder in its cell, the so-called "cell model" [22,23], Section 1.5.1.

Bare DNA is however highly-charged and the linearized PB equation fails near the surface
of the molecule — the nonlinear PB equation should be considered. The classical (and till now
unique) solution of the nonlinear PB equation in cylindrical cell in "counterion-only" case was
derived half a century ago independently by Fuoss et al. [24] and Alfrey et al. [25].

However, both linear and nonlinear PB equations lead to smooth decrease of concentration
of cations with departure from the macroion axis and do not reproduce the Manning’s "cloud
hypothesis”. Moreover, the radius of the cylinder around DNA, where the fraction 6 of cations
is situated, diverges oc v/cell radius [26]. Thus, the Manning theory gives incorrect description
of counterion distribution near the polyion surface and also of the electrostatic free energy of
polyelectrolyte solution [27].

Thus, the description of polyelectrolyte solutions on the basis of the (linearized) PB equation
appears to be more self-consistent and theoretically justified. It is used therefore throughout
this work. Known limitation of the PB equation for description of point-like charges near
highly-charged surfaces ( [28,29] and Section 1.8.4), appears to be insignificant for DNA, which
is highly-neutralized by condensed/adsorbed counterions, Section 1.5.1.

1.1.2 DNA condensation

Experimental observations: DNA condensation plays an extremely important role for storage
of genetic information. Genomic DNA is usually a very long molecule and therefore it must be
tightly packaged to fit into small space in a cell or virus particles. For example, the DNA of T7
bacteriophage is 10~* times smaller in the phage head than in unpacked form [30], the chromo-
some DNA of Escherichia coli has 1.5x10% compression ratio. Genetic DNAs of eukatyotes form
more complex chromatid structure, using histones and other proteins for packaging [2]. Knowl-
edge of condensation process is essential also for understanding of such biological processes as
transcription and replication, it can also be helpful for the purposes of gene therapy.

It has been suggested that many bacteriophages use multivalent cations to package their
DNAs. Indeed, when polyamines known to exist in host bacteria are added to DNA in dilute so-

2 Assemblies of 500A long DNAs with density ~350mg /ml (DNA-DNA interaxial separation R ~33A), indeed
adopt hexagonal lattice [20,21].
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lution, DNA chains spontaneously form highly-concentrated toroids with similar shape and size
as in vivo packaged DNA [31,32]. The addition of alcohol (methanol, ethanol) tends to produce
more rod-like structures when condensation is provoked by Co(NH;3)a" [33] or spermidine®* [34].

Generality: Many other highly-charged polyelectrolytes, such as F-actin [35], tobacco mo-
saic and fd virus [36], also condense into dense bundles. In the condensed state the helical
segments are locally aligned, the volume fraction of solvent and DNA are compatible, and
DNA helices may be separated by just one or two layers of water [37]. The aggregation does
not depend crucially on the structure of polyions and condensing cations, and is similar for
many biopolymers.

DNA condensation has been observed by a variety of techniques that detect changes in
polymer size or chirality, including various forms of electron microscopy, total intensity and
dynamic laser light scattering, sedimentation, viscometry, linear optical dichroism and circular
dichroism, and fluorescence microscopy. In the latter case DNA condensation has been pro-
voked by high concentration of PEG. High molecular wight PEG is also used in osmotic stress
experiments. The condensation of single DNA in very dilute solutions is observed for long
molecules [37], with plasmid-sized or smaller DNAs, several molecules are incorporated into
condensed structure. Condensation is therefore difficult to distinguish form aggregation and
precipitation [37,38].

Multivalent cations: Many multivalent cations cause precipitation of DNA in solutions
(polyamines spermidine® [30,39] and spermine* [40, 41], inorganic cations Co(NHs)s™ [31,
42-44]). The basic proteins found in association with DNA (protamine, polylysine, histones,
etc) are also known to facilitate DNA condensation. The measured DNA persistence length
decreases down to ~200A at 25mM of CO(NH3)2+ (compared to 500A at physiological con-
centration of NaCl) [45], that may help DNAs to condense into dense toroids. Experiments
show that in solutions of multivalent cations DNAs condense when nearly 90% of their charge
is neutralized by condensed cations [40], that is in agreement with Manning’ 6 ~ 0.92.

Linkers: The dependence on linker length and charge was detected for DNA condensation
with diaminoalkane NH (CHy), NH7. The condensation has been observed only for n = 3,5
but not for n = 2,4,6 [46]. The formation of phosphate-cation-phosphate-links was also sug-
gested as a mechanism of DNA collapse by tri-and di-amines [47], where the correlation between
the equilibrium spacing of DNA lattice and the chains length of polyamines has also been ob-
served.

Divalent cations: Recent experiments show that di-valent cations cause DNA condensation.
For instance, Mn?* can produce toroidal condensates of supercoiled plasmid DNA 3 [48]. The
capability of Mn?* to condense long linear DNA array has also been confirmed by the mea-
surements of DNA-DNA force in osmotic stress experiments [49]. No DNA precipitation was
observed in DNA solution with Mg*™ and Ca*" salts [37].

Some di-valent cations (Mg?* and putrescine*"), which unable to cause DNA precipitation
in water, do it however in alcohol-water mixtures [40]. Alcohols are known to decrease the di-
electric constant of solution, that weakens the repulsion between DNA phosphates and provokes
DNA condensation. Condensing agents generally act either by decreasing DNA charge (adsorp-
tion of cations) or by making DNA-solvent interaction less favorable (alcohols are excluded from
DNA phase and effectively exert an osmotic pressure on it, like PEG). In alcohol-water solution
also a lower concentration of Co(NHz); " is required to cause DNA condensation [33], whereas
higher concentration are necessary in the presence of organic osmolyte glycine, which increase

3But not of linearized plasmid. It was detected that millimolar concentrations of Mn and supercoiling can
cooperate to drive DNA condensation at room temperature in aqueous solutions [37].

10
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the dielectric constant [50]. It supports the electrostatic basis of DNA condensation.

Structure of condensed DNA: DNA structure can change during condensation. Raman
spectroscopy of protamine-calf thymus DNA complexes shows a modified B-form with bp un-
stacking [51]. Divalent transition metals cause deviations from normal B-form vibrational
spectra [52,53]; changes are also seen with cobalt hexammine and cobalt pentammine. Some
sequences may be converted from B- to Z-conformation by Co(NHz): ™ [54]. Insertion of blocks
capable to proceed B-to-Z transition stimulates DNA condensation with CO(NHg) , sper-
midine and spermine. It was shown that MnCly can also induce right(B)-to-left(Z) helical
transformation of GC-rich DNA sequences both at low and high (~ M) concentrations [55].
Runs of adenines (A-tracts) are considered as sources of sequence-induced DNA bending that
produces unusually small toroids.

In the osmotic stress experiments on dense DNA arrays with transition cations [49] DNA
however remains much more stable. Usual B-DNA helical structure follows from analysis of
x-ray diffraction pictures, with no indication on DNA melting or backbone destabilization,
Section 1.7.4.

Mono-valent cations: DNA condensation with multivalent cations depends on the presence
of monovalent salt in solution. Indeed, the concentration of spermine* required for DNA
condensation is linearly proportional to DNA concentration in the region of cpya =0.1—10
mM and increases also with concentration of NaCl in solution [44]. The concentration of
CO(NH3)2Jr required to cause DNA condensation also increases with addition of univalent salt
in solution [56]. In dilute DNA solution NaCl can prevent DNA condensation: at ~ 0.2M of
NaCl DNA does not precipitate in the presence of spermine** [44]. The competitive adsorption
of mono- and multi-valent cations as well as screening effects may cause such behavior. Note
that in very dilute DNA solutions, c¢pna ~ 10~?mM, DNA precipitation is almost independent
of spermine’™ concentration, but dependent on DNA molecular weight [56]. In Ref. [31] was
also shown that DNAs shorter than 400bp do not condense into ordered structures. All these
facts suggest that DNA condensation is far from being governed by a simple mechanism.

2D DNA condensation: Divalent cations can provoke DNA condensation also in 2 dimen-
sions. Its understanding is very important since cationic-lipid-DNA complexes are one of the
most promising synthetic vehicles for gene delivery applications. 2D array of parallel DNAs
adsorbed on the surface of cationic membranes reveals an abrupt shrinking with increase of
concentration of divalent Co*, Mg**, Ca**, and Mn** [57]. The equilibrium DNA-DNA spac-
ing varies from ~27A for Mn2+ to ~29A for other ionic species, that is very close to ~ 28A
measured in columnar DNA assemblies with Mn?* [49]. The fraction of neutralized DNA charge
is low, &~ 63%, compared to 90% for 3D-DNA condensation [42]. Spermine and spermidine also
stimulate 2D DNA condensation, no condensation with univalent salts was detected.

Intermolecular Forces. Osmotic Stress: Electrostatic [58] and hydration [59,60] forces *
govern the interaction of DNAs in dense assemblies. Forces between DNA double helices in
dense hexagonal array have been measured directly as a function of distance, pushing the

4Indeed, many biomolecular surfaces tightly bind and organize at least one shell of water. Water molecules in
this layer have the orientation of hydrogen bonds different than that of the tetrahedral hydrogen-bond network
of bulk water. The perturbation of water in second and further water layers may occur. The overlap of these
layers make the approach of molecules energetically very unfavorable, the cost per water molecule may reach a
substantial fraction of the energy of hydrogen bond [60]. This produce a strong, usually, repulsive force.
“Hydration force magnitudes depend on the strength of surface water ordering, while the decay length and sign,
attraction or repulsion, depend on the mutual structuring of water on the two surfaces. Attraction results from
a complementary ordering, while repulsion is due to symmetrical structuring.” [66]

11
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molecules by external osmotic stress of PEG [61]. ° In NaCl solution exponentially decaying
forces are observed, that is consistent with DLVO-like electrostatic as well as with hydration
forces [63]. In solutions of Co(NHs)2" [64] and Mn2* [49,66] an attraction force between DNAs
can appear. The attraction becomes stronger with cation concentration in multimillimolar
range and DNA columnar array shrinks spontaneously in the region of 8—10A DNA surface-
to-surface separations. Monte Carlo simulations of DNA columnar hexagonal aggregate with
divalent salts also reveal a DNA-DNA attraction at similar interaxial separations [65]. In Mn-
DNA assembly the attraction is also stimulated by temperature increase. The specificity of
cation binding to DNA determines the charge patterns on the molecules and can affect DNA-
DNA electrostatic interaction. The change in hydration of DNA and cations upon binding can
also influence the hydration forces.

Mechanisms of DNA condensation: What are the forces which overcome the configurational
entropy of DNA molecule in solution, tight bending of the helix upon toroid-like condensation,
and a huge electrostatic repulsion of DNA phosphates upon DNA condensation?

Statistical mechanics of free polymer collapse has been developed in the works of Lifshitz,
Grosberg, and co-workers [67]. It goes back to the Onsager-Isihara model of appearance of
spontaneous ordering in the system of long rigid cylindrical molecules [68] and to Flory-
Huggins theory of polymer solution with polymer-solvent interactions [69]. The consideration of
the finite DNA bending rigidity together with polymer-polymer, solvent-solvent, and polymer-
solvent interaction leads to a close estimate of the size of toroids [70].

Columnar assembly: fluctuations and correlations: In dense columnar assembly the con-
figurational entropy of DNA molecules is small and intermolecular interaction determine the
behavior of the system. The mean-field Poisson-Boltzmann equation does not however lead
to attraction between two uniformly-charges cylinders regardless of cation valence in solution.
Thus, correlations and fluctuations effects beyond the mean-field may be responsible for DNA-
DNA attraction.

Many theoretical models have been suggested for description of attraction between like-
charged cylinders. The first idea of fluctuations of associated charges was put forward by
Oosawa. In this picture the correlations between the non-uniform profiles of fluctuating cations
may lead to attraction of like-charged rods [5,71]. This van der Waals-like attraction increases
with decreasing temperature. The idea of correlated charge fluctuations has also been used
in the "ion-bridging" model, which results in short-ranged attraction due to an alternation
of positive and negative charges along the polyelectrolytes [72]. The mechanism of collective
charge fluctuations in dense DNA assembly has also been developed [81].

The "zero-temperature" model of ion correlations proposed in [73] and developed on the

®The osmotic stress technique has been described in detail [62]. DNA exposed to a polymer solution
(polyethylene glycol (PEG)) forms an ordered phase. PEG with high molecular weight is almost completely
excluded from DNA phase exerting an effective osmotic pressure on the latter. In equilibrium, the activities of
the exchanging water and salt are equal in the DNA and PEG phase. pH and chemical potential of salt are held
fixed. The osmotic stress method is based on the measurement of interaxial spacing in this phase as a function
of applied osmotic stress, varied by changing the PEG concentration.
Phases: X-ray-diffraction shows that DNA assembly at densities ~400mg/ml is packed into 2D hexagonal lat-
tice (line hexatic). In densier lattices (> 600mg/ml: interaxial separation R < 25A) B-to-A transition can
take place because of the dehydration of the sample [20]. With dilution, in solution of BOOA—long—DNA a liquid
crystalline phase is observed (at ~340mg/ml: R =32-34A) and then a "blue" isotropic phase (<100mg/ml).
In our model we assume that DNAs are long enough to adopt hexagonal lattice for 22A<R <40A interaxial
separation, where we plot our results.
Note, no force measurements can be done in the region of abrupt shrinking of DNA assembly. Thus, this
unstable region can correspond to either DNA-DNA attraction or to a much weaker repulsion.
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1.2. Specificity of Mn?"-binding to DNA

basis of ionic crystal arguments for rods [74, 75] can also lead to attraction. The density
functional approach [76] and the hypernetted chain approximation [77] were also shown to be
capable to produce attraction between like-charged objects. The incorporation of finite ionic
radius into the charge fluctuation approach [78] has made a connection between the theories
of high- [5] and low- [73] temperature fluctuations, and also led to counterion-mediated DNA
attraction. This theory was also successful in description of the formation of DNA bundles and
their optimal size [79, 80].

In the majority of these models the attraction is possible in the presence of multivalent
cations, but theoretically the sharing of monovalent associated cations can also lead to attraction
[82]. The non-pair-wise-additive rod-rod counterion correlation force has been shown to be
important for formation of DNA bundles [80] and for description of (collective) fluctuations in
dense DNA arrays [81].

However, in all above-mentioned models DNAs interact as homogeneously-charged rods, no
effect helical symmetry is considered. The models however are based on the correlations of
"artificial” non-uniform patterns of associated cations on nearest rods. Computer simulations
however show that the DNA electrostatic potential [83] and distribution of cations near the
DNA surface [17] follow the symmetry and periodicity of the helix itself.

Kornyshev-Leikin theory: Recently the first theory of interaction of helical macromolecules
has been developed, which takes explicitly into account the helical distribution of DNA phos-
phates and adsorbed cations [84]. The problem of potential distribution in the system of two
helical molecules on the basis of the linear PB equation has been solved exactly. This theory is
constructed for zero temperature in a sense that no fluctuations of adsorbed cations and corre-
lations between them are considered. Nevertheless, the theory gives a quantitative electrostatic
explanation of DNA condensation at high neutralization of DNA charge [85].

In this Chapter the DNA condensation with Mn?* at elevated temperatures is investigated
on the basis of the Kornyshev-Leikin theory [86]. In the next Section the model and the
basic idea is discussed. In Section 1.4 the basic results and predictions of the Kornyshev-
Leikin are summarized, as well as their experimental verifications. In Section 1.5 the free
energy is constructed which takes into account the non-fixed distribution of adsorbed cations
between DNA grooves. In Section 1.5.1 we solve the problem of potential distribution in the cell
model on the basis of linearized PB equation. In Section 1.6.1 the basic equations for cations
redistribution are derived, which are used for calculation of the interaction pressure in Section
1.6.2. In Section 1.7.2 the effect of model parameters on the force and the entropy curves is
discussed. In Section 1.7.4 the other possible contribution to temperature-induced aggregation
are discussed. In Section 1.8 the auxiliary results of the model and some results beyond the
model are presented. In section 1.9 the special case of azimuthally frustrated DNA lattices is
investigated in the framework of the Kornyshev-Leikin theory.

1.2 Specificity of Mn**-binding to DNA

Divalent metal ions plays an important, and in many cases essential, role in chemistry of nucleic
acids and their structural and dynamic properties. For example, Mn®" can, like Mg?*, stabilize
secondary and tetrary DNA structure and can replace Mgt in a variety of enzymatic reactions
involving DNA and RNA. In particular, Mn?" substitution for Mg?* is known to increase the
number of errors in replication.

Mn**—DNA interaction: It was shown that in aqueous solutions of some di-valent cations
DNAs self-assemble spontaneously into dense aggregates (Mn*" and Cd?* [37,49]), whereas in

13
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solutions of other cations does not (Ca’*" and Mg®* [37]). It means that the capability of ions
to condense DNA depends not only on their valences but also on where and how strong the
cations bind to DNA. A large number of experimental works have been devoted to interaction of
Mn** with DNA. It was argued that Mn®" as well as some other divalent transition metal ions
induce DNA condensation due to their ability to bind in the major DNA groove, particularly
at N7 atom of guanine [14, 87].

The proton relaxation enhancement technique [88] has also shown that Mn*" possesses
two types of binding. The first, weak, electrostatic binding of cation with two contiguous
phosphates, whereas the second, strong, binding appears to vary almost proportionally to
GC content of DNA. It suggests that at small concentration Mn?" binds preferentially to
phosphates, whereas at moderate and large concentration — to bases, decreasing DNA melting
temperature [89] (see Fig. 1.18). Binding of Mn to bases increases with GC content of DNA, as
well as the effect of Mn on DNA condensation upon heating in osmotic stress experiments [49].
Many adsorption isotherms which take into account the specificity Mn**-binding to DNA have
been suggested [14]

Double-heliz of B-DNA: Such specificity of Mn*"-binding cannot be taken into account
within the framework of the DNA-rod-model. Indeed, B-DNA is not a homogeneously-charged
cylinder, but has the periodic helical distribution of the phosphates (Fig. 1.1). B-DNA has
two grooves, the ratio of their heights is nearly 2/3. Different cations may adsorb in different
places on the DNA surface: in the minor groove (majority of alkali cations), in the major
groove (multivalent cations, some divalent cations), or on the phosphate strings (as commonly
believed, Ca and Mg).

Such preference in cations adsorption has been explicitly taken into account in the theory of
electrostatic interaction of helical macromolecules, developed recently by A.A.Kornyshev and
S.Leikin [84,85] (it is summarized in Section 1.4). This theory shows that adsorption of cations
in the major groove stimulates DNA-DNA attraction [85] due to natural charge separation along
the DNA axis. That is why the multivalent cations adsorbing in the major groove cause DNA
precipitation, whereas the majority of mono- and di-valent cations adsorbing in the minor
groove do not [85]. This theory is the basic tool of investigation of DNA phenomena in the
present work.

1.2.1 Puzzle of Mn-DNA condensation

However, several aspects of DNA condensation are still not completely understood. One such
feature is the spontaneous DNA aggregation at elevated temperatures in the presence of Mn*'.
It has been investigated in the osmotic stress experiments coupled with X-ray diffraction [49].
This technique has been proved to be an extremely exact tool of measuring of force between
various biopolymers in the last 20-50A surface-to-surface separation in solution of various agents
[90-93]. It is successfully used for measurement of DNA-DNA forces for a long time [62].
Phenomenon: The osmotic stress measurements reveal an abrupt compression of DNA
columnar hexagonal aggregate upon heating in the presence of only MnCl, and Mn (ClOy4), in
multimillimolar range, in 10mM NaCl buffer solution [49]. The equilibrium separation between
DNA axis is 28—30A. Similar effect was detected also for Cd2-salts [49]. With temperature
DNA-DNA attraction becomes stronger, DNA-DNA force at large separation (R =~ 35A) de-
creases, and the transition pressure decreases as well, Fig. 1.11b. The force at very short
distances (R < 26A) is almost temperature-independent. The larger the GC DNA content,
the stronger the effect of Mn®" was detected [49], that indicates Mn binding in the major
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groove. With increase of Mn?* concentration the attraction also become stronger. The entropy
increases nearly exponentially with compression of the DNA array, the typical value of entropy
change is kg/bp [66] (see Section 1.6). In this Chapter, on the basis of the Kornyshev-Leikin
theory [84], we construct a model for description of this phenomenon [86].

1.2.2 Condensation of Mn-DNA upon heating is entropy-driven

Counter-intuitively, temperature-favored aggregation into ordered assemblies is quite common
for biopolymers. It was observed not only with Mn?**-DNA but also with collagen [94], light
chains of myosin [95], hydroxypropylcellulose [93] and a number of other macromolecules. Ther-
modynamic laws dictate that temperature-favored processes must somehow increase the overall
entropy of the system. Because formation of an ordered assembly obviously decreases the
translational and configurational entropy of macromolecules, there must be some other source
of the entropy increase that drives the temperature-favored assembly. Potential sources of en-
tropy increase upon formation of Mn*"-DNA aggregates are: (i) release of water molecules
structured at DNA surface or in the solvation of Mn*" ions, (ii) reorganization of Mn®* ions
bound to DNA [49], explored below, (iii) relaxation and partial melting of DNA backbone,
resulting in higher conformational freedom of DNA bases. The question is, which (if any) of
these mechanisms is the dominating one?

The release of structured water is a traditional explanation of temperature-favored aggre-
gation of biological macromolecules [96]. Water release indeed governs the polymerization of
tobacco mosaic virus [96], gelation of methylcellulose with temperature [96], and, most probably,
the temperature-induced aggregation of collagen [94]. It was also proposed as the mechanism
of temperature effect in Mn*"-induced DNA condensation [49,66]. However, no experimental
evidence directly supporting this interpretation for Mn-DNA was found. Moreover, compari-
son of strongly temperature-dependent intermolecular forces in Mn*"-DNA aggregates [49] and
temperature-independent, but otherwise similar forces in Co(NHs); " -aggregates [64] suggests
that the temperature dependence may be a peculiar feature of Mn?*.

1.3 Distribution of cations on DNA

1.3.1 The model of Mn-DNA aggregation

Here we consider the potential role of re-arrangement of bound Mn?" in the entropy increase
observed upon DNA condensation. We base our analysis on the following. It was argued previ-
ously that Mn?* as well as some other divalent transition metal ions induce DNA condensation
due to their ability to bind in the major groove, particularly at N7 atom of GC base pairs.
(This is in contrast to Ca*" and Mg®" ions which have much higher binding affinity to DNA
phosphates, do condense single-stranded DNA, but does not condense double-stranded DNA..)
Such ion specificity can be explained by taking into account specific helical symmetry features
of the DNA charge pattern [85]. Binding of counterions in the major groove induces a sub-
stantial charge separation resulting in areas of positive and negative charge alternating with
34A helical periodicity along the molecular axis. Such charge separation allows alignment of
molecules with oppositely charged areas facing each other in a zipper-like fashion, producing
an electrostatic attraction sufficiently strong to condense DNA [85], Section 1.4.

Binding entropy: One expects cations to have much larger translational freedom in the wider
major groove compared to ions bound to phosphates in the minor groove, Section 1.7. A shift in
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the equilibrium towards binding in the major groove upon DNA aggregation may, thus, result
in a substantial increase in the system entropy and lead to temperature-favored condensation.
Thus, we formulate theoretical predictions for this mechanism and compare them with available
experimental data. We also discuss the other possible mechanism where the possible entropy
increase may come from increasing conformational freedom of DNA backbone (Sections 1.8.5
and 1.8.6).

We base our model on the theory of electrostatic interaction between helical macromolecules
[84], Section 1.4, that accounts for realistic surface charge pattern of DNA backbone and dis-
tinguishes between different binding sites for counterions [85]. For the purposes of the present
work we assume that Mn can bind only in minor or in major DNA groove.

