Semiempirische Verfahren mit Orthogonalisierungskorrekturen: Die OM3 Methode

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

> vorgelegt von Mirjam Scholten aus Frankfurt am Main

Frankfurt am Main

2003

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Referent: Herr Prof. Dr. Walter Thiel Korreferentin: Frau Prof. Dr. Christel Marian Tag der mündlichen Prüfung: 31.01.2003

Meinen Eltern

Die vorliegende Arbeit entstand am Max-Planck-Institut für Kohlenforschung in Mülheim an der Ruhr.

Mein besonderer Dank gilt Herrn Prof. Dr. Walter Thiel für die interessante Themenstellung und die gute Betreuung bei der Durchführung der Arbeit. Herrn Prof. Dr. Manfred T. Reetz danke ich für die Aufnahme am Institut. Frau Prof. Dr. Christel Marian danke ich für die Übernahme des Korreferates.

Der Arbeitsgruppe danke ich für die schöne gemeinsame Zeit. Herrn Dr. Frank Terstegen danke ich für seine Unterstützung bei der Einarbeitung. Rainer Steiger danke ich für die Überlassung des von ihm geschriebenen Programmes gps1, das eine große Arbeitserleichterung bedeutete und mit dem auch die meisten in dieser Arbeit enthaltenen Abbildungen erstellt wurden. Desweiteren gilt mein Dank der Computer-Abteilung des Institutes, insbesondere Horst Lenk.

Allen Kollegen und Freunden, die mich auf unterschiedlichste Weise bei der Anfertigung der Arbeit unterstützt haben, danke ich vielmals.

Inhaltsverzeichnis

1	Einleitung						
2	Semiempirische Methoden						
	2.1	Grundlagen	3				
	2.2	Integralnäherungen	6				
	2.3	MNDO	8				
	2.4	AM1 und PM3	12				
3	Die OMx Methoden 15						
	3.1	Orthogonalisierungseffekte	15				
	3.2	Gemeinsame Merkmale der OMx Methoden	20				
	3.3	OM1	22				
	3.4	OM2	23				
	3.5	OM3	25				
	3.6	Zusammenfassende Darstellung	26				
4	Der Parametrisierungsalgorithmus 29						
	4.1	Optimierungsalgorithmen	30				
	4.2	Levenberg-Marquardt Algorithmus	32				
	4.3	Implementierung des Algorithmus	34				
5	Parametrisierung 37						
	5.1	Vorgehensweise	37				
	5.2	Übersicht für den Standardsatz	40				
	5.3	Enthalpien und relative Energien	41				
		5.3.1 Standardbildungsenthalpien	41				
		5.3.2 Isomere	42				
		5.3.3 Konformere	43				
	5.4	Weitere Eigenschaften	44				
		5.4.1 Geometrien	44				
		5.4.2 Ionisierungspotentiale	45				
		5.4.3 Dipolmomente	46				
		5.4.4 Schwingungen	47				
	5.5	Vertikale Anregungen	47				
	5.6	Radikale	48				
	5.7	Ionen	49				
	5.8	G2 und G3 Validierungssätze	51				
		5.8.1 Standardbildungsenthalpien	51				

B	8 Anwendungsrechnungen					
A Validierungssätze						
8	Zusammenfassung und Ausblick 1					
	7.8	Pericyclische Reaktionen	177			
	7.7	Peptide	170			
	7.6	Wasserstoffbrückengebundene Systeme	155			
	7.5	G2 und G3 Validierungssätze	148			
	7.4	Vertikale Anregungsenergien	142			
		7.3.2 Kationen	138			
		7.3.1 Anionen	138			
	7.3	Ionische Systeme	137			
	7.2	Radikale	135			
		7.1.7 Schwingungen	131			
		7.1.6 Atomladungen	130			
		7.1.5 Dipolmomente	128			
		714 Ionisierungspotentiale	124			
		7.1.2 Relative Energien	109			
		7.1.1 Standardbildungsentnalpien	102			
	/.1	Neutrale geschlossenschalige Molekule 7.1.1 Standardbildungssenthalsing	102			
7	Erge	ebnisse	101			
6	Die OM3 Parameter 8					
	5.12		04			
	5.11 5.12	Bewertung der einzelnen Parametersatze	60 64			
	5.10		58			
	5.9	Wasserstoffbrückengebundene Systeme	57			
		5.8.2 Ionisierungspotentiale und Elektronenaffinitäten	53			

Kapitel 1

Einleitung

Noch zu Beginn des letzten Jahrhunderts war die Chemie eine rein empirische Wissenschaft. Dies änderte sich durch die Quantenchemie. Als ihre Geburtsstunde wird die Heitler-London Betrachtung des Wasserstoffmoleküls [1] angesehen. Die der Quantenchemie zugrunde liegende mathematische Theorie, die Quantenmechanik, war zwar schon in den 20er Jahren des 20. Jahrhunderts entwickelt worden, aber Näherungslösungen ihrer zentralen Gleichung, der Schrödinger-Gleichung, wurden für größere Moleküle erst durch den Einsatz von Computern möglich.

Heutzutage bietet die Quantenchemie eine Vielzahl von Methoden zur Berechnung von Molekülen. Die einfachsten dieser Verfahren sind semiempirische Molekülorbitalmethoden, die verschiedene Integrale vernachlässigen und in den verbleibenden Termen Parameter enthalten, die am Experiment kalibriert werden. Dies führt dazu, dass auch bei sehr großen Molekülen noch Rechnungen mit brauchbarer Genauigkeit durchgeführt werden können.

Die vorliegende Arbeit befasst sich mit der Weiterentwicklung von semiempirischen Methoden im Rahmen der NDDO (neglect of diatomic differential overlap) Approximation. Die Grundidee ist die Einführung von Orthogonalisierungskorrekturen in den theoretischen Formalismus verbunden mit der Parametrisierung des betreffenden Ansatzes. Zwei solche Modelle sind bereits in früheren Arbeiten entwickelt worden, OM1 [2, 3] und OM2 [4, 5], bei denen die Orthogonalisierungskorrekturen zu den Einelektronenintegralen sich auf den Einzentrenteil der Fock-Matrix (OM1) bzw. auf die gesamte Fock-Matrix (OM2) erstrecken. Beide Verfahren liefern deutlich bessere Ergebnisse als die etablierten semiempirischen Methoden, wobei eine genauere Analyse [6] jedoch zeigt, dass gewisse Korrekturterme zu diesen Verbesserungen wenig beitragen und daher weggelassen werden können. Der resultierende OM3 Ansatz wird in dieser Arbeit vorgestellt, parametrisiert und anhand ausgedehnter Anwendungen validiert.

Kapitel 2

Semiempirische Methoden

In der Quantenchemie unterscheidet man zwischen:

- 1. ab initio Methoden,
- 2. Dichtefunktional (DFT)-Methoden,
- 3. Semiempirische Methoden.

Die Genauigkeit der Ergebnisse und der benötigte Rechenaufwand nehmen bei quantenchemischen Rechnungen in der genannten Reihenfolge ab. Man verwendet ab initio Methoden daher vorzugsweise zu sehr genauen Berechnungen kleiner Moleküle, während semiempirische Methoden eher zur approximativen Behandlung sehr großer Systeme dienen.

Die meisten semiempirischen Verfahren nutzen die Molekülorbital (MO)-Näherung. Sie gehen konzeptionell vom ab initio MO-Ansatz aus, der daher im Folgenden zunächst kurz beschrieben wird; für eine ausführlichere Darstellung sei auf die gängige Literatur verwiesen [7–11]. Danach werden die semiempirischen Integralnäherungen besprochen.

2.1 Grundlagen

Ausgangspunkt der Herleitung ist die nichtrelativistische zeitunabhängige Schrödinger-Gleichung, die von den Kern- und Elektronenkoordinaten abhängt. Die Born-Oppenheimer Näherung erlaubt es, Kern- und Elektronenbewegung zu separieren, so dass man sich auf die Lösung der elektronischen Schrödinger-Gleichung bei festgehaltener Kernanordnung konzentrieren kann:

$$\mathbf{H}_{el}\psi_{el} = \mathbf{E}_{el}\psi_{el}.\tag{2.1}$$

Hierbei bezeichnet \mathbf{H}_{el} den elektronischen Hamilton-Operator, ψ_{el} die elektronische Wellenfunktion und \mathbf{E}_{el} die elektronische Energie.

Der Operator \mathbf{H}_{el} für ein System von N_A Kernen (A) und n Elektronen (i, j) lautet:

$$\mathbf{H}_{el} = -\frac{\hbar}{2m_e} \sum_{i}^{n} \nabla_i^2 - \sum_{i}^{n} \sum_{A}^{N_A} \frac{Z_A e^2}{r_{iA}} + \frac{1}{2} \sum_{i,j}^{n} \frac{e^2}{r_{ij}}.$$
 (2.2)

Er beschreibt die kinetische Energie der Elektronen (erster Term, Elektronenmasse m_e), die Kern-Elektron-Anziehung (zweiter Term, Kernladung Z_Ae , Kern-Elektron-Abstand r_{iA}) und die Elektron-Elektron-Abstoßung (dritter Term, Elektron-Elektron-Abstand r_{ij}).

In der Orbitalnäherung wird die n-Elektronen-Wellenfunktion durch eine Slater-Determinante beschrieben:

$$\frac{1}{\sqrt{n!}} \begin{vmatrix} \phi_1(1) & \phi_2(1) & \dots & \phi_{n-1}(1) & \phi_n(1) \\ \phi_1(2) & \phi_2(2) & \dots & \phi_{n-1}(2) & \phi_n(2) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \phi_1(n-1) & \phi_2(n-1) & \dots & \phi_{n-1}(n-1) & \phi_n(n-1) \\ \phi_1(n) & \phi_2(n) & \dots & \phi_{n-1}(n) & \phi_n(n) \end{vmatrix},$$

wobei die Spinorbitale ϕ_i das Produkt aus Raumorbitalen ψ_k und Spinfunktionen α oder β sind. Diese Form der Wellenfunktion ist antisymmetrisch bezüglich des Austausches zweier Elektronen und genügt somit dem Pauli-Prinzip.

Um die mit diesem Ansatz bestmögliche Näherung für den Grundzustand zu erzielen, führt man eine Variationsrechnung durch. Damit erhält man effektive Einelektronen-Eigenwertgleichungen für die Spinorbitale ϕ_i mit den Orbitalenergien ϵ_i :

$$\mathbf{F}\phi_i = \epsilon_i \phi_i, \tag{2.3}$$

$$\mathbf{F} = \mathbf{H} + \sum_{j}^{n} \left(J_{j} - K_{j} \right). \tag{2.4}$$

Der Fock-Operator \mathbf{F} besteht aus einem Einelektronen-Operator \mathbf{H} (kinetische Energie und Kern-Elektron-Anziehung)

$$\mathbf{H} = -\frac{\hbar}{2m_e} \sum_{i}^{n} \nabla_i^2 - \sum_{i}^{n} \sum_{A}^{N_A} \frac{Z_A e^2}{r_{iA}}$$
(2.5)

sowie den Coulomb-Operatoren J_j und den Austausch-Operatoren K_j , die wie folgt definiert sind (Elektronennummern 1 und 2):

$$J_j(1)\phi_i(1) = \left(\int \phi_j^*(2) \frac{e^2}{r_{12}} \phi_j(2) \mathrm{d}\tau_2\right) \phi_i(1), \qquad (2.6)$$

$$K_j(1)\phi_i(1) = \left(\int \phi_j^*(2)\frac{e^2}{r_{12}}\phi_i(2)\mathrm{d}\tau_2\right)\phi_j(1).$$
(2.7)

Der Coulomb-Operator J_j beschreibt die klassische Elektron-Elektron-Abstoßung, während der Austauschoperator K_j Korrekturen aufgrund des Spins berücksichtigt. Da die Spinfunktionen orthogonal zueinander sind, ist K_j nur für Elektronen mit parallelem Spin ungleich Null.

Über die Coulomb- und Austausch-Integrale hängt der Fock-Operator von den noch zu bestimmenden Spinorbitalen ab. Daher kommt als Lösungsmethode nur ein iteratives Verfahren in Frage, bei dem man von geeignet gewählten Startorbitalen ausgeht und dann iteriert, bis die Ergebnisse innerhalb der festgelegten Toleranzen konvergieren. Diese Lösungsmethode wird als SCF (self consistent field) Verfahren bezeichnet.

Für Moleküle wird die Hartree-Fock-Methode meist in der von Roothaan [12] und Hall [13] entwickelten Form verwendet. Im Rahmen des LCAO (linear combination of atomic orbitals) Ansatzes werden die Molekülorbitale ψ_i als Linear-kombination von N Atomorbitalen φ_{μ} dargestellt

$$\psi_i = \sum_{\mu}^{N} c_{\mu i} \varphi_{\mu}. \tag{2.8}$$

Die unter Verwendung dieses Ansatzes gewonnenen Roothaan-Hall-Gleichungen lauten in kompakter Matrixschreibweise

$$\mathbf{FC} = \mathbf{SCE},\tag{2.9}$$

wobei in der N x N-Matrix C die Entwicklungskoeffizienten $c_{\mu i}$ stehen; E bezeichnet eine N x N Diagonalmatrix mit den Orbitalenergien ϵ_i und S ist die Überlappungsmatrix mit den Elementen

$$S_{\mu\nu} = \langle \mu, \nu \rangle = \int \varphi^*_{\mu}(1) \varphi_{\nu}(1) \mathrm{d}\tau_1.$$
(2.10)

Für die nichttrivialen Lösungen der Gleichung (2.9) verschwindet die Säkulardeterminante:

$$\det(\mathbf{F} - \mathbf{ES}) = 0. \tag{2.11}$$

Die Fock-Matrix \mathbf{F} in der Atomorbital (AO)-Basis ist die Summe aus einer Einelektronenmatrix ("core Hamiltonian") \mathbf{H} und einer Zweielektronenmatrix \mathbf{G} . Die Formeln für die Matrixelemente bei abgeschlossenschaligen Systemen lauten in atomaren Einheiten:

$$F_{\mu\nu} = H_{\mu\nu} + G_{\mu\nu}, \qquad (2.12)$$

$$H_{\mu\nu} = \langle \mu | -\frac{1}{2} \nabla^2 | \nu \rangle - \sum_{A} \langle \mu | \frac{Z_A}{r_{iA}} | \nu \rangle, \qquad (2.13)$$

$$G_{\mu\nu} = \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma} \Big[\langle \mu\nu | \lambda\sigma \rangle - \frac{1}{2} \langle \mu\lambda | \nu\sigma \rangle \Big], \qquad (2.14)$$

$$\langle \mu \lambda | \nu \sigma \rangle = \iint \varphi_{\mu}^{*}(1) \varphi_{\nu}(1)^{*} \frac{1}{r_{12}} \varphi_{\lambda}(2) \varphi_{\sigma}(2) \mathrm{d}\tau_{1} \mathrm{d}\tau_{2}.$$
(2.15)

Die Elemente $P_{\lambda\sigma}$ der Dichtematrix sind definiert durch

$$P_{\lambda\sigma} = 2\sum_{i=1}^{N_{occ}} c_{\lambda i} c_{\sigma i}, \qquad (2.16)$$

wobei über alle N_{occ} besetzten Orbitale summiert wird. Die elektronische Energie ist gegeben durch

$$E_{el} = \sum_{\mu} \sum_{\nu} P_{\mu\nu} (H_{\mu\nu} + \frac{1}{2} G_{\mu\nu}).$$
 (2.17)

Um die Gesamtenergie E_{tot} des betrachteten Systems zu erhalten, muss zur elektronischen Energie noch die Coulomb-Energie der Kern-Kern-Abstoßung $E_{nuc,nuc}$ addiert werden

$$E_{nuc,nuc} = \sum_{A < B} \frac{Z_A Z_B}{R_{AB}}.$$
(2.18)

2.2 Integralnäherungen

Die Zweielektronenintegrale (2.15) enthalten vier Atomorbitale, die an bis zu vier verschiedenen Zentren lokalisiert sein können. Daher können Ein-, Zwei-, Dreiund Vierzentrenintegrale auftreten. Bei N Atomorbitalen steigt die Gesamtzahl der Zweielektronenintegrale (2.15) und damit der Rechenaufwand formal mit N⁴, so dass die Rechenzeit mit der Molekülgröße schnell zunimmt.

In semiempirischen MO Methoden werden daher Integralnäherungen eingeführt,

bei denen viele der kleinen im ab initio MO Formalismus auftretenden Integrale vernachlässigt werden. Zur Kompensation der hierdurch verursachten Fehler werden die verbleibenden Integrale durch parametrische Ausdrücke beschrieben und an verlässlichen experimentellen oder theoretischen Referenzdaten kalibriert.

Die grundlegende Integralnäherung ist die ZDO (zero differential overlap) Approximation [14]. Sie besagt, dass bei der Berechnung von Integralen die Ladungsverteilungen, die aus der Überlappung unterschiedlicher Atomorbitale resultieren, gleich Null gesetzt werden können:

$$\mu \nu \, \mathrm{d}\tau = \delta_{\mu\nu} \, \mu \nu \, \mathrm{d}\tau$$
$$= \begin{cases} 0 & \text{falls } \mu \neq \nu \\ 1 & \text{falls } \mu = \nu \end{cases},$$
(2.19)

wobei $\delta_{\mu\nu}$ das Kronecker δ ist. Die Rechtfertigung dieser drastischen Näherung ist in der Literatur ausführlich diskutiert worden [15–35] (siehe auch Kapitel 3).

Die ZDO Approximation wird in den etablierten semiempirischen Methoden auf die Überlappungsintegrale in den Säkulargleichungen (2.9) angewendet, die damit folgende vereinfachte Form annehmen:

$$\mathbf{FC} = \mathbf{CE}.\tag{2.20}$$

Dies impliziert formal, dass die Basisorbitale als orthogonal angesehen werden und dass die Fock-Matrix sich auf eine orthogonale Basis bezieht.

Die ZDO Approximation führt bei den Zweielektronenintegralen dazu, dass alle Drei- und Vierzentrenintegrale verschwinden und die Gesamtzahl der Integrale mit N² skaliert.

Zur Berechnung der Fock-Matrix (2.12) verbleiben dann sowohl bei den Einelektronentermen (2.13) als auch bei den Zweielektronentermen (2.14) nur noch Ein- und Zweizentrenintegrale. Für deren Behandlung gibt es verschiedene Näherungen [36]: CNDO (complete neglect of differential overlap), INDO (intermediate neglect of differential overlap) und NDDO (neglect of diatomic differential overlap). NDDO ist die beste dieser Näherungen mit den geringsten Vernachlässigungen. In NDDO wird die ZDO Approximation nur auf Zweizentren-Ladungsverteilungen angewendet (Atome A und B):

$$\mu^A \lambda^B \mathrm{d}\tau = \delta_{AB} \ \mu^A \lambda^B \mathrm{d}\tau. \tag{2.21}$$

In der vorliegenden Arbeit wird ausschließlich die NDDO Näherung verwendet, so dass CNDO und INDO nicht weiter diskutiert werden. Mit der Konvention, dass die Atomorbitale μ und ν dem Atom A und die Atomorbitale λ und σ dem Atom B zugeordnet werden, lauten die Gleichungen für die Elemente der NDDO Fock-Matrix in abgeschlossenschaligen Systemen:

$$F_{\mu\mu} = H_{\mu\mu} \qquad \text{Einelektronenanteil} \\ + \sum_{\nu} [P_{\nu\nu} \langle \mu \mu | \nu \nu \rangle - \frac{1}{2} P_{\nu\nu} \langle \mu \nu | \mu \nu \rangle] \qquad \text{Zweielektronenanteil} \\ + \sum_{B \neq A} \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma} \langle \mu \mu | \lambda \sigma \rangle, \qquad (2.22)$$
$$F_{\mu\nu} = H_{\mu\nu} \qquad \text{Einelektronenanteil}$$

$$+\frac{1}{2}P_{\mu\nu}[3\langle\mu\nu|\mu\nu\rangle - \langle\mu\mu|\nu\nu\rangle] \qquad \text{Zweielektronenanteil} +\sum_{B\neq A}\sum_{\lambda}\sum_{\sigma}P_{\lambda\sigma}\langle\mu\nu|\lambda\sigma\rangle, \qquad (2.23)$$

und

$$F_{\mu\lambda} = H_{\mu\lambda}$$
Einelektronenanteil
$$-\frac{1}{2} \sum_{\nu} \sum_{\sigma} P_{\mu\lambda} \langle \mu\nu | \lambda\sigma \rangle.$$
Zweielektronenanteil (2.24)

Anzumerken ist, dass (2.23) sich auf den Spezialfall einer sp-Basis bezieht (wie in der vorliegenden Arbeit verwendet). Es ist offenkundig, dass in (2.22)-(2.24) nur Ein- und Zweizentrenintegrale vorkommen. Für ein Paar von zwei Atomen mit einer sp-Basis werden im NDDO-Formalismus 100 verschiedene Zweizentren-Zweielektronenintegrale $\langle \mu\nu|\lambda\sigma \rangle$ berücksichtigt, während CNDO und INDO ein einziges gemeinsames Integral für alle $\langle \mu\mu|\lambda\lambda \rangle$ benutzen.

2.3 MNDO

MNDO (Modified Neglect of Diatomic Overlap) [37] ist das erste semiempirische MO Verfahren, das auf der NDDO Integralnäherung beruht und weite Verbreitung gefunden hat. MNDO berücksichtigt nur die Valenzelektronen, zu deren Beschreibung ein minimaler Basissatz von Atomorbitalen verwendet wird; der Kern und die inneren Elektronen von Atom A werden als punktförmiger Rumpf mit der effektiven Ladung Z_A angesehen (Kernladung minus Zahl der inneren Elektronen). Die Säkulargleichungen (2.20) dienen zur Bestimmung der Molekülorbitale, wobei die Fock-Matrix mit Hilfe der Formeln (2.22)-(2.24) berechnet wird. Im Folgenden wird kurz zusammengefasst, wie die einzelnen Terme der Fock-Matrix in MNDO dargestellt werden.

Einelektronenintegrale

Die Gleichungen für die Einelektronenterme lauten

$$H_{\mu\mu} = U_{\mu\mu} + \sum_{B \neq A} \langle \mu | V_{AB} | \mu \rangle, \qquad (2.25)$$

$$H_{\mu\nu} = \sum_{B \neq A} \langle \mu | V_{AB} | \nu \rangle, \qquad (2.26)$$

$$H_{\mu\lambda} = \beta_{\mu\lambda}.\tag{2.27}$$

Die Einzentren-Einelektronenintegrale $U_{\mu\mu}$ repräsentieren die Energie eines Elektrons in dem betreffenden Atomorbital (kinetische Energie plus potentielle Energie aufgrund der Anziehung durch den Rumpf A). Sie sind atomspezifische Größen, die in MNDO als freie, justierbare Parameter behandelt werden. Dabei orientiert man sich an den spektroskopisch erhaltenen Werten [38].

Die Zweizentren-Einelektronenintegrale $\langle \mu | V_{AB} | \mu \rangle$ und $\langle \mu | V_{AB} | \nu \rangle$ beschreiben die Anziehung der Ladungsverteilungen $\mu\mu$ bzw. $\mu\nu$ an Atom A durch den Rumpf B. Wie in den meisten semiempirischen Verfahren üblich, werden sie unter Vernachlässigung der Durchdringungsintegrale [39, 40] parameterfrei über die entsprechenden Zweizentren-Zweielektronenintegrale $\langle \mu\mu | ss \rangle$ bzw. $\langle \mu\nu | ss \rangle$ berechnet:

$$\langle \mu | V_{AB} | \mu \rangle = \mathcal{Z}_{B} \langle \mu \mu | ss \rangle, \langle \mu | V_{AB} | \nu \rangle = \mathcal{Z}_{B} \langle \mu \nu | ss \rangle.$$
 (2.28)

Die Matrixelemente $H_{\mu\lambda}$ beziehen sich auf die Ladungsverteilung, die durch Überlappung von Orbital μ an Atom A und Orbital λ an Atom B entsteht, und repräsentieren deren kinetische und potentielle Energie. Sie haben einen wesentlichen Anteil an dem Zustandekommen von kovalenten Bindungen und werden in semiempirischen Methoden allgemein als Resonanzintegrale $\beta_{\mu\lambda}$ bezeichnet. In MNDO werden diese Resonanzintegrale - wie generell üblich - als empirisch parametrisierte Funktionen behandelt, die proportional zu den entsprechenden Überlappungsintegralen $S_{\mu\lambda}$ angesetzt werden

$$H_{\mu\lambda} = \frac{1}{2} (\beta_{\mu} + \beta_{\lambda}) S_{\mu\lambda}.$$
(2.29)

Bei β_{μ} und β_{λ} handelt es sich um freie, atomspezifische Parameter, welche für s- und p-Atomorbitale verschiedene Werte annehmen können. Die Überlappungsintegrale werden für die betreffenden Atomorbitale analytisch berechnet. Es sind im MNDO Formalismus die einzigen Integrale, in welche die Basisfunktionen explizit eingehen. MNDO verwendet Slaterfunktionen, deren Orbitalexponent ζ parametrisch bestimmt wird.

Zweielektronenintegrale

Die Einzentren-Zweielektronenintegrale werden als atomspezifische Größen angesehen, die mittels einer auf Oleari zurückgehenden Methode [38, 41] bestimmt werden. Dabei werden die Energien verschiedener Atom- und Ionenvalenzzustände den entsprechenden spektroskopischen Werten angepasst. Im Vergleich zu den analytisch berechneten Einzentren-Zweielektronenintegralen sind die Oleari Werte beträchtlich kleiner. Dies liegt, zumindest teilweise, an einer gemittelten Berücksichtigung der Elektronenkorrelationseffekte.

Für eine sp-Basis resultieren fünf unabhängige Einzentren-Zweielektronenintegrale, die üblicherweise wie folgt bezeichnet werden:

$$G_{s^{A}s^{A}} = \langle s^{A}s^{A}, s^{A}s^{A} \rangle,$$

$$G_{s^{A}p^{A}} = \langle s^{A}s^{A}, p^{A}p^{A} \rangle,$$

$$G_{p^{A}p^{A}} = \langle p^{A}p^{A}, p^{A}p^{A} \rangle,$$

$$G_{p^{A}p'^{A}} = \langle p^{A}p^{A}, p'^{A}p'^{A} \rangle, \qquad p \neq p',$$

$$H_{s^{A}p^{A}} = \langle s^{A}p^{A}, s^{A}p^{A} \rangle.$$
(2.30)

Bei den Zweizentren-Zweielektronenintegralen muss darauf geachtet werden, dass sie das richtige Verhalten sowohl für $R_{AB} \rightarrow \infty$ als auch für $R_{AB} \rightarrow 0$ aufweisen, wobei R_{AB} der interatomare Abstand ist. Im ersten Fall müssen sie zu den Werten der klassischen Wechselwirkung konvergieren und im zweiten Fall zu den Einzentren-Zweielektronentermen. Dies wird durch eine Multipolentwicklung der Zweizentren-Zweielektronenintegrale, die eine Punktladungsnäherung beinhaltet, sichergestellt.

Der Multipolentwicklung liegt der aus einer klassischen Betrachtungsweise stammende Ansatz zugrunde, dass die Wechselwirkung zwischen nichtüberlappenden Ladungsverteilungen $\mu\nu$ am Atom A und $\lambda\sigma$ am Atom B der Summe aller Wechselwirkungen der Multipole der Ladungsverteilungen entspricht [42–44], d. h.

$$\langle \mu \nu | \lambda \sigma \rangle = \sum_{l_1} \sum_{l_2} \sum_{m} [M_{l_1 m}^A, M_{l_2 m}^B].$$
 (2.31)

Die Indizes l_i geben die Ordnung der Multipolmomente an. In einer sp-Basis kann l nur die Werte 0, 1 und 2 annehmen, was einem Monopol-, Dipol- bzw. Quadrupolmoment entspricht. Der Index m ist die Projektion des Momentes auf die

Kernverbindungsachse.

Zur Beschreibung der Multipolwechselwirkung wird dann eine Punktladungsnäherung verwendet. Damit lässt sich jeder Multipol durch 2^l Punktladungen im Abstand D_l darstellen, denen die Größe $\frac{e}{2^l}$ zugeordnet wird. Die Wechselwirkungsenergie der Multipole wird dann beschrieben durch

$$[M_{l_1m}^A, M_{l_2m}^B] = \frac{e^2}{2^{l_1+l_2}} \sum_{i=1}^{2^{l_1}} \sum_{j=1}^{2^{l_2}} f(R_{ij}), \qquad (2.32)$$

wobei R_{ij} der Abstand der Punktladungen *i* und *j* ist. Für die in Gleichung (2.32) enthaltene Funktion $f(R_{ij})$ wird in MNDO eine Formel verwendet, die auf der Dewar-Sabelli-Klopman-Ohno Näherung [45–49] beruht:

$$f(R_{ij}) = \frac{1}{\sqrt{R_{ij}^2 + (\varrho_{l_1}^A + \varrho_{l_2}^B)^2}}.$$
(2.33)

Die Parameter ϱ_l werden so bestimmt, dass man im Grenzfall $R_{AB} \rightarrow 0$ die Oleari Werte erhält. Im Falle $R_{AB} \rightarrow \infty$ resultiert aus den Gleichungen (2.32) und (2.33) die klassische Wechselwirkung der Multipole. Das MNDO Modell für die Zweizentren-Zweielektronenintegrale konvergiert somit bei großen Abständen gegen die analytischen Werte, während es bei mittleren und kleinen Abständen durch die Annäherung an das Oleari-Einzentrenlimit niedrigere Werte liefert.

Rumpf-Rumpf-Abstoßung

Um eine ausgewogene Beschreibung der Zweizentren-Coulomb-Wechselwirkungen sicherzustellen, wird die Rumpf-Rumpf-Abstoßung nicht analytisch berechnet, sondern - ebenso wie die Rumpf-Elektron-Anziehung (2.28) - durch Zweizentren-Zweielektronenintegrale (2.31) ausgedrückt. Im MNDO Formalismus verschwindet die elektrostatische Wechselwirkung zweier neutraler Atome A und B (Rumpf-Elektron-Anziehung plus Elektron-Elektron-Abstoßung plus Rumpf-Rumpf-Abstoßung E_{core}) mit folgendem Ansatz:

$$E_{core} = Z_A Z_B \langle ss | ss \rangle. \tag{2.34}$$

Bei kleinen Abständen ist diese elektrostatische Wechselwirkung jedoch in Wirklichkeit sicher repulsiv, und es treten außerdem Pauli-Abstoßungen auf (siehe Kapitel 3), die im MNDO Formalismus nicht explizit berücksichtigt werden. Um diese Effekte nicht vollständig zu vernachlässigen, wird die Rumpf-Rumpf-Abstoßung in MNDO wie folgt berechnet:

$$E_{core} = Z_A Z_B \langle ss | ss \rangle [1 + e^{-\alpha_A R_{AB}} + e^{-\alpha_B R_{AB}}], \qquad (2.35)$$

wobei α_A und α_B atomare Parameter sind. Für große Abstände geht Gleichung (2.35) in Gleichung (2.34) über.

2.4 AM1 und PM3

Auf dem im vorigen Kapitel vorgestellten MNDO Modell [37, 50] basieren einige andere weit verbreitete semiempirische Verfahren. In der Literatur [50–55] erhält man einen guten Überblick. Die bekanntesten unter ihnen sind wohl AM1 [56] und PM3 [57].

Der wichtigste Unterschied zwischen AM1 (Austin Model 1) und MNDO besteht in der Beschreibung der Rumpf-Rumpf-Abstoßung. MNDO hat die Tendenz, die Abstoßung von Atomen, deren Abstand ungefähr dem van der Waals Radius entspricht, zu überschätzen. Dies hat zur Folge, dass z. B. Wasserstoffbrückenbindungen nicht gut beschrieben werden können.

Um die Wechselwirkung für größere Abstände besser zu modellieren, kommt in AM1 zur Rumpf-Rumpf-Abstoßung (Gleichung (2.35)) ein weiterer Term E_{AM1} hinzu. Dieser setzt sich zusammen aus ein oder zwei attraktiven Gaußfunktionen, deren Ursprung in der Region mit zu großer Abstoßung liegt, und aus repulsiven Gaußfunktionen mit Ursprung im Bereich kürzerer Kernabstände. Diese Zusatzterme erlauben eine durchschnittliche Verminderung des Haupttermes der Rumpf-Rumpf-Abstoßung (2.35) und führen damit zu einer geringen Abstoßung bei größerer Entfernung. Die Zusatzterme haben folgende Form:

$$E_{AM1} = \frac{Z_A Z_B}{R_{AB}} \Big(\sum_i \left(K_{A_i} exp[L_{A_i} (R_{AB} - M_{A_i})^2] \right) + \sum_j \left(K_{B_j} exp[L_{B_j} (R_{AB} - M_{B_j})^2] \right) \Big).$$
(2.36)

Die Breite der Gaußfunktionen wird durch die Größen L festgelegt, denen in AM1 feste Werte zugewiesen werden. Als freie atomare Parameter werden K und M behandelt. Durch diese Modifikation können mit AM1 einige Defizite von MNDO behoben werden.

PM3 (Parametrization Method 3) unterscheidet sich von AM1 nur in der Parametrisierung. Es werden zum einen mehr Parameter und zum anderen ein anderes Verfahren zu ihrer Bestimmung verwendet.

Mit der Entwicklung von AM1 und PM3 ist ausgelotet worden, wie weit sich die Ergebnisse im Rahmen des MNDO Modells durch eine sorgfältige Parametrisierung verbessern lassen. Trotz einiger unstrittiger Fortschritte hat sich dabei

gezeigt, dass die Fehler der MNDO, AM1 und PM3 Methoden generell in der gleichen Größenordnung liegen. Um eine wesentliche Verbesserung zu erzielen, muss daher der zugrunde liegende theoretische Ansatz modifiziert werden.

Kapitel 3

Die OMx Methoden

Das wesentliche Merkmal der Methoden OM1, OM2 und OM3 (orthogonalization model 1, 2, 3) ist die explizite Berücksichtigung von Orthogonalisierungseffekten [15, 18, 19, 22, 28, 30–32, 34, 39, 58–62] in semiempirischen NDDO-MO Methoden. In diesem Kapitel werden zunächst die zugrunde liegenden Konzepte erläutert. Danach werden die Näherungen in den früher entwickelten Methoden OM1 [2, 3] und OM2 [4, 5] sowie in der hier vorgestellten Methode OM3 im Einzelnen diskutiert. Zum Abschlusss folgt eine kurze vergleichende Zusammenfassung.

3.1 Orthogonalisierungseffekte

Die in den ab initio SCF-MO Methoden verwendeten Säkulargleichungen lauten in Matrixschreibweise (vgl. Kapitel 2.1)

$$\mathbf{FC} = \mathbf{SCE},\tag{3.1}$$

wobei **F**, **C** und **S** die Fock-, Eigenvektor- und Überlappungsmatrix bezeichnen. **E** ist eine Diagonalmatrix, deren Diagonalelemente den Orbitalenergien entsprechen. Eine Orthogonalisierung der Basis führt zu einem Standard-Eigenwert-Problem

$${}^{\lambda}\mathbf{F} {}^{\lambda}\mathbf{C} = {}^{\lambda}\mathbf{C}\mathbf{E}, \qquad (3.2)$$

wobei das hochgestellte λ bedeutet, dass die Matrix sich auf eine orthogonale Basis bezieht. Die entsprechende Transformation kann durch eine Löwdin-Orthogonalisierung [63, 64] erfolgen, bei der alle Basisorbitale gleich gewichtet werden. Die Einelektronenbeiträge (**H**) und Zweielektronenbeiträge (**G**) zur FockMatrix können dabei separat transformiert werden.

$${}^{\lambda}\mathbf{F} = {}^{\lambda}\mathbf{H} + {}^{\lambda}\mathbf{G}, \qquad (3.3)$$

$$^{\lambda}\mathbf{H} = \mathbf{S}^{-1/2}\mathbf{H}\mathbf{S}^{-1/2}, \qquad (3.4)$$

$$^{\lambda}\mathbf{G} = \mathbf{S}^{-1/2}\mathbf{G}\mathbf{S}^{-1/2},\tag{3.5}$$

$$^{\lambda}\mathbf{C} = \mathbf{S}^{1/2}\mathbf{C}.$$
(3.6)

Für die hier vorgestellten semiempirischen Methoden ergeben sich durch die Verwendung der NDDO Integralnäherung folgende Säkulargleichungen (vgl. Kapitel 2.1)

$$^{NDDO}\mathbf{F} \ ^{NDDO}\mathbf{C} = \ ^{NDDO}\mathbf{CE}. \tag{3.7}$$

Der Vergleich von Gleichung (3.2) und (3.7) lässt vermuten, dass sich die semiempirische Fock-Matrix implizit auf eine orthogonale Basis bezieht und dass gilt

$$^{NDDO}\mathbf{F} \approx {}^{\lambda}\mathbf{F}.$$
 (3.8)

Die semiempirischen Integrale sollten daher die theoretischen Integrale in der orthogonalen ${}^{\lambda}\Phi$ Basis repräsentieren. Im Falle der Zweielektronenintegrale bietet dieses Konzept die traditionelle Rechtfertigung der NDDO Approximation [30– 35]. Numerische Rechnungen haben gezeigt, dass sowohl die Drei- und Vierzentren- als auch gewisse Zweizentren-Zweielektronenintegrale in der ${}^{\lambda}\Phi$ Basis sehr klein sind und daher vernachlässigt werden können. Die Löwdin Transformation bewirkt für die nach Anwendung der NDDO Näherung verbleibenden Zweizentren-Zweielektronenintegrale eine Reduktion dieser Integrale bei mittlerem Abstand, die mit der Klopman-Ohno Skalierung (2.33) der semiempirischen Integrale konsistent ist. Somit werden in den etablierten semiempirischen Methoden vom MNDO-Typ wesentliche Orthogonalisierungseffekte bei den Zweielektronenintegralen bereits berücksichtigt.

Die Einelektronenintegrale in der orthogonalen Basis ${}^{\lambda}\Phi$ (Gleichung (3.4)) sind gegenüber den Integralen in der nichtorthogonalen Basis stark verändert. Anhand der analytischen Ausdrücke für ${}^{\lambda}\mathbf{H}$ im einfachen Fall eines homonuklearen zweiatomigen Moleküls mit zwei Orbitalen (μ an Atom A und λ an Atom B) kann man die wesentlichen Änderungen erkennen:

$${}^{\lambda}H_{\mu\mu} = H_{\mu\mu} - S_{\mu\lambda} \frac{M_{\mu\mu}}{(1 - S_{\mu\lambda}^2)}, \qquad (3.9)$$

$${}^{\lambda}H_{\mu\lambda} = \frac{M_{\mu\lambda}}{(1 - S_{\mu\lambda}^2)},\tag{3.10}$$

$$M_{\mu\lambda} = H_{\mu\lambda} - \frac{S_{\mu\lambda}}{2} (H_{\mu\mu} + H_{\mu\lambda}), \qquad (3.11)$$

$$^{\lambda}H_{\mu\mu} = H_{\mu\mu} - S_{\mu\lambda}H_{\mu\lambda}, \qquad (3.12)$$

wobei **M** (3.11) die Mullikenfunktion ist. Numerische Rechnungen für das Wasserstoffmolekül mit minimalem Basissatz haben ergeben, dass $H_{\mu\mu}$ und ${}^{\lambda}H_{\mu\mu}$ die gleiche Größenordnung aufweisen, während die Zweizentren-Einelelektronenintegrale $H_{\mu\lambda}$ und ${}^{\lambda}H_{\mu\lambda}$ sehr verschieden sind [65]. Daher sollte es gerechtfertigt sein, die relativ kleinen Einzentrenkorrekturen ${}^{\lambda}H_{\mu\mu} - H_{\mu\mu}$ durch einen geeignet gewählten semiempirischen Ausdruck zu erfassen, während die Zweizentrenintegrale ${}^{\lambda}H_{\mu\lambda}$ direkt durch entsprechend formulierte Resonanzintegrale $\beta_{\mu\lambda}$ repräsentiert werden sollten [2, 3].

Die qualitative Bedeutung von Orthogonalisierungskorrekturen, vor allem bezüglich der Einelektronenintegrale, ist allgemein anerkannt. Im ab initio Formalismus resultieren die Pauli-Abstoßung und die unsymmetrische Aufspaltung bindender und antibindender Molekülorbitale aus diesen Korrekturen. Bei Verwendung der semiempirischen Integralnäherungen (siehe Kapitel 2.2) werden diese und verwandte Effekte formal vernachlässigt. Genauere Analysen zeigen [4, 5, 58, 66– 70], dass einige wesentliche Defizite der etablierten semiempirischen Methoden hierauf zurückzuführen sind:

- Die Aufspaltungen zwischen bindenden und antibindenden Molekülorbitalen und die zugehörigen Anregungsenergien werden unterschätzt.
- Die Abstoßung geschlossenschaliger Systeme, die aus der Wechselwirkung zwischen doppelt besetzten Orbitalen resultiert, wird nicht richtig beschrieben.
- Dies führt zu einer Unterschätzung der Barrieren für die interne Rotation um Einfachbindungen und zu Fehlern bei anderen konformationsabhängigen Eigenschaften, aber auch bei antiaromatischen Systemen und intermolekularen Wechselwirkungen.

Anhand eines MO Schemas (Abbildung 3.1) sollen diese Defizite näher erläutert werden. In den ab initio Methoden führt die Wechselwirkung zwischen zwei nichtorthogonalen AOs zu einer unsymmetrischen Aufspaltung der Energieniveaus. Das antibindende MO ist stärker destabilisiert als das bindende MO stabilisiert. Formal wird dies durch die Orthogonalisierung der Basis bewirkt, welche die AO-Energien anhebt $(H_{\mu\mu} \rightarrow {}^{\lambda}H_{\mu\mu})$, bevor sie dann symmetrisch aufgespalten werden.

Bei den etablierten semiempirischen Methoden bewirkt das Ersetzen der Überlappungsmatrix durch die Einheitsmatrix in den Säkulargleichungen eine symmetrische Aufspaltung bezogen auf die nichtorthogonalen AOs. Da die Lage des

Abbildung 3.1: MO Schema für Atomorbitale (AO) und orthogonale Atomorbitale (OAO)

bindenden MOs üblicherweise durch die Parametrisierung auf Grundzustandseigenschaften festgelegt wird, ergibt sich ein zu niedriges antibindendes MO. Dieser systematische Fehler kann durch geeignete Orthogonalisierungskorrekturen vermieden werden, die analog zum ab initio Fall eine Anhebung der AO-Energien bewirken ($H_{\mu\mu} \rightarrow {}^{\lambda}H_{\mu\mu}$).

Es ist offensichtlich, dass eine vollständige Besetzung der beiden gezeigten MOs (Abb. 3.1) bei unsymmetrischer Aufspaltung zu einer Destabilisierung führt. Die etablierten semiempirischen Methoden vom MNDO-Typ vernachlässigen diese Pauli-Abstoßung zwar formal, berücksichtigen sie jedoch implizit, indem ein effektiver Atompaarterm zur Rumpf-Rumpf-Abstoßung addiert wird (vgl. Kapitel 2.3). Aus der vorangehenden Diskussion ist ersichtlich, dass eine explizite Berücksichtigung im elektronischen Teil durch Verwendung von Orthogonalisierungskorrekturen vorzuziehen ist, wodurch auch der zusätzlich in der Rumpf-Rumpf-Abstoßung vorhandene effektive Term überflüssig wird.

Es sind verschiedene Ansätze denkbar, die Orthogonalisierungseffekte zu berücksichtigen. Eine exakte orthogonalen Transformation ist nicht praktikabel, da zur Bestimmung der Zweielektronenintegrale gemäß Gleichung (3.5) eine Berechnung aller Zweielektronenintegrale erforderlich ist, wodurch die Effizienz des NDDO Ansatzes aufgehoben wäre. Der rechnerische Aufwand zur Orthogonalisierung der Einelektronenintegrale nach Gleichung (3.4) hingegen ist gering. Eine Verwendung von Gleichung (3.4) ohne Gleichung (3.5) würde jedoch zu einem Ungleichgewicht zwischen Ein- und Zweielektronenanteil der Fock-Matrix führen. Wie bereits erwähnt, sind die wichtigsten aus der Orthogonalisierung der Basis für die Zweielektronenintegrale resultierenden Effekte schon im MNDO-Formalismus berücksichtigt. Es ist daher am besten, sich auf die Orthogonalisierungskorrekturen bei den Einelektronenintegrale zu konzentrieren und diese durch geeignete parametrische Funktionen zu beschreiben. Diese Korrekturen können im Verlauf der Parametrisierung angepasst werden. Aus Konsistenzgründen sollten auch andere Einelektronenterme vergleichbarer Größenordnung in diese Ansätze explizit einbezogen werden (Durchdringungsintegrale und effektive Rumpfpotentiale) [2, 3].

Bei der Wahl der parametrischen Funktionen orientiert man sich an der Potenzreihenentwicklung von ${}^{\lambda}\mathbf{H}$ (Gleichung (3.4)). Dazu wird die Überlappungsmatrix **S** zerlegt in

$$\mathbf{S} = \mathbf{I} + \mathbf{S}',\tag{3.13}$$

wobei I die Einheitsmatrix ist und S' nur die Nichtdiagonalelemente von S enthält. Unter Verwendung der Zerlegung (3.13) lautet die Reihenentwicklung für ${}^{\lambda}\mathbf{H}$ (3.4) unter Beibehaltung aller Terme, die höchstens zweiter Ordnung in S sind

^{$$\lambda$$}**H** = **H** - $\frac{1}{2}$ (**S**'**H** + **HS**') - $\frac{3}{8}$ (**S**'²**H** + **HS**'²) + $\frac{1}{4}$ **S**'**HS**'. (3.14)

Ausgehend von diesen Ansätzen wählt man zur Beschreibung der Orthogonalisierungskorrekturen

$$V_{\mu\nu,B}(ORT) = -\frac{1}{2}F_1^A \sum_{\lambda}^B (S_{\mu\lambda}\beta_{\lambda\nu} + \beta_{\mu\lambda}S_{\lambda\nu}) + \frac{1}{8}F_2^A \sum_{\lambda}^B S_{\mu\lambda}S_{\lambda\nu}(H_{\mu\mu}^{loc} + H_{\nu\nu}^{loc} - 2H_{\lambda\lambda}^{loc}), \qquad (3.15)$$

$$V_{\mu\lambda,C}(ORT) = -\frac{1}{2}G_1^{AB}\sum_{\rho}^C (S_{\mu\rho}\beta_{\rho\lambda} + \beta_{\mu\rho}S_{\rho\lambda}) + \frac{1}{8}G_2^{AB}\sum_{\rho}^C S_{\mu\rho}S_{\rho\lambda}(H_{\mu\mu}^{loc} + H_{\lambda\lambda}^{loc} - 2H_{\rho\rho}^{loc}), \qquad (3.16)$$

wobei F_1^A , F_2^A , G_1^{AB} und G_2^{AB} freie, justierbare Parameter bezeichnen und $H_{\mu\mu}^{loc}$ Matrixelemente in einem lokalen A–B-System sind. In den folgenden Abschnitten werden diese Funktionen näher erläutert, für eine ausführliche Herleitung wird auf [2–5] verwiesen. Diese grundlegenden Ideen sind auf dem NDDO Niveau in drei Schritten implementiert worden. In OM1 [2, 3] sind die Pauli-Abstoßungen als Valenzschalenorthogonalisierungskorrekturen nur in den Einzentrenteil des core Hamiltonian eingegangen. OM2 [4, 5] berücksichtigt auch Korrekturen bezogen auf die Zweizentren-Einelektronenintegrale, d. h. die Resonanzintegrale. In beiden Fällen werden die Orthogonalisierungskorrekturen durch abgebrochene und parametrisierte Potenzreihenentwicklungen beschrieben, in denen anstelle von ${}^{\lambda}H_{\mu\lambda}$ und $M_{\mu\lambda}$ die Resonanzintegrale $\beta_{\mu\lambda}$ auftreten. Der hier vorgestellte OM3 Ansatz berücksichtigt alle Korrekturen der OM2 Methode, aber die entsprechenden Formeln sind vereinfacht, indem die weniger wichtigen Beiträge vernachlässigt werden.

Zusammenfassend lässt sich festhalten, dass sich die OM1, OM2 und OM3 Methoden von den etablierten Methoden wie MNDO, AM1 und PM3 konzeptionell dadurch unterscheiden, dass sie im Einelektronenteil der Fock-Matrix ($H_{\mu\mu}$, $H_{\mu\nu}$, $H_{\mu\lambda}$) explizite Orthogonalisierungskorrekturen (und einige weitere Korrekturen) einführen und darüber hinaus zur Beschreibung einiger Terme andere Ausdrücke verwenden. Diese Punkte werden in den folgenden Abschnitten im Detail besprochen.

3.2 Gemeinsame Merkmale der OMx Methoden

OM1, OM2 und OM3 verwenden Gaußfunktionen als Basisfunktionen (anstelle von Slaterfunktionen wie in MNDO, AM1 und PM3). Jedes Atomorbital wird als Linearkombination von drei Gaußfunktionen dargestellt. Dies ist von Vorteil, da in den OMx Methoden viele Integrale analytisch berechnet werden. Durch die Verwendung von Gaußfunktionen sind sie kompatibel zu den gängigen ab initio Methoden und die in diesen Programmen enthaltenen Integralroutinen können für die Berechnung der Integrale genutzt werden.

Die OM1, OM2 und OM3 Methoden beruhen auf den gleichen grundlegenden Gleichungen wie die etablierten NDDO-MO Methoden, nämlich den Säkulargleichungen (2.20) und den Formeln (2.22)-(2.24) für die Fock Matrix.

Die reinen Einzentrenterme werden wie in MNDO behandelt (vgl. Kapitel 2.3). Die Einzentren-Einelektronenenergien $U_{\mu\mu}$ werden als freie Parameter angesehen, während für die Einzentren-Zweielektronenintegrale (2.30) die auf Atomspektren basierenden Oleari-Werte [38] verwendet werden.

Die Zweizentren-Zweielektronenintegrale müssen wiederum das richtige asymptotische Verhalten für $R_{AB} \rightarrow 0$ und $R_{AB} \rightarrow \infty$ zeigen. Hierfür werden die analytisch berechneten Integrale $\langle \mu^A \nu^A | \lambda^B \sigma^B \rangle^a$ (Superskript a = analytisch) mit dem Klopman-Ohno Faktor f_{KO} skaliert, um die entsprechenden semiempirischen Integrale (Superskript s = semiempirisch) zu erzeugen:

$$\langle \mu^A \nu^A | \lambda^B \sigma^B \rangle^s = f_{KO} \langle \mu^A \nu^A | \lambda^B \sigma^B \rangle^a, \qquad (3.17)$$

$$f_{KO} = \frac{\langle s^A s^A | s^B s^B \rangle^s}{\langle s^A s^A | s^B s^B \rangle^a}.$$
(3.18)

In Gleichung (3.18) ist das semiempirische Integral $\langle ss|ss \rangle^s$ durch die bekannten Oleari-Werte für G_{ss} (2.30) determiniert [38,41], so dass f_{KO} immer leicht bestimmt werden kann. Der Faktor f_{KO} liegt im Bereich des Gleichgewichtsabstands normalerweise bei 0.7 bis 0.8 und konvergiert für größere Abstände gegen 1. Per definitionem sind die Integrale $\langle s^A s^A | s^B s^B \rangle^s$ identisch mit den entsprechenden Integralen in MNDO (vgl. Kapitel 2.3), während bei den übrigen Integralen $\langle \mu^A \nu^A | \lambda^B \sigma^B \rangle^s$ leichte Abweichungen zu MNDO auftreten können, welche aber von sehr geringem Einfluss auf die Endergebnisse sind.

Um die Zweizentren-Coulomb-Wechselwirkungen ausgewogen zu behandeln (vgl. Kapitel 2.3), werden auch die Rumpf-Elektron-Anziehung und die Rumpf-Rumpf-Abstoßung analytisch berechnet und dann mit dem Klopman-Ohno Faktor skaliert:

$$\langle \mu^A | V_{AB} | \nu^A \rangle^s = f_{KO} \langle \mu^A | V_{AB} | \nu^A \rangle^a, \qquad (3.19)$$

$$E_{Core} = f_{KO} \frac{Z_A Z_B}{R_{AB}} . aga{3.20}$$

Verglichen mit dem MNDO Formalismus werden bei den Rumpf-Elektron-Anziehungen die Durchdringungsintegrale somit jetzt berücksichtigt, während bei den Rumpf-Rumpf-Abstoßungen die Zusatzterme wegfallen, welche in MNDO die Effekte der Pauli-Abstoßung simulieren (vgl. Kapitel 3.1). Für die Durchdringungsintegrale gilt bei dem gewählten Ansatz:

$$V_{\mu\nu,B}(PI) = f_{KO}[V^a_{\mu\nu,B} - Z_B \langle \mu\nu | ss \rangle^a].$$
(3.21)

Neben diesen Durchdringungsintegralen $V_{\mu\nu,B}(PI)$ werden in OM1, OM2 und OM3 zwei weitere Korrekturen im Einzentren-Einelektronenteil der Fock-Matrix eingeführt: Orthogonalisierungskorrekturen $V_{\mu\nu,B}(ORT)$ (vgl. Kap. 3.1) und effektive Rumpfpotentiale (ECP, effective core potentials) $V_{\mu\nu,B}(ECP)$ zur genaueren Beschreibung des Einflusses der Rumpfelektronen. Im Vergleich zu den entsprechenden Formeln im MNDO Formalismus gilt:

$$H_{\mu\nu} = H_{\mu\nu}(MNDO) + \sum_{B} [V_{\mu\nu,B}(PI) + V_{\mu\nu,B}(ORT) + V_{\mu\nu,B}(ECP)].$$
(3.22)

Bei OM2 und OM3 werden außerdem noch die Orthogonalisierungskorrekturen für die Resonanzintegrale berücksichtigt:

$$H_{\mu\lambda} = \beta_{\mu\lambda} + \sum_{C} V_{\mu\lambda,C}(ORT).$$
(3.23)

Auch die Beschreibung der Resonanzintegrale unterscheidet die OMx Methoden von den etablierten semiempirischen Verfahren. Hinsichtlich der Winkelabhängigkeit verhalten sich die Resonanzintegrale auch weiterhin analog zu den Überlappungsintegralen, aber bei der Abstandsabhängigkeit wird der traditionelle proportionale Zusammenhang (2.29) aufgegeben. Stattdessen wurden verschiedene andere (flexiblere) Ansätze untersucht [2, 3]. Die besten Ergebnisse wurden mit einem rein empirischen Ausdruck erzielt

$$\beta_{\mu\lambda} = \pm \frac{1}{2} (\beta^A_\mu + \beta^B_\lambda) \sqrt{R_{AB}} e^{-(\alpha^A_\mu + \alpha^B_\lambda)} R^2_{AB} . \qquad (3.24)$$

In einer sp-Atomorbitalbasis liegen in einem zweiatomigen System die Orbitaltypen s, p_{σ} und p_{π} vor. Daher können die in Gleichung (3.24) vorkommenden Parameter α und β jeweils drei verschiedene Werte annehmen.

Der semiempirische Ausdruck (3.24) ist so gewählt [2, 3], dass er dem entsprechenden analytischen Matrixelement ${}^{\lambda}H_{\mu\lambda}$ sowohl qualitativ als auch quantitativ möglichst ähnlich ist (vgl. Kapitel 3.1).

Nachdem in diesem Abschnitt die Gemeinsamkeiten der Methoden mit Orthogonalisierungskorrekturen dargestellt wurden, wird in den nächsten Abschnitten auf die individuellen Eigenschaften der einzelnen Verfahren eingegangen.

3.3 OM1

Orthogonalisierungskorrekturen

OM1 berücksichtigt lediglich Orthogonalisierungskorrekturen für die Einzentren-Einelektronenintegrale $H_{\mu\mu}$ und $H_{\mu\nu}$. Diese Korrekturen werden beschrieben durch

$$V_{\mu\nu,B}(ORT) = -\frac{1}{2}F_1^A \sum_{\lambda}^B (S_{\mu\lambda}\beta_{\lambda\nu} + \beta_{\mu\lambda}S_{\lambda\nu}) + \frac{1}{8}F_2^A \sum_{\lambda}^B S_{\mu\lambda}S_{\lambda\nu}(H_{\mu\mu}^{loc} + H_{\nu\nu}^{loc} - 2H_{\lambda\lambda}^{loc}),$$
(3.25)

wobei F_1^A und F_2^A atomspezifische Parameter sind, welche die aus der Reihenentwicklung hergeleiteten Orthogonalisierungskorrekturen skalieren. Diese Faktoren erlauben eine Justierung dieser Korrekturen während der Parametrisierung. Die sich durch die Potenzreihenentwicklung ergebenden Diagonalelement $H_{\mu\mu}$ sind in Gleichung (3.25) durch die Matrixelemente $H_{\mu\mu}^{loc}$ im lokalen A–B-System ersetzt. Diese Vereinfachung ist dadurch motiviert, dass durch die Elektron-Rumpf-Anziehung die Matrixelemente zwar von allen Atomen des Moleküls abhängen, aber der Hauptbeitrag von den Atomen A und B zu erwarten ist.

Effektive Rumpfpotentiale

Die Wechselwirkung zwischen Rumpf- und Valenzelektronen umfasst [71, 72]:

- 1. Orthogonalitätseffekte, die sich aus dem Pauli Prinzip ergeben und den Aufenthalt der Valenzelektronen in Kernnähe verhindern,
- 2. wechselseitige Polarisationseffekte und
- 3. Coulomb- sowie Austauschwechselwirkungen zwischen Rumpf- und Valenzelektronen, die durch das HF Potential gegeben sind.

Diese Effekte sind hinreichend wichtig, um ihre explizite Behandlung zu rechtfertigen. Zur Beschreibung der Rumpf-Valenz-Wechselwirkung werden in OM1 ab initio ECPs [72] verwendet. Die analytischen Potentiale werden ebenso wie die anderen analytischen Integrale (Kapitel 3.2) mit dem Klopman-Ohno Faktor skaliert

$$V_{\mu\nu,B}(ECP) = f_{KO} \langle \mu | V_{\mu\nu,B}(ECP) | \nu \rangle^a .$$
(3.26)

3.4 OM2

Orthogonalisierungskorrekturen

Für konformationsabhängige Eigenschaften ist es wichtig, nicht nur Wechselwirkungen zwischen direkt benachbarten Atomen zu berücksichtigen, sondern die jeweilige Umgebung eines Atompaares mit einzubeziehen. Daher verwendet OM2 auch Orthogonalisierungskorrekturen für die Zweizentren-Einelektronenmatrixelemente $H_{\mu\lambda}$, welche Dreizentrenterme enthalten. Es wurde gezeigt [4,5], dass hierdurch die Beschreibung stereospezifischer Eigenschaften wesentlich verbessert werden kann.

Zur Bestimmung dieser Korrekturterme wird eine OM1 analoge Vorgehensweise

angewandt (vgl. auch Kapitel 3.1). Damit erhält man als Orthogonalisierungskorrekturen [4, 5]:

$$V_{\mu\lambda,C}(ORT) = -\frac{1}{2}G_1^{AB}\sum_{\rho}^C (S_{\mu\rho}\beta_{\rho\lambda} + \beta_{\mu\rho}S_{\rho\lambda}) + \frac{1}{8}G_2^{AB}\sum_{\rho}^C S_{\mu\rho}S_{\rho\lambda}(H_{\mu\mu}^{loc} + H_{\lambda\lambda}^{loc} - 2H_{\rho\rho}^{loc}),$$
(3.27)

wobei die Parameter G_i^{AB} (i = 1, 2) definiert sind als

$$G_i^{AB} = \frac{1}{2}(G_i^A + G_i^B).$$
(3.28)

Ebenso wie bei den Orthogonalisierungskorrekturen (3.25) in OM1 werden auch in OM2 atomare Parameter eingeführt, die eine Skalierung der Korrekturen (3.27) zu den Resonanzintegralen ermöglichen sollen.

Effektive Rumpfpotentiale

Die in OM1 verwendeten ab initio ECPs erforden einen relativ großen Rechenzeitaufwand. In OM2 werden stattdessen semiempirische Pseudopotentiale verwendet, die nicht nur weit weniger weniger rechenintensiv sind, sondern auch eine parametrische Anpassung gestatten. Bei der Entwicklung des semiempirischen Ausdrucks konzentriert man sich auf die Orthogonalitätseffekte (vgl. Kapitel 3.3), da diese den wesentlichen Anteil an der Rumpf-Valenz-Wechselwirkung haben [71,72].

Bei der Herleitung des semiempirischen Pseudopotentials [4,5] verwendet man eine Schmidt-Orthogonalisierung der Valenzorbitale (μ) zu den Rumpforbitalen (α):

$$\tilde{\mu} = \mu - \sum_{\alpha} S_{\mu\alpha} \alpha, \qquad (3.29)$$

wobei für die Überlappung der Valenz- mit den Rumpforbitalen gilt

$$\langle \mu | \alpha \rangle = S_{\mu\alpha} , \langle \tilde{\mu} | \alpha \rangle = 0 \quad \text{für alle } \alpha.$$
 (3.30)

In Anlehnung an literaturbekannte Ansätze [73,74] und unter Vernachlässigung

der Rumpf-Rumpf-Überlappung [71, 72] wird für das Pseudopotential der folgende Ausdruck gewählt [4, 5]:

$$V_{\mu\nu,B}(ECP) = -(S_{\mu\alpha}G_{\alpha\nu} + G_{\mu\alpha}S_{\alpha\nu}) - S_{\mu\alpha}S_{\alpha\nu}F_{\alpha\alpha}.$$
 (3.31)

Das Matrixelement $F_{\alpha\alpha}$ in Gleichung (3.31), das die Rumpfenergien beschreibt, wird als freier atomarer Parameter behandelt. $G_{\mu\alpha}$ ist eine der Mulliken-Funktion (3.11) formal vergleichbare Größe, die durch einen analogen Ausdruck wie das Resonanzintegral (3.24) dargestellt werden kann [4, 5]:

$$G_{\mu\alpha} = \frac{1}{2} (\beta_{\mu}^{A} + \beta_{\alpha}^{B}) \sqrt{R_{AB}} e^{-(\alpha_{\mu}^{A} + \alpha_{\alpha}^{B})} R_{AB}^{2}.$$
(3.32)

3.5 OM3

Die in OM1 und OM2 verwendeten Orthogonalisierungskorrekturen sind durch die Reihenentwicklung von $^{\lambda}$ H bis zur zweiten Ordnung motiviert (Kapitel 3.2). Ausgehend von den Definitionsgleichungen (3.25) und (3.27) kann man die Beiträge dieser Korrekturen zur Gesamtenergie wie folgt aufschlüsseln:

$$\mathbf{E}_{1}^{\beta} = -\frac{1}{2} \sum_{\mu}^{A} \sum_{\nu}^{A} P_{\mu\nu} F_{1}^{A} \sum_{\lambda}^{B} (S_{\mu\lambda}\beta_{\lambda\nu} + \beta_{\mu\lambda}S_{\lambda\nu}), \qquad (3.33)$$

$$E_{1}^{\alpha} = +\frac{1}{8} \sum_{\mu}^{A} \sum_{\nu}^{A} P_{\mu\nu} F_{2}^{A} \sum_{\lambda}^{B} S_{\mu\lambda} S_{\lambda\nu} (H_{\mu\mu}^{loc} + H_{\nu\nu}^{loc} - 2H_{\lambda\lambda}^{loc}), \qquad (3.34)$$

$$\mathbf{E}_{2}^{\beta} = -\frac{1}{2} \sum_{\mu}^{A} \sum_{\lambda}^{B} P_{\mu\lambda} G_{1}^{AB} \sum_{\rho}^{C} (S_{\mu\rho} \beta_{\rho\lambda} + \beta_{\mu\rho} S_{\rho\lambda}), \qquad (3.35)$$

$$E_{2}^{\alpha} = +\frac{1}{8} \sum_{\mu}^{A} \sum_{\lambda}^{B} P_{\mu\lambda} G_{2}^{AB} \sum_{\rho}^{C} S_{\mu\rho} S_{\rho\lambda} (H_{\mu\mu}^{loc} + H_{\lambda\lambda}^{loc} - 2H_{\rho\rho}^{loc}).$$
(3.36)

Die relative Bedeutung dieser vier Beiträge ist für OM1 und OM2 anhand vieler Beispiele numerisch untersucht worden [6]. Dabei zeigt sich, dass E_1^{β} stets dominiert und eine stark repulsive Korrektur liefert ($E_1^{\beta} > 0$), weil die in (3.33) auftretenden Überlappungsintegrale und Resonanzintegrale entgegengesetzte Vorzeichen aufweisen. Obwohl E_2^{β} wesentlich kleiner als E_1^{β} ist, wirkt dieser nur in OM2 vorkommende Term stereodifferenzierend und führt zu konsistenten Verbesserungen in den Ergebnissen (z. B. für Rotationsbarrieren und konformationelle Eigenschaften), im Einklang mit der Analyse einfacher Modellsysteme [4, 5]. Die Korrekturen E_1^{α} und E_2^{α} sind in der Regel ebenfalls recht klein, weil sich die einzelnen Terme in den Klammerausdrücken in (3.34) und (3.36) tendenziell kompensieren und sich im homonuklearen Fall sogar teilweise ganz aufheben. Darüber hinaus zeigt sich bei genauerer Analyse [6], dass diese Korrekturen nicht zu konsistenten Verbesserungen der durch die ZDO-Näherungen bedingten Fehler führen, sondern auch in die falsche Richtung weisen können. Dies mag zum Teil an der Verwendung lokaler Einelektronen-Matrixelemente in (3.34) und (3.36) liegen, aber alternative Ansätze für diese Matrixelemente waren nicht erfolgreicher.

Angesichts dieser Befunde liegt es nahe, die Beiträge E_1^{α} und E_2^{α} ganz zu vernachlässigen, auch wenn diese Terme formal ebenfalls zweiter Ordnung sind. Diese Näherung liegt der OM3 Methode zugrunde, die somit im Vergleich zu OM2 die dominanten Orthogonalisierungskorrekturen (E_1^{β}, E_2^{β}) beibehält und die weniger wichtigen Korrekturen ($E_1^{\alpha}, E_2^{\alpha}$) vernachlässigt.

Zusammenfassend lässt sich festhalten, dass OM3 generell den OM2 Formalismus verwendet, allerdings mit folgender vereinfachten Definition für die Orthogonalisierungskorrekturen:

$$V_{\mu\nu,B}(ORT) = -\frac{1}{2}F_1^A \sum_{\lambda}^B (S_{\mu\lambda}\beta_{\lambda\nu} + \beta_{\mu\lambda}S_{\lambda\nu})$$
(3.37)

$$V_{\mu\lambda,C}(ORT) = -\frac{1}{2}G_1^{AB}\sum_{\rho}^C (S_{\mu\rho}\beta_{\rho\lambda} + \beta_{\mu\rho}S_{\rho\lambda})$$
(3.38)

3.6 Zusammenfassende Darstellung

In diesem Kapitel werden zunächst die Fock-Matrixelemente der Methoden mit Orthogonalisierungskorrekturen dargestellt. Dazu wird von der OM2 Implementierung ausgegangen, da diese die umfassendste ist. Im Anschluss daran werden die Unterschiede von OM1 und OM3 anhand der Formeln angegeben. Außerdem werden die in OM3 zu bestimmenden Parameter vorgestellt.

Das Modell

Die Elemente der Fock-Matrix sind:

$$F_{\mu\mu} = H_{\mu\mu} + \sum_{\nu}^{A} P_{\nu\nu} [\langle \mu\mu | \nu\nu \rangle^{s} - \frac{1}{2} \langle \mu\nu | \mu\nu \rangle^{s}] \sum_{B \neq A} \sum_{\lambda}^{B} \sum_{\sigma}^{B} P_{\lambda\sigma} \langle \mu\mu | \lambda\sigma \rangle^{s} \quad (3.39)$$

$$F_{\mu\nu} = H_{\mu\nu} + \frac{1}{2} P_{\mu\nu} [3\langle\mu\nu|\mu\nu\rangle^s - \langle\mu\mu|\nu\nu\rangle^s] \sum_{B\neq A} \sum_{\lambda}^{B} \sum_{\sigma}^{B} P_{\lambda\sigma} \langle\mu\nu|\lambda\sigma\rangle^s \quad (3.40)$$

$$F_{\mu\lambda} = H_{\mu\lambda} - \frac{1}{2} \sum_{\nu}^{A} \sum_{\sigma}^{B} P_{\nu\sigma} \langle \mu\nu | \lambda\sigma \rangle^{s}$$
(3.41)

Die Matrixelemente des core-Hamiltonian lauten:

$$H_{\mu\mu} = U_{\mu\mu} + \sum_{B} [Z_B \langle \mu\mu | ss \rangle^s + V_{\mu\mu,B}(PI) + V_{\mu\mu,B}(ORT) + V_{\mu\mu,B}(ECP)]$$
(3.42)

$$H_{\mu\nu} = \sum_{B} [Z_B \langle \mu\nu | ss \rangle^s + V_{\mu\nu,B}(PI) + V_{\mu\nu,B}(ORT) + V_{\mu\nu,B}(ECP)] \quad (3.43)$$

$$H_{\mu\lambda} = \beta_{\mu\lambda} + \sum_{C} V_{\mu\lambda,C}(ORT)$$
(3.44)

Die Implementierung des Modells

OM2

$$\langle \mu\nu | \lambda\sigma \rangle^s = f_{KO} \langle \mu\nu | \lambda\sigma \rangle^a \tag{3.45}$$

$$f_{KO} = \frac{\langle ss|ss\rangle^s}{\langle ss|ss\rangle^a} \tag{3.46}$$

$$\beta_{\mu\lambda} = \pm \frac{1}{2} (\beta^A_\mu + \beta^B_\lambda) \sqrt{R_{AB}} \ e^{-(\alpha^A_\mu + \alpha^B_\lambda)} R^2_{AB}$$
(3.47)

$$V_{\mu\nu,B}(PI) = [V^a_{\mu\nu,B} - Z_B \langle \mu\nu | ss \rangle^a] f_{KO}$$
(3.48)

$$V_{\mu\nu,B}(ORT) = -\frac{1}{2} F_1^A \sum_{\lambda}^{B} (S_{\mu\lambda}\beta_{\lambda\nu} + \beta_{\mu\lambda}S_{\lambda\nu}) + \frac{1}{8} F_2^A \sum_{\lambda}^{B} S_{\mu\lambda}S_{\lambda\nu} (H_{\mu\mu}^{loc} + H_{\nu\nu}^{loc} - 2H_{\lambda\lambda}^{loc})$$
(3.49)

$$V_{\mu\lambda,C}(ORT) = -\frac{1}{2}G_1^{AB} \sum_{\rho}^C (S_{\mu\rho}\beta_{\rho\lambda} + \beta_{\mu\rho}S_{\rho\lambda}) + \frac{1}{8}G_2^{AB} \sum_{\rho}^C S_{\mu\rho}S_{\rho\lambda}(H_{\mu\mu}^{loc} + H_{\lambda\lambda}^{loc} - 2H_{\rho\rho}^{loc})$$
(3.50)

$$G_1^{AB} = \frac{1}{2}(G_1^A + G_1^B)$$

$$G_2^{AB} = \frac{1}{2}(G_2^A + G_2^B)$$
(3.51)

KAPITEL 3. DIE OMX METHODEN

$$V_{\mu\nu,B}(ECP) = -(S_{\mu\alpha}G_{\alpha\nu} + G_{\mu\alpha}S_{\alpha\nu}) - S_{\mu\alpha}S_{\alpha\nu}F_{\alpha\alpha}$$
(3.52)

$$G_{\mu\alpha} = \frac{1}{2} (\beta_{\mu}^{A} + \beta_{\alpha}^{B}) \sqrt{R_{AB}} \ e^{-(\alpha_{\mu}^{A} + \alpha_{\alpha}^{B})} R_{AB}^{2}$$
(3.53)

OM1

 $V_{\mu\lambda,C}(ORT) = 0$ $V_{\mu\nu,B}(ECP)$: Es werden ab initio Pseudopotentiale [72, 75] mit Klopman-Ohno Skalierung verwendet.

OM3

$$\begin{aligned} F_2^A &= 0\\ G_2^A &= 0 \end{aligned}$$

OM3-Parameter

Basisfunktionen: Alle Methoden verwenden eine ECP-3G-Basis [2, 3]. Um die Kontraktion der Orbitale bei Bindungsbildung berücksichtigen zu können, wird noch ein Skalierungsfaktor ζ^A für die Gaußfunktionen eingeführt. Dieser Faktor behandelt alle Exponenten α_i^A eines Atoms A gleich

$$\alpha_i^A \to \alpha_i^A (\zeta^A)^2. \tag{3.54}$$

Einzentren-Einelektronenterme:	U_{ss}
	U_{pp}
Resonanzintegrale:	$\alpha_s, \alpha_p \text{ und } \alpha_{\pi}$
	$\beta_s, \beta_p \text{ und } \beta_{\pi}$
	Es werden spezielle X-H Parameter verwendet.
	α_s (X–H), α_p (X–H)
	$\beta_s(X-H), \beta_p(X-H)$
Orthogonalisierungsfaktoren:	F_1
	G_1
Pseudopotentiale:	ζ_{α} (Orbitalexponent des Rumpforbitals)
	$F_{\alpha\alpha}$ (Rumpfenergien)
	β_{lpha}
	α_{lpha}

Somit sind für Wasserstoff 6 Parameter und für Kohlenstoff, Stickstoff und Sauerstoff je 19 Parameter zu bestimmen.
Kapitel 4

Der Parametrisierungsalgorithmus

Der Zweck der Parametrisierung besteht darin, die vorhandenen Parameter so zu optimieren, dass wesentliche chemische Eigenschaften möglichst gut beschrieben werden. Dazu wählt man einen Satz von Molekülen, die möglichst repräsentativ für die interessierenden Eigenschaften sind. Dabei ist es natürlich essentiell, dass man verlässliche Referenzwerte hat. Traditionell werden bei semiempirischen Parametrisierungen experimentelle Referenzwerte bevorzugt, aber wenn diese fehlen, können heutzutage auch theoretische Referenzdaten aus genauen ab initio Rechnungen verwendet werden.

Betrachtet wird die i-te Moleküleigenschaft. Die Abweichung zwischen dem Referenzwert y_i und dem berechneten Wert c_i wird auch Residuum r_i genannt

$$r_i(\mathbf{x}) = y_i - c_i(\mathbf{x}),\tag{4.1}$$

wobei x der Vektor ist, der die Parameter enthält.

Die Parameter werden durch nichtlineare Minimierung der Fehlerquadratsumme (Sum of Squares, SSQ) [76, 77]

$$f(\mathbf{x}) = SSQ = \sum_{i=1}^{m} [w_i r_i(\mathbf{x})]^2$$
(4.2)

bestimmt. Die Faktoren w_i dienen dazu, verschiedene Eigenschaften unterschiedlich gewichten zu können und darüber hinaus alle Fehler dimensionslos zu machen. Bei der Vorstellung des Algorithmus wird im Folgenden der Einfachheit halber $w_i = 1$ (für alle i) gesetzt.

Damit lautet die zu minimierende Funktion

$$f(\mathbf{x}) = \sum_{i=1}^{m} (r_i(\mathbf{x}))^2 = r(\mathbf{x})^T r(\mathbf{x})$$
(4.3)

und ihre Ableitungen

$$\nabla f(\mathbf{x}) = 2 \sum_{i=1}^{m} r_i(\mathbf{x}) \nabla r_i(\mathbf{x})$$
$$= 2J(\mathbf{x})^T r(\mathbf{x})$$
(4.4)

und

$$\nabla^2 f(\mathbf{x}) = 2 \sum_{i=1}^m \nabla r_i(\mathbf{x}) \nabla r_i(\mathbf{x}) + 2 \sum_{i=1}^m r_i(\mathbf{x}) \nabla^2 r_i(\mathbf{x})$$
$$= 2J(\mathbf{x})^T J(\mathbf{x}) + 2 \sum_{i=1}^m r_i(\mathbf{x}) \nabla^2 r_i(\mathbf{x}).$$
(4.5)

Die Matrix $J(\mathbf{x})$ heißt Jacobi-Matrix und besitzt die folgende Form

$$J(\mathbf{x}) = \begin{vmatrix} \frac{\partial r_1}{\partial x_1} & \frac{\partial r_1}{\partial x_2} & \cdots & \frac{\partial r_1}{\partial x_{n-1}} & \frac{\partial r_1}{\partial x_n} \\ \frac{\partial r_2}{\partial x_1} & \frac{\partial r_2}{\partial x_2} & \cdots & \frac{\partial r_2}{\partial x_{n-1}} & \frac{\partial r_2}{\partial x_n} \end{vmatrix}$$
$$\vdots \qquad \vdots \qquad \ddots \qquad \vdots \qquad \vdots \qquad \vdots \\ \frac{\partial r_{m-1}}{\partial x_1} & \frac{\partial r_{m-1}}{\partial x_2} & \cdots & \frac{\partial r_{m-1}}{\partial x_{n-1}} & \frac{\partial r_{m-1}}{\partial x_n} \\ \frac{\partial r_m}{\partial x_1} & \frac{\partial r_m}{\partial x_2} & \cdots & \frac{\partial r_m}{\partial x_{n-1}} & \frac{\partial r_m}{\partial x_n} \end{vmatrix}$$

Die erste Summe in Gleichung (4.5) ist in der Regel wesentlich wichtiger als die zweite. In der Nähe der Lösung verhalten sich die Fehler meist entweder nahezu linear, d. h. $\nabla^2 r_i(\mathbf{x})$ ist annähernd Null, oder die Residuen $r_i(\mathbf{x})$ sind sehr klein. Daher wird zur Berechnung der zweiten Ableitung, die auch Hesse-Matrix genannt wird, oft die zweite Summe in Gleichung (4.5) vernachlässigt.

Die Hesse-Matrix H lautet dann

$$H = 2J(\mathbf{x})^T J(\mathbf{x}). \tag{4.6}$$

Diese Näherung verwendet auch der hier verwendete Algorithmus. Bevor dieser näher erläutert wird, werden erst einige allgemeine Eigenschaften von Optimierungsalgorithmen vorgestellt.

4.1 Optimierungsalgorithmen

Die Optimierungsalgorithmen für mehrere Variablen sind iterative Verfahren. Man beginnt mit einem geratenen Variablensatz ("initial guess") und generiert eine Folge von verbesserten Werten, bis man eine Lösung erreicht hat. Als Lösungssatz gelten die Variablen, deren Funktionswert sich von dem der Variablen im vorherigen Zyklus um weniger als eine vorher festgelegte Fehlerschranke unterscheidet.

Die neuen Variablen erhält man in jedem Zyklus (k) gemäß

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \mathbf{p}_k,\tag{4.7}$$

wobei \mathbf{p}_k der Suchvektor ist und α die dazugehörige Schrittweite. Ist f die zu minimierende Funktion, dann müssen \mathbf{p}_k und α so bestimmt werden, dass gilt

$$f_{k+1}(\mathbf{x}) < f_k(\mathbf{x}). \tag{4.8}$$

Dabei wird zuerst der Suchvektor \mathbf{p}_k festgelegt und anschließend die Schrittweite α berechnet. Dies kann z. B. durch quadratische Interpolation erfolgen.

