Regulation der Expression des *EFG1*-Gens in der Morphogenese des humanpathogenen Pilzes *Candida albicans*

INAUGURAL-DISSERTATION

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

> vorgelegt von Bernd Tebarth aus Kempen

> > Düsseldorf 2001

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen-Fakultät der Heinrich-Heine-Universität, Düsseldorf.

Referent: Prof. Dr. J. F. Ernst

Korreferent: Prof. Dr. R. Wagner

Tag der mündlichen Prüfung: 13.11.2001

1. Einleitung

2. Material und Methoden

2.1	Chemikalien und Enzyme	14
2.2	Stämme und Medien	14
2.2.1	<i>E.coli</i> -Stämme	14
2.2.2	C.albicans-Stämme	14
2.2.3	Medien zur Anzucht von Bakterien	15
2.2.4	Medien zur Anzucht von Hefen	15
2.2.5	Spezielle Medien	15
2.2.5.1	Hypheninduktion	15
2.2.5.2	β-Galaktosidase-Screening	15
2.2.5.3	PCK1p-Induktion	15
2.3	Vektoren und Primer	16
2.3.1	Basisvektoren	16
2.3.2	Vektorkonstruktionen	16
2.3.3	Synthetische Oligonukleotide	18
2.4	Transformation	19
2.4.1	Transformation von <i>E.coli</i>	19
2.4.2	Transformation von <i>C.albicans</i>	19
2.5	Methoden zur Analyse von DNA	19
2.5.1	Klonierung	19
2.5.2	Isolierung von DNA-Fragmenten aus Agarosegelen	19
2.5.3	Isolierung von Plasmid-DNA aus E.coli	19
2.5.4	Isolierung von Gesamt-DNA aus Hefe	20
2.5.5	Sequenzierung	20
2.5.6	Polymerase-Kettenreaktion	20
2.5.7	Nachweis spezifischer DNA-Sequenzen über Southern-Blot-Analyse	20
2.6	Methoden zur Analyse von RNA	21
2.6.1	Isolierung von Gesamt-RNA aus Hefe	21
2.6.2	Präparation von mRNA	21
2.6.3	5'RACE	21
2.6.4	Restriktion von RNA mit RNaseH	21
2.6.5	Nachweis spezifischer RNA-Sequenzen über Northern-Blot-Analyse	21
2.7	Methoden zur Analyse von Proteinen	22
2.7.1	Herstellung von Rohextrakten aus Hefe	22
2.7.2	Bestimmung der Proteinkonzentration	22
2.7.3	Messung der β-Galaktosidase-Aktivität	23
2.7.4	Messung der Luciferase-Aktivität	23
2.8	Disruption der 5'UTR des langen EFG1-Transkriptes	23

3. Ergebnisse

3.1	Northern-Analyse der EFG1-Expression	24
3.2	Kartierung der EFG1-Transkripte	25
3.2.1	Northern-Analyse des Haupttranskriptes nach RNaseH-Restriktion	25
3.2.2	5'RACE des <i>EFG1</i> -Haupttranskriptes	27
3.2.3	5'RACE des EFG1-Nebentranskriptes	28
3.3	Subklonierung und Sequenzierung des EFG1-Hauptpromoters	28
3.4	Disruption der 5'UTR des langen EFG1-Transkriptes	30
3.4.1	Disruption in den Stämmen CAI4, CAI8 und BCa14.1	30
3.4.2	Transkriptananlyse in den 5'UTR-Deletionsstämmen	32
3.4.3	Phänotypen der 5'UTR-Deletion	32
3.4.4	Einfluß der FRT-Sequenz auf die Expression	34
3.5	Überexpression des langen EFG1-Transkriptes	35
3.6	LAC4-Fusionen der EFG1-Promotoren	
3.7	Autoregulation des <i>EFG1</i> -Hauptpromotors	
3.7.1	Northern-Analyse der Autoregulation der EFG1-Promotoren	39
3.7.2	Deletionsanalyse des EFG1-Hauptpromotors	40
3.7.2.1	LAC4 als episomal exprimiertes Reportergen	40
3.7.2.2	LAC4 als integriertes Reportergen	43
3.7.2.3	RLUC als integriertes Reportergen	44
3.7.3	Überproduktion von Efg1p-Varianten	46
3.7.4	Autoregulation in <i>tup1</i> - und <i>cap1</i> - Mutanten	46
3.7.5	Autoregulation in sir2-Mutante	47
3.8	Regulation der <i>EFG1</i> -Expression	49
3.8.1	Hypheninduktion	49
3.8.2	TPK1/TPK2-Überexpression	50
3.8.3	EFH1-Überexpression	51
3.8.4	White-/Opaque-Phänotypwechsel	52
3.9	EFH1-Expression im Phänotypwechsel	54
3.10	Regulation der TPK1/TPK2-Expression	56

4. Diskussion

4.1	Bestimmung der EFG1-Transkriptionsstartpunkte	.58
4.1.1	Der EFG1-Locus generiert ein 3,2 kb Haupttranskript und ein 2,1 kb	
	Nebentranskript	59
4.1.2	Das lange EFG1-Transkript enthält eine 1,2 kb große 5'UTR	60
4.2	Sequenz des EFG1-Hauptpromotors	60
4.2.1	Der 5'-flankierende Bereich von <i>EFG1</i> stellt eine große intergenische	60
	Region dar	60
4.3	Funktion der 5'UTR des langen EFG1-Transkriptes	61
4.3.1	5'UTR-Deletionsstämme zeigen Defekte im Hyphenwachstum	62
4.4	Promotorfunktion der 5'-flankierenden Region von EFG1	63
4.4.1	Die EFG1-Expression wird durch einen Haupt- und einen Neben-	
	Promotor reguliert	63
4.5	Autoregulation des <i>EFG1</i> -Hauptpromotors	64
4.5.1	Die Autoregulation von EFG1 findet auf Transkriptionsebene statt	65
4.5.2	Der EFG1-Hauptpromotor unterliegt einer 10fachen negativen	
	Autoregulation	65
4.5.3	Ein minimaler 45 bp großer Promotor vermittelt eine vollständige	
	autoregulatorische Repression	66
4.5.4	Phosphorylierungsmutanten von Efg1p zeigen volle Autoregulation	67
4.5.5	Tup1p und Cap1p sind nicht an der Autoregulation beteiligt	67
4.5.6	Die Deletion von SIR2 verändert die genomische EFG1-Expression	68
4.5.7	Modell der Autoregulation	69
4.6	Regulation der EFG1-Expression	.70
4.6.1	Die Aktivität des EFG1-Hauptpromotors bleibt während der	
	Hypheninduktion konstant	70
4.6.2	Die Überexpression von TPK1 und TPK2 reprimiert den	
	EFG1-Hauptpromotor	71
4.6.3	EFH1-Überexpression reprimiert den EFG1-Hauptpromotor	72
4.6.4	Die Expression von EFG1 korreliert mit dem "white/opaque"-	
	Phänotypwechsel	72
4.7	EFH1-Expression im Phänotypwechsel	.74
5.	Zusammenfassung	75
6.	Literaturverzeichnis	76
7.	Abkürzungen	98
8.	Anhang	99

1 Einleitung

Candida albicans – Klinische Bedeutung und Therapie

Pilze und insbesondere Hefen haben in den letzten Jahren eine beachtliche Bedeutung für den Menschen gewonnen. Das Spektrum reicht vom ökonomischen und wissenschaftlichen Nutzen bis hin zur lebensbedrohlichen Infektion.

Auf der einen Seite des Spektrums steht die Bier- und Bäckerhefe *Saccharomyces cerevisiae*, der neben ihrer traditionellen Funktion in Fermentationsprozessen auch eine Rolle als eukaryontischer Modellorganismus in der molekulargenetischen Forschung zukommt. Die vollständige Sequenzierung des Genoms dieses apathogenen Pilzes, der mit einer Generationszeit von 90 Minuten und der Bildung haploider Sporen nahezu optimale Eigenschaften als "Labororganismus" besitzt, stellte einen Meilenstein in der Hefeforschung dar, der durch die Entwicklung der "Microarray"-Technologie neue Möglichkeiten zur Untersuchung des Transkriptoms und des Proteoms von *S. cerevisiae* eröffnet.

Auf der anderen Seite des Spektrums befinden sich Hefen, welche direkt oder indirekt eine schädliche Wirkung auf den Menschen entfalten. Die Infektion von Getreide und Futterpflanzen mit der Hefeform des pflanzenpathogenen Pilzes *Ustilago maydis* führt beispielweise über die Minderung der Ernteerträge zu wirtschaftlichen Verlusten. Eine unmittelbare Bedrohung geht von humanpathogenen Hefen, z.B. *Cryptococcus neoformans* und *Candida albicans* aus. Beide Organismen werden als opportunistische Erreger bezeichnet, da ein geschwächtes Immunsystem des Wirtes die Voraussetzung für eine erfolgreiche Infektion darstellt.

Als fakultativ intrazellulärer Parasit besitzt *C. neoformans* die Fähigkeit, nach der Infektion des Menschen über die Lunge in den Makrophagen zu überleben. Die Ausbreitung im Zentralnervensystem führt letztendlich zum Krankheitsbild einer Meningoenzephalitis.

C. albicans gilt als der bedeutendste humanpathogene Pilz. Drei Viertel aller nosokomialen Pilzinfektionen werden auf C. albicans zurückgeführt (Jarvis, 1995). Als Bestandteil der mikrobiellen Flora des Menschen besiedelt er die Schleimhäute des gastrointestinalen und urogenitalen Traktes. In mindestens einem Drittel der Gesamtbevölkerung wurde C. albicans oropharvngial oder gastrointestinal nachgewiesen (Milatovic et al., 1997). Drei Viertel aller Frauen zeigen einmal in ihrem Leben eine durch Candida spp. hervorgerufene Vaginitis, ca. 20 % sind mehrfach betroffen (Fidel et al., 1999). Die sogenannte "Windeldermatitis" ist bei Säuglingen weit verbreitet. Menschen mit einem intakten Immunsystem entwickeln lediglich lokal begrenzte Candidosen der Haut und der Schleimhäute, welche einer Therapie mit Antimykotika relativ leicht zugänglich sind. Eine Immunsuppression des Menschen erleichtert C. albicans sowohl die Infektion als auch die systemische Ausbreitung im Wirt. Die Zahl von Personen mit einem kurzzeitig geschwächten oder dauerhaft geschädigten Immunsystem hat gerade durch die Entwicklung der Medizin in den letzten Jahren deutlich zugenommen. Die Therapie von Krankheiten und Infektionen mit Cytostatika, Breitspektrumantibiotika und Corticosteroiden beeinträchtigt neben dem Gleichgewicht der natürlichen mibrobiellen Flora des Menschen auch sein Immunsystem. Die Entwicklung der Organtransplantation hat darüber hinaus eine weitere "Zielgruppe" für C. albicans geschaffen, da die medikamentöse Immunsuppression zur Vermeidung von Abstoßungsreaktionen die lokale oder systemische Ausbreitung des opportunistischen Pilzes erleichtert. Intravenöse Katheter, welche bei den zuvor beschriebenen Behandlungen häufig zum Einsatz kommen, stellen als potentieller Infektionsort ebenso einen Risikofaktor dar, wie die parenterale Ernährung.

Der HIV-Infektion des Menschen kommt jedoch die bei weitem größte Bedeutung für die steigende Zahl von Pilzinfektionen zu. Die AIDS-Erkrankung ist durch einen stetig zunehmenden Zerfall des Immunsystems gekennzeichnet. Die auftretenden bakteriellen Infektionen sind trotz der zunehmenden Resistenzen mit Antibiotika weitgehend therapierbar. Die ständige Immunsuppression erleichtert aber auch eukaryontischen Erregern und Parasiten (*Candida* spp., *Aspergillus* spp., *C. neoformans, Pneumocystis* spp., *Cryptosporidium* spp.) die Besiedlung des Wirtes. So wurde beispielsweise bei 90 % aller AIDS-Patienten eine orale Candidose diagnostiziert (Greenspan, 1994). Im weiteren Verlauf der "erworbenen Immundefizienz" entwickelt sich mit der Verbreitung im gesamten Körper eine systemische Candidose, die eine Mortalitätsrate von 35 % aufweist (Wenzel, 1995).

Die Therapie von Pilzerkrankungen des Menschen wird durch die Gemeinsamkeit von Pilzund humanen Zellen als Eukaryonten erschwert. Zur erfolgreichen Bekämpfung von Pilzen stehen nur wenige Wirkstoffe zur Verfügung. Um unerwünschte Nebenwirkungen zu reduzieren, bilden pilzspezifische Komponenten von Zellmembranen und Stoffwechselwegen die Angriffspunkte für Antimykotika. Bei den beiden meistverwendeten Therapeutika Amphotericin B und Nystatin handelt es sich um Polyene, welche mit dem pilzspezifischen Membranbestandteil Ergosterol interagieren und dadurch die Zellmembran permeabilisieren und die Pilzzellen abtöten. Die Membran des Pilzes kann auch durch die Hemmung der Ergosterolsynthese geschädigt werden. In dieser Weise wirken die Azolderivate Ketoconazol, Fluconazol und Itraconazol. Das Nukleosidanalogon 5'-Fluorocytosin stellt einen weiteren fungiziden Wirkstoff dar. Es kann nur von Pilzen zu 5'-Fluoruracil metabolisiert werden, welches die RNA-Sythese inhibiert (Hoppe-Tichy, 1997).

Alle Antimykotika verbinden jedoch zwei Nachteile. Einerseits ist die intrakorporale Anwendung bei großflächigen und systemischen Mykosen mit schweren Nebenwirkungen verbunden, da sie leber- und nierenschädigend wirken. Andererseits hat die antimykotische Therapie, vor allem mit Azolderivaten, schon zur Entwicklung resistenter Stämme geführt. Einen Mechanismus stellt hierbei die Amplifikation resistenzvermittelnder Gene dar. Die Fluconazolresistenz eines *C. glabrata*-Isolates konnte z.B. auf eine erhöhte Kopiezahl eines Chromosoms zurückgeführt werden (Marichal *et al.*, 1997). Die erhöhte Inzidenz von Pilzinfektionen wird zwangsläufig auch die Entwicklung von Resistenzen beschleunigen. Es ist daher wichtig, pilzspezifische Komponenten von Stoffwechsel- und Signalwegen auf molekularer Ebene zu charakterisieren, um die Virulenzfaktoren des Pilzes als Grundlage zur Entwicklung neuer antimykotisch wirksamer Substanzen zu entschlüsseln. Da ca. 80 % aller Mykosen durch *Candida* spp. hervorgerufen werden (Pfaller, 1996), konzentriert sich die molekulargenetische Analyse auf den Haupterreger *C. albicans*.

C. albicans – Taxonomie und Genetik

Die humanpathogene Hefe *C. albicans* wurde bislang den Deuteromyceten zugeordnet. Bei den Mitgliedern dieser auch als Fungi imperfecti bezeichneten Gruppe konnte noch kein sexueller Vermehrungszyklus nachgewiesen werden. Diese klassische Einteilung basierte hauptsächlich auf der morphologischen Analyse, der Ploidie und der Art der vegetativen Zellteilung (Knospung, Spaltung).

Neuere Einteilungen hingegen legen den Schwerpunkt auf molekulargenetische Kriterien. Zur phylogenetischen Analyse dienen beispielsweise Sequenzvergleiche ribosomaler RNA bzw. DNA (5S, 18S, 26S). Neben der Sequenzierung weiterer Gene (Cytochrom II Oxidase, β -Tubulin) erlaubt auch die Analyse der mitochondrialen DNA Rückschlüsse auf die verwandtschaftlichen Beziehungen der Hefen (Petersen, 2000).

Die Fungi imperfecti können nach diesen Kriterien den Ascomyceten und Basidiomyceten zugeordnet werden, wobei jedoch aufgrund der sexuellen Fortpflanzung zwischen teleomorphen und anamorphen Genera unterschieden wird. Während C. neoformans z.B. den Basidiomyceten zugeordnet werden kann, gelten C. albicans und S. cerevisiae als Ascomyceten (Petersen, 2000). S. cerevisiae wird jedoch, im Gegensatz zu C. albicans, aufgrund seiner sexuellen Vermehrung als teleomorph eingestuft. Der namengebende Ascus enthält bei der Bäckerhefe vier haploide Sporen, die entweder den Paarunstyp a oder a besitzen. Nach der Keimung der Sporen unter geeigneten Umweltbedingungen können haploide Zellen komplementären Paarungstypes durch Fusion ("Mating") den sexuellen Vermehrungszyklus abschließen. Genetisch determiniert wird der Paarungstyp am sogenannten MAT-Locus. In C. albicans wurden vor kurzem homologe Gene dieses MAT-Locus beschrieben (Hull und Johnson, 1999). Neben den homologen regulatorischen Proteinen a1, α 1 und α 2 werden am heterozygoten *MAT*-Locus von *C. albicans* (auch *MTL*) noch drei weitere Proteine codiert: eine Poly(A)-Polymerase, ein Oxysterol-bindendes Protein und eine Phosphatidylinositolkinase. Die Funktionalität dieses Locus im Hinblick auf eine sexuelle Fortpflanzung konnte bisher nur artifiziell erzeugt werden. Stämme mit einer Deletion entweder im MTLa- oder im MTLa-Locus wurden nach einer gemeinsamen Inkubation in der Maus mithilfe entsprechender Marker auf eine vollzogene Fusion hin selektiert (Hull et al., 2000). In einem anderen Ansatz wurden durch den Verlust eines Homologs von Chromosom 5 produzierte MTLa- und MTLa-Stämme auch in Kultur "gekreuzt" (Magee und Magee, 2000). In beiden Fällen konnte eine erfolgreiche Fusion komplementärer Stämme nachgewiesen werden, da die produzierten Stämme tetraploid waren und sowohl beide MTL-Allele als auch die Marker der eingesetzten Deletionsstämme aufwiesen. Zum Beweis eines natürlichen sexuellen Vermehrungszyklus von C. albicans fehlt allerdings noch der Nachweis einer meiotischen Zellteilung.

Unabhängig von der sexuellen Rekombination zeigt sich eine ausgeprägte genetische Variabilität. Neben einigen heterozygoten Loci (Whelan und Magee, 1981; Whelan und Soll, 1982) werden auch größere Umordnungen des diploiden Genoms beobachtet (Rutschenko-Bulgac *et al.*, 1990). Diese genetische Instabilität erschwert die molekulargenetische Analyse von *C. albicans*.

Darüberhinaus erweist sich auch der abweichende Kodongebrauch insbesondere bei der Expression heterologer Gene als hinderlich. Da das Kodon CUG in Serin und nicht in Leucin translatiert wird (Leuker und Ernst, 1994; Santos und Tuite, 1995), finden z.B. die Reportergene *lacZ* aus *Escherichia coli* und *GFP* aus *Aequorea victoria* in *C. albicans* keine Anwendung. Mit dem eine β -Galaktosidase codierenden *LAC4*-Gen aus *Kluyveromyces lactis* (Leuker *et al.*, 1992), einer codonoptimierten *GFP*-Version (Cormack *et al.*, 1997) und *RLUC* aus *Renilla reniformis* (Srikantha *et al.*, 1996) stehen zur Expressionanalyse einige Reportergene zur Verfügung. Dieses Repertoir wurde vor kurzem um das *lacZ*-Gen aus *Streptococcus thermophilus* erweitert (Uhl und Johnson, 2001). Diese β -Galaktosidase zeigte im Vergleich mit der von *LAC4* exprimierten eine deutlich höhere Aktivität und eignet sich auch in integrierter Einzelkopie zur Analyse der Reportergenexpression.

Heterologe Gene können auch nach Transformation autonom replizierender Plasmide episomal exprimiert werden. Im Gegensatz zu *S. cerevisiae* basieren diese Plasmide nicht auf Centromer- oder 2μ-Sequenzen, sondern auf autonom replizierenden Sequenzen (Kurz *et al.*, 1987; Cannon *et al.*, 1992; Herreros *et al.*, 1992). Die Kopiezahl aller *C. albicans*-Vektoren ist daher variabel. Vor kurzem wurden in *C. albicans* erstmals auch natürliche Plasmide beschrieben (Huber und Rustchenko, 2001). Neben einem großen zirkulären rDNA-Plasmid unbekannter Größe treten lineare rDNA-Plasmide mit einer Größe zwischen 50-150 kb in variabler Kopiezahl auf.

Zur Analyse der Funktion eines Gens wird es häufig auch in definierten Mengen mit Hilfe eines regulierbaren Promotors exprimiert. Der Promotor des *PCK1*-Gens, welches die Phospho*enol*pyruvatcarboxykinase codiert, eignet sich beispielweise zur sehr starken Überexpression eines Gens. Durch Glukose wird die Expression des Schlüsselenzyms der Glukoneogenese und somit auch der *PCK1p* reprimiert, während er durch alternative C-Quellen (z.B. Casaminosäuren) induziert werden kann (Leuker *et al.*, 1997). Die Expression eines essentiellen Gens läßt sich in Fusion mit dem *MET3*-Promotor durch Methionin und Cystein bis zur Letalität minimieren (Care *et al.*, 1999). Der *MAL2*-Promotor (Backen *et al.*, 2000) und ein Tetracyclin-regulierter Promotor (Nakayama *et al.*, 2000) haben die Möglichkeiten der regulierten Genexpression in *C. albicans* erweitert.

Die Transformation von *C. albicans* basiert hauptsächlich auf den Markern *URA3* (Kelly *et al.*, 1987), *ADE2* (Kurtz *et al.*, 1987) und *LEU2* (Kelly *et al.*, 1988), welche auxotrophen Stämmen auf Mangelmedien Wachstum ermöglichen (Fonzi und Irwin, 1993). Der dominante Marker *IMH3* hingegen verleiht prototrophen Stämmen eine Resistenz gegenüber Mycophenolsäure (Beckerman *et al.*, 2001) und eröffnet die Möglichkeit Wildtypstämme bzw. klinische Isolate zu transformieren.

Zur Gendisruption stehen mittlerweile zahlreiche Methoden zur Verfügung. Die klassische "URA-Blaster"-Methode mit FOA-Selektion (Fonzi und Irwin, 1993) wurde ergänzt durch die "URA-Flipper"-Methode, welche zur gezielten Induktion der intrachromosomalen Rekombination eine Rekombinase unter der Kontrolle eines regulierbaren Promotors verwendet (Morschhäuser *et al.*, 1999). Während mit diesen Verfahren das Zielgen in zwei Schritten auf beiden Allelen ausgeschaltet wird, produziert eine andere Methode in nur einem Transformationschritt und anschließender mitotischer Rekombination homozygote Mutanten (Enloe *et al.*, 2000).

Die gerade in der letzten Zeit entwickelten Methoden zur molekulargenetischen Analyse von *C. albicans* haben die Forschung an diesem pathogenen Pilz erheblich vereinfacht und beschleunigt. Das Fundament der weiteren Entwicklung bildet hingegen die vollständige Sequenz des Genoms, auf welche seit dem letzten Jahr freier Zugriff besteht unter: (http://www-sequence.stanford.edu/group/candida/). Anhand eines umfassenden Sequenz-vergleichs von über 500 Genen, welche an der sexuellen Differenzierung von *S. cerevisiae* beteiligt sind, mit dem *C. albicans*-Genom konnten zahlreiche Homologe identifiziert werden (Tzung *et al.*, 2001). Nahezu alle Komponenten des Pheromon-Signalweges in *S. cerevisiae* besitzen homologe Gene in *C.albicans*, während zahlreiche an der Meiose beteiligten Gene nur in der Bäckerhefe vorkommen. Im Vergleich mit Meiose-Genen anderer Organismen (*Drosophila melanogaster, Caenorhabditis elegans*) wurden jedoch einige Homologe in *C. albicans* identifiziert und lassen die Existenz einer natürlichen sexuellen Fortpflanzung möglich erscheinen.

C. albicans – Virulenzfaktoren

Die Virulenz eines Pathogens wird durch zahlreiche Eigenschaften des Erregers bestimmt. Als Kommensale und opportunistischer Pilz besiedelt *C. albicans* mehrere Körperregionen des Menschen. In der Anpassung an die sehr unterschiedlichen Wachstumsbedingungen weist dieser Pilz eine hohe Variabilität auf, wenngleich er es nicht vermag, ein völlig intaktes Immunsystem des Wirtes zu überwinden. Die zuvor beschriebenen Einschränkungen in der Immunabwehr aber auch Mazerationen der Haut ermöglichen *C. albicans* eine lokale oder systemische Infektion. In der Reihenfolge, in der die Virulenzfaktoren dabei wirksam werden, sollen sie vorgestellt werden.

Der Adhäsion des Pilzes an die Epithelien des Wirtes folgt die Invasion des Gewebes. Eine systemische Infektion zeichnet sich darüberhinaus durch die Ausbreitung von *C. albicans* im gesamten Organismus aus. Die bei vielen Pathogenen beschriebene Immunevasion durch Antigenvariation stellt auch einen Virulenzfaktor dieses opportunistischen Erregers dar (Abb.1).

Die Adhäsion von C. albicans an die Mukosa des Wirtes wird durch Proteine, die auf der Zelloberfläche des Pilzes exprimiert werden, gewährleistet. Diese als Adhäsine bezeichneten Polypeptide sind in der Lage an Proteine der extrazellulären Matrix der Säugerzelle, wie z.B. Fibronectin, Laminin, Fibrinogen und Kollagen Typ I und IV zu binden (Hostetter, 1994; Sturtevant und Calderone, 1997; Chaffin et al., 1998). Eine solche Funktion wird z.B. durch die beiden Proteine Als1p und Als5p vermittelt (Fu et al., 1998). Die insgesamt sieben Als-Proteine zeigen typische Merkmale sekretierter Proteine und werden wahrscheinlich über den Rest eines GPI-Ankers am C-Terminus auf der Zelloberfläche verankert (Hoyer, 2001). Der Aminoterminus scheint die Bindung an die Proteine der Wirtszellen zu vermitteln. Ein weiteres Adhäsin stellt das strukturell sehr ähnliche Protein Hwp1p dar (Staab et al., 1999). Dieses Mannoprotein präsentiert ebenfalls seinen Aminoterminus auf der Zelloberfläche, während der Carboxyterminus kovalent mit der Zellwand verbunden ist. Das Integrinähnliche Protein Int1p kann ebenfalls der Klasse der Adhäsine zugeordnet werden. Die Deletion dieses Oberflächenproteins beeinträchtigt die Adhäsionfähigkeit an humane Epithelzellen und verursacht einen nahezu vollständigen Verlust der Virulenz (Gale et al., 1998).

Der Glykosylierungsstatus dieser Adhäsine scheint an ihrer Funktion ebenfalls beteiligt zu sein, da Deletionen der Mannosyltransferasen Mnt1p und Pmt1p sowohl eine verminderte Adhäsion als auch eine drastisch reduzierte Virulenz zeigen (Buurman *et al.*, 1998; Timpel *et al.*, 1998). Wenngleich ihre Funktion nur indirekt die Pathogenität von *C. albicans* beeinflußt, können sie als Virulenzfaktoren bezeichnet werden. Während die Funktion der Adhäsine auch für die Rolle von *C. albicans* als Kommensale von Bedeutung ist, markiert die Invasion des Wirtsgewebes den Übergang zur Rolle als Pathogen.

Der Fähigkeit zum filamentösen Wachstum in Form von Hyphen und Pseudohyphen kommt dabei neben der Sekretion proteolytischer und lipolytischer Enzyme eine entscheidende Bedeutung zu. Der Vergleich mit anderen Pilzen zeigt jedoch, daß die Bildung von Filamenten alleine nicht ausreicht, um die Rolle als Pathogen zu definieren.

Obwohl S. cerevisiae die Fähigkeit zur Pseudohyphenbildung besitzt (Gimeno et al., 1992), gilt die Bäckerhefe nicht als Krankheitserreger. Allerdings konnte z.B. bei den pathogenen Hefen C. glabrata und C. neoformans filamentöses Wachstum nachgewiesen werden, obwohl sie lange Zeit als afilamentös galten (Csank und Haynes, 2000; Wickes et al., 1996). Die Fähigkeit zum reversiblen Wechsel zwischen einzelligem und filamentösem Wachstum (Dimorphismus) begründet ebenfalls nicht die Pathogenität, da auch reine Myzelbildner wie A. fumigatus gefährliche Krankheitserreger darstellen (Odds, 1988). Der Dimorphismus von C. albicans scheint hingegen in erheblichem Umfang zur Pathogenität dieses Pilzes beizutragen, da klinische Isolate in der Regel sowohl Blastosporen als auch Filamente enthalten. Hyphen sind beipielsweise in der Lage, Epithelien zu durchwachsen (Pendrak und Klotz, 1995; Weide und Ernst, 1999) und so zur Gewebeinvasion beizutragen. Nach Eintritt in die Blutbahn eignet sich die Hefeform von C. albicans optimal zur Verbreitung im gesamten Organismus (Cutler, 1991). Diese "Überschwemmung" des Wirtes erfolgt jedoch nur im Zuge einer systemischen Infektion bei einem völligen Zusammenbruch des Immunsystems, z.B. bei AIDS-Patienten im Endstadium. Der Dimorphismus erweist sich jedoch auch in der Reaktion auf die zelluläre Immunantwort als vorteilhaft, da phagozytierte Blastosporen in Form von Hyphen aus Makrophagen herauszuwachsen vermögen (Arai et al., 1977; Vasquez-Torres und Balish, 1997). Die molekularen Mechanismen der Regulation des Dimorphimus werden im folgenden Kapitel detailiert vorgestellt.

Als weitere Virulenzfaktoren, die zur Invasion beitragen, werden sekretierte Proteasen, (Phospho)Lipasen und N-Acetyl-Glukoaminidasen angesehen (Hube et al., 1997; Ghannoum et al., 2000; Hube et al., 2000, Molloy et al., 1994). Von den beschriebenen Phospholipasen PLA, PLB, PLC und PLD konnte bisher nur für PLB1 ein Zusammenhang zur Virulenz von C. albicans hergestellt werden (Ghannoum et al., 2000). Die sauren Aspartatproteasen (SAP) bilden ebenso wie die Lipasen (LIP) eine zehn Mitglieder umfassende Genfamilie. Die Bedeutung für die Virulenz wurde durch die Deletion einiger SAP-Gene nachgewiesen (Hube et al., 1997). Ebenso wie die LIP-Gene unterliegen die SAP-Gene einer komplexen differentiellen Expression. Die Expression einiger SAP-Gene wird beispielweise in Anpassung an die verschiedenen Habitate von C. albicans durch den pH-Wert reguliert. Darüberhinaus werden im zeitlichen Verlauf der Gewebeinvasion unterschiedliche SAP-Gene exprimiert (Schaller et al., 2000). Der frühen Phase der Invasion mit der Expression von SAP1 und SAP2 schließt sich die Expression von SAP8 an. Während der abschließenden intensiven Hyphenbildung wird ausschließlich SAP6 exprimiert. Die große Zahl der Proteasen und Lipasen codierenden Gene und insbesondere ihre differentielle Expression verleiht C. albicans im Hinblick auf die Invasion verschiedener Wirtsgewebe eine enorme Flexibilität, welche durch den reversiblen Wechsel zwischen Blastosporen und Filamenten zusätzlich erhöht wird.

Neben dem Dimorphismus wurde in *C. albicans* noch das Phänomen eines spontanen Phänotypwechsels ("phenotypic switching") beschrieben. In Stamm 3153A treten beispielsweise bis zu fünf verschiedene Kolonieformen auf ("star"; "stippled"; "hat"; "irregular wrinkle"; "fuzzy"). Da sich jeder Kolonietyp spontan in einen anderen umwandeln kann und auch Mischformen beobachtet werden, ist die experimentelle Analyse dieses komplexen Phänotypwechsel nahezu unmöglich (Slutsky *et al.*, 1985). Der Phasenwechsel des Stammes WO-1 wurde hingegen eingehend charakterisiert (Slutsky *et al.*, 1987; Soll, 1997). Er ist lediglich durch zwei verschiedene Phänotypen gekennzeichnet. Während die "white"-Form dieses Stammes eine normale Kolonieform und runde bis ovale Zellen aufweist, bildet die "opaque"-Form flache gräuliche Kolonien und elongierte stäbchenförmige Zellen. Die Ultrastruktur von "opaque"-Zellen zeigt außerdem noch charakteristische als "pimple" bezeichnete Ausstülpungen (Anderson *et al.*, 1990). Der "white"-Phänotyp kann bei 30°C kultiviert werden, wohingegen der "opaque"-Phänotyp nur bei 25°C relativ stabil ist (Bergen *et al.*, 1990). In beide Richtungen findet auch unter diesen Bedingungen ein spontaner Wechsel des Phänotyps statt, wobei der Wechsel von "opaque" zu "white" deutlich häufiger (10^{-1} - 10^{-3}) beobachtet wird als umgekehrt (10^{-3} - 10^{-5}). Experimentell kann durch eine Temperaturerhöhung auf 42°C eine Massenkonversion vom "opaque"- zum "white"-Phänotyp induziert werden.

Neben diesen morphologischen Merkmalen unterscheiden sich beide Phasen z.B. auch hinsichtlich der Adhäsion (Kennedy *et al.*, 1988), des Sterol-/Lipidgehaltes (Ghannoum *et al.*, 1990) und der Sensitivität gegenüber Antimykotika (Soll *et al.*, 1991). Darüberhinaus vermögen lediglich "white"-Zellen unter Standardbedingungen Hyphen zu bilden, "opaque"-Zellen zeigen nur auf humanen Epithelzellen filamentöses Wachstum (Anderson *et al.*, 1989). Reguliert werden die Charakteristika beider Phänotypen durch ein komplexes System differentieller Genexpression. Als "opaque"-spezifische Gene wurden *SAP1*, *SAP3*, *OP4* und *CDR3* beschrieben (Morrow *et al.*, 1992; Hube *et al.*, 1994; Morrow *et al.*, 1994; Balan *et al.*, 1997), als "white"-spezifisch *SAP2* und *WH11* (Srikantha und Soll, 1993).

In die Regulation des Phänotypwechsels auf molekularer Ebene scheinen die beiden Histon-Deacetylasen Hda1p und Rpd3 involviert zu sein. Die Deletion von *HDA1* forciert den Wechsel von "white" zu "opaque", während die Deletion von *RPD3* die Wechselrate in beide Richtungen erhöht (Srikantha *et al.*, 2001). Demgegenüber besitzt auch der Transkriptionsfaktor Efg1p, der im Mittelpunkt dieser Arbeit steht und daher noch detailiert vorgestellt wird, eine regulatorische Funktion im Phänotypwechsel des Stammes WO-1. Neben seiner phasenspezifischen Expression im "white"-Phänotyp verursacht die Überexpression von *EFG1* einen Wechsel vom "opaque"-zum "white"-Phänotyp (Sonneborn *et al.*, 1999b).

Die Bedeutung dieses Phasenwechsels für die Virulenz von *C. albicans* zeigt sich an einer erhöhten Wechselrate in frischen klinischen Isolaten (Soll, 1988; Jones *et al.*, 1994). Darüberhinaus konnten "opaque"-Zellen in einem Modell die menschliche Haut besser besiedeln, während "white"-Zellen im Maus-Modell der systemischen Infektion eine höhere Virulenz zeigen (Kvaal *et al.*, 1999). Diese Spezialisierung der Phänotypen auf verschiedene Infektionswege unterstreicht ihre Funktion in der Pathogenese.

Zusätzlich bietet ein Phänotypwechsel die Möglichkeit der Antigenvariation zur Umgehung des Immunsystems. Bei anderen Pathogenen wie z.B. *Trypanosoma brucei*, *Neisseria gonnorhoae* und *Salmonella typhimurium* ist diese Funktion mit der Expression zahlreicher antigener Varianten allerdings deutlich stärker ausgeprägt als im Stamm WO-1 mit dem Wechsel zwischen lediglich zwei Phänotypen (Donelson, 1989; Swanson und Koomey, 1989; Glasgow *et al.*, 1989).

C. albicans verfügt somit über ein großes Repertoir potentieller Virulenzfaktoren, die in einem komplexen Zusammenspiel zur Pathogenität dieses oppurtunistischen Pilzes beitragen. In Anpassung an die sehr verschiedenen Habitate des Kommensalen und die unterschiedlichen Infektionswege des Erregers verleiht ein flexibles System differentieller Genexpression *C. albicans* diese große Variabilität.

C. albicans – Dimorphismus

Die Pathogenität von *C. albicans* basiert nicht ausschließlich auf dem Dimorphismus dieses Pilzes. In Kombination mit den zuvor beschriebenen Virulenzfaktoren wird ihm jedoch eine Schlüsselrolle zugeordnet. In *C. albicans* beschreibt er nicht nur die zwei morphologischen Wachstumsformen Hefe und Hyphe, sondern den Wechsel zwischen einzelligem und mehrzelligem filamentösen Wachstum im allgemeinen. Einzelliges Wachstum manifestiert sich einerseits in der typischen Hefezellform (Blastosporen), andererseits in Chlamydosporen.

Filamente werden sowohl in Form von echten Hyphen als auch Pseudohyphen gebildet (Abb. 2).

Die Vermehrung der Blastosporen erfolgt durch Knospung, wohingegen die dickwandigen runden Chlamydosporen von pseudohyphalen Helferzellen gebildet werden (Montazeri und Hedrick, 1984; Joshi *et al.*, 1993).

Während ausdifferenzierte echte Hyphen und Pseudohyphen sich nur schwer unterscheiden lassen, weist ihre Genese charakteristische Merkmale auf.

Echte Hyphen entstehen durch das kontinuierliche apikale Wachstum eines Keimschlauches, der anschließend

septiert wird. Pseudohyphen werden durch unipolare Knospung gebildet, wobei die elongierten Tochterzellen den Kontakt zur Mutterzelle aufrechterhalten und auf diese Weise Filamente bilden. Beide filamentösen Formen sind in der Lage durch Knospung wieder Blastosporen zu bilden.

Zur experimentellen Induktion filamentösen Wachstums stehen neben positiven Induktoren auch spezielle Mangelmedien zur Verfügung. Den stärksten Induktor echter Hyphen stellt Serum in einer Konzentration von 5-20% dar (Odds, 1988). Auch N-Acetylglukosamin, Prolin und cAMP vermögen Hyphenwachstum zu induzieren (Cassone *et al.*, 1985; Land *et al.*, 1975; Niimi *et al.*,1980, Sabie und Gadd, 1992; Niimi *et al.*, 1996). Neben diesen Medienzusätzen begünstigt eine Temperaturerhöhung (37° C) und ein neutraler pH-Wert die Entwicklung echter Hyphen (Buffo *et al.*, 1984). Die Effizienz der Hypheninduktion kann durch eine vorangehende Hungerphase gesteigert werden (Holmes und Shepherd, 1988; Delbrück und Ernst, 1993). Nährstoffmangel führt auch als Einzelfaktor zur Hyphenbildung. Sowohl Stickstoffmangel (SLAD) als auch ein Medium mit komplexer Stickstoffquelle und Mannitol als Kohlenstoffquelle (Spider- und modifiziertes Lee-Medium) induzieren filamentöses Wachstum in *C. albicans* (Csank *et al.*, 1998; Liu *et al.*, 1994). Die Limitierung von Sauerstoff forciert ebenfalls die Entwicklung echter Hyphen).

Nahezu alle Induktionsprotokolle erinnern an die natürlichen Wachstumsbedingungen dieses Pilzes in seinem Wirt oder sind aus diesen abgeleitet worden. Verschiedene Charakteristika der von *C. albicans* besiedelten Epi- und Endothelien des Menschen führen sowohl über positive Induktoren als auch über Mangelbedingungen zur Entwicklung filamentösen Wachstums. Die Umweltreize werden in einem komplexen System verschiedener Signaltransduktionskaskaden integriert und in die optimale Wachstumsform des Pilzes umgesetzt. Diese sollen mit Konzentration auf die beteiligten Transkriptionsfaktoren im folgenden vorgestellt werden (Abb. 3).

In *C. albicans* wurden zahlreiche an der Regulation der Morphogenese beteiligte Faktoren identifiziert. Ihre funktionellen Zusammenhänge sind mit Ausnahme zweier Signalwege weitgehend unbekannt. Parallel zu einer MAPK-Kaskade wird die Hyphenbildung durch einen cAMP-abhängigen Signalweg reguliert.

Die Grundlage zur Identifizierung dieser beiden Wege bildete ihre große Homologie zur Signaltransduktion in *S. cerevisiae*. Der MAPK-Weg steuert in *S. cerevisiae* neben der Pseudohyphenbildung auch die Pheromonantwort (Liu *et al.*, 1993; Madhani und Fink, 1997). Auch der cAMP-abhängige PKA-Weg besitzt in *S. cerevisiae* neben der Regulation des filamentösen Wachstums zahlreiche weitere Funktionen (Robertson und Fink, 1998). Die Proteinkinase A ist sowohl in die Regulation der Antwort auf osmotischen, oxidativen und temperaturbedingten Streß (Norbeck und Blomberg, 2000; Charizanis *et al.*, 1999; Smith *et al.*, 1998), als auch in den Wechsel von fermentierbaren zu nicht-fermentierbaren C-Quellen involviert (Jiang *et al.*, 1998). Auch die Eisenaufnahme und der Abbau von Reservekohlenhydraten werden über die PKA gesteuert (Robertson *et al.*, 2000).

