Rolle immunregulatorischer natürlicher Killer-Zellen in der Autoimmunität

Inaugural-Dissertation

zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Margret Johanna Ehlers, geb. Wuttke

aus Beuthen

Düsseldorf, November 2011

aus der Klinik für Endokrinologie, Rheumatologie und Diabetologie der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Referent: Univ.-Prof. Dr. med. Matthias Schott Korreferent: Univ.-Prof. Dr. rer. nat. Eckhard Lammert

Tag der mündlichen Prüfung: 02.04.2012

Derjenige, der etwas zerbricht, um herauszufinden, was es ist, hat den Pfad der Weisheit verlassen. J.R.R. Tolkien

Inhaltsangabe

Inhaltsar	ngabe	ə	4
Abkürzu	ngen		6
Abbildur	ngen		8
Tabellen	۱۱		9
1 Einl	eitun	g	10
1.1	Natü	irliche Killer-Zellen	10
1.1.	1	Entstehung und Reifung von murinen NK-Zellen	10
1.1.	2	Regulation muriner NK-Zellen	13
1.2	Auto	vimmunerkrankungen	16
1.2.	1	"Programmed Death Receptor 1" und Autoimmunität	17
1.2.	2	IL-18 und die Autoimmunerkrankung	18
1.2.	3	NK-Zellen und Autoimmunität	19
1.3	Aufg	abenstellung	24
2 Mat	erial	und Methoden	25
2.1	Mate	erialien	25
2.1.	1	Verbrauchsmaterialien	25
2.1.	2	Chemikalien, Reagenzien und Kits	
2.1.	3	Puffer und Medien	27
2.1.	4	Geräte	
2.1.	5	Software	30
2.2	Meth	noden	31
2.2.	1	Zellbiologische Techniken	31
2.2.	2	In vivo Experimente	
2.2.	3	Statistische Auswertungen	49
3 Erg	ebnis	se	50
3.1	IL-18	8 induzierte Expression von c-Kit auf NK1.1 positiven	
	Zelle	en der Milz	50
3.2	Gen	-Expressionsanalyse von frisch isolierten versus IL-18	
	gene	erierten NK-Zellen	52
3.3	Phä	notypische Charakterisierung von frisch isolierten und	
	IL-18	8 generierten NK-Zellen	55

	3.4	Existenz von naïven NK1.1+ / c-Kit+ NK-Zellen in NOD-Mäusen	. 55
	3.5	Existenz von naïven NK1.1+ / c-Kit+ NK-Zellen in	
		STZ-behandelten Mäusen	. 58
	3.6	IL-18 abhängiger Anstieg der NK1.1+ / c-Kit+ NK-Zellen in vivo	. 61
	3.7	Langerhans' Inseln des Pankreas bilden IL-18 nach	
		Stimulation mit IFN-y	. 62
	3.8	IL-18 generierte c-Kit positive NK-Zellen lysieren aktivierte	
		Antigen-spezifische CTLs	. 63
	3.9	Lymphozytäre Infiltration des Pankreas besteht aus CD8	
		und PD-1 positiven T-Zellen	. 65
	3.10	Partielle Diabetes Prävention nach Behandlung mit IL-18	
		generierten c-Kit positiven NK-Zellen	. 66
	3.11	Migration und Infiltration von c-Kit positiven NK-Zellen	. 70
4	Disł	kussion	. 73
	4.1	Mausmodelle	. 73
	4.2	NK-Zellen im Diabetes-Mausmodell	. 74
	4.3	Einfluss von IL-18 auf NK-Zellen	. 75
	4.4	Der PD-1 / PD-1L-Signalweg im Typ 1 Diabetes Mellitus	. 77
	4.5	Schlussfolgerung	. 78
	4.6	Ausblick	. 79
5	Zus	ammenfassung	. 81
6	sum	imary	. 83
7	Ref	erenzen	. 85
8	Anh	ang	. 98

Abkürzungen

Abb.	Abbildungen
AIE	Autoimmunerkrankung
APC	Antigen präsentierende Zelle
APC	Allophyocyanin
CD	"cluster of differentiation"
cDNA	komplementäre DNA
CFA	komplettes Freundsches Adjuvans
Cr	Chrom
CTL	zytotoxische T-Lymphozyten
DAPI	4,6-Diamin-2-Phenylindol
DC	dendritische Zelle
EAE	experimentelle Autoimmune Encephalomyelitis
FACS	"fluorescence activated cell sorting"
FITC	Fluorescein-Isothiocyanat
FSC	"forward scatter"
IFN-y	Interferon gamma
lgG	Immunglobulin G
IL	Interleukin
LTi	"Lympoid Tissue-inducer"
МНС	"major histocompatibility complex"
NFĸß	"nuclear factor кß"
NK-Zelle	natürliche Killer Zelle
NOD-Maus	"nonobese diabetic mouse"
nt	Nukleotide
PCR	"polymerase chain reaction"
PD-1	"programmed death"-1
PD-1L	"programmed death"-1 Ligand
PE	Phycoerythrin
PE/Cy7	Phycoerythrin gekoppelt mit Cyanin 7
PerCP	Peridinin Chlorophyll Protein
PI	Propidiumiodid

RIN "RNA integrity number" rekombinantes murines IL rm-IL Raumtemperatur RT RT-PCR "real time" PCR SZF Stammzellfaktor "side scatter" SSC Streptozotocin STZ Tabelle Tab. T1DM Typ 1 Diabetes Mellitus TCR **T-Zell Rezeptor**

Abbildungen

Abb. 1.1:	Regulation von NK-Zellen15
Abb. 1.2:	Regulation der Immunantwort durch NK-Zellen
Abb. 2.1:	Intraduktale Kollagenase-Injektion32
Abb. 2.2:	Bestimmung der RNA-Qualität zur Durchführung der
	Gen-Expressionsanalysen 46
Abb. 3.1:	Konzentrationsabhängige Induktion der c-Kit Expression auf
	NK-Zellen durch IL-18 50
Abb. 3.2:	Stärkste c-Kit Induktion durch IL-18 in CD11b negativen NK-Zellen . 51
Abb. 3.3:	Isolierung und Generierung von IL-18 inkubierten NK-Zellen
Abb. 3.4:	Frisch isolierte NK-Zellen unterscheiden sich maßgeblich im
	Gen-Expressions-profil von IL-18 generierten NK-Zellen 54
Abb. 3.5:	Verifizierung der Gen-Expressionsanalyse auf Translationsebene 56
Abb. 3.6:	Frequenz der naïven c-Kit negativen und c-Kit positiven NK-Zellen
	in der C57Bl/6 und Diabetes-freien NOD-Mäusen 57
Abb. 3.7:	Diabetes-abhängige Frequenz der naïven c-Kit negativen und
	c-Kit positiven NK-Zellen in der NOD-Maus
Abb. 3.8:	Quantifizierung der naïven c-Kit negativen und c-Kit positiven
	NK-Zellen in der STZ-behandelten Maus 59
Abb. 3.9:	Frequenz von naïven c-Kit positiven NK-Zellen in der STZ
	behandelten Maus (repräsentative FACS-Analyse)
Abb. 3.10:	rm-IL-18 induziert die Entstehung von c-Kit positiven NK-Zellen
	<i>in vivo</i> 61
Abb. 3.11:	IFN-y induziert die IL-18 Expression in Langerhans' Inseln auf
	Transkriptionsebene
Abb. 3.12:	IL-18 generierte NK-Zellen lysieren aktivierte unspezifische
	CD8 positive T-Zellen (Annexin V Färbung) 64
Abb. 3.13:	IL-18 generierte NK-Zellen lysieren sowohl Antigen
	unspezifische als auch spezifische CD8 positive T-Zellen
	(⁵¹ Chrom-Freisetzung)65

Abb. 3.14:	Pankreas-infiltrierende Zellen der STZ-behandelten Maus sind	
	CD8 und PD-1 positiv	. 66
Abb. 3.15:	Diabetes-Inzidenz der STZ-behandelten Mäuse wird durch die	
	Gabe von IL-18 generierten NK-Zellen verbessert	. 67
Abb. 3.16:	IL-18 generierte NK-Zellen führen zu niedrigeren mittleren	
	Blutglukose-Werten in STZ-behandelten Mäusen	. 68
Abb. 3.17:	PD-1L geblockte IL-18 generierte NK Zellen können den	
	STZ-induzierten Anstieg der mittleren Blutglukose-Werte nicht	
	beeinflussen	. 69
Abb. 3.18:	c-kit positive NK-Zellen im Pankreas von STZ-behandelten	
	Mäusen nach Transfer von IL-18 generierten c-Kit positiven	
	NK-Zellen	. 71
Abb. 3.19:	Adoptiver Transfer von IL-18 generierten NK-Zellen	. 72

Tabellen

Tab. 2.1: benötigte Verbrauchsmaterialien	25
Tab. 2.2: verwendete Chemikalien, Reagenzien und Kits	26
Tab. 2.3: erworbene Puffer und Medien	27
Tab. 2.4: hergestellte Puffer und Medien	28
Tab. 2.5: Weiterführung	29
Tab. 2.6: verwendete Geräte	29
Tab. 2.7: verwendete software	30
Tab. 2.8: experimentelle Verwendung der Organe	31
Tab. 2.9: Für die Durchflusszytometrie verwendete Fluorochrome	36
Tab. 2.10: Für die Durchflusszytometrie verwendete Antikörper	38
Tab. 2.11: Immunhistologisch verwendete primäre Antikörper	43
Tab. 8.1: Daten der Gen-Expressionsanalyse	98

1 Einleitung

1.1 Natürliche Killer-Zellen

Killer-Zellen Natürliche (NK-Zellen) entstehen im Knochenmark aus hämatopoetischen Stammzellen und repräsentieren eine kleine Fraktion der Lymphozyten. Beim Menschen machen sie zwischen 2% und 18% des peripheren Blutes und in der Maus ca. 2% bzw. 10% der Lymphozyten der Milz bzw. der Lunge aus (GREGOIRE et al. 2007). Im Verhältnis zu den zahlenmäßig häufigeren T- und B-Lymphozyten sind NK-Zellen größer und granulärer und zählen neben Monozyten, Makrophagen, dendritischen Zellen ("dendritic cells", DC) und Granulozyten zum angeborenen Immunsystem. Sie wurden das erste Mal 1975 als "natürlich vorkommende Tumorzell-spezifische Killerzellen" in der Maus beschrieben (KIESSLING et al. 1975). NK-Zellen töten ihre Zielzellen durch die Induktion eines programmierten Zelltods (Apoptose) über zwei mögliche Wege: Zum einen können NK-Zellen zytotoxische Granula (Perforin, Granzym) ausschütten, die die Zellmembran der gebundenen Zielzelle auflöst oder sie können an sogenannte Todes-Rezeptoren auf der Zielzelle (z.B. Fas/CD95) binden (SMYTH et al. 2005). NK-Zellen sind in der Lage, infizierte oder krankhaft veränderte Zellen von gesunden körpereigenen Zellen zu unterscheiden. Diese Fähigkeit hängt von dem Zusammenspiel einer Vielzahl von aktivierenden und inhibierenden Rezeptoren der NK-Zellen ab. NK-Zellen von Mensch und Maus unterscheiden sich zwar nicht in der Funktionalität, aber in der Expression spezifischer Oberflächenmoleküle. So definiert man humane NK-Zellen über die Expression von "cluster of differentiation 56" (CD56) und murine über die Expression von NK1.1 oder auch NKp46. In der vorliegenden Arbeit beziehe ich mich auf murine NK-Zellen.

1.1.1 Entstehung und Reifung von murinen NK-Zellen

Bei der Entstehung und Reifung von NK-Zellen handelt es sich um einen mehrstufigen Prozess, der mit hämatopoetischen Stammzellen im Knochenmark beginnt. Unter Einfluss unterschiedlicher Zytokine und der wechselnden Expression von Oberflächenmolekülen entstehen reife, funktionsfähige NK-Zellen.

1.1.1.1 Entstehung muriner NK-Zellen

NK-Zellen entstehen im Rahmen der Hämatopoese im Knochenmark. Bei diesem Prozess entwickeln sich aus einer multipotenten hämatopoetischen Stammzelle alle Zellen des Blutes (Erythrozyten, Thrombozyten, Granulozyten, Monozyten, B-Lymphozyten, T-Lymphozyten und NK-Zellen). Ein löslicher Ligand, dem eine essentielle Bedeutung in der Hämatopoese zuteil wird, ist der Stammzellfaktor (SZF), der von den Stromazellen des Knochenmarks gebildet wird. SZF bindet an den Rezeptor c-Kit (CD117), eine transmembranäre Rezeptor Tyrosinkinase, die hauptsächlich von hämatopoetischen Vorläuferzellen exprimiert wird. Der SZF und somit auch das c-Kit spielen in der Entwicklung der hämatopoetischen Zellen eine entscheidende Rolle, da ihre Interaktion den ersten Schritt der Hämatopoese ausmacht. So konnte durch Colucci et al. gezeigt werden, dass die lytische Aktivität von c-Kit -/- NK-Zellen in Bezug auf YAC-Zellen nur noch 50% der lytischen Aktivität von Wildtyp NK-Zellen entspricht (COLUCCI et al. 2000). Der Differenzierungsweg der einzelnen Blutzellen hängt von dem Zytokin-Muster ab. Für die Entwicklung von NK-Zellen spielen Zytokine wie das Interleukin 7 (IL-7), der fetale Leber Kinase 2 und 3 Ligand, IL-15 und insbesondere IL-2 eine entscheidende Rolle (COLUCCI et al. 2000). Sämtliche Fehler in der Interaktion der Zytokine mit der entstehenden NK-Zelle resultieren in einem veränderten NK-Zell-Repertoire. Dabei scheint die Wirkung von IL-15 weitreichende Folgen zu haben, da IL-15 Rezeptor defiziente Mäuse keine reifen NK-Zellen entwickeln können (LODOLCE et al. 1998; SUZUKI et al. 1997).

Obwohl die c-Kit Expression für lange Zeit nur auf den sich entwickelnden Zellen des Knochenmarks beobachtet wurde, fand man kürzlich auch c-Kit positive NK-Zellen im Darm von adulten Menschen und Mäusen. Diese c-Kit positiven mukosalen NK-Zellen spielen durch die Ausschüttung von IL-22 eine wichtige Rolle in der mukosalen Immunreaktion (SANOS et al. 2009; VIVIER et al. 2009).

1.1.1.2 Reifung muriner NK-Zellen

In Abhängigkeit der Expression der Oberflächenmoleküle CD11b und CD27 werden in der Maus drei Reifestadien von NK-Zellen beschrieben, die sich in der Expression der Oberflächenmoleküle, der Gewebeverteilung, der Zytokin-Produktion sowie der zytotoxischen Fähigkeit unterscheiden. Die Ausgangszelle der Reifung bildet die CD11b^{low}/CD27^{high} NK-Zelle, die vornehmlich in fetalen und neonatalen Mäusen (TAKEDA et al. 2005) sowie im Knochenmark, in den Lymphknoten und in der Leber von adulten Mäusen zu finden ist. Sie zeichnet sich dadurch aus, dass sie CD127 und c-Kit exprimiert und nur im geringen Maße zur Zytokin-Produktion und Zytotoxizität fähig ist. So produzieren diese NK-Zellen Interferon-y (IFN-γ) nur nach *in vitro* Stimulation mit IL-2 und IL-12 und töten Tumorzellen (YAC-1 und B16 Melanom-Zellen) wesentlich uneffizienter als CD11b^{high}/CD27^{high} (KIM et al. 2002c). Ein weiteres Merkmal dieser Knochenmark-NK-Zellen ist ihre Proliferationsfähigkeit, die darauf hindeutet, dass sich entwickelnde NK-Zellen im Knochenmark expandieren. Durch adoptiven Zelltransfer dieser NK-Zellen in bestrahlte Mäuse konnte gezeigt werden, dass sich aus diesen CD11b^{low}/CD27^{high} NK-Zellen CD11b^{high}/CD27^{high} NK-Zellen entwickeln (KIM et al. 2002b). Diese Zellen befinden sich in der Milz und in den Lymphknoten und zeichnen sich durch stärkere Effektorfunktionen als die CD11b^{low}/CD27^{high} NK-Zellen aus (KIM et al. 2002a), zeigen aber eine Sowohl CD11b^{low}/CD27^{high}, Proliferationsfähigkeit. verminderte als auch CD11b^{high}/CD27^{high} NK-Zellen exprimieren die Chemokin-Rezeptoren CXCR3 und CXCR4, was sie von den NK-Zellen des folgenden Reifestadiums unterscheidet. CD11b^{high}/CD27^{low} NK-Zellen befinden sich in der Lunge und im peripheren Blut (HAYAKAWA et al. 2004), exprimieren lediglich den Chemokin-Rezeptor CXCR4 (HAYAKAWA et al. 2006), befinden sich im Stadium der zellulären Seneszenz und proliferieren nur im Falle einer Entzündungsreaktion. Kürzlich wurde ein weiteres Reifestadium der NK-Zellen von Chiossone et al. beschrieben, die in sehr geringer Menge in allen lymphoiden und nicht-lymphoiden Organen von NDE und C57BL/6 Mäusen gefunden wurden. Diese NK-Zellen exprimieren CD11b^{low} und CD27^{low} und agieren vermutlich als Vorläuferzellen zur Generierung von Effektorzellen für den Fall, dass diese benötigt werden (CHIOSSONE et al. 2009). Demnach kann man die Reifestadien der NK-Zellen in Bezug auf die Expression der Oberflächenmoleküle CD11b und CD27 folgendermaßen zusammenfassen: CD11b^{low}/CD27^{high} CD11b^{high}/CD27^{high} CD11b^{high}/CD27^{low} \rightarrow \rightarrow \rightarrow CD11b^{low}/CD27^{low}.

1.1.2 Regulation muriner NK-Zellen

Die wichtigste Rolle bei der Regulation der NK-Zellen spielt der Haupthistokompatibilitätskomplex ("major histocompatibility complex", MHC). Alle murinen MHC-Gene sind auf Chromosom 17 kodiert und bilden eine hoch polymorphe Gruppe von Genen, die die Peptid-bindenden Moleküle kodiert, die sowohl durch T- als auch durch NK-Zellen erkannt werden. MHC-Moleküle werden zwei Gruppen unterteilt: MHC-Klasse-I- und MHC-Klasse-II-Moleküle. in MHC-Klasse-I-Moleküle werden von allen kernhaltigen Zellen exprimiert und präsentieren die gebundenen Peptide an CD8 positive T-Lymphozyten. MHC-Klasse-I-Moleküle bestehen aus zwei nicht-kovalent gebundenen Polypeptidketten: Der α -Kette (oder auch schwere Kette) sowie der kurzen zytoplasmatischen Kette, dem ß2-Mikroglobulin. Die α -Kette besteht aus drei extrazellulären Domänen (α 1 - α 3), einer hydrophoben Transmembranregion und dem carboxyterminalen Ende, das in das Zytoplasma ragt. Die aminoterminalen α 1- und α 2-Segmente bilden die Peptidbindungsfurche, durch die Peptide der Länge von 8 bis 11 Aminosäuren gebunden werden können.

MHC-Klasse-II-Moleküle werden von Antigen-präsentierenden Zellen (*"antigen presenting cells*", APC), wie den DC's, B-Lymphozyten, Makrophagen und einigen anderen Zelltypen exprimiert. Im Gegensatz zu MHC-Klasse-I-Molekülen, präsentieren MHC-Klasse-II-Moleküle Peptide an CD4 positive T-Lymphozyten. MHC-Klasse-II-Moleküle bestehen, wie MHC-Klasse-I-Moleküle, aus zwei nicht-kovalent gebundenen Polypeptidketten. In diesem Fall handelt es sich um die α - und die ß-Kette. Beide Ketten bestehen aus zwei extrazellulären Domänen, einer hydrophoben Transmembranregion sowie einem kurzen, in das Zytoplasma ragenden, carboxyterminalen Ende. Die aminoterminalen α 1- und ß1-Segmente bilden die Peptidbindungsfurche und können Peptide der Länge von 30 Aminosäuren und mehr binden.

Für die Regulation von NK-Zellen spielen nur die MHC-Klasse-I-Moleküle eine Rolle. Unter normalen Umständen präsentiert eine bestimmte Anzahl von MHC-Klasse-I-Molekülen körpereigene Peptide. Im Falle einer viralen Infektion oder einer malignen Transformation, werden virale oder tumorassoziierte Peptide präsentiert. Diese Peptide werden zum einen von zytotoxischen CD8 positiven T-Zellen und zum anderen von NK-Zellen erkannt, wodurch es zur Aktivierung der

13

Immunreaktion und infolgedessen zur Lyse der befallenen Zelle kommt. Viele Viren sowie Tumorzellen haben Mechanismen entwickelt, die dazu führen, dass diese Erkennung und Lyse verhindert wird. Dabei spielt die Herunterregulierung der MHC-Moleküle eine wichtige Rolle (TORTORELLA et al. 2000). Durch dieses "Verstecken" der körperfremden Peptide entgeht die veränderte Zelle der Entdeckung durch zytotoxische CD8 positive T-Zellen, wird aber von NK-Zellen erkannt, da diese durch Zellen aktiviert werden, die keine oder eine veränderte Anzahl an MHC-I-Molekülen auf der Oberfläche tragen (unabhängig von dem präsentierten Peptid). Dieses Phänomen wurde 1985 von Kärre et al. als "*missing-self*" Hypothese beschrieben (KÄRRE K 1985). In den Folgejahren wurde diese Hypothese untermauert: Während MHC-I-defiziente Tumorzellen *in vivo* von NK-Zellen erkannt und lysiert werden (KÄRRE K et al. 1986), wirkt eine Expression von MHC-I-Molekülen auf der Zielzelle *in vitro* protektiv (QUILLET et al. 1988) (Abb. 1.1).

Wie bereits erwähnt, werden NK-Zellen durch ein Gleichgewicht von aktivierenden und inhibierenden Signalen / Rezeptoren reguliert. Verändert sich das Verhältnis der aktivierenden und inhibierenden Rezeptoren zugunsten der aktivierenden, so wird die Zelle als "verändert" erkannt und durch NK-Zellen lysiert. Generell müssen aktivierende Rezeptoren auf der NK-Zelle inhibiert werden, damit eine körpereigene, gesunde Zelle nicht durch die NK-Zelle lysiert wird (Abb 1.1).

1.1.2.1 Inhibierende Rezeptoren

Zu den inhibierenden Rezeptoren zählt unter anderem Ly49, welches MHC-I-Moleküle auf der Ziel-Zelle erkennt und somit die zytotoxische Reaktion der NK-Zelle gegen körpereigene Zellen verhindert. Die Interaktion zwischen Ly49 und dem MHC-I-Molekül ist dabei unabhängig von dem präsentierten Peptid (LANIER 1998). Der Signalweg inhibierender Rezeptoren verläuft über *"immunoreceptor tyrosine-based inhibition motifs"* (ITIMs), die sich am zytoplasmatischen Ende des inhibierenden Rezeptors befinden. Nach Bindung eines MHC-Klasse-I-Moleküls an den extrazellulären Bereich des Rezeptors wird der zytoplasmatische Tyrosin-Rest des ITIMs phosphoryliert. Diese Reaktion rekrutiert die Protein-Tyrosin-Phosphatase SHP (*"SH2 containing protein-tyrosine*

phosphatase")-1 und SHP-2, die verschiedene Signalproteine dephosphorylieren und somit die NK-Aktivierung inhibieren (YOKOYAMA et al. 2008).

Abb. 1.1: Regulation von NK-Zellen

NK-Zellen werden durch das Zusammenspiel von aktivierenden und inhibierenden Signalen reguliert. Trifft eine NK-Zelle auf eine körpereigene gesunde Zelle, so findet aufgrund der natürlichen MHC-I-Peptid-Präsentation keine Aktivierung der NK-Zelle statt (A). Gleiches Phänomen ist zu beobachten, wenn die Zielzelle weder MHC-Moleküle noch aktivierende Rezeptoren trägt (B). Trifft die NK-Zelle aber auf eine Zielzelle mit aktivierenden Rezeptoren und verminderter Anzahl an MHC-I-Molekülen, so wird die Zelle angegriffen (C). Können sowohl aktivierende als auch inhibierende Rezeporen auf der Ziel-Zelle erkannt werden, so hängt die Reaktion von der Balance zwischen den Signalen ab (D).

1.1.2.2 Aktivierende Rezeptoren

Auf den NK-Zellen befindet sich eine Reihe von aktivierenden Rezeptoren, wie z.B. NKG2D und CD27. Diese Moleküle erkennen auf der Zielzelle unterschiedliche Oberflächenmoleküle und bewirken nach ihrer Aktivierung die Induktion der NK-Zell-Aktivität.

Der Signalweg aktivierender Rezeptoren verläuft über die Assoziierung mit Transmemranmolekülen, die ein *"immunoreceptor tyrosine-based activation motifs*" (ITAMs) am zytoplasmatischen Ende besitzen (z.B. DAP12). Nach der Bindung des Liganden, werden die Tyrosin-Reste des ITAMs durch die zytoplasmatische Src Kinasen-Familie phosphoryliert, woraufhin der Signalweg über die Bindung weiterer Protein-Tyrosin- Phosphatasen induziert wird (LANIER 2003).

1.2 Autoimmunerkrankungen

Wie bereits erwähnt, müssen die Zellen des Immunsystems in der Lage sein, zwischen körpereigenen, gesunden und infizierten. veränderten oder körperfremden Zellen zu unterscheiden, um den Körper vor fremden Pathogenen zu schützen. Die zentrale Toleranz gegenüber körpereigenen und gesunden Zellen entsteht im Thymus, wo diejenigen T-Zellen identifiziert und beseitigt werden, die Peptid-MHC Komplexe mit sehr hoher Avidität erkennen, sodass die meisten autoreaktiven T-Zellen bereits im Thymus zerstört werden (LOHMANN et al. 1996; VAN NOORT et al. 1993). Einige wenige autoreaktive Zellen gelangen aber dennoch in die Peripherie, wo sie unter normalen Umständen durch andere Mechanismen, wie Anergie, periphere Deletion, Ignoranz und regulatorische T-Zellen inhibiert werden können (MUELLER 2010; SALOMON et al. 2001). Eine Autoimmunerkrankung kann dann entstehen, wenn diese Regulationsmechanismen gestört oder verändert sind und es somit zur Entstehung einer Immunreaktion gegen körpereigene Zellen kommt.

Generell unterscheidet man zwei Gruppen von Autoimmerkrankungen (AIE): i) die Gewebe-spezifische AIE, zu der der Typ 1 Diabetes mellitus (T1DM) und die Multiple Sklerose zählen und ii) die systemische AIE, wie z.B. der systemische Lupus erythematodes.

16

Was eine Autoimmunerkrankung weiterhin kennzeichnet, ist ihre lange Induktionsphase. Die Zell-vermittelte AIE beginnt lange bevor es zu den ersten klinischen Symptomen kommt. Es handelt sich bei der AIE also um einen mehrstufigen Prozess, der sich über mehrere Jahre erstreckt.

1.2.1 "Programmed Death Receptor 1" und Autoimmunität

Autoreaktive T-Zellen spielen eine entscheidende Rolle in der Entstehung von Autoimmunerkrankungen. Im Gegensatz zu NK-Zellen, müssen T-Zellen zur Ausführung ihrer Funktion aktiviert werden. Generell bedarf die Regulation von T-Zellen zweier Signale: Das erste Signal ist die Bindung des T-Zell-Rezeptors (*"T-cell receptor"*, TCR) an ein Peptid-beladenes MHC-Molekül auf einer APC. Das zweite (kostimulatorische) Signal ist Antigen-unabhängig und kann entweder zur Aktivierung oder zur Inhibierung der T-Zelle führen. Für die Regulation der T-Zellen sind beide Signale notwenig. Wenn eine T-Zelle z.B. nur über den gebundenen TCR ein Signal erhält aber kein kostimulatorisches, so geht sie in Anergie über.

Der kostimulatorische Weg über den *"programmed death 1"* (PD-1)-Rezeptor und seinen Liganden PD-1L und PD-2L stellt ein inhibierendes kostimulatorisches Signal dar. PD-1 ist ein Typ-1 Transmembranprotein, das auf aktivierten T-Zellen, B-Zellen und einigen myeloiden Zellen hochreguliert wird (AGATA et al. 1996; NISHIMURA et al. 1996; VIBHAKAR et al. 1997). Die Expressionsmuster der Liganden sind unterschiedlich. PD-1L wird auf T-Zellen, B-Zellen, DCs, Makrophagen und einigen nicht-hematopoetischen Zellen exprimiert (BROWN et al. 2003; FREEMAN et al. 2000a; YAMAZAKI et al. 2002), wohingegen PD-2L nur auf DCs und Monozyten gefunden wurde (ANSARI et al. 2003; FREEMAN et al. 2002; LATCHMAN et al. 2001).

PD-1 besitzt auf seiner zytoplasmatischen Seite sowohl ein ITIM als auch ein *"immunoreceptor tyrosine-based switch motif*" (ITSM). Der genaue Signalweg des Rezeptors ist bisher nicht bekannt. Studien haben zeigen können, dass das Tyrosin in der ITSM Sequenz für die PD-1 Funktion essentiell ist und dass SHP-1 und SHP-2 an ITSM binden können (FIFE et al. 2011). Der Signalweg führt in der T-Zelle zur Inhibierung der Proliferation, Zytokin-Produktion, zytolytischer Funktion und zum verminderten T-Zell Überleben (RILEY 2009). Es konnte weiter gezeigt werden, dass der PD-1 Weg eine wichtige Rolle in der peripheren Toleranz und in Autoimmunerkrankungen spielt. In der nicht-adipösen diabetischen Maus ("nonobese diabetic mouse", NOD) konnte gezeigt werden, dass der PD-1 / PD-1L Weg an der Initiation und der Progression des Diabetes in der NOD Maus beteiligt ist. So führte die Blockade des Weges durch Verwendung von Antikörpern gegen PD-1 oder PD-1L zu mehr IFN-y produzierenden Glutaminsäure-Decarboxylasespezifischen Splenozyten und zu einem früheren Diabetesausbruch (ANSARI et al. 2003). Diese Wirkung des PD-1 / PD-1L Weges wurde ebenfalls in anderen Autoimmunerkrankungen beobachtet, wie in der experimentellen autoimmunen Encephalomyelitis (EAE) und in der Kollagen-induzierten Arthritis. Diverse Veröffentlichungen zeigten, dass die Blockade des Weges zu einer erhöhten lymphozytären Infiltration des Zentralen Nervensystems und zu einer verstärkten Paralyse führt (CARTER et al. 2007; KRONER et al. 2009; LIANG et al. 2003; SALAMA et al. 2003). Im Fall der Kollagen-induzierten Arthritis konnte ebenfalls nach PD-1 / PD-1L Blockade eine schwerere Verlaufsform der Erkrankung beobachtet werden (RAPTOPOULOU et al. 2010).