Es gibt verschiedene Möglichkeiten, den Vektor p zu definieren. Diese Definitionen basieren alle auf dem Taylor-Theorem, wonach im Falle einer zweimal stetig differenzierbaren Funktion gilt:

$$f(\mathbf{x} + \alpha \mathbf{p}) = f(\mathbf{x}) + \alpha \mathbf{p}^T \nabla f(\mathbf{x}) + \frac{1}{2} \alpha^2 \mathbf{p}^T \nabla^2 f(\mathbf{x} + t\mathbf{p}) \mathbf{p}, \quad \text{für ein } t \in (0, \alpha).$$
(4.9)

Die Änderung von f entlang der Richtung **p** in **x** ist durch den Koeffizienten von α gegeben, d. h. $\mathbf{p}^T \nabla f(\mathbf{x})$. Für den Koeffizienten gilt

$$\mathbf{p}^T \nabla f(\mathbf{x}) = \|\mathbf{p}\| \|\nabla f(\mathbf{x})\| \cos \theta, \qquad (4.10)$$

wobei θ der Winkel zwischen p und $\nabla f(\mathbf{x})$ ist. Die Richtung des stärksten Abnehmens der Funktion liegt für $\cos \theta = -1$ vor. Sind die Normen von p und $\nabla f(x)$ beide 1, dann resultiert

$$\mathbf{p} = -\nabla f(\mathbf{x}). \tag{4.11}$$

Diese Wahl von p entspricht der Methode des steilsten Abstiegs (steepest descent), die ein Abnehmen des Funktionswertes garantiert. In der Praxis wird diese Methode jedoch meist nicht angewandt, da sie eine nicht akzeptabel langsame Konvergenzrate aufweisen oder sogar zwischen zwei Lösungen oszillieren kann.

Eine verbesserte Suchrichtung ist die Newton Richtung. Sie ergibt sich, wenn man die exakte Gleichung (4.9) durch eine quadratische Modellfunktion nähert

$$f(\mathbf{x} + \mathbf{p}) \approx f(\mathbf{x}) + \mathbf{p}^T \nabla f(\mathbf{x}) + \frac{1}{2} \mathbf{p}^T \nabla^2 f(\mathbf{x}) \mathbf{p},$$
 (4.12)

wobei in den meisten Fällen eine Schrittweite von 1 angenommen wird. Der Vektor **p** wird bestimmt, indem man die erste Ableitung der Modellfunktion gleich Null setzt. Dies entspricht der notwendigen Bedingung für das Vorliegen eines minimalen Wertes

$$\mathbf{p} = -\nabla^2 f^{-1}(\mathbf{x}) \nabla f(\mathbf{x}). \tag{4.13}$$

Allerdings ist auch diese Methode nicht immer geeignet. Ist die Hesse-Matrix nicht positiv definit, kann es vorkommen, dass die Richtung nicht definiert ist. Selbst wenn sie definiert ist, ist ein Abnehmen des Funktionswertes nicht garantiert. Aber in der Nähe eines lokalen Minimums ist die Näherung in Gleichung (4.12) sehr gut und der Suchvektor wohldefiniert. Das Konvergenzverhalten ist in diesem Bereich quadratisch.

Aus diesen Sachverhalten lassen sich die Eigenschaften eines guten Algorithmus ableiten. Weit entfernt vom lokalen Minimum sollte ein mit der Methode des steilsten Abstieges ermittelter Suchvektor verwendet werden, in der Nähe des lokalen Minimums hingegen die Newton Richtung. Dies ist in der Levenberg-Marquardt Methode [78, 79] der Fall.

4.2 Levenberg-Marquardt Algorithmus

Der Suchvektor wird definiert als

$$\mathbf{p} = -[\mathbf{J}^T \mathbf{J} + \lambda^2 \mathbf{I}]^{-1} \mathbf{J}^T \mathbf{r}, \qquad (4.14)$$

wobei λ der Levenberg-Marquardt-Parameter und I die $n \ge n$ Einheitsmatrix ist. Für große λ geht die Gleichung (4.14) in

$$\mathbf{p} \propto \mathbf{J}^T \mathbf{r} \tag{4.15}$$

und für kleine λ in

$$\mathbf{p} = -[\mathbf{J}^T \mathbf{J}]^{-1} \mathbf{J}^T \mathbf{r} \tag{4.16}$$

über. Im ersten Fall liegt also die Definition gemäß der Methode des steilsten Abstieges vor (vgl. Gleichung (4.4)). Betrachtet man Gleichung (4.16), so erkennt man, dass sie Gleichung (4.13) entspricht, wenn man anstelle der Hesse-Matrix ihre Näherung (vgl. Gleichung (4.6)) verwendet. Somit stellt die Definition (4.16) eine modifizierte Version des Newton-Verfahrens dar. Sie heißt Gauß-Newton-Methode. Die Bestimmungsgleichung für den Suchvektor ist die Normalgleichung zu dem linearen Least-Squares Problem.

$$\min_{p} \frac{1}{2} \left[\begin{pmatrix} \mathbf{J} \\ \lambda \mathbf{I} \end{pmatrix} \mathbf{p} + \begin{pmatrix} \mathbf{r} \\ \mathbf{0} \end{pmatrix} \right]^{2}, \qquad (4.17)$$

wobei J eine $m \ge n$ Matrix, I die $n \ge n$ Einheitsmatrix, p und r Vektoren mit n bzw. m Elementen sind.

Als Lösungsansatz zur Berechnung von **p** ist die folgende QR-Zerlegung [80] der Koeffizientenmatrix des Vektors **p** in Gleichung (4.17) geeignet

$$\mathbf{R}_{\lambda} = \mathbf{Q}_{\lambda}^{\mathbf{T}} \begin{bmatrix} \mathbf{J} \\ \lambda \mathbf{I} \end{bmatrix}.$$
(4.18)

Die $(m+n) \mathbf{x} (m+n)$ Matrix \mathbf{Q}_{λ} ist eine orthogonale Matrix (d. h. $\mathbf{Q}_{\lambda}^{T} = \mathbf{Q}_{\lambda}^{-1}$) und \mathbf{R}_{λ} eine $(m+n) \mathbf{x} n$ obere Dreiecksmatrix. Für \mathbf{R}_{λ} gilt

$$\mathbf{R}_{\lambda}^{\mathbf{T}}\mathbf{R}_{\lambda} = (\mathbf{J}^{\mathbf{T}}\mathbf{J} + \lambda^{2}\mathbf{I}). \tag{4.19}$$

Damit lässt sich Gleichung (4.14) umformen in

$$\mathbf{R}_{\lambda}\mathbf{p} = -[\mathbf{R}_{\lambda}^{\mathbf{T}}]^{-1}\mathbf{J}^{\mathbf{T}}\mathbf{r}.$$
(4.20)

Ersetzt man in dieser Gleichung $[\mathbf{R}_{\lambda}^{\mathbf{T}}]^{-1}$ durch den entsprechenden Ausdruck in Gleichung (4.18), so resultiert

$$\mathbf{R}_{\lambda}\mathbf{p} = -\mathbf{Q}_{\lambda}^{\mathbf{T}}\mathbf{r}.$$
 (4.21)

Wenn \mathbf{R}_{λ} , $\mathbf{Q}_{\lambda}^{\mathbf{T}}$ und \mathbf{r} bekannt sind, liegt ein lineares Gleichungssystem der Form $\mathbf{A}\mathbf{x} = \mathbf{b}$ vor, dessen Lösung man mit den gängigen Algorithmen erhält.

Das Problem, dass sich nun stellt, ist die Ermittlung der oberen Dreiecksmatrix \mathbf{R}_{λ} . Dazu führt man zunächst eine QR-Zerlegung der Jacobi-Matrix durch

$$\mathbf{J} = \mathbf{Q}\mathbf{R},\tag{4.22}$$

wobei J, Q und R die Dimension $m \ge n$, $m \ge m$ und $m \ge n$ besitzen. Erweitert man die Matrix J zu der in Gleichung (4.18) enthaltenen Matrix, so ergibt sich

$$\begin{bmatrix} \mathbf{R} \\ \lambda \mathbf{I} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}^{\mathbf{T}} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{J} \\ \lambda \mathbf{I} \end{bmatrix}.$$
(4.23)

Um von dieser Gleichung zur Gleichung (4.18) zu gelangen, muss die Matrix $[\mathbf{R} \ \lambda \mathbf{I}]^T$ in eine obere Dreiecksmatrix überführt werden. Dazu verwendet man orthogonale Transformationen

$$\overline{\mathbf{Q}}_{\lambda}^{\mathbf{T}} \begin{bmatrix} \mathbf{R} \\ \lambda \mathbf{I} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{\lambda} \\ \mathbf{0} \end{bmatrix}.$$
(4.24)

Die orthogonale Matrix in Gleichung (4.18) ist das Produkt der beiden orthogonalen Matrizen

$$\mathbf{Q}_{\lambda} = \begin{bmatrix} \mathbf{Q} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \overline{\mathbf{Q}}_{\lambda}. \tag{4.25}$$

Dieser Algorithmus hat den Vorteil, dass bei einer Änderung des Levenberg-Marquardt Parameters nur die zweite orthogonale Transformation durchgeführt werden muss, während sich an der QR-Zerlegung der Jacobi-Matrix nichts ändert.

4.3 Implementierung des Algorithmus

Um eine größere Stabilität des bereits vorhandenen Programms zu erreichen, wurden anstelle des vorhandenen Codes einige gängige LAPACK und BLAS Subroutinen eingebettet. Dies betrifft überwiegend Matrizen- und Vektormultiplikationen und das Auflösen linearer Gleichungssysteme.

Der Code zur Bestimmung des Levenberg-Marquardt Parameters λ wurde unverändert beibehalten. Darin wird der Parameter definiert als

$$\lambda = \sqrt{c_{\lambda} SSQ} \tag{4.26}$$

Mit dieser Definition [2, 76] ist der Übergang von der Methode des steilsten Abstieges zur Gauß-Newton Methode gewährleistet. Der Faktor c_{λ} dient zur Optimierung des Levenberg-Marquardt Parameters und wird durch quadratische Interpolation bestimmt.

Die Jacobi-Matrix J wird durch numerische Differentiation gebildet. Für die QR Zerlegung (Gleichung (4.22)) wurden die zuvor verwendeten Givens-Rotationen durch eine Householder-Transformation ersetzt. Der Vorteil besteht in einem geringeren Rechenaufwand.

Die Reduktion der Matrix $[\mathbf{R} \ \lambda \mathbf{I}]^T$ zur oberen Dreiecksmatrix $[\mathbf{R}_{\lambda} \ 0]^T$ wird mit Givens-Rotationen [81] erreicht. Beide orthogonalen Transformationen sind unter Verwendung von LAPACK und BLAS Routinen implementiert.

Eine Berechnung der Jacobi-Matrix in jedem Schritt wäre sehr aufwendig. Daher wird sie nur in jedem k-ten Schritt berechnet. Der Wert k wird vom Benutzer festgelegt. In den anderen Schritten werden die Matrizen \mathbf{Q} und \mathbf{R} nach einem Algorithmus von Broyden [82] verändert und davon ausgehend der neue Suchvektor bestimmt.

Nach Bestimmung des Vektors \mathbf{p} wird ein Lösungsvektor \mathbf{x} , der einem lokalen Minimum des SSQ-Wertes entspricht und die n Parameter enthält, durch lineare Optimierung ermittelt. Für die Parameter werden obere und untere Schranken festgelegt, innerhalb derer die Werte variieren dürfen. Damit wird vermieden, dass die Parameter Werte annehmen, die physikalisch nicht sinnvoll sind.

Mit dem hier vorgestellten Algorithmus wurden die in den nächsten Kapiteln diskutierten Parametersätze ermittelt.

Kapitel 5

Parametrisierung

In diesem Kapitel wird relativ ausführlich die Durchführung der Parametrisierung dokumentiert. Hierdurch sollen zum einen die technische Vorgehensweise und die Kriterien zur Bewertung der erzeugten Parameter deutlich gemacht werden, zum anderen soll aber auch durch die Besprechung von 25 ausgewählten Parametersätzen ein Eindruck von der Bandbreite der möglichen OM3 Ergebnisse vermittelt werden. Die endgültigen OM3 Parameter werden dann in Kapitel 6 und die zugehörigen Ergebnisse in Kapitel 7 vorgestellt.

5.1 Vorgehensweise

Zur Optimierung der Parameter dient ein Standardsatz von Referenzmolekülen [37]. Er besteht aus 227 Verbindungen, die sich aus den Elementen Wasserstoff (H), Kohlenstoff (C), Stickstoff (N) und Sauerstoff (O) zusammensetzen und die so ausgewählt sind, dass sie weite Bereiche der Organischen Chemie repräsentieren. Dieser Satz wird in Zukunft CHNO File genannt.

Wie in früheren Parametrisierungen wurden zunächst anhand der Kohlenwasserstoffe im CHNO File die Parameter für H und C bestimmt und danach für die besten dieser Parametersätze die Parameter für N und O optimiert.

In jedem einzelnen Parametrisierungslauf werden - ausgehend von geeignet gewählten Startwerten - die Parameter so lange variiert, bis die Fehlerquadratsumme (SSQ) nicht weiter reduziert werden kann. Anhand des erzielten SSQ Wertes trifft man eine Vorauswahl, welche Parametersätze man sich näher anschaut. Sätze mit zu großen SSQ Werten werden gleich verworfen.

Der kleinste SSQ Wert ist nicht gleichbedeutend damit, dass es sich um die besten Parameter handelt. Dazu muss man die Resultate im Detail betrachten und bewerten. So ist ein großer Fehler beim Bicyclobutan nicht so schwerwiegend wie ein großer Fehler beim Benzol.

Da immer wieder solche Entscheidungen nötig sind, ob Fehler vertretbar sind oder aufgrund dessen der Parametersatz verworfen werden muss, ist eine rein "automatische" Parametrisierung nicht möglich.

Man behält von den im Einzelnen untersuchten CH Parametersätzen nicht nur den besten, sondern mehrere sehr gute. Der Grund für diese Vorgehensweise liegt darin, dass der beste Satz für die Kohlenwasserstoffe nicht optimal sein muss, wenn man weitere Elemente in der Parametrisierung berücksichtigt.

Die Parameter der Kohlenwasserstoffe werden fix gehalten, wenn man die Parameter für ein weiteres Element bestimmt. Da sich geeignete Parameter für Stickstoff erfahrungsgemäß wesentlich schwieriger finden lassen als für Sauerstoff, parametrisiert man Stickstoff erst nach Sauerstoff.

Alternativ wurde im Laufe der Parametrisierung auch versucht, nicht mit fixen CH Parametern zu rechnen, sondern diese simultan zur Bestimmung der Sauerstoffparameter zu verbessern, ausgehend von den optimierten Parametern für C und H.

Eine analoge Vorgehensweise wurde auch für Stickstoff und Sauerstoff getestet (Verbesserung der zuvor optimierten Sauerstoffparameter bei gleichzeitiger Berechnung der Stickstoffparameter und fixen CH Werten). In beiden Fällen konnten diese Ansätze jedoch nicht die Leistung von getrennten Optimierungen erreichen.

Die Gewichtung der einzelnen Referenzfunktionen wurde zu Beginn vollständig vom vorliegenden CHNO File übernommen. Da so jedoch einige Größen, wie z. B. die Standardbildungsenthalpien des Wasserstoffes oder des Kohlenmonoxides (einem wichtigen Liganden) oft nur sehr schlecht beschrieben wurden, wurde die Gewichtung der entsprechenden Referenzfunktion hochgesetzt. Dabei muss ausprobiert werden, welcher Faktor am geeignetsten ist. Ein zu kleiner Wert ergibt wenig Änderungen, während ein zu großer Wert die für die übrigen Referenzdaten erhaltenen Resultate beeinträchtigt.

Zunächst wurden ausschließlich atomare Parameter verwendet. Dabei stellte sich heraus, dass die Ergebnisse für Moleküle mit X–H Bindungen (X = C, N, O) teilweise unbefriedigend waren. In Analogie zu anderen semiempirischen Verfahren wurden daher spezielle Parameter für X–H Bindungen in die Resonanzintegrale eingeführt.

In den ersten Parametrisierungsläufen wurden sehr großzügige Wertebereiche für die Parameter zugelassen. Dies diente dazu, sich erst einmal ein Bild davon zu verschaffen, was die Parametrisierung leisten kann. Um jedoch physikalisch sinn-

5.1. VORGEHENSWEISE

volle Parameter zu erhalten, wurden diese Wertebereiche später eingeschränkt.

Besonders die Parameter für die ECPs zeigten oft eine sehr große Streuung. Daher wurden im Verlauf der Parametrisierung die Orbitalexponenten (ζ_{α}) der Rumpforbitale und die Rumpfenergien ($F_{\alpha\alpha}$) zunächst konstant gehalten, wobei Slater-Exponenten für die 1s Rumpforbitale [9] und aus experimentellen Atomspektren bestimmte Rumpfenergien [83, 84] verwendet wurden. Für die Feinjustierung wurden diese Parameter am Ende wieder freigegeben, allerdings innerhalb sehr kleiner Wertebereiche.

Im Laufe dieser Arbeit konnte ein sehr großes Gebiet der Parameterfläche untersucht werden. Es wurden mehr als hunderttausend Parametrisierungsläufe mit unterschiedlichen Startsätzen durchgeführt. Davon sind schätzungsweise 80 000 Parametersätze für die Elemente C, H, N und O.

Um nun ein Gefühl dafür zu bekommen, was der OM3 Ansatz zu leisten vermag und wie die Ergebnisse für verschiedene Parametersätze streuen können, werden 25 solcher Sätze vorgestellt und ihre Vor- und Nachteile diskutiert. Der endgültige Parametersatz ist nicht in diesen 25 Sätzen enthalten.

Die ersten 14 Parametersätze unterscheiden sich in allen Parametern. Der 15. und 16. Satz besitzen, abgesehen von einem unterschiedlichen α_s Wert im Resonanzintegral, dieselben Sauerstoffparameter. Bei den Sätzen 17, 18 und 19 sind alle Sauerstoffparameter identisch. Sowohl der 20. und der 21. als auch der 22. und der 23. Satz unterscheiden sich jeweils in den Stickstoff- und den Sauerstoffparametern. Die Sätze 24 und 25 weisen nur für Sauerstoff verschiedene Werte auf.

Bei den Sätzen handelt es sich jeweils um optimierte Parameter, die nach der Auswertung des Standardsatzes (CHNO File) viel versprechend waren. Für solche Sätze werden jeweils ausgedehnte Validierungsrechnungen durchgeführt, um ihre Genauigkeit nicht nur für die Moleküle im CHNO File zu testen, sondern auch für andere Molekülklassen (z. B. Kationen, Anionen, Radikale) und für andere Eigenschaften (z. B. vertikale Anregungsenergien, Aktivierungsenergien). Im Folgenden werden daher nicht nur die mittleren absoluten Fehler für den CHNO Referenzsatz (CHNO File) diskutiert, sondern auch diejenigen für die verschiedenen anderen Validierungssätze. Dabei wird mit den Ergebnissen bekannter semiempirischer Methoden verglichen (MNDO, AM1, PM3, OM1 und OM2).

In Kapitel 7 ist aufgeführt, welche Verbindungen im CHNO File und den Validierungssätzen enthalten sind und welche Eigenschaften berechnet werden. Um sich einen leichteren Überblick über die einzelnen Sätze zu verschaffen, findet sich im Anhang eine entsprechende Zusammenstellung mit einer Zuordnung zu den Tabellen in Kapitel 5 und 7. Bei den Vergleichen werden die Fehler nicht für jeden der 25 Parametersätze angegeben, sondern es wird jeweils nur der kleinste (OM3 min) und der größte Wert (OM3 max) genannt. Die hochgestellte Zahl an diesen Werten gibt an, mit welchem Parametersatz sie erzielt wurden.

In der Diskussion werden die allen Parametersätzen gemeinsamen Fehler betont, von denen man annehmen muss, dass sie modellbedingt sind.

5.2 Übersicht für den Standardsatz

Tabelle 5.1 zeigt die mittleren absoluten Fehler des zur Parametrisierung verwendeten CHNO Files. Verglichen mit den etablierten semiempirischen Methoden

	N^b	MNDO	AM1	PM3	OM1	OM2	OM3 min	OM3 max
Standardbil- dungsenthal- pien [kcal/mol]	140	6.34	5.51	4.17	3.46	3.10	2.80 ¹⁵	3.84^{6}
Bindungslängen [Å]	242	0.014	0.017	0.013	0.012	0.016	0.013^{8}	0.023^{22}
Bindungswinkel [°]	101	2.56	1.89	2.08	1.82	2.24	1.77^{18}	2.41^{15}
Ionisierungs- potentiale [eV]	52	0.46	0.36	0.43	0.32	0.26	0.22^{4}	0.56^{11}
Dipolmomente [D]	53	0.35	0.26	0.27	0.25	0.28	0.21^{9}	0.29^{21}
Barrieren [kcal/mol]	61	3.44	2.05	2.98	2.27	1.62	1.42^{10}	1.97^{6}
Relative Ener- gien[kcal/mol]	15	8.09	5.20	3.36	5.33	1.50	2.02^{11}	2.94^{20}
Wellenzahlen $[\mathrm{cm}^{-1}]$	112	240.7	172.1	150.6	188.6	155.2	113.4^{14}	149.9^{15}
Höhere IPs [eV]	39	1.22	1.07	1.07	0.76	0.73	0.53^{12}	1.14^{21}
		1						

Tabelle 5.1: Mittlere absolute Fehler für den Standardsatz^a

a Die hochgestellten Zahl in den letzten beiden Spalten ist jeweils die Nummer des Parametersatzes, der dieses Resultat liefert.

b Anzahl der Vergleiche

ohne Orthogonalisierungskorrekturen (MNDO, AM1, PM3) findet man bei OM3 durchgängig niedrigere Fehler bei Standardbildungsenthalpien, Barrieren, relativen Energien und Schwingungsfrequenzen, während bei den übrigen Eigenschaften die 25 OM3-Parametersätze meist einen ähnlichen Bereich überstreichen wie die bekannten Verfahren. Letzteres gilt generell beim Vergleich mit OM2.

5.3 Standardbildungsenthalpien und relative Energien

Ein guter Parametersatz sollte besonders für die Standardbildungsenthalpien nur kleine Abweichungen von den experimentellen Werten liefern, weil eine gute Beschreibung der Energetik bei den meisten chemischen Fragestellungen von zentraler Bedeutung ist, insbesondere im Hinblick auf die Stabilität und Reaktivität chemischer Verbindungen. In diesem Abschnitt werden nur neutrale Moleküle mit abgeschlossener Elektronenschale diskutiert. Radikale und Ionen werden später besprochen (Kapitel 5.6 und 5.7).

5.3.1 Standardbildungsenthalpien

Betrachtet man die Resultate des CHNO Files, so fällt auf, dass die berechneten Standardbildungsenthalpien von Bicyclobutan, Pyrrol, Furan, Biacetyl und Glyoxal immer einen großen Fehler aufweisen. Besonders für Bicyclobutan und Glyoxal weicht die Bildungsenthalpie auch bei früheren semiempirischen Methoden stark vom experimentellen Wert ab. In der Tabelle 5.2 sind diese Fehler dargestellt. Auch hier wird nur der kleinste und größte Fehler der OM3-Parametersätze angegeben. Anfänglich wurde auch das Stickstoffmolekül viel zu instabil berech-

	$\Delta \mathrm{H_{f}^{mol}}$ [kcal/mol]	MNDO	AM1	PM3	OM1	OM2	OM3 min	OM3 max
Bicyclo- butan	51.9	12.2	26.2	17.3	7.1	10.1	5.9^{16}	11.6^{24}
Pyrrol	25.9	6.6	14.0	1.2	11.3	7.8	6.4^{5}	17.6^{6}
Furan	-8.3	-0.3	11.3	4.3	6.5	5.4	4.6^{21}	11.6^{3}
Biacetyl	-78.2	-0.6	3.3	-5.2	-4.4	-11.0	-6.3^{15}	-18.1^{25}
Glyoxal	-50.7	-11.8	-8.0	-13.7	-13.3	-8.4	-4.5^{2}	-15.0^{25}

Tabelle 5.2: Fehler in den Standardbildungsenthalpien

net. Dieser Fehler konnte jedoch durch eine stärkere Gewichtung behoben werden.

Die Kohlenwasserstoffe werden generell besser beschrieben als Moleküle, die Heteroatome enthalten. Ob Sauerstoff- oder Stickstoffverbindungen besser repräsentiert werden, hängt vom Parametersatz ab. Die Fehler bei der Berechnung der Carbonylverbindungen sind jedoch bei allen Sätzen recht groß.

Bei der Validierung für einen Satz größerer Moleküle [2] (Tabelle 7.4) findet man mit allen Parametersätzen Fortschritte im Vergleich zu den früheren semiempirischen Methoden (Tabelle 5.3), allerdings zeigen auch hier zwei Moleküle immer starke Abweichungen vom Experiment (Tabelle 5.4).

	Ν	MNDO	AM1	PM3	OM1	OM2	OM3	OM3
							min	max
Standardbil- dungsenthal- pien [kcal/mol]	20	9.20	12.12	8.25	10.45	4.85	4.64^{15}	6.75^{5}

Tabelle 5.3: Mittlere absolute Fehler größerer Moleküle

Tabelle 5.4: Fehler in den Standardbildungsenthalpien größerer Moleküle

	$\Delta \mathrm{H_{f}^{mol}}$ [kcal/mol]	MNDO	AM1	PM3	OM1	OM2	OM3 min	OM3 max
Phenanthra- chinon 1,2-Benzanthra-	-33.3	26.5	33.0	22.8	28.2	9.7	8.5^{14}	21.4^{16}
cene-9,10-dione	-35.0	42.1	47.9	39.4	44.4	18.1	18.111	31.910

5.3.2 Isomere

Aus einer guten Beschreibung der Standardbildungsenthalpien resultieren gute relative Energien. Nur im Falle von systematischen Fehlern können relative Energien trotz schlechter Standardbildungsenthalpien gut wiedergegeben werden. Aufgrund der engen Beziehung beider Größen werden die relativen Energien an dieser Stelle besprochen. Dazu werden die Fehler (Tabelle 5.5) in einem speziellen Validierungssatz von 27 Isomeren (Tabelle 7.5) betrachtet.

Probleme bereitet hier generell nur die Standardbildungsenthalpie von Methylisocyanid (Fehler von 21.2, 11.3, 15.6, -11.3, -0.8, -5.3 und -16.9 kcal/mol für

	Ν	MNDO	AM1	PM3	OM1	OM2	OM3	OM3
							min	max
Standardbil- dungsenthal- pien [kcal/mol]	27	6.42	4.40	2.92	3.32	1.05	1.57^{21}	3.04^{22}
Relative Energien [kcal/mol]	17	8.03	5.59	3.22	5.67	0.80	1.86^{19}	2.92^{5}

Tabelle 5.5: Mittlere absolute Fehler einiger Isomere

die Methoden in Tabelle 5.5) und folglich auch seine Energie relativ zum stabileren Isomer Acetonitril. Allgemein sind die OM3 Ergebnisse für die relativen Energien jedoch zufrieden stellend.

5.3.3 Konformere

Die traditionellen semiempirischen Methoden vom MNDO-Typ liefern qualitativ zu niedrige Rotationsbarrieren. Wie schon erwähnt (vgl. Kapitel 3.4), bietet OM2 eine wesentlich bessere Beschreibung dieser Barrieren. Dies liegt daran, dass nun die Orthogonalitätseffekte berücksichtigt werden, die für die unterschiedlichen Energien der Konformere verantwortlich sind (Pauli-Abstoßung zwischen den Bindungsorbitalen, vgl. die ausführliche Diskussion in [4]).

Numerische Analysen, die die Entwicklung von OM3 motivierten [6], haben gezeigt, dass die in OM3 beibehaltenen Orthogonalisierungsterme für die systematische Verbesserung der Barrieren verantwortlich sind, während die weiteren Korrekturen in OM2 nicht systematischer Natur sind und teilweise sogar eine Verschlechterung der Ergebnisse bewirken. Daher erwartet man für OM3 einen ähnlich kleinen Fehler bei der Berechnung der Barrieren wie in OM2.

Dies wird durch die Ergebnisse mit einem speziellen Validierungssatz [4] für Konformere (Tabelle 7.7) bestätigt, für den die Barrieren mit allen OM3-Parametersätzen allgemein gut wiedergegeben werden, ebenso wie in den anderen Verfahren mit Orthogonalisierungskorrekturen (vgl. Tabelle 5.6).

Eine genauere Analyse zeigt allerdings, dass die Rotationsbarrieren um Einfachbindungen in konjugierten Systemen weiterhin deutlich zu niedrig sind (Tabelle 5.7).

	N	MNDO	AM1	PM3	OM1	OM2	OM3 min	OM3 max
Standardbil- dungsenthal- pien [kcal/mol]	11	3.14	6.48	2.72	1.83	2.95	1.66^{19}	6.07^{6}
Barrieren [kcal/mol]	19	2.31	2.05	2.12	1.43	1.27	1.02^{9}	1.68^{23}

Tabelle 5.6: Mittlere absolute Fehler einiger Konformere

Tabelle 5.7: Barrieren mit starken Abweichungen vom experimentellen Wert

	ΔH [kcal/mol]	MNDO	AM1	PM3	OM1	OM2	OM3 min	OM3 max
Butadiene ort Acrolein	$\begin{array}{c} 6.0\\ 5.9\end{array}$	$\begin{array}{c} -5.8 \\ -5.7 \end{array}$	$-4.1 \\ -4.1$	$\begin{array}{c} -4.5 \\ -4.8 \end{array}$	$\begin{array}{c} -5.5 \\ -4.5 \end{array}$	-5.1 -3.3	$-5.0^{18} \\ -3.5^{10}$	$-5.6^6 -4.4^{14}$

5.4 Weitere Eigenschaften neutraler, geschlossenschaliger Moleküle

5.4.1 Geometrien

Die mittleren absoluten Fehler bei den Bindungslängen liegen für die verschieden OM3-Parametersätze im Bereich von 0.013-0.023 Å (Tabelle 5.1). Dies ist die gleiche Größenordnung wie bei den anderen semiempirischen Verfahren, allerdings muss festgehalten werden, dass die meisten OM3-Parametersätze tendenziell größere Abweichungen zeigen als OM2 und insbesondere OM1 (Tabelle 5.1). Die Fehler der Bindungslängen sind bei den Kohlenwasserstoffen ähnlich wie in den früheren Methoden, häufig sind sie sogar kleiner. Schlechter werden jedoch die Bindungslängen bei Molekülen beschrieben, die Stickstoff und Sauerstoff enthalten. Der Fehler der stickstoffhaltigen Moleküle ist besonders bei den Sätzen groß, die einen großen Gesamtfehler aufweisen. Extrem sind die Abweichungen bei Bindungen zwischen Heteroatomen. Man beobachtet Fehler, die oft doppelt so groß sind wie die entsprechenden Fehler der bisherigen Methoden (N–H, O–H, $C=N, C\equivN, N=N, N=O$ Bindungen).

Bei der Berechnung der Bindungslängen treten teilweise auch systematische Fehler auf. So sind C \equiv C Bindungen bei fast allen Sätzen entweder immer zu kurz oder immer zu lang. Die C–N, C=N, C \equiv N, C–O, C=O und C \equiv O Bindungslän-

gen sind überwiegend zu lang. Dabei sind die Abweichungen bei C=N und $C\equiv N$ oft systematischer Natur. Ähnliches gilt für die O–H, N=O und N=N Bindungen, die ebenfalls generell zu lang sind.

Die mittleren absoluten Fehler bei den Bindungswinkeln liegen mit 1.77°-2.41° wiederum im gleichen Bereich wie bei den übrigen Methoden (Tabelle 5.1). Die Bindungswinkel werden bei vielen OM3-Parametersätzen besser als mit OM2 beschrieben. Wie bei den Bindungslängen treten die deutlich kleinsten Fehler bei den Kohlenwasserstoffen auf. Moleküle, die Sauerstoff oder Stickstoff enthalten, zeigen wesentlich größere Abweichungen. Bei fast allen Parametersätzen werden die Winkel am Sauerstoff am schlechtesten wiedergegeben.

Da in den ersten Parametrisierungen von OM3 die Bindungswinkel von Wasser und Ammoniak oft stark vom experimentellen Wert abwichen, wurde ihnen in den späteren Parametrisierungen ein stärkeres Gewicht verliehen, wodurch die Fehler wesentlich verringert werden konnten.

Die Konformation der Moleküle im CHNO-Referenzsatz wird in fast allen Fällen qualitativ richtig wiedergegeben. Ausnahmen sind Cyclobutan, wo alle OM3-Parametersätze ebenso wie alle früheren Methoden einen planaren Vierring (D_{4h}) statt eines abgewinkelten Vierrings (D_{2d}) ergeben, und Glyoxal, wo bei 24 von 25 Parametersätzen statt der *trans*-Konformation (C_{2h}) eine nahezu orthogonale Konformation (C_2 , Diederwinkel von 100°-110°) gefunden wird.

5.4.2 Ionisierungspotentiale

Die Berechnung der Ionisierungspotentiale erfolgt nach Koopmans' Theorem. Die sich mit OM3 ergebenden Fehler für das erste Ionisierungspotential (0.22-0.56 eV, Tabelle 5.1) liegen größenordnungsmäßig im Bereich der anderen semiempirischen Methoden (0.26-0.46 eV). Nur für das Ionisierungspotential des Oxirans ist der absolute Fehler bei allen 25 Sätzen größer als 0.5 eV (0.60-1.42 eV), aber in diesem Fall weisen auch die früheren Methoden große Abweichungen auf (0.74-0.92 eV).

Die absoluten Fehler der höheren Ionisierungspotentiale streuen ebenfalls stark. Generell sind die OMx Methoden hier den traditionellen Methoden jedoch überlegen. Problematisch sind oft Ionisierungen aus den tiefsten Valenz-Molekülorbitalen mit starkem 2s Anteil, insbesondere die drei Beispiele in Tabelle 5.8. Die betreffenden Orbitalenergien werden stark von den U_{ss} Parametern (Einzentren-Einelektronenenergien) beeinflusst, die in den verschiedenen Methoden und Parametrisierungen sehr unterschiedliche Werte annehmen können. Die Ergebnisse für OM3-Parametersatz 12 zeigen, dass man auch für diese Ionisierungspotentiale gute Ergebnisse erzielen kann.

	IP _{exp} [eV]	MNDO	AM1	PM3	OM1	OM2	OM3 min	OM3 max
$egin{array}{c} \mathrm{N}_2 \ 1\sigma_u \ \mathrm{NH}_3 \ 1a_1 \ \mathrm{CO}_2 \ 2\sigma_g \end{array}$	$18.78 \\ 27.00 \\ 19.40$	$2.28 \\ 5.98 \\ 1.85$	$2.65 \\ 5.69 \\ 3.34$	$-3.51 \\ 1.79 \\ 1.79$	$0.77 \\ 2.72 \\ 0.74$	$3.10 \\ 2.78 \\ 2.84$	$1.58^{12} \\ 0.25^{12} \\ 1.34^{16}$	$5.02^{21} \\ 6.95^8 \\ 3.98^{11}$

Tabelle 5.8: Große Abweichungen in den höheren Ionisierungspotentialen

5.4.3 Dipolmomente

Betrachtet man die mittleren absoluten Fehler für die Dipolmomente (bei den OM3-Sätzen 0.21-0.29 D, ansonsten 0.25-0.35 D), so erkennt man, dass die Fehler alle in der gleichen Größenordnung liegen. In allen Methoden wird das Dipolmoment nach [10]

$$\overrightarrow{\mu} = \sum_{A} Q_{A} \langle \mu | \mathbf{r} | \mu \rangle - 2 \sum_{A} \sum_{\mu < \nu}^{A} P_{\mu\nu} \langle \mu | \mathbf{r} | \nu \rangle$$
(5.1)

berechnet, wobei **r** der Elektronenortsvektor, $P_{\mu\nu}$ ein Einzentrenelement der Dichtematrix und Q_A die Nettoladung von Atom A ist.

Zwei Moleküle erweisen sich bei praktisch allen Methoden als problematisch (Tabelle 5.9). Das Dipolmoment wird bei Methylisocyanid systematisch unterschätzt (bei 24 von 25 OM3-Sätzen um mehr als 1 D) und bei Ozon systematisch überschätzt (bei den OM3-Sätzen um 0.42-0.73 D, ansonsten um 0.53-1.17 D). Der letztgenannte Fehler hängt mit dem Multireferenz-Charakter von Ozon zusammen, korrelierte Rechnungen liefern ein deutlich niedrigeres und damit realistischeres Dipolmoment.

Tabelle 5.9: Dipolmomente mit großem Fehler

	μ [D]	MNDO	AM1	PM3	OM1	OM2	OM3 min	OM3 max
Methyliso- cyanid Ozon	$\begin{array}{c} 3.85\\ 0.53\end{array}$	-1.68 0.65	-1.02 0.67	-0.16 1.17	-1.32 0.53	-0.85 0.93	-0.93^{21} 0.42^{15}	-1.47^{18} 0.73^{25}

5.4.4 Schwingungen

Bei den bisherigen semiempirischen Methoden sind die berechneten harmonischen Schwingungsfrequenzen in der Regel deutlich größer als die gemessenen Frequenzen der Grundschwingungen (mittlere absolute Fehler von 151-241 cm⁻¹, Tabelle 5.1). Auch wenn eine solche Überschätzung wegen der Vernachlässigung der Anharmonizitäten und der Beschränkung auf Hartree-Fock-Rechnungen tendenziell zu erwarten ist, wurde bei OM3 eine Verbesserung angestrebt, indem bei der Parametrisierung die Schwingungsfrequenzen einiger Moleküle (Wasserstoff, Methan, Ethan, Kohlenmonoxid) als Referenzdaten berücksichtigt wurden. Dies führte in der Tat zu einer deutlichen Verringerung der Fehler (113-150 cm⁻¹, Tabelle 5.1).

Problematisch sind natürlich Moleküle, deren Geometrie bzw. Konformation in OM3 nicht richtig wiedergegeben wird (Kapitel 5.4.1). So liefern beim *trans*-Glyoxal alle OM3-Parametersätze, die eine verdrillte Struktur ergeben, entsprechend auch eine imaginäre Frequenz für die Torsionsschwingung (Übergangszustand), während das Molekül experimentell eine planare C_{2h}-Struktur und eine Torsionsschwingungsfrequenz von 127 cm⁻¹ aufweist.

Auffällige quantitative Abweichungen findet man bei den O–O Streckschwingungen, deren Frequenzen durchgängig stark überschätzt werden (im Einklang mit zu kurzen O–O Bindungslängen).

5.5 Vertikale Anregungen

Elektronisch angeregte Zustände müssen auch auf semiempirischem Niveau unter expliziter Berücksichtigung der Elektronenkorrelation berechnet werden. Für Validierungszwecke wurden die vertikalen Anregungsenergien durch CISDTQ-Rechnungen im GUGACI-Formalismus [85] berechnet. Als Referenzdaten dienten publizierte CASPT2-Daten; der aktive Raum umfasste jeweils die relevanten Orbitale (π , π^* , n; vgl. Tabelle 7.31).

Erwartungsgemäß (vgl. Kapitel 3.1) unterschätzen die semiempirischen Methoden ohne Orthogonalisierungskorrekturen (MNDO, AM1, PM3) die vertikalen Anregungsenergien systematisch und stark (mittlere absolute Fehler 1.37-1.63 eV, Tabelle 5.10). Bei den OMx Methoden besteht weiterhin eine leichte Tendenz zur Unterschätzung, aber die mittleren absoluten Fehler sind etwa um den Faktor 3 kleiner (0.40-0.51 eV). Dies ist bemerkenswert, weil die Anregungsenergien nicht als Referenzwerte in die Parametrisierung einbezogen worden sind. Die Verbesserung der Resultate resultiert somit aus dem qualitativ besseren zugrunde liegenden Modell (Kapitel 3.1).

	N	MNDO	AM1	PM3	OM1	OM2	OM3 min	OM3 max
Gesamt	190	1.63	1.37	1.57	0.48	0.51	0.40^{12}	0.50^{8}
Singulett	129	1.63	1.37	1.60	0.49	0.54	0.41^{12}	0.52^{8}
Triplett	61	1.64	1.36	1.50	0.47	0.45	0.33^{6}	0.46^{8}

Tabelle 5.10: Fehler der vertikalen Anregungsenergien in [eV]

5.6 Radikale

Zur Berechnung radikalischer Systeme werden nicht UHF-, sondern RHF-Rechnungen unter Verwendung der Half-Electron-Methode [86] durchgeführt. Auf diese Weise werden Probleme der Spinkontamination (UHF) vermieden, und es ist außerdem bekannt [87], dass die Energetik geschlossenschaliger und offenschaliger Systeme insgesamt konsistenter beschrieben wird, wenn man durchgängig mit RHF arbeitet.

	Ν	MNDO	AM1	PM3	OM1	OM2	OM3	OM3
							min	max
Standardbildungsen- thalpien [kcal/mol]	42	11.50	10.39	10.62	7.07	4.83	4.35^{5}	7.67^{9}
Ionisierungspo- tentiale [eV]	25	0.87	0.73	0.84	0.38	0.37	0.35^{4}	0.63^{23}
Relative Energien [kcal/mol]	4	12.90	9.99	9.84	8.64	3.85	3.50^{6}	10.01^{10}
Wellenzahlen $[\mathrm{cm}^{-1}]$	8	331.6	194.4	193.5	298.1	90.2	57.1^{6}	141.9^{3}

Tabelle 5.11: Mittlere absolute Fehler der Radikale

Die Fehlerstatistik (Tabelle 5.11) zeigt das gewohnte Bild: Die OMx Methoden sind den Verfahren ohne Orthogonalisierungskorrekturen (MNDO, AM1, PM3) überlegen, und die Fehler für die 25 OM3-Parametersätze überstreichen meist die durch OM1 und OM2 gegebene Bandbreite (OM1 > OM2, Tabelle 5.11). So liegen bei den Standardbildungsenthalpien die mittleren absoluten Fehler für MNDO, AM1 und PM3 bei 10.39-11.50 kcal/mol und für die OM3-Sätze im Bereich von 4.35-7.67 kcal/mol. Generell werden dabei neutrale Radikale besser beschrieben als kationische Radikale.

Auch bei den Radikalen findet man einige Systeme, die bei allen OM3-Parametersätzen Probleme bereiten (siehe Tabelle 5.12 für Standardbildungsenthalpien, OM3-Fehler stets größer 5 kcal/mol, und Tabelle 5.13 für Ionisierungspotentiale, OM3-Fehler stets größer als 0.5 eV).

	$\Delta H_{f}(exp)$ [kcal/mol]	MNDO	AM1	PM3	OM1	OM2	OM3 min	OM3 max
Cyclopentadienyl Phenyl Aminomethyl Formyl Acetyl	58.0 79.0 38.0 10.7 -6.0	$0.3 \\ -0.9 \\ -18.7 \\ -11.0 \\ -8.4$	$10.2 \\ 0.5 \\ -22.3 \\ -11.7 \\ -5.7$	$4.1 \\ -1.7 \\ -17.2 \\ -20.0 \\ -13.0$	$8.9 \\ -7.4 \\ -7.9 \\ -17.0 \\ -13.0$	$7.3 \\ -7.5 \\ -8.7 \\ -10.6 \\ -10.0$	$\begin{array}{r} 6.3^{14} \\ -7.8^3 \\ -7.6^{11} \\ -6.6^3 \\ -7.3^3 \end{array}$	$\begin{array}{r} 12.0^{16} \\ -11.8^5 \\ -14.6^9 \\ -16.5^{21} \\ -16.1^{14} \end{array}$

Tabelle 5.12: Standardbildungsenthalpien von Radikalen mit großem Fehler

Tabelle 5.13: Erste Ionisierungspotentiale von Radikalen mit großem Fehler

	IP(exp) [eV]	MNDO	AM1	PM3	OM1	OM2	OM3 min	OM3 max
CH Dublett NH_4^+ NO NO_2	$10.64 \\ 23.50 \\ 9.25 \\ 9.80$	$-1.26 \\ -1.45 \\ 0.95 \\ 2.05$	$-0.92 \\ -1.69 \\ 0.81 \\ 1.73$	$-1.14 \\ -3.55 \\ 0.72 \\ 0.44$	$-1.43 \\ -1.90 \\ 0.25 \\ 0.86$	$-0.72 \\ -1.49 \\ 1.10 \\ 1.68$	$-0.69^{11} \\ -0.72^{11} \\ 0.80^{21} \\ 1.04^8$	$-1.35^{4} \\ -1.76^{9} \\ 1.11^{3} \\ 1.67^{24}$

5.7 Ionen

Die Fehler der OM3-Sätze liegen bei der Berechnung von anionischen (Tabelle 5.14) und kationischen Systemen (Tabelle 5.15) jeweils in der gleichen Größenordnung wie bei OM1 und OM2.

An vielen chemischen Reaktionen ist entweder das Hydroxid-Anion oder das H_3O^+ -Kation beteiligt. Mit den anfänglichen Parametern wurden diese beiden

Ionen oft relativ schlecht beschrieben, so dass sie später ebenfalls in die Parametrisierung einbezogen wurden. Auch das Ammonium-Kation wurde hinzugenommen.

	N	MNDO	AM1	PM3	OM1	OM2	OM3 min	OM3 max
Standardbil- dungsenthal- pien [kcal/mol]	24	14.41	11.29	9.59	11.55	8.37	6.47^{2}	10.86^{25}
Wellenzahlen $[\mathrm{cm}^{-1}]$	5	484.0	386.6	274.0	327.4	292.2	174.8^{14}	242.2^{17}

Tabelle 5.14: Mittlere absolute Fehler der Anionen

Tabelle 5.15: Mittlere absolute Fehler kationischer Systeme

	Ν	MNDO	AM1	PM3	OM1	OM2	OM3	OM3
							min	max
Standardbil- dungsenthal- pien [kcal/mol]	32	11.64	9.96	12.15	10.04	7.24	6.78^{21}	11.84^{15}
Bildungslän- ngen[Å]	18	0.033	0.039	0.037	0.021	0.032	0.027^{4}	0.044^{7}
Bindungswinkel [°]	18	2.92	2.77	2.89	2.37	2.47	2.11^{16}	2.76^{6}
Wellenzahlen [cm ⁻¹]	22	226.4	184.5	177.5	191.0	174.3	151.8^{4}	303.3^{10}

Problemfälle bei Anionen (Tabelle 5.16): Am schlechtesten von allen Anionen des Validierungssatzes (Tabelle 7.24) wird das Hydrid-Anion beschrieben. Auch für das Methyl- und das Formylanion wird mit keinem Parametersatz ein Wert nahe der experimentellen Standardbildungsenthalpie gefunden. Bei der Berechnung der Wellenzahlen treten Probleme beim Stickstoffdioxid-Anion auf. Sowohl für die asymmetrische als auch die symmetrische N–O Streckschwingung beträgt die Abweichung oft mehr als 300 Wellenzahlen. Die entsprechenden Schwingungen für das Stickstoffdioxid-Kation werden wesentlich besser wiedergegeben.

Problemfälle bei Kationen (Tabelle 5.17): Bei fünf der 32 Kationen im Validierungssatz (Tabelle 7.27) liefert keiner der OM3-Parametersätze Fehler von weni-

	$\Delta \mathrm{H_{f}^{mol}}$ [kcal/mol]	MNDO	AM1	PM3	OM1	OM2	OM3 min	OM3 max
H^- CH_3^- HCO^-	$33.2 \\ 33.2 \\ 1.9$	$40.6 \\ 23.7 \\ 3.0$	$52.4 \\ 24.5 \\ -1.7$	$58.6 \\ 18.3 \\ -9.4$	$19.1 \\ 23.5 \\ -15.9$	$23.5 \\ 15.7 \\ -24.7$	$24.4^{4} \\ 6.1^{11} \\ -12.5^{12}$	$\begin{array}{r} 38.1^3 \\ 17.2^{19} \\ -31.5^{21} \end{array}$

Tabelle 5.16: Fehler einiger Anionen

ger als 5 kcal/mol. Analog zu den Anionen findet man die größten Fehler bei den kleinsten Systemen (H^+ , CH^+).

	$\Delta \mathrm{H_{f}^{mol}}$ [kcal/mol]	MNDO	AM1	PM3	OM1	OM2	OM3 min	OM3 max
$ \begin{array}{c} H^+ \\ CH^+ \\ OH^+ \text{ Triplett} \\ (CH_3)_2 OH^+ \\ NO^+ \end{array} $	365.7 387.8 309.1 130.0 235.3	$-39.9 \\ -29.1 \\ -30.2 \\ 8.8 \\ -4.7$	$-50.8 \\ -19.9 \\ -22.7 \\ 6.6 \\ -7.2$	$-12.1 \\ -21.9 \\ -19.5 \\ 27.0 \\ 2.9$	-17.5 -39.8 -29.8 7.3 -13.2	$-21.9 \\ -20.9 \\ -7.2 \\ 11.8 \\ 24.5$	$\begin{array}{r} -22.8^4 \\ -21.8^{11} \\ -5.8^{25} \\ 10.5^{15} \\ 7.4^{14} \end{array}$	$-36.5^{16} \\ -40.7^{10} \\ -25.4^{16} \\ 30.8^{13} \\ 28.7^{12}$

Tabelle 5.17: Fehler einiger Kationen

5.8 G2 und G3 Validierungssätze

5.8.1 Standardbildungsenthalpien

Zum Beurteilen einer neuen Methode ist es wichtig, dass man ihre Leistung anhand allgemein akzeptierter Validierungssätze mit verlässlichen experimentellen Daten überprüfen kann. Aus diesem Grund wurde im Rahmen der Entwicklung der Gaussian-2 (G2) Theorie [88], einem zusammengesetzten ab initio Verfahren auf hohem Niveau, ein Testsatz von kleinen Molekülen zusammengestellt. Die experimentellen Werte der Standardbildungsenthalpien bei 298 K für die Moleküle dieses Satzes weisen eine Unsicherheit von weniger als 1 kcal/mol auf.

Der ursprüngliche Satz von 55 Molekülen [88], auch G2-1 Teilsatz genannt, wurde später um 93 Verbindungen (G2-2 Teilsatz) auf 148 Moleküle (G2/97 Testsatz) erweitert [89]. Der G2/97-Satz besteht aus Molekülen mit bis zu sechs Nichtwasserstoffatomen. Er enthält jedoch einige Elemente, für die in OM3 noch keine Parameter vorhanden sind. Daher werden hier nur die 81 Moleküle verwendet, die aus den Elementen H, C, N, O aufgebaut sind und somit mit allen zum Vergleich herangezogenen Methoden berechnet werden können (vgl. auch [90]).

Für diese Moleküle liegen nicht nur Daten der G2 Methode und von zwei G2 Varianten, G2(MP2) [91] und G2(MP2,SVP) [92,93], vor, sondern auch Daten für einige DFT sowie HF/DFT-Hybrid-Methoden (Tabelle 5.18).

Die Resultate der G2-Methode für Verbindungen mit Halogenen oder ungesättigten Ringen, waren nicht zufrieden stellend [89]. Um auch für diese Klassen gute Ergebnisse zu erzielen, wurde die Gaussian-3 (G3) Methode [89] entwickelt. Dieses Verfahren erweitert den G2-Ansatz durch Einführung unterschiedlicher Basissätze, eine Spin-Bahn-Korrektur, eine modifizierte Korrektur für Korrelationseffekte höherer Ordnung und einen Rumpf-Korrelationsterm.

Auch für die G3 Methode und die G3(MP2) Variante [94] werden die Abweichungen für den G2 Testsatz in der Tabelle 5.18 angegeben.

Bei der Entwicklung der G3-Methode wurde der G2/97 Testsatz durch Hinzunahme von 75 Molekülen zum G3/99 Testsatz [96] erweitert. 47 dieser Moleküle enthalten nur die Elemente H, C, N und O und können daher mit OM3 berechnet werden. Die statistischen Daten für diese zusätzlichen 47 Moleküle sind in Tabelle 5.19 zusammengestellt.

Erwartungsgemäß liefern die aufwendigen ab initio Methoden die genauesten Ergebnisse, die mittleren absoluten Fehler in den G2 und G3 Standardbildungsenthalpien liegen in der Größenordnung von 1 kcal/mol (Tabelle 5.18 und 5.19). Die reinen Dichtefunktionalmethoden schwanken in ihrer Qualität je nach verwendetem Funktional: LDA liefert viel zu hohe Bindungsenergien ($\Delta > 100$ kcal/mol), und bei den gradientenkorrigierten Funktionalen sind die Fehler für BP86 (ca. 25 kcal/mol) deutlich höher als für BLYP und BPW91 (7-8 kcal/mol). Besser verhalten sich die Hybridfunktionale (B3LYP, B3PW91), wobei die B3LYP-Fehler aber anscheinend mit der Molekülgröße ansteigen (ca. 2 kcal/mol in Tabelle 5.18 und ca. 7 kcal/mol in Tabelle 5.19). Die Abweichungen bei den semiempirischen Verfahren liegen in einer ähnlichen Größenordnung (MNDO, AM1, PM3 ca. 6-8 kcal/mol und OM1, OM2, OM3 ca. 3-4 kcal/mol).

Um den unterschiedlichen Rechenzeitbedarf der verschiedenen Methoden zu dokumentieren, wurden für Ethen und Benzol Geometrieoptimierungen mit anschließender Berechnung der Standardbildungsenthalpien durchgeführt. Die Ergebnisse sind in Tabelle 5.20 zusammengestellt. Der Rechenzeitbedarf der semiempirischen Methoden vom MNDO-Typ und der OMx-Methoden liegt in der gleichen Größenordnung, daher werden hier nur die Daten von OM3 genannt. Für die Testrechnungen wird der endgültige OM3-Parametersatz (vgl. Tabelle 6.1) verwendet.

	Gesamt	CH	CHN	CHNO
Anzahl	81	30	17	33
		1		1.00
$G2^a$	1.28	1.30	1.05	1.38
$G2(MP2)^a$	1.72	1.87	1.11	1.92
$G2(MP2,SVP)^a$	1.21	0.87	1.01	1.64
$G3^b$	0.69	0.73	0.89	0.57
$G3(MP2)^c$	0.86	0.76	1.03	0.87
$LDA(SVWN)^{a,d}$	108.64	116.97	102.54	107.40
$\operatorname{BLYP}^{a,d}$	7.17	6.82	5.95	8.33
$BP86^{a,d}$	24.75	23.29	25.24	26.49
$BPW91^{a,d}$	7.56	4.11	7.37	10.91
$B3LYP^{a,d}$	2.35	2.67	2.18	2.18
$B3P86^{a,d}$	23.22	27.80	22.34	20.13
B3PW91 ^{a,d}	3.32	3.83	3.14	2.99
MNDO	7.72	7.42	5.93	9.13
AM1	7.37	6.57	5.05	9.35
PM3	6.77	6.43	6.75	6.88
OM1	4.39	3.20	3.67	5.89
OM2	3.36	2.37	3.25	4.31
OM3 min	3.60^{19}	2.87	4.20	3.97
OM3 max	4.49^{6}	3.07	4.85	5.70

Tabelle 5.18: Mittlere absolute Fehler in [kcal/mol] für den G2 Satz

a Werte aus[89] entnommen

b Werte aus[95] entnommen

c Werte aus[94] entnommen

d verwendeter Basissatz 6-3111+G(3df,2p)

Anhand von Tabelle 5.20 erkennt man, dass sogar für verhältnismäßig kleine Systeme der Rechenaufwand von den semiempirischen Methoden über DFT-Hybridmethoden bis zu dem sehr genauen ab initio G2 Verfahren rasch ansteigt.

5.8.2 Ionisierungspotentiale und Elektronenaffinitäten

Bisher wurden nur die neutralen Moleküle in den G2 und G3 Testsätzen betrachtet. Zusätzlich gibt es im G2/97 Satz 83 ionische Moleküle. Mit diesem erweiterten Satz können 55 Ionisierungspotentiale (IPs) und 58 Elektronenaffinitäten (EAs) bestimmt werden. Die angegebene experimentelle Unsicherheit der ausgewählten IPs und EAs beträgt 0.05 eV oder weniger.

Die adiabatischen IPs und EAs der ab initio und DFT Methoden werden als Differenzen der Gesamtenergien bei 0 K von Ion und neutralem Molekül berechnet.

r				
	Gesamt	CH	CHN	CHO
	47	17	9	20
$G3^a$	0.94	0.75	1.06	1.04
$G3(MP3)^a$	0.84	0.69	1.44	0.69
$G3(MP2)^a$	0.70	0.74	0.99	0.53
$B3LYP^{a,b}$	7.12	9.21	4.52	6.62
MNDO	7.13	5.91	8.02	6.68
AM1	6.27	6.15	6.78	5.91
PM3	4.43	3.45	6.17	4.34
OM1	4.36	4.25	5.43	3.53
OM2	3.15	2.82	3.45	3.27
OM3 min	2.75^{18}	3.01	3.18	2.33
OM3 max	4.76^{11}	3.32	6.57	5.07
1				

Tabelle 5.19: Mittlere absolute Fehler in den Standardbildungsenthalpien [kcal/mol] der 47 neuen Verbindungen im G3 Satz

a Werte entnommen aus [96]

b basierend auf B3LYP/6-31G(d) Geometrien und ZPEs mit Skalierungsfaktor 0.96

Tabelle 5.20: Rechenzeiten [s] und Standardbildungsenthalpien [kcal/mol] im Vergleich verschiedener Methoden auf einer COMPAQ ES40 EV67/667

ΔH_f° ΔH_f° t ΔH_f° t ΔH_f° tEthen D_{2h} 12.512.7180.411.922.113.90.07Benzol D_{6h} 19.523.67500.924.246.718.50.27			Exp.	$G2^a$		B3L	YP^{a}	OM3	
Ethen D_{2h} 12.512.7180.411.922.113.90.07Benzol D_{6h} 19.523.67500.924.246.718.50.27			$\Delta \mathrm{H}_{f}^{\circ}$	$\Delta \mathrm{H}_{f}^{\circ}$	t	$\Delta \mathrm{H}_{f}^{\circ}$	t	$\Delta \mathrm{H}_{f}^{\circ}$	t
	Ethen Benzol	${f D}_{2h}\ {f D}_{6h}$	12.5 19.5	12.7 23.6	180.4 7500.9	11.9 24.2	22.1 46.7	13.9 18.5	0.07 0.27

a [97]

Es gilt

$$IP_0 = E_0(Kation) - E_0(neutral)$$
(5.2)

und

$$EA_0 = E_0(neutral) - E_0(Anion).$$
(5.3)

Dabei wird jeweils von den MP2(full)/6-31G(d) optimierten Geometrien ausgegangen.

Von diesem ionischen Testsatz können mit den zur Zeit für OM3 vorhandenen Parametern (H, C, N, O) 38 Ionisierungspotentiale und 31 Elektronenaffinitäten berechnet werden. Nicht mit in die Statistik aufgenommen werden Phenol, Anilin und Toluol, da diese mit den G2 Verfahren aufgrund ihrer Größe nicht berechnet

	N	Gesamt
COA	22	1 50
G2 ^a	32	1.50
$G2(MP2)^a$	32	1.59
$G2(MP2,SVP)^a$	32	1.62
$G3^b$	32	1.13
$G3(MP2)^c$	32	1.39
$LDA(SVWN)^{a,d}$	32	13.69
$\operatorname{BLYP}^{a,d}$	32	6.23
$BP86^{a,d}$	32	4.89
BPW91 ^{a,d}	32	5.66
$B3LYP^{a,d}$	32	5.15
$B3P86^{a,d}$	32	14.00
B3PW91 ^{a,d}	32	5.46
MNDO	32	12.55
AM1	32	12.22
PM3	32	11.93
OM1	32	10.57
OM2	32	7.13
OM3 min	32	6.27^{24}
OM3 max	32	10.91^{9}

Tabelle 5.21: Mittlere absolute Fehler der Ionisierungspotentiale [kcal/mol] im G2 Satz

a Werte aus [98] entnommen

b Werte aus [95] entnommen

c Werte aus [94] entnommen

d verwendeter Basissatz 6-3111+G(3df,2p)

werden können. Auch das $N_2(^2\Pi$ Kation) wird nicht berücksichtigt, da die reinen DFT sowie alle semiempirischen Methoden es nicht finden. Die Ionisierungspotentiale und Elektronenaffinitäten der Atome werden ebenfalls nicht berücksichtigt.

Die semiempirischen Ionisierungspotentiale und Elektronenaffinitäten wurden aus relativen Energien (vgl. Gleichung (5.2) und Gleichung (5.3)) ermittelt. Allerdings wurden diese nicht aus den Gesamtenergien bei 0 K gewonnen, sondern aus den jeweiligen Standardbildungsenthalpien bei 298 K.

Die mittleren absoluten Fehler in den Tabellen 5.21 und 5.22 sind nicht in Elektronenvolt angegeben, sondern in kcal/mol, um den Vergleich mit den Neutralmolekülen zu erleichtern. Sehr große Abweichungen von den experimentellen Wer-

	Ν	Gesamt
G2 ^a	29	1.43
$G2(MP2)^a$	29	1.70
$G2(MP2,SVP)^a$	29	1.83
$G3^{b}$	29	0.97
G3(MP2) ^c	29	1.19
$LDA(SVWN)^{a,d}$	29	17.12
$\operatorname{BLYP}^{a,d}$	29	2.50
$BP86^{a,d}$	29	4.56
$BPW91^{a,d}$	29	2.79
$B3LYP^{a,d}$	29	3.57
$B3P86^{a,d}$	29	13.57
$B3PW91^{a,d}$	29	3.89
MNDO	29	15.44
AM1	29	11.80
PM3	29	9.22
OM1	29	13.70
OM2	29	8.60
OM3 min	29	7.47^{22}
OM3 max	29	10.86^{15}
	1	

Tabelle 5.22: Mittlere absolute Fehler der Elektronenaffinitäten [kcal/mol] im G2 Satz

a Werte aus [98] entnommen b Werte aus [95] entnommen

c Werte aus [94] entnommen

d verwendeter Basissatz 6-3111+G(3df,2p)

ten sind erwartungsgemäß für die Parameter zu beobachten, die bei den Validierungssätzen für Kationen und Anionen (Kapitel 5.7) schlecht abschneiden, also die Sätze 4, 8, 9, 15 und 16.

Alle Methoden weisen bei den Ionisierungspotentialen und den Elektronenaffinitäten größere Abweichungen auf als bei den Neutralmolekülen des G2-Testsatzes. Der Leistungsabfall bei semiempirischen Methoden ist jedoch ausgeprägter. Die mittleren absoluten Fehler der Ionisierungspotentiale liegen für die OMx-Methoden zwischen 6.27 und 10.57 kcal/mol, für die Methoden vom MNDO-Typ zwischen 11.93 und 12.55 kcal/mol und für die DFT-Methoden zwischen 4.89 und 14.00 kcal/mol. Die Abweichungen der G2 und G3 Verfahren und ihrer Varianten sind hingegen kleiner als 1.65 kcal/mol. Ein ähnliches Verhalten liegt bei der Berechnung der Elektronenaffinitäten vor: OMx (7.47-13.7 kcal/mol); MNDO, AM1 sowie PM3 (9.22-15.44 kcal/mol); DFT-Methoden (2.5-17.12 kcal/mol); G2, G3 und Varianten (0.97-1.83 kcal/mol).

5.9 Wasserstoffbrückengebundene Systeme

Die traditionellen semiempirischen Verfahren beschreiben wasserstoffbrückengebundene Systeme nur unzureichend. Um zu untersuchen, inwieweit Orthogonalisierungskorrekturen eine bessere Beschreibung bewirken, wurde im Rahmen der Entwicklung von OM1 ein Validierungssatz zusammengestellt [2] (vgl. Tabelle 7.44 und Tabelle 7.45), der experimentelle relative Energien und ab initio Geometrien als Referenzdaten enthält. Dieser Satz wird im Folgenden Satz I genannt. Für den Vergleich werden hier nur die experimentellen relativen Energien herangezogen (Tabelle 5.23).

Tabelle 5.23: Mittlere absolute Fehler der relativen Energien von Satz I

	N	MNDO	AM1	PM3	OM1	OM2	OM3 min	OM3 max
Relative Energien [kcal/mol]	36	12.12	5.05	4.98	2.57	2.90	3.17^{5}	9.27^{4}

Die Fehler bei der Berechnung der relativen Energien sind für die OM3-Parametersätze generell größer als für OM1 und OM2. Für 22 der 25 Sätze liegen die mittleren absoluten Fehler zwischen 3.1 und 5.5 kcal/mol, d. h. in der Größenordnung der Fehler von AM1, PM3, OM1 und OM2. Der für MNDO beobachtete Fehler liegt mit 12.12 kcal/mol wesentlich höher.

Fast alle Parametersätze beschreiben die relativen Energien der neutralen Systeme am besten. Für die kationischen Systeme resultieren leicht größere Abweichungen und für die anionischen die größten. Generell werden die Bindungsstärken meist überschätzt. Bei den Anionen jedoch liegt fast immer eine systematische Überschätzung vor. Dies kann zumindest teilweise mit dem Basissatzsuperpositionsfehler (BSSE) erklärt werden.

Ein besonders großer Fehler tritt für die OM3-Parametersätze bei der Berechnung des Systems $H_2O - OH^-$ auf, wo die absoluten Abweichungen zwischen 8.8 kcal/mol (Satz 5) und 22.6 kcal/mol (Satz 4) variieren.

Die Fehler der anderen semiempirischen Verfahren für dieses System betragen: MNDO ($\Delta = 17.7$ kcal/mol), AM1 ($\Delta = 4.8$ kcal/mol), PM3 ($\Delta = 0.7$ kcal/mol), OM1 ($\Delta = -4.1$ kcal/mol) und OM2 ($\Delta = -9.8$ kcal/mol).

Bei der Beschreibung der drei in Satz I enthaltenen Wasserdimere treten qualitative Fehler auf. Bei diesen Dimeren handelt es sich um eine C_s -Struktur mit linearer Wasserstoffbrücke (das experimentell gefundene Minimum), die bifurkierte C_{2v} -Struktur (Minimum laut MNDO und OM1) sowie die trifurkierte C_s -Struktur (Minimum laut AM1). Nur acht der 25 OM3-Parametersätze finden alle drei Strukturen, die übrigen laufen während der Optimierung zu einer anderen Struktur oder konvergieren nicht. Auch für OM1 konvergiert ein Wasserdimer, die trifurkierte C_s -Struktur, nicht.

Zur Einschätzung der Leistungsfähigkeit von OM3 bei der Beschreibung von Systemen mit Wasserstoffbrücken wurde noch ein zweiter Validierungssatz (Tabelle 7.47 und 7.48) verwendet, der Satz II genannt wird. Dieser Satz wurde ursprünglich entwickelt, um Kraftfelder zu evaluieren [99]. Als Referenzdaten dienen mit HF/6-31G* bestimmte relative Energien und Geometrien.

In Tabelle 5.24 sind die mittleren absoluten Fehler für Satz II zusammengestellt. Die Fehler bei der Berechnung der Abstände der wasserstoffbrückengebundenen Atome und der relativen Energien für AM1, PM3, OM1, OM2 und OM3 liegen in der gleichen Größenordnung (0.21-0.43 Å bzw. 1.55-3.85 kcal/mol), während die Fehler für MNDO 1.44 Å und 6.28 kcal/mol betragen. Die X–H Y-Winkel werden mit PM3, OM2 und OM3 deutlich besser berechnet als mit MNDO, AM1 und OM1. MNDO, AM1 und OM1 weichen im Mittel um mehr als 30° von den ab initio Daten ab.

	N	MNDO	AM1	PM3	OM1	OM2	OM3 min	OM3 max
Abstände [Å] Winkel [°]	$\frac{150}{75}$	$\begin{array}{c} 1.435\\ 36.89 \end{array}$	$\begin{array}{c} 0.261\\ 30.67 \end{array}$	0.289 13.29	$\begin{array}{c} 0.210\\ 31.31 \end{array}$	0.267 10.52	0.205^5 15.19^{20}	0.430^4 24.48^5
Relative Ener- gien[kcal/mol]	57	6.28	2.53	3.85	2.50	1.55	1.68^{20}	3.38^{2}

Bei der Berechnung der Geometrien der in Satz II enthaltenen Dimere treten für die meisten Parametersätze die größten Abweichungen für Wasserstoffbrücken mit Sauerstoff auf. Dies betrifft sowohl die Abstände als auch die Winkel, insbesondere in $OH \cdots O$ und $OH \cdots N$ Wasserstoffbrücken.

5.10 Peptide

Eigenschaften von Biomakromolekülen, die mehrere Tausend Atome besitzen, lassen sich mit semiempirischen Methoden entweder direkt mit linear skalieren-

5.10. PEPTIDE

den Implementierungen [100–104] oder im Rahmen von QM/MM Methoden [105– 110] berechnen. Für ein gutes Verfahren ist die korrekte Beschreibung der typischen Elemente der Sekundärstrukturen in Peptiden und Proteinen essentiell. Mit den etablierten semiempirischen Methoden AM1 und PM3 ist sie jedoch oft unzureichend.

Es wurde gezeigt [111], dass durch die Verwendung der Orthogonalisierungskorrekturen in OM1 und OM2 eine deutliche Verbesserung der Resultate erzielt werden konnte. Allerdings liegen immer noch signifikante Abweichungen gegenüber den ab initio Werten vor.

Es wäre wünschenswert, wenn man mit OM3 eine Methode zur Verfügung hätte, die in der Güte der Strukturberechnung mit OM2 vergleichbar ist und zugleich auf einem einfacheren Formalismus beruht. Es wurde daher versucht, einige charakteristische Peptide in die OM3 Parametrisierung mit hineinzunehmen. Damit wurde zwar eine wesentlich bessere Beschreibung ihrer Eigenschaften erzielt, aber die Ergebnisse für den CHNO Satz verschlechterten sich deutlich. Auch unterschiedliche Wichtungsfaktoren konnten daran nichts ändern.

Wir diskutieren daher im Folgenden nicht die so gewonnenen, auf Peptide spezialisierten Parametersätze, sondern die üblichen 25 OM3-Sätze. Dabei werden alle in [111] untersuchten Strukturen für die Beurteilung herangezogen. Die Diskussion orientiert sich an [111]. Die Referenzwerte für die Peptide sind in den Tabellen 7.50 und 7.51 angegeben.

Das als erstes Molekül betrachtete N-Methylacetamid (NMA) kann als das einfachste Modell für ein Peptid angesehen werden. Die Kohlenstoffe der beiden Methylgruppen stehen dann stellvertretend für die C^{α} Kohlenstoffe von zwei durch eine Peptidbindung verknüpften Aminosäuren.

In der Regel sind die C^{α} Kohlenstoffe in Peptiden und Proteinen bezogen auf die CN Bindung *trans* angeordnet. Daher sollte auch für NMA die *trans* Orientierung bevorzugt sein. Dies ist für alle OM3-Parametersätze der Fall. Auch die Reihenfolge der Barrieren für die Rotation um die CN Bindung wird richtig wiedergegeben. Allerdings sind alle relativen Energien bedeutend kleiner als die entsprechenden ab initio oder experimentellen Daten. Die Geometrien werden im Wesentlichen richtig beschrieben.

Bei dem Dipeptid Ac-L-Ala-NHMe finden ab initio Rechnungen die sechs verschiedenen Konformere C_{7eq} , C_5 , C_{7ax} , β_2 , α_L und α' . Mit OM3 können für keinen Parametersatz alle sechs Konformere bestimmt werden. Ebenso wie mit AM1, OM1 und OM2 führt die Optimierung der β_2 Struktur stets zum C_{7eq} Konformer. In einigen Fällen wird das α_L zum C_{7ax} Konformer optimiert.

Desweiteren wurden β -turns untersucht, welche die wichtigsten nichtperiodischen

sekundären Strukturelemente sind. Dazu wurden die Tripeptide Ac- Gly_2 -NHMe und Ac-Ala₂-NHMe betrachtet.

Bei einem Drittel der Parametersätze geht der βI -turn des Ac-Gly₂-NHMe im Laufe der Optimierung in die $(C_7)_2$ -Struktur über, ebenso wie es in AM1 geschieht.

Außerdem wird der βII -turn für ein Drittel aller OM3-Sätze nicht richtig wiedergegeben. Dies sind aber nicht immer die gleichen Parametersätze, die mit der ersten Struktur Probleme haben.

Die Geometrien der βI -turn Struktur des Ac-Ala₂-NHMe stimmen recht gut mit den entsprechenden ab initio Daten überein. Dies gilt auch für die Struktur $\beta I'$. Lediglich der ψ_{i+2} Torsionswinkel wird bei beiden häufig zu groß berechnet.

Die βII -Strukturen hingegen weichen für mehr als die Hälfte der Sätze stark von den ab initio Geometrien ab.

Auch die $\beta II'$ -Strukturen ähneln nicht den ab initio, sondern eher den AM1 Strukturen.

Außer den nichtperiodischen sekundären Strukturelementen wurden auch periodische Strukturelemente betrachtet. Dies ist zum einen die eher selten in Proteinen vorkommende 3_{10} -Helix und zum anderen eine formal denkbare Stuktur aus C₇ Pseudoringen. Als Modellsystem dienten die Moleküle der Reihe Ac-Ala_n-NHMe mit n = 2-6.

Die Abweichungen der berechneten gegenüber den ab initio Referenzwerten sind hier für alle OM3-Parametersätze relativ klein.

Weiterhin wurde ein Testsatz von zehn Konformeren des Ac-Ala₃-NHMe untersucht, für die zuverlässige ab initio Referenzdaten vorliegen [112]. Ebenso wie bei den in [111] verwendeten semiempirischen Methoden gelingt es auch OM3 mit keinem Parametersatz, die ab initio Ergebnisse aller Konformere völlig zufrieden stellend wiederzugeben. Die relativen Energien des 4. und des 5. Konformeren sind in allen Parametersätzen fehlerhaft. Alle Sätze identifizieren jedoch das stabilste Konformer (3) korrekt und ergeben qualitativ zutreffende Geometrien für die meisten anderen Konformere.

Eine Statistik für die Peptide soll aufgrund mangelnder Aussagefähigkeit nicht gezeigt werden.

5.11 Bewertung der einzelnen Parametersätze

Nach der Diskussion der Resultate für die verschiedenen Eigenschaften und Molekülklassen soll nun dokumentiert werden, wofür sich die einzelnen Parame-

60

tersätze besonders gut eignen.

1: Dieser Satz beschreibt die Standardbildungsenthalpien der Ionen und vor allem der Radikale sehr gut. Auch vertikale Anregungsenergien werden gut wiedergegeben. Die Eigenschaften der Peptide werden, abgesehen von den Bindungswinkeln, ebenfalls sehr gut berechnet.

2: Diese Parameter eignen sich sehr gut für die Berechnung von Standardbildungsenthalpien von radikalischen und ionischen Systemen. Peptide und vertikale Anregungsenergien werden ebenfalls gut repräsentiert.

3: Von allen Sätzen ist dieser zur Beschreibung der Peptide am besten geeignet. Gleich mehrere Eigenschaften werden am besten wiedergegeben: Standardbildungsenthalpien, Bindungslängen und Diederwinkel. Auch die relativen Energien werden sehr gut berechnet.

4: Die Ionisierungspotentiale nach Koopmans' Theorem sowohl im Falle neutraler geschlossenschaliger Moleküle als auch für Radikale werden mit diesem Parametersatz am besten beschrieben.

Für Peptide ist dieser Satz jedoch ungeeignet.

5: Der Parametersatz eignet sich gut zur Berechnung von Ionen. Die Fehler der radikalischen Systeme sind ebenfalls gering.

Für wasserstoffbrückengebundene Systeme und Peptide liefert er sehr gute Resultate.

6: Viele Eigenschaften weisen verhältnismäßig große Abweichungen auf. Die Wellenzahlen jedoch werden, unabhängig ob ein neutrales, radikales oder ionisches System vorliegt, sehr gut wiedergegeben.

Die Fehler bei der Berechnung der Ionen OH⁻ und H₃O⁺ sind klein.

7: Im Großen und Ganzen sind die Ergebnisse dieses Satzes durchschnittlich. Trotz schlechter Bindungslängen sind die Wellenzahlen sehr gut.

8: Dieser Satz beschreibt die Eigenschaften neutraler geschlossenschaliger Systeme sehr gut. Ionen werden weniger gut berechnet.

Die besondere Stärke diese Satzes sind die Bindungslängen, die allgemein gut wiedergegeben werden. Dies gilt auch für Wasserstoffbrücken.

9: Die Eigenschaften neutraler geschlossenschaliger Systeme werden sehr gut beschrieben, Radikale nur mittelmäßig, und für Ionen ist dieser Satz nicht geeignet. Obwohl die Resultate für die Bindungslängen gut bis sehr gut sind, werden Wellenzahlen nur mittel bis schlecht wiedergegeben.

Exzellent sind die berechneten Werte für die NMA Konformere. Die Barrieren sind nicht viel kleiner als die entsprechenden ab initio bzw. experimentellen Daten.

Auch für Wasserstoffbrücken sowie Peptide sind die berechneten Werte gut.

10: Dieser Satz eignet sich ausschließlich zur Beschreibung neutraler geschlossenschaliger Moleküle. Besonders gut werden Barrieren repräsentiert.

11: Vor allem die Eigenschaften der Radikale werden sehr gut wiedergegeben.

12: Dieser Satz ist besonders gut für vertikale Anregungsenergien. Auch die Werte der Standardbildungsenthalpien von Ionen und Radikalen sind gut bis sehr gut sowie die der Peptideigenschaften. Wellenzahlen jedoch werden nicht gut wiedergegeben.

13: Radikale und Wellenzahlen werden sehr gut beschrieben.

14: Die Wellenzahlen werden mit diesem Satz hervorragend berechnet.

15: Dieser Parametersatz ist für neutrale Moleküle mit abgeschlossener Elektronenschale sehr gut, besonders für die Berechnung der Standardbildungsenthalpien. Die Ergebnisse für Peptide sind gut. Die Wellenzahlen werden allgemein schlecht wiedergegeben.

Für Radikale sind die Resultate nur mittelmäßig und für Ionen schlecht.

16: Dieser Satz eignet sich nur für nicht zu große, neutrale geschlossenschalige Systeme.

Überraschenderweise werden jedoch Peptide gut repräsentiert.

Zur Beschreibung von ionischen Systemen eignen sich diese Parameter nicht.

17: Ein allgemein durchschnittlich bis guter Satz. Die Beschreibung der Peptide, besonders von NMA, ist gut bis sehr gut.Die Wellenzahlen jedoch sind schlecht.