In Homologie zu *C. albicans* führt Stickstoffmangel in *S. cerevisiae* ebenfalls zu filamentösem Wachstum, allerdings nur in Form von Pseudohyphen (Gimeno *et al.*, 1992). In der Signaltransduktion werden die homologen Kinasen Ste20p (Cst20p), Ste11p (Hst11p; im Genom identifiziert aber noch nicht näher beschrieben), Ste7p (Hst7p) und Kss1p (Cek1p) durch aufeinanderfolgende Phosphorylierungen aktiviert (Liu *et al.*, 1993).

Am Ende dieser signalverstärkenden Kaskade führt die Phosphorylierung des Transkriptionsfaktors Ste12p (Cph1p) zur Aktivierung der Zielgene. Die Spezifität dieses Signalweges, der in *S. cerevisiae* sowohl die Pseudohyphenbildung als auch die Pheromonantwort steuert, wird auf Ebene der MAP-Kinasen sowie des Transkriptionsfaktors reguliert. In der Pseudohypheninduktion wird die MAP-Kinase Kss1p, in der Pheromonantwort die MAPK Fus3p aktiviert (Madhani *et al.*, 1997). Zusätzlich führt die Dimerisierung von Ste12p mit Tec1p zur Bindung von "filamentous growth responsive elements" (FRE) in den Promotoren der Zielgene, während die Dimerisierung von Ste12p mit Mcm1p über die Bindung von "pheromone responsive elements" (PRE) die Pheromonantwort vermittelt. Die funktionelle Homologie bzw. die Reihenfolge im Signalweg der *C. albicans*-Homologen konnte mit epistatischen Versuchen nachgewiesen werden (Liu *et al.*, 1994; Köhler und Fink, 1996; Leberer *et al.*, 1996; Csank *et al.*, 1998).

Obgleich S. cerevisiae und C. albicans eine große Homologie in dieser MAPK-Kaskade aufweisen, so unterscheiden sich die Signalwege im Hinblick auf ihre Bedeutung für das filamentöse Wachstum der beiden Hefen erheblich. Während die Pseudohyphenbildung von S. cerevisiae durch die Deletion von Komponenten der MAPK-Kaskade nahezu vollständig inhibiert wird, zeigt C. albicans nach Mutation der Homologen sowohl hinsichtlich der Hyphenbildung als auch der Virulenz nur partielle Defekte (Köhler und Fink, 1996; Leberer et al., 1996; Lo et al., 1997). Insbesondere ist im Vergleich mit S. cerevisiae die Bedeutung des durch den MAP-Kinaseweg regulierten Transkriptionsfaktors Cph1p für die Hyphenbildung von C. albicans geringer einzuschätzen. Die Schlüsselrolle in der Regulation filamentösen Wachstums spielt der Transkriptionsfaktor Efg1p (Stoldt et al., 1997; Lo et al., 1997; Ernst, 2000a, b). Die Deletion von EFG1 blockiert nahezu vollständig die Hyphenbildung unter allen Standardinduktionsprotokollen, während die zusätzliche Deletion von CPH1 diesen Phänotyp, auch in einer efg1/tup1-Mutante (Braun und Johnson, 2000), kaum zu steigern vermag. Den kompletten Verlust der Virulenz im Mausmodell der systemischen Infektion zeigt jedoch nur die efgl/cphl-Doppeldeletion (Lo et al., 1997). Allerdings wurde auch in dieser Mutante unter speziellen Bedingungen filamentöses Wachstum beobachtet (Brown et al., 1999; Sonneborn et al., 1999a). Sowohl die Einbettung in Agar als auch mikroaerophile Bedingungen (Sauerstoffmangel) führen zur Ausbildung echter Hyphen (Brown et al., 1999; Riggle et al., 1999; Sonneborn et al., 1999a). Vermittelt wird die Filamentbildung unter diesen Bedingungen durch den Transkriptionsfaktor Czf1p (Abb. 3). Während eine czfl-Mutante in Einbettung weniger Hyphen bildet, stimuliert die Überexpression von CZF1 die Bildung echter Hyphen (Brown et al., 1999). Da die zusätzliche Deletion von CPH1 den Phänotyp von czf1 noch steigert, scheint Cph1p an der Hypheninduktion unter diesen Bedingungen aktivierend beteiligt zu sein. Für Efg1p wird hingegen eine inhibierende Funktion diskutiert, da eine efgl-Mutante bei Sauerstoffmangel sogar ein gegenüber dem Wildtyp verstärktes Hyphenwachstum zeigt (Sonneborn et al., 1999a).

Der zuvor beschriebene Einfluß des pH-Wertes auf den Dimorphismus wird über den Transkriptionsfaktor Prr2p reguliert (Ramon *et al.*, 1999). Dieser unterliegt seinerseits einer Aktivierung durch Prr1p (Porta *et al.*, 1999). Eine *prr2*-Mutante zeigt bei leichter Induktion ein vermindertes Hyphenwachstum und ist nicht in der Lage, die Expression der pH-regulierten Gene *PHR1* und *PHR2* zu steuern (Fonzi, 1999).

Während alle zuvor beschriebenen Transkriptionsfaktoren den Übergang von der Hefe- zur Hyphenform aktivieren, besitzt der Transkriptionsfaktor Tup1p eine antagonistische reprimierende Funktion, da ein *tup1*-Deletionsstamm konstitutiv filamentöses Wachstum zeigt (Braun und Johnson, 1997). Dabei handelt es sich jedoch hauptsächlich um Pseudohyphen. Da in der *tup1*-Mutante durch Serum jedoch keine echten Hyphen induziert werden können (Braun und Johnson, 1997), scheint Tup1p neben seiner Rolle als Repressor von Pseudohyphen auch in der Ausbildung echter Hyphen regulatorisch beteiligt zu sein. Ein indirekter Einfluß auf den Dimorphismus kann allerdings nicht ausgeschlossen werden, da dieser Transkriptionsfaktor analog zu seiner Rolle in *S. cerevisiae* als Regulator von über 100 Genen (Glukose-Regulation, oxidative Streßantwort, DNA-Reparatur) auch in *C. albicans* an der hitzebedingten Streßantwort und der Integrität der Zellwand beteiligt ist. Daß jedoch der starke filamentöse Phänotyp der tup1-Mutante z.T. durch die zusätzliche efg1-Deletion (aber nicht durch cph1) wieder aufgehoben werden konnte (Braun und Johnson, 2000), unterstreicht die Schlüsselfunktion von Efg1p im Dimorphismus von *C. albicans*.

Der cAMP-abhängige Signalweg, in dem Efg1p diese Funktion ausübt (Abb. 3), weist ebenso wie der MAP-Kinaseweg große Homologien zu S. cerevisisae auf. Während in der Bäckerhefe das kleine G-Protein Ras2p beide Signalwege reguliert (Lorenz und Heitman, 1997; Robertson und Fink, 1998), wird seine Funktion in C. albicans von dem homologen Protein Ras1p übernommen (Feng et al., 1999). In S. cerevisiae wird die MAPK-Kaskade von Ras2p über Cdc42p aktiviert (Mösch et al., 1996), wohingegen der PKA-Weg von Ras2p über die Aktivierung der Adenylylzyklase Cyr1p und die damit verbundene Erhöhung des cAMP-Ras2^{Val19}-Allel angeschaltet wird. Das dominant aktive forciert Spiegels die Pseudohyphenbildung in S. cerevisiae (Gimeno et al., 1992). In C. albicans blockiert die Deletion von RAS1 die Bildung echter Hyphen, während die Entwicklung von Pseudohyphen nicht beeinträchtigt wird (Feng et al., 1999). Ein dominant aktives Allel verstärkt hier die Induktion echter Hyphen. Für Ras1p wird daher auch in C. albicans eine aktivierende Funktion sowohl des MAP-Kinaseweges über Cst20p (Abb. 3) als auch des PKA-Weges über den cAMP-Spiegel diskutiert (Ernst, 2000b).

Die im Zentrum des cAMP-abhängigen Weges stehende Proteinkinase A besitzt in *S. cerevisiae* drei isoforme katalytische Untereinheiten (Tpk1p, Tpk2p, Tpk3p), wobei Tpk2p eine aktivierende und Tpk1p/Tpk3p eine inhibierende Funktion in der Pseudohyphenbildung zukommt (Robertson und Fink, 1998; Pan und Heitman, 1999). In *C. albicans* wurden bisher nur die beiden Isoformen Tpk1p und Tpk2p beschrieben (Bockmühl, 2001; Sonneborn *et al.*, 2000). Die Deletion von *TPK1* wie *TPK2* führt unter schwachen Induktionsbedingungen zu Defekten in der Entwicklung echter Hyphen. Beide Isoformen scheinen ihre Funktion gegenseitig komplementieren zu können, da nur eine konditionale *tpk1/tpk2*-Doppelmutante auch unter starken Induktionsbedingungen (Serum) völlig afilamentös wächst (Bockmühl, 2001). Allerdings vermittelt Tpk1p hauptsächlich Hyphenwachstum auf festen Medien, wohingegen Tpk2p dies in erster Linie in Flüssigmedien vermag. Darüberhinaus wird als Tpk2p-Funktion die Initialisierung des Keimschlauches, als Tpk1p-Funktion die sich anschließende Aufrechterhaltung des Hyphenwachstums diskutiert (Bockmühl, 2001).

Im Zusammenhang mit der Regulation filamentösen Wachstums wird Sfl1p in *S. cerevisiae* als potentielles Zielprotein für Tpk2p diskutiert. Als Transkriptionsfaktor reguliert Sfl1p die Expression des für die Pseudohyphenentwicklung essentiellen Zellwandproteins Fl011p (Robertson und Fink, 1998; Lo und Dranginis, 1998).

In C. albicans wird hingegen der zentrale Regulator des Dimorphismus Efg1p als Zielprotein von PKA im cAMP-abhängigen Signalweg angesehen (Abb. 3). Einerseits deuten epistatische Untersuchungen auf die Position von Efg1p unterhalb von PKA im gleichen Signalweg hin (Sonneborn et al., 2000; Bockmühl, 2001). Andererseits besitzt Efg1p eine potentielle PKA-Phosphorylierungssequenz (RVT) an Position 204-206 (Kenelly und Krebs, 1991). Die Simulation einer nicht-phosphorylierten Aminosäure durch einen Threonin/Alanin-Austausch Funktionalität von Efg1p in der Hypheninduktion. zerstört die während ein Threonin/Glutamat-Austausch, der eine konstitutiv phosphorylierte Aminosäure vortäuscht, die Hypheninduktion deutlich verstärkt und ebenfalls die Hyphendefekte von tpk-mutanten komplementiert (Bockmühl und Ernst, 2001; Bockmühl, 2001). Die multiplen Funktionen von Efg1p in der Morphogenese von C. albicans scheinen jedoch durch zusätzliche Phosphorylierungen und Modifikationen reguliert zu werden (Bockmühl, 2001).

C. albicans – Transkriptionsfaktor Efg1p

Neben der Bildung von Filamenten in Form von echten Hyphen und Pseudohyphen steuert Efg1p sowohl die Entwicklung von Chlamydosporen als auch einen Phänotypwechsel von *C. albicans* (Stoldt *et al.*, 1997; Lo *et al.*, 1997; Sonneborn *et al.*, 1999a, b). Aufgrund seiner Struktur gilt Efg1p als Mitglied der APSES-Proteinfamilie (Abb. 4). Im Bereich der ca. 100 Aminosäuren umfassenden APSES-Domäne weisen diese Proteine, als Regulatoren

morphogenetischer Prozesse in verschiedenen Pilzen, eine 80-90%ige Homologie auf. Asm1p reguliert die Reifung der Ascosporen in Neurospora crassa (Aramayo et al., 1996), während StuA die Bildung von Konidiophoren in Aspergillus nidulans steuert (Miller et al., 1992). S. cerevisiae ist mit zwei Mitgliedern in dieser Gruppe vertreten. Phd1 und Sok2 sind in antagonistischer Weise in die Pseudohyphenbildung der Bäckerhefe involviert. Überexpression von PHD1 sowie Deletion von SOK2 verstärken das filamentöse Wachstum, so daß Phd1p als Aktivator und Sok2p als Repressor von Pseudohyphen gelten (Gimeno und Fink, 1994; Ward et al., 1995). Efg1p komplettierte diese Gruppe vor kurzem. Die vollständige bis Sequenzierung des Genoms von C. albicans ermöglichte jedoch die

Aminosäuren im Protein an). Efh1p aus *C. albicans* kann in

Identifizierung eines weiteren APSES-Proteins. Efh1p (<u>Efg1p Homolog</u>) besitzt ebenfalls eine APSES-Domäne und ist in die Steuerung morphogenetischer Prozesse involviert, da seine Überexpression zu einem pseudohyphalen Phänotyp führt (Bockmühl, 2001).

diese Gruppe eingeordnet werden.

C. albicans ist somit wie S. cerevisiae mit zwei Mitgliedern in dieser Proteinfamilie vertreten.

Eine basische Helix-Loop-Helix-Domäne (bHLH) bildet ein weiteres Charakteristikum dieser Transkriptionsfaktoren. Eine solche Domäne kennzeichnet auch viele Transkriptionsfaktoren aus Säugern (z.B. c-Myc, c-Max, MyoD, E47), Hefen (z.B. Cbf1p, Ino2p/Ino4p, Pho4p) und anderen Eukaryonten (Ferre-d'Amare *et al.*, 1993; Ellenberger *et al.*, 1994; Ma *et al.*, 1994; Cai und Davis, 1990; Berben *et al.*, 1990; Robinson und Lopes, 2000; Ledent und Vervoort, 2001). Sowohl Proliferations- als auch Differenzierungsprozesse von Zellen werden maßgeblich von ihnen reguliert (Jan und Jan, 1993; Hassan und Bellen, 2000).

Die DNA-Bindung von bHLH-Proteinen an als E-Boxen bezeichnete palindromische Erkennungssequenzen (5'-CACGTG-3'; 5'-CAGCTG-3') wird durch die basische Region vermittelt (Murre *et al.*, 1989; Ellenberger *et al.*,1994), während die HLH-Domäne über die Interaktion amphipathischer Helices zur Bildung von Homo- und Heterodimeren führt (Ma *et al.*, 1994). Insbesondere durch die Heterodimerisierung verschiedener bHLH-Proteine kann die Affinität für unterschiedliche Zielsequenzen moduliert und somit die Variabilität der Transkriptionsregulation erhöht werden (Swanson *et al.*, 1995; Meroni *et al.*, 1997; Walhout *et al.*, 1997). Neben E-Boxen wurden daher eine Vielzahl von Erkennungssequenzen von bHLH-Transkriptionsfaktoren beschrieben (Robinson und Lopes, 2000; Ledent und Vervoort, 2001).

Während für die APSES-Proteine noch keine Dimerisierungspartner beschrieben wurden, deuten Untersuchungen im Zwei-Hybridmodell in *S. cerevisiae* auf eine Homodimerisierung von Efh1p (Bockmühl, 2001). Desweiteren wurde für Efg1p die für bHLH-Proteine charakteristische Bindung einer E-Box-Erkennungssequenz nachgewiesen (Leng *et al.*, 2001).

Alle Mitglieder der APSES-Familie, inklusive Efh1p, weisen sowohl N- als auch C-terminal für Transkriptionsfaktoren typische glutaminreiche Regionen auf. Außerhalb der APSES-Domäne differieren Efg1p und Efh1p ansonsten jedoch erheblich (Bockmühl, 2001). Sie unterscheiden sich nicht nur in der relativen Lage der APSES-Domäne (Efg1p: AS 202-304; Efh1p: AS 412-514) innerhalb des Proteins, sondern auch in ihrer absoluten Größe (Efg1p: 552 AS; Efh1p: 720 AS). Das berechnete Molekulargewicht von Efg1p beträgt 61 kDa und konnte allerdings nur bei heterologer Expression in *E. coli* mittels einer 6xHis-Fusion bestätigt werden (Doedt, 2000). Sowohl bei der heterologen Expression in *S. cerevisiae* als in *C. albicans* wird eine Dreifachbande bei ca. 90 kDa detektiert, die auf posttranslationale Modifikationen zurückgeführt wird (Sonneborn, 1999; Bockmühl, 2001).

Der vergleichbare Überexpressionsphänotyp von Efg1p und Efh1p (Pseudohyphen) kann jedoch nicht auf die homologe APSES-Domäne zurückgeführt werden, da die beiden APSES-Proteine von *S. cerevisiae* antagonistisch als Aktivator (Phd1p) und als Repressor (Sok2p) die Pseudohyphenbildung beeinflussen (Gimeno und Fink, 1994; Ward *et al.*, 1995). Darüberhinaus fungiert Sok2p in *S. cerevisiae* über die Proteinkinase A-Regulation sowohl als Aktivator der Mitose, als auch als Repressor der Meiose (Shenhar und Kassir, 2001). Da die Repressorfunktion in *sok2*-Mutanten heterolog durch Efg1p komplementiert wird, scheinen Sok2p und Efg1p in dieser Hinsicht funktionelle Homologe zu sein. Diese Homologie bezüglich einer Funktion von Efg1p als Aktivator und Repressor offenbart sich in *C. albicans*, da noch keine Meiose beschrieben wurde, in der Regulation der Morphogenese. Filamentöses Wachstum in Form von Hyphen und Pseudohyphen wird von Efg1p sowohl reprimiert als auch aktiviert, wobei die Rolle von Efg1p durch morphogenetisch relevante Umweltreize determiniert wird (Ernst, 2000b).

Ausgangspunkt dieser Arbeit war die Diskrepanz zwischen der Größe des offenen Leserahmens (1,6 kb) und der Größe des Haupttranskriptes (3,2 kb) des *EFG1*-Gens. Die Promotoranalysen von Weide (1998) basierten auf der Bestimmung eines Transkriptionsstartpunktes (-35) in unmittelbarer Nähe des Translationstarts (Stoldt, 1995). Die implizierte Hypothese einer 1,6 kb großen 3'-untranslatierten Region des *EFG1*-Transkriptes konnte am Beginn dieser Arbeit widerlegt werden und definierte gleichzeitig die weiteren Ziele:

Der Northern-Analyse der *EFG1*-Expression folgte die Kartierung der *EFG1*-Transkripte und die Sequenzierung des *EFG1*-Hauptpromotors. Die Funktion der 5'*UTR* des *EFG1*-Haupttranskriptes wurde sowohl durch Deletion als auch durch Überexpression untersucht.

Mittels Reportergenfusionen und Transkriptanalysen wurde die Regulation der *EFG1*-Expression in den von Efg1p gesteuerten Entwicklungsprozessen (Hyphenbildung, Phänotypwechsel) analysiert. In einer Deletionsanalyse erfolgte die Identifizierung funktioneller Regionen des Hauptpromotors im Prozeß der negativen Autoregulation von *EFG1*.

Transkriptionelle Wechselwirkungen zwischen EFG1 und Komponenten des cAMP-Weges (TPK1/TPK2) wurden einerseits in Überexpressionsexperimenten, andererseits in efg1- und tpk1/tpk2-Mutanten analysiert.

2 Material und Methoden

2.1 Chemikalien und Enzyme

Chemikalien und Enzyme wurden von folgenden Firmen bezogen: Amersham (Braunschweig), Biorad (München), J.T. Baker (Deventer, Niederlande), Calbiochem (Bad Soden), Dianova (Hamburg), Difco (Michigan), Fluka (Buchs, Schweiz), Gibco BRL (Eggenstein), Kodak (New Haven), Merck AG (Darmstadt), MBI Fermentas (St. Leon Rot), Millipore (Eschborn), New England Biolabs (Schwalbach), Oxoid (Wesel), Pharmacia (Freiburg), Promega (Madison), Qiagen (Hilden), Riedel-De Haen (Hannover), Roche (Mannheim), Roth (Karlsruhe), Serva Feinbiochemica (Heidelberg), Sigma (Deisenhofen), Tropix (Heidelberg), United States Biochemical Corporation USB (Bad Homburg), Whatman (Maidstone, GB). Radioisotope wurden von Amersham (Braunschweig) erworben.

2.2 Stämme und Medien

2.2.1 E. coli-Stämme

Für Klonierungen wurde ausschließlich DH5 α F' benutzt. Mutagenisierte Plasmide wurden auch in XL1-Blue transformiert.

DH5αF':	F'[Φ 80 (Δ lacZ) M15] Δ (lacZYA-argF) U169 recA1 endA1 hsdR17 r_{k}^{-} m _k ⁺
	supE44 thi-1 gyrA relA (Hanahan, 1983; Woodcock et al., 1989)

XL1-Blue: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 lac[F' proAB lacI^qZ Δ M15 $Tn10(\text{Tet}^{r})$]^c

Stamm	Beschreibung
SC5314	Wildtyp, prototroph (Fonzi und Irwin, 1993)
CAI4	Δura3::imm434/Δura3::imm434 (Fonzi und Irwin, 1993)
CAI8	ade2::hisG/ade2::hisG, \u00e5ura3::imm434/\u00e5ura3::imm434 (Fonzi und Irwin, 1993)
HLC67	wie CAI4, aber efg1::hisG/efg1::hisG (Lo et al., 1997)
WO-1	Wildtyp, prototroph mit "white/opaque"-Phänotypwechsel (Slutsky et al., 1987)
Red3/6	ade2/ade2-Derivat von WO-1 (Srikantha et al., 1995)
BCa2-9	wie CAI4, aber <i>tup1::hisG/tup1::hisG</i> (Braun und Johnson, 1997)
BCa14-1	wie CAI4, aber <i>cph1::hisG/cph1::hisG, efg1::hisG-URA3-hisG/EFG1</i> (Braun und Johnson, 1997)
CDB1	wie CAI4, aber <i>cph1::hisG/cph1::hisG</i> , <i>efg1::hisG/efg1::hisG</i> (Bockmühl, 2001)
M231	wie CAI4, aber <i>tpk2::hisG/tpk2::hisG, tpk1::hisG/tpk1::hisG/URA3-PCK1p-TPK1</i> (M. Gerards)
CMP7	wie CAI4, aber <i>sir2::hisG/sir2::hisG</i> (J. Perez-Martin, pers. Mitteilung)
DSY1346	wie CAI4, aber cap1::hisG/cap1::hisG (Micheli, 2000)
LUC1/2/3/4	pBT-100A, <i>Hpa</i> I linearisiert im <i>EFG1p</i> , integriert in CAI8 (diese Arbeit)
LUC5/6/7/8	pBT-100B, <i>Hpa</i> I linearisiert im <i>EFG1p</i> , integriert in CAI8 (diese Arbeit)
LUC9/10	pBT-150A, <i>Hpa</i> I linearisiert im <i>EFG1p</i> , integriert in CAI8 (diese Arbeit)
LUC11/12	pBT-150B, <i>Hpa</i> I linearisiert im <i>EFG1p</i> , integriert in CAI8 (diese Arbeit)
LUC13/14	pBT-153A, <i>Hpa</i> I linearisiert im <i>EFG1p</i> , integriert in CAI8 (diese Arbeit)
LUC15/16	pBT-153B, <i>Hpa</i> I linearisiert im <i>EFG1p</i> , integriert in CAI8 (diese Arbeit)

2.2.2 C. albicans-Stämme

2.2.3 Medien zur Anzucht von Bakterien

Vollmedium (LB): 1 % Trypton, 0,5 % Hefeextrakt, 0,5 % NaCl Die Anzucht der Bakterien erfolgte bei 37°C. Festen Nährböden enthielten 1,2 % Agar. Zur Selektion plasmidkodierter Antibiotikaresistenz wurde dem Medium Ampicillin [100 μ g/ml] oder Kanamycin [50 μ g/ml] zugesetzt. Die Selektion auf lacZ-Aktivität erfolgte durch Zugabe von IPTG/X-Gal. Pro Platte wurden 100 μ l einer Stammlösung mit 10 mg X-Gal und 2,4 mg IPTG/ ml DMF aufgebracht.

2.2.4 Medien zur Anzucht von Hefen

YPD (Vollmedium):	1 % Hefeextrakt, 2 % Glukose, 2 % Pepton
SD (Minimalmedium):	0,67 % Hefe Stickstoffbasis ohne Aminosäuren (YNB w/o AS),
	2 % Glukose
S4D:	0,67 % YNB w/o AS, 4 % Glukose
SCAA:	0,67 % YNB w/o AS, 2 % Casaminosäuren
Die Anzucht von Hefen erfol	gte bei 30°C. Feste Medien enthielten 1,2 % Agar.

2.2.5 Spezielle Medien

2.2.5.1 Hypheninduktion

Die Induktion von Hyphen in *C. albicans* erfolgte ausschließlich in Medien mit 10 % Serum bei 37°C. Auf festen Medien (1,2 % Agar) wurden Vereinzelungsausstriche durchgeführt. Zur Induktion in Flüssigmedien wurden logarithmische Vorkulturen mit H₂O gewaschen und auf eine OD_{600} von 0,1 eingestellt.

2.2.5.2 Screening auf β-Galaktosidase-Aktivität

Der Test von *C. albicans*-Transformanten mit *LAC4*–Reportergen auf β –Galaktosidase-Aktivität wurde auf gepufferten X-Gal-SD-Platten (pH 7) durchgeführt. Pro Platte wurden 50 µl einer X-Gal-Lösung mit 40 mg/ml aufgebracht. Im Enzymtest wurden nur Transformanten verwendet, welche nach drei Tagen Wachstum bei 30°C eine Blaufärbung zeigten.

2.2.5.3 Induktion des *PCK1*-Promotors

Die Induktion des *PCK1*-Promotors erfolgte in SCAA-Medium. Zum Test der *EFG1*-Autoregulation wurden Vorkulturen in S4D mit H₂O gewaschen und in S4D und SCAA auf eine OD₆₀₀ von 0,2-0,3 angeimpft. Nach Wachstum über Nacht (ca.16h) wurden die Kulturen am Morgen wieder auf eine OD₆₀₀ von 0,2-0,3 eingestellt und bei einer OD₆₀₀ von 0,8-1,0 geerntet, so daß die Gesamtdauer der *PCK1p*-Induktion etwa 24 h betrug.

2.3 Vektoren und Primer

2.3.1 Basisvektoren

Vektor	Beschreibung
pUC18	E.coli-Klonierungsvektor (Yannish-Perron, 1985)
pUCBgl	E.coli-Klonierungsvektor (M. Gerads, pers. Mitteilung)
pUK21	<i>E.coli</i> -Klonierungsvektor (Viera und Messing, 1991)
p607/2	<i>EFG1</i> (Stoldt, 1995)
p606/1	<i>EFG1</i> (Stoldt, 1995)
pRS-LAC4	LAC4 (Delbrück, 1994)
pRC18	C.albicans-Vektor (Stoldt et al., 1997)
pCL76	EFG1p::LAC4 in pRC18 (Stoldt et al. 1997)
pBI	<i>PCK1p</i> in pRC2312 (Rademacher, 1998)
pBT-3a	C.albicans-Vektor, URA3 (Tebarth, 1998)
pBT-4	C.albicans-Vektor, ADE2 (Tebarth, 1998)
pCA01	<i>PCK1p</i> in pUC21 (Sonneborn, 1999)
pAPE(2)/ADE	PCK1p::EFG1 (Sonneborn et al., 1999)
pRL-null	RLUC, Renilla luciferase (Promega)
pSFU1	URA3-Flipper in pBluescript (Morschhäuser et al., 1999)
p1367/1	URA3 in pUC18 (Losberger und Ernst, 1989)
pDB30	<i>EFH1</i> in pUC18 (Bockmühl, 2001)
pHIStag/C.TPK1	C.albicans-TPK1 in pUC18 (M. Gerads, pers. Mitteilung)
pHIStag/C.TPK2	C.albicans-TPK2 in pUC18 (M. Gerads, pers. Mitteilung)
pUC/C.TPK1	C.albicans-TPK1 in pUC18 (M. Gerads, pers. Mitteilung)
pBI-HisC.TPK1	C.albicans-TPK1 in pBI (M. Gerads, pers. Mitteilung)
pBI/TPK	C.albicans-TPK2 in pBI (M. Gerads, pers. Mitteilung)
p1595/3	ACT1 in pBR322 (Delbrück und Ernst, 1993)
pUC19/EFG1	EFG1 in pUC19 (Sonneborn, 1999)
pMi/UC700e	EFG1p-Subklon (Weide, 1997)
pWH11	WH11 in pUC18 (M. Gerads, pers. Mitteilung)
p26-6	<i>PCK1</i> in pUC21 (Leuker, 1996)

2.3.2 Vektorkonstruktionen

In numerischer Reihenfolge werden alle verwendeten Subklone, Zwischenkonstruktionen und *Candida*-Vektoren aufgeführt.

Vektor	Konstruktion	
pBT-9	3,2 kb <i>Bam</i> HI/ <i>BgI</i> II-Fragment aus p607/2 in pUK21, <i>Bam</i> HI/ <i>BgI</i> II	
pBT-10	3,2 kb BamHI/BglII-Fragment aus p607/2 in pUCBgl, BamHI/BglII	
pBT-13	3,5 kb BamHI/SphI-Fragment aus p606/1 in pUK21, BamHI/SphI	
pBT-15	4,2 kb PvuII/XbaI-Fragment aus pRS-LAC4 in pRC18, SmaI/XbaI	
pBT-16	2,5 kb BglII/HindIII-Fragment aus pBT-9 in pUCBgl, BglII,HindIII	
pBT-17	5,8 kb BamHI(part.)/XbaI aus pCL76 in pBT-9, BamHI/XbaI	
pBT-20	9,0 kb SpeI-Fragment aus pBT-17 in pRC18, XbaI	

pBT-23	2,7 kb BamHI/BglII-Fragment aus pBT-13 in pBI, BglII
pBT-25	9,0 kb SpeI-Fragment aus pBT-17 in pBT-3a, XbaI
pBT-29	1,0 kb <i>Hin</i> cII-Fragment aus pBT-9 in pUC18, <i>Sma</i> I
pBT-30	0,4 kb <i>Hin</i> cII-Fragment aus pBT-9 in pUC18, <i>Sma</i> I
pBT-31	4,2 kb <i>PvuII/XbaI</i> -Fragment aus pRS-LAC4 in pBT-9, <i>Eco</i> RV/XbaI
pBT-32	0,4 kb <i>Hin</i> dIII/ <i>Xmn</i> I-Fragment aus pBT-9 (fill-in,Religation)
pBT-34	7,4 kb Spel-Fragment aus pBT-31 in pBT-3a, Xbal
pBT-36	3,7 kb-PCR-Fragment (EFG5',EFG3') in pUC18, Smal
pBT-37	0,8 kb Bg/II/HincII-Fragment aus pBT-9 in pUC18, Smal
pBT-39	1,0 kb Sspl-Fragment aus pBT-16 in pUC18, Smal
pBT-40	1,1 kb HindIII/Xhol-Fragment aus pBT-16 in pUC18, Smal
pBT-41	0,7 kb Hpal/Xhol-Fragment aus pB1-16 in pUC18, Smal
рВТ-44 - рт 47	1,4 kb Spel-Fragment aus pCAUI in pB1-4, Nhel
рВ1-47 "рт. 49	2,7 Kb BamHi/Bgill-Fragment aus pB1-13 in pB1-44, $Bgill$
рВТ-48 "рт. 40	3,2 kb BamHI/Bg/II-Fragment aus p60 //2 in pB1-13, BamHI
рв1-49 трт 50	6,7 kb Stul/Xbal-Fragment aus pB 1-48 in pB 1-5a, Smal/Xbal
рв1-50 рвт 52	0,7 kb Bglii-Fragment aus pB 1-30 in pB 1-25, Bglii
рот-35 ррт 55	0,7 KO Dg/II -Fragment aus pD1-30 III pD1-47, $Dg/IIMutagenese mit EEC T/A1 EEC T/A2 suf pADE(2)/ADE$
рот-33 ррт 66	Mulagenese IIII EFG-1/A1,EFG-1/A2 au pAPE(2)/ADE
рыт-00 ррт 67	0,2 K0 Dum ni/EcoKi-Flagment aus pD1-50 in pDK21, Dum ni/EcoKi
pBT-07 pBT-68	4,2 KU F VUII/ADDI-FTAGINENT AUS pKS-LAC4 III pB 1-00, ECOK V/ADDI
pBT-08 pBT-69	1.0 kb Nhel/Yhal Fragment aus pPL pull in pPT 3a, Yhal
pBT-70	3.5 kb Stul/Xbal-Fragment aus pRT-13 in pBT-3a, <i>Xbal</i>
pBT-70 pBT-73	0.9 kb PCR-Fragment (dell ITR1 dell ITR2) in pLIC18 Small
pBT-75	0.9 kb PCR-Fragment (dell/TR3 dell/TR4) in pUC18, Small
pBT-76	0.9 kb KnnI/XhoI-Fragment aus nBT-73 in nSFU1 KnnI/XhoI
pBT-77	0.9 kb Notl/SacI-Fragment aus pBT-75 in pBT-76 Notl/SacI
pBT-79	1.0 kb <i>NheI/Xha</i> I-Fragment aus pRL-null in pBT-9. <i>Xha</i> I
pBT-89	4.2 kb <i>Sne</i> I-Fragment aus pBT-79 in pBT-3a. <i>Xha</i> I
pBT-95	2.8 kb <i>Stul/Xmn</i> I-Fragment aus pBT-9 (fill-in.Religation)
pBT-96	4.2 kb <i>PvuII/Xba</i> I-Fragment aus pRS-LAC4 in pBT-95. <i>Eco</i> RV/XbaI
pBT-99	4,5 kb SpeI-Fragment aus pBT-96 in pBT-3a, XbaI
pBT-100	4,2 kb SpeI-Fragment aus pBT-79 in p1367/1, XbaI
pBT-101	338 bp PCR-Fragment (DELa,DELc) in pUC18, Smal
pBT-102	284 bp PCR-Fragment (DELb,DELc) in pUC18, SmaI
pBT-103	117 bp BamHI/EcoRI-Fragment aus pBT-101 in pUK21, BamHI/EcoRI
pBT-104	63 bp <i>Bam</i> HI/ <i>Eco</i> RI- Fragment aus pBT-102 in pUK21, <i>Bam</i> HI/ <i>Eco</i> RI
pBT-105	4,2 kb <i>PvuII/XbaI</i> -Fragment aus pRS-LAC4 in pBT-103, <i>EcoRV/XbaI</i>
pBT-106	4,2 kb <i>PvuII/Xba</i> I-Fragment aus pRS-LAC4 in pBT-104, <i>Eco</i> RV/XbaI
pBT-107	4,3 kb SpeI-Fragment aus pBT-105 in pBT-3a, XbaI
pBT-108	4,3 kb SpeI-Fragment aus pBT-106 in pBT-3a, XbaI
pBT-110	FRT1,FRT2 nach Hybridisierung in pBT-9, BamHI
pBT-120/-121	Mutagenese mit 7GT4GT,4CA7CA auf pBT-34
pBT-122/-123	Mutagenese mit 7GT4GT,4CA7CA auf pBT-68
pBT-140/-141	Mutagenese mit T248E1,T248E2 auf pAPE(2)/ADE
pBT-145	2,1 kb <i>Bam</i> HI-Fragment aus pDB30 in pBT-44, <i>Bgl</i> II
pBT-146	2,1 kb <i>Bam</i> HI-Fragment aus pDB30 in pUK21, <i>Bam</i> HI
pBT-148/-149	Mutagenese mit del2-10, del10-2 auf pBT-68
pBT-150	Mutagenese mit LUC107a,LUC107b auf pBT-100
pBT-151	1,3 KD Bg/II-Fragment aus pHIStag/C.TPK1 in pBT-44, Bg/II
pBT-152	1,3 KD <i>Bgl</i> II-Fragment aus pHIStag/C.TPK2 in pBT-44, <i>Bgl</i> II
рвт-153	Mutagenese mit LUCI08a,LUCI08b auf pBT-100
рвт-154	1.0 KD <i>Nhel/Xba</i> l.Fragment aus pKL-null (fill-in) in pBT-110, <i>Eco</i> RV
рв1-155 трт 156	4,5 KD Spei-Fragment aus pB1-154 in p136//1, Xbal
рыт-156 трт 157	Mutagenese mit LUC1109a,LUC1109b auf pBT-100
рв1-12/	Mutagenese mit LUC112a,LUC112b auf pB1-153

2.3.3 Synthetische Oligonukleotide

Primer	Sequenz	Verwendung
FEG5'	$5' - \pi\pi a a c a \pi c \pi c \pi \pi c c \pi a a \pi a c c \pi \pi \pi c c \pi a \pi c c \pi a \pi a$	nBT-36
EFG3'	$5' = \pi \pi \lambda \alpha \pi \alpha \pi \alpha \alpha \alpha \pi \pi \alpha \pi \alpha \pi \alpha \pi \alpha \pi \pi \alpha$	pBT 36
dal3a	5 = 11	pBT-30 pBT 42
del2h	5 - AAGGAAAAAGCGGCCGCCCAACAIGCCACCGC - 5	pD1-42 pPT 42
dello		рБ1-42 рБТ 42
		рыт-45 трт 42
		рыт-45
del2c	5° -AAGGAAAAAAGCGGCCGCGIAIACACAIAIACACACGGAAG- 3°	pB1-46/-62/-72
EFG-1/A1		рв1-55
EFG-1/A2		рВТ-55
dellc	5' - AAGGAAAAAAGCGGCCGCGCGGTTGAGTTTCGTGCAGATCT-3'	рВ1-01 "рт. 61
		pB1-61
		рв1-63
delUIRI	5' - ATTGGTACCTGTGCATTGTCATTTTGTGTATATGTGC-3'	pB1-/3
delUTR2	5' -ATTCTCGAGCCAACCAAGTCTATTTGATAGATGATAG-3'	pBT-/3
delUTR3	5' -ATTGCGGCCGCGTTCTATTTGACTACCAAGAATATAACCC-3'	pBT-74
delUTR4	5' -ATTGAGCTCGGATACAACATATCCACAATTTGTTCACG-3'	pBT-74
DELa	5'-GTATATTCCATACTACCAACAGG-3'	pBT-101
DELb	5'-GGGAGCAAAACTAAGAAAAGTAG-3'	pBT-102
DELc	5'-GGGATAGTTGGATAATTGGATAG-3'	pBT-101/-102
FRT1	5'-GATCCGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTCA-3'	pBT-110
FRT2	5'-GATCTGAAGTTCCTATACTTTCTAGAGAATAGGAACTTCG-3'	pBT-110
EFG/TSP5'	5'-TTAAGATCTCTAAAAAGAATTTATCAAGTGAG-3'	pBT-118
EFG/TSP3'	5 ′ -TTAAGATCTGAAATCTCTTTTAAATGTAATG-3 ′	pBT-118/-119
7GT4GT	5 ′ -GGGAGCAAAACTAAGAAAATTATAAATATAATAACATCC-3 ′	pBT-120/-121
		pBT-122/-123
4CA7CA	5 ′ –GGATGTTATTTTATATTTTATAATTTTCTTAGTTTTGCTCCC–3 ′	pBT-120/-121
		pBT-122/-123
T248E1	5 ′ -CAATGTGGCCCAAATGGAACGTGGTAGAAGAG-3 ′	pBT-140/-141
T248E1	5'-CTCTTCTACCACGTTCCATTTGGGCCACATTG-3'	pBT-140/-141
del2-10	5'-GGATCCTTTTGGATGTTATTTATATTCTTAGTTTTGCTCCCACCC-3'	pBT-148/-149
del10-2	5'-GGGTGGGAGCAAAACTAAGAATATAAATAACATCCAAAAGGATCC-3'	pBT-148/-149
LUC107a	5 ′ - CAAGTGAGTGAGAAGTAGTAGAAGGGTATATTCCATACTACCAACA	pBT-150
	GG-3'	1
LUC107b	5'-CCTGTTGGTAGTATGGAATATACCCTTCTACTACTTCTCACTCA	pBT-150
	TG-3'	1
LUC108a	5 ' - CAAGTGAGTGAGAAGTAGTAGAAGGGGGGGGGGAGCAAAACTAAGAAAAGT	pBT-153
	AG-3'	1
LUC108b	5 ′ – CTACTTTTCTTAGTTTTGCTCCCCCTTCTACTACTTCTCACTCA	pBT-153
	TG-3'	r
LUC109a	5'-CAAGTGAGTGAGAAGTAGTAGAAGGGAAATATAAATAACATCCAAA	pBT-156
	AGG-3'	r
LUC109b	5 ' - CCTTTTGGATGTTATTTATATTTCCCTTCTACTACTTCTCACTCA	pBT-156
	TTG-3'	r
LUC112a	5'-GCAAAACTAAGAAAAGTACATCCAAAAGGATCC-3'	pBT-157
LUC112h	5 ′ –GGATCCTTTTGGATGTACTTTTCTTAGTTTTGC-3 ′	pBT-157
2001120		
5'RACE/SP1	5'-CGGGTTAGTGCAATGAATAATGG-3'	5'RACE
5'RACE/SP1	5' - CCCACTTCAAATAACCTTATCTCAATCCC-3'	5'RACE
5' P A CE/SP 2	5' - CCCCACTACATCCCTACCCCAATTCC-2'	5'DACE
J KACE/SF J		J KACE
/U/RACE/SPI		5 KACE
/U/RACE/SP2	5'-GGTAATAGTTTCCTTGAGATGTTGCGGC-3'	5 RACE
70/RACE/SP3	5'-GGTATTGTAATCATATTGTTGCTGCTGC-3'	5'RACE
EFG/SP1	5'-GCAGAAGTGGCAGTGGCAGC-3'	RNaseH
EFG/rev	5'-CGTTGAGCCATGGCCAATGCTC-3'	RNaseH

2.4 Transformation

2.4.1 Transformation von E. coli

Die Transformation von E. coli wurde nach der Methode von Hanahan (1983) durchgeführt.