1.2.2 IL-18 und die Autoimmunerkrankung

IL-18 ist ein Mitglied der IL-1 Superfamilie und wird hauptsächlich von Makrophagen gebildet. Es führt zur Steigerung der Zytokin-Produktion, Proliferation und zytotoxischen Aktivität von T- und NK-Zellen (TOUGH et al. 1996; TSUTSUI et al. 1996) und nimmt somit Einfluss auf die Regulierung des Immunsystems. Nach der Assoziation von IL-18 an den Rezeptor bindet eine Signal-Untereinheit den Rezeptor-Ligand Komplex, an woraufhin das Adaptormolekül MyD88 bindet. Anschließend kommt es zur Rekrutierung von IRAK, zur Aktivierung der "nuclear factor κß (NFκß)-inducing" Kinase", zur Translokation von NFkß in den Zellkern und somit zur Induktion der Transkription von Zielgenen. Die Wirkung von IL-18 in Autoimmunerkrankungen liefert bisher widersprüchliche Resultate. Es wird eine Korrelation zwischen dem IL-18 Spiegel, der Frequenz der NK-Zellen und dem klinischen Verlauf der Erkrankung postuliert (MAZODIER et al. 2005; RUTH et al. 2010; SANCHEZ et al. 2009): Je höher der IL-18 Spiegel, desto niedriger die Frequenz der NK-Zellen und desto ausgeprägter die Erkrankung. Weiterhin wurde für das NOD-Mausmodell beobachtet, dass

Einleitung

exogen zugeführtes IL-18 den Verlauf des Diabetes aggraviert (OIKAWA et al. 2003), wohingegen die zusätzliche Gabe des IL-18 Bindeproteins die Aggressivität der Erkrankung abmildert (ZACCONE et al. 2005). Für das Streptozotocin (STZ)–Mausmodell wurde ferner beschrieben, dass IL-18 zur Entstehung des STZ-induzierten Diabetes beiträgt (NICOLETTI et al. 2003). Im Gegensatz dazu konnten Rothe et al. zeigen, dass eine Gabe von IL-18 (zusammen mit Ovalbumin) ab der 10. Lebenswoche zu einer signifikant geringeren lymphozytären Infiltration in die pankreatischen Inseln und somit zur verzögerten Inzidenz des Diabetes in NOD-Mäusen führt (ROTHE et al. 1999).

1.2.3 NK-Zellen und Autoimmunität

NK-Zellen spielen in Immunreaktionen eine wichtige Rolle, da sie in der Lage sind, mit Makrophagen, DC's und auch direkt mit T-Zellen zu kommunizieren. Je nachdem, in welchem Milieu sich die Zellen befinden, können Makrophagen und DC's NK-Zellen über Zytokine wie Typ 1 Interferone, IL-12, IL-15 und IL-18 aktivieren, wodurch diese wiederum die Reifung und Aktivierung von DC's, Makrophagen und T-Zellen über eine Kombination aus Zytokinen (z.B. IFN-y und Tumornekrosefaktor) und Oberflächenmolekülen bewirken. NK-Zellen sind aber auch in der Lage aktivierte CD4 positive T-Zellen, unreife DC's und hyperaktivierte Makrophagen zu töten (VIVIER et al. 2008b) (Abb. 1.2). Diese regulatorischen Eigenschaften deuten darauf hin, dass NK-Zellen auch in Autoimmunreaktionen eine Rolle spielen könnten. Dabei liefern bisherige Untersuchungen an Tiermodellen und Patienten widersprüchliche Resultate in Bezug auf die Funktion der NK-Zellen. Zwei potentielle Wirkweisen sind theoretisch möglich: Zum einen könnten NK-Zellen aufgrund ihrer aktivierenden Wirkung anderer Zellen des Immunsystems eine exzessive Entzündung induzieren, wodurch sie eine Immunreaktion durch das erworbene Immunsystem bewirken. Zum anderen könnten NK-Zellen aber auch direkt aktivierte auto-reaktive Immunzellen töten, bevor eine Autoimmunreaktion induziert werden kann. Generell stellt sich allerdings die Frage, zu welchem Zeitpunkt NK-Zellen im Autoimmunprozess eine Rolle spielen. Möglich ist eine Beteiligung zu Beginn der Immunreaktion, also während der initialen Entzündungsreaktion, aber auch während der andauernden

Entzündungsreaktion oder später während der Progression zur Autoimmunerkrankung.

Abb. 1.2: Regulation der Immunantwort durch NK-Zellen

Nach Aktivierung durch z.B. IL-18, induzieren NK-Zellen die Reifung und Aktivierung von dendritischen Zellen (DC), Makrophagen (MØ) und CD4 positiven T-Zellen (T) durch Oberflächenmoleküle und Zytokine. Sie sind aber ebenfalls in der Lage unreife DC's, aktivierte CD4 positive T-Zellen und hyperaktivierte MØ's zu lysieren. (Abb. nach (VIVIER et al. 2008a), modifiziert)

In diversen Autoimmunerkrankungen wird eine Akkumulation von NK-Zellen im Zielgewebe beobacht (DALAKAS et al. 1995; GARCIA-SUAREZ et al. 1995; TAK et al. 1994), wo sie sowohl einen protektiven als auch einen induzierenden Effekt auf die Entzündungsreaktion ausüben. Fort et al. konnte 1998 im Kolitis-Mausmodell belegen, dass sich NK-Zellen protektiv auf die Entstehung der Kolitis auswirken, da sie die Effektor CD4 positiven T-Zellen über die Ausschüttung von Perforin inhibieren (FORT et al. 1998). Weitere regulatorische Wirkweisen der NK-Zellen wurden im Arthritis-Modell, in der EAE und in der Multiplen Sklerose nachgewiesen. Hier führte eine NK Depletion zu einem aggressiveren Krankheitsverlauf (MATSUMOTO et al. 1998; NILSSON et al.

Einleitung

1999; SHI et al. 2006). Es konnte auch gezeigt werden, dass NK-Zellen in der Induktions- als auch in der Effektorphase der EAE eine protektive Rolle spielen. Neben diesen regulatorischen Effekten in Autoimmunerkrankungen, können NK-Zellen aber auch die Induzierung oder Verstärkung der Autoimmunprozesse bewirken. Mit Hilfe eines Mausmodells für eosinophile Atemwegs-Entzündung (Asthma) konnten Korsgren et al., belegen, dass eine NK-Zell-Depletion zu einer wesentlich schwächer ausgeprägten Erkrankung führt (KORSGREN et al. 1999). Die Rolle von NK-Zellen im T1DM erweist sich bisher ebenfalls als äußerst widersprüchlich. Es werden wiederum sowohl protektive als auch induzierende Wirkmechanismen beschrieben (siehe 1.2.3.1.3).

1.2.3.1 T1DM Tiermodelle

Eine Vielzahl von T1DM-Tiermodellen wird bereits seit etwa 40 Jahren beschrieben. Dabei kann ein Diabetes z.B. durch ß-Zell-toxische Substanzen (STZ oder Cyclophosphamid), durch genetische Manipulation (Herstellung von transgenen Mäusen), oder durch virale Infektion (Coxsackie-Virus) induziert werden. Weiterhin gibt es auch zwei Modelle, die einen spontanen Insulin abhängigen entwickeln: Die NOD-Maus und die BB Ratte (*"Biobreeding"*) (VAN BELLE et al. 2009). Generell wird im Tiermodell, wie im humanen System, der Blutglukose-Wert zur Bestimmung des Schweregrades der Erkrankung gemessen. Dabei gilt der Blutglukosewert von 300 mg/dl als Schwellenwert für einen etablierten Diabetes der Maus.

Für die Durchführung dieser Arbeit wurden die zwei in der Literatur meistgenannten T1DM-Mausmodelle verwendet: die NOD Maus und die STZ- behandelte Maus.

1.2.3.1.1 NOD-Maus

Die NOD-Maus wurde bereits 1980 beschrieben (KIKUTANI et al. 1992; MAKINO et al. 1980a) und wird seitdem vornehmlich verwendet um spontane Organ-spezifische Autoimmunerkrankungen zu untersuchen. Obwohl der Mechanismus der Diabetes-Entstehung in der Maus noch immer nicht vollständig aufgeklärt ist, gibt es eindeutige Hinweise darauf, dass T-Zellen die entscheidende Rolle in der Induktion des spontanen Diabetes spielen. Die Inzidenz des Insulin abhängigen Diabetes beläuft sich auf 60% bis 80% in der weiblichen und auf 20% bis 30% in der männlichen Maus (BACH 1994; KIKUTANI et al. 1992). Histologische Untersuchungen haben gezeigt, dass die Pathogenese des Diabetes in der NOD-Maus bereits im Alter von drei bis vier Wochen beginnt. Es kommt zu einer Infiltration von mononuklearen Zellen, die die Langerhans' Inseln des Pankreas umgeben (peri-Insulitis). Anschließend folgt eine langsame, progressive weitere Invasion der Inseln, die zu schwerer Insulitis im Alter von ca. 10 Wochen führt und im weiteren Verlauf zu einer T-Zell vermittelten selektiven Zerstörung der Insulin-produzierenden ß-Zellen im Alter von vier bis sechs Monaten. Bei den infiltrierenden Zellen handelt es sich um CD4 positive T-Zellen, CD8 positive T-Zellen, NK-Zellen, B-Zellen, DC's und Makrophagen (KIKUTANI et al. 1992; MAKINO et al. 1980b). Als verantwortliche Zellen für die Entstehung des Diabetes waren schnell T-Zellen identifiziert worden, da eine neonatale Thymektomie einen inhibitorischen Effekt auf die Insulitis-Inzidenz in den NOD-Mäusen ausübte (OGAWA et al. 1985) und der Transfer von Splenozyten aus diabetischen NOD-Mäusen in bestrahlte Diabetes-freie NOD-Mäuse zur Entstehung von Diabetes in der Empfänger Maus führte (BENDELAC et al. 1987; WICKER et al. 1986). Einen weiteren Beweis lieferte der protektive Effekt vom T-Zell inhibierenden Cyclosporin sowie von T-Zell-blockierenden Antikörpern (CHATENOUD et al. 1994; SHIZURU et al. 1987). Kurze Zeit später konnten explizit CD4 positive als auch CD8 positive T-Zellen als verantwortliche Zellen identifiziert werden (PETERSON et al. 1996; WANG et al. 1996; WONG et al. 1996).

1.2.3.1.2 Streptozotocin-induzierter Diabetes

Ein weiteres weit verbreitetes Mausmodell zur Untersuchung des T1DM stellt das durch STZ induzierte Diabetes Mausmodell dar. Bereits 1963 wurde STZ als diabetogene Substanz beschrieben (RAKIETEN et al. 1963), deren Wirkung primär auf der Zerstörung der Insulin-produzierenden ß-Zelle des Pankreas beruht (RERUP 1970). Dabei wird das STZ über den Glukose-Transporter GLUT2 in die ß-Zelle aufgenommen, wo es zur DNA-Alkylierung und somit zur Nekrose führt (BENNETT et al. 1981; SZKUDELSKI 2001). 1976 beschrieben Arthur A. Like und Aldo A. Rossini das neue Mausmodell für Diabetes Mellitus, das durch die Gabe von STZ hervorgerufen wird. Dabei führte die fünfmalige Injektion von 40 mg/kg Körpergewicht STZ zur Erhöhung des Plasma-Glukose-Levels und zu einer mikroskopisch sichtbaren Infiltration des Pankreas durch mononukleare inflammatorische Zellen, wie Lymphozyten, Makrophagen und neutrophile Granulozyten (LIKE et al. 1976a). Ein Hinweis auf die Induktion einer zellulären immunologischen Reaktion lieferte die Beobachtung, dass die Reduzierung der ß-Zellen und die Erhöhung der Blutglukose voranschritt, lange nachdem das STZ im Blutkreislauf zerfallen war (LIKE et al. 1976b). Wenige Jahre später konnte die Beteiligung der T-Zellen an dem Immunprozess belegt werden, da T-Zell-defiziente Mäuse durch STZ-Gabe keinen Diabetes entwickeln (KIM et al. 1984b). Transferierte man Splenozyten aus einer diabetischen (STZ-induziert) Maus in eine gesunde unbehandelte Maus, so entstand kein Diabetes, was aber durch eine einzelne Gabe von STZ (40 mg/kg Körpergewicht) vor dem Transfer doch induziert werden konnte (KIM et al. 1984a). Diese Beobachtung deutet darauf hin, dass es sich bei dem STZ-Mausmodell um eine immunogene Reaktion handelt, die spezifisch ist für STZ-veränderte ß-Zellen.

1.2.3.1.3 Rolle von NK-Zellen im T1DM

Die pathophysiologische Rolle von NK-Zellen im T1DM scheint in der Regulierung der Aggressivität der autoimmunen Reaktionen und des Voranschreitens von der initialen Insulitis zum ausgeprägten T1DM zu liegen. In einem Coxsackie-Virus induzierten T1DM Mausmodell konnte gezeigt werden, dass pankreatische ß-Zellen *in vivo* durch NK-Zellen getötet werden und dass diese zur Progression der Erkrankung führen (FLODSTROM et al. 2002). Ähnliche Resultate wurden auch in einem transgenen Mausmodell beobachtet, das eine besonders aggressive Form des Diabetes entwickelt. Bei diesen Mäusen wurde die aggressive Verlaufsform mit NK-Zellen in Zusammenhang gebracht, da eine NK-Depletion zu einer signifikanten Inhibierung der Diabetes-Entstehung führte (POIROT et al. 2004). Im Gegensatz zu diesen induzierenden Wirkungen der NK-Zellen, konnte auch gezeigt werden, dass NK-Zellen eine Entstehung des Diabetes verhindern können. Lee et al. zeigten, dass eine einmalige Injektion von komplettem Freundschen Adjuvans im Alter zwischen 4 und 10 Wochen die

Entwicklung der Hyperglykämie in NOD-Mäusen verhindern kann (LEE et al. 2004). Zusätzlich wurde bewiesen, dass die Sekretion von Zytokinen durch NK-Zellen ebenfalls zur Verhinderung des Diabetes führt (BEILKE et al. 2005a).

1.3 Aufgabenstellung

Eine kooperierende Arbeitsgruppe (Frau Prof. Laurence Zitvogel, Institut Gustave Roussy, Villejuif, Frankreich) hat zeigen können, dass murine Tumorzellen (Kolonkarzinom-Zellen CT26 und Melanomzellen B16F10) IL-18 sezernieren, welches zur Induktion der Expression von PD-1L und c-Kit auf konventionellen NK-Zellen führt (ULLRICH E et al. 2008). Diese IL-18 generierten NK-Zellen scheinen eine immunsuppressive Wirkung auszuüben: Tumortragende Mäuse zeigten nach adoptiven Transfer der IL-18 generierten NK-Zellen vermehrt Metastasen in der Lunge. Demnach scheint es sich bei IL-18 um ein immunsuppressives Interleukin zu handeln, welches in der Lage ist, das angeborene Immunsystem zu regulieren.

In der vorliegenden Arbeit wurde untersucht, ob dieser immunsuppressive Effekt von IL-18 eine protektive Auswirkung auf die Entstehung von T1DM ausüben kann. Dabei sollten folgende Fragen beantwortet werden:

- 1. Führt rekombinantes murines IL-18 ebenfalls zur Generierung der PD-1L positiven und c-Kit positiven NK-Zellen *in vitro* und *in vivo*?
- 2. Welche phänotypischen und funktionellen Unterschiede gibt es zwischen konventionellen und IL-18 generierten NK-Zellen?
- 3. Gibt es einen Zusammenhang zwischen der Entstehung von T1DM und der Frequenz von konventionellen und IL-18 generierten NK-Zellen?
- 4. Welchen Einfluss hat ein adoptiver Zelltransfer der IL-18 generierten NK-Zellen auf die Entstehung und den Verlauf des T1DM?

2 Material und Methoden

2.1 Materialien

2.1.1 Verbrauchsmaterialien

Tab. 2.1: benötigte Verbrauchsmaterialien

Verbrauchsmaterial	Handelsname	Firma	Firmensitz
Adhesive Objektträger	HistoBond [®]	Marienfeld	Lauda-Königshafen,
Paktarialag Datriaghalan		DUD0	Deutschlanu Reakilde Dänemerk
	e i ® ee	DAKU	Hamburg, Deutschland
Einmal Insulinspritzen	Omnicam [®] 50	Braun	Melsungen, Deutschland
FACS-Röhrchen	FACS tubes	Sarstedt	Nümbrecht, Deutschland
Falcons (15 und 50 ml)	Cellstar [®] tubes	greiner bio-one	Frickenhausen,
			Deutschland
Gewebeplatten		nunc	Roskilde, Dänemark
Gussförmchen	Cryomold Biopsy	Sakura	Zoeterwoude, Niederlande
Kanülen (0.3 x 13 mm)	Microlane [™] 3	BD	New Jersey, USA
und 0.6 x 30 mm)			
Kanülen (0.8 x 40 mm	Sterican [®]	Braun	Melsungen, Deutschland
und 0.9 x 40 mm)			0
Pasteurpipette		ratiolab	Dreieich. Deutschland
PCR-Abdeckfolie	MicroAmp [™] optical	Applied	Carlsbad, USA
	Adhesive film	Biosystems	
Pinetten-Snitzen		Starlah	Ahrensburg Deutschland
Pro Sonarationsfiltor	пропе	Miltonvi	Rorgisch Cladbach
(40 um)		Winterfyf	Deutschland
Peaktionsgefäß 16 ml		Biozym	Hess Oldendorf
Scientific		Biozym	Deutechland
	NA:®	Anneliant	
Real time PCR Platte	Microamp	Applied	Carisbad, USA
		Biosystems	
Skalpelle		Feather	Osaka, Japan
Spritzen (2 und 5 ml)	Injekt [®]	Braun	Melsungen, Deutschland
Stripetten	Costar Stripette	Corning	New York, USA
Zell-Isolations-Säulen	Isolation columns	Miltenyi	Bergisch-Gladbach,
			Deutschland
Zellsieb (70 µm)	BD FALCON [™] BD		New Jersey, USA

2.1.2 Chemikalien, Reagenzien und Kits

Tab. 2.2: verwendete Chemikalien, Reagenzien und Kits

Chemikalie / Reagenz / Kit	Firma	Firmensitz
⁵¹ Chrom	Hartmann	Braupschweig
Gillom	Tatunann	Deutschland
Affymetrix Mouse Gene 1.0 ST Microarrays	Affumetrix	Santa Clara USA
Ambion [®] WT expression-Kit	Applied Biosystems	Carlsbad USA
Ambion [®] WT Terminal Labelling and	Applied Biosystems	Carlsbad, USA
Hybridization for use with the		
Ambion [®] WT Expression		
Aceton	Merck	Darmstadt, Deutschland
Annexin V Antikörper	BD	New Jersev, USA
Antibody diluent with background reduction	DAKO	Hamburg, Deutschland
Anti-CD4 Antikörper	BD	New Jersev. USA
Anti-MHC-II Antikörper	BD	New Jersey, USA
Anti-rat Alexa 488 und 594	Invitrogen	Karlsruhe. Deutschland
CaCl ₂ x 2 H ₂ O	Merck	Darmstadt. Deutschland
Camptothecin	Merck	Darmstadt. Deutschland
CD4 MicroBeads	Miltenvi	Bergisch-Gladbach,
		Deutschland
DEPC Wasser	Invitrogen	Karlsruhe, Deutschland
Dynabeads [®] Maus T-Aktivator CD3 / CD28	Invitrogen	Karlsruhe, Deutschland
EDTA-Lösung (0.5 M)	Promega	Madison, USA
Ethanol	Merck	Darmstadt, Deutschland
FKS	Sigma-Aldrich	St. Louis, USA
Glukose	Sigma-Aldrich	St. Louis, USA
HCI	Merck	Darmstadt, Deutschland
High capacity cDNA Reverse	Applied Biosystems	Carlsbad, USA
Transcription Kit		
IFNy	R&D	Minneapolis, USA
IL-2	R&D	Minneapolis, USA
IL-7	R&D	Minneapolis, USA
IL-18	MBL	Woburn, USA
IL-18 Primer	Qiagen	Hilden, Deutschland
InsB Peptid	Glycotope	Heidelberg, Deutschland
KCI	Merck	Darmstadt, Deutschland
KH ₂ PO ₄	Merck	Darmstadt, Deutschland
Kollagenase NB8	Serva	Heidelberg, Deutschland

Tab. 2.2: Weiterführung

Chemikalie / Reagenz / Kit	Firma	Firmensitz
L-Glutamin	Invitrogen	Karlsruhe, Deutschland
MgSo ₄ x 7H ₂ O	Sigma-Aldrich	St. Louis, USA
NaCl	Sigma-Aldrich	St. Louis, USA
NaH ₂ PO ₄ x 2 H ₂ O	Merck	Darmstadt, Deutschland
NK-Isolationskit	Miltenyi	Bergisch-Gladbach,
		Deutschland
Non essential amino acids	PAA	Pasching, Öterreich
Normales Schweineserum	DAKO	Hamburg, Deutschland
Pan-T Isolationskit	Miltenyi	Bergisch-Gladbach,
		Deutschland
PD-1 blocking Antikörper	BD	New Jersey, USA
Penizillin / Streptomycin	Invitrogen	Karlsruhe, Deutschland
ProLong Gold antifade	Invitrogen	Karlsruhe, Deutschland
Propidiumiodid	Sigma-Aldrich	St. Louis, USA
Pyruvat	PAA	Pasching, Öterreich
QuantiTect [®] SYBR green	Qiagen	Hilden, Deutschland
RNeasy Plus mini Kit	Qiagen	Hilden, Deutschland
Sterile Isotone Kochsalzlösung	Braun	Melsungen, Deutschland
Streptozotocin	Sigma-Aldrich	St. Louis, USA
Tissue-Tek-Gefriereinbettmedium; O.C.T.	Miles	Elkhart, USA
TRIS	Roth	Karlsruhe, Deutschland
Trypsin	Roche	Basel, Schweitz
Tween 20	Sigma-Aldrich	St. Louis, USA
ß-Actin Primer	Qiagen	Hilden, Deutschland
ß-Mercaptoethanol	Sigma-Aldrich	St. Louis, USA

2.1.3 Puffer und Medien

Tab. 2.3: erworbene	Puffer und Medien
---------------------	-------------------

Puffer / Medium	Firma	Firmensitz	—
Annexin-Puffer	BD	New Jersey, USA	
Auto MACS running buffer	Miltenyi	Bergisch-Gladbach,	
		Deutschland	
Erythrozyte Lysis Puffer	Qiagen	Hilden, Deutschland	
HBSS -/- (Zellkultur)	PAA	Pasching, Öterreich	
PBS -/- (Zellkultur)	Invitrogen	Karlsruhe, Deutschland	
RPMI 1640 + GlutaMax [™]	Invitrogen	Karlsruhe, Deutschland	

Puffer / Medium	Chemikatie / Zusatz	Endkonzentration
PBS-EDTA-Puffer		
zur Blutentnahme	EDTA (in NaCl)	10 mM
zum Zell-sort	EDTA (in PBS)	2 mM
InsB-Medium		
	FKS	10% Vol.
	Pen/Strep	1% Vol.
	ß-Mercapthoethanol	50 µM
	L-Glutamin	2 mM
	rm-IL-2	20 U/ml
	rm-IL-7	10 ng/ml
	Ins B Peptid	10 µg/ml
	Anti CD4 Antikörper	100 ng/ml
	Anti MHC II Antikörper	50 ng/ml
Krebs-Ringer-Lösung		
рН 7.1 – 7.3	NaCl	0.154 M
	KCL	0.154 M
	MgSO ₄ x 7H ₂ O	0.154 M
	CaCl ₂ x 2H ₂ O	0.11 M
	$NaH_2PO_4 \times 2H_2O$	0.1 M
PBS(T), Immunhistologie		
pH 7.6	NaCl	140 mM
	KCI	2.68 mM
	NaH ₂ PO ₄ x 2H ₂ O	10.51 mM
	KH ₂ PO ₄	1.76 Mm
	(Tween 20	0.1% Vol.)
TBS(T), Immunhistologie		
pH 7.6	TRIS	50 mM
	NaCl	150 mM
	(Tween 20	0.1% Vol.)
	•	•

Tab.	2.4:	hergestellte	Puffer	und	Medien
------	------	--------------	--------	-----	--------

Puffer / Medium	Chemikatie / Zusatz	Endkonzentration				
R10 Medium	RPMI 1640 versetzt m	RPMI 1640 versetzt mit				
	FKS	10% Vol.				
	Pen/Strep	1% Vol.				
	Pyruvat	1% Vol.				
	NEAA	1% Vol.				

Tab. 2.5: Weiterführung

2.1.4 Geräte

Tab. 2.6: verwendete Geräte

Gerätebezeichnung	Firma	Firmensitz
er	Agilent	Santa Clara, USA
Leica Zoom 2000	Leica	Burgwedel, Deutschland
Ascensia Contour	Bayer	Leverkusen, Deutschland
BBD 6220	Heraeus	Hanau, Deutschland
DXM 1200	Nikon	Zürich, Schweiz
	BD	San Jose, USA
	BD	San Jose, USA
Nikon eclipse TE 300	Nikon	Zürich, Schweiz
Ret basic	IKA	Staufen, Deutschland
Jung Frigocut 2800E	Leica	Burgwedel, Deutschland
Leica DMIL	Leica	Burgwedel, Deutschland
	Thermo	Wilmington, USA
	Scientific	
	WTW	Weilheim, Deutschland
StepOnePlus	Applied	Carlsbad, USA
	Biosystems	
Wizard Gamma	Wallac /	Rodgau, Deutschland
Counter	PerkinElmer	
T3 thermocycler	Biometra	Göttingen, Deutschland
GFL 1083	GFL	Burgwedel, Deutschland
Centrifuge 5810R	Eppendorf	Hamburg, Deutschland
	Gerätebezeichnung er Leica Zoom 2000 Ascensia Contour BBD 6220 DXM 1200 Nikon eclipse TE 300 Ret basic Jung Frigocut 2800E Leica DMIL StepOnePlus Wizard Gamma Counter T3 thermocycler GFL 1083 Centrifuge 5810R	GerätebezeichnungFirmaarAgilentLeica Zoom 2000LeicaAscensia ContourBayerBBD 6220HeraeusDXM 1200NikonDXM 1200NikonBDBDNikon eclipse TE 300NikonRet basicIKAJung Frigocut 2800ELeicaLeica DMILLeicaScientificXTWStepOnePlusAppliedWizard GammaWallac /CounterBiosystemsGFL 1083GFLCentrifuge 5810REppendorf

2.1.5 Software

Tap. Z.T. verwendele sollware	Tab. 2.7	verwendete	software
-------------------------------	----------	------------	----------

Anwendung / Gerät	software	Firma	Firmensitz
	Distant		0
Blidbearbeitung	Photosnop	Adobe	San Jose, USA
FACSAria	DIVA	BD	San Jose, USA
FACSCalibur	CellQuestPro	BD	San Jose, USA
Fluoreszenzmikroskop	Akt-1	Nikon	Zürich, Schweiz
Gen-Expressionsanalyse	GeneSpring GX	Agilent	Santa Clara, USA
Real time PCR	StepOne software V2.0	Applied	Carlsbad, USA
		Biosystems	
Statistische Auswertung	Prism3	GraphPad	La Jolla, USA

2.2 Methoden

2.2.1 Zellbiologische Techniken

2.2.1.1 Organentnahme

C57BI/6 und NOD-Mäuse wurden zur Entnahme von Blut, Lymphknoten, Pankreas, Milz sowie Ober- und Unterschenkelknochen verwendet. Aus diesen Organen wurde im ersten Schritt eine Einzelzellsuspension hergestellt (siehe 2.2.1.2), die im Folgenden zur Durchführung einer Vielzahl von Experimenten diente. Tabelle 2.8 veranschaulicht die Verwendung der Organe.

	Methoden					
Organe	IMZS	FACS	<i>in vitro</i> Exp.	IHC	mol. biol. Techniken	<i>in vivo</i> Exp.
Blut	2.2.1.4					
LK		2.2.1.4				
Pankreas		2.2.1.4	2.2.1.5	2.2.1.6		
Milz	2.2.1.3	2.2.1.4	2.2.1.5		2.2.1.7	2.2.2
Knochen		2.2.1.4				

Tab. 2.8: experimentelle Verwendung der Organe

IMZS: Immunmagnetische Zellseparation; FACS: *"fluorescence activated cell sorting*", Exp.: Experimente; IHC: Immunhistochemie

Zunächst wurde das Blut mit einer 2 ml Spritze entnommen und in einer EDTA-Lösung (Endkonzentration 10 mM) aufgenommen. Anschließend wurde der Bauchraum eröffnet und sowohl die inguinalen als auch cervicalen Lymphknoten herauspräpariert. Zur Gewinnung der pankreatischen Lymphknoten wurde der Pankreas herausgenommen und die Lymphknoten mit Hilfe des Binokulars aus dem Pankreas präpariert. Für die Verwendung des Pankreas für immunhistologische Färbungen, wurde dieser entnommen und sofort eingebettet. Für die Isolierung der murinen Langerhans' Inseln wurde zunächst eine Kollagenaselösung, wie durch Bellmann et al. beschrieben (BELLMANN et al.

1995), intraduktal appliziert. Dabei wurde die Papilla duodeni major abgeklemmt und die Kollagenaselösung (2 mg/ml, 2 ml) in den Ductus pancreaticus gespritzt (Abb. 2.1). Der "geblähte" Pankreas sowie die sich daran befindende Milz wurden anschließend entnommen. Die Pankreata wurden zur Präparation der Langerhans' Inseln 10 Minuten im 37°C warmen Wasserbad in der Kollagenaselösung inkubiert. Im folgenden Schritt wurde der Pankreas mittels Pasteurpipette auf Eis homogenisiert und mit kaltem HBSS sowie HBSS mit 10% FKS gewaschen. Die Zentrifugationsschritte zwischen den verschiedenen Puffern fanden bei 120 xg und 8°C für eine Minute statt. Anschließend wurde das Homogenisat in RPMI 1640 resuspendiert und die Inseln am Binokular in bakteriologische Petrischalen in RPMI 1640 gepickt.

Die Entnahme des Oberschenkelknochens erfolgte nach Entfernung der Muskulatur durch einen Schnitt oberhalb des Femurs und unterhalb der Tibia.

Abb. 2.1: Intraduktale Kollagenase-Injektion

Zur Isolierung der Langerhans' Inseln wird der Ductus pancreaticus freigelegt und die Papilla duodeni major abgeklemmt. Anschließend wird eine Kollagenaselösung in den Ductus pancreaticus gespritzt. Der so behandelte Pankreas nimmt an Volumen zu und ist anschließend klar zu erkennen.