18: Die Berechnung der Standardbildungsenthalpien ist sowohl für neutrale Moleküle (inklusive Radikale) als auch Ionen sehr gut. Der Fehler der berechneten Enthalpie des Hydroxid-Ions bezogen auf den experimentellen Wert ist jedoch sehr groß (15.3 kcal/mol). Das H_3O^+ Ion weist nur einen Fehler von 0.7 kcal/mol auf. 19: Neutrale Moleküle (einschließlich Radikale) werden gut beschrieben.

20: Sieht man von den Standardbildungsenthalpien der Anionen ab, so werden viele Eigenschaften, besonders die Enthalpien gut bis sehr gut wiedergegeben. Die Resultate für die relativen Energien und die höheren Ionisierungspotentiale sind jedoch schlecht.

Die Stärke dieses Satzes liegt in der Beschreibung der Wasserstoffbrücken.

21: Die Ergebnisse sind insgesamt gut. Ausgenommen sind die Bindungslängen, die allgemein schlecht beschrieben werden. Die Fehler für anionische Systeme sind groß, dafür werden Kationen sehr gut repräsentiert.

Die Beschreibung der Systeme mit Wasserstoffbrücken ist sehr gut.

Peptidstrukturen werden mit großen Fehlern berechnet, allerdings sind die relativen Energien hervorragend.

22: Dieser Satz beschreibt Ionen und vertikale Anregungsenergien sehr gut. Für Peptide erhaltene Resultate sind ebenfalls gut.

23: Die Standardbildungsenthalpien der Radikalen und der Ionen weisen nur geringe Fehler auf. Ebenso zeigen sich bei Peptiden keine großen Abweichungen.

24: Dieser Satz eignet sich besonders für die Beschreibung von Wellenzahlen und zur Berechnung kationischer Systeme.

25: Insbesondere Wellenzahlen werden gut wiedergegeben.

1	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.19536858	1.41570039	1.32507438	1.16106709
Einzentrenterme				
U_{ss} [eV] U_{pp} [eV]	-12.29311909	$-50.34142914 \\ -39.29669619$	$-75.83326252 \\ -57.70005840$	$-97.53927138 \\ -78.72877750$
Resonanzintegrale				
$ \begin{aligned} &\beta_s \ [\text{eV bohr}^{-1/2}] \\ &\beta_p \ [\text{eV bohr}^{-1/2}] \\ &\beta_\pi \ [\text{eV bohr}^{-1/2}] \\ &\alpha_s \ [\text{a.u.}] \\ &\alpha_p \ [\text{a.u.}] \\ &\alpha_\pi \ [\text{a.u.}] \\ &\beta_s (\text{X-H)} \ [\text{eV bohr}^{-1/2}] \\ &\beta_p (\text{X-H)} \ [\text{eV bohr}^{-1/2}] \\ &\alpha_s (\text{X-H)} \ [\text{a.u.}] \\ &\alpha_p (\text{X-H)} \ [\text{a.u.}] \end{aligned} $	-4.10907792 0.08069222	$\begin{array}{r} -6.81985732\\ -4.71403169\\ -5.49114261\\ 0.08809117\\ 0.05603926\\ 0.09857132\\ -5.97715092\\ -5.60251749\\ 0.08808099\\ 0.06906492\end{array}$	$\begin{array}{c} -14.02622935\\ -5.98692013\\ -7.90867965\\ 0.09774287\\ 0.06607392\\ 0.10765756\\ -10.67383845\\ -8.40348411\\ 0.10560037\\ 0.08860793\end{array}$	$\begin{array}{c} -12.22629881\\ -10.92189407\\ -12.90715607\\ 0.23805538\\ 0.10169900\\ 0.16879531\\ -13.73333722\\ -11.67216421\\ 0.26553674\\ 0.11477472\end{array}$
Orthogonalisierung				
F_1 G_1	$0.37955463\ 0.30693941$	$0.64968633 \\ 0.16126561$	$0.71662137 \\ 0.21777474$	$0.65752890\ 0.43125253$
Effektive Rumpfpotentiale				
$\begin{aligned} \zeta_{\alpha} & [\text{a.u.}] \\ F_{\alpha\alpha} & [\text{eV}] \\ \beta_{\alpha} & [\text{eV bohr}^{-1/2}] \\ \alpha_{\alpha} & [\text{a.u.}] \end{aligned}$		5.70000000 - 283.81699000 - 4.74329401 0.18102871	$\begin{array}{r} 6.70000000\\ -401.63436000\\ -6.50143330\\ 0.89999855\end{array}$	$7.70000000 \\ -531.98678000 \\ -24.09168722 \\ 0.04346446$

5.12 Tabellen mit Parametersätzen
2	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.19051425	1.40996820	1.31767038	1.15700086
Einzentrenterme				
U_{ss} [eV]	-12.28794823	-50.33386388	-74.64056374	-99.28120444
U_{pp} [eV]		-39.28241533	-57.73833025	-78.68408198
Resonanzintegrale				
$eta_s [{ m eV bohr^{-1/2}}]$	-4.09428180	-6.84118100	-13.63418670	-12.41211603
$eta_p [ext{eV bohr}^{-1/2}]$		-4.74225291	-5.83442275	-11.13850098
$eta_{\pi} [\mathrm{eV} \mathrm{bohr}^{-1/2}]$		-5.47164501	-7.87814611	-13.05829132
α_s [a.u.]	0.08033622	0.08828455	0.09895535	0.23670726
α_p [a.u.]		0.05603434	0.06530164	0.10358986
α_{π} [a.u.]		0.09815418	0.10627874	0.17016160
β_s (X-H) [eV bohr ^{-1/2}]		-5.95783836	-10.33327895	-13.19351682
β_p (X-H) [eV bohr ^{-1/2}]		-5.59423512	-8.38694303	-11.69042783
$\alpha_s(X-H)$ [a.u.]		0.08965958	0.10931455	0.26626654
$\alpha_p(X-H)$ [a.u.]		0.06763345	0.08931709	0.11470010
Orthogonalisierung				
F_1	0.37723784	0.64863001	0.73187920	0.65663043
G_1	0.32838679	0.15710312	0.16239308	0.39519061
Effektive Rumpfpotentiale				
ζ_{α} [a.u.]		5.70000000	6.70000000	7.70000000
$F_{\alpha\alpha}$ [eV]		-283.81699000	-401.63436000	-531.98678000
$\beta_{\alpha} [\mathrm{eV \ bohr^{-1/2}}]$		-4.68577785	-8.07776920	-24.15105637
α_{α} [a.u.]		0.18226045	0.97794968	0.05337501

3	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.20938997	1.42050742	1.35034078	1.13703515
Einzentrenterme				
U_{ss} [eV] U_{pp} [eV]	-12.01643116	$-50.88260146 \\ -39.31241429$	$-76.59814603 \ -57.63648111$	$-95.65873263 \ -78.77258998$
Resonanzintegrale				
$\beta_{s} [eV bohr^{-1/2}]$ $\beta_{p} [eV bohr^{-1/2}]$ $\beta_{\pi} [eV bohr^{-1/2}]$ $\alpha_{s} [a.u.]$ $\alpha_{p} [a.u.]$ $\alpha_{\pi} [a.u.]$ $\beta_{s} (X-H) [eV bohr^{-1/2}]$ $\beta_{p} (X-H) [eV bohr^{-1/2}]$ $\alpha_{s} (X-H) [a.u.]$ $\alpha_{p} (X-H) [a.u.]$	-4.10175602 0.08232920	$\begin{array}{r} -7.02633145\\ -4.80241899\\ -5.51037846\\ 0.08541594\\ 0.05708532\\ 0.09843358\\ -5.93877424\\ -5.53135897\\ 0.08750607\\ 0.06645973\end{array}$	$\begin{array}{r} -13.62576144\\ -5.99127702\\ -7.90611898\\ 0.09348369\\ 0.06829187\\ 0.11034451\\ -10.96717912\\ -8.05407283\\ 0.11726918\\ 0.08521016\end{array}$	$\begin{array}{c} -13.67996350\\ -11.13622981\\ -12.75820823\\ 0.24888650\\ 0.10162096\\ 0.16529381\\ -14.21908056\\ -11.40387156\\ 0.27999293\\ 0.11368093\end{array}$
Orthogonalisierung				
$egin{array}{c} F_1 \ G_1 \end{array}$	$0.36998803 \\ 0.37156113$	$0.64503796\ 0.15594344$	$0.70495706\ 0.31552259$	$\begin{array}{c} 0.65600134 \\ 0.44750574 \end{array}$
Effektive Rumpfpotentiale				
$\begin{aligned} &\zeta_{\alpha} \text{ [a.u.]} \\ &F_{\alpha\alpha} \text{ [eV]} \\ &\beta_{\alpha} \text{ [eV bohr}^{-1/2]} \\ &\alpha_{\alpha} \text{ [a.u.]} \end{aligned}$		5.70000000 - 283.81699000 - 4.95806370 0.18824457	$\begin{array}{c} 6.70000000\\ -401.63436000\\ -0.81216267\\ 0.99999701 \end{array}$	$\begin{array}{r} 7.70000000\\ -531.98678000\\ -23.50227949\\ 0.03568119\end{array}$

-	11	C	IN	U
Orbitalexponent				
ζ [a.u.]	1.16843255	1.35796950	1.23761260	1.14535455
Einzentrenterme				
U_{ss} [eV]	-12.60936593	-50.38932476	-75.40330727	-94.37594347
U_{pp} [eV]		-38.90667332	-57.07461669	-77.94109379
Resonanzintegrale				
$eta_s [{ m eV bohr^{-1/2}}]$	-3.84603241	-6.10174892	-12.89966795	-12.18727663
$\beta_p [{ m eV} { m bohr}^{-1/2}]$		-4.45611575	-5.54521932	-10.65484378
$\beta_{\pi} [\mathrm{eV}\mathrm{bohr}^{-1/2}]$		-5.66525712	-7.24426798	-10.82989262
α_s [a.u.]	0.07946431	0.08577382	0.09440822	0.19039838
α_p [a.u.]		0.05349043	0.06039440	0.09555903
α_{π} [a.u.]		0.09542754	0.10725731	0.15376863
β_s (X-H) [eV bohr ^{-1/2}]		-5.79469368	-9.71833868	-14.51676008
β_p (X-H) [eV bohr ^{-1/2}]		-5.35540384	-7.38492202	-10.08514390
$\alpha_s(X-H)$ [a.u.]		0.09003301	0.09045158	0.18380106
$\alpha_p(X-H)$ [a.u.]		0.06437207	0.08967697	0.10648799
Orthogonalisierung				
F_1	0.31990294	0.43048495	0.45490367	0.48930104
G_1	0.28382332	0.16866993	0.33302924	0.40957069
Effektive Rumpfpotentiale				
ζ_{α} [a.u.]		5.45266514	7.92291269	6.28440527
$\tilde{F}_{\alpha\alpha}$ [eV]		-283.50976352	-406.65843675	-228.27352798
β_{α} [eV bohr ^{-1/2}]		-8.25552969	-20.08206318	-22.10211385
α_{α} [a.u.]		0.06715598	0.00035526	0.00500001
$\begin{array}{l} U_{ss} [\mathrm{eV}] \\ U_{pp} [\mathrm{eV}] \\ Resonanzintegrale \\ \beta_s [\mathrm{eV} \mathrm{bohr}^{-1/2}] \\ \beta_p [\mathrm{eV} \mathrm{bohr}^{-1/2}] \\ \beta_{\pi} [\mathrm{eV} \mathrm{bohr}^{-1/2}] \\ \alpha_s [\mathrm{a.u.}] \\ \alpha_p [\mathrm{a.u.}] \\ \alpha_{\pi} [\mathrm{a.u.}] \\ \beta_s (\mathrm{X-H}) [\mathrm{eV} \mathrm{bohr}^{-1/2}] \\ \beta_p (\mathrm{X-H}) [\mathrm{eV} \mathrm{bohr}^{-1/2}] \\ \alpha_s (\mathrm{X-H}) [\mathrm{eV} \mathrm{bohr}^{-1/2}] \\ \alpha_s (\mathrm{X-H}) [\mathrm{a.u.}] \\ \alpha_p (\mathrm{X-H}) [\mathrm{a.u.}] \\ \alpha_p (\mathrm{X-H}) [\mathrm{a.u.}] \\ Orthogonalisierung \\ F_1 \\ G_1 \\ Effektive Rumpfpotentiale \\ \zeta_{\alpha} [\mathrm{a.u.}] \\ F_{\alpha\alpha} [\mathrm{eV}] \\ \beta_{\alpha} [\mathrm{eV} \mathrm{bohr}^{-1/2}] \\ \alpha_{\alpha} [\mathrm{a.u.}] \end{array}$	-12.60936593 -3.84603241 0.07946431 0.31990294 0.28382332	$\begin{array}{c} -50.38932476\\ -38.90667332\\ \end{array}$	$\begin{array}{c} -75.40330727\\ -57.07461669\\\\ \end{array}$ $\begin{array}{c} -12.89966795\\ -5.54521932\\ -7.24426798\\ 0.09440822\\ 0.06039440\\ 0.10725731\\ -9.71833868\\ -7.38492202\\ 0.09045158\\ 0.08967697\\\\ \end{array}$ $\begin{array}{c} 0.45490367\\ 0.33302924\\\\ \end{array}$ $\begin{array}{c} 7.92291269\\ -406.65843675\\ -20.08206318\\ 0.00035526\\ \end{array}$	$\begin{array}{c} -94.375943 \\ -77.941093 \\ \end{array}$ $\begin{array}{c} -12.187276 \\ -10.654843 \\ -10.829892 \\ 0.190398 \\ 0.095559 \\ 0.153768 \\ -14.516760 \\ -10.085143 \\ 0.183801 \\ 0.106487 \\ \end{array}$ $\begin{array}{c} 0.489301 \\ 0.409570 \\ \hline 6.284405 \\ -228.273527 \\ -22.102113 \\ 0.005000 \end{array}$

5	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.20287384	1.41081725	1.33541660	1.15938899
Einzentrenterme				
U_{ss} [eV] U_{pp} [eV]	-12.35739419	$-50.35778933 \\ -39.47888300$	$-76.59367212 \\ -57.72010563$	$-96.55856302 \\ -78.84697248$
Resonanzintegrale				
$ \begin{aligned} &\beta_s \; [\text{eV bohr}^{-1/2}] \\ &\beta_p \; [\text{eV bohr}^{-1/2}] \\ &\beta_\pi \; [\text{eV bohr}^{-1/2}] \\ &\alpha_s \; [\text{a.u.}] \\ &\alpha_p \; [\text{a.u.}] \\ &\alpha_\pi \; [\text{a.u.}] \\ &\beta_s (\text{X-H}) \; [\text{eV bohr}^{-1/2}] \\ &\beta_p (\text{X-H}) \; [\text{eV bohr}^{-1/2}] \\ &\alpha_s (\text{X-H}) \; [\text{a.u.}] \\ &\alpha_p (\text{X-H}) \; [\text{a.u.}] \end{aligned} $	-4.08078118 0.07986011	$\begin{array}{r} -6.79764620\\ -4.69198174\\ -5.55700546\\ 0.08824966\\ 0.05580978\\ 0.09964443\\ -5.96047405\\ -5.53390097\\ 0.08867821\\ 0.07043252\end{array}$	$\begin{array}{c} -13.55928361\\ -5.61680108\\ -7.77491507\\ 0.08983076\\ 0.06544003\\ 0.10784420\\ -9.75137509\\ -8.34598690\\ 0.08775308\\ 0.09428559\end{array}$	$\begin{array}{c} -11.07039802\\ -10.45365105\\ -12.79438744\\ 0.21683860\\ 0.09766913\\ 0.16293627\\ -11.97777571\\ -11.87106680\\ 0.19358943\\ 0.12093409\end{array}$
Orthogonalisierung				
$egin{array}{c} F_1 \ G_1 \end{array}$	$\begin{array}{c} 0.37765912 \\ 0.31342900 \end{array}$	$0.65004604 \\ 0.16503180$	$\begin{array}{c} 0.68403518\\ 0.15076657\end{array}$	$\begin{array}{c} 0.63948992 \\ 0.18419421 \end{array}$
Effektive Rumpfpotentiale				
$\begin{aligned} &\zeta_{\alpha} \text{ [a.u.]} \\ &F_{\alpha\alpha} \text{ [eV]} \\ &\beta_{\alpha} \text{ [eV bohr}^{-1/2]} \\ &\alpha_{\alpha} \text{ [a.u.]} \end{aligned}$		5.70000000 - 283.81699000 - 4.76118750 0.18052524	6.70000000 -401.63436000 -14.37915075 0.95922643	$\begin{array}{c} 7.70000000\\ -531.98678000\\ -24.05303081\\ 0.03941176\end{array}$

6	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.14398555	1.21757137	1.29533248	1.14007625
Einzentrenterme				
U_{ss} [eV] U_{rr} [eV]	-12.41280257	$-51.32216186 \\ -39.49712121$	-72.65774064 -57.70163510	-95.24455707 -78.53962231
Resonanzintegrale		00010012121	01110200020	
$\beta_s \text{ [eV bohr}^{-1/2]}$	-3.51961605	-7.24407774	-11.18948086	-12.82127293
$\beta_p [\text{ev bohr}^{-1/2}]$ $\beta_\pi [\text{eV bohr}^{-1/2}]$		-4.42420889 -5.25515096	-6.12712858 -8.25979828	-10.49973428 -12.99405094
α_s [a.u.] α_p [a.u.]	0.06942001	$0.09112253 \\ 0.04939341$	$0.09402238 \\ 0.07031183$	$0.20142357 \\ 0.09717982$
α_{π} [a.u.] β_{s} (X-H) [eV bohr ^{-1/2}]		0.09393762 - 6.64921520	0.10878827 - 10.83252759	$0.15987817 \\ -13.57521014$
$\beta_p(X-H)$ [eV bohr ^{-1/2}]		-3.60658527	-7.97381012	-11.02345849
$\alpha_s(X-H)$ [a.u.] $\alpha_p(X-H)$ [a.u.]		$0.09640316 \\ 0.04289650$	$0.13540402 \\ 0.09387737$	$0.23635681 \\ 0.11727828$
Orthogonalisierung				
F_1	0.24673915	0.41035925	0.70245733	0.62440555
	0.27224937	0.11760431	0.11299046	0.30999251
Effektive Rumpfpotentiale				
$\begin{bmatrix} \zeta_{\alpha} & [a.u.] \end{bmatrix}$ $F_{\alpha\alpha} & [eV] \end{bmatrix}$		5.70000000 - 283.81699000	6.70000000 - 401.63436000	7.70000000 -531.98678000
$\beta_{\alpha} \text{ [eV bohr}^{-1/2}]$ $\alpha_{\alpha} \text{ [a.u.]}$		$-7.20602873 \\ 0.05958285$	-9.90087556 0.29171335	-22.77982118 0.04902733

7	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.15185290	1.21449011	1.28379924	1.06926701
Einzentrenterme				
U_{ss} [eV] U_{pp} [eV]	-12.38690470	$-51.28590456 \\ -39.50372657$	$-73.55605883 \\ -57.71091223$	$-96.45891215 \\ -78.55108195$
Resonanzintegrale				
$\beta_{s} [eV bohr^{-1/2}]$ $\beta_{p} [eV bohr^{-1/2}]$ $\beta_{\pi} [eV bohr^{-1/2}]$ $\alpha_{s} [a.u.]$ $\alpha_{p} [a.u.]$ $\alpha_{\pi} [a.u.]$ $\beta_{s} (X-H) [eV bohr^{-1/2}]$ $\beta_{p} (X-H) [eV bohr^{-1/2}]$ $\alpha_{s} (X-H) [a.u.]$ $\alpha_{p} (X-H) [a.u.]$	-3.49580686 0.06854071	$\begin{array}{c} -7.32328190\\ -4.41579012\\ -5.24654811\\ 0.09181155\\ 0.04985091\\ 0.09409343\\ -6.48612207\\ -3.61469376\\ 0.09696687\\ 0.04313883\end{array}$	$\begin{array}{r} -10.89048359\\ -6.33535064\\ -8.22741424\\ 0.07885750\\ 0.07129985\\ 0.10830052\\ -9.60549134\\ -8.03027461\\ 0.09720995\\ 0.09453541\end{array}$	$\begin{array}{c} -11.27597290\\ -10.88076228\\ -11.76476831\\ 0.18710291\\ 0.09476446\\ 0.14767629\\ -12.31662623\\ -10.11162295\\ 0.20827250\\ 0.10606577\end{array}$
Orthogonalisierung				
$egin{array}{c} F_1 \ G_1 \end{array}$	$0.24223192 \\ 0.27700488$	$0.40930246\ 0.10960652$	$\begin{array}{c} 0.69135165 \\ 0.12274882 \end{array}$	$0.50715603 \\ 0.22802436$
Effektive Rumpfpotentiale				
$\begin{aligned} &\zeta_{\alpha} \text{ [a.u.]} \\ &F_{\alpha\alpha} \text{ [eV]} \\ &\beta_{\alpha} \text{ [eV bohr}^{-1/2]} \\ &\alpha_{\alpha} \text{ [a.u.]} \end{aligned}$		5.70000000 - 283.81699000 - 7.31230778 0.06141817	6.70000000 -401.63436000 -19.38623855 0.40860941	$\begin{array}{c} 7.70000000\\ -531.98678000\\ -26.07865404\\ 0.01399033\end{array}$

8	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.18278359	1.29531446	1.16346540	1.27576952
Einzentrenterme				
U_{ss} [eV]	-12.38177395	-50.07933001	-77.13451866	-108.38033437
U_{pp} [eV]		-38.92783008	-56.95353454	-77.96751913
Resonanzintegrale				
eta_s [eV bohr $^{-1/2}$]	-3.59672295	-6.17988661	-15.00000000	-13.52736315
$\beta_p [{ m eV} { m bohr}^{-1/2}]$		-4.69964139	-5.76097257	-8.32382782
$eta_{\pi} [\mathrm{eV} \mathrm{bohr}^{-1/2}]$		-5.84028362	-7.71084448	-8.89042035
α_s [a.u.]	0.07149265	0.09040757	0.10111277	0.09872680
α_p [a.u.]		0.05407013	0.06037370	0.08460188
α_{π} [a.u.]		0.09739515	0.11559260	0.13701826
β_s (X-H) [eV bohr ^{-1/2}]		-5.77819309	-11.64867110	-12.53226524
β_p (X-H) [eV bohr ^{-1/2}]		-4.58811597	-6.01462872	-7.67974917
$\alpha_s(X-H)$ [a.u.]		0.09723465	0.11069946	0.11032785
$\alpha_p(X-H)$ [a.u.]		0.05716779	0.07350533	0.07769413
Orthogonalisierung				
F_1	0.25437314	0.41541419	0.40301778	0.57714738
G_1	0.30727535	0.12180398	0.26826757	0.22702462
Effektive Rumpfpotentiale				
ζ_{α} [a.u.]		5.56425781	8.02152560	8.18783653
$F_{\alpha\alpha}$ [eV]		-301.39824683	-444.99578668	-184.96367552
β_{α} [eV bohr ^{-1/2}]		-8.33227716	-17.70083252	-22.00059973
α_{α} [a.u.]		0.05852310	0.00142937	0.10313044
$\begin{array}{l} Resonanzintegrale \\ \beta_s \ [eV \ bohr^{-1/2}] \\ \beta_p \ [eV \ bohr^{-1/2}] \\ \beta_\pi \ [eV \ bohr^{-1/2}] \\ \alpha_s \ [a.u.] \\ \alpha_p \ [a.u.] \\ \alpha_p \ [a.u.] \\ \alpha_\pi \ [a.u.] \\ \beta_s (X-H) \ [eV \ bohr^{-1/2}] \\ \beta_p (X-H) \ [eV \ bohr^{-1/2}] \\ \alpha_s (X-H) \ [a.u.] \\ \alpha_p (X-H) \ [a.u.] \\ \alpha_p (X-H) \ [a.u.] \\ Orthogonalisierung \\ F_1 \\ G_1 \\ Effektive \ Rumpfpotentiale \\ \zeta_\alpha \ [a.u.] \\ F_{\alpha\alpha} \ [eV] \\ \beta_\alpha \ [eV \ bohr^{-1/2}] \\ \alpha_\alpha \ [a.u.] \end{array}$	-3.59672295 0.07149265 0.25437314 0.30727535	$\begin{array}{c} -6.17988661\\ -4.69964139\\ -5.84028362\\ 0.09040757\\ 0.05407013\\ 0.09739515\\ -5.77819309\\ -4.58811597\\ 0.09723465\\ 0.05716779\\ \end{array}$	$\begin{array}{c} -15.0000000\\ -5.76097257\\ -7.71084448\\ 0.10111277\\ 0.06037370\\ 0.11559260\\ -11.64867110\\ -6.01462872\\ 0.11069946\\ 0.07350533\\ \hline 0.40301778\\ 0.26826757\\ \hline 8.02152560\\ -444.99578668\\ -17.70083252\\ 0.00142937\\ \end{array}$	$\begin{array}{r} -13.5273631\\ -8.3238278\\ -8.8904203\\ 0.0987268\\ 0.0846018\\ 0.1370182\\ -12.5322652\\ -7.6797491\\ 0.1103278\\ 0.0776941\\ \end{array}$

9	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.18842650	1.29313128	1.17872308	1.25480419
Einzentrenterme				
U_{ss} [eV] U_{pp} [eV]	-12.29277299	$-49.97432164\ -38.95662865$	$-76.79025743 \\ -56.95023972$	$-109.80979457 \ -77.94719541$
Resonanzintegrale				
$\beta_{s} [eV bohr^{-1/2}]$ $\beta_{p} [eV bohr^{-1/2}]$ $\beta_{\pi} [eV bohr^{-1/2}]$ $\alpha_{s} [a.u.]$ $\alpha_{p} [a.u.]$ $\alpha_{\pi} [a.u.]$ $\beta_{s} (X-H) [eV bohr^{-1/2}]$ $\beta_{p} (X-H) [eV bohr^{-1/2}]$ $\alpha_{s} (X-H) [a.u.]$ $\alpha_{p} (X-H) [a.u.]$	-3.59133838 0.07242422	$\begin{array}{r} -6.27717767\\ -4.74773133\\ -5.74844326\\ 0.09380348\\ 0.05418388\\ 0.09711298\\ -5.75346521\\ -4.56896381\\ 0.10051663\\ 0.05554800 \end{array}$	$\begin{array}{r} -14.26704671\\ -5.67099663\\ -7.58760697\\ 0.10005414\\ 0.05886356\\ 0.11408675\\ -11.22030158\\ -6.08987070\\ 0.10995566\\ 0.07361331\end{array}$	$\begin{array}{r} -12.71702199\\ -9.07047560\\ -9.39531890\\ 0.10573022\\ 0.08721750\\ 0.14369453\\ -12.16120646\\ -8.03441652\\ 0.11968001\\ 0.07689248\end{array}$
Orthogonalisierung				
F_1 G_1	$0.25897783 \\ 0.36502052$	$\begin{array}{c} 0.41172734 \\ 0.13823691 \end{array}$	$\begin{array}{c} 0.40717945 \\ 0.34088508 \end{array}$	$\begin{array}{c} 0.55614230 \\ 0.30311045 \end{array}$
Effektive Rumpfpotentiale				
$\begin{aligned} &\zeta_{\alpha} \text{ [a.u.]} \\ &F_{\alpha\alpha} \text{ [eV]} \\ &\beta_{\alpha} \text{ [eV bohr}^{-1/2]} \\ &\alpha_{\alpha} \text{ [a.u.]} \end{aligned}$		$5.56927401 \\ -301.36313842 \\ -8.34900588 \\ 0.05488547$	$7.99951986 \\ -428.76273603 \\ -18.55323261 \\ 0.00117346$	$7.72047662 \\ -186.39075077 \\ -22.04283197 \\ 0.07407245$

Н	С	Ν	0
1.21122995	1.29467348	1.19788979	1.32660667
-12.42661186	-50.08082872	-76.70842191	-105.00212988
	-38.94858476	-57.04648463	-78.16690869
-3.56231743	-6.16312096	-14.80000000	-14.02811352
	-4.79396977	-5.70339646	-8.59356095
	-5.81720117	-7.14560641	-10.04591191
0.06958757	0.09218128	0.10608222	0.12538082
	0.05467038	0.06139943	0.08886782
	0.09666475	0.10671837	0.15135036
	-5.87330278	-10.96865030	-14.02811352
	-4.43493094	-6.37029867	-8.59356095
	0.09786649	0.10234200	0.12538082
	0.05510895	0.08137807	0.08986782
0.25624989	0.41252738	0.44398695	0.69624201
0.29612927	0.12957722	0.28063287	0.28023427
	5.52250703	8.36761857	7.86779088
	-301.32836760	-481.47082565	-198.66057877
	-8.38655055	-17.51080453	-20.32487182
	0.06118385	0.00174118	0.14204760
	H 1.21122995 -12.42661186 -3.56231743 0.06958757 0.25624989 0.29612927	HC 1.21122995 1.29467348 -12.42661186 -50.08082872 -38.94858476 -3.56231743 -6.16312096 -4.79396977 -5.81720117 0.06958757 0.09218128 0.09666475 -5.87330278 -4.43493094 0.09786649 0.05510895 0.25624989 0.41252738 0.12957722 0.25624989 0.329612927 0.41252738 0.12957722 5.52250703 -301.32836760 -8.38655055 0.06118385	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

11	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.18380889	1.21350920	1.29585562	1.15246662
Einzentrenterme				
U_{ss} [eV] U_{pp} [eV]	-12.23101109	$-51.22287810 \ -39.59167755$	$-72.80808891 \\ -57.82153885$	$-98.94234663 \\ -78.70269664$
Resonanzintegrale				
$\beta_{s} [eV bohr^{-1/2}]$ $\beta_{p} [eV bohr^{-1/2}]$ $\beta_{\pi} [eV bohr^{-1/2}]$ $\alpha_{s} [a.u.]$ $\alpha_{p} [a.u.]$ $\alpha_{\pi} [a.u.]$ $\beta_{s} (X-H) [eV bohr^{-1/2}]$ $\beta_{p} (X-H) [eV bohr^{-1/2}]$ $\alpha_{s} (X-H) [a.u.]$ $\alpha_{p} (X-H) [a.u.]$	-3.29372110 0.06657850	$\begin{array}{r} -7.41907480\\ -4.43350596\\ -5.60991744\\ 0.09712334\\ 0.04976543\\ 0.09585610\\ -6.30617557\\ -3.63432641\\ 0.09700000\\ 0.04446290\end{array}$	$\begin{array}{r} -10.60006780\\ -6.15270616\\ -8.33735641\\ 0.08560024\\ 0.07229959\\ 0.11553294\\ -8.91538524\\ -7.42388671\\ 0.10234607\\ 0.09811770\end{array}$	$\begin{array}{c} -10.62003331\\ -10.47345528\\ -12.98642758\\ 0.19765458\\ 0.09876187\\ 0.16779716\\ -11.75658211\\ -10.32027379\\ 0.18489503\\ 0.11708810\end{array}$
Orthogonalisierung				
$egin{array}{c} F_1 \ G_1 \end{array}$	$0.19434611 \\ 0.29001801$	$0.40710967 \\ 0.10264329$	$0.70350406 \\ 0.08704252$	$0.57308374 \\ 0.20775151$
Effektive Rumpfpotentiale				
$\begin{aligned} &\zeta_{\alpha} \text{ [a.u.]} \\ &F_{\alpha\alpha} \text{ [eV]} \\ &\beta_{\alpha} \text{ [eV bohr}^{-1/2]} \\ &\alpha_{\alpha} \text{ [a.u.]} \end{aligned}$		5.70000000 - 283.81699000 - 11.94117319 0.09284248	6.70000000 -401.63436000 -13.89239345 0.84657419	$\begin{array}{c} 7.70000000\\ -531.98678000\\ -20.50636180\\ 0.02108182\end{array}$

12	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.21130023	1.41982995	1.32353929	1.13639397
Einzentrenterme				
U_{ss} [eV]	-12.07467472	-50.58122882	-72.17657024	-97.22300136
$U_{pp} [eV]$		-39.30585287	-57.71385073	-78.71582867
Resonanzintegrale				
$\beta_s [{ m eV} { m bohr}^{-1/2}]$	-4.11338107	-6.94418660	-12.05140126	-13.50720015
$eta_p [ext{eV bohr}^{-1/2}]$		-4.73997456	-5.47576614	-11.16117628
$\beta_{\pi} [\mathrm{eV \: bohr^{-1/2}}]$		-5.50111314	-7.95061381	-12.84046484
α_s [a.u.]	0.08112491	0.08838606	0.10161110	0.24379084
α_p [a.u.]		0.05579189	0.06155608	0.10243612
α_{π} [a.u.]		0.09816361	0.10623817	0.16514643
β_s (X-H) [eV bohr ^{-1/2}]		-5.88730915	-8.57683344	-13.48235209
$\beta_p(X-H) [eV bohr^{-1/2}]$		-5.51991307	-8.23106841	-11.51562478
$\alpha_s(X-H)$ [a.u.]		0.08643415	0.11137963	0.28535751
$\alpha_p(X-H)$ [a.u.]		0.06882574	0.08837963	0.11589797
Orthogonalisierung				
F_1	0.36939891	0.64897149	0.73078843	0.65536279
G_1	0.32992298	0.17142311	0.30149179	0.41357016
Effektive Rumpfpotentiale				
ζ_{α} [a.u.]		5.70000000	6.70000000	7.70000000
$F_{\alpha\alpha}$ [eV]		-283.81699000	-401.63436000	-531.98678000
$\beta_{\alpha} [\mathrm{eV bohr^{-1/2}}]$		-4.89893993	-1.56712029	-24.17798695
α_{α} [a.u.]		0.18168436	0.08006890	0.04820632
$\begin{array}{l} Orthogonalisierung \\ F_1 \\ G_1 \\ \hline \\ Effektive Rumpfpotentiale \\ \zeta_{\alpha} \ [a.u.] \\ F_{\alpha\alpha} \ [eV] \\ \beta_{\alpha} \ [eV \ bohr^{-1/2}] \\ \alpha_{\alpha} \ [a.u.] \end{array}$	0.36939891 0.32992298	0.64897149 0.17142311 5.70000000 -283.81699000 -4.89893993 0.18168436	$\begin{array}{c} 0.73078843\\ 0.30149179\\ \hline 6.70000000\\ -401.63436000\\ -1.56712029\\ 0.08006890\end{array}$	$\begin{array}{c} 0.65536279\\ 0.41357016\end{array}$ $\begin{array}{c} 7.70000000\\ -531.98678000\\ -24.17798695\\ 0.04820632\end{array}$

13	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.19295916	1.21300317	1.32276310	1.12663421
Einzentrenterme				
U_{ss} [eV] U_{pp} [eV]	-12.25602319	$-50.72356832 \\ -39.48894422$	$-75.72603048 \\ -57.68543877$	$-100.48716336 \ -78.72300841$
Resonanzintegrale				
$\beta_{s} [eV bohr^{-1/2}]$ $\beta_{p} [eV bohr^{-1/2}]$ $\beta_{\pi} [eV bohr^{-1/2}]$ $\alpha_{s} [a.u.]$ $\alpha_{p} [a.u.]$ $\alpha_{\pi} [a.u.]$ $\beta_{s} (X-H) [eV bohr^{-1/2}]$ $\beta_{p} (X-H) [eV bohr^{-1/2}]$ $\alpha_{s} (X-H) [a.u.]$ $\alpha_{p} (X-H) [a.u.]$	-3.62932783 0.07080213	$\begin{array}{r} -7.34626629\\ -4.25825934\\ -5.26068470\\ 0.09553506\\ 0.05000000\\ 0.09472183\\ -6.10761650\\ -3.65225297\\ 0.09582938\\ 0.04398537\end{array}$	$\begin{array}{c} -11.01072333\\ -6.23591491\\ -7.99761542\\ 0.07543365\\ 0.07171010\\ 0.11059351\\ -9.60994452\\ -7.66883542\\ 0.08954883\\ 0.09500026\end{array}$	$\begin{array}{c} -11.34335740\\ -10.87184481\\ -11.34517569\\ 0.18179853\\ 0.10243961\\ 0.15060108\\ -13.20547297\\ -10.12306004\\ 0.16553471\\ 0.11002144\end{array}$
Orthogonalisierung				
$egin{array}{c} F_1 \ G_1 \end{array}$	$\begin{array}{c} 0.28148530 \ 0.25737575 \end{array}$	$0.41853739 \\ 0.10674640$	$0.67082450\ 0.09563839$	$\begin{array}{c} 0.56594128 \\ 0.10150175 \end{array}$
Effektive Rumpfpotentiale				
$\begin{aligned} &\zeta_{\alpha} \text{ [a.u.]} \\ &F_{\alpha\alpha} \text{ [eV]} \\ &\beta_{\alpha} \text{ [eV bohr}^{-1/2]} \\ &\alpha_{\alpha} \text{ [a.u.]} \end{aligned}$		5.70000000 - 283.81699000 - 9.39629160 0.09112636	6.70000000 -401.63436000 -10.34108721 0.90000000	$\begin{array}{c} 7.70000000\\ -531.98678000\\ -19.35795402\\ 0.04793453\end{array}$

14	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.17578399	1.21797404	1.30969156	1.12337400
Einzentrenterme				
U_{ss} [eV]	-12.28520174	-50.76548924	-76.01340070	-98.33170702
U_{pp} [eV]		-39.50969779	-57.56185997	-78.77234902
Resonanzintegrale				
$\beta_s [\mathrm{eV} \mathrm{bohr}^{-1/2}]$	-3.58520705	-7.36588207	-11.40487648	-12.64956224
$\beta_p [\mathrm{eV}\mathrm{bohr}^{-1/2}]$		-4.17429114	-6.05452558	-10.58398248
β_{π} [eV bohr ^{-1/2}]		-5.25600318	-8.04899615	-12.09878777
α_s [a.u.]	0.07167768	0.09496971	0.07031771	0.15565969
α_p [a.u.]		0.05000000	0.06885734	0.09878280
α_{π} [a.u.]		0.09571988	0.11010919	0.14839518
β_s (X-H) [eV bohr ^{-1/2}]		-6.26137143	-9.21627661	-13.40005715
β_p (X-H) [eV bohr ^{-1/2}]		-3.63370883	-7.62636208	-10.02176957
α_s (X-H) [a.u.]		0.09639723	0.07324060	0.17443217
$\alpha_p(X-H)$ [a.u.]		0.04488137	0.09287742	0.11260979
Orthogonalisierung				
F_1	0.26677439	0.41467936	0.66295764	0.56380290
G_1	0.24528180	0.10250798	0.00946474	0.05126317
Effektive Rumpfpotentiale				
ζ_{α} [a.u.]		5.70000000	6.70000000	7.70000000
$F_{\alpha\alpha}$ [eV]		-283.81699000	-401.63436000	-531.98678000
$eta_{lpha} \ [{ m eV} { m bohr}^{-1/2}]$		-9.21973924	-9.58314895	-19.32749358
α_{α} [a.u.]		0.09195445	0.90000000	0.04595379

15	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.19270777	1.42767788	1.19372970	1.13902241
Einzentrenterme				
U_{ss} [eV] U_{pp} [eV]	-12.02253930	-50.26090058 -39.00032579	$-74.64183575 \\ -57.07007255$	$-95.41617728 \\ -77.96105025$
Resonanzintegrale				
$\beta_{s} [eV bohr^{-1/2}]$ $\beta_{p} [eV bohr^{-1/2}]$ $\beta_{\pi} [eV bohr^{-1/2}]$ $\alpha_{s} [a.u.]$ $\alpha_{p} [a.u.]$ $\alpha_{\pi} [a.u.]$ $\beta_{s} (X-H) [eV bohr^{-1/2}]$ $\beta_{p} (X-H) [eV bohr^{-1/2}]$ $\alpha_{s} (X-H) [a.u.]$ $\alpha_{p} (X-H) [a.u.]$	-4.08708728 0.07972394	$\begin{array}{r} -6.58348427\\ -4.82593251\\ -5.50681270\\ 0.08889691\\ 0.05539077\\ 0.09574278\\ -5.88267669\\ -5.50380957\\ 0.09354844\\ 0.06272736\end{array}$	$\begin{array}{c} -14.37851423\\ -5.62453136\\ -7.09231522\\ 0.10715417\\ 0.06016298\\ 0.10436050\\ -9.16101569\\ -7.11020186\\ 0.10094879\\ 0.08719047\end{array}$	$\begin{array}{c} -11.99293062\\ -10.56414717\\ -10.57793965\\ 0.17393413\\ 0.09645663\\ 0.14986740\\ -14.57362599\\ -9.96261074\\ 0.17176987\\ 0.10991371\end{array}$
Orthogonalisierung				
F_1 G_1	$\begin{array}{c} 0.36493400 \\ 0.36962152 \end{array}$	$0.65197132 \\ 0.16573267$	$0.49727839 \\ 0.35096942$	$\begin{array}{c} 0.53190551 \\ 0.45691964 \end{array}$
Effektive Rumpfpotentiale				
$\begin{aligned} \zeta_{\alpha} & [a.u.] \\ F_{\alpha\alpha} & [eV] \\ \beta_{\alpha} & [eV \text{ bohr}^{-1/2}] \\ \alpha_{\alpha} & [a.u.] \end{aligned}$		5.77104521 -281.81614844 -6.42458629 0.16454338	8.47879855 -419.00589698 -18.02624790 0.00828992	$7.01936461 \\ -286.34943413 \\ -22.27021256 \\ 0.01019336$

16	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.19477345	1.42439265	1.20578365	1.13902241
Einzentrenterme				
U_{ss} [eV] U_{ss} [eV]	-12.01556135	-50.28615745 -38.98583961	-74.32682051 -57.09019219	-95.41617728 -77.96105025
		000000000	01100010210	11.001000000
Resonanzintegrate				
$\beta_s [{ m eV}{ m bohr}^{-1/2}]$	-4.09709937	-6.55915715	-12.08640890	-12.39293062
$eta_p [ext{eV bohr}^{-1/2}]$		-4.77541747	-5.42308111	-10.54414717
$eta_{\pi} [\mathrm{eV} \mathrm{bohr}^{-1/2}]$		-5.54657381	-7.32236646	-10.57793965
α_s [a.u.]	0.07962372	0.08976210	0.09465545	0.17393413
α_p [a.u.]		0.05412687	0.06248042	0.09645663
α_{π} [a.u.]		0.09504497	0.10796072	0.14986740
β_s (X-H) [eV bohr ^{-1/2}]		-5.86659934	-8.73070826	-14.37362599
$\beta_p(X-H) [eV bohr^{-1/2}]$		-5.50514646	-7.04146789	-9.96261074
α_s (X-H) [a.u.]		0.09658428	0.09359176	0.17176987
$\alpha_p(X-H)$ [a.u.]		0.06234837	0.08845058	0.10991371
Orthogonalisierung				
F_1	0.36527418	0.65281249	0.49404878	0.53190551
G_1	0.35757852	0.15229031	0.34831481	0.45691964
Effektive Rumpfpotentiale				
ζ_{α} [a.u.]		5.78218447	6.98262061	7.01936461
$F_{\alpha\alpha}$ [eV]		-281.79990629	-227.88596229	-286.34943413
β_{α} [eV bohr ^{-1/2}]		-6.36104152	-18.06466772	-22.27021256
α_{α} [a.u.]		0.16377680	0.08111594	0.01019336

17	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.18312523	1.41270456	1.20417919	1.07226235
Einzentrenterme				
U_{ss} [eV] U_{pp} [eV]	-12.25092374	$-50.33858182 \ -39.10849833$	$-74.25521023 \\ -57.13816150$	$-95.23079459 \ -78.33549109$
Resonanzintegrale				
$ \begin{aligned} &\beta_s \; [\text{eV bohr}^{-1/2}] \\ &\beta_p \; [\text{eV bohr}^{-1/2}] \\ &\beta_\pi \; [\text{eV bohr}^{-1/2}] \\ &\alpha_s \; [\text{a.u.}] \\ &\alpha_p \; [\text{a.u.}] \\ &\alpha_\pi \; [\text{a.u.}] \\ &\beta_s (\text{X-H}) \; [\text{eV bohr}^{-1/2}] \\ &\beta_p (\text{X-H}) \; [\text{eV bohr}^{-1/2}] \\ &\alpha_s (\text{X-H}) \; [\text{a.u.}] \\ &\alpha_p (\text{X-H}) \; [\text{a.u.}] \end{aligned} $	-4.16417701 0.07953041	$\begin{array}{r} -6.53347026\\ -4.94436490\\ -5.58180118\\ 0.09039569\\ 0.05566120\\ 0.09590665\\ -5.98616781\\ -5.56422864\\ 0.09236239\\ 0.06610789\end{array}$	$\begin{array}{r} -12.70874004\\ -5.36399351\\ -7.37424146\\ 0.10053020\\ 0.06256980\\ 0.10924430\\ -8.95076105\\ -7.05922062\\ 0.09901529\\ 0.09084245\end{array}$	$\begin{array}{c} -10.17619148\\ -10.48751473\\ -10.90710839\\ 0.19049661\\ 0.09432012\\ 0.14864642\\ -13.63178427\\ -10.21892738\\ 0.21477075\\ 0.10887214\end{array}$
Orthogonalisierung				
$egin{array}{c} F_1 \ G_1 \end{array}$	$0.37236392 \\ 0.24893781$	$0.64787546\ 0.16204538$	$0.49547288 \\ 0.31296116$	$\begin{array}{c} 0.51499483 \\ 0.33363142 \end{array}$
Effektive Rumpfpotentiale				
$\begin{aligned} &\zeta_{\alpha} \text{ [a.u.]} \\ &F_{\alpha\alpha} \text{ [eV]} \\ &\beta_{\alpha} \text{ [eV bohr}^{-1/2]} \\ &\alpha_{\alpha} \text{ [a.u.]} \end{aligned}$		5.70000000 - 283.81699000 - 4.83516432 0.16615493	$6.99992359 \\ -207.90939431 \\ -18.06839080 \\ 0.07564385$	$\begin{array}{c} 7.70000000\\ -531.98678000\\ -22.09719900\\ 0.01077826\end{array}$

18	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.18340553	1.41562812	1.34625442	1.07226235
Einzentrenterme				
U_{ss} [eV]	-12.23122918	-50.31793627	-75.13123229	-95.23079459
U_{pp} [eV]		-39.11394717	-57.47692310	-78.33549109
Resonanzintegrale				
$eta_s \ [{ m eV} \ { m bohr}^{-1/2}]$	-4.17555550	-6.63494441	-9.71287948	-10.17619148
$\beta_p [{ m eV} { m bohr}^{-1/2}]$		-4.74917113	-5.52561024	-10.48751473
$eta_{\pi} [ext{eV bohr}^{-1/2}]$		-5.50084438	-7.65981487	-10.90710839
α_s [a.u.]	0.07932069	0.08949695	0.06805286	0.19049661
α_p [a.u.]		0.05463069	0.06596624	0.09432012
α_{π} [a.u.]		0.09514540	0.11107090	0.14864642
β_s (X-H) [eV bohr ^{-1/2}]		-5.89891349	-8.56291113	-13.63178427
$\beta_p(X-H) [eV bohr^{-1/2}]$		-5.57113344	-7.69670552	-10.21892738
$\alpha_s(X-H)$ [a.u.]		0.09652565	0.07774505	0.21477075
$\alpha_p(X-H)$ [a.u.]		0.06548546	0.08752286	0.10887214
Orthogonalisierung				
F_1	0.37717433	0.64670749	0.66450312	0.51499483
G_1	0.27452553	0.14365389	0.24148540	0.33363142
Effektive Rumpfpotentiale				
ζ_{α} [a.u.]		5.70000000	6.70000000	7.70000000
$F_{\alpha\alpha}$ [eV]		-283.81699000	-401.63436000	-531.98678000
$\beta_{\alpha} [\mathrm{eV bohr^{-1/2}}]$		-5.07122576	-7.70581468	-22.09719900
α_{α} [a.u.]		0.17474770	0.87137358	0.01077826
α []		0.1. 1. 1.10	0.01101000	0.0101.020

19	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.19152187	1.42600873	1.34736409	1.07226235
Einzentrenterme				
U_{ss} [eV] U_{pp} [eV]	-12.11050873	$-50.28781081 \\ -39.06990305$	$-75.52501565 \ -57.46590547$	$-95.23079459 \\ -78.33549109$
Resonanzintegrale				
$\beta_{s} [eV bohr^{-1/2}]$ $\beta_{p} [eV bohr^{-1/2}]$ $\beta_{\pi} [eV bohr^{-1/2}]$ $\alpha_{s} [a.u.]$ $\alpha_{p} [a.u.]$ $\alpha_{\pi} [a.u.]$ $\beta_{s} (X-H) [eV bohr^{-1/2}]$ $\beta_{p} (X-H) [eV bohr^{-1/2}]$ $\alpha_{s} (X-H) [a.u.]$ $\alpha_{p} (X-H) [a.u.]$	-4.11635578 0.08093121	$\begin{array}{r} -6.66859339\\ -4.70915411\\ -5.55411533\\ 0.08878945\\ 0.05439523\\ 0.09623474\\ -6.05586968\\ -5.52370119\\ 0.09369658\\ 0.06506556\end{array}$	$\begin{array}{r} -9.46495506\\ -5.57244256\\ -7.63344264\\ 0.06357825\\ 0.06627308\\ 0.11083772\\ -9.08615268\\ -7.89918201\\ 0.07704383\\ 0.09346340\end{array}$	$\begin{array}{c} -10.17619148\\ -10.48751473\\ -10.90710839\\ 0.19049661\\ 0.09432012\\ 0.14864642\\ -13.63178427\\ -10.21892738\\ 0.21477075\\ 0.10887214\end{array}$
Orthogonalisierung				
F_1 G_1	$0.37312831 \\ 0.21230904$	$0.65235761\ 0.14985135$	$0.66209514 \\ 0.30742761$	$\begin{array}{c} 0.51499483 \\ 0.33363142 \end{array}$
Effektive Rumpfpotentiale				
$\begin{aligned} &\zeta_{\alpha} \text{ [a.u.]} \\ &F_{\alpha\alpha} \text{ [eV]} \\ &\beta_{\alpha} \text{ [eV bohr}^{-1/2]} \\ &\alpha_{\alpha} \text{ [a.u.]} \end{aligned}$		5.70000000 - 283.81699000 - 5.31521121 0.17770090	6.70000000 -401.63436000 -8.79210837 0.91465455	$\begin{array}{c} 7.70000000\\ -531.98678000\\ -22.09719900\\ 0.01077826\end{array}$

20	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.25906452	1.27811536	1.32267553	1.19664257
Einzentrenterme				
U_{ss} [eV]	-12.45828647	-50.55997310	-75.26559847	-106.58244791
U_{pp} [eV]		-39.60463506	-57.58389679	-78.96456792
Resonanzintegrale				
$eta_s [{ m eV \ bohr^{-1/2}}]$	-3.40064659	-7.15007507	-11.73765267	-13.27884986
$\beta_p [{ m eV} { m bohr}^{-1/2}]$		-4.00965991	-5.27216475	-8.93436982
$eta_{\pi} [\mathrm{eV} \mathrm{bohr}^{-1/2}]$		-5.63958651	-8.26690128	-13.00000000
α_s [a.u.]	0.06931667	0.09197146	0.08507148	0.12507918
α_p [a.u.]		0.05274021	0.06583042	0.09209689
α_{π} [a.u.]		0.09864674	0.10348197	0.15861132
β_s (X-H) [eV bohr ^{-1/2}]		-6.19914817	-11.03422319	-14.68023096
$\beta_p(ext{X-H}) [ext{eV bohr}^{-1/2}]$		-4.23218526	-8.00578527	-9.43246130
$\alpha_s(X-H)$ [a.u.]		0.10023679	0.11685339	0.15275872
$\alpha_p(X-H)$ [a.u.]		0.05492720	0.09588627	0.10775699
Orthogonalisierung				
F_1	0.25393975	0.41151269	0.60704987	0.55114223
G_1	0.35600772	0.10398816	0.02048785	0.04510497
Effektive Rumpfpotentiale				
ζ_{α} [a.u.]		5.70000000	6.70000000	7.70000000
$F_{\alpha\alpha}$ [eV]		-283.81699000	-401.63436000	-531.98678000
β_{α} [eV bohr ^{-1/2}]		-22.48815939	-20.10000000	-23.48992482
α_{α} [a.u.]		0.15323932	0.16888529	0.16586867

21	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.25906452	1.27811536	1.30837061	1.18383974
Einzentrenterme				
U_{ss} [eV] U_{pp} [eV]	-12.45828647	$-50.55997310 \ -39.60463506$	$-77.86080986 \ -57.43091036$	$-107.29669485 \ -78.94711256$
Resonanzintegrale				
$\beta_{s} [eV bohr^{-1/2}]$ $\beta_{p} [eV bohr^{-1/2}]$ $\beta_{\pi} [eV bohr^{-1/2}]$ $\alpha_{s} [a.u.]$ $\alpha_{p} [a.u.]$ $\alpha_{\pi} [a.u.]$ $\beta_{s} (X-H) [eV bohr^{-1/2}]$ $\beta_{p} (X-H) [eV bohr^{-1/2}]$ $\alpha_{s} (X-H) [a.u.]$ $\alpha_{p} (X-H) [a.u.]$	-3.40064659 0.06931667	$\begin{array}{c} -7.15007507\\ -4.00965991\\ -5.63958651\\ 0.09197146\\ 0.05274021\\ 0.09864674\\ -6.19914817\\ -4.23218526\\ 0.10023679\\ 0.05492720\end{array}$	$\begin{array}{r} -12.43741621\\ -5.65223539\\ -8.51604371\\ 0.07480050\\ 0.06686417\\ 0.10501176\\ -11.03821932\\ -8.08434283\\ 0.08487051\\ 0.09563540\end{array}$	$\begin{array}{r} -14.48135900 \\ -8.65463394 \\ -12.98951226 \\ 0.12050562 \\ 0.08891145 \\ 0.15616020 \\ -14.08805167 \\ -9.33163928 \\ 0.14058228 \\ 0.10606301 \end{array}$
Orthogonalisierung				
$egin{array}{c} F_1 \ G_1 \end{array}$	$0.25393975\ 0.35600772$	$0.41151269 \\ 0.10398816$	$0.58955893 \\ 0.01418113$	$\begin{array}{c} 0.53991464 \\ 0.03744686 \end{array}$
Effektive Rumpfpotentiale				
$\begin{aligned} &\zeta_{\alpha} \text{ [a.u.]} \\ &F_{\alpha\alpha} \text{ [eV]} \\ &\beta_{\alpha} \text{ [eV bohr}^{-1/2]} \\ &\alpha_{\alpha} \text{ [a.u.]} \end{aligned}$		5.70000000 - 283.81699000 - 22.48815939 0.15323932	6.70000000 -401.63436000 -22.18719871 0.18094688	$\begin{array}{r} 7.70000000\\ -531.98678000\\ -27.27454511\\ 0.21149766\end{array}$

22	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.21033327	1.39968262	1.27808945	1.15216403
Einzentrenterme				
U_{ss} [eV] U_{pp} [eV]	-12.44759890	$-50.32793190 \ -39.51021019$	$-74.63154519 \\ -57.74100885$	$-95.31068159 \\ -78.63310667$
Resonanzintegrale				
$\beta_s [\text{eV bohr}^{-1/2}]$ $\beta_p [\text{eV bohr}^{-1/2}]$ $\beta_{\pi} [\text{eV bohr}^{-1/2}]$ $\alpha_c [\text{a.u.}]$	-4.10574478 0.07639620	-6.87748106 -4.73617212 -5.54729008 0.09024220	-13.29296201 -6.31068065 -7.94673772 0.09289495	-13.34334329 -10.81616074 -12.81095510 0.22200519
$\begin{aligned} \alpha_p \text{ [a.u.]} \\ \alpha_p \text{ [a.u.]} \\ \alpha_\pi \text{ [a.u.]} \\ \beta_s(X-H) \text{ [eV bohr}^{-1/2]} \\ \beta_p(X-H) \text{ [eV bohr}^{-1/2]} \\ \alpha_s(X-H) \text{ [a.u.]} \\ \alpha_p(X-H) \text{ [a.u.]} \end{aligned}$	0.01000020	$\begin{array}{c} 0.05565235\\ 0.09915559\\ -5.93273030\\ -5.41482711\\ 0.09064929\\ 0.07030762\end{array}$	$\begin{array}{c} 0.06573556\\ 0.10355826\\ -10.83750647\\ -8.44497004\\ 0.10825854\\ 0.08893547\end{array}$	$\begin{array}{c} 0.09843431\\ 0.16149431\\ -12.88364496\\ -11.62672299\\ 0.24230798\\ 0.11566118\end{array}$
Orthogonalisierung				
$egin{array}{c} F_1 \ G_1 \end{array}$	$0.37715587 \\ 0.30714314$	$0.64857004 \\ 0.16113300$	$\begin{array}{c} 0.70669436 \\ 0.29891642 \end{array}$	$0.64342873 \\ 0.46403489$
Effektive Rumpfpotentiale				
$ \begin{aligned} \zeta_{\alpha} & [\text{a.u.}] \\ F_{\alpha\alpha} & [\text{eV}] \\ \beta_{\alpha} & [\text{eV bohr}^{-1/2}] \\ \alpha_{\alpha} & [\text{a.u.}] \end{aligned} $		5.70000000 - 283.81699000 - 5.40060457 0.18622506	6.70000000 -401.63436000 -4.58593269 0.19054432	$7.70000000 \\ -531.98678000 \\ -26.09940901 \\ 0.04240217$

23	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.21033327	1.39968262	1.27758157	1.15030447
Einzentrenterme				
U_{ss} [eV] U_{pp} [eV]	-12.44759890	$-50.32793190\ -39.51021019$	$-74.73237070 \ -57.75674499$	$-94.84987927 \ -78.63261621$
Resonanzintegrale				
$ \begin{aligned} &\beta_s \; [\text{eV bohr}^{-1/2}] \\ &\beta_p \; [\text{eV bohr}^{-1/2}] \\ &\beta_\pi \; [\text{eV bohr}^{-1/2}] \\ &\alpha_s \; [\text{a.u.}] \\ &\alpha_p \; [\text{a.u.}] \\ &\alpha_\pi \; [\text{a.u.}] \\ &\beta_s (\text{X-H}) \; [\text{eV bohr}^{-1/2}] \\ &\beta_p (\text{X-H}) \; [\text{eV bohr}^{-1/2}] \\ &\alpha_s (\text{X-H}) \; [\text{a.u.}] \\ &\alpha_p (\text{X-H}) \; [\text{a.u.}] \end{aligned} $	-4.10574478 0.07639620	$\begin{array}{r} -6.87748106\\ -4.73617212\\ -5.54729008\\ 0.09024220\\ 0.05565235\\ 0.09915559\\ -5.93273030\\ -5.41482711\\ 0.09064929\\ 0.07030762\end{array}$	$\begin{array}{c} -13.36697932\\ -6.19953905\\ -7.80417684\\ 0.09302332\\ 0.06658243\\ 0.10519398\\ -10.65780167\\ -8.28731999\\ 0.10683046\\ 0.09090630\end{array}$	$\begin{array}{c} -13.45962506\\ -10.87217814\\ -12.79574610\\ 0.21974586\\ 0.09965756\\ 0.16243983\\ -12.99313418\\ -11.53475377\\ 0.25439947\\ 0.11583079\end{array}$
Orthogonalisierung				
$egin{array}{c} F_1 \ G_1 \end{array}$	$0.37715587 \\ 0.30714314$	$0.64857004\ 0.16113300$	$0.71124283 \\ 0.26641275$	$0.63967552 \\ 0.47245593$
Effektive Rumpfpotentiale				
$\begin{aligned} &\zeta_{\alpha} \text{ [a.u.]} \\ &F_{\alpha\alpha} \text{ [eV]} \\ &\beta_{\alpha} \text{ [eV bohr}^{-1/2]} \\ &\alpha_{\alpha} \text{ [a.u.]} \end{aligned}$		5.70000000 - 283.81699000 - 5.40060457 0.18622506	6.70000000 -401.63436000 -4.60098512 0.70016526	$7.70000000 \\ -531.98678000 \\ -26.09927088 \\ 0.04574502$

24	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.17958393	1.21456979	1.31037965	1.13390470
Einzentrenterme				
U_{ss} [eV]	-12.33557077	-50.99620025	-75.89746461	-97.37249388
U_{pp} [eV]		-39.47669145	-57.53380965	-78.84858471
Resonanzintegrale				
$\beta_s [\mathrm{eV \ bohr^{-1/2}}]$	-3.55740904	-7.55167360	-11.39337944	-11.36307448
$eta_p [ext{eV bohr}^{-1/2}]$		-4.18846179	-6.08150008	-10.45521362
$\beta_{\pi} [\mathrm{eVbohr}^{-1/2}]$		-5.28304749	-8.16226555	-12.38654303
α_s [a.u.]	0.07076748	0.09443968	0.07063401	0.16112369
α_p [a.u.]		0.04996965	0.07039752	0.10153321
α_{π} [a.u.]		0.09549846	0.11185886	0.15432842
β_s (X-H) [eV bohr ^{-1/2}]		-6.57584362	-9.48847262	-12.89676833
β_p (X-H) [eV bohr ^{-1/2}]		-3.60279832	-7.55354681	-10.02735625
$\alpha_s(X-H)$ [a.u.]		0.09700000	0.07334178	0.18347327
$\alpha_p(X-H)$ [a.u.]		0.04303109	0.09247830	0.11619088
Orthogonalisierung				
F_1	0.26915586	0.41311601	0.65783111	0.56170252
G_1	0.25727333	0.10531853	0.01109162	0.00506226
Effektive Rumpfpotentiale				
ζ_{α} [a.u.]		5.70000000	6.70000000	7.70000000
$F_{\alpha\alpha}$ [eV]		-283.81699000	-401.63436000	-531.98678000
β_{α} [eV bohr ^{-1/2}]		-9.40435728	-9.58311458	-19.39656022
α_{α} [a.u.]		0.09522375	0.85982324	0.04351082

25	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.17958393	1.21456979	1.31037965	1.12481180
Einzentrenterme				
U_{ss} [eV] U_{pp} [eV]	-12.33557077	$-50.99620025 \\ -39.47669145$	$-75.89746461 \\ -57.53380965$	$-98.02126581\\-78.86920494$
Resonanzintegrale				
$ \begin{aligned} &\beta_s \; [\text{eV bohr}^{-1/2}] \\ &\beta_p \; [\text{eV bohr}^{-1/2}] \\ &\beta_\pi \; [\text{eV bohr}^{-1/2}] \\ &\alpha_s \; [\text{a.u.}] \\ &\alpha_p \; [\text{a.u.}] \\ &\alpha_\pi \; [\text{a.u.}] \\ &\beta_s (\text{X-H}) \; [\text{eV bohr}^{-1/2}] \\ &\beta_p (\text{X-H}) \; [\text{eV bohr}^{-1/2}] \\ &\alpha_s (\text{X-H}) \; [\text{a.u.}] \\ &\alpha_p (\text{X-H}) \; [\text{a.u.}] \end{aligned} $	-3.55740904 0.07076748	$\begin{array}{c} -7.55167360\\ -4.18846179\\ -5.28304749\\ 0.09443968\\ 0.04996965\\ 0.09549846\\ -6.57584362\\ -3.60279832\\ 0.09700000\\ 0.04303109\end{array}$	$\begin{array}{c} -11.39337944\\ -6.08150008\\ -8.16226555\\ 0.07063401\\ 0.07039752\\ 0.11185886\\ -9.48847262\\ -7.55354681\\ 0.07334178\\ 0.09247830\end{array}$	$\begin{array}{c} -12.69494714\\ -10.65907310\\ -12.10809611\\ 0.17000010\\ 0.09998845\\ 0.14963603\\ -13.24397470\\ -10.06985916\\ 0.17576807\\ 0.11363574\end{array}$
Orthogonalisierung				
$egin{array}{c} F_1 \ G_1 \end{array}$	$0.26915586\ 0.25727333$	$0.41311601 \\ 0.10531853$	$0.65783111 \\ 0.01109162$	$0.56849367 \\ 0.00200001$
Effektive Rumpfpotentiale				
$\begin{aligned} &\zeta_{\alpha} \text{ [a.u.]} \\ &F_{\alpha\alpha} \text{ [eV]} \\ &\beta_{\alpha} \text{ [eV bohr}^{-1/2]} \\ &\alpha_{\alpha} \text{ [a.u.]} \end{aligned}$		5.70000000 - 283.81699000 - 9.40435728 0.09522375	$\begin{array}{r} 6.70000000\\ -401.63436000\\ -9.58311458\\ 0.85982324\end{array}$	$7.70000000 \ -531.98678000 \ -19.32766390 \ 0.04057879$

Kapitel 6

Die OM3 Parameter

Die endgültigen Parameter für OM3 sind in Tabelle 6.1 zusammengestellt.

Die Skalierungsfaktoren ζ , die zur Skalierung der Exponenten der primitiven Gaußfunktionen (Multiplikation mit ζ^2) dienen, nehmen Werte zwischen 1.20 und 1.31 an. Die OM3 Basisfunktionen sind daher etwas kompakter als die an den Atomen optimierten ECP-3G Basisfunktionen [2, 3].

Für die Einzentrenterme U_{ss} und U_{pp} , welche die Energie eines Elektrons in einem s- bzw. p-Orbital beschreiben, erhält man Werte in der Größenordnung der aus Atomspektren ermittelten Werte [38].

Für die Berechnung der verschiedenen Resonanzintegrale (3.47) sind pro Element insgesamt 2 (H) oder 10 (C, N, O) Parameter erforderlich. Die optimierten Parameterwerte nehmen betragsmäßig in der Reihe C-N-O zu, allerdings ist ihr Einfluss auf die Resonanzintegrale (3.47) meist nicht unmittelbar ersichtlich. Daher sind die relevanten Resonanzintegrale für alle (H, C, N, O) Atompaare in den Abbildungen 6.1-6.10 dargestellt (jeweils in ihrem Absolutbetrag). Die funktionale Form (3.47) stellt sicher, dass jedes dieser Integrale bei R = 0 verschwindet und für R $\rightarrow \infty$ exponentiell gegen Null geht. In den Serien C–H/ N–H/ O–H und C– C/ N–N/ O–O findet man erwartungsgemäß, dass die maximalen Werte der Resonanzintegrale eines gegebenen Typs ansteigen. Weiterhin beobachtet man z. B. für C–C, dass die $p\sigma$ - $p\sigma$ Wechselwirkung die größte Reichweite besitzt und dass im Bereich typischer Bindungsabstände die $p\pi$ - $p\pi$ Wechselwirkung am schwächsten ist. Diese und andere Befunde stehen im Einklang mit den qualitativen Erwartungen.

Abbildung 6.1: Semiempirisches Resonanzintegral: H-H

Abbildung 6.2: Semiempirische Resonanzintegrale: C-H

Abbildung 6.3: Semiempirische Resonanzintegrale: C-C

Abbildung 6.4: Semiempirische Resonanzintegrale: C-N

Abbildung 6.5: Semiempirische Resonanzintegrale: C-O

Abbildung 6.6: Semiempirische Resonanzintegrale: N-H

Abbildung 6.7: Semiempirische Resonanzintegrale: N-N

Abbildung 6.8: Semiempirische Resonanzintegrale: N-O

Die Vorfaktoren F_1 und G_1 skalieren die Orthogonalisierungskorrekturen (3.49) bzw. (3.50). Ihre optimierten Werte sind generell kleiner als 1, so dass die Korrekturen in OM3 weniger stark ausgeprägt sind als aufgrund der Reihenentwicklung (3.14) für ^{λ}H zu erwarten wäre. Besonders niedrig sind die optimierten G_1 -Werte für C, N und O (0.06-0.10), so dass die Korrekturen (3.50) zu den entsprechenden Resonanzintegralen recht klein sind und sich dem OM1 Grenzfall annähern.

Der zur Beschreibung der effektiven Rumpforbitale verwendete Rumpforbitalexponent ζ_{α} entspricht für Kohlenstoff dem Slater-Exponent, und auch für Stickstoff und Sauerstoff ist er nicht wesentlich größer als der entsprechende Slater-Exponent [9]. Ebenso weichen die Rumpfenergien F_{\alpha\alpha} für C, N und O nicht viel von den experimentell aus Atomspektren ermittelten Größen ab [83, 84]. Die Abbildungen 6.11-6.24 zeigen die Abstandsverläufe der semiempirischen effektiven

Abbildung 6.9: Semiempirische Resonanzintegrale: O-H

Abbildung 6.10: Semiempirische Resonanzintegrale: O-O

Rumpfpotentiale (3.52). Für die C–C und die O–O Rumpf-Valenz-Wechselwirkungen wird das Verhalten der ECPs von 0 bis 3 Å dargestellt, während für alle anderen Wechselwirkungen nur der für Bindungen relevante Bereich abgebildet ist. Zusätzlich zu den semiempirischen Pseudopotentialen (in den Abbildungen mit "s" bezeichnet) werden auch die ab initio Matrixelemente [75] (durch ein "a" gekennzeichnet) gezeigt, zu deren Berechnung die OM3 Basisfunktionen (mit dem Skalierungsfaktor ζ) verwendet wurden. Der Vergleich der Kurven belegt, dass die semiempirischen Rumpfpotentiale im Bereich von 1.2-2.4 Å die ab initio ECPs sehr gut reproduzieren. In allen Fällen findet man im Bindungsbereich ein steiles repulsives Potential, das in den semiempirischen ECPs meist geringfügig ausgeprägter ist.

Abbildung 6.11: Semiempirisches und ab initio ECP für die ss-Kombination in C-C

Abbildung 6.12: Semiempirisches und ab initio ECP für die sp-Kombination in C-C

Abbildung 6.13: Semiempirisches und ab initio ECP für die pp-Kombination in C-C

Abbildung 6.14: Semiempirische und ab initio ECPs für C-H, N-H und O-H

Abbildung 6.15: Semiempirische und ab initio ECPs für C-N (Rumpf C)

Abbildung 6.16: Semiempirische und ab initio ECPs für C-N (Rumpf N)

Abbildung 6.17: Semiempirische und ab initio ECPs für C-O (Rumpf C)

Abbildung 6.18: Semiempirische und ab initio ECPs für C-O (Rumpf O)

Abbildung 6.19: Semiempirische und ab initio ECPs für N-N

Abbildung 6.20: Semiempirische und ab initio ECPs für N–O (Rumpf N)

Abbildung 6.21: Semiempirische und ab initio ECPs für N–O (Rumpf O)

Abbildung 6.22: Semiempirisches und ab initio ECP für die ss-Kombination in O-O

Abbildung 6.23: Semiempirisches und ab initio ECP für die sp-Kombination in O-O

Abbildung 6.24: Semiempirisches und ab initio ECP für die pp-Kombination in O-O

	Н	С	Ν	0
Orbitalexponent				
ζ [a.u.]	1.25906452	1.27811536	1.30965521	1.20838191
Einzentrenterme				
U_{ss} [eV] U_{pp} [eV]	-12.45828647	$-50.55997310 \ -39.60463506$	$-75.98413465 \\ -57.38630489$	$-105.79319826 \ -78.90502490$
Resonanzintegrale				
$\beta_{s} [eV bohr^{-1/2}]$ $\beta_{p} [eV bohr^{-1/2}]$ $\beta_{\pi} [eV bohr^{-1/2}]$ $\alpha_{s} [a.u.]$ $\alpha_{p} [a.u.]$ $\alpha_{\pi} [a.u.]$ $\beta_{s}(X-H) [eV bohr^{-1/2}]$ $\beta_{p}(X-H) [eV bohr^{-1/2}]$ $\alpha_{s}(X-H) [a.u.]$ $\alpha_{p}(X-H) [a.u.]$	-3.40064659 0.06931667	$\begin{array}{c} -7.15007507\\ -4.00965991\\ -5.63958651\\ 0.09197146\\ 0.05274021\\ 0.09864674\\ -6.19914817\\ -4.23218526\\ 0.10023679\\ 0.05492720\end{array}$	$\begin{array}{c} -13.42485887\\ -5.69143961\\ -8.25767437\\ 0.09461210\\ 0.06941595\\ 0.10511596\\ -11.40440049\\ -7.87479008\\ 0.11356707\\ 0.09244486\end{array}$	$\begin{array}{c} -14.42839639\\ -8.77114206\\ -12.94995697\\ 0.12962541\\ 0.09275135\\ 0.16086067\\ -13.56403003\\ -9.42200507\\ 0.14516313\\ 0.10981869\end{array}$
Orthogonalisierung				
$\begin{bmatrix} F_1 \\ G_1 \end{bmatrix}$	$0.25393975\ 0.35600772$	$\begin{array}{c} 0.41151269 \\ 0.10398816 \end{array}$	$\begin{array}{c} 0.58223498 \\ 0.05928617 \end{array}$	$\begin{array}{c} 0.55266327 \\ 0.06226814 \end{array}$
Effektive Rumpfpotentiale				
$ \begin{aligned} \zeta_{\alpha} & [\text{a.u.}] \\ F_{\alpha\alpha} & [\text{eV}] \\ \beta_{\alpha} & [\text{eV bohr}^{-1/2}] \\ \alpha_{\alpha} & [\text{a.u.}] \end{aligned} $		5.70000000 - 283.81699000 - 22.48815939 0.15323932	$\begin{array}{c} 6.73673665\ -380.94261410\ -22.78185605\ 0.15915338 \end{array}$	$7.74239776 \\ -512.51900000 \\ -26.13251784 \\ 0.18281098$

Tabelle 6.1: Parameter für OM3
Kapitel 7

Ergebnisse

Die mit den endgültigen Parametern (Tabelle 6.1) erzielten Resultate für verschiedene Moleküleigenschaften werden in diesem Kapitel nicht nur mit den experimentellen Referenzdaten, sondern auch mit OM1 und OM2 verglichen. Dieser Vergleich soll eine Beurteilung ermöglichen, welche Methode für welche Eigenschaften am besten geeignet ist.

Die Tabellen, in denen die Einzelergebnisse dargestellt sind, sind wie folgt aufgebaut. In der(n) ersten Spalte(n) stehen die Molekülnamen und evtl. Bezeichnungen (meist entsprechend den Inputfiles für die Validierungssätze in Englisch). Dann folgt der Referenzwert (experimentell bestimmt oder, nur falls experimentell nicht vorhanden, mit sehr genauen ab initio Verfahren berechnet). Die nächsten Spalten dokumentieren die mit OM1, OM2 und OM3 erhaltenen Resultate. Nur für OM3 wird die Abweichung Δ zum Referenzwert angegeben und anschließend - falls bekannt - auch die experimentelle Unsicherheit δ_{exp} . Die letzte Spalte (Ref.) verweist auf die Quellen, denen die Referenzdaten entnommen wurden.

In den Tabellen, welche die statistischen Auswertungen enthalten, werden der mittlere Fehler (\overline{x}), der mittlere absolute Fehler (MAF) und die Standardabweichung (σ) angegeben. Für OM1 und OM2 erscheinen in den Tabellen jeweils nur die ersten beiden Größen. Dabei dient \overline{x} zum Erkennen von systematischen Fehlern. In der zweiten Spalte aufgeführt ist jeweils die Anzahl N der Vergleiche.

Die Fehler werden nicht nur bezogen auf die Gesamtheit der Moleküle, sondern auch für ausgewählte Molekülklassen angegeben. Dadurch ist es möglich, die Leistung der einzelnen Methoden besser einzuschätzen.

Diese einzelnen Klassen werden in der Statistik nur aufgeführt, wenn sie mindestens drei Elemente enthalten. Dies führt dazu, dass sich die Zahl der Verbindungen in allen Unterklassen und ihre Gesamtzahl unterscheiden können.

7.1 Neutrale geschlossenschalige Moleküle

Die mittleren absoluten Fehler einiger Eigenschaften des CHNO Satzes sind in Tabelle 7.1 angegeben. Sie liegen bei OM3 generell in derselben Größenordnung wie bei OM1 und OM2. Im statistischen Mittel beschreibt OM3 Bindungslängen und Ionisierungspotentiale etwas schlechter, dagegen werden die Schwingungsfrequenzen besser wiedergegeben.

	N	OM1	OM2	OM3
Standardbildungsenthalpien [kcal/mol]	140	3.46	3.10	3.05
Bindungslängen [Å]	242	0.012	0.016	0.019
Bindungswinkel [°]	101	1.82	2.24	1.85
Ionisierungspotentiale [eV]	52	0.32	0.26	0.44
Höhere Ionisierungspotentiale [eV]	39	0.76	0.73	1.02
Dipolmomente [D]	63	0.23	0.25	0.26
Relative Energien [kcal/mol]	15	5.33	1.50	2.75
Barrieren [kcal/mol]	61	2.32	1.60	1.59
Wellenzahlen [cm ⁻¹]	112	188.6	151.0	120.2

Tabelle 7.1: Mittlere absolute Fehler des Standardsatzes

7.1.1 Standardbildungsenthalpien

Der kleinste Fehler bei der Berechnung der Standardbildungsenthalpien tritt ebenso wie bei OM1 und OM2 bei den Kohlenwasserstoffen auf (vgl. Tabelle 7.2). Innerhalb der Kohlenwasserstoffe liegt die größte Abweichung bei Bicyclobutan vor, das 8.0 kcal/mol zu instabil berechnet wird. Allgemein sind die Abweichungen bei den bicyclischen Systemen verhältnismäßig groß. Im Vergleich zu OM1 und OM2 jedoch konnten diese Fehler ebenso diejenigen bei den viergliedrigen Ringsystemen reduziert werden.

Während OM1 und OM2 Cyanide wesentlich besser beschreiben als Amine, ist bei OM3 das Gegenteil der Fall. Besonders das Methylisocyanid zeigt eine sehr große Abweichung (-12.4 kcal/mol). Cyanide werden tendenziell zu stabil und Amine zu instabil berechnet.

Für den großen mittleren absoluten Fehler der CHO Verbindungen sind hauptsächlich die Carbonyle verantwortlich, deren Standardbildungsenthalpien überwiegend unterschätzt werden.

Säuren, Ester und Anhydride weisen hingegen tendenziell zu hohe Enthalpien auf. Ihr mittlerer absoluter Fehler ist weniger als halb so groß wie der Wert der Carbonylverbindungen, beträgt jedoch fast das Doppelte des Fehlers der Alkohole, Ether und Wasser. Die Fehler dieser drei Molekülklassen sind nur bei OM1 nahezu ausgewogen.

Die größte Abweichung bezogen auf alle Moleküle des Standardsatzes findet sich beim Pyridazin, für das sich eine um 15.4 kcal/mol zu niedrige Enthalpie ergibt.