2.4.2 Transformation von C. albicans

Sphäroplasten von C. albicans wurden nach Sherman et al. (1986), modifiziert von Srikantha et al. (1995) transformiert.

2.5 Methoden zur Analyse von DNA

Generell wurden die von Sambrook et al. (1989) beschriebenen Standardmethoden angewendet.

2.5.1 Klonierung

Die Restriktion von DNA erfolgte nach den Angaben der Hersteller (Roche, NEB, Gibco BRL, MBI Fermentas). Das Auffüllen überhängender 5'-Enden mit Klenow-Fragment sowie die Dephosphorylierung von 5'-Enden wurde nach Herstellerangaben (Roche) durchgeführt. Überstehende DNA-Enden wurden 1/2h bei Raumtemperatur (RT), glatte Enden über Nacht bei 16°C ligiert. Die Hybridisierung einzelsträngiger DNA-Oligos zu doppelsträngiger DNA erfolgte nach Denaturierung (95°C, 5 min.) durch langsames Abkühlen (1h) auf RT.

2.5.2 Isolierung von DNA-Fragmenten aus Agarosegelen

Bei der Isolierung von DNA-Fragmenten aus Agarosegelen kam der Qiaquick PCR Purification Kit der Firma Qiagen (Hilden) zum Einsatz.

2.5.3 Isolierung von Plasmid-DNA aus E. coli

Die Isolation von Plasmid-DNA aus *E. coli* erfolgte nach der Methode der alkalischen Lyse (Sambrook *et al.*, 1989). Größere Mengen Plasmid-DNA (100µg) wurden mit dem Plasmid Midi Kit der Firma Qiagen (Hilden) präpariert.

2.5.4 Isolierung von Gesamt-DNA aus Hefe

Die Isolation genomischer DNA aus *C. albicans* erfolgte nach Sherman *et al.* (1986). Eine stationäre 5 ml Übernachtkultur wurde abzentrifugiert (5 min., 3000 Upm), in Wasser gewaschen, in 400-800 μ l SCE/Zymolyase-Lösung resuspendiert und 1 h bei 37°C inkubiert. Die Sphäroplasten wurden für 5 min bei 4.000-6000 Upm pelletiert und in 500 μ l EDTA (50 mM, pH 8) aufgenommen. Der Zellaufschluß erfolgte nach Zugabe von 50 μ l SDS-Lösung (10%) durch Inkubation bei 65°C (30 min.). Durch Zugabe von 100 μ l 5 M Kaliumacetat-Lösung wurden denaturierte Proteine ausgefällt und abzentrifugiert (15 min, 13.000 Upm, 4°C) gefällt und in 400 μ l RNAse-Lösung resuspendiert und inkubiert (1/2 h, 37°C). Nach Phenol/Chloroform-Extraktion folgte eine abschließende Ethanolfällung. Die getrocknete DNA wurde in 100 μ l TE-Puffer rückgelöst (1/2 h, 37°C).

SCE/Zymolyase-Lösung	1,0 M Sorbit; 0,1 M Natriumcitrat; 10 mM EDTA (pH 7) 200 μg/ml Zymolyase (100T), 20 mM DTT
RNAse-Lösung	150 mM Natriumacetat (pH 5,9), 200 μg/ml RNAseA, 10 mM Tris/HCl (pH 7,5), 1 mM EDTA (pH 8,0)
TE-Puffer	10 mM Tris/HCl (pH 8) ; 1 mM EDTA pH 8,0

2.5.5 Sequenzierung

Sequenzierungen wurden in Auftragsarbeit vom BMFZ,Universität Düsseldorf oder der Firma Seqlab (Göttingen) ausgeführt.

2.5.6 Polymerase-Kettenreaktion

PCR-Reaktionen wurden unter Verwendung des Expand High Fidelity Kit oder des Expand Long Template Kit der Firma Roche nach Herstellerangaben durchgeführt. Bei Mutagenesen kam der Quick Change Site-directed Mutagenesis Kit der Firma Stratagene zum Einsatz.

2.5.7 Nachweis spezifischer DNA-Sequenzen über Southern-Blot-Analyse

Genomische DNA (1-2 μ g) wurde über Nacht mit Restriktionsenzymen geschnitten, auf einem Agarosegel (1 %) aufgetrennt und mittels Vacu-Blot (LKB 2016 VacuGene, Pharmacia) auf eine Nylonmembran (Hybond N, Amersham) transferiert. Nach UV-Fixierung (3 min.) erfolgte die Hybridisierung mit Digoxigenin-markierten DNA-Fragmenten (Feinberg und Vogelstein, 1983) bei 68°C über Nacht. Zur Detektion wurde der DIG DNA Labeling and Detection Kit der Firma Roche eingesetzt.

2.6 Methoden zur Analyse von RNA

2.6.1 Isolierung von Gesamt-RNA aus Hefe

Zur Isolierung von Gesamt-RNA nach Schmitt et al. (1990) wurden 30 ml Hefekulturen bei einer OD_{600} von 0,8-1,0 geerntet. Die RNA wurde in Ethanolfällung bei -20°C gelagert.

2.6.2 Präparation von mRNA

Zur Aufreinigung von mRNA wurde der Oligotex mRNA Mini Kit der Firma Qiagen (Hilden) eingesetzt.

2.6.3 5'RACE

Zur Bestimmung des Tanskriptstartpunktes kam der 5'/3'RACE Kit der Firma Roche nach Herstellerangaben zur Anwendung.

2.6.4 Restriktion von RNA mit RNaseH

Zur Restriktion von RNA mit RNaseH wurde die Methode von Mercer und Wake (1985) folgendermaßen modifiziert.

30 µg Gesamt-RNA wurden in 18,5 µl EDTA (1 mM) rückgelöst. Nach Denaturierung (95°C, 5 min.) wurden 0,5 µl Oligonukleotid (50 pmol) zugesetzt. Nach Inkubation bei 50°C (10 min.) wurde 1 µl KCl (1M) zugegeben und erneut für 10 min. bei 50°C inkubiert. Anschließend wurden 20 µl einer RNaseH-Lösung (28mM MgCl₂, 20mM TRIS/HCl (pH8), 0,5 mM EDTA (pH8), 0,5 U RNaseH (Pharmacia)) zugesetzt. Einer Inkubation bei 37°C für 15 min. folgte nach Zugabe von 160 µl Wasser ein Phenol-Chloroform-Extraktion. Durch Zugabe von 20 µl NaAc (3M, pH 5,2) und 500 µl Ethanol (abs.) wurde die geschnittene RNA über Nacht gefällt und im Northern-Blot eingesetzt.

2.6.5 Nachweis spezifischer RNA-Sequenzen über Northern-Blot-Analyse

Die radioaktive Markierung erfolgte nach dem Prinzip des "random priming" (Feinberg und Vogelstein, 1983) mit dem "Random Primed Labeling Kit" von Boehringer, Mannheim. In einem Reaktionsansatz von 20 μ l erfolgte die Markierung von 50-100 ng frisch denaturierter DNA bei 37°C für 2 h. Hierbei kamen 50 μ Ci [α - ³²P] dATP zum Einsatz. Die markierte DNA wurde durch Sephadex G50-Säulen (in TEN-Puffer (0,1 M NaCl, 10 mM Tris/HCl (pH8), 1 mM EDTA (pH8) gelöst) zentrifugiert und nach Denaturierung (15 min., 95°C) zur Hybridisierung eingesetzt. In einem Agarosegel (1,2 %) wurden 30 μ g Gesamt-RNA aufgetrennt. Der RNA-Transfer auf eine Nylonmembran (Hybond N, Amersham) erfolgte mit einem Kapillar-Blot über Nacht (Sambrook *et al.*, 1989). Als Blot-Puffer wurde 20xSSPE

 $(3,6 \text{ M NaCl}; 0,2 \text{ M NaH}_2\text{PO}_4; 0,02 \text{ M EDTA (pH 7,4)})$ mehrfach verwendet. Die Fixierung der RNA auf der Membran erfolgte durch Bestrahlung mit UV - Licht (254 nm, 3 min.) und anschließender Inkubation bei 80°C (2 h).

Nach Inkubation in Prähybridisierunglösung (SSPE (5x), 50% deionisiertes Formamid, 1 % Ficoll, 1 % Polyvinylpyrolidon, 1 % BSA, 0,5 % SDS, 50 ng denaturierte Heringssperma - DNA) für mindestens 1 h bei 42°C erfolgte die Zugabe der frisch denaturierten Sonde 1 % Ficoll, 1 % Polyvinylpyrolidon, 1 % BSA. An die Hybridisierung über Nacht bei 42°C schlossen sich je zwei Waschschritte in Lösung I (0,1 % SDS, 2xSSPE, 10 min.) und Lösung II (0,1 % SDS, 1 x SSPE, 10 min., 50°C) an. Die Detektion erfolgte über Autoradiographie mit Kodak-X-OMAT AR - Röntgenfilmen bei -70°C.

Die in der Northern-Analyse verwendeten Sonden sind in Tabelle 1 aufgeführt.

Transkript	Sonde
ACT1	1500 bp <i>ClaI/Sal</i> I-Fragment aus p1595/3
EFG1	1500 bp <i>Nhe</i> I-Fragment aus pUC19/EFG1
EFG1 (3' Ende)	492 bp SpeI/NheI-Fragment aus pUC19/EFG1
EFG1 (5'UTR)	664 bp <i>Eco</i> RI-Fragment aus pMi/UC700e
EFH1	2172 bp <i>Bam</i> HI-Fragment aus pBT-146
LAC4	879 bp <i>Eco</i> RI-Fragment aus pRS-LAC4
TPK1	1228 bp <i>Bam</i> HI/ <i>Bgl</i> II-Fragment aus pUC/C.TPK1
TPK2	1257 bp <i>Bam</i> HI/ <i>Bgl</i> II-Fragment aus pHIStag/C.TPK2
WH11	220 bp BamHI-Fragment aus pWH11
PCK1	488 bp <i>Bam</i> HI/ <i>Hpa</i> I-Fragment aus p26-6

 Tabelle 1 : DNA-Sonden zur Northern-Analyse

2.7 Methoden zur Analyse von Proteinen

2.7.1 Herstellung von Rohextrakten aus Hefe

Die Hefekulturen (5 ml) wurden bei einer OD_{600} von 0,8-1,0 geerntet (3 min, 13.000 Upm, 4°C). Nach einmaligem Waschen in dem entsprechenden Puffer des Enzymtestes (Galactolight-Puffer, Passive Lysis Buffer) wurden die Zellen entweder bis zu einer Woche bei -20° C gelagert oder direkt einem Zellaufschluß unterzogen. Nach Zugabe von 100 µl Glasperlen (4°C) und 150-300 µl Puffer (4°C) wurden die Zellen in 2ml-Reaktiongefäßen (Eppendorf) bei maximaler Geschwindigkeit auf einem Vibrax bei 4°C geschüttelt, gefolgt von einer Zentrifugation (10 min., 13.000 Upm, 4°C). Der Überstand wurde erneut abzentrifugiert (2 min., 13.000 Upm, 4°C), so daß ein klares Rohextrakt gewonnen wurde. Dieses wurde unmittelbar in den Enzymtest eingesetzt.

2.7.2 Bestimmung der Proteinkonzentration

Die Bestimmung der Proteinkonzentration in den Rohextrakten erfolgte nach der Methode von Bradford (1976) bei 595 nm in einem Beckmann-Photometer (DU 7400) unter Verwendung des Bradford-Reagenzes der Firma BIO-RAD anhand einer BSA-Eichkurve.

2.7.3 Messung der β-Galaktosidase-Aktivität

Die β -Galaktosidase-Aktivität wurde mit dem Galactolight Kit der Firma Tropix bestimmt. In weißen 96er Platten der Firma Labsystems (cliniplate) wurden 80 µl Substrat (Galacton Plus) vorgelegt. Durch Zugabe von 10 µl Rohextrakt (1-10 µg) wurde die Enzymreaktion gestartet. Nach einer einstündigen Inkubation bei Raumtemperatur wurde die Reaktion durch Zugabe von 125 µl Verstärker (Galactolight Emission Accelerator) gestoppt und die Lichtemission verstärkt. In einem Luminometer der Marke Fluoroskan Ascent FL der Firma Labsystems wurde unmittelbar über ein Zeitintervall von 10 Sekunden die gesamte emittierte Lichtmenge detektiert. Dabei lagen die Werte zwischen 10,0 - 0,001 RLU (relative light units, siehe Anhang I-IV). Diese relativen Werte wurden auf die Proteinkonzentration bezogen, da die Zelldichte angesichts des pseudohyphalen Wachstums eine ungeeignete Bezugsgröße darstellt. Zur Berechnung der autoregulatorischen Repression wurde der Quotient aus der Aktivität unter Repression des *PCK1*-Promotors und der Aktivität unter Induktion des *PCK1*-Promotors (*EFG1*-Überexpression) gebildet.

2.7.4 Messung der Luziferase-Aktivität

Die Luziferase-Aktivität wurde unter Verwendung des Dual-Luciferase Reporter Assay System der Firma Promega in einem Luminometer der Marke Fluoroskan Ascent FL der Firma Labsystems bestimmt. In weißen 96er Platten der Firma Labsystems (cliniplate) wurden 50-100 μ l LARII-Reagenz vorgelegt und die Reaktion durch Zugabe von 10 μ l Rohextrakt (1-10 μ g) gestartet. Über 10 Sekunden wurde unmittelbar die Hintergrundaktivität bestimmt, welche jedoch unter der Nachweisgrenze lag. Nach Zugabe von 50-100 μ l Stop&Glo-Reagenz wurde über 10 Sekunden die Aktivität der Renilla Luziferase bestimmt. Die Werte zwischen 10 - 0,001 RLU wurden auf die Proteinkonzentration bezogen. Die autoregulatorische Repression wurde als Quotient von Aktivität unter reprimierter *EFG1*-Expression und induzierter *EFG1*-Expression berechnet.

2.8 Disruption der 5'UTR des langen EFG1-Transkriptes

Zur Disruption der 5'-untranslatierten Region des langen *EFG1*-Transkriptes am *EFG1*-Locus wurden mittels PCR sowohl aus dem Bereich des Hauptpromotors (Oligonukleotide delUTR1, delUTR2) als auch aus dem Bereich des ORF von *EFG1* (Oligonukleotide delUTR3 und delUTR4) ca. 0,9 kb große Abschnitte amplifiziert und in die Vektoren pBT-73 und pBT-75 kloniert. Aus dem Vektor pBT-73 wurde der 3'-Bereich des *EFG1*-Promotors (inklusive des Transkriptionsstartpunktes des langen Transkriptes) mit *KpnI/XhoI* herausgeschnitten und in den Vektor pSFU1 kloniert (Morschhäuser *et al.*, 1999), welcher die URA-Flipper-Kassette beinhaltet, wobei der Vektor pBT-76 entstand. Aus dem Vektor pBT-75 kloniert, wobei der Vektor pBT-77 entstand. Aus diesem wurde die vollständige Disruptionskassette mit *KpnI/SacI* herausgeschnitten und zur Deletion der 5'*UTR* in die verschiedenen Stämme transformiert.

Sequenz des disruptierten *EFG1*-Locus in den 5'*UTR*-Mutanten (Beginn: TSP; Ende: ATG): 5'-TTACATTTAAAAGAGATTTCATTTTAATTTGAATAATCTATCATCTATCAA ATAGACTTGGTTGG GGTACCGGGCCCCCCCCCCGAG **GAAGTTCCTATACTTTCT AGAGAATAGGAACTTC** AGATCCACTAGTTCTAGAGCGGCCGC GTTCTATTTGA CTACCAAGAATATAACCCATATTA-3' (FRT-Sequenz fett gedruckt).

3 Ergebnisse

Der Transkriptionsfaktor Efg1p stellt einen zentralen Regulator der Morphogenese von C. albicans dar. Er ist sowohl in die Steuerung des Hyphenwachstums, welches als bedeutender Pathogenitätsfaktor angesehen wird (Odds, 1988), als auch in die Chlamydosporenbildung involviert (Sonneborn, 1999). Darüberhinaus führt die Überexpression von EFG1 zur Filamentation in Form von Pseudohyphen (Stoldt et al., 1997). Als Transkriptionsfaktor obliegt ihm die Funktion, die Expression von Zielgenen durch Bindung an ihre Promotoren zu regulieren. Der Regulation der Expression dieses Transkriptionsfaktors kommt neben seiner Aktivierung eine entscheidende Bedeutung zu, da schon geringe Unterschiede in seinem Expressionsniveau durch die verstärkende Wirkung der Signaltransduktionskaskade erheblichen Einfluß auf die verschiedenen Entwicklungsprogramme entfalten können. Eine stabile Wachstumsform von C. albicans setzt einen konstanten Transkriptspiegel von EFG1 voraus. Da die Deletion von EFG1 eine deutlich reduzierte Virulenz im Mausmodell zeigt (Lo et al., 1997), ist die Identifizierung von regulatorischen Domänen im EFG1-Promotor im Hinblick auf die Entwicklung neuer Antimykotika von besonderem Interesse, da durch die gezielte Hemmung der *EFG1*-Expression eine Reduktion der Virulenz möglich ist.

Im Mittelpunkt dieser Arbeit stehen Untersuchungen zur Expression von EFG1 und der sie vermittelnden regulatorischen Elemente, wobei neben dem Promotor des Haupttranskriptes auch eine regulatorische Funktion seines 5'-untranslatierten Bereiches (5'UTR) untersucht wurde. Als Grundlage für alle weiteren Experimente wurde am Beginn dieser Arbeit der Startpunkt des Haupttranskriptes bestimmt.

3.1 Northern-Analyse der *EFG1*-Expression

Ausgangspunkt zur Bestimmung der Transkriptionsstartpunkte von EFG1 war die Diskrepanz zwischen dem nur 1,6 kb großen offenen Leserahmen und dem 3,2 kb großen Transkript von EFG1 (Stoldt et al., 1997).

Die Bestimmung eines Startpunktes an Position -35 (Stoldt, 1995) legte entweder die Existenz eines ca. 1,6 kb großen 3'-untranslatierten Bereiches oder eine extreme Polyadenylierung nahe. Im Rahmen des 3'-Endes zahlreicher Transkriptanalysen von EFG1 konnte jedoch neben dem 3,2 kb großen EFG1-Haupttranskript (Stoldt, 1995) ein deutlich geringer exprimiertes ca. 2.1 kb großes Transkript detektiert werden. Die Kombination einer großen Menge RNA (30 μ g), einer besonders stark radioaktiven Sonde und einer langen Expositionsdauer des Röntgenfilmes (ca. eine Woche) ermöglichten die Detektion des kleineren Transkriptes (Abb. 5).

Aufgrund des Versuchsansatzes (S1-Nuclease) zur Bestimmung des Startpunktes durch Stoldt (1995), erschien es möglich, daß er einen Start des kleinen Transkriptes bestimmt hatte. Aus dieser Annahme ergab sich die Notwendigkeit zur Kartierung des EFG1-Haupttranskriptes, da

Transkript.

im S1-Nuklease-Ansatz von Stoldt (1995) wegen der Kürze des hybridisierten Fragmentes (341 bp) im S1-Nuclease-Ansatz eine potentiell 1,6 kb große 5'-untranslatierte Region nicht bestimmt werden konnte.

3.2 Kartierung der EFG1-Transkripte

3.2.1 Northern-Analyse des Haupttranskriptes nach RNaseH-Restriktion

Als Versuchsansatz zur Bestimmung der Größe von 5'UTR und 3'UTR des EFG1-Haupttranskriptes wurde eine sequenzspezifische Restriktion der mRNA gewählt (Abb. 6). Zu diesem Zweck wurde die EFG1-mRNA mit zwei Oligonukleotiden (A, B) aus dem Bereich des ORF hybridisiert, so daß partielle Doppelstränge aus DNA und RNA entstanden. Durch den Einsatz von RNaseH, welche diese RNA/DNA-Hybride abbaut, konnte die mRNA sequenzspezifisch geschnitten werden. Die Verwendung von Sonden sowohl aus dem 5'- als auch aus dem 3'-flankierenden Bereich der Schnittstellen erlaubte die exakte Identifizierung der produzierten mRNA-Fragmente. Mit einer nahezu den ganzen ORF umfassenden 1500 bp-Sonde konnten neben dem ungeschnittenen 3,2 kb-Haupttranskript jeweils zwei mRNA-Fragmente detektiert werden (Oligo A: 2,1 kb und 1,1 kb; Oligo B: 2,0 kb und 1,2 kb). Während mit der 3'-Sonde (492 bp SpeI/NheI-Fragment aus pUC19/EFG1) die kleineren Fragmente (1,1 kb und 1,2 kb) nachgewiesen wurden, konnten mit der 5'-Sonde (664 bp EcoRI-Fragment aus pMi/UC700e) die größeren Fragmente (2,1 kb und 2,0 kb) eindeutig dem 5'-flankierenden Bereich der Schnittstellen zugeordnet werden. Basierend auf der Position der Schnittstellen (Oligo A: ca. 975; Oligo B: ca. 850) konnte eine 5'UTR von ca. 1,2 kb für das große EFG1-Transkript postuliert werden. Zusätzlich führte der Einsatz einer Sonde aus dem Bereich der 5'UTR zur Detektion des 3,2 kb großen EFG1- Haupttranskriptes (Daten nicht gezeigt).

Die Ergebnisse der Northern-Analyse der mRNA-Fragmente deuteten weiterhin auf eine ca. 400 bp große *3'UTR* des *EFG1*-Haupttranskriptes. In einer 3'RACE wurde die exakte Größe der *3'UTR* mit 412 bp bestimmt, wobei jedoch nicht zwischen den beiden *EFG1*-Transkripten unterschieden wurde (M. Gerards, pers. Mitteilung).

Das *EFG1*-Haupttranskript wurde mit den Oligonukleotiden A (EFG/SP1) oder B (EFG/rev) hybridisiert und an diesen Stellen durch die doppelstrangspezifische RNaseH geschnitten. Die dargestellten mRNA-Fragmente wurden mit den angegebenen Sonden in Northern-Blots nachgewiesen

Als Sonden wurden ein 664 bp *Eco*RI–Fragment aus der 5'*UTR* zur Detektion des 5'-RNA-Fragmentes (blau), ein 492 bp *SpeI/Nhe*I-Fragment vom 3'Ende des *ORF* zur Detektion des 3'-RNA-Fragmentes (grün) sowie ein 1500 bp *Nhe*I-Fragment des *ORF* zur Detektion beider RNA-Fragmente (rot) eingesetzt. Weiterhin ist die Größe der mRNA-Fragmente in den Northern-Blots (2,1/2,0 kb; 1,2/1,1 kb) markiert, wobei die kleine ribosomale RNA bei 1,8 kb als Hintergrund auftritt und ebenfalls noch ungeschnittenes *EFG1*-Transkript (3,2 kb) detektiert wird.

3.2.2 5'RACE des *EFG1*-Haupttranskriptes

Die Bestimmung der Transkriptionsstartpunkte der EFG1-Transkripte erfolgte in einer 5'-RACE ("rapid amplification of cDNA ends"). Nach der "Umschreibung" der EFG1mRNA in cDNA mit Hilfe eines spezifischen Oligonukleotids (SP1), folgten zwei PCR-Reaktionen zur Amplifikation der cDNA mit jeweils stromaufwärts liegenden Primern (SP2, SP3). Die PCR-Produkte wurden kloniert und sequenziert.

Nachdem die ungefähre Größe der 5'UTR des Haupttrankriptes bekannt war (ca. 1,2 kb; siehe

3.2.1), konnten die Oligonukleotide für eine exakte Bestimmung des Startpunktes des langen EFG1-Transkriptes in Stamm SC5314 über 5'RACE so gewählt werden, daß PCR-Produkte von geeigneter Größe (ca. 400 bp) entstanden. In Abbildung 7 ist die Lage von drei auf diese Weise bestimmten Startpunkten markiert, von denen der am 5'-liegende weitesten (Position -1169 relativ zum ATG) als Startpunkt des EFG1-Haupttranskriptes angesehen wird. Im Stamm WO-1 wurde der Start des langen EFG1-Transkriptes am vorangehenden C-Nukleotid beschrieben (Srikantha et al., 2000) Die anderen Startpunkte könnten auch durch z.T. degradierte Transkripte des Hauptverwendeten komplementären Oligonukleotide (5'RACE/SP1, 5'RACE/SP2, startpunktes entstanden 5'RACE/SP3) angegeben. sein.

3.2.3 5'RACE des EFG1-Nebentranskriptes

Ein Transkriptionsstartpunkt von *EFG1* war von Stoldt (1995) mit einem S1-Nuklease-Ansatz an Position -35 bestimmt worden (Abb. 8). Dabei handelte es sich jedoch, wie sich erst im Verlauf dieser Arbeit herausstellte, vermutlich um einen Startpunkt des sehr schwach exprimierten kurzen *EFG1*-Transkriptes. Srikantha (1999) bestimmte mit Hilfe einer 5'RACE in der "opaque"-Form des Stammes WO-1 einen Startpunkt des kurzen *EFG1*-Transkriptes an Position -165 (Abb. 8). Mit derselben Methode wurde mit den Primern 70/RACE/SP1, 70/RACE/SP2 und 70/RACE/SP3 der Startpunkt des *EFG1*-Nebentranskriptes bestimmt.

Da der stromaufwärts gelegene Startpunkt des EFG1-Haupttranskriptes bereits bekannt war (siehe 3.2.2) und vermieden werden sollte, daß das lange *EFG1*-Transkript oder seine Abbauprodukte zu 5'RACE-Produkten führen, wurde in die *efg1/cph1*-Mutante CDB1 das Plasmid pBT-70 transformiert, welches nur den Promotor des kurzen Transkriptes (beginnend *Bam*HI-Schnittstelle) mit der und den ORF von EFG1 enthält. Somit war sichergestellt, daß lediglich das kurze EFG1-Transkript, wenn auch von einem Plasmid, exprimiert wurde.

Der Startpunkt des kurzen *EFG1*-Nebentranskriptes wurde auf diese Weise an Position -73 relativ zum ATG bestimmt (Abb. 8)

3.3 Subklonierung und Sequenzierung des EFG1-Hauptpromotors

Die in Abschnitt 3.2.1 identifizierte 5'UTR des EFG1-Haupttranskriptes umfaßt beinahe die gesamte von Weide (1997) als EFG1-Promotor angesehene Sequenz. Dabei handelt es sich jedoch um den Promotor des EFG1-Nebentranskriptes, so daß sich die folgenden Arbeiten auf den Promotor des EFG1-Haupttranskriptes konzentrierten.

Aus dem *EFG1*-Klon p607/2 (Stoldt, 1995), wurde ein stromaufwärts der *Bam*HI-Schnittstelle (Abb. 7) gelegenes 3,2 kb *Bgl*II/*Bam*HI-Fragment subkloniert und sequenziert, da zu diesem Zeitpunkt das Sequenzierungs-Projekt von *C. albicans* die entsprechende Sequenz noch nicht enthielt. Dieses Fragment wird im weiteren als Promotor des langen *EFG1*-Transkriptes oder als Hauptpromotor von *EFG1* bezeichnet. Abbildung 9 gibt die Lage der von beiden Seiten sequenzierten Subklone wieder.

Das bereits von Weide (1997) in eine Richtung sequenzierte ca. 650 bp große HindIII/BamHI-Fragment am 3'-Ende des Hauptpromotors (pMi/UC650bh)wurde aufgrund seiner besonderen Bedeutung für die Funktion des Promotors erneut in beide Richtungen sequenziert. Abbildung 10 zeigt einen Ausschnitt der 3'-Region des EFG1-Hauptpromotors. Die veröffentlichte Gesamtsequenz des EFG1-Locus (Accession Z32687) geht auf den Stamm ATCC10231 zurück, aus dessen Genbank der *EFG1*-Klon p607/2 über seine die Pseudohyphenbildung in S. cerevisiae verstärken-Wirkung isoliert de wurde (Stoldt et al., 1997). Ein Vergleich mit

der mittlerweile vorliegenden Sequenz des Genom-Sequenzierungsprojektes, in dem der Stamm SC5314 verwendet wurde, zeigt über eine 4448 bp große 5'-flankierende Region von *EFG1* (*Bgl*II bis ATG) in 63 bp Sequenzunterschiede (Abb. 10).

Dargestellt ist das 3'-Ende des *EFG1*-Hauptpromotors in Stamm ATCC10231. Neben dem Transkriptes startpunkt (TSP: -1169) ist die Position der TATA-Box gekennzeichnet. Die *Bam*HI-Schnittstelle unterteilt die 5'-flankierende Region von *EFG1* in den Promotor des kurzen Transkriptes (stromabwärts; Weide, 1997) und den Promotor des langen Transkriptes (stromaufwärts). Zusätzlich ist die Position modifizierter Yap1p-Bindemotive (5'-TTACTAA-3') markiert. Hervorgehoben sind ferner drei 6-8 bp große Sequenzwiederholungen (I.-III.). In der TATA-Box-Umgebung sind drei in der Sequenz des Stammes SC5314 abweichende Nukleotide markiert (T: grau unterlegt, nicht in SC5314; 2xA: nur in SC5314 an mit Pfeil markierter Position).

3.4 Disruption der 5'UTR des langen EFG1-Transkriptes

Die 5'UTR des langen EFG1-Transkriptes umfaßt 1169 Basenpaare (3.2.2). Diese außergewöhnliche Größe ließ eine regulatorische Funktion der 5'UTR in der posttranskriptionalen Kontrolle der EFG1-Expression vermuten (McCarthy, 1998). Den ersten Schritt zur Identifizierung einer solchen Funktion stellte die Deletion der 5'-untranslatierten Region im EFG1-Locus in verschiedenen Stämmen dar.

3.4.1 Disruption in den Stämmen CAI4, CAI8 und BCa14.1

Mittels der sogenannten "URA-Flipper"-Methode (Morschhäuser *et al.*, 1999) wurde in den *C. albicans*-Stämmen CAI4 und CAI8 die 5'*UTR* des *EFG1*-Locus auf beiden Allelen disruptiert. Der Stamm BCa14.1 trägt eine homozygote *cph1*-Deletion und eine heterozygote *efg1*-Deletion. In diesem Stamm mußte nach FOA-Seletion auf Uridin-Auxotrophie lediglich die 5'*UTR* des *EFG1*-Locus auf einem Allel disruptiert werden.

Zur homologen Rekombination der Disruptionskassette in den *EFG1*-Locus diente ein 0,9 kb-Fragment aus der 3'-Region des *EFG1*-Hauptpromotors (einschließlich des Transkriptionsstartpunktes) und ein 0,9 kb-Fragment aus der 5'-Region des offenen Leserahmens (einschließlich des Startcodons), welche an die URA-Flipper-Kasette kloniert wurden (Abb. 11; Konstruktion siehe 2.8).

Die Transformanten wurden in Southern-Blot-Analysen auf die Richtigkeit der Integration der Disruptionskassette untersucht (Abb. 11). In positiv getesteten Stämmen wurde über die Induktion der *SAP2p*-abhängigen Expression der Rekombinase die Kassette wieder so herausgeschnitten, daß der Promotor des langen *EFG1*-Transkriptes unmittelbar vor dem offenen Leserahmen von *EFG1* liegt (Abb. 11). Eine Erkennungssequenz für die Rekombinase (Abb.11: FRT) verbleibt jedoch auch nach dem Entfernen der Disruptionskassette zwischen dem Transkriptionsstartpunkt des langen *EFG1*-Transkriptes (Abb. 11: TSP) und dem Startpunkt der Translation (Abb. 11: ATG). Der disruptierte *EFG1*-Locus wird in Abbildung 15 vorgestellt (siehe 3.4.4).

Auf diese Weise wurden folgende Stämme produziert.

BT1.1/BT1.2 : 5'UTR in einem EFG1-Allel disruptiert in Stamm CAI4 BT2.1/BT2.2 : 5'UTR in einem EFG1-Allel disruptiert in Stamm CAI8 BT3.1/BT3.2 : 5'UTR in beiden EFG1-Allelen disruptiert in Stamm CAI4 BT4.1/BT4.2 : 5'UTR in beiden EFG1-Allelen disruptiert in Stamm CAI8 BT5.1/BT5.2 : 5'UTR in einem EFG1-Allel disruptiert in Stamm BCa14.1

Kassette in einem Allel (4,8 kb), unter III. das Muster bei herausgeschnittener Kassette in einem Allel (4,8 kb) und integrierter Kassette im anderen Allel (9,0 kb), unter IV. das Muster bei herausgeschnittener Kassette in beiden Allelen. Die mittlere Spur unter III. zeigt einen Stamm mit nicht korrekter Integration. Als Längenstandard (S) diente *Eco*RI/*Hin*dIII geschnittene λ -DNA.
3.4.2 Transkriptanalyse in den 5'UTR-Deletionsstämmen

Nach der genomischen Kontrolle der Disruption der 5'UTR über Southern-Blot-Analysen wurden außerdem die *EFG1*-Transkripte der Deletionsstämme durch einen Northern-Blot analysiert. Da der Promotor des langen Transkriptes durch die Deletion der 5'UTR direkt an den ORF fusioniert worden war, konnte man in den doppelt disruptierten Stämmen nur noch ein verkürztes *EFG1*-Transkript (2,1 kb) erwarten. Untersucht wurde die Gesamt-RNA aller 5'UTR-disruptierten Stämme (Abb. 12).

Von allen Allelen, auf welchen die 5'UTR disruptiert wurde, wird ein kurzes EFG1-Transkript (2,1 kb) exprimiert. In den Stämmen, welche nur in einem Allel disruptiert sind, fällt auf, daß das kurze Transkript in ca. 5fach größerer Menge als das lange Transkript (3,2 kb) nachgewiesen werden konnte. Das schwächere Signal in den Stämmen BT5.1 und BT5.2 resultiert z.T. aus einer geringeren eingesetzten RNA-Menge (Daten nicht gezeigt). Da beide Stämme auf einer heterozygoten *efg1*-Mutante (BCa14.1) basieren, exprimieren sie *EFG1* nur von einem Allel, während in den homozygoten 5'UTR-Deletionsstämmen BT3.1/3.2 und BT4.1/4.2 *EFG1* von zwei Allelen unter Kontrolle des *EFG1*-Hauptpromotors exprimiert wird. Die Transkriptanalyse zeigte somit, daß durch Deletion der 5'UTR der *EFG1*-Transkriptspiegel nicht verringert wurde.

3.4.3 Phänotypen der 5'UTR-Deletion

Als Transkriptionsfaktor spielt Efg1p eine essentielle Rolle in der Regulation des Dimorphismus von *C. albicans* (Stoldt *et al.*, 1997; Lo *et al.*, 1997). Daher stand der Einfluß der Disruption der 5'*UTR* auf die Induktion des Hyphenwachstums im Mittelpunkt des Interesses. Die Deletionsstämme, welche lediglich ein kurzes Transkript unter der Kontrolle des *EFG1*-Hauptpromotors exprimieren (siehe 3.4.2), wurden auf induzierenden Serum-Platten (10% Serum) vereinzelt und die Hyphenbildung analysiert (Abb. 13, 14).

Während die Deletion der 5'UTR auf einem Allel in den Stämmen BT1.1/BT1.2 bzw. BT2.1/BT2.2 keinen nachweisbaren Defekt der Hyphenbildung aufwiesen (Daten nicht gezeigt), zeigten die Doppeldeletionen eine deutliche Einschränkung der Hypheninduktion

auf Serummedium (Abb. 13). Nur vereinzelt wurden Hyphen gebildet (BT3.2). Die Deletion der 5'UTR auf dem einen vollständigen EFG1-Allel im Stamm BCa14.1, welcher in einem EFG1-Allel und beiden CPH1-Allelen disruptiert ist, zeigte auf Serum (10%) einen nahezu totalen Verlust der Hyphenbildung (Abb. 14).

Dieser Defekt konnte durch ein vollständiges *EFG1*-Allel auf einem Plasmid (pBT-49) komplementiert werden (Abb. 14).

Das Ausmaß der Induktion deutet auf eine vollständige Rekonstituierung des Wildtyps.

Abbildung 14: Hyphenbildung nach 5'*UTR*-Deletion und Komplementation Die Hyphenbildung von Kolonien der Stämme BT5.1 und BT5.2 (transformiert mit dem Leervektor pBT-3a) wurde nach Wachstum über fünf Tage bei 37°C auf Serummedium (10% Serum) analysiert. Die beiden unteren Bilder zeigen die mit dem Plasmid pBT-49 (*EFG1*) transformierten Stämme.

3.4.4 Einfluß der FRT-Sequenz auf die Expression

Bei der Anwendung der "URA-Flipper"-Methode nach Morschhäuser (1999) verbleibt nach dem Ausschneiden der Disruptionskassette eine Erkennungssequenz (FRT) für die induzierbare Rekombinase am disruptierten Locus. Dabei handelt es sich um folgende 34 bp lange Sequenz: 5'-GAAGTTCCTATACTTTCTAGAGAATAGGAACTTC-3'.

Nach der Disruption der 5'UTR befindet sich die FRT-Sequenz 89 bp hinter dem Transkriptionsstartpunkt (Abb. 15, A). Die mRNA enthält daher am 5'-Ende die transkribierte FRT-Sequenz. Aufgrund ihrer Basenfolge ist diese in der Lage, eine "Haarnadelstruktur" auszubilden (Abb. 15, B), welche in der Translation eine inhibierende Funktion auf den "Scanning"-Prozeß der Ribosomen ausüben könnte (McCarthy, 1998).

Ob die zuvor beschriebenen Hyphendefekte der Stämme mit einer Disruption der 5'UTR des langen *EFG1*-Transkriptes (Abb. 13, 14) lediglich das Resultat einer durch die Haarnadelstruktur der FRT-Sequenz inhibierten Translation des *EFG1*-Transkriptes darstellen, wurde durch folgenden Versuchsansatz näher untersucht. Da eine korrekte Expression von *EFG1* aufgrund des fehlenden Efg1p-Antikörpers nicht direkt über die Detektion des Proteins nachweisbar war, wurde ein indirekter Ansatz über die Expression des Reportergens *RLUC* gewählt. Die Situation am *EFG1*-Locus nach der Disruption der 5'UTR wurde dadurch simuliert, daß zwischen dem *EFG1*-Hauptpromotor und dem Reportergen *RLUC* die FRT-Sequenz eingefügt wurde (Abb. 15, C). Diese Expressionskassette aus *EFG1p*/FRT/*RLUC* wurde in den Vektor p1367/1, welcher das *URA3*-Gen trägt, kloniert. Das so erhaltene Plasmid pBT-155 wurde ebenso wie das Plasmid pBT-100, welches keine FRT-Sequenz zwischen *EFG1p* und *RLUC* enthält, im *EFG1*-Hauptpromotor mit *Hpa*I linearisiert und in den *EFG1*-Locus des Stammes CAI4 integriert. Die Luziferase-Aktivität von jeweils zwei Stämmen mit integriertem Plasmid (pBT-100, pBT-155) wurde luminometrisch bestimmt:

pBT-100 (ohne FRT):	0,12 +/- 0,04 RLU/µg
pBT-155 (mit FRT):	1,1 +/- 0.01 RLU/µg.

Das Konstrukt mit der FRT-Sequenz (pBT-155) zeigte eine gegenüber dem Konstrukt ohne FRT-Sequenz (pBT-100) erhöhte Luziferase-Aktivität. Da beide Konstrukte in das Genom integriert wurden (analog zur Deletionsanalyse 3.7.2.3, Abb.24) und somit in einfacher und konstanter Kopiezahl vorliegen (Daten nicht gezeigt), war in diesem Modell kein inhibierender Einfluß der FRT-Sequenz auf die Expression (Translation) des Reportergens nachweisbar. Die FRT-Sequenz am 5'-Ende des *RLUC*-Transkriptes führte dagegen sogar zu einer Erhöhung der Reportergenaktivität, möglicherweise über eine Stabilisierung des Transkriptes.