1.3.2 Two-state adsorption model for Mn

Below a two-state adsorption model is constructed, where cations can reside on two types of
adsorption sites, inside minor and major grooves of DNA. Each type of sites is characterized
by adsorption energy and maximal number of sites. The electrostatic problem of adsorption
on single DNA is treated within the framework of Debye-Bjerrum approximation. Adsorbed
cations take part in chemical bonds with the corresponding sites in the grooves. The rest cations
and anions are delocalized around DNA in the electric field of the molecule with renormalized
charge. The introduced surface model leads to two coupled Frumkin-type adsorption isotherms
for groove coverage. In the main text we use similar model for Mn**-binding to DNA in the
aggregate.

Surface Free Energy (per unit length of DNA) of adsorbed cations can be written in the
model of two-state lattice-gas [97] as

Nz' 602\I/Z' + Ez Ni m Nz Xz Ni
F, = —kgT1 — " Fxp | X Exp |——t : 1.3
B n{ H N!(N; — N,)! P [ kgT ] P {2 N; kBT} (13)

i=1,2 "'

where subscript ¢ = 1,2 labels DNA minor and major grooves, respectively. Here E; is the

chemisorption energy, U, is the electrostatic potential in the grooves, N; is the maximal number

of adsorption sites, /V; is the number of adsorbed cations, m is the number of nearest neighbors

in the pattern of adsorbed cations (m = 2 for linear cations patterns in the grooves), X; is

the interaction energy between the adsorbed cations. No inter-groove interaction between the

adsorbed cations is considered. The partition function of the adsorbed cations is unity.
Applying the Stirling formula we get

Fo=>" {Ni[zeoxlfi + E]+ =X, 4+ kgT |N;ln =+ (N; — N;) In T} } . (14
i=1,2 Ni Ni N;

The terms in (1.4) correspond to the electrostatic and chemical energy of ion adsorption, intra-
groove interaction, and lattice-gas mixing-entropy over the adsorption sites, respectively.

The potential in the grooves, W;, is assumed further to be equal to uniform electrostatic
potential on the surface of the molecule. This simplification is not crucial for the purposes of
this section since below we consider only the dependence of DNA charge compensation on F;,
which anyway are poorly known. They appear in Eq. (1.4) as a sum with electrostatic potential
in the grooves.
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Figure 1.1: Sketch of B-DNA structure. H is DNA pitch, as is the azimuthal half-width of the minor groove.
Grey bands depict surfaces available for partitioning of adsorbed cations ().

Single molecule: To calculate this potential we consider DNA as infinite uniformly charged
cylinder of the radius a in the cell model [22], in the presence of z; : z_ salt with bulk cation
concentration ng. The solvent is modeled by a medium with dielectric constant e, ~ 80 at all
distances from the molecule. The distribution of dimensionless electrostatic potential ®(r)=%%

~knT
around the cylinder in the cell model is described by Poisson-Boltzmann equation ?
PB(r) | 1d2(r) TR,
72 + T = —4mlpzing [e +2(r) _ o7 )] (1.5)
with boundary conditions at the surface of the molecule and on the cell boundary
dd dd
il —92¢(1—6 - = 0. 1.6
a d?“ —a 5( )’ d?“ R, ( )

Here the total DNA fraction of compensated DNA charge is § = (N; + Ns) /N, where 1/N is
the linear charge density of DNA phosphates. From these equations we need to find only the
value of surface potential.

Below we linearize PB equation (1.5), assuming that |®(r)] < 1. Having found the real
DNA charge density, £(1 — 6), we have to verify our assumption. Obviously, it will work for
highly neutralized molecule and we need to set sufficiently large adsorption energies.

After linearization of Eq. (1.5), its solution, satisfying the boundary conditions (1.6), is

26(1 = 0) Iy(kr)K1(kR) + Ko(kr) 1 (kR)

(r) = ka I (ka)Ki(kR) — [(kR)K(ka)’ (17)

where (I, K), () are the modified Bessel functions of nth order, and x = /4rlpz, (24 + 2_)ng is
the reciprocal Debye screening length. o
Adsorption isotherm: The groove coverages, §; = N; /N, are obtained from equalization of
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1.3.2. Two-state adsorption model for Mn

Figure 1.2: Coverage of the major groove 65 increases with adsorption energy in the major groove, —Ws. Cover-
age of the minor groove decreases. Parameters: £ = 4.2, a = 9.5A and z = 3, np = 0.1M, Wy = 0 (solid curves),
ng = 0.01M, Wy = 0 (dashed curves), ng = 0.01M, W; = —3 (dashed-dotted curves). o approaches unity for
—Ws5 ~ 10 =+ 12. Higher adsorption energies may lead to a charge overcompensation since we have chosen that
6 = 1 under full occupation of each groove (Ni = N). For z = 4 charge compensation is more pronounced due
to the stronger contribution to binding constant form exp[—z4®(a)]. At ng =0.1 M and 8 = 0.7, ®(a) ~ —0.92
and the Debye-Bjerrum approximation can indeed be used. At smaller # it works not so well.

Amount of associated cations on bulk cation concentration has been analyzed in another electrostatic model
in [98], where competitive binding of several species on DNA has also been considered. The improvement of
Manning counterion condensation theory for the case of tight ligand binding has been suggested and various
binding regimes have been analyzed.

electrochemical potential of cation in the bulk and in the grooves, that leads to two coupled
Frumkin-type adsorption isotherms
6’Z~ T

=0~ Eexp{—zgr@ (a) — W; —2x,0:}. (1.8)

Here n,, ~ 55.5M; W; = (E; —u°)/ (kgT), x; = X;/ (kgT) are the dimensionless chemisorp-
tion and intra-groove interaction energies. We use Eq. (1.7) to find ®(a,f) and solve system
(1.8) with respect to 6;. The dependence of groove coverages on the concentration of adsorbing
salt and adsorption energies are trivial (Fig. 1.2 for z = 3) and are only useful when the values
of N, W, and y are known.®

We use similar two-state model for description of adsorption on DNA duplexes in hexagonal

lattice, Section 1.5, and for analysis of concentrational dependence of pressure curves, Sec.
1.8.1.

6The determination of N;, W;, and x; for DNA in a salt solution is however a complicated problem which
requires a complex all-atom calculations. These parameters depend on the type of cation, DNA GC-content, bp
sequence, and DNA properties in a given solution. For example, negative values of x, correspond to additional
indirect attraction between adsorbed cations and 3-valued solution may take place [99]. The positive x,; prevent
accumulation of cations in the grooves. As we have insufficient information on cation adsorption patterns, we
have plotted the results for x,;, = 0.
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macromolecules

1.4 Kornyshev-Leikin theory of electrostatic interaction
of helical macromolecules

Below we briefly summarize the results of the theory of electrostatic interaction of two long
ideal helical macromolecules, including DNA duplexes, developed recently by A.A.Kornyshev
and S.Leikin [84,85]. We start with used assumptions, then consider equations for electrostatic
potential, and the final expression for interaction energy. Then we consider how this theory
explains some puzzling features of interactions measured between DNA, collagen, and four-
stranded guanosine helices.

The idea is to build an analytical theory which connects the molecular structure and inter-
molecular interaction. The starting assumptions are: (i) the dielectric response of water is linear
and local, (ii) the molecules have straight, cylindrical, water-impermeable inner cores which are
parallel to each other, (iii) the electric field in the water layer separating macromolecules can
be described in the framework of the linear Debye-Hiickel theory. The latter assumption does
not capture the counterion condensation in the region of high electric field near DNA surface.
However, it is possible to combine the Debye-Hiickel field equation with the Bjerrum theory of
ion pair formation [100,101].

The strategy is to (i) solve the Debye-Hiickel model for an electric field created by two
opposing helical molecules with helical distribution of fixed surface charges and condensed
counterions (charges are treated explicitly); (ii) calculate the resulting electrostatic energy and
the interaction energy [84].

1.4.1 Debye-Hiickel-Bjerrum approximation

Interaction in electrolyte solution: Many biological macromolecules, DNA in particular, have
high density of surface charges. Under physiological conditions, they are surrounded by an ionic
atmosphere with the Debye length A\p ~ 7A. Tt is natural to expect here a nonlinear screening of
fixed surface charges by electrolyte ions which is often treated within the mean-field, nonlinear
Poisson-Boltzmann theory [5,71,102]. However, most of the counterions which contribute to
the nonlinear screening lie within a narrow layer around each molecule. We refer to them as
condensed counterions. The thickness of this layer can be estimated as d. < A/ (4wlp) [102],
where A is the average area per elementary charge on the molecular surface and [ 5 is the Bjerrum
length. For most biological macromolecules A<100A2? and d, < 2A. Mean-field description of
an electric field inside such a thin layer is inappropriate.

We replace the Poisson—Boltzmann approximation by explicit treatment of condensed coun-
terions. We describe the nonlinear screening layer (as well as the molecular-core /water interface)
as infinitesimally thin surface that may have an arbitrary, inhomogeneous charge density. This
surface contains fixed surface charges, chemisorbed ions, and mobile, condensed counterions.
We treat the diffuse ionic atmosphere outside this surface within the Debye-Hiickel theory.

This approach is similar to the two-state model (condensed counterions and free ions) com-
monly used in polyelectrolyte theory at nonvanishing salt concentrations. It is also similar
to the Debye-Hiickel-Bjerrum model which has proved to be quite successful in the theory of
concentrated electrolyte solutions, including the theory of Coulomb criticality [100, 101, 103].
This model is accurate when the ratio of d. to all other characteristic lengths in the system (the
Debye length, the surface-to-surface distance between the molecules, the helical pitch, etc.) is
small [102].
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Figure 1.3: Horizontal cross section of two interacting parallel rod-like molecules. The molecules have water-
impermeable cylindrical cores (shaded circles). Discrete charges are located on the coaxial cylindrical surfaces
of, generally, larger radii. The charges may form any surface patterns.

1.4.2 The field equations and their solution

Several different models were proposed for electrostatic and non-electrostatic short-range force
fields created by polar macromolecules in an aqueous solution [59,104]. Here we use a gener-
alized mean-field formalism [59,105]. Within this formalism, the free energy of the system of
two interacting DNA duplexes is expressed through the potential, ¢, of a mean field as

B=3 [, (1.9)

where d®r indicates integration over the system volume.

The volume density, p(r), of fixed surface charges (including adsorbed ions) is related to
the surface charge density as p, (r) = 0, (2, ¢) 6 (R, — a,) , where § (x) is the Dirac §—function,
(z, ¢, R,) is the cylindrical coordinate system for the molecule v, and «,, are the radii of the
outer cylinders where the charges are located, Fig. 1.3.

Inside the inner cores, the potential satisfies the Poisson equation,

Ag®e (r) = 0, (1.10)

outside the cores, it obeys the linear Poisson—Boltzmann equation

Ap™ (r) — k%™ (r) = 4map (r) . (1.11)
The continuity conditions,
" (by) = ™" (by) (1.12)
and
(Vap™ (r),_,, = % (Vag™" (¥)),y, (1.13)

relate ©°** and ©°"¢ at the core/water interfaces. Here b, is the radius of the core of the vth
molecule and V, ¢ is the gradient component normal to the core surface.
For the electrostatic interaction,

o= 5;1, K= )\51, Yy, = €v/Ew, (1.14)

p (r) is the electrostatic charge density; where ¢, and ¢, are the macroscopic dielectric constants
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of water and of the inner cores, respectively.

Linear vs. nonlinear: Despite its well-known limitations, the linearized Poisson—Boltzmann
equation captures the qualitative force features between not too highly-charged objects and in
many cases yields reasonable quantitative estimates. Many biological helices, like collagen, have
an approximately equal number of positively and negatively charged groups or have a major
fraction of the charge neutralized by adsorbed counterions, like spontaneously condensed DNAs.
Then the nonlinear screening is pronounced only in the immediate vicinity of discrete charges
so that the linear model may give accurate results at large and intermediate distances.

We neglect dielectric saturation of the solvent in immediate vicinity of ions since we will
not apply our results at such short distances. Furthermore, we do not account for nonlocal
dielectric response of water and neglect hydration forces that may be caused by specific water
ordering near molecular groups. *

1.4.3 Interaction free energy

Potential distribution. The general procedure of calculation of electrostatic potential around
two helical macromolecules with discrete charge distributions is presented in Ref. [84]. Here we
summarize the results.

The potential created by the charge density o, (z,¢) on cylindrical surfaces of the radius
r, > b, around each core is [84,85]

(ryq,m Z Z o (¢, R) 7y (g, m), (1.15)

v,u=1m=—oc

where

1 27 00 ) )
B =5 [0 [, (g et (1.16)
™ —0o0

is the Fourier transform of the potential near the core of the molecule v in cylindrical coordinates
(r,z,¢) associated with the molecular axis, 7, (¢,m) is a similar transform of o, (z,¢), and R
is DNA-DNA interaxial separation.

At R > 2b+ Ap the following approximation holds

r 14
Th (6, R) = 710 (g, 00) = 23.Qut (0, B) G (g,70) € (45 7) - (1.17)
Here
) K, (7b) L, (Rr,) — Ky (Fry) I, (7b) + 28 (K, (r,) I (7b) — K, (7b) I, ()]
n\4,Tv) = — — — — R 1 5
6, (Rb) L (R0) — K (b) I ()] (1 — =4y )
(1.18)
where

E=VK2+¢, K=" (1.19)

"Note that a phenomenological model of hydration forces [106] also uses the same field Eq. (1.11) with
K= ;1, v, = 0, where p (r) is the density of hydration field sources, « is a phenomenological parameter, and
Aw & 4A is a correlation length in water [59]. This is a purely empirical approach relating observed short-range,
exponential interactions between polar surfaces in water to a phenomenological hydration field. This model
gives a consistent description of a variety of existing experimental data [59].
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The electrostatic propagators Q% (¢, R) in Eq. (1.17) are in general very cumbersome [84],
but for the case of interaction of two similar molecules (b, = b) with fixed surface charges lying
directly on inner core/water interface (a, = b,), they can be reduced to [58,85]

Ax ()P K, (RR)

v (g R) = e " vt vu=1,2 1.20
Qnim (4, ) e’ K (Rb) K (RD) 7 Vi (1.20)
A (=1)"""" Qo (KR, RD) %R
Y (¢, R) = — — — o e, 1.21
@i (4, 7) Ewlﬂ2K{1 (kb) K! (kb) ( )
where
Jj=+oc /
Ii(y)

]7_00 .7 ( )Kjl(y) ( )

Since e./e,, < 1, (¥ ~ 1 can be used for (r, —b) /b < 1 [85].
Interaction energy: With the help these expressions the interaction energy between two
rigid infinitely long DNAs for a given distribution of charges on their surfaces,

Eim = E(R) — E (), (1.23)

can be written as [58,84,85] (per unit length)

B = = Z 3 / dqQ2%, (g, B) s, (q) (1.24)

up 1nm=1""

where
~€ff( ~eff eff o\ xeff
: q,n)o,’ (—q,—m) + 7, (=q,—n)a,” (¢, m)
U, — H
Srim (4) nggo[ 57 , (1.25)
B
e . y r,dr,
5 @) = [ Bl G an) 5 (1.26)
1 /2 L2 o
0, (r,q,n) = %/0 do L dzp, (r,,q,n) etz (1.27)

It was assumed that the adsorbed and condensed counterions lie within the non-overlapping
layers around DNA cores (b <r < B, R > 2B). Here p(r,q,n) is the Fourier transform of the
charge density, and L is the length of the molecules.

Equations above define the interaction Hamiltonian for given s;* (q). To account for fluc-
tuations in p (r,¢,n) , one can add the energy of isolated DNA and chemical interaction of ions
with DNA (Section 1.6) and calculate the partition function. The latter however is a compli-
cated problem and it is not yet done. Thus, everywhere below we consider the consequences of
the interaction Hamiltonian, but not of the free energy.
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1.4.4. DNA-DNA interaction

1.4.4 DNA-DNA interaction

The theory of counterion condensation [6] and the majority of the models of attraction between
polyelectrolytes [5,71,73,74] (see Section 1.1.2 for details) presume that associated counterions
are freely mobile. Such an assumption may hold for alkali metal ions. It is doubtful or breaks
down for divalent alkali-earth and multivalent cations, since they possess strong chemical affinity
to specific sites on the DNA surface. Therefore, while heuristically useful, theories of this type
are not applicable to DNA condensation caused by these cations.

B-DNAs: Based on the experimental evidences, we assume that DNA-condensing counte-
rions are chemisorbed and form a rigid, R-independent, s}* (¢) pattern. Then Eq. (1.24)
gives the free energy of interaction between the molecules. Below we explicitly describe phos-
phate strands as two helical lines of charges and approximate various patterns of chemisorbed
counterions by a three-state model, so that for adsorption pattern we can write

stk (q) = 20605 m0 (¢ + ng) cos [qAz (1 = 4,,,)] x
1604+ (<1)" fa6 = (1= f0) cos (nd,) | . (1.28)

Here & = 16.8uC/cm? and —07 are the average effective surface charge densities of phos-
phates and of adsorbed counterions, respectively; d,, and ¢ (z) are the Kronecker’s and Dirac’s
deltas;

b, ~ 0.47 (1.29)

is the azimuthal half-width of the minor groove of B-DNA [2] (Fig. 1.1, 2.1); g =2n/H, H ~
34A is the DNA pitch; f; are the fractions of ions in the middle of the minor (f;) and major
(f2) grooves and on the strands (f3); f1 + fo+ f3 = 1. DNA alignment is described by the axial
shift 0< Az < H, Fig. 1.20c.

After substitution of Eq. (1.28) into Egs. (1.24) and (1.25), we find the free energy of
interaction of two B-DNAs

Uint = Up f [flé’ + (=1)" fof — (1 — f30) cos (ng~zﬁs>r X

n=—oo

(—1)"Ko(knR) cos [ngAz] — Q. (KR, Kpa)
[(kn/K) K, (Kna)]?

. (1.30)

where

up = 87°5°/ (er?), kn = \/K? + ng2. (1.31)
Expression (1.30) is the basic expression for DNA-DNA electrostatic interaction used in
the present work for incorporation of non-fixed distribution of adsorbed cations treated in this

Chapter, as well as non-ideality and torsional softness of DNA backbone, considered in the
second Chapter.

1.4.5 Predictions of the theory and their experimental confirmation

Let us consider some puzzles of DNA-DNA interaction in the light of this theory.
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1.4.5. Predictions of the theory and their experimental confirmation

DNA condensation: The different ability of ions to condense DNA can be addressed via
binding of cations to different sites on DNA. Indeed, multivalent cations condensing DNA
(spermine, spermidine, Co(NH3):") prefer to bind into major DNA groove [16]. According
to the theory, it causes sharp charge separation along the axis of the molecule and facilitate
DNA-DNA zipper-like attraction [85]. As shown in [85], the energy profit of adsorption in the
major groove may be as huge as 50kgT per DNA persistence length (=~ 500A in physiological
solution [45]). Analogously, ability of Mn*" to condense DNA [49] follows from its preferential
binding into the major groove [14]. Ca®", in spite of its much strong affinity to DNA phosphates,
does not condense double-stranded DNA [37,49]: binding to the phosphates virtually neutralizes
their charge and does not produce strong attraction.

DNA overwinding in fibers: Regardless of the distribution of cations in condensed layer, the
theory predicts that interaction between DNA helices is more energetically favorable at integer
number of bp per helical turn. In this case DNAs can align so that the axial phosphate ridges
of one molecule face axial grooves separating the same ridge on opposite molecule, minimiz-
ing unfavorable interaction of the phosphates. The estimated energy gain from optimizing of
phosphate-phosphate interaction [107] is sufficient to overcome the torsional DNA overwinding
from 10.5 bp/turn in solution [108] to nearly 10 bp/turn in dense fibers [109].

Interaction between guanosine four-stranded helices. Another quantitative confirmation of
the theory come from the recent measurements of the forces between helices formed by stacked
guanosine monophosphate tetramers [110,111]. At small concentration of KCI the DLVO re-
pulsion is observed in this system. At high concentrations (up to molar KCl) a short-range
exponential repulsion force is observed. Its decay length is ~ 0.7A and almost independent
on salt concentration. At even higher concentration (up to 4M), KCIl facilitates the attraction
with 1.3A decay length and causes the spontaneous aggregation of guanosine helices [110,111].

The Kornyshev-Leikin theory predicts two dominant non-DLVO components of electrostatic
force at high degree of surface charge neutralization by adsorbed cations. The first one is the
image-charge repulsion of charge of one helix from dielectric core of another helix, Eq. (1.21).
The decay length of this repulsion depends on the number of helical strands, N, on helical
pitch, H, and on the Debye screening length of the solution, Ap, as

Ap
72 2
2y/14+ Ap L

This expression gives for four-stranded guanosine helices the decay length A = O.7A, almost
independent on univalent salt concentration up to 2M. The second force is the exponential
attraction with two time longer decay length, Eq. (1.20), which is also in agreement with
experiments [111].

Predictions: The Kornyshev-Leikin theory also predicts B-to-A DNA transition triggered
by adsorption of cations and DNA mesomorphism in dense assemblies [112], symmetry laws for
interaction of duplexes [107], when the discreteness of DNA charges is taken into account ex-
plicitly. The Kornyshev-Leikin theory with conjunction of the model of cations re-distribution
between the grooves, described in the next Section, give a quantitative explanation of sponta-
neous condensation of Mn-DNA assembly [86]. The generalization of the theory for the case
of interaction of DNAs at all interaxial angles gives a qualitative [102] and quantitative [113]
agreement for the cholesteric pitch of DNA liquid-crystalline phase.

- (1.32)
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1.5. The free energy of DNA assembly

1.5 The free energy of DNA assembly

In this Section we construct the total free energy of DNA columnar hexagonal assembly, as a
sum of electrostatic interaction energy of all nearest neighbors and the free energy of adsorbed
cations. Total free energy minimum determines the optimal distribution of cations on DNA
surface for each value of DNA-DNA separation and temperature. It suggests a description
of the observed temperature dependence of DNA-DNA force and the entropy increase with
compression of DNA assembly [49].

DNA Structure and Charge Pattern. Following [84,85] we assume that bare DNA is a dielec-
tric cylinder with two negatively charged phosphate strands described as spiral line-charges on
the cylinder surface (Fig. 1.1). We distinguish two types of counterions: (a) bound, treated as
surface charges, and (b) free, treated within the linear Debye-Hiickel theory. We assume that
bound counterions follow the basic double helical motif of DNA. For simplicity, we distinguish
only minor and major groove binding and describe the two populations of counterions (with f
and 1 — f are the fractions of cations, respectively) as positively charged spiral lines located in
the middle of the grooves .

We calculate the free energy of a hexagonally packed DNA assembly as a function of sepa-
ration between helices and average occupation numbers for the two types of binding sites (the
charge density of the corresponding spiral lines). This is the simplest model that accounts for
helical symmetry of surface charge pattern on DNA and possible changes in this pattern upon
DNA aggregation. It can be adopted to include other binding sites [85] and generalized to
describe each phosphate or counterion as a discrete charge [107], but this should not change
main qualitative features of intermolecular forces in Mn-DNA assembly.

Free Energy. Similar to interaction between two DNA helices analyzed previously [85], it
is convenient to represent the free energy per molecule in DNA hexagonal aggregate in the
following form

F(R,0,f) = Foyu(R,0) + Fheiiz (R, 0, f) + Fion (R, 0, f), (1.33)

where F' is the free energy normalized per unit length of one DNA molecule, R is the interaxial
distance between molecules in the aggregate.