2.2.1.2 Herstellen von Einzelzellsuspensionen

Zur Durchführung von durchflusszytometrischen Analysen sowie *in vitro*-Versuchen, wurden aus den präparierten Organen Einzelzellsuspensionen hergestellt.

2.2.1.2.1 Einzelzellsuspension aus dem peripheren Blut

Die Zellen des peripheren Blutes befanden sich nach Entnahme in 10 mM EDTA-Lösung, wodurch eine Gerinnung des Blutes verhindert wurde und die Zellen somit als Einzelzellsuspension vorlagen. Zur Beseitigung der Erythrozyten wurde das EDTA-Blut mit Erythrozyten Lyse-Puffer bei Raumtemperatur (RT) 10 Minuten inkubiert. Anschließend wurden die Zellen jeweils ein Mal mit PBS und "*Auto MACS running buffer"* gewaschen.

2.2.1.2.2 Einzelzellsuspension aus Milzen und Lymphknoten

Die Milzen wurden nach Entnahme einmalig in 70%-igem Ethanol und anschließend zwei Mal in sterilem PBS gespült. Im folgenden Schritt wurden die Milzen in einer Petrischale mit einem Skalpell zerschnitten. Anschließend wurden sowohl die zerschnittenen Milzen als auch die Lymphknoten durch ein Zellsieb (70 μ m) gerieben und die erhaltene Einzelzellsuspension zentrifugiert (300 x g, 5 Minuten, 8°C). Zur Beseitigung der Erythrozyten wurde das Zellpellet, wie oben beschrieben, in Erythrozyten Lyse-Puffer inkubiert und anschließend gewaschen.

2.2.1.2.3 Einzelzellsuspension aus Langerhans' Inseln

Für durchflusszytometrische Analysen wurde aus den Langerhans' Inseln eine Einzelzellsuspension hergestellt. Dabei wurden die Langerhans' Inseln in HBSS -/aufgenommen und in 20 mg/ml Trypsin 5 Minuten im 37°C-warmen Wasserbad inkubiert. Anschließend wurden die Langerhans' Inseln unter Zuhilfenahme von 0.9, 0.8 und 0.7 µm großen Kanülen geschert, wodurch der Zellverband gelöst wurde und die Zellen einzeln vorlagen.

2.2.1.2.4 Einzelzellsuspension aus dem Knochenmark

Zur Isolierung des Knochenmarks aus dem Femur und der Tibia der Maus, wurden diese vom Hüft- und Kniegelenk getrennt. Anschließend wurde mit Hilfe einer 5 ml Spritze und einer 0.6 mm Kanüle das Knochenmark aus den Knochen gespritzt und in einem 15 ml Falcon aufgefangen. Die Zellen wurden durch mehrmaliges pipettieren vereinzelt und gesiebt (40 μ m). Zur Beseitigung der Erythrozyten wurde das Zellpellet wie unter 2.2.1.2.1 beschrieben, behandelt.

2.2.1.3 Immunmagnetische Zellseparation

In der vorliegenden Arbeit wurden NK-Zellen und T-Zellen mit Hilfe von immunmagnetischer Separation aus den, in Einzelzellsuspension vorliegenden, Milzzellen isoliert. Dabei handelt es sich um eine Technik, bei der entweder die relevanten Zellen (positiv-Selektion) oder sämtliche unrelevanten Zellen (negativ-Selektion) mit magnetisch-markierten Antikörpern gefärbt werden. Diese Zellsuspension wird auf eine mit Eisenwolle gefüllte Säule in einem Magnetfeld gegeben. Die Antikörper-gefärbten Zellen bleiben in der Säule hängen und die unmarkierten wandern hindurch. Nach Inaktivierung des Magnetfeldes können auch die markierten Zellen eluiert werden.

2.2.1.3.1 Isolierung von murinen NK-Zellen

Zur Isolierung der NK-Zellen wurde das murine NK-Isolationskit von Miltenyi verwendet. Dabei handelt es sich um ein System mit indirekter magnetischer Markierung, wodurch unangetastete NK-Zellen isoliert werden können. Nicht-NK-Zellen wurden mit Hilfe eines biotinylierten Antikörper-Cocktails, der Antikörper gegen CD4 (L3T4), CD8 (Ly-2), CD5 (Ly-1), CD19, Ly-6G (Gr-1) und Ter-119 beinhaltet, markiert. Anschließend wurde die Zellsuspension mit anti-Biotin MicroBeads inkubiert sodass im folgenden Schritt eine Zellseparation unter Verwendung von Magnetfeldern erfolgen konnte. Dabei blieben die markierten nicht-NK-Zellen im Magneten haften und die unmarkierten NK-Zellen liefen hindurch. Die Isolierung der NK-Zellen erfolgte nach Angaben des Herstellers.

2.2.1.3.2 Isolierung von murinen T-Zellen

Zur Isolierung von T-Zellen wurde das murine Pan T-Isolationskit von Miltenyi verwendet. Wie bei dem NK-Isolationskit, handelt es sich hierbei wiederum um die negative Selektionsmethode. Die Durchführung gleicht der in 2.2.1.3.1 beschriebenen Methode und wurde nach den Angaben des Herstellers durchgeführt. Dabei wurden im ersten Schritt nicht-T-Zellen mit biotinylierten Antikörpern gegen CD11b, CD45R, DX5 und Ter-119 markiert. Nach der folgenden anti-Biotin-MircoBead-Inkubation und dem Durchlauf durch die Magnetfelder wurden ungefärbte T-Zellen gewonnen. Je nach Versuch wurden die Zellen anschließend weiter isoliert um CD4 von CD8 positiven Zellen zu trennen. Dabei wurden CD4 MicroBeads verwendet. Hierbei handelt es sich um ein Selektionsverfahren, bei dem die Zellen direkt mit einem positives MicroBead-gekoppelten anti-CD4 Antikörper inkubiert werden. In diesem Fall durchwandern nur die ungefärbten CD8 positiven T-Zellen das magnetische Feld, während die CD4 positiven T-Zellen erst nach Beseitigung des magnetischen Feldes isoliert werden können.

2.2.1.4 Durchflusszytometrie

Die Methode der Durchflusszytometrie basiert auf einer Laserstrahlerfassung von Fluoreszenz-markierten Zellen (*"fluorescence-activated-cell-sorting*", FACS). Dabei wird zum einen das Laserlicht gestreut und zum anderen die Fluoreszenzfarbstoffe angeregt, sodass sie Licht einer bestimmten Wellenlänge emittieren.

Bei dem gestreuten Licht handelt es sich einerseits um die nach vorne abgelenkten Strahlen, das sogenannte Vorwärtsstreulicht oder auch *"forward scatter"* (FSC), welches Informationen über die relative Größe der gemessenen Zellen liefert. Zusätzlich wird das Laserlicht im 90°-Winkel abgelenkt und ergibt das Seitwärtsstreulicht oder auch *"side scatter"* (SSC), welches Informationen über die Zellgranularität liefert. Weiterhin können die zu messenden Zellen mit Fluoreszenz-markierten Antikörpern gefärbt werden. Dabei unterscheiden sich die zu verwendenden Fluorochrome spezifisch in ihren Absorptions- und Emissionsspektren, wodurch für jedes Fluorochrom ein spezifisches Signal erhalten wird. In Tabelle 2.9 sind die Charakteristika der in dieser Arbeit verwendeten Fluorochrome dargestellt.

2.2.1.4.1 Durchflusszytometrische Analysen

Für die Färbung von Einzelzellsuspensionen (aus peripherem Blut, Milzen, Lymphknoten, Langerhans' Inseln und Knochenmark) wurden jeweils ca. 1x10⁵ Zellen pro Ansatz verwendet. Zunächst wurden unspezifische Bindestellen durch eine Inkubation in R10-Medium geblockt (5 Minuten, auf Eis). Anschließend wurden die Antikörper hinzugegeben (1 µg Antikörper / 1x10⁶ Zellen), siehe Tabelle 2.10. Die Proben wurden 15 Minuten auf Eis in Dunkelheit inkubiert und anschließend mit kaltem PBS gewaschen und zentrifugiert. Das Zellpellet wurde in 200 µl kaltem PBS resuspendiert und sofort im Anschluss an die Färbung am FACSCalibur Durchflusszytometer gemessen.

Fluorochrom	Absorptions- maximum	Emissions- maximum	Anregungswel- lenlänge
FITC	495 nm	519 nm	488 nm
PE	480 nm; 565 nm	615 nm	488 nm; 532 nm
PI	536 nm	617 nm	
APC	650 nm	660 nm	595 nm; 633 nm;
			635 nm; 647 nm
PerCP482 nm	678 nm	488 nm;	532 nm
PE/Cy7	480 nm; 565 nm	785 nm	488 nm; 532 nm

 Tab. 2.9: Für die Durchflusszytometrie verwendete Fluorochrome

(FITC: Fluorescein-Isothiocyanat; PE: Phycoerythrin; PI: Propidiumiodid; APC: Allophyocyanin; PerCP: Peridinin Chlorophyll Protein; PE/Cy7: Phycoerythrin gekoppelt mit Cyanin 7)

2.2.1.4.2 Färbung und Durchführung der Fluoreszenz-assoziierten Zell Sortierung Angereicherte NK-Zellen (2.2.1.3.1) wurden im folgenden Schritt weiter phänotypisch und funktionell charakterisiert sowie für *in vitro* und *in vivo* Experimente eingesetzt. Dazu wurden die Zellen mit Hilfe eines Zellsorters zusätzlich aufgereinigt.
Hierbei handelt es sich um eine durchflusszytometrische Messung, wobei es möglich ist, die Fluoreszenz-markierten Zellen nicht nur optisch, sondern auch räumlich zu trennen, sodass diese in folgenden Untersuchungen getrennt verwendet werden können. Dabei wird jede einzelne Zelle in dem sie umgebenden Flüssigkeitstropfen elektrisch positiv oder negativ geladen und dann in einem elektrostatischen Feld ladungsabhängig abgelenkt. Dadurch können die einzelnen Zellen in unterschiedliche Reagenzgefäße sortiert werden.

Die Durchführung der Färbung erfolgte wie bereits unter 2.2.1.4.2 beschrieben. Es wurde aber hierbei 0.1 µg Antikörper zur Färbung von 1x10⁶ Zellen verwendet. Nach dem Waschschritt mit PBS wurde das Zellpellet in 2 mM EDTA-Puffer so resuspendiert, dass eine Zellkonzentration von 2x10⁷ Zellen / ml erreicht wurde. Frisch isolierte NK-Zellen (siehe 2.2.1.3.1) wurden zunächst auf CD3– / NK1.1+ / c-Kit– / CD11b- NK-Zellen und nach IL-18 Kultur auf CD3– / NK1.1+ / c-Kit+ / CD11b- NK-Zellen sortiert. Die Sortierung der Zellen erfolgte in Zusammenarbeit mit der Arbeitsgruppe von Prof. Hegemann am Institut für Funktionelle Genomforschung der Mikroorganismen (Lehrbereich Biologie, Heinrich-Heine-Universität Düsseldorf) am FACSAria unter Verwendung der DIVA software.

2.2.1.5 In vitro Experimente

2.2.1.5.1 IL-18 Kultur von frisch isolierten NK-Zellen

Im Rahmen des initialen IL-18 *in vitro* Experiments wurden frisch isolierte NK-Zellen (nach Isolation durch Immunmagnetische Färbung oder Zellsorter) in R10 Medium supplementiert mit rm-IL-2 (300 IU/ml) und unterschiedlichen IL-18 Konzentrationen (0 ng/ml bis 100 ng/ml) für 16 Stunden bei einer Zelldichte von 1x10⁶ NK-Zellen / ml im Brutschrank inkubiert. Für weitere phänotypische und funktionelle Charakterisierung wurde die Konzentration des IL-18 auf 25 ng/ml festgelegt.

Antikörper	Spezies	Isotyp	Fluorochrom	Firma
CD3e	Hamster	lgG1	PerCP	BD Pharmingen
CD8	Ratte	lgG2a	PerCP	BD Pharmingen
CD11b	Ratte	lgG2b	FITC	BD Pharmingen
CD27	Hamster	lgG1	PE	BD Pharmingen
CD45	Ratte	lgG2b	APC	BD Pharmingen
CD107a	Ratte	lgG2a	FITC	BD Pharmingen
CD117	Ratte	lgG2b	PE	Miltenyi
CD117	Ratte	lgG2b	APC	Miltenyi
CD244 (2B4)	Ratte	lgG2a	PE	eBioscience
HO-1	Maus	lgG2b	PE	abcam
NK1.1	Maus	lgG2a	APC	BD Pharmingen
NK1.1	Maus	lgG2a	Pe-Cy7	BD Pharmingen
NKG2D	Ratte	lgG1	PE	eBioscience
PD-1L	Ratte	lgG2a	PE	BD Pharmingen
RORyt	Ratte	lgG2a	PE	eBioscience

Tab. 2.10: Für die Durchflusszytometrie verwendete Antikörper

Firmensitz: BD Pharmingen: San Jose, USA; Miltenyi: Bergisch-Gladbach, Deutschland; eBioscience: San Diego, USA; abcam: Cambridge, England

2.2.1.5.2 Aktivierung von frisch isolierten T-Zellen

Frisch isolierte T-Zellen (nach Isolation durch Immunmagnetische Färbung) wurden für die Durchführung der Lyse-Experimente über Nacht mit CD3 / CD28 Dynabeads aktiviert. Dabei wird die *in vivo* T-Zell-Aktivierung durch APC nachgeahmt, da die beiden Aktivierungssignale CD3 und CD28 dreidimensional von den Dynabeads gebunden werden.

Zunächst wurden die Dynabeads im Liefergefäß resuspendiert und die benötigte Menge entnommen. Der Ansatz sieht eine Kultur von T-Zellen und Dynabeads in einem Verhältnis von 1:1 vor. Die entnommenen Dynabeads wurden mit PBS gewaschen und zu den T-Zellen gegeben. Die Kultur der Zellen erfolgte in R10-Medium, supplementiert mit 30 U/ml rm-IL2 mit einer Zell-Dichte von 1x10⁶ Zellen / ml in einer 24 well Gewebekulturplatte.

2.2.1.5.3 Aktivierung von Insulin-spezifischen T-Zellen

Die Insulin-spezifischen T-Zellen wurden freundlicherweise von Dr. Mette Ejrnaes (*Department of Developmental Immunology, La Lolla Institute for Allergy and Immunology,* San Diego, USA) zur Verfügung gestellt. Dabei handelt sich um einen T-Zell Klon, der spezifisch auf das Epitop InsB15-23 (LYLVCGERG) der Insulin beta-Kette reagiert. Die Zellen wurden in InsB-Medium mit bestrahlten (30 Gy) peripheren mononuklearen Blutzellen im Verhältnis von 1:4 (mononukleare Zellen : T-Zellen) über Nacht kultiviert.

2.2.1.5.4 Kultur und Stimulierung von Langerhans' Inseln

Für den *in vitro*-Stimulationstest wurden die Inseln zunächst über Nacht in RPMI 1640 in bakteriologischen Petrischalen bei 37°C kultiviert. Am folgenden Tag wurden die Inseln mit IFN-y in unterschiedlichen Konzentrationen in Krebs-Ringer-Puffer für ca. 16 Stunden stimuliert (in 5.5 mM Glukose). Dabei wurden jeweils 15 Inseln in einem Volumen von 100 µl in einem "*well"* einer "*96-well"* Platte mit rundem Boden inkubiert. Am folgenden Tag wurden die Inseln geerntet und die RNA isoliert (siehe 2.2.1.7.1).

2.2.1.5.5 Zellvermittelte Zytotoxizität

Um die zellvermittelte Zytotoxizität der IL-18 generierten NK-Zellen zu untersuchen wurden zwei Methoden angewendet: Der Chrom [⁵¹Cr]-Freisetzungs-Assay und die Annexin V-Färbung. In beiden Fällen wurden Antigen-unspezifische und –spezifische aktivierte CD8 positive T-Zellen sowie CD4 positive T-Zellen als Zielzellen verwendet. Diese Zellen wurden wie bereits oben beschrieben isoliert und aktiviert.

Chrom-Freisetzungs-Assay

Beim ⁵¹Chrom (⁵¹Cr)-Freisetzungs-Assay handelt es sich um eine klassische Methode zur Untersuchung der zellvermittelten Zytotoxizität, die auf der Freisetzung von radioaktivem Chrom durch die tote Zielzelle beruht.

Im Vorfeld wurden die Zielzellen mit 100 µCi ⁵¹Cr / 1x10⁶ für eine Stunde bei 37°C inkubiert, wobei es in das Zytoplasma der Zellen gelangte. Anschließend wurde das überschüssige ⁵¹Cr durch drei PBS-Waschschritte entfernt. Zur Untersuchung

der zellvermittelten Zytotoxizität der IL-18 generierten NK-Zellen wurden diese als auch konventionelle NK-Zellen zusammen mit den ⁵¹Cr-beladenen T-Zellen in einem Verhältnis von 1:1 (ca. 1×10^5 Zellen / Fraktion) für 16 Stunden in U-geformten 96-well Gewebekulturplatten in 200 µl R10 Medium (mit 30 U/ml rm-IL-2) in Kultur gebracht. Am folgenden Tag wurde der Überstand abgenommen und die Radioaktivität im Szintillationszähler gemessen. Dabei verhält sich die Menge des freigesetzten ⁵¹Cr proportional zu den getöteten Zielzellen in der Kultur. Die zytotoxische Aktivität wurde wie folgt berechnet: Zytotoxizität [%] = [(counts/min vom zu untersuchenden Ansatz - counts/min von der negativ-Kontrolle) / (counts/min von der positiv-Kontrolle - counts/min von der negativ-Kontrolle)] x 100. Bei diesem Assay wurden die ⁵¹Cr-beladenen Zielzellen allein in Medium als negativ-Kontrolle und in Medium mit HCI (0.5 M) als positiv-Kontrolle verwendet.

Annexin V-Färbung

Bei der Annexin V – Färbung handelt es sich um eine FACS-Färbung mit der man apoptotische und nekrotische Zellen unterscheiden kann. Das Prinzip beruht auf der Antikörperfärbung von Phosphadidylserin. Bei Phosphatidylserin handelt es sich um ein Phosphoglycerid, welches sich in intakten Zellen auf der zytoplasmatischen Seite der Zellmembran befindet. Im Frühstadium der Apoptose transloziert es auf die Außenseite der Zellmembran und kann dort mit Hilfe des Proteins Annexin V spezifisch gebunden bzw. gefärbt werden. Da die Zellmembran von nekrotischen Zellen permeabel ist, kann das Annexin auch an Phosphatidylserin binden, welches sich noch auf der Innenseite der Zellmembran befindet. Um in diesem Fall nekrotische und apoptotische Zellen unterscheiden zu können bedarf es bei dieser Technik zusätzlich zur Durchführung einer Viabilitätsfärbung mit z.B. Propidiumiodid (PI). PI kann nur durch die Plasmamembran toter Zellen gelangen und interkaliert dort in doppelsträngige DNA, wodurch der Zellkern angefärbt wird. Es kann mit Licht der Wellenlänge 490 nm angeregt werden (FACS: z.B. Argon-Laser: 488 nm) und emitiert Licht der Wellenlänge 617 nm. Bei dieser Methode liefern apoptotische Zellen nur ein Annexin V- Signal, wohingegen nekrotische Zellen sowohl PI positiv als auch Annexin V-positiv erscheinen.

Bei der Durchführung dieses Experiments wurden wiederum IL-18 generierte NK-Zellen als auch konventionelle NK-Zellen zusammen mit T-Zellen in einem Verhältnis von 1:1 (ca. 1x10⁵ Zellen / Fraktion) für 16 Stunden in U-gefomten 96-well Gewebekulturplatten in 200 µl R10 (mit 30 U/ml rm-IL-2) in Kultur gebracht. Am folgenden Tag wurden die Zellen geerntet und in Annexin V-Bindepuffer mit anti-CD8 FITC, Annexin V APC und PI gefärbt. Die Analyse erfolgte am FACSCantor. Bei dieser Methode wurden die Zielzellen (Antigen-spezifischen und –unspezifischen CD8 positiven T-Zellen) allein in Medium als negativ-Kontrolle und in Medium mit Camptothecin (15 nM) als positiv-Kontrolle verwendet.

2.2.1.6 Immunhistologie

Bei der Immunhistologie handelt es sich um eine Methode, mit der man spezielle Antigene im Gewebe durch Antikörperbindung sichtbar machen kann. In der vorliegenden Arbeit wurde die indirekte Färbemethode an Kryostatschnitten verwendet: der primäre unkonjugierte Antikörper bindet an das Antigen im Gewebe und wird anschließend durch einen Fluoreszenz-markierten sekundären Antikörper sichtbar gemacht. Die Auswertung der Immunfluoreszenz-Färbung erfolgte am computergestützten Fluoreszenzmikroskop.

Mit Hilfe der Immunhistologie sollten in dieser Arbeit lymphozytäre Infiltrationen im Pankreas diabetischer Mäuse nachgewiesen und analysiert werden.

2.2.1.6.1 Einbettung und Herstellung histologischer Schnitte

Entnommene Pankreata (siehe 2.2.1.1) wurden mit Hilfe von *"Tissue-Tek"-*Gefriereinbettmedium und Gussförmchen zunächst in flüssigem Stickstoff schockgefroren und anschließend bei –20°C gelagert. Die Gewebeblöcke wurden am Kryostaten bei -20 °C in serielle Schnitte der Dicke 7 µm geschnitten, auf adhesive Objektträger übertragen und im folgenden bis zur Färbung wiederum bei -20°C gelagert.

2.2.1.6.2 Färbung und Auswertung

Zunächst wurden die Kryostatschnitte bei RT 10 Minuten getrocknet und die Gewebeschnitte mit dem DAKO Pen umrandet. Anschließend wurden die Schnitte 10 Minuten in kaltem Aceton fixiert und anschließend erneut für 10 Minuten bei RT getrocknet. Im folgenden Schritt wurden die Schnitte dreimal in PBS für jeweils fünf Minuten gewaschen. Zur Verhinderung von unspezifischer Antikörperbindung wurden die Schnitte eine Stunde lang mit 5%-iger Serumlösung (normales Schweineserum) in einer feuchten Kammer bei RT inkubiert. Nach Entfernung der Serumlösung wurde der primäre Antikörper mit "Antibody diluent with background reduction" verdünnt und auf die Kryostatschnitte gegeben. Die Inkubation des primären Antikörpers (siehe Tabelle 2.11) erfolgte über Nacht bei 4°C in einer feuchten Kammer.

Am folgenden Tag wurden die Kryostatschnitte viermal für fünf Minuten mit PBS gewaschen um ungebundenen primären Antikörper zu entfernen. Anschließend wurde der sekundäre Antikörper wiederum in *"Antibody diluent with background reduction*" verdünnt und auf den Schnitten eine Stunde in einer feuchten Kammer bei RT inkubiert. Als sekundären Antikörper wurde ein *"anti-rat"* Alexa Fluor® 488-Antikörper verwendet. Im folgenden Schritt wurde erneut ungebundener Antikörper durch dreimaliges waschen in PBS (jeweils fünf Minuten) entfernt. Abschließend wurden die Kryostatschnitte mit *"ProLong Gold antifade"*-Reagenz eingedeckt. Das verwendete Eindeckmedium beinhaltete 4,6-Diamin-2-Phenylindol (DAPI) welches an die vorhandene DNA bindet und somit Zellkerne sichtbar macht.

Die Auswertung der Immunfluoreszenz-Färbungen erfolgte am computergestützten Fluoreszenzmikroskop, wobei sowohl CD8 als auch PD-1 durch eine grüne Fluoreszenz und die Zellkerne durch eine blaue Fluoreszenz sichtbar gemacht wurden. Mit Hilfe der angeschlossenen Digitalkamera und der software Akt-1 von Nikon konnten die Färbungen fotografiert und digitalisiert werden. Die "*overlays*" der aufgenommenen Bilder wurden mit Hilfe des Computerprogramms "*Photoshop*" erstellt.

	-			
Antikörper	Spezies	Klon	Verdünnung	Firma
CD8	Ratte	53-6.7	1:100	BD Pharmingen
PD-1	Ratte	RMP1-14	1:100	Abcam

Tab. 2.11: Immunhistologisch verwendete primäre Antikörper

Firmensitz: BD Pharmingen: San Jose, USA; abcam: Cambridge, England

2.2.1.7 Molekularbiologische Methoden

2.2.1.7.1 RNA-Isolierung

Um zu untersuchen, ob eine IFN-y Inkubation von Langerhans' Inseln zu einer gesteigerten Expression von IL-18 führt, sollte eine real time PCR durchgeführt werden. Zunächst wurden die kultivierten Langerhans' Inseln zweimal mit PBS gewaschen und die totale RNA mit Hilfe des *"RNeasy Plus Mini"*-Kits nach Angaben des Herstellers isoliert.

2.2.1.7.2 cDNA-Synthese

Anschließend wurde die isolierte RNA durch eine RT-Reaktion in komplementäre DNA (cDNA) umgeschrieben. Dabei wurde das *"high capacity cDNA Reverse Transcription*"-Kit nach Angaben des Herstellers verwendet. Zur Durchführung der Inkubationsschritte wurde der T3 Thermocycler von Biometra verwendet. Die hergestellte cDNA wurde 1:1 mit DEPC-Wasser verdünnt und bei –20°C gelagert.

2.2.1.7.3 real time PCR

Bei der PCR handelt es sich um eine exponentielle Amplifikation einer bestimmten Gensequenz. Dabei werden spezifische Primer verwendet und die Reaktions-Schritte mehrfach wiederholt. Bei der konventionellen PCR wird das Amplikon durch eine Endpunkt-Analyse, zum Beispiel Agarose-Gel, detektiert. Bei der *real time* PCR kann man die Zunahme der amplifizierten Zielsequenz während des Reaktionsprozesses (in "*real time*") beobachten.

In dieser Arbeit wurde das "SYBR green" zur Dedektion des Amplifikats verwendet, welches in doppelsträngige DNA interkaliert und durch ein

Fluoreszenzsignal die Menge der vorhandenen DNA messbar macht. Die einzelnen Schritte der "*real time*" PCR sind:

- a) Denaturierung der DNA durch eine Erwärmung der Probe auf 95°C
- spezifische Bindung der Primer durch Inkubation bei einer Temperatur, die f
 ür jedes Primerpaar spezifisch ist
- c) Extension der Primer bei 72°C durch die DNA-Polymerase

Dabei kann das vorhandene "*SYBR green*" an die neu entstandenen DNA-Doppelstränge binden. Entsprechend der Zunahme des PCR-Produkts steigt die Fluoreszenz mit jedem PCR-Zyklus an.

Zur Untersuchung des Einflusses von IFN-y auf die IL-18 Expression in murinen Langerhans' Inseln, wurden diese mit IFN-y in unterschiedlichen Konzentrationen inkubiert und anschließend eine real time PCR durchgeführt. Dabei diente ß-Actin als *"housekeeping"-Gen. Zur Durchführung der PCR wurde das IL-18 und das "ß-Actin QuantiTect[®] Primer Assay"* sowie das *"QuantiTect[®] SYBR green"* von Qiagen verwendet.

Die PCR-Reaktion fand in einem Endvolumen von 15 µl statt, das sich wie folgt zusammensetzte: 7.5 µl "*SYBR green*"-Puffer, 1.5 µl der entsprechenden Primer, 3.5 µl Wasser und 2.5 µl cDNA. Zur Durchführung der PCR wurde das *"StepOnePlus rt-PCR System*" von Applied Biosystems verwendet. Das PCR-Programm bestand aus

- Aktivierung der "hot start" DNA-Polymerase bei 95°C für 15 Minuten

- 40 Zyklen, bestehend aus

Denaturierung der DNA bei 95°C für 15 Sekunden

Binden der Primer bei 55°C für 30 Sekunden

Extension der Primer bei 72°C durch die DNA-Polymerase

- Schmelzpunktanalyse

Die Auswertung der "*real time*"-PCR erfolgte mittels $\Delta\Delta$ Ct-Analyse.

2.2.1.7.4 Gen-Expressionsanalyse

IL-18 generierte NK-Zellen wurden im Vergleich zu konventionellen NK-Zellen genotypisiert. Dabei wurden die Zellen, wie oben beschrieben, isoliert und kultiviert und anschließend die RNA, wie oben für Langerhans' Inseln beschrieben (siehe 2.2.1.7.1), isoliert.

Die Quantität der isolierten totalen RNA wurde mit Hilfe von photometrischer Nonodrop Messung und die Qualität mit Hilfe des Agilent 2100 Bioanalyzers bestimmt. Bei diesem System wird die RNA mit Hilfe einer Elektrophorese auf einem MicroChip aufgetrennt und mittels Laser-induzierter Fluoreszenz detektiert. Die Qualität der RNA wird mit einem software Algorithmus berechnet, der das Verhältnis der 18S zur 28S ribosomalen Untereinheit der RNA analysiert und eine *"RNA Integrity Number"* (RIN) zwischen 1 und 10 ermittelt. Dabei beschreibt das errechnete Resultat "1" eine stark degradierte RNA und "10" eine sehr gut erhaltene RNA. In der vorgelegten Arbeit erreichten alle eingereichten RNA-Proben eine sehr hohe RIN, die zwischen 8.9 und 9.8 lag. Abb. 2.2 zeigt das Elektrophorese-Bild der verwendeten RNA-Proben.

Nach der bestandenen Qualitätskontrolle der totalen RNA, wurden 50 ng in cDNA umgeschrieben, in vitro transkribiert und anschließend die cRNA mit Biotin markiert. Nach der folgenden Fragmentierung der Biotin-markierten cRNA fand die Hybridiserungsreaktion der Proben auf "Affymetrix Mouse Gene 1.0 ST Microarrays" über einen Zeitraum von 16 Stunden bei 42°C statt. Anschließend wurden die Proben mit Streptavidin / PE-Konjugaten gefärbt und die unterschiedlichen Gen-Expressionen gemessen. Die Durchführung der Gen-Expressionsanalysen erfolgte unter Verwendung des "Ambion WT Expression"-Kits und des "WT Terminal Labelling and Hybridization for use with the Ambion WT Expression"-Kits nach Angaben des Herstellers.

Die Daten-Analyse wurde mit der GeneSpring GX Software durchgeführt. Dabei wurden die multiplen Expressionsdaten der verschiedenen Transkripte des *"probe Sets"* mit Hilfe des GeneSprings' ExonRMA16 Algorithmus normalisiert. Die pre-Prozessierung der Daten wurde durch eine *"baseline"*-Transformation vervollständigt. Für die statistische Auswertung der Daten wurden die einzelnen Arrays anschließend in Abhängigkeit ihres Phänotyps (konventionelle NK-Zellen bzw. IL-18 generierte NK-Zellen, jeweils n = 3) gruppiert. In den folgenden Schritten wurden nur die Transkripte weiter analysiert, deren Expression in mindestens zwei von drei Arrays in mindestens einer oder beiden experimentellen Gruppen über dem Hintergrundrauschen lag. Die statistische Analyse der differentiellen Gen-Expression erfolgte mittels Welch's ungepaartem t-Test (p < 0.05). Die resultierten p-Werte wurden zusätzlich mittels Benjamini-Hochberg-Tests für multiples Testen korrigiert, um falsch-positive Ergebnisse zu minimieren.