3.5 Überexpression des langen *EFG1*-Transkriptes

Abbildung 16: Überexpression der *EFG1*-Transkripte

Unter A werden schematisch die beiden *PCK1p*-Fusionen (1: pBT-50, 2: pBI-HAHYD) und die von ihnen exprimierten Transkripte dargestellt. Die Northern-Analyse der *EFG1*-Transkripte (B) erfolgte im *efg1*-Deletionsstamm HLC67. Die Überexpression des langen Transkriptes wurde durch Induktion des *PCK1*-Promotors in SCAA-Medium erreicht. In S4D-Medium wird der *PCK1*-Promotor reprimiert und kein *EFG1*-Transkript exprimiert. Die Überexpression des kurzen Transkriptes erfolgte wiederum in SCAA (2). Die Überexpression des langen Transkriptes in Stamm CAI8 in SCAA-Medium führt zur Ausbildung von Pseudohyphen (C).

Alle bisherigen Überexpressionsexperimente mit *EFG1* waren mit dem kurzen Transkript ohne die 5'UTR durchgeführt worden (Stoldt et al., 1997). Dabei entstand eine stark elongierte pseudohyphale Wachstumsform. Um den Einfluß der 5'UTR auf die Bildung dieser Pseudohyphen zu untersuchen, erfolgte eine Fusion des regulierbaren *PCK1*-Promotors an den das lange *EFG1*-Transkript codierenden Bereich (pBT-50). Nach Transformation des Plasmides pBT-50 in den Stamm CAI8 wurde bei allen Transformanten bei Induzierung des *PCK1*-Promotors die Bildung von Pseudohyphen beobachtet (Abb. 16). Somit besitzt die 5'UTR weder einen aktivierenden noch einen inhibierenden Einfluß auf die Entwicklung von Pseudohyphen.

3.6 LAC4-Fusionen der EFG1-Promotoren

Zur Analyse der Promotorfunktion der 5'-flankierenden Sequenzen von *EFG1* wurde ein 3,2 kb Fragment stromaufwärts der in Abbildung 10 markierten *Bam*HI-Schnittstelle sowohl direkt als auch in Verbindung mit der 5'*UTR* an das Reportergen *LAC4* fusioniert (Abb. 17).

Die Fusion der gesamten Promotorregion mit Haupt- und Nebenpromotor an LAC4 (pBT-25) führte zur Expression zweier LAC4-Transkripte (Abb 17: Spur 1). Während das kürzere Transkript (3,1 kb) der Größe des LAC4-ORF entspricht, beinhaltet das lange LAC4-Transkript (4,3 kb) die 5'UTR von EFG1, da es ebenfalls mit einer Sonde aus der Region der 5'UTR nachgewiesen werden konnte (Daten nicht gezeigt). Darüber hinaus zeigte die Fusion des EFG1-Hauptpromotors (pBT-34) bei vergleichbaren RNA-Mengen (siehe C) ein deutlich stärkeres Signal als die Fusion des EFG1-Nebenpromotors (bzw. der 5'UTR) an LAC4 (pCL76), wodurch die verschiedenen Expressionsniveaus der beiden EFG1-Transkripte widergespiegelt werden (Abb. 5). Der EFG1-Nebenpromotor (BamHI bis ATG) auf Plasmid pCL76 beinhaltet zwar den Transkriptionsstart des langen EFG1-Transkripte, jedoch nicht den entsprechenden Hauptpromotor (Abb. 10), so daß kein langes LAC4-Transkript (4,3 kb) exprimiert wird. Die von Weide (1997) durchgeführten Expressionsstudien beziehen sich daher ausschließlich auf den EFG1-Nebenpromotor

3.7 Autoregulation des *EFG1*-Hauptpromotors

Die Expression des langen *EFG*-Transkriptes unterliegt einer autoregulatorischen Repression. Bei episomaler Überexpression von *EFG1* unter der Kontrolle des induzierbaren *PCK1*-Promotors zeigt sich eine deutliche Abnahme des langen *EFG1*-Transkriptes (Sonneborn,

1999). Dieses Phänomen wird in Abbildung 18 dokumentiert. In Spur 1 zeigt sich ausschließlich die EFG1-Expression vom genomischen Locus detektiert, da der PCK1-Promotor in S4D-Medium nahezu vollständig reprimiert wird (Leuker et al., 1997). Es werden die zwei zuvor beschriebenen EFG1-Transkripte (3,2 kb und 2,1 kb) (Abb. 5) beobachtet. Die Induktion (bzw. Derepression) des PCK1-Promotors in SCAA-Medium resultiert in einer deutlichen Zunahme des kurzen Transkriptes (Spur 2), welches von dem Plasmid pAPE(2)/ADE exprimiert wird (PCK1-Promotor ohne 5'UTR fusioniert an EFG1-ORF). Dieses wird von einem nahezu völligen Verschwinden des genomischen langen EFG1-Transkriptes begleitet. Bei einer EFG1-Überexpression wird somit die genomische Expression des langen EFG1-Transkriptes reprimiert.

Zur Untersuchung der negativen *EFG1*-Autoregulation etablierte Weide (1997) ein "Zwei-Plasmid-System", um regulatorische Domänen des *EFG1*-Nebenpromotors zu identifizieren. Dabei werden in den *C. albicans*-Stamm CAI8 zwei Plasmide transformiert (Abb. 19). Eines trägt zur Überexpression von *EFG1* eine Fusion des

Plasmid pAPE(2)/ADE und dem Leervektor pBT-3a transformiert und in S4D (1) und SCAA (2) angezogen. Als Mengenstandard dient das *ACT1*-Transkript.

regulierbaren PCK1-Promotors an den EFG1-ORF, das zweite Plasmid beinhaltet die Fusion des EFG1-Promotors oder Fragmente desselben an das Reportergen LAC4. Auf diese Weise konnte für den Nebenpromotor von EFG1 eine autoregulatorische Repression um den Faktor 8 bestimmt werden (Weide, 1997). Dieser errechnet sich als Verhältnis der EFG1p-abhängigen LAC4-Expression in S4D-Medium (keine episomale EFG1-Expression) und in SCAA-Medium (EFG1-Überexpression)

Abbildung 19: "Zwei-Plasmid-Modell" der EFG1-Autoregulation

In den *C. albicans*-Stamm CAI8 werden zwei Plasmide transformiert. Das erste Plasmid beinhaltet eine Fusion des *PCK1*-Promotors mit *EFG1*, das zweite Plasmid eine Fusion des *EFG1*-Promotors mit dem Reportergen *LAC4*. In glukosehaltigem Medium (S4D) wird der *PCK1*-Promotor reprimiert, so daß nur eine geringe episomale *EFG1*-Expression (zusätzlich zur genomischen *EFG1*-Expression) erfolgt. Ein niedriger Efg1p-Spiegel vermittelt keine Repression des *EFG1*-Promotors, so daß unter seiner Kontrolle eine ungehinderte Expression des *Reportergens LAC4* stattfindet. In glukosefreiem Medium (SCAA) bewirkt die Derepression bzw. Induktion des *PCK1*-Promotors eine Überproduktion von Efg1p. Durch den hohen Efg1p-Spiegel erfolgt eine Repression des *EFG1*-Promotors, die sich in einer verminderten Expression des Reportergens manifestiert. Die autoregulatorische Repression berechnet sich als Quotient aus Aktivität des Reportergens ohne und mit Überproduktion von Efg1p.

3.7.1 Northern-Analyse der Autoregulation der EFG1-Promotoren

Mit dem "Zwei-Plasmid-Systems" konnte bereits gezeigt werden, daß die Autoregulation des Nebenpromotors auf Transkriptionsebene stattfindet. Daher sollte getestet werden, ob auch die Abnahme des langen *EFG1*-Transkriptes bei *EFG1*-Überexpression auf Transkriptions-

ebene reguliert wird (Abb. 18). Die Fusion der gesamten Promotorregion (Haupt- und Nebenpromotor) an *LAC4* führte zur Expression zweier *LAC4*-Transkripte, so daß die Repression beider Promotoren gleichzeitig untersucht werden konnte.

In Abbildung 20 zeigt sich bei *EFG1*-Überinduzierter expression in SCAA-Medium (Spur 2) im Vergleich zu fehlender Überexpression 1) eine deutliche Ab-(Spur nahme des langen LAC4-Transkriptes (4,3 kb), welches die 5'UTR enthält und unter Kontrolle des EFG1-Hauptpromotors exprimiert wird. Die Menge des kleinen Transkriptes nimmt dagegen in geringerem Maße ab.

Die Kontrolle mit einem Leervektor ohne EFG1- Überexpression (Spur 3, 4) zeigt für beide LAC4-Transkripte keine Abnahme (Spur 4). Als zusätzliche Kontrolle wurde PCK1die genomische Expression analysiert. In glukosefreiem Medium wird mit und ohne Überexpression von *EFG1* (Spur 2 und 4) exprimiert. PCK1 Somit reprimiert die Überproduktion von Efg1p nicht unspezifisch die Transkription von Genen (z.B. ACT1, PCK1), sondern spezifisch die *EFG1*-Expression.

Abbildung 20: Northern-Analyse der Autoregulation im "Zwei-Plasmid-System"

Die *EFG1p*-abhängige *LAC4*-Expression bei episomaler *EFG1*-Überexpression wurde analysiert. Der Stamm CAI8 wurde gleichzeitig mit dem Plasmid pBT-25 (Fusion der gesamten *EFG1*-Promotorregion an *LAC4*; Abb. 17) und mit dem Plasmid pAPE(2)/ADE zur *EFG1*-Überexpression (Spur 1 und 2) oder dem leeren Kontrollvektor pBT-4 (Spur 3 und 4) transformiert. Die Transformanten wurden in S4D (1, 3) und SCAA (2, 4) angezogen. Das lange *LAC4*-Transkript (4,3kb) steht unter Kontrolle des *EFG1*-Hauptpromotors, das kurze *LAC4*-Transkript (3,1kb) steht unter Kontrolle des *EFG1*-Nebenpromotors. Zur Kontrolle der Spezifität der *EFG1*-Autoregulation wurde die *ACT1*- und die *PCK1*-Expression analysiert. *PCK1* wird durch Glukose reprimiert (1, 3) und in glukosefreiem Medium induziert (2, 4).

Zusammenfassend wurde durch das "Zwei-Plasmid-System" bestätigt, daß die autoregulatorische Repression des genomischen *EFG1*-Locus bei Überproduktion von Efg1p (Abb. 18) über die Aktivität des *EFG1*-Hauptpromotors vermittelt wird.

3.7.2 Deletionsanalyse des *EFG1*-Hauptpromotors

Im "Zwei-Plasmid-System" sinkt der *LAC4*-Transkriptspiegel bei *EFG1*-Überexpression (Abb. 20), so daß angenommen werden kann, daß der *EFG1*-Hauptpromotor autoreguliert wird. Dieses Phänomen wurde durch Deletionsstudien in verschiedenen Testsystemen charakterisiert.

3.7.2.1 LAC4 als episomal exprimiertes Reportergen

Im "Zwei-Plasmid-System" kann die Kopiezahl der Plasmide schwanken. Um die Lac4p-Aktivität zuverlässig bestimmen zu können, wurden die Transformanten auf X-Gal-Platten auf eine ausreichende β -Galaktosidase-Aktivität vorselektioniert. Nur solche Transformanten, welche nach 3-4 Tagen eine Blaufärbung zeigten, kamen im Test der Autoregulation zum Einsatz. Dieses Vorgehen ist berechtigt, da die autoregulatorischen Repressionswerte bei Transformanten mit verschiedenen *LAC4*-Expressionswerten keine signifikanten Unterschiede zeigten (siehe Anhang I). Trotz der Vorselektion der Transformanten auf X-Gal-Platten variieren die absoluten Werte der β -Galaktosidase-Aktivität in S4D-Medium von 2,5 bis 0,0009 RLU/µg, in SCAA-Medium von 0,29 bis 0,00008 RLU/µg, wobei die Repressionswerte aber sehr ähnlich waren (Anhang I). Die Reportergenaktivität von Transformanten ohne Blaufärbung war in den meisten Fällen nicht mehr im Enzymtest nachweisbar.

Es sollte getestet werden, ob die Deletion cis-regulatorischer Domänen zu einer Abnahme der autoregulatorischen Repression führt. Um auszuschließen, daß eine solche Abnahme aus einer zufällig geringeren *EFG1*-Überexpression resultiert (variable Kopiezahl des Plasmides), wurde über eine lange Induktionszeit des *PCK1*-Promotors (24 h) eine maximale Überexpression auf vergleichbarem Niveau angestrebt. Bei kürzerer Induktionszeit (8 h) wurde lediglich eine ca. 2-3fache Repression des *EFG1*-Hauptpromotors bestimmt (Daten nicht gezeigt). Diese stellte jedoch sowohl aufgrund erheblicher Schwankungen als auch wegen des niedrigen Repressionsniveaus keine ausreichende Basis für die Deletionsanalyse dar. Das Ausmaß der durch *EFG1*-Überexpression ausgelösten Pseudohyphenbildung diente als zusätzlicher "Gradmesser" der Efg1p-Überproduktion.

Zur Kontrolle der Spezifität des Autoregulationsphänomens für den *EFG1*-Promotor wurde zusätzlich zur Analyse der *PCK1*-Expression (Abb. 20) der *ACT1*-Promotor in Fusion mit dem Reportergen *LAC4* im "Zwei-Plasmid-Modell" getestet. Unter *EFG1*-Überexpression und der durch ihr verursachten Pseudohyphenbildung wurde keine Repression, sondern eine konstante Aktivität des *ACT1*-Promotors beobachtet (Daten nicht gezeigt).

Abbildung 21: Deletionsanalyse des *EFG1*-Hauptpromotors im "Zwei-Plasmid-System" Auf der linken Seite der Abbildung sind die verwendeten Promotorfragmente schematisch gezeigt, welche direkt an *LAC4* fusioniert wurden; auf der rechten Seite ist die korrespondierende autoregulatorische Repression im Enzymtest gezeigt, welche anhand von mindestens drei verschiedenen Transformanten in unabhängigen Tests ermittelt wurde (Anhang I). In der Mitte der Abbildung wird die Lage der Promotorfragmente am *EFG1*-Locus verdeutlicht. Zusätzlich sind die Namen der verwendeten Reportergenplasmide am linken Rand vermerkt. Alle Promotorfragmente reichen bis zur *Bam*HI-Schnittstelle.

Der komplette *EFG1*-Hauptpromotor (pBT-34) zeigte im "Zwei-Plasmid-Modell" eine 11,5fache Repression der β -Galaktosidase-Aktivität bei Überproduktion von Efg1p (Abb. 21). Die ersten drei Deletionen (pBT-61, pBT-62, pBT-63) dienten dazu, den für die Autoregulation essentiellen Bereich des Promotors einzuengen. Während die beiden distalen Deletionen (pBT-61, pBT-62) eine dem vollständigen Promotor vergleichbare autoregulatorische Repression (9,9 +/- 2,9; 8,9 +/- 3,5) zeigten, führte die Deletion des proximalen Bereiches (-2450 bis -1250; Die Zahlen beziehen sich auf das Startcodon ATG.), welche auch die TATA-Box umfaßt, zu keiner meßbaren Reportergenaktivität. Da im distalen

Bereich (-4450 bis -2450) keine funktionalen Regionen lokalisiert zu sein scheinen, konzentrierten sich die weiteren Deletionsschritte auf den proximalen Bereich. Eine Deletion, welche nur noch 721 bp stromaufwärts der zuvor erwähnten *Bam*HI-Schnittstelle enthält (pBT-60), wies dieselbe Repression auf (10,7 +/- 1,6) wie der gesamte Promotor in pBT-34. Eine weitere Verkürzung des Promotors auf 313 bp (pBT-99) führte ebenfalls zu keiner Veränderung der Autoregulation (12,4 +/- 2,8). Ein 167 bp-Fragment (pBT-68) zeigte eine leicht reduzierte autoregulatorische Hemmung (8,6 +/- 4,0), welche jedoch nicht signifikant von der Wildtyp-Repression (11,5 +/- 3,6) abwich. Die folgende Verkürzung auf nur 99 bp (pBT-107) verhielt sich ähnlich (13,4 +/- 9,6). Die absoluten Werte der Lac4p-Aktivität waren bei allen Deletionen vergleichbar und zeigten keinen Einfluß auf die Repressionswerte.

Die Verkürzung des Promotors auf nur noch 45 bp (pBT-108) hatte jedoch einen vollständigen Verlust der β -Galaktosidase-Aktivität zur Folge. Obgleich dieses Fragment noch die TATA-Box enthält, konnte im Enzymtest keine Aktivität und damit auch keine Repression gemessen werden. Unter ca. 150 Transformanten mit dem Plasmid pBT-108 konnte auch nach längerer Lagerung bei 4°C keine β -Galaktosidase-Aktivität über eine Blaufärbung der Kolonien nachgewiesen werden. Daher wurden einige Transformanten zufällig ausgewählt und auf ihre Reportergenaktivität im Enzymtest untersucht. Diese lag jedoch unter der Nachweisgrenze.

Da eine weitere Verkürzung des Promotors nicht ohne völligen Verlust der Reportergenaktivität möglich war, erfolgten gezielte Deletionen bzw. Basenaustausche an potentiellen Bindestellen aus dem Bereich unmittelbar vor der TATA-Box (Abb. 22). Weder der G-T-Austausch auf den Plasmiden pBT-120/-121 (Repression: 17,2 +/- 5,6) noch die 9 bp-Deletion auf den Plasmiden pBT-148/-149 (Repression: 9,0 +/- 7,1) wiesen auf eine autoregulatorische Funktion dieses Bereiches hin.

Zusammenfassend konnte mit dem "Zwei-Plasmid-Modell" der für die Autoregulation des *EFG1*-Hauptpromotors essentielle Bereich auf die 99 bp große Sequenz (pBT-107) stromaufwärts der *Bam*HI-Schnittstelle eingegrenzt werden. Eine weitere Eingrenzung (45 bp, pBT-108) führte zu einem Verlust der Reportergenaktivität.

3.7.2.2 LAC4 als integriertes Reportergen

Parallel zur Untersuchung der Autoregulation des Hauptpromotors im "Zwei-Plasmid-Modell" sollten einige Deletionen auch integriert werden, um den Einfluß einer variablen Kopiezahl des Reportergenplasmides auf die *LAC4*-Expression auszuschließen. Die Plasmide pBT-34, pBT-68 und pBT-107 wurden zu diesem Zweck in der *ARS2*-Sequenz (Cannon *et al.*, 1990) mit *Pml*I linearisiert und zusammen mit dem *EFG1*-Überexpressionsplasmid pAPE(2)/ADE in den Stamm CAI8 transformiert. Die Integration der Reporterplasmide wurde in einer Southern-Blot-Analyse untersucht. Die genomische DNA jeweils vier verschiedener Transformanten wurde mit *HpaI/Bgl*II geschnitten und gleichzeitig mit einer *EFG1*-Sonde und einer *LAC4*-Sonde analysiert (Abb. 23).

Die linearisierten Reporterplasmide wurden zusammen mit pAPE(2)/ADE in CAI8 transformiert und ihre genomische DNA nach Restriktion mit *Pml*I mit einer *EFG1*-Sonde (1,3 kb *NheI/Bgl*II-Fragment aus pUC19/EFG1) und einer *LAC4*-Sonde (1,2 kb *HpaI/Bgl*II-Fragment aus pRS-LAC4) analysiert. In der ersten Spur (1) ist als Kontrolle jeweils nur Plasmid-DNA aufgetragen. Die Spuren 2-5 enthalten die genomische DNA (*HpaI/Bgl*II) der Transformanten (siehe Text). Als Größenstandard diente *Eco*RI/*Hin*dIII geschnittene λ -DNA.

Mit der *EFG1*-Sonde werden zwei Signale detektiert. Die größere Bande (2045 bp) resultiert aus dem Überexpressionsplasmid pAPE(2)/ADE, während die kleinere Bande (1931 bp) das genomische *EFG1*-Signal darstellt. Die zwei *LAC4*-Signale entstehen durch die Verwendung von zwei Fragmenten ähnlicher Größe (1269 bp, ca. 1,2 kb) als *LAC4*-Sonde. Der Vergleich der Signalintensität der *LAC4*-Signale unterschiedlicher Transformanten zeigt trotz ähnlich starker *EFG1*-Signale z.T. erhebliche Unterschiede (z.B. pBT-34: Spur 3 und 4). Daraus kann geschlossen werden, daß die Reporterplasmide nicht in allen Fällen in einer Kopie integriert wurden. Sie könnten in mehreren Kopien integriert sein.

Der Ansatz der Integration der *LAC4*-Konstrukte über die Transformation in der *ARS2*-Sequenz linearisierter Plasmide garantiert daher nicht, die Variabilität der Kopiezahl des Reportergens zu vermeiden.

3.7.2.3 *RLUC* als integriertes Reportergen

Die Minimierung des *EFG1*-Promotors auf 45 bp im Plasmid pBT-108 (Abb. 21) führte dazu, daß keine *LAC4*-Aktivität mehr nachweisbar war. Da jedoch die vollständige Autoregulation durch einen minimalen Promotor (99 bp) vermittelt wird (pBT-107) und für die exakte Identifizierung funktioneller Regionen weitere Deletionen unerläßlich sind, wurde das bereits für *C. albicans* etablierte Reportergen *RLUC* aus *Renilla reniiformis* für weitergehende Deletionen des minimalen *EFG1*-Promotors eingesetzt. Bei Integration einer Kopie von *RLUC* in das Genom von *C. albicans* kann die Aktivität der kodierten Luziferase luminometrisch nachgewiesen zu werden (Srikantha *et al.*, 1996). Somit bot dieser Ansatz die Möglichkeit, sowohl die nicht ausreichende Aktivität der von *LAC4* kodierten β-Galaktosidase als auch die variable Kopiezahl des Reportergens im "Zwei-Plasmid-Modell" zu umgehen.

Der vollständige EFG1-Hauptpromotor aus Plasmid pBT-34 sowie einige Deletionen wurden an RLUC fusioniert und in einen Vektor ohne ARS-Sequenz (p1367/1) kloniert. Nach Linearisierung der Plasmide im EFG1-Promotor (Restriktion mit HpaI) wurden sie transformiert und auf diese Weise die Reportergenkonstrukte in den EFG1-Promotor integriert. Die Überprüfung der Integration in den Stamm CAI8 wird an einem Abbildung 24 Beispiel in gezeigt. Nach Restriktion der genomischen DNA mit HindIII erfolgte in Southern-Analysen die Detektion des integrierten EFG1-Promotors mit einer EFG1p-Sonde (1199 bp HindIII-Fragment aus pBT-48). Bei der Integration des Plasmides pBT-150 bestätigte z.B. die Detektion eines 2863 bp-Fragmentes korrekte Integration die der Reportergenfusion (Abb. 24). Als ursprüngliches Signal wurden neben genomisches einem erwarteten 1199 bp-Fragment zwei weitere Signale (ca. 5,1 kb und 3,5 kb) detektiert, welche jedoch auch im untransformierten Stamm CAI8 auftraten und daher den Hintergrund darstellen.

In die positiv getesteten Integranten wurde das EFG1-Überexpressionsplasmid pAPE(2)/ADE transformiert. Analog zum β -Galaktosidase-Test erfolgte dann über die Messung der EFG1p-abhängigen Luziferase-Aktivität mit und ohne EFG1-Überexpression eine Analyse der autoregulatorischen Repression in mehreren unabhängigen Transformanten.

Die exakte Position der getesteten Deletionen ist in Abbildung 25 gekennzeichnet. Da für die Integration der Reportergenkonstrukte in den genomischen *EFG1*-Locus ein Teil des *EFG1* Deletionen nur bis zur *Xmn*I-Schnittstelle (Abb.

Abbildung 24: Southern-Analyse der Integration der *RLUC*-Fusionen

Neben zwei Integranten mit dem Plasmid pBT-150 (1, 2) wurde der Stamm CAI8 (3) analysiert (siehe Text). Die Fragmente des *EFG1*-Locus ohne und mit integriertem *RLUC*-Gen sind schematisch dargestellt. Als Größenstandard diente *Eco*RI/*Hin*dIII-geschnittene λ -DNA. (*EFG1*p: *EFG1*-Hauptpromotor)

genomischen *EFG1*-Locus ein Teil des *EFG1*-Promotors benötigt wird, reichen alle Deletionen nur bis zur *Xmn*I-Schnittstelle (Abb. 25). Der 5'-flankierende Bereich dieser Position besitzt nach den Ergebnissen der *LAC4*-Deletionsanalyse (siehe 3.7.2.1) in der Autoregulation des *EFG1*-Hauptpromotors keine Funktion.

Als Negativkontrolle der Luziferase-Aktivität wurde der *RLUC*-ORF ohne Promotor auf einem Plasmid (pBT-69) in den Stamm CAI4 transformiert. Alle untersuchten Transformanten zeigten im Enzymtest keine Luziferase-Aktivität (Daten nicht gezeigt).

Abbildung 25: Deletionen des *EFG1*-Hauptpromotors im *RLUC*-Reportersystem Zur Integration in den *EFG1*-Locus wurden die Reporterkonstrukte im 5'-Bereich des Hauptpromotors linearisiert (*HpaI*). Die Deletionen erfolgten nur im 3'-Bereich des Promotors. Sie reichen jeweils von den mit den Plasmidnamen bezeichneten Pfeilen bis zu dem mit Δ markierten Pfeil (*XmnI*-Schnittstelle). Die 13 bp-Deletion des Plasmides pBT-157 wurde in das Plasmid pBT-153 eingefügt. Zur Orientierung sind die *Bam*HI-Schnittstelle, welche die Grenze zwischen Haupt- und Nebenpromotor markiert, und der Transkriptionsstartpunkt (TSP) angezeigt. Im unteren Teil ist die mittlere autoregulatorische Repression der Promotorkonstrukte angegeben (Einzeldaten in Anhang II). Das Plasmid pBT-100 beinhaltet den vollständigen *EFG1*-Hauptpromotor. Die grau unterlegte Sequenz von der *Bam*HI-Schnittstelle bis zum TSP ist nicht in den Konstrukten enthalten. Zusätzlich ist die TATA-Box hervorgehoben.

Die Deletionen pBT-150 (10,1 +/- 6,2) und pBT-153 (8,1 +/- 3,7) zeigten eine dem vollständigen *EFG1*-Promotor (pBT-100: 9,2 +/- 1,7) vergleichbare autoregulatorische Repression (Abb. 25). Die Deletion pBT-156 führte jedoch zu einer deutlich reduzierten Efg1p-abhängigen Repression der Luziferase-Aktivität (3,3 +/- 1,4), so daß in dem deletierten Bereich auf eine funktionelle Domäne der *EFG1*-Autoregulation rückgeschlossen werden kann. Eine Deletion, welche die TATA-Box einschließt (pBT-157), vermittelte ebenfalls noch Luziferase-Aktivität, allerdings keine autoregulatorische Repression (0,9 +/- 0,2).

Zusammenfassend wurde die autoregulatorische Repression des *EFG1*-Hauptpromotors durch eine 45 bp große Promotorregion vermittelt. Nur die Deletion der TATA-Box-Region (13 bp-Deletion in Plasmid pBT-157) führte zu einem völligen Verlust der Autoregulation

3.7.3 Überproduktion von Efg1p-Varianten

Bei allen zuvor beschriebenen Experimenten erfolgte die Überproduktion der Wildtypform von Efg1p. Bockmühl (2001) stellte zahlreiche Efg1p-Varianten her und untersuchte die Aktivierung von Efg1p über Phosphorylierungen. Zwei dieser Varianten wurden im "Zwei-Plasmid-Modell" auch im Hinblick auf ihre Fähigkeit, eine autoregulatorische Repression des *EFG1*-Hauptpromotors zu vermitteln, getestet. Die Austausche T206A, welcher eine nicht phosphorylierbare Aminosäure (Alanin) an einer potentiellen PKA-Zielsequenz einfügt, und T248E, welcher eine ständig phosphorylierte Aminosäure (Glutamat) an einem konservierten Threonin imitiert, wurden unter Kontrolle des *PCK1*-Promotors überproduziert und die reprimierende Wirkung auf den *EFG1*-Hauptpromotor (pBT-34) über die *LAC4*-Expression bestimmt. Die Mutagenese von *EFG1* erfolgte auf dem *ADE2*-Plasmid pAPE(2)/ADE. Jeweils zwei unabhängige Klone (T206A: pBT-55A/B; T248E: pBT-140/-141) wurden zusammen mit dem Reporterplasmid pBT-34 in den Stamm CAI8 transformiert und im "Zwei-Plasmid-Modell" auf ihre autoregulatorische Funktion getestet (Abb. 26).

Im Vergleich mit der Wildtypform von Efg1p (11,5 +/- 3,6) zeigt sich kein signifikanter Unterschied hinsichtlich der autoregulatorischen Repression (Abb. 26). Der Aktivierungsbzw. Phosphorylierungszustand an den Aminosäurepositionen 206 und 248 beeinflußt, obgleich er in der Hypheninduktion essentiell ist (Bockmühl, 2001), nicht die Fähigkeit von Efg1p, die Aktivität des *EFG1*-Hauptpromotors zu reprimieren.

3.7.4 Autoregulation in *cap1*- und *tup1*-Mutanten

Der Transkriptionsfaktor Yap1p aus *S. cerevisiae* gehört zur acht Mitglieder umfassenden *YAP*-Genfamilie und ist in die oxidative Stressantwort involviert (Schnell *et al.*, 1992). Diese bZIP-Proteine wurden über die Bindung der Erkennungssequenz des humanen Proteins AP-1 identifiziert und benannt (Harshman *et al.*, 1988). Von vier Mitgliedern der Yap-Familie, darunter Yap1p, ist bekannt, daß sie sehr effizient die Sequenz TTACTAA binden (Fernandes *et al.*, 1997). Im *EFG1*-Hauptpromotor befinden sich an Position –137 bis –131 (ATACTAT, Gegenstrang) und –125 bis –119 (ATACTAC) relativ zum Transkriptionsstart leicht

modifizierte Bindemotive (Abb. 10). Eine potentielle Funktion des *C. albicans*-homologen Proteins Cap1 (Alarco und Raymond, 1999) in der Autoregulation von *EFG1* sollte daher untersucht werden, ebenso wie eine Beteiligung von Tup1p. Dieser generelle Repressor in *S. cerevisiae* fungiert in *C. albicans* als Repressor filamentösen Wachstums, da eine *tup1*-Mutante konstitutiv Pseudohyphen bildet (Braun und Johnson, 1997). Da Tup1p in *S. cerevisiae* seine Repressorfunktion über die Interaktion mit dem DNA-bindenden Protein Ssn6p ausübt (Keleher *et al.*, 1992), könnte aufgrund der großen Homologie ein ähnlicher Mechanismus der autoregulatorischen Repression von *EFG1* zugrundeliegen.

Daher erfolgte in den Deletionsstämmen DSY1346 (cap1/cap1: Micheli, 2000) und BCa2-9 (tup1/tup1: Braun und Johnson, 1997) eine Northern-Analyse der *EFG1*-Autoregulation. Die *PCK1p*::*EFG1*-Fusion wurde auf dem Plasmid pRC2312/PCK1p::HYD1 in beide Stämme transformiert und die *EFG1*-Transkripte bei Repression (S4D) und Induktion (SCAA) des *PCK1*-Promotors analysiert.

In beiden Mutanten konnte die Repression des *EFG1*-Locus nachvollzogen werden (Abb. 27).

Die Überexpression des kurzen *EFG1*-Transkriptes (Spur 2, 4) hatte eine deutliche Abnahme (*cap1*) bzw. ein völliges Verschwinden (*tup1*) des langen *EFG1*-Transkriptes zur Folge.

Dabei ist jedoch zu beachten, daß ohne *EFG1*-Überexpression im *cap1*-Stamm (Spur 1) das lange *EFG1*-Transkript, wie im Wildtyp (Abb. 18), deutlich stärker expri-

miert wurde als das kurze Transkript, während im *tup1*-Stamm (Spur 3) eine nahezu gleichmäßige Verteilung beider Transkripte zu verzeichnen war. Hier wurde das kurze Transkript im Vergleich mit dem Langen ungewöhnlich stark exprimiert.

3.7.5 Autoregulation in *sir2*-Mutante

Die Deletion von *SIR2* beschleunigt den Wechsel zwischen verschiedenen Phänotypen in *C. albicans* (Perez-Martin *et al.*, 1999). Da Sir2p (silent information regulator) in *S. cerevisiae* in mehrere "silencing"-Phänomene, wie z.B. die "stillen" Paarungstyploci, involviert ist (Loo und Rine, 1994), wird für Sir2p in *C. albicans* eine ähnliche regulatorische Funktion in der Organisation der Chromatinstruktur diskutiert (Perez-Martin *et al.*, 1999). Inwiefern diese Mechanismen neben der Ausprägung verschiedener Phänotypen auch die Autoregulation des *EFG1*-Locus beeinflussen oder ihr zugrundeliegen, wurde in einer

sir2-Mutante überprüft. In den Stamm CMP7 (*sir2/sir2*) wurde eine Fusion des *PCK1*-Promotors an *EFG1* (pBI-HAHYD) transformiert und die genomische *EFG1*-Expression bei episomaler Überexpression von *EFG1* über den Transkriptspiegel analysiert (Abb. 28).

Eine mögliche Modifikation der Chromatinstruktur besteht in der Deacetylierung von Histonen, deren Bedeutung für *C. albicans* vor kurzem anhand des Einflusses des Deacetylaseinhibitors Trichostatin A auf den Phänotypwechsel beschrieben wurde (Klar *et al.*, 2001). Um eine Beteiligung der Deacetylierung auf die *EFG1*-Autoregulation zu evaluieren, wurde die genomische *EFG1*-Expression unter episomaler *EFG1*-Überexpression ebenfalls in Anwesenheit dieses Inhibitors untersucht (Abb. 28)

Die beiden Transformanten des *sir2*-Stammes (I./II.) zeigten nur z.T. das erwartete *EFG1*-Expressionsmuster (Abb.28).

Die erste Transformante zeigte ohne EFG1-Überexpression die normale Verteilung der genomischen *EFG1*-Transkripte (Spur 1). Die Induzierung des PCK1-Promotors bzw. die episomale EFG1-Überexpression führte jedoch nicht wie erwartet zu Repression einer des genomisch exprimierten

Abbildung 28: Northern-Analyse der *EFG1*-Autoregulation in eíner *sir2*-Mutante Zwei unabhängige Transformanten (I./II.) des Stammes CMP7 (*sir2/sir2*) mit dem Plasmid pBI-HAHYD (*PCK1p::EFG1*) wurden auf ihre *EFG1*-Expression sowohl in *PCK1p*-reprimierendem Medium (S4D) als auch in induzierendem Medium (SCAA) analysiert. Zusätzlich wurde im Wildtypstamm CAI8, transformiert mit dem *EFG1*-Überexpressionsplasmid pAPE(2)/ADE, die Autoregulation mit (Spur 7) und ohne Trichostatin A (Spur 6) untersucht. Der Inhibitor wurde in der Kultur in einer Konzentration von 50µg/ml eingesetzt. *ACT1*-mRNA dient als Mengenstandard.

langen EFG1-Transkriptes, sondern dessen Menge blieb konstant (Spur 2). Die zweite Transformante exprimierte jedoch unter Repression der episomalen EFG1-Expression vom genomischen Locus beide EFG1-Transkripte in gleicher Menge (Spur 3), wohingegen die induzierte episomale Überexpression von EFG1 in erwarteter Form die Expression des langen Transkriptes reprimierte (Spur 4).

Im Wildtyp verursachte die Induktion der episomalen *EFG1*-Überexpression sowohl mit (Spur 7) als auch ohne Trichostatin A (Spur 6) eine deutliche Abschwächung des genomisch exprimierten langen *EFG1*-Transkriptes (Spur 5). Während die Deletion von *SIR2* somit nur in einer von zwei Transformanten die Expression und Autoregulation von *EFG1* beeinflußte, zeigte Trichostatin A als Deacetylase-Inhibitor, zumindest in der eingesetzten Konzentration [50µg/ml], keine Wirkung auf die Efg1p-vermittelte Repression des *EFG1*-Hauptpromotors.

Eine Beteiligung von Sir2p an der Autoregulation kann aufgrund der widersprüchlichen *EFG1*-Expressionsmuster in den Transformanten des *sir*2-Stammes nicht eindeutig beurteilt werden.

3.8 Regulation der *EFG1*-Expression

Die Expression des Gens für den Transkriptionsfaktors Efg1p wird in erster Linie durch den Promotor des langen *EFG1*-Transkriptes reguliert. Neben seiner autoregulatorischen Repression stand seine Aktivierung bzw. Reprimierung im Verlaufe verschiedener morphologischer Entwicklungsprogramme im Mittelpunkt des Interesses. Sowohl während der Hypheninduktion als auch im "white/opaque"-Phänotypwechsel des Stammes WO-1 wurde die Promotoraktivität bzw. der *EFG1*-Transkriptspiegel analysiert. Zusätzlich zu diesen "natürlichen" Differenzierungsprozessen wurde die *EFG1*-Expression bei einer "artifiziellen" Überproduktion sowohl der beiden katalytischen Untereinheiten der ProteinkinaseA Tpk1p und Tpk2p als auch des *EFG1*-Homologen Efh1p betrachtet. Zur Bestimmung der *EFG1*-Promotoraktivität diente in allen Fällen das *LAC4*-Reportergensystem (pBT-34).

3.8.1 Hypheninduktion

Die Deletion von EFG1 reduziert in drastischem Ausmaß die Kompetenz von *C. albicans* zur Ausbildung von Hyphen (Lo *et al.*, 1997; Stoldt *et al.*, 1997). Als maßgeblicher Regulator des Dimorphismus wurde die Aktivität des EFG1-Hauptpromotors bei der Induktion von Hyphen durch Serum analysiert. Im Verlaufe der Hyphenbildung wurde bereits eine Abnahme des großen EFG1-Transkriptes beschrieben (Stoldt *et al.*, 1997). Inwiefern diese Abnahme auf einer reduzierten Aktivität des EFG1-Promotors beruht, wurde unter Verwendung einer LAC4-Reportergenfusion überprüft. Nach der Transformation des Plasmides pBT-34, welches eine EFG1p::LAC4-Fusion beinhaltet, in den Stamm CAI4 erfolgte über die Bestimmung der β -Galaktosidase-Aktivität eine indirekte Bestimmung der EFG1-Promotoraktivität bei der

Hypheninduktion in Serummedium (Abb. 29).

Nach ca. 80 min. war eine vollständige Hypheninduktion erfolgt. Die B-Galaktosidase-Aktivität zeigte jedoch im Induktionsprozeß gesamten einen konstanten Verlauf. Die unbekannte Halbwertszeit des Lac4-Proteins stellt allerdings bei Rückschlüssen auf die EFG1-Promotoraktivität einen Unsicherheitsfaktor dar. Ob der *EFG1*-Hauptpromotor während der Hypheninduktion eine konstante Aktivität zeigte, kann daher ohne eine Analyse LAC4-Transkriptspiegels des zweifelsfrei beurteilt nicht werden.

Abbildung 29: EFG1p-Aktivität während der Hypheninduktion Über einen Zeitraum von drei Stunden erfolgte die Induktion von Hyphen in 10% Serum. Der Hyphenanteil wurde mikroskopisch ausgezählt. Die Aktivität des EFG1-Hauptpromotors wurde durch eine EFG1p::LAC4-Fusion auf Plasmid pBT-34 in Stamm CAI4 über die luminometrische Messung der β -Galaktosidase-Aktivität bestimmt.

3.8.2 TPK1/TPK2-Überexpression

Durch epistatische Untersuchungen und durch Mutagenese potentieller Phosphorylierungsstellen konnte Bockmühl (2001) zeigen, daß Efg1p unterhalb von PKA in einem cAMPvermittelten Signalweg die Differenzierungsprozesse des Dimorphismus reguliert. Die *EFG1*-Expression ist insofern unabhängig von Tpk1p und Tpk2p, als daß in einer konditionalen *tpk1/tpk2*-Mutante eine dem Wildtyp vergleichbare *EFG1*-Expression beobachtet wurde (Daten nicht gezeigt). Es sollte daher getestet werden, ob ein erhöhter *TPK1*- oder *TPK2*-Transkriptspiegel, wie er z.B. bei der Hypheninduktion auftritt, die *EFG1*-Expression verändert.

Unter einer *PCK1p*-vermittelten Überexpression erfolgte einerseits die Analyse der *EFG1*-Transkripte (Abb. 30), andererseits die Bestimmung der *EFG1p*-Aktivität mittels des Reportergens *LAC4* (Abb. 31).

Die Induktion des *PCK1*-Promotors in SCAA und damit die Überexpression von *TPK1* oder *TPK2* (Abb. 30, Spur 2 und 4) führten zu einer deutlichen Abnahme des *EFG1*-Hauptranskriptes im Vergleich zur Repression des *PCK1*-Promotors in S4D (Spur 1 und 3). Obwohl der *ACT1*-Standard unter induzierenden Bedingungen (Spur 2 und 4) eine geringfügig größere RNA-Menge anzeigte als unter reprimierenden Bedingungen (Spur 1 und 3), sank der *EFG1*-Transkriptspiegel. Das *EFG1*-Nebentranskript zeigte hingegen keine Veränderung durch *TPK1/TPK2*-Überexpression.