	Ν	OM1	OM1	OM2	OM2	OM3	OM3	OM3
		\overline{x}	MAF	\overline{x}	MAF	\overline{x}	MAF	σ
All molecules	140	-0.06	3.46	0.11	3.10	-0.65	3.05	4.40
CH compounds	57	-0.11	2.49	0.12	1.72	-0.19	1.63	2.31
CHN compounds	32	-0.16	4.27	0.03	3.92	-1.65	3.80	5.12
CHO compounds	39	-0.34	3.41	-0.30	4.53	-0.97	4.20	5.57
CHNO compounds	4	1.96	6.18	1.54	1.96	-0.00	3.24	3.93
HNO compounds	8	1.16	5.94	1.69	3.28	1.24	4.53	7.08
Aromatic Rings	5	0.66	1.70	-1.49	1.49	-1.11	1.25	1.71
Triple bonds	5	-0.07	1.23	-0.30	0.54	-0.59	0.68	1.05
Three-membered rings	6	-2.25	3.61	0.25	2.40	-1.21	2.05	2.59
Four-membered rings	5	-1.49	4.33	-1.20	3.38	-1.04	2.83	3.34
Bicyclic Systems	8	0.64	3.38	0.93	3.13	0.18	2.85	4.25
Amines	10	3.94	4.00	3.17	3.78	2.00	2.26	3.18
Cyanides	9	-1.31	3.18	0.62	2.83	-3.22	3.73	4.50
With NN bonds	10	-3.11	4.59	-2.34	5.89	-1.51	4.12	6.29
Alcohols, Ethers, Water	12	0.30	2.69	-0.08	1.47	0.53	1.92	2.47
Carbonyl compounds	12	-3.66	4.47	-4.91	5.96	-7.14	7.21	8.66
Acids, Esters, Anhydrides	11	2.63	2.85	3.07	3.71	2.56	3.48	4.44
With OO bonds	7	2.35	5.70	-1.42	3.23	1.77	3.77	6.44
With NO bonds	3	-5.53	8.11	-1.26	1.26	-4.66	4.66	6.76

Tabelle 7.2: Fehler in den Standardbildungsenthalpien [kcal/mol]

Tabelle 7.3: Standardbildungsenthalpien [kcal/mol]

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
Hydrogen	0.0	2.6	-3.4	0.0	0.0	0.0	а
Methane	-17.9	-13.8	-19.2	-18.0	-0.1	0.1	b
Ethane	-20.0	-20.3	-21.2	-20.8	-0.8	0.1	b
Ethylene	12.5	11.9	12.9	13.9	1.4	0.1	b
Acetylene	54.5	53.6	54.2	54.7	0.2	0.2	b
Propane	-25.0	-25.2	-25.5	-25.4	-0.4	0.1	b
Propene ecl	4.8	4.4	4.7	5.0	0.2	0.2	b

	Exp.	OM1	OM2	OM3	Δ	Sern	Ref.
Propyne	44.2	45.0	44.5	44.1	-0.1	$\frac{0.2}{0.2}$	b
Allene	45.5	45.4	45.9	45.5	0.0	0.3	b
<i>n</i> -Butane	-30.0	-30.4	-30.1	-30.3	-0.3	0.2	b
Isobutane	-32.1	-28.3	-31.8	-31.3	0.8	0.2	b
But-1-ene	02.1	20.0	01.0	01.0	0.0	0.2	U
H-ecl	0.0	-0.7	0.1	0.3	0.3	0.2	b
trans-2-Butene	-2.7	-3.1	-3.8	-4.0	-1.3	0.2	b
<i>cis</i> -2-Butene	-17	-11	-19	-2.2	-0.5	0.2	b
Isobutene	-4.0	-0.4	-4.3	-3.9	0.1	0.2	b
1.2-Butadiene	38.8	38.4	38.1	37.6	-1.2	0.1	b
1.3-trans-							
Butadiene	26.3	28.2	29.4	30.3	4.0	0.3	b
1-Butyne	39.5	39.9	39.5	39.2	-0.3	0.2	b
2-Butyne	34.8	36.5	35.1	33.8	-1.0	0.3	b
Vinvlace-						0.0	-
tylene	73.0	70.6	71.2	71.2	-1.8		с
Butatriene	83.0	81.6	81.9	80.7	-2.3		с
<i>n</i> -Pentane	-35.1	-35.5	-34.7	-35.2	-0.1	0.2	b
Neopentane	-40.2	-29.3	-39.6	-37.6	2.6	0.2	b
<i>n</i> -Hexane	-39.9	-40.7	-39.2	-40.0	-0.1	0.2	b
trans-1.3-Pen-							_
tadiene	18.2	20.2	20.5	20.9	2.7	0.2	b
cis-1.3-Pen-							
tadiene	19.5	22.2	22.4	22.8	3.3	0.3	b
1.4-Pentadiene	25.2	24.4	26.9	26.8	1.6	0.3	b
Cyclopropane	12.7	7.2	9.9	10.1	-2.6	0.1	b
<i>cis</i> -Dimethyl-					-	-	
cyclopropane	1.3	-0.1	0.6	0.1	-1.2		d
Cyclopropene	66.2	62.8	67.4	65.5	-0.7	0.6	b
1-Methylcyclo-	F 0.0	X 0.0	F O 0				
propene	58.2	56.6	59.6	57.1	-1.1	0.3	b
1,2-Dimethyl-	10.1		F1 0	10.0	۵ F		
cyclopropene	46.4	50.5	51.8	48.9	2.5		d
Methylene-	47 0	40.0	45.0	40 7	4.0	0.4	1
cyclopropane	47.9	42.2	45.0	43.7	-4.2	0.4	b
Cyclobutane	6.8	-1.9	3.0	2.9	-3.9	0.1	b
Cyclobutene	0	00.0	41.0	10.0	0.0	0.4	
plan	37.5	39.0	41.3	40.8	3.3	0.4	b
1,2-Dimethyl-	10.0	05.4	01.4	00.0			
cyclobutene	19.8	25.4	21.4	20.9	1.1		d
Methylene-	00.0	04.0	05.4	0F C	9.4	0.0	1
cyclobutane	29.0	24.2	25.4	25.0	-3.4	0.2	b
Cyclopentane	10.9	04.0	10 7	00.0	0.5	0.0	1
envelope	-18.3	-24.8	-19.7	-20.8	-2.5	0.2	b
Cyclopentene	8.1	3.5	6.8	5.7	-2.4	0.3	b
Cyclopenta-	90.1	00.0	00.0	20.0	0 5	0.4	1
diene	32.1	33.3	33.3	32.0	0.5	0.4	D

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
Cyclohexane	_20.5	_31.2	_27 1	_28.5	1.0	0.2	h
chair	-25.0	-31.2	-21.1	-20.0	1.0	0.2	U
Cyclohexene	-1.2	-3.7	0.4	_11	0.1	0.2	h
half-chair	1.2	0.1	0.1	1.1	0.1	0.2	U
1,3-Cyclo-	$25 \ 4$	22.3	25.9	24.8	-0.6	0.2	b
hexadiene	20.1	22.0	20.0	- 1.0	0.0	0.2	Ū
Benzene	19.7	17.1	18.8	18.5	-1.2	0.2	b
Toluene ecl	12.0	12.2	9.5	9.6	-2.4	0.1	b
Ethylbenzene	7.1	7.1	4.8	5.0	-2.1	0.3	b
stag	05 0	90.0	04 7	05 0	0.0	0.4	1
Styrene	35.3	30.0	34.7	35.0	0.3	0.4	b
Cyclohepta-	43.2	44.0	46.7	46.1	2.9	0.5	b
Diavalobutano	51.0	50.0	62.0	50.0	0	0.9	h
Spirogyclo	51.9	59.0	02.0	59.9	8.0	0.2	D
pentane	44.3	38.4	42.8	41.0	-3.3	0.2	b
trans_Bi_							
cyclopropyl	30.9	26.9	30.7	30.2	-0.7	0.9	b
Bievelo[2 1 0]-							
pentane	37.8	37.3	40.1	39.0	1.2		с
Norbornane	-13.1	-10.8	-12.5	-12.4	0.7	1.1	b
Norborna-	 						
diene	58.8	59.5	51.8	52.0	-6.8	0.7	b
Bicyclo[2.2.2]-	0.9 7	04.9	00.0	0.9.4	0.9	0.9	1
octane	-23.7	-24.3	-22.2	-23.4	0.3	0.3	b
Naphthalene	35.9	40.3	34.8	35.7	-0.2	0.4	b
Adamantane	-32.2	-26.2	-30.4	-30.2	2.0	0.5	b
Cubane	148.7	147.6	144.6	146.3	-2.4	0.9	b
Nitrogen	0.0	-4.4	2.8	2.6	2.6	0.0	а
Ammonia	-11.0	-3.8	-5.9	-11.2	-0.2	0.1	b
Methylamine	-5.5	-4.7	-4.1	-5.8	-0.3	0.1	b
Dimethyl-	-44	-47	-5.1	-2.2	2.2	0.2	h
amine	1.1	1.1	0.1	2.2	2.2	0.2	U
Trimethyl-	-5.7	-3.5	-8.0	-0.1	5.6	0.2	b
amine							
Ethylamine	-11.3	-9.3	-8.9	-12.1	-0.8	0.2	b
<i>n</i> -Propylamine	-10.8	-14.0	-13.5	-10.9	-0.1	0.1	b
Isopropyi-	-20.0	-14.2	-14.5	-17.4	2.6	0.1	b
amine							
ieri-Dulyi-	-28.9	-14.7	-22.3	-24.6	4.3	0.2	b
Aziridine	20.9	20 G	26.2	25 4	5 9	0.2	h
Pyrrole	25 Q	30.0 37.2	30.5	32.4	6.1	0.2	b
Pyridine	20.9 33.6	37.2	30.7	52.0 20.4	_12	0.1	b
Pyridazine	66 5	53.0 58.2	48 A	51.4	-15 4	0.2 0.2	h
Pyrimidine	46.8	47.3	44.5	41 9	_4 Q	0.2 0.3	h
Pyrazine	46.0	51 7	44.0	42.0	_4 Q	0.3	h
A	10.0	05.0	11.0	<u>1</u> .0	1.5	0.0	h

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
Hydrogen	32.3	24.5	26.1	25.3	-7.0	2.0	e
cyanide	02.0	21.0	20.1	20.0	1.0	2.0	U
Acetonitrile	18.0	16.5	17.5	15.3	-2.7	0.2	С
Methyliso-	39.1	27.8	38.3	26.7	-12.4	1.7	b
cyanide							
Propio-	12.3	10.8	12.3	10.2	-2.1	0.1	b
nitrile	43.2	43.3	45.6	43.7	0.5	0.4	b
Fumaro-							
nitrile	81.0	76.4	79.7	75.2	-5.8		b
Maleonitrile	81.3	78.0	81.2	76.2	-5.1	0.5	b
Dicyanoace-	100 5	104.0	100.0	100.0	1.0	0.0	1
tylene	126.5	134.8	138.0	128.3	1.8	0.3	b
Cyanogen	73.3	72.3	74.8	68.2	-5.1	0.2	b
Benzo-	51.6	51 1	40.7	48.0	26	05	h
nitrile	51.0	91.1	49.1	40.0	-3.0	0.5	U
Hydrazine	22.8	16.1	18.5	16.5	-6.3	0.2	e
Methyl-	22.6	15.8	18.2	20.1	-2.5	0.1	b
hydrazine		1010	1012		2.0	0.12	0
1,1-Dime-	20.1	17.5	14.8	21.4	1.3	0.8	b
thylhydrazine							
1,2-Dimetnyi-	22.0	16.2	17.1	22.8	0.8	1.0	b
trans Azodi							
isopropane	8.6	4.7	4.5	5.8	-2.8	0.2	b
Hydrogen							
azide	70.3	71.2	72.6	69.2	-1.1		С
Oxygen			2.0	2.4	2.4		
Triplet	0.0	-7.1	2.0	-2.6	-2.6	0.0	а
Ozone	34.1	48.4	37.9	48.7	14.6	0.5	f
Water	-57.8	-56.7	-56.5	-58.5	-0.7	0.0	b
Methanol	-48.2	-51.0	-49.3	-49.8	-1.6	0.1	b
Ethanol	-56.2	-59.5	-56.9	-57.2	-1.0	0.1	b
Propanol	-61.0	-64.9	-61.9	-62.2	-1.2	0.1	b
Isopropanol	-65.2	-63.8	-66.7	-67.2	-2.0	0.1	b
<i>tert</i> -Butanol	-74.7	-68.2	-76.8	-75.9	-1.2	0.2	b
Dimethylether	-44.0	-43.8	-45.6	-42.8	1.2	0.2	b
Diethylether	-60.3	-61.4	-61.1	-58.4	1.9	0.2	b
Oxirane	-12.0	-15.7	-13.3	-8.8	3.8	0.1	D 1-
Furan	-8.3 -22.0	-1.8 92.1	-2.9	-2.1	0.0 0.6	0.2	D h
Anisole plan	-23.0	-23.1 14.0	-21.7	-23.0	-0.0	0.2	b b
Hydrogen	-10.2	-14.0	-10.0	-14.1	2.1	0.2	U
peroxide	-32.5	-36.4	-35.3	-36.9	-4.4		e
Dimethyl-						o -	
peroxide	-30.0	-27.5	-33.6	-29.0	1.0	0.3	b

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
Diethylper-	-46.1	-46.8	-52.6	-46.0	0.1	0.6	h
oxide C2	10.1	10.0	02.0	10.0	0.1	0.0	U
Diethylper-	-46 1	-457	-495	-44.6	15	0.6	b
oxide C2h	10.1	10.1	10.0	11.0	1.0	0.0	U
Carbon	-26.4	-30.5	-20.3	-21.5	4.9	0.0	b
monoxide		00.0	2010		1.0	0.0	0
Carbon	-94.1	-90.1	-80.5	-87.7	6.4	0.0	b
dioxide	0	00.1	00.0	0	0.1	0.0	
Carbon	-22.0	-15.4	-3.2	-16.9	5.1	0.5	с
suboxide	96.0	04.0	00.0	01.0	FO	0.1	1
Formaldehyde	-20.0	-34.3	-30.3	-31.9	-5.9	0.1	b
Acetaldehyde	-39.7	-45.2	-44.2	-46.5	-6.8	0.1	b
Iree Description of the							
Propionalde-	-44.4	-50.5	-48.2	-50.5	-6.1	0.2	b
A satana							
aclinsed	-51.9	-52.4	-57.4	-59.3	-7.4	0.2	b
Ketene	_11 /	_0.0	_5 1	_11.0	0.4	0.4	h
Acrolein free	-18.0	-20.1	-18.1	-19.1	_11	0.1	c
Glyoxal free	-50.7	-64.0	-59.1	-62.6	_11.0	0.2	b
Biacetyl C2	-78.2	-82.6	-89.2	-91.6	-13.4	0.3	b
Biacetyl C2h	-78.2	-81.6	-88.8	-90.7	-12.5	0.3	b
Acetylacetone	-91.0	-91.0	-99.2	-101.8	-10.8	0.4	b
p-Ouinone	-29.4	-26.1	-32.5	-32.9	-3.5	0.8	b
Benzaldehyde	-8.8	-14.0	-14.5	-15.6	-6.8	0.7	b
Formic acid (Z)	-90.5	-91.7	-86.9	-88.2	2.3	0.1	b
Acetic acid	100.4	101.0	100.0	100 -	0 -	0.4	1
stag (Z)	-103.4	-101.3	-100.9	-102.7	0.7	0.4	b
Propionic acid	100.4	1070	100.0	107 5	0.0	0.1	1
C-eclipsed	-108.4	-107.0	-100.3	-107.5	0.9	0.1	b
Oxalic acid	172.0	160 F	165 0	166 /	66	1.0	h
4-ring	-173.0	-109.0	-105.0	-100.4	0.0	1.4	D
Benzoic acid	-70.3	-69.0	-71.1	-71.0	-0.7	0.5	b
Methyl formiate	85.0	83 5	<u>81</u> /	70.4	5.6	0.2	h
(Z)	-00.0	-00.0	-01.4	-19.4	5.0	0.2	U
Methyl acetate	_08.5	_03 1	_05.6	_03.8	4.6	0.4	h
eclipsed (Z)	- 90.0	-90.1	- 90.0	- 33.0	4.0	0.4	U
Acetic anhy-	-136.8	-1367	-139 5	-138.8	-2.0	0.4	h
dride eclipsed	100.0	100.1	100.0	100.0	2.0	0.1	U
Maleic	-95.2	-85.6	-871	-87.2	8.0	12	h
anhydride	50.2	00.0	01.1	01.2	0.0	1.2	U
Formamide	-44.0	-41.2	-39.8	-46.3	-2.3		с
Dimethylform-	-45.8	-43.2	-43.5	-41.4	4.4	0.5	b
amide						0.1	-
Nitrous oxide	19.6	19.7	21.2	20.7	1.1	0.1	e
Dinitrote-	2.2	8.6	13.2	9.5	7.3		b
troxide free							

	Evn	OM1	OM2	OM3	Δ	S	Ref
	Exp.	OWIT	ONIZ	ONIS	Δ	v_{exp}	Kel.
Nitrous acid	-18.3	-30.3	-197	-26.8	-8.5	0.3	e
trans	10.0	00.0	10.1	20.0	0.0	0.0	C
Nitric acid	-32.1	-28.2	-33.6	-33.4	-1.3	0.1	e
Methylnitrite	-15.9	-24.4	-16.8	-20.0	-4.1	0.2	b
Nitromethane	-17.8	-6.9	-17.3	-15.7	2.1	0.1	b
a [113]; b [1	14]; c	[115]; d	[116];	e [117]	; f [89]	

In der Literatur ist vor einiger Zeit ein Validierungssatz für "große" Moleküle vorgeschlagen worden [2], der hier ebenfalls zur Auswertung herangezogen wird (Tabelle 7.4). Die Fehler von OM2 und OM3 bei der Berechnung der Standardbildungsenthalpien dieser Systeme liegen in der gleichen Größenordnung (Tabelle 7.4). Die größte Abweichung tritt mit allen drei Verfahren bei 1,2-Benzanthracen-9,10-dion auf. Während OM1 die Enthalpie um +44.4 kcal/mol überschätzt, sind es für OM3 noch +21.6 kcal/mol und für OM2 +18.1 kcal/mol.

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
Tetrahydro-2H- pyran	-53.4	-54.6	-53.1	-51.7	1.7	0.2	а
Maleic anhydride	-95.2	-85.6	-87.1	-87.2	8.0	1.2	а
Cyclo- hexanone	-54.0	-59.5	-59.9	-62.1	-8.1	0.5	а
Benzo- quinone	-29.4	-26.1	-32.5	-32.9	-3.5	0.8	а
Hydro- quinone	-63.4	-62.2	-60.6	-64.6	-1.2	0.5	а
2-Methoxy- tetrahydro-	-95.5	-95.2	-97.2	-90.3	5.2	0.4	а
pyran Naphthalene	35.9	40.3	34.8	35.7	-0.2	0.4	а
2-Aminoben- zoic acid	-70.7	-61.6	-68.6	-70.8	-0.1	0.3	а
1-Naphthol 2-Naphthol	-7.1 -7.2	$1.1 \\ -0.2$	$-5.1 \\ -5.9$	$-5.5 \\ -6.6$	1.6	0.2	a a
1,4-Naphtho- quinone	-26.5	-20.0	-32.7	-31.8	-5.3	1.0	a
Isophtha- lic acid	-166.4	-154.5	-159.5	-159.4	7.0	0.5	а
Terephtha- lic acid	-171.6	-154.2	-159.5	-159.2	12.4	0.6	а
1-Naphthoic acid	-53.3	-44.2	-55.2	-52.8	0.5	0.2	а

Tabelle 7.4: Standardbildungsenthalpien [kcal/mol] für ausgewählte größere Moleküle [2]

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.	
2-Naphthoic acid	-55.6	-46.1	-55.1	-53.9	1.7	0.4	а	
Anthracene	55.2	68.0	55.5	57.5	2.3	0.5	а	
Phenan- threne	49.6	60.0	46.8	49.1	-0.5	0.4	b	
9,10-Anthra- quinone	-22.8	-13.6	-32.7	-30.4	-7.6	1.6	а	
Phenanthra- quinone	-33.3	-5.1	-23.6	-21.3	12.0	1.1	а	
1,2-Benzanthra- cene-9,10- dione	-35.6	8.8	-17.5	-14.0	21.6	1.3	a	

a [114]; b [115]

7.1.2 Relative Energien

Es werden Validierungssätze für relative Energien und Barrieren verwendet, die im Rahmen der Entwicklung von OM2 zusammengestellt worden sind [4]. Die relativen Energien von Konstitutionsisomeren werden mit OM2 sowohl qualitativ als auch quantitativ besser reproduziert als mit OM3. Verglichen mit OM1 hingegen sind die mit OM3 erzeugten Werte deutlich besser (vgl. Tabelle 7.5).

OM3 vertauscht die Lage der Hexanisomere, und anstelle von Nitromethan wird Methylnitrit als stabileres Isomer berechnet.

Gut werden die relativen Energien der Alkohole beschrieben.

	Exp.	OM1	OM2	OM3	Δ	Ref.
<i>n</i> -Butane	0.0	0.0	0.0	0.0		
Isobutane	-2.1	2.0	-1.7	-1.0	1.1	а
But-1-ene H-ecl	0.0	0.0	0.0	0.0		
cis-2-Butene	-1.7	-0.5	-2.0	-2.5	-0.8	а
trans-2-Butene	-2.7	-2.5	-3.9	-4.3	-1.6	а
Isobutene	-4.0	0.3	-4.4	-4.2	-0.2	а
1-Butyne	0.0	0.0	0.0	0.0		
2-Butyne	-4.7	-3.3	-4.4	-5.4	-0.7	а
-						
<i>n</i> -Pentane	0.0	0.0	0.0	0.0		
2-Methylbutane	-1.6	2.9	-1.2	-0.3	1.3	e
Neopentane	-5.1	6.2	-4.9	-2.5	2.6	а
±.						

Tabelle 7.5: Relative Energien [kcal/mol]

	Exp.	OM1	OM2	OM3	Δ	Ref.
trans-1,3-Pentadiene	0.0	0.0	0.0	0.0		
cis-1,3-Pentadiene	1.3	2.0	1.9	1.9	0.6	а
<i>n</i> -Hexane	0.0	0.0	0.0	0.0		
3-Methylpentane	-1.2	4.0	-0.6	0.5	1.7	а
2-Methylpentane	-1.8	3.0	-1.2	-0.3	1.5	а
2,3-Dimethylbutane	-2.7	6.6	-1.9	0.2	2.9	а
2,2-Dimethylbutane	-4.5	8.1	-3.5	-0.7	3.8	а
Dimethylamine	0.0	0.0	0.0	0.0		
Ethylamine	-6.9	-4.6	-3.7	-9.8	-2.9	а
<i>n</i> -Propylamine	0.0	0.0	0.0	0.0		
Isopropylamine	-3.2	0.4	-1.0	-0.6	2.6	а
A ('('1	0.0	0.0	0.0	0.0		
Acetonitrile	0.0	0.0	0.0	0.0		
Methylisocyanide	21.1	11.3	20.8	11.4	-9.7	а
Dimethylether	0.0	0.0	0.0	0.0		
Ethanol	12.0	15.8	11.2	14.5	9 3	0
Lunanoi	-12.2	-10.0	-11.0	-14.0	-2.0	a
Propanol	0.0	0.0	0.0	0.0		
Isopropanol	-4.2	1.1	-4.7	-5.0	-0.8	а
1 1						
<i>n</i> -Butanol	0.0	0.0	0.0	0.0		
Isobutanol	-2.1	2.3	-1.1	-0.5	1.6	а
2-Butanol	-4.3	1.0	-4.8	-4.2	0.1	а
tert-Butanol	-9.0	1.9	-10.4	-8.3	0.7	а
Acetylacetone	0.0	0.0	0.0	0.0		
Acetylacetone Enol	-4.0	5.9	5.2	4.6	8.6	с
Acetylacetone Enol (TS)	6.9	11.6	5.8	4.6	-2.3	d
Methylnitrite	0.0	0.0	0.0	0.0	0.0	
Nitromethane	-1.9	17.5	-0.6	4.3	6.2	а

a [114]; b [117]; c [118]; d [119]; e [120]

Die relativen Energien der Konformere und die Barrieren für Konformationsänderungen werden mit OM3 besser als mit OM2 beschrieben (Tabelle 7.6). Besonders gut werden die Barrieren von Cyclohexan und seinen Derivaten reproduziert (vgl. Tabelle 7.7).

Bei den Inversionsbarrieren der Amine spiegeln sich die zu wenig pyramidalen Geometrien der höher substituierten Amine wider. Während sich für die Inversionsbarrieren von Ammoniak und Methylamin geringe Abweichungen ergeben, werden die Barrieren für Di- und Trimethylamin stark unterschätzt.

	Ν	OM1	OM1	OM2	OM2	OM3	OM3	OM3
		\overline{x}	MAF	\overline{x}	MAF	\overline{x}	MAF	σ
All molecules	61	-1.39	2.31	-0.91	1.61	-1.18	1.58	2.36
CH compounds	20	-1.92	2.37	-1.25	1.69	-1.54	2.01	3.00
CHN compounds	11	0.47	3.00	0.07	1.76	-1.10	1.38	2.31
CHO compounds	25	-1.30	1.61	-0.97	1.50	-0.98	1.45	2.03

Tabelle 7.6: Statistik der Barrieren [kcal/mol]

OM2 und OM3 können nicht alle Konformere des Dihydroxymethans lokalisieren. Das g^+g^- Konformer läuft in beiden Fällen während der Optimierung zum g^+g^+ Konformeren. Beide Verfahren erkennen das ga Konformer korrekt als Minimum sowie das aa Konformer als Übergangszustand, während OM1 das g^+g^- Konformer als Übergangszustand und das aa Konformer als Minimum lokalisiert.

		Exp.	OM1	OM2	OM3	Δ	Ref.
Rotationsbarrieren un	n Einfachbindunge	en					
Ethane	stag (D_{3d})	0.0	0.0	0.0	0.0		
	$ecl(D_{3h})$	2.9	1.8	2.8	2.4	-0.5	а
Propane	tr/tr	0.0	0.0	0.0	0.0		
	tr/cis	3.7	1.9	2.7	2.3	-1.4	k
	cis/cis	8.8	4.2	5.6	4.9	-3.9	k
Propene	$ecl(C_s)$	0.0	0.0	0.0	0.0		
	stag (C_s)	2.0	0.2	0.8	0.7	-1.3	b
<i>n</i> -Butane	trans	0.0	0.0	0.0	0.0		
	gauche	0.8	0.9	0.8	0.9	0.1	v
	anticlinal	3.4	0.9	0.8	0.9	-2.5	v
	cis	6.0	4.2	5.1	5.0	-1.0	с
But-1-ene	H-ecl (C_1)	0.0	0.0	0.0	0.0		
	C-ecl (C.)	0.4	1.1	1.4	1.2	0.8	с
Methylamine	(C.)	0.0	0.0	0.0	0.0		
	$ecl(C_1)(TS)$	2.0	1.6	2.2	2.3	0.3	i
Methanol	stag	0.0	0.0	0.0	0.0	0.0	-
	ecl	11	13	1.8	1.6	0.5	i
Acetaldehvde	ecl	0.0	0.0	0.0	0.0	0.0	1
Tieetuldeliyde	stag	11	0.0	0.0	0.0	-0.8	C
Propionaldehyde	ecl	0.0	0.0	0.2	0.0	0.0	e
Topionaldenyde	stag	1.5	0.0	0.0	0.0	<u> </u>	C
Dimethylether	stag tr/tr	1.0	-0.2	-0.8	-0.7	-2.2	C
Dimensienter	u/u tr/ois	0.0	0.0	0.0	1.0	0.0	1-
	IF/CIS	2.1	1.3	<i>4.</i> 0	1.ð	-0.9	K

Tabelle7.7: RelativeEnergienvonKonformerenundBarrie-ren [kcal/mol]

		Exp.	OM1	OM2	OM3	Δ	Ref.
	cis/cis	7.0	2.6	3.2	3.0	-4.0	k
Carbocyclen							
				0.0	0.0		
Cyclobutane	planar	1.4	0.0	0.0	0.0	-1.4	a
Metnylene-	planar	0.4	0.0	0.0	0.0	-0.4	d
Cyclopentane	envelope	0.0	0.0	0.0	0.0		
Cyclopentune	planar	4.8	0.0	2.6	1.9	-2.9	с
Cyclopentene	planar	0.7	0.0	0.0	0.0	-0.7	e
Cyclohexane	chair	0.0	0.0	0.0	0.0		
	twist	4.8	3.7	5.2	5.0	0.2	с
	boat	5.5	4.2	6.1	5.7	0.2	с
Cyclohexene	half-chair	0.0	0.0	0.0	0.0		
	planar	13.4	7.1	11.9	9.8	-3.6	f
Cyclohexa-	nlanar	39	0.4	2.0	1 3	_1 0	σ
diene	planai	0.2	0.4	2.0	1.0	1.5	5
Methylcyc-	ea	0.0	0.0	0.0	0.0		
lohexane	•4	1.7	1.0	1.0	1.0	0.1	
44 D41	ax	1.7	1.6	1.8	1.8	0.1	С
<i>tert</i> -Butyl-	eq	0.0	0.0	0.0	0.0		
cyclonexalle	av	48	5.6	5.6	5.1	03	C
1 4-trans-Dime-	ал	 0	0.0	0.0	0.1	0.0	C
thylcyclohexane	ee	0.0	0.0	0.0	0.0		
5.5	aa	3.6	3.3	3.5	3.7	0.1	
Aminocyclo-		0.0	0.0	0.0	0.0		
hexane	eq	0.0	0.0	0.0	0.0		
	ax	1.2	-0.3	1.8	2.0	0.8	Х
N-Methylpi-	еа	0.0	0.0	0.0	0.0		
peridine	0 9	0.0	0.0	0.0	0.0		
	ax	3.1	3.0	1.3	0.5	-2.6	Х
4-Methylpi-	eq	0.0	0.0	0.0	0.0		
peridine	av	1 0	1.6	17	10	0.0	C
	ал	1.9	1.0	1.1	1.9	0.0	<u> </u>
Koniugierte Systeme							
1,3-Butadiene	trans	0.0	0.0	0.0	0.0		
	gauche	2.9	0.6	0.9	0.8	-2.1	b
	s–cis	3.8	0.7	1.1	1.0	-2.9	b
	ort	6.0	0.6	0.9	0.8	-5.2	b
Toluene	stag	0.1	0.0	0.0	0.0	-0.1	с
Styrene	plan	0.0	0.4	0.2	0.1	0.1	b
-	ort	3.1	0.3	0.8	0.7	-2.3	b
Acrolein	s-trans	0.0	0.0	0.0	0.0		
	s-cis	1.7	-0.7	0.0	-0.2	-1.9	b
	ort (TS rot)	4.7	1.4	2.6	2.0	-2.7	m

		Exp.	OM1	OM2	OM3	Δ	Ref.
Glyoxal	trans	0.0	1.0	0.0	0.8	0.8	k
	cis	4.8	1.6	3.8	2.9	-2.0	n
	ort (TS)	5.9	-1.0	0.0	-0.8	-6.7	n
Benzaldehyde	ort	4.6	2.3	3.6	3.3	-1.4	b
Benzoic acid	planar	0.0	0.0	0.0	0.0		k
	ort	5.0^{1}	2.7	4.0	3.5	-1.5	q
Phenol	planar	0.0	0.0	0.0	0.0		k
	ort	3.5	1.9	1.4	2.0	-1.5	b
Anisole	planar	0.0	0.0	0.0	0.0		k
	ort	3.0	0.5	0.1	0.5	-2.5	1
Stereoelektronische Eff	ekte in Säuren, E	stern und	d Amider	n			
Formic acid	(E)	39	41	61	62	2.3	0
i onnie uela	ort (TS)	$12 \ 4^1$	94	10.5	0. 11 3	_11	v
Acetic acid	stag (E)	$5 9^1$	62	5.6	5.8	-0.1) D
neede dela	stag ort (TS)	12.6^{1}	10.8	10.1	10.9	-1.7	P V
Methyl formiate	(Z)	1 2	0.8	0.0	0.1	-11	9
interny i formitate	(E)	4.8	2.9	4.0	4 1	-0.6	0
Methyl acetate	ecl	8.5	<u></u> 6	5.1	5.9	-2.6	0
Formamide	trans	0.0	0.0	0.0	0.0	2.0	r
Tormannae	ort 1	$16 0^{1}$	8.3	13.7	14.9	-11	S
	ort 2	18.7^{1}	10.2	16.7	17.8	-0.9	t
Gauche- und anomerer	Effekt						
Hydrazine	trans	2.5^{1}	-0.9	8.0	1.8	-0.7	j
-	cis	8.3^{1}	5.9	10.8	8.7	0.4	j
Hydrogen peroxide	trans	1.1	2.1	2.5	1.1	0.0	i
	cis	7.0	9.4	8.5	10.5	3.5	i
Dihydroxymethane	g+g	3.5^{1}	4.2	2.7	3.5	0.0	W
	ga	4.3^{1}	1.8	0.0	0.0	-4.3	W
	aa	9.1^{1}	6.4	8.8	10.0	0.9	W
Diethylperoxide		0.0	1.1	3.2	1.4	1.4	i
2-Methoxytetra-		0.9	19	3.0	3.6	27	v
hydropyran		0.7	1.4	5.0	0.0	2.1	Λ
NO-haltige Verbindung	en						
Dinitro							
tetrovide	planar	0.0	0.5	0.1	0.1	0.1	u
leuoxide	ort	2.9	-0.5	-0.1	-0.1	-3.0	u
Inversionsbarrieren			0.0			3.0	~
Ammonia	planar	5.8	13.0	3.5	6.7	0.9	h
Methylamine	planar	4.8	7.7	3.6	4.2	-0.6	h
Dimethylamine	planar	4.4	4.2	3.5	2.8	-1.6	h

		Exp.	OM1	OM2	OM3	Δ	Ref.
Trimethylamine	planar	6.0	2.2	4.2	2.6	-3.4	h
Aziridine	planar	11.6	15.9	13.4	11.5	-0.1	h
Aniline	planar	1.5	3.5	0.5	0.6	-0.9	b

1 Ab initio data

a Experimental data cited in: [121];

b Experimental conformational barriers cited in: [122, 123];

c Experimental data cited in: [124]; d [125];

e [126] and literature cited therein; f [127]; g [128]; h [129];

i Taken from the experimental data quoted in: [37]; j [130] (CCSD(T)/vqz//CCSD(T)/avtz);

k [114]; 1 [131]; m [132]; n [133]; o [134];

p [135] (MP4SDQ/TZP); q [136] (MP2/6-31++G**//MP2/6-31G*);

r [115]; s [137] (G2); t [138] (HF/6-31G**); u [139];

v Experimental data cited in: [140]; w [141] (MP2-FC/6-31G**);

x Experimental data cited in: [135];

y [134] (MP3/6-311+G**)

7.1.3 Geometrien

Wie schon erwähnt werden Bindungslängen mit OM3 schlechter beschrieben als mit OM1 und OM2. Bis auf wenige Ausnahmen (H–H (H₂) für OM1, C1–C3 (Bicyclobutan) und O–O (O₂) für OM2) ergeben sich für alle Referenzgrößen längere Bindungen als mit OM1 und OM2. Da schon mit OM1 und OM2 viele Bindungen tendenziell zu lang berechnet werden, nehmen die Abweichungen gegenüber den experimentellen Werten folglich zu.

Die Kohlenwasserstoffe werden besser als mit den beiden früheren Methoden beschrieben. Kommt jedoch ein Heteroatom hinzu, steigen die Fehler stark an.

Es treten viele systematische Fehler auf (vgl. Tabelle 7.8). OM3 berechnet für die Moleküle des CHNO Refenzsatzes alle C \equiv C, N–H, C–N, C=N, C \equiv N, N=N, O–H, C=O, C \equiv O und N=O Bindungen zu lang, während die je drei N–N und O–O Bindungen zu kurz sind.

Trends in den Kohlenwasserstoffbindungen werden generell sehr gut reproduziert. Auch bei den Verbindungen mit Heteroatomen werden in der Regel Trends gut wiedergegeben.

Die beiden größten Einzelfehler treten bei der Beschreibung des Methylazids auf. Die N=N Bindungen werden um 0.129 Å und 0.082 Å überschätzt.

Der mittlere absolute Fehler der Bindungswinkel entspricht ungefähr dem Fehler, der sich mit OM1 ergibt (Tabelle 7.9). Ebenso wie für OM1 und OM2 treten die größten Abweichungen bei den HNO Verbindungen auf.

In dieser Gruppe kommen auch die drei größten Einzelfehler vor. Die NOH-Winkel der Salpeter- bzw. Salpetrigen Säure werden um 9.8° bzw. 9.1° überschätzt, ebenso wie der HOO-Winkel im Wasserstoffperoxid (6.3°).

	N	OM1	OM1	OM2	OM2	OM3	OM3	OM3
		\overline{x}	MAF	\overline{x}	MAF	\overline{x}	MAF	σ
All molecules	242	-0.007	0.012	-0.000	0.016	0.012	0.019	0.027
CH compounds	113	-0.011	0.012	-0.004	0.010	0.002	0.009	0.012
CHN compounds	49	-0.003	0.009	-0.002	0.015	0.024	0.027	0.038
CHO compounds	57	-0.003	0.013	0.008	0.018	0.016	0.022	0.028
CHNO compounds	5	0.009	0.013	0.013	0.018	0.033	0.033	0.038
HNO compounds	18	-0.002	0.019	0.001	0.049	0.028	0.043	0.050
C-H	61	-0.002	0.008	0.004	0.011	0.011	0.013	0.017
C-C	69	-0.013	0.014	-0.008	0.011	-0.002	0.009	0.012
C=C arom.	9	-0.009	0.009	0.001	0.005	0.007	0.008	0.010
C=C	19	-0.016	0.017	-0.000	0.006	0.004	0.006	0.009
C≡C	7	0.002	0.004	0.017	0.017	0.022	0.022	0.024
N-H	9	0.003	0.007	0.002	0.010	0.038	0.038	0.041
C-N	8	-0.009	0.015	-0.020	0.024	0.001	0.011	0.017
C=N	3	0.002	0.010	0.002	0.007	0.028	0.028	0.035
$C \equiv N$	6	0.001	0.004	0.017	0.017	0.046	0.046	0.051
N-N	3	-0.037	0.037	-0.141	0.141	-0.034	0.034	0.057
N=N	6	0.002	0.015	-0.002	0.013	0.078	0.078	0.091
O-H	7	0.002	0.007	0.033	0.033	0.053	0.053	0.058
C-0	8	-0.001	0.017	-0.006	0.019	0.017	0.020	0.028
C=O, C≡O	15	-0.004	0.010	0.020	0.020	0.024	0.024	0.027
0-0	3	-0.050	0.050	-0.008	0.041	-0.035	0.035	0.056
N=O (as in NO ₂ Groups)	6	0.017	0.017	0.048	0.048	0.055	0.055	0.063

Tabelle 7.8: Statistik der Bindungslängen [Å]

Tabelle 7.9: Statistik der Bindungswinkel [°]

	Ν	OM1	OM1	OM2	OM2	OM3	OM3	OM3
		\overline{x}	MAF	\overline{x}	MAF	\overline{x}	MAF	σ
All molecules	101	0.02	1.82	-0.01	2.24	-0.06	1.85	2.57
CH compounds	38	-0.04	1.45	-0.28	1.46	-0.17	1.23	1.59
CHN compounds	22	-0.02	1.85	0.94	2.30	0.40	1.82	2.39
CHO compounds	31	-0.01	1.95	-0.26	2.45	-0.35	2.03	2.76
HNO compounds	10	0.45	2.76	-0.27	4.43	0.31	3.76	4.91
HCH	15	-0.07	2.18	-0.52	1.96	-1.42	2.15	2.85
HCC	24	-0.32	1.20	0.12	1.27	0.06	0.93	1.14
CCC	17	-0.51	1.08	-1.20	1.67	-0.57	1.13	1.35
at N	19	-0.03	1.89	0.95	2.81	0.26	2.39	2.84
at O	9	3.14	3.57	2.82	4.16	2.90	3.39	5.10
XCO	12	-0.86	2.42	-1.78	3.49	-0.97	2.70	3.38

Unterschätzt werden hingegen die ONO-Winkel: N₂O₄ (-4.5°), HNO₂ (-5.3°), H₂NO₃ (-2.2° und -1.4°) und H₂NNO₂ (-1.7°). Ebenfalls zu kleine Werte ergeben sich für den OCO-Winkel in Ameisensäure (-5.3°) und Methylformiat (-4.8°).

Bei den Aminen werden die Winkel vom Methylamin zum Trimethylamin hin zunehmend überschätzt (HNC-Winkel: $+2.3^{\circ}$ [CH₃NH₂] und $+3.0^{\circ}$ [(CH₃)₂NH]; CNC-Winkel: $+4.0^{\circ}$ [(CH₃)₂NH] und $+4.7^{\circ}$ [(CH₃)₃N]).

Die Winkel in den Kohlenwasserstoffen werden allgemein gut reproduziert.

Eine statistische Betrachtung der Diederwinkel wird hier nicht vorgenommen, stattdessen werden hier nur die Moleküle mit großen Abweichungen besprochen. Bei der Berechnung des Diederwinkels von Glyoxal treten qualitative Fehler auf. Nur mit OM2 wird der OCCO Diederwinkel von 180° richtig wiedergegeben. OM1 und OM3 finden beide verdrillte Strukturen mit einem Diederwinkel von etwa 110°.

Allen drei Verfahren gelingt es nicht, die planare Anordnung des Dinitrotetroxides vorherzusagen, stattdessen sind die NO_2 -Gruppen um 90° verdreht. Ein weiterer gemeinsamer Fehler betrifft Cyclobutan und Methylencyclobutan, wo für den Vierring eine planare statt einer abgewinkelten Struktur berechnet wird.

Bei den Diederwinkeln in Fünfringen ergeben sich für OM3 relativ große Abweichungen, die betragsmäßig zwischen 4.4° und 16.8° liegen. Die Diederwinkel der Sechsringe werden jedoch wieder gut reproduziert, die größte Abweichung beträgt 4.1°.

Der Diederwinkel des Wasserstoffperoxides wird ebenso wie in OM1 und OM2 unterschätzt (-9.3°) , jedoch ist der Fehler kleiner als früher.

	Symm.	Variable	Exp.	OM1	OM2	OM3	Δ	Ref.
Hydrogen	D_{0h}	H-H	0.741	0.741	0.672	0.716	-0.026	а
Methane	T_d	C-H	1.087	1.086	1.085	1.089	0.002	а
Ethane	D_{3d}	C-C	1.535	1.504	1.507	1.513	-0.022	b
		C-H	1.094	1.094	1.102	1.107	0.013	b
		HCC	111.2	109.9	110.2	110.8	-0.4	b
Ethylene	D_{2h}	C=C	1.339	1.311	1.327	1.331	-0.008	b
		C-H	1.087	1.080	1.085	1.092	0.005	b
		HCC	121.3	121.8	122.0	122.4	1.1	b
Acetylene	D_{0h}	$C \equiv C$	1.202	1.207	1.222	1.227	0.025	b
		C-H	1.063	1.051	1.041	1.053	-0.010	b
Propane	C_{2v}	C-C	1.526	1.514	1.515	1.521	-0.005	с
		C1-H4	1.089	1.094	1.102	1.107	0.018	с
		C1-H5	1.094	1.093	1.102	1.107	0.013	с
		C2-H7	1.096	1.100	1.118	1.124	0.028	с

Tabelle 7.10: Bindungslängen [Å] und Winkel [°]

	Symm.	Variable	Exp.	OM1	OM2	OM3	Δ	Ref.
		CCC	112.4	111.8	110.7	111.9	-0.5	с
		H7C2H8	106.1	108.9	108.0	106.9	0.8	с
		H4C1C2	111.8	109.4	110.2	110.9	-0.9	с
		H5C1H6	107.3	109.1	108.6	108.0	0.7	с
		C2-C1H5H	126.4	126.6	126.4	127.0	0.6	с
Propene	C_s	C=C	1.336	1.318	1.334	1.338	0.002	с
eclipsed		C-C	1.501	1.481	1.488	1.492	-0.009	с
		C1-H4	1.081	1.080	1.083	1.090	0.009	с
		C1-H5	1.091	1.079	1.084	1.090	-0.001	с
		C2-H6	1.090	1.086	1.099	1.107	0.017	с
		C3-H7	1.085	1.093	1.101	1.106	0.021	с
		C3-H8	1.098	1.095	1.102	1.107	0.009	с
		CCC	124.3	123.7	122.6	123.4	-0.9	с
		H4C1C2	121.5	121.2	122.1	122.6	1.1	с
		H5C1C2	120.5	122.3	121.8	122.1	1.6	с
		H6C2C1	119.0	120.8	121.4	121.0	2.0	с
		H7C3C2	111.2	111.5	111.1	111.5	0.3	с
		H8C3H9	106.2	109.1	109.0	108.4	2.2	с
		C2-C2H8H	126.0	123.7	124.8	125.7	-0.3	с
Propyne	C_{3v}	C≡C	1.206	1.210	1.226	1.231	0.025	с
		C-C	1.459	1.435	1.447	1.449	-0.010	с
		C1-H	1.056	1.050	1.039	1.051	-0.005	с
		С3-Н	1.105	1.097	1.102	1.108	0.003	с
		C2C3H	110.2	108.7	108.9	109.5	-0.7	с
Allene	D_{2d}	C=C	1.308	1.295	1.311	1.315	0.007	b
		C-H	1.087	1.079	1.081	1.087	0.000	b
		HCH	118.2	118.9	118.4	117.5	-0.7	b
<i>n</i> -Butane	C_{2h}	C1-C2	1.531	1.514	1.515	1.520	-0.011	b
		C2-C3	1.531	1.525	1.523	1.530	-0.001	b
		CCC	113.8	111.3	110.7	112.0	-1.8	b
Isobutane	C_{3v}	C-C	1.525	1.525	1.523	1.531	0.006	с
		CCC	111.2	110.5	110.1	110.6	-0.6	с
trans-2-Bu-	C_{2h}	C-C	1.508	1.480	1.486	1.490	-0.018	с
tene		C=C	1.347	1.324	1.340	1.345	-0.002	с
	~	CCC	123.8	123.1	122.5	123.5	-0.3	с
Isobutene	C_{2v}	C=C	1.342	1.324	1.340	1.345	0.003	с
		C-C	1.508	1.492	1.497	1.502	-0.006	с
1.2	G	CCC	122.2	122.0	122.0	122.0	-0.2	с
1,3-trans	C_{2h}	C=C	1.348	1.321	1.337	1.341	-0.007	b
Butadiene		C-C	1.468	1.456	1.463	1.470	0.002	b
1 D. (1	C		124.3	122.0	121.3	122.3	-2.0	b
s- <i>cis</i> -Butadiene	C_2	0=0-0=0	38.0	28.3	32.6	32.9	-5.1	
2-Butyne	D_{3d}		1.214	1.214	1.228	1.235	0.021	с
		C-C	1.468	1.434	1.446	1.447	-0.021	с
		U-H	1.110	1.097	1.104	1.109	-0.007	с
X 7° - 1 - 1	C	нсс	110.7	108.7	109.1	109.6	-1.1	с
vinylacetylene	C_s		1.215	1.212	1.227	1.232	0.017	с
		L-L	1.434	1.415	1.420	1.432	-0.002	с

	Symm.	Variable	Exp.	OM1	OM2	OM3	Δ	Ref.
		C=C	1.344	1.322	1.337	1.341	-0.003	с
		C2C3C4	123.1	121.3	119.8	120.9	-2.2	с
Diacetylene	D_{2h}	$C \equiv C$	1.218	1.214	1.228	1.234	0.016	с
		C-C	1.384	1.365	1.375	1.384	0.000	с
		C-H	1.046	1.052	1.041	1.054	0.008	с
Butatriene	D_{2h}	C1-C2	1.318	1.299	1.314	1.318	0.000	с
		C2-C3	1.283	1.273	1.287	1.294	0.011	с
		C1-H	1.083	1.082	1.084	1.092	0.009	с
Neopentane	T_d	C-C	1.539	1.534	1.531	1.540	0.001	с
		C-H	1.120	1.094	1.102	1.107	-0.013	с
		HCC	110.0	110.0	110.3	110.9	0.9	с
Cyclopropane	D_{3h}	C-C	1.501	1.485	1.492	1.498	-0.003	d
• • •		C-H	1.083	1.084	1.088	1.096	0.013	d
		HCH	114.5	113.5	113.4	112.0	-2.5	d
Cyclopropene	C_{2v}	C=C	1.296	1.297	1.314	1.318	0.022	b
• • •		C-C	1.509	1.475	1.486	1.489	-0.020	b
		C1-H	1.072	1.061	1.054	1.065	-0.007	b
		С3-Н	1.088	1.093	1.098	1.105	0.017	b
		HC1C2	149.9	151.2	151.3	151.5	1.6	b
		HC3H	114.6	114.0	113.5	112.4	-2.2	b
Cyclobutane	D_{2d}	C-C	1.552	1.535	1.533	1.541	-0.011	d
		C-H	1.093	1.093	1.107	1.113	0.020	d
		HCH	106.4	110.0	109.1	107.9	1.5	d
		CCCC	27.9	0.0	0.0	-0.1	-28.0	d
Cyclobutene	C_{2v}	C=C	1.342	1.330	1.347	1.352	0.010	с
plan		C-C	1.517	1.507	1.510	1.515	-0.002	с
•		C-C	1.566	1.560	1.555	1.563	-0.003	с
		C1-H	1.083	1.073	1.080	1.087	0.004	с
		С3-Н	1.094	1.093	1.105	1.111	0.017	с
		HC1C2	133.5	135.1	135.0	135.3	1.8	с
		HC3H	109.2	111.2	110.5	109.2	0.0	с
		C1-HC4H	135.8	137.1	136.7	136.9	1.1	с
Methylene-	C_1	C=C	1.331	1.313	1.330	1.334	0.003	b
cyclobutane		C-C	1.517	1.505	1.510	1.517	0.000	b
-		C-C	1.565	1.542	1.540	1.547	-0.018	b
		CCCC	20.9	0.0	0.0	0.0	-20.9	b
Cyclopentane	C_s	C-C	1.546	1.531	1.532	1.539	-0.007	с
envelope		C-H	1.114	1.099	1.115	1.121	0.007	с
-		HCC	111.7	110.1	110.2	110.5	-1.2	с
		CCCC	0.0	0.0	0.0	0.0	0.0	e
		CCCC	-25.0	-16.5	-22.2	-20.6	4.4	e
		CCCC	40.0	26.7	35.9	33.3	-6.7	e
Cyclopentene	C_s	C=C	1.343	1.325	1.341	1.346	0.003	с
v 1		C-C plan	1.518	1.495	1.498	1.503	-0.015	с
		C-C	1.540	1.538	1.534	1.542	0.002	с
		CCCC	157.7	180.0	167.2	174.5	16.8	с
Cyclopenta-	C_{2n}	C=C	1.345	1.337	1.353	1.358	0.013	b
diene	-	C2-C3	1.468	1.460	1.464	1.470	0.002	b

	Symm.	Variable	Exp.	OM1	OM2	OM3	Δ	Ref.
		C1-C5	1.506	1.501	1.503	1.508	0.002	b
Fulvene	C_{2v}	C1=C2	1.470	1.478	1.482	1.489	0.019	с
		C2-C3	1.355	1.340	1.355	1.359	0.004	с
		C3-C4	1.476	1.464	1.471	1.477	0.001	с
		C1-C6	1.349	1.323	1.339	1.343	-0.006	с
Cyclohexane	D_{3d}	C-C	1.536	1.523	1.521	1.528	-0.008	с
chair		C-H	1.121	1.101	1.119	1.123	0.002	с
		HCH	107.5	108.8	107.9	106.9	-0.6	с
		CCC	111.4	111.1	110.0	110.7	-0.7	с
		CCCC	54.9	55.6	58.7	56.9	2.0	с
Cyclohexane	D_2	CCCC	31.0	29.9	31.8	30.8	-0.2	e
twist		CCCC	-65.0	-62.0	-66.5	-64.2	0.8	e
Cyclohexene	C_2	C=C	1.334	1.323	1.340	1.344	0.010	с
half-chair		C2-C3	1.503	1.489	1.493	1.499	-0.004	с
		C3-C4	1.530	1.523	1.520	1.528	-0.002	с
		C4-C5	1.540	1.521	1.519	1.526	-0.014	с
		CC=CC	0.0	1.9	1.8	1.4	1.4	e
		C=C-CC	-15.0	-16.4	-17.7	-16.7	-1.7	e
		=CCCC	44.0	44.7	48.9	46.7	2.7	e
		CCCC	-61.0	-60.0	-66.0	-63.1	-2.1	e
1,3-Cyclohexa-	C_2	=C-C=	1.466	1.447	1.456	1.462	-0.004	с
diene		C=C	1.349	1.328	1.345	1.349	0.000	с
		C-C	1.521	1.488	1.493	1.498	-0.023	с
		C-C	1.536	1.526	1.520	1.528	-0.008	с
		C=C-C=C	341.9	349.8	344.5	346.0	4.1	с
Benzene	D_{6h}	C-C	1.397	1.381	1.393	1.398	0.001	с
		C-H	1.084	1.084	1.096	1.103	0.019	с
Bicyclobutane	C_{2v}	C1-C2	1.498	1.492	1.498	1.503	0.005	с
		C1-C3	1.497	1.475	1.502	1.499	0.002	с
		C1-H	1.071	1.069	1.069	1.078	0.007	с
		C2-Heq	1.093	1.089	1.093	1.100	0.007	с
		C2-Hax	1.093	1.091	1.099	1.106	0.013	с
		C2C3C1C4	121.7	122.6	123.2	122.4	0.7	с
Spirocyclopen-	D_{2d}	C1-C2	1.469	1.468	1.477	1.483	0.014	с
tane		C2-C3	1.519	1.498	1.509	1.513	-0.006	с
		C2-H	1.091	1.086	1.090	1.098	0.007	с
		HC2H	118.4	114.5	114.0	112.8	-5.6	с
		C3-HC2H	148.3	150.8	150.4	150.5	2.2	с
Bicyclo[2.1.0]-	C_s	C1-C2	1.528	1.529	1.528	1.535	0.007	с
pentane		C2-C3	1.565	1.550	1.544	1.552	-0.013	с
		C1-C4	1.536	1.512	1.522	1.529	-0.007	с
		C1-C5	1.507	1.492	1.501	1.505	-0.002	с
		C5C4C1C2	116.7	115.0	113.9	114.4	-2.3	с
Bicyclo[2.1.0]-	C_s	C1-C2	1.511	1.516	1.518	1.523	0.012	с
pentene		C2-C3	1.341	1.334	1.352	1.356	0.015	с
		C1-C4	1.543	1.526	1.537	1.543	0.000	с
		C1-C5	1.533	1.499	1.506	1.511	-0.022	с
		C5C4C1C2	114.5	115.4	114.1	114.5	0.0	с

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Symm.	Variable	Exp.	OM1	OM2	OM3	Δ	Ref.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Norbornane	$\overline{C_{2v}}$	C1-C2	1.536	1.544	1.537	1.547	0.011	b
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		- 20	C2-C3	1.573	1.542	1.536	1.544	-0.029	b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C1-C7	1.546	1.541	1.536	1.544	-0.002	b
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			C1C7C4	93.4	93.9	93.8	93.9	0.5	b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C5C4C1C2	113.1	112.5	112.0	112.3	-0.8	b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Norbornadiene	C_{2n}	C1-C2	1.535	1.524	1.520	1.527	-0.008	с
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- 20	C2=C3	1.343	1.331	1.348	1.352	0.009	с
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			C1-C7	1.573	1.564	1.554	1.562	-0.011	с
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			C1C7C4	94.1	92.3	93.0	93.0	-1.1	c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C6C1C4C3	115.6	112.5	111.9	112.2	-3.4	c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Naphthalene	D_{2h}	C1-C2	1.381	1.359	1.372	1.377	-0.004	b
$\begin{array}{ccccccc} & C1-C9 & 1.422 & 1.424 & 1.422 & 1.429 & 0.007 & b \\ C9-C10 & 1.412 & 1.407 & 1.414 & 1.423 & 0.011 & b \\ Nitrogen & D_{0h} & N\equiv N & 1.098 & 1.099 & 1.098 & 1.170 & 0.072 & a \\ Ammonia & C_{3v} & N-H & 1.013 & 1.012 & 0.996 & 1.044 & 0.031 & b \\ HNH & 107.1 & 104.6 & 110.5 & 107.0 & -0.1 & b \\ Methylamine & C_s & N-C & 1.471 & 1.451 & 1.424 & 1.453 & -0.018 & d \\ N-H & 1.019 & 1.013 & 1.013 & 1.052 & 0.033 & d \\ HNC & 110.3 & 109.5 & 113.1 & 112.6 & 2.3 & d \\ HNH & 106.6 & 105.4 & 109.1 & 106.4 & -0.2 & d \\ Dimethyl- & C_s & N-C & 1.462 & 1.450 & 1.432 & 1.456 & -0.006 & c \\ amine & N-H & 1.019 & 1.014 & 1.028 & 1.060 & 0.041 & c \\ CNC & 112.2 & 115.1 & 114.5 & 116.2 & 4.0 & c \\ HNC & 108.9 & 109.9 & 111.8 & 111.9 & 3.0 & c \\ CNC & 110.9 & 105.1 & 1.135 & 115.6 & 4.7 & b \\ Aziridine & C_s & N-C & 1.475 & 1.447 & 1.435 & 1.466 & -0.009 & c \\ C-C & 1.481 & 1.485 & 1.490 & 1.491 & 0.010 & c \\ N-H & 1.016 & 1.015 & 1.027 & 1.061 & 0.045 & c \\ Pyrrole & C_s & N-C & 1.370 & 1.388 & 1.377 & 1.306 & 0.001 & b \\ C2-C & 1.481 & 1.485 & 1.490 & 1.491 & 0.010 & c \\ N-H & 1.016 & 1.015 & 1.027 & 1.061 & 0.045 & c \\ C2-H & 1.076 & 1.081 & 1.084 & 1.093 & 0.017 & c \\ C3-C4 & 1.370 & 1.388 & 1.377 & 1.396 & 1.403 & 0.021 & c \\ C3-C4 & 1.370 & 1.388 & 1.377 & 1.396 & 1.403 & 0.021 & c \\ C3-C4 & 1.077 & 1.072 & 1.079 & 1.086 & 0.009 & c \\ C2-H & 1.076 & 1.081 & 1.084 & 1.093 & 0.017 & c \\ C2-H & 1.076 & 1.081 & 1.084 & 1.093 & 0.017 & c \\ C2-C3 & 1.332 & 1.357 & 0.019 & b \\ C2-C3 & 1.332 & 1.357 & 0.19 & b \\ C2-C3 & 1.334 & 1.394 & 1.401 & 1.407 & 0.013 & b \\ C3-C4 & 1.392 & 1.379 & 1.391 & 1.397 & 0.055 & c \\ C3-H & 1.081 & 1.092 & 1.098 & 0.015 & b \\ C4-H & 1.082 & 1.080 & 1.092 & 1.098 & 0.015 & b \\ C4-H & 1.082 & 1.080 & 1.092 & 1.098 & 0.015 & b \\ C4-H & 1.082 & 1.080 & 1.092 & 1.098 & 0.016 & b \\ HC2C3 & 120.2 & 119.1 & 119.2 & 120.3 & 0.11 & b \\ HC2C3 & 120.2 & 120.4 & 120.6 & 120.8 & 120.6 & 0.5 & b \\ \end{array}$	Tupmini	ν_{2n}	C2-C3	1.417	1.404	1.415	1.420	0.003	b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C1-C9	1.422	1.414	1.422	1.429	0.007	b
Nitrogen D_{0h} N=N 1.098 1.098 1.170 0.072 a Ammonia C_{3v} N-H 1.013 1.012 0.996 1.044 0.031 b Methylamine C_s N-C 1.471 1.451 1.424 1.453 -0.018 d Methylamine C_s N-C 1.471 1.451 1.424 1.453 -0.018 d Methylamine C_s N-C 1.471 1.451 1.422 1.453 -0.018 d MH 1019 1.013 1.013 1.052 0.033 d Minc 110.3 109.5 113.1 112.6 2.3 d Minc 110.3 109.5 113.1 112.6 2.3 d Minc 1019 115.3 1.450 1.432 1.446 -0.2 d Trimethyl- C_s N-C 1.450 1.441 1.451 1.416 -0.001 c			C9-C10	1.412	1.407	1.414	1.423	0.011	b
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Nitrogen	D_{0h}	$N \equiv N$	1.098	1.099	1.098	1.170	0.072	a
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ammonia	C_{2n}	N-H	1.013	1.012	0.996	1.044	0.031	b
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 minionia	\sim_{sv}	HNH	107.1	104.6	110.5	107.0	-0.1	b
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Methylamine	Ca	N-C	1.471	1.451	1.424	1.453	-0.018	d
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wienry	\sim_s	N-H	1.019	1.013	1.013	1.052	0.033	d
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			HNC	110.3	109.5	113.1	112.6	2.3	d
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			HNH	106.6	105.4	109.1	106.4	-0.2	d
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dimethy]-	C.	N-C	1 462	1450	1 432	1 456	-0.006	c
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	amine	\smile_{s}	N-H	1 019	1 014	1 028	1.100	0.041	c
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	allinie		CNC	112.2	115.1	114.5	116.2	4.0	c
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			HNC	108.9	109.9	111.8	111.9	3.0	c
AmineCNC110011101110111011001110Aziridine C_s N-C1.4751.4471.4351.466 -0.009 cC-C1.4811.4851.4901.4910.010cN-H1.0161.0151.0271.0610.045cPyrrole C_{2v} N-C1.3701.3881.3771.4070.037cC2-C31.3821.3771.3961.4030.021cC3-C41.4171.4181.4201.4210.004cN-H0.9961.0111.0101.0440.048cC2-H1.0761.0811.0841.0930.017cC3-H1.0771.0721.0791.0860.009cHC2C3130.8128.8128.3128.9 -1.9 cCCC107.4107.6107.3107.90.5cPyridine C_{2v} N-C1.3381.3271.3321.3570.019bC2-C31.3941.3941.4011.4070.013bC3-C41.3921.3791.3911.3970.005bC2-C31.3941.3041.4011.4070.013bC2-C31.3941.0971.1051.1120.025bC2-C31.3941.3081.0921.0980.015bC2-C31.2921.2061.2021.0980.015	Trimethv]-	C_{a}	N ₋ C	1 458	1450	1 440	1 459	0.001	b
AziridineCac C s140.5 N-C110.5 1.447110.5 1.447110.5 1.435110.6 1.466110.5 -0.009c c c cPyrrole C_s N-C C-C1.4811.4851.4901.4910.010 c c ccPyrrole C_{2v} N-C C-C1.3701.3881.3771.4070.037 c ccC2-C31.3821.3771.3961.4030.021 c ccC3-C41.4171.4181.4201.4210.004 ccN-H0.9961.0111.0101.0440.048 ccC2-H1.0761.0811.0841.0930.017 ccC3-H1.0771.0721.0791.0860.009cHC2C3130.8128.8128.3128.9-1.9cHC3C2125.5126.6126.1125.70.2cCC107.4107.6107.3107.90.5cPyridine C_{2v} N-C1.3381.3271.3321.3570.019bC2-C31.3941.3941.4011.4070.013bC2-C41.3921.3791.3911.3970.005bC2-C31.3941.0971.1051.1120.025bC2-C31.3941.0971.0980.015bC2-C41.0871.0971.0980.016bC2-C31.202119.1 <td>amine</td> <td>C_{3v}</td> <td>CNC</td> <td>1100</td> <td>115 0</td> <td>113 5</td> <td>115.6</td> <td>47</td> <td>h</td>	amine	C_{3v}	CNC	1100	115 0	113 5	115.6	47	h
$\begin{array}{c ccccc} \mbox{A2110} & \mbox{C}_{s} & \mbox{IVC} & \mbox{IV1} & \$	∆ ziridine	C	N_C	1475	1 447	1 435	1 466	_0 009	c
$\begin{array}{cccccccc} N-H & 1.005 & 1.005 & 1.001 & 0.015 & c \\ N-H & 1.016 & 1.015 & 1.027 & 1.061 & 0.045 & c \\ C_{2v} & N-C & 1.370 & 1.388 & 1.377 & 1.407 & 0.037 & c \\ C_2-C3 & 1.382 & 1.377 & 1.396 & 1.403 & 0.021 & c \\ C_3-C4 & 1.417 & 1.418 & 1.420 & 1.421 & 0.004 & c \\ N-H & 0.996 & 1.011 & 1.010 & 1.044 & 0.048 & c \\ C_2-H & 1.076 & 1.081 & 1.084 & 1.093 & 0.017 & c \\ C_3-H & 1.077 & 1.072 & 1.079 & 1.086 & 0.009 & c \\ HC2C3 & 130.8 & 128.8 & 128.3 & 128.9 & -1.9 & c \\ HC3C2 & 125.5 & 126.6 & 126.1 & 125.7 & 0.2 & c \\ CNC & 109.8 & 108.3 & 109.6 & 108.4 & -1.4 & c \\ CCC & 107.4 & 107.6 & 107.3 & 107.9 & 0.5 & c \\ Pyridine & C_{2v} & N-C & 1.338 & 1.327 & 1.332 & 1.357 & 0.019 & b \\ C_2-C3 & 1.394 & 1.394 & 1.401 & 1.407 & 0.013 & b \\ C_3-C4 & 1.392 & 1.379 & 1.391 & 1.397 & 0.005 & b \\ C_2-H & 1.087 & 1.097 & 1.105 & 1.112 & 0.025 & b \\ C_3-H & 1.083 & 1.080 & 1.092 & 1.098 & 0.015 & b \\ HC2C3 & 120.2 & 119.1 & 119.2 & 120.3 & 0.1 & b \\ HC3C2 & 120.1 & 120.6 & 120.8 & 120.6 & 0.5 & b \\ \end{array}$	ALIHUIN	C_{s}	$C_{-}C$	1 481	1 485	1 490	1 491	0.000	c
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			N_H	1 016	1 015	1 027	1 061	0.010	c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Durrole	C.	N_C	1 370	1 388	1 377	1.001 1 407	0.040	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I ynole	C_{2v}	$C^{2}C^{3}$	1 382	1 377	1 306	1 403	0.001	c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$C_{3}C_{4}$	1 417	1 418	1.000 1 420	1 421	0.021	c
$\begin{array}{ccccccc} \mbox{Pyridine} & \mbox{C}_{2v} & \mbox{H}^{11} & \mbox{1.076} & \mbox{1.081} & \mbox{1.084} & \mbox{1.093} & \mbox{0.017} & \mbox{c} & \mbox{C}_{2H} & \mbox{1.077} & \mbox{1.079} & \mbox{1.086} & \mbox{0.009} & \mbox{c} & \mbox{HC2C3} & \mbox{130.8} & \mbox{128.8} & \mbox{128.3} & \mbox{128.9} & \mbox{-1.9} & \mbox{c} & \mbox{HC3C2} & \mbox{125.5} & \mbox{126.6} & \mbox{126.1} & \mbox{125.7} & \mbox{0.2} & \mbox{c} & \mbox{C} & \mbox{109.8} & \mbox{109.6} & \mbox{108.4} & \mbox{-1.4} & \mbox{c} & \mbox{CCC} & \mbox{109.8} & \mbox{109.6} & \mbox{107.3} & \mbox{107.9} & \mbox{0.5} & \mbox{c} & \mbox{C} & \mbox{CCC} & \mbox{107.4} & \mbox{107.6} & \mbox{107.3} & \mbox{107.9} & \mbox{0.5} & \mbox{c} & \mbox{c} & \mbox{CCC} & \mbox{107.4} & \mbox{107.6} & \mbox{107.3} & \mbox{107.9} & \mbox{0.5} & \mbox{c} & \mbox{c} & \mbox{C} & \mbox{C} & \mbox{1.38} & \mbox{1.327} & \mbox{1.332} & \mbox{1.357} & \mbox{0.019} & \mbox{b} & \mbox{C} & \mbox{C} & \mbox{C} & \mbox{1.394} & \mbox{1.401} & \mbox{1.407} & \mbox{0.013} & \mbox{b} & \mbox{C} & \mbox{C} & \mbox{C} & \mbox{1.392} & \mbox{1.391} & \mbox{1.397} & \mbox{0.005} & \mbox{b} & \mbox{C} & \mbox{C} & \mbox{C} & \mbox{1.392} & \mbox{1.399} & \mbox{1.401} & \mbox{1.407} & \mbox{0.013} & \mbox{b} & \mbox{C} & \mbox{C} & \mbox{C} & \mbox{1.408} & \mbox{1.092} & \mbox{1.098} & \mbox{0.015} & \mbox{b} & \mbox{C} & \mbox{C} & \mbox{C} & \mbox{L} & \mbox{1.408} & \mbox{1.092} & \mbox{1.098} & \mbox{0.016} & \mbox{b} & \mbox{H} & \mbox{C} & \mbox{C} & \mbox{L} & \mbox{1.401} & \mbox{1.407} & \mbox{0.11} & \mbox{1.401} & $			N_H	0.996	1 011	1 010	1 044	0.001	č
$\begin{array}{ccccccc} C3-H & 1.070 & 1.001 & 1.001 & 1.000 & 0.011 & 0.0000 & 0.001 & 0.00000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.00000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.000000 & 0.00000 & 0.00000 & 0.00000 & 0.000000 & 0.000000 & 0.000000 & 0.00000 & 0.00000 & 0.00000 & 0.00000000$			C2-H	1.076	1 081	1 084	1 093	0.017	c
$\begin{array}{cccccccc} H & 1.01.1 & 1.01.2 & 1.01.2 & 1.01.0 & 0.000 & $			C3-H	1.077	1.001 1.072	1 079	1 086	0.009	c
$\begin{array}{c ccccc} HC2C5 & 120.0 & 120.0 & 120.0 & 120.0 & 120.0 & 120.0 & 120.0 & 120.0 & 120.0 & 120.0 & 120.0 & 100.0 & 1$			нс2C3	130.8	128.8	128.3	128.9	-19	c
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			HC3C2	125.5	126.6	126.0	120.0 125.7	$1.0 \\ 0.2$	c
$\begin{array}{ccccccc} & 100.0 & 100.0 & 100.0 & 100.1 & 111 & 0 \\ CCC & 107.4 & 107.6 & 107.3 & 107.9 & 0.5 & c \\ \hline \\ Pyridine & C_{2v} & N-C & 1.338 & 1.327 & 1.332 & 1.357 & 0.019 & b \\ C2-C3 & 1.394 & 1.394 & 1.401 & 1.407 & 0.013 & b \\ C3-C4 & 1.392 & 1.379 & 1.391 & 1.397 & 0.005 & b \\ C2-H & 1.087 & 1.097 & 1.105 & 1.112 & 0.025 & b \\ C3-H & 1.083 & 1.080 & 1.092 & 1.098 & 0.015 & b \\ C4-H & 1.082 & 1.080 & 1.092 & 1.098 & 0.016 & b \\ HC2C3 & 120.2 & 119.1 & 119.2 & 120.3 & 0.1 & b \\ HC3C2 & 120.1 & 120.6 & 120.8 & 120.6 & 0.5 & b \\ \end{array}$			CNC	109.8	108.3	109.6	108.4	_1 4	c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			CCC	107.4	107.6	107.3	107.9	0.5	c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pyridine	Cau	N_C	1 338	1327	1 332	1357	0.019	b
C3-C4 1.392 1.379 1.391 1.397 0.005 b C2-H 1.087 1.097 1.105 1.112 0.025 b C3-H 1.083 1.080 1.092 1.098 0.015 b C4-H 1.082 1.080 1.092 1.098 0.016 b HC2C3 120.2 119.1 119.2 120.3 0.1 b HC3C2 120.1 120.6 120.8 120.6 0.5 b	1 yndine	C_{2v}	$C^2 C^3$	1 394	1 394	1 401	1.001	0.013	h
C2-H 1.087 1.097 1.105 1.112 0.025 b C3-H 1.083 1.080 1.092 1.098 0.015 b C4-H 1.082 1.080 1.092 1.098 0.016 b HC2C3 120.2 119.1 119.2 120.3 0.1 b			$C_{3}C_{4}$	1.392	1.001 1.379	1 391	1 397	0.015	h
C2-H 1.001 1.001 1.100 1.112 0.025 5 C3-H 1.083 1.080 1.092 1.098 0.015 b C4-H 1.082 1.080 1.092 1.098 0.016 b HC2C3 120.2 119.1 119.2 120.3 0.1 b HC3C2 120.1 120.6 120.8 120.6 0.5 b			СЭ-С- С?-Н	1.032	1 007	1.001	1 112	0.000	h
C3-11 1.000 1.000 1.002 1.000 0.015 0 C4-H 1.082 1.080 1.092 1.098 0.016 b HC2C3 120.2 119.1 119.2 120.3 0.1 b HC3C2 120.1 120.6 120.8 120.6 0.5 b			C2-11 C3_H	1 083	1 080	1 002	1 008	0.025	h
HC2C3 120.2 119.1 119.2 120.3 0.1 b HC3C2 120.1 120.6 120.8 120.6 0.5 b			Сл н	1 089	1 080	1 002	1 008	0.010	h
HC_2C_5 120.2 110.1 110.2 120.6 0.1 0 HC_3C_2 120.1 120.6 120.8 120.6 0.5 b			Ц <u>г</u> гг	1902	110 1	110.92	1903	0.010	h
			HC3C2	120.2 120.1	110.1 120.6	120.8	120.0 120.6	0.1	b

120

	Symm.	Variable	Exp.	OM1	OM2	OM3	Δ	Ref.
		CNC	116.9	118.8	118.7	118.6	1.7	b
Hydrogen	C_{0v}	$C\equiv N$	1.153	1.151	1.165	1.196	0.043	b
cyanide		C-H	1.063	1.060	1.046	1.060	-0.003	b
Acetonitrile	C_{3v}	$C \equiv N$	1.157	1.155	1.170	1.201	0.044	b
		C-C	1.462	1.445	1.453	1.456	-0.006	b
		C-H	1.095	1.094	1.099	1.105	0.010	b
		HCC	109.9	108.3	108.5	109.2	-0.7	b
Methyliso-	C_{3v}	C1-N2	1.424	1.418	1.418	1.429	0.005	с
cyanide		C3≡N2	1.166	1.174	1.202	1.223	0.057	с
		C-H	1.101	1.110	1.113	1.120	0.019	с
		HCN	109.1	109.8	109.8	110.0	0.9	с
Acrylo-	C_s	C=C	1.339	1.320	1.336	1.339	0.000	с
nitrile		C-C	1.426	1.428	1.434	1.442	0.016	с
		$C\equiv N$	1.164	1.157	1.172	1.202	0.038	с
		CCC	122.6	120.6	119.1	120.2	-2.4	с
Cyano-	C_{0v}	C≡C	1.205	1.212	1.227	1.232	0.027	с
acetylene		C-C	1.378	1.374	1.382	1.392	0.014	с
		C≡N	1.159	1.160	1.174	1.205	0.046	с
		C-H	1.058	1.055	1.044	1.056	-0.002	с
Cyanogen	D_{0h}	C≡N	1.154	1.159	1.172	1.204	0.050	с
, ,	0.0	C-C	1.389	1.385	1.390	1.401	0.012	с
Hydrazine	C_2	N-N	1.447	1.409	1.329	1.424	-0.023	b
	-	N-H	1.015	1.025	1.031	1.070	0.055	b
		HNNo	106.0	107.3	112.9	107.9	1.9	b
		HNNi	112.0	112.2	116.6	114.9	2.9	b
		HNH	106.6	104.6	107.4	104.6	-2.0	b
		HNNH	-91.0	-101.2	-84.0	-86.2	4.8	b
Azomethane	C_{2h}	C-N	1.482	1.478	1.465	1.485	0.003	с
	2.0	N=N	1.247	1.210	1.208	1.282	0.035	с
		CNN	112.3	116.1	115.2	114.0	1.7	с
Diazo-	C_{2n}	C=N	1.300	1.300	1.306	1.328	0.028	с
methane	-0	N=N	1.139	1.145	1.139	1.216	0.077	с
		C-H	1.075	1.079	1.076	1.081	0.006	с
		HCH	126.0	120.2	119.8	120.5	-5.5	с
Methylazide	C_s	C-N2	1.468	1.451	1.450	1.460	-0.008	с
	0	N2=N3	1.216	1.250	1.243	1.345	0.129	с
		N3=N4	1.130	1.139	1.137	1.212	0.082	с
		CNN	116.8	119.2	116.9	115.4	-1.4	с
Oxygen Triplet	D_{0h}	0-0	1.207	1.177	1.240	1.196	-0.011	а
Ozone	C_{2v}	0-0	1.272	1.235	1.289	1.255	-0.017	b
	-0	000	117.8	118.6	113.3	115.6	-2.2	b
Water	C_{2n}	O-H	0.958	0.955	0.980	1.003	0.045	b
		HOH	104.5	103.1	102.9	105.0	0.5	b
Methanol	C _s	C-O	1.421	1.397	1.387	1.410	-0.011	b
	0	O-H	0.963	0.961	0.995	1.016	0.053	b
		C-H4	1.094	1.106	1.112	1.115	0.021	b
		C-H5	1.094	1.114	1.122	1.123	0.029	b
		COH	108.0	107.4	108.1	108.3	0.3	b

	Symm.	Variable	Exp.	OM1	OM2	OM3	Δ	Ref.
		H4CO	106.3	106.6	105.3	105.9	-0.4	b
		H5C1H6	108.5	109.2	108.7	108.7	0.2	b
Dimethylether	C_{2v}	C-0	1.415	1.408	1.394	1.420	0.005	b
		COC	111.8	113.5	113.2	111.8	0.0	b
Oxirane	C_{2v}	C-O	1.431	1.408	1.415	1.434	0.003	с
		C-C	1.466	1.459	1.457	1.469	0.003	с
		C-H	1.085	1.097	1.101	1.106	0.021	с
		HCH	116.6	114.9	115.0	113.8	-2.8	с
Furan	C_{2v}	O-C2	1.362	1.379	1.367	1.387	0.025	b
		C2-C3	1.361	1.357	1.376	1.376	0.015	b
		C3-C4	1.430	1.426	1.432	1.440	0.010	b
		C2-H	1.075	1.082	1.087	1.093	0.018	b
		С3-Н	1.077	1.071	1.076	1.083	0.006	b
		HCO	116.0	117.0	116.8	116.9	0.9	b
		HC3C4	127.8	125.2	126.0	125.7	-2.1	b
Phenol	C_1	CCOH	0.0	-0.1	0.0	0.0	0.0	b
Hydrogen	C_2	0-0	1.467	1.385	1.394	1.391	-0.076	f
peroxide		O-H	0.965	0.975	1.016	1.030	0.065	f
		HOO	98.5	105.4	105.3	104.8	6.3	f
		HOOH	120.0	105.1	97.3	110.6	-9.4	f
Carbon monoxide	C_{0v}	C=O	1.128	1.148	1.171	1.176	0.048	а
Carbon dioxide	D_{0h}	C=O	1.160	1.175	1.199	1.202	0.042	d
Formaldehyde	C_{2v}	C=O	1.208	1.195	1.216	1.220	0.012	с
		C-H	1.116	1.119	1.126	1.131	0.015	с
		HCH	116.5	115.2	114.7	113.7	-2.8	с
Acetaldehyde	C_1	C-C	1.515	1.500	1.500	1.504	-0.011	с
free		C=O	1.210	1.199	1.222	1.226	0.016	с
		C2-H	1.128	1.120	1.138	1.143	0.015	с
		CCO	124.1	122.3	120.7	122.0	-2.1	с
		C1C2H	115.3	115.2	116.7	115.2	-0.1	с
		HCC=O	9.0	4.1	3.9	3.8	-5.2	e
Acetone	C_{2v}	C-C	1.520	1.508	1.508	1.513	-0.007	с
eclipsed		C=O	1.214	1.203	1.226	1.231	0.017	с
		CCC	116.0	116.9	118.4	117.3	1.3	с
Cyclopropanone	C_{2v}	C1=O	1.191	1.191	1.215	1.218	0.027	с
		C1-C2	1.475	1.461	1.470	1.473	-0.002	с
		C2-C3	1.575	1.526	1.539	1.540	-0.035	с
Ketene	C_{2v}	C=C	1.314	1.305	1.321	1.320	0.006	с
		C=O	1.161	1.174	1.197	1.200	0.039	с
		C-H	1.077	1.066	1.066	1.072	-0.005	с
		HCH	122.2	119.7	119.7	118.2	-4.0	с
Acrolein free	C_1	C1=C2	1.341	1.317	1.334	1.337	-0.004	b
		C2-C3	1.468	1.483	1.481	1.490	0.022	b
		C3=O	1.215	1.200	1.223	1.226	0.011	b
		С3-Н	1.113	1.119	1.138	1.143	0.030	b
		CCC	120.3	122.1	120.7	121.4	1.1	b
		CCO	123.9	121.0	119.9	121.5	-2.4	b
		C2C3H	114.7	116.0	117.0	115.3	0.6	b

	Symm.	Variable	Exp.	OM1	OM2	OM3	Δ	Ref.
		CCC=O	180.0	180.0	180.0	180.0	0.0	b
Acrolein	C_s	C1=C2	1.339	1.318	1.336	1.339	0.000	b
s-cis		C2-C3	1.479	1.480	1.479	1.488	0.009	b
		C3=O	1.213	1.201	1.224	1.228	0.015	b
		С3-Н	1.106	1.119	1.136	1.141	0.035	b
		CCC	121.4	121.6	118.8	119.7	-1.7	b
		CCO	124.3	122.2	120.4	121.6	-2.7	b
		C2C3H	115.5	114.8	116.8	115.5	0.0	b
Propynal	C_s	C1≡C2	1.209	1.211	1.227	1.232	0.023	с
		C2-C3	1.445	1.449	1.450	1.458	0.013	с
		C3=O	1.215	1.197	1.220	1.224	0.009	с
		C1-H	1.055	1.054	1.044	1.056	0.001	с
		С3-Н	1.106	1.116	1.130	1.137	0.031	с
		CCC	178.4	179.8	179.2	179.8	1.4	с
		CCO	123.6	121.0	119.3	121.0	-2.6	с
		CCH	113.9	112.8	114.7	113.0	-0.9	с
Glyoxal free	C_2	O=C-C=O	180.0	255.9	180.0	251.4	71.4	e
trans-Glyoxal	C_{2h}	C=O	1.207	1.196	1.218	1.221	0.014	b
		C-C	1.525	1.541	1.523	1.542	0.017	b
		C-H	1.116	1.114	1.127	1.133	0.017	b
		OCC	121.2	120.1	118.3	119.8	-1.4	b
		HCC	115.5	115.8	116.9	115.1	-0.4	b
Benzaldehyde	C_1	C=C-C-H	180.0	180.0	180.0	180.0	0.0	g
Formic acid (Z)	C_s	C=O1	1.201	1.201	1.225	1.229	0.028	b
		C-O2	1.340	1.354	1.354	1.374	0.034	b
		O-H	0.969	0.964	0.993	1.017	0.048	b
		C-H	1.091	1.116	1.129	1.133	0.042	b
		OCO	124.8	120.1	118.6	119.5	-5.3	b
		COH	106.6	110.0	110.1	110.8	4.2	b
		HCO1	123.3	128.4	129.2	129.2	5.9	b
Acetic acid	C_s	C-C	1.503	1.498	1.501	1.501	-0.002	d
staggered (Z)	0	C=O1	1.205	1.204	1.229	1.233	0.028	d
		C-O2	1.352	1.356	1.360	1.382	0.030	d
		O-H	0.971	0.963	0.992	1.015	0.044	d
		CC=O	125.4	128.3	129.0	129.0	3.6	d
		CC-O	111.7	111.5	111.7	111.3	-0.4	d
Benzoic acid	C_1	OCCC	0.0	0.0	0.0	0.0	0.0	
Methyl formiate	C_s	C2=O1	1.200	1.199	1.225	1.227	0.027	с
(Z)		C2-O3	1.334	1.363	1.361	1.384	0.050	с
		O3C4	1.437	1.422	1.409	1.433	-0.004	с
		OCO	125.9	121.5	119.8	121.1	-4.8	с
		COC	114.8	117.0	115.7	114.9	0.1	с
Formamide	C_1	C-N	1.352	1.374	1.368	1.392	0.040	с
	-	C=O	1.219	1.209	1.238	1.242	0.023	с
		C-H	1.098	1.125	1.140	1.145	0.047	с
		N-H1	1.002	1.005	0.997	1.030	0.028	с
		N-H2	1.002	1.004	0.995	1.028	0.026	с
		H-N-C=O	0.0	13.0	0.0	-0.1	-0.1	с

	Symm.	Variable	Exp.	OM1	OM2	OM3	Δ	Ref.
		H-N-C=O	180.0	164.0	180.0	179.9	-0.1	с
Nitrous oxide	C_{0v}	N=N	1.128	1.130	1.123	1.203	0.075	с
		N=O	1.184	1.213	1.258	1.260	0.076	с
Dinitrotetroxide	D_2	N-N	1.782	1.732	1.574	1.705	-0.077	с
free		N=O	1.180	1.202	1.236	1.245	0.065	с
		ONO	135.4	134.1	130.8	130.9	-4.5	с
		ONNO	0.0	-90.0	-90.0	-90.0	-90.0	с
Nitrous acid	C_s	N=O	1.170	1.172	1.199	1.209	0.039	с
trans		N-O	1.432	1.385	1.387	1.429	-0.003	с
		O-H	0.958	0.968	0.997	1.014	0.056	с
		ONO	110.7	109.6	104.6	105.4	-5.3	с
		NOH	102.1	108.7	111.1	109.2	7.1	с
Nitric acid	C_s	N=O1	1.203	1.213	1.238	1.246	0.043	b
		N=O2	1.210	1.222	1.245	1.254	0.044	b
		N-O3	1.406	1.416	1.398	1.440	0.034	b
		О3-Н	0.959	0.971	1.001	1.017	0.058	b
		O1NO3	113.9	113.5	111.6	111.7	-2.2	b
		O2NO3	116.1	115.3	115.3	114.7	-1.4	b
		NO3H	101.9	110.5	111.5	111.7	9.8	b
Nitrylamide	C_s	N-N	1.427	1.405	1.330	1.424	-0.003	с
		N=O	1.206	1.231	1.265	1.271	0.065	с
		N-H	1.005	1.018	1.008	1.035	0.030	с
		ONO	130.1	127.2	126.4	128.4	-1.7	с
		HNH	115.2	111.5	117.3	118.1	2.9	с

a [142]; b [143]; c [144]; d [145]; e [124]; f [146]; g [147]

7.1.4 Ionisierungspotentiale

Die vertikalen Ionisierungspotentiale werden als negative Orbitalenergien berechnet (Koopmans' Theorem). Dabei vernachlässigt man Relaxationseffekte, welche das Kation stabilisieren, und differentielle Korrelationseffekte, die das Neutralmolekül begünstigen. Die damit verbundenen Fehler kompensieren sich tendenziell, wenn auch nicht vollständig. Für die Moleküle des CHNO Refenzsatzes darf man erwarten, dass die ersten Ionisierungspotentiale bei Anwendung von Koopmans' Theorem eher überschätzt werden sollten (Relaxationseffekte dominant, insbesondere bei Ionisierung aus "lone-pair Orbitalen"). Dieser erwartete Trend wird in der Tat beobachtet.