Die hierarchische Cluster-Analyse erfolgte mit Hilfe des Manhattan-Abstandsmaßes ("*complete linkage*").

Die Gen-Expressionsanalysen wurden in Zusammenarbeit mit dem Biologisch-Medizinischem Forschungszentrum der Heinrich-Heine-Universität Düsseldorf durchgeführt.

Abb. 2.2: Bestimmung der RNA-Qualität zur Durchführung der Gen-Expressionsanalysen

Die MicroChip Elektrophorese der Proben bescheinigte eine sehr hohe Reinheit der RNA. Die "*RNA Integrity Number*" (RIN) liefert dabei eine Aussage über die Qualität: Eine niedrige RIN deutet auf stark degradierte RNA hin und eine hohe auf gut erhaltene RNA. Ein Bereich von 1 bis 10 wird durch diese Bewertung abgedeckt.

2.2.2 In vivo Experimente

Zur Untersuchung der Wirkung von IL-18 auf NK-Zellen *in vivo* sowie zur Wirkung von IL-18 generierten NK-Zellen im Diabetes-Maus-Modell, wurden NOD und STZ-behandelte C57BI/6 Mäuse verwendet.

2.2.2.1 Mäuse

C57BI/6 und NOD Mäuse wurden von der Tierversuchsanlage der Universität Düsseldorf bzw. von Clarles River Laboratories (L'Arbresle, Frankreich) bezogen. Die Tiere wurden unter pathogenfreien Bedingungen gehalten und erhielten konventionelles Nager-Futter und Trinkwasser ad libitum. Das Töten der Tiere erfolgte mittels Kohlenstoffdioxid gemäß der Tierschutzverordnung. Die Präparation erfolgte in einem Sektionsraum der Tierversuchsanlage der Heinrich-Heine-Universität Düsseldorf. Die Durchführung des Versuchsvorhabens wurde durch das Landesamt für Natur, Umwelt und Verbraucherschutz genehmigt (AZ 8.87-50.10.34.08.145).

2.2.2.1.1 Blutglukose-Messungen

Zur Bestimmung der Blutglukose wurde eine Blutprobe aus der Schwanzvene von nicht-nüchternen Mäusen zwischen 9:00 Uhr und 11:00 Uhr entnommen. Die Messung erfolgte mit Hilfe des Blutglukosemessgerätes Ascensia Contour[®], wobei das Enzym / Koenzym System Glukosedehydrognase / Pyrrolochinolinchinon verwendet wurde. Eine Maus wurde für diabetisch befunden, wenn sie in zwei unabhängigen Messungen einen Blutglukosewert von mehr als 300 mg/dl aufwies. Schwerer Diabetes wurde durch das zweimalige Erreichen des Blutglukosewertes von 600 mg/dl definiert. Die Blutglukose wurde dreimal wöchentlich gemessen.

2.2.2.1.2 Streptozotocin-behandelte Maus

Zur Induktion des Diabetes in C57BI/6-Mäusen wurde das STZ-Maus-Modell verwendet. Dabei erhielten C57BI/6-Mäuse im Alter von vier Wochen an fünf aufeinanderfolgenden Tagen eine intraperitoneale STZ-Injektion in einer niedrigen Konzentration (40 mg STZ/ kg Körpergewicht) (LU et al. 1998; SCHOTT-OHLY et al. 2004).

2.2.2.1.3 In vivo IL-18

IL-18 bewirkt *in vitro* eine erhöhte Expression von PD-1L und c-Kit auf murinen NK-Zellen. Um diesen Effekt *in vivo* zu untersuchen, wurde C57Bl/6-Mäusen parallel zu den STZ-Injektionen IL-18 intraperitoneal verabreicht. Dabei erhielten die Mäuse an den Tagen 1, 3 und 5 der STZ-Injektion jeweils 500 µg in NaCl gelöstes murines rekombinantes IL-18. An Tag 9 erfolgte die Bestimmung der konventionellen (c-Kit negativen) und der IL-18 generierten (c-Kit positiven) NK-Zellen in der Milz und im Knochenmark.

2.2.2.1.4 Adoptiver Zelltransfer

Um zu untersuchen welchen Effekt *in vitro* IL-18 generierte NK-Zellen *in vivo* auf die Entstehung des Diabetes haben, wurde ein adoptiver Zelltransfer dieser Zellen in STZ-behandelte Mäuse durchgeführt. IL-18 generierte NK-Zellen wurden wie oben beschrieben hergestellt. Um weiterhin zu untersuchen, ob der zellvermittelte Mechanismus ebenfalls den PD-1 / PD-1L Signalweg involviert, wurde dieser vor Transfer *in vitro* mit einem blockierenden Antikörper geblockt. Dabei wurden die isolierten IL-18 generierten NK-Zellen *in vitro* mit anti-PD-1L Antikörper 30 Minuten bei 4°C inkubiert (0.5 µg Antikörper / 1x10⁶ Zellen) und anschließend mit kaltem PBS gewaschen (SAUDEMONT et al. 2005). Der Zelltransfer startete an Tag 9 und endete an Tag 16 nach initialer STZ-Gabe. Dabei erhielt jede Maus einen dreimaligen Transfer von ca. 1x10⁵ *in vitro* IL-18 generierten NK-Zellen in NaCl intravenös (Schwanzvene). Kontrolltieren wurde NaCl verabreicht. Die Messung der Blutglukose erfolgte drei Mal die Woche.

2.2.2.1.5 Zellmigrations-Experimente

Zum Nachweis der Organ-gerichteten Zellmigration der transferierten Zellen wurden C57BI/6-Ly5 Mäuse verwendet. Diese unterscheiden sich von Wildtyp C57BI/6 Mäusen durch eine veränderte CD45 Expression der hematopoetischen Zellen. Während man in gewöhnlichen C57BI/6-Mäusen die Expression von CD45.2 vorfindet, wird in C57BI/6-Ly5 Mäusen CD45.1 exprimiert. Für das Traffiking-Experiment wurden CD45.2 positive IL-18 generierte NK-Zellen *in vitro* wie oben beschrieben hergestellt (Donor: C57BI/6 Maus) und ca. 1x10⁶ dieser Zellen intravenös in eine C57BI/6-Ly5 Maus injiziert. Am folgenden Tag wurde die Verteilung der transferierten Zellen untersucht. Dabei wurde die Frequenz der Zellen im Blut, in der Milz sowie in den inguinalen und pankreatischen Lymphknoten untersucht.

2.2.3 Statistische Auswertungen

Zur statistischen Analyse der Daten wurde die Prism Software verwendet. Unter Verwendung des *"unpaired"* t-Tests wurden normal verteilte Messgruppen verglichen. Im Falle keiner Normalverteilung wurde zusätzlich die Welsh-Korrektur durchgeführt. P-Werte < 0.05 wurden als signifikant gewertet.

3 Ergebnisse

3.1 IL-18 induzierte Expression von c-Kit auf NK1.1 positiven Zellen der Milz

Wie bereits durch die Arbeitsgruppe von L. Zitvogel gezeigt (ULLRICH E et al. 2008), führt IL-18 zu einer Hochregulierung des Oberflächenmoleküls c-Kit auf NK1.1 positiven Zellen. Um diesen Effekt *in vitro* zu überprüfen, wurden folgende drei NK-Zell Fraktionen aus Milzen von C57Bl/6 Mäusen isoliert und mit rekombinantem murinen IL-18 in unterschiedlichen Konzentrationen inkubiert: CD3- / NK1.1+ / c-Kit- Zellen, CD3- / NK1.1+ / c-Kit- / CD11b- Zellen und CD3- / NK1.1+ / c-Kit- / CD11b+ Zellen. Nach einer 16-stündigen Kultur konnte eine konzentrationsabhängige Erhöhung der c-Kit Expression beobachtet werden, wobei in allen Gruppen ab einer IL-18 Konzentration von 25 ng/ml ein Plateau erreicht wurde (Abb. 3.1).

IL-18 Konzentration [ng/ml]

Abb. 3.1: Konzentrationsabhängige Induktion der c-Kit Expression auf NK-Zellen durch IL-18

Murine NK1.1 positive Zellen der Milz wurden 16 Stunden mit unterschiedlichen IL-18 Konzentrationen kultiviert. Anschließend wurde die c-Kit Expression in NK1.1 positiven (▼) sowie in sortierten NK1.1 positiven / CD11b negativen (●) und NK1.1 positiven / CD11b positiven (■) untersucht. In Abhängigkeit der IL-18 Konzentrationen nahm die c-Kit Expression in allen drei Gruppen zu, wobei jeweils ein Plateau ab einer IL-18 Konzentration von 25 ng/ml erreicht wurde.

Den stärksten c-Kit induzierenden Effekt scheint eine IL-18 Kultur in der CD11b negativen Gruppe zu bewirken. Betrachtet man den Mittelwert aller IL-18 Konzentrationen (Abb. 3.2), so findet man in der CD11b negativen Gruppe nach IL-18 Inkubation signifikant mehr c-Kit positive NK-Zellen vor als in der CD11b positiven (23.69% \pm 6.48% vs. 9.66% \pm 2.73%, p < 0.0001) und der NK1.1-Gruppe (23.69% \pm 6.48% vs. 12.51% \pm 2.81%, p < 0.0001). Vergleicht man die c-Kit Induktion in der NK1.1-Gruppe mit der CD11b positiven Gruppe, so findet man auch hier signifikant weniger c-Kit positive NK-Zellen in der CD11b positiven Gruppe (p = 0.0089). Diese Resultate spiegeln sich auch in den Ergebnissen der Inkubation mit 25 ng/ml IL-18 wieder. In der CD11b negativen Gruppe wurden 27.36% \pm 2.55% c-Kit positive NK-Zellen beobachtet im Gegensatz zu 10.73% \pm 0.91% in der CD11b positiven (p = 0.0004) und 14.13% \pm 0.42% in der NK1.1-Gruppe (p = 0.0009).

Wiederum konnte eine signifikant stärkere c-Kit Expression in der NK-Gruppe im Vergleich zur CD11b positiven Gruppe beobachtet werden (p = 0.0041).

Um die IL-18 generierten c-Kit positiven NK-Zellen genauer zu charakterisieren, wurde im folgenden Schritt eine Gen-Expressionsanalyse der IL-18 generierten CD3– / NK1.1+ / c-Kit+ / CD11b– NK-Zellen im Vergleich zu den unstimulierten CD3– / NK1.1+ / c-Kit– / CD11b+ NK-Zellen durchgeführt.

3.2 Gen-Expressionsanalyse von frisch isolierten versus IL-18 generierten NK-Zellen

Für die Gen-Expressionsanalyse wurden konventionelle c-Kit negative NK-Zellen sowie IL-18 generierte c-Kit positive NK-Zellen in drei unabhängigen Versuchen isoliert bzw. generiert (Abb. 3.3). Für die Herstellung der IL-18 kultivierten NK-Zellen wurden zunächst CD3- / NK1.1+ / c-Kit- / CD11b- NK-Zellen aus Milzen von C57BI/6 Mäusen gewonnen und mit rm-IL-2 und rm-IL-18 kultiviert. Am folgenden Tag wurden die entstandenen CD3- / NK1.1+ / c-Kit+ / CD11b-NK-Zellen isoliert und im Vergleich zu frisch isolierten CD3- / NK1.1+ / c-Kit- / CD11b+ NK-Zellen in der Gen-Expressionsanalyse eingesetzt. Dabei konnten Unterschiede zwischen den frisch isolierten NK-Zellen und den IL-18 stimulierten NK-Zellen auf Transkriptionsebene nachgewiesen werden (Abb. 3.4; Tab. 7.1, siehe Anhang). In Bezug auf die Funktionalität exprimieren IL-18 generierte NK-Zellen zwei Gene mit potentiellen immunsuppressiven Eigenschaften um mindestens den Faktor 2 höher als die unstimulierten NK-Zellen. Dabei handelt es sich um i) die Häm-Oxygenase (HO-1, 5.7-fache Erhöhung), die die Abstoßung von allogenen Transplantaten inhibiert (SCHNICKEL et al. 2006) und ii) PD-1L (2.58-fache Erhöhung), welches durch Bindung an seinen Rezeptor (PD-1) zur Apoptose der Zielzelle führt (ANSARI et al. 2003). Außerdem werden drei Gene mit NK-Zell-aktivierender Wirkung in den IL-18 generierten NK-Zellen um mehr als den Faktor 2 niedriger exprimiert als in den unstimulierten NK-Zellen. Dabei handelt es sich um i) NKG2I (4.08-fach niedrigere Expression), ein Aktivierungs-Rezeptor, der eine Rolle in der Erkennung und Abstoßung von allogenen Transplantaten spielt (KOIKE et al. 2004), ii) CD244 (2B4, 2.47-fach niedrigere Expression), welches in seiner Abwesenheit die NK-vermittelte Lyse von aktivierten CD8 positiven T-Zellen (WAGGONER et al. 2010) sowie NK-Zellen

Abb. 3.3: Isolierung und Generierung von IL-18 inkubierten NK-Zellen

(A) Isolierung von konventionellen, frischen NK-Zellen. Lebende (P1) NK1.1 aufgereinigte Zellen wurden phänotypisch auf CD3 negativ (P2), NK1.1 positiv und c-Kit negativ (P3) sowie CD11b negativ (P5) sortiert. Diese Zellen wurden mit IL-2 und IL-18 Nacht kultiviert. über Anschließend erfolgte die Isolierung der IL-18 generierten NK-Zellen (B). Dabei wurden die lebenden (P1) Zellen wiederum phänotypisch auf CD3 negativ (P2), NK1.1 und c-Kit positiv (P4) sowie CD11b negativ (P5) sortiert. Es wird eine repräsentative Isolierung dargestellt.

(TANIGUCHI et al. 2007) ermöglicht und iii) Rab27a (Ras-ähnliches GTPase Protein, 2.19-fach niedrigere Expression), welches eine wichtige Rolle in der Bildung und Mobilität von lytischer Granula der NK-Zellen spielt (LIU et al. 2010). Um die Ergebnisse der Gen-Expressionsanalyse auf Translationsebene zu überprüfen, wurden die Zellen mittels FACS Analyse weiter untersucht.

Abb. 3.4: Frisch isolierte NK-Zellen unterscheiden sich maßgeblich im Gen-Expressionsprofil von IL-18 generierten NK-Zellen

Zur Durchführung der Gen-Analyse wurden sowohl frische NK-Zellen als auch IL-18 generierte NK-Zellen in drei unabhängigen Experimenten isoliert bzw. generiert (die Spalten stellen die entsprechenden Aufbereitungen dar). Dargestellt ist eine hierarchische Cluster-Analyse der Gene, deren Expression sich in den beiden Gruppen um mindestens den Faktor 2 unterscheidet (1414 Gene, siehe zusätzlich Tabelle 8.1). Die Farbskala gibt dabei Auskunft über die Regulation der Gene: Runterregulierte Gene werden in grün und hochregulierte Gene in rot dargestellt.

c-Kit neg. NK-Zellen

3.3 Phänotypische Charakterisierung von frisch isolierten und IL-18 generierten NK-Zellen

Wie in der Gen-Expressionsanalyse wurden auch in der FACS-Analyse frisch isolierte CD3– / NK1.1+ / c-Kit– / CD11b+ Zellen mit IL-18 stimulierten CD3– / NK1.1+ / c-Kit+ / CD11b– NK-Zellen verglichen. Wie in der Abbildungen 3.5 dargestellt, führt die IL-18 Inkubation auch auf Proteinebene zu einem erhöhten Signal von PD-1L. So liegt die mittlere Fluoreszenzintensität von PD-1L bei den unstimulierten NK-Zellen bei 932 und bei IL18-generierten NK-Zellen bei 4667. Die Gen-Expressionsresultate bezüglich der HO-1 konnten auf Proteinebene bestätigt werden: Eine IL-18 Stimulierung führte zu einer erhöhten Quantität von HO-1 auf NK-Zellen. Es konnten weiterhin keine Unterschiede für die Oberflächenmoleküle CD244 und NKG2D sowie für den Transkriptionsmarker RORyt beobachtet werden. Betrachtet man den Reifungsmarker CD27, so zeigen die IL-18 generierten NK-Zellen eine niedrigere Expression als die konventionellen NK-Zellen.

3.4 Existenz von naïven NK1.1+ / c-Kit+ NK-Zellen in NOD-Mäusen

Zunächst wurde die Frequenz der naïven c-Kit negativen und c-Kit positiven NK-Zellen in der Milz und in den Lymphknoten von nicht-diabetischen NOD-Mäusen (definiert als Blutglukose < 300 mg/dl) mit der Frequenz der Zellen in gleich alten C57Bl/6 Wildtyp-Mäusen verglichen. Dabei zeigten NOD-Mäuse sowohl in der Milz (p < 0.0001) als auch in den Lymphknoten (p = 0.0007) signifikant weniger c-Kit negative NK-Zellen als C57Bl/6 Mäuse (Abb. 3.6 A). Der NODund C57BI/6-Maus Unterschied zwischen in Bezua auf die NK-Zell-Frequenz wird deutlicher, wenn man die Frequenz der c-Kit positiven NK-Zellen betrachtet. So haben NOD-Mäuse im Vergleich zu C57Bl/6 WT-Mäusen 14.7-fach weniger c-Kit positive NK-Zellen in der Milz und 17.2-fach weniger c-Kit positive NK-Zellen in den Lymphknoten (p < 0.0001 bzw. p = 0.0012, Abb. 3.6 B). Diese Beobachtungen führen zu einem Verhältnis von c-Kit negativen zu c-Kit positiven NK-Zellen von 4.5 ± 1.0 in der Milz von nicht-diabetischen C57BI/6 Mäusen und von 21.5 ± 8.5 in der Milz von Diabetes-freien NOD-Mäuse

Abb. 3.5: Verifizierung der Gen-Expressionsanalyse auf Translationsebene

Die Quantität verschiedener Proteine von frisch isolierten konventionellen (schwarz) sowie IL-18 generierten (rot) NK-Zellen wurde mit Hilfe von FACS-Analysen untersucht. Dargestellt sind die entsprechenden Histogramme, wobei die Isotyp-Kontrolle in blau eingezeichnet wurde. IL-18 generierte NK-Zellen besitzen mehr PD-1L und HO-1 auf ihrer Oberfläche als frisch isolierte konventionelle NK-Zellen. Es konnte kein Unterschied beobachtet werden in Bezug auf CD224, NKG2D und RORyt. Im Gegensatz dazu befindet sich auf der Oberfläche von IL-18 generierten NK-Zellen weniger CD27.

Abb. 3.6: Frequenz der naïven c-Kit negativen und c-Kit positiven NK-Zellen in der C57BI/6 und Diabetes-freien NOD-Maus

Zur Bestimmung der Quantität der naïven c-Kit positiven und negativen NK-Zellen in Milz und Lymphknoten wurden gleich-alte C57BI/6 (n = 6) und Diabetes-freie NOD-Mäuse (n = 7) miteinander verglichen. (A) Die FACS-Analyse ergab eine 3.1- bzw. 4.5-fach niedrigere Frequenz von c-Kit negativen NK-Zellen in der Milz (p < 0.0001) bzw. in den Lymphknoten (p = 0.0007) von NOD-Mäusen. (B) Bezüglich der c-Kit positiven NK-Zellen konnte in den NOD-Mäusen eine 14.7- bzw. 17.2-fach niedrigere Frequenz in der Milz (p < 0.0001) bzw. den Lymphknoten (p = 0.0012) beobachtet werden.

Im nächsten Schritt wurde die alters-abhängige NK-Zell-Frequenz in den NOD-Mäusen untersucht. Dazu wurden die Mäuse zu unterschiedlichen Zeitpunkten (zwischen den Lebenswochen 5 und 18) untersucht (Abb. 3.7). Im Alter von 8 Wochen kommt es bei der NOD-Maus zu einer erhöhten Frequenz von c-Kit negativen NK-Zellen in der Milz (Abb. 3.7 A) und in den Lymphknoten (Abb. 3.7 B). Verglichen mit der Frequenz der Zellen im Alter von 5 Wochen, kann man in der Milz eine 1.2-fache und in den Lymphknoten eine 6.4-fache Zunahme Zellen beobachten. Diese Daten stehen im Einklang mit bereits der veröffentlichten Daten, die belegen, dass es in der NOD-Maus im Prädiabetes-Stadium einer Hochregulierung von aktivierten NK-Zellen kommt zu (OGASAWARA et al. 2004). Zum gleichen Zeitpunkt konnte aber auch eine 2.7-fach erhöhte Frequenz von c-Kit positiven NK-Zellen in der Milz und eine

7.1-fach erhöhte Frequenz in den Lymphknoten beobachtet werden. Gleichzeitig kommt es zu einer erhöhten Häufigkeit von aktivierten CD8+/CD107a+ zytotoxischen T-Zellen (*"cytotoxic T cells",* CTL) in beiden Geweben.

 \Box c-Kit pos. NK-Zellen \circ c-Kit neg. NK-Zellen

▲ CD8/CD107a pos. T-Zellen

Abb. 3.7: Alters-abhängige Frequenz der naïven c-Kit negativen und c-Kit positiven NK-Zellen in der NOD-Maus

Die altersabhängige Frequenz (n = 4 zu jedem Zeitpunkt) der c-Kit positiven und negativen NK-Zellen sowie der aktivierten CD8 T-Zellen in Milz (A) und Lymphknoten (B) von NOD-Mäusen wurde mittels FACS-Analyse untersucht. Im Alter von 8 Wochen ist eine starke Zunahme der c-Kit positiven und negativen sowie der CD8 positiven T-Zellen zu verzeichnen. Im Vergleich zum Ausgangswert (Alter: 5 Wochen), stieg die Frequenz der c-Kit negativen NK-Zellen signifikant in den Lymphknoten an (p = 0.0045). Gleichzeitig nahm die Frequenz der c-Kit positiven NK-Zellen in der Milz (p = 0.03) und in den Lymphknoten (p = 0.0023) zu.

3.5 Existenz von naïven NK1.1+ / c-Kit+ NK-Zellen in STZ-behandelten Mäusen

Anschließend wurde die Frequenz der NK1.1+ / c-Kit+ NK-Zellen im STZ-vermittelten Diabetes-Mausmodell in Abhängigkeit des Blutglukose-Wertes beobachtet. Naïve c-Kit positive und c-Kit negative NK-Zellen wurden in den Langerhans' Inseln des Pankreas von STZ-behandelten Mäusen untersucht und mit der Frequenz der Zellen in C57Bl/6 Mäusen in Bezug auf die Blutglukose-

Konzentration verglichen. Hier zeigte sich, dass die Zahl der konventionellen c-Kit negativen NK-Zellen sich nicht in Abhängigkeit der Blutglukose verändert (Abb. 3.8 A). Interessanterweise konnte aber eine Korrelation zwischen den c-Kit positiven NK-Zellen und der Blutglukose-Konzentration gezeigt werden. In der prä-diabetischen Maus (Blutglukose-Konzentration < 200 mg/dl) waren ca. 10% aller NK1.1-Zellen c-Kit positiv und in den gesunden Kontrollen nur 1% (p = 0.0098). Mit dem weiteren Anstieg der Blutglukose-Konzentration auf 200 bis 299 mg/dl nahm die Frequenz der c-Kit positiven NK-Zellen weiter zu. Zu diesem Zeitpunkt waren 12.1% \pm 10.1% aller Pankreas-infiltrierender CD45 positiver Zellen NK1.1 und c-Kit doppelt positiv (p = 0.0044, Abb. 3.8 B). Abbildung 3.9 zeigt eine repräsentative FACS-Analyse.

Die Frequenz der c-Kit negativen (A) und c-Kit positiven (B) NK-Zellen wurde mittels Durchflusszytometrie untersucht. Dabei wurden STZ-behandelte Mäuse (n = 25) in Abhängigkeit der Blutglukose-Werte in Gruppen eingeteilt. Gesunde C57BI/6 Mäuse (Blutglukose: 113.8 ± 11.5 mg/dl) dienten als Kontrolle (n = 10). Die Frequenz der c-Kit negativen NK-Zellen in den Langerhans' Inseln veränderte sich nicht in Abhängigkeit der Blutglukose. Im Gegensatz dazu stieg die Frequenz der c-Kit positiven NK-Zellen bis zu einem Blutglukose-Wert von 299 mg/dl auf 12.1% ± 10.1% an. p ≤ 0.0098 (**)

Abb. 3.9: Frequenz von naïven c-Kit positiven NK-Zellen in der STZ-behandelten Maus (repräsentative FACS-Analyse)

Aus Langerhans' Inseln von STZ-behandelten C57BI/6 Mäusen wurden Einzelzellsuspensionen hergestellt und diese auf lymphozytäre Infiltrationen untersucht. Lebende (A, R1), CD45 positive (B, R2) Zellen wurden mittels Durchflusszytometrie analysiert. Gesunde C57BI/6 Mäuse zeigten keine Infiltration durch c-Kit positive NK-Zellen (C). Im Gegensatz dazu infiltrierten c-Kit positive NK-Zellen die Langerhans' Inseln von STZ-behandelten Mäusen mit (D) unauffälligem Blutglukose-Spiegel (hier 185 mg/dl) und (E) hohem Blutglukose-Spiegel (hier 468 mg/dl).

3.6 IL-18 abhängiger Anstieg der NK1.1+ / c-Kit+ NK-Zellen in vivo

Im folgenden Schritt wurde der Effekt von IL-18 auf NK-Zellen *in vivo* untersucht. Dabei erhielten STZ-behandelte Mäuse eine dreimalige intraperitoneale Injektion von jeweils 500 ng rm-IL-18. Die erste Verabreichung erfolgte am ersten Tag der STZ-Gabe und wurde im Abstand von drei Tagen wiederholt. Einen Tag nach der finalen IL-18 Injektion wurden die Mäuse getötet und die Häufigkeit der c-Kit positiven NK-Zellen in Milz und Lymphknoten im Vergleich zur Kontrollgruppe (STZ-behandelte Mäuse) untersucht. In beiden Geweben führte die Verabreichung von rm-IL-18 zu einer signifikanten Zunahme der c-Kit positiven NK-Zellen: Die Anzahl der c-Kit positiven NK-Zellen nahm von 1.5% \pm 0.2% auf 2.1% \pm 0.26% in den Milzen (p = 0.0056) und von 0.47 \pm 0.29% auf 1.6 \pm 0.36% (p = 0.0002) im Knochenmark zu (Abb. 3.10).

Abb. 3.10: rm-IL-18 induziert die Entstehung von c-Kit positiven NK-Zellen *in vivo*

STZ-behandelte Mäuse erhielten parallel zur STZ-Gabe rm-IL-18 intraperitoneal (n = 6). Die Frequenz der c-Kit positiven NK-Zellen wurde mit Hilfe der Durchflusszytometrie im Vergleich zur Kontroll-Gruppe (STZ-behandelte Mäuse, n = 6) in der Milz und im Knochenmark untersucht. Die Gabe von IL-18 führte in beiden Geweben zu einer signifikanten Erhöhung der c-Kit positiven NK-Zell Fraktion (Milz: p = 0.0056; Knochenmark: p = 0.0002).

3.7 Langerhans' Inseln des Pankreas bilden IL-18 nach Stimulation mit IFN-y

Da es in den STZ-behandelten Mäusen zu einem Blutglukose-abhängigen Anstieg der c-Kit positiven NK-Zellen im Pankreas kam, wurde im folgenden Schritt untersucht, ob Langerhans' Inseln IL-18 sezernieren, wenn sie sich im inflammatorischen Zustand befinden. Dafür wurden isolierte Langerhans' Inseln mit IFN-y in unterschiedlichen Konzentrationen inkubiert und anschließend *"Real-time"* PCR-Analysen durchgeführt. Dabei wurde beobachtet, dass die IL-18 Expression mit steigender IFN-y Konzentration zunahm (Abb. 3.11). So führte die Inkubation mit 200 und mit 2000 U/ml IFN-y zu einer signifikant erhöhten IL-18 Expression in den Langerhans' Inseln (p = 0.0043 bzw. p = 0.0026).

Abb. 3.11: IFN-y induziert die IL-18 Expression in Langerhans' Inseln auf Transkriptionsebene

Isolierte pankreatische Inseln wurden mit unterschiedlichen IFN-y Konzentrationen über Nacht inkubiert. Die Resultate der *"real time"* PCR zeigten eine signifikante konzentrationsabhängige Zunahme der IL-18 Expressionslevel ($p \le 0.0043$)

3.8 IL-18 generierte c-Kit positive NK-Zellen lysieren aktivierte Antigenspezifische CTLs

Da in der Entstehung des T1DM T-Zellen und insbesondere Antigen-spezifische T-Zellen eine wichtige Rolle spielen, wurde in den anschließenden Experimenten die Apoptose-induzierende Kapazität von konventionellen c-Kit negativen und IL-18 generierten NK-Zellen untersucht. Dabei wurden die NK-Zellen entweder mit Antigen-unspezifischen oder mit Insulin-spezifischen aktivierten CD8 positiven T-Zellen inkubiert. Die Inkubation mit Antigen-unspezifischen aktivierten CTLs als Zielzellen und konventionellen c-Kit negativen NK-Zellen als Effektor-Zellen führte in den CTLs zu einer Apoptose-Induktion von 8.8%. Im Gegensatz dazu waren IL-18 generierte c-Kit positive NK-Zellen in der Lage, bei 41% der CTLs die Apoptose zu induzieren (Abb. 3.12). ⁵¹Chrom-Analysen konnten diese Resultate bestätigen. Die Kokultur von IL-18 generierten c-Kit positiven NK-Zellen und Antigen-unspezifischen aktivierten CTLs führte zur Apoptose-Induktion in $30.0\% \pm 6.6\%$ der CTLs (Abb. 3.13 A). Dieser Lyse-Mechanismus konnte über die Zugabe von blockierendem anti-PD-1L-Antikörper signifikant inhibiert werden (Lyse-Reduktion um 80.8%, p = 0.004).

Neben der Verwendung von Antigen-unspezifischen aktivierten CTLs als Zielzellen, wurden auch Insulin-spezifische CTLs eingesetzt, was zu ähnlichen Ergebnissen führte. Auch hier konnten IL-18 generierte c-Kit positive NK-Zellen bei $39.0\% \pm 3.2\%$ der CTLs eine Apoptose induzieren (Abb. 3.13 B). Der verantwortliche Mechanismus war in diesem Fall ebenfalls der PD-1/PD-1L-Weg, da auch hier die Zugabe von blockierendem anti-PD-1L-Antikörper zu einer Lyse-Reduktion von 59% führte (p < 0.0001). Im Gegensatz dazu, bewirkte die Blockade von Granzym B, Perforin und TRAIL keine Reduktion der CTL-Lyse. Weiterhin konnten weder IL-18 generierte c-Kit positive noch konventionelle c-Kit negative NK-Zellen eine Apoptose-Induktion bei CD4 positiven T-Zellen bewirken.