Da das Absinken des *EFG1*-Transkriptspiegels sowohl durch eine veringerte mRNA-Stabilität

als auch durch eine reduzierte *EFG1*-Promotoraktivität verursacht werden kann, wurde mittels einer *LAC4*-Fusion daher die Aktivität des *EFG1*-Hauptpromotors in Abhängigkeit der Überexpression von *TPK1* und *TPK2* untersucht. Dazu wurde neben den Überexpressionsplasmiden pBT-151 (*TPK1*) und pBT-152 (*TPK2*) in den *C. albicans*-Stamm CAI8 das Reporterplasmid pBT-34 transformiert. Jeweils vier unabhängige Transformanten wurden unter reprimierenden Bedingungen in S4D-Medium angezogen und anschließend sechs Stunden in SCAA-Medium die *TPK1/TPK2*-Überexpression induziert (analog zur Analyse der *EFG1*-Transkripte). Als Verhältnis der β -Galaktosidase-Aktivität unter Repression und Induktion der Überexpression von *TPK1* bzw. *TPK2* wurde die Repression der Aktivität des *EFG1*-Promotors bestimmt (Abb. 31).

Zusammenfassend führte die episomale Überexpression von *TPK1* und *TPK2* zu einer ca. sechsfach reduzierten Aktivität des *EFG1*-Hauptpromotors (Abb. 31). Die Reduzierung des *EFG1*-Transkriptspiegels durch Überexpression von *TPK1* und *TPK2* resultierte somit nicht aus einer verminderten Transkriptstabilität, sondern aus einer Repression des *EFG1*-Hauptpromotors.

3.8.3 EFH1-Überexpression

Die Bäckerhefe *S. cerevisiae* ist mit zwei Mitgliedern, *PHD1* und *SOK2*, in der APSES-Genfamilie vertreten. Beide sind in antagonistischer Form in die Pseudohyphenbildung involviert. Sowohl die Überexpression von *PHD1* als auch die Deletion von *SOK2* haben ein verstärktes filamentöses Wachstum zur Folge (Ward *et al.*, 1995; Gimeno und Fink, 1994). Vor kurzem gelang auch in *C. albicans* die Identifizierung eines zweiten APSES-Gens neben *EFG1*, dessen Genprodukt auf Proteinebene im Bereich der APSES-Domäne eine große Homologie zu den übrigen Mitgliedern dieser Genfamilie zeigt und mit *EFH1* bezeichnet wurde (Bockmühl, 2001). Es ist wie *EFG1* an der Regulation filamentösen Wachstums in *C. albicans* beteiligt, da seine Überexpression pseudohyphales Wachstum verursacht (Bockmühl, 2001). Die Überexpression von *EFG1*, welche ebenso einen Pseudohyphen-Phänotyp zeigt, führt zur Repression der *EFG1*-Promotoren ("negative Autoregulation"; siehe 3.7). Daher wurde die Wirkung einer *EFH1*-Überexpression auf die *EFG1p*-Aktivität analysiert.

Mittels des "Zwei-Plasmid-Systems" (Abb. 19) wurde anhand der *LAC4*-Expression der Effekt einer *PCK1p*-vermittelten Überexpression von *EFH1* (pBT-145) auf die Aktivität des *EFG1*-Hauptpromotors in Plasmid pBT-34 beurteilt. Die β -Galaktosidase-Aktivität von drei verschiedenen Transformanten mit Reporter- und Überexpressionsplasmid wurde sowohl unter Repressions- (S4D) als auch Induktionsbedingungen (SCAA) der *PCK1p*::*EFH1*-Expressionskassette bestimmt (Abb. 32).

Die Überproduktion des Efg1p-Homologen Efh1p führte, wie die Überproduktion von Efg1p, zu einer Repression der *EFG1*-Promotoraktivität (Abb. 32). Diese Efh1p-abhängige Repression (3, 4 + 0, 8) betrug ca. ein Drittel der negativen Autoregulation von *EFG1* (Abb. 21: 11,5 + - 3,6).

3.8.4 "White/opaque"-Phänotypwechsel

Der "white/opaque"-Phänotypwechsel des Stammes WO-1 stellt neben dem Dimorphismus von *C. albicans* eine weitere Form des reversiblen Wechsels zwischen zwei verschiedenen Wachstumsformen dar. Während der "white"-Phänotyp sich durch eine rundlich bis ovale Zellform und eine "normale" leicht erhobene weiße Kolonieform auszeichnet, weist die "opaque"-Form elongierte stäbchenförmige Zellen und relativ glatte gräuliche Kolonien auf (Soll *et al.*, 1993). "Opaque"-Zellen können lediglich bei 25°C relativ stabil, ohne einen Phänotypwechsel, kultiviert werden, "white"-Zellen sind hingegen auch bei 30°C stabil.

Da die Überexpression von *EFG1* im "opaque"-Phänotyp den Wechsel zur "white"-Form in erheblichen Ausmaß forciert (Sonneborn *et al.*, 1999b), scheint dieser Transkriptionsfaktor im Phänotypwechsel eine regulatorische Schlüsselfunktion zu besitzen. Zur näheren Untersuchung seiner Funktion erfolgte eine Northern-Analyse des *EFG1*-Haupttranskriptes im Verlaufe einer bei 42°C induzierten "Massenkonversion" vom "opaque"- zum "white"-Phänotyp (Abb. 33). Zuvor war nur im "white"-Phänotyp das *EFG1*-Haupttrankript nachgewiesen worden, während der "opaque"-Phänotyp keine *EFG1*-Expression zeigte (Sonneborn, 1999).

Der Verlauf der Massenkonversion wurde einerseits über die mikroskopische Kontrolle der Zellform in der Hauptkultur verfolgt (Abb. 33, A). Andererseits wurde zur Analyse der Kolonieform zu den angegebenen Zeitpunkten (0-8 h) der Hauptkultur eine Probe entnommen und in geeigneter Verdünnung (ca. 50-100 Zellen/Platte) ausplattiert und vier Tage bei 25°C kultiviert. Zur Unterscheidung zwischen "opaque"- und "white"-Kolonien wurde den Platten der Farbstoff Phloxin B (5 μ g/ml) beigemischt, welcher "opaque"-Kolonien eine rötliche Färbung verleiht. Zusätzlich zu dieser optischen Unterscheidung erfolgte eine mikroskopische Kontrolle der Zellform in den Kolonien.

Nach drei Stunden bei 42°C waren ca. 3 % der "opaque"-Zellen auf einen Wechsel des Phänotyps festgelegt, während in der Hautkultur mikroskopisch noch keine "white"-Zellen nachgewiesen werden konnten (Abb. 33, A). Nach fünf Stunden entwickelten 55 % der Zellen eine "white"-Kolonieform, obwohl nur 5 % der Zellen eine "white"-Zellform aufwiesen. Nach sieben Stunden ist der Anteil der "white"-Zellen in der Hauptkultur auf 30 % angestiegen, der induzierte Wechsel zum "white"-Phänotyp ist hingegen schon insoweit abgeschlossen, als daß 100% der Zellen "white"-Kolonien bildeten, wenn sie ausplattiert und bei 25°C kultiviert wurden.

Die Analyse des EFG1-Haupttranskriptes zeigte im Verlauf der Massenkonversion (Abb. 33, B) zu Beginn (0 h) im "opaque"-Phänotyp ein kaum detektierbares Signal. Es könnte auf einen minimalen Anteil von "white"-Zellen in der "opaque"-Kultur zurückgehen, wenngleich auch die Analyse der Kolonieform zu diesem Zeitpunkt keine "white"-Kolonien nachwies. Dies kann allerdings mit der relativ niedrigen Koloniezahl (50-100) auf den Platten erklärt werden. Im "opaque"-Phänotyp bei 25°C sollte keine Expression des EFG1-Haupttranskriptes stattfinden (Sonneborn, 1999). Zwei Stunden nach dem Wechsel auf 42°C erfolgte jedoch bereits eine Transkription von EFG1, obwohl noch keine "white"-Zellen in der Hauptkultur nachweisbar waren. Im weiteren Verlauf (3-8 h) nahm die Menge des EFG1-Transkriptes stetig zu (das schwächere Signal nach 3 und 4 Stunden beruht vermutlich auf einem mangelnden Transfer der RNA in diesem Bereich). Eine Expression des "white"spezifischen Gen WH11 erfolgte im Gegensatz zu EFG1 nur nach vier Tagen Wachstum der Hauptkultur bei 25°C (4 d) bzw. in der "white"-Kontrolle (w). Zusammenfassend nahm in der Phase, in der der Wechsel des Phänotyps von "opaque" zu "white" determiniert wird (2-7 h), die EFG1-Expression stetig zu, während keine Expression des "white"-spezifischen Gen WH11 in diesem Zeitraum nachweisbar war. Somit reflektierte der EFG1-Transkriptspiegel die Kompetenz der Zellen zum Phänotypwechsel, nicht nur den Endzustand.

3.9 *EFH1*-Expression im Phänotypwechsel

Aufgrund seiner Homologie zu Efg1p sollte eine potentielle Funktion von Efh1p im Phänotypwechsel untersucht werden. Daher wurde der *EFH1*-Transkriptspiegel im Verlauf der Massenkonversion vom "opaque"- zum "white"-Phänotyp analysiert (Abb. 33, B). Während zu Beginn in der reinen "opaque"-Kultur (0 h) keine *EFH1*-Transkription erfolgte, wurden in einer reinen "white"-Kultur (nach vier Tagen Wachstum der Hauptkultur bei 25 °C (4 d) bzw. in der "white"-Kontrolle (w)) zwei *EFH1*-Transkripte nachgewiesen. Ein 2,5 kbund ein 2,7 kb-Transkript wurden in nahezu vergleichbarer Menge exprimiert. "White"-Zellen, welche den induzierten Wechsel von der "opaque"-Form vollzogen haben, zeigten nach vier Tagen Wachstum bei 25°C (4 d) jedoch eine leicht verstärkte Expression des kleinen Transkriptes. Die Expression von *EFH1* wurde parallel zur *EFG1*-Expression induziert. Nach drei Stunden (3 h) konnte das größere *EFH1*-Transkript detektiert werden. Die Induktion der *EFH1*-Expression war gegenüber der *EFG1*-Induktion (2 h) leicht verzögert. Die Menge des großen *EFH1*-Transkriptes nahm bis zum Ende der Massenkonversion (8 h) kaum zu. Zusammenfassend wurde die Expression des großen *EFH1*-Transkriptes (2,7 kb) im Vergleich mit *EFG1* während der Massenkonversion leicht verzögert induziert, während das kleine *EFH1*-Transkript (2,5 kb) parallel zum *WH11*-Transkript im "white"-Phänotyp gebildet wurde. Das Expressionsmuster der *EFH1*-Transkripte deutete auf eine Funktion von Efh1p in der Regulation des Phasenwechsels von "opaque" zu "white".

Durch die Überexpression von *EFG1* im "opaque"-Phänotyp konnte ebenso wie durch eine Temperaturerhöhung auf 42°C eine Massenkonversion zum "white"-Phänotyp ausgelöst werden (Sonneborn *et al.*, 1999b). Ob Efh1p auch in dieser Hinsicht eine ähnliche Funktion wie Efg1p besitzt, sollte in einem ähnlichen Überexpressionsexperiment analysiert werden.

Dazu wurde in die "opaque"-Form des Stammes Red3/6, ein *ade2*-Derivat von WO-1, das Plasmid pBT-145 (*PCK1p*::*EFH1*) und als Kontrolle das Plasmid pBT-44 (*PCK1p*) transformiert. Vier unabhängige Transformanten (pBT-145) und ein Kontrollstamm (pBT-44) wurden zwei Tage bei 25°C sowohl in S4D-Medium, zur Repression des *PCK1*-Promotors, als auch in SCAA-Medium, zur Induktion der *EFH1*-Überexpression, angezogen. In geeigneter Verdünnung (50-200 Kolonien/Platte) wurden anschließend die S4D-Kulturen auf S4D-Platten und die SCAA-Kulturen auf SCAA-Platten ausplattiert und bei 25°C inkubiert. Zur leichteren visuellen Unterscheidung von "opaque"- und "white"-Kolonien enthielten die Platten den Farbstoff Phloxin B (5 µg/ml) zur selektiven Rotfärbung von "opaque"-Kolonien. Die Phänotypen der Kolonien wurden zusätzlich durch mikroskopische Kontrolle der Zellform bestimmt.

Der Kontrollstamm (pBT-44: *PCK1p*) entwickelte unter reprimierenden (Abb. 34: C) sowie induzierenden Bedingungen (D) reine "opaque"-Kolonien. Dagegen bildeten Stämme mit der *PCK1p*::*EFH1*-Fusion auf reprimierenden Medium ebenfalls reine "opaque"-Kolonien (A); bei Induktion der *EFH1*-Überexpression zeigten die Kolonien jedoch weiße Sektoren (B).

Abbildung 34: Überexpression von *EFH1* im "opaque"-Phänotyp des Stammes Red3/6 Die Transformanten mit dem Überexpressionsplasmid pBT-145 (*PCK1p*::*EFH1*) (A, B) und der Kontrollstamm mit dem Plasmid pBT-44 (*PCK1p*) (C, D) wurden auf S4D (A, C) und SCAA (B, D) ausplattiert. Nach Inkubation bei 25°C für eine Woche erfolgte die Analyse des Phänotyps der Kolonien. "Opaque"-Zellen wurden mit dem Farbstoff Phloxin B selektiv angefärbt. Aufgrund der höheren Koloniedichte auf den S4D-Platten fällt die Rotfärbung der "opaque"-Kolonien dort insgesamt etwas schwächer aus.

Die Zellen dieser Sektoren konnten nach mikroskopischer Kontrolle der Zellform dem "white"-Phänotyp zugeordnet werden. Die episomale *EFH1*-Überexpression forcierte somit den Wechsel vom "opaque"- zum "white"-Phänotyp.

Eine quantitative Analyse dieses Effektes erfolgte durch Auszählen der homogenen "opaque"-Kolonien und der inhomogenen Kolonien mit "white"-Sektoren. Auf reprimierendem Medium (S4D) erfolgte kein Wechsel des Phänotyps (Tab. 2). Die Kontrolle (pBT-44: *PCK1p*) behielt auch auf induzierendem Medium die "opaque"-Form bei. reiner "opaque"-Der Anteil Kolonien ging bei Überexpression von EFH1 auf bis zu 2 % zurück. Kolonien mit den oben gezeigten "white"-Sektoren (Abb. 34) nahmen einen Anteil zwischen 40-98 % ein.

	SCAA	S4D
pBT-44 (<i>PCK1p</i>)	100 %	100 %
1. pBT-145 (<i>PCK1p</i> :: <i>EFH1</i>)	10 %	100 %
2. pBT-145 (<i>PCK1p</i> :: <i>EFH1</i>)	60 %	100 %
3. pBT-145 (<i>PCK1p</i> :: <i>EFH1</i>)	10 %	100 %
4. pBT-145 (<i>PCK1p</i> :: <i>EFH1</i>)	2 %	100 %

Tabelle 2: Quantitative Analyse der *EFH1*-Überexpression in Stamm Red3/6

Vier unabhängige Transformanten mit dem Plamid pBT-145, welches die Überexpressionskassette beinhaltet, wurden auf induzierendem Medium (SCAA) und reprimierendem Medium (S4D) ausplattiert und der Anteil reiner "opaque"-Kolonien bestimmt.

Zusammenfassend erhöhte die episomale Überexpression von *EFH1* in allen untersuchten Transformanten die Rate des Wechsels vom "opaque"- zum "white"-Phänotyp. In seiner Fähigkeit, diesen Wechsel zu forcieren, zeigte Efh1p eine ähnliche Kompetenz wie Efg1p.

3.10 Regulation der TPK1/TPK2-Expression

Die Funktion des Transkriptionsfaktors Efg1p in der Hyphenbildung von *C. albicans* wird in einem cAMP-abhängigen Signalweg über die Proteinkinase A vermittelt (Bockmühl, 2001). Die beiden katalytischen Untereinheiten von PKA, Tpk1p und Tpk2, besitzen dabei unterschiedliche und z.T. redundante Funktionen. Als ein wesentlicher Unterschied zwischen beiden Isoformen wurde festgestellt, daß die PKA-vermittelte Hyphenbildung auf festen Medien hauptsächlich über Tpk1p, in flüssigen Medien über Tpk2p reguliert wird (Bockmühl, 2001). Eine direkte Phosphorylierung von Efg1p durch Tpk1p oder Tpk2p konnte jedoch bisher nicht nachgewiesen werden. Die funktionellen Zusammenhänge zwischen PKA und Efg1p wurden einerseits über epistatische Untersuchungen, andererseits über die Mutation potentieller Zielsequenzen in Efg1p aufgeklärt (Bockmühl und Ernst, 2001). In dieser Arbeit wurde die Repression des *EFG1*-Hauptpromotors durch Überproduktion von Tpk1p und Tpk2p gezeigt (siehe 3.8.2). Über die Northern-Analyse der *TPK*-Transkripte in einer *efg1*-Mutante sollte daher untersucht werden, ob auch Efg1p die Expression von *TPK1* oder *TPK2* beeinflußt.

Im Rahmen dieser Analyse wurde auch die *TPK*-Expression der konditionalen tpk1/tpk2-Mutante M231 überprüft. In dieser Mutante wurden beide *TPK2*-Allele und ein *TPK1*-Allel disruptiert. Das andere *TPK1*-Allel wurde unter die Kontrolle des regulierbaren *PCK1*-Promotors gestellt. Unter reprimierenden Bedingungen sollte nur ein minimaler *TKP1*-Transkriptspiegel nachweisbar sein. Zusätzlich wurde der *TPK*-Transkriptspiegel bei *PCK1p*vermittelter Überexpression von *TPK1* und *TPK2* analysiert.

Während der *TPK1*-Locus nur in ein *TPK1*-Transkript mit einer ungefähren Größe von 1,6 kb transkribiert wurde (Abb. 35: Spur 3 und 4), erfolgte die genomische *TPK2*-Expression in zwei Transkripte. Neben einem kleinen Transkript von ebenfalls 1,6 kb wurde ein großes *TPK2*-Transkript von etwa 2,5 kb detektiert (Spur 7, 8 und 9). Die konditionale *TPK*-Mutante M231 zeigte wie erwartet keine *TPK2*-Expression (Spur 5) und ein kaum zu detektierendes *TPK1*-Transkript (Spur 1). Bei *TPK1*-Überexpression wurde ein deutlich stärkeres Signal bei ca. 2,6 kb nachgewiesen (Spur 2). Bei Überexpression von *TPK2* wurde neben den beiden genomisch exprimierten *TPK2*-Transkripten (vgl. Spur 7) auch ein verstärktes Signal bei 2,6 kb detektiert, welches sich mit dem großen *TPK2*-Transkript überlagert (Spur 6).

Zwischen dem Wildtyp (CAI4) und der *efg1*-Deletion (HLC67) konnte kein Unterschied in der Expression beider *TPK*-Isoformen nachgewiesen werden. Weder der Spiegel des *TPK1*-Transkriptes (Spur 3 und 4) noch der der beiden *TPK2*-Transkripte (Spur 8 und 9) wies eine signifikante Veränderung in beiden Stämmen auf. Auch das Verhältnis zwischen kleinem und großem *TPK2*-Transkript blieb konstant. Die Deletion von *EFG1* beeinflußte weder die Expression von *TPK1* noch von *TPK2*.

4 Diskussion

C. albicans gilt als der bedeutendste Erreger von Pilzerkrankungen des Menschen. Seine stetig wachsende Bedeutung verdankt er der zunehmenden Zahl prädisponierter Personen. Eine Immunsuppression des Wirtes ermöglicht es dem harmlosen Kommensalen, seine pathogenen Eigenschaften zu entwickeln. Das pathogene Potential von C. albicans basiert in Anpassung an seine verschiedenen Habitate auf einem komplexen Zusammenspiel zahlreicher Virulenzfaktoren. Neben der Adhäsion an Epi- und Endothelien des Wirtes über spezielle Oberflächenproteine (Adhäsine), der Sekretion proteo- und lipolytischer Enzyme und verschiedenen Phänotypwechseln wird dem Dimorphismus von C. albicans eine zentrale Bedeutung beigemessen. Der reversible Wechsel zwischen einzelligem Hefewachstum und der Ausbildung von Filamenten wird insofern als Virulenzfaktor angesehen, als daß die Hefeform der schnellen Vermehrung und der Verbreitung über den Blutkreislauf dient, während Hyphen ein größeres Adhäsionsvermögen zeigen und die Invasion in Wirtsgewebe vermitteln (Calderone und Braun, 1991). Klinische Isolate weisen stets beide Wachstumsformen auf, wobei die Filamente von C. albicans aufgrund ihrer Genese in echte Hyphen und Pseudohyphen unterteilt werden. Chlamydosporen gelten hingegen als Überdauerungsstadium (Odds, 1988).

Als essentieller Regulator der Morphogenese von C. albicans ist das APSES-Protein Efg1p an der Steuerung dieser Entwicklungsprozesse auf molekularer Ebene beteiligt. Seine Überexpression führt zur Ausbildung von Pseudohyphen, seine Deletion zu einem nahezu vollständigen Verlust der Hyphen- wie der Chlamydosporenbildung (Stoldt et al., 1997; Lo et al., 1997; Sonneborn et al., 1999a). In einem cAMP-abhängigen Signalweg reguliert der Transkriptionsfaktor Efg1p unterhalb der Proteinkinase A die Expression bisher noch nicht bekannter Zielgene (Ernst, 2000a, b). Die Regulation seiner eigenen Expression stand im Mittelpunkt dieser Arbeit. Die Bestimmung des Transkriptionsstartes des langen EFG1-Transkriptes führte zur Identifizierung des EFG1-Hauptpromotors. Nach der Sequenzierung folgte über die Fusion mit verschiedenen Reportergenen die Analyse seiner Regulation in verschiedenen von Efg1p gesteuerten Prozessen. Die reprimierende Funktion von Efg1p wurde am Phänomen der negativen Autoregulation von EFG1 untersucht. Über eine Deletionsanalyse gelang die Identifizierung der diesen Prozeß vermittelnden funktionellen Domäne im EFG1-Promotor. Eine Beteiligung von Efg1p an der Regulation des "white/opaque"-Phänotypwechsels konnte durch die Analyse des EFG1-Transkriptspiegels bestätigt werden. Die Überexpression von EFH1 deutet auf eine ähnliche Funktion des zweiten APSES-Proteins in diesem Prozeß. Ferner lieferten Untersuchungen des TPK1/TPK2-Transkriptspiegel sowie Überexpressionsexperimente von TPK1 und TPK2 weitere Hinweise auf den postulierten funktionellen Zusammenhang von PKA und Efg1p in einem gemeinsamen cAMP-abhängigen Signalweg.

4.1 Bestimmung der *EFG1*-Transkriptionsstartpunkte

Aufgrund der Diskrepanz zwischen der Größe des offenen Leserahmens von *EFG1* (1,6 kb) und der Größe des *EFG1*-Transkriptes (3,2 kb) erfolgte am Beginn dieser Arbeit die Bestimmung der Transkriptionsstartpunkte von *EFG1*.

Basierend auf der Bestimmung eines *EFG1*-Transkriptionstartpunktes von Stoldt (1995) an Position -35 verwendete Weide (1998) ein 1200 bp großes 5'-flankierendes Fragment des offenen Leserahmens von *EFG1* zur Charakterisierung des *EFG1*-Promotors. Wie in dieser Arbeit gezeigt wurde, handelt es sich dabei jedoch um den Promotor eines kurzen, bis dahin nicht detektierten *EFG1*-Transkriptes.

4.1.1 Der *EFG1*-Locus generiert ein 3,2 kb Haupttranskript und ein 2,1 kb Nebentranskript

Die Northern-Analyse der EFG1-Expression im Wildtypstamm SC5314 zeigte die Transkription des *EFG1*-Locus in zwei Transkripte. Neben dem beschriebenen Haupttranskript von EFG1 mit einer Größe von ca. 3,2 kb (Stoldt, 1995; Sonneborn, 1999) gelang die Detektion eines deutlich schwächer exprimierten kurzen EFG1-Transkriptes von ca. 2,1 kb (Abb. 5). Das Mengenverhältnis zwischen langem und kurzem Transkript konnte anhand der Signalstärke auf 20-30 zu 1 geschätzt werden. Im Verlauf dieser Arbeit wurden die EFG1-Transkripte in einem anderen C. albicans-Stamm beschrieben (Srikantha et al., 2000). Der Stamm WO-1 mit seinen beiden Phänotypen "white" und "opaque" wies eine phasenspezifisch getrennte Expression der beiden EFG1-Transkripte auf, während im Stamm SC5314 beide Transkripte zusammen auftraten. Die "white"-Form zeigte, wie bereits von Sonneborn (1999) beschrieben, nur ein langes Transkript (3,2 kb), während in der "opaque"-Form nur ein kurzes EFG1-Transkript (2,2 kb) nachgewiesen wurde. Das Verhältnis zwischen beiden Transkripten wurde hier mit 20 zu 1 angegeben. Der Startpunkt des kurzen Transkriptes liegt an Position -165 (Srikantha et al., 2000). Aufgrund des relativ großen Unterschiedes zu dem von Stoldt (1995) bestimmten Startpunkt an Position -35 wurde mittels 5'RACE erneut der Start des kurzen EFG1-Transkriptes bestimmt (siehe 3.2.3). Der ermittelte Start an Position -73 liegt 47 bp stromabwärts einer TATA-Box (Abb. 8). Zusammen mit dem offenen Leserahmen von EFG1 (1656 bp) und der 3'UTR (412 bp, M. Gerards, pers. Mitteilung) ergibt sich für das kurze EFG1-Transkript eine Größe von 2141 bp. Die Differenz zum Transkript der "opaque"-Form (2,2 kb) kann auf dem unterschiedlichen Stammhintergrund beruhen.

Der Startpunkt des langen *EFG1*-Transkriptes wurde mittels 5'RACE an Position -1169 bestimmt und weicht nur eine Base von dem von Srikantha *et al.* (2000) in der "white"-Form des Stammes WO-1 beschriebenen ab. Dieser Startpunkt liegt aber aufgrund von Sequenzunterschieden an Position -1173. Die Unterschiede in der Sequenz des *EFG1*-Locus zeigen sich darüber hinaus auch in der Größe der *3'UTR* (WO-1: 407 bp). Sogar der ORF von *EFG1* ist mit 1662 bp (554 AS) sechs Basen größer als der zuvor beschriebene mit 1656 bp (552 AS; Stoldt *et al.*, 1997).

Das lange *EFG1*-Transkript umfaßt in der Summe von 5'*UTR* (1169 bp), ORF (1656 bp) und 3'*UTR* (412 bp) insgesamt 3237 bp und bestätigt die Northern-Analysen (Abb. 36).

Abb. 36: Transkription des EFG1-Locus

Der Startpunkt des kurzen Transkriptes liegt an Position -73, der des langen Transkriptes an Position -1169. Beide Transkripte beinhalten eine 3'UTR von 412 bp. Da Weide für die Untersuchungen des Promotors des kurzen Transkriptes ein Fragment von -1200 (*Bam*HI) bis -1 verwendete, wurde zur Analyse des Promotors des langen Transkriptes (*EFG1p*) der 5'-flankierende Bereich bis -4448 (*Bgl*II) eingesetzt. Die Region der 5'*UTR* des langen Transkriptes stellt somit gleichzeitig nahezu den gesamten Promotor des kurzen *EFG1*-Transkriptes dar.

4.1.2 Das lange EFG1-Transkript enthält eine 1,2 kb große 5'UTR

Durch die Bestimmung des Startpunktes des langen EFG1-Transkriptes an Position -1169 gelang die Aufklärung der Größendifferenz zwischen dem Haupttranskript (3,2 kb) und dem ORF von EFG1 (1.6 kb). Die beiden Transkripte von StuA, welches ein APSES-Protein in Aspergillus nidulans codiert (Miller et al., 1992), enthalten vergleichbar ausgedehnte 5'-untranslatierte Regionen (stuAa: 1088 bp; stuAß: 1221 bp). Im Vergleich mit S. cerevisiae besitzt das Transkript des G1-Cyclins CLN3 mit 864 bp die größte 5'UTR (Polymenis und Schmidt, 1997). Eine ebenfalls ausgedehnte 5'UTR enthalten die Transkripte des Trankriptionsfaktors GCN4 mit 591 bp und der Proteinkinase Sch9 mit ca. 600 bp (Müller und Hinnebusch, 1986; Blasi et al., 1993). Die 5'-untranslatierten Regionen der Transkripte der beiden in die Stressantwort involvierten Transkriptionsfaktoren YAP1 und YAP2 umfassen lediglich 164 bp bzw. 157 bp (Move-Rowley et al., 1989; Bossier et al., 1993). Sie enthalten jedoch ebenso wie die zuvor aufgeführten Transkripte kleine offene Leserahmen, die als uORF ("upstream open reading frame") bezeichnet werden. Die 5'UTR von YAP1 enthält einen uORF von 7 Codons, YAP2 dagegen zwei uORFs mit 6 bzw. 23 Codons. Die Größe dieser uORFs reicht von vier Codons (CLN3) bis zu 55 Codons (SCH9). Die Funktion dieser uORFs in der posttranskriptionellen Kontrolle der Genexpression wurde am Regulator der Aminosäuresynthese von S. cerevisiae GCN4 detailliert untersucht. Die regulatorische Funktion seiner vier uORFs mit einer Größe von 3 bis 4 Codons wird im Zusammenhang mit der Funktion der 5'UTR von EFG1 in Abschnitt 4.3.1 diskutiert. Die 5'UTR des langen EFG1-Transkriptes beinhaltet distal an Position -1074 bis -1060 ebenfalls einen uORF, der mit 6 Codons eine typische Größe besitzt (5'-ATG AAA ATA GAA TAG-3'). Die mRNA mehrerer hundert Gene von S. cerevisiae wie von Säugern besitzt solche uORFs (Vilela et al., 1998; Kozak, 1991). Da gerade Transkriptionsfaktoren als zentrale Regulationsproteine besonders häufig vertreten sind, könnte auch die Expression des Transkriptionsfaktors Efg1p posttranskriptionell reguliert sein (siehe 4.3.1).

4.2 Sequenz des *EFG1*-Hauptpromotors

Als Promotor des langen *EFG1*-Transkriptes (*EFG1p*) wurde in dieser Arbeit ein 3,2 kb großes *BglII/Bam*HI-Fragment von Plasmid p607/2 verwendet. Dieses enthält den durch die Verstärkung der Pseudohyphenbildung in *S. cerevisiae* isolierten *EFG1*-Klon des *C. albicans*-Stammes ATCC10231. Die Sequenz des *EFG1*-Promotors geht somit auf den Stamm ATCC10231 zurück, während für die Sequenzierung des *C. albicans*-Genomes der Stamm SC5314 verwendet wurde (http://www-sequence.stanford.edu/group/candida/). Die Sequenz der gesamten 5'-flankierenden Region von *EFG1* weicht in 63 von 4448 bp von der Genomsequenz von SC5314 ab. Drei abweichende Nukleotide liegen in der TATA-Box-Region des *EFG1*-Hauptpromotors (Abb. 10).

4.2.1 Der 5'-flankierende Bereich von *EFG1* stellt eine große intergenische Region dar

Wenn man die Sequenz des *EFG1*-Locus von ATCC10231 über die *Bg1*II-Schnittstelle (-4448) hinaus mit der Sequenz von SC5314 ergänzt (CONTIG 4-2908), enthält die 5'-flankierende Region von *EFG1* über einen Bereich von ca. 10 kb keine offenen Leserahmen. Der erste ORF (größer als 100 AS) codiert ein Protein von 331 Aminosäuren

(*ARF98*). Die fünf größten offenen Leserahmen unterhalb von 100 Aminosäuren innerhalb dieser Region codieren für Proteine mit einer berechneten Größe von 83 AS, 82 AS, 72 AS, 68 AS und 65 AS. Somit umfaßt der 5'-flankierende Bereich von *EFG1* eine intergenische Region von 10 kb. In *S. cerevisiae* stellt die 5'-flankierende Region von *FLO11* mit 3,6 kb bisher die größte beschriebene intergenische Region dar (Rupp *et al.*, 1999). Als Oberflächenprotein ist Flo11p an der Ausprägung des filamentösen Wachstums von *S. cerevisiae* beteiligt, wobei in seinem ausgedehnten und komplexen Promotor sowohl Signale der MAPK-Kaskade als auch des cAMP-abhängigen Weges integriert werden. Die zehn größten intergenischen Regionen in *S. cerevisiae* werden von zwei weiteren an Entwicklunsprozessen beteiligte Genen 3'-flankiert. Die Größe des *HO*-Promotors (3082 bp) sowie des *IME1*-Promotors (2652 bp) deuten ebenfalls auf eine komplexe Steuerung ihrer Expression im Paarunstypwechsel bzw. der Meiose.

Die Größe der intergenischen 5'-flankierenden Region von *EFG1* bzw. des *EFG1*-Promotors bietet die Möglichkeit für eine ähnlich komplexe Regulation der Expression dieses zentralen Regulators der Morphogenese von *C. albicans*. Funktionelle Domänen und potentielle Bindemotive des *EFG1*-Promotors werden im Zusammenhang mit der Autoregulation diskutiert (siehe 4.5).

4.3 Funktion der 5'UTR des langen EFG1-Transkriptes

Die 5'-untranslatierte Region eines Transkriptes kann auf verschiedene Arten an der posttranskriptionalen Kontrolle der Genexpression beteiligt sein. Neben der Transkriptstabilität wird vor allem die Translationseffizienz des Transkriptes von der Sequenz bzw. der Sekundärstruktur einer 5'*UTR* beeinflußt (McCarthy, 1998). Wenngleich der CAP-Struktur am 5'-Ende einer mRNA als Schutz vor 5'-Exonukleaseaktivität die größte Bedeutung für die Stabilität beigemessen wird, so wurden auch Haarnadelstrukturen und Poly(G)-Sequenzen in 5'-untranslatierten Regionen als Stabilitätsdeterminanten eines Transkriptes beschrieben (Sagliocco *et al.*, 1994; Vega Laso *et al.*, 1993).

Auch RNA-bindende Proteine wie z.B. Pub1p regulieren den Abbau der mRNA (Stripecke et al., 1994, Ruiz-Echevarria und Peltz, 2000). Die Regulation auf Translationsebene wird u.a. durch kurze offene Leserahmen (uORF) in der 5'UTR vermittelt. Die Expression des Transkriptionsfaktors GCN4 von S. cerevisiae wird durch vier uORFs translational reguliert (McCarthy, 1998). Während uORF2 und uORF3 nicht essentiell für die Regulation sind, kommt uORF1 und uORF4 eine besondere Bedeutung zu. Die Initiation, Termination und Reinitiation der Translation wird sowohl durch die Sequenz der uORFs als auch durch ihren relativen Abstand zueinander reguliert. Auch die flankierenden Sequenzen von uORF1 und uORF4 beeinflussen aufgrund ihres A/U-Gehaltes bzw. G/C-Gehaltes die Reinitiationsrate und damit die Translation des offenen Leserahmens von GCN4. Ein weiteres Beispiel der translationalen Kontrolle durch uORFs stellen die beiden an der oxidativen Stressanwort beteiligten Transkriptionsfaktoren YAP1 und YAP2 von S. cerevisiae dar (Vilela et al., 1998). Während der uORF von YAP1 die Translation des stromabwärts gelegenen ORF von YAP1 durch Reinitiation ermöglicht, wird die Translation von YAP2 durch seine uORFs effizient blockiert. Zusätzlich zur Termination der Translation an den uORFs wird der Abbau des YAP2-Transkriptes beschleunigt. Demgegenüber wurde eine aktivierende Funktion des ersten uORFs auf die Translation des stuAα-Transkriptes beschrieben (Wu und Miller, 1997).

Die im folgenden Abschnitt diskutierte regulatorische Funktion der 5'UTR des langen *EFG1*-Transkriptes in der seruminduzierten Hyphenbildung von *C. albicans* könnte auf einer ähnlichen posttranskriptionalen Kontrolle der *EFG1*-Expression basieren, da die Abnahme des *EFG1*-Transkriptspiegels während der Hypheninduktion (Stoldt, 1995) nicht auf eine reduzierte Aktivität des *EFG1*-Hauptpromotors zurückgeführt werden kann (siehe 4.6.1).

4.3.1 5'UTR-Deletionsstämme zeigen Defekte im Hyphenwachstum

Um die potentielle Funktion der 5'UTR des langen EFG1-Transkriptes zu identifizieren, wurde die entsprechende Region am EFG1-Locus in mehreren Stämmen deletiert. Heterozygote Mutanten (BT1.1/1.2; BT2.1/2.2) zeigen keinen Defekt in der seruminduzierten Hyphenbildung (3.4.3), da sie über ein intaktes EFG1-Allel verfügen (Stoldt et al., 1997; Lo et al., 1997). Die Fähigkeit, auf festem Serummedium Hyphen zu bilden, ist bei homozygoten Mutanten (BT3.1/3.2; BT4.1/4.2) hingegen deutlich eingeschränkt. Den stärksten Phänotyp zeigen die Stämme BT5.1/5.2, da in ihnen neben der kompletten Deletion eines EFG1-Allels durch die Deletion von CPH1 eine alternative Hypheninduktion über den MAPK-Weg blockiert ist. Alle Mutanten, die ausschließlich EFG1-Transkripte ohne 5'UTR exprimieren, weisen einen extrem starken Defekt in der Hyphenbildung auf, der an den Phänotyp von efgl-Mutanten erinnert. Es erschien möglich, daß in den 5'UTR-Mutanten keine EFG1-Expression stattfindet. Da die Transkription des mutierten EFG1-Locus eindeutig nachgewiesen wurde (siehe 3.4.2), konnte ein die Translation inhibierender Einfluß der FRT-Sequenz am distalen Ende der verkürzten EFG1-Transkripte vermutet werden (siehe 3.4.4). In einem indirekten Ansatz über die Expression des Reportergens RLUC, zeigte sich jedoch, daß die potentielle Haarnadelstruktur der durch die Deletionsmethode eingefügten FRT-Sequenz keine inhibierende sondern eine aktivierende Wirkung auf die Expression des Reportergens ausübt (siehe 3.4.4). Die im Vergleich mit einem Reportergenkonstrukt ohne FRT-Sequenz erhöhte Luziferase-Aktivität eines Konstruktes mit FRT-Sequenz, kann mit einer Stabilisierung des Transkriptes erklärt werden. Die Transkriptanalyse in den heterozygoten 5'UTR-Mutanten zeigt im Vergleich mit dem langen EFG1-Transkript einen deutlich höheren Spiegel des kurzen EFG1-Transkriptes (Abb. 12). Da beide Transkripte unter der Kontrolle des EFG1-Hauptpromotors exprimiert werden, basiert die Differenz in den Transkriptspiegeln vermutlich auf einer durch die FRT-Sequenz bzw. ihrer Haarnadelstruktur veränderten Transkriptstabilität. Eine Stabilisierung durch die Einfügung einer Haarnadelstruktur in die 5'UTR wurde bereits für eine Luziferase-mRNA beschrieben (Linz et al., 1997). Obgleich die Stabilisierung des verkürzten EFG1-Transkriptes nicht direkt auf die RLUC-mRNA übertragen werden kann, korreliert das Verhältnis der Reportergenaktivitäten der beiden Konstrukte von 1 zu 10 relativ gut mit dem Mengenverhältnis der beiden Transkripte in den heterozygoten 5'UTR-Mutanten (siehe 3.4.2). Aus dem Kontrollansatz läßt sich somit ableiten, daß eine effiziente Translation des verkürzten EFG1-Transkriptes in den 5'UTR-Mutanten stattfindet. Ihr Phänotyp beruht daher nicht auf einem totalen Verlust der EFG1-Expression, sondern auf der Deletion der 5'UTR.

Eine essentielle Funktion der 5'UTR für die durch Efg1p vermittelte Hyphenbildung steht allerdings im Widerspruch zur Komplementation des Hyphendefektes von *efg1*-Mutanten durch eine PCK1p::EFG1-Fusion, in der die 5'UTR fehlt (Sonneborn, 1999; Bockmühl, 2001). Die fehlende regulatorische Funktion der 5'UTR in der PCK1p-Fusion wird möglicherweise durch die starke Induktion des PCK1-Promotors durch die Hyphen-induktionsmedien d.h. eine erhöhte EFG1-Expression kompensiert. Sollte die Funktion der 5'UTR in der Vermittlung einer effizienten Translation des langen EFG1-Transkriptes bestehen, könnte die potentiell geringere Translationsrate eines EFG1-Transkriptes ohne 5'UTR durch einen PCK1p-vermittelten, höheren Transkriptspiegel ausgeglichen werden. Ohne eine Analyse des EFG1-Transkriptspiegels kann eine die fehlende Funktion der 5'UTR kompensierende, erhöhte PCK1p-abhängige EFG1-Expression während der Hypheninduktion jedoch nur vermutet werden.