Bei der statistischen Auswertung (auf der Grundlage von Koopmans' Theorem) findet man, dass der im Vergleich zu OM1 und besonders zu OM2 große mittlere absolute Fehler in OM3 sich aus einer deutlichen Überschätzung der Ionisierungspotentiale ergibt. Nur sechs der 52 betrachteten Referenzmoleküle weisen zu kleine Ionisierungspotentiale auf (vgl. Tabelle 7.12). Systematisch überschätzt werden die Aromaten, Moleküle mit Dreifachbindung, Amine, Alkohole und Ether,

sowie Carbonyle (Tabelle 7.11).

	Ν	OM1	OM1	OM2	OM2	OM3	OM3	OM3
		\overline{x}	MAF	\overline{x}	MAF	\overline{x}	MAF	σ
All molecules	52	0.13	0.32	0.11	0.26	0.36	0.44	0.52
CH compounds	22	0.23	0.24	0.03	0.24	0.37	0.37	0.43
CHN compounds	13	0.15	0.33	0.15	0.22	0.20	0.39	0.49
CHO compounds	14	0.06	0.41	0.20	0.34	0.53	0.61	0.70

Tabelle 7.11: Statistik der Ionisierungspotentiale [eV]

Die größten Fehler treten bei den CHO Verbindungen auf. Oxiran, dessen Ionisierungspotential um 1.22 eV überschätzt wird, zeigt den größten Einzelfehler. Das Ionisierungspotential des Stickstoffmoleküls hingegen wird um 1.09 eV unterschätzt.

	Exp.	OM1	OM2	OM3	Δ	Ref.
Hydrogen	15.98	15.96	15.68	15.65	-0.33	а
Methane	14.00	14.28	13.64	14.17	0.17	а
Ethane	12.10	12.44	11.92	12.30	0.20	b
Ethylene	10.51	10.79	10.74	11.05	0.54	а
Acetylene	11.40	11.49	11.55	11.79	0.39	а
Propane	11.50	11.84	11.39	11.69	0.19	а
Propene ecl	9.88	10.08	9.99	10.29	0.41	b
Propyne	10.37	10.66	10.64	10.88	0.51	а
Allene	10.07	10.19	10.16	10.44	0.37	с
Isobutane	11.40	11.54	11.06	11.41	0.01	а
1,3-tr-Butadiene	9.08	9.29	9.32	9.61	0.53	а
Diacetylene	10.17	10.06	10.30	10.47	0.30	а
Butatriene	9.15	9.19	9.35	9.60	0.45	d
Neopentane	11.30	11.30	10.82	11.31	0.01	а
Cyclopropane	11.00	11.61	10.88	11.47	0.47	b
Cyclopropene	9.86	9.97	9.84	10.13	0.27	а
Cyclobutane	11.00	11.06	10.38	10.98	-0.02	с
Cyclobutene plan	9.43	9.78	9.65	9.93	0.50	а
Cyclopentene	9.18	9.41	9.22	9.51	0.33	а
Cyclopentadiene	8.57	8.92	8.82	9.10	0.53	а
Benzene	9.24	9.66	9.59	9.91	0.67	а
Toluene ecl	8.82	9.26	9.17	9.46	0.64	b
Naphthalene	8.15	8.48	8.51	8.79	0.64	а
Nitrogen	15.60	15.19	15.46	14.51	-1.09	b
Ammonia	10.85	11.08	10.67	11.23	0.38	b
Methylamine	9.45	10.14	9.75	10.00	0.55	с

Tabelle 7.12: Ionisierungspotentiale [eV]

	Exp.	OM1	OM2	OM3	Δ	Ref.
Dimethylamine	8.93	9.45	9.23	9.24	0.31	с
Trimethylamine	8.54	8.90	8.84	8.67	0.13	с
Aziridine	9.80	10.39	10.13	10.39	0.59	b
Pyrrole	8.21	8.40	8.46	8.65	0.44	d
Pyridine	9.67	9.99	9.96	10.13	0.46	e
Hydrogen cyanide	13.60	13.56	13.91	13.94	0.34	b
Acetonitrile	12.21	12.45	12.50	12.63	0.42	d
Acrylonitrile	10.91	10.85	10.88	11.09	0.18	d
Cyanoacetylene	11.60	11.37	11.58	11.67	0.07	с
Cyanogen	13.36	12.94	13.27	13.22	-0.14	d
Ozone	12.75	12.13	12.85	13.27	0.52	с
Water	12.62	12.29	12.91	13.12	0.50	b
Methanol	10.96	11.22	11.22	11.60	0.64	а
Dimethylether	10.04	10.67	10.51	10.94	0.90	а
Oxirane	10.57	11.40	11.31	11.79	1.22	а
Furan	8.88	9.12	9.03	9.45	0.57	а
Carbon monoxide	14.01	13.32	13.60	13.68	-0.33	а
Carbon dioxide	13.78	12.67	13.27	13.57	-0.21	а
Formaldehyde	10.88	10.85	11.03	11.26	0.38	b
Acetaldehyde free	10.21	10.51	10.62	10.94	0.73	а
Acetone ecl	9.72	10.18	10.31	10.67	0.95	а
Ketene	9.64	9.39	9.75	9.97	0.33	а
Acrolein free	10.11	10.46	10.59	10.87	0.76	b
trans-Glyoxal	10.59	10.22	10.57	10.77	0.18	а
Formic acid (Z)	11.51	11.52	11.72	12.12	0.61	а
Methyl formiate (Z)	11.02	11.27	11.24	11.70	0.68	а

a [148]; b [149]

c Taken from the experimental data quoted in: [37]; d [115]

e From experimental data of dubious accuracy quoted in: [57] Original source: [150]

Ebenso wie die ersten Ionisierungspotentiale werden auch die höheren Ionisierungspotentiale oft überschätzt (vgl. Tabelle 7.14).

Besonders große Abweichungen treten bei Wasser (1a₁: +8.65 eV), Ammoniak (1a₁: +4.83 eV), Stickstoff (1 σ_u : +4.03 eV) und Kohlendioxid (2 σ_u : +3.03 eV) auf. Wie schon in Kapitel 5.4.2 erwähnt, weisen für Stickstoff und Sauerstoff die berechneten Anregungsenergien aus Valenzorbitalen mit hohem 2s Anteil oft größere Abweichungen auf.

Gut reproduziert werden die höheren Ionisierungspotentiale der Kohlenwasserstoffe (vgl. Tabelle 7.13).

	Ν	OM1	OM1	OM2	OM2	OM3	OM3	OM3
		\overline{x}	MAF	\overline{x}	MAF	\overline{x}	MAF	σ
All molecules	39	0.47	0.76	0.28	0.73	0.82	1.02	1.91
CH compounds	18	0.90	0.95	-0.06	0.47	0.36	0.49	0.63
CHN compounds	9	0.38	0.70	0.76	0.90	0.94	1.39	2.29
CHO compounds	8	0.17	0.46	0.26	0.70	0.99	1.04	1.41

Tabelle 7.13: Statistik der höheren Ionisierungspotentiale [eV]

	Ionisierung	Exp.	OM1	OM2	OM3	Δ	Ref.
Methane	1a ₁	22.91	25.74	23.26	22.82	-0.09	а
Ethane	$1e_g$	12.10	12.44	11.92	12.30	0.20	b
	$1e_u$	15.00	15.82	14.89	15.54	0.54	b
	$1a_{2u}$	20.41	22.44	20.74	20.67	0.26	b
Ethylene	$1b_{1u}$	10.51	10.79	10.74	11.05	0.54	а
	$1b_{1g}$	12.85	12.44	11.97	12.32	-0.53	а
	$2a_g$	14.66	15.01	13.63	14.44	-0.22	а
	$1b_{2u}$	15.87	16.99	15.75	16.50	0.63	а
Acetylene	$1\pi_u$	11.40	11.49	11.55	11.79	0.39	b
	$2\sigma_g$	16.36	16.76	15.11	16.03	-0.33	b
	$1\sigma_u$	18.69	19.82	19.37	19.08	0.39	b
Benzene	$1e_{1g}$	9.24	9.66	9.59	9.91	0.67	а
	$2e_{2g}$	11.49	11.91	11.05	11.60	0.11	а
	$1a_{2u}$	12.30	13.74	13.39	13.84	1.54	а
	$2e_{1u}$	13.80	14.51	13.58	14.26	0.46	а
	$1b_{2u}$	14.70	16.02	14.18	15.12	0.42	а
	1b _{1u}	15.40	16.18	15.69	15.65	0.25	а
	$2a_{1g}$	16.85	19.08	17.02	18.10	1.25	а
Nitrogen	$2\sigma_g$	15.60	15.19	15.46	14.51	-1.09	b
	$1\pi_u$	16.98	16.15	16.80	16.40	-0.58	b
	$1\sigma_u$	18.78	19.55	21.88	22.82	4.04	b
Ammonia	2a ₁	10.85	11.08	10.67	11.23	0.38	а
	1e	16.00	15.87	15.87	15.67	-0.33	а
	1a ₁	27.00	29.72	29.78	31.83	4.83	а
Hydrogen cyanide	1π	13.60	13.56	13.91	13.94	0.34	b
	3σ	14.00	14.66	14.78	14.61	0.61	b
	2σ	19.95	20.44	20.41	20.23	0.28	b
Water	1b ₁	12.62	12.29	12.91	13.12	0.50	с
	2a ₁	14.74	14.55	14.93	15.32	0.58	с
	$1b_2$	18.51	17.65	16.70	17.90	-0.61	с
	1a ₁	32.20	31.00	36.47	40.85	8.65	с
Carbon dioxide	$1\pi_g$	13.78	12.67	13.27	13.57	-0.21	b
	$1\pi_u$	17.59	17.86	18.00	18.84	1.25	b
	$2\sigma_u$	18.08	18.05	17.25	18.83	0.75	b
	$2\sigma_q$	19.40	20.14	22.24	22.43	3.03	b

Tabelle 7.14: Höhere Ionisierungsenergien [eV]

	Ionisierung	Exp.	OM1	OM2	OM3	Δ	Ref.
Formaldehyde	$2b_2$	10.88	10.85	11.03	11.26	0.38	а
	1b ₁	14.38	14.57	14.64	15.32	0.94	а
	$2a_1$	16.00	16.65	15.59	16.77	0.77	а
	$1b_2$	16.78	17.45	16.96	17.77	0.99	а

a Taken from the experimental data quoted in: [37]; b [149]; c [148]

7.1.5 Dipolmomente

Die Abweichungen bei der Berechnung der Dipolmomente liegen für OM1, OM2 und OM3 in der gleichen Größenordnung. Während für Kohlenwasserstoffe die mit OM3 berechneten Dipolmomente die experimentellen Werte sehr gut wiedergeben, treten bei den anorganischen Verbindungen große Fehler auf (Tabelle 7.15).

Tabelle 7.15: Statistik der Dipolmomente [D]

	Ν	OM1	OM1	OM2	OM2	OM3	OM3	OM3
		\overline{x}	MAF	\overline{x}	MAF	\overline{x}	MAF	σ
All molecules	63	0.09	0.23	0.10	0.25	0.06	0.26	0.34
CH compounds	20	0.01	0.08	-0.02	0.11	-0.01	0.10	0.12
CHN compounds	16	0.12	0.40	-0.10	0.27	-0.11	0.33	0.43
CHO compounds	19	0.11	0.23	0.29	0.31	0.20	0.26	0.31

Das berechnete Dipolmoment des Methylisocyanids weicht mit -1.00 D am stärksten vom experimentellen Wert ab. Auch die Dipolmomente der drei anderen im Referenzsatz enthaltenen Cyanide werden deutlich unterschätzt.

Obwohl die Winkel von Ammoniak und Wasser mit OM3 sehr gut reproduziert werden, resultieren zu große Dipolmomente. Dies ist nur teilweise darauf zurückzuführen, dass sowohl die N–H als auch die O–H Bindung deutlich zu lang berechnet werden.

Tabelle 7.16:	Dipolmomente	[D]
---------------	--------------	-----

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
Propane	0.08	0.03	0.01	0.05	-0.03	0.01	а
Propene ecl	0.37	0.38	0.39	0.41	0.04	0.01	а
Propyne	0.78	0.57	0.65	0.65	-0.14	0.01	b
Isobutane	0.13	0.05	0.01	0.08	-0.05	0.01	а
But-1-ene H-ecl	0.36	0.40	0.40	0.40	0.05	0.01	а
But-1-ene C-ecl	0.44	0.39	0.38	0.37	-0.07	0.01	а
cis-2-Butene	0.25	0.22	0.07	0.15	-0.10	0.01	а

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
Isobutene	0.50	0.67	0.68	0.71	0.21	0.01	а
1,2-Butadiene	0.40	0.41	0.40	0.39	-0.01	0.01	а
1-Butyne	0.80	0.66	0.74	0.69	-0.11	0.05	а
Vinylacetylene	0.22	0.29	0.44	0.37	0.15	0.04	а
Cyclopropene	0.45	0.59	0.63	0.65	0.20	0.01	а
Cyclobutene plan	0.13	0.23	0.16	0.10	-0.03	0.01	а
Cyclopentene	0.20	0.24	0.10	0.08	-0.12	0.02	а
Cyclopentadiene	0.42	0.60	0.56	0.59	0.17	0.01	а
3,4-Dimethylenecyclobutene	0.62	0.62	0.63	0.62	0.00	0.00	с
Fulvene	0.42	0.54	0.37	0.46	0.04	0.01	а
Cyclohexene half-chair	0.33	0.21	0.08	0.09	-0.24	0.00	d
1,3-Cyclohexadiene	0.44	0.39	0.24	0.27	-0.17	0.01	d
Toluene ecl	0.38	0.37	0.32	0.38	0.00	0.01	а
Ammonia	1.47	2.39	1.89	2.14	0.66	0.00	b
Methylamine	1.31	1.89	1.32	1.51	0.20	0.03	а
Dimethylamine	1.01	1.35	0.88	0.88	-0.13	0.02	а
Trimethylamine	0.61	0.81	0.52	0.33	-0.29	0.01	а
Ethylamine	1.22	2.03	1.46	1.68	0.46	0.06	а
Aziridine	1.90	2.27	1.92	2.03	0.13	0.02	а
Pyrrole	1.74	2.00	1.92	2.06	0.32	0.03	а
Pyridine	2.21	2.33	2.19	2.15	-0.06	0.01	b
Hydrogen cyanide	2.98	2.93	2.57	2.68	-0.31	0.00	b
Acetonitrile	3.92	3.63	3.35	3.36	-0.57	0.00	b
Methylisocyanide	3.89	2.53	3.00	2.89	-1.00	0.00	b
Acrylonitrile	3.87	3.64	3.43	3.37	-0.50	0.08	а
Cyanoacetylene	3.72	3.65	3.40	3.27	-0.45	0.03	b
Methylhydrazine	1.66	2.20	1.58	1.65	-0.01	0.00	с
Diazomethane	1.50	1.42	1.87	1.43	-0.07	0.01	а
Methylazide	2.17	2.01	2.27	2.01	-0.16	0.04	а
Ozone	0.53	1.06	1.46	1.22	0.69	0.00	b
Water	1.85	2.30	2.16	2.31	0.46	0.00	b
Methanol	1.70	1.91	1.81	1.95	0.25	0.02	а
Ethanol	1.68	1.77	1.64	1.75	0.07	0.02	b
Dimethylether	1.30	1.68	1.47	1.66	0.36	0.01	а
Diethylether	1.06	1.35	1.07	1.20	0.14	0.02	b
Oxirane	1.89	2.24	2.34	2.30	0.41	0.02	а
Furan	0.66	0.87	0.79	1.00	0.34	0.01	а
Phenol	1.22	1.56	1.51	1.61	0.38	0.00	b
Anisole plan	1.38	1.44	1.29	1.44	0.06	0.07	а
Carbon monoxide	1.57	2.16	1.99	2.01	0.44	0.00	b
Formaldehyde	0.11	0.57	0.92	0.57	0.46	0.00	b
Acetaldehyde free	2.33	2.23	2.65	2.42	0.08	0.00	b
Acetone ecl	2.88	3.15	3.45	3.33	0.45	0.03	а
Ketene	1.42	1.50	2.19	1.90	0.48	0.00	b
Acrolein free	3.12	2.97	3.41	3.27	0.15	0.06	а
Propynal	2.74	2.66	3.07	2.92	0.18	0.00	b
Formic acid (Z)	1.41	1.16	1.64	1.23	-0.18	0.01	а
Acetic acid stag (Z)	1.70	1.67	2.18	1.82	0.12	0.02	e

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
Methyl formiate (Z)	1.77	1.30	1.71	1.36	-0.41	0.04	а
Methyl acetate ecl (Z)	1.72	1.67	2.04	1.73	0.01	0.09	а
Formamide	3.73	3.80	4.21	4.17	0.44	0.07	а
Dimethylformamide	3.86	3.58	3.97	3.95	0.09	0.02	b
Nitrous oxide	0.16	0.63	0.76	0.96	0.80	0.00	b
Nitrous acid trans	1.93	2.27	2.56	2.51	0.58	0.02	b
Nitrous acid cis	1.42	1.47	0.97	0.74	-0.68	0.01	а
Nitric acid	2.17	2.23	2.19	1.89	-0.28	0.02	а

a [151]; b [152]; c Taken from the experimental data quoted in: [37]; d [153]; e [154]

7.1.6 Atomladungen

Auch wenn es sich bei Atomladungen nicht um meßbare Größen handelt, sollen sie der Vollständigkeit halber aufgeführt werden. Zur Bestimmung der Atomladungen wird eine Mulliken Populationsanalyse mit der Einheitsmatrix als Überlappungsmatrix durchgeführt. Zum Vergleich der so resultierenden Werte sind die Atomladungen angegeben, die aus ab initio Wellenfunktionen zum einen durch eine Mulliken Populationsanalyse (Mull.) und zum anderen durch eine Natural-Populationsanalyse (NPA) erhalten wurden. Die Abweichungen von OM3 werden nur bezüglich der NPA Ladungen angegeben.

	Atom	Mull. ^a	NPA^{b}	OM1	OM2	OM3	Δ
Methane	С	-0.47	-0.88	-0.40	-0.76	-0.74	0.14
	Н	0.12	0.22	0.10	0.19	0.19	-0.03
Ethane	С	-0.34	-0.65	-0.27	-0.48	-0.44	0.21
	Η	0.11	0.22	0.09	0.16	0.15	-0.07
Ethylene	С	-0.25	-0.42	-0.26	-0.43	-0.39	0.03
	Η	0.13	0.21	0.13	0.22	0.19	-0.02
Acetylene	С	-0.23	-0.24	-0.27	-0.39	-0.35	-0.11
	Η	0.23	0.24	0.27	0.39	0.35	0.11
Propane	С	-0.22	-0.43	-0.16	-0.21	-0.16	0.27
	С	-0.33	-0.65	-0.28	-0.50	-0.47	0.18
Butadiene ort	С		-0.38^{c}	-0.27	-0.48	-0.43	-0.05
	С		-0.21^{c}	-0.13	-0.16	-0.13	0.08
Cyclopropane	С	-0.26	-0.45	-0.28	-0.42	-0.39	0.06
	Η	0.13	0.23	0.14	0.21	0.20	-0.03
Cyclopropene	С	-0.24	-0.46	-0.19	-0.34	-0.33	0.13
	С	-0.14	-0.20	-0.24	-0.33	-0.30	-0.11
Cyclobutene plan	С	-0.13	-0.21	-0.20	-0.26	-0.24	-0.03
	С	-0.24	-0.44	-0.16	-0.28	-0.25	0.19
Bicyclobutane	С	-0.15	-0.25	-0.31	-0.37	-0.34	-0.09

Tabelle 7.17: Atomladungen [e]

	Atom	Mull. ^a	NPA^b	OM1	OM2	OM3	Δ
	С	-0.24	-0.43	-0.15	-0.29	-0.28	0.15
Water	Ο	-0.67	-0.97	-0.51	-0.60	-0.56	0.41
	Н	0.34	0.49	0.26	0.30	0.28	-0.20
Methanol	Ο		-0.80^{d}	-0.46	-0.47	-0.43	0.37
	С		-0.23^{d}	0.02	-0.21	-0.23	0.00
	Н		0.20^d	0.09	0.18	0.16	-0.04
	Η		0.17^d	0.04	0.11	0.11	-0.06
	Н		0.48^{d}	0.27	0.28	0.27	-0.21
Formaldehyde	Ο	-0.43	-0.58	-0.34	-0.34	-0.28	0.30
	С	0.24	0.33	0.25	0.07	0.04	-0.28
	Η	0.09	0.13	0.05	0.14	0.12	-0.01
Acetaldehyde free	Ο	-0.47	-0.61	-0.38	-0.39	-0.33	0.27
	С	0.38	0.51	0.33	0.28	0.26	-0.26
	Η	0.09	0.13	0.06	0.11	0.09	-0.04
	С	-0.43	-0.76	-0.37	-0.61	-0.58	0.18
	Η	0.16	0.24	0.13	0.21	0.19	-0.05
Acetone ecl	0		-0.63	-0.41	-0.44	-0.38	0.25
	С		0.69	0.40	0.49	0.45	-0.23
	С		-0.75	-0.35	-0.62	-0.59	0.16
	Η		0.25	0.12	0.21	0.19	-0.06
Acetic acid stag	С		0.99	0.60	0.64	0.56	-0.42
	0		-0.70	-0.48	-0.50	-0.43	0.27
	0		-0.80	-0.50	-0.54	-0.49	0.30
	Η		0.52	0.31	0.34	0.31	-0.21
Formamide	С	0.56	0.67	0.50	0.38	0.40	-0.27
	0	-0.56	-0.70	-0.47	-0.49	-0.44	0.26
	Ν	-0.73	-0.94	-0.67	-0.68	-0.67	0.27
	Η	0.32	0.43	0.29	0.33	0.31	-0.12
Nitromethane	С	-0.19	-0.48	-0.17	-0.57	-0.51	-0.04
	Ν	0.55	0.65	0.38	0.58	0.56	-0.09
	0	-0.45	-0.46	-0.30	-0.35	-0.34	0.12

a [155]; b [155]; c [4]; d [156]

7.1.7 Schwingungen

Die Berechnung der Schwingungsfrequenzen erfolgt unter Vernachlässigung der Anharmonizitäten. Daher ist eine Überschätzung der Frequenzen zu erwarten (vgl. Kapitel 5.4.4). Durch die Hinzunahme einiger Schwingungen (H–H Schwingung des H₂, alle Schwingungen von Methan und Ethan, C–O Schwingung des CO) als Referenzfunktionen für die Parametrisierung konnte eine deutliche Reduzierung der Abweichungen erzielt werden. Die mittleren absoluten Fehler sind in Tabelle 7.18 angegeben.

Allen drei Methoden ist gemeinsam, dass ihre bei weitem größten Fehler bei den O-O Schwingungen auftreten.

	N	OM1	OM1	OM2	OM2	OM3	OM3	OM3
		\overline{x}	MAF	\overline{x}	MAF	\overline{x}	MAF	σ
All molecules	112	172.2	188.6	44.8	151.0	47.4	120.2	165.4
CH compounds	33	192.5	196.8	70.6	93.0	54.9	84.7	122.8
CHN compounds	19	252.0	256.5	122.9	195.1	68.4	147.2	184.9
CHO compounds	41	140.7	157.2	20.0	127.2	46.2	113.5	162.3
HNO compounds	19	125.0	174.2	-25.0	259.1	16.0	169.6	221.7

Tabelle 7.18: Statistik der Wellenzahlen $[cm^{-1}]$

Mit OM3 ergeben sich die beiden stärksten Abweichungen für Ozon. Die symmetrische O–O Streckschwingung wird um 455 cm⁻¹ und die asymmetrische um 572 cm⁻¹ überschätzt.

Außerdem werden in der Regel C–N, C–O sowie O–H Streckschwingungen nur schlecht reproduziert.

Der Fehler bei der Berechnung der C–C Streckschwingung nimmt von Ethan $(+213 \text{ cm}^{-1})$ über Ethen $(+310 \text{ cm}^{-1})$ zum Ethin $(+380 \text{ cm}^{-1})$ zu.

	Schwingung	Exp.	OM1	OM2	OM3	Δ	Ref.
Hydrogen	H-H s-str a ₁	4160	4182	3828	4076	-84	а
Methane	C-H s-str a ₁	2917	3171	2895	2869	-48	b
	HCH d-def e	1534	1547	1565	1503	-31	b
	C-H d-str f ₂	3019	3349	3060	3081	62	b
	HCH d-def f ₂	1306	1512	1512	1461	155	b
Ethane	CH3 s-str a _{1g}	2954	3181	2864	2876	-78	b
	CH3 s-def a_{1g}	1388	1565	1530	1511	123	b
	CC str a_{1g}	995	1159	1249	1208	213	b
	Torsion a_{1u}	289	249	310	287	-2	b
	CH3 s-str a_{2u}	2896	3148	2849	2844	-52	b
	CH3 s-def a_{2u}	1379	1511	1476	1453	74	b
	CH3 d-str e_g	2969	3281	2967	3003	34	b
	CH3 d-def e_g	1468	1520	1511	1453	-15	b
	CH3 rock e_u	1190	1261	1249	1192	2	b
	CH3 d-str e_u	2985	3299	3000	3030	45	b
	CH3 d-def e_u	1469	1528	1513	1459	-10	b
	CH3 rock e_u	822	955	963	921	99	b
Ethylene	CH2 s-str a_g	3026	3351	3008	3020	-6	b
	CC str a_g	1623	1981	1976	1933	310	b
	CH2 scis a_g	1342	1491	1479	1446	104	b
	CH2 twist a_u	1023	993	980	970	-53	b
	CH2 a-str b_{1g}	3103	3405	3056	3084	-19	b
	CH2 rock b_{1g}	1236	1249	1239	1171	-65	b
	CH2 wag b_{1u}	949	1087	1107	1073	124	b

Tabelle 7.19: Wellenzahlen [cm⁻¹]

	Schwingung	Exp.	OM1	OM2	OM3	Δ	Ref.
	CH2 wag b_{2g}	943	1127	1058	1102	159	b
	CH2 a-str b_{2u}	3106	3433	3102	3123	17	b
	CH2 rock b_{2u}	826	911	936	888	62	b
	CH2 s-str b _{3u}	2989	3278	2946	2937	-52	b
	CH2 scis b_{3u}	1444	1501	1489	1450	6	b
Acetylene	CH str σ_g^+	3374	3750	3395	3386	12	b
	CC str σ_q^+	1974	2454	2393	2354	380	b
	CH str σ_u^+	3289	3615	3236	3226	-63	b
	CH bend σ_q^+	612	784	683	787	175	b
	CH bend σ_{q}^{+}	730	874	904	878	148	b
Nitrogen	N-N s-str a ₁	2331	2808	2672	2431	100	а
Ammonia	N-H s-str a ₁	3337	3475	3132	3148	-189	b
	HNH s-def a ₁	950	1488	1083	1194	244	b
	N-H d-str e	3444	3562	3407	3343	-101	b
	HNH d-def e	1627	1773	1777	1637	10	b
Hydrogen cyanide	C-H str σ^+	3311	3664	3344	3299	-12	b
	HCN bend π	712	944	962	927	215	b
	C-N str σ^+	2097	2577	2478	2380	283	b
Cyanogen	C-N s-str σ_a^+	2330	2795	2789	2662	332	с
	N-N str σ_a^+	846	1015	1025	984	138	с
	C-N a-str σ_u^+	2158	2617	2552	2434	276	с
	CCN bend π_a	503	640	654	625	122	с
	CCN bend π_u^g	234	274	273	257	23	с
trans-Diimine	N-H s-str a _a	3128	3358	2983	3089	-39	а
	N-H bend a_a	1583	2035	2034	1888	305	а
	N-N str a_a	1529	1662	1590	1490	-39	а
	Torsion a_{ii}	1359	1316	1262	1218	-141	а
	N-H a-str b_{μ}	3131	3371	2995	3093	-38	а
	N-H bend b_u	1286	1308	1220	1098	-188	а
Ozone	O-O s-str a ₁	1103	1460	1613	1558	455	с
	OOO bend a_1	701	670	544	630	-71	с
	O-O a-str b_2	1042	1636	1677	1614	572	с
Water	O-H s-str a ₁	3657	3847	3123	3475	-182	b
	HOH bend a ₁	1595	1820	1739	1673	78	b
	O-H a-str b ₂	3756	3834	3264	3555	-201	b
Methanol	O-H str a'	3681	3776	3135	3437	-244	b
	CH3 d-str a'	3000	3242	2972	3016	16	b
	CH3 s-str a'	2844	3104	2822	2852	8	b
	CH3 d-def a'	1477	1595	1499	1500	23	b
	CH3 s-def a'	1455	1507	1469	1433	-22	b
	O-H bend a'	1345	1452	1392	1361	16	b
	CH3 rock a'	1060	1247	1317	1288	228	b
	C-O str a'	1033	1125	1072	1051	18	b
	CH3 d-str a"	2960	3181	2925	2980	20	b
	CH3 d-def a"	1477	1503	1466	1425	-52	b
	CH3 rock a"	1165	1210	1197	1147	-18	b
	Torsion a"	295	338	386	360	65	b
	Torsion a"	200	338	386	360	160	b

	Schwingung	Exp.	OM1	OM2	OM3	Δ	Ref.
Hydrogen	O-H str a	3599	3702	3119	3392	-207	с
peroxide	OH bend a	1402	1522	1360	1417	15	с
	O-O str a	877	1222	1333	1248	371	с
	Torsion a	371	491	504	398	27	с
	O-H str b	3608	3694	3118	3388	-220	с
	OH bend b	1266	1431	1314	1310	44	с
Carbon monoxide	C-O s-str a1	2143	2457	2306	2396	253	а
Carbon dioxide	C-O s-str σ_q^+	1333	1521	1430	1495	162	b
	OCO bend π_u	667	545	516	526	-141	b
	C-O a-str σ_u^+	2349	2706	2496	2633	284	b
Formaldehyde	CH2 s-str a ₁	2783	3122	2854	2888	105	b
-	C-O str a ₁	1746	2142	2048	2105	359	b
	CH2 scis a ₁	1500	1538	1467	1457	-43	b
	CH2 a-str b ₁	2843	3168	2932	2970	127	b
	CH2 rock b ₁	1249	1243	1161	1196	-53	b
	CH2 wag b_2	1167	1186	1165	1124	-43	b
trans-Glyoxal	C-H str a_q	2843	3178	2897	2939	96	с
-	C-O str a_g	1745	2126	2052	2104	359	с
	C-H bend a_g	1338	1370	1320	1311	-27	с
	C-C str a_g	1065	1041	1145	1079	14	с
	CCO def a_q	551	543	536	529	-22	с
	C-H bend a_u	801	787	755	745	-56	с
	Torsion a_u	127	0	37	0	-127	с
	C-H bend b_g	1048	1088	1035	1058	10	с
	C-H str b_u	2835	3192	2911	2955	120	с
	C-O str b_u	1732	2125	2040	2106	374	с
	C-H bend b_u	1312	1275	1233	1217	-95	с
	CCO def b_u	339	366	331	329	-10	с
Nitrous oxide	N-N str σ^+	2224	2611	2509	2278	54	b
	NNO bend π	589	443	435	404	-185	b
	N-O str σ^+	1285	1437	1328	1340	55	b
Nitric acid	O-H str a'	3550	3735	3118	3429	-121	с
	NO2 a-str a'	1708	1978	1925	1947	239	с
	OH bend a'	1331	1497	1479	1463	132	с
	NO2 s-str a'	1325	1405	1244	1199	-126	с
	NO2 scis a'	879	1017	1122	1056	177	с
	NO str a'	647	590	499	508	-139	с
	NO2 rock a'	579	511	434	441	-138	с
	NO2 wag a"	762	629	575	554	-208	с
	Torsion a"	456	424	419	452	-4	с

a Experimental data cited in: [121]; b [157]; c [158]

7.2 Radikale

Die Standardbildungsenthalpien der Radikale werden mit OM3 ähnlich gut wie mit OM2 berechnet (vgl. Tabelle 7.20). Die Enthalpien der Radikalkationen werden bei allen drei Verfahren schlechter beschrieben als die der neutralen Systeme. Allerdings nimmt der Unterschied von OM1 nach OM3 ab (vgl. Tabelle 7.20). Die Standardbildungsenthalpien der radikalischen Kohlenwasserstoffe werden mit OM3 gut reproduziert, bei Systemen mit Heteroatomen ist der Fehler größer. Bei letzteren zeigt OM3 die Tendenz, die Standardbildungsenthalpien zu unterschätzen.

	Ν	OM1	OM1	OM2	OM2	OM3	OM3	OM3
		\overline{x}	MAF	\overline{x}	MAF	\overline{x}	MAF	σ
Standardbildungser	nthalp	oien [kcal/r	nol]					
All molecules	42	-4.48	7.07	-1.82	4.83	-3.39	5.28	6.43
CH compounds	23	-2.09	5.15	-1.24	4.74	-1.35	4.26	5.09
CHN compounds	6	-2.16	6.21	-0.46	5.60	-5.88	6.92	8.73
CHO compounds	6	-10.33	12.07	-5.47	5.84	-6.93	7.32	9.98
HNO compounds	6	-10.23	10.80	-2.54	3.80	-5.31	5.90	6.93
Neutral radicals	35	-2.50	5.60	-0.88	4.49	-2.91	5.13	6.38
Radical cations	7	-14.41	14.41	-6.54	6.54	-5.79	5.99	7.19
Ionisierungspotenti	ale [e	eV]						
All molecules	25	-0.03	0.38	0.14	0.37	0.34	0.53	0.68
CH compounds	17	0.07	0.30	0.10	0.21	0.38	0.47	0.54

Tabelle 7.20: Statistik der Radikale

Tabelle 7.21: Standardbildungsenthalpien [kcal/mol] der Radikale

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
CH Doublet	142.4	137.3	140.0	138.1	-4.3		а
CH ₂ ⁺ Doublet	331.0	313.8	322.5	324.9	-6.1		а
Carbene Triplet	92.3	91.3	91.9	90.3	-2.0		b
Carbene Singlet	99.8	102.0	103.9	101.3	1.5		b
Methyl	34.8	36.8	33.7	35.2	0.4		а
Ethyl	28.0	24.6	24.8	24.7	-3.3		а
n-Propyl	24.0	19.8	20.7	20.3	-3.7	0.5	а
<i>i</i> -Propyl	22.3	14.8	14.7	13.8	-8.5	0.6	а
<i>n</i> -Butyl	18.0	14.8	16.3	15.9	-2.1		а
sec-Butyl	17.0	9.7	9.9	8.8	-8.2	0.4	а
<i>i</i> -Butyl	16.0	16.9	14.7	15.0	-1.0		а
tert-Butyl	11.0	7.7	3.7	2.8	-8.2	0.6	а
Ethylene cation	254.8	244.4	244.8	251.5	-3.3		а
Vinyl	63.4	66.0	67.4	66.4	3.0	1.0	а

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
Acetylene cation	317.4	309.3	312.4	318.1	0.7		а
Allyl	39.0	41.8	42.9	43.6	4.6		а
Propargyl	82.0	87.3	87.9	87.4	5.4		а
Propenyl ecl	58.1	58.3	57.9	56.7	-1.4		а
Cyclopropenyl	105.0	108.2	114.9	110.2	5.2	4.0	а
Cyclopropyl	66.9	61.7	64.9	63.1	-3.8		а
Cyclopentadienyl	58.0	66.9	65.3	65.1	7.1	1.0	а
Phenyl	79.0	71.6	71.5	70.4	-8.6	1.0	а
Phenoxy	11.4	16.6	12.5	12.6	1.2		а
Benzyl	49.0	56.1	54.1	54.6	5.6		а
Amidyl	45.1	42.1	47.8	39.3	-5.8	0.2	а
NH ₂ ⁺ Triplet	302.0	292.0	299.0	292.2	-9.8		а
Ammonia cation	223.2	219.0	216.6	214.4	-8.8		а
Aminomethyl	38.0	30.1	29.3	25.2	-12.8	2.0	а
Cyanide	104.0	112.7	111.6	102.7	-1.3	2.0	а
Cyanomethyl	59.0	62.4	64.1	62.1	3.1	2.0	а
Azidyl	99.0	100.7	100.0	100.8	1.8	7.0	b
Hydroxyl	9.3	4.0	5.3	4.3	-5.0	0.3	а
OH ⁺ Triplet	309.1	279.3	301.9	301.8	-7.3		а
Water cation	233.0	211.9	227.5	227.0	-6.0		а
Formyl	10.7	-6.3	0.1	-4.4	-15.1		а
Methoxy	3.7	2.8	0.7	1.5	-2.2	0.7	а
Hydroxymethyl	-6.2	-12.7	-9.4	-10.5	-4.3	1.5	а
HO_2	2.5	-4.0	-4.3	-4.2	-6.7		а
Acetyl	-6.0	-19.0	-16.0	-19.9	-13.9	0.5	а
Cyanate	37.0	33.1	39.7	34.3	-2.7	3.0	а
Nitric oxide	21.8	6.1	24.5	15.2	-6.6		а
Nitrogen dioxide	7.9	-6.5	5.1	-1.5	-9.4		а

a [115]; b [117]

Bei der Berechnung der C–H Bindungslängen des Carbens mit Singulett und Triplett Elektronenkonfiguration zeigt sich das von OM3 nun schon bekannte Verhalten, dass zu lange Bindungen resultieren (vgl. Tabelle 7.22). Aber die Winkel von 136.0° und 102.4° werden mit 135.9° und 101.5° gut reproduziert.

Tabelle 7.22: Bindungslängen [Å] und Winkel [°]

	Symm.	Variable	Exp.	OM1	OM2	OM3	Δ	Ref.
Carbene Triplet	C_{2v}	C-H	1.029	1.063	1.061	1.073	0.044	а
		HCH	136.0	134.9	138.6	135.9	-0.1	а
Carbene Singlet	C_{2v}	C-H	1.110	1.116	1.143	1.149	0.039	а
		HCH	102.4	102.9	103.6	101.5	-0.9	а

a [117]
Während sich mit OM1 und OM2 relativ geringe Abweichungen bei der Berechnung der Ionisierungspotentiale ergeben, resultiert mit OM3, wie auch schon bei den Neutralmolekülen, ein recht großer Fehler. Vielfach erhält man zu hohe Werte für die Ionisierungspotentiale (wiederum in Koopmans' Näherung).

	Exp.	OM1	OM2	OM3	Δ	Ref.
CH Doublet	10.64	9.21	9.92	9.91	-0.73	а
Methyl	9.84	9.70	9.81	10.12	0.28	а
Ethyl	8.51	8.58	8.58	8.84	0.33	а
<i>n</i> -Propyl	8.43	8.54	8.55	8.81	0.38	а
<i>i</i> -Propyl	7.69	7.89	7.83	8.07	0.38	а
<i>n</i> -Butyl	8.50	8.56	8.48	8.93	0.43	а
sec-Butyl	7.59	7.82	7.76	8.01	0.42	а
<i>i</i> -Butyl	8.31	8.58	8.55	8.91	0.60	а
tert-Butyl	6.92	7.32	7.19	7.42	0.50	а
Vinyl	9.45	9.40	9.31	9.68	0.23	а
Allyl	8.13	7.96	8.07	8.35	0.22	а
Propargyl	8.34	8.17	8.42	8.64	0.30	а
Cyclopropenyl	5.80	6.61	6.73	7.04	1.24	а
Cyclopropyl	8.05	8.53	8.45	8.77	0.72	а
Cyclopentadienyl	8.69	8.73	8.73	9.02	0.33	а
Phenyl	9.20	9.59	9.19	9.67	0.47	а
Phenoxy	8.84	8.38	8.59	8.86	0.02	а
Benzyl	7.20	7.23	7.34	7.61	0.41	а
Amidyl	12.45	12.03	12.43	12.54	0.09	а
Ammonia cation	23.50	21.60	22.01	21.96	-1.54	а
Cyanide	14.17	14.38	14.16	14.05	-0.12	а
Formyl	9.31	9.04	9.61	9.68	0.37	а
HO_2	11.53	11.39	12.21	12.42	0.89	а
Nitric oxide	9.25	9.50	10.35	10.05	0.80	а
Nitrogen dioxide	9.80	10.66	11.48	11.37	1.57	а

Tabelle 7.23: Ionisierungspotentiale [eV] der Radikale

a [159]

7.3 Ionische Systeme

In die Parametrisierung wurden einige Ionen einbezogen. Bei den Anionen waren es Cyclopentadienyl, Cyanid sowie Hydroxid, und von den Kationen wurden H_3O^+ sowie NH_4^+ berücksichtigt.

7.3.1 Anionen

Betrachtet man Tabelle 7.24, so erkennt man, dass die Standardbildungsenthalpien meist von OM1 nach OM3 abnehmen. Die beiden einzigen Ausnahmen bilden das Cyanid-Ion, das mit OM1 leicht stabiler als mit OM2 berechnet wird, und das Hydrid-Ion, dessen berechnete Enthalpie von OM1 zu OM3 ansteigt.

Schlecht beschrieben werden die anorganischen Anionen. Ebenfalls deutlich zu stabil werden Alkoholate und mit etwas kleineren Abweichungen die Säureanionen berechnet.

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
H-	33.2	52.3	56.7	61.1	27.9		а
CH_3^-	33.2	56.7	48.9	41.3	8.1	1.9	b
$CH_3CH_2^-$	35.1	43.2	36.6	30.3	-4.8	2.2	b
HCC ⁻	65.5	71.2	61.9	61.7	-3.8	2.4	b
CH_2CH^-	52.8	58.4	52.7	47.9	-4.9	2.2	b
$c-C_5H_5^-$	19.6	30.0	28.2	20.9	1.3	3.8	b
$C_6H_5^-$	54.7	51.8	44.9	41.6	-13.1	0.7	b
NH_2^-	27.0	56.7	51.6	39.8	12.8	1.0	b
CH_3NH^-	32.0	38.4	31.9	25.6	-6.4	1.2	b
$(CH_3)_2N^-$	26.1	27.6	17.4	17.1	-9.0	1.7	b
$C_4H_4N^-$	18.9	32.7	25.5	20.9	2.0	3.1	b
NC ⁻	17.7	22.4	23.5	15.7	-2.0	2.2	b
CH_2CN^-	25.1	40.9	37.9	32.7	7.6	2.9	b
OH ⁻	-32.7	-4.3	-24.2	-29.0	3.7		b
CH_3O^-	-33.2	-34.0	-46.1	-51.1	-17.9	2.4	b
$C_2H_5O^-$	-44.5	-38.9	-52.7	-58.1	-13.6	2.4	b
$C_6H_5O^-$	-39.4	-29.6	-39.2	-46.2	-6.8	2.4	b
HCOO-	-110.9	-102.4	-111.8	-118.7	-7.8	3.1	b
CH ₃ COO	-120.5	-106.3	-121.9	-127.6	-7.1	3.1	b
$C_6H_5COO^-$	-97.3	-82.8	-99.8	-103.7	-6.4	3.3	b
HOO-	-22.5	-7.6	-27.5	-33.9	-11.4	2.4	b
HCO-	1.9	-14.0	-22.8	-28.5	-30.4	1.0	b
NO_2^-	-45.2	-43.8	-51.1	-55.6	-10.4	2.4	b
$CH_2NO_2^-$	-27.2	-11.1	-36.5	-37.4	-10.2	3.1	b
\overline{x}		9.92	0.63	-4.28			
MAF		11.55	8.37	9.56			

Tabelle 7.24: Standardbildungsenthalpien [kcal/mol]

a [117]; b [115]

7.3.2 Kationen

Ebenso wie bei OM1 und OM2 wird auch bei OM3 die Energieabfolge der klassischen und nichtklassischen Konfiguration von $C_2H_3^+$ und $C_2H_5^+$ vertauscht. Die

	Schwingung	Exp.	OM1	OM2	OM3	Δ	Ref.
$\rm NH_2^-$	N-H s-str a1	3122	3315	1320	2991	-131	а
	HNH bend a1	1523	1927	806	1650	127	а
	N-H a-str b2	3190	3392	2419	3082	-108	а
NO_2^-	N-O s-str al	1268	1657	1764	1653	385	а
	N-O a-str b2	1242	1690	759	1603	362	а
MAF			327.4	292.3	222.5		

Tabelle 7.25: Schwingungfrequenzen der Anionen [cm⁻¹]

a [160]

Geometrien werden mit allen drei Verfahren gut reproduziert (vgl. Tabelle 7.28).

	Ν	OM1	OM1	OM2	OM2	OM3	OM3	OM3		
		\overline{x}	MAF	\overline{x}	MAF	\overline{x}	MAF	σ		
Standardbildungsenthalpien [kcal/mol]										
All molecules	33	-8.47	9.90	-0.96	7.16	0.35	7.17	9.86		
CH compounds	15	-6.78	8.93	-5.25	8.47	-1.00	7.32	11.30		
CHN compounds	5	-8.09	8.09	-1.67	4.27	-7.18	7.18	10.44		
CHO compounds	11	-9.28	10.61	2.20	5.14	5.13	7.32	9.40		
Wellenzahlen [cm-	-1]									
All molecules	22	124.2	155.4	-21.4	148.7	-29.7	146.7	202.3		

Tabelle 7.26: Statistik der Kationen

Tabelle 7.27: Standardbildungsenthalpien [kcal/mol] der Kationen

	Exp.	OM1	OM2	OM3	Δ	Ref.
H^+	365.7	348.2	343.8	339.4	-26.3	а
CH^+	387.8	348.0	366.9	364.7	-23.1	b
CH_3^+ methyl	261.3	254.1	255.7	262.4	1.1	b
$C_2H_3^+$ nonclassical	265.9	273.5	280.4	282.2	16.3	b
$C_2H_3^+$ classical ¹	268.9	255.5	258.5	262.9	-6.0	e
$C_2H_5^+$ nonclassical	215.6	221.9	222.9	227.7	12.1	b
$C_2H_5^+$ class ¹	220.8	213.4	213.4	219.2	-1.6	e
$C_3H_3^+$ cyclopropenyl	257.0	250.5	259.4	262.2	5.2	b
HCCCH ⁺ ₂ propargyl	282.0	270.0	276.4	280.9	-1.1	b
$C_3H_5^+$ allyl	226.0	220.6	223.7	230.7	4.7	b
$C_3H_7^+$ 2-propyl	190.9	187.4	185.1	190.0	-0.9	b
$C_3H_7^+$ 1-propyl	211.0	206.0	206.6	212.3	1.3	b
$C_4H_7^+$ methylallyl	207.9	199.2	199.3	205.7	-2.2	с
$C_4H_9^+$ n-butyl sec	183.0	179.4	176.8	182.1	-0.9	b
$C_4H_9^+$ tert-butyl	165.8	167.9	159.4	164.6	-1.2	b

	Exp.	OM1	OM2	OM3	Δ	Ref.
$C_6H_5^+$ phenyl	269.3	260.8	254.6	262.6	-6.7	b
C ₆ H ₅ CH ₂ ⁺ benzyl	215.0	215.2	214.6	221.7	6.7	b
$\rm NH_2^+$ triplet	302.0	292.0	299.0	292.2	-9.8	b
$\rm CH_2 NH_2^+$	179.4	173.9	174.9	173.9	-5.5	f
HCNH ⁺	226.0	208.4	221.6	211.5	-14.5	b
CH_3CNH^+	195.0	190.4	201.5	190.8	-4.2	b
C ₅ H ₅ NH ⁺ pyridinium	178.0	175.3	175.0	176.6	-1.4	b
OH ⁺ triplet	309.1	279.3	301.9	301.8	-7.3	b
CHO ⁺ formyl	197.3	174.8	194.8	192.6	-4.7	b
$CH_{3}CHOH^{+}$	139.0	132.4	138.8	144.0	5.0	b
CH ₃ CO ⁺ acetyl	156.0	149.7	162.3	160.6	4.6	b
H_3O^+	141.0	134.9	142.9	141.7	0.7	b
$\rm CH_3OH_2^+$	136.0	134.8	142.4	146.6	10.6	b
$(CH_3)_2OH^+$	130.0	137.3	141.8	151.2	21.2	b
C ₄ H ₅ O ⁺ furan C-prot	165.0	163.1	161.5	170.6	5.6	b
OCOH ⁺	141.0	128.1	150.8	148.5	7.5	b
H_2COH^+	169.3	157.4	166.4	172.4	3.1	d
$HC(OH)_2^+$	96.0	85.9	100.2	106.0	10.0	b
NO ⁺	235.3	222.1	259.8	243.6	8.3	b
NO_2^+	233.0	210.7	239.7	230.8	-2.2	b

1 Diese Verbindungen werden in der Statistik nicht berücksichtigt.

a [114]; b [115]; c [161]; d [162];

e [162] (MP4SDQ/6-31G**//RHF/6-31G*);

f [163] (W2)

Tabelle 7.28:	Bindungslängen	[Å] und	l Winkel	[°]
Tabelle 7.20.	Dindungslangen	[11] unc	i vv mixer	LJ

	Symm.	Variable	Exp.	OM1	OM2	OM3	Δ	Ref.
CH ⁺	C_{0v}	C-H	1.131	1.150	1.120	1.157	0.026	а
$C_2H_3^+$ nonclassical	C_{2v}	C-C	1.207	1.264	1.242	1.268	0.061	b
		C-H term	1.071	1.063	1.079	1.079	0.009	b
		C-H br	1.270	1.394	1.315	1.379	0.110	b
		CCH	179.1	171.8	174.4	174.0	-5.2	b
$C_2H_5^+$ nonclassical	C_{2v}	C-C	1.372	1.400	1.372	1.402	0.031	b
		C-H br	1.307	1.395	1.326	1.384	0.077	b
		C-H term	1.077	1.091	1.095	1.103	0.026	b
		CCH(br)	58.3	59.9	58.9	59.6	1.2	b
		HCH(br)	120.7	121.3	121.3	121.9	1.2	b
		C-CH2	178.3	169.7	171.6	171.7	-6.6	b
		HCH/2	59.3	58.2	58.3	57.7	-1.6	b
		H(br)CCH	91.0	96.3	95.2	95.2	4.2	b
$C_2H_5^+$ class	C_s	C-C	1.432	1.414	1.396	1.415	-0.017	b
		C-H	1.079	1.101	1.104	1.115	0.036	b
		C-H	1.115	1.114	1.101	1.117	0.001	b
		C-H	1.081	1.094	1.090	1.100	0.018	b
		CCH	121.4	121.1	120.5	121.3	-0.1	b

	Symm.	Variable	Exp.	OM1	OM2	OM3	Δ	Ref.
		CCH	114.7	113.8	113.9	114.5	-0.2	b
		HCH/2	57.3	55.7	56.2	55.5	-1.8	b
		HCH/2	58.5	58.9	59.4	58.7	0.2	b
		C-CH2	176.0	178.7	178.9	178.7	2.8	b
		C-CH2	140.6	135.6	136.6	137.0	-3.6	b
		CCH	98.2	104.7	106.6	106.5	8.4	b
		HCCH	112.2	115.5	114.7	115.1	3.0	b
		HCCH	272.5	270.8	270.6	270.8	-1.7	b
$C_2H_5^+$ class	C_s	C-C	1.441	1.414	1.395	1.415	-0.026	b
		C-H	1.078	1.090	1.087	1.096	0.018	b
		C-H	1.097	1.105	1.097	1.110	0.013	b
		C-H	1.079	1.101	1.103	1.114	0.035	b
		C-H	1.079	1.103	1.104	1.116	0.037	b
		CCH	107.4	109.3	110.2	110.5	3.1	b
		C-CH2	118.6	122.2	122.4	123.4	4.8	b
		CCH	114.9	114.4	114.9	115.3	0.4	b
		CCH	122.8	121.6	121.0	121.7	-1.1	b
		CCH	120.4	120.7	120.2	121.0	0.6	b
		HCH/2	51.4	51.6	50.0	50.5	-0.9	b
		HCCH	55.0	56.2	54.6	55.5	0.5	b
OH ⁺ triplet	C_{0v}	O-H	1.029	1.053	1.018	1.080	0.051	а
NO ⁺	C_{0v}	N-O	1.063	1.128	1.102	1.142	0.078	а

a [142]; b [164]

	Schwingung	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
CH_3^+ methyl	HCH oop a"	1380	1453	1382	1396	16	20	а
	C-H str e'	3108	3335	3139	3124	16		а
$\rm NH_2^+$ triplet	HNH bend a ₁	840	896	564	176	-664	50	а
	N-H a-str b ₂	3360	3301	2916	3194	-166		а
$\rm NH_2^+$ singlet	N-H s-str a ₁	2900	3442	3032	3118	218	50	а
	HNH bend a ₁	1350	1491	1420	1328	-22	50	а
$\rm NH_4^+$	N-H str t ₂	3343	3432	3280	3224	-119		а
	HNH bend t ₂	1447	1561	1701	1560	113		а
HCNH ⁺	N-H str σ_g	3483	3522	3296	3296	-187		а
	C-H str σ_g	3188	3326	3075	3090	-98		а
	C-N str σ_g	2156	2483	2379	2320	164		а
	HCN bend π	802	941	950	918	117		а
	HNC bend π	646	765	727	827	181		а
CHO ⁺ formyl	C-H str σ_g	3089	3376	3089	3123	34		а
	HCO bend π	830	988	933	978	148		а
	C-O str σ_g	2184	2462	2299	2384	200		а
H_3O^+	umbrella a_1	954	991	1144	820	-134		а
	O-H str e	3536	3435	3018	3266	-270		а
	HOH def e	1626	1561	1610	1549	-77		а

	Schwingung	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
NO_2^+	N-O s-str σ_g	1397	1563	1448	1477	80		а
	ONO bend π	639	521	489	463	-176		а
	N-O a-str σ_g	2362	2506	2258	2335	-27		а

a [160]

Die sich mit OM3 ergebenden Wellenzahlen der kationischen Systeme stimmen mit den experimentellen Werten abgesehen von der Spreizschwingung des NH_2^+ Tripletts ($\Delta = -664 \text{ cm}^{-1}$) gut überein. Ohne diese Schwingung betragen die mittleren absoluten Fehler der Schwingungsfrequenzen: OM1 (160.1 cm⁻¹), OM2 (142.6 cm⁻¹) und OM3 (122.1 cm⁻¹).

7.4 Vertikale Anregungsenergien

Die Güte von OM3 bei der Berechnung vertikaler Anregungsenergien wurde mit einem Validierungssatz untersucht, der 129 Singulett- und 61 Triplettanregungen enthält. Als Referenzwerte wurden aus CASPT2 Rechnungen erhaltene Energien verwendet. Zur Bestimmung der semiempirischen Energien wurden CISDTQ Rechnungen im GUGACI-Formalismus [85] durchgeführt. Dieses Verfahren berücksichtigt die Elektronenkorrelation für elektronisch angeregte Zustände explizit (vgl. auch Kapitel 5.5). Die Zuordnung der Energien erfolgt anhand der Symmetrie der Anregung und ihrer energetischen Abfolge. In Kapitel 5.5 wurde schon erwähnt, dass die Verwendung von Orthogonalisierungskorrekturen eine wesentliche qualitative und quantitative Verbesserung bei der Berechnung von Anregungsenergien bewirkt. Die mittleren absoluten Fehler aller drei Verfahren sind relativ gering (Tabelle 7.30). OM3 zeigt die kleinsten Abweichungen.

Die Triplettanregungen werden von den OMx Methoden besser beschrieben als die Singulettanregungen.

Semiempirische Methoden werden vorwiegend bei Anregungen mit niedrigen Valenzzuständen eingesetzt. Bei sehr hohen Energien werden tendenziell größere Fehler beobachtet. So sind auch bei den OM Methoden die Berechnungen der höheren $\pi\pi^*$ Anregungen, besonders in Amiden, teilweise problematisch.

	Ν	OM1	OM1	OM2	OM2	OM3	OM3	OM3
		\overline{x}	MAF	\overline{x}	MAF	\overline{x}	MAF	σ
All molecules	190	-0.36	0.48	-0.38	0.51	-0.27	0.44	0.56
Singlet \rightarrow single	let vale	nce trans	itions					
All molecules	129	-0.34	0.49	-0.38	0.54	-0.28	0.46	0.61

Tabelle 7.30: Statisik der Anregungsenergien [eV]

	Ν	OM1	OM1	OM2	OM2	OM3	OM3	OM3
		\overline{x}	MAF	\overline{x}	MAF	\overline{x}	MAF	σ
1st	28	-0.34	0.50	-0.31	0.48	-0.21	0.41	0.49
2nd	26	-0.29	0.40	-0.43	0.52	-0.29	0.37	0.46
3rd	24	-0.55	0.60	-0.67	0.71	-0.59	0.66	0.93
higher	51	-0.26	0.48	-0.26	0.50	-0.16	0.44	0.55
Singlet \rightarrow triplet	vələr	nce transit	tions					
All molecules	61	-0.41	0.47	-0.37	0.45	-0.27	0.38	0.46
1 st	20	-0.50	0.41	-0.42	0.40 0.42	-0.34	0.30	0.40
2nd	$\frac{20}{20}$	-0.48	0.00	-0.42	0.42	-0.37	0.04 0.41	0.51
higher	21	-0.25	0.40 0.43	-0.21	0.01 0.41	-0.12	0.41 0.40	0.51
ingher	21	0.20	0.10	0.21	0.11	0.12	0.10	0.10
Compounds with	$\pi \to$	π^* trans	itions on	ly				
Singlet \rightarrow single	t vale	nce transi	itions					
All molecules	54	-0.11	0.40	-0.07	0.39	-0.03	0.38	0.47
1st	11	-0.14	0.32	-0.13	0.30	-0.10	0.28	0.35
2nd	10	-0.20	0.41	-0.16	0.38	-0.13	0.36	0.43
3rd	9	-0.19	0.27	-0.15	0.27	-0.11	0.26	0.33
higher	24	-0.03	0.48	0.03	0.48	0.06	0.49	0.58
Singlet \rightarrow triplet	valer	nce transit	tions					
All molecules	29	-0.23	0.36	-0.16	0.31	-0.13	0.31	0.39
1st	9	-0.32	0.32	-0.24	0.24	-0.22	0.22	0.27
2nd	8	-0.38	0.39	-0.31	0.34	-0.28	0.33	0.41
higher	12	-0.06	0.37	-0.00	0.34	0.04	0.36	0.47
8								
Compounds with	$n \rightarrow n$	π^* trans	itions als	0				
Singlet \rightarrow single	t vale	nce transi	itions					
All molecules	75	-0.50	0.56	-0.61	0.65	-0.45	0.52	0.69
1st	17	-0.47	0.61	-0.43	0.60	-0.28	0.49	0.57
2nd	16	-0.34	0.40	-0.60	0.60	-0.39	0.39	0.50
3rd	15	-0.77	0.79	-0.97	0.97	-0.88	0.90	1.17
higher	27	-0.46	0.49	-0.51	0.53	-0.36	0.40	0.54
Singlet \rightarrow triplet	valer	nce transit	tions					
All molecules	32	-0.57	0.57	-0.56	0.57	-0.40	0.45	0.52
1st	11	-0.65	0.65	-0.57	0.57	-0.44	0.44	0.51
2nd	11	-0.59	0.59	-0.67	0.68	-0.47	0.50	0.62
higher	10	-0.45	0.46	-0.43	0.45	-0.28	0.42	0.49

Tabelle 7.31: Singulett- und Triplettanregungsenergien [eV]

	Übergang	Symm.	CASPT2	OM1	OM2	OM3	Δ	Ref.
Ethene	$\pi\pi^*$	${}^{1}B_{1u}$	7.98	7.82	7.78	7.85	-0.13	а
	$\pi\pi^*$	${}^{3}\mathrm{B}_{1\mathrm{u}}$	4.39	4.07	4.14	4.16	-0.23	b
E-Butadiene	$\pi\pi^*$	${}^{1}\mathrm{B}_{\mathrm{u}}$	6.23	6.24	6.22	6.26	0.03	b
	$\pi\pi^*$	$^{1}A_{g}$	6.27	5.88	5.96	5.98	-0.29	b
	$\pi\pi^*$	${}^{3}B_{u}^{\circ}$	3.20	2.99	3.04	3.04	-0.16	b

	Übergang	Symm.	CASPT2	OM1	OM2	OM3	Δ	Ref.
	$\pi\pi^*$	$^{3}A_{g}$	4.89	4.49	4.56	4.59	-0.30	b
Hexatriene	$\pi\pi^*$	${}^{1}B_{u}$	5.01	5.35	5.33	5.36	0.35	b
	$\pi\pi^*$	${}^{1}A_{\varphi}$	5.20	4.79	4.86	4.86	-0.34	b
	$\pi\pi^*$	${}^{3}B_{u}$	2.55	2.41	2.46	2.45	-0.10	b
	$\pi\pi^*$	$^{3}A_{\sigma}$	4.12	3.73	3.80	3.81	-0.31	b
Octatetraene	$\pi\pi^*$	${}^{1}A_{\sigma}$	4.38	4.09	4.14	4.13	-0.25	с
	$\pi\pi^*$	¹ B ₁	4.42	4.79	4.77	4.79	0.37	с
	$\pi\pi^*$	${}^{1}B_{1}$	5.83	5.06	5.13	5.14	-0.69	с
	$\pi\pi^*$	$^{1}A_{\sigma}$	6.56	5.66	5.74	5.75	-0.81	с
	$\pi\pi^*$	${}^{1}A_{\sigma}^{5}$	7.14	6.40	6.41	6.44	-0.70	с
	$\pi\pi^*$	¹ B.	8.44	7.09	7.19	7.22	-1.22	с
	$\pi\pi^*$	³ B.	2.17	2.09	2.12	2.11	-0.06	с
	$\pi\pi^*$	$^{3}A_{\pi}$	3.39	3.18	3.23	3.24	-0.15	c
Cyclopropene	$\sigma\pi^*$	${}^{1}B_{1}$	6.36	6.33	5.75	5.93	-0.43	d
cyclopropene	$\pi\pi^*$	${}^{1}B_{2}$	7.45	6.59	6.42	6.39	-1.06	d
	$\pi\pi^*$	$^{3}B_{2}$	4 18	3 77	3 80	3 72	-0.46	d
	$\sigma\pi^*$	${}^{3}B_{1}$	6.05	6.01	5 48	5 65	-0.40	d
Cyclopenta-	$\pi\pi^*$	$^{1}B_{0}$	5 27	5 14	5.07	5.09	-0.18	e
diene	$\pi\pi^*$	$^{1}\Delta$.	6.31	5 52	5.60	5 59	-0.72	e
ulene	$\pi\pi^*$	¹ Δ.	7 89	7.63	7 47	7 53	-0.12	e
	ππ* ππ*	$^{3}B_{2}$	3.15	2.81	2.87	2.86	_0.00	e
	ππ*	3 A	4 90	1 23	1 30	2.00 4 31	0.23	0
Benzene	ππ*	л1 1 В.	4.90	4.23	4.30	4.51	-0.39	f C
Delizene	<i>ππ</i> *	$1_{\mathbf{B}}$	6 30	5 08	5.04	6.03	-0.33 0.27	f
	лл — — *	$1_{\rm T}$	7.03	7 13	7 16	7.20	-0.21 0.17	I f
	лл — — *	$1_{\rm E}$	7.03	7.13	7.10	7.20	0.17	I f
	*	1ը 1թ	7.03	7.13	7.10	7.20	0.17	I f
	<i>1111111111111</i>	L_{2g}	7.90	7.07	7.19	7.22	-0.00	I f
	7171 *	_{2g} 3р	7.90	2.66	274	2.76	-0.00	I f
	$\pi\pi$	D _{1u} 3г	5.69	5.00	5.74	5.70	-0.13	I f
	$\pi\pi$	- 1 ¹ и 3 гг	4.49	4.40	4.34	4.37	0.08	I r
	$\pi\pi$	$^{-}E_{1u}$ 3D	4.49	4.48	4.34	4.37	0.08	l f
	$\pi\pi^{*}$	$^{\circ}D_{2u}$ $_{3\Gamma}$	5.49	5.19	5.80	5.85	0.30	I r
	$\pi\pi^{*}$	$^{\circ}E_{2g}$	7.12	0.20 6.20	6.30	0.34	-0.78	I r
D' 1 1	$\pi\pi$	$^{-}E_{2g}$	1.12	0.20	0.50	0.54	-0.78	1
Bipnenylene	$\pi\pi^{*}$	¹ Ag	4.49	4.32	4.39	4.40	-0.09	g
	$\pi\pi^*$	¹ A _g	5.30	5.38	5.47	5.45	0.15	g
	$\pi\pi^*$	$^{1}B_{1u}$	3.31	3.73	3.11	3.78	0.47	g
	$\pi\pi^*$	$^{1}B_{1u}$	4.85	5.74	5.76	5.79	0.94	g
	$\pi\pi^*$	$^{1}B_{1u}$	6.55	6.58	6.67	6.71	0.16	g
	$\pi\pi^*$	$^{1}B_{1u}$	6.66	7.19	7.29	7.32	0.66	g
	$\pi\pi^*$	${}^{1}B_{3g}$	3.23	3.86	3.85	3.86	0.63	g
	$\pi\pi^*$	$^{1}B_{3g}$	5.25	5.98	6.05	6.06	0.81	g
	$\pi\pi^*$	${}^{1}B_{3g}$	6.14	6.19	6.21	6.25	0.11	g
	$\pi\pi^*$	$^{1}B_{2u}$	5.20	5.41	5.47	5.46	0.26	g
	$\pi\pi^*$	$^{1}B_{2u}$	5.75	6.05	6.01	6.09	0.34	g
	$\pi\pi^*$	$^{1}B_{2u}$	6.07	6.59	6.68	6.70	0.63	g
Naphthalene	$\pi\pi^*$	$^{1}B_{3u}$	4.03	3.76	3.81	3.84	-0.19	h
	$\pi\pi^*$	$^{1}\mathrm{B}_{2\mathrm{u}}$	4.56	4.85	4.83	4.87	0.31	h

	Übergang	Symm.	CASPT2	OM1	OM2	OM3	Δ	Ref.
	$\pi\pi^*$	$^{1}A_{g}$	5.39	5.16	5.23	5.27	-0.12	h
	$\pi\pi^*$	${}^{1}\mathrm{B}_{1g}$	5.53	5.67	5.74	5.76	0.23	h
	$\pi\pi^*$	${}^{1}B_{3u}$	5.54	6.12	6.16	6.18	0.64	h
	$\pi\pi^*$	${}^{1}B_{1g}$	5.87	6.29	6.24	6.31	0.44	h
	$\pi\pi^*$	${}^{1}B_{2u}$	5.93	6.22	6.23	6.28	0.35	h
	$\pi\pi^*$	${}^{1}A_{\sigma}^{2}$	6.04	5.94	6.03	6.05	0.01	h
	$\pi\pi^*$	${}^{1}B_{2u}^{5}$	7.16	7.55	7.68	7.71	0.55	h
	$\pi\pi^*$	${}^{1}B_{3u}$	7.18	6.68	6.80	6.83	-0.35	h
	$\pi\pi^*$	${}^{3}B_{2u}$	3.04	2.84	2.89	2.90	-0.14	h
	$\pi\pi^*$	${}^{3}B_{3u}$	3.84	3.87	3.91	3.94	0.10	h
	$\pi\pi^*$	${}^{3}B_{1a}$	4.18	4.00	4.07	4.09	-0.09	h
	$\pi\pi^*$	${}^{3}B_{2}$	4.24	4.22	4.28	4.31	0.07	h
	$\pi\pi^*$	${}^{3}B_{3}$	4.40	4.95	4.95	4.99	0.59	h
	$\pi\pi^*$	$^{3}A_{\pi}$	5.22	4.82	4.90	4.93	-0.29	h
	$\pi\pi^*$	${}^{3}B_{1}$	5.65	5.71	5.79	5.83	0.18	h
	$\pi\pi^*$	$^{3}A_{\pi}$	5.77	5.68	5.76	5.79	0.02	h
	$\pi\pi^*$	$^{3}A_{-}$	5 85	6 50	6 51	6 58	0.73	h
	$\pi\pi^*$	${}^{3}B_{1}$	6.18	6.46	6 4 9	6.52	0.34	h
Pyrrole	$\pi\pi^*$	$^{1}A_{1}$	5.10	5.21	5.28	5 29	-0.63	e
1 ynoie	$\pi\pi^*$	$^{1}B_{2}$	6.00	5 77	5.20	5.94	-0.06	e
	<i>ππ</i> *	$^{1}\Delta$	7.46	7 10	7.18	7 16	-0.30	e
	<i>ππ</i> *	$^{3}B_{2}$	4 27	3 55	3 76	3.80	-0.30	e
	<i>ππ</i> *	$^{3}\Lambda$	5.16	<i>J.JJ</i> <i>A 4</i> 6	<i>J</i> .70 <i>A</i> 59	5.69 4.64	-0.50 -0.52	e
s-Tetrazine	$n\pi^*$	$^{1}B_{2}$	2.00	7. 1 0 2.66	2.83	2.88	0.52	i
Imidazole	nπ*	1 A //	6.52	2.00 5.87	6.00	6.08	0.00	i
minuazoie	ΠΛ ππ*	1Λ'	6.72	5.50	5 50	5.85	-0.44	J i
	~~* ~~*	1 /	7.15	5.05	6.04	6.16	-0.01	J i
	n n = *	1 / //	7.15	6.81	6 70	6 70	-0.99	J i
	11// 	Α 1 Λ /	7.50	7.40	7.45	7.60	-0.80	J
	*	Α. 3 Λ /	0.31 4.40	2 70	2.05	1.09	-0.62	J
	*	Α. 3 Λ /	4.49	3.70 4 77	J.95 4.05	4.00 5.27	-0.45	J
	<i>ππ</i> nπ*	A 3 \\ //	5.47	4.77 5.43	4.95	5.27	-0.20	J
	*	AL 3 A /	6.52	5.45	5.60	5.00	-0.57	J
	*	Α. 3 Λ /	7.08	6.79	6.20	5.33	-0.54	J
	<i>ππ</i> <i>n</i> -*	A 3 <u>\</u> //	7.08	0.20 6.50	6.47	6.22	-0.71	J
Druiding	*		7.13	0.50	0.47	1.02	-0.62	J 1-
Fyndine	<i>1111111111111</i>	$1D_{2}$	4.04	4.50	4.05	4.03	-0.01	K 1-
	$n\pi$	- Б ₁ 1 л	4.91	4.85	4.85	4.80	-0.00	K 1-
	$n\pi$	$^{-}A_{2}$	5.17	5.17	5.06	4.84	-0.33	K
	$\pi\pi^{*}$	$^{-}A_{1}$	6.42	0.14	0.11	0.25	-0.17	K 1
	$\pi\pi^{+}$	$^{-}A_{1}$	7.23	7.44	7.45	7.05	0.40	K 1
	$\pi\pi^*$	$^{1}B_{2}$	7.48	7.09	7.20	7.44	-0.04	K
	$\pi\pi^*$	$^{+}B_{2}$	7.95	1.39	/.48	7.62	-0.33	K
	$\pi\pi^*$	⁺ A ₁	7.96	1.53	7.69	8.09	0.13	K
	$\pi\pi$	$^{\circ}A_{1}$	4.05	3.78	3.86	3.94	-0.11	K 1
	$n\pi_{\star}$	^ч В ₁	4.41	4.37	4.48	4.47	0.06	k
	$\pi\pi^*$	$^{3}B_{2}$	4.56	4.57	4.66	4.83	0.27	k
	$\pi\pi^*$	$^{\circ}A_{1}$	4.73	4.67	4.74	4.97	0.24	k
	$n\pi^*$	${}^{3}A_{2}$	5.10	5.11	4.96	4.75	-0.35	k