Annexin V FITC

Abb. 3.12: IL-18 generierte NK-Zellen lysieren aktivierte unspezifische CD8 positive T-Zellen (Annexin V Färbung)

Dargestellt wird eine repräsentative Annexin Färbung von CD3/CD28-aktivierten, unspezifischen T-Zellen. Nach über Nacht Kultur dieser Zellen in Medium befanden sich 3.6% der Zellen in der Apoptose. Die Annexin-positiv-Kontrolle (Zugabe von 15 µM Camptothecin) zeigte eine Erhöhung der apoptotischen Zellen auf 76%. Wurden die aktivierten CD8 positiven Zellen mit IL-18 generierten NK-Zellen kultiviert, so gingen 41% der Zellen ins Stadium der Apoptose über. Im Falle der Kokultur mit konventionellen NK-Zellen belief sich die Anzahl der apoptotischen T-Zellen auf 8.8%.

Abb. 3.13: IL-18 generierte NK-Zellen lysieren sowohl Antigen-unspezifische als auch spezifische CD8 positive T-Zellen (51 Chrom-Freisetzung) IL-18 generierte NK-Zellen wurden über Nacht mit 51 Chrom-markierten Antigenunspezifischen (A) und Insulin-spezifischen (B) T-Zellen kultiviert. Wurden unspezifische T-Zellen als Zielzellen verwendet (n = 3), so konnte eine lytische Aktivität der IL-18 generierten NK-Zellen von $30.0\% \pm 6.6\%$ beobachtet werden. Durch Zugabe des PD-1L blockierenden Antikörpers wurde die Lyse signifikant um 80.8% inhibiert (p = 0.04). Beim Einsatz der Insulin-spezifischen T-Zellen als Zielzellen (n = 6), wurde eine lytische Aktivität von $39.0\% \pm 3.2\%$ beobachtet, die wiederum durch die Zugabe des PD-1L blockierenden Antikörpers signifikant um 59% inhibiert werden konnte (p < 0.0001).

3.9 Lymphozytäre Infiltration des Pankreas besteht aus CD8 und PD-1 positiven T-Zellen

Eine fünfmalige Injektion von 40 mg/kg Körpergewicht STZ führt zur gewebespezifischen Aufnahme der Substanz durch ß-Zellen und infolgedessen zur zellulären Infiltration des Pankreas (LIKE et al. 1976c). Es wurde weiterhin gezeigt, dass es bei NOD-Mäusen zu einer Infiltration von PD-1 positiven T-Zellen kommt (ANSARI et al. 2003). Um dieses Phänomen in STZ-behandelten Mäusen zu überprüfen, wurden in dieser Arbeit die Pankreata der STZ-behandelten Mäuse immunhistologisch gefärbt. Dabei wurde für STZ-behandelte Mäuse ebenfalls eine Infiltration von CD8 und PD-1 positiven T-Zellen beobachtet (Abb. 3.14).

Abb. 3.14: Pankreas-infiltrierende Zellen der STZ-behandelten Maus sind CD8 und PD-1 positiv

Mit Hilfe der konfokalen Mikroskopie konnte gezeigt werden, dass es sich bei den Pankreas-infiltrierenden Zellen der STZ-behandelten Maus um CD8 und PD-1 positive T-Zellen handelte. Dargestellt ist eine repräsentative Färbung einer Insulin positiven Langerhans' Insel (rot), die von CD8 positiven und PD-1 positiven T-Zellen (grün) angegriffen wird. Die Zellkerne sind blau dargestellt.

Maßstab: Balken entsprechen jeweils 5 µm (zusätzliche Vergrößerung der eingerahmten Fläche)

3.10 Partielle Diabetes Prävention nach Behandlung mit IL-18 generierten c-Kit positiven NK-Zellen

Um die Rolle der IL-18 generierten c-Kit positiven NK-Zellen *in vivo* zu untersuchen, wurden STZ-behandelte Mäuse verwendet. Dabei wurden die Mäuse entweder mit IL-18 generierten c-Kit positiven NK-Zellen, konventionellen c-Kit negativen NK-Zellen oder mit NaCl (Kontrolle) behandelt. Die Verabreichung von IL-18 generierten c-Kit positiven NK-Zellen führte zu einer Verzögerung der Diabetes-Manifestation (definiert als Blutglukosewert ≥ 300 mg/dl) im Vergleich zum Einsatz von unstimulierten c-Kit negativen NK-Zellen oder den Kontrollen (Abb. 3.15). Im Alter von 7 Wochen hatten alle Kontroll-Mäuse (100%), 66.6% c-Kit negativ-NK-Zell-behandelte Mäuse und nur 26.6% c-Kit positiv-NK-Zell-behandelte Mäuse und nur 26.6% c-Kit positiv-NK-Zell-behandelte Mäuse einen Blutglukosespiegel von mehr als 300 mg/dl. Dabei konnte die Gabe von IL-18 generierten c-Kit positiven NK-Zellen zu einer signifikanten Verzögerung der Diabetes-Manifestation im Vergleich zu den

Kontroll-Tieren führen (p = 0.006). Im Alter von 10 Wochen entwickelten alle Mäuse, die mit c-Kit negativen NK-Zellen behandelt wurden, einen Diabetes. In der Gruppe, die c-Kit positive NK-Zellen erhalten hatten waren es zu diesem Zeitpunkt nur 53.3% der Mäuse. Dieser Unterschied erreichte statistische Signifikanz (p = 0.0271).

Abb. 3.15: Diabetes-Inzidenz der STZ-behandelten Mäuse wird durch die Gabe von IL-18 generierten NK-Zellen verbessert

C57BI/6 Mäuse wurden mit STZ behandelt und erhielten anschließend eine dreimalige intravenöse Injektion von IL-18 generierten NK-Zellen (n = 15), konventionellen NK-Zellen (n = 9) oder NaCI als Kontrolle (n = 7). Die Diabetes-Inzidenz (Erreichen einer Blutglukose von 300 mg/dl) wurde beobachtet, wobei die Gabe der IL-18 generierten NK-Zellen zu einer signifikanten Verzögerung der Diabetes-Inzidenz im Vergleich zur Kontrollgruppe (p = 0.006, **) als auch zur konventionellen NK-Zell-Gruppe (p = 0.0271, *) führte.

Zur weiteren Analyse des Effekts von IL-18 generierten c-Kit positiven NK-Zellen *in vivo* im Diabetes-Mausmodell, wurde der Diabetes-Verlauf bis zum Alter von 18 Wochen beobachtet. Wurde bei einer Maus in zwei aufeinanderfolgenden unabhängigen Blutglukose-Messungen ein Wert von 600 mg/dl gemessen, so erreichte sie den definierten Endpunkt des schweren Diabetes. Abbildung 3.16 zeigt die mittleren Blutglukosewerte aller drei Maus-Gruppen. Im Alter von 12 Wochen entwickelten bereits 77.8% der Mäuse, die mit konventionellen NK-Zellen behandelt wurden, einen schweren Diabetes. Zum gleichen Zeitpunkt waren in der

Gruppe, die mit IL-18 generierten NK-Zellen behandelt wurden, nur 33.3%

Abb. 3.16: IL-18 generierte NK-Zellen führen zu niedrigeren mittleren Blutglukose-Werten in STZ-behandelten Mäusen

Über einen Zeitraum von 18 Wochen wurden die Blutglukose-Werte der Mäuse gemessen. In der Abbildung sind die Mittelwerte der Blutglukose sowie das Erreichen des Endpunktes für die Mäuse der jeweiligen Gruppe dargestellt. Die Gabe von IL-18 generierten NK-Zellen führte zu signifikant niedrigeren mittleren Blutglukose-Werten über den Zeitraum von 18 Wochen (IL-18 generierte NK-Zellen vs. NaCl-Kontrolle sowie IL-18 generierte NK-Zellen vs. konventionelle NK-Zellen: p < 0.0001).

und in der Kontroll-Gruppe nur 42.8% der Mäuse betroffen. Im weiteren Verlauf, im Alter von 14 Wochen, zeigten alle Mäuse (100%), die mit konventionellen NK-Zellen behandelt wurden, 57.14% der Kontroll-Mäuse und lediglich 40% der Mäuse, die mit IL-18 generierten-NK-Zellen behandelt wurden, schweren Diabetes. Im Alter 17.5 Wochen von waren noch immer 40% der Mäuse, die IL-18 generierte NK-Zellen erhalten haben, frei von Diabetes. dieser 6 verbliebenen Der Blutalukosewert Mäuse betrua im Mittel 179.5 mg/dl. Der Vergleich der Summe der mittleren Blutglukosewerte von IL-18

generierte versus konventionelle NK-Zellen sowie von IL-18 generierten NK-Zellen versus Kontroll-Mäusen erreichte hoch signifikante Unterschiede (p < 0.0001). Um zu untersuchen, ob der PD-1 / PD-1L Signalweg *in vivo* für den Diabetes protektiven Effekt der IL-18 generierten Zellen verantwortlich ist, wurden STZ-behandelten Mäusen IL-18 generierte NK Zellen verabreicht, bei denen zuvor der PD-1 / PD-1L Signalweg *in vitro* durch einen inhibierenden Antikörper geblockt

wurde. Diese Mäuse entwickelten alle einen schweren Diabetes innerhalb von 16 Wochen und unterschieden sich nicht von der Kontroll-Gruppe, die nur STZ erhalten hat (Abbildung 3.17).

Abb. 3.17: PD-1L geblockte IL-18 generierte NK Zellen können den STZ-induzierten Anstieg der mittleren Blutglukose-Werte nicht beeinflussen Über einen Zeitraum von 18 Wochen wurden die Blutglukose-Werte der Mäuse gemessen. In der Abbildung sind die Mittelwerte der Blutglukose sowie das Erreichen des Endpunktes für die Mäuse der jeweiligen Gruppe dargestellt. Die Gabe von PD-1L geblockten, IL-18 generierten NK-Zellen konnte den STZ-bedingten Anstieg der Blutglukosewerte nicht beeinflussen (IL-18 generierte NK-Zellen vs. PD-1L geblockte IL-18 generierte NK-Zellen: p < 0.0001). Daten der Maus-Gruppe, die IL-18 generierte NK-Zellen erhalten hat, werden ebenfalls in Abb. 3.16 dargestellt.)

3.11 Migration und Infiltration von c-Kit positiven NK-Zellen

Im folgenden Schritt sollte die Migrationsfähigkeit der verabreichten NK-Zellen untersucht werden. Um dieser Frage nachzugehen, wurde die Anzahl der Langerhans' Insel infiltrierenden c-Kit positiven NK-Zellen in den drei behandelten Gruppen bestimmt. In der Gruppe, die IL-18 generierte NK-Zellen erhalten hatten, machten c-Kit positive NK-Zellen $6.5\% \pm 2.7\%$ der CD45 positiven Insel-infiltrierenden Zellen aus. Im Gegensatz dazu, konnten in den Infiltraten der Mäuse, die mit konventionellen NK-Zellen behandelt wurden, nur $0.14\% \pm 0.16\%$ c-Kit und CD45 positive Zellen beobachtet werden (p = 0.03). Abbildung 3.18 zeigt eine repräsentative FACS-Analyse.

Zusätzlich wurden Migrations-Experimente unter Verwendung von CD45.1 positiven C57BI/6-Ly5 Mäusen durchgeführt. IL-18 generierte NK-Zellen aus CD45.2 positiven C57BI/6 Mäusen wurden intravenös in CD45.1 positive Mäuse transferiert. 24 Sunden nach Transfer wurden die meisten Zellen im Blut der Mäuse gefunden (0.53%). Interessanterweise befanden sich in den pankreatischen Lymphknoten ebenso viele IL-18 generierte NK-Zellen wie in der Milz und signifikant mehr als in den inguinalen Lymphknoten (p = 0.007, Abb. 3.19).

Abb. 3.18: c-Kit positive NK-Zellen im Pankreas von STZ-behandelten Mäusen nach Transfer von IL-18 generierten c-Kit positiven NK-Zellen 24 Stunden nach der Injektion von IL-18 generierten NK-Zellen wurden die Langerhans' Inseln isoliert und die infiltrierenden lymphozytären Zellen untersucht. Dabei wurden lebende (R1) und CD45 positive (R2) Zellen analysiert. Im Vergleich zur Isotyp-Kontrolle (unten, links) konnten c-Kit positive NK-Zellen eindeutig nachgewiesen werden (unten, rechts).

Abb. 3.19: Adoptiver Transfer von IL-18 generierten NK-Zellen

Um naïve und transferierte (IL-18 generierte) c-Kit positive NK-Zellen *in vivo* unterscheiden zu können wurden CD45.2 positive C57BI/6-Mäuse als Spender und CD45.1 positive C57BL/6-Ly5 Mäuse als Empfänger verwendet. IL-18 generierte CD45.2 positive NK-Zellen wurden intravenös transferiert. 24 Stunden nach Transfer wurden das Blut, die Milz, die inguinalen und die pankreatischen Lymphknoten der CD45.1 positiven Maus untersucht. Dabei wurden 0.53% der transferierten Zellen im Blut und 0.11% in der Milz gefunden. In den pankreatischen Lymphknoten wurden signifikant mehr transferierte Zellen gefunden als in den inguinalen Lymphknoten (0.11% vs. 0.01%, p = 0.007).
4 Diskussion

Eine Autoimmunerkrankung entsteht in Folge des Zusammenbruchs der Selbst-Toleranz. Dadurch reagieren die Zellen des erworbenen Immunsystems auf körpereigene Antigene und verursachen die Zerstörung vom körpereigenen, gesunden Gewebe. Der T1DM zählt zu den Organ-spezifischen Autoimmunerkrankungen und wird meistens bereits im Kindes- und Jugendalter diagnostiziert. Jedes Jahr werden in den USA 11.000 und in Europa 15.000 Neuerkrankte gezählt (DEVENDRA et al. 2003; PATTERSON et al. 2009). Aufgrund der fehlgeleiteten Immunreaktion werden die Insulin-produzierenden ß-Zellen des Pankreas zerstört, was zum einen zur Hyperglykämie und zum anderen zu Diabetes-assoziierten Komplikationen führen kann. Andere Autoimmun-erkrankungen wie Zöliakie, Morbus Addison und Autoimmunthyroiditis sind mit dem T1DM vergesellschaftet. Die Haupttherapie sieht eine Insulin-Substitution vor, was allerdings keinen Effekt auf den autoimmunologischen Prozess ausübt (AMERICAN DIABETES ASSOCIATION 2008).

Da eine kooperierende Arbeitsgruppe in initialen Experimenten beobachtete, dass IL-18 zur Entstehung von NK-Zellen mit immunregulatorischen Eigenschaften führt (ULLRICH E et al. 2008), sollte in der vorliegenden Arbeit untersucht werden, welchen Einfluss diese IL-18 generierten NK-Zellen auf den T1DM haben. Durch Gen-Expressions- und FACS-Analysen wurde beobachtet, dass IL-18 die Expression von PD-1L und c-Kit sowohl auf Transkriptions- als auch auf Translationsebene erhöht. *In vivo* Untersuchungen zeigten, dass die Frequenz der naïven c-Kit positiven NK-Zellen in beiden verwendeten T1DM-Mausmodellen zum Zeitpunkt der Diabetes-Entstehung zunimmt. Weiterhin konnte durch Annexin-Färbungen und Chrom-Freisetzungs-Versuche gezeigt werden, dass IL-18 generierte NK-Zellen Gewebe-spezifische T-Zellen lysieren können und dass sie nach adoptivem Transfer in STZ-behandelte Mäuse die Inzidenz des Diabetes verzögern können.

4.1 Mausmodelle

In der vorliegenden Arbeit wurden die in der Literatur am häufigsten zitierten T1DM Mausmodelle verwendet. Dabei handelt es sich um STZ-behandelte C57BI/6 Wildtyp und NOD Mäuse. Verwendung fanden NOD-Mäuse bei der

Analyse der naïven, konventionellen und c-Kit positiven NK-Zellen. Alle weiteren Experimente (Gen-Expressionsanalysen, weiterführende FACS-Analysen, sämtliche in vivo Experimente, etc.) wurden mit Hilfe von STZ-behandelten Mäusen durchgeführt. Dies lag in erster Linie daran, dass man in NOD-Mäusen eine signifikant niedrigere Anzahl an peripheren NK-Zellen vorfindet als in anderen Wildtyp-Mäusen. Bei NOD-Mäusen ist eine Akkumulation von NK-Zellen im Knochenmark zu beobachten, was darauf schließen lässt, dass ein Defekt im NK-Export in diesem Mausmodell vorliegt (POULTON et al. 2001). Unsere Experimente bestätigen diese Aussage. Im Vergleich zu C57BI/6-Mäusen fanden wir in NOD-Mäusen in der Milz und in den Lymphknoten eine signifikant niedrigere Frequenz von naïven c-Kit negativen als auch c-Kit positiven NK-Zellen vor (Abb. 3.6). Neben diesen phänotypischen und guantitativen Abnormalitäten in der NOD Maus wird vermutet, dass diese veränderten NK-Zellen der NOD Maus zur Entstehung des Diabetes in diesem Mausstamm führen. Diese Beobachtungen machten es praktisch unmöglich NOD-Mäuse für die weiterführenden Experimente zu verwenden.

4.2 NK-Zellen im Diabetes-Mausmodell

Frühere Veröffentlichungen haben zeigen können, dass T-Zellen für die Entstehung und Progression von T1DM verantwortlich sind, da sie Insulin produzierende ß-Zellen des Pankreas selektiv zerstören (LENNON et al. 2009). NK-Zellen scheinen bei diesem autoimmunen Prozess eine partizipierende Rolle zu spielen, da sie sowohl im Pankreas von T1DM-Patienten (DOTTA et al. 2007) als auch im Pankreas von Diabetes-Mausmodellen detektiert wurden (ALBA et al. 2008; BRAUNER et al. 2010; FLODSTROM et al. 2002; GUR et al. 2010; POIROT et al. 2004). Die Rolle von NK-Zellen im T1DM ist aber bisher unklar. Gerade das NOD-Mausmodell, welches dem humanen T1DM am ähnlichsten ist, da es spontan entsteht, liefert widersprüchliche Ergebnisse. Die Frage ob NK-Zellen protektiv oder induzierend wirken, kann bisher nicht geklärt werden. So ist das Verhältnis von NK-Zellen im Knochenmark zu NK-Zellen in der Peripherie in NOD-Mäusen im Vergleich zu anderen Wildtyp-Mäusen zugunsten der NK-Zellen im Knochenmark verschoben (POULTON et al. 2001). Des Weiteren unterscheiden sich pankreatische NK-Zellen der NOD-Maus von anderen Maus-Stämmen, da sie eine geringere Aktivität des aktivierenden Rezeptors

74

NKG2D aufweisen (OGASAWARA et al. 2003) und das Oberflächenmolekül *"killer cell lectin-like receptor G1*" stärker exprimieren. Obwohl es sich hierbei um einen Proliferationsmarker von reifen NK-Zellen handelt, ist die Proliferationsrate der pankreatischen NK-Zellen der NOD-Maus niedrigerer als die der anderen Maus-Stämme (BRAUNER et al. 2010). Zusätzlich konnte gezeigt werden, dass Splenozyten der NOD-Maus eine reduzierte zytotoxische Funktion (KATAOKA et al. 1983) aufweisen. Lee et al. konnten in ihren Untersuchungen zeigen, dass die einmalige Gabe von komplettem Freund'schen Adjuvans (*"complete Freunds Adjuvans"*) CFA die Entstehung des Diabetes in der NOD-Maus verhindert. Dabei wurden NK-Zellen als die verantwortlichen immunoregulierenden Zellen diagnostiziert, da eine Depletion der NK-Zellen unter Applikation von CFA die Entstehung des Diabetes nicht verhindern konnte (LEE et al. 2004).

In Bezug auf die beiden hier verwendeten T1DM-Mausmodelle zeigen die vorliegenden Ergebnisse, dass es innerhalb der Gruppe der NK-Zellen, immunsuppressive NK-Zellen gibt, deren Anzahl im Zuge der Diabetes-Initiation zunimmt (Abb. 3.7 und 3.8) und die in der Lage sind, aktivierte T-Lymphozyten zu lysieren (Abb. 3.13). Doch warum kann die erhöhte Frequenz dieser naïven NK-Zellen die Entstehung und Progression des Diabetes nicht verhindern? Die Ursache dafür könnte in der ebenfalls stark ansteigenden Anzahl der konventionellen NK-Zellen und CD8 positiven T-Zellen zu finden sein (Abb. 3.7 und 3.8), die den Pankreas während der Diabetes-Entstehung infiltrieren (Abb. 3.14). Die Tatsache, dass sich das Verhältnis von konventionellen NK-Zellen zu IL-18 generierten PD-1L positiven NK-Zellen zugunsten der konventionellen verschiebt, stellt in diesem Zusammenhang auch eine bedeutende Beobachtung dar. Zusammengefasst kommt es in der Entstehung des Diabetes zu einer überwältigenden, proinflammatorischen Situation, die nicht durch die naïven PD-1L positiven NK-Zellen kann.

4.3 Einfluss von IL-18 auf NK-Zellen

IL-18 spielt in der Regulierung der Immunantwort eine wichtige Rolle, da es in der Lage ist die Reifung von T- und B-Zellen, die Zytokin-Produktion und die Zytotoxizität zu fördern (NAKANISHI et al. 2001; OKAMURA et al. 1995). Zusammen mit IL-12 kann es die reduzierte zytotoxische Fähigkeit von NK-Zellen der NOD-Maus gegenüber YAC-1 Zellen *in vitro* wiederherstellen (JOHANSSON

et al. 2004). Diese Beobachtungen stehen im Einklang mit den vorgestellten Resultaten. Eine 16-stündige Inkubation der NK-Zellen mit IL-18 führte zu einer induzierten Lyse-Aktivität gegenüber aktivierten Gewebe-unspezifischen und – spezifischen CTLs (Abb. 3.12 und 3.13). Ähnliche Beobachtungen wurden von Rabinovich et al. gemacht. Sie verwendeten IL-2 aktivierte NK-Zellen der BALB/c-Maus und inkubierten diese mit syngenen CD4 positiven und CD8 positiven T-Zellen, die zuvor durch APC's aktiviert wurden. Diese Versuche zeigten eine Perforin-vermittelte Lyse der T-Zellen durch IL-2 aktivierte NK-Zellen (RABINOVICH et al. 2003).

In der vorliegenden Arbeit führte die Inkubation mit IL-18 zu einer erhöhten Expression von PD-1L und c-Kit auf Transkriptions- (Abb. 3.4) und Translationsebene (Abb. 3.3 und 3.5). c-Kit gehört zur Gruppe der Rezeptor Tyrosinkinasen und wird vornehmlich auf hämatopoetischen Stammzellen exprimiert. Die Bindung des Liganden (Stammzellfaktor) ist essentiell für die Entstehung eines natürlichen NK-Zell-Repertoires (COLUCCI et al. 2000). Lange wurde die c-Kit Expression ausschließlich für differenzierende Zellen beschrieben (HAYAKAWA et al. 2006). Kürzlich jedoch gelang es sowohl in der Maus als auch im Menschen weitere Zellen zu charakterisieren, die dieses Oberflächenmolekül tragen. Dabei handelt es sich zum einen um fetale Zellen, die die Bildung vom lymphoiden Gewebe induzieren ("*Lympoid Tissue-inducer*", LTi) und zum anderen um mukosale Lymphozyten, die IL-22 als Antwort auf IL-23 bilden können. LTi-Zellen sind essentiell für die Bildung von lymphoiden Organen während der Embryogenese (MEBIUS 2003), werden aber auch in den sekundären lymphatischen Organen, wie der Milz (KIM et al. 2008; TAKATORI et al. 2009) und den Kryptopaches des Dünndarms (KANAMORI et al. 1996) gefunden. C-Kit exprimierende mukosale RORyt+ / NKp46+ Lymphozyten wurden im Darm von ausgewachsenen Mäusen gefunden (LUCI et al. 2009; SANOS et al. 2009) und unterscheiden sich hauptsächlich durch die Expression von NKp46 von LTi-Zellen. Obwohl es Ähnlichkeiten zwischen LTi-Zellen, mukosalen RORyt+ / NKp46+ Lymphozyten, konventionellen NK-Zellen der Lymphknoten sowie der Milz und den IL-18 generierten NK-Zellen gibt, so fallen dennoch phänotypische und funktionelle Unterschiede auf. IL-18 generierte NK-Zellen unterscheiden sich in erster Linie von konventionellen NK-Zellen der Milz und der Lymphknoten durch die Expression von c-Kit und RORyt. Weiterhin unterscheiden sich IL-18

76

generierte NK-Zellen von LTi-Zellen und mukosalen RORyt+ / NKp46+ Lymphozyten durch die Expression von NK1.1. Die Bedeutung der c-Kit Expression auf den oben beschriebenen NK-Zellen ist bisher nicht bekannt.

Die IL-18 Inkubation wirkt sich ebenfalls auf immunoregulatorische Gene aus. Die runter regulierte Expression von Genen, die das Immunsystem aktivieren, wie NKG2I, CD244 und Rab27a deuten auf die immunsuppremierende Wirkung der IL-18 generierten NK-Zellen hin. Weiterhin werden Gene, die beim Erhalt der immunogenen Toleranz eine Rolle spielen, höher exprimiert, wie der PD-L1 und die HO-1 (SCHNICKEL et al. 2006; WANG et al. 2008). Zusammenfassend kann man sagen, dass das IL-18 die Entstehung von immunregulatorischen NK-Zellen eines intermediären Reifestadiums bewirkt, da in erster Linie CD11b negative NK-Zellen eine Veränderung des Phänotyps zeigen. Zusätzlich ist die Expression von CD27 im Vergleich zu konventionellen NK-Zellen verringert. Dennoch sind IL-18 generierte NK-Zellen in der Lage Zielzellen zu lysieren.

4.4 Der PD-1 / PD-1L-Signalweg im Typ 1 Diabetes mellitus

Wie bereits erwähnt, führt IL-18 zu einer erhöhten Expression von PD-1L. Bei seinem Rezeptor, dem PD-1, handelt es sich um ein inhibierendes Molekül, welches auf der Oberfläche von aktivierten T- und NK-Zellen zu finden ist. Die Bedeutung des PD-1 / PD-1L-Signalweges in Autoimmunerkrankungen ist bisher nicht geklärt. Die Untersuchungen an Mausmodellen lieferten widersprüchliche Resultate. Zum einen zieht die Blockade des Weges die Diabetes-Entstehung in weiblichen prädiabetischen NOD-Mäusen, unabhängig vom Alter der Tiere, stark vor (ANSARI et al. 2003). Zum anderen verhindert eine erhöhte Expression von PD-1L auf ß-Zellen die Diabetes-Manifestation in NOD-Mäusen und wirkt somit protektiv (FIFE et al. 2008; WANG et al. 2008). In der vorliegenden Arbeit konnte in vitro gezeigt werden, dass IL-18 generierte NK-Zellen aktivierte CD8 positive T-Zellen über den PD-1 / PD-1L-Signalweg lysieren können. Ferner wurde gezeigt, dass ein adoptiver Transfer dieser Zellen zu einer Verzögerung des Diabetes in STZ-behandelten Mäusen führt. Durch die Inhibierung des PD-1 / PD-1L-Signalweges konnte der beobachtete protektive Effekt der IL-18 generierten NK Zellen aufgehoben werden (Abb. 3.17). Zusammengefasst deuten diese Resultate darauf hin, dass der PD-1 / PD-1L-Signalweg in vivo ebenfalls

verantwortlich sein könnte für die Diabetes-Verzögerung im STZ-Mausmodell nach adoptivem Zelltransfer von IL-18 generierten NK-Zellen.

Die Beobachtung, dass ß-Zellen im Falle einer CD8 positiven T-Zell-Infiltration PD-1L exprimieren und meine Beobachtung, dass IL-18 zu der Generierung von immunmodulierenden NK-Zellen führt. deuten darauf hin. dass der PD-1 / PD-1L-Signalweg sowie das IL-18 an einem Selbstschutz-Mechanismus der Langerhans' Inseln beteiligt sind. Untermauert wird diese Hypothese durch die Veröffentlichung von Hong et al., in der beschrieben wird, dass ß-Zellen in den frühen Stadien der Insulitis endogenes IL-18 produzieren (HONG et al. 2000). Dieses Phänomen steht im Einklang mit den hier vorgestellten Ergebnissen, da in der vorliegenden Arbeit gezeigt wurde, dass die Expression von IL-18 durch Langerhans' Inseln nach Kultur in IFN-y gesteigert wird (Abb. 3.11). Der potenzielle Selbstschutz-Mechanismus von Langerhans' Inseln könnte zusammenfassend aus zwei Strängen bestehen: Zum einen bilden die ß-Zellen PD-1L, wodurch sie über direkten Zellkontakt autoreaktive infiltrierende T-Zellen regulieren. Zum anderen sezernieren pankreatische Inseln endogenes IL-18, wodurch immunmodulierende NK-Zellen entstehen. Trotz dieser Mechanismen wird die Diabetes-Manifestation nicht verhindert, was daran liegen könnte, dass die IL-18 Konzentration am Ort der Entzündung zu niedrig ist und dass es im Vergleich zu der hohen Anzahl an infiltrierenden T-Zellen nur eine geringe Menge an naïven IL-18 generierten NK-Zellen gibt.

4.5 Schlussfolgerung

In der vorliegenden Arbeit konnte ein neuer Mechanismus der Immunregulation bei Autoimmunerkrankungen am Beispiel des murinen T1DM identifiziert werden: Erstmalig wurde gezeigt, dass, die zum angeborenen Immunsystem zählenden NK-Zellen mit den Zellen des erworbenen Immunsystems interagieren und somit durch direkten Zellkontakt bei der Entstehung des T1DM eine Rolle spielen. Zum Zeitpunkt der Diabetes-Manifestation verändert sich die Frequenz von naïven konventionellen NK-Zellen, c-Kit positiven immunomodulierenden NK-Zellen sowie autoreaktiven T-Zellen. Die starke Infiltration des Pankreas durch T-Zellen und konventionelle NK-Zellen hat zur Folge, dass die vorhandenen naïven c-Kit positiven NK-Zellen die Diabetes-Manifestation nicht aufhalten können. Ein adoptiver Zelltransfer von IL-18 generierten NK-Zellen in STZ-Mäuse führt zu einer gesteigerten Präsenz dieser Zellen im Pankreas und resultiert in einer deutlichen Verzögerung der Diabetes-Entstehung. In diesem immunologischen Prozess spielt das IL-18 eine wichtige Rolle, da es von ß-Zellen gebildet werden kann und die Induktion von PD-1L auf NK-Zellen bewirkt. Über diesen Signalweg (PD-1 / PD-1L) können IL-18 generierte NK-Zellen aktivierte T-Zellen lysieren und sich somit protektiv auf die Diabetes-Entstehung auswirken.