The components of the free energy are (i) F.,;, the interaction free energy associated with
the average net charge of DNA (free energy of an aggregate of homogeneously charged cylinders
whose surface charge density is equal to (1 — 0)@, where 7 is the average surface charge density
of bare DNA); (ii) Fhenz, the interaction free energy associated with inhomogeneous, helical
pattern of DNA surface charges; and (iii) Fj.n, the free energy of counterion binding to an
isolated DNA molecule. All these free energy terms are considered in next sections.

1.5.1 Homogeneously-charged rods in the cell model

Homogeneously Charged Cylinders. Calculation of I, is a traditional problem which was solved
with the help of several approximations (see, e.g., [24,114]). Since the differences between the
results are not substantial and not critical for understanding the temperature sensitivity of
Mn?T-DNA forces, we use the simplest cell model (23,24, 115], where a molecule is considered
to be surrounded by a cylindrical cell of the radius R; (Rs is chosen so that the volume of the
cell is equal to the volume per polyelectrolyte molecule in solution).

We calculate the distribution of the electrostatic potential W(r) inside the cell using the
Poisson-Boltzmann equation linearized around W(R;) rather than around the potential in the
bulk electrolyte and calculate W(R;) self-consistently. This leads to renormalized screening
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1.5.1. Homogeneously-charged rods in the cell model

Figure 1.4: Effective Debye screening length k=1 in the cell model decreases substantially with increasing aggregate
density (a = 9.5 A, ng = 0.05 M, and T = 20 °C). This length is calculated from PB equation for uniformly-
charged cylinders with B-DNA parameters, Eq. ( 1.39).

Further this length is used as a Debye length for screening of interaction of helical charge distributions on DNAs
(harmonics with » > 0 in Eq. (1.30)). Thus, in our model the interaction of uniformly-charged DNA rods affects
the interaction of the spirals of phosphates and of the cations via k.

length inside the aggregate, k~! (Fig. 1.4), which reflects Donnan equilibrium (higher concen-
tration of counterions and shorter screening length compared to bulk electrolyte). We assume
that 6 is independent of R and of absolute temperature T (possible effects of 6 (R,) —dependence
on DNA-DNA force are discussed in Section 1.8.1)

Note that the variation of the potential inside the cell AW does not exceed kgT'/eq, where e
is the elementary charge, kg is the Boltzmann constant (Fig. 1.7). Consistent with this, detailed
comparison shows little difference between our simplified approximation and full numerical
solution of the nonlinear Poisson-Boltzmann equation inside the cell, Fig. 1.7. 8

Cell Model. The potential in a hexagonal lattice of parallel, homogeneously charged, cylin-
drical molecules can be approximated by a potential created by molecule inside a cylindrical

cell of the radius R, = Ry/¥2, where R is the interaxial distance in the lattice [22]. Within

27
the standard cell model, the dimensionless electrostatic potential ®(r) = %(TT) is described by
the nonlinear Poisson-Boltzmann (PB) equation
d*® 1d®
(7') - (7") _ _47_‘_an02+ (efz+<1>(T) _ ez_<1>('r)) : (134)

dr? r dr

where a is the molecular radius, z, and z_ are the valences of electrolyte ions, ng is the bulk
cation concentration, r is the radial distance from the axis of the cell, I3 is the Bjerrum length,
and ¢ is the temperature-dependent dielectric constant of water [116]. No dependence of ¢ on
salt concentration in the aggregate is considered, since (i) this dependence may not be the same
as in the bulk [117], (ii) this may not allow us to get the final results in analytical form. No
effects of dielectric saturation of the solvent and the nonlocal dielectric response are taken into
account as well.

The following boundary conditions should be satisfied at the molecular surface (r = a) and

8In pressure calculation we use the solution of linearized PB equation, since the interaction of helical charge
distributions is also considered within the linear PB theory, Eq. (1.30).
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1.5.1. Homogeneously-charged rods in the cell model

at the cell surface (r = Ry)

o L
G| = 26(1 — 6), =0, (1.35)

a 87" r=Rs

where £ = [p/b, and b is the mean distance between unit negative charges along the axis of the
molecule.

Figure 1.5: The Donnan potential in the cell, ®pep, (solid) and the mid-point potential as the solution of
linearized PB equation, Eq. (1.38), (dashed curve) are very close in dense assemblies. Donnan poten-
tial is always more negative than <I>(R5)Qdue to the finite potential variation in the cell. Parameters:
zy =z =2, ng=0.00M, §=0.8, a=9.5A.

Potential Distribution. For the purpose of the present work, we linearize Eq. (1.34) near
the potential on the cell boundary ® (R;), i.e. we assume that

O(r) =0 (Rs) + 0D(r), (1.36)
where |§®(r)| < 1. Eq. (1.34) then takes the form

0 U0y 1, oo

where A = 4migngzy (e‘z+¢(Rs) — ezfq’(Rs)) , B = 4rwigngzy (z+e_z+¢(Rs) + z,ezfq’(RS)) . This
procedure is similar to the so-called Debye-Bjerrum approximation and valid when potential

variation inside the cell is small.
The solution of Egs. (1.37), (1.35) is

e~ 2+ P(Rs) _ 02— ®(R:) 26(1 — 0) Iy(kr)K1(kRs) + Ko(kr) 11 (kRy)

zie @) 4 5 - (R) L I(ka)K1(kRs) — I (kRs) K1 (ka)’
(1.38)

O(r,0) = @ (Rs) +

where
k> = B = 4rnlgngzy (Z+efz+q>(Rs) + Z_ez‘q)(Rs)) (1.39)

is an effective screening length inside the cell, Fig. 1.4. At r = R,, this expression transforms
into a transcendental equation that defines the value of ® (R;). Note that the variation of the
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1.5.2. Linearized and nonlinear Poisson-Boltzmann equations

potential decreases and ® (R,) approaches the Donnan potential with decreasing R, Fig. 1.5.7

1.5.2 Linearized and nonlinear Poisson-Boltzmann equations

Linearized solution of PB equation always underestimates concentration of counterions near
a highly charged surface and, therefore, overestimates the surface potential compared to the
full solution. However, under the conditions relevant for the present work (strong adsorption
of counterions on molecular surface and substantially reduced net surface charge density), the
difference between the linearized solution and full numerical solution of nonlinear PB equation
is small and can be neglected (Fig. 1.7). As we will see later, the effect of this difference on total
interaction pressure in the assembly is much smaller than the effect of counterion re-partitioning
between DNA grooves, Fig. 1.11.

Interaction Free Energy and Pressure. Repulsive pressure in the lattice of homogeneously
charged cylinders, p,;, can be expressed via concentrations of ions at the cell boundary (n; (R;)
and n_ (R,)) and in the bulk (n, (c0) and n_ (00)) as follows [23,118,119]"°

Peyt = kBT [ny (Rs) +n_ (Rs) —ny (00) — n_ (00)] =
nokgT (e_z+q’(Rs) — 1+ Z—+62*¢(Rs) — Z—+> . (1.40)

Z_ zZ_

For 2:1 electrolyte this expression turns into Eq. (1.53), used further for MnCl,. Similar
expression has been recently used to rationalize the measured osmotic properties of columnar
DNA assembly in solutions of simple electrolytes [114]. The dependence of the mid-point
potential and p.,; on 6 are presented in Fig. 1.6. The free energy of interaction between
uniformly charged cylinders can then be found as

Fi(R) = — / R'\3pey, (R dR'. (1.41)

Note that the electrostatic free energy of the cell, F.,; (R), and corresponding homogeneous
electrostatic repulsive pressure of overlapping diffuse double layers p., (R), can also be found
via a charging process as follows [118]

/d)\/ P (r)Ad®r,  pey (R) = (222031;_))710, (1.42)

9For DNA assembly with cell radius R, in the presence of z : z electrolyte with bulk concentration ng,
the Donnan potential, ®p,p, is calculated from the electroneutrality condition of the DNA assembly [22] as

1 % The average concentrations of positive (+) and negative

(—) ions inside the cell are ny = ngeT*®ron = ng (:i:C + \/C + ) The average reciprocal Debye screening

Dpon, = —z tarcsinh [(], where ¢ =

length is then kp,, = \/ 87rle2nm/C2 + 1. For dense DNA assemblies the averaged quantities are close to
determined from the linearized PB equation owing to a small potential variation in the cell.

0This pressure does not contain the contribution of all structural forces, viz. hydration, entropic, and
depletion forces, as well as the Debye-Hiickel correction to ideal pressure due to interaction of ions in electrolyte.
Water is considered as structureless dielectric continuum.
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Figure 1.6: The mid-point potential @9 = ® (R,) and corresponding homogeneous repulsive pressure, peyi, Eq.
(1.53), decrease with increase of DNA charge neutralization, 6. All curves are plotted at room temperature for
2:1 electrolyte with ng = 0.05M.
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Figure 1.7: Potential distributions in the cell obtained from linearized PB equation, solution (1.38) (solid curve)
and full numerical solution of the nonlinear PB equation (dashed curve) are very close. Parameters: ng = 0.05M
(2:1 electrolyte), § = 0.85, R, = 15 A, and T = 20 °C. The potential drop between the cylinder surface and cell
boundary remains small (< 1) and the agreement of the two solutions remains reasonably good in the whole
range of R; and temperatures used in the present Chapter.

Note that in spite of the fact that PB equation together with boundary conditions (1.35) contains the elec-
troneutrality of the cell, after linearization the approximate solution satisfies this condition within several
percent accuracy. The simplicity of used numerical scheme also results in a mistake of the same order.
Numerical solution: To find numerical solution of nonlinear PB equation (1.34) we start with the derivative of
electrostatic potential on the cylinder surface, Eq. (1.35) and some value of surface potential. The simplest
finite-difference scheme shows that at some separation from the cylinder surface the potential derivative turns
to zero. Then, to compare with approximate solution of linearized PB equation at proper cell radius, Eq. (1.38),
we choose such value of surface potential for numerical scheme, that the calculated potential has the turning
point at the same cell radius R, as analytical solution. Doing so, fortunately, we reduce the problem of solving
of nonlinear equation with boundary conditions at = a and at » = R, for potential derivatives to the problem
with initial conditions on one end of the interval, that is much simpler.
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1.6. 'Total interaction pressure

where p is the charge density of ions, A is the charging parameter, o is the surface charge
density of the cylinder, V = LR?\/3/2 is the cell volume. For cylindrical geometry the identity
of this pressure with Eq. (1.40) can be proved analogously to the planar case [118]. Note that
the calculation of p., by charging cycle is more complicated if § = 6 (R;).

In the limit kKR > 1 the mid-point potential and the uniform pressure are given by simple
formula (in z : z electrolyte)

26(1—-0) 2T kR 2
@ = @ RS - — ko S’ = k’ T
0 (Fs) koa KK (Koa) KORSB Peyt = = ToliB

26(1-10) o o~ 20 Rs
koaK1(koa) | kKoRs ’

(1.43)
where kg = 8mlpz?ng. This expression reproduces the exact results for reasonable  and ng
at Rs 2 18A.

1.6 Total interaction pressure

1.6.1 The minimum of the free energy

Assumptions and approximations: Following [85] we assume that all molecules in Mn-DNA
aggregate are aligned parallel to each other without any axial shifts. Such alignment is energet-
ically favorable at large separations or when a majority of counterions is bound in the major
groove. For simplicity, for description of temperature-dependent forces below we neglect the
possibility of other, frustrated alignments (azimuthal alignment of DNAs in hexagonal lattice
is considered in Section 1.9).

We take into account only the interaction between nearest-neighbor molecules because of
the rapid, exponential decay of av, (R). ! We assume that considered electrostatic interaction
is pair-wise additive. > We assume also that all DNAs in the aggregate have identical fraction
of cations bound in the major/minor grooves and the same fraction of charge compensation. '*

Helices. We approximate the free energy associated with the helical distribution of charges
on DNA by the sum of pair interaction free energies for nearest neighbors derived in [85], (see
Eq. (1.30))

P (R0, ) = 2570 Zan )8+ (=1)"(1 = )0 — cos(nd, )], (1.44)

where ¢ = ¢, is the macroscopic dielectric constant of water and

n e 2 I(kna)
(=1)"Ko(knR?) — _Z [Kjn(knR)] Kj;(nna)
an (R) = c— : (1.45)

[(kn/ ) K, (Fna)]?

We expect that the main conclusions of the model will not change substantially if the interaction beyond
nearest-neighbor are taken into account. The effect of DNA-DNA-interaction on counterions re-distribution can
become even stronger due to a larger amount of interaction pairs which from each molecule in the assembly.

12This approximation is valid for direct electrostatic interaction, but is questionable for fluctuation-induced
forces. For instance, non-pairwise-additive effects of (collective) fluctuations of associated cations was shown to
be important for dense assemblies of charged DNA rods [81].

13Thus, only symmetric solutions are considered, some results of behavior of DNAs with non-symmetric
distributions on the lattice are considered in Section 1.8.3.
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1.6.1. The minimum of the free energy

Here K, (z), K| () and I,(x), I/ (z) are the modified Bessel functions of nth order and their
derivatives, rk, = \/k?+ 47°n?/H?, H is the DNA pitch, a is the DNA radius, and &55 is the
azimuthal half-width of the minor groove (see Fig. 1.1, 2.1).

Counterion Binding. We neglect short-range interactions between bound cations in the
grooves and approximate the free energy of counterion binding by

Eon (R7 97 f) = Nl (El - TSl) + N2 (E2 - TSQ) - TSCOHf‘ (146)

Here E; is the binding energy at a given site in minor (i = 1) or major (i = 2) grooves. Note
that it may have both electrostatic and non-electrostatic components. .S; is the binding entropy.
The axial densities (number per unit length of DNA) of counterions bound in each groove are

i a-re

Ny (R
1( ) Z+b’ Z+b

Ny (R) = , (1.47)
where b1 is the axial density of charged phosphate groups on bare DNA (b = 1.7A), z, is the
counterion charge number (z, = 2 for Mn-DNA). Under the assumption that the adsorbed ion
is confined between four nearest neighbor phosphates, the linear density of binding sites in each
groove is N =1/ (2b)."
To find the configurational entropy of the distribution of bound counterions among these
sites, we use a two-state ideal lattice-gas model [28,97] which gives (Section 1.3.2)
N N
Seont (R) =k Niln — 4+ (N — N;) In = : 1.48
7 (R) BZZ:Q[ n 5+ )nN—NZ- (1.48)

We assume that AE,q, = Ey — Ey > 0 because of closer prozimity of Mn*" to negatively
charged phosphates. We also assume that

ASads = SQ — Sl > O, (149)

e.g., because of larger space per binding site available in the major groove.
Counterion Partitioning. Eq. (1.33) defines the free energy functional with respect to the
minor groove fraction f. Neglecting fluctuations, minimization of Eq. (1.33) yields an equation
on f 15

(1+K) \/[ (1+ K) AK (L.50)

11 ?
f =3 300 =k Q(I—K)_] 01— K)

Here the partition coefficient K depends on f and R

14Note again that the number of adsorption sites in each groove depends on many factors, GC DNA content
is one of them. In principle, we can account to GC-factor choosing or, if the experimental data are sufficient,
calculating the density of adsorption sites in each groove and the adsorption energies. The calculation of surfaces
available for cation binding, becomes then however more problematic. Thus, in the main text we have simplified
the model assuming equal number of adsorption sites in both grooves, N; = No. We vary the groove coverages
thus only by adsorption energies.

15This solution follows from the free energy extremum: NJX e N %(N ];N 2 — K , where, in general, N; # No.
274V2
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1.6.2. Intermolecular forces
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Figure 1.8: The change in the fraction of cations bound in the major groove, 1 — f, upon aggregate compression
at ng = 0.05 M, 6 = 0.85, AE,qs = 4kgT, and AS,qs = 4kp. Under these conditions, 4-5 cations per helical
pitch of DNA move from minor to major groove upon aggregate compression.

TS B (1)~ 116+ (~1)"(1 )0 cos<m?>s>l} ,

K(f,R) = K(faoo)exp{—mnl
(1.51)
and K (f,00) = exp [~ (AEuas — TAS,uas) / (kgT)] . The solution of Eq. (1.50) with compres-

sion of the aggregate is presented in Fig. 1.8.

1.6.2 Intermolecular forces

Intermolecular Forces in Mn*"-DNA aggregates were experimentally studied by the osmotic
stress technique [59,62] which directly measures an interaction pressure

_ dF(R)  [9(Fuu(R,0) + Fhein (R0, )] _ .
H(R) - _d—A = Y \/§R8R y = pcy[(R, ‘9) +phelzm(R7 97 f)7 (152)

where A = /3R? /2 is the cross-section area per molecule in the aggregate. Here we took into

account that OF /0f = 0 and 0F,,,/0A = 0. In expression (1.52) we did not take the derivative

OF _OKk(R)
Ok(R) gR

The two contributions to the interaction pressure are given by Eq. (1.40)

into account.

_2eq¥(Rs,9) eg¥(Rs,0)
- 3) , (1.53)

Deyt = noksT’ (e BT 4 2e *BT

where ng is the concentration of MnCly in the bulk solution outside the DNA aggregate; and

32



1.7. Entropy change and the force

according to Eq. (1.44) [85]

n TE Kjon(bnR)K] (5 R)I ()
164/37252 — (—1)"Ki(knR) + 2]':;00 K;(Hna) J
eliz — X
Dhel eR = kin[ I, (Kna)]?

[fO+(—=1)"(1— f)o— cos(n{bs)]? (1.54)

1.7 Entropy change and the force

Entropy. The model accounts for the following sources of the entropy change with variation of
R: (a) the entropy of bound counterions (Fig. 1.9), (b) the entropy of free electrolyte ions and
counterions and (c¢) the entropy of water polarization fluctuations (at each temperature, we use
the observed value of £(T")) (Fig. 1.10).

With compression of DNA assembly and with temperature increase adsorbed cations move
into the major groove, that make the patterns of adsorbed cations more complimentary and
stimulate DNA-DNA attraction. Within this model, the dominating contribution to the entropy
change is associated with repartitioning of bound counterions, Fig. 1.9,

AS(R) = AN (R) ASugs + ASeons (R) (1.55)

where AN (R) = N (R) — N2(00) is the axial density of cations transferred to the major groove
with compression and AS.y, s (R) = Scons (R) — Scons (00) in the difference in configurational
entropy of distribution of cations between the grooves, see Eq. (1.48). The latter entropy
increases with compression of the aggregate when in the final state the cations have more
possibilities to arrange themselves over the available adsorption sites in both grooves.

1.7.1 Partition function of adsorbed cation

Partition function of adsorbed cation in :th DNA groove, g;, is approximated in the main text by
its translational part only. Le., AS,4s is determined by translational freedom of adsorbed cations
in the adsorption sites in the grooves, along DNA surface. In general, due to the difference in
the strength of adsorption bonds, cations in the grooves may have different vibrational entropy
of motion perpendicular to DNA surface, along the adsorption bond. We explore it below but
neglect in the main text. '

The partition function ¢;, can be written as ¢; = ¢"¢?™" [28,120], where ¢!" is the trans-
lational partition function which depends on available surfaces for translational motion of a
cation, ¢*"*" is the wvibrational partition function which describes the vibration of cation perpen-

1
dicular to DNA surface. ¢ can be calculated as the partition function of point particle with

16We neglect also by the change in hydration of cations and DNA upon binding. Below we want to explore
separately the electrostatic consequences of transfer of cations between the grooves. We realize that the changes
in hydration can be very important, since the entropy release per one water molecule transferred from the
adsorbed state into the bulk can be ~ kgT. However the quantitative model, which would describe the specificity
of Mn?* compared to cobalt hexammine, requires much more experimental data on DNA hydration in the dense
arrays in the presence of these cations.
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1.7.1. Partition function of adsorbed cation
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Figure 1.9: The calculated (solid curve) change in the entropy of adsorbed cations and measured (filled circles,
data from [66]) change in the total entropy upon compression of DNA aggregate at ng = 0.025 M and T = 35
°(C. The same 0, AFE,4s, and AS,4s as in Fig. 1.8 were used for the calculation. Note that the value of the
entropy change depends on AS,4s, but the decay length is almost independent of AS,4s. This length appears
in the model naturally and depends on the decay lengths of Kornyshev-Leikin interaction energy, (1.30), and
on the density-dependent Debye screening length x (R;), determined from Eq. ( 1.39).

mass m in square box of the size a; [2§]

2mmkgT 2
. 2B a’? = & (1.56)

i 2 i = N2
h )\B'r

where \g, is the thermal de Broglie length of Mn?*. Considering each cation as harmonic
oscillator of frequency v;, we get

; i _ B
¢’ (T) = B_QkBT/ (1 —e ’“BT) . (1.57)

vibr

Then K ~ exp {—%} = 2% where s; ~ a? are the surface area per one adsorption site

S1 qq

in each groove. The entropy difference upon transfer of AN cations (per unit length of DNA)
from the minor to major groove is given by

AS = [AN(AS" + AS"™) 4+ ASeons]- (1.58)

Here the difference of translational and vibrational entropy per cation is, respectively,

AS"™ = St — SI" = kyln (j—j) (1.59)
and
vibr __ Quibr __ Quibr pibT o Wi o W L hlji
AST = S3 ST ST = kg [—ewi 7 In(1-e )] , W = T (1.60)

For strong adsorption w; > 1. Adsorption energies were assumed to be temperature-independent
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1.7.2. Parameters of the model

Figure 1.10: Entropy change with interaxial separation upon DNA aggregate compression. Following Eq. (1.33)
we distinguish three different contributions to entropy: (1) Seyi = —0Fy1 /0T, (2) Shetiz = —O0Fne1iz/0T, and
(3) Sion = —0F;4,/OT. The total entropy change (4) is dominated by the entropy of repartitioning of ions
(Sion). The values of S, were calculated from Eqs. (1.46), (1.48), (1.55). The values of Sy and Shepig
were obtained by numerical differentiation of Fi,; and Fj.;;, where we took into account the measured [116]

temperature dependence of water dielectric constant e (') .

Note that the entropy change due to the complex derivatives, —%’é’{%%@, comes from re-arrangement of
water molecules associated with interaction upon the change in DNA-DNA interaxial separation. Like for two
point like-charged particles [29], for homogeneously charged cylinders this contribution is negative (curve 1).
The dependence of Fjj;,, on temperature come primarily from dependence of pre-exponential factor ug (¢ (T)),

Egs. (1.30), (1.44), and may be either positive or negative.

in Eq. (1.58). Further we neglect by vibrational degree of freedom of cations, ¢*®" = 1. Thus
AS,ss = AS™ and entropy change is determined by different available adsorption surfaces
(s2 > s1) and by configurational entropy of cation distributions, AScr, Eq. (1.55).

1.7.2 Parameters of the model

The overall entropy change and, thus, the temperature dependence of intermolecular forces
depend primarily on AS,4s. It is the most important adjustable parameter of the model, which,
however, cannot be accurately calculated, based on present knowledge. Indeed, the value of
AS,4s may depend on the strength of counterion binding in each groove, space available within
each binding site, counterion and binding site hydration, etc. It may depend both on the type
of counterion and base pair composition of DNA. The two other adjustable parameters, # and
AFE s, also depend on some of these factors and may vary upon a change in experimental
conditions. Our goal here is to see whether the observed force curves and entropy changes
can be explained at reasonable values of AS,4s, 0 and AFE,4s. For the calculations, we use the
macroscopic water dielectric constant (7") [116] and the following values of other parameters:
a~95A, H~34A, ¢, ~ 0.4r, o ~ 16.8uC/cm?.

Forces and Entropy. Figs. 1.9 and 1.11 compare the entropy and the osmotic stress vs.
separation curves measured in columnar aggregates of Mn*"-DNA [49], and the corresponding
curves calculated within our model. Fig. 1.10 compare the other contributions to entropy
change with the entropy of adsorbed cations.