	Übergeng	Summ	CASDT2	OM1	OM2	OM3	Δ	Dof
		$\frac{3}{D}$	CASI 12	6.02	5.07	6.17	0.15	le
	~~* ~~*	D2 3р	7.28	6.42	5.57	6.82	0.15	к 1-
	$\pi\pi$	D2 Зл	7.20	0.42	0.J9 6 67	0.05	-0.40	K 1,
Deminsiding	$\pi\pi$	A ₁ 1D	2.95	4 42	4.24	1.00	-0.20	К 1
Pyrimaine	exp.	D1 1 л	3.05	4.43	4.54	4.30	0.00	1
	exp.	$^{-}A_2$	4.02	4.13	4.34	4.40	-0.22	1
Esemaldahuda	exp.	- Б2 1 л	J.12 2.01	4.//	4.00	3.22 2.50	0.10	1
Formaldenyde	11π	$^{+}A_{2}$	0.00	3.71	3.33 7.02	5.39 0.01	-0.32	m
	$\sigma\pi^*$	т Б ₁ 1 л	9.09	9.50	1.93 9.50	9.01	-0.00	m
	$\pi\pi$	⁻ A ₁ 3 A	9.11	9.21	8.39	8.07 2.24	-1.10	m
	$n\pi$	° A ₂ 3 A	5.40	5.40	5.25 5.62	3.24 6.07	-0.24	m
A 4 .	$\pi\pi^*$	$^{\circ}A_{1}$	5.99	5.07	5.03	6.07	0.08	m
Acetone	$n\pi$	$^{+}A_{2}$	4.18	3.80	3.98	4.05	-0.13	n
	$\sigma\pi$	⁻ В1	9.10	8.03	/./1	8.34	-0.70	n
	$\pi\pi$	[•] A ₁	9.10	8.55	8.08	8.51	-0.05	n
	$n\pi^*$	³ A ₂	5.90	3.33	3.14	3.19 5.70	-0.11	n
	$\pi\pi^*_{\pm}$	$^{9}A_{1}$	5.98	5.33	5.45	5.79	-0.19	n
Furan	$\pi\pi^*$	$^{1}B_{2}$	6.04	5.78	5.82	5.88	-0.16	e
	$\pi\pi^*_{\pm}$	$^{1}A_{1}$	6.16	5.39	5.43	5.51	-0.65	e
	$\pi\pi^*$	$^{1}A_{1}$	7.74	7.44	7.47	7.62	-0.12	e
	$\pi\pi^*$	$^{\circ}B_{2}$	3.99	3.40	3.50	3.53	-0.46	e
, <u> </u>	$\pi\pi^*$	$^{\mathrm{a}}\mathrm{A}_{1}$	5.15	4.44	4.54	4.59	-0.56	e
Phenol	$\pi\pi^*$	$,,^{1}B_{2u}$	4.53	4.23	4.30	4.33	-0.20	f
	$\pi\pi^*$	" ¹ B _{1u} "	5.80	5.66	5.66	5.74	-0.06	f
	$\pi\pi^*$	$,,^{1}E_{1u}$	6.50	6.64	6.76	6.80	0.30	f
	$\pi\pi^*$	$,,^{1}E_{1u}$ "	6.56	6.72	6.82	6.87	0.31	f
	$\pi\pi^*$	$,,^{1}E_{2g}$ "	7.14	6.85	6.91	6.95	-0.19	f
	$\pi\pi^*$	$,,^{1}E_{2g}$ "	7.72	7.17	7.25	7.29	-0.43	f
Formamide	$n\pi^*$	¹ A''	5.61	4.61	4.56	4.82	-0.79	0
	$\pi\pi^*$	$^{1}A'$	7.41	6.92	6.71	7.07	-0.34	0
	$\pi\pi^*$	$^{1}A'$	10.50	9.67	9.41	10.11	-0.39	0
	$n\pi^*$	$^{3}A^{\prime\prime}$	5.34	4.39	4.34	4.58	-0.76	0
	$\pi\pi^*$	$^{3}A'$	5.69	4.89	4.77	4.98	-0.71	0
N-Methyl-	$n\pi^*$	$^{1}\mathrm{A}^{\prime\prime}$	5.52	4.59	4.57	4.81	-0.71	0
formamide	$\pi\pi^*$	$^{1}A'$	6.71	6.53	6.22	6.40	-0.31	0
	$\pi\pi^*$	$^{1}A'$	9.70	8.54	8.45	8.16	-1.54	0
	$n\pi^*$	$^{3}A^{\prime\prime}$	5.35	4.38	4.36	4.58	-0.77	0
	$\pi\pi^*e$	$^{3}\mathrm{A'}$	5.42	4.74	4.55	4.67	-0.75	0
N,N-Dimethyl-	$n\pi^*$	$^{1}\mathrm{A}^{\prime\prime}$	5.64	4.57	4.56	4.77	-0.87	0
formamide	$\pi\pi^*$	$^{1}\mathrm{A}^{\prime}$	6.50	6.21	5.82	5.90	-0.60	0
	$\pi\pi^*$	$^{1}\mathrm{A'}$	9.73	7.95	7.75	7.33	-2.40	0
	$n\pi^*$	$^{3}\mathrm{A}^{\prime\prime}$	5.06	4.35	4.36	4.56	-0.50	0
	$\pi\pi^*$	$^{3}\mathrm{A'}$	5.41	4.61	4.35	4.39	-1.02	0
Acetamide	$n\pi^*$	$^{1}\mathrm{A}^{\prime\prime}$	5.54	4.59	4.75	4.98	-0.56	0
	$\pi\pi^*$	$^{1}\mathrm{A}^{\prime}$	7.21	6.76	6.63	6.95	-0.26	0
	$\pi\pi^*$	$^{1}\mathrm{A}^{\prime}$	10.08	8.93	8.64	9.02	-1.06	0
	$n\pi^*$	$^{3}\mathrm{A}^{\prime\prime}$	5.24	4.38	4.54	4.76	-0.48	0
	$\pi\pi^*$	$^{3}A'$	5.57	4.86	4.86	5.07	-0.50	0

	Übergang	Symm.	CASPT2	OM1	OM2	OM3	Δ	Ref.
N-Methyl-	$n\pi^*$	¹ A''	5.49	4.58	4.75	4.96	-0.53	0
acetamide	$\pi\pi^*$	$^{1}\mathrm{A}^{\prime}$	6.76	6.39	6.15	6.29	-0.47	0
	$\pi\pi^*$	$^{1}\mathrm{A}^{\prime}$	9.60	8.45	8.35	8.05	-1.55	0
	$n\pi^*$	$^{3}\mathrm{A}^{\prime\prime}$	5.22	4.37	4.55	4.75	-0.47	0
	$\pi\pi^*$	$^{3}\mathrm{A}^{\prime}$	5.43	4.71	4.65	4.76	-0.67	0
Propanamide	$n\pi^*$	$^{1}\mathrm{A}^{\prime\prime}$	5.48	4.67	4.85	5.06	-0.42	0
	$\pi\pi^*$	$^{1}\mathrm{A'}$	7.28	6.78	6.64	6.94	-0.34	0
	$\pi\pi^*$	$^{1}\mathrm{A}^{\prime}$	9.95	8.72	8.34	8.50	-1.45	0
	$n\pi^*$	$^{3}A^{\prime\prime}$	5.28	4.44	4.61	4.81	-0.47	0
	$\pi\pi^*$	$^{3}A'$	5.94	4.87	4.87	5.07	-0.87	0
Diazabicyclo-		¹ B	5.47	4.78	4.86	4.99	-0.48	р
[2,2,2]octane-		^{1}A	5.48	4.82	4.96	5.13	-0.35	р
3,6-dione		^{1}A	6.28	6.45	6.06	6.15	-0.13	р
		^{1}B	6.61	6.72	6.59	6.68	0.07	р
		^{1}B	7.51	7.60	7.33	7.38	-0.13	р
		$^{1}\mathrm{A}$	7.56	7.61	7.39	7.44	-0.12	р
		^{1}B	8.04	7.96	7.81	7.96	-0.08	р
		^{1}A	8.43	8.02	7.79	7.98	-0.45	р
Adenine	$\pi\pi^*$	$^{1}\mathrm{A}^{\prime}$	5.13	4.19	4.23	4.33	-0.80	q
	$\pi\pi^*$	$^{1}\mathrm{A}^{\prime}$	5.20	4.83	4.79	4.90	-0.30	q
	$\pi\pi^*$	$^{1}\mathrm{A}^{\prime}$	6.24	5.61	5.65	5.80	-0.44	q
	$\pi\pi^*$	$^{1}\mathrm{A}^{\prime}$	6.72	6.00	5.91	6.14	-0.58	q
	$\pi\pi^*$	$^{1}\mathrm{A'}$	6.99	6.02	6.03	6.27	-0.72	q
	$\pi\pi^*$	$^{1}\mathrm{A'}$	7.57	6.49	6.50	6.74	-0.83	q
	$n\pi^*$	$^{1}\mathrm{A'}$	6.15	4.81	4.60	4.62	-1.53	q
	$n\pi^*$	$^{1}\mathrm{A}^{\prime\prime}$	6.86	5.10	5.05	5.16	-1.70	q
Thymine	$\pi\pi^*$	$^{1}A'$	4.88	4.97	4.81	4.81	-0.07	r
	$\pi\pi^*$	$^{1}\mathrm{A}^{\prime}$	5.88	5.78	5.56	5.65	-0.23	r
	$\pi\pi^*$	$^{1}\mathrm{A}^{\prime}$	6.10	5.91	5.73	5.90	-0.20	r
	$\pi\pi^*$	$^{1}A'$	7.13	6.71	6.50	6.73	-0.40	r
	$n\pi^*$	$^{1}\mathrm{A}^{\prime\prime}$	4.39	4.34	4.52	4.68	0.29	r
	$n\pi^*$	$^{1}\mathrm{A}^{\prime\prime}$	5.91	5.32	5.47	5.69	-0.22	r
	$n\pi^*$	$^{1}\mathrm{A}^{\prime\prime}$	6.15	6.07	6.08	6.08	-0.07	r
	$n\pi^*$	$^{1}A^{\prime\prime}$	6.70	6.48	6.36	6.45	-0.25	r
Uracil	$n\pi^*$	$^{1}A^{\prime\prime}$	4.54	4.27	4.45	4.64	0.10	r
	$\pi\pi^*$	$^{1}A'$	5.00	5.05	4.88	4.90	-0.10	r
	$\pi\pi^*$	$^{1}A'$	5.82	5.78	5.68	5.86	0.04	r
	$n\pi^*$	$^{1}A^{\prime\prime}$	6.00	5.29	5.43	5.65	-0.35	r
	$n\pi^*$	$^{1}A^{\prime\prime}$	6.37	6.09	6.09	6.10	-0.27	r
	$\pi\pi^*$	$^{1}A'$	6.46	6.14	5.85	5.97	-0.49	r
	$n\pi^*$	$^{1}A^{\prime\prime}$	6.95	6.47	6.34	6.44	-0.51	r
	$\pi\pi^*$	$^{1}A'$	7.00	6.72	6.50	6.75	-0.25	r
				-	54 603			
a [165]; t) [166];	c [167];	d [168]; e	[169];	f [170)]; G	
g [171]; h	n [172];	1 [173];	j [174]; k	[175];	1 [176	b];	
m [177]; r	ı [178];	o [179];	р [180]; q	[181];	r [182	2]	

7.5 G2 und G3 Validierungssätze

Ebenso wie in Kapitel 5.8 wird auch hier der G3/99 Validierungssatz für die Betrachtung der mit OM3 erzielten Resultate in den G2/97 Satz und die zum G3/99 Satz hinzugekommenen Verbindungen aufgeteilt. Die Sätze wurden in Kapitel 5.8 vorgestellt. Viele Verbindungen der G2 und G3 Testsätze sind ebenfalls im CHNO Standardsatz enthalten (einschließlich einiger Problemfälle, die hier nicht nochmals diskutiert werden).

Die Standardbildungsenthalpien werden mit allen drei Verfahren gut reproduziert (Tabelle 7.34). OM3 berechnet die Aldehyde und Ketone zu stabil und die Ether zu instabil.

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
CH radical, doublet	142.5	137.3	140.0	138.1	-4.4	-	а
Triplet methylene	93.7	91.3	91.9	90.3	-3.4	0.6	а
Singlet methylene	102.8	102.0	103.9	101.3	-1.5	_	а
Methyl radical	35.0	36.8	33.7	35.2	0.2	0.1	а
Methane	-17.9	-13.8	-19.3	-18.0	-0.1	0.1	а
NH, triplet	85.2	80.1	85.4	79.8	-5.4	0.4	а
NH ₂ radical	45.1	42.1	47.8	39.3	-5.8	0.3	а
Ammonia	-11.0	-3.8	-5.9	-11.2	-0.2	0.1	а
OH radical	9.4	4.0	5.3	4.3	-5.1	0.1	а
Water	-57.8	-56.7	-56.5	-58.5	-0.7	0.0	а
Acetylene	54.2	53.6	54.2	54.7	0.5	0.1	а
Ethylene	12.5	11.9	12.9	13.9	1.4	0.1	а
Ethane	-20.1	-20.3	-21.2	-20.8	-0.7	0.1	а
Cyano radical	104.9	112.7	111.6	102.7	-2.2	0.5	а
Hydrogen cyanide	31.5	24.5	26.1	25.3	-6.2	1.0	а
Carbon monoxide	-26.4	-30.5	-20.3	-21.5	4.9	0.0	а
HCO radical, bent	10.0	-6.3	0.1	-4.4	-14.4	0.2	а
Formaldehyde	-26.0	-34.3	-30.3	-31.9	-5.9	0.1	а
Methanol	-48.0	-51.0	-49.3	-49.8	-1.8	0.1	а
N_2	0.0	-4.4	2.8	2.6	2.6	0.0	а
Hydrazine	22.8	15.2	18.5	16.5	-6.3	0.2	а
NO radical	21.6	6.1	24.5	15.2	-6.4	0.0	а
O_2	0.0	-7.1	2.0	-2.6	-2.6	0.0	а
Hydrogen peroxide	-32.5	-36.4	-35.3	-36.9	-4.4	_	а
Carbon dioxide	-94.1	-90.1	-80.5	-87.7	6.4	0.0	а
N_2O	19.6	19.7	21.2	20.7	1.1	0.1	а
Ozone	34.1	48.4	37.9	48.7	14.6	0.5	а
Propyne	44.2	45.0	44.5	44.1	-0.1	0.2	а
Allene	45.5	45.4	45.9	45.5	0.0	0.3	а
Cyclopropene	66.2	62.8	67.4	65.5	-0.7	0.6	а
Propene	4.8	4.4	4.7	5.0	0.2	0.2	а

Tabelle 7.32: Standardbildungsenthalpien [kcal/mol] (G2 Testsatz)

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
Cyclopropane	12.7	7.2	9.9	10.1	-2.6	0.1	а
Propane	-25.0	-25.2	-25.5	-25.4	-0.4	0.1	а
trans-1,3-Butadiene	26.3	28.2	29.4	30.3	4.0	0.2	а
2-Butyne	34.8	36.5	35.1	33.8	-1.0	0.3	а
Methylenecyclopropane	47.9	42.2	45.0	43.7	-4.2	0.4	а
Bicyclo[1.1.0]butane	51.9	59.0	62.0	59.9	8.0	0.2	а
Cyclobutene	37.4	39.0	41.3	40.8	3.4	0.4	а
Cyclobutane	6.8	-1.9	3.0	2.9	-3.9	0.1	а
Isobutene	-4.0	-0.4	-4.3	-3.9	0.1	0.2	а
trans-Butane	-30.0	-30.4	-30.1	-30.3	-0.3	0.2	а
Isobutane	-32.1	-28.3	-31.8	-31.3	0.8	0.2	а
Spiropentane	44.3	38.4	42.8	41.0	-3.3	0.2	а
Benzene	19.7	17.1	18.8	18.5	-1.2	0.2	а
Methylamine	-5.5	-4.7	-4.1	-5.8	-0.3	0.1	а
Methylcyanide	18.0	16.5	17.5	15.3	-2.7	0.2	а
Nitromethane	-17.8	-6.9	-17.3	-15.7	2.1	0.2	а
Methylnitrite	-15.9	-25.2	-23.4	-25.9	-10.0	0.2	а
Formic acid	-90.5	-91.7	-86.9	-88.2	2.3	0.1	а
Methyl formate	-85.0	-83.5	-81.4	-79.4	5.6	0.2	а
Acetamide	-57.0	-47.7	-50.7	-57.4	-0.4	0.2	а
Aziridine	30.2	30.6	36.3	35.4	5.2	0.2	а
Cyanogen	73.3	72.3	74.8	68.2	-5.1	0.2	а
Dimethylamine	-4.4	-4.7	-5.1	-2.2	2.2	0.2	а
trans-Ethylamine	-11.3	-9.3	-8.9	-12.1	-0.8	0.2	а
Ketene	-11.4	-9.9	-5.1	-11.0	0.4	0.4	а
Oxirane	-12.6	-15.7	-13.3	-8.8	3.8	0.1	а
Acetaldehyde	-39.7	-45.2	-44.2	-46.5	-6.8	0.1	а
Glyoxal	-50.7	-62.9	-59.1	-61.8	-11.1	0.2	а
Ethanol	-56.2	-59.5	-56.9	-57.2	-1.0	0.1	а
Dimethyl ether	-44.0	-43.8	-45.6	-42.8	1.2	0.1	а
Acrylonitrile	43.2	43.3	45.6	43.7	0.5	0.4	а
Acetone	-51.9	-52.4	-57.4	-59.3	-7.4	0.2	а
Acetic acid	-103.4	-101.3	-100.9	-102.7	0.7	0.4	а
Isopropanol	-65.2	-65.1	-66.3	-66.6	-1.4	0.1	а
Methyl ethyl ether	-51.7	-52.6	-53.4	-50.6	1.1	0.2	а
Trimethylamine	-5.7	-3.5	-8.0	-0.1	5.6	0.2	а
Furan	-8.3	-1.8	-2.9	-2.7	5.6	0.2	а
Pyrrole	25.9	37.2	33.7	32.0	6.1	0.1	а
Pyridine	33.6	33.0	30.8	29.4	-4.2	0.2	а
H_2 molecule	0.0	2.6	-3.4	0.0	0.0	0.0	а
CCH radical	135.1	140.8	139.6	141.1	6.0	0.7	а
C ₂ H ₃ radical	71.6	66.0	67.4	66.4	-5.2	0.8	а
CH ₃ CO radical	-2.4	-19.0	-16.0	-19.9	-17.5	0.4	а
H ₂ COH radical	-4.1	-14.4	-10.8	-12.2	-8.1	0.8	а
CH ₃ O radical	4.1	2.7	0.4	1.3	-2.8	0.9	а
CH ₃ CH ₂ O radical	-3.7	-3.8	-5.6	-5.2	-1.5	0.8	а
C_2H_5 radical	28.9	24.6	24.8	24.6	-4.3	0.4	а
$(CH_3)_2CH$ radical	21.5	14.7	14.3	13.4	-8.1	0.4	а

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
tert-Butyl radical	12.3	7.7	3.2	2.4	-9.9	0.4	а
NO ₂ radical	7.9	-6.5	5.1	-1.5	-9.4	0.2	а

a [89]

Tabelle 7.33: Standardbildungsenthalpien [kcal/mol] (zusätzliche Moleküle des G3 Testsatzes)

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
Methylallene	38.8	38.4	38.1	37.6	-1.2	0.1	а
Isoprene	18.0	24.4	21.4	22.6	4.6	0.3	а
Cyclopentane twist	-18.3	-24.8	-19.7	-20.8	-2.5	0.2	а
<i>n</i> -Pentane	-35.1	-35.5	-34.7	-35.2	-0.1	0.2	а
Neopentane	-40.2	-29.3	-39.6	-37.6	2.6	0.2	а
1,3-Cyclohexadiene	25.4	22.3	25.9	24.8	-0.6	0.2	а
1,4-Cyclohexadiene	25.0	22.7	26.8	24.8	-0.2	0.1	а
Cyclohexane chair	-29.5	-31.2	-27.0	-28.5	1.0	0.2	а
<i>n</i> -Hexane	-39.9	-40.7	-39.2	-40.0	-0.1	0.2	а
3-Methylpentane	-41.1	-36.7	-39.8	-39.5	1.6	0.2	а
Toluene stag	12.0	12.2	9.5	9.6	-2.4	0.1	а
<i>n</i> -Heptane	-44.9	-45.8	-43.8	-44.8	0.1	0.3	а
Cyclooctatetraene	70.7	72.0	75.3	73.9	3.2	0.4	а
<i>n</i> -Octane	-49.9	-51.0	-48.3	-49.7	0.2	0.3	а
Naphthalene	35.9	40.3	34.8	35.7	-0.2	0.4	а
Azulene	69.1	86.9	83.4	82.5	13.4	0.8	а
Z-Methylacetate	-98.4	-93.1	-95.6	-93.8	4.6	0.4	а
tert-Butanol	-74.7	-68.2	-76.8	-75.9	-1.2	0.2	а
Anilin	20.8	25.6	25.2	22.3	1.5	0.2	а
Phenol (planar)	-23.0	-23.1	-21.7	-23.6	-0.6	0.2	а
Divinylether	-3.3	-0.8	4.5	4.6	7.9	0.2	а
Tetrahydrofuran	-44.0	-50.1	-47.9	-46.3	-2.3	0.2	а
Cyclopentanone	-45.9	-55.1	-54.9	-57.5	-11.6	0.4	а
Benzoquinone	-29.4	-26.1	-32.5	-32.9	-3.5	0.8	а
Pyrimidine	46.8	47.3	44.5	41.9	-4.9	0.3	а
1,2-Dicyanoethane	50.1	43.8	47.7	43.4	-6.7	0.2	а
Pyrazine	46.9	51.7	44.9	42.0	-4.9	0.3	а
Acetyl acetylene	15.6	15.0	11.2	9.8	-5.8	0.2	а
Crotonaldehyde	-24.0	-28.8	-27.9	-29.5	-5.5	0.3	а
Acetic anhydride	-136.8	-136.7	-139.5	-138.8	-2.0	0.4	а
Isobutanenitrile	5.6	6.9	5.1	3.5	-2.1	0.3	а
Methylethylketone	-57.1	-57.9	-61.8	-63.4	-6.3	0.2	а
Isobutanal	-51.6	-54.8	-56.0	-57.1	-5.5	0.2	а
1,4-Dioxane	-75.5	-75.1	-76.5	-72.4	3.1	0.2	а
Tetrahydropyrrole	-0.8	-5.1	0.8	1.5	2.3	0.2	а
Nitro-s-butane	-39.1	-25.9	-36.2	-34.8	4.3	0.4	а
Diethylether	-60.3	-61.4	-61.1	-58.4	1.9	0.2	а
1,1-Dimethoxyethane	-93.1	-90.7	-96.4	-88.7	4.4	0.2	а
tert-Butylamine	-28.9	-14.7	-22.3	-24.6	4.3	0.2	а

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
N-Methylpyrrole	24.6	35.5	31.1	33.5	8.9	0.1	а
Tetrahydropyran	-53.4	-54.6	-53.1	-51.7	1.7	0.2	а
Diethylketone	-61.6	-63.3	-66.0	-67.5	-5.9	0.2	а
Isopropylacetate	-115.1	-108.1	-113.7	-111.3	3.8	0.2	а
Piperidine	-11.3	-9.8	-6.7	-7.2	4.1	0.1	а
tert-Butylmethylether	-67.8	-59.1	-70.5	-66.1	1.7	0.3	а
Diisopropylether	-76.3	-70.7	-77.7	-74.1	2.3	0.4	а
Phenyl radical	81.2	71.6	71.5	70.4	-10.8	0.6	а

a G3 values derived from the data in: [96]

Tabelle 7.34: Statistik der G2 und G3 Testsätze

	Ν	OM1	OM1	OM2	OM2	OM3	OM3	OM3
		\overline{x}	MAF	\overline{x}	MAF	\overline{x}	MAF	σ
Standardbildungsent	halpie	en G2 [kca	l/mol]					
All molecules	81	-1.46	4.39	-0.29	3.36	-1.43	3.82	5.29
CH compounds	30	-1.06	3.20	-0.66	2.37	-1.02	2.67	3.84
CHN compounds	17	0.07	3.67	1.37	3.25	-0.99	3.60	4.35
CHO compounds	33	-2.74	5.89	-0.70	4.31	-2.08	5.11	6.86
Elektronenaffinitäter	ı [kca	l/mol]						
All molecules	29	-12.53	13.70	-1.15	8.60	2.20	8.39	10.50
CH compounds	9	-11.07	14.35	-4.96	8.05	-0.25	7.08	9.05
CHN compounds	5	-19.35	19.86	-10.81	10.81	-8.70	8.92	13.23
CHNO compounds	15	-11.13	11.26	4.36	8.20	7.31	9.00	11.11
Ionisierungspotentia	le [kc	al/mol]						
All molecules	32	-8.89	10.57	-4.48	7.13	-1.44	6.91	9.61
CH compounds	10	-4.75	7.06	-3.42	6.49	2.24	4.33	6.56
CHN compounds	9	-8.72	12.13	-5.25	7.80	-6.87	8.96	12.40
CHNO compounds	12	-11.73	11.73	-3.33	6.47	1.63	5.89	7.12
Standardbildungsent	halpie	en G3 [kca	l/mol]					
All molecules	47	1.54	4.36	-0.03	3.15	-0.08	3.62	4.80
CH compounds	17	1.09	4.25	1.02	2.82	0.50	2.64	4.70
CHN compounds	10	4.07	6.20	1.93	3.40	0.66	4.39	5.13
CHO compounds	20	0.65	3.53	-1.90	3.27	-0.94	4.08	4.96

Die mittleren absoluten Fehler der Ionisierungspotentiale und der Elektronenaffinitäten sind für OM2 und OM3 wesentlich kleiner als für OM1. Besonders große Abweichungen vom experimentellen Wert treten bei den kleinen Systemen, wie z. B. C, H, N₂ (${}^{2}\Sigma_{g}$), NH und CO, auf. Dies sind jedoch alles keine Verbindungen, die man üblicherweise mit semiempirischen Verfahren berechnen würde. Der große Fehler für die mit OM3 erhaltene Elektronenaffinität des Ozons resultiert aus der starken Überschätzung der Standardbildungsenthalpie des Ozons. Die mit ab initio und DFT Methoden erzielten Ergebnisse für die G2 und G3 Validierungssätze sind in Kapitel 5 dokumentiert (Tabelle 5.18-5.22) und werden dort auch mit den semiempirischen Ergebnissen verglichen.

	Exp.	OM1	OM2	OM3	Δ	Ref.
С	259.7	208.3	230.9	227.7	-32.0	а
Methane	291.0	288.7	292.3	297.3	6.3	а
Ammonia	234.8	222.9	222.5	225.7	-9.1	а
OH	300.0	275.3	296.6	297.4	-2.6	а
Water	291.0	268.6	284.0	285.5	-5.5	а
НССН	262.9	255.6	258.1	263.4	0.5	а
Ethene	242.4	236.2	236.2	242.8	0.4	а
СО	323.1	303.4	312.4	312.0	-11.1	а
$N_2(^2\Sigma \text{ cation})$	359.3	349.1	354.9	333.1	-26.2	а
O_2	278.3	261.3	286.6	286.3	8.0	а
Н	313.6	296.1	291.7	287.3	-26.3	а
CO_2	317.6	289.8	304.6	311.2	-6.4	а
CH ₂	239.7	222.5	230.6	234.6	-5.1	а
CH ₃	227.0	217.4	222.0	227.1	0.1	а
$C_2H_5(^2A')$	187.2	197.3	198.1	203.1	15.9	а
C ₃ H ₄ (Cyclopropene)	223.0	217.7	216.2	222.2	-0.8	а
C_3H_4 (twisted structure)	223.5	212.5	213.2	218.9	-4.6	а
sec-C ₃ H ₇	170.0	171.4	168.7	174.8	4.8	а
C_6H_6	213.2	213.1	210.4	218.0	4.8	а
CN	313.6	328.9	325.1	322.2	8.6	а
НСО	187.7	181.1	194.8	197.0	9.3	а
$CH_2OH(^2A)$	174.2	171.7	177.2	184.7	10.5	а
$CH_3O(^2A')$	247.3	241.3	242.3	248.3	1.0	а
CH ₃ OH	250.2	245.6	245.5	252.4	2.2	а
C_2H_5OH	241.4	238.2	232.3	243.3	1.9	а
CH ₃ CHO	235.9	233.9	236.4	244.3	8.4	а
NCCN	308.3	290.8	299.9	298.3	-10.0	а
Furan	203.6	199.4	197.6	207.6	4.0	а
Pyrrole	189.3	182.1	183.8	188.2	-1.1	а
NH	311.1	282.0	296.9	295.6	-15.5	а
NH ₂	256.9	249.9	251.3	252.9	-4.0	а
N_2H_2	221.1	215.2	215.6	221.9	0.8	а
N_2H_3	175.5	170.5	172.8	170.2	-5.3	а

Tabelle 7.35: Ionisierungspotentiale [kcal/mol] (G2 Testsatz)

a [89]

Tabelle 7.36: Elektronenaffinitäten [kcal/mol] (G2 Testsatz)

	Exp.	OM1	OM2	OM3	Δ	Ref.
0	33.7	-2.6	28.1	27.6	-6.1	а
CH	28.6	1.2	18.1	18.0	-10.6	а
Triplet methylene	15.0	-6.2	4.1	8.1	-6.9	а

	Exp.	OM1	OM2	OM3	Δ	Ref.
CH ₃	1.8	-19.9	-15.2	-6.1	-7.9	а
NH	8.7	-25.5	-8.9	-9.6	-18.3	а
$\rm NH_2$	17.7	-14.6	-3.9	-0.5	-18.2	а
OH	42.2	8.3	29.5	33.4	-8.8	а
O_2	10.1	-5.2	18.9	21.3	11.2	а
NO	0.4	-4.7	13.8	8.8	8.4	а
CN	89.0	90.3	88.2	87.0	-2.0	а
C_2	75.5	89.1	80.2	93.2	17.7	а
CCO	52.8	32.7	46.4	49.0	-3.8	а
NCO	83.2	69.7	83.5	86.8	3.6	а
NO_2	52.4	37.3	56.2	54.1	1.7	а
O_3	48.5	46.5	65.0	71.0	22.5	а
ССН	68.5	69.6	77.7	75.4	6.9	а
C_2H_3	15.4	7.6	14.7	18.4	3.0	а
H_2CCC	41.4	21.9	29.4	33.8	-7.6	а
H_2CCCH	20.6	12.9	19.5	22.8	2.2	а
C_3H_5	10.9	1.8	4.7	11.8	0.9	а
HCO	7.2	7.6	22.8	24.1	16.9	а
$CH_{3}O$	36.2	36.8	46.5	52.4	16.2	а
H_2CCN	35.6	21.5	26.2	30.0	-5.6	а
H_2CNC	24.4	7.0	19.7	25.0	0.6	а
HCCO	54.2	40.4	50.4	57.6	3.4	а
H_2CCHO	42.1	30.7	37.9	45.3	3.2	а
CH ₃ CO	9.8	4.9	19.4	18.9	9.1	а
CH_3CH_2O	39.5	35.1	47.1	53.0	13.5	а
HNO	7.8	0.5	16.1	15.6	7.8	а
HOO	24.8	3.6	23.2	29.7	4.9	а

a G3 values derived from the data in: [94]

Tabelle 7.37: Standardbildungsenthalpien [kcal/mol] der Alkane

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
Methane	-17.8	-13.8	-19.3	-18.0	-0.2	0.1	а
Ethane	-20.0	-20.3	-21.2	-20.8	-0.7	0.1	а
Propane	-25.0	-25.2	-25.5	-25.4	-0.4	0.1	а
n-Butane	-30.0	-30.4	-30.1	-30.3	-0.3	0.2	а
n-Pentane	-35.1	-35.5	-34.7	-35.2	0.0	0.2	а
n-Hexane	-39.9	-40.7	-39.2	-40.0	-0.1	0.2	а
n-Heptane	-44.9	-45.8	-43.8	-44.8	0.0	0.3	а
n-Octane	-49.9	-51.0	-48.3	-49.7	0.2	0.3	а
n-Nonane	-54.5	-56.1	-52.9	-54.5	0.0	0.2	а
n-Decane	-59.6	-61.3	-57.5	-59.3	0.3	0.3	а
n-Undecane	-64.8	-66.4	-62.0	-64.2	0.6	0.6	а
n-Dodecane	-69.2	-71.5	-66.6	-69.0	0.2	0.5	а
n-Tridecane	-74.5	-76.7	-71.1	-73.8	0.6	0.4	b
n-Tetradecane	-79.4	-81.8	-75.7	-78.7	0.7	0.4	b
n-Pentadecane	-84.8	-87.0	-80.3	-83.5	1.3	0.5	b

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
n-Hexadecane	-89.6	-92.1	-84.8	-88.4	1.2	0.5	а
2-Methylpropane	-32.1	-28.3	-31.8	-31.3	0.8	0.2	а
2-Methylbutane	-36.7	-32.6	-35.9	-35.5	1.3	0.2	а
2-Methylpentane	-41.8	-37.7	-40.4	-40.3	1.5	0.2	а
2-Methylhexane	-46.5	-42.9	-45.0	-45.1	1.4	0.2	а
2-Methylheptane	-51.5	-48.0	-49.5	-50.0	1.5	0.4	а
2-Methylnonane	-62.1	-58.3	-58.6	-59.6	2.5	0.6	а

a [114]; b [183]

Tabelle 7.38: Relative Energien [kcal/mol] der Alkane

	Exp.	OM1	OM2	OM3	Δ	δ_{exp}	Ref.
2-Methylpropane	-2.1	2.0	-1.7	-1.0	1.1	0.2	а
2-Methylbutane	-1.6	2.9	-1.2	-0.3	1.3	0.2	а
2-Methylpentane	-1.8	3.0	-1.2	-0.3	1.6	0.2	а
2-Methylhexane	-1.6	3.0	-1.2	-0.3	1.4	0.2	а
2-Methylheptane	-1.6	3.0	-1.2	-0.3	1.3	0.4	а
2-Methylnonane	-2.5	3.0	-1.2	-0.3	2.2	0.6	а

a [114]

Tabelle 7.39: Statistik der Alkane

	Ν	OM1	OM1	OM2	OM2	OM3	OM3	OM3
		\overline{x}	MAF	\overline{x}	MAF	\overline{x}	MAF	σ
Standardbildungse	enthal	pien [kca	l/mol]					
All molecules	22	0.28	2.16	1.62	1.91	0.56	0.72	0.98
n-Alkanes	16	-1.04	1.54	1.63	2.03	0.21	0.44	0.60
2-Methylalkanes	6	3.80	3.80	1.59	1.59	1.49	1.49	1.73
Relative Energien	[kcal/	/mol]						
All molecules	6	4.68	4.68	0.62	0.62	1.47	1.48	1.66

Zur Beurteilung der G3 Methode wurde ein weiterer Testsatz [183] herangezogen, der aus 16 *n*-Alkanen und 6 Isoalkanen besteht. Berechnet wurden die Standardbildungsenthalpien der Alkane sowie die relativen Energien der verzweigten Alkane bezogen auf die *n*-Alkane. Aufgrund des großen Rechenaufwandes (vgl. Kapitel 5.8.1) wurden mit der G3 Methode und ihren Varianten die Standardbildungsenthalpien der Alkane nur bis zum Oktan direkt berechnet und die Enthalpien der größeren Moleküle durch eine Energieabschätzung ermittelt. Zusätzlich zu den G3 Resultaten sind auch die ihrer Varianten sowie die Ergebnisse für B3LYP in [183] dokumentiert. Bei allen G3-basierten ab initio Methoden nehmen die Fehler mit wachsender Kettenlänge zwar leicht zu, sie bleiben aber auch bei Hexadecan noch unter 3 kcal/mol. Wie bereits beim G3/99 Testsatz beobachtet (vgl. Kapitel 5.8.1), steigen die Fehler für B3LYP dagegen mit wachsender Molekülgröße stark an (um mehr als 2 kcal/mol pro Methylengruppe, bis auf 33 kcal/mol bei Hexadecan).

Bei den semiempirischen Verfahren mit Orthogonalisierungskorrekturen bleiben die Abweichungen bei wachsender Kettenlänge klein. In die Parametrisierung mit einbezogen wurden die Alkane bis einschließlich Hexan (vgl. Tabelle 7.3). Tabelle 7.37 zeigt, dass auch Alkane mit mehr als sechs Kohlenstoffatomen zu-frieden stellend beschrieben werden. Der mittlere absolute Fehler liegt zwischen 0.72 kcal/mol bei OM3 und 2.16 kcal/mol bei OM1 (vgl. Tabelle 7.39), verglichen mit 0.62 kcal/mol bei G3(MP2), 0.86 kcal/mol bei G3 und 15.44 kcal/mol bei B3LYP (*n*-Alkane). OM1, OM2 und OM3 beschreiben die unverzweigten *n*-Alkane insgesamt gut (tendenziell eher zu stabil in OM1 und eher zu instabil in OM2), während die Standardbildungsenthalpien der verzweigten Alkane generell etwas zu hoch berechnet werden (besonders bei OM1). Daraus resultiert eine leichte Unterschätzung der relativen Stabilität der 2-Methylalkane (besonders bei OM1). OM3 beschreibt die *n*-Alkane besonders gut. Der mittlere absolute Fehler von 0.44 kcal/mol ist sogar kleiner als der beste G3-basierte Wert [183] von 0.52 kcal/mol (G3(MP2)//B3LYP).

7.6 Wasserstoffbrückengebundene Systeme

Als einfaches System mit Wasserstoffbrücken werden zunächst zehn Konformere des Wasserdimers betrachtet. In einem schon bei der Entwicklung von OM2 verwendeten Validierungssatz [4] wurden einige Referenzwerte durch neuere, noch genauere ab initio Daten [184] ersetzt. Hinzu kamen Referenzwerte für die sieben auftretenden Dipolmomente.

Tabelle 7.40 zeigt die Anzahl imaginärer Frequenzen (NIMAG), die man aus der Berechnung der Kraftkonstantenmatrix erhält. Man erkennt, dass OM2 und OM3 beide nur das lineare Wasserdimer als Minimum bestimmen. Hingegen läuft für OM1 die lineare Struktur während der Optimierung zur nichtplanaren bifurkierten C_{2v} -Struktur, die laut ab initio Daten ein Übergangszustand ist, aber bei OM1 als Minimum berechnet wird. Die drei Übergangszustände werden nur von OM2 alle richtig als solche erkannt, während mit OM3 für die cyclische C_i -Struktur noch ein zweiter negativer Eigenwert der Kraftkonstantenmatrix auftritt. Dies ist der einzige Übergangszustand, den OM1 richtig lokalisiert. Bei den Sattelpunkten höherer Ordnung läuft für alle drei Methoden die cyclische C_2 -Struktur während der Optimierung zur cyclischen C_{2h} -Struktur. Daher sind die Daten für die cyclische C_2 -Struktur in den folgenden Tabellen nicht mehr aufgeführt. Wie schon in Kapitel 5.9 erwähnt, konvergiert mit OM1 das trifurkierte Wasserdimer nicht.

	Symm.	ab initio	OM1	OM2	OM3	Ref.
Water dimer linear	C_s	0	0	0	0	а
Water dimer rot1	C_1	1	3	1	1	а
Water dimer rot2 planar	C_s	2	2	1	1	а
Water dimer trifurcated	C_s	2	_	2	1	а
Water dimer doubly bifurcated	C_{2h}	3	3	3	3	а
Water dimer bifurcated	C_{2v}	1	0	1	1	а
Water dimer bifurcated planar	C_{2v}	2	1	2	2	а
Water dimer cyclic	C_i	1	1	1	2	а
Water dimer cyclic	C_2	2	2	3	3	а
Water dimer cyclic	C_{2h}	3	2	3	3	а

Tabelle 7.40: Imaginäre Frequenzen

a [184]

Bei den Geometrien der Wasserdimere werden die intramolekularen O–H Bindungen systematisch zu lang und die intermolekularen Abstände zwischen den Atomen systematisch zu kurz berechnet (Tabelle 7.41). So ergeben sich die großen Abweichungen in der doppelt bifurkierten C_{2h} -Struktur und dem planaren bifurkierten C_{2v} Konformer daraus, dass sich die Wassermoleküle während der Optimierung nähern. Sowohl die intramolekularen als auch die intermolekularen Winkel werden meist sehr gut reproduziert. Nur für die trifurkierte Struktur werden große Abweichungen in den Winkeln beobachtet, denn ein Wassermolekül dreht sich während der Optimierung aus der Ebene heraus.

	Symm.	Variable	ab initio	OM1	OM2	OM3	Δ	Ref.
Water dimer	C_s	00	2.908	2.818	2.736	2.726	-0.182	b
linear		O-Hb	0.965	0.991	0.982	1.009	0.044	а
		НО	1.948	2.330	1.764	1.719	-0.229	а
		OHO	172.9	109.4	169.7	175.2	2.3	а
		H2OH	135.6	160.6	141.9	138.9	3.3	b
		HOH	104.6	104.1	103.4	105.7	1.1	а
		HOH	104.5	102.5	102.6	104.8	0.4	а
Water dimer	C_1	00	2.925	3.162	2.757	2.792	-0.133	b
rot1		O-Hb	0.965	0.991	0.981	1.007	0.042	а
		НО	1.972	2.171	1.797	1.802	-0.171	а
		OHO	169.0	179.8	165.3	167.3	-1.7	а
		HOH	104.5	103.0	102.5	104.7	0.2	а
		Hdihed	28.1	90.2	2.6	6.1	-22.0	b
		HOH	104.8	103.9	103.4	105.8	0.9	а
		HOH	135.0	146.4	139.9	136.4	1.4	а
		HOH	107.3	109.6	116.6	117.8	10.5	а
		Hdihed	-26.5	-90.5	-2.1	-5.1	21.4	b
		Hdihed	-173.4	-269.7	-184.0	-189.3	-15.9	b
Water dimer	C_s	00	2.926	2.899	2.757	2.793	-0.133	b
rot2		O-Hb	0.964	0.992	0.981	1.007	0.043	а
planar		НО	1.981	2.410	1.797	1.802	-0.179	а
		OHO	167.6	109.7	165.4	167.2	-0.4	а
		HOH	104.5	103.6	102.5	104.7	0.2	а
		HOH	145.0	174.4	139.9	136.5	-8.5	а
		HOH	110.0	70.8	116.7	117.7	7.7	а
Water dimer	C_s	00	2.871		2.560	2.704	-0.167	b
trifurcated		НО	3.000		2.149	2.162	-0.838	а
		НО	2.571		2.408	2.662	0.091	b
		НО	2.571		2.408	2.662	0.091	b
		OHO	77.3		103.4	112.0	34.7	а
		OHO	55.2		70.0	76.9	21.7	а
		OHO	55.2		70.0	76.9	21.7	а
Water dimer	C_{2h}	НО	3.114	2.641	2.522	2.684	-0.430	а
doubly		НО	0.959	0.992	0.979	1.003	0.044	а
bifurcated		OHO	92.2	82.4	83.3	82.5	-9.7	а
		OHO	70.8	76.2	74.7	76.2	5.4	а
		OHO	70.8	76.2	74.7	76.2	5.4	а
Water dimer	C_{2v}	00	2.944	2.818	2.590	2.732	-0.212	b
bifurcated		НО	2.515	2.330	2.112	2.256	-0.260	а
		OHO	112.0	109.4	108.2	107.6	-4.4	а
		O-H	0.959	0.991	0.978	1.002	0.042	а
		O-Hb	0.960	0.991	0.979	1.002	0.043	а
		HOH	101.6	102.5	101.6	103.8	2.3	а
		HOH	104.4	104.1	103.3	105.5	1.1	а

Tabelle 7.41: Bindungslängen [Å] und Bindungswinkel [°]

	Symm.	Variable	ab initio	OM1	OM2	OM3	Δ	Ref.
Water dimer	C_{2v}	OO	3.126	2.883	2.648	2.816	-0.310	b
bifurcated		НО	2.683	2.390	2.165	2.334	-0.349	а
planar		OHO	112.9	110.0	108.8	108.4	-4.5	а
		O-H	0.959	0.991	0.978	1.002	0.043	а
		O-Hb	0.959	0.991	0.979	1.002	0.043	а
		HOH	101.9	102.3	101.5	103.8	1.8	а
		HOH	104.1	103.8	103.0	105.2	1.1	а
Water dimer	C_i	00	2.775	2.764	2.611	2.752	-0.023	b
cyclic		O-Hb	0.962	0.992	0.980	1.004	0.042	а
-		OH	2.280	2.362	2.129	2.285	0.005	а
		OHO	114.8	103.3	108.4	107.0	-7.8	а
		O-H	0.959	0.991	0.978	1.002	0.043	а
		HOH	104.8	103.2	103.0	105.1	0.2	а
Water dimer	C_{2h}	00	2.740	2.899	2.652	2.819	0.079	b
cyclic		O-Hb	0.961	0.992	0.980	1.004	0.043	а
-		OH	2.276	2.414	2.143	2.317	0.041	а
		OHO	110.3	109.4	110.6	109.8	-0.5	а
		O-H	0.958	0.991	0.978	1.002	0.044	а
		HOH	105.1	103.6	103.1	105.2	0.1	а
D' 1. 1"	AL 21)							
Bindungslang	en $(N=31)$)		0.000	0 1 0 0	0.000		
				0.020	-0.108	-0.090		
MAF	1 (11 0)			0.128	0.182	0.143		
Bindungswinl	kel (N=29))						
\overline{x}				-4.11	1.34	2.97		
MAF				11.11	4.95	5.56		

a [184]; b [185]

Die relativen Energien der Konformere sowohl bezüglich der Monomere als auch bezogen auf das lineare Wasserdimer, welches das experimentell bestimmte Minimum ist, werdem mit OM2 und OM3 sehr gut beschrieben (Tabelle 7.42).

	Symm.	ab initio	OM1	OM2	OM3	Δ	Ref.
Relative Ene	ergien beza	ogen auf die	Monome	re			
linear	C_s	-5.4	-4.8	-4.3	-4.5	0.9	а
rot1	C_1	-4.7	-3.4	-4.0	-4.0	0.7	а
rot2	C_s	-4.6	-3.1	-4.0	-4.0	0.7	а
trifurcated	C_s	-3.6		-3.6	-3.5	0.1	а
doubly bif.	C_{2h}	-1.6	-3.1	-2.8	-2.7	-1.1	а
bifurcated	C_{2v}	-3.6	-4.8	-4.1	-4.3	-0.6	а
bifurcated	C_{2v}	-2.5	-4.2	-3.6	-3.7	-1.1	а
cyclic	C_i	-4.4	-3.8	-3.7	-3.4	1.0	а
cyclic	C_{2h}	-4.0	-3.1	-3.4	-3.1	1.0	а
Relative Ene	ergien beza	Sgen auf das	lineare I	Dimer			
linear	C_s	0.0	0.0	0.0	0.0		
rot1	C_1	0.5	1.4	0.3	0.5	0.0	b
rot2	C_s	0.6	1.7	0.3	0.5	-0.1	b
trifurcated	C_s	1.8		0.7	1.0	-0.8	b
doubly bif.	C_{2h}	3.6	1.3	1.5	1.8	-1.8	b
bifurcated	C_{2v}	1.8	0.0	0.2	0.2	-1.6	b
bifurcated	C_{2v}	2.7	0.6	0.7	0.8	-1.9	b
cyclic	C_i	0.7	0.9	0.7	1.1	0.4	b
cyclic	C_{2h}	1.0	1.7	0.9	1.4	0.4	b
Relative Ene	ergien bezo	ogen auf die	Monome	ere (N=9)			
\overline{x}		Ĩ	0.49	0.10	0.17		
MAF			1.34	0.74	0.80		
Relative Ene	ergien bezo	bgen auf das	lineare I	Dimer (N=	=8)		
\overline{x}	-	-	-0.55	-0.90	-0.66		
MAF			1.30	0.90	0.86		

Tabelle 7.42: Relative Energien [kcal/mol]

a [185]; b [184]

Bei der Berechnung der Dipolmomente (Tabelle 7.43) resultieren für alle drei Verfahren verhältnismäßig große Abweichungen (0.81-1.16 D).

Tabelle 7.43: Dipolmomente [D]

		ab initio	OM1	OM2	OM3	Δ	Ref.
Water dimer							
linear	C_s	2.70	5.07	3.76	3.88	1.18	а
rot1	C_1	3.73	4.23	4.28	4.60	0.86	а

		ab initio	OM1	OM2	OM3	Δ	Ref.
rot2	C_s	3.44	0.02	4.28	4.60	1.16	а
trifurcated	C_s	3.41		1.77	1.19	-2.22	а
bifurcated	C_{2v}	4.15	5.07	4.53	4.81	0.65	а
bifurcated	C_{2v}	4.11	5.05	4.50	4.78	0.67	а
\overline{x}			0.16	0.27	0.38		
MAF			1.16	0.81	1.12		

a [184]

Auch hier sollen ebenso wie in Kapitel 5.9 die beiden dort vorgestellten Validierungssätze (Satz I und Satz II) zur Beurteilung der Leistungsfähigkeit von OM3 für Wasserstoffbrücken herangezogen werden. Betrachtet man die Statistik für Satz I der wasserstoffbrückengebundenen Systeme [2] (Tabelle 7.46), so stellt man fest, dass die Resultate für OM3 schlechter als für die beiden vorherigen Methoden sind. Der mittlere absolute Fehler der relativen Energie ist ungefähr doppelt so groß verglichen mit den Werten für OM1 und OM2. Besonders bei ionischen Systemen treten sehr große Abweichungen auf. Lediglich die Fehler der X–H Y Winkel sind in der Größenordnung der Fehler von OM2.

	Symm.	Variable	Exp.	OM1	OM2	OM3	Δ	Ref.
Water dimer	C_s	00	2.908	2.838	2.736	2.726	-0.182	а
		O-Hb	0.969	0.954	0.982	1.009	0.040	а
		НО	1.941	2.360	1.764	1.719	-0.222	а
		OHO	175.6	110.4	169.5	175.2	-0.4	а
		H2OH	135.6	161.6	142.0	138.9	3.3	а
		HOH	105.7	103.6	103.4	105.7	0.0	а
		HOH	105.6	102.4	102.6	104.8	-0.8	а
Water dimer	C_{2v}	00	2.944	2.838	2.591	2.732	-0.212	а
bifurcated		НО	2.452	2.360	2.113	2.256	-0.196	а
		OHO	111.4	110.4	108.2	107.6	-3.8	а
		O-H	0.963	0.955	0.978	1.002	0.039	a
		O-Hb	0.964	0.954	0.979	1.002	0.038	a
		HOH	101.7	102.4	101.6	103.8	2.1	а
		HOH	105.6	103.6	103.3	105.5	-0.1	а
Water dimer	C_s	00	2.871		2.560	2.704	-0.167	a
trifurcated		НО	2.620		2.149	2.162	-0.458	a
		НО	2.571		2.408	2.662	0.091	a
		НО	2.571		2.408	2.662	0.091	a
		OHO	95.1		103.4	112.0	16.9	а
		OHO	98.2		87.5	81.6	-16.6	а
		OHO	98.2		87.5	81.6	-16.6	а

Tabelle 7.44: Abstände [Å] und Winkel [°] (Satz I)

	Symm.	Variable	Exp.	OM1	OM2	OM3	Δ	Ref.
Ammonia dimer	C_1	NN	3.271	3.010	3.222	3.176	-0.095	b
		N-H	1.003	1.011	0.998	1.043	0.040	b
HOH - NH ₃	C_1	NO	3.039	2.985	2.780	2.659	-0.380	b
Formic acid dimer	C_1	00	2.779	2.954	2.508	2.385	-0.394	с
		O-H	0.966	0.969	1.034	1.193	0.227	с
		OHO	172.7	159.1	173.6	179.1	6.4	с
H_3O^+ - OH_2	C_1	00	2.382	2.349	2.345	2.370	-0.012	с
		O-H	1.192	1.174	1.173	1.185	-0.007	с
NH_4^+ - OH_2	C_1	NO	2.772	2.598	2.591	2.520	-0.252	с
		N-H	1.034	1.066	1.037	1.109	0.075	с
NH_4^+ - NH_3	C_1	NN	2.816	2.525	2.522	2.540	-0.276	с
		N-H	1.060	1.262	1.261	1.270	0.210	с
$H_2O - OH^-$	C_1	00	2.523	2.308	2.386	2.369	-0.154	с
		O-H	1.041	1.154	1.193	1.184	0.143	с
$H_2O - NC^-$	C_1	ON	2.896	2.794	2.604	2.485	-0.411	с
		O-H	0.960	0.954	1.016	1.088	0.128	с
		OHN	168.2	111.4	163.2	172.4	4.2	с

a [185]

b Theoretical data cited in: [4]

c Theoretical data cited in: [2]

Tabelle 7.45: Relative Energien [kcal/mol] (Satz I)

	ab initio	OM1	OM2	OM3	Δ	Ref.
Water dimer	-5.4	-4.3	-4.3	-4.5	0.9	а
Ammonia dimer	-4.5	-3.6	-2.1	-2.5	2.0	b
HOH - NH ₃	-4.7	-4.7	-4.9	-6.9	-2.2	с
Formic acid dimer	-14.8	-6.7	-14.6	-16.7	-1.9	b
Acetic acid dimer	-14.6	-6.7	-15.3	-18.2	-3.5	b
Formamide - H ₂ O	-9.5	-6.2	-8.5	-7.7	1.8	с
$H_2CO - HOH$	-4.7	-2.5	-3.7	-3.0	1.7	с
Phenol - Acetone	-4.2	-4.2	-6.7	-6.0	-1.8	b
Phenol - Dimethylether	-5.4	-3.3	-4.5	-4.0	1.4	b
Phenol - Pyridin	-6.5	-4.0	-5.0	-7.8	-1.3	b
H_3O^+ - OH_2	-35.0	-35.1	-36.4	-41.5	-6.5	b
$H_3O^+ - (OH_2)_2$	-20.2	-19.1	-22.9	-26.0	-5.8	b
$H_3O^+ - (OH_2)_3$	-17.6	-14.8	-18.7	-19.0	-1.4	b
$CH_3OH_2^+$ - OH_2	-27.3	-29.4	-30.4	-36.9	-9.6	b
$(CH_3)_2OH^+$ - OH_2	-24.0	-25.5	-26.6	-33.7	-9.7	b
$(CH_3)_2OH^+ - O(CH_3)_2$	-29.5	-25.2	-27.7	-31.6	-2.1	b
NH_4^+ - OH_2	-20.6	-18.2	-19.8	-22.9	-2.3	b
$CH_3NH_3^+$ - HOH	-18.4	-16.8	-18.0	-20.7	-2.3	b
NH_4^+ - NH_3	-24.8	-23.5	-26.9	-34.2	-9.4	b
$CH_3NH_3^+$ - NH_3	-21.4	-21.0	-24.4	-31.2	-9.8	b
$N(C_2H_5)_3H^+$ - NH_3	-16.3	-14.3	-16.2	-20.6	-4.3	b
$\mathrm{HCNH^{+}}$ - OH_{2}	-27.4	-27.7	-29.2	-31.1	-3.7	b

	ab initio	OM1	OM2	OM3	Δ	Ref.
HCNH ⁺ - NCH	-26.1	-27.0	-25.8	-33.1	-7.0	b
Pyridin- H^+ - OH_2	-16.1	-14.1	-15.9	-18.2	-2.1	b
Pyridin- H^+ - NH_3	-17.3	-17.2	-24.1	-28.2	-10.9	b
$\rm CO_2H^+$ - OCO	-20.1	-19.8	-24.0	-25.5	-5.4	b
HCOOH_2^+ - OH_2 I cis	-24.1	-18.8	-28.0	-31.1	-7.0	b
HCOOH_2^+ - OH_2 II tr	-24.1	-24.7	-28.2	-34.2	-10.1	b
H_2COH^+ - OH_2	-28.5	-31.3	-33.4	-40.5	-12.0	b
H_3O^+ - OCH_2	-28.5	-31.3	-36.1	-36.3	-7.8	b
$H_2O - OH^-$	-27.0	-31.1	-36.8	-43.4	-16.4	b
$H_2O - OCH_3^-$	-23.9	-15.3	-20.6	-23.8	0.1	b
$H_2O - CN^-$	-14.6	-19.8	-27.8	-29.1	-14.5	b
$H_2O - OOCH^-$ -	-16.0	-14.9	-17.5	-17.9	-1.9	b
CH ₃ OH - OOCH ⁻	-17.6	-12.0	-16.6	-18.7	-1.1	b
$H_2O - CCH^-$ -	-16.2	-21.4	-27.7	-31.1	-14.9	b
Mean error		1.15	-2.01	-5.03		
Mean absolute error		2.57	2.90	5.47		

a [185]

b Experimental data cited in: [3]

c Experimental data cited in: [4]

	Ν	OM1	OM1	OM2	OM2	OM3	OM3	OM3
		\overline{x}	MAF	\overline{x}	MAF	\overline{x}	MAF	σ
Standardbildun	gsent	halpien [kc	al/mol]					
All molecules	32	0.13	5.61	1.20	5.20	0.93	6.30	8.76
Neutral	16	-0.15	3.13	0.80	3.86	-0.63	3.28	4.33
Cations	11	-3.63	7.38	2.62	6.62	6.16	10.35	12.98
Anions	5	9.29	9.63	-0.63	6.35	-5.59	7.05	10.19
Abstände [Å]								
All molecules	26	-0.023	0.110	-0.122	0.162	-0.088	0.175	0.220
Neutral	16	-0.001	0.102	-0.164	0.178	-0.109	0.180	0.229
Cations	6	-0.047	0.125	-0.054	0.123	-0.044	0.139	0.195
Anions	4	-0.053	0.109	-0.055	0.159	-0.074	0.209	0.277
Winkel [°]								
All molecules	12	-13.01	18.95	-2.30	4.91	-0.44	5.94	9.18
Relative Energi	en [k	cal/mol]						
All molecules	36	1.15	2.57	-2.01	2.90	-5.03	5.47	7.17
Neutral	10	2.82	2.82	0.46	1.14	-0.29	1.86	2.08
Cations	20	0.62	1.73	-2.27	2.63	-6.46	6.46	7.44
Anions	6	0.13	4.96	-5.27	6.70	-8.14	8.16	11.90

Tabelle 7.46: Statistik der Wasserstoffbrücken (Satz I)

Die mit OM3 erhaltenen Werte für Satz II der Wasserstoffbrücken [99], in dem nur wenige geladene Systeme enthalten sind, reproduzieren die ab initio (HartreeFock) Resultate sehr gut. In der Regel sind die berechneten Strukturen jedoch näher an der Linearität als die Referenzgeometrien (Tabelle 7.47). Die einzige Ausnahme bildet das System Wasser-Phenol.

Die Fehler der relativen Energien für OM2 und OM3 (Tabelle 7.49) sind nahezu gleich. Der berechnete Wert von Systemen, die Oxalsäure enthalten, weist größere Abweichungen auf.

	Variable	ab initio	OM1	OM2	OM3	Δ
HOHOH ₂	00	2.930	2.838	2.736	2.726	-0.204
	OHO	2.030	2.360	1.764	1.719	-0.311
	OHO	172.3	110.4	169.6	175.5	3.2
HOHHOH Cyclic	00	2.780	2.838	2.723	2.751	-0.029
	OHO	2.310	3.515	2.173	2.280	-0.030
	OHO	111.8	39.1	113.9	107.3	-4.5
	00	2.780	2.838	2.723	2.751	-0.029
	OHO	2.310	2.357	2.210	2.293	-0.017
	OHO	111.8	110.7	111.2	106.4	-5.4
HOHOHCH ₃	00	2.920	2.863	2.743	2.815	-0.105
	OHO	2.010	2.385	1.827	1.957	-0.053
	OHO	169.0	110.6	154.2	141.8	-27.2
CH_3OHOH_2	00	2.920	3.119	2.720	2.687	-0.233
	OHO	2.010	2.159	1.728	1.666	-0.344
	OHO	174.9	174.8	171.3	173.0	-1.9
CH₃OHOHCH₃	00	2.910	3.162	2.766	2.784	-0.126
	OHO	2.000	2.206	1.771	1.764	-0.236
	OHO	174.6	172.2	174.5	176.0	1.4
$C_6H_5OHOH_2$	00	2.870	3.083	2.861	2.626	-0.244
	OHO	1.950	2.121	1.867	1.599	-0.351
	OHO	172.3	174.7	172.1	172.4	0.1
$HOHOHC_6H_5$	00	2.990	2.858	2.829	2.767	-0.223
	OHO	2.120	2.397	1.940	2.281	0.161
	OHO	160.8	109.3	149.6	108.4	-52.4
T-NMAOH ₂	NO	3.070	3.197	2.883	2.970	-0.100
	NHO	2.120	2.241	1.890	1.934	-0.186
	NHO	178.3	157.7	165.3	170.2	-8.1
HOHT-NMA	00	2.900	2.816	2.609	2.655	-0.245
	OHO	2.000	2.368	1.699	1.649	-0.351
	OHO	167.6	108.2	151.5	171.0	3.4
Formamide Dimer	NO	2.960	2.865	2.688	2.619	-0.341
Cyclic	NHO	2.000	2.220	1.674	1.558	-0.442
-	NHO	171.6	120.4	173.9	173.9	2.3
	NO	2.960	2.795	2.687	2.619	-0.341
	NHO	2.000	2.304	1.673	1.558	-0.442
	NHO	171.5	108.6	173.9	173.9	2.4

Tabelle 7.47: Abstände [Å] und Winkel [°] (Satz II) [99]

	Variable	ab initio	OM1	OM2	OM3	Δ
Formamide Dimer	NO	3.000	3.045	2.738	2.798	-0.202
1-HB	NHO	2.090	2.188	1.817	1.817	-0.273
	NHO	156.7	141.9	150.8	156.6	-0.1
H_2NHHNH_2	NN	3.210	3.404	3.272	3.311	0.101
Bifurcated	NHN	2.600	2.745	2.583	2.612	0.012
	NHN	123.9	123.1	126.1	124.0	0.1
	NN	3.210	3.404	3.272	3.311	0.101
	NHN	2.610	2.742	2.580	2.607	-0.003
	NHN	123.8	123.3	126.4	124.4	0.6
H_2NHNH_3	NN	3.350	3.008	3.232	3.177	-0.173
2 0	NHN	2.420	2.719	2.241	2.177	-0.243
	NHN	179.0	96.6	171.8	159.8	-19.2
	NN	3.350	3.008	3.232	3.177	-0.173
	NHN	3.640	3.536	3.455	3.603	-0.037
	NHN	69.8	51.2	68.8	58.1	-11.7
HOHNH₃	ON	3.000	2.986	2.780	2.658	-0.342
	OHN	2.090	2.504	1.793	1.632	-0.458
	OHN	176.4	111.3	175.1	179.4	3.0
HOH NH ₂ CH ₂	O N	3 000	2 9 9 8	2 841	2 689	-0.311
11011	OH N	2.090	2.531	1 861	1.665	-0.425
	OHN	175.0	110.2	172 3	179 0	3 1
Н₀ССООН НООССН₀	0 0	2.770	2 950	2.487	2 382	-0.388
Cvelic	OH O	1 830	2.500 2.017	1.457	1 101	-0.630
Cyclic	0110	1.000 175 0	161 5	1.402 174.0	170 0	0.005 3 1
		2770	201.0	2 /88	2 282	-0.388
	00 0H 0	1 830	2.301 2.017	1 459	1 101	0.500
	0110 0H0	1.000 175.0	2.017	1.402 174.0	1.131 170.0	-0.039 3 1
		110.9	2 002	2 468	2 206	0.201
1120000101111		2.700	2.902	2.400	2.390	-0.364
	0п0	1.900	2.040 146 4	1.042	1.410 1.47.9	-0.464
		100.0	140.4	141.4	141.4	-9.1
		2.010	2.000	2.443 1 716	2.424	-0.380
	0п0	2.100	2.473	1.710	1.010	-0.007
	UHU N O	127.9	90.4	120.8	131.3	3.4 0.105
ImidazoleOH ₂	NU	2.990	3.100	2.795	2.795	-0.195
	NHU	2.030	2.095	1.77.0	1.(45	-0.285
	NHO	178.2	175.9	176.9	176.8	-1.4
HOHImidazole	0N	2.930	2.884	2.803	2.669	-0.261
	OHN	2.100	2.516	2.165	1.647	-0.453
	OHN	151.2	102.9	121.5	175.2	24.0
IndoleOH ₂	NO	3.010	3.124	2.823	2.832	-0.178
	NHO	2.070	2.134	1.809	1.785	-0.285
	NHO	168.3	165.6	178.9	178.4	10.1
PyrroleOH ₂	NO	3.020	3.151	2.825	2.833	-0.187
	NHO	2.070	2.137	1.808	1.783	-0.287
	NHO	180.0	178.3	178.2	178.5	-1.5
Methyl Ammonium	NO	2.900	2.636	2.615	2.542	-0.358
OH_2	NHO	1.790	1.581	1.575	1.431	-0.359
	NHO	173.8	173.4	172.1	176.7	2.9

	Variable	ab initio	OM1	OM2	OM3	Δ
$OHH^{(-)}O_2CCH_3$	00	2.970	2.904	2.623	2.477	-0.493
Bidentate	OHO	2.060	2.118	1.768	1.436	-0.624
	OHO	142.9	138.7	142.8	170.1	27.2
	00	2.980	2.936	2.634	3.259	0.279
	OHO	2.080	2.137	1.790	2.776	0.696
	OHO	141.8	140.4	141.5	110.3	-31.5
HOHPyridine	ON	2.970	2.987	2.884	2.716	-0.254
	OHN	2.120	2.502	1.977	1.700	-0.420
	OHN	155.8	111.5	152.7	173.6	17.8
HOHFuran	00	2.980	2.846	2.776	2.826	-0.154
	OHO	2.220	2.539	2.060	2.498	0.278
	OHO	141.6	98.8	128.1	98.5	-43.1
HOH	00	2.830	2.734	2.534	2.530	-0.300
Pyrdine N-Oxide	OHO	1.940	2.355	1.665	1.563	-0.377
-	OHO	161.0	103.1	143.5	154.8	-6.2
HOHMethyl Formate	00	2.960	2.828	2.741	2.827	-0.133
(=O)	OHO	2.060	2.454	1.768	1.840	-0.220
	OHO	167.0	103.1	169.8	166.1	-0.9
HOHMethyl Formate	00	2.980	2.765	2.704	3.581	0.601
(-0-)	OHO	2.240	2.495	2.174	3.963	1.723
	OHO	138.7	96.1	112.5	60.7	-78.0
HOHFormaldehyde	00	2.920	2.800	2.701	2.855	-0.065
2	OHO	2.110	2.499	1.884	2.077	-0.033
	OHO	147.6	98.2	138.8	132.7	-14.9
HOHAcetone	00	2.940	2.820	2.664	2.721	-0.219
	OHO	2.060	2.392	1.758	1.731	-0.329
	OHO	163.1	106.8	151.2	165.8	2.7
FormamidineHOH	NO	3.010	3.149	2.792	2.981	-0.029
Cyclic	NHO	2.200	2.307	1.945	2.210	0.010
2	NHO	143.3	140.0	140.2	129.9	-13.4
	ON	2.900	2.854	2.684	2.562	-0.338
	OHN	2.060	2.450	1.797	1.563	-0.497
	OHN	151.4	105.3	147.2	159.6	8.2
HOHFormaldehyde-	ON	2.960	3.003	2.883	2.728	-0.232
imime	OHN	2.110	2.520	2.046	1.713	-0.397
	OHN	154.0	111.5	142.0	175.1	21.1
GuanidineOHH	NO	3.080	2.811	2.810	3.041	-0.039
	NHO	2.250	2.645	2.029	2.327	0.077
	NHO	145.4	88.8	132.7	124.9	-20.5
	ON	2.970	3.065	2.837	2.649	-0.321
	OHN	2.210	2.665	2.137	1.680	-0.530
	OHN	141.1	105.7	127.1	156.3	15.2
Guanidinium Cation	NO	3.050	2.936	2.719	2.801	-0.249
OHH	NHO	2.080	2.070	1.858	1.928	-0.152
	NHO	147.7	142.2	141.3	139.8	-7.9
	NO	3.050	2.936	2.718	2.774	-0.276
	NHO	2.080	2.070	1.857	1.886	-0.194
	NHO	147.7	142.2	141.3	141.4	-6.3

AnilineOHH NO 3.140 2.834 2.900 2.989	Δ
	-0.151
NHO 2.200 2.522 1.927 1.982	-0.218
NHO 173.2 97.3 161.8 161.9	-11.3
HOHO(CH ₃) ₂ OO 2.910 2.872 2.838 2.788	-0.122
OHO 2.020 2.391 1.922 2.323	0.303
OHO 163.9 110.8 154.3 107.1	-56.8
T-NMA Dimer NO 3.030 3.127 2.795 2.866	-0.164
parallel NHO 2.080 2.224 1.822 1.851	-0.229
NHO 171.8 148.2 158.3 161.9	-9.9
T-NMA Dimer NO 3.850 3.084 4.639 4.489	0.639
antiparallel stacked NHO 3.880 3.220 4.965 4.741	0.861
NHO 87.9 73.2 65.6 69.8	-18.1
NO 3.870 3.636 4.882 4.737	0.867
NHO 3.880 3.943 5.262 5.042	1.162
NHO 88.9 65.1 62.7 67.3	-21.6
HOHN-Methyl- OO 2.910 2.817 2.650 2.685	-0.225
formamide OHO 2.010 2.381 1.706 1.694	-0.316
OHO 164.7 107.4 159.1 165.4	0.7
N-Methylformamide- NO 3.040 3.193 2.850 2.904	-0.136
OH ₂ NHO 2.090 2.204 1.854 1.866	-0.224
NHO 173.8 166.6 166.2 170.7	-3.1
CH ₃ COOHNH ₃ ON 2.830 2.980 2.430 2.474	-0.356
Bidentate OHN 1.900 2.059 1.299 1.372	-0.528
OHN 168.3 158.0 162.2 167.3	-1.0
NO 3.090 3.006 2.664 2.875	-0.215
NHO 2.530 2.332 2.302 2.366	-0.164
NHO 119.0 116.1 118.2 110.3	-8.7
ImidazoliumOH ₂ NO 2.910 2.687 2.616 2.545	-0.365
NHO 1.810 1.653 1.574 1.449	-0.361
NHO 174.5 170.9 173.1 176.2	1.7
FormamidiniumOH ₂ NO 2.910 2.783 2.597 2.574	-0.336
NHO 1.910 2.095 1.694 1.503	-0.407
NHO 148.7 122.9 144.9 173.8	25.1
FormamidiniumOH ₂ NO 3.030 2.896 2.702 2.779	-0.251
Central (2 HB) NHO 2.090 2.048 1.840 1.919	-0.171
NHO 142.6 139.3 140.6 137.5	-5.1
NO 3.030 2.884 2.700 2.741	-0.289
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.651
NHO 142.6 139.9 140.8 139.8	-2.8
Formaldehydeiminium N O 2 860 2 571 2 581 2 511	-0.349
OH ₂ NH O 1 780 1 501 1 534 1 395	-0.385
NHO 163 4 175 1 172 7 176 9	13.5
Vinvlamine OH_0 N O 3 240 2 921 2 913 3 002	-0.238
	-0.203
NH O 2 190 2 534 1 919 1 987	-0.2
NHO 2.190 2.534 1.919 1.987 NHO 164 2 102 2 168 8 164 0	
NHO 2.190 2.534 1.919 1.987 NHO 164.2 102.2 168.8 164.0 T-Vinylalcohol O O 2.850 3.009 2.689 2.625	-0.225
NHO 2.190 2.534 1.919 1.987 NHO 164.2 102.2 168.8 164.0 T-Vinylalcohol OO 2.850 3.009 2.689 2.625 OH ₂ OHO 1.930 2.152 1.692 1.594	-0.225 -0.336

	Variable	ab initio	OM1	OM2	OM3	Δ
HOHT-Vinyl-	00	2.990	2.879	2.834	2.829	-0.161
alcohol	OHO	2.110	2.405	1.929	1.923	-0.187
	OHO	163.2	110.3	152.3	148.6	-14.6
Methylethylamine	ON	2.690	2.640	2.522	2.505	-0.185
OxideOHH Cyclic	OHN	1.830	2.304	1.616	1.489	-0.341
	OHN	148.9	99.8	148.8	166.3	17.4
	NO	2.840	2.982	2.915	3.167	0.327
	NHO	2.170	2.428	2.411	3.156	0.986
	NHO	124.2	111.0	107.0	80.4	-43.8
Methylethylamine-	00	2.860	3.016	2.641	3.277	0.417
hydroxylamineOH ₂	OHO	2.110	2.290	1.803	2.754	0.644
Cyclic	OHO	138.5	130.7	137.1	111.9	-26.6
	ON	2.860	2.907	2.748	2.732	-0.128
	OHN	2.180	2.777	2.532	1.744	-0.436
	OHN	130.2	88.1	92.1	162.6	32.4
T,T-Oxalic Acid	00	2.740	2.705	2.428	2.350	-0.390
OHH Cyclic	OHO	1.800	1.724	1.373	1.203	-0.597
	OHO	171.5	176.3	169.4	162.1	-9.4
	00	2.810	2.726	2.444	2.371	-0.439
	OHO	2.220	2.255	1.648	1.376	-0.844
	OHO	122.2	109.3	134.2	150.2	28.0
Cis,Cis-Oxalic	00	3.170	2.693	2.516	2.677	-0.493
AcidOHH Cyclic	OHO	2.440	3.116	3.256	3.154	0.714
	OHO	141.1	55.5	34.7	53.2	-87.9
	00	3.160	2.786	2.556	2.757	-0.403
	OHO	2.350	2.422	3.072	2.339	-0.011
	OHO	151.7	102.2	49.9	103.8	-47.9
OHHT,T-Oxalic	00	3.100	3.063	2.780	2.968	-0.132
Acid Cyclic	OHO	2.270	2.402	1.995	2.222	-0.048
	OHO	155.0	126.1	135.5	130.0	-25.0
	00	3.410	3.359	3.240	3.421	0.011
	OHO	2.950	2.515	2.443	2.593	-0.357
	OHO	117.5	147.4	138.3	139.8	22.3
HOHSkew-Methyl	00	2.930	2.880	2.800	2.799	-0.131
Vinyl Ether	OHO	2.080	2.425	2.008	2.334	0.254
-	OHO	155.6	109.0	136.4	107.2	-48.4
$H_2NHO(CH_3)_2$	NO	3.200	2.917	3.201	3.367	0.167
_ 、 _/_	NHO	2.320	2.664	2.223	2.344	0.024
	NHO	155.9	94.1	166.4	166.3	10.4
T-N-OH,N-Methyl-	00	2.820	2.972	2.628	2.662	-0.158
acetamideOH ₂	OHO	1.940	2.161	1.677	1.628	-0.312
-	OHO	159.2	139.4	152.6	171.0	11.8
HOHT-N-OH,N-Me-	00	3.020	2.927	2.852	2.899	-0.121
thylacetamide	OHO	2.120	2.424	1.887	1.910	-0.210
-	OHO	168.7	112.6	168.0	167.5	-1.2

	ab initio	OM1	OM2	OM3	Δ
HOHOH ₂	-5.5	-4.3	-4.3	-4.5	1.0
НОННОН	-4.3	-4.3	-3.6	-3.4	0.8
HOHOHCH ₃	-5.5	-3.9	-4.0	-3.8	1.7
CH ₃ OHOH ₂	-5.5	-3.0	-3.9	-4.1	1.4
CH ₃ OHOHCH ₃	-5.5	-2.7	-3.4	-3.2	2.2
$C_6H_5OHOH_2$	-7.3	-4.0	-4.8	-5.7	1.6
HOHOHC ₆ H ₅	-4.7	-3.6	-4.1	-3.8	0.9
T-NMAOH ₂	-5.4	-3.1	-3.9	-3.5	1.8
HOHT-NMA	-7.2	-4.9	-6.8	-6.0	1.2
Formamide Dimer	-13.3	-7.6	-13.0	-12.4	0.9
Formamide Dimer	-7.3	-4.5	-6.2	-5.2	2.1
H_2NHHNH_2	-3.2	-1.8	-2.0	-1.9	1.3
H ₂ NHNH ₃	-3.0	-3.5	-2.1	-2.5	0.6
HOHNH ₃	-6.5	-4.7	-4.9	-6.9	-0.4
HOHNH ₂ CH ₃	-6.4	-4.4	-4.3	-6.1	0.3
H ₃ CCOOHHOOCCH ₃	-15.4	-6.7	-15.2	-18.2	-2.8
H ₂ CCOOHOHH	-9.8	-6.0	-10.4	-9.9	-0.1
ImidazoleOH ₂	-6.3	-4.1	-5.4	-5.3	1.0
HOHImidazole	-7.0	-5.2	-4.9	-7.0	0.0
IndoleOH ₂	-5.7	-3.4	-4.5	-4.5	1.2
PyrroleOH ₂	-5.3	-3.4	-4.5	-4.4	0.9
Methyl AmmoniumOH ₂	-19.3	-16.8	-18.0	-20.7	-1.4
$OHH^{(-)}O_2CCH_3$	-21.9	-15.3	-17.9	-18.9	2.9
HOHPyridine	-6.0	-4.4	-4.0	-5.5	0.5
HOHFuran	-3.6	-2.9	-3.2	-2.9	0.7
HOHPyridine N-Oxide	-9.6	-5.9	-8.8	-7.8	1.8
HOHMethyl Formate	-5.8	-3.8	-5.3	-4.0	1.8
HOHMethyl Formate	-3.4	-3.1	-4.6	-4.0	-0.6
HOHFormaldehyde	-5.2	-3.0	-3.7	-3.0	2.3
HOHAcetone	-6.2	-4.3	-5.8	-4.9	1.2
FormamidineHOH	-9.9	-5.9	-7.6	-9.7	0.2
HOHFormaldehydeimine	-6.1	-4.1	-3.8	-5.3	0.8
GuanidineOHH	-7.2	-5.3	-4.9	-6.2	0.9
Guanidinium ⁺ OHH	-18.5	-13.8	-15.5	-15.1	3.4
AnilineOHH	-4.2	-3.1	-3.0	-2.9	1.3
$HOHO(CH_3)_2$	-5.3	-3.7	-3.6	-3.6	1.7
T-NMA Dimer	-6.9	-3.8	-5.7	-4.6	2.3
T-NMA Dimer	-3.5	-4.1	-6.1	-4.0	-0.5
HOHN-Meformamide	-7.1	-4.7	-6.4	-5.5	1.6
N-MeformamideOH ₂	-5.5	-2.9	-4.3	-4.0	1.5
CH ₃ COOHNH ₃	-10.8	-5.4	-12.7	-14.9	-4.2
ImidazoliumOH ₂	-16.9	-13.4	-15.6	-17.4	-0.4
FormamidiniumOH ₂	-17.0	-13.8	-14.8	-16.1	0.9
FormamidiniumOH ₂	-19.6	-15.3	-16.8	-16.4	3.2
FormaldehydeiminiumOH ₂	-20.0	-17.2	-18.7	-21.6	-1.6
VinylamineOH ₂	-3.4	-2.9	-2.9	-2.7	0.7

Tabelle 7.48: Relative Energien [kcal/mol] (Satz II) [99]

	ab initio	OM1	OM2	OM3	Δ
T-VinylalcoholOH ₂	-7.4	-4.2	-5.0	-5.7	1.7
HOHT-Vinylalcohol	-4.6	-3.6	-4.1	-3.7	0.9
Methylethylamine OxideOHH	-13.9	-7.8	-8.3	-9.0	5.0
MethylethylhylhydroxylamineOH ₂	-6.7	-3.3	-4.2	-3.9	2.8
T,T-Oxalic AcidOHH	-10.1	-6.7	-14.1	-17.3	-7.2
Cis,Cis-Oxalic AcidOHH	-4.4	-6.2	-7.4	-5.7	-1.3
OHHT,T-Oxalic Acid	-3.4	-3.0	-3.1	-2.8	0.6
HOHSkew-Methylvinylether	-4.7	-3.4	-3.5	-3.5	1.2
$H_2NHO(CH_3)_2$	-2.8	-2.6	-2.0	-1.6	1.2
N-MeacetamideOH ₂	-7.4	-3.7	-5.3	-4.7	2.7
HOHN-Meacetamide	-3.7	-2.2	-2.5	-2.5	1.2

Tabelle 7.49: Statistik Wasserstoffbrücken (Satz II)

	N	OM1	OM1	OM2	OM2	OM3	OM3	OM3
		\overline{x}	MAF	\overline{x}	MAF	\overline{x}	MAF	σ
Abstände [Å]								
All molecules	150	0.079	0.210	-0.170	0.267	-0.148	0.309	0.388
CHN compounds	8	0.022	0.219	-0.065	0.096	-0.052	0.105	0.142
CHO compounds	58	0.103	0.207	-0.216	0.269	-0.147	0.320	0.426
CHNO compounds	84	0.068	0.211	-0.148	0.282	-0.158	0.320	0.379
NN (H bonds)	4	-0.074	0.268	-0.028	0.090	-0.036	0.137	0.164
OO (H bonds)	35	-0.033	0.132	-0.243	0.243	-0.173	0.247	0.292
NO (H bonds)	36	-0.074	0.153	-0.161	0.265	-0.159	0.270	0.313
NHN (H bonds)	4	0.118	0.170	-0.103	0.103	-0.068	0.074	0.142
OHO (H bonds)	35	0.254	0.284	-0.204	0.292	-0.115	0.388	0.508
NHO (H bonds)	26	0.094	0.215	-0.079	0.334	-0.058	0.348	0.453
OHN (H bonds)	10	0.414	0.414	-0.147	0.230	-0.449	0.449	0.476
Winkel [°]								
All molecules	75	-30.01	31.31	-8.33	10.52	-6.46	15.11	23.44
CHN compounds	4	-25.58	25.58	-0.84	3.24	-7.55	7.92	12.99
CHO compounds	29	-31.20	33.77	-11.74	14.33	-15.92	22.63	33.47
CHNO compounds	42	-29.61	30.16	-6.69	8.58	0.17	10.60	14.64
NHN	4	-25.58	25.58	-0.84	3.24	-7.55	7.92	12.99
OHO	35	-33.24	35.36	-11.09	13.25	-13.71	20.18	30.81
NHO	26	-20.62	21.52	-4.64	7.69	-4.45	9.70	13.97
OHN	10	-44.88	44.88	-11.22	11.22	14.11	14.30	18.27
Relative Energien [k	cal/mo	1]						
All molecules	57	2.40	2.50	1.09	1.55	0.83	1.55	2.00
CHO compounds	22	2.16	2.33	0.65	1.44	0.58	1.67	2.22
CHNO compounds	33	2.68	2.71	1.38	1.66	0.99	1.51	1.93

7.7 Peptide

Der aus [111] entnommene Validierungssatz für Peptide wurde schon in Kapitel 5.10 vorgestellt. Für die Definition der Geometrien wird auf [111] verwiesen. Die mit OM3 erhaltenen Resultate sind in den Tabellen 7.50 und 7.51 dokumentiert. Die beobachteten mittleren absoluten Fehler entsprechen im Wesentlichen denen von OM1 und OM2, die in [111] ausführlich diskutiert worden sind. Auch wenn im Vergleich zu AM1 und PM3 bedeutend bessere Resultate erzielt werden, ist deren Qualität auch für die OM Methoden insgesamt noch nicht zufrieden stellend. Ein viel versprechender Ansatz, um eine verbesserte Beschreibung der Peptide zu erhalten, ist eine spezielle Parametrisierung. Da OM2 und OM3 sich in ihrer Qualität nicht viel unterscheiden und OM3 einen einfacheren Formalismus aufweist, ist es empfehlenswert, eine spezielle Parametrisierung für OM3 durchzuführen.