4.4 Promotorfunktion der 5'-flankierenden Region von EFG1

Der Promotor des kurzen EFG1-Transkriptes (Nebenpromotor) wurde von Leuker (1995) und Weide (1998) durch Fusionen mit dem Reportergen LAC4 eingehend charakterisiert. Die Regulation des Nebenpromotors wird im Zusammenhang mit den Ergebnissen des Hauptpromotors diskutiert (siehe 4.5.3). Obgleich das als Nebenpromotor verwendete 1200 bp große Fragment den Startpunkt des langen EFG1-Transkriptes beinhaltet, zeigt die Northern-Analyse der LAC4-Fusion (pCL76), daß nur ein kurzes LAC4-Transkript (ohne 5'UTR des langen EFG1-Transkriptes) exprimiert wird (Abb. 17). Der Nebenpromotor vermittelt somit ausschließlich die Expression des kurzen EFG1-Transkriptes. Die Expression des mengenmäßig bedeutenderen langen EFG1-Transkriptes wird ausschließlich von der 5'-flankierenden Sequenz des Nebenpromotors vermittelt, die im Rahmen dieser Arbeit durch Fusionen mit den Reportergenen LAC4 und RLUC als EFG1-Hauptpromotor (EFG1p) charakterisiert wurde.

4.4.1 Die *EFG1*-Expression wird durch einen Haupt- und einen Nebenpromotor reguliert

Die Northern-Analyse der *EFG1*-Expression zeigt, daß der *EFG1*-Locus zwei Transkripte generiert (Abb. 5). Da das kurze Transkript auch als Abbauprodukt des langen Transkriptes gebildet werden könnte, wurde mit verschiedenen *LAC4*-Fusionen die Promotorfunktion der 5'-flankierenden Sequenzen des ORF von *EFG1* analysiert. Sowohl die Fusion einer 1,2 kb großen proximalen 5'-flankierenden Sequenz (pCL76) als auch die Fusion eines 3,2 kb großen distalen Fragmentes (pBT-34) mit *LAC4* vermitteln die Expression eines 3,1 kb *LAC4*-Transkriptes, dessen Größe ungefähr dem ORF entspricht (Abb. 17). Die Expression von zwei *EFG1*-Transkripten basiert auf zwei distinkten Promotoren, wobei der Hauptpromotor gegenüber dem Nebenpromotor eine deutlich höhere Aktivität zeigt.

Die Fusion der gesamten 5'-flankierenden Sequenz von *EFG1* (4,4 kb) mit *LAC4* (pBT-20) bestätigt durch die Expression von zwei *LAC4*-Transkripten (3,1 kb; 4,3 kb) die Existenz von zwei Promotoren am *EFG1*-Locus (Abb. 17). Das lange *LAC4*-Transkript beinhaltet die 5'UTR des langen *EFG1*-Transkriptes (Detektion mit 5'UTR-Sonde) und spiegelt somit dessen Expression wider, während die Expression des kurzen *LAC4*-Transkriptes auf der Aktivität des Nebenpromotors basiert. Das Mengenverhältnis der beiden *LAC4*-Transkripte entspricht jedoch nicht exakt dem der *EFG1*-Transkripte. Der relativ höhere Spiegel des kurzen *LAC4*-Transkriptes beruht auf einer höheren Transkriptstabilität. Eine durch einen unvollständigen *EFG1*-Hauptpromotor bedingte relativ schwächere Expression des langen *LAC4*-Transkriptes könnte den relativ erhöhten Spiegel des kurzen Transkriptes ebenfalls erklären. Diese Vermutung kann aufgrund der Größe des verwendeten Fragmentes in der Fusion (4,4 kb) jedoch ausgeschlossen werden. Eine aktivierende Domäne eines Promotors in mehr als 3,2 kb Abstand zum Transkriptionsstart wurde bisher in Hefe nicht beschrieben.

Die im Vergleich zum langen *EFG1*-Transkript schwächere Expression des kurzen *EFG1*-Transkriptes vom *EFG1*-Locus könnte auf der Hemmung des Nebenpromotors durch den stromaufwärts gelegenen Hauptpromotor basieren (Cullen *et al.*, 1984; Bateman *et al.*, 1988; Henderson *et al.*, 1989; Irninger *et al.*, 1992). Allerdings vermittelt der Nebenpromotor auch ohne den vorgelagerten Hauptpromotor eine deutlich geringere Expression als der Hauptpromotor in direkter Fusion mit *LAC4* (Abb. 17). Die Funktion zweier gleichgerichteter aufeineinanderfolgender Transkriptionseinheiten ("in tandem") wird anhand des Vergleiches zwischen Haupt- und Nebenpromotor im weiteren diskutiert.

4.5 Autoregulation des *EFG1*-Hauptpromotors

Den ersten Hinweis auf die negative Autoregulation der EFG1-Expression lieferte die Northern-Analyse der episomalen Überexpression von EFG1 (Sonneborn, 1999; Abb. 18). Aufgrund der unterschiedlichen Größe der EFG1-Transkripte konnte zwischen episomaler und genomischer Expression differenziert werden. Die Überexpression des kurzen EFG1-Transkriptes unter Kontrolle des PCK1-Promotors führte zu einem Verschwinden des langen EFG1-Transkriptes. Die genomische Expression des langen EFG1-Transkriptes wurde nahezu völlig reprimiert. Eine reprimierende Funktion der episomalen Überexpression auf das kurze EFG1-Transkript war nicht detektierbar aufgrund der identischen Größe der beiden kurzen (genomisch bzw. episomal exprimierten) Transkripte.

Da ein künstlich erzeugter hoher Efg1p-Spiegel eine Repression der genomischen *EFG1*-Expression bewirkt, kann auf eine negative Autoregulation des *EFG1*-Locus rückgeschlossen werden. Eine negative aber auch positive Autoregulation wurde für zahlreiche Transkriptionsfaktoren beschrieben. Während der *MyoD*-Promotor positiv autoreguliert wird (Dechesne *et al.*, 1994), unterliegt die Expression von *c-myc* einer negativen Autoregulation, welche auf der Bindung von c-Myc/Max-Heterodimeren an den *c-myc*-Promotor basiert (Facchini *et al.*, 1997). Weitere Beispiele für negative Autoregulation stellen das Homeobox-Gen *ATHB-2* von *Arabidopsis thaliana* und *SUF14* (auch *RPS3*) aus *Saccharomyces cerevisiae* dar, welches das ribosomale Protein S3 codiert (Ohgishi *et al.*, 2001; Hendrick *et al.*, 2001). Obgleich die Autoregulation meistens auf Transkriptionsebene durch eine direkte Bindung des Proteins an den eigenen Promotor vermittelt wird, scheint die autoregulatorische Repression der *SUF14*-Expression auf einer erhöhten Abbaurate der mRNA zu basieren, welche u.a. über die 5'*UTR* vermittelt wird. Eine ähnliche Funktion der *5'UTR* des langen *EFG1*-Transkriptes in der Autoregulation von *EFG1* konnte über die Reportergenanalysen des *EFG1*-Hauptpromotors ausgeschlossen werden (siehe 3.7.2).

Die Bedeutung der Autoregulation für zentrale Regulationsproteine zeigt sich auch am Transkriptionsfaktor Reb1p von *S. cerevisiae*. Ein konstantes Expressionsniveau wird über die direkte Bindung von Reb1p an drei verschiedene Domänen (A, B, C) in seinem eigenen Promotor sowohl durch negative als auch durch positive Autoregulation gewährleistet (Wang und Warner, 1998). Der Transkriptionsfaktors Amt1p von *Candida glabrata* wird ebenfalls autoreguliert (Zhou und Thiele, 1993). Die Verstärkung seiner Expression als Antwort auf hohe Kupferkonzentrationen beruht auf der Bindung von Amt1p an eine spezifische Sequenz (MRE: metal response element) in seinem eigenen Promotor. Da jedoch sowohl der Swi/Snf-Komplex als auch die Histonacetyltransferase Gcn5p für diese Regulation essentiell sind, wird eine regulatorische Funktion des Chromatin-Status in der *AMT1*-Autoregulation diskutiert (Koch *et al.*, 2001). Inwiefern ein ähnlicher Mechanismus der Autoregulation von *EFG1* zugrundeliegt, wurde in einer *sir2*-Mutante und mittels des Histondeacetylase-Inhibitors Trichostatin A untersucht (siehe 4.5.6).

Am Anfang der Untersuchungen zur *EFG1*-Autoregulation stand jedoch die Hypothese, daß sie wie in den meisten der zuvor beschriebenen Beispielen auf einer direkten Promotorbindung des überexprimierten Proteins basiert. Obgleich die Transkriptanalyse der *EFG1*-Überexpression nur auf eine Repression des *EFG1*-Hauptpromotors, der zu diesem Zeitpunkt noch nicht identifiziert war, hindeutete, zeigten Leuker (1995) und Weide (1997), daß auch der *EFG1*-Nebenpromotor negativ autoreguliert wird. Die Autoregulation des in dieser Arbeit charakterisierten *EFG1*-Hauptpromotors wird daher im Vergleich mit den Ergebnissen zum Nebenpromotor diskutiert.

Anhand der Abnahme des genomisch exprimierten langen EFG1-Transkriptes bei episomaler EFG1-Überexpression konnte vermutet werden, daß die negative Autoregulation von EFG1 auf Transkriptionsebene stattfindet. Im "Zwei-Plasmid-System" konnte diese Annahme durch eine LAC4-Fusion für den EFG1-Nebenpromotor bestätigt werden (Tebarth, 1998). Auch die vom EFG1-Hauptpromotor vermittelte LAC4-Expression wird bei Überexpression von EFG1 reprimiert (siehe 3.7.1). Die Fusion der gesamten 5'-flankierenden Region von EFG1 (4,4 kb) mit dem Reportergen erlaubte anhand der zwei LAC4-Transkripte die gleichzeitige Analyse beider Promotoren. Nach Induktion der PCK1p-vermittelten EFG1-Expression nimmt der Spiegel des langen LAC4-Transkriptes bis an die Nachweisgrenze ab, während der Spiegel des kurzen LAC4-Transkriptes in geringerem Maße sinkt (Abb. 20). Die Kontrolle mit einem Leervektor zeigt, daß dieser Effekt nicht auf das Medium, sondern auf die spezifische Überexpression von *EFG1* zurückgeführt werden kann. Die Repression des Hauptpromotors am EFG1-Locus konnte in der LAC4-Fusion in vergleichbarem Ausmaß nachvollzogen werden. Die nur leichte Abnahme des kurzen LAC4-Transkriptes korreliert hingegen nicht mit der achtfachen Repression der Aktivität des Nebenpromotors im "Zwei-Plasmid-Modell" (Weide, 1998). Da die Repression der Reporteraktivität mit einer LAC4-Fusion des Nebenpromotors (ohne vorgelagerten Hauptpromotor) ermittelt wurde, könnte das schwächere (weniger als achtfache) Absinken des kurzen LAC4-Transkriptes auf einer Beeinflussung der Autoregulation durch den 5'-flankierenden Hauptpromotor beruhen. Um einen entgegengesetzten Einfluß des Neben- auf den Hauptpromotor auszuschließen, erfolgte die Analyse der autoregulatorischen Repression über die Enzymaktivität durch eine direkte Fusion des *EFG1*-Hauptpromotors an die Reportergene *LAC4* und *RLUC*.

4.5.2 Der *EFG1*-Hauptpromotor unterliegt einer 10fachen negativen Autoregulation

In Fusion mit dem episomal exprimierten Reportergen LAC4 wurde eine 11,5fache Repression der Aktivität des EFG1-Hauptpromotors durch eine PCK1p-vermittelte Überexpression von EFG1 ermittelt, in Fusion mit dem integrierten Reportergen RLUC eine 9,2fache Repression. Diese ca. 10fache negative Autoregulation des EFG1-Hauptpromotors korreliert relativ gut mit der starken Abnahme der unter seiner Kontrolle exprimierten langen LAC4- und EFG1-Transkripte bei EFG1-Überexpression (Abb. 18, 20).

Desweiteren erlaubt die Transkriptanalyse in Kombination mit der Messung der Reportergenaktivität den Schluß, daß die Autoregulation von *EFG1* eindeutig auf Transkriptionsebene reguliert wird. Eine Steuerung über den spezifischen Abbau der Transkripte der heterologen Reportergene kann ausgeschlossen werden.

Das große Ausmaß der autoregulatorischen Repression ließ die Identifizierung von funktionellen Domänen in einer Deletionsanalyse des EFG1-Hauptpromotors möglich erscheinen. Das Niveau der episomalen Überexpression von EFG1 unter Kontrolle des PCK1-Promotors stellte jedoch aufgrund der variablen Kopiezahl des Plasmides einen Unsicherheitsfaktor dar, da nicht nur die Deletion potentieller Bindestellen im EFG1-Promotor, sondern auch eine unvollständige EFG1-Überexpression eine verminderte Autoregulation bedingen. Obgleich das Maß der Überexpression anhand des Pseudohyphen-Phänotyps beurteilt werden kann, wurde durch eine lange Induktionsphase (24 h) des PCK1-Promotors eine gleichmäßige und vollständige EFG1-Überexpression sichergestellt.

4.5.3 Ein minimaler 45 bp großer Promotor vermittelt eine vollständige autoregulatorische Repression

Die Deletionsanalyse des EFG1-Nebenpromotors führte zur Identifizierung von drei cis-Regionen, welche die autoregulatorische Repression des regulatorischen EFG1-Nebenpromotors steuern (Weide, 1997). Neben einer Autoregulation reprimierenden Domäne (ARD; -1200 bis -722) wurden eine distale (DAAD: -444 bis -389) und eine proximale (PAAD: -389 bis -283) Autoregulation aktivierende Domäne beschrieben. Die phasenspezifische Expression des "white"-spezifischen Gens WH11 im Stamm WO-1 wird über zwei cis-aktivierende Sequenzen (DAS: -475 bis -388; PAS: -305 bis -270) in seinem Promotor mit einer vergleichbar großen Distanz zum Transkriptionsstart reguliert (Srikantha et al., 1997). Die cis-regulatorischen Sequenzen des EFG1-Hauptpromotors wurden demgegenüber in unmittelbarer Nähe der TATA-Box lokalisiert (siehe 3.7.2).

Anhand der Deletionsanalysen mit den beiden Reportergenen LAC4 und RLUC ließ sich die funktionelle Domäne, welche eine vollständige Autoregulation vermittelt, auf einen Bereich von nur 45 bp einengen (3.7.2). Die gesamte 5'-flankierende Region dieses minimalen Promotors besitzt in der negativen Autoregulation von EFG1 keine essentielle regulatorische Funktion, da ihre Deletion im RLUC-System (pBT-153) keine signifikante Abnahme der Repression bewirkt (3.7.2.3). Obgleich alle Deletionen im RLUC-System noch die zur Integration in den EFG1-Locus benötigte 5'-flankierende Region der XmnI-Schnittstelle des Promotors beinhalten (Abb. 25), erlaubt die Kombination mit den Ergebnissen der Deletionsanalyse im LAC4-System die eindeutige Identifizierung dieser funktionellen Domäne. Innerhalb des minimalen Promotors scheint der unmittelbar stromaufwärts gelegene Bereich der TATA-Box (-10 bis -2) nicht an der Autoregulation beteiligt zu sein, da sowohl ein doppelter G-T-Austausch (pBT-120/-121) als auch seine völlige Deletion (pBT-148/-149) die Repression im LAC4-System nicht signifikant verändern (3.7.2.1). Da die Deletion pBT-156 im RLUC-Sytem eine deutliche Abnahme der autoregulatorischen Repression zeigt (2,2 +/- 0,4), kann aus der Kombination mit den zuvor genannten Deletionen geschlossen werden, daß ein wesentlicher Teil der EFG1-Autoregulation von einem 16 bp großen Bereich (-26 bis -11 relativ zur TATA-Box) vermittelt wird.

Seine Sequenz 5'-GGGAGCAAAACTAAGA-3' weist jedoch kein zuvor beschriebenes Bindemotiv oder ein Palindrom auf. Während bisher keine direkte Bindung von Efg1p an diese Sequenz über Verzögerungsgele nachgewiesen werden konnte, deuten die Ergebnisse einer CHIP-Analyse (<u>Ch</u>romatin Immunopräzipitation) auf eine direkte oder indirekte Interaktion von Efg1p mit seinem eigenen Promotor (Doedt, 2000; pers. Mitteilung). Obgleich die Bindung von Efg1p an ein E-Box-Motiv vor kurzem in vitro nachgewiesen wurde (Leng *et al.*, 2001), liegt der Autoregulation von *EFG1* eine solche für bHLH-Proteine typische Interaktion nicht zugrunde, da die Deletion potentieller E-Boxen weder im Hauptnoch im Nebenpromotor ihre autoregulatorische Repression beeinflußt (Doedt, 2000; Daten nicht gezeigt).

Da nur die Deletion der TATA-Box des Hauptpromotors die negative Autoregulation vollständig aufhebt, scheint die Bildung des Transkriptionsinitiationskomplexes unmittelbar an der Repression des *EFG1*-Hauptpromotors beteiligt zu sein. Eine die Autoregulation unterstützende Funktion könnte durch die Interaktion eines Repressorproteins, welches die benachbarte 16 bp-Sequenz (-26 bis -11) bindet, mit dem Initiationskomplex ausgeübt werden. Ein Modell zur Autoregulation des *EFG1*-Hauptpromotors wird in Abschnitt 4.5.7 vorgestellt.

4.5.4 Phosphorylierungsmutanten von Efg1p zeigen volle Autoregulation

Die Überproduktion von zwei Efg1p-Varianten zeigte, daß die Imitierung eines dephosphorylierten Zustandes von Efg1p an Aminosäure 206 durch einen T/A-Austausch bzw. eines stetig phosphorylierten Zustandes an Aminosäure 248 durch einen T/E-Austausch, obgleich ihrer Effekte auf die Hyphenbildung, die autoregulatorische Repression des EFG1-Hauptpromotors nicht beeinflußt (siehe 3.7.3). Die Mutation an Threonin 206 führt beim Austausch zu Alanin zu einer deutlichen Reduktion der Hyphenbildung in Spider-Medium, während sie beim Austausch zu Glutamat beschleunigt wird (Bockmühl, 2001). Die Funktion von Efg1p in der Hyphenbildung scheint daher zumindest teilweise über die Phosphorylierung bzw. Aktivierung des Proteins an dieser PKA-Zielsequenz vermittelt zu werden. Der Glutamat-Austausch an einem unter den APSES-Proteinen konservierten Threonin (248) als potentieller Phosphorylierungsstelle führte zu einem völligen Verlust der Hyphenbildung auf Spider-Medium (Bockmühl, 2001). Da der ebenfalls beschriebene Verlust der Pseudohyphenbildung bei Überexpression im Autoregulationsexperiment mit dieser Variante nicht nachvollzogen werden konnte, könnte der Hyphendefekt auf einer zusätzlichen Mutation des Proteins über einen Mutagenese-Fehler basieren. Für die Untersuchungen zur Autoregulation wurde der Austausch auf einem ADE2-Vektor (pAPE(2)/ADE) eingefügt. Die Überexpression des T248E-Austausches führte ebenso wie die Wildtypform von Efg1p zu einem ausgeprägten Pseudohyphenphänotyp. Eine imitierte Phosphorylierung an Position 248 beeinflußt daher nicht die Fähigkeit von Efg1p, seinen eigenen Promotor zu reprimieren.

Die zur Aktivierung der Efg1p-Funktionen in der Morphogenese postulierten multiplen Phosphorylierungen durch mehrere Kinasen (Bockmühl, 2001) beeinflussen hinsichtlich der Positionen 206 und 248 nicht die *EFG1*-Autoregulation. Entweder benötigt die autoregulatorische Funktion von Efg1p eine Aktivierung an einer anderen Position, oder sie stellt eine vollkommen vom Aktivitätszustand unabhängige Eigenschaft des Proteins dar. Eine solche Trennung zwischen katalytischer Aktivität und autoregulatorischer Funktion wurde für die isogenen Pyruvatdecarboxylasen *PDC1* und *PDC5* von *S. cerevisiae* beschrieben. Die Expression von *PDC5* wird autoregulatorisch durch Pdc1p reprimiert. Mutante Allele von *PDC1* (pdc1-8, pdc1-14 und pdc1-51) besitzen trotz stark reduzierter katalytischer Aktivität ebenfalls diese autoregulatorische Funktion (Eberhardt *et al.*, 1998). Eine für Pdc1p diskutierte spezielle Konformation des Proteins zur Vermittlung der autoregulatorischen Funktion könnte auch der *EFG1*-Autoregulation zugrundeliegen.

Autoregulation und Hypheninduktion scheinen distinkte Funktionen von Efg1p zu sein.

4.5.5 Tup1p und Cap1p sind nicht an der Autoregulation beteiligt

Weder der Repressor filamentösen Wachstums Tup1p noch der in die Antwort auf oxidativen Stress involvierte Transkriptionsfaktor Cap1p sind an der autoregulatorischen Repression des *EFG1*-Locus beteiligt (siehe 3.7.4). Da beide Deletionsstämme nur einen Marker (*ura3*) besitzen, konnte die Autoregulation nicht indirekt im "Zwei-Plasmid-Modell", sondern nur direkt auf Transkriptionsebene untersucht werden. Die aufgrund der modifizierten Bindestellen des *S. cerevisiae*-Homologen Yap1p im *EFG1*-Hauptpromotor vermutete Beteiligung von Cap1p am Prozeß der *EFG1*-Autoregulation, wurde nicht bestätigt, da die Repression des genomischen *EFG1*-Locus durch Überexpression von *EFG1* in einer *cap1*-Mutante (DSY1346) nachvollzogen wurde (Abb. 27).

Desweiteren liegen die potentiellen Bindestellen (Abb. 10) nach den Ergebnissen der Deletionsanalyse außerhalb der für die Autoregulation essentiellen Region (Abb. 25).
In der *tup1*-Mutante (BCa2-9) zeigt sich im Hinblick auf die Autoregulation ebenfalls kein Unterschied zum Wildtyp. Das kurze *EFG1*-Transkript wird jedoch bei Repression der *PCK1p::EFG1*-Fusion im Vergleich mit dem langen Transkript stärker exprimiert (Abb. 27). Da in der Transkript-Analyse keine Unterscheidung zwischen genomisch und episomal exprimierten kurzem *EFG1*-Transkript möglich ist, könnte dies als ein Hinweis für eine Beteiligung von Tup1p an der Repression des *EFG1*-Nebenpromotors gewertet werden. Der hohe Spiegel des kurzen Transkriptes resultiert jedoch vermutlich aus einer unvollständigen Repression der *PCK1p*-vermittelten episomalen *EFG1*-Expression. Die Funktion von Tup1p bei der Repression des *PCK1*-Promotors wurde vor kurzem beschrieben (Braun *et al.*, 2001). Demnach beruht das verstärkte Signal des kurzen Transkriptes auf der episomalen *EFG1*-Expression, da in der *tup1*-Mutante eine vollständige Repression des *PCK1*-Promotors nicht möglich ist.

4.5.6 Die Deletion von SIR2 verändert die genomische EFG1-Expression

Inwiefern von Sir2p regulierte Veränderungen der Chromatinstruktur am Mechanismus der *EFG1*-Autoregulation beteiligt sind, kann aufgrund der gegensätzlichen Ergebnisse der Transkipt-Analyse zweier Transformanten nicht eindeutig beurteilt werden (siehe 3.7.5).

Eine Transformante (Abb. 28, I.) zeigt ohne episomale EFG1-Überexpression die normale Verteilung von langem und kurzem EFG1-Transkript. Bei Induktion der Überexpression bleibt die Menge des langen Transkriptes jedoch konstant. Da keine Repression des Hauptpromotors stattfindet, scheint die Deletion von SIR2 die Autoregulation von EFG1 aufzuheben. Die andere Transformante zeigt ein völlig anderes Expressionsmuster. Unter PCK1p-reprimierenden Bedingungen (ohne episomale EFG1-Überexpression) wird das kurze EFG1-Transkript stärker als das lange Transkript exprimiert, wobei das Signal des kurzen Transkriptes aus der genomischen Expression resultiert. Eine nicht ausreichende Repression der episomalen EFG1-Expression kann die starke Expression des kurzen Transkriptes nicht erklären, da die Induktion der PCK1p-vermittelten Expression in erwarteter Weise ein Verschwinden des langen Transkriptes bzw. autoregulatorische Repression bewirkt, obgleich genomisch exprimiertes kurzes Transkript dies nicht vermag. Der Verlust der autoregulatorischen Kompetenz der ersten Transformante kann daher nicht auf eine spezifische Wirkung von Sir2p zurückgeführt werden, da die zweite Transformante sie trotz sir2-Deletion besitzt. Vielmehr deutet die verstärkte genomische Expression des kurzen EFG1-Transkriptes in der zweiten Transformante auf einen sir2-Effekt für den gesamten EFG1-Locus hin. Die widersprüchlichen Expressionsmuster könnten einerseits auf eine erhöhte Rekombinationsrate in der sir2-Mutante zurückzuführen sein, da ein ständiger Wechsel des Karyotyps beschrieben wurde (Perez-Martin, 1999). Andererseits wird in Analogie zu S. cerevisiae eine Funktion von Sir2p in der Organisation der Chromatinstruktur von C. albicans diskutiert, die den häufigen Phänotypwechseln dieser Mutante zugrundeliegen soll und auch die ungewöhnliche Expression des EFG1-Locus erklären könnte. Der Deacetylase-Aktivität von Sir2p wird in den "Silencing"-Mechanismen von S. cerevisiae eine besondere Bedeutung beigemessen, da "stille" Chromatin-Domänen einen hypoacetylierten Status aufweisen (Moazed, 2001). Der vor kurzem nachgewiesenen, mit der Deacetylierung von Histonen gekoppelten Spaltung von NAD bzw. Synthese von O-Acetyl-ADP-Ribose konnte noch keine Funktion im "Silencing" zugeordnet werden (Tanny et al., 1999). Die Funktion des Acetylierungsstatus' von Histonen konnte jedoch anhand der Analyse von 40 S. cerevisiae-Promotoren verdeutlicht werden (Deckert und Struhl, 2001). Eine differentielle Acetylierung bzw. Deacetylierung der Histone H3 und H4 vermittelt die Funktion von Aktivatoren (Gcn4p, Gal4p) und Repressoren (Tup1p), wobei Aktivierung auch ohne Acetylierung beobachtet wird.

Eine Deacetylierung des *EFG1*-Locus im Zuge seiner autoregulatorischen Repression kann aufgrund der Überprüfung mit dem Deacetylase-Inhibitor Trichostatin A insofern ausgeschlossen werden, als daß die eingesetzte Konzentration die Repression des *EFG1*-Hauptpromotors nicht beeinflußt (siehe 3.7.5). Obgleich eine geringe episomale Expression von *EFG1* auch unter *PCK1p*-reprimierenden Bedingungen beobachtet wird, führt erst die Induktion der Überexpression sowohl mit als auch ohne Trichostatin A zur vollen negativen Autoregulation. Obgleich die Deletion der Histon-Deacetylasen *HDA1* und *RPD3* die Expression des langen *EFG1*-Transkriptes im Stamm WO-1 und dessen Phänotypwechsel beeinflussen (Srikantha *et al.*, 2001), kann kein funktioneller Zusammenhang zwischen Autoregulation und Deacetylierung nachgewiesen werden. Während bei den Untersuchungen zur Deacetylase-Funktion im Phänotypwechsel Trichostatin A in einer Konzentration von 10 μ g/ μ l in einem Volumen von 3 μ l eingesetzt wurde (Klar *et al.*, 2001), erfolgte die Analyse der Autoregulation aufgrund des großen Kulturvolumens (30 ml) mit einer geringeren Konzentration [50 μ g/ml]. Diese liegt aber noch deutlich höher als in anderen Studien ([10 μ g/ml]; Grewal *et al.*, 1998).

4.5.7 Modell der Autoregulation des *EFG1*-Hauptpromotors

Während der Autoregulation des *EFG1*-Nebenpromotors drei *cis*-regulatorische Domänen zugrundeliegen, die von Homo-/Heterodimeren von Efg1p bzw. unbekannten Proteinen gebunden werden sollen (Weide, 1998), wird für die Autoregulation des *EFG1*-Hauptpromotors eine *cis*-regulatorische Sequenz von 16 bp postuliert, die via Interaktion mit Efg1p von einem Repressor der *EFG1*-Expression spezifisch gebunden wird. Die reprimierende Funktion des Repressor(komplexes) könnte sowohl durch eine Protein/Protein-Wechselwirkung mit dem Initiationskomplex als auch aufgrund der geringen Distanz durch die sterische Behinderung der TATA-Box-Bindung vermittelt werden (Abb. 37).

4.6 Regulation der *EFG1*-Expression

Die Funktionen des Transkriptionsfaktors Efg1p in der Morphogenese von *C. albicans* werden einerseits über seine Aktivierung im cAMP-abhängigen PKA-Weg reguliert (Ernst, 2000a,b). Andererseits beeinflussen Variationen des *EFG1*-Expressionsniveaus in großem Ausmaß die Regulation des Dimorphismus. Während eine reduzierte Expression die Kompetenz zur Bildung echter Hyphen wie Chlamydosporen minimiert, induziert eine erhöhte Expression pseudohyphales Wachstum (Stoldt *et al.*, 1997; Sonneborn *et al.*, 1999a). Neben der Aktivierung des Proteins stellt die Expression des Gens eine zweite Regulationsebene dar. Die negative Autoregulation von *EFG1* stellt einen Mechanismus zur Aufrechterhaltung einer konstanten Expression dar.

Während der Hypheninduktion und im "white/opaque"-Phänotypwechsel des Stammes WO-1 findet eine Regulation der *EFG1*-Expression ebenso statt wie unter *TPK1/TPK2*- bzw. *EFH1*-Überexpression. Die Aktivität des *EFG1*-Hauptpromotors und der *EFG1*-Transkriptspiegel wurden in diesen Beispielen untersucht und werden im folgenden diskutiert.

4.6.1 Die Aktivität des *EFG1*-Hauptpromotors bleibt während der Hypheninduktion konstant

Die Induktion echter Hyphen unter verschiedenen Bedingungen führt zu einem starken Absinken des langen *EFG1*-Transkriptes (Stoldt *et al.*, 1997).

Nach seiner Identifizierung wurde in dieser Arbeit der Promotor des langen EFG1-Transkriptes in Fusion mit dem Reportergen LAC4 während der Hyphenentwicklung analysiert. Im gesamten Verlauf der Induktion in Serum (10 %) zeigt sich keine Abnahme, sondern ein konstanter Verlauf der β-Galaktosidase-Aktivität bzw. der *EFG1p*-abhängigen Expression des Reportergens (Abb. 29). Die Abnahme des langen EFG1-Transkriptes während der mit Serum induzierten Induktion echter Hyphen korreliert daher nicht mit der Aktivität des EFG1-Hauptpromotors. Bei dieser Schlußfolgerung ist jedoch zu beachten, daß die Halbwertszeit des Lac4-Proteins nicht bekannt ist. Im Falle einer sehr hohen Stabilität des Reporterproteins ließe sich über den Versuchszeitraum von drei Stunden keine Abnahme der Enzymaktivität bzw. der Promotoraktivität nachweisen. Gegen diese Annahme spricht jedoch, daß bei Überproduktion von Tpk1p und Tpk2 über einen Zeitraum von sechs Stunden eine ca. sechsfach reduzierte Reportergenaktivität bestimmt wurde (siehe 3.8.2). Daher erscheint der Rückschluß auf eine konstante Aktivität des EFG1-Hauptpromotors während der Hypheninduktion zulässig. Das Absinken des EFG1-Transkriptspiegels in diesem Prozeß würde demzufolge posttranskriptional reguliert. Eine solche Kontrolle wurde bereits für die Expression von TEF3 (codiert einen Transkriptions-elongationsfaktor, Swoboda et al., 1994) und ADH1 (Alkoholdehydrogenase, Bertram et al., 1996) in C. albicans beschrieben. Die zuvor beschriebene essentielle Funktion der 5'UTR des langen EFG1-Transkriptes in der seruminduzierten Hyphenbildung (siehe 4.3) könnte in der Vermittlung des posttranskriptional regulierten Abbaus des Transkriptes bestehen. Eine reduzierte Stabilität des langen Transkriptes während der Hypheninduktion könnte z.B. auf destabilisierenden Elementen ("stem-loop", Poly(G)-Sequenz) in der 5'UTR basieren oder mit der Translation des uORFs (siehe 4.3) gekoppelt sein. Neben ihrem inhibierenden Einfluß auf die Translation können uORFs auch den Abbau der mRNA beschleunigen (Oliveira und McCarthy, 1995). Über diese Elemente scheint jedoch kein hyphenspezifischer Abbau des langen Transkriptes erreichbar.

Dieser könnte jedoch z.B. durch ein hyphenspezifisch exprimiertes RNA-bindendes Protein vermittelt werden. Über die Bindung eines solchen Proteins (Degradationsfaktor: DF) an eine spezifische Sequenz in der 5'UTR könnte der Abbau des langen EFG1-Transkriptes hyphenspezifisch beschleunigt werden (Abb. 38).

Überprüfen ließe sich die oben beschriebene Hypothese zur hyphenspezifischen Degradation durch die Bestimmung der Luziferase-Aktivität und des Transkriptspiegels einer in den *EFG1*-Locus integrierten Reportergenfusion aus *EFG1*-Hauptpromotor, 5'*UTR* und *RLUC*. Der Spiegel eines unter Kontrolle des *EFG1*-Hauptpromotors exprimiertes *RLUC*-Transkriptes, welches die 5'*UTR* des langen *EFG1*-Transkriptes enthält, sollte während der seruminduzierten Hypheninduktion ebenso sinken wie der des langen *EFG1*-Transkriptes. Parallel dazu wäre ein Absinken der Luziferase-Aktivität zu erwarten.

4.6.2 Die Überexpression von *TPK1* und *TPK2* reprimiert den *EFG1*-Hauptpromotor

Die Funktionen des Transkriptionsfaktor Efg1p werden in einem cAMP-abhängigen Signalweg von der Proteinkinase A reguliert (Ernst, 2000a, b). Die Mutation einer potentiellen PKA-Zielsequenz (RVT) im Efg1-Protein (T206A; T206E) deutet auf eine direkte Phosphorylierung des Transkriptionsfaktors durch PKA (Bockmühl und Ernst, 2001). Dieser funktionelle Zusammenhang konnte durch die Überexpression der beiden katalytischen Untereinheiten der PKA (Tpk1p, Tpk2p) und ihrer Wirkung auf die *EFG1*-Expression indirekt bestätigt werden. Während eine Minimierung der *TPK1*-Expression bzw. eine Ausschaltung der *TPK2*-Expression in einer konditionalen *tpk1/tpk2*-Mutante die *EFG1*-Expression des Transkriptionsfaktors. Die Abnahme des langen *EFG1*-Transkriptes unter der Überexpression kann auf eine Repression des *EFG1*-Hauptpromotors zurückgeführt werden (siehe 3.8.2). Die ungefähr sechsfach reprimierte Promotoraktivität korreliert relativ gut mit der Senkung des *EFG1*-Transkriptspiegels, so daß eine veränderte mRNA-Stabilität als Ursache ausgeschlossen werden kann.

Diese Tpk1p/Tpk2p-abhängige Repression des *EFG1*-Hauptpromotors könnte einerseits auf einem Mechanismus basieren, der eine "Überaktivierung" des PKA-Weges verhindert. Eine Aktivierung von Efg1p durch Tpk1p und Tpk2p vorrausgesetzt, führt die Überexpression der beiden katalytischen Untereinheiten zu einer starken Aktivierung des Transkriptionsfaktors.

Als Folge wird über die Repression des *EFG1*-Promotors die Efg1p-Menge gesenkt, um die Aktivierung des PKA-Weges zu begrenzen.

Andererseits könnte die Tpk1p/Tpk2p-vermittelte Aktivierung von Efg1p direkt mit einer Repression der *EFG1*-Expression gekoppelt sein. In diesem Modell basierte die Signaltransduktion von PKA zu Efg1p lediglich auf einem "Aktivierungspuls" zur Initiation der Hyphenbildung. Dieser "Puls" wird begleitet oder gefolgt von der Repression der *EFG1*-Expression, da die Kaskade zur Entwicklung von Hyphen nur initial von aktiviertem Efg1p "angestoßen" wird und im weiteren Ablauf keiner weiteren *EFG1*-Expression bedarf.

Die reprimierende Wirkung der Überexpression von *TPK1* und *TPK2* auf den *EFG1*-Hauptpromotor beweist zwar nicht den postulierten funktionellen Zusammenhang zwischen PKA und Efg1p, stellt aber einen weiteren Hinweis auf ihre Funktion in einem gemeinsamen Signalweg dar.

4.6.3 EFH1-Überexpression reprimiert den EFG1-Hauptpromotor

Aufgrund seiner Homologie zu Efg1p konnte Efh1p als zweites Protein von *C. albicans* in die Gruppe der APSES-Proteine eingeordnet werden (Bockmühl, 2001). Der pseudohyphale Überexpressionsphänotyp sowohl von *EFH1* als auch von *EFG1* deutet auf eine funktionelle Verwandschaft der beiden bHLH-Proteine. Da die Überexpression von *EFG1* neben der Induktion von Pseudohyphen eine Repression des *EFG1*-Hauptpromotors bewirkt ("negative Autoregulation"; siehe 4.5), wurde eine ähnliche Funktion für Efh1p vermutet und im "Zwei-Plasmid-Modell" analysiert (siehe 3.8.3). Die Überexpression von *EFH1* unter Kontrolle des *PCK1*-Promotors bewirkte ebenfalls eine Repression des *EFG1*-Hauptpromotors (ca. 3fach; Abb. 32). Im Vergleich mit der negativen Autoregulation von *EFG1* (10fach; Abb. 21, 25) war diese jedoch deutlich reduziert. Da die Funktionen von Efh1p in der Morphogenese von *C. albicans* noch weitgehend unbekannt sind, kann die reprimierende Funktion von Efh1p auf den *EFG1*-Hauptpromotor nicht in einen regulatorischen Zusammenhang gestellt werden.

Die Repression des *EFG1*-Promotors könnte insofern auf der großen Homologie zwischen Efh1p und Efg1p im Bereich der APSES-Domäne (65 %) basieren, als daß Efh1p in abgeschwächter Form den *EFG1*-Autoregulationsmechanismus vermittelt. Im Rückschluß kann nur die APSES-Domäne der autoregulatorischen Funktion zugrundeliegen, da sich die Homologie auf diese Region beschränkt.

4.6.4 Die Expression von *EFG1* korreliert mit dem "white/opaque"-Phänotypwechsel

Die Entwicklung des *EFG1*-Transkriptspiegels während der temperaturinduzierten Massenkonversion von der "opaque"- zur "white"-Form deutet auf ein regulatorische Funktion des Transkriptionsfaktors im Phänotypwechsel des Stammes WO-1. Das lange *EFG1*-Transkript wird nicht nur "white"-spezifisch exprimiert, sondern auch von "opaque"-Zellen, die einen Wechsel des Phänotyps vollziehen (siehe 3.8.4). Zur Regulation des Phänotypwechsels im Verlaufe der Massenkonversion wurde ein einzelnes Wechselereignis ("master switch event") während der zweiten Zellteilung nach 3-5 Stunden postuliert, welches die irreversible Abschaltung "opaque"-spezifischer Gene auslöst und die Expression "white"-spezifischer Gene induziert (Soll, 1997).

Die Expression des langen *EFG1*-Transkriptes korreliert mit diesem Wechselereignis insoweit, als daß Zellen, die aufgrund ihrer Morphologie dem "opaque"-Typ zuzuordnen, aber auf molekularer Ebene schon auf die Entwicklung des "white"-Phänotyps festgelegt sind,

EFG1 exprimieren (Abb. 33). "Opaque"-Zellen, die stabil ihren Phänotyp bei 25°C aufrechterhalten, zeigen keine Expression des langen *EFG1*-Transkriptes (Sonneborn, 1999).

Eine regulatorische Funktion von Efg1p im Phänotypwechsel wird noch durch weitere Beobachtungen unterstützt (Sonneborn *et al.*, 1999). Die episomale Überexpression von *EFG1* erhöht deutlich die Wechselrate vom "opaque"- zum "white"-Phänotyp, während eine minimale *EFG1*-Expression in Stamm CAI8 zur Ausprägung elongierter "opaque"-ähnlicher Zellen führt, die zwar das "opaque"-spezifische Gen *OP4* exprimieren, aber nicht die charakteristische Oberflächenstruktur ("pimples") zeigen. Die Expression von *EFG1* vermittelt nicht nur die Induktion des "white"-Phänotyps, sondern auch seine Aufrechterhaltung, da gegenüber der "opaque"-Form eine 38fach höhere Aktivität des *EFG1*-Promotors in der "white"-Form beschrieben wurde (Srikantha *et al.*, 2000).