The model reproduces experimental observations at reasonable values of the adjustable
parameters: § = 0.85—0.9, AFE,qs =3—5 kgT, and AS,qs =2—5 kg. Indeed, # =0.85—0.9
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1.7.3. Calculated pressure curve and cations re-distribution

agrees with previous estimates for Mn?"-DNA based on the available experimental data. The
range of AFE, s is consistent with our electrostatic estimate of AFy4s ~ 2 — 8 kgT (assuming
e ~ 20-t0-80 inside DNA grooves [122]); AS,4s is ezpected to be of the order of several kg.
For instance, the geometrically available surface areas per counterion are A; ~ 10A2? and
Ay ~ 50A? in the minor and major grooves; so that just the change in the translational entropy
upon counterion translocation may already contribute

ASads ~ kB In (AQ/Al) ~ 151{7}3 (161)

Unfortunately, we do not know the contribution of specific (chemical) interactions of bound
Mn?* with DNA bases and adjacent phosphates to AFE,4s and AS,4s. Nor do we know the
energetic and entropic cost of the change in solvation of DNA grooves and Mn*"—ions upon
the ion translocation from minor to major groove. These unknown factors may change the
values (and even the sign) of AFE,4 and AS,4. Still, interpretation of the observed data in
terms of the described model is plausible.

1.7.3 Calculated pressure curve and cations re-distribution

Within such interpretation, the net force between DNA helices results from a balance between
three main components: (i) repulsion associated with the net, average charge of the molecules,
(ii) attraction associated with alignment of negatively charged phosphate strands opposite to
positively charged major grooves on adjacent DNA, and (iii) image-charge repulsion of phos-
phate strands and bound counterions from dielectric cores of adjacent DNA. The average-charge

repulsion decreases as exp (—xR), the attraction decays as exp (—\//12 +4n?/H QR), and the

image-charge repulsion as exp (—2 K? +4m2/H 2R> [84]. At larger separations between DNA

— prior to the transition to a less hydrated, condensed state — the dominating intermolecular
force is the average-charge repulsion. The magnitude of the net force is, however, reduced by
the attraction.

Elevated temperature favors higher fraction of counterions in the major groove (due to
higher binding entropy). This results in stronger attraction and smaller absolute value of the
net force. At closer distances, the attraction (which increases with decreasing R faster than
the average-charge repulsion) becomes more important and the net force becomes less repulsive
or even attractive. This leads to a jump-wise decrease in the separation under osmotic stress
and the transition to the condensed state. In the condensed state, the image-charge repulsion
— which has the shortest decay length and the largest amplitude of the three forces — prevents
further dehydration. It is responsible for the repulsive branch of the net force observed at close
distances.
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Figure 1.11: The calculated (a) and measured (b) (data from [{9]) pressure, I1, in DNA lattice vs. interaxial
separation R at different temperatures are very similar. Same parameters as in Fig. 1.8 were used. The solid
lines show the equilibrium pressure-distance curves that exhibit jumpwise transitions from a more hydrated to
a less hydrated state. The transitions are indicated by dashed lines. The pressure-distance curve branches that
are metastable or unstable at constant pressure (osmotic stress) conditions are depicted by dotted lines. We
have used Maxwell relation of "equal surfaces" [121] to calculate the transition pressure.

Note that since the Debye length becomes shorter with compression, the region of attraction appears for much
smaller surface-to-surface DNA separation, than it was predicted in physiological solution [85].

The lattice separation of predicted repulsion-attraction transition are by 3-4A smaller than measured [49]. This
may come from 9.5A used for DNA radius. The first shell of tightly bound on DNA water molecules [15],
increases effectively the "radius" of DNA by ~ 3A.

Counterion Partitioning and Specificity. Because counterion translocation from minor to
major groove increases intermolecular attraction and, thus, reduces the free energy of DNA
aggregate, compression of the aggregate by osmotic stress induces such translocation (Fig. 1.8).
Most of counterion repartitioning occurs during the jump-wise transition to the condensed state.
Overall, we expect 3-5 bound counterions per helical pitch of DNA (10 base pairs) to move from
minor to major groove with compression. As we have pointed out, the present model associates
the observed entropy increase upon DNA condensation and aggregate compression with this
repartitioning.

Because it predicts strong temperature dependence of intermolecular forces only in a fairly
narrow range of AF,; and AS,4, the present model may explain the observed counterion
specificity. For instance, assuming that AF.4 and AS,s for Mn?" are within this range,
it is natural to expect AFE,;s and AS,ys for CO(NH3)2+ to be substantially different and,
therefore, outside the range. Thus, even though the dependencies of intermolecular forces
on concentrations of these ions are qualitatively similar [64], the absence of strong (if any)
temperature dependence for Co(NH3)3" is not surprising.

Note in the end that no effect of anions on DNA-DNA force has been investigated in the
present model, since the anion concentration inside DNA phase is much lower than in the bulk
(Donnan effect). Thus, we have neglected by the influence of anion type and properties on
temperature-induced DNA condensation. It was however observed [49] that attraction in Mn-
DNA assembly is enhanced in the presence of Mn perchlorate compared to cloride. This says
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1.7.4. Other interpretations of experimental data

in favor of water release mechanism, since ClOj is known to increase the entropy of bulk water
(bond breaker). Thus, a water molecules coming from DNA phase upon aggregate compression,
where it is either adsorbed on DNA or confined between the molecules, can win more entropy.
It would be interesting to investigate the magnitude of this effect compared to predicted cations
re-distribution.

Conclusions: In the present Chapter we focused on potential contribution of counterion
redistribution on DNA surface to the temperature-induced DNA aggregation [49]. The cor-
responding model may potentially explain the existing observation at reasonable assumptions
about the energetic (AFE,4s) and entropic (ASygs) cost of the redistribution. The existing data
do not allow one to distinguish unambiguously this and other possible mechanisms of the tem-
perature dependence. Still, the present work offers a strategy for further experiments. Ideally,
one would measure AFE,;s and AS,4s or partitioning of counterions between DNA grooves and
compare the results with our predictions. In reality, direct experiments of this type are difficult
to do, but the present theory may also be helpful in evaluation of indirect data. We hope that
future studies will eventually resolve this puzzle.

1.7.4 Other interpretations of experimental data

The interpretation of reported observations in terms of our model is consistent with the available
experimental data. However, the data are not sufficient for excluding other interpretations.

Destabilization of DNA backbone and DNA melting: In particular, it was proposed that
temperature-induced aggregation of DNA in the presence of Mn?*" may be caused by cross-
linking of melted sections of DNA mediated by the ions [123-125,138]. However, Mn*"-induced
DNA melting was observed only above 60°C and at fairly low pH (=~ 4 [123]), i.e. when DNA is
substantially less stable than under the conditions of osmotic stress force measurements. Fur-
thermore, such interpretation is at odds with x-ray diffraction patterns observed from Mn*"-
DNA aggregates in the latter experiments. Even though it is difficult to exclude that a fraction
of the sample could be melted, the osmotic stress/x-ray method reveals only the forces be-
tween DNA helices that exhibit normal B-DNA scattering pattern. We however explore some
consequences of a model of (collective) DNA melting and cross-linking in Section 1.8.5. While
DNA melting and base pair cross-linking via transition metal ions could be the mechanism
of temperature-induced aggregation at low pH and high temperature observed in [123], it is
unlikely to explain the temperature-dependent forces and aggregation observed at neutral pH
and much lower temperatures in [49,66]. Within the framework of cross-linking model it is still
unclear why Mn and Cd cause DNA condensation whereas Ni and Zn do not [49], in spite of
the fact that all these cations are known to destabilize DNA structure, Fig. 1.18.

Still, partial destabilization of DNA backbone by Mn?" may be important even in the
latter case. Indeed, aggregation of real non-ideally helical DNA sequences requires torsional
deformation of DNA and DNA unwinding from 10.5 bp/turn in solution [108] to 10 bp/turn
in dense fibers [109] is observed. As previously suggested, this torsional deformation may be
needed to make the opposition of negatively charged phosphate strands and positively charged
grooves possible over entire length of the molecules [126]. Otherwise it would be disrupted
by sequence-dependent variations in the helical pitch (see Chapter 2). Partial destabilization
of DNA backbone by Mn?" may reduce torsional rigidity and make the deformation easier.
Furthermore, it may increase thermal motions of the backbone. The latter may help to adjust
two similar but not completely complementary charge patterns on surfaces of two opposing
DNA for a better match (see [127] and discussion in Section 1.8.6).
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1.8. Auxiliary results of the model and beyond the model

Hydration forces and water-release mechanism: Here we have rationalized the intermolecular
forces in terms of an electrostatic model. However, it was proposed that hydration forces arising
from modulation of water structure near DNA surface may give a substantial contribution to
the net DNA-DNA interaction [59].

The interaction between almost neutral collagen triple helices for example is indeed governed
by hydration force [90,128] associated with energetic cost of re-arrangement of hydrogen-bond-
network in the water between molecules. The temperature-dependence collagen condensation
[94], very similar to Mn-DNA condensation, can be described on the basis of release of structured
water. The predicted 0.7A decay length of hydration forces depends both on water correlation
length (~ 4A) and on the periodicity of surface hydration pattern. It is excellent agreement
with experiment. The decay length of electrostatic force is too long to fit the data [107].

DNA wvs. collagen: The surface hydration pattern of collagen is regular (determined pri-
marily by helical backbone) in contrast to surface charge pattern, which is irreqular. Tt dis-
tinguishes collagen from other biopolymers. For DNA duplexes both surface charge patterns
and surface hydration patterns follow the helical symmetry of phosphate residues [58]. Thus,
both experimentally and theoretically, it is difficult to distinguish the electrostatic and hydra-
tion contribution to DNA-DNA forces [107]. Osmotic stress experiments in very concentrated
NaCl solutions have been done to exclude the electrostatic contribution to the force, but the
analysis of data is somewhat ambiguous. Theoretically, both forces have very similar functional
dependence on DNA charge periodicity and the results depend on a number of poorly known
factors (water dielectric response, re-arrangement of hydrogen bond network, etc.) that makes
the comparison of force amplitudes very difficult.

It was proposed that the entropy increase associated with release of structured water
upon compression may be responsible for the observed temperature dependence of Mn-DNA
forces [49]. Comparison of Mn*"-DNA that does exhibit strong temperature dependence and
Co(NH3)2"-DNA that does not (despite quantitatively similar forces) suggests that the tem-
perature dependence is unlikely to be related to the release of structured water. The entropy
effect of such a release should be similar in both cases. However, the release of water structured
around counterions, either upon their binding or upon dehydration of DNA aggregate, may be
different. So that this mechanism cannot be excluded as well.

1.8 Auxiliary results of the model and beyond the model

1.8.1 Adsorption isotherm and its effect on interaction pressure

In the calculations above we assumed that 6 is independent of the density of DNA assembly.
This assumption was based on the experimental observation that the change in the number
of adsorbed cations upon compression of DNA aggregate is ~0.01/bp [49] (and, therefore, the
change in 6 should also be ~0.01, i.e. small). '7

To test whether such change is consistent with the parameters used in the present model, we
calculated an expected change in 0 upon variation in the cell radius based on a simplified form
of adsorption isotherm [28,120], which results from equalization of electrochemical potential of

1"For CO(NH3)2+, contrary to Mn?*, 0.2 cation/bp are additionally bound during the shrinking transition
[64], that causes substantial change in 6.
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Figure 1.12: DNA charge compensation 6 changes only slightly with compression of the cell, Eq. ( 1.62).
Parameters: ng = 0.05M, F,4s/ (kgT) = —3 (dotted), — 6 (dotted-dashed), —9 (solid curves). € increases
with compression since the value of surface potential increases. The larger the value of 8, the smaller its variation
with compression.

cations on molecular surface and in the bulk solution

0 o [_ Fads

1-0  n, P | kT

] exp [—z® (a, 0)], (1.62)

where n,, = 55.5M is the water molarity, F,4s is the average adsorption free energy on DNA
surface, ® (a, ) is the surface potential of the rod in the cell model, Eq. (1.38).

The dependence of 0 on Ry calculated from Egs. (1.62), (1.38) at different values of F,4s
is plotted in Fig. 1.12. We find that the change in € is indeed ~0.01 when 6 (c0) exceeds
0.8-0.85 which is the range of # required for Mn?"-induced condensation within our model and
in experiments. The value of adsorption free energy that produces such 6 (F,45 ~ 10 kgT')
has the same order of magnitude but is slightly larger than the change in the adsorption free
energy upon Mn?" transition from minor to major groove. In other words, it also appears
to be consistent with model assumptions required for explaining the observed temperature
dependence.

Adsorption isotherm (1.62) results in 6 increase only in the region R < 24A, where the
image-charge repulsion between DNAs dominates. Therefore, including of adsorption isotherm
in the model of Mn-DNA aggregation can change calculated pressure curves only slightly. Thus,
we did not include 0 (R)-effect in the main part, but present I () —dependences in Fig. 1.13. As
follows from the Kornyshev-Leikin theory, the appearance of attraction between DNAs depends
on the threshold value of 8, when favorable strand—groove register overcome the repulsion of
non-compensated DNA charge, Fig. 1.13. This value increases with ng according to (1.62), that
implies the appearance of attraction at R ~ 28A (cobalt hexammine [64], Mn?* and Cd?* [49]).

The specificity of binding of each type of cations determine the values of # and f on DNA.
These 6 and f can satisfy theoretically predicted DNA condensation condition. For example,
many alkali cations adsorb in the minor groove [9] (large f), that requires much higher 0
for DNA condensation, Fig. 1.13c. The multivalent cations are bound usually in the major
groove [16] (small f) and much stronger (larger 6), that warrants easier DNA condensation Fig.
1.13a.
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Figure 1.13: DNA-DNA attraction is triggered by small variation of the pattern of adsorbed cations. Parame-
ters: /{51 = 7A =Const (R), fixed R—independent pattern of adsorbed cations. Longe-ranged DNA repulsion
decreases with 6 : (a) f =0, § = 0.5, 0.55, 0.6;(b) f =0.5, § =0.85, 0.9, 0.95; (c) f =1, 6 =0.75, 0.8, 0.85.
The situation with 50/50 occupation of the grooves (f = 0.5) is the most unfavorable for condensation since it
requires 6 close to unity. It is so since charge separation along the helix decreases.

1.8.2 Abrupt transitions of cations between the grooves

In Fig. 1.8 we have presented the case when the occupation of the major groove increases
smoothly with compression of DNA assembly. It was so because the proper distribution of the
adsorbed cations between the grooves on single DNA has been chosen. Here we present the
solution of Eq. (1.50) when minor groove is occupied with compression, or groove occupa-
tion changes jump-wise. We propose also a phenomenological DNA surface model which may
account for such behavior.

Idea. If minor groove is highly occupied on single DNA, it corresponds to a deep well of
DNA surface energy at small f. The interaction energy is minimal (at all distances!) when all
cations are adsorbed in the major groove. There can be a critical separation when two minima
of total energy equalize, and an abrupt transition in groove occupation takes place.

Strong adsorption in the minor groove. The surface free energy, Fy (N,), has a deep min-
imum at small N,. The Kornyshev-Leikin interaction energy, Fj,;(Nz), has two minima at
the edges. When R decreases both minima of Fj,; become deeper relative to the energy in
maximum, Fig. 1.14. The total free energy per one DNA in assembly, F' = F; + 3F;,;, has only
one minimum for all R at small f. With compression, f decrease, Fig. 1.15a.

At strong adsorption in the major groove both Fj,; and F have a minimum at large N,.
When R decreases, this minimum becomes relatively deeper for larger Ns, Fig. 1.15b. Only
this case was considered in the main text.

Intermediate case. When there is a slight preference for adsorption in minor grooves, F'
may have two minima, their depth equalizes at a certain R. When R decreases, the minimum
at higher V; is lower, and a transition when N, jumps from smaller to higher value takes place,
Fig. 1.15¢.

A phenomenological model proposed below can result in such abrupt re-arrangement of
adsorbed cations. In the spirit of Landau order-parameter-theory, we suppose that the surface
free energy of ith DNA has the form

@

2
2

F,=A—~+1B
2+ 4

+ Py,. (1.63)
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Figure 1.14: The pair DNA-DNA interaction energy, Eq. (1.30) has two minima (at f =0 and f = 1) which
become relatively deeper with approach of the molecules (nearest side of the cube R = 4013, the most far side —
R = 20A). Parameters: Az =0, § = 0.85,n9 = 0.05M, T = 300K.

Note that the possibility of abrupt transitions should survive also for non-zero mutual shifts, since the interaction
energy surface still has minima at the edges: two minima at f =1 and Az # 0, and one minimum at f = 0 and
Az =0, see Fig. 2b in [85]. The investigation of non-zero shift in the aggregate is however itself a non—trivial
problem (Section 1.9).

Here ¢, = f; — f,, where f; and f (0 < f;, f < 1), are the fractions of cations in the minor
groove at finite and at infinite separation, respectively. The coefficients B > 0, A, P should
reproduce the specificity of binding of considered cations. If A < 0, F, has a two-well shape.'®

Idea: negative P favors larger f on single DNA. With compression due to the minimum of
Fint at f = 0, the optimal f may change abruptly, from larger to smaller value. It could lead
to jump in Fj,; and in the force.

Model: Since coefficients a,,, Eq. (1.45), decrease quickly with n, only first two f-dependent
terms in Fj,; are important for the present model. Then F' reduces to Landau Hamiltonian
with two bilinearly-coupled order parameters [129]

B
U= Alp1 + ¢2) + S (01 +¢2) + 20010 = D(p1 + ) + G, (1.64)
where C' = 4ugf*ay, D = —P — 4ugfEay, J = 20f — 0 — cos(¢,),
G = ug {2042 [0 — cos(2¢,)]? + 2E2a1} . The minimization of (1.64) with respect to ¢, s,
Az at fixed f and @ yields to Euler equations

(1 = P)[A = C+ Bp + @3 + 01909)] = 0, (1 + @2)[A+C + Bl + 93 — p1905)] = D,
sin(gAz) { A 402610, + 201 (2, + ) + N — 44z cos(gA2) [0 — cos(26,)12} = 0,
(1.65)
where A, = Ko(kn,R) [k, K] (Knb)] 2.

18The model gives also a hint for accounting of temperature-dependent DNA condensation if A =
p(ng) %, T* (ng) is the critical temperature when DNAs start to condense [44,49]; p is the adjustable
parameter.
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Figure 1.15: The number of cations in the magor grove per pitch, Eq. (1.50), at strong occupation of the
minor (a) and major (b) groove, and in intermediate case (c). Parameters as in Fig. 1.14 and n = 0.4,
So/s0 =9, W1 =0,Ws = (a) — 3, (b) — 5, (c) — 4. In this figure No = 106 (1 — f), 7 is the fraction of adsorption
sites in the minor groove.

Further we consider only symmetric solutions so that ¢, = ¢, = ¢. At Az =0 Eqgs. (1.65)
reduce to cubic equation

2B¢° + (2A + 8ugl’an)p + (P + dugfhJay) = 0. (1.66)

Its solutions can describe the abrupt transitions from large to small f with compression of DNA
lattice. For Az # 0 we also get a cubic equation for f.

We do not speculate about the physical meaning and value of coefficients A, B, P, since
the present experimental data do not allow to say unambiguously whether this model has any
physical relevance to real DNA. It is however possible that at short R the electrostatic inter-
action is strong enough to make such transformation of DNA backbone, that new adsorption
sites appear in the (major) grooves, that could facilitate DNA-DNA attraction.

1.8.3 Behavior of DNAs of two types on the lattice

Below we account for different distributions of cations on DNAs and consider how the inter-
convertible DNAs of two types behave on hexagonal lattice with its compression. We use the
Bragg-Williams approximation to calculate the number of corresponding interacting pairs. Only
nearest-neighbor-interaction are considered. The Kornyshev-Leikin pair interaction energy is
used as interaction energy of DNAs on the lattice [85], Eq. (1.30). Debye screening length and
patterns of adsorbed cations are constant.

Idea: Since the interaction energy of DNAs with highly occupied major groove is lower
than that with highly occupied minor groove, the larger amount of interaction pairs with
highly occupied major groove is energetically favored. Entropically (T" # 0) however 50/50
distribution of molecules over two possible types is favored. Below we show that the number
of DNAs with highly-occupied major groove always increases with compression.

Model: Let only f; and fo = 1 — f; occupations of the minor groove are possible (f;
corresponds to highly occupied minor groove (say, 80%)). Let M; molecules of the length L
have f; cation distribution, i = 1,2. Then f = —24_ is the fraction of DNAs of the first type

M+ Mo
on the lattice. This quantity we want to find.
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Figure 1.16: The fraction of molecules with high occupation of the minor groove decreases with compression.
Parameters: 6 = 0.8, f; = 0.75, k' = 7A, L = 10H (solid curve) and L = H (dashed curve).

There are three possible interacting pairs: f1 : fi, fi: fo, fo: fo, interaction energy of each
of them is, Eq. (1.30), (per length L)

F(fi, [;)=Fi = uOLiZOzn [fi9~|— (=1)" (1 — f;)0 — cos (nngs)] X

n=1

50+ (1) (1= £)0 = cos (nd) ],

where «,, = «, (R, k,a) are known functions [85], Eq. (1.30), # = Const, z; = 2. If the

zM? 22 My My

SO T5) 3006ty and

molecules are distributed randomly on the lattice, their numbers are

2
z M3

ST AR) respectively. Here z is the lattice coordination number, z = 6 for hexagonal lattice.
By construction the surface free energies of all DNAs are equal, Fs;= Fy. Then the free
energy of M = M; + M, interacting molecules is

F=M{fFa+ Q- f)Fo+kT[fInf+(1—f)In(1-f)]
+ 2[R+ 2f (1= f)Fia+ (1 — f)? Fao] /2}. (1.67)

Results: Extremum of F' with respect to M at fixed M gives the equation on f (Fig. 1.16)

L~ ames (B (), (1.68)

1—f
where A (R) = exXp [Z (Flg — Fgg) / (]{/’BT)] s B (R) =z (2F12 — Fn — FQQ) / (]{/’BT) . DNA length
gives the energetic scale where the "conversion" effect becomes to be significant. We have
observed that f decreases always monotonically with compression and no phase transition
occurs. Considered model suggests that if there is a limitation on the maximal number of
adsorption sites in the minor groove (repulsion between adsorbed cations, etc.), the occupation
of the major groove will increase with compression.
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1.8.4 Ions of the finite size and Poisson-Boltzmann equation

Motivation: Below we present the approximate analytical solution for potential distributions
near one and two charged surfaces with taking into account finite size of ions in solution. For
highly-neutralized DNA the saturation effect considered below is of no significant importance.
In general, however, it is useful to have an analytical solution, at least for planar case.

The Poisson-Boltzmann (PB) mean-field theory considers ions as point-like particles and
neglects by statistical correlations between them. The first assumption leads to overestimation
of ion concentration near highly-charged surface, especially in the case of multivalent ions. The
calculated concentration of ions near highly-charged surface (with charge density of bare B-
DNA) may be as large as 50M. Physically, however, the maximal-available concentration of ions
is their close-packing concentration, @ ~ a2, where a is the size of an ion, possibly hydrated.