4.6 Ausblick

Trotz jahrelanger Forschung ist das Zusammenspiel der Zellen des angeborenen und erworbenen Immunsystems bei der Entstehung des T1DM nicht geklärt. Insbesondere wirft der Einfluss von NK-Zellen noch viele Fragen auf. Aktuelle Forschungsergebnisse liefern widersprüchliche Resultate: So wird beobachtet, dass NK-Zellen sowohl für die Diabetes-Progression verantwortlich sind (FLODSTROM et al. 2002; POIROT et al. 2004), aber auch eine Diabetes-Manifestation verhindern können (BEILKE et al. 2005b; LEE et al. 2004). Die vorliegende Arbeit liefert den Beweis, dass IL-18 generierte NK-Zellen durch direkten Zellkontakt über den PD-1 / PD-1L Weg mit aktivierten Antigenspezifischen T-Zellen interagieren und diese lysieren können. Dadurch greifen IL-18 generierte NK-Zellen regulatorisch in den Autoimmunprozess ein.

Diese Erkenntnis bestärkt die Hoffnung auf eine zelluläre Therapie für Patienten mit Autoimmunerkrankungen. Bis dieses Ziel Realität wird, gibt es noch diverse Fragen, die beantwortet werden müssen.

Zum einen stellt sich die Frage, ob der hier vorgestellte Mechanismus universal, also auch bei anderen Autoimmunerkrankungen, die durch aktivierte Antigenspezifische T-Zellen ausgelöst werden, protektiv wirken kann. Kann man durch IL-18 generierte NK-Zellen generell Autoimmunerkrankungen verhindern? Um dieser Frage nachzugehen, sind Untersuchungen an weiteren Tiermodellen von Nöten. Zusätzlich empfiehlt sich eine Veränderung des Protokolls, die eine Expansion der Zellen ermöglicht.

Weiterhin sollten Daten bezüglich der Sicherheit dieser Methode erhoben werden. Durch den adoptiven Transfer der IL-18 generierten NK-Zellen wird eine Herunter-Regulierung der aktivierten T-Lymphozyten bewirkt. Es werden Daten über den weitreichenden Effekt dieses immunmodulierenden Eingriffs benötigt. Welchen Einfluss hat diese Methode auf eine potentielle Infektion oder die spontane Entstehung von Tumoren? Um dieser Frage nachzugehen, sollten Untersuchungen über einen längeren Zeitraum stattfinden.

Abschließend stellt sich die Frage, ob diese Methode ohne Einschränkungen auf das humane System übertragen werden kann. Hierbei sollten NK-Zellen des peripheren Blutes *in vitro* mit IL-18 kultiviert werden um herauszufinden, ob die Expression des PD-1L induziert wird und ob aktivierte T-Lymphozyten ebenfalls lysiert werden können.

Das Ziel sollte es sein, diese Fragen zu beantworten, um zukünftig autologe Zelltherapien bei Patienten mit Autoimmunerkrankungen durchführen zu können.

5 Zusammenfassung

Margret Johanna Ehlers, geb. Wuttke

Rolle immunregulatorischer natürlicher Killer-Zellen in der Autoimmunität

Natürliche Killer (NK)-Zellen zählen zum angeborenen Immunsystem und sind in der Lage, infizierte oder krankhaft veränderte Zellen ohne vorherige Aktivierung zu erkennen. Ihre Effektorfunktionen bestehen hauptsächlich aus der Zytokin-Sekretion und der zellulären Toxizität. Außerdem spielen sie bei Immunreaktionen eine wichtige Rolle, da sie die Aktivität anderer Zellen des Immunsystems, wie z.B. von dendritischen Zellen, Makrophagen, T Helfer-1 Zellen und zytotoxischen T Zellen, beeinflussen können. Aufgrund dieser Eigenschaft und aufgrund ihrer Akkumulation in Zielorganen unterschiedlicher Autoimmunerkrankungen, könnten sie in die autoimmunen Prozesse involviert sein und eine autoimmune Reaktion entweder verhindern oder induzieren.

Solch widersprüchliche Effekte von NK-Zellen wurden besonders im Falle des Diabetes mellitus Typ 1 (T1DM) beschrieben. Die pathophysiologische Rolle von NK-Zellen im T1DM scheint in der Regulierung der Aggressivität der autoimmunen Reaktionen und des Voranschreitens von der initialen Insulitis zum ausgeprägten T1DM zu liegen. Ein induzierender Effekt von NK-Zellen wurde in einem Coxsackie-Virus induzierten T1DM Mausmodell und in einem transgenen Mausmodell beobachtet. In beiden Fällen trugen NK-Zellen zur Progression und Aggressivität der Erkrankung bei. Im Gegensatz dazu führte eine einmalige Injektion von kompletten Freundschen Adjuvans in NOD Mäuse zu einem NK-Zell vermittelten protektiven Effekt. Die Gründe für diese widersprüchlichen Resultate sind verschieden: Zum einen stellt sich die Frage zu welchem Zeitpunkt NK-Zellen direkt den Autoimmunprozess des T1DM beeinflussen können und ob es immunoregulatorische NK-Zellen gibt, die hier partizipieren. Zum anderen stellt sich die Frage inwiefern Zytokine in diesem System eine Rolle spielen.

Ein interessantes Zytokin, welches in Autoimmunprozessen involviert zu sein scheint, ist das Interleukin 18 (IL-18). Hierbei handelt es sich um ein Zytokin, das die T Helfer 1 Immunantwort induziert und welches in erhöhten Mengen im Falle einer Autoimmunerkrankung vorkommt. Von malignen Tumoren gebildetes IL-18

führt zu einer erhöhten Expression des Oberflächenmoleküls c-Kit auf NK-Zellen, die mit dem Tumor-"*escape*" Mechanismus in Zusammenhang gebracht werden. Aufgrund dieser Beobachtungen sollte in der vorliegenden Arbeit untersucht werden, inwiefern IL-18 NK-Zellen stimuliert und polarisiert und inwiefern diese NK-Zellen an der Entstehung des T1DM beteiligt sind.

Um dieser Fragestellung nachzugehen, wurden zwei T1DM-Mausmodelle verwendet. Dabei konnten NK-Zellen mit regulatorischen Funktionen identifiziert werden. Diese Zellen wurden durch IL-18 Kultur von konventionellen NK-Zellen generiert und zeigten eine charakteristische Expression der Oberflächenmoleküle "programmed death"-1 Ligand (PD-1L) und c-Kit (CD117). In in vitro Analysen konnte eine direkte zytotoxische Aktivität der IL-18 generierten NK-Zellen in Bezug auf Insulin-spezifische CD8 positive T-Zellen beobachtet werden. Dieser Lysemechanismus war vom PD-1 / PD-1L Signalweg abhängig und für konventionelle NK-Zellen nicht nachweisbar. Mit Hilfe von durchflusszytometrischen Analysen wurde eine starke Zunahme der c-Kit positiven NK-Zellen in Milz und Lymphknoten von NOD-Mäusen im Alter von acht Wochen beobachtet. Ein adoptiver Zelltransfer von konventionellen und IL-18 generierten NK-Zellen in Treptozotocin-behandelte Mäuse führte zu einer Verzögerung der Diabetes-Manifestation und partiell zur Verhinderung des Diabetes in der Gruppe, die IL-18 generierte NK-Zellen erhalten hat.

Die hier vorgestellten Resultate verdeutlichen einen direkten Zusammenhang zwischen den Zellen des angeborenen und erworbenen Immunsystems im Falle des T1DM. Dabei partizipieren IL-18 generierte NK-Zellen als immunregulatorische Zellen.

6 summary

Margret Johanna Ehlers, geb. Wuttke

Role of immunoregulatory natural killer-cells in autoimmunity

Natural killer (NK) cells belong to the innate immune system and are able to respond directly to viral infections and tumors. Their main effector-functions include cytokine secretion and cellular toxicity. Although these functions can have a direct effect on a pathogen or tumor, NK cells also regulate the activity of other cells of the immune system, including dendritic cells, macrophages, T helper 1 cells, and cytotoxic T-lymphocytes. Due to this specific property and due to their accumulation in target organs of certain autoimmune diseases, they may be involved in the process of autoimmunity where they are able to induce or to avoid the autoimmune reaction.

Such conflicting data about the impact of NK cells have especially been reported for type 1 diabetes mellitus (T1DM). Here, the pathophysiological effect of NK cells may be to modulate the aggressiveness of the immune attack and the rate of progression from insulitis to overt diabetes. An inducing effect was seen in a model of Coxsackie virus-induced autoimmunity as well as in a T-cell receptor transgenic model where NK cells play an important role in disease progress and aggressiveness. On the other hand, a protective effect of NK cells was seen by injecting complete Freund's adjuvans in NOD mice. The reasons for these contradictory results are certainly multifactorial. They include the time point at which NK cells impact on the development of autoimmune diseases, different stimuli of NK cells such as adjuvans and cytokines and question on whether regulatory NK cells might exist and might be involved in the underlying molecular mechanisms of this process.

One interesting cytokine that could be involved in that process is interleukin 18 (IL-18), a strong inducer of the Th-1 immune response that is highly expressed in autoimmune diseases. It has been shown that IL-18 produced by malignant tumors converts c-Kit negative NK cells into c-Kit positive NK cells, which have a direct effect on the escape of tumor cells by down regulating cells of the adaptive

immune system. Based on these observations, I raised the question whether IL-18 may stimulate or polarize NK cells which may influence the outcome of autoimmune diseases.

Using two mouse models for T1DM, I identified NK cells with regulatory function. These cells can be generated from conventional NK cells by incubation with IL-18 and are characterized by the expression of the surface markers programmed death-1 ligand (PD-1L) and c-Kit (CD117). *In vitro* analyses demonstrated a direct lysis activity of IL-18 generated NK cells against activated insulin-specific CD8 positive T cells in a PD-1 / PD-1L-dependent manner whereas conventional NK cells did not. Flow cytometry analyses revealed a large increase of splenic and lymphatic c-Kit positive NK cells in non-obese diabetic mice at 8 weeks of age, a time point of acceleration of adaptive cytotoxic immunity. Adoptive transfer of conventional and IL-18-generated NK cells into streptozotocin-treated mice led to a delayed disease development and a partial diabetes prevention in the IL-18 generated NK cell treated group.

My results demonstrate a direct link between innate and adaptive immunity in T1DM with IL-18 generated NK cells displaying a possible role as immunosuppressors within this context.

7 Referenzen

AGATA, Y., KAWASAKI, A., NISHIMURA, H., ISHIDA, Y., TSUBATA, T., YAGITA, H., and HONJO, T. (1996):

Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes.

Int.Immunol. <u>5</u>, 765-772

ALBA, A., PLANAS, R., CLEMENTE, X., CARRILLO, J., AMPUDIA, R., PUERTAS, M.C., PASTOR, X., TOLOSA, E., PUJOL-BORRELL, R., VERDAGUER, J., and VIVES-PI, M. (2008):

Natural killer cells are required for accelerated type 1 diabetes driven by interferon-beta. Clin.Exp.Immunol. 3, 467-475

AMERICAN DIABETES ASSOCIATION (2008):

Standards of medical care in diabetes--2008. Diabetes Care, S12-S54

ANSARI, M.J., SALAMA, A.D., CHITNIS, T., SMITH, R.N., YAGITA, H., AKIBA, H., YAMAZAKI, T., AZUMA, M., IWAI, H., KHOURY, S.J., AUCHINCLOSS, H., JR., and SAYEGH, M.H. (2003):

The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J.Exp.Med. 1, 63-69

BACH, J.F. (1994):

Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr.Rev. <u>4</u>, 516-542

BEILKE, J.N., KUHL, N.R., VAN, K.L., and GILL, R.G. (2005a):

NK cells promote islet allograft tolerance via a perforin-dependent mechanism. Nat.Med. <u>10</u>, 1059-1065

BEILKE, J.N., KUHL, N.R., VAN, K.L., and GILL, R.G. (2005b):

NK cells promote islet allograft tolerance via a perforin-dependent mechanism. Nat.Med. <u>10</u>, 1059-1065

BELLMANN, K., WENZ, A., RADONS, J., BURKART, V., KLEEMANN, R., and KOLB, H. (1995):

Heat shock induces resistance in rat pancreatic islet cells against nitric oxide, oxygen radicals and streptozotocin toxicity in vitro. J.Clin.Invest <u>6</u>, 2840-2845

BENDELAC, A., CARNAUD, C., BOITARD, C., and BACH, J.F. (1987):

Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells. J.Exp.Med. <u>4</u>, 823-832

BENNETT, R.A. and PEGG, A.E. (1981):

Alkylation of DNA in rat tissues following administration of streptozotocin. Cancer Res. <u>7</u>, 2786-2790

BRAUNER, H., ELEMANS, M., LEMOS, S., BROBERGER, C., HOLMBERG, D., FLODSTROM-TULLBERG, M., KARRE, K., and HOGLUND, P. (2010): Distinct phenotype and function of NK cells in the pancreas of nonobese diabetic mice.

J.Immunol. <u>5</u>, 2272-2280

BROWN, J.A., DORFMAN, D.M., MA, F.R., SULLIVAN, E.L., MUNOZ, O., WOOD, C.R., GREENFIELD, E.A., and FREEMAN, G.J. (2003):

Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production.

J.Immunol. <u>3</u>, 1257-1266

CARTER, L.L., LEACH, M.W., AZOITEI, M.L., CUI, J., PELKER, J.W., JUSSIF, J., BENOIT, S., IRELAND, G., LUXENBERG, D., ASKEW, G.R., MILARSKI, K.L., GROVES, C., BROWN, T., CARITO, B.A., PERCIVAL, K., CARRENO, B.M., COLLINS, M., and MARUSIC, S. (2007):

PD-1/PD-L1, but not PD-1/PD-L2, interactions regulate the severity of experimental autoimmune encephalomyelitis. J.Neuroimmunol. <u>1-2</u>, 124-134

CHATENOUD, L., THERVET, E., PRIMO, J., and BACH, J.F. (1994):

Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice.

Proc.Natl.Acad.Sci.U.S.A 1, 123-127

CHIOSSONE, L., CHAIX, J., FUSERI, N., ROTH, C., VIVIER, E., and WALZER, T. (2009):

Maturation of mouse NK cells is a 4-stage developmental program. Blood <u>22</u>, 5488-5496

COLUCCI, F. and DI SANTO, J.P. (2000):

The receptor tyrosine kinase c-kit provides a critical signal for survival, expansion, and maturation of mouse natural killer cells. Blood <u>3</u>, 984-991

DALAKAS, M.C. and ILLA, I. (1995):

Common variable immunodeficiency and inclusion body myositis: a distinct myopathy mediated by natural killer cells. Ann.Neurol. <u>6</u>, 806-810

DEVENDRA, D. and EISENBARTH, G.S. (2003):

17. Immunologic endocrine disorders. J.Allergy Clin.Immunol. <u>2 Suppl</u>, S624-S636

DOTTA, F., CENSINI, S., VAN HALTEREN, A.G., MARSELLI, L., MASINI, M., DIONISI, S., MOSCA, F., BOGGI, U., MUDA, A.O., PRATO, S.D., ELLIOTT, J.F., COVACCI, A., RAPPUOLI, R., ROEP, B.O., and MARCHETTI, P. (2007):

Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recentonset type 1 diabetic patients. Proc.Natl.Acad.Sci.U.S.A 12, 5115-5120

FIFE, B.T. and BLUESTONE, J.A. (2008):

Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways.

Immunol.Rev. 166-182

FIFE, B.T. and PAUKEN, K.E. (2011):

The role of the PD-1 pathway in autoimmunity and peripheral tolerance. Ann.N.Y.Acad.Sci. 45-59

FLODSTROM, M., MADAY, A., BALAKRISHNA, D., CLEARY, M.M., YOSHIMURA, A., and SARVETNICK, N. (2002):

Target cell defense prevents the development of diabetes after viral infection. Nat.Immunol. $\underline{4}$, 373-382

FORT, M.M., LEACH, M.W., and RENNICK, D.M. (1998):

A role for NK cells as regulators of CD4+ T cells in a transfer model of colitis. J.Immunol. <u>7</u>, 3256-3261

FREEMAN, G.J., LONG, A.J., IWAI, Y., BOURQUE, K., CHERNOVA, T., NISHIMURA, H., FITZ, L.J., MALENKOVICH, N., OKAZAKI, T., BYRNE, M.C., HORTON, H.F., FOUSER, L., CARTER, L., LING, V., BOWMAN, M.R., CARRENO, B.M., COLLINS, M., WOOD, C.R., and HONJO, T. (2000b): Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J.Exp.Med. <u>7</u>, 1027-1034

FREEMAN, G.J., LONG, A.J., IWAI, Y., BOURQUE, K., CHERNOVA, T., NISHIMURA, H., FITZ, L.J., MALENKOVICH, N., OKAZAKI, T., BYRNE, M.C., HORTON, H.F., FOUSER, L., CARTER, L., LING, V., BOWMAN, M.R., CARRENO, B.M., COLLINS, M., WOOD, C.R., and HONJO, T. (2000a): Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J.Exp.Med. <u>7</u>, 1027-1034

GARCIA-SUAREZ, J., PRIETO, A., REYES, E., ARRIBALZAGA, K., PEREZ-MACHADO, M.A., LOPEZ-RUBIO, M., MANZANO, L., and VAREZ-MON, M. (1995):

Persistent lymphocytosis of natural killer cells in autoimmune thrombocytopenic purpura (ATP) patients after splenectomy. Br.J.Haematol. <u>3</u>, 653-655

GREGOIRE, C., CHASSON, L., LUCI, C., TOMASELLO, E., GEISSMANN, F., VIVIER, E., and WALZER, T. (2007):

The trafficking of natural killer cells. Immunol.Rev. 169-182

GUR, C., PORGADOR, A., ELBOIM, M., GAZIT, R., MIZRAHI, S., STERN-GINOSSAR, N., ACHDOUT, H., GHADIALLY, H., DOR, Y., NIR, T., DOVINER, V., HERSHKOVITZ, O., MENDELSON, M., NAPARSTEK, Y., and MANDELBOIM, O. (2010): The activating receptor NKp46 is essential for the development of type 1 diabetes. Nat.Immunol. <u>2</u>, 121-128

HAYAKAWA, Y., SCREPANTI, V., YAGITA, H., GRANDIEN, A., LJUNGGREN, H.G., SMYTH, M.J., and CHAMBERS, B.J. (2004):

NK cell TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy.

J.Immunol. <u>1</u>, 123-129

HAYAKAWA, Y. and SMYTH, M.J. (2006):

CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity.

J.Immunol. <u>3</u>, 1517-1524

HONG, T.P., ANDERSEN, N.A., NIELSEN, K., KARLSEN, A.E., FANTUZZI, G., EIZIRIK, D.L., DINARELLO, C.A., and MANDRUP-POULSEN, T. (2000):

Interleukin-18 mRNA, but not interleukin-18 receptor mRNA, is constitutively expressed in islet beta-cells and up-regulated by interferon-gamma. Eur.Cytokine Netw. <u>2</u>, 193-205

ISHIDA, M., IWAI, Y., TANAKA, Y., OKAZAKI, T., FREEMAN, G.J., MINATO, N., and HONJO, T. (2002):

Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol.Lett. 1, 57-62

JOHANSSON, S.E., HALL, H., BJORKLUND, J., and HOGLUND, P. (2004):

Broadly impaired NK cell function in non-obese diabetic mice is partially restored by NK cell activation in vivo and by IL-12/IL-18 in vitro. Int.Immunol. 1, 1-11

KANAMORI, Y., ISHIMARU, K., NANNO, M., MAKI, K., IKUTA, K., NARIUCHI, H., and ISHIKAWA, H. (1996):

Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J.Exp.Med. <u>4</u>, 1449-1459

KÄRRE K (1985):

Role of target histocompatibility antigens in regulation of natural killer activity: A reevaluation and a hypothesis.

Mechanisms of Cytotoxicity by NK cells <u>Herbermann RB, Callewaert DM (eds)</u>, 81-103

KÄRRE K, LJUNGGREN, H.G., and PIONTEK G (1986):

Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature , 675-678

KATAOKA, S., SATOH, J., FUJIYA, H., TOYOTA, T., SUZUKI, R., ITOH, K., and KUMAGAI, K. (1983):

Immunologic aspects of the nonobese diabetic (NOD) mouse. Abnormalities of cellular immunity.

Diabetes 3, 247-253

KIESSLING, R., KLEIN, E., and WIGZELL, H. (1975):

"Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur.J.Immunol. 2, 112-117

KIKUTANI, H. and MAKINO, S. (1992):

The murine autoimmune diabetes model: NOD and related strains. Adv.Immunol. 285-322

KIM, M.Y., ROSSI, S., WITHERS, D., MCCONNELL, F., TOELLNER, K.M., GASPAL, F., JENKINSON, E., ANDERSON, G., and LANE, P.J. (2008): Heterogeneity of lymphoid tissue inducer cell populations present in embryonic

and adult mouse lymphoid tissues.

Immunology 2, 166-174

KIM, S., IIZUKA, K., KANG, H.S., DOKUN, A., FRENCH, A.R., GRECO, S., and YOKOYAMA, W.M. (2002c):

In vivo developmental stages in murine natural killer cell maturation. Nat.Immunol. 6, 523-528

KIM, S., IIZUKA, K., KANG, H.S., DOKUN, A., FRENCH, A.R., GRECO, S., and YOKOYAMA, W.M. (2002b):

In vivo developmental stages in murine natural killer cell maturation. Nat.Immunol. 6, 523-528

KIM, S., IIZUKA, K., KANG, H.S., DOKUN, A., FRENCH, A.R., GRECO, S., and YOKOYAMA, W.M. (2002a):

In vivo developmental stages in murine natural killer cell maturation. Nat.Immunol. 6, 523-528

KIM, Y.T. and STEINBERG, C. (1984a):

Immunologic studies on the induction of diabetes in experimental animals. Cellular basis for the induction of diabetes by streptozotocin. Diabetes <u>8</u>, 771-777

KIM, Y.T. and STEINBERG, C. (1984b):

Immunologic studies on the induction of diabetes in experimental animals. Cellular basis for the induction of diabetes by streptozotocin. Diabetes 8, 771-777

KOIKE, J., WAKAO, H., ISHIZUKA, Y., SATO, T.A., HAMAOKI, M., SEINO, K., KOSEKI, H., NAKAYAMA, T., and TANIGUCHI, M. (2004):

Bone marrow allograft rejection mediated by a novel murine NK receptor, NKG2I. J.Exp.Med. <u>1</u>, 137-144

KORSGREN, M., PERSSON, C.G., SUNDLER, F., BJERKE, T., HANSSON, T., CHAMBERS, B.J., HONG, S., VAN, K.L., LJUNGGREN, H.G., and KORSGREN, O. (1999):

Natural killer cells determine development of allergen-induced eosinophilic airway inflammation in mice.

J.Exp Med. 3, 553-562

KRONER, A., SCHWAB, N., IP, C.W., ORTLER, S., GOBEL, K., NAVE, K.A., MAURER, M., MARTINI, R., and WIENDL, H. (2009):

Accelerated course of experimental autoimmune encephalomyelitis in PD-1deficient central nervous system myelin mutants. Am.J.Pathol. <u>6</u>, 2290-2299

LANIER, L.L. (1998):

NK cell receptors. Annu.Rev.Immunol. 359-393

LANIER, L.L. (2003):

Natural killer cell receptor signaling. Curr.Opin.Immunol. <u>3</u>, 308-314

LATCHMAN, Y., WOOD, C.R., CHERNOVA, T., CHAUDHARY, D., BORDE, M., CHERNOVA, I., IWAI, Y., LONG, A.J., BROWN, J.A., NUNES, R., GREENFIELD, E.A., BOURQUE, K., BOUSSIOTIS, V.A., CARTER, L.L., CARRENO, B.M., MALENKOVICH, N., NISHIMURA, H., OKAZAKI, T., HONJO, T., SHARPE, A.H., and FREEMAN, G.J. (2001):

PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat.Immunol. <u>3</u>, 261-268

LEE, I.F., QIN, H., TRUDEAU, J., DUTZ, J., and TAN, R. (2004):

Regulation of autoimmune diabetes by complete Freund's adjuvant is mediated by NK cells.

J.Immunol. <u>2</u>, 937-942

LENNON, G.P., BETTINI, M., BURTON, A.R., VINCENT, E., ARNOLD, P.Y., SANTAMARIA, P., and VIGNALI, D.A. (2009):

T cell islet accumulation in type 1 diabetes is a tightly regulated, cell-autonomous event.

Immunity. 4, 643-653

LIANG, S.C., LATCHMAN, Y.E., BUHLMANN, J.E., TOMCZAK, M.F., HORWITZ, B.H., FREEMAN, G.J., and SHARPE, A.H. (2003):

Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses.

Eur.J.Immunol. 10, 2706-2716

LIKE, A.A. and ROSSINI, A.A. (1976c):

Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science <u>4251</u>, 415-417

LIKE, A.A. and ROSSINI, A.A. (1976b):

Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science <u>4251</u>, 415-417

LIKE, A.A. and ROSSINI, A.A. (1976a):

Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science <u>4251</u>, 415-417

LIU, D., MECKEL, T., and LONG, E.O. (2010):

Distinct role of rab27a in granule movement at the plasma membrane and in the cytosol of NK cells. PLoS.One. 9, e12870-

LODOLCE, J.P., BOONE, D.L., CHAI, S., SWAIN, R.E., DASSOPOULOS, T., TRETTIN, S., and MA, A. (1998):

IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity. 5, 669-676

LOHMANN, T., LESLIE, R.D., and LONDEI, M. (1996):

T cell clones to epitopes of glutamic acid decarboxylase 65 raised from normal subjects and patients with insulin-dependent diabetes. J.Autoimmun. <u>3</u>, 385-389

LU, W.T., JUANG, J.H., HSU, B.R., and HUANG, H.S. (1998): Effects of high or low dose of streptozocin on pancreatic islets in C57BL/6 and C.B17-SCID mice. Transplant.Proc. <u>2</u>, 609-610

LUCI, C., REYNDERS, A., IVANOV, I.I., COGNET, C., CHICHE, L., CHASSON, L., HARDWIGSEN, J., ANGUIANO, E., BANCHEREAU, J., CHAUSSABEL, D., DALOD, M., LITTMAN, D.R., VIVIER, E., and TOMASELLO, E. (2009):

Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin.

Nat.Immunol. <u>1</u>, 75-82

MAKINO, S., KUNIMOTO, K., MURAOKA, Y., MIZUSHIMA, Y., KATAGIRI, K., and TOCHINO, Y. (1980a):

Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu <u>1</u>, 1-13

MAKINO, S., KUNIMOTO, K., MURAOKA, Y., MIZUSHIMA, Y., KATAGIRI, K., and TOCHINO, Y. (1980b):

Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu <u>1</u>, 1-13

MATSUMOTO, Y., KOHYAMA, K., AIKAWA, Y., SHIN, T., KAWAZOE, Y., SUZUKI, Y., and TANUMA, N. (1998):

Role of natural killer cells and TCR gamma delta T cells in acute autoimmune encephalomyelitis. Eur.J.Immunol. 5, 1681-1688

MAZODIER, K., MARIN, V., NOVICK, D., FARNARIER, C., ROBITAIL, S., SCHLEINITZ, N., VEIT, V., PAUL, P., RUBINSTEIN, M., DINARELLO, C.A., HARLE, J.R., and KAPLANSKI, G. (2005):

Severe imbalance of IL-18/IL-18BP in patients with secondary hemophagocytic syndrome.

Blood <u>10</u>, 3483-3489

MEBIUS, R.E. (2003):

Organogenesis of lymphoid tissues.

Nat.Rev.Immunol. 4, 292-303

MUELLER, D.L. (2010): Mechanisms maintaining peripheral tolerance. Nat.Immunol. <u>1</u>, 21-27

NAKANISHI, K., YOSHIMOTO, T., TSUTSUI, H., and OKAMURA, H. (2001): Interleukin-18 regulates both Th1 and Th2 responses. Annu.Rev.Immunol. 423-474

NICOLETTI, F., DI, M.R., PAPACCIO, G., CONGET, I., GOMIS, R., BERNARDINI, R., SIMS, J.E., SHOENFELD, Y., and BENDTZEN, K. (2003): Essential pathogenic role of endogenous IL-18 in murine diabetes induced by multiple low doses of streptozotocin. Prevention of hyperglycemia and insulitis by a recombinant IL-18-binding protein: Fc construct. Eur.J.Immunol. <u>8</u>, 2278-2286

NILSSON, N., BREMELL, T., TARKOWSKI, A., and CARLSTEN, H. (1999): Protective role of NK1.1+ cells in experimental Staphylococcus aureus arthritis. Clin Exp Immunol. <u>1</u>, 63-69

NISHIMURA, H., AGATA, Y., KAWASAKI, A., SATO, M., IMAMURA, S., MINATO, N., YAGITA, H., NAKANO, T., and HONJO, T. (1996): Developmentally regulated expression of the PD-1 protein on the surface of double-negative (CD4-CD8-) thymocytes. Int.Immunol. <u>5</u>, 773-780

OGASAWARA, K., HAMERMAN, J.A., EHRLICH, L.R., BOUR-JORDAN, H., SANTAMARIA, P., BLUESTONE, J.A., and LANIER, L.L. (2004): NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity. <u>6</u>, 757-767

OGASAWARA, K., HAMERMAN, J.A., HSIN, H., CHIKUMA, S., BOUR-JORDAN, H., CHEN, T., PERTEL, T., CARNAUD, C., BLUESTONE, J.A., and LANIER, L.L. (2003):

Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity. <u>1</u>, 41-51

OGAWA, M., MARUYAMA, T., HASEGAWA, T., KANAYA, F., KOBAYASHI, F., TOCHINO, Y., and UDA, H. (1985):

The inhibitory effect of neonatal thymectomy on the incidence of insulitis in nonobese diabetic (NOD) mice. Biomed.Res. 103-

OIKAWA, Y., SHIMADA, A., KASUGA, A., MORIMOTO, J., OSAKI, T., TAHARA, H., MIYAZAKI, T., TASHIRO, F., YAMATO, E., MIYAZAKI, J., and SARUTA, T. (2003):

Systemic administration of IL-18 promotes diabetes development in young nonobese diabetic mice.