Neben seiner essentiellen Funktion in der Ausprägung der beiden Phänotypen spricht jedoch gegen eine Funktion von Efg1p als "molekularer Schalter" in diesem Phänotypwechsel, daß efg1-Mutanten des Stammes WO-1 einen temperaturinduzierten Wechsel von der "opaque"zu einer unvollständigen "white"-Form vollziehen (Srikantha *et al.*, 2000). Sowohl die Induktion des "white"-spezifischen Gens *WH11* (bzw. Abschaltung von *OP4*) als auch der Verlust der "opaque"-spezifischen Oberflächenstruktur ("pimples") deuten auf einen Wechsel der *efg1*-Mutanten zum "white"-Phänotyp, obwohl eine "opaque"-ähnliche Zellform beobachtet wird. Die konstitutive Ausprägung elongierter Zellen wird auf die Deletion von *EFG1* zurückgeführt und bestätigt den Phänotyp der konditionalen *efg1*-Mutante in Stamm CAI8.

Ein vollständiger "white"-Phänotyp (Hefeform) ist daher an die ausreichende Expression des langen *EFG1*-Transkriptes gekoppelt, welches nicht in der stabilen "opaque"-Form auftritt. Eine minimale *EFG1*-Expression in Form eines kurzen Transkriptes (2,2 kb) wurde jedoch auch im "opaque"-Phänotyp nachgewiesen (Srikantha *et al.*, 2000). Eine Funktion konnte diesem im Vergleich mit dem langen Transkript der "white"-Form ca. 20fach schwächer exprimierten Transkript bisher nicht zugeordnet werden, da *efg1*-Mutanten in der "opaque"-Form keinen morphologischen Phänotyp zeigen. Potentielle Funktionen des kurzen Transkriptes in der Ausprägung physiologischer oder virulenzspezifischer Charakteristika von "opaque"-Zellen könnten Hinweise auf eine ähnliche Funktion des kurzen *EFG1*-Transkriptes in Stamm SC5314 liefern (siehe 4.1.1). Obgleich beide Transkripte nicht identische Startpunkte besitzen (Abb. 8), deutet sowohl die Existenz jeweils zweier Transkripte so unterschiedlicher Größe (3,2 kb und 2,2/2,1 kb) als auch ihr vergleichbares relatives Expressionsniveau (20 : 1) in den Stämmen WO-1 und SC5314 auf eine verwandte Funktion. Diese könnte auf posttranskriptionaler Ebene über eine unterschiedliche mRNA-Stabilität/-Lokalisation oder Transkripte definiert werden (siehe 4.3).

Die Ausprägung des "white"- und "opaque"-Phänotyps wird nicht nur direkt über den Transkriptionsfaktor Efg1p, sondern auch indirekt über Veränderungen der Chomatinstruktur reguliert, da die Deletion von Histon-Deacetylase codierenden Genen (*HDA1*, *RPD3*) den Phänotypwechsel beeinflußt (Srikantha *et al.*, 2001). *hda1*-Mutanten zeigen eine erhöhte Wechselrate von "white" zu "opaque", während *rpd3*-Mutanten eine höhere Wechselfrequenz in beide Richtungen und eine verminderte Expression "opaque"-spezifischer Gene (*OP4*, *SAP1*, *SAP3*) aufweisen. Die reduzierte Expression des langen "white"-spezifischen *EFG1*-Transkriptes in beiden Deletionsstämmen deutet auf eine übergeordnete Funktion der beiden Deacetylasen. Die "white"-spezifische Expression von *HDA1* und *RPD3* widerspricht hingegen einer essentiellen Funktion im Wechselereignis ("master switch event").

Inwiefern der "white/opaque"-Phänotypwechsel auf einer direkten Deacetylierung eines "master switch locus" basiert oder indirekt über die Deacetylase-Funktion ein Regulator des "master switch event" aktiviert wird, bleibt weiter ungeklärt.

4.7 *EFH1*-Expression im Phänotypwechsel

Die Analyse des *EFH1*-Transkriptspiegels im Verlauf einer Massenkonversion zeigt ein phasenspezifisches Expressionsmuster des Transkriptionsfaktors (Abb. 33). Während in der stabilen "opaque"-Form bei 25°C kein *EFH1*-Transkript nachweisbar ist, erfolgt nach dem Temperaturwechsel eine gegenüber der *EFG1*-Expression (2 h) leicht verzögerte Induktion der Expression eines 2,7 kb großen *EFH1*-Transkriptes (3 h). Dieser zeitliche Verlauf läßt eine direkte Induktion der *EFH1*-Expression durch Efg1p möglich erscheinen.

Im Gegensatz zur im weiteren Verlauf der Massenkonversion stetig zunehmenden Expression von *EFG1* bleibt die Menge des *EFH1*-Transkriptes nahezu konstant, wobei seine Induktion (3 h) dem Phänotypwechsel (4 h) eindeutig vorrausgeht und eine regulatorische Funktion andeutet. Diese wird unterstützt durch die "white"-spezifische Expression eines kurzen *EFH1*-Transkriptes (2,5 kb). Es kann zusätzlich zum langen Transkript (2,7 kb) nur in Zellen nachgewiesen werden, die das "white"-spezifische Gen *WH11* exprimieren. Eine phasenspezifische Expression zweier Transkripte eines Gens wurde neben *EFG1* (Srikantha *et al.*, 2000) auch für das eine Deacetylase codierende Gen *HOS3* beschrieben (Srikantha *et al.*, 2001). Während der "white"-Phänotyp ein 2,5 kb großes *HOS3*-Transkript exprimiert, wird in der "opaque"-Form ein 2,3 kb großes, deutlich schwächer exprimiertes Transkript nachgewiesen.

Die Phänotypen werden einerseits auf Transkriptionsebene durch die Expression phasenspezifischer Gene determiniert (Soll, 1997). Andererseits deutet die phasenspezifische Bildung verschiedener Transkripte eines Gens auf eine zusätzliche posttranskriptionale Ebene der Regulation. Die Expression von *EFH1* stellt neben der von *EFG1* und *HOS3* ein weiteres Beispiel für eine Regulation auf beiden Ebenen dar.

Eine regulatorische Funktion von Efh1p im Phänotypwechsel wird durch die Wirkung seiner Überexpression auf den "opaque"-Phänotyp unterstützt. Ebenso wie Efg1p forciert Efh1p bei *PCK1p*-vermittelter Überexpression den Wechsel zum "white"-Phänotyp (siehe 3.9). Da der destabilisierende Effekt der *EFG1*-Überexpression auf die "opaque"-Form deutlich stärker ausgeprägt ist (keine reinen "opaque"-Kolonien; Sonneborn, 1999), kann vermutet werden, daß Efh1p aufgrund seiner Homologie die regulatorische Funktion von Efg1p im Phänotypwechsel teilweise übernimmt. In diesem Fall würde die Funktion über die APSES-Domäne vermittelt, da sich die Homologie auf diesen Bereich beschränkt. Dem Effekt der *EFH1*-Überexpression kann aber auch eine eigene regulatorische Funktion von Efh1p zugrundeliegen, da die Expression des langen *EFH1*-Transkriptes in der Massenkonversion während des Wechselereignisses ("master switch event") vor der Ausprägung des "white"-Phänotyps induziert wird (Abb. 33).

Obgleich weder Efg1p noch Efh1p den "molekularen Schalter" des Phänotypwechsels darstellen, werden sie nicht nur phasenspezifisch exprimiert, sondern sie besitzen als Trankriptionsfaktoren beide regulatorische Funktionen in der Determinierung der beiden Phänotypen.

5. Zusammenfassung

Der Dimorphismus gilt als bedeutender Virulenzfaktor des humanpathogenen Pilzes *Candida albicans*. Die einzellige Hefeform dient der systemischen Ausbreitung im Wirt, während Filamente in Form von Hyphen und Pseudohyphen sowohl die Adhäsion an Epithelien als auch deren Penetration ermöglichen. Zentraler Regulator dieser morphogenetischen Prozesse ist der Transkriptionfaktors Efg1p. Seine aktivierende Funktion in der Ausbildung echter Hyphen wird über die Proteinkinase A (PKA) gesteuert. Efg1p ist ebenfalls für die Bildung von Chlamydosporen notwendig, während Pseudohyphen als Folge einer *EFG1*-Überexpression gebildet werden.

Die Regulation der Expression des EFG1-Gens wurde in dieser Arbeit anhand von Transkriptanalysen und Reportergenfusionen untersucht. Die Transkriptanalyse zeigte, daß der EFG1-Locus ein 3,2 kb großes Haupttranskript und ein 2,1 kb großes Nebentranskript generiert. Nach sequenzspezifischer Restriktion mittels RNaseH konnte eine 1,2 kb große 5'-untranslatierte Region (5'UTR) des ca. 20fach stärker exprimierten Haupttranskriptes identifiziert werden. Beide Transkripte wurden durch 5'RACE kartiert. Die Sequenzierung des EFG1-Hauptpromotors zeigte eine ungewöhnlich große intergenische Region (ca. 10 kb). Mutanten mit genomisch deletierter 5'UTR wurden konstruiert und wiesen eine defekte Hyphenbildung auf. Da in Reportergenfusionen kein positiver Einfluß der 5'UTR auf den Transkriptspiegel nachgewiesen wurde, scheint die 5'UTR posttranskriptionell die Expression von EFG1 zu beeinflussen.

Die Abnahme des genomisch exprimierten EFG1-Haupttranskriptes bei episomaler Überproduktion von Efg1p wurde durch Reportergenanalysen auf eine ca. 10fache autoregulatorische Repression des EFG1-Hauptpromotors zurückgeführt. In einer Deletionsanalyse mit den Reportergenen LAC4 und RLUC wurde die Umgebung der TATA-Box als cis-regulatorische Sequenz der negativen Autoregulation von EFG1 identifiziert. Während eine Beteiligung von Tup1p, Sir2p, Cap1p sowie von Histondeacetylasen an der autoregulatorischen Repression ausgeschlossen werden konnte, wurde der EFG1-Hauptpromotor auch durch die Überproduktion des Efg1p-Homologen Efh1p sowie der beiden katalytischen Untereinheiten der PKA (Tpk1p, Tpk2p) reprimiert. Die Tpk-bedingte Repression unterstützt ein Modell, in dem PKA einerseits Efg1p aktiviert, andererseits aber die EFG1-Expression reprimiert; hierdurch und durch die EFG1-Autoregulation wird bei der Hypheninduktion ein "Aktivierungspuls" erzeugt.

Eine weitere Konsequenz der Überexpression von *EFG1* und *EFH1* ist die Forcierung des Phänotypwechsels des *C. albicans*-Stammes WO-1 von der elongierten "opaque"-Form zur runden "white"-Form, der normalerweise spontan verläuft. Die Transkriptanalyse im Verlauf einer temperaturinduzierten Massenkonversion unterstützt eine regulatorische Funktion beider Transkriptionsfaktoren in der Etablierung des "white"-Phänotyps. Das *EFG1*-Haupttranskript wird spezifisch im "white"-Phänotyp exprimiert, aber auch von "opaque"-Zellen, die auf molekularer Ebene zur Entwicklung des "white"-Phänotyps determiniert sind. Somit reguliert Efg1p neben der Hyphen- und Chlamydosporenbildung auch den "white/opaque"-Phänotyp-wechsel.

Die Ergebnisse zeigen, daß die *EFG1*-Expression in komplexer Weise transkriptionell und posttranskriptionell reguliert wird. Hierdurch wird einerseits eine bestehende Morphogenese aufrechterhalten (Homeostase), andererseits bewirken Veränderungen des Efg1p-Spiegels morphogenetische Prozesse.

6. Literaturverzeichnis

Anderson, J.M., Cundiff, L., Schnars, B., Gao, M., Mackenzie, I. und Soll, D.R. (1989)

Hyphae formation in the white - opaque transition of *Candida albicans*. Infect. Immun. 57: 458 - 467

Anderson, J.M., Mihalik, K. und Soll, D.R. (1990)

Ultrastructure and Antigenicity of the Unique Cell Wall Pimple of the Candida Opaque Phenotype. J. Bacteriol. 172: 224 - 235

Alarco, A.M. und Raymond, M. (1999)

The bZIP transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans.

J. Bacteriol. 181: 700-708

Arai, T., Mikami, Y. und Yokovama, K. (1977)

Phagocytosis of Candida albicans by rabbit alveolar macrophages and guinea pig neutrophils. Sabouraudia. 15: 171-177

Aramayo, R., Peleg, Y., Addison, R. und Metzenberg, R. (1996)

Asm-1⁺, a Neurospora crassa gene related to transcriptional regulators of fungal development. Genetics 144: 991-1003

Ayer, D.E. und Eisenmann, R.N. (1993)

A switch from Myc::Max to Mad::Max heterocomplexes accompanies monocyte/macrophage differentiation. Gene Dev. 7: 2110-2119

Ayer, D.E., Kretzner, L. und Eisenman, R.N. (1993)

Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72: 211-222

Backen, A.C. (2000)

Evaluation of the CaMAL2 promoter for regulated expression of genes in Candida albicans. Yeast 16: 1121-1129

Bailey, D.A., Feldman, P.F.J., Bovey, M., Gow, N.A.R. und Brown, A.J.P. (1996)

The Candida albicans HYR1 gene, which is activated in response to hyphal development belongs to a gene family encoding yeast cell wall proteins.

J. Bacteriol. 278: 5353-5360

Balan, I., Alarco, A.-M. und Raymond, M. (1997)

The Candida albicans CDR3 gene codes for an opaque-phase ABC-transporter. J. Bacteriol. 179: 7210-7218

Banuett, F. (1998)

Signalling in the Yeasts: An Informational Cascade with Links to the Filamentous Fungi. Microbiology and Molecular Biology Reviews 62: 249-274

Bateman, E. und Paule, M.R. (1988)

Promoter occlusion during ribosomal RNA transcription. Cell **54**: 985-992

Beckerman, J., Chibana, H., Turner, J. und Magee, P.T. (2001)

Single-copy IMH3 allele is sufficient to confer resistance to mycophenolic acid in Candida albicans and to mediate transformation of clinical Candida species. Infect. Immun. 69: 108-114

Berben, G., Legrain, M., Gilliquet, V. und Hilger, F. (1990)

The yeast regulatory gene PHO4 encodes a helix-loop-helix motif. Yeast 6: 451-454

Bergen, M.S., Voss, E. und Soll, D.R. (1990)

Switching at the cellular level in the white - opaque transition of *Candida albicans*. J. Gen. Microbiol. 136: 1925 - 1936

Bertram, G., Swoboda, R.K., Gooday, G.W., Gow, N.A.R. und Brown, A.J.P. (1996)

Structure and Regulation of the Candida albicans ADH1 Gene Encoding an Immunogenic Alcohol Dehydrogenase.

Yeast 12: 115-127

Blackwood, E.M. und Eisenmann, R.N. (1991)

Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science **251**: 1211-1217

Blasi, F., Carra, E., Vedittis, E., Masturzo, P., Bureri, E., Lambrinoudaki, M., Mirisola, G., Seidita, G. und Fasano, O. (1993)

The SCH9 protein kinase mRNA contains a long 5' leader with a small open reading frame. Yeast 9: 21-32

Bockmühl. D. (1998)

Strukturhomologe des Efg1p-Regulatorproteins von Candida albicans. Diplomarbeit, Heinrich-Heine-Universität, Düsseldorf

Bockmühl, D.P. und Ernst, J.F. (2001)

A potential Phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics 157: 1523-1530

Bockmühl, D. (2001)

Regulation der Morphogenese des humanpathogenen Pilzes Candida albicans durch Komponenten eines cAMPabhängigen Signalweges.

Dissertation, Heinrich-Heine Universität, Düsseldorf

Bossier, P., Fernandes, L., Rocha, D. und Rodrigues-Pousada, C. (1993)

Overexpression of YAP2, coding for a new yap protein, and YAP1 in Saccharomyces cerevisiae alleviates growth inhibition caused by 1,10-phenanthroline. J. Biol. Chem. 268: 23640-23645

Bouchard, C., Staller, P. und Eilers, M. (1998)

Control of cell proliferation by Myc. Trends in Cell Biol. 8: 202-208

Bradford, M.M. (1976)

A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254

Braun, B.R. und Johnson, A.D. (1997)

Control of Filament Formation in *Candida albicans* by the Transcriptional Repressor TUP1. Science 277: 105-109

Braun, B.R. und Johnson, A.D. (2000)

TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 155: 57-67

Braun, B.R., Kadosh, D. und Johnson, A.D. (2001)

NRG1, a repressor of filamentous growth in C. albicans, is down-regulated during filament induction. EMBO 20: 4753-4761

Broach, J.R. (1991)

RAS genes in *Saccharomyces cerevisiae*: signal transduction in search of a pathway. TIG **7**: 28-33

Brown, A.J.P., Bertram, G., Feldmann, P.J.F., Peggie, M.W. und Swoboda, R.K. (1991)

Codon utilisation in the pathogenic yeast *Candida albicans*. Nucleic Acids Research **19**: 4298

Brown, D.H., Jr., Giusani, A.D., Chen, X. und Kumamoto, C. (1999)

Filamentous growth of *Candida albicans* in response to physical environmental cues and its regulation by the unique *CZF1* gene.

Mol. Microbiol. 34: 651-662

Bruckmann, A. Künkel, W., Härtl, A., Wetzker, R. und Eck, R. (2000)

A phosphatidylinositol 3-kinase of *Candida albicans* influences adhesion, filamentous growth and virulence. Microbiology **146**: 2755-2764

Buffo, J., Herman, M.A. und Soll, D.R. (1984)

A characterization of pH-regulated dimorphism in *Candida albicans*. Mycopathologia **85**: 21-30

Buurman, C., Westwater, C., Hube, B., Brown, A.J., Odds, F.C. und Gow, N.A. (1998)

Molecular analysis of CaMnt1p, a mannosyl transferase important for adhesion and virulence of *Candida albicans*.

PNAS 95: 7670-7675

Cahill, M.A., Ernst, W.H., Janknecht, R. und Nordheim, A. (1994)

Regulatory squelching. FEBS **344**: 105-108

Cai, M. und Davis. R.W. (1990)

Yeast centromere binding protein Cbf1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell **61**: 437-446

Calderone, R.A. (1994)

Molecular pathogenesis of fungal infections. Trends in Microbiology **2**: 461-463

Calderone, R.A. und Braun, P.C. (1991)

Adherence and Receptor Relationships of *Candida albicans*. Microbiol. Rev. **55**: 1-20

Cameron B.J., und Douglas, L.J. (1996)

Blood group glycolipids as epithelial cells receptors for *Candida albicans*. Inf. Immun. **64**: 891-896

Cannon, R.D., Jenkinson, H.F. und Sheperd, M.G. (1992)

Cloning and expression of *Candida albicans ADE2* and proteinase genes on a replicative plasmid in *C. albicans* and *Saccharomyces cerevisiae*.

Mol. Gen. Genet. 235: 453-457

Cannon, R.D., Jenkinson, H.F. und Shepherd, M.G. (1990)

Isolation and nucleotide sequence of an autonomously repplicating sequence (*ARS*) element functional in *Candida albicans* and *Saccharomyces cerevisiae*. Mol. Gen. Genet. **221**: 210-218

Care, R.S., Trevethick, J., Binley, K.M. und Sudbery, P.E. (1999)

The MET3 promoter: a new tool for *Candida albicans* molecular genetics. Mol. Microbiol. **34**: 792-798

Cassone, A., Sullivan, P.A. und Sheperd, M.G. (1985)

N-Acetyl-D-glucosamine-induced morphogenesis in *Candida albicans*. Microbiologica **8**: 85-99

Castilla, R., Passeron, S. und Cantore, M.L. (1998)

N-acetyl-D-glucosamine induces germination in *Candida albicans* through a mechanism sensitive to inhibitors of cAMP-dependent proteinkinase. Cell Signal **10**: 713-719

Chaffin, W.L., López-Ribot, J.L., Casanova, M., Gozalbo, D. und Martínez, J.P. (1998)

Cell wall and secreted proteins in *Candida albicans*: Identification, function and expression. Microbiol. Molec. Biol. Rev. **62**: 130-180

Charizanis, C., Juhnke, H., Krems, B. und Entian, K.-D. (1999)

The oxidative stress response mediated via Pos9/Skn7 is negatively regulated by the Ras/PKA pathway in *Saccharomyces cerevisiae*.

Mol. Gen. Genet. 261: 740-752

Chen, J., Zhou, S., Wang, Q., Chen, X., Pan, T. und Liu, H. (2000)

Crk1, a novel Cdc2-related protein kinase, is required for hyphal development and virulence in *Candida albicans*.

Mol. Cell. Biol. 20: 8696-8708

Cook, J.G., Bardwell, L., Kron, S.J. und Thorner, J. (1996)

Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast *Saccharomyces cerevisiae*.

Genes Dev. 10: 2831-2848

Cormack, B.P., Bertram, G., Gow, N.A.R., Falkow, S. und Brown, A.J.P. (1997)

Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in *Candida albicans*. Microbiol. **143**: 303-311

Cormack, B.P., Ghori, N. und Falkow, S. (1999)

An adhesin of the yeast pathogen *Candida glabrata* mediating adherence to human epithelial cells. Science **285**: 578-582

Csank, C. Makris, K., Meloche, S., Schröppel, K., Röllinghoff, M., Dignard, D., Thomas, D.Y. und Whiteway, M. (1997)

Derepressed Hyphal Growth and Reduced Virulence in a VH1 Family-related Protein Phosphatase Mutant of the Human Pathogen *Candida albicans*. Mol. Biol. Cell **8**: 2539-2551

Mol. Biol. Cell 8: 2539-2551

Csank, C., Schröppel, K., Leberer, E., Harcus, D., Mohamed, O., Meloche, S., Thomas, D.Y. und Whiteway, M. (1998)

Roles of the *Candida albicans* Mitogen-Activated Protein Kinase Homolog, Cek1p, in Hyphal Development and Systemic Candidiasis. Infect. Imm. **66**: 2713-2721

Csank, C. und Haynes, K. (2000) *Candida glabrata* displays pseudohyphal growth. FEMS Microbiol. Lett. **189**: 115-120

Cutler, J.E. (1991)

Putative virulence factors of *Candida albicans*. Annu. Rev. Microbiol. **45**: 187-218

De Backer, M.D., Maes, D., Vandoninck, S., Logghe, M., Contreras, R. und Luyten, W.H.M.L. (1999) Transformation of *Candida albicans* by electroporation. Yeast **15**: 1609-1618

Dechesne, C.A., Wei, Q., Eldridge, J., Gannoum-Zaki, L., Millasseau, P., Bougueleret, L., caterina, D. und Paterson, B.M. (1994)

E-Box- and MEF2-independent muscle-specific expression, positive autoregulation, and cross-activation of the chicken *MyoD* (*CMD1*) promoter reveal an indirect regulatory pathway. Mol. Cell. Biol. **14**:5474-5486

Deckert, J. und Struhl, K. (2001)

Histone acetylation at promotors is differentially affected by specific activators and repressors. Mol. Cell. Biol. **21**: 2726-2735

Delbrück, S. (1994)

Transkriptregulation während der Morphogenese des humanpathogenen Pilzes *Candida albicans*. Dissertation, Heinrich-Heine-Universität, Düsseldorf

Delbrück, S. und Ernst, J.F. (1993)

Morphogenesis-independent regulation of actin transcript levels in the pathogen yeast *Candida albicans*. Mol. Microbiol. **10**: 859-866

Doedt, T. (2000)

Untersuchungen zur Regulation und DNA-Bindung des Transkriptionsfaktors Efg1p aus *Candida albicans*. Diplomarbeit, Heinrich-Heine-Universität, Düsseldorf

Dohmen, R.J., Strasser, A.W.M., Höner, C.B. und Hollenberg, C.P. (1991)

An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast **7**: 691-692

Donelson, J.E. (1989)

DNA rearrangements and antigenic variation in African trypanosomes. In *Mobile DNA*. Seite 763-782; Berg, D.E. und Howe, M.M.; Washington, DC: ASM

Douglas, L.J. (1995)

Adhesion-receptor interaction in the attachment of *Candida albicans* to epithelial cells. Can. J. Bot. **73**: S1147-S1153

Dürrenberger, F., Wong, K. und Kronstad, J.W. (1998)

Identification of a cAMP-dependent kinase catalytic subunit required for virulence and morphogenesis in *Ustilago maydis*.

Proc. Natl. Acad. Sci. 95: 5684-5688

Dutton, J.R., Johns, S. und Miller, B.I. (1997)

StuAp is a sequence-specific transcription factor that regulates developmental complexity in *Aspergillus nidulans*.

EMBO J. 16: 5710-5721

Eberhardt, I., Cederberg, H., Li, H., Konig, S., Jordan, F. und Hohmann, S. (1999)

Autoregulation of yeast pyruvate decarboxylase gene expression requires the enzyme but not its catalytic activity.

Eur. J. Biochem. 262: 191-201

Enloe, B. (2000)

A single-transformation gene function test in diploid *Candida albicans*. J. Bacteriol. **182**: 5730-5736

Ellenberger, T. (1994)

Getting a grip on DNA structures of the basic region leucine zipper, and the basic region helix-loop-helix DNA binding domains.

Curr. Op. Struct. Biol. 4: 12-21

Ernst, J.F. (2000a)

Regulation of dimorphism in *Candida albicans*, in: Contributions to Microbiology, vol. 5, *Dimorphism in Human Pathogenic and Apathogenic Yeasts* 98-111. Hrsg. J.F. Ernst und A. Schmidt, Basel: Karger

Ernst, J.F. (2000b)

Transcription factors in *Candida albicans* – environmental control of morphogenesis. Microbiol. **146**: 1763-1774

Facchini, L.M., Chen, S. und Penn, L.Z. (1994)

Dysfunction of the Myc-induced apoptosis mechanism accompanies c-myc activation in the tumorigenic L929 cell line.

Cell Growth & Differentiation 5: 637-646

Facchini, L.M., Chen, S., Marhin, W.W., Lear, J.N. und Penn, L.Z. (1997)

The Myc negative autoregulation mechanism requires Myc-Max association and involves the c-Myc P2 minimal promotor.

Mol. Cell. Biol. 17: 100 - 114

Feinberg, A.P. und Vogelstein, B. (1983)

A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. **132**: 6-13

Feng, Q., Summers, E., Guo, B. und Fink, G. (1999)

Ras signalling is required for serum-induced hyphal differentiation in *Candida albicans*. J. Bacteriol. **181**: 6339-6346

Fernandes, L., Rorigues-Pousada, C. und Struhl, K. (1997)

Yap, a novel family of eight bZIP proteins in *Saccharomyces cerevisiae* with distinct biological functions. Moll. Cell. Biol. **17**: 6982-6993

Ferre-D'Amare, A.R., Prendergast, G., Ziff, E.B. und Burley, S.K. (1993)

Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature **363**: 38-45

Fidel, P., Vazquez, J.A. und Sobel, J.D. (1999)

Candida glabrata : a review of epidemiology, pathogenesis and clinical disease. Clin. Microbiol.Rev. **12**: 80-96

Fonzi, W.A. und Irwin, M.Y. (1993)

Isogenic Strain Construction and Gene Mapping in *Candida albicans*. Genetics **134**: 717-728

Fonzi, W.A. (1999)

PHR1 and *PHR2* of *Candida albicans* encode putative glycosidases required for proper cross-linking of β -1,3and β -1,6-glucans. J. Bacteriol. **181**: 7070-7079

Fu, Y., Ibrahim, A.S., Fonzi, W., Zhou, X., Ramos, C.F. und Ghannoum, M.A. (1997)

Cloning and characterization of a gene (*LIP1*) which encodes a lipase from the pathogenic yeast *Candida albicans*.

Microbiol. 143: 331-340

Fu, Y., Ibrahim, A.S., Fonzi, W., Ramos, C.F. und Ghannoum, M.A. (1998)

Expression of the *Candida albicans* gene *ALS1* in *Saccharomyces cerevisiae* induces adherence to endothelial and epithelial cells.

Infect. Immun. 66: 1783-1786

Gale, C.A., Bendel, C.M., McClellan, M., Hauser, M., Becker, J.M., Berman, J. und Hostetter, M.K. (1998)

Linkage of Adhesion, Filamentous Growth, and Virulence in *Candida albicans* to a Single Gene, *INT1*. Science **279**: 1355-1358

Gale, C.A., Finkel, D., Tao, N., Meinke, M., McClellan, M., Olson, J., Kendrick, K. und Hostetter, M.K. (1996)

Cloning and expression of a gene encoding an integrin-like protein in *C. albicans*. Proc. Natl. Acad. Sci.. 93: 357-361

Garreau, H., Hasan, r.N., Renault, G., Estruch, F., Boy-Marcotte, E. und Jacquet, M. (2000)

Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in *Saccharomyces cerevisiae*. Microbiology **146**: 2113-2120

Gavrias, V., Adrianopolous, A., Gimeno, C.J. und Timberlake, W.E. (1996)

Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth.

Molec. Microbiol. 19: 1255-1263

Ghannoum, M.A., Swairjo, I. und Soll, D.R. (1990)

Variation in lipid and sterol contents in *Candida albicans* white and opaque phenotypes. J. Med. Vet. Mycol. **28**: 103 - 117

Ghannoum, M.A. (2000)

Potential role of phospholipases in virulence and fungal pathogenesis. Clin. Microbiol. Rev. **13**: 122-143

Gietz, R.D. und Sugino, A. (1988)

New yeast-*Escherichia coli* shuttle vectors constructed with *in vitro* mutagenized yeast genes lacking six-base pair restriction sites. Gene **74**: 527-534

Gietz, R.D. und Schiestl, R.H. (1995)

Transforming yeast with DNA. Meth. Mol. Cell. Biol. **5**: 255-269

Gillum, A.M., Tsay, E.Y.H. und Kirsch, D.R. (1984)

Isolation of the *Candida albicans* gene for orotidine-5'-phosphate decarboxylase by complementation of *S. cerevisiae ura3* and *E. coli pyrF* mutations. Mol. Gen. Genet. **189**: 179-182

Gimeno, C.J. und Fink, G.R. (1994)

Induction of pseudohyphal growth by overexpression of *PHD1*, a *Saccharomyces cerevisae* gene related to transcriptional regulators of fungal development. Mol. Cell. Biol. **14**: 2100-2112

Gimeno, C.J., Ljungdahl, P.O., Styles, C.A. und Fink, G.R. (1992)

Unipolar cell division in the yeast *S. cerevisiae* leads to filamentous growth: regulation by starvation and *RAS*. Cell **58**: 1077-1090

Glasgow, A.C., Hughes, K.T. und Simon, M.I. (1989)

Bacterial DNA inversion systems. In *Mobile DNA*. Herausg. Berg, D.E. und Howe, M.M., Seite 637-660; Washington, DC: American Society for Microbiology

Gow, N.A.R., Robbins, P.W., Lester, J.W., Brown, A.J.P., Fonzi, W.A., Chapman, T. und Kinsman, O.S. (1994)

A hyphal-specific chitin synthase gene (CHS2) is not essential for groth, dimorphism, or virulence of Candida albicans.

Proc. Natl. Acad. Sci. 91: 6216-6220

Greenspan, D. (1994)

Treatment of oropharyngeal candidiasis in HIV-positive patients. J. Am. Acad. Dermatol. **31**: 51-55

Grewal, S.I.S., Bonaduce, M.J. und Klar, A.J.S. (1998)

Histone deacetylase homologs regulate epigentic inheritance of trasncriptional silencing and chromosome segregation in fission yeast.

Genetics 150: 563-576

Guhad, F. A., Jensen, H.E., Aalbeck, C., Csank, C., Mohamed, O., Harcus, D., Thomas, D.Y., Witheway, M. und Hau, J. (1998)

Mitogen activated protein kinase-defective *Candida albicans* is avirulent in a novel model of localized murine candidiasis.

FEMS Microbiol. Lett. 166: 135-139

Hanahan, D. (1983)

Studies on transformation of *Escherichia coli* with plasmids. J. Mol. Biol. **166**: 557-580

Harshman, K.D., Moye-Rowley, W.S. und Parker, C.S. (1988)

Transcriptional activation by the SV40 AP-1 recognition element in yeast is mediated by a factor similar to AP-1 that is distinct from GCN4. Cell **53**: 321-330

Hassan, B.A, und Bellen, H.J. (2000)

Doing the MATH: Is the mouse a good model for fly development? Genes and Dev. **12**: 2623-2635

Henderson, S.L., Ryan, K. und Sollner-Webb, B. (1989)

The promoter-proximal rDNA terminator augments initiation by preventing disruption of the stable transcription complex caused by polymerase read-in.

Genes Devel. 3: 212-223

Hendrick, J.L., Wilson, P.G., Edelman, I.I., Sandbaken; M.G., Ursic, D. und Culbertson, M.R. (2001)

Yeast frameshift suppressor mutations in the genes coding for transcription factor Mbf1p and ribosomal protein S3. Evidence for autoregulation of s3 synthesis.

Genetics 157: 1141-1158

Herreros, E., Garcia-Saez, M.I., Nombela, C. und Sanchez, M. (1992)

A reorganized *Candida albicans* DNA sequence promoting homologous non-integrative genetic transformation. Mol. Microbiol. **6**: 3567 - 3574

Herskowitz, I. (1995)

MAP Kinase Pathways in Yeast: For Mating and More. Cell **80**: 187-197

Holmes, A.R. und Shepherd, M.G. (1988)

Nutritional factors determine germ tube formation in *Candida albicans*. J. Med. Vet. Mycol. **26**: 127-131

Hoppe-Tichy, T. (1997)

Systematische Pilzerkrankungen: Klinik und antimykotische Therapie. PZ **26**: 2161-2168

Hostetter, M.K. (1994)

Adhesins and ligands involved in the interaction of *Candida spp*. with epithelial and endothelial surfaces. Clin. Microbiol. Rev. **7**: 29-42

Hostetter, M.K. (1996)

Adhesion and morphogenesis in *Candida albicans*. Pediatric Research **39**: 569-573

Hoyer, L.L. (2001)

The *ALS* gene family of *Candida albicans*. Trends Microbiol. **9**: 176-180

Hubbard, M.J., Sullivan, P.A. und Shepherd, M.G. (1985)

Morphological studies of N-Acetylglucosamine induced germ tube formation by Candida albicans. Can. J. Microbiol. 31: 396-701

Hube, B., Monod, M., Schofield, D.A., Brown, A.J.P. und Gow, N.A.R. (1994)

Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol. Microbiol. 14: 87-99

Hube, B., Sanglard, D., Odds, F.C., Hess, D., Monod, M., Schäfer, W., Brown, A.J.P. und Gow, N.A.R. (1997)

Disruption of each of the secreted aspartyl proteinase genes, SAP1, SAP2, and SAP3 of C. albicans albicans attenuates virulence.

Infect. Immun. 65: 3529-3528

Huber, D.H. und Rustchenko, E. (2001)

Large circular and linear rDNA plasmids in Candida albicans. Yeast 18: 261-272

Hull, C. M. und Johnson, A. D. (1999)

Identification of a mating type-like locus in the asexual pathogenic yeast *Candida albicans*. Science 285: 1271-1275

Hull, C. M., Raisner, R. M. und Johnson, A. D. (2000)

Evidence for mating of the 'asexual' yeast Candida albicans in a mammalian host. Science 189: 307-310

Ibrahim, A.S., Mirbod, F., Filler, S.G., Banno, Y., Cole, G.T., Kitajima, Y., Edwards, J.E. jr., Nozawa, Y. und Ghannoum, M.A. (1995)

Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect. Immun. 63: 1993-1998

Irninger, S. Egli, C.M., Kuenzler, M. und Braus, G.H. (1992)

The yeast actin intron contains a cryptic promoter that can be switched on by preventing transcriptional interference.

Nucl. Acids Res. 20: 4733-4739

Ishii, N., Yamamoto, M., Lahm, H., Iiumi, S., Yoshihara, F., Nakayama, H., Arisawa, M. und Aoki, Y. (**1997**a)

A DNA-binding protein from Candida albicans that binds to the RPG box of Saccharomyces cerevisea and the telomeric repeat sequence of C. albicans. Microbiol. 143: 417-427

Ishii, N., Yamamoto, M., Yoshihara, F., Arisawa, M. und Aoki, Y. (1997)

Biochemical and genetic characterization of Rbf1p, a putative transcription factor of Candida albicans. Microbiology 143: 429-435

Jan, Y.N. und Jan, L.Y. (1993)

HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell 75: 827-830

Jarvis, W.R. (1995)

Epidemiology of nosocomial infections, with emphasis on Candida species. Clin. Infect. Dis. 20: 1526-1530

Jiang, Y., Davis, C. und Broach J.R. (1998)

Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway. EMBO J. 17: 6942-6951

Jones, S. et al. (1994)

Increased phenotypic switching in strains of *Candida albicans* associated with invasive infections. J. Clin. Microbiol. 132: 2869-2870

Keleher, C.A., Redd, M.J., Schultz, J., Cralson, M. und Johnson, A.D. (1992)

Ssn6-tup1 is a general repressor of transcription in yeast. Cell 68: 709-719

Kelly, R., Miller, S.M., Kurtz, M.B. und Kirsch, D.R. (1987)

Directed mutagenesis in *Candida albicans*: One-step gene disruption to isolate *ura3*-mutants. Mol. Cell. Biol. 7: 199 - 207

Kelly, R., Miller, S.M. und Kurtz, M.B. (1988)

One-step gene disruption by cotransformation to isolate double auxotrophs in Candida albicans. Mol. Gen. Genet. 214: 24 - 31

Kennedy, M.J., Rogers, A.L., Hanselman, L.R., Soll, D.R. und Yancey, R.J. (1988)

Variation in adhesion and cell surface hydrophobicity in *Candida albicans* white and opaque phenotype. Mycopathologia 102: 149 - 156

Kennelly, P.J. und Krebs, E.G. (1991)

Consensus Sequences as Substrate Specificity Determinants for Protein Kinases and Protein Phosphatases. J. Biol. Chem. 266: 15555-15558

Klar, A.J.S., Srikantha, T. und Soll, D.R. (2001)

A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans.

Genetics 158: 919-924

Kobayashi, S.D. und Cutler, J.E. (1998)

Candida albicans hyphal formation and virulence: is there a clearly defined role? Trends in Microbiology 6: 92-94

Koch, K.A., Allard, S., Santoro, N., Cote, J. und Thiele, D.J. (2001)

The Candida glabrata Amt1 copper-sensing transcription factor requires Swi/Snf and Gcn5 at a critical step in copper detoxification.

Mol. Microbiol. 40: 1165-1174

Köhler, J. und Fink, G.R. (1996)

Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc Nat. Acad. Sci. USA 93: 13223-13228

Kron, S.J. (1997)

Filamentous Growth in budding yeast. Trends in Microbiology 5: 450-454

Kurtz, M.B., Cortelyou, M.W., Miller, S.M., Lai, M. und Kirsch, D.R. (1987)

Development of autonomously replicating plasmids for Candida albicans. Mol. Cell. Biol. 7: 209-217

Kvaal, C.A., Srikantha, T. und Soll, D.R. (1997)

Misexpression of the White-Phase-Specific Gene WH11 in the Opaque Phase of Candida albicans Affects Switching and Virulence. Infect. Immun. 65: 4468 - 4475

Land, G.A., McDonald, W.C., Stjernholm, R.L. und Friedman, L. (1975)

Factors affecting filamentation in Candida albicans: Relationship of the uptake and distribution of proline to morphogenesis.

Infect. Immun. 11:1014-1023

Leberer, E., Harcus, D., Broadbent, I.D., Clark, K.L., Dignard, D., Ziegelbauer, K., Schmidt, A., Gow, N.A.R., Brown, A.J.P. und Thomas, D.Y. (1996)

Signal transduction through homologs of the Ste20p and the Ste7p protein kinase can trigger hyphal formation in the pathogenic fungus *Candida albicans*. Proc. Natl. Acad. Sci. **93**: 13217-13222

Leberer, E., Wu, C., Leeuw, T. Fourest-Lieuvin, A., Segall, J.E. und Thomas, D.Y. (1997a)

Functional characterization of the Cdc42p binding domain of yeast Ste20p protein kinase. EMBO **16**: 83-97

Leberer, E., Thomas, D.Y. und Whiteway, M. (1997b)

Pheromone signalling and polarized morphogenesis in yeast. Curr. Op. Gen. Dev. 7: 59-66

Leberer, E., Ziegelbauer, K., Schmidt, A., Harcus, D., Dignard, D., Ash, J., Johnson, L. und Thomas, D.Y. (1997c)

Virulence and hyphal formation of *Candida albicans* require the Ste20p-like protein kinase CaCla4p. Current Biology **7**: 539-546

Ledent, V. und Vervoort, M. (2001)

The Basic Helix-Loop-Helix Protein Family: Comparative Genomics and Phylogenetic Analysis. Gen. Res. **11**: 754-770

Leidich, S.D., Ibrahim, A.S., Fu, Y., Koul, A., Jessup, C., Vitullo, J., Fonzi, W., Mirbod, F., Nakashima, S., Nozawa, Y. und Ghannoum, M.A. (1998)

Cloning and disruption of *caPLB1*, a Phospholipase B Gene involved in the pathogenicity of *Candida albicans*. J. Biol. Chem. **273**: 26078-26086

Leng, P., Lee, P.R., Wu, H. und Brown, A.J.P. (2001)

Efg1, a morphogenetic regulator in *Candida albicans*, is a sequence-specific DNA binding protein. J. Bacteriol. **183**: 4090-4093

Lengeler, K.B., Davidson, R.C., D'Souza, C., Harashima, T., Shen, W.-C., Wang, P., Pan, X., Waugh, M. und Heitman, J. (2000)

Signal transduction cascades regulating fungal development and virulence. Microbiol. Mol. Biol. Rev. **64**: 746-785

Leuker, C.E. und Ernst, J.F. (1994)

Toxicity of a heterologous leucyl-tRNA (anticodon CAG) in the pathogen *Candida albicans: in vivo* evidence for non-standard decoding of CUG codons. Mol. Gen. Genet. **245**: 212-217

Leuker, C.E., Hahn, A.M. und Ernst, J.F. (1992)

 β -Galactosidase of *Kluyveromyces lactis* (Lac4p) as a reporter of gene expression in *Candida albicans* and *C.tropicalis*.

Mol. Gen. Genet. 245: 212-217

Leuker, C.E., Sonneborn, A., Delbrück, S. und Ernst, J.F. (1997)

Sequence and promoter regulation of the *PCK1* gene encoding phospho*enol*carboxykinase of the fungal pathogen *Candida albicans*.

Gene **192**: 235-240

Li, L.H., Nerlov, C., Prendergast, G., MacGregor, D. und Ziff, E.B. (1994)

c-Myc represses transcription *in vivo* by a novel mechanism dependent on the initator element and Myc box II. EMBO **13**: 4070-4079

Lin, P. und Sherman, F. (1997)

The unique hetero-oligomeric nature of the subunits in the catalytic cooperativity of the yeast Cct chaperonin complex.

Proc. Natl. Acad. Sci. USA 94: 10780-10785

Linz, B., Koloteva, N., Vasilescu, S. und McCarthy, J.E.G. (1997)

Disruption of ribosomal scanning on the 5'-untranslated region, and not restriction of translation initiation *per se*, modulates the stability of nonaberrant mRNAs in the yeast *Saccharomyces cerevisiae*. J. Biol. Chem. **272**: 9131-9140

Liu, H., Köhler, J. und Fink, G.R. (1994)

Suppression of hyphal formation in *Candida albicans* by mutation a *STE12* homolog. Science **266**: 1723-1725

Liu, H., Styles, C.A. und Fink, G.R. (1993)

Elements of the Yeast Pheromone Response Pathway Required for Filamentous Growth of Diploids. Science **262**: 1741-1744

Lo, H.-S., Köhler, J., DiDomenico, B., Loebenberg, D., Cacciapuoti, A. und Fink, G.R. (1997) Nonfilamentous *C. albicans* are avirulent. Cell **90**: 939-949

Lo, W.-S. und Dranginis, A. M. (1998)

The cell surface flocculin Flo11 is required for Pseudohyphae formation and invasion by *Saccharomyces cerevisiae*. Mol. Biol. Cell **9**: 161-171

Loo, S. und Rine, J. (1994)

Silencers and domains of generalized repression. Science **264**: 1768-1771

Lorenz, M.C. und Heitman, J. (1997)

Yeast pseudohyphal growth is regulated by *GPA2*, a G protein α homolog. EMBO J. **16**: 7008-7018

Lorenz, M.C. und Heitman, J. (1998)

The MEP2 ammonium permease regulates pseudohyphal differentiation in *Saccharomyces cerevisiae*. EMBO **17**: 1236-1247

Lorenz, M.C., Pan, X., Harashima, T., Cardenas, M.E., Xue, Y., Hirsch, J.P. und Heitman, J. (2000) The G Protein coupled receptor Gpr1 is a nutrient snesor that regulates pseudohyphal differentiation in *Saccharomyces cerevisiae*. Genetics **154**: 609-622

Losberger, C. und Ernst, J.F. (1989)

Sequence and transcript analysis of the *C. albicans URA3* gene encoding orotidine-5'-phosphate decarboxylase. Curr. Genet. **16**: 153-157

Ma, P.C., Rould, M.A., Weintraub, H. und Pabo, C.O. (1994) Crystal structure of MyoD bHLH domain DNA complex: perspectives on DNA recognition and implications for transcriptional activation. Cell 77: 451-459

Madhani, D.H. und Fink, G.R. (1998) The control of filamentous differentiation and virulence in fungi. Trends in Cell Biology 8: 348-353

Madhani, D.H. und Fink, G.R. (1998b) The riddle of MAP kinase signaling specifity. TIG 14: 151-155

Madhani, H.D. und Fink, G.R. (1997)

Combinatorial Control Required for the Specificity of Yeast MAPK Signaling. Science **275**: 1314-1317

Madhani, H.D., Styles, C.A. und Fink, G.R. (1997)

MAP kinases with distinct functions impart signaling specificity during yeast differentiation. Cell **91**: 673-674

Magee, B.B., Hube, B., Wright, R.J., Sullivan, P.J. und Magee, P.T. (1993)

The genes encoding the secreted aspartyl proteinases of Candida albicans constitute a family with at least three members. Infect. Immun. **61**: 3240-3243

Magee, P.T. (1997) Which Came First, the Hypha or the Yeast? Science 277: 52-53

Magee, B. B. und Magee, P. T. (2000)

Induction of mating in *Candida albicans* by the constructon of *MTLa* and *MTLa* strains. Science **289**: 310-313

Marichal, P., Vanden Bossche, H., Odds, F.C., Nobels, G., Warncock, D.W., Timmerman, V., Van Broeckhoven, C., Fay, S und Mose-Larsen, P. (1997) Antimicrobiol. Agents Chemother. 41: 2229-2237

Martinez-Pastor, M.T., Marchler, G., Schüller, C., Marchler-Bauer, A., Ruis, H. und Estruch, F. (1996) The *Saccharomyces cerevisiae* zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15: 2227-2235

McCarthy, J.E.G. (1998) Posttranscriptional control of gene expression in yeast. MMBR 62: 1492-1553

McCusker, J.H. und Davis, R.W. (1991)

The use of prolin as a nitrogen source causes hypersensitivity to, and allows more economical use of 5'FOA in *Saccharomyces cerevisiae*. Yeast **7**: 607-608

Meroni, G., Reymond, A.; Alcalay, M., Borsani, G., Tanigami, A., Tonlorenzi, R., Nigro, C.L., Messali, S., Zollo, M., Ledbetter, D.H., Brent, R., Ballabio, A. und Carrozzo, R. (1997)

Rox, a novel bHLHZip protein expressed in quiescent cells that heterodimerizes with Max, binds a noncanonical E-Box and acts as a transcriptional repressor.

EMBO 16: 2892 - 2906

Milatovic, D., Braveny, I., Cremer, J. und Bodey, G. [o.J. (1997)]

Candida-Infektionen: Neue Aspekte der Pathogenese, Therapie und Prophylaxe. Weiterbildungsprogramm Infektiologie-Klinikhygiene, Klinikum r.d. Isar, München

Miller, K.Y., Wu, J. und Miller, B.L. (1992)

StuA is required for cell pattern formation in *Aspergillus*. Genes & Development **6**: 1770-1782

Moazed, D. (2001)

Enzymatic activities of Sir2 and chromatin silencing. Current opinion in Cell Biol. **13**: 232-238

Molloy, C., Cannon, R.D., Sullivan, P.A. und Shepherd, M.G. (1994)

Purification and characterization of two forms of N-Acetylglucosaminidase from *Candida albicans* showing widely different outerchain glycosylation. Microbiol. **140**: 1543-1553

Montazeri, M. und Hedrick, H.G. (1984)

Factors affecting spore formation in a *Candida albicans* strain. Appl. Environ. Microbiol. **47**: 1341- 1342

Morrow, B., Srikantha, T. und Soll, D.R. (1992)

Transcription of the gene for a pepsinogen, *PEP1*, is regulated by white-opaque switching in *Candida albicans*. Mol. Cell. Biol. 12: 2997-3005

Morrow, B., Ramsey, H. und Soll, D.R. (1994)

Regulation of phase - specific genes in the more general switching system of *Candida albicans* strain 3153A. J. Med. Vet. Mycol. **32**: 287 - 294

Morschhäuser, J., Blum-Oehler, G. und Hacker, J. (1997)

Virulenz- und Resistenzmechanismen pathogener *Candida*-Spezies. Med. Welt **48**: 352-357

Morschhäuser, J., Michel, S. und Staib, P. (1999)

Sequential gene disruption in *Candida albicans* by FLP-mediated site-specific recombination. Mol. Microbiol. **32**: 547-556

Mösch, H.U., Roberts, R.L. und Fink, G.R. (1996)

Ras2 signals via Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in *Saccharomyces cerevisiae*.

Proc. Natl. Acad. Sci. 93: 5352-5356

Moye-Rowley, W.S., Harshman, K.D. und Parker, C.S. (1989)

Yeast *YAP1* encodes a novel form of the jun family of transcriptional activator proteins. Genes Dev. **3**: 283-292

Müller, P.P. und Hinnebusch, A. (1986)

Multiple AUG codons mediate translational control of *GCN4*. Cell **45**: 201-207

Murre, C., McCaw, P.S., Vaessin, H., Caudy, M., Jan, L.Y., Jan, Y.N., Cabrera, C.V., Buskin, J.N., Hauschka, S. D., Lassar, A.B., Weintraub, H. und Baltimore, D. (1989)

Interactions between heterologous helix-loop-helix proteins generate complexes that bind specificially to a common DNA sequence.

Cell 58: 437-445

Nakayama, H., Mio, T., Nagahashi, S., Kokado, M., Arisawa, M. und Aoki, Y. (2000)

Tetracycline regulatable system to tightly control gene expression in the pathogenic fungus *Candida albicans*. Infect. Immun. **68**: 6712-6719

Navarro-García, F., Alonso-Monge, R., Rico, H., Pla, J., Sentandreu, R. und Nombela, C. (1998) A role for the MAP kinase gene *MKC1* in cell wall construction and morphological transitions in *Candida albicans*. Microbiology 144: 411-424

Niimi, M., Niimi, K., Tokunaga, J. und Nakayama, H. (1980)

Changes in cyclic nucleotide levels and dimorphic transition in *Candida albicans*. J. Bacteriol. **142**: 1010-1014

Niimi, M. (1996)

Dibutyryl cyclic AMP-enhanced germ tube formation in exponentially growing *Candida albicans* cells. Fungal Genetics and Biology **20**: 79-83

Norbeck, J. und Blomberg, A. (2000)

The level of cAMP-dependent protein kinase A activity strongly affects osmotolerance and osmo-instigated gene expression changes in *Saccharomyces cerevisiae*. Yeast **16**: 121-137

Odds, F.C. (1988)

Candida and Candidosis, A Review and Bibliography; 2nd Edition, Ballière Tindall, London

Odds, F.C. (1994)

Pathogenesis of *Candida* infections. J. Am. Acad. Dermatol. **31**: 2-5

Ohgishi, M., Oka, A., Morelli, G., Ruberti, I. und Aoyama, T. (2001)

Negative autoregulation of the *Arabidopsis* homeobox gene *ATHB-2*. The plant journal **25**: 389-398

Oliveira, C.C. und McCarthy, J.E.G. (1995)

The relationship between eukaryotic translation and mRNA stability: a short upstream open reading frame strongly inhibits translational initiation and greatly accelerates mRNA degradation in the yeast *Saccharomyces cerevisiae*.

J. Biol. Chem. 270: 8936-8943

Pan, X. und Heitman, J. (1999)

Cyclic cAMP-dependent protein kinase regulates pseudohyphal differentiation in *Saccharomyces cerevisiae*. Mol. Cell. Biol. **19**:4874-4887

Pan, X. und Heitman, J. (2000)

Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell-cell adhesion. Mol. Cell. Biol. **22**: 8364-8372

Pendrak, M.L. und Klotz, S.A. (1995)

Adherence of *Candida albicans* to host cells. FEMS Microbiological Letters **129**: 103-114

Perez-Martin, J., Uria, J. A. und Johnson, A. D. (1999)

Phenotypic switching in *Candida albicans* is controlled by a *SIR2* gene. EMBO J. **18**: 2580-2592

Petersen, R.F., Marinoni, G., Nielsen, M.L. und Piskur, J. (2000)

Molecular Approaches for Analyzing Diversity and Phylogeny among Yeast Species., in: Contributions to Microbiology, vol. 5, *Dimorphism in Human Pathogenic and Apathogenic Yeasts* 15-35. Hrsg. J.F. Ernst und A. Schmidt, Basel: Karger

Peukert, K. Staller, P., Schneider, A., Carmichael, G., Hänel, F. und Eilers, M. (1997)

An alternative pathway for gene regulation by Myc. EMBO J. **16**: 5672-5686

Pfaller, M.A. (1996)

Nosocomial candidiasis: emerging species, reservoirs and modes of transmission. Clin. Infect. Dis. **40** : 1577-1583

Pla, J., Gil, C., Monteoliva, L., Navarro-García, F., Sánchez, M. und Nombela, C. (1996)

Understanding *Candida albicans* at the Molecular Level. Yeast **12**: 1677-1702

Polymenis, M. und Schmidt, E.V. (1997)

Coupling of cell division to cell growth by translational conrol of the G_1 cyclin *CLN3* in yeast. Genes Dev. **11**: 2522-2531

Porta, A., Ramon, A.M. und Fonzi, W.A. (1999)

PRR1, the homolog of Aspergillus nidulans *palF*, controls pH-dependent gene expression and filamentation in *Candida albicans*. J.Bacteriol. **181**: 7516-7523

Ptashne, M. und Gann, A.A.F. (1990) Activators and targets. Nature **346**: 329-331

Rademacher, F. (1998)

Chaperonine als dominant-negative Suppressoren von Ras-Phänotypen und der Morphogenese von Candida albicans und Saccharomyces cerevisiae. Dissertation, Heinrich-Heine-Universität, Düsseldorf

Rademacher, F., Kehren, V., Stoldt, V.R. und Ernst, J.F. (1998)

A Candida albicans chaperonin subunit (CaCct8p) as a suppressor of morphogenesis and Ras phenotypes in C. albicans and Saccharomyces cerevisiae. Microbiology 144: 2951-2960

Ramon, A.M., Porta, A. und Fonzi, W.A. (1999)

Effect of environmental pH on morphological development of Candida albicans is mediated via the PacCrelated transcription factor encoded by PRR2. J. Bacteriol. 181: 7524-7530

Reinders, A., Bürckert, N., Boller, T., Wiemken, A. und De Virgilio, C. (1998)

Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. Genes Devel. 12: 2943-2955

Reynolds, T.B. und Fink, G.R. (2001)

Bakers' yeast, a model for fungal biofilm formation. Science 291: 878-881

Riggle, P.J., Andrutis, K.A., Chen, X., Tzipori, S.R. und Kumamoto, C. (1999)

Invasive lesions containing filamentous forms produced by a Candida albicans mutant that is defective in filamentous growth in culture.

Infect. Imm. 67: 3649-3652

Rikkerink, E.H.A., Magee, B.B. und Magee, P.T. (1988)

Opaque-white phenotype transition: a programmed morphological transition in Candida albicans. J. Bacteriol. 170: 895-899

Roberts, R.L. und Fink, G.R. (1994)

Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 8: 2974-2985

Robertson, L.S. und Fink, G.R. (1998)

The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc. Natl. Acad. Sci. 95: 13783-13787

Robertson, L.S., Causton, H.C., Young, R.A. und Fink, G.R. (2000)

The yeast A kinases differentially regulate iron uptake and respiratory function. Proc. Natl. Acad. Sci. 97: 5984-5988

Robinson, K.A. und Lopes, J.M. (2000)

Saccharomyces cerevisiae basic helix-loop-helix proteins regulate diverse biological processes. Nuc. Acids Res. 28: 1499-1505

Ruiz-Echevarria, M.J. und Peltz, S.W. (2000)

The RNA binding protein Pub1 modulates the stability of transcripts containing upstream open reading frames. Cell 101: 741-751

Rupp, S. Summers, E., Lo, H.-J., Madhani, H. und Fink, G. (1999)

MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene.

EMBO J. 18: 1257-1269

Rutschenko-Bulgac, E.P., Sherman, F. und Hicks, J.B. (1990)

Chromosomal rearrangements associated with morphological mutants provide a means for genetic variation of *Candida albicans*.

J. Bacteriol. 172: 1276-1283

Sabie, F.T. und Gadd, G.M. (1992)

Effect of nucleosides and nucleotides and the relationship between cellular adenosine 3':5'-cyclic monophosphate (cyclic AMP) and germ tube formation in *Candida albicans*. Mycopath. 119: 147-156

Sagliocco, F., Zhu, D. Vega Laso, M.R., McCarthy, J.E.G., Tuite, M.F. und Brown, A.J.P. (1994)

Rapid mRNA degradation in yeast can proceed independently of translational elongation. J. Biol. Chem. 269: 18630-18637

Sambrook, J., Maniatis, T. und Fritsch E.F. (1988)

Molecular Cloning: A Laboratoy Manual, Cold Spring Harbour, NY: Cold Spring Harbour, NY

Sanglard, D., Hube, B., Monod, M., Odds, F.C. und Gow, N.A.R. (1994)

Deletion of the secretory aspartyl proteinase genes SAP4, SAP5 and SAP6 causes attenuated virulence. Infect. Immun. **65**: 3539-3546

Santos, M.A.S. und Tuite, M.F. (1995)

The CUG codon is decoded *in vivo* as serine and not leucine in *Candida albicans*. Nucleic. Acids Res. **23**: 1481-1486

Sass, P., Field, J., Nikawa, J., Toda, T. und Wigler, M. (1986)

Cloning and characterization of the high-affinity cAMP phosphodiesterase of *Saccharomyces cerevisiae*. Proc. Natl. Acad. Sci. **83**: 9303-9307

Schaller, M., Schackert, C., Korting, H.C., Januschke, E. und Hube, B. (2000)

Invasion of *Candida albicans* correlates with expression of secreted aspartic proteinases during experimental infection of human epidermis.

J. Invest. Dermatol. 114: 712-717

Schmitt, E.M., Brown, T.A. und Trumpower, B.L. (1990)

A rapid and simple method for preparation of RNA from *Saccharomyces cerevisiae*. Nucleic Acids Res. **18**: 3091

Schnell, N., Krems, B. und Entian, K.D. (1992)

The PAR1 (YAP1/SNQ3) gene of *Saccharomyces cerevisiae*, a c-jun homolog, is involved in oxygen metabolism. Cuur. Genet. **21**: 269-273

Shenhar, G. und Kassir, Y. (2001)

A positive regulator of mitosis, Sok2, functions as a negative regulator of meiosis in *Saccharomyces cerevisae*. Mol. Cell. Biol. **21**: 1603-1612

Sheperd, M.G. und Sullivan, P.A. (1983)

C. albicans germ-tube formation with immobilized GlcNAc. FEMS Microbiol. Lett. **17**: 167-170

Sheperd, M.G., Poulter, R.T.M. und Sullivan, P.A. (1985)

Candida albicans: biology, genetics, and pathogenicity. Ann. Rev. Microbiol. **39**: 579-614

Sherman, F., Fink, G.R. und Hicks, J.B. (1986)

Laboratory course manual for methods in yeast genetics. Cold Spring Harbour Laboratory Press, Cold Spring Harbour NY

Shristava, A., Yu, J., Artandi, S. und Calame K. (1996)

YY1 and c-Myc associate *in vivo* in a manner that depends on c-Myc levels. Proc. Natl. Acad. Sci. **93**: 10638-10641

Slutsky, B. et al. (1985)

High frequency switching of colony morphology in Candida albicans. Science 230: 666-669

Slutsky, B., Staebell, M., Anderson, J., Risen, L., Pfaller, M. und Soll, D.R. (1987)

"White-opaque transition": a second high frequency switching system in Candida albicans. J.Bacteriol. 169: 189-197

Smith, A., Ward, M.P. und Garret, S. (1998)

Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J. 17: 3556-3564

Soll, D.R. (1988)

High-frequency switching in *Candida albicans* and ist relationship to vaginal candidiasis. Am. J. Obstet. Gynecol. 158: 997-1001

Soll, D.R., Anderson, J. und Bergen, M. (1991)

The developmental biology of the white - opaque transition in *Candida albicans*. In The Molecular Biology of Candida albicans, pp. 20 -45; R. Prasad; Springer, Berlin

Soll, D.R., Morrow, B. und Srikantha, T. (1993)

High-frequecy phenotypic switching in Candida albicans. Trends Genet. 9: 61-65

Soll, D.R. (1997)

Gene regulation during high-frequency switching in Candida albicans. Microbiol. 143: 279 - 288

Sonneborn, A. (1999)

Die Bedeutung des Transkriptionsfaktors Efg1p und der Proteinkinase A (CaTpk2p) für die Morphogenese des humanpathogenen Pilzes Candida albicans. Dissertation, Heinrich-Heine-Universität, Düsseldorf

Sonneborn, A., Bockmühl, D.P. und Ernst, J.F. (1999a)

Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator. Infect. Immun. 67: 5514-5517

Sonneborn, A., Tebarth, B. und Ernst, J.F. (1999b)

Control of white-opaque phenotypic switching in *Candida albicans* by the Efg1p morphogenetic regulator. Inf. Immun. 67: 4655-4660

Sonneborn, A., Bockmühl, D.P., Gerards, M., Kurpanek, K., Sanglard, D., und Ernst, J.F. (2000) Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Mol. Microbiol. 35: 386-396

Southern, E.M. (1975)

Detection of specific sequences among DNA fragments seperated by DNA electrophoresis. J. Mol. Biol. 98: 503-517

Srikantha, T. und Soll, D.R. (1993)

A white-specific gene in the white-opaque switching system of *Candida albicans*. Gene 131: 53 - 60

Srikantha, T., Morrow, B., Schröppel, K. und Soll, D.R. (1995)

The frequency of integrative transformation at phase specific genes of *Candida albicans* correlates with their transcriptional state.

Mol.Gen.Genet. 246: 342-352

Srikantha, T., Klapach, A., Lorenz, W.W., Tsai, L.K., Laughlin, L.A., Gorman, J.A. und Soll, D.R. (1996) The sea pansy *Renilla reniformis* luciferase serves as a sensitive bioluminescent reporter for differential gene expression.

J. Bacteriol. 178: 121-129

Srikantha, T., Tsai, L.K. und Soll, D.R. (1997)

The WH11 gene of Candida albicans is regulated in two distinct developmental programs through the same transcription activation sequences. J. Bacteriol. 179: 3837 - 3844

Srikantha, T., Tsai, L., Daniels, K. und Soll, D.R. (2000)

EFG1 null mutants of Candida albicans switch but cannot express the complete phenotype of white-phase budding cells.

J. Bacteriol. 182: 1580-1591

Srikantha, T., Tsai, L., Daniels, K., Klar, A.J.S. und Soll, D.R. (2001)

The Histone Deacetylase Genes HDA1 and RPD3 Play Distinct Roles in Regulation of High-Frequency Phenotypic Switching in Candida albicans. J.Bacteriol. 183: 4614-4625

Staab, J.F., Bradway, S.D., Fidel, P.L. und Sundstrom, P. (1999)

Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283: 1535-1538

Steinmetz, H.T. (1996)

Candidamykosen in der Intensivmedizin. Mykosen 1: 1-19

Stoldt, V.R., Sonneborn, A., Leuker, C.E. und Ernst, J.F. (1997)

Efg1p, an essential regulator of morphogenesis of the human pathogen *Candida albicans*, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 16: 1982-1991

Strickling, B. (1996)

Untersuchungen zur Funktion des Transkriptionsfaktors Hyd1p (Efg1p) aus dem pathogenen Pilz Candida albicans in Saccharomyces cerevisiae. Diplomarbeit, Heinrich-Heine-Universität, Düsseldorf.

Stripecke, R., Oliveira, C.C., McCarthy, J.E. und Hentze, M.W. (1994)

Proteins binding to 5' untranslated region sites: a general mechanism for translational regulation of mRNAs in human and yeast cells. Mol. Cell. Biol. 14: 5898-5909

Sturtevant, J. und Calderone, R. (1997)

Candida albicans adhesins: biochemical aspects and virulence. Iberamer. Micologia 14: 90-97

Sundstrom, P. (1999)

Adhesins in Candida albicans. Curr. Opin. Microbiol. 2: 353-357

Swanson, J. und Koomey, L.J. (1989)

Mechanisms for variation of pili and outer membrane protein II in Neisseria gonnorea. In Mobile DNA. Herausg. Berg; D.E. und Howe, M.M., S. 743-762; Washington, DC: ASM

Swanson, H.I., Chan, W.K. und Bradfield, C.A. (1995)

DNA binding specificities and pairing rules of the Ah receptor, ARNT, and SIM proteins. J. Biol. Chem. 270: 26292 - 26302

Sweet, S.P. und Douglas, L.J. (1991)

Effect of iron depreviation on surface composition and virulence determinants of Candida albicans. J. Gen. Microbiol. 137: 859-856

Swoboda, R.K., Bertram, G., Colthurst, D., Tuite, M., Gow, N.A., Gooday, G.W. und Brown, A.J. (1994)

Regulation of the gene encoding translation elongation factor 3 during growth and morphogenesis in *Candida albicans*.

Microbiol. 140: 2611-2616

Tanny, J.C., Dowd, G.J., Huang, J., Hilz, H. und Moazed, D. (1999)

An enzymatic activity in the yeast Sir2 protein taht is essential for gene silencing. Cell **99**: 735-745

Tebarth, B. (1998)

Versuche zur Regulation des *EFG1*-Gens in dem pathogenen Pilz *Candida albicans*. Diplomarbeit, Heinrich-Heine-Universität, Düsseldorf

Thevelein, J.M. und de Winde, J.H. (1999)

Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast *Saccharomyces cerevisiae*. Mol. Microbiol. **33**: 904-918

Timpel, C., Strahl-Bolsinger, S., Ziegelbauer, K. und Ernst, J.F. (1998)

Multiple Functions of Pmt1p-mediated Protein *O*-Mannosylation in the Fungal Pathogen *Candida albicans*. J. Biol. Chem. **273**: 20837-20846

Toda, T., Uno, I., Ishikawa, T., Powers, S., Kataoka, T., Broek, D., Cameron, S., Broach, J., Matsumo, K. und Wigler, M. (1985)

In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell **40**: 27-36

Toda, T., Cameron, S., Sass, P., Zoller, M. und Wigler, M. (1987)

Three Different Genes in *S. cerevisiae* Encode the Catalytic Subunits of the cAMP-Dependent Protein Kinase. Cell **50**: 277-287

Toda, T., Cameron, S., Sass, P. und Wigler, M. (1988)

SCH9, a gene of *Saccharomyces cerevisiae* that encodes a protein distinct from, but functionally related to, cAMP-dependent protein kinase catalytic subunits. Genes Dev. **2**: 517-527

Towbin, H., Staelin, T. und Gordon, J. (1979)

Electrophoretic transfer of proteins from polyacrylamid gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. **76**: 4350-4354

Tzung, K. W. et al. (2001)

Genomic evidence for a complete sexual cycle in *Candida albicans*. PNAS **13**: 3249-3253

Uhl, M.A. und Johnson, A.D. (2001)

Development of *Streptococcus thermophilus lacZ* as a reporter gene for *Candida albicans*. Microbiol. **147**: 1189-1195

Vazquez-Torres, A. und Balish, E. (1997)

Macrophages in resistance to candidiasis.Microbiol. Mol. Biol. Rev. **61**: 170-192

Vega Laso, M.R., Zhu, D., Sagliocco, F., Brown, A.J.P., Tuite, M.F. und McCarthy, J.E.G. (1993)

Inhibition of translational initiation in the yeast *Saccharomyces cerevisiae* as a function of the stability and position of hairpin structures in the mRNA leader. J. Biol. Chem. **268**: 6453-6462

Vieira, J und Messing, J. (1991)

New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene **100**: 189-194

Walhout, A.J.M., Gubbels, J.M., Bernards, R., van der Vliet, P.C. und Timmers, H.T. (1997)

c-Myc/Max heterodimers bind cooperatively to the E-Box sequences located in the first intron of the rat ornithine decarboxylase (*ODC*) gene. Nucleic Acids Res. **25**:1493 – 1501

Wang, K.L. und Warner, J.R. (1998)

Positive and negative autoregulation of *REB1* transcription in *Saccharomyces cerevisiae*. Mol. Cell. Biol. **18**: 4368-4376

Ward, M.P., Gimeno, C.J., Fink, G.R. und Garrett, S. (1995)

SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription.

Mol. Cell. Biol. 15: 6854-6863

Watts, H.J., Cheah, F.S.H., Hube, B., Sanglard, D. und Gow, N.A.R. (1998)

Altered adherence in strains of *Candida albicans* harbouring null mutations in secreted aspartic proteinase genes. FEMS Microbiol. Lett. **159**: 129-135

Weide, M.R. (1997)

Regulation des Transkriptionsfaktors Efg1p in dem humanpathogenen Pilz *Candida albicans* und Etablierung eines *in vitro*-Modells der epithelialen Migration. Dissertation, Heinrich-Heine-Universität, Düsseldorf

Weide, M.R. und Ernst, J.F. (1999)

Caco-2 monolayer as a model for transepithelial migration of the fungal pathogen *Candida albicans*. Mycoses **42**: 61-67

Wenzel, R.P. (1995)

Nosocomial candidiasis: risk factors and attributable mortality. Clin. Infect. Dis. **20**: 1531-1534

Whelan, W.L. und Magee, P.T. (1981)

Natural heterozygosity in *Candida albicans*. J. Bacteriol. **145**: 896-903

Whelan, W.L. und Soll, D.R. (1982)

Mitotic recombination in *Candida albicans*: recessive lethal alleles linked to a gene required for methionine biosythesis Mol. Gen. Genet. **187**: 477-485

Wickes, B.L., Mayorga, M.E., Edman, U. und Edman, J.C. (1996)

Dimorphism and haploid fruiting in *Cryptococcus neoformans*: association with the α -mating type. Procl. Natl. Acad. Sci. **93**: 7327-7331

Woodcock, D.M., Crowther, P.J., Doherty, J., Jefferson, S., De-Cruz, P., Noyer-Weidner, M., Smith, S.S., Michael, M.Z. und Graham, M.W. (1989)

Quantitative evaluation of Escherichia coli host strain for tolerance to cytosine methylation in plasmid strain and phage recombinants.

Nucl. Ac. Res. 17: 3469-3478

Wu, J. und Miller, B.L. (1997)

Aspergillus asexual reproduction and sexual reproduction are differentially affected by transcriptional and translational mechanisms regulating stunted gene expression. Nol. Cell. Biol. **17**: 6191-6201

Xue, Y., Battle, M. und Hirsch, J.P. (1998)

GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras-independent pathway. EMBO J. **17**: 1996-2007

Yannisch-Perron, C., Vieira, J. und Messing, J. (1985)

Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors.

Gene **33**: 103-119

Zimmermann, F.K. (1975)

Procedures used in the induction of mitotic recombination and mutation in the yeast *Saccharomyces cerevisiae*. Mut.Res. **31**: 71-86

Zhou, P. und Thiele, D.J. (1993)

Rapid transcriptional autoregulation of a yeast metalloregulatory transcription factor is essential for high-level copper detoxification.

Genes and Development. 7: 1824 – 1835

7 Abkürzungen

А	Adenin	OD_{600}	Optische Dichte bei einer
Amp	Ampicillin		Wellenlänge von $\lambda = 600$ nm
APSES	pilzspezifische bHLH-Domäne	${}^{32}P$	Phosphorisotop
ARS	autonom replizierende Sequenz	PCR	Polymerasekettenreaktion
AS	Aminosäure	PEG	Polyethylenglykol
bHLH	basische Helix-Loop-Helix	РКА	Proteinkinase A
	Domäne	RLU	relative Licht-Einheiten
bp	Basenpaare	RLUC	Luziferase-Gen aus <i>R. reniformis</i>
BSA	Rinderserumalbumin (engl.	RNA	Ribonukleinsäure
	"bovine serum albumine")	RNAseH	RibonukleaseH
С	Cytosin	SCAA	synthetisches Minimalmedium
°C	Temperatur in Grad Celsius	Serai	mit Casaminosäuren
CASA	Casaminosäuren	SD	synthetisches Minimal-medium
cAMP	zyklisches		mit Glukose
	A denosinmononhosphat	SDS	Natriumdodecylsulfat
CEN	Contromor	SGal	synthetisches Minimal-medium
CEN	Curio	bour	mit Galaktose
CI C Onalla	Vahlanstoffgualla	SI ADH	Synthetisches Medium mit
C-Quelle	EEC1 Con	5L/ 1D/1	geringer Ammonium Menge
	EFGI-Gell	STRE	strass responsive element (engl.)
EFGIP Efala	EFG1-Promotor	T	Thymidin
EIGIP	Eigi-Protein		
dATP	Desoxyadenosintripnosphat	TL Tria	Tris (hydroxymothyl)
DIG	Digoxigenin	1118	amin aathan
DMSO	Dimethylsulfoxid	Lan	Innoethan
DNA	Desoxyribonukleinsaure	Upin	
cDNA	komplemetäre	X-Gal	5-Brom-4Chlor-3-Indolyl-β-D-
DTT	1,4-Dithiothreitol	VAID	Galaktopyranosid
EDTA	Ethylendiamintetraacetat	YNB	Y east nitrogen base
FOA	5'-Fluororotidinsäure	VDD	(Here Stickstoff Basis)
g	Gramm	YPD	Yeast extract-Pepton-Dextrose
G	Guanin		(Vollmedium)
Gal	Galaktose		
β-Gal	β-Galaktosidase		
GlcNAc	N-Acetylglukosamin		
HA	Hämagglutinin		
IPTG	Isopropyl-β-D-		
	Thiogalaktopyranosid		
KAN	Kanamycin		
kb	Kilobasenpaare		
kDa	Kilodalton		
LAC4	β-Galaktosidase-Gen aus		
	K. lactis		
lacZ	B-Galaktosidase-Gen aus		
	E. coli		
log	logarithmisch		
M	Molar		
U U	mikro		
MAPK	Mitogen activated protein kinase		
min	Minute		
ml	Milliliter		
mM	Millimolar		
MOPS	[3-(N-Morpholinopropan-		
	Sulfonsäure)]		
NBT	4-Nitrotetrazolium Chloridblau		
nm	Nanometer		
**			

Reporter-	Überexpressions-	β-Gal-Aktivität:	β-Gal-Aktivität:	Repression:	mittlere Repression
plasmid	plasmid	A (S4D)	A (SCAA)	A(S4D)/	+/
		[RLU/µg]	[RLU/µg]	A(SCAA)	Standardabweichung
pBT-34	pAPE(2)/ADE	0,0904	0,0055	16,4	11,5+/-3,6
		0,0138	0,0018	7,7	
		0,0082	0,00099	8,3	
		0,0288	0,0021	13,7	
pBT-61	pAPE(2)/ADE	0,0141	0,00186	7,6	9,9+/-2,9
		0,0332	0,00238	13,9	
		0,0305	0,003	10,2	
		0,003	0,0038	7,9	
pBT-62	pAPE(2)/ADE	0,0017	0,00035	4,9	8,9+/-3,5
		0,0087	0,008	10,9	
		0,0402	0,0027	14,9	
		0,0009	0,00019	4,7	
pBT-60	pAPE(2)/ADE	0,099	0,0077	12,9	10,7+/-1,6
	1 . , ,	0,0099	0,001	9,9	
		0,0229	0,0025	9,2	
pBT-99	pAPE(2)/ADE	0.0761	0,0049	15,5	12,4+/-2,8
1	r ()	0.5192	0.06	8.7	7 7 -
		0.2593	0.0188	13.8	
		0.172	0.016	10.8	
		0.1	0.0066	15.2	
		0,7365	0,0697	10.6	
nBT-68	nAPE(2)/ADE	0,7309	0,2934	18	8 6+/-4 0
pb1 00	p/ 11 L(2)/ 11 L	0,1469	0.0189	7.8	0,017 1,0
		0.8816	0.1138	7,0	
		0,5855	0.0484	12.1	
		0,5055	0,046	9.1	
		0,00	0,0598	13.2	
pBT 107	pADE(2)/ADE	0,79	0,0398	15,2	13.4 ± 0.6
pb1-107	pArE(2)/ADE	2,1247	0,0839	25,5	13,4+/-9,0
		0,4303	0,0289	15,0	
		0,0048	0,0238	2,5	
"DT 120/121	= A DE(2) / A DE	0,0094	0,0499	10,2	17.2 . / 5.6
рыт-120/121	pape(2)/ADE	0,0850	0,0005	15,2	17,2+7-3,0
DT 149/140		0,110	0,0055	21,1	0.0 + 7.1
рв1-148/149	pAPE(2)/ADE	0,2496	0,0314	7,9	9,0+/-/,1
		0,0096	0,0039	2,5	
		0,094	0,0036	26,1	
		0,0234	0,0097	2,4	
		0,0267	0,0045	5,9	
pBT-34	pBT-55A/B	0,0016	0,00008	20,0	11,3+/-6,4
	1	0.0017	0.00013	13.1	, ,
		0.0091	0.0014	6.5	
		0.0036	0.00075	4.8	
pBT-34	pBT-140/141	2.239	0.2512	8.9	13.8+/-5.2
	1	1.466	0.1828	8.0	, - · - , -
		1.072	0.063	17.0	
		0.7086	0.0349	20.3	
		1 8187	0 1892	96	
		2 5828	0 1709	15.1	
		2,5020	0,1707	1.5,1	
		2 1488	0 1996	10.8	

Anhang I : Autoregulation im *LAC4*-System (3.7.2.1; 3.7.3)

Reporter-	Überexpressions-	β-Gal-Aktivität:	β-Gal-Aktivität:	Repression:	mittlere Repression
plasmid	plasmid	A (S4D)	A (SCAA)	A(S4D)/	+/-
		[RLU/µg]	[RLU/µg]	A(SCAA)	Standardabweichung
pBT-100	pAPE(2)/ADE	0,106	0,0098	10,8	9,2 +/- 1,7
		0,0263	0,0035	7,5	
pBT-150	pAPE(2)/ADE	0,049	0,0085	5,8	10,1 +/- 6,2
		0,072	0,0126	5,7	
		0,4406	0,0233	18,9	
pBT-153	pAPE(2)/ADE	0,282	0,064	4,4	8,1 +/- 3,7
		0,7126	0,0609	11,7	
pBT-156	pAPE(2)/ADE	0,0374	0,0209	1,8	3,3 +/- 1,4
-	• • •	0,0045	0,0018	2,5	
		0,0217	0,012	1,8	
		0,0058	0,0013	4,4	
		0,5495	0,1314	4,2	
		0,2361	0,0448	5,3	
pBT-157	pAPE(2)/ADE	0,0749	0,157	0,5	0,9 +/- 0,2
-	• • •	0,0066	0,0084	0,8	
		0,0119	0,0113	1,1	
		0,0001	0,0001	1,0	

Anhang II: Autoregulation im *RLUC*-System (3.7.2.3)

Anhang III: *EFG1p*-Repression durch *TPK1/TPK2*-Überexpression (3.8.2.)

Reporter-	Überexpressions-	β -Gal-Aktivität:	β-Gal-Aktivität:	Repression:	mittlere Repression
plasmia	plasmid	A (S4D)	A (SCAA)	A(S4D)/	+/-
		[RLU/µg]	[RLU/µg]	A(SCAA)	Standardabweichung
pBT-34	pBT-151	1,55	0,262	5,9	6,3 +/- 3,1
		0,3685	0,0366	10,1	
		0,0447	0,0171	2,6	
		0,1018	0,016	6,4	
pBT-34	pBT-152	0,4535	0,1238	3,7	5,9 +/- 2,9
		0,1345	0,0264	5,1	
		0,1619	0,016	10,1	
		1,697	0,3799	4,5	

Anhang IV: *EFG1p*-Repression durch *EFH1*-Überexpression (3.8.3.)

Reporter- plasmid	Überexpressions- plasmid	β-Gal-Aktivität: A (S4D) [RLU/μg]	β-Gal-Aktivität: A (SCAA) [RLU/μg]	Repression: A(S4D)/ A(SCAA)	mittlere Repression +/- Standardabweichung
pBT-34	pBT-145	0,409 0,646 0,1188	0,100 0,255 0,0333	4,1 2,5 3,6	3,4 +/- 0,8

Herrn Prof. Dr. J.F. Ernst danke ich für die Überlassung des Themas, seine ständige Diskussionsbereitschaft und die vielen Ideen zu neuen Experimenten.

Herrn Prof. Dr. R. Wagner danke ich für die Übernahme des Korreferats.

Allen ehemaligen und aktuellen Mitarbeitern des Instituts für Mikrobiologie und insbesondere der AG Ernst danke ich für die sehr gute Zusammenarbeit in einer ausgezeichneten Arbeitsatmosphäre.

Besonders danke ich Yvonne Weber und Thomas Doedt für die Durchsicht des Manuskriptes und die konstruktive Kritik.