Modified Nonlinear PB (MNPB) equation. The idea of incorporation of the finite size of
ions into the PB equation is very old [130], but it became known again several years ago [131].
To account for the finite size of ions, usually, the lattice-gas free energy (for one type of ions)

Fior = kT /V {n (r)In {“f’”)} F = n ()] {M} }d3r, (1.69)

n n

is used for volume free energy of ions, instead of the ideal-gas free energy,
Fig ~ kBT/ n (r)Inn (r)dr. (1.70)
v
It modifies PB equation for dimensionless electrostatic potential, ® (r) = ey (r)/ (kgT). In
solution of z—valent cations only with bulk concentration ng it gives (in planar geometry)

d2® —z®(x)
(@) _ o e (1.71)

dax? 1 -2 Moe—2®()’

where k% = 4nlgzng, Ip is the Bjerrum length, 7 = a=3 is the close-packing concentration of
ions on cubic lattice with edge a. For negatively charged surface(s) ® () < 0. At m — oo, Eq.
(1.71) turns into usual PB equation.

Single charged surface in salt solution. After first integration of Eq. (1.71) from the surface
(z = 0) to infinity, and using the Gau$} theorem, @, = &'|,_q = —4EZ > 0, we get the exact
expression for surface potential as a function of surface charge density o [131],

®,=—2"'[In(e = (1—a)) —Ina], (1.72)

where ¢ = 21a’0?/ (ekgT), a = ng /7.

Far from the surface, kpz > 1, the potential is small, |®| < 1, we may expand exponents

dQ;;(Qw) ~ —k2[1 —2(1 —a)® ()], with exponen-

and arrive at Debye-Hiickel (DH) equation,
tially decaying solution
Befh‘DI

P (r) =Py (z) = —m,

(1.73)
where k2, = z (1 — ) k2.

Near the highly-charged surface the potential may be so large that 7%—06’2‘1’(7“) > 1. Then
a saturation layer appears near the surface, where the concentration of ions approaches 7.

Eq. (1.71) can thus be simplified as dei(f) R~ —%2. After two integrations, we get a parabolic
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1.8.4. Ions of the finite size and Poisson-Boltzmann equation

approximation for potential near the surface,

2
O ()= D) (2) = Dy + Pl — 5—3:2. (1.74)
o
The thickness of saturation layer, [* [131], is estimated as the point of zero derivative of potential
(1.74)

e —, 1.75
" (1.75)

It is proportional to the surface charge density and ion’s volume. Below we find analytically
the approximate solution of Eq. (1.71). At kpx > 1, we use DH solution (1.73), whereas near
the surface, at kr < Kkl* = %2“, we use solution (1.74). If these two regions overlap, matching

the value of potential and its derivative in some point, x,,, we find integration constant B and
parameter x,, as

I{2D KD 2 4 2 ’

(az (1-—a)®, 1 ) 1 a2(1—a)*®2 20z(1—a)d,
Ty = | s + +
KD kb )

2
m 1-—
B= (cp; S i ) 21 =) epen(1.76)

az(l—a) KD

The final distribution of potential differs only slightly from the numerical solution of Eq. (1.71)
[131], Fig. 1.17.

Two charged surfaces. We find the potential distribution between two charged surfaces on
the distance D, with counterions between them to ensure the electroneutrality of the system.
Like for PB equation between two surfaces [29], in MNPB case we need to find the cation
concentration in the mid-point between the surfaces self-consistently for each surface-to-surface
separation.

Since only the potential difference is important, we set potential in the mid-point to zero,
® (r = 0) = 0. (Cation concentration in the mid-point is not zero, of course, and varies with R
and o.) Then DH region of small potential always exists near the middle point, where we write
the expansion
1 — cosh (kpx)

z2(1—a)
where the condition of zero potential derivative in the mid-point was used. Near the surfaces
we use solution (1.74)

O (x) =Dy (x) =

(1.77)

2

O(z) =P, (2) =y + P, (x+ D/2) — ;—a (z + D/2)? (1.78)

with only difference, that now the mid-point concentration ng is not fixed, but is determined
self-consistently.
Then we match the potential and its derivative at some distance x,, from the surface,
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Figure 1.17: Distribution of potential and of finite-size cations near one (a) and two (b) negatively charged
surfaces.

a): Parameters: a = Q,z: , ng = 0. , o= le A2). For t ese parameters: m = 1. , Ir =
P 10A 4 0.1M 1 50A2). For th 1.66M, 1

5A, /{Bl = 3.5jok, T = 4.4A. The value of potential in sewing point is -0.76, that justifies used DH approxi-
mation. The approximate solution for potential is very close to full numenrical solution [131].

b) Parameters: D = 40A, z=2,a= SA, o =1le/ (50A2). Then 7 = 32M, ¥ = 5.1jok, Kyl = 3.4;&, Ty, =
D

3.51&, e I > xpy > KBl and there is a region of overlap of two used approximations. The value of potential in
matching point is -1.4. This value can be decreased if larger ions or larger ¢ are considered. Dotted curves —
the solution of NPB equation, {z®xpp (¢) = In [cos? [Kz]| , where the mid-point concentration is found from
equation 0 = K~ 1zngtan [KD/2], where K? = 2mlgngz2}. Solid curves — is the approximate solution of MNPB
equation, Egs. (1.77), (1.78). Expression (1.72) for surface potential is used in calculations for two plates.

The cation profile reveals a plateau region near the surfaces. In addition to considered bulk close-packing effect,
the finite-size-ions cannot come closer than ~ a/2 to the surface. When this effect is also considered, the cation
concentration near the surface decreases substantially [132], and the maximum at the distance ~ a/2 from the
surface can appear.

unknown in advance, and found ng and z,, from matching conditions,

O+ By K2 _ 1—coshkp (=D/2 + xn)]
T 202(1 - @) 2 (1—a) ’
o K5 T, _ kpsinh [kp (D)2 — x,)] (1.79)
*az(l—a) z2(1—a) '

Unfortunately, these coupled equations can be treated only numerically. Note that second
equation in (1.79) is equivalent to approximate electroneutrality condition. Indeed, we obtain
the constructed approximate solution satisfies electroneutrality condition within 3-5% accuracy,
that confirms used approximations.

1.8.5 Are DNA melting and aggregation coupled?

As we noted in Sec. 1.6, the proposed mechanism of entropically-driven DNA aggregation in the
presence of Mn?* does not exclude another interpretations because of insufficient experimental
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1.8.5. Are DNA melting and aggregation coupled?

data. Below we explore temperature-induced DNA aggregation which arises from temperature-
and cation-induced DNA melting and cross-linking.

Heliz-to-coil DNA transition. Since two phases cannot coexist in 1D system [121], the
majority models of DNA melting result in alternating coil-helix sections along the molecule.
The basic tendency is that the combinatorial entropy of melted /helix sections favors the shorter
length of the sequences, the energy profit promotes the larger amount of bp in helical state and
longer sequences. Most of the works on helix-coil transition of bio-molecules are based on the
nearest-neighbors Ising models [133,134]. Many factors, affecting DNA stability in solutions
have also been considered theoretically (solvent composition, pH and ionic strength, specifically
adsorbing cations, force-induced melting [133], DNA electrostatic charge [135], etc.).

Motivation. Melting of Mn-DNA in assembly can differ from melting of single DNA. Some
earth-transition cations (for example, Mn?*, Cut, Cd**, etc.) are known to form a chela-
tion complexes with DNA (N7-(cation)-O6, N7-(cation)-phosphate, N3C-(cation)-phosphate),
destabilizing the helix and at moderate concentrations decreasing DNA melting temperature
T, [14,89,136] (see Fig. 1.18). Such re-construction of helix may lead to appearance of new
additional sites for cation binding on DNA (N3A, N1A, etc. [137]). The possible cross-linking
via a cation bridging between these sites may "glue" DNAs together that was suggested as a
mechanism of temperature-induced DNA aggregation in the presence of backbone destabilizing
cations [123,125].

35
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Figure 1.18: Transition-earth cations at moderate concentrations decreases DNA melting temperature, T ,,, (data
from [89]). More aggressive Cu™ melts DNA even at room temperature.

Raman spectroscopy experiments indeed show that perturbations of structural DNA groups
and DNA aggregation occur simultaneously [123,136,138]. In spite of the insufficient accuracy
and ambiguous interpretation of Raman spectroscopy data (pH=4-5 [123]), below we present a
simple model of collective DNA melting.

Mn-DNA is not a unique system, where X-linking can occur. In solutions of polyamines,
for example, the measured equilibrium spacing of DNA lattice is correlated with the length of
condensing agent [47], supporting X-link-driven DNA condensation.

The theory of DNA melting and its modification. We consider the melting theory of ho-
mopolymer DNA of N bp long in the solution of agent, that binds with different affinities to
melted and helical bp. Let the number of bp in melted (i = 1) and helix (i = 2) sections are
N;, i = 1,2, the number of bound cations are k;, n is the number of helix-coil boundaries, Fj is
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the free energy of creation of one such boundary. The free energy then takes the form [134]

F =nFy+ N1y 4+ NoFs + kyihy + kotbsy
Ny! No!
n! (Ny —n)!n! (Ny —n)!

N,! Ny!

— kpT'1
Bh Trl (VT — ko)l ool (Vg — ko)

} — ksTIn { (1.80)

Here F; are the free energies of melted and helix bp, 1, are the binding free energies of a cation
to corresponding bp. Adsorption of cations is assumed to be non-cooperative and adsorbed
cations do not interact. Helix-coil transition occurs cooperatively due to finite energy Fi.

Basic equations: Applying the Stirling’s formula, extremum F over n, Ny, kio at N =
N7 + Ny = Const can be written as

N1 N2 1 1—n/N2 l—kl/Nl kz/Nz
) (A ) o _ = noK; 1.81
(n ) (n ) 7 1 a/Ny 1 —ke/No' 1 kN, ® (1.81)

where ¢ = exp [— ]f];T} is the so-called DNA cooperativity factor, ¢ ~ 10°% [134], s =

exp [—%] = exp [—kB—T], K, = %exp [—%] are the binding constants,s = 1,2. If

no = 0, we arrive at two coupled quadratic equations for the fraction of the molecule in helical
state, 1, and the number of boundaries, n, with well-known solutions

=— |1+ , — = 1-— : (1.82)
\/(3—1)2—1-430 1-o \/(3—1)2—1-430

According to Eq. (1.82), the smaller o, the sharper the transition [133]. The number of sections
n increases with 7" and increases sharply with decrease of F;. At small 7" DNA is in helix-state,
AF < 0. If ky/N; — 1, the r.h.s. of Eq. (1.81) tends to zero, and N; — N. lLe., adsorption of
cations on melted bp stimulates DNA melting.

It is reasonable to assume however that in order to bind to two single DNA strands and
connect them together, some energy, P,, must be paid to overcome the entropy of ss-sections.
We assume that P; = Const and does not depend on the length of ss-section. The free energy of

one DNA then is Fy,, = FF+ mP, — kg1 In k! Ny —ky)! ,] , where the new term is the

m!(k1—m)! m!(Ny—k;—m)!

mixing entropy of the number of combinations to form m regions from k; bound cations, and
of m regions without bound cations from N; — k; remaining sites. It appears that the number
of cations bound to ss-sections is correlated with helix-coil transition; 7;, increases with P,.

Cooperative DNA melting and DNA condensation. We assume below that the melted
sections on two juxtaposed DNAs are distributed randomly, i.e. the probability to find a
melted-melted contact is px = (N;/N)>. Then the number of sites for X-linking is Nx =
N2/ (Ny + Ns). Electrostatic interaction between DNAs is considered below in the model of

— . . 2
uniformly charged rods, Fj,; = hNN 8ng2 (gf((:(igg ( — ZZ(k21§k2)> (energies are measured per

N bp). DNAs also interact via X-links, the corresponding free energy of two DNAs with
ny X-links is: Fy = nyEy — ksT'In [N—X‘}

N> 1 s—1 n o s+ 1
N

nx!(Nx—nx)!
The extremum of the total free energy, Fi,; = F'x + Fiut + 2F4,., with respect to
nx, N1, n, ko gives
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N1 /N
NnX/Nf . _Ex 1—n/N2 _e,%l—kl/]\fl ( _NnX> / 7 (183a)

— —  __ — e kBT _— =
l—NnX/Nf ’ ]_—’fL/Nl ]__kQ/NQ N12

(ﬂ - 1) (& - 1) — e (1.83b)
n n

kz/Nz U ¢Z — ILLO 87‘(’252 Zi Kg (HR) Zi (lﬁ + ]{2)
LT S O proz - ST (183
1— kN, np P { T | P " ek 2K, (ka)) 2 N (1.83¢)

Two last equations are obtained by equalization of electrochemical potential of cation adsorbed
on helical and melted sites of each DNA, to bulk electrochemical potential. 8 = z; (k; + k2) /N,
is not a constant, but changes with R according to adsorption isotherms (1.83c).
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Figure 1.19: Attraction of partially melted DNAs can be triggered by their collective melting. The fraction of
melted bp, Ny/N, of zipped bp, nx /N, of adsorbed cations, ki /N, increase abruptly at R = R, = 30A. The
total free energy, F}.:, also decreases abruptly due to X-linking. Parameters: AF = —2kgT, F; = 2kgT, Ex =
—1kgT, ¢y = —1kT, vy = —8kT, no = 0.1M, /{Bl — TA. The plausible values have been chosen for
adjustable parameters of the model, Ex, R*, Ps, and ;.

Results: If k; = 0 (no melting ions) and Ex is large, nx — N2/N and the R.H.S. of second
Eq. (1.83a) tends to zero, Ny — N , i.e. almost all bp are melted and zipped together via X-
links. Physically, a possibility to crosslink may appear at DNA-DNA separations smaller than
some critical R,. If it happens abruptly, an abrupt change in all quantities takes place, Fig.
1.19. When R < R, and DNAs are further pushed together, the number of adsorbed cations
increases in order to compensate DNA charge, according to (1.83c). The repulsion becomes
weaker compared to a fixed number of adsorbed cations.

Water release upon melting: B-DNA is highly-hydrated molecule, 10-30 water molecules
are ordered per nucleotide [2,15]. From the point of view of accessible surfaces, ds-DNA should
be much more hydrated than ss-DNA, and upon melting water should release from DNA. With
compression DNAs melt and water releases progressively into the bulk, increasing the entropy
of DNA assembly. It again says in favor of water release mechanism of DNA condensation with
Mn. Still, we consider the electrostatic model of DNA aggregation with Mn, Section 1.6, as the
most reasonable and straightforward one, its results are in good agreement with experimental
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data.

1.8.6 Aggregation of non-ideal duplexes, the role of bp fluctuations

In Section 1.6 we have considered the temperature-induced aggregation of ideal DNA duplexes
in the present of Mn?*. Real DNA is however not an ideal staircase and such imperfect duplexes
interact differently than ideal [126]. Below we discuss how the destabilization of DNA backbone
allows non-ideal non-rigid helices recognize and attract each other.

The concept of temperature-induced complementarity has been put forward in Ref. [127],
where the important role of fluctuations for biomolecular recognition was emphasized and the
recognition code for hydration forces between complimentary patterns of polar groups has been
suggested.

Idea: Consider two opposing surfaces with distributed polar groups. Let they attract each
other if there is a mutual complementarity of "charge" distributions. Let laterally-rigid, incom-
mensurate surfaces always repel each other (it corresponds to low temperature when charges
do not fluctuate). At finite temperature fluctuations grow and charges acquire more freedom
on the substrate.!” Thermal agitation allows charges to arrange on the surfaces better, the
patterns become more complimentary with a possibility of net attraction forces. At higher
temperature, the fluctuations increase and can destroy the favorable arrangement of charges,
interaction may again become repulsive. When surfaces come closer to each other, interaction
and adjustment of charges become stronger. It necessary leads to increase of the number of
configurations for surface groups and serve as a source of entropy increase.

Role of Mn: In assembly of non-ideally-helical rigid DNAs the sequence-dependent twist
leads to disruption of strand-groove register, and long rigid DNA fragments always repel each
other [126], Section 2.3. Finite DNA torsional rigidity allows molecules to relax sequence-
dependent mismatches of the twist (see Section 2.4) and they can attract each other. Since Mn
is known to destabilize DNA backbone, this cation can decrease DNA torsional rigidity and
allow molecules to attract each other easier.

Role of fluctuations: At ambient temperature the fluctuations of azimuthal angle may dimin-
ish the incommensuration of DNA charge patterns caused by sequence-dependent twist. It may
help to restore strand-groove register and facilitate DNA-DNA attraction. However torsional
bp fluctuations smooth charge distributions on DNAs, that weakens DNA-DNA attraction,
according to the Kornyshev-Leikin theory. At high temperature bp fluctuations disrupt the
complementarity of charge patterns, diminishing the attraction. ** With compression DNAs
interact stronger, that must increase the entropy of the backbone adjustment.

Note also that simultaneous consideration of DNA sequence-dependent twist and bp fluctua-
tions is also important for calculation of the optimal number of bp/turn on imperfect interacting
DNAs. This result should correct the 10bp/turn favored by electrostatics on ideal helices [107].

19Note that the correlation between associated cations may also strengthen the attraction with temperature:
for instance, configuration {Jj 4 + 4 + 7} of cations and polycation charges, minimizing the electrostatic energy
at T = 0, produces weaker attraction than configuration {f Tt i ;} at T # 0 [139].

20The additional length-scale, the fluctuation coherence length, A¢ (7)), appears in this model. If A\ > )\, the
fluctuations are too small to help system to reach a commensurate charge patterns. If Ay ~ A, i.e. the thermal
bp fluctuations are of the order of random twist fluctuations, the fluctuation can improve DNA non-ideality and

facilitate attraction. If Ay < A, the fluctuations are too large and disrupt strand-groove register.
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1.9. Azimuthally frustrated DNA lattices

1.9 Azimuthally frustrated DNA lattices

Motivation: The main topic of Chapter 1 is to describe the temperature-induced DNA con-
densation in the presence of Mn®*. We have considered however only the simplest alignment
of DNAs on hexagonal lattice, without any axial shifts between the molecules, Az = 0, see p.
30. It is realistic for large DNA-DNA separations or high occupation of the major groove by
adsorbed cations [84] (occupation of the major groove in our model is indeed strong, Fig. 1.8).

Pair DNA-DNA interaction energy, Eq. (1.30), results in the nonzero optimal shift (nonzero
azimuthal orientation angle) between two DNAs at close separations [84], Fig. 1.20b,c. On the
lattice, where each molecule takes part in many interactions, the optimization of all angles is
constrained by packing symmetry and may involve many-body effects. It is not clear how the
azimuthal part of interaction energy is optimized on a given lattice and we address this point
below.

We consider electrostatic interaction between DNAs in columnar hexagonal lattice on the
basis of the Kornyshev-Leikin theory [85]. We consider as before only nearest-neighbor in-
teraction and consider them to be pair-wise additive. We calculate the optimal azimuthal
orientational angles which minimize the orientation of DNAs in elementary triangles on the
lattice. The lattice constructed from such triangles is frustrated.

1.9.1 Experimental observations and puzzles

Experiment: It has recently been shown that positional order within the hexatic DNA phase
under the external osmotic stress is more liquid-like the more DNA density is increased. The
measured correlation length goes from about five neighbors at 24.0A DNA interaxial spacing
to about eight neighbors at R =27.5 A, Fig. 1.20a. It is surprising and counter-intuitive,
since we would expect that DNA array becomes more positionally-organized when we approach
the crystalline phase. It was suggested [140] that progressive disordering of DNA packing at
higher densities may be due to increasing frustration of the molecules as they try to satisfy
both the positional and the angular constraints imposed by electrostatic interaction potential,
Eq. (1.30), [85].

1.9.2 Optimal azimuthal angles on hexagonal lattice

Let pair DNA-DNA interaction energy (per unit length) depends on mutual azimuthal orien-
tation angle of two DNA, ¢ = d¢p = &1 — Oy, as

E (¢) = —ay (R) cos [¢] + a2 (R) cos [2¢], a1,as > 0, (1.84)

where a; (R)and as (R) are known functions of DNA-DNA separation R, the parameters of
solution and of DNA intrinsic parameters. For electrostatic interaction these coefficients have
been calculated in [85] (see Section 1.4 and Appendix A). ! We calculate only the ground-
state configuration of the molecules: no influence of temperature either on interaction energy or
packing symmetry is considered. As was shown in [84,85], energy (1.84) is minimal at ¢, = 0 at
a; > 4as (v < 1/2, v = 2as/ay) and at a nonzero angle, ¢, = =+ arccos [a1/(4a,)], at v > 1/2.

21 Below however we do not restrict ourselves to only electrostatic interaction and first calculated the properties
of packing of the molecules with general form pair interaction energy, Eq. (1.84). We do so since the patterns
of water adsorbed on DNA follow DNA helical symmetry [15] and the hydration forces [59] should also depend
on DNA mutual azimuthal orientation, as it was indeed predicted [58].
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Figure 1.20: The measured positional correlation length (a) decreases when DNA lattice is compressed. The
optimal azimuthal angle between two DNA is nonzero at close DNA-DNA separation, as follows from Kornyshev-
Leikin theory (b,c). Data from [84] and [140]. The interaxial DNA-DNA separation is recalculated from inverse
lattice spacing as R = 4/ (\/gqmax) .

The recent theoretical predictions of frustrated DNA assemblies, based both on the phenomenolocal theory [141]
and computer simulations of DNA lattice with exact DNA-DNA pair interaction potential [142], suggest a variety
of possible azimuthal "spin" structures. However, in first work no exact DNA-DNA interaction potentail was
used, whereas in the second work the predicted spin structures do not garantee the minimum of the system.

General consideration. The interaction energy of vth DNA molecule of the length L on
hexagonal lattice is

(d)u, qb = i /dz Z {—al(R) coS (d)u — qbﬂ) + aZ(R) cos [2 (¢V = ¢u)] } , (1.85)

where index y labels 6 nearest-neighbors. From the symmetry of the ground state, ¢, , ., = ¢, ,,
and (1.85) can be written in terms of new variables

T =1 — (¢ + ¢3) /2, Yy = Py — ¢35 (1.86)
as the interaction energy density of three molecules in elementary equilateral triangle,
Ea (z,y) = —aq cos [y] + az cos [2y] — 2a4 cos [x] cos [y/2] + 2as cos [y] cos [2x] . (1.87)

Energy minimum: The extremum of this energy, 0Ea/0x = 0EA/Jy = 0, leads to multiple
solutions for optimal values of variables = and y. These solutions correspond to energy maxima
and minima, we choose the solutions of the energy minima. The angle differences between the
molecules in such "optimal triangle" are constructed from optimal x and y as

A1:¢2—gb1:y/2—x, A2:¢3_¢2:_ya Az = Ay + A (1~88)

Analysis of energy extremum shows that energy FEA is minimal at (Fig. 1.21)

(1.89)

1 2@1
4 4 as ’

1
A = A, = £ arccos [—+— 14—
We found also that in such triangle two differences of azimuthal angles between the molecules
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1.9.2. Optimal azimuthal angles on hexagonal lattice
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Figure 1.21: The optimal azimuthal angle between two DNAs (left) and angle differences in elementary triangles:
A1 solid, Ay — dashed curves. For v > 1, ¢, — w/2, Ay — +7/3, 2A1 — Ay, and the energies of two optimal
triangles equalize.

are equal to A; and the third difference is two times larger. The energy of such triangle, Eq.
(1.87), is
asa? — 2a,a3+10a3 + 2 [2a; fay + 1]/

En, = — . 1.90

When ay 2 2.3a1, the second minimal triangle appears, with

Ay = +27/3. (1.91)
This triangle also has As, Ag, 2A, angle differences, but its energy is higher,
En, = 3(a1—as) /2. (1.92)

Electrostatic interaction of B-DNAs: The assumption of hexagonal DNA lattice is realistic
for R~ 25+34A. For B-DNA-B-DNA electrostatic interaction the expression for coefficients
aj; (R), as (R) are [85], see Eq. (1.30)

167752 (20 — 0 — cos [0.4 71])° Ko (k1 R)
ekt (K7 (k1a)]

167252 [0 — cos [0.8 71]]* Ko (ko R)
, a9 (R) = 3 7 s
ERY [ (K20)]
(1.93)
where kK, = /K> + nQ‘jqij; a is the DNA radius, 6 is the DNA charge compensation fraction, f

is the fraction of cations in the minor groove, x5, is the Debye screening length of the solution.