J.Immunol. <u>11</u>, 5865-5875

OKAMURA, H., TSUTSI, H., KOMATSU, T., YUTSUDO, M., HAKURA, A., TANIMOTO, T., TORIGOE, K., OKURA, T., NUKADA, Y., HATTORI, K., and . (1995):

Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature <u>6552</u>, 88-91

PATTERSON, C.C., DAHLQUIST, G.G., GYURUS, E., GREEN, A., and SOLTESZ, G. (2009):

Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: a multicentre prospective registration study. Lancet <u>9680</u>, 2027-2033

PETERSON, J.D. and HASKINS, K. (1996):

Transfer of diabetes in the NOD-scid mouse by CD4 T-cell clones. Differential requirement for CD8 T-cells. Diabetes 3, 328-336

POIROT, L., BENOIST, C., and MATHIS, D. (2004):

Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity.

Proc.Natl.Acad.Sci.U.S.A 21, 8102-8107

POULTON, L.D., SMYTH, M.J., HAWKE, C.G., SILVEIRA, P., SHEPHERD, D., NAIDENKO, O.V., GODFREY, D.I., and BAXTER, A.G. (2001):

Cytometric and functional analyses of NK and NKT cell deficiencies in NOD mice. Int.Immunol. <u>7</u>, 887-896

QUILLET, A., PRESSE, F., MARCHIOL-FOURNIGAULT, C., HAREL-BELLAN, A., BENBUNAN, M., PLOEGH, H., and FRADELIZI, D. (1988):

Increased resistance to non-MHC-restricted cytotoxicity related to HLA A, B expression. Direct demonstration using beta 2-microglobulin-transfected Daudi cells.

J.Immunol. <u>1</u>, 17-20

RABINOVICH, B.A., LI, J., SHANNON, J., HURREN, R., CHALUPNY, J., COSMAN, D., and MILLER, R.G. (2003):

Activated, but not resting, T cells can be recognized and killed by syngeneic NK cells.

J.Immunol. <u>7</u>, 3572-3576

RAKIETEN, N., RAKIETEN, M.L., and NADKARNI, M.V. (1963):

Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemother.Rep. 91-98

RAPTOPOULOU, A.P., BERTSIAS, G., MAKRYGIANNAKIS, D., VERGINIS, P., KRITIKOS, I., TZARDI, M., KLARESKOG, L., CATRINA, A.I., SIDIROPOULOS, P., and BOUMPAS, D.T. (2010):

The programmed death 1/programmed death ligand 1 inhibitory pathway is upregulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritis.

Arthritis Rheum. 7, 1870-1880

RERUP, C.C. (1970):

Drugs producing diabetes through damage of the insulin secreting cells. Pharmacol.Rev. $\underline{4}$, 485-518

RILEY, J.L. (2009):

PD-1 signaling in primary T cells. Immunol.Rev. <u>1</u>, 114-125

ROTHE, H., HAUSMANN, A., CASTEELS, K., OKAMURA, H., KURIMOTO, M., BURKART, V., MATHIEU, C., and KOLB, H. (1999):

IL-18 inhibits diabetes development in nonobese diabetic mice by counterregulation of Th1-dependent destructive insulitis. J.Immunol. <u>3</u>, 1230-1236

RUTH, J.H., PARK, C.C., AMIN, M.A., LESCH, C., MAROTTE, H., SHAHRARA, S., and KOCH, A.E. (2010):

Interleukin-18 as an in vivo mediator of monocyte recruitment in rodent models of rheumatoid arthritis.

Arthritis Res. Ther. 3, R118-

SALAMA, A.D., CHITNIS, T., IMITOLA, J., ANSARI, M.J., AKIBA, H., TUSHIMA, F., AZUMA, M., YAGITA, H., SAYEGH, M.H., and KHOURY, S.J. (2003):

Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis.

J.Exp.Med. <u>1</u>, 71-78

SALOMON, B. and BLUESTONE, J.A. (2001):

Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation.

Annu.Rev.Immunol. 225-252

SANCHEZ, E., PALOMINO-MORALES, R.J., ORTEGO-CENTENO, N., JIMENEZ-ALONSO, J., GONZALEZ-GAY, M.A., LOPEZ-NEVOT, M.A., SANCHEZ-ROMAN, J., DE, R.E., GONZALEZ-ESCRIBANO, M.F., PONS-ESTEL, B.A., D'ALFONSO, S., SEBASTIANI, G.D., ARCON-RIQUELME, M.E., and MARTIN, J. (2009):

Identification of a new putative functional IL18 gene variant through an association study in systemic lupus erythematosus. Hum.Mol.Genet. 19, 3739-3748

SANOS, S.L., BUI, V.L., MORTHA, A., OBERLE, K., HENERS, C., JOHNER, C., and DIEFENBACH, A. (2009):

RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat.Immunol. <u>1</u>, 83-91

SAUDEMONT, A., JOUY, N., HETUIN, D., and QUESNEL, B. (2005):

NK cells that are activated by CXCL10 can kill dormant tumor cells that resist CTLmediated lysis and can express B7-H1 that stimulates T cells. Blood <u>6</u>, 2428-2435

SCHNICKEL, G.T., HSIEH, G.R., KACHIKWU, E.L., GARCIA, C., SHEFIZADEH, A., FISHBEIN, M.C., and ARDEHALI, A. (2006):

Cytoprotective gene HO-1 and chronic rejection in heart transplantation. Transplant.Proc. <u>10</u>, 3259-3262

SCHOTT-OHLY, P., LGSSIAR, A., PARTKE, H.J., HASSAN, M., FRIESEN, N., and GLEICHMANN, H. (2004):

Prevention of spontaneous and experimentally induced diabetes in mice with zinc sulfate-enriched drinking water is associated with activation and reduction of NF-kappa B and AP-1 in islets, respectively. Exp.Biol.Med.(Maywood.) 11, 1177-1185

SHI, F.D. and VAN, K.L. (2006):

Reciprocal regulation between natural killer cells and autoreactive T cells. Nat.Rev.Immunol. <u>10</u>, 751-760

SHIZURU, J.A., GREGORY, A.K., CHAO, C.T., and FATHMAN, C.G. (1987):

Islet allograft survival after a single course of treatment of recipient with antibody to L3T4.

Science <u>4812</u>, 278-280

SMYTH, M.J., CRETNEY, E., KELLY, J.M., WESTWOOD, J.A., STREET, S.E., YAGITA, H., TAKEDA, K., VAN DOMMELEN, S.L., GLI-ESPOSTI, M.A., and HAYAKAWA, Y. (2005):

Activation of NK cell cytotoxicity. Mol.Immunol. <u>4</u>, 501-510

SUZUKI, H., DUNCAN, G.S., TAKIMOTO, H., and MAK, T.W. (1997):

Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor beta chain. J.Exp.Med. <u>3</u>, 499-505

SZKUDELSKI, T. (2001):

The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. <u>6</u>, 537-546

TAK, P.P., KUMMER, J.A., HACK, C.E., DAHA, M.R., SMEETS, T.J., ERKELENS, G.W., MEINDERS, A.E., KLUIN, P.M., and BREEDVELD, F.C. (1994):

Granzyme-positive cytotoxic cells are specifically increased in early rheumatoid synovial tissue.

Arthritis Rheum. 12, 1735-1743

TAKATORI, H., KANNO, Y., WATFORD, W.T., TATO, C.M., WEISS, G., IVANOV, I.I., LITTMAN, D.R., and O'SHEA, J.J. (2009):

Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J.Exp.Med. <u>1</u>, 35-41

TAKEDA, K., CRETNEY, E., HAYAKAWA, Y., OTA, T., AKIBA, H., OGASAWARA, K., YAGITA, H., KINOSHITA, K., OKUMURA, K., and SMYTH, M.J. (2005): TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver.

Blood 5, 2082-2089

TANIGUCHI, R.T., GUZIOR, D., and KUMAR, V. (2007):

2B4 inhibits NK-cell fratricide. Blood 6, 2020-2023

TORTORELLA, D., GEWURZ, B.E., FURMAN, M.H., SCHUST, D.J., and PLOEGH, H.L. (2000):

Viral subversion of the immune system. Annu.Rev.Immunol. 861-926

TOUGH, D.F., BORROW, P., and SPRENT, J. (1996):

Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 5270, 1947-1950

TSUTSUI, H., NAKANISHI, K., MATSUI, K., HIGASHINO, K., OKAMURA, H., MIYAZAWA, Y., and KANEDA, K. (1996):

IFN-gamma-inducing factor up-regulates Fas ligand-mediated cytotoxic activity of murine natural killer cell clones.

J.Immunol. <u>9</u>, 3967-3973

ULLRICH E, TERME M, AYMERIC L, APETOH L, CHAPUT N, RYFFEL B, MACKENSEN A, SCHULTZE JL, and ZITVOGEL L (2008):

IL-18 Elicited Suppressor NK Cells with Immunoregulatory Functions. American Society of Hematology

VAN BELLE, T.L., TAYLOR, P., and VON HERRATH, M.G. (2009):

Mouse Models for Type 1 Diabetes. Drug Discov.Today Dis.Models. 2, 41-45

VAN NOORT, J.M., VAN, S.A., BOON, J., BOERSMA, W.J., POLMAN, C.H., and LUCAS, C.J. (1993):

Minor myelin proteins can be major targets for peripheral blood T cells from both multiple sclerosis patients and healthy subjects. J.Neuroimmunol. <u>1-2</u>, 67-72

VIBHAKAR, R., JUAN, G., TRAGANOS, F., DARZYNKIEWICZ, Z., and FINGER, L.R. (1997):

Activation-induced expression of human programmed death-1 gene in Tlymphocytes. Exp.Cell Res. 1, 25-28

VIVIER, E., SPITS, H., and CUPEDO, T. (2009):

Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair? Nat.Rev.Immunol. 4, 229-234

VIVIER, E., TOMASELLO, E., BARATIN, M., WALZER, T., and UGOLINI, S. (2008a):

Functions of natural killer cells. Nat.Immunol. 5, 503-510

VIVIER, E., TOMASELLO, E., BARATIN, M., WALZER, T., and UGOLINI, S. (2008b):

Functions of natural killer cells. Nat.Immunol. <u>5</u>, 503-510

WAGGONER, S.N., TANIGUCHI, R.T., MATHEW, P.A., KUMAR, V., and WELSH, R.M. (2010):

Absence of mouse 2B4 promotes NK cell-mediated killing of activated CD8+ T cells, leading to prolonged viral persistence and altered pathogenesis. J.Clin.Invest <u>6</u>, 1925-1938

WANG, B., GONZALEZ, A., BENOIST, C., and MATHIS, D. (1996):

The role of CD8+ T cells in the initiation of insulin-dependent diabetes mellitus. Eur.J.Immunol. <u>8</u>, 1762-1769

WANG, C.J., CHOU, F.C., CHU, C.H., WU, J.C., LIN, S.H., CHANG, D.M., and SYTWU, H.K. (2008):

Protective role of programmed death 1 ligand 1 (PD-L1)in nonobese diabetic mice: the paradox in transgenic models. Diabetes 7, 1861-1869

WICKER, L.S., MILLER, B.J., and MULLEN, Y. (1986):

Transfer of autoimmune diabetes mellitus with splenocytes from nonobese diabetic (NOD) mice.

Diabetes <u>8</u>, 855-860

WONG, F.S., VISINTIN, I., WEN, L., FLAVELL, R.A., and JANEWAY, C.A., JR. (1996):

CD8 T cell clones from young nonobese diabetic (NOD) islets can transfer rapid onset of diabetes in NOD mice in the absence of CD4 cells. J.Exp.Med. <u>1</u>, 67-76

YAMAZAKI, T., AKIBA, H., IWAI, H., MATSUDA, H., AOKI, M., TANNO, Y., SHIN, T., TSUCHIYA, H., PARDOLL, D.M., OKUMURA, K., AZUMA, M., and YAGITA, H. (2002):

Expression of programmed death 1 ligands by murine T cells and APC. J.Immunol. <u>10</u>, 5538-5545

YOKOYAMA, W.M. and RILEY, J.K. (2008):

NK cells and their receptors. Reprod.Biomed.Online. <u>2</u>, 173-191

ZACCONE, P., PHILLIPS, J., CONGET, I., COOKE, A., and NICOLETTI, F. (2005):

IL-18 binding protein fusion construct delays the development of diabetes in adoptive transfer and cyclophosphamide-induced diabetes in NOD mouse. Clin.Immunol. <u>1</u>, 74-79

8 Anhang

Tab. 8.1: Daten der Gen-Expressionsanalyse

hochregulierte Gene

Faktor	Reg.	Gen	Faktor	Reg.	Gen
40.04	hoch	ll2ra	6.30	hoch	Trib3
29.70	hoch	Asns	6.19	hoch	Odc1
26.96	hoch	Sema6d	6.17	hoch	Camk4
25.31	hoch	EG433024	6.17	hoch	Cpd
23.52	hoch	AA467197	6.04	hoch	ldi1
22.79	hoch	Csf2	6.00	hoch	Tnfrsf11b
18.57	hoch	Tnfsf4	5.94	hoch	Rora
16.85	hoch	Asb2	5.91	hoch	Gm129
16.50	hoch	Utf1	5.90	hoch	Inpp4b
15.78	hoch	Adam8	5.86	hoch	Sesn2
14.78	hoch	Slc7a3	5.81	hoch	Ppa1
13.07	hoch	Slc7a5	5.80	hoch	Shmt2
12.41	hoch	Tnfsf8	5.79	hoch	Acpp
12.05	hoch	Gm129	5.74	hoch	Mfsd2
11.42	hoch	Mthfd2	5.72	hoch	Hmox1
11.33	hoch	Dscam	5.59	hoch	Srm
11.18	hoch	Ngo1	5.45	hoch	Rbpi
11.07	hoch	Cdkn1a	5.44	hoch	Pno1
9.94	hoch	Tfrc	5.43	hoch	Ccr7
9.87	hoch	Cxcr6	5.32	hoch	Hspa9
9 75	hoch	Pmena1	5.30	hoch	Tnfrsf10b
9 64	hoch	Pvcr1	5 23	hoch	Sale
9.45	hoch	Chac1	5.20	hoch	LOC100045562
0.40 0.11	hoch	SIc6a9	5.04	hoch	Slc7a1
8 66	hoch	Ptplad1	1 90	hoch	Hend1
0.00 8 <i>4</i> 1	hoch	A1836003	4.88	hoch	Rah39h
8 34	hoch	Smox	4.00	hoch	Rnn38
8.26	hoch	Hochn1	4.66	hoch	Detd
0.20 8.26	hoch	Gdpd5	4.60	hoch	Duc/I
0.20 8.20	hoch	Tnf	4.62	hoch	Sernine?
0.20	hoch	1111 Avril	4.02	hoch	Mrne18h
0.15	hooh	Avii Mottil1	4.02	hooh	
0.09	hooh		4.00	hooh	
7.93	hoch		4.59	hooh	3110043021Rik
7.91	hoch		4.59	hoch	Aqp9 Dhar24
7.09	hoch	Lia	4.59	hoch	
7.89	nocn	Coxoaz	4.50	hoch	
	nocn	ICOS	4.52	nocn	
7.47	nocn	Ctn	4.50	nocn	IP04 Dharalla
7.40	nocn	Cisn	4.48	nocn	Pngan
7.35	nocn		4.42	nocn	HSO1/D/
7.23	hoch	Imem154	4.39	hoch	Xpot
1.16	hoch	Gpt2	4.30	hoch	ivithtd1
7.09	hoch	Bcat1	4.28	hoch	Itng
7.01	hoch	Zbtb32	4.27	hoch	Josd3
6.90	hoch	Kit	4.27	hoch	Glrp1
6.78	hoch	Nek6	4.27	hoch	Tnfrsf25
6.77	hoch	Tnfrsf8	4.26	hoch	lars
6.58	hoch	Gzmc	4.22	hoch	Ero1I
6.44	hoch	Psat1	4.20	hoch	C1qbp
6.36	hoch	ldi1	4.20	hoch	Nol5

4.00			0.40		AL 40
4.20	hoch	Pus7	3.42	hoch	Atp10a
4.16	hoch	Tsr1	3.41	hoch	Mvc
4 12	hoch	Plscr1	3 40	hoch	Ctos
4 4 0	heek		2.40	hoch	Zo2h12o
4.12	noch	ENSW03G0000074917	5.40	noch	
4.09	hoch	Gars	3.38	hoch	Aars Exosc6
4.07	hoch	Eif2s2 LOC100040220	3.38	hoch	Gas5
4 06	hoch	Fhl3	3.37	hoch	Esd
1.00	hoch	TnfrefQ	3 37	boch	Eurip
4.00	hash	Tim 513	0.07	hash	Deftoh
4.01	nocn	I mem97	3.30	noch	Rhf19b
4.01	hoch	Cyp51	3.36	hoch	Eif2s2
4.00	hoch	Gas5	3.36	hoch	Smyd2
3 99	hoch	Dus2l	3 35	hoch	Mvhbp1a
2.07	hoch	Dhf10	3 35	hoch	Neto2
0.07	HUCH		0.00	hour	
3.97	nocn	I mem97	3.35	noch	VVdr75
3.96	hoch	Phgdh	3.34	hoch	Lrp8
3.94	hoch	Sc4mol	3.33	hoch	Gadd45b
3 94	hoch	Ppp1r14b	3 33	hoch	Nhoch43
2 00	hooh		2 22	hoch	Timm0
3.90	noch		3.32	noch	1111119
3.89	hoch	Smyd5	3.32	hoch	lfrd2
3.89	hoch	Hspd1	3.32	hoch	Rexo2
3.88	hoch	Lonp1	3.32	hoch	Clic4
3.84	hoch	D13\Weu177e	3 31	boch	Pde7h
2.04	heeb		0.01	heeb	Nama1
3.81	nocn	Lpxn	3.30	noch	
3.80	hoch	Rpl12	3.30	hoch	Pgk1
3.79	hoch	Aldh1l2	3.29	hoch	Pgk1
3.79	hoch	Edps	3.27	hoch	Rpo1-2
3 70	hoch	Enre	3 27	boch	Tare
2 77	hooh		2.27	hoch	
3.11	noch		3.27	noch	
3.76	hoch	1500012F01Rik	3.27	hoch	Npas2
3.73	hoch	Mdn1	3.26	hoch	6720458F09Rik
3.72	hoch	Abcc1	3.26	hoch	LOC383450
3 71	hoch	Gett1	3 25	hoch	Pwp1
2 70	hoch	Mofa	2.20	hoch	Mrpo29
3.70	noch		3.24	noch	
3.70	hoch	Traf1	3.24	nocn	Timm17a
3.66	hoch	Slc1a5	3.23	hoch	Ltb
3.66	hoch	Eef1e1	3.23	hoch	Gart
3 66	hoch	I hfnl2	3 22	hoch	Rcl1
3.65	hoch	Timm8a	2 22	hoch	lk=fA
3.05	HOCH		0.22	hoch	
3.64	nocn	A830043J08RIK	3.22	noch	4632434111RIK
3.62	hoch	Slc19a2	3.22	hoch	Eif2b3
3.62	hoch	Gnl3	3.22	hoch	Reep6
3 62	hoch	Thyn1	3.20	hoch	Vegfa
3 60	hoch	Cyb5r1	3 10	hoch	
3.00	hash		0.19	hash	CI-42-2
3.58	nocn	Plm2	3.19	noch	5104383
3.58	hoch	Timm8a	3.19	hoch	SIc19a1
3.56	hoch	Plscr1	3.18	hoch	1700047G07Rik
3.56	hoch	Nme6	3.18	hoch	Pak1
3 55	hoch	Cables1	3 17	boch	Slc2a6
0.00	hash		0.17	heeb	Diedo
3.55	nocn	Lars	3.17	noch	Plodz
3.53	hoch	Socs1	3.16	hoch	Ahr
3.51	hoch	Cdon	3.16	hoch	Ghitm
3 51	hoch	Hspe1IEG628438IHspe1-rs1	3.14	hoch	Chek1
3 50	hoch	Fif4obn1	3 1/	hoch	Slc39a4
0.40	hour		0.14	hash	Maria
3.49	nocn	Cd200r1	3.14	noch	Mars
3.49	hoch	Apex1	3.13	hoch	Psmg2
3.47	hoch	Hspe1 EG628438 Hspe1-rs1	3.12	hoch	Ltv1
3.45	hoch	Tbc1d19	3 12	hoch	Rnf180
3 15	hoch	Maat/a	3 12	hoch	Hif1a
0.40 0 45	heel	Ciad1	0.12	heat	Ctogo
3.45	noch		3.11	nocn	Clageo
3.44	hoch	Utp20	3.10	hoch	Mmachc
3.43	hoch	Fndc3a	3.10	hoch	BC021614
3.43	hoch	Tiparp	3.09	hoch	Nars
-	-				

3.09 3.09	hoch hoch	Al452195 Impdb2
3.09	hoch	Agpat5
3.08	hoch	Pdgfa
3.08	hoch	Cars
3.06	hoch	Taf4b
3.06	hoch	Yars
3.05	hoch	Pck2
3.05	hoch	Mrto4
3.04	hoch	Lap3
3.03	hoch	Zfp593
3.03	hoch	Glp1 Fdx1l
3.03	nocn	
3.02	hoch	
3.02	hoch	SICSU44 Mif
3.02	hoch	lfrd1
2.99	hoch	1700109H08Rik
2.00	hoch	7fp238
2.99	hoch	Ahcv
2.98	hoch	Got1
2.97	hoch	Ttc27
2.97	hoch	Rps27I
2.97	hoch	Wdr12
2.97	hoch	Crls1
2.96	hoch	Nat10
2.96	hoch	Slc16a1
2.96	hoch	Rrs1
2.95	hoch	Gpr34
2.95	nocn	
2.95	hoch	IVIII Llaera
2.94	hoch	Peaf6
2.94	hoch	LOC100043314
2.93	hoch	Lvsmd2
2.93	hoch	2700007P21Rik
2.93	hoch	Skil
2.93	hoch	Ahcy
2.93	hoch	Ccdc86
2.92	hoch	5830415L20Rik
2.92	hoch	Abcb6
2.92	hoch	Mif
2.91	hoch	Nme2
2.90	hoch	Ankrd49
2.90	nocn	Apoo-ps
2.09	hoch	AIXIII Pro1h
2.09	hoch	loed3
2.00	hoch	Nkrf
2.00	hoch	Pik3r6
2.87	hoch	Dimt1
2.87	hoch	Mrto4
2.87	hoch	Pa2g4
2.86	hoch	Heatr3
2.86	hoch	Nme1 LOC100046344
2.86	hoch	Nol10
2.86	hoch	Sssca1
2.85	hoch	Acsbg1
2.85	hoch	Itgb3
∠.ŏ4 2.¤∕	noch	Arvi
2.04	hoch	Lsu Dkc1

2.84	hoch	Pabpc4
2.84	hoch	Ahcy
2.83	hoch	Pabpc4
2.83	hoch	Nmd3
2.83	hoch	Tcf7
2.82	hoch	Flvcr1
2.82	hoch	Atpbd4
2.81	hoch	Pabpc4
2.81	hoch	lpo5
2.81	hoch	Mecr
2.80	hoch	Basp1
2.80	hoch	Fosl1
2.79	hoch	Pprc1
2.79	hoch	Timm17a
2.79	hoch	3110052M02Rik
2.78	hoch	Rrp9
2.78	hoch	Clec2i
2.77	hoch	Nudcd2
2.77	hoch	Pabpc4
2.77	hoch	Dis3
2.77	hoch	0610010E21Rik
2.76	hoch	Psmc6
2.76	hoch	Cad
2.76	hoch	Slc7a11
2.76	hoch	Utp18
2.75	hoch	Impdh2
2.74	hoch	Fpgs
2.74	hoch	Wdr43
2.74	hoch	Dtwd1
2.74	hoch	Iltifb
2.73	hoch	Apoo-ps
2.73	hoch	Capg
2.73	hoch	Rcc2
2.71	hoch	Farsb
2.71	hoch	Niban
2.71	hoch	Wdr74
2.71	hoch	Ppan
2.70	hoch	İsq2011
2.69	hoch	Txnrd1
2.69	hoch	Zmat3
2.68	hoch	Qtrtd1
2.68	hoch	2310014G06Rik
2.68	hoch	1110007M04Rik
2.68	hoch	Bax
2.68	hoch	Wdr12
2.67	hoch	Sssca1 Mtvr2
2.67	hoch	Plscr2
2.67	hoch	Cetn4
2.67	hoch	Lilrb4
2.66	hoch	Grwd1
2.66	hoch	Dock9
2.66	hoch	Stard3nl
2.65	hoch	Nudt5
2.65	hoch	Mthfd1I
2.65	hoch	EG639787
2.65	hoch	Rpo1-4
2.65	hoch	Rrp12
2.65	hoch	Gclm
2.64	hoch	BC087945
2.64	hoch	Hyou1
2.64	hoch	Gİmn
2.64	hoch	Josd3

~ ~ /		
2.64	hoch	Gnpnat1
2 64	hoch	Shad1
2.04	hoon	
2.64	nocn	Alg8
2.64	hoch	Bzw2
2.63	hoch	Spire1
2.00	hoon	
2.63	hoch	Nol5a
2.63	hoch	Hax1
2.62	hoch	Hav1
2.02	nocn	
2.62	hoch	Cirh1a
2.61	hoch	Bxdc2
2.61	hoch	Rnl23a
2.01		
2.61	nocn	Nfe2l1
2.60	hoch	Gnpnat1
2 60	hoch	l nhn2
2.00	hoon	Tablad
2.60	nocn	Impimi
2.59	hoch	Aldh18a1
2 59	hoch	Edft1
2.00	hash	Durat
2.59	nocn	Prmt3
2.59	hoch	Lmna
2 58	hoch	P2rv14
2.00	hash	
2.58	nocn	SIC25a4
2.58	hoch	Vars
2 58	hoch	Pdcd1la2
2.00	hash	Ota ha 4
2.58	nocn	Gtpbp4
2.57	hoch	Erh LOC100042777
2 57	hoch	Bxdc1
2.01	heeb	DdyEC
2.30	nocn	Daxoo
2.56	hoch	Denr
2 56	hoch	1300001101Rik
2.00	heeb	
2.55	nocn	Cakis
2.55	hoch	Mrpl23
2 55	hoch	Tmem147
2.00	heeb	Notoffe
2.55	noch	NUUIDO
2.55	hoch	Nola2
2 55	hoch	Mrrf
2.55	hooh	More
2.55	nocn	
2.55	hoch	Erh LOC100042777
2 54	hoch	Cct6a
2.51	hooh	Erbll OC100042777
2.04	nocn	
2.54	hoch	Ece2
2.54	hoch	Mtbp
2.51	hooh	Sonon1
2.04	noch	Schehl
2.54	hoch	Mki67ip
2.54	hoch	Cct3
2 5 3	hoch	Sastm1
2.00	nocn	
2.53	nocn	8430427H17RIK
2.53	hoch	EG624165 EG668347
2 5 3	hoch	Δim2
2.00		
2.53	nocn	Att4
2.52	hoch	Pvt1
2 5 2	hoch	Nol1
2.52	hoon	
2.52	nocn	2610020H08RIK
2.52	hoch	AK122209
2 52	hoch	4732471D19Rik
2.02	heat	
2.52	noch	NUCCOT
2.52	hoch	Jmjd3
2 52	hoch	Bcl2111
2.02	heat	
2.51	nocn	Ladi
2.51	hoch	Abce1
2 50	hoch	Car12
2.50	hach	
2.50	nocn	Chenali
2.50	hoch	Cysltr1

2.50	hoch	2410019A14Rik
2.49	hoch	Alcam
2.49	hoch	Emb
2.48	hoch	Lphn2
2.48	hoch	Slc35b1
2.48	hoch	2010309E21Rik
2.48	hoch	ENSMUSG0000054945
2.47	hoch	LOC665649
2.47	hoch	Mrpl23
2.47	hoch	Nfkb2
2.47	hoch	Prmt7
2.46	hoch	Nhoch62
2.45	hoch	Thg1l
2.45	hoch	Ran LOC100045999
2.45	hoch	Rab6ip1
2.44	hoch	Gsto1
2.44	hoch	Timm10 Timm13
2.44	hoch	Hmgcs1 LOC100040592
2.44	hoch	Angptl6
2.44	hoch	Gas5
2.44	hoch	Tbc1d7
2.43	hoch	Prdx6
2.41	hoch	Rcc1
2.41	hoch	Thada
2.41	hoch	Ptpn3
2.41	hoch	Tbrg4
2.41	hoch	Mtx2
2.40	hoch	Glce
2.40	hoch	2210411K11Rik
2.40	hoch	Wdr67
2.40	hoch	Angel1
2.40	hoch	Adsl
2.39	hoch	Extl1
2.39	hoch	Ncl
2.39	hoch	Hint1
2.39	hoch	Miki
2.38	hoch	Serpina3g Serpina3f
2.38	hoch	Trim35
2.38	hoch	Nsun2
2.38	hoch	I cp1
2.38	hoch	Wdr18
2.37	hoch	Hmbs
2.37	hoch	Mrpl45
2.36	hoch	Nox1
2.36	hoch	Qtrt1
2.36	noch	4930488E11RIK
2.35	nocn	Srxn1
2.35	noch	
2.35	noch	SICO3a1
2.35	nocn	
2.35	noch	VVdr36
2.35	noch	Ces2
2.35	nocn	BDS12
2.30 2.25	hoch	
2.30	nocn	
∠.35 2.24	noch	INOCOL Doubd2
∠.34 2.24	hoch	ryusu∠ Kar1
2.34	hoch	NSI I Tanan 21
∠.34	noch	ISPANSI Edft1
∠.34 2.24	hoch	Fulli Morp2
∠.ა4 ე.ეე	hoch	
∠.აა	noch	110115

2.33	hoch	Npm1	2.22	hoch	B3gaInt2
2.33	hoch	Uxt	2.22	hoch	Mnat1
2.33	hoch	2410127L17Rik	2.22	hoch	EG434858
2.33	hoch	Ndufab1	2.22	hoch	Orc2l
2.33	hoch	Npm1	2.22	hoch	Ptpn3
2.32	hoch	Wdr46	2.22	hoch	Usp31
2.32	hoch	Nola1	2.22	hoch	Fbl LOC100044829
2.32	hoch	Pfas	2.22	hoch	Snrpe
2.32	hoch	Slc38a1	2.22	hoch	Cox18
2.32	hoch	Bckdhb	2.21	hoch	Pdia6
2.31	hoch	Arhgap5	2.21	hoch	2610524H06Rik
2.31	hoch	H47	2.21	hoch	Rilpl2
2.31	hoch	Ranbp1	2.21	hoch	Nubp1
2.31	hoch	Uchl3	2.21	hoch	Nat13
2.31	hoch	Golim4	2.21	hoch	Synj2
2.30	hoch	Gstz1	2.21	hoch	Nol14
2.30	hoch	Tgif1	2.21	hoch	Ebna1bp2
2.30	hoch	Hk2	2.21	hoch	Usp10
2.30	hoch	Ndufab1	2.21	hoch	Gtlf3a
2.30	hoch	Nol6	2.20	hoch	Cops5
2.30	hoch	Exosc2	2.20	hoch	Sfrs7
2.30	hoch	4921511H13Rik	2.20	hoch	Atf5
2.30	hoch	Gtpbp10 EG628412	2.20	hoch	Pvr
2.29	hoch	Mphosph10	2.20	hoch	AI747699
2.29	hoch	Lyrm1	2.20	hoch	1110031I02Rik
2.29	hoch	Adam19 LOC100045780	2.19	hoch	Tsr2
2.29	hoch	2610028A01Rik	2.19	hoch	Naf1
2.28	hoch	Eif1a	2.19	hoch	Fas
2.28	hoch	Ftsj3	2.19	hoch	Nol11
2.28	hoch	Uxt	2.19	hoch	Eif2s1
2.28	hoch	Eif3g	2.18	hoch	Ascc2
2.27	hoch	Tbce	2.18	hoch	Batf
2.27	hoch	Hmgcr	2.18	hoch	Cebpg
2.27	hoch	Larp1	2.18	hoch	Hnrnpa1
2.27	hoch	Lrrc1	2.18	hoch	Ell2
2.27	hoch	Hook1	2.18	hoch	Tmem49
2.27	hoch	Pdss1	2.18	hoch	Mrpl47
2.27	hoch	1110008L16Rik	2.18	hoch	2900026A02Rik
2.27	hoch	BC003885 EG623867	2.18	hoch	Tomm40
2.27	hoch	Nme2	2.18	hoch	Bmp2k
2.26	hoch	Lztfl1	2.18	hoch	Nars2
2.25	hoch	Ppp1r16b	2.18	hoch	Ssr4
2.25	hoch	Rsl1d1	2.18	hoch	lsg20
2.25	hoch	Rangrf	2.18	hoch	Eif3c
2.25	hoch	Trmt1	2.18	hoch	Crem
2.24	hoch	BC003885	2.17	hoch	Eif4e
2.24	hoch	Pomt2	2.17	hoch	Brp16
2.24	hoch	Slc44a1	2.17	hoch	Lsm7
2.24	hoch	Adat2	2.17	hoch	Ldlr
2.24	hoch	Ankrd28	2.17	hoch	Gnl2
2.24	hoch	Gcsh	2.17	hoch	Sfrs3
2.24	hoch	Gclc	2.17	hoch	Cldnd1
2.24	hoch	1500019G21Rik	2.17	hoch	MrpI54
2.24	hoch	Nif3l1	2.16	hoch	Srpk1
2.24	hoch	Dennd3	2.16	hoch	Slc7a6
2.23	hoch	Hsd17b12	2.16	hoch	Rrp15
2.23	hoch	Mtg1	2.16	hoch	Fastkd2
2.23	hoch	Utp11I	2.16	hoch	Cdk8
2.23	hoch	Tspan3	2.16	hoch	Cct7
2.23	hoch	Thy1	2.16	hoch	BC057079
2.23	hoch	Bcl2l1	2.16	hoch	Aebp1
2.22	hoch	Tmem39a	2.16	hoch	2810439F02Rik

2.16	hoch	BC026590		2.10	hoch	Aebp2
2.16	hoch	Ak2		2.10	hoch	Gemin5
2.15	hoch	Hnrnpa1 LOC654467		2.10	hoch	Scn1b
2.15	hoch	Prim1		2.10	hoch	Msto1
2.15	hoch	Heatr1		2.09	hoch	Pwp2
2.15	hoch	Tcrg-V3		2.09	hoch	1810029B16Rik
2.15	hoch	Thoc1		2.09	hoch	Ddx49
2.15	hoch	Timm23		2.09	hoch	Ddt
2.14	hoch	1810054D07Rik		2.09	hoch	Psma3
2.14	hoch	Cd274		2.09	hoch	Orc1I
2.14	hoch	Timm23	:	2.09	hoch	Pitrm1
2 14	hoch	Xrcc5		2 09	hoch	Polr3a
2 14	hoch	Utp15		2 09	hoch	Gtf2h4
2 14	hoch	Prdx3	-	2 09	hoch	Pus7l
2 14	hoch	Zwint		2.08	hoch	Tfb2m
2.14	hoch	Slc31a1		2.08	hoch	Mid2
2.14	hoch	Nomo1	-	2.00	hoch	
2.14	hoch	Atyn10	-	2.00	hoch	Cohn
2.14	hoch	Autitu Domo?	4	2.00	hoch	Miba
2.13	hoch		-	2.00	hooh	Motti2
2.13	hoch			2.00	hoch	
2.13	nocn	Raliz	4	2.08	nocn	
2.13	nocn	Gabarapi	-	2.08	nocn	D10Ertd322e
2.13	hoch	Psma3		2.08	hoch	Yars2
2.13	hoch	Arl6		2.08	hoch	Dtl
2.13	hoch	Thop1		2.08	hoch	Nob1
2.13	hoch	Blm		2.08	hoch	Coq2
2.12	hoch	Atp5g1 LOC100041835		2.07	hoch	Psmd12
2.12	hoch	Gm71		2.07	hoch	Uhrf1bp1
2.12	hoch	Qsox2		2.07	hoch	Srebf2
2.12	hoch	Exosc8		2.07	hoch	Umps
2.12	hoch	Magmas		2.07	hoch	Slc44a1
2.12	hoch	5730469M10Rik		2.07	hoch	Tomm20
2.12	hoch	Rabggtb		2.07	hoch	Lyar
2.12	hoch	2310056P07Rik		2.07	hoch	D17Wsu104e
2.12	hoch	Psma6		2.07	hoch	Wrb
2.12	hoch	Eif1ay		2.06	hoch	Hnrnpa1
2.12	hoch	Cndp2		2.06	hoch	Psmc5
2.12	hoch	Dph5		2.06	hoch	Slc3a2
2.12	hoch	AK129128		2.06	hoch	Mtap
2.12	hoch	BC024814	:	2.06	hoch	0610037L13Rik
2.11	hoch	3010003L21Rik	:	2.06	hoch	Tbl3
2 11	hoch	Aasdhootll OC100044211		2.06	hoch	Wdr59
2 11	hoch		-	2 06	hoch	Wdr4
2.11	hoch	Hnrnna1/EG434858	-	2.06	hoch	Gvs1
2 11	hoch		-	2 05	hoch	Clcn5
2.11	hoch	Psmd7		2.05	hoch	Pou2f2
2.11	hoch	Gyk		2.05	hoch	Dut
2.11	hoch	Inte?	4	2.05	hoch	l man1
2.11	hoch	Mtrr	4	2.05	hoch	Nolc1
2.11	hoch	SI625d1	4	2.05	hoch	Slobab
2.11	hoch	Mrpa 27	4	2.05	hoch	
2.11	hoch	Timm 22		2.05	hooh	Nuff2
2.11	hoch			2.05	hoch	
2.11	nocn	Casp4/LOC 100044206		2.05	hoch	
2.11	nocn	Atic/LOC100046995	4	2.05	nocn	Null2
2.11	noch			2.05	noch	
2.11	noch	Nr2C2ap		2.05	noch	
2.10	hoch	Alg2		2.05	noch	
2.10	hoch	Ern1		2.04	hoch	Cnst2
2.10	hoch	11157		2.04	hoch	Ruvbl2
2.10	hoch	Jtv1	4	2.04	noch	
2.10	hoch	Lrpprc		2.04	hoch	Polr3e
2.10	hoch	I xnl1		2.04	hoch	Snx9

2.04	hoch	Mrpl17
2.04	hoch	Sars
2.04	hoch	G6pc3
2.03	hoch	Fkbp2
2.03	hoch	Gfer
2.03	hoch	Mif4gd
2.03	hoch	Rwdd4a
2.03	hoch	Tspan4
2.03	hoch	5730449L18Rik
2.03	hoch	Oprs1
2.03	hoch	Polr3d
2.03	hoch	Krr1
2.03	noch	Guri
2.03	nocn	Algo
2.03	nocn	LSS Incia1
2.03	nocn	
2.03	hoch	
2.03	hoch	
2.02	hoch	4930320004RIK
2.02	hoch	
2.02	hoch	LIICZU Udaf
2.02	hoch	Tmem/12
2.02	hoch	Npm3
2.02	hoch	Irrc/0
2.02	hoch	Ptomt1
2.02	hoch	Man2k3
2.02	hoch	Psmd1
2.02	hoch	Ret1
2.02	hoch	D19Bwg1357e
2.02	hoch	Tmem34
2.01	hoch	Pecam1
2.01	hoch	Rhbdd1
2.01	hoch	Lsm7
2.01	hoch	Traf4
2.01	hoch	Fndc3b
2.01	hoch	1600012F09Rik
2.01	hoch	Psmd6
2.01	hoch	Nap1I1
2.01	hoch	Aldoa
2.01	hoch	2410002F23Rik
2.01	hoch	Vdac1
2.01	hoch	2610510H03Rik
2.01	hoch	2900075B16Rik
2.01	hoch	Armet
2.01	hoch	Gde1
2.00	hoch	Magohb
2.00	hoch	Lig3
2.00	hoch	Mipep
2.00	hoch	Rars2
2.00	hoch	LOC100043462
2.00	hoch	Noc4I
2.00	hoch	Surf2
2.00	hoch	Uchl5ip

herunteregulierte Gene

Faktor	Reg.	Gen	Faktor	Reg.	Gen
143.00	runter	Lyz2	12.35	runter	Atp1a3
71.45	runter	I830127L07Rik	11.38	runter	Csf2rb
71.12	runter	Cybb	11.12	runter	LOC435333
65.42	runter	Ear2	10.54	runter	Cma1
50.69	runter	Ngp	10.47	runter	Sirpb1
41.94	runter	Ceacam1	10.39	runter	Cd36
39.97	runter	Itgam	10.34	runter	Garnl4
37.91	runter	lgsf6	10.10	runter	C3ar1
36.25	runter	EG434025	9.82	runter	Tspan32
33.56	runter		9.65	runter	Sirpa
32.85	runter	Ear10 Ear2 Ear12 Ear3	9.23	runter	Cx3cr1
29.72	runter	Igh-Ia	9.12	runter	ENSMUSG0000073493
28.03	runter	Igkv1-117/LOC100046350	9.10	runter	Ntam1
27.54	runter	EarijEariojEar2jEari2jEar3	8.94	runter	
20.40	runter		0.07	runter	EG033457
20.22 25.16	runter	Eugo Ear10/Ear2/Ear12/Ear2	0.04 0.71	runter	
20.10	runter		0./1	runter	Cmah
24.24	runter	Flu4 Foor/	0.49 8.45	runter	Serpinb0b
24.07	runter		0.45 8.42	runter	
22.04	runter	Emr/	8 30	runter	BC013712
22.00	runter	lfitm6	8 29	runter	As3mt
21.00	runter	Cmklr1	8 27	runter	ll13ra1
20.94	runter	Mpeg1	8 21	runter	lfngr2
20.80	runter	Csf1r	8.00	runter	Hpad
19.57	runter	Ccl6	7.96	runter	Pira11
19.42	runter	Clec4a1	7.90	runter	Kcni8
19.04	runter	Alox5ap	7.73	runter	Tlr7
18.94	runter	Cyp4f18	7.72	runter	Ms4a6c
18.06	runter	Cd180	7.65	runter	Cd200r3
17.37	runter	lghv1-72	7.64	runter	Cd209a
17.26	runter	lfitm3	7.64	runter	Mcam
17.19	runter	Klrg1	7.61	runter	Rassf4
17.15	runter	Gzma	7.53	runter	Tgfbi
16.98	runter	lgj	7.52	runter	OTTMUSG0000000990
16.85	runter	2310016C16Rik	7.42	runter	Abca1
16.01	runter	Serpinb10	7.30	runter	Klf2
15.85	runter	1100001H23Rik	7.19	runter	Cdc20b
15.53	runter	Fn1	7.10	runter	Sema4a
15.50	runter	LOC435333	6.83	runter	Pla2g7
15.30	runter	ENSMUSG0000076563	6.80	runter	Acp5
15.27	runter	RP23-331L12.7	6.73	runter	Ly6i
15.05	runter	Stpl1	0.69	runter	Rasgrp2
15.05	runter		0.00	runter	I rem3
14.97	runter	MIIA	0.00	runter	E12o1
14.07	runter	722/20016Dik	0.04	runter	
14.02	runter	Fntnd1	6.37	runter	
14.47	runter	Tir13	6.31	runter	Cvp17a1
13.87	runter	lahy1-7	6.13	runter	Klra9
13 56	runter	Ccl9	6 10	runter	Myadm
13 49	runter	OTTMUSG0000000971	5.97	runter	Slc7a8
13.25	runter	Fcar2b	5.88	runter	Ptplad2
13.14	runter	ENSMUSG0000076577	5.86	runter	Klrb1a
12.53	runter	ll8rb	5.75	runter	Aoah

5 72	runter	Rnase6
5.68	runter	Alox5
5.62	runter	Hnse
5.60	runter	Smodl3a
5.00	runter	
5.57	runtor	
5.55	runter	
0.00 E E O	runter	A430070G23RIK
5.52	runter	
5.51	runter	Fgr
5.47	runter	Smpal3b
5.45	runter	A430084P05RIK
5.33	runter	Abcg3
5.27	runter	Plxnb2
5.22	runter	Sepp1
5.19	runter	Casp7
5.16	runter	Arhgef18
5.16	runter	Fry
5.14	runter	Lpcat2
5.10	runter	Itgax
5.08	runter	St5
5.03	runter	Atp2a3
4.97	runter	Grn
4.97	runter	Mylip
4 95	runter	Cd68
4 93	runter	Adrbk2
4.92	runter	Acol2
4 79	runter	Man1c1
4.76	runter	E430024C06Rik
4.76	runtor	L 0C751864
4.70	runtor	E430024C06Pik
4.73	runtor	
4.73	runtor	
4.03	runter	
4.02	runter	LOC301404
4.01	runter	
4.30	runter	EG241041
4.54	runter	
4.53	runter	
4.53	runter	Pirali
4.52	runter	In
4.51	runter	Prf1
4.47	runter	Klf3 LOC100046855
4.45	runter	Xdh
4.44	runter	Prdm1
4.43	runter	Arsb
4.43	runter	Sord
4.39	runter	Dhrs3
4.37	runter	Acss1
4.37	runter	C5ar1
4.36	runter	Hsd11b1
4.36	runter	ltih5
4.27	runter	Ctsh
4.27	runter	Tifab
4.26	runter	Aldh3b1
4.25	runter	Rnf144b
4.25	runter	Hrh4
4.22	runter	Enpp1
4.18	runter	Gm2a
4.17	runter	Daka
4.15	runter	Acss2
4 14	runter	Car5b
4,11	runter	Lv6c1 Lv6c2 OC100041546
4 10	runter	ll18r1
	1 41100	

4.08	runter	Klrb1c
4.07	runter	AF251705 Cd300a
4.06	runter	Нр
4.05	runter	S1pr1
4.05	runter	ll18rap
4.02	runter	Slc11a1
4.00	runter	AB124611
3.99	runter	Timp2
3.96	runter	Tbx21
3.94	runter	Pde2a
3.92	runter	Arsh
3.91	runter	Pilrb2lPilrb1
3.90	runter	
3.88	runter	2010012005Rik
3.87	runter	Tam2
3.83	runter	Pilrh1
3.83	runter	Kira9
3.82	runtor	1830077 102Pik
3 70	runtor	Pac ³
271	runtor	
3.74	runter	96501501VITSRIK
3.74	runter	GSIM I
3.12	runter	
3.71	runter	Stom
3.71	runter	I mem / 1
3.69	runter	Adamts14
3.69	runter	ltgb2
3.67	runter	Cd97
3.65	runter	LOC625360
3.65	runter	AI607873
3.65	runter	Khdc1a LOC100044146
3.65	runter	Kcnip3
3.64	runter	Pygl
3.63	runter	Chn2
3.63	runter	Nuak2
3.62	runter	Rgl1
3.59	runter	Csf3r
3.58	runter	Samhd1
3.58	runter	Klra2
3.57	runter	Ccl4
3.54	runter	Sept5 Gp1bb
3.53	runter	Angpt1
3.53	runter	Slc14a1
3.52	runter	ldh1
3.50	runter	6430548M08Rik
3.50	runter	Cldnd2
3.49	runter	Klra3
3.49	runter	6330500D04Rik
3.49	runter	H2-T24
3.48	runter	Art2b
3.47	runter	Clec7a
3.46	runter	Epsti1
3.45	runter	Kif10
3.44	runter	Thbd
3.44	runter	Hfe
3.44	runter	Tnfsf12-tnfsf13lTnfsf13
3 4 2	runter	Kira10
3 40	runter	Dpep2
3 39	runter	ENSMUSG0000071525
3.38	runter	Itaa6
3.36	runter	Dok3
3 3/	runtor	Fad4
3 33	runter	Cenh2
0.00		CONDE

3.31	runter	2810048G17Rik
3.28	runter	Tm6sf1
3.27	runter	Fpr1
3.26	runter	C030014K22Rik
3.25	runter	Atp10d
3.24	runter	Rasgef1a
3.23	runter	EG232801
3.23	runter	Nr4a1
3.23	runter	Lpin1
3.16	runter	Ptgs1
3.15	runter	Aldn2
3.15	runter	SIC46a3
3.14	runter	
3.14 2.12	runter	Amad2
0.10 0.10	runter	Ampus Vulti
3.13	runter	Ahia
3.12	runter	Sort1
3.12	runtor	Zeh2
3.12	runter	Chfa2t3
3 11	runter	Unc93h1
3 10	runter	Cited2
3 10	runter	Jhoch
3.09	runter	Racgap1
3.08	runter	Gda
3.08	runter	Cfp
3.07	runter	Mxd4
3.06	runter	Sorl1
3.05	runter	Zfhx3
3.04	runter	Myo1f
3.04	runter	Nfe2
3.04	runter	Clec4e
3.04	runter	Cd48
3.04	runter	Rab31
3.03	runter	4831426119Rik
3.02	runter	Il 10ra
3.01	runter	Sqrai
3.00	runter	
2.99	runter	Rgsz Debe
2.90	runter	Phoh ECenoses
2.90	runter	EG040200 Cvp2ab1
2.97	runter	
2.37	runter	Palvrn1
2.97	runter	Cdh22
2.97	runter	Ncf2
2.95	runter	Slc44a2
2.95	runter	ll15
2.92	runter	Hexb
2.92	runter	B430306N03Rik
2.91	runter	Gpx1
2.90	runter	Spn
2.89	runter	Tmc8
2.89	runter	Runx1
2.88	runter	I cn2
∠.88	runter	AOSSI1 Tafbr2
∠.01 2 07	runter	I GIDI S Dab 10
2.01 2.87	runter	Nau 19 Hast
2.07	runter	Fhi3
2.86	runter	Sepx1
2.86	runter	Lyl1

2.86	runter	Ptpn4
2.85	runter	Itga4 Cerkl
2.85	runter	Nr4a2
2.84	runter	Kif21b
2.84	runter	Tnk2
2.83	runter	Osbpl5
2.83	runter	Plxnc1
2.83	runter	Lef1
2 82	runter	Ebxl2
2 80	runter	Cdc25b
2 79	runter	Prkca
2.78	runter	Cd81
2.70	runter	C630004H02Rik
2.70	runtor	Man2h1
2.70	runtor	Aim1
2.11	runtor	Slo16o7
2.11	runter	
2.11	runter	
2.75	runter	
2.75	runter	PICD2
2.75	runter	PISCr4
2.75	runter	Prkcd
2.75	runter	Cdc42ep3
2.75	runter	D930028F11Rik
2.75	runter	9130213B05Rik
2.74	runter	Nqo2
2.74	runter	Sorcs2
2.73	runter	Abcd1
2.71	runter	5730593F17Rik
2.71	runter	Klra8
2.70	runter	Dab2ip
2.69	runter	Tyrobp
2.69	runter	Cbfa2t3
2.68	runter	Dusp7
2.68	runter	Txnip
2.68	runter	Nav1
2.67	runter	Slamf7
2.66	runter	Plaur
2.66	runter	Hsd17b11
2.66	runter	Plek
2.65	runter	Naaa
2.65	runter	Khdc1a
2.64	runter	Rasa3
2.63	runter	Slc41a3
2.63	runter	Klhl30
2.62	runter	Baiap3
2.61	runter	Cldn1
2.60	runter	Cd2
2.60	runter	Enpp5
2.58	runter	Naip5lNaip7lBirc1f
2.58	runter	Sash
2.57	runter	Ctsw
2.57	runter	A930008G19Rik
2.57	runter	Sh2d3c
2.56	runter	Mapre2
2.56	runter	Zfn710
2.55	runtor	Cst3
2.55	runter	Chr2
2 55	runter	l diran1
2.50	runter	1810034F14Rik
2.53	runter	Stean3lStean1
2.53	runter	lkzf3
2.53	runter	2210404007Rik
2.00	101101	

2 52	runter	2900024C23Rik
2.52	runter	ltah7
2.52	runter	Klre1
2.52	runtor	\cap vr1
2.51	runter	Itaal
2.51	runtor	Tenan17
2.51	runtor	l of
2.51	runtor	
2.51	runter	
2.51	runter	
2.50	runter	2210412E05RIK
2.50	runter	Sp100
2.50	runter	BC067047
2.50	runter	
2.49	runter	Anxa1
2.49	runter	Pik3cb
2.49	runter	L1cam
2.49	runter	Cd247
2.49	runter	Cpt1a
2.47	runter	Cd244
2.47	runter	Zyx
2.47	runter	LOC667824
2.47	runter	Prkcq
2.45	runter	Ptpre
2.45	runter	Efhd2
2.45	runter	Siglece
2.45	runter	BC046404
2.45	runter	Hs3st3b1
2.45	runter	Jhdm1d
2.45	runter	Smpd1
2.44	runter	A530088107Rik
2.44	runter	Nfia
2.44	runter	Hk3
2.44	runter	Gpr141
2.43	runter	Cd38
2.43	runter	Nab2
2.43	runter	A630033H20Rik
2.43	runter	D8Ertd82e
2.43	runter	Ubash3b
2.43	runter	Myo18a
2.43	runter	Gprc5a
2.42	runter	Lilrb3
2.42	runter	Ak3
2.42	runter	BC028528
2.41	runter	Pycard
2.41	runter	Kctd12
2 41	runter	Slc24a6
2 41	runter	Ptms
2 41	runter	Csf2ra
2.40	runter	4631426.105Rik
2.40	runter	Rirc1flNain7
2.40	runter	Δtn1h1
2.40	runtor	Enhv1
2.39	runtor	
2.39	runtor	Cu300ib
2.39 2.20	runter	Cord6
∠.39 2.20	runter	
2.39 2.20	runter	Lop I Cono7
2.39 2.20	runter	Oprile/ B2aptE
2.39	runter	Dognio Cm1066
2.39	runter	
∠.3ŏ	runter	
2.38	runter	SIKJZC
2.30	runter	Сурээат

2.37	runter	Inpp4a
2.37	runter	Pgcp
2.36	runter	Serinc5
2.36	runter	Ccm2
2.36	runter	Ppm1j
2.36	runter	AW146242
2.36	runter	Tet1
2.35	runter	Btbd11
2.35	runter	Slc2a3
2.35	runter	Sema4c
2.35	runter	Jhdm1d
2.34	runter	LbhlLOC100048380
2.34	runter	Slc28a2
2.33	runter	Dvrk1b
2.33	runter	Rap2b
2.33	runter	Tnik
2.32	runter	lrf1
2 32	runter	EG432555
2.32	runter	Hea1
2.32	runter	Kihi6
2.02	runter	Glul
2.01	runter	Pdcd4
2.01	runtor	Rael12
2.01	runtor	Forn3
2.30	runter	6330512M0/Rik
2.30	runtor	Sonn1
2.30	runtor	Sepiri Kirb1f
2.30	runtor	Dto/rl1
2.30	runtor	E0f0
2.30	runter	LZIZ Tofoin?
2.30	runter	Thiaipz Tapap5
2.29	runter	TSpano Dik2on1
2.29	runter	Mturo
2.29	runter	
2.29	runter	NINI4 Samud 2
2.29	runter	Samus
2.20	runter	
2.28	runter	
2.27	runter	
2.20	runter	
2.26	runter	RP23-45P4.1
2.26	runter	Adamtso
2.26	runter	Erichí
2.26	runter	Cond3
2.26	runter	Zbtb16
2.25	runter	MKI1
2.25	runter	Malt1
2.25	runter	EG668139
2.25	runter	Gns
2.25	runter	Styk1
2.25	runter	Qprt
2.24	runter	Arhgef2
2.24	runter	Hpcal1
2.24	runter	2310014H01Rik
2.24	runter	Lrrk2
2.24	runter	Hist1h2bb
2.23	runter	Rnf122
2.23	runter	Wdfy4
2.22	runter	Mettl7a1
2.22	runter	Foxn3
2.22	runter	Cercam
2.21	runter	Mr1
2.21	runter	Lrmp
2.21 runter Rps6ka2 runter EG432555 2.21 runter EG432555 2.21 runter Plekhg2 2.20 runter Slc39a13 2.20 runter Cmpk2 2.19 runter Soat1 2.19 runter Soart runter Rab27a runter Spata13 runter Smad3 runter Lrig3 2.19 2.19 2.19 2.18 2.18 runter Cdkn3 runter BC043118 2.17 runter Mfge8 2.17 2.17 runter Marveld1 2.16 runter Slfn5 runter Tifa|LOC637082 2.16 2.16 runter Ahnak 2.15 runter Rab3d 2.15 runter II17ra runter Ccpg1 2.15 runter Wdfy3 2.14 runter Ctsa 2.14 runter Atp2b4 2.14 2.13 runter Galnt10 runter Heg1 2.13 runter Blvrb 2.13 runter Abca3 2.13 runter Emp3 runter Itgad runter Arid5b 2.13 2.13 2.12 runter S100a6 2.12 2.12 runter Lats2 runter Fmo5|LOC100046051 2.12 2.11 runter Elf4 runter Cited4 2.11 2.11 runter Ets1 2.10 runter Stk10 2.10 runter Arhgef10I 2.10 runter Coro7 2.10 runter Tax1bp3 runter Mcl1 2.10 runter Lfng 2.10 2.10 runter Tnfrsf1a runter Sgk3 2.10 runter 5730470L24Rik 2.09 runter Mag 2.09 runter Fkbp10 2.09 runter Cst7 2.09 runter Tax1bp3 runter Qrfp 2.09 2.09 runter St3gal1 2.09 runter 1810033B17Rik 2.08 2.08 runter 1700101E01Rik 2.08 runter Bcl9l 2.08 runter Ppp1r9b 2.08 runter Mxd1 runter Tbc1d9 2.07 2.07 runter Cd27|LOC100048672 2.07 runter D930015E06Rik 2.06 runter BC031353 2.06 runter 1700040L02Rik

2.06	runter	B430201A12Rik
2.06	runter	Gpr137b
2.06	runter	OTTMUSG0000012358
2.06	runter	Zfp442 EG245174
2.06	runter	Tcp11l2
2.06	runter	Plekhg3
2.06	runter	Arl4c
2.06	runter	Paqr7
2.05	runter	Atp13a2
2.05	runter	Ube2h
2.05	runter	Rab11fip4
2.05	runter	lqgap2
2.05	runter	Tshz3
2.05	runter	Golm1
2.05	runter	Rassf3
2.05	runter	Stk38
2.04	runter	Pot1b
2.04	runter	Tpcn1
2.04	runter	Snx30
2.04	runter	A530064D06Rik
2.04	runter	Grk5
2.04	runter	Rnpepl1
2.03	runter	Frat1
2.03	runter	Sbk1
2.03	runter	Gpr77
2.03	runter	Fasl
2.02	runter	Ube2h
2.02	runter	2310005E10Rik
2.01	runter	Oasl2
2.00	runter	Twf2
2.00	runter	Sepw1

Mein besonderer Dank gilt:

Univ.-Prof. Dr. med. Werner A. Scherbaum, der meine damalige Bewerbung an Prof. Schott leitete und somit die ersten Weichen zur Durchführung der Promotion stellte. Ich möchte ihm für die Bereitstellung der Laborräume, für die anhaltende Förderung und die zahlreichen intensiven Gespräche und Ideen danken.

Meinem Doktorvater **Univ.-Prof. Dr. med. Matthias Schott**, der mich stets unterstützte und förderte. Er hat meine Arbeit mit besonderem Interesse und wertvollen Ratschlägen begleitet und gab mir die Gelegenheit, meine Daten auf zahlreichen Konferenzen vorstellen zu dürfen. Er verstand es, wie kein anderer, mich bei Rückschlägen zu motivieren.

Meinem Korreferenten **Univ.-Prof. Dr. rer. nat. Eckhard Lammert** von der Mathematisch-Naturwissenschaftlichen Fakultät (Institut für Stoffwechselphysiologie), der diese Arbeit durch seine fachliche Begleitung ermöglicht hat.

Dr. rer. nat. Claudia Papewalis (Abteilung für Pädiatrische Hämatologie und Onkologie, Zentrum für Kinderheilkunde, Universitätsklinikum Bonn), die mich in die hiesigen Labortechniken eingearbeitet hat und von der ich in vielen fachlichen und auch privaten Gesprächen lernen durfte. Sie unterstützte mich stets mit innovativen Ideen, neuen Literaturstellen, half mir bei der praktischen Arbeit im Labor und unterstützte mich bei der Erstellung der Veröffentlichung.

Prof. Dr. med. Evelyn Ullrich (Hämatologie und internistische Onkologie, Medizinische Klinik 5, Universitätsklinikum Erlangen), die zusammen mit Univ.-Prof. Dr. med. Matthias Schott die Idee für die Doktorarbeit erarbeitet hat und mich während des gesamten Verlaufs begleitete und über ihre neuen Erkenntnisse und Ideen informierte.

Roswitha Charko, Ulla Dötter und Birgit Opgenoorth, die mich mit ihrem fachlichen Wissen und praktischen Hinweisen sehr unterstützt und mir in vielerlei

Hinsicht den Weg geebnet haben. Die Zusammenarbeit mit ihnen hat in beträchtlichem Ausmaß zur Erstellung dieser Doktorarbeit beigetragen.

Meinen Freunden, Kathrin und Christian Weiffen, Jens Schlebusch, Janina Kier, Andrea Kemkers und ganz besonders Jennifer Klöpper, die für die erforderliche Ablenkung während des Studiums und der Doktorarbeit sorgten und mich mit praktischen Tipps zum Erstellen wissenschaftlicher Arbeiten unterstützten.

Meiner Familie, für den Rückhalt, das Vertrauen und die Zuversicht.

Und natürlich meinem Mann **Björn Ehlers**, der mich während meines Studiums und meiner Doktorarbeit immer unterstützt und bestärkt hat, wenn ich an mir gezweifelt habe. Er hat mein Rückgrad in vielen Situationen gestützt. Ohne ihn wäre mein Weg nicht so gradlinig verlaufen und daher widme ich ihm diese Arbeit.