	Variable	ab initio	OM1	OM2	OM3	Δ	Ref.
N-Methyl-	C1-N2	1.469	1.444	1.432	1.454	-0.015	а
acetamide	N2-C3	1.386	1.379	1.380	1.406	0.020	
	C3-C4	1.520	1.518	1.513	1.518	-0.002	
	C3=O5	1.225	1.213	1.242	1.247	0.022	
	C1-N2-C3	119.7	124.3	120.9	122.3	2.6	
	H6-N2-C3	110.0	120.0	120.9	120.4	10.4	
	N2-C3-C4	114.1	118.2	118.5	117.4	3.3	
	N2-C3-O5	121.8	120.5	120.1	120.3	-1.5	
	C4-C3-O5	121.8	121.4	121.4	122.2	0.4	
NMA-COHOH	NHOHH	2.130	2.316	1.686	1.644	-0.486	b
	C=OH	146.0	138.8	138.4	136.7	-9.3	b
NMA-NHOHH	NHOHH	2.130	2.235	1.885	1.924	-0.206	b
NMA dimer	COHN	2.080	2.253	1.841	1.954	-0.126	b
Ac-Ala-NHMe							
C_{7eq}	Φ	-85.8	-79.9	-78.2	-81.2	4.6	с
-	Ψ	78.5	86.7	72.4	76.1	-2.4	с
	0H	2.220	2.270	1.920	2.101	-0.119	d
C_5	Φ	-157.9	-106.6	-126.7	-125.7	32.2	с
	Ψ	160.3	153.1	153.3	147.7	-12.6	с
	0H	2.210	2.489	2.356	2.487	0.277	d
β	Φ	-128.6	-80.0	-78.1	-81.2	47.4	с
	Ψ	23.2	86.6	72.7	76.1	52.9	с
C_{7ax}	Φ	75.8	77.6	71.7	71.7	-4.1	с
	Ψ	-56.5	-61.7	-61.2	-62.1	-5.6	с
	0H	2.030	2.148	1.835	1.892	-0.138	d
α_L	Φ	66.9	77.6	71.7	71.7	4.8	с
	Ψ	29.7	-61.8	-61.2	-62.1	-91.8	с
α'	Φ	-166.4	-186.9	-193.8	-288.3	-121.9	с
	Ψ	-40.1	-39.4	-45.6	-62.1	-22.0	с

Tabelle 7.50: Bindungslängen [Å] und Winkel [°] der Peptide

	Variable	ab initio	OM1	OM2	OM3	Δ	Ref.
α_R	Φfix	-60.7	-60.7	-60.7	-60.7	0.0	e
	Ψ fix	-40.7	-40.7	-40.7	-40.7	0.0	e
Ac-(Gly) ₂ -NHMe							
double-C7	Φ_1	-85.8	-82.9	-77.4	-80.3	5.5	f
	Ψ_1	65.4	78.2	67.7	70.7	5.3	f
	Φ_2	-86.1	-85.1	-77.2	-79.8	6.3	f
	Ψ_2	60.9	72.4	66.5	69.1	8.2	f
	OH	2.160	2.240	1.892	2.053	-0.107	f
	OH	2.170	2.233	1.891	2.031	-0.139	f
extended	Φ_1	-179.9	-180.7	-230.6	-231.4	-51.5	f
	Ψ_1	-179.7	-179.6	-164.0	-160.3	19.4	f
	Φ_2	-179.7	-179.7	-223.7	-226.0	-46.3	f
	Ψ_2	-179.7	-180.2	-165.3	-162.4	17.3	f
β I turn	Φ_1	-73.3	-71.1	-75.4	-83.5	-10.2	f
	Ψ_1	-17.7	-15.6	14.2	19.8	37.5	f
	Φ_2	-101.9	-120.2	-110.5	-115.0	-13.1	f
	Ψ_2	11.9	24.6	11.2	14.7	2.8	f
	OH	2.290	2.371	1.980	2.521	0.231	f
	OH	2.960	2.968	2.393	2.604	-0.356	f
β II	Φ_1	-60.9	-58.1	-67.9	-69.5	-8.6	f
	Ψ_1	136.4	134.9	91.2	96.5	-39.9	f
	Φ_2	95.5	112.0	115.7	117.2	21.7	f
	Ψ_2	-11.7	-20.9	2.1	-3.0	8.7	f
	OH	2.240	2.357	1.882	1.996	-0.244	f
	OH	3.230	3.487	2.127	2.402	-0.828	f
$Ac-(Ala)_2$ -NHMe	Ŧ	150.0	1 4 1 1	100 5	100.0	04.0	
extended	Ψ_1	-150.0	-141.7	-122.7	-122.0	34.0	g
	Ψ_1	160.4	158.5	157.2	152.3	-8.1	g
	Ψ_2	-157.0	-142.3	-123.2	-121.0	35.4	g
0.1	Ψ_2	157.5	158.1	155.4	150.5	-7.0	g
βI	Ψ_1	-72.8	-71.4	-72.2	-75.1	-2.3	g
	Ψ_1	-18.9	-10.3	4.7	2.1 107.2	21.0	g
	Ψ_2	-99.0	-104.7	-104.8	-107.3	-1.1	g
<i>Q</i> II	Ψ_2	(.8		(.9 65 1	12.(4.9	g
	Ψ_1	-00.2	-30.1	-00.1	-(1.4)	-11.2	g
	Ψ_1	133.7	141.1	104.1	88.3 167.0	-40.4	g
	Ψ_2	00.0	107.8	91.3	107.0	100.5	g
	Ψ_2	20.0	-20.2	12.2	-38.0	-08.0	g
	Ψ1 Ψ	02. <i>(</i> 91.0	00.2 91 7	01./ 17.6	08.9 05 7	— ა. გ ი	g
	Ψ_1	51.9 64.6	01.7 100 F	17.0	20.7	-0.2	g
	Ψ_2	04.0	122.0	(9.9	110.U 94.C	03.4 E7 7	g
<i>R'</i> II	Ψ_2	23.1 E 4 - 4	-30.3 E0.6	U.U 69 0	-34.0	-01.1	g
	Ψ <u>1</u> Ψ	04.4 120.0	00.0 140.0	03.8 01 <i>c</i>	04.1	10.3	g
	Ψ1 Φ	-1977	-140.9 100.0	-01.0	-02.4	49.0 16.9	g
	Ψ2 Ш	-90.U 09	-100.9 19.0	-110.8	-111.3 11.9	-10.3 10 ¢	g
1	Ψ_2	0.5	12.0	-11.0	-11.3	-19.0	g

	Variable	ab initio	OM1	OM2	OM3	Δ	Ref.
Ac-(Ala) ₃ -NHMe							
conf.3	Φ_1	-81.7	-80.0	-74.3	-78.1	3.6	с
	Ψ_1^-	93.4	84.4	82.1	83.9	-9.5	с
	$\overline{\Phi_2}$	76.3	75.1	72.6	73.7	-2.6	с
	$\overline{\Psi_2}$	-53.4	-58.4	-53.5	-54.0	-0.6	с
	Φ_3	-80.5	-70.8	-67.9	-71.0	9.5	с
	Ψ_3	85.1	96.5	85.9	88.6	3.5	с
	NHO	2.336	2.234	1.899	2.106	-0.230	с
	NHO	2.061	2.131	1.829	1.904	-0.157	с
	NHO	2.217	2.316	1.934	2.149	-0.068	с
conf.1	Φ_1	-158.5	-148.3	-124.8	-123.3	35.2	с
	Ψ_1^-	163.5	159.4	156.8	151.9	-11.6	с
	Φ_2	-157.8	-146.3	-121.7	-119.7	38.1	с
	Ψ_2	163.4	159.5	158.6	154.3	-9.1	с
	Φ_3	-156.2	-145.5	-123.5	-122.7	33.5	с
	Ψ_3	160.8	159.0	155.5	150.6	-10.2	с
	NHO	2.176	2.307	2.363	2.497	0.321	с
	NHO	2.191	2.313	2.393	2.529	0.338	с
	NHO	2.195	2.313	2.364	2.493	0.298	с
conf.2	Φ_1	-158.6	-134.6	-119.7	-119.9	38.7	с
	Ψ_1	163.9	155.6	155.0	150.1	-13.8	с
	Φ_2	-154.9	-114.4	-117.7	-116.2	38.7	с
	Ψ_2	158.1	153.9	153.1	148.5	-9.6	с
	Φ_3	-86.0	-80.4	-78.3	-81.1	4.9	с
	Ψ_3	79.2	87.0	72.9	76.9	-2.3	с
	NHO	2.185	2.369	2.414	2.540	0.355	с
	NHO	2.224	2.489	2.451	2.585	0.361	с
	NHO	2.264	2.279	1.930	2.120	-0.144	с
conf.4	Φ_1	-156.9	-93.4	-114.1	-123.4	33.5	с
	Ψ_1	161.3	149.1	148.3	151.9	-9.4	с
	Φ_2	-88.8	-81.8	-78.5	-119.9	-31.1	с
	Ψ_2	83.5	83.9	70.4	154.4	70.9	с
	Φ_3	-156.0	-81.8	-77.7	-122.8	33.2	с
	Ψ_3	152.8	83.4	70.0	150.7	-2.1	с
	NHO	2.195	2.630	2.485	2.496	0.301	с
	NHO	2.435	2.246	1.906	4.684	2.249	с
	NHO	2.325	3.620	3.707	2.492	0.167	с
conf.5	Φ_1	-157.2	-85.5	-115.5	-102.5	54.7	с
	Ψ_1	170.0	159.0	167.3	129.1	-40.9	с
	Φ_2	-76.2	-54.1	-88.9	-98.8	-22.6	с
	Ψ_2	-19.6	-38.7	2.3	-2.4	17.2	с
	Φ_3	-153.8	-102.8	-133.8	-139.8	14.0	с
	Ψ_3	160.8	137.7	155.8	153.9	-6.9	с
	NHO	2.170	2.680	2.432	2.828	0.658	с
	NHO	2.203	2.518	2.248	2.320	0.117	с
conf.6	Φ_1	-89.0	-86.4	-80.4	-84.0	5.0	с
	Ψ_1	67.3	70.5	68.2	70.2	2.9	с
	Φ_2	63.0	69.1	68.2	69.8	6.8	с

172
	Variable	ab initio	OM1	OM2	OM3	Δ	Ref.
	Ψ_2	24.3	-67.7	-56.1	-56.2	-80.5	с
	$\tilde{\Phi_3}$	-165.0	-69.7	-92.3	-90.5	74.5	с
	Ψ_{3}	149.8	149.7	154.9	151.5	1.7	с
	NHO	2.171	2.265	1.893	2.060	-0.111	с
	NHO	2.270	3.037	2.862	2.949	0.679	с
conf.7	Φ_1	56.0	55.6	49.4	50.7	-5.3	c
	Ψ_1	-158.5	-175.2	-145.8	-139.4	19.1	с
	Φ_2	-93.0	-83.5	-101.7	-106.4	-13.4	с
	$\tilde{\Psi_2}$	63.8	72.8	28.1	26.7	-37.1	с
	Φ_3	-163.3	-173.1	-119.8	-117.6	45.7	с
	Ψ_3	-50.0	-46.2	-33.4	-37.6	12.4	с
	NHO	2.159	2.278	1.858	1.950	-0.209	с
	NHO	2.389	2.324	3.102	3.252	0.863	с
conf.8	Φ_1	72.8	68.7	67.1	70.2	-2.6	с
	Ψ_1	-70.5	-73.4	-69.4	-62.3	8.2	с
	Φ_2	-58.1	-49.8	-55.8	-53.6	4.5	с
	$\overline{\Psi_2}$	134.7	149.7	126.2	133.4	-1.3	с
	Φ_3	62.0	96.7	67.9	100.8	38.8	с
	Ψ_3	25.7	-25.1	16.4	-22.7	-48.4	с
	NHO	2.036	2.121	1.846	1.844	-0.192	с
	NHO	2.200	2.334	1.802	1.919	-0.281	с
conf.9	Φ_1	75.7	76.5	71.6	70.5	-5.2	с
	Ψ_1	-59.5	-66.1	-61.2	-60.7	-1.2	с
	Φ_2	76.1	77.6	71.1	69.4	-6.7	с
	Ψ_2^-	-55.3	-62.8	-59.6	-59.2	-3.9	с
	$\overline{\Phi_3}$	75.5	78.3	71.5	70.4	-5.1	с
	Ψ_3	-53.0	-59.3	-59.0	-59.6	-6.6	с
	NHO	1.998	2.107	1.785	1.801	-0.197	с
	NHO	1.983	2.099	1.775	1.779	-0.204	с
	NHO	2.013	2.120	1.804	1.830	-0.183	с
conf.10	Φ_1	62.5	59.5	65.6	56.5	-6.0	с
	Ψ_1	29.0	26.7	1.4	29.7	0.7	с
	Φ_2	65.1	53.6	73.0	94.6	29.5	с
	Ψ_2	20.6	30.5	15.7	-22.3	-42.9	с
	Φ_3	73.8	99.8	71.2	70.6	-3.2	с
	Ψ_3	-51.5	-32.3	-58.9	-57.6	-6.1	с
	NHO	2.158	2.260	1.847	2.007	-0.151	с
	NHO	2.014	3.051	1.819	1.826	-0.188	с
Ac-(Ala) ₂ -NHMe							
$(C_7)_2$ reference	Φ_1	-86.9	-79.3	-77.9	-80.6	6.3	h
	Ψ_1	73.9	86.0	71.8	77.1	3.2	h
	Φ_2	-88.0	-81.5	-77.5	-79.7	8.3	h
	Ψ_2	74.9	83.8	69.8	73.1	-1.8	h
	NHO	2.202	2.258	1.913	2.112	-0.090	i
	NHO	2.186	2.226	1.889	2.032	-0.154	i
$3_{(10)}$ helix	Φ_1	-72.8	-71.3	-72.2	-75.1	-2.3	h
	Ψ_1	-18.8	-18.4	4.8	2.1	20.9	h
	Φ_2	-98.8	-104.8	-104.7	-107.3	-8.5	h

	Variable	ab initio	OM1	OM2	OM3	Δ	Ref.
	Ψ_2	7.1	11.6	7.9	12.7	5.6	h
	NHO	2.259	2.312	1.927	2.163	-0.096	i
Ac-(Ala) ₃ -NHMe							
$(C_7)_2$ reference	Φ_1	-86.6	-78.7	-77.7	-80.0	6.6	с
(1/2	Ψ_1	73.8	86.5	71.3	76.1	2.3	с
	$\overline{\Phi_2}$	-88.6	-81.2	-77.4	-79.2	9.4	с
	Ψ_{2}	69.9	82.8	68.4	73.1	3.2	с
	$\overline{\Phi}_{2}$	-88.0	-81.9	-78.0	-79.9	8.1	c
	Ψ_{2}	74.9	83.3	69.3	72.7	-2.2	c
	NH O	2174	2243	1 803	2.074	_0 100	i
	NH O	2.114 2.167	2.240	1.055	2.014	0.100	i
		2.107	2.210	1.070	2.030 2.010	-0.157	i
2. holiv	мпО Ф	2.101	65 4	69.4	2.019	-0.102	l h
$\mathcal{S}_{(10)}$ ment	Ψ_1	-09.2	-00.4	-02.4	-03.0 16.6	0.4 7 0	ll h
	Ψ_1	-23.0	-22.1	-10.7	-10.0	1.0	11 b
	Ψ_2	-09.5	-09.1	-04.5	-09.9	-0.0	1
	Ψ_2	-12.9	-10.0	-(.(-4.0	8.3	n
	Ψ_3	-95.2	-94.5	-103.2	-104.0	-8.8	h
	Ψ_3	2.8	-2.0	14.4	13.5	10.7	h
	NHO	2.278	2.278	1.876	2.017	-0.261	h
	NHO	2.333	2.347	1.926	2.196	-0.137	h
	NHO	3.919	4.221	3.983	4.132	0.213	h
Ac-(Ala) ₄ -NHMe							
$(C_7)_2$ reference	Φ_1	-86.5	-78.4	-77.6	-79.8	6.7	h
	Ψ_1	73.6	86.7	71.0	75.6	2.0	h
	Φ_2	-88.3	-80.5	-77.2	-78.7	9.6	h
	Ψ_2	69.8	83.7	67.6	72.0	2.2	h
	Φ_3	-88.6	-81.1	-77.8	-79.5	9.1	h
	Ψ_3	70.2	83.2	68.2	72.8	2.6	h
	Φ_4	-88.0	-81.9	-78.0	-79.7	8.3	h
	Ψ_4	74.3	83.2	68.6	71.9	-2.4	h
	NHO	2.164	2.235	1.882	2.054	-0.110	h
	NHO	2.144	2.205	1.857	1.995	-0.149	h
	NHO	2.165	2.210	1.867	2.016	-0.149	h
	NHO	2.173	2.211	1.871	2.001	-0.172	h
3(10) helix	Φ_1	-68.4	-63.0	-595	-602	82	h
5(10) Heli x	Ψ_1	-24.0	-26.4	-20.0	-21.3	2.7	h
	Φ.	-64.3	-61.7	-58.2	-60.1	2.1 4.2	h
	¥2 W.	_20.1	_18.0	_18.8	_18.0	+.2 9 1	h
	¥2 Ф.	20.1 60.4	60.1	66.0	60.3	0.1	h
	¥3 Ш	-09.4	10.0	-00.0	-09.0	0.1	li h
	¥3 Ф	-13.8	-10.9	-4.9 109.7	-4.0 102.6	9.0	11 12
	Ψ_4	-95.5	-90.2	-102.7	-103.0	-0.1	11
	Ψ_4	3.9	-0.5	12.0	1070	9.3	n
	NHU	2.270	2.279	1.857	1.979	-0.297	n
	NHO	2.334	2.292	1.880	2.036	-0.298	h
	NHO	2.328	2.351	1.900	2.129	-0.199	h
	NHO	4.158	4.464	4.211	4.312	0.154	h
	NHO	3.969	4.242	3.888	4.076	0.107	h

	Variable	ab initio	OM1	OM2	OM3	Δ	Ref.
Ac-(Ala) ₅ -NHMe							
$(C_7)_2$ reference	Φ_1	-87.1	-78.4	-77.6	-79.6	7.5	h
	Ψ_1	75.0	86.6	70.7	75.1	0.1	h
	Φ_1	-88.7	-80.4	-77.3	-78.5	10.2	h
	Ψ_1	71.6	83.8	67.4	71.6	0.0	h
	Φ_2	-88.8	-80.6	-77.3	-78.9	9.9	h
	Ψ_2	72.1	83.7	67.5	71.7	-0.4	h
	Φ_3	-89.1	-81.3	-77.6	-79.3	9.8	h
	Ψ_3	69.3	82.9	67.6	71.9	2.6	h
	Φ_4	-90.6	-82.2	-77.8	-79.8	10.8	h
	Ψ_4	69.2	82.9	69.1	71.5	2.3	h
	NHO	2.168	2.229	1.874	2.039	-0.129	h
	NHO	2.119	2.198	1.848	1.977	-0.142	h
	NHO	2.118	2.197	1.844	1.979	-0.139	h
	NHO	2.100	2.203	1.857	1.996	-0.104	h
	NHO	2.191	2.208	1.867	1.994	-0.197	h
$3_{(10)}$ helix	Φ_1	-67.8	-62.7	-58.6	-58.7	9.1	h
()	Ψ_1	-24.9	-26.7	-22.2	-23.7	1.2	h
	Φ_1	-63.7	-59.8	-56.4	-57.6	6.1	h
	Ψ_1	-20.2	-21.5	-19.9	-20.1	0.1	h
	Φ_2	-64.4	-62.3	-59.2	-60.0	4.4	h
	Ψ_2	-21.1	-18.8	-18.4	-19.1	2.0	h
	Φ_3	-69.7	-69.8	-66.5	-69.5	0.2	h
	Ψ_3	-13.2	-9.8	-3.7	-3.7	9.5	h
	Φ_4	-94.7	-93.7	-102.0	-103.1	-8.4	h
	Ψ_4	3.0	-2.4	11.3	11.6	8.6	h
	NHO	2.254	2.271	1.842	1.950	-0.304	h
	NHO	2.335	2.293	1.865	2.015	-0.320	h
	NHO	2.323	2.298	1.858	1.991	-0.332	h
	NHO	2.305	2.345	1.890	2.104	-0.201	h
	NHO	4.177	4.465	4.186	4.288	0.111	h
	NHO	4.203	4.505	4.161	4.292	0.089	h
	NHO	3.916	4.226	3.855	4.004	0.088	h
Ac-(Ala) ₆ -NHMe							
$(C_7)_2$ reference	Φ_1	-86.5	-78.3	-77.6	-79.5	7.0	h
	Ψ_1	73.4	86.7	70.5	74.8	1.4	h
	Φ_2	-88.1	-80.2	-77.1	-78.3	9.8	h
	Ψ_2	69.9	84.0	67.2	71.2	1.3	h
	Φ_3	-88.2	-80.3	-77.5	-78.6	9.6	h
	Ψ_3	70.2	84.1	67.2	71.2	1.0	h
	Φ_4	-88.3	-80.6	-77.6	-78.6	9.7	h
	Ψ_4	69.5	83.6	66.7	70.7	1.2	h
	Φ_5	-88.6	-81.2	-77.9	-79.3	9.3	h
	Ψ_5	69.8	83.2	67.6	71.7	1.9	h
	Φ_6	-88.1	-82.3	-78.1	-79.7	8.4	h
	Ψ_6	74.0	82.8	68.2	71.2	-2.8	h
	NHO	2.153	2.227	1.870	2.029	-0.124	h
	NHO	2.131	2.196	1.842	1.965	-0.166	h

	Variable	ab initio	OM1	OM2	OM3	Δ	Ref.
	NHO	2.132	2.192	1.838	1.959	-0.173	h
	NHO	2.132	2.191	1.838	1.958	-0.174	h
	NHO	2.155	2.202	1.855	1.990	-0.165	h
	NHO	2.168	2.205	1.865	1.987	-0.181	h
$3_{(10)}$ helix	Φ_1	-67.5	-62.4	-58.3	-57.9	9.6	h
. ,	Ψ_1	-25.3	-27.1	-22.5	-24.5	0.8	h
	Φ_2	-62.9	-59.3	-55.4	-56.1	6.8	h
	Ψ_2	-21.2	-22.2	-21.4	-22.0	-0.8	h
	Φ_3	-63.9	-60.3	-57.7	-57.9	6.0	h
	Ψ_3	-20.9	-21.3	-19.0	-20.6	0.3	h
	Φ_4	-64.4	-62.7	-59.4	-60.1	4.3	h
	Ψ_4	-20.9	-18.2	-17.8	-18.2	2.7	h
	Φ_5	-69.5	-69.4	-66.3	-69.2	0.3	h
	${\Psi}_5$	-13.4	-10.1	-3.9	-4.3	9.1	h
	Φ_6	-94.1	-92.6	-101.3	-102.1	-8.0	h
	${\Psi}_6$	2.4	-3.6	10.7	10.8	8.4	h
	NHO	2.243	2.260	1.832	1.930	-0.313	h
	NHO	2.307	2.282	1.850	1.984	-0.323	h
	NHO	2.324	2.292	1.841	1.965	-0.359	h
	NHO	2.302	2.287	1.848	1.976	-0.326	h
	NHO	2.302	2.343	1.881	2.088	-0.214	h
	NHO	4.161	4.440	4.183	4.270	0.109	h
	NHO	4.224	4.498	4.143	4.268	0.044	h
	NHO	4.155	4.483	4.135	4.238	0.083	h
	NHO	3.898	4.220	3.845	3.994	0.096	h

a [186]; b [187]; c [112]; d [188]; e [189]; f [190]; g [191] h K. Möhle, own reference calculations (1998-2000); i [192]

	Exp.	OM1	OM2	OM3	Δ	Ref.
N-Methylacetamide cis	2.3	0.7	1.1	1.0	-1.3	e
N-Methylacetamide TS	16.6	9.3	12.8	14.7	-1.9	e
N-Methylacetamide TS	21.0	12.6	14.9	16.6	-4.4	e
Ac-Ala-NHMe C ₅	0.9	0.6	1.1	0.8	-0.1	а
Ac-Ala-NHMe β	2.8	0.0	-0.1	0.0	-2.8	а
Ac-Ala-NHMe C _{7ax}	2.7	1.7	1.0	1.5	-1.2	а
Ac-Ala-NHMe α_L	4.3	1.7	1.0	1.5	-2.8	а
Ac-Ala-NHMe α'	5.5	3.1	4.9	1.5	-4.0	а
Ac-Ala-NHMe α_R	4.0	2.4	5.4	4.8	0.8	b
Ac-(Gly) ₂ -NHMe extended	1.4	-0.1	1.5	0.7	-0.7	с
Ac-(Gly) ₂ -NHMe β I turn	2.1	1.6	3.0	2.5	0.4	с
Ac-(Gly) ₂ -NHMe β II	1.2	1.2	1.1	0.9	-0.4	с
Ac-(Ala) ₂ -NHMe β I	-1.4	0.6	0.6	1.4	2.7	d
Ac-(Ala) ₂ -NHMe β II	-0.4	1.6	1.5	1.8	2.2	d
Ac-(Ala) ₂ -NHMe β ' I	1.1	4.0	4.4	5.3	4.2	d
Ac-(Ala) ₂ -NHMe β ' II	-0.4	2.2	0.3	1.5	1.9	d

Tabelle 7.51: Relative Energien der Peptide [kcal/mol]

	Exp.	OM1	OM2	OM3	Δ	Ref.
Ac-(Ala) ₃ -NHMe conf.1	2.7	2.1	6.2	2.9	0.2	а
Ac-(Ala) ₃ -NHMe conf.2	2.8	1.8	5.5	2.5	-0.3	а
Ac-(Ala) ₃ -NHMe conf.4	4.1	1.1	4.5	2.9	-1.2	а
Ac-(Ala) ₃ -NHMe conf.5	3.9	2.4	7.3	3.9	0.0	а
Ac-(Ala) ₃ -NHMe conf.6	2.2	0.7	1.3	0.9	-1.3	а
Ac-(Ala) ₃ -NHMe conf.7	5.8	4.9	6.9	5.4	-0.3	а
Ac-(Ala) ₃ -NHMe conf.8	4.2	4.0	6.4	5.1	0.9	а
Ac-(Ala) ₃ -NHMe conf.9	6.9	5.2	5.3	4.5	-2.4	а
Ac-(Ala) ₃ -NHMe conf.10	7.0	7.1	9.8	8.7	1.7	а
Mean error		-0.61	0.70	-0.40		
Mean absolute error		1.49	1.72	1.61		
	•					

a [112]; b [193]; c [190]; d [191]; e [194]

7.8 Pericyclische Reaktionen

Im Rahmen der Entwicklung von OM1 [2] wurde auch ein Validierungssatz mit pericyclischen Reaktionen zusammengestellt, der neben Aktivierungsenergien (experimentelle oder ab initio Referenzdaten) aus ab initio Rechnungen gewonnene Geometrien der Übergangszustände enthält.

Die ab initio Geometrien der Übergangszustände werden von allen drei Methoden mit vergleichbar kleinen Abweichungen von den ab initio Referenzdaten bestimmt (Tabelle 7.52).

	¥7 · 11	771	01/1	0110	01/2	Δ.	DC
	Variable	Theor.	OMI	OMZ	UM3	Δ	Rei.
Diels-Alder Reaktion							
Butadien +	C3-C4	2.286	2.093	2.042	2.076	-0.210	а
Ethen	C4-C5	1.380	1.361	1.376	1.379	-0.001	а
	C2-C3	1.378	1.361	1.375	1.377	-0.001	а
	C1-C2	1.410	1.398	1.412	1.419	0.009	а
	C2C3C4	101.6	99.5	98.6	98.4	-3.2	а
Elektrocyclische Ringöffnung							
$Cyclobuten \rightarrow$	C1-C2	2.133	2.027	1.983	1.999	-0.134	а
Butadien (C_1)	C2-C3	1.423	1.395	1.409	1.412	-0.011	а
	C3-C4	1.379	1.383	1.398	1.403	0.023	а
	C1C2C3C4	22.2	18.4	18.6	19.5	-2.7	а
Cope-Umlagerung							
1,5-Hexadien	C	1 071	1 765	1 710	1 721	0.240	ŀ
Sessel (C_{2h})	CC	1.971	1.705	1.719	1.731	-0.240	к
1,5-Hexadien	C	2 208	1 849	1 760	1 701	0 417	ŀ
Wanne (C_{2v})	CC	2.200	1.042	1.709	1.791	-0.417	К

Tabelle 7.52: Bindungslängen [Å] und Winkel [°] von Übergangszuständen $^{\rm 1}$

	Variable	Theor.	OM1	OM2	OM3	Δ	Ref.
1-Cyano-1,5-hexadien	C1-C6	2.082	1.787	1.734	1.746	-0.336	b
Sessel (C_1)	C1-C2	1.414	1.410	1.423	1.428	0.014	b
	C5-C6	1.402	1.400	1.414	1.419	0.017	b
	C3-C4	2.131	1.786	1.730	1.748	-0.383	b
	C4-C5	1.393	1.396	1.412	1.416	0.023	b
	C2-C3	1.389	1.395	1.411	1.414	0.025	b
	C1-C7	1.439	1.452	1.458	1.465	0.026	b
2-Cyano-1,5-hexadien	C1-C2	1.434	1.417	1.430	1.433	-0.001	b
Sessel (C_s)	C2-C7	1.422	1.422	1.431	1.439	0.017	b
	C3-C4	1.825	1.728	1.691	1.705	-0.120	b
	C5-C6	1.421	1.405	1.418	1.423	0.002	b
2,5-Dicvano-1,5-hexadien	C2-C3	1.443	1.420	1.432	1.436	-0.007	b
Sessel (C_{2h})	C3-C4	1.752	1.704	1.675	1.686	-0.066	b
	C2-C7	1.418	1.422	1.431	1.439	0.021	b
Claisen-Umlagerung						0.011	
Allylvinyl-	C6-C1	2.322	1.952	1.925	1.955	-0.367	с
ether	0-C4	1.914	1.642	1.570	1.613	-0.301	c
Sessel (C_1)	C5-C6	1 382	1 375	1 384	1 388	0.006	c
	C5-C4	1 401	1 408	1 429	1 430	0.029	c
	C1-C2	1 383	1 383	1 392	1.394	0.011	c
	C2-0	1.000 1 287	1.000 1 286	1 304	1.001 1 315	0.011	c
Allylyinyl	C6-C1	2 362	2.017	1.004	2.010	-0.352	d
ether	$O_{-}C4$	1 080	1 674	1.610	1.657	-0.302	d
Wanne (C_{\star})	$C_{5}C_{6}$	1.300 1.375	1.074	1 282	1 386	0.020	d
Wanne (C1)	$C_{5}C_{4}$	1 3 8 5	1.371	1.303	1.300	0.011	u d
	$C_{1}C_{2}$	1.300 1.373	1.402	1.415 1.300	1.420 1 302	0.035	d d
	C1-C2	1.575	1.300 1.970	1.090 1.007	1.392	0.019	u d
1.3-Dipolare Cvcloadditionen	02-0	1.201	1.413	1.231	1.500	0.049	u
Ethin + Iso-	C1-01	2.361	2.238	2.242	2.200	-0.161	е
cvansäure	C3-C2	2.171	1.992	1.957	1.981	-0.190	e
(C _a)	C1-C2	1 2 4 0	1 228	1.241	1.246	0.006	e
(03)	C3-N1	1.227	1.221	1.227	1.259	0.032	e
	01-N1	1 233	1 231	1.264	1.264	0.031	e
	C2C101	93.2	101 2	102.0	102.1	8.9	e
	01N1C3	140.3	133 7	134.8	133.9	-6.4	e
	C3C2C101	0.0	0.0	0.0	0.0	0.0	C
	C2C101N1	0.0	0.0	0.0	0.0	0.0	
	C101N1C3	0.0	0.0	0.0	0.0	0.0	
	01N1C3C2	0.0	0.0	0.0	0.0	0.0	
	N1C3C2C1	0.0	0.0	0.0	0.0	0.0	
Fthen + Iso-	C1-01	2 228	2 192	2 156	2170	-0.058	f
cvansäure	$C_3 - C_2$	$\frac{2.220}{2.149}$	2.152 2.057	2.100	2.110	-0.115	f
(C_1)	C1-C2	1 363	1 344	1 353	1 360	-0.003	f
(~1)	C3-N1	1.000	1.044	1 993	1 957	0.000	f
	01_N1	1 990	1 991	1.220	1.201	0.001	r f
	C3C2C101	1.220	1.201	1.204	1.204	0.044	1
	$C_{2}C_{1}O_{1}N_{1}$	0.0	0.0	0.0	0.0	0.0	
	C101N1C3	0.0	0.0	0.0	0.0	0.0	
	CIGINICS	0.0	0.0	0.0	0.0	0.0	

7.8. PERICYCLISCHE REAKTIONEN

	Variable	Theor.	OM1	OM2	OM3	Δ	Ref.
	O1N1C3C2	0.0	0.0	0.0	0.0	0.0	
	N1C3C2C1	0.0	0.0	0.0	0.0	0.0	
Ethen +	C1-O1	2.202	1.990	1.928	1.943	-0.259	g
Formaldoxim	C3-C2	2.186	2.174	2.050	2.082	-0.104	g
(C_1)	C1-C2	1.380	1.353	1.370	1.375	-0.005	g
	C3-N1	1.335	1.334	1.336	1.363	0.028	g
	O1-N1	1.290	1.283	1.294	1.307	0.017	g
	C2C1O1	102.6	103.2	102.8	103.2	0.6	g
	C1C2C3	100.5	101.0	102.1	102.3	1.8	g
En-Reaktionen							
Ethen +	C1-C2	1.407	1.382	1.395	1.397	-0.010	h
Propen	C2-H3	1.552	1.406	1.477	1.455	-0.097	h
(C_1)	H3-C4	1.251	1.227	1.248	1.247	-0.004	h
	C4-C5	1.427	1.412	1.428	1.433	0.006	h
	C5-C6	1.392	1.368	1.384	1.384	-0.008	h
	C1-C6	2.024	1.971	1.907	1.958	-0.066	h
	C1C2H3	102.1	107.0	105.8	106.1	4.0	h
	C2H3C4	153.6	152.2	149.9	151.1	-2.5	h
	H3C4C5	99.8	98.9	98.5	98.5	-1.3	h
	C4C5C6	117.0	118.4	117.2	118.2	1.2	h
	C5C6C1	103.4	99.0	100.4	98.4	-5.0	h
	C6C1C2	112.0	110.4	111.4	111.4	-0.6	h
	C1C2H3C4	-16.0	-4.7	-5.9	-1.6	14.5	h
	C2H3C4C5	31.5	22.4	21.9	18.3	-13.2	h
	H3C4C5C6	-56.1	-59.2	-58.6	-59.2	-3.1	h
	C4C5C6C1	63.4	66.8	69.8	69.6	6.2	h
	C5C6C1C2	-40.8	-39.3	-43.9	-42.3	-1.5	h
	C6C1C2H3	14.3	11.0	14.2	12.3	-2.0	h
Formaldehyd +	C1-O2	1.297	1.259	1.278	1.282	-0.015	h
Propen	O2-H3	1.377	1.267	1.376	1.352	-0.025	h
(C_1)	H3-C4	1.266	1.233	1.210	1.224	-0.042	h
	C4-C5	1.415	1.406	1.428	1.432	0.017	h
	C5-C6	1.394	1.375	1.395	1.394	0.000	h
	C1-C6	1.918	1.916	1.797	1.859	-0.059	h
	C1O2H3	105.5	115.2	114.1	113.7	8.2	h
	O2H3C4	151.8	149.2	144.6	146.4	-5.4	h
	H3C4C5	95.0	96.2	97.1	96.8	1.8	h
	C4C5C6	118.6	119.5	118.0	118.9	0.3	h
	C5C6C1	98.5	96.4	97.7	96.4	-2.1	h
	C6C1O2	111.4	108.0	109.5	109.3	-2.1	h
	C1O2H3C4	-34.4	-14.9	-13.8	-14.9	19.5	h
	O2H3C4C5	42.9	28.2	25.5	25.9	-17.0	h
	H3C4C5C6	-58.2	-59.6	-59.2	-59.4	-1.2	h
	C4C5C6C1	65.7	66.9	70.5	69.7	4.0	h
	C5C6C1O2	-47.4	-41.3	-46.8	-46.4	1.0	h
	C6C1O2H3	25.8	17.2	21.2	21.3	-4.5	h

	Variabla	Theor	OM1	OM2	OM2		Dof
	Variable	Theor.	UNIT	UIVI2	UNIS		Kei.
Sigmatrope Wasserstoffversch	iebung						
Malonaldehyd	O-H	1.203	1.183	1.207	1.212	0.009	i
(C_{2v})	C-O	1.285	1.262	1.279	1.291	0.006	i
	C-C	1.396	1.394	1.404	1.408	0.012	i
	HOC	101.2	108.0	109.2	107.9	6.7	i
	OCC	121.9	119.7	120.4	120.6	-1.3	i
Gruppentransfer-Reaktion							
Methanol +	OH	1.188	1.167	1.192	1.205	0.017	j
Formaldehyd	CH	1.322	1.344	1.373	1.366	0.044	j
(C_{2v})	C-O	1.296	1.277	1.289	1.302	0.006	j
	HCO	105.6	108.0	106.6	107.0	1.4	j
	HOC	105.6	111.1	109.9	110.3	4.7	j
Bindungslängen (N = 68)							
\overline{x}			-0.0625	-0.0657	-0.0554		
MAF			0.0671	0.0801	0.0767		
Bindungswinkel $(N = 21)$							
\overline{x}			0.70	0.45	0.46		
MAF			3.29	3.21	3.31		
Diederwinkel ($N = 28$)							
\overline{x}			-0.19	-0.11	-0.14		
MAF			8.65	8.69	8.93		

a [195] (MP2/6-31G*); b [196] (B3LYP/6-31G*);

c [197] (B3LYP/6-31G^{**}); d [198] (HF/6-31G^{*});

e [199] (CCSD(T)/6-31G*); f [200] (HF/6-311G**);

g [201] (B3LYP/6-31G*); h [202] (MP2/6-31G*);

i [203] (MP2/6-31G**); j [204] (MP2/aug-cc-pVTZ);

k [195] (B3LYP/6-31G*)

Auch die experimentellen bzw. ab initio Werte der Aktivierungsenergien gibt OM3 gut wieder (Tabelle 7.53). Sie liegen meist zwischen den für OM1 und OM2 berechneten Größen. Während OM1 die Energien vielfach überschätzt, werden sie mit OM2 oft unterschätzt.

	Exp.	OM1	OM2	OM3	Δ	Ref.
Diels-Alder Reaktion						
Butadien + Ethen	27.5	29.0	28.9	28.4	0.9	а
Elektrocyclische Ringöffnung	•					
cis -Butadien \rightarrow Cyclobuten	32.9	40.9	39.3	39.3	6.4	а
Cope-Umlagerung	•					
1,5-Hexadien, Sessel	33.5	36.2	31.5	33.6	0.1	а
1,5-Hexadien, Boot	44.7	47.1	42.8	45.4	0.7	а
1-Cyano-1,5-hexadien, Sessel	35.5^{1}	37.3	30.6	33.7	-1.8	b
2-Cyano-1,5-hexadien, Sessel	28.0^{1}	32.3	26.6	29.4	1.4	b

Tabelle 7.53: Aktivierungsenergien [kcal/mol] pericyclischer Reaktionen

	Exp.	OM1	OM2	OM3	Δ	Ref.
3-Cyano-1,5-hexadien, Sessel	29.3^{1}	34.3	30.0	32.0	2.7	b
2,5-Dicyano-1,5-hexadien, Sessel	24.4^{1}	30.0	23.6	26.5	2.1	b
Claisen-Umlagerung						
Allyl-Vinyl-Ether, Sessel	30.6	29.3	20.4	22.1	-8.5	с
	27.4^{1}	29.3	20.4	22.1	-5.3	d
Allyl-Vinyl-Ether, Wanne	6.6^{1}	6.1	7.3	7.2	0.6	e
1,3-Dipolare Cycloadditionen						
Ethin + HCNO	14.2^{1}	19.9	13.0	16.5	2.3	f
Ethen + HCNO	8.9^{1}	17.7	12.0	14.8	5.9	g
Ethen + H_2 CNOH	13.1^{1}	17.5	18.0	19.9	6.8	h
En-Reaktionen						
Ethen + Propen	36.2^{1}	40.1	32.7	31.2	-5.1	i
Formaldehyd + Propen	30.4^{1}	33.3	16.4	19.2	-11.2	i
Sigmatrope Wasserstoffverschiebur	ig					
Malonaldehyd, Enolform	5.4	7.0	0.9	0.0	-5.4	j
Gruppentransfer-Reaktion	•					
Methanol + Formaldehyd	29.6^{1}	44.9	17.7	21.2	-8.4	k
Aktivierungsenergien ($N = 18$)	•					
\overline{x}		4.12	-2.57	-0.88		
MAF		4.31	4.47	4.19		

1 Ab initio und DFT Referenzdaten

a [195];

b [196] (B3LYP/6-31G*); c [205];

- d [197] (B3LYP/6-31G^{**});
- e [198] (MP2/6-31G*//RHF) (Energie der Wannenform relativ zur Sesselform);
- $f \quad [199] (CCSD(T)/6-311++G^{**}//CCSD(T)/6-31G^{*});$
- g [200] (bester auf DFT basierender geschätzter Wert);
- $h \quad [201] \ (CCSD(T)/6-31G^*//B3LYP/6-31G^*);$
- $i \quad [202] \ (MP4/6-31G^*//MP2/6-31G^*); \\$
- j [206] (experimentell geschätzter Wert 4.0-6.8 kcal/mol);
- k [204] (CCSD(T)/aug-cc-pV)

Betrachtet man nur die fünf Reaktionen, für die experimentelle Referenzdaten vorliegen und welche die richtige Anzahl negativer Frequenzen aufweisen, so betragen die mittleren absoluten Fehler der Barrieren für OM1, OM2 und OM3 3.16, 4.37 und 3.31 kcal/mol.

Kapitel 8

Zusammenfassung und Ausblick

In der vorliegenden Arbeit wurden Parameter für ein neues semiempirisches MO-Verfahren mit Orthogonalisierungskorrekturen entwickelt. Die neue Methode basiert auf zwei früheren vom NDDO Formalismus ausgehenden Methoden mit Orthogonalisierungskorrekturen, OM1 und OM2, und wird daher OM3 genannt (orthogonalization model 3). Alle drei Verfahren berücksichtigen Orthogonalisierungseffekte explizit nur im Einelektronenteil der Fock-Matrix. OM1 verwendet nur für den Einzentren-Einelektronenteil Korrekturen, OM2 zusätzlich für die Zweizentren-Einelektronenintegrale, und OM3 behält nur diejenigen Terme bei, die für systematische Verbesserungen verantwortlich sind.

Aus der ab initio MO-Theorie ist bekannt, dass die Orthogonalisierung der Basis eine unsymmetrische Aufspaltung zwischen bindenden und antibindenden Molekülorbitalen bewirkt, welche für die richtige Beschreibung von elektronisch angeregten Zuständen und von sterischen Effekten (Pauli-Abstoßung) wesentlich ist. Durch die explizite Einführung von Orthogonalisierungskorrekturen in den OMx Methoden findet man in diesen Bereichen qualitative Verbesserungen gegenüber den traditionellen semiempirischen Verfahren, MNDO, AM1, und PM3. So werden beispielsweise elektronische Anregungsenergien wesentlich besser wiedergegeben, obwohl diese nicht in die Parametrisierung einbezogen worden sind. Ähnliche modellbedingte Fortschritte sind bei Konformationseigenschaften und Wasserstoffbrücken zu verzeichnen. Daneben beobachtet man Verbesserungen aufgrund einer umfassenderen Parametrisierung, z. B. hinsichtlich Schwingungsfrequenzen, die früher nicht in die Parametrisierung eingegangen sind. Wie die systematischen Vergleiche für eine Vielzahl von Molekülklassen und Eigenschaften in der vorliegenden Arbeit zeigen, sind die OMx Methoden den traditionellen semiempirischen Verfahren insgesamt deutlich überlegen.

Innerhalb der OMx Methoden gibt es geringere Unterschiede in der Genauigkeit

der Ergebnisse. Bei einer Gesamtbewertung schneiden OM2 und OM3 etwas besser ab als OM1, wobei für OM3 der merklich geringere Rechenaufwand relativ zu OM2 spricht. Die vorliegenden Ergebnisse stützen die grundlegende Annahme des OM3 Ansatzes, dass gewisse der in zweiter Ordnung auftretenden Orthogonalisierungskorrekturen in OM2 ohne Nachteile vernachlässigt werden können.

Für spezifische Anwendungen ist es legitim, die jeweils geeignetste der drei OMx Methoden einzusetzen. Aufgrund der vorliegenden Daten und statistischen Auswertungen sind dies OM2 und OM3 bei Energien (Standardbildungsenthalpien) und bei Konformationseigenschaften (relative Energien und Barrieren). OM1 eignet sich besonders für Geometrien und Dipolmomente, OM2 für Ionisierungspotentiale und OM3 für Schwingungswellenzahlen und elektronische Anregungsenergien. Betrachtet man einzelne Molekülklassen, so ist für Ionen OM2 und für Radikale OM2 oder OM3 vorzuziehen. Bei diesen Differenzierungen sollte man aber beachten, dass die Unterschiede zwischen den drei OMx Methoden meist nicht allzu groß sind und dass man daher vor geplanten größeren Anwendungen eine spezifische Validierung und Auswahl erwägen sollte.

Angesichts der deutlichen Überlegenheit der OMx Methoden gegenüber den Standardverfahren bietet sich für die Zukunft eine Ausdehnung der Parametrisierung auf andere Elemente an, besonders bei OM2 und OM3. Zur Behandlung schwererer Elemente ist das zugrunde liegende Modell dabei auf d Orbitale zu erweitern.

Wie sich in der vergleichenden Diskussion von 25 ausgewählten OM3 Parametersätzen gezeigt hat (Kapitel 5), gibt es durchaus typische und damit modellbedingte Fehler, die durch eine Parametrisierung nicht behoben werden können. Andererseits hat es sich in vielen Fällen aber auch als möglich erwiesen, durch die Wahl geeigneter Parametersätze gewisse Eigenschaften und Molekülklassen auf Kosten anderer besser zu beschreiben, ohne dass die Qualität insgesamt leidet (ähnliche Fehlerquadratsumme). Diese Beobachtung legt es nahe, in der Zukunft spezifische Parametrisierungen für bestimmte Anwendungsfelder durchzuführen, um die mit den jetzt vorliegenden generischen Parametern erreichte Genauigkeit weiter zu steigern. Aufgrund der bisherigen Erfahrungen mit OM2 und OM3 sollte ein solches Vorgehen besonders bei großen Biomolekülen Erfolg versprechend sein.

Anhang A

Validierungssätze

Standardreferenzsatz (CHNO-File) [37] (Tabelle 5.1)

- 140 Standardbildungsenthalpien, Tabelle 7.3 (7.2)
- 242 Bindungslängen, Tabelle 7.10 (7.8)
- 101 Bindungswinkel, Tabelle 7.10 (7.9)
- 31 Diederwinkel, Tabelle 7.10
- 52 Ionisierungspotentiale, Tabelle 7.12 (7.11)
- 39 Höhere Ionisierungspotentiale, Tabelle 7.14 (7.13)
- 15 Relative Energien, Tabelle 7.5
- 63 Dipolmomente, Tabelle 7.16 (7.15)
- 61 Barrieren, Tabelle 7.7
- 112 Schwingungsfrequenzen, Tabelle 7.19 (7.18)
- 85 Atomladungen, Tabelle 7.17

Größere Moleküle [2] (Tabelle 5.3)

• 20 Standardbildungsenthalpien, Tabelle 7.4

Isomere [4] (Tabelle 5.5)

• 17 Relative Energien, Tabelle 7.5

Konformere [4] (Tabelle 5.6, 7.6)

• 19 Barrieren und relative Energien, Tabelle 7.7

Anionen [2] (Tabelle 5.14)

- 24 Standardbildungsenthalpien, Tabelle 7.24
- 5 Schwingungsfrequenzen, Tabelle 7.25

Kationen [2] (Tabelle 5.15, 7.26)

- 33 Standardbildungsenthalpien, Tabelle 7.27
- 18 Bindungslängen, Tabelle 7.28
- 18 Bindungswinkel, Tabelle 7.28
- 22 Schwingungsfrequenzen, Tabelle 7.29

Radikale [87] (Tabelle 5.11, 7.20)

- 42 Standardbildungsenthalpien, Tabelle 7.21
- 25 Ionisierungspotentiale, Tabelle 7.23

Vertikale Anregungsenergien (zusammengestellt von A. Koslowski) (Tabelle 5.10, 7.30)

- 129 Singulettanregungen, Tabelle 7.31
- 61 Triplettanregungen, Tabelle 7.31

G2/97 Testsatz [89] (Tabelle 7.34)

- 81 Standardbildungsenthalpien, Tabelle 7.32 (5.18)
- 32 Ionisierungspotentiale, Tabelle 7.35 (5.21)
- 29 Elektronenaffinitäten, Tabelle 7.36 (5.22)

186

G3/99 Testsatz [96] (Tabelle 7.34)

• 47 Standardbildungsenthalpien, Tabelle 7.33 (5.19)

Alkane [183]

- 22 Standardbildungsenthalpien, Tabelle 7.37
- 6 Relative Energien, Tabelle 7.38

Wasserdimere [4, 184]

- 35 Bindungslängen, Tabelle 7.41
- 31 Bindungswinkel, Tabelle 7.41
- 10 Relative Energien bezogen auf Wassermonomere, Tabelle 7.42
- 10 Relative Energien bezogen auf das Mininum der Wasserdimere, Tabelle 7.42
- 7 Dipolmomente, Tabelle 7.43

Wasserstoffbrücken (Satz I) [2] (Tabelle 7.46)

- 26 Abstände zwischen wasserstoffbrückengebundenen Atomen, Tabelle 7.44
- 36 Relative Energien bezogen auf Monomere, Tabelle 7.45 (5.23)

Wasserstoffbrücken (Satz II) [99] (Tabelle 5.24, 7.49)

- 150 Abstände XH...X und X...X, Tabelle 7.47
- 75 Winkel, Tabelle 7.47
- 57 Relative Energien bezogen auf getrennte Systeme, Tabelle 7.48

N-Methylacetamid und Peptide [111]

- 86 Bindungslängen, Tabelle 7.50
- 6 Bindungswinkel, Tabelle 7.50

- 190 Diederwinkel, Tabelle 7.50
- 25 relative Energien, Tabelle 7.51

Pericyclische Reaktionen [2]

- 68 Bindungslängen, Tabelle 7.52
- 21 Bindungswinkel, Tabelle 7.52
- 28 Diederwinkel, Tabelle 7.52
- 18 Aktivierungsenergien, Tabelle 7.53

Anhang B

Anwendungsrechnungen

Während der Promotionszeit wurde auch ein anwendungsorientiertes Projekt bearbeitet. Dabei ging es um die Modellierung des geschwindigkeitsbestimmenden Schritts bei der Hydroxylierung aromatischer Substrate in dem Enzym p-Hydroxybenzoathydroxylase. Der eigene Beitrag bestand in der Durchführung von ab initio und Dichtefunktional-Rechnungen an den entsprechenden isolierten Modellsystemen. Zur Dokumentation ist eine Kopie der betreffenden Publikation [207] (mit Supporting Information) in diesem Anhang beigefügt.

CCF

Molecular dynamics study of oxygenation reactions catalysed by the enzyme *p*-hydroxybenzoate hydroxylase[†][‡]

Salomon R. Billeter,^a Christof F. W. Hanser,^a Tiziana Z. Mordasini,^a Mirjam Scholten,^b Walter Thiel^{*b} and Wilfred F. van Gunsteren^c

- ^a Organisch-chemisches Institut, Winterthurerstrasse 190, Universität Zürich, CH-8057 Zürich, Switzerland
- ^b Max-Planck-Institut f
 ür Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 M
 ülheim an der Ruhr, Germany
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Zentrum, CH-8092 Zürich, Switzerland

Received 8th November 2000, Accepted 9th January 2001 First published as an Advance Article on the web 8th February 2001

Combined quantum mechanical and molecular mechanical (QM/MM) methods have been used to model the rate-determining step of the title reaction for three different substrates, *i.e.*, *p*-oxpherazoate dianion 1, *p*-hydroxybenzoate anion 2 and *p*-oxybenzoic acid anion 3. The system studied includes the enzyme, the cofactor, the substrate, and crystal water (*ca.* 7000 atoms total, *ca.* 100 QM atoms). Molecular dynamics simulations at the AM1/GROMOS level confirm that the dianion mechanism is favoured over both monoanion mechanisms, with a computed free energy barrier of 12 kcal mol⁻¹. Geometry optimisations of model systems (QM) and of the complete enzyme (QM/MM) provide additional information on the intrinsic barriers and transition states.

I. Introduction

The opening lecture at the EUCO-CC3 conference surveyed the current status of combined quantum mechanical and molecular mechanical (QM/MM) methods and discussed QM/MM calculations on the reactions catalysed by phydroxybenzoate hydroxylase (PHBH) and triosephosphate isomerase (TIM). In this article, we shall only address the QM/MM work on PHBH.

p-Hydroxybenzoate hydroxylase (PHBH) (EC 1.14.13.2) is a flavoprotein involved in the degradation of aromatic compounds.¹ It catalyses the monooxygenation of *p*-hydroxybenzoate (*p*-OHB) to form 3,4-dihydroxybenzoate (3, 4-DOHB). The catalytic cycle consists of reductive and oxidative phases.^{2,3} In the reductive half-reaction, *p*-OHB and NADPH (reduced nicotinamide adenine dinucleotide phosphate) bind to the enzyme, and NADPH reduces the cofactor FAD (flavin adenine dinucleotide). In the oxidative half-reaction, the reduced flavin reacts with oxygen to form flavin-C4a-hydroperoxide (FADHOOH) which then oxygen itate which tautomerises to the product 3,4-DOHB, awell as flavin-C4a-hydroxide (FADHOOH). The final step of the catalytic cycle involves the release of the product and elimination of water from FADHOH to regenerate the oxidatied enzyme.

The oxygen transfer from FADHOOH to *p*-OHB is the rate-determining step in the cycle. Several mechanisms have been considered for this step including electrophilic aromatic substitution,^{4,5} diradical formation *via* homolytic cleavage of the peroxide bond,^{6,7} and isoalloxazine ring cleavage.^{2,8,9} The

688 Phys. Chem. Chem. Phys., 2001, 3, 688–695

currently preferred mechanism is electrophilic substitution of the aromatic ring of the substrate, with heterolytic cleavage of the peroxide bond.^{1,10} This is the reaction that we have investigated theoretically.

Conformational changes play an important role in the catalytic mechanism of PHBH. It has been shown^{11,1,3} that the flavin cofactor can occupy two different positions in the enzyme. In the closed conformation, the substrate is buried inside the enzyme, and the flavin ring occupies a position that isolates the C4a-hydroperoxy group from the solvent. This conformation has been observed in crystal structures of the initial PHBH–substrate complex,^{14,15} the reduced PHBH– substrate complex,¹⁶ and the PHBH–product complex.¹⁷ In the open conformation,^{11–13} the flavin ring is considerably exposed to solvent, and a channel is formed that connects the bulk solvent to the active site. Flavin movement from the closed to the open conformation is caused by the binding of NADPH,^{11–13} and the reduction of FAD by NADPH is believed to occur in the open conformation. As supported by the observed crystal structures,^{16,17} the oxidative half-reaction proceeds in the closed conformation where the flavin ring is positioned such that it minimises solvent access and thus inhitis the elimination of hydrogen peroxide from FADHOOH. Consequently, we have modelled the oxidative hydroxylation reaction starting from a crystal structure of a PHBH–

The protonation state of the substrate is another important mechanistic factor. It is generally accepted that *p*-OHB reacts as a deprotonated dianion during the hydroxylation step since the reaction is much slower if the deprotonation is suppressed.² It has also been proposed that the deprotonation facilitates flavin movement to the open conformation in the initial stage of the reductive half-reaction.¹⁸ The deprotonation is achieved *via* a hydrogen bonding network involving

DOI: 1

This journal is ^(C) The Owner Societies 2001

DOI: 10.1039/b009011p

[†] Presented at the Third European Conference on Computational Chemistry, Budapest, Hungary, September 4-8, 2000. ‡ Electronic Supplementary Information available. See http:// www.rsc.org/suppdata/cp/b0/b009011p/

several PHBH residues and crystal water,^{13,15,19,20} and disruption of this network in mutants decreases the efficiency of hydroxylation considerably.^{19,20} Schematically, the transformation of *p*-OHB thus proceeds in three stages:² deprotonation of the *p*-hydroxy group places a second negative charge on the substrate, which is delocalised into the aromatic ring, thus leading to an increased reactivity towards electrophilic substitution; thereafter, the *p*-OHB dianion is hydroxylated to form a non-aromatic dienone intermediate, which then rearranges by keto-enol tautomerisation to generate the product.

In this article we report a molecular dynamics (MD) study of the rate-determining hydroxylation reaction in PHBH using a QM/MM description of the full system.²¹ In line with the preferred mechanism, the chosen substrate is the *p*-OHB dianion. For comparison, we have also investigated the enzymatic hydroxylation reaction with two different monoanions as substrates, which are obtained from the *p*-OHB dianion by adding a proton at the phenolate oxygen atom or at a carboxylate oxygen atom, respectively. In addition to these MD runs, we have performed geometry optimisations of the relevant reactants, products, and transition states, both for the complete enzyme (QM/MM) and for small model systems (QM).

In related independent work, the hydroxylation reaction in PHBH has been studied by computing reaction pathways at the QM/MM level.^{22–24} Our present results complement and extend the results obtained from the reaction coordinate calculations, as will be described in more detail below. These calculations^{22,24} have established correlations between computed QM/MM activation energies and experimental rate constants for substituents on both the substrate and the flavin, and thus provide further support for the notion that the aromatic hydroxylation is the rate-determining step in PHBH. Other earlier theoretical studies include QM calculations on the substrate²⁵ and on the flavin.²⁶

II. Computational methods

In the QM/MM calculations, the QM region was described by the semiempirical AM1 method.^{27,28} The use of AM1 has previously been justified²³ by comparing gas-phase AM1 results for model systems with corresponding *ab initio* Hartree–Fock [HF/6-31+G(d)] and hybrid density functional [B3LYP/6-31+G(d)] results. Reasonable agreement between AM1 and the higher-level methods has been reported²³ for the geometries of the reactants (*p*-oxybenzoate dianion, flavin-C4a-hydroperoxide) and the products (hydroxycyclohexadienone benzoate anion, flavin-C4a-oxide anion) as well as for their relative energies. We have extended this validation of AM1 by additional comparisons which are summarised in the Electronic Supplementary Information[‡].

The MM region was represented by the GROMOS87 force field²⁹ which was chosen because the more recent force fields implemented in GROMOS96³⁰ were not yet available at the beginning of this project. Standard all-atom GROMOS87 parameters were used for the protein (set 37C4) and for water (SPC model³¹).

The PHBH system studied by QM/MM modelling included enzyme, cofactor, substrate, and crystal water.¹⁵ The QM region comprised the substrate and the oxidised cofactor (FADHOOH) and consisted of 102 atoms when using the *p*-OHB dianion as substrate (or 103 atoms in the case of the monoanionic substrates). The MM region contained the protein environment with 219 crystal water molecules, yielding a total of 6902 MM atoms. The chosen QM/MM partitioning did not require the cutting of any covalent bonds, and hence there was no need to employ link atoms or other terminators at the QM/MM boundary.

The QM/MM interactions were treated at two levels. 32 mechanical embedding (model A) and electronic embedding (model B). In the first case, all QM/MM interactions are

handled by the classical force field. In the second case, this is only true for the bonded and the van der Waals interactions while the electrostatic interactions are described at the QM level: the MM atomic charges are included in the QM Hamiltonian of model B, thus leading to a polarisation of the QM region, and the electrostatic interactions are evaluated from the QM electrostatic potential and the MM atomic charges. For the AMI electrostatic potential in model B, we adopted a special parameterisation³³ designed to mimic *ab initio* (HF/6-3IG*) electrostatic potentials,³⁴ and used the corresponding one-parametric function with the published parameters (Table II of ref. 33). For the MM atomic charges in model B, it is possible to employ the fixed GROMOS87 values or to derive them from a charge equilibration scheme (QEq) based on the principle of electronegativity equalisation^{33,35} which allows for some charge fluctuation in the MM region. The first option was chosen for geometry optimisation, and the second one during the MD studies. In the latter case, the parameters for the semiempirical AMI-QEq approach were taken from previous work (Table VIII of ref. 33, QEq/PD), and the adjustment of the MM atomic charges was restricted to a region in the neighbourhood of the active site (MM' region, see next section).

The QM/MM MD runs followed the general guidelines that have been established in the field of biomolecular simulations.^{36,37} The corresponding protocols²¹ are outlined in the next section. Energy minimisations and transition state searches were carried out at the QM level for the chosen model systems, and at the QM/MM level for the full enzyme, using a recently developed linear scaling divide-and-conquer geometry optimiser.³⁸

The present study employed the MNDO94 and MNDO97 programs^{39,40} for the QM calculations, and the GROMOS87 and GROMOS96 codes^{29,30} for the MM calculations. The QM/MM MD runs were done with a monolithic combination of MNDO94 and GROMOS87 that has been tuned for performance on NEC SX-4 machines.²¹ The QM/MM geometry optimisations made use of a modular combination of MNDO97 and GROMOS96 as implemented in the Chem-Shell software.⁴¹

III. Molecular dynamics simulations

A. Overview

QM/MM MD simulations were carried out for the hydroxylation step in the catalytic cycle of PHBH, which involves an electrophilic aromatic substitution of the *p*-OHB substrate by flavin-C4a-hydroperoxide (FADHOOH). Fig. 1 shows the formulas for the chosen substrates 1-3, the flavin-C4a-hydroperoxide 4, and the corresponding products 1a-4a. The following reactions were investigated through MD runs:

 $1+4\rightarrow 1a+4a\,;\quad 2+4\rightarrow 2a+4a\,;\quad 3+4\rightarrow 3a+4a.$

B. Procedure

The starting point of the QM/MM modelling was the X-ray structure¹⁵ of a PHBH-substrate complex at pH 7.4 (see PDB file 1IUW). The coordinate file obtained for this structure⁴² already contained the hydrogen atoms and 219 crystal water molecules. A hydroperoxy group was introduced manually at the C4a-position of the flavin ring. Additional solvent water molecules were not included since the hydroxylation occurs in the closed conformation (see Section 1).

The neighbourhood of the QM region was allowed to move freely during the QM/MM MD simulation whereas the outer parts of the system were harmonically restrained. The unrestrained part comprised the QM region (active site), 75 amino acids, and 19 water molecules (see ES1† for an explicit list). All other atoms were restrained by applying a harmonic restoring

Phys. Chem. Chem. Phys., 2001, 3, 688-695 689

Fig. 1 Reactants and products in the enzymatic reactions studied. The numbering of the ring atoms for 1 and 4 also holds for the other systems; substituent atoms are labelled by the same number as the ring atom to which they are attached. In 4 the atoms of the hydroperoxy group are denoted as O_p (proximal), O_d and H_d (distal); R represents the ribityl side chain.

force. The corresponding force constant was chosen to be inversely proportional to the isotropic crystallographic *B*factor for each atom being restrained,¹⁵ with a proportionality constant of 200 kJ mol⁻¹ (ref. 21). In the MD simulations employing QM/MM interaction model B, amino acids and water molecules were included in the MM' region whenever one of their constituent atoms was within a sphere of 8 Å around an atom of the QM region. According to this criterion, there were 63 amino acids and 25 water molecules (see ESIf) whose MM atomic charges were recalculated at each MD time step and included in the QM Hamiltonian. Fig. 2 shows the active site with the unrestrained environment and the MM' region, while Fig. 3 provides a view of the full enzyme including a schematic representation of the outer restrained part.

The initially prepared structure (see above) was first subjected to an unrestrained energy minimisation at the MM level. The resulting structure was the starting point for classical MD runs where the temperature was increased successively from 0 K to 300 K, in steps of 50 K every 2 ps. At 300 K the system was then equilbrated over 25 ps of classical MD, with harmonic position restraints (see above) switched on after 5 ps. Thereafter, the first QM/MM MD simulation was performed for the reaction involving the *p*-hydroxybenzoate anion 2 as substrate (models A and B, total simulation time of 85.2 ps). The second QM/MM MD simulation covered the reaction of the *p*-oxybenzoate dianion 1 (models A and B, total simulation inter of 60.4 ps). Finally, the third QM/MM MD simulation was performed technically as a continuation of the second one, but with an alternative substrate, *p*-oxybenzoacie acid anion 3 (model B only, total simulation time of 14.5 ps). All QM/MM b simulations were carried out at a con-

All QM/MM MD simulations were carried out at a constant temperature of 300 K by coupling the system to a Berendsen thermostat, with a coupling constant of $\tau = 0.1$ ps. The time step was 0.5 fs in each case. Hence, all QM/MM MD simulations together required more than 3 million energy

690 Phys. Chem. Chem. Phys., 2001, 3, 688-695

Fig. 2 Active site with unrestrained environment and MM' region. Colour code: yellow and light green atoms are unrestrained, light green and dark olive atoms belong to the MM' region. The substrate is red and the cofactor is blue.

and gradient evaluations of the full enzymatic system with ca. 7000 atoms.

Free energy profiles for the reactions studied were determined using thermodynamic integration techniques.^{4,3} In each of the three QM/MM MD simulations, the bond length $R(O_d-C_3)$ between the distal oxygen atom of the hydroperoxy group and the C_3 atom in the aromatic ring of the substrate was defined as reaction coordinate, which was varied in 18 steps between 3.0 Å and 1.2 Å. For each of these points, an MD simulation was carried out with an initial equilibration followed by data collection. The resulting free energy changes were converted to free energy profiles by numerical integration over the coupling parameter 21 .

C. Results

Figs. 4–6 show the free energy profiles obtained from the AM1/GROMOS calculations. Table 1 lists the corresponding numerical results.

Fig. 3 Embedding of the active site with unrestrained environment and MM' region in the complete enzyme (crystal water not shown). Colour code: see Fig. 2; violet parts of the protein backbone are restrained.

Fig. 4 Free energy profile for substrate 1, $^-\text{O-C}_6\text{H}_4\text{-COO}^-$ dianion, as a function of the reaction coordinate, for QM/MM interaction models A and B.

The free energy profiles from mechanical embedding (model A) and from electronic embedding (model B) are obviously quite similar to each other for substrates 1 and 2. Therefore, it was considered sufficient to use only model B for substrate 3. The free energy barrier is clearly lowest for the dianionic substrate 1 where both models A and B yield a value of *ca.* 12 kcal mol⁻¹. The barrier is much higher for the monoanion 2

Fig. 5 Free energy profile for substrate 2, HO–C₆H₄–COO⁻ monoanion, as a function of the reaction coordinate, for QM/MM interaction models A and B.

Fig. 6 Free energy profile for substrate 3, $^{-}O-C_{6}H_{4}$ -COOH monoanion, as a function of the reaction coordinate, for QM/MM interaction model B.

 $\label{eq:table_$

	Model	Transition s	Transition state ^a					
System		<i>R</i> (O _d –O ₃) /Å	ΔF^{\ddagger} /kcal mol ⁻¹	Product ^b ΔF_{react} /kcal mol ⁻¹				
1 + PHBH	A B	2.15 2.13	12.6 11.8	-56.1 -50.5				
2 + PHBH	A B	1.83 1.82	34.1 28.2	-1.0 -4.2				
3 + PHBH	в	1.99	19.8	-33.5				

^a Average distance O_d - C_3 and free energy of activation ΔF^4 . ^b Fi energy of reaction ΔF_{react} .

and amounts to 28 kcal mol^{-1} for the more reliable electronic embedding scheme (and to 34 kcal mol^{-1} for mechanical embedding). The relative barrier heights are consistent with the available experimental evidence in favour of an initial deprotonation of the *p*-OHB substrate (see Section I).

To our knowledge, the alternative pathway via substrate 3 has not yet been considered in the literature, presumably due to the fact that the pK_a value of phenol is much higher than that of carbonic acids. Our calculations suggest that the monoanion 3 is hydroxylated more easily than the normally considered monoanion 2, since the free energy barrier is lower by about 8 kcal mol⁻¹. Nevertheless, 3 is not expected to play a mechanistic role since the pathway via the dianion 1 is favoured by another 8 kcal mol⁻¹.

Consistent with the free energy barriers obtained and the Hammond postulate, the transition state occurs early on the reaction coordinate for the dianion 1, late for the monoanion 2, and at an intermediate point for the alternative substrate 3. We have also monitored the average distance of the breaking O–O bond during the simulations and find that it changes rather rapidly around the transition state from reactant-like values (short) to product-like values (long, broken) in most cases.²¹ Likewise, the QM charge distributions from selected MD snapshots confirm the transfer of an electron from substrate to cofactor during the course of the MD simulation.²¹ Finally, we note that the profile for monoanion 2 with model A (Fig. 5) is only shown up to the product minimum due to some technical problems at shorter distances (see ESIF).

IV. Geometry optimisations

A. Overview

To gain further insight into the mechanism of aromatic hydroxylation, we have located the relevant minima and transition states for some gas-phase model systems by pure QM calculations, and for the entire enzymatic system by QM/MM calculations. We have studied stationary points for all three substrates 1–3, but we shall focus here on the results for the *p*-OHB dianion 1 which is most relevant mechanistically (see previous sections) and has therefore been investigated in more detail than the monoanions.

The gas-phase reaction partners for 1 include hydrogen peroxide HOOH as the simplest model system, the methylated flavin-C4a-hydroperoxide MeFlOOH (species 4 in Fig. 1 with R = Me), the complete cofactor FADHOOH (species 4 in Fig. 1 with R = ribityl), and MeFlOOH with the three neighbouring amino acids Arg214, Tyr201, and Tyr385 (denoted as MeFlOOH + 3AA). The optimisations for the full enzyme involve the same system as in the MD simulations (see Section III).

Schematically, the aromatic hydroxylation can be represented as:

 $R\text{-sep} \rightarrow R\text{-compl} \rightarrow TS \rightarrow R\text{-compl} \rightarrow P\text{-sep}$

Phys. Chem. Chem. Phys., 2001, 3, 688–695 691

where the symbols denote the separated reactants (R-sep), the reactant complex (R-compl), the transition state (TS), the product complex (P-compl), and the separated products (P-sep). In the enzyme, reactants and products cannot be separated to infinite distance, of course, and therefore R-sep and P-sep are not meaningful in this case.

B. Procedure

In the gas-phase QM calculations, R-sep and P-sep were optimised using standard techniques. For the parent reaction 1 + HOOH, the transition state was found at the AM1 level from a two-dimensional grid (variables O_p-O_d and O_d-C_3) and a subsequent full optimisation by eigenvector following. The resulting structure provided a reasonable starting point for the TS searches in the larger systems with AM1, and was also useful in the validation studies for 1 + HOOH at the *ab initio* and DFT levels (see ESI[†]). To find R-compl and P-compl with AM1, the fully opti-

To find R-compl and P-compl with AM1, the fully optimised TS geometries were distorted by changing the $O_{\rm d}$ - $C_{\rm a}$ distance slightly (typically by +0.1 Å or -0.1 Å) and then minimised without constraints. In the *ab initio* and DFT studies for 1 + HOOH, the intrinsic reaction (IRC) path was followed in both directions until R-compl and P-compl were reached.

The optimisations for the full enzyme started from the same initially prepared structure as the MD runs (see Section IIIB). A sequence of partially restrained optimisations and short MD simulations at the MM level were used to remove unfavourable contacts and to generate a reasonably strain-free starting geometry for the optimisations at the QM/MM level. These unrestrained optimisations were carried out for Rcompl, TS, and P-compl, using model B (see ESI† for further technical details).

Except for the simplest system 1 + HOOH, the calculations employed the linear scaling divide-and-conquer optimiser³⁸ as implemented in ChemShell.⁴¹ The required partitioning into user-defined fragments followed chemical intuition (typical fragments being the substrate, the flavin ring, one amino acid, and one crystal water molecule). In the case of 1 + MeFIOOH and 1 + FADHOOH, the partitioning chosen for TS has been specified before (see Fig. 5 of ref. 38).

C. Results

The relative energies for the various stationary points are listed in Table 2. Plots of the transition structures for the gasphase model systems 1 + HOOH and 1 + MeFIOOH are available elsewhere.²¹ Fig. 7 shows a view of the active site in the optimised transition structure of the enzyme (model B). For the parent system 1 + HOOH, both AM1 and the

For the parent system I + HOOH, both AMI and the higher-level methods (*ab initio*, DFT) predict a surprising

 Table 2
 Relative energies (kcal mol⁻¹) from geometry optimisations

Fig. 7 View of the active site in the optimised transition structure for aromatic hydroxylation of the *p*-OHB dianion by the enzyme PHBH (AM1/GROMOS, model B).

course of the reaction. When following the reaction path from the transition state downhill towards the products, there is some rearrangement such that a water molecule forms rather than the expected hydroxide anion. As a consequence, only an oxygen atom is transferred to the C₃-position of the substrate (instead of OH⁺). The complex between the corresponding dianion **Ib** and water (relative energy of -3.7. kcal mol⁻¹) is the kinetic product, which is metastable and lies only 4.5 kcal mol⁻¹ above the expected thermodynamic product (P-sep: monoanion **Ia** + OH⁻, relative energy of -4.2.2 kcal mol⁻¹).