At separations larger than the separation of spontaneous symmetry breakdown, R > R, all
angle differences between the molecules in elementary triangle are zero (R, is found from
equation 4as (Ry) /a; (R.) = 1). At R < R, these differences are nonzero, Egs. (1.89), (1.91),
and all DNAs in triangle are rotated (shifted) with respect to each other, Fig. 1.20c. We found
that for strong compensation of DNA charge (large #) and strong occupation of major groove
(small f) the only optimal triangle with A; is realized, Fig. 1.22. For relatively small § and
large f the second optimal triangle can appear, Fig. 1.23.

aq (R)
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1.9.2. Optimal azimuthal angles on hexagonal lattice
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Figure 1.22: At close separations the energy of elementary triangle, Ea (z,y), is minimal at nonzero azimuthal
angles between the molecules (at R < 301&). Parameters: 1/kp = 7A, f=0.3,0=0.8. At large R the mutual
azimuthal angle between all DNAs is zero (R = 35A). Predicted nonzero azimuthal angles, which are consistent
with hexagonal lattice, may be the physical reason why the DNA lattices at high densities are frustrated [144].
Due to R — ¢—coupling in the interaction potentail, the increase of azimuthal frustrations can affect (disrupt)
the positional order on the lattice [140].

We find that even at R = 22A the permutation minima of the interaction energy of triangle are separated by
small energy barrier, ~ 0.01kgT/ A (~ bkpT for 500A long DNAs). Frustrations of the mutual angle within the
valley from one minimum to another costs little energy. This weakens biaxial correlations at ambient temperature
and lead to suppression of chiral interactions and, probably, to a cholesteric-hexagonal transition [113].

Beyond nearest-neighbor interactions: The lattice constructed from optimal triangles has
minimal energy; noninteracting triangles are distributed randomly on the lattice. Let now the
molecules on the distance Rv/3 interact and let it may affect the mutual orientation of triangles
on the lattice, but cannot change the optimal angles in triangle, A;,. It is reasonable since
electrostatic interaction decreases nearly exponentially with separation, Eq. (1.93).

Only zero and 3A; angle differences are possible between the molecules on the distance Rv/3.
The interaction energy E (3A;) = [(a1+4a2)2 Vs (aa+2a1) + a1 (ag—aq) (8as — al)] /[16a3] is
always lower than E (0) = as — a;. Thus, at T = 0 the triangles are arranged so that all
angle differences between DNAs on Rv/3-distance are zero (such lattice can be constructed).
With temperature increase the lattice of minimal triangles start to disorder and zero differences
between diagonal molecules will appear.

Finite temperature: phase diagram of DNA assembly. The calculation of the full phase
diagram of dense DNA assembly at finite temperature is a complicated problem. For hexagonal
lattice it is similar 2D XY models in the theory of magnetism and Ising model of order-disorder
transitions, but the R — ¢-coupling in interaction energy makes the problem even more non-
trivial. At high densities however the interaction energy is much larger than the thermal energy,
the low-temperature expansion can be used [143]. The full analysis however is not yet done.
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1.9.3. Observed lattice structures: Hexagonal vs. orthorhombic
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Figure 1.23: At relatively small 6 and high occupation of the minor groove the optimal triangle with angle
difference Ao appears. Six permutation minima corresponding to the first optimal triangle, A, are depicted as
red spots, whereas those for second triangle are seen as yellow spots. Parameters: R = 22A, f=1,60=0.55,
/{151 — 7A. Each color in the column on the right corresponds to 0.01kgT'/ A rise of Ea.

1.9.3 Observed lattice structures: Hexagonal vs. orthorhombic

Experimental facts: Analysis of X-ray-diffraction pictures has shown that natural DNA in
fibers in the presence of alkali cations can adopt A, B, and C configurations [144-146]. The
particular DNA-form is largely determined by the type of cations in solution and relative
humidity around the fibre. These parameters also determine the symmetry of DNA lattices
(hexagonal, orthorhombic, etc.). On each lattice DNA molecules are forces to pack with definite
vertical shifts with respect to each other.

For example, Li-DNAs at 66% relative humidity are in the B-form (10bp/turn) and packed
into orthorhombic crystalline lattice with i% or i% shifts between nearest molecules [144]
(DNA pitch is H = 33.7A) 22, sce Fig. 1.24a. Li-, Na-, K-, and Rb- B-DNAs at 92% humidity
adopt heragonal phase with (O, —i—%, —%) shifts between the molecules in elementary triangle
[144]. It is consistent with (A, A,2A) angle differences, predicted above from the Kornyshev-
Leikin theory, Eqgs. (1.89), (1.91).

At 44% humidities Li-DNA adopt C-form (95bp/turn!), Fig. 1.24, but in no case A-form,
which is however observed in fibers of Na-, Rb-, and K-DNAs at 75% humidity. ?* Li-DNA
adopt hexagonal or orthorhombic lattice with nonzero axial shifts, in contrast to Na- and K-
DNAs, which are packed in monoclinic lattice without any axial shifts [144, 146].

Unfortunately, all experiments have been done for very dense DNA lattices, where the
edge-groove interlocking may take place. Still, some puzzles remain. For example, best-fitting

22The molecules are distributed over two types of sheets (1,2), parallel to DNA axis. Molecules m; are
displaced along DNA axis by 11.0A relative to molecules me. The sheet of contiguous molecules is displaced
randomly either by H/3 or -H/3 along DNA axes relative to the neighboring sheet.

231t suggests that in the osmotic stress experiments, which are usually performed at 10mM of NaCl, B-to-A
transition in dense DNA assemblies can take place. It rearranges water structure around DNAs and can give
rise to entropy increase with compression.
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1.9.3. Observed lattice structures: Hexagonal vs. orthorhombic

Figure 1.24: Arrangement of C-DNAs in the unit cell: (a) orthorhombic packing, (b) hexagonal packing (data
from [146]). B-DNAs adopt orthorhombic lattice similar to (a), but with larger lattice constants, 31. 24, 22.7A,
and 19.3A instead of 31.8A, 20.2A,and 19.0A, respectively, for C-DNA.

(a) vertical shifts +& and +2Z were observed between nearest molecules m; and mj [145]. Nearest DNAs can
also be translated randomly along the axis by i%.

geometrical arrangement has never been observed for C-DNA. It was suggested that it is not
favored electrostatically [145]. Below we explore the consequences of DNA-DNA electrostatic
interaction, Eq. (1.30), on DNA packing symmetry on non-equidistant lattice. 2*

Idea: As was put forward by Parsegian et al. [140], "the orthorhombic phase solves the
angular frustration problem by distorting the hexagonal equilateral into the isosceles triangles."
On the basis of this idea the first phenomenological model of distorted hexagonal lattice has
recently been suggested [141].

Model: We base our analysis on Eq. (1.84) for exact DNA-DNA pair interaction energy.
We calculate the energy Ea of elementary isosceles triangle with angle o # 7/3 near one vortex.
We want to find the optimal value of «, if the density of the lattice is held constant, and the
optimal mutual shift between the molecules.

Extremum of EA however does not result in an analytical expression for the optimal x, y.
Analysis of the energy surface shows that Fa loses the permutation minima, specific for hexag-
onal lattice, and has a shallow minimum for x, y, which satisfy the condition y ~ m — 2x. The
optimal angle differences between DNAs in the triangle are

Ay /221, A2z —7, Ay~ —7/2. (1.94)

Le., two closest molecules are shifted by 7 27r = =, whereas the angles between two other
molecules, which are far apart, can take any value subject to condition y + 2x ~ m. The value
of Ea in the minimum decrease when « decreases. Experiments indeed show [144] that in
orthorhombic lattice some molecules interlock into each other, whereas the other molecules are
several A apart. Thus, electrostatic interaction stimulates packing in non-equidistant lattice,
where the nearest molecules adopt the most favorable mutual orientation.

24This interaction energy may be inaccurate for such tightly packed lattices because (i) the linear PB equation
does not work (potential exceeds kgT'/eg), (ii) the dielectric constant of water is not more macroscopic [147]
and non-local screening may take place [148]. We hope however that it may strongly affect the absolute value
of interaction energy, but not its azimuthal dependence.
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Chapter 2

Interaction and recognition of
non-ideal DN A duplexes

The basic molecular mechanisms that govern the search of DNA homology and subsequent ho-
mologous pairing during synapsis are not completely understood. The complementarity of single
DNA strands and subsequent homologous recombination mediated by RecA-family-proteins are
commonly considered as the basic mechanism of homologous recognition in pro- and eukaryotic
cells. Recent experiments however suggest that there can be also RecA-independent mecha-
nisms of DNA-DNA recognition, which involve direct DNA-DNA interaction. In this chapter
we explore one such mechanism: the recognition of homologous DNA sequences mediated by
their electrostatic interaction.

2.1 DNA-DNA recognition: the role and description

2.1.1 Homologous recombination and the length of homology

The essential problem in genetic recombination is how homologous DNA sequences recognize
each other in gene shuffling reaction or DNA repair. These reactions represent the funda-
mental metabolic activity of life. In vivo, homologous recombination proceeds in many steps
and involves many different molecules. It is often a response to single- or double-stranded
damage of DNA duplex in bacteria and fungi [149,150]. In some yeast and mammalian cells
the chromosomal DNA double-strand breaks are also efficiently repaired by homologous and
illegitimate recombination, respectively [151]. Without these mechanisms a re-arrangement of
genetic information or loss of chromosomal segment would have been unavoidable. In wvitro,
the specificity of homologous sequences to recognize each other on a distance is used for gene
manipulation [152] and gene targeting [153,154]. Thus, the understanding of the mechanisms
of DNA pairing is extremely important.

The dependence of recombination frequency on the length of DNA homology has been mea-
sured for many DNAs in different conditions. For example, minimum 30 and 50 base-pairs
(bp) long DNA homology were shown to be required for recombination between the cII cistrons
of bacteriophage T4 [155] and between plasmid and phage of Escherichia coli [156,157]. It
was also shown that in both cases the recombination frequency reveals two different regions in
dependence on the sequence length L, for short and long sequences. For long sequences in all
experiments the recombination frequency increases linearly with the sequence length, for short
sequences it increases ~ L™ with n > 1. Similar tendencies but with longer required homology
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2.1.2. Electrostatic mechanism of homology recognition

length (150-200 bp) were detected for homologous recombination of mammalian cells [158].
It was shown [156] that mismatches in DNA homology substantially decrease the recombina-
tion frequency (in E.coli for instance reduction of homology from 100% to 90% decreases the
frequency over 40-fold [157]). It suggests that DNA-DNA recognition depends on the comple-
mentarity of DNA sequences over the whole length of homology.

The complementarity of single DNA strands has been considered as a mechanism of recogni-
tion of nucleic acids during synapsis [159]. Random-walk theoretical models of branch migration
during homologous recombination have been developed for description the above-described de-
pendences of recombination frequency [160, 161]. Although these models result in reasonable
linear dependence of recombination frequency for long sequences, and L3—dependence for short
sequences [160], they do not answer the question how the homologous sequences recognize each
other before the onset of recombination process.

2.1.2 Electrostatic mechanism of homology recognition

Recent investigations on pairing of homologous chromosomes of budding yeast [162] suggest that
recognition may proceed via pairing of intact double-stranded DNA fragments. Since reported
recognition is independent of specific recombination proteins (RecA), it was suggested that
"identification of homology at the chromosomal level during somatic pairing is determined
by processes other than those involved in searching for homology at the DNA level during
recombination repair". "In budding yeast, just prior to entering the meiotic program, homologs
are paired via multiple interstitial interactions between chemically intact chromosomes" [163].
It was argued that pairing contact should be unstable and dynamic, that may be initiated by
direct interaction between homologous DNA fragments [162].

Recently it was shown that DNA-DNA electrostatic interaction crucially depends on DNA
surface charge patterns [85] (Section 1.4). From the theory follows that two juxtaposed ideal
helices can attract each other under a favorable mutual azimuthal alignment. This effect gave
rise to a concept of "an electrostatic zipper motif for DNA aggregation" [85]. Modification of
this theory to include the sequence-dependent twist between adjacent DNA monomers [126]
has shown that interaction between two uncorrelated DNA sequences differs dramatically from
the interaction between two homologous sequences. It was argued that this kind of interaction
may be responsible for a snap-shot electrostatic recognition of homologous DNA sequences on
a distance [126].

Basic Idea: Qualitatively, this result may be explained without a complicated algebra.
Indeed, DNA is not an ideal staircase. Step angles are slightly distorted for each step, and the
pattern of these distortions correlates with the text of the sequence [164,165].

Two homologous duplexes in parallel juxtaposition will have almost identical patterns of
distortions of the steps, and they can be aligned in such a way, that the motifs of positive and
negative charges will stay in register along the whole length of the sequence. This strengthens
attraction between the duplexes and allows homologous sequences to recognize each other on
a distance. They can come into a closer juxtaposition from the solution that is necessary for
subsequent recombination process.

On the contrary, two non-homologous sequences have random relative to each other texts
and the related patterns of distortions. Their quasi-helical charge distributions can be po-
sitioned in a register over a certain length, but they will inevitably lose register for longer
sequences. The attraction between them will therefore be much weaker or even turn into re-
pulsion [126]. The characteristic length over which two juxtaposed duplexes with uncorrelated
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2.1.3. Recognition energy and DNA torsional softness

texts completely lose register was found to be equal to [126]
A = h/AQ?, (2.1)

where h is the vertical rise between DNA base pairs and AS2 is the root mean square variation
of the twist angle for each sequence; \. was called the helical coherence length. For B-DNA
h~34A , AQ ~ 0.07 — 0.1rad [166-169], and thus A, ~ 300 — 700A. On the length-scales
larger than A, the mismatch accumulates according to the law of random walk.

The difference between the interaction energy of rigid non-homologous and homologous du-
plexes of the same length is positive and is called recognition energy. It is typically several
kgT for sequences L ~100bp long at interaxial separations of R = 30A [85]. Tt was also shown
that the interaction energy increases nearly exponentially with approach of the duplexes and
the recognition energy grows. The latter is pronounced for long sequences, and is larger the
longer the sequence. This kind of electrostatic, ’snap-shot’ recognition mechanism may explain
the puzzle of homologous recombination: the observed growth of the frequency of recombina-
tion events with the length of DNA homology [155, 156, 158]. The electrostatic recognition of
sequences as a whole could be a source of selective screening in a primary search in which DNA
need not unzip [170].

2.1.3 Recognition energy and DNA torsional softness

These conclusions were derived under assumption that the juxtaposed duplexes are torsionally
rigid. However DNAs have a finite torsional persistent length, A; [126]. In the model this
length depend on DNA torsional rigidity modulus, DNA-DNA interaxial separation, and the
patterns of adsorbed charges, \; ~ 200 — 700A [126]. For sequences longer than the torsional
length, L > )\; the effects of torsional elasticity may not be ignored, although if A\, > A, ~ L,
the account of torsional elasticity could give only a small correction to the recognition energy.
Since typically A\; ~ A. ~ L, the problem needs special analysis.

Torsional elasticity will somehow allow DNA sequences to relax the accumulating mismatch,
at the cost of the energy of torsional deformation. This will diminish the corresponding recog-
nition energy. The effect will be the stronger the torsionally softer the molecules. But how
will it be realized and how much will it change the recognition energy dependence on the se-
quence length is most interesting to know. The basic equation for approaching this problem
was suggested in Ref. [126], but it was solved there only in the limit of (A\;/A.) — oco. In this
Chapter we treat this problem also for very soft sequences, (\;/\.) < 1, and in intermediate
case, (A¢/Ac) ~ 1.

There is a number of experimental indications on the importance of DNA torsional deforma-
tions. It is well established that DNA structure changes in dense aggregates subject to external
conditions. The impetus for the observed DNA overwinding from 10.4—10.6 bp per DNA heli-
cal pitch in solutions [108,171] to nearly 10 bp/pitch in hydrated fibers [109] as well as B-to-A
DNA transition in dense aggregates at low humidity [144,146], was recently explained by the
gain in corresponding electrostatic interaction energy [107,112]. We are unaware of experimen-
tally detected laws of how torsional unwinding-overwinding relaxes the energy, accumulated
due to intrinsic distortions mismatch. However, the correlations between B-DNA twisting and
base-pair morphology were repeatedly discussed [166].

The theory predicts that sequence-dependent DNA twist prevents attraction between rigid
DNA duplexes with uncorrelated texts [126]. It is known, however, that in vitro some ions
cause aggregation of even random DNAs [37]. Some of these cations, in particular cobalt hex-
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ammine, are known to destabilize DNA backbone [45], that may help DNA to condense. It was
established that identical sequences aggregate without significant backbone deformations [168],
contrary to random fragments. This may be considered as another indication that torsional
deformations are important for DNA-DNA recognition. In addition, the value of DNA torsional
rigidity [172,173] may strongly depend on external conditions (specifically adsorbing cations,
properties of solution, temperature, etc.). Thus, if the effect of finite torsional rigidity on the
recognition energy were strong, one could expect a nontrivial influence of external conditions
on the identification of homology.

Below we explore the effect of finite DNA torsional rigidity on electrostatic interaction of
helically imperfect DNA duplexes [174]. In Section 2.2 we derive the basic equations in the
simplest approximation for DNA-DNA interaction energy. In Sections 2.3 and 2.4 we find
approximate solutions of these equations for rigid and soft helices, and calculate the energy
of the system. In Section 2.5 we use the parabolic approximation to estimate the energy of
interacting duplexes with B-DNA parameters. In Section 2.6 we discuss the consequences of
the model when a more accurate expression for interaction energy is used. In Section 2.8 we
derive kink-like solutions of Euler equation for ideal helices and discuss their importance.

2.2 The free energy functional

The interaction free energy of ideal DNA duplexes of the length L at interaxial separation R
has been calculated in Refs. [84,85]. It can be written in the form

Eiut = L{ag (R) — a1 (R) cos [0¢] + a2 (R) cos [209]] (2.2)

with the coefficients a; (R) decaying nearly exponentially with R (when R > A\p) (see Appendix
A). They depend crucially on DNA surface charge pattern. Since coefficients a; quickly decrease
with index 7, the first two d¢-dependent terms usually reproduce basic dependence of interaction
energy on mutual azimuthal orientation of the molecules [84] (see footnote in Appendix A).

Here mutual orientational angle is the difference of azimuthal orientations of the middle of
the minor groove of two molecules, Fig. 2.1,

5 = By — Do (2.3)

For ideal helices this angle does not change along the molecules in juxtaposition, i.e. along
z-axis.

However DNA is not an ideal helix, and d¢ changes along axis z. Within one molecule each
combination of adjacent base pairs has a preferred twist angle Q2 = (Q) + AQ, (Q) = 34° — 35°
and AQ) = 4° — 6° [167-169]. The distribution of the preferred twist angle, Q2 (z), is a sequence
"fingerprint", Fig. 2.2.

Using expression (2.2) for a local density of interaction energy, which is valid for long
(L > H) molecules with small twit variation (|AQ| < (Q2)), we may write

L

Eu (L) =~ /dz {ag (R) — a1 (R) cos [0¢ (2)] + a2 (R) cos [20¢ (2)]}. (2.4)

0

For each of the molecules in juxtaposition the actual twist angle may differ from 2 (z)
because intermolecular interaction (and thermal fluctuations) may cause torsional deformation
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2.2. The free energy functional

Z axis 3¢(z) =, (z) -,(2)

Figure 2.1: A plane perpendicular to two non-ideal B-DNA helices on the distance R. Cross sections of the
phosphate strands are depicted as bright circles. We describe the orientation of bp on each molecule at axial
position z by the azimuthal angle ®; 2 (z) of the middle of the minor groove. Each combination of adjacent bp
has a preferred twist angle €21 5 (2) = () £ AQ (z), where AQ = 4° — 6° [167].
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Figure 2.2: Homologous sequences are in register (b), whereas for mnon-homologous sequences the sequence-
dependent twist destroyes the register (c) (data from [126]). (a) B-DNA schematically drawn as a stack of base
pairs. Each base pair has two negatively charged phosphate groups. Sequence-dependent twist variation €2 (z)
leads to local variation of DNA helical pitch H (z).

of DNA. To find this angle we write the torsional energy for each molecule in the form

pum$ [ (22 ) 25

where C' is DNA torsional rigidity modulus, and index ¢ = 1,2 labels the molecules. In calcu-
lations below we will use the value of C'= 3 x 107" ergcm [172]. !

IThe latter of course depends on DNA bp-sequence, the presence of cations and environmental conditions.
However at ambient physiological conditions 107! ergcm order of magnitude is certain. For instance, the
values of [172] C ~ 3.4 x 107 ergem and [175] C ~ 2.4 x 1079 ergcm have been reported, on the basis of
experiments on cyclization kinetics. The Monte-Carlo simulations of ring closure probabilities coupled with
statistical mechanics of DNA chains give a value very close to the former estimate [172]. Measurements of
DNA supercoiling free energy [176] treated by means of the statistical mechanics of supercoils give C' =~ 2.9 x
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2.2. The free energy functional

The sum of interaction and torsional free energies gives the total free energy as a functional
of §¢ (z). The minimum of the functional provides the most favorable local azimuthal alignment
of torsionally flexible DNAs. In the main part of this Chapter we consider a simplified form
of interaction energy, in which the as— term is neglected in Eq. (2.4). This is appropriate for
not too close separations between the duplexes and for high occupation of major grooves by
adsorbed cations [85]. The results for as # 0 are more sophisticated and briefly discussed in
Section 2.7.

Then the total energy of two DNA duplexes in juxtaposition reads (see Appendix A)

L/h

C (dbg(2) 2
E(L)~h / [ag —aycos [0¢ (Z)] + el ( ¥ 5Q(Z)) dz, (2.6)
0
where Z = z/h is the corresponding lengths scaled to the vertical rise;
NZ) =0 (2) - (2). (2.7

)

For homologous sequences 6€) (Z) = 0, whereas for non-homologous, random sequences 02 (Z)

can be approximated by a delta-correlated random Gaussian field with zero average, (0§ (Z)) =
0,

(6Q(2)60(Z))) = 200%5 (Z — 7)), (2.8)

where AS) is the root-mean-square variation of the twist on each sequence. Minimizing energy
functional (2.6), we obtain the Euler equation on the running optimal mutual azimuthal angle

5.(2), "
dz?

— k*sin [0¢] = LZS—ZQ (2.9)

e
A = 0 (2.10)

is the characteristic torsional length. It decreases with approach of the duplexes, Fig. 2.6, and
with their softening.

Eq. (2.9) is the Sine-Gordon equation in a random field. Many non-trivial solutions of this
equation have been investigated (Brownian motion in periodic potential [177], kink-dynamics
in random media [178-181], soliton pinning by impurities [182-185], Frenkel-Kontorova model
[186] and non-linear oscillations [187], etc.). For parameters of real DNA in standard conditions
solution of Eq. (2.9) may not involve a coupling of disorder and non-linearity and can be
investigated in simple harmonic approximation, Sections 2.4 and 2.5.

Below we solve Eq. (2.9) in this regime, insert the solution into Eq. (2.6), average the
energy over the realizations of 62 (z), and thus get the mean-field system energy as a function
of model parameters.

Here k = h/ )\, where

10~%ergem [173], if DNA is modeled as an elastic isotropic rod.
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2.3. Rigid DNA duplexes

2.3 Rigid DNA duplexes

Consider the case of absolutely rigid chains: £ = 0. It was studied in Ref. [126], and we
essentially reproduce its results for the simplified form of the interaction energy, Eq. (2.6). We
also extend them for duplexes of finite length.

Since k = 0, the second term in the r.h.s. of Eq. (2.9) is absent. Then, d¢ (Z) is not
affected by the interaction between duplexes, but is predetermined by the intrinsic pattern of
twist angle 692 (Z) (the one they would have had, if they did not interact with each other):

dss (2)
dz

= 6Q(2). (2.11)

(the constant of integration is of no importance for the calculation and is put to zero). The
solution of Eq. (2.9), satisfying the boundary condition

00 (Z)| 720 =0 (2.12)
is
z
0p(Z) = /5Q(Z’)dZ’. (2.13)
0
Using the Gaussian-statistics we find
(cos [0¢ (2)]) = e 3 (0¢°(2) = e (2.14)

i.e. the angular correlations decrease exponentially along the helices; the decay length is equal
to the coherence length. The larger the deviation of the twist angle from its mean value, the
faster the decay of correlations along the molecules. For long sequences d¢(Z) obeys the law of
random walk: its mean square displacement increases o< L, whereas short sequences (L < A.)
remain correlated due to condition (2.12).

The average energy reads

(BE(L)) = aoL — ar A (1 — e7"/) . (2.15)

Since a1 > 0, (E' (L)) increases with L linearly for long sequences (L > \.), Fig. 2.3. First
correction in kK < 1 reveals the same tendency (Appendix B). For short sequences (L < A.),
(E (L)) decreases since d¢ (Z) is situated near the minimum of interaction energy, Eq. (2.14).
Thus, the helical non-ideality of rigid DNAs disrupts strand-groove register [85] and long rigid
DNA fragments with uncorrelated texts always repel each other [126].

The recognition energy, AFE, is the difference between the interaction energy of uncorrelated
sequences and the interaction energy of identical sequences

(E (L)) = (ag — a1) L. (2.16)

It has the form
AE (L) = ai)e [L/Ac + e FP —1]. (2.17)

This energy increases with L linearly for long sequences (L > \.),

AE ~ aiL, (2.18)
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but it vanishes quadratically for short sequences (L < A.),
AE =~ a,L*/ (2)\.) . (2.19)

Note that the used approximation is strictly valid for DNA duplexes of finite rigidity it they
are much shorter than \;.

Azimuthally free sequences: The case considered above corresponds to the situation when the
two duplexes are fixed on one end and have second end free. But how do two ’azimuthally free’
DNA duplexes align? Let them be free to decide at which point Z, they choose d¢ (Z,) = 0.
Integrating Eq. (2.11), we get d¢ (Z f 5. 0Q(Z')dZ'. The energy minimization over Z,
results in Z, = L/ (2h), i.e. correlatlons persist from the center of the chains to their ends.

The average energy,
(E(L)) = aoL — 2a1 A\ (1 — e 2/ | (2.20)

is thus lower than energy (2.15), Fig. 2.4. The recognition energy,
AE = ai). [L/ A+ 2e 22X — 2] (2.21)

coincides with Eq. (2.17) in the limit of long L, as it should be, but for short duplexes it
increases with L? two times slower, AE = a; L?/ (4)\.).

2.4 Soft DNA duplexes

2.4.1 Infinite sequences

Below we consider the case when the interaction energy of two DNAs is much larger than their
torsional energy. It is the case of small C' and large a4, i.e. short \;. This case, opposite to the
one considered in the previous section, will be called the limit of soft fragments. In this limit,
the duplexes relax practically after each torsional mismatch, keeping d¢ close to zero.

Thus, we may replace sin [d¢ (Z)] by d¢ (Z) in Eq. (2.9) (harmonic approximation), which
results in linear differential equation

d*5¢ 9 dos)
The solution of this equation for infinite chains reads
2 doQ2 (Z")
5 - = dZI —R|Z=Z"| YA\~ ) —
/ i
Z [e¢)
e—/{Z , KZ
5 / dZ'e* 5Q (2" — / dZ'e "7 5Q(Z") . (2.23)
—oo Z
It is only valid if
At
4] = 2.24
(56(2)) = o 220

i.e., for soft chains (short \;) or for small AQ (long )\.). Note that the average in Eq. (2.24)
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2.4.2. Finite sequences

does not depend on the coordinate along the chains, since we have neglected by boundary
conditions in Eq. (2.23). Compared to rigid fragments, there will be a long-range order in the
mutual alignment of the duplexes: correlations persist along the whole length of the fragments.
Since ((dé¢/dZ — 5Q)Q> = k2 (8¢* (Z)), the average energy for solution (2.23) is calculated

from Eq. (2.6) as
(E(L)) = apL — ay L [e7/™) — ),/ (4).)] - (2.25)

However, in order to stay within the accuracy of linear approximation, we should expand the
exponential, i.e.

(E(L)) = a0l — arL[1 = A/ (20.)]. (2.26)

Thus, the total energy of soft chains is proportional to the sequence length L (dotted-dashed
line in Fig. 2.3b), because each azimuthal mismatch is corrected by local torsional deformation
of the backbone. The recognition energy for soft duplexes is proportional to L for all L

At
2.

AFE =a L—. (2.27)
As follows from Eq. (2.25), one half of AE comes from the energy of torsional adjustment, and

another half — is the difference of interaction energy of homologous (d¢ = 0 ) and uncorrelated
chains. Note, that solution (2.23) must not satisfy condition (2.12).

2.4.2 Finite sequences

The general solution of Eq. (2.22) is

5¢ (Z) = Aleinz + A26”2+

Z
—KZ 2

e KZ

/59 (€) e"ede — 5 /59 (€) e™"edE + 0

Z1 Z

O (Z)) esZre~2 — §5Q (Zy) e K222
2K ’

e

(2.28)

where the limits of integration Z;» and the constants A; o are arbitrary. Their values should
be obtained from the boundary conditions. Without loss of generality we put Z; =0, Z; = L
and

02 (0) =002 (L) = 0. (2.29)

Since we expect that solution (2.28) is valid also only for soft sequences, we again use the
harmonic approximation expanding (cos [6¢ (Z)]) =~ 1 — (6¢ (Z )2> /2 in interaction energy. It
simplifies the expression for average energy, the minimization of which with respect to A
gives A; = Ay = 0. Thus, the average

—QZ/At —2(L—Z)/At
A [1 e ] (2.30)

(90 (2)) = 2N, 2

decays with the length \;/2 to the value calculated for infinite soft chains, Eq. (2.24). The
third term in the calculated average energy,

(E (L)) = aoL — a,L (1 - ;;) - ‘ZAA? (1 — exp [—QA—LD , (2.31)
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2.5. Approximate solution in parabolic approximation

is the correction to Eq. (2.26), which takes into account the finite length of the duplexes (see
Fig. 2.3). This term is negative, since soft finite chains are more correlated on the ends, Eq.
(2.30), due to condition (2.29).

The calculated recognition energy (Fig. 2.5),

A a )\

AFE :alLQ)\C 4)\6

(1 - exp[~2L/\]), (2.32)

increases linearly for long (L > \;) sequences,

At
AE~aiLo (2.33)

It increases \;/ (2).)-times slower with L than the recognition energy of long rigid chains, Eq.
(2.18). AFE increases quadratically for short (L < A;) sequences, similarly to the recognition
energy of rigid chains, Eq. (2.17), AE =~ a;L?/(2).). This is understandable, since both
approximations consider the sequences much shorter than DNA torsional length, ;.

2.5 Approximate solution in parabolic approximation

Below we find approximate solution of Eq. (2.9) which allows us to calculate the energy of
much more rigid chains and of the chains with larger twist variation, than in the limit of soft
chains. It appears than the interaction of random B-DNA sequences and the adjustment of
their twist patterns can be considered by this method.

The main difficulty in solving Eq. (2.9) is in its nonlinearity. However, a fairly good
approximation to it could be obtained if the — cos [§¢] in Eq. (2.6) is replaced by two parabolas
with a minimum at d¢ = 0 and a maximum at d¢ = w. The parabolas, which intercept

dp-axis at —m/2, m/2 and 7/2, 37/2, are given by the functions U; (d¢) = —ay ( - %%)

2

and Us (0¢) = ay (1 — %M), in these intervals, respectively. © We model the potential

—ay cos [0¢] on whole axis by 27 -periodic translations of these parabolas.
Then, in the interval of —7/2 < d¢ < 37/2, the corresponding Euler equations are

266, 450
W - H0(5¢1 = d—Z, — 7T/2 S 5¢1 S 7T/2, (234)
250, 5

where kg = kv/8/m. The solution for §¢, (Z) is constructed similarly to solution (2.28). In
considered region the solution of Egs. (2.34), (2.35) must be matched in the point where
d¢, = m/2. The matching procedure is, however, ambiguous in view of the random functions
under the integrals. We therefore use an approzrimate condition on the mean squared angle,
assuming that Eq. (2.34) is valid when

\/ (603 (2)) < /2. (2.36)

2Such approximation makes soft chains softer and gives lower estimation for their energy.
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2.6. How to affect the recognition energy?

Comparing this condition with condition (2.24) makes it clear that the range of validity of
d¢, is much larger than of soft chains solution, Eq. (2.23). It makes d¢, valid for more rigid
chains and for larger AQ. It appears that for the typical values of parameters of B-DNA this
approximate solution is quite representative for any length of the sequence.

Thus, we get that

and the average energy (Fig. 2.3)
M V8 N V82L
E (L)) =aol — a1 L —— | 1- — . 2.
(L) = al—a < 2\, w> Y e Y (2:38)

According to condition (2.36), the average angle remains within the first parabola when

A/ e < V21 (2.39)

This determines the region of parameters where d¢, is valid and no d¢, solution exists. This
constraint is much weaker than the inequality (2.24), that is the basic advantage of parabolic
approximation.

Criterion (2.39) however fails (i) for large AQ (small A\.: mismatch accumulated very
quickly), (ii) for very rigid chains (at large C: chains are not soft enough to correct the angle
mismatches), (iii) when DNAs are far apart form each other (the case of small a; and thus
large ¢, when electrostatic forces are not strong enough to keep d¢ near zero). Eventually,
for B-DNAs at R = 30A interaxial separation, A, = 200 + 800A (at physiological conditions),
A, = 200 + 600A [126], and that warrants the validity of Eq. (2.38).

2.6 How to affect the recognition energy?

Energy comparing: rigid and soft duplexes. The averaged interaction energies for all the dis-
cussed approximations are displayed in Fig. 2.3. The basic conclusions are: (i) the energy of
long absolutely rigid duplexes increases with the sequence length L and they repel each other;
(ii) the energy of soft duplexes decreases ~L, and the duplexes can attract each other always
acquiring the optimal azimuthal configuration. The finite torsional rigidity thus allows DNAs to
correct the accumulating mismatch and turn repulsion into attraction. The attraction-repulsion
behavior of unrelated B-DNA sequences depends on their groove occupation, Fig. (2.3).

Possible mechanism of homologous recombination: Homologous recombination is commonly
believed to be initiated by breaks in DNA duplex. Specialized RecA proteins are thought
to coat the 3’ single-stranded tails produced from such breaks. This complex promotes the
association of an intact partner double helix and catalyzes the exchange with homologous
sequence [162,188]. This is the basic mechanism of homologous recombination in E.coli [156].
Corresponding RecA homologs can also be involved in homologous recombination of eukaryotic
cells [188]. However, RecA-independent homologous recombination in pairing of chromosomes
in yeast [162] suggests that direct DNA-DNA interaction are important for alignment and
exchange of homologous DNA sequences as well.
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Figure 2.3: Torsional softness decreases the energy of DNA sequences with uncorrelated texts. Negative energy
values indicate favorable juxtaposition compared to infinite separation between the duplexes. Parameters:
R=30A,a=9A,0=08,1/kp =TA, A\, = 310A; (a) f = 0.5, \; = 324A and (b) f = 0.3, \; = 158A. In case
(a) DNAs are rigid and soft-chains-approximation does not work; in case (b) A\:;/ (2)\.) & 1/4 and the chains
are soft. Compared to rigid sequences, the energy of soft chains decreases with the sequence length and such
sequences can attract each other. Notations: the average energy of homologous sequences (dotted), random
absolutely rigid sequences, Eq. (2.15) (solid), random soft sequences, Eq. (2.26) (dotted-dashed) and Eq. (
2.31) (short-dashed), and random sequences within the parabolic approximation, Eq. (2.38) (long-dashed).
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Figure 2.4: Energy of optimally aligned rigid finite chains (long dashes) is lower than their energy when one
end of chains is fized (solid). Thick curves: az # 0 in ( 2.2), thin curves: az = 0. Dotted curves: homologous
sequences, Eqgs. (2.16), (2.42); long-dashed curves: azimuthally free rigid sequences, Eqgs. (2.20), (2.41); solid
curves: rigid sequences with one end fixed, Egs. (2.15), (2.40). Parameters of Fig. 2.3b.
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2.6. How to affect the recognition energy?

It was shown [189] that in synaptic complex RecA pairs as short as 8 bp-long homol-
ogy sequences. It seems to be too short both for avoiding of mistakes [190] and for carrying
genome-wide search. The effective homologous recombination requires on the other hand 50-200
bp homology [155]. It suggests an alternative, two-step mechanism of homologous recombina-
tion [126]: the first step is a cross-grained alignment of 50-200 bp long DNA sequences, governed
by direct DNA-DNA interactions, and the second step is the precise match of ~ 10bp-long frag-
ments, which may involve specific proteins. To test this hypothesis more advanced experiments
should be done.

Recognition energy: In this Chapter we explore the role of DNA torsional rigidity on ho-
mology recognition of the first step of this scheme. We show that although recognition energy
decreases for soft sequences, still it is ~ kgT' for 200bp-long homology, that warrants the efficient
recognition of homologous DNA fragments.

The recognition energy of long duplexes increases proportionally their length, Fig. 2.5. Its
slope depends on A\; and )., being maximal for rigid chains, Eq. (2.18), and minimal for soft
chains, Eq. (2.27). For short sequences the recognition energy increases quadratically with
the length of the sequence, Eq. (2.19). Similar nonlinear increase of recombination frequency
for DNA homologous sequences shorter than 50bp was indeed observed in recombination of
E.coli [157] and T4 phage, Fig. 2.5a.

Effect of parameters: Expressions (2.15), (2.26), (2.32), and (2.38) describe the dependence
of the recognition energy on (i) DNA-DNA separation, the external parameters ((ii) temper-
ature, (iii) Debye screening length of solution, etc.), and DNA intrinsic parameters ((iv) rms
variation of twist angle, AQ, and (v) counterion partitioning on DNA). Consider each effect
separately.

(i) if molecules are forced into closer juxtaposition, A\, ~ a; "/ decreases (Fig. 2.6) and
DNAs adjust their sequence-dependent twist patterns better. The recognition energy for long
sequences (both rigid and soft) is ~ a; and increases nearly exponentially when R decreases.
Thus, the recognition energy increases ~ a}/ 2,

(ii) Temperature-induced twist fluctuations, which were not taken into account in the present
work, may also facilitate the complementarity of twist-angle-patterns in a proper temperature
range (c.f. the mechanism of temperature-induced complementarity proposed in Ref. [127]).
With temperature increase DNAs can make torsional deformations easier that decreases the
recognition energy.

(iii) DNA-DNA interaction energy depends on Debye screening length via screening expo-
nents and pre-exponential factor, Eqs. (A.4), (A.5). In particular, at higher ionic strength of
solution DNA charges are screened better that decreases the recognition energy.

(iv) The effect of base-pair sequence is considered in the model through DNA coherence
length \.. ? It decreases with increase of root-mean-square variation of the twist angle, ASQ.
It leads to disruption of strand-groove register on shorter lengths and increases the recognition
energy, especially of long soft chains.

3The dependence of DNA twist rigidity on bp-sequence, predicted in computer simulations of real DNAs [191],
can modify the results of the present model, being particularly important for kink-solitons, Section 2.7.

In addition, DNA is an extendable molecule [193]. The most known example of it is the variable 142-149
number of bp per turn of nucleosome [192]. DNA can be compressed or elongated in some bp sequences up to
1.5 times [193]. Such huge extension of the duplex, as well as its unwinding (18.5 bp per right-handed turn), is
believed to be important for homologous recognition of RecA-ss-DNA and dsDNA fragments [191]. It can also
be important for adjustment of sequence-dependent charge patterns on interacting DNAs in our model, since
DNA backbone gets one more degree of freedom to relax twist mismatches.
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Figure 2.5: Frequency of homologous recombination events measured by deletion-by-deletion crosses in T4 bac-
teriophage [155] (a) and the predicted electrostatic recognition energy (b) increase linearly with the legngth of
homology. Parameters as in Fig. 2.3b, i.e. R = 30A that is quite representative distance between homologous
DNAs before and during recombination process. (a) The region of DNA homology is limited between the dele-
tions in two phage DNAs. Triangles, empty and filled circles correspond to various location of deletions along
DNA; the line is least square fit to data. 50bp is the minimal length of DNA homology required for primary
pathway for recombination in T4. For shorter sequences the second mode of recombination with ~ L?>1 -law
was also detected [155]. In spite of the fact that the measured recombination frequency is independent of
RecA-family-proteins, its similarity with calculated recognition energy should not be overestimated.

(v) Last but not least, coefficients a; depend crucially on the patterns of adsorbed charges
(see Appendix A). For example, strong occupation of the major groove decreases \; substan-
tially (Fig. 2.6) that allows DNAs to make torsional adjustment easier and decreases the recog-
nition energy (Fig. 2.5). * If the electrostatic mechanism is indeed involved in recombination
process, this fact should affect the homology recognition.

All these parameters may control the efficiency of homologous recombination and it would
have been extremely interesting to explore possible effects of this kind experimentally. For
instance, the difference in electrostatic interaction of homologous and non-homologous sequences
could be detected by osmotic stress experiments. °

Conclusions. We have calculated the interaction energy of torsionally non-rigid helically
non-ideal DNA helices. We have shown that the recognition energy of torsionally soft duplexes
decreases with chains softening. We have also found that for typical parameters of B-DNA the
recognition, although diminished by torsional elasticity, is still possible. We have revealed a
number of factors that can affect the recognition energy.

4This dramatic DNA softening suggests a hint why many cations, which bind in the major groove, cause
precipitation of unrelated DNA sequences [37], whereas those bound in the minor groove, do not.

’Even if a force difference will be seen, the contribution of other forces must be somehow excluded (different
sequences have different patterns of hydration, they interact differently with ions, and may have different bp-
dependent torsional moduli). Only after this one can say unambiguously that the observed difference comes

exclusively from the different laws of electrostatic interaction of homologous and non-homologous sequences. It
is however difficult to do for DNA.
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Figure 2.6: The torsional lengths X, (thin), Ay, (thick solid) and X (thick dashed curve) describe the torsional
softness of DNA duplexes in the model. Parameters: 6 = 0.8, k' = 7A, (left) f = 0.3; (right): R = 30A. A
decreases with approaching of the duplexes and with occupation of the major (an minor) groove. A diverges
when a; vanishes, 28 — 6 — cos [0.47] = 0.

2.7 Beyond cos(d¢) interaction potential: ready to kink

In this Section we explore the basic consequences of interaction energy (2.4) with as # 0. Below
we calculate the energy of the rigid chains, following [126], and use the harmonic approximation
to calculate the energy of soft chains.

2.7.1 Rigid chains

Within the approximation of absolutely rigid chains, Eq.
random sequences of the length L is [126]

(2.13), the interaction energy of

(B (L)) = aoL — arA. (1 — e7") + GQTAC (1— 2, (2.40)

the energy of azimuthally free unrelated sequences at the most favorable alignment is lower

Ac
(E (L)) = aoL — 2ay\e (1 — e74/*) + 2@T (1— e 2/, (2.41)
the energy of identical sequences is the most favorable
<E (L)> = ((IO —ay + (12) L. (242)

All energies are shown in Fig. 2.4.

2.7.2 Soft chains: Two-well-approximation

The simplest cos [d¢]-approximation considered above works reasonably well at separations,
larger than the separations of spontaneous symmetry breakdown R, ~ 30+ 35A in the interac-
tion potential [84]. (R, is determined from the condition a; (R.) /[4as (R.)] = 1). At smaller
separations we should also account for cos [20¢]-term in Eiy (0¢), Eq. (2.2).

Large separations. At R > R, the mutual angle §¢ = 0 minimizes Ej,. In the harmonic
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2.7.3. The role of kink-solitons

approximation (¢ < 1), analogously to (2.26), for average energy we obtain

(E (L)) = agL — (a1 — az) L + [a1 — 4as] N/ (2).) (2.43)

where \; = \/C/[2(a; — 4as)] is a new DNA torsional length [85].

Small separations. At R < R, the interaction energy has a two-well shape, the angles
d¢, = tarccos[ay/ (4az)] describes the minima of Fiy. If rms twist variation A2 is small or
DNA torsional rigidity is small, d¢ will develop near the bottom of one energy well and no
transition between the wells occurs. The criterion of validity of this approximation can be
written, analogously to (2.36), in terms of mean squared angle, i.e. when

(66— 60.,)%) < 06, (2.44)

or —Ye2__ < arccos? [4“—1}

AeV/24/ (4a2)2—a% a2

Then, using harmonic approximation for the shape of interaction energy near the minimum,
we get

(E(L)) = agL — (g% + a2> L+ [4@ — a—ﬂ A : (2.45)

where A, = \/C/[2 (4ay — a2/ (4ay))] is new DNA torsional length.

Since in both cases we effectively consider soft chains, interaction energy (2.43) and (2.45)
is the sum of the energy of homologous sequences plus a positive term proportional to DNA
torsional rigidity modulus. Criterion (2.44) fails near R,, as well as the harmonic approximation

used for R > R,, when the torsional lengths M and diverge (Fig. 2.6).

2.7.3 The role of kink-solitons

Large AQ and large C' may however cause the variation of angle ~ d¢,, and the approximation
of single parabola, Eqgs. (2.43), (2.45), fails. At R < R, a kink-like transition in 0¢ (Z) may
take place, which switch the energy minima from one well to another (see small kink, Section
2.8). It can prevent the accumulation of large mismatches. At R > R, only 0 — 27 transition
can exist (big kink), that can require much larger mismatches and increases the energy of the
system.

Biological importance: The torsional dynamic solitons on DNA may be responsible, in
particular, for transport of specific proteins along the DNA [194]. It is suggested that proteins
binding cause conformational distortion of DNA backbone, which may travel along the molecule
without dispersion, carrying protein to corresponding gene (~1kbp apart). It was shown that
the static Sine-Gordon-like soliton placed within the promoter region develops along the DNA,
whereas it remains static being placed outside this region [194].

Another indication of importance of undamped dynamic torsional deformation of the duplex
comes from the observations of homologous recombination occurring in some yeast far (~ 30
kbp!) from double-strand DNA breaks [150]. As one possible mechanism it was suggested
that a "recombination machine" which consists of special enzymes and proteins, can entry at
double-strand break and travel along DNA to a distant point before promoting recombination.

73



2.8. Azimuthal kinks on ideal non-rigid DNA duplexes

2.8 Azimuthal kinks on ideal non-rigid DNA duplexes

In previous Sections we have considered the effect of sequence-dependent DNA twist on the
behavior of mutual azimuthal angle d¢ (2) on rigid and soft chains. The approximations used did
not however imply a kink-like solution for d¢ (z) . Here we consider the effect of DNA torsional
softness on azimuthal angle of two ideal DNAs and investigate whether the interaction potential
(2.46) implies a kink-like solution along interacting DNA duplexes.
As follows from Eq. (1.30), the pair local DNA-DNA interaction free energy has the form [85]
(per unit length)
Eint (00) = —ay (R) cos [0¢] + 2as (R) cos? [0¢] (2.46)

where a; (R), as (R) are positively defined functions, exponentially decaying with DNA-DNA
interaxial separation R (see Appendix A). These functions depend on DNA charge compen-
sation 6, the fraction of counterions in the minor groove, f, the reciprocal Debye screening
length of the solution, /151. All these parameters are assumed below to be independent on R,
possible effects of non-fixed patterns of adsorbed cation and increasing xp with approach of
the molecules are considered in Chapter 1, [86].

As we noted, minimization of €y, (d¢) results in equation: sin [0¢] (a; — 4ag cos [0¢]) = 0.
Its solution is d¢ = 0 (mod 27), when R > R,, and

d¢, = * arccos (:—1> , (2.47)

a2
when R < R,. Le., the spontaneous symmetry breakdown occurs and nonzero mutual azimuthal

angle are optimal when two DNAs are closer than critical separation R, [84], Fig. 2.9. R, is

found from the condition 4‘22((%3) =1 and is 30-35A for typical DNA parameters. The value of

interaction energy in the minima is €y (0) = 2as — a1, when R > R,, and & (09,) = —%,
when R < R,.

The angles 6¢ = 0, 27,47, ... and d¢ = d¢,, constant along the chains, describe the absolute
energy minimum. The possible transitions between the angles in each set describe the states of
the system with higher energy. We describe the properties of these excited states in the next
Sections.

2.8.1 Free energy functional and basic equations

Below we consider DNA torsional elastic energy in the simplest model [126] with macroscopic
rigidity modulus C' ~ 3 x 107! erg cm [172,173], that leads to the following Hamiltonian of
the system of two non-rigid ideal DNA molecules [195]

+oo C [dd,\> C [dd;\°
H = /Oo dz {5int (P — Dy) + 5 (E) + 5 (E) . (2.48)

The variation of H with respect to ®; and P, leads to the following equation (see Appendix

A)
agint 826¢
=C . 2.49
00 022 (2.49)
Multiplying both sides on % and integrating from 2y to z, we get the Euler mean-filed equation
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on the local mutual azimuthal angle

1o, 5¢(2) déo
4/ — (2 — = ) 2.50
C (2 = 20) /6(13(20) \/5int (69) — it (0¢) ( )

We expect this equation to have a kink-like solutions. It is useful thus to choose zy to be the
position of the center of the kink. This can be done by choosing d¢ (z) to be the value of J¢
at the center of the kink. Like for the Sine-Gordon kink, we choose below zy = 0.

The energy of topological kink with the shape described by Eq. (2.50), is determined as

op(z

E=+C / \/gmt (60) — €int (6D (2.51)

Z—*OO

2.8.2 Big kink

At R>R, angles d¢ = 0(mod 27) describe the minima of interaction energy of two DNAs. The
kink solution derived below describe the transition along the molecule between two nearest
minima of interaction energy, d¢ = 0 and d¢ = 2w. We will call below this kink-soliton "big"
kink.

Thus, we put d¢ (0) = 7. Then Eq. (2.50) turns into the following equation

[day [ dé¢
+ T /7T V1 —cos[6¢] — v {1 — cos? [6¢]} (252)

where
v =2as/a; < 1/2. (2.53)
Direct integration of Eq. (2.52) gives
4 V1—2v 0¢p/2
\/ﬂz = arctanh V1 — 2 cos [0/ ] : (2.54)
V7 (14 cos[0¢]) —

Resolving Eq. (2.54) with respect to d¢ (2), we get the shape of the big kink

sinh?[Z]—(1—27)
arccos {—sinhQ[ZH—(l—Q'y)} , 4<0

_ sinh®(Z] - (1-2) ’
271 — arccos {sinh2[2}+(1f2~/)} , 4 >0

0y (2) = (2.55)

where the dimensionless length along the molecule, Z = 2y/1 — 2~ 2‘” , has been introduced.
At v = 0 big kink turns into Sine-Gordon kink,

dbgq (2) = darctan [exp <iﬁ>] , (2.56)

with energy Fsg = 8\a1 = 4/2/Cay.
The half-width of d¢, (2) is determined by 1/ <\/1 — 27,/%) = \/+/1—2v. The DNA

torsional length is A\, ~ 200 — 500A for typical parameters, Fig. 2.6. The larger the DNA
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Figure 2.7: Energy of kinks on ideal torsionally soft DNA duplezes. Big kink, Eq. (2.57), (solid curve) exists at
large separations R > R, (v < 1/2) and coresponds to 0— 27 azimuthal rotation of mutual orientation angle.
Small kink, Eq. (2.60), exists at R < R. and corresponds to —d¢, — +0¢, rotation, (dotted-dashed curve)
and to ¢, — 27 — d¢, rotation (dashed curve). When « >> 1, the energies of the latter rotations equalize since

0¢, — /2.

torsional rigidity, the wider the kink. When DNAs approach closer to each other, the coefficient
a; (R) increases, that decreases the kink width. (stronger interaction can make more localized
kink). In the point of spontaneous symmetry breakdown, at v = 1/2, the width of the big kink
diverges.

Kink-solution (2.55) describes 0— 27 torsional rotation along the molecule between the
minima of interaction energy ei, (d¢). The energy of big kink is calculated according to Eq.
(2.51) as

By = \/5/0 ' V1 = cos [6¢] — v {1 — cos? [6¢] }doo

= 2v2y/Ca, {\/1 — 2y + %} . (2.57)

2.8.3 Small kink
1

For close DNA-DNA separations, R < R,, the non-zero azimuthal angle d¢, = + arccos <%>

minimizes the interaction energy (2.46). It appears that Euler equation (2.50) has a kink-like
solution, below "small" kink, which describes the torsional rotation between the angles d¢,.
We choose below d¢ (0) = 0.

From Eq. (2.50), the shape of the small kink is determined from equation

£ /ﬁz = /6¢(Z) do¢
C
0 \/% — cos [dp] — !

(2.58)

Y <(27)2 — cos? [5¢])
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2.8.3. Small kink
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Figure 2.8: The shape of the small kink, Eq. (2.59). It exists at R < R, and corresponds to torsional rotation

of DNA backbone between the angles +d¢,. With approach of DNAs to each other, kink width decreases and
d¢p, — +m. Parameters: 8 = 0.8, f =0.3, /{Bl =TA.

by direct integration as

2y — 1 [2a:1 [(27)" — 1
d¢, (2) = 2arctan  + T tanh |2/ 222 &) -1 : (2.59)
2v + 1 C 2 2

Plus and minus in Eq. (2.59) corresponds to kink and anti-kink, respectively. Since d¢,
— 0 when v — 1/2, near the point of the symmetry break-down the energy of the small kink,

o,
E = \/5/ \/% —cos [0¢] — (2”1y)2 —cos? [d¢] |dog

_6(/)*

1 arccos [%]
=2y/Ca;y{ (J1— R . (2.60)

tends to zero. The half-width of the small kink diverges at v — 1/2.

At R < R, the second possibility for rotation of local azimuthal on interacting duplexes
appears. It corresponds to azimuthal rotation from angle arccos % to angle 2w —arccos (%)
Le., the angle difference of such rotation is always larger than 7. Such rotation has the energy

27—0¢,

E. =VC \/1 — cos [0¢p] — v {1 — cos? [0¢]}dop =

6¢*

[
1 7/2 + arcsin [Z]
=2¢/Cary 11— +

(29)° 2y

(2.61)

The shape of the small kink is depicted in Fig. 2.8, the energies of small and big kinks
varying with DNA-DNA separation are depicted in Fig. 2.9.
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Figure 2.9: The optimal azimuthal angle §¢, between two ideal rigid DNA (left) and the energy of big, Eq. (
2.57), and small, Eq. (2.60), kinks (right) (R* ~ 301&) . The same notations for energies as in Fig. 2.7 as used,

parameters as in Fig. 2.8. As expected, the energy of big kink is much higher than that of small kink. All
energies increase nearly exponentially with compression.

2.8.4 Outlook

Concentration of kinks: The energy of two molecules with above-predicted kinks is higher
than the energy of the system without kinks; one can consider kinks as defects. At zero
temperature there will be no kinks, at finite temperature their density will be exponentially
small. For estimation one can use the result for linear density of thermally-activated Sine-

Gordon kinks [196]
nse =2\ ———— ———exp [—Esa/ (ksT)], (2.62)

where Egq is the energy of Sine-Gordon kink and d is its width.

For typical DNA parameters the energy of the big kink is ~ 10 —30kgT, Fig. 2.9. According
to Eq. (2.62), the concentration of thermally-activated big kinks is of the order of 1 kink per
each ~10° — 107 bp. It is negligible concentration for relaxing of mismatches on DNAs with
sequence-dependent twist variation (see previous Sections).

The concentration of small kinks can be much higher and their effect on interaction energy
can be more appreciable, especially in the vicinity of the point of spontaneous symmetry break-
down, where the energy of small kink vanishes, Eq. (2.60). At R — R, the half-width of the
small kink however diverges, that diminishes its efficiency in relaxing of twist mismatches.

Order-disorder lattice: The equation, which governs the pinning of these kinks by random
variation of DNA twist, is the Euler equation for free energy (A.3), (A.10) [126]

4256
I

i
dz’

— R2sin (0) 14— gin? (56/2) | = (2.63)
a; — 4&2
where & = h/\,.

Pinning of the kinks by random "impurities" of DNA twist pattern could (substantially)
decrease the energy of kink nucleation. One could expect in this case the formation of a quasi-
periodic wall of Frenkel-Kontorova-like kink dislocations [197,198]. In this mechanism the long
part of the chains is kept out of disorder whereas the accumulated mismatch is released in the
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2.8.4. Outlook

narrow region via a kink ¢7. The effect of pinning of small and big kinks by random DNA
twist patterns on the averaged energy requires additional investigation and is the subject of
our future work.

61t is plausible at least for interaction of dinucleotide seqeuences, %%%%‘"_‘} with {gggg . (The sequences

with large percentage of AT or GC bp is not a fiction, but they form block structure of DNA of higher
organisms [134], they can be several kbp long.) The twist angle between nearest bp in such sequences is
constant and equal to ~35.6° and ~33.6°, respectively [167]). If such sequences are forced into juxtaposition,
the constant incommensuration along the chains appears (first has 10.1bp/turn, the second — 10.5bp/turn [199]).
The Kornyshev-Leikin-like DNA-DNA interaction is then approximated by pure Frenkel-Kontorova model. As
a result, kink lattice of d¢ with a constant period can appear, if the twist variation §Q > 4x/m ~ 1°. The
random twist variation will however disrupt this ideal lattice.

"The first estimation for fragments with random texts show that such structure can realize only on soft
chains. If, for example, §¢ does not respond to twist variation at all, only the chains with )\? < h. can profit
from that (compare to criterion (2.24)).

On the other hand, we have performed numerical simulations of Eq. (2.9). We model DNA twist variation
so that the twist angle of each bp differs from () only by +AQ = Const. For very rigid chains, d¢ (z) obeys
random-walk motion along the chains. At x ~ 0.01 the regions of correlation of §¢ near 0, 27, 4, ... appear.
Between these regions d¢ tracks the twist variation. The relative width of correlated and uncorrelated regions
depends on AQ and \;. The trajectory of §¢ reminds a random walk motion between the energy minima, similar
to trajectory of overdamped forced Sine-Gordon equation under perturbation by a thermal random force [200].
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Conclusions

This thesis is focused on the theory of electrostatic interaction of DNA duplexes: the comple-
mentarity and recognition of DNA charge patterns, torsional adjustment of DNA backbone and
DNA-DNA attraction are explored.

DNA helical symmetry determines to a large extend the properties of DNA in vitro and
its functioning in cells. The exact pair interaction potential of ideal DNAs [84] provides a
quantitative description of many of puzzles of DNA-DNA interaction. We have modified this
potential to incorporate (i) the non-fixed, adjusting patterns of adsorbed cations and (ii) he-
lical non-ideality and torsional flexibility of the DNA backbone. It allows to describe (i) the
temperature-induced DNA condensation and (ii) interaction and recognition of non-ideal DNA
duplexes.

(i) In the last 10-15A surface-to-surface separation between DNAs, their helicity can give
rise to a strong attraction. We have shown that DNA condensation is governed by temperature-
induced adjustment of Mn?* adsorption patterns that strengthens this attraction. The caused
entropy increase upon aggregation is comparable with the traditional entropy of water release
[86]. Advanced experiments are required to test the predicted features, including the predicted
frustrated DNA lattices.

The model can be modified to describe the aggregation of imperfect DNA helices. The
attraction in this case should be less pronounced, but temperature- and Mn-induced torsional
DNA softening can help DNAs to condense. Thus, the entropy of the backbone, as well as the
change of hydration upon adsorption of ions, are other plausible entropy sources, which can
also contribute to aggregation of DNA and other biopolymers.

This study can help to elucidate in vitro DNA condensation in solutions of trivalent ions,
where the specificity of binding is crucial as well. Incorporation of DNA bending rigidity in the
model can also shed light on toroidal DNA condensation in vivo as well as on the properties of
DNAs wrapped around histone cores in nucleosome.

(ii) Even slightly noticeable non-ideality of the DNA helical structure may have a huge
effect on electrostatic interaction and, especially, recognition of DNA duplexes. Just that non-
ideality allows homologous (identical) DNA fragments to recognize and attract each other [126].
This attraction can bring them into closer juxtaposition to ensure entering the recombination
process. Non-homologous 7igid sequences repel each other, and the stronger the longer the
sequences.

We have shown that finite DNA torsional softness diminishes the recognition energy of
homologous sequences, but the recognition still remains strong. The dependence of recognition
energy on many factors and parameters has been calculated in the model [174]. Only systematic
future experiments could prove whether they indeed affect DNA-DNA recognition. If they do,
new controlling tools could be suggested for gene targeting and shuffling, as well as for DNA
repair. This could help envisaging new methods for curing diseases, affected by erroneous
recombination.
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Appendix A

Non-rigid duplexes: The free energy
functional

The free energy functional for two parallel non-rigid non-ideal DNA duplexes of the length L
in juxtaposition at interaxial separation R can be written as a sum of their local torsional and
electrostatic energy densities,

E(L)= /dz [e:(2) + eme(2)] - (A.1)

Expressions for ¢, (z) and €y (2) are written in terms of local twist angles, @4 2(z), (Fig. 2.1)

A, U (2)\?  [(dPs  Q(2)\?
(dz h ) * ( & h )
where subscript ¢ = 1,2 labels the molecules; h is DNA rise (axial phosphate-to-phosphate
distance).

Q;(2) is the local azimuthal angle on isolated molecule, the preferred twist angle between
adjacent base pairs. These angles take the values Q; = () +(4 — 6°), () ~ 34°—35° [167,169],
that reflect the intrinsic non-ideality of helical DNA structure.

The modulus of DNA torsional rigidity C' [172] determines to which extend the twist angles
on interacting DNAs are close to their values on single molecule, €2; (z). In our model the
actual twist angles, h[d®; (z) /dz], differ from Q; (z), because electrostatic interaction may
cause torsional DNA deformation.

Pair DNA-DNA electrostatic interaction free energy density, ei,, depends on d¢ (z) =
P, (2) — Py (2) (Fig. 2.1), and can be approximated by first two terms of sum (1.30) as [85] !

C

ei(2) = Bl

) €int(2) = 5int(c1)1(2) - @g(z)), (A.2)

emt (R, 2) = ag (R) — a1 (R) cos [0¢ (2)] + az (R) cos [20¢ (2)], (A.3)

'Note however that the situation is possible when factor f(1,6) in a; is small, whereas similar factors in
ag 3 are not (as is described by Eq. (A.5) with n = 3). For B-DNA with 6§ = 0.8 it occurs at f ~ 0.7, when the
inequality a; < as < agz holds (a; vanishes, see Fig. 2.6). Le., for such occupation of the grooves the term with
cos[30¢] must be taken into account in interaction energy (A.3) as well. Since the decay length of coefficients
ap, decreases with n, Eq. (A.6), the contribution of az-term can be neglected already at R 2 40A.
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A. Non-rigid duplexes: The free energy functional

where the coefficients for B-DNA have the form (see Eq. (1.30))

a0 (R) = 825> {(1 —0)’ Ko (kpR) i [f (n,0))? [[Knj (kR I (W)] } o

€ kp Ky (kpa)l =~ K} (K, (rnr)]” K (na)
167252 [f (n,0)]* Ko (knR)
€ Kn K (kna)]?

F,0) =0+ (=1)" (1 — f)0 —cos[0.4mn], Ky =\/KD + 47;;”‘2. (A.6)

Here a ~ 9A is the radius of the cylindrical surface formed by centers of phosphates, H =~ 34A
is the average value of B-DNA helical pitch ?; & ~ 16.8C'/cm? is the surface charge density
of the phosphates; 6 is the fraction of DNA charge neutralization by bound counterions; f and
1 — f are the fractions of counterions bound in the minor and major groove, respectively (no
binding of cations on strands is considered here); ¢ ~ 80 is the dielectric constant of water; kp
is the Debye screening length (1/k &~ 74 in physiological solution); I, (z), K, (z), I, (z) and
K! (x) are the modified Bessel functions and their derivatives, respectively.

For getting expression (A.3) both phosphates and adsorbed cations are approximated as
uniformly charged helical strings on the distance a from DNA axis. The strings of cations run
in the middle of the grooves. The inner core of DNA is approximated by a medium with low
dielectric constant, ... < € (see [84] and Section 1.4 for more details).

Further, it is convenient to introduce new variables: d¢ (z) = @1 (2) — P2 (2), V (2) =
Dy (2) + P2 (2), 022) = Q(2) — Da(2), T(2) = N(2) + Q(z), P(2)? = Q(2)? + Q(2)? In
terms of these variables ei,(2) = eint(0p(2)) and e4(2) = €_(z) + £,.(2), where

1/dV 2_dVT+P2
2\ dz dz h  h?

An=1,2 (R) =

and

C

e_(z) = B}

1

2(@)2 dspoR) oy (A7)

dz ) dz h

¢
dz h 2

The minimization of energy functional (A.1) over d¢ (z) and V (z) leads to Euler equations:

Os_  Oeint Oe
_o %+ _g A
550 " a5p " ay 0 (A.8)

Introducing the dimensionless length variable, Z = z/h, we obtain the equations of the free
energy extremum

d25¢ doQ)  2h2 O€int 2V dT
7z a7 T C e aztaz " (A-9)

2Tt is assumed that the seqeunce-dependent twist variation is so small that does not disrupt the DNA helical
symmetry and does not change the average value of the pitch. It is also assumed, Eq. (A.3), that DNA interact
locally is if they are infinitely long. The inaccuracy involved is hard to estimate in both cases. It is clear that
if DNASs retain the helical symmetry in the model, no order-disirder transitions with variable pitch along the
molecule are possible. The more accurate consideration of soft chains however may require to take into account
the effects of H (z) and (H (R)), since the unwinding of the chains can be favorable.
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Using Egs. (A.7), (A.9) we rewrite (A.1) in terms of d¢ (Z) as

cun (00 () + 4z (G5~ 0942) )

L/h

E(L):h/dZ

0
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Appendix B

Non-rigid duplexes: perturbation
theory in small &

Below we find correction term to energy of absolutely rigid chains, Eq. (2.15), in small . We
substitute the solution as a sum of (2.13) and a small deviation, x?6® < 1, into Eq. (2.6). The
condition of applicability of this approximation is estimated below. Then the equation for é®
takes the form
d*6®(2)
dz?

where 09, (Z) = fOZ dQUZ")dZ" is the solution for absolutely rigid chains, Eq. (2.13). For short
sequences the accumulated mistake is statistically small, i.e. ¢, (2 < A.) =~ 0. On such length
scale we put cos[d¢, (2)] = 1in Eq. (B.1). For long sequences §¢, (z) may take any values and
this approximation fails.

The solution of resulting equation, which does not depend on the sequence length L, is

— k2cos [0¢, (Z2)] 6®(Z) = sin[6¢, (Z)], (B.1)

60(Z) = —i OOO dz'e "2=2sin[6¢, (Z')], (B.2)

where we kept sin[d¢, ]-term that reflects the nonlinearity of Eq. (2.9). The average energy is

L/h L/h
(E(L)) ~ h bf (ag — ay {cos§¢,.(Z))) dZ + hayk* ‘of ((69(2)sind,(Z)) + 3 <(5<I>'(Z))2>) az
= (Ex(L)) + (Ex(L)) ,

(B.3)
where we have used that x?d® < 1, but do not expand sin[d¢,] and cos [0¢,]. The first integral
is the energy of infinitely rigid DNAs, (E,(L)). The second integral, (E,(L)), is the correction
to it due to finite DNA torsional rigidity. The first term in (E,.(L)) is negative as energy
gain of adjustment of torsionally non-rigid chains to minimum of e;,;, whereas the second
one is positive as the torsional energy of mismatch between d¢, (Z) and corrected solution
60 (Z) = 6¢, (Z)+k*0® (Z, k). In total (E.(L)) should be negative, since torsionally non-rigid
chains have lower energy than the rigid ones.
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Figure B.1: The average energy decreases when the chains are not infinitely rigid. Long-dashed: (FE (L)),
solid: (E,. (L)), dotted: homologous sequences. Parameters of Fig. 2.3b. The approximation x2§® (Z) < 1 is
questionable at R = 30A (a). At larger R, DNA-DNA interaction perturbs the twist pattern weaker, chains
become effective more rigid and the approximation is valid (b).

Further we use "Gaussian averaging theorem", (exp [i(d¢,(Z) — d¢,(Z"))]) =
exp [—1 ((66,(2) — 5¢T(Z’))2>] , since d¢,.(Z) can be represented as a sum of delta-correlated
quantities. After cumbersome but straightforward integration we get

Kkt3T e—(n+7)l _e(n—ST)l
<E""(L)> = _alh {2(Tl+n) - 87(:—37)2 + 87 (k+7)2 |:li + 37 — (lig - 7—2) ln——?rr:| } +

a1 hk? 291 + —273 1072k —3K27 4 K> (1 _ e—(n—i—’r)l) + e~ ()l |1 _e(k—3T)L K—8T _1—e= (w7l 97
16 k(Kk+T1)2 262 (Kk+7)2(k+2T1) 2(k—27) k=37  (k+T)(k+2T) K—T K2 ’
(B.4)

where [ = L/h, 7 = h/\..
a1 Tk L(1—8v1+3kl
For very short sequences (L < A\, ), (Ex(L)) =~ W
suppose that this wrong result comes from approximations used for getting expression (B.3).
It occurs for typical parameters at L < 5bp. For long sequences (L > M\, A\ ) the energy
correction, (E.(L)) ~ —345L  The proportionality coefficient is, as expected, the reciprocal

81
torsional length, kK = h/\;.

Solution (B.4) is valid if <(/12(5<I> (Z ))2> < 1. The upper estimate, when unity is used for
sin[d¢,] in (B.2), is <(/12(5¢> (Z))2> ~ (2 - e_“Z)2/4. The exact calculation gives a smaller
value: for long sequences <(/i2<I> (Z ))2> R gy Thus, for A = 300A which corresponds to
real DNA, \; 2 1000A satisfy this approximation, i.e. it is applicable for very rigid chains.

Although k20® (Z) < 1, (E (L)) may differ substantially from (E, (L)), since this adjust-
ment is integrated over the whole length of the sequence. Nevertheless, DNAs with long \;
repel each other (Fig. B.1). Note that the approximation cos [§¢, (z)] = 1 does may not work
for long sequences, and we can use the calculated energy correction (F, (L 2 A.)) only as an
extrapolation.

can be positive. We
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