For the next larger model system 1 + MeFlOOH, the reaction proceeds from the transition state directly to the hydroxylated *p*-OHB anion **1a** and the MeFlO⁻ anion. The essential difference between MeFlOOH and HOOH is that a negative charge can be stabilised much better in MeFlO⁻ than in HO⁻, as indicated by a proton affinity that is much lower in MeFlO⁻ (by 76.5 kcal mol⁻¹ according to AM1). Hence, there is a large driving force in 1 + HOOH to capture a proton and form water in the course of the reaction which is lacking in 1 + MeFlOOH. Therefore, in the latter case, an OH⁺ moiety is transferred, and the two forming anions separate from each other due to their coulombic repulsion without an intervening P-compl. These considerations indicate hat 1 + HOOH is less suitable as a model system for the enzymatic reaction.

ę ,	, , , ,					
System	Method	R-sep	R-compl	TS	P-compl	P-sep
1 + HOOH 1 + MeFIOOH 2 + MeFIOOH 3 + MeFIOOH 1 + FADHOOH 1 + MeFIOOH + 3AA	AM1 AM1 AM1 AM1 AM1 AM1	$ 18.1 \\ 28.7 \\ 16.1 \\ 18.5 \\ -51.5 \\ 3.7 $	0.0 0.0 0.0 0.0 0.0 0.0	39.7 20.1 38.3 30.6 28.9 25.9	-37.7 	-19.2^{a} -114.0 16.3 -31.9 -135.2 -15.4
1 + PHBH 1 + PHBH 1 + PHBH	AM1/GROMOS ^b AM1/GROMOS ^c AM1/GROMOS ^d		0.0 0.0 0.0	21.3 19.6 19.0	-68.5 -70.2 -66.6	

^{*a*} Dianionic product from transfer of O to C₃ of 1, see text; all other products arise from transfer of OH⁺ to C₃. ^{*b*} Model B with fixed GROMOS point charges, fully optimised. ^c Single-point QM energies at QM/MM optimised geometries evaluated in the field of the MM atomic charges and thus including the QM/MM electrostatic interactions. ^{*a*} Single-point QM energies at QM/MM optimised geometries evaluated without external point charges.

692 Phys. Chem. Chem. Phys., 2001, 3, 688-695

The substrate/cofactor combination 1 + FADHOOH corresponds to the chosen QM region and would thus seem to be a realistic gas-phase model at first sight. However, the ribityl side chain of FADHOOH carries two negative charges which will interact with the two negative charges on the p-OHB dianion 1. In the entrance channel, there is long-range electrostatic repulsion so that R-sep is much lower in energy than R-compl (by 51.5 kcal mol⁻¹, AM1). R-compl exists as a minimum on the potential surface and can undergo the hydroxylation reaction via a transition state which is structurally very similar to that found for 1 + MeFIOOH. The barrier is, however, higher by about 9 kcal mol^{-1} (see Table 2), which is again due to the effects of electrostatic repulsion: during hydroxylation, one electron is transferred from the substrate to the flavin which is less favourable if the latter is already negatively charged as in FADHOOH. In the enzyme, the distant charges in the ribityl side chain are engaged and screened by interactions with the protein environment and therefore less detrimental. In this sense, 1 + MeFlOOH should actually be a better gas-phase model than 1 + FADHOOH.

We have therefore adopted 1 + MeFlOOH as a starting point to investigate the influence of neighbouring amino acid specifically Arg214, Tyr201 and Tyr385. The resulting model system 1 + MeFIOOH + 3AA provides another surprise: during an unconstrained optimisation of TS, a proton trans-fers from Arg214 to the carboxylate group of 1, thus effectively changing the substrate to **3**. The barrier for 1 + MeFIOOH + 3AA (25.9 kcal mol⁻¹) is lower than that for 3 + MeFIOOH + 5AA (25.5 kcal mol⁻¹), but higher than that for <math>1 + MeFIOOH (20.1 kcal mol⁻¹). To our knowledge, there isno experimental evidence for such a proton transfer in the enzyme (see Section I), and it might be possible that this proton transfer is merely a feature of the rather artificial model system chosen. It should be noted that such events could not occur during the MD runs (Section III) because of the chosen QM/MM partitioning; however, the MD simulations did explore the limiting behaviour of both substrates 1 and 3 through separate MD runs, and found a lower free energy barrier for $\hat{\mathbf{l}}$, consistent with experiment.

Surveying the results for the gas-phase model systems, it should also be mentioned that we have only discussed one representative transition state in each case where the orientation of substrate and flavin ring resembles that in the enzyme. Transition states can also be found for other orientations (e.g., with an approximately stacking arrangement of substrate and flavin ring), but the energetics and the relevant structural features are generally quite similar for different conformations. In an overall comparison, the gas-phase transition states of 1 with HOOH, MeFlOOH and FADHOOH share several characteristics. For example, the distance in the forming O₄-C bond varies in a fairly narrow range between 1.96 Å (HOOH) and 2.01 Å (MeFIOOH), and the breaking O_p - O_d bond is lengthened significantly by more than 0.2 Å for all systems, with distances between 1.49 Å (MeFlOOH) and 1.65 Å (HOOH). The charge distribution is quite similar in all three transition states (substrate between -1.66e and -1.70e, O_d -H_d between +0.04e and +0.08e, charge acquired by oxide product between -0.35e and -0.40e). On the other hand, the barriers differ more strongly for different reaction partners, between 40 kcal mol⁻¹ for HOOH and 20 kcal mol⁻¹ for MeFlOOH.

The results for 1 + MeFIOOH + 3AA indicate that the neighbouring amino acids influence the activation barriers, but not in a dramatic manner. They also suggest that it may be hard to study environmental effects systematically by successive addition of nearby residues, because the resulting model systems are unconstrained and can therefore optimise to structures that may be less accessible within the enzyme. While it is technically possible to add residues with positional

constraints, this introduces some ambiguity into the analysis. We have therefore decided not to pursue this strategy further, but to optimise the full enzyme.

Due to the large conformational flexibility of the enzyme, it is clear that we can only locate representative transition states which connect a given reactant complex with the corresponding product complex. Following the procedure outlined in the ESI[†], we have found such a transition state for the aromatic hydroxylation of the p-OHB dianion 1 in PHBH (see Fig. 7). The lengths of the forming O_d - C_3 bond (1.97 Å) and of the breaking O_p - O_d bond (1.56 Å) fall in the range encountered with the model systems (see above). The QM/MM activation energy in the enzyme (21.3 kcal mol⁻¹) is considerably lower than the QM value for the QM region 1 + FADHOOH (28.7 kcal mol^{-1}), but close to that for the model system 1 + MeFlOOH (20.1 kcal mol⁻¹). Singlepoint calculations at the optimised QM/MM geometries show that the energetics do not change much when the MM energy contributions and both the bonding and van der Waals QM/MM interactions are disregarded: the barrier drops only slightly to 19.6 kcal mol⁻¹. More surprisingly, the energetics are also rather unaffected in such single-point calculations when the remaining electrostatic QM/MM interactions are neglected (yielding a barrier of 19.0 kcal mol⁻¹). In other words, the QM energy barrier for 1 + FADHOOH decreases from 28.7 to 19.0 kcal mol^{-1} when going from optimised QM gas-phase geometries to optimised QM/MM active-site geometries.

Comparing the results from the QM/MM optimisations and the QM/MM molecular dynamics simulations, we note first that the optimised C3-Od distance at the transition state (1.97 Å) is shorter than the corresponding average C_3-O_4 distance from the MD run (2.13 Å). This seems plausible since the former corresponds to a temperature of 0 K, and the latter to 300 K: given the relatively flat free energy profile along C3-Od (Fig. 4) thermal motion at 300 K should easily be able to sample larger C_3 - O_d distances. The free energy barrier from the MD simulation (11.8 kcal mol⁻¹) is almost 10 kcal lower than the computed activation energy (21.3 kcal mol^{-1} mol⁻¹). We attribute at least part of this difference to entropic effects since there should generally be several different path ways that connect given reactant and product conformers. It is hard to draw more definitive conclusions, however, for the following reasons: First, we have only optimised one representative transition state, and there will be others with somewhat different barriers. Second, different programs were used for the MD runs²¹ and the geometry optimisations⁴¹ with slightly different implementations of QM/MM interaction model B (Section II). Third, the outer part of the enzyme was restrained during the MD runs (Section III) and unrestrained during geometry optimisation (Section IV). Hence, we believe that there are sensible physical reasons for the observed differences between the results from MD and geometry optimisation, but the above uncertainties prevent a reliable quantitative assessment.

V. Discussion

In this section, we compare our results with related independent QM/MM work on aromatic hydroxylation in PHBH2-2-2-4 which has addressed the reaction pathways for the substrates 1 and 2 as well as for several substituted substrates and cofactors. The overall approach is similar to our QM/MM geometry optimisations (Section IV), although there are some technical differences. Briefly, the published work²²⁻²⁴ employs the AM1/CHARMM combination with the CHARMM force field,⁴⁴ a QM region consisting of substrate + MeFIOOH (48 QM atoms plus one link atom), an MM region with 4840 atoms (united-atom treatment for nonpolar hydrogen), geometry optimisation for 295 atoms within a 10 Å sphere around the distal oxygen atom (others fixed),

Phys. Chem. Chem. Phys., 2001, 3, 688-695 693

Table 3 Activation energies (kcal mol⁻¹) for aromatic hydroxylation

System	Method	Model	Quantity	Barrier/kcal mol ⁻¹	Ref.
1 + PHBH	Experiment		ΔG	11.7	45
1 + PHBH	AM1/GROMOS	Α	ΔF , MD	12.6	а
		В	ΔF , MD	11.8	а
2 + PHBH	AM1/GROMOS	Α	ΔF , MD	34.1	а
		В	$\Delta F. MD$	28.2	а
3 + PHBH	AM1/GROMOS	В	ΔF , MD	19.8	а
1 + PHBH	AM1/GROMOS	В	ΔE , opt	21.3	а
1 + PHBH	AM1/CHARMM	В	ΔE , opt	17.6	23
2 + PHBH	AM1/CHARMM	В	ΔE , opt	30 ^b	23
1 + MeFlOOH	AM1		ΔE , opt	20.1	а
2 + MeFlOOH	AM1		ΔE , opt	38.3	а
3 + MeFlOOH	AM1		ΔE , opt	30.6	а
^a This work. ^b Estimated	from Fig. 2 in ref. 23.				

and an assumed reaction coordinate $R(O_p-O_d)-R(O_d-C_3)$. By contrast, our calculations make use of AM1/GROMOS, a QM region consisting of substrate + FADHOOH (102 QM atoms without link atom), a united-atom MM region with 6902 atoms (nonpolar hydrogen atoms are explicitly included and subjected to bonded interactions but invisible for electrostatic and Lennard-Jones interactions), and unconstrained geometry optimisation.

It is reassuring that both approaches yield similar overall results, in spite of these technical differences. For the aromatic hydroxylation of 1 in PHBH, AM1/CHARMM gives a transition state with a C_3 - O_4 distance of 2.06 Å, an O_p - O_4 distance of 1.52 Å, and a barrier of 17.6 kcal mol⁻¹, whereas AM1/GROMOS predicts values of 1.97 Å, 1.56 Å and 21.3 kcal mol⁻¹, respectively. Single-point QM calculations for the QM region at the optimised QM/MM geometries lead to barriers of 19.4 kcal mol⁻¹ (AM1/CHARMM) and 19.0 kcal mol⁻¹ (AM1/GROMOS), which deviate from the corresponding full QM/MM barriers only by a small amount (but in the opposite direction). Hence, both approaches find only a small direct energetic influence of the protein environment on the barrier which supports the idea that the enzyme mainly serves to activate substrate and cofactor as well as to arrange and stabilise them in the right relative orientation. The published AM1/CHARMM studies²²⁻²⁴ did not report

MD simulations. Our AM1/GROMOS MD runs (Section III) provide free energy barriers that are significantly lower than the AM1/GROMOS or AM1/CHARMM barriers from optimisation. Table 3 collects some of the relevant theoretical barriers and compares them with the available experimental data from kinetic measurements.⁴⁵

The AM1/GROMOS free energy barriers for 1 + PHBHreproduce this experimental value⁴⁵ very well. This excellent agreement is pleasing, but must be considered fortuitous in view of the known limited accuracy of AM1 for reaction barriers. The different theoretical approaches give a consistent picture of the relative barrier heights: the p-oxybenzoate dianion 1 reacts most easily both in the enzyme and in model systems. The barriers for the p-hydroxybenzoate anion 2 are significantly higher and even exceed those for the *p*-oxybenzoic acid anion **3**. The differences in the computed barriers $[\Delta E^{\ddagger}(1) < \Delta E^{\ddagger}(3) < \Delta E^{\ddagger}(2)]$ are found to be quite similar in the enzyme and in the model system MeFlOOH (Table 3).

VI. Conclusions

We have presented molecular dynamics simulations of aromatic hydroxylation reactions in *p*-hydroxybenzoate hydroxylase for three different substrates (AM1/GROMOS) and full geometry optimisations of the relevant minima and transition states in smaller model systems (AM1) and in the

694 Phys. Chem. Chem. Phys., 2001, 3, 688-695 enzyme (AM1/GROMOS). In agreement with related QM/MM work²²⁻²⁴ we find that the *p*-oxybenzoate dianion is the favoured substrate and that the direct energetic influence of the protein environment on the activation energy is relatively small in this enzyme. The free energy barriers from molecular dynamics are significantly lower than the classical activation energies from geometry optimisation, and quite close to the experimental free energy barrier.

Acknowledgements

This work was supported by the Schweizerischer Nation-alfonds and by the European Commission (ESPRIT project no. 25047, QUASI). The MD simulations were performed on the NEC-SX4 computer at the Swiss Center for Scientific Computing (CSCS Manno). We thank Domenico Gatti for providing coordinates, and we are grateful to Raffaele Curcio for his contributions to the optimisation studies.

References

- B. Entsch and W. J. H. van Berkel, *FASEB J.*, 1995, 9, 476.
 B. Entsch, D. P. Ballou and V. Massey, J. Biol. Chem., 1976, 251, 2
- 2550
- 3 B. Entsch and D. P. Ballou, Biochim. Biophys. Acta, 1989, 999,
- 4
- 313.
 B. Entsch, V. Massey and D. P. Ballou, Biochim. Biophys. Res. Commun. 1974, 57, 1018.
 V. Massey, J. Biol. Chem., 1994, 269, 22459.
 R. F. Anderson, K. B. Patel and M. R. L. Stratford, J. Biol. Chem., 1987, 262, 17475.
 R. F. Anderson, K. B. Patel and B. Vojnovic, J. Biol. Chem., 1991, V. C. 1090.
- 6
- 7 266. 13086.
- ğ
- 200, 10000: G. A. Hamilton, Prog. Bioorg. Chem., 1971, 1, 83. M. Husain, B. Entsch, D. P. Ballou, V. Massey and J. P. Chapman, J. Biol. Chem., 1980, 255, 4189. M. Ortiz-Maldonado, B. P. Ballou and V. Massey, Biochemistry, 10
- 11
- M. Ortiz-Maldonado, B. P. Ballou and V. Massey, *Biochemistry*, 1999, **38**, 8124.
 D. L. Gatti, B. A. Palfey, M. S. Lah, B. Entsch, V. Massey, D. P. Ballou and M. L. Ludwig, *Science*, 1994, **266**, 110.
 M. S. Lah, B. A. Palfey, H. A. Schreuder and M. L. Ludwig, *Biochemistry*, 1994, **33**, 1555. 12
- H. A. Schreuder, A. Mattevi, G. Obmolova, K. H. Kalk, W. G. J. Hol, F. J. T. van der Bolt and W. J. H. van Berkel, *Biochemistry*, 1994, 33, 10161. 13 H. A. Schreuder, P. A. J. Prick, R. K. Wierenga, G. Vriend, K. S.
- 14 H. A. Schreuder, P. A. J. Prick, K. K. Wierenga, C. Vriend, K. S. Wilson, W. G. J. Hol and J. Drenth, J. Mol. Biol., 1989, 208, 679.
 D. L. Gatti, B. Entsch, D. P. Ballou and M. L. Ludwig, Biochemistry, 1996, 35, 567.
 H. A. Schreuder, J. M. van der Laan, M. B. A. Swarte, K. H. Kalk, W. G. J. Hol and J. Drenth, Proteins: Struct. Funct. Genet.,
- 17
- Kan, W. G. J. Hol and J. Dielini, *Proteins: Struct. Funct. Venet.*, 1992, 14, 178.
 H. A. Schreuder, J. M. van der Laan, W. G. J. Hol and J. Drenth, *J. Mol. Biol.*, 1988, 199, 637.
 B. A. Palley, G. R. Moran, B. Entsch, D. P. Ballou and V. 18 Massey, Biochemistry, 1999, 38, 1153.

- B. Entsch, B. A. Palfey, D. P. Ballou and V. Massey, J. Biol. Chem., 1991, 266, 17341.
 K. Eschrich, F. J. T. van der Bolt, A. de Kok and W. J. H. van Berkel, Eur, J. Biochem., 1993, 216, 137.
 C. F. W. Hanser, PhD Thesis, University of Zürich, 1999.
 L. Ridder, A. J. Mulholland, J. Vervoort and I. M. C. M. Rietjens, J. Am. Chem. Soc., 1998, 120, 7641.
 L. Ridder, B. A. Palfey, J. Vervoort and I. M. C. M. Rietjens, I. Ridder, B. A. Palfey, J. Vervoort and I. M. C. M. Rietjens, FEBS Lett., 2000, 478, 197.
 J. Vervoort, I. M. C. M. Rietjens, W. J. H. van Berkel and C. Veeger, Eur. J. Biochem., 1992, 206, 479.
 Y.-J. Zheng and R. L. Ornstein, J. Am. Chem. Soc., 1996, 118, 9402.
 M. S. Dewar, E. Zoebisch, E. F. Healy and J. J. P. Stewart, J.

- M. J. S. Dewar, E. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902.
 M. J. S. Dewar and C. Jie, J. Mol. Struct. THEOCHEM, 1989,

- M. J. S. Dewar and C. Jie, J. Mol. Struct. Intercention, con-187, 1.
 W. F. van Gunsteren and H. J. C. Berendsen, GROMOS87 Program and Manual, Biomos b.v., Laboratory of Chemical Physics, University of Groningen, 1987.
 W. F. van Gunsteren, S. R. Billeter, A. A. Eising, P. H. Hünenberger, P. Krüger, A. E. Mark, W. R. P. Scott and I. G. Tironi, Biomolecular Simulation: The GROMOS96 Manual and User Guide, Biomos b.v., Zürich and Groningen, 1996.
- J. P. M. Postma, W. F. van Gunsteren, J. Hermans and H. J. C. Berendsen, in *Intermolecular Forces*, ed. B. Pullman, Reidel, Dordrecht, 1981, pp. 331-342.
 D. Bakowies and W. Thiel, J. *Phys. Chem.*, 1996, **10**, 10580.
 D. Bakowies and W. Thiel, J. *Comput. Chem.*, 1996, **17**, 87.
 G. P. Ford and B. J. Wang, J. *Comput. Chem.*, 1993, **14**, 1101.
 A. K. Rappe and W. A. Goddard, J. *Phys. Chem.*, 1991, **95**, 338.
 W. F. van Gunsteren and H. J. C. Berendsen, *Angew. Chem.*, 1990, **102**, 1020.

- 40
- 1990, 102, 1020.
 1990, 102, 1020.
 1990, 102, 1020.
 1990, 102, 1020.
 1990, 102, 1020.
 1990, 102, 1020.
 1990, 102, 1020.
 1990, 1020.
 1990, 1020.
 1990, 1020.
 1990, 1020.
 1990, 1020.
 1991.
 1991.
 1991.
 1991.
 1991.
 1992.
 1992.
 1992.
 1993.
 1995.
 1994.
 1995.
 1996.
 1996.
- D. L. Gatti, private communication, 1996.
 See, e.g., ref. 37, part IV, pp. 267–367.
 B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus, J. Comput. Chem., 1983, 4, 187.
 W. J. H. van Berkel and F. Müller, J. Biochem., 1989, 179, 307. 44

Electronic supplementary information for the paper

Molecular dynamics study of aromatic oxygenation reactions catalysed by the enzyme p-hydroxybenzoate hydroxylase

Salomon R. Billeter (a), Christof F. W. Hanser (a), Tiziana Z. Mordasini (a), Mirjam Scholten (b), Walter Thiel* (b) and Wilfred F. van Gunsteren (c)

- a Organisch-chemisches Institut, Universitaet Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich, Switzerland
- Max-Planck-Institut fuer Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Muelheim an der Ruhr, Germany
- c Laboratorium fuer Physikalische Chemie, ETH Zuerich, ETH-Zentrum, CH-8092 Zuerich, Switzerland

Contents

- 1. Validation of AM1: Comparison with ab initio and DFT results
- 2. Unrestrained environment in MD simulations
- 3. Definition of the MM' interaction region in MD simulations
- 4. Technical details of QM/MM geometry optimisations in PHBH
- 5. Technical note concerning Figure 5 of the paper

1. Validation of AM1: Comparison with ab initio and DFT results

We have considered the substrates p-oxybenzoate dianion (1), p-hydroxybenzoate anion (2), and p-oxybenzoic acid anion (3), and their reactions with hydrogen peroxide as discussed in section IV. The formulas for substrates (1)-(3) and for the hydroxylation products (1a)-(3a) are shown in Figure 1 of the paper. The alternative oxygenation products (1b)-(3b) are derived from (1a)-(3a) by abstracting a proton from the OH group at C3. The following reactions have been studied:

 $(1) + HOOH \rightarrow (1a) + OH$ - (analogously for (2) and (3))

 $(1) + HOOH \rightarrow (1b) + HOH$ (analogously for (2) and (3))

The validation studies employed ab initio Hartree-Fock (HF) [S1] and hybrid density functional (B3LYP) [S2] calculations with standard basis sets [S1]. The 6-31++G(d,p) basis is derived from the 6-31G(d) basis by adding two sets of diffuse functions for a proper description of anions and one set of p-polarisation functions at hydrogen. The results with the larger 6-31++G(d,p) basis are expected to be more reliable. All HF and B3LYP calculations were performed using the Gaussian98 program [S3] and involved full geometry optimisations.

Table S1 lists the relative energies for the model system (1)+HOOH, employing the same notation as in section IV of the paper.

Table S1.	Relative energies (kcal/mol) for the reactants (R-sep, R-compl),
	the transition state (TS), and the products (P-compl, P-sep) in
	the reaction between the p-OHB dianion (1) and hydrogen peroxide.

	R-sep (1)	R-compl (1)	TS	P-sep (1a)	P-compl (1b)	P-sep (1b)
HF/6-31G(d)	0.0	-17.8	38.2	-62.8	-62.1	-32.8
HF/6-31++G(d,p)	0.0	-28.7	37.1	-78.8	-62.0	-37.0
B3LYP/6-31G(d)	0.0	-21.5	-1.3	-50.3	-59.0	-26.3
B3LYP/6-31++G(d,p)	0.0	-16.4	-1.7	-73.0	-58.5	-31.2
AM1	0.0	-18.1	21.6	-60.3	-55.8	-37.3

The reference results from the HF and B3LYP calculations show some scatter and do not yet provide results that are converged with regard to basis set extension and electron correlation. The AM1 results lie generally in the same range as the reference results and appear to be generally satisfactory. The largest uncertainty is associated with the energy of TS where the HF and B3LYP results differ by almost 40 kcal/mol, with AM1 approximately halfway in between. It is known that HF tends to overestimate barriers while B3LYP is generally more realistic in this regard. To check this further, we have computed single-point MP2/6-31++G(d,p)//HF/6-31++G(d,p) energies and find that TS lies 27.2 kcal/mol above R-compl at this level (compared with 65.8 kcal/mol for HF/6-31++G(d,p), 14.7 kcal/mol for B3LYP/6-31++G(d,p), and 39.7 kcal/mol for AM1). Hence, both ab initio HF and AM1 overestimate this barrier compared with the correlated MP2 and B3LYP methods.

Our validation attempts for substrates (2) and (3) are far less extensive. Table S2 contains the corresponding relative energies.

Table S2.Relative energies (kcal/mol) involving the substrates (2) and (3)
using an analogous notation as in Table 1.

Reference system Relative energy for	(3) (2)	R-sep(2) P-sep(2a)	R-sep(3) P-sep(3a)	R-sep(3) P-sep(3b)	R-sep(3) TS(3)
HF/6-31G(d)	7.3	86.7	32.4	-15.1	59.0
HF/6-31++G(d,p)	6.3	62.9	10.7	-20.8	_
B3LYP/6-31G(d)	10.2	93.0	49.4	_	_
B3LYP/6-31++G(d,p)	8.4	61.2	18.8	_	_
AM1	16.2	80.2	32.0	-21.0	34.9

The dipole moments (evaluated in center-of-mass coordinates) provide a rough indication of the charge distribution. Table S3 compares the AM1 values with the reference dipole moments from HF and B3LYP.

Species	(1)	(1a)	(1b)	TS(1)	(2)	(2a)	(3)	(3a)	(3b)
HF/6-31G(d)	1.90	8.76	5.43	4.86	11.05	16.02	5.70	3.24	8.83
HF/6-31++G(d,p)	1.93	9.12	5.91	4.90	11.64	16.48	6.13	3.31	9.76
B3LYP/6-31G(d)	1.79	7.73	4.03	4.24	10.24	12.99	4.91	3.21	_
B3LYP/6-31++G(d,p)	1.97	8.34	4.91	4.28	11.12	14.19	5.35	3.34	_
AM1	2.71	8.37	5.23	5.08	10.83	13.72	4.57	2.28	9.19

Table S3. Dipole moments (D) for substrates and products.

The AM1 geometries for selected reactants and products have already been compared to ab initio and B3LYP geometries in previous work [23] where good agreement has generally been found except for the O-O bond length. Table S4 presents additional comparisons for the geometry of the transition state in (1)+HOOH. The performance of AM1 is similar as before [23], the only major discrepancy is again the underestimation of the O-O distance (even though it should be noted that the increase of the O-O distance in going from HOOH to the transition state is well reflected).

Table S4.Selected bond lengths (A) in the transition state for the reaction
between the p-OHB dianion and hydrogen peroxide; see Figure 1 in
the paper for the numbering of the atoms.

Bond length	C1-C2	C2-C3	C3-C4	C4-O4	C3-H3	C3-Od	Od-Op	Od-Hd	Op-Hp
HF/6-31G(d)	1.359	1.435	1.457	1.231	1.075	1.953	1.873	0.947	0.947
HF/6-31++G(d,p)	1.363	1.432	1.453	1.237	1.075	1.990	1.846	0.946	0.944
B3LYP/6-31G(d)	1.383	1.427	1.470	1.259	1.087	2.047	1.911	0.969	0.970
B3LYP/6-31++G(d,p)	1.390	1.420	1.461	1.269	1.085	2.209	1.815	0.970	0.968
AM1	1.380	1.415	1.447	1.267	1.098	1.965	1.646	0.960	0.950

In an overall comparison, AM1 reproduces the HF and B3LYP reference data in Tables S1-S4 with reasonable accuracy.

References for this section:

- [S1] W.J. Hehre, L. Radom, P.v.R. Schleyer, and J.A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.
- [S2] A.D. Becke, J. Chem. Phys. 98, 5648 (1993).
- [S3] Gaussian98, Revisions A.7 and A.9,
 M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria,
 M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr.,
 R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam,
 A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi,
 V.Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo,
 S.Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui,
 K.Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari,
 J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul,
 B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi,
 R.Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham,
 C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe,
 P.M. W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres,
 C.Gonzalez, M. Head-Gordon, E.S. Replogle, and J.A. Pople,
 Gaussian, Inc., Pittsburgh PA, 1998.

2. Unrestrained environment in MD simulations

The following parts of the system were unrestrained during the entire MD simulation.

a) QM region (substrate and oxidised cofactor FADHOOH).

b) 75 amino acids:

43	ILE,	44	ARG,	45	ALA,	46	GLY,	47	VAL,	48	LEU,
49	GLU,	70	LEU,	71	VAL,	72	HIS,	73	GLU,	74	GLY,
75	VAL,	76	GLU,	77	ILE,	78	ALA,	79	PHE,	82	GLN,
83	ARG,	84	ARG,	85	ARG,	86	ILE,	88	LEU,	89	LYS,
92	SER,	95	LYS,	96	THR,	97	VAL,	98	THR,	99	VAL,
101	GLY,	185	TRP,	187	GLY,	194	PRO,	196	SER,	197	HIS,
198	GLU,	199	LEU,	200	ILE,	201	TYR,	202	ALA,	203	ASN,
208	PHE,	209	ALA,	210	LEU,	211	CYS,	212	SER,	213	GLN,
214	ARG,	220	ARG,	221	TYR,	222	TYR,	247	LEU,	248	PRO,
292	PRO,	293	PRO,	294	THR,	295	GLY,	296	ALA,	297	LYS,
300	ASN,	342	PHE,	346	MET,	350	LEU,	378	LEU,	379	ALA,
380	THR,	381	ILE,	382	ALA,	383	GLU,	384	ASN,	385	TYR,
386	VAL,	387	GLY,	388	LEU.						

c) 19 water molecules:

22	WAT,	23	WAT,	25	WAT,	31	WAT,	33	WAT,	34	WAT,
40	WAT,	64	WAT,	75	WAT,	90	WAT,	93	WAT,	103	WAT,
107	WAT,	150	WAT,	177	WAT,	178	WAT,	179	WAT,	181	WAT,
219	WAT.										

All listed residues (species) have at least one atom at a distance of less than 7 A from one of the centres of mass of the imaginary chain formed by the species: p-OHB, 201 TYR, 385 TYR, 33 WAT, 219 WAT, and 72 HIS.

The numbering scheme comes from reference 15.

3. Definition of the MM' interaction region in MD simulations

The MM' interaction region contains during the entire MD simulation:

a) 63 amino acids:

12	PRO,	42	ARG,	43	ILE,	44	ARG,	45	ALA,	46	GLY,
47	VAL,	48	LEU,	49	GLU,	52	MET,	72	HIS,	75	VAL,
97	VAL,	98	THR,	99	VAL,	100	TYR,	101	GLY,	102	GLN,
184	GLY,	185	TRP,	186	LEU,	187	GLY,	188	LEU,	189	LEU,
199	LEU,	200	ILE,	201	TYR,	208	PHE,	210	LEU,	211	CYS,
212	SER,	213	GLN,	214	ARG,	219	SER,	220	ARG,	221	TYR,
222	TYR,	262	GLU,	264	SER,	265	ILE,	266	ALA,	267	PRO,
268	LEU,	286	ASP,	289	HIS,	290	ILE,	291	VAL,	292	PRO,
293	PRO,	294	THR,	295	GLY,	296	ALA,	297	LYS,	298	GLY,
299	LEU,	300	ASN,	301	LEU,	302	ALA,	303	ALA,	343	SER,
346	MET,	347	THR,	385	TYR.						

b) 25 water molecules:

13	WAT,	22	WAT,	24	WAT,	31	WAT,	33	WAT,	49	WAT,
58	WAT,	64	WAT,	68	WAT,	70	WAT,	71	WAT,	90	WAT,
92	WAT,	93	WAT,	103	WAT,	107	WAT,	128	WAT,	172	WAT,
173	WAT,	178	WAT,	179	WAT,	181	WAT,	198	WAT,	206	WAT,
219	WAT.										

The numbering scheme comes from reference 15.

4. Technical details of QM/MM geometry optimisations in PHBH

The protocol for the QM/MM geometry optimisations of the full enzyme consisted of four phases:

- MM and QM/MM relaxation of the initially prepared structure,
- microiterative transition state (TS) search at the QM/MM level,
- QM/MM energy minimisation for the reactant complex starting from TS,
- QM/MM energy minimisation for the product complex starting from TS.

Each of the four phases required a number of separate steps which are outlined below. The original paper on the HDLC optimiser [38] should be consulted for further background information.

Relaxation at the MM level (a-f) and the QM/MM level (g):

- a) Starting point: the initially prepared structure (see section III of the paper), partitioned into a central region (p-OHB, FADHOOH, Arg214, Tyr201, Tyr385) and the remainder ("environment").
- b) Energy minimisation of the environment with fixed central region using 40 HDLCopt cycles.
- c) Energy minimisation of the central region with fixed environment using 20 HDLCopt cycles which defines the reference positions of the central region for the next steps.
- d) 5 ps MD simulation and subsequent steepest descent minimisation of the entire system with harmonic position restraints in the central region, using a restraining force constant of 100 kcal/(mol*A**2).
- e) Repeat previous step with a force constant of 50 kcal/(mol*A**2).
- f) Repeat previous step with a force constant of 25 kcal/(mol*A**2).
- g) Refine the resulting structure by an energy minimisation using the HDLC optimiser with the input option cfact=0.5 and a convergence criterion for the gradient components of gtol=0.002 Hartree/Bohr: this leads to a reasonably strain-free reactant complex since the starting point (a) was derived from the X-ray structure of a PHBH-substrate complex [15].

Transition state search at the QM/MM level:

- h) Define a reaction core of 9 atoms (see Figure 5 of ref.38).
- i) Shift distal OH group in the relaxed structure (g) by 0.1 A towards the C3 atom of the substrate.
- j) Energy minimisation of all HDLC fragments except for the reaction core using 100 HDLCopt cycles.

- k) Energy minimisation of the HDLC fragments in the QM region outside the reaction core for another 100 HDLCopt cycles.
- Microiterative transition state search in the QM region with gtol=0.00135 Hartree/Bohr followed by an energy minimisation of all HDLC fragments (except for the reaction core) with gtol=0.00045 Hartree/Bohr.
- m) Repeat previous step twice.
- n) Final microiterative transition state search with gtol=0.0009 Hartree/Bohr for the reaction core and gtol=0.0003 Hartree/Bohr for the other HDLC fragments.

QM/MM energy minimisation of the product complex:

- o) Shift distal OH group from optimised TS geometry (n) by 0.1 A towards C3 atom of substrate.
- q) HDLCopt energy minimisation with gtol=0.00045 Hartree/Bohr.

QM/MM energy minimisation of the reactant complex:

- r) Shift distal OH group from optimised TS geometry (n) by 0.1 A towards Op atom of cofactor.
- s) HDLCopt energy minimisation with gtol=0.00045 Hartree/Bohr.

5. Technical note concerning Figure 5 of the paper

The originally generated profile [21] for monoanion 2 with model A (Figure 5) showed some structure in the product region, for values of the reaction coordinate R(Od-C3) below 1.4 A. We have checked the original evaluations again and found that there were unusually large variations in dG/dlambda during the course of the simulations for two of the corresponding lambda points. We now consider these data as being technically unreliable and have therefore not included them in Figure 5. This omission does not affect any of our conclusions.

Literaturverzeichnis

- [1] HEITLER, W. und F. LONDON: Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Z. Physik, 44:455, 1927.
- [2] KOLB, M.: Ein neues semiempirisches Verfahren auf Grundlage der NDDO-N\"aherung: Entwicklung der Methode, Parametrisierung und Anwendungen. Doktorarbeit, Bergische Universit\"at - Gesamthochschule Wuppertal, 1991.
- [3] KOLB, M. und W. THIEL: Beyond the MNDO Model: Methodical Considerations and Numerical Results. J. Comput. Chem., 14:775, 1993.
- [4] WEBER, W.: Ein neues semiempirisches NDDO-Verfahren mit Orthogonalisierungskorrekturen: Entwicklung des Modells, Implementierung, Parametrisierung und Anwendungen. Doktorarbeit, Universität Zürich, 1996.
- [5] WEBER, W. und W. THIEL: Orthogonalization corrections for semiempirical methods. Theor. Chem. Acc., 103:495, 2000.
- [6] KOLLMAR, C. und W. THIEL. unpublizierte Ergebnisse.
- [7] SZABO, A. und N. S. OSTLUND: *Modern Quantum Chemistry*. Dover Publications, Inc., New York, 1996.
- [8] LEVINE, I.N.: Quantum Chemistry. Prentice Hall, Englewood Cliffs, 4. Auflage, 1991.
- [9] POPLE, J. A. und D. L. BEVERIDGE: *Approximate Molecular Orbital Theory*. McGraw Hill, New York, 1970.
- [10] SCHOLZ, M. und H. J. KÖHLER: Quantenchemie III. Hüthig, Heidelberg, 1981.
- [11] ATKINS, P.W. und R. S. FRIEDMAN: *Molecular Quantum Mechanics*. Oxford University Press, Oxford, 3. Auflage, 1997.
- [12] ROOTHAAN, C. C. J.: New Developments in Molecular Orbital Theory. Rev. Mod. Phys., 23:69, 1951.
- [13] HALL, G. G.: The molecular orbital theory of chemical valency VIII. A method of calculating ionization potentials. Proc. R. Soc. London A, 205:541, 1951.
- [14] PARISER, R. und R. G. PARR: A Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. I. J. Chem. Phys., 21:466, 1953.
- [15] FISCHER-HJALMARS, I.: Zero Differential Overlap in π -Electron Theories. Adv. Quant. Chem., 2:25, 1965.
- [16] FISCHER-HJALMARS, I.: Connections between Current π -Electron Theories. Theoret. chim. Acta (Berl.), 4:332, 1966.

- [17] BRUIJN, S. DE: Resonance Integrals in Semi-Empirical MO Theories. Chem. Phys. Lett., 54:399, 1978.
- [18] BRUIJN, S. DE: Analysis of the Inadequacies of Some Semi-empirical MO Methods as Theories of Structure and Reactivity. Int. J. Quant. Chem., 25:367, 1984.
- [19] BROWN, R. D. und K. R. ROBY: Approximate Molecular Orbital Theory for Inorganic Molecules I. Analysis of Possible Integral Approximations II. Methods of Evaluating Basic Parameters. Theoret. chim. Acta (Berl.), 16:175,194, 1970.
- [20] BROWN, R. D., F. R. BURDEN und G. R. WILLIAMS: Simplified ab-initio Calculations for Molecular Systems. Theoret. chim. Acta (Berl.), 18:98, 1970.
- [21] GRAY, N. A. B. und A. J. STONE: Justifiability of the ZDO Approximation in Terms of a Power Series Expansion. Theoret. chim. Acta (Berl.), 18:389, 1970.
- [22] CHANDLER, G. S. und F. E. GRADER: A Re-Examination of the Justification of Neglect of Differential Overlap Approximations in Terms of a Power Series Expansion in S. Theoret. chim. Acta (Berl.), 54:131, 1980.
- [23] SPANGET-LARSEN, J., J. WALUK und E. W. THULSTRUP: Electronic States of Chrysene. Linear and Magnetic Circular Dichroism and Quantum Chemical Calculations. J. Phys. Chem., 94:1800, 1990.
- [24] SPANGET-LARSEN, J., J. WALUK, S. ERIKSSON und E. W. THULSTRUP: Electronic States of Benzo[a]pyrene. Linear and Magnetic Circular Dichroism, Polarized Fluorescence and Quantum Chemical Calculations. J. Am. Chem. Soc., 114:1942, 1992.
- [25] WALUK, J., A. MORDZINSKI, J. SPANGET-LARSEN und E. W. THULSTRUP: The Electronic Spectrum of Benz[a]anthracene. Linear and Magnetic Circular Dichroism and Fluorescence Polarization Studies. Chem. Phys., 116:411, 1987.
- [26] KING, H. F., M. D. NEWTON und R. E. STANTON: Canonical Orthonormalization and Neglect of Differential Overlap. Chem. Phys. Lett., 31:66, 1975.
- [27] NICHOLSON, B. J.: Approximate Molecular Orbital Theories. Adv. Chem. Phys., 18:249, 1970.
- [28] SPANGET-LARSEN, J.: On Bridging the Gap Between Extended Hückel and NDO Type LCAO-MO Theories. Theoret. chim. Acta (Berl.), 55:165, 1980.
- [29] JUG, K.: On the Development of Semiempirical Methods in the MO Formalism. Theoret. chim. Acta (Berl.), 14:91, 1969.
- [30] FISCHER-HJALMARS, I.: Deduction of the Zero Differential Overlap Approximation from an Orthogonal Atomic Orbital Basis. J. Chem. Phys., 42:1962, 1965.
- [31] ROBY, K. R.: On the Justifiability of Neglect of Differential Overlap Molecular Orbital Methods. Chem. Phys. Lett., 11:6, 1971.
- [32] ROBY, K. R.: Fundamentals of an Orthonormal Basis Set Molecular Orbital Theory. Chem. Phys. Lett., 12:579, 1972.
- [33] WEINHOLD, F. und J. E. CARPENTER: Some Remarks on Nonorthogonal Orbitals in Quantum Chemistry. J. Mol. Struct. (Theochem.), 42:189, 1988.
- [34] COOK, D. B., P. C. HOLLIS und R. MCWEENY: Approximate ab initio calculations on polyatomic molecules. Mol. Phys., 13:553, 1967.

- [35] KOCH, W.: Neglect of Diatomic Differential Overlap (NDDO) in Non-Empirical Quantum Chemical Orbital Theories. Z. Naturforsch., 48a:819, 1993.
- [36] POPLE, J. A., D. P. SANTRY und G. A. SEGAL: Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures. J. Chem. Phys., 43:S129, 1965.
- [37] DEWAR, M. J. S. und W. THIEL: Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters. 39. MNDO Results for Molecules containing Hydrogen, Carbon, Nitrogen, and Oxygen. J. Am. Chem. Soc., 99:4899, 4907, 1977.
- [38] OLEARI, L., L. DI SIPIO und G. DE MICHELIS: The evaluation of one-centre integrals in the semi-empirical molecular orbital theory. Mol. Phys., 10:97, 1966.
- [39] COFFEY, P.: Potential Energy Integrals in Semiempirical MO Methods. Int. J. Quant. Chem., 8:263, 1974.
- [40] GOEPPERT-MAYER, M. und A. L. SKLAR: Calculations of the Lower Excited Levels of Benzene. J. Chem. Phys., 6:645, 1938.
- [41] DEWAR, M. J. S. und D. H. LO: Ground States of σ-Bonded Molecules. XVII. Fluorine Compounds. J. Am. Chem. Soc., 94:5296, 1972.
- [42] VOIGT, B.: On Bridging the Gap Between the INDO and the NDDO Schemes. Theoret. chim. Acta (Berl.), 31:289, 1973.
- [43] HIRSCHFELDER, J. O., C. F. CURTISS und R. B. BIRD: Molecular Theory of Gases and Liquids. John Wiley & Sons, New York, 1954.
- [44] PARR, R. G. J.: Three Remarks on Molecular Orbital Theory of Complex Molecules. J. Chem. Phys., 33:1184, 1960.
- [45] DEWAR, M. J. S. und N. L. SABELLI: *The SPO (Split p-Orbital) Method and Its Application to Ethylene*. J. Chem. Phys., 34:1232, 1961.
- [46] DEWAR, M. J. S. und N. L. SABELLI: The s.p-o.(split-p-orbital) method II. Further definition and application to acetylene. Proc. R. Soc. London A, 264:431, 1961.
- [47] DEWAR, M. J. S. und N. L. SABELLI: The Split p-Orbital (S.P.O.) Method. III. Relationship to other M.O. Treatments and Application to Benzene, Butadiene, and Naphthalene. J. Phys. Chem., 66:2310, 1962.
- [48] KLOPMAN, G.: A Semiempirical Treatment of Molecular Structures. II. Molecular Terms and Application to Diatomic Molecules. J. Am. Chem. Soc., 86:4550, 1964.
- [49] OHNO, K.: Some Remarks on the Pariser-Parr-Pople Method. Theoret. chim. Acta (Berl.), 2:219, 1964.
- [50] DEWAR, M. J. S.: Quantum Mechanical Molecular Models. J. Phys. Chem., 89:2145, 1985.
- [51] THIEL, W.: Semiempirical Methods: Current Status and Perspectives. Tetrahedron, 44:7393, 1988.
- [52] STEWART, J. J. P.: MOPAC: A semiempirical molecular orbital program. J. Comput.-Aided Mol. Design, 4:1, 1990.
- [53] STEWART, J. J. P.: Semiempirical Molecular Orbital Methods. In: K. K. B. LIPKOWITZ, D. B. BOYD (Herausgeber): Reviews in Computational Chemistry, Band 1, Seite 45. Verlag Chemie, New York, 1990.

- [54] ZERNER, M. C.: Semiempirical Molecular Orbital Methods. In: K. K. B. LIPKOWITZ, D. B. BOYD (Herausgeber): Reviews in Computational Chemistry, Band 2, Seite 313. Verlag Chemie, New York, 1990.
- [55] THIEL, W.: Perspectives on Semiempirical Molecular Orbital Theory. Adv. Chem. Phys., 93:703, 1996.
- [56] DEWAR, M. J. S., E. G. ZOEBISCH, E. F. HEALY und J. J. P. STEWART: AM1: A New General Purpose Quantum Mechanical Molecular Model. J. Am. Chem. Soc., 107:3902, 1985.
- [57] STEWART, J. J. P.: Optimization of Parameters for Semiempirical Methods. I. Method; II. Applications. J. Comput. Chem., 10:209,221, 1989.
- [58] BRUIJN, S. DE: Learning from Mistake: The CNDO-Inheritance. In: CARBÓ, R. (Herausgeber): Current Aspects of Quantum Chemistry, Studies in Physical and Theoretical Chemistry, Band 21, Seite 251. Elsevier, Amsterdam, 1982.
- [59] COFFEY, P. und K. JUG: Semiempirical Molecular Orbital Calculations and Molecular Energies. A New Formula for the β Parameter. J. Am. Chem. Soc., 95:7575, 1973.
- [60] FILATOV, M. J., O. V. GRITSENKO und G. M. ZHIDOMIROV: CNDO-S²-a semiempirical SCF MO method for transition metal organometallics. Theoret. Chim. Acta, 72:211, 1987.
- [61] NANDA, D. N. und K. JUG: SINDO1. A Semiempirical SCF MO Method for Molecular Binding Energy and Geometry I. Approximations and Parametrization. Theoret. chim. Acta (Berl.), 57:95, 1980.
- [62] JUG, K., R. IFFERT und J. SCHULZ: Development and Parametrization of SINDO1 for Second-row Elements. Int. J. Quant. Chem., 32:265, 1987.
- [63] LÖWDIN, P.-O.: On the Non-Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals. J. Chem. Phys., 18:365, 1950.
- [64] LÖWDIN, P.-O.: On the Nonorthogonality Problem. Adv. Quant. Chem., 5:185, 1970.
- [65] KUTZELNIGG, W.: Einführung in die Theoretische Chemie, Band 2. Verlag Chemie, Weinheim, 1978.
- [66] KOLLMAR, C. und M. C. BÖHM: An analysis of the zero differential overlap approximation. Towards an improved semiempirical MO method beyond it. Theor. Chim. Acta, 92:13, 1995.
- [67] GREGORY, A. R. und M. N. PADDON-ROW: On the Ability of the CNDO/2 and INDO MO Methods to Cope with Nonbonded Interactions. J. Am. Chem. Soc., 98:7521, 1976.
- [68] BASILEVSKY, M. V., A. G. SHAMOV und V. A. TIKHOMIROV: *Transition State of the Diels-Alder Reaction*. J. Am. Chem. Soc., 99:1369, 1977.
- [69] CARAMELLA, P., K. N. HOUK und L. N. DOMELSMITH: On the Dichotomy between Cycloaddition Transition States Calculated by Semiempirical and ab Initio Techniques. J. Am. Chem. Soc., 99:4511, 1977.
- [70] SPANGET-LARSEN, J.: The alternant hydrocarbon pairing theorem and all-valence electrons theory. An approximate LCOAO theory for the electronic absorption and MCD spectra of conjugated organic compounds, part 2. Theor. Chim. Acta, 98:137, 1997.
- [71] KAHN, L. R., P. BAYBUTT und D. G. TRUHLAR: Ab initio effective core potentials: Reduction of all-electron molecular structure calculations to calculations involving only valence electrons. J. Chem. Phys., 65:3826, 1976.
- [72] KRAUSS, M. und W. J. STEVENS: *Effective Potentials in Molecular Quantum Chemistry*. Annu. Rev. Phys. Chem., 35:357, 1984.
- [73] MANNE, R.: An Approximate MO-LCAO-SCF Method Including Overlap. Theoret. chim. Acta (Berl.), 6:299, 1966.
- [74] ZERNER, M. C.: Removal of core orbitals in 'valence orbital only' calculations. Mol. Phys., 23:963, 1972.
- [75] STEVENS, W. J., H. BASCH und M. KRAUSS: Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms. J. Chem. Phys., 81:6026, 1984.
- [76] WEINER, P. K. Ph. D. Thesis, University of Texas, Austin, 1975.
- [77] SCHWARZ, H. R.: Numerische Mathematik. Teubner, Stuttgart, 1986.
- [78] LEVENBERG, K.: A Method for the Solution of Certain Problems in Least Squares. Quart. Appl. Math., 2:164, 1944.
- [79] MARQUARDT, D. W.: An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM J. Numer. Anal., 11:431, 1963.
- [80] NOCEDAL, J. und S. J. WRIGHT: Numerical Optimization. Springer, New York, 2000.
- [81] GIVENS, W.: Computation of Plane Unitary Rotations Transforming a General Matrix to Triangular Form. J. Soc. Ind. Appl. Math., 6:26, 1958.
- [82] BROYDEN, C. G.: A Class of Methods for Solving Nonlinear Simultaneous Equations. Math. Comp., 19:577, 1965.
- [83] AHLSWEDE, B. und K. JUG: Consistent Modifications of SINDO 1: I. Approximations and Parameters. J. Comput. Chem., 20:563, 1999.
- [84] WEAST, R. C.: CRC Handbook of Chemistry and Physics. The Chemical Rubber Company, Cleveland, 1971.
- [85] KOSLOWSKI, A., M. BECK und W. THIEL: *Implementation of a general multi-reference configuration interaction procedure with analytic gradients in a semiempirical context using the graphical unitary group approch.* J. Comput. Chem., in press.
- [86] DEWAR, M. J. S., J. A. HASHMALL und C. G. VENIER: Ground States of Conjugated Molecules. IX. Hydrocarbon Radicals and Radical Ions. J. Am. Chem. Soc., 90:1953, 1968.
- [87] HIGGINS, D., C. THOMSON und W. THIEL: Comparison of Semiempirical MO Methods for Open-Shell Systems. J. Comp. Chem., 9:702, 1988.
- [88] CURTISS, L. A., K. RAGHAVACHARI, G. W. TRUCKS und J. A. POPLE: *Gaussian-2 theory for molecular energies of first- and second-row compounds*. J. Chem. Phys., 94:7221, 1991.
- [89] CURTISS, L. A., K. RAGHAVACHARI, P. C. REDFERN und J. A. POPLE: Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J. Chem. Phys., 106:1063, 1997.

- [90] THIEL, W.: Thermochemistry from Semiempirical Molecular Orbital Theory. In: IRIKU-RA, K. K. und D. J. FRURIP (Herausgeber): Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics, ACS Symposium Series 667, Seite 142, Washington, DC, 1996.
- [91] CURTISS, L. A., K. RAGHAVACHARI und J. A. POPLE: Gaussian-2 theory using reduced Møller-Plesset orders. J. Chem. Phys., 98:1293, 1993.
- [92] SMITH, B. J. und L. RADOM: Calculation of Proton Affinities using the G2(MP2,SVP) Procedure. J. Chem. Phys.-US, 99:6468, 1995.
- [93] CURTISS, L. A., P. C. REDFERN, B. J. SMITH und L. RADOM: Gaussian-2 (G2) theory: Reduced basis set requirements. J. Chem. Phys., 104:5148, 1996.
- [94] CURTISS, L. A., P. C. REDFERN, K. RAGHAVACHARI, V. RASSOLOV und J. A. POPLE: Gaussian-3 theory using reduced Møller-Plesset order. J. Chem. Phys., 110:4703, 1999.
- [95] CURTISS, L. A., K. RAGHAVACHARI, P. C. REDFERN, V. RASSOLOV und J. A. POPLE: Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J. Chem. Phys., 109:7764, 1998.
- [96] CURTISS, L. A., K. RAGHAVACHARI, P. C. REDFERN und J. A. POPLE: Assessment of Gaussian-3 and density functional theories for a larger experimental test set. J. Chem. Phys., 112:7374, 2000.
- [97] FRISCH, M. J., G. W. TRUCKS, H. B. SCHLEGEL, G. E. SCUSERIA, M. A. ROBB, J. R. CHEESEMAN, V. G. ZAKRZEWSKI, JR. J. A. MONTGOMERY, R. E. STRATMANN, J. C. BURANT, S. DAPPRICH, J. M. MILLAM, A. D DANIELS, K. N. KUDIN, M. C. STRAIN, O. FARKAS, J. TOMASI, V. BARONE, M. COSSI, R. CAMMI, B. MENNUCCI, C. POMELLI, C. ADAMO, S. CLIFFORD, J. OCHTERSKI, G. A. PETERSSON, P. Y. AYALA, Q. CUI, K. MOROKUMA, P. SALVADOR, J. J. DANNENBERG, D. K. MALICK, A. D. RABUCK, K. RAGHAVACHARI, J. B. FORESMAN, J. CIOSLOWSKI, J. V. ORTIZ, A. G. BABOUL, B. S. STEFANOV, G. LIU, A. LIASHENKO, P. PISKORZ, I. KOMAROMI, R. GOMPERTS, R. L. MARTIN, D. J. FOX, T. KEITH, M. A. AL-LAHAM, C. Y. PENG, M. NANAYAK-KARA, A.AND CHALLACOMBE, P. M. W. GILL, B. JOHNSON, W. CHEN, M. W. WONG, J. L. ANDRES, C. GONZALEZ, M. HEAD-GORDON, E. S. REPLOGLE und J. A. POPLE: Gaussian98, Revision A.11.1, Gaussian, Inc., Pittsburgh PA, 2001.
- [98] CURTISS, L. A., P. C. REDFERN, K. RAGHAVACHARI und J. A. POPLE: Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities. J. Chem. Phys., 109:42, 1998.
- [99] HALGREN, T. A.: MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J. Comput. Chem., 20:730, 1999.
- [100] LEE, T.-S., D. M. YORK und W. YANG: Linear-scaling semiempirical quantum calculations for macromolecules. J. Chem. Phys., 105:2744, 1996.
- [101] DIXON, S. L. und K. M. MERZ: Semiempirical molecular orbital calculations with linear system size scaling. J. Chem. Phys., 104:6643, 1996.
- [102] STEWART, J. J. P.: Application of Localized Molecular Orbitals to the Solution of Semiempirical Self-Consisten Field Equations. Int. J. Quantum. Chem., 58:133, 1996.

- [103] DANIELS, A. D., J. M. MILLAM und G. E. SCUSERIA: Semiempirical methods with conjugate gradient density matrix search to replace diagonalization for molecular systems containing thousands of atoms. J. Chem. Phys., 107:425, 1997.
- [104] DANIELS, A. D. und G. E. SCUSERIA: What is the best alternative to diagonalization of the Hamiltonian in large scale semiempirical calculations? J. Chem. Phys., 110:1321, 1998.
- [105] WARSHEL, A. und M. LEVITT: Theoretical Studies of Enzymatic Reactions Dielectric Electrostatic and Steric Stabilization of Carbonium-Ion in Reaction of Lysozyme. J. Mol. Biol., 103:227, 1976.
- [106] FIELD, M. J., P. A. BASH und M. KARPLUS: A Combined Quantum-Mechanical and Molecular Mechanical Potential for Molecular-Dynamics Simulations. J. Comput. Chem., 11:700, 1990.
- [107] ÅQVIST, J. und A. WARSHEL: Simulation of Enzyme Reactions Using Valence Bond Force Fields and Other Hybrid Quantum/Classical Approaches. Chem. Rev., 93:2523, 1993.
- [108] GAO, J.: Methods and Applications of Combined Quantum Mechanical and Molecular Mechanical Potentials. In: LIPKOWITZ, K. K. B. und D. B. BOYD (Herausgeber): Reviews in Computational Chemistry, Band 7, Seite 119. Verlag Chemie, New York, 1995.
- [109] MORDASINI, T. Z. und W. THIEL: Combined Quantum Mechanical and Molecular Mechanical Approaches. Chimia, 52:288, 1998.
- [110] MONARD, G. und K. M. MERZ: Combined Quantum Mechanical/Molecular Mechanical Methodologies Applied to Biomolecular Systems. Acc. Chem. Res., 32:904, 1999.
- [111] MÖHLE, K., H.-J. HOFMANN und W. THIEL: Description of Peptide and Protein Secondary Structures Employing Semiempirical Methods. J. Comp. Chem., 22:509, 2001.
- [112] BEACHY, M. D., D. CHASMAN, R. B. MURPHY, T. A. HALGREN und R. A. FRIESNER: Accurate ab Initio Quantum Chemical Determination of the Relative Energetics of Peptide Conformations and Assessment of Empirical Force Fields. J. Am. Chem. Soc., 119:5908, 1997.
- [113] PILCHER, G. und H. A. SKINNER: The Chemistry of the Metal-Carbon Bond. F. R. Hartley and S. Patai (Herausgeber), Wiley, New York, 1982.
- [114] PEDLEY, J. B., R. D. NAYLOR und S. P. KIRBY: *Thermochemical Data of Organic Compounds*. Chapman and Hall, London, 2 Auflage, 1986.
- [115] LIAS, S. G., J. E. BARTMESS, J. F. LIEBMANN, J. L. HOLMES, R. D. LEVIN und W. G. MALLARD: Gas Phase Ion and Neutral Thermochemistry. J. Phys. Chem. Ref. Data, 17:Suppl. 1, 1988.
- [116] TURNER, R. B., P. GOEBEL, B. J. MALLON, W. E. VON DOERING, J. F. COBURN und M. POMERANTZ: *Heats of Hydrogenation. VIII. Compounds with Three- and Four-Membered Rings.* J. Am. Chem. Soc., 90:4315, 1968.
- [117] CHASE, M. W., C. A. DAVIES, J. R. DOWNEY, D. R. FRURIP, R. A. MCDONALD und SYVERUD: JANAF Thermochemical Tables. J. Phys. Chem. Ref. Data, 14:Suppl.1, 1985.
- [118] HUSH, N. S., M. K. LIVETT, J. B. PEEL und G. D. WILLETT: Variable-Temperature Ultraviolet Photoelectron Spectroscopy of the Keto-Enol Tautomers of Pentane-2,4-dione. Aust. J. Chem. Phys., 40:599, 1987.

- [119] RIOS, M. A. und J. RODRIGUEZ: An Ab Initio Study of the Conformation and Intramolecular Proton Transfer in the Enol Form of Acetylaceton. J. Mol. Struct. (Theochem.), 63:137, 1990.
- [120] MALLARD, W. G. und P. J. LINSTROM (Herausgeber): NIST Chemistry WebBook. NIST Standard Reference Data Base 69, February 2000, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov).
- [121] HEHRE, W. J., L. RADOM, P.V.R. SCHLEYER und J. A. POPLE: Ab initio Molecular Orbital Theory. Wiley, New York, 1986.
- [122] HEAD-GORDON, M. und J. A. POPLE: Internal Rotation in Conjugated Molecules: Substituted Ethylenes and Benzenes. J. Phys. Chem., 97:1147, 1993.
- [123] DORIGO, A. E., D. W. PRATT und K. N. HOUK: Origin of Methyl Conformational Preferences and Rotational Barriers in the Ground States, Excited Triplet States, Radical Cations, and Radical Anions of Molecules Having CH₃-C=X Functionalities. J. Am. Chem. Soc., 109:6591, 1987.
- [124] TESTA, B.: Grundlagen der Organischen Stereochemie. VCH, Weinheim, 1983.
- [125] CHARRO, M. E., J. C. LÓPEZ, J. L. ALONSO, G. WLODARCZAK und J. DEMAISON: The Rotational Spectrum of Methylene Cyclobutane. J. Mol. Spectrosc., 162:67, 1993.
- [126] ALLEN, W. D., A. G. CSÁSZÁR und D. A. HORNER: The Puckering Inversion Barrier and Vibrational Spectrum of Cyclopentene. A Scaled Quantum Mechanical Force Field Algorithm. J. Am. Chem. Soc., 114:6834, 1992.
- [127] RIVERA-GAINES, V. E., S. J. LEIBOWITZ und J. LAANE: Far-Infrared Spectra, Two-Dimensional Vibrational Potential Energy Surface, and Conformation of Cyclohexene and Its Isotopomers. J. Am. Chem. Soc., 113:9735, 1991.
- [128] AUTREY, D., J. CHOO und J. LAANE: Spectroscopic Determination of the Ring-Twisting Potential Energy Function of 1,3-Cyclohexadiene and Comparison with Ab Initio Calculations. J. Phys. Chem. A, 105:10230, 2001.
- [129] RAUK, A., J. D. ANDOSE, W. G. FRICK, R. TANG und K. MISLOW: Semiempirical Calculation of Barriers to Pyramidal Inversion for First- and Second-Row Elements. J. Am. Chem. Soc., 93:6507, 1971.
- [130] DYCZMONS, V.: Six Structures of the Hydrazine Dimer. J. Phys. Chem. A, 104:8263, 2000.
- [131] SPELLMEYER, D. C., P. D. J. GROOTENHIUS, M. D. MILLER, L. F. KUYPER und P. A. KOLLMAN: Theoretical Investigations of the Rotational Barrier in Anisole: An ab Initio and Molecular Dynamics Study. J. Phys. Chem., 94:4483, 1990.
- [132] FABIAN, W. M. F.: AM1 Calculations of Rotation around Essential Single Bonds and Preferred Conformations in Conjugated Molecules. J. Comput. Chem., 9:369, 1988.
- [133] BUTZ, K. W., D. J. KRAJNOVICH und C. S. PARMENTER: An experimental potential energy surface for internal rotation in glyoxal. J. Chem. Phys., 93:1557, 1990.
- [134] WIBERG, K. B. und K. E. LAIDIG: Barriers to Rotation Adjacent to Double Bonds. 3. The C-O Barrier in Formic Acid, Methyl Formate, Acetic Acid, and Methyl Acetate. The Origin of Ester and Amide "Resonance". J. Am. Chem. Soc., 109:5935, 1987.

- [135] ST.-AMANT, A., W. D. CORNELL, P. A. KOLLMAN und T. A. HALGREN: Calculation of Molecular Geometries, Relative Conformational Energies, Dipole Moments, and Molecular Electrostatic Potential Fitted Charges of Small Organic Molecules of Biochemical Interest by Density Functional Theory. J. Comput. Chem., 16:1483, 1995.
- [136] NAGY, P. I., D. A. SMITH, G. ALAGONA und C. GHIO: Ab Initio Studies of Free and Monohydrated Carboxylic Acids in the Gas Phase. J. Phys. Chem., 98:486, 1994.
- [137] WIBERG, K. B. und P. R. RABLEN: Why Does Thioformamide Have a Larger Rotational Barrier Than Formamide? J. Am. Chem. Soc., 117:2201, 1995.
- [138] WIBERG, K. B. und C. M. BRENEMAN: Resonance Interactions in Acyclic Systems. 3. Formamide Internal Rotation Revisited. Charge and Energy Redistribution along the C–N Bond Rotational Pathway. J. Am. Chem. Soc., 114:831, 1992.
- [139] MO, Y. und Q. ZHANG: Why N_2O_2 is cis while $(CHO)_2$ is trans: MO and VB Studies. Int. J. Quant. Chem., 56:19, 1995.
- [140] HALGREN, T. A. und R. B. NACHBAR: Merck Molecular Force Field. IV. Conformational Energies and Geometries for MMFF94. J. Comput. Chem., 17:587, 1996.
- [141] SALZNER, U. und P. V. R. SCHLEYER: Generalized Anomeric Effects and Hyperconjugation in CH₂(OH)₂, CH₂(SH)₂, CH₂(SeH)₂, and CH₂(TeH)₂. J. Am. Chem. Soc., 115:10231, 1993.
- [142] HUBER, P. K. und G. HERZBERG: Molecular Spectra and Structre IV. Constants of Diatomic Molecules. van Nostrand, New York, 1979.
- [143] CALLOMON, J. H., E. HIROTA, T. IIJIMA, K. KUCHITSU und W. J. LAFFERTY: Structure Data of Free Polyatomic Molecules, Band II/15. Springer-Verlag, Berlin, 1987. New Series, Landolt-Boernstein.
- [144] CALLOMON, J. H., E. HIROTA, K. KUCHITSU, W. J. LAFFERTY, A. G. MAKI und C. S. POTE: *Structure Data of Free Polyatomic Molecules*, Band II/7. Springer-Verlag, Berlin, 1976. New Series, Landolt-Boernstein.
- [145] HIROTA, E. IIJIMA, T., K. KUCHITSU, W. J. LAFFERTY und D. A. RAMSAY: Structure Data of Free Polyatomic Molecules, Band II/21. Springer-Verlag, Berlin, 1992. New Series, Landolt-Boernstein.
- [146] GIGUÈRE, P. A. und T. K. K. SRINIVASAN: The Ground-State Geometry of the H₂O₂ and D₂O₂ Molecules. J. Mol. Spectr., 66:168, 1977.
- [147] BORISENKO, K. B., C. W. BOCK und I. HARGITTAI: Molecular Geometry of Benzaldehyde and Salicylaldehyde: A Gas-Phase Electron Diffraction and ab Initio Molecular Orbital Investigation. J. Phys. Chem., 100:7426, 1996.
- [148] ROBINSON, J. W. (Herausgeber): Handbook of Spectroscopy, Band 1. CRC Press, Baton Rouge, 1980.
- [149] TURNER, D. W., C. BAKER, A. D. BAKER und C. R. BRUNDLE: Molecular Photoelectron Spectroscopy. Wiley-Interscience, London, 1970.
- [150] DITTMER, G. und U. NIEMANN: Thermodynamic Properties of Gaseous Non-Metallic Main Group Element Halides, Oxyhalides and Oxides. Philips J. Res., 37:1, 1982.
- [151] LIDE, D. R. (Herausgeber): CRC Handbook of Chemistry and Physics. CRC Press, Baton Rouge, 1992.

- [152] DEMAISON, J., A. DUBRULLE, W. HÜTTNER und E. TIEMANN: Molecular Constants, Band II/14. Springer-Verlag, Berlin, 1982. New Series, Landolt-Boernstein.
- [153] LOVAS, F. J., E. TIEMANN, J. S. COURSEY, S. A. KOTOCHIGOVA, K. K. OLSEN und R. A. DRAGOSET. (2002), *Diatomic Spectral Database* (version 1.0), F.J. Lovas, J.S. Coursey, S.A. Kotochigova, K. Olsen, and R.A. Dragoset. (2002), *Triatomic Spectral Database* (version 1.0), F.J. Lovas, R.D. Suenram, J.S. Coursey, S.A. Kotochigova, K. Olsen, and R.A. Dragoset. (2002), *Hydrocarbon Spectral Database* (version 1.1).
- [154] DEMAISON, J., W. HÜTTNER, B. STARCK, I. BUCK, R. TISCHER und M. WINNEWIS-SER: *Molecular Constants*, Band II/6. Springer-Verlag, Berlin, 1974. New Series, Landolt-Boernstein.
- [155] WIBERG, K. B. und P. R. RABLEN: Comparison of Atomic Charges Derived via Different Procedures. J. Comput. Chem., 14:1504, 1993.
- [156] REED, A. E., R. B. WEINSTOCK und F. WEINHOLD: Natural population analysis. J. Chem. Phys., 83:735, 1985.
- [157] SHIMANOUCHI, T.: Tables of Molecular Vibrational Frequencies, Band I. NSRDS-NBS 39, U.S. Government Printing Office, Washington, 1972.
- [158] SHIMANOUCHI, T.: Tables of Molecular Vibrational Frequencies, Band II. J. Phys. Chem. Ref. Data, 6:993, 1977.
- [159] KONDRATEV, V. N. (Herausgeber): Dissociation Energies of Chemical Bonds, Ionization Potentials, and Electron Affinities. Nauka, Moscow, 1974. (auf Russisch).
- [160] JACOX, M. E.: Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules. J. Phys. Chem. Ref. Data Monograph No. 3, 1994.
- [161] TRAEGER, J. C.: Heat of Formation for the 1-Methylallyl Cation by Photoionization Mass Spectrometry. J. Phys. Chem., 90:4114, 1986.
- [162] TRAEGER, J. C. und J. L. HOLMES: *Heat of Formation of CH₂OH*. J. Phys. Chem., 97:3453, 1993.
- [163] DE OLIVEIRA, G., J. M. L. MARTIN, I. K. C. SILWAL und J. F. LIEBMAN: Definitive Heat of Formation of Methylenimine, CH₂=NH, and of Methylenimmonium Ion, CH₂NH₂⁺, by Means of W2 Theory. J. Comput. Chem., 22:1297, 2001.
- [164] WHITESIDE, R. A., M. J. FRISCH und J. A. POPLE: The Carnegie-Mellon Quantum Chemistry Archive. Pittsburgh, 3. Auflage, 1983.
- [165] FINLEY, J., P.-Å. MALMQVIST, B. O. ROOS und L. SERRANO-ANDRÉS: The multi-state CASPT2 method. Chem. Phys. Lett., 288:299, 1998.
- [166] SERRANO-ANDRÉS, L., M. MERCHÁN, I. NEBOT-GIL, R. LINDH und B. O. ROOS: Towards an accurate molecular orbital theory for excited states: Ethene, butadiene, and hexatriene. J. Chem. Phys., 98:3151, 1993.
- [167] SERRANO-ANDRÉS, L., R. LINDH, B. O. ROOS und M. MERCHÁN: Theoretical Study of the Electronic Spectrum of all-trans-1,3,5,7-Octatetraene. J. Phys. Chem., 97:9360, 1993.
- [168] GONZÁLEZ-LUQUE, R., M. MERCHÁN und B. O. ROOS: Multiconfigurational perturbation theory (CASPT2) applied to the study of low-lying singlet and triplet excited states of cyclopropene. Z. Phys. D, 36:311, 1996.

- [169] SERRANO-ANDRÉS, L., M. MERCHÁN, I. NEBOT-GIL, B. O. ROOS und M. FÜLSCHER: Theoretical Study of the Electronic Spectra of Cyclopentadiene, Pyrrole, and Furan. J. Am. Chem. Soc., 115:6184, 1993.
- [170] LORENTZON, J., P.-Å. MALMQVIST, M. FÜLSCHER und B. O. ROOS: A CASPT2 study of the valence and lowest Rydberg electronic states of benzene and phenol. Theor. Chim. Acta, 91:91, 1995.
- [171] BECK, M. E., R. REBENTISCH, G. HOHLNEICHER, M. FÜLSCHER, L. SERRANO-ANDRÉS und B. O. ROOS: Vertical and adiabatic electronic excitations in biphenylene: A theoretical study. J. Chem. Phys., 107:9464, 1997.
- [172] RUBIO, M., M. MERCHÁN, E. ORTÍ und B. O. ROOS: A theoretical study of the electronic spectrum of naphthalene. Chem. Phys., 179:395, 1994.
- [173] SCHÜTZ, M., J. HUTTER und H. P. LÜTHI: The molecular and electronic structure of s-tetrazine in the ground and first excited state: A theoretical investigation. J. Chem. Phys., 103:7048, 1995.
- [174] SERRANO-ANDRÉS, L., M. P. FÜLSCHER, B. O. ROOS und M. MERCHÁN: *Theoretical Study of the Electronic Spectrum of Imidazole*. J. Phys. Chem., 100:6484, 1996.
- [175] LORENTZON, J., M. P. FÜLSCHER und B. O. ROOS: A theoretical study of the electronic spectra of pyridine and phosphabenzene. Theor. Chim. Acta, 92:67, 1995.
- [176] MALMQVIST, P.-Å., B. O. ROOS, M. P. FÜLSCHER und A. P. RENDELL: An ab initio quantum chemical study of vertically excited singlet states of pyrimidine. Chem. Phys., 162:359, 1992.
- [177] MERCHÁN, M. und B. O. ROOS: A theoretical determination of the electronic spectrum of formaldehyde. Theor. Chim. Acta, 92:227, 1995.
- [178] MERCHÁN, M., B. O. ROOS, R. MCDIARMID und X. XING: A combined theoretical and experimental determination of the electronic spectrum of acetone. J. Chem. Phys., 104:1791, 1996.
- [179] SERRANO-ANDRÉS, L. und M. P. FÜLSCHER: Theoretical Study of the Electronic Spectroscopy of Peptides. 1. The Peptidic Bond: Primary, Secondary, and Tertiary amides. 2. Glycine and N-Acetylglycine. J. Am. Chem. Soc., 118:12190, 12200, 1996.
- [180] BESLEY, N. A., M.-J. BRIENNE und J. D. HIRST: Electronic Structure of a Rigid Cyclic Diamide. J. Phys. Chem. B, 104:12371, 2000.
- [181] FÜLSCHER, M. P., L. SERRANO-ANDRÉS und B. O. ROOS: A Theoretical Study of the *Electronic Spectra of Adenine and Guanine*. J. Am. Chem. Soc., 119:6168, 1997.
- [182] LORENTZON, J., M. P. FÜLSCHER und B. O. ROOS: Theoretical Study of the Electronic Spectra of Uracil and Thymine. J. Am. Chem. Soc., 117:9265, 1995.
- [183] REDFERN, P. C., P. ZAPOL, L. A. CURTISS und K. RAGHAVACHARI: Assessment of Gaussian-3 and Density Functional Theories for Enthalpies of Formation of C₁-C₁₆ Alkanes. J. Phys. Chem. A, 104:5850, 2000.
- [184] TSCHUMPER, G. S., M. L. LEINIGER, B. C. HOFFMAN, E. F. VALEEV, H. F. SCHAE-FER und M. QUACK: Anchoring the water dimer potential energy suface with explicitly correlated computations and focal point analyses. J. Chem. Phys., 116:690, 2002.

- [185] SMITH, B. J., D. J. SWANTON, J. A. POPLE, H. F. SCHAEFER und L. RADOM: Transition structures for the interchange of hydrogen atoms within the water dimer. J. Chem. Phys., 92:1240, 1990.
- [186] KITANO, M., T. FUKUYAMA und B. KUCHITSU: *Molecular Structure of N-Methylacetamide as Studied by Gas Electron Diffraction*. B. Chem. Soc. Jpn., 46:384, 1973.
- [187] MACKERELL, A. D. ET AL.: All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B, 102:3586, 1998.
- [188] BÖHM, H.-J. und S. BRODE: Ab Initio SCF Calculations on Low-Energy Conformers of N-Acetyl-N'-methylalaninamide and N-Acetyl-N'-methylglycinamide. J. Am. Chem. Soc., 113:7129, 1991.
- [189] GOULD, I. R., W. D. CORNELL und I. H. HILLIER: A Quantum Mechanical Investigation of the Conformational Energetics of the Alanine und Glycine Dipeptides in the Gas Phase and in Aqueous Solution. J. Am. Chem. Soc., 116:9250, 1994.
- [190] MÖHLE, K. und H.-J. HOFMANN: Stability order of basic peptide conformations reflected by density functional theory. J. Mol. Model., 4:53, 1998.
- [191] MÖHLE, K., M. GUSSMANN und H.-J. HOFMANN: Structural and Energetic Relations between β Turns. J. Comp. Chem., 18:1415, 1997.
- [192] MCDONALD, I. K. und J. M. THORNTON: Satisfying Hydrogen-Bonding Potential in Proteins. J. Mol. Biol., 239:315, 1994.
- [193] GOULD, I. R. und P. A. KOLLMAN: *Ab Initio SCF and MP2 Calculations on Four Low-Energy Conformers of N-Acetyl-N'-methylalaninamide*. J. Phys. Chem., 96:9255, 1992.
- [194] GUO, H. und M. KARPLUS: *Ab Initio Studies of Hydrogen Bonding of N-Methylacetamide: Structure, Cooperativity, and Internal Rotational Barriers.* J. Phys. Chem., 96:7273, 1992.
- [195] WIEST, O., D. C. MONTIEL und K. N. HOUK: Quantum Mechanical Methods and the Interpretation and Prediction of Pericyclic Reaction Mechanisms. J. Phys. Chem. A, 101:8378, 1997.
- [196] HROVAT, D. A., B. R. BENO, H. LANGE, H.-Y. YOO, K. N. HOUK und W. T. BORDEN: A Becke3LYP/6-31G* Study of the Cope Rearrangements of Substituted 1,5-Hexadienes Provides Computational Evidence for a Chameleonic Transition State. J. Am. Chem. Soc., 121:10529, 1999.
- [197] HU, H., M. N. KOBRAK, C. XU und S. HAMMES-SCHIFFER: Reaction Path Hamiltonian Analysis of Dynamical Solvent Effects for a Claisen Rearrangement and a Diels-Alder Reaction. J. Phys. Chem. A, 104:8058, 2000.
- [198] VANCE, R. L., N. G. RONDAN, K. N. HOUK, F. JENSEN, W. T. BORDEN, A. KOMOR-NICKI und E. WIMMER: *Transition Structures for the Claisen Rearrangement*. J. Am. Chem. Soc., 110:2314, 1988.
- [199] NGUYEN, M. T., A. K. CHANDRA, S. SAKAI und K. MOROKUMA: Another Look at the Mechanism of the Concerted 1,3-Dipolar Cycloaddition of Fulminic Acid to Acetylene. J. Org. Chem., 64:65, 1999.
- [200] SOSA, C., J. ANDZELM, C. LEE, J. F. BLAKE, B. L. CHENARD und T. W. BUTLER: Electronic Structure Calculations of 1,3-Dipolar Cycloadditions Using Density Functional and Hartree-Fock Methods. Int. J. Quant. Chem., 49:511, 1994.

- [201] DI VALENTIN, C., M. FRECCERO, R. GANDOLFI und A. RASTELLI: Concerted vs Stepwise Mechanism in 1,3-Dipolar Cycloaddition of Nitrone to Ethene, Cyclobutadiene, and Benzocyclobutadiene. A Computational Study. J. Org. Chem., 65:6112, 2000.
- [202] BACHRACH, S. M. und S. JIANG: Ab Initio Study of the Thio-Ene Reaction. 1. The Enophile Substituent Effect. J. Org. Chem., 62:8319, 1997.
- [203] FRISCH, M. J., A. C. SCHEINER und H. F. SCHAEFER: The malonaldehyde equilibrium geometry: A major structural shift due to the effects of electron correlation. J. Chem. Phys., 82:4194, 1985.
- [204] BRUMER, Y., M. SHAPIRO, P. BRUMER und K. K. BALDRIDGE: Controlled Alcohol-Ketone Interconversion by Dihydrogen Transfer: An ab Initio Study of the Methanol-Formaldehyde Complex. J. Phys. Chem. A, 106:9512, 2002.
- [205] WIEST, O., K. A. BLACK und K. N. HOUK: Density Functional Theory Isotope Effects and Activation Energies for the Cope and Claisen Rearrangements. J. Am. Chem. Soc., 116:10336, 1994.
- [206] BAUGHCUM, S. L., Z. SMITH, E. B. WILSON und R. W. DUERST: Microwave Spectroscopic Study of Malonaldehyde. 3. Vibration-Rotation Interaction and One-Dimensional Model for Proton Tunneling. J. Am. Chem. Soc., 106:2260, 1984.
- [207] BILLETER, S. R., C. F. W. HANSER, T. Z. MORDASINI, M. SCHOLTEN, W. THIEL und W. F. VAN GUNSTEREN: *Molecular dynamics study of oxygenation reactions catalysed by the enzyme p-hydroxybenzoate hydroxylase.* Phys. Chem. Chem. Phys., 3:688, 